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RESUME

Cette these s’inscrit dans le cadre de I’étude mathématique de la mécanique des fluides.
Nous nous intéressons aux équations d’Euler et QGSW (Quasi-Geostrophic Shallow- Water
en anglais) bidimensionnelles, qui prennent la forme d’équations de transport non-linéaires
et non-locales. Nous étudions en particulier I’émergence de structures quasi-périodiques

sous la forme de poches de tourbillon pour ces modeles.

La mécanique des fluides est une branche de la Physique dont ’objet est la description
des propriétés dynamiques des fluides (généralement des liquides ou des gaz mais aussi
parfois des plasmas). Rappelons que les équations d’Euler décrivent 1’évolution d’un fluide
homogene incompressible non-visqueux. Elles peuvent étre posées en n’importe quelle
dimension d’espace, mais nous nous limiterons au cas de la dimension deux qui a 'avantage
de présenter une structure de transport sur la vorticité. Leur présentation sera faite en
Section 1.1.1. Les équations QGSW quant a elles décrivent la circulation des océans ou
de I'atmosphere sur des échelles de temps et d’espace assez larges. Elles sont obtenues
a partir des équations Shallow-Water en effectuant un développement asymptotique au
premier ordre par rapport au nombre de Rossby proche de I’équilibre géostrophique. Cet
équilibre correspond a une compensation entre les effets de rotation et de stratification du
fluide étudié. Analytiquement, les équations QGSW peuvent se voir comme une générali-
sation des équations d’Euler écrites en formulation vitesse-tourbillon via I'introduction
d’un parametre appelé rayon de Rossby relié a la fréquence de Coriolis, la constante de
gravitation et la hauteur moyenne du fluide étudié. Nous renvoyons a la Section 1.1.2 pour

une présentation plus détaillée de ce modele.

Dans ce travail, nous étudions quelques propriétés dynamiques des poches de tourbillon
planaires, qui sont des solutions faibles de la classe de Yudovich pour les modeles cités
plus haut. Les poches décrivent I’évolution temporelle de domaines bidimensionnels
bornés et 1’étude de leur dynamique est réduite a celle de leur contour qui est soumis
a une équation intégro-différentielle. Grace a la structure des équations, les fonctions
radiales fournissent des solutions stationnaires, en particulier les poches associées aux
disques appelées tourbillons de Rankine. L’analyse des portraits de phase autour de ces
points d’équilibre a suscité beaucoup d’intéréts. Notons qu’une activité assez riche s’est
développée durant la derniere décennie autour des solutions périodiques. Dans le cas
rigide, ou la forme de la solution ne change pas au cours du temps (appelée V-state), de
nombreuses structures dépendant de la topologie ont été mise en évidence grace a des

techniques de bifurcation. Ces solutions implicites effectuent une rotation uniforme autour



de leur centre de masse a vitesse angulaire constante. Par contre, dans le cas non-rigide,
peu de résultats sont connus a ce jour. A la suite de ces travaux, une question naturelle

s’est alors imposée :

Peut-on trouver des solutions quasi-périodiques (plus générales que périodiques)

proches de certains de ces points d’équilibre ?

Cette these a pour vocation a apporter une réponse positive a cette question. Les tech-
niques employées sont empruntées aux théories de KAM (nomée d’apres ses fondateurs
Kolmogorov, Arnold et Moser) et de Nash-Moser dans I'esprit des récents travaux de
Massimiliano Berti et de ses collaborateurs. Rappelons que la théorie de KAM originelle
décrit (sous de bonne conditions de régularité et de non-dégénérescence) la persistance de
tores invariants supportant des trajectoires quasi-périodiques pour de petites perturbations
de systémes hamiltoniens intégrables en dimension finie. Cette théorie fut développée
dans les années 50-60 et a commencé a étre étendue aux EDP hamiltoniennes et/ou
réversibles, i.e. en dimension infinie, a partir des années 80-90 avec notamment les travaux
de Kuksin, Wayne, Poschel et Bourgain. Une présentation plus exhaustive de 1'utilisation
des techniques KAM en EDP est faite a la Section 1.3. Le schéma de Nash-Moser, quant
a lui, est un processus itératif généralisant la méthode de Newton au moyen d’opérateurs
de régularisation (typiquement des projections sur un nombre fini de modes de Fourier)
afin de trouver certains zéros d’une fonctionnelle. Son utilisation permet d’effectuer un
théoreme des fonctions implicites "a la main" dans le cas d’existence d’un inverse approché
a droite satisfaisant de bonnes estimées douces avec perte fixe de régularité. Tout comme
la méthode classique de Newton, I’avantage majeur de ce procédé, introduit par John Nash
dans les années 50, réside dans son caractere quadratique, ce qui implique une vitesse de

convergence exponentielle.

Les modeles qui nous intéressent ici et en particulier leurs formulations au niveau des
poches de tourbillon sont des EDP hamiltoniennes. De plus, elles peuvent étre décrites
comme des perturbations quasi-linéaires de leurs linéarisations aux tourbillons de Rankine
qui, elles, forment des systemes intégrables. Nous sommes donc précisément dans le
cadre adapté a l'utilisation des techniques KAM. Nous arrivons a générer des poches de
tourbillon quasi-périodiques en jouant avec un parametre qui apparait soit naturellement
dans I’équation soit géométriquement di a des propriétés de non-invariance par changement
d’échelle. Pour de bonnes valeurs de ce parametre choisies dans un ensemble de type
Cantor nous arrivons a montrer ’existence de telles structures. Voici a présent un plan

succint de la these.

» La premicere partie de la these (Part I) est consacrée a 'étude de l'existence de poches
de tourbillon quasi-périodiques proche du disque unité pour les équations QGSW.
Ces structures apparaissant naturellement au niveau linéaire persistent au niveau

non-linéaire modulo un choix du rayon de Rossby parmi un ensemble possible de
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mesure presque pleine. Il est a noté que ce choix revient a sélectionner des équations
pour lesquelles on est capable de construire des solutions, mais en aucun cas les
équations sont fixées a I’avance. Ce travail a été effectué avec mon directeur Taoufik
Hmidi.

» La seconde partie (Part II) est dédiée a 'obtention de poches quasi-périodiques
proches des tourbillons de Rankine pour les équations d’Euler posées dans le disque
unité. Cette fois, c’est un parametre géométrique, le rayon des tourbillons de Rankine,
qui permet de générer les solutions quasi-périodiques. L’apparition de ce parameétre
est reliée a la non-invariance du probleme par dilatation. En effet, dans le plan entier,
cette approche n’est pas possible dii notamment a des résonances triviales entre les
fréquences a I’équilibre. L’ensemble des rayons admissibles est de type Cantor et de
mesure presque pleine. L’analyse est plus simple dans ce cadre car les effets du bord
se font au travers de termes réguliers. Ce travail a été fait en collaboration avec Zineb

Hassainia.

Techniquement, les difficultés rencontrées dans les preuves de ces deux résultats peuvent

étre classifiées en trois composantes.

o La premiere est de nature spectrale. Comme mentionné plus haut, chaque équation
est quasi-linéaire et sa linéarisation est a coefficients variables. Au cours du schéma
de Nash-Moser, il nous faut construire un inverse approché a droite du linéarisé ce
qui se fait en conjuguant celui-ci a un opérateur a coefficients constants en choisissant
les parametres parmi des ensembles de Cantor liés au spectre de 'opérateur. Cette
procédure est assez cotliteuse et est basée sur les techniques KAM. En particulier, pour
les équations QGSW, le spectre est relié a des fonctions de Bessel modifiées et 'on
doit faire appel a des propriétés fines de ces dernieres, reliées a leurs asymptotiques,

leurs représentations intégrales etc...

» La seconde est de nature fonctionnelle. En vue de 'application du schéma de Nash-
Moser, nous devons montrer des estimées douces et des propriétés de symétrie pour
I'inverse approché ce qui nous oblige a étre attentif aux lois de produit et composition
en lien avec les fonctions et opérateurs utilisés lors de la réduction du linéarisé a
coefficients constants. Pour faire converger le schéma de réduction, il nous faut utiliser
a certains endroits une topologie particuliere sur les opérateurs Toeplitz en temps,
plus forte que la topologie standard sur les opérateurs. Enfin, I’analyse est basée
sur I’étude d’opérateurs a noyaux qui sont assez singuliers et requierent donc une
attention particuliere. Le travail direct avec la structure du noyau et non du symbole
de opérateur (techniques de calcul pseudo-différentiel) est en contraste avec les
travaux précédents dans I’étude de 1’émergence de solutions quasi-périodiques en
EDP. II est important de remarquer que, pour les équations qui nous intéressent,
les singularités du noyau apparaissent comme des convolutions. C’est un point clé

qui, grace a des changements de variables, permet d’estimer le noyau. Les parties
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non-singulieres étant régularisantes a tous ordres, leurs estimations sont relativement

simples.

La derniéere difficulté est plutot relative a la théorie des nombres. En effet, 'application
des techniques KAM implique la résolution d’équations dites homologiques qui néces-
sitent des conditions de non-résonance en lien avec I’approximation diophantienne.
Afin d’assurer ces conditions, il nous faut sélectionner des parametres admissibles
en exploitant une rigidité des fréquences a 1’équilibre qui se manifeste par la non-

dégénérescence et la transversalité.

La troisieme partie de la these (Part III) est consacrée a I’étude de I'existence de
V-states doublement-connexes analytiques pour les équations QGSW. 1l s’agit de
solutions dont le domaine possede un trou et qui sont en rotation uniforme. Ces
poches, obtenues par des techniques de bifurcation, satisfont des conditions de hautes
symétries (non explicites) et les branches de bifurcations associées émergent de
I’anneau pour des vitesses angulaires bien spécifiques reliées aux fonctions de Bessel
modifiées. Le point délicat de 'analyse est en lien avec des propriétés fines sur ces
fonctions spéciales. Ce résultat est dans la lignée de ceux obtenus dans la derniére

décennie concernant les poches périodiques.
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ABSTRACT

This thesis takes place in the mathematical study of fluid mechanics. We are interested in bidimensional
Euler and quasi-geostrophic shallow-water (QGSW) equations, which take the form of nonlinear and
nonlocal transport-type equations. We study in particular the emergence of quasi-periodic vortex patch

structures for these models.

Recall that Euler equations describe the evolution of an inviscid homogeneous and incompressible fluid.
They can be set in any space dimension but we shall restrict our discussion to the dimension two since
in this case the vorticity solves a transport equation. Their presentation is done in Section 1.1.1. As to
the QGSW equations, they describe the circulation of the ocean and the atmosphere at large time and
space scales. They are obtained from shallow-water equations by making some asymptotic expansions
with respect to the Rossby number close to the quasi-geostrophic balance. This equilibrium corresponds
to a balance between rotation and stratification effects. Analytically, these equations can be seen as a
generalization of Fuler equations written in velocity-vorticity formulation through the introduction of a

parameter called Rossby radius. We refer to Section 1.1.2 for a detailed presentation of this model.

In this work, we study some dynamical properties of planar vortex patches, which are weak solutions in
the Yudovich class for the above mentioned models. They describe the evolution of bidimensional bounded
domains and the study of their dynamics is reduced to the one of their boundary which is subject to an
integro-differential equation. Thanks to the structure of the equations, radial profiles provide stationary
solutions, in particular vortex patches associated with the discs called Rankine vortices. The analysis
of the phase portraits close to these equilibrium points has aroused great interest. Notice that, during
the last decade, a quite rich activity has been developed around periodic solutions. In the rigid motion
case, where the solution keeps the same shape (and is called V-state), several structures depending on the
topology were found by using bifurcation theory. These implicit solutions perform a uniform rotation
around their center of mass with constant angular velocity. However, very few results are known in the

non-rigid case. After these works, a natural question appeared :

Can we find quasi-periodic solutions (more general than periodic)

close to some of these equilibrium points ?

This thesis answers positively to this question. The techniques involved are borrowed from KAM and
Nash-Moser theories in the spirit of the recents works of Massimiliano Berti and his collaborators. Recall
that the original KAM theory describes (in suitable regularity) the persistence of invariant tori supporting
quasi-periodic motions for small perturbations of integrable Hamiltonian systems in finite dimension.
This theory was developed in the 50-60s and started to be extended to Hamiltonian PDE, i.e. in infinite
dimension, in the 80-90s. The Nash-Moser scheme is an iterative procedure generalizing the Newton’s
method through the use of regularizing operators. It allows to perform an implicit function theorem

in case of existence of an approximate right inverse satisfying nice tame estimates with fixed loss of regularity.

The models of interest here and in particular their formulations at the level of vortex patches are
Hamiltonian PDE. In addition, they can be seen as quasilinear perturbations of their linearizations at the

Rankine vortices which one are integrable. Then, we are exactly in a well-adapted situation for applying
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KAM techniques. We can generate quasi-periodic vortex patch solutions by playing with a parameter
appearing either naturally in the equations or geometrically due to non-invariance scaling properties. For
suitable selected values of this parameter among a Cantor-type set, we can generate these solutions. We

shall now present a short plan of the memoir.

» The first part of the thesis (Part I) is devoted to proving the existence of time quasi-periodic vortex
patches close to the unit disc for QGSW equations. These structures appearing naturally at the
linear level persist at the nonlinear one modulo the choice of the Rossby radius among a massive
Cantor-like set. This work has been done together with my PhD advisor Taoufik Hmidi.

» The second part (Part IT) of the thesis is devoted to proving the existence of quasi-periodic in time
vortex patches close to the Rankine vortices for Euler equations set in the unit disc. Here this is a
geometrical parameter, the radius of the Rankine vortices, which allows to generate quasi-periodic
solutions. The apparition of this parameter is related to the non-invariance by radial dilation of
the problem. Indeed, in the whole plane, this approach fails in particular due to trivial resonances
between the equilibrium frequencies. The set of admissible parameters is of Cantor-type with almost
full Lebesgue measure. The analysis is simpler in this case since the boundary effects make appear

smooth terms. This work has been done in collaboration with Zineb Hassainia.

From a technical point of view, the difficulties encountered in the proofs of the previous two results can

be classified into three components.

e The first one is of spectral nature. As already mentioned, each equation is quasilinear and its
linearization has variable coefficients. Along the Nash-Moser scheme, we need to construct an
approximate right inverse for the linearized operator which is done by conjugating it to a constant
coeflicients operator provided the choice of parameters among Cantor sets related to the spectrum

of the operator. This procedure is expensive and based on KAM reductions.

o The second is linked to functional analysis. In view of the Nash-Moser iteration, we need to show
tame estimates and symmetry properties for the approximate inverse which forces us to pay attention
to products and composition laws related to functions and operators used during the reduction of
the linearized operator to constant coefficients. In order to make the reduction scheme convergent,
we have to deal with a special Toeplitz in time topology for operators which is stronger than the
classical one. Finally, the analysis is based on the study of integral operators whose kernels are quite

singular and require particular attention.

e The last difficulty is related to number theory. Indeed, the implementation of KAM techniques
implies to solve some equations called homological which require non-resonance conditions linked
to Diophantine approximation. In order to ensure these conditions, we must select admissible
parameters by exploiting the rigidity of the equilibrium frequencies through the non-degeneracy and

the transversality.

» The third part (Part III) deals with the existence of analytic doubly-connected V-states for QGSW
equations. These patches, obtained by bifurcation techniques, have high symmetries and the
associated branches of bifurcation emerge from the annulus for very specific angular velocities related
to modified Bessel functions. The delicate point in the analysis is linked to rafined properties of
these special functions. This result follows the previous works in the field obtained during the past

decade.
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Introduction

Le progres n’est que 'accomplissement

des utopies.

OscAR WILDE

1 Historical and mathematical contexts

Fluid mechanics is a branch of Physics studying the dynamics of fluids, namely, liquids, gases or even
plasmas. The literature in the subject is huge so we may restrict our discussion to the case of an inviscid,
homogeneous and incompressible fluid for which the Euler equations [61] and their generalizations are
well-adapted to describe the dynamics. We refer to Section 1.1 for a mathematical presentation of the
fluid models of interest in this work. Such models (or at least the Eulerian one) have been widely studied

numerically, experimentally and analytically, so we may focus on some aspects which fit with our purpose.

This thesis is devoted to the study of the emergence of ordered structures for some fluid models.
More precisely, we are interested in the vortex patch dynamics. Their study goes back to the works of
Helmoltz [92, 91], Kirchhoff [114] and Kelvin [111]. Helmoltz introduced in [91] the notion of vorticity for
Euler equations, which is in the bidimensional case a scalar function quantifying the local rotation of the
mesoscopic particles. He proved that the vorticity is a solution to an active scalar equation driven by the
solenoidal velocity field of the fluid. Therefore, the initial profile is transported by the flow associated to
the velocity. In particular, if the initial condition is given by the characteristic function of a bounded
domain, then, at later time, the solution will keep the same structure and the resulting solution is called
vortex patch. These structures can be seen as a simple modelization of hurricanes and in this context, the
nature provides some interesting examples (see Figure 1-(b) and 2). We refer to Section 1.2 for a detailed

mathematical presentation of vortex patches.

R
NS 2 W\ \PXA

s
e

AN

< 0
WA

(a) (b)

Figure 1: (a) Ordered fluid structures. (b) Hexagon vortex at the north pole of Saturn (Cassini spacecraft
2017).

When renormalized by its area, then taking the diameter of the vortex patch going to zero, we find a
point vortex. The point vortex system is the equivalent of the N-body problem in fluid mechanics. It was
first introduced by Helmoltz in [92]. Later on, Kirchhoff [114] proved the Hamiltonian structure of this
system. Then, Poincaré [129] and Grobli [82] studied the 3-point vortex configuration and showed that it

18



Introduction

Figure 2: Pictures in false colors of the North (a) and South (b) poles of Jupiter where polygonal vortex
sturctures are rotating (Juno spacecraft 2017).

is integrable. The inverse problem of desingularizing a point vortex configuration to get a vortex patch
motion has been recently studied [70, 71, 90, 98] and numerical simulations like in [4] on point vortices

are helpful in this task.

We shall look for the emergence of quasi-periodic solutions in the patch form for different models.
Quasi-periodic functions are a generalization of periodic ones and are natural structures appearing in
Hamiltonian systems. Their study goes back to the works of Kolmogorov [115], Arnold [5] and Moser
[126] who proved the persistence of invariant tori supporting quasi-periodic motion for perturbations of
integrable Hamiltonian systems in finite dimension. KAM theory was extended and refined for several
Hamiltonian PDE with small divisors problems. For instance, it has been implemented for the 1-d
semilinear wave and Schrodinger equations in several papers [39, 47, 49, 119, 131, 134, 147]. Many results
were also obtained for semilinear perturbations of PDE [20, 19, 40, 60, 69, 109, 117, 118, 123]. However
the case of quasi-linear or fully nonlinear perturbations were explored in [10, 8, 9, 21, 32, 67]. Many
interesting results have also been obtained in the past few years on the periodic and quasi-periodic settings
for the water-waves equations as in [2, 7, 29, 28, 33, 108, 128]. For Euler equations, only few results are
known [11, 51]. We refer the reader to Section 1.3 for more details about KAM theory and its applications
to PDE.

05

0.5 +

Figure 3: Numerical simulation of quasi-periodic point vortex motion [37].
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1.1 Nonlinear and nonlocal transport-type fluid models

In this section, we present the various partial differential equations of interest in this PhD. These are

bidimensional nonlinear fluid models which can be written as an active scalar equation, namely
Ow +v-Vw =0, (t,z) e Ry x D

for a certain scalar unknown function w = w(t,z) driven by a time dependent solenoidal vector field
v = v(t, z) related to w through singular integrals. The equation is set in a planar domain D taken either

as the full plane or the unit disc in our discussions
D = R? or D:Dé{(zl,:ﬁg)eRQ s.t. x%—l—x%él}.

The divergence-free condition allows to introduce a velocity potential ¥ = (¢, x) such that
v=viw, vi2 <—a2> :
In each considered model, the stream function ¥ is given by an integral in the form
w(t.o) = [ Glaelt.n)dAw).
with a Green function G satisfying the following symmetry properties

Vo e R, VY(z,y) € D? G(ewx,ewy) = G(z,y) = G(y, ). (1.1)

Here and in the sequel, we use the notation dA for the planar Lebesgue measure. Notice that along the
document, we shall identify C with R2. In particular, the Euclidean structure of R? is seen in the complex

sense through the usual inner product defined for all zy = ay +ib; € C and 20 = as +1by € C by
Z1 %22 £ <Z17 22>]R2 = Re (215) = aia2 + blbg. (12)

Several examples of such nonlinear transport-type equations are known in fluid mechanics :

Equations Domain D Unknown w Potential G(z,y)
Euler R? vorticity w > log(|lz — y)
Euler D vorticity w 5 log ( f”:wyy )
(QGSW)y with A € RY, R? potential vorticity ¢ —5=Ko (Alz — y])
(SQG), with o € (0,1) R? temperature 6 F(%)Q 1

Remark 1.1. Observe at this stage that according to the symmetry properties in (1.1), every radial initial
profile generates a trivial stationary solution. In this memoir, we shall look for quasi-periodic structures
living close to the stationary solutions given by discs and for periodic structures living close to the annuli.
1.1.1 Euler equations

We first introduce the 2D-Euler equations which is the master model in fluid dynamics describing the

evolution of an inviscid homogeneous incompressible fluid in a domain D. It was first introduced by Euler
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in [61] and writes in the following way

Ov+v-Vv+Vp=0, inRy xD
()X V-v=0 (1.3)

v(0,-) = vo.

The quantity v = v(t, z) denotes the velocity field of the fluid. It is obtained as an average of the velocities
of particles contained in a mesoscopic volume of fluid at time ¢ and centered around a position x. The scalar
function p = p(t, x) denotes the pressure of the fluid at time ¢ and position z. More generally, the gradient
term can represent the sum of all conservative forces acting on the fluid. Notice that the incompressibility
condition is encoded in the divergence-free condition for the vector field v (second equation in (1.3)). In
the case D = D, the system (1.3) is supplemented with the non penetration condition v - v = 0 where v is

the outward normal vector to the boundary 9.

The global well-posedness theory for these equations set in the full plane goes back to the work
of Wolibner [148] for smooth initial data. Later on, for classical solutions in Sobolev spaces H®(R?)
(s > 2) the local well-posedness was proved by Kato and Ponce in [110]. Then, the question of the global
existence of these solutions was solved in [15]. Notice that the global well-posedness in Holder spaces was
also obtained in [45]. The case of supercritical Besov spaces was studied in [44] and the critical cases
were proved in [143] and [95]. As regards the situation in a bounded domain, the first result was given
by Ebin and Marsden [58] in Sobolev and Holder spaces, see also [57]. Their proof was very technical

and based on Riemannian geometry on infinite dimensional manifolds. A simpler proof was proposed in [16].

We shall now present the velocity-vorticity formulation of Euler equations. In the planar case, this
new system is equivalent to the Euler system (1.3) under nice decay property at infinity. We introduce
the vorticity

A
w:VJ‘ 'V281V2782V1.

This quantity measures the rotation effects inside the fluid. Applying the operator V1 to the first equation

in (1.3), we get the following active scalar equation
0w +v-Vw =0.
In the planar case, the stream function is solution of the Laplace problem
AP =w

and then is given by
1
Vr € R?, W(t,x) = —/ log (| — y|)w(t,y) dA(y).
2 R2

In the case of the unit disc D, the stream function ¥ solves the following Dirichlet problem

AW = w
Psp = 0.

Thus, by using the Green function of the unit disc, we get the expression

1
Vo € D, \Il(t,w):4/log(
T Jp

21
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Then, the new formulation of Euler equations is given by

3tw+V~Vw:07 inR+><D
v=Viw¥ (1.5)
w(0, ) = wp.

The study of weak solutions for the system (1.5) will be discussed in Section 1.2.

1.1.2 Quasi-geostrophic shallow-water equations

The quasi-geostrophic shallow-water equations (QGSW), is considered as one of the most common
asymptotic models used to describe the large scale motion of the atmospheric and oceanic circulation
and can be derived asymptotically from the rotating shallow-water equations when Rossby and Froude
numbers are small enough, for more details we refer to [56, 142] and the references therein. We also refer
to the formal derivation below. This model is planar and the evolution of the potential vorticity q takes

the form of a nonlinear and nonlocal transport equation,

Oig+v-Vqg=0, in Ry x R?
(QGSW)x{ v =V+(A-)\?)"lq, (1.6)
q(0,-) = q,.

Here v denotes the velocity field which is solenoidal and q is a scalar function. Physically, the parameter
A is defined by

22 <
VoH’

where g is the gravity constant, H is the mean active layer depth and w, is the Coriolis frequency, assumed
to be constant. In the literature, the number % is called the Rossby deformation length or Rossby radius
and measures the length scale at which the rotation effects are balanced by the stratification. Notice
that small values of A corresponds to a free surface which is nearly rigid and when A = 0 we get Euler
equations written in the formulation velocity-vorticity. The velocity field v writes v = VW where W is

the stream function governed by the Helmholtz equation,
(A= X)(t,) =q(t,").
To invert this operator we shall make appeal to the Green function T solution of the equation
(~A+X)Ty =4y in S'(R?).

Using the Fourier transform yields

1

2 T e —
vf eR ’ T)\(g) - ‘€|2+)\2

Thus by Fourier inversion theorem and using a scaling argument, we find

) A 1 eiz{
Th(z) =Ti(\z) with Ti(z) = P /]R? Wd{

Applying a polar change of variables gives

1 o] r 2
Ti(z) = 4—71_2/0 1"'77"2/0 cos(|z|r cos())dOdr.
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Simple arguments based on the symmetry of trigonometric functions allow to get the identity

2w T
/ cos(|z|r cos(8))dd = 2/ cos(|z|rsin(6))d6.
0 0
Consequently, we get in view of (C.1)

T =g [

T o 1+1r2

where J,, denotes the Bessel function. Applying (C.8) with v = p =0, a = 1 and b = |z|, we finally deduce

the representation
1

2

Therefore, one obtains the following expression for the stream function

Ti(z) Ko|2]).

1
W(t.2) = 5 [ KoMz - €)at.€) dA(©). (17)
™ JRr2
where K is the zero-th order modified Bessel function of second kind which expresses as
Ko(2) =log(2)F(z) + G(2), F, G analytic functions. (1.8)

A more precise description of the kernel Ky can be found in (C.7). We point out that Ky behaves like
a logarithm at zero which explains the link with Euler equations whenever the parameter A tends to 0.
We mention that the well-posedness theory of classical solutions for (QGSW), equations is not properly
written in the literature, but due to the similarity with Euler equations, one can easily prove it for instance

in supercritical or even critical Besov regularity.

Formal derivation :
We may follow the calculation developed in [142] with the stronger assumption that the Coriolis frequency
is constant. Let us consider a fluid with constant density and such that the height variation scale is
small compared to the depth of the fluid. This is typically the case of the ocean and the atmosphere.
Then, we can assume the hydrostatic approximation namely the gravitational force and the pressure
terms compensate each other. We assume the rotation frequency of the planet to be constant equal to w..
Finally, we assume that the bottom of the fluid is flat and at the origin. The velocity field can be written

in this context in the following way
- — -
U(z,y,2) = u(z,y) +w(z,y,2) k,  ulzy) =ul,y) i +v(z,y)j.

We also denote h(z,y) the thickness of the fluid at point (z,y) and H the average height. Newton’s

general law allows us to write
_>
du+u-Vutw.k Au+gVh =0, V=Vgy. (1.9)
The incompressibility of the fluid provides
Viyz-U=0, ie OJ,w=-V-u
Integrating the last equation with respect to z yields
w(h) =w(0) — AV -u=—hV - u.
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But at the surface, the vertical velocity corresponds to the material derivative of the position of the

particle, namely
w(h) = Oth+u-Vh.

Therefore, combining the foregoing formulae, we obtain the new formulation of the mass conservation

dh+u-Vh+hV-u=0. (1.10)

The system (1.9)-(1.10) is called rotating shallow-water model and we shall derive from this the model of
interest by using some asymptotics in a small parameter called Rossby number. For that purpose, we

introduce characteristic length L and velocity U assumed to be horizontally isotropic.
(2.y) = O(L) and (u,v) = O(U).

Now we define the Rossby number Ry and the Rossby radius Lg by

U vVgH
Ry £ and L;,2 g .
welL We

The Rossby number is a ratio between advection and rotation term in the equation (1.9). The number
Ly, also called Rossby deformation length is a length scale measuring the balance between rotation and
stratification in (1.9).

RO Ly
Ocean 0.01 25-100km
Atmosphere 0.1  1000-1500km

Then consider the adimensionalized variables

Now we assume the quasi-geostrophic hypothesis, namely Ry is small and the height variations are small.

We write that the height & is a perturbation of its mean value H
h(z,y) = H + Ah(z,y)
with the following scale

% ~ Ro (L)2 — O(Ry).

Ah L2~
h—H<1+H> —H<1+R0L2h>.

We assume that the advection term dominates and that the time scale can be choosen as

Therefore, we have

L
T=_—.
U

Adimensionalizing the equations (1.9) and (1.10) leads to
~ |~ e AN o~
Ry [&t\u+u~Vu} +E A= -Vh (1.11)

and

Ry <L)2{@A+ﬁ-vﬂ+[1+30 <LL>QE]v-ﬁ_o. (1.12)
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We expend our quantities into power series with respect to the small parameter Ry

:ﬁ0+R0E1 —|—R(2)ﬁ2+...
=1y + Roty + R3tay + ...
:60+R0%\1+R%§}\2+...

< 2 D)

Taking the zero-th order terms in Ry in (1.11), we obtain
(70, 50) = (= Bho, Oho ). (1.13)
Denoting Uy = (170,50), then we deduce from (1.13) the following mass conservation equation
V-uy =0.

At the next order, we get

L\, ~ L\? -~
(Ld) a?h0+ (Ld) ug-Vho+V-u; =0. (114)

Notice that this equation is not closed since it makes appear ;. Hence, we go to the next order in the

momentum equation
- - ~ -~ ~
62\110 +(Up-V)ug+ k£ Aty = —Vhy.

To get rid of the gradient term in ﬁl, we introduce a) £ vl .1, and apply the operator V*- to the
previous equation leading to
06 +1g - V& = —V - 1. (1.15)

Inserting (1.14) into (1.15), we infer
R R I\2 2
080 +Up - V& = <> Or-ho + <> U - Vhe.

Denoting ¥ 2 hyg, we have by virtue of (1.13)

and the previous equation becomes

~ L\? . ~ L\? .

Coming back to the dimensionalized quantities, denoting v = ug = (ug,vg), A = Lid and ¢ £ (A — \2)¥

v=Viy, 0q+v-Vqg=0.

1.2 Vortex patches : general facts and periodic rigid motion

This section provides an introduction to the vortex patch theory and more precisely to the study of
uniformly rotating solutions. During the past decade, this theory has been well-developed for Euler and
SQG equations using bifurcation theory. Only few theoretical results were obtained in [54] for QGSW
equations. For our purpose, we may briefly deal with SQG equations in the discussion and rather focus on

the other two models.
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For (1.5), the global existence and uniqueness for weak solutions bounded and integrable follows from
Yudovich’s theory [149] for Euler equations in the plane or in the unit disc. One can adapt the theory to
the case of QGSW equations due to the logarithmic behaviour of the kernel K at the origin. In particular,
if the initial datum is a vortex patch, that is, the characteristic function of a bounded planar domain Dy,
then the solution keeps a patch form 1p, for any time ¢ > 0, where D; is the transported domain Dy by

the flow map associated to the velocity field v, namely
t
D; 2 ®,(Dy), ®,(z) L2 +/ v(s, ®4(x))ds.
0

The boundary motion in the smooth case reduces to tackle the evolution of a curve in the complex
plane surrounding a constant area domain and subject to the deformation induced by its own effect.
Local/global in time persistence of the boundary regularity is a relevant subject in fluid dynamics and
has attracted a lot of attention during the past decades, not only for Euler equations but also for similar
active scalar equations such as generalized surface quasi-geostrophic equations or the aggregation equation.
The persistence of the regularity of the boundary was proved in [35, 46, 45] for the full plane Eulerian case
and in [53] for the case of the unit disc. Let us now briefly see how to write down the contour dynamics
equations, more details can be found in [99, 100]. Given a smooth parametrization z(t,-) : T — 9D; of
the boundary of the patch, then as particles located at the boundary move with the boundary then we get
the evolution equation

[@du@—v@J@ﬂ»-nUJ@ﬁD:O, (1.16)

where n(t, z(¢,0)) is the outward normal vector to the boundary 9D; of D; at the point z(¢,6). This
equation reflects the fact that the particle velocity and the boundary velocity admit the same normal
components which is a classical fact for free boundary problems. As we shall see later along the document,
the equation (1.16) is the starting point for our discussions. More precisely, we may start with the complex
formulation of (1.16). Since one has, up to a real constant of renormalization, n(¢, z(¢,6)) = —i0yz(t,0),

then we find the complex form of the contour dynamics motion,
Im ([atz(t, 0) — v(t, 2(t, 9))}392(15, a)) = 0. (1.17)

Notice that due to the symmetry property (1.1) of the Green kernel, any radial profile generates a
stationary solution. It is a classical fact to look for periodic or quasi-periodic solutions close to these
equilibrium state solutions for Hamiltonian systems like (1.5)-(1.6). Looking for particular solutions where
the domain moves without any shape deformation is a traditional subject in fluid dynamics and important
developments have been performed a long time ago. In the literature, these structures appear under
different names: relative equilibria, V-states, long-lived structures, vortex crystals, etc. .. A particular class

of periodic solutions is given by the rigid body rotating vortex patches around the origin described by
w(t,)=1p, with D, =Dy, (1.18)

where € is a time independent angular velocity. These solutions are periodic in time with period %’T or
equivalently with frequency 2. Such solutions are called V-states according to the terminology introduced
by Deem and Zabusky in [52] where they numerically obtained the first examples of m-fold uniformly
rotating vortex patches solutions to Euler equations for small values of m. Recall that a domain Dy is
called m-fold if it is invariant under the action of the diedral group Dy,, with the convention that 1-fold
(resp. 2-fold) means to admit one (resp. two) axis of symmetry. Consequently, a m-fold uniformly rotating

vortex patch is a solution in the form (1.18) with m-fold inital domain Dj.
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Figure 4: Numerical simulations of V-states by Deem and Zabusky in [52].

The first explicit example, discovered by Kirchhoff in [114], is the ellipse which rotates about its center

of mass with the constant angular velocity

B ab
- (a+0)¥

where a and b are the semi-axes of the ellipse. Further families of implicit solutions with higher symmetries
were established by Burbea in [42] using local bifurcation tools and complex analysis. More precisely,
he proved the existence of branches of m-fold rotating solutions bifurcating from the discs at angular
velocities

ST R (119)
Notice that the mode m = 1 corresponds to a translation of the trivial solution and the second branch,
emerging at Qs = i, describes the Kirchhoff ellipses. Moreover, all the bifurcation angular velocities €y,
are in the range (0, %) Outside this interval, the only uniformly rotating solutions are the radial ones, as
proved in the series of papers [68, 78, 93]. The boundary regularity was first discussed in [43, 88, 99] and

the global bifurcation diagram was studied in [88].

all patches must be radial all patches must be radial

. L
3z Q

Figure 5: Local bifurcation diagram of uniformly rotating vortex patch solutions for Euler equation [78].

Note also that countable branches of rotating patches bifurcating from the ellipses at implicit angular
velocities were found in [96, 97], however, the shapes have in fact less symmetry and being at most
two-folds. The doubly-connected case has also been explored. To fix the terminology, a bounded open
domain Dy is said doubly-connected if

Do = D1\Ds,

where D, and D, are two bounded open simply-connected domains with Dy C D;. This means that the

boundary of Dy is given by two interfaces, one of them is contained in the open region delimited by the
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second one. In [94, Thm. B], the authors proved for Euler equations that under the condition

m(1 — b?)

14—
* 2

<0, be(0,1), meN*

one can find two branches of m-fold doubly-connected V-states bifurcating from the normalized annulus
Ay, defined by

Ay 2 {z eC st b<|z< 1} (1.20)

at the following angular velocities

NHOEE _4b2 T \/<m(1_b2) - 1)2 _ p2m, (1.21)

B 2m

Q = 0.09011 Q=0.04852
1 T T 1
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Figure 6: Exemples of 12-fold doubly-connected V-states for Euler equations [94].

m = 3; b=0.8; Q= 0.3765

L2

04

08

08

Figure 7: 3-fold V-states for Euler equations in the unit disc [86].

Let us now turn to the case where Euler equations (1.5) are set in the unit disc. The theory of weak
solutions and vortex patches is still valid in this context and the persistence of the boundary regularity of
vortex patches remains true, as proved in [53]. The existence of V-states close to the discs bD (b € (0, 1)),

also called Rankine vortices, were obtained in [86]. These curves of solutions have m-fold symmetry,
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perform a uniform rotation and emerge at the angular velocities

m— 14 p2m
Qm(b) £ om

\
=

(1.22)

It is of paramount importance to highlight different boundary effects observable at this periodic level.
First, Burbea’s frequencies (1.19) are shifted to the right, implying in particular that the 1-fold patches,
which are not centered at the origin, are no longer associated to the trivial solution. Second, the numerical

observations in [86] show that the bifurcation curves have oscillations, see Figure 8.
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Q ¢

Figure 8: Oscillations in the bifucation curves for Euler equations in the unit disc [86].

In the same paper, the authors also studied the bifurcation from the annulus
Abl,bzé{ZE(C s.t. b2<|2’|<b1}, 0<by<b <1,

which occurs for the following angular velocities (b = 2—?)

1_b2 b2m_b2m 1_b2 2_b2m_b2m 2 1_b2m 2
+ A 1 2 _ 1 2 _ 12m 1
i (b1:02) T dm T \/{ 2 2m } b ( m )

provided that the following condition is fullfilled

. 24 20™ — (b 4 b5*)?
1—b?

Concerning (QGSW), there are few results dealing with relative equilibria. Interesting numerical
simulations showing the complexity and the richness of the bifurcation diagram with respect to the
parameter A was studied in [54, 55]. In [54], using bifurcation tools the authors proved analoguous results
to those of Burbea. They show in particular the existence of branches of m-fold symmetric V-states

(m > 2) bifurcating from the Rankine vortex 1p with the angular velocity
Qm(A) £ Il()‘)Kl(A) - Im()‘)Km()‘)a (123)

where I,,, and K, are the modified Bessel functions of first and second kind. For more details about these
functions, we refer to the Appendix C. Notice that in the same paper the authors explored the two-fold
branch when A is small and proved first that it is located close to the ellipse branch of Euler equations

and second it is not connected (see Figure 9) and from numerical simulations they put in evidence the
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fragmentation of this branch in multiple connected pieces. The second bifurcation from this branch was

also analyzed leading to similar results as for Euler equations.

0.18

0.16

0.14

0.12

0.10

0.08

0.06

Figure 9: Disconnected bifurcation diagram for 2-fold bifurcation curves from Kirchhoff branch for QGSW
equations [54].

We point out that numerical simulations showed the behaviour of the end of branches of bifurcation
for the different models. The corresponding patches are called limiting V-states and seem to present
singularities in their boundary. Nevertheless, no theorical result is known so far. We also mention that
more investigations on the V-states have been implemented during the past decade by several authors in
different settings like for the SQG equations [43, 77, 83, 85, 137] or for the multipole case [70, 71, 84, 90,
9g].

1.3 Quasi-periodic solutions for Hamiltonian systems : KAM theory

In this section, we present the basis of KAM and Nash-Moser theories. We also discuss some recent results
about the application of these theories to PDE. The methods developed in this section will be the one
used all along the document in the proofs of our results. First, we give the definition of quasi-periodic
functions which is the notion of interest in this study. A function f : R — C is said to be quasi-periodic if

there exists a continuous function F : T — C such that
VteR, f(t)=F(wt)
for some frequency vector w € R? (d € N*) which is non-resonant, that is
VieZ4\ {0}, w-1#0. (1.24)

Here and in the sequel, we denote T = R/27Z. In the case d = 1, we recover from this definition periodic
functions with frequency w € R*. The variable living in the d-dimensional torus T¢ will be generically

denoted ¢ in the remainder of the document. The archetype of quasi-periodic function is given by
d
ft) = Z ajeit, a; € C, w=(wi,...,wq) € R? non-resonant.
j=1

From a dynamical point of view, the trajectory is densely contained in a d-dimensional torus, see Figure

10. We say that this torus is invariant and supports a quasi-periodic motion with frequency vector w.
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Figure 10: Quasi-periodc trajectory in an invariant torus [116].

Consider a finite dimensional Hamiltonian system with 2d variables associated to a Hamiltonian H

o . .
P=-Volla) (D) Ly gy, go (0 TH (1.25)
¢ =V,H(p,q) q fa 0

This is a particular class of ODE appearing naturally in Physics whenever the energy of a system is
conserved and in this case, the Hamiltonian H is related to this energy. Indeed, in presence of conservative
forces, the Newton’s law can be written in such a form. Lagrangian/Hamiltonian formalism is an
important and elegant mathematical aspect of Physics allowing to simplify the computations. The cost is
a mathematical abstraction into the world of symplectic geometry. Here we discuss the finite dimensional
Hamiltonian systems but the same formalism can be transposed into infinite dimension through PDE. The
latter is the context for the next sections. The Hamiltonian H in (1.25) is said to be Liouwille-integrable
if there exist (F})1<j<a € C°(R?*, R)¢ such that

o Vje[l,d],{F;,H} =0 (i.e. the F}; are intragrals of the motion).
o V(4 k) € [1,d]? {F;, Fx} = 0 (i.e. the F}; are in involution).
o (VpoFj)i<i<n is a free family.

Notice that {-,-} is the Poisson structure induced by the Hamiltonian system (1.25) and defined by

d
{F.G} 2> 0,,F0,,G - 0,,F0,,G.

i=1

Then, the Arnold-Liouville Theorem asserts that if we assume that H is Liouville-integrable and that
there exists ¢ € R? such that the set

M. 2 {(p, q) € R2? st Vje [1,d], Fj(p,q) = cj}

is connected and compact. Then, there exist a neighbourhood U of M., a neighbourhood D of 0 in R?

and a symplectic (that is which preserves Hamiltonian structures) change of variables

A: DxT? = U
(L,9) = (9
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such that H o A(I,9) = h(I) is a function of I only. Therefore, the equations become

I=0
9= Vih(I) 2 w).
Thus, we can integrate the system and obtain

I(t)=1(0) £ I,
I(t) = w(lo)t 4 V(0).

Consequently, the motion is confined in the torus {Iy} x T and given by the linear flow 9J. Therefore, the
nature of the motion depends on the arithmetic properties of w(I). In particular, if w(/) is non-resonnant,
then the phase space is foliated by Lagrangian invariant tori carrying a quasi-periodic dynamics with
frequency vector w(I). Recall that a torus is said to be Lagrangian if the restriction of the symplectic
form dI A d¥ to its tangent space vanishes and the dimension of the torus is maximal (equal to d) for this
property. Notice that the variables (I,) are called action-angle variables and such denomination can be
justified by the archetype of Hamiltonian satisfying the Arnold-Liouville conditions, namely the harmonic

oscillator on R2

H(p,q) = %(p2 +4%)
with
Fi=H, (pq)=AI9)=(V2Icos(¥),vV2Isin(¥)), HoA(,9)=1I. (1.26)

Indeed, one can easily check that the application A is symplectic since
dp Ndq=dI NdY.

The study of quasi-periodic solutions to perturbations of integrable Hamiltonian systems goes back to the
pioneering works of Kolmogorov [115], Arnold [5] and Moser [126] where they proved, in finite dimension
and under suitable non degeneracy and smoothness conditions, the persistence of invariant tori for small
perturbations of integrable Hamiltonian systems. In the action-angle variables (I, ), such perturbation
can be written as

H(I,9)=h(I)+eP(I,9), ek 1. (1.27)
The various techniques and ideas used to study such kind of problems are now gathered under the name

of KAM theory, in honor of Kolmogorov, Arnold and Moser. Kolmogorov’s Theorem states as follows.

Kolmogorov’s Theorem :
Consider an Hamiltonian H in the form (1.27) being real-analytic on the closure of a domain D x T<.

Assume that for some I* € D, the following conditions hold.

1. The frequency vector w(I*) = Vh(I*) is Diophantine, namely w(I*) € DC(7,7) where for given
v €(0,1) and 7 > d — 1, the Diophantine set DC(~, 7) is given by

pc(v.7) 2 ) {weRd s.t. |w-l|><l%}, (1) 2 max(1, |1]). (1.28)
1e74\{0}

2. Non-degeneracy /twist condition

02h
det ( (I*)) £0.
aL,01, i<
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Then for ¢ small enough, the torus {I*} x T¢ persits for the pertubed Hamiltonian system associated
with H, being just slightly deformed, as a Lagrangian invariant torus carrying a quasi-periodic motion

with the same frequency vector w(I*).
For a complete and pedagogical proof of Kolmogorov’s result, we refer the reader to [132, 146]. It is

based on a Newton method, where at each step, we shall remove some terms from the perturbation P

which imply at the end the preservation of one invariant torus.

F(u)/

-..__/ uz Uy up

Figure 11: Three steps of the classical Newton scheme ;11 = u, — (DF(un))_lF(un) [67].

We shall now discuss the hypothesis and the main points in the proof of Kolmogorov’s Theorem. First,
at each step of the Newton method, we compose the previous Hamiltonian by a well-chosen symplectic
change of variables in order to improve the structure of the Hamiltonian system in terms of normal form
plus a perturbation. This transformation is chosen as the solution of a functional equation called the
homological equation and we shall explain the typical difficulty appearing at this level by discussing the
fundamental theorem of calculus in the quasi-periodic setting, namely the inversion of the operator w - J,,.

Given g : T? — R with zero average, we look for a function f solution of the equation
w-0,f =g. (1.29)
To solve (1.29), we expand into Fourier series which yields

floy =Y %e”"”. (1.30)

leza\{0}

For a long time people like Poincaré thought that it was not possible to make such series convergent due to
the possible smallness of the denominator. The key idea of Kolmogorov was to introduce the Diophantine
conditions (1.28) for w to control the small divisors problem and get only an algebraic loss of regularity.
Such kind of non-resonance conditions are called zero-th order Melnikov conditions. We mention that
when looking for lower dimensional invariant tori (i.e. non-Lagrangian), one should need to deal with
other type of non-resonant condition called first or second order Melnikov conditions. We refer the reader
to [125, 133]. Notice that for the Hamiltonian PDE as of interest is this document, we are led to consider
this type of non-resonant conditions, see Propositions 7.5 and 13.4. Taking w € DC(v,7), then we can

estimate f, given by (1.30), in Sobolev norm and we obtain the following estimate with loss of regularity

1£1ls <7~ lgllsr-

In the analytic setting, treated by Kolmogorov and Arnorld, the fixed loss of regularity 7 corresponds

to a shrinkness of the domain of analyticity and the quadratic convergence of the Newton method is
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sufficient to overcome the small divisors problem so that the final domain of analyticity is non-empty.
Nevertheless, in the finitely many differentiable case, this is an important issue and the method may fail.
Moser overcame this problem using what is now called "Nash-Moser procedure". The twist condition
ensures that the application I — w([) is a local diffeomorphism which allows to consider the frequencies
as independant parameters and to follow the shift of frequencies along the scheme in terms of tori. This
condition, which is not satisfied by the harmonic oscillator for instance, is quite strong and actually it is
now known since the works of Riissmann [140], see also Sevryuk [141], that the minimal assumption is that
the frequency map I + w(I) is not contained in an hyperplane of R%. We call this fact the non-degeneracy
property. Notice that such properties are the one used later in the proofs of the main results of this thesis,
see Lemmata 5.4 and 11.4. In particular they are used to prove the so-called Riissmann transversality
conditions Lemmata 5.5 and 11.5, useful for measuring the Cantor sets of admissible parameters generating

quasi-periodic solutions similarly to [12] and based on the application of [139, Thm. 17.1].

We shall now present the main steps concerning a Nash-Moser procedure, an iterative scheme used
in this document for the construction of quasi-periodic vortex patches. The Nash-Moser iteration is a
modification of the standard Newton scheme making appeal to regularizing operators (Ily)y in order to
solve an equation F(U) = 0 in a Banach scale allowing some fixed loss of derivatives at each step. This
strategy was first introduced by Nash in [127] to prove the isometric embedding theorem. There exist
many versions of the Nash-Moser scheme and we refer the interested reader to [3, 18, 103, 150, 151]. For
our later purpose, we may present one of them adapted to the Sobolev Banach scale (H?®)s>o and taken
from the book of Massimiliano Berti [18, Thm. 3.6]. We consider a differentiable function F' satisfying the

following tame estimates : there exists « > 0 such that for any s > 0, for any (u,u’,h) € H*T%,

IEWs S 1+ ullsta
IDE@)[B]lls < Ihlls+a
[F(u) = F(u') = DF(u)[u’ = ullls $ [lu— '3,

Assume that there exists a right inverse T of the linearized operator with fixed loss 7 > 0 of derivatives,

namely
DF(u) o T(u)[h] = b, [T(w)[h]lls S [Alls+--

We shall also assume that there exists a Sobolev index sg > « + 7 such that
[E(0)[lso+r < 1.

Then introducing the family of projectors () y and (HJN)  defined by

Oy | Y fie9 ) = Y fie¥, Ty =Id-Ty

JEL je
7SN

and satisfying

)

IMyu < Nt|u
w0, { Iyl < Nl
[Tyulls < N7 ulls4

we can make the following scheme convergent
3yn
ug = 0, Upt1 = Up — Hn, T(un)F(uy), N, = NéQ) , Ny > 1.
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Indeed, one has the induction inequality for some a priori free large parameter 5.
< O‘JFT*%B a+T1 2
||Un+1 - un”so S Na ||T(Un—1)F(Un—1)HSU+/3 + Ny Hun - un_1||30.

Observe that the previous inequality makes appear a fast decaying term linear in a high regularity norm
(so + B) and a quadratic term in low regularity norm (sg). Then, one can prove by induction that for
suitable selected values of # and for some well-chosen parameter v > 0, we have

IT(un) F (un)llso+s < Ny

Yoand st — unlle, < Ny

n

The second estimate allows to make the scheme convergent and one obtains the convergence F'(u,) — 0

for n — oo due to the relation
_2
I1F(un) |l so—a S Na 35‘|T(un71)F(unfl)H80+ﬁ + [lun — un71||§0-

The reader is refered to [18, Thm. 3.6] for the missing details hidden here to avoid too much technicality.

Later on, in the 80-90’s, started the investigation for quasi-periodic solutions to PDE viewed as lower
dimensional invariant tori for infinite dimensional Hamiltonian systems. Such equations can generally be
written as

Owu = JVH(u), (1.31)

where H is a functional over an infinite dimensional Hilbert function space H and J is an antisymmetric
non-degenerate operator. Normal forms KAM methods and Nash-Moser implicit function iterative schemes
were explored and developed in partial differential equations by several authors leading to important
contributions and opening new perspectives. The complexity of the problem depends on the space
dimension and on the structure of the equations (semilinear, quasilinear, fully nonlinear, asymptotic of
the linear frequencies). The first use of KAM methods for PDE was proposed by Kuksin [119] in 1987 and
Wayne [147] in 1990 regarding parameter dependant (through a potential) one dimensional NLS and NLW
with Dirichlet boundary conditions. The corresponding proofs are based on KAM reducibilty techniques

whose main feature is the following. Consider a quasi-periodically time dependant linear system
O¢h + A(wt)h = 0, (1.32)

with h € H. In practice (1.32) corresponds to the linearization of (1.31), up to a restriction to a closed
subspace of the phase space H, at a quasi-periodic solution with frequency w € R?, namely A(wt) =
—J(D?H)[u(wt),]. One wants to find a bounded invertible linear transformation ® (i) : H — H, depending
smoothly on ¢ € T?, such that under the change of unknown

h = @(wt)[v],

the equation (1.32) reduces to
0w+ Bv =0, (1.33)

with B = diag;(b;) a diagonal time independant operator. Therefore, denoting (v;); the decomposition of

v in a Hilbert basis of eigenvectors of B, the equation (1.33) decouples into
Owj +bjv; =0, ie. v;(t) = e (0).
Then, if b; = iu; € iR, one recovers the linear stability in the sense of dynamical systems related to
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the Floquet exponents theory. In addition, the knowledge of the asymptotic expansion of the y; allows
to control the small divisors problems that can appear. A particular case (of interest in the sequel) of
application of KAM reducibilty techniques is when

A=D+R, D = diag;(id;),

with (id;); simple eigenvalues and R a perturbation. In this case, the choice of ® is done in such a way to
reduce quadratically the size of the remainder up to an additional diagonal contribution. At this stage the

second order Melnikov conditions naturally appear. These are Diophantine constraints in the form

0
U

with v and 7 as in the statement of Kolmogorov’s Theorem. Iterating the procedure allows to diagonalize

V(l,5,5) €2 x 2, |w-l4dj—dy| >

the oparator A. For more details, we refer to [24] and to Section 7.3.2. The works of Kuksin and Wayne
were later extended to parameter independant situations by Kuksin-Poschel [120] for the NLS and Péschel
[134] for the nonlinear Klein-Gordon equation. Then for one dimensional equations with periodic boundary
conditions the first result is due to Craig-Wayne [49] for time periodic solutions for the NLW. They
introduced a completely different approach with respect to Kuksin and Wayne, with a Lyapunov-Schmidt
decomposition and a multiscale approach to invert the linearized operator with tame estimates for the
inverse. Then, Bourgain extended this work to the search of quasi-periodic solutions to the one dimensional
semilinear NLS and NLW in [39]. The KAM reducibility approach was extended later by Chierchia-You
[47] for 1D semilinear wave equations with periodic boundary conditions. The first KAM reducibility
result for NLS with « € T has been proved by Eliasson-Kuksin in [60]. Then, the Nash-Moser scheme
was used to find periodic solutions for completely resonant nonlinear 1D wave equations with Dirichlet
boundary conditions, both with analytic and differentiable nonlinearities, see [22, 23]. We also refer to
[74].

The case of higher dimension was first studied by Bourgain in [41] looking for time quasi-periodic
solutions for the NLS on T2, followed by the results on the NLW on T, for time periodic [38] and
quasi-periodic solutions [40]. His solutions were analytic. The existence of quasi-periodic solutions for
bounded perturbations (cubic or convolution-type) of the multidimensional NLS has been studied in the
series of papers [60, 72, 135]. We also mention the result of Grébert-Kappeler [79], were they obtained the
existence of quasi-periodic solutions for Hamiltonian perturbations of the defocusing NLS. The extension
of the regularization method to finite Sobolev regularity in higher dimensions was considered by Berti and
Bolle for quasi-periodic solutions on T? of the NLW [26] and of the NLS [25] with an external potential.
We also mention [34, 27], where they provided an abstract Nash-Moser theorem for the NLS and the NLW
on compact Lie groups. More recently, Berti and Bolle obtained in [24] the existence of small amplitude
time quasi-periodic solutions for the NLW with multiplicative potential and cubic nonlinearity for the
NLW in any dimensional torus. KAM results have been proved for parameter dependent beam equations
by Geng-You [73], Procesi [136], and, more recently, in Eliasson-Grébert-Kuksin [59] for multidimensional
beam equations. We also mention the KAM result by Grébert-Thomann [81] for smoothing nonlinear

perturbations of the 1d harmonic oscillator and Grébert-Paturel [80] in higher space dimension.

KAM theory was also developed for equations involving unbounded nonlinearities. In this case,
the symplectic transformation at each step of the KAM iteration may lose space derivatives which
destroys the convergence of the scheme. The first results in this direction for semilinear PDE with
unbounded perturbations were obtained by Kuksin [117] and Kappeler-Poschel [109] for Hamiltonian,
analytic perturbations of the KdV equation on the torus. The case of quasilinear or even fully nonlinear

is much harder and the pioneering works in this situation were presented by Plotnikov-Toland [128] and
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Tooss-Plotnikov-Toland [108], for the existence of 2D periodic standing waves with finite and infinite depth,
respectively. We also mention that in the same decade, Baldi [6] studied a forced quasilinear Kirchhoff
equation on a bounded domain in R? with Dirichlet boundary condition and on the d-dimensional periodic
domain. The nonlinearity is there space-independent and he found time periodic solutions in this context.
The first existence results for time quasi-periodic solutions for quasilinear and fully nonlinear PDE are due
to Baldi-Berti-Montalto for some quasilinear and fully nonlinear perturbations of the forced Airy equation
[10], of the autonomous KdV [8] and of the autonomous modified KdV [9]. These results are obtained
with a Nash-Moser iteration as stated in [21], where the analysis of the linearized operator is inspired by
the descent regularization procedure introduced by Plotnikov-Toland [128] via pseudo-differential calculus
combined with the KAM reducibility scheme. The Nash-Moser approach was applied also by Feola-Procesi
[67], who considered a class of fully nonlinear forced and reversible Schrodinger equations on the torus and
proved existence and stability of quasi-periodic solutions, see also [62] for the quasi-linear Hamiltonian case
and [66] for the fully nonlinear autonomous case. We refer also to the work of Giuliani [76] for quasilinear
perturbations of generalized KdV equations, the result by Feola-Giuliani-Procesi [65] for Hamiltonian
perturbations of the Degasperis-Procesi equation and the recent works of Berti-Kappeler-Montalto [31,
32], who provided the existence of finite dimensional invariant tori of any size for perturbations of the
defocusing NLS and of KdV, respectively.

Several results have been obtained concerning the water-waves equations both for the standing and
traveling waves. Let us first deal with the periodic standing waves. The case of 2D gravity in finite
depth was treated by Plotnikov-Toland [128]. Then, the infinite depth situation was covered in 2D by
Tooss-Plotnikov-Toland [108], see also [105, 106]. Later, the 2D gravity-capillary water-waves in infinite
depth was done by Alazard-Baldi [2]. The quasi-periodic standing waves have been obtained first by
Berti-Montalto [33] where the authors constructed these solutions in the gravity-capillary case for most
values of the surface tension. In this case, the linear eigenvalues grow like | j|%. Then, the more difficult
pure gravity case in finite depth, where the equilibrium frequencies admit the asymptotic |j \% and vary
exponentially with the depth parameter, has been treated in [7] with quasi-periodic solutions constructed
for most values of the depth. Notice that in this case one may impose Diophantine conditions that lose
also space derivatives. Let us now turn to the traveling periodic solutions. First, Levi-Civita [122] proved
the 2D gravity case. Then, the 2D/3D gravity-capillary situation was studied by Craig-Nicholls [48]. And
the 3D with pure gravity was developed by Iooss-Plotnikov [107, 104]. The first results about traveling
quasi-periodic water-waves were very recently exposed in [29] for the gravity-capillary in finite depth with
constant vorticity, [28] for the pure gravity in finite depth with constant vorticity and [63] for the pure
gravity in infinite depth.

Concerning Euler equations, the first result for quasi-periodic solutions was obtained by Crouseilles-
Faou [51] in the two dimensional torus and was not invloving small divisors difficulties. More recently, a

quasi-periodic forcing term was used in [11] to generate quasi-periodic solutions for the 3D case.

Next we shall give more details on the general scheme performed to construct quasi-periodic solutions
that was developed by Berti and Bolle in [21]. This approach is robust and flexible and will be adapted to
our framework with the suitable modifications. The first step is to write in a standard way the equations
using the action-angle variables for the tangential part. When we linearize the nonlinear functional around
a state near the equilibrium we end with an operator with variable coefficients that we should invert
approximately up to small errors provided the external parameters belong to a suitable Cantor set defined
through various Diophantine conditions. To do that we first look for an approximate inverse using an
isotropic torus built around the initial one. It has the advantage to transform the linearized operator via
symplectic change of coordinates into a triangular system up to errors that vanish when tested against an

invariant torus. Notice that the outcome is that the Hamiltonian has a good normal form structure such
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that we can almost decouple the dynamics in the phase space in tangential and normal modes. On the
tangential part the system can be solved in a triangular way provided we can invert the linearized operator
on the normal part up to a small coupling error term. This is more or less a finite dimensional KAM theory
appearing here. Then, the analysis reduces to invert the linearized operator on the normal part which is a
small perturbation of a diagonal infinite dimensional matrix. This is done by conjugating the linearized
operator to a diagonal one with constant coefficients. This step is long and technical and most of the
non-resonance conditions in the Cantor set arise during this process. This allows the construction of an
approximate inverse for the linearized operator with adequate tame estimates required along Nash-Moser
scheme. Finally, we point out that the use of suitable isotropic tori is a commodity but it is not essential

to get the triangular structure up to small errors, we will come back on this remark later on.

2 Main contributions of the thesis

The purpose of this thesis is to gather the previous two theories looking for the emergence of quasi-periodic
structures in the patch form for Euler and quasi-geostrophic shallow-water equations. We shall now present
the main theorems proved during the PhD and briefly discuss the key steps of their proofs. More detailed
proof structures will be given in the introduction of the corresponding parts. We mention that in parallel
to this thesis, similar results have been obtained for SQG equations [87] and for Euler equations close to
Kirchhoff ellipses [30].

2.1 Time quasi-periodic vortex patches for QGSW equations

In this section, we present the first contribution of this PhD concerning the existence of quasi-periodic in
time solutions in the patch form close to the unit disc for the quasi-geostrophic shallow-water equations
(1.6) with parameter A. The result can be found in [101] and we refer to Theorem 3.1 for a precise
statement. Fixing two real numbers Ag and A; such that 0 < A\g < A1, the parameter A lies in the interval
(Mo, A1). Nevertheless, at the end it will belong to a Cantor set for which invariant torus can be constructed.

Using the following polar parametrization of the boundary 0D,

N

2(t,0) 2 R(t,0)e' "~ with  R(t,0) £ (1+2r(t,0))?, (2.1)

the vortex patch equation (1.17) becomes an Hamiltonian equation satisfied by the radial deformation
r. Notice that the parametrization is well-defined at least for short time when the initial patch is close
to the equilibrium state given by the Rankine vortex 1p where DD is the unit disc of R2. The particular
choice for the radius is inspired from (1.26) to get a Hamiltonian equation for r. We emphasize that
the parameter (2 is introduced to get rid of the degeneracy of the first eigenvalue associated with the
linearized operator at the equilibrium state, see (2.6). The radial deformation r is subject to a nonlinear

and nonlocal transport-type Hamiltonian equation in the form
Or = 0gVH(r), (2.2)

where the Hamiltonian H is related to the kinetic energy and the angular momentum which are prime
integrals of the system. The Hamiltonian system (2.2) is reversible, namely, if (¢,6) — r(t,0) is a solution,
then so is (¢,0) — r(—t, —6). The purpose is to find a reversible quasi-periodic solution of (2.2), that is to
find a frequency vector w € RY, such that the equation (2.2) admits solutions in the form 7(¢,6) = 7(wt, 6)
with 7 being a smooth (27)%! —periodic even function. Then 7 satisfies the equation (2.2) replacing 0;
by w - 0,, therefore, we should use the same notation for » and 7. To explore quasi-periodic solutions we

should first check their existence at the linear level. The linearized operator around a given small state r
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is given by
L, =w-0,+0p [V, - —L;], (2.3)

where V. is a scalar function depending on A defined in (3.6) and L, is a nonlocal operator depending on A

given in (3.7). At the equilibrium state = 0, we find that the linearized operator is a Fourier multiplier,
Lo=w-0p+ Vo(N)Ig — 0Ky *¢ -, Vo(A) £ Q+ LN K (M), Ka(0) £ Ko (2X [sin (§)]) . (2.4)

We refer to Appendix C for the definition of the modified Bessel functions I;, K7 and K. The equation

Lop = 0 is integrable and its reversible quasi-periodic solutions take the form

p(t,0) => pjcos (j6 —Q;(Nt),  p€R,  SCN,  [§|=deN, (2.5)
j€eSs

with frequency vector
weq(V) = (G N) e (N = j(ﬂ + LK) - Ij(A)Kj(A)) (2:6)

provided that the vector wgq(A) satisfies the non-resonant condition (1.24). Observe that Qy = 0 and
therefore may create trivial resonances. This can be fixed by working in a phase space with zero space
average which is possible due to the structure of (3.3). Similarly, notice that for Q = 0, the frequency Q;
vanishes. This is the reason for the introduction of {2 which is taken to be strictly positive to remedy to
this defect and avoid resonances.

Observe that small divisors already appear at this level and the non-resonant condition is obtained
by selecting the parameter A such that the vector wgq(A) belong to a Diophantine set in the form (1.28).
Actually, this property holds true for almost all the values of A. Our main result concerns the persistence
of quasi-periodic solutions for the nonlinear model (2.2) when the perturbation is small enough and the
parameter A is subject to be in a massive Cantor set. We state here a simplified version of the result and

refer the reader to Theorem 3.1 for a precise statement.

Theorem 2.1. Given A1 > X\g > 0 and € small enough, there exists a Cantor-like set Coo with almost full
Lebesgue measure in (Ao, A1), such that any parameter A € C generates a quasi-periodic vortex patch for
(QGSW) equations in the form

a(t,)=1p,  Dy={" gel2m], 0<C<RLO},  R(t0)= V1t 2r(wre)t.6),

where r : T4 — R is a perturbation of the equilibrium quasi-periodic solutions (2.5) with e-amplitudes
and associated frenquency vector w(\,e) which is an e-perturbation of the equilibrium frequency vector
wiq(A) defined in (2.6).

The proof of Theorem 2.1 (or more precisely Theorem 3.1) is the content of Part I, but let us make

some comments about the main steps of the proof and the novelties in there.

» Step 1. Reformulation with embedded tori and restriction to the normal directions :

After a rescaling r — er, we remark that the equation (2.2) can be seen as a perturbation of the integrable
system given by the linear dynamics at the equilibrium state. This allows us to hope using ideas from
KAM theory as presented in Section 1.3. More precisely, we may use and adapt the method developed
n [21], slightly modified in [87], and successfully implemented for instance in [7, 33]. The dynamics is

decoupled into tangential and normal parts. On the tangential modes, we introduce action-angles variables
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(I,1), seen as symplectic polar variables for the Fourier coefficients, allowing to reformulate the problem
in terms of embedded tori . More precisely, we shall look for the zeros of a certain functional, namely to
solve an equation in the form

F(i, o, p,e) =0, wE (A w). (2.7)

It turns out that it is more convenient to introduce one degree of freedom through a parameter « which
provides at the end of the scheme a solution for the original problem when it is fixed to —wgq(A). At
this stage one cannot apply the classical implicit function theorem because of resonances preventing the
invertibility of the linearized operator at the equilibrium state. The restriction of the parameter A to a
suitable Cantor-like set related to some Diophantine conditions on the linear frequency wgq(A) allows in
particular to control the small divisors problem as explained before and therefore avoid the resonances.
This provides an inverse at the equilibrium state but with algebraic loss of regularity. Unfortunately,
this is not sufficient to apply Nash-Moser scheme requiring the construction of a right inverse with tame
estimates in a small neighborhood of the equilibrium. Indeed, the linearized operator is no longer with
constant coefficients as for the integrable case and its main part is not a Fourier multiplier. At this level we
are dealing with a quasilinear problem where the perturbation is unbounded. Given any small reversible
embedded torus ig and any oy € R? we shall construct an approximate right inverse for the linear
operator d; o F (i, o). For that purpose, we conjugate the linearized operator d; o F (ig, o) via a suitable
linear diffeomorphism of the toroidal phase space associated to the action-angle-normal formulation. We
obtain a triangular system in the action-angle-normal variables up to error terms. To solve the triangular
system, we only have to invert the linearized operator in the normal directions, which is denoted by
L.,. Notice that the approach used here is slightly different from [21] where they linearized around an
isotropic torus close enough to the original one and then use a symplectic change of coordinates leading to
a triangular system up to small errors, essentially of "type Z" (that is vanishing at an exact solution) or
highly decaying in frequency, that can be incorporated in Nash-Moser scheme. Here, and similarly to
[87], we can bypass the use of isotropic torus by a slight modification of Berti-Bolle approach. Actually,
according to Proposition 6.1, we can conjugate the linearized operator with the transformation described
by (6.58) computed at the torus ig and get a triangular system with small errors mainly of "type Z". The
computations are performed in a straightforward way using in a crucial way the Hamiltonian structure of
the original system. The main advantage that simplifies some arguments is to require the invertibility for
the linearized operator only at the torus itself and not necessary at a closer isotropic one. By this way,
we can avoid the accumulation of different errors induced by the isotropic torus that one encounters for
example in the estimates of the approximate inverse or in the multiple Cantor sets generated along the

different reduction steps where the coefficients should be computed at the isotropic torus.

» Step 2. Approximate inverse in the normal directions :
Therefore, the main issue consists in the construction of an approximate inverse of the linearized operator

in the normal direction. Notice that the latter expresses as
L, =g, (Ler —e0pR) g, ,

where HslO denotes the projector in the normal directions, L., is defined through (3.5) and e9yR is a
perturbation of finite rank encoding a coupling between tangential and normal dynamics. Notice that even
for € small, this operator is with non-constant coefficients since the perturbation affects the main part of
the operator in a similar way to water waves [7, 33] or generalized SQG equation [87]. Nevertheless, it
has constant coefficients at the equilibrium state ¢ = 0. Therefore, to invert it, the idea is to conjugate it
to a constant coefficient by suitable bounded operators close to the identity. The reduction is done in

decreasing positive orders in the spirit of [7, 33, 128].
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First, we reduce the transport part and look at the effects on the lower orders and as regards the
localization in the normal modes. This provides a diagonal operator plus a small remainder term of order
0. Then, we also reduce the remainder term. Let us begin with general remarks about these reduction
procedures. Each reduction is based on KAM techniques at the level of functions or operators and makes
appear small divisors problems through a countable family of non-resonant conditions. Notice that in our
work, for each reduction, the final Cantor set is built on the final state, which is slightly different from
[7, 33] where they perform the reduction procedure simultaneously with the Nash-Moser scheme. Also
remark that one needs to consider time truncation in the Cantor set implying the addition of error terms
that can be later included in the Nash-Moser procedure so that the latter runs. We mention that the
KAM reductions allow to diagonalize the operator when the parameters belong to a Cantor-like set, even
though all the involved transformations and operators can be extended in the whole set of parameters
using standard cut-off functions for the Fourier coefficients. This extension with adequate estimates is
needed later during the implementation of the Nash-Moser scheme. This is not the only way to produce
suitable extensions and one expects Whitney extension to be also well adapted as in [7, 33]. In our case,
we opt for the first procedure which can be easily set up and manipulated using classical functional tools.
The last general comment is related to a technical point in KAM reduction. Contrary to the preceding
papers such as [7, 33], we do not need to use pseudo-differential operators techniques. In fact, they can be
avoided since all the involved operators can be described through their kernels and therefore instead of
splitting the symbols we simply expand the kernels which sounds to be more appropriate in our context.
Now let us make some specific comments on the different reductions. The reduction of the transport part
basically follows the ideas in [8, 28, 29, 32, 64] conjugating the linearized operator L., to an operator with
constant coefficients transport part, through a suitable quasi-periodic symplectic change of coordinates %

in the form
Bp(p, ¢, 0) = (1 + g B(1t, @, 9))0(% ©,0+ B(u, ¢,0)).

The symplectic form has the advantage to avoid the apparition of zero order terms at the end of the
reduction. Notice that the action of this conjugation on the nonlocal term is tricky due to the structure
(1.8)-(C.7) of K. This makes appear a singular kernel which can be carefully treated in the analysis. The

projection in the normal directions is done by the operator
%, =g, Allg,

for which we obtained a nice duality representation linked to % useful for doing estimates. A similar

relation is obtained for the inverse transformation. Then we obtain
%Ilfw,@l =w- Qaﬂga + Dy + %, + fast decaying error terms,
where % is a diagonal operator whose spectrum (i) ; satisfies
pi (A, w,io) = (A +jrt (A w,io), Tt =0(e)

and the remainder term %, is a reversible Toeplitz in time integral operator enjoying nice smallness
property. The Toeplitz structure and the revesibility are crucial properties that need to be checked along
the KAM reduction of the remainder term. The first one allows to work with a nice operator topology
well-adapted to the convergence of the scheme. The second is required for the construction of a reversible
approximate right inverse in order to construct, later in the Nash-Moser scheme, a reversible invariant

tori. Also this provides pure imaginary spectrum diagonal operators ensuring the linear stability. This
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reduction provides a completely diagonalized operator with spectrum (ip?o) s
15 (A, w,io) = 25(A) + it (N w,ig) + 757 (A, w, o), sup jri° = O(e)
J

and easily invertible up to new restrictions of the parameters. We mention the Lipschitz dependence of
these eigenvalues with respsect to the torus. Such property is required in studying the stability of Cantor

sets in the Nash-Moser scheme and allows to construct a final massive Cantor set.

» Step 3. Construction of a non-trivial solution :
Now we can implement a Nash-Moser procedure to find non-trivial zeros for the nonlinear function F for
small € in the spirit of the papers [7, 33]. We can build by induction a sequence of approximate solutions
Un

Upi1 2 U, — Oy, Ty, F(U,), Up 2 (in, an).

with T,, an approximate right inverse of d; ,F(U,) obtained at step n using the above mentioned
construction (Steps 1 and 2). At each step of the scheme, we needed to construct classical extensions to
the whole set of parameters O. This is different from the papers [7, 33] where they considered Whitney
extensions. Actually, we get a precise statement in Proposition 8.1 allowing to deduce that the sequence
(Un)n converges in a strong topology towards a profile Uy, = (ioo, aoo) solution of (2.7) whenever the
parameters (A,w) are selected among a Cantor-like set G, which is constructed as the intersection of
all the Cantor sets appearing in the scheme to invert at each step the linearized operator. To find a
solution to the original problem we construct a frequency curve A — w(A\, ) implicitly defined by solving
the equation
oo (A, w(A, €)) = —wrq(A).

Hence, we obtain the desired result for any value of A in the rigidified Cantor set
ce {)\ € Mo M1) st (hw(he)) e goo}.

Then, it remains to check that this set is non-trivial. The proof of this fact is inspired from [10] with
adaptations to the structure of our Cantor set, namely contructed on the final states of each KAM

reduction procedure. We can prove
ICS| = (M — Xo) — C&°,

with small § connected to the geometry of the Cantor set and the non degeneracy of the equilibrium
spectrum. There are two main ingredients to get this result. The first one is the stability of the intermediate
Cantor sets following from the fast convergence of Nash-Moser scheme. However the second one is the
transversality property stated in Lemma 8.3 used in the spirit of [12] and [139]. This property will be first
established for the linear frequencies in Proposition 5.5, using the analyticity of the eigenvalues and their
asymptotic behavior. Then the extension of the transversality assumption to the perturbed frequencies is
done using perturbative arguments together with the asymptotic description of the approximate eigenvalues
detailed in (8.67), (8.82) and (8.81). We emphasize that the transversality is strongly related to the
non-degeneracy of the eigenvalues in the sense of the Definition 5.1 . For instance, we show that the curve
A€ Ao, M (25, (N), ..., 95,())) is not contained in any vectorial hyperplane. This is proved in Lemma
5.4 and follows from the asymptotic of the eigenvalues for large values of A according to the law (C.15)

combined with the invertibility of Vandermonde matrices.
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2.2 Boundary effects on the emergence of quasi-periodic solutions to Euler

equations

We shall now present the second result obtained during the thesis and presented in [89]. This work is
based on the remark that the Euler equations set in the unit disc D are not invariant under dilation.
Therefore, we can introduce a geometric parameter b € (0,1) such that the Rankine vortices 1pp are not
equivalent and provide a family of stationary solutions. Hence, as in the previous mentioned result, we
can expect to play with this parameter to generate quasi-periodic solutions. For that purpose, we consider

a polar parametrization of a patch boundary close to the stationary solution 1,p, namely
2(t,0) £ R(b,t,0)e’,  R(b,t,0) 2 /b2 + 2r(t,0).
The parameter b is assumed to live in an interval (bg, b1), where
0<by<b <1.

However, as in the previous result, at the end this parameter will belong to a Cantor set for which invariant
torus can be constructed. We emphasize that this ansatz no longer depends on 2 as in (2.1). Indeed, in
this context the first frequency is non-degenerate according to (1.22). The radial deformation r solves a

nonlinear and nonlocal transport Hamiltonian PDE taking the form
Or = 209VE(r),

where E is the kinetic energy related to the stream function given by (1.4). The linearized operator close

to the Rankine patch 1;p, i.e. at a small state r writes
Er = 8t+86(‘/r - +L, _Sr>7

where V. is a scalar function depending on b, L, is a nonlocal operator with logarithmic singular kernel
reflecting the planar Euler action and S, is a smoothing nonlocal operator. We refer to (9.3), (9.5) and
(9.6) for their definitions. The boundary effects of D are observed through a quasilinear smoothing action in
the transport part and through the smoothing operator S,.. At the equilibrium state » = 0, the linearized

operator is a Fourier multiplier given by
Lo =0+ 209 + K1 *- — Koy -,
where
K1(0) 2 2log (sin® (£)) and K p(0) £ log (|1 — b%€?]).
Now, almost every b € (bg, b1) generates reversible quasi-periodic solutions to Lop = 0 in the form

p(t,0) = ij cos(j0 — € (b)t), p; €R, S c N¥, S| =d e N*, (2.8)
Jj€Ss

with frequency vector
ora® 2 (Y0), e BO) 2 H(— 1+ 1), (2.9

The measure of the Cantor set in b generating these solutions is estimated using Riissmann Lemma 5.6

requiring a lower bound on the maximal derivative of a given function up to order gg. It is a remarkable
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fact that here the value of ¢q is explicit, namely go = 2 max(S) + 2 which is due to the polynomial structure
of the Q;(b). The aim of the following result is to state that these structures persist at the nonlinear level.
We mention that this is a simplified version and the interested reader may be refered to Theorem 9.1 for a

complete statement.

Theorem 2.2. Given 0 < by < by <1 and € small enough, there exists a Cantor-like set Coo with almost
full Lebesgue measure in (bo,b1), such that any parameter b € Co, generates a quasi-periodic vortex patch,

solution of (1.5) set in the unit disc, in the form

w(t,") = 1p,, Dt:{fe”, 0 € [0, 2], 0<€<R(b,t,0)}, R(b,t,ﬂ):\/62+2r(w(b,s>t,0),

where v : T4 — R is a perturbation of the equilibrium quasi-periodic solutions (2.8) with e-amplitudes
and associated frenquency vector w(b,e) which is an e-perturbation of the equilibrium frequency vector
wgq(b) defined in (2.9).

The proof of Theorem 2.2 (or more precisely Theorem 9.1) is the content of Part II and is similar to
the previous one. Indeed, we reformulate the problem in terms of embedded tori, looking for the zeros
of a certain nonlinear functional. We obtain a non-trivial solution by applying a Nash-Moser scheme,
where at each step, we construct an approximate right inverse with nice tame estimates for the linearized
operator. This inverse is obtained from the application of the Berti-Bolle theory reducing the problem
to the search of an approximate right inverse for the normal projection of the linearized operator. This
latter is obtained by using KAM reducibility techniques which imply restrictions of parameters (b,w) to a
Cantor-like set. The iterative implicit function procedure generates a solution provided that we ensure
all the required restrictions of parameters along the scheme. Then we rigidify the frequency vector w in
terms of b and we estimate, through the perturbed Riissmann conditions, the measure of the final Cantor
set proving that it has almost full Lebesgue measure. The main difference with the previous result is the
smoothing effects of the boundary observable on the linearized operator. In particular, in this case, the
remainder term obtained after the reduction of the transport part and the projection in the normal modes

is directly regularizing at every order, which simplifies the analytical study.

2.3 Doubly-connected V-states for QGSW equations

The main purpose of this section is to present the last result obtained in this thesis concerning the
emergence of time periodic solutions in the patch form close to the annulus of radii 1 and b for the system
(QGSW), with fixed A > 0 and b € (0,1). A simplified version of the result can be written as follows, we

refer the reader to Theorem 15.1 for a precise statement.

Theorem 2.3. For fized A € (0,00) and b € (0,1), there exist non-trivial analytic doubly-connected
V-states close to the annulus Ay defined in (1.20) for (QGSW)y equations with m-fold symmetry for any
m larger than a threshold depending on A and b.

Notice that the proof of Theorem 2.3 (or more precisely Theorem 15.1) is the content of Part III. The
related paper is [138]. More precisely, these solutions are implicitly obtained as branches of bifurcation
emerging from the annulus 4 as in (1.20) for specific angular velocities related to modified Bessel functions.
The proof is based on local bifurcation theory and more precisely on Crandall-Rabinowitz’s Theorem B.1
in the spirit of the previous works mentioned in Section 1.2. Indeed, by using conformal mappings, we can
reformulate the contour dynamics equation (1.17) in the context of uniformly rotating solutions as the
zeros of a suitable nonlinear and nonlocal functional. Remarking that the annulus A is a solution for any
angular velocity, we obtain a line of trivial solutions. Therefore, we may expect to apply bifurcation theory

to find other curves of solutions provided that the linearized operator is a Fredholm operator with zero
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index and one dimensional kernel supplemented with a transversality assumption. Actually, the linearized
operator at the equilibrium state is a Fourier multiplier and its kernel is one dimensional for explicit
angular velocities X (\, b) related to Bessel functions of imaginary argument. This last property is based
on the asymptotic monotonicity for large modes n of the sequence (Q}L (A, b))n which is obtained from
the asymptotic properties of the involved special functions. The bifurcation is proved in the regularity
Ce with o € (0,1) and using a regularity argument for elliptic equations, we find the analyticity of the

boundaries.
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Part 1

La fagon dont on trouve n’est pas celle dont

on prouve.

ALBERT EINSTEIN

This part is devoted to the proof of Theorem 2.1. We also refer to Theorem 3.1 below for a more
precise statement. This result is the subject of the following preprint [101] which is submitted to the
journal Mémoires de la Société Mathématique de France and entitled "Time quasi-periodic vortex patches

for quasi-geostrophic shallow-water equations".

Abstract

We shall implement KAM theory in order to construct a large class of time quasi-periodic solutions for an
active scalar model arising in fluid dynamics. More precisely, the construction of invariant tori is
performed for quasi-geostrophic shallow-water equations when the Rossby deformation length belongs to a
massive Cantor set. As a consequence, we construct pulsating vortex patches whose boundary is localized

in a thin annulus for any time.

3 Introduction

We shall present here the main result obtained during the thesis and related to the existence of quasi-
periodic vortex patches close to the unit disc for QGSW equations. We shall also present the main steps
of its proof with more details than in Section 2.1. The contour dynamics equation stated in (1.16) can be
written in a more tractable way using polar coordinates. This is meaningful at least for short time when
the initial patch is close to the equilibrium state given by the Rankine vortex 1p where D is the unit disc

of R2. Thus the boundary 0D, will be parametrized as follows

Nl

2(t,0) 2 R(t,0)e'O~  with  R(t,0) £ (1+2r(t,0))>. (3.1)

We shall prove in Section 4.1 that the function r satisfies a nonlinear and non-local transport equation
taking the form
Or + Qgr + Fy[r] =0, (3.2)

with

Falr](t,0) £ / Ko (VA (1,0,) 68, (R( ) R(t,0) sin(s — 0) ) dny
T

and
A (t,0,m) = |R(t, 0)e?? — R(t,n)em{ .

The function Ky is a Bessel function of imaginary parts and it is defined in Appendix C. We point out
that the introduction of the parameter 2 seems at this level artificial but it will be used later to fix the
degeneracy of the first eigenvalue associated with the linearized operator at the equilibrium state. As we

shall see in Proposition 4.1, the equation (3.2) has an Hamiltonian structure
Or = gV H(r), (3.3)

where the Hamiltonian H is related to the kinetic energy and the angular momentum which are prime
integrals of the system. In the quasi-periodic setting, we should find a frequency vector w € R%, such that

the equation (3.2) admits solutions in the form r(t,0) = 7(wt, ) with 7 being a smooth (27)%*! —periodic
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function. Then 7 satisfies (to alleviate the notation we keep the notation r for 7)
w - Opr + QOpr + Fy[r] = 0. (3.4)

To explore quasi-periodic solutions we should first check their existence at the linear level. Then according
to Lemma 5.1 the linearized operator to (3.4) around a given small state r is given by the linear Hamiltonian

equation,
Lp=0 with £, =0+ 0[V, -—L,], (3.5)

where V. is a scalar function defined by

1
R(t,0)

V(A 1,0) = Q+ /TKO (AA(t,0,1n)) 0y (R(t,n)sin(n — 0)) dn (3.6)

and L, is a non-local operator in the form
L)) & [ Ko (A4 (t.0.0) plt ). (37)
At the equilibrium state » = 0, we find that the linearized operator is a Fourier multiplier, see Lemma 5.2,
Lop = 0ep+ Vo(AN)Dgp — Ky * p, (3.8)
where * denotes the convolution product in the variable # and
Vo(A) £ Q+ LMK (A) and  KA(0) £ Ko (2X [sin (§)]) -

Expanding into Fourier series

p(t,0) =Y p;(t)e’,

JEL
yields
peEker(Lo) <= p(t,0) = p;(0)e?= 2N, (3.9)
JEZ
where the eigenvalues {); are defined by
Q) 2 {2+ LK) = LK) (3.10)

and the Bessel functions of imaginary argument I,, and K, are given by (C.2). It is worthy to point out
that the frequency associated to the mode j = 0 is vanishing and therefore it creates trivial resonance.
This can be fixed by imposing a zero space average which can be maintained at the nonlinear level by
virtue of the structure of (3.3). Hence we shall work with the phase space of real functions enjoying this

property, namely,

L2 L2(T,R) = {r = Z rje; st. r_;=7; and Z Irj|? < oo}.
JEL* JEL*

Another similar comment concerns the mode j = 1 which vanishes for any A when © = 0. This is why we
have introduced 2 which should be strictly positive to remedy to this defect and avoid any resonance at

higher frequencies. The reversibility of the system (3.3) can be also exploited to find the requested parity
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property of the solutions. Actually, we can check that if (¢,0) — r(¢,0) is a solution then (¢, 0) — r(—t, —0)
is a solution too. Then the solutions to the linear problem with this symmetry are in the form

p(t,8) = Z p; cos (76 — Q;(\)t). (3.11)

Now, in order to generate quasi-periodic solutions to the linear problem it suffices to excite a finite number

of frequencies from the linear spectrum. We shall then consider the following frequency vector.
wiq(A) £ (Qj(/\))jeg with S £ {ji,...,jq4} C N*.

Notice that the vector wgq(A) gives periodic solutions provided that it satisfies the non-resonant condition
(1.24). This property holds true for almost all the values of A as it is proved in Proposition 5.1. Observe
that this latter is based on the equilibrium Riissmann conditions proved in Lemma 5.5 and which make
appear an index of regularity gy with respect to the parameter A. Our main result concerns the persistence
of quasi-periodic solutions for the nonlinear model (3.3) when the perturbation is small enough and the

parameter \ is subject to be in a massive Cantor set.

Theorem 3.1. Let \y > g > 0, d € N* and S C N* with |S| = d. There exist ¢g € (0,1) small enough
with the following properties : For every amplitudes a = (a;)jes € (R%)? satisfying

|a| < €0,
there exists a Cantor-like set Coo C (Ao, A1) with asymptotically full Lebesgue measure as a — 0, i.e.
lim |Coo| = )\1 - /\0,
a—0

such that for any A\ € C, the equation (3.3) admits a time quasi-periodic solution with diophantine

frequency vector wpe(M,a) £ (wj(\,a))jes € R? and taking the form

r(t,0) = Z a; cos (j0 + w;(\, a)t) + p(wpet, ),
j€s
with
wpe()" a) Q) ( - Qj()‘))jega

where ;(X\) are the equilibrium frequencies defined in (3.10) and the perturbation p : T**1 — R is an

even function satisfying for some large index of regularity s = s(d, qo)

||PHHS(W+1,1R) 450 o(|a]).

We shall now outline the main steps of the proof which will be developed following standard scheme
as in the preceding works [8, 7, 21, 33] with different variations connected to the models structure. We
mainly use techniques from KAM theory combined with Nash Moser scheme. This will be implemented

along several steps which are detailed below.

» Step 1. Action-angle reformulation. We first notice that the equation (3.3) can be seen as a perturbation
of the integrable system given by the linear dynamics at the equilibrium state. Indeed, by combining
(3.8), (3.10) and (3.3) we may write

Oy = OgL(N)(r) + Xp(7),
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where L(A) and the perturbed Hamiltonian vector field Xp are defined by
L) (r) £ —(Q+ (LEK1)N)r+ Ky xr and  Xp(r) 2 LI(A) K1 (A\)dgr — 9Ky xr — Fi[r].

Since we are looking for small solutions then we find it convenient to rescale the solution 7 ~» er with € a

small positive number and consequently the new unknown still denoted by r satisfies
Or = OgL(A)(r) + eXp_ (1),

where Xp_ is the Hamiltonian vector field defined by Xp_ (1) = e~2Xp(er). Then finding quasi-periodic

solutions with frequency w € R? amounts to solve the equation
w - Opr = OgL(A\)(r) + eXp_ (7).

Here we still use the same notation 7 for the new profile which depends in the variables (p,6) € T4+,
The next step consists in splitting the phase space L2 into an orthogonal sum of tangential and normal

subspaces as follows

L
Li=Lg® L7,

where Lz is the finite dimensional subspace of real functions generated by {e"’, j € S} with S £ SU (-S).
For more details on this description we refer to Section 6.1. To track the dynamics it seems to be more
suitable to use the action-angle variables (I,1) seen as symplectic polar variables for the Fourier coefficients

of the tangential part in Lg. This leads to reformulate the problem in terms of the embedded torus,

i: T — T¢xRIxL?
e = (9(p),1(p),2(¥)),

with
r(e,0) = v(9(0), 1)) () + 2(,0) = A(i())()
o ar
and
v(d,I) 2 Z \/meiﬂjej) e;(0) 2 0.

jes

Notice that the action and angle variables should satisfy the symmetry properties
ViesS, Ij=I;eR and V_;=-9, €T

Therefore we reduce the problem in the new variables to construct invariant tori with non-resonant

frequency vector w to the system
w - 0,i(p) = X, (i(0)), (3.12)

where Xy is the Hamiltonian vector field associated to the Hamiltonian H. given by
H. £ —wpq(A) - T+ L(L(A\)z, 2) 21 + €Pe,
with P. defined by P. £ P.o A. A useful trick used in [21, 125] consists in solving first the relaxed problem

w - 0yi(p) = Xpgal(i(y)),
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where the vector field Xpyo is associated to the modified Hamiltonian HZ given by
H? LT+ %<L(/\)Z, z>L2(T) + ePe.

The advantage of this procedure is to get one degree of freedom with the vector o € R? that will be
used to ensure some compatibility assumptions during the construction of an approximate inverse of the
linearized operator. At the end of Nash-Moser scheme we shall adjust implicitly the frequency w so that «
coincides with the equilibrium frequency —wgq(A), which enables to finally get solutions to the original

Hamiltonian equation. The relaxed problem can be written in the following form
F(i,a, \,w,e) =0,
with

Fliy o A w,e) £ w - dyi(p) — Xpe (i(p))

w - 0p(p) — a — edrP:(i(p))
= w0, I(cp) + €09 P:(i(p)) . (3.13)
w - Opz(p) — Oy (L(A)2(p) + V. Pe(i(¢)))

We point out that the linear torus corresponding to the linear solution

0) = E a; e'?iell?

jes
is given in the new coordinates system by iq..(p) = (,0,0) and it is obvious that
}—(Z’ﬂat, —qu()\), /\, —UJEq()\), 0) = 0

We emphasize that at this stage the classical implicit function theorem does not work because the
linearized operator at the equilibrium state is not invertible due to resonances. One can avoid resonances
by restricting the parameter A\ to a suitable Cantor set according to some Diophantine conditions on
the linear frequency wgq(A) allowing in particular to control the small divisors problem. By this way we
get an inverse at the equilibrium state but with algebraic loss of regularity. Unfortunately, this is not
enough to apply Nash-Moser scheme which requires to construct a right inverse with tame estimates in a
small neighborhood of the equilibrium and this is the challenging deal in this topic. Indeed, the linearized
operator is no longer with constant coefficients as for the integrable case and its main part is not a Fourier
multiplier. At this level we are dealing with a quasilinear problem where the perturbation is unbounded.
» Step 2. Approzimate inverse. Let ag € R? (actually ay is a function of the parameters w and \) and

consider an embedded torus ig = (9, lo, 20) near the flat one with the reversible structure,

Do(=¢) = =vo(p), To(=¢) = lo(¢) and zo(—p,—0) = 20(p,0).

To deal with the linearized operator d; o F ({9, ), which exhibits complicated structure, and see whether
we can construct an approximate inverse we should fix two important issues. One is related to the coupling
structure in the new coordinates system and the second is that the linearized operator is with variable
coefficients. For this aim we shall follow the approach conceived by Berti and Bolle in [21] with making
suitable modifications. This approach consists in linearizing around an isotropic torus close enough to the
original one and then use a symplectic change of coordinates leading to a triangular system up to small

errors, essentially of "type Z" or highly decaying in frequency, that can be incorporated in Nash-Moser
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scheme. Therefore to invert this triangular system it suffices to get an approximate right inverse for the
linearized operator in the normal direction, denoted in what follows by Ew. We notice that in Section
6.3, and similarly to [87], we can bypass the use of isotropic torus by a slight modification of Berti-Bolle
approach. Actually, according to Proposition 6.1, we can conjugate the linearized operator with the
transformation described by (6.58) computed at the torus g and get a triangular system with small errors
mainly of "type Z". The computations are performed in a straightforward way using in a crucial way the
Hamiltonian structure of the original system. The main advantage that simplifies some arguments is to
require the invertibility for the linearized operator only at the torus itself and not necessary at a closer
isotropic one. By this way, we can avoid the accumulation of different errors induced by the isotropic torus
that one encounters for example in the estimates of the approximate inverse or in the multiple Cantor sets
generated along the different reduction steps where the coefficients should be computed at the isotropic
torus. The final outcome of this first step is to reduce the invertibility to finding an approximate inverse

of LAW which takes, according to Proposition 7.1, the form
L, =Tz (Lep —e0gR) S with Lo, =w -9, + g [Ver - —Le,]

where €Jy'R is a perturbation of finite rank, the function V, and the nonlocal operator L., are defined in
(3.6) and (3.7), respectively. At the equilibrium state (corresponding to € = 0) L., is diagonal and we
shall see that the set of parameters (A, w) leading to the existence of a right inverse is almost full. Now
remark that even for £ small, the perturbation affects the main part of the operator in a similar way to
water waves [7, 33] or generalized SQG equation [87] and then we should construct the suitable change of
coordinates in order to reduce the positive part of the operator to a diagonal operator. Later we should
implement KAM scheme to diagonalize the zero-order part. This will be done in three steps.

@ Reduction of the transport part. This procedure will be discussed in Proposition 7.2 and
Proposition 7.3. We basically use KAM techniques as in [29, 64] in order to conjugate the operator
L., through a suitable quasi-periodic symplectic change of coordinates %, to a transport operator with

constant coefficients. Indeed, we may construct an invertible transformation

Bp(,0) = (1+09B(2,0))p(,0 + B(0,0))

and a constant ¢;, (A, w) such that for any given number n € N, if the parameter (A, w) belongs to the

truncated set defined through the first order Melnikov condition

oz () {Aweo st fw-i+je,(Ow) > Gt
(1,5) €24 xZ\{(0,0)}
LIS Nn
then we have
Lo = %71£5r<@ =w- 8¢, + ¢y ()\,w)ag — 0gKx % - + OpRer + E(,)L, (3.14)

3\n
with N,, = NO(Q) ,No=2,v€(0,1),0=Ng,\1) Xx%,0< X <A and Z = B(0, Ry) being an open
ball of R? containing the curve of the linear vector frequency A € (Ao, A1) — —wgq()). The operator Re,

is a self-adjoint Toeplitz integral operator satisfying the estimates

k ;0 - 0
Vsl S max 1059 1300 S ev (14 10035 )

where the off-diagonal norm | - [|2:S,.« is defined in (A.23) and the loss of regularity o is connected to 71

and d but it is independent of the index regularity s. Concerning the operator E?, we can show that it is
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a small fast decaying remainder with the following estimate for low regularity

IER AT S & NE2 N2 o3 sn a0 (3.15)

q,80 ~

where the weighted norms || - ||2°$ are defined in (A.6). For the number po, it is connected to the regularity

q, 80
of the torus iy and can be taken large enough allowing to identify the contributions of E? as small errors in
the construction of the approximate inverse. The next step will be discussed in Proposition 7.4 where we
explore the effect of the transport reduction on the original operator Ew which is localized to the normal

direction. We prove that with the localized transformation %, defined by
B, =115, Ay, ,
one obtains in the Cantor set O%"} (io),
BTLLPBL =w-ONIE + Do+ Ry +EL, (3.16)
where % is a diagonal operator whose spectrum {i,u?, J € S§} satisfies
/A?()\,w,io) £ Q;\) +irt(\w,ig)  with ||T1H3’O <e

and %, is a remainder term taking the form of an integral operator with Toeplitz and reversibility

structures with the estimates the asymptotic

-1
Vs €[50, 8] max (050505, Sev ! (141003 )
We remark that the operator E} satisfies similar estimates as for E) seen before in (3.15). Finally, we want
to emphasize that the derivation of the asymptotic structure of the operator £., seen before in (3.14)
requires some refined analysis. The delicate point concerns the expansion of the operator L, defined in
(3.7) and for this part we use the kernel structure detailed in (C.7)

oo

Kofe) = —log (3) o(2) + 3 5 (3)

M\N

with Iy being analytic. This is different from the cases discussed before as for the water waves in [7, 33]
where the kernel is given by that of Euler equations (corresponding to A = 0), that is, K(z) = —log ().

In this latter case the deformed kernel enjoys the structure
—log (24,.(t,0,n)) = —log ’sin (%)‘ + smooth nonhomogeneous kernel.

This means that the associated operator is given by a diagonal operator of order —1 up to a smoothing
non diagonal pseudo-differential operator in OPS™°. In our context, this decomposition fails for A > 0

and we get a similar one but with less smoothing operator. Actually we obtain from (6.39) the splitting
Ko (2AA,(t,0,1)) = Ko (2)\sm ( )) + (= 0N (N0, 0,m) + A (N 0,0,m), (3.17)

where the kernels %,11 and %21 are smooth whereas % is slightly singular taking the form

Therefore, the change of variable i — 1 + 0 kills the dependence in theta in the singular part, which
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allows to estimate the corresponding integral operator in H”.

® KAM reduction of the remainder term. This is the main target of Section 7.3.2 and the result is
stated in Proposition 7.5. The goal is to conjugate the remainder %, of (3.16) and transform it into a
diagonal operator. This will be developed in a standard way by constructing successive transformations
through the KAM reduction allowing to replace at each step the old remainder by a new one which is
much smaller provided that we make the suitable parameters extraction. This scheme can be achieved
unless we solve the associated homological equation. To avoid resonances we should at each step make an
extraction from the parameters set through the second order Melnikov conditions and the final outcome is
as follows,

Lo 2O LoPoo = w - 0,115, + Do,

where P, = (i,uj?o()\, w, io))(l J)ezdxse is a diagonal operator with pure imaginary spectrum and ®, is
2 0
a reversible invertible operator. This reduction is possible when the parameters (A, w) belong to the

following Cantor-like set,

o2 () 0w e0xmo) st fwe I+ pE O wio) - (O w,io)| > 2L
(1,4,40) €24 x (5§)2
[H<Nn

The eigenvalues admit the following asymptotic
152 (A w, o) £ Q5 () + jrt (A w, o) + 750 (A, w, o),

where r! and r;° are real small coefficients with Lipschitz dependence with respect to the torus. Indeed,

we have

I 15 + sup [[175°13C S e
JES§

v,0
q,8n+0?

12127779 + sup [|A2r5° |70 < ey Aral|

JES§
for some index regularity 3, + o and Ajor! = r1(\ w,i1) — 71 (N, w,42).
(© Construction of the approximate inverse. The next step is to invert approximately the operator

Zw detailed in Proposition 7.6. First we establish an approximate inverse for %, on the Cantor set

NG ) {w) €0 st et > 32}
(L,j)EZdXSS
[LISNp

Then, introducing the Cantor set

Gn (7, 71,72, 10) = OLTE (i0) N OLTY ™ (i) N AL (o),

n

we are able to construct an approximate inverse of Ew in the following sense,
LoTypn=1d+E, inG,,

where E,, is a fast frequency decaying operator as in (3.15) and T, ,, satisfies tame estimates uniformly in
n. Therefore coming back to Section 6.3, more precisely to Theorem 6.1, this enables to construct an
approximate right inverse T for the full differential d; F (i0, &) enjoying suitable tame estimates.

In what follows we want to make some comments. The first one concerns the Lipschitz dependence of

the eigenvalues with respsect to the torus. This is required in studying the stability of Cantor sets in
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Nash-Moser scheme and allows to construct a final massive Cantor set. As for the second one, it concerns
the KAM reduction which allows to diagonalize the operator when the parameters belong to a Cantor
set like, even though all the involved transformations and operators can be extended in the whole set of
parameters using standard cut-off functions for the Fourier coefficients. This extension with adequate
estimates will be needed later during the implementation of Nash-Moser scheme. This is not the only
way to produce suitable extensions and one expects Whitney extension to be also well adapted as in
[7, 33]. In our case we privilege the first procedure which can be easily set up and manipulated using
classical functional tools. The last comment is related to a technical point in KAM reduction, Contrary to
the preceding papers such as [7, 33], we do not need to use pseudo-differential operators techniques in
the description of the aforementioned asymptotic structures of £., and %Ilfw% 1. In fact, they can be
avoided since all the involved operators can be described through their kernels and therefore instead of
splitting the symbols we simply expand the kernels as in (3.17) which sounds to be more appropriate in

our context.

» Step 3. Nash-Moser scheme. This is the main purpose of Section 8.1 where we construct zeros for the
nonlinear function F defined in (3.13) for small ¢ following Nash-Moser scheme in the spirit of the papers

[7, 33]. Let us quickly sketch this scheme. We build by induction a sequence of approximate solutions U,
Uny1 2Up+ Hyyy with Hpyyq 2 —Ty, Ty, F(U,).

with T,, an approximate inverse of d; oF (U,) constructed in Step 2. Thus using Taylor Formula we may

write
F(Uns1) =y, F(U,) — O, (Ln Ty — Id)n, F(Uy,) + (Lol — Oy, Ly) T Iy, F(Un) + Qn,

where @Q,, is a quadratic functional. Consider the Cantor set

n—1

A;YL = ﬂ gk(’yk+la7—177—2aik)7

k=0

L

with 7y, = v(1 +27"), then we show by induction that

0 —1 pqa 0 - 07 —ay
U117 Sey 'NGY, U] Sev N IF(Un)llgise™ S eN,t (3.18)

q,80+0 ~ q,b1+o ~ n—1

for a suitable choice of the parameters a1, b1,a, 4, > 0 and O] is an open enlargement of A) needed
to construct classical extensions to the whole set of parameters O. Actually, we get a precise statement
in Proposition 8.1 allowing to deduce that the sequence (U, ), converges in a strong topology towards a
sufficient smooth profile (A, w) € O = Uso(A,w) = (ioo(A,w), tlos (A, w), (A, w)) with

V(A w) €6, FlUx(Aw))=0, GL £ m A

neN

Moreover, we get in view of Corollary 8.1 a smooth function A € (Ag, A1) — (A, w(A, €)) with

w(A &) = —wrq(A) +7e(N),  ||7e]

10 ey NG (3.19)

and
YA e, .F(Uoo()\,w()\,e))) =0 with a ()\,w()\,s)) = —wgq(N),
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where the Cantor set C5, is defined by
cc 2 {A € (Mo M) st (Aw(he)) e ggo}. (3.20)

This gives solutions to the original equation (3.12) provided that A belongs to the final Cantor set C, and

the last point to deal with aims to measure this set.

» Step 4. Measure estimates. The measure of the final Cantor set C5, will be explored in Section 8.2.

We show in Proposition 8.2 that by fixing v = ¢ for some small a we get
Cs| = (A1 — o) — C&°,

with small 6 connected to the geometry of the Cantor set and the non degeneracy of the equilibrium
spectrum. There are two main ingredients to get this result. The first one is the stability of the
intermediate Cantor sets (\A7),, following from the fast convergence of Nash-Moser scheme. However the
second one is the transversality property stated in Lemma 8.3 used in the spirit of [12] and [139]. This
property will be first established for the linear frequencies in Proposition 5.5, using the analyticity of the
eigenvalues and their asymptotic behavior. Then the extension of the transversality assumption to the
perturbed frequencies is done using perturbative arguments together with the asymptotic description of
the approximate eigenvalues detailed in (8.67), (8.82) and (8.81). We emphasize that the transversality is
strongly related to the non-degeneracy of the eigenvalues in the sense of the Definition 5.1 . For instance,
we show that the curve A € [Ag, A\1] = (€, (A), ..., €2, (A)) is not contained in any vectorial plane, that is,

if there exists a constant vector ¢ = (cy, .., ¢q) such that
d
YAE Do Ml D el (V) =0,
j=1

then ¢ = 0. This is proved in Lemma 5.4 and follows from the asymptotic of the eigenvalues for large

values of A according to the law (C.15) combined with the invertibility of Vandermonde matrices.

4 Hamiltonian formulation of the patch motion

In this section we shall set up the contour dynamics equation governing the patch motion. A particular
attention will be focused on the vortex patch equation in the polar coordinates system. We shall see that
the Hamiltonian structure still survives at the level of the patch dynamics, which is the starting point

towards the construction of quasi-periodic solutions.

4.1 Contour dynamics equation in polar coordinates

The Rankine vortex 1p (actually any radial function) is a stationary solution to (QGSW),. To look for
ordered structure like periodic or quasi-periodic vortex patches ¢ — 1p, around this equilibrium state, we

find it convenient to consider a polar parametrization of the boundary

1

2(t,0) 2 (1 + 2r(t,9))§ei9. (4.1)
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Here r is the radial deformation of the patch which is small, namely |r(¢,0)| < 1. Taking r = 0 gives a
parametrization of the unit circle T. We shall introduce the new symplectic unknown

R(t,0) 2 (1 +or(t, 9))%. (4.2)

which will be useful to write down the equations into the Hamiltonian form. In what follows we want to
explicit the contour dynamics equation with the polar coordinates. The starting point is the complex

formulation of the vortex patches equation (1.17), which we recall here
Im ([atz(t, 0) — v(t, =(t, 9))}3(%(15, 9)) = 0.

In order to transform it into a nonlinear PDE, we need to recover the velocity field v from the patch
parametrization. To do so, recall that v = V+W¥ with ¥ given by (1.7) To get an explicit form of the

velocity in terms of the patch boundary we shall use the complex version of Stokes theorem

% [ oeredane - [ e (4.3)

oD

In view of v(t,z) = 2i0:¥(t, z), one deduces that

Vit )= o [ Ko(Alz = €l (4.4)

Notice that to rigorously apply Stokes theorem one may use a regularization procedure. This is purely
technical and we refer the reader to the proof of Proposition 4.1 for more details. Next we intend to write
down the boundary motion in terms of the contour dynamics. First, from the polar parametrization, it is
easy to check from (4.1) that

Im (8tz(t, a)aez(w)) = —0,r(t,0).

On the other hand, using (4.4) and (C.3), we infer

I (v(t,2(1.0)35:(00)) = |

Ko (Al2(6,0) = 2(t,m)]) T (,2(t, )=(£,0) ) di.
T

Next we observe that,
Im (8,,z(t,77)892(t,9)) = 8§n1m (z(t,n)z(t,e))
— 0, (Rt n)R(t,0) sin(n — 6) ).

Thus, by setting
Ap(t,0,m) £ |2(t,0) — 2(t,n)| = [R(t,0)e” — R(t,n)e"| (4.5)

and
FAlr(00) & [ Ko OA(0,0.0) 0, (Rtm) Rt ) sinn = 0) ), (4.6)

we get the vortex patch equation in the polar coordinates
Or(t,0) + Fi[r](t,0) = 0. (4.7)

Now, we fix a parameter ) that will be used later to get rid of trivial resonances, and we shall look for
solutions in the form

r(t,0) = 7 (t, 0 + Qt). (4.8)

58



4. Hamiltonian formulation of the patch motion

Then elementary change of variables applied with (4.6) show that
Fy\[7](t, 0+Qt) = Fi\[r] (¢, 6) . (4.9)
Thus, the equation (4.7) becomes (to alleviate the notation we simply use r instead of 7)
Oyr(t,0) + Qpr(t,0) + Fx[r](t,0) =0, (4.10)

which is a nonlinear and nonlocal transport PDE. To fix the terminology, we mean by a time quasi-periodic

solution of (4.10), a solution in the form
r(t,0) = 7(wt, 0),

where 7 : (¢,0) € T4 — 7(p,0) € R, w € R? and d € N*. Hence in this setting, the equation (4.10)
becomes
w - 0,7(p, ) + Qg7 (¢, 0) + Fr[r](p,8) = 0.

In the sequel, we shall alleviate the notation and denote 7 simply by r and the foregoing equation writes

V(p,0) € T, w- 0,1 (0, 0) + Q01 (i, 0) + Fi[r](,0) = 0. (4.11)

4.2 Hamiltonian structure

We now move to a new consideration related to the analysis of the Hamiltonian structure behind the
transport equation (4.10). This structure sounds to be essential if one wants to explore quasi-periodic
solutions near Rankine vortices. Notice that it is a classical fact that incompressible active scalar
equations such as 2D Euler equations are Hamiltonian and as we shall see in this section, we can find a
suitable interpretation of this property at the level of the contour dynamics equations which is a stronger

reformulation.

4.2.1 Hamiltonian reformulation
We consider the kinetic energy and the angular impulse associated to the patch w(t) = 1p, and defined by

E(t)é_% i W(t,2)dA(z) and J(t)é%/[) 2[PdA(2), (4.12)

where the stream function ¥ is defined according to (1.7). Notice that the sign convention ensures the
kinetic energy to be positive. The following result dealing with the time conservation of the preceding

quantities is classical and can be proved in a similar way to Euler equations.

Lemma 4.1. The kinetic energy E and the angular impulse J are conserved during the motion,

dE(t) _, _ dI(1)
a0 dt

In what follows we shall state the main result of this section on the Hamiltonian structure governing
the equation (4.10).

Proposition 4.1. The equation (4.10) is Hamiltonian and takes the form
Or = 0gVH(r), (4.13)
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where V is the L3(T)-gradient with respect to the L3 (T)-normalized scalar product defined by

</)1,P2>L2(T) £ /Tpl(e)pz(e)dﬁ
and the hamiltonian H is defined by

H(r) 2 %(E(r) - QJ(T)).

In particular, we get the conservation of the average, that is,

% /T r(t,0)df = 0. (4.14)

Proof. » Using Stokes formula (4.3), we may write
I = [ JePede.
oD,

Then from the parametrization detailed in (4.1) one gets easily

J(r)(t) = i/T\z(u9)\22@79)3%(@9)(19
= %/Tae (R'(t,0)) d9+i/TR4(t,9)d9

= %/TR‘l(t,H)dH.

Consequently,

J(r)(t) = i/Ta +2r(t,0))° db. (4.15)

Differentiating in r one gets for p € L*(T)

(VI(r), p) oo () = /T (14 20(t,0)p(0)d0, ie. VJ(r)=1+2r

It follows that
%Q(%VJ(’/‘) = 9697‘. (4.16)

» Next, we shall compute the Gateaux derivative of E in a given direction p € L?(T). The first step is to

express the energy

E(t) = —% i W(t, z)dA(z)

in terms of the boundary parametrization of dD;, which shall be done by using Stokes theorem (4.3).

Recall from (1.7) that the potential velocity expresses as follows
W(t,2) = /D Ko(A¢ — 2)dA().

In order to apply Stokes theorem we shall a priori formally compute an anti-derivative of Ko(A|€ — z|)

with respect to £&. We shall search it in the form
(€ = 2)F(AIE = 2I).
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Then we should get
Ko(M¢ — 21) = 9 (€ = 2) f(ME = 21) = FONE — 2) + 22 (Mg — 2.
Hence f is a solution on R% of the ordinary differential equation
iaf(z) + f(z) = Ko(z), ie. (2°f(x)) =22Ko(z). (4.17)

Using (C.5), we obtain
f(x) _ _21K1(:E)+C

2 ’
where C is a constant to be fixed so that the integral converges. Using (C.6), one has on the real line
Ko@) =+ 310 (3) +o(xlog(3)).
so that
K (x) = 1+ % log (§) +o(a*log (3)).

Making the choice C' = —2 we get
flz) = -2 (4.18)

$2

which behaves like a logarithm near 0 and thus it is integrable. But notice that Stokes theorem requires
some smoothness on the integrated function to be applied. Consequently, we shall rather consider for
€ > 0 the smooth quantity

F&2) 2 0 (€-2f (WIE—2P +€)).

Then applying Stokes theorem (4.3) yields

25 [ R, 2)dAE) = /

D, oD,

f (A €27 + 62) de.
According to the structure of f described above, a simple application of dominated convergence theorem
gives

e—0 oD

im [ @-ns (WE=PTe)de= [ E-Dr0e-z) s

Now observe that by virtue of (4.17), we can write

F.(§,2) = Ko (WIE—2P +€) - f(WE=P+e).

Ae2
2¢/1€ — 2[* + €2

Using the fact that f’(z) is equivalent to L at 0, we obtain by dominated convergence theorem

lim

62
5~>0/;t /‘§_Z|2+62

Thus, still by dominated convergence theorem, we get

7 (/\\/|§ 2P+ 62) dA(€) = 0.

lim [ F(6,2)dA(€) = [ Ko(ME — 2)dA().
€E— D, D,
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Gathering the foregoing computations implies
(o) = o [ €D - e

Therefore using the parametrization (4.1) we find

_ a1 [ Gm) —=(E,0) [Ma(t, 0) — 20t n) Ky (A2(t, 1) — 2(¢,0)]) — 1]
O = / ) — (0 O)P Bu{t )
Making appeal to f and removing the time dependence, we get

W (z(0)) = %/T(?(H) = 2(m))f (A[2(0) = 2(n)])0y2(n)dn. (4.19)

At this stage we need to look for an anti-derivative with respect to z of Z!(€ — %) f(A|¢ — 2]) in the form
(€ —2)%g(AE — 2.
Therefore we deduce the constraint
FE-DSOE - 2D) = 0 (€~ 2)9(A¢ — 21) = —€ — =) (2000¢ — 21) + 25219/ (e - 21)) .
Hence, g should be a solution on R* of the ordinary differential equation

2g'(z) +29(x) = f(;), ie. (ztg(x)) =23f(zx) = 20 — 222K, (). (4.20)

Using once again (C.5) yields

224222 Ko (x)+C
g(z) = et )

where C' is again a constant used to cancel the violent singularity. From (C.6) and (C.2), one obtains the
asymptotic
Ky(z) = % — 140 (2%log(z)).

Thus
22 Ky(z) = 2— 2 4 O(z* log(x)).
—0

x

Then by choosing C' = —4 we deduce that the function below

g((E) _ z2+2w2;§2(w)74

is integrable. Hence, applying once again Stokes theorem (4.3) together with a regularization procedure

as above, we infer

E(r)(t) = gty / / (€27 [A2|€z|2€<1_+z|§K2<A|sz|>>4] ded
0Dy J 9D,

Z(t,n)—Z(t,0))2 [\ z(t,n)—2(t,0)|(14+2Ka (M| 2(t,n) —2(£,0)])) —4

:/\14//( (t;m)—=(t,0))"[A=(t n\)z(f,(;)Jl((t;)|22( [z(t,n)—=(t,0)])) ]892(t,9)a,7z(t,77)d77d9.
TJT

Hence using g and removing the dependence in time, we find
B) = 4 [ [ (206) =20 P901=(0) = 2))00=(0)0, =)o, (421)
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4. Hamiltonian formulation of the patch motion

The next goal is to compute the derivative of E with respect to r in the direction p, which is straightforward

(VE(r).p)r2(x / / )= 2(n) g (\=(0) — 2(0)) (2R — 2B ) Do=(0)0y ()

/ / D20 g (M2(8) — 2(n)]) B9 Re ((2(6) — 2(n))e ) Bp=(8)0,2(n)dbdn

/ ./ O (M=(0) = =(n))) FiRe (=) — 2(0))e ™) p=(0)y=(n)dodn

// )= 201)” g (A2(0) = 2(n)]) 9y (2 ) Dn(m) By
/ / ) = 2(m)° g (N=(0) — 2(0)]) 90=(0)0), (2™ ) dod.

By exchanging in the double integral 6 and 7, we deduce

—i6
< 0(0)0y 2(n)dds)

(VE(r).p)r> T)—Z//(Z(H)—Z( )) 9 (A2(0) = z(n)]) 25

+A//(zz(<99 O (A|2(0) — 2(m)]) g Re ((2(0) — 2(n))e ™) 09=(0)0, 2 () dddn

+//(z(e)—z(n))Qg(AIZ(G)—Z(n)I)ae(p%)
TJT

An integration by parts in the last integral leads to

/ / (2(0) = 2(n)* g (\|=(0) — =(n)]) 9 (24557 ) Du=(n) ol
TJT

— 2 / / (2(6) — Z(m)g(N=(0) — =(n)]) 29" y=(6)3, = (n)dbd
TJ T

—A / / GO 5/ (A|2(6) — 2(n)]) 29" Re [(2(0) — =(n))9p=(0)] 9,,=(n)dbn.
TJT

Using the identities
e0pz(0) — e 0y2(0) = —2iR(0)

and
Re [((6) — =(n)35=(0)] & — Dp=(0)Re [((6) — =(n))e"] = —iR(0)(=(0) — =(n).
we infer
VW em = 4] / G(N=(0) — =(n)])By=(n)p(0) 0y
[ [e 2(6) — =()lg (N=(0) — =(m) ), =(n)(6) 6.
TJT

Applying (4.20), we find

(VE(r), p)r>(1) = %/T/T(?(@) —2(n)f(A|2(0) — 2(n)[)9y () p(0)dOdn,
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which implies by virtue of (4.19)

VE(r) = %/T(?(f’) = Z()f (A[2(0) — 2(n))Opz(n)dn = =2 (=(0)).
Now, using the complex notation we deduce that

0pW (2(0)) = V¥(2(0)) - 0p2(0)

where we used (1.2) and the facts that V2 ¥ = v and W is real-valued. Recall that the functional Fy[r]

was introduced in (4.6). Hence
OV E(r) = =20, (2(0)) = —2F\[r](9).

Finally we get
%%VE(T) = —F\[r](0). (4.22)

The conservation of the average is easy to check from the Hamiltonian equation. Therefore the proof of

Proposition 4.1 is achieved. O

4.2.2 Symplectic structure and reversibility

The main concern is to investigate the symplectic structure together with the reversibility property
associated to the Hamiltonian equation (4.13). These properties will be used in a crucial way to fix the
symmetry in the function spaces and by this way remove from the phase space the trivial resonances. For

more details we refer to Section A.1 and Section 6.

According to Proposition 4.1, it seems more convenient to work with the phase space
LAT) 2 {r= Z rje; st. r_;=7; and Z Iril? < ooy, ej(0) £ . (4.23)
jezr jezx

The symplectic structure on L3(T) induced by (4.13) is given by the symplectic 2-form

W(r, h) & /jr 05 ' r(0)h(0)d0  with 95 r(0) = Y 73 elif (4.24)

JEZ* ij
Then for a given function H, its symplectic gradient X g is defined through the identity
dH(r)[] = W(Xg(r),). (4.25)

Using the Fourier expansion

r(0) = Z riel?  with r_; =77,
jezx

we easily find that the symplectic form W writes

1 1 —
W(’f’, h) = Z FT‘jh_j = Z ?jrjhj’

jezx jez*
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5. Linearization and frequencies structure

that is

1 1 1
W= Z i—jdrj ANdr_; = Z gdrj Adr_j, (4.26)
JEZ* JEN*

where for all j € Z*, the exterior product dr; A dr_; is defined by
dry Ndr_;(r,h) =rjh_;j —r_jh;.
To define the reversibility, we shall introduce the involution .
(1) () = r(-0), (4.27)
which satisfies the obvious properties
7?2 =1d and OpoS =—F00y. (4.28)

The following elementary result is useful and can be easily checked from the structure of the Hamiltonian.

Actually, it suffices to make changes of variables.

Lemma 4.2. The Hamiltonian H and its associated vector field Xy = 09V H satisfy

HoY=H and Xpgo¥ =-90Xg.

5 Linearization and frequencies structure

This section is devoted to some aspects of the linearized operator associated to the evolution equation
(4.10) or its Hamiltonian version (4.13). We shall in particular compute it at any state close to the
equilibrium and reveal some of its main general feature. As we shall see, the radial shape is very special
and gives rise to a Fourier multiplier and thus the spectral properties follow immediately. This latter case
serves as a toy model to check the emergence of quasi-periodic solutions at the linear level provided that
the Rossby radius A belongs to a Cantor set, see Proposition 5.1 . However, around this ideal state the
situation is roughly uncontrolled and the operator is no longer diagonal and its spectral study is extremely
delicate due to resonances that prevent to diagonalize the operator. To deal with this problem we will

implement some important tools borrowed from KAM theory as we shall see in Section 7.

5.1 Linearized operator

The main goal of this section is to compute the differential of the nonlinear operator in (4.10) for any small
state r. The computations will be conducted at a formal level by simply computing Gateaux derivatives
which are related to Frechet derivatives. This formal part can be justified rigorously in a classical way for

the suitable functional setting fixed in Section A.1.

5.1.1 The general form

In what follows we shall derive a formula for the linearized operator associated to the equation (4.13). We
shall see that it can be split into a transport part with variable coefficients and a nonlocal operator of

order zero. More precisiely, we shall establish the following lemma.

Lemma 5.1. The linearized equation of (4.13) at a given small state r is given by the time-dependent

linear Hamiltonian equation,
Dup(t,6) = By (= V(X £,0)p(t,0) + Lyp(A,1,0) ),
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where V. is a scalar function defined by
Vi £0) 2 0+ by [ Ko (VAL (0.6.0)) 0, (Ret) sinn = 0) i (1)
and L, is a nonlocal operator given by
o)\ t0) £ [ KoM, 1.0, 52)

We recall that Ko, A, and R are defined by (C.7), (4.5) and (4.2), respectively.
Moreover, if r(—t,—0) = r(t,0), then

V(A —t,—0) = V,.(\, t,0). (5.3)

Proof. Throughout the proof, we shall remove the time dependency of the involved quantities except when
it is relevant to keep it. The computations of the Gateaux derivative of F defined by (4.6) at a point r in
the direction p are straightforward and standard and we shall only sketch the main lines. Notice that the
functional F\ is smooth in a suitable functional setting and therefore its differential should be recovered
from its Gateaux derivative. First, we observe that the function A, defined in (4.5) can be written in the

form

A (0,7) = (R2(0) + R2(n) — 2R(0)R(n) cos(y — 0))?

1

_ ((R(e) — R(n))? + 4R(0)R() sin ("T*")) ’, (5.4)

This identity (5.4) will be of constant use in the sequel. Second, after straightforward computations, we
obtain from (4.6),

d.Fx[r](p) = 0-Fxlr + TP]\T:o
=T + 1+ 13 + 14,

where
I £ Mp(0) /Br(é’»n)Ké (AA(0,7)) 05, (R(B)R(n) sin(n — 0)) dn,
T
I, £ /\/p(n)Br(nﬁ)Ké (AA(0,7)) 07, (R(O)R(n) sin(n — 6)) dn,
T
Iy 2 / Ko (A, (0,1)) 93, (p(0) 25020 ) i,
T
7,2 / Ko (A(0,m)) 0, (p(n) " 50=2 ) ay,
T
with



5. Linearization and frequencies structure

Next, we shall compute Z; + Z3. To do that, we split Z3 into two terms as follows,
Ty = dpp(0) / Ko (A, (0,)) 0, (238020 ) i
T

+p(60) / Ko (AA(0,)) 83, (E2580=20) dny
T
£ 90p(0)V+ (A, 0) + p(0)Ts.

An integration by parts in Z3 allows to get,

Iy = —A /T On A, (0,m) K5 (A, (6,1m) B(m)y (255852 ) .
Putting together the preceding identities yields
Tr + Iz = 9op(9) Vi (A, 0) + p(0) V1(X, 0) (5.6)
with
Vi(A0) £ X [ B(0.0)0%, (RO)R()sinn — 0)) K (VA (0.1) d

- /T O A (0,19 (R0 [5G (AA, (0, ) dn (5.7)

Differentiating term by term V,. with respect to 6§ gives
Vr (A, 6) = A / DA (0, 1)) (N (0,1m) Dy (250020 ) iy
T

+/K0 ()\Ar(e,n))agn (W) i
T
éjl+j2,

Integrating by parts in Jo yields

T ==X [ R0)0,A0.0) 15 (0AL(6.2)) 0 (5552 )
Combining the preceding identities allows to deduce that
Vi (X.6) = X / K5 (VAL (6,m) |00 A, (0,00, (D200 ) — 9, 4,6, m)0p (250=20) | d.
Next we shall check the following identity
00 A (0,m)0, (P5I=Y) = B,(6,0)05, (R(O)R(n) sin(n — 0)) — 9, A, (6,1). (5.8)

Indeed, by (5.4) and (5.5), one finds

O Ar (0, 1)0y (EU0=CL) = 9 R(0) B, (8, 1), () sin(n — 0)) — S =0)2 00t sinn=0)
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and

B,(0,1)95, (R(0)R(n) sin(n — 0)) = 9gR(0) B,(0, 1), (R(n) sin(n — 0))

_ (R(9)—=R(n) cos(n—0))d, (R(n) cos(n—9)) .
Ar(0,m)

Putting together the foregoing identities leads to

99 Ar (6, 1)0n(R(n) sin(n — 0))
R(0)

= B..(6,1)7, (R(0)R(n)sin(n — 6)) + g(6,7),
where

9(0.m) £ gy [(R(O) — R(y) cos(n — 0))0y(R(n) cos(n — 0)) — R(n) sin(n — 0),(R(n) sin(n — 0))]

_ R(6)9y(R(n) cos(n—06))—R(n)dn R(n)
Ar(0,m)

= _817147“ (67 77)

This achieves the proof of (5.8). From the periodicity we get

[ 204,005 (04, 600 dn = [ 4 (Ko (1AL (6.1)] =0
and thus we get the following important identity
V(A 0) = V(A 0).
Plugging this into (5.6) allows to get
Ty + I3 = 0 (Ve (X, 0)p(0)) -
Notice that it is easy to check that if r(—t, —6) = r(¢,0), then
V(A —t,—0) = V(A t,0). (5.9)
The next task is to compute Zy + Z4. Using integration by parts in Z, gives,
I, = —A/Tp(n)@nAr(@,n)Ké (A, (0,m)) By (BL5r0=2) a,

From the symmetry property A.(6,n) = A.(n,6) and by exchanging the roles of § and 7 in (5.8), one

deduces
Br(n7 0)8927; (R(G)R(n) Sin(n - 9)) - aT]AT’(ga 77)59 (W) = *6914?”(93 77)
Therefore we obtain

T+ T— 0 ( [ o 3, (0,) dn) & 9L, (o)1, 0).

Finally, by setting
V(A t,0) 2 Q+ V() t,0)

and combining the preceding identities, we end the proof of Lemma 5.1. O
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5. Linearization and frequencies structure

5.1.2 The integrable case

The main purpose here is to explore the structure of the linearized operator at the equilibrium state.
We shall see that the radial shape is reflected on the structure the linearized operator which is a Fourier

multiplier (of a convolution type). More precisely, we have the following result.
Lemma 5.2. The following properties hold true.

1. The linearized equation of (4.13) at the equilibrium state (r = 0) writes,
Orp = OpL(N)p = 09V Hy(p), (5.10)
where L(\) is the self-adjoint operator defined by L(\) = —Vy(A) + Kxxg with
Vo(N) 2 Q+ (VMK (N (5.11)

and

Ka(0) £ Ko (2X [sin (§)]) - (5.12)

We refer to the Appendix A for the definitions of the modified Bessel functions I, K1 and K.

Moreover, the Hamiltonian Hy, is quadratic and takes the form

Hy(p) £ 5(L(N)p, p)r2(r)-

2. The solutions to (5.10) with zero space average are given by

p(t,0) = Z p;(0)eld0= 2N (5.13)
jez*
with

Q) 2 5[+ (LKD) = (LE;) (V). (5.14)

and for p(6) = Z ;€% we have

jEz*
LVp0) ==Y LR pie®  and  Hpp=-Y LXM|p2, (5.15)
jez jez

Before proceeding with the proof we want to give some remarks.

Remark 5.1. o When 2 =0 the eigenvalue Q1(\) vanishes for any A due to the rotation invariance
of the equation and the use of the free parameter ) is to avoid this degeneracy. However the trivial
resonance Qo(A) = 0 can be removed by imposing the zero space average which is preserved by the

nonlinear dynamics from the Hamiltonian structure as we have seen before in (4.14).

e The solutions to the linear equation at the equilibrium are aperiodic and if we excite only a finite
number of frequencies with non-resonances assumption we get quasi-periodic solutions. We will make

a precise comment later on Proposition 5.1.

Proof. 1. First observe that from (5.4), one deduces for r = 0 that Ag(6,7n) = 2

sin ("2;9) ‘ Then we
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obtain from (5.1) and (5.2),

Lop(A,0) = /p(n)Ko (2/\
T

= IC)\ * p(9)7

an (52) )

with Ky defined in (5.12) and using the change of variables n — n + 6 we obtain

Vo(\,0) = Q+/Ko (2>\
T

sin (77 9) D cos(n — 6)dn
=Q+ /Ko (2 [sin (2)]) cos(n)dn

T
2 Vo(N).

We remark that if we write e;(0) = €% then direct computations yield

(K % ¢;)(0) = /KU (2 [sin (2)]) €9 dyy

T

=e;(0) /KO (2X [sin (2)]) e~ dn.
T

Since the function n — Ky (2/\ ’sin (g) ’) is even, we deduce using the change of variables n = 27 + 7 and
the formula (C.9) that

[ o @ fsin ()00 -

T

Ko (2X [sin (2)]) cos (jn) dn

S~

- / Ko(2\ cos(r)) cos(2jr)dr

Hence, the Fourier coefficients of Ky are
(Kx); = (LK;)(A). (5.16)
Similar arguments as before with j = 1 allow to get
Vo(A) = Q+ (I K1)(A).

Recall that Iy is even and then we find that L(\) is self—adjoint in L2(T).

2. Starting from the Fourier expansion p(t, 6) Z p;(t % then we can easily ensure from direct
JEZL*
computations using the previous results, that p solves the equation (5.10) if and only if

pj=—19;(Np;  with  Q;(\) = j[Q+ (LK1)(N) = (LE;)(N)],
and therefore

Zp j9 Q;( )\)t).

JEL*

Concerning the identities (5.15) they can be obtained from straightforward computations. This ends the
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5. Linearization and frequencies structure

proof of Lemma 5.2. O

5.2 Structure of the linear frequencies

The main target in this section is to explore some interesting structures of the equilibrium frequencies.
We shall in particular focus on their monotonicity and detail some asymptotic behavior for large modes.
Another important discussion will be devoted to the non-degeneracy of these frequencies through the
so-called Riissmann conditions. This is the cornerstone step in measuring the final Cantor set giving rise
to quasi-periodic solutions for the linear/nonlinear problems. Actually, in the nonlinear case the final
Cantor appears as a perturbation of the Cantor set constructed from the equilibrium eigenvalues and
therefore perturbative arguments based on their non-degeneracy are very useful and will be performed in
Section 8.2.

5.2.1 Monotonicity and asymptotic behaviour

Our purpose is to establish some useful properties related to the monotonicity and the asymptotic behavior
for large modes of the eigenvalues of the linearized operator at the equilibrium state. Notice that their

explicit values are detailed in (5.14). Our result reads as follows.
Lemma 5.3. Let Q > 0 and A € R, then the frequencies (;(\)); ez~ satisfy the following properties.
(i) For any j € Z*, X > 0 we have Q_;(\) = —Q;(N).

(ii) For any A > 0, the sequences (£2;(X\)) jen+ and (Qj()‘)) are strictly increasing.
JEN*

J

(iii) For any A > 0, the following expansion holds

QN = Vo(N)j—35+ ﬁ + Ox (%) , (5.17)

Jj—o0
where Vo(X) is defined in (5.11).

(iv) For any j € Z*, A > 0 we have
1€ (N)] = Q3]

(v) Given 0 < A\g < A1, there exists Cy > 0 such that

Ve [)\0,)\1],Vj,j0 S Z, ‘Q](/\) + Qjo()‘)| > Co|] :|:j0|

(vi) Given 0 < \g < A1 and qo € N, there exists Cy > 0 such that

Vjvjo € Z*a max sup |a§\ (QJ()‘) - Q]O()\))| < CO'J - ]0|
a€[0,q0] Ae[rg, 1]

Proof. (i) Tt is an immediate consequence of (5.14) and (C.3).
25(A)
J
C. It follows that the sequence (€2;(\));en+ is strictly increasing as the product of two strictly increasing

(ii) The monotonicity of the sequence ( ) is proved in [54, Prop. 5.9. (1)], see also the Appendix
jeN~

positive sequences.

(iii) Tt is an immediate consequence of (5.14) and the asymptotic expansion (C.14)

(iv) Recall that j — €;()) is odd and vanishes at j = 0. Then it suffices to check the result for j € N*.
According to the Appendix C, the sequence j +— (I; K;)()) is decreasing and therefore

YA>0, (I1K)(\) — (IK;)(\) = 0. (5.18)
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It follows that
VAS 0, 2,00 > 9.

(v) By the oddness of j — €2;()) it is enough to establish the estimate for j, jo € N. We shall first focus on
the estimate of the difference Q;(X) — Q;,(A). Without loss of generality we can assume that j > jo > 1,
(The case j = jp is obvious and the case jo = 0 brings us back to the previous point). One may write by
(5.14) that for A > 0,

Q) = 25, (V) = (G jo) (2 + LKL () = LOVE; (V)
+ 5o (L WKy = LOVE; (V) (5.19)
Combining this identity with the estimate (5.18) yields
() = %y (N) = (G = o)+ o (Liy VK5, () = LOVE; (V). (5.20)

We need to get refined estimate for the last term of the right hand side. For this goal we use the formulae
(C.10) to write

(I,K,)(\) = ;/OOO Jo(2Asinh(L))e " dt. (5.21)

This allows to construct for a fixed A a smooth extension n € (0,00) — (I, K,,)(A). Thus differentiating

term by term using change of variable we get for any m € N
sup |07 (1, Kn) (V)] < %/ t™e " dt
PYSH 0
< gt (5.22)

where we have used the classical estimates for Bessel functions (applied with n = ¢ = 0)

sup 1T ()] < 1, (5.23)
VeR

which follows easily from the integral representation (C.1). In particular, for m = 1 we find that for for

any n > 1

sup an(ann)(A)‘ < oL

AER

Therefore applying Taylor Formula we infer for j > jo > 1

igkh&ﬂﬂ—ﬂﬁ&ﬁ@ﬂ<§é”m

< hl. (5.24)
Inserting this estimate into (5.20) gives
Q) = 2 (V) = (G- o) (2 - %)-
Therefore for j > N = [Q7!] and j > jo > 1 we get

Qi) = (N = 527 — jo)- (5.25)
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Now for j # jo € [1, N] we get from the point (ii) that the map A € [Ag, A1] = Q;(X) — Q;,(A) does not
vanish and therefore we can find by a compactness argument a constant C' > 0 such that

VA€ o, Ml [95(A) = Q5 (M] = Cli = Jol-
Taking C = min(C, 3£2) and combining the preceding inequality with (5.25) we obtain
VA€ Do, Vi Zd0 > 1, [25(A) = Q5 (M) = Coli = jol-

Finally we get

VA€ Ao, M. V5, J0 €N, 1Q(N) — Q4 (V)] = Coli — Jol-
Let us now move to the estimate ;(X) 4+ €, () for j,jo € N. Since both quantities are positive then
using the point (iv) yields

VAE Pos My (950 4 Q5 (M = Q5 (A) + Q5o (A) = Q3 + o) = ColJ + Jo)-

This completes the proof of the desired estimate.
(vi) Let go € N*. let g € [0, qo]. Differentiating ¢ times (5.19) in A, one obtains

O () = 4, (V) = G = o) (312 + O (VK (V) — 85 (LK, (V) )
+ 5008 (L Wiy (V) = OIS (V) (5.26)
Similarly, we get by differentiating ¢ times in A the identity (5.21)
91(I, K,)(\) = 2971 A1 / JSP (2 sinh (%)) sinh?(L)e " dt. (5.27)
0

From (5.23) we deduce for any A € [Ag, A1),
|03 (In K ) (M) < Qq_l)‘?/ sinh?(L)e " dt.
0

Then using the inequality sinh z < % for > 0 we get for n >

KW < F [ )
0

A‘f.

< 2n—q

(5.28)
By compactness argument, we deduce that

sup max  sup |9 (L;(NK;(N)| < C. (5.29)
j€N 4€[0,90] xe[Xg,A1]

Differentiating in n (5.27) yields

810, (I, K,)(\) = =297 1\ / J$¥ (2Asinh(t/2)) sinh?(t/2)te """ dt.
0
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Therefore applying similar arguments used to show (5.28) gives for 2n > ¢

q o0 a
0. (1K) < [ et B e
0

2\

<G (5.30)

Then Taylor Formula allows to get for j, jo > 4

sup (08 (1K — I, K5, )(V)] < Ol (5.31)
AE[Xo,A1]

Setting N = [% | + 1, one obtains for any j,jo > N

max sup |j08§(IjKj - IjonO)()‘)‘ < C|J - 30|
a€[0,q0] xe[rg,A1]

By compactness argument, one obtains for any 7, jo € [1, N]

max sup |jod} (1K — 1, Ky ) (V)] < Clj = jol-
q€[0,90] Ae[Ng,A1]

Now for the remaining case jo € [1, N] and j > N one has gathering the previous two estimates

max  sup |jody([;K; — I[;, Kj ) (AN)| < N max  sup |95([;K; — INKn)(N)]
a€[0,q0] A€[Ao,A1] 2€[0,q0] xe[rg,A1]

+ N max  sup [0(INKn — Ly Kj,)(N)]
a€[0,q0] xe[rg,A1]
< Clj = N[+ C|N — jo| < Clj = jol-
Thus we can find C' > 0 such that for any j, jo € N*

max  sup |jod([;K; — Ljo K, )(A)| < Clj — Jol-
a€[0,90] Ag[ro,A1]

Putting together (5.26), (5.29) and (5.14) yields

max - sup (35 (2(3) ~ iy (V)| < Clj — jol.
q€[0,90] Ae[Xo,\1]

This ends the proof of Lemma 5.3. O

5.2.2 Non-degeneracy and transversality

Fix finitely many tangential sites
S2 {j,....ja} CN* with d>1 and 1<j; < < ja.
We consider the linear vector frequency at the equilibrium state
wa(N) 2 (95(0)es. (5.32)

where Q,;()) is defined by (5.14). The main purpose is to study some Diophantine structure of the curve
A€ (Ao, A1) = wie(A) for fixed 0 < Ag < A1. In particular, we shall focus on the non-degeneracy and the

transversality conditions of these eigenvalues which are essential in getting non trivial Cantor set from
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5. Linearization and frequencies structure

which quasi-periodic solutions emerge at the linear and nonlinear levels. Notice that the approach that we
shall implement here has been developed before in several papers such as [7, 12, 139]. Before exploring

these properties we need to fix some definitions.

Definition 5.1. Given two numbers Ao < A\ and d € N*, a vector-valued function f = (f1,..., fa) :
(Mo, A1] — R? is called non-degenerate if, for any vector ¢ = (c1,...,cq) € R\ {0}, the function f-c =
fier + ... + faca is not identically zero on the whole interval [Ag, A1]. This means that the curve of f is

not contained in an hyperplane.

Now we shall prove the following result on the non-degeneracy of the linear frequencies which is related
to the asymptotic behavior of Bessel functions (I;K;)(A) for large values of A\. This property will be

crucial to check a suitable transversality assumption.

Lemma 5.4. Let Q € R* and 0 < A\g < A1, then the frequency curve wg, defined by (5.32) and the
vector-valued function A — (2 + I1 K1, wg,) € R¥Y are non degenerate on [\g, \1] in the sense of the
Definition 5.1.

Proof. » Let us start with checking the non-degeneracy of wg,. For this aim, we shall argue by contradiction

and assume the existence of a fixed vector ¢ = (cx)o<r<a € RY such that

d
YAE Do, Al Y e, (V) =0, (5.33)
k=1

Since for all j € N*, the application A — (I;K;)(\) admits a holomorphic extension in the open connected
set {)\ € C,Re(A) > 0} (see Appendix C) then by the continuation principle we obtain

d d
k=1 k=1
Using the asymptotic expansion (C.15) obtained for I;K; with large A, we first get
Vj € N, Aler;O(IjKj)(A) =0.

Then taking the limit in (5.34) as A — oo implies
d

Q Z ijk =0.
k=1

d
Since we assumed that  # 0, then necessary we find that Z ckJr = 0 which implies in turn according to
k=1

(5.34)
d
YA>0, > erin(L;, K, )(A) = 0.
k=1
Applying once again the expansion (C.15) yields
d
Vm e [1,d], Y crjk,m =0. (5.35)
k=1

We consider the matrix Ay = (Am.k)1<mk<d € Ma(R) defined by

Y(m, k) € [L,d]?,  Amr = ik, m-
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Then the system (5.35) is equivalent to Ajc = 0 with ¢ = . To get the desired result, ¢ = 0, it

Cd
suffices to check that det (44) # 0. Using the expression of the coefficients j, ,, in (C.16) one deduces
that

O = ity = DQm 1), am = ()" TR0 gy = 4% (5.36)

with @1(X) =1 and for m > 2

Qm(X) =[] (X = (20— 1)?).

Remark that @,, is a unitary polynomial of degree m — 1. Using the homogeneity of the determinant

with respect to each column and row we find

d
det (Ad) = H am(ujk — 1) det (Bd),
m,k=1

with By the matrix given by
Qulps) -+ Quly)
By = : :
Qalps) -+ Qalnga)
Therefore we infer that A, is nonsingular if det (Bd) # 0. On the other hand, the computation of det (Bd)

can be done in a similar way to Vandermonde determinant. Indeed, define the polynomial given by the

determinant

Qipg) - Qilpja,) Q1(X)
P(X)£| : :
Qalpj) -+ Qalpje,) Qa(X)

Then P is a polynomial of degree d — 1 and vanishes at all the points X = p;, for k € [1,d — 1].
Consequently, we get

det (Bg) = P(u;,) = det (Bg—1 H i — Ky )-

Therefore, iterating this identity yields

det (Bd) = H (Mje - Mik)‘

1<k<d<d—1

Since pj, # pj, for £ # k we get det (Bd) = 0 which achieves the proof of the first point.

» Next we move to the second point of the lemma and show that if
d
VA€ Do A, co( Q4 (HEDW)) + D aniu (2 + (LKD) = (1, K;,) (V) =0,
k=1

then necessary c¢g = ... = ¢q = 0. As before we can extend by analyticity the preceding identity to (0, c0)
By checking the terms in % in the preceding identity using (C.15) we find immediately that ¢y = 0.
Therefore the system reduces to (5.33) and then we may apply the result of the first point in order to get
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5. Linearization and frequencies structure

c1 = ... = ¢g = 0. This completes the proof of Lemma 5.4. O

The next goal is to check that Riissemann transversality conditions are satisfied for the linear frequencies

of the equilibrium state. Namely, we shall prove the following result in the spirit of the papers [7, 12, 139].

Lemma 5.5. [Transversality] Given 0 < Ao < A1, there exist qo € N and pg > 0 such that the following
results hold true. Recall that wgq and Q; are defined in (5.32) and (5.14) respectively.

(i) For anyl € Z4\ {0}, we have

inf 9 A) - > ).
XD g€ [ongo] 93wea(X) -1l > pol)

(ii) For any (1,7) € (Z¢ x N) \ {(0,0)}

inf max
AE[Xo,A1] g€[0,q0]

0 (wra(N) - 14 5@+ (LKD) )| > poll).

(iii) For any (1,j) € Z% x (N*\ S)

inf 91 AL\ | = poll).
Aefﬁ,mqéﬁlﬁﬁou} % (WEq(M) 3(A) | = poll)

(iv) For anyl € Z%, 5,7 € N*\ S with (I,7) # (0, '), we have

inf 04 AL+ N) Q0 (N)) | = l).
Ae[lity)\ﬂ qé?&?o“ )\(WEq( ) - J( ) ]( ))’ p0<>

Proof. (i) We argue by contradiction by assuming that for any gy € N and py > 0, there exist [ € Z9\ {0}
and A € [Ag, A1] such that
max |97 (wrq(A) - 1)| < po(l).

q€[0,90]
It follows that for any m € N, and by taking ¢o = m and pg = ﬁﬂ, there exist 1, € Z4\ {0} and
Am € [Ao, A1] such that
max [03wpq(An) - In| < Lo
and therefore
VgeN, VYm>gq, |0lwrq(An)- <§:> < i (5.37)

Since the sequences (ﬁ) and (A, )m are bounded, then by compactness and up to an extraction we
m) ) om

can assume that

lim oy = ¢#0 and lim A, = A

I .
m—oo [ m—r>noo
Hence, passing to the limit in (5.37) as m — oo leads to

Vg eN, 0wrq(\)-¢=0.

Thus, we conclude that the real analytic function A — wgq(A) - € is identically zero which contradicts the

non-degeneracy condition stated in Lemma 5.4.
(ii) We shall first check the result for the case [ = 0 and j € N*. Obviously, one has from the monotonicity
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of A — I (A\)K1(\) stated in Appendix C,

inf max
A€[No,A1] ¢€[0,90]

08 (i (2 + (WEDW) )| > 2+ (LKD)
= P0<l>7

for some py > 0. Now let us consider [ € Z%\{0} and j € N. Then we may write according to the
triangle and Cauchy-Schwarz inequalities combined with the boundedness of wgq and the monotonicity of
A= I1(A) K7 (N) stated in Appendix C,

wra(N) 1% (@ + LVKI )| 2 (@ + LK1 () = wrg() - 1] > coj = C1) > ()
provided that j > Cy(l) for some Cy > 0. Therefore we reduce the proof to indices j and ! with
0<j<Coll), j€N and 1ez)\{0}. (5.38)

Arguing by contradiction as in the previous case, we may assume the existence of sequences I,,, € Z%\ {0},
Jm € N satisfying (5.38) and A, € [Ag, A1] such that

max

a€[o.m] o] o]

m—+1

0! (qu( A) - et 9+(11K1)(/\))M:A

and therefore

YgeN, Vm>gq, < 1. (5.39)

m—+1

0! (qu(,\) Cdmoy Q—HIIKl)()\))\/\:/\

TTon] T

Since the sequences (‘l””‘) , (J—) and (A, )m are bounded, then up to an extraction we can assume
m m
that

lim 4= =¢#£0, lim 4= =d and lim A\, =\

ALY =
m—o0 [lml

Hence, by letting m — oo in (5.39), using that A — ([;K7)(X) is smooth, we find

vgen, of(weq(\) cEd(Q+ (Mﬁ)(A)))MZX 0.

Thus, the real analytic function A — wrq(A) - €+d (2 + I1(\)K1(\)) with (¢,d) # (0,0) is identically zero

and this contradicts Lemma 5.4.
(iii) Consider (1,7) € Z? x (N*\'S). Then applying the triangle inequality and Lemma 5.3-(iv), yields

wiq(A) - L Q;(A)] 2 [92;(A)] — [weq(A) -]
>Qj—ClI| = (1)

provided j > Cy(l) for some Cy > 0. Thus as before we shall restrict the proof to indices j and I with
0<j<Co(l), jeN*\'S and 1< Z\{0}. (5.40)

Proceeding by contradiction as in the previous case, we may assume the existence of sequences [,,, € Zd\{O}7
Jm € N\ 'S satisfying (5.40) and A, € [Ag, A1] such that

max
q€0,m]

q . lm, Qjm(k)
oy (qu(/\) \ [Lon )|,\=/\m <

‘lm
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5. Linearization and frequencies structure

and therefore

VgeN, VYm>q, < 1. (5.41)

m+1

q o 1 R (V)
a! (qu(/\)-‘ + Pl )M:M

L]

Since the sequences (ﬁ”w) and (Am)m are bounded, then up to an extraction we can assume that
m/m

lim = =¢#£0 and lim A\, = \.
m%mum‘ m—o0

Now we shall distinguish two cases.

» Case @ : (I,)n, is bounded. In this case, by (5.40) we find that (j,,)m is bounded too and thus up

to an extraction we may assume lim [, = and lim j,, = j. Since (jim)m and (|l;])m are sequences

of integers, then they are necessary stationary. In particular, the condition (5.40) implies 1 # 0. Hence,

taking the limit n — oo in (5.41), yields

VgeN, 0f (qu()\) l+ Qf()\))l)\ - =0.
Thus, the analytic function A — wgq(\) -1+ Q;(A) with (1,1) # (0,0) is identically zero which contradicts
Lemma 5.4.
» Case @ : (I,,)., is unbounded. Up to an extraction we can assume that W}E)noo |l;m| = c0. We have two
sub-cases.
e Sub-case @ : (jm)m is bounded. In this case and up to an extraction we can assume that it converges.

Then, taking the limit m — oo in (5.41), we find
VgeN, dlwpq(N)-c=0.

As before we conclude that function A — wgq(A) - € with ¢ # 0 is identically zero which contradicts Lemma

5.4.

e Sub-case @ : (jm)m is unbounded. Then up to an extraction we can assume that lim j,, = co. We
m—o0

write according to (5.14)

2 ) — g (04 (LK) () = (53, K5,) (V) (5.42)

[l [lm]

By (5.40), the sequence (I%m\ is bounded, thus up to an extraction we can assume that it converges to

— n
d. Using the first inequality of (5.22) we deduce that

VYméeN, sup |(Ijijm)()\)| < QJ%,
AER

which implies that
lim sup(;,, K, )(A) =0.

m—0o0 AER

Moreover by (5.28), we have

lim  sup [94(2;, K, ) (V)] = 0. (5.43)

M= A€o, A1)
Taking the limit in (5.42) and using (5.43) yields

lim 2% )
m—oo  |bml

=91 (E(Q + (IlKl)()‘))> h=x-
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Consequently, taking the limit m — oo in (5.41), we have

VaeN, 0 (weaN)-eEd(Q+ (LE)(O)) N

By continuation the analytic function A — wgq(A) - ¢ £ d(Q+ I (M) K1 (\)) with (¢,d) # 0 is identically

zero which contradicts Lemma 5.4.

(iv) Consider | € 745,57 € N*\ S with (1,5) # (0,5'). Then applying the triangle inequality com-

bined with Lemma 5.3-(v), we infer
wra(A) -1+ Q) = Q)] > 12500 2 (V)] — g (N) - 1 > Colj £ ] — €l > (1)
provided that |j £ j'| = ¢o(l) for some ¢g > 0. Then it remains to check the proof for indices satisfying
li 7| <ecoll), 1€ZN{0} and j,j € N*\S. (5.44)

Reasoning by contradiction as in the previous cases, we get for all m € N, real numbers I,, € Z¢\ {0},
Jm, Jm € N*\ 'S satisfying (5.44) and A, € [Ao, A1] such that

q L Im
max 8A (Lqu(A) . m + o] < P

g€0,m]

2, (VE2, (V) ) .
A=A

implying in turn that

VgeN, Vmz>=gq, |03 (qu()\) L. T < ﬁﬂ (5.45)

lml

U V£, (A))
A=A,

Up to an extraction we can assume that lim 5& =c¢#0and lim A, =\
m—o0 [l m—»00
As before we shall distinguish two cases.
» Case @ : (I,,)nm is bounded. We shall only focus on the most delicate case associated to the difference
Q;,. — Q. Up to an extraction we may assume that lim I, = [ # 0. Now according to (5.44) we have
m—r o0

two sub-cases to discuss depending whether the sequences (jm,)m and (j,,)m are simultaneously bounded

/.
m

or unbounded.

e Sub-case @ : (Jm)m and (j,,)m are bounded. In this case, up to an extraction we may assume that
these sequences are stationary j,, = j and j/, = j’ with j,j/ € N*\ S. Hence taking the limit as m — oo
in (5.45), we infer

Vg eN, 0f (weq(A) -1+ 25(\) — Q5 (V) 0.

A=X —

Thus, the analytic function A +— wgq(\) -1+ Q5(A) — Q5 (A) is identically zero. If j = j' then this contradicts
Lemma 5.4 since [ # 0. However in the case j # 7/ € N*\ S this still contradicts this lemma applied with
the vector frequency (wgq, (25,5 ) instead of wry.

e Sub-case @ : (Jm)m and (j,)m are both unbounded and without loss of generality we can assume that

lim j, = lim j,, = co. From (5.31) combined with (5.44) and the boundedness of (I,, ), we deduce
m—r 00 m—» 00

that
1081 K — L, Ky, ) )| < 5257
which implies in turn
i gy, O34, K, = 1, Ky, )(Am) = 0. (5.46)
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Coming back to (5.14) we get the splitting
() — 25 (8) =(in — G4) (@ (LEDN) = G — T1) (3 5, ) ()
g (L, Ky YO = (15, K, ). (5.47)
Therefore by applying (5.43) and (5.46) we get for any ¢ € N,

tim_ 0% (2, () = 2y () =(m — i) 0+ (LKD) =0

m—00 [A=Xm

Using once again (5.44) and up to an extraction we have lim j"‘fj‘.’," = d. Thus
m—oo m

lim || 710X (1, (V) = g, (V) 2y, = 408 (2 + (LED)D) 5

m

By taking the limit as m — oo in (5.45), we find

VgeN, o (qu()\) e d(Q+ (IlKl)(A))) =0

Thus, the analytic function A — wgq(A) - € + d(Q + 1 (A) K1 (X)) with (¢,d) # 0 is vanishing which
contradicts Lemma 5.4. Now we shall move to the second case.

» Case @ : (I,,)., is unbounded. Up to an extraction we can assume that W}l_r}noo [l | = 0.

We shall distinguish three sub-cases.

e Sub-case @. The sequences (jm)m and (j/,)m are bounded. In this case and up to an extraction they

will converge and then taking the limit in (5.45) yields,
VgeN, dlwgq(N)-c=0.

which leads to a contradiction as before.

e Sub-case ®. The sequences (jm)m and (j!,)m are both unbounded. This is similar to the sub-case @ of
the case @.

e Sub-case ®. The sequence (j,,,)m is unbounded and (j7,)., is bounded (the symmetric case is similar).

Without loss of generality we can assume that lim j,, = oo and j/, = j. By (5.44) and up to an extraction
m—0o0

one gets liin % = d. One may use (5.14) combined with (5.43) and (5.46) in order to get for any
qeN,

tim ] 105 (9, () % 95y, (V) = (G £ 50) (2 + (LKD) =

m— o0 ‘)\:)\m
) -7n:t -7 v
tim_of (S22 (1;, 15, )N o (1, K5,) (N = (I, K5 ))) =0,

m—o0 [l | [l A=A

Hence, taking the limit in (5.45) implies
Vg € N, 9! (qu(/\) e+d(Q+ (IlKl)(A))) _=o.

Thus, the analytic function A — wgq(\) - €+ d(Q + 11 (A) K1 () is identically zero with (¢, d) # 0 which

contradicts Lemma 5.4.This completes the proof of Lemma 5.5. O
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5.2.3 Linear quasi-periodic solutions

Notice that all the solutions of (5.10) taking the form (5.13) are either periodic, quasi-periodic or almost
periodic in time, with linear frequencies of oscillations €2;()\) defined by (5.14) These different notions
depend on the irrationality properties of the frequencies {{2;(\)} and on the cardinality of the Fourier-space
support (finite for quasi-periodic functions and possibly infinite for almost periodic ones). Remark that

we have the implications
Periodic = Quasi-periodic =  Almost periodic.

We shall prove here the existence of quasi-periodic solutions for the linear equation (5.10) when A belongs

to a massive Cantor set.

Proposition 5.1. Let \y > Ao > 0, d € N* and S C N* with |S| = d. Then, there exists a Cantor-like set
C C [Xo, A1) satisfying |C| = A\ — Ao and such that for all X € C, every function in the form

p(t,0) = pjcos(j6 — Q(Nt), p; €R® (5.48)
JES

is a time quasi-periodic reversible solution to the equation (5.10) with the vector frequency
wra(N) 2 (% 0N) e

Proof. Tt is easy to check that any function in the form (5.48) is a reversible solution to (5.10), that is a
solution satisfying the property
r(—t,—0) =r(t,0).

Then, it remains to check the non-resonance condition (1.24) for the frequency vector wgq for almost every
X € [Ao, A1]. For that purpose, we consider 71 > 0,7 € (0,1) and define the set C, by

e, N {)\G[AO,)\l] s.t. |qu(>\)-l|><l>%}.
1eZ4\{0}

Therefore its complement set takes the form

Do MINC = |J Ri where Rlé{)\e[)\o,)\l] st |wsq) -] < 2 }
1ez4\{0}

It follows that

’[AO,/\I]\CW‘g > IR
1eZ4\{0}

Now applying Lemma 5.6 together with Lemma 5.5-(i), one obtains

L 1ttt

[Ra| Sy (l) oo

Then by imposing

one gets a convergent series with
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Now, we define the Cantor set

ct|Je,.

>0

Then one gets easily for any v > 0
AL — Ao — Cyis < [Cy] < [C] < A1 — Ao

Passing to the limit as v — 0 yields
IC] = A1 = Ao,

which achieves the proof of Proposition 5.1. O

In the previous proof, we used the following Lemma whose proof can be found in [139, Thm. 17.1].
Notice that in all the document, we use the notation |A| as the Lebesgue measure of a given measurable
set A.

Lemma 5.6. Let qo € N*, a,b € R with a < b and m,M € (0,00). Let f € C®([a,b],R) such that

inf max @ (g > m.
xe[a,b]qe[[o,qo]]|f (2)]

Then, there exists C = C(a,b, qo, || fllcao (ja,p),r)) > O such that

1
M 20
-
m1+ a0

{z €la,b] st. [f(z)|<M}|<C

6 Hamiltonian toolkit and approximate inverse

In this section, we shall reformulate the problem into the form of searching for zeros of a functional F.
We first rescale the equation by introducing a small parameter €. This allows us to see the Hamiltonian
equation (4.13) as a perturbation of the equilibirum one (5.10). The latter being integrable and admitting
quasi-periodic solutions in view of Lemma 5.2-2 and Lemma 5.1, we can hope using KAM techniques to
find quasi-periodic solutions to the first one. This approach has been intensively used before in [7, 8, 29,
28, 33]. We select finitely-many tangential sites S and decompose the phase space into tangential and
normal subspaces described by the selection of Fourier modes belonging to S or not. On the tangential
part, containing the main part of the quasi-periodic solutions, we introduce action-angle variables allowing
to reformulate the problem in terms of embedded invariant tori. We shall also be concerned with some
regularity aspects for the perturbed Hamiltonian vector field appearing in F and needed during the Nash-
Moser scheme. Finally, we construct an approximate right inverse for the linearized operator associated to
F.

Next, with the result of Lemma 5.2 we can easily check that the equation (4.13) can be written in the form
Oyr = OpL(N)(r) + Xp(1),
where Xp is the Hamiltonian vector field defined by
Xp(r) 2 LN K1 (N\)Ogr — 0gICy + 7 — F)\[r]. (6.1)

Remind that Fy[r] is introduced in (4.6) and the convolution kernel is stated in (5.12). To measure the
smallness condition it seems to be more convenient to introduce a small parameter ¢ and rescale the

Hamiltonian as done for instance in the papers [7, 33]. To do that we rescale the solution as follows
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7 +— er with r bounded. Therefore the Hamiltonian equation takes the form
Ogr = OpL(A)(r) + eXp_ (1), (6.2)

where Xp_ is the rescaled Hamiltonian vector field defined by Xp_(r) £ e~2Xp(er). Notice that (6.2) can
be recast in the Hamiltonian form

Opr = 0gVH (1), (6.3)

where the rescaled Hamiltonian H.(r) is given by

He(r) £ e ?Her)
£ Hy(r) +eP.(r), (6.4)

with Hy, being the quadratic Hamiltonian defined in Lemma 5.2 and eP-(r) is composed with terms of

higher order more than cubic.

6.1 Action-angle reformulation

Let us consider finitely many Fourier-frenquencies, called tangential sites, gathered in the tangantial set S
defined by
S&{j1,....ja} CN* with 1<j; <jo<...<ja

We now define the symmetrized tangential sets S and Sy by
S2SU(-S)={4j, €S} and Sy =Su{0}. (6.5)
Recall from (5.32) that we denote the unperturbed tangential frequency vector by
wea(A) = (2(N) e (6.6)

where Q;(\) are given by (5.14). Since the application A — wgq(A) is continuous then wgq ([Ao, A1) is a
compact subset of R%. In particular, there exists Ry > 0 such that

wiq([Ao, M1]) € Z £ B(0, Ry).
Therefore, the parameters set O is defined as
O2 N, M) X %. (6.7)
For s € R, we decompose the phase space of L3(T) as the direct sum

2 _ L 2
L3(T) =Ls & L, (6.8)

A —_— 2 A 2 —
ng{v:erej, rjzr_j}, L :{z: Z zjejEL,zj:z_j},

jes JEZ\So
where e;(0) = €% We denote by Iy, HSLO the corresponding orthogonal projectors defined by

r=uv+ 2z, véﬂgrég rie;, zéHSLO?"é E i€, (6.9)
j€es JEZ\So
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where v and z are called the tangential and normal variables, respectively. Fix some small amplitudes
(aj)jes € (R3)? and set a_; = a;. We shall now introduce the action-angle variables on the tangential set

Hz by making the following symplectic polar change of coordinates
Vi€eS, rj=/a2+]jl;e", (6.10)

Vi€ §7 I,j = Ij €R and ﬁ,j = —’19]' eT. (611)

where

Thus, any function of the phase space L decomposes as

r=AW,1,2) =v(¥,I)+ 2z where v(J,I)= Z,/a? + 1517, €%, . (6.12)

j€s

In these coordinates the solutions (5.48) of the linear system (5.10) simply read as v(—wgq(A)t, I) where
WEq 1s defined in (6.6) and I € R? such that the quantity under the square root is positive. The involution

# defined in (4.27) now reads in the new variables
G:(0,1,2)— (—9,1,7%) (6.13)

and the symplectic 2-form in (4.26) becomes after straightforward computations using (6.10) and (6.11)

2i

1 1
W= dondl+ o S0 dry ndry = (Y vy ndL) © W, (6.14)
JES JEZ\So J JES

where W, L2 denotes the restriction of W to L? . This proves that the transformation A is symplectic. The
next goal is to study the Hamiltonian system generated by the Hamiltonian #. in (6.4), in the action-angle

and normal coordinates (¢, 1,2) € TV x R” x L% . We consider the Hamiltonian H. defined by
H.2H, oA, (6.15)

where A is the map described before in (6.12). Since L(A) in (5.15) is a Fourier multiplier keeping invariant
the subspaces Lg and L%, then the quadratic Hamiltonian Hy, in (5.15) in the variables (¢, I, z) reads, up

to an additive constant which can be removed since it does not change the dynamics in view of (4.13),

HyoA=—=Y" QNI+ 3L\ 2 2)2(r) = —weq(A) - T+ 5L 2, 2) 12(m), (6.16)
jES

where wgq € R? is the unperturbed tangential frequency vector defined by (5.14). According to (6.4) and
(6.16), one deduces that the Hamiltonian H in (6.15) has the form

H. =N +eP. with N £ —wgq(\)- T+ 3(L(A) 2z, 2)r2(r) and P £ P.o A, (6.17)
We look for an embedded invariant torus

i: T — RIxRIx L2 (6.18)
o — i(p) 2 (0(e), I(p),2(¥))

of the Hamiltonian vector field

Xpu. 2 (9rH., —09H., T 95V . H,) (6.19)
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filled by quasi-periodic solutions with Diophantine frequency vector w. Remark that for the value € = 0,

the Hamiltonian system reduces to the linear equation

w - Byi(p) = X, (i(g))

which admits the trivial solution given by the flat torus iq..(¢) = (¢,0,0) provided that w = —wgq(A). In

what follows we shall consider the modified Hamiltonian equation indexed with a parameter a € R?,
1
H* 2 N, +¢P. where N, 2a -1+ §<L()\) Z,2) L2(T)- (6.20)

For the value & = —wgq(A) we have HY = H.. The parameter o will play the role of a Lagrangian
multiplier in order to satisfy a compatibility condition during the approximate inverse process. Notice

that the initial problem is reduced to finding the zeros of the nonlinear operator

w - 0,9(p) — a— e0rP(i(p))
Fis o, p8) 2w Byi(p) — Xpo (i) = w - 0pI(p) + 0 P-(i(p)) ; (6.21)
w - 0y2(p) — Op [L()\)z(go) + eV, P. (Z((p))]

where 1 2 (\,w) and where P is defined in (6.4). We point out that we can easily check that the

Hamiltonian HS is reversible in the sense of the Definition A.2, that is,
HYoG& =HZ, (6.22)

where the involution & is defined in (6.13). Thus, we shall look for reversible solutions of

f(i7a7Ma 5) = 07
that is, solutions satisfying
Si(p) = i(=),
or equivalently,
W=p) = =0(p), I(=¢) =1(p), 2(=¢)=(T2)(p). (6.23)

We define the periodic component J of the torus ¢ by
I(p) £i(p) = (,0,0) = (O(p), I(p). 2())  with  O(p) 2 9(p) — .
We define the weighted Sobolev norm of J as

1313:2 = 1015:2 + I11113:2 + 112139

6.2 Hamiltonian regularity

This section is devoted to some regularity aspects of the Hamiltonian vector field introduced in (6.1),
together with the rescaled one associated to the Hamiltonian described in (6.17). First, we shall give a
useful decomposition of the nonlocal operator appearing in Lemma 5.1.

Lemma 6.1. We have the following decomposition of the operator L, defined in (5.2).

L, = Ky %+ Ly, (6.24)
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6. Hamiltonian toolkit and approximate inverse

where Ky is introduced in (5.12) and L1 is an integral operator with kernel K, 1 taking the following form
Kr,l(Av 2 97 7)) £ %(77 - 0)‘%/7“,11()‘7 2 05 77) + ‘%/7",21(A7 2 07 77)5 (625)

with 2 defined by
H(0) £ sin? (§) log (|sin (§)]) (6.26)

and %fr}l, 1/7,21 smooth kernels. Moreover, the kernel K, 1 satisfies the following symmetry property

r(—p,—0) =7r(p,0) = K.1(\—¢,—0,-n) =K. 1(\ p,0,n). (6.27)
In addition,
100KCx 7|72 < (Ir |78 (6.28)

Proof. We start by proving (6.28). According to (5.16), the Fourier coefficients of 0p/Cx are (ij1;(A) K () ;<5

Hence

NOoKCx * il = Y (LA NET (Mg < Flirle.
(L,§)ELIXL

Notice that the last inequality is obtained by the decay property of the product I; K; on R%, (C.3) and
(C.13). Thus we deduce that

[06KCx 5 7l s < l7lme < [|7] ae

Now, from (5.16), we infer that

OpfCrxr =" > LK N\ w)ey ;. (6.29)
(L,j)EZIXZ

At this stage we need to explore the regularity of the multiplier with respect to A\. By using (C.9), we

write

LK, (V) = 221 /0 ® Ko (2\cos(r)) cos(2j7)dr.

From (C.7), we have the decomposition
Ko(z) = —log(z/2)1y(2) + f(2), (6.30)

with Iy being the modified Bessel function of the first kind and f an analytic function. By the morphism
property of the logarithm, we get

Li(MNK;(\) = —log(/\)z(_Tl)j /05 Ip(2X cos(T)) cos(257)dr
- @ /05 log(cos(7)) cos(2j7)dr
_ @ /7 log(cos(7)) (Io(2A cos(T)) — 1) cos(2j7)dT
0

+ @/2 f(2X\cos(T)) cos(2jT)dr
0

2715 (N) + Ta + T s (V) + Ta g (V).
Since Iy and f are analytic, then the above expressions are smooth with respect to the parameter
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A € (Ao, A1) C R%. An integration by parts in Z; j(\) and Zy j()) yields

Vie{l,4}, sup (|j| max |8§”)Ii,j||mo(w,m) <L
JEL ne[0,q]

Looking at the definition of Iy in (C.2), we see that we have uniformly in A € [Ag, \1],
vnelo,q), 0" (Io(2Acos(r)) — 1) = O (cos(7)).

Hence, an integration by parts in Z3 ;(\) yields

sup (m mavs 107 Ts, 1~ 0, m) <1
JEL €[0,q]

It remains to study the integral 7, ;. One can easily check from the above decomposition that
Tp; = lim L;(A)E;().

Using (C.13), we then find
To; = —-
2,7 QJ

Putting together the preceding estimates, we obtain

sup (m mase (1047 () 1, m) <1
JEL €[0,q]

Then coming back to (6.29) and using Leibniz formula, we obtain (6.28). Now we turn to the proof of
(6.24). According to (5.4) we may write

sin (Lge)‘ ((W)Z + R(p,n)R(p, 9))
sin ("29) vr1 (e, 0,1m). (6.31)

Notice that v,.; is smooth when r is smooth and small enough, and vy 1 = 1. More precisely, Lemma
A.1-(v) combined with Lemma A.2 allow to get

1
2

Ar(p,0,m) =2

£9

o
sup HUT,l(*a SR/ n ') -1 |g:s S || ”q s+1»
neT
@]
vk € N*a SIGHT) ||(agvr,1)(*7 e ] + ') |g:s S || ”q s+1+k" (632)
n

Here and in the sequel, the symbols x, -,. denote the variables u = (\,w), ¢, 8, respectively. Then from
the identity (6.30) we infer

KoM, (p,0,m)) = Ky (2)\ sin ("776) D + log ( sin (T‘g) D {Io (2)\ sin (772;‘9) D — IQ()\AT((,D,67’I7))}
—log (vrl(go,@ n))IO(AA (p,0, n)) F(AA, (@9,17)) —f (2)\ ‘sm (”29> ’) . (6.33)

By virtue of the expansion (C.2), we can write

(2/\

sin (’7 O)D ffo(/\Ar(go,G,n)) = sin® (%‘9) %711()\,%9’77)7
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6. Hamiltonian toolkit and approximate inverse

with !, being smooth and vanishing at » = 0. More precisely, we have the expansion
r,1

AL (N 0.m) = 3 P sin?m (’%0) (1 =027, 0,m)) - (6.34)

m=1

Now our aim is to establish the following estimate.

vk € Nv Slelvfﬂ‘)n(ag‘%/r,ll)(*v'7'777+')||g:§9 5 ||T'||q s+1+k* (635)
n

For this goal we apply Taylor Formula at the order 2,
Iy (/\Ar(go, 9,77)) (2)\ sin ("29) D = 2\ [sin (%49)‘ (vr)l(go,em) — 1)[6 (2/\

+ 4\?sin? <an6) (vr)1(<p7¢9717) — 1)2 /1(1 — )1y (2)\

0

(o5

sin ("7 )’ (1 —t+tvr1(p, 6, n))) dt.

Consequently, the kernel JZ!, can be rewritten into the form

i (22 fsin (152))
(6.36)
sin (152))|

432 (01 (p.0.m) 1)2 /1(1 =015 (2 fsin (152) ] (1 = £+ tora (e, 0,m)) .
0

Hh (N e, 0,m) = 2A(1 — v (e, 9,77))

Using the structure (C.2) and Lemma A.1-(iv)-(v) combined with (6.32) we deduce the estimate (6.35).
Coming back to (6.33) and set

‘%/7‘,21 ()‘7 1) 97 7]) = 1Og(/\) Sil’l2 (77779) %,11 ()‘7 1) 9; 77) - log(vhl(<p’ 9, 77))[0(/\147"(907 9’ 77))
+ FOAA(p,0,0)) — f (2>\ ‘sin (L;e) D . (6.37)

Then, by virtue of the product laws and the composition laws of Lemma A.1 combined with (6.32), (6.35)

and the fact that f is analytic and even, we get

Vk €N, sup 105 720) (s s + D138 S 1D 1 (6.38)
n
Consequently we obtain the decomposition
KoMy (p,0,m) = Ko (22 [sin (152)]) + 2 (0 = 045 O\, 0.0,m) + 2 (e, 0m), (6:39)

where .# is defined by (6.26) and the functions %!, and %2 satisfy the estimates (6.35) and (6.38). We
r,1 r,1

can obviously check that £ is an even function satisfying
H, 0% € L°(T,R) C L*(T,R) and 03.# € L'(T,R)\ L>(T,R). (6.40)
Introduce the kernel K, ; as in (6.25). Hence, putting together (6.35), (6.38) and (6.40), we obtain

.0
Z,S+1+k' (6.41)

vk € {0,1}, Surq;Il(aéfKr,l)(*,-,-,n+-)l3;? S Il
ne

The symmetry property (6.27) is obtained by straightforward computations. From (5.2), (5.12), (6.39)
and (6.25) we deduce the decomposition (6.24). O
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The main result of this section reads as follows.

Lemma 6.2. Let (v,q, S0, s) satisfying (A.2). There exists €9 € (0,1) such that if

|| | q,€0+2 < €0,

then the vector field Xp defined in (6.1) satisfies the following estimates

(i) 1 Xp()I[3:2 < lIr

s+2|| | q,so—i-l

(i6) |de Xp(r) )30 S ol cralirllyeoss + 1715 lol o1

(iii) |2 X p(r)[p1, p2]lI7

||p1| sg+1Hp2 q,s+2 + ”pll s+2||p2||q,so+1 + ”T' q,s+2||p1| q,sg+1||p2 q,so+1

Proof. Remarking that Xp(0) = 0 and d,, Xp(0) = 0, it suffices to prove the point (iii) and we immediately
obtain (i)-(ii) by applying Taylor formula. From Lemma 5.1 and its proof we find

d-F[r]p = 0 (Vi — Q)p) — 0glCx * p — OgLiy- 1.
Thus, we get according to the definition (6.1)
erP(T)P = 80]:‘7",1/) - 80 ((er - VO),O) . (642)

Coming back to (5.1) and using the kernel decomposition (6.39) together with the product laws, the

composition laws in Lemma A.1 and the smallness condition, we deduce for any s > sg,

Ve = Vol 28 < Il

q,8 ~

e (6.43)

Therefore, we obtain from the product laws, (6.43) and the smallness property on r,

10 (Vi = Vo)) p)

2l SV = Vollg:dallolgc e + Ve = Vollg:g s llolly:

q,s+1
< ||p||q s+1 + HT”q €+2||p||q so+1°
Differentiating in 7 the identity (6.42) yields,
42X p(r)[p1, pa) = 99 (dy Ly 1 (r)[p2lp1) — 3o ((drVir(r)[p2]) p1) - (6.44)

For the first member of the right-hand side we first recall from (6.25) that

L,1p(¢,0) = /Tp(cp, n) [ (n—0)1 (N, 0,0,m) + 4 (N @, 0,m)]dn

Hence, by differentiation and change of variables, we obtain

Ly 1 (7)[p2]p1 (., 0) = /Tm(w, n) [ (n — 0)(dr 1) [p2) (0, 0,m) + dr262) [p2) (0,6, 1) ] dn (6.45)

= /Tm(w, 0 +n) [ (n)(dr 1) [p2](0, 0.0 +n) + dr %)) [p2] (0, 0,60 + m) | dn

Coming back to (6.36), we emphasize that the dependence in r of the functional %! is smooth since
the function v, 1, introduced in (6.31), depends smoothly in r. In addition drji/,ﬂ!ll can be easily related

to d,v,1. From straightforward calculations we see that, for the sake of simple notation we remove the
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6. Hamiltonian toolkit and approximate inverse

dependence in the parameters and ¢,

dyvr1(r)[p](8,m) =

1 R() — R(n) (p(f)) p(n) > L POR () + p(m)R*(0) (6.46)

vr1(0,1) \ gin2 (7%9) R(0) R(n)

Therefore using (6.32) combined with the product laws stated in Lemma A.1, Lemma A.2 and the smallness

condition of Lemma 6.2, we find that

sup [|drvp,1 (1) [} (-, oy 1+ 17 S Mol or + 1017 el 13501 (6.47)

neT

Similarly to (6.47), one gets from (6.36) and (6.37),

Vie {1,2}, sup|[difl[p](x, o n + )
neT

,0
3.0 S lpllgsis + ol s Il (6.48)

Inserting (6.48) into (6.45) and using once again the product laws and the smallness condition we obtain,

100d, L1 (1) [p2] 11138 Sl L (7 )[pz]p1|q,s+1

Slhowlyalloalyo i + lonl3: 0 lloal3: 5 + 715 Sallorlly S ozl v (649)

Next we shall move to the estimate of the last member of (6.44). Differentiating the definition of V; in

the proof of Lemma 5.1, we infer

d, Vi (r)[p2](6) = / Ko (A, (8,)) 0, (200200 in(n — 0) ) di
T

R (R(6)—R(n)) (’}? 7
T R .,
T

2 2 _ .
22 / PO R O) gin? (150 K (AAL(0, 7)) 0y (R(n) sin(y — 0))dy
T

k ) Ko (AA(0,1m)) 0y (R(n) sin(n — 0))dn

£ 7,(0) + To(0) + I3 (6).

The estimate of Z; is obtained using the decomposition (6.39) together with the estimates (6.35), (6.38)
and the Lemma A.1-(iv)-(v). We get

,O
IZ2l13: S o2l + o2l el 13551 (6.50)

For the terms Zo and Z3 the computations are straightforward and we shall only extract their main parts

and give the suitable estimates. For this goal we differentiate (C.7), leading to

Ki(2) = — +log(2) F(2) + G(2),

with F' and G being entire functions. Hence, applying (6.31), we deduce that Z, takes the form

2

1| RO-R) (B %) :
12(0)——4/T 2 0)7 (0,7 sin? (52 On(R(n) sin(n — 6))dn + Lo.t.

Hence we proceed as for (6.48) and one finds

||I2| g:so 5 Hp2||q,s+1 + ||p2 50+1|| ||q,s+1 (651)
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As for the last term Z3, we write

1 2 2( .
T3(0) = — /T ngggg;)g;vg$gi<j(>fn @ d,(R(n) sin(n — 0))dn + Lo.t.

Then, we get
1Z313: < lloall 8 + o2l g lir ]y (6.52)

q,50

Putting together (6.50), (6.51) and (6.52) yields

Id, Ve () p2]15:7 < N2l

s+1 + ||p2||fy,s'0+1|| ||q,s+1 (653)

Therefore we obtain according to the product laws in Lemma A.1, (6.53) and the smallness condition,

Hae(drvr(r)[pﬂpl)’ q,s "~ Hd V H’Y75+1Hp ’ q,80 + Hd V [ ’ q,sOHp | q,5+1

larsorr - loall3 e o213 011

< ||p1||q sOHPQHq s5+2 + ||THq s+2||p1||q,90||p2

Combining the latter estimate with (6.44) and (6.49) allows to get

||dEXP(7")[Plap2]||g,’§9 5 ||p1||q7so||p2||q s+2 + ||r||q s+2Hp1||q7so||p2||q so+1 + lenq7 +1||p2||q so+1°

Using Sobolev embeddings we get the desired result. This achieves the proof of Lemma 6.2. O

As an application of Lemma 6.2, we shall establish tame estimates for the Hamiltonian vector field
Xp, = (0rP-, —0yP.,I§ 05V . P.)
defined through (6.17) and (6.19).
Lemma 6.3. Let (v, q, S0, s) satisfy (A.2). There exists g € (0,1) such that if
e<¢gy and \|§||q80+2 <1,

then the perturbed Hamiltonian vector field Xp_ satisfies the following estimates,

(i) [1X7. (D)3

q,8

q 9+2

(i) ||diXp. DT S 117

q,s+2 + ||J||’y,s+2H ||q,50+2

~~ 2
(iii) |2 Xp. G E177 S NT ISl TS 0 + 13158 (1715:541)

Proof. These estimates can be recovered from Lemma 6.2 combined with the following estimate on the

action-angle change of variables introduced in (6.12)

Va8 e N (050700, D)7 S 1+ 133 (6:54)
This estimate follows from Lemma A.1-(iv)-(v) provided that [|9]|7:9, [|7]|7:9 < 1. This latter condition is

satisfied due to the smallness condition in the Lemma. For more details, we refer to [33, Lem. 5.1]. O
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6. Hamiltonian toolkit and approximate inverse

6.3 Berti-Bolle approach for the approximate inverse

In this section, we shall follow the remarkable procedure developed by Berti and Bolle in [21] to construct

an approximate right inverse for the linearized operator

~

di o F (io, a0)[i, 6] = w - Dy — di X o0 (i0(0))[i] — (@, 0,0), (6.55)

where F is the nonlinear functional defined in (6.21). This construction is crucial for the Nash-Moser

scheme that we shall perform later in Section 8. From (6.18), we denote by ig an embedded torus with

io(p) = (Yo(9), lo(¥), 20(w)) and  TJo(p) =io(v) — (¢,0,0).

Throughout this section, we shall assume the following smallness condition : the application (\,w) —
Jo(A,w) is g-times differentiable on O and there exists g € (0,1) (small enough) such that

,O
130l sy 12 + o — w

179 < eo. (6.56)

We mainly follow the same approach as in [21] which reduces the search of an approximate right inverse
of (6.55) to the search of an approximate right inverse in the normal directions. The main difference with

[21] is to be able to bypass the use of the isotropic torus in a similar way to the recent paper [87].

6.3.1 Triangularization up to error terms

Given a linear operator A € L(R%, L2 ), we define the transposed operator AT : L2 — R? by the duality
relation
Y(u,v) € L2 xR?, (AT, v)pa = (u, Av) £2(T). (6.57)

We introduce the following change of coordinates Gy : (¢, y, w) — (9, I, z) of the phase space T¢ x R? x L%
defined by

Y o Yo(9)
I[2Go|y | 2| 1)+ Li(d)y + La(p)w | , (6.58)
z w 20(0) + w
where
Li(¢) £ [0590(9)] ", (6.59)
La() 2 [(99%0) (90(9))] " 05 ", (6.60)
Z0(9) £ 20(95 1 (9)), (6.61)

provided that 9 : R* — R? is a diffeomorphism. Notice that one recovers the torus iy by taking in the

new coordinates, the flat torus is..(¢) = (¢,0,0) namely

Go(ina () = io(p).

Next, we shall adopt the notation u = (¢, y,w) to denote the new coordinates induced by Gq in (6.58)
and we simply set ug(p) = 4q..(¢). Now, to measure to which extent an embedded torus ig(T) is close to

be invariant for the Hamiltonian vector field X oo, we shall make appeal to the error function
Z() £ (21, Z, Z3) () £ Flio, a0)(p) = w - Dyin() — X oo (io(0)) - (6.62)
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We say that a quantity is of "type Z" is it is O(Z), and particular it is vanishing at an exact solution. In
the next Proposition, we study the conjugation of the linear operator d; oF (i, o) by the linear change of
variables induced by G defined in (6.58),

¢ a,90(¢) O 0 3
DGo(,0,0) [ 5| = | Oplo(w) Li(p) La2(e) | | ¥ (6.63)
w 020 () 0 I w

Proposition 6.1. The conjugation of the linearized operator d; o F (i, o) by the linear change of variables

DGy(ug) writes as follows
[DGo(wo)] ™ d; 0 F (i0, 0) DGo(wo) [, , @, @] = D¢, 7, @, 6] + Elg, 7, @], (6.64)

where Gy is defined by
Go(u, a) £ (GU(U)’ a)

and where

(i) the operator D admits a triangular structure in the variables ((}5, Y, W) in the form

~ w - 3<p$— [Kao(@)7 + K1 (0)@ + L] (p)d]
D[¢a Q/J\, ﬁ)\7 a] £ w 6tpg+B((p)a ’
w - B, — By [K11 ()Y + Koz ()W + Ly (¢)a]

B(p) and Kaoo(p) are d x d real matrices given by

B(¢) £ [0,90()] " 0pTo(0)L{ () + [0p20()] "Ly (), (6.65)
Kao(p) £ eL{ (9)(0r1P:)(io()) L1 (), (6.66)

Koz2() is a linear self-adjoint operator of L? in the form

Koz(p) £ (8:VHZ)(io()) + €Ly (£)(011P:) (io(0)) La()
+ €Ly (0)(9:1P:)(io(p)) + (01 V. Pe) (io () La(p) (6.67)

and Ki1(p) € LR, L2) is given by

Ki1(p) £ €Ly (9)(011P:)(io () L1 () + (0rV.P:) (io()) L1 (). (6.68)

(ii) the operator E is an error term in the form

E[$,5, @) £ [DGo(w)) 0, Z(9)d

0
+ 1 Alp)[Kao(0)7 + K]} (0)®] — Rio(9)y — Ro1(p)@ |,
0
where A(p) and Rip(p) are d x d matrices defined by
A(p) £ [0,00(9)] "0 Io () — [0,10(9)] T 0p90() + [0p20(0)] T 0y ' D20 (0), (6.69)
Rio(p) = [0,21(0)] " L1 () (6.70)
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6. Hamiltonian toolkit and approximate inverse

and Ro1(p) € L(L2 ,R?) with

Roi() £ [0,21(0)) " La() — [0, Z3()] " 05

Proof. Under the map Gy, the nonlinear functional F in (6.21) is transformed into

F(Golu(p)), @) = w - 9y (Go(u(p))) — Xue (Go(u(y)))-

Differentiating (6.72) at (ug, o) in the direction (T, @) gives

du,0) (F © Go)(uo, 20)[(W, @)](p) = w - B (DGo(u)u) — 0y [ X o0 (Go(u(e)))]

= 9y [X g0 (Go(w(©))) ]y T = Ou[Xpoo (Go(u(p)))] ., @ — (

From the expression of DGg(ug) in (6.63), we obtain

¢

u=ug

S o Q)

w - 8, (DGo(wo)[B] () = DGo(ug)w - D8 + By (w - Dyig) b

0

0
+ ( (W 0pL1(9))y + (w - OpLa(p)) @ ) :

In view of (6.59) and (6.62) we have

w- 0L () = ~[0,90 ()] T (@ - 0 [0,00()] D 00(2)] T
= (0,90 T ([0 22(0)] " + [0, ((OrH2) Go(2)))] ) [0,90(0)] -

By (6.60) we can easily check that

Dpz0(p) = (9920)(Vo())Ipdo()

and thus, we may write the operator Lo(p) in term of the matrix L (¢),

La(p) = [0,90(0)] ™ [0p20(9)] 05" = L1(9)[0p20()] ' 05 "

Then, by (6.75), (6.77) we have

w05 La(¢) = ~[000(2)) T (@ plDp00 ()] Do ()] 10p20()) 05
+[0,00(9)]” T [0 (w - p20) ()] 85

and from (6.62) we get

w-yLa(p) = —[5¢190(<P)]_T([6wzl(@)]

+ [0,90(0) 7T ([0 Za(0)]
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(6.72)
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Putting together (6.74), (6.75) and (6.78) we conclude that

o~

w-8¢(DGo(u0)[ ]( )) DGo(uo)w 899114‘6 (w a¢lo)¢
0

— | [0:90(9)]" T [C1(#)La(p) + Rio(¥)]y )
0

0
— | [0:90(0)] T [Cr(0) La(0) + Ca () + Ror(g)] @ ) ; (6.79)
0

where Rio(p) and Roi(p) are given by (6.70)-(6.71) and

Cr() 2 [0, ((0rH)(io ()] "
= [0,10()] T (D11 HE) (i0(#)) + [0,90()] T (D1 HE) (i0())
+ [0520(0)] T (Or V. HE) (i (), (6.80)
C. () 2 [0, ((V.HE)(io(9)))]
= [0,10()] T (D=1 HE) (i0(#)) + [0,90()] T (920 HE) (i0 ()
+ [0p20(0)] T (9: V. HE) (g (). (6.81)

On the other hand, in view of (6.21) and (6.58) we obtain

Dy [XHSO (GO(U(@)))]u:uO‘g: 0y [XH;*O (i0(¢p )))]¢ (6.82)
(OrrHEo)(io(9)) L1 ()Y
By [X 20 (Go (u(w)))]uzuﬁ = —(OroHZ)(io () L1 (p)y ) (6.83)
99 [(9rV-HZ°)(io()) L1 (#)7]
(011 HZ)(io(0)) L2(p)W + (01 HZ2) (i0(p) )W
B [X g2 (Golu(p))],_y, @ = —(Oro HE) (o () L2 ()W — (920 HE0) (io ()W (6.84)
D9 [(0rV - HE0) (i (0)) Lo (@)W + (0. V . H2) (io()) @]
Plugging (6.79), (6.82), (6.83) and (6.84) into (6.73) we find
d(u,0) (F © Go) (w0, 00)[(4, )] = DGo(uo) w - 9,8 + 0, [Flio())] &
—(0rrHEo)(io(9)) L1(0)Y
+ | @raH2)(io(0)) L1 ()7 — [0,90(0)] T [Cr(0) L1 () + Rao(9)]y
—09(01VHZ)(io(¢)) L1(0)Y
—(0rrHZ°) (io(p)) L2(p)w — ( leaO)( o(p))w
+ [(DroHE ) (i0(0)) La(p) + (920 H2) (io ()] @
—9 [(0rV . H2)(io()) La ()@ + 9(0-V - H2?) (i0 (i) ) @]
0 a
— | [0p90(2)]" " [Cr(@)La()@ + C. ()W + Ro1 ()0 ) - ( 0 ) : (6.85)
0 0

According to (6.63) and using the identities (6.76) and (6.77), the inverse of the linear operator DGy (uo)
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6. Hamiltonian toolkit and approximate inverse

is given by
[0,00(¢)] 0 0
[DGo(uo)] ™ = —B(p) [0,90(2)] T ~[0p20(0)] 705" (6.86)
—(9920) (Vo ()) 0 I

where B(y) is given by (6.65). Applying [DGo(ug)] ™! to (6.85) and using the identities (6.80), (6.81) and
the fact that

B() = A@)[0,90(9)] 7" + [0,10(9)] T, (6.87)

where A(¢p) is defined in (6.69), we obtain

[DGo(uo)] ™ dpua) (F 0 Go) (wo, a0)[8, @] = w - 9,8 + [DGo(wo)] ™8, [Flio())] 6
—Kao(p)y —Ku( Jw ~L{ (¢)a
+ | Alp)K20(p)y — RlO @)K (p)W — Ror1(p)w | + B(p)a ,
—0pK11(p) —0p Koz ()W —0pLj (p)a
with
Kao() 2 Li (9) (011 HZ®) (i0(9)) L1 () ,
K11(p) £ Ly (9)(0r1H2) (io(9)) L1 () + (OrV-HE) (io()) L1 (),
Koa(p) £ (0:V.HE)(io(9)) + Lg (#)(01rHE®) (io()) La() + Lg (0)(0=1HE®) (io())
+ (0rV2HZ°)(io()) L2(¢).
Finally, by (6.20) we conclude the desired identity and this ends the proof of Proposition 6.1. O

Now we recall the following result, for the proof we refer to [33, Lem. 5.6 and 5.7].
Lemma 6.4. The following assertions hold true.
(i) The operator DGo(ug) and [DGo(ug)] ™t satisfy for alld = (qg, U, W),

7,0
q,80 °

Vs € [0, 5], [I[DGo(ao) @117 S IR17:2 + 130172 18

q,s nr~

(i) The operators Rio and Ro1, defined in (6.70) and (6.71), satisfy the estimates

Vs € [s0,5], ||R107]
Vs € [s0,5], [[Ro1®|

FAel [P 7 A 4 A [ Y Y (7 A

Z:? S ||Z||q 9+1H A”q so+1 + ||Z||q 90+1||J0||q s+1||w||q790+1 .

(iii) The operators Koo and K11, defined in (6.66) and (6.68), satisfy the estimates

Vs € [so, 5],

Se(l+13l17:5)
o
Vs € [s0,5], IIKuyII”’ S eIl 2 + IIJqu wealTl s

Vs € [s0.5), |KL@[38 S e(lally:s rrall @l +s) -

(iv) The matrices A and B defined in (6.69) and (6.65) satisfy
Vs € [s0,5), 137 + IBIZS S 19l13:501

q,s v
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Notice that the matrix A(¢) measures the defect of the symplectic structure. In the following, we shall
see that it is of order O(Z). Notice that according to (6.69) and [21, Lem. 5], the coefficients A of the

matrix A can be written

Ajk(gp) = 69%[0((»0) . 3%-190(‘%’) - 84{%790(90) : 890]‘ I()((,D) + <a;18wk20(§0)ﬂ 8(,03' ZO((P)>L2(T)7 (688)

and satisfy
w - Dphjk(p) = W(9pZ(p)ey, Dpin(p)e;) + W (Dypio(p)er, 0o Z(0)e;), (6.89)

where W is the symplectic form defined in (4.24) and (eq,...,e,) denotes the canonical basis of R%. In
order to estimate A;x(¢), we shall discuss the invertibility of the operator w-0,. This task was accomplished
in several papers [7, 21, 33, 87] and we shall outline here the main lines.

Let v € (0,1] and 71 > 0 be defined as in (A.2). We introduce the Diophantine Cantor set

DC(vy,71) £ ﬂ {w eR? st Jw-l > (l;ﬁ }
1€Z4\{0}

and for N € N* we define the truncated Diophantine Cantor set

DCy(v,m) 2 ) {weRd st |w-l] > l’yﬁ}. (6.90)
1ezd\ {0} <>

<N
Given f: O x T — R a smooth function with zero y-average, that can be expanded in Fourier series

as follows
f= Z fri(A w)ey ;, ei(p,0) £ heti?).

(1,5)€zd+1

1#0

If w € DC(7y, 71), then the equation w - J,u = f has a periodic solution u : Té+1 — R given by

U(Aa%e) =i Z fl’j(;\> el’j(¢79)~

w .
(1,5)ezd+1
1#£0

For all w € O, we define the smooth extension of u by

_ : X( D™ w 1) fi;(N)

Wit Y SCIULEON, (651)

(1,5)€zd+1

140
where x € ¥°(R, [0,1]) is an even positive cut-off function such that
0 if 6 <3

= 6.92
x(§) { i el L (6.92)

Notice that this operator is well-defned in the whole set of parameters O and coincides with the formal
inverse of (w-d,)~! when the frequency w belongs to DC(v,71). The next result is the fundamental

theorem of calculus in the quasi-periodic setting.

Lemma 6.5. Let v € (0,1],q € N*. Then for any s > q we have
—1 17,0 - 0
H(OJ ! 8W)extf| q,8 5 Y 1Hf||:;,8+7'1q+7'1'
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6. Hamiltonian toolkit and approximate inverse

In addition, for any N € N* and for any w € DCx (7, 71) we have

(w+ ) (w - Op) N = Ty,

ext

where I is the orthogonal projection defined by

Oy Y fies= Y. fuen.

(L,j)eza+1 (1,5)€zd+1
[1I<N

Proof. The proof of the first point can be done using Faa di Bruno’s formula in a similar way to [7, Lem.
2.5]. We also refer to the proof of Proposition 7.2.
By construction, one has for w € DCx (7, 71) and || < N,

X(w- Dy D™) =1,
Thus, according to the explicit extension (6.91),

X((w- Dy D™ (N)

(w- ap);éHNh =—i Z 0 €10
1ezd\{o}
n<N
_ hi(N)
=—i ) e (6.93)
1ezd\{o}
<N
Therefore, we obtain
(w-0p)(w - Op)oulInh = Y hi(Neo
1ezd\ {0}
<N
=1IIyxh.
This concludes the proof of the lemma. O

For later purposes we need to fix some notation that will be adopted in the sequel. Take Ny > 2 and

define the sequence
§ n
Noi=1, vneN, N,=n" (6.94)
Next, we shall split the coefficients of the matrix A = A(p) defined in (6.69) as
(n)’l

Apj = Aé’;—) + A Ai(c?) = Iy, Akj, Al(c?)’L = Iy, Ay (6.95)

The proof of the following lemma is quite similar to Lemma 5.3. in [11] with the a minor difference in the

weighted norms.
Lemma 6.6. Let n € N, then the following results hold true.

(i) The function A,(CZ)’J' satisfies
Wb >0, Vs€[so,S], [a)]

,O —b|~ ,O
|:1Y,s SN’H ||J0||g,s+2+b'

(i) There exist functions Ag)’eXt defined for any (\,w) € O, g-times differentiable with respect to A and
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satisfying the estimate

t (@] ,O
\VIS S [5078]7 HA(n) o ||g,s' 5 (‘|Z||s+rlq+71+1 + ||Z||q 50—0—1”"0 Y )

q,s+711g+71+1/) *

(n ),ext

Moreover, A coincides with A,(;;.) in the Cantor set DCy, (7y,7T1).

Proof. (i) Follows immediately from (6.88), (6.95) and Lemma A.1-(ii).
(ii) Applying the projector to the identity (6.89) we obtain

w0 A5) (9) = T, W (9 Z(9)er, Dpio()e;) + W(Dypio(0)ers Do Z(9)e;) -
Then, by (6.56) and Lemma A.1-(ii)-(iv), we get

HHN,,L [W(%Z(@)Qka 8302.0(90)Qj) + W(atpiO( )ekz7 0, Z( ) )] Hq " (HZH

50+1 ||j0||s+1)

ext

We define the the function A,(;;)’ as
AN (0) 2 (W D)oy, W (0 Z(9)ey, Dyio(9)e;) + W (Dyio(9)er, Do Z(9)e;)].

Applying Lemma 6.5 concludes the proof of the Lemma.

6.3.2 Construction of the approximate inverse

This section is devoted to the construction of an approximate right inverse of the operator d; F (4o, o)
that will be discussed in Theorem 6.1. One first may observe according to Proposition 6.1-(ii) and Lemmata
6.4 and 6.6, that the operator E vanishes at an exact solution up to fast decaying remainder terms. As a
consequence, getting an approximate inverse for the full operator d; oF (4o, ®g) amounts simply to invert
the operator D up to small errors of type "Z" mixed with fast frequency decaying error. Let us consider

the triangular system given by

D[(ga @\7 ﬁ)\7 a] = g ) (696)
g3

where D is defined in Proposition 6.1-(i). The system (6.96) writes more explicitly in the following way

W 0,0 = g1 + [Kao ()7 + K1 (9)@ + LT ()d]
w- 0,7 = g2 — B(p)a (6.97)
(w- 8, — 06Koa(p))W = g3 + 0s[K11 ()7 + Lg (p)al.

The strategy to solve the above system in the variables (g/b\, ¥, W) is first to solve the second action-component
equation, then to solve the third normal-component equation and finally to solve the first angle-component
equation. Due to the fact that the Cantor set should be truncated then we need to solve approximately

the system (6.97) and for this aim we need the following statement.
Lemma 6.7. The following results hold true.
(i) There exists a function g : Z¢\ {0} — {—1,1} such that
vie 2\ {0}, g(-1)=—g().
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6. Hamiltonian toolkit and approximate inverse

(i1) For all (\,w) € O the operator w - 0, can be split as follows
w0y =Dy + D(J;L),
with

Doy 2w 0, HN,L +I0, (6.98)

[I>

n,8 7

where

HJNn,g Z fl,JelJ Z g(l)fl,jel,j-

(1,j)eza+1 (1,5)€zd+1
[1[>Nn

(éii) The operator D(J-n) satisfies

Vb = Oa Vs € [SOa S]v ||D(J;L)h||;/,? q s+b+1

(iv) There exists a family of linear operators ([D(n)]ext) satisfying, for any h € W% (O, Hg(TH1)),
Vs € [807 S]a Slelg ||[D(n)]exth||g§9 S 771 Hh”q s+T1q+T71"

Moreover, for all w € DCy;, (77, 71) one has the identity

D) [Dimyons = 1d. (6.100)

Proof. (i) The function g : Z4\ {0} — {—1,1} is defined, for all [ = (Iy,--- ,14) € Z¢\ {0}, as the sign of

the first non-zero component in the vector [. Thus, it satisfies
vie Z4\{0}, g(-1) = —g(.

(ii) Immediate.

(iii) Follows immediately from Lemma A.1-(ii).

(iv) We define the operator [D(,,)]o. as

[Dim)exs £ (W 0p)ext Iy, + My, 1. (6.101)
'g
From (6.93), (6.98), (6.99) and (6.101) we get, for all w € DCy;, (7, 1),

Do) [Pt = w - O T, [(w+ 0p) T, + Ty 1] + Ty, g [(@ - 0p) o TIn, + Ty 1]

= w0y (W 0p) o Iln, + 1y, .
Applying Lemma 6.5-(ii) we conclude that

D(n)[D( )] =1IIn, -|-Hl =1Id.

ext T

The estimate on [Dy,,]. follows from (6.101), Lemma A.1-(ii) and Lemma 6.5. O

ext
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Consider the linearized operator restricted to the normal directions Ew and defined by
Lo, 2T (w8, — Koo () 1TE,, (6.102)

which appears in the last equation of (6.97). The construction of an approximate right inverse of this
operator is the heart part of this work and will be discussed in Proposition 7.6. Here we give only a partial

statement.

Proposition 6.2. Let (v, q,d, 1, T2, S, Sk, pi2, S) satisfy (A.2) (A.1) and (7.235). There exist £ > 0 and
o =o0(mn,72,q,d) > 0 such that if

ey 2TING® <eo and  |Tol|)0 L, <1, (6.103)

then there exist a family of linear operator (T, n)n Satisfying

Vs € [s0,5], sup|Ts,
neN

PI3E St (103 S + 19007 o 11T ) (6.104)
and a family of Cantor sets {G, = Gn (v, T1,T2,%0) }n, satisfying the inclusion

Gn C (Mo, A1) X DCx,, (7, 71)

such that in each set G, we have the splitting

with
LonTwn = Id, (6.105)

where the operators Ew,n and ﬁn are defined in the whole set O with the estimates

Vs € [s0,95],

29 Sl +ev 2130l o ol s

Grso+10
VMMﬂ|mmﬁywvmemﬁﬂﬂmmmeM@

+e7 NG N L2 ol 4 o

For the splitting below which follows from the foregoing results we refer to (6.45) in [87]. Consider the
linear operator L.y defined by
Lext = Dp + E* + 2, + 2, (6.106)
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6. Hamiltonian toolkit and approximate inverse

where, for any (8, y,w,0) € T* x R x L2 x RY

Dy — Kao(9)7 — K1 (@)@ — L (9)@

Do [, 7, B, &) & Dy + B(p)a , (6.107)
fw,n@ — g [Kn( YJ+ Ly (go)a]
0
ES(3,5,8,0] £ [DGoluo(¢))] ' 0,2(0) — | Ruo(9) + Ron(9)d
0
0
+ A (o) [Kag(9)7 + Ky () @] | (6.108)
0
- Dy
Znl6,9.0,8] £ | DE7+ A" (9) [Kao(0)7 + Ky (0)3] | (6.109)
0
0
o062 0 | (6.110)
R[]

Then, the operator Ley; is defined on the whole set O and when it is restricted to the Cantor set G,, it

coincides with the conjugated linearized operator obtained in (6.64), that is,
Lext = [DGo(uo)] " d; o F (i0, a0) DGo(ug)  in Gy (6.111)

In the next result, we give some useful estimates for the different terms appearing in Leyt needed to obtain

good tame estimates for the approximate inverse.

Proposition 6.3. Let (v, q,d, 11, So, o) satisfy (A.2) and (7.235) and assume the conditions (6.56) and
(6.103). Then, denoting Vv = (3, U, W, q), the following assertions hold true.

(i) The operator B satisfies the estimate

,O
B @35 S 1211500+ 19113

q,80 ~ q7$o+0
(ii) The operator 2™ satisfies the estimate
o
Vb > 0, ”‘@”[ } :ZY:SO 5 N (H ”q,SoJraer + EHJO”q SO+U+bH q750+0

(iii) The operator 2, satisfies the estimate

Vbe0,S], (2.7

g:soo S Nn_b'y (Hqu so+b+o +E’Y qso+b+a”/\||q,80+a)

+ Epy 3N”2N n+1 Hw”q so+o°

i) There exists a family of operators ([Dn]L)  such that for all g £ (g1, g2, g3) satisfying the reversibility
ext/)n
property

g1(¢) = g1(=9), ga(w) = —g2(—¢), g3(0) = —(Fg3)(—),

the function [D,],Lg satisfies the estimate

Vs € [s0,8],  [Pnledll3 S v (lll:e + 19013

)
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and for all (\,w) € G,, one has
D, [D,]5L =Id.

ext

Proof. (i) The estimate of EZ** is obtained from (6.108), Lemma 6.4, Lemma A.1-(iv) and Lemma 6.6-(ii).
(ii) From (6.109), Lemma 6.7-(iii), Lemma A.1-(iv), Lemma 6.6-(i), Lemma 6.4-(ii) we obtain the estimate
on Z,.

(iii) Tt is a consequence of (6.110) and Proposition 6.2.

(iv) The proof can be found in [87, Prop. 6.3] and for the sake of completeness we shall sketch the main

ideas. We intend to look for an exact inverse of ID,, by solving the system

g1
Dn[¢,§/\7 @7 a} =192 1> (6112)
93
where (g1, go, g3) satisfy the reversibility property
91(p) = 91(=¢), g2(p) = —g2(—¢), g3(p) = —(Lg3)(—¢), (6.113)

with . being the involution defined in (4.27). Note that in view of (6.107), the system (6.112) writes
Dinyd = g1 + [Kao(0)¥ + K{1 (0)@ + L (p)a]
D)y = g2 — B(p)a (6.114)
We first consider the second action-component equation in (6.114), namely
D)y = g2 — B(p)a.

In view of (6.113), (6.65) and (6.88), g2 and B are odd in the variable . Thus, the p-average of the right hand

side of this equation is zero. Then, by Lemma 6.7-(iv) its solution in the Cantor set DCy, (y,71) is given by
7 = [Pt (92 — B(9)a) - (6.115)
Then we turn to the third normal-component equation in (6.114), namely
fw,n@ = g5 + [Ki(9)y + L;(ap)@].
By Proposition 6.2, this equation admits as a solution
—~ A —~ T —~
W £ Ty (g3 + 00[Kin ()7 + Ly (9)a]) - (6.116)

Finally, we solve the first angle-equation in (6.114), which, substituting (6.115), (6.116), becomes

~

D(ny¢ = g1 + Mi(p)a + Ma(p)g2 + Ms(#)gs , (6.117)
where
Mi(p) £ Li () = Ma(0)B(p) + M3()3s L3 () , (6.118)
Ms(p) £ Koo (@) [Pyt + K11 (9)To,n09K11 () [Py ot » (6.119)
M3(p) 2 K1 (9)Tun - (6.120)
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6. Hamiltonian toolkit and approximate inverse

To solve the equation (6.117) we choose @ such that the right hand side has zero p-average. Notice that
Lemma 6.4, (6.56), (6.104) and Lemma 6.7-(ii) imply

Vs € [80?5]5 ||M2.g2

+ ||]\43g3||’y o < € <||g||q s+o + ||30| q,s+a||g”q,so+o) . (6121)

By Lemma 6.4-(iii), (6.56), the ¢-averaged matrix is (M;) = Id + O(ey~!). Therefore, for ey~! small
enough, (M) is invertible and (M;)~! =1d + O(ey~1). We thus define

a2 —(M) " '((g1) + (Maga) + (Msgs)) . (6.122)

Remark that & satisfies

1l < llglly (6.123)

q750+0

Coming back to (6.115) and using (6.123), (6.56) together with Lemma 6.7-(iv) and Lemma 6.4-(iv), we

obtain
Vs €[50, 81 17130 597" (935 + 130135 lglly 40 ) - (6.124)

Putting together (6.116), (6.104), Lemma 6.4-(iii), (6.123), (6.124) and (6.56), one should get, up to

redefining the value of o,

Vs € [s0, 5], |lw

36 597 (91380 + 170175019178 1) - (6.125)

With the choice (6.122) of @, the equation (6.117) admits as a solution
¢ £ [Dimlat (91 + Mi(9)a@ + Ma(p)gz + Ms(i0)gs) - (6.126)
Putting together (6.126), Lemma 6.7-(ii), (6.123) and (6.121), one obtains

Vs € [s0, 5], ||o)

7 577 (97 S0 + 1301370 191720 ) - (6.127)

In conclusion, we have obtained a solution ((;AS, 7,W,Q) = [D,].4g of the linear system (6.112) satisfying in
virtue of (6.123), (6.127), (6.125) and (6.124),

Vs € [50,5], [|[Dn)oa

77 (gl S + 13015 913901 ) -

Notice that the relation

D,[D,]o: =1d in G,

ext

is a direct consequence of (6.100) and (6.105). O

The last point is to prove that the operator

To £ To(io) 2 (DGo)(up) o [Dn]os o (DGo)(ug) ™! (6.128)

ext
is an approximate right inverse for d; F (io, &v).

Theorem 6.1 (Approximate inverse). Let (v, q,d, 71, T2, So, Sk, p2,5) satisfy (A.2), (A.1), (7.235) and
(7.3). Then there exists & = & (11, 7T2,d,q) > 0 such that if the smallness conditions (6.56) and (6.103)
hold, then the operator T defined in (6.128) is reversible and satisfies for all g = (g1, 92, 93), with (6.113),

Vs € [s0,5], || Tog

Pl (7 [ Y B 7 (6.129)

105



Part 1

Moreover T is an almost-approzimate right inverse of d; oF (o, o) in the Cantor set G,. More precisely,
for all (\,w) € G, one has
di o F(ig) 0 To —Id = €M 4 ™ + &l (6.130)

where the operators 81("), 52(") and Sén) are defined in the set O with the estimates

IEM TS < A M IF (o ao) 17,5 19178 -, (6.131)

>0, [E79179 SN 9178 iz + Tl iz llollS ) (6.132)
wel0,s], €779 S Nty (||g||q%+,,+(,+m 211300170 51901704

+ ey TANEEN g0 L (6.133)

Proof. The estimate (6.129) is a consequence of (6.128), Proposition 6.3-(iv) and Lemma 6.4-(i). Then,
according to (6.106) and (6.111), in the Cantor set G,, we have the decomposition

d; o F (i0, o) = DGp(ug) © Lext, © D[Go(up)] ™
= DGy(up) o Dy, 0 D[Go(up)] ™ + DGo(ug) 0 E&* o [Go ()]~
+ DGo(ug) © P 0 [Go(uo)] ™! + DGo(ug) © 2y, 0 [Go(uo)] ™

By applying Ty, defined in (6.128), to the last identity we get for all (A\,w) € G,
_ (n) (n) (n)
d .F(Zo,ao)OTo Id = 5 +(€ +(€3 5
with

& 2 DGo(ug) o ES 0 [Go(ug)] ™! o T,
&M £ DGoy(ug) © Py, 0 [Goluo)] ™4 o T,
£ & DGy (up) 0 2y, 0 [Golup)] ! o To.

The estimates on 591), 82(”) and 835") come from (6.129), Proposition 6.3 and Lemma 6.4-(i).

7 Reduction of the linearized operator in the normal directions

In this section, we fix a torus ig = (Yo, Iy, 20) close to the flat one and satisfying the reversibility condition
(6.23), that is

Jo(—p) = —=o(0), To(—=¢) =Io(p), z20(—¢) = (L20)(¢). (7.1)

As in the previous section, we denote Jo(p) = io(¢) — (¢,0,0). Our main goal here is to explore the

invertibility of the operator

o~ o~

ﬁw = ﬁw(io) = HSLD (w . 890 — 69K02(gp)) HSLO (72)

defined through (6.102) and (6.67) with the suitable tame estimates for the inverse. For a precise statement
we refer to Proposition 7.6. Notice that this operator will be described as a quasilinear perturbation of the
diagonal operator stated in Lemma 5.1 and we expect that suitable standard reductions can be performed
to conjugate it to a diagonal one provided that the exterior parameters are subject to live in a Cantor set
allowing to prevent resonances. For this aim, we shall implement with suitable adaptions the strategy

developed in the works [7, 33]. We distinguish two long reduction steps. First, we perform a quasi-periodic
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7. Reduction of the linearized operator in the normal directions

change of variables such that in the new coordinates system the transport part is straightened to a constant
coefficient operator. The construction of this transformation is based on a KAM reducibility procedure
as in [64]. The outcome of this first step is a new operator whose positive part is diagonal with a small
nonlocal perturbation of order —1. Then the second step consists in applying KAM scheme in order to
reduce the remainder and conjugate the resulting operator from step 1 into a diagonal one up to small
errors. The proof follows basically a common procedure that can be found for instance in [17]. We point
out that our results differ slightly from the preceding ones in [7, 33|, especially at the level of Cantor sets
which are constructed over the final targets.

We shall use throughout the proofs some frequency cut-offs with respect to the sequence defined in (6.94),
with Ny a constant needed to be large enough. In the current section, the numbers Ny > 2 and v € (0,1)
are a priori free parameters, but during the Nash-Moser scheme, see Proposition 8.1, they will be adjusted

with respect to € according to the relations
No=~"1 and ~v=¢% forsomea>0.
We shall set the following parameters required along the different reductions that we intend to perform,

SIE 50+ Tq+ T +2, [y = 47ig+ 67 + 3,

A

(7.3)
5 2 5+ Toq + 7o, Sh= Sy 4 s+ 1,

supplemented with the assumptions (A.2) and (A.1).

7.1 Localization on the normal directions

According to Theorem 6.1, the construction of an approximate inverse for d; oF (ig, ) is based on
Proposition 6.2 dealing with finding an approximate right inverse for the operator Ew. This program will
be achieved along several steps and in the first one we shall describe its asymptotic structure around the
linearized operator at the equilibrium state described in Lemma 5.1. More precisely, we shall prove the

following result.

Proposition 7.1. Let (v,q,d, so) satisfy (A.2). Then the operator L., defined in (7.2) takes the form
Lo, =Tz (Lep —0R)E, Loy =w- 0y + g (Ver-) — DgLicy,
where Ve, and L, are defined in Lemma 5.1, and from (6.12) we have

() = A(Do(p), To(¥), 20(¢))
=v(%o(), Lo()) + z0(p),

supplemented with the reversibility assumption
T(Aawa —¥, 70) = 7’(/\700790,9)- (74)

Moreover, R is an integral operator in the sense of the Definition A.3, whose kernel J satisfies the

symmetry property
J(Av W, —@, _07 _77) = J(>\7 w, ¢, 97 77) (75)

and under the assumption
130

0
10 <1, (7.6)

we have for all s > sg,
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(i) The function r satisfies the estimates,
(@] ~ (@]
Irllgs < 1+ 113ollgs (7.7)

and

0 S 2+ HA122||q,50 max [|3;lys 7 (7.8)

(i) The kernel J satisfies the following estimates for all £ € N,

up [(05.7) e, w1+ 3 S 1419013 (7.9)
n
and

sup [[A12(07) (5, s+ )3 S 18015 g + 18020150 s max 1351130 (710)

neT

Here x,-,. stand for (\,w), ¢, 0, respectively and Jo(p) = ie(p) — (,0,0). In addition, for any
function f, Aiof = f(i1) — f(ia) refers for the difference of f taken at two different states iy and is
satisfying (7.6).

Proof. To alleviate the notation we shall at several stages of the proof remove the dependence of the
involved functions/operators with respect to (A, w) and keep it when we deem it relevant. Recall that the
operator L,, is defined in (7.2). To describe Koa(y) we follow [7, 33]. First, we observe from (6.67) and
(6.20) that

Koz(¢) = L(N) + €00V (P:(io(9)) + eR(),

with

where

Ra(p) £ 3IV Pe(io()) L2().

As we shall see, all the operators Rq(¢), Ra(¢) and R3(p) have a finite-dimensional rank. This property
is obvious for the operator Ly () defined in (6.60), which sends in view of (6.57) the space L? to RY and

therefore for any p € L% we write

d d
Ly(p)p] = > (La(#)[pl e => (P L3 (P)lex]) pom) s
k=1

k=1

with (e;){_; being the canonical basis of R%. Hence

d

Ri(@)le) =D (o, L3 (D)ler]) pogmyAr(@)ler]  with  Ai(p) = Ly (9)01V1Pe(io(p)),
k=1
d

Rs(¢)lo] = 3 (0. L3 ()lex]) oy As(@lex]  with  As(p) = 9rV.Pe(io(p)).
k=1
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7. Reduction of the linearized operator in the normal directions

In a similar way, by setting As(p) £ 0.V P-(io(¢)) : L2 — R?, then we may write

d
=D (0 A3 (P)ler]) o () L3 (9)lex):

k=1

Define
9k 1(2,0) = gr.3(0,0) = xr2(0,0) £ Ly (0)[ex] (), gr2(0,0) 2 A3 (0)[ex] (6)

and

Xk (0, 0) £ A1(0)[er](0),  xn.3(p,0) = As(0)le,](0),

then we can see that the operator R takes the integral form

d
Z )s Gk (@5 ) L2 (1) Xk ke (105 0)

1 k=1

o
Mw

Ro(

/

X

p(e,n)J (¢, 0,n)dn,

Il
5~

with
3 d

J(@) 9? 77) £ Z Z 9k, Kk’ (4107 W)Xk,k' (%07 9)

k'=1k=1

Now we remark that by construction g i/, Xk.k € Li with

gk, 17:C + ki 17:0 S 1+ 1301178

and straightforward computations yield

) o
dsgn e B + Neixci i (17 S 117z + 130l a 115 42

On the other hand, one has from direct computations that

3 d

k'=1k=1

Hence, we may combine (7.11) with Lemma A.1-(iv) and (7.6) allowing to get

3 d
sup [[(959) (o + )39 S [N CRN RS et P CHNN] et
€T
n k'=1k=1

+ Z Z ||gkk: ) an—i— )”q,.so”ka ( ')
k=1

k'=1

I%O
q,5+L

< 1+ ||30||q s+3+4£7

where we have used the interpolation inequality: for s > sg

o ,0 ,0
gipe Gy =51 4 1o Wit sy )1 e S it Gy oy )1y gl (s, ) 13280

0
+ gk G A T Xk (s 5 )10

109

q,5+L°

(7.11)

(7.12)



Part 1

In addition, to estimate the difference we simply write

3 d
A4 S N7 Al?(ag‘]) (@7 07 n + 0) = Z Z Angk,k’ (@7 n + 0)(65(Xk,k/)7“1 )(‘Pv 9)
k=1

k'=1

3 d
+) Z Ik )z (931 + 0) (D120 X0,) (10, 6).
k'=1k=1

By applying the mean value theorem combined with (7.12), (7.6) and interpolation inequalities

20w Gy, TS L

3 d
SuI'E||A12(agJ)(*7'a'an+ 37?§ ZZHA12gkk' 7777+')
ne '=1k=1

,O ,0
Z,so HXk,k’ (*7 o ')”;,s—i-f

Z [A12gk 1 (%, 1 + )
k=1

Zd

o)
g (5, -, m + )| gfo (AT R CNN [t

Jr
k
Jr
k'=1k=1
3 d
o ,0
+ Z Z Hgk,k/(*v'vn—i_'”’% ||A12Xk k’( ')”3750"!‘@

k'=1k=1

S Al e + 1202637 sot3 X [|7; [

The symmetry property detailed in (7.5) is a consequence of the definition of r and the reversibility
condition (7.1) imposed on the torus ig. Consequently, putting together (6.4) and (6.12) gives

Ko2() = LN, + £0.V.P-(io(¢)) + eR()
= L(MIg, + ¢llg, 0, V, P-(A(io(¢)))g, +eR(p)
= I05, 0, V. He (A(io ()15, + eR(p)
= TI5, 0,V H( A(io(0)))TIg, + eR ().

Recall from (6.12) that
(¢, ) = A(io()), (7.13)

then according to the general form of the linearized operator stated in Lemma 5.1 one has
—303TVTH(€T(SO, )) = 80 (‘/;r) - 80:[157“7

which implies in turn
—Koz(p) = g, (9o (Var') — QLer) — eR () 1L,

Plugging this identity into (7.2) gives the desired result. Next, using (7.13), (6.12) and (6.54), we obtain

Ir13:8 S (o, Lo)l13:5 + llzoll3:8

q,s r~

We shall now move to the proof of the bound (7.8). First, we observe from (6.12) that

1AL S A0, D70 + || Az

qs ~
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7. Reduction of the linearized operator in the normal directions

Therefore, Taylor Formula with (6.54) and product laws allow to get

1812000, D79 S 1Ar2(L,9)[17:8 + | Ar2 (1, 19)||qs0 max ”J]”q,f)’
which implies that
[A1r)70 < |1 A2d] 79 maX ||Jg||
This achieves the proof of Proposition 7.1. O

7.2 Reduction of order 1

In this section, we perform the reduction of the transport part of the linearized operator L., described in
Proposition 7.1. More precisely, we conjugate the operator L., by a quasi-periodic symplectic change
of variables % leading to a transport part with constant coefficients depending only on the torus ig
and the parameters €, A and w. To get a precise information on the remainder, which is of order —1 in
0, we need to describe the action of this conjugation on the nonlocal term using the kernel structure
rather than pseudo-differential theory. The reduction to a constant coefficient operator is based on KAM
scheme through the construction of successive quasi-periodic symplectic change of coordinates. This will
be implemented in the spirit of [8, 64]. Here we need to extend their construction to the framework
of symplectic change of coordinates with C? regularity. We point out that similar results with slight
variations have been established in [11, 28, 32].

7.2.1 Reduction of the transport part

Now we shall state the main result of this section concerning the reduction of the transport part of the

linearized operator L.

Proposition 7.2. Let (v,q,d, 1, S0,5, 81, Sh, ig) satisfy (A.2), (A.1) and (7.3). Letv € (0, q+2} We set
01 éS(]-I-qu—‘r-?Tl + 4. (714)
For any (ua,p, sp) satisfying
_ 3 _
Ho =iy =4mqg+671+3, p=0, s,>max 5/12 +s1+1,5,+p], (7.15)
there exists eg > 0 such that if
ey INE? <eo and |30 7, Sh+01 <1, (7.16)
there exist
Ciy EWIT(O,R) and Be (| W0, HS,,)
s€[so,5]
such that with % defined in (A.12) one gets the following results.
(i) The function c;, satisfies the following estimate,
leig = Vollg© Se (7.17)

where Vy is defined in Lemma 5.2.
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(i)

(iii)

(iv)

The transformations A+, B, 3 and B satisfy the following estimates for all s € [sg, S|

1 )12 + 1B+ ol

29 Sl + e HITollg o ol (7.18)

and
1B17:2 S 1813 S ev* (1413

1) (7.19)

Let n € N, then in the truncated Cantor set

0L (ig) = N {(A,w) €0 st |w-l+je,(\w)| > }
<l,j>e%dx2\{<0,0>}
we have

%’71@-8#, —|—89(VE,«~))% =w -0y + ¢i,09 +EY,

with EQ = EX (\,w, o) a linear operator satisfying

IES P13 S eNg> N L3 Il e 2 (7.20)

q,50 ~

Given two tori i1 and iy both satisfying (7.16), we have

|A2¢; ||%0 < 5||A12'L||q Sht2 (7.21)
and
1812817 1 + 180810 L 4, S v N AwilTE 1o (7.22)
Before giving the proof, some remarks are in order.
Remark 7.1. e The final Cantor set OLT1 (ig) is constructed over the limit coefficient c;, but it is still

Proof.

truncated in the time frequency, that is |l| < N, leading to a residual remainder with enough decay.
This induces a suitable stability property that is crucial during the Nash-Moser scheme achieved with

the nonlinear functional.

Notice that, since 4y > vy, then looking at j = 0 we find that the Cantor set O} (ig) is contained
in the Diophantine Cantor set (Mg, A\1) X DCy, (7, 71) introduced in (6.90).

The parameter v is introduced for technical reasons appearing later in the measure estimates of the
final Cantor set and it will be fized in (8.64).

The constant 4 used in the definition of the Cantor set O (ig) is useful to ensure the inclusion of
this set in all the Cantor sets built in the KAM procedure (see (7.81) in the proof below) and also to

establish some inclusions related to the final Cantor set (see the proof of Lemma 8.2).

We emphasize here that the functions 8 and B are odd in the sense

6()"(")7 _807_9) = _B()‘7w730a0) and B()\aw’ —¥, _0) = _B()Vwa@?H) (723)

which will be crucial later to get the Toeplitz structure of the new remainder term emerging after

this reduction.

Since we are looking at a state near the disc, we can split V;,. defined by (5.1) according to
‘/;r()‘v 2 0) = VO()‘) + f0(>\a ¥, 0)) (724)
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7. Reduction of the linearized operator in the normal directions

with fo being a perturbation term of small size. We refer to (7.47) for a more precise quantification of this
smallness. The proof is an iteration process introducing at each step a linear quasi-periodic symplectic
change of coordinates. This transformation is linked to the remainder term of the previous step. Roughly
speaking, if the latter is of size ¢, then we choose the change of coordinates in such a way that we extract
the main diagonal part of the previous remainder and keep a new perturbation term of size ¢2. The choice
of the transformation is done through the resolution of an homological equation requiring non-resonance
conditions capted by a suitable selection of the parameters of the system. Thus, by iteration, we can
construct a final Cantor set gathering all the parameters restrictions of all steps in which we completely
reduced the transport operator into a constant coefficient one. We shall now explain a typical step of the
procedure Later, we shall implement the scheme.

(1)-(ii) » KAM step. Let us consider a transport operator in the form,
w0+ 0y (V + f)
for suitable parameters (A, w) that belong to a subset O7 C O, where O is the ambient set and
V=V and f=fwe0),
where f enjoys the following symmetry condition

fw,—p,—0) = f(\w,p,0). (7.25)

To alleviate the notations we shall use during the proof the variable u = (\,w). We consider a symplectic

quasi-periodic change of coordinates close to the identity taking the form

Gp(p, ¢, 0) (1+ g1, ¢, 0))Gp(p, ,0)

7.
(14 Dog (1, 0,0)) p(1, 0,0 + g(p, 0,0)), (726)

> 1>

where g : O x T - R is a small function which will be later linked to f. Then, by using Lemma A.3,

we can write for any N > 2
G (w0t 0 (V4 )Y = w0+ 00G (Vb 0pg + Vgg + T + 15[ + fOgg) . (7.27)

Recall that the projections Il are defined in (A.5). The basic idea is to obtain after this transformation

a new transport operator in the form
G w0+ 00 (V4 )G = w0y +00(Vi + [1), (7.28)

where
V+:V+(:U’) and f—‘r :f+(ﬂa%9);

with f; quadratically smaller than f. In order to get rid of the terms wich are not small of quadratic in f

in the right hand-side of (7.27), we shall select g as a solution of the following homological equation
w - 0pg +VOpg + 1IN [ = (f)e,0, (7.29)

where

(Neolp) = /T » £ (s 0, 0)dpdo.

To find a solution to the homological equation (7.29), we use Fourier decomposition and look for g in the
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form
(e 0) 21 Y SR, (7.30)
(1,5)€zd+1\ {0}
(LIYSN

The denominators appearing in the Fourier decomposition of g may be small and generate problems in the
convergence of the series in (7.30) for large N. This is a well-known phenomenon in KAM theory called
"small divisors problem". To overcome this difficulty, one has to avoid the resonances and, following the

ideas of Kolmogorov, we introduce Diophantine conditions gathered in the following Cantor set

ort () {ueor st fw-l+V|> L} (7.31)

(,ezdt+i\{o}
LHN
Such a selection of the external parameters allows us to control the size of the denominators in (7.30). As
we shall see in (7.39), the quantification of this control, linked to the parameters v and 71, allows to get
suitable estimates for g with some loss of regularity uniform with respect to IN. Before performing this
estimate, we shall first construct an extension of g to the whole set O. In what follows, we still denote g
this extension. This is done by extending the Fourier coefficients of ¢ using the cut-off function x defined

in (6.92). More precisely, we define

>

X (@l V() (v () T T
() 2 LTI TON) ) (732

2 g () fr5(w).

Notice that the extension g is a solution to (7.29) only when the parameters are restricted to the Cantor
set O]. Then, we define

Vi 2V 4 (f)es and fr 2G7H(IKf + fOng),

so that in restriction to the Cantor set OJ, the identity (7.28) holds. Remark that Vi and fi are
well-defined in the whole set of parameters O and the function g is smooth since it is generated by a finite

number of frequencies. According to (7.25), we obtain that g is odd. As a consequence,

g€ [\ W= (0, He,). (7.33)

s=0

Our next task is to estimate the Fourier coefficients ¢; ; defined by (7.32). Notice that we can write them

in the following form

2 x@) (7.34)

gri(p) =1iag;X(ar A1 (p), Xz
Aj(p) 2w 1+ 5V(n), aj=(y

c
8

Since X is C*° with bounded derivatives and ¥(0) = 0, then applying Lemma A.1-(vi), we obtain

—~ 17,0
vq' € [0,q], lgnilly” S aijll A,

0 —1 '—1
oy (1 +aj; ||Al,j||%oo(0))~
Direct computations lead to

V(l,j) € 29, Yo e N*' ol < ¢, sup |05 A ()] S (1) max <1, sup |5ﬁV(M)|>
neO neo

S 71N ) max (L, [V][3€) -
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7. Reduction of the linearized operator in the normal directions

Assuming
,0
VIg~ <G, (7.35)

we then obtain
¥q €0,q, V(,5) €z, AL < (1 4). (7.36)

Added to the fact that 0 < a;; < v~ Y()™, we then find that
g € [0.q], Nlgilly® S ATV T (737)

Our choice of v in Proposition 7.2 implies in particular that
v < A (7.38)

Therefore, we deduce from (7.32) and Leibniz rule that for all « € N?*! with |a| < ¢

_ B~ 2
VN OZ g, -, M pemion S > N7 Rlel=28 908 g ()| Py 08 £ (e IR
(1,5)€z4+1\{(0,0)} BeNd+1
(LN <a
—~ 179 2 25—2
S Y (1) A0 s ] e
(1,5)€24+1\{(0,0)} Bend+1
(LN B<a
< Z Z 7*272\5\{35‘}01 | >2(8+71Q+71*|5|).
(1,5)€z4+1\{(0,0)} Bend+1
(LN B<a

As a consequence, by interverting the summation symbols, we find

o - ,0
lgl15:5 < v~ TN Flg e g, - (7.39)

Assume now that
YTINTIETE P20 < e (7.40)

Then added to (7.39) and Lemma A.1-(ii), we get
||g||q so X C’yilNquJrTl Hf”q S0 < Ceo.

On the other hand if we assume
17138 S e (1419035

then (7.39) gives

—1
”g”q 2s0+1 ~ S Y Hf”q 2so+T19+71+1

S 67 (1 + ||J0Hq 2so+‘r1q+rl+2)

< 6’)/_1 (1 + ||jo

q, 5h+01> '

Notice that to obtain the last inequality we used the fact that (7.15) and (7.14) imply

250 +T1q+ 11 +2< s, + 01
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Using interpolation inequality and (7.16), one gets for some 6 € (0,1)

1-6
9132, < (19132)° (o132, 1)
5 0. (741)

Thus, taking £y small enough, we can ensure the smallness condition in Lemma A.4 and get that the

linear operator ¢ is invertible. Now, we introduce
w2y f + fag.

By the triangle inequality, Lemma A.1-(ii) and (7.39), we obtain for all s € [sg, 5]

< I £17:0 + € (1120069130 + 17178 120617:2)
< I A1 + (112 Nelly o + ||f||%@||g||q,so+1)

<My fl3: + O alflge

Combined with Lemma A.4, Lemma A.1-(ii) and (7.40), we get for all s € [sq, 5]

=g W)l
IIUIIWO+C(||UII gl + 19138

|q,50)
7,0
q,So)

<l + C(IIUII Dlgllgs + llglly:d Nl

SN flg + Oy INT T |2

Using once again Lemma A.1-(ii), we find for S >3 > s > s

IF+13:0 S NTFFITS + Cy I NTatmt

sl flg:s- (7.42)

» KAM scheme. Let us now assume that we have constructed V,,, and f,,, well-defined in the whole set of
parameters O and satisfying the assumptions (7.35) and (7.40). We shall now construct the corresponding
quantity at the next order, namely V;,, 41 and fi,,41, still satisfying (7.35) and (7.40). For this aim, we shall
implement the KAM step with (V| f, V., f+, N) replaced by (Vin, fin, Vina1, fm+1, Nm). More precisely,
we will shall prove by induction the existence of a sequence {V,,,, fm }men such that

Sm(s1) < So(sn)NI2N#  and  Sm(sn) < (2—m+1)(50(8h) (7.43)

and
||Vm||;“ <C and NS (s0) < e, (7.44)

with f,, satisfying the following symmetry condition

fm(,uv - _6) = fm (Ma 2 9) (745)

and where we denote

() 247 I fmll 50

Recall that the parameters s; and sj, were introduced in (7.3) and (7.15).
> Initialization. We shall first check that the estimates (7.43) and (7.44) are satisfied for m = 0. In which
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7. Reduction of the linearized operator in the normal directions

case the functions Vp and fy are defined by (5.11) and (7.24). By (6.43) and (7.7) we infer

So(s) =7 H|Ver — Vol 2:€

7,0

S v rlgen

Ser™ (1+ 117l

75)- (7.46)
Thus, the notation (7.15) and the smallness condition (7.16) imply that

N§?60(sp) < Ceg. (7.47)
In addition, by (7.4) and (5.3), we deduce that fy satisfies the following symmetry condition

fO()" R _9) = fO()" ®s 9) (748)

We set O = O and consider Ny > 2. Our next task is to check that the assumptions (7.35) and (7.40)
are satisfied by Vj and fy. First recall that Vj is defined by

Vo(A) = Q+ Li(A) K1 (A).
Using the smooth regularity of (C.10), we obtain
IVally© < C. (7.49)
Therefore, the required boundedness property (7.35) is satisfied with V' = V{. Now by (7.15), we have
Ho = Tiq+ T + 2. (7.50)
Hence, using (7.47), we obtain

,Y71N8'1q+'r1+1||f0||3:8(90 _ NgqurTlJrl(SO(SO)
Nglq+T1+1*H2N64250(8h)

<
< CEON(;l.

By taking Ny large enough we get
CNy ' <1, (7.51)

so that

'7_1N(;—1q+71+1”f0||3:500 < &o.

Hence, the assumption (7.40) is satisfied for f = fy. This ends the initialization step.
> [teration. let us now assume that we have constructed V,,, and f,, enjoying the properties (7.43), (7.44)
and (7.45). We shall see how to construct V,, 1 and fn,41. According to the KAM step, we consider a

symplectic quasi-periodic change of variables ¥, taking the form

Grap(y 0,0) £ (1 + Oggm (11, ,0)) Gmp (11, ¢, 6)
= (14 Bogm (1, 0. 0))p(1ts 0,0 + gm (11, 0,9)),
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with
. x (@ 45V () (v ) ()™ (1ot
e £ 3 (ot 07 (5, ) 549, (7.52)
i 1
5 gm\n{ o

where x is the cut-off function introduced in (6.92) and N,, is defined in (6.94). As explained in the KAM

step, gm is well-defined on the whole set of parameters O and solves the homological equation

w - 8Lpgm, + VmaQQm + HNmfm = <fm><p,9

when restricted to the Cantor set

Oz () {e=0weos st |w-i+Val] > H2}. (7.53)
(1,5)€ze+\{0}

(L,i)SNm

Hence, in the Cantor set O] 11, the following reduction holds
%;1 (W : acp + a@(vm + fm))%m =w:- aga + 89(‘/m+1 + fm—&-l)y

with V41 and fi,,+1 defined by

{ Vint1 2 Vi + (fm)e0 (7.54)

fmt1 = g;ll (HJJ\_Imfm + fmaQQm) .

In view of (7.45), the function f,, is even and therefore g, is odd. Consequently, we deduce through
elementary manipulations that f,,41 is also even. This allows us to follow the symmetry persistence along

the scheme. Besides, in a similar way to (7.33), one obtains

gm € [\ W(O, HE,). (7.55)

520

Now, we set
PB_1 ég_l £1d and vaN, @mégooglo...ogm.

One easily finds that

B p(1,0,0) = (14 0o Bm (1, ©,0)) Brp(, 0, 0)
= (1+ 96Bm (11, 0,0)) p (11 0,0 + B (11,0, 0)),

where the sequence (8., )men is defined by 3_; £ g_; 2 0 and
BO £ 9o and ﬂm(:u’v(pﬂe) £ Bmfl(uv@va) + 9m (M»@va + 5m71(:u7§079))' (756)
A trivial induction based on (7.55) yields

Bm € [\ WP7(0, HE,). (7.57)

s>20

118



7. Reduction of the linearized operator in the normal directions

According to Sobolev embeddings, (7.54) and the induction assumption (7.43), we infer

Vin = Vin-all7€ = 1 {fm-1)00l17°
<N fm-al2:
= Y0m—1(50)
<0(sn) NG N, 1. (7.58)

As a consequence, by using the triangle inequality, (7.47) and choosing € small enough we deduce
IVall3© < Vi1l + 00 (sn)NG> Ny

m—1
< Voll7© 4 ~00(sn) N§™ (Z Nk’“)
k=0

o0
< Vol + > Nt
k=0

Now, remark that (7.15) implies in particular
Mo = T1q + T1 + 2.
Hence, by the induction hypothesis (7.43), (7.47), (7.50) and (7.51), we have

5m(80)Ngfq+T1+1 50(Sh)N6tzN$q+n+1—uz

<
<eolNy!
< 0. (7.59)

Using (7.49) and the previous estimate, we deduce that

surgI ||Vm||;”(9 <C and 6, (so) NPT L g (7.60)
me

Thus, the KAM step applies and, in particular, the estimate (7.42) becomes
Sma1(8) S NET56,,(3) + CNIHITTHLS - (8)6,m(s0)- (7.61)
If we apply (7.61) with s = s; and § = s, we obtain
Sma1(81) < NET5nG, (s) + CNIPEELS(5) 6, (S0)-
Using the induction assumption (7.43) and the fact that s; > sq yields

Sm1(1) < Nt ™6 (s1) + CNZ T (6,0 (s1))?
(2 _ L) Nsi_shfso(sh) + CNSN?NTQQ+T1+1—2M2 (50(8h))2

N

m—+1

S 2NZ =308 (sp,) + CNGH2 NT1a+TiH1=202 (5, (5, )2,
The conditions (7.15) imply

sh=Spet+s+1, and pp 22(rig+m+1)+ 1
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Also, using the fact that Ny > 2 and choosing £y small enough, we get in view of (7.47),
4NgH" <1 and 2C8o(sp)N{? < 1.
As a consequence, one has

Np=sn SINGEN RS and CNGR2NHPTH=2026,(s),) < AN2N, A3, (7.62)

which implies in turn
5m+1(sl) < 5 ( )Nﬂszi21

This proves the first statement of the induction in (7.43) and we now turn to the proof of the second
statement. Applying (7.61) with s =3 = s;, and using the induction (7.43), we get

Smt1(5n) < Om(sn) (1 + CNTTHLS, (s0))
(2 m+1> So(sn) (14 CNY2 N 170250 (sp))

Notice that if the condition

(2 . 7) (1 + CN#zNT1q+Tl+1 Hz(;o(sh)) <2-— ﬁ% (7.63)

holds true, then
dm+1(sn) < (2 - m+2) do(sn),

which achieves the induction argument of (7.43). Notice that (7.63) is equivalent to

(2 _ TH) CN#2N7'1Q+T1+1 u250(5h)

c 1
1) (m+2)

Using (7.50), the preceding condition holds true if

CN€2N771150(5h) < m (7.64)
Since Ny > 2, then in view of (6.94) there exists a small enough constant ¢y > 0 such that
1
Vm € N, C()N W
Consequently, (7.64) is ensured provided that
CN5‘250(sh) < Co. (765)

Choosing g small enough and making use of (7.47), we obtain

CN{§?do(sn) < Ceo
<

Co.

Hence, the condition (7.65) is satisfied and the proof of (7.43) is now achieved.
> Persistence of the regularity. Putting together (7.61), applied with 5§ = s € [sg, S], (7.43) and (7.50),
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7. Reduction of the linearized operator in the normal directions

we infer

Om+1(8) < Om(s) (1 + CN;qu+T1+15M(30))
5m(3) (1 + Céo(sh)NétzN;lqurnJrlfuﬂ
é

m(8) (1 + CNn_ll) .

N IN N

Gathering this estimate with (7.46), implies, up to a trivial induction,

o T (- oy

k=0
< Cdo(s) (7.66)

<Cer (1+13072,)
Then, (7.39), interpolation inequality in Lemma A.1 and (7.43) give

lgml138 < Com(s + T1q +71)
< C @G (50)™ (s +71q + 71 +1))
059(5 ( )5(1)75(3)(8+T1q+7'1 + 1)N§(S)MQN1;§(S)#2

1-0(s)

with (s) = . From (7.66), (7.16) and (7.46), we deduce

1
s+711g+71+1—50

- (s —0(s)p
lgmli3: < Coy ™ (141300175 41) (1+ ||ﬁo||q,s+nq+n+2) Ny N, P

< 05771 (1 + HJ0||(I15’+7'1(I+7'1+2) N (S)MQN 6(8) (767)
Using (7.56) and (A.16), we get for all s € [sg, 5]
Hﬁm| q,s \ ||ﬁm 1” (1 + CHgm”q,so) + C (1 + ||Bm 1||q,so) ||gm||:1y:\§9 (768)

If we apply this estimate with s = sy and use Sobolev embeddings, we deduce

||ﬂm||q 50 ||6m 1||q S0 (1+C”gm”q so)

The previous two expressions make appear recurrent relation for the weighted norms of the sequence
(Bm)m- To get good estimate for 3,,, we shall make use of the following result which is quite easy to prove

by induction : Given three positive sequences (an)nen, (bn)nen and (¢, )nen satisfying
V’I’LEN, an+1 <bnan+cn7

we have

Vn =2, aOHb+chHb+cn1

k=0 zk:-‘rl

< (ao i Z_: ck) H b;. (7.69)
k=0 1=0
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o0 o0
In particular, if H b, and Z ¢, converge then
n=0 n=0

ilég a, < (ao + ni_: cn) i b;. (7.70)
Since the conditions (7.15) and (7.14) imply

so+Tq+T+2< s, +0o1 and O(so)ue =1, (7.71)
then, from (7.67) and (7.16), we deduce

057_1NH2 (1 + HJOHq so+7’1q+r1+2> Nﬂ_%e(SO)HQ

< CE()Nn_ll.

qSo

Choosing ¢g small enough to ensure Cey < 1, Ny sufficiently large to ensure Z N, 1 < 00 and we can
m=0

apply (7.70) together with the fact that Sy = go to obtain
< <||B0 q,so + CZ ||gk||q 30> H (1 + C”gk”q so)
k=0
oo
<1+CZN ) [T+~
k=0

<C. (7.72)

Hence the sequence (|| ﬁm”gsoo) is bounded and inserting this information in (7.68) gives for all

S € [80, S]

meN

HBqu,s X ”/Bm 1” (1+O||gm|

s0) T Cllgmll3:?

Similarly to what preceeds, if we apply (7.70) and (7.67), we infer

s%%lwmll;: (ﬁoII +CZ||gk|| )H(1+C|gk|

k=0

0(s . —0(s)u
< Cgf)/ (1 + ||J0Hq s+'rlq+'rl+2> (1 + NO( Jhz ZNk ()1 2) .

q750)

From Lemma A.5 we get

Vs € [50; 5]7 NE(S)Mz ZNl;g(S)HZ <
which implies in turn

Vs € [so, 5],

O < Cey (141300178 gmrr2) - (7.73)

From the condition (7.3) we have s; = so + 71¢ + 71 + 2, and consequently we deduce from (A.16), (7.72),
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7. Reduction of the linearized operator in the normal directions

(7.39) and (7.43),

,O
18 = B39 2 < Cllgmly vz (14 1Bm-1113:02)

= C”Qm”q so+2 < C(Sm(sl)
< ONI2 N2 60(sn). (7.74)

N

Applying once again Lemma A.5, we deduce that

ijm

Hence there exists 3 € W7 (O, H%*2) such that

q 50 +2 C’50 (sh)

By — B (strongly) in WZ7(O, H¥T?),

m—0o0

By (7.73) the sequence (B),,cy is bounded in W°*7(O, H?), then by a weak-compactness argument
we find that g € W%>7(0O, H®). Using (7.73), we obtain

Vs € [s0, 8], 18115 < liminf |15, [|7:0
S e (14 13 mgime) - (7.75)

We then can consider the quasi-periodic symplectic change of variables % associated with 8 and defined
by

Bp(Aw,,0) = (14 0pB(A,w, ¢, 0)) Bp(A,w, ¢, 0)
= (1 + 895()‘7(“]7 L) 9)) p(>‘a w,p, 0+ B()Uw? ®, 9))

By (7.75), (7.71) and (7.16), we have

O -
1813:9 S &7 (14 13001329 4 g 2) S 0. (7.76)

Proceeding as for (7.41), using interpolation (7.75), (7.76), (7.16) and the fact that 2so+711¢+71+3 < sp+071,

one obtains

||B| q,250 N

Therefore, choosing g small enough, we deduce in view of Lemma A.4 that £ is an invertible operator.
Moreover, by (A.17) and (7.75), we get

|‘%i1

P :ZY:?S ||P|| +57 1||30||7,s+nq+7—1+3||p| q,80" (777)

In addition, by (7.57), and Sobolev embeddings (to get pointwise convergence), we find

e [ Wo=(0,H;,,).
s€[s0,5]
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We also have an estimate of the rate of convergence for the sequence (5,,)n, towards £,

oo

Hﬂ ﬂmnq s0+2 < Z ||/8k+1 Bqu so+2
k=m
Sydo(sn)NE Y N (7.78)
k=m+1
From Lemma A.5, one obtains
YN = O(N™). (7.79)
k=m

Gathering (7.79), (7.78) and (7.46), we get

Hﬁ Bm| q,50+2 ~ ’yéo(sh)NMZNmizl

<SeNp” Nmi"‘l (7.80)
» KAM conclusion
By (7.58), we have
D Vot = Vil 7@ < yo(sn) NG2 D N, »2
m=0 m=0
< Ydo(sn)-

We deduce that the sequence (Vi;)men is convergent in W7 (O, C) and let us denote by ¢;, its limit.
Moreover, we have by (7.79), (7.46) and (7.16)

oo
leio — Vollg ©< Z Vi1 — ang’o
=0

2

<v%ww<s@+w%m%ﬂ)

<e.

2

Now, we introduce the truncated Cantor set

o= () {n2Oweo st w4 je,n)]| > Y
(1,5)€ezd xZ\{ (0,0}

[LISNn

In what follows, we shall prove that the Cantor set O": (7o) satisfies the inclusion

n+1

'Yle R
O ﬂ O n+1’

where the intermediate Cantor sets are defined in (7.53). For this aim, we shall argue by induction. We
first remark that by construction O (ig) C O £ OF. Now assume that OL7: (i) C OF, for m < n and
let us check that

OLTi (i) C O} 4y (7.81)
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7. Reduction of the linearized operator in the normal directions

Putting together (7.58) and (7.79) we infer

oo
Vi = eill7€ < D IVier = Villg©
l=m

oo

< Yoo(sn)NG® D Ny

l=m

< oo (sn) N2 N2 (7.82)

Given p € O (io) and (1, §) € Z% x Z\ {(0,0)} such that 0 < |I| < N, we have then |I| < N,, and by

triangle inequality,

w1 Vi ()] > e+ L+ sy ()] = 1511 Vin (12) — cig (1)
> B — (oo (s) N§ Nt

™
> Oy)yPen(l)H

)
)

Since (7.15) implies po > 71, then taking g < %7 we deduce from the previous estimate

w1+ V()] > T2

Consequently, 1 € O} ., and the inclusion (7.81) holds.
(iii) We can write for all n € N,

B w0, + 00 Vot f0) )2 = (#71 — 2,") (w0, + 00 (Vo + o) ) #
+ B, (w05 + 05 (Vo + fo) ) (2 — Z0)
+,@;1(w.a¢+ag(%+f0))%

In view of (7.81) and the definition of %,,, we have in the Cantor set O (ip)

oo,

B, (w0400 (Vo + fo) ) B = w0y + 09 (Vi + )
Therefore, in the Cantor set O (io), the following decomposition holds
B w0y + 00 (Vo + o) ) B = w - 0, + cig o + EN o),
where
B9 (i0) 2 (Vi1 — i) Op + 0 (fr1:) + (B — B (w 8y + 05 (Vo + fo) )%“

+%_1<w-8¢+69(V0+f0)) (% — $n)

2E, 1 +Ey,+E) 3 +E
By the product laws in Lemma A.1, (7.82) and (7.46) we have

(@] (@]
ED 121750 S 1WVatr — cin 7 Clloll s
S Véo(sh)NM2Nn-ﬁ12||p||q7so+1

< ENHQN 7.83
q 90+1
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From (7.43) and since (7.3) implies in particular s; > sg + 1, we obtain

,O ,O
[En 200750 S 70nt1(s0 + Dol s 41
< 750(8h)NH2Nan12||p||q,so+1

S ENMan-ﬁprHq so+1° (784)

We now turn to the estimate of E%A. First remark that by the product laws in Lemma A.1, we have

||(.d a@ﬂ‘f‘ 89 ( 67”;0) ||q S0 ”w 8<Pp| q,50 + Hae ( ETP) | q, 30

SIS (L IV l39 ) -

But combining (7.24), (7.49), (7.66) and (7.16), we obtain

< H‘/O”’Y © + ||f0||q S0
<C+Cey M 3oll78 14
< C.

ET

Therefore, we get

,O
29 < pllS Ly (7.85)

[l - sap + 09 (Verp)

Putting together (7.85), (7.77) and (7.16), gives

IED 4pll750 S 112 = Za)oll e ir (7.86)
Applying Taylor Formula, we may write
(% — Bn)p(0) = (14 005(0))p(6 + B(6)) — (1 + 99Bn(6))p(6 + hn(6))
= (1+00B8(9)) [p(0 + B(6)) — p(0 + Bn(0))] + 0o (B — Bn) (0)p(0 + B (0))
2 (1+3pB(0))(8 — Bn)(0)-F0(0) + 35(B — Bn)(0)Brp(6),
where )
5up0) 2 [ (@09) 0+ 52(0) +15(0) - 5o (0))
0
Hence, we get by the product laws, A.16 and (7.80)
196 (8 = B) Bupl} 21 S 18 = Bl Sallpllasos (15 18217501
S eNGEN L2 ol o
Using the product laws together with (7.80), (7.72) and (7.76) we find
~v,0
| +008) (8= 80) 2| S (1+1813:042) 18 = Bull a3
a,50+1
x (1+ ||ﬂn||mo+1 118 = Ball 041
< ENHQN H2 q so+2
Gathering the foregoing estimates leads to
H('% '@ ) qso+1 SENNQN +1 ||p||q so+2° (787)
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7. Reduction of the linearized operator in the normal directions

Plugging (7.87) into (7.86) gives

IED apll e S NG N5 1ol 3 o2 (7.88)

q;80 ~

Proceeding in a similar way as before using in particular the identity (A.14) and (A.18) we find

||E 3P||7 DU eNY* N, { n+1 Pllelly q,§0+2 (7.89)

q,S0 ~~

Putting together (7.83), (7.84), (7.88), (7.89) allows to get

(o7

e SENEN ol 2

q,80 ~

(iv) » Estimate of Aj23. First notice that, since 5_; = 0, then

A = Z A12(Bm — Bm—1)- (7.90)

m=0

The triangle inequality allows us to write

o0

18128175 15 < D 1812(Bm = B0 I]5) - (7.91)
m=0

According to Taylor Formula and (7.56), we infer

Thus,

A12Bm(0) = A12Bm—1(0) + (Bi—1)r, (A129m)(0)

1
+ AroBr1(6) /O (00(g)ra) (0 + Bon1)ra(0) + 121281 (0)) dt.

m 5m71)(0) = (Bmfl)rl (AIQQm)(e)

1
+ A125777,71(0) /0 (80(gm)7"2) (0 + (ﬁmfl)rg (0) + tA12ﬂm,1(0))dt.

Consequently, using the law product in Lemma A.1, Lemma A.4 and Sobolev embeddings we obtain

A12(Bm

ﬁm 1)| q7sh+p < ||A1297n||q Sh4p (1 + C”(Bm 1 T1||q,so) + ||A129m

|q,80 H ﬁm 1)T1 ||q)sh+p

1+ OlABn-1 171 gm)ral 1S s (L 1 Brr1)ra I3 + 1 A12Bin-1117.S)
+ CllAAm 1 17N )77y (1B )75y + 181281175 1)
+ ClAv2Bmall)s o ll(gm)r 761 (L4 [ Bm1)ra 175 + 1 A128m-11175)

and for all s € [sg,sp + ]

O < Ar2gm3 (1+ Cll (B 1)n||qso) + 1 Av2giml3 0N (Brn—1)r, 17:0

+ Ol A28 draet (L 1B 1)r2||q,30+||A126m 13:52)
+ Ol A2Brm 132 g 1751 (1Br=0)ra 13 + D181 113:2)
+18128m -1 1€ (14 Cl(gm)ra |34 (1 + ||<ﬁm_1>m 78+ BB 1l17:9) ) -

Iq,so H (gm>r2|

Notice that (7.15) implies in particular 5, +p + 71¢ + 71 + 3 < 8, + 01. Therefore, using (7.67) and (7.16),
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we get

f,:ép re{1s} 1(gm e ”q Sutpr1 S CE7 (1 + Kello) 135113, 3}L+P+qu+7'1+3)

<C. (7.92)

Notice that the previous estimate is sufficient to easily get rid of most of terms in the estimates of A28y,
and A12(Bm — Bm—1), but not enough to make the series (7.90) convergent. For this purpose, we shall
refine the estimates. By (7.67), (7.15) and (7.16), we have

max | (gm )ry

) NO (Sh+P+1)#2N (5;L+p+1)u2
ke{1,2}

|q75h+p+1 Cey™ ( q8h+p+nq+n+3

< Cey INGERHPHDI2 D tpt1)a, (7.93)

Combining (7.73) and (7.16)

sup max ||(Bm)r,

—1
e helis) a.5n+p < Cey (1+ max || k||q3h+P+qu+ﬁ+3)

(1.2}
<C. (7.94)

Hence, using (7.92), (7.94) and Sobolev embeddings, the previous two estimates can be reduced to

181208 = Bl 1 < C (18129175 1y + 1812 Bm 7S o)l TS i) (7:95)

18128135 < ClAr2gml7S + 181281113 (1+ Cllgn)ra 350 41) (7.96)

and

18028175 1, < C (181201757 4y + 1812801 13 Q 1 Gl 941 )

18128178 1 (14 Clllgm)rall s ) - (7.97)

From (7.96), using (7.70) and the fact that Sy = go, we deduce that

0
Sup HAlQBm”q,so =X <||A12go||q,so + CZ ||A12gk?||’y,so> H (1 + ||(gk)T2||Z7so+l) :

k=0 k=0
Adding (7.93), we obtain
Sup HAlQﬁm”q S0 CZ ||A12gk||q s0°

Similarly, (7.97), (7.70), (7.93) and the previous estimate allow to get

sup 1A12Bm )5 1 < C Z 18129k 775
Putting together the previous bounds, (7.95) and (7.93) gives

— s 1 4
1A12(Bm = Bre1)|? q:Shﬂ) < ||A129m||q 9 ot e 1N 0 (s +p+ )#2N 0(Sp+p+1)pz Z | Aragr|?: B Sh+p (7.98)
k=0
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7. Reduction of the linearized operator in the normal directions

Thus, the main delicate point is to estimate A13g,,. First remark that according to (7.34) and (7.52), we
can make the splitting

Im(p, 0,0) =i Z a1, X (@5 (Arj)ry (1) (D2 )i, ()€

(1,5)ezd+1\{o}
(1,7)<Nm

i an DX (an A () ((Fm)r )i (1er

(1,5)ezd+1\{o0}

t.3)<Nm
21, + 1.
Similarly to (7.39), one obtains
_ Ne)
HIlng,’sO 5 Y 1||HNmA12fm||g,s+ﬁq+'rl' (799)

We shall now estimate the second term. Applying Taylor Formula, we get

L=i Y dany) [ R (o ) )+ (1= ) (A0) 0] ) () s

(1,5)ezd+1\{o0}
(1,5)<Nm,

S b () s (e . (7.100)

(1,5)€zd+1\ {0}
(L,i)SNm

(1>

Remark that direct computations yield
Vg € [0,q],  [A12A415013° S (1) | Ar2 Vil (7.101)

Since that X' € C*° with Y’(0) = 0, then applying Lemma A.1-(iv)-(vi) together with (7.36) and (7.101),

we get
,O ,0 ,O
A1z A1 (104 13 + 1 (Ari)ra |15

;o '—1
x (14 a7 (1AL () + (AL sl 0)" )

S PR, YRR ALY, 20

— 0.0
Vq/ € [[O’q]]v ||hl7j||:;’ S a?,j'

By assumption in Proposition 7.2, we have

v< (7.102)
and using Leibniz rule, we deduce that
_ 0
L2037 S v A Vinllg C I, (fr)r 1560 g2 1 (7.103)

Putting together (7.99) and (7.103), we obtain for all s > s

- ,0 - , ,0
18120 17:7 < 77 TN, A2 finll] b gr + 7 A2 Vinll] Iy, () I e g2m 1 (7:104)

SN Ava finll30 + 7N A Vi3 (frn) 1325

m

Therefore, estimating Aj2g,, can be done through the estimate of Ay f,,. To do so, we shall argue by

induction. For that purpose, we shall consider a parameter p (which can depend on the parameter p, see
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for instance (7.118)) satisfying the following constraint
Sp+p+3< sy +or. (7.105)
We denote

Um £ Hﬁmfm + fmaagm

Then, we can write

Arafms1 = (G )r Aratm + (A12G,") (Wi )rs s

with
A12u7n - HﬁmAllfm + A12fm89(gm)r1 + (fm)r289A12gm~

By the triangle inequality, we have for all s > sg

28 < G 28 H1(A1G) (um)r 1727 (7.106)

Therefore, combining (A.16), (A.18), (7.39) and Lemma A.1-(ii), we get for all s > s

(G )iy Ar2tm |79 < ([ Ar2um 1729 (1 + C||(Gm)

|Ar2tn |77 (14 Cll(gm)r,

q; so) + C”( m)Tl ||7’O||A12Um||q S0
q750) +C||( m)h” ||A12um||q S0

< Ianaun € (1 € N s (A 1)

<
<

+C'771Nﬂq+ﬁ max H(fm)?k” OHAHU"L”

ke{1,2} @%0°
Using (7.66),(7.105) and (7.16), one gets
7,0 < 7,0
v SuP kgﬁw;} ”(fm) "k ”q Shptl Cev™ (1 + rr}{&%};} ” ”q s;t+p+2)
<C. (7.107)

Therefore, from (7.43) and (7.107), we get for all s € [so, 5p]

1(G ), © < 1Bl (1+ ONJ2 N ) - ONIE™ | Avyun 7.

At this level we need to give a suitable estimate for Ajsu,,. For this aim, we apply the product laws in

Lemma A.1, ensuring that for all s > sq

1A 12w |37 < Ty, Azl 320 + CllArzfnll 6 ||<9e(9m)n||q,so+C||A12fm

2250196 (gm)r 13:7

+ Cl(Fn)ra 138 1812913200 + Cll(Frm)rs 1350|1291
Hence we deduce by (7.39) and Lemma A.1-(ii),
||A12Um|g,’so < HnﬁmA12fm| + Oy T INTH Ay fon [ ,’ knﬁ);} 1)1 q,SO

+ C,yleanrnJrl”Aufm

q,so kn%a } ||(fm)7“k| q7

o
+C e ()31 8020055 + € mase 1(Fdoul131Ar201l35
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7. Reduction of the linearized operator in the normal directions

Added to (7.104), we finally obtain for all s > s

||A12Um||g,’ HHN Alme” +O’Y71Nﬁq+n+l||A12fm” Hﬁ);} ”(fm)?"k”q S0
C —1N‘r1q+7'1+1 A - -
+ Oy v fnll 3 s 1)
—2a7T1g+271+1 o
N 19 1 ') m)r A V v .
+Cy kﬂﬁg}ﬂ(f Jrillgs L H(f )i 5o 1A12Vinl [

Consequently, we find from (7.43), Lemma A.1-(ii) and (7.107),

SN P Ara 70+ ONGENZ T T2G02 (54 [ Avaflly

[A12um |78

4,50 q760

+ CN§#2N77;L1¢1+2T1+172#25(1)72(§h)||A12Vm”;}y,0

and
18wzl =< A2 ful 0 (14 ONFENZI I T2552 (5) ) + ONZT 1652 (50) | Arz 7
+ CNgzN;jq+2n+1—/725872(§h>||A12Vm”g,07
where we use the notation
12,y 4 -1 ,0
9" (s) = R [ (fo)rellgs
It follows from the preceding estimates that,
||(gm ) AlQum”q S0 < ONT1q+T1 ||A12um||q S0
< 0N53+nq+n —Eh—p”AmmeZD 4+ CNH2N2(7'1Q+T1)+1 uz(gl 2($h)||A12fm||q,so
+ CNOQEZN7%1,qu+37—1+1_2ﬁ263,2(§h)|‘A12Vm||g7o' (7108)

In a similar way, direct computations yield

1(Ga )i Azt |70 =< 1 A1 o]

7,0 (1 =+ N’;{H-qu-i-ﬁ 5P + CNOH2 N$Q+Tl+1—ﬁz 53’2 (gh)>
Sh P

(NN ) B3 Ars

[P
q,50

+ CNY? N2 a8t 602 (5,) [ Aga Vi 7€ (7.109)

By a new use of Taylor Formula, we can write

(12671 )(00)rs(0) = Aaa0) [ Dol (0+ (@)ra0) + 120287(0)) .

Applying Lemma A.1 and (7.39), we deduce for all s > sq

lum3:2 < 0%, fnll3E + Cll 17 1009mI17:C, + Cll funlI 3 B 1322
< fom (1+0Nﬁq+““\|fm||qso)
< Iz, (7.110)
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Using once again the product laws in Lemma A.1 combined with (A.16) yield for all s > sq

12126, (m)rall3:9 < CllAL2GgmlI3:0 1 () rallg,sorr (L4 1Gm)rs 1300 + 1A128m13:57)
+ CIIAungIq )l s (L4 1Gm) a3 + IIAugqu o)
+ CllAv2Gm llg,s0 | (wm)ra 17 5041 (1) s 32 )

In view of (A.19), (7.93) and Sobolev embeddings, one gets for all s € [so,3p, + p]

(nAmgmn 181239 mase (g 175 )

{1 2}

Putting together the previous estimates, (7.92) and (A.18) gives for all s € [sg, 5p]

- o
1(A12G,,) () 17:7 < ClI A2 171 (i) ralla,so 1 + CllA12giml |32 1 () 17501

Thus, by virtue of (7.104), (7.110), we get for all s € [so, 5p]

(812051 () [3€ < C7 NS v f 320 kg?x}\\<fm>,k||q,go+l

+0’7_1Nqu+Tl||A12fm||q,so { 2} X N (fm)rellg q,8+1

+ Oy NG A V7€ max (1(fn)r I 1 max [|(fon)r ]Iy

ke{1,2} ke{l.2)
Hence, (7.43), (7.66) and (7.107) allow to get (since s; > sg + 1)
1(A12G1) () 1725 < CNG2NTT 2502 (5) | Ava fon | 125
+ CN02H2N:;L1Q+2T1+172,u253’2(§h)||A12Vm|‘g,(9
and
_ ,O T19+71— >
(1201 )y 7€ = < ONFENR M T 5| A 12 i
+ CN177—qu+T1 6372(§h + p + )||A12fm| q,so
+ CNJ2 N a2t 12502 (5, + 5+ 1) | A Vi | 7€
Gathering (7.106), (7.108) and (7.111) implies (since N,,* < 1)
So+719+71—Sh >
QSo Nm 2fm||qs +p
+ CNN2N2(71q+T1)+1 u251 2(8h)||A12fm| 29
4 CN§H2N72n‘I'1q+3T1+1—2u26372(§h)||A12Vm||:1y,o.
In a similar war, we get in view of (7.106), (7.109) and (7.112)
||A12fm+1||"/7 HA12fm”% (1 4 Nso+T1q+7'1 Sh— P + CNH2N7'1Q+T1+1 M251 Q(Sh))
+C (NH2N2(T1Q+T1)+1 Ho + N71q+r1+1) 51 2(3h + P + 1)||A12meq o
+ ONE? NZaet3nt=Ta 502 (5, + 5+ 1) Ao Vi 1€
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7. Reduction of the linearized operator in the normal directions

In the sequel, we shall use the following notations
5y _ 1 5,0 _ -1 ~,0
om(s) =77 [Ar2fmllys and  sem =7 |ArVin [
Notice that
A1oVig1 = A2V + (Arafm)pe and AV = 0.
Then, by using Sobolev embeddings, we obtain
m—1
s <Y Ok(s0)- (7.115)
k=0

We shall now prove by induction that, for all p satisfying the condition (7.105), we have

Wk <m, Bi(so) < NPNG T u(sn+ ) and k(5 +B) < (2- gy ) vea+B), (T116)

with
v(s) £ 60(s) + &7 | Avillse 42

First remark that the property (7.116) is trivially satisfied for m = 0 according to Sobolev embeddings.
We now assume that (7.116) is true at the order m and let us check it at the next order. By the induction

assumption (7.116) and (7.115), one obtains the following estimate

sup s, < Cv(s, +p). (7.117)
meN

Using (7.113), (7.117) and hypothesis of induction (7.116), we find
Bunsa(50) € NHTaHT 55 (5, 1 B) 4+ ONJ2 N2+ T L2 (5,05, (50)
+ CNgﬁz N3n71q+3'r1+172ﬁ2 6(1).,2 (gh)%m

< |:2N;?+T1q+nf§h, + CNgﬁzN;71q+371+l—2ﬁ2 5(1),2 (Eh):| V(E;L 4 ,15)
Then, in view of (7.15), we infer

_ 3 —
so+T1q+T1—5Kn __ —5H2—3 _ —3 \THa2
QNSotTIatTI=5h — 9N — 2N, 2N, 2

3T
< 2Np "Ny

1 — -

< NN

To prove the last inequality, we remark that since Ny > 2 and 7y, > 0 (according to (7.3)), then
4 < NP2,

Similarly, from the expression of 71, in (7.15) and using (6.94) one obtains

2y N7271q+371+1 -2, 51,2 = —1 pfa NP2T1aH3TI 1= 50y 6 rTis AT —Ha
CNO Nm 2(50 (Sh) g CE'Y NO Nm NO Nm—i—l
—1 AP2T1q 3T+ 1 5o Ty AT
<Cey "N Ny2N,
<

m+1
Cey ' N N§>N, 3.
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Hence, choosing € small enough and using (7.16) we deduce that
NPT < LN
Gathering the preceding estimates gives
5 Ho a7 P2 (= =
Om+1(s0) < No? N,y iv(Sh +p)-

This ends the proof of the first statement in (7.116). As for the second one, we shall first write in view of
(7.114),
B () < (50 +B) (14 N7 T4 ONFEN T T 5 )
+ O (Nprtnott g N NZD T ) 502 (5, 4 + 1) (50)

+ CNOﬁzN§Z1q+371+1*ﬁ25872(§h + ’I; + 1)%m.

Notice that since 3, + p + 2 < sp, + 01, then by (7.46) and (7.16), one has
532Gh+p+ 1) <ev (1 3.|7C ~
o (Snt+p+1) Sey + e, L

Sey

Tt follows from (7.116) and (7.117),

Br1(n+5) < (2= i) (1 N ot m S 4 ONJE NG T ) (s, + )

+C (N;qu"'ﬁ"'l + N()HQN,%L71Q+371+1_H2) NN ey (s, +9).
Proceeding as for (7.63), taking ¢ small enough and thanks to (7.15), we obtain

(2 1 ) (1 +N75r{)+7'1q+7'1*§h + CNOﬁzN;;qunJrlfﬁz)

m+1

+C (NT7;L1q+7‘1+1 + N(I)Q N;qu+3ﬁ+1_ﬁ2> N61‘2N;Lﬁ25,y—1

1
<S2- 55

so that

Sms1(5n +B) < (2— 7k3 ) v(5n +)-

This completes the proof of the second statement in (7.116).

> Conclusion. From (7.104), we get for s = sg.

I\A129m|l770 < gm(s() + T1q+ T1) + #m0m (50 + T1g + 211 + 1).

q,50 ~

By interpolation inequality in Lemma A.1, (7.43) applied with pus = Ty, (7.116) applied with p = 0 and

Sobolev embeddings, we have for some € (0, 1)

Sm(so+71q+71) < Sm(s0 +T1q+ 21 +1)
< Om(50) 76 (30)

<N,

PN ()

o
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7. Reduction of the linearized operator in the normal directions

and
Sm(s0 +71q + 271 + 1) < 6,1(50)7 0 (50) ' 7
< NP2 N =072 5 (5,,)
< NJP2N, e,
Therefore

5,0 o m
Ve S NN, 2w (5y).

[A12gmll]

Now from (7.104), we have

1A12Gm 75 o1 S Om(Sn + P+ 71g + 71 + 1) + 56m0m (5 + p + 710 + 271 + 2).

Applying (7.116) with
p=p+tmg+mn+1, (7.118)

which is possible since from (7.3), (7.15) and (7.14), one has 3y +p+ 7m1¢+ 71 + 4 < s, + 01, we find

Om(Bn+p+mg+m+1)<20@En, +p+7g+7+1)
<250(Gh +p+mig+m+1)+ 2y 1||A12z||qu+2

Implementing a similar proof to (6.43) based on the kernel decomposition (6.39), the composition laws
and (7.8), we find

Vs > s9, do(s) = 7*1||A12V;-T||%

S v (1202l S+ 18207 4 g el 3% ).

On the other hand, since
5p,+p+1iqg+ 21 +3 < s+ o0y,

one may obtain through combining (7.66) and (7.16)

Om(3n + P+ 11g + 211 +2) < Cey ! (14 Tl

7,0
¢,5h+p+719+271 +3>

< Csfy_l.
Thus, by interpolation inequality in Lemma A.1, we finally obtain for some 6 € (0, 1)
1A 12gm )5 5 S < NP2 N0y (5, +p+ 1 + 7 + 1). (7.119)

Choosing Ny sufficiently large, then the composition law in Lemma A.1 allows to get

m
Z||A12.gk||q8h+p (Sh+p—|—71q+71 +1 NOHQZN 9”2
h=0 k=0

< ey Y| Ail2C (7.120)

q,Sp+p+T1q+T1I+2°

Finally, gathering (7.91), (7.98), (7.119) and (7.120), we get

1A128175 15 S ev 1 Avillg 5 tptrigimto-
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Putting together this estimate, (A.19) and (7.94) yields

112878 O o SIARBINS
Sey A

|q7§h+P+Tl qt+71+2-

» Estimate on Ajsc;. Since Vy = Q + [1 K, is independent of r, then
Aqgc; = Z A12(Vm+1 - Vm)~
m=0

Therefore we obtain in view of (7.54), Sobolev embeddings and (7.116) applied with p = 0,

1A12(Vingr = Va)ll7 = (D12 fm) .0 17°C
CYdm(s0)
Cn N”zN B2y(3).

NN

Hence by the composition law in Lemma A.1, Lemma A.5 and (7.8) one may find
o0
[A1eill7€ <Y 1A (Vinga — Vi) 7€
m=0

< Cyr(sh)N, Z N, Ha

q81+2

This achieves the proof of Proposition 7.2. O

7.2.2 Action on the nonlocal term

In this section, we shall analyze the conjugation action by % on the nonlocal term appearing in the

linearized operator L., described in Proposition 7.1. The main result reads as follows.

Proposition 7.3. Let (v,q,d, 1, 80,3h,01,S) satisfy (A.2), (A.1), (7.3) and (7.14). We set
02é50+01 + 3. (7121)
For any (ua,p, sn) satisfying the condition (7.15), there exists €9 > 0 such that if

<1

ey N <eg and  [|Tol|] q,5h+o—2 < (7.122)

)

then in the Cantor set OL"1 (io), we have
Ler = %71557”@ =Ww:- 890 + Cioae — O0gKx * - + OgRer + E?w

where KCy is defined in (5.12), EY is introduced in Proposition 7.2 and R., is a real and reversibility

preserving self-adjoint integral operator satisfying

Vs € [so, 5],  Jhax |05 R (7.123)

ke{0,1,2}

Qo S (14130175, ) -
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7. Reduction of the linearized operator in the normal directions

In addition, if i1 and iz are two tori satisfying the smallness property (7.122), then

0 _ e
kg}{%)i} ||A123§9%er\\3.d,q,gh+p Sey 1||A12Z||:1Y,§h+p+02' (7.124)

Proof. We recall from Proposition 7.1 and Lemma 5.1. that
Loy =w- 0y +0p (Verr) — OpLecr,
where L., is a nonlocal operator defined by
Lerlp).0) = [ pliom)KoMer 0.0,

with

N|=

Acr(p,0,m) = ((R(% n) = R(p.0))" + 4R(0,n)R(p, 0) sin” ("%0))

and
1
2

R(p,0) = (1+2er(p,0))2.
Notice that we have removed the dependance in (A, w) from the functions in order to alleviate the notation.

Hence by Proposition 7.2, Lemma A.3-(i) and (6.24), we have in the Cantor set O%"} (7o)

S, A2 B, B
= B w0y + 0y (Ver) ) B — B 0Lcr B
=w:0p+ ¢iy0p — OB L. & + E?L
—w-dy + ciy09 — Oy (B’l (KCx ) B+ B*lLET,lﬁ) +EO. (7.125)

From a direct computation using (5.12) combined with (A.14) and (A.12), we find
B™H(Kx + #p)(0,0) = AP(¢,U)KO(AW§(@a9,W))dW7

where

)

A5(p,0,m) £ 2

sin ("—;9 + iAL(ga, 0, n))

with R R
- 2 Blem—Ble.0)
h(p,0,n) = =520

Using elementary trigonometric identities, we can write

5(0,0,m) =2

sin (%9) ‘ v§72(<p,9,n), (7.126)

with (A )
A e sin( h(p,0,n)
v5,(p,0,m) = cos (h(% 9777)) T ()

Notice that vg 2 = 1 and one may write

" _ N _ D) sin(h(0.m) h(0.m)
v5,(8,m) = 1+ (cos (h(8,9)) — 1) + aan(iery < ) 1) n(120)
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and then using Lemma A.1-(iv)-(v), Lemma A.2 and (7.19), we obtain

f]lég HUEQ(*7 ERN) + - 1||q s ~ ||5||q s+1 ~ S 5771 (1 + ||30 q, s+a’1+1)

(7.127)

0
vk € N sup (v ) 7Y S 1813 s S 237 (1 13003 S 1)
n

Proceeding as for (6.39), one obtains the decomposition

Ko(A5(\,w, ,0,m) = Ko (27

Sm( )D +H (= 0)H5, (¢, 0,m) + A5, (,0,m)
with similar estimates to (6.35) and (6.38), that is, for all k € N,
k o1 7,0 k a2
f]lél’]l‘) (H(ae'%/E,Q)(*a ) '777 + ')’ q,s + ||(80°%//’@\72)(*7 B '777 + '){ ) S Hﬁ”q s+1+k
Sev (L 180 S s ) 5 (7128)

where the symbols *,-,. stand for (), w), ¢, 0, respectively. Now we shall denote by L., o the integral
operator with the kernel K., o defined by

Kera(,0.m) = K (n = 0)45 (9, 0,m) + A5, (0, 0,1)- (7.129)
Then we find the decomposition
B (Ky*)B=Ky*-+ Lo
Inserting this identity into (7.125) allows to get
Lop =B ey B =w- 0y + ciy0p — Dgkx - + DgNRep + EY,

with
msr £ _Lsr,2 - B_lLsr,L%- (7130)

Observe that by (7.4) and (7.23) we can easily check that the kernel K., o satisfies the following symmetry

property
KET,Q(_(pv —9, _77) = KET,2(§07 97 77) S R7 (7131)

which implies in turn, according to Lemma A.7, that L, o is a real and reversibility preserving operator.

Moreover, one obtains from (7.128)

x| OFKera) (o410 S v (1 130030, ) (L= loglsin (D)), (7132)
Our next purpose is to highlight some properties of the operator B~'Lc, 1% which takes the integral form
(B Loy 1 %) pl(ip,0) = /T (o) Rer1 (0,6, m)dn, (7.133)

where the kernel KEM is related to the kernel K, ; defined in (6.25) through the formula,

Ker1(0,60,m) 2 Kepi (9,6 + B, 0), 1+ B, m)). (7.134)
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7. Reduction of the linearized operator in the normal directions

It is quite easy to check from (6.27) and (7.23), that

Ker1(—¢, =0, —n) = Kep1(i9,0,7) € R. (7.135)
According to (6.25), one gets the decomposition
]Ksr,l (90) 97 77) = t)‘(///\(907 97 "7)‘72/5\7‘1,1(90) 97 77) + '%/};“2,1(()07 0 77) (7136)
with
H (p,0,m) £ A (n— 0+ Ble.n) — Bw.0)),
'%/zsrl,l(()p79777) '%/esrl((pve""g((p?H)vn'i_B(@ 77))
‘%/67"2,1(<)07 07 77) ‘x/s

7"1(()0704'/8\(()079)7774_3(@’ ))
deduce that

Coming back to (6.26) and using the morphism property of the logarithm, combined with (7.126)

%/(90,9 n) = sin? (" 9)

2

(g0,977 (log’sm( >‘+log|vﬁ2 (p,0, n)’)
—%(n 9)—1—%(77 9)(

(@.0.) ~ 1)
+ sin” ("29) M(%G n)log |vg, (¢, 0,m)].
Combining Lemma A.1-(iv)-(v), (7.127), (7.19) gives for any n € T

onax, (|5 (5o + )

Hﬂ| 1543 (1 —log ‘sin (g) D —log |sin (g)| +1
<e

(1 + HJOHq S+02) (1 — log |sin (g) D —log fsin (g)| + 1.
The next goal is to prove that

(7.137)
7, < 1 : 1
ke%afz}igH DAL (5 + ) |70 S er” ( + IIJo||q,s+02) (7.138)
For this aim we first write from (6.36) and (C.2)
'%/ET 1(()07 0 77) - 4)‘ (1 - Uar,l(%‘% 9777))I~/\(77 9)
1
— AN} (v (,0) — 1)2/ (1—t)1y (2)\ sin ( ) (I —t+ tveri(ep, 0 77)))
0
£ AN (1= vera(,0,m) In(n — 0) + G (0,0, 7) (7.139)

with

- I} (2 [sin

INOEES (2 Jsin

)
2)\|Sm )‘
:72 )\m' (m + ( )

H!
Then we get the decomposition

<}/gs\rl,l (90’ 0, 77) =

AN2[1 — Dot (0, 0. 0)] In (0, 0,1) + G0, 6, )
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with

1757«1(%977)%%7«1(%94-3( 79)777“'3(50’77))7
Lu(e,0.m) 2 I (n + Blw,n) — 0 — Blp,0)),
G(p.0,m) 2 G(0,0 + B¢, 0). 1+ B(,1)).

It follows that

K11 (0,0,0 + 1) =42 [1 = ver1 (0,0 + B9, 0),0 + 1+ B, 6 +0) | In (1 + Ble, 0 + 1) — B, 0))
+ G, 0+ B(0,0).,n+ 0+ B(e.n+0)). (7.140)

Notice that (A7) — Ix(n) is C*, then using Lemma A.1-(v) and (7.19) yields for any k € N

sup (D5 10) (+, - oy +2)|1]

%O <1+ [3
neT H ||qs+k

S1+ey T

|q75+01+k

Now using (6.31), Lemma A.1-(v), (7.18), (7.7), (7.127) and proceeding as in (6.32) we obtain

sup ||§]\67",1(*5 ST/ iy ) - 1”7 O < 6Hr||q s+1 +e 771”"0”(1 9+a'1+1||

neT 117?0-&-1
S (1 + ||30 q, s+01+1>
and
~,0 —1 ,O
kgqg}ig\l(aevm)( e+ )0C Sellrlll s + 2y B0l 1S 0 sl IS s

—1
< ey ( q8+01+3)

Arguing as above using the structure of G detailed in (7.139) allows to get

ol O
SLQIEI)HG(*’.’-’T]+ ) - 1||‘y < (1+ ”jOHq s+01+1)
n

and

DG (5, woser (1419 ).
kgs%g}itelgﬂ( KG (%, 0m + IS Sey + | 0||q sto1+3

Thus applying the product laws in Lemma A.1 and using the preceding estimates combined with (7.140)
imply

OFHL) (, 70 < *1(1 3 ) 7.141
ke%z,li{ﬂ}ilel%”( 0 Cer, 1)(*7 ) 777+ )H €y + || 0||q s+o1+3 ( )

which gives in particular (7.138). The estimate of the last term ..} | in (7.136), which is connected to
(6.37), can be treated in a similar way to the estimate (7.141) and one finds

ke%?fz}?é%” A2 (e + )70 S er! (1+ Hﬁollq,g+m+3) (7.142)
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7. Reduction of the linearized operator in the normal directions

Consequently, putting together (7.136),(7.137), (7.138) and (7.142) yields

max |

om0 (@R (e +) [0 S 27 (1 130030, ) (L togfsin (). (7143

By (7.130) we infer that ., is an integral operator of kernel K., given by
Ksr = _KET,I - Ker,2~

Therefore, by virtue of Lemma A.7 combined with (7.132) and (7.143) we find, taking o2 = so + o1 + 3,

k k1> k
kEI?OE,%f(Q} ||89 ET”Odqs S’kerﬁ)é,lif%/ (H(aHKET’,l)(*’U'3n+ )”q s+s0 + ||(89K67“72)( s+ )

S (14105 S nss) [ (1= 10w sin ()]

5 ’Y (1 + ||J0||q,s+02) .

1179+90> dT]

Notice that by (7.135), (7.131), the kernel K., satisfies the following symmetry property

KET(_SO7 _97 _77) = KET(@’ 9; 77) E R7 (7144)

which implies in view of Lemma A.7 that R, is a real and reversibility preserving Toeplitz in time integral

This is will be implemented

operator. It remains to estimate the quantity kg}{%,}i} |A1205 ero @ aFntp"

as before and we shall here sketch the main ideas. First we observe that for k € {0,1} the kernel of
Algags)%ﬂ is given by
A1285K5r = *A1284]9€Ksr,1 - A126§K5r,2~

To estimate A1205Ke, 2 we shall use (7.129) leading to
AKera(p,0,m) = (0 — n)A121§2(¢, 0,m) + A12L%/§2,2(‘P7977]) (7.145)
and
A1209Ker2(p,0,m) = H (0 — 1) A1209 K5, (0, 0.0) + K (0 — ) A2 (0.0,m)
+ Alzaee%%%Q(% 0,m). (7.146)

Observe from (7.126) that the preceding kernels can be expressed with respect to B Then proceeding in

a similar way to (6.48) we obtain

Vie {1a2}v kg%}i}bul) ||dA60 ipi(*7 SN/ ')Hg:? S ||p

q,9+2 + ||p||q so+1||6||q7s+2 (7147)

Applying Taylor Formula yields for all < € {1,2} and for all k¥ € {0,1},

1
A123§=%§’2(%9,9+n)—/0 o E A LB = Bal(,0,0 + ) dr.

It follows from (7.147) that for all ¢ € {1,2} and for all k € {0,1}

HAlzag‘%/é’z( IR ?77+ )| q,s ~ ||ﬂ2 Bliiq s+2+ ||ﬂ2 161 |q so+1/ || 177— /82+T/81||q s+2
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Therefore, by our previous choice of o2, we obtain in view of (7.19), (7.22) (applied with p replaced by
p + so) and the smallness condition (7.122),

(1

. k ;
Vi € {1,2}, max HA1289‘%/[§72(*v et ) 2Bt p50

< ey M| Agai] 79 (1+5 “1(1 4 |3, 7C
s S er il 70+ ol

q,8h+pt+o2

_ o)
Sev 1HA122”33h,+P+02'

Inserting this estimate into (7.145) and (7.146) yields

Sev | Avi])E (7.148)

,O
max sup ||A128§K5r,2(*7 e ) + ')} ) q,5h+ptoz’

ke{0,1} peT q,5n+p+so

Using similar techniques based on Taylor Formula, one can estimate Auag]ﬁm. We use in particular the
identity (7.136) combined with (6.48), (7.19), (7.22) and the smallness condition (7.122) allowing to get

kT2 . 7,0 < a1 17,0
%, 5D [ 800 Rera (s 4 )05y S €7 180G, (7.149)
Putting together (7.148) and (7.149) gives
k . 7,0 < a1 17,0
S | Qso0y Ko ooy S0 AR
Comibining this estimate with Lemma A.7 yields
k v,0 k 7,0
kg}%ﬁ} | A1205 marHO_d,q,ghﬂ) S kg}%ﬁ}/ﬂ- |A1205Ke, (%, -0, m + ')||q,§h+P+Sod77
_ Re)
Sev 1||A122||;/;§h+P+02'
This completes the proof of the Proposition 7.3. O

7.3 Diagonalization up to small errors

The main goal of this section is to diagonalize, up to small errors, the operator Ew discussed in Proposition
7.1 and given by
L., =g, (Ler — c0pR)g, .

This will be performed in two main steps. First, we shall explore the effect of the frequency localization
in the normal direction on the transport reduction discussed in Section 7.2. We essentially get the
same structure up to a small perturbation of finite-dimensional rank. Then, in the second step we shall
implement a KAM reducibility scheme in order to reduce the remainder to a diagonal one modulo small
fast decaying operators. This will be performed through the use of a suitable strong topology on continuous
operators given by (A.23). With this topology one has tame estimates and the Toeplitz structure of the
remainder is very important in this part. The reduction will be conducted by assuming non resonance
conditions stemming from the second order Melnikov conditions needed in the resolution of adequate

homological equations during the scheme.

7.3.1 Projection in the normal directions

In this section, we study the effects of the reduction of the transport part when the linearized operator is
localized in the normal directions. Notice that the change of coordinates does not stabilize the normal

subspace and as we shall see the defect of the commutation can be modeled by projectors of finite ranks.
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7. Reduction of the linearized operator in the normal directions

Let us define
B, 2105, Al

where the transformation 2 is introduced in (A.12) and constructed in Proposition 7.2. Recall that the
projection Hg-o and the space L% were respectively defined in (6.9) and (6.8). We also recall the following

notations
e i(p,0) = el ti%  and em () = ™.

In the sequel, we may use the following notation
H 2 H NIL%.
The first main result of this section reads as follows.

Lemma 7.1. Let A the transformation constructed in Proposition 7.2, then under the condition (7.122)
and (7.15), the following assertions hold.

(i) Foralls € [sg,S], the operator B, : WY (O, Hj_) — WD (O, Hj”_) is continuous and invertible,
with
—1~ 17,0
183 01172 S Mol + ey T30l ) Soslle

q,s r~ q,5+03

70 (7.150)

g,50

In addition, we have the representations

Bip=2p— Y (p.(B™ ~1d)em) o em

meESy
and
'@Ilp = L@71p - Z <p7 (B - Id)gm>L2(T)L@716ma
meESy ’
where

A 2 ((emBer) ain)) e AT 2 (ki) s Im(2.0) 2 Y arm()en(0),

k€S k€S keSo

with the estimate

_ ~ 17,0
sup_ [l = Skl S €1 (14130017001 ) -
k,meESy

(ii) Given two tori iy and iy satisfying the smallness condition (7.122), one has

0 _ )
gléisxo ||A129m||3;§h+p Sev 1||A122Hg,§h+p+a’1+l' (7.151)

Proof. (i) The first estimate concerning %, follows easily from the continuity of the orthogonal projector
Hé‘o on the space L2, combined with (7.18). For the representation of %, , take p € W%°7(O, H$ ) and
set

ﬂLpzﬂé‘O(@Hé}]p:Hé‘O(@pég.

Next, we write the following splitting
PBp=g+h with Ilgh=h. (7.152)
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Notice that the projector Ilg, is defined by

Ts,p = Y pje; = Tgp+ (p)o,
J€So

where Il is defined in (6.9) and ()¢ denotes the average in the variable §. Therefore

h(@ag) = Z hm(@)em(a%

meESy

supplemented with the orthogonal conditions
VkeSo, (#Bp—h er)rzm =0.

This implies
h(,0) = Y (Bp,em) Lz myem(0).

meESy

Using Lemma A.3-(iii) leads to

h(QO,e) - Z <P, Bil€m>L3(T)em(9)'

meSy

Inserting this identity into (7.152) yields

%Lp =g9= %p - Z <pa B_lem>L3(T)em~

meSy

Since Ym € Sy, <p, em> = 0, then

L3(1)

Bip=g=%RBp— Z (p, (Bfl — Id)em>Lg(T)em.

meSy

This ensures the desired representation of % .

Next, we intend to establish similar representation for 9311. Let g € W7(O, HY ) and we need to solve

the equation
feWeeYOH]), B.f= Hg‘o.%f =g.

This is equivalent to
Bf=g+h, with llssh=h and I, f=0.

Then we get

f=%"'(g+h), with Hsh=h and I, f=0.

The condition Ilg, f = 0 is equivalent to,
vk € Sy, <<@_1<g+h)’ek>L§('ﬂ‘) =0.

Therefore using Lemma A.3-(iii) the latter equation reads

¥k €S0, (94 h. ) oy =0 with €(p,0) = Bex(p,0) = ),
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7. Reduction of the linearized operator in the normal directions

which will fix h. Indeed, by expanding h(p, ) = Z am (p)em (), we can transform the preceding system

meESy
into
¥k €S0, Y am(@){em k) 2 m) = ~(9:k) 12 (r- (7.154)
meSy
Define the matrix
A(P) = (emn(P) (mayeszs  Omn(P) = (ems Cr)r2m) z/Tei“m"“)e"“ﬁ(‘f’ﬂ))de. (7.155)

Notice that according to (7.23) and the change of variables 6 — —6, one obtains
V(m,k) €SE, Vo T  cpnr(—9) = com k(@) = cmi(p,0). (7.156)

One can check by slight adaptation of the composition law in Lemma A.1 and using the smallness condition
(7.122) and (7.19)

0 —imp (-0 0
[em,m = 1135 S/Te o) 12, do

S 181152

- ~ 11750
Ser (1+130017:50,) - (7.157)

For k #£ m € Sy we use integration by parts,

emk () = 7 /Tei((m—k)G—kﬂ(wﬂ))aeﬁ(% 0)do.
Then using product laws and composition laws in Lemma A.1 combined with (7.19) yield

@]
2e S 18I

sup ||Cm7k| q,s ~ q,s+1
(m,k)es?
me#k
_ ,0
Ser ™ (141300170 -
Finally, we get that
. ,0
A(p) =1d+R(p) with [RIZS S 181175 (7.158)

Hence under the smallness condition ||3]|7:9 < 1 following from (7.122), combined with the product laws

in Lemma A.1 we get that A is invertible with

- 0
lA~t =1d3:2 < 1815

q,s ~ q,5+1

Ser (14 130l o) - (7.159)

Therefore the system (7.154) is invertible and one gets a unique solution given by

an(@) = = D Cms(@)(9,) par with A7) 2 (am(@)) (7.160)
k€ESo ¢ (M7 )G 0
We claim that the coefficients of A~! admit the same symmetry conditions as (7.156), that is
V(m,k) €SE, Vo €T  ami(—9) = am—i(9) = amr(e). (7.161)
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This can be done through the series expansion A~! = Z(fl)"(A —Id)™ together with the fact that the
neN
entries of the monomials (A — Id)™ satisfy in turn (7.156). Next, using the product laws yields

_ ~ N} _
sup flam 7. S sup (|A713:009,8) 1) I3 570 + 1A
0

~ ,0
2019 oy 17572 )- (7.162)
meESy 0 »

Notice that one gets from (7.159)

sup e = Sl S 2y (14130
(m,k)€eS?

q, «5+01+1>

where 0y, denotes the Kronecker symbol. Let us now move to the estimate of the partial scalar product

containing ¢ in (7.162). Using the product laws in Lemma A.1 with Cauchy-Schwarz inequality gives

e ,0 ,O iB(-, ,0
Nl T N 9)||Z,H:,>d9

~ (@] ,O

H<gaek>Lg(T J,H@ </<g('a9)g,Hv
T

< ”g”q L2H?

@]
Sllalg:2 e 170 + Ngllyale” 11

7

[ILZHQO + HquLQHQO qL2HS‘

Then applying the composition law as in (7.157) combined with with (7.19) and the smallness condition
(7.122) gives

2allBIS

< lglly$ +m-1 (11301350, ) gl

C+llg

H<gaek>L2(T ||q Hg

Plugging this estimate into (7.162) and using (7.19), (7.159) combined with the smallness condition (7.122)

and Sobolev embeddings implies

sup Jlam[3:7 S Nl + 27" (14 130130000 ) gl
meSg
Slgll3 + v M 190l 5o 41 911725

Therefore we obtain

1211335

meSo

S 913 + v 301135 001191155 -

Coming back to (7.153) and using (7.18), we get

7,0
9,50

_ 0
11120 S Nlg+hl3e +ey 1||30||’Ya+01+1||g+h
Slglrd +evy

s+a’1+1 ||g||q S0

It follows that

122913 S gy + v 130013 e +1 1912
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7. Reduction of the linearized operator in the normal directions

In addition, from (7.160) and (7.153) we deduce the formula

@I_lg(g070) Z amk gaBek> )gilem(o)
=B g(p,0) — 2; (9:BIm) 12 n) (Z " em) (.9),
meSy

with

0) £ > ami(p)ex(0)

kESo

From (7.161) and the symmetry of Sg, we infer

vm €Sy, V(p,0) € T, gi(—,—0) = g—m(p,0) = gm(p,0).

Since Hé‘og =g and Hé‘ogm = 0 then <g7gm> = 0 and therefore

L3(T)

<9789m>L3(T) =(9.(B— Id)9m>Lg(T)'

Plugging this identity into (7.163) yields
B lg=B""g- Z (g,(B— Id)gm>Lg(T)L@*1€m.
meESy

(ii) Coming back to the definition of ¢, in (7.155), one can write
V(m,k) €S, Arzcm i = (em, (Ar2B)er) 2 (1)-
Hence, using Taylor Formula and (7.22), we have

( m%X ||A120m k| q, Sh+P ~ E’Y 1||A12Z||q Spt+ptor’

From (7.164), one has

Aja2gm = E Aot ks €k
kEeSo

Thus

Inax [A12gm] 78, < ||A12Oém k|78

q,Sp+p ~ (m k) q,5h+p”

Using Neumann series, we can write

(7.163)

(7.164)

(7.165)

(7.166)

Therefore, the product laws in Lemma A.1 combined with (7.158) and the smallness condition (7.122)

lead to

”Al?A 1Hq Shtp ~ Z HAHR”HQ Shtp

q3; +p

-1
S 87 ||A127’||q 3h+P+Ul+1
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As a consequence,

—1
(mrf}j;gsg B 9h+P S ey HAl?Z”q Shtptoitlt (7.167)
Gathering (7.167) and (7.166) finally gives
ma'X ||A12gm||q,sh+p ~ Efy 1||A127’Hq Sh+P+Ul+1
This achieves the proof of Lemma 7.1. O

In Lemma 7.1, the parameter p is subject to the constraint (7.15) and from now on, we shall fix it to
the value
p £ 4moq + 4. (7.168)

This particular choice is determined through some constraints in the proof of the remainder reduction.

More precisely, it appears in (7.364). Next we shall establish the second main result of this section.

Proposition 7.4. Let (v,q,d, 71, S0, Sh, S, 2, P, 02, 5) satisfy the assumptions (A.2), (A.1), (7.3), (7.15),
(7.121) and (7.168). Consider the operator L., defined in Proposition 7.1.
There exist g > 0 and o3 = 03(71,¢,d, So) = 02 such that if

ey INE? < ey and H30||q ot <1, (7.169)
then the following assertions hold true.

(i) For any n € N*, in the Cantor set OL "L (io) introduced in Proposition 7.2, we have

%’Ilfw%L = (w . Qa + Cioag — OglCy * )Hé‘o + %o —|—E;
£ (w- 0y + Zo)lg, + %o +E,
éfo-ﬁ-E}L,

where Dy is a reversible Fourier multiplier given by
V(l,j) € Z¢ X S5, Doer; = inf e,

with
,u?()\,w,io) £ Q;(N) + it (N w,ig)  and i\ w,ig) £ ey (N w) — Vo(N)

and such that

[rH 7 Se and [|Aprt]]° S 5||A121||q 5 o (7.170)
(ii) The operator EL satisfies the following estimate
o

IEL ol S eNE2N L2 ol cosa: (7.171)

(i) Ko is a real and reversible Toeplitz in time operator satisfying %o = Hé)%oHSLO with
Vs € [S()75]7 H%%X}”aO'@OHOdqs Ng’y_l (1+ HJ()”q s+03) (7172)

and

18122015 d,q St S €7 1”A12ZHq Shtptos’ (7.173)
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7. Reduction of the linearized operator in the normal directions

(iv) The operator £y satisfies

5,0 5,0

o 0 —1 i :
Vs € [s0, 5], 1%onl3:8 S llellgica + v 130l s, lolg 50 (7.174)

q,s ~

Proof. (i) We shall first start with finding a suitable expansion for ﬂllfw%’ 1. Using the expression of

L, given in Proposition 7.1 and the decomposition Id = Ilg, + HSL0 we write

BB, = BT (Lo, — R B
= % 'Ug, Lo, PNy, — B ' 15 L., 115, P15, — B '115,0)RB..

According to the definitions of £., and L., seen in Proposition 7.3 and in Lemma 5.1 and using (6.24),

one has in the Cantor set O%" (7o)
Loy B =PBLer and Lo =w-0p+ 0 (Ver:) — OgLier1 — 0py * -
and therefore
BLBL =B g BL, e — BTG (99 (V) — pLier1) s, BlE — e BT 0yRA L,
where we have used the identities
#'g = 27" and [g,T]=0=[Is,, 7],

for any Fourier multiplier 7. The structure of £, is detailed in Proposition 7.3, and from this we deduce
that

HSLU,%’)ZETHSLO = Hé‘o,@(a} . 5@ + Cioag — Oy * - + OpRer + Eg)Hé‘o
= g, P15, (w - O, + ciy0p — Opkx + +) + g, BOpR., 113, + g BELTIS
=R, (w . 84/, + iy Op — OpKy * ) + Hé}:@@gmwﬂé{) + HSLO‘%E(BLHSLO'

It follows that

BTG BL NG = (w- 0y + ¢iy0p — 0pKx )13, + B 'TIg BOyR., g, + % 113 BELTIE
= (w+ Oy + ciyOp — 0K * )15, + IIg. DpR., 15, + B ' Blls, 0pNR-, 15,
+ 27 'y, BEOIS, .

Consequently, in the Cantor set O". (io), one has the following reduction

BTLLBL =(w- Dy + ciyOp — DekCx * )IE, + 113 OpR., 1IE + BT Blls, dpRc, 112,
— B 'g, (0o (Ver+) — OpLicy1) s, P15, — e B 0yRAB L + 27 115, BEVIS,
2(w+ 0y + ¢iy0p — 0K x )15, + %o +E}, (7.175)

where we set
1 4 o177l 07l
En == %L HSQ‘%EHHSO'

Notice that the estimates (7.170) are simple reformulations of (7.17) and (7.21) since Ajar! = Ajac;.
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(ii) By using (7.150), (7.18), the continuity of the projectors, (7.20) and (7.169), one obtains

IEnA|

,O
3730 S’ H‘@EOHSOPH(] S0

< HEOHSOp”q S0
SeNgE N L lollysn

q,50+2"
(iii) Now, we shall prove the following estimates,
i 057001300 S et (141900130, (7.176)
and
1AL Zo 1S 50 S &V M IAWITS oo, (7.177)

To do that, we shall study separately the different terms appearing in (7.175) in the definition of %.
Notice that in the various estimates below, we use the notation o3 to denote some loss of regularity. This
index depends only on 71, ¢, d, sp and may change increasingly from one line to another and it is always
taken greater than the oy introduced in Proposition 7.3.

» Study of the term HSloagiRaTHSlO. One gets easily according to (7.123) and (7.124)

v,0
kgl{%x Haensoaamarnso 0-d,q 5 {O 1 2} ||30 ny 0-d,q,s
Ser (14170320, (7.178)
and
A2 (Hsoa‘gmﬂngo) HO 4,q,3n+p ~ |‘Ama‘gmmno 4,q,5n+p
S ey M IAwil)S oo, (7.179)
» Study of the term %’II%’HSO%%E,.HL%O. Using the first point of Proposition 7.4 yields
B B, g 115, = s, 0pRe, 115, — ToSt, (7.180)
where
Top= Y (p.(B=1d)gm) 2P e and S £ Blls, 0pRe, 115, (7.181)
meESy ’
To estimate the first term, we use Proposition 7.3
v,0 k ,0
k?}ax Hae HSU‘%%ETHSO 0-d,q 5 ker{noz,if(Q (195 mET”g.d,q,s
Ser (14 130030 ) - (7.182)

As for the second term, we write

ToSip =Y (Sip, (B=1d)gm) 2y B 'em

meSy

= > (P SI(B—=14)gm) 12y B em,

meSy
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7. Reduction of the linearized operator in the normal directions

where S7 is the Lg (T)-adjoint of S;. This is an integral operator taking the form

Ki(p,0,m) 2 Z (S (B —=1d)gm) (¢, n) (Z " em) (0, 0).

meESy

Recall from Proposition 7.3 that R., is self-adjoint and using Lemma A.3 we have the identities * = B!
and B* = %7, then
St = —IIg M., 0p 15, B 1. (7.183)

Therefore, combining (7.165), (7.23) and (7.144) imply

Applying Lemma A.7 combined with the product laws yields for any k € N

105 ToS1113:5 g, N/II (O5K1) (ks + 1750 o dn (7.185)
(HSl - Id)gm| q, €+50H@_ em‘ q,s0+k + HST( - Id)gm| q, S’OH%_ m| q, 9+90+k)'

mESo

Remark that (7.183) implies
St (B —1d) gy = —5, R, 0615, (Id — B~ 1) gy,
Hence according to Lemma A.6 combined with Proposition 7.3 we find

181 (B - 1d) gm

28 SR l|2:0g o 10605, (1A = B™) ginll3:5) + 196 13:0.5, 196115, (1 — B™) g [3:7

<eyt (1 + ||30||q,s+g-3> H(Id B~ ) ;y,sooﬂ
e (1 130135 ) 100 = B gm 32 (7.186)

Using (7.18) together with Lemma 7.1 and the smallness condition (7.169) leads to

||(Id_Bi )gmH < ”gmH +6771||J0||q,s+03”gqu S0

5 Sup H< + 67_1||J0||q’5+03 Sup HOZk; qu HSO
k,mESy ,MmES
< 1+€’7_1H30”q s+o3° (7187)

Therefore, inserting this estimate into (7.186) and using (7.169) allow to get

157 (8 = 1) gml3:2 S &v ™ (14 19001354, ) -
Plugging this estimate into (7.185) and using (7.18) ensure
s 1057081135, Sev (1+13013:5.0,) (7.188)
Consequently, by combining (7.180), (7.182) and (7.188), we find
s 10k BT B, 0B, 114 (20, S v (1 + 130lI7 Sm) . (7.189)
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We now turn to the difference estimate. From (7.180), it is obvious that
Avo (B Bls, 00K, 15, ) = g, A1200Re, Ig, — A12(ToSh). (7.190)
To estimate the first term, we use (7.124)

[ Tsy A128p%Re, I, | 7€ Eatp S < (| A1200Re, (|2

Sev Al

Odqsh—i-p

q,8p+pt+os’ (7191)

As for the second term, we notice that Ao (7681) is an integral operator whose kernel A5/ is

A1Ki(p,0,m) = Y A5 (B —1d)gm) (2, n) (B, €m) (10, 0)

meSy

+ (Sf (B - Id)gm)r2 (‘pv 77) (A12f%€m) (307 9)

Hence, using Lemma A.7-(ii) together with the product laws we deduce that

1ATSILC, - o S / 112K (o e+ )12 oo

~ Z ||A12 Sl 7Id)gm)||q shJ,»pJ,»sO”L@Tlem”q Sh+p+so

meESy

+ (St (B -1d)gm),,|

A2 Bem|)S

q,8n+p+so0 q,8h+p+so”

Notice that by Taylor Formula and (7.22) (applied with p replaced by p + sp), one has

_ No) .
sup [A12 28 el prse S €YV 1 A20llg 50 p+os - (7.192)

On the other hand, we have
A128F = —TI3 A1oR., 0p1ls, B! — 113 Rer, OpIls, A12B 7,
leading to

A12 (Sf (B - Id)gm) = - Hé_o AIstraQHSO (Id - B;ll)gm,rl - H$%5r280H§0A12871 (Brl — Id)gm,rl
+ 8{(,7"2 (AIQB)gm,rl + ST,Tz (B’l"g — Id)Alggm.

According to Lemma A.6, we obtain
HHS AlQm&TaHHSo (Id Brl )gm r1 ”q Sh+ptso ~ HAl?g{ET‘Ho d4,¢,5n+p+50 ” (Id Brl )gm 1 ”q Sh+p+so+1-
From (7.187), one has

I(1d — B:Y) 90 S 1+er Ml

q,é+03

Thus, from (7.124) and (7.169), we infer

|[TTg; A12Re-0p1s, (Id — B,.Y) gy \|q tptse S EY 1||A122||q bt (7.193)
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7. Reduction of the linearized operator in the normal directions

Applying Lemma A.6, (7.123) and (7.169) we deduce that

O
ST T2 (AlZB)gm r1 ||(1 Sh+ptso ~ S |Rer, ||O-d7q7§h+80 1B, (A12B)9m,7“1 H;gh+p+50+1

S 1B, (A12B) g, ||q Sh4p+so+1l”

To estimate the right hand side member, it suffices to use (7.18) and (7.169), leading to

,O
HB7'2 (A12B)gm,'r1 | 37§IL+P+30+1 5 ” (

Ay,B)

.0
G llg 5, +pt 5041

By Taylor Formula, we may write

1
A12Bp(0) = A12»3(9)/ Bgp(0 4 P2(0) + tA125(0))dt
0
It follows from the product laws in Lemma A.1, (7.22) and (7.169) that

H (A12B>gm r1 |

@]
q,3h+p+1 ~ HAlzﬁ” Sh+p+80+1”gm 1 3,8h+p+80+2

Sev 1HAlQZHq Sh+ptos’

Thus

IS5, (A12B) g,y Hq S ptso S EVT v Sh+p+a'3 (7.194)

In the same way, using Taylor Formula together with (7.22), we get
_ v,0
|| TIg; Rer, 0TI, A2 B~ (B, — 1d) gy || Ventptso SEY 1||A122||q Shtptos” (7.195)
By Lemma A.6, (7.123) and (7.169), one finds
* ,0
”8177"2 (BT2 - )AIQQm”q Shtptso ~ ||m€7‘2 ”O d,q,5h+p+50 H (BT2 - Id)Augm”g’gh,JrPJrSOﬁLl
5 ||( T2 T Id)Amgqu Shtp+sot+l”

Applying (7.18) and (7.169), we obtain

,O N6}
” (Bm - Id)A12gm||’qy,§h+p+so+1 S HA12gmH;{7§h+p+so+1'

Using (7.151) (applied with p = s¢ + 1), we finally get

18802 (Bry — 1) Arsgun 7€ o S er Al (7.196)
Gathering (7.192), (7.193), (7.194), (7.195) and (7.196) implies

1812 (ToS1)] Sev Ay (7.197)

|O d,q,5p+p ~ q,Sh+ptos”

Putting together (7.190), (7.191) and (7.197), one obtains

A2 (B P15, 00R:, 118, ) | 229 “HAi)S

0-d,q,5n+p ~~ E’Y q,5n+p+03° (7198)

» Study of the term %Ilﬂsf;o (09 (Ver+) — OgLigy 1) Hgoﬁﬂé‘o. We first write,

BTG, (09 (Ver+) — OpLicy 1) s, By, & B 0pS2 A1,
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with
82 - ((VYET — C’io) . _LET,I) HSO'

Notice that to get the above identity we have used the identity
Hé‘oag(cio~)ﬂgo =0.

Recall from (6.24) and (6.25) that

Lsr,lp(soaa) ZAKer,l(@,9»ﬂ)P(¢aﬁ)d7)~

Then from elementary computations we find

Sap(p,0) :/TICz(so,t‘),n)p(sa,n)dn,
with

IC2(<P» 9? 77) £ (V;-:r(sﬁ% 9) - Cio)DSo (9 - 77) - /EKET,I(SD7 97 U/)DSO (77/ - ﬁ)dnl7
DSO (9) £ Z eme.

neSy

Combining (6.27), (7.4), (5.3) and the change of variables ' — 7', one gets
Ka(=¢,—0,—n) = Ka(p,0,n) € R.
Proceeding as in (7.180) we obtain
B 0gSs BN, = B 0pS2Bg, — ToOpS2 P13, .

It follows that

7,0
0-d,q,s

7,0
0-d,q,8"

voas S 15T B7 8|

0-d,q,5 ™

|0k 2998 211 | + 1|05 To0e S2 2|

The expression of the first term is similar to that of (7.133), namely, one has

(B~1828)p(p,0) =/Tp(s07n)/€z(s079,77)d77,

with
Ka(,0,m) & Ka(p,0 4 B(e,0),n+ Ble,n)).

Combining (7.199) and (7.23), one gets
Ka(—p, =0, —n) = Ka(p,0.7) € R.
Then coming back to (7.134) and arguing as for (7.143), we find

sup H(agﬁg)(*, e+ ) HZSO <ey! (1 + H30||;Y7’3U3) (1 — log ’ sin (77/2) D
ke{0,1,2} ’

154

(7.199)

(7.200)

(7.201)

(7.202)

(7.203)



7. Reduction of the linearized operator in the normal directions

By virtue of Lemma A.7 and (7.203) we obtain

k+1 k+1
2 AT S [ R
Ser ! (1413001750, ) - (7.204)

Notice that from (7.181), we can write

T00sS2%p = ) (0652%p, (B—1d)gm) 12 ) B 'em

meESy

== (p.B'S505(B - d)9m>Lg(1r)‘%)_1em’

meSoy

where &3 is the adjoint of Sy and is given by
S; = Hgo ((V;—T — Cio) . _Lar,l)- (7205)
This is an integral operator taking the form

(T606S2%p) (¢, 0) = /T/C:s(% 0,m)p(p,n)dn,

Ks(p,0,m) 2 > (B7'S306(B —1d) g ) (0,7) (B em) (10,0).

meESy

According to (7.165), (7.23), (7.205), (7.4), (5.3) and (6.27), one gets
Ks(—¢,=0,-n) = —Ks(¢,0,n) €R. (7.206)
On the other hand, applying Lemma A.7 combined with the product laws yield for any k € N

Hamaes%@nww/n KCs) (s + )|l

<> (I1B718500(B~1d)g.,

meSy

arsoll B emll Vg, + 1878506 (B — 1d) g 22012 e

7,0
q 5+80+k

Applying (7.18) we find
1B='8506 (B = 1d) g |7:C < 118506 (B = 1d) gunll7:E + ey 130113541153 06 (B — 1d) g 17,50

q,s nr~

Now, from (7.205), the product laws and Lemma A.6, we find

IS3013:5 SNVer = cig

q,8 r~

wsllplg:d + 1 Ver = Cio” lelly
+ | Ler 13:5, SOIIPII + || Ler,

11790

qso

From the composition law and (7.17), one has

IVer = €iollg:d < IVer = Vollgid + 11Vo — i lI©

Se (1413075, ) -
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According to Lemma A.7 and (6.41), we deduce that

dn

”LET 1||Odq,s N/”Ksrl syt )|q,s+so
Ser (141300175, ) -

Using (7.169), one gets

+E’Y_1||jo

q,s+0'3 ||p||q7so

q,s nr~

Combining this with (7.18) allows to get

o _
H52*89(Bild)gm”;/:9 ,S Hgqu s+1 +€'Y 1||J0||q €+0'L;Hgm||q,90

< 1+ 57_1 ”j(]”q s+o3°

Therefore,
max ||ae%3932@||0dq8 Ser (141900300 ) - (7.207)

Plugging the estimates (7.204) and (7.207) into (7.201) we find
max_||0f #1058, A1, |10

< max |05 B8, 2| Jmax ||39%3952@||

kef{0,1} 0-:4,8 ™ ke{0,1} 0-d,q,8 0-d,q,s
Ser (14190l 0ss) - (7.208)
We now turn to the estimate of the difference. Coming back to (7.200), one can write
A2 (B 0682 Bg,) = A12 (B 0pS2B1N5. ) — A1 (To0pS2B113, ).
It follows that
-1 IRNTRAY -1 7,0 7,0
|80 (# 0 A) 10, L < [8n@B S:2) 10, . + A (ms:2) 10, . (7200
Arguing as for (7.149), one obtains
1812(06K2) (%, -5 01+ llgz04p50 S Y 1 ALATS L, (1—Tlog [sin (2)]) .
Then, using Lemma A.7 implies
||A12 (898 18 %)| 0-d,q,5h+p ~ / ||A12(89K2)(*7 /e ') |q,§h+p+sod77
Ser AT ooy (7.210)
On the other hand, proceeding as for (7.197), and using in particular (7.21),
HA12 76698233) ’ 0-d,q,5p+p ™~ €’Y 1||A12ZHQ Sh+ptos’ (7211)
Putting together (7.210), (7.211) and (7.209), ensures that
—1
HA12 (93 3952%1‘[50” g S < ey ||A122||q Shtptos” (7.212)
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7. Reduction of the linearized operator in the normal directions

» Study of the term sﬂllang%’l. Using the relation Id = Ilg, + Hg-o, we can write

OF B ORAB, = Oy ' B 'RAB, — 05 TodeRAB.L
= Oy T BT RIIG, B, — 05 Tody RIS, A5,
=0, "' BTIRBg, — 0T BT RILs, B, — 95 Tode RBg, + 05 ToOgRIls, B1L5..  (7.213)

Hence

105 B 0 RABLES s <Ny BT RB|T, s + 105 B~ RILs, B30
+ ||807689R93”0d + ||867689RH30‘%H04q5 (7'214)

»q,S

Recall that from Proposition 7.1 that R is an integral operator of kernel J and therefore direct computations
give

(B~'R%p)(¢,0) = /Tp(so, ) (i0,0,m)dn, (7.215)

with
T(p.0.m) 2 T (9,0 + B, 0),n+ Blw,n)). (7.216)

Combining (7.23) and (7.5), one gets

J(=p,—0,-n) = J(¢,0,) € R. (7.217)

Using the composition law and (7.9), we obtain

max__sup [|(95T) (¥, -0 + )20 <

ke{0,1,2} peT . H"‘”‘
Thus, applying Lemma A.7-(ii) implies
e 0571 B I RALS, < S / 1T (e )7 Crl
(7.218)
On the other hand we notice from (7.215) that we get the structure
(57 R, 20) (2.6) = [ plie.1) .0, (7.219
with
J(p,0,m) & /T T (9,0 + B, 0),n") Ds, (n —n)dyy’. (7.220)
Combining (7.23), (7.5) and the change of variables ' — —n/, one finds
J(—,—0,—n) = J(¢,0,1) € R. (7.221)

Using the change of variables ' — 7’ + 6 yields

T(p.0.n+6) 2 / (0,04 B,0),f +6) D, (nf — )
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Then by the composition law, we infer

Q. S 8 . ’YO < 1 73,
ke%f?}ngr)u( 0 )( RELRD] e + OHqS-s-og.

Consequently, we find in view of Lemma A.7

-
e (055 R, 23,0 S e [ 105 (eveimn 4 ) [5G

< 1+ |"’0||q,s+03 (7222)

If wet set
53 = 897393 or 89RHSO,%,

then using (7.181), we deduce that

ToSsp =Y (Ssp, (B=1d)gm) 2 ) B 'em

meSy
-1
meESy
with S3 is the adjoint of S3 given by
Sy =-B'R*0y or — B Mg, R*0p, (7.223)

and R* the adjoint of R which is an integral operator with kernel

3 d

T2, 0,m) 2 > gew (@, 0)xew (@:1), (7.224)

k'=1k=1

where we use the notations of the proof of Proposition 7.1. Notice that similarly to (7.9) and (7.5), the

kernel J* satisfies

* . 1951 22
kergfi(,?}ilell’[?”(aej )( s+ )H + HjOHq s+o3 (7 5)
and
J (=, =0, —n) = J*(¢,0,m) € R. (7.226)
Now, we have the integral representation
(ToS3p) (0,6 / Ka(p,0,m)p(p,n)dn,
Ka(,0,m) 2 > (85(B = 1d)gm) (2, n) (B em) (9, 0).
meESy
Then by virtue of (7.165), (7.23), (7.205) and (7.226) we obtain
Ka(=p, =0, —n) = =Ka(p,0,n) € R. (7.227)
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7. Reduction of the linearized operator in the normal directions

Applying Lemma A.7 combined with the product laws, we get for all k¥ € {0,1}

105758522, N/n K)o + 2l
< 3 (138~ 10)0 .00, 12 el 1S+ 15 (B ~ 10) g 721 B e 7 11
meESy

Consequently, using Lemma A.7 and (7.225), we get

Q76+60

||R*|Od,q,sN/||J* el

< 1+ ||J0||q s+o3°

Applying (7.18), Lemma A.6 and the previous estimate implies

18501137 S IR*Dapl3:0 + ey HIT0l3: 5o, IR Do

q,s ~

|q,80

< (57‘1 (L4 19001750, ) + IRUES 0 121301 + RS g0 NN e
< Hp| q, qs+03||p||q,so+1
Thus
||83( d)gm Zf S ||9m||q s+1 T+ HJOHq s+angqu so+1
< 1+ HJOHq s+o3°
Hence
kH}%’X ||897683HO d,q,5 ~ Sl + Hjo| q,5+03 (7228)
Putting together (7.214), (7.218), (7.222) and (7.228) allows to get
—1
kg%%)i 5||89 am%uuow Sevy™ (1+ 1T0lly; S+03> . (7.229)
We now move to the estimate of the difference. From (7.213), one has
1812(B L 00 RBL) 1S 51 < 1012808 RB)IIL D 5,45 + |1 B12(00B 7 RILs, B) T 5, 4
+ || A2 (768972@) ||O aq3ntp T A2 (76397?,1_[50%) Ord,q5n+p" (7.230)
Combining Lemma A.7 with Taylor Formula, (7.215), (7.216), (7.10) and (7.22) one obtains
1812 (0B RB) |20 5, 1 S / 18120 7)o+ TE 4 4ol
Fie— (7.231)
In the same spirit, (7.219) and (7.220) give
||A12 (898_1RHSO )H’y 0-d,q, S}L+P ~ / ||A12 80'])( 3y 77] + )Hq S},,-‘rp-‘réodﬁ
< ||A122||q Shtptos” (7.232)

According to the structure of J* detailed in (7.224) one can check that J* satisfies similar estimates as
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(7.10). Then using (7.22), one finds in a similar way to (7.197),

1A1(ToSI2C 5 0 S /||A12’C4( e+ 2

< ”Al?ZHq Sp4ptos” (7233)
Hence, putting together (7.231), (7.232), (7.233) and (7.230) gives
EHAH( lagR‘@i) Ho d,q,5h+p ~ 87 1HA12Z||Q75}L+P+03 (7234)

On the other hand, gathering (7.175), (7.144), (7.184), (7.202), (7.206), (7.227), (7.217) and (7.221)
together with Lemma A.7, we find that %, is a real and reversible Toeplitz in time integral operator.

In addition, (7.175), (7.178), (7.189), (7.208) and (7.229) give (7.176).

Furthermore, (7.175), (7.179), (7.198), (7.212) and (7.234) imply (7.177).

(iv) Using Lemma A.6 together with (7.172), (6.28), (7.17) and (7.169), one obtains for all s € [sg, 5]

< (w9 + cigDp + DKo -))pll + %ol
5 ||p||q s+1 + H‘%OHO d,q,s | so + ||‘%0||O d,q,80
S

|p||q s+1 + 6771”‘]0“(1 s+03||p|

q,50"

This ends the proof of Proposition 7.4. [

7.3.2 KAM reduction of the remainder term

The goal of this section is to conjugate % defined in Proposition 7.4 to a diagonal operator, up to a
fast decaying small remainder. This will be achieved through standard KAM reducibility techniques
in the spirit of Proposition 7.2 but well-adapted to the operators setting. This will be implemented by
taking advantage of the exterior parameters which are restricted to a suitable Cantor set that prevents the
resonances in the second Melnikov assumption. Notice that one gets from this study some estimates on
the distribution of the eigenvalues and their stability with respect to the torus parametrization. This is
considered as the key step not only to get an approximate inverse but also to achieve Nash-Moser scheme

with a final massive Cantor set. The main result of this section reads as follows.
Proposition 7.5. Let (v, q,d, 11,72, So, 51, i, S) satisfy (A.2), (A.1) and (7.3). For any (us, sp) satisfying
po = Ty +272q + 212 and s > g,ug +35+1, (7.235)
there exist eg € (0,1) and o4 = 04(71,72,q,d) > 03, with o3 defined in Proposition 7.4, such that if
ey 2TING? <eo and 30|78 L, <1, (7.236)

then the following assertions hold true.

(i) There exists a family of invertible linear operator P, : O — E(Hj) satisfying the estimates
Vs € [s0, 8], 19E 0l S HlPl7E + v 11%0ll3 0, 101175 - (7.237)
There ezists a diagonal operator Lo, = Lo (A, w, 1) taking the form

fwéw-3¢ﬂ§+.@w
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7. Reduction of the linearized operator in the normal directions

where Do = Doo(A,w, ig) is a reversible Fourier multiplier operator given by,
V(l,]) € Zd X S(C)a gooel,j = lﬂjoo €15,

with

Vj € 887 /1’(;0()‘7(*}; ZO) £ /’62()‘7wai0) + T;'X)()Vwa iO)a ||T;X>H:1Y7O S 8’7_1

and

sup el s ev

JESG

such that in the Cantor set

ﬁgo’?f?(io) £ m {()\ w) € (’)7’” (i0), |w l—l—,uj (Aw,ig) — u;:()\,w,io)‘ >

(L.d:d0) €24 x (8§)2
[L|<Nn
(1.3)#(0.50)

we have
O LPoo = Lo +E2,
and the linear operator E2 satisfies the estimate

IEZPlI30 S &y NG Nt Nl e+

q,S0 ~

(7.238)

(7.239)

2’Y<j—j0>}
=

(7.240)

Notice that the Cantor set OL% (o) was introduced in Proposition 7.2, the operator £, and the

frequencies ([L?()\, w, io))jESS were stated in Proposition 7.4.
(i) Given two tori iy and iy both satisfying (7.236), then

vje SS? ”AlQrOOH’Y 0 < ~ €Y 1HA127’H¢1 Shtoa

and
VieSs, AnplllC e il AwilE

q,Sh+0o4”

Proof. (i) We shall introduce the quantity

8o(s) £ 7 %ol 3. g.s

where %, is the remainder seen in Proposition 7.4. By applying (7.172), we deduce that

do(s) < Ceny™ (1 + ||30||q S+0’3) :

Therefore with the notation of (7.235), (7.236) and the fact that o4 > o3 we obtain

» KAM step. Recall from Proposition 7.4 that in the Cantor set O (i) one has
B LB = Ly +EL,
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Part 1

where the operator %, has the following structure
Ly = (w+ 0p + Z0)1lg, + %o, (7.245)

with 2, a diagonal operator of pure imaginary spectrum and %, a real and reversible Toeplitz in time
operator of zero order satisfying H§) %OH§() = %y. Similarly to the reduction of the transport part, we
shall first expose a typical step of the iteration process of the KAM scheme whose goal is to reduce to
a diagonal part Zy. Notice that the scheme is flexible and has been used in the literature to deal with
various equations. Assume that we have a linear operator . taking the following form in restriction to

some Cantor set & one has
L= (w0, +2)g, + %,

where & is real and reversible diagonal Toeplitz in time operator, that is,
Pe; =ipij(Aw)e; and p_;j(Aw)=—pi(Aw). (7.246)

The operator Z is assumed to be a real and reversible Toeplitz in time operator of zero order satisfying

Hé‘o %’HS\J;U = Z. Consider a linear invertible transformation close to the identity
& =TIlg, +V: 0 — L(H}),
where W is small and depends on &Z. Then straightforward calculations show that in &

OLD =0 (@ (w0, + D), + [w- 0,II, + 7, 9] + % + V)

— (w0 + D), + 07 ([(w- 0, + D), U] + PxZ + PR+ RV,

where the projector Py was defined in (A.25). The main idea consists in replacing the remainder %
with another quadratic one up to a diagonal part and provided that the parameters (A, w) belongs to a
Cantor set connected to non-resonance conditions associated to the homological equation. Iterating this
scheme will generate new remainders which become smaller and smaller up to new contributions on the
diagonal part and with more extraction on the parameters. Then by passing to the limit we expect to
diagonalize completely the operators provided that the parameters belong to a limit Cantor set. Notice
that the Cantor set should be truncated in the time mode in order to get a stability form required later in
Nash-Moser scheme and during the measure of the final Cantor set. This will induce a diagonalization up
to small fast decaying remainders modeled by the operators E2 in Proposition 7.5. Now the first step is to

impose the following homological equation,
[(w-0, +2)5,, V] + Pn% = | Pn%), (7.247)

where | PyZ| is the diagonal part of the operator Py%. We emphasize that the notation |R| with a
general operator R is defined as follows, for all (Iy, jo) € Z¢ x S§,

R L,j ) - _ plosdo - ) ) .
Relodo - E Rlo,joelﬂ = LRJ €lo.50 = ng,joelo-,]o - <Relo,JoaeloJo>L2(Td+1) €lo,50- (7'248)
(1,§) €z xS§

Remind the notation ey, j, (i, 0) = eillo¢+309) The Fourier coefficients of ¥ are defined through

_ E l,J l,j
qjelo,jo - ‘Illo,joel7j’ \IIIOJO eC
(1.§) €L XSG
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7. Reduction of the linearized operator in the normal directions

From direct computations based on the above Fourier decomposition, we infer

. l,j
[w . 8¢,H§‘0, \I/] elmjo =1 Z \Ijloj,jo w (l — lo) el,j
(l,j)EdeSg

and using the diagonal structure of 2,

. 1,
(Do, \Il]elo,jo =1 Z \Ijloj,jo (1 (N, w) = pjo (A, w)) €1,
(1,)EZAxSE

By hypothesis, Z is a real and reversible Toeplitz in time operator. Hence its Fourier coefficients write in
view of Proposition A.1,

7. 2irl Awlo—1)€iR  and 27,7 =-2)7

lo,Jo lo,—Jo lo,jo"

(7.249)

Consequently ¥ is a solution of (7.247) if and only if

- E Ly )
Ve, 5, = \I/lo,joeld
li=lo|<N
li—dolsN

and |
—rd (\w,lo—1) if (1,5) # (lo, jo)

whi (w (I =1o) + pj(A\ w) —#jo(/\w)) = { 0 if (1,5) = (lo, jo)-

In particular, we get that ¥ is a Toeplitz in time operator with \II;O (lo —1) = ‘Ilﬁojjo Moreover, for
(1,4, 4o0) € Z x (S§)? with |I[,|j — jo| < N, one obtains

77";. (Aw,l) . . 3
¥l (hw, )= { STFmOem e ()7 0.0) (7.250)
0 if (laj) = (07j0)7

provided that the denominator is non zero. In addition, from Hé‘o %Hé‘o = %, one easily gets
VI eZ Vjor jo€So, 1l (A\w,l)=0.

Therfore, we should impose the compatibility condition
Viez' Vjorjo€So, ¥ (\wl)=0.

This implies that HSLO \I/H§O = U. To justify the formula given by (7.250) we need to avoid resonances and

restrict the parameters to the following open set according to the so-called second Melnikov condition,

ol= N {dweo st ol pOw) - (e > R
(1.3.30) €2 % (5§)2
<N
(1.)#(0,50)
In view of this restriction, the identity (7.250) is well defined and to extend ¥ to the whole set O we shall

use the cut-off function x of (6.92). We set

—dl (vw, ) L (N w,0), i (1,4) # (0, jo)

. . . (7.251)
0, if (lvj) = (07]0)a

W (N w,1) = {
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with

2 X ((w A+ /-Lj()‘vw) — Mo ()\,W))(’Y<j - j0>)_1<l>T2) .
wel+ (A w) — pjo (A w)

ol (\w,1) (7.252)

To simplify the notation, in the sequel we shall still write ¥ to denote this extension. Note that the
extension (7.251) is smooth and its restriction to the Cantor set &7 coincides with W. On the other hand,
(7.249) and (7.251) imply that \I/;:O (1) € R. In addition, (7.252) combined with (7.246) give

I (=) =W (I).

Consequently, in view of Proposition A.1, we deduce that W is a real and reversibility preserving operator.
Now consider,
Dy =9+ |Pn#], Ry =0'(—V|PyR|+Py%+RV) (7.253)

and
$+ é (W'6¢+.@+ +%+)H§'O

Therefore, in restriction to the Cantor set @], we can write
L =020,

Our next task is to estimate 9;:0 defined by (7.252). Notice that this quantity can be written in the

following form

2 A\ w, 1) = ag 50X (015,40 At g jo (A w)),  X(2) = %
AlJ,jo (>‘v w) =w-l+ ,LL]'O\,(U) — Hjo O‘vw)’ al,j,50 = (’Y<.7 - j0>)71<l>7—27 (7'254)

2 x(@)

where X(x) is C* with bounded derivatives. Assume now the following estimate

Y (j,jo) € (S§)%,  max  sup |05, (1A w) — pio(A,w))| < Clj — jol- (7.255)
la|€[0,q] (A, w)eO
Then, we find
V(l,4.4o) € Z* x (S§)?, max  sup |05, A1 0\ w)| < C (L5 — jo). (7.256)
0.y (A€

In a similar way to (7.37), using Lemma A.1-(vi) and (7.256), we obtain

Va € N, Jal € [0, 4], ()0 1080 (A w, D] < Oy~ 1D — jo)melelimatal, (7.257)
Aw)€E

Similarly to (7.39), using Leibniz rule, we get

]

1000 < CY PN, (7.258)

0-d,q,5+T2q+T72"

We also assume that the following smallness condition holds

2% < Cey. (7.259)

0-d,q,s0+T2q+712 X
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7. Reduction of the linearized operator in the normal directions

Hence, by virtue of (7.258), we get

”\I/”o d,q,80 <C 71”%“0 d,q,80+7T2q+T72
< Cco. (7.260)

As a consequence, up to taking ey small enough, the operator ® is invertible and

o= (1" £ 1d+ X
n=0

According to the product laws in Lemma A.1, Lemma A.6, (7.258) and (7.260) one gets

1S3, s (1 +Z CII‘I’IIOd,q,SO)n>
< 07_1N72‘1+T2||<%’||0 s (7.261)
Therefore, we conclude with the assumption (7.259) that ®~! satisfies the following estimate
107" —1d[[3:0, <Oy~ N30, (7.262)
From (7.253), we can write
R =PyH+ O 'RV -V |PnE| +X(Py% —V |PyZ)).
Thus, by virtue of Lemma A.6 and (7.262), we infer
121130 g.s S NPR RIS g8 + CISILS g s (IPK2ITS g 00 + 1PITT g 0 211204 50)
+C (14 121200,00) (NIZS g I 2L g 00 + 1WN2L0 00 [1212:04,0) - (7.263)
By Lemma A.6, (7.258), (7.260) and (7.262), we get for all S >3 > s > s,
1241800 < NP2 o5+ Cv T IN RN o 12180 o (7.264)

» Initialization We shall verify that the assumptions (7.255) and (7.259) required along the KAM
step to get the final form (7.264) are satisfied for .Z = % in (7.245). Indeed, (7.255) is an immediate

consequence of Lemma 5.3-(vi), that is

90> 0, V(j.jo) €27, max  sup |95 () — Q5 (W) < C i — jol- (7.265)
la|€0,q] Ae (X0 A1)

Thus, applying (7.170) we obtain

3C >0, V(j,50) € Z*>, max  sup ]a;w (,u?()\,w) - u(])-o()\,w))| < Clj = jol-
lel€[0,q] (A, w)e0

Concerning the second assumption (7.259), we may combine (7.172) and (7.236) to find

VBN st < Cov (141300135010,

< CSQ.
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» KAM iteration. Let m € N and consider a linear operator
L 2 (w0 + Do + %o )1, (7.266)

with Z,, a diagonal real reversible operator and %, a real and reversible Toeplitz in time operator of zero
order satisfying HSLO %mﬂ§) = Xrm. We assume that both assumptions (7.255) and (7.259) are satisfied for
Dy and Xy, Remark that for m = 0 we take the operator % defined in (7.245). Let ®,, = Id 4+ ¥, be

a linear invertible operator such that
O, L@ £ (W Oy + Dt + Bomrr ) g, (7.267)

with U, satisfying the homological equation

m m

[(w:0p + Pm) g, U] + Pn,, % = | PN,, %]

Recall that N, was defined in (6.94). The diagonal parts (Z;,;)men and the remainders (%, )men are
defined similarly to (7.253) by the recursive formulas,

Dimi1 = Do + | PnyBm]  and Ry = 0, (Vo | PN, o] + Py, B + B V) . (7.268)

Remark that 2, and | Py,, %m | are Fourier multiplier Toeplitz operators that can be identified to their

spectra (iu]")jesg and (ir?") jese, namely

V(l,j) € 7% x So,  Dmerj =ipj e; and | Py, Zmler; =ir e ;. (7.269)

By construction, we find

ptt = (7.270)
In a similar way to (7.250) we obtain
—rd A, . . .
- A 0L £ O,
(\I!m);'o (>‘7wv l) = w-l+;¢]_ ()\’w)iﬂjo(A’w) ' ( ]) 7& (0 ]O) (7271)
0 if (1,7) = (0,Jo),

where the collection {rgmm()\, w, )} describes the Fourier coefficients of %, that is,

— E : J
.@melO,jO =1 Tjo)m(A,w, lo — l)ehj.
(Lj)ezd+t

Now we shall define the open Cantor set where the preceding formula is meaningful,

o)., = N {()\,w) €0}, st |w L+ pl(Aw) — up(hw)| > 1ol } (7.272)

(1,4:d0) €L X (S§)2
1< Nm
(.5)#(0,40)

Similarly to (7.251) and (7.252) we can extend (7.271) as follows
a7 )= () (T15—do) " (072)r | (wD)

(W), ) = SO - 0) HEDZ O 7 75)
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7. Reduction of the linearized operator in the normal directions

We point out that working with this extension for ¥,,, allows to extend both Z,,,1 and the remainder
Hm+1 provided that the operators %, and Z,, are defined in the whole range of parameters. Thus the
operator defined by the right-hand side in (7.267) can be extended to the whole set @ and we denote this
extension by %, 11, that is,

(W 0p + D1 + R )5, & L. (7.274)

This enables to construct by induction the sequence of operators (.%,,+1) in the full set O. Similarly the
operator ®,1.%,,®,, admits an extension in O induced by the extension of fI)il However, by construction
the identity %, 1 = ®,,'.%,®,, in (7.267) occurs in the Cantor set & m+1 and may fail outside this set.
We define

Om(s) 27~ B33 (7.275)

»4,8

and we want to prove by induction in m € N that
VmeN, Vs € [s0,51], 0m(s) < Go(sn)NENTH2  and  Opm(sn) < (2 - mﬂ) Sol(sn),  (7.276)

with 3; and sp, fixed by (7.3) and (7.235). Moreover, we should check the validity of the assumptions
(7.255) and (7.259) for Py, 11 and Zp,+1. Notice that by Sobolev embeddings, it is sufficient to prove the
first inequality with s = 5;. The property is obvious for m = 0. Now, assume that the property (7.276) is

true for m € N and let us check it at the next order. We write

O =1d+3%, with S,=>» (-1)"I. (7.277)

n=1

Thus similarly to (7.261), using in particular (7.258) and (7.260) we deduce successively

\ ||\Ilm||0dqso (1 + Z Cl\Ijm”o(iqu)n)

< (Sm(So + T2q + 7'2) (1 + Z (C(Sm(SO + T2q + Tg))n>

n=0

1%

and for any s € [sg, 5],

HZWHO d,q,s \ H\IJWHO d,q,s <1+Z C’HlI/mHO d,q,so) >

< Nat26,,(s) (1 + Z (COm(so+m2q+ r2>)") :

n=0

Hence, from the induction assumption, the fact that N, > Ny and since (7.3) implies in particular

So + T2q + T2 < §;, we obtain

12 130 00 < OGN 2d0(5n) <1 +> (0N52Nm“25o(8h))">

n=0

< CN(';LZNT;HZ(;()(S}L) <1 + Z (C50(5h))n>

n=0
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and for any s € [sg, 5],

IZml|20g,e < N2t ™26 (s) (1 +Y (CNé‘QNm”%(Sh))n)

n=0

< N2TT26, ( ( Z (Cdo(sn) ) .

It follows from the condition (7.244) that
IS )13 450 < CONE2N#260(s5n)  and (|80 |35, s < ONZ9T26,,(s). (7.278)

One also gets

IZml|2S 46 < Com(s + T2q + 7). (7.279)
From KAM step (7.264) and Sobolev embeddings, we infer

Om1(51) < Njt ™6 (s1) + ONZ20H™ (8, (51))7

Using the induction assumption (7.276) yields

Sm+1(51) < NJI—°n (2 — m) So(sn) + CNTQ‘”'T?(SQ( )NgMNn_f“?

< 2N 5o (sp,) + ONT2TT™262 (51, ) NoH2 N, 212,
At this level we need to select the parameters §;, sp, and ps in such a way

NI—sn 41\1“21\@”121 and  CN2TH726, (s, ) NG"2 N, 2> < 2N“2Nmiﬁ (7.280)

leading to
5m+1(§l) < 5 ( )Nﬂszi21

The conditions (7.235) imply in particular
h = gl@ +5+1 and po > 2(mq+ 1)+ 1.
Then, using (6.94), we conclude that the assumptions of (7.280) hold true provided that
AN" <1 and  20NE260(sp) < 1, (7.281)

which follow from (7.244), since the first condition 4N, "* < 1 is automatically satisfied because Ny > 2
and po > 2, according to (7.235). Therefore, under the assumptions (7.235) we get the first statement
of the induction in (7.276). The next goal is to establish the second estimate in (7.276). By KAM step
(7.264) combined with the induction assumptions (7.276) we deduce that

Srns1(5n) < Omlsn) + CNTIF™25 (50)6m(50)
S (2 - m+1)60(3h) (1 + CNSLQNquJrTQ_”Q%(Sh))'

Thus if one has

(2 - m—ﬂ) (1 + CN(’)“N;f”T?_“ZéO(Sh)) <2- Lo (7.282)
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7. Reduction of the linearized operator in the normal directions

then we get
Smii(sn) < (2= 5255 ) dolsn),

which ends the induction argument of (7.276). Remark that with the choice ps > 2(72q + 72) fixed in
(7.235), the condition (7.282) is staisfied if

CN6L2N;TZQ7T25O(S}L) § m (7283)
Since Ny > 2 we may find a constant ¢y > 0 small enough such that

-1 1
vaN, CONm S m

Consequently, (7.283) is satisfied provided that
CN2 N, 729750 (51,) < cp. (7.284)
By virtue of the assumption (A.1) we get in particular
Toqg+ 10 —120. (7.285)

Thus (7.284) is satisfied in view of (7.244). To conclude the induction proof of (7.276) it remains to
check that the assumptions (7.255) and (7.259) are satisfied for @, 1 and %, +1. First, the assumption
(7.259) is a consequence of the first inequality of (7.276) applied at the order m + 1 with the regularity
index s = sg + 72q + T2 < 5 supplemented with (7.244). Concerning the validity of (7.255) for 2,11, we
combine (7.269), (7.270) and (7.248), in order to find

m+1

0
(g™ = MTH}’O = H<PNm<%mel,jael,j>L2(’H‘d+1)HZ

From the Topeplitz structure of %, we may write

0
HM;'RH - u}-"IIZ’O = H<PNm<@meo,j7eo,j>L2(1rd+1)HZ .

By a duality argument combined with Lemma A.6 and (7.275) we infer

O O ;o=
5 = w30 S (| Zmeo sllgie (5) 7

0 s
SN %oml[3 .50 100,31 2270 ()7
,0
SN %l s ss = 10m(s0)- (7.286)
Hence we deduce from (7.276), (7.243) and (7.236)
it = i 130 < Oy Go(sn) NG N 12
< Cey N[N, 1=, (7.287)
As the assumption (7.255) is satisfied with Z,,, that is,
YV (j,jo) € (S5)?,  max  sup |05, (uF'(Aw) —plt(Aw)| < Clj— jol, (7.288)

lel€[0,q] (A, w)e0
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then we obtain by (7.287)

V(. jo) € (S5)%,  max  sup |85, (uf T\ w) = pf (A w)) | S C(L+ey T TTINGTNGH2) [ — ol
lal€[0,q] (A, w)eO
Consequently, the convergence of the series Y N, #2 gives the required assumption with the same constant
C independently of m. This completes the induction principle. In what follows, we shall provide some
estimates for U, that will be used later to study the string convergence. Using (7.258) combined with
Lemma A.6 and sg + mog + 70 + 1 < 5; we find
H\Il C _1||PNm‘@ ”o d,q,80+T2q+T2+1

Com(51). (7.289)

m“o d,q,s0+1 <
<

Thus (7.276) and (7.244) yield

do(sn) N> N, #2
ey 2N{? N Fe. (7.290)

||‘Ilm||o d,q,s0+1 < ¢
<C

Next, we discuss the persistence of higher regularity. Let s € [so,.S], then from (7.264), (7.276) and (7.244)

and (7.285)

m1(5) < 8n(5) (14 OV 726, (s0))
< bn(s) (1 4+ OV NI 7125y ()

< 5,”(3)(1 +CN,, )

Combining this estimate with (6.94) and (7.243) yields

Vs >80, VmeN, 0, H 1+CN
n=0
< Cdo(s)
< Cey 2 (1 + ||Jo||qs+g4). (7.291)

Using (7.258) combined with Lemma A.6, applying in particular interpolation inequalities, leads to

[\ Cy M IPw,, B35

O »$ < m 14,5+ T2q+T2
< Cfsm(s + Toq + 7'2)
< O08,(50)057 (s + mag + 2 + 1), (7.292)
with § = ;. Inserting (7.276) and (7.291) into (7.292) and using (7.244) give

W19, s < C65(52)0870(s + Taq + 12 + 1) N4 N, 120

< Ceo?8) (s + g+ 1o + )N #20. (7.293)

We point out that one also finds from (7.279), the second inequality of (7.292) and (7.291) that

Vs € oo Sl sup (I5ml Q0+ 10nl2325.) < Cov™2 (141301350, ) (7.294)
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7. Reduction of the linearized operator in the normal directions

» KAM conclusion. Let us examine the sequence of operators (ZI;m) N defined by

me

Dy2®, and VYm>1, &, 2 Pgodi0...0D,,. (7.295)

It is obvious from the identity ®,,, = Id + ¥,,, that ffm_H = ffm + (/I\)m\llm-i-l- Applying the product laws
yields

0
184112 g1 < N85 (1 CNm 135 1)
By iterating this inequality and using (7.290) we infer

m+1
18112 Dot < 103y ir TT (14 CIOAIES 1)

n=1

<1I (1+ Ceonyr).

Using the first condition of (7.244) and (6.94) imply
~ o s
1B 1280 < T (1 + Cepd™® )
n=0

and since the infinite product converges, we obtain for €y small enough

sup ||(I)m||o d,q,s0+1 <2 (7296)

meN

Now we shall estimate the difference (/ﬁm+1 — <T>m and for this aim we use the product laws combined with
(7.290) and (7.296)

= = ,O ,O
||(I)m+1 - (I)m”’cy)fd,q,sQJrl < O”(I)m”O d,q, 50+1H\I!m+1||g,d’q’50+1
< C (SQ(Sh)Nélz Nmizl (7297)
Applying Lemma A.5 gives
Y 1Pt = Pll3S gorr < C olsn). (7.298)

~

Therefore, by a completeness argument we deduce that the series Z ($m+1 — ®,,) converges to an

meN
element .. In addition, we get in view of (7.297) and Lemma A.5

o0
~ = = O
1@ — ool 3ot < D 1®sg1 = B4, o0

j=m

< Cdo(sn)N§? Z N3+AL12
< Coo(sn)N, “QNmfﬁ (7.299)
Remark that one also finds from (7.296)

,O
[ Poolld e gs041 < 2- (7.300)
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Using (7.298) combined with (7.292) for m = 0 and (7.235)

,O
”(I) Id”OdqsOJrl Z Hq)m—i-l m”()dqsoJrl + ||\I/0||’Oyfd,q,so+1

< C 8o(sn). (7.301)

Let us now check the convergence with higher order norms. Take s € [sg, S], then using the product laws,
(7.290), (7.293) and (7.296) we infer

H(I)m-‘rl”o d,q,s Hq)mHo d,q,s (1 + C”‘I’m-i-l Ho d,q,so) + CHCI)mHo d,q,80 ”\I’m-i-l Ho d,q,s (7'302)

Bl 20ys (14 C o Npta) + C 89 (sn)NE2065 2 (5 + ag + 72 + 1) N2

According to the first condition of (7.244) and (6.94) one finds

1+ Ceo N ") < 1+ Cegd= @)
(
n=0

n=0
<

DO

)

where the last inequality holds if €( is chosen small enough. Applying (7.70) together with (7.302) and
Lemma A.5 and using (7.258) yield

b @[30, < C IR0 0+ 8 (s1) N0 s+ mag 472 +1)
< C(l +00(s + T2q + 72) + 52(sh)N5‘2953—5(5 + Toq + T2 + 1))
Interpolation inequalities and (7.244) allow to get

sup [ &[22, < 0(1 +80(s+Taq + 72 + 1)). (7.303)
meN

The next task is to estimate the difference ||®,,41 — &JmHgSO . By the product laws combined with the
first inequality in (7.290), (7.293), (7.296) and (7.303) we obtain

L 0
1Bms1 = Bunllr S < C (182, W1 13m0 + 1813 1¥m4113..)

< Coo(sn) N2 Nt (140 (s + g+ 72 +1) )

+C80(sn)NE20 6370 (s 4 Taq + 7o + 1) N 120,
Thus, we obtain in view of Lemma A.5
Z 1Bms1 = Bualln Sy < Cdolsn) (14 do (s + maq + 72+ 1))
+ C(Sg(sh)éé_a(s + Toq + T2 + 1).

Combining the interpolation inequalities with the second condition in (7.244) gives

Z [Br1 — Bl|2C,., < 0(50(sh) +00(s+ g+ 72+ 1)) (7.304)
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7. Reduction of the linearized operator in the normal directions

From this latter inequality combined with (7.244) and (7.303) we infer

”(I)OOHgi(dg,q,s < Z Hq)m—i-l mHOdq7 + ||(I)0| Odqs
<C(1+do(s+ma+72+1)). (7.305)

On the other hand, using (7.304) and the second inequality in (7.292) with m = 0, one can check that

”q) 7Id||0dq, Z ”(I)m-H "l||0dq9+||\PO||Odq,
=0
< C(Bo(sn) + G (s + m2q + 72 +1) ). (7.306)
Therefore, Lemma A.6 together with (7.300), (7.305) and Sobolev embeddings give

[®oopl

7O S 103G oIl + 1935 017
Sl + (14 00(s + 720+ 7 + 1))||p||q,50

SpIEE + 6o (s + g + 72+ 1) |plI7S. (7.307)
Applying (7.172) and (7.275) we obtain

So(s+mq+72+1) =7 "%lLS,.s
Ser 2 (1+130017:5%0,) - (7.308)

Plugging (7.308) into (7.307) and using (7.236) combined with Sobolev embeddings and (7.235) yield

O _
1Bocpl 7€ < Nl +ew(1+||3o||qé+ﬂ)||p

Sl + v 2190035 o 1011

q780

(7.309)

q,So

In a similar way to (7.307) we get by Lemma A.6 combined with (7.306) and (7.301)

1(®oc = 1a)p||7T S [ @e — 1113, s, N3 + |19oc 0ol

< do(sn) 10170 + (Bo(sn) + 8o (s + raq + 72+ 1)) ol

< So(sn)llpll3E + 6o (s + m2q + 72+ 1) |p)| 2.

Hence we find from (7.308) and (7.236) combined with Sobolev embeddings and (7.243)

+€’Y

(@oo =177 < (2972 + Bu(sn) Jollg el

Ser ol + €V*2||Jo||q,5+g4L oI35 (7.310)

The estimates - and &' — (IS; ! follow from the same type pf arguments.
> In what follows we plan to study the asymptotic of the eigenvalues. Summing up in m the estimates
(7.287) and using Lemma A.5, we find

o0

Z 5t = W30 < Oy So(sn)NG? D Nyt

m=0

< 0’750(8}1). (7311)
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Thus for each j € S§ the sequence (1}")men converges in the space W°7(0,C) to an element denoted
by u3° € W=7(0,C). Moreover, for any m € N, we find in view of (7.287)

[ee]
[ A N i
B (oo}
< Cvdo(sn)N§? Z N, #2.
Applying Lemma A.5
sup [|us® — pil17 Coo(sn) N> N, 12, (7.312)
jese
Therefore, we deduce
=g+ Y (=)
m=0
2 ﬂ? +75°, (7.313)

where (1) is described in Proposition 7.4 and takes the form
15\ wyio) = Q5(N) + 4 (cio (A, w) = (A K1 (X))
Hence (7.311), (7.243) and (7.236) yield

Pl

(|7 7 6o (sn)

<C
<Cey?

and this gives the first result in (7.239). We define the diagonal operator Z, acting on the normal modes,

as follows
V(1,j) €24 x S, Docer; =ip ey (7.314)
By the norm definition we obtain

(’)
||9m - OOHOdqéo = _Sup ”'u] _p’J HFY
JES§

which gives by virtue of (7.312)
1D = Do 3.0 .5 < C 7 Go(sn)NG> Nyph2. (7.315)

> The next goal is to prove that the Cantor set 03717 (i) defined in Proposition 7.5 satisfies

n+1
’Y 7'1 7'2 ) —
10 =00n.

where the intermediate Cantor sets are defined in (7.272). For this aim we shall proceed by finite

induction on m with n fixed. First, we get by construction 0274 (ig) C O £ 0. Now assume that
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7. Reduction of the linearized operator in the normal directions

O™ (ig) C Oy, for m < n and let us check that
O™ (i0) C Oy (7.316)

Let (A, w) € 027 (ig) and (1,4, jo) € Z* x (S§)? such that 0 < |I| < Ny, and (1, j) # (0, jo). Then, the
triangle inequality, (7.312), (7.235) and (7.244) imply

o L 4 ) = s w)] > o L 57 (A ) = 3 (A, )| = 2 sup [l — T i
A

WV

Bl — 2960 (sn) N2 N1

> o) — gyeg{l) ™ (j — jo).

Thus for gy small enough and by (7.235) (implying that uo > 72) we get

|w - L+ p (N w) = it (A, w)| > 7%;@”

which shows that (\,w) € @), , and therefore the inclusion (7.316) is satisfied.
> Next we shall discuss the convergence of the sequence (£,,),, oy introduced in (7.266) towards the
diagonal operator Zs, £ w - 9,113 + Poo, Where Z is detailed in (7.314). Applying (7.315) and (7.276)

||f f |Od,q, 50 < H-@m_ 00|Odq,80+||‘@ |Od,q,so
< Oy b (s ) NE= N, (7.317)
which gives in particular that
hm 1L — Lo 129 0,50 = 0- (7.318)

By virtue of (7.295) and (7.267) one gets

YOw) € )1, Bt %@, = (w-0p + Dui1 + Rni1) 12,
= goo + (9n+1 - @oo + '@nntl)né_(f

It follows that any (A\,w) € O,

(I)golgoq)oo = ws/poo + (@n-&-l - -@oo + '%n—&-l)Hé_O
+ 0% (@m - <f>n) + <<I>g01 - cf);l) %,
L L+ Bl +EL g +EL g & L +ED.

For the estimate E2 ; we use (7.315) combined with (7.275), (7.276), (7.243) and (7.236)

B2 113 050 < Cv0o(sn) NE? N, 15
< Cey 'NY2N, 13 (7.319)

According to Lemma A.25 with (7.319) we obtain

IES 1pll3:50 < Cev NG N LIl

q,So
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Now let us move to the estimates of Eiz and E%73. They can be treated in a similar way. Therefore we
shall restrict the discussion to the term E? ,. Using (7.237) yields

7,0
q,50"

I2.00135 < 120(@oc = B0)oll 75 + 272130178 40,20 (@ — B) (7.320)

Therefore we get from (7.174) combined with (7.236)

¥,0

||E 9,50 ~ H"go(q) (I) ) |q S0
o

S (@ = @a)rlly e

Applying (7.299) with Lemma A.25, (7.236) and (7.243) allow to get

”E 20”3’500 S; H(I) - (I) ||o d,q, g0+1||p||q,so+1

S 050(3h)Nu2N +1||p||q so+1

< 05772N#2N +1HP||q so+1°

Notice that for Eis we get the same estimate as the preceding one. Consequently, putting together the
foregoing estimates yields (7.240).
> The goal now is to prove (7.239). We set

5m(8)émax( 1”89‘% ||oaqs’7_1||'%m|0dqs)'

Then we shall prove by induction on m € N that

~ ~

B (50) < Bo(sn)NE2NZF2  and gm(sh)g(meH)éo(sh) (7.321)

According to Sobolev embeddings, the property is trivially satisfied for m = 0. Notice that from (7.172)
and (7.236) one gets

~

Solsn) S ev2 (141300139 10, )

<ey i (7.322)

We assume that (7.321) is satisfied at the order m and let us check it at the order m + 1. Applying 9y to
the second identity in (7.268) and using (7.277) we obtain the expression

OpRomsr = B (Pﬁma@%m + 00 R W — U 0| Py, P | — [0, o] LPN,,,,%mJ)
+ [0 5] (P, Zon + Fon Wi = Wi | Py, B ).

2Ur + U,

with
U2, = (00, S (PS5, o + Fon W = Ui | P,y B | ).

It is easy to check that for any Toeplitz in time operator T'(\,w), we have

[aﬁa T()‘a w)]elo,jo =i Z (] - JO)TJJO(Av wvl - ZO)el,ja

(l,5)€za+?
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7. Reduction of the linearized operator in the normal directions

which implies using the norm definition

100 T1N[23 s S ITNS g (7.323)

Since @1 = Id + ¥,,, then applying Lemma A.6, we obtain successively for S >3 > s > s

||Z/[1 Ho d CHZmHo d,q,s [HaG% ,q,so (1 + H\IJMHO d7q,80) + || [89, ] ”o d,q,soH‘%mHO d,q,so]
+ C”Em”o d,q,50 [”89%7"”0 d,q,8 (1 + ”\IIMHO d,q, 30) + Ha9ﬂm”o d,q,80 ”\I’m”o d,q,s (7324)

+ 100, U] 135,112 + 1100, Urn) 1320 .50 | 2m 3.5 g.5] + I PN, 06 %ml|3:

4,8

and

H ||o d,q,8 ~ || [697 ]”o d,q,S0 (”%m”Odqso”\Ilm”o d,qs+H‘%m||Odqs(1+||\Ilm||0dqso))
+ [ 100, Zin] 13:0,5 112 (L 1% 139 g.s0) - (7.325)

By using (7.323), (7.258) and Lemma A.6, we obtain

H [897\Ij7n} Ho d,q,8 ||\I/mH()dq€+1
~v,0
C 1||P %m”o d,q,5+T2q+72+1

CN T2q+72+15 ()

NN /A

Coming back to (7.278), we obtain

0
|| [897 ] ”o d,q,8 < ||Em||gfd,q,s+1
< ONT2OHTHIg (),

Then inserting the preceding estimates and (7.290) into (7.324) we deduce that
VS 2525250, Omet(s) <N 0,(3) + CNPITHIS ()8, (s0). (7.326)
In particular, for s = sp we get by the induction assumption (7.321),

—~ —~ 2
Bm1(s0) < N2O~hG, (s) + CN72a+T2+1 (5 (so))

N

2
(2 _ m+1) (50(sh)Ns° Shoy CN2H2N72Q+7'2+1 2p2 (50(8h))

o~

< bo(sn) <2N;f;f’sh + CNg“ZN;fq*T?“*?“?go(sh)) .
If we fix s and ps such that

Ngo=on L LNE2N-H2 and  ONGH2 NJ2aHm+1=2m25, () < LNE2 N, 12 (7.327)

then we find

~ o~

dm+1(s0) < do(sn)NG* N L3

Notice that (7.235) implies in particular

/%u2+50+1 and  ps = 2(req+ 12+ 1) + 1.
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Hence, using (6.94), we see that the assumptions of (7.327) hold true provided that
ANG" <1 and  2C8(sp) < Ny ™.

Remark that these conditions are satisfied thanks to (7.281), (7.322) and (7.236). Now, we turn to the
proof of the second estimate in (7.321). By (7.326) and (7.321)

Sma1(sn) < Om(sn) + CNZ2ITHLE (6,98, (s0)

o~

< (2- mLH) So(sn) (1 + CNgZN:;WzH—MSO(Sh)) .

Taking the parameters sy and o such that

(2- 2 (14 ONge NGy () <2 — A, (7.328)

then we obtain

~

Omt1(sn) < (2 - #Jrz) do(sn),

which achieves the induction argument in (7.321). Now observe that (7.328) is quite similar to (7.282)
using in particular ps > 2(72¢ + 72) + 1 and one may proceed following the same lines. Next let us see
how to get the estimate (7.239). Recall that

o
Ty = g T with T ——1<PNmﬂme0,J,e07]>L2(Td+1).
m=0

Then it is clear that
<PNm%meO,j7 e07j>L2(’H‘d+1,(C) = %<PNm%meO,jy 89e0,j>L2('Ed+l)'

Therefore integration by parts leads to

<PNmf@meO,j7 6Qeovj>L2(Td+17(C) = 7<PNmaé)«Qmeo,jy e07j>L2(Td+1)'
Using a duality argument H*° — H % combined with Lemma A.6 and (7.321), we obtain

I(PN,, O6Fme ;,€0,5) L2 (ra+1)l7°°

Putting together the preceding estimates with (7.322) and Lemma A.5 yields

oo

Il @ S 151 o (sn)NG® D Npghe

m=0

Sty

This achieves the proof of (7.239).

(i) We shall now work with fixed values (minimal) of us and s, denoted respectively by p. and s., namely

A

3
fe &3 +272q + 215 and s, 2 She +35+1 =735, +4m2q + 410 (7.329)
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7. Reduction of the linearized operator in the normal directions

From (7.268) and (7.277), we can write
Fms1 = (1d + ) Upn,
where
Up £ Py B+ BV, — U | Py, %o |- (7.330)
After straightforward computations, we get

A12[]m :P]J\fmAIQ%m + (A12%m)(\:[/m)r1 + (‘%m)’l“z (A12\Ijm)
— (8129 | PN, (Zon)rs | = (W) vy | P, D12%m | (7.331)

and
DN19Rm+1 = D12Up + (A1250) (Unn)ry + (Zm)ry A12Un,. (7.332)
We have used the notation (f), = f(r). Elementary manipulations based on (7.277) give
Aa¥m = D@t = —(D,1)r, (1200 (@11 )r, -
The product laws of Lemma A.6 together with (7.294) and (7.236) imply
Vs € [s0,5c  1A12ZmlI2 00 S 181230, (7.333)
Using once again the product laws of Lemma A.6, (7.333) and (7.332) we obtain

||A12‘%m+1||0 d,q,80 < HAlQU ”O d,q,80 + ||(A12\I} )Hgo,q,so”(Um)Tl gz?,q,so

1 (Bim)ra 180,00 | 812U 13:9 4 (7.334)

and

||A12‘%m+1||0dqsc HAlQU |Odqsc+||(A12\I’ )|Odqso||( m)’f’l|0dqsC
F ALY s N Um) i 135,50 + 1 (Em)rs 13,50
+ ||(Zm)7"2 Ho d,q, %”AlgU ”o d,q,80° (7335)

For the estimate (Uy,),, (to alleviate the notation we shall remove in this part remove the subscript 1)

described by (7.330) we use the product laws leading to

U 13:0.50 <

Sl 221 S 1 8 Ser (7.336)

and

UnlIZ g, < %o IIOdq,gCHL@ IIOdq,goll‘I’mIIOdq,gc

22 o L 2 (7.337)
By (7.276), (7.243) and (7.290) together with (7.336) we infer
U350 < Coy " NJ= N Fe. (7.338)
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Putting together the first estimate of (7.292), (7.276) and (7.243) we deduce that

Ny‘,rfqurTQ 6m(5(1)

jlg%n(\lf ) 1S, S

< ey 2Nt
Hence we get in view of (7.337), (7.276) and (7.236)

||U HoaqsL < 057_1~

Plugging (7.338) and (7.340) into (7.335) implies

- o
1812 Zm 11188 4 6. S NALURILS s + Cov M 121280 135, 4
+ Cey 'NJe N [ AU 12:9 5. + (S

+||( ’m)T2||Od,q,sc||A12U ”oa,q,so

m)Tz HO d,q,S0

Applying (7.278) and (7.243) gives

||(Em)7"2||g:?,q,so < CE'V_QN(#CNn_mMC and  |[(Zm) CE’Y_QNTN—PQ

,qs =

Inserting (7.342) into (7.341) allows to get

||A12Uv’m||g7»<(119,q,sC

(7.339)

(7.340)

(7.341)

(7.342)

||A12'%m+1”’(y)1?,q,sp X (1 + 057 2NILCN HC)HA12U ||() d,q,8¢ + 05772N3q+72HAlQUm”’(Y)i(ciq,so

+ Cey ' NE N [ AU |35, + Cey ALY

m”%O )
0-d,q,s0

In a similar way, by combining (7.338), (7.342) with (7.334) we find

1812 Zm 411150 060 < (1+ Cey 2NE N ) | A12Un 1354 40
+ Cey T NY e N, e || AU

m|‘g7-fio,q,50'
From (7.331) and the product laws of Lemma A.6 we obtain Vs € [sg, S|,

112U 3.9« <Nm > [A12Bn |30y o, + CllA12m |30« jrg%);ll(‘l’m)r,\lmq 0

(7.343)

(7.344)

+ O A2 |0 g0 max [[(Wm)r, 12508 + ClA1Tm 30, . max [[(%m)r, 129,56

+C||A12\pm”0d

max ||(

[, 13,

»4,50

Combining the foregoing estimate with (7.339), (7.276) and (7.290) yields

HA12U ||Od <Nso SC||A12<%

+ Cey™ NN #e

,q Se +C€’y QNMLN HCHAH‘% ||Od
Al?qjm”oa

»4,50 »4,50

»4,50

and

<(1+ Cey 2N[°N,, He || Ayo P
+ Cey 'NY N | AU, |39

Ho d,q,5¢ + CNT2q+T25'Y 2||A12‘%
+ Cey™ ! HAlQ\Ijm”o d

,q Sc

sd,Sc ;80"
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7. Reduction of the linearized operator in the normal directions

Putting together the preceding estimate with (7.343), (7.344), (7.235) and (7.236) we deduce that

1812Bm 4113 o, < (L Cor NG N #e 4+ Cey 2 Ngp =m0 ) | Ay B 35,

OV a1+ O™ NG N B1a¥m 5,
— 0
+ CE’Y 1HA12\Pm||’(Y).d,q7so' (7346)

In a similar way, by making appeal to (7.344), (7.345) and (7.236) we find

o _
|‘A12%m+1||g7-d,q,so < Nf?f e d,q,S¢

+ Cey 'NEeN [ AU [|3:9, o0- (7.347)

Ao R[5S s + CEV ENE Nl AR |5 .50

We shall now estimate A15V,,,. Remark that

Nl=

. 2
ALY, 3, = > 7 sup > R sup |0 A (T (A w, 1)
aecnd+1 (Aw)eo (L,k)ezd+1 JEL
|al<a 11],1k| < Nom
By virtue of (7.273), we get
‘ —(om). (N w, D (N w, ) if (L, ) # (0, ]
(\Ilm);o()\,w,l) _ (Q )jo( w )rjo,m( w ) 1 ( J) 7é ( ]0)
0 if (lvj) = (07]0)3
where o )
( )] (/\ W l)é X((Wl‘*‘ﬂzn(/\’w)_N%(Aaw))(’NJ—JO))_ <l>7—2)
Om Jjo \ A W, w-l+u;-”()\,w)—u%()\,w)
Recall from (7.249), that {ir?mm(/\, w, )} are the Fourier coefficients of Py, %y, that is
ir;:o,m()\’ W, l) = <PN7”<%7meo,j0, el,j>L2(Td+1). (7348)

We can write for non-zero coefficients

Ara (U)K w, 1) = Avaom)] oA, D (74 o) (A, )
+ ((em)l k), \w, DALY (A w, D).

Hence, using Lemma A.1-(iv)

v € 0ol [Bra(W)] (DI S 1Ana(em)] (DI mase 110 ), G DI

4 (e on),, (D101 B1ard ., (5 DI (7:309)
From (7.348), we deduce

iAlngo,m(A, w, l) = <PNmA12%me07j0, ele>L2(Td+1).

One can write
(om)j, (N w,l) = bl,j,jo,m?(bz,m,mBz,j,jo,m()\vw))7
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with
branm 2 (0 =) D™, Brim(A0) £ 0L+ P Ovw) — i w), K() = X2,
Notice that from (7.288), one obtains
Ve € [0.a],  1Bujomlly® S (15 — Go)- (7.350)
In a similar way to (7.257), one gets from (7.288)
v € [0, [(em)}, ( DIGC SV — gy AT (7:351)

Using Taylor formula in a similar way to (7.100), we find (to simplify the notation we remove the

dependence in (\,w))

1
A12(Qm>§-0 (l) = b%,j,jo,m(AmBl;on’m)/o S(\/ (blaj,jo,m [(1 - 7)(Bl,j,o,m)r1 + T(Blyj,o,m)rz})dr

We shall estimate A125; ; j,.m. For that purpose, we use (7.270) to write
m—1
/J,T = /J,g) + Z <PNnﬁneo7j,eo7j>L2('ﬂ-d+1).

n=0

We recall from Proposition 7.4 that

u?()\,w,io) =Q;(\) +irt (N w,ig), T\ w,ig) = i (A w) — Vo(A).

Therefore )
m __ 0
Arpp = Ao + > (A12 Py, Zneo j, €0,5) 12(1as1)
n=0
and

A12Bij jo,m = Arz (" — o)

m—1
= (j = jo)Araci + > (A12Pn, Zneo j,€0,5) 12(ras)
n=0
m—1
— Z <A12PNH%neo,j07 eo7le>L2(Td+1).
n=0
Hence, using (7.21), one gets
m—1
0 .. o) 0
Vg € [0,a), 1A12Bujjomly® Seli —dollAwill}3, 4o+ D I1Pn, Aol 30y sy (7:352)
n=0

Then, one obtains from Lemma A.1-(vi), (7.350) and (7.352)

Vg €0,ql,  [[Aw2(om)’ (5 DITC S ey 79 (1,5 — Go) ™ P2 T Ayl 1S L, (7.353)
m—1
o . . ’ ' ,0
+ L = Go) YN | Py, AaZn |18 o o
n=0
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7. Reduction of the linearized operator in the normal directions

Gathering (7.349), (7.351) and (7.353) gives for all ¢’ € [0, ¢],

812 (e DI S ey (@ 2 A3, s (), (5D
m—1
T2 e 2t nax, (2 k), G DI nZ:O 1PN, A2l 35 o o
TR A (D3
We deduce that for all s € [sg, 5],
181291300, S & M2t 5) 42| P BrlE g 272 1
m—1
B 1S P Y ) VAN o
n=0
) Py A Bl 2 st e o (7.354)
We set .
Om(s) = 7—1||A12%m||g1§q75 and  s,(s) = 0n(8). (7.355)
n=0

Then, using (7.354), (7.275) and (7.3), we get

AU 13S0 Sev qNT2||A12Z||q 5 120m (81) + 7T INGZ 6 (81) 2m (s0)
4 INTTT (60) (7.356)

and

||A12\I/m||o d,q,5¢ S E’Y_l qNTzq+27'2+1 HA |

q,5n +25 (SC) + ’Y_qu?q—FQTQ(Sm(Sc)%m(SO)
Gy TINTIOTS (s, (7.357)

According to (7.322), one has

6m(31) S ey 2NEeN,#e and  sup m(s.) Sey 2 S 1. (7.358)
meN

Putting together (7.358) and (7.356) and using (7.236) yields

HAlQ\Ijm”o d,q,50 ~ 5’7_1NT2 e

A€ 1y + N st (50) + 7 INZH 250 (s0).  (7.359)

q,5n+

In a similar way, on gets by (7.358), (7.357) and (7.236)

1A Tnll3S, . S v I NET 2 Al 1€ o + N0 27 50, (50)

+yTINPRIYTE, (s,). (7.360)

34;Sc

Plugging (7.359) into (7.347) yields by virtue of (7.276) and (7.236)

Omr1(50) S N2OT%6, (s0) + CNT2ITT27He§ (50) 4+ CNT272He 5, (50)
+ Cey N2~ 2“C|\A121||q 2 (7.361)
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Therefore, inserting (7.359), (7.360) into (7.346) and using (7.236) implies

m

St (se) < (1 + CNT20HT2 e L NSO~ Scmqm)é (se) + Cey 2 TIN2IT26,, (50)

+ CN2I T2 be 30 (50) 4 Cey L NT2aT2m2 1 pe A12z||q Py (7.362)
Next, we intend to prove by induction in m € N that
Yk <m, 0r(so) < NYN_"v(s.) and 0x(s.) < (2 - %H) v(se), (7.363)

with

v(s) £ 30(s) + ey Al 5 10
The estimate (7.363) is obvious for m = 0 by Sobolev embeddings. Now let us assume that the preceding
property holds true at the order m and let us check it at the order m + 1. Thus by applying (7.355) and

Lemma A.5, we get

sup s, (s0) < Cr(se).
meN

Putting together this estimate with the induction assumption, (7.361), (7.362), (7.329) and (7.236) yields

dmt1(s0) < (QNSO SC+CN“"NT2CI+72 2uc) v(se)

m

and

1
6m . < (1 C Toq+Ta— e C So—sc+Tzq+Tz) 9 _ .
41(se) + CN? + CON 1) Ve

+C (N;latﬁmﬂtc + NT7;L2q+272+1*Hc) v(se).
Since (7.329) implies in particular
fic = 2T2q+ 21+ 1 and  S¢ > Spc+so+ g+ 2+ 1,
then proceeding similarly to the proof of (7.276), we conclude that
Bt (s0) < NP NHav(se) and B (se) < (2 - m—H) v(se),

which achieves the induction. The next target is to estimate Ajor2°. Then similarly to (7.286) we obtain

through a duality argument, Lemma A.6, (7.363) and Lemma A.5

s 7,0
HAlgerO”g’o < Z H(PNMAH%meO,jaeO,j>L2(’JI‘d+1) .
m=0

oo

S Z ’|A12‘%m| 0-d,q,50

v(se) Z N{'* N, te
m=0
< Cyv(se).
From the particular value of p in (7.168), we infer

Se = Sp + 472q + 412 =35 + p. (7.364)
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7. Reduction of the linearized operator in the normal directions

Then, applying (7.173) we obtain

Y (Sh + 412q + 4712)

[A1275°]7°° < C
< Cevy™

q 5h+04

Finally, combining the previous estimate with (7.313) and (7.170) we deduce

Vi€Ss, [1A1pCl7C SIIAwpd)lC + (| Awnrd|?C
< ey il Awi)S

q,5ptoa’

The achieves the proof of Proposition 7.5. O

7.4 Approximate inverse in the normal directions

In this section we plan to construct an approximate right inverse in the normal directions for the linearized
operator L., defined in (6.102) when the parameters are restricted in a Cantor like set. Our main result is

the following.

Proposition 7.6. Let (v,q,d, 71,50, ji2, K, S) satisfying (A.2), (A.1) and (7.235). There evists 0 =
o(71,72,q,d) = o4 such that if

ey 2TING® <eo and  |[Tol|)0 L, <1, (7.365)

then the following assertions hold true.

(i) Consider the operator %, defined in Proposition 7.5, then there exists a family of linear operators
(T”)neN defined in O satisfying the estimate

,O -
VS € [807 S]v Slelllzl HTnP”g,s S 0 1||/0||q s+T1q+T71
n

and such that for any n € N, in the Cantor set

ARG = () {(A,w)GO s.t. w.z+u;°(A,w,io)|>g§zi},
(z,J)edesg
[LISNn

we have
LT =1d 4+ E2,
with

v30 <SS < S’ ”E pll’y o < Ns s _1||p||q,s+1+r1q+7—1

(i) There exists a family of linear operators (T%”)neN satisfying

Vs € [807 SL Slél]i] ||Tw,"lp||:1y,50 5 (Hp q,b-‘ro + ‘|jo||q,s+a|‘p‘ q,50+a> (7366)
n

and such that in the Cantor set
Gn (7,71, 72,10) = OLTE (i0) N OLT™ (i) N AL (o),

oo,n

we have
EwTw,n =1d+ En,
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where E,, satisfies the following estimate

%s+o-+ev*2nﬁonqs+onpnqso+g)

+ey ANEEN L ol

Vs € [s0,5], [[Enp

79 s N (1l

q,50 ~

q,S0+0"

Recall that L., O (io) and OLTL™ (o) are given in Propositions 7.1,7.2 and 7.5, respectively.

(iii) In the Cantor set G, (v, T1,T2,10), we have the following splitting
L,=Tyn+R, with L,,T,,=1Id and R, =E,L,,,
where the operators fw,n and R, are defined in O and satisfy the following estimates

VS € [SO’S]’ SléIl\)] ||i‘\w7np||g7.§9 5 Hp”q s+1 + 67_2”:&)' s+UHp||q so+1°
n

Vs € [s0,],  [Rupl 1S + e 23003 a3 )

79 s N (1l

q,50 ~

+ ey 3N“2Nn—|/j12 ||p||q so+o*

Proof. (i) From Proposition 7.5 we recall that
Lo = w0115, + Do
Then we may split this operator as follows, using the projectors defined in (A.5)

Loo =N, w - O,1IN, g, + Do — Iy, w - D11y Tlg,
A1 R, (7.367)

with R, £ I} w - 0,11y Ilg, . From this definition and the structure of Z, in Proposition 7.5 we deduce

that

(w14 p) if I < N,
¥(l,j) € 2 x S5, ehﬂwuz{ﬂw )

ipge if |I] > N,,.
Define the diagonal operator T,, by
. x (w45 (Aw,io))y (D)™ i(1-p+j0
Tnp(/\awa <P79) £ Z ( w~l]+uj°.°(/\,u,io) )Pl,] ()\ w) e +38)
(z,j)ezdxsg
ILI<Nn
; pLi(Aw) i(l-p+356
- YRR,
(l,j)ede§8
|[1|>Nnp

where x is the cut-off function defined in (6.92) and (py,;(A,w)), ; are the Fourier coefficients of p. We
recall from Proposition 7.5 that

157 (A wyio) = 25(A) + grt (N w,io) + 73 (A, w,ig)  with (N w,ig) = ciy (N, w) — Vo(N),

with the estimates
viess, Nuely <l
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7. Reduction of the linearized operator in the normal directions

where we use in part the estimate (7.265), (7.239) and (7.170). According to Lemma 5.3-(iii), (7.265),
(7.239) and the smallness condition (7.236) we infer

. 0
131 S 5Pl < s l17°-

Tmplementing the same arguments as for (7.258) one gets

Vs 2 50, HTﬂp”g:sO S ’7_1||p||q s+T1q+71° (7368)
Moreover, by construction
L,Tp =1d in AT} (io) (7.369)

since x(-) = 1 in this set. It follows from (7.367) that

V(A w) € AL, (i0),  ZLooTyn =1d —R,T,
£1d +E}. (7.370)

Notice that by Lemma A.1-(ii),

Vso<s <3, |Rapll2C S NSF ol

q, s+1
Combining this estimate with (7.368) yields
Vso <s <5 [[El7S S N ITanll )5
<N *1|\p\|q5+1+nq+ﬁ. (7.371)
(ii) Let us define
Ton = BLOT, OB, (7.372)

where the operators %, and ®., are defined in Propositions 7.4 and 7.5 respectively. Notice that T, ,, is
defined in the whole range of parameters O. Since the condition (7.365) is satisfied, then, both Propositions
7.2 and 7.5 apply and from (7.150) we obtain

Vs € [50, 5], [Twnpll]d S 1PecTn® B pl175 + 13011750 o 1R Ta P B plI7250.
By using (7.237) and (7.365), one gets

Vs € [s0.5), 1 @oTu® BT plI7S S ITa® B 0170 + 1190035k 0 I T @) 27

q,s v

Q;So

Thus the point (i) of the current proposition implies

Vs > 50, ||an);ol'%llp”%0 S 7_1”(1) 1*@ qu s+T19q+T1°

q,s r~

Applying (7.237) and (7.150) with (7.365) yields

Vs € [s0,5], 2 BL0lI3 < ||<%‘Ilp|| + 113015 12 01328

g5~

S ol3:8 + 190l13: 2 el
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Putting together the preceding three estimates gives (7.366). Now combining Propositions 7.4 and 7.5, we
find that in the Cantor set O%": (i9) N OL L™ (ig) the following decomposition holds

O BTIL, BB, = O LB + PLEL D,
=YL +EL+ O E O

It follows that in the Cantor set O} (io) N OL72(ig) N AL (40) one has by virtue of the identity (7.370)
O BT LB BT, = 1d +E3 + E2T, + O EL DT,
which gives, using (7.372), the following identity in G, (v, 71, T2, o)

LoTun =1d+ B &0 (B2 + E2T, + O LELOT,) 0 BT
21d+ B PLED B!
21d+E,. (7.373)

The estimate of the first term of E. is given in (7.371). For the second term of E} we use (7.240) and
(7.368) leading to

IE2Tapl3S < e 2NE2 Nt I Tup 2

q,50 ~

q730+1

S e NN ol g (7.374)
For the estimate of ®_'EL® T, , we combine (7.237), (7.171), (7.368) and (7.365) to get
12 En @ocTrpllgen S IIE; PooT
SeNG* N, ”2||‘I> Tuply o
< ey NG N ol s (7.375)
Putting together (7.371) and (7.374) and (7.375) we find
(o2 D 2tmgrn TV NN ol 2t 2 rager (7.376)
Set U = #| Do, then from (7.237), (7.150) and (7.365) we deduce that
Vs € [s0, 8], 10 ol S HlollgS + ey 2 11Toly oIl (7.377)

Straightforward computations based on (7.376), (7.377) and (7.365) yields

IWE, T pll:d S IELTpll7

q;80 ~

11780
< NSO S 1”\:[} p||s+2+7'1q+7‘1 +€’Y 3N#2Nn+#12”\:[1 p”q so+2+T119+71
< Néo s -1 (||p||q,s+2+‘f'1q+‘r1 + E’Y_QHJOH s+a||p||q,so)

+ ey NN, L3 ol

11790+2+qu+7'1

Consequently, taking o large enough, we get

||E’ﬂp||;/g S.z Néo b ! (Hp”q,era + ey 2”30' q,s+o’Hp| q,sUJra') + ey 3N”2N n+1 Hp| q,so+a
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8. Proof of the main result

(iii) According to (7.373), one can write in the Cantor set G, (7, 71, T2, %0)

Lo =T,% +E. T (7.378)
Gathering (7.372) and (7.369), one obtains in the Cantor set G, (v, 71, T2, i0)
Lupn 2T, = B0 L, ) B = VL, 0.
Hence, (7.378) can be rewritten
Ly=Tyn+R, with R, 2E,L,,. (7.379)
Putting together (7.367), (7.377) and (7.365), we obtain
Vs € [s0.5), (Bl = WL p)0
< HL v p” +€’y_2H30”q s+a||L v p|qg)
s+1 + 57_2H‘J0”’Y,s+o’”\p p| q,so+1
9+1 +6772”J0Hq,.§+0 ‘qu,sg—i-l (7380)
Hence combining this estimate with (7.378) yields
Vs € [s0, 8], [Rapll3S S N oy (le 1S+ 2130l el 1)
+ gy n+1 q so+a
This achieves the proof of the third point and the proof of the proposition is now complete. O

8 Proof of the main result

This section is devoted to the proof of Theorem 3.1. For this aim we intend to implement Nash-Moser scheme
in order to construct zeros for the nonlinear functional F (i, a, \,w, &:) defined in (6.21). We shall be able to
capture the solutions when the parameters (A, w) belong to a suitable final Cantor set G obtained as the
intersection of all the Cantor sets required during the steps of the scheme to invert the linearized operator.
More precisely, we get a relatively smooth function (\,w) € O — Uy (\,w) = (ioo()\,w), aoo(/\,w)) such
that

V(A w) € gl, f(UOO()\,w),)\,w,E) =0.

To generate solutions to the initial Hamiltonian equation (6.2) we should adjust the parameters so that
Qoo (A, w) = —wrq(A), where wgq corresponds to the equilibrium frequency vector defined in (5.32). As
a consequence, nontrivial solutions are constructed when the scalar parameter A is selected in the final

Cantor set
cc, = {)\ € Mo A1) st (w(he)) €L with as(hw()e)) = —qu(A)}.

The measure of this set will be discussed in Section 8.2.

8.1 Nash-Moser scheme

In this section we implement the Nash-Moser scheme, which is a modified Newton method implemented

with a suitable Banach scales and through a frequency cut-off. Basically, it consists in a recursive
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construction of approximate solutions to the equation F (i, a, A\ W, 5) = (0 where the functional F is defined
in (6.21). At each step of this scheme, we need to construct an approximate inverse of the linearized
operator at a state near the equilibrium by applying the reduction procedure developed in Section 7. This
enables to get the result of Theorem 6.1 with the suitable tame estimates associated to the final loss of
regularity & that could be arranged to be large enough. We point out that @ depends only on the shape
of the Cantor set through the parameters 71, 72, d and on the non degeneracy of the equilibrium frequency
through ¢ = 1+ qo, where gg be defined in Lemma 5.5. However, & is independent of the regularity of the
solutions that we want to construct. Now, we shall fix the following parameters needed to implement
Nash-Moser scheme and related to the geometry of the Cantor sets encoded in 7, 72, d fixed by (A.1) and
to the parameter ¢ = qp + 1,

a = To+2
w = 3q(r2+2)+65+6
ap = 6q(r2+2)+125 + 15
ay = 3q¢(m2+2)+65+9 (8.1)
pe = 2¢(mo+2)+55+7
sp = so+4q(ra+2)+ 97+ 11
Sm = 28p — So-

The numbers a; and as will describe the rate of convergence for the regularity so and sg + @, respectively.
They appear in the statements (P1),, and (P2), in the Proposition 8.1. The parameter p; controls the
norm inflation at the high regularity index s,, and appears in (P3),. As for the parameter @, it is linked
to the thickness of a suitable enlargement of the intermediate Cantor sets, needed to construct classical
extensions of our approximate solutions. Finally, the numbers us and sp correspond to those already
encountered before in the reduction of the linearized operator and are now fixed to their minimal required
values. In particular, we recall that us corresponds to the rate of convergence of the error terms emerging
in the almost reducibility of the linearized operator, for instance we refer to Theorem 6.1. We should
emphasize that, by taking & large enough, the choice for ps and s, done in (8.1) enables to cover all the
required assumptions in (7.15) and (7.235). Another assumption that we need to fix is related to v, Ny
and ¢

0<a< £¢7 No2qh (8.2)

1
patgrz

This constraint is required for the measuring the final Cantor set and to check that it is massive, for more
details we refer to Proposition 8.2.
We shall start with defining the finite dimensional subspaces where the approximate solutions are expected

to live with controlled estimates. Consider the space,
; é{ﬁ —(0,1,2) st. ©=10,0, I=I,I and z= Hz}
where II,, is the projector defined by

)= > fidt et o L) = Y fieltetio),

(1,7)EZAXZ (LJ)SNn

where the sequence (N,,) is defined in (6.94). We observe that the same definition applies without
ambiguity when the functions depend only on ¢ such as the action and the angles unknowns. The main

result of this section is to prove the following induction statement.

Proposition 8.1 (Nash-Moser). Let (11,72, q,d, s9) satisfy (A.2) and (A.1). Consider the parameters
fized by (8.1) and (8.2). There exist Ci. > 0 and g9 > 0 such that for any e € [0,e0] we get for alln € N
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8. Proof of the main result

the following properties,

(P1),, There exists a q-times differentiable function

W, : O — E,_1xR?xR¢t!
Aw) = (Tn,an —w,0)

satisfying
Wo=0 and for n>=1, |W,]|7°, _<C.ey 'N&

q,80+0
By setting
Uy = ((cp,0,0),w, ()\7w)) and for neN" U,=Uy+W, and H,=U,—U,_1,

then

Vs € [s0, 5], [Hil|}O < 3Cuey'NE® and V2 < k<, |Hil)S 5 < Cuey I N

(P2),, Define
in = (90’ 0, 0) +Tn, = 7(1 + 27”) € [7) 27]'

The embedded torus i, satisfies the reversibility condition
Sin(p) = in(=¢);
where the involution & is defined in (6.13). Introduce
Aj=0 and Al =A) NGy (Yng1,T1, T2, 0n),
where G (Yn+1,T1, T2, in) 18 described in Proposition 7.6 and consider the open sets
vr >0, Of = {(/\,w) €0 s.t. dist((/\,w),.Afﬂ) < rN,:E},

where dist(z, A) = in,f4 |z — y||. Then we have the following estimate
ye
021 -
IF(Un)llgisa"™ < CueN, .

(P3)n [Wall)'s) 15 < Cuey INEL,.

q,8m+0

Remark 8.1. Let O be an open subset of O. Since Vn € N,~,, € [v,27], then the norms || - ||:1V§O and

|- 12%°. are equivalent uniformly in n.

Proof. e Initialization : By construction, Uy = ((@,0,0),w, (/\,w)). Notice that the flat torus ig..(p) =
(,0,0) satisfies obviously the reversibility condition. By (6.21), we have

—817)5((%070,0))
]:(UO) =€ 819736((30,070))
—89VZPE((<P,O,O))

Using Lemma 6.3, we get
Vs 20, ||FUo)2° < Cie, (8.3)
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up to taking C. large enough. The properties (P1)g, (P2)p and (P3)y then follow immediately since
N_; =1and O} = O and by setting Wy = 0.

e Induction step : Given n € N, assume that (P1), (P2); and (P3); are true for all k € [0,n] and let

us check them at the next order n 4 1. Introduce the linearized operator of F at the state (iy, o)
Ly, £ Ln(>\7w) £ di,af(in()‘aw)aan()‘vw)v (>‘7w))

In order to construct the next approximation U,11, we need an approximate right inverse for L,,. Its
construction was performed along the preceding sections and we refer to Theorem 6.1 for a precise
statement. To apply this result and get some bounds on U,, 1 we need to establish first some intermediate

results connected to the smallness condition and to some Cantor set inclusions.

» Smallness/boundedness properties. First of all, remark that the parameters conditions (7.3)
are automatically satisfied by (8.1). Then, provided that the smallness assumption (7.365) is satisfied,
Proposition 7.6 applies. It remains to check that (7.365) is satisfied. According to the first condition in

(8.2) and choosing ¢ small enough, we can ensure
ey TITINE? = glralnatatd) ¢ (8.4)

for some a priori fixed €9 > 0. Therefore the first assumption in (7.365) holds. We now turn to the second

assumption. Since from (8.1) s, = 2s;, — sg, then by interpolation inequality in Lemma A.1, we have

1

11058 1 = (130 5) (1072 ) (8.5)

Besides, by using (P1),, we find

Vs € [so, 5], ||H1||;’§9 <iC.ey'N§® and |H, Hqgo_w Cuey 1N %, (8.6)
Now (P3),, and (P3),,—1 imply
175 5 = 1Un = Unall}s) k7
= ||W W q 5771+0'
%sm+a +[Wa- 1||Q75m+0'
< 20*57—1N§11.
Putting together the foregoing estimates into (8.5) gives for n > 2,
— 1 (p1—az)
[Ho |79 5 < CCey INZTE (8.7)
and for n =1,
IH 2 5 < $Cuey " NG™. (8.8)
Now from (8.1) we infer
2 2 [+ 2. (8.9)
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8. Proof of the main result

Thus, by (8.2) and Lemma A.5, we get for small &

||W Hq sp+o \ HHlHq sp+o + Z ||Hk||q sp+o

< 1C.eyINE® + CCLen™t Z N
k=0

< 10 ey IN{® + CNy ' Crery™

< C*slfa(lJrqE)'

One can check from (8.1) and (8.2) that

1
a < m (810)

and therefore, by choosing € small enough and since & > o, we get

10 o SWal€ o < Cue?

||j’fl| q,sh+o

q,8p+0 <

< 1.

As we have already mentioned, the parameter & is the final loss of regularity constructed in Theorem 6.1
and depends only on the parameters 71, 72, ¢ and d but it is independent of the state and the regularity.
Hence it can be selected large enough such that so +7 > Sj + 04 where 55, and o4 are respectively defined

in (7.15) and Proposition 7.5. Then using (8.6) and Sobolev embeddings, we obtain

Vn =2, |H,|" < Coey IN %, (8.11)

Q73h +o4

» Set inclusions. From the previous point, Propositions 7.2, 7.5 and 7.6 apply and allow us to perform
the reduction of the linearized operator in the normal directions at the current step. Therefore, the sets
AZ for all £ < n+ 1 are well-defined. We shall now prove the following inclusions needed later to establish

suitable estimates for the extensions.
4~ 2
A2 C O, C (AL, NOY). (8.12)

Notice that the first inclusion is obvious by construction since Ofﬂﬂ is an enlargement of Ai]rl. It remains

to prove the last inclusion. We have the inclusion
vk € [0,n], O, C O7. (8.13)
Indeed, since by construction Aill C Aiﬂ’ then taking (\, w) € Oi}rl we have the following estimates

dist((\w), A7) < dist((\w), 4;],)

< 4'yNkf1 = 4yN, "N,

< 2’yNk__a,

a

Nl

—ia S . C e
provided that 2N, 2* < 1, which is true up to taking Ny large enough, that is in view of (8.2) for ¢ small

enough. We shall now prove by induction in &k that

Vke[0,n+1], O} C A (8.14)
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The case k = 0 is trivial since OFY = O = AJ. Let us now assume that (8.14) is true for the index
k € [0,n] and let us check it at the next order. From (8.13) and (

14), we obtain
0,1, C 0P C Oy C Aj.

Therefore, we are left to check that

051, C G <7k+1,717727ik)~
Let (\,w) € Oy

4r1, then by construction, there exists (\',w’) € Aill such that

dist (\,w), (N, w')) < 4yN,

k41
Hence, for all (I,5) € Z¢ x S§ with [

Ny, we have by left triangle and Cauchy-Schwarz inequalities
together with (X, w’) € Aigf,:l’ﬁ (i)

| L4 pe (N w,ig)| = | L4 p (N W i) | = Jw = & 1] = |3 (N, w, i)
> 2et1ls)

_U?(A/’wlvik”
RO 4’7Nka |/~L;O<)"waik) _M;O()‘/’wlvik”
> ’Yk+1< > _4’7N1 a
(Hm

k+1 ’/J‘(;O(A7W7Zk) - M?O(Al7wlaik)’ .

Using the Mean Value Theorem and the definition of o pi1 yields

152 (N wy i) — e (N, i)| < T w) = (V@) ly ™ 5 () 1©

|%0.

<
<4 k+1HM] (ix) q

On the other hand,

Vi€ S5, g nly® < Iuse(in) — Q41170 + 19113
Using the asymptotic (5.17) and the smoothness of A +— I;(A)K;(A) for all j € N*, one has

192;17¢ < Cljl.

Since (7.236) is satisfied by the previous point, we can apply (7.238) and obtain

VjeSg w5 (in) -

° < oljl.
Hence

Vi €S, e (@)ly® < Clil.
It follows that

|P’JO'O()‘7W77:/€) - M;O(Alaw/aik” < C<]>Nk_f1 <C < >N1 i

kt1°
Since |I| <

< Ng41 and Yg41 = 7y, we obtain

w14+ i3 w,in)| > 2t — CyGINLT

> 2 (2- V'),

k+1
From (8.1) and (A.1) we infer

IS]

>1+221+2 (8.15)
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8. Proof of the main result

and we can take Ny sufficiently large to ensure

CNJLT < ONg ' < 1,

allowing to finally get

w1+ p (N w,ig)| > 2l
This shows that, (A, w) € A2tV (ix). Let us now check that (\,w) € OL3"™ (ix). For all (I,5) € Z% x S§

29k 41, .
tokH ™ (ik)

with [I| < N, we have by Cauchy-Schwarz inequality together with (\,w’) € O

jw - L jei, (A w)| = " - T+ jei, (N, W) = fw = &1 =[] fei, (A w) = e, (X, o)

e O gy NIT () i, (M w) — i (X, 0)].

T

Using the Mean Value Theorem and the definition of Oi]’rl yields

s, (A, w) = e, (N, W) < ON e, 17

Since (7.16) is satisfied by the previous point, we can apply (7.17) leading to

] o
leallg™ < llei = Vollg™ + Vol

<
<C.

7,0
q

Thus
lei, (N, w) — ¢, (N, w')| < C”y’y*lNk_fl < C”)/N,i_‘__la.

Therefore, we obtain from the definition of -y, and v € (0,1)

. Ay 1127 (5 A\ ATl—T
- L+ jei, (A w)] > 220 oy (N

Avg 11 (9) m+1-a
> T (20 - ovp ).

By the choice of @ made in (8.15), we can ensure, up to taking Ny sufficiently large,

2V — CNJAT T > 2 —CONg' > 1,

so that

. yi4109)
Iw'l+jcik()‘7w)| > 'Y<1T>r7}1] '

As a consequence, (\,w) € O3 (i1,). Let us now check that (A,w) € ﬁ;’sr’ﬁ’ﬁ (ir). For all (I, 4, jo) €

Z% x (S§)? with || < N, we have by the triangle and Cauchy-Schwarz inequalities together with
2Vit1,T1,T2 ) -

(W) € O 5 (i)

’w A (N w, k) — u?j(/\,w,ik)’ > ‘w’ 4 pSe N, W) — u?s(A’,w',ik)‘ — |w — ]I

- |N?O()‘7w7 ik) - Iu’;?:(A’ W, Zk) + .ujo'j(A/v wl7 ik) - /U‘;O(A,vw/a Z7€)|
> 4’Yk4?l1><rﬂ'2*jo> _ 4'YN1§_T_1E
- |/1/]oo()\7 w, Zk) - ’ujo;;()\’ w, Zk:) + M?g()‘/a w/7 Zk) - /J/;)O(A/a w/a Zk)‘ .
We recall by virtue of Proposition 7.5 that

M]O'O()‘?wvik) = M?()‘awvzk) + T;O(Aﬂwaik)'
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Thus

152 (N wy i) — gy (A, wy i) + gy (N, &'y ie) = p§° (V0|
< |N?()‘awvik) - N?o (Avwaik) + /L?O ()‘/awlvik) - :u'?()‘/ W’ Z:’€)|
+ ’7‘;0()\7(*})2]6) - T;?O()\I7W/,ik)’ + "r] )\ w Zk) — ’I“ ()\/ w Zk)‘

According to the Mean Value Theorem, (7.255) and the definition of Og_l we find
| O\ wy i) — p§y (A w, i) + pg, (N, o' yi) — (N, o' ik) | < yONG LT (G — do)-

Applying once again the Mean Value Theorem, (7.239), (8.4) and the definition of Ofﬂﬂ yields

| TN w, i) =15 2N, W zk)| < C”yNk_fl»S“f2 < *yC’N,iIf(j — Jo)-
Putting together the foregoing estimates and the facts that |I|] < Ny and ;11 > v we infer

|w A p (A w, k) — u%’()\,w,ik)‘ > W (4 C’ngjll a) .
By virtue of (8.15) and taking Ny sufficiently large we get

CN2H=7 < ONG?

This implies

As a consequence, we deduce that (A, w) € ﬁ%“’n”( »). Finally, (\,w) € Gy (Vk+1,71,72,i)) and there-
fore (A, w) € A/ ;. This achieves the induction proof of (8.14).

» Construction of the next approximation. We are now going to construct the next approximation
U,+1 by using a modified Nash-Moser scheme. The assumption (7.365) being satisfied, we can apply
Theorem 6.1 with L,, and obtain the existence of an operator T,, = T, (), w) well-defined in the whole set

of parameters O and satisfying the following estimates

Vs € 5o, Sl ITuplly® S 27 (Il S5 + 190

1ol ) (8.16)

and
| Trpl

oSy elre (8.17)

Moreover, when it is restricted to the Cantor set G, (Vn+1, 71, T2,n), Tr is an approximate right inverse

of L, with suitable tame estimates needed later, see Theorem 6.1. Next we define,
Ups1 2 Up + Hyyy  with  Hyppy 2 Gnyt, Gngr, 0) 2 —IL, T, I, F(U,) € E, x R x R,
where IT,, is defined by
I, (J,a,0) = (I1,3,a,0) and II}(J,q,0) = (11,3,0,0). (8.18)

Notice that the projectors II,, are reversibility preserving due to the symmetry with respect to the Fourier

modes. Then, using the reversibility of T,, together with (6.22) and Lemma 4.2, one deduces from
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Gin(p) = in(—¢p) that
STn+1(p) = Tnt1(—p). (8.19)
Note that U, is defined in the full set @ and so does ﬁnH Nevertheless, we will not be working with this

natural extension but rather with a suitable localized version of it around the Cantor set A ;. Doing so,

we shall get a nice decay property allowing the scheme to converge. Now, introduce the quadratic function

Qn = ]:(Un + Hn+1) - I(Un) - Lnﬁn-&-la (820)

then simple transformations give

F(Un+1) = F(Un) = LpIL TRl F(Un) + @Qn

(U,) — L, T,11, F(U,) + L, JI-T, 11, F(U,) + Qn

(U,) — 0, L, T, I, F(U,) + (L, I+ — - L,)T, I, F(U,) + Qn

T F(U,) — (L Ty — I, F(Uy) + (LI — 155 L) T, 0L, F(Un) + Q. (8.21)

|
R

In the sequel we shall prove

0?2 _
|FUnsn)llgise™" < CueNy™,

with Up41 a suitable extension of Uy, 1|52y -
n+1

» Estimates of F(U,41). We shall now estimate F(U,41) with the norm || - ||q,’sooi11 by using (8.21).
The localization in On11 is required for the classical extension in the next point, see (8.48).
> Estimate of II.- F(U,,). We apply Taylor formula combined with (6.21) and Lemma 6.3 together with
(8.3) and (P1),. Therefore, we obtain
~,027 ~,0
25" < NFO)IGS + 1F(Un) = F(Uo)llas

<

e+ Wl s (8.22)

Vs = s0, [|F(Un)llq

As a consequence, (8.2) and (P1),, imply

7,027

T HFU)llgs0™ < 1. (8.23)

From Lemma A.1-(ii) and (8.22), we get

R
I F U3 < N | F () 3257
SN (24 Wl 5 ) - (8.24)
Now, (P3),, together (6.94) and (8.2) yield
n q sm+0' <€ (1 + C*VilN#il)
<20,eNM (8.25)
By putting together (8.25) and (8.24) and by making appeal to (8.13), we infer for any n € N,
1 On+1 1
I F(U) 30 < T F UL 39"
< CLeNgoTEm T (8.26)
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Remark that one also obtains, combining (8.22) and (8.25),

IFUITO™ S < CueNg T3, (8.27)

> FEstimate of 11, (L, Ty, — Id)I1,F(U,). In view of (8.14), one has
O, CA, CGy ('7n+1;7_177—27in>'
Then, applying Theorem 6.1, we can write
I, (L, Ty, — I, F(U,) = E1,n + E2,n + 63,
with

& 2 L,EM L, F(U,),
& 2 1L,EM L, F(U,),
& 2 TL,EM L, F(U,)

where 81("), 52(n) and S:g") satisfy the estimates (6.131), (6.132) and (6.133) respectively. By (8.13), we get

1L (0T = I F U0 < 11397 + 1630 (8.28)
We shall first focus on &1 ,. We need the following interpolation-type inequality
7,02 7,02
H‘F( )‘ q, 50+g \ HH ’F( )”q So+a‘ + HHJ_‘F(U ) q, 507;0'
< NI FU)3ar + Ngo=sm | F(U )||q,sm+g- (8.29)
Combining (6.131), (8.29), (P1)n, (8.4) and (8.27), we obtain
16397 <A IF O ST F O (14 194172,5)
— o o On S m
yINT (N IFUIEST + N~ IF ) ers) IF OIS (14 Wl )
<0, 5( NZT TRy et fa ) (8.30)

We now turn to &, and &3 ,,. Applying (6.132) with b = s,, — sp and using (8.4), (P2), and (P3)n, we
get

— S0—Sm On
o7 o7 N (PR P )

q,50+0

SN (IF U)o

+eNTIWIS I F OIS )

s0++2pu1+2—sm so+o+2u1+2—2a1—sm,
5 O*SNno FH1 —|—C*€Nn0 M1 3a1

5 O*€N£0+E+§H1+2*Sm' (831)
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8. Proof of the main result

Using the same techniques together with (6.133), (6.94), (8.2) and (8.4), we infer

) n s Sm - B O"
A (R A S EA R S AT M
7,027
+5")/ 4N(1)112N HZHH ‘F( )lqsoibl»a'
< C.c ( 50+g'+3,u,1+2 Sm +N0'+1 n2—3a 1) ) (832)

Putting together (8.28), (8.30), (8.31) and (8.31), we obtain
4y — 2
L, (L T,y — )L, F(U,) [0 < CChe ( NZ TRy ot imt o N:{“*”W“l) . (833)
For n = 0, we deduce from (8.3),(8.4) and by slight modifications of the preceding computations

Mo (Lo To — Id)Io F (Vo) 4. so1 <&, 0||Z’so1 + || 62, 0||q7501 + (|3, 0||q 50"
Sy ey 4 (e NG T + ey
<

ey “. (8.34)

~

> Estimate of (LI, — II; Ly,) T, 11, F(U,). Combining (6.55) and (6.21), we get for H = (J,@) with
J=(6,1,2),
LoH =w-8,3 — (0,0,0L(N)Z) — ed; Xp_ (in)T — (@,0,0). (8.35)

Using (8.18) and the fact that w - 9, and 9yL(A) are diagonal leading to [HrJL_v w0y = [HvJ{» 9L(A)] =0,
one has for H = (3, Q),
(L JIE —YIEL,) H = —&[di Xp_ (in), TIF]T.

In view of Lemma 6.3-(ii), Lemma A.6, (8.13) and (P1),, we get

(LTt — L) H]7O < N (131795 + 13070 131705 ).

Consequently,

Neww(50) & || (LaTTy = 0y Ly) T ILF (U Ot < N~ [T, 1L, F(U Wl

+€N50 3m||j || |T I ]:( )Hq so+1'

q, Sm+o|

Hence, gathering (8.16), Lemma A.1, Sobolev embeddings, (8.4), (8.2) and (P1),, yields

Ncom(so) < 5771N80787H

0, F(U. )Hq smdTt2 T ”Jn”q Sm+<7+1”HnF( )”q 50+U
+ey NSO sm|\~’n||qu+o (HH FU, )|| so+U+1 + 1315 So+0'+1HH F(U. )”q SO+U)

SNz (|F W), I F W)l ) -

q,80+0

+Wallys

q, 57n+0' q,8m+0

Applying Lemma A.1-(ii), (P2), and (6.94), we infer

(1L, F (U, )||qso+g NT|F @)
< C.eNTNT%
<C*£N37%al.
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Added to (8.1), (8.27) and (P3),,, we obtain for n € N,

5,027

[(LoTLE — TTE L) T I F (U [hart € CC,e N7 Him+8=am, (8.36)

> FEstimate of Q. We apply Taylor formula together with (8.20) leading to

1
Qn = / (1- t)dia]:(Un + tHyp1)[Hpg1, Hyy1]dt.
0

Thus, (8.35) and Lemma 6.3-(iii) allow to get

2
HQAM%”ISE( wﬁa+nﬂnﬂmﬁﬁg)(wu+mwgy). (8.37)

Combining (8.14), (8.16), (8.22) and (8.23), we find for all s € [s, 5]

4y
'Yvon+1

||Hn+1||% "+1 - ||HnTan]:(U )
S (I F 05 + 13l T F ) 170 )

_ Ied ,027 G
S (NTIFODIES + NE 330 I F U I35 )

SN (e + (IWallgd) - (8.38)

In the same way, according to (8.17), (P1),, and (P2),, we infer

'Yvoi’y _ vl
o SATINTIFUL) e
< C.ey 'NIN 4. (8.39)

”ﬁnJrl

Choosing € small enough and using (P1),, and (8.39), we find

-1 20 77 7,007
Ceey™ 4+ Nyl Hngallgso
1+ Cey 'NIT2N 4

7,05,
||W | q,so+2 + ||Hn+1||q so++21 <
<

35—
14 Cey 'NZT27"

N

Now notice that (8.1) implies
aiy 2 3+

[\S][98)

7. (8.40)

Therefore, we obtain

80+2 + ||Hn+1||q 501+21 X 2.

Hence, plugging this estimate and (8.39) into (8.37) and using (8.2) and (8.4), we find
2

7,0, 7050

4,80 + < € (”H +1||q 30++2 )

2
@mmmﬁﬁ

SeC NFHN 20,

1@n

By using (6.94), we deduce when n > 1,

25+4—3%a;

IIQnIIq,SO"“ < CCieNy, (8.41)
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8. Proof of the main result

For n = 0, we come back to (8.38) and (8.3) to obtain for all s € [sg, 5]

~ oY _ o
[Hillgs Sy~ Mo F(Uo)I]

q,s+0
< Cueyt
Finally, the inequality (8.41) becomes for n = 0,

4y
7,00 3.—2
4,50 5 Cie”y™".

Qo

> Conclusion. Inserting (8.26), (8.33), (8.36) and (8.41), into (8.21) implies for n € N*

)
~ 7,00 50+25+2p1+1—sm T+1—pa—2 24—
||]:(Un+1)||q,80 < OC,e (N;o-I— otsp1+l—s + Ng-‘r po—35ai _’_Nnn Fa1
The parameters conditions stated in (8.1) give

so+20+ 2 +2+a; <
T a1 +2 < p
<

26 +5 tas.

Thus, by taking Ny large enough, that is € small enough, we obtain for n € N|

50420+ 21 +1—s,, 1 AT—
CN, 3 < N,

G+1l—po—3 —
CNy, 7759 ¢ INTo

264+4—4aq 1 Ar—
CNn 3 < gNn a17

which implies in turn that when n € N*,
4~y
= 7,05, _
[F(Unt1)llgso"™ < CueNy ™

However, when n = 0, we plug (8.26), (8.34), (8.36) and (8.43) into (8.21) in order to get

~ 4~ _ .3 B
IF@39 < OCue (NgtmHamsimem g2y 222)

From (8.45), one already has

S0+20+3p1+1l—sm 1 nr—ay
CN, < 3Ny ™

Therefore, we need at this level to take € small enough to ensure
C ey ?+e*y7?%) < 2Ny ™.

This occurs since (8.2) and (8.1) imply

1

O<a<2+a1.

Hence
7701 —a1
[F(U1)llg;so' < CueNg “*.

This completes the proof of the estimates in (P2),41.

).

(8.42)

(8.43)

(8.44)

(8.45)

(8.46)

» Extension and verification of (P1),,11 — (P3),+1. We shall now construct an extention of ﬁnﬂ

living in the whole set of parameters and enjoying suitable decay properties. This is done by using the

201



Part 1

C* cut-off function xn4+1 : O — [0, 1] defined by

1 in O®
Xn-i-l()‘vw) = nH
0 inO\ On+1

and satisfying the additional growth conditions
—1 |
Vae N al € [0,q], [10%uxnt1llLeo) S (VNG )
Next, we shall deal with the extension H,, ;1 of ﬁnH defined by

oy (w) 2 4 Xt En(w) - in O3,
m O\On-l-l

and the extension U,y of ﬁnH by
Un+1 £ Un + Hn+1~

We remark that
Hyt1 =Hyp1 and F(Upyr) = F(Upg1) in 0311

Looking at the first component of (8.49), one can write with obvious notations
Int1 = in + Tnt1.
By the induction assumption (P2),,, (8.48) and (8.19), one has
Sin(p) = in(—¢) and &Tn41(¢) = Int1(—¢)-

Thus
Sint1(p) = int1(=p)-

Using Lemma A.1-(iv) together with (8.47) and the fact that H,.1 =0in O\ Ofgrl, we obtain

_ o~ ’Oi“f
Vs > s0, [1Har3:) S N Hustllgis "
Applying (8.51) and (8.39) we deduce that for n € N*,

1Hos1 1755 < ON. q“l\Hn+1||qsoT;

< ONE*7 | o e

< OC,eny I NFTHT -5
From (8.1), we have
ag = %al —qa—20—-12>21.
Therefore, choosing € small enough, we obtain

1|l e 5 < CNg ' Cuey ™ N, 2
< Coey IN2,
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8. Proof of the main result

As for the case n = 0, we combine (8.51) and (8.42) to obtain, up to taking C, large enough,
IHL[7:9 < $C.ey " NG". (8.54)
We now set
Woi1 = Woy + Hyy, (8.55)

then by construction, we infer
Unt1=Uo+ Wpy1.

Moreover, applying (P1),, (8.54) and (8.53) and Lemma A.5, we infer

n+1

”W qso+a = ”Hl“q 50+J+Z”Hk”q so+o

< 3C.ev INE® + Cuey™! Z N
k=0

< 10,y INE® + CNy ' Chen™!

<

C.ey ING®.
This completes the proof of (P1),,+1. Now gathering (8.38), (8.51) and (P3),, allows to write

Wi 75 15 < I1Wh

ey FONT | Hy |17

q,8m+0o q,5m+ q,8m~+0

< Cien™ 1Nm 1t CC*'V_qua—mo (6 + [[Wa ||q s,n-i-a)

< OC,eny | NITHTHIHEm
B * n .
From (8.1), we can ensure the condition
qa+20+2 =&, (8.56)
in order to get

Wit 7€ 1o < ONy ' Cueny™ NI

¢,8m+0o
< Coey INM

by taking ¢ small enough and using (8.2). This proves (P3),+1 and the proof of Proposition 8.1 is now
complete. O

Once this sequence of approximate solutions is constructed, we may obtain a non-trivial solution by
passing to the limit. This is possible due the decay properties given in Proposition 8.1. Actually, we

obtain the following corollary.

Corollary 8.1. There exists g > 0 such that for all € € (0,eq), the following assertions hold true. We
consider the Cantor set G, depending on ¢ through v, and defined by

£ A

neN

203



Part 1

There exists a function

U : O — (T?*xR?x Hg) x R? x R4
\w) = (ioo()\,w),aoo(/\,w), ()\,w))

such that
V(A w) e Gl, FUx(Aw))=0.

In addition, i, is reversible and a, € W7 (O,RY) with
a(Aw)=w+r.(A\w) and [r]|7° < ey INE. (8.57)
Moreover, there exists a q-times differentiable function X € (Ao, \1) + w(\, g) € R? with
w(A,e) = —wrg(A) +7(N), I3 S e NG" (8.58)

and
YA€ C, ]-"(Uoo()\,w()\,s))) =0 and  a (N w()e)) = —wrq(N),

where the Cantor set C5, is defined by
ce 2 {)\ € o A1) st (Awhe) e ggo}. (8.59)
Proof. Putting together (8.55) and (8.53), we infer
Wast = WallZ:S = [ Hosa 128 < [ Huga 79,5 < Cuey 1N 22,

Thus, the telescopic series associated with the sequence (W),), o is convergent, so the sequence itself

converges. We denote its limit
We 2 lim W,, £ (Joo, Qoo — w, 0,0)

n—oo

and
Uy 2 (iomaoo, ()\7w)) =Uy + W

Passing to the limit in (8.50), one obtains the reversibility property
Sioo () = oo (=¢)-
By the point (P2),, of Proposition 8.1, we have for small &
V(\w) € GL, ]—'(ioo()\,w), Qoo (N w), (A,w),a) =0, (8.60)

with F the functional defined in (6.21). We highlight that the Cantor set G, depends on e through ~ and
(8.2). By the point (P1),, of the Proposition 8.1, we have

QoA w) =w+1:(A\,w) with ||r8|\g’o < ey INGE

We now prove the second result and check the existence of solutions to the original Hamiltonian equation.
First recall that the open set O is defined in (6.7) by

O= (Ao, A1) x% with % = B(0,Ry) for some large Ry > 0,
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8. Proof of the main result

where the ball % is taken to contain the equilibrium frequency vector A — wgq(A). According to (8.57),
we deduce that for any A € (Mg, A1), the mapping w — (A, w) is invertible from % into its image
oo (A, %) and we have

O=a\w)=wt+r.(\w) Sw=al(\0)=0+7.(\,0).
This gives the identity
/I'\E(Aa a) = 7rE(A7 w)v

which implies in turn after using successive differentiation and (8.57) that T. satisfies the estimate
[F113°° < ev™ ' NG (8.61)
We now set
w(Xe) £ at (N —wpq(\) = —wpq(A) +T(A)  with  T.(\) 2T (A, —wrqe(N)).
As a consequence of (8.60), if we denote
2 {reo ) st (Ahwhe) edr},
then we have

VA € C2, ]—"(Uoo (A,w(A,e))) ~0.

This gives a nontrivial reversible solution for the original Hamiltonian equation provided that A € C,.
Since all the derivatives up to order ¢ of wgq are uniformly bounded on [Ag, A1], see Lemma 5.3-(vi), then

by chain rule and (8.61), we obtain
IFl15°° S ey 'NG® and lw(-e)llg @ S1+erT NG S L. (8.62)

This ends the proof of Corollary 8.1. O

8.2 Measure of the final Cantor set

The purpose of this final section is to give a lower bound of the Lebesgue measure of the Cantor set C5,
constructed in Corollary 8.1 via (8.59). We show that this set is massive and asymptotically when & — 0
it tends to be of full measure in (Ag, A1). Note that Corollary 8.1 allows us to write the Cantor set C5, in

the following form

c=()C; where 2 {A €M) st (Aw(he) e Ag}. (8.63)
neN

The sets A) and the perturbed frequency vector w(\, ) are respectively defined in Proposition 8.1 and in

(8.57). The main result of this section reads as follows.

Proposition 8.2. Let qo be defined as in Lemma 5.5 and assume that (8.1) and (8.2) hold with ¢ = qo + 1.

Assume the additional conditions
T > qu

T > T1 + dqo (864)

1

v= qo+3"
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Then, there exists C > 0 such that
C2.| = (M — Ao) — Ceao.
In particular,

lim |C§o| = )\1 - )\0.

e—0

The remainder of this section is devoted to the proof of Proposition 8.2. We shall begin by giving
the proof using some a priori results. These results will be proved later in Lemmata 8.1, 8.2 and 8.3.
We first give a short insight about the strategy to prove Proposition 8.2. The idea is to measure the

complementary set of C5, in (Ao, A1). To proceed with, we write

(Mo, M)\ Co = (Ao, M)\ G U || (ea\Cayy)- (8.65)

n=0

The measure of each set appearing in (8.65) is estimated by using Lemma 5.6. We shall now give the

proof of Proposition 8.2.

Proof. By choosing Ry large enough, one can ensure using (8.58) that
Ve ()\0,)\1), w()\,e) E%:B(O,Ro)
Indeed, % contains by construction the curve A € (A, A1) — fwrq(A) and by (8.58) and (8.2), one has

sup  |w(A,€) + weq(A)] < Hf5||;”o < Cay‘lNgE = Ogl—all+aa)
)\E(}\o.)\l)

Now, the conditions (8.1) and (8.2) imply in particular

0<a<

1+qa
Hence, by taking e small enough, we find

sup |w(A, ) + wrq(A)] < E[79 < 1.

AE(Xo,A1)
As a consequence,
CS = ()\0, )\1)
By (8.65), we can write
(o A\ Co| <D [Ci N\ Co|
n=0

= i Sn. (8.66)

n=0

According to the notation introduced in Proposition 7.5 and Proposition 7.4 one may write

157" (A €) £ 52 (A w(Ne),in)
= Q)+t (N e) + 177 (N e), (8.67)
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8. Proof of the main result

with

POV E) 2 en(Me) — Q — IWKL (),
Cn()‘v 5) £ Cin ()‘7 w()‘v 5))7

" (A €) = r3e (N w(€),in).

Coming back to (8.63) and using the Cantor sets introduced in Proposition 7.5, Proposition 7.6 and

Proposition 7.2 one obtains by construction that for any n € N,

€ e _ (0) (. ; 1),
Ci\Coy = U Ry (in) U Rijiolin)  |J Ry (in), (8.68)
(1,5) €24 x2\{(0,0)} (1.4,40) €24 % (8§)2 (1.3)€zd x5¢
< N7 II<Nn [L<Nn

with

st w(he)- L jea(h o) < D)

Rigiolin) 2 {NECh st [w(he) -1+ > (N e) = 32" (A e)| < Tl

(Hr=

o) 10 < )

Notice that using the inclusion

W (0,C) = C17H(0, C)

and the fact that ¢ = qo + 1, one gets that for all n € N and (I, §, jo) € Z¢ x (S§)?, the curves

A= w(Ae) - L+ jen (N e),
A w(he) L+ ET(e) — i (A ),
A= whe) L+ p (A e)

have a C% regularity. Then, applying Lemma 5.6 combined with Lemma 8.3 gives for any n € N,

R ()| < 2 ()3 7
7141
(R )| S Gy )~ =7 (8.69)
. PN S Bk
‘Rl,j,jo(in) S0 (j — o) () T

Let us now move to the estimate of Sy and &; defined in (8.66) that should be treated differently from
the other terms. This is related to the discussion done at the beginning of the proof of Lemma 8.1 dealing
with the validity of the estimate (8.74). By using Lemma 8.2, we find for all k¥ € {0,1},

Sk

A

(0) ¢, . (1), .
> ‘Rl,j (i) + > R jjo (k)| + > Ry (k)| (8.70)
(1,7)€Z4x2Z\{(0,0)} (1,5.30) €EZE % (S§)? (OVISA S
[7ISCo (1), ILIS Ny, [3=3dol<Co (1), LIS Ny [FI<SCo (1), LIS N,
min(|j].li0 ) <ear ¥ ()7L
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Plugging (8.69) into (8.70) yields for all k € {0, 1},

1 L I —+1 . . 1 T “+1
skgw< Sl + 3 15— jol® (1) " )
[71<Co(l) [7—30|<Co(l)
min(|j|,[jgl)<eay V()L

v oL 11Tt
R D W FIECR() S

l71<Co (D)

Consequently, we obtain

xSy 77 ( DT Z<l>“‘1‘55> i (W (8.71)

Notice that the last estimate is obtained provided that we choose the parameters 71 and 75 in the following

way in order to make the series convergent
71 >dqy and T > T +dqo. (8.72)

This condition is exactly what we required in (8.64). Concerning the estimate of S,, for n > 2 in (8.66)

we may use Lemma 8.1 and Lemma 8.2, in order to get

0) - . 1),
Sn < E ’RZJ‘ (in)| + § R jjo (in) | + § Rl,j (in)|-
(1,5)€Z*xZ\{(0,0)} (1,3,50) €L X (S5)? (1L,7)ELH xS
[7ISCo (1), Ny 1 <[LISNn [3=301<Co (1), Np 1 <[L|SNn [i1<Co (1), Ny 1 <[U|<Nn

min(lj1,lio N <eay ¥y (DT
Remark that if |j — jo| < Co(l) and min(|j], [70]) < 7,41 ()™, then
max (|, [jol) = min(|j], [jol) + |7 — Jo| < v i1 (™ + Co{l) S 7)™
Therefore, (8.69) implies
Sn S ( PRGNS <l>“53> +yi Y ()T,
[U|>Np_1 [1|>Np_1 [U|>Np_1

Under the assumption, we obtain (8.72)

S8 < ymin (3 —v). (8.73)

n=2

Plugging (8.73) and (8.71) into (8.66) gives

(o a)\ €2 | 7 )

provided that the condition (8.72) is satisfied. The condition (8.64) implies that

min (3, L_ U) =X
g0’ 9o
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8. Proof of the main result

We then find, since v = € according to (8.2),
(Ao, M)\ €5 e
This completes the proof of Proposition 8.2. O
Now we are left to prove Lemma 8.1 and Lemma 8.2 used in the proof of Proposition 8.2.
Lemma 8.1. Let n € N\ {0,1} and | € Z% such that || < N,,_1. Then the following assertions hold true.
(i) For j € Z with (1,5) # (0,0), we get R (in) = @.
(ii) For (j,jo) € (S§)* with (1,) # (0, jo), we get Ryjjo(in) = 2.
(iii) For j € S§, we get R( )( n) = .

(iv) For any n € N\ {0,1},

0),/. . 1),.
Co\Ce,, = U Ry (i) U U Rizalin)U | R ().
(1,5)€24xZ\{(0,0)} (1,5,50) EZE X (S§)? (1,§)€ZA xS
Np_1<[l|<Np Ny _1<|l[<Nn Nyp_1<|l[<Nn

Proof. In all the proof, we shall use the following estimate coming from (8.11), namely, for all n > 2,

||Zn —lp— 1”(1 Sh+oa < ||Un —Up— 1”(1 Sh+oa
< ”H ”q sh+toa

< Cuey N %, (8.74)

The fact that the previous estimate is valid only for n > 2 is the reason why we had to treat the cases of

Sp and &7 sparately in the proof of Proposition 8.2.

(i) We begin by proving that if |I| < N,—1 and (I, j) # (0,0), then R(O)( ) C R(O)(zn 1). Assume for a
while this inclusion and let us check how this implies that R(O)( n) = &. In view of (8.68) one obtains

Ry (in) € R (in-1) € C5_y \ CE.
Now (8.68) implies in particular Rl(?j) (in) C C;, \ C5 41 and thus we conclude
R (in) € (C5\C ) =
l,](Z ) ( \ n+1) (n 1\ )

We now turn to the proof of the inclusion. Let us consider A\ € Rl(?j) (in). By construction, we get in

particular that A € C; C C;_;. Moreover, by the triangle inequality, we obtain

WX &) L+ jen1(Ae)] < [whe) - L+ jen(h )| + [il|en(As€) = cnmr(Ns€)|

4
< et 4 Olllles, — ci I°-

Therefore, combining (7.21), (8.74), (8.2) and the fact tht o4 > 2, we infer

7,0
q,5n+2

WX &) L+ jeat (X )| < 4 Ce(glin — in

< Dt 4 OGNS,
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In view of the definition of ~,, in Proposition 8.1-(P2),, one gets
Jeg >0, YneN, .. —7, <—cy"27"
Now remark that (8.64), (8.1) and (8.2) imply
2—a—av>1 and as >, (8.75)

and therefore one gets sup 2" N, “37™ < oco. It follows that, for € small enough and |I| < N,,_1,
neN

W, €) -1+ jenr(Ae)| < 2B 4 o ( —deg + CsQ"Nn‘ff*ﬁ)

Consequently A € Rl(,oj)(in,l) and this achieves the proof.

(ii) Let (4,Jo) € (S§)? and (1, 5) # (0,70). If j = jo then by construction Ry j, j, (in) = Rl(f)o) (i) and then
the result follows from the point (i). Now let us discuss the case when j # jo. Similarly to the point (i), in
order to get the result it is enough to check that Ry ; j, (in) C Rijjo (in—1). Let A € Ry j j, (i) then from
the definition of this set introduced in (8.68) we deduce that A € C5 C C5_; and

whe) L+ =" T N e) — e T (A e)| < Rmldsdel oy gn s (), (8.76)

where we set
oo,n co,n oco,n—1 oco,n—1
Q?,jo()‘ﬂg) £ ‘:u] ()‘76) — My, (/\75) —Hy <>\;5) +Mj0 ()\,E)’

Then coming back to (8.67), one gets

Q;L,jo(Aa 5) < |j - ]0| |T1’n(>‘a 5) - Tl’nil()‘v €)| + |T.?7n(A7 5) - 7,90771*1(A7 €)|
+ [ (N e) = T (e (8.77)

Jo

In view of (7.170), (8.74), (8.2) and the fact that o4 > o3, one obtains

— y ) ’O
[P (ve) =t (N e)] S ellin — inma 5 1,
g2y IN, %

S
< erN, 2.
In a similar line, using (7.241), (8.74) and (8.2) yields

) ’ _1 B ) J 70
777" o) =T ) S e i = inallg, o,
Sely AN

< — o) N
Inserting the preceding two estimates into (8.77) gives

0} (A e) ST (j — jo) N, 3. (8.78)

n—1
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8. Proof of the main result

Putting together (8.78) and (8.76) and using y,+1 = 7, — 27", we deduce

lw(X,e) - 1+ pS" T (N e) — po" (A o) <27’z§§%§j°>—6“<j—jo>2’”<l>’”
+ Ce21=0(j — o) N2,

Since |I| < N,,_1,we can write
et )T 4 CRITONTE < 2Ty (14 O N ),
Now remark that (8.1) and (8.2) yield in particular
as >T1 and a < % (8.79)
Hence, we find for € small enough
VneN, —1+4Ce? 392" N 2172 0

and therefore

(X)L S () — ST (6| < Rl

Consequently, A € Ry ; j, (in—1) and the proof of the second point is now achieved.

(iii) Let j € S§. In particular, one has (I,5) # (0,0). We shall first prove that if |I| < N,_1 and then
R(l)( n) C R(l)(zn 1). As in the point (i) this implies that R(l)( n) = &. Remind that the set R( )(zn) is
defined below (8.68). Consider A € R 1)(zn) then by construction A € C; C C;_;. Now by the trlangle
inequality we may write in view of (7.242) and (8.74) and the choice v = &

whe) -1+ p" (A e |+|,u°°"(>\ ) —pg " Y\ e)]

whe) - L+ a2 <
<’Y

+1(7)

ﬂ([ + Cey™ 1|J|||Zn_ln 1”
) + G ()N,

n—1

q,5p+04

//\

Since Y41 = Yn — 227" 1 and |I| < N,_1, then

o)1 0] € 4 (1 4 o )
Notice that (8.79) implies in particular
ag>7 and a<3 (8.80)
and taking € small enough we find that
VneN, —14g2 3entiy-atn (g,

which implies in turn that

lwhe) - 1+ u>" M ()| < Tl

Consequently, A € Rl(lj) (in,—1) and this ends the proof of the third point.
(iv) It is an immediate consequence of (8.68) and the points (i)-(ii) and (iii) of Lemma 8.1. O

The next result deals with necessary conditions such that the sets in (8.68) are nonempty.

Lemma 8.2. There exists ey such that for any € € [0,e0] and n € N the following assertions hold true.
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(i) Let (I, ) € Z x Z\ {(0,0)}. If R\ (in) # &, then |j| < Co(l).
(i) Let (1,7, jo) € Z x (S§)*. If Rujjo(in) # D, then |j — jo| < Coll).
(iii) Let (1,j) € Z? x S§. If R\ (in) # &, then |j| < Co(l).

i) Let (1,7,70) € Z% x (S§)?. There exists ca > 0 such that if min(|j|, [jo|) = coy, Y ()™, then
0 n+1

Riggolin) C RE)_ . (in)-

Proof. (i) Assume R( ;i (in) # @, then we can find A € (A9, A1) such that, using triangle and Cauchy-

Schwarz inequalities,

lecn (AN )19] < 4Ll (7™ + |w(Xe) -]
<Ajlrn +C0)
< 8¢

i+ e,
where we have used v = &% and the fact that (A, &) — w(A, &) is bounded. Notice that

en(Ne) = Q4+ LWVK (A + 7" (\e) and \ (iilf/\ : (Q+ L(AWK1(N) > Q.
€(Ao,A1

Then, from (7.17), (7.239) and Proposition 8.1 (P1),,, we obtain

Vk € [0,q], sup sup |O3r1" (N e)| <y sup |rt7€
neN AE(Ao,A1) neN

Ev_k

gl-ak, (8.81)

AR AN

Thus, by choosing € small enough, we can ensure by (8.81)

inf inf Me)l > 2.
7112N>\6(1)I\t,>\1)|cn( ) =5

Hence, by taking e small enough we find that |j| < Cy(l) for some Cy > 0.

(ii) In the case j = jo we get by definition Ry j, . j, (in) = Rl( 0)( n), and then we use the point (7). In what

follows we take j # jo and we assume that Ry ; j, (in) # @ then there exists A € (Ag, A1) such that

5" (As€) = gy (A )] < 29 ld = Gol ()77 + |w(X, ) -]
< 2Yn41li — Jol + C(l)
< 4de

17 = dol + C).

Similarly to (8.81), we can prove

Vk € [0,q), supsup sup |jl|oXr7"" (N )| <" sup sup |j[|r7 "7
neN FESH Ae(Xo, A1) neN jES]
5 €,y—1—k
< glmall+k), (8.82)
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8. Proof of the main result

By using the triangle inequality, Lemma 5.3-(v), (8.81) and (8.82) we get for j # jo,

157" (A €) = g ™ (N )] = 195(N) = Qi (W] = [ (A €)1 = ol = 757" (A, ) = g™ (A, €))

=
> (Co— C")|j — jol
>

o1 — jol

provided that e is small enough. Putting together the previous inequalities yields for € small enough
|7 — do] < Co(l), for some Cy > 0.

(iii) First remark that the case j = 0 is trivial. Now for j # 0 we assume that Rl(lj) (in) # @ then there
exists A € (Ag, A1) such that

157" (N e)] < Y [T ™ + Jw (X e) -
< 2]+ C(I).

Using the definition (8.67) combined with the triangle inequality, Lemma 5.3-(iv), (8.81) and (8.82), we
get

157" (N e)l = QL = 13l (A e) = 7" (A )]

>
> Qlj| - C=177j].
Combining the previous two inequalities and the second condition in (8.80) implies

(Q— Ce'~* — 2e%)|j| < C(I).

Thus, by taking ¢ small enough we obtain [j| < Cy{l), for some Cy > 0.
(iv) First notice that the case j = jo is trivial and follows from the definition (8.68). Let j # jo and
A € Ry jjo(in), then by definition

Jwh,€) - T+ (A ) — WSS (A e)| < Zmializdol,
Combining (8.67) and (5.14) with the triangle inequality we infer

lw(\ &) - 1+ (G —do)en(N )| < Jw(Nse) - 14 5" (N e) — 3™ (A, €)|
+ 5 (NEG(N) = GoLiy (WK (V)] + |57 (A e) — 50" (A, ).

Thus, we find

(W) 1+ (G = do)en(h, )] SZREZ 4 ILONK () — Ty (VG (V)
+ |7";->°’"()\,5) - r;?’"()\,s)|. (8.83)

Without loss of generality, we can assume that |jo| > |j| and remind that j # jo. Then, from (5.24) and
(5.22), we easily find

31N K (A) = doLig (N K jo (V] < G (N K (A) = Lig W) Ko (V)| + 15 = dol [ 1 (V) K jy (V)]
< U= JO> .
= min(|j],[5ol)
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Applying (7.239), we find for j # jo € S§,

[P () = s (o) <G (13l + Lol )

J Jo
<Cel—e_li—jo) .
<O ™ Smmhon

Plugging the preceding estimates into (8.83) yields

|w(Ae) - L+ (G = Jo)ea(A )| < Zratplizdol 4 o Uul

Therefore, if we assume min(|j|, |jo|) = %07;$1 ()™ and 2 > 71, then we deduce
. . 4~V s
|0\ &) L+ (G = Jo)en (N, )| < el

This ends the proof of the lemma by taking co = % O

We shall now establish that the perturbed frequencies w(\, £) satisfy the Riissmann conditions. This is
done by a perturbation argument from the equilibrium linear frequencies wgq(A) for which we already

know by Lemma 5.5 that they satisfy the transversality conditions.

Lemma 8.3. Let qy, Cy and pg as in Lemma 5.5. There exist €y > 0 small enough such that for any

e € [0,eq] the following assertions hold true.

(i) For alll € Z¢\ {0}, we have

inf 8k )\, .l > PO<Z>'
el g 13 A ) D] > 25

(i3) For all (1,5) € Z4T1\ {(0,0)} such that |j| < Co(l), we have

Vn € N, inf (W, &) -1+ jen(Ne))| = 224l
" el g A (@O ) L Jen(A ) > 25

(iii) For all (1,7) € Z% x S§ such that |j| < Co(l), we have

Vn € N, inf O (w(N, &) - 1+ pS™(\ > £olh)
" el o |05 (wA ) L 1", 2)] > 25

(iv) For all (1,7, jo) € Z% x (S§)? such that |j — jo| < Co(l), we have

Vn € N, inf O (wNe) 1+ pm (N e) — u=m (N, e))| = 2oL
n Aeﬂﬁ,xl]kéﬁin' V(we) L+ p37"(Ae) — 5" (A )| = 2%

Proof. (i) From the triangle and Cauchy-Schwarz inequalities together with (8.62), (8.2) and Lemma
5.5-(i), we deduce

A (w(\e) -1 i N — A (T-(\) -1
ké?g?OHIA(W( ,€)-1) ] kg[[lgf;o“,\(qu() )| kgﬁgzﬂh(r() ) |

WV

> po(l) — Cey™ " TING(D)
> poll) — Cel—al+atam ()
()
2 PO2
provided that € is small enough and
1—-a(l+q+gqa)>0. (8.84)
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8. Proof of the main result

Notice that the condition (8.84) is automatically satisfied by (8.2) and (8.1).
(ii) As before, using the triangle and Cauchy-Schwarz inequalities combined with (8.62), (8.81), Lemma
5.5-(ii) and the fact that |j| < Co(l), we get

(e |08 (WA, €) - 1+ jen(N€)) | = e |08 (wra(N) - T+ (2 + L(NKL (V)|

— O (Fe(N) - 1+ jrim (N,
kren[[gf;ﬂlx(rs() grtt(\e)) |

> po(l) — Celmaltratad )y _ cel=ad|j|
2 P

o(l)
2

for € small enough and with the condition (8.84).
(iii) As before, performing the triangle and Cauchy-Schwarz inequalities combined with (8.62), (8.81),
(8.82), Lemma 5.5-(iii) and the fact that |j] < Co(l), we get

max |8’)f (w(X,e) - 1+ ,u;’o’”()\,s)ﬂ > max |95 (weq(N) -1+ Q;(N)) |

ke[0,q0] ke[0,90]
k(= - 1,n oo,n
— kgl[[%,)f]]] |OY (T(N) - T+ jrt™ (N e) + r; (Ae)]
> mll) - Cel-e ) — cgt-etita
1
2 P02< >

for e small enough with the condition (8.84).
(iv) Arguing as in the preceding point, using (8.81), (8.82), Lemma 5.5-(iv)-(v) and the fact that
0 < |7 — jo| < Co(l) (notice that the case j = jo is trivial), we have

max |95 (w(X, ) - 1+ p5°" (N e) — 5™ (A e))| = max |95 (weq(A) -1+ Q5(X) — Q;,(V))]

ke[0,q0] ke[0,q0]
= e [O4(E.00) 1 (= do)r™" (A 2) 155" (0 2) =155 (1, 0)
> poll) — Cel—a(l+q+qa) {1y — Cel—a(+aq) l7 — Jol
(1)
2 PO2
for € small enough. This ends the proof of Lemma 8.3. O
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Part 11

L’essence des mathématiques, c’est la liberté.

GEORG CANTOR

This part is devoted to the proof of Theorem 2.2. We also refer to Theorem 9.1 below for a more
precise statement. This result is the subject of the following preprint [89] which is submitted to the journal
Annals of PDE and entitled "Boundary effects on the emergence of quasi-periodic solutions for Euler

equations”.

Abstract

We highlight the importance of the boundary effects on the construction of quasi-periodic vortex patches
solutions close to Rankine vortices and whose existence is not known in the whole space due to the
resonances of the linear frequencies. Availing of the lack of invariance by radial dilation of Euler equations
in the unit disc and using a Nash-Moser implicit function iterative scheme we show the existence of such
structures when the radius of the Rankine vortex belongs to a suitable massive Cantor-like set with

almost full Lebesgue measure.

9 Introduction

We shall now present the second result of this thesis and discuss the key ideas of its proof. We first

consider a polar parametrization of a patch boundary close to the stationary solution bID, namely

2(t,0) 2 R(b,t,0)e'’,  R(b,t,0) £ /b2 + 2r(t,0).

The quantity of interest is the radial deformation r assumed to be of small size. We emphasize that our
ansatz is slightly different from the one in the papers [87, 101] where the parametrization is written in a
rotating frame with an angular velocity ) to remedy to the degeneracy of the first frequency. This is not
the case in our context due to the non-degeneracy of the first frequency according to (1.22). As explained
in Lemma 10.1 and Proposition 10.1, the radial deformation solves a nonlinear and nonlocal transport

PDE which admits a Hamiltonian formulation in the form
or = $09VE(r), (9.1)

where F is the kinetic energy related to the stream function given by (1.4). In view of Lemma 11.1, the

linearized operator at a state r close to the Rankine patch bID takes the form
L, =0, + 0 (w 4L, — sr), (9.2)

where

V;“(ba tﬂ 0) é % /1[‘ 22%2:;:2; d77 - R(b]:tﬂ) /ﬂ‘log (Ar(b7 ta 07 77))877 (R(b7 ta 7]) Sin(n - 0))d77 (93)
- m /T log (By(b,t,6,1))0,(R(b,t,n)sin(n — 0))dn, (9.4)

L, is a nonlocal operator in the form

L. (p)(b,t,0) é/p(t,n) log (A, (b,t,0,n))dn, A.(bt,0,n) 2 |R(b,t,0)e’ — R(b,t,m)e"| (9.5)
T
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9. Introduction

and S, is a smoothing nonlocal operator in the form

Sr(p)(b,tﬁ)é/p(tm)log(Br(bJ,@,n))dm B.(b,t,0,m) = |1 — R(b,t,0)R(b,t,n)e " V| (9.6)
T

The operator L, is of order zero and reflects the planar Euler action. Moreover, we observe two boundary
effects of D. The first one is quasi-linear in the transport part through the last term of V., but with a
smoothing action. The second one is given by the operator S, which is smoothing since it involves a

smooth kernel. At the equilibrium state r» = 0, the linearized operator is a Fourier multiplier given by
Lo =0+ 309 + 0K+ — Koy -,
where
K1(0) 2 2log (sin® (£)) and K p(0) £ log (|1 — b%€?]).

Notice that the convolution with the kernel 9gK; 5 is exactly the Hilbert transform in the periodic setting.

From direct computations, we may show that the kernel of L is given by the set of functions in the form

(t,0) — Z rjei(jﬁfﬂj(b)t)’
JEL*

where

Vj e Z*, Qj(b)é%(j)ﬂﬂ—l—s-bm‘), (9.7)

where we denote by sgn the sign function. Consider a finite number of Fourier modes
S={j1,....ja} CN* with 1<ji1<...<jag, (d€N").

Then, from Proposition 11.1, we deduce that, for any 0 < by < by < 1, for almost all b € [bg, b1], any
function in the form
r:(t,0) — er cos(j0 — Q;(b)t), r; €R
JEs

is a quasi-periodic solution with frequency wgq(b) = (£2;(b));es of the equation Lor = 0 which is reversible,
namely r(—t, —60) = r(¢,0). The measure of the Cantor set in b generating these solutions is estimated
using Riissmann Lemma 5.6 requiring a lower bound on the maximal derivative of a given function up
to order qo. In our case, the value of ¢q is explicit, namely gy = 2j4 + 2 which is due to the polynomial
structure of the Q;(b). The aim of this part is to prove that these structures persist at the nonlinear level,

more precisely, our result reads as follows.

Theorem 9.1. Let 0 < by < by < 1, d € N* and S C N* with |S| = d. There exists g € (0,1) small
enough with the following properties : For every amplitudes a = (a;)jes € (Rj_)d satisfying

|a‘ < €0,
there exists a Cantor-like set Coo C (bg,b1) with asymptotically full Lebesque measure as a — 0, i.e.
lim |Coo| = bl - bo,
a—0
such that for any b € C, the equation (9.1) admits a time quasi-periodic solution with diophantine
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frequency vector wpe(b,a) £ (w;(b,a));es € RY and taking the form

r(t,0) = Z a; cos (jO + w;(b,a)t) + p(wpe(b, a)t,0),
j€ES
with
wpe (b, a) —> (=9;(b))jes;

a—0

where Q;(b) are the equilibrium frequencies defined in (9.7) and the perturbation p : T4t — R is an even

function satisfying for some large index of reqularity s depending only on the set S,

Ipllie(rors = oflal):

We shall now sketch the main steps used to prove the previous theorem. First remark that small divisors
problems already appear in the proof of Proposition 11.1 to find quasi-periodic structures at the linear
level from the equilibrium. We can invert the linearized operator at the equilibrium with some fixed loss of
regularity. Hence, we need to use a Nash-Moser scheme to find quasi-periodic solutions for the nonlinear
model. To do so, we must invert the linearized operator in a neighborhood of the equilibrium state. Since
L, has non constant coefficients, the task is more delicate. The basic idea consists in diagonalizing, namely
to conjugate to constant coefficients operator. Actually, we may follow the procedure presented in [21],
slightly modified in [87, 101], where the dynamics is decoupled into tangential and normal parts. On the
tangential modes, we introduce action-angles variables (I,4) allowing to reformulate the problem in terms

of embedded tori. More precisely, we shall look for the zeros of the following functional

w - 0,0(p) —a — edrP(i(p))
Fli,a,b,w,e) £ w - Op1(p) + €Dy Pe(i(y))
w - 0,2(0) — Bp[L(b)2(¢p) + VP (i(¢))]

It turns out that it is more convenient to introduce one degree of freedom through the parameter o which
provides at the end of the scheme a solution for the original problem when it is fixed to —wgq(b). Given any
small reversible embedded torus ig : ¢ — (9o(), Lo(¢), 20()) and any oy € RY, conjugating the linearized
operator d; o F (ig, ) via a suitable linear diffeomorphism of the toroidal phase space T4 x R¢ x Li, we
obtain a triangular system in the action-angle-normal variables up to error terms. To solve the triangular
system, we only have to invert the linearized operator in the normal directions, which is denoted by
Ew. This is done using KAM reducibility techniques in a similar way to [7, 33, 87, 101]. According to
Proposition 13.1, we can write
Lo =T, (Lo — cO)R)IIE,,

where HSLO is the projector in the normal directions, R is an integral operator and L., is defined by (9.2).
First, following the KAM reducibility scheme in [11, 64, 101], we can reduce the transport part and the

zero order part by conjugating by a quasi-periodic symplectic invertible change of variables in the form

Bp(p,p,0) = (1 + 0011, @, 9))1)(#, ©,0+ B, @,0)).

More precisely, as stated in Proposition 13.2, we can find a function V;>° = V;>°(b,w) and a Cantor set

oz {eweo st fwi+vEew| > 52
(l,j)emgv\{(om}
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in which the following decomposition holds
9371557”% =w- 8¢ + Vzioaa + 89/C17b * o — a@]CQJ) * -+ OpRer + E?L,

where R, is a real and reversibility preserving Toeplitz in time integral operator enjoying good smallness
properties. The operator EO is an error term of order one associated to the time truncation of the Cantor
set OL"1 (o). Notice that N,, is defined by

N,=N®" with No> 1.
Then, we project in the normal directions by considering the operator
P, = g, B3, .
Therefore, in view of Proposition 13.3, we obtain the following decomposition in O%7} (io)
B, PBL = w0y + Do+ R +EL 2 L +EL,

where %y = (iud (b, w))jese is a diagonal and reversible operator and %y = Ilg; Zollg, is a real and reversible
Toeplitz in time remainder integral operator in OP.S™ in space and satisfying nice smallness properties.
The term E! plays a similar role as the previous one E2. The next goal is to reduce the remainder term
Hy. For this aim, we implement a KAM reduction process in the Toeplitz topology as in [101, Prop. 6.5].
The result is stated in Proposition 13.4 and provides two operators ®,, and Z,, £ (ip5° (b, w)) jesg, with

9~ a diagonal and reversible operator whose spectrum is described by
Vi€eS§ ub,w) =) +5(Vid(bw) — 3) +15°(b,w),
such that in the Cantor set

o) s () {0w) e0uno) st w4 pRbw) - bw)| > 20

(L.d:d0) €24 x (8§)2
(1,5 =30)<Nn
(1.3)#(0.50)

the following decomposition holds
O LB =w -0y + Do +E2 2 Loy +E2.

Now, we can invert the operator .Z,, when the parameters are restricted to the Cantor set

AL )2 () {(b,w)e@ s.t. \w~z+u;.°(b,w)\>g§22}.
(Lg)ezd xsg
[L|I<Nn

Therefore, we are able to construct an approximate right inverse of Ew in the Cantor set
G (i) & OLT(i0) N OLT ™ (i0) NALT (o)

We refer to Proposition 13.5 for more details. Now we can implement a Nash-Moser scheme in a similar
way to [33, 87, 101] to find a solution (b,w) — (ico(b,w), so(b,w)) to the equation F(i,a,b,w,e) =0
provided that the parameters (b,w) are selected among a Cantor set GI which is constructed as the

intersection of all the Cantor sets appearing in the scheme to invert at each step the linearized operator.
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To find a solution to the original problem we construct a frequency curve b — w(b, €) implicitly defined by
solving the equation
Qoo (D, w(b,€)) = —wpq(b).

Hence, we obtain the desired result for any value of b in the Cantor set
c 2 {b € (bo,b1) st. (buw(be)) e ggo}.

Then, it remains to check that this set is non-trivial. This is done by estimating its measure using
perturbed Riissmann conditions from the equilibrium. In Proposition 14.2, we find a lower bound for the

measure of C5_, namely

ICE.| = (by — bo) — Ce®  for some § = 6(qo,d, 1, 72) > 0.

10 Hamiltonian reformulation

In this section, we shall write down the equation governing the boundary dynamics. For that purpose, we
shall consider a polar parametrization of the boundary and see that the radial deformation in there is

subject to a nonlinear and nonlocal Hamiltonian equation of transport type.

10.1 Equation satisfied by the radial deformation of the patch

Given b € (0,1), consider a vortex patch ¢ — 1p,, near the Rankine vortex 1pp with a smooth boundary

whose polar parametrization is given by

Nl

2(t,0) 2 (0% + 2r(t,0))* €, (10.1)

where r is the radial deformation assumed to be small, namely |r(¢,0)] < 1. In the sequel, we shall

frequently use the following notations

R(b,t,0) = (b° +2r(t, 9))% , (10.2)
Au(b,1,0,m) 2 |R(b,1,0)¢ — R(b,t,n)e™]|, (10.3)
Br(b,t,0,1) 2 |1 = R(b,t,0)R(b,t, ). (10.4)

The equation satisfied by r is given by the following lemma.

Lemma 10.1. For short time T > 0, the radial deformation r, defined through (10.2), satisfies the

following nonlinear and nonlocal transport PDE:

V(t,0) € [0,T] x T, 8r(t,0)+ Fy[r](t,0) =0, (10.5)
where
Fylr] & —F)[r] = F[r] + Flr], (10.6)
Filr) £ 40nr(e.0) [ felbian, (10.7)
Fllr) & /T log (Ar(b,t,0,1))05, (R(b,t,e)R(b,t,n) sin(n — 9)>dn, (10.8)
F2r] 2 /Tlog (Br@,t,e,n))agn(% sin(n — 9)>d77, (10.9)
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where R(b,t,0), A.(b,t,0,n) and B,(b,t,0,n) are given by (10.2)-(10.4).

Proof. We start with the vortex patch equation. Denoting n the outward normal vector to the boundary

of the patch, the evolution equation of the boundary can be written as
0¢z(t,0) - n(t, 2(t,0)) = —0p W (¢, 2(¢,0)).

For a detailed proof see for instance [99, p.174]. Since n(t, z(t,6)) = —19pz(t,0) (up to a real constant of

renormalization) then the complex formulation of the vortex patch equation is given by
Im (@z(t, H)W) — 9pW(t, 2(1,0)).
Using the parametrization (10.1), one easily checks that
Im (8tz(t,9)m> = —0,r(t,0).
Thus, the vortex patch equation writes in the following way
Or(t,0) + 0p W (t, z(t,0)) = 0. (10.10)

Now we shall compute 9p®¥(t, z(t,0)). Using complex notations, we have

e (¢, 2(t,0)) = VE(t, 2(t,0)) - Dpz(t, 0) = 2Re (aw\p(t, At 0))W) . (10.11)

Recall, from (1.4), that the stream function ¥ writes

YweD, Y(tw) =4 /D log (Jw — &) dA(€) — ﬁ/ log (|&w — 1[*)dA(&). (10.12)

t

Let € > 0. We set
J&8) 2 €=m)[1og (J§ ~ wl+¢) = 1] = (€~ L) [tog (11 - wEf?) —1].

Then

Oefe(€,€) =log (jw — £* +¢) — — log ([€w —1P%).

¢
w— P +e

Using the complex version of Stokes’ Theorem,

21/&f6§5d14 / f.(¢, )i,

then passing to the limit as € goes to 0, using in particular dominated convergence theorem, we obtain

Witw) =g [ @ w)los (e wP) ~1]de— g [ €= 3) [log (1 - wEP) - 1]ae

Performing the change of variables £ = z(t,n), given by (10.1), and using the notation (A.3) we can write

W(tow) = [ (3(0n) =) 1og (1(t.) — w?) — 1]0,5(e. )
— %/T( (t,n) — 7) [log (|1 —wz(t,n)| ) 1}&72(1&, n)dn.
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It follows that
aE‘Il(t7w) = _% Alog (|Z(t77]) - ’LU|2) anz(t>77)d77
1 (10.13)

%/E (z(t,m) - %) [ﬁ + %} Onz(t,m)dn.

gll-

Direct computations lead to

Zg,n;}@ z(t,n) = 0y [bg(IZ(t,n) - %\2) +log(|w|2)} (E(t,n) - %) — 9,7(t, ).

2L, M

—

EHHE\H

Inserting this identity into (10.13), integrating by parts, using the morphism property of the logarithm
and the periodicity imply

W (t,w) = — 1 / log (|2(t, 1) — w]2) By=(t, m)dn

1
4k [ o (11 = w2 (. )P) 0,50 m) =g (10.14)

/ (1, m)y(t,m) .
T

*:\H

As a consequence, one gets

2Re(8ﬁ\11(t,z(t,@))@ﬂ(t,@)) = —1 [ log (|2(t,n) — 2(t,0)|?) Tm(8,2(t, ) D1, 0)

/T ))dn
+1 /T log (|1 — Z(t,6)=(t,n)[*) Tm <8,7,z(t7 " 80(?(9)9))
I

Tm <z(t o=t 2 Z(t’9)>dn.

dn

That is, by (10.11),
(2, =(t,0)) = 1 / log (|=(t, 1) — =(t.0)[%) 92, Tm (=(t, m)=(t, 6))
+1 /ng (11— 2(£,0)(t, m)|?) agnhn(zg’ Zan

N ;/Tlm(z(t,n)@nz(t’”) 6i§£,t7)))dn

From (10.1) we immediately get

Im(z(t,n)z(t,0)) = R(b,t,0)R(b,t,n)sin(n — ),
z(t,n)\ _ R(,t,0)
Im<z(t,9)) Rib,t,n) Sn=0)
Im(z(t,n)@nz(t,n) 82'(1(75’0()9)) = §2E27i Z;@ r(t,0) — Oyr(t,n).

Combining the last four identities with (10.10) and using the notations (10.1)-(10.4) we conclude the
desired result.

O

We look for time quasi-periodic solutions of (10.5); that are functions in the form
r(t,0) = r(wt,0),
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10. Hamiltonian reformulation

where r = r(p,0) : T9! — R, w € R%, d € N*. With this ansatz, the equation (10.5) becomes

w - 0ur (e, 8) + Fy[r](e,0) = 0. (10.15)

10.2 Hamiltonian structure

In this section, we show that the contour dynamics equation (10.5) has a Hamiltonian structure related to

the kinetic energy

B(r)(t) & —% [ wiesaac) (10.16)

which is a conserved quantity for (1.5). It is well-known that the bidimensional Euler equations admits a
Hamiltonian structure and we shall see here that such structure still persists at the level of the boundary

equation, which is a stronger formulation.

Proposition 10.1. The equation (10.5) is a Hamiltonian equation in the form
Or = 0pVH(r), where H(r)% 1E(r), (10.17)
and V is the L}(T)-gradient associated with the LZ(T) normalized inner product
<P17P2>L2(T) = AP1(9)92(9)d9~

Proof. In polar coordinates, the stream function, given by (10.12), at some point w € D writes

v B R(b,t,m) i ' N w— g
(t,w) = s G (w, l2€") ladladn  with G (w,€) £ log T —wi (10.18)

and kinetic energy F, in (10.16), reads

R(b,t.0) R(b,t.n) _ _
E()(t) = — /T /jr /0 ( /0 G(€1619,€261")€2d€2> (1de,dodn.

Differentiating with respect to 7 in the direction p and using the symmetry of the kernel

G(w,§) = G(& w)

yields

d,E(r)[p|(t) = -2 /T p(t,0) ( /T /O R(b’tm)G(R(b,t,e)eie,@ei") egdzzzdn> do
= —Q/Tp(t,e)\Il(t, R(b,t,0)e?)do.
Since d, E(r)[p] = (VE, p) () then
VE(r)(t,0) = —2% (t, R(b,t,0)e"). (10.19)

Finally, using (10.19) and comparing (10.17) with (10.10) we conclude the desired result. This achieves
the proof of Proposition 10.1. O

Now, we shall present the symplectic structure associated with the Hamiltonian equation (10.17). This

will be relevant later in Section 12.1 when introducing the action-angle variables. We shall also explore
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some symmetry property for (10.17). Observe that this latter equation implies

d

it 7000 =

Therefore, we will consider the phase space with zero average in the space variable L3(T) defined in (4.23).
The equation (10.17) induces on the phase space L2(T) a symplectic structure given by the symplectic
2-form W defined in (4.24). The Hamiltonian vector field is Xp(r) = 0pVH(r) is defined similarly to
(4.25). We shall now look at the reversibility property of the equation (10.17). Using the change of

variables  — —n and parity arguments, one gets
Fb o =-So Fb,

where F}, is given by (10.6) and . is the involution introduced in (4.27). Then we conclude by Lemma
10.1, (10.17) and (4.28) that the Hamiltonian vector field X satisfies

Xgos =—-Y0Xy.
Thus, we will look for quasi-periodic solutions satisfying the reversibility condition

r(—t,—0) =r(t,0).

11 Linearization and structure of the equilibrium frequencies

In the current section, we linearize the equation (10.5) at a given small state r close to the equilibrium. At
this latter, we shall see that the linear operator is a Fourier multiplier with polynomial linear frequencies
with respect to the radius of the Rankine patch bD. At the end of this section, we also check the

transversality conditions for the unperturbed frequency vector.

11.1 Linearized operator

We shall first prove that the linearized operator at a general small state r can be decomposed into the
sum of a variable coefficients transport operator, a nonlocal operator of order 0 and a smoothing nonlocal

operator in the variable . More precisely, we have the following lemma.

Lemma 11.1. The linearized Hamiltonian equation of (10.17) at a state r is the time-dependent Hamil-

tonian system

Dup(t,0) = =05 (Vi (b, 1,0)p(2,0) + Lo (p) (b,1,0) — S, (p)(b,1,0) ),

where the function V,. is defined by

V,(b,t,0) = —%/ giggxgggdn (11.1)
bte)/ +(b,t,0,1)) 0, (R(b, t,n)sin(n — 6))dn
bte) / (b, t,0,m)) 0, (R(b, t,n)sin(n — 0))dn,

L, is a nonlocal operator in the form
Lo(p)b..6) = [ pltm)log (4, (¢,6.7)) d (11.2)
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11. Linearization and structure of the equilibrium frequencies

and S, is a smoothing nonlocal operator in the form

Sr(p)(b7 t, 9) = /H‘ p(ta 77) log (Br (t> 0, 77)) dn. (11'3)

We recall that A,, B, and R are defined by (10.3), (10.4) and (10.2), respectively.
Moreover, if r(—t,—0) = r(t,0), then

Vo (b, —t, —0) = V, (b, ,6). (11.4)

Proof. In all the proof, we shall omit the dependence of our quantities with respect to the variables b

and t. Notice that linearizing (10.10) amounts to compute the Gateaux derivative of the stream function
A

W(r,z(0)) = ¥(z(0)) given by (10.12) at point r in the direction p (real-valued). All the computations
are done at a formal level, but can be rigorously justified in a classical way in the functional context

introduced in Section A. Applying the chain rule gives
d, (% (r, 2(60))) o] = (d % (r,w)[p]) , __ ) + 2Re ((85\11(7“, w))lw:z(e)drf(ﬂ)[po : (11.5)
Differentiating (10.18) gives

w = R(n)e"

()] = [ 1oy (]1_1%7)10\) p(n)dn. (11.6)

On the other hand, from (10.14) and the identity
d,2(0)[p)(8) = £,
we obtain

2Re ( (2 (r, ),y b7O)16]) = ~Figy b /T log (|2(7) — 2(6)[2) dyIm ((n)e %) dn

— #ie 4 [ 1og (11 = 3=00?) 0yt (2)e”)
+ oy /T Im (9,2 (n)z(n))dn. (11.7)

Putting together (11.6), (11.5), (11.7) and using the identities

Im (2(n)e™") = R(n)sin(n — 6), Im(9,z(n)z(n)) = —R*(n),

we conclude the desired result. The symmetry property (11.4) is an immediate consequence of (11.1) with

the change of variables n — —n. This achieves the proof of Lemma 11.1. O

The following lemma shows that the linearized operator at the equilibrium state is a Fourier multiplier.
This provides an integrable Hamiltonian equation from which we shall generate, in Proposition 11.1,
quasi-periodic solutions.

Lemma 11.2. The following properties hold true.
1. The linearized equation of (10.17) at the equilibrium state (r = 0) writes

Oip = OpL(b)p = Oy VHy(p), (11.8)
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where L(b) is the self-adjoint operator on LE(T) defined by

1
M@é—§—&*- (11.9)
with
Ko £ Kip— Kap, (11.10)
K1,5(0) £ $log (sin® (%)), (11.11)
Ka(0) £ log (|1 — b%€?]) . (11.12)
It is generated by the quadratic Hamiltonian
1
Hy(p) 2 S (L(b)p, p) 12 (7)- (11.13)

2

2. From Fourier point of view, if we write p(t,6) = Z p;(0)e? with p_;(t) = pi(t), then the self-
jez~
adjoint operator L(b) and the Hamiltonian Hy, write

Q; (b ij Q; (b
Lo)p(0) = — > 2Bpie®  and  Hu(p) = -y Lp)%, (11.14)
JEL* JEZ*

where (Q;(b)) is defined by

JEL*

j—14+bY

Vi eN*, Q;(b) and  Q_;(b) = —Q;(b). (11.15)

Moreover, the reversible solutions of the equation (11.8) take the form

p(t,0) = >~ picos(jO — (b)), p; ER. (11.16)
JEZ*

Proof. 1. Notice that the quantities A, and B,, introduced in (10.3), (10.4), can be rewritten as follows

1

Ap(b,t,0,m) = (R2(b,1,0) + B2 (b,t,n) — 2R(b,t, ) R(b, t,n) cos(y — 0) )

[N

_ ((R(b, £,0) — R(b,t,n))” + 4R(b,t,0) R(b, t, ) sin® (5 — 9)) (11.17)

and

MBS

B, (b,t,0,1) = (RQ(b, t,0)R2(b, t,n) — 2R(b,t,0)R(b,t, 1) cos(n — ) + 1) : (11.18)
Taking » = 0 in (11.17), (10.4) and (10.2) gives
sin (’7779)

Ao(b,t,0,m) = 2b . Bo(b,t,0,n) =1 -0~ and R(b,t,6) =b. (11.19)
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11. Linearization and structure of the equilibrium frequencies

According to (11.1), (11.2) and (11.3) we obtain, after straightforward simplifications using (11.19),
. 1 i
Vo(b,t,0) = -3 — %/Tlog (4v? sin® (2)) cos(n)dn — = Trlog (|1 — be™|) cos(n)dn,
Lo(p)(b.1,6) = [ log (20 sin (25°)]) plt.m)an,
T
So(p)(b,t,0) = /log (Il - b2ei("‘9)\) p(t,m)dn.
T
We then see that Ly and Sy are convolution operators given by

Lo= K- with lClb(H)é%lg(sm ( ))
So = Kop*- with Kop(0) 2 log (|1 —b%e?]).

2. To describe the operators above, it suffices to look for their actions on the Fourier basis (e;),ez- of
L3(T). We first study the operator Lg. Recall the following formula which can be found in [43, Lem. A.3]

Vi e Z*, /Tlog (sin2 (2)) cos(jn)dn = —ﬁ. (11.20)
Using (11.20) together with symmetry arguments, one obtains
VieZ", Kipxe;j(d)= %/Tlog (sin2 (1)) 0= qp
= %@ /Tlog (sm2 (2)) cos(jin)dn (11.21)
_ ) (11.22)
2|31

We now turn to the study of the operator Sy. Using the following identity proved in [138, Lem. 3.2]

) p2ldl
Vj € Z*, /log (]1 — be™|) cos(jn)dn = TR (11.23)
T
we obtain
VjeZ*, Kopxe;j(0)=re;0) / log (|1 — b®€"|) cos(jn)dn
T
p2lile. (6
_ el (11.24)
251
In view of the expression of V; and using formulae (11.20) and (11.23) we find
1
Vo(b,t,0) = 3 (11.25)

Notice that, the kernels Ky, and Ky being even, the operator L(b) is self-adjoint. The identities in
(11.14) follows immediately from (11.9), (11.22), (11.24) and (11.25). Then, according to (11.14), a real

function p with Fourier representation p(¢,6) = Z p(t)e? is a solution to (11.8) if and only if
jez

Vi€, pi=—iQ;(b)p;,
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where ;(b) is defined by (11.15). Solving the previous ODE gives

p(t,0) = p;(0)e 0= ®1),

jezr

Therefore, every real-valued reversible solution to (11.8) has the form (11.16). This ends the proof of
Lemma 11.2. O

11.2 Properties of the equilibrium frequencies

The goal of this section is to explore some important properties of the equilibrium frequencies. We shall
first show some bounds on these frequencies then discuss their non-degeneracy through the transversality
conditions. Such conditions are crucial in the measure estimates of the final Cantor set giving rise to

quasi-periodic solutions for the linear and the nonlinear problems.

Lemma 11.3. The following properties hold true.

(i) For allb € (0,1), the sequence (ij(b) is strictly increasing.

)jen-

(i) For all j € Z*, we have
b2
YO<bo<b<l, Q) > il

(iii) For all j,j' € Z*, we have

b

VO <by<b<l, |Qj(b):|:Qj/(b)|> 6|j:|:]’|

(iv) Given 0 < by < by <1 and qo € N, there exists Cy > 0 such that

Vi, i €Z*, max_sup |97(Q;(b) —Qy(b)| < Coli— .
a€[0,90] be[bo,by ]

Proof. (i) This point was proved in [86, Prop. 2].
(ii) By symmetry (11.15), it suffices to show the inequality for j € N*. From (i) we have

/

(iii) In view of the symmetry (11.15), it suffices to check the property for j, 7/ € N*. By symmetry in j, j

we may assume that j > j’. For j = j/ = 1 one has
Q(b) + Qu(b) = B > B
In the case where 7 > 2 and j' > 1 we get

A =2 ¥ i -2 4
= = — = .
2 + 2 (J+])2(J+J') 6

€Q;(b) + ;1 (b)
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11. Linearization and structure of the equilibrium frequencies

Now we shall move to the difference. Using Taylor formula we obtain, for all j > j' > 1,
P 2 p2d’
J—J 4

2 2

P J
J (b) / b2 da
j/
o,

i—i
4

Q;(b) — 9 (b) =

j—=J 2j
> 5 (1 + 2log(b)b™) >

(iv) The case j = j’ is trivial, then from the symmetry (11.15) and without loss of generality we shall
assume that j > j' > 1. First, remark that

G-1) £ —1) b¥ +£p¥
2 Ty

Vb e (071)3 ‘Qj(b)iQJ'(bH < gji]/

Now, for all ¢ € N*, one has
1 . v
aQ( (b) £ Q. (b)) 285(1923 + b% )

Moreover, for all ¢ € [1, qo] and n € N*,

Q(Jb"
0< c’){f(b”) < q!(n> pn—d < angl.
q 0

Since by € (0,1) then the sequence (n%b7}),cy is bounded. Therefore, there exists Cy £ Co(qo, bo, b1) > 0
such that

YneN, 0<al(b") < Co. (11.26)
We deduce that for all ¢ € [1, o],
08 (20) £ 950 )| < Co < Coli 7).

This concludes the proof of Lemma 11.3. O

Let us consider finitely many Fourier modes, called tangential sites, gathered in the tangential set S
defined by
S&{j1,...,ja} CN* with 1<j; <jo<...<ja (11.27)

Now, we define the equilibrium frequency vector by

wrq(b) £ (25(b))jes, (11.28)

where €2,;(b) is defined by (11.15). We shall now investigate the non-degeneracy and the transversality

properties satisfied by wgq. We have the following result.

Lemma 11.4. The equilibrium frequency vector wgq and the vector-valued function (wgq,1) are non-

degenerate on [bg,by] in the sense of Definition 5.1.

Proof. » We shall first prove that the equilibrium frequency vector wgq is non-degenerate on [bg, b1].

Arguing by contradiction, suppose that there exists ¢ = (cy, ..., cq) € R¥\{0} such that

Vb € [bo, bu], chﬁjk ) = 0. (11.29)
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Since €Q;(b) is polynomial in b then, from (11.15), one has

d
Vb eR, Y er(je —1+b¥F) =0. (11.30)
k=1
d
Taking the limit b — 0 in (11.30) gives the relation Z ¢k (jk — 1) = 0, which, inserted into (11.30), implies
k=1
d .
VhbeER, Y epb®r =0.
k=1

Since j1 < jo < ... < jg, then
Vk € [1,d], cx =0,

which contradicts the assumption.

» Next, we shall check that the function (wgg, 1) is non-degenerate on [bg, b1]. Suppose, by contradiction,
that there exists ¢ = (c1,...,cq, car1) € R1\{0} such that
d
Vb € [bo,b1],  capr+ Y crf;, (b) =0. (11.31)

k=1

Since €;(b) is polynomial in b then, from (11.15), one may writes

d
Vb ER, cap1t+ 3D ck(ik —14b7F) =0. (11.32)
k=1
Taking the limit b — 0 in (11.32) yields
d
Cd+1 + % ch(jk —-1)=0.
k=1

Inserting this relation into (11.32) gives

d
VhbER, Y epb®r =0.
k=1

Reasoning as in the previous point, we obtain
Vk € [1,d], ¢, =0

and then ¢441 = 0, by coming back to (11.32), contradicting the assumption. O

We shall now state the transversality conditions satisfied by the unperturbed frequencies.

Lemma 11.5. [Transversality] Let 0 < by < by < 1. Set qo = 2jq + 2. Then, there exists py > 0 such that
the following results hold true. Recall that wgq and Q; are defined in (11.28) and (11.15), respectively.

(i) For alll € Z4\ {0}, we have

inf  max [0lwgq(b) - 1| = po(l).
be[bo,bl]qeﬂqugﬂl Hwrq() - 1| = po(l)
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11. Linearization and structure of the equilibrium frequencies

(ii) For all (I,5) € Z¢ x (N*\ S)

inf - max [0 (weq(b) - 1£ 3)| > po(l).
b6f£),b1]qer[[[lo,§oﬂ| b (wna(b) )| = poll)

(iii) For all (I,§) € Z¢ x (N*\ S)

in 0% (wrq(b) - 1 = Q5 ()] > poll).
selit oSty 198 (4mal0) 12 ) > ol

(iv) For alll € Z%,j, 5" € N*\'S with (I,5) # (0, '), we have

inf e b) - 1+ Q;(b) £ Q;(b))] = po(l).
beflg,bllqen[[l(%)q{o]“ b(WEq() 1) J())| Pl

Proof. (i) Assume by contradiction that for all pg > 0, there exist I € Z%\ {0} and b € [b, b1] such that

max |0%wgq(b) -1 < po(l).
a0 (8) 1) < pol)

In particular, for the choice py = we can construct sequences I,,, € Z%\ {0} and b,, € [bo, b1] such

that

_1
m—+1’

Vg€ [0.q0,  |0fwnq(bm) - | < - (11.33)

Since the sequences ( <§m>) and (b)), are bounded, then by compactness arguments and, up to an
m) ) om

extraction, we can assume that

lim éﬁ:é;&o and  lim b, = b.

m— 00 m—r oo

Therefore, denoting
Py £ qu(X) -Cc € jod[X]

then passing to the limit in (11.33) as m — oo leads to

Vq € [0, qo], Péq) (b) = 0.
Hence, using the particular choice of gy, we conclude that the polynomial (X — b)%4+3 divides Py,

(X — b)YaT3|P,.

Since deg(Py) < 2jq, we conclude that Py is identically zero. This contradicts the non-degeneracy of the
equilibrium frequency vector wgq stated in Lemma 11.4.
(ii) The case | = 0,5 € N* is trivially satisfied. Thus, we shall consider the case j € N, [ € Z?\ {0}. By

the triangle inequality combined with the boundedness of wgq we find
|wiq(b) -1+ 3| = 31| — lwrq (D) - 1| = 313l = ClI| = |1
provided that |j| > Cp|l| for some Cy > 0. Thus, we shall restrict the proof to indices j and [ with
lj| < Coll], jeN, 1ez\{0}. (11.34)
Arguing by contradiction as in the previous case, we may assume the existence of sequences I,,, € Z%\ {0},
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Jm € N satistying (11.34) and b,,, € [bo, b1] such that

Vg € [0, qo], ‘82 (qu(bm) Sy 2{%)‘ < o (11.35)

Since the sequences (b, )m, (2{[” >) and (%) are bounded, then up to an extraction we can assume that

Denoting

and letting m — oo in (11.35) we obtain
g € [0,q0], Q5" (b) =0.
Consequently, using the particular choice of ¢y, we get
(X =+ Qo.

Since deg(Qo) < 2jq4, we conclude that @ is identically zero. This contradicts Lemma 11.4.
(iii) Consider (1,7) € Z? x (N*\'S). Then applying the triangle inequality and Lemma 11.3-(ii), yields

Wi (B) - 1 £ Q;(B)] > 192;(B)] — |wiq(b) - I
> %j—Clil =)

provided j > Co(l) for some Cy > 0. Thus as before we shall restrict the proof to indices j and | with
0<j<Co(l), jeN*\S and 1< Z\{0}. (11.36)

Proceeding by contradiction, we may assume the existence of sequences l,,, € Z¢\ {0}, 7., € N\S satisfying
(11.36) and by, € [bg, b1] such that

S (11.37)

VQ € [[Oa qo]]a ma1

q by 4 25 (B)
81, (qu(b) " Tlim] \7lm\ >\b=b <

Since the sequences (llm ) and (b, )m are bounded, then up to an extraction we can assume that
m

lim 4= =¢#0 and lim b, =b.

Now we shall distinguish two cases.

» Case @ : (I,,), is bounded. In this case, by (11.36) we find that (j,,)m is bounded too and thus up

to an extraction we may assume lim [, = and lim j,, = J. Since (jm)m and (|l,|)m are sequences
m— 00 m—00

of integers, then they are necessary stationary. In particular, the condition (11.36) implies 1 # 0 and
7 € N\ S. Hence, denoting

P(),j = qu(X) . l_:|: Qj(X) S Rmax(deQj) [X],
then taking the limit m — oo in (11.37), yields

Vg € [0,q0],  P3Y(b) = 0.
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11. Linearization and structure of the equilibrium frequencies

If 7 < jq, then in a similar way to the point (i), we find that Py ; = 0 which contradicts Lemma 11.4,
applied with (qu, Qj) in place of wgy. Hence, we shall restrict the discussion to the case 7 > j;. Since

Wiq(X) - [ is of degree 2j4, then we obtain in view of our choice of gy that

%q!(qu> bR 201 = 2iatlo (h) = 0,
This implies that b = 0 which contradicts the fact that b € [by, by] C (0,1).

» Case ® : (I,,)., is unbounded. Up to an extraction we can assume that W}E)noo |l;m| = 00. We have two
sub-cases.

e Sub-case @ : (jm)m is bounded. In this case and up to an extraction we can assume that it converges.
Then, taking the limit m — oo in (11.37), we find

Vg € [0,q0], Ofwrq(b)-c=0.

Therefore, we obtain a contradiction in a similar way to the point (i).
e Sub-case @ : (jm)m is unbounded. Then up to an extraction we can assume that lim j,, = co. We
m—0o0

write according to (11.15)

Qjm(b) o ]m N 1 + sz"‘

(11.38)

By (11.36), the sequence (%) is bounded, thus up to an extraction we can assume that it converges
_ mi/n
to d. Moreover, since lim j,, = lim || = oo and b,, € (by,b1), then taking the limit in (11.38), one
m—0o0 m—0o0
obtains from (11.26),
lim 26%m ®e=by, _ { d ifqg=0

m—00 [Em ] 0 else.

Consequently, taking the limit m — oo in (11.37), we have
Vq € [[07 qO]]? 85 (WEq(b) -Cc =+ d) \b:E = 0.

Then, in a similar way the the point (ii), we deduce that the polynomial wgq(X) - ¢+ d is identically zero,
which is in contradiction with Lemma 11.4.
(iv) Consider [ € Z4, 7,5 € N*\ S with (I,5) # (0, ). Then applying the triangle inequality combined

with Lemma 11.3-(iii), we infer that
(wiq(b) - 1+ 9;(b) £ 2 (b)] > 9;(b) £ Q2 (0)] — lwrq(b) - 1] > 15 £ 5| - Cli| > (1)
provided that |j £ j'| = ¢o(l) for some ¢g > 0. Then it remains to check the proof for indices satisfying
i 5| <ecol), 1€zZN{0}, j,j €N*\S. (11.39)

Reasoning by contradiction as in the previous cases, we get for all m € N, real numbers [,, € Z¢\ {0},
Jm,Jm € N*\ 'S satisfying (11.39) and by, € [bo, b1] such that

Qi (D)2, ()
Vg € [0,q], |0} (qu(b) S JT) o L (11.40)
Up to an extraction we can assume that lim l’”l =¢#0and lim b, =b.

As before we shall distinguish two cases.
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» Case @ : (I,,), is bounded. Up to an extraction we may assume that W}gnoo I =1 # 0. Now according
to (11.39) we have two sub-cases to discuss depending whether the sequences (jm,)m and (j),)m are
simultaneously bounded or unbounded.

e Sub-case @ : (jm)m and (j),)m are bounded. In this case, up to an extraction we may assume that

these sequences are stationary j,, = 7 and j/, = 7 with 7,7 € N* \ S. Hence, denoting
Pojy & wiq(X) -1+ Q5(X) £ Qy(X) € Ruax(2j,,27.27) [X],

then, taking the limit m — oo in (11.37), we have

Vg e [0,q0], P2 () =o0.

0,3,

If max(7,7) < ja, then, we deduce that P, ;5 = 0 which gives a contradiction as the previous cases, up to
replacing wgq by (qu, Q3, Qj—/). Therefore, we are left to study the case max(j,7) > j4. Notice that the
cases 7 =7 and min(7,7) > jq are byproducts of point (i) and (iii). Without loss of generality, we may
assume that 7 > 7' > jq + 1. In particular, since wgq(X) - [ is of degree 2j4, then, according to our choice

of gp, we obtain

(11.41)

C1b™ £ Cob? =0
C’lozBO‘ + Cgﬁl;ﬂ = 0,

with

A - . A o . N 27 N 27
a=2]-2jg—1, B=2] —-2j4—1, Ci=qo! and (2 = qo! .
qo qo

Since Cy and Cs are positive, we immediately get from the first equation in (11.41) that
Cib*+CobP =0 = b=0.

This contradicts the fact that b € [by, b1] C (0,1). In the case where we have the difference, the system

(11.41) gives
Cr _ G

C, Cia’
which implies in turn that o = /3, that is 7 = 7 which is excluded by hypothesis.
e Sub-case @ : (jm)m and (), )m are both unbounded and without loss of generality we can assume that
mlignoo Jm = W}gnoo Jr, = 0o. Coming back to (11.15) we get the splitting
Q, (b) £y (b) o £, | Dm0
Ll 2] ZI

Using once again (11.39) and up to an extraction we have lim % =d. Thus
m—00 m

d ifg=0

ln_[bn| 10} (Qjm<b>mj;n<b>)b_bm={ 0 i 2o

m—r o0
By taking the limit as m — oo in (11.40), we find
Va € [0,q0], 05 (weq(b) -c+d) 5 =0.

This leads to a contradiction as in the point (ii).
» Case @ : (L) is unbounded. Up to an extraction we can assume that lim |l,,| = oco.
m—r oo

We shall distinguish three sub-cases.
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12. Functional of interest and regularity aspects

e Sub-case @. The sequences (jm,)m and (j.,)m are bounded. In this case and up to an extraction they

will converge and then taking the limit in (11.40) yields,
Vg € [0,q0], Ofwrq(b)-c=0.

which leads to a contradiction as before.

e Sub-case @. The sequences (jm)m and (j/,)m are both unbounded. This is similar to the sub-case @ of
the case @.

e Sub-case ®. The sequence (j,,,)m is unbounded and (j7,)., is bounded (the symmetric case is similar).

Without loss of generality we can assume that lim j, = oo and j/, = 7. By (11.39) and up to an
m— o0

. . : :t -/
extraction one gets lim %=Im —

d. Once again, we have

d ifg=0
: -199 ((). . _
N JUNCEE AT S

Hence, taking the limit in (11.40) implies
Vg € [[07 QO]]a 8[;1 (qu(b) -c+ J)bzg =0,
which also gives a contradiction as the previous cases. This completes the proof of Lemma 11.5. O

Notice that by selecting only a finite number of frequencies, the sum in (11.16) give rise to quasi-periodic
solutions of the linearized equation (11.8), up to selecting the parameter b in a Cantor-like set of full

measure. We have the following result.

Proposition 11.1. Let 0 < by < by < 1,d € N* and S C N* with |S| = d. Then, there exists a Cantor-like
set C C [bg, b1] satisfying |C| = by — by and such that for all X\ € C, every function in the form

p(t, 6) = ij cos (jO — Q;(b)t), p; € R (11.42)
j€s

is a time quasi-periodic reversible solution to the equation (10.17) with the vector frequency

wiq(b) = (24(0)) ;s

The proof of this proposition follows in a similar way to Proposition 5.1.

12 Functional of interest and regularity aspects

The main goal of this section is to reformulate the problem in a dynamical system language more adapted to
KAM techniques. More precisely, we shall write the equation (10.17) as a Hamiltonian perturbation of an
integrable system, given by the linear dynamics at the equilibrium state. Then, by selecting finitely-many
tangential sites and decomposing the phase space into tangential and normal subspaces we can introduce
action-angle variables on the tangential part allowing to reformulate the problem in terms of embedded
tori. This reduces the problem into the search for zeros of a functional F to which the Nash-Moser implicit
function theorem will be applied. We shall also study in this section some regularity aspects for the
perturbed Hamiltonian vector field appearing in F and needed during the Nash-Moser scheme. This
approach has been intensively used before, for instance in [7, 8, 29, 28, 33].

Notice that, according to Lemmata 10.1 and 11.2, the equation (10.17), that is also (10.5), can be written
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in the form
Or = OpL(b)(r) + Xp(r) with Xp(r) £ 10pr + 0pKy 1 — Eyr], (12.1)

where the nonlinear functional Fj[r] is introduced in (10.6) and the convolution kernel is given by (11.10).
Since we shall look for small amplitude quasi-periodic solutions then it is more convenient to rescale the

solution as follows r — er with r bounded. Hence, the Hamiltonian equation (10.17) takes the form
Or = OgL(b)(r) + eXp. (1), (12.2)

where Xp_ is the Hamiltonian vector field defined by Xp_(r) £ e 2Xp(er). Notice that (12.2) is the

Hamiltonian system generated by the rescaled Hamiltonian

Ho(r) = 2H(er)
2 Hy(r) +eP.(r), (12.3)
with Hy, the quadratic Hamiltonian defined in Lemma 11.2 and e P.(r) containing terms of higher order

more than cubic.

12.1 Reformulation with the action-angle and normal variables
Recall from (11.27) that the tangential set is defined by
S&{ji,...,ja} CN* with 1<j; <jo<...<ja
We now define the symmetrized tangential sets S and Sy by
S&£SU(-S)={+£j, 7€S} and Sy =Su{0}. (12.4)

Since the application b — wgq(b) is continuous then wgq ([bo, b1]) is a compact subset of R?. In particular,
there exists Ry > 0 such that
WEq ((bo, bl)) (a4 £ B(O, Ro)

Then we define the set of parameters as
O 2 (bo,by) X% . (12.5)

Then we decompose the phase space L(T) into the following L?(T)-orthogonal direct sum

1
Li(T) = Lg & L, Lg= {ZW% = hj}v L £ {Z = D ze€ L%(T)}7 (12.6)
JES JEZ\So

where we denote e;(0) = €%, The associated orthogonal projectors I, HSl(J are defined by

— o — L T & . L7l 2 o
r= E riej=v+z, v=Igr= E rjej, z=Ilgr= E riej, (12.7)
jezr j€s JEZ\So

where v and z are respectively called the tangential and normal variables. For fixed small amplitudes
(aj)]. G € (R%)? satisfying a_; = a;, we introduce the action-angle variables on the tangential set Lg by

making the following symplectic polar change of coordinates

Vje gv T = \/ a? + ‘]‘IJ eiﬂja (128)
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12. Functional of interest and regularity aspects

where
VieS, I;=I;€R and 9_;=-0;€T. (12.9)

Thus, any function 7 of the phase space L3 can be represented as

r=AW,1,2) 2v(0,I)+ 2z where v(¥9,1)= Zw/a? + 15| eie; . (12.10)

j€s

Observe that the function v(—wgq(b)t,0), where wgq is defined in (11.28), corresponds to the solution
of the linear system (11.8) described by (11.42). In these new coordinates, the involution . defined in
(4.27) reads

G:0,1,2)— (—9,1,7%) (12.11)

and the symplectic 2-form in (4.24) becomes, after straightforward computations using (12.8) and (12.9),

1 1
W= Ddiy ndl 5 Y dry Adroy = (Y dd; Adl) & Wi (12.12)
jes jemnso jes

where W12 denotes the restriction of W to L? . This proves that the transformation A defined in (12.10)
is symplectic and in the action-angle and normal coordinates (9, 1,z) € T x R? x L? , the Hamiltonian

system generated by H. in (12.3) transforms into the one generated by the Hamiltonian
H.=H.0A. (12.13)

Since L(b) in Lemma 11.2 preserves the subspaces Lg and L? then the quadratic Hamiltonian Hj, in
(11.13) (see (11.14)) in the variables (9, I, z) reads, up to an additive constant,

1 1
HpoA=— Z Q](b)I] + §<L(b) Z,Z>L2(T) = —qu(b) I+ §<L(b) 27Z>L2(']I‘)7 (12.14)
JES

where wrq € R? is the unperturbed tangential frequency vector defined by (11.28). By (12.3) and (12.14),
the Hamiltonian H, in (12.13) reads

1
H.=N+¢eP. with N & —wpq(b) I+ (L) 2, 2) 2y and P 2P oA (12.15)

We look for an embedded invariant torus

i: T — RIxRIxL? (12.16)
e = i(p) £ (), I(p), 2(9)

of the Hamiltonian vector field
Xy, £ (0/H.,—09H., 15,05V . H.) (12.17)

filled by quasi-periodic solutions with Diophantine frequency vector w. We point out that for the value

€ = 0 the Hamiltonian system
w - D) = X, (i(0))

possesses, for any value of the parameter b € (bg, b1 ), the invariant torus

ina () = (,0,0). (12.18)
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Now we consider the family of Hamiltonians,
1
HE & No+ePe where No £ oI+ S (L(b) 2 2)r2(r). (12.19)

which depends on the constant vector a € R%. For the value o = —wgq(b) we have HY = H.. The
parameter « is introduced in order to ensure the validity of some compatibility conditions during the

approximate inverse process. We look for zeros of the nonlinear operator

‘F<i7a7 (b,w),a) £ W agoi(()o) - XHEO‘ (2(90))
w - 9,9(p) — a — e0rPe(i(p))
= w - 0,1(p) +€0yP:(i(y)) ;
w - 0pz(p) — Do [L(b)2(p) + V. Pc(i(p))]

(12.20)

where P, is defined in (12.3). For any a € R?, the Hamiltonian HZ is invariant under the involution &
defined in (12.11),
HYoG=H.

Thus, we look for reversible solutions of F(i,a, (b,w),e) = 0, namely satisfying
H=p) = =0(p), I(=¢) =1I(p), 2(=¢)=(T2)(p) (12.21)
We define the periodic component J of the torus ¢ by
I(p) £i(p) = (£,0,0) = (O(p), (), 2(¢))  with  O(p) =D(p) — ¢
and the weighted Sobolev norm of J as

] o o @]
1315:8 = 101155 + I1715:7 + 1120155

12.2 Regularity of the perturbed Hamiltonian vector field

This section is devoted to some regularity aspects of the Hamiltonian involved in the equation (10.17).

We shall need the following lemma.

Lemma 12.1. Let (v,q, o, s) satisfy (A.2). There exists g9 € (0,1] such that if

,0
171135042 < €0,

then the operators OpL, and 09S,, defined in (11.2) and (11.3) write
0oLy = 0pK1p - + 0pLya  with Ly1(p)(b,,0) £ /p(so,n)Kr,l(b,@ﬁ,n)dm (12.22)
T
0S, = Okan s+ 0uSra with Sua(p)(b00) = [ plomlHalbopbimdy (1229
T

where K1y, Koy are given by (11.11)-(11.12) and the kernels K, 1(b, ¢, 8,n), % 1(b, ¢,0,1) € R satisfy the
following symmetry property: if r(—p, —60) = r(p,0) then

Kﬁl(ba -, _95 _77) = Kr,l (b7 @, 07 77)7 (1224)
Hr1 (b, —p, =0, —n) = H;1(b, ¢, 0,m) (12.25)
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12. Functional of interest and regularity aspects

and the following estimates

K175 e, ST P2 (12.26)
el S, S el (12.27)
Moreover,
186K % pllg:d < Nlolls s (12.28)
186KCa,p * pllg:d < Nloll3:ss (12.29)
06859 5 I35l + 121135, (12.30)
1068 r10117:C S lIrlg e allolg + il (12.31)
Proof. According to (11.17) we may write
1
R(b,.1) - R(b,,0)\ :
A, (0,0, f2bs1n<” 9)’(( DY L 1lp R(b, ¢, 0
(SD 77) 2 Qbsul (77 9) b2 ( ) ( SD )
£ 2b|sin <"T_9) vr,1(b, 0, 6,m). (12.32)

Notice that v,.; is smooth when r is smooth and small enough, and vg; = 1. More precisely, by using

Lemma A.1-(iv)-(v) combined with Lemma A.2-(i7) and the smallness condition on r, we get

,0
o = 1175, , S I35 (12.33)
Using the morphism property of the logarithm, we can write
log(A, (b, ,0,m)) = log (25) + 4 log (sin? (252 ) + log (v, (b, 9, 6,1))
£ 10g (2b) + ]Cl,b(n - 9) + Kr,l(b7 P 05 77) (1234)

and (12.24) immediately follows. Moreover, (11.2) and (12.34) give (12.22). Applying Lemma A.1-(v)
together with (12.33) and the smallness condition on r, we obtain (12.26). Using (12.26), Lemma A.7-(i7)
and the smallness property on 7, we get (12.30). Similarly, from (11.18) we can link B2 to BZ by

B2 (b,0,0,1) = B3(b,2,0,m) + (R2(b,0,0)R2(b, 0,1m) — b') = 2(R(b, 0, 6)R(b, 0,11) — b?) cos(sy — 6)

= B3 (b, ¢,0,n)(1+ P(b,,0,m))

with

s (R20w.0) R (bpm)—b*) —2(R(bip,0) R(bipn)—b?) cos(n—0)
Pr(b,p,0,m) = T407—257 cos(n—0)

so that we can write

log (B, (b,¢,0,n)) = log (Bo(b,,0,n)) + 3 log (1 + P,(b,¢,0,m))
é K:Q,b(n - 9) + *%/’r',l(ba @, 67 77) (1235)

and (12.25) immediately follows. Moreover, (11.3) and (12.35) give (12.23). Notice that that P, is smooth
with respect to each variable and with respect to r with Py = 0. We conclude by Lemma A.1-(iv)-(v) and

the smallness property on r that

qu CSNgS
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As a consequence, composition laws in Lemma A.l together with the smallness property on r imply
(12.27). Then, using (12.27), Lemma A.7-(i7) and the smallness property on r, we get (12.31). The
estimates (12.28)-(12.29) can be obtained using (11.22), (11.24) and Leibniz rule combined with the
following estimate

sup ||b — b"||7 0 <1
neN

This ends the proof of Lemma 12.1. [

We now provide tame estimates for the vector field Xp defined in (12.1).

Lemma 12.2. Let (v,q, so,s) satisfy (A.2). There exists g9 € (0,1] such that if

,0
171150 42 < €0,
then the vector field Xp, defined in (12.1) satisfies the following estimates

(i) 1Xp(M)53:0 < 7l

q,s v

q,s+2 |r||q,50+1

(i6) 1 Xp () pl3:2 S ol el o + 1713l -

(iii) ||d2 X p(r)lpy, p2]lly g

S ol salloally: e + (loally e + 1715 S lloally 5 ) o2l 041

q,8

Proof. We first prove the estimate (i4¢) and the estimates (i4) and (i) then follow by Taylor formula since
d,Xp(0) =0 and Xp(0) = 0. Recall from Lemma 11.1, (12.22) and (12.23) that

d- Xp(r)[p] = —d Fy(r)[p] = =09 (Vrp) — 0okt % p — 0Ly 1p 4 0pSr1p-

According to (12.1), P is is the Hamiltonian generated by higher order more than cubic terms Hx3. Then

differentiating with respect to r the last expression we obtain

4 Xp(r)|p1, pa] = =9 ((d:Vrlpal)p1) — 8o (dr Ly 1 [palpr) + 8o (drSralp2lpr) - (12.36)

Recall, from (12.22) and (12.34), that

L;1(p) (b, ¢,0) :/Tp(cp,n) log (v, 1(b, ,0,n))dn. (12.37)

Hence by differentiation we obtain

1 drv? 1) [p2](b,.0,m)
dr Ly 1 (r)[p2]p1 (b, 0, 0) = 2/Tpl(<p,v7)( Ué.ll)(ﬁi,a,:) 2 dn. (12.38)

Coming back to (12.32) it is obvious that the dependence in 7 of the functional v2; is smooth. Straight-

forward calculations lead to

1 0)— 0)R?
20 () [pal(by o, 0,1m) = ECLOMpo) (frloly  palen) ) | (oW onplonbos

Using (12.33) combined with the law products stated in Lemma A.1, Lemma A.2-(i:) and the smallness

condition of Lemma 12.2 we find that

,0
a2 2ol < o230 + 13 Sl el S, (12.39)

According to (12.39), (12.38) and using Lemma A.1-(iv)-(v), Lemma A.7-(44) and the smallness condition
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we obtain,

100, L1 (r)[p2] 1135 Sl Lm( pelpall3:ch
Slleallg

ool + Il alloelly ). (12.40)

q,s+1 ||p2||q,so+1 + ”pl

Now we shall move to the estimate of d,.S, 1(r)[p2]p1(b, ¢, #). By differentiating with respect to r in (12.23)
and (12.35), we obtain

1 drBZ ) [p2](b,,0,1)
drSr1(r)[p2]p1 (b, ¢, 0) = 2/Ep1(<p777)(33)(£wd77-

In view of (11.18), direct computations yield

1
id?”Bz (T)[pZ](ba ©s 0, 77) = p2(§03 G)RQ(bv 2 77) + P2((,0, TI)RQ (b7 2 0)

b,p, b,p,0
— (P2l O RELB + palp,m) RE2) cos(n — 0).

Then, Lemma A.1-(iv)-(v) and the smallness condition on r imply

ld By (r )[ﬂz]llqm < llp2llg?

Cllozllg-

It follows from Lemma A.7-(i7), that

196,811 (1) [p2] o113 SlldrSra (r)[p2lpa g

<||P1

q7b+1

q,s+1||p2||q so+1 + Hp1| 4,50 (HpQ”q s+1 + H ||q s+1||p2 q,so+1) (1241)

Next we shall move to the estimate of d,.V;.[p2]. From Lemma 11.1, we can write

Vs VP VI VR with V0b0) 2~ [ e,

‘/7"1 (ba ©, 0) £ _m Alog (A’F(ba ©, 07 77))87] (R(b7 2 77) Sin(’? - 9))d777

1>

VE(0.2.0) & gy [ 108 (B (b.0.6.1)0, (R0 0. ) sinty — 0))

Differentiating V,° with respect to r in the direction py yields

2(p,0)R? (b, 2 R2(b,p,0
drVTO(T)[pz](e) /Tp(so )R ( %n()bzg(;an) (b, )d

Law products in Lemma A.1 and the smallness condition in r then imply

1, V() o238 < N2l + Il

©lpall) (12.42)

11780

Differentiating V,! with respect to r in the direction py gives

4,V () [pa)(6) = — / log (A, (b, 9,8, 1)) Bydy £+ 2] (b, 0,6, 7)d

L[ (d02,) Ipl (b bm)
_5/qr rll(bsoem 3fr( ©,0,m)dn

2 7,(0) + To(0),
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with

Ir (b ©,0, 77) REb 2, 9; Sm(ﬂ 0)

Straightforward computations give

1) R2(b,p,0)— LO)R2 (b,
drfr[p2) (b ,0) = PG R e =2 sin(n — 6).

Then, by law products and composition laws in Lemma A.1 we immediately deduce that

[ S S 4 e

10ad. f+lp2)I3757 RSN el [ ) o2l

q,9+1 + (1 + HT”q 9+1)||IO2 q,e0+1'

(12.43)

(12.44)

The following estimate on Zy can be obtained combining (12.39), (12.33) and (12.43) together with Lemma

A.1-(iv)-(v) and the smallness property on r.

IZ217:2 < Noall3:0 + el

q,s+1 ||p2||q s0°

As for Z; we argue in a similar way to Lemma 12.1 to get

o
IZ2l13:0 S Np2lg o + 115 e o2l s

Putting together (12.45) and (12.46) yields

12V )2l S loallgicen + Il o211 e

Differentiating V,? with respect to r in the direction py yields

(12.45)

(12.46)

(12.47)

2 _ 2 .
d V7 ()lpa) (b, 0,0) = — / log (Br(b, ¢, 0,m))0y (p2(W])RR(g’(i:z),e)%(gb(,ili))l% ©L1 sin(y — 9)) dn
T

1 (drBf [p2](b,,0,m) R(b,p,n) o
B 2/ Bf)(bw@ﬁm) 877(R3(bfp,n€) sin(n — 9))d77.
T
Arguing in a similar way as above we find

,O
I V2ol S lp2llgisis + 713 le2l 3o

Putting together (12.42), (12.47) and (12.48) gives

Id, Ve () p2]17:7 < N2l

q,s—‘r 5+1||p2||q so+1°

(12.48)

(12.49)

Therefore, according to the law products in Lemma A.1, (12.49) and the smallness condition we obtain

196 (V2 (1) p21) |75 < Ml Vo () 2] 154

< HdTVT [p2 Hq s+1 ’p1’
Sy

qso+HdV ’qsole‘qs+1
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13. Construction of an approximate right inverse

Combining the latter estimate with (12.36), (12.40) and (12.41) allows to get

,O
a2 X p () o1, o2l S loallge o2l e + 1715 ezl 320 o215 00+ a3 a2 15 01

Using Sobolev embeddings we get the desired result. This concludes the proof of Lemma 12.2. O

Notice in particular that Lemma 12.2-(i) implies that there is no singlarity in e for the rescaled vector
field Xp_ defined in (12.2). Based on the previous lemma we obtain tame estimates for the Hamiltonian
vector field

Xp, = (0rP, ~05 P, 15 0pV - P)
defined by (12.15) and (12.17). The proof can be done in a similar way to [33, Lem. 5.1].

Lemma 12.3. Let (v,q, so,s) satisfy (A.2). There exists g € (0,1) such that if

e<eo and |J|7

q,50+2 <1

then the perturbed Hamiltonian vector field Xp_ satisfies the following tame estimates,

(i) I X7, ()39

q,s

(i) ||diXp. OGNS SNTN75 + 131351715

ST+

q750+1

(iéi) ||d? Xp. ()], Hq& SISl T 0+ 191 (1155 1)

13 Construction of an approximate right inverse

In order to apply a modified Nash-Moser scheme, we need to construct an approximate right inverse of

the linearized operator associated to the functional F, that is
d(i,0) F (i0, a0)[t, 0] = w - 0,0 = di X oo (i0(p)) 1] — (@, 0,0). (13.1)

where F is defined in (12.20), ap : O — R? is a vector-valued function and i = (9o, Iy, z0) is an arbitrary

torus close to the flat one and satisfying the reversibility condition

Jo(—¢) = =o(p), Ilo(—¢)=1Io(p) and z20(—¢)=(F20)(p). (13.2)

For this aim, we may follow the procedure introduced in [21] and slightly simplified in [87, Sec. 6].
The main idea consists in conjugating (13.1) by a linear diffeomorphism of the toroidal phase space
T x R x L? to a triangular system in the action-angles-normal variables up to small fast decaying error
terms and terms vanishing at an exact solution. Then, to solve the triangular system we are led to almost

invert the linearized operator in the normal directions, given by
Lo 211 (w0, — 00(0:-V-HE) o)) — 00R() )T, (133)
where H2 is given by (12.19),
R(p) £ Ly (9)IrVrPe(io(¢)) La(p) + L3 (9)0:V1P=(io(0)) + 01V Pe(io(¢)) L2 (), (13.4)
P. is defined by (12.15) and

Ly(¢) & —[(0970)(o(e))] 95", Z0(0) £ 20(95 " (9)). (13.5)
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Here, for any linear operator A € L(R9, Lf_) the transposed operator AT : Li — R? is defined through
the duality relation

YueL?, Yve R, <ATu,v>Rd = <u,Av>L2(,ﬂ.d). (13.6)

We point out the presence of the remainder term due to the linear change of variables performed to
decouple the dynamics of the action-angle components from the normal ones. For more details we refer
the reader to [87, Sec. 6].

13.1 Linearized operator in the normal direction

Our main goal here is to explore the structure of the linear operator Ew, introduced in (13.3). We have the
following result. The following lemma describes the asymptotic structure of L., around the equilibrium

state, described in Lemma 11.1.
Proposition 13.1. Let (v,q,d, so) satisfy (A.2). Then, the operator L. defined in (13.3) takes the form
Lo =T, (Lo — cO)R)IIE,, (13.7)
where
(i) the operator L., is given by
Loy 2w 0p+0p(Ver - ) + OpLier — 06Sey, (13.8)
with Ver, Ler and S,y defined by (11.1), (11.2) and (11.3).

(ii) the function r is given by

satisfies the following symmetry property

7(=p, —0) = 1(p,0) (13.10)

and the following estimates
Il S 1+ IIJollq 2, (13.11)
A7 S A0 + 1812478 e 13;12:9. (13.12)

(iii) the operator R, defined in (13.4), is an integral operator with kernel J satisfying the symmetry
property
J(=p,=0,—n) = J(v,0,m) (13.13)

and the following estimates: for all £ € N,

sup [[(897)(x, o + )37 S 1+ 10l s (13.14)
ne

Slgr) ||A12(55J)(*a EC X/ Ann )IIZ? S HAlﬂHq st34et ||A12@||Wso+3 Hﬁl);} HJJHq s+3+e° (13.15)
n

where %, -,., denote successively the variables b, p,0 and J;(v) =i;(¢) — (,0,0).
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13. Construction of an approximate right inverse

Proof. From (12.19), (12.13), (12.10) and (12.3) we obtain

(0.V.H2)(io(p)) = L(O)IIE, + . V. P-(io())
= L(b)IIE, + elIg. 8,V P-(A(io()))
— 1140, He(Aliol))
= HSLOaTVTH(EA(ZO((p)))
According to the general form of the linearized operator stated in Lemma 11.1 one has
~00(0.VHE)(i0(¢)) = T, (D0 (Var (b 9,2) ) + OoLicr — DS, TI,

Inserting this identity into (13.3) gives (13.7). The operator R(¢y) in (13.4) may be written as

R(p) = Ri(p) + Ra(p) + Rs(p), with Ri(p) 2 Ly (9)91VPe(io(¢)) La(p),
Ra(p) 2 Ly (9)0:-V1P:(io(0)),
Ra(p) £ 0rV.P(io(¢)) La(p).

Notice that R1(¢), Ra(p) and R3(p) have a finite-dimensional rank. In fact, from (13.5) and (13.6) one

may write

L

d
La(¢)[p] = Z <L2(<P)[p]7§k>Rd € = Z <p7 L;(‘P) [ﬁkwm('ﬂ*) €k»
k=

1 k=1

with (e,)¢_, being the canonical basis of R%. Hence

d

Ri(e)lpl =D {p, Ly (©)lex]) 2 Ar(@)le]  with  Ai(p) = L (¢)0rViPe(io(¥)),
k=1
d

Rs()lp) =D {(p, Ly (©)ler]) 2y As()ler]  with  As(p) = 9;V.Pe(io(0))-
k=1

Analogously, since As(¢) £ 0,V P:(io(p)) : L2 — R?, then we may write
d
Ra(@)lpl = Y {0, A3 (9)ler]) 12 (my L2 (#)lex].
k=1
By setting

gk,l(@v 0) = gk,B(QDa 0) = Xk,Z(Sov 9) £ L;(@)[Qk](e)a gk,Q(QOa 0) £ A;(@)[Qk](e)v
X1 (9,0) 2 A1(@)[er](0),  xr3(0,0) = As(p)[er](0),

we can see that the operator R takes the integral form
3 d
Rp(p,0) = /Tp(so, (@, 0,m)dn, with  J(2,0,n) £ > "> g p (0, 7)x01 (2, 6).
k'=1k=1

The symmetry property (13.13) is a consequence of the definition of r and the reversibility condition
(13.2) imposed on the torus ig. The estimates (13.15), (13.14), (13.11) and (13.12) are straightforward

and follow in a similar way to Proposition 7.1. O
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13.2 Diagonalization of the linearized operator in the normal directions

This section is devoted to the reduction of the linearized operator Ew, defined in (13.7), to constant
coefficients. This procedure is done in three steps. First, we reduce the operator L, introduced in (13.8)
up to smoothing reminders. Then we study the action of the localization in the normal directions. Finally,

we almost eliminate the remainders by using a KAM reduction procedure. We fix the following parameters.

s12s0+Tq+ T +2, [y
31 £ s+ Toq + To, Sh

(13.16)

13.2.1 Leading orders reduction

In this section, we shall straighten the transport part by using a suitable quasi-periodic symplectic change
of variables and look at its conjugation action on the nonlocal terms. The reduction of the transport part

is done by a KAM iterative scheme in a similar way to Proposition 7.2. The result reads as follows.

Proposition 13.2. Let (v, q,d, 1, S0, Iia, S, Sn, S) satisfy (A.2), (A.1) and (13.16). Let v € (O,q%} .
We set
01 =8)+71q¢+2n+4 and o9 =59+ 01+ 3. (13.17)

For any (ua,p, sn) satisfying
_ 3 _
Ho =My, p=0, sp>max §,u2—|—sl—|—1,sh—|—p , (13.18)
there exists eg > 0 such that if

ey INE? Ceo and [T 0., <1, (13.19)

q,spto2

then following assertions hold true.

1. There exist
Ve e W1(0,C)  and B € W™ (O,H?)

such that with A defined in (A.12) one gets the following results.

(i) The function V;>° satisfies the estimate:
IViee = 31I3¢ S e. (13.20)

(ii) The transformations %', B! 3 and E satisfy the following estimates: for all s € [sg, S|,

_ 0 ,

155 013 + 1B 130 S ol + v 1300135, o7, (13.21)
. ) °

1B13:0 S 18132 S ey (14130013250, ) - (13.22)

Moreover, 8 and E satisfy the following symmetry condition:
B, =, —0) = =B, ,0) and  B(u, —p,—=0) = —B(u, ¢, 0). (13.23)

(iii) Let n € N, then in the truncated Cantor set

oo,n

OL™ (i) = N {(b,w) €0 st |w I+ VR (b,w)|> 2 } (13.24)

(1,5)€2% xZ\{(0,0) }
[1I<Nn
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13. Construction of an approximate right inverse

we have the decomposition
Lo EB LGB =w-0p+ V0 + 0Ky % - + 0pRer +Ep,

where Lo, is given by (13.8), Ky is defined in Lemma 11.2 and EY = E2 (b, w,io) is a linear

operator satisfying

o

ED lI75 S eNE2N L2 lpl17 oo a- (13.25)
The operator R, is a real and reversibility preserving integral operator satisfying
k _

Vsl 8] max 0fR 30, <2 (14 190075 0.) (13.26)

2. Given two tori iy and iy both satisfying (13.19), we have
1ALV 17C S ell Awill)s Lo (13.27)
1ABITE o+ 1802810C S v AL - (13.28)

In addition, we have
Nej

max HA12(89 ) aq5ntp S EY 1||A122||q Shtpton” (13.29)

ke{0,1

Proof. Notice that along the proof, to simplify the notation, we shall omit the dependence with respect to
the parameters b, w kipping in mind that the functions appearing actually depend on them. We begin by
setting

Vo=3 and fo(p.0) £ Ver(p.6) — 3. (13.30)
with V., defined by (11.1). According to (13.10) and (11.4), one gets

Notice that according to (11.1), (12.49) and Taylor formula, one has

1ollz€ S e (1+ 1130013221 ) - (13.32)

These properties allow to apply Proposition 7.2, whose proof is based on a KAM iterative scheme reduction
of the perturbation term fy and construct 8 and V;>°. In particular, for any n € N, we are able to construct
a Cantor set O} (ig) in the form (13.24) in which the following reduction holds

B (w04 00(Ver ) B =w-0,+ V0 +E, (13.33)

where E? is an operator enjoying the decay property stated in (13.25). Using (13.33), (12.22), (12.23) and

Lemma A.3-(i), one obtains in the Cantor set 0.7} (i) the following decomposition

B ey B =B (w0 + 09 (Ver) ) B+ B 0Ly B — B 06S.r B
=w- 0, + V0 + B '0g(Kip* ) B+ B '0gLer1 B
— B0 (Ko * ) B — B 09Ser1 B +E
=w -0y + V20 + 0pK1p x - — 0pKap * - + 0pRep + En,
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where

A
9ﬁier =

B (Kips ) Z = Kaps | = [B7(Kap ) B — Kap x| + B a2~ B'S.0n 8. (13.34)

Direct computations using (11.11) lead to

B (K1 = (#0))(6.0) = [ plin) lox(e.0.m) i,

where

A5(,0,m) = ’sm( ﬁ(cp,@,n))’ with  h(p,,n) 2 2ef-Blen),

Using elementary trigonometric identities, we can write

. - > sin (h(,0,7)
5(,0,m) = |sin (”70)’115(%9,77) with  v5(p,0,m) = cos (h(p,0,m)) + %
tan (157)
In view of (13.23), one finds that v~ enj

5 enjoys the following symmetry property

vg(=p, =0, =) = v3(p, 0,7).

(13.35)
Using the morphism property of the logarithm, one gets
(B (Ko % p) 2 — Ko % p)(,0) = /1rp(w7n)K@2(w7 0.1)
where
5.2(@.0.m) = log (v5(.0,7m)). (13.36)
Notice that (13.36) and (13.35) imply
K5 o(=p, =0, =n) = K5 (¢, 0,1) € R. (13.37)
Hence, we deduce from Lemma A.7 that B~ (ICU, * )@ — K1, * - is a real and reversibility preserving
Toeplitz in time operator. Writing

N . 7 sin(/l;(tp,ﬁ,n))
U,g(<p70777)_1+ (COS (h(%oﬂ?)) _1> + tan(nT_e) )
one finds, by Lemma A.1-(v), Lemma A.2 and (13.22),

log— 1175 He o S 1B13:5

Ser ! (14 17|

Q75+1+U1) :

Moreover, by (13.28) and the Mean Value Theorem (applied with p replaced by p + sg + 2), we find
||A12v/\||’y’ sh+p+so+1 ~ HA12ﬂ||q 5h+p+50+2

S e M 1Al g5, +ptsot2ton
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13. Construction of an approximate right inverse

In a similar way, we deduce that

1K 75, Sev™ (1419007 04 ) (13.38)
0
”AHKB\?”Z Fhtrtsott sey 1HA122Hqsh+p+sO+2+ol (13.39)
In view of Lemma A.7 we get, from (13.38) and (13.39),
BB Ky )2 —Kugs |70 <oy (14 13]2°€ (13.40)
kEIE)a,‘i(,Q} 0 1,0 1,0 oudigs ™ ey 0llg,54s0+3+01 ) :
o

N T,

o [8005 (B0 ) B —Kap e ]| SIS sz (134D

According to (11.12), one finds
B7H (Ko + (8p)) (,0) — K2 % pl,0) = /Tp(so, 75 ,(p, 0, m)dn,
with

A5, (p:0,m)

3 [log (140" — 2% cos(n — 6 + }z\(go, 0,m))) —log (1 + b* — 2b* cos(n — 9))}
_ 1 log (1+b4—2b2 cos (17—0—&-;1\(@,9,7]))) '

2 14+b%—2b2 cos(n—0)
From (13.23), we deduce that

K, (—p, =0, —n) = A5 ,(#,0,m) €R. (13.42)

It follows from Lemma A.7 that B~! (ICQ’b * ),%’ — Ky * - is a real and reversibility preserving Toeplitz in
time operator. Arguying as for (12.27) and using (13.22), we obtain

BN we, . SIBIGS
q; 9,

Sey! (1 + [|T0] q,sm) . (13.43)

Using Mean Value theorem, applied with p replaced by p + so + 1, one also gets by (13.28)

||A12‘%/Z-3\’2HZ eh+p+e0+1 ~ ||A12ﬂ||q Sp+p+so+1
S VN (13.44)
Consequently, in view of Lemma A.7, we get from (13.43)
Ok (B (Ko + )% — K "o < 3
- B — : 1 ) 13.4
| 18k [, e (i) 099
and from (13.44)
max_||A ak[zs*l(/c «)B—K *] "o < ey | Apgi 0 (13.46)
ke{0,1} 120 >0 20 0-d,q,5,+P v 12%g,5n+p+so+14or )

Next, putting together (12.24), (13.23) and Lemma A.8, we infer that B~'L., 1% is a real and reversibility
preserving Toeplitz in time operator. Moreover, we obtain from (A.30) in Lemma A.8, (13.22), (12.26),
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(13.11) and the smallness condition (13.19),

,O
kerﬁ)z?ifz} Hae ILET 1%”0 d,q,8 ~> S [ Ker, 1”7 s+<o+2 + 118

q,s+so+2HK€T1”q H*D
0,m
Sevt(1+ ||ﬁo||q;s+so+2+m) - (13.47)
Applying Lemma A.1, we get from (12.32), Lemma A.2 and (13.12),

(@]
1A12K 1 |[7757 mx, S Averally:

ser (HAmnisH + Al

q,so H%?“)é} || J”q,s-{-l)

Added to Lemma A.8-(ii), (13.28), (13.22), (12.26) and (13.19), we infer

max ||A12(998 Lsr 1%”

| AiS
ke{o

0-d,¢,5n+p ~ S € 4,5n+p+so+1+o1” (13.48)

The next task is to estimate the term B~'S,, 1% in (13.34). Note that (12.25), (13.23) and Lemma A.8
imply that B~'S,,.1.% is a real and reversibility preserving Toeplitz in time operator. In addition, Lemma
A8 together with the estimates (12.27), (13.11) and (13.22) give

k
kerﬁ)affﬂ Hag lssr lggllo d,q,5 ~> ||L%/€r 1||'y s+2 + ||ﬁ||q,s+2||*%/6r1||q Hbo oo

Ser (14 ol

1O v Jm) . (13.49)

Applying Lemma A.1, we get from (12.35) and (13.12),

18l S er (18l + 1Awil78 max [3:075).

Then, combining Lemma A.8-(ii), (13.28), (13.22), (12.27) and (13.19), we get

max HA1289 B ISET 1%||

<oyl
ke{0.1} o-dyq,5ntp ~ €Y | A€

TSt pboatLioy (13.50)

In view of (13.34), Lemma A.8 and the previous computations, we conclude that R, is a real and
reversibility preserving toeplitz in time integral operator which satisfies, by (13.40), (13.45), (13.47) and
(13.49),

k ,0
o (OR300 S v (14 10 S0t )

In addition, combining (13.41), (13.46), (13.48) and (13.50) yields

-1
kgax 141205 ET”O aantp < €Y ||A122||q Shtptsot2tor”
This ends the proof of Proposition 13.2. O

13.2.2 Projection in the normal directions

In this section, we study the effects of the localization in the normal directions for the reduction of the
transport part. For that purpose, we consider the localized quasi-periodic symplectic change of coordinates
defined by

P, =13, B3, .
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Then, the main result of this section reads as follows.

Proposition 13.3. Let (v,q,d, 1, S0, Sh, Sh, P, S) satisfy the assumptions (A.2), (A.1) and (13.18).
There exist g > 0 and o3 = 03(71,¢q,d, S0) = 09 such that if

ey IN§? <eo and 3oV L, <1, (13.51)
then the following assertions hold true.

(i) The operators @fl satisfy the following estimate

1B 113 S Mol + v M 1ol sl (13.52)

|q,50

(i) For any n € N*, in the Cantor set OL}L(io) introduced in Proposition 13.2, we have

B LBy = (w- 0y + Vi + 09y + )IE, + By +E,
L w- 0,105, + Do + X +E,
£ % +Ep,

where Xy = H§)<@0H§) is reversible and 9Dy = H§() @0H§) is a reversible Fourier multiplier operator

given by
V(l,j) € 2 x S5, Doer; =ip ey,
with
1) (b,w,io) = Q(b) + jri(b,w,io) and r'(bw,ip) = Vit (bw) — 3 (13.53)
and such that
Hr1||g’o <e and ||A12r1||7 0 < E||A127’||q Sh42° (13.54)
(iii) The operator EL satisfies the following estimate
IER Pl S eNG N2 Il e v (13.55)
(iv) The operator Xy is a real and reversible Toeplitz in time operator satisfying
Vs lso, 8] max 05050, Sev (1 13003 ) (13.56)
and
1A12%0][ q Sutp S €Y 1”A12Z”q Shtptos” (13.57)
(v) Furthermore the operator £y satisfies
Vs € [s0.5), 1%l 32 S Iol7Cn + 23 130170, ol 32 (13.58)

Proof. (i) Follows from (13.21) and Lemma A.1-(ii).
(ii) From (13.7) and the decomposition Id = IIs, + IIg; we write

BLLBL = BTG (Lo — 0yR) B
= B 'Ug, Lo, BN, — B 15, L., 115, P15, — B '115,0)RB..
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According to the definitions of £, and L., seen in Proposition 13.2 and in Lemma 11.1 and using (12.22),
(12.23) and (11.10), one has in the Cantor set O (7o)

Lo B =RBL,y and Lo =w-0p+ 09 (Vorr) + 06Ky * - + OgLicr1 — 09Sern
and therefore
BTLL B =B UG BL,NE — BT (9 (Ver-) + OgLicrt — 09Sert) U, BlIE — e BT OyRA .,
where we have used the identities
By, = 27" and [g,T] = 0= [Ils,, 7],

for any Fourier multiplier 7. The structure of £.,. is detailed in Proposition 13.2, and from this we deduce
that

g, BL, g, =g, B(w - 0y + V0 + 06Ks - + 0oRer + En ),
=I5, B (w - Oy + V20 + 0pKp * -) + 13, BOpR., 15 + T3 BELIS
=%, (w . ap + Vf;oae + 09Iy * ) + Hé{)%@g%srng'o + H&@E%Hé‘o.

It follows that

BT g BL, NG, = (w0 + Vi20p + 0pKy # )13, + 25 BOyR., 115, + B 'TI3. BEOIS
= (w . ap + V,C;Oag + 09Ky * )Hé‘o + HSLO&;ERETHSLO + %Ilﬂngoagﬁgrﬂéa
+ %'y, BEITLG, .

Consequently, in the Cantor set (93577}1(1'0), one has the following reduction

BTLLB L =(w- Dy + V2D + 0gKy # )IIE, + 1IE dpR., 115, + BT Blls, R, 115,
— B 'g, (99 (Ver+) + OpLiery — 06Sery) s, Blg, — B 0gRB, + B T3, BEI g,
20 0,115, + Do + %o + Ej,, (13.59)

where we set
Dy £ (V;;Oag + O Ky * )Hé‘o

and
E, & 2 '3 ZEO]I;. . (13.60)

(iii) Results from (13.60), (13.52), (13.21), (13.25) and Lemma A.1-(ii).

(iv) For the estimates (13.56) and (13.57), we refer to Lemma 7.1 and Proposition 7.4. They are based on
suitable duality representations of %’fl linked to #*!.

(v) It is obtained by (12.28), (12.29), (13.20), (13.56) and Lemma A.6-(iv). O

13.2.3 Elimination of the remainder term

We perform here the KAM reduction of the remainder % of Proposition 13.3. This procedure allows to
diagonalise the linearized operator in the normal directions, namely to conjugate it to a constant coefficients

operator %, up to fast decaying terms. We omit the proof due to its similarity with Proposition 7.5.

Proposition 13.4. Let (v,q,d, 1,72, So, S, 51, Sh, fia, S) satisfy (A.2), (A.1), (13.16). For any (uz,sn)
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13. Construction of an approximate right inverse

satisfying
_ 3 _
Ho = iy +270q + 279, and s, > SH2 +35 +1, (13.61)
there exist eg € (0,1) and o4 = 04(71,72,q,d) > 03 such that if
ey 2TINE? < gy and ||J0||q,sh+a4 <1, (13.62)

then the following assertions hold true.

(i) There exists a family of invertible linear operator @, : O — E(HS N Li) satisfying the estimates

Vs € [s0,5], 19X pllys

lpll3:so- (13.63)

o4 ey
There ezists a diagonal operator Lo, = Lo (b, w,ig) taking the form
L :w-apﬂé‘o—k.@oo
where Doy = Do (b, w, i) = HSLO @mn§() s a reversible Fourier multiplier operator given by,
Y(l,j) € 7% x S5, Dcer; = i,u?o eLj,

with
Vi€Sh  p(b,w,io) = pd(b,w,io) + 750 (b, w, o) (13.64)

and
sup |j[[75°15°° S ev™! (13.65)
JESE

such that in the Cantor set

0277 (i) 2 N {( w) € 0L (ig), |w - L+ p3° (b,w, dg) — pS (b, w, ig)| > 2‘Y<(lj):2jo>}
(1,4,30) €24 X (5§)?2
ILI<Nn
(1.)%(0,50)
we have

O LD = Lo +E2,
and the linear operator E2 satisfies the estimate

IEZ N30 S ey NG N L5 Mol (13.66)

q,80 ~

Notice that the Cantor set OL": (o) was introduced in Proposition 13.2, the operator £ and the

frequencies (u?(b,w,io))jesc were stated in Proposition 13.3.
0

(ii) Given two toriiy and iz both satisfying (13.62), then

Vi€ 1Awre7C < ey IAwilly (13.67)

q,5p+04

Vi€ Sh  NAwplyC S e lill Ay (13.68)

q,5htoa’
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13.3 Construction and tame estimates for the approximate inverse

At this step, we can construct an almost approximate right inverse for Ew defined in (13.7). This enables

to find in turn an almost approximate right inverse for the whole operator d; oF (g, ) given by (13.1).

Proposition 13.5. Let (v,q,d, 71,50, 5n, it2, S) satisfying (A.2), (A.1) and (13.61). There exists o =
o(m1,72,q,d) = o4 such that if

ey 2TINE? < go and ||JO||q shto <1, (13.69)
then, the following assertions hold true.

(i) Consider the operator £, defined in Proposition 13.4, then there exists a family of linear reversible

operators (T”)neN defined in O satisfying the estimate
O —
VS € [807 SL Sléll\)l HTnp”’qy:s 5 Y 1||p||q,s+'rlq+‘r1
n

and such that for any n € N, in the Cantor set

AL )= ) {(b,w)e(’) s.t. w-l+u]°-°(b7w,io)]>g§iz}7
(z,j)ezdxss
[LISNn

we have
LT =1d +E2,
with

Vso < s <5<, ERIILS S N5 Il S g

(ii) There exists a family of linear reversible operators (Tw,n)nEN satisfying

Vae 0.8l sl vt (IS + 190 01500)  (13.70)
n
and such that in the Cantor set
gn(’)/a T1, T2, ZO) = (’);@2(20) O’Y T 7—2( ) N A’Y o (ZO) (1371)
we have
EwTw,n =Id+ Ena
where E,, satisfies the following estimate
Vs € 50,8 EapllgS S N2y (10135 + 27213035 0135
+€’7_3NM2Nn-ﬁ12||p||q,so+a (1372)

Recall that L., OLTi(io) and OLTL™ (i) are given by (13.7) and Propositions 13.2 and 13.4,

respectively.

(iii) In the Cantor set G, (v, T1,T2,10), we have the following splitting

~

Lo=Tyn+Ry with L,,Ton,=1Id and R, =E,L,,,
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13. Construction of an approximate right inverse

where fwm and R, are reversible operators defined in O and satisfy the following estimates

Vs € [s0, 5], sup IEwnpll3 S el + e 2110l

q,s+o‘ + gy

+ey NGNS el

q,S0

Vs € 50,81 IRupllyrS S Ny (Il

f1790+0

Proof. (i) First recall from Proposition 13.4 that
Loo = w - 0,115, + De
Using the projectors defined in (A.5), we can split this operator as follows

Loo =N, w - 0,1y, g, + Doo — Iy, w - D11y T3,
£L,—R

where
Ry 2 11k, - 0,11k, 11,

According to the structure of %, in Proposition 13.4, we obtain from (13.75),

V(l,]) € Zd X SS? e—l-,—jLnelvj = {

Let us now consider the diagonal operator T,, defined by

. (w-l+p5° (bwyio))y (T i
Tnp(ba w, v, 0) £ 1 Z X( w;'il-i-uio (b?w,;yo) )pl7j (ba w) €

(1,5)ezd xsg
[1|<Nn
s pr,i(b,w) i(l-p+j0)
1 ) — €
> 1 (b.wrio) ’
(1) ezd xsg
[1]>Nnp

q,s+a||p||q so+1>

(w14 p) if[l] <N,
ipge if |I] > N,,.

(13.73)

(13.74)

(13.75)

where y is the cut-off function introduced in (6.92) and (py,;(b,w)), ; are the Fourier coefficients of p. Now

recall the expansion of the perturbed eigenvalues given by Proposition 13.4, namely
ujo-o(b,w,io) = Q,(b) + jr b, w) + T ®(b,w) with ri(bw)= Voo (b, w)

In view of Lemma 11.3-(iv), (13.54) and (13.65), they satisfy the following estimates

viess, w7 < il

According to Lemma 11.3-(ii), (13.54), (13.65) and the smallness condition (13.69) we infer

57 < Iugelly©.

1S 1157 [l447°1

Computations based on Lemma A.1-(vi) give

,0 -
Vs = S0, HTnP”g,s S ’7 1||p||q s+T1q+T71"
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In addition, by construction
L,T, =1Id in A2 (ip) (13.77)

co,n

since x(-) = 1 in this set. Gathering (13.77) and (13.75) yields

V(b,w) € ALTL (i), ZLooTn=1d —R,T,
£1d+E>. (13.78)

Remark that by Lemma A.1-(ii),

Vso <s<5<S,  [Rapll2:C S N5lp) 78

q,8 ~ q,5+1°
Putting this estimate with (13.76) implies
_ o 5 - 0
Voo <s <3<, El3d S Vo ol S g (13.79)

(i) We set
Tw,n £ %J_q)ooan);olgglla (1380)

where the operators #; and ®., are defined in Propositions 13.3 and 13.4 respectively. Notice that T, ,, is
defined in the whole range of parameters O. Since the condition (13.69) is satisfied, then, both Propositions
13.2 and 13.4 apply and the estimate (13.70) is obtained combining (13.52), (13.63), (13.76) and (13.69).
Now combining Propositions 13.3 and 13.4, we find that in the Cantor set O} (ig) N OL7L ™ (ig) the

following decomposition holds

OB L, B D = O LoD + PLEL D,
=% +E2+ O E D

According to (13.78), one finds that in the Cantor set O%7}, (i0) N 0Lz (10) VAL (io) the following identity
holds

O BTL B BT, = 1d +E3 + E2T, + O EL DL T,

which implies in turn, in view of (13.80), the following identity in G, (v, 71, T2, %0)

LoTun =1d+ B &0 (B2 + E2T, + OLEL® T, )0 B!
21d4E,. (13.81)

Combining (13.81), (13.55), (13.66), (13.79), (13.76), (13.52), (13.63) and (13.69), we get (13.72), up to
taking o large enough.

(iii) By virtue of (13.81), one can write in the Cantor set G, (7, 71, T2, o)
L,=T,} +E,T L. (13.82)
Putting together (13.80) and (13.77), one finds in the Cantor set G, (v, 71, 72, i0)

/L\w,n = Toj,ln = ‘@LQOOL'”(I)(:Olﬂll'
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14. Nash-Moser iteration and measure of the final Cantor set

Therefore, (13.82) can be rewritten

~

Lo=Tyn+R, with R, 2E,L,,.

The estimate (13.73) is obtained gathering (13.75), (13.52), (13.63) and (13.69). Finally, (13.73) together
with (13.72) implies (13.74). This ends the proof of Proposition 13.5. O

The following theorem, see also Theorem 6.1, states that the linearized operator d; oF (i, o) in (13.1)

admits an approximate right inverse on a suitable Cantor set.

Theorem 13.1. (Approximate inverse)

Let (v, q,d, 71, T2, So, Sh, ft2) satisfy (A.2), (A.1), (13.16) and (13.61). Then there exists & = 7 (11, T2,d, q) >
0 and a family of reversible operators To = To.n(ig) such that if the smallness condition (13.69) holds,
then for all g = (g1, g2, 93), satisfying

91(9) = 91(9),  92(—¢) = —g2(p) and  gs(—p) = (Lg3)(),
the function Tog satisfies the following estimate

Vs € [s0,5], || Tog

Pl (7 [ Y B 7

Moreover Tg is an almost-approximate right inverse of d; oF (io, ) in the Cantor set Gn(v,T1,T2,0)
defined by (13.71). More precisely,

V(b, w) (S gn(’Y, 71,72, 7:0), d“af(lo) [¢] TO — Id = 51(n) + 52(n) + 5§n)7

where the operators El(n), 52(”) and Sén) are defined in the whole set O with the estimates

1EM 920 < W‘lllf(lmao)l JAna 71
Vb >0, ||82(n)g| ZSO SN (gl Q750+b+0 + €3 sO+b+aH9 q,80+a) )

79 SN2 (Mg + 22300170

+ey INGEN 2 gl

Vb e0,9), (&M gl

g| q730+0)

q,50+0"

14 Nash-Moser iteration and measure of the final Cantor set
In this last section, we shall find a non-trivial solution (b,w) — (iso(b,w), @eo(b,w)) to the equation
F(Z’ a7 b7 w? 6) = 07

where F is the functional defined in (12.20). This is done by using a Nash-Moser scheme in a similar way
as the series of papers [7, 33, 87, 101]. The solutions are constructed for parameters (b,w) belonging to
the intersection of all the Cantor sets G2, on which we are able to invert the linearized operator at the
different steps. In order to find a solution to the original problem, we must rigidify the frequencies w
so that they coincide with the equilibrium frequencies. This amounts to considering a frequency curve

b — w(b, e) implicitly defined by the equation
oo (b, w(b,€)) = —wiq(b).
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Considering the associated rigidified Cantor set
e = {b € (boby) st (bw(be)) € ggo},

we have a solution to the original problem provided that the measure of C5 is non-zero. This will be
checked, in Section 14.2, by perturbative arguments in the spirit of the previous works [7, 10, 33, 87, 101].

This proves in particular Theorem 9.1.

14.1 Nash-Moser iteration

In this section we implement the Nash-Moser scheme, which is a modified Newton method consisting
in a recursive construction of approximate solutions of the equation ]-"(z', a, b, w) = .7-"(@', a,b,w, 6) =0
where the functional F is defined in (12.20). At each step of this procedure, we need to construct an
approximate inverse of the linearized operator at a state near the equilibrium by applying the reduction
procedure developed in Section 13. This allows to get Theorem 13.1 with the suitable tame estimates
associated to the final loss of regularity @ that could be arranged to be large enough. We point out that &
depends only on the shape of the Cantor set through the parameters 71,7, d and ¢ but it is independent
of the regularity of the solutions that we want to construct. The main result of this section can be stated

as follows. The proof is similar to Proposition 8.1.
Proposition 14.1. (Nash-Moser)
Let (11,72,q,d, s0) satisfy (A.2) and (A.1). Consider the parameters fized by (8.1) and (8.2). There exist

C. >0 and g9 > 0 such that for any € € [0,&9] we get for all n € N the following properties.

(P1),, There exists a q-times differentiable function

W, : O — E,_1xR%xRt!
(byw) = (Tn,an —w, 0)
satisfying
Wo=0 and for neN", ||I/Vn||:;900JrE < Coey NG
By setting

Uy = ((%070),% (b,w)) and for neN*, U,=Uy+W, and H,=U,—U,_1, (14.1)
then
]_ —
Vs € [s0, S, [[H1]|79 < 50*57*11\[3“ and V2 <k <n, |Hy|?C - < Cuey 'N%2. (14.2)

q;80+0

We also have for n > 2,

0 Ca—a
IHll}5 10, < Caey N, (14.3)

(P2),, Define
in = ((pa 0, O) +Tn, Y= '7(1 + 27”), (144)

then i, satisfies the following reversibility condition

Sin(p) = in(—p), (14.5)
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14. Nash-Moser iteration and measure of the final Cantor set

where & is defined by (12.11). Define also
Aj=0 and Al = Al NGy (Ynt1,T1, T2, 0n)
where G (Yn+1, T1, T2, in) 18 defined in Proposition 7.6. Consider the open sets
vr>0, O = {(b,w) €0 st dist((bw),AY) < an_E}
where dist(z, A) = ;relg |z —y||. Then we have the following estimate

7,027

H]:(Un) q,50 < C*EN,;_ai

0 _
(P3)n HWn”:;,lerE < Ceey™'NJL,.

A non trivial reversible quasi-periodic solution of our problem is obtained as the limit of the sequence
(Un)nen according to the fast convergence stated in Proposition 14.1. This is explained in the following

corollary.

Corollary 14.1. There exists g > 0 such that, for all e € (0,¢), the following assertions hold true. We
consider the Cantor set G)_, related to € through -, and defined by

[eep)

gL = () AL

neN
There exists a function
U : O — (T*xR*x L3 NH*) xR x R
(ba W) = (ioc(ba w)a [07°%) (b, (JJ), (b, w))

such that
V(b,w) € GL, F(Us(b,w))=0.

In addition, i, is reversible and as, € W% (O, R%) with

0 (byw) =w+r.(byw) and |

|70 < ey NG (14.6)
Moreover, there exists a g-times differentiable function b € (b, b1) — w(b,e) with

w(b,e) = —wpq(b) +7:(b), ||I7e

70 S ey NG, (14.7)

and
Vb eCs, F(Us(bw(be)) =0 and as(bw(b,e)) =—wpq(d),

where the Cantor set C5, is defined by
c: = {b € (bo,by) st (bw(be)) e ggo}. (14.8)
Proof. In view of (14.1) and (14.2), we obtain
Wit = Wall 250 = [ Hns1 79 < 1 Hna |16 15 < Cesy ™ N2

q,50 q,50 q,80+0
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This implies the convergence of the sequence (W,,) Its limit is denoted by

neN -
Wa £ lim W, £ (Joo, Qoo — w,0,0)

n—oo

and we set
Uso £ (lioe, oo, (by,w)) = Up + Wa.

Taking n — oo in (14.5) gives
Gico () = too(—)-
According to Proposition 14.1-(P2),,, we get for small values of €

V(b,w) € G1., ]—'(ioo(b,w), oo (b, w), (b, w),5> =0, (14.9)

where F is the functional defined in (12.20). We emphasize that the Cantor set GX, depends on € through
~ fixed in (8.2). Now, from Proposition 14.1-(P1),,, we deduce that

aso(bw) =w+re(byw)  with ]2 < ey NG

Next we shall prove the second result and check the existence of solutions to the original Hamiltonian
equation. First recall that the open set O is defined in (12.5) by

O = (by,b1) x % with % = B(0,Ry) for some large Ry > 0,

where the ball % is taken to contain the equilibrium frequency vector b — wgq(b). In view of (14.6), we
obtain that for any b € (bg, b1), the mapping w — aoo(b,w) is invertible from % into its image oo (b, %)
and we have

0= oo(b,w) =w+r(bw) & w=0al(ba)=0+7.(bd).

In particular,
T.(b,@) = —r.(b,w).

Differentiating the previous relation and using (14.6), we find
IE117°° S ey NE° (14.10)
Now, we set
w(b,e) £ al (b, —wpq(b)) = —wpq(b) + T(b)  with  Te(b) £ T. (b, —wgq(b))
and consider the following Cantor set
ce 2 {b € (bo,b) st (bw(be)) € ggo}.
Then, according to (14.9), we get
WeCh, F(Us(bwde)) =0,

This gives a nontrivial reversible solution for the original Hamiltonian equation provided that b € CZ,.

From Lemma 11.3, we obtain that all the derivatives up to order ¢ of wgq are uniformly bounded on
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14. Nash-Moser iteration and measure of the final Cantor set

[bo, b1]. As a consequence, the chain rule and (14.10) imply
E)20° <eyINI® and  w(-e)|[PC <1+4+ey N < 1. 14.11
q ~ ’Y 0 q ~ ’-Y 0 ~

This achieves the proof of Corollary 14.1. O

14.2 Measure estimates

In this last section, we check that the Cantor set CS_, defined in (14.8), of parameters generating non-trivial
quasi-periodic solutions is non trivial. More precisely, we have the following proposition giving a lower

bound measure for CZ.

Proposition 14.2. Let gy be defined as in Lemma 11.5 and impose (8.1) and (8.2) with ¢ = qo + 1.
Assume the additional conditions
T > qu

> 1+ dgo (14.12)

1
qo+3"

v =

Then there exists C > 0 such that
|C2.| = (b1 — by) — Ceo.
In particular,

lim [CZ,| = b1 — bo.

Remark 14.1. The constraints listed in (14.12) appear naturally in the proof, see (14.20) and (14.25),
for the convergence of series and for smallness conditions. Notice that these conditions agree with (A.1)

and Proposition 15.2.

Proof. According to Corollary 14.1, we can decompose the Cantor set CS, in the following intersection

c22 ()¢ where 32 {b € (bo,by) st (bw(be)) € A;g}. (14.13)

neN

Recall that the intermediate sets A} and the perturbed frequency vector w(b, e) are respectively defined
in Proposition 14.1 and in (14.6). Instead of measuring directly CS_, we rather estimate the measure of its

complementary set in (bg, b1). Thus, we write

oo

(b, b1) \ €5 = ((bo,b1) \ C5) U || (€5 \ Coia)- (14.14)

n=0

Then, we have to measure all the sets appearing in the decomposition (14.14). This can be done by using
Lemma 5.6 together with some trivial inclusions allowing to link the time and space Fourier modes in
order to make the series converge. For more details, we refer to Lemmata 14.1, 14.2 and 14.3. From (8.2)
and (14.7), one obtains

sup |w(b,€) + wrq(b)] < [[T=[77° < Cey ' NG = Cetm el
b€ (bo,b1)

Notice that the conditions (8.1) and (8.2) imply in particular

O<a<

1+qa
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Therefore, taking € small enough yields

sup [w(b, ) + wrq(b)] < [T )17C < 1.
be(bo,b1)

Recall that % = B(0, Ry), then, up to taking R large enough, we get
Vb € (bo,b1), Ve € [0,20), w(b,e) € % = B(0, Ry).
Recall that AJ = O = (bg,b1) x % then, from (14.13),
Co = (bo, b1)

and coming back to (14.14), we find

oo

(bo,b) \ €| <3

=0

Ci\Cin|

> S (14.15)
n=0
In accordance with the notations used in Propositions 13.3 and 13.4, we denote the perturbed frequencies

associated with the reduced linearized operator at state i, in the following way

M;om(b’ 8) = MJOO (ba W(b, 5)’ Z'n)

= Q;(b) + jri"(b,e) + 757" (bye), (14.16)

where

rl’”(b75) 2 V> (b,e) — %,
V2 (be) = Vi (b, w(b, €)),

in

" (b,e) £ 130 (b,w(b,e), in).

J

Now, according to (14.13), Propositions 13.4, 13.5 and 13.2 one can write for any n € N,

€ € _ ) /- . 1) ,.
Ci\Cri1 = U Ry (in) U Rij.io(in) U Ry (in), (14.17)
(1,5) €24 xZ\{(0,0) } (L.ddo) €24 % (8§)2 (1,.5)€zd xsg
IS Nn [LISNn [1|<Np

where we denote

Rl(oj)(zn) L {b €C: st ’w(b, e) -1+ V20, 5)‘ < w}v

Rmm@mé{beq,st pwﬁyz+ufwa@—u§mw@‘<ﬁ%%;@},
Rl(lj) (in) £ {b eC; s.t. ‘w(b, e)-l+ /A;C’"(b,a)‘ < %257175”} :

In view of the inclusion

We(0,C) — C1710,C)
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14. Nash-Moser iteration and measure of the final Cantor set

and the fact that ¢ = gg + 1, one obtains that for any n € N the curves

b w(be) -1+ jV2(be), (1,5) € Z* x Z\{(0,0)}
b w(b,e) - 1+ pS"(be) — p5o " (be),  (Lj,jo) € Z% x (S§)?
b w(b,e) -1+ pS"(be), (1,) € Z% x S§

are of regularity C%. Therefore, applying Lemma 5.6 together with Lemma 14.3 yields

. R N o st

(R (in)| S 275 Gy gy~

(R ()| < 77 () @)1 (14.18)
. 1 1 _1_T2+H1

‘Rlvjvjo(zn) Sy (j = joyao () w0

We first estimate the measure of Sy and &y defined in (14.15). From Lemma 14.2, we have some trivial

inclusions allowing us to write for n € {0,1},

S < 3 \Rg?j (in)| + 3 ‘Rlyj,jo i)+ 3 ‘R(l) (14.19)
(1,7) €24 xZ\{(0,0)} (1,5,50) €24 % (S§)? (1,§) €L xS
131<Co (1), 1L <Nn 1i=30|<Co (1), <N, 171K Co 1), 1< N,
min(|5], 1501 <ear ¥ (DT
Inserting (14.18) into (14.19) implies that for n € {0,1},
1 JE S s . R B sk
Sn57q0< ST e+ > 1 = dola0 (1)~ w0 )
[71<Co(l) [7—Jol<Co(l)
min(13],1501)<eay Y (1) 7L
v 141
tyt 3 lilw@ T e
[71<Co (1)
The first two conditions listed in (14.12) write
71 >dqgy and T > 71 +dqo. (14.20)

Hence, we can make the series appearing in the following expression converge and write

max S, <® (Zmlé R A DX/ A ) + o Zaﬂ% (14.21)
ne{0.1) lezd lezd lezd

v 1

5 rymin(a,ﬁfv) )

Let us now move to the estimate of S, for n > 2 defined by (14.15). Using Lemma 14.1 and Lemma 14.2,

we infer
(0) ; Q).
S, < > ’R + >, R j.jo (in) | + > Rij (in)
(1,7)€Z4XZ\{(0,0)} (1,3,30) EZ4 % (S5)? (1,5)€Z %SG
[31<Co (1), Ny 1 <I|lLISNn =30l <Co(l),Np_1<|l|<Np [41<Co(l), Ny 1 <|U|<Np

min(lj],lio N <eay, Yy (DT
Notice that if |j — jo| < Co(l) and min(|j], [jo|) < 7,11 ([)™, then

max (|, [ol) = min(|jl, [jol) + |j = Jol < %, L1 ()™ + Co(l) S~
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Hence, we deduce from (14.18) that

snsv$< DRI a S ) M >+v% > .

[U|>Np_1 [1|>Np 1

Now according to (14.20), we obtain
an < Amin(G5a ), (14.22)

Inserting (14.22) and (14.21) into (14.15) yields
o, bi)\ €5 | gy A ),

Remark also that (14.12) implies
min (3, L_ U) =X

Consequently, using the fact that v = % due to (8.2), we finally get
|, b) \ O] S e
This ends the proof of Proposition 14.2. O

We shall now prove Lemmata 14.1, 14.2 and 14.3 used in the proof of Proposition 14.2.

Lemma 14.1. Let n € N\ {0,1} and | € Z¢ such that |l| < N,,_1. Then the following assertions hold

true.

(i) For j € Z with (1,7) # (0,0), we get Rl(oj)(zn) =g.

(ii) For (j,70) € (S§)? with (1,7) # (0, jo), we get Ry jo(in) = @.
(ii) For j € S§, we get Rl(lj)(zn) =o.

(iv) For any n € N\ {0,1},

0),. . 1),.
CENCo,, = U R (in) U U Rijiolin)U  J R ()
(1,5)€Z4xZ\{(0,0)} (1,5,90) EZL X (S§)? (1,§)€ZExSE
Np_1<IlI<Np Np_1<|l|<Nn Np_1<|l|<Nn

Proof. The following estimate, obtained from (14.3), turns to be very useful in the sequel. For any n > 2,

we have

lin = in1135 10, < 1Un = Unalli5, 1o,
g ||H ||q Sh+0oa4
< Cuey N %, (14.23)

Since (14.23) is only true for n > 2, we had to estimate the measures of Sy and S; differently in the proof

of Proposition 14.2.
(i) Assume that |I| < N,_1 and (I, 5) # (0,0). Let us prove that

R (in) € R (in1). (14.24)
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14. Nash-Moser iteration and measure of the final Cantor set

Take b € Rl(?j) (in). In view of (14.17), we have in particular that b € C5 C C;_,. In addition, the triangle
inequality gives
|w(b,e) -1+ jV, 2 (be)| < |w(be) - 1+ jV;°(be)| + |5]|Vi® (b,e) — V22 (b,e)]

4y, 11 (5)
< Do) 4 g vie

e

ln 1|

Thus, putting together (13.27), (14.23), (8.2) and the fact that o4 > 2, we obtain

Y 700 4, , ; 0
’W(ba ) L+ V24 (b, 5)‘ S 7(1#1 + Ce(G)lin — Zn—1||;{,§h+2

< T + O TUGIN .

According the definition of ~,, in Proposition 14.1-(P2),,, we infer
Jeg >0, YneN, v, -7, <—coy27"
Notice that (14.12), (8.1) and (8.2) give
2—a—av>1 and ag >y, (14.25)
which implies in turn

sup 2" N, T < oo.
neN

Consequently, for e small enough and |I| < N, _1,

w(b,e) -1+ V2, (b e)] < il + O ( — ey + CeQnN;f§+n)

47, (3)
S

It follows that b € Rl(f)j) (4n—1) and this proves (14.24). Now, from (14.17) we deduce
Ry (in) © Ry (in-1) € Gy \ G
In view of (14.24) and (14.17), we get RI(OJ)(Zn) C C;;\ C;, ;1 and thus we conclude

R (in) € (C5\C51) N (Co 1\ C5) =2

This proves the first point.

(ii) Let (4,J0) € (S§)? and (I,5) # (0,40). If 5 = jo then by construction Ry j, j, (in) = Rl(?o) (in) and then
the result is an immediate consequence of the first point. Then, we restrict the discussion to the case
J # jo. In a similar way to the point (i), we only have to check that

Rij.jo(in) C R jjo (in—1)-

Take b € Ry j,(in). Then coming back to (14.17), we deduce from the triangle inequality that b € C; C
C;_; and

(b, e) - 1 3" (bye) = e T (b )| < P 4 of (b ), (14.26)

where

25 5o (b, €) 2 |N§o’n(bv ) — p>"(bye) — pSo" (b e) 4+ uSo" (b, e)).

Jo
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According to (14.16), one obtains

Q;'L,jo(b7€) < |.7 _jOHTLn(br E) - Tl’nil(b7€)| + |T?o,n(b56) - r;?o,n_l(bv 5)|

+ |5 (bye) — 5T (b e)]. (14.27)

From (13.54), (14.23), (8.2) and the fact that o4 > o3, we deduce that

7,0

|rt7(b,e) = b (b, e)| S ellin — in-1 o5 tos

2 -1 —asz
e Nn—l

S
< 627GN_[12
~ n—1-

Similarly, (13.67), (14.23) and (8.2) imply

- —1ys . ,0
|75 (b e) = 15" 0 0)] S el — ina I 4o,

Se*yTAN, Y

<m0 — jo) N
Plugging the preceding two estimates into (14.27) yields

0750 (b,6) S €17 (j — jo) N, 3. (14.28)

n—1
Gathering (14.28) and (14.26) and using v, 11 = 7, — €27 "1, we obtain

[w(B,2) L+ " (b, 2) — S (b, )| < i) o jo)an ()

+ 20— Go) N .
Using the fact that |I| < N,—_1, we deduce
—e" 2T (1)T 4 CATINTE < 27l T (- 14 PR N )
Notice that (8.1) and (8.2) imply in particular
az>7 and a< 3. (14.29)
Therefore, for € small enough, we get
VneN, —14Ce? 30 nN"2%™ L,
which implies in turn
w(b,e) -1+ 5" (bye) — i (b,0)| < 2l

Finally, b € Ry ;,j, (in—1). This achieves the proof of the second point.
(iii) Let j € S§. In particular, one has (I,7) # (0,0). In a similar line to the first point, we shall prove that
if |I| < Np—1 and then

where the set Rl(lj) (in) is defined below (14.17). Take b € Rl(lj)(zn) Then, by construction, b € C;, C C;,_;.
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14. Nash-Moser iteration and measure of the final Cantor set

By using the triangle inequality, (13.68), (14.23) and the choice v = %, we obtain

w(bye) - L4+ po" (b, e)| + [p3>" (b,e) — p3>" (b, e)

J
7,0
q,5h+04

w(b,e) -1+ p5>" " (b,e)| <
<

2t 4 Cey ™Y lin — ino1

< 2 4+ 00N, %

Now recalling that v, 11 = v, — €27 " ! and || < N,,_1, we get

wlbye) L+ )| < B+ i (= 14 @SN ),
As a byproduct of (14.29), we infer
ar>7 and a< % (14.30)
Therefore, up to taking e small enough, we deduce
VneN, —14g2 3entiy-atn (g,

which implies in turn that

w(b,e) - 14 p2>"H(b,e)| < 7(1)93

Finally, b € Rl(lj) (in—1) and the proof of the third point is now complete.
(iv) Follows immediately from (14.17) and the points (i)-(ii)-(iii). O

The following lemma provides necessary constraints on the time and space Fourier modes so that the
sets in (14.17) are not void.

Lemma 14.2. There exists ey such that for any € € [0,e0] and n € N the following assertions hold true.
(i) Let (I, ) € Z x Z\ {(0,0)}. If R\ (in) # &, then |j| < Co(l).
(i) Let (1,4, jo) € Z x (S§)*. If Rujjo(in) # @, then |j — jo| < Co(l).
(iii) Let (I,5) € 2% x S§. If R (in) # @, then |j| < Co(l).
(iv) Let (1,3, j0) € Z% x (S§)?. There exists c; > 0 such that if min(|j], [jo|) = oy, {1 (1), then
R jijolin) © RYGjy (in):

Proof. (i) Let us assume that Rl(,oj)(in) # @&. Then, there exists b € (bo, b1) such that

w(b,e) -1+ Ve (b,e)| < )

From triangle and Cauchy-Schwarz inequalities, (14.4) and (8.2), we deduce

(Vo (b, e)ll5] < Al ()7 + w(b, e) - 1]

<4
<Ajlrne +C0)
< 8|3+ C().

Remark that we used the fact that (b,e) — w(b, ) is bounded. Also notice that the identity
V2 (bye) = 1 +r"(b,e)
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together with (13.20), (13.65) and Proposition 14.1-(P1),, imply

Vk € [0,q), sup sup [J5r""(be)| <y Fsup |rh2€
nEN be(bg,by) neN

Ser™*
< glmak, (14.31)
Hence, taking € small enough, we infer
inf inf |V, °(b,e)| > 1.
inf cinf IV (b.6) > 5
Therefore, up to choosing ¢ small enough we can ensure |j| < Co(l) for some Cy > 0.

(ii) In the case j = jo we get by definition Ry j, j, (in) = Rl(%)( n), SO this case can be treated by the first

point. Then, we shall restrict the discussion to the case j # jo. Let us assume that Ry ; j, (i) # @. Then,
there exists b € (bo, b1) such that

jw(bye) -1+ 5" (be) = gy (bye) | < Zpliel,
By using triangle and Cauchy-Schwarz inequalities, (14.4) and (8.2), we get

< 290417 = Jol D)™™ + |w(b,€) - 1]
< 2417 = Jo| + C()
< 4elj — jol + C(I).

157" (b &) = g " (by )]

In a similar way to (14.31), we may obtain

Vk € [0,q), supsup sup [j[[0fr;>"(b,e)| < v Fsup up 5o 130
neN jES§ be(bo,by) neNje
S; g,yflfk
< glmali+k), (14.32)

From the triangle inequality, Lemma 11.3-(iii), (14.31) and (14.32) we infer for j # jo,

57" (bye) — pgy " (bse)| = |Qj(b) — Q5 (0)| — [P (b, ©)[15 — Jo| — 757" (b, €) | — 752" (b, €)]
( —Ce'~ a)|] — Jol

2
*°|J*]o|

\%

Notice that the last inequality is obtained for e sufficiently small. Gathering the previous inequalities
implies that, up to choosing ¢ small enough, we can ensure |j — jo| < Co(l), for some Cy > 0.

(iii) First notice that the case j = 0 is obvious. Now for j # 0 we assume that R(l)(zn) # . Then, there
exists b € (bg, b1) such that

wb,e) - 1+ 3" (b,e)] < L.

Thus, triangle and Cauchy-Schwarz inequalities, (14.4) and (8.2) imply

157" (b, )] < gl + lw(by€) -1

<
< 22| + C{).
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According to the definition (14.16) together with the triangle inequality, Lemma 11.3-(ii), (14.31) and
(14.32), we obtain

1" (b)) = 13| = 1]l (b,9)] = 13" (b, 9)]
> %] - Ce'~jl.
Putting together the previous two inequalities and the second condition in (14.30) yields

(% — et — 2e9) || < O,

Finally, by choosing ¢ small enough we get |j| < Co(l), for some Cy > 0.
(iv) First remark that the case j = jg is obvious as a direct consequence of the definition (14.17). Let
j # jo- In view of the symmetry property u>;" = —u;°"™ of the perturbed eigenvalues, we can always

assume that 0 < j < jo. Take b € Ry j j, (i). Then by construction

|w(b, e)-l+ u?o’”(b, g)+ ujj’”(b,sﬂ < %ﬁ

Putting together (14.16), (11.15) and the triangle inequality, we find

|w(be) -1+ (5 £ 4o) VS (b,e)| < [w(b,e) - 1+ p3™" (b,e) + p5e " (bye)| + 5[6% £ 67|
FHG - £ 0o~ 1) — G jo)| + [ (be) £ 1507 (b e)].

Hence, we deduce

Jw(bye) - 1+ (G £ jo)Vii® (b )| < 2tpldol 4 11127 o 20|

+3G =D £ Go—1) = (£ jo)| +|r>"(boe) £ (be)].  (14.33)
Notice that
2j 23 (3+3do)
b + b0 L C ya
In addition, Taylor formula implies

S Jo -
b2 — pPo < 721n(b)/ bR dy < S
J

where ¢c; =  sup ( — 2111(b)jb2j) > 0. On the other hand, one has
JEN,bE(0,1)

G =1+ (Go—1) = (j £ jo)| = 1 £1 < L,

Applying (13.65), we find for j # jo,

ry " (be) £ (bye)| <Ce (517 + Lol )

it
<C€1 a{J jJ(l) .

Plugging the preceding estimates into (14.33) yields

[w(bye) - 1+ (& o) Vi (b, 2)| <2ephin) 4 olitiol.
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Therefore, if we assume j > %C'y;jjl ()™ and 19 > 71, then we deduce

[w(b,2) L+ (& o) Vi (b, )| < 2ol

This achieves the proof of Lemma 14.2, taking co = % [

We shall now establish that the perturbed frequencies w(b, €) satisfy the Riissmann conditions. This is
done by a perturbation argument on the transversality conditions of the equilibrium linear frequencies

WEq(b) stated in Lemma 11.5.

Lemma 14.3. Let qo, Cy and pg as in Lemma 11.5. There exist eg > 0 small enough such that for any

e € [0,eq] the following assertions hold true.

(i) For alll € Z4\ {0}, we have

inf OF (w(bye) - 1) | = 2o
el By 105 (w02 D[ > 5

(i3) For all (1,5) € Z4T1\ {(0,0)} such that |j| < Co(l), we have

¥neN, inf OF (w(bye) - L+ jV2(b,e))| > 22,
MM bl i B O AT 5

(ii3) For all (1,5) € Z% x S§ such that |j] < Co(l), we have

YneN, inf OF (w(b,e) - 1+ p" (be))| > 248
SR T LA R

(iv) For all (1,7, jo) € Z% x (S§)? such that |j — jo| < Co(l), we have

VneN, inf O (w(b,e) - 14+ u"(b,e) — ™ (b,e))| = 2.
n befﬁ,buk?ﬁ%n’ y (w(bse) - L+ ps7" (bye) — ps " (be))| = 25

Proof. (i) From the triangle and Cauchy-Schwarz inequalities together with (14.11), (8.2) and Lemma
11.5-(i), we deduce

max |0F (w(b,e) -1
ke[[quo]]\ p (w(b,e) 1) | pax

WV

maxx [0f (weq(b) -0)| ~ max |0F (5:(0) 1)

> pol) — Cey ™ ING" (1)
> p0<l> _ Cglfa(1+q+q6) <l>
0]
> 902
provided that € is small enough and
1—a(l+q+qa) > 0. (14.34)

Notice that the condition (14.34) is automatically satisfied by (8.2) and (8.1).
(ii) As before, using the triangle and Cauchy-Schwarz inequalities combined with (14.11), (14.31), Lemma
11.5-(ii) and the fact that |j] < Co(l), we get

AF (w(b, &) -1+ jV>(b > aF b) -1+ )| — AF (T-(b) - L+ jr™ ™ (b
kéﬁl&gﬂlb(w(,e) + V2o (be)) | kg[%ggztoﬂlb(qu() +12)] kgl[[%)};ﬂ|b(rs() + jrt"(be)) |

ofl) — Cetmalttarany) — Celmaalj|

o (1)
2

> D

2
2
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14. Nash-Moser iteration and measure of the final Cantor set

for e small enough and with the condition (14.34).
(iii) As before, using triangle and Cauchy-Schwarz inequalities combined with (14.11), (14.31), (14.32),
Lemma 11.5-(iii) and the fact that |j| < Co(l), we get

(e |05 (w(b,e) - L+ p5°" (b)) | = T 105 (wrq(b) - 1+ Q;(0)) |

- klen[[%i]] |OF (Fe(b) - L+ " (b,e) + " (b))

> po(l) — Ce!7eHTram () — el e+
2 P

o(l)
2

for € small enough with the condition (14.34).
(iv) Arguing as in the preceding point, using (14.31), (14.32), Lemma 11.5-(iv) and the fact that
0 < |7 — jo| < Coy(l) (notice that the case j = jy is trivial), we have

Jmax [0 (w(be) - L+ (0,€) = 15" (0,9)) > maxc 0] (wea(B) - L+ 25(6) = 20 (0))]

k(= . -\ 1n oo,n n
- kren[[%?;]] |ab (I‘a(b) I+ (.] - .]O)T (b7 6) + Tj (b7 6) - rjo (b76))|

> poll) — Cel—a(l+a+qa) {1y — Cegl—a(+a) 17 — Jol
l
> P02< )
for € small enough. This ends the proof of Lemma 14.3. O
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Part III

Un Anneau pour les gouverner tous. Un
Anneau pour les trouver. Un Anneau pour

les amener tous et dans les ténébres les lier.

J. R. R. TOLKIEN

This part is devoted to the proof of Theorem 2.3. We also refer to Theorem 15.1 below for a more
precise statement. This result is the subject of the following preprint [138] which is accepted for publication
in the journal Asymptotic Analysis and entitled "Vortex rigid motion in quasi-geostrophic shallow-water

equations".
Abstract
We prove the existence of analytic relative equilibria with holes for quasi-geostrophic shallow-water

equations. More precisely, using bifurcation techniques, we establish for any m large enough the existence

of two branches of m-fold doubly-connected V-states bifurcating from any annulus of arbitrary size.

15 Introduction

We shall present here the last result obtained during the PhD related to the existence of relative equilibria
with holes for QGSW equations. The result reads as follows.

Theorem 15.1. Let A > 0 and b € (0,1). There exists N(\,b) € N* such that for every m € N*| with
m > N(\,b), there exist two curves of m-fold doubly-connected V-states bifurcating from the annulus Ay

defined in (1.20), at the angular velocities

Qi (A b) = 1 ;bb2 Ar(\,b) + %(Qm()\) - Qm(,\b)>
+ % (b[ﬂm()\) + Qe (AD)] — (1 +02) A1 (A, b))2 —ARRAZ (A D),

where Qm (A) is defined in (1.23) and

A (X, 0) £ Ln(AD) Ko (A)
with I, and K,, being the modified Bessel functions of first and second kind. In addition, the boundary of
each V-state is analytic.

Before sketching the proof some remarks are in order.

Remark 15.1. The spectrum is continuous with respect to A and b. In particular, when we shrink X — 0
we find the spectrum of Fuler equations detailed in (1.21). However, when we shrink b — 0 we obtain in

part the simply connected spectrum (1.23) . In other words,

A—0
—

These asymptotics are obtained for sufficiently large values of m. For more details see Lemma 17.2.

Now, we intend to discuss the key steps of the proof of Theorem 15.1. Notice that for a given continuous

function f : T — C, we define its mean value by
2w

a1 r Téi 0\ i6
]frf(r)df /Tf( )d o |, f(€7) e’as, (15.1)

T 2im
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15. Introduction

where d7 stands for the complex integration.

First, in Section 16, we reformulate the vortex patch equation by using conformal maps. We opted for this
approach to take advantage of the computations already done in [54] in this framework. Nevertheless, one
could choose to formulate the problem in polar coordinates as in the previous sections. Consider an initial
doubly-connected domain Dy = D; \ Do, with D; and D, are two simply-connected domains close to the
discs of radii 1 and b respectively. We introduce for j € {1,2} the conformal mappings ®; : D° — Dy
taking the form

B1(2) =24 i) =24 3 () = bk fole) = b2t Y
n=0 n=0

Thus, from the contour dynamics equation, rotating doubly-connected V-states amounts to finding

non-trivial zeros of the nonlinear functional G = (G1, G2), defined for j € {1,2} and w € T by
G300, 1, f2)(w) 2 T { (Q®;(w) + SO, B, @) (w) — SO\, 1, @) (w) ) (w) },

with

VweT, S d;,d;)w) 2 ]frcp;(r)Ko (A[®; (w) — Dy(7)]) dr-

For this aim, we shall implement Crandall-Rabinowitz’s Theorem, starting from the elementary observation
that the annulus A; defined by (1.20) generates a trivial line of solutions for any Q € R, which will play
the role of the bifurcation parameter. In the same section, we also study the regularity of G and prove
that it is of class C'' with respect to the functional spaces introduced in Section 16.2. Then, in Section
17, we compute the linearized operator at the equilibrium state and prove that it is a Fourier matrix

multiplier. More precisely, for

VweT, hi(w)=> a,@" and hy(w) =Y ba",
n=0 n=0

we have
d(fhfz)G()‘v b’ Qv 07 O)[hla hQ](w) = Z(n + I)MH-H()‘? b’ Q) (Zn> Im(wn+1)’
n=0 n
where
b0 & (B - 2= bh (D) bAL (N, b) |
“An(A D) Ar(A,b) — B[, (AD) + Q]

We refer to Proposition 17.1 for more details and point out that some difficulties appear there when
computing some integrals related to Bessel functions. Then, the kernel for the linearized operator
dis,,£)G(A, 5,€2,0,0) is non trivial for ) = QL () b), as defined in Theorem 15.1, with m large enough.

The restriction to higher symmetry m > N (), b) is needed first to ensure the condition
2
Am(\,b) 2 (b[ﬂm()\) + Qm(Ab)] — (1+ bQ)Al(A,b)) —ABA2 (A, b) > 0,
required in the transversality condition of Crandall-Rabinowitz’s Theorem and second to get the monotonic-

ity of the sequences (Qf (A, b))n>N(/\ ) (

analysis on the modified Bessel functions. For more details, we refer to Proposition 18.1. The previous

to get a one-dimensional kernel), obtained from tricky asymptotic

bifurcation occurs a priori in C1*¢ regularity with a € (0, 1), but using an elliptic regularity argument,

we prove in Lemma 18.1 the analyticity of the boundary for these V-states.
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16 Functional settings

In this section, we shall reformulate the problem of finding V-states looking at the zeros of a nonlinear
functional G. We also introduce the function spaces used in the analysis and study some regularity aspects

for the functional G with respect to these functions spaces.

16.1 Boundary equations

In this subsection we shall obtain the system governing the patch motion. The starting point is the vortex

patch equation in complex notation (1.17), which we recall here
Im { [0,2(t,0) — v(t, 2(t,0))] Dpz(t, 9)} =0, (16.1)

where 6 — z(t,0) is a parametrization of the boundary of D;. Assuming that the patch is uniformly

rotating with an angular velocity €2, we can choose a parametrization «y in the form
2(t,0) = ' *2(0,6). (16.2)

One readily has
Im {8tz(t, 0)9p=(t, e)} = ORe {z(O, 6)9p2(0, 9)} . (16.3)

Now, to study the second term in the equation (16.1), we use (4.4). By using (16.2), we obtain

1
vt 2(t,0)) = 5 O (Alz(t, 0) —¢[) dg
1
= % Ky ()\|emtz(0,0) - eiQtz(O,n)D Onz(t,n)dn
0
eiQt 1
= 5 | Ko0.0) = 2(0.0))9y2(0.m)dy
T Jo
iQt

(&
=% o, Ko (M|2(0,0) — &]) d€

= Uv(0, 2(0,0)).

Consequently using again (16.2), we get
Im {v(t,z(t,@))m} —Tm {v(o,z(o,a))m}. (16.4)
Putting together (16.3) and (16.4), the equation (16.1) can be rewritten
ORe {Z(O, e)Wo,e)} ~ Im {v(o, 2(0, 9))W} . (16.5)
Let us assume that our starting domain Dg is doubly-connected, that is
Do=Di\D; with D, C Dy,
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where D; and Dy are simply-connected bounded open domains of C. Then combining (4.4) and (16.5),
one obtains for all z € 9Dy = D1 U 9Ds,

QRe {22’} =1Im {;ﬁ /8D0 Ko (M\z =€) dfz’}
1 1 -
~m{ (5 [ Roe—ehde— o [ Ko - dac)7h. oo

where 2’ denotes a tangent vector to the boundary dDg at the point z. The minus sign in front of the
integral on 0Ds is here because of the orientation convention for the application of Stokes’ Theorem.
Following the works initiated by Burbea, see for instance [42, 54, 99, 100], we give the equation(s) to solve

by using conformal mappings. For this purpose, we shall recall Riemann mapping Theorem.

Theorem 16.1 (Riemann Mapping). Let D denote the unit open ball and Dy C C be a simply connected
bounded domain. Then there exists a unique bi-holomorphic map called also conformal map, ® : C\D —
C\Dy taking the form

(o]
O(2) =az+ Z %,
n=0

with a > 0 and (a,)nen € CN.

Notice that in the previous theorem, the domain is only assumed to be simply-connected and bounded.
In particular, the existence of the conformal mapping does not depend on the regularity of the boundary.
However, information on the regularity of the conformal mapping implies some regularity of the boundary.
This is given by the following result which can be found in [144] or in [130, Thm. 3.6].

Theorem 16.2 (Kellogg-Warschawski). We keep the notations of Riemann mapping Theorem. If the
conformal map ® : C\D — C\Dq has a continuous extension to C\ID which is of class C"t1+F with n € N
and B € (0,1), then the boundary ®(T) is a Jordan curve of class C"H1+5.

Assuming that D and Dy are respectively small deformations of the discs of radii 1 and b, so that the
shape of Dy is close to the annulus A, defined in (1.20), we shall consider the parametrizations by the

conformal mapping ®; : C\D — C\ D, satisfying
oo an
D1(2) =2+ fi(z) =2 (1 + Zl z”)
n=

and

Do(2) = bz + fa(2) =2 (b+ZiZ) .

n=1
We shall now rewrite the equations by using the conformal parametrizations ®; and ®5. First remark that

for w € T, a tangent vector on the boundary 0D; at the point z = ®;(w) is given by
2 = —iw® (w).
Inserting this into (16.6) and using the change of variables { = ®;(7) gives
Vie{l,2}, YweT, G;(\DbQ,f1,f2)(w)=0,
where

G500, f1, f2)(w) 2 T { (Q®; () + S\, @2, @) (w) — S\, @1, @) (w) )@@} (w) |, (16.7)
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with
V(i,j) € {1,2}%, VweT, S\, ®;,P,)(w) = ]{;b;(r)Ko (M@ (w) — @;(7)]) dr. (16.8)

Then, finding a non trivial uniformly rotating vortex patch for (1.6) reduces to finding zeros of the

nonlinear functional
G2 (G1,Ga).

As stated in the introduction, these non trivial solutions may be obtained by bifurcation techniques from
trivial solutions which are annuli. Let us recover with this formalism that indeed the annuli rotate for any

angular velocity. This is given by the following result.

Lemma 16.1. Let b € (0,1). Then the annulus Ay defined in (1.20) is a rotating patch for (1.6) for any
angular velocity Q) € R.

Proof. Taking f; = fo =0 by in (16.7), we get
G1(A,0,9,0,0)(w) =Im {bw][ Ko (Mw —br|)dr — E][ Ko (Mw — 7)) dT} .
T T
Using the changes of variables 7 — w7 and the fact that |w| = 1, we have

GL(\b, 2, 0,0)(w) = Im{b]{rKo (A1 = br) dr — ]iKO (A1 — T|)d7‘} ~0.

Indeed for a € {1, b}, we have by (C.3) and the change of variables § — —0

L[ o
][Ko A1 —ar|)dr = — Ko (A1 — ae'?]) el?dh
T 21 Jo

1 27 X i
=— [ Ko(\1-ae?)edo

2T 0

1 2 ) )
=5 i Ko (M1 —ae™ ™)) edo

2m
= %/0 Ko (A1 — ae'?]) e?do
:][KO (A1 —at])dr. (16.9)
T
Similarly, we find
G2(A,0,9,0,0)(w) = 0.

This proves Lemma 16.1. O

16.2 Function spaces and regularity of the functional

We introduce here the function spaces used along this work. Throughout this part it is more convenient
to think of 2m-periodic function g : R — C as a function of the complex variable w = €l?. To be more
precise, let f : T — R?, be a continuous function, then it can be assimilated to a 27-periodic function

g : R — R? via the relation

Hence, when f is smooth enough, we get

N T
Fwy e &= g o)
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16. Functional settings

Since % and d0 differ only by a smooth factor with modulus one, we shall in the sequel work with dw
instead of 4 <5 Which appears more suitable in the computations. In addition, if f is of class C' and has

real Fourier coefficients, then we can easily check that

7 (w) = _fw) (16.10)

We shall now recall the definition of Hélder spaces on the unit circle.
Definition 16.1. Let o € (0,1).

(i) We denote by C*(T) the space of continuous functions f such that

f(r) = flw
[ llew(m £ |fll ooy + sup M < 00.
(raw)er? T —w|
T#w

(ii) We denote by C*T(T) the space of C* functions with a-Hélder continuous derivative

A df‘
1 llcrsemy 2 Il + | 3

Ce(T)
For a € (0,1), we set
Xlta & X11+a « X11+a with XllJra A {f c Cl+a(T) s.t. Yw €T, f an’w fn € R}
n=0

and

YO2Y2 XYY with Y22 {g eCT) st. VweT,glw Zgnen » gn € R}
where

ea(w) £ Tm(u").
We denote
Bt 2 {fex* st |flowem <7}
We can encode the m-fold structure in the functional spaces by setting
Xire xlte s xlte  with  xlo2 {f € Xt st YweT, f(w men 1™ }
n=1
and
Vi 2 Y x Y with Y, 2 {g €Yy st. VweT, glw ngnem" } '

The spaces X7 and X}« (resp. Y and Y,ﬁ) are equipped with the strong product topology of
C'(T) x C*T*(T) (resp. C*(T) x C*(T)). We also denote

Blio 2 {f € X1 st |[flloream < r} = B xlte.

We shall now investigate the regularity of the nonlinear functional G defined by (16.7). Indeed,

Crandall-Rabinowitz’s Theorem B.1 requires some regularity assumptions to apply and this is what we
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check here.

Proposition 16.1. Let A >0, b€ (0,1), o € (0,1) and m € N*. There exists r > 0 such that
(i) G\, b,-,-,+) : R x B x BIte - Y js well-defined and of classe C*.
(i) The restriction G(\,b,-,-,-) : R x B} E® x B E® — Y2 is well-defined.

iii) The partial derivative Oqd G\, b,y +) : R x BMFe x Bt — L(X1F* YY) exists and is
(f1.f2) r r
continuous.

The following proof follows closely the lines of the proof of [85, Prop. 4.1].

Proof. (i) The proof proceeds in three steps. The first step is to show the well-posedness of the function
G(\, b, -, +) from R x B1T® x Bt to Y@ for some 7 small enough. Then, in the second step, we shall
prove the existence and give the computation of the Gateaux derivative of G(\,b, -, -, ). Finally, in the
third step, we shall prove that these Gateaux derivatives are continuous. This will show the C' regularity
of G(\, b, -, -, -).

» Step 1 : Show that G(\,b,-,-,-) : R x Bt x B*® - Y is well-defined :

For this purpose, we split G; into two terms, the self-induced term S; and the interaction term Z;,

G i, f2) = S (0.2 f) + T\ b, 1, fo), (16.11)

where

85002, ) (w) 2 Im {[20; (w) + (1S (A, @, @) (w)] T} (w) }
LA b fr f2) 2 (<17 M { SO\, @, ;) ()7 (w) }

> We refer to [54, Prop. 5.7] for the study of §;. Only the (—1)7 defers, but has no consequence. We
recall here the results. There exists r € (0, 1) such that for all o € (0,1), we have

o Si(\ b, ) iR x BT — Y™ is of class C'.
» The restriction S;(A,b,-,-) : R x BIf® — V% is well-defined.

Moreover, we have

8505, 9, f3)hs(w) = QTm { b (w) DT (w) + ; (w)ah] (w) |

+(~1)YIm {S()\, B, ;) (w)wh (w) + W, (w) [Ar (A, @5, hy) (w) + By (A, By, hj)(w)}} . (16.12)
where
AN B3, 15) (1) £ B (7)o (A () = (7))

Re(( h 7') T)))
W | (w)~ <>| i

Actually, this is the most difficult part of this proof since in this case, the integrals appearing have singular

Bi(\, ®;,hy)(w) 2 A f & (1)K} (A (w) — B (7

kernel and the proof uses some results about singular kernels. As we shall see in the remaining of the
proof, the terms concerning 7Z; are not singular.
> We shall first show that for (f1, f2) € BAT® x B}, we have Z;(\, b, f1, f2) € C*(T). According to the
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algebra structure of C*(T), it suffices to show that for i # j, S(A, ®;, ®;) € C*(T). For that purpose, we
consider the operator T defined by

VweT, Tix(w)2 ]ﬁ X(7) Ko (A (w) — ;(7)]) dr. (16.13)

But for w, 7 € T, we have taking f; and fo small functions,
1 (w) = Bo(7)] < [w = br| + [fu(w)] + [f2(r)] < (14 0) + [ fallpoemy + | follpeqm < 201 +8)  (16.14)

and

-0
|1 (w) = Po(7)] = |w = b7| = [fr(w)| = [f2(T)| = (1 = b) = [[fill oo () — [ f2ll Lo (m) 2 i) (16.15)

2
Since Ky is continuous on {#, 2A(1 4 0)|, we have
I Tiixlzoe(ry < XN pee (m)-
Moreover, taking w; # we € T, we have by mean value Theorem, since from (C.4) K|, = — K is continuous
on [’\(1;]) L2 (1 + b)], and left triangle inequality

| Tiix(w1) — Tijx(wa)| < /T IX(T)[ [ Ko (M@ (w1) — @i(7)]) — Ko (|M]|®;(w2) — @s(7)])] |d7|
S Xl oy [@5(w1) — @5 (w2)] .

Using that ®; € C'T*(T) — C*(T), we conclude that

[ Tigx(w1) — Tigx(w2)| S IxIIzo (1) |95 ]| oo (mylwr — w2]*.

We deduce that
1 Tiixllcay S (14 185llcecry) Il Lo (16.16)

Applying this with x = ®’, we find
SN, @5, @) lca(ry S (1+ 1®5llcacm)) [Pz S (1 + 12)]lcracmy) |Pillcreamy < o

The last point to check is that the Fourier coefficients of Z;(, fi, f2) are real. According to the definition
of the space X'T*  the mapping ®; has real coefficients. We deduce that the Fourier coefficients of <I>; are
also real. Due to the stability of such property under conjugation and multiplication, we only have to

prove that the Fourier coefficients of S(\, ®;, ®;) are real. This is checked by the following computations.
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By using (C.3) and the change of variables n — —, one has

SO0, 8,)(w) = ][ B! (r) Ko (M (w) — By(7))) dr

2m
S ; P; (e1) Ko (A|®j(w) — @; (e™))]) ietdn

2im t
1 27 ) . .
o Jo D (e7) Ko (A ®; (@) — @i (e7") [) e~ dn
1 27 ) ' '
~ 2ir J, @} () Ko (M@ (@) — ®; () |) ie™dn

- ]frég(T)Ko (A|®; (W) — ®i(7)]) dr

= S()\, P, <I>J)(E)

» Step 2 : Show the existence and compute the Gateaux derivatives of G(\,b,,-,) :
> The Gateaux derivative of Z; at (fi, f2) in the direction h = (hy, hy) € X' is given by
disy 1) Li(A b, f1, fa)h = dy, T (A b, f1, f2)ha + dp, i (N, b, f1, f2)ha
o1
£ }g%z [Zij(A,b, f1 + tha, f2) = Z;j(A. b, f1, f2)]
1

im 5 L, o fo + the) = (b, i, f2)). (16.17)
The previous limits are understood in the sense of the strong topology of Y¢. As a consequence, we need
to to prove first the pointwise existence of these limits and then we shall check that these limits exist in
the strong topology of C*(T). To be able to compute the Gateaux dérivatives, we have to precise that

since the beginning of this study we have identified C with R2. Hence C is naturally endowed with the

Euclidean scalar product which writes for z; = ay + ib; and 25 = as + ibs
A — 1, _ _
<2:1, 22> = Re(2’12’2) = 5 (212’2 + 2’12’2) = ajas + b1bs.
By straightforward computations, we infer
Ay, T30 b, fr, o)y (w) = (<17 T (@RS (@) SO, @, @) (w)

+éﬁq); (’U}) (hj (w)A()\, P, q)])(w) + hj (w)B()\, P,, <I>J)(w)> } R (16.18)

2

and

B(), @7, ;) (w) 2 ]frcb;(T)K() (A (w) — D;(7)]) mm = ]frcbg(T)K(A,w,T)dT.

Since B differs from A only with a conjugation, then, they both satisfy the same estimates in the coming

analysis. For all w € T, we have
[AA, @4, @) (w)] S /T |25(7)[ Ko (A|@;(w) = 4(7)]) [dr| < V5| L (7)-
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So
AN, @i, @) Loo(m) S 19| oo (1)

Let wy # wo € T. let 7 € T. Then

|K()\,U}17T) - K()\vaaT”

= 65 8 ) = 0)) =TS — B 1 ) — ) =g

< K (A5 (wr) — @i(7)]) — Kg (A ®; (wz) ®i(7)])l

13 V8 )~ 8O [ =g - e

But by right and left triangle inequalities, we get

1_ o,(r)| |<I>j(w2>1 Pi(1 )I) ’

1B, (wn) — B, () 18, (12) — B4(7)] = |9, (w1) — @,(7)]
< () = i g ) = s ()T, (w5) — &1 (7]

Hence,
KA\ w1, 7) = KA wa, 7)| S [@(w1) — @5(wa)| S (|9l (r)[wr — wal®

Thus,
AN, @i, @))|[cary S 1Pillcrvacry + 1 R5]lcrar)-

We conclude that,
lds, Zi (N, f1, f2)hlloery S Il eree ),

which means that dy,Z;(\, b, f1, f2) € L(CTT(T), C*(T)).
> Concerning the other differentiation, we have

05 (b, o fo) () = (1)~ llm{w@' £ ) Ko 85 0) — @4(7)])

_7w ; oy 2i(@) — ®i(T)

ol ][ PG s ) = 2D 1 = ()

—éw’ r P;(w) — @i(7) -

Ao G (8 0) — ) =2

2 (—1)i- 1Im{w<1>;( J[CO\ i, @) (i) (w) + DA, B, @) (ha)(w) + B\, i, ;) (i) (w)] }

Using the algebra structure of C*(T), we obtain

lds. Zi(A b, f1, fo)hillcary S NICA, @4, @5)hillco(ry + [ DA, @i, @5)hillcory + [EN, @iy @) hil oy

From (16.16), we find
IC(N, @i, @5)hillca(ry S NPl < lhilloitacr)-
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In the same way as for A(\, ®;, ®;), we infer
DA, @4, @5)hillcary + |1 EN, @i, @5)hilloa(ry S il < ||hillcrar)-
Gathering the foregoing computations leads to
lds.Z;j (A b, f1, fo)hillcory S lhillcrvacry,

that is, dy, Z; (N, b, f1, f2) € L(CTT(T), C*(T)).

> The last thing to check is that the convergence in (16.17) occurs in the strong topology of C*(T). Since
there are many terms involved, we shall select the more complicated one and study it. The other terms
can be treated in a similar way, up to slight modifications. Let us focus on the first term of the right-hand
side of (16.18). We shall prove,

}i_r)r(l) S\, ®;,0; +th;) — S\, ®;,®;,) =0 in C¥T).
For more convenience, we use the following notation
Ty (N t,w) & SN, @, ®; + thj)(w) — S\, @i, @) (w).
Consider ¢ > 0 such that ¢[|h;|| () < r. According to (16.8), we get
T 0t 0) = @1 (o (AJ® 1) = Br) + th(w)]) = Ko (A& (w) = (7)) dr
S ]{T(I)Q(T)K()\,t,wm)dr.
Applying mean value Theorem and left triangle inequality, we obtain
KA £, w, )| S tlhjllLoe ()

Consequently,
|Tij(>\, t, w)\ 5 t”hj ||L00(T).

This implies that
lim || T3 (A, £, ) | g (ry = 0.

Let us now consider wy # wy € T. In view of the mean value Theorem, one obtains the following estimate
‘nj(Aa t, ’LUl) - nj(A7 t, ’LU2)| S; / ‘K(Aa t,wy, T) - K(A7 t,wa, T)‘ |dT|
T

S wy —wal [ sup [0, KA, t,w, 7)]|dT|. (16.20)
T weT

Now remark that we can write

¢
K\ t,w,7) = / 0s9(\, s,w,7)ds with g(\ t,w,7) = Ko (A |D;(w) — @;(7) + Th;(w)]) .
0
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According to (16.10), one obtains

QugOntw,7) = S KL (N8 () — Bi(r) + th (w))

() w) + th (w)) () = Bil(r) + thy(w) ) — @ (T (w) + th (w) ) (@;(w) — @i(7) + thy (w))

. @, (w) — D,(7) + thy (w)]

After straightforward computations, we obtain for s € [0, ],
|0s0wg (A, s,w, T)| S 1.

As a consequence, we infer
|0 K, t,w, 7)| < |t

Coming back to (16.20) and using the fact that o € (0, 1), we conclude
Ti5 (At w1) = Tig (At wa)| S [tl[wr — wa| S [t]Jwr — wa|.

Therefore,
lim [ (¢, )l (r) = 0.

The second step is now achieved.

» Step 3 : Show that the Gateaux derivatives of G(\,b,-,-, ) are continuous :

Now we investigate for the continuity of the Gateaux derivatives seen as operators from the neighborhood
Bt x B into the Banach space £ (X1, V). Using the algebra structure of C*(T), we deduce
from (16.19) and (16.18) that we only have to study the continuity of the terms S(X, ®;, ®;), A(X, ©;, ®;),
B\, ®@;,2;), C(\, ®;,P,)h;, DA, ®;,P,)h; and E(\, ®;, ®;)h,;. As before, we shall focus on the term
S(X\, ®@;,®;) for i # j and remark that the other terms are similar. We denote

O 2Td4fr, U 2Tdtgr, o2 bldA fo, Wo 2 b+ go,
with (f1, f2) € BXT® x B} and (g1, g2) € BFT® x B}, Let us show that
SN, @i, ®5) = SO\, W4, ¥j)l[caqry S [f1 = gillorve(my + [[f2 = g2llcra(r).
According to (16.8), we get

S, @4, @) (w) = S(A, W3, W) (w) = ]é [@5(7) Ko (A @ (w) — @i(7)]) — W3(7) Ko (MW (w) — Wy(7)[)] dr

8 f W () Ko (A w, 7)dr +][ (®1(r) — V(7)) Ko (| ; (1) — By(7)]) dr,
T T

where
Ko(A,w,7) £ Ko (A ®;(w) — ®4(7)]) — Ko (M ¥(w) — Wi(7)]).

We have directly
| £ @0 - v Ko, = o ar]| S 1= gllme) < 1 = silcreocn,
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Now set

Li(Aw) 2 ][KQ(A,w,T)\IJ;(T)dT,
T
By a new use of the mean value Theorem and left triangle inequality, we obtain
Ko\ w, )| < |1®@)(w) — @i(7)| = [T (w) — i(7)] |

<[P (w) — Vj(w)| + |Pi(7) — Wy(7)]
<Ny — @5 poe(ry + Wi — @i Loo(T)-

Hence, we deduce

IZiO )z ery S NPl pee ey (195 = @jll e (ry + W5 — @il oo ry )

S = gillerracry + 1 fi — gillcrve (.

Take wy # wy € T. Applying the mean value Theorem yields

|L; (A, w1) — Li( A wa)| < Jwy — wa suP[r |0 Ko (A, w, 7)||dT|.
Twe

By (16.10), we have
OwKo (A, w,7) =

| >

(I w7 - I w.7)),

where

TN w, ) £ @ (w)(P;(w) — Bi(7)) KG (A @ (w) — (7)]) — W) (w) (T (w) = W (7)) Kg (AT (w) — Ti(7)]) .

Notice that it can be written in the following form
\7(>\a w, T) = j1(>\7 w, T) + J2(Aa w, 7—) + jS()\7 w, T)a

with

Ji(Aw,7) & @ (w) [(®; — Tj)(w) — (Di — T;)(7)] Kg (A@;(w) — @i(7)])

T2\ w, ) = | (w) — W (w) (U (w) — W (7)] K (AT (w) — @;(7)]),

Ts(Aw,7) £ @ (w) [W;(w) — i(7)] [KG (A (w) — @i(7)]) = Ko (AW (w) = Ti(7)])].

<
—~

By the same techniques as already used above, we get
10wK2(A, - 7)oy S 1fj — gillorra(ny + I1fi — gillcr+e(r).-
We deduce that
[SA, @i, @) — SN Wi, W) lloa(ry S Ifj — gillorecr) + 1fi — gillor+ar)-

(ii) Looking at Proposition 16.1, it is sufficient to prove the preservation of the m-fold symmetry. Let r
be as in Proposition 16.1. Let (f1, f2) € BiEY x BiEe. Let @1 and @, be the associated conformal maps

oo oo
a b
Qy(2) =2+ E zm:*1 and  ®o(z) = bz + E Zm:—l'
n=0 n=0
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One easily obtains

2im

Vie{l,2}, VweT, & (62::11)) = ®j(w) and @ (6 m w) = o (w).

Hence, by using the change of variables 7 — e 7, we have for all (i,7) € {1,2}? and for all w € T,

2

S\, ®;, ;) (82,‘;‘ w) = ]frég(r)Ko ()\ D (e n:rw) - ®; (T)D dr

e ][ P’ <6%7'> Ko ()\ D, (ezgw) — @, (ezri:r)D dr
T

= £ D)Ko (N @ (w) — @, (7)]) dr

e m

=

2im

= W SN, By, B;) (w).

By definition (16.7) of G, this immediately implies that

2im

V]E{l,?}, VU}ET, Gj()‘ab7Q7f1af2) (emw):Gj (A7b7Q7f17f2)<w)~

So
G\ b, ) Rx BiTe x BILe - v

(iii) Fix j € {1,2}. By (16.11) and (16.12), we have for f; € B!™* and h; € C***(T),
Oady; Gj(A; b, 2, f5)(hj)(w) = dady; S; (A b, 2, f5)(hj)(w)
= Im {hj(w)m;.(m + B, (w)wh] (w)} .
As a consequence, we deduce that for (f;,g;) € (BL*)? and h; € C'T(T),

|, G500, 5)(hy) = Bady, G50, 2 0) ) |, S = ilerem g lleroce.

Cco(T

This proves the continuity of dad(s, 1, G(A,b,-,-,-) : R x BIT® x BIT* — L(X1+* V) and achieves the
proof of Proposition 16.1. O

17 Spectral study

In this section, we study the linearized operator at the equilibrium state and look for the degeneracy

conditions for its kernel.

17.1 Linearized operator

In this subsection, we compute the differential d(s, r,)G(),b,€2,0,0) and show that it acts as a Fourier

multiplier. More precisely, we prove the following proposition.

Proposition 17.1. Let A >0, b € (0,1) and a € (0,1). Then for all Q@ € R and for all (hy,hy) € X1,

if we write

hi(w) = Z a,@w"  and  ho(w) = Z b,w",
n=0 n=0
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we have for all w € T

n=0

d(fl,fz)GO‘ﬂ b,$,0, 0)(h1, hQ)(w) = Z(TL + 1)Mn+1(>‘7 b, Q) (Zn> en+1(w)7

where for all n € N*, the matriz M, (\,b,$2) is defined by

M. ()\ b)) 2 Qn()\) —Q—bAl()\,b) bAn()\7b)
R ~Aa(\,) Av(AB) — [, (A) + €]

with Q,, defined in (1.23) and
(M) 2 LD K (M).

Recall that the modified Bessel functions I, and K, are defined in Appendiz C.
Proof. Since G = (G4, G>), then for given (hy, hs) € X117, we have

ds, G1(N,0,9,0,0)h1 +dg, G1(A, 0,£2,0,0)R
A0 5 GO, ,0,0) (g hy) = (9 OB DI F ARG OO0 ) 7 )
df1 GQ()\, b,0,0, O)hl + dszQ()\7 b,Q,0, O)hz
But, with the notation introduced in the proof of Proposition 16.1, we can write
dg, G1(A,0,9,0,0)h1 = dfS1(A,0,Q,0)hy +dp, Z1 (N, b,0,0)hy
ds,G2(X,0,9,0,0)0he = df,S2(A,0,Q,0)he + dp,Zo(A, b,0,0)h (17.2)
dp,G1(A,5,9Q,0,00hy = dp, Ty (A, 1,0,0)hy '
dp, G2(A,0,9,0,00hy = dy,Zo(A,b,0,0)h;.
We write
(oo}
(w) = Z a,w"  and  ho(w Z b,w".
n=0
It has already been proved in [54, Prop. 5.8] that for all w € T,
o0
dp, S1(A, 0,2, 0)h (w) = Z(n + 1) (21 (N) — Q) anenyr(w), (17.3)
n=0
where
Qn()‘) £ Il()‘)Kl()‘) - In()‘)Kn()‘)
By a similar calculation, we get
g, S2(A b, 2, 0)ha(w) = =Y (n+ 1)b (g1 (Ab) + Q) byep g1 (w). (17.4)
n=0

In view of (16.18), we can write
AT (0 b, 0,0)hs (1) = L3 (hy)(w) + La(hy)(w)
with
£1(m)(w) = 1 {0t f Ko (o = e |
R (w) (w — br) + ha (w) (@ — b7) dT} .

|w — br|

A Ab_ [
Lo(h1)(w) = Im {Qw]erO (Aw — br|)
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By using the change of variables 7 — w7 and the fact that |w| = 1, we deduce

E][ Ko (Mw —=br|)dr = ][ Ko (M1 —=br|)dr
T T
Moreover, from (16.9), we know that
][KO (A1 = b7])dr € R.
T

So using that

. 1

11— be| = (1 —2bcos(d) +b%)  with be (0,1), (17.5)

we obtain from (C.3),

1 21 i i
][KO ()\|1—bT|)dT:Re{/ K, (/\|1—b€19|)€19d9}
T 21 Jo

1 2m

=— [ Ko (AL —0be"]) cos(6)do.
5 o (A]1 = be'”|) cos(6)db

Now, by (C.11) and (C.3), one obtains for all n € N*,

27 27 o
- Ko (A1 — be™®|) cos(nf)df = / Z m(AD) K (N) cos(mb) cos(n)do
o7

m=—0o0

% Z Im()\b)Km()\)/oWcos(mQ)cos(n@)d@

m=—0oo

LA K, (\). (17.6)

Notice that the inversion of symbols of summation and integration is possible due to the geometric decay
at infinity given by (C.18). Then, we deduce by (16.10) that

L1(hy)(w) == nbI1(Ab)K1(N)aneni1(w).

n=0

By using the change of variables 7 — w7 and the fact that |w| = 1, we infer

][KO (Alw — br]) I (w)(w b;)+th1|( @ =b7) .
hi(w)w(l — br) + hy (w)w(1 — b7)
][KO (AL =b7]) b dr.
But
) ha (w)w (1—b7) N, L — ey L0 o et
][KO (A1 —br]) T sy ;n(]ﬁf(o(m b)lle|d>
and

][KO (A1 — br]) (|i wil =~ - M =br) . =3 Oan<][Ko (A1 —br |)(| Z?m)w“.

Moreover, by writting the line integral with the parametrization 7 = e and making the change of variables

0 — —0, we get as in (16.9)

][KO (A1 — b7|( )dTGR and fKO >\|1—b|)( — 4 e,

1= br] 1= br|
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Since Im (w" ') = —Im (w™*!) , we obtain
> ) b(T —7) .
Lo(h1)(w) = nz::oan (2]{TK6 (A1 —b7|) ll_deT> Im(w™ ).

An integration by parts together with (17.5) and (17.6) gives

)\b b(? _ 7_) )\b 2m . b(efie _ eie)eie
=+ K,(\1 - = — K| 1 —bel?|) ——~——
) ]{T 0 (/\‘ bTD ‘1 _ bT| dr A /(; 0 (A‘ be |) |1 _ b610| 9

—p [27 . .
— Ko (M1 = be?|) e?do
7w, Ko (L —ue e

-b 2m 0
= /) Ko (A1 —be|) cos(6)do
= —bI1(Ab)K1(N).
Therefore,
La(h1)(w) = =Y bL(AD) K1 (N)aneni1(w).
n=0
Finally,
dpTi(A,5,0,0)h (W) = — Z b(n 4+ 1)1 (Ab) K1 (A)anent1(w). (17.7)
n=0

Similar computations taking into acount the modification with b, change of signs and the fact that
|b— €l = |1 — be'?| yield

oo

dg,T2(X,5,0,0)(h2)(w) = 3 (n+ 1)L (M) K1 (Abnensr (w). (17.8)

n=0

According to (16.19), we can write
df,T1 (A, 0,0,0)ha(w) = Ls(h2)(w) + La(h2)(w),
with

ot ) = 1 {0 f 1651 o (o = b

ha(7)(w — br) + ha(7) (W — b7) dT} |

|w — br|

Lalha)(w) &~ {w F Ko = br)
T
The change of variables 7 — w7 implies
L3(h2)(w) = Im {][ hy(wr) Ko (A1 — b)) dT}
T

== nb, (][ 7K (A1 — b)) d7> Im(w™ ™)
n=0 T

= Z nby, (][ 7K (A1 — br|) dT) ent1(w).
n=0 T
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But by symmetry and (17.6)

1 2m X
K L~ b dr / e~ Iy (A1 — bel”]) ¢df
T 27T
1 27 0
=5 Ko (A1 = be'”|) cos(nb)db
= 1L () K (V).

Hence,

w) = 0Ly (AD) Ky, (\)bpenr (w).
n=0

By using the change of variables 7 — w7 and the fact that |w| = 1, we have

Ly(ha)(w) Im{][KO (A1 = br]) ( T)w (1—b|71)j-bf7l—2|(w7') (1_b7—)d7-},

which also writes

?n) _ b(7n+1 _ ?n+1)

Eath)w) = 55 3 b (f Ky 1 = ey T i) m(u"),
n=0

We denote

—\b n _Fn) _}p n+1l _ =n+1
Ié—][K(’)()\HbeD "= 7) B T )
2 Jr |1 — b7|

Since I € R, we have

_\b 27 . eint _ o—indy _ ei(n+1)9 _ efi(nJrl)G .
=4 | K ()\|1—be‘9|)( ) |1£bei9| ) 946
b [T ; in(0
=5 i K (A1 — be'?)) Hsflgye)iﬂ(sm(ne) —bsin((n +1)0))d6.

Integrating by parts with (17.5) and using (17.6) yield

1 [ .
I= o /. Ko(A1 = be'?|) (b(n + 1) cos((n + 1)8) — ncos(nd))
0
=b(n+ 1)L, 41(AD) Kpi1(X) — nl, (AD) Ky (A).
Therefore,
d, Ty (N, b,0,0) (ha)( Zb n 4+ D)1 (AD) Ky 1 (A)bpen s (w). (17.9)

Similar computations taking into acount the modification with b, change of signs and the fact that

|b— €l = |1 — be'?| imply

oo

dg, To(A, 5,0,0)(h1)(w) = =Y (n+ 1) Ing1 (Ab) K1 (N anen1 (w). (17.10)
n=0

Gathering (17.1), (17.2), (17.7), (17.10), (17.3), (17.9), (17.8) and (17.4), we get the desired result. The

proof of Proposition 17.1 is now complete. O
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17.2 Asymptotic monotonicity of the eigenvalues

This subsection is devoted to the proof of Proposition 17.2 concerning the asymptotic monotonicity of the
eigenvalues needed to ensure the one dimensional kernel assumption of Crandall-Rabinowitz’s Theorem.

But first, we have to prove their existence and this is the purpose of the following lemma.

Lemma 17.1. Let A > 0 and b € (0,1). There exists No(\,b) € N* such that for all integer n = No(\,b),

there exist two angular velocities

Qr (D) 27 ;bb Ar(A )+ %(Qn()\) - 2,00))
+ % ([£20(0) + 22 (A0)] = (1+ ) A1 (A b))2 — 40202 (A, b) (17.11)

for which the matriz M, ()\, b, Qf()\,b)) is singular.
Proof. The determinant of M, (X, b, Q) is
det (M, (A, b,Q)) = (Qn()\) Q- bAL (), b)) (Al()\, b) — b[€2, () + QD +A2Z(A, D)
=b0? — B, (\,0)Q + C(\, 1), (17.12)
where
B(A,0) £ (1= b*)A1(A,b) + b[2,(X) — 2, (A)],

Cr(Ab) 2 b KAl(/\, b) — 29,1@)) (bﬂn()\b) — AN, b)) +AZ(, b)] .

It is a polynomial of degree two in €2 which has at most two roots. Let us compute its discriminant. After

straightforward computations, we find
An (N, b) £ B2(\,b) — 4bC,, (A, b)
2
- (b[ﬂn()\) +Q,(A0)] = (1+52)A1 (), b)) —AB2A2 (A, D). (17.13)
Using the asymptotic expansion of large order (C.14), we infer

YA>0, Vbe (0,1, ILAb)K,(\) —s 0. (17.14)

n—oo

As a consequence,
Ap(A D) — Ax(ADb), (17.15)

n—roo

where
Aso(A,b) =62 (A, b)  with  Gog (A, b) £ [ (N K1 (A) + L1 (AD) K1 (Ab)] — (1 + b?) 11 (Ab) K1 (A). (17.16)
We can rewrite doo (A, ) as
Soo (A, b) = [bI1(N) — I1(AD)| K1 (N) + bI; (Ab) [K1 (Ab) — bK1(N)].

According to (C.12) and (C.3), we find K{ < 0 on (0, 00), which implies in turn the strict decay property
of K7 on (0,00). Therefore, since b € (0, 1), we get

bE1(\) < K1(\) < K{(\b).
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Now since b € (0,1), we obtain from (C.2),

1 (AD) ::i?i (%?)1+%n bjiiAgggjitiﬁg—__bI(A)
ml(m+2) = ml(m+2)

m=0

Finally,
A (A, D) > 0.

Thus
INg(A,0) e N*, ¥n e N*, n>= No(\b) = A,(A\b) >0. (17.17)

Therefore, for n > Ny(A, b) there exist two angular velocities €2, (X, b) and £, (), b) for which the matrix
M, (N, b, Qf()\, b)) is singular. These angular velocities are defined by

B, (A b) £ v/AR(ND)

+ A
1— b2 1
= 5 MAD) + 3 (2 — 2 00))
1 2
o (bKLAA)+SLAA®]A(Iﬁ—N)AﬂA,m) —ABRAZ(\ D).
This ends the proof of Lemma 17.1. [

We shall now study the monotonicity of the eigenvalues obtained in Lemma 17.1. This is a crucial
point to obtain later the one dimensional condition for the kernel of the linearized operator given by
Proposition 17.1.

Proposition 17.2. Let A > 0 and b € (0,1). There exists N(\,b) € N* with N(\,b) > No(\,b) where
No(\,b) is defined in Lemma 17.1 such that

(i) The sequence (€2} (), b))n>N()\ b 8 strictly increasing and converges to Q1 (\,b) = [;(\) K1 (\) —
bA1 (A, b).

(ii) The sequence (2, (X, b))
I (Ab) K1 (D).

nSNOD) O strictly decreasing and converges to S2__(\,b) = w —

Then, we have for all (m,n) € (N*) with N(\,b) <n < m,
QL (\D) < QL (N D) < Q) (\D) < QF (D) < QF (N b) < QL (\D).

Proof. The convergence is an immediate consequence of (17.11), (17.15), (17.16) and (17.14). Then, we

turn to the asymptotic monotonicity. For that purpose, we study the sign of the difference

2 00) =2 (A 8) = 2 (19010 =20 0)] = [0 00) - 20 00)] ) 57 [ VA1 (5] — VA D)|

for n large enough.

» We first study the difference term before the square roots. We can write

[Q2041(A) = a1 (AD)] = [20(V) — 2 (ND)]

= [2011(N) = 2u (V)] = [Qns1(A0) — Q2 (AD)]

= [LVEKZ (V) = Tnia (V) K1 (V)] = [T (A0) K (Ab) = L1 (Ab) K11 (AD)]
2 on(A) — ©n(AD).
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By vitue of (C.18), we deduce

LK) = L -2 L, (7114)

nooo 2n  4n3

Therefore,

n+1)3 —n3 1
en(X) = Pa(AD) = NA(B? - 1>(4n3<n)+1>3 Toxb (n)

3N2(b% —1) 1
nvoo 4n4 tonp nt )’

We conclude that

%([Qnﬂ()\) ~2,(] ~ [0 (D) ~ 2,00)]) = O, ( ! ) . (17.18)

— 00 ’I’L4

» The next task is to look at the asymptotic sign of the difference \/A,11(X,b) — /A, (A, b). We can

write

Ani1(A D) — Ay (N D)
VAL (OND) 4 /AL D)

VAL 1 (N D) — VAL b) =

with
Ani1(0b) — An(\b) = b(QnH(/\) — (M) + Doy (AD) — Qn()\b))
X (b[nnﬂ(x) + () + Qg1 (AD) + 2, (AB)] — 2(1 + b2 As (A, b))

+ 4b? (An(A, b) — Apst (N, b)) (AH(A, B) + A (N, b)).

By using (C.18), we have

b A2 (b —1 b
An()\,b) = — + # +oxp <) .

n—oco 2n 2n? n?

Hence, the following asymptotic expansion holds

1
An()\, b) + An+1()\, b) n—:><x> 0,\,1, (712) .
AS a consequence,
4b2(A (A B) — At (A b))(A (A B) + A1 (A b)) — o (& (17.19)
n ) n+1 ) n ) n+1 ) N oo A, n2 . .
In addition,
b
b(nnﬂ(x) — (M) + Doy (AD) — Qn(/\b)> - b(@n()\) + @n(Ab)) - (17.20)

and

b[nn+1(A) () + Qs (AD) + Qn(Ab)} ~ (1 4+ B2)A (A, D)
— 2 [Il()\)Kl(A) + Il(Ab)Kl()\b)] —2(1 4+ B2) L (AD) K1 (N)

= b L VK1 () + gt (D) K1 (D) + L (N K () + L (D) K (M)
— 2000(\, b),

n—oo

(17.21)
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where do (A, b) is defined in (17.16). From (17.15), (17.16), (17.19), (17.20) and (17.21), we obtain

N/ /N N I (17.22)

n—soo M2

» Combining (17.18) and (17.22), we get

QF (\D) — QE(\D) ~ o

n—ooo  2n2°

We conclude that there exists N(A,b) > Ny(A,b) such that

Q+
YneN*, n>=NA\b = "

i.e. the sequence (€2 (), b))n>N(/\ b (resp. (€, (A, b))n>N(/\‘b) ) is strictly increasing (resp. decreasing).
This achieves the proof of Proposition 17.2. O

We shall now study both important asymptotic behaviours

A—0 and b—0.

The first one corresponds to the Euler case and the second one corresponds to the simply-connected case.
We remark that we formally recover (at least partially) [94, Thm. B.] and [54, Thm. 5.1.] looking at these

limits. More precisely, we have the following result.
Lemma 17.2. The spectrum is continuous in the following sense.

(i) Let b € (0,1). There exists N (b) such that
vn e N*, n > N@b) = QE(\b) = QF(b),
—

where QE(b) is defined in (1.21).
(ii) Let A > 0. There exists N(\) such that
Vn e N*, n > N(A) = QF(\b) — (),
—

where €, (N) is defined in (1.23).
Proof. (i) In view of (C.13), we deduce

bn
—

In what follows, we fix b € (0,1). By virtue of (17.23), the matrices M,, defined in Proposition 17.1, satisfy

the following convergence

n=1l _ b _ prtt
Vne N, Mp(Ab,Q) — Mu(b,Q) 2 ( mo 2 s b bQ) .
2n 2 2n

After straightforward computations, we find

b(1 — b?)

_ 2 _
det (M., (b, 2)) = bQ2 0t
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This polynomial of degree two in 2 has the discriminant

A, (b) 2 biz K"(lz_b% — 1)2 —b2”] .

Thus, provided A, (b) > 0, i.e. for

12
1+b”_w

1=b 1 [/n(1-0b?) 2
Q) £ (P2 ) e
n(®) 4 2n\/< 2 > b

<0, (17.24)

we have two roots

Then, we recover the result found in [94, Thm. B.]. Now, observe that the sequence n — 140" — n(%lﬁ)
is decreasing. Then there exists N(b) € N* and ¢y > 0 such that
inf An(b) = co> 0.

neN*

n>N(b)
We use the integral representation (C.10), allowing to write

Vn e N, L(W)K,(\) — & = %/ [7o (2xsinh (4)) = 1]e "t
0
Now using the integral representation (C.1), we find
Jo (2Asinh () —1=1 / [ cos (22 sinh (5) sin(6)) — 1]df.
0
The classical inequalities
Ve eR, |cos(z)—1|< 952—2 and sinh(z) < %
provide the following estimate for ¢ > 0
o (2xsinh (4)) = 1) < A%,
We conclude that
YA >0, sup ’In(/\)Kn()\) — | <A (17.25)

neN\{0,1}

On the other hand, we set for € > 0,
K§(z) = Ko(ex) +1log (5) -

Remark that (C.7) implies
31_1}}) K§(z) = —log (§) — -

By the dominated convergence theorem, one has

Vn e N*,  lim / K& (|1 — bel’|) cos(nf)dn = — / log(|1 — be'®|) cos(nf)dh.
e=0 Jr T
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Now one obtains from (17.6)
Vn € N*, /TKS(H — be?|) cos(nf)dn = /TKO(E\I — be'?|) cos(nh)do
=I,(eb) K, (¢).
Putting together the last two equality with (17.23) yields
Vn € N*, /Tlog (J1 —be'®|)do = -5

Added to (17.6), we have

2n

YA>0, VneN, LK\ -5 = / [Ko (AL —be|) +log (|1 — beie\)] cos(n@)do.
T
Then, making appeal to the power series decompositions (C.7) and (C.2), we get

YA>0, sup |I,(Ab)K,(A) — 5| < max(|log(N)], 1)A%. (17.26)

2n
neN*

Combining (17.13), (17.25), (17.26) and (17.23) one obtains

sup |An(A,b) — Ap(b)| — 0.
neN* A—0

Hence, there exists \g(b) > 0 such that

inf inf A,(Ab) > % >0.
A€(0,A0(b)] mER”
n>N(b)

Therefore, we deduce from (17.11) and (17.23) that,

VneN*, n>N®b) = QD) = Q).
—

(ii) In what follows, we fix A > 0. By using the asymptotic (C.13), we find

A
1()‘?b) N AI(I(A)
b b—0

and Vne N*, A, (\b) ~ QUTK,(\).
b—0 :
Using the power series decomposition (C.2), the decay property of A — I,,(A)K,(\) and the asymptotic
(17.23), we get
Ve N, [LOb)K,(\) — Q2T K, (V)] < B2, (V) K (N) < b2,

2nn!

Thus, we obtain from (17.13), (17.25) and (17.23)

PN [(ﬂn(/\) ool A ge KEL(A)] 0. (17.27)

Sup on 2 P

neN*

Notice that
Q,(\) + 1 - MIAL gk () + SR

n—roo

Consider the function ¢ defined by Vz > 0,¢(z) = K7 (x). From (C.4), we get
¢ (x) = Ki(z) + K] (z) = —xKo(z) < 0.
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Hence ¢ is strictly decreasing on (0, 00). Moreover, in view of the asymptotic (C.13), we infer

lim p(z) = 1.

x—0

Thus, using also (C.3), we obtain
Vo >0, ¢(z)e(0,1).

Therefore, we deduce that there exists N()) € N* such that

Yne N, n> N = Q)+ 5t - A 5 g

In addition, using (C.14) and up to increasing the value of N(\) one gets

VneN*, n>NO) = L2080 K20 < 1.

22n(nl)2 " n

Coming back to (17.27), we infer the existence of by(A) € (0,1) such that
Vb e (0,bo(N), VYneN*, n>=NQ) = A, (\b) > 0.
Thus, we get from (17.11)
VYneN*, n>NO) = Q50 — Q).
—

Then, we partially recover the result found in [54, Thm. 5.1.]. We also obtain, up to increasing the value
of N()),
s AK(N) —n+1

2n

Unfortunately, we cannot prove bifurcation from these eigenvalues. O

Vn e N*, n>=NO) = Q,(\b) — ()
—

18 Bifurcation from simple eigenvalues

We prove here the following result which implies the main Theorem 15.1 by a direct application of
Crandall-Rabinowitz’s Theorem B.1.

Proposition 18.1. Let A > 0, b € (0,1), @ € (0,1) and m € N* such that m > N(X,b). Then the

following assertions hold true.
(i) There exists r > 0 such that G(A,b,-,-,-) : R x B}T® x BIT® — Y& is well-defined and of class C*.

i) The kernel ker ( d G )\,b,Qi A, 0),0,0) ) is one-dimensional and generated by
(f1.f2) m
vom: T — C?

| L (bl2mO0) + QEOD)] A
v —Am(\,b) v

(#ii) The range R(d(fth)G()\,b, Qi()\, b),0, 0)) is closed and of codimension one in Y3.
(iv) Tranversality condition :

B g,.1,)G (N b, R (A,0),0,0) (vo.m) & B(d(s, 1) G (A b, 5 (1,0),0,0) ).
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Proof. (i) Follows from Proposition 16.1.
(ii) Let (hi, he) € XL We write

Z w1 and hg(w):Zb,@"m ! (18.1)
Proposition 17.1 gives
Ywe T, d, 1) GAb,Q,0,0)(hi, ha)(w anMnm(/\ b, Q) (b ) enm(W). (18.2)
n=1 n

For Q € {Q,,(\,b), Q5 (\,b)}, we have
det (M (0, b, (A1) ) =
Thus, the kernel of d(fl,fz)G(/\7 Qrin()\7 b), 0, 0) is non trivial and it is one dimensional if and only if
Vne N, n>2=det ( M (A, QE(N, b))) £ 0. (18.3)

The previous condition is satisfied in view of Proposition 17.2. Hence, we have the equivalence

YVneN" n>22=a,=0=0,
k Q;
(b, h2) € er (dig, 1) G (A, b, R (AD),0,0)) & ( ) e (M (00,950,

Therefore, we can select as generator of ker (d( 1, fQ)G()\ b, Q ) the following pair of functions

V0,m : T —» C?

v o (b[ﬂ m(A0) + 2 (0. D)] — M (. b>>m1.
A, b)

(iii) We consider the set Zy, defined by

ZmA{g(gl,gg)EY,ﬁ st. YweT, g(w Z( )enm w),

s
Vn €N*, (o, #,) €R? and 3(a1,b1) €R?, Mm(A, 0,95 (N 1)) (b > B <@1>}
1 1

Clearly, Zm is a closed sub-vector space of codimension one in Y$. It remains to prove that it coincides
with the range of d(fl,fz)G()v b, Qrin()\, b),0, 0). Obviously, we have the inclusion

R(d(fle2)G(A’ b’ Qﬁl()V b)a 07 O)) C Zm
We are left to prove the converse inclusion. Let (g1, g2) € Zm. We shall prove that the equation
d(f,,1)G (A 0, (A1), 0,0) (1, h2) = (91, 92)

admits a solution (hi,h2) € XLF® in the form (18.1). According to (18.2), the previous equation is
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equivalent to the following countable set of equations

n 'dn
Vn € N, annm()\,b, Qrin()\,b)) (Z ) = (ﬁ ) .

For n = 1, the existence follows from the definition of Zy,. Thanks to (18.3), the sequences (a,)n>2 and
(b )n>2 are uniquely determined by

n

a 1 o,
Vn € N* >2 "= — ML\ b,QE (N b "
e :<bn> nm nm(ﬂm(’))< >’
or equivalently,

A1 (N D) = B[ (AD) + Q5 (N, D)]

B bA (A, D)
nmndet (M (A, b, 255(1,0)) ) " nmdet (M (0,5, 925, (0,0))

- Am(, )

Qum (M) + QE (N, b) — A1 (A, b)
Ly +
nm det (Mo (A0, 25 (1, 1)))

B
nm det (Mnm()\, b, QE (N, b)))
It remains to prove the regularity, that is (hy, he) € X L. For that purpose, we show

w ( Z;EZ; _2321 ) € CMH(T) x CMHo(T)

We may focus on the first component, the second one being analogous. We set

Hi(\,b,m)(w) 2

o, - )83 P,
:Z et (Mo (A, b, 25 (2, b))) R R3S
and

n=2

n

oo

> L (D) Kyym (Ab)

n=2

G (N, b,m)(w) £

w", gQ/\bm =

. Aum(0,)
_nz_:gdet( Mo (A, b, 25 (), b)))

n

If we denote hq(w)

hi(w) — a;w™ !, then we can write

hi(w) =Cy (A, b, m)wH; (A, b, m) (w™)
+ Co (b, m)w (% (A, b,m) x Hy (A, b,m)) (w™)

+ Oy (b, m)w (% (X, b,m) * Hy) (™), (18.4)
where

Cl<)\, b7 m)

(1>

(A, b) — bQE (X, b) — bI1 (Ab) K1 (\D)

m
b

02 (b7 m)

(1>

)

The convolution must be understood in the usual sense, that is

bcT, fxglw ][f . % O%f(ein)g (ei(e—n)) dn.

Yw
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We shall use the classical convolution law
LY(T)  C*(T) — C*T(T). (18.5)

By using the decay property of the product I, K,, and the asymptotic (C.13), we have

2 1 o0 1 2
19 (A\ b, m) || pagry S 1% (A, b, m)|| p2ry = <Z (A)KZ Ab)) < — (Z ) < 0.

We also have -
%2 (A, b,m) | Ly < [|9o(A by ) || poe(my S Y 0"™ < 00
n=2

Hence

(%(A,b, m), % (\, b, m)) e (LM(m)?. (18.6)
We now prove that H; and Hy are with regularity C1+(T).
» Regularity of Hy :
First observe that by Cauchy-Schwarz inequality and the embedding C(T)(< L>°(T)) < L?(T), we have

| H2| Lo (T) <

< (z j) (Z %2)
n=2 n=2

S llgallzz(r)
S llg2lleacr)- (18.7)

We now have to prove that H) € C*(T). We show that it coincides, up to slight modifications, with go
which is of regularity C%(T). For that purpose, we show that we can differentiate Hy term by term.
We denote (Sy)n>2 (resp. (Rn)n>2) the sequence of the partial sums (resp. the sequence of the

remainders) of the series of functions Hs. One has

o0

B
-3 2
n
n=N+1
Using Cauchy-Schwarz inequality, we obtain similarly to (18.7)

1
o0 1 2
BN Lo (1) < < > n2> lg2llcacry o2 O
n=N-+1
Hence
1Sx = Hellpoo(my = 0 (18.8)
One has
N
Sy(w) =Y Buw"™ £ wg) (w)
n=2
We set -
g5 (w) = Z Brw"
n=2
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By continuity of the Szegé projection defined by

II: E apw' — g apw"

nez neN

from C*(T) into itself (see [83] for more details) added to the fact that go € C*(T), we deduce that
g4 € C(T). Applying Bernstein Theorem of Fourier series gives that g5 is the uniform limit of its Fourier
series, namely

I1S% —Wg5 || Lo () oL 0 (18.9)

Gathering (18.8) and (18.9), we conclude that we can differentiate Hy term by term and get
Hj(w) =gy (w).

As a consequence,
Hy € CMF(T). (18.10)

» Regularity of Hi(\,b,m) :
By using (17.12) and (C.18), we have the asymptotic expansion

o0 b ) 1
det (Mym(A, b, 25 (A1) = doo(A,b,m) + w + Oxpm <n3> , (18.11)

n—oo

with, using Proposition 17.2,

doo (N, b,m) £ [N K1 (N) — Q5(N,b) — bA1 (N, b)] [A1 (A, b) — b5 (A, b) — bI1 (Ab) K1 (\D)]
=b[QL (b)) — QLN b)] [ (N D) — Q5 (N, D)]

<0

and, using (17.16),

doo(N,b,m) £ % (LKL (N) — Q5N D) — bAL (N, b)] — im [A1(A, ) — bQE (N, b) — bI1 (D) K1 (AD)]

b (I (A K1 (A) + I (AB) KL (D) — (1 + b2)Aq (A, )

2m
B 000 (A, B)
T om
We denote
dos (A, b, 1
(A, b, m) £ det (Mnm()\,b, Qrin()\,b))) —doo (A, bym) = ﬁ + Oxbm <3) . (18.12)
n—oo n n
We can write
1 72 (A, b, m) (A, b, m) 1

det (Mnm(/\,b, Qi(A,b))) @2, (A, b, m) det (Mnm(A,b, Q;(A,b))) A2, (\bym) T doo(N,bm)’
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18. Bifurcation from simple eigenvalues

Thus we can write

n

1 > pr2 (N, b, m) 1 = (N, b, m)
T2 (\b,m) T “’_dZ‘(Abm)Z w"
(A bm) = o (Mnm()\7b,ﬂm(>\,b))> 2% (Abym) o~ n

Hi(A\ b, m)(w)

+ ; S %w”
doc (X, b,m) <
N 1 1

= 7H __—
42_(\, b, m) 11(A by m)(w) 2_(\, b, m)
1

+ mHl,s(A,b, m)(w). (18.14)

HLQ(/\,b, m)(w) (18.13)

Now since (@, )nen+ € 12(N*) C [°°(N*), we have

Aur (b m) SNEY
= Abm | T ) -
ndet (Mum (A0, Q5(D) ) | "7 n’

By using the link regularity /decay of Fourier coefficients, we deduce that
Hy 1 (\,b,m) € C*T(T). (18.15)

Similarly to (18.10), we can obtain
Hy 3(\,b,m) € CTT(T). (18.16)

By the same method, we can also differentiate term by term H; 2(A, b, m) and obtain

VweT, (Hip(\bm)) (w)=7Y #ra(Xbm)uw".

n=2

Notice that from (18.12), we can write
Vw e T, w(Hs(A\bm)) (w)=du(\b,m)H; 5(\,b,m) + (% * g )(w),

where
oo oo 1
+ L n A n 3 _
YweT, g7 (w)= 22 dpw™  and F(w) = 572 Crw"  with €, =Oxpm (n?’) .

Using again the continuity of the Szeg6 projection, we have
g € CYT(T) € L>®(T) ¢ LY(T) and % € C'(T). (18.17)
Using (18.16), (18.17) and (18.5), we deduce that
(Hi2(\,b,m))" € C*o(T) c C(T).

Thus
Hy 2(\,b,m) € CTT(T). (18.18)

Gathering (18.15), (18.18) and (18.16), we conclude that

Hy(\,b,m) € C*T(T). (18.19)
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Putting together (18.4), (18.19), (18.10), (18.6) and (18.5), we finally conclude
hy € CH(T).

(iv) QI (X, b) is a simple eigenvalue since A, (A, b) > 0. From (16.11) and (16.12), we deduce

Dad s, 1) G (A b (A, 0),0,0) (i, hz) (w) = T {RI(w) + Wha (w) = = 3 nmaem (w)
n=0

Do g, 1) G2 (A, b 2 (0,9), 0,0) (b, o) (w) = bl { B (w) + Wha(w) } = = >~ bnmbyeom(w).
n=0
Thus,

_ +
Doy 12yC (A b A (X, 8), 0,0) (v ) () = m (Al“’ ) = bl2m(A) + 2 (1, b”) ().

bAm (A, b)

Notice that the previous expression belongs to the range of d(fl’f,z)G()\7 b, Qrin()\, b),0, 0) if and only if the

vector

AL (N D) = b[Qun (M) + Q5 (N, D)]
bAm (A, D)

is a scalar multiple of one column of the matrix My, ()\, b, Qi()\, b)) This occurs if and only if
2
(Al()\7 b) — b[Qm(Ab) + QE(, b)]) — B2A2 (\,b) = 0. (18.20)
Putting (18.20) together with det (Mm (A0, Qi (), b))) = 0 implies

(Al(/\, b) — b[Qm (AD) + QE (), b)]) ((1 — D) A1 (A b) + B[ () — D (AD)] — 2602 (A, b)) —0.

Now remark that the above equation is equivalent to

AL D) = b[Qn(AD) + Qi (A, 0)] =0 or Q5 (A b) = Qib((l — b)) AL(A,0) + 0 [Dm () — nm(Aw]).

Since b # 0 and Ay (A, b) # 0, then in view of (18.20), the first equation can’t be solved. Then, necessary,
the second equation must be satisfied. But we notice that it corresponds to a multiple eigenvalue
(Am(A,b) = 0), which is excluded here. Therefore, we conclude that

B g,.1)G (N b, R (A,0),0,0) (to.m) & B(d(s, 1) G (A b, 2 (1,0),0,0) ).

This ends the proof of Proposition 18.1. O

The previous proposition allows to construct, for any fixed A > 0, b € (0,1), a € (0,1) and m > N (), b)
two branches of m-fold doubly-connected V-states with regularity C''*® bifurcating from the annulus A
at the angular velocities QF (), ) for the (QGSW), equations. Actually, we have the following better
result for the regularity of the boundary.

Lemma 18.1. Let A >0, b€ (0,1) and m > N(\,b). Consider a m-fold doubly-connected V-state close
to Ay for (QGSW)x equations, rotating with an angular velocity 0 and associated with an initial domain

Dy = Dy \ Da, where Dy and Dy are simply-connected domains satisfying Do C D1 and parametrized by
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18. Bifurcation from simple eigenvalues

the following conformal mappings
Py (w) =w+ fi(w), Do (w) = bw + fa(w), fi, f2 € Bi

If r > 0 is small enough, then the boundaries 0Dy and 0Dy are analytic.

Proof. The proof is done in the spirit of [88, Sec. 5.4] by applying [113, Thm. 3.1’]. We highlight that the
positive number r quantifies the smallness of f; and fo in the C*** topology. We mention that (16.5)
can also be written as follows

2
%85’7(07 s)‘ = 0 (\II(O,’y(O, s))), (18.21)
where W is the velocity potential given by
v(t,z) = VIW(t, 2) = 21059 (t, 2), (A =AW (t,2) = 1p,(2). (18.22)

Therefore, integrating the relation (18.21), there exists for each j € {1,2} a constant ¢; € R such that
Vz € 0D;, wu;(z):=¥(0,z) — %|Z|2 —¢; =0.

Fix j € {1,2}. By compactness of D;, there exist M € N*, (zy;)1<k<m € (0D;)™ and e > 0 (small)

such that we can write

M
oD; C U B(zk,;,¢), with  B(wy,j,6) 10Dz ; = .
k=1

Fix k € [1, M] and denote
Iyj:= B(:L'k,j,{:‘)ﬂaDj, O,;J = B(:Chj,é‘)ﬂDo, Ol—:’] = B(mkd,{-j)ﬁ (R2\D0)
Solving the Helmoltz problem (18.22) as in [101], the stream function writes

(0.5) = —5- [ Ko(z - €)aao).

where dA denotes the planar Lebesgue measure. From (C.7)-(C.2), we can write

(0.2) = 5 [ toa(lz = €hdA©) + [ F(lz = €hdAe©
= W1 (z) + ¥a(2).

where F,F’ are bounded at 0 and F” is integrable at the origin. Notice that ¥, corresponds to the classical

Euler velocity potential. Since Dy is of regularity C1* then one can classically prove that
¥, € C'T*(R?, R) N C*"*(Dy, R) NC*T*(R?\ Dy, R).

For instance, the C1T¢ regularity is obtained by using [75, Exercise 4.8 (a)]. As for the C?* regularity,
one may use in particular the "Main Lemma" in [124] applied to the Calderén-Zygmund type operator

1p, = VVLW,. The term ¥, being less singular, we get
w(0,-) € C1F(R2, R) N €2 (Dy, R) N C2*(R2\ Dy, R)
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and then
uj € C'(B(xy,4,¢), R) NC* (O ; UTk;, R) NC* (05, UTy 5, R).

One can easily find from (18.22) that

Vz € O,J{,j, 0= Fj(z,u;, Duj, D*u;) == (A — M)u;(z) — ’\;Q|z|2 — N¢; + 20,
Vz €O, 0=9(z, uj, Duj, D*uj) i= (A — \?)u;(2) — A;Q|z|2 - A +20 - 1.

Observe that the functions .%; and ¥; are analytic. Thus it remains to prove that
Vz € 0D;, Vu;(z)- -n;(z) #0, (18.23)
where n; is a normal unitary vector to dD;. We can write

Vu;(z) -nj(z) = V¥(0,2) - n;(z) — Qz -n,;(z)
=VE(0,2) - inj(z) — Qz - nj(2)
=v(0,2) -in;(z) — Qz - n;(z2). (18.24)

The normal unitary vector can be expressed as follows in terms of the conformal mapping

@ (w)

n;(z) = |<I>’ )] if z=®;(w), weT.

On one hand, denoting by := 1 and by := b, we have for z = ®;(w) € 9Dy,

@/
z.nj(z)zRe{(D( Yw |‘I’/E ;}

(I)/( ) bj‘f'm
:bj+Re{f< e )|+bj(|bj+f;<w>l‘l>}

=b; + O(r). (18.25)

On the other hand,

P (w)
| @] (w)

Re {w <]§ Ko(Abjw — 7])dr - b]iKo(Mbjw - bT|)dT)} Y At St S, (18.26)

gl

v(0,2) -inj(z) = Re{ (fqr (1)Ko ()\|¢>j(w) — <I>1(T)|)d7' — ﬁ@g(T)KO ()\|<I>j(w) - @2(7)|)d7> }

where

Iy = { (7[ Ko(Albjw — 7| dT—][KO A|@; (w) — (T))df)}
— Re {wb <][ Ko(Abjw — br|)dr — f Ko(A|®, (w) — @z(T))dT) } :
= Re {w (Z ::, - ) (][ Ko(A|®;(w @1(T)|)d7—b]ero(Aq>j(w)—@2(7)|)d7>},

Re{ @, <ff1 VKo (A (w) — 1<T>|)dr—ﬁfﬁ(r)Ko(M@j(w)—%(r)l)dr)}-

We shall now prove that the terms _#;, #5 and _#3 are small. Let us start with _#3. Recalling the

N

S

S =

w
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18. Bifurcation from simple eigenvalues

notation (16.13), one has

| 73] < | Twjf1llnoecry + T2 f2ll oo (my- (18.27)
From (16.16), we get
v(i,j) € {1,2}?, i#j = |NTyfilleem SIfilleem S Nfillorvam S (18.28)

Now fix i € {1,2} and denote
Ki(w,7) := Ko(A|[®s(w) — @4(7)]).

We mention that the triangle inequality and the mean value theorem imply that ®; is bi-Lipschitz, namely
(1-m)w-—7|<|P;(w) —D;(7)| < L +7)|w—7]. (18.29)

Recall that Ky behaves like a logarithm at 0 and using (C.7) we can write
K{(z) = —% + G(2), G bounded at 0. (18.30)

Therefore, for any § € (0, 1), we have

1 1

|Ki(w, T) and |9, Ki(w,7)| < m'

S o=F
Thus, applying [83, Lem. 1], we infer
I Tii fill Lo (my S 17 lzoe(my S (18.31)

Putting together (18.27), (18.28) and (18.31), we deduce

|25l S (18.32)
From the previous computations, one also obtains

| Jal S (18.33)
As for ¢, we may use Taylor formula to write

Ko(A|®;(w) — ®;(7)|) — Ko (Albjw — b;7])
= A(J@;(w) — Dy(7)| — [byw — biT]) /01 K (Albs = bir| 4+ A (1@ (w) = @4(7)| = by = bir) ).

The triangular inequality and the mean value theorem imply

[19(w) = :(7)| = by = bir| < 1f5(w) = fi(r)] < 2" it i # j,
rlw—r1| ifi=j.

Hence using (18.30), (18.29), (16.14) and (16.15), we deduce

| /1] S (18.34)

Moreover, according to the computations carried out in Proposition 17.1 (see also [101, Lem. 3.2]), we
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have
E][ Ko(A|z—7])dr = (A K1 (N), E][ Ko(Aw—=br|)dr = @][ Ko(A\Jbw—7|)dT = A1 (N b). (18.35)
T T T
Therefore, in view of (18.26), (18.32), (18.33), (18.34), (18.35) and Proposition 17.2, we infer

Vz € 8D1, V(O, Z) . inl(z) = Il(/\)K1()\) — bA; (/\, b) + 0(7’)
— QL (M, b) 4+ O(r) (18.36)

and

Vz € 8D2, V(O, Z) . 11’12(2) = Al(/\, b) — bl (/\b)Kl(Ab) + O(T)
— b (A, b) + O(r). (18.37)

Combining (18.24), (18.25), (18.36) and (18.37), we deduce by triangular inequality
Vz € 0Dy, |Vui(z) ni(2)] = QL (\b) — Q| —Cr

and
Vz € 0Da, |Vua(z) - na(z)| = b2, (A, b0) — Q| — Cr.

The Crandall-Rabinowitz Theorem implies that € is close to Q£ (A, b). Hence, according to Proposition

17.2, we can say
Q= (\,0) —Q #0.

Thus, up to take r sufficiently small, we get (18.23). Consequently, Iy ; is analytic from which we deduce

by reconstruction that dD; is also analytic. O
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APPENDICES

A Functional setting and technical lemmata

In this appendix, we set up the general topological framework for both the functions and the operators
classes that are used in Parts I and II. We also provide some classical results on the law products,

composition rule, Toeplitz operators, etc... First we begin by presenting some notations.

Notations. Along this document we shall make use of the following parameters and sets.

e We denote by
Né{O,l,n-}, Zé{...,_LQ’L...}

the set of natural numbers and the set of integers, respectively, and we set
N* 2 N\{0}, Z* £ 7\{0}.
The set of real (resp. complex) numbers is denoted R (resp. C). We also use the following notation

R% £ (0, 00), Ry £ R% U {0}

e The integer d is the number of excited frequencies that will generate the quasi-periodic solutions.
This is the dimension of the space where lies the frequency vector w € R%, that will be a perturbation

of the equilibrium frequency vectors.

o The integer ¢ is the index of regularity of our functions/operators with respect to the parameters A
or b and w. It is chosen as
q £ qo + ]-7

with ¢go being the non-degeneracy index provided by Lemmata 5.5 or 11.5.
e The real parameters 7, 71 and 7 satisfy
0<y<l, m>1m>d (A1)

and are linked to different Diophantine conditions, see for instance Propositions 7.2 and 7.5. The
choice of 71 and 75 will be finally fixed in (8.64). We point out that the parameter v appears in the
weighted Sobolev spaces and will be fixed in Proposition 8.1 with respect to the rescaling parameter

€ giving the smallness condition of the solutions around the equilibrium.

e The real number s is the Sobolev index regularity of the functions in the variables ¢ and 6. The

index s will vary between sy and S,
S>S>SO>%+q+2, (A.2)

where S is a fixed large number.
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« For a given continuous complex function f: T" — C, n > 1, T £ R/277Z, we denote by

s 1 2Vda
. flx)dx = G /[O,Qﬂn f(x)dx. (A.3)

Notice that T will also be considered as the unit circle, namely, the boundary of the unit disc ID.

« We denote by (ey;)(,j)ezixz the Hilbert basis of the L*(T!, C),

e;(p,0) 2 letif),

and we endow this space with the Hermitian inner product

<p1ap2>L2(’]1‘d+l,(C) 2 /d+ p1(p, 0)p2(p, 0)dpds. (A.4)
e 1

A.1 Function spaces

We shall introduce the function spaces that will be frequently used along the document. They are given
by weighted Sobolev spaces with respect to the parameter v in (A.1). Given p € L?(T9! C), we may

decompose it in Fourier expansion as

A
pP= Z PL,j €15 where Pl = <Pa el7j>L2(Td+1,(C)'
(1,5)€z4+?

Next, we introduce for s € R the complex Sobolev space H*(T*!,C) by

H(TH,C) 2 {p e IMH,0) st lolh 2 Y0 (L) Il < o},
(l,j)GZdJr1

where (1, j) £ max(1, ||, |j|) with |- | denoting either the £! norm in R? or the absolute value in R.

The real Sobolev spaces can be viewed as closed sub-spaces of the preceding one,

H* 2 B (THLR) 2 {p e HY(THLC) st ¥(p,0) € T, plp,0) = p(,0) |
= {p € H°(T™',C) st. V(,j)€Z™, py ;= ij}-
We shall also make use of the following subspaces of H? taking into account of some particular symmetries
on odd and even functions,

s A

even

peH® st. V(p0) €T p(—p,—0) = plp, 9)}

{P €H® st V(L,j)eZ™ py = Pl,j}

and
Hyy 2 {pe H' st ¥(p,0) € T, p(—p,~0) = —p(,0) |

{p cH® st Y(,j)ez ™ py ;= —plyj}.
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For N € N*, we define the cut-off frequency projectors on H*(T4+1 C) as follows

HNp £ Z PiL,5€l,5 and HJ]\} =1Id — HN.
(Lj)ezd+t
(Li)SN

We shall also make use of the following mixed weighted Sobolev spaces.

Wi (0,17 2 {p:0 5 H* st ol < o),

Wex(0,0) £ {p: 05 C st o3 < ook,

where € O — p(p) € H® and

79 2 > 4l sup {107 (4 )l sr=re

aeNd+1 ne
||<q
el & > Al sup [0 p(u)].
aeNd+1 neo
|| <aq

Note that a function p € W2°7(O, H®) can be written in the form

Pl ,0) = > prj(wer;(p,0).

(Lj)ezatt

Remark A.1. e From Sobolev embeddings, we obtain

W27(0,C) — C171(0, C).

e The spaces (W27(O0, H?), || - [|7:€) and (W2>7(O,C), || - [|7:°) are complete.

(A.6)

o For needs related to the use of the kernels of integral operators, we will have to duplicate the variable

0. Thus we may define the weighted Sobolev space W27 (O, H;,em) similarly as above and denote

the corresponding norm by || - ||:;,(3;8 .

In the next lemma we collect some useful classical results dealing with various operations in weighted

Sobolev spaces. The proofs are very close to those in [29, 28, 33], so we omit them.

Lemma A.1. Let (v,q,d, so,s) satisfying (A.2), then the following assertions hold true.

(i) Space translation invariance: Let p € WY (O, H®), then for all n € T, the function (p,0) —

plp,n+0) belongs to W°>7(O, H®), and satisfies

lpGyn+)13:7 = lollg:e-

(7t) Projectors properties: Let p € W2°7(O, H®), then for all N € N* and for all t € R ,

Re;
IMnpllgsre < Nl

where the projectors are defined in (A.5).

(iii) Interpolation inequality: Let ¢ < s < s3 < s3 and 0 € [0,1], with s3 = 0s1 + (1 — 0)sa.
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If p € W22oY(0, H*2), then p € W7(O, H**) and

10138 < el (Iol32)"

(iv) Product laws:

(a) Let p1,p2 € WO(O, H®). Then p1p2 € W7(O, H®) and

o
12132 < a2l + e Nzl o

(b) Let p1,ps € W2Y(O,C). Then p1ps € W7 (0O,C) and

o o
lp1p2llg g llo2llg ™

(c) Let (p1,p2) € WY (O,C) x W27 (O, H?). Then p1ps € WY (O, H®) and

(@ o o
1 S o7 el

q,8 r~

P12

(v) Composition law: Let f € C°(O x R,R) and p1, ps € WLV (O, H®) such that

o175, 21172 < Co

for an arbitrary constant Cy > 0 and define the pointwise composition

V(i ,0) € O X T f(p) (1, 0,0) 2 f(p, p(p, 0,0)).

Then f(p1) — f(p2) € WY (O, H®) with

||f(ﬂl) — f(p2)

g:? g C(S, da q, f7 CO)le - P2||3,7§9-
(vi) Composition law 2: Let f € C*(R,R) with bounded derivatives. Let p € W>7(O,C). Then

17(0) ~ FO)17° < Cla.d. Dl (1 + ol iy ) -

This estimate is also true for v =1, corresponding to the classical Sobolev space W (O, C).
The following technical lemma turns out to be very useful in the study of the linearized operators.

Lemma A.2. Let (v,q,d, so, s) satifying (A.2) and f € W27 (O, H?).
We consider the function g : O x 'I[‘fi x Tg x T, = C defined by

fom)—flu,e,0) s
Lo o) if g4y

g 1=2
sin{ 5

209 f (11, 0, 0) ifo=n

g(p,,0,m) =

Then
(i) Vk €N, sup 1059) (s e + TS SN0 F TSk S NI s
(“) ||g| q,HS q 9+1
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Proof. (i) Since the differentiation with respect to p can be transported from g to f, then it is enough to
check the result for ¢ = 0 and therefore we shall remove the dependence in p. We start with expanding f

into its Fourier series,

fle.0)= > fieni(e,0).

(Lj)eza+t

Thus, one can write

(Lg)ezdtt

ijn_ e 1.
9(p,0,m) = Z fl,j; (ne;)elg)
(T

. i
(=0
(1,5)€zd+1 Sm( 2 )

J#0

We shall introduce the Chebychev polynomials of second kind (U, )nen. They are defined for all n € N by
the following relation
V0 € R, sin(0)U,(cos()) = sin((n + 1)6).

Using these polynomials, we obtain a new formulation for g, namely
. .. 04n .
— 9; Jfig 0— -
g(p,0,n) = 2i § \;|]€U 2 Ujjl-1 (COS (7277))61 @,

(1,5)€zd+1
J#0

Differentiating in # yields by Leibniz rule

oot =5 Y3 (M) o (1 (e (52))). (A

(1,5)ezd+1 m=0
J#0

For all j € N*, we consider the function f; defined by

sin(j6)
sin(6)

fi(0) = Uj-1(cos(8)) =
Notice that f; is even and 2m-periodic. Thus, we restrict its study to the interval [0, 7]. Also remark that

fi(m—0) = (=1)7 £;(0).

Hence, we restrict the study to the interval [0, §]. We first consider the function f; on the interval [, 7].

There, the function f; writes as the quotient of two smooth functions with non vanishing denominator.

Therefore, differentiating in 6 leads to

VkeN, sup |0ff;(0)] < il*-
0€l%. 5]

Now we look at the behaviour close to 0 by looking at the function f; restricted to [0, §]. Using Taylor

Formula, we can write

sin(j60
fJ(e) = ! x sine(e)

9

1
_ . 9
_j/() cos(tj0)dt x SR
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0

The function 6 — =
sin(0)

being smooth on [0, 7], then differentiating in 6 leads to

VEeN, sup [95f;(0)] < il
00, 5]

Combining the previous estimates, one gets

VjieN*, VkeN, sup a;;(Uj_1 (cos (9)))‘ < [j|F1. (A8)
6eR

Gathering (A.7) and (A.8), we deduce that

(agg)((pa9777+0) = Z Cl,j,k(’l)el,j(%e)v
(1,5)ezd+1
J#0
with

sup [er 0 (m)] S 1717 | fu).
neT

Therefore,

sup [[(959) (-, + )7, = Y (LA supleu(n)l’

neT (1,5)czd+1 neT
J#0
S () Sl T VP e
(l,j)ezitt

S 106 fIIgn-

This concludes the proof of Lemma A.2.

(ii) It suffices to prove the case ¢ = 0. Recall the following classical norm estimate

gl e

¥,0,m

S lgllas 2+ lgllszs - (A.9)
By the translation invariance property

2
9230y, = [ o8+ s, a8

sup Hg(*7 '79 + . ')“H;m'
0eT

A

Using the first point and the symmetry g in (7, 6) we obtain

l9llegeme, S [1f st

@

Introducing the Bessel potential J° defined in Fourier by

Vjiezl, (Ju); =max(L,]j])u;, (A.10)
a use of Fubini’s Theorem implies
lgllas y2 = 1930 9llL2 1202 = 193 0 9llL2r222 = l9llz2ms -
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Since g is symmetric in the variables 6 and 7, we get

lgllzzrs , = lgllozms .

Combining the foregoing estimates leads to

lgllezs , S I llsea-

©,0,m

This ends the proof of Lemma A.2. O

We now turn to the presentation of quasi-periodic symplectic change of variables needed for the
reduction of the transport part of the linearized operators in the construction of the approximate inverses
in the normal directions. Let 8 : O x T¢*1 — T be a smooth function such that sup ||B(u, -, «)||lLip < 1

neo
then the map
(#,0) € T 5 (0,0 + B(u, ¢,0)) € T
is a diffeomorphism with inverse having the form
(9,0) € T s (0,0 + B(u, ¢,0)) € T
Moreover, one has the relation
Y =0+ B0, 0) <= 0=y +Bu,p,y). (A11)
Define the operators
B = (1+098)B, (A.12)
with
Bp(u, ¢,0) = p(p, 0,0 + B(n, ¢,6)). (A.13)
By straightforward computations we obtain
B p(p,py) = (1 + 0,8 ¢, y))p(u, 0,y + Bl #,v)) (A.14)

and

B o(uy0,9) = pis 0,y + Bl1s ,1)).-

The following lemma gives some elementary algebraic properties for B*! and %*!.
Lemma A.3. The following assertions hold true.
(i) The action of =1 on the derivative is given by

%7139 = (99871.

(i) The conjugation of the transport operator by % keeps the same structure
B (w04 00(V(0,0)-)) B =w- 0, + 0,V (p1) ),

with
V(py) 2 B (w- 0,8(0,0) + V(e,0)(1+ 0B(9,6)) ).
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(iii) Denote by %* the L%(T)-adjoint of B, then

B*=B"' and B ="

Now we shall state the following result proved in [64] for ¢ = 1 and which can be obtained by induction

for a general ¢ € N* up to slight modifications. We also refer to [28, (A.2)].

Lemma A.4. Let (q,d,7,so) as in (A.2). Let # € W7 (O, H**(T4™)) such that

q 250 < €0, (A15)
with €9 small enough. Then the following assertions hold true.

(i) The linear operators B, % : W% (O, H*(T*+1)) — W (O, H¥(T*1)) are continuous and

invertible, with

Vs > s0, Bl <ol (1+ClBITS) + ClBIGL el (A.16)

and
Vs > s0, 1B 078 < llpllyS (14 C|IB

4750) +Cl1Bllg; s+1||P||q so0- (A.17)

(i) The functions B and B are linked through

Vs >s0, B30 < (A.18)
(iii) Let 31, By € WY (O, H*®(T*Y)) satisfying (A.15). If we denote
ApB2p—p and ApBEp —p,
then they are linked through
Voo 18IS <O (18alEe +18uAES mos 15155 ). (A1)

Proof. (i)-(ii) For (A.16) and (A.18), we refer to [28, (A.2)] and [64, Lem. A.3.]. The estimate (A.17) is
obtained from (A.16) and law product in Lemma A.1.
(iii) One has by Taylor Formula

AlQB(y) = Bl (y) — 32(.@)
= Ba(y + ﬁz(y)) — Py + Bl(y))

— _AuBly+ Baly)) - ABly) / BB (y + Buly) — tA1B(y))dt

Hence

AuBly) = BP0 i sy / 001 (y+ Buly) — tAraBly))dt

By composition estimate in Lemma A.1, one has
o
S1+17137

ieed
1+ 05
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Thus, applying the law product in Lemma A.1 implies

||A12B||W’O S (

q,8 r~

s B ABlTd + (L+1713:9) 1By
Using (A.16), (A.18) and (A.15) yields

1By Araf3

10 S 1808170 (1+1B013:9) + 1B 1402813:2

S8BT + 1807214128178
S ALY + 11820170 11 A28175

and

=4

7 S 1B (1+ 1B

SIBLgE + A28

v+ ||Auﬂ||q,so) (E10S
e T

7O 1813

q,50+1
Putting together the foregoing estimates gives

18402817 < € (1+ 1B G + 1212812181175 ) L+ 18217.9) 18128178

+C (14187040 + 14128 g;gznﬁlnq,éoﬂ) (1212813: + 118217:71812813:S) - (A.20)

From the triangle inequality, (A.18) and (A.15), one has

g ”ﬁl‘ q,50 + ”52| q, so
<lBilgie + 182055
< 2ep.
From Sobolev embeddings we infer that
5,0
jmax [18;lq a1 S s 1185114726, < o

Thus, by choosing g small enough, we can ensure

N 1 N
CllAw2Bll7:s ||Bl||q,so+1 (1+ ||52||q,so) ||A12ﬂ||q,s0 < §||A12ﬂ||:{,’so-

Inserting this term into the left hand side in (A.20) and using Sobolev embeddings, we find

180813 < € (1808132 + 1808178 mas 15175 )

This ends the proof of Lemma A.4. O

We shall also prove here the following result which is frequently used in the reduction procedure for

the linearized operators.

Lemma A.5. Let Ny > 2. Consider the sequence (Np)men defined by (6.94). Then for all a > 0, we

have

oo
N, ¢ ~ N
Z Eomsoe ™ ™

k=m
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Proof. We consider the positive decaying function
—_a(3)t
te Ry — N, (%) = exp (—aln(No)e“n(%)> ,
and apply to it a series-integral comparison, namely
> > 3 o0 3 3
Z N, “ < / exp (—aln(NO)e“n(i)) dt = / exp (—a ln(No)e"l“(§)emln(5)) du.
m 0

k=m+1

Now remark that
Nf exp (—aln(NO)e“m(%)emln(%)) = exp (a In(Nog) (1 — e“ln(%)) emln(%)) .

Since
Vue Ry, 1- en(3) < 0,

then we deduce that
VueRY, N exp (—aln(No)e“hl(%)emln(%)) — 0
and
Vu e R, Vm e N, 0< N exp (—aln(No)e“m(%)emln(%)) < Ny exp (—aln(No)euln(%)) € L'(Ry).

Applying dominated convergence theorem, we obtain

>N = _o(N.").

—00
k=m+1
AS a consequence
[eS) [e%S)
E N_“=N_“+ E N_ % ~ N_“.
k m k m—oo M
k=m k=m+1

A.2 Operators

We shall focus in this section on some useful norms related to suitable operators class. These notions
were used before in [7, 29, 28, 33]. We consider a smooth family of bounded operators on Sobolev spaces
H*(T4*,C), that is a smooth map T : p = (\,w) € O+ T(u) € L(H*(T4L,C)) of linear continuous
operators on Sobolev space H*(T%*!, C), with O being an open bounded set of R?*!. Then we find it

convenient to encode T'(u) in terms of the infinite dimensional matrix (Tll’j , (,u)) with
020 (o) ()2
(3,d0) €22
1, 1,j
T(wewio =y, Tilwen;  where T (0) £ (T(Weryjor€15) popassy:  (A21)
(Lj)eza+t

Next, we need to fix a notation that we are implicitly using along the document. For a given family of

multi-parameter operators 7'(11), it acts on W2°7 (0O, H*(T+!, C)) in the following sense,
pE WSO, H (T, C)),  (Tp)(pp,0) = T(p)p(p, ,0).
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A.2.1 Toeplitz in time operators

In this short section we shall introduce a suitable class of Toeplitz operators.

Definition A.1. We say that an operator T(u) is Toeplitz in time (actually in the variable ) if its
Fourier coefficients defined by (A.21), satisfy

.. l -1
Vl,lo,],]o € Za TIIOJ]O(‘LL) TO,]OO J(H’)

Or equivalently
l,j j . . L
Tlo?jo ('u) = T]JO (Mal - lO) with quo (M’ l) TO ;0( )

The action of a Toeplitz operator T'(x) on a function p = Z Plo.jo€lo,jo 15 then given by
(lo,jo)€Z+1

T(wp= Y, T5(m1=10)pi el (A.22)

(1,1g)€e(zd)?
(4,50)€22

We encounter several operators acting only on the variable § and that can be considered as p-dependent

operators T'(i1, ) taking the form

T(p, ) p(ep,0) ZAK(Ma¢797n)P(@7W)dU-

One can easily check that those operators are Toeplitz and therefore they satisfy (A.22).
For ¢ € N and s € R, we can equip Toeplitz operators with the off-diagonal norm given by,

T3S = D A" sup 05(T) (1) llo-a,s—jal» (A.23)
aeNd+1 neo
lo<q
where
IT)3.. % > @&m)* sup |TFD) (A.24)
(I,m)ezd+1 J—h=m

We mention that the off-diagonal norm (A.24) has first been introduced in [25, Def. 3.2]. This norm is of
important use during the KAM reduction of the remainder. The cut-off projectors (Py)nen+ are defined
as follows:

(PNT(W)ewjo= >  Tp7 (wey; and PyT =T — PyT. (A.25)

(Lj)ezstt
lt=tol,li—do | <N

In the next lemma we shall gather classical results whose proofs are very close to those in [33] concerning

pseudo-differential operators. We recall that the weighted norms on functions that will be used below are
defined in (A.6).

Lemma A.6. Let (v,q,d, so, s) satisfying (A.2). Let T, Ty and Ty be Toeplitz in time operators.
(i) Projectors properties : Let N € N*. Let t € R,. Then
IPNT oI5 gsre < NNTp3 0 and |PRToI3S, 0 < NTHTpl3 0 e
(ii) Interpolation inequality : Let q < 51 < s3 < 89, 0 € [0,1] with s3 = 0s1 + (1 — 0)sy. Then
1713 s S (IT13 S0 (TS0
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(iii) Composition law :

||T1T2HO d,q,8 ~ ||T1Ho d,q,8 |T2Ho d,q,80 + HT1||O d q,sUHTQH’(Y)fi’),q,s'

(iv) Link between operators and off-diagonal norms :

ITPl3:0 S ITUZS g 00 10115 + T N30 ol

q,s r~

In particular

ITpl3:d S ITIZS,.

q,8 r~

A.2.2 Reversible and reversibility preserving operators

In this section we intend to collect some definitions and properties related to different reversibility notions
for operators and give practical characterizations. We shall also come back to Toeplitz operators defined
before in Section A.2.1 and discuss two important examples frequently encountered in this document and

given by multiplications and integral operators. First, we give the following definitions following [10, Def.

2.2).

Definition A.2. Introduce the following involution
(720)(,0) = p(—¢, =0). (A.26)
We say that an operator T(p) is
e real if for all p € L?(T,C), we have

p=p = Tp=Tp

o reversible if
T(p)o S =—=S20T ().

o reversibility preserving if

T(p)o 2 =S20T(p).

We now detail the following characterizations needed at several places in this document and the proofs

are quite easy and follow from Fourier expansion. One can find a similar result in [10, Lem. 2.6].
Proposition A.1. Let T be an operator. Then T is

e real if and only if
.. l, l,j
v(l;l07j7j0) S (Zd)Q X Z27 T —lo, jjo = irl(l?jo'

e reversible if and only if
(1,10, 4, jo) € (Z%)* x 72, T_lo_fjo = —:Fll(jfg»o-
o reversibility-preserving if and only if
(1o, j, jo) € (Z)? x 22, T 70 =17 .
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In what follows, we shall focus on two particular cases of operators which will be of constant use

throughout this document. Namely, multiplication and integral operators.
Definition A.3. Let T be an operator as in Section A.2. We say that

o T is a multiplication operator if there exists a function M : (u,@,0) — M (u,0,0) such that
(Tp) (1,0, 0) = M(p, ,0)p(1s, ¢, 0).

e T is an integral operator if there exists a function (called the kernel) K : (u, p,0,m) — K(u,©,0,n)
such that
(ﬂMM%@=AMM%mKW%&m®

We intend to prove the following lemma.
Lemma A.7. Let (v,q,d, so,s) satisfy (A.2), then the following assertions hold true.
(i) Let T be a multiplication operator by a real-valued function M, then the following holds true.

o If M(p,—p,—0) = M(u,p,0), then T is real and reversibility preserving Toeplitz in time and

space operator.

o If M(p,—p,—0) = —M(u,,0), then T is real and reversible Toeplitz in time and space
operator.
Moreover,
||T||O d,q,58 ~ HMHq,erso

(i) Let T be an integral operator with a real-valued kernel K.

o If K(u,—p,—0,—n) = K(u,p,0,n), then T is a real and reversibility preserving Toeplitz in

time operator.

o If K(p,—p,—0,—n) = —K(u,p,0,n), then T is a real and reversible Toeplitz in time operator.

In addition,

7100 S [ IR G 3y S KIS
and
1767 < Nl / 1K (5o + IS /T 1K (5,0 + 170
S ol IKIS , + oIS,

where the notation *,-,. denote u, p, 0, respectively.

Proof. We point out that the proofs will be implemented for the particular case ¢ = 0 and the general
case can be done similarly by differentiating with respect to p and using Leibniz rule.

(i) Since M is a real-valued function, then we get by the definition

T = M(p,0)e_1, —jo (0, 0)er,; (0, 0)dipdd

= M(QD, g)elo,jo (903 a)e—l,—j(gp, 0)d90d0 - lo ,Jo°
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This shows in view of Proposition A.1 that the operator T is a real. It remains to check the reversibility

preserving property. We write from the definition

T(S2p)(p,0) = M(p,0)p(—p, —0)
= M(~p, =0)p(—p, —0)
=S (Tp) (p,0).

This gives the desired result. As to the reversible Toepliz structure, it can be checked in a similar way. To
achieve the proof of the first point it remains to establish the suitable estimate. Using a duality argument

Hsts0 — =575 we may write,

7 (1)) =

M (g, 0)er ;5 (e, 9)d90d9’ S =3 T M s

']I‘d,+1

It follows that

T3 s = > (&m)* suwp |77 ()P

(I,m)ezd+1 j—j'=m
= 74 S (N R
(I,m)ezd+?
SIM || 3ess0-

Therefore we find
TNl o-a,s S IM | oo

(ii) By assumption, K is real and thus

T = K(0,0,m)e_15 o (ps m)er,; (i, ) dipdf

Td+2

= K(,0,m)ew, 5, (9, m)e—1,—(p, 0)dpdbdn = T}, .

Td+2

This implies, according to Proposition A.1, that T is a real operator. Now we shall check the reversibility
preserving. The reversibility can be checked in a similar way. By the change of variables n — —n, we may

write,
T(Fap)(p,0) = /TK(%H,n)p(—% —n)dn
_ / K(—¢, =0, —n)p(—p, —n)dy
_ /T K (=, —0,m)p(—p,n)dn = 7 (Tp) (¢, ).

From Fubini’s theorem and the duality H ;'_;50 - H ;Z_SO, we infer,
7' (1)] = K(p,0,n)eC#+39=3'm q,d04
s 0,01 pdfdn
Td+2

/ it =3")0) (/ K(p,0,m+ H)eij/"dn> d@d&’
Td+1 T

S G =3177 [ IR+ god.
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Hence, we deduce that

1T lomas < / 1K Gy e o) g0
T Al

The last estimate in Lemma A.7 can be obtained from the expression

(Tp)(p.6) = / p0.0+ 1)K (.0, + n)d.

combined with the law products and the translation invariance in Lemma A.1-(i)-(iv).
This concludes the proof of Lemma A.7. O

In the following lemma we shall study the action of a change of variables as in (A.13) on an integral
operator. More precisely, we shall need two partial change of coordinates B! and B? acting respectively

on the variables # and 1 and defined through

(B 0)(1, 0.0.m) = p(p, 0,0 + Bi(p, 0, 0), 1) (A.27)

(B?p) (11, 0,0.m) £ p(p, ¢,0,m + B2(1,0,m)),

with (1, 82 two smooth functions satisfying (A.15). A similar result is proved in [33, Lem. 2.34] for
pseudo-differential integral operators, so we omit the proof here. We also include the difference estimate
which is useful to study the stability of the Cantor sets in Section 8.2. The proof of the difference estimate

is standard and we shall also skip it here.

Lemma A.8. Let (v,q,d, so,s) satisfy (A.2). Given r € WoY(O, H?), we consider a C* function in
the form

K : (p,0,0,m) = K(p,0,0,m).

We consider the integral operator associated to K, namely

Tp(p, ¢, 0) =/Tp(s07n)K(u7<p79,n)dn.

Then the following assertions hold true.

(i) Let Bt and B? as in (A.27) associated to 31 and B2, respectively and enjoying the smallness condition
(A.15). Then,

;O ,O , 0
1B' B2 KIS, SIKIEE., + (max 18130 IKI G, (A.28)

s0
ie{172} 8 q’Hcp,Gm

Now, assume that 1 = o = B satisfies the following symmetry conditions

ﬂ(u, - *0) = 7&(,“@ ¥, 0) (A29)
Consider B, B be quasi-periodic changes of variables as in (A.12)-(A.13), then

o if K(p,—p,—0,—n) = K(u,0,0,n), then B-YT% is a real and reversibility preserving Toeplitz

in time integral operator.

o if K(p,—p,—0,—n) = —K(uu,p,0,n), then BYT A is a real and reversible Toeplitz in time

inegral operator.

In this case, for any k € N,

kja— o ,0
||8OB 1T‘@”gid,q,s 5 ||K||ZHs+so+k + ||5
e,6,m

O
’ K|

q,s+so+k "9 . (A?)O)

s0
q’H%S,n
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(i) Introduce B, a quasi-periodic change of variables as in (A.13) associated to B, (linked to r) Consider
r1, rg € WY (O, H®). Denote

Aor 211 —19, Asafr = fry — fro

for any quantity f, depending on r and assume that there exist e > 0 small enough such that

Vie {1,2}, Bnlllsn + I K, Z:ﬁim < eo. (A.31)
Then, for any k € N, the following estimate holds
81208 B T B3 S WA o+ [ BrB (A32)
(g 1855 ) 1802 B
+ (Zg{li};} K, Z:giﬁ;?ﬁkﬂ + igi}é} Br; g,’ﬁso+k+1> | A28, 3,’3

B Crandall-Rabinowitz’s Theorem

Now, we recall the classical Crandall-Rabinowitz’s Theorem. This result was first proved in [50] and it is
one of the most common theorems appearing in the bifurcation theory. A convenient reference in the

subject is [112]. We briefly explain the core of local bifurcation theory.

Consider a function F': R x X — Y with X and Y two Banach spaces. Assume that for all  in a

non-empty interval I we have F(§2,0) = 0. This provides a line of solutions
{(©,0, Qer}.

Now take some (€, 0) with Q¢ € I. The implicit function Theorem explains that if DF (£, 0) is invertible,
then the line {(£2,0), |2 — Q| < €} is the only curve of solutions close to (€29, 0), i.e. for € small enough.
(Local) bifurcation theory is the study of situations where this is not true, that is, close to (g, 0)
there exists (at least) another line of solutions. In this case, we say that (g, 0) is a bifurcation point.
Crandall-Rabinowitz’s Theorem gives sufficient conditions to construct a bifurcation curve and states as

follows.

Theorem B.1 (Crandall-Rabinowitz). Let X and Y be two banach spaces. Let V' be a neighborhood of 0
in X and let
F: RxV —= Y
(Qzx) — F(Qx)

be a function of classe C' with the following properties
(i) (Trivial solution) VQ € R, F(Q2,0) = 0.
(i) (Regularity) OqF, dzF and Oqd,F exist and are continuous.

(i) (Fredholm property) ker (dzF(0,0)) = (xo) andY/R (d,F'(0,0)) are one dimensional and R (d,F'(0,0))

is closed in'Y.
(iv) (Transversality assumption) Oad, F(0,0)(x0) € R (dzF(0,0)).
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If x is any complement of ker (d,F(0,0)) in X, then there exist a neighborhood U of (0,0), an interval

(—a,a) (a>0) and continuous functions
Y:(—a,a) >R and ¢:(—a,a) = x
such that ¥(0) = 0, ¢(0) =0 and

{(sm) U st F(Qz)= o} - {(w(s),sxo +sp(s)) st |s|< a} U {(970) e U}.

C Modified Bessel functions

In this appendix we shall collect some properties about Bessel and modified Bessel functions that were
used in the preceding sections. We refer to [145] for an almost exhaustive presentation of these special
functions.

We define first the Bessel functions of order v € C by

fo%e) _1\m (z v+2m
Ju(2) & Z r(n'Il‘)(V—f—zn)”L—i—l)’ larg(z)] < 7.
m=0 :

Notice that when v € N we have the following integral representation, see [121, p. 115].

1 T
Ju(x) = 7/ cos (zsin @ — v8)df. (C.1)
T Jo
We shall also introduce the Bessel functions of imaginary argument also called modified Bessel functions

of first and second kind
(E) v+2m
2

I(2) £ rnZ:O (v +m+ 1) larg(2)| <7 (C.2)

and

K,(z) = gw, veC\Z, |arg(z)|<m.

For j € Z, we define K;(z) = lim K, (z). We give now useful properties of modified Bessel functions.
v—j

» Symmetry and positivity properties (see [1, p. 375]) :
VjEN, VAERi, I_J(A):Ij()\) ERj_ and K_J(A):KJ()\) ER:_ (C-?))

» Derivatives and anti-derivatives (see [1, p. 376]) :
If we set Z,(2) = I,,(2) or ™K, (2), then for all v € R, we have

and
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» Power series extension for K; (see [1, p. 375]) :

w03 (6 L (F) v @)
o 22 k
;(;)]Z (k+1) +¢(g+k+1))mg4+)m, (C.6)

k=0

where

1
(1) £ —v (Euler’s constant) and Vm € N*, ¢y(m +1) £ Z ot

In particular

so Ky behaves like a logarithm at 0.

» Integral representation for K, (see [121, p. 133]) :

For all a,b > 0 for any v, pu € C satisfying —1 < Re(r) < 2Re(u) + 2 one has

< vt (bx) a’~Hpr
———dr = ———7FK,_ . .
/; (ZL'2 + a2);¢+1 dx Q'U,F(M + 1) v N(ab> (C 8)

» Nicholson’s integral representation (see [145, p. 441]) :
Let j € N then

(LK;)(z) = 220 /0 ' Ko (22 cos(r)) cos(2j7)dr. (C.9)

Another similar representation can be found in [121, p. 140]
1 [ .
(LK) = 5/ Jo(2Asinh(t/2))e 7 dt. (C.10)
0

» Holomorphic property of the product I;K; :
Let j € N. Then the function z — (I;K;)(z) is holomorphic on the half plane Re(z) > 0.

» Decay property for the product I, K, (see [13] and [54]) :
The application (\,v) — I,,(A\) K, (X) is strictly decreasing in each variable (A, v) € (R%)%.

» Beltrami’s summation formula (see [145, p. 361]) : Let 0 < b < a. Then

V8 eR, Ky (\/a2 + b2 — 2abcos(6 ) = Z I, a) cos(md). (C.11)

» Ratio bounds (see [14]) :
For all n € N, for all A € R%, we have

!/
Muld) et

I,(\)
(C.12)

!/
M) e

Kn(X)
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» Asymptotic expansion of small argument (see [1, p. 375]) :

VneN*, I,(\)

~

» Asymptotic expansion of high order (see [1, p. 377]) :

ex\” [7 [eX\ "
<2y) and KV(A) y:oo Z (21/)

» Asymptotic expansion of large argument for the product I;K; (see [1, p. 378]) :

with

YA>0, I,(\)

In particular,

1

~
v—oo /2Ty

* 1 Aj,m
YN ENT, LVK() ~ o <1+ Z (Wm> ,

e i

{=1

A—00

(20 —1)%), p; =452

» Asymptotic expansion of high order for the product I;K; (see [102]) :

YV (a0 (o, ym b
b (S (St

YA >0,

Vb e (0,1], I;(Ab)

K;(N)

m=0

m=0

where for each m € N, b,,()) is a polynomial of degree m in A\? defined by

bo(M) 21 and  VmeN*, by(N) 2 (~1

k=1

i S(m >(A4>

and the S(m, k) are Stirling numbers of second kind defined recursively by

with

5(0,0) =

L

v(m, k) € (N*)?,

Ym € N*, S(m,1) =

S(m,k)=S(m—1,k—1)+ kS(m — 1,k),

1

and  S(m,0)
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=0

and if m < k then S(m,k) =0

(C.13)

(C.14)

(C.15)

(C.16)

(C.17)

(C.18)
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Structures quasi-périodiques pour des modeles de transport non-linéaires issus de la

mécanique des fluides

Mot clés :
périodiques

Résumé Nous étudions I'existence de
poches de tourbillon quasi-périodiques en
temps pour les équations d’Euler et les
équations quasi-geostrophic shallow-water
(QGSW) qui sont deux modéles de transport
non-linéaires et non-locaux bidimensionnels.
Les poches sont des solutions faibles de la
classe de Yudovich décrites par I'évolution de
domaines planaires dont I'étude repose sur la
dynamique de leur bord. Tout domaine initial
radial fournit une solution stationnaire et il est
naturel de se demander si I'on peut trouver,
proche de ses points d’équilibre, des solutions
périodiques ou quasi-périodiques. Le premier
cas a été largement étudié par le passé via
des techniques de bifurcation, et nous appor-
tons ici un résultat dans cette lignée pour le
cas des poches doublement-connexe en rota-

Poches de tourbillon, Théorie KAM, Schéma de Nash-Moser, Solutions quasi-

tion uniforme pour les équations QGSW. Le
second cas est moins évident et constitue le
noyau dur de cette thése. En utilisant les théo-
ries de KAM et de Nash-Moser, nous mon-
trons que quitte a choisir un paramétre dans
un ensemble admissible de type Cantor et de
mesure presque pleine, il est possible de gé-
nérer des poches quasi-périodiques proches
des tourbillons de Rankine ; solutions station-
naires associées aux disques. Pour les équa-
tions QGSW, le rayon de Rossby joue le réle
de ce parameétre qui apparait naturellement
dans les équations. Pour les équations d’Euler
dans le disque unité, la non-invariance par di-
latation du modéle permet de créer un para-
meétre géométrique : le rayon des tourbillons
de Rankine.

Quasi-periodic structures for nonlinear tranport fluid models

Keywords: Vortex patches, KAM theory, Nash-Moser scheme, Quasi-periodic solutions

Abstract: We study the existence of time
quasi-periodic vortex patches for Euler and
quasi-geostrophic  shallow-water (QGSW)
equations which are bidimensional nonlinear
and nonlocal transport-type fluid models. Vor-
tex patches are weak solutions in the Yudovich
class described by the evolution of planar do-
mains whose study relies on their boundary
dynamics. Any radial initial domain provides
a stationary solution and it is natural to ask
whether we can find, close to these equilib-
rium points, periodic or quasi-periodic solu-
tions. The first case has been widely studied in
the past by using bifurcation theory, and here
we give a result in this direction concerning

the existence of doubly-connected uniformly
rotating patches for QGSW equations. The
second in less obvious and is the core of this
thesis. By using KAM and Nash-Moser theo-
ries, we show that up to select a parameter
among an admissible massive Cantor-like set,
it is possible to construct quasi-periodic vor-
tex patch solutions close to Rankine vortices ;
stationary solutions associated with discs. For
the QGSW equations, the Rossby radius plays
the role of this parameter appearing naturally
in the equations. For Euler equations set in the
unit disc, the non-invariance by radial dilation
allows to create a geometrical parameter : the
radius of the Rankine vortices.
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