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R É S U M É

Cette thèse s'inscrit dans le cadre de l'étude mathématique de la mécanique des fluides. Nous nous intéressons aux équations d'Euler et QGSW (Quasi-Geostrophic Shallow-Water en anglais) bidimensionnelles, qui prennent la forme d'équations de transport non-linéaires et non-locales. Nous étudions en particulier l'émergence de structures quasi-périodiques sous la forme de poches de tourbillon pour ces modèles.

La mécanique des fluides est une branche de la Physique dont l'objet est la description des propriétés dynamiques des fluides (généralement des liquides ou des gaz mais aussi parfois des plasmas). Rappelons que les équations d'Euler décrivent l'évolution d'un fluide homogène incompressible non-visqueux. Elles peuvent être posées en n'importe quelle dimension d'espace, mais nous nous limiterons au cas de la dimension deux qui a l'avantage de présenter une structure de transport sur la vorticité. Leur présentation sera faite en Section 1.1.1. Les équations QGSW quant à elles décrivent la circulation des océans ou de l'atmosphère sur des échelles de temps et d'espace assez larges. Elles sont obtenues à partir des équations Shallow-Water en effectuant un développement asymptotique au premier ordre par rapport au nombre de Rossby proche de l'équilibre géostrophique. Cet équilibre correspond à une compensation entre les effets de rotation et de stratification du fluide étudié. Analytiquement, les équations QGSW peuvent se voir comme une généralisation des équations d'Euler écrites en formulation vitesse-tourbillon via l'introduction d'un paramètre appelé rayon de Rossby relié à la fréquence de Coriolis, la constante de gravitation et la hauteur moyenne du fluide étudié. Nous renvoyons à la Section 1.1.2 pour une présentation plus détaillée de ce modèle.

Dans ce travail, nous étudions quelques propriétés dynamiques des poches de tourbillon planaires, qui sont des solutions faibles de la classe de Yudovich pour les modèles cités plus haut. Les poches décrivent l'évolution temporelle de domaines bidimensionnels bornés et l'étude de leur dynamique est réduite à celle de leur contour qui est soumis à une équation intégro-différentielle. Grâce à la structure des équations, les fonctions radiales fournissent des solutions stationnaires, en particulier les poches associées aux disques appelées tourbillons de Rankine. L'analyse des portraits de phase autour de ces points d'équilibre a suscité beaucoup d'intérêts. Notons qu'une activité assez riche s'est développée durant la dernière décennie autour des solutions périodiques. Dans le cas rigide, où la forme de la solution ne change pas au cours du temps (appelée V-state), de nombreuses structures dépendant de la topologie ont été mise en évidence grâce à des techniques de bifurcation. Ces solutions implicites effectuent une rotation uniforme autour de leur centre de masse à vitesse angulaire constante. Par contre, dans le cas non-rigide, peu de résultats sont connus à ce jour. A la suite de ces travaux, une question naturelle s'est alors imposée : Peut-on trouver des solutions quasi-périodiques (plus générales que périodiques) proches de certains de ces points d'équilibre ?

Cette thèse a pour vocation à apporter une réponse positive à cette question. Les techniques employées sont empruntées aux théories de KAM (nomée d'après ses fondateurs Kolmogorov, Arnold et Moser) et de Nash-Moser dans l'esprit des récents travaux de Massimiliano Berti et de ses collaborateurs. Rappelons que la théorie de KAM originelle décrit (sous de bonne conditions de régularité et de non-dégénérescence) la persistance de tores invariants supportant des trajectoires quasi-périodiques pour de petites perturbations de systèmes hamiltoniens intégrables en dimension finie. Cette théorie fut développée dans les années 50-60 et a commencé à être étendue aux EDP hamiltoniennes et/ou réversibles, i.e. en dimension infinie, à partir des années 80-90 avec notamment les travaux de Kuksin, Wayne, Pöschel et Bourgain. Une présentation plus exhaustive de l'utilisation des techniques KAM en EDP est faite à la Section 1.3. Le schéma de Nash-Moser, quant à lui, est un processus itératif généralisant la méthode de Newton au moyen d'opérateurs de régularisation (typiquement des projections sur un nombre fini de modes de Fourier) afin de trouver certains zéros d'une fonctionnelle. Son utilisation permet d'effectuer un théorème des fonctions implicites "à la main" dans le cas d'existence d'un inverse approché à droite satisfaisant de bonnes estimées douces avec perte fixe de régularité. Tout comme la méthode classique de Newton, l'avantage majeur de ce procédé, introduit par John Nash dans les années 50, réside dans son caractère quadratique, ce qui implique une vitesse de convergence exponentielle.

Les modèles qui nous intéressent ici et en particulier leurs formulations au niveau des poches de tourbillon sont des EDP hamiltoniennes. De plus, elles peuvent être décrites comme des perturbations quasi-linéaires de leurs linéarisations aux tourbillons de Rankine qui, elles, forment des systèmes intégrables. Nous sommes donc précisément dans le cadre adapté à l'utilisation des techniques KAM. Nous arrivons à générer des poches de tourbillon quasi-périodiques en jouant avec un paramètre qui apparaît soit naturellement dans l'équation soit géométriquement dû à des propriétés de non-invariance par changement d'échelle. Pour de bonnes valeurs de ce paramètre choisies dans un ensemble de type Cantor nous arrivons à montrer l'existence de telles structures. Voici à présent un plan succint de la thèse.

➤ La première partie de la thèse (Part I) est consacrée à l'étude de l'existence de poches de tourbillon quasi-périodiques proche du disque unité pour les équations QGSW. Ces structures apparaissant naturellement au niveau linéaire persistent au niveau non-linéaire modulo un choix du rayon de Rossby parmi un ensemble possible de mesure presque pleine. Il est à noté que ce choix revient à sélectionner des équations pour lesquelles on est capable de construire des solutions, mais en aucun cas les équations sont fixées à l'avance. Ce travail a été effectué avec mon directeur Taoufik Hmidi.

➤ La seconde partie (Part II) est dédiée à l'obtention de poches quasi-périodiques proches des tourbillons de Rankine pour les équations d'Euler posées dans le disque unité. Cette fois, c'est un paramètre géométrique, le rayon des tourbillons de Rankine, qui permet de générer les solutions quasi-périodiques. L'apparition de ce paramètre est reliée à la non-invariance du problème par dilatation. En effet, dans le plan entier, cette approche n'est pas possible dû notamment à des résonances triviales entre les fréquences à l'équilibre. L'ensemble des rayons admissibles est de type Cantor et de mesure presque pleine. L'analyse est plus simple dans ce cadre car les effets du bord se font au travers de termes réguliers. Ce travail a été fait en collaboration avec Zineb Hassainia.

Techniquement, les difficultés rencontrées dans les preuves de ces deux résultats peuvent être classifiées en trois composantes.

• La première est de nature spectrale. Comme mentionné plus haut, chaque équation est quasi-linéaire et sa linéarisation est à coefficients variables. Au cours du schéma de Nash-Moser, il nous faut construire un inverse approché à droite du linéarisé ce qui se fait en conjuguant celui-ci à un opérateur à coefficients constants en choisissant les paramètres parmi des ensembles de Cantor liés au spectre de l'opérateur. Cette procédure est assez coûteuse et est basée sur les techniques KAM. En particulier, pour les équations QGSW, le spectre est relié à des fonctions de Bessel modifiées et l'on doit faire appel à des propriétés fines de ces dernières, reliées à leurs asymptotiques, leurs représentations intégrales etc...

• La seconde est de nature fonctionnelle. En vue de l'application du schéma de Nash-Moser, nous devons montrer des estimées douces et des propriétés de symétrie pour l'inverse approché ce qui nous oblige à être attentif aux lois de produit et composition en lien avec les fonctions et opérateurs utilisés lors de la réduction du linéarisé à coefficients constants. Pour faire converger le schéma de réduction, il nous faut utiliser à certains endroits une topologie particulière sur les opérateurs Toeplitz en temps, plus forte que la topologie standard sur les opérateurs. Enfin, l'analyse est basée sur l'étude d'opérateurs à noyaux qui sont assez singuliers et requièrent donc une attention particulière. Le travail direct avec la structure du noyau et non du symbole de l'opérateur (techniques de calcul pseudo-différentiel) est en contraste avec les travaux précédents dans l'étude de l'émergence de solutions quasi-périodiques en EDP. Il est important de remarquer que, pour les équations qui nous intéressent, les singularités du noyau apparaissent comme des convolutions. C'est un point clé qui, grâce à des changements de variables, permet d'estimer le noyau. Les parties non-singulières étant régularisantes à tous ordres, leurs estimations sont relativement simples.

• La dernière difficulté est plutôt relative à la théorie des nombres. En effet, l'application des techniques KAM implique la résolution d'équations dites homologiques qui nécessitent des conditions de non-résonance en lien avec l'approximation diophantienne. Afin d'assurer ces conditions, il nous faut sélectionner des paramètres admissibles en exploitant une rigidité des fréquences à l'équilibre qui se manifeste par la nondégénérescence et la transversalité.

➤ La troisième partie de la thèse (Part III) est consacrée à l'étude de l'existence de V-states doublement-connexes analytiques pour les équations QGSW. Il s'agit de solutions dont le domaine possède un trou et qui sont en rotation uniforme. Ces poches, obtenues par des techniques de bifurcation, satisfont des conditions de hautes symétries (non explicites) et les branches de bifurcations associées émergent de l'anneau pour des vitesses angulaires bien spécifiques reliées aux fonctions de Bessel modifiées. Le point délicat de l'analyse est en lien avec des propriétés fines sur ces fonctions spéciales. Ce résultat est dans la lignée de ceux obtenus dans la dernière décennie concernant les poches périodiques.

A B S T R A C T

This thesis takes place in the mathematical study of fluid mechanics. We are interested in bidimensional

Euler and quasi-geostrophic shallow-water (QGSW) equations, which take the form of nonlinear and nonlocal transport-type equations. We study in particular the emergence of quasi-periodic vortex patch structures for these models.

Recall that Euler equations describe the evolution of an inviscid homogeneous and incompressible fluid.

They can be set in any space dimension but we shall restrict our discussion to the dimension two since in this case the vorticity solves a transport equation. Their presentation is done in Section 1.1.1. As to the QGSW equations, they describe the circulation of the ocean and the atmosphere at large time and space scales. They are obtained from shallow-water equations by making some asymptotic expansions with respect to the Rossby number close to the quasi-geostrophic balance. This equilibrium corresponds to a balance between rotation and stratification effects. Analytically, these equations can be seen as a generalization of Euler equations written in velocity-vorticity formulation through the introduction of a parameter called Rossby radius. We refer to Section 1.1.2 for a detailed presentation of this model.

In this work, we study some dynamical properties of planar vortex patches, which are weak solutions in the Yudovich class for the above mentioned models. They describe the evolution of bidimensional bounded domains and the study of their dynamics is reduced to the one of their boundary which is subject to an integro-differential equation. Thanks to the structure of the equations, radial profiles provide stationary solutions, in particular vortex patches associated with the discs called Rankine vortices. The analysis of the phase portraits close to these equilibrium points has aroused great interest. Notice that, during the last decade, a quite rich activity has been developed around periodic solutions. In the rigid motion case, where the solution keeps the same shape (and is called V-state), several structures depending on the topology were found by using bifurcation theory. These implicit solutions perform a uniform rotation around their center of mass with constant angular velocity. However, very few results are known in the non-rigid case. After these works, a natural question appeared :

Can we find quasi-periodic solutions (more general than periodic)

close to some of these equilibrium points ?

This thesis answers positively to this question. The techniques involved are borrowed from KAM and Nash-Moser theories in the spirit of the recents works of Massimiliano Berti and his collaborators. Recall that the original KAM theory describes (in suitable regularity) the persistence of invariant tori supporting quasi-periodic motions for small perturbations of integrable Hamiltonian systems in finite dimension.

This theory was developed in the 50-60s and started to be extended to Hamiltonian PDE, i.e. in infinite dimension, in the 80-90s. The Nash-Moser scheme is an iterative procedure generalizing the Newton's method through the use of regularizing operators. It allows to perform an implicit function theorem in case of existence of an approximate right inverse satisfying nice tame estimates with fixed loss of regularity.

The models of interest here and in particular their formulations at the level of vortex patches are Hamiltonian PDE. In addition, they can be seen as quasilinear perturbations of their linearizations at the Rankine vortices which one are integrable. Then, we are exactly in a well-adapted situation for applying KAM techniques. We can generate quasi-periodic vortex patch solutions by playing with a parameter appearing either naturally in the equations or geometrically due to non-invariance scaling properties. For suitable selected values of this parameter among a Cantor-type set, we can generate these solutions. We shall now present a short plan of the memoir.

➤ The first part of the thesis (Part I) is devoted to proving the existence of time quasi-periodic vortex patches close to the unit disc for QGSW equations. These structures appearing naturally at the linear level persist at the nonlinear one modulo the choice of the Rossby radius among a massive

Cantor-like set. This work has been done together with my PhD advisor Taoufik Hmidi.

➤ The second part (Part II) of the thesis is devoted to proving the existence of quasi-periodic in time vortex patches close to the Rankine vortices for Euler equations set in the unit disc. Here this is a geometrical parameter, the radius of the Rankine vortices, which allows to generate quasi-periodic solutions. The apparition of this parameter is related to the non-invariance by radial dilation of the problem. Indeed, in the whole plane, this approach fails in particular due to trivial resonances between the equilibrium frequencies. The set of admissible parameters is of Cantor-type with almost full Lebesgue measure. The analysis is simpler in this case since the boundary effects make appear smooth terms. This work has been done in collaboration with Zineb Hassainia.

From a technical point of view, the difficulties encountered in the proofs of the previous two results can be classified into three components.

• The first one is of spectral nature. As already mentioned, each equation is quasilinear and its linearization has variable coefficients. Along the Nash-Moser scheme, we need to construct an approximate right inverse for the linearized operator which is done by conjugating it to a constant coefficients operator provided the choice of parameters among Cantor sets related to the spectrum of the operator. This procedure is expensive and based on KAM reductions.

• The second is linked to functional analysis. In view of the Nash-Moser iteration, we need to show tame estimates and symmetry properties for the approximate inverse which forces us to pay attention to products and composition laws related to functions and operators used during the reduction of the linearized operator to constant coefficients. In order to make the reduction scheme convergent, we have to deal with a special Toeplitz in time topology for operators which is stronger than the classical one. Finally, the analysis is based on the study of integral operators whose kernels are quite singular and require particular attention.

• The last difficulty is related to number theory. Indeed, the implementation of KAM techniques implies to solve some equations called homological which require non-resonance conditions linked to Diophantine approximation. In order to ensure these conditions, we must select admissible parameters by exploiting the rigidity of the equilibrium frequencies through the non-degeneracy and the transversality.

➤ The third part (Part III) deals with the existence of analytic doubly-connected V-states for QGSW equations. These patches, obtained by bifurcation techniques, have high symmetries and the associated branches of bifurcation emerge from the annulus for very specific angular velocities related to modified Bessel functions. The delicate point in the analysis is linked to rafined properties of these special functions. This result follows the previous works in the field obtained during the past decade.

C O N T E N T S

Introduction

Le progrès n'est que l'accomplissement des utopies.

O s c a r W i l d e

Historical and mathematical contexts

Fluid mechanics is a branch of Physics studying the dynamics of fluids, namely, liquids, gases or even plasmas. The literature in the subject is huge so we may restrict our discussion to the case of an inviscid, homogeneous and incompressible fluid for which the Euler equations [START_REF] Euler | Principes généraux du mouvement de fluides[END_REF] and their generalizations are well-adapted to describe the dynamics. We refer to Section 1.1 for a mathematical presentation of the fluid models of interest in this work. Such models (or at least the Eulerian one) have been widely studied numerically, experimentally and analytically, so we may focus on some aspects which fit with our purpose.

This thesis is devoted to the study of the emergence of ordered structures for some fluid models.

More precisely, we are interested in the vortex patch dynamics. Their study goes back to the works of Helmoltz [START_REF] Hermann Von | Uber Integrale der hydrodynamischen Gleichungen, welche der Wirbel bewegung entsprechen[END_REF][START_REF] Hermann Von | On integrals of the hydrodynamical equations, which express vortexmotion[END_REF], Kirchhoff [START_REF] Kirchhoff | Vorlesungen uber mathematische Physik[END_REF] and Kelvin [START_REF] Lord | On the stability of steady and of periodic fluid motion[END_REF]. Helmoltz introduced in [START_REF] Hermann Von | On integrals of the hydrodynamical equations, which express vortexmotion[END_REF] the notion of vorticity for Euler equations, which is in the bidimensional case a scalar function quantifying the local rotation of the mesoscopic particles. He proved that the vorticity is a solution to an active scalar equation driven by the solenoidal velocity field of the fluid. Therefore, the initial profile is transported by the flow associated to the velocity. In particular, if the initial condition is given by the characteristic function of a bounded domain, then, at later time, the solution will keep the same structure and the resulting solution is called vortex patch. These structures can be seen as a simple modelization of hurricanes and in this context, the nature provides some interesting examples (see Figure 1-(b) and 2). We refer to Section 1.2 for a detailed mathematical presentation of vortex patches. When renormalized by its area, then taking the diameter of the vortex patch going to zero, we find a point vortex. The point vortex system is the equivalent of the N-body problem in fluid mechanics. It was first introduced by Helmoltz in [START_REF] Hermann Von | Uber Integrale der hydrodynamischen Gleichungen, welche der Wirbel bewegung entsprechen[END_REF]. Later on, Kirchhoff [START_REF] Kirchhoff | Vorlesungen uber mathematische Physik[END_REF] proved the Hamiltonian structure of this system. Then, Poincaré [START_REF] Poincaré | Théorie des tourbillons[END_REF] and Gröbli [START_REF] Grobli | Spezielle Probleme uber die Bewegung geradliniger paralleler Wirbelfäden[END_REF] studied the 3-point vortex configuration and showed that it is integrable. The inverse problem of desingularizing a point vortex configuration to get a vortex patch motion has been recently studied [START_REF] García | Kármán vortex street in incompressible fluid models[END_REF][START_REF] García | Vortex patches choreography for active scalar equations[END_REF][START_REF] Hassainia | Multipole vortex patch equilibria for active scalar equations[END_REF][START_REF] Hmidi | Existence of corotating and counter-rotating vortex pairs for active scalar equations[END_REF] and numerical simulations like in [START_REF] Aref | vortex crystals[END_REF] on point vortices are helpful in this task.

We shall look for the emergence of quasi-periodic solutions in the patch form for different models.

Quasi-periodic functions are a generalization of periodic ones and are natural structures appearing in Hamiltonian systems. Their study goes back to the works of Kolmogorov [START_REF] Kolmogorov | On the persistence of conditionally periodic motions under a small change of the hamiltonian function[END_REF], Arnold [START_REF] Arnol | Small denominators and problems of stability of motion in classical mechanics and celestial mechanics[END_REF] and Moser [START_REF] Moser | On invariant curves of area-preserving mappings of an annulus[END_REF] who proved the persistence of invariant tori supporting quasi-periodic motion for perturbations of integrable Hamiltonian systems in finite dimension. KAM theory was extended and refined for several

Hamiltonian PDE with small divisors problems. For instance, it has been implemented for the 1-d semilinear wave and Schrödinger equations in several papers [START_REF] Bourgain | Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE[END_REF][START_REF] Chierchia | KAM tori for 1D nonlinear wave equations with periodic boundary conditions[END_REF][START_REF] Craig | Newton's method and periodic solutions of nonlinear wave equation[END_REF][START_REF] Kuksin | Hamiltonian perturbations of in finite-dimensional linear systems with imaginary spectrum[END_REF][START_REF] Pöschel | A KAM-Theorem for some nonlinear PDEs[END_REF][START_REF] Pöschel | Quasi-periodic solutions for a nonlinear wave equation[END_REF][START_REF] Wayne | Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory[END_REF]. Many results were also obtained for semilinear perturbations of PDE [START_REF] Berti | KAM theory for the Hamiltonian derivative wave equation[END_REF][START_REF] Berti | KAM for Reversible Derivative Wave Equations[END_REF][START_REF] Bourgain | Green's function estimates for lattice Schrodinger operators and applications[END_REF][START_REF] Eliasson | KAM for the nonlinear Schrödinger equation[END_REF][START_REF] Gao | KAM tori for reversible partial differential equations[END_REF][START_REF] Kappeler | KdV and KAM[END_REF][START_REF] Kuksin | A KAM theorem for equations of the Korteweg-de Vries type[END_REF][START_REF] Kuksin | Analysis of Hamiltonian PDEs[END_REF][START_REF] Liu | A KAM theorem for Hamiltonian partial differential equations with unbounded perturbations[END_REF]. However the case of quasi-linear or fully nonlinear perturbations were explored in [START_REF] Baldi | KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation[END_REF][START_REF] Baldi | KAM for autonomous quasi-linear perturbations of KdV[END_REF][START_REF] Baldi | KAM for autonomous quasi-linear perturbations of mKdV[END_REF][START_REF] Berti | A Nash-Moser approach to KAM theory[END_REF][START_REF] Berti | Large KAM tori for quasi-linear perturbations of KdV[END_REF][START_REF] Feola | Quasi-periodic solutions for fully nonlinear forced reversible Schrodinger equations[END_REF]. Many interesting results have also been obtained in the past few years on the periodic and quasi-periodic settings for the water-waves equations as in [START_REF] Alazard | Gravity capillary standing water waves[END_REF][START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Traveling quasi-periodic water waves with constant vorticity[END_REF][START_REF] Berti | Pure gravity traveling quasi-periodic water waves with constant vorticity[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF][START_REF] Iooss | Standing waves on an infinitely deep perfect fluid under gravity[END_REF][START_REF] Plotnikov | Nash-Moser theory for standing water waves[END_REF]. For Euler equations, only few results are known [START_REF] Baldi | Quasi-periodic incompressible Euler flows in 3D[END_REF][START_REF] Crouseilles | Quasi-periodic solutions of the 2D Euler equations[END_REF]. We refer the reader to Section 1. [START_REF] Alinhac | Opérateurs pseudo-différentiels et théorème de Nash-Moser[END_REF] for more details about KAM theory and its applications to PDE.

Figure 3: Numerical simulation of quasi-periodic point vortex motion [START_REF] Blackmore | Studies of perturbed three vortex dynamics[END_REF].

Nonlinear and nonlocal transport-type fluid models

In this section, we present the various partial differential equations of interest in this PhD. These are bidimensional nonlinear fluid models which can be written as an active scalar equation, namely

∂ t ω + v • ∇ω = 0, (t, x) ∈ R + × D
for a certain scalar unknown function ω = ω(t, x) driven by a time dependent solenoidal vector field v = v(t, x) related to ω through singular integrals. The equation is set in a planar domain D taken either as the full plane or the unit disc in our discussions

D = R 2 or D = D ≜ (x 1 , x 2 ) ∈ R 2 s.t. x 2 1 + x 2 2 ⩽ 1 .
The divergence-free condition allows to introduce a velocity potential Ψ = Ψ(t, x) such that

v = ∇ ⊥ Ψ, ∇ ⊥ ≜ -∂ 2 ∂ 1 .
In each considered model, the stream function Ψ is given by an integral in the form Ψ(t, x) = ˆD G(x, y)ω(t, y) dA(y), with a Green function G satisfying the following symmetry properties ∀θ ∈ R, ∀(x, y) ∈ D 2 , G e iθ x, e iθ y = G(x, y) = G(y, x).

(

Here and in the sequel, we use the notation dA for the planar Lebesgue measure. Notice that along the document, we shall identify C with R 2 . In particular, the Euclidean structure of R 2 is seen in the complex sense through the usual inner product defined for all z 1 = a 1 + i b 1 ∈ C and z 2 = a 2 + i b 2 ∈ C by

z 1 • z 2 ≜ ⟨z 1 , z 2 ⟩ R 2 = Re (z 1 z 2 ) = a 1 a 2 + b 1 b 2 . (1.2)
Several examples of such nonlinear transport-type equations are known in fluid mechanics : 

(QGSW ) λ with λ ∈ R * + R 2 potential vorticity q -1 2π K 0 (λ|x -y|) (SQG) α with α ∈ (0, 1) R 2 temperature θ Γ( α 2 ) π2 2-α Γ( 2-α
2 )

1 |x-y| α in [START_REF] Euler | Principes généraux du mouvement de fluides[END_REF] and writes in the following way (E)

     ∂ t v + v • ∇v + ∇p = 0, in R + × D ∇ • v = 0 v(0, •) = v 0 .
(1.3)

The quantity v = v(t, x) denotes the velocity field of the fluid. It is obtained as an average of the velocities of particles contained in a mesoscopic volume of fluid at time t and centered around a position x. The scalar function p = p(t, x) denotes the pressure of the fluid at time t and position x. More generally, the gradient term can represent the sum of all conservative forces acting on the fluid. Notice that the incompressibility condition is encoded in the divergence-free condition for the vector field v (second equation in (1.3)). In the case D = D, the system (1.3) is supplemented with the non penetration condition v • ν = 0 where ν is the outward normal vector to the boundary ∂D.

The global well-posedness theory for these equations set in the full plane goes back to the work of Wolibner [START_REF] Wolibner | Un théorème sur l'existence du mouvement plan d'un fluide parfait, homogène, incompressible, pendant un temps infiniment long[END_REF] for smooth initial data. Later on, for classical solutions in Sobolev spaces H s (R 2 ) (s > 2) the local well-posedness was proved by Kato and Ponce in [START_REF] Kato | Commutator estimates and the Euler and Navier-Stokes equations[END_REF]. Then, the question of the global existence of these solutions was solved in [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3D Euler equations[END_REF]. Notice that the global well-posedness in Hölder spaces was also obtained in [START_REF] Chemin | Fluides parfaits incompressibles[END_REF]. The case of supercritical Besov spaces was studied in [START_REF] Dongho | Local existence and blow-up criterion for the Euler equations in the Besov spaces[END_REF] and the critical cases were proved in [START_REF] Vishik | Hydrodynamics in Besov spaces[END_REF] and [START_REF] Hmidi | Existence globale pour le système d'Euler incompressible 2D dans B 1 ∞,1[END_REF]. As regards the situation in a bounded domain, the first result was given by Ebin and Marsden [START_REF] Ebin | Groups of diffeomorphisms and the motion of an incompressible fluid[END_REF] in Sobolev and Hölder spaces, see also [START_REF] Ebin | A concise presentation of Euler equations of hydrodynamics[END_REF]. Their proof was very technical and based on Riemannian geometry on infinite dimensional manifolds. A simpler proof was proposed in [START_REF] Veiga | Kato's perturbation theory and well-posedness for the Euler equations in bounded domain[END_REF].

We shall now present the velocity-vorticity formulation of Euler equations. In the planar case, this new system is equivalent to the Euler system (1.3) under nice decay property at infinity. We introduce the vorticity

ω ≜ ∇ ⊥ • v = ∂ 1 v 2 -∂ 2 v 1 .
This quantity measures the rotation effects inside the fluid. Applying the operator ∇ ⊥ • to the first equation in (1.3), we get the following active scalar equation

∂ t ω + v • ∇ω = 0.
In the planar case, the stream function is solution of the Laplace problem ∆Ψ = ω and then is given by ∀x ∈ R 2 , Ψ(t, x) = 1 2π ˆR2 log |x -y| ω(t, y) dA(y).

In the case of the unit disc D, the stream function Ψ solves the following Dirichlet problem ∆Ψ = ω Ψ| ∂D = 0. Thus, by using the Green function of the unit disc, we get the expression ∀x ∈ D, Ψ(t, x) = 1 4π ˆD log x -y 1 -xy 2 ω(t, y) dA(y). (1.4) Then, the new formulation of Euler equations is given by

     ∂ t ω + v • ∇ω = 0, in R + × D v = ∇ ⊥ Ψ ω(0, •) = ω 0 .
(1.5)

The study of weak solutions for the system (1.5) will be discussed in Section 1.2.

Quasi-geostrophic shallow-water equations

The quasi-geostrophic shallow-water equations (QGSW) λ is considered as one of the most common asymptotic models used to describe the large scale motion of the atmospheric and oceanic circulation and can be derived asymptotically from the rotating shallow-water equations when Rossby and Froude numbers are small enough, for more details we refer to [START_REF] Dritschel | Shallow-water vortex equilibria and their stability[END_REF][START_REF] Vallis | Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation[END_REF] and the references therein. We also refer to the formal derivation below. This model is planar and the evolution of the potential vorticity q takes the form of a nonlinear and nonlocal transport equation,

(QGSW) λ      ∂ t q + v • ∇q = 0, in R + × R 2 v = ∇ ⊥ (∆ -λ 2 ) -1 q, q(0, •) = q 0 .
(1.6)

Here v denotes the velocity field which is solenoidal and q is a scalar function. Physically, the parameter λ is defined by

λ ≜ ω c √ gH ,
where g is the gravity constant, H is the mean active layer depth and ω c is the Coriolis frequency, assumed to be constant. In the literature, the number 1 λ is called the Rossby deformation length or Rossby radius and measures the length scale at which the rotation effects are balanced by the stratification. Notice that small values of λ corresponds to a free surface which is nearly rigid and when λ = 0 we get Euler equations written in the formulation velocity-vorticity. The velocity field v writes v = ∇ ⊥ Ψ where Ψ is the stream function governed by the Helmholtz equation, (∆ -λ 2 )Ψ(t, •) = q(t, •).

To invert this operator we shall make appeal to the Green function T λ solution of the equation

(-∆ + λ 2 )T λ = δ 0 in S ′ (R 2 ).
Using the Fourier transform yields

∀ξ ∈ R 2 , T λ (ξ) = 1 |ξ| 2 + λ 2 •
Thus by Fourier inversion theorem and using a scaling argument, we find

T λ (z) = T 1 (λz) with T 1 (z) ≜ 1 4π 2 ˆR2 e iz•ξ 1 + |ξ| 2 dξ.
Applying a polar change of variables gives 

T 1 (z) = 1 4π 2 ˆ∞ 0 r 1 + r 2
T 1 (z) = 1 2π K 0 (|z|).
Therefore, one obtains the following expression for the stream function

Ψ(t, z) = - 1 2π ˆR2 K 0 (λ|z -ξ|)q(t, ξ) dA(ξ), (1.7) 
where K 0 is the zero-th order modified Bessel function of second kind which expresses as K 0 (z) = log(z)F (z) + G(z), F, G analytic functions.

(1.8)

A more precise description of the kernel K 0 can be found in (C.7). We point out that K 0 behaves like a logarithm at zero which explains the link with Euler equations whenever the parameter λ tends to 0.

We mention that the well-posedness theory of classical solutions for (QGSW ) λ equations is not properly written in the literature, but due to the similarity with Euler equations, one can easily prove it for instance in supercritical or even critical Besov regularity.

Formal derivation :

We may follow the calculation developed in [START_REF] Vallis | Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation[END_REF] with the stronger assumption that the Coriolis frequency is constant. Let us consider a fluid with constant density and such that the height variation scale is small compared to the depth of the fluid. This is typically the case of the ocean and the atmosphere.

Then, we can assume the hydrostatic approximation namely the gravitational force and the pressure terms compensate each other. We assume the rotation frequency of the planet to be constant equal to ω c .

Finally, we assume that the bottom of the fluid is flat and at the origin. The velocity field can be written in this context in the following way U(x, y, z) = u(x, y) + w(x, y, z)

- → k , u(x, y) = u(x, y) - → i + v(x, y) - → j .
We also denote h(x, y) the thickness of the fluid at point (x, y) and H the average height. Newton's general law allows us to write

∂ t u + u • ∇u + ω c - → k ∧ u + g∇h = 0, ∇ = ∇ x,y .
(1.9)

The incompressibility of the fluid provides ∇ x,y,z • U = 0, i.e. ∂ z w = -∇ • u.

Integrating the last equation with respect to z yields

w(h) = w(0) -h∇ • u = -h∇ • u.
But at the surface, the vertical velocity corresponds to the material derivative of the position of the particle, namely

w(h) = ∂ t h + u • ∇h.
Therefore, combining the foregoing formulae, we obtain the new formulation of the mass conservation

∂ t h + u • ∇h + h∇ • u = 0.
(1.10)

The system (1.9)-(1.10) is called rotating shallow-water model and we shall derive from this the model of interest by using some asymptotics in a small parameter called Rossby number. For that purpose, we introduce characteristic length L and velocity U assumed to be horizontally isotropic. The Rossby number is a ratio between advection and rotation term in the equation (1.9). The number L d , also called Rossby deformation length is a length scale measuring the balance between rotation and stratification in (1.9). Now we assume the quasi-geostrophic hypothesis, namely R 0 is small and the height variations are small.

We write that the height h is a perturbation of its mean value H h(x, y) = H + ∆h(x, y)

with the following scale ∆h

H ∼ R 0 L L d 2 = O(R 0 ).
Therefore, we have

h = H 1 + ∆h H = H 1 + R 0 L 2 L 2 d h .
We assume that the advection term dominates and that the time scale can be choosen as

T = L U .
Adimensionalizing the equations (1.9) and (1.10) leads to

R 0 ∂ t u + u • ∇ u + - → k ∧ u = -∇ h (1.11)
and

R 0 L L d
We expend our quantities into power series with respect to the small parameter R 0

     h = h 0 + R 0 h 1 + R 2 0 h 2 + ... u = u 0 + R 0 u 1 + R 2 0 u 2 + ... v = v 0 + R 0 v 1 + R 2 0 v 2 + ...
Taking the zero-th order terms in R 0 in (1.11), we obtain u 0 , v 0 = -∂ y h 0 , ∂ x h 0 .

(1.13)

Denoting u 0 = u 0 , v 0 , then we deduce from (1.13) the following mass conservation equation

∇ • u 0 = 0.
At the next order, we get

L L d 2 ∂ t h 0 + L L d 2 u 0 • ∇ h 0 + ∇ • u 1 = 0. (1.14)
Notice that this equation is not closed since it makes appear u 1 . Hence, we go to the next order in the momentum equation

∂ t u 0 + ( u 0 • ∇) u 0 + - → k ∧ u 1 = -∇ h 1 .
To get rid of the gradient term in h 1 , we introduce ξ 0 ≜ ∇ ⊥ • u 0 , and apply the operator ∇ ⊥ • to the previous equation leading to

∂ t ξ 0 + u 0 • ∇ ξ 0 = -∇ • u 1 .
(1.15)

Inserting (1.14) into (1.15), we infer

∂ t ξ 0 + u 0 • ∇ ξ 0 = L L d 2 ∂ t h 0 + L L d 2 u 0 • ∇ h 0 .
Denoting Ψ ≜ h 0 , we have by virtue of (1.13)

u 0 , v 0 = -∂ y Ψ, ∂ x Ψ , ξ 0 = ∆ Ψ
and the previous equation becomes

∂ t ∆ Ψ - L L d 2
For (1.5), the global existence and uniqueness for weak solutions bounded and integrable follows from Yudovich's theory [START_REF] Yudovich | Nonstationary flow of an ideal incompressible liquid[END_REF] for Euler equations in the plane or in the unit disc. One can adapt the theory to the case of QGSW equations due to the logarithmic behaviour of the kernel K 0 at the origin. In particular, if the initial datum is a vortex patch, that is, the characteristic function of a bounded planar domain D 0 , then the solution keeps a patch form 1 Dt for any time t > 0, where D t is the transported domain D 0 by the flow map associated to the velocity field v, namely

D t ≜ Φ t (D 0 ), Φ t (x) ≜ x + ˆt 0 v(s, Φ s (x))ds.
The boundary motion in the smooth case reduces to tackle the evolution of a curve in the complex plane surrounding a constant area domain and subject to the deformation induced by its own effect.

Local/global in time persistence of the boundary regularity is a relevant subject in fluid dynamics and has attracted a lot of attention during the past decades, not only for Euler equations but also for similar active scalar equations such as generalized surface quasi-geostrophic equations or the aggregation equation.

The persistence of the regularity of the boundary was proved in [START_REF] Bertozzi | Global regularity for vortex patches[END_REF][START_REF] Chemin | Persistance de structures géométriques dans les fluides incompressibles bidimensionnels[END_REF][START_REF] Chemin | Fluides parfaits incompressibles[END_REF] for the full plane Eulerian case and in [START_REF] Depauw | Poche de tourbillon pour Euler 2D dans un ouvert à bord[END_REF] for the case of the unit disc. Let us now briefly see how to write down the contour dynamics equations, more details can be found in [START_REF] Hmidi | Boundary Regularity of Rotating Vortex Patches[END_REF][START_REF] Hmidi | On rotating doubly connected vortices[END_REF]. Given a smooth parametrization z(t, •) : T → ∂D t of the boundary of the patch, then as particles located at the boundary move with the boundary then we get the evolution equation

∂ t z(t, θ) -v(t, z(t, θ)) • n(t, z(t, θ)) = 0, (1.16) 
where n(t, z(t, θ)) is the outward normal vector to the boundary ∂D t of D t at the point z(t, θ). This equation reflects the fact that the particle velocity and the boundary velocity admit the same normal components which is a classical fact for free boundary problems. As we shall see later along the document, the equation (1.16) is the starting point for our discussions. More precisely, we may start with the complex formulation of (1.16). Since one has, up to a real constant of renormalization, n(t, z(t, θ)) = -i∂ θ z(t, θ), then we find the complex form of the contour dynamics motion, Im ∂ t z(t, θ) -v(t, z(t, θ)) ∂ θ z(t, θ) = 0.

(1.17)

Notice that due to the symmetry property (1.1) of the Green kernel, any radial profile generates a stationary solution. It is a classical fact to look for periodic or quasi-periodic solutions close to these equilibrium state solutions for Hamiltonian systems like (1.5)- (1.6). Looking for particular solutions where the domain moves without any shape deformation is a traditional subject in fluid dynamics and important developments have been performed a long time ago. In the literature, these structures appear under different names: relative equilibria, V-states, long-lived structures, vortex crystals, etc. . . A particular class of periodic solutions is given by the rigid body rotating vortex patches around the origin described by ω(t, •) = 1 Dt with D t = e itΩ D 0 , (1.18) where Ω is a time independent angular velocity. These solutions are periodic in time with period 2π Ω or equivalently with frequency Ω. Such solutions are called V-states according to the terminology introduced by Deem and Zabusky in [START_REF] Deem | Vortex waves : Stationary "V-states", Interactions, Recurrence, and Breaking[END_REF] where they numerically obtained the first examples of m-fold uniformly rotating vortex patches solutions to Euler equations for small values of m. Recall that a domain D 0 is called m-fold if it is invariant under the action of the diedral group D m , with the convention that 1-fold (resp. 2-fold) means to admit one (resp. two) axis of symmetry. Consequently, a m-fold uniformly rotating vortex patch is a solution in the form (1.18) with m-fold inital domain D 0 . The first explicit example, discovered by Kirchhoff in [START_REF] Kirchhoff | Vorlesungen uber mathematische Physik[END_REF], is the ellipse which rotates about its center of mass with the constant angular velocity Ω = ab (a + b) 2 , where a and b are the semi-axes of the ellipse. Further families of implicit solutions with higher symmetries were established by Burbea in [START_REF] Burbea | Motions of vortex patches[END_REF] using local bifurcation tools and complex analysis. More precisely, he proved the existence of branches of m-fold rotating solutions bifurcating from the discs at angular velocities

Ω m ≜ m -1 2m , m ⩾ 1. (1.19)
Notice that the mode m = 1 corresponds to a translation of the trivial solution and the second branch, emerging at Ω 2 = 1 4 , describes the Kirchhoff ellipses. Moreover, all the bifurcation angular velocities Ω m are in the range (0, 1 2 ). Outside this interval, the only uniformly rotating solutions are the radial ones, as proved in the series of papers [START_REF] Fraenkel | An introduction to maximum principles and symmetry in elliptic problems[END_REF][START_REF] Gómez-Serrano | Symmetry in stationary and uniformlyrotating solutions of active scalar equations[END_REF][START_REF] Hmidi | On the trivial solutions for the rotating patch model[END_REF]. The boundary regularity was first discussed in [START_REF] Castro | Uniformly rotating analytic global patch solutions for active scalars[END_REF][START_REF] Hassainia | Global bifurcation of rotating vortex patches[END_REF][START_REF] Hmidi | Boundary Regularity of Rotating Vortex Patches[END_REF] and the global bifurcation diagram was studied in [START_REF] Hassainia | Global bifurcation of rotating vortex patches[END_REF]. Note also that countable branches of rotating patches bifurcating from the ellipses at implicit angular velocities were found in [START_REF] Hmidi | Bifurcation of rotating patches from Kirchhoff vortices[END_REF][START_REF] Hmidi | Degenerate bifurcation of the rotating patches[END_REF], however, the shapes have in fact less symmetry and being at most two-folds. The doubly-connected case has also been explored. at the following angular velocities

Ω ± m (b) ≜ 1 -b 2 4 ± 1 2m m(1 -b 2 ) 2 -1 2 -b 2m .
(1.21)

Figure 6: Exemples of 12-fold doubly-connected V-states for Euler equations [START_REF] Hmidi | Doubly connected V-states for the planar Euler equations[END_REF].

Figure 7: 3-fold V-states for Euler equations in the unit disc [START_REF] Hassainia | An analytical and numerical study of steady patches in the disc[END_REF].

Let us now turn to the case where Euler equations (1.5) are set in the unit disc. The theory of weak solutions and vortex patches is still valid in this context and the persistence of the boundary regularity of vortex patches remains true, as proved in [START_REF] Depauw | Poche de tourbillon pour Euler 2D dans un ouvert à bord[END_REF]. The existence of V-states close to the discs bD (b ∈ (0, 1)), also called Rankine vortices, were obtained in [START_REF] Hassainia | An analytical and numerical study of steady patches in the disc[END_REF]. These curves of solutions have m-fold symmetry, perform a uniform rotation and emerge at the angular velocities

Ω m (b) ≜ m -1 + b 2m 2m , m ⩾ 1. (1.22)
It is of paramount importance to highlight different boundary effects observable at this periodic level.

First, Burbea's frequencies (1.19) are shifted to the right, implying in particular that the 1-fold patches, which are not centered at the origin, are no longer associated to the trivial solution. Second, the numerical observations in [START_REF] Hassainia | An analytical and numerical study of steady patches in the disc[END_REF] show that the bifurcation curves have oscillations, see Figure 8.

Figure 8: Oscillations in the bifucation curves for Euler equations in the unit disc [START_REF] Hassainia | An analytical and numerical study of steady patches in the disc[END_REF].

In the same paper, the authors also studied the bifurcation from the annulus

A b1,b2 ≜ z ∈ C s.t. b 2 < |z| < b 1 , 0 < b 2 < b 1 < 1,
which occurs for the following angular velocities (b = b2 b1 )

Ω ± m (b 1 , b 2 ) ≜ 1 -b 2 4 + b 2m 1 -b 2m 2 4m ± 1 -b 2 2 - 2 -b 2m 1 -b 2m 2 2m 2 -b 2m 1 -b 2m 1 m 2
provided that the following condition is fullfilled

m > 2 + 2b m -(b m 1 + b m 2 ) 2 1 -b 2 •
Concerning (QGSW) λ there are few results dealing with relative equilibria. Interesting numerical simulations showing the complexity and the richness of the bifurcation diagram with respect to the parameter λ was studied in [START_REF] Dritschel | Imperfect bifurcation for the shallowwater quasi-geostrophic equations[END_REF][START_REF] Dritschel | Stability and evolution of two opposite-signed quasigeostrophic shallow-water vortex patches[END_REF]. In [START_REF] Dritschel | Imperfect bifurcation for the shallowwater quasi-geostrophic equations[END_REF], using bifurcation tools the authors proved analoguous results to those of Burbea. They show in particular the existence of branches of m-fold symmetric V-states (m ≥ 2) bifurcating from the Rankine vortex 1 D with the angular velocity

Ω m (λ) ≜ I 1 (λ)K 1 (λ) -I m (λ)K m (λ), (1.23) 
where I m and K m are the modified Bessel functions of first and second kind. For more details about these functions, we refer to the Appendix C. Notice that in the same paper the authors explored the two-fold branch when λ is small and proved first that it is located close to the ellipse branch of Euler equations and second it is not connected (see Figure 9) and from numerical simulations they put in evidence the fragmentation of this branch in multiple connected pieces. The second bifurcation from this branch was also analyzed leading to similar results as for Euler equations.

Figure 9: Disconnected bifurcation diagram for 2-fold bifurcation curves from Kirchhoff branch for QGSW equations [START_REF] Dritschel | Imperfect bifurcation for the shallowwater quasi-geostrophic equations[END_REF].

We point out that numerical simulations showed the behaviour of the end of branches of bifurcation for the different models. The corresponding patches are called limiting V-states and seem to present singularities in their boundary. Nevertheless, no theorical result is known so far. We also mention that more investigations on the V-states have been implemented during the past decade by several authors in different settings like for the SQG equations [START_REF] Castro | Uniformly rotating analytic global patch solutions for active scalars[END_REF][START_REF] Gómez-Serrano | On the existence of stationary patches[END_REF][START_REF] Hassainia | On the V-States for the generalized quasi-geostrophic equations[END_REF][START_REF] Hassainia | Doubly connected V-states for the generalized surface quasi-geostrophic equations[END_REF][START_REF] Renault | Relative equilibria with holes for the surface quasi-geostrophic equations[END_REF] or for the multipole case [START_REF] García | Kármán vortex street in incompressible fluid models[END_REF][START_REF] García | Vortex patches choreography for active scalar equations[END_REF][START_REF] Hassainia | Steady asymmetric vortex pairs for Euler equations[END_REF][START_REF] Hassainia | Multipole vortex patch equilibria for active scalar equations[END_REF][START_REF] Hmidi | Existence of corotating and counter-rotating vortex pairs for active scalar equations[END_REF].

Quasi-periodic solutions for Hamiltonian systems : KAM theory

In this section, we present the basis of KAM and Nash-Moser theories. We also discuss some recent results about the application of these theories to PDE. The methods developed in this section will be the one used all along the document in the proofs of our results. First, we give the definition of quasi-periodic functions which is the notion of interest in this study. A function f : R → C is said to be quasi-periodic if there exists a continuous function F :

T d → C such that ∀ t ∈ R, f (t) = F (ωt)
for some frequency vector ω ∈ R d (d ∈ N * ) which is non-resonant, that is

∀ l ∈ Z d \ {0}, ω • l ̸ = 0. (1.24)
Here and in the sequel, we denote T = R/2πZ. In the case d = 1, we recover from this definition periodic functions with frequency ω ∈ R * . The variable living in the d-dimensional torus T d will be generically denoted φ in the remainder of the document. The archetype of quasi-periodic function is given by

f (t) = d j=1
a j e iωj t , a j ∈ C, ω = (ω 1 , . . . , ω d ) ∈ R d non-resonant.

From a dynamical point of view, the trajectory is densely contained in a d-dimensional torus, see Figure 10. We say that this torus is invariant and supports a quasi-periodic motion with frequency vector ω.

Figure 10: Quasi-periodc trajectory in an invariant torus [START_REF] Krishnaswami | Invariant tori, action-angle variables and phase space structure of the Rajeev-Ranken model[END_REF].

Consider a finite dimensional Hamiltonian system with 2d variables associated to a Hamiltonian H ṗ = -∇ q H(p, q) q = ∇ p H(p, q) , i.e. ṗ q = J∇ p,q H(p, q), J ≜ 0 -I d

I d 0 (1.25)
This is a particular class of ODE appearing naturally in Physics whenever the energy of a system is conserved and in this case, the Hamiltonian H is related to this energy. Indeed, in presence of conservative forces, the Newton's law can be written in such a form. Lagrangian/Hamiltonian formalism is an important and elegant mathematical aspect of Physics allowing to simplify the computations. The cost is a mathematical abstraction into the world of symplectic geometry. Here we discuss the finite dimensional

Hamiltonian systems but the same formalism can be transposed into infinite dimension through PDE. The latter is the context for the next sections. The Hamiltonian H in (1. [START_REF] Berti | Quasi-periodic solutions with Sobolev regularity of NLS on T d with a multiplicative potential[END_REF]) is said to be Liouville-integrable if there exist (F j ) 1⩽j⩽d ∈ C ∞ (R 2d , R) d such that

• ∀j ∈ 1, d , {F j , H} = 0 (i.e. the F j are intragrals of the motion).

• ∀(j, k) ∈ 1, d 2 , {F j , F k } = 0 (i.e. the F j are in involution).

• (∇ p,q F j ) 1⩽j⩽N is a free family.

Notice that {•, •} is the Poisson structure induced by the Hamiltonian system (1.25) and defined by

F, G ≜ d i=1 ∂ qi F ∂ pi G -∂ pi F ∂ qi G.
Then, the Arnold-Liouville Theorem asserts that if we assume that H is Liouville-integrable and that there exists c ∈ R d such that the set M c ≜ (p, q) ∈ R 2d s.t. ∀j ∈ 1, d , F j (p, q) = c j is connected and compact. Then, there exist a neighbourhood U of M c , a neighbourhood D of 0 in R d and a symplectic (that is which preserves Hamiltonian structures) change of variables

A : D × T d → U (I, ϑ) → (p, q)
such that H • A(I, ϑ) = h(I) is a function of I only. Therefore, the equations become İ = 0 θ = ∇ I h(I) ≜ ω(I).

Thus, we can integrate the system and obtain

I(t) = I(0) ≜ I 0 ϑ(t) = ω(I 0 )t + ϑ(0).
Consequently, the motion is confined in the torus {I 0 } × T d and given by the linear flow ϑ. Therefore, the nature of the motion depends on the arithmetic properties of ω(I). In particular, if ω(I) is non-resonnant, then the phase space is foliated by Lagrangian invariant tori carrying a quasi-periodic dynamics with frequency vector ω(I). Recall that a torus is said to be Lagrangian if the restriction of the symplectic form dI ∧ dϑ to its tangent space vanishes and the dimension of the torus is maximal (equal to d) for this property. Notice that the variables (I, ϑ) are called action-angle variables and such denomination can be justified by the archetype of Hamiltonian satisfying the Arnold-Liouville conditions, namely the harmonic

oscillator on R 2 H(p, q) = 1 2 p 2 + q 2 with F 1 = H, (p, q) = A(I, ϑ) = √ 2I cos(ϑ), √ 2I sin(ϑ) , H • A(I, ϑ) = I. ( 1.26) 
Indeed, one can easily check that the application A is symplectic since

dp ∧ dq = dI ∧ dϑ.
The study of quasi-periodic solutions to perturbations of integrable Hamiltonian systems goes back to the pioneering works of Kolmogorov [START_REF] Kolmogorov | On the persistence of conditionally periodic motions under a small change of the hamiltonian function[END_REF], Arnold [START_REF] Arnol | Small denominators and problems of stability of motion in classical mechanics and celestial mechanics[END_REF] and Moser [START_REF] Moser | On invariant curves of area-preserving mappings of an annulus[END_REF] where they proved, in finite dimension and under suitable non degeneracy and smoothness conditions, the persistence of invariant tori for small perturbations of integrable Hamiltonian systems. In the action-angle variables (I, ϑ), such perturbation can be written as

H(I, ϑ) = h(I) + εP (I, ϑ), ε ≪ 1. (1.27)
The various techniques and ideas used to study such kind of problems are now gathered under the name of KAM theory, in honor of Kolmogorov, Arnold and Moser. Kolmogorov's Theorem states as follows. 

DC(γ, τ ) ≜ l∈Z d \{0} ω ∈ R d s.t. |ω • l| > γ ⟨l⟩ τ , ⟨l⟩ ≜ max(1, |l|). (1.28)
Then for ε small enough, the torus {I * } × T d persits for the pertubed Hamiltonian system associated with H, being just slightly deformed, as a Lagrangian invariant torus carrying a quasi-periodic motion with the same frequency vector ω(I * ).

For a complete and pedagogical proof of Kolmogorov's result, we refer the reader to [START_REF] Pöschel | A lecture on the classical KAM theorem[END_REF][START_REF] Wayne | An introduction to KAM theory[END_REF]. It is based on a Newton method, where at each step, we shall remove some terms from the perturbation P which imply at the end the preservation of one invariant torus.

Figure 11: Three steps of the classical Newton scheme

u n+1 = u n -DF (u n ) -1 F (u n ) [67].
We shall now discuss the hypothesis and the main points in the proof of Kolmogorov's Theorem. First, at each step of the Newton method, we compose the previous Hamiltonian by a well-chosen symplectic change of variables in order to improve the structure of the Hamiltonian system in terms of normal form plus a perturbation. This transformation is chosen as the solution of a functional equation called the homological equation and we shall explain the typical difficulty appearing at this level by discussing the fundamental theorem of calculus in the quasi-periodic setting, namely the inversion of the operator ω • ∂ φ .

Given g : T d → R with zero average, we look for a function f solution of the equation

ω • ∂ φ f = g. (1.29)
To solve (1.29), we expand into Fourier series which yields

f (φ) = l∈Z d \{0} g l ω • l e il•φ . (1.30)
For a long time people like Poincaré thought that it was not possible to make such series convergent due to the possible smallness of the denominator. The key idea of Kolmogorov was to introduce the Diophantine conditions (1.28) for ω to control the small divisors problem and get only an algebraic loss of regularity.

Such kind of non-resonance conditions are called zero-th order Melnikov conditions. We mention that when looking for lower dimensional invariant tori (i.e. non-Lagrangian), one should need to deal with other type of non-resonant condition called first or second order Melnikov conditions. We refer the reader to [START_REF] Moser | Convergent series expansions for quasi-periodic motions[END_REF][START_REF] Pöschel | On elliptic lower dimensional tori in hamiltonian systems[END_REF]. Notice that for the Hamiltonian PDE as of interest is this document, we are led to consider this type of non-resonant conditions, see Propositions 7.5 and 13.4. Taking ω ∈ DC(γ, τ ), then we can estimate f , given by (1.30), in Sobolev norm and we obtain the following estimate with loss of regularity τ ∥f ∥ s ≲ γ -1 ∥g∥ s+τ .

In the analytic setting, treated by Kolmogorov and Arnorld, the fixed loss of regularity τ corresponds to a shrinkness of the domain of analyticity and the quadratic convergence of the Newton method is sufficient to overcome the small divisors problem so that the final domain of analyticity is non-empty.

Nevertheless, in the finitely many differentiable case, this is an important issue and the method may fail.

Moser overcame this problem using what is now called "Nash-Moser procedure". The twist condition ensures that the application I → ω(I) is a local diffeomorphism which allows to consider the frequencies as independant parameters and to follow the shift of frequencies along the scheme in terms of tori. This condition, which is not satisfied by the harmonic oscillator for instance, is quite strong and actually it is now known since the works of Rüssmann [START_REF] Rüssmann | Non-degeneracy in the perturbation theory of integrable dynamical systems[END_REF], see also Sevryuk [START_REF] Sevryuk | KAM-stable Hamiltonians[END_REF], that the minimal assumption is that the frequency map I → ω(I) is not contained in an hyperplane of R d . We call this fact the non-degeneracy property. Notice that such properties are the one used later in the proofs of the main results of this thesis, see Lemmata 5.4 and 11.4. In particular they are used to prove the so-called Rüssmann transversality conditions Lemmata 5.5 and 11.5, useful for measuring the Cantor sets of admissible parameters generating quasi-periodic solutions similarly to [START_REF] Bambusi | Degenerate KAM theory for partial differential equations[END_REF] and based on the application of [START_REF] Rüssmann | Invariant tori in non-degenerate nearly integrable Hamiltonian systems[END_REF]Thm. 17.1].

We shall now present the main steps concerning a Nash-Moser procedure, an iterative scheme used in this document for the construction of quasi-periodic vortex patches. The Nash-Moser iteration is a modification of the standard Newton scheme making appeal to regularizing operators (Π N ) N in order to solve an equation F (U ) = 0 in a Banach scale allowing some fixed loss of derivatives at each step. This strategy was first introduced by Nash in [START_REF] Nash | C1-isometric imbeddings[END_REF] to prove the isometric embedding theorem. There exist many versions of the Nash-Moser scheme and we refer the interested reader to [START_REF] Alinhac | Opérateurs pseudo-différentiels et théorème de Nash-Moser[END_REF][START_REF] Berti | Nonlinear oscillations of Hamiltonian PDEs[END_REF][START_REF] Hörmander | On the Nash-Moser implicit function theorem[END_REF][START_REF] Zehnder | Generalized implicit function theorems with applications to some small divisors problems I[END_REF][START_REF] Zehnder | Generalized implicit function theorems with applications to some small divisors problems II[END_REF]. For our later purpose, we may present one of them adapted to the Sobolev Banach scale (H s ) s⩾0 and taken from the book of Massimiliano Berti [START_REF] Berti | Nonlinear oscillations of Hamiltonian PDEs[END_REF]Thm. 3.6]. We consider a differentiable function F satisfying the following tame estimates : there exists α ⩾ 0 such that for any s ⩾ 0, for any (u,

u ′ , h) ∈ H s+α ,      ∥F (u)∥ s ≲ 1 + ∥u∥ s+α ∥DF (u)[h]∥ s ≲ ∥h∥ s+α ∥F (u) -F (u ′ ) -DF (u)[u ′ -u]∥ s ≲ ∥u -u ′ ∥ 2 s+α
Assume that there exists a right inverse T of the linearized operator with fixed loss τ ⩾ 0 of derivatives, namely

DF (u) • T(u)[h] = h, ∥T(u)[h]∥ s ≲ ∥h∥ s+τ .
We shall also assume that there exists a Sobolev index s 0 > α + τ such that

∥F (0)∥ s0+τ ≪ 1.
Then introducing the family of projectors (Π N ) N and Π ⊥ N N defined by

Π N   j∈Z f j e ijθ   = j∈Z |j|⩽N f j e ijθ , Π ⊥ N = Id -Π N and satisfying ∀t ⩾ 0, ∥Π N u∥ s+t ⩽ N t ∥u∥ s ∥Π ⊥ N u∥ s ⩽ N -t ∥u∥ s+t ,
we can make the following scheme convergent

u 0 = 0, u n+1 = u n -Π Nn T(u n )F (u n ), N n = N
Indeed, one has the induction inequality for some a priori free large parameter β.

∥u n+1 -u n ∥ s0 ≲ N α+τ -2 3 β n ∥T(u n-1 )F (u n-1 )∥ s0+β + N α+τ n ∥u n -u n-1 ∥ 2 s0 .
Observe that the previous inequality makes appear a fast decaying term linear in a high regularity norm (s 0 + β) and a quadratic term in low regularity norm (s 0 ). Then, one can prove by induction that for suitable selected values of β and for some well-chosen parameter ν > 0, we have

∥T(u n )F (u n )∥ s0+β ⩽ N ν n and ∥u n+1 -u n ∥ s0 ⩽ N -ν n .
The second estimate allows to make the scheme convergent and one obtains the convergence

F (u n ) → 0
for n → ∞ due to the relation

∥F (u n )∥ s0-α ≲ N -2 3 β n ∥T(u n-1 )F (u n-1 )∥ s0+β + ∥u n -u n-1 ∥ 2 s0 .
The reader is refered to [START_REF] Berti | Nonlinear oscillations of Hamiltonian PDEs[END_REF]Thm. 3.6] for the missing details hidden here to avoid too much technicality.

Later on, in the 80-90's, started the investigation for quasi-periodic solutions to PDE viewed as lower dimensional invariant tori for infinite dimensional Hamiltonian systems. Such equations can generally be written as

∂ t u = J∇H(u), (1.31) 
where H is a functional over an infinite dimensional Hilbert function space H and J is an antisymmetric non-degenerate operator. Normal forms KAM methods and Nash-Moser implicit function iterative schemes were explored and developed in partial differential equations by several authors leading to important contributions and opening new perspectives. The complexity of the problem depends on the space dimension and on the structure of the equations (semilinear, quasilinear, fully nonlinear, asymptotic of the linear frequencies). The first use of KAM methods for PDE was proposed by Kuksin [START_REF] Kuksin | Hamiltonian perturbations of in finite-dimensional linear systems with imaginary spectrum[END_REF] in 1987 and

Wayne [START_REF] Wayne | Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory[END_REF] in 1990 regarding parameter dependant (through a potential) one dimensional NLS and NLW with Dirichlet boundary conditions. The corresponding proofs are based on KAM reducibilty techniques whose main feature is the following. Consider a quasi-periodically time dependant linear system

∂ t h + A(ωt)h = 0, (1.32) 
with h ∈ H. In practice (1.32) corresponds to the linearization of (1.31), up to a restriction to a closed subspace of the phase space H, at a quasi-periodic solution with frequency

ω ∈ R d , namely A(ωt) = -J(D 2 H)[u(ωt), •].
One wants to find a bounded invertible linear transformation Φ(φ) : H → H, depending smoothly on φ ∈ T d , such that under the change of unknown

h = Φ(ωt)[v],
the equation (1.32) reduces to

∂ t v + Bv = 0, (1.33) 
with B = diag j (b j ) a diagonal time independant operator. Therefore, denoting (v j ) j the decomposition of v in a Hilbert basis of eigenvectors of B, the equation (1.33) decouples into

∂ t v j + b j v j = 0, i.e. v j (t) = e -bj t v j (0).
Then, if b j = iµ j ∈ iR, one recovers the linear stability in the sense of dynamical systems related to the Floquet exponents theory. In addition, the knowledge of the asymptotic expansion of the µ j allows to control the small divisors problems that can appear. A particular case (of interest in the sequel) of application of KAM reducibilty techniques is when

A = D + R, D = diag j (id j ),
with (id j ) j simple eigenvalues and R a perturbation. In this case, the choice of Φ is done in such a way to reduce quadratically the size of the remainder up to an additional diagonal contribution. At this stage the second order Melnikov conditions naturally appear. These are Diophantine constraints in the form

∀(l, j, j ′ ) ∈ Z d × Z 2 , ω • l + d j -d j ′ > γ ⟨l⟩ τ ,
with γ and τ as in the statement of Kolmogorov's Theorem. Iterating the procedure allows to diagonalize the oparator A. For more details, we refer to [START_REF] Berti | Quasi-periodic solutions of nonlinear wave equations on the d-dimensional torus[END_REF] and to Section 7.3.2. The works of Kuksin and Wayne were later extended to parameter independant situations by Kuksin-Pöschel [START_REF] Kuksin | Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrodinger equation[END_REF] for the NLS and Pöschel [START_REF] Pöschel | Quasi-periodic solutions for a nonlinear wave equation[END_REF] for the nonlinear Klein-Gordon equation. Then for one dimensional equations with periodic boundary conditions the first result is due to Craig-Wayne [START_REF] Craig | Newton's method and periodic solutions of nonlinear wave equation[END_REF] for time periodic solutions for the NLW. They introduced a completely different approach with respect to Kuksin and Wayne, with a Lyapunov-Schmidt decomposition and a multiscale approach to invert the linearized operator with tame estimates for the inverse. Then, Bourgain extended this work to the search of quasi-periodic solutions to the one dimensional semilinear NLS and NLW in [START_REF] Bourgain | Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE[END_REF]. The KAM reducibility approach was extended later by Chierchia-You [START_REF] Chierchia | KAM tori for 1D nonlinear wave equations with periodic boundary conditions[END_REF] for 1D semilinear wave equations with periodic boundary conditions. The first KAM reducibility result for NLS with x ∈ T has been proved by Eliasson-Kuksin in [START_REF] Eliasson | KAM for the nonlinear Schrödinger equation[END_REF]. Then, the Nash-Moser scheme was used to find periodic solutions for completely resonant nonlinear 1D wave equations with Dirichlet boundary conditions, both with analytic and differentiable nonlinearities, see [START_REF] Berti | Cantor families of periodic solutions for completely resonant nonlinear wave equations[END_REF][START_REF] Berti | Cantor families of periodic solutions for wave equations with C k nonlinearities[END_REF]. We also refer to [START_REF] Gentile | Periodic solutions for completely resonant nonlinear wave equations with Dirichlet boundary conditions[END_REF].

The case of higher dimension was first studied by Bourgain in [START_REF] Bourgain | Quasi-periodic solutions of Hamiltonian perturbations of 2D linear Schrodinger equations[END_REF] looking for time quasi-periodic solutions for the NLS on T 2 , followed by the results on the NLW on T d , for time periodic [START_REF] Bourgain | Construction of periodic solutions of nonlinear wave equations in higher dimension[END_REF] and quasi-periodic solutions [START_REF] Bourgain | Green's function estimates for lattice Schrodinger operators and applications[END_REF]. His solutions were analytic. The existence of quasi-periodic solutions for bounded perturbations (cubic or convolution-type) of the multidimensional NLS has been studied in the series of papers [START_REF] Eliasson | KAM for the nonlinear Schrödinger equation[END_REF][START_REF] Geng | An infnite dimensional KAM theorem and its application to the two dimensional cubic Schrodinger equation[END_REF][START_REF] Procesi | A KAM algorithm for the completely resonant nonlinear Schrodinger equation[END_REF]. We also mention the result of Grébert-Kappeler [START_REF] Grébert | Théorème de type KAM pour l'équation de Schrodinger non linéaire[END_REF], were they obtained the existence of quasi-periodic solutions for Hamiltonian perturbations of the defocusing NLS. The extension of the regularization method to finite Sobolev regularity in higher dimensions was considered by Berti and Bolle for quasi-periodic solutions on T d of the NLW [START_REF] Berti | Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potential[END_REF] and of the NLS [START_REF] Berti | Quasi-periodic solutions with Sobolev regularity of NLS on T d with a multiplicative potential[END_REF] with an external potential.

We also mention [START_REF] Berti | Nonlinear wave and Schrodinger equations on compact Lie groups and homogeneous spaces[END_REF][START_REF] Berti | An abstract Nash-Moser theorem and quasi-periodic solutions for NLW and NLS on compact Lie groups and homogeneous manifolds[END_REF], where they provided an abstract Nash-Moser theorem for the NLS and the NLW on compact Lie groups. More recently, Berti and Bolle obtained in [START_REF] Berti | Quasi-periodic solutions of nonlinear wave equations on the d-dimensional torus[END_REF] the existence of small amplitude time quasi-periodic solutions for the NLW with multiplicative potential and cubic nonlinearity for the NLW in any dimensional torus. KAM results have been proved for parameter dependent beam equations by Geng-You [START_REF] Geng | KAM tori for higher dimensional beam equations with constant potentials[END_REF], Procesi [START_REF] Procesi | A normal form for beam and nonlocal nonlinear Schrodinger equations[END_REF], and, more recently, in Eliasson-Grébert-Kuksin [START_REF] Eliasson | KAM for the nonlinear beam equation[END_REF] for multidimensional beam equations. We also mention the KAM result by Grébert-Thomann [START_REF] Grébert | KAM for the quantum harmonic oscillator[END_REF] for smoothing nonlinear perturbations of the 1d harmonic oscillator and Grébert-Paturel [START_REF] Grébert | On reducibility of quantum harmonic oscillators on R d with a quasi-periodic in time potential[END_REF] in higher space dimension. KAM theory was also developed for equations involving unbounded nonlinearities. In this case, the symplectic transformation at each step of the KAM iteration may lose space derivatives which destroys the convergence of the scheme. The first results in this direction for semilinear PDE with unbounded perturbations were obtained by Kuksin [START_REF] Kuksin | A KAM theorem for equations of the Korteweg-de Vries type[END_REF] and Kappeler-Pöschel [START_REF] Kappeler | KdV and KAM[END_REF] for Hamiltonian, analytic perturbations of the KdV equation on the torus. The case of quasilinear or even fully nonlinear is much harder and the pioneering works in this situation were presented by Plotnikov-Toland [START_REF] Plotnikov | Nash-Moser theory for standing water waves[END_REF] and Iooss-Plotnikov-Toland [START_REF] Iooss | Standing waves on an infinitely deep perfect fluid under gravity[END_REF], for the existence of 2D periodic standing waves with finite and infinite depth, respectively. We also mention that in the same decade, Baldi [START_REF] Baldi | Periodic solutions of forced Kirchhoff equations[END_REF] studied a forced quasilinear Kirchhoff equation on a bounded domain in R d with Dirichlet boundary condition and on the d-dimensional periodic domain. The nonlinearity is there space-independent and he found time periodic solutions in this context. The first existence results for time quasi-periodic solutions for quasilinear and fully nonlinear PDE are due to Baldi-Berti-Montalto for some quasilinear and fully nonlinear perturbations of the forced Airy equation [START_REF] Baldi | KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation[END_REF], of the autonomous KdV [START_REF] Baldi | KAM for autonomous quasi-linear perturbations of KdV[END_REF] and of the autonomous modified KdV [START_REF] Baldi | KAM for autonomous quasi-linear perturbations of mKdV[END_REF]. These results are obtained with a Nash-Moser iteration as stated in [START_REF] Berti | A Nash-Moser approach to KAM theory[END_REF], where the analysis of the linearized operator is inspired by the descent regularization procedure introduced by Plotnikov-Toland [START_REF] Plotnikov | Nash-Moser theory for standing water waves[END_REF] via pseudo-differential calculus combined with the KAM reducibility scheme. The Nash-Moser approach was applied also by Feola-Procesi [START_REF] Feola | Quasi-periodic solutions for fully nonlinear forced reversible Schrodinger equations[END_REF], who considered a class of fully nonlinear forced and reversible Schrödinger equations on the torus and proved existence and stability of quasi-periodic solutions, see also [START_REF] Feola | KAM for quasilinear forced hamiltonian NLS[END_REF] for the quasi-linear Hamiltonian case and [START_REF] Feola | KAM for quasi-linear autonomous NLS[END_REF] for the fully nonlinear autonomous case. We refer also to the work of Giuliani [START_REF] Giuliani | Quasi-periodic solutions for quasi-linear generalized KdV equations[END_REF] for quasilinear perturbations of generalized KdV equations, the result by Feola-Giuliani-Procesi [START_REF] Feola | Reducible KAM tori for Degasperis-Procesi equation[END_REF] for Hamiltonian perturbations of the Degasperis-Procesi equation and the recent works of Berti-Kappeler-Montalto [START_REF] Berti | Large KAM tori for perturbations of the dNLS equation[END_REF][START_REF] Berti | Large KAM tori for quasi-linear perturbations of KdV[END_REF], who provided the existence of finite dimensional invariant tori of any size for perturbations of the defocusing NLS and of KdV, respectively.

Several results have been obtained concerning the water-waves equations both for the standing and traveling waves. Let us first deal with the periodic standing waves. The case of 2D gravity in finite depth was treated by Plotnikov-Toland [START_REF] Plotnikov | Nash-Moser theory for standing water waves[END_REF]. Then, the infinite depth situation was covered in 2D by Iooss-Plotnikov-Toland [START_REF] Iooss | Standing waves on an infinitely deep perfect fluid under gravity[END_REF], see also [START_REF] Iooss | Existence of multimodal standing gravity waves[END_REF][START_REF] Iooss | Multimodal standing gravity waves: a completely resonant system[END_REF]. Later, the 2D gravity-capillary water-waves in infinite depth was done by Alazard-Baldi [START_REF] Alazard | Gravity capillary standing water waves[END_REF]. The quasi-periodic standing waves have been obtained first by Berti-Montalto [START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF] where the authors constructed these solutions in the gravity-capillary case for most values of the surface tension. In this case, the linear eigenvalues grow like |j| 3 2 . Then, the more difficult pure gravity case in finite depth, where the equilibrium frequencies admit the asymptotic |j| 1 2 and vary exponentially with the depth parameter, has been treated in [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF] with quasi-periodic solutions constructed for most values of the depth. Notice that in this case one may impose Diophantine conditions that lose also space derivatives. Let us now turn to the traveling periodic solutions. First, Levi-Civita [START_REF] Levi-Civita | Détermination rigoureuse des ondes permanentes d'ampleur finie[END_REF] proved the 2D gravity case. Then, the 2D/3D gravity-capillary situation was studied by Craig-Nicholls [START_REF] Craig | Travelling two and three dimensional capillary gravity water waves[END_REF]. And the 3D with pure gravity was developed by Iooss-Plotnikov [START_REF] Iooss | Small divisor problem in the theory of three-dimensional water gravity waves[END_REF][START_REF] Iooss | Asymmetrical tridimensional travelling gravity waves[END_REF]. The first results about traveling quasi-periodic water-waves were very recently exposed in [START_REF] Berti | Traveling quasi-periodic water waves with constant vorticity[END_REF] for the gravity-capillary in finite depth with constant vorticity, [START_REF] Berti | Pure gravity traveling quasi-periodic water waves with constant vorticity[END_REF] for the pure gravity in finite depth with constant vorticity and [START_REF] Feola | Quasi-periodic traveling waves on an infinitely deep perfect fluid under gravity[END_REF] for the pure gravity in infinite depth.

Concerning Euler equations, the first result for quasi-periodic solutions was obtained by Crouseilles-Faou [START_REF] Crouseilles | Quasi-periodic solutions of the 2D Euler equations[END_REF] in the two dimensional torus and was not invloving small divisors difficulties. More recently, a quasi-periodic forcing term was used in [START_REF] Baldi | Quasi-periodic incompressible Euler flows in 3D[END_REF] to generate quasi-periodic solutions for the 3D case.

Next we shall give more details on the general scheme performed to construct quasi-periodic solutions that was developed by Berti and Bolle in [START_REF] Berti | A Nash-Moser approach to KAM theory[END_REF]. This approach is robust and flexible and will be adapted to our framework with the suitable modifications. The first step is to write in a standard way the equations using the action-angle variables for the tangential part. When we linearize the nonlinear functional around a state near the equilibrium we end with an operator with variable coefficients that we should invert approximately up to small errors provided the external parameters belong to a suitable Cantor set defined through various Diophantine conditions. To do that we first look for an approximate inverse using an isotropic torus built around the initial one. It has the advantage to transform the linearized operator via symplectic change of coordinates into a triangular system up to errors that vanish when tested against an invariant torus. Notice that the outcome is that the Hamiltonian has a good normal form structure such that we can almost decouple the dynamics in the phase space in tangential and normal modes. On the tangential part the system can be solved in a triangular way provided we can invert the linearized operator on the normal part up to a small coupling error term. This is more or less a finite dimensional KAM theory appearing here. Then, the analysis reduces to invert the linearized operator on the normal part which is a small perturbation of a diagonal infinite dimensional matrix. This is done by conjugating the linearized operator to a diagonal one with constant coefficients. This step is long and technical and most of the non-resonance conditions in the Cantor set arise during this process. This allows the construction of an approximate inverse for the linearized operator with adequate tame estimates required along Nash-Moser scheme. Finally, we point out that the use of suitable isotropic tori is a commodity but it is not essential to get the triangular structure up to small errors, we will come back on this remark later on.

Main contributions of the thesis

The purpose of this thesis is to gather the previous two theories looking for the emergence of quasi-periodic structures in the patch form for Euler and quasi-geostrophic shallow-water equations. We shall now present the main theorems proved during the PhD and briefly discuss the key steps of their proofs. More detailed proof structures will be given in the introduction of the corresponding parts. We mention that in parallel to this thesis, similar results have been obtained for SQG equations [START_REF] Hassainia | KAM theory for active scalar equations[END_REF] and for Euler equations close to Kirchhoff ellipses [START_REF] Berti | Time quasi-periodic vortex patches[END_REF].

Time quasi-periodic vortex patches for QGSW equations

In this section, we present the first contribution of this PhD concerning the existence of quasi-periodic in time solutions in the patch form close to the unit disc for the quasi-geostrophic shallow-water equations (1.6) with parameter λ. The result can be found in [START_REF] Hmidi | Time quasi-periodic vortex patches for quasi-geostrophic shallow-water equations[END_REF] and we refer to Theorem 3.1 for a precise statement. Fixing two real numbers λ 0 and λ 1 such that 0 < λ 0 < λ 1 , the parameter λ lies in the interval (λ 0 , λ 1 ). Nevertheless, at the end it will belong to a Cantor set for which invariant torus can be constructed.

Using the following polar parametrization of the boundary ∂D

t z(t, θ) ≜ R(t, θ)e i(θ-Ωt) with R(t, θ) ≜ 1 + 2r(t, θ) 1 2 , ( 2.1) 
the vortex patch equation (1.17) becomes an Hamiltonian equation satisfied by the radial deformation r. Notice that the parametrization is well-defined at least for short time when the initial patch is close to the equilibrium state given by the Rankine vortex 1 D where D is the unit disc of R 2 . The particular choice for the radius is inspired from (1.26) to get a Hamiltonian equation for r. We emphasize that the parameter Ω is introduced to get rid of the degeneracy of the first eigenvalue associated with the linearized operator at the equilibrium state, see (2.6). The radial deformation r is subject to a nonlinear and nonlocal transport-type Hamiltonian equation in the form

∂ t r = ∂ θ ∇H(r), (2.2) 
where the Hamiltonian H is related to the kinetic energy and the angular momentum which are prime integrals of the system. The Hamiltonian system (2.2) is reversible, namely, if (t, θ) → r(t, θ) is a solution, then so is (t, θ) → r(-t, -θ). The purpose is to find a reversible quasi-periodic solution of (2.2), that is to find a frequency vector ω ∈ R d , such that the equation (2.2) admits solutions in the form r(t, θ) = r(ωt, θ)

with r being a smooth (2π) d+1 -periodic even function. Then r satisfies the equation (2.2) replacing ∂ t by ω • ∂ φ , therefore, we should use the same notation for r and r. To explore quasi-periodic solutions we should first check their existence at the linear level. The linearized operator around a given small state r is given by

L r = ω • ∂ φ + ∂ θ [V r • -L r ] , (2.3)
where V r is a scalar function depending on λ defined in (3.6) and L r is a nonlocal operator depending on λ given in (3.7). At the equilibrium state r ≡ 0, we find that the linearized operator is a Fourier multiplier,

L 0 = ω • ∂ φ + V 0 (λ)∂ θ -∂ θ K λ * θ •, V 0 (λ) ≜ Ω + I 1 (λ)K 1 (λ), K λ (θ) ≜ K 0 2λ sin θ 2 . (2.4)
We refer to Appendix C for the definition of the modified Bessel functions I 1 , K 1 and K 0 . The equation L 0 ρ = 0 is integrable and its reversible quasi-periodic solutions take the form

ρ(t, θ) = j∈S ρ j cos jθ -Ω j (λ)t , ρ j ∈ R, S ⊂ N * , |S| = d ∈ N * , ( 2.5) 
with frequency vector

ω Eq (λ) ≜ Ω j (λ) j∈S , Ω j (λ) ≜ j Ω + I 1 (λ)K 1 (λ) -I j (λ)K j (λ) (2.6)
provided that the vector ω Eq (λ) satisfies the non-resonant condition (1.24). Observe that Ω 0 ≡ 0 and therefore may create trivial resonances. This can be fixed by working in a phase space with zero space average which is possible due to the structure of (3.3). Similarly, notice that for Ω = 0, the frequency Ω 1 vanishes. This is the reason for the introduction of Ω which is taken to be strictly positive to remedy to this defect and avoid resonances.

Observe that small divisors already appear at this level and the non-resonant condition is obtained by selecting the parameter λ such that the vector ω Eq (λ) belong to a Diophantine set in the form (1.28).

Actually, this property holds true for almost all the values of λ. Our main result concerns the persistence of quasi-periodic solutions for the nonlinear model (2.2) when the perturbation is small enough and the parameter λ is subject to be in a massive Cantor set. We state here a simplified version of the result and refer the reader to Theorem 3.1 for a precise statement.

Theorem 2.1. Given λ 1 > λ 0 > 0 and ε small enough, there exists a Cantor-like set C ∞ with almost full Lebesgue measure in (λ 0 , λ 1 ), such that any parameter λ ∈ C ∞ generates a quasi-periodic vortex patch for (QGSW ) λ equations in the form

q(t, •) = 1 Dt , D t = ℓe i(θ-Ωt) , θ ∈ [0, 2π], 0 ⩽ ℓ ⩽ R(t, θ) , R(t, θ) = 1 + 2r ω(λ, ε)t, θ ,
where r : T d+1 → R is a perturbation of the equilibrium quasi-periodic solutions (2.5) with ε-amplitudes and associated frenquency vector ω(λ, ε) which is an ε-perturbation of the equilibrium frequency vector ω Eq (λ) defined in (2.6).

The proof of Theorem 2.1 (or more precisely Theorem 3.1) is the content of Part I, but let us make some comments about the main steps of the proof and the novelties in there.

(I, ϑ), seen as symplectic polar variables for the Fourier coefficients, allowing to reformulate the problem in terms of embedded tori i. More precisely, we shall look for the zeros of a certain functional, namely to solve an equation in the form

F(i, α, µ, ε) = 0, µ ≜ (λ, ω). (2.7)
It turns out that it is more convenient to introduce one degree of freedom through a parameter α which provides at the end of the scheme a solution for the original problem when it is fixed to -ω Eq (λ). At this stage one cannot apply the classical implicit function theorem because of resonances preventing the invertibility of the linearized operator at the equilibrium state. The restriction of the parameter λ to a suitable Cantor-like set related to some Diophantine conditions on the linear frequency ω Eq (λ) allows in particular to control the small divisors problem as explained before and therefore avoid the resonances.

This provides an inverse at the equilibrium state but with algebraic loss of regularity. Unfortunately, this is not sufficient to apply Nash-Moser scheme requiring the construction of a right inverse with tame estimates in a small neighborhood of the equilibrium. Indeed, the linearized operator is no longer with constant coefficients as for the integrable case and its main part is not a Fourier multiplier. At this level we are dealing with a quasilinear problem where the perturbation is unbounded. Given any small reversible embedded torus i 0 and any α 0 ∈ R d , we shall construct an approximate right inverse for the linear operator d i,α F(i 0 , α 0 ). For that purpose, we conjugate the linearized operator d i,α F(i 0 , α 0 ) via a suitable linear diffeomorphism of the toroidal phase space associated to the action-angle-normal formulation. We obtain a triangular system in the action-angle-normal variables up to error terms. To solve the triangular system, we only have to invert the linearized operator in the normal directions, which is denoted by

L ω .
Notice that the approach used here is slightly different from [START_REF] Berti | A Nash-Moser approach to KAM theory[END_REF] where they linearized around an isotropic torus close enough to the original one and then use a symplectic change of coordinates leading to a triangular system up to small errors, essentially of "type Z" (that is vanishing at an exact solution) or highly decaying in frequency, that can be incorporated in Nash-Moser scheme. Here, and similarly to [START_REF] Hassainia | KAM theory for active scalar equations[END_REF], we can bypass the use of isotropic torus by a slight modification of Berti-Bolle approach. Actually, according to Proposition 6.1, we can conjugate the linearized operator with the transformation described by (6.58) computed at the torus i 0 and get a triangular system with small errors mainly of "type Z". The computations are performed in a straightforward way using in a crucial way the Hamiltonian structure of the original system. The main advantage that simplifies some arguments is to require the invertibility for the linearized operator only at the torus itself and not necessary at a closer isotropic one. By this way, we can avoid the accumulation of different errors induced by the isotropic torus that one encounters for example in the estimates of the approximate inverse or in the multiple Cantor sets generated along the different reduction steps where the coefficients should be computed at the isotropic torus.

▶ Step 2. Approximate inverse in the normal directions :

Therefore, the main issue consists in the construction of an approximate inverse of the linearized operator in the normal direction. Notice that the latter expresses as

L ω = Π ⊥ S0 (L εr -ε∂ θ R) Π ⊥ S0 ,
where Π ⊥ S0 denotes the projector in the normal directions, L εr is defined through (3.5) and ε∂ θ R is a perturbation of finite rank encoding a coupling between tangential and normal dynamics. Notice that even for ε small, this operator is with non-constant coefficients since the perturbation affects the main part of the operator in a similar way to water waves [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF] or generalized SQG equation [START_REF] Hassainia | KAM theory for active scalar equations[END_REF]. Nevertheless, it has constant coefficients at the equilibrium state ε = 0. Therefore, to invert it, the idea is to conjugate it to a constant coefficient by suitable bounded operators close to the identity. The reduction is done in decreasing positive orders in the spirit of [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF][START_REF] Plotnikov | Nash-Moser theory for standing water waves[END_REF].

First, we reduce the transport part and look at the effects on the lower orders and as regards the localization in the normal modes. This provides a diagonal operator plus a small remainder term of order 0. Then, we also reduce the remainder term. Let us begin with general remarks about these reduction procedures. Each reduction is based on KAM techniques at the level of functions or operators and makes appear small divisors problems through a countable family of non-resonant conditions. Notice that in our work, for each reduction, the final Cantor set is built on the final state, which is slightly different from [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF] where they perform the reduction procedure simultaneously with the Nash-Moser scheme. Also remark that one needs to consider time truncation in the Cantor set implying the addition of error terms that can be later included in the Nash-Moser procedure so that the latter runs. We mention that the KAM reductions allow to diagonalize the operator when the parameters belong to a Cantor-like set, even though all the involved transformations and operators can be extended in the whole set of parameters using standard cut-off functions for the Fourier coefficients. This extension with adequate estimates is needed later during the implementation of the Nash-Moser scheme. This is not the only way to produce suitable extensions and one expects Whitney extension to be also well adapted as in [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF]. In our case, we opt for the first procedure which can be easily set up and manipulated using classical functional tools.

The last general comment is related to a technical point in KAM reduction. Contrary to the preceding papers such as [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF], we do not need to use pseudo-differential operators techniques. In fact, they can be avoided since all the involved operators can be described through their kernels and therefore instead of splitting the symbols we simply expand the kernels which sounds to be more appropriate in our context. Now let us make some specific comments on the different reductions. The reduction of the transport part basically follows the ideas in [START_REF] Baldi | KAM for autonomous quasi-linear perturbations of KdV[END_REF][START_REF] Berti | Pure gravity traveling quasi-periodic water waves with constant vorticity[END_REF][START_REF] Berti | Traveling quasi-periodic water waves with constant vorticity[END_REF][START_REF] Berti | Large KAM tori for quasi-linear perturbations of KdV[END_REF][START_REF] Feola | Reducibility of first order linear operators on tori via Moser's theorem[END_REF] conjugating the linearized operator L εr to an operator with constant coefficients transport part, through a suitable quasi-periodic symplectic change of coordinates B in the form

Bρ(µ, φ, θ) = 1 + ∂ θ β(µ, φ, θ) ρ µ, φ, θ + β(µ, φ, θ) .
The symplectic form has the advantage to avoid the apparition of zero order terms at the end of the reduction. Notice that the action of this conjugation on the nonlocal term is tricky due to the structure (1.8)-(C.7) of K 0 . This makes appear a singular kernel which can be carefully treated in the analysis. The projection in the normal directions is done by the operator

B ⊥ ≜ Π ⊥ S0 BΠ ⊥ S0 ,
for which we obtained a nice duality representation linked to B useful for doing estimates. A similar relation is obtained for the inverse transformation. Then we obtain

B -1 ⊥ L ω B ⊥ = ω • ∂ φ Π ⊥ S0 + D 0 + R 0 + fast decaying error terms,
where D 0 is a diagonal operator whose spectrum (iµ 0 j ) j satisfies

µ 0 j (λ, ω, i 0 ) = Ω j (λ) + jr 1 (λ, ω, i 0 ), r 1 = O(ε)
reduction provides a completely diagonalized operator with spectrum (iµ ∞ j ) j ,

µ ∞ j (λ, ω, i 0 ) = Ω j (λ) + jr 1 (λ, ω, i 0 ) + r ∞ j (λ, ω, i 0 ), sup j jr ∞ j = O(ε)
and easily invertible up to new restrictions of the parameters. We mention the Lipschitz dependence of these eigenvalues with respsect to the torus. Such property is required in studying the stability of Cantor sets in the Nash-Moser scheme and allows to construct a final massive Cantor set.

▶ Step 3. Construction of a non-trivial solution :

Now we can implement a Nash-Moser procedure to find non-trivial zeros for the nonlinear function F for small ε in the spirit of the papers [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF]. We can build by induction a sequence of approximate solutions

U n U n+1 ≜ U n -Π Nn T n Π Nn F(U n ), U n ≜ (i n , α n ).
with T n an approximate right inverse of d i,α F(U n ) obtained at step n using the above mentioned construction (Steps 1 and 2). At each step of the scheme, we needed to construct classical extensions to the whole set of parameters O. This is different from the papers [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF] where they considered Whitney extensions. Actually, we get a precise statement in Proposition 8.1 allowing to deduce that the sequence

(U n ) n converges in a strong topology towards a profile U ∞ = i ∞ , α ∞ solution of (2.7
) whenever the parameters (λ, ω) are selected among a Cantor-like set G ∞ which is constructed as the intersection of all the Cantor sets appearing in the scheme to invert at each step the linearized operator. To find a solution to the original problem we construct a frequency curve λ → ω(λ, ε) implicitly defined by solving the equation

α ∞ (λ, ω(λ, ε)) = -ω Eq (λ).
Hence, we obtain the desired result for any value of λ in the rigidified Cantor set

C ε ∞ ≜ λ ∈ (λ 0 , λ 1 ) s.t. (λ, ω(λ, ε)) ∈ G ∞ .
Then, it remains to check that this set is non-trivial. The proof of this fact is inspired from [START_REF] Baldi | KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation[END_REF] with adaptations to the structure of our Cantor set, namely contructed on the final states of each KAM reduction procedure. We can prove

|C ε ∞ | ⩾ (λ 1 -λ 0 ) -Cε δ ,
with small δ connected to the geometry of the Cantor set and the non degeneracy of the equilibrium spectrum. There are two main ingredients to get this result. The first one is the stability of the intermediate Cantor sets following from the fast convergence of Nash-Moser scheme. However the second one is the transversality property stated in Lemma 8.3 used in the spirit of [START_REF] Bambusi | Degenerate KAM theory for partial differential equations[END_REF] and [START_REF] Rüssmann | Invariant tori in non-degenerate nearly integrable Hamiltonian systems[END_REF]. This property will be first established for the linear frequencies in Proposition 5.5, using the analyticity of the eigenvalues and their asymptotic behavior. Then the extension of the transversality assumption to the perturbed frequencies is done using perturbative arguments together with the asymptotic description of the approximate eigenvalues detailed in (8.67), (8.82) and (8.81). We emphasize that the transversality is strongly related to the non-degeneracy of the eigenvalues in the sense of the Definition 5.1 . For instance, we show that the curve

λ ∈ [λ 0 , λ 1 ] → Ω j1 (λ), ..., Ω j d (λ)
is not contained in any vectorial hyperplane. This is proved in Lemma 5.4 and follows from the asymptotic of the eigenvalues for large values of λ according to the law (C. [START_REF] Beale | Remarks on the breakdown of smooth solutions for the 3D Euler equations[END_REF] combined with the invertibility of Vandermonde matrices.

Boundary effects on the emergence of quasi-periodic solutions to Euler equations

We shall now present the second result obtained during the thesis and presented in [START_REF] Hassainia | Boundary effects on the existence of quasi-periodic solutions for Euler equations[END_REF]. This work is based on the remark that the Euler equations set in the unit disc D are not invariant under dilation.

Therefore, we can introduce a geometric parameter b ∈ (0, 1) such that the Rankine vortices 1 bD are not equivalent and provide a family of stationary solutions. Hence, as in the previous mentioned result, we can expect to play with this parameter to generate quasi-periodic solutions. For that purpose, we consider a polar parametrization of a patch boundary close to the stationary solution 1 bD , namely

z(t, θ) ≜ R(b, t, θ)e iθ , R(b, t, θ) ≜ b 2 + 2r(t, θ).
The parameter b is assumed to live in an interval (b 0 , b 1 ), where

0 < b 0 < b 1 < 1.
However, as in the previous result, at the end this parameter will belong to a Cantor set for which invariant torus can be constructed. We emphasize that this ansatz no longer depends on Ω as in (2.1). Indeed, in this context the first frequency is non-degenerate according to (1.22). The radial deformation r solves a nonlinear and nonlocal transport Hamiltonian PDE taking the form

∂ t r = 1 2 ∂ θ ∇E(r),
where E is the kinetic energy related to the stream function given by (1.4). The linearized operator close to the Rankine patch 1 bD , i.e. at a small state r writes

L r = ∂ t + ∂ θ V r • +L r -S r ,
where V r is a scalar function depending on b, L r is a nonlocal operator with logarithmic singular kernel reflecting the planar Euler action and S r is a smoothing nonlocal operator. We refer to (9.3), (9.5) and (9.6) for their definitions. The boundary effects of D are observed through a quasilinear smoothing action in the transport part and through the smoothing operator S r . At the equilibrium state r = 0, the linearized operator is a Fourier multiplier given by

L 0 = ∂ t + 1 2 ∂ θ + ∂ θ K 1,b * • -∂ θ K 2,b * •,
where

K 1,b (θ) ≜ 1 2 log sin 2 θ 2 and K 2,b (θ) ≜ log |1 -b 2 e iθ | .
Now, almost every b ∈ (b 0 , b 1 ) generates reversible quasi-periodic solutions to L 0 ρ = 0 in the form

ρ(t, θ) = j∈S ρ j cos(jθ -Ω j (b)t), ρ j ∈ R, S ⊂ N * , |S| = d ∈ N * , ( 2.8) 
with frequency vector

ω Eq (b) ≜ Ω j (b) j∈S , Ω j (b) ≜ 1 2 j -1 + b 2j . (2.9)
The measure of the Cantor set in b generating these solutions is estimated using Rüssmann Lemma 5.6

requiring a lower bound on the maximal derivative of a given function up to order q 0 . It is a remarkable fact that here the value of q 0 is explicit, namely q 0 = 2 max(S) + 2 which is due to the polynomial structure of the Ω j (b). The aim of the following result is to state that these structures persist at the nonlinear level.

We mention that this is a simplified version and the interested reader may be refered to Theorem 9.1 for a complete statement. 

ω(t, •) = 1 Dt , D t = ℓe iθ , θ ∈ [0, 2π], 0 ⩽ ℓ ⩽ R(b, t, θ) , R(b, t, θ) = b 2 + 2r ω(b, ε)t, θ ,
where r : T d+1 → R is a perturbation of the equilibrium quasi-periodic solutions (2.8) with ε-amplitudes and associated frenquency vector ω(b, ε) which is an ε-perturbation of the equilibrium frequency vector ω Eq (b) defined in (2.9).

The proof of Theorem 2.2 (or more precisely Theorem 9.1) is the content of Part II and is similar to the previous one. Indeed, we reformulate the problem in terms of embedded tori, looking for the zeros of a certain nonlinear functional. We obtain a non-trivial solution by applying a Nash-Moser scheme, where at each step, we construct an approximate right inverse with nice tame estimates for the linearized operator. This inverse is obtained from the application of the Berti-Bolle theory reducing the problem to the search of an approximate right inverse for the normal projection of the linearized operator. This latter is obtained by using KAM reducibility techniques which imply restrictions of parameters (b, ω) to a

Cantor-like set. The iterative implicit function procedure generates a solution provided that we ensure all the required restrictions of parameters along the scheme. Then we rigidify the frequency vector ω in terms of b and we estimate, through the perturbed Rüssmann conditions, the measure of the final Cantor set proving that it has almost full Lebesgue measure. The main difference with the previous result is the smoothing effects of the boundary observable on the linearized operator. In particular, in this case, the remainder term obtained after the reduction of the transport part and the projection in the normal modes is directly regularizing at every order, which simplifies the analytical study.

Doubly-connected V-states for QGSW equations

The main purpose of this section is to present the last result obtained in this thesis concerning the emergence of time periodic solutions in the patch form close to the annulus of radii 1 and b for the system (QGSW) λ with fixed λ > 0 and b ∈ (0, 1). A simplified version of the result can be written as follows, we refer the reader to Theorem 15.1 for a precise statement. in the spirit of the previous works mentioned in Section 1.2. Indeed, by using conformal mappings, we can reformulate the contour dynamics equation (1.17) in the context of uniformly rotating solutions as the zeros of a suitable nonlinear and nonlocal functional. Remarking that the annulus A b is a solution for any angular velocity, we obtain a line of trivial solutions. Therefore, we may expect to apply bifurcation theory to find other curves of solutions provided that the linearized operator is a Fredholm operator with zero index and one dimensional kernel supplemented with a transversality assumption. Actually, the linearized operator at the equilibrium state is a Fourier multiplier and its kernel is one dimensional for explicit angular velocities Ω ± n (λ, b) related to Bessel functions of imaginary argument. This last property is based on the asymptotic monotonicity for large modes n of the sequence Ω ± n (λ, b) n which is obtained from the asymptotic properties of the involved special functions. The bifurcation is proved in the regularity C 1+α with α ∈ (0, 1) and using a regularity argument for elliptic equations, we find the analyticity of the boundaries.

Pa rt I

Time quasi-periodic vortex patches for QGSW equations 3 Introduction

We shall present here the main result obtained during the thesis and related to the existence of quasiperiodic vortex patches close to the unit disc for QGSW equations. We shall also present the main steps of its proof with more details than in Section 2.1. The contour dynamics equation stated in (1.16) can be written in a more tractable way using polar coordinates. This is meaningful at least for short time when the initial patch is close to the equilibrium state given by the Rankine vortex 1 D where D is the unit disc of R 2 . Thus the boundary ∂D t will be parametrized as follows

z(t, θ) ≜ R(t, θ)e i(θ-Ωt) with R(t, θ) ≜ 1 + 2r(t, θ) 1 2 . (3.1)
We shall prove in Section 4.1 that the function r satisfies a nonlinear and non-local transport equation taking the form

∂ t r + Ω∂ θ r + F λ [r] = 0, (3.2) 
with

F λ [r](t, θ) ≜ ˆT K 0 (λA r (t, θ, η)) ∂ 2 θη R(t, η)R(t, θ) sin(η -θ) dη and A r (t, θ, η) ≜ R(t, θ)e iθ -R(t, η)e iη .
The function K 0 is a Bessel function of imaginary parts and it is defined in Appendix C. We point out that the introduction of the parameter Ω seems at this level artificial but it will be used later to fix the degeneracy of the first eigenvalue associated with the linearized operator at the equilibrium state. As we shall see in Proposition 4.1, the equation (3.2) has an Hamiltonian structure

∂ t r = ∂ θ ∇H(r), (3.3) 
where the Hamiltonian H is related to the kinetic energy and the angular momentum which are prime integrals of the system. In the quasi-periodic setting, we should find a frequency vector ω ∈ R d , such that the equation (3.2) admits solutions in the form r(t, θ) = r(ωt, θ) with r being a smooth (2π) d+1 -periodic function. Then r satisfies (to alleviate the notation we keep the notation r for r)

ω • ∂ φ r + Ω∂ θ r + F λ [r] = 0. (3.4)
To explore quasi-periodic solutions we should first check their existence at the linear level. Then according to Lemma 5.1 the linearized operator to (3.4) around a given small state r is given by the linear Hamiltonian equation,

L r ρ = 0 with L r = ∂ t + ∂ θ [V r • -L r ] , (3.5) 
where V r is a scalar function defined by

V r (λ, t, θ) ≜ Ω + 1 R(t, θ) ˆT K 0 (λA r (t, θ, η)) ∂ η (R(t, η) sin(η -θ)) dη (3.6)
and L r is a non-local operator in the form

L r (ρ)(λ, t, θ) ≜ ˆT K 0 (λA r (t, θ, η)) ρ(t, η)dη. (3.7)
At the equilibrium state r ≡ 0, we find that the linearized operator is a Fourier multiplier, see Lemma 5.2,

L 0 ρ = ∂ t ρ + V 0 (λ)∂ θ ρ -∂ θ K λ * ρ, (3.8) 
where * denotes the convolution product in the variable θ and

V 0 (λ) ≜ Ω + I 1 (λ)K 1 (λ) and K λ (θ) ≜ K 0 2λ sin θ 2 .
Expanding into Fourier series

ρ(t, θ) = j∈Z ρ j (t)e ijθ , yields ρ ∈ ker(L 0 ) ⇐⇒ ρ(t, θ) = j∈Z ρ j (0)e i(jθ-Ωj (λ)t) , ( 3.9) 
where the eigenvalues Ω j are defined by

Ω j (λ) ≜ j Ω + I 1 (λ)K 1 (λ) -I j (λ)K j (λ) (3.10)
and the Bessel functions of imaginary argument I n and K n are given by (C.2). It is worthy to point out that the frequency associated to the mode j = 0 is vanishing and therefore it creates trivial resonance.

This can be fixed by imposing a zero space average which can be maintained at the nonlinear level by virtue of the structure of (3.3). Hence we shall work with the phase space of real functions enjoying this property, namely,

L 2 0 ≜ L 2 0 (T, R) = r = j∈Z *
r j e j s.t. r -j = r j and

j∈Z * |r j | 2 < ∞ .
Another similar comment concerns the mode j = 1 which vanishes for any λ when Ω = 0. This is why we have introduced Ω which should be strictly positive to remedy to this defect and avoid any resonance at higher frequencies. The reversibility of the system (3.3) can be also exploited to find the requested parity property of the solutions. Actually, we can check that if (t, θ) → r(t, θ) is a solution then (t, θ) → r(-t, -θ) is a solution too. Then the solutions to the linear problem with this symmetry are in the form

ρ(t, θ) = j∈Z * ρ j cos jθ -Ω j (λ)t . (3.11)
Now, in order to generate quasi-periodic solutions to the linear problem it suffices to excite a finite number of frequencies from the linear spectrum. We shall then consider the following frequency vector.

ω Eq (λ) ≜ Ω j (λ) j∈S with S ≜ {j 1 , . . . , j d } ⊂ N * .

Notice that the vector ω Eq (λ) gives periodic solutions provided that it satisfies the non-resonant condition (1.24). This property holds true for almost all the values of λ as it is proved in Proposition 5.1. Observe that this latter is based on the equilibrium Rüssmann conditions proved in Lemma 5.5 and which make appear an index of regularity q 0 with respect to the parameter λ. Our main result concerns the persistence of quasi-periodic solutions for the nonlinear model (3.3) when the perturbation is small enough and the parameter λ is subject to be in a massive Cantor set. 

r(t, θ) = j∈S a j cos jθ + ω j (λ, a)t + p(ω pe t, θ), with ω pe (λ, a) -→ a→0 -Ω j (λ) j∈S ,
where Ω j (λ) are the equilibrium frequencies defined in (3.10) and the perturbation p : T d+1 → R is an even function satisfying for some large index of regularity s = s(d, q 0 )

∥p∥ H s (T d+1 ,R) = a→0 o(|a|).
We shall now outline the main steps of the proof which will be developed following standard scheme as in the preceding works [START_REF] Baldi | KAM for autonomous quasi-linear perturbations of KdV[END_REF][START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | A Nash-Moser approach to KAM theory[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF] with different variations connected to the models structure. We mainly use techniques from KAM theory combined with Nash Moser scheme. This will be implemented along several steps which are detailed below.

▶ Step 1. Action-angle reformulation. We first notice that the equation (3.3) can be seen as a perturbation of the integrable system given by the linear dynamics at the equilibrium state. Indeed, by combining (3.8), (3.10) and (3.3) we may write

∂ t r = ∂ θ L(λ)(r) + X P (r),
where L(λ) and the perturbed Hamiltonian vector field X P are defined by

L(λ)(r) ≜ -Ω + (I 1 K 1 )(λ) r + K λ * r and X P (r) ≜ I 1 (λ)K 1 (λ)∂ θ r -∂ θ K λ * r -F λ [r].
Since we are looking for small solutions then we find it convenient to rescale the solution r ⇝ εr with ε a small positive number and consequently the new unknown still denoted by r satisfies

∂ t r = ∂ θ L(λ)(r) + εX Pε (r),
where X Pε is the Hamiltonian vector field defined by X Pε (r) ≜ ε -2 X P (εr). Then finding quasi-periodic solutions with frequency ω ∈ R d amounts to solve the equation

ω • ∂ φ r = ∂ θ L(λ)(r) + εX Pε (r).
Here we still use the same notation r for the new profile which depends in the variables (φ, θ) ∈ T d+1 .

The next step consists in splitting the phase space L 2 0 into an orthogonal sum of tangential and normal subspaces as follows

L 2 0 = L S ⊥ ⊕ L 2 ⊥ ,
where L S is the finite dimensional subspace of real functions generated by {e ijθ , j ∈ S} with S ≜ S ∪ (-S).

For more details on this description we refer to Section 6.1. To track the dynamics it seems to be more suitable to use the action-angle variables (I, ϑ) seen as symplectic polar variables for the Fourier coefficients of the tangential part in L S . This leads to reformulate the problem in terms of the embedded torus,

i : T d → T d × R d × L 2 ⊥ φ → (ϑ(φ), I(φ), z(φ)), with r(φ, θ) = v(ϑ(φ), I(φ))(θ) ∈L S + z(φ, θ) ∈L 2 ⊥ ≜ A(i(φ))(θ) and v(ϑ, I) ≜ j∈S a 2 j + |j|I j e iϑj e j , e j (θ) ≜ e ijθ .
Notice that the action and angle variables should satisfy the symmetry properties ∀j ∈ S, I -j = I j ∈ R and ϑ -j = -ϑ j ∈ T.

Therefore we reduce the problem in the new variables to construct invariant tori with non-resonant frequency vector ω to the system

ω • ∂ φ i(φ) = X Hε (i(φ)), (3.12)
where X Hε is the Hamiltonian vector field associated to the Hamiltonian H ε given by

H ε ≜ -ω Eq (λ) • I + 1 2 ⟨L(λ)z, z⟩ L 2 (T) + εP ε ,
with P ε defined by P ε ≜ P ε • A. A useful trick used in [START_REF] Berti | A Nash-Moser approach to KAM theory[END_REF][START_REF] Moser | Convergent series expansions for quasi-periodic motions[END_REF] consists in solving first the relaxed problem

ω • ∂ φ i(φ) = X H α ε (i(φ)),
where the vector field X H α ε is associated to the modified Hamiltonian H α ε given by

H α ε ≜ α • I + 1 2 ⟨L(λ)z, z⟩ L 2 (T) + εP ε .
The advantage of this procedure is to get one degree of freedom with the vector α ∈ R d that will be used to ensure some compatibility assumptions during the construction of an approximate inverse of the linearized operator. At the end of Nash-Moser scheme we shall adjust implicitly the frequency ω so that α coincides with the equilibrium frequency -ω Eq (λ), which enables to finally get solutions to the original Hamiltonian equation. The relaxed problem can be written in the following form

F(i, α, λ, ω, ε) = 0, with 
F(i, α, λ, ω, ε) ≜ ω • ∂ φ i(φ) -X H α ε (i(φ)) =    ω • ∂ φ ϑ(φ) -α -ε∂ I P ε (i(φ)) ω • ∂ φ I(φ) + ε∂ ϑ P ε (i(φ)) ω • ∂ φ z(φ) -∂ θ (L(λ)z(φ) + ε∇ z P ε (i(φ)))    . (3.13)
We point out that the linear torus corresponding to the linear solution

r(φ, θ) = j∈S a j e iφj e ijθ
is given in the new coordinates system by i flat (φ) = (φ, 0, 0) and it is obvious that F i flat , -ω Eq (λ), λ, -ω Eq (λ), 0 = 0.

We emphasize that at this stage the classical implicit function theorem does not work because the linearized operator at the equilibrium state is not invertible due to resonances. One can avoid resonances by restricting the parameter λ to a suitable Cantor set according to some Diophantine conditions on the linear frequency ω Eq (λ) allowing in particular to control the small divisors problem. By this way we get an inverse at the equilibrium state but with algebraic loss of regularity. Unfortunately, this is not enough to apply Nash-Moser scheme which requires to construct a right inverse with tame estimates in a small neighborhood of the equilibrium and this is the challenging deal in this topic. Indeed, the linearized operator is no longer with constant coefficients as for the integrable case and its main part is not a Fourier multiplier. At this level we are dealing with a quasilinear problem where the perturbation is unbounded.

▶ Step 2. Approximate inverse. Let α 0 ∈ R d (actually α 0 is a function of the parameters ω and λ) and consider an embedded torus i 0 = (ϑ 0 , I 0 , z 0 ) near the flat one with the reversible structure, ϑ 0 (-φ) = -ϑ 0 (φ), I 0 (-φ) = I 0 (φ) and z 0 (-φ, -θ) = z 0 (φ, θ).

To deal with the linearized operator d i,α F(i 0 , α 0 ), which exhibits complicated structure, and see whether we can construct an approximate inverse we should fix two important issues. One is related to the coupling structure in the new coordinates system and the second is that the linearized operator is with variable coefficients. For this aim we shall follow the approach conceived by Berti and Bolle in [START_REF] Berti | A Nash-Moser approach to KAM theory[END_REF] with making suitable modifications. This approach consists in linearizing around an isotropic torus close enough to the original one and then use a symplectic change of coordinates leading to a triangular system up to small errors, essentially of "type Z" or highly decaying in frequency, that can be incorporated in Nash-Moser scheme. Therefore to invert this triangular system it suffices to get an approximate right inverse for the linearized operator in the normal direction, denoted in what follows by L ω . We notice that in Section 6.3, and similarly to [START_REF] Hassainia | KAM theory for active scalar equations[END_REF], we can bypass the use of isotropic torus by a slight modification of Berti-Bolle approach. Actually, according to Proposition 6.1, we can conjugate the linearized operator with the transformation described by (6.58) computed at the torus i 0 and get a triangular system with small errors mainly of "type Z". The computations are performed in a straightforward way using in a crucial way the Hamiltonian structure of the original system. The main advantage that simplifies some arguments is to require the invertibility for the linearized operator only at the torus itself and not necessary at a closer isotropic one. By this way, we can avoid the accumulation of different errors induced by the isotropic torus that one encounters for example in the estimates of the approximate inverse or in the multiple Cantor sets generated along the different reduction steps where the coefficients should be computed at the isotropic torus. The final outcome of this first step is to reduce the invertibility to finding an approximate inverse of L ω which takes, according to Proposition 7.1, the form

L ω = Π ⊥ S0 (L εr -ε∂ θ R) Π ⊥ S0 with L εr = ω • ∂ φ + ∂ θ [V εr • -L εr ] ,
where ε∂ θ R is a perturbation of finite rank, the function V εr and the nonlocal operator L εr are defined in (3.6) and (3.7), respectively. At the equilibrium state (corresponding to ε = 0) L ω is diagonal and we shall see that the set of parameters (λ, ω) leading to the existence of a right inverse is almost full. Now remark that even for ε small, the perturbation affects the main part of the operator in a similar way to water waves [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF] or generalized SQG equation [START_REF] Hassainia | KAM theory for active scalar equations[END_REF] and then we should construct the suitable change of coordinates in order to reduce the positive part of the operator to a diagonal operator. Later we should implement KAM scheme to diagonalize the zero-order part. This will be done in three steps. a ⃝ Reduction of the transport part. This procedure will be discussed in Proposition 7.2 and Proposition 7.3. We basically use KAM techniques as in [START_REF] Berti | Traveling quasi-periodic water waves with constant vorticity[END_REF][START_REF] Feola | Reducibility of first order linear operators on tori via Moser's theorem[END_REF] in order to conjugate the operator L εr , through a suitable quasi-periodic symplectic change of coordinates B, to a transport operator with constant coefficients. Indeed, we may construct an invertible transformation

Bρ(φ, θ) = 1 + ∂ θ β(φ, θ) ρ φ, θ + β(φ, θ)
and a constant c i0 (λ, ω) such that for any given number n ∈ N, if the parameter (λ, ω) belongs to the truncated set defined through the first order Melnikov condition

O γ,τ1 ∞,n (i 0 ) ≜ (l,j)∈Z d ×Z\{(0,0)} |l|⩽Nn (λ, ω) ∈ O s.t. |ω • l + jc i0 (λ, ω)| > 4γ υ ⟨j⟩ ⟨l⟩ τ 1 , then we have L εr ≜ B -1 L εr B = ω • ∂ φ + c i0 (λ, ω)∂ θ -∂ θ K λ * • + ∂ θ R εr + E 0 n , ( 3.14) 
with

N n = N ( 3 2 ) n 0 , N 0 ⩾ 2, υ ∈ (0, 1), O = (λ 0 , λ 1 ) × U , 0 < λ 0 < λ 1 and U ≜ B(0, R 0 )
being an open ball of R d containing the curve of the linear vector frequency λ ∈ (λ 0 , λ 1 ) → -ω Eq (λ). The operator R εr is a self-adjoint Toeplitz integral operator satisfying the estimates

∀s ∈ [s 0 , S], max k∈{0,1,2} ∥∂ k θ R εr ∥ γ,O O-d,q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ ,
where the off-diagonal norm ∥ • ∥ γ,O O-d,q,s is defined in (A.23) and the loss of regularity σ is connected to τ 1 and d but it is independent of the index regularity s. Concerning the operator E 0 n , we can show that it is

Part I a small fast decaying remainder with the following estimate for low regularity

∥E 0 n ρ∥ γ,O q,s0 ≲ ε N µ2 0 N -µ2 n ∥ρ∥ γ,O q,s0+2 , (3.15) 
where the weighted norms ∥ • ∥ γ,O q,s0 are defined in (A.6). For the number µ 2 , it is connected to the regularity of the torus i 0 and can be taken large enough allowing to identify the contributions of E 0 n as small errors in the construction of the approximate inverse. The next step will be discussed in Proposition 7.4 where we explore the effect of the transport reduction on the original operator L ω which is localized to the normal direction. We prove that with the localized transformation B ⊥ defined by

B ⊥ ≜ Π ⊥ S0 BΠ ⊥ S0 ,
one obtains in the Cantor set O γ,τ1 ∞,n (i 0 ),

B -1 ⊥ L ω B ⊥ = ω • ∂ φ Π ⊥ S0 + D 0 + R 0 + E 1 n , ( 3.16) 
where D 0 is a diagonal operator whose spectrum {iµ 0 j , j ∈ S c 0 } satisfies

µ 0 j (λ, ω, i 0 ) ≜ Ω j (λ) + jr 1 (λ, ω, i 0 ) with ∥r 1 ∥ γ,O q ≲ ε
and R 0 is a remainder term taking the form of an integral operator with Toeplitz and reversibility structures with the estimates the asymptotic

∀s ∈ [s 0 , S], max k∈{0,1} ∥∂ k θ R 0 ∥ γ,O O-d,q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ ,
We remark that the operator E 1 n satisfies similar estimates as for E 0 n seen before in (3.15). Finally, we want to emphasize that the derivation of the asymptotic structure of the operator L εr seen before in (3.14) requires some refined analysis. The delicate point concerns the expansion of the operator L r defined in (3.7) and for this part we use the kernel structure detailed in (C.7)

K 0 (z) = -log z 2 I 0 (z) + ∞ m=0 ψ(m+1) (m!) 2 z 2 2m .
with I 0 being analytic. This is different from the cases discussed before as for the water waves in [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF] where the kernel is given by that of Euler equations (corresponding to λ = 0), that is, K(z) = -log z 2 . In this latter case the deformed kernel enjoys the structure

-log (2A r (t, θ, η)) = -log sin θ-η 2 + smooth nonhomogeneous kernel.
This means that the associated operator is given by a diagonal operator of order -1 up to a smoothing non diagonal pseudo-differential operator in OP S -∞ . In our context, this decomposition fails for λ > 0 and we get a similar one but with less smoothing operator. Actually we obtain from (6.39) the splitting

K 0 (2λA r (t, θ, η)) = K 0 2λ sin θ-η 2 + K (η -θ)K 1 r,1 (λ, φ, θ, η) + K 2 r,1 (λ, φ, θ, η), ( 3.17) 
where the kernels K 1 r,1 and K 2 r,1 are smooth whereas K is slightly singular taking the form

K (θ) ≜ sin 2 θ 2 log sin θ 2 .
Therefore, the change of variable η → η + θ kills the dependence in theta in the singular part, which allows to estimate the corresponding integral operator in H s . b ⃝ KAM reduction of the remainder term. This is the main target of Section 7.3.2 and the result is stated in Proposition 7.5. The goal is to conjugate the remainder R 0 of (3.16) and transform it into a diagonal operator. This will be developed in a standard way by constructing successive transformations through the KAM reduction allowing to replace at each step the old remainder by a new one which is much smaller provided that we make the suitable parameters extraction. This scheme can be achieved unless we solve the associated homological equation. To avoid resonances we should at each step make an extraction from the parameters set through the second order Melnikov conditions and the final outcome is as follows,

L ∞ ≜ Φ -1 ∞ L 0 Φ ∞ = ω • ∂ φ Π ⊥ S0 + D ∞ ,
where

D ∞ = iµ ∞ j (λ, ω, i 0 ) (l,j)∈Z d ×S c
0 is a diagonal operator with pure imaginary spectrum and Φ ∞ is a reversible invertible operator. This reduction is possible when the parameters (λ, ω) belong to the following Cantor-like set,

O γ,τ1,τ2 ∞,n (i 0 ) ≜ (l,j,j 0 )∈Z d ×(S c 0 ) 2 |l|⩽Nn (λ, ω) ∈ O γ,τ1 ∞,n (i 0 ) s.t. ω • l + µ ∞ j (λ, ω, i 0 ) -µ ∞ j0 (λ, ω, i 0 ) > 2γ⟨j-j0⟩ ⟨l⟩ τ 2 .
The eigenvalues admit the following asymptotic

µ ∞ j (λ, ω, i 0 ) ≜ Ω j (λ) + jr 1 (λ, ω, i 0 ) + r ∞ j (λ, ω, i 0 ),
where r 1 and r ∞ j are real small coefficients with Lipschitz dependence with respect to the torus. Indeed, we have

∥r 1 ∥ γ,O q + sup j∈S c 0 |j|∥r ∞ j ∥ γ,O q ≲ εγ -1 , ∥∆ 12 r 1 ∥ γ,O q + sup j∈S c 0 ∥∆ 12 r ∞ j ∥ γ,O q ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +σ ,
for some index regularity s h + σ and ∆ 12 r 1 = r 1 (λ, ω, i 1 ) -r 1 (λ, ω, i 2 ). c ⃝ Construction of the approximate inverse. The next step is to invert approximately the operator L ω detailed in Proposition 7.6. First we establish an approximate inverse for L ∞ , on the Cantor set

Λ γ,τ1 ∞,n (i 0 ) ≜ (l,j)∈Z d ×S c 0 |l|⩽Nn (λ, ω) ∈ O s.t. |ω • l + µ ∞ j (λ, ω)| > γ⟨j⟩ ⟨l⟩ τ 1 .
Then, introducing the Cantor set

G n (γ, τ 1 , τ 2 , i 0 ) ≜ O γ,τ1 ∞,n (i 0 ) ∩ O γ,τ1,τ2 ∞,n (i 0 ) ∩ Λ γ,τ1 ∞,n (i 0 ),
we are able to construct an approximate inverse of L ω in the following sense,

L ω T ω,n = Id + E n in G n ,
where E n is a fast frequency decaying operator as in (3.15) and T ω,n satisfies tame estimates uniformly in n. Therefore coming back to Section 6.3, more precisely to Theorem 6.1, this enables to construct an approximate right inverse T 0 for the full differential d i,α F(i 0 , α 0 ) enjoying suitable tame estimates.

In what follows we want to make some comments. The first one concerns the Lipschitz dependence of the eigenvalues with respsect to the torus. This is required in studying the stability of Cantor sets in Part I Nash-Moser scheme and allows to construct a final massive Cantor set. As for the second one, it concerns the KAM reduction which allows to diagonalize the operator when the parameters belong to a Cantor set like, even though all the involved transformations and operators can be extended in the whole set of parameters using standard cut-off functions for the Fourier coefficients. This extension with adequate estimates will be needed later during the implementation of Nash-Moser scheme. This is not the only way to produce suitable extensions and one expects Whitney extension to be also well adapted as in [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF]. In our case we privilege the first procedure which can be easily set up and manipulated using classical functional tools. The last comment is related to a technical point in KAM reduction, Contrary to the preceding papers such as [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF], we do not need to use pseudo-differential operators techniques in the description of the aforementioned asymptotic structures of L εr and B -1 ⊥ L ω B ⊥ . In fact, they can be avoided since all the involved operators can be described through their kernels and therefore instead of splitting the symbols we simply expand the kernels as in (3.17) which sounds to be more appropriate in our context. ▶ Step 3. Nash-Moser scheme. This is the main purpose of Section 8.1 where we construct zeros for the nonlinear function F defined in (3.13) for small ε following Nash-Moser scheme in the spirit of the papers [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF]. Let us quickly sketch this scheme. We build by induction a sequence of approximate solutions U n

U n+1 ≜ U n + H n+1 with H n+1 ≜ -Π Nn T n Π Nn F(U n ).
with T n an approximate inverse of d i,α F(U n ) constructed in Step 2. Thus using Taylor Formula we may write

F(U n+1 ) = Π ⊥ Nn F(U n ) -Π Nn L n T n -Id Π Nn F(U n ) + L n Π ⊥ n -Π ⊥ Nn L n T n Π Nn F(U n ) + Q n ,
where Q n is a quadratic functional. Consider the Cantor set

A γ n ≜ n-1 k=0 G k (γ k+1 , τ 1 , τ 2 , i k ), with γ n ≜ γ(1 + 2 -n
), then we show by induction that

∥U n ∥ γ,O q,s0+σ ≲ εγ -1 N qa 0 , ∥U n ∥ γ,O q,b1+σ ≲ εγ -1 N µ n-1 , ∥F(U n )∥ γ,O γ n q,s0 ≲ εN -a1 n-1 (3.18)
for a suitable choice of the parameters a 1 , b 1 , a, µ, σ > 0 and O γ n is an open enlargement of A γ n needed to construct classical extensions to the whole set of parameters O. Actually, we get a precise statement in Proposition 8.1 allowing to deduce that the sequence (U n ) n converges in a strong topology towards a

sufficient smooth profile (λ, ω) ∈ O → U ∞ (λ, ω) = i ∞ (λ, ω), α ∞ (λ, ω), (λ, ω) with ∀(λ, ω) ∈ G γ ∞ , F(U ∞ (λ, ω)) = 0, G γ ∞ ≜ n∈N A γ n .
Moreover, we get in view of Corollary 8.1 a smooth function λ ∈ (λ 0 , λ 1 ) → (λ, ω(λ, ε)) with

ω(λ, ε) = -ω Eq (λ) + rε (λ), ∥r ε ∥ γ,O q ≲ εγ -1 N qa 0 (3.19) and ∀λ ∈ C ε ∞ , F U ∞ (λ, ω(λ, ε)) = 0 with α ∞ λ, ω(λ, ε) = -ω Eq (λ),
where the Cantor set C ε ∞ is defined by

C ε ∞ ≜ λ ∈ (λ 0 , λ 1 ) s.t. λ, ω(λ, ε) ∈ G γ ∞ . (3.20)
This gives solutions to the original equation (3.12) provided that λ belongs to the final Cantor set C ε ∞ and the last point to deal with aims to measure this set.

▶ Step 4. Measure estimates. The measure of the final Cantor set C ε ∞ will be explored in Section 8.2. We show in Proposition 8.2 that by fixing γ = ε a for some small a we get

|C ε ∞ | ⩾ (λ 1 -λ 0 ) -Cε δ ,
with small δ connected to the geometry of the Cantor set and the non degeneracy of the equilibrium spectrum. There are two main ingredients to get this result. The first one is the stability of the intermediate Cantor sets (A γ n ) n following from the fast convergence of Nash-Moser scheme. However the second one is the transversality property stated in Lemma 8.3 used in the spirit of [START_REF] Bambusi | Degenerate KAM theory for partial differential equations[END_REF] and [START_REF] Rüssmann | Invariant tori in non-degenerate nearly integrable Hamiltonian systems[END_REF]. This property will be first established for the linear frequencies in Proposition 5.5, using the analyticity of the eigenvalues and their asymptotic behavior. Then the extension of the transversality assumption to the perturbed frequencies is done using perturbative arguments together with the asymptotic description of the approximate eigenvalues detailed in (8.67), (8.82) and (8.81). We emphasize that the transversality is strongly related to the non-degeneracy of the eigenvalues in the sense of the Definition 5.1 . For instance, we show that the curve λ

∈ [λ 0 , λ 1 ] → Ω j1 (λ), ..., Ω j d (λ) is not contained in any vectorial plane, that is, if there exists a constant vector c = (c 1 , .., c d ) such that ∀λ ∈ [λ 0 , λ 1 ], d j=1 c k Ω j k (λ) = 0,
then c = 0. This is proved in Lemma 5.4 and follows from the asymptotic of the eigenvalues for large values of λ according to the law (C.15) combined with the invertibility of Vandermonde matrices.

Hamiltonian formulation of the patch motion

In this section we shall set up the contour dynamics equation governing the patch motion. A particular attention will be focused on the vortex patch equation in the polar coordinates system. We shall see that the Hamiltonian structure still survives at the level of the patch dynamics, which is the starting point towards the construction of quasi-periodic solutions.

Contour dynamics equation in polar coordinates

The Rankine vortex 1 D (actually any radial function) is a stationary solution to (QGSW) λ . To look for ordered structure like periodic or quasi-periodic vortex patches t → 1 Dt around this equilibrium state, we find it convenient to consider a polar parametrization of the boundary

z(t, θ) ≜ 1 + 2r(t, θ) 1 2 e iθ . ( 4 

.1)

Part I

Here r is the radial deformation of the patch which is small, namely |r(t, θ)| ≪ 1. Taking r = 0 gives a parametrization of the unit circle T. We shall introduce the new symplectic unknown

R(t, θ) ≜ 1 + 2r(t, θ) 1 2 . (4.2)
which will be useful to write down the equations into the Hamiltonian form. In what follows we want to explicit the contour dynamics equation with the polar coordinates. The starting point is the complex formulation of the vortex patches equation (1.17), which we recall here

Im ∂ t z(t, θ) -v(t, z(t, θ)) ∂ θ z(t, θ) = 0.
In order to transform it into a nonlinear PDE, we need to recover the velocity field v from the patch parametrization. To do so, recall that v = ∇ ⊥ Ψ with Ψ given by (1.7) To get an explicit form of the velocity in terms of the patch boundary we shall use the complex version of Stokes theorem

2i ˆD ∂ ξ f (ξ, ξ)dA(ξ) = ˆ∂D f (ξ, ξ)dξ. (4.3) In view of v(t, z) = 2i∂ z Ψ(t, z), one deduces that v(t, z) = 1 2π ˆ∂Dt K 0 (λ|z -ξ|)dξ. ( 4.4) 
Notice that to rigorously apply Stokes theorem one may use a regularization procedure. This is purely technical and we refer the reader to the proof of Proposition 4.1 for more details. Next we intend to write down the boundary motion in terms of the contour dynamics. First, from the polar parametrization, it is easy to check from (4.1) that

Im ∂ t z(t, θ)∂ θ z(t, θ) = -∂ t r(t, θ).
On the other hand, using (4.4) and (C.3), we infer

Im v(t, z(t, θ))∂ θ z(t, θ) = ˆT K 0 (λ|z(t, θ) -z(t, η)|) Im ∂ η z(t, η)∂ θ z(t, θ) dη.
Next we observe that,

Im ∂ η z(t, η)∂ θ z(t, θ) = ∂ 2 θη Im z(t, η)z(t, θ) = ∂ 2 θη R(t, η)R(t, θ) sin(η -θ) .
Thus, by setting

A r (t, θ, η) ≜ |z(t, θ) -z(t, η)| = |R(t, θ)e iθ -R(t, η)e iη | (4.5)
and

F λ [r](t, θ) ≜ ˆT K 0 (λA r (t, θ, η)) ∂ 2 θη R(t, η)R(t, θ) sin(η -θ) dη, ( 4.6) 
we get the vortex patch equation in the polar coordinates

∂ t r(t, θ) + F λ [r](t, θ) = 0. (4.7)
Now, we fix a parameter Ω that will be used later to get rid of trivial resonances, and we shall look for solutions in the form

r(t, θ) = r(t, θ + Ωt). (4.8)
Then elementary change of variables applied with (4.6) show that

F λ [r](t, θ+Ωt) = F λ [r](t, θ) . (4.9)
Thus, the equation (4.7) becomes (to alleviate the notation we simply use r instead of r)

∂ t r(t, θ) + Ω∂ θ r(t, θ) + F λ [r](t, θ) = 0, (4.10) 
which is a nonlinear and nonlocal transport PDE. To fix the terminology, we mean by a time quasi-periodic solution of (4.10), a solution in the form

r(t, θ) = r(ωt, θ),
where r : (φ, θ)

∈ T d+1 → r(φ, θ) ∈ R, ω ∈ R d and d ∈ N * .
Hence in this setting, the equation (4.10)

becomes

ω • ∂ φ r(φ, θ) + Ω∂ θ r(φ, θ) + F λ [ r](φ, θ) = 0.
In the sequel, we shall alleviate the notation and denote r simply by r and the foregoing equation writes

∀(φ, θ) ∈ T d+1 , ω • ∂ φ r(φ, θ) + Ω∂ θ r(φ, θ) + F λ [r](φ, θ) = 0. (4.11)

Hamiltonian structure

We now move to a new consideration related to the analysis of the Hamiltonian structure behind the transport equation (4.10). This structure sounds to be essential if one wants to explore quasi-periodic solutions near Rankine vortices. Notice that it is a classical fact that incompressible active scalar equations such as 2D Euler equations are Hamiltonian and as we shall see in this section, we can find a suitable interpretation of this property at the level of the contour dynamics equations which is a stronger reformulation.

Hamiltonian reformulation

We consider the kinetic energy and the angular impulse associated to the patch ω(t) = 1 Dt and defined by

E(t) ≜ - 1 2π ˆDt Ψ(t, z)dA(z) and J(t) ≜ 1 2π ˆDt |z| 2 dA(z), ( 4.12) 
where the stream function Ψ is defined according to (1.7). Notice that the sign convention ensures the kinetic energy to be positive. The following result dealing with the time conservation of the preceding quantities is classical and can be proved in a similar way to Euler equations. 

∂ t r = ∂ θ ∇H(r), (4.13)
where ∇ is the L 2 θ (T)-gradient with respect to the L 2 θ (T)-normalized scalar product defined by

ρ 1 , ρ 2 L 2 (T) ≜ ˆT ρ 1 (θ)ρ 2 (θ)dθ
and the hamiltonian H is defined by

H(r) ≜ 1 2 E(r) -ΩJ(r) .
In particular, we get the conservation of the average, that is,

d dt ˆT r(t, θ)dθ = 0. (4.14)
Proof. ▶ Using Stokes formula (4.3), we may write

J(r)(t) = 1 8iπ ˆ∂Dt |ξ| 2 ξdξ.
Then from the parametrization detailed in (4.1) one gets easily

J(r)(t) = 1 4i ˆT |z(t, θ)| 2 z(t, θ)∂ θ z(t, θ)dθ = 1 16i ˆT ∂ θ R 4 (t, θ) dθ + 1 4 ˆT R 4 (t, θ)dθ = 1 4 ˆT R 4 (t, θ)dθ.
Consequently,

J(r)(t) = 1 4 ˆT (1 + 2r(t, θ)) 2 dθ. (4.15)
Differentiating in r one gets for ρ ∈ L 2 (T)

⟨∇J(r), ρ⟩ L 2 (T) (t) = ˆT(1 + 2r(t, θ))ρ(θ)dθ, i.e. ∇J(r) = 1 + 2r.
It follows that

1 2 Ω∂ θ ∇J(r) = Ω∂ θ r. (4.16)
▶ Next, we shall compute the Gâteaux derivative of E in a given direction ρ ∈ L 2 (T). The first step is to express the energy

E(t) = - 1 2π ˆDt Ψ(t, z)dA(z)
in terms of the boundary parametrization of ∂D t , which shall be done by using Stokes theorem (4.3).

Recall from (1.7) that the potential velocity expresses as follows

Ψ(t, z) = -1 2π ˆDt K 0 (λ|ξ -z|)dA(ξ).
In order to apply Stokes theorem we shall a priori formally compute an anti-derivative of K 0 (λ|ξ -z|)

with respect to ξ. We shall search it in the form

(ξ -z)f (λ|ξ -z|).
Then we should get

K 0 (λ|ξ -z|) = ∂ ξ (ξ -z)f (λ|ξ -z|) = f (λ|ξ -z|) + λ|ξ-z| 2 f ′ (λ|ξ -z|).
Hence f is a solution on R * + of the ordinary differential equation

1 2 xf ′ (x) + f (x) = K 0 (x), i.e. (x 2 f (x)) ′ = 2xK 0 (x). (4.17)
Using (C.5), we obtain

f (x) = -2xK1(x)+C x 2 ,
where C is a constant to be fixed so that the integral converges. Using (C.6), one has on the real line

K 1 (x) = x→0 1 x + x 2 log x 2 + o x log x 2 , so that xK 1 (x) = x→0 1 + x 2 2 log x 2 + o x 2 log x 2 .
Making the choice C = -2 we get

f (x) = -2(xK1(x)-1) x 2 , ( 4.18) 
which behaves like a logarithm near 0 and thus it is integrable. But notice that Stokes theorem requires some smoothness on the integrated function to be applied. Consequently, we shall rather consider for ϵ > 0 the smooth quantity

F ϵ (ξ, z) ≜ ∂ ξ (ξ -z)f λ |ξ -z| 2 + ϵ 2 .
Then applying Stokes theorem (4.3) yields 2i

ˆDt F ϵ (ξ, z)dA(ξ) = ˆ∂Dt (ξ -z)f λ |ξ -z| 2 + ϵ 2 dξ.
According to the structure of f described above, a simple application of dominated convergence theorem gives

lim ϵ→0 ˆ∂Dt (ξ -z)f λ |ξ -z| 2 + ϵ 2 dξ = ˆ∂Dt (ξ -z)f (λ|ξ -z|) dξ.
Now observe that by virtue of (4.17), we can write

F ϵ (ξ, z) = K 0 λ |ξ -z| 2 + ϵ 2 - λϵ 2 2 |ξ -z| 2 + ϵ 2 f ′ λ |ξ -z| 2 + ϵ 2 .
Using the fact that f ′ (x) is equivalent to 1 x at 0, we obtain by dominated convergence theorem

lim ϵ→0 ˆDt ϵ 2 |ξ -z| 2 + ϵ 2 f ′ λ |ξ -z| 2 + ϵ 2 dA(ξ) = 0.
Thus, still by dominated convergence theorem, we get

lim ϵ→0 ˆDt F ϵ (ξ, z)dA(ξ) = ˆDt K 0 (λ|ξ -z|)dA(ξ).
Part I

Gathering the foregoing computations implies

Ψ(t, z) = 1 4iπ ˆ∂Dt (ξ -z)f (λ|ξ -z|)dξ.
Therefore using the parametrization (4.1) we find

Ψ(t, z(t, θ)) = 1 iλ 2 ˆT (z(t, η) -z(t, θ)) [λ|z(t, θ) -z(t, η)|K 1 (λ|z(t, η) -z(t, θ)|) -1] |z(t, η) -z(t, θ)| 2 ∂ η z(t, η)dη.
Making appeal to f and removing the time dependence, we get

Ψ(z(θ)) = i 2 ˆT(z(θ) -z(η))f (λ|z(θ) -z(η)|)∂ η z(η)dη. (4.19)
At this stage we need to look for an anti-derivative with respect to z of -1

2 (ξ -z)f (λ|ξ -z|) in the form (ξ -z) 2 g(λ|ξ -z|).
Therefore we deduce the constraint

-1 2 (ξ -z)f (λ|ξ -z|) = ∂ z (ξ -z) 2 g(λ|ξ -z|) = -(ξ -z) 2g(λ|ξ -z|) + λ|ξ-z| 2 g ′ (λ|ξ -z|) .
Hence, g should be a solution on R * + of the ordinary differential equation

x 2 g ′ (x) + 2g(x) = f (x) 2 , i.e. (x 4 g(x)) ′ = x 3 f (x) = 2x -2x 2 K 1 (x). (4.20) 
Using once again (C.5) yields

g(x) = x 2 +2x 2 K2(x)+C x 4
, where C is again a constant used to cancel the violent singularity. From (C.6) and (C.2), one obtains the asymptotic

K 2 (x) = x→0 2 x 2 -1 2 + O x 2 log(x) .
Thus

x 2 K 2 (x) = x→0 2 -x 2 2 + O(x 4 log(x)).
Then by choosing C = -4 we deduce that the function below

g(x) = x 2 +2x 2 K2(x)-4 x 4
is integrable. Hence, applying once again Stokes theorem (4.3) together with a regularization procedure as above, we infer

E(r)(t) = 1 4π 2 λ 4 ˆ∂Dt ˆ∂Dt (ξ -z) 2 λ 2 |ξ -z| 2 (1 + 2K 2 (λ|ξ -z|)) -4 |ξ -z| 4 dzdξ = 1 λ 4 ˆT ˆT (z(t,η)-z(t,θ)) 2 [λ|z(t,η)-z(t,θ)|(1+2K2(λ|z(t,η)-z(t,θ)|))-4] |z(t,η)-z(t,θ)| 2 ∂ θ z(t, θ)∂ η z(t, η)dηdθ.
Hence using g and removing the dependence in time, we find

E(r) = 1 2 ˆT ˆT(z(θ) -z(η)) 2 g(λ|z(θ) -z(η)|)∂ θ z(θ)∂ η z(η)dθdη. (4.21)
The next goal is to compute the derivative of E with respect to r in the direction ρ, which is straightforward

⟨∇E(r),ρ⟩ L 2 (T) = ˆT ˆT (z(θ) -z(η)) g (λ|z(θ) -z(η)|) ρ(θ)e -iθ R(θ) -ρ(η)e -iη R(η) ∂ θ z(θ)∂ η z(η)dθdη + λ 2 ˆT ˆT (z(θ)-z(η)) 2 |z(θ)-z(η)| g ′ (λ|z(θ) -z(η)|) ρ(θ) R(θ) Re (z(θ) -z(η))e -iθ ∂ θ z(θ)∂ η z(η)dθdη + λ 2 ˆT ˆT (z(θ)-z(η)) 2 |z(θ)-z(η)| g ′ (λ|z(θ) -z(η)|) ρ(η) R(η) Re (z(η) -z(θ))e -iη ∂ θ z(θ)∂ η z(η)dθdη + 1 2 ˆT ˆT (z(θ) -z(η)) 2 g (λ|z(θ) -z(η)|) ∂ θ ρ(θ)e iθ R(θ) ∂ η z(η)dθdη + 1 2 ˆT ˆT (z(θ) -z(η)) 2 g (λ|z(θ) -z(η)|) ∂ θ z(θ)∂ η ρ(η)e iη R(η)
dθdη.

By exchanging in the double integral θ and η, we deduce

⟨∇E(r),ρ⟩ L 2 (T) = 2 ˆT ˆT (z(θ) -z(η)) g (λ|z(θ) -z(η)|) ρ(θ)e -iθ R(θ) ∂ θ z(θ)∂ η z(η)dθdη + λ ˆT ˆT (z(θ)-z(η)) 2 |z(θ)-z(η)| g ′ (λ|z(θ) -z(η)|) ρ(θ) R(θ) Re (z(θ) -z(η))e -iθ ∂ θ z(θ)∂ η z(η)dθdη + ˆT ˆT (z(θ) -z(η)) 2 g (λ|z(θ) -z(η)|) ∂ θ ρ(θ)e iθ R(θ) ∂ η z(η)dθdη.
An integration by parts in the last integral leads to

ˆT ˆT (z(θ) -z(η)) 2 g (λ|z(θ) -z(η)|) ∂ θ ρ(θ)e iθ R(θ) ∂ η z(η)dθdη = -2 ˆT ˆT(z(θ) -z(η))g(λ|z(θ) -z(η)|) ρ(θ)e iθ R(θ) ∂ θ z(θ)∂ η z(η)dθdη -λ ˆT ˆT (z(θ)-z(η)) 2 |z(θ)-z(η)| g ′ (λ|z(θ) -z(η)|) ρ(θ)e iθ R(θ) Re [(z(θ) -z(η))∂ θ z(θ)] ∂ η z(η)dθdη.
Using the identities

e iθ ∂ θ z(θ) -e -iθ ∂ θ z(θ) = -2iR(θ) and Re [(z(θ) -z(η))∂ θ z(θ)] e iθ -∂ θ z(θ)Re (z(θ) -z(η))e -iθ = -iR(θ)(z(θ) -z(η)),
we infer

⟨∇E(r), ρ⟩ L 2 (T) = 4 i ˆT ˆT(z(θ) -z(η))g(λ|z(θ) -z(η)|)∂ η z(η)ρ(θ)dθdη + λ i ˆT ˆT(z(θ) -z(η))|z(θ) -z(η)|g ′ (λ|z(θ) -z(η)|)∂ η z(η)ρ(θ)dθdη.
Applying (4.20), we find

⟨∇E(r), ρ⟩ L 2 (T) = 1 i ˆT ˆT(z(θ) -z(η))f (λ|z(θ) -z(η)|)∂ η z(η)ρ(θ)dθdη, Part I
which implies by virtue of (4. [START_REF] Berti | KAM for Reversible Derivative Wave Equations[END_REF])

∇E(r) = 1 i ˆT(z(θ) -z(η))f (λ|z(θ) -z(η)|)∂ η z(η)dη = -2Ψ(z(θ)).
Now, using the complex notation we deduce that

∂ θ Ψ(z(θ)) = ∇Ψ(z(θ)) • ∂ θ z(θ) = Im v(z(θ))∂ θ z(θ) = F λ [r](θ),
where we used (1.2) and the facts that ∇ ⊥ Ψ = v and Ψ is real-valued. Recall that the functional F λ [r] was introduced in (4.6). Hence

∂ θ ∇E(r) = -2∂ θ Ψ(z(θ)) = -2F λ [r](θ).
Finally we get

1 2 ∂ θ ∇E(r) = -F λ [r](θ). (4.22)
The conservation of the average is easy to check from the Hamiltonian equation. Therefore the proof of Proposition 4.1 is achieved.

Symplectic structure and reversibility

The main concern is to investigate the symplectic structure together with the reversibility property associated to the Hamiltonian equation (4.13). These properties will be used in a crucial way to fix the symmetry in the function spaces and by this way remove from the phase space the trivial resonances. For more details we refer to Section A.1 and Section 6.

According to Proposition 4.1, it seems more convenient to work with the phase space

L 2 0 (T) ≜    r = j∈Z *
r j e j s.t. r -j = r j and

j∈Z * |r j | 2 < ∞    , e j (θ) ≜ e ijθ . ( 4.23) 
The symplectic structure on L 2 0 (T) induced by (4.13) is given by the symplectic 2-form

W(r, h) ≜ ˆT ∂ -1 θ r(θ)h(θ)dθ with ∂ -1 θ r(θ) = j∈Z * r j ij e ijθ . ( 4.24) 
Then for a given function H, its symplectic gradient X H is defined through the identity

dH(r)[•] = W(X H (r), •). (4.25)
Using the Fourier expansion

r(θ) = j∈Z *
r j e ijθ with r -j = r j , we easily find that the symplectic form W writes

W(r, h) = j∈Z * 1 ij r j h -j = j∈Z * 1 ij r j h j , that is W = 1 2 j∈Z * 1 ij dr j ∧ dr -j = j∈N * 1 ij dr j ∧ dr -j , ( 4.26) 
where for all j ∈ Z * , the exterior product dr j ∧ dr -j is defined by

dr j ∧ dr -j (r, h) = r j h -j -r -j h j .
To define the reversibility, we shall introduce the involution S (S r)(θ) ≜ r(-θ), (4.27) which satisfies the obvious properties

S 2 = Id and ∂ θ • S = -S • ∂ θ . (4.28)
The following elementary result is useful and can be easily checked from the structure of the Hamiltonian.

Actually, it suffices to make changes of variables.

Lemma 4.2. The Hamiltonian H and its associated vector field

X H = ∂ θ ∇H satisfy H • S = H and X H • S = -S • X H .

Linearization and frequencies structure

This section is devoted to some aspects of the linearized operator associated to the evolution equation (4.10) or its Hamiltonian version (4.13). We shall in particular compute it at any state close to the equilibrium and reveal some of its main general feature. As we shall see, the radial shape is very special and gives rise to a Fourier multiplier and thus the spectral properties follow immediately. This latter case serves as a toy model to check the emergence of quasi-periodic solutions at the linear level provided that the Rossby radius λ belongs to a Cantor set, see Proposition 5.1 . However, around this ideal state the situation is roughly uncontrolled and the operator is no longer diagonal and its spectral study is extremely delicate due to resonances that prevent to diagonalize the operator. To deal with this problem we will implement some important tools borrowed from KAM theory as we shall see in Section 7.

Linearized operator

The main goal of this section is to compute the differential of the nonlinear operator in (4.10) for any small state r. The computations will be conducted at a formal level by simply computing Gateaux derivatives which are related to Frechet derivatives. This formal part can be justified rigorously in a classical way for the suitable functional setting fixed in Section A.1.

The general form

In what follows we shall derive a formula for the linearized operator associated to the equation (4.13). We shall see that it can be split into a transport part with variable coefficients and a nonlocal operator of order zero. More precisiely, we shall establish the following lemma.

Lemma 5.1. The linearized equation of (4.13) at a given small state r is given by the time-dependent linear Hamiltonian equation,

∂ t ρ(t, θ) = ∂ θ -V r (λ, t, θ)ρ(t, θ) + L r ρ(λ, t, θ) ,
where V r is a scalar function defined by

V r (λ, t, θ) ≜ Ω + 1 R(t,θ) ˆT K 0 (λA r (t, θ, η)) ∂ η (R(t, η) sin(η -θ)) dη (5.1)
and L r is a nonlocal operator given by L r (ρ)(λ, t, θ) ≜ ˆT K 0 λA r (t, θ, η) ρ(t, η)dη.

(5.2)

We recall that K 0 , A r and R are defined by (C.7), (4.5) and (4.2), respectively.

Moreover, if r(-t, -θ) = r(t, θ), then V r (λ, -t, -θ) = V r (λ, t, θ). (5.3)
Proof. Throughout the proof, we shall remove the time dependency of the involved quantities except when it is relevant to keep it. The computations of the Gâteaux derivative of F λ defined by (4.6) at a point r in the direction ρ are straightforward and standard and we shall only sketch the main lines. Notice that the functional F λ is smooth in a suitable functional setting and therefore its differential should be recovered from its Gâteaux derivative. First, we observe that the function A r defined in (4.5) can be written in the form

A r (θ, η) = R 2 (θ) + R 2 (η) -2R(θ)R(η) cos(η -θ) 1 2 = (R(θ) -R(η)) 2 + 4R(θ)R(η) sin 2 η-θ 2 1 2 .
(5.4)

This identity (5.4) will be of constant use in the sequel. Second, after straightforward computations, we obtain from (4.6),

d r F λ [r](ρ) = ∂ τ F λ [r + τ ρ] |τ=0 = I 1 + I 2 + I 3 + I 4 ,
where

I 1 ≜ λρ(θ) ˆT B r (θ, η)K ′ 0 (λA r (θ, η)) ∂ 2 θη (R(θ)R(η) sin(η -θ)) dη, I 2 ≜ λ ˆT ρ(η)B r (η, θ)K ′ 0 (λA r (θ, η)) ∂ 2 θη (R(θ)R(η) sin(η -θ)) dη, I 3 ≜ ˆT K 0 (λA r (θ, η)) ∂ 2 θη ρ(θ) R(η) sin(η-θ) R(θ)
dη,

I 4 ≜ ˆT K 0 (λA r (θ, η)) ∂ 2 θη ρ(η) R(θ) sin(η-θ) R(η) dη, with B r (θ, η) ≜ R(θ) -R(η) cos(η -θ) R(θ)A r (θ, η) • (5.5)
Next, we shall compute I 1 + I 3 . To do that, we split I 3 into two terms as follows,

I 3 = ∂ θ ρ(θ) ˆT K 0 (λA r (θ, η)) ∂ η R(η) sin(η-θ) R(θ) dη + ρ(θ) ˆT K 0 (λA r (θ, η)) ∂ 2 θη R(η) sin(η-θ) R(θ) dη ≜ ∂ θ ρ(θ)V r (λ, θ) + ρ(θ)I 3 .
An integration by parts in I 3 allows to get,

I 3 = -λ ˆT ∂ η A r (θ, η)K ′ 0 (λA r (θ, η)) R(η)∂ θ sin(η-θ) R(θ)
dη.

Putting together the preceding identities yields

I 1 + I 3 = ∂ θ ρ(θ)V r (λ, θ) + ρ(θ)V 1 (λ, θ) (5.6) with V 1 (λ, θ) ≜ λ ˆT B r (θ, η)∂ 2 θη R(θ)R(η) sin(η -θ) K ′ 0 (λA r (θ, η)) dη -λ ˆT ∂ η A r (θ, η)∂ θ R(η) sin(η-θ) R(θ) K ′ 0 (λA r (θ, η)) dη. ( 5.7) 
Differentiating term by term V r with respect to θ gives

∂ θ V r (λ, θ) = λ ˆT ∂ θ A r (θ, η)K ′ 0 (λA r (θ, η)) ∂ η R(η) sin(η-θ) R(θ) dη + ˆT K 0 (λA r (θ, η)) ∂ 2 θη R(η) sin(η-θ) R(θ) dη ≜ J 1 + J 2 .
Integrating by parts in J 2 yields

J 2 = -λ ˆT R(η)∂ η A r (θ, η)K ′ 0 (λA r (θ, η)) ∂ θ sin(η-θ) R(θ)
dη.

Combining the preceding identities allows to deduce that

∂ θ V r (λ, θ) = λ ˆT K ′ 0 (λA r (θ, η)) ∂ θ A r (θ, η)∂ η R(η) sin(η-θ) R(θ) -∂ η A r (θ, η)∂ θ R(η) sin(η-θ) R(θ)
dη.

Next we shall check the following identity

∂ θ A r (θ, η)∂ η R(η) sin(η-θ) R(θ) = B r (θ, η)∂ 2 θη (R(θ)R(η) sin(η -θ)) -∂ η A r (θ, η).
(5.8) Indeed, by (5.4) and (5.5), one finds

∂ θ A r (θ, η)∂ η R(η) sin(η-θ) R(θ) = ∂ θ R(θ)B r (θ, η)∂ η (R(η) sin(η -θ)) - R(η) sin(η-θ)∂η(R(η) sin(η-θ)) Ar(θ,η) Part I and B r (θ, η)∂ 2 θη (R(θ)R(η) sin(η -θ)) = ∂ θ R(θ)B r (θ, η)∂ η (R(η) sin(η -θ)) - (R(θ)-R(η) cos(η-θ))∂η(R(η) cos(η-θ)) Ar(θ,η)
• Putting together the foregoing identities leads to

∂ θ A r (θ, η)∂ η (R(η) sin(η -θ)) R(θ) = B r (θ, η)∂ 2 θη (R(θ)R(η) sin(η -θ)) + g(θ, η),
where

g(θ, η) ≜ 1 Ar(θ,η) [(R(θ) -R(η) cos(η -θ))∂ η (R(η) cos(η -θ)) -R(η) sin(η -θ)∂ η (R(η) sin(η -θ))] = R(θ)∂η(R(η) cos(η-θ))-R(η)∂ηR(η) Ar(θ,η) = -∂ η A r (θ, η).
This achieves the proof of (5.8). From the periodicity we get

ˆT λ∂ η A r (θ, η)K ′ 0 (λA r (θ, η)) dη = ˆT ∂ η [K 0 (λA r (θ, η))] dη = 0
and thus we get the following important identity

∂ θ V r (λ, θ) = V 1 (λ, θ).
Plugging this into (5.6) allows to get

I 1 + I 3 = ∂ θ V r (λ, θ)ρ(θ) .
Notice that it is easy to check that if r(-t, -θ) = r(t, θ), then V r (λ, -t, -θ) = V r (λ, t, θ).

(5.9)

The next task is to compute I 2 + I 4 . Using integration by parts in I 4 gives,

I 4 = -λ ˆT ρ(η)∂ η A r (θ, η)K ′ 0 (λA r (θ, η)) ∂ θ R(θ) sin(η-θ) R(η)
dη.

From the symmetry property A r (θ, η) = A r (η, θ) and by exchanging the roles of θ and η in (5.8), one deduces

B r (η, θ)∂ 2 θη (R(θ)R(η) sin(η -θ)) -∂ η A r (θ, η)∂ θ R(θ) sin(η-θ) R(η) = -∂ θ A r (θ, η).
Therefore we obtain

I 2 + I 4 = -∂ θ ˆT ρ(η)K 0 (λA r (θ, η)) dη ≜ -∂ θ L r (ρ)(λ, θ).
Finally, by setting

V r (λ, t, θ) ≜ Ω + V r (λ, t, θ)
and combining the preceding identities, we end the proof of Lemma 5.1.

The integrable case

The main purpose here is to explore the structure of the linearized operator at the equilibrium state.

We shall see that the radial shape is reflected on the structure the linearized operator which is a Fourier multiplier (of a convolution type). More precisely, we have the following result.

Lemma 5.2. The following properties hold true.

1. The linearized equation of (4.13) at the equilibrium state (r = 0) writes,

∂ t ρ = ∂ θ L(λ)ρ = ∂ θ ∇H L (ρ), (5.10) 
where L(λ) is the self-adjoint operator defined by

L(λ) ≜ -V 0 (λ) + K λ * θ with V 0 (λ) ≜ Ω + I 1 (λ)K 1 (λ) (5.11)
and

K λ (θ) ≜ K 0 2λ sin θ 2 .
(5.12)

We refer to the Appendix A for the definitions of the modified Bessel functions I 1 , K 1 and K 0 .

Moreover, the Hamiltonian H L is quadratic and takes the form

H L (ρ) ≜ 1 2 ⟨L(λ)ρ, ρ⟩ L 2 (T) .
2. The solutions to (5.10) with zero space average are given by ρ(t, θ) = j∈Z * ρ j (0)e i(jθ-Ωj (λ)t) , (5.13)

with

Ω j (λ) ≜ j Ω + (I 1 K 1 )(λ) -(I j K j )(λ) . (5.14)
and for ρ(θ) = j∈Z * ρ j e ijθ we have

L(λ)ρ(θ) = - j∈Z * Ωj (λ) j ρ j e ijθ and H L ρ = - j∈Z * Ωj (λ) 2j |ρ j | 2 , ( 5.15) 
Before proceeding with the proof we want to give some remarks.

Remark 5.1.

• When Ω = 0 the eigenvalue Ω 1 (λ) vanishes for any λ due to the rotation invariance of the equation and the use of the free parameter Ω is to avoid this degeneracy. However the trivial resonance Ω 0 (λ) = 0 can be removed by imposing the zero space average which is preserved by the nonlinear dynamics from the Hamiltonian structure as we have seen before in (4.14).

• The solutions to the linear equation at the equilibrium are aperiodic and if we excite only a finite number of frequencies with non-resonances assumption we get quasi-periodic solutions. We will make a precise comment later on Proposition 5.1.

Proof. 1. First observe that from (5.4), one deduces for r = 0 that A 0 (θ, η) = 2 sin η-θ

2

.

Then we

Part I obtain from (5.1) and (5.2),

L 0 ρ(λ, θ) = ˆT ρ(η)K 0 2λ sin η-θ 2 dη = K λ * ρ(θ),
with K λ defined in (5.12) and using the change of variables η → η + θ we obtain

V 0 (λ, θ) = Ω + ˆT K 0 2λ sin η-θ 2 cos(η -θ)dη = Ω + ˆT K 0 2λ sin η 2 cos(η)dη ≜ V 0 (λ).
We remark that if we write e j (θ) = e ijθ , then direct computations yield

(K λ * e j )(θ) = ˆT K 0 2λ sin η 2 e ij(θ-η) dη = e j (θ) ˆT K 0 2λ sin η 2 e -ijη dη.
Since the function η → K 0 2λ sin η 2 is even, we deduce using the change of variables η = 2τ + π and the formula (C.9) that

ˆT K 0 2λ sin η 2 e -ijη dη = ˆT K 0 2λ sin η 2 cos (jη) dη = (-1) j π ˆπ 2 -π 2 K 0 (2λ cos(τ )) cos(2jτ )dτ = (I j K j )(λ).
Hence, the Fourier coefficients of K λ are (K λ ) j = (I j K j )(λ).

(5.16)

Similar arguments as before with j = 1 allow to get

V 0 (λ) = Ω + (I 1 K 1 )(λ).
Recall that K λ is even and then we find that L(λ) is self-adjoint in L 2 (T).

Starting from the Fourier expansion ρ(t, θ) =

j∈Z * ρ j (t)e ijθ , then we can easily ensure from direct computations using the previous results, that ρ solves the equation (5.10) if and only if

ρj = -iΩ j (λ)ρ j with Ω j (λ) = j Ω + (I 1 K 1 )(λ) -(I j K j )(λ) ,
and therefore

ρ(t, θ) = j∈Z * ρ j (0)e i(jθ-Ωj (λ)t) .
Concerning the identities (5.15) they can be obtained from straightforward computations. This ends the proof of Lemma 5.2.

Structure of the linear frequencies

The main target in this section is to explore some interesting structures of the equilibrium frequencies.

We shall in particular focus on their monotonicity and detail some asymptotic behavior for large modes.

Another important discussion will be devoted to the non-degeneracy of these frequencies through the so-called Rüssmann conditions. This is the cornerstone step in measuring the final Cantor set giving rise to quasi-periodic solutions for the linear/nonlinear problems. Actually, in the nonlinear case the final Cantor appears as a perturbation of the Cantor set constructed from the equilibrium eigenvalues and therefore perturbative arguments based on their non-degeneracy are very useful and will be performed in Section 8.2.

Monotonicity and asymptotic behaviour

Our purpose is to establish some useful properties related to the monotonicity and the asymptotic behavior for large modes of the eigenvalues of the linearized operator at the equilibrium state. Notice that their explicit values are detailed in (5.14). Our result reads as follows.

Lemma 5.3. Let Ω > 0 and λ ∈ R, then the frequencies (Ω j (λ)) j∈Z * satisfy the following properties.

(i) For any j ∈ Z * , λ > 0 we have Ω -j (λ) = -Ω j (λ).

(ii) For any λ > 0, the sequences (Ω j (λ)) j∈N * and Ωj (λ) j j∈N * are strictly increasing. (iii) For any λ > 0, the following expansion holds where V 0 (λ) is defined in (5.11).

Ω j (λ) = j→∞ V 0 (λ)j -1 2 + λ 2 4j 2 + O λ 1 j 4 , ( 5.17 
(iv) For any j ∈ Z * , λ > 0 we have

|Ω j (λ)| ⩾ Ω|j|. (v) Given 0 < λ 0 < λ 1 , there exists C 0 > 0 such that ∀λ ∈ [λ 0 , λ 1 ], ∀j, j 0 ∈ Z, |Ω j (λ) ± Ω j0 (λ)| ⩾ C 0 |j ± j 0 |.
(vi) Given 0 < λ 0 < λ 1 and q 0 ∈ N, there exists C 0 > 0 such that

∀ j, j 0 ∈ Z * , max q∈ 0,q0 sup λ∈[λ0,λ1] |∂ q λ (Ω j (λ) -Ω j0 (λ))| ⩽ C 0 |j -j 0 |.

Proof. (i)

It is an immediate consequence of (5.14) and (C.3).

(ii) The monotonicity of the sequence Ωj (λ) j j∈N * is proved in [54, Prop. 5.9. (1)], see also the Appendix C. It follows that the sequence (Ω j (λ)) j∈N * is strictly increasing as the product of two strictly increasing positive sequences.

(iii) It is an immediate consequence of (5.14) and the asymptotic expansion (C.14) (iv) Recall that j → Ω j (λ) is odd and vanishes at j = 0. Then it suffices to check the result for j ∈ N * . According to the Appendix C, the sequence j → (I j K j )(λ) is decreasing and therefore

∀λ > 0, (I 1 K 1 )(λ) -(I j K j )(λ) ⩾ 0.
(5.18)

Part I

It follows that

∀ λ > 0, |Ω j (λ)| ⩾ Ωj.
(v) By the oddness of j → Ω j (λ) it is enough to establish the estimate for j, j 0 ∈ N. We shall first focus on the estimate of the difference Ω j (λ) -Ω j0 (λ). Without loss of generality we can assume that j > j 0 ⩾ 1, (The case j = j 0 is obvious and the case j 0 = 0 brings us back to the previous point). One may write by (5.14) that for λ > 0,

Ω j (λ) -Ω j0 (λ) = (j -j 0 ) Ω + I 1 (λ)K 1 (λ) -I j (λ)K j (λ) + j 0 I j0 (λ)K j0 (λ) -I j (λ)K j (λ) . (5.19)
Combining this identity with the estimate (5.18) yields

Ω j (λ) -Ω j0 (λ) ⩾ (j -j 0 )Ω + j 0 I j0 (λ)K j0 (λ) -I j (λ)K j (λ) .
(5.20)

We need to get refined estimate for the last term of the right hand side. For this goal we use the formulae (C.10) to write

(I n K n )(λ) = 1 2 ˆ∞ 0 J 0 2λ sinh( t
2 ) e -nt dt. (5.21) This allows to construct for a fixed λ a smooth extension n ∈ (0, ∞) → (I n K n )(λ). Thus differentiating term by term using change of variable we get for any m ∈ N

sup λ∈R |∂ m n (I n K n )(λ)| ⩽ 1 2 ˆ∞ 0 t m e -nt dt ⩽ m! 2n m+1 , ( 5.22) 
where we have used the classical estimates for Bessel functions (applied with n = q = 0) sup n,q∈N x∈R

|J (q) n (x)| ⩽ 1, (5.23) 
which follows easily from the integral representation (C.1). In particular, for m = 1 we find that for for

any n ⩾ 1 sup λ∈R ∂ n (I n K n )(λ) ⩽ 1 2n 2 •
Therefore applying Taylor Formula we infer for j > j 0 ⩾ 1 sup λ∈R

(I j K j )(λ) -(I j0 K j0 )(λ) ⩽ 1 2 ˆj j0 dn n 2 ⩽ |j-j0| 2 j j0 • (5.24)
Inserting this estimate into (5.20) gives

Ω j (λ) -Ω j0 (λ) ⩾ (j -j 0 ) Ω -1 2j .
Therefore for j > N = Ω -1 and j > j 0 ⩾ 1 we get

Ω j (λ) -Ω j0 (λ) ⩾ 1 2 Ω (j -j 0 ). (5.25)
Now for j ̸ = j 0 ∈ 1, N we get from the point (ii) that the map λ ∈ [λ 0 , λ 1 ] → Ω j (λ) -Ω j0 (λ) does not vanish and therefore we can find by a compactness argument a constant C > 0 such that

∀λ ∈ [λ 0 , λ 1 ], |Ω j (λ) -Ω j0 (λ)| ⩾ C|j -j 0 |.
Taking C 0 = min(C, 1 2 Ω) and combining the preceding inequality with (5.25) we obtain

∀λ ∈ [λ 0 , λ 1 ], ∀j ⩾ j 0 ⩾ 1, |Ω j (λ) -Ω j0 (λ)| ⩾ C 0 |j -j 0 |. Finally we get ∀λ ∈ [λ 0 , λ 1 ], ∀j, j 0 ∈ N, |Ω j (λ) -Ω j0 (λ)| ⩾ C 0 |j -j 0 |.
Let us now move to the estimate Ω j (λ) + Ω j0 (λ) for j, j 0 ∈ N. Since both quantities are positive then using the point (iv) yields

∀λ ∈ [λ 0 , λ 1 ], |Ω j (λ) + Ω j0 (λ)| = Ω j (λ) + Ω j0 (λ) ⩾ Ω(j + j 0 ) ⩾ C 0 (j + j 0 ).
This completes the proof of the desired estimate.

(vi) Let q 0 ∈ N * . let q ∈ 0, q 0 . Differentiating q times (5.19) in λ, one obtains

∂ q λ Ω j (λ) -Ω j0 (λ) = (j -j 0 ) ∂ q λ Ω + ∂ q λ I 1 (λ)K 1 (λ) -∂ α λ I j (λ)K j (λ) + j 0 ∂ q λ I j0 (λ)K j0 (λ) -I j (λ)K j (λ) . ( 5.26) 
Similarly, we get by differentiating q times in λ the identity (5.21)

∂ q λ (I n K n )(λ) = 2 q-1 λ q ˆ∞ 0 J (q) 0
2λ sinh( t 2 ) sinh q ( t 2 )e -nt dt.

(5.27)

From (5.23) we deduce for any λ ∈ [λ 0 , λ 1 ],

|∂ q λ (I n K n )(λ)| ⩽ 2 q-1 λ q 1 ˆ∞ 0 sinh q ( t 2 )e -nt dt.
Then using the inequality sinh x ⩽ e x 2 for x ⩾ 0 we get for n > q 

2 |∂ q λ (I n K n )(λ)| ⩽ λ q 1 2 ˆ∞ 0 e q 2 -n t dt ⩽ λ q 1 2n-q • (5.
∂ q λ I j (λ)K j (λ) ⩽ C. (5.29)
Differentiating in n (5.27) yields

∂ q λ ∂ n (I n K n )(λ) = -2 q-1 λ q ˆ∞ 0 J (q) 0
2λ sinh(t/2) sinh q (t/2)te -nt dt.

Part I

Therefore applying similar arguments used to show (5.28) gives for 2n > q

|∂ q λ ∂ n (I n K n )(λ)| ⩽ λ q 1 2 ˆ∞ 0 te -n- q 2 t dt ⩽ 2λ q 1 (2n -q) 2 • (5.30)
Then Taylor Formula allows to get for j, j 0 > q

2 sup λ∈[λ0,λ1] |∂ q λ (I j K j -I j0 K j0 )(λ)| ⩽ C |j-j0| jj0 • (5.31)
Setting N = ⌊ q0 2 ⌋ + 1, one obtains for any j, j 0 ⩾ N

max q∈ 0,q0 sup λ∈[λ0,λ1] |j 0 ∂ q λ (I j K j -I j0 K j0 )(λ)| ⩽ C|j -j 0 |•
By compactness argument, one obtains for any j, j 0 ∈ 1, N

max q∈ 0,q0 sup λ∈[λ0,λ1] |j 0 ∂ q λ (I j K j -I j0 K j0 )(λ)| ⩽ C|j -j 0 |•
Now for the remaining case j 0 ∈ 1, N and j ⩾ N one has gathering the previous two estimates

max q∈ 0,q0 sup λ∈[λ0,λ1] |j 0 ∂ q λ (I j K j -I j0 K j0 )(λ)| ⩽ N max q∈ 0,q0 sup λ∈[λ0,λ1] |∂ q λ (I j K j -I N K N )(λ)| + N max q∈ 0,q0 sup λ∈[λ0,λ1] |∂ q λ (I N K N -I j0 K j0 )(λ)| ⩽ C|j -N | + C|N -j 0 | ⩽ C|j -j 0 |•
Thus we can find C > 0 such that for any j, j 0 ∈ N * max q∈ 0,q0 

sup λ∈[λ0,λ1] |j 0 ∂ q λ (I j K j -I j0 K j0 )(λ)| ⩽ C|j -j 0 |•
|∂ q λ (Ω j (λ) -Ω j0 (λ))| ⩽ C|j -j 0 |.
This ends the proof of Lemma 5.3.

Non-degeneracy and transversality

Fix finitely many tangential sites

S ≜ {j 1 , . . . , j d } ⊂ N * with d ⩾ 1 and 1 ⩽ j 1 < • • • < j d .
We consider the linear vector frequency at the equilibrium state ω Eq (λ) ≜ (Ω j (λ)) j∈S , (5.32) where Ω j (λ) is defined by (5.14). The main purpose is to study some Diophantine structure of the curve λ ∈ (λ 0 , λ 1 ) → ω Eq (λ) for fixed 0 < λ 0 < λ 1 . In particular, we shall focus on the non-degeneracy and the transversality conditions of these eigenvalues which are essential in getting non trivial Cantor set from which quasi-periodic solutions emerge at the linear and nonlinear levels. Notice that the approach that we shall implement here has been developed before in several papers such as [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Bambusi | Degenerate KAM theory for partial differential equations[END_REF][START_REF] Rüssmann | Invariant tori in non-degenerate nearly integrable Hamiltonian systems[END_REF]. Before exploring these properties we need to fix some definitions.

Definition 5.1. Given two numbers λ 0 < λ 1 and d ∈ N * , a vector-valued function f = (f 1 , ..., f d ) :

[λ 0 , λ 1 ] → R d is called non-degenerate if, for any vector c = (c 1 , ..., c d ) ∈ R d \ {0}, the function f • c = f 1 c 1 + ... + f d c d is not identically zero on the whole interval [λ 0 , λ 1 ]
. This means that the curve of f is not contained in an hyperplane.

Now we shall prove the following result on the non-degeneracy of the linear frequencies which is related to the asymptotic behavior of Bessel functions (I j K j )(λ) for large values of λ. This property will be crucial to check a suitable transversality assumption.

Lemma 5.4. Let Ω ∈ R * and 0 < λ 0 < λ 1 , then the frequency curve ω Eq defined by (5.32) and the vector-valued function λ → (Ω + I 1 K 1 , ω Eq ) ∈ R d+1 are non degenerate on [λ 0 , λ 1 ] in the sense of the Definition 5.1.

Proof. ▶ Let us start with checking the non-degeneracy of ω Eq . For this aim, we shall argue by contradiction and assume the existence of a fixed vector c

= (c k ) 0⩽k⩽d ∈ R d such that ∀λ ∈ [λ 0 , λ 1 ], d k=1 c k Ω j k (λ) = 0. (5.33) 
Since for all j ∈ N * , the application λ → (I j K j )(λ) admits a holomorphic extension in the open connected set λ ∈ C, Re(λ) > 0 (see Appendix C) then by the continuation principle we obtain ∀λ > 0,

d k=1 c k j k (I j k K j k )(λ) = d k=1 c k j k (I 1 K 1 )(λ) + Ω . (5.34)
Using the asymptotic expansion (C.15) obtained for I j K j with large λ, we first get

∀j ∈ N * , lim λ→∞ (I j K j )(λ) = 0.
Then taking the limit in (5.34) as λ → ∞ implies

Ω d k=1 c k j k = 0.
Since we assumed that Ω ̸ = 0, then necessary we find that d k=1 c k j k = 0 which implies in turn according to (5.34) ∀λ > 0,

d k=1 c k j k (I j k K j k )(λ) = 0.
Applying once again the expansion (C.15) yields

∀m ∈ 1, d , d k=1 c k j k α j k ,m = 0. (5.35)
We consider the matrix

A d = (A m,k ) 1⩽m,k⩽d ∈ M d (R) defined by ∀(m, k) ∈ 1, d 2 , A m,k ≜ j k α j k ,m .
Part I

Then the system (5.35) is equivalent to

A d c = 0 with c =     c 1 . . . c d     .
To get the desired result, c = 0, it suffices to check that det A d ̸ = 0. Using the expression of the coefficients α j k ,m in (C. [START_REF] Veiga | Kato's perturbation theory and well-posedness for the Euler equations in bounded domain[END_REF]) one deduces that

α j k ,m = a m (µ j k -1)Q m µ j k , a m = (-1) m (2m)! 4 m m! 2 , µ j = 4j 2 , (5.36) with Q 1 (X) = 1 and for m ≥ 2 Q m (X) = m ℓ=2 X -(2ℓ -1) 2 .
Remark that Q m is a unitary polynomial of degree m -1. Using the homogeneity of the determinant with respect to each column and row we find

det A d = d m,k=1 a m (µ j k -1) det B d ,
with B d the matrix given by

B d ≜     Q 1 (µ j1 ) • • • Q 1 (µ j d ) . . . . . . Q d (µ j1 ) • • • Q d (µ j d )     .
Therefore we infer that A d is nonsingular if det B d ̸ = 0. On the other hand, the computation of det B d can be done in a similar way to Vandermonde determinant. Indeed, define the polynomial given by the determinant

P (X) ≜ Q 1 (µ j1 ) • • • Q 1 (µ j d-1 ) Q 1 (X) . . . . . . . . . Q d (µ j1 ) • • • Q d (µ j d-1 ) Q d (X)
.

Then P is a polynomial of degree d -1 and vanishes at all the points X = µ j k for k ∈ 1, d -1 .

Consequently, we get

det B d = P (µ j d ) = det B d-1 d-1 k=1 µ j d -µ j k .
Therefore, iterating this identity yields

det B d = 1⩽k<ℓ⩽d-1 µ j ℓ -µ j k .
Since µ j ℓ ̸ = µ j k for ℓ ̸ = k we get det B d ̸ = 0 which achieves the proof of the first point.

▶ Next we move to the second point of the lemma and show that if

∀λ ∈ [λ 0 , λ 1 ], c 0 Ω + (I 1 K 1 )(λ) + d k=1 c k j k Ω + (I 1 K 1 )(λ) -(I j k K j k )(λ) = 0,
then necessary c 0 = ... = c d = 0. As before we can extend by analyticity the preceding identity to (0, ∞)

By checking the terms in 1 λ in the preceding identity using (C.15) we find immediately that c 0 = 0. Therefore the system reduces to (5.33) and then we may apply the result of the first point in order to get c 1 = ... = c d = 0. This completes the proof of Lemma 5.4.

The next goal is to check that Rüssemann transversality conditions are satisfied for the linear frequencies of the equilibrium state. Namely, we shall prove the following result in the spirit of the papers [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Bambusi | Degenerate KAM theory for partial differential equations[END_REF][START_REF] Rüssmann | Invariant tori in non-degenerate nearly integrable Hamiltonian systems[END_REF]. Lemma 5.5. [Transversality] Given 0 < λ 0 < λ 1 , there exist q 0 ∈ N and ρ 0 > 0 such that the following results hold true. Recall that ω Eq and Ω j are defined in (5.32) and (5.14) respectively.

(i) For any l ∈ Z d \ {0}, we have

inf λ∈[λ0,λ1] max q∈ 0,q0 |∂ q λ ω Eq (λ) • l| ⩾ ρ 0 ⟨l⟩. (ii) For any (l, j) ∈ (Z d × N) \ {(0, 0)} inf λ∈[λ0,λ1] max q∈ 0,q0 ∂ q λ ω Eq (λ) • l ± j Ω + (I 1 K 1 )(λ) ⩾ ρ 0 ⟨l⟩. (iii) For any (l, j) ∈ Z d × (N * \ S) inf λ∈[λ0,λ1] max q∈ 0,q0 ∂ q λ (ω Eq (λ) • l ± Ω j (λ)) ⩾ ρ 0 ⟨l⟩. (iv) For any l ∈ Z d , j, j ′ ∈ N * \ S with (l, j) ̸ = (0, j ′ ), we have inf λ∈[λ0,λ1] max q∈ 0,q0 ∂ q λ ω Eq (λ) • l + Ω j (λ) ± Ω j ′ (λ) ⩾ ρ 0 ⟨l⟩.

Proof. (i)

We argue by contradiction by assuming that for any q 0 ∈ N and ρ 0 > 0, there exist l ∈ Z d \ {0}

and λ ∈ [λ 0 , λ 1 ] such that max q∈ 0,q0 |∂ q λ (ω Eq (λ) • l)| < ρ 0 ⟨l⟩.
It follows that for any m ∈ N, and by taking q 0 = m and ρ 0 = 1 m+1 , there exist Hence, passing to the limit in (5.37) as m → ∞ leads to

l m ∈ Z d \ {0} and λ m ∈ [λ 0 , λ 1 ] such that max q∈ 0,m |∂ q λ ω Eq (λ m ) • l m | < ⟨lm⟩ m+1 and therefore ∀q ∈ N, ∀m ⩾ q, ∂ q λ ω Eq (λ m ) • lm ⟨lm⟩ < 1 m+1 • (5.
∀q ∈ N, ∂ q λ ω Eq ( λ) • c = 0.
Thus, we conclude that the real analytic function λ → ω Eq (λ) • c is identically zero which contradicts the non-degeneracy condition stated in Lemma 5.4.

(ii) We shall first check the result for the case l = 0 and j ∈ N * . Obviously, one has from the monotonicity

Part I of λ → I 1 (λ)K 1 (λ) stated in Appendix C, inf λ∈[λ0,λ1] max q∈ 0,q0 ∂ q λ j Ω + (I 1 K 1 )(λ) ⩾ Ω + (I 1 K 1 )(λ 1 )
⩾ ρ 0 ⟨l⟩, for some ρ 0 > 0. Now let us consider l ∈ Z d \{0} and j ∈ N. Then we may write according to the triangle and Cauchy-Schwarz inequalities combined with the boundedness of ω Eq and the monotonicity of

λ → I 1 (λ)K 1 (λ) stated in Appendix C, ω Eq (λ) • l ± j Ω + I 1 (λ)K 1 (λ) ⩾ j Ω + I 1 (λ 1 )K 1 (λ 1 ) -|ω Eq (λ) • l| ⩾ c 0 j -C⟨l⟩ ⩾ ⟨l⟩
provided that j ⩾ C 0 ⟨l⟩ for some C 0 > 0. Therefore we reduce the proof to indices j and l with 0 ⩽ j < C 0 ⟨l⟩, j ∈ N and l ∈ Z d \{0}.

(5.38)

Arguing by contradiction as in the previous case, we may assume the existence of sequences l m ∈ Z d \ {0},

j m ∈ N satisfying (5.38) and λ m ∈ [λ 0 , λ 1 ] such that max q∈ 0,m ∂ q λ ω Eq (λ) • lm |lm| ± j m Ω+(I1K1)(λ) |lm| |λ=λm < 1 m+1
and therefore Hence, by letting m → ∞ in (5.39), using that λ

∀q ∈ N, ∀m ⩾ q, ∂ q λ ω Eq (λ) • lm |lm| ± j m Ω+(I1K1)(λ) |lm| |λ=λm < 1 m+1 • (5.
→ (I 1 K 1 )(λ) is smooth, we find ∀q ∈ N, ∂ q λ ω Eq (λ) • c ± d Ω + (I 1 K 1 )(λ) |λ=λ = 0.
Thus, the real analytic function λ → ω Eq (λ)

• c ± d Ω + I 1 (λ)K 1 (λ) with (c, d) ̸ = (0, 0) is identically zero
and this contradicts Lemma 5.4.

(iii) Consider (l, j) ∈ Z d × (N * \ S).
Then applying the triangle inequality and Lemma 5.3-(iv), yields

|ω Eq (λ) • l ± Ω j (λ)| ⩾ |Ω j (λ)| -|ω Eq (λ) • l| ⩾ Ωj -C|l| ⩾ ⟨l⟩ provided j ⩾ C 0 ⟨l⟩ for some C 0 > 0.
Thus as before we shall restrict the proof to indices j and l with 0 ⩽ j < C 0 ⟨l⟩, j ∈ N * \ S and l ∈ Z d \{0}.

(5.40)

Proceeding by contradiction as in the previous case, we may assume the existence of sequences l m ∈ Z d \{0}, 

j m ∈ N \ S satisfying (5.40) and λ m ∈ [λ 0 , λ 1 ] such that max q∈ 0,m ∂ q λ ω Eq (λ) • lm |lm| ± Ωj m (λ) |lm| |λ=λm < 1 m+1 and therefore ∀q ∈ N, ∀m ⩾ q, ∂ q λ ω Eq (λ) • lm |lm| ± Ωj m (λ) |lm| |λ=λm < 1 m+1 • (5.
∀q ∈ N, ∂ q λ ω Eq (λ) • l ± Ωj(λ) |λ=λ = 0.
Thus, the analytic function λ → ω Eq (λ) • l ± Ωj(λ) with ( l, 1) ̸ = (0, 0) is identically zero which contradicts Lemma 5.4.

▶ Case ❷ : (l m ) m is unbounded.
Up to an extraction we can assume that lim

m→∞ |l m | = ∞.
We have two sub-cases.

• Sub-case ① : (j m ) m is bounded. In this case and up to an extraction we can assume that it converges. Then, taking the limit m → ∞ in (5.41), we find

∀q ∈ N, ∂ q λ ω Eq ( λ) • c = 0.
As before we conclude that function λ → ω Eq (λ) • c with c ̸ = 0 is identically zero which contradicts Lemma 5.4.

• Sub-case ② : (j m ) m is unbounded. Then up to an extraction we can assume that lim m→∞ j m = ∞. We write according to (5.14) is bounded, thus up to an extraction we can assume that it converges to d. Using the first inequality of (5.22) we deduce that

Ωj m (λ) |lm| = jm |lm| Ω + (I 1 K 1 )(λ) -(I jm K jm )(λ) . ( 5 
∀ m ∈ N, sup λ∈R (I jm K jm )(λ) ≤ 1 2jm , which implies that lim m→∞ sup λ∈R (I jm K jm )(λ) = 0.
Moreover by (5.28), we have

lim m→∞ sup λ∈[λ0,λ1] |∂ q λ (I jm K jm )(λ)| = 0.
(5.43)

Taking the limit in (5.42) and using (5.43) yields

lim m→∞ ∂ q λ Ωj m (λm) |lm| = ∂ q λ d Ω + I 1 K 1 (λ) | λ=λ .
Part I

Consequently, taking the limit m → ∞ in (5.41), we have

∀q ∈ N, ∂ q λ ω Eq (λ) • c ± d Ω + I 1 K 1 (λ) |λ=λ = 0.
By continuation the analytic function λ → ω Eq (λ)

• c ± d Ω + I 1 (λ)K 1 (λ) with (c, d) ̸ = 0 is identically zero which contradicts Lemma 5.4.
(iv) Consider l ∈ Z d , j, j ′ ∈ N * \ S with (l, j) ̸ = (0, j ′ ). Then applying the triangle inequality combined with Lemma 5.3-(v), we infer

|ω Eq (λ) • l + Ω j (λ) ± Ω j ′ (λ)| ⩾ |Ω j (λ) ± Ω j ′ (λ)| -|ω Eq (λ) • l| ⩾ C 0 |j ± j ′ | -C|l| ⩾ ⟨l⟩ provided that |j ± j ′ | ⩾ c 0 ⟨l⟩ for some c 0 > 0.
Then it remains to check the proof for indices satisfying

|j ± j ′ | < c 0 ⟨l⟩, l ∈ Z d \{0} and j, j ′ ∈ N * \ S. (5.44) 
Reasoning by contradiction as in the previous cases, we get for all m ∈ N, real numbers

l m ∈ Z d \ {0}, j m , j ′ m ∈ N * \ S satisfying (5.44) and λ m ∈ [λ 0 , λ 1 ] such that max q∈ 0,m ∂ q λ ω Eq (λ) • lm |lm| + Ωj m (λ)±Ω j ′ m (λ) |lm| |λ=λm < 1 m+1 implying in turn that ∀q ∈ N, ∀m ⩾ q, ∂ q λ ω Eq (λ) • lm |lm| + Ωj m (λ)±Ω j ′ m (λ) |lm| |λ=λm < 1 m+1 • (5.45)
Up to an extraction we can assume that lim ▶ Case ❶ : (l m ) m is bounded. We shall only focus on the most delicate case associated to the difference

Ω jm -Ω j ′ m .
Up to an extraction we may assume that lim m→∞ l m = l ̸ = 0. Now according to (5.44) we have two sub-cases to discuss depending whether the sequences (j m ) m and (j ′ m ) m are simultaneously bounded or unbounded.

• Sub-case ① : (j m ) m and (j ′ m ) m are bounded. In this case, up to an extraction we may assume that these sequences are stationary j m = j and j ′ m = j′ with j, j′ ∈ N * \ S. Hence taking the limit as m → ∞ in (5.45), we infer

∀q ∈ N, ∂ q λ ω Eq (λ) • l + Ωj(λ) -Ωj′(λ) |λ=λ = 0.
Thus, the analytic function λ → ω Eq (λ)• l +Ωj(λ)-Ω j′ (λ) is identically zero. If j = j′ then this contradicts Lemma 5.4 since l ̸ = 0. However in the case j ̸ = j′ ∈ N * \ S this still contradicts this lemma applied with the vector frequency (ω Eq , Ωj, Ω j′ ) instead of ω Eq .

• Sub-case ② : (j m ) m and (j ′ m ) m are both unbounded and without loss of generality we can assume that lim m→∞ j m = lim m→∞ j ′ m = ∞. From (5.31) combined with (5.44) and the boundedness of (l m ) m we deduce that

∂ q λ (I jm K jm -I j ′ m K j ′ m )(λ m ) ⩽ C jmj ′ m , which implies in turn lim m→∞ j ′ m ∂ q λ (I jm K jm -I j ′ m K j ′ m )(λ m ) = 0. (5.46)
Coming back to (5.14) we get the splitting

Ω jm (λ) -Ω j ′ m (λ) =(j m -j ′ m ) Ω + (I 1 K 1 )(λ) -(j m -j ′ m )(I jm K jm )(λ) + j ′ m (I j ′ m K j ′ m )(λ) -(I jm K jm )(λ) . (5.47)
Therefore by applying (5.43) and (5.46) we get for any q ∈ N,

lim m→∞ ∂ q λ Ω jm (λ) -Ω j ′ m (λ)-(j m -j ′ m ) Ω + (I 1 K 1 )(λ) |λ=λm = 0.
Using once again (5.44) and up to an extraction we have lim

m→∞ jm-j ′ m |lm| = d. Thus lim m→∞ |l m | -1 ∂ q λ Ω jm (λ) -Ω j ′ m (λ) |λ=λm = d ∂ q λ Ω + (I 1 K 1 )(λ) |λ=λ .
By taking the limit as m → ∞ in (5.45), we find

∀q ∈ N, ∂ q λ ω Eq (λ) • c + d Ω + (I 1 K 1 )(λ) |λ=λ = 0.
Thus, the analytic function λ → ω Eq (λ) • Sub-case ①. The sequences (j m ) m and (j ′ m ) m are bounded. In this case and up to an extraction they will converge and then taking the limit in (5.45) yields,

• c + d(Ω + I 1 (λ)K 1 (λ)) with (c, d) ̸ = 0 is
∀q ∈ N, ∂ q λ ω Eq ( λ) • c = 0.
which leads to a contradiction as before.

• Sub-case ②. The sequences (j m ) m and (j ′ m ) m are both unbounded. This is similar to the sub-case ② of the case ❶.

• Sub-case ③. The sequence (j m ) m is unbounded and (j ′ m ) m is bounded (the symmetric case is similar). Without loss of generality we can assume that lim (5.46) in order to get for any q ∈ N,

lim m→∞ |l m | -1 ∂ q λ Ω jm (λ) ± Ω j ′ m (λ) -(j m ± j ′ m ) Ω + (I 1 K 1 )(λ) |λ=λm = lim m→∞ ∂ q λ (jm±j ′ m ) |lm| (I jm K jm )(λ) ± j ′ m |lm| (I jm K jm )(λ) -(I j ′ m K j ′ m )(λ) |λ=λm = 0.
Hence, taking the limit in (5.45) implies

∀q ∈ N, ∂ q λ ω Eq (λ) • c + d Ω + (I 1 K 1 )(λ) λ=λ = 0.
Thus, the analytic function λ → ω Eq (λ) 

• c + d Ω + I 1 (λ)K 1 (λ)

Linear quasi-periodic solutions

Notice that all the solutions of (5.10) taking the form (5.13) are either periodic, quasi-periodic or almost periodic in time, with linear frequencies of oscillations Ω j (λ) defined by (5.14) These different notions depend on the irrationality properties of the frequencies {Ω j (λ)} and on the cardinality of the Fourier-space support (finite for quasi-periodic functions and possibly infinite for almost periodic ones). Remark that we have the implications Periodic ⇒ Quasi-periodic ⇒ Almost periodic.

We shall prove here the existence of quasi-periodic solutions for the linear equation (5.10) when λ belongs to a massive Cantor set. 

ρ(t, θ) = j∈S ρ j cos(jθ -Ω j (λ)t), ρ j ∈ R * (5.48)
is a time quasi-periodic reversible solution to the equation (5.10) with the vector frequency

ω Eq (λ) ≜ Ω j (λ) j∈S .
Proof. It is easy to check that any function in the form (5.48) is a reversible solution to (5.10), that is a solution satisfying the property r(-t, -θ) = r(t, θ).

Then, it remains to check the non-resonance condition (1.24) for the frequency vector ω Eq for almost every

λ ∈ [λ 0 , λ 1 ].
For that purpose, we consider τ 1 > 0, γ ∈ (0, 1) and define the set C γ by

C γ ≜ l∈Z d \{0} λ ∈ [λ 0 , λ 1 ] s.t. |ω Eq (λ) • l| > γ ⟨l⟩ τ 1 .
Therefore its complement set takes the form

[λ 0 , λ 1 ] \ C γ = l∈Z d \{0} R l where R l ≜ λ ∈ [λ 0 , λ 1 ] s.t. |ω Eq (λ) • l| ⩽ γ ⟨l⟩ τ 1 . It follows that [λ 0 , λ 1 ] \ C γ ⩽ l∈Z d \{0} |R l | .
Now applying Lemma 5.6 together with Lemma 5.5-(i), one obtains

|R l | ≲ γ 1 q 0 ⟨l⟩ -1-τ 1 +1 q 0 .
Then by imposing

τ 1 > (d -1)q 0 -1,
one gets a convergent series with

[λ 0 , λ 1 ] \ C γ ⩽ Cγ 1 q 0 .
Now, we define the Cantor set

C ≜ γ>0 C γ .
Then one gets easily for any γ > 0

λ 1 -λ 0 -Cγ 1 q 0 ⩽ |C γ | ⩽ |C| ⩽ λ 1 -λ 0 .
Passing to the limit as γ → 0 yields

|C| = λ 1 -λ 0 ,
which achieves the proof of Proposition 5.1.

In the previous proof, we used the following Lemma whose proof can be found in [START_REF] Rüssmann | Invariant tori in non-degenerate nearly integrable Hamiltonian systems[END_REF]Thm. 17.1].

Notice that in all the document, we use the notation |A| as the Lebesgue measure of a given measurable set A.

Lemma 5.6. Let q 0 ∈ N * , a, b ∈ R with a < b and m, M ∈ (0, ∞). Let f ∈ C q0 ([a, b], R) such that inf x∈[a,b] max q∈ 0,q0 |f (q) (x)| ⩾ m.
Then, there exists

C = C(a, b, q 0 , ∥f ∥ C q 0 ([a,b],R) ) > 0 such that {x ∈ [a, b] s.t. |f (x)| ⩽ M} ⩽ C M 1 q 0 m 1+ 1 q 0 •

Hamiltonian toolkit and approximate inverse

In this section, we shall reformulate the problem into the form of searching for zeros of a functional F.

We first rescale the equation by introducing a small parameter ε. This allows us to see the Hamiltonian equation (4.13) as a perturbation of the equilibirum one (5.10). The latter being integrable and admitting quasi-periodic solutions in view of Lemma 5.2-2 and Lemma 5.1, we can hope using KAM techniques to find quasi-periodic solutions to the first one. This approach has been intensively used before in [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Baldi | KAM for autonomous quasi-linear perturbations of KdV[END_REF][START_REF] Berti | Traveling quasi-periodic water waves with constant vorticity[END_REF][START_REF] Berti | Pure gravity traveling quasi-periodic water waves with constant vorticity[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF]. We select finitely-many tangential sites S and decompose the phase space into tangential and normal subspaces described by the selection of Fourier modes belonging to S or not. On the tangential part, containing the main part of the quasi-periodic solutions, we introduce action-angle variables allowing to reformulate the problem in terms of embedded invariant tori. We shall also be concerned with some regularity aspects for the perturbed Hamiltonian vector field appearing in F and needed during the Nash-Moser scheme. Finally, we construct an approximate right inverse for the linearized operator associated to

F.

Next, with the result of Lemma 5.2 we can easily check that the equation (4.13) can be written in the form

∂ t r = ∂ θ L(λ)(r) + X P (r),
where X P is the Hamiltonian vector field defined by

X P (r) ≜ I 1 (λ)K 1 (λ)∂ θ r -∂ θ K λ * r -F λ [r]. (6.1) 
Remind that F λ [r] is introduced in (4.6) and the convolution kernel is stated in (5.12). To measure the smallness condition it seems to be more convenient to introduce a small parameter ε and rescale the Hamiltonian as done for instance in the papers [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF]. To do that we rescale the solution as follows

Part I r → εr with r bounded. Therefore the Hamiltonian equation takes the form

∂ t r = ∂ θ L(λ)(r) + εX Pε (r), (6.2) 
where X Pε is the rescaled Hamiltonian vector field defined by X Pε (r) ≜ ε -2 X P (εr). Notice that (6.2) can be recast in the Hamiltonian form

∂ t r = ∂ θ ∇H ε (r), (6.3) 
where the rescaled Hamiltonian H ε (r) is given by

H ε (r) ≜ ε -2 H(εr) ≜ H L (r) + εP ε (r), (6.4) 
with H L being the quadratic Hamiltonian defined in Lemma 5.2 and εP ε (r) is composed with terms of higher order more than cubic.

Action-angle reformulation

Let us consider finitely many Fourier-frenquencies, called tangential sites, gathered in the tangantial set S defined by

S ≜ {j 1 , . . . , j d } ⊂ N * with 1 ⩽ j 1 < j 2 < . . . < j d .
We now define the symmetrized tangential sets S and S 0 by S ≜ S ∪ (-S) = {±j, j ∈ S} and S 0 ≜ S ∪ {0}. (6.5)

Recall from (5.32) that we denote the unperturbed tangential frequency vector by ω Eq (λ) = Ω j (λ) j∈S , (

where Ω j (λ) are given by (5.14). Since the application λ → ω Eq (λ) is continuous then ω Eq [λ 0 , λ 1 ] is a compact subset of R d . In particular, there exists R 0 > 0 such that

ω Eq [λ 0 , λ 1 ] ⊂ U ≜ B(0, R 0 ).
Therefore, the parameters set O is defined as

O ≜ (λ 0 , λ 1 ) × U . (6.7)
For s ∈ R, we decompose the phase space of L 2 0 (T) as the direct sum

L 2 0 (T) =L S ⊥ ⊕ L 2 ⊥ , ( 6.8 
)

L S ≜ v = j∈S r j e j , r j = r -j , L 2 ⊥ ≜ z = j∈Z\S0 z j e j ∈ L 2 , z j = z -j ,
where e j (θ) = e ijθ . We denote by Π S , Π ⊥ S0 the corresponding orthogonal projectors defined by

r = v + z, v ≜ Π S r ≜ j∈S r j e j , z ≜ Π ⊥ S0 r ≜ j∈Z\S0 r j e j , ( 6.9) 
where v and z are called the tangential and normal variables, respectively. Fix some small amplitudes (a j ) j∈S ∈ (R * + ) d and set a -j = a j . We shall now introduce the action-angle variables on the tangential set H S by making the following symplectic polar change of coordinates

∀ j ∈ S, r j = a 2 j + |j|I j e iϑj , ( 6.10) 
where

∀ j ∈ S, I -j = I j ∈ R and ϑ -j = -ϑ j ∈ T. (6.11)
Thus, any function of the phase space L 2 0 decomposes as

r = A(ϑ, I, z) ≜ v(ϑ, I) + z where v(ϑ, I) ≜ j∈S a 2 j + |j|I j e iϑj e j . ( 6.12) 
In these coordinates the solutions (5.48) of the linear system (5.10) simply read as v(-ω Eq (λ)t, I) where ω Eq is defined in (6.6) and I ∈ R d such that the quantity under the square root is positive. The involution S defined in (4.27) now reads in the new variables

S : (ϑ, I, z) → (-ϑ, I, S z) (6.13)
and the symplectic 2-form in (4.26) becomes after straightforward computations using (6.10) and (6.11)

W = j∈S dϑ j ∧ dI j + 1 2i j∈Z\S0 1 j dr j ∧ dr -j = j∈S dϑ j ∧ dI j ⊕ W |L 2 ⊥ , (6.14) 
where W |L 2 ⊥ denotes the restriction of W to L 2 ⊥ . This proves that the transformation A is symplectic. The next goal is to study the Hamiltonian system generated by the Hamiltonian H ε in (6.4), in the action-angle and normal coordinates (ϑ,

I, z) ∈ T ν × R ν × L 2
⊥ . We consider the Hamiltonian H ε defined by

H ε ≜ H ε • A, (6.15)
where A is the map described before in (6.12). Since L(λ) in (5.15) is a Fourier multiplier keeping invariant the subspaces L S and L 2 ⊥ , then the quadratic Hamiltonian H L in (5.15) in the variables (ϑ, I, z) reads, up to an additive constant which can be removed since it does not change the dynamics in view of (4.13),

H L • A = - j∈S Ω j (λ)I j + 1 2 ⟨L(λ) z, z⟩ L 2 (T) = -ω Eq (λ) • I + 1 2 ⟨L(λ) z, z⟩ L 2 (T) , (6.16) 
where ω Eq ∈ R d is the unperturbed tangential frequency vector defined by (5.14). According to (6.4) and (6.16), one deduces that the Hamiltonian H ε in (6.15) has the form

H ε = N + εP ε with N ≜ -ω Eq (λ) • I + 1 2 ⟨L(λ) z, z⟩ L 2 (T) and P ε ≜ P ε • A. (6.17)
We look for an embedded invariant torus

i : T d → R d × R d × L 2 ⊥ φ → i(φ) ≜ (ϑ(φ), I(φ), z(φ)) (6.18)
of the Hamiltonian vector field

X Hε ≜ (∂ I H ε , -∂ ϑ H ε , Π ⊥ S0 ∂ θ ∇ z H ε ) (6.19) Part I
filled by quasi-periodic solutions with Diophantine frequency vector ω. Remark that for the value ε = 0, the Hamiltonian system reduces to the linear equation

ω • ∂ φ i(φ) = X H0 (i(φ))
which admits the trivial solution given by the flat torus i flat (φ) = (φ, 0, 0) provided that ω = -ω Eq (λ). In what follows we shall consider the modified Hamiltonian equation indexed with a parameter α ∈ R d ,

H α ε ≜ N α + εP ε where N α ≜ α • I + 1 2 ⟨L(λ) z, z⟩ L 2 (T) . (6.20)
For the value α = -ω Eq (λ) we have H α ε = H ε . The parameter α will play the role of a Lagrangian multiplier in order to satisfy a compatibility condition during the approximate inverse process. Notice that the initial problem is reduced to finding the zeros of the nonlinear operator

F(i, α, µ, ε) ≜ ω • ∂ φ i(φ) -X H α ε (i(φ)) =    ω • ∂ φ ϑ(φ) -α -ε∂ I P ε (i(φ)) ω • ∂ φ I(φ) + ε∂ θ P ε (i(φ)) ω • ∂ φ z(φ) -∂ θ L(λ)z(φ) + ε∇ z P ε i(φ)    , ( 6.21) 
where µ ≜ (λ, ω) and where P ε is defined in (6.4). We point out that we can easily check that the Hamiltonian H α ε is reversible in the sense of the Definition A.2, that is,

H α ε • S = H α ε , (6.22) 
where the involution S is defined in (6.13). Thus, we shall look for reversible solutions of

F(i, α, µ, ε) = 0, that is, solutions satisfying Si(φ) = i(-φ),
or equivalently,

ϑ(-φ) = -ϑ(φ), I(-φ) = I(φ), z(-φ) = (S z)(φ). (6.23)
We define the periodic component I of the torus i by

I(φ) ≜ i(φ) -(φ, 0, 0) = Θ(φ), I(φ), z(φ) with Θ(φ) ≜ ϑ(φ) -φ.
We define the weighted Sobolev norm of I as

∥I∥ γ,O q,s ≜ ∥Θ∥ γ,O q,s + ∥I∥ γ,O q,s + ∥z∥ γ,O q,s .

Hamiltonian regularity

This section is devoted to some regularity aspects of the Hamiltonian vector field introduced in (6.1),

together with the rescaled one associated to the Hamiltonian described in (6.17). First, we shall give a useful decomposition of the nonlocal operator appearing in Lemma 5.1.

Lemma 6.1. We have the following decomposition of the operator L r defined in (5.2).

L r = K λ * • + L r,1 , (6.24)
where K λ is introduced in (5.12) and L r,1 is an integral operator with kernel K r,1 taking the following form

K r,1 (λ, φ, θ, η) ≜ K (η -θ)K 1 r,1 (λ, φ, θ, η) + K 2 r,1 (λ, φ, θ, η), (6.25)
with K defined by

K (θ) ≜ sin 2 θ 2 log sin θ 2 (6.26)
and K 1 r,1 , K 2 r,1 smooth kernels. Moreover, the kernel K r,1 satisfies the following symmetry property

r(-φ, -θ) = r(φ, θ) ⇒ K r,1 (λ, -φ, -θ, -η) = K r,1 (λ, φ, θ, η). (6.27)
In addition,

∥∂ θ K λ * r∥ γ,O q,s ≲ ∥r∥ γ,O q,s . (6.28)
Proof. We start by proving (6.28). According to (5.16), the Fourier coefficients of

∂ θ K λ are (ijI j (λ)K j (λ)) j∈Z .
Hence

∥∂ θ K λ * r∥ 2 H s = (l,j)∈Z d ×Z ⟨l, j⟩ 2s j 2 I 2 |j| (λ)K 2 |j| (λ)|r l,j | 2 ⩽ 1 4 ∥r∥ 2 H s .
Notice that the last inequality is obtained by the decay property of the product I j K j on R * + , (C.3) and (C.13). Thus we deduce that

∥∂ θ K λ * r∥ H s ⩽ 1 2 ∥r∥ H s ⩽ ∥r∥ H s .
Now, from (5.16), we infer that

∂ θ K λ * r = (l,j)∈Z d ×Z ijI j (λ)K j (λ)r l,j (λ, ω)e l,j . (6.29)
At this stage we need to explore the regularity of the multiplier with respect to λ. By using (C.9), we write

I j (λ)K j (λ) = 2(-1) j π ˆπ 2 0 K 0 (2λ cos(τ )) cos(2jτ )dτ.
From (C.7), we have the decomposition

K 0 (z) = -log(z/2)I 0 (z) + f (z), (6.30) 
with I 0 being the modified Bessel function of the first kind and f an analytic function. By the morphism property of the logarithm, we get

I j (λ)K j (λ) = -log(λ) 2(-1) j π ˆπ 2 0 I 0 (2λ cos(τ )) cos(2jτ )dτ -2(-1) j π ˆπ 2 0 log(cos(τ )) cos(2jτ )dτ -2(-1) j π ˆπ 2 0 log(cos(τ )) (I 0 (2λ cos(τ )) -1) cos(2jτ )dτ + 2(-1) j π ˆπ 2 0 f (2λ cos(τ )) cos(2jτ )dτ ≜ I 1,j (λ) + I 2,j + I 3,j (λ) + I 4,j (λ).
Since I 0 and f are analytic, then the above expressions are smooth with respect to the parameter

Part I λ ∈ (λ 0 , λ 1 ) ⊂ R * + .
An integration by parts in I 1,j (λ) and I 4,j (λ) yields

∀ i ∈ {1, 4}, sup j∈Z |j| max n∈ 0,q ∥∂ (n) λ I i,j ∥ L ∞ ([λ0,λ1]) ≲ 1.
Looking at the definition of I 0 in (C.2), we see that we have uniformly in λ ∈ [λ 0 , λ 1 ],

∀ n ∈ 0, q , ∂ (n) λ (I 0 (2λ cos(τ )) -1) = O (cos(τ )) .
Hence, an integration by parts in I 3,j (λ) yields

sup j∈Z |j| max n∈ 0,q ∥∂ (n) λ I 3,j ∥ L ∞ ([λ0,λ1]) ≲ 1.
It remains to study the integral I 2,j . One can easily check from the above decomposition that

I 2,j = lim λ→0 + I j (λ)K j (λ).
Using (C.13), we then find

I 2,j = 1 2j •
Putting together the preceding estimates, we obtain

sup j∈Z |j| max n∈ 0,q ∥∂ (n) λ (I j K j ) ∥ L ∞ ([λ0,λ1]) ≲ 1.
Then coming back to (6.29) and using Leibniz formula, we obtain (6.28). Now we turn to the proof of (6.24). According to (5.4) we may write

A r (φ, θ, η) = 2 sin η-θ 2 R(φ,η)-R(φ,θ) 2 sin( η-θ 2 ) 2 + R(φ, η)R(φ, θ) 1 2 ≜ 2 sin η-θ 2 v r,1 (φ, θ, η). (6.31)
Notice that v r,1 is smooth when r is smooth and small enough, and v 0,1 = 1. More precisely, Lemma

A.1-(v) combined with Lemma A.2 allow to get sup η∈T ∥v r,1 ( * , •, , η + ) -1∥ γ,O q,s ≲ ∥r∥ γ,O q,s+1 , ∀k ∈ N * , sup η∈T ∥(∂ k θ v r,1 )( * , •, , η + )∥ γ,O q,s ≲ ∥r∥ γ,O q,s+1+k . (6.32)
Here and in the sequel, the symbols * , •, denote the variables µ = (λ, ω), φ, θ, respectively. Then from the identity (6.30) we infer

K 0 (λA r (φ, θ, η)) = K 0 2λ sin η-θ 2 + log λ sin η-θ 2 I 0 2λ sin η-θ 2 -I 0 λA r (φ, θ, η) -log v r,1 (φ, θ, η) I 0 λA r (φ, θ, η) + f (λA r φ, θ, η) -f 2λ sin η-θ 2 . (6.33)
By virtue of the expansion (C.2), we can write

I 0 2λ sin η-θ 2 -I 0 λA r (φ, θ, η) = sin 2 η-θ 2 K 1 r,1 (λ, φ, θ, η),
with K 1 r,1 being smooth and vanishing at r = 0. More precisely, we have the expansion

K 1 r,1 (λ, φ, θ, η) = ∞ m=1 (2λ) 2m (m!) 2 sin 2m-2 η-θ 2 1 -v 2m r,1 (φ, θ, η) . (6.34)
Now our aim is to establish the following estimate.

∀ k ∈ N, sup η∈T ∥(∂ k θ K 1 r,1 )( * , •, , η + )∥ γ,O q,s ≲ ∥r∥ γ,O q,s+1+k . (6.35)
For this goal we apply Taylor Formula at the order 2,

I 0 λA r (φ, θ, η) -I 0 2λ sin η-θ 2 = 2λ sin η-θ 2 v r,1 (φ, θ, η) -1 I ′ 0 2λ sin η-θ 2 + 4λ 2 sin 2 η-θ 2 v r,1 (φ, θ, η) -1 2 ˆ1 0 (1 -t)I ′′ 0 2λ sin η-θ 2 1 -t + tv r,1 (φ, θ, η) dt.
Consequently, the kernel K 1 r,1 can be rewritten into the form

K 1 r,1 (λ, φ, θ, η) = 2λ 1 -v r,1 (φ, θ, η) I ′ 0 2λ sin η-θ 2 sin η-θ 2 (6.36) -4λ 2 v r,1 (φ, θ, η) -1 2 ˆ1 0 (1 -t)I ′′ 0 2λ sin η-θ 2 (1 -t + tv r,1 (φ, θ, η)) dt.
Using the structure (C.2) and Lemma A.1-(iv)-(v) combined with (6.32) we deduce the estimate (6.35).

Coming back to (6.33) and set

K 2 r,1 (λ, φ, θ, η) = log(λ) sin 2 η-θ 2 K 1 r,1 (λ, φ, θ, η) -log(v r,1 (φ, θ, η))I 0 (λA r (φ, θ, η)) + f (λA r (φ, θ, η)) -f 2λ sin η-θ 2 . (6.37)
Then, by virtue of the product laws and the composition laws of Lemma A.1 combined with (6.32), (6.35) and the fact that f is analytic and even, we get

∀k ∈ N, sup η∈T ∥(∂ k θ K 2 r,1 )( * , •, , η + )∥ γ,O q,s ≲ ∥r∥ γ,O q,s+1+k . (6.38)
Consequently we obtain the decomposition

K 0 (λA r (φ, θ, η)) = K 0 2λ sin η-θ 2 + K (η -θ)K 1 r,1 (λ, φ, θ, η) + K 2 r,1 (λ, φ, θ, η), (6.39)
where K is defined by (6.26) and the functions K 1 r,1 and K 2 r,1 satisfy the estimates (6.35) and (6.38). We can obviously check that K is an even function satisfying

K , ∂ θ K ∈ L ∞ (T, R) ⊂ L 1 (T, R) and ∂ 2 θ K ∈ L 1 (T, R) \ L ∞ (T, R). (6.40)
Introduce the kernel K r,1 as in (6.25). Hence, putting together (6.35), (6.38) and (6.40), we obtain

∀k ∈ {0, 1}, sup η∈T ∥(∂ k θ K r,1 )( * , •, , η + )∥ γ,O q,s ≲ ∥r∥ γ,O q,s+1+k . (6.41)
The symmetry property (6.27) is obtained by straightforward computations. From (5.2), (5.12), (6.39) and (6.25) we deduce the decomposition (6.24).

Part I

The main result of this section reads as follows.

Lemma 6.2. Let (γ, q, s 0 , s) satisfying (A.2). There exists ε 0 ∈ (0, 1) such that if ∥r∥ γ,O q,s0+2 ⩽ ε 0 , then the vector field X P defined in (6.1) satisfies the following estimates

(i) ∥X P (r)∥ γ,O q,s ≲ ∥r∥ γ,O q,s+2 ∥r∥ γ,O q,s0+1 . (ii) ∥d r X P (r)[ρ]∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s+2 ∥r∥ γ,O q,s0+1 + ∥r∥ γ,O q,s+2 ∥ρ∥ γ,O q,s0+1 . (iii) ∥d 2 r X P (r)[ρ 1 , ρ 2 ]∥ γ,O q,s ≲ ∥ρ 1 ∥ γ,O q,s0+1 ∥ρ 2 ∥ γ,O q,s+2 + ∥ρ 1 ∥ γ,O q,s+2 ∥ρ 2 ∥ γ,O q,s0+1 + ∥r∥ γ,O q,s+2 ∥ρ 1 ∥ γ,O q,s0+1 ∥ρ 2 ∥ γ,O q,s0+1 .
Proof. Remarking that X P (0) = 0 and d r X P (0) = 0, it suffices to prove the point (iii) and we immediately obtain (i)-(ii) by applying Taylor formula. From Lemma 5.1 and its proof we find

d r F λ [r]ρ = ∂ θ ((V r -Ω)ρ) -∂ θ K λ * ρ -∂ θ L r,1 ρ.
Thus, we get according to the definition (6.1)

d r X P (r)ρ = ∂ θ L r,1 ρ -∂ θ ((V r -V 0 )ρ) . ( 6.42) 
Coming back to (5.1) and using the kernel decomposition (6.39) together with the product laws, the composition laws in Lemma A.1 and the smallness condition, we deduce for any s ⩾ s 0 ,

∥V r -V 0 ∥ γ,O q,s ≲ ∥r∥ γ,O q,s+1 . (6.43)
Therefore, we obtain from the product laws, (6.43) and the smallness property on r,

∥∂ θ ((V r -V 0 )) ρ) ∥ γ,O q,s ≲ ∥V r -V 0 ∥ γ,O q,s+1 ∥ρ∥ γ,O q,s0+1 + ∥V r -V 0 ∥ γ,O q,s0+1 ∥ρ∥ γ,O q,s+1 ≲ ∥ρ∥ γ,O q,s+1 + ∥r∥ γ,O q,s+2 ∥ρ∥ γ,O q,s0+1 .
Differentiating in r the identity (6.42) yields,

d 2 r X P (r)[ρ 1 , ρ 2 ] = ∂ θ (d r L r,1 (r)[ρ 2 ]ρ 1 ) -∂ θ d r V r (r)[ρ 2 ] ρ 1 . (6.44)
For the first member of the right-hand side we first recall from (6.25) that

L r,1 ρ(φ, θ) = ˆT ρ(φ, η) K (η -θ)K 1 r,1 (λ, φ, θ, η) + K 2 r,1 (λ, φ, θ, η) dη.
Hence, by differentiation and change of variables, we obtain

d r L r,1 (r)[ρ 2 ]ρ 1 (φ, θ) = ˆT ρ 1 (φ, η) K (η -θ) d r K 1 r,1 [ρ 2 ](φ, θ, η) + d r K 2 r,1 [ρ 2 ](φ, θ, η) dη (6.45) = ˆT ρ 1 (φ, θ + η) K (η) d r K 1 r,1 [ρ 2 ](φ, θ, θ + η) + d r K 2 r,1 [ρ 2 ](φ, θ, θ + η) dη.
Coming back to (6.36), we emphasize that the dependence in r of the functional K 1 r,1 is smooth since the function v r,1 , introduced in (6.31), depends smoothly in r. In addition d r K 1 r,1 can be easily related to d r v r,1 . From straightforward calculations we see that, for the sake of simple notation we remove the dependence in the parameters and φ,

d r v r,1 (r)[ρ](θ, η) = 1 v r,1 (θ, η)   R(θ) -R(η) sin 2 η-θ 2 ρ(θ) R(θ) - ρ(η) R(η) + ρ(θ)R 2 (η) + ρ(η)R 2 (θ) 2R(θ)R(η)   . (6.46)
Therefore using (6.32) combined with the product laws stated in Lemma A.1, Lemma A.2 and the smallness condition of Lemma 6.2, we find that

sup η∈T ∥d r v r,1 (r)[ρ]( * , •, , η + )∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s+1 + ∥ρ∥ γ,O q,s0+1 ∥r∥ γ,O q,s+1 . (6.47)
Similarly to (6.47), one gets from (6.36) and (6.37),

∀ i ∈ {1, 2}, sup η∈T ∥d r K i r,1 [ρ]( * , •, , η + )∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s+1 + ∥ρ∥ γ,O q,s0+1 ∥r∥ γ,O q,s+1 . (6.48)
Inserting (6.48) into (6.45) and using once again the product laws and the smallness condition we obtain,

∥∂ θ d r L r,1 (r)[ρ 2 ]ρ 1 ∥ γ,O q,s ≲∥d r L r,1 (r)[ρ 2 ]ρ 1 ∥ γ,O q,s+1 ≲∥ρ 1 ∥ γ,O q,s+1 ∥ρ 2 ∥ γ,O q,s0+1 + ∥ρ 1 ∥ γ,O q,s0 ∥ρ 2 ∥ γ,O q,s+2 + ∥r∥ γ,O q,s+2 ∥ρ 1 ∥ γ,O q,s0 ∥ρ 2 ∥ γ,O q,s0+1 . (6.49)
Next we shall move to the estimate of the last member of (6.44). Differentiating the definition of V r in the proof of Lemma 5.1, we infer

d r V r (r)[ρ 2 ](θ) = ˆT K 0 (λA r (θ, η)) ∂ η ρ2(η)R 2 (θ)-ρ2(θ)R 2 (η) R 3 (θ)R(η) sin(η -θ) dη + λ R(θ) ˆT (R(θ)-R(η)) ρ2(θ) R(θ) - ρ2(η) R(η) Ar(θ,η) K ′ 0 (λA r (θ, η)) ∂ η (R(η) sin(η -θ))dη + 2λ ˆT ρ2(θ)R 2 (η)+ρ2(η)R 2 (θ) R 2 (θ)R(η)Ar(θ,η) sin 2 η-θ 2 K ′ 0 (λA r (θ, η)) ∂ η (R(η) sin(η -θ))dη ≜ I 1 (θ) + I 2 (θ) + I 3 (θ).
The estimate of I 1 is obtained using the decomposition (6.39) together with the estimates (6.35), (6.38) and the Lemma A.1-(iv)-(v). We get

∥I 1 ∥ γ,O q,s ≲ ∥ρ 2 ∥ γ,O q,s+1 + ∥ρ 2 ∥ γ,O q,s0+1 ∥r∥ γ,O q,s+1 . (6.50)
For the terms I 2 and I 3 the computations are straightforward and we shall only extract their main parts and give the suitable estimates. For this goal we differentiate (C.7), leading to

K ′ 0 (z) = -1 z + log(z)F (z) + G(z),
with F and G being entire functions. Hence, applying (6.31), we deduce that I 2 takes the form

I 2 (θ) = - 1 4 ˆT (R(θ)-R(η)) ρ 2 (θ) R(θ) - ρ 2 (η) R(η) R 2 (θ)v 2 r,1 (θ,η) sin 2 ( η-θ 2 ) ∂ η (R(η) sin(η -θ))dη + l.o.t.
Hence we proceed as for (6.48) and one finds

∥I 2 ∥ γ,O q,s ≲ ∥ρ 2 ∥ γ,O q,s+1 + ∥ρ 2 ∥ γ,O q,s0+1 ∥r∥ γ,O q,s+1 . (6.51)
As for the last term I 3 , we write

I 3 (θ) = - 1 2 ˆT ρ2(θ)R 2 (η)+ρ2(η)R 2 (θ) R 2 (θ)R(η)v 2 r,1 (θ,η) ∂ η (R(η) sin(η -θ))dη + l.o.t.
Then, we get

∥I 3 ∥ γ,O q,s ≲ ∥ρ 2 ∥ γ,O q,s + ∥ρ 2 ∥ γ,O q,s0 ∥r∥ γ,O q,s+1 . (6.52)
Putting together (6.50), (6.51) and (6.52) yields

∥d r V r (r)[ρ 2 ]∥ γ,O q,s ≲ ∥ρ 2 ∥ γ,O q,s+1 + ∥ρ 2 ∥ γ,O q,s0+1 ∥r∥ γ,O q,s+1 . (6.53)
Therefore we obtain according to the product laws in Lemma A.1, (6.53) and the smallness condition,

∂ θ d r V r (r)[ρ 2 ]ρ 1 γ,O q,s ≲ d r V r (r)[ρ 2 ] γ,O q,s+1 ρ 1 γ,O q,s0 + d r V r (r)[ρ 2 ] γ,O q,s0 ρ 1 γ,O q,s+1 ≲ ∥ρ 1 ∥ γ,O q,s0 ∥ρ 2 ∥ γ,O q,s+2 + ∥r∥ γ,O q,s+2 ∥ρ 1 ∥ γ,O q,s0 ∥ρ 2 ∥ γ,O q,s0+1 + ∥ρ 1 ∥ γ,O q,s+1 ∥ρ 2 ∥ γ,O q,s0+1 .
Combining the latter estimate with (6.44) and (6.49) allows to get

∥d 2 r X P (r)[ρ 1 , ρ 2 ]∥ γ,O q,s ≲ ∥ρ 1 ∥ γ,O q,s0 ∥ρ 2 ∥ γ,O q,s+2 + ∥r∥ γ,O q,s+2 ∥ρ 1 ∥ γ,O q,s0 ∥ρ 2 ∥ γ,O q,s0+1 + ∥ρ 1 ∥ γ,O q,s+1 ∥ρ 2 ∥ γ,O q,s0+1 .
Using Sobolev embeddings we get the desired result. This achieves the proof of Lemma 6.2.

As an application of Lemma 6.2, we shall establish tame estimates for the Hamiltonian vector field

X Pε = (∂ I P ε , -∂ ϑ P ε , Π ⊥ S ∂ θ ∇ z P ε )
defined through (6.17) and (6.19).

Lemma 6.3. Let (γ, q, s 0 , s) satisfy (A.2). There exists ε 0 ∈ (0, 1) such that if

ε ⩽ ε 0 and ∥I∥ γ,O q,s0+2 ⩽ 1,
then the perturbed Hamiltonian vector field X Pε satisfies the following estimates,

(i) ∥X Pε (i)∥ γ,O q,s ≲ 1 + ∥I∥ γ,O q,s+2 . (ii) d i X Pε (i)[ i ] γ,O q,s ≲ ∥ i ∥ γ,O q,s+2 + ∥I∥ γ,O q,s+2 ∥ i ∥ γ,O q,s0+2 . (iii) d 2 i X Pε (i)[ i, i ] γ,O q,s ≲ ∥ i ∥ γ,O q,s+2 ∥ i ∥ γ,O q,s0+1 + ∥I∥ γ,O q,s+2 ∥ i ∥ γ,O q,s0+1 2 .
Proof. These estimates can be recovered from Lemma 6.2 combined with the following estimate on the action-angle change of variables introduced in (6.12)

∀α, β ∈ N d , ∥∂ α ϑ ∂ β I v(ϑ, I)∥ γ,O q,s ≲ 1 + ∥I∥ γ,O q,s . (6.54)
This estimate follows from Lemma A.1-(iv)-(v) provided that ∥ϑ∥ γ,O q,s0 , ∥I∥ γ,O q,s0 ⩽ 1. This latter condition is satisfied due to the smallness condition in the Lemma. For more details, we refer to [33, Lem. 5.1].

Berti-Bolle approach for the approximate inverse

In this section, we shall follow the remarkable procedure developed by Berti and Bolle in [START_REF] Berti | A Nash-Moser approach to KAM theory[END_REF] to construct an approximate right inverse for the linearized operator

d i,α F(i 0 , α 0 )[ i, α] = ω • ∂ φ i -d i X H α 0 ε (i 0 (φ))[ i] -( α, 0, 0), (6.55) 
where F is the nonlinear functional defined in (6.21). This construction is crucial for the Nash-Moser scheme that we shall perform later in Section 8. From (6.18), we denote by i 0 an embedded torus with

i 0 (φ) = (ϑ 0 (φ), I 0 (φ), z 0 (φ)) and I 0 (φ) = i 0 (φ) -(φ, 0, 0).
Throughout this section, we shall assume the following smallness condition : the application (λ, ω) → I 0 (λ, ω) is q-times differentiable on O and there exists ε 0 ∈ (0, 1) (small enough) such that

∥I 0 ∥ γ,O q,s0+2 + ∥α 0 -ω∥ γ,O q ⩽ ε 0 . (6.56)
We mainly follow the same approach as in [START_REF] Berti | A Nash-Moser approach to KAM theory[END_REF] which reduces the search of an approximate right inverse of (6.55) to the search of an approximate right inverse in the normal directions. The main difference with [START_REF] Berti | A Nash-Moser approach to KAM theory[END_REF] is to be able to bypass the use of the isotropic torus in a similar way to the recent paper [START_REF] Hassainia | KAM theory for active scalar equations[END_REF].

Triangularization up to error terms

Given a linear operator A ∈ L(R d , L 2 ⊥ ), we define the transposed operator

A ⊤ : L 2 ⊥ → R d by the duality relation ∀(u, v) ∈ L 2 ⊥ × R d , ⟨A ⊤ u, v⟩ R d = ⟨u, Av⟩ L 2 (T) . (6.57)
We introduce the following change of coordinates G 0 : (ϕ, y, w) → (ϑ, I, z) of the phase space

T d × R d × L 2 ⊥ defined by    ϑ I z    ≜ G 0    ϕ y w    ≜    ϑ 0 (ϕ) I 0 (ϕ) + L 1 (ϕ)y + L 2 (ϕ)w z 0 (ϕ) + w    , ( 6.58) 
where

L 1 (ϕ) ≜ [∂ ϕ ϑ 0 (ϕ)] -⊤ , (6.59) L 2 (ϕ) ≜ [(∂ ϑ z 0 )(ϑ 0 (ϕ))] ⊤ ∂ -1 θ , (6.60) z 0 (ϑ) ≜ z 0 (ϑ -1 0 (ϑ)), (6.61) 
provided that ϑ 0 : R d → R d is a diffeomorphism. Notice that one recovers the torus i 0 by taking in the new coordinates, the flat torus i flat (φ) = (φ, 0, 0) namely

G 0 (i flat (φ)) = i 0 (φ).
Next, we shall adopt the notation u = (ϕ, y, w) to denote the new coordinates induced by G 0 in (6.58)

and we simply set u 0 (φ) = i flat (φ). Now, to measure to which extent an embedded torus i 0 (T) is close to be invariant for the Hamiltonian vector field X H α 0 ε , we shall make appeal to the error function

Z(φ) ≜ (Z 1 , Z 2 , Z 3 )(φ) ≜ F(i 0 , α 0 )(φ) = ω • ∂ φ i 0 (φ) -X H α 0 ε (i 0 (φ)) . (6.62) Part I
We say that a quantity is of "type Z" is it is O(Z), and particular it is vanishing at an exact solution. In the next Proposition, we study the conjugation of the linear operator d i,α F(i 0 , α 0 ) by the linear change of variables induced by G 0 defined in (6.58), 

DG 0 (φ, 0, 0)    ϕ y w    ≜    ∂ φ ϑ 0 (φ) 0 0 ∂ φ I 0 (φ) L 1 (φ) L 2 (φ) ∂ φ z 0 (φ) 0 I       ϕ y w    . ( 6 
[DG 0 (u 0 )] -1 d i,α F(i 0 , α 0 )D G 0 (u 0 )[ ϕ, y, w, α] = D[ ϕ, y, w, α] + E[ ϕ, y, w], (6.64)
where G 0 is defined by

G 0 (u, α) ≜ (G 0 (u), α)
and where (i) the operator D admits a triangular structure in the variables ( ϕ, y, w) in the form

D[ ϕ, y, w, α] ≜    ω • ∂ φ ϕ -K 20 (φ) y + K ⊤ 11 (φ) w + L ⊤ 1 (φ) α ω • ∂ φ y + B(φ) α ω • ∂ φ w -∂ θ K 11 (φ) y + K 02 (φ) w + L ⊤ 2 (φ) α    , B(φ) and K 20 (φ) are d × d real matrices given by B(φ) ≜ [∂ φ ϑ 0 (φ)] ⊤ ∂ φ I 0 (φ)L ⊤ 1 (φ) + [∂ φ z 0 (φ)] ⊤ L ⊤ 2 (φ), (6.65) 
K 20 (φ) ≜ εL ⊤ 1 (φ)(∂ II P ε )(i 0 (φ))L 1 (φ), (6.66) 
K 02 (φ) is a linear self-adjoint operator of L 2 ⊥ in the form K 02 (φ) ≜ (∂ z ∇ z H α0 ε )(i 0 (φ)) + εL ⊤ 2 (φ)(∂ II P ε )(i 0 (φ))L 2 (φ) + εL ⊤ 2 (φ)(∂ zI P ε )(i 0 (φ)) + ε(∂ I ∇ z P ε )(i 0 (φ))L 2 (φ) (6.67) and K 11 (φ) ∈ L(R d , L 2 ⊥ ) is given by K 11 (φ) ≜ εL ⊤ 2 (φ)(∂ II P ε )(i 0 (φ))L 1 (φ) + ε(∂ I ∇ z P ε )(i 0 (φ))L 1 (φ). (6.68) (ii) the operator E is an error term in the form E[ ϕ, y, w] ≜ [DG 0 (u 0 )] -1 ∂ φ Z(φ) ϕ +    0 A(φ) K 20 (φ) y + K ⊤ 11 (φ) w -R 10 (φ) y -R 01 (φ) w 0    ,
where A(φ) and R 10 (φ) are d × d matrices defined by

A(φ) ≜ [∂ φ ϑ 0 (φ)] ⊤ ∂ φ I 0 (φ) -[∂ φ I 0 (φ)] ⊤ ∂ φ ϑ 0 (φ) + [∂ φ z 0 (φ)] ⊤ ∂ -1 θ ∂ φ z 0 (φ), (6.69) R 10 (φ) ≜ [∂ φ Z 1 (φ)] ⊤ L 1 (φ) (6.70) and R 01 (φ) ∈ L(L 2 ⊥ , R d ) with R 01 (φ) ≜ [∂ φ Z 1 (φ)] ⊤ L 2 (φ) -[∂ φ Z 3 (φ)] ⊤ ∂ -1 θ . (6.71)
Proof. Under the map G 0 , the nonlinear functional F in (6.21) is transformed into

F(G 0 (u(φ)), α) = ω • ∂ φ G 0 (u(φ)) -X H α ε G 0 (u(φ)) . (6.72)
Differentiating (6.72) at (u 0 , α 0 ) in the direction ( u, α) gives

d (u,α) (F • G 0 )(u 0 , α 0 )[( u, α)](φ) = ω • ∂ φ DG 0 (u 0 ) u -∂ ϕ X H α 0 ε G 0 (u(φ)) u=u0 ϕ (6.73) -∂ y X H α 0 ε G 0 (u(φ)) u=u0 y -∂ w X H α 0 ε G 0 (u(φ)) u=u0 w -    α 0 0    .
From the expression of DG 0 (u 0 ) in (6.63), we obtain

ω • ∂ φ DG 0 (u 0 )[ u](φ) = DG 0 (u 0 ) ω • ∂ φ u + ∂ φ ω • ∂ φ i 0 ϕ (6.74) +    0 (ω • ∂ φ L 1 (φ)) y + ω • ∂ φ L 2 (φ) w 0    .
In view of (6.59) and (6.62) we have

ω • ∂ φ L 1 (φ) = -[∂ φ ϑ 0 (φ)] -⊤ (ω • ∂ φ [∂ φ ϑ 0 (φ)] ⊤ )[∂ φ ϑ 0 (φ)] -⊤ = -[∂ φ ϑ 0 (φ)] -⊤ ∂ φ Z 1 (φ) ⊤ + ∂ φ (∂ I H α ε )(i 0 (φ)) ⊤ [∂ φ ϑ 0 (φ)] -⊤ . (6.75)
By (6.60) we can easily check that

∂ φ z 0 (φ) = (∂ ϑ z 0 )(ϑ 0 (φ))∂ ϕ ϑ 0 (φ) (6.76)
and thus, we may write the operator L 2 (φ) in term of the matrix L 1 (φ),

L 2 (φ) = [∂ φ ϑ 0 (φ)] -⊤ [∂ φ z 0 (φ)] ⊤ ∂ -1 θ = L 1 (φ)[∂ φ z 0 (φ)] ⊤ ∂ -1 θ . (6.77)
Then, by (6.75), (6.77) we have

ω • ∂ φ L 2 (φ) = -[∂ φ ϑ 0 (φ)] -⊤ (ω • ∂ φ [∂ φ ϑ 0 (φ)] ⊤ )[∂ φ ϑ 0 (φ)] -⊤ [∂ φ z 0 (φ)] ⊤ ∂ -1 θ + [∂ φ ϑ 0 (φ)] -⊤ [∂ φ (ω • ∂ φ z 0 )(φ)] ⊤ ∂ -1 θ
and from (6.62) we get

ω • ∂ φ L 2 (φ) = -[∂ φ ϑ 0 (φ)] -⊤ ∂ φ Z 1 (φ) ⊤ + ∂ φ (∂ I H α ε )(i 0 (φ)) ⊤ L 2 (φ) + [∂ φ ϑ 0 (φ)] -⊤ ∂ φ Z 3 (φ) ⊤ -∂ φ (∇ z H α ε )(i 0 (φ)) ⊤ ∂ θ ∂ -1 θ . (6.78) Part I
Putting together (6.74), (6.75) and (6.78) we conclude that

ω • ∂ φ DG 0 (u 0 )[ u](φ) = DG 0 (u 0 ) ω • ∂ φ u + ∂ φ ω • ∂ φ i 0 ϕ -    0 [∂ φ ϑ 0 (φ)] -⊤ C I (φ)L 1 (φ) + R 10 (φ) y 0    -    0 [∂ φ ϑ 0 (φ)] -⊤ C I (φ)L 2 (φ) + C z (φ) + R 01 (φ) w 0    , ( 6.79) 
where R 10 (φ) and R 01 (φ) are given by (6.70)-(6.71) and

C I (φ) ≜ ∂ φ (∂ I H α0 ε )(i 0 (φ)) ⊤ = [∂ φ I 0 (φ)] ⊤ (∂ II H α0 ε )(i 0 (φ)) + [∂ φ ϑ 0 (φ)] ⊤ (∂ ϑI H α ε )(i 0 (φ)) + [∂ φ z 0 (φ)] ⊤ (∂ I ∇ z H α0 ε )(i 0 (φ)), (6.80) 
C z (φ) ≜ ∂ φ (∇ z H α0 ε )(i 0 (φ)) ⊤ = [∂ φ I 0 (φ)] ⊤ (∂ zI H α0 ε )(i 0 (φ)) + [∂ φ ϑ 0 (φ)] ⊤ (∂ zϑ H α0 ε )(i 0 (φ)) + [∂ φ z 0 (φ)] ⊤ (∂ z ∇ z H α0 ε )(i 0 (φ)). (6.81) 
On the other hand, in view of (6.21) and (6.58) we obtain

∂ ϕ X H α 0 ε G 0 (u(φ)) u=u0 ϕ = ∂ φ X H α 0 ε (i 0 (φ))) ϕ, (6.82) ∂ y X H α 0 ε G 0 (u(φ)) u=u0 y =    (∂ II H α0 ε )(i 0 (φ))L 1 (φ) y -(∂ Iϑ H α0 ε )(i 0 (φ))L 1 (φ) y ∂ θ (∂ I ∇ z H α0 ε )(i 0 (φ))L 1 (φ) y    , (6.83) ∂ w X H α 0 ε G 0 (u(φ)) u=u0 w =    (∂ II H α0 ε )(i 0 (φ))L 2 (φ) w + (∂ zI H α0 ε )(i 0 (φ)) w -(∂ Iϑ H α0 ε )(i 0 (φ))L 2 (φ) w -(∂ zϑ H α0 ε )(i 0 (φ)) w ∂ θ (∂ I ∇ z H α0 ε )(i 0 (φ))L 2 (φ) w + (∂ z ∇ z H α0 ε )(i 0 (φ)) w    . (6.84)
Plugging (6.79), (6.82), (6.83) and (6.84) into (6.73) we find

d (u,α) (F • G 0 )(u 0 , α 0 )[( u, α)] = DG 0 (u 0 ) ω • ∂ φ u + ∂ φ F(i 0 (φ)) ϕ +    -(∂ II H α0 ε )(i 0 (φ))L 1 (φ) y (∂ Iϑ H α0 ε )(i 0 (φ))L 1 (φ) y -[∂ φ ϑ 0 (φ)] -⊤ [C I (φ)L 1 (φ) + R 10 (φ)] y -∂ θ (∂ I ∇ z H α0 ε )(i 0 (φ))L 1 (φ) y    +    -(∂ II H α0 ε )(i 0 (φ))L 2 (φ) w -(∂ zI H α0 ε )(i 0 (φ)) w (∂ Iϑ H α0 ε )(i 0 (φ))L 2 (φ) + (∂ zϑ H α0 ε )(i 0 (φ)) w -∂ θ (∂ I ∇ z H α0 ε )(i 0 (φ))L 2 (φ) w + ∂ θ (∂ z ∇ z H α0 ε )(i 0 (φ)) w    -    0 [∂ φ ϑ 0 (φ)] -⊤ C I (φ)L 2 (φ) w + C z (φ) w + R 01 (φ) w 0    -    α 0 0    . (6.85)
According to (6.63) and using the identities (6.76) and (6.77), the inverse of the linear operator DG 0 (u 0 ) is given by

[DG 0 (u 0 )] -1 =    [∂ φ ϑ 0 (φ)] -1 0 0 -B(φ) [∂ φ ϑ 0 (φ)] ⊤ -[∂ φ z 0 (φ)] ⊤ ∂ -1 θ -(∂ ϑ z 0 )(ϑ 0 (φ)) 0 I    (6.86)
where B(φ) is given by (6.65). Applying [DG 0 (u 0 )] -1 to (6.85) and using the identities (6.80), (6.81) and the fact that

B(φ) = A(φ)[∂ φ ϑ 0 (φ)] -1 + [∂ φ I 0 (φ)] ⊤ , ( 6.87) 
where A(φ) is defined in (6.69), we obtain

[DG 0 (u 0 )] -1 d (u,α) (F • G 0 )(u 0 , α 0 )[ u, α] = ω • ∂ φ u + [DG 0 (u 0 )] -1 ∂ φ F(i 0 (φ)) ϕ +    -K 20 (φ) y A(φ)K 20 (φ) y -R 10 (φ) y -∂ θ K 11 (φ) y    +    -K ⊤ 11 (φ) w A(φ)K ⊤ 11 (φ) w -R 01 (φ) w -∂ θ K 02 (φ) w    +    -L ⊤ 1 (ϕ) α B(φ) α -∂ θ L ⊤ 2 (φ) α    , with K 20 (φ) ≜ L ⊤ 1 (φ)(∂ II H α0 ε )(i 0 (φ))L 1 (φ) , K 11 (φ) ≜ L ⊤ 2 (φ)(∂ II H α0 ε )(i 0 (φ))L 1 (φ) + (∂ I ∇ z H α0 ε )(i 0 (φ))L 1 (φ) , K 02 (φ) ≜ (∂ z ∇ z H α0 ε )(i 0 (φ)) + L ⊤ 2 (φ)(∂ II H α0 ε )(i 0 (φ))L 2 (φ) + L ⊤ 2 (φ)(∂ zI H α0 ε )(i 0 (φ)) + (∂ I ∇ z H α0 ε )(i 0 (φ))L 2 (φ).
Finally, by (6.20) we conclude the desired identity and this ends the proof of Proposition 6.1.

Now we recall the following result, for the proof we refer to [33, Lem. 5.6 and 5.7].

Lemma 6.4. The following assertions hold true.

(i) The operator DG 0 (u 0 ) and [DG 0 (u 0 )] -1 satisfy for all u = ( ϕ, y, w),

∀s ∈ [s 0 , S], ∥[DG 0 (u 0 )] ±1 [ u]∥ γ,O q,s ≲ ∥ u∥ γ,O q,s + ∥I 0 ∥ γ,O q,s+1 ∥ u∥ γ,O q,s0 .
(ii) The operators R 10 and R 01 , defined in (6.70) and (6.71), satisfy the estimates

∀s ∈ [s 0 , S], ∥R 10 y∥ γ,O q,s ≲ ∥Z∥ γ,O q,s+1 ∥ y∥ γ,O q,s0+1 + ∥Z∥ γ,O q,s0+1 ∥I 0 ∥ γ,O q,s+1 ∥ y∥ γ,O q,s0+1 , ∀s ∈ [s 0 , S], ∥R 01 w∥ γ,O q,s ≲ ∥Z∥ γ,O q,s+1 ∥ w∥ γ,O q,s0+1 + ∥Z∥ γ,O q,s0+1 ∥I 0 ∥ γ,O q,s+1 ∥ w∥ γ,O q,s0+1 .
(iii) The operators K 20 and K 11 , defined in (6.66) and (6.68), satisfy the estimates

∀s ∈ [s 0 , S], ∥K 20 ∥ γ,O q,s ≲ ε 1 + ∥I 0 ∥ γ,O q,s+3 , ∀s ∈ [s 0 , S], ∥K 11 y∥ γ,O q,s ≲ ε ∥ y∥ γ,O q,s+3 + ∥I 0 ∥ γ,O q,s+3 ∥ y∥ γ,O q,s0+3 , ∀s ∈ [s 0 , S], ∥K ⊤ 11 w∥ γ,O q,s ≲ ε ∥ w∥ γ,O q,s+3 + ∥I 0 ∥ γ,O q,s+3 ∥ w∥ γ,O q,s0+3 .
(iv) The matrices A and B defined in (6.69) and (6.65)

satisfy ∀s ∈ [s 0 , S], ∥A∥ γ,O q,s + ∥B∥ γ,O q,s ≲ ∥I 0 ∥ γ,O q,s+1
.

Part I

Notice that the matrix A(φ) measures the defect of the symplectic structure. In the following, we shall see that it is of order O(Z). Notice that according to (6.69) and [21, Lem. 5], the coefficients A jk of the matrix A can be written

A jk (φ) = ∂ φ k I 0 (φ) • ∂ φj ϑ 0 (φ) -∂ φ k ϑ 0 (φ) • ∂ φj I 0 (φ) + ⟨∂ -1 θ ∂ φ k z 0 (φ), ∂ φj z 0 (φ)⟩ L 2 (T) , (6.88) 
and satisfy

ω • ∂ φ A jk (φ) = W ∂ φ Z(φ)e k , ∂ φ i 0 (φ)e j + W ∂ φ i 0 (φ)e k , ∂ φ Z(φ)e j , ( 6.89) 
where W is the symplectic form defined in (4.24) and (e 1 , . . . , e d ) denotes the canonical basis of R d . In order to estimate A jk (φ), we shall discuss the invertibility of the operator ω •∂ φ . This task was accomplished in several papers [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | A Nash-Moser approach to KAM theory[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF][START_REF] Hassainia | KAM theory for active scalar equations[END_REF] and we shall outline here the main lines.

Let γ ∈ (0, 1] and τ 1 > 0 be defined as in (A.2). We introduce the Diophantine Cantor set

DC(γ, τ 1 ) ≜ l∈Z d \{0} ω ∈ R d s.t. |ω • l| > γ ⟨l⟩ τ1
and for N ∈ N * we define the truncated Diophantine Cantor set

DC N (γ, τ 1 ) ≜ l∈Z d \{0} |l|⩽N ω ∈ R d s.t. |ω • l| > γ ⟨l⟩ τ1 . ( 6.90) 
Given f : O × T d+1 → R a smooth function with zero φ-average, that can be expanded in Fourier series as follows

f = (l,j)∈Z d+1 l̸ =0
f l,j (λ, ω)e l,j , e l,j (φ, θ) ≜ e i(l•φ+jθ) .

If ω ∈ DC(γ, τ 1 ), then the equation ω

• ∂ φ u = f has a periodic solution u : T d+1 → R given by u(λ, φ, θ) = -i (l,j)∈Z d+1 l̸ =0 f l,j (λ) ω • l e l,j (φ, θ).
For all ω ∈ O, we define the smooth extension of u by

(ω • ∂ φ ) -1 ext f ≜ -i (l,j)∈Z d+1 l̸ =0 χ γ -1 ⟨l⟩ τ1 ω • l f l,j (λ) ω • l e l,j . (6.91) where χ ∈ C ∞ (R, [0, 1]
) is an even positive cut-off function such that

χ(ξ) = 0 if |ξ| ⩽ 1 3 1 if |ξ| ⩾ 1 2 . (6.92)
Notice that this operator is well-defned in the whole set of parameters O and coincides with the formal inverse of (ω • ∂ φ ) -1 when the frequency ω belongs to DC(γ, τ 1 ). The next result is the fundamental theorem of calculus in the quasi-periodic setting.

Lemma 6.5. Let γ ∈ (0, 1], q ∈ N * . Then for any s ⩾ q we have

(ω • ∂ φ ) -1 ext f γ,O q,s ≲ γ -1 ∥f ∥ γ,O q,s+τ1q+τ1 .
In addition, for any N ∈ N * and for any ω ∈ DC N (γ, τ 1 ) we have

(ω • ∂ φ )(ω • ∂ φ ) -1 ext Π N = Π N ,
where Π N is the orthogonal projection defined by

Π N (l,j)∈Z d+1 f l,j e l,j = (l,j)∈Z d+1 |l|⩽N f l,j e l,j .
Proof. The proof of the first point can be done using Faá di Bruno's formula in a similar way to [7, Lem.

2.5]. We also refer to the proof of Proposition 7.2.

By construction, one has for ω ∈ DC N (γ, τ 1 ) and |l| ⩽ N ,

χ (ω • l)γ -1 ⟨l⟩ τ1 = 1,
Thus, according to the explicit extension (6.91),

(ω • ∂ φ ) -1 ext Π N h = -i l∈Z d \{0} |l|⩽N χ (ω • l)γ -1 ⟨l⟩ τ1 h l (λ) ω • l e l,0 = -i l∈Z d \{0} |l|⩽N h l (λ) ω • l e l,0 . (6.93) 
Therefore, we obtain

(ω • ∂ φ )(ω • ∂ φ ) -1 ext Π N h = l∈Z d \{0} |l|⩽N h l (λ)e l,0 = Π N h.
This concludes the proof of the lemma.

For later purposes we need to fix some notation that will be adopted in the sequel. Take N 0 ⩾ 2 and define the sequence

N -1 = 1, ∀n ∈ N, N n = N ( 3 2 ) n 0 . (6.94)
Next, we shall split the coefficients of the matrix A = A(φ) defined in (6.69) as

A kj = A (n) kj + A (n),⊥ kj , A (n) kj ≜ Π Nn A kj , A (n),⊥ kj ≜ Π ⊥ Nn A kj . (6.95)
The proof of the following lemma is quite similar to Lemma 5.3. in [START_REF] Baldi | Quasi-periodic incompressible Euler flows in 3D[END_REF] with the a minor difference in the weighted norms.

Lemma 6.6. Let n ∈ N, then the following results hold true.

(i) The function

A (n),⊥ kj satisfies ∀b ⩾ 0, ∀s ∈ [s 0 , S], ∥A (n),⊥ kj ∥ γ,O q,s ≲ N -b n ∥I 0 ∥ γ,O q,s+2+b .
(ii) There exist functions A

(n),ext kj defined for any (λ, ω) ∈ O, q-times differentiable with respect to λ and

Part I satisfying the estimate ∀s ∈ [s 0 , S], ∥A (n),ext kj ∥ γ,O q,s ≲ γ -1 ∥Z∥ γ,O s+τ1q+τ1+1 + ∥Z∥ γ,O q,s0+1 ∥I 0 ∥ γ,O q,s+τ1q+τ1+1 . Moreover, A (n),ext kj coincides with A (n) kj in the Cantor set DC Nn (γ, τ 1 ).
Proof. (i) Follows immediately from (6.88), (6.95) and Lemma A.1-(ii).

(ii) Applying the projector to the identity (6.89) we obtain

ω • ∂ φ A (n) jk (φ) = Π Nn W ∂ φ Z(φ)e k , ∂ φ i 0 (φ)e j + W ∂ φ i 0 (φ)e k , ∂ φ Z(φ)e j .
Then, by (6.56) and Lemma A.1-(ii)-(iv), we get

Π Nn W ∂ φ Z(φ)e k , ∂ φ i 0 (φ)e j + W ∂ φ i 0 (φ)e k , ∂ φ Z(φ)e j q,κ s ≲ s ∥Z∥ q,κ s+1 + ∥Z∥ q,κ s0+1 ∥I 0 ∥ q,κ s+1 .
We define the the function

A (n),ext kj as A (n),ext kj (φ) ≜ (ω • ∂ φ ) -1 ext Π Nn W ∂ φ Z(φ)e k , ∂ φ i 0 (φ)e j + W ∂ φ i 0 (φ)e k , ∂ φ Z(φ)e j .
Applying Lemma 6.5 concludes the proof of the Lemma.

Construction of the approximate inverse

This section is devoted to the construction of an approximate right inverse of the operator d i,α F(i 0 , α 0 ) that will be discussed in Theorem 6.1. One first may observe according to Proposition 6.1-(ii) and Lemmata 6.4 and 6.6, that the operator E vanishes at an exact solution up to fast decaying remainder terms. As a consequence, getting an approximate inverse for the full operator d i,α F(i 0 , α 0 ) amounts simply to invert the operator D up to small errors of type "Z" mixed with fast frequency decaying error. Let us consider the triangular system given by

D[ ϕ, y, w, α] =    g 1 g 2 g 3    , ( 6.96) 
where D is defined in Proposition 6.1-(i). The system (6.96) writes more explicitly in the following way

     ω • ∂ φ ϕ = g 1 + [K 20 (φ) y + K ⊤ 11 (φ) w + L ⊤ 1 (φ) α] ω • ∂ φ y = g 2 -B(φ) α ω • ∂ φ -∂ θ K 02 (φ) w = g 3 + ∂ θ [K 11 (φ) y + L ⊤ 2 (φ) α].
(6.97)

The strategy to solve the above system in the variables ( ϕ, y, w) is first to solve the second action-component equation, then to solve the third normal-component equation and finally to solve the first angle-component equation. Due to the fact that the Cantor set should be truncated then we need to solve approximately the system (6.97) and for this aim we need the following statement.

Lemma 6.7. The following results hold true.

(i) There exists a function g :

Z d \ {0} → {-1, 1} such that ∀l ∈ Z d \ {0}, g(-l) = -g(l).
(ii) For all (λ, ω) ∈ O the operator ω • ∂ φ can be split as follows

ω • ∂ φ = D (n) + D ⊥ (n) ,
with

D (n) ≜ ω • ∂ φ Π Nn + Π ⊥ Nn,g (6.98) D ⊥ (n) ≜ ω • ∂ φ Π ⊥ Nn -Π ⊥ Nn,g , (6.99) 
where

Π ⊥ Nn,g (l,j)∈Z d+1 f l,j e l,j ≜ (l,j)∈Z d+1 |l|>Nn g(l)f l,j e l,j . (iii) The operator D ⊥ (n) satisfies ∀b ⩾ 0, ∀s ∈ [s 0 , S], ∥D ⊥ (n) h∥ γ,O q,s ⩽ N -b n ∥h∥ γ,O q,s+b+1 .
(iv) There exists a family of linear operators

[D (n) ] -1 ext n satisfying, for any h ∈ W q,∞,γ (O, H s 0 (T d+1 )), ∀s ∈ [s 0 , S], sup n∈N ∥[D (n) ] -1 ext h∥ γ,O q,s ≲ γ -1 ∥h∥ γ,O q,s+τ1q+τ1 .
Moreover, for all ω ∈ DC Nn (γ, τ 1 ) one has the identity

D (n) [D (n) ] -1 ext = Id. (6.100) Proof. (i) The function g : Z d \ {0} → {-1, 1} is defined, for all l = (l 1 , • • • , l d ) ∈ Z d \ {0}
, as the sign of the first non-zero component in the vector l. Thus, it satisfies

∀l ∈ Z d \ {0}, g(-l) = -g(l).
(ii) Immediate.

(iii) Follows immediately from Lemma A.1-(ii).

(iv) We define the operator [

D (n) ] -1 ext as [D (n) ] -1 ext ≜ (ω • ∂ φ ) -1 ext Π Nn + Π ⊥ Nn, 1 g . (6.101)
From (6.93), (6.98), (6.99) and (6.101) we get, for all ω ∈ DC Nn (γ, τ 1 ),

D (n) [D (n) ] -1 ext = ω • ∂ φ Π Nn (ω • ∂ φ ) -1 ext Π Nn + Π ⊥ Nn, 1 g + Π ⊥ Nn,g (ω • ∂ φ ) -1 ext Π Nn + Π ⊥ Nn, 1 g = ω • ∂ φ (ω • ∂ φ ) -1 ext Π Nn + Π ⊥ Nn .
Applying Lemma 6.5-(ii) we conclude that

D (n) [D (n) ] -1 ext = Π Nn + Π ⊥ Nn = Id.
The estimate on [D (n) ] -1 ext follows from (6.101), Lemma A.1-(ii) and Lemma 6.5.

Part I

Consider the linearized operator restricted to the normal directions L ω and defined by

L ω ≜ Π ⊥ S0 ω • ∂ φ -∂ θ K 02 (φ) Π ⊥ S0 , (6.102)
which appears in the last equation of (6.97). The construction of an approximate right inverse of this operator is the heart part of this work and will be discussed in Proposition 7.6. Here we give only a partial statement.

Proposition 6.2. Let (γ, q, d, τ 1 , τ 2 , s 0 , s h , µ 2 , S) satisfy (A.2) (A.1
) and (7.235). There exist ε 0 > 0 and

σ = σ(τ 1 , τ 2 , q, d) > 0 such that if εγ -2-q N µ2 0 ⩽ ε 0 and ∥I 0 ∥ γ,O q,s h +σ ⩽ 1, (6.103) 
then there exist a family of linear operator

(T ω,n ) n satisfying ∀ s ∈ [s 0 , S], sup n∈N ∥T ω,n h∥ γ,O q,s ≲ γ -1 ∥h∥ γ,O q,s+σ + ∥I 0 ∥ γ,O q,s+σ ∥h∥ γ,O q,s0+σ (6.104)
and a family of Cantor sets

{G n = G n (γ, τ 1 , τ 2 , i 0 )} n , satisfying the inclusion G n ⊂ (λ 0 , λ 1 ) × DC Nn (γ, τ 1 )
such that in each set G n we have the splitting

L ω = L ω,n + R n , with L ω,n T ω,n = Id, (6.105)
where the operators L ω,n and R n are defined in the whole set O with the estimates

∀ s ∈ [s 0 , S], ∥ L ω,n ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s+1 + εγ -2 ∥I 0 ∥ γ,O q,s+σ ∥ρ∥ γ,O q,s0+1 , ∀ b ∈ [0, S], ∥ R n ρ∥ γ,O q,s0 ≲ N -b n γ -1 ∥ρ∥ γ,O q,s0+b+σ + εγ -2 ∥I 0 ∥ γ,O q,s0+b+σ ∥ρ∥ γ,O q,s0+σ + εγ -3 N µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+σ .
For the splitting below which follows from the foregoing results we refer to (6.45) in [START_REF] Hassainia | KAM theory for active scalar equations[END_REF]. Consider the linear operator L ext defined by

L ext = D n + E ext n + P n + Q n , (6.106)
where, for any ( ϕ, y, w, α)

∈ T d × R d × L 2 ⊥ × R d D n [ ϕ, y, w, α] ≜    D (n) ϕ -K 20 (φ) y -K ⊤ 11 (φ) w -L ⊤ 1 (φ) α D (n) y + B(φ) α L ω,n w -∂ θ K 11 (φ) y + L ⊤ 2 (φ) α    , (6.107) E ext n [ ϕ, y, w, α] ≜ [DG 0 (u 0 (φ))] -1 ∂ φ Z(φ) ϕ -    0 R 10 (φ) y + R 01 (φ) w 0    +    0 A (n),ext (φ) K 20 (φ) y + K ⊤ 11 (φ) w 0    , (6.108) P n [ ϕ, y, w, α] ≜    D ⊥ (n) ϕ D ⊥ (n) y + A (n),⊥ (φ) K 20 (φ) y + K ⊤ 11 (φ) w 0    , (6.109) Q n [ ϕ, y, w, α] ≜    0 0 R n [ w]    . (6.110)
Then, the operator L ext is defined on the whole set O and when it is restricted to the Cantor set G n it coincides with the conjugated linearized operator obtained in (6.64), that is,

L ext = [DG 0 (u 0 )] -1 d i,α F(i 0 , α 0 )D G 0 (u 0 ) in G n . ( 6.111) 
In the next result, we give some useful estimates for the different terms appearing in L ext needed to obtain good tame estimates for the approximate inverse.

Proposition 6.3. Let (γ, q, d, τ 1 , s 0 , µ 2 ) satisfy (A.2) and (7.235) and assume the conditions (6.56) and (6.103). Then, denoting v = ( ϕ, y, w, α), the following assertions hold true.

(i) The operator E ext n satisfies the estimate

∥E ext n [ v]∥ γ,O q,s0 ≲ ∥Z∥ γ,O q,s0+σ ∥ v∥ γ,O q,s0+σ .
(ii) The operator P (n) satisfies the estimate

∀b ⩾ 0, ∥P n [ v]∥ γ,O q,s0 ≲ N -b n ∥ v∥ γ,O q,s0+σ+b + ε∥I 0 ∥ γ,O q,s0+σ+b v∥ γ,O q,s0+σ .
(iii) The operator Q n satisfies the estimate

∀ b ∈ [0, S], ∥Q n v∥ γ,O q,s0 ≲ N -b n γ -1 ∥ w∥ γ,O q,s0+b+σ + εγ -2 ∥I 0 ∥ γ,O q,s0+b+σ ∥ w∥ γ,O q,s0+σ + εγ -3 N µ2 0 N -µ2 n+1 ∥ w∥ γ,O q,s0+σ .
(iv) There exists a family of operators [D n ] -1 ext n such that for all g ≜ (g 1 , g 2 , g 3 ) satisfying the reversibility property

g 1 (φ) = g 1 (-φ) , g 2 (φ) = -g 2 (-φ) , g 3 (φ) = -(S g 3 )(-φ) , the function [D n ] -1 ext g satisfies the estimate ∀ s ∈ [s 0 , S], ∥[D n ] -1 ext g∥ γ,O q,s ≲ γ -1 ∥g∥ γ,O q,s+σ + ∥I 0 ∥ γ,O q,s+σ ∥g∥ γ,O q,s0+σ
Part I and for all (λ, ω) ∈ G n one has

D n [D n ] -1 ext = Id.
Proof. (i) The estimate of E ext n is obtained from (6.108), Lemma 6.4, Lemma A.1-(iv) and Lemma 6.6-(ii). (ii) From (6.109), Lemma 6.7-(iii), Lemma A.1-(iv), Lemma 6.6-(i), Lemma 6.4-(ii) we obtain the estimate on P n .

(iii) It is a consequence of (6.110) and Proposition 6.2.

(iv) The proof can be found in [START_REF] Hassainia | KAM theory for active scalar equations[END_REF]Prop. 6.3] and for the sake of completeness we shall sketch the main ideas. We intend to look for an exact inverse of D n by solving the system

D n [ ϕ, y, w, α] =    g 1 g 2 g 3    , ( 6.112) 
where (g 1 , g 2 , g 3 ) satisfy the reversibility property

g 1 (φ) = g 1 (-φ) , g 2 (φ) = -g 2 (-φ) , g 3 (φ) = -(S g 3 )(-φ), (6.113) 
with S being the involution defined in (4.27). Note that in view of (6.107), the system (6.112) writes

     D (n) ϕ = g 1 + [K 20 (φ) y + K ⊤ 11 (φ) w + L ⊤ 1 (φ) α] D (n) y = g 2 -B(φ) α L ω,n w = g 3 + ∂ θ [K 11 (φ) y + L ⊤ 2 (φ) α]. (6.114) 
We first consider the second action-component equation in (6.114), namely

D (n) y = g 2 -B(φ) α.
In view of (6.113), (6.65) and (6.88), g 2 and B are odd in the variable φ. Thus, the φ-average of the right hand side of this equation is zero. Then, by Lemma 6.7-(iv) its solution in the Cantor set DC Nn (γ, τ 1 ) is given by

y ≜ [D (n) ] -1 ext g 2 -B(φ) α . (6.115)
Then we turn to the third normal-component equation in (6.114), namely

L ω,n w = g 3 + ∂ θ [K 11 (φ) y + L ⊤ 2 (φ) α].
By Proposition 6.2, this equation admits as a solution

w ≜ T ω,n g 3 + ∂ θ [K 11 (φ) y + L ⊤ 2 (φ) α] . (6.116)
Finally, we solve the first angle-equation in (6.114), which, substituting (6.115), (6.116), becomes

D (n) ϕ = g 1 + M 1 (φ) α + M 2 (φ)g 2 + M 3 (φ)g 3 , ( 6.117) 
where

M 1 (φ) ≜ L ⊤ 1 (φ) -M 2 (φ)B(φ) + M 3 (φ)∂ θ L ⊤ 2 (φ) , (6.118) M 2 (φ) ≜ K 20 (φ)[D (n) ] -1 ext + K ⊤ 11 (φ)T ω,n ∂ ϑ K 11 (φ)[D (n) ] -1 ext , (6.119) M 3 (φ) ≜ K ⊤ 11 (φ)T ω,n . (6.120)
To solve the equation (6.117) we choose α such that the right hand side has zero φ-average. Notice that Lemma 6.4, (6.56), (6.104) and Lemma 6.7-(ii) imply

∀s ∈ [s 0 , S], ∥M 2 g 2 ∥ γ,O q,s + ∥M 3 g 3 ∥ γ,O q,s ≲ ε ∥g∥ γ,O q,s+σ + ∥I 0 ∥ γ,O q,s+σ ∥g∥ γ,O q,s0+σ . (6.121)
By Lemma 6.4-(iii), (6.56), the ϕ-averaged matrix is ⟨M 1 ⟩ = Id + O(εγ -1 ). Therefore, for εγ -1 small enough, ⟨M 1 ⟩ is invertible and ⟨M 1 ⟩ -1 = Id + O(εγ -1 ). We thus define

α ≜ -⟨M 1 ⟩ -1 (⟨g 1 ⟩ + ⟨M 2 g 2 ⟩ + ⟨M 3 g 3 ⟩) . (6.122)
Remark that α satisfies

∥ α∥ γ,O q ≲ ∥g∥ γ,O q,s0+σ . (6.123)
Coming back to (6.115) and using (6.123), (6.56) together with Lemma 6.7-(iv) and Lemma 6.4-(iv), we

obtain ∀s ∈ [s 0 , S], ∥ y∥ γ,O q,s ≲ γ -1 ∥g∥ γ,O q,s+σ + ∥I 0 ∥ γ,O q,s+σ ∥g∥ γ,O q,s0+σ . (6.124)
Putting together (6.116), (6.104), Lemma 6.4-(iii), (6.123), (6.124) and ( 6.56), one should get, up to redefining the value of σ,

∀s ∈ [s 0 , S], ∥ w∥ γ,O q,s ≲ γ -1 ∥g∥ γ,O q,s+σ + ∥I 0 ∥ γ,O q,s+σ ∥g∥ γ,O q,s0+σ . (6.125)
With the choice (6.122) of α, the equation (6.117) admits as a solution

ϕ ≜ [D (n) ] -1 ext g 1 + M 1 (φ) α + M 2 (φ)g 2 + M 3 (φ)g 3 . (6.126)
Putting together (6.126), Lemma 6.7-(ii), (6.123) and (6.121), one obtains ∀s ∈ [s 0 , S], ∥ ϕ∥ γ,O q,s ≲ γ -1 ∥g∥ γ,O q,s+σ + ∥I 0 ∥ γ,O q,s+σ ∥g∥ γ,O q,s0+σ . (6.127)

In conclusion, we have obtained a solution ( ϕ, y, w, α) ≜ [D n ] -1 ext g of the linear system (6.112) satisfying in virtue of (6.123), (6.127), (6.125) and (6.124),

∀s ∈ [s 0 , S], ∥[D n ] -1 ext g∥ γ,O q,s ≲ γ -1 ∥g∥ γ,O q,s+σ + ∥I 0 ∥ γ,O q,s+σ ∥g∥ γ,O q,s0+σ .
Notice that the relation

D n [D n ] -1 ext = Id in G n
is a direct consequence of (6.100) and (6.105).

The last point is to prove that the operator

T 0 ≜ T 0 (i 0 ) ≜ (D G 0 )(u 0 ) • [D n ] -1 ext • (DG 0 )(u 0 ) -1 (6.128)
is an approximate right inverse for d i,α F(i 0 , α 0 ). Theorem 6.1 (Approximate inverse). Let (γ, q, d, τ 1 , τ 2 , s 0 , s h , µ 2 , S) satisfy (A.2), (A.1), (7.235) and (7.3). Then there exists σ = σ(τ 1 , τ 2 , d, q) > 0 such that if the smallness conditions (6.56) and (6.103) hold, then the operator T 0 defined in (6.128) is reversible and satisfies for all g = (g 1 , g 2 , g 3 ), with (6.113),

∀s ∈ [s 0 , S], ∥T 0 g∥ γ,O q,s ≲ γ -1 ∥g∥ γ,O q,s+σ + ∥I 0 ∥ γ,O q,s+σ ∥g∥ γ,O q,s0+σ . (6.129) Part I Moreover T 0 is an almost-approximate right inverse of d i,α F(i 0 , α 0 ) in the Cantor set G n . More precisely, for all (λ, ω) ∈ G n one has d i,α F(i 0 ) • T 0 -Id = E (n) 1 + E (n) 2 + E (n) 3 , (6.130)
where the operators

E (n) 1 , E (n) 2
and

E (n) 3
are defined in the set O with the estimates

∥E (n) 1 g∥ γ,O q,s0 ≲ γ -1 ∥F(i 0 , α 0 )∥ γ,O q,s0+σ ∥g∥ γ,O q,s0+σ , (6.131) ∀b ⩾ 0, ∥E (n) 2 g∥ γ,O q,s0 ≲ γ -1 N -b n ∥g∥ γ,O q,s0+b+σ + ε∥I 0 ∥ γ,O q,s0+b+σ g∥ γ,O q,s0+σ , (6.132) ∀b ∈ [0, S], ∥E (n) 3 g∥ γ,O q,s0 ≲ N -b n γ -2 ∥g∥ γ,O q,s0+b+σ + εγ -2 ∥I 0 ∥ γ,O q,s0+b+σ ∥g∥ γ,O q,s0+σ + εγ -4 N µ2 0 N -µ2 n ∥g∥ γ,O q,s0+σ . (6.133)
Proof. The estimate (6.129) is a consequence of (6.128), Proposition 6.3-(iv) and Lemma 6.4-(i). Then, according to (6.106) and (6.111), in the Cantor set G n we have the decomposition

d i,α F(i 0 , α 0 ) = DG 0 (u 0 ) • L ext • D[ G 0 (u 0 )] -1 = DG 0 (u 0 ) • D n • D[ G 0 (u 0 )] -1 + DG 0 (u 0 ) • E ext n • [ G 0 (u 0 )] -1 + DG 0 (u 0 ) • P n • [ G 0 (u 0 )] -1 + DG 0 (u 0 ) • Q n • [ G 0 (u 0 )] -1 .
By applying T 0 , defined in (6.128), to the last identity we get for all (λ, ω)

∈ G n d i,α F(i 0 , α 0 ) • T 0 -Id = E (n) 1 + E (n) 2 + E (n) 3 , with E (n) 1 ≜ DG 0 (u 0 ) • E ext n • [ G 0 (u 0 )] -1 • T 0 , E (n) 2 ≜ DG 0 (u 0 ) • P n • [ G 0 (u 0 )] -1 • T 0 , E (n) 3 ≜ DG 0 (u 0 ) • Q n • [ G 0 (u 0 )] -1 • T 0 . The estimates on E (n) 1 , E (n) 2 and E (n) 3
come from (6.129), Proposition 6.3 and Lemma 6.4-(i).

Reduction of the linearized operator in the normal directions

In this section, we fix a torus i 0 = (ϑ 0 , I 0 , z 0 ) close to the flat one and satisfying the reversibility condition (6.23), that is

ϑ 0 (-φ) = -ϑ 0 (φ), I 0 (-φ) = I 0 (φ), z 0 (-φ) = (S z 0 )(φ). (7.1)
As in the previous section, we denote I 0 (φ) = i 0 (φ) -(φ, 0, 0). Our main goal here is to explore the invertibility of the operator

L ω = L ω (i 0 ) = Π ⊥ S0 (ω • ∂ φ -∂ θ K 02 (φ)) Π ⊥ S0 (7.2)
defined through (6.102) and (6.67) with the suitable tame estimates for the inverse. For a precise statement we refer to Proposition 7.6. Notice that this operator will be described as a quasilinear perturbation of the diagonal operator stated in Lemma 5.1 and we expect that suitable standard reductions can be performed to conjugate it to a diagonal one provided that the exterior parameters are subject to live in a Cantor set allowing to prevent resonances. For this aim, we shall implement with suitable adaptions the strategy developed in the works [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF]. We distinguish two long reduction steps. First, we perform a quasi-periodic change of variables such that in the new coordinates system the transport part is straightened to a constant coefficient operator. The construction of this transformation is based on a KAM reducibility procedure as in [START_REF] Feola | Reducibility of first order linear operators on tori via Moser's theorem[END_REF]. The outcome of this first step is a new operator whose positive part is diagonal with a small nonlocal perturbation of order -1. Then the second step consists in applying KAM scheme in order to reduce the remainder and conjugate the resulting operator from step 1 into a diagonal one up to small errors. The proof follows basically a common procedure that can be found for instance in [START_REF] Berti | KAM theory for partial differential equations[END_REF]. We point out that our results differ slightly from the preceding ones in [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF], especially at the level of Cantor sets which are constructed over the final targets.

We shall use throughout the proofs some frequency cut-offs with respect to the sequence defined in (6.94),

with N 0 a constant needed to be large enough. In the current section, the numbers N 0 ⩾ 2 and γ ∈ (0, 1) are a priori free parameters, but during the Nash-Moser scheme, see Proposition 8.1, they will be adjusted with respect to ε according to the relations

N 0 = γ -1 and γ = ε a for some a > 0.
We shall set the following parameters required along the different reductions that we intend to perform,

s l ≜ s 0 + τ 1 q + τ 1 + 2, µ 2 ≜ 4τ 1 q + 6τ 1 + 3,
s l ≜ s l + τ 2 q + τ 2 , s h ≜ 3 2 µ 2 + s l + 1, (7.3) 
supplemented with the assumptions (A.2) and (A.1).

Localization on the normal directions

According to Theorem 6.1, the construction of an approximate inverse for d i,α F(i 0 , α 0 ) is based on Proposition 6.2 dealing with finding an approximate right inverse for the operator L ω . This program will be achieved along several steps and in the first one we shall describe its asymptotic structure around the linearized operator at the equilibrium state described in Lemma 5.1. More precisely, we shall prove the following result.

Proposition 7.1. Let (γ, q, d, s 0 ) satisfy (A.2). Then the operator L ω defined in (7.2) takes the form

L ω = Π ⊥ S0 (L εr -ε∂ θ R) Π ⊥ S0 , L εr = ω • ∂ φ + ∂ θ (V εr •) -∂ θ L εr ,
where V εr and L εr are defined in Lemma 5.1, and from (6.12) we have

r(φ) = A ϑ 0 (φ), I 0 (φ), z 0 (φ) = v ϑ 0 (φ), I 0 (φ) + z 0 (φ),
supplemented with the reversibility assumption

r(λ, ω, -φ, -θ) = r(λ, ω, φ, θ). (7.4)
Moreover, R is an integral operator in the sense of the Definition A.3, whose kernel J satisfies the symmetry property

J(λ, ω, -φ, -θ, -η) = J(λ, ω, φ, θ, η). (7.5)
and under the assumption

∥I 0 ∥ γ,O q,s0 ⩽ 1, (7.6) 
we have for all s ⩾ s 0 ,

Part I (i) The function r satisfies the estimates,

∥r∥ γ,O q,s ≲ 1 + ∥I 0 ∥ γ,O q,s (7.7)
and

∥∆ 12 r∥ γ,O q,s ≲ ∥∆ 12 i∥ γ,O q,s + ∥∆ 12 i∥ γ,O q,s0 max j=1,2 ∥I j ∥ γ,O q,s . (7.8)
(ii) The kernel J satisfies the following estimates for all ℓ ∈ N,

sup η∈T ∥(∂ ℓ θ J)( * , •, , η + )∥ γ,O q,s ≲ 1 + ∥I 0 ∥ γ,O q,s+3+ℓ (7.9) 
and

sup η∈T ∥∆ 12 (∂ ℓ θ J)( * , •, , η + )∥ γ,O q,s ≲ ∥∆ 12 i∥ γ,O q,s+3+ℓ + ∥∆ 12 i∥ γ,O q,s0+3 max j=1,2 ∥I j ∥ γ,O q,s+3+ℓ . (7.10)
Here * , •, stand for (λ, ω), φ, θ, respectively and I ℓ (φ) = i ℓ (φ) -(φ, 0, 0). In addition, for any

function f , ∆ 12 f ≜ f (i 1 ) -f (i 2 )
refers for the difference of f taken at two different states i 1 and i 2 satisfying (7.6).

Proof. To alleviate the notation we shall at several stages of the proof remove the dependence of the involved functions/operators with respect to (λ, ω) and keep it when we deem it relevant. Recall that the operator L ω is defined in (7.2). To describe K 02 (φ) we follow [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF]. First, we observe from (6.67) and (6.20) that

K 02 (φ) = L(λ) + ε∂ w ∇ w (P ε (i 0 (φ)) + εR(φ), with R(φ) = R 1 (φ) + R 2 (φ) + R 3 (φ),
where

R 1 (φ) ≜ L ⊤ 2 (φ)∂ I ∇ I P ε (i 0 (φ))L 2 (φ), R 2 (φ) ≜ L ⊤ 2 (φ)∂ z ∇ I P ε (i 0 (φ)), R 3 (φ) ≜ ∂ I ∇ z P ε (i 0 (φ))L 2 (φ).
As we shall see, all the operators R 1 (φ), R 2 (φ) and R 3 (φ) have a finite-dimensional rank. This property is obvious for the operator L 2 (φ) defined in (6.60), which sends in view of (6.57) the space L 2 ⊥ to R d and therefore for any ρ ∈ L 2 ⊥ we write

L 2 (φ)[ρ] = d k=1 L 2 (φ)[ρ], e k R d e k = d k=1 ρ, L ⊤ 2 (φ)[e k ] L 2 (T) e k ,
with (e k ) d k=1 being the canonical basis of R d . Hence

R 1 (φ)[ρ] = d k=1 ρ, L ⊤ 2 (φ)[e k ] L 2 (T) A 1 (φ)[e k ] with A 1 (φ) = L ⊤ 2 (φ)∂ I ∇ I P ε (i 0 (φ)), R 3 (φ)[ρ] = d k=1 ρ, L ⊤ 2 (φ)[e k ] L 2 (T) A 3 (φ)[e k ] with A 3 (φ) = ∂ I ∇ z P ε (i 0 (φ)).
In a similar way, by setting

A 2 (φ) ≜ ∂ z ∇ I P ε (i 0 (φ)) : L 2 ⊥ → R d , then we may write R 2 (φ)[ρ] = d k=1 ρ, A ⊤ 2 (φ)[e k ] L 2 (T) L ⊤ 2 (φ)[e k ].
Define

g k,1 (φ, θ) = g k,3 (φ, θ) = χ k,2 (φ, θ) ≜ L ⊤ 2 (φ)[e k ](θ), g k,2 (φ, θ) ≜ A ⊤ 2 (φ)[e k ](θ)
and

χ k,1 (φ, θ) ≜ A 1 (φ)[e k ](θ), χ k,3 (φ, θ) ≜ A 3 (φ)[e k ](θ),
then we can see that the operator R takes the integral form

Rρ(φ, θ) = 3 k ′ =1 d k=1 ⟨ρ(φ, •), g k,k ′ (φ, •)⟩ L 2 (T) χ k,k ′ (φ, θ) = ˆT ρ(φ, η)J(φ, θ, η)dη, with J(φ, θ, η) ≜ 3 k ′ =1 d k=1 g k,k ′ (φ, η)χ k,k ′ (φ, θ).

Now we remark that by construction g

k,k ′ , χ k,k ′ ∈ L 2 ⊥ with ∥g k,k ′ ∥ γ,O q,s + ∥χ k,k ′ ∥ γ,O q,s ≲ 1 + ∥I 0 ∥ γ,O q,s+3 (7.11) 
and straightforward computations yield

∥d i g k,k ′ [ i]∥ γ,O q,s + ∥d i χ k,k ′ [ i]∥ γ,O q,s ≲ ∥ i∥ γ,O q,s+2 + ∥I 0 ∥ γ,O q,s+4 ∥ i∥ γ,O q,s0+2 . (7.12)
On the other hand, one has from direct computations that

∀ℓ ∈ N, (∂ ℓ θ J)(φ, θ, η + θ) = 3 k ′ =1 d k=1 g k,k ′ (φ, η + θ)(∂ ℓ θ χ k,k ′ )(φ, θ).
Hence, we may combine (7.11) with Lemma A.1-(iv) and (7.6) allowing to get

sup η∈T ∥(∂ ℓ θ J)( * , •, , η + )∥ γ,O q,s ≲ 3 k ′ =1 d k=1 ∥g k,k ′ ( * , •, η + )∥ γ,O q,s ∥χ k,k ′ ( * , •, )∥ γ,O q,s0+ℓ + 3 k ′ =1 d k=1 ∥g k,k ′ ( * , •, η + )∥ γ,O q,s0 ∥χ k,k ′ ( * , •, )∥ γ,O q,s+ℓ ≲ 1 + ∥I 0 ∥ γ,O q,s+3+ℓ ,
where we have used the interpolation inequality: for s ⩾ s 0

∥g k,k ′ ( * , •, η + )∥ γ,O q,s ∥χ k,k ′ ( * , •, )∥ γ,O q,s0+ℓ ≲ ∥g k,k ′ ( * , •, η + )∥ γ,O q,s+ℓ ∥χ k,k ′ ( * , •, )∥ γ,O q,s0 + ∥g k,k ′ ( * , •, η + )∥ γ,O q,s0 ∥χ k,k ′ ( * , •, )∥ γ,O q,s+ℓ .
Part I

In addition, to estimate the difference we simply write

∀ℓ ∈ N, ∆ 12 (∂ ℓ θ J)(φ, θ, η + θ) = 3 k ′ =1 d k=1 ∆ 12 g k,k ′ (φ, η + θ)(∂ ℓ θ (χ k,k ′ ) r1 )(φ, θ) + 3 k ′ =1 d k=1 (g k,k ′ ) r2 (φ, η + θ)(∆ 12 ∂ ℓ θ χ k,k ′ )(φ, θ).
By applying the mean value theorem combined with (7.12), (7.6) and interpolation inequalities

sup η∈T ∥∆ 12 (∂ ℓ θ J)( * , •, , η + )∥ γ,O q,s ≲ 3 k ′ =1 d k=1 ∥∆ 12 g k,k ′ ( * , •, η + )∥ γ,O q,s ∥χ k,k ′ ( * , •, )∥ γ,O q,s0+ℓ + 3 k ′ =1 d k=1 ∥∆ 12 g k,k ′ ( * , •, η + )∥ γ,O q,s0 ∥χ k,k ′ ( * , •, )∥ γ,O q,s+ℓ + 3 k ′ =1 d k=1 ∥g k,k ′ ( * , •, η + )∥ γ,O q,s0 ∥∆ 12 χ k,k ′ ( * , •, )∥ γ,O q,s+ℓ + 3 k ′ =1 d k=1 ∥g k,k ′ ( * , •, η + )∥ γ,O q,s ∥∆ 12 χ k,k ′ ( * , •, )∥ γ,O q,s0+ℓ ≲ ∥∆ 12 i∥ γ,O q,s+3+ℓ + ∥∆ 12 i∥ γ,O q,s0+3 max j=1,2 ∥I j ∥ γ,O q,s+3+ℓ .
The symmetry property detailed in (7.5) is a consequence of the definition of r and the reversibility condition (7.1) imposed on the torus i 0 . Consequently, putting together (6.4) and (6.12) gives

K 02 (φ) = L(λ)Π ⊥ S0 + ε∂ z ∇ z P ε (i 0 (φ)) + εR(φ) = L(λ)Π ⊥ S0 + εΠ ⊥ S0 ∂ r ∇ r P ε (A(i 0 (φ)))Π ⊥ S0 + εR(φ) = Π ⊥ S0 ∂ r ∇ r H ε (A(i 0 (φ)))Π ⊥ S0 + εR(φ) = Π ⊥ S0 ∂ r ∇ r H(εA(i 0 (φ)))Π ⊥ S0 + εR(φ).
Recall from (6.12) that r(φ, •) = A(i 0 (φ)), (7.13) then according to the general form of the linearized operator stated in Lemma 5.1 one has

-∂ θ ∂ r ∇ r H(εr(φ, •)) = ∂ θ (V εr •) -∂ θ L εr ,
which implies in turn

-K 02 (φ) = Π ⊥ S0 ∂ θ (V εr •) -∂ θ L εr ) -εR(φ) Π ⊥ S0 .
Plugging this identity into (7.2) gives the desired result. Next, using (7.13), (6.12) and (6.54), we obtain

∥r∥ γ,O q,s ≲ ∥v(ϑ 0 , I 0 )∥ γ,O q,s + ∥z 0 ∥ γ,O q,s ≲ 1 + ∥I 0 ∥ γ,O q,s .
We shall now move to the proof of the bound (7.8). First, we observe from (6.12) that

∥∆ 12 r∥ γ,O q,s ≲ ∥∆ 12 v(ϑ, I)∥ γ,O q,s + ∥∆ 12 z∥ γ,O q,s .
Therefore, Taylor Formula with (6.54) and product laws allow to get

∥∆ 12 v(ϑ, I)∥ γ,O q,s ≲ ∥∆ 12 (I, ϑ)∥ γ,O q,s + ∥∆ 12 (I, ϑ)∥ γ,O q,s0 max j=1,2 ∥I j ∥ γ,O q,s ,
which implies that

∥∆ 12 r∥ γ,O q,s ≲ ∥∆ 12 i∥ γ,O q,s + ∥∆ 12 i∥ γ,O q,s0 max j=1,2 ∥I j ∥ γ,O q,s .
This achieves the proof of Proposition 7.1.

Reduction of order 1

In this section, we perform the reduction of the transport part of the linearized operator L εr described in Proposition 7.1. More precisely, we conjugate the operator L εr by a quasi-periodic symplectic change of variables B leading to a transport part with constant coefficients depending only on the torus i 0 and the parameters ε, λ and ω. To get a precise information on the remainder, which is of order -1 in θ, we need to describe the action of this conjugation on the nonlocal term using the kernel structure rather than pseudo-differential theory. The reduction to a constant coefficient operator is based on KAM scheme through the construction of successive quasi-periodic symplectic change of coordinates. This will be implemented in the spirit of [START_REF] Baldi | KAM for autonomous quasi-linear perturbations of KdV[END_REF][START_REF] Feola | Reducibility of first order linear operators on tori via Moser's theorem[END_REF]. Here we need to extend their construction to the framework of symplectic change of coordinates with C q regularity. We point out that similar results with slight variations have been established in [START_REF] Baldi | Quasi-periodic incompressible Euler flows in 3D[END_REF][START_REF] Berti | Pure gravity traveling quasi-periodic water waves with constant vorticity[END_REF][START_REF] Berti | Large KAM tori for quasi-linear perturbations of KdV[END_REF].

Reduction of the transport part

Now we shall state the main result of this section concerning the reduction of the transport part of the linearized operator L εr .

Proposition 7.2. Let (γ, q, d, τ 1 , s 0 , S, s l , s h , µ 2 ) satisfy (A.2), (A.1) and (7.3). Let υ ∈ 0, 1 q+2 . We set

σ 1 ≜ s 0 + τ 1 q + 2τ 1 + 4. (7.14)
For any (µ 2 , p, s h ) satisfying

µ 2 ⩾ µ 2 ≜ 4τ 1 q + 6τ 1 + 3, p ⩾ 0, s h ⩾ max 3 2 µ 2 + s l + 1, s h + p , ( 7.15 
)

there exists ε 0 > 0 such that if εγ -1 N µ2 0 ⩽ ε 0 and ∥I 0 ∥ γ,O q,s h +σ1 ⩽ 1, (7.16 
)

there exist c i0 ∈ W q,∞,γ (O, R) and β ∈ s∈[s0,S] W q,∞,γ (O, H s odd )
such that with B defined in (A.12) one gets the following results.

(i) The function c i0 satisfies the following estimate,

∥c i0 -V 0 ∥ γ,O q ≲ ε, (7.17)
where V 0 is defined in Lemma 5.2.

Part I

(ii) The transformations B ±1 , B ±1 , β and β satisfy the following estimates for all s ∈ [s 0 , S]

∥B ±1 ρ∥ γ,O q,s + ∥B ±1 ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s + εγ -1 ∥I 0 ∥ γ,O q,s+σ1 ∥ρ∥ γ,O q,s0 (7.18)
and

∥ β∥ γ,O q,s ≲ ∥β∥ γ,O q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1 . (7.19) (iii) Let n ∈ N, then in the truncated Cantor set O γ,τ1 ∞,n (i 0 ) = (l,j)∈Z d ×Z\{(0,0)} |l|⩽Nn (λ, ω) ∈ O s.t. ω • l + jc i0 (λ, ω) > 4γ υ ⟨j⟩ ⟨l⟩ τ 1
, we have

B -1 ω • ∂ φ + ∂ θ V εr • B = ω • ∂ φ + c i0 ∂ θ + E 0 n , with E 0 n = E 0 n (λ, ω, i 0 ) a linear operator satisfying ∥E 0 n ρ∥ γ,O q,s0 ≲ εN µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+2 . (7.20)
(iv) Given two tori i 1 and i 2 both satisfying (7.16), we have

∥∆ 12 c i ∥ γ,O q ≲ ε∥∆ 12 i∥ γ,O q,s h +2 (7.21) 
and

∥∆ 12 β∥ γ,O q,s h +p + ∥∆ 12 β∥ γ,O q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ1 . (7.22)
Before giving the proof, some remarks are in order.

Remark 7.1.

• The final Cantor set O γ,τ1 ∞,n (i 0 ) is constructed over the limit coefficient c i0 but it is still truncated in the time frequency, that is |l| ⩽ N n , leading to a residual remainder with enough decay. This induces a suitable stability property that is crucial during the Nash-Moser scheme achieved with the nonlinear functional.

• Notice that, since 4γ υ ⩾ γ, then looking at j = 0 we find that the Cantor set O γ,τ1 ∞,n (i 0 ) is contained in the Diophantine Cantor set (λ 0 , λ 1 ) × DC Nn (γ, τ 1 ) introduced in (6.90).

• The parameter υ is introduced for technical reasons appearing later in the measure estimates of the final Cantor set and it will be fixed in (8.64).

• The constant 4 used in the definition of the Cantor set O γ,τ1

∞,n (i 0 ) is useful to ensure the inclusion of this set in all the Cantor sets built in the KAM procedure (see (7.81) in the proof below) and also to establish some inclusions related to the final Cantor set (see the proof of Lemma 8.2).

• We emphasize here that the functions β and β are odd in the sense

β(λ, ω, -φ, -θ) = -β(λ, ω, φ, θ) and β(λ, ω, -φ, -θ) = -β(λ, ω, φ, θ) (7.23)
which will be crucial later to get the Toeplitz structure of the new remainder term emerging after this reduction.

Proof. Since we are looking at a state near the disc, we can split V εr defined by (5.1) according to

V εr (λ, φ, θ) = V 0 (λ) + f 0 (λ, φ, θ), (7.24)
with f 0 being a perturbation term of small size. We refer to (7.47) for a more precise quantification of this smallness. The proof is an iteration process introducing at each step a linear quasi-periodic symplectic change of coordinates. This transformation is linked to the remainder term of the previous step. Roughly speaking, if the latter is of size ε, then we choose the change of coordinates in such a way that we extract the main diagonal part of the previous remainder and keep a new perturbation term of size ε 2 . The choice of the transformation is done through the resolution of an homological equation requiring non-resonance conditions capted by a suitable selection of the parameters of the system. Thus, by iteration, we can construct a final Cantor set gathering all the parameters restrictions of all steps in which we completely reduced the transport operator into a constant coefficient one. We shall now explain a typical step of the procedure Later, we shall implement the scheme.

(i)-(ii) ▶ KAM step. Let us consider a transport operator in the form,

ω • ∂ φ + ∂ θ V + f for suitable parameters (λ, ω) that belong to a subset O γ -⊂ O,
where O is the ambient set and

V = V (λ, ω) and f = f (λ, ω, φ, θ),
where f enjoys the following symmetry condition

f (λ, ω, -φ, -θ) = f (λ, ω, φ, θ). (7.25)
To alleviate the notations we shall use during the proof the variable µ ≜ (λ, ω). We consider a symplectic quasi-periodic change of coordinates close to the identity taking the form

G ρ(µ, φ, θ) ≜ 1 + ∂ θ g(µ, φ, θ) Gρ(µ, φ, θ) ≜ 1 + ∂ θ g(µ, φ, θ) ρ µ, φ, θ + g(µ, φ, θ) , (7.26) 
where g : O × T d+1 → R is a small function which will be later linked to f. Then, by using Lemma A.3, we can write for any N ⩾ 2

G -1 ω • ∂ φ + ∂ θ (V + f ) G = ω • ∂ φ + ∂ θ G -1 V + ω • ∂ φ g + V ∂ θ g + Π N f + Π ⊥ N f + f ∂ θ g . (7.27)
Recall that the projections Π N are defined in (A.5). The basic idea is to obtain after this transformation a new transport operator in the form

G -1 ω • ∂ φ + ∂ θ (V + f ) G = ω • ∂ φ + ∂ θ V + + f + , ( 7.28) 
where

V + = V + (µ) and f + = f + (µ, φ, θ),
with f + quadratically smaller than f. In order to get rid of the terms wich are not small of quadratic in f in the right hand-side of (7.27), we shall select g as a solution of the following homological equation

ω • ∂ φ g + V ∂ θ g + Π N f = ⟨f ⟩ φ,θ , (7.29) 
where

⟨f ⟩ φ,θ (µ) ≜ ˆTd+1 f (µ, φ, θ)dφdθ.
To find a solution to the homological equation (7.29), we use Fourier decomposition and look for g in the

Part I form g(µ, φ, θ) ≜ i (l,j)∈Z d+1 \{0} ⟨l,j⟩⩽N f l,j (µ) ω•l+jV (µ) e i(l•φ+jθ) . (7.30)
The denominators appearing in the Fourier decomposition of g may be small and generate problems in the convergence of the series in (7.30) for large N. This is a well-known phenomenon in KAM theory called "small divisors problem". To overcome this difficulty, one has to avoid the resonances and, following the ideas of Kolmogorov, we introduce Diophantine conditions gathered in the following Cantor set

O γ + ≜ (l,j)∈Z d+1 \{0} ⟨l,j⟩⩽N µ ∈ O γ - s.t. ω • l + jV (µ) > γ υ ⟨j⟩ ⟨l⟩ τ 1 . (7.31)
Such a selection of the external parameters allows us to control the size of the denominators in (7.30). As we shall see in (7.39), the quantification of this control, linked to the parameters γ and τ 1 , allows to get suitable estimates for g with some loss of regularity uniform with respect to N . Before performing this estimate, we shall first construct an extension of g to the whole set O. In what follows, we still denote g this extension. This is done by extending the Fourier coefficients of g using the cut-off function χ defined in (6.92). More precisely, we define

g l,j (µ) ≜ i χ (ω•l+jV (µ))(γ υ ⟨j⟩) -1 ⟨l⟩ τ 1 ω•l+jV (µ) f l,j (µ) (7.32) ≜ g l,j (µ)f l,j (µ).
Notice that the extension g is a solution to (7.29) only when the parameters are restricted to the Cantor set O γ + . Then, we define

V + ≜ V + ⟨f ⟩ φ,θ and f + ≜ G -1 Π ⊥ N f + f ∂ θ g ,
so that in restriction to the Cantor set O γ + , the identity (7.28) holds. Remark that V + and f + are well-defined in the whole set of parameters O and the function g is smooth since it is generated by a finite number of frequencies. According to (7.25), we obtain that g is odd. As a consequence,

g ∈ s⩾0 W q,∞,γ (O, H s odd ). (7.33)
Our next task is to estimate the Fourier coefficients g l,j defined by (7.32). Notice that we can write them in the following form

g l,j (µ) = i a l,j χ(a l,j A l,j (µ)), χ(x) ≜ χ(x) x (7.34) A l,j (µ) ≜ ω • l + jV (µ), a l,j ≜ (γ υ ⟨j⟩) -1 ⟨l⟩ τ1 .
Since χ is C ∞ with bounded derivatives and χ(0) = 0, then applying Lemma A.1-(vi), we obtain

∀q ′ ∈ 0, q , ∥ g l,j ∥ γ,O q ′ ≲ a 2 l,j ∥A l,j ∥ γ,O q ′ 1 + a q ′ -1 l,j ∥A l,j ∥ q ′ -1 L ∞ (O) .
Direct computations lead to

∀(l, j) ∈ Z d+1 , ∀α ∈ N d+1 , |α| ⩽ q, sup µ∈O ∂ α µ A l,j (µ) ≲ ⟨l, j⟩ max 1, sup µ∈O ∂ α µ V (µ) ≲ γ -|α| ⟨l, j⟩ max 1, ∥V ∥ γ,O q . Assuming ∥V ∥ γ,O q ⩽ C, (7.35)
we then obtain

∀q ′ ∈ 0, q , ∀(l, j) ∈ Z d+1 , ∥A l,j ∥ γ,O q ′
≲ ⟨l, j⟩. (7.36) Added to the fact that 0 ⩽ a l,j ⩽ γ -υ ⟨l⟩ τ1 , we then find that 

∀q ′ ∈ 0, q , ∥ g l,j ∥ γ,O q ′ ≲ γ -υ(q ′ +1) ⟨l, j⟩ τ1q ′ +τ1+q ′ . ( 7 
γ 2|α| ∥∂ α µ g(µ, •, )∥ 2 H s-|α| ≲ (l,j)∈Z d+1 \{(0,0)} ⟨l,j⟩⩽N β∈N d+1 β⩽α γ 2|α|-2|β| ∂ α-β µ g l,j (µ) 2 γ 2|β| ∂ β µ f l,j (µ) 2 ⟨l, j⟩ 2s-2|α| ≲ (l,j)∈Z d+1 \{(0,0)} ⟨l,j⟩⩽N β∈N d+1 β⩽α ∥ g l,j ∥ γ,O |α|-|β| 2 γ 2|β| ∂ β µ f l,j (µ) 2 ⟨l, j⟩ 2s-2|α| ≲ (l,j)∈Z d+1 \{(0,0)} ⟨l,j⟩⩽N β∈N d+1 β⩽α γ -2 γ 2|β| ∂ β µ f l,j (µ) 2 ⟨l, j⟩ 2(s+τ1q+τ1-|β|) .
As a consequence, by interverting the summation symbols, we find

∥g∥ γ,O q,s ≲ γ -1 ∥Π N f ∥ γ,O q,s+τ1q+τ1 . (7.39)
Assume now that

γ -1 N τ1q+τ1+1 ∥f ∥ γ,O q,s0 ⩽ ε 0 . (7.40)
Then added to (7.39) and Lemma A.1-(ii), we get

∥g∥ γ,O q,s0 ⩽ Cγ -1 N τ1q+τ1 ∥f ∥ γ,O q,s0 ⩽ Cε 0 .
On the other hand if we assume

∥f ∥ γ,O q,s ≲ ε 1 + ∥I 0 ∥ γ,O q,s+1 , then (7.39) gives ∥g∥ γ,O q,2s0+1 ≲ γ -1 ∥f ∥ γ,O q,2s0+τ1q+τ1+1 ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,2s0+τ1q+τ1+2 ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s h +σ1 .
Notice that to obtain the last inequality we used the fact that (7.15) and (7.14) imply

2s 0 + τ 1 q + τ 1 + 2 ⩽ s h + σ 1 .
Part I

Using interpolation inequality and (7.16), one gets for some θ ∈ (0, 1)

∥g∥ γ,O q,2s0 ≲ ∥g∥ γ,O q,s0 θ ∥g∥ γ,O q,2s0+1 1-θ ≲ ε 0 . (7.41)
Thus, taking ε 0 small enough, we can ensure the smallness condition in Lemma A.4 and get that the linear operator G is invertible. Now, we introduce

u ≜ Π ⊥ N f + f ∂ θ g.
By the triangle inequality, Lemma A.1-(ii) and (7.39), we obtain for all s ∈ [s 0 , S]

∥u∥ γ,O q,s ⩽ ∥Π ⊥ N f ∥ γ,O q,s + C ∥f ∥ γ,O q,s0 ∥∂ θ g∥ γ,O q,s + ∥f ∥ γ,O q,s ∥∂ θ g∥ γ,O q,s0 ⩽ ∥Π ⊥ N f ∥ γ,O q,s + C ∥f ∥ γ,O q,s0 ∥g∥ γ,O q,s+1 + ∥f ∥ γ,O q,s ∥g∥ γ,O q,s0+1 ⩽ ∥Π ⊥ N f ∥ γ,O q,s + Cγ -1 N τ1q+τ1+1 ∥f ∥ γ,O q,s0 ∥f ∥ γ,O q,s .
Combined with Lemma A.4, Lemma A.1-(ii) and (7.40), we get for all s ∈ [s 0 , S]

∥f + ∥ γ,O q,s = ∥G -1 (u)∥ γ,O q,s ⩽ ∥u∥ γ,O q,s + C ∥u∥ γ,O q,s ∥ g∥ γ,O q,s0 + ∥ g∥ γ,O q,s ∥u∥ γ,O q,s0 ⩽ ∥u∥ γ,O q,s + C ∥u∥ γ,O q,s ∥g∥ γ,O q,s0 + ∥g∥ γ,O q,s ∥u∥ γ,O q,s0 ⩽ ∥Π ⊥ N f ∥ γ,O q,s + Cγ -1 N τ1q+τ1+1 ∥f ∥ γ,O q,s0 ∥f ∥ γ,O q,s .
Using once again Lemma A.1-(ii), we find for S ⩾ s ⩾ s ⩾ s 0

∥f + ∥ γ,O q,s ⩽ N s-s ∥f ∥ γ,O q,s + Cγ -1 N τ1q+τ1+1 ∥f ∥ γ,O q,s0 ∥f ∥ γ,O q,s . (7.42)
▶ KAM scheme. Let us now assume that we have constructed V m and f m , well-defined in the whole set of parameters O and satisfying the assumptions (7.35) and (7.40). We shall now construct the corresponding quantity at the next order, namely V m+1 and f m+1 , still satisfying (7.35) and (7.40). For this aim, we shall implement the KAM step with (V, f, V + , f + , N ) replaced by (V m , f m , V m+1 , f m+1 , N m ). More precisely, we will shall prove by induction the existence of a sequence {V m , f m } m∈N such that

δ m (s l ) ⩽ δ 0 (s h )N µ2 0 N -µ2 m and δ m (s h ) ⩽ 2 -1 m+1 δ 0 (s h ) (7.43)
and

∥V m ∥ γ,O q ⩽ C and N τ1q+τ1+1 m δ m (s 0 ) ⩽ ε 0 , (7.44)
with f m satisfying the following symmetry condition

f m (µ, -φ, -θ) = f m (µ, φ, θ) (7.45)
and where we denote

δ m (s) ≜ γ -1 ∥f m ∥ γ,O q,s .
Recall that the parameters s l and s h were introduced in (7.3) and (7.15). ➢ Initialization. We shall first check that the estimates (7.43) and (7.44) are satisfied for m = 0. In which case the functions V 0 and f 0 are defined by (5.11) and (7.24). By (6.43) and (7.7) we infer

δ 0 (s) = γ -1 ∥V εr -V 0 ∥ γ,O q,s ≲ εγ -1 ∥r∥ γ,O q,s+1 ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+1 . (7.46)
Thus, the notation (7.15) and the smallness condition (7.16) imply that

N µ2 0 δ 0 (s h ) ⩽ Cε 0 . (7.47)
In addition, by (7.4) and ( 5.3), we deduce that f 0 satisfies the following symmetry condition

f 0 (λ, -φ, -θ) = f 0 (λ, φ, θ). (7.48)
We set O γ 0 = O and consider N 0 ⩾ 2. Our next task is to check that the assumptions (7.35) and (7.40) are satisfied by V 0 and f 0 . First recall that V 0 is defined by

V 0 (λ) = Ω + I 1 (λ)K 1 (λ).
Using the smooth regularity of (C.10), we obtain

∥V 0 ∥ γ,O q ⩽ C. (7.49)
Therefore, the required boundedness property (7.35) is satisfied with V = V 0 . Now by (7.15), we have

µ 2 ⩾ τ 1 q + τ 1 + 2. (7.50)
Hence, using (7.47), we obtain

γ -1 N τ1q+τ1+1 0 ∥f 0 ∥ γ,O q,s0 = N τ1q+τ1+1 0 δ 0 (s 0 ) ⩽ N τ1q+τ1+1-µ2 0 N µ2 0 δ 0 (s h ) ⩽ Cε 0 N -1 0 .
By taking N 0 large enough we get

CN -1 0 ⩽ 1, (7.51) so that γ -1 N τ1q+τ1+1 0 ∥f 0 ∥ γ,O q,s0 ⩽ ε 0 .
Hence, the assumption (7.40) is satisfied for f = f 0 . This ends the initialization step. ➢ Iteration. let us now assume that we have constructed V m and f m enjoying the properties (7.43), (7.44) and (7.45). We shall see how to construct V m+1 and f m+1 . According to the KAM step, we consider a symplectic quasi-periodic change of variables G m taking the form

G m ρ(µ, φ, θ) ≜ 1 + ∂ θ g m (µ, φ, θ) G m ρ(µ, φ, θ) = 1 + ∂ θ g m (µ, φ, θ) ρ µ, φ, θ + g m (µ, φ, θ) , Part I with g m (µ, φ, θ) ≜ i (l,j)∈Z d+1 \{0} ⟨l,j⟩⩽Nm χ (ω•l+jVm(µ))(γ υ ⟨j⟩) -1 ⟨l⟩ τ 1 ω•l+jVm(µ) (f m ) l,j (µ) e i(l•φ+jθ) , (7.52)
where χ is the cut-off function introduced in (6.92) and N m is defined in (6.94). As explained in the KAM step, g m is well-defined on the whole set of parameters O and solves the homological equation

ω • ∂ φ g m + V m ∂ θ g m + Π Nm f m = ⟨f m ⟩ φ,θ
when restricted to the Cantor set

O γ m+1 ≜ (l,j)∈Z d+1 \{0} ⟨l,j⟩⩽Nm µ = (λ, ω) ∈ O γ m s.t. ω • l + jV m (µ) > γ υ ⟨j⟩ ⟨l⟩ τ 1 . (7.53)
Hence, in the Cantor set O γ m+1 , the following reduction holds

G -1 m ω • ∂ φ + ∂ θ (V m + f m ) G m = ω • ∂ φ + ∂ θ (V m+1 + f m+1 ),
with V m+1 and f m+1 defined by

V m+1 ≜ V m + ⟨f m ⟩ φ,θ f m+1 ≜ G -1 m Π ⊥ Nm f m + f m ∂ θ g m . (7.54)
In view of (7.45), the function f m is even and therefore g m is odd. Consequently, we deduce through elementary manipulations that f m+1 is also even. This allows us to follow the symmetry persistence along the scheme. Besides, in a similar way to (7.33), one obtains

g m ∈ s⩾0 W q,∞,γ (O, H s odd ). (7.55) Now, we set B -1 ≜ G -1 ≜ Id and ∀m ∈ N, B m ≜ G 0 • G 1 • ... • G m .
One easily finds that

B m ρ(µ, φ, θ) = 1 + ∂ θ β m (µ, φ, θ) B m ρ(µ, φ, θ) = 1 + ∂ θ β m (µ, φ, θ) ρ µ, φ, θ + β m (µ, φ, θ) ,
where the sequence (β m ) m∈N is defined by β -1 ≜ g -1 ≜ 0 and

β 0 ≜ g 0 and β m (µ, φ, θ) ≜ β m-1 (µ, φ, θ) + g m µ, φ, θ + β m-1 (µ, φ, θ) . ( 7 

.56)

A trivial induction based on (7.55) yields

β m ∈ s⩾0 W q,∞,γ (O, H s odd ). (7.57)
According to Sobolev embeddings, (7.54) and the induction assumption (7.43), we infer

∥V m -V m-1 ∥ γ,O q = ∥⟨f m-1 ⟩ φ,θ ∥ γ,O q ⩽ ∥f m-1 ∥ γ,O q,s0 = γδ m-1 (s 0 ) ⩽ γδ 0 (s h )N µ2 0 N -µ2 m-1 . (7.58)
As a consequence, by using the triangle inequality, (7.47) and choosing ε 0 small enough we deduce

∥V m ∥ γ,O q ⩽ ∥V m-1 ∥ γ,O q + γδ 0 (s h )N µ2 0 N -µ2 m-1 ⩽ ∥V 0 ∥ γ,O q + γδ 0 (s h )N µ2 0 m-1 k=0 N -µ2 k ⩽ ∥V 0 ∥ γ,O q + ∞ k=0 N -µ2 k .
Now, remark that (7.15) implies in particular

µ 2 ⩾ τ 1 q + τ 1 + 2.
Hence, by the induction hypothesis (7.43), (7.47), (7.50) and (7.51), we have Thus, the KAM step applies and, in particular, the estimate (7.42) becomes

δ m (s 0 )N τ1q+τ1+1 m ⩽ δ 0 (s h )N µ2 0 N τ1q+τ1+1-µ2 m ⩽ ε 0 N -1 0 ⩽ ε 0 . ( 7 
δ m+1 (s) ⩽ N s-s m δ m (s) + CN τ1q+τ1+1 m δ m (s)δ m (s 0 ). (7.61)
If we apply (7.61) with s = s l and s = s h , we obtain

δ m+1 (s l ) ⩽ N s l -s h m δ m (s h ) + CN τ1q+τ1+1 m δ m (s l )δ m (s 0 ).
Using the induction assumption (7.43) and the fact that s l ⩾ s 0 yields

δ m+1 (s l ) ⩽ N s l -s h m δ m (s h ) + CN τ1q+τ1+1 m (δ m (s l )) 2 ⩽ 2 -1 m+1 N s l -s h m δ 0 (s h ) + CN 2µ2 0 N τ1q+τ1+1-2µ2 m (δ 0 (s h )) 2 ⩽ 2N s l -s h m δ 0 (s h ) + CN 2µ2 0 N τ1q+τ1+1-2µ2 m (δ 0 (s h )) 2 .
The conditions (7.15) imply

s h ⩾ 3 2 µ 2 + s l + 1, and µ 2 ⩾ 2(τ 1 q + τ 1 + 1) + 1.
Part I Also, using the fact that N 0 ⩾ 2 and choosing ε 0 small enough, we get in view of (7.47),

4N -µ2 0 ⩽ 1 and 2Cδ 0 (s h )N µ2 0 ⩽ 1.
As a consequence, one has

N s l -s h m ⩽ 1 4 N µ2 0 N -µ2 m+1 and CN 2µ2 0 N τ1q+τ1+1-2µ2 m δ 0 (s h ) ⩽ 1 2 N µ2 0 N -µ2 m+1 , ( 7.62) 
which implies in turn

δ m+1 (s l ) ⩽ δ 0 (s h )N µ2 0 N -µ2 m+1 .
This proves the first statement of the induction in (7.43) and we now turn to the proof of the second statement. Applying (7.61) with s = s = s h and using the induction (7.43), we get

δ m+1 (s h ) ⩽ δ m (s h ) 1 + CN τ1q+τ1+1 m δ m (s 0 ) ⩽ 2 -1 m+1 δ 0 (s h ) 1 + CN µ2 0 N τ1q+τ1+1-µ2 m δ 0 (s h ) .
Notice that if the condition

2 -1 m+1 1 + CN µ2 0 N τ1q+τ1+1-µ2 m δ 0 (s h ) ⩽ 2 -1 m+2 (7.63)
holds true, then

δ m+1 (s h ) ⩽ 2 -1 m+2 δ 0 (s h ),
which achieves the induction argument of (7.43). Notice that (7.63) is equivalent to

2 -1 m+1 CN µ2 0 N τ1q+τ1+1-µ2 m δ 0 (s h ) ⩽ 1 (m+1)(m+2) •
Using (7.50), the preceding condition holds true if

CN µ2 0 N -1 m δ 0 (s h ) ⩽ 1 (m+1)(m+2) • (7.64)
Since N 0 ⩾ 2, then in view of (6.94) there exists a small enough constant c 0 > 0 such that

∀m ∈ N, c 0 N -1 m ⩽ 1 (m+1)(m+2) •
Consequently, (7.64) is ensured provided that

CN µ2 0 δ 0 (s h ) ⩽ c 0 . (7.65)
Choosing ε 0 small enough and making use of (7.47), we obtain

CN µ2 0 δ 0 (s h ) ⩽ Cε 0 ⩽ c 0 .
Hence, the condition (7.65) is satisfied and the proof of (7.43) is now achieved. ➢ Persistence of the regularity. Putting together (7.61), applied with s = s ∈ [s 0 , S], (7.43) and (7.50), we infer

δ m+1 (s) ⩽ δ m (s) 1 + CN τ1q+τ1+1 m δ m (s 0 ) ⩽ δ m (s) 1 + Cδ 0 (s h )N µ2 0 N τ1q+τ1+1-µ2 m ⩽ δ m (s) 1 + CN -1 m .
Gathering this estimate with (7.46), implies, up to a trivial induction,

δ m (s) ⩽ δ 0 (s) ∞ k=0 1 + CN -1 k ⩽ Cδ 0 (s) (7.66) ⩽ Cεγ -1 1 + ∥I 0 ∥ γ,O q,s+1 .
Then, (7.39), interpolation inequality in Lemma A.1 and (7.43) give

∥g m ∥ γ,O q,s ⩽ Cδ m (s + τ 1 q + τ 1 ) ⩽ C (δ m (s 0 )) θ(s) δ m (s + τ 1 q + τ 1 + 1) 1-θ(s) ⩽ Cδ θ(s) 0 (s h )δ 1-θ(s) 0 (s + τ 1 q + τ 1 + 1)N θ(s)µ2 0 N -θ(s)µ2 m , with θ(s) ≜ 1 s+τ1q+τ1+1-s0
. From (7.66), (7.16) and (7.46), we deduce 

∥g m ∥ γ,O q,s ⩽ Cεγ -1 1 + ∥I 0 ∥ γ,O q,s h +1 1 + ∥I 0 ∥ γ,O q,s+τ1q+τ1+2 N θ(s)µ2 0 N -θ(s)µ2 m ⩽ Cεγ -1 1 + ∥I 0 ∥ γ,O q,s+τ1q+τ1+2 N θ(s)µ2 0 N -θ(s)µ2 m . ( 7 
∥β m ∥ γ,O q,s ⩽ ∥β m-1 ∥ γ,O q,s 1 + C∥g m ∥ γ,O q,s0 + C 1 + ∥β m-1 ∥ γ,O q,s0 ∥g m ∥ γ,O q,s . (7.68)
If we apply this estimate with s = s 0 and use Sobolev embeddings, we deduce

∥β m ∥ γ,O q,s0 ⩽ ∥β m-1 ∥ γ,O q,s0 1 + C∥g m ∥ γ,O q,s0 + C∥g m ∥ γ,O q,s0 .
The previous two expressions make appear recurrent relation for the weighted norms of the sequence (β m ) m . To get good estimate for β m , we shall make use of the following result which is quite easy to prove by induction : Given three positive sequences (

a n ) n∈N , (b n ) n∈N and (c n ) n∈N satisfying ∀ n ∈ N, a n+1 ⩽ b n a n + c n ,
we have

∀ n ⩾ 2, a n ⩽ a 0 n-1 i=0 b i + n-2 k=0 c k n-1 i=k+1 b i + c n-1 ⩽ a 0 + n-1 k=0 c k n-1 i=0 b i . (7.69) Part I In particular, if ∞ n=0 b n and ∞ n=0 c n converge then sup n∈N a n ⩽ a 0 + ∞ n=0 c n ∞ n=0 b i . (7.70)
Since the conditions (7.15) and (7.14) imply

s 0 + τ 1 q + τ 1 + 2 ⩽ s h + σ 1 and θ(s 0 )µ 2 ⩾ 1, (7.71) 
then, from (7.67) and (7.16), we deduce

∥g m ∥ γ,O q,s0 ⩽ Cεγ -1 N µ2 0 1 + ∥I 0 ∥ γ,O q,s0+τ1q+τ1+2 N -θ(s0)µ2 m ⩽ Cε 0 N -1 m .
Choosing ε 0 small enough to ensure Cε 0 ⩽ 1, N 0 sufficiently large to ensure

∞ m=0 N -1
m < ∞ and we can apply (7.70) together with the fact that β 0 = g 0 to obtain

sup m∈N ∥β m ∥ γ,O q,s0 ⩽ ∥β 0 ∥ γ,O q,s0 + C ∞ k=0 ∥g k ∥ γ,O q,s0 ∞ k=0 1 + C∥g k ∥ γ,O q,s0 ⩽ 1 + C ∞ k=0 N -1 k ∞ k=0 1 + N -1 k ⩽ C. (7.72)
Hence the sequence ∥β m ∥ γ,O q,s0 m∈N is bounded and inserting this information in (7.68) gives for all s ∈ [s 0 , S]

∥β m ∥ γ,O q,s ⩽ ∥β m-1 ∥ γ,O q,s 1 + C∥g m ∥ γ,O q,s0 + C∥g m ∥ γ,O q,s .
Similarly to what preceeds, if we apply (7.70) and (7.67), we infer

sup m∈N ∥β m ∥ γ,O q,s ⩽ ∥β 0 ∥ γ,O q,s + C ∞ k=0 ∥g k ∥ γ,O q,s ∞ k=0 1 + C∥g k ∥ γ,O q,s0 ⩽ Cεγ -1 1 + ∥I 0 ∥ γ,O q,s+τ1q+τ1+2 1 + N θ(s)µ2 0 ∞ k=0 N -θ(s)µ2 k . From Lemma A.5 we get ∀s ∈ [s 0 , S], N θ(s)µ2 0 ∞ k=0 N -θ(s)µ2 k ≲ 1 which implies in turn ∀s ∈ [s 0 , S], sup m∈N ∥β m ∥ γ,O q,s ⩽ Cεγ -1 1 + ∥I 0 ∥ γ,O q,s+τ1q+τ1+2 . (7.73)
From the condition (7.3) we have s l = s 0 + τ 1 q + τ 1 + 2, and consequently we deduce from (A. [START_REF] Veiga | Kato's perturbation theory and well-posedness for the Euler equations in bounded domain[END_REF]), (7.72), (7.39) and (7.43),

∥β m -β m-1 ∥ γ,O q,s0+2 ⩽ C∥g m ∥ γ,O q,s0+2 1 + ∥β m-1 ∥ γ,O q,s0+2 ⩽ C∥g m ∥ γ,O q,s0+2 ⩽ Cδ m (s l ) ⩽ CN µ2 0 N -µ2 m δ 0 (s h ). (7.74)
Applying once again Lemma A.5, we deduce that

∞ m=0 ∥β m -β m-1 ∥ γ,O q,s0+2 ⩽ Cδ 0 (s h ).
Hence there exists

β ∈ W q,∞,γ (O, H s0+2 ) such that β m -→ m→∞ β (strongly) in W q,∞,γ (O, H s0+2 ).
By (7.73) the sequence (β m ) m∈N is bounded in W q,∞,γ (O, H s ), then by a weak-compactness argument we find that β ∈ W q,∞,γ (O, H s ). Using (7.73), we obtain

∀s ∈ [s 0 , S], ∥β∥ γ,O q,s ⩽ lim inf m→∞ ∥β m ∥ γ,O q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+τ1q+τ1+2 . (7.75) 
We then can consider the quasi-periodic symplectic change of variables B associated with β and defined by

Bρ(λ, ω, φ, θ) = (1 + ∂ θ β(λ, ω, φ, θ)) Bρ(λ, ω, φ, θ) = (1 + ∂ θ β(λ, ω, φ, θ)) ρ(λ, ω, φ, θ + β(λ, ω, φ, θ)).
By (7.75), (7.71) and (7.16), we have

∥β∥ γ,O q,s0 ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s0+τ1q+τ1+2 ≲ ε 0 . (7.76)
Proceeding as for (7.41), using interpolation (7.75), (7.76), (7.16) and the fact that 2s 0 +τ 1 q+τ 1 +3 ⩽ s h +σ 1 , one obtains

∥β∥ γ,O q,2s0 ≲ ε 0 .
Therefore, choosing ε 0 small enough, we deduce in view of Lemma A.4 that B is an invertible operator.

Moreover, by (A.17) and (7.75), we get

∥B ±1 ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s + εγ -1 ∥I 0 ∥ γ,O q,s+τ1q+τ1+3 ∥ρ∥ γ,O q,s0 . (7.77)
In addition, by (7.57), and Sobolev embeddings (to get pointwise convergence), we find

β ∈ s∈[s0,S] W q,∞,γ (O, H s odd ).
123

Part I

We also have an estimate of the rate of convergence for the sequence (β m ) m towards β,

∥β -β m ∥ γ,O q,s0+2 ⩽ ∞ k=m ∥β k+1 -β k ∥ γ,O q,s0+2 ≲ γδ 0 (s h )N µ2 0 ∞ k=m+1 N -µ2 k . (7.78)
From Lemma A.5, one obtains 

∞ k=m N -µ2 k = m→∞ O N -µ2 m . ( 7 
∥β -β m ∥ γ,O q,s0+2 ≲ γδ 0 (s h )N µ2 0 N -µ2 m+1 ≲ εN µ2 0 N -µ2 m+1 . (7.80)
▶ KAM conclusion By (7.58), we have

∞ m=0 ∥V m+1 -V m ∥ γ,O q ⩽ γδ 0 (s h )N µ2 0 ∞ m=0 N -µ2 m ≲ γδ 0 (s h ).
We deduce that the sequence (V m ) m∈N is convergent in W q,∞,γ (O, C) and let us denote by c i0 its limit.

Moreover, we have by (7.79), (7.46) and (7.16)

∥c i0 -V 0 ∥ γ,O q ⩽ ∞ m=0 ∥V m+1 -V m ∥ γ,O q ≲ γδ 0 (s h ) ≲ ε 1 + ∥I 0 ∥ γ,O q,s h +1 ≲ ε. Now, we introduce the truncated Cantor set O γ,τ1 ∞,n (i 0 ) = (l,j)∈Z d ×Z\{(0,0} |l|⩽Nn µ ≜ (λ, ω) ∈ O s.t. ω • l + jc i0 (µ) > 4γ υ ⟨j⟩ ⟨l⟩ τ 1 .
In what follows, we shall prove that the Cantor set O γ,τ1 ∞,n (i 0 ) satisfies the inclusion

O γ,τ1 ∞,n (i 0 ) ⊂ n+1 m=0 O γ m = O γ n+1 ,
where the intermediate Cantor sets are defined in (7.53). For this aim, we shall argue by induction. We

first remark that by construction O γ,τ1 ∞,n (i 0 ) ⊂ O ≜ O γ 0 . Now assume that O γ,τ1 ∞,n (i 0 ) ⊂ O γ m for m ⩽ n and let us check that O γ,τ1 ∞,n (i 0 ) ⊂ O γ m+1 . (7.81)
Putting together (7.58) and (7.79) we infer

∥V m -c i0 ∥ γ,O q ⩽ ∞ l=m ∥V l+1 -V l ∥ γ,O q ⩽ γδ 0 (s h )N µ2 0 ∞ l=m N -µ2 l ≲ γδ 0 (s h )N µ2 0 N -µ2 m . (7.82) Given µ ∈ O γ,τ1 ∞,n (i 0 ) and (l, j) ∈ Z d × Z \ {(0, 0)} such that 0 ⩽ |l| ⩽ N m , we have then |l| ⩽ N n and by triangle inequality, |ω • l + jV m (µ)| ⩾ |ω • l + jc i0 (µ)| -|j||V m (µ) -c i0 (µ)| ⩾ 4γ υ ⟨j⟩ ⟨l⟩ τ 1 -C⟨j⟩γδ 0 (s h )N µ2 0 N -µ2 m ⩾ 4γ υ ⟨j⟩ ⟨l⟩ τ 1 -C⟨j⟩γ υ ε 0 ⟨l⟩ -µ2 .
Since (7.15) implies µ 2 ⩾ τ 1 , then taking ε 0 ⩽ 1 C , we deduce from the previous estimate

|ω • l + jV m (µ)| > γ υ ⟨j⟩ ⟨l⟩ τ 1 .
Consequently, µ ∈ O γ m+1 and the inclusion (7.81) holds. (iii) We can write for all n ∈ N,

B -1 ω • ∂ φ + ∂ θ (V 0 + f 0 ) B = B -1 -B -1 n ω • ∂ φ + ∂ θ (V 0 + f 0 ) B + B -1 n ω • ∂ φ + ∂ θ (V 0 + f 0 ) (B -B n ) + B -1 n ω • ∂ φ + ∂ θ (V 0 + f 0 ) B n .
In view of (7.81) and the definition of B n , we have in the Cantor set O γ,τ1 ∞,n (i 0 )

B -1 n ω • ∂ φ + ∂ θ (V 0 + f 0 ) B n = ω • ∂ φ + ∂ θ (V n+1 + f n+1 ) .
Therefore, in the Cantor set O γ,τ1 ∞,n (i 0 ), the following decomposition holds

B -1 ω • ∂ φ + ∂ θ (V 0 + f 0 ) B = ω • ∂ φ + c i0 ∂ θ + E 0 n (i 0 )
, where

E 0 n (i 0 ) ≜ (V n+1 -c i0 ) ∂ θ + ∂ θ (f n+1 •) + B -1 -B -1 n ω • ∂ φ + ∂ θ (V 0 + f 0 ) B + B -1 ω • ∂ φ + ∂ θ (V 0 + f 0 ) (B -B n ) ≜ E 0 n,1 + E 0 n,2 + E 0 n,3 + E 0 n,4 .
By the product laws in Lemma A.1, (7.82) and (7.46) we have

∥E 0 n,1 ρ∥ γ,O q,s0 ≲ ∥V n+1 -c i0 ∥ γ,O q ∥ρ∥ γ,O q,s0+1 ≲ γδ 0 (s h )N µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+1 ≲ εN µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+1 . (7.

83)

Part I From (7.43) and since (7.3) implies in particular s l ⩾ s 0 + 1, we obtain

∥E 0 n,2 ρ∥ γ,O q,s0 ≲ γδ n+1 (s 0 + 1)∥ρ∥ γ,O q,s0+1 ≲ γδ 0 (s h )N µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+1 ≲ εN µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+1 . (7.84)
We now turn to the estimate of E 0 n,4 . First remark that by the product laws in Lemma A.1, we have

∥ω • ∂ φ ρ + ∂ θ (V εr ρ) ∥ γ,O q,s0 ⩽ ∥ω • ∂ φ ρ∥ γ,O q,s0 + ∥∂ θ (V εr ρ) ∥ γ,O q,s0 ≲ ∥ρ∥ γ,O q,s0+1 1 + ∥V εr ∥ γ,O q,s0+1 .
But combining (7.24), (7.49), (7.66) and (7.16), we obtain

∥V εr ∥ γ,O q,s0 ⩽ ∥V 0 ∥ γ,O q + ∥f 0 ∥ γ,O q,s0 ⩽ C + Cεγ -1 ∥I 0 ∥ γ,O q,s0+1 ⩽ C.
Therefore, we get

∥ω • ∂ φ ρ + ∂ θ (V εr ρ) ∥ γ,O q,s0 ≲ ∥ρ∥ γ,O q,s0+1 . (7.85) 
Putting together (7.85), (7.77) and (7.16), gives

∥E 0 n,4 ρ∥ γ,O q,s0 ≲ ∥(B -B n )ρ∥ γ,O q,s0+1 . (7.86) 
Applying Taylor Formula, we may write

(B -B n )ρ(θ) = (1 + ∂ θ β(θ))ρ(θ + β(θ)) -(1 + ∂ θ β n (θ))ρ(θ + h n (θ)) = (1 + ∂ θ β(θ)) [ρ(θ + β(θ)) -ρ(θ + β n (θ))] + ∂ θ (β -β n ) (θ)ρ(θ + β n (θ)) ≜ (1 + ∂ θ β(θ))(β -β n )(θ)I n (θ) + ∂ θ (β -β n )(θ)B n ρ(θ),
where

I n ρ(θ) ≜ ˆ1 0 (∂ θ ρ) (θ + β n (θ) + t(β(θ) -β n (θ))) dt.
Hence, we get by the product laws, A.16 and (7.80)

∥∂ θ (β -β n ) B n ρ∥ γ,O q,s0+1 ≲ ∥β -β n ∥ γ,O q,s0+2 ∥ρ∥ q,s0+1 1 + ∥β n ∥ γ,O q,s0+1 ≲ εN µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+1 .
Using the product laws together with (7.80), (7.72) and (7.76) we find

(1 + ∂ θ β) (β -β n ) I n ρ γ,O q,s0+1 ≲ 1 + ∥β∥ γ,O q,s0+2 ∥β -β n ∥ γ,O q,s0+1 ∥ρ∥ γ,O q,s0+2 × 1 + ∥β n ∥ γ,O q,s0+1 + ∥β -β n ∥ γ,O q,s0+1 ≲ εN µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+2 .
Gathering the foregoing estimates leads to

∥(B -B n )ρ∥ γ,O q,s0+1 ≲ εN µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+2 . (7.87)
Plugging (7.87) into (7.86) gives

∥E 0 n,4 ρ∥ γ,O q,s0 ≲ εN µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+2 . (7.88)
Proceeding in a similar way as before using in particular the identity (A.14) and (A.18) we find

∥E 0 n,3 ρ∥ γ,O q,s0 ≲ εN µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+2 . (7.89)
Putting together (7.83), (7.84), (7.88), (7.89) allows to get

∥E 0 n ρ∥ γ,O q,s0 ≲ εN µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+2 .
(iv) ▶ Estimate of ∆ 12 β. First notice that, since β -1 = 0, then

∆ 12 β = ∞ m=0 ∆ 12 (β m -β m-1 ). (7.90)
The triangle inequality allows us to write

∥∆ 12 β∥ γ,O q,s h +p ⩽ ∞ m=0 ∥∆ 12 (β m -β m-1 )∥ γ,O q,s h +p . (7.91)
According to Taylor Formula and (7.56), we infer

∆ 12 β m (θ) = ∆ 12 β m-1 (θ) + (B m-1 ) r1 (∆ 12 g m )(θ) + ∆ 12 β m-1 (θ) ˆ1 0 (∂ θ (g m ) r2 ) θ + (β m-1 ) r2 (θ) + t∆ 12 β m-1 (θ) dt.
Thus,

∆ 12 (β m -β m-1 )(θ) = (B m-1 ) r1 (∆ 12 g m )(θ) + ∆ 12 β m-1 (θ) ˆ1 0 (∂ θ (g m ) r2 ) θ + (β m-1 ) r2 (θ) + t∆ 12 β m-1 (θ) dt.
Consequently, using the law product in Lemma A.1, Lemma A.4 and Sobolev embeddings we obtain

∥∆ 12 (β m -β m-1 )∥ γ,O q,s h +p ⩽ ∥∆ 12 g m ∥ γ,O q,s h +p 1 + C∥(β m-1 ) r1 ∥ γ,O q,s0 + ∥∆ 12 g m ∥ γ,O q,s0 ∥(β m-1 ) r1 ∥ γ,O q,s h +p + C∥∆ 12 β m-1 ∥ γ,O q,s0 ∥(g m ) r2 ∥ γ,O q,s h +p+1 1 + ∥(β m-1 ) r2 ∥ γ,O q,s0 + ∥∆ 12 β m-1 ∥ γ,O q,s0 + C∥∆ 12 β m-1 ∥ γ,O q,s0 ∥(g m ) r2 ∥ γ,O q,s0+1 ∥(β m-1 ) r2 ∥ γ,O q,s h +p + ∥∆ 12 β m-1 ∥ γ,O q,s h +p + C∥∆ 12 β m-1 ∥ γ,O q,s h +p ∥(g m ) r2 ∥ γ,O q,s0+1 1 + ∥(β m-1 ) r2 ∥ γ,O q,s0 + ∥∆ 12 β m-1 ∥ γ,O q,s0
and for all s ∈ [s 0 , s h + p]

∥∆ 12 β m ∥ γ,O q,s ⩽ ∥∆ 12 g m ∥ γ,O q,s 1 + C∥(β m-1 ) r1 ∥ γ,O q,s0 + ∥∆ 12 g m ∥ γ,O q,s0 ∥(β m-1 ) r1 ∥ γ,O q,s + C∥∆ 12 β m-1 ∥ γ,O q,s0 ∥(g m ) r2 ∥ γ,O q,s+1 1 + ∥(β m-1 ) r2 ∥ γ,O q,s0 + ∥∆ 12 β m-1 ∥ γ,O q,s0 + C∥∆ 12 β m-1 ∥ γ,O q,s0 ∥(g m ) r2 ∥ γ,O q,s0+1 ∥(β m-1 ) r2 ∥ γ,O q,s + ∥∆ 12 β m-1 ∥ γ,O q,s + ∥∆ 12 β m-1 ∥ γ,O q,s 1 + C∥(g m ) r2 ∥ γ,O q,s0+1 1 + ∥(β m-1 ) r2 ∥ γ,O q,s0 + ∥∆ 12 β m-1 ∥ γ,O q,s0
.

Notice that (7.15) implies in particular s h + p + τ 1 q + τ 1 + 3 ⩽ s h + σ 1 . Therefore, using (7.67) and (7.16),

Part I we get sup m∈N max k∈{1,2} ∥(g m ) r k ∥ γ,O q,s h +p+1 ⩽ Cεγ -1 1 + max k∈{1,2} ∥I k ∥ γ,O q,s h +p+τ1q+τ1+3 ⩽ C. (7.92)
Notice that the previous estimate is sufficient to easily get rid of most of terms in the estimates of ∆ 12 β m and ∆ 12 (β m -β m-1 ), but not enough to make the series (7.90) convergent. For this purpose, we shall refine the estimates. By (7.67), (7.15) and (7.16), we have max 

k∈{1,2} ∥(g m ) r k ∥ q,s h +p+1 ⩽ Cεγ -1 1 + ∥I k ∥ γ,O q,s h +p+τ1q+τ1+3 N θ(s h +p+1)µ2 0 N -θ(s h +p+1)µ2 m ⩽ Cεγ -1 N θ(s h +p+1)µ2 0 N -θ(s h +p+1)µ2 m . ( 7 
∥(β m ) r k ∥ q,s h +p ⩽ Cεγ -1 1 + max k∈{1,2} ∥I k ∥ γ,O q,s h +p+τ1q+τ1+3 ⩽ C. (7.94)
Hence, using (7.92), (7.94) and Sobolev embeddings, the previous two estimates can be reduced to

∥∆ 12 (β m -β m-1 )∥ γ,O q,s h +p ⩽ C ∥∆ 12 g m ∥ γ,O q,s h +p + ∥∆ 12 β m-1 ∥ γ,O q,s h +p ∥(g m ) r2 ∥ γ,O q,s h +p+1 , ( 7.95) 
∥∆ 12 β m ∥ γ,O q,s0 ⩽ C∥∆ 12 g m ∥ γ,O q,s0 + ∥∆ 12 β m-1 ∥ γ,O q,s0 1 + C∥(g m ) r2 ∥ γ,O q,s0+1 (7.96) 
and

∥∆ 12 β m ∥ γ,O q,s h +p ⩽ C ∥∆ 12 g m ∥ γ,O q,s h +p + ∥∆ 12 β m-1 ∥ γ,O q,s0 ∥(g m ) r2 ∥ q,s h +p+1 + ∥∆ 12 β m-1 ∥ γ,O q,s h +p 1 + C∥(g m ) r2 ∥ γ,O q,s0+1 . (7.97)
From (7.96), using (7.70) and the fact that β 0 = g 0 , we deduce that

sup m∈N ∥∆ 12 β m ∥ γ,O q,s0 ⩽ ∥∆ 12 g 0 ∥ γ,O q,s0 + C ∞ k=0 ∥∆ 12 g k ∥ γ,O q,s0 ∞ k=0 1 + ∥(g k ) r2 ∥ γ,O q,s0+1 .
Adding (7.93), we obtain

sup m∈N ∥∆ 12 β m ∥ γ,O q,s0 ⩽ C ∞ k=0 ∥∆ 12 g k ∥ γ,O q,s0 .
Similarly, (7.97), (7.70), (7.93) and the previous estimate allow to get

sup m∈N ∥∆ 12 β m ∥ γ,O q,s h +p ⩽ C ∞ k=0 ∥∆ 12 g k ∥ γ,O q,s h +p .
Putting together the previous bounds, (7.95) and (7.93) gives

∥∆ 12 (β m -β m-1 )∥ γ,O q,s h +p ≲ ∥∆ 12 g m ∥ γ,O q,s h +p + εγ -1 N θ(s h +p+1)µ2 0 N -θ(s h +p+1)µ2 m ∞ k=0 ∥∆ 12 g k ∥ γ,O q,s h +p . (7.98)
Thus, the main delicate point is to estimate ∆ 12 g m . First remark that according to (7.34) and (7.52), we can make the splitting

g m (µ, φ, θ) = i (l,j)∈Z d+1 \{0} ⟨l,j⟩⩽Nm a l,j χ a l,j (A l,j ) r2 (µ) (∆ 12 f m ) l,j (µ)e l,j + i (l,j)∈Z d+1 \{0} ⟨l,j⟩⩽Nm a l,j ∆ 12 χ a l,j A l,j (µ) ((f m ) r1 ) l,j (µ)e l,j ≜ I 1 + I 2 .
Similarly to (7.39), one obtains

∥I 1 ∥ γ,O q,s ≲ γ -1 ∥Π Nm ∆ 12 f m ∥ γ,O q,s+τ1q+τ1 . (7.99)
We shall now estimate the second term. Applying Taylor Formula, we get

I 2 = i (l,j)∈Z d+1 \{0} ⟨l,j⟩⩽Nm a 2 l,j (∆ 12 A l,j ) ˆ1 0 χ ′ a l,j τ (A l,j ) r1 (µ) + (1 -τ )(A l,j ) r2 (µ) dτ ((f m ) r1 ) l,j e l,j ≜ (l,j)∈Z d+1 \{0} ⟨l,j⟩⩽Nm h l,j (µ)((f m ) r1 ) l,j (µ)e l,j . (7.100)
Remark that direct computations yield

∀q ′ ∈ 0, q , ∥∆ 12 A l,j ∥ γ,O q ′ ≲ ⟨l, j⟩∥∆ 12 V m ∥ γ,O q ′ . ( 7.101) 
Since that χ ′ ∈ C ∞ with χ ′ (0) = 0, then applying Lemma A.1-(iv)-(vi) together with (7.36) and (7.101), we get

∀q ′ ∈ 0, q , ∥ h l,j ∥ γ,O q ′ ≲ a 3 l,j ∥∆ 12 A l,j ∥ γ,O q ′ ∥(A l,j ) r1 ∥ γ,O q ′ + ∥(A l,j ) r2 ∥ γ,O q ′ × 1 + a q ′ -1 l,j ∥(A l,j ) r1 ∥ L ∞ (O) + ∥(A l,j ) r2 ∥ L ∞ (O) q ′ -1 ≲ γ -υ(q ′ +2) ⟨l, j⟩ τ1q ′ +2τ1+q ′ +1 ∥∆ 12 V m ∥ γ,O q ′ .
By assumption in Proposition 7.2, we have

υ ⩽ 1 q+2 (7.102)
and using Leibniz rule, we deduce that

∥I 2 ∥ γ,O q ≲ γ -1 ∥∆ 12 V m ∥ γ,O q ∥Π Nm (f m ) r1 ∥ γ,O q,s+τ1q+2τ1+1 . (7.103)
Putting together (7.99) and (7.103), we obtain for all s ⩾ s 0

∥∆ 12 g m ∥ γ,O q,s ≲ γ -1 ∥Π Nm ∆ 12 f m ∥ γ,O q,s+τ1q+τ1 + γ -1 ∥∆ 12 V m ∥ γ,O q ∥Π Nm (f m ) r1 ∥ γ,O q,s+τ1q+2τ1+1 (7.104) ≲ γ -1 N τ1q+τ1 m ∥∆ 12 f m ∥ γ,O q,s + γ -2 N τ1q+2τ1+1 m ∥∆ 12 V m ∥ γ,O q ∥(f m ) r1 ∥ γ,O q,s .
Therefore, estimating ∆ 12 g m can be done through the estimate of ∆ 12 f m . To do so, we shall argue by induction. For that purpose, we shall consider a parameter p (which can depend on the parameter p, see for instance (7.118)) satisfying the following constraint

s h + p + 3 ⩽ s h + σ 1 . (7.105)
We denote

u m ≜ Π ⊥ Nm f m + f m ∂ θ g m .
Then, we can write

∆ 12 f m+1 = (G -1 m ) r1 ∆ 12 u m + ∆ 12 G -1 m (u m ) r2 , with ∆ 12 u m = Π ⊥ Nm ∆ 12 f m + ∆ 12 f m ∂ θ (g m ) r1 + (f m ) r2 ∂ θ ∆ 12 g m .
By the triangle inequality, we have for all s ⩾ s 0

∥∆ 12 f m+1 ∥ γ,O q,s ⩽ ∥(G -1 m ) r1 ∆ 12 u m ∥ γ,O q,s + ∥(∆ 12 G -1 m )(u m ) r2 ∥ γ,O q,s . (7.106)
Therefore, combining (A.16), (A.18), (7.39) and Lemma A.1-(ii), we get for all s ⩾ s 0

∥(G -1 m ) r1 ∆ 12 u m ∥ γ,O q,s ⩽ ∥∆ 12 u m ∥ γ,O q,s 1 + C∥( g m ) r1 ∥ γ,O q,s0 + C∥( g m ) r1 ∥ γ,O q,s ∥∆ 12 u m ∥ γ,O q,s0 ⩽ ∥∆ 12 u m ∥ γ,O q,s 1 + C∥(g m ) r1 ∥ γ,O q,s0 + C∥(g m ) r1 ∥ γ,O q,s ∥∆ 12 u m ∥ γ,O q,s0 ⩽ ∥∆ 12 u m ∥ γ,O q,s 1 + Cγ -1 N τ1q+τ1 m max k∈{1,2} ∥(f m ) r k ∥ γ,O q,s0 + Cγ -1 N τ1q+τ1 m max k∈{1,2} ∥(f m ) r k ∥ γ,O q,s ∥∆ 12 u m ∥ γ,O q,s0 .
Using (7.66),(7.105) and (7.16), one gets

γ -1 sup m∈N max k∈{1,2} ∥(f m ) r k ∥ γ,O q,s h + p+1 ⩽ Cεγ -1 1 + max k∈{1,2} ∥I k ∥ γ,O q,s h + p+2 ⩽ C. (7.107)
Therefore, from (7.43) and (7.107), we get for all s ∈ [s 0 , s h ]

∥(G -1 m ) r1 ∆ 12 u m ∥ γ,O q,s ⩽ ∥∆ 12 u m ∥ γ,O q,s 1 + CN µ 2 0 N τ1q+τ1-µ 2 m + CN τ1q+τ1 m ∥∆ 12 u m ∥ γ,O q,s0 .
At this level we need to give a suitable estimate for ∆ 12 u m . For this aim, we apply the product laws in Lemma A.1, ensuring that for all s ⩾ s 0

∥∆ 12 u m ∥ γ,O q,s ⩽ ∥Π ⊥ Nm ∆ 12 f m ∥ γ,O q,s + C∥∆ 12 f m ∥ γ,O q,s ∥∂ θ (g m ) r1 ∥ γ,O q,s0 + C∥∆ 12 f m ∥ γ,O q,s0 ∥∂ θ (g m ) r1 ∥ γ,O q,s + C∥(f m ) r2 ∥ γ,O q,s ∥∆ 12 g m ∥ γ,O q,s0 + C∥(f m ) r2 ∥ γ,O q,s0 ∥∆ 12 g m ∥ γ,O q,s .
Hence we deduce by (7.39) and Lemma A.1-(ii),

∥∆ 12 u m ∥ γ,O q,s ⩽ ∥Π ⊥ Nm ∆ 12 f m ∥ γ,O q,s + Cγ -1 N τ1q+τ1+1 m ∥∆ 12 f m ∥ γ,O q,s max k∈{1,2} ∥(f m ) r k ∥ γ,O q,s0 + Cγ -1 N τ1q+τ1+1 m ∥∆ 12 f m ∥ γ,O q,s0 max k∈{1,2} ∥(f m ) r k ∥ γ,O q,s + C max k∈{1,2} ∥(f m ) r k ∥ γ,O q,s ∥∆ 12 g m ∥ γ,O q,s0 + C max k∈{1,2} ∥(f m ) r k ∥ γ,O q,s0 ∥∆ 12 g m ∥ γ,O q,s .
Added to (7.104), we finally obtain for all s ⩾ s 0

∥∆ 12 u m ∥ γ,O q,s ⩽ ∥Π ⊥ Nm ∆ 12 f m ∥ γ,O q,s + Cγ -1 N τ1q+τ1+1 m ∥∆ 12 f m ∥ γ,O q,s max k∈{1,2} ∥(f m ) r k ∥ γ,O q,s0 + Cγ -1 N τ1q+τ1+1 m ∥∆ 12 f m ∥ γ,O q,s0 max k∈{1,2} ∥(f m ) r k ∥ γ,O q,s + Cγ -2 N τ1q+2τ1+1 m max k∈{1,2} ∥(f m ) r k ∥ γ,O q,s max k∈{1,2} ∥(f m ) r k ∥ γ,O q,s0 ∥∆ 12 V m ∥ γ,O q .
Consequently, we find from (7.43), Lemma A.1-(ii) and (7.107),

∥∆ 12 u m ∥ γ,O q,s0 ⩽ N s0-s h -p m ∥∆ 12 f m ∥ γ,O q,s h + p + CN µ 2 0 N τ1q+τ1+1-µ 2 m δ 1,2 0 (s h )∥∆ 12 f m ∥ γ,O q,s0 + CN 2µ 2 0 N τ1q+2τ1+1-2µ 2 m δ 1,2 0 (s h )∥∆ 12 V m ∥ γ,O q and ∥∆ 12 u m ∥ γ,O q,s h + p ⩽ ∥∆ 12 f m ∥ γ,O q,s h + p 1 + CN µ 2 0 N τ1q+τ1+1-µ 2 m δ 1,2 0 (s h ) + CN τ1q+τ1+1 m δ 1,2 0 (s h )∥∆ 12 f m ∥ γ,O q,s0 + CN µ 2 0 N τ1q+2τ1+1-µ 2 m δ 1,2 0 (s h )∥∆ 12 V m ∥ γ,O q ,
where we use the notation

δ 1,2 0 (s) ≜ γ -1 max k∈{1,2} ∥(f 0 ) r k ∥ γ,O q,s .
It follows from the preceding estimates that,

∥(G -1 m ) r1 ∆ 12 u m ∥ γ,O q,s0 ⩽ CN τ1q+τ1 m ∥∆ 12 u m ∥ γ,O q,s0 ⩽ CN s0+τ1q+τ1-s h -p m ∥∆ 12 f m ∥ γ,O q,s h + p + CN µ 2 0 N 2(τ1q+τ1)+1-µ 2 m δ 1,2 0 (s h )∥∆ 12 f m ∥ γ,O q,s0 + CN 2µ 2 0 N 2τ1q+3τ1+1-2µ 2 m δ 1,2 0 (s h )∥∆ 12 V m ∥ γ,O q . (7.108)
In a similar way, direct computations yield

∥(G -1 m ) r1 ∆ 12 u m ∥ γ,O q,s h + p ⩽ ∥∆ 12 f m ∥ γ,O q,s h + p 1 + N s0+τ1q+τ1-s h -p m + CN µ 2 0 N τ1q+τ1+1-µ 2 m δ 1,2 0 (s h ) + C N µ 2 0 N 2(τ1q+τ1)+1-µ 2 m + N τ1q+τ1+1 m δ 1,2 0 (s h )∥∆ 12 f m ∥ γ,O q,s0 + CN µ 2 0 N 2τ1q+3τ1+1-µ 2 m δ 1,2 0 (s h )∥∆ 12 V m ∥ γ,O q . (7.109)
By a new use of Taylor Formula, we can write

(∆ 12 G -1 m )(u m ) r2 (θ) = ∆ 12 g m (θ) ˆ1 0 ∂ θ (u m ) r2 θ + ( g m ) r2 (θ) + t∆ 12 g m (θ) dt.
Applying Lemma A.1 and (7.39), we deduce for all s ⩾ s 0

∥u m ∥ γ,O q,s ⩽ ∥Π ⊥ Nm f m ∥ γ,O q,s + C∥f m ∥ γ,O q,s ∥∂ θ g m ∥ γ,O q,s0 + C∥f m ∥ γ,O q,s0 ∥∂ θ g m ∥ γ,O q,s ⩽ ∥f m ∥ q,s 1 + CN τ1q+τ1+1 m ∥f m ∥ γ,O q,s0 ⩽ C∥f m ∥ γ,O q,s . (7.110) Part I
Using once again the product laws in Lemma A.1 combined with (A. [START_REF] Veiga | Kato's perturbation theory and well-posedness for the Euler equations in bounded domain[END_REF]) yield for all s ⩾ s 0

∥(∆ 12 G -1 m )(u m ) r2 ∥ γ,O q,s ⩽ C∥∆ 12 g m ∥ γ,O q,s ∥(u m ) r2 ∥ q,s0+1 1 + ∥( g m ) r2 ∥ γ,O q,s0 + ∥∆ 12 g m ∥ γ,O q,s0 + C∥∆ 12 g m ∥ γ,O q,s0 ∥(u m ) r2 ∥ γ,O q,s+1 1 + ∥( g m ) r2 ∥ γ,O q,s0 + ∥∆ 12 g m ∥ γ,O q,s0 + C∥∆ 12 g m ∥ q,s0 ∥(u m ) r2 ∥ γ,O q,s0+1 ∥( g m ) r2 ∥ γ,O q,s + ∥∆ 12 g m ∥ γ,O q,s .
In view of (A. [START_REF] Berti | KAM for Reversible Derivative Wave Equations[END_REF]), (7.93) and Sobolev embeddings, one gets for all s ∈ [s 0 , s h + p]

∥∆ 12 g m ∥ γ,O q,s ⩽ C ∥∆ 12 g m ∥ γ,O q,s + ∥∆ 12 g m ∥ γ,O q,s0 max k∈{1,2} ∥(g m ) r k ∥ γ,O q,s+1 ⩽ C∥∆ 12 g m ∥ γ,O q,s .
Putting together the previous estimates, (7.92) and (A.18) gives for all s ∈ [s 0 , s h ]

∥(∆ 12 G -1 m )(u m ) r2 ∥ γ,O q,s ⩽ C∥∆ 12 g m ∥ γ,O q,s ∥(u m ) r2 ∥ q,s0+1 + C∥∆ 12 g m ∥ γ,O q,s0 ∥(u m ) r2 ∥ γ,O q,s+1 .
Thus, by virtue of (7.104), (7.110), we get for all s ∈ [s 0 , s h ]

∥(∆ 12 G -1 m )(u m ) r2 ∥ γ,O q,s ⩽ Cγ -1 N τ1q+τ1 m ∥∆ 12 f m ∥ γ,O q,s max k∈{1,2} ∥(f m ) r k ∥ γ,O q,s0+1 + Cγ -1 N τ1q+τ1 m ∥∆ 12 f m ∥ γ,O q,s0 max k∈{1,2} ∥(f m ) r k ∥ γ,O q,s+1 + Cγ -2 N τ1q+2τ1+1 m ∥∆ 12 V m ∥ γ,O q max k∈{1,2} ∥(f m ) r k ∥ γ,O q,s0+1 max k∈{1,2} ∥(f m ) r k ∥ γ,O q,s+1 .
Hence, (7.43), (7.66) and (7.107) allow to get (since s l ⩾ s 0 + 1)

∥(∆ 12 G -1 m )(u m ) r2 ∥ γ,O q,s0 ⩽ CN µ 2 0 N τ1q+τ1-µ 2 m δ 1,2 0 (s h )∥∆ 12 f m ∥ γ,O q,s0 + CN 2µ 2 0 N τ1q+2τ1+1-2µ 2 m δ 1,2 0 (s h )∥∆ 12 V m ∥ γ,O q (7.111)
and 

∥(∆ 12 G -1 m )(u m ) r2 ∥ γ,O q,s h + p ⩽ CN µ 2 0 N τ1q+τ1-µ 2 m δ 1,2 0 (s h )∥∆ 12 f m ∥ γ,O q,s h + p + CN τ1q+τ1 m δ 1,2 0 (s h + p + 1)∥∆ 12 f m ∥ γ,O q,s0 + CN µ 2 0 N τ1q+2τ1+1-µ 2 m δ 1,2 0 (s h + p + 1)∥∆ 12 V m ∥ γ,O q . ( 7 
∥∆ 12 f m+1 ∥ γ,O q,s0 ⩽ N s0+τ1q+τ1-s h m ∥∆ 12 f m ∥ γ,O q,s h + p + CN µ 2 0 N 2(τ1q+τ1)+1-µ 2 m δ 1,2 0 (s h )∥∆ 12 f m ∥ γ,O q,s0 + CN 2µ 2 0 N 2τ1q+3τ1+1-2µ 2 m δ 1,2 0 (s h )∥∆ 12 V m ∥ γ,O q . (7.113)
In a similar war, we get in view of (7.106), (7.109) and (7.112)

∥∆ 12 f m+1 ∥ γ,O q,s h + p ⩽ ∥∆ 12 f m ∥ γ,O q,s h + p 1 + N s0+τ1q+τ1-s h -p m + CN µ 2 0 N τ1q+τ1+1-µ 2 m δ 1,2 0 (s h ) + C N µ 2 0 N 2(τ1q+τ1)+1-µ 2 m + N τ1q+τ1+1 m δ 1,2 0 (s h + p + 1)∥∆ 12 f m ∥ γ,O q,s0 + CN µ 2 0 N 2τ1q+3τ1+1-µ 2 m δ 1,2 0 (s h + p + 1)∥∆ 12 V m ∥ γ,O q . (7.114)
In the sequel, we shall use the following notations

δ m (s) = γ -1 ∥∆ 12 f m ∥ γ,O q,s and κ m = γ -1 ∥∆ 12 V m ∥ γ,O q .
Notice that

∆ 12 V m+1 = ∆ 12 V m + ⟨∆ 12 f m ⟩ φ,θ and ∆ 12 V 0 = 0.
Then, by using Sobolev embeddings, we obtain

κ m ⩽ m-1 k=0 δ k (s 0 ). ( 7.115) 
We shall now prove by induction that, for all p satisfying the condition (7.105), we have

∀k ⩽ m, δ k (s 0 ) ⩽ N µ 2 0 N -µ 2 k ν(s h + p) and δ k (s h + p) ⩽ 2 -1 k+1 ν(s h + p), (7.116) 
with

ν(s) ≜ δ 0 (s) + εγ -1 ∥∆ 12 i∥ s0+2 .
First remark that the property (7.116) is trivially satisfied for m = 0 according to Sobolev embeddings.

We now assume that (7.116) is true at the order m and let us check it at the next order. By the induction assumption (7.116) and (7.115), one obtains the following estimate

sup m∈N κ m ⩽ Cν(s h + p). (7.117) 
Using (7.113), (7.117) and hypothesis of induction (7.116), we find

δ m+1 (s 0 ) ⩽ N s0+τ1q+τ1-s h m δ m (s h + p) + CN µ 2 0 N 2(τ1q+τ1)+1-µ 2 m δ 1,2 0 (s h )δ m (s 0 ) + CN 2µ 2 0 N 2τ1q+3τ1+1-2µ 2 m δ 1,2 0 (s h )κ m ⩽ 2N s0+τ1q+τ1-s h m + CN 2µ 2 0 N 2τ1q+3τ1+1-2µ 2 m δ 1,2 0 (s h ) ν(s h + p).
Then, in view of (7.15), we infer

2N s0+τ1q+τ1-s h m = 2N -3 2 µ 2 -3 m = 2N -3 m N -µ 2 m+1 ⩽ 2N -3 0 N -µ 2 m+1 ⩽ 1 2 N µ 2 0 N -µ 2 m+1 .
To prove the last inequality, we remark that since N 0 ⩾ 2 and µ 2 ⩾ 0 (according to (7.3)), then

4 ⩽ N µ 2 +3 0 .
Similarly, from the expression of µ 2 in (7.15) and using (6.94) one obtains

CN 2µ 2 0 N 2τ1q+3τ1+1-2µ 2 m δ 1,2 0 (s h ) ⩽ Cεγ -1 N µ 2 0 N 2τ1q+3τ1+1-1 2 µ 2 m N µ 2 0 N -µ 2 m+1 ⩽ Cεγ -1 N 2τ1q+3τ1+1+ 1 2 µ 2 0 N µ 2 0 N -µ 2 m+1 ⩽ Cεγ -1 N µ 2 0 N µ 2 0 N -µ 2 m+1 . Part I
Hence, choosing ε 0 small enough and using (7.16) we deduce that

CN 2µ 2 0 N 2τ1q+3τ1+1-2µ 2 m δ 1,2 0 (s h ) ⩽ 1 2 N µ 2 0 N -µ 2 m+1 .
Gathering the preceding estimates gives

δ m+1 (s 0 ) ⩽ N µ 2 0 N -µ 2 m+1 ν(s h + p).
This ends the proof of the first statement in (7.116). As for the second one, we shall first write in view of (7.114),

δ m+1 (s h + p) ⩽ δ m (s h + p) 1 + N s0+τ1q+τ1-s h m + CN µ 2 0 N τ1q+τ1+1-µ 2 m δ 1,2 0 (s h ) + C N τ1q+τ1+1 m + N µ 2 0 N 2(τ1q+τ1)+1-µ 2 m δ 1,2 0 (s h + p + 1)δ m (s 0 ) + CN µ 2 0 N 2τ1q+3τ1+1-µ 2 m δ 1,2 0 (s h + p + 1)κ m .
Notice that since s h + p + 2 ⩽ s h + σ 1 , then by (7.46) and (7.16), one has

δ 1,2 0 (s h + p + 1) ≲ εγ -1 1 + max k∈{1,2} ∥I k ∥ γ,O q,s h + p+2 ≲ εγ -1 .
It follows from (7.116) and (7.117),

δ m+1 (s h + p) ⩽ 2 -1 m+1 1 + N s0+τ1q+τ1-s h m + CN µ 2 0 N τ1q+τ1+1-µ 2 m ν(s h + p) + C N τ1q+τ1+1 m + N µ 2 0 N 2τ1q+3τ1+1-µ 2 m N µ 2 0 N -µ 2 m εγ -1 ν(s h + p).
Proceeding as for (7.63), taking ε 0 small enough and thanks to (7.15), we obtain

2 -1 m+1 1 + N s0+τ1q+τ1-s h m + CN µ 2 0 N τ1q+τ1+1-µ 2 m + C N τ1q+τ1+1 m + N µ 2 0 N 2τ1q+3τ1+1-µ 2 m N µ 2 0 N -µ 2 m εγ -1 ⩽ 2 -1 m+2 , so that δ m+1 (s h + p) ⩽ 2 -1 m+2 ν(s h + p).
This completes the proof of the second statement in (7.116). ➢ Conclusion. From (7.104), we get for s = s 0 .

∥∆ 12 g m ∥ γ,O q,s0 ≲ δ m (s 0 + τ 1 q + τ 1 ) + κ m δ m (s 0 + τ 1 q + 2τ 1 + 1).
By interpolation inequality in Lemma A.1, (7.43) applied with µ 2 = µ 2 , (7.116) applied with p = 0 and Sobolev embeddings, we have for some θ ∈ (0, 1)

δ m (s 0 + τ 1 q + τ 1 ) ⩽ δ m (s 0 + τ 1 q + 2τ 1 + 1) ≲ δ m (s 0 ) θ δ m (s h ) 1-θ ≲ N θµ 2 0 N -θµ 2 m ν(s h )
and

δ m (s 0 + τ 1 q + 2τ 1 + 1) ≲ δ m (s 0 ) θ δ m (s h ) 1-θ ≲ N θµ 2 0 N -θµ 2 m δ 0 (s h ) ≲ N θµ 2 0 N -θµ 2 m .
Therefore

∥∆ 12 g m ∥ γ,O q,s0 ≲ N θµ 2 0 N -θµ 2 m ν(s h ).
Now from (7.104), we have

∥∆ 12 g m ∥ γ,O q,s h +p+1 ≲ δ m (s h + p + τ 1 q + τ 1 + 1) + κ m δ m (s h + p + τ 1 q + 2τ 1 + 2).
Applying (7.116) with

p = p + τ 1 q + τ 1 + 1, (7.118) 
which is possible since from (7.3), (7.15) and (7.14), one has

s h + p + τ 1 q + τ 1 + 4 ⩽ s h + σ 1 , we find δ m (s h + p + τ 1 q + τ 1 + 1) ⩽ 2ν(s h + p + τ 1 q + τ 1 + 1) ⩽ 2δ 0 (s h + p + τ 1 q + τ 1 + 1) + 2εγ -1 ∥∆ 12 i∥ γ,O q,s0+2 .
Implementing a similar proof to (6.43) based on the kernel decomposition (6.39), the composition laws and (7.8), we find

∀s ⩾ s 0 , δ 0 (s) = γ -1 ∥∆ 12 V εr ∥ γ,O q,s ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s+1 + ∥∆ 12 i∥ γ,O q,s0+1 max ℓ=1,2
∥r ℓ ∥ γ,O q,s+1 .

On the other hand, since

s h + p + τ 1 q + 2τ 1 + 3 ⩽ s h + σ 1 ,
one may obtain through combining (7.66) and (7.16)

δ m (s h + p + τ 1 q + 2τ 1 + 2) ⩽ Cεγ -1 1 + ∥I 0 ∥ γ,O q,s h +p+τ1q+2τ1+3 ⩽ Cεγ -1 .
Thus, by interpolation inequality in Lemma A.1, we finally obtain for some θ ∈ (0, 1)

∥∆ 12 g m ∥ γ,O q,s h +p ≲ N θµ 2 0 N -θµ 2 m ν(s h + p + τ 1 q + τ 1 + 1). (7.119)
Choosing N 0 sufficiently large, then the composition law in Lemma A.1 allows to get

∞ k=0 ∥∆ 12 g k ∥ γ,O q,s h +p ≲ ν(s h + p + τ 1 q + τ 1 + 1)N θµ 2 0 ∞ k=0 N -θµ 2 m ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+τ1q+τ1+2 . (7.120)
Finally, gathering (7.91), (7.98), (7.119) and (7.120), we get ∥∆ 12 β∥ γ,O q,s h +p ≲ εγ -1 ∥∆ 12 i∥ q,s h +p+τ1q+τ1+2 .

Part I

Putting together this estimate, (A. [START_REF] Berti | KAM for Reversible Derivative Wave Equations[END_REF]) and (7.94) yields

∥∆ 12 β∥ γ,O q,s h +p ≲ ∥∆ 12 β∥ γ,O q,s h +p ≲ εγ -1 ∥∆ 12 i∥ q,s h +p+τ1q+τ1+2 . ▶ Estimate on ∆ 12 c i . Since V 0 = Ω + I 1 K 1 is independent of r, then ∆ 12 c i = ∞ m=0 ∆ 12 (V m+1 -V m ).
Therefore we obtain in view of (7.54), Sobolev embeddings and (7.116) applied with p = 0,

∥∆ 12 (V m+1 -V m )∥ γ,O q = ∥⟨∆ 12 f m ⟩ φ,θ ∥ γ,O q ⩽ Cγδ m (s 0 ) ⩽ CγN µ 2 0 N -µ 2 m ν(s h ).
Hence by the composition law in Lemma A.1, Lemma A.5 and (7.8) one may find

∥∆ 12 c i ∥ γ,O q ⩽ ∞ m=0 ∥∆ 12 (V m+1 -V m )∥ γ,O q ⩽ Cγν(s h )N µ 2 0 ∞ m=0 N -µ 2 m ⩽ Cε∥∆ 12 i∥ γ,O q,s h +2 .
This achieves the proof of Proposition 7.2.

Action on the nonlocal term

In this section, we shall analyze the conjugation action by B on the nonlocal term appearing in the linearized operator L εr described in Proposition 7.1. The main result reads as follows.

Proposition 7.3. Let (γ, q, d, τ 1 , s 0 , s h , σ 1 , S) satisfy (A.2), (A.1), (7.3) and (7.14). We set

σ 2 ≜ s 0 + σ 1 + 3. (7.121)
For any (µ 2 , p, s h ) satisfying the condition (7.15), there exists ε 0 > 0 such that if

εγ -1 N µ2 0 ⩽ ε 0 and ∥I 0 ∥ γ,O q,s h +σ2 ⩽ 1, (7.122)
then in the Cantor set O γ,τ1 ∞,n (i 0 ), we have

L εr ≜ B -1 L εr B = ω • ∂ φ + c i0 ∂ θ -∂ θ K λ * • + ∂ θ R εr + E 0 n ,
where K λ is defined in (5.12), E 0 n is introduced in Proposition 7.2 and R εr is a real and reversibility preserving self-adjoint integral operator satisfying

∀s ∈ [s 0 , S], max k∈{0,1,2} ∥∂ k θ R εr ∥ γ,O O-d,q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ2 . (7.123)
In addition, if i 1 and i 2 are two tori satisfying the smallness property (7.122), then

max k∈{0,1} ∥∆ 12 ∂ k θ R εr ∥ γ,O O-d,q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ2 . (7.124)
Proof. We recall from Proposition 7.1 and Lemma 5.1. that

L εr = ω • ∂ φ + ∂ θ (V εr •) -∂ θ L εr ,
where L εr is a nonlocal operator defined by

L εr (ρ)(φ, θ) = ˆT ρ(φ, η)K 0 (λA εr (φ, θ, η))dη, with A εr (φ, θ, η) = R(φ, η) -R(φ, θ) 2 + 4R(φ, η)R(φ, θ) sin 2 η-θ 2 1 2
and

R(φ, θ) = 1 + 2εr(φ, θ) 1 2 .
Notice that we have removed the dependance in (λ, ω) from the functions in order to alleviate the notation.

Hence by Proposition 7.2, Lemma A.3-(i) and (6.24), we have in the Cantor set O γ,τ1 ∞,n (i 0 )

L εr ≜ B -1 L εr B = B -1 ω • ∂ φ + ∂ θ (V εr •) B -B -1 ∂ θ L εr B = ω • ∂ φ + c i0 ∂ θ -∂ θ B -1 L εr B + E 0 n = ω • ∂ φ + c i0 ∂ θ -∂ θ B -1 (K λ * •) B + B -1 L εr,1 B + E 0 n . (7.125)
From a direct computation using (5.12) combined with (A.14) and (A.12), we find

B -1 K λ * Bρ (φ, θ) = ˆT ρ(φ, η)K 0 λA β (φ, θ, η) dη, where A β (φ, θ, η) ≜ 2 sin η-θ 2 + h(φ, θ, η) , with h(φ, θ, η) ≜ β(φ,η)-β(φ,θ) 2 •
Using elementary trigonometric identities, we can write

A β (φ, θ, η) = 2 sin η-θ 2 v β,2 (φ, θ, η), (7.126) with v β,2 (φ, θ, η) ≜ cos h(φ, θ, η) + sin h(φ,θ,η) tan( η-θ 2 )
• Notice that v 0,2 = 1 and one may write

v β,2 (θ, η) = 1 + cos h(θ, η) -1 + h(θ,η) tan( η-θ 2 ) + sin( h(θ,η)) h(θ,η) -1 h(θ,η) tan( η-θ
Part I and then using Lemma A.1-(iv)-(v), Lemma A.2 and (7.19), we obtain

sup η∈T v β,2 ( * , •, , η + ) -1 γ,O q,s ≲ ∥ β∥ γ,O q,s+1 ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1+1 , ∀k ∈ N * , sup η∈T (∂ k θ v β,2 )( * , •, , η + ) γ,O q,s ≲ ∥ β∥ γ,O q,s+k+1 ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1+1+k . (7.127)
Proceeding as for (6.39), one obtains the decomposition

K 0 (λA β (λ, ω, φ, θ, η)) = K 0 2λ sin η-θ 2 + K (η -θ)K 1 β,2 (φ, θ, η) + K 2 β,2 (φ, θ, η)
with similar estimates to (6.35) and (6.38), that is, for all k ∈ N,

sup η∈T (∂ k θ K 1 β,2 )( * , •, , η + ) γ,O q,s + (∂ k θ K 2 β,2 )( * , •, , η + ) γ,O q,s ≲ ∥ β∥ γ,O q,s+1+k ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1+1+k , (7.128)
where the symbols * , •, stand for (λ, ω), φ, θ, respectively. Now we shall denote by L εr,2 the integral operator with the kernel K εr,2 defined by

K εr,2 (φ, θ, η) ≜ K (η -θ)K 1 β,2 (φ, θ, η) + K 2 β,2 (φ, θ, η). ( 7.129) 
Then we find the decomposition

B -1 (K λ * •) B = K λ * • + L εr,2 .
Inserting this identity into (7.125) allows to get

L εr = B -1 L εr B = ω • ∂ φ + c i0 ∂ θ -∂ θ K λ * • + ∂ θ R εr + E 0 n , with R εr ≜ -L εr,2 -B -1 L εr,1 B. (7.130) 
Observe that by (7.4) and (7.23) we can easily check that the kernel K εr,2 satisfies the following symmetry property

K εr,2 (-φ, -θ, -η) = K εr,2 (φ, θ, η) ∈ R, (7.131) 
which implies in turn, according to Lemma A.7, that L εr,2 is a real and reversibility preserving operator.

Moreover, one obtains from (7.128)

max k∈{0,1,2} (∂ k θ K εr,2 )( * , •, , η + ) γ,O q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1+3 1 -log sin η 2 . (7.132)
Our next purpose is to highlight some properties of the operator B -1 L εr,1 B which takes the integral form

B -1 L εr,1 B ρ(φ, θ) = ˆT ρ(φ, η) K εr,1 (φ, θ, η)dη, ( 7.133) 
where the kernel K εr,1 is related to the kernel K εr,1 defined in (6.25) through the formula,

K εr,1 (φ, θ, η) ≜ K εr,1 φ, θ + β(φ, θ), η + β(φ, η) . (7.134)
It is quite easy to check from (6.27) and (7.23), that

K εr,1 (-φ, -θ, -η) = K εr,1 (φ, θ, η) ∈ R. (7.135)
According to (6.25), one gets the decomposition

K εr,1 (φ, θ, η) = K (φ, θ, η) K 1 εr,1 (φ, θ, η) + K 2 εr,1 (φ, θ, η), ( 7.136) 
with

K (φ, θ, η) ≜ K η -θ + β(φ, η) -β(φ, θ) , K 1 εr,1 (φ, θ, η) ≜ K 1 εr,1 φ, θ + β(φ, θ), η + β(φ, η) , K 2 εr,1 (φ, θ, η) ≜ K 2 εr,1 φ, θ + β(φ, θ), η + β(φ, η) .
Coming back to (6.26) and using the morphism property of the logarithm, combined with (7.126) we deduce that

K (φ, θ, η) = sin 2 η-θ 2 v 2 β,2 (φ, θ, η) log sin η-θ 2 + log v β,2 (φ, θ, η) = K η -θ + K η -θ v 2 β,2 (φ, θ, η) -1 + sin 2 η-θ 2 v 2 β,2 (φ, θ, η) log v β,2 (φ, θ, η) .
Combining Lemma A.1-(iv)-(v), (7.127), (7.19) gives for any η ∈ T max k∈{0,1,2} 

(∂ k θ K ) * , •, ,η + γ,O q,s ≲ β∥ γ,O q,s+3 1 -log sin η 2 -log sin η 2 + 1 ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ2
(∂ k θ K 1 εr,1 ) * , •, , η + γ,O q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ2 . (7.138)
For this aim we first write from (6.36) and (C.2)

K 1 εr,1 (φ, θ, η) = 4λ 2 1 -v εr,1 (φ, θ, η) Ĩλ (η -θ) -4λ 2 (v εr,1 (φ, θ) -1) 2 ˆ1 0 (1 -t)I ′′ 0 2λ sin η-θ 2 (1 -t + tv εr,1 (φ, θ, η)) dt ≜ 4λ 2 1 -v εr,1 (φ, θ, η) Ĩλ (η -θ) + G(φ, θ, η), (7.139) with Ĩλ (η) ≜ I ′ 0 2λ sin η 2 2λ sin η 2 = 1 2 ∞ m=0 λ 2m sin 2m η 2 m!(m + 1)! •
Then we get the decomposition

K 1 εr,1 (φ, θ, η) = 4λ 2 1 -v εr,1 (φ, θ, η) I λ (φ, θ, η) + G(φ, θ, η), Part I with v εr,1 (φ, θ, η) ≜ v εr,1 φ, θ + β(φ, θ), η + β(φ, η) , I λ (φ, θ, η) ≜ Ĩλ η + β(φ, η) -θ -β(φ, θ) , G(φ, θ, η) ≜ G φ, θ + β(φ, θ), η + β(φ, η) .
It follows that

K 1 εr,1 (φ, θ, θ + η) =4λ 2 1 -v εr,1 φ, θ + β(φ, θ), θ + η + β(φ, θ + η) Ĩλ η + β(φ, θ + η) -β(φ, θ) + G φ, θ + β(φ, θ), η + θ + β(φ, η + θ) . (7.140) Notice that (λ, η) → Ĩλ (η) is C ∞ , then using Lemma A.1-(v) and (7.19) yields for any k ∈ N sup η∈T ∥(∂ k θ I λ )( * , •, , η + )∥ γ,O q,s ≲ 1 + ∥ β∥ γ,O q,s+k ≲ 1 + εγ -1 ∥I 0 ∥ γ,O q,s+σ1+k .
Now using (6.31), Lemma A.1-(v), (7.18), (7.7), (7.127) and proceeding as in (6.32) we obtain

sup η∈T ∥ v εr,1 * , •, , η + -1∥ γ,O q,s ≲ ε∥r∥ γ,O q,s+1 + ε 2 γ -1 ∥I 0 ∥ γ,O q,s+σ1+1 ∥r∥ γ,O q,s0+1 ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1+1
and max

k∈{1,2} sup η∈T ∥(∂ k θ v εr,1 ) * , •, , η + ∥ γ,O q,s ≲ ε∥r∥ γ,O q,s+3 + ε 2 γ -1 ∥I 0 ∥ γ,O q,s+σ1+3 ∥r∥ γ,O q,s0+3 ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1+3 .
Arguing as above using the structure of G detailed in (7.139) allows to get

sup η∈T ∥ G * , •, , η + -1∥ γ,O q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1+1 and max k∈{1,2} sup η∈T ∥(∂ k θ G * , •, , η + ∥ γ,O q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1+3 .
Thus applying the product laws in Lemma A.1 and using the preceding estimates combined with (7.140)

imply max k∈{0,1,2} sup η∈T ∥ ∂ k θ K 1 εr,1 ( * , •, , η + )∥ γ,O q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1+3 , (7.141) 
which gives in particular (7.138). The estimate of the last term K 2 εr,1 in (7.136), which is connected to (6.37), can be treated in a similar way to the estimate (7.141) and one finds max 

k∈{0,1,2} sup η∈T (∂ k θ K 2 εr,1 ) * , •, , η + γ,O q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1+3 . ( 7 
(∂ k θ K εr,1 ) * , •, , η + γ,O q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1+3
1 -log sin η 2 .

(7.143) By (7.130) we infer that R εr is an integral operator of kernel K εr given by

K εr ≜ -K εr,1 -K εr,2 .
Therefore, by virtue of Lemma A.7 combined with (7.132) and (7.143) we find, taking

σ 2 = s 0 + σ 1 + 3, max k∈{0,1,2} ∥∂ k θ R εr ∥ γ,O O-d,q,s ≲ max k∈{0,1,2} ˆT ∥(∂ k θ K εr,1 )( * , •, , η + )∥ γ,O q,s+s0 + ∥(∂ k θ K εr,2 )( * , •, , η + )∥ γ,O q,s+s0 dη ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+s0+σ1+3 ˆT 1 -log sin η 2 dη ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ2 .
Notice that by (7.135), (7.131), the kernel K εr satisfies the following symmetry property

K εr (-φ, -θ, -η) = K εr (φ, θ, η) ∈ R, (7.144) 
which implies in view of Lemma A.7 that R εr is a real and reversibility preserving Toeplitz in time integral operator. It remains to estimate the quantity max k∈{0,1}

∥∆ 12 ∂ k θ R εr ∥ γ,O O-d,q
,s h +p . This is will be implemented as before and we shall here sketch the main ideas. First we observe that for k ∈ {0, 1} the kernel of

∆ 12 ∂ k θ R εr is given by ∆ 12 ∂ k θ K εr = -∆ 12 ∂ k θ K εr,1 -∆ 12 ∂ k θ K εr,2 .
To estimate ∆ 12 ∂ k θ K εr,2 we shall use (7.129) leading to

∆ 12 K εr,2 (φ, θ, η) = K (θ -η)∆ 12 K 1 β,2 (φ, θ, η) + ∆ 12 K 2 β,2
(φ, θ, η) (7.145) and

∆ 12 ∂ θ K εr,2 (φ, θ, η) = K (θ -η)∆ 12 ∂ θ K 1 β,2 (φ, θ, η) + K ′ (θ -η)∆ 12 K 1 β,2
(φ, θ, η)

+ ∆ 12 ∂ θ K 2 β,2
(φ, θ, η). (7.146) Observe from (7.126) that the preceding kernels can be expressed with respect to β. Then proceeding in a similar way to (6.48) we obtain

∀ i ∈ {1, 2}, max k∈{0,1} sup η∈T ∥d β ∂ k θ K i β,2 [ρ]( * , •, , η + )∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s+2 + ∥ρ∥ γ,O q,s0+1 ∥ β∥ γ,O q,s+2 . (7.147)
Applying Taylor Formula yields for all i ∈ {1, 2} and for all k ∈ {0, 1},

∆ 12 ∂ k θ K i β,2 (φ, θ, θ + η) = ˆ1 0 d β ∂ k θ K i (1-τ ) β2+τ β1,2 [ β 1 -β 2 ](φ, θ, θ + η) dτ.
It follows from (7.147) that for all i ∈ {1, 2} and for all k ∈ {0, 1} 

∆ 12 ∂ k θ K i β,2 ( * , •, , η + ) γ,O q,s ≲ ∥ β 2 -β 1 ∥ γ,O q,s+2 + ∥ β 2 -β 1 ∥ γ,O q,s0+1 ˆ1 0 ∥(1 -τ ) β 2 + τ β 1 ∥ γ,O q,s+2
∆ 12 ∂ k θ K i β,2 ( * , •, , η + ) γ,O q,s h +p+s0 ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ2 1 + εγ -1 1 + ∥I 0 ∥ γ,O q,s h +p+σ2 ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ2 .
Inserting this estimate into (7.145) and (7.146) yields max k∈{0,1} 

sup η∈T ∆ 12 ∂ k θ K εr,2 ( * , •, , η + ) γ,O q,s h +p+s0 ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ2 . ( 7 
∆ 12 ∂ k θ K εr,1 ( * , •, , η + ) γ,O q,s h +p+s0 ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ2 . ( 7 
∆ 12 ∂ k θ K εr ( * , •, , η + ) γ,O q,s h +p+s0 ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ2 .
Comibining this estimate with Lemma A.7 yields max k∈{0,1}

∥∆ 12 ∂ k θ R εr ∥ γ,O O-d,q,s h +p ≲ max k∈{0,1} ˆT ∥∆ 12 ∂ k θ K εr ( * , •, , η + )∥ γ,O q,s h +p+s0 dη ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ2 .
This completes the proof of the Proposition 7.3.

Diagonalization up to small errors

The main goal of this section is to diagonalize, up to small errors, the operator L ω discussed in Proposition 7.1 and given by

L ω = Π ⊥ S0 (L εr -ε∂ θ R)Π ⊥ S0 .
This will be performed in two main steps. First, we shall explore the effect of the frequency localization in the normal direction on the transport reduction discussed in Section 7.2. We essentially get the same structure up to a small perturbation of finite-dimensional rank. Then, in the second step we shall implement a KAM reducibility scheme in order to reduce the remainder to a diagonal one modulo small fast decaying operators. This will be performed through the use of a suitable strong topology on continuous operators given by (A. [START_REF] Berti | Cantor families of periodic solutions for wave equations with C k nonlinearities[END_REF]. With this topology one has tame estimates and the Toeplitz structure of the remainder is very important in this part. The reduction will be conducted by assuming non resonance conditions stemming from the second order Melnikov conditions needed in the resolution of adequate homological equations during the scheme.

Projection in the normal directions

In this section, we study the effects of the reduction of the transport part when the linearized operator is localized in the normal directions. Notice that the change of coordinates does not stabilize the normal subspace and as we shall see the defect of the commutation can be modeled by projectors of finite ranks.

Let us define

B ⊥ ≜ Π ⊥ S0 BΠ ⊥ S0 ,
where the transformation B is introduced in (A.12) and constructed in Proposition 7.2. Recall that the projection Π ⊥ S0 and the space L 2 ⊥ were respectively defined in (6.9) and (6.8). We also recall the following notations e l,j (φ, θ) = e i(l•φ+jθ) and e m (θ) = e imθ .

In the sequel, we may use the following notation

H s ⊥ ≜ H s ∩ L 2 ⊥ .
The first main result of this section reads as follows.

Lemma 7.1. Let B the transformation constructed in Proposition 7.2, then under the condition (7.122) and (7.15), the following assertions hold.

(i) For all s ∈ [s 0 , S], the operator

B ⊥ : W q,∞,γ O, H s ⊥ → W q,∞,γ O, H s ⊥ is

continuous and invertible, with

∥B ±1 ⊥ ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s + εγ -1 ∥I 0 ∥ γ,O q,s+σ3 ∥ρ∥ γ,O q,s0 . (7.150)
In addition, we have the representations

B ⊥ ρ = Bρ - m∈S0 ρ, B -1 -Id e m L 2 θ (T) e m and B -1 ⊥ ρ = B -1 ρ - m∈S0 ρ, B -Id g m L 2 θ (T) B -1 e m ,
where

A(φ) ≜ e m , Be k L 2 θ (T) m∈S 0 k∈S 0 , A -1 (φ) ≜ α k,m m∈S 0 k∈S 0 , g m (φ, θ) ≜ k∈S0 α k,m (φ)e k (θ),
with the estimate

sup k,m∈S0 ∥α k,m -δ km ∥ γ,O q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1+1 .
(ii) Given two tori i 1 and i 2 satisfying the smallness condition (7.122), one has

max m∈S0 ∥∆ 12 g m ∥ γ,O q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ1+1 . (7.151)
Proof. (i) The first estimate concerning B ⊥ follows easily from the continuity of the orthogonal projector Π ⊥ S0 on the space L 2 ⊥ , combined with (7.18). For the representation of B ⊥ , take ρ ∈ W q,∞,γ (O, H s ⊥ ) and set

B ⊥ ρ = Π ⊥ S0 BΠ ⊥ S0 ρ = Π ⊥ S0 Bρ ≜ g.
Next, we write the following splitting

Bρ = g + h with Π S0 h = h. (7.152) Part I
Notice that the projector Π S0 is defined by

Π S0 ρ = j∈S0 ρ j e j = Π S ρ + ⟨ρ⟩ θ ,
where Π S is defined in (6.9) and ⟨•⟩ θ denotes the average in the variable θ. Therefore

h(φ, θ) = m∈S0 h m (φ)e m (θ),
supplemented with the orthogonal conditions

∀ k ∈ S 0 , ⟨Bρ -h, e k ⟩ L 2 θ (T) = 0.
This implies

h(φ, θ) = m∈S0 ⟨Bρ, e m ⟩ L 2 θ (T) e m (θ). Using Lemma A.3-(iii) leads to h(φ, θ) = m∈S0 ⟨ρ, B -1 e m ⟩ L 2 θ (T) e m (θ).
Inserting this identity into (7.152) yields

B ⊥ ρ = g = Bρ - m∈S0 ρ, B -1 e m L 2 θ (T) e m .
Since ∀m ∈ S 0 , ρ, e m L 2 θ (T) = 0, then

B ⊥ ρ = g = Bρ - m∈S0 ρ, B -1 -Id e m L 2 θ (T) e m .
This ensures the desired representation of B ⊥ .

Next, we intend to establish similar representation for B -1 ⊥ . Let g ∈ W q,∞,γ (O, H s ⊥ ) and we need to solve the equation

f ∈ W q,∞,γ (O, H s ⊥ ), B ⊥ f = Π ⊥ S0 Bf = g.

This is equivalent to

Bf = g + h, with Π S0 h = h and Π S0 f = 0.
Then we get

f = B -1 g + h , with Π S0 h = h and Π S0 f = 0. (7.153) The condition Π S0 f = 0 is equivalent to, ∀k ∈ S 0 , B -1 g + h , e k L 2 θ (T) = 0.
Therefore using Lemma A. 

A(φ) ≜ c m,k (φ) (m,k)∈S 2 0 , c m,k (φ) ≜ ⟨e m , e k ⟩ L 2 θ (T)
= ˆT e i((m-k)θ-kβ(φ,θ)) dθ. (7.155) Notice that according to (7.23) and the change of variables θ → -θ, one obtains 

∀(m, k) ∈ S 2 0 , ∀φ ∈ T d , c m,k (-φ) = c -m,-k (φ) = c m,k (φ, θ). ( 7 
∥c m,m -1∥ γ,O q,s ⩽ ˆT ∥e -imβ(•,θ)) -1∥ γ,O q,H s φ dθ ≲ ∥β∥ γ,O q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1 . (7.157) 
For k ̸ = m ∈ S 0 we use integration by parts,

c m,k (φ) = k i(m-k) ˆT e i((m-k)θ-kβ(φ,θ)) ∂ θ β(φ, θ)dθ.
Then using product laws and composition laws in Lemma A.1 combined with (7.19) yield sup

(m,k)∈S 2 0 m̸ =k ∥c m,k ∥ γ,O q,s ≲ ∥β∥ γ,O q,s+1 ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1+1 .
Finally, we get that

A(φ) = Id + R(φ) with ∥R∥ γ,O q,s ≲ ∥β∥ γ,O q,s+1 . (7.158)
Hence under the smallness condition ∥β∥ γ,O q,s0 ≪ 1 following from (7.122), combined with the product laws in Lemma A.1 we get that A is invertible with

∥A -1 -Id∥ γ,O q,s ≲ ∥β∥ γ,O q,s+1 ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1+1 . (7.159)
Therefore the system (7.154) is invertible and one gets a unique solution given by

a m (φ) = - k∈S0 α m,k (φ) g, e k L 2 θ (T) with A -1 (φ) ≜ α m,k (φ) (m,k)∈S 2 0 . (7.160)
We claim that the coefficients of A -1 admit the same symmetry conditions as (7.156), that is

∀(m, k) ∈ S 2 0 , ∀φ ∈ T d , α m,k (-φ) = α -m,-k (φ) = α m,k (φ). ( 7 

.161)

Part I

This can be done through the series expansion A -1 = n∈N (-1) n (A -Id) n together with the fact that the entries of the monomials (A -Id) n satisfy in turn (7.156). Next, using the product laws yields

sup m∈S0 ∥a m ∥ γ,O q,s ≲ sup k∈S0 ∥A -1 ∥ γ,O q,s ∥ g, e k L 2 θ (T) ∥ γ,O q,H s 0 φ + ∥A -1 ∥ γ,O q,s0 ∥ g, e k L 2 θ (T) ∥ γ,O q,H s φ . (7.162)
Notice that one gets from (7.159)

sup (m,k)∈S 2 0 ∥α k,m -δ km ∥ γ,O q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1+1 ,
where δ km denotes the Kronecker symbol. Let us now move to the estimate of the partial scalar product containing g in (7.162). Using the product laws in Lemma A.1 with Cauchy-Schwarz inequality gives

∥ g, e k L 2 θ (T) ∥ γ,O q,H s φ ≲ ˆT ∥g(•, θ)∥ γ,O q,H s φ ∥e iβ(•,θ) ∥ γ,O q,H s 0 φ + ∥g(•, θ)∥ γ,O q,H s 0 φ ∥e iβ(•,θ) ∥ γ,O q,H s φ dθ ≲ ∥g∥ γ,O q,L 2 θ H s φ ∥e iβ ∥ γ,O q,L 2 θ H s 0 φ + ∥g∥ γ,O q,L 2 θ H s 0 φ ∥e iβ ∥ γ,O q,L 2 θ H s φ ≲ ∥g∥ γ,O q,s ∥e iβ ∥ γ,O q,s0 + ∥g∥ γ,O q,s0 ∥e iβ ∥ γ,O q,s .
Then applying the composition law as in (7.157) combined with with (7. [START_REF] Berti | KAM for Reversible Derivative Wave Equations[END_REF]) and the smallness condition

(7.122) gives ∥ g, e k L 2 θ (T) ∥ γ,O q,H s φ ≲ ∥g∥ γ,O q,s + ∥g∥ γ,O q,s0 ∥β∥ γ,O q,s ≲ ∥g∥ γ,O q,s + εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1 ∥g∥ γ,O q,s0 .
Plugging this estimate into (7.162) and using (7. [START_REF] Berti | KAM for Reversible Derivative Wave Equations[END_REF]), (7.159) combined with the smallness condition (7.122) and Sobolev embeddings implies

sup m∈S0 ∥a m ∥ γ,O q,s ≲ ∥g∥ γ,O q,s + εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1+1 ∥g∥ γ,O q,s0 ≲ ∥g∥ γ,O q,s + εγ -1 ∥I 0 ∥ γ,O q,s+σ1+1 ∥g∥ γ,O q,s0 .
Therefore we obtain

∥h∥ γ,O q,s ≲ m∈S0 ∥a m ∥ γ,O q,H s φ ≲ ∥g∥ γ,O q,s + εγ -1 ∥I 0 ∥ γ,O q,s+σ1+1 ∥g∥ γ,O q,s0 .
Coming back to (7.153) and using (7.18), we get

∥f ∥ γ,O q,s ≲ ∥g + h∥ γ,O q,s + εγ -1 ∥I 0 ∥ γ,O q,s+σ1+1 ∥g + h∥ γ,O q,s0 ≲ ∥g∥ γ,O q,s + εγ -1 ∥I 0 ∥ γ,O q,s+σ1+1 ∥g∥ γ,O q,s0 .
It follows that

∥B -1 ⊥ g∥ γ,O q,s ≲ ∥g∥ γ,O q,s + εγ -1 ∥I 0 ∥ γ,O q,s+σ1+1 ∥g∥ γ,O q,s0 .
In addition, from (7.160) and (7.153) we deduce the formula 

B -1 ⊥ g(φ, θ) = B -1 g(φ, θ) - m∈S 0 k∈S 0 α m,k (φ) g, Be k L 2 θ (T) B -1 e m (θ) = B -1 g(φ, θ) - m∈S0 g, Bg m L 2 θ (T) B -1 e m (φ, θ), ( 7 
∀m ∈ S 0 , ∀(φ, θ) ∈ T d+1 , g m (-φ, -θ) = g -m (φ, θ) = g m (φ, θ). (7.165) Since Π ⊥ S0 g = g and Π ⊥ S0 g m = 0 then g, g m L 2 θ (T) = 0 and therefore g, Bg m L 2 θ (T) = g, B -Id g m L 2 θ (T) .
Plugging this identity into (7.163) yields

B -1 ⊥ g = B -1 g - m∈S0 g, B -Id g m L 2 θ (T) B -1 e m .
(ii) Coming back to the definition of c m,k in (7.155), one can write

∀(m, k) ∈ S 2 0 , ∆ 12 c m,k = ⟨e m , (∆ 12 B)e k ⟩ L 2 θ (T) .
Hence, using Taylor Formula and (7.22), we have max

(m,k)∈S 2 0 ∥∆ 12 c m,k ∥ γ,O q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ1 .
From (7.164), one has

∆ 12 g m = k∈S0 ∆ 12 α m,k e k . Thus max m∈S0 ∥∆ 12 g m ∥ γ,O q,s h +p ≲ max (m,k)∈S 2 0 ∥∆ 12 α m,k ∥ γ,O q,s h +p . (7.166)
Using Neumann series, we can write

A -1 (φ) = Id + ∞ n=1 (-1) n R n (φ).
Therefore, the product laws in Lemma A.1 combined with (7.158) and the smallness condition (7.122) lead to 

∥∆ 12 A -1 ∥ γ,O q,s h +p ≲ ∞ n=1 ∥∆ 12 R n ∥ γ,O q,s h +p ≲ ∥∆ 12 R∥ γ,O q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ1+1 . Part I As a consequence, max (m,k)∈S 2 0 ∥∆ 12 α m,k ∥ γ,O q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ1+1 . ( 7 
∥∆ 12 g m ∥ γ,O q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ1+1 .
This achieves the proof of Lemma 7.1.

In Lemma 7.1, the parameter p is subject to the constraint (7.15) and from now on, we shall fix it to the value

p ≜ 4τ 2 q + 4τ 2 . (7.168)
This particular choice is determined through some constraints in the proof of the remainder reduction.

More precisely, it appears in (7.364). Next we shall establish the second main result of this section. There exist ε 0 > 0 and

σ 3 = σ 3 (τ 1 , q, d, s 0 ) ⩾ σ 2 such that if εγ -1 N µ2 0 ⩽ ε 0 and ∥I 0 ∥ γ,O q,s h +σ3 ⩽ 1, (7.169) 
then the following assertions hold true.

(i) For any n ∈ N * , in the Cantor set O γ,τ1 ∞,n (i 0 ) introduced in Proposition 7.2, we have

B -1 ⊥ L ω B ⊥ = ω • ∂ φ + c i0 ∂ θ -∂ θ K λ * • Π ⊥ S0 + R 0 + E 1 n ≜ ω • ∂ φ + D 0 Π ⊥ S0 + R 0 + E 1 n ≜ L 0 + E 1 n ,
where D 0 is a reversible Fourier multiplier given by

∀(l, j) ∈ Z d × S c 0 , D 0 e l,j = iµ 0 j e l,j , with µ 0 j (λ, ω, i 0 ) ≜ Ω j (λ) + jr 1 (λ, ω, i 0 ) and r 1 (λ, ω, i 0 ) ≜ c i0 (λ, ω) -V 0 (λ)
and such that

∥r 1 ∥ γ,O q ≲ ε and ∥∆ 12 r 1 ∥ γ,O q ≲ ε∥∆ 12 i∥ γ,O q,s h +2 . (7.170) (ii)
The operator E 1 n satisfies the following estimate

∥E 1 n ρ∥ γ,O q,s0 ≲ εN µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+2 . (7.171) (iii) R 0 is a real and reversible Toeplitz in time operator satisfying R 0 = Π ⊥ S0 R 0 Π ⊥ S0 with ∀s ∈ [s 0 , S], max k∈{0,1} ∥∂ k θ R 0 ∥ γ,O O-d,q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ3 (7.172)
and

∥∆ 12 R 0 ∥ γ,O O-d,q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ3 . (7.173) (iv) The operator L 0 satisfies ∀s ∈ [s 0 , S], ∥L 0 ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s+1 + εγ -1 ∥I 0 ∥ γ,O q,s+σ3 ∥ρ∥ γ,O q,s0 . (7.174)
Proof. (i) We shall first start with finding a suitable expansion for B -1 ⊥ L ω B ⊥ . Using the expression of L ω given in Proposition 7.1 and the decomposition Id = Π S0 + Π ⊥ S0 we write

B -1 ⊥ L ω B ⊥ = B -1 ⊥ Π ⊥ S0 (L εr -ε∂ θ R)B ⊥ = B -1 ⊥ Π ⊥ S0 L εr BΠ ⊥ S0 -B -1 ⊥ Π ⊥ S0 L εr Π S0 BΠ ⊥ S0 -εB -1 ⊥ Π ⊥ S0 ∂ θ RB ⊥ .
According to the definitions of L εr and L εr seen in Proposition 7.3 and in Lemma 5.1 and using (6.24), one has in the Cantor set O γ,τ1 ∞,n (i 0 )

L εr B = BL εr and L εr = ω • ∂ φ + ∂ θ (V εr •) -∂ θ L εr,1 -∂ θ K λ * •
and therefore

B -1 ⊥ L ω B ⊥ =B -1 ⊥ Π ⊥ S0 BL εr Π ⊥ S0 -B -1 ⊥ Π ⊥ S0 (∂ θ (V εr •) -∂ θ L εr,1 ) Π S0 BΠ ⊥ S0 -εB -1 ⊥ ∂ θ RB ⊥ ,
where we have used the identities

B -1 ⊥ Π ⊥ S0 = B -1 ⊥ and [Π ⊥ S0 , T ] = 0 = [Π S0 , T ],
for any Fourier multiplier T . The structure of L εr is detailed in Proposition 7.3, and from this we deduce that

Π ⊥ S0 BL εr Π ⊥ S0 = Π ⊥ S0 B ω • ∂ φ + c i0 ∂ θ -∂ θ K λ * • + ∂ θ R εr + E 0 n Π ⊥ S0 = Π ⊥ S0 BΠ ⊥ S0 ω • ∂ φ + c i0 ∂ θ -∂ θ K λ * • + Π ⊥ S0 B∂ θ R εr Π ⊥ S0 + Π ⊥ S0 BE 0 n Π ⊥ S0 = B ⊥ ω • ∂ φ + c i0 ∂ θ -∂ θ K λ * • + Π ⊥ S0 B∂ θ R εr Π ⊥ S0 + Π ⊥ S0 BE 0 n Π ⊥ S0 .
It follows that

B -1 ⊥ Π ⊥ S0 BL εr Π ⊥ S0 = ω • ∂ φ + c i0 ∂ θ -∂ θ K λ * • Π ⊥ S0 + B -1 ⊥ Π ⊥ S0 B∂ θ R εr Π ⊥ S0 + B -1 ⊥ Π ⊥ S0 BE 0 n Π ⊥ S0 = ω • ∂ φ + c i0 ∂ θ -∂ θ K λ * • Π ⊥ S0 + Π ⊥ S0 ∂ θ R εr Π ⊥ S0 + B -1 ⊥ BΠ S0 ∂ θ R εr Π ⊥ S0 + B -1 ⊥ Π ⊥ S0 BE 0 n Π ⊥ S0 .
Consequently, in the Cantor set O γ,τ1 ∞,n (i 0 ), one has the following reduction

B -1 ⊥ L ω B ⊥ = ω • ∂ φ + c i0 ∂ θ -∂ θ K λ * • Π ⊥ S0 + Π ⊥ S0 ∂ θ R εr Π ⊥ S0 + B -1 ⊥ BΠ S0 ∂ θ R εr Π ⊥ S0 -B -1 ⊥ Π ⊥ S0 (∂ θ (V εr •) -∂ θ L εr,1 ) Π S0 BΠ ⊥ S0 -εB -1 ⊥ ∂ θ RB ⊥ + B -1 ⊥ Π ⊥ S0 BE 0 n Π ⊥ S0 ≜ ω • ∂ φ + c i0 ∂ θ -∂ θ K λ * • Π ⊥ S0 + R 0 + E 1 n , ( 7.175) 
where we set

E 1 n ≜ B -1 ⊥ Π ⊥ S0 BE 0 n Π ⊥ S0 .
Notice that the estimates (7.170) are simple reformulations of (7.17) and (7.21) since ∆ 12 r 1 = ∆ 12 c i .

(ii) By using (7.150), (7.18), the continuity of the projectors, (7.20) and (7.169), one obtains

∥E 1 n ρ∥ γ,O q,s0 ≲ ∥BE 0 n Π ⊥ S0 ρ∥ γ,O q,s0 ≲ ∥E 0 n Π ⊥ S0 ρ∥ γ,O q,s0
≲ εN µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+2 .

(iii) Now, we shall prove the following estimates, max k∈{0,1}

∥∂ k θ R 0 ∥ γ,O O-d,q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ3 (7.176) 
and

∥∆ 12 R 0 ∥ γ,O O-d,q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ3 . (7.177)
To do that, we shall study separately the different terms appearing in (7.175) in the definition of R 0 .

Notice that in the various estimates below, we use the notation σ 3 to denote some loss of regularity. This index depends only on τ 1 , q, d, s 0 and may change increasingly from one line to another and it is always taken greater than the σ 2 introduced in Proposition 7.3.

▶ Study of the term Π ⊥ S0 ∂ θ R εr Π ⊥ S0 .
One gets easily according to (7.123) and (7.124)

max k∈{0,1} ∥∂ k θ Π ⊥ S0 ∂ θ R εr Π ⊥ S0 ∥ γ,O O-d,q,s ≲ max k∈{0,1,2} ∥∂ k θ R εr ∥ γ,O O-d,q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ3 (7.178) 
and

∥∆ 12 Π ⊥ S0 ∂ θ R εr Π ⊥ S0 ∥ γ,O O-d,q,s h +p ≲ ∥∆ 12 ∂ θ R εr ∥ γ,O O-d,q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ3 . (7.179) ▶ Study of the term B -1 ⊥ BΠ S0 ∂ θ R εr Π ⊥ S0 .
Using the first point of Proposition 7.4 yields

B -1 ⊥ BΠ S0 ∂ θ R εr Π ⊥ S0 = Π S0 ∂ θ R εr Π ⊥ S0 -T 0 S 1 , (7.180) 
where

T 0 ρ = m∈S0 ρ, B -Id g m L 2 θ (T) B -1 e m and S 1 ≜ BΠ S0 ∂ θ R εr Π ⊥ S0 . (7.181)
To estimate the first term, we use Proposition 7.

3 max k∈{0,1} ∥∂ k θ Π S0 ∂ θ R εr Π ⊥ S0 ∥ γ,O O-d,q,s ≲ max k∈{0,1,2} ∥∂ k θ R εr ∥ γ,O O-d,q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ3 . (7.182)
As for the second term, we write

T 0 S 1 ρ = m∈S0 S 1 ρ, B -Id g m L 2 θ (T) B -1 e m = m∈S0 ρ, S ⋆ 1 B -Id g m L 2 θ (T) B -1 e m ,
where S ⋆ 1 is the L 2 θ (T)-adjoint of S 1 . This is an integral operator taking the form

T 0 S 1 ρ (φ, θ) = ˆT K 1 (φ, θ, η)ρ(φ, η)dη, K 1 (φ, θ, η) ≜ m∈S0 S ⋆ 1 B -Id g m (φ, η) B -1 e m (φ, θ).
Recall from Proposition 7.3 that R εr is self-adjoint and using Lemma A.3 we have the identities

B ⋆ = B -1 and B ⋆ = B -1 , then S ⋆ 1 = -Π ⊥ S0 R εr ∂ θ Π S0 B -1 . (7.183)
Therefore, combining (7.165), (7.23) and (7.144) imply

K 1 (-φ, -θ, -η) = -K 1 (φ, θ, η) ∈ R. ( 7 

.184)

Applying Lemma A.7 combined with the product laws yields for any k ∈ N

∥∂ k θ T 0 S 1 ∥ γ,O O-d,q,s ≲ ˆT ∥(∂ k θ K 1 )( * , •, , η + )∥ γ,O q,s+s0 dη (7.185) ≲ m∈S0 S ⋆ 1 B -Id g m γ,O q,s+s0 B -1 e m γ,O q,s0+k + S ⋆ 1 B -Id g m γ,O q,s0 B -1 e m γ,O q,s+s0+k .
Remark that (7.183) implies

S ⋆ 1 B -Id g m = -Π ⊥ S0 R εr ∂ θ Π S0 Id -B -1 g m .
Hence according to Lemma A.6 combined with Proposition 7.3 we find 

∥S ⋆ 1 B -Id g m ∥ γ,O q,s ≲ ∥R εr ∥ γ,O O-d,q,s ∥∂ θ Π S0 Id -B -1 g m ∥ γ,O q,s0 + ∥R εr ∥ γ,O O-d,q,s0 ∥∂ θ Π S0 Id -B -1 g m ∥ γ,O q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ3 ∥ Id -B -1 g m ∥ γ,O q,s0+1 + εγ -1 1 + ∥I 0 ∥ γ,O q,s0+σ3 ∥ Id -B -1 g m ∥ γ,O q,s+1 . ( 7 
Id -B -1 g m γ,O q,s ≲ ∥g m ∥ γ,O q,s + εγ -1 ∥I 0 ∥ γ,O q,s+σ3 ∥g m ∥ γ,O q,s0 ≲ sup k,m∈S0 ∥α k,m ∥ γ,O q,H s φ + εγ -1 ∥I 0 ∥ γ,O q,s+σ3 sup k,m∈S0 ∥α k,m ∥ γ,O q,H s 0 φ ≲ 1 + εγ -1 ∥I 0 ∥ γ,O q,s+σ3 . (7.187)
Therefore, inserting this estimate into (7.186) and using (7.169) allow to get

∥S ⋆ 1 B -Id g m ∥ γ,O q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ3 .
Plugging this estimate into (7.185) and using (7.18) ensure max k∈{0,1}

∥∂ k θ T 0 S 1 ∥ γ,O O-d,q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ3 . (7.188)
Consequently, by combining (7.180), (7.182) and (7.188), we find max k∈{0,1}

∥∂ k θ B -1 ⊥ BΠ S0 ∂ θ R εr Π ⊥ S0 ∥ γ,O O-d,q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ3 . ( 7 

.189)

Part I

We now turn to the difference estimate. From (7.180), it is obvious that

∆ 12 B -1 ⊥ BΠ S0 ∂ θ R εr Π ⊥ S0 = Π S0 ∆ 12 ∂ θ R εr Π ⊥ S0 -∆ 12 (T 0 S 1 ). (7.190)
To estimate the first term, we use (7.124)

∥Π S0 ∆ 12 ∂ θ R εr Π ⊥ S0 ∥ γ,O O-d,q,s h +p ≲ ∥∆ 12 ∂ θ R εr ∥ γ,O O-d,q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ3 . (7.191)
As for the second term, we notice that ∆ 12 T 0 S 1 is an integral operator whose kernel ∆ 12 K 1 is

∆ 12 K 1 (φ, θ, η) = m∈S0 ∆ 12 S ⋆ 1 B -Id g m (φ, η) B r1 e m (φ, θ) + S ⋆ 1 B -Id g m r2 (φ, η) ∆ 12 Be m (φ, θ).
Hence, using Lemma A.7-(ii) together with the product laws we deduce that

∥∆ 12 T 0 S 1 ∥ γ,O O-d,q,s h +p ≲ ˆT ∥∆ 12 K 1 ( * , •, , η + )∥ γ,O q,s h +p+s0 dη ≲ m∈S0 ∥∆ 12 S ⋆ 1 B -Id g m ∥ γ,O q,s h +p+s0 ∥B r1 e m ∥ γ,O q,s h +p+s0 + ∥ S ⋆ 1 B -Id g m r2 ∥ γ,O q,s h +p+s0 ∥∆ 12 Be m ∥ γ,O q,s h +p+s0 .
Notice that by Taylor Formula and (7.22) (applied with p replaced by p + s 0 ), one has sup m∈S0 ∥∆ 12 B -1 e m ∥ γ,O q,s h +p+s0 ≲ εγ -1 ∥∆ 12 i∥ q,s h +p+σ3 . (7.192) On the other hand, we have

∆ 12 S ⋆ 1 = -Π ⊥ S0 ∆ 12 R εr ∂ θ Π S0 B -1 r1 -Π ⊥ S0 R εr2 ∂ θ Π S0 ∆ 12 B -1 , leading to ∆ 12 S ⋆ 1 B -Id g m = -Π ⊥ S0 ∆ 12 R εr ∂ θ Π S0 Id -B -1 r1 g m,r1 -Π ⊥ S0 R εr2 ∂ θ Π S0 ∆ 12 B -1 B r1 -Id g m,r1 + S ⋆ 1,r2 ∆ 12 B g m,r1 + S ⋆ 1,r2 B r2 -Id ∆ 12 g m .
According to Lemma A.6, we obtain

∥Π ⊥ S0 ∆ 12 R εr ∂ θ Π S0 Id -B -1 r1 g m,r1 ∥ γ,O q,s h +p+s0 ≲ ∥∆ 12 R εr ∥ γ,O O-d,q,s h +p+s0 ∥ Id -B -1 r1 g m,r1 ∥ γ,O q,s h +p+s0+1 .
From (7.187), one has

∥ Id -B -1 r1 g m,r1 ∥ γ,O q,s ≲ 1 + εγ -1 ∥I 1 ∥ γ,O q,s+σ3 .
Thus, from (7.124) and (7.169), we infer

∥Π ⊥ S0 ∆ 12 R εr ∂ θ Π S0 Id -B -1 r1 g m,r1 ∥ γ,O q,s h +p+s0 ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ3 . ( 7 

.193)

Applying Lemma A.6, (7.123) and (7.169) we deduce that

∥S ⋆ 1,r2 ∆ 12 B g m,r1 ∥ γ,O q,s h +p+s0 ≲ ∥R εr2 ∥ O-d,q,s h +s0 ∥B r2 ∆ 12 B g m,r1 ∥ γ,O q,s h +p+s0+1 ≲ ∥B r2 ∆ 12 B g m,r1 ∥ γ,O q,s h +p+s0+1 .
To estimate the right hand side member, it suffices to use (7.18) and (7.169), leading to

∥B r2 ∆ 12 B g m,r1 ∥ γ,O q,s h +p+s0+1 ≲ ∥ ∆ 12 B g m,r1 ∥ γ,O q,s h +p+s0+1 .
By Taylor Formula, we may write

∆ 12 Bρ(θ) = ∆ 12 β(θ) ˆ1 0 ∂ θ ρ θ + β 2 (θ) + t∆ 12 β(θ) dt.
It follows from the product laws in Lemma A.1, (7.22) and (7.169) that

∥ ∆ 12 B g m,r1 ∥ γ,O q,s h +p+1 ≲ ∥∆ 12 β∥ γ,O q,s h +p+s0+1 ∥g m,r1 ∥ γ,O q,s h +p+s0+2 ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ3 . Thus ∥S ⋆ 1,r2 ∆ 12 B g m,r1 ∥ γ,O q,s h +p+s0 ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ3 . ( 7.194) 
In the same way, using Taylor Formula together with (7.22), we get

∥Π ⊥ S0 R εr2 ∂ θ Π S0 ∆ 12 B -1 B r1 -Id g m,r1 ∥ γ,O q,s h +p+s0 ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ3 . ( 7 

.195)

By Lemma A.6, (7.123) and (7.169), one finds

∥S ⋆ 1,r2 B r2 -Id ∆ 12 g m ∥ γ,O q,s h +p+s0 ≲ ∥R εr2 ∥ γ,O O-d,q,s h +p+s0 ∥ B r2 -Id ∆ 12 g m ∥ γ,O q,s h +p+s0+1 ≲ ∥ B r2 -Id ∆ 12 g m ∥ γ,O q,s h +p+s0+1 .
Applying (7.18) and (7.169), we obtain

∥ B r2 -Id ∆ 12 g m ∥ γ,O q,s h +p+s0+1 ≲ ∥∆ 12 g m ∥ γ,O q,s h +p+s0+1 .
Using (7.151) (applied with p = s 0 + 1), we finally get

∥S ⋆ 1,r2 B r2 -Id ∆ 12 g m ∥ γ,O q,s h +p+s0 ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ3 . (7.196)
Gathering (7.192), (7.193), (7.194), (7.195) and (7.196) implies .197) Putting together (7.190), (7.191) and (7.197), one obtains

∥∆ 12 T 0 S 1 ∥ γ,O O-d,q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ3 . ( 7 
∥∆ 12 B -1 ⊥ BΠ S0 ∂ θ R εr Π ⊥ S0 ∥ γ,O O-d,q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ3 . (7.198) ▶ Study of the term B -1 ⊥ Π ⊥ S0 (∂ θ (V εr •) -∂ θ L εr,1 ) Π S0 BΠ ⊥ S0 .
We first write,

B -1 ⊥ Π ⊥ S0 (∂ θ (V εr •) -∂ θ L εr,1 ) Π S0 BΠ ⊥ S0 ≜ B -1 ⊥ ∂ θ S 2 BΠ ⊥ S0 , Part I with S 2 = V εr -c i0 • -L εr,1 Π S0 .
Notice that to get the above identity we have used the identity

Π ⊥ S0 ∂ θ (c i0 •)Π S0 = 0.
Recall from (6.24) and (6.25) that

L εr,1 ρ(φ, θ) = ˆT K εr,1 (φ, θ, η)ρ(φ, η)dη.
Then from elementary computations we find

S 2 ρ(φ, θ) = ˆT K 2 (φ, θ, η)ρ(φ, η)dη, with K 2 (φ, θ, η) ≜ V εr (φ, θ) -c i0 D S0 (θ -η) -ˆT K εr,1 (φ, θ, η ′ )D S0 (η ′ -η)dη ′ , D S0 (θ) ≜ n∈S0 e inθ .
Combining (6.27), (7.4), (5.3) and the change of variables η ′ → η ′ , one gets

K 2 (-φ, -θ, -η) = K 2 (φ, θ, η) ∈ R. (7.199) 
Proceeding as in (7.180) we obtain

B -1 ⊥ ∂ θ S 2 BΠ ⊥ S0 = B -1 ∂ θ S 2 BΠ ⊥ S0 -T 0 ∂ θ S 2 BΠ ⊥ S0 . (7.200)
It follows that

∂ k θ B -1 ⊥ ∂ θ S 2 BΠ ⊥ S0 γ,O O-d,q,s ≲ ∂ k+1 θ B -1 S 2 B γ,O O-d,q,s + ∂ k θ T 0 ∂ θ S 2 B γ,O O-d,q,s . (7.201)
The expression of the first term is similar to that of (7.133), namely, one has

B -1 S 2 B ρ(φ, θ) = ˆT ρ(φ, η) K 2 (φ, θ, η)dη, with K 2 (φ, θ, η) ≜ K 2 φ, θ + β(φ, θ), η + β(φ, η) .
Combining (7.199) and (7.23), one gets 

K 2 (-φ, -θ, -η) = K 2 (φ, θ, η) ∈ R. ( 7 
(∂ k θ K 2 ) * , •, , η + γ,O q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ3
∂ k+1 θ B -1 S 2 B γ,O O-d,q,s ≲ sup k∈{0,1} ˆT (∂ k+1 θ K 2 ) * , •, , η + γ,O q,s+s0 dη ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ3 . (7.204)
Notice that from (7.181), we can write

T 0 ∂ θ S 2 Bρ = m∈S0 ∂ θ S 2 Bρ, B -Id g m L 2 θ (T) B -1 e m = - m∈S0 ρ, B -1 S ⋆ 2 ∂ θ B -Id g m L 2 θ (T) B -1 e m ,
where S ⋆ 2 is the adjoint of S 2 and is given by

S ⋆ 2 = Π S0 V εr -c i0 • -L εr,1 . (7.205)
This is an integral operator taking the form

T 0 ∂ θ S 2 Bρ (φ, θ) = ˆT K 3 (φ, θ, η)ρ(φ, η)dη, K 3 (φ, θ, η) ≜ m∈S0 B -1 S ⋆ 2 ∂ θ B -Id g m (φ, η) B -1 e m (φ, θ).
According to (7.165), (7.23), (7.205), (7.4), (5.3) and (6.27), one gets

K 3 (-φ, -θ, -η) = -K 3 (φ, θ, η) ∈ R. (7.206)
On the other hand, applying Lemma A.7 combined with the product laws yield for any k ∈ N

∥∂ k θ T 0 ∂ θ S 2 B∥ γ,O O-d,q,s ≲ ˆT ∥(∂ k θ K 3 )( * , •, , η + )∥ γ,O q,s+s0 dη ≲ m∈S0 ∥B -1 S ⋆ 2 ∂ θ B -Id g m ∥ γ,O q,s+s0 ∥B -1 e m ∥ γ,O q,s0+k + ∥B -1 S ⋆ 2 ∂ θ B -Id g m ∥ γ,O q,s0 ∥B -1 e m ∥ γ,O q,s+s0+k .
Applying (7.18) we find

∥B -1 S ⋆ 2 ∂ θ B -Id g m ∥ γ,O q,s ≲ ∥S ⋆ 2 ∂ θ B -Id g m ∥ γ,O q,s + εγ -1 ∥I 0 ∥ γ,O q,s+σ ∥S ⋆ 2 ∂ θ B -Id g m ∥ γ,O q,s0 .
Now, from (7.205), the product laws and Lemma A.6, we find

∥S ⋆ 2 ρ∥ γ,O q,s ≲∥V εr -c i0 ∥ γ,O q,s0 ∥ρ∥ γ,O q,s + ∥V εr -c i0 ∥ γ,O q,s ∥ρ∥ γ,O q,s0 + ∥L εr,1 ∥ γ,O O-d,q,s0 ∥ρ∥ γ,O q,s + ∥L εr,1 ∥ γ,O O-d,q,s ∥ρ∥ γ,O q,s0 .
From the composition law and (7.17), one has

∥V εr -c i0 ∥ γ,O q,s ⩽ ∥V εr -V 0 ∥ γ,O q,s + ∥V 0 -c i0 ∥ γ,O q ≲ ε 1 + ∥I 0 ∥ γ,O q,s+σ3 .
Part I

According to Lemma A.7 and (6.41), we deduce that

∥L εr,1 ∥ γ,O O-d,q,s ≲ ˆT ∥K εr,1 ( * , •, , η + )∥ γ,O q,s+s0 dη ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ3 .
Using (7.169), one gets

∥S ⋆ 2 ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s + εγ -1 ∥I 0 ∥ γ,O q,s+σ3 ∥ρ∥ γ,O q,s0 .
Combining this with (7.18) allows to get 

∥S ⋆ 2 ∂ θ B -Id g m ∥ γ,O q,s ≲ ∥g m ∥ γ,O q,s+1 + εγ -1 ∥I 0 ∥ γ,O q,s+σ3 ∥g m ∥ γ,O q,s0 ≲ 1 + εγ -1 ∥I 0 ∥ γ,O q,s+σ3 . Therefore, max k∈{0,1} ∂ k θ T 0 ∂ θ S 2 B γ,O O-d,q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ3 . ( 7 
∂ k θ B -1 ⊥ ∂ θ S 2 BΠ ⊥ S0 γ,O O-d,q,s ≲ max k∈{0,1} ∂ k+1 θ B -1 S 2 B γ,O O-d,q,s + max k∈{0,1} ∂ k θ T 0 ∂ θ S 2 B γ,O O-d,q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ3 . (7.208) 
We now turn to the estimate of the difference. Coming back to (7.200), one can write

∆ 12 B -1 ⊥ ∂ θ S 2 BΠ ⊥ S0 = ∆ 12 B -1 ∂ θ S 2 BΠ ⊥ S0 -∆ 12 T 0 ∂ θ S 2 BΠ ⊥ S0 .
It follows that

∆ 12 B -1 ⊥ ∂ θ S 2 BΠ ⊥ S0 γ,O O-d,q,s h +p ≲ ∆ 12 ∂ θ B -1 S 2 B γ,O O-d,q,s h +p + ∆ 12 T 0 ∂ θ S 2 B γ,O
O-d,q,s h +p . (7.209)

Arguing as for (7.149), one obtains

∥∆ 12 (∂ θ K 2 )( * , •, , η + )∥ q,s h +p+s0 ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ3 1 -log sin η 2 .
Then, using Lemma A.7 implies

∆ 12 ∂ θ B -1 S 2 B γ,O O-d,q,s h +p ≲ ˆT ∥∆ 12 (∂ θ K 2 )( * , •, , η + )∥ q,s h +p+s0 dη ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ3 . (7.210)
On the other hand, proceeding as for (7.197), and using in particular (7.21),

∆ 12 T 0 ∂ θ S 2 B γ,O O-d,q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ3 . (7.211)
Putting together (7.210), (7.211) and (7.209), ensures that

∆ 12 B -1 ⊥ ∂ θ S 2 BΠ ⊥ S0 γ,O O-d,q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ3 . (7.212) ▶ Study of the term εB -1 ⊥ ∂ θ RB ⊥ . Using the relation Id = Π S0 + Π ⊥ S0 , we can write ∂ k θ B -1 ⊥ ∂ θ RB ⊥ = ∂ k+1 θ B -1 RB ⊥ -∂ k θ T 0 ∂ θ RB ⊥ = ∂ k+1 θ B -1 RΠ ⊥ S0 BΠ ⊥ S0 -∂ k θ T 0 ∂ θ RΠ ⊥ S0 BΠ ⊥ S0 = ∂ k+1 θ B -1 RBΠ ⊥ S0 -∂ k+1 θ B -1 RΠ S0 BΠ ⊥ S0 -∂ k θ T 0 ∂ θ RBΠ ⊥ S0 + ∂ k θ T 0 ∂ θ RΠ S0 BΠ ⊥ S0 . (7.213) Hence ∥∂ k θ B -1 ⊥ ∂ θ RB ⊥ ∥ γ,O O-d,q,s ⩽∥∂ k+1 θ B -1 RB∥ γ,O O-d,q,s + ∥∂ k+1 θ B -1 RΠ S0 B∥ γ,O O-d,q,s + ∥∂ k θ T 0 ∂ θ RB∥ γ,O O-d,q,s + ∥∂ k θ T 0 ∂ θ RΠ S0 B∥ γ,O O-d,q,s . (7.214)
Recall that from Proposition 7.1 that R is an integral operator of kernel J and therefore direct computations give

B -1 RBρ (φ, θ) = ˆT ρ(φ, η) J(φ, θ, η)dη, (7.215) with J(φ, θ, η) ≜ J φ, θ + β(φ, θ), η + β(φ, η) . (7.216)
Combining (7.23) and (7.5), one gets

J(-φ, -θ, -η) = J(φ, θ, η) ∈ R. (7.217) 
Using the composition law and (7.9), we obtain max k∈{0,1,2}

sup η∈T ∥(∂ k θ J) * , •, , η + ∥ γ,O q,s ≲ 1 + ∥I 0 ∥ γ,O q,s+σ3 .
Thus, applying Lemma A.7-(ii) implies max k∈{0,1}

∥∂ k+1 θ B -1 RB∥ γ,O O-d,q,s ≲ max k∈{0,1,2} ˆT ∥(∂ k θ J) * , •, , η + ∥ γ,O q,s+s0 dη ≲ 1 + ∥I 0 ∥ γ,O q,s+σ3 . (7.218)
On the other hand we notice from (7.215) that we get the structure Using the change of variables η ′ → η ′ + θ yields

B -1 RΠ S0 Bρ (φ, θ) = ˆT ρ(φ, η) J(φ, θ, η)dη, (7.219) with J(φ, θ, η) ≜ ˆT J φ, θ + β(φ, θ), η ′ D S0 (η ′ -η)dη ′ . ( 7 
J(φ, θ, η + θ) ≜ ˆT J φ, θ + β(φ, θ), η ′ + θ D S0 (η ′ -η)dη ′ . Part I
Then by the composition law, we infer max k∈{0,1,2}

sup η∈T ∥(∂ k θ J)( * , •, , η + )∥ γ,O q,s ≲ 1 + ∥I 0 ∥ γ,O q,s+σ3 .
Consequently, we find in view of Lemma A.7 max k∈{0,1}

∥∂ k θ B -1 RΠ S0 B∥ γ,O O-d,q,s ≲ max k∈{0,1,2} ˆT ∥(∂ k θ J) * , •, , η + ∥ γ,O q,s+s0 dη ≲ 1 + ∥I 0 ∥ γ,O q,s+σ3 . (7.222)
If wet set

S 3 = ∂ θ RB or ∂ θ RΠ S0 B,
then using (7.181), we deduce that

T 0 S 3 ρ = m∈S0 S 3 ρ, B -Id g m L 2 θ (T) B -1 e m = m∈S0 ρ, S ⋆ 3 B -Id g m L 2 θ (T) B -1 e m ,
with S ⋆ 3 is the adjoint of S 3 given by

S ⋆ 3 = -B -1 R ⋆ ∂ θ or -B -1 Π S0 R ⋆ ∂ θ , (7.223) 
and R ⋆ the adjoint of R which is an integral operator with kernel

J ⋆ (φ, θ, η) ≜ 3 k ′ =1 d k=1 g k,k ′ (φ, θ)χ k,k ′ (φ, η), (7.224)
where we use the notations of the proof of Proposition 7.1. Notice that similarly to (7.9) and (7.5), the

kernel J ⋆ satisfies max k∈{0,1,2} sup η∈T ∥(∂ k θ J ⋆ )( * , •, , η + )∥ γ,O q,s ≲ 1 + ∥I 0 ∥ γ,O q,s+σ3 (7.225) 
and

J ⋆ (-φ, -θ, -η) = J ⋆ (φ, θ, η) ∈ R. (7.226)
Now, we have the integral representation

T 0 S 3 ρ (φ, θ) = ˆT K 4 (φ, θ, η)ρ(φ, η)dη, K 4 (φ, θ, η) ≜ m∈S0 S ⋆ 3 B -Id g m (φ, η) B -1 e m (φ, θ).
Then by virtue of (7.165), (7.23), (7.205) and (7.226) we obtain

K 4 (-φ, -θ, -η) = -K 4 (φ, θ, η) ∈ R. ( 7 

.227)

Applying Lemma A.7 combined with the product laws, we get for all k ∈ {0, 1}

∥∂ k θ T 0 S 3 ∥ γ,O O-d,q,s ≲ ˆT ∥(∂ k θ K 4 )( * , •, , η + )∥ γ,O q,s+s0 dη ≲ m∈S0 ∥S ⋆ 3 B -Id g m ∥ γ,O q,s+s0 ∥B -1 e m ∥ γ,O q,s0+k + ∥S ⋆ 3 B -Id g m ∥ γ,O q,s0 ∥B -1 e m ∥ γ,O q,s+s0+k .
Consequently, using Lemma A.7 and (7.225), we get

∥R ⋆ ∥ γ,O O-d,q,s ≲ ˆT ∥J ⋆ ( * , •, , η + )∥ γ,O q,s+s0 ≲ 1 + ∥I 0 ∥ γ,O q,s+σ3 .
Applying (7.18), Lemma A.6 and the previous estimate implies

∥S ⋆ 3 ρ∥ γ,O q,s ≲ ∥R ⋆ ∂ θ ρ∥ γ,O q,s + εγ -1 ∥I 0 ∥ γ,O q,s+σ3 ∥R ⋆ ∂ θ ρ∥ γ,O q,s0 ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ3 + ∥R ⋆ ∥ γ,O O-d,q,s ∥ρ∥ γ,O q,s0+1 + ∥R ⋆ ∥ γ,O O-d,q,s0 ∥ρ∥ γ,O q,s+1 ≲ ∥ρ∥ γ,O q,s+1 + ∥I 0 ∥ γ,O q,s+σ3 ∥ρ∥ γ,O q,s0+1 .
Thus 

∥S ⋆ 3 B -Id g m ∥ γ,O q,s ≲ ∥g m ∥ γ,O q,s+1 + ∥I 0 ∥ γ,O q,s+σ3 ∥g m ∥ γ,O q,s0+1 ≲ 1 + ∥I 0 ∥ γ,O q,s+σ3 . Hence max k∈{0,1} ∥∂ k θ T 0 S 3 ∥ γ,O O-d,q,s ≲ 1 + ∥I 0 ∥ γ,O q,s+σ3 . ( 7 
ε ∂ k θ B -1 ⊥ ∂ θ RB ⊥ γ,O O-d,q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ3 . (7.229)
We now move to the estimate of the difference. From (7.213), one has

∥∆ 12 B -1 ⊥ ∂ θ RB ⊥ ∥ γ,O O-d,q,s h +p ⩽ ∥∆ 12 ∂ θ B -1 RB ∥ γ,O O-d,q,s h +p + ∥∆ 12 ∂ θ B -1 RΠ S0 B ∥ γ,O O-d,q,s h +p + ∥∆ 12 T 0 ∂ θ RB ∥ γ,O O-d,q,s h +p + ∥∆ 12 T 0 ∂ θ RΠ S0 B ∥ γ,O O-d,q,s h +p . ( 7 

.230)

Combining Lemma A.7 with Taylor Formula, (7.215), (7.216), (7.10) and (7.22) one obtains

∥∆ 12 ∂ θ B -1 RB ∥ γ,O O-d,q,s h +p ≲ ˆT ∥∆ 12 (∂ θ J)( * , •, , η + )∥ γ,O q,s h +p+s0 dη ≲ ∥∆ 12 i∥ γ,O q,s h +p+σ3 . (7.231)
In the same spirit, (7.219) and (7.220) give

∥∆ 12 ∂ θ B -1 RΠ S0 B ∥ γ,O O-d,q,s h +p ≲ ˆT ∥∆ 12 (∂ θ J)( * , •, , η + )∥ γ,O q,s h +p+s0 dη ≲ ∥∆ 12 i∥ γ,O q,s h +p+σ3 . (7.232)
According to the structure of J ⋆ detailed in (7.224) one can check that J ⋆ satisfies similar estimates as

Part I (7.10). Then using (7.22), one finds in a similar way to (7.197),

∥∆ 12 (T 0 S 3 )∥ γ,O O-d,q,s h +p ≲ ˆT ∥∆ 12 K 4 ( * , •, , η + )∥ γ,O q,s h +p+s0 dη ≲ ∥∆ 12 i∥ γ,O q,s h +p+σ3 . (7.233)
Hence, putting together (7.231), (7.232), (7.233) and (7.230) gives 

ε∥∆ 12 B -1 ⊥ ∂ θ RB ⊥ ∥ γ,O O-d,q,s h +p ≲ εγ -1 ∥∆ 12 i∥ q,s h +p+σ3 . ( 7 
∥L 0 ρ∥ γ,O q,s ⩽ ∥ ω • ∂ φ + c i0 ∂ θ + ∂ θ K λ * •) ρ∥ γ,O q,s + ∥R 0 ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s+1 + ∥R 0 ∥ γ,O O-d,q,s ∥ρ∥ γ,O q,s0 + ∥R 0 ∥ γ,O O-d,q,s0 ∥ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s+1 + εγ -1 ∥I 0 ∥ γ,O q,s+σ3 ∥ρ∥ γ,O q,s0 .
This ends the proof of Proposition 7.4.

KAM reduction of the remainder term

The goal of this section is to conjugate L 0 defined in Proposition 7.4 to a diagonal operator, up to a fast decaying small remainder. This will be achieved through standard KAM reducibility techniques in the spirit of Proposition 7.2 but well-adapted to the operators setting. This will be implemented by taking advantage of the exterior parameters which are restricted to a suitable Cantor set that prevents the resonances in the second Melnikov assumption. Notice that one gets from this study some estimates on the distribution of the eigenvalues and their stability with respect to the torus parametrization. This is considered as the key step not only to get an approximate inverse but also to achieve Nash-Moser scheme with a final massive Cantor set. The main result of this section reads as follows.

Proposition 7.5. Let (γ, q, d, τ 1 , τ 2 , s 0 , s l , µ 2 , S) satisfy (A.2), (A.1) and (7.3). For any (µ 2 , s h ) satisfying

µ 2 ⩾ µ 2 + 2τ 2 q + 2τ 2 and s h ⩾ 3 2 µ 2 + s l + 1, (7.235)
there exist ε 0 ∈ (0, 1) and σ 4 = σ 4 (τ 1 , τ 2 , q, d) ⩾ σ 3 , with σ 3 defined in Proposition 7.4, such that if

εγ -2-q N µ2 0 ⩽ ε 0 and ∥I 0 ∥ γ,O q,s h +σ4 ⩽ 1, (7.236)
then the following assertions hold true.

(i) There exists a family of invertible linear operator

Φ ∞ : O → L H s ⊥ satisfying the estimates ∀s ∈ [s 0 , S], ∥Φ ±1 ∞ ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s + εγ -2 ∥I 0 ∥ γ,O q,s+σ4 ∥ρ∥ γ,O q,s0 . (7.237)
There exists a diagonal operator L ∞ = L ∞ (λ, ω, i 0 ) taking the form

L ∞ ≜ ω • ∂ φ Π ⊥ S0 + D ∞
where D ∞ = D ∞ (λ, ω, i 0 ) is a reversible Fourier multiplier operator given by,

∀(l, j) ∈ Z d × S c 0 , D ∞ e l,j = iµ ∞ j e l,j , with ∀j ∈ S c 0 , µ ∞ j (λ, ω, i 0 ) ≜ µ 0 j (λ, ω, i 0 ) + r ∞ j (λ, ω, i 0 ), ∥r ∞ j ∥ γ,O q ≲ εγ -1 (7.238)
and

sup j∈S c 0 |j|∥r ∞ j ∥ γ,O q ≲ εγ -1 , (7.239)
such that in the Cantor set

O γ,τ1,τ2 ∞,n (i 0 ) ≜ (l,j,j 0 )∈Z d ×(S c 0 ) 2 |l|⩽Nn (l,j)̸ =(0,j 0 ) (λ, ω) ∈ O γ,τ1 ∞,n (i 0 ), ω • l + µ ∞ j (λ, ω, i 0 ) -µ ∞ j0 (λ, ω, i 0 ) > 2γ⟨j-j0⟩ ⟨l⟩ τ 2
we have

Φ -1 ∞ L 0 Φ ∞ = L ∞ + E 2 n ,
and the linear operator E 2 n satisfies the estimate

∥E 2 n ρ∥ γ,O q,s0 ≲ εγ -2 N µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+1 . (7.240)
Notice that the Cantor set O γ,τ1 ∞,n (i 0 ) was introduced in Proposition 7.2, the operator L 0 and the frequencies µ 0 j (λ, ω, i 0 ) j∈S c 0 were stated in Proposition 7.4.

(ii) Given two tori i 1 and i 2 both satisfying (7.236), then

∀j ∈ S c 0 , ∥∆ 12 r ∞ j ∥ γ,O q ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +σ4 (7.241) and ∀j ∈ S c 0 , ∥∆ 12 µ ∞ j ∥ γ,O q ≲ εγ -1 |j|∥∆ 12 i∥ γ,O q,s h +σ4 . (7.242)
Proof. (i) We shall introduce the quantity

δ 0 (s) ≜ γ -1 ∥R 0 ∥ γ,O O-d,q,s ,
where R 0 is the remainder seen in Proposition 7.4. By applying (7.172), we deduce that

δ 0 (s) ⩽ Cεγ -2 1 + ∥I 0 ∥ γ,O q,s+σ3 . (7.243)
Therefore with the notation of (7.235), (7.236) and the fact that σ 4 ⩾ σ 3 we obtain

N µ2 0 δ 0 (s h ) ⩽ CN µ2 0 εγ -2 ⩽ Cε 0 .
(7.244) ▶ KAM step. Recall from Proposition 7.4 that in the Cantor set O γ,τ1 ∞,n (i 0 ) one has

B -1 ⊥ L ω B ⊥ = L 0 + E 1 n ,
where the operator L 0 has the following structure

L 0 = ω • ∂ φ + D 0 Π ⊥ S0 + R 0 , (7.245)
with D 0 a diagonal operator of pure imaginary spectrum and R 0 a real and reversible Toeplitz in time operator of zero order satisfying Π ⊥ S0 R 0 Π ⊥ S0 = R 0 . Similarly to the reduction of the transport part, we shall first expose a typical step of the iteration process of the KAM scheme whose goal is to reduce to a diagonal part R 0 . Notice that the scheme is flexible and has been used in the literature to deal with various equations. Assume that we have a linear operator L taking the following form in restriction to some Cantor set O one has

L = ω • ∂ φ + D Π ⊥ S0 + R,
where D is real and reversible diagonal Toeplitz in time operator, that is, De l,j = iµ j (λ, ω) e l,j and µ -j (λ, ω) = -µ j (λ, ω).

(7.246)

The operator R is assumed to be a real and reversible Toeplitz in time operator of zero order satisfying Π ⊥ S0 RΠ ⊥ S0 = R. Consider a linear invertible transformation close to the identity

Φ = Π ⊥ S0 + Ψ : O → L(H s ⊥ ),
where Ψ is small and depends on R. Then straightforward calculations show that in O

Φ -1 L Φ = Φ -1 Φ (ω • ∂ φ + D) Π ⊥ S0 + ω • ∂ φ Π ⊥ S0 + D, Ψ + R + RΨ = ω • ∂ φ + D Π ⊥ S0 + Φ -1 ω • ∂ φ + D Π ⊥ S0 , Ψ + P N R + P ⊥ N R + RΨ ,
where the projector P N was defined in (A.25). The main idea consists in replacing the remainder R with another quadratic one up to a diagonal part and provided that the parameters (λ, ω) belongs to a

Cantor set connected to non-resonance conditions associated to the homological equation. Iterating this scheme will generate new remainders which become smaller and smaller up to new contributions on the diagonal part and with more extraction on the parameters. Then by passing to the limit we expect to diagonalize completely the operators provided that the parameters belong to a limit Cantor set. Notice that the Cantor set should be truncated in the time mode in order to get a stability form required later in Nash-Moser scheme and during the measure of the final Cantor set. This will induce a diagonalization up to small fast decaying remainders modeled by the operators E 2 n in Proposition 7.5. Now the first step is to impose the following homological equation,

ω • ∂ φ + D Π ⊥ S0 , Ψ + P N R = ⌊P N R⌋, (7.247) 
where ⌊P N R⌋ is the diagonal part of the operator P N R. We emphasize that the notation ⌊R⌋ with a general operator R is defined as follows, for all (l 0 , j 0 ) ∈ Z d × S c 0 , Re l0,j0 = (l,j)∈Z d ×S c 0 R l,j l0,j0 e l,j =⇒ ⌊R⌋e l0,j0 = R l0,j0 l0,j0 e l0,j0 = Re l0,j0 , e l0,j0 L 2 (T d+1 ) e l0,j0 . (7.248)

Remind the notation e l0,j0 (φ, θ) = e i(l0•φ+j0θ) . The Fourier coefficients of Ψ are defined through Ψe l0,j0 = (l,j)∈Z d ×S c 0 Ψ l,j l0,j0 e l,j , Ψ l,j l0,j0 ∈ C.

From direct computations based on the above Fourier decomposition, we infer

ω • ∂ φ Π ⊥ S0 , Ψ e l0,j0 = i (l,j)∈Z d ×S c 0 Ψ l,j l0,j0 ω • (l -l 0 ) e l,j
and using the diagonal structure of D,

[D 0 , Ψ]e l0,j0 = i (l,j)∈Z d ×S c 0 Ψ l,j l0,j0 (µ j (λ, ω) -µ j0 (λ, ω)) e l,j .
By hypothesis, R is a real and reversible Toeplitz in time operator. Hence its Fourier coefficients write in view of Proposition A.1,

R l,j l0,j0 ≜ i r j j0 (λ, ω, l 0 -l) ∈ i R and R -l,-j -l0,-j0 = -R l,j l0,j0 . (7.249)
Consequently Ψ is a solution of (7.247) if and only if

Ψe l0,j0 = |l-l 0 |⩽N |j-j 0 |⩽N Ψ l,j l0,j0 e l,j and Ψ l,j l0,j0 ω • (l -l 0 ) + µ j (λ, ω) -µ j0 (λ, ω) = -r j j0 (λ, ω, l 0 -l) if (l, j) ̸ = (l 0 , j 0 ) 0 if (l, j) = (l 0 , j 0 ).
In particular, we get that Ψ is a Toeplitz in time operator with Ψ j j0 (l 0 -l) ≜ Ψ l,j l0,j0 . Moreover, for (l, j, j 0

) ∈ Z d × (S c 0 ) 2 with |l|, |j -j 0 | ⩽ N, one obtains Ψ j j0 (λ, ω, l) =    -r j j 0 (λ,ω,l) ω•l+µj (λ,ω)-µj 0 (λ,ω)
if (l, j) ̸ = (0, j 0 ) 0 if (l, j) = (0, j 0 ), (7.250) provided that the denominator is non zero. In addition, from Π ⊥ S0 RΠ ⊥ S0 = R, one easily gets

∀ l ∈ Z d , ∀ j or j 0 ∈ S 0 , r j j0 (λ, ω, l) = 0.
Therfore, we should impose the compatibility condition

∀ l ∈ Z d , ∀ j or j 0 ∈ S 0 , Ψ j j0 (λ, ω, l) = 0.
This implies that Π ⊥ S0 ΨΠ ⊥ S0 = Ψ. To justify the formula given by (7.250) we need to avoid resonances and restrict the parameters to the following open set according to the so-called second Melnikov condition,

O γ + = (l,j,j 0 )∈Z d ×(S c 0 ) 2 |l|⩽N (l,j)̸ =(0,j 0 ) (λ, ω) ∈ O s.t. |ω • l + µ j (λ, ω) -µ j0 (λ, ω)| > γ⟨j-j0⟩ ⟨l⟩ τ 2 .
In view of this restriction, the identity (7.250) is well defined and to extend Ψ to the whole set O we shall use the cut-off function χ of (6.92). We set Ψ j j0 (λ, ω, l) = -ϱ j j0 (λ, ω, l) r j j0 (λ, ω, l), if (l, j) ̸ = (0, j 0 ) 0, if (l, j) = (0, j 0 ), (7.251)

Part I with ϱ j j0 (λ, ω, l) ≜ χ (ω • l + µ j (λ, ω) -µ j0 (λ, ω))(γ⟨j -j 0 ⟩) -1 ⟨l⟩ τ2 ω • l + µ j (λ, ω) -µ j0 (λ, ω) • (7.252)
To simplify the notation, in the sequel we shall still write Ψ to denote this extension. Note that the extension (7.251) is smooth and its restriction to the Cantor set O γ + coincides with Ψ. On the other hand, (7.249) and (7.251) imply that Ψ j j0 (l) ∈ R. In addition, (7.252) combined with (7.246) give

Ψ -j -j0 (-l) = Ψ j j0 (l).
Consequently, in view of Proposition A.1, we deduce that Ψ is a real and reversibility preserving operator.

Now consider,

D + = D + ⌊P N R⌋, R + = Φ -1 -Ψ ⌊P N R⌋ + P ⊥ N R + RΨ (7.253) and L + ≜ ω • ∂ φ + D + + R + Π ⊥ S0 .
Therefore, in restriction to the Cantor set O γ + , we can write

L + = Φ -1 L Φ.
Our next task is to estimate ϱ j j0 defined by (7.252). Notice that this quantity can be written in the following form ϱ j j0 (λ, ω, l) = a l,j,j0 χ a l,j,j0 A l,j,j0 (λ, ω) , χ(x) =

χ(x) x ,

A l,j,j0 (λ, ω) = ω • l + µ j (λ, ω) -µ j0 (λ, ω), a l,j,j0 = (γ⟨j -j 0 ⟩) -1 ⟨l⟩ τ2 , (7.254)

where χ(x) ≜ χ(x)

x is C ∞ with bounded derivatives. Assume now the following estimate

∀ (j, j 0 ) ∈ (S c 0 ) 2 , max |α|∈ 0,q sup (λ,ω)∈O ∂ α λ,ω (µ j (λ, ω) -µ j0 (λ, ω)) ⩽ C |j -j 0 |. (7.255)
Then, we find

∀ (l, j, j 0 ) ∈ Z d × (S c 0 ) 2 , max α∈N d+1 |α|∈ 0,q sup (λ,ω)∈O ∂ α λ,ω A l,j,j0 (λ, ω) ⩽ C ⟨l, j -j 0 ⟩. (7.256)
In a similar way to (7.37), using Lemma A.1-(vi) and (7.256), we obtain

∀α ∈ N d+1 , |α| ∈ 0, q , sup (λ,ω)∈O ∂ α λ,ω ϱ j j0 (λ, ω, l) ⩽ Cγ -(|α|+1) ⟨l, j -j 0 ⟩ τ2|α|+τ2+|α| . (7.257)
Similarly to (7.39), using Leibniz rule, we get

∥Ψ∥ γ,O O-d,q,s ⩽ Cγ -1 ∥P N R∥ γ,O O-d,q,s+τ2 q+τ2 . (7.258)
We also assume that the following smallness condition holds

γ -1 ∥R∥ γ,O O-d,q,s0 +τ2q+τ2 ⩽ Cε 0 . (7.259)
Hence, by virtue of (7.258), we get

∥Ψ∥ γ,O O-d,q,s0 ⩽ Cγ -1 ∥R∥ γ,O O-d,q,s0+τ2 q+τ2 ⩽ Cε 0 . (7.260)
As a consequence, up to taking ε 0 small enough, the operator Φ is invertible and

Φ -1 = ∞ n=0 (-1) n Ψ n ≜ Id + Σ.
According to the product laws in Lemma A.1, Lemma A.6, (7.258) and (7.260) one gets

∥Σ∥ γ,O O-d,q,s ⩽ ∥Ψ∥ γ,O O-d,q,s 1 + ∞ n=1 C∥Ψ∥ γ,O O-d,q,s0 n ⩽ C γ -1 N τ2q+τ2 ∥R∥ γ,O O-d,q,s . (7.261)
Therefore, we conclude with the assumption (7.259) that Φ -1 satisfies the following estimate

∥Φ -1 -Id∥ γ,O O-d,q,s ⩽Cγ -1 N τ2q+τ2 ∥R∥ γ,O O-d,q,s . (7.262)
From ( 7.253), we can write

R + = P ⊥ N R + Φ -1 RΨ -Ψ ⌊P N R⌋ + Σ P ⊥ N R -Ψ ⌊P N R⌋ .
Thus, by virtue of Lemma A.6 and (7.262), we infer

∥R + ∥ γ,O O-d,q,s ⩽ ∥P ⊥ N R∥ γ,O O-d,q,s + C∥Σ∥ γ,O O-d,q,s ∥P ⊥ N R∥ γ,O O-d,q,s0 + ∥Ψ∥ γ,O O-d,q,s0 ∥R∥ γ,O O-d,q,s0 + C 1 + ∥Σ∥ γ,O O-d,q,s0 ∥Ψ∥ γ,O O-d,q,s ∥R∥ γ,O O-d,q,s0 + ∥Ψ∥ γ,O O-d,q,s0 ∥R∥ γ,O O-d,q,s . ( 7 

.263)

By Lemma A.6, (7.258), (7.260) and (7.262), we get for all S ⩾ s ⩾ s ⩾ s 0 ,

∥R + ∥ γ,O O-d,q,s ⩽ N s-s ∥R∥ γ,O O-d,q,s + Cγ -1 N τ2q+τ2 ∥R∥ γ,O O-d,q,s0 ∥R∥ γ,O O-d,q,s . (7.264)
▶ Initialization We shall verify that the assumptions (7.255) and (7.259) required along the KAM step to get the final form (7.264) are satisfied for L = L 0 in (7.245). Indeed, (7.255) is an immediate consequence of Lemma 5.3-(vi), that is

∃C > 0, ∀(j, j 0 ) ∈ Z 2 , max |α|∈ 0,q sup λ∈(λ0,λ1) |∂ α λ (Ω j (λ) -Ω j0 (λ))| ⩽ C |j -j 0 |. (7.265)
Thus, applying (7.170) we obtain

∃C > 0, ∀(j, j 0 ) ∈ Z 2 , max |α|∈ 0,q sup (λ,ω)∈O ∂ α λ,ω µ 0 j (λ, ω) -µ 0 j0 (λ, ω) ⩽ C |j -j 0 |.
Concerning the second assumption (7.259), we may combine (7.172) and (7.236) to find

γ -1 ∥R 0 ∥ γ,O O-d,q,s0 +τ2q+τ2 ⩽ Cεγ -2 1 + ∥I 0 ∥ γ,O q,s h +σ4 ⩽ Cε 0 .
Part I ▶ KAM iteration. Let m ∈ N and consider a linear operator

L m ≜ ω • ∂ φ + D m + R m Π ⊥ S0 (7.266)
with D m a diagonal real reversible operator and R m a real and reversible Toeplitz in time operator of zero

order satisfying Π ⊥ S0 R m Π ⊥ S0 = R m .
We assume that both assumptions (7.255) and (7.259) are satisfied for D m and R m . Remark that for m = 0 we take the operator L 0 defined in (7.245). Let Φ m = Id + Ψ m be a linear invertible operator such that

Φ -1 m L m Φ m ≜ ω • ∂ φ + D m+1 + R m+1 Π ⊥ S0 , ( 7.267) 
with Ψ m satisfying the homological equation

ω • ∂ φ + D m Π ⊥ S0 , Ψ m + P Nm R m = ⌊P Nm R m ⌋.
Recall that N m was defined in (6.94). The diagonal parts (D m ) m∈N and the remainders (R m ) m∈N are defined similarly to (7.253) by the recursive formulas, In a similar way to (7.250) we obtain

D m+1 = D m + ⌊P Nm R m ⌋ and R m+1 = Φ -1 m -Ψ m ⌊P Nm R m ⌋ + P ⊥ Nm R m + R m Ψ m . ( 7 
(Ψ m ) j j0 (λ, ω, l) =    -r j j 0 ,m (λ,ω,l) ω•l+µ m j (λ,ω)-µ m j 0 (λ,ω) if (l, j) ̸ = (0, j 0 ) 0 if (l, j) = (0, j 0 ), (7.271) 
where the collection {r j j0,m (λ, ω, l)} describes the Fourier coefficients of R m , that is,

R m e l0,j0 = i (l,j)∈Z d+1
r j j0,m (λ, ω, l 0 -l)e l,j .

Now we shall define the open

Cantor set where the preceding formula is meaningful, 

O γ m+1 = (l,j,j0)∈Z d ×(S c 0 ) 2 |l|⩽Nm (l,j)̸ =(0,j 0 ) (λ, ω) ∈ O γ m s.t. |ω • l + µ m j (λ, ω) -µ m j0 (λ, ω)| > γ⟨j-j0⟩ ⟨l⟩ τ 2 . ( 7 
(Ψ m ) j j0 (λ, ω, l) =    - χ((ω•l+µ m j (λ,ω)-µ m j 0 (λ,ω))(γ|j-j0|) -1 ⟨l⟩ τ 2 )r j j 0 ,m (λ,ω,l) ω•l+µ m j (λ,ω)-µ m j 0 (λ,ω) if (l, j) ̸ = (0, j 0 ) 0 if (l, j) = (0, j 0 ). (7.273)
We point out that working with this extension for Ψ m allows to extend both D m+1 and the remainder R m+1 provided that the operators D m and R m are defined in the whole range of parameters. Thus the operator defined by the right-hand side in (7.267) can be extended to the whole set O and we denote this extension by L m+1 , that is, 

ω • ∂ φ + D m+1 + R m+1 Π ⊥ S0 ≜ L m+1 . ( 7 
δ m (s) ≜ γ -1 ∥R m ∥ γ,O O-d,q,s (7.275)
and we want to prove by induction in m ∈ N that

∀ m ∈ N, ∀s ∈ [s 0 , s l ], δ m (s) ⩽ δ 0 (s h )N µ2 0 N -µ2 m and δ m (s h ) ⩽ 2 -1 m+1 δ 0 (s h ), (7.276) 
with s l and s h fixed by (7.3) and (7.235). Moreover, we should check the validity of the assumptions (7.255) and (7.259) for D m+1 and R m+1 . Notice that by Sobolev embeddings, it is sufficient to prove the first inequality with s = s l . The property is obvious for m = 0. Now, assume that the property (7.276) is true for m ∈ N and let us check it at the next order. We write

Φ -1 m = Id + Σ m with Σ m = ∞ n=1 (-1) n Ψ n m . ( 7.277) 
Thus similarly to (7.261), using in particular (7.258) and (7.260) we deduce successively

∥Σ m ∥ γ,O O-d,q,s0 ⩽ ∥Ψ m ∥ γ,O O-d,q,s0 1 + ∞ n=0 C∥Ψ m ∥ γ,O O-d,q,s0 n ⩽ δ m (s 0 + τ 2 q + τ 2 ) 1 + ∞ n=0 Cδ m (s 0 + τ 2 q + τ 2 )
n and for any s ∈ [s 0 , S],

∥Σ m ∥ γ,O O-d,q,s ⩽ ∥Ψ m ∥ γ,O O-d,q,s 1 + ∞ n=0 C∥Ψ m ∥ γ,O O-d,q,s0 n ⩽ N τ2q+τ2 m δ m (s) 1 + ∞ n=0 Cδ m (s 0 + τ 2 q + τ 2 ) n .
Hence, from the induction assumption, the fact that N m ⩾ N 0 and since (7.3) implies in particular

s 0 + τ 2 q + τ 2 ⩽ s l , we obtain ∥Σ m ∥ γ,O O-d,q,s0 ⩽ CN µ2 0 N -µ2 m δ 0 (s h ) 1 + ∞ n=0 CN µ2 0 N -µ2 m δ 0 (s h ) n ⩽ CN µ2 0 N -µ2 m δ 0 (s h ) 1 + ∞ n=0 Cδ 0 (s h ) n Part I
and for any s ∈ [s 0 , S],

∥Σ m ∥ γ,O O-d,q,s ⩽ N τ2q+τ2 m δ m (s) 1 + ∞ n=0 CN µ2 0 N -µ2 m δ 0 (s h ) n ⩽ N τ2q+τ2 m δ m (s) 1 + ∞ n=0 Cδ 0 (s h ) n .
It follows from the condition (7.244) that

∥Σ m ∥ γ,O O-d,q,s0 ⩽ CN µ2 0 N -µ2 m δ 0 (s h ) and ∥Σ m ∥ γ,O O-d,q,s ⩽ CN τ2q+τ2 m δ m (s). (7.278)
One also gets

∥Σ m ∥ γ,O O-d,q,s ⩽ Cδ m (s + τ 2 q + τ 2 ). (7.279)
From KAM step (7.264) and Sobolev embeddings, we infer

δ m+1 (s l ) ⩽ N s l -s h m δ m (s h ) + CN τ2q+τ2 m (δ m (s l )) 2 .
Using the induction assumption (7.276) yields

δ m+1 (s l ) ⩽ N s l -s h m 2 -1 m+1 δ 0 (s h ) + CN τ2q+τ2 m δ 2 0 (s h )N 2µ2 0 N -2µ2 m ⩽ 2N s l -s h m δ 0 (s h ) + CN τ2q+τ2 m δ 2 0 (s h )N 2µ2 0 N -2µ2 m .
At this level we need to select the parameters s l , s h and µ 2 in such a way

N s l -s h m ⩽ 1 4 N µ2 0 N -µ2 m+1 and CN τ2q+τ2 m δ 0 (s h )N 2µ2 0 N -2µ2 m ⩽ 1 2 N µ2 0 N -µ2 m+1 (7.280) leading to δ m+1 (s l ) ⩽ δ 0 (s h )N µ2 0 N -µ2 m+1 .
The conditions (7.235) imply in particular

s h ⩾ 3 2 µ 2 + s l + 1 and µ 2 ⩾ 2(τ 2 q + τ 2 ) + 1.
Then, using (6.94), we conclude that the assumptions of (7.280) hold true provided that

4N -µ2 0 ⩽ 1 and 2CN µ2 0 δ 0 (s h ) ⩽ 1, (7.281) 
which follow from (7.244), since the first condition 4N -µ2 0 ⩽ 1 is automatically satisfied because N 0 ⩾ 2 and µ 2 ⩾ 2, according to (7.235). Therefore, under the assumptions (7.235) we get the first statement of the induction in (7.276). The next goal is to establish the second estimate in (7.276). By KAM step (7.264) combined with the induction assumptions (7.276) we deduce that

δ m+1 (s h ) ⩽ δ m (s h ) + CN τ2q+τ2 m δ m (s 0 )δ m (s h ) ⩽ 2 -1 m+1 δ 0 (s h ) 1 + CN µ2 0 N τ2q+τ2-µ2 m δ 0 (s h ) .
Thus if one has

2 -1 m+1 1 + CN µ2 0 N τ2q+τ2-µ2 m δ 0 (s h ) ⩽ 2 -1 m+2 , ( 7.282) 
then we get

δ m+1 (s h ) ⩽ 2 -1 m+2 δ 0 (s h ),
which ends the induction argument of (7.276). Remark that with the choice µ 2 ⩾ 2(τ 2 q + τ 2 ) fixed in (7.235), the condition (7.282) is staisfied if

CN µ2 0 N -τ2q-τ2 m δ 0 (s h ) ⩽ 1 (2m+1)(m+2) • (7.283)
Since N 0 ⩾ 2 we may find a constant c 0 > 0 small enough such that

∀ m ∈ N, c 0 N -1 m ≤ 1 (2m+1)(m+2) •
Consequently, (7.283) is satisfied provided that

CN µ2 0 N -τ2q-τ2+1 m δ 0 (s h ) ⩽ c 0 . (7.284)
By virtue of the assumption (A.1) we get in particular

τ 2 q + τ 2 -1 ⩾ 0. (7.285)
Thus (7.284) is satisfied in view of (7.244). To conclude the induction proof of (7.276) it remains to check that the assumptions (7.255) and (7.259) are satisfied for D m+1 and R m+1 . First, the assumption (7.259) is a consequence of the first inequality of (7.276) applied at the order m + 1 with the regularity index s = s 0 + τ 2 q + τ 2 ⩽ s l supplemented with (7.244). Concerning the validity of (7.255) for D m+1 , we combine (7.269), (7.270) and (7.248), in order to find

∥µ m+1 j -µ m j ∥ γ,O q = ⟨P Nm R m e l,j , e l,j ⟩ L 2 (T d+1 ) γ,O q .
From the Topeplitz structure of R m we may write

∥µ m+1 j -µ m j ∥ γ,O q = ⟨P Nm R m e 0,j , e 0,j ⟩ L 2 (T d+1 ) γ,O q .
By a duality argument combined with Lemma A.6 and (7.275) we infer

∥µ m+1 j -µ m j ∥ γ,O q ≲ R m e 0,j ∥ γ,O q,s0 ⟨j⟩ -s0 ≲ R m γ,O O-d,q,s0 ∥e 0,j ∥ H s 0 ⟨j⟩ -s0 ≲ R m γ,O O-d,q,s0 = γδ m (s 0 ). ( 7 

.286)

Hence we deduce from (7.276), (7.243) and (7.236)

∥µ m+1 j -µ m j ∥ γ,O q ⩽ Cγ δ 0 (s h )N µ2 0 N -µ2 m ⩽ Cεγ -1 N µ2 0 N -µ2 m . (7.287)
As the assumption (7.255) is satisfied with D m , that is,

∀ (j, j 0 ) ∈ (S c 0 ) 2 , max |α|∈ 0,q sup (λ,ω)∈O ∂ α λ,ω µ m j (λ, ω) -µ m j0 (λ, ω) ⩽ C |j -j 0 |, (7.288) 
Part I

then we obtain by (7.287)

∀ (j, j 0 ) ∈ (S c 0 ) 2 , max |α|∈ 0,q sup (λ,ω)∈O ∂ α λ,ω µ m+1 j (λ, ω) -µ m+1 j0 (λ, ω) ⩽ C 1 + εγ -1-q N µ2 0 N -µ2 m |j -j 0 |.
Consequently, the convergence of the series N -µ2 m gives the required assumption with the same constant C independently of m. This completes the induction principle. In what follows, we shall provide some estimates for Ψ m that will be used later to study the string convergence. Using (7.258) combined with Lemma A.6 and s 0 + τ 2 q + τ 2 + 1 ⩽ s l we find 

∥Ψ m ∥ γ,O O-d,q,s0+1 ⩽ Cγ -1 ∥P Nm R m ∥ γ,O O-d,q,s0 +τ2q+τ2+1 ⩽ C δ m (s l ). ( 7 
∥Ψ m ∥ γ,O O-d,q,s0+1 ⩽ C δ 0 (s h )N µ2 0 N -µ2 m ⩽ C εγ -2 N µ2 0 N -µ2 m . ( 7 
δ m+1 (s) ⩽ δ m (s) 1 + CN τ2q+τ2 m δ m (s 0 ) ⩽ δ m (s) 1 + CN µ2 0 N τ2q+τ2-µ2 m δ 0 (s h ) ⩽ δ m (s) 1 + CN -1 m .
Combining this estimate with (6.94) and (7.243) yields 

∀ s ⩾ s 0 , ∀ m ∈ N, δ m (s) ⩽ δ 0 (s) ∞ n=0 1 + CN -1 n ⩽ Cδ 0 (s) ⩽ Cεγ -2 1 + ∥I 0 ∥ γ,O q,s+σ4 . ( 7 
∥Ψ m ∥ γ,O O-d,q,s ⩽ Cγ -1 ∥P Nm R m ∥ γ,O O-d,q,s+τ2 q+τ2 ⩽ C δ m (s + τ 2 q + τ 2 ) ⩽ C δ θ m (s 0 )δ 1-θ m (s + τ 2 q + τ 2 + 1), (7.292) 
with θ = 1 s-s0+τ2q+τ2+1 . Inserting (7.276) and (7.291) into (7.292) and using (7.244) give

∥Ψ m ∥ γ,O O-d,q,s ⩽ C δ θ 0 (s 2 )δ 1-θ 0 (s + τ 2 q + τ 2 + 1)N µ2θ 0 N -µ2θ m ⩽ C ε 0 θ δ 1-θ 0 (s + τ 2 q + τ 2 + 1)N -µ2θ m . ( 7 

.293)

We point out that one also finds from (7.279), the second inequality of (7.292) and (7.291) that 

∀ s ∈ [s 0 , S], sup m∈N ∥Σ m ∥ γ,O O-d,q,s + ∥Ψ m ∥ γ,O O-d,q,s ⩽ Cεγ -2 1 + ∥I 0 ∥ γ,O q,s+σ4 . ( 7 
∥ Φ m+1 ∥ γ,O O-d,q,s0+1 ⩽ ∥ Φ m ∥ γ,O O-d,q,s0+1 1 + C∥Ψ m+1 ∥ γ,O O-d,q,s0 +1 .
By iterating this inequality and using (7.290) we infer

∥ Φ m+1 ∥ γ,O O-d,q,s0+1 ⩽ ∥Φ 0 ∥ γ,O O-d,q,s0 +1 m+1 n=1 1 + C∥Ψ n ∥ γ,O O-d,q,s0 +1 ⩽ ∞ n=0 1 + C ε 0 N -µ2 n .
Using the first condition of (7.244) and (6.94) imply

∥ Φ m+1 ∥ γ,O O-d,q,s0+1 ⩽ ∞ n=0 1 + C ε 0 4 -( 3 2 ) n
and since the infinite product converges, we obtain for ε 0 small enough

sup m∈N ∥ Φ m ∥ γ,O O-d,q,s0+1 ⩽ 2. ( 7.296) 
Now we shall estimate the difference Φ m+1 -Φ m and for this aim we use the product laws combined with (7.290) and (7.296)

∥ Φ m+1 -Φ m ∥ γ,O O-d,q,s0+1 ⩽ C∥ Φ m ∥ γ,O O-d,q,s0+1 ∥Ψ m+1 ∥ γ,O O-d,q,s0+1 ⩽ C δ 0 (s h )N µ2 0 N -µ2 m+1 . (7.297) Applying Lemma A.5 gives ∞ m=0 ∥ Φ m+1 -Φ m ∥ γ,O O-d,q,s0+1 ⩽ C δ 0 (s h ). (7.298)
Therefore, by a completeness argument we deduce that the series m∈N ( Φ m+1 -Φ m ) converges to an element Φ ∞ . In addition, we get in view of (7.297) and Lemma A.5

∥ Φ m -Φ ∞ ∥ γ,O O-d,q,s0 +1 ⩽ ∞ j=m ∥ Φ j+1 -Φ j ∥ γ,O O-d,q,s0+1 ⩽ C δ 0 (s h )N µ2 0 ∞ j=m N -µ2 j+1 ⩽ C δ 0 (s h )N µ2 0 N -µ2 m+1 . (7.299)
Remark that one also finds from (7.296) 

∥Φ ∞ ∥ γ,O O-d,q,s0 +1 ⩽ 2. ( 7 
∥Φ ∞ -Id∥ γ,O O-d,q,s0 +1 ⩽ ∞ m=0 ∥ Φ m+1 -Φ m ∥ γ,O O-d,q,s0+1 + ∥Ψ 0 ∥ γ,O O-d,q,s0 +1
⩽ C δ 0 (s h ). (7.301)

Let us now check the convergence with higher order norms. Take s ∈ [s 0 , S], then using the product laws, (7.290), (7.293) and (7.296) we infer

∥ Φ m+1 ∥ γ,O O-d,q,s ⩽ ∥ Φ m ∥ γ,O O-d,q,s 1 + C∥Ψ m+1 ∥ γ,O O-d,q,s0 + C∥ Φ m ∥ γ,O O-d,q,s0 ∥Ψ m+1 ∥ γ,O O-d,q,s (7.302) ⩽ ∥ Φ m ∥ γ,O O-d,q,s 1 + C ε 0 N -µ2 m+1 + C δ θ 0 (s h )N µ2θ 0 δ 1-θ 0 (s + τ 2 q + τ 2 + 1)N -µ2θ m .
According to the first condition of (7.244) and (6.94) one finds

∞ n=0 1 + C ε 0 N -µ2 n ⩽ ∞ n=0 1 + C ε 0 4 -( 3 2 ) n ⩽ 2,
where the last inequality holds if ε 0 is chosen small enough. Applying (7.70) together with (7.302) and Lemma A.5 and using (7.258) yield

sup m∈N ∥ Φ m ∥ γ,O O-d,q,s ⩽ C ∥Φ 0 ∥ γ,O O-d,q,s + δ θ 0 (s h )N µ2θ 0 δ 1-θ 0 (s + τ 2 q + τ 2 + 1) ⩽ C 1 + δ 0 (s + τ 2 q + τ 2 ) + δ θ 0 (s h )N µ2θ 0 δ 1-θ 0 s + τ 2 q + τ 2 + 1 .
Interpolation inequalities and (7.244) allow to get

sup m∈N ∥ Φ m ∥ γ,O O-d,q,s ⩽ C 1 + δ 0 s + τ 2 q + τ 2 + 1 . (7.303)
The next task is to estimate the difference ∥ Φ m+1 -Φ m ∥ γ,O q,s . By the product laws combined with the first inequality in (7.290), (7.293), (7.296) and (7.303) we obtain

∥ Φ m+1 -Φ m ∥ γ,O O-d,q,s ⩽ C ∥ Φ m ∥ γ,O O-d,q,s ∥Ψ m+1 ∥ γ,O O-d,q,s0 + ∥ Φ m ∥ γ,O O-d,q,s0 ∥Ψ m+1 ∥ γ,O O-d,q,s ⩽ C δ 0 (s h )N µ2 0 N -µ2 m+1 1 + δ 0 s + τ 2 q + τ 2 + 1 + C δ θ 0 (s h )N µ2θ 0 δ 1-θ 0 s + τ 2 q + τ 2 + 1 N -µ2θ m+1 .
Thus, we obtain in view of Lemma A.5

∞ m=0 ∥ Φ m+1 -Φ m ∥ γ,O O-d,q,s ⩽ C δ 0 (s h ) 1 + δ 0 s + τ 2 q + τ 2 + 1 + C δ θ 0 (s h )δ 1-θ 0 s + τ 2 q + τ 2 + 1 .
Combining the interpolation inequalities with the second condition in (7.244) gives

∞ m=0 ∥ Φ m+1 -Φ m ∥ γ,O O-d,q,s ⩽ C δ 0 (s h ) + δ 0 s + τ 2 q + τ 2 + 1 . (7.304)
From this latter inequality combined with (7.244) and (7.303) we infer

∥Φ ∞ ∥ γ,O O-d,q,s ⩽ ∞ m=0 ∥ Φ m+1 -Φ m ∥ γ,O O-d,q,s + ∥ Φ 0 ∥ γ,O O-d,q,s ⩽ C 1 + δ 0 s + τ 2 q + τ 2 + 1 . (7.305)
On the other hand, using (7.304) and the second inequality in (7.292) with m = 0, one can check that

∥Φ ∞ -Id∥ γ,O O-d,q,s ⩽ ∞ m=0 ∥ Φ m+1 -Φ m ∥ γ,O O-d,q,s + ∥Ψ 0 ∥ γ,O O-d,q,s ⩽ C δ 0 (s h ) + δ 0 s + τ 2 q + τ 2 + 1 . (7.306)
Therefore, Lemma A.6 together with (7.300), (7.305) and Sobolev embeddings give

∥Φ ∞ ρ∥ γ,O q,s ≲ ∥Φ ∞ ∥ γ,O O-d,q,s0 ∥ρ∥ γ,O q,s + ∥Φ ∞ ∥ γ,O O-d,q,s ∥ρ∥ γ,O q,s0 ≲ ∥ρ∥ γ,O q,s + 1 + δ 0 s + τ 2 q + τ 2 + 1 ∥ρ∥ γ,O q,s0
≲ ∥ρ∥ γ,O q,s + δ 0 s + τ 2 q + τ 2 + 1 ∥ρ∥ γ,O q,s0 . (7.307) Applying (7.172) and ( 7.275) we obtain

δ 0 s + τ 2 q + τ 2 + 1 = γ -1 ∥R 0 ∥ γ,O O-d,q,s ≲ εγ -2 1 + ∥I 0 ∥ γ,O q,s+σ4 . (7.308) 
Plugging (7.308) into (7.307) and using (7.236) combined with Sobolev embeddings and (7.235) yield

∥Φ ∞ ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s + εγ -2 1 + ∥I 0 ∥ γ,O q,s+σ4 ∥ρ∥ γ,O q,s0
≲ ∥ρ∥ γ,O q,s + εγ -2 ∥I 0 ∥ γ,O q,s+σ4 ∥ρ∥ γ,O q,s0 . (7.309)

In a similar way to (7.307) we get by Lemma A.6 combined with (7.306) and (7.301)

Φ ∞ -Id ρ γ,O q,s ≲ ∥Φ ∞ -Id∥ γ,O O-d,q,s0 ∥ρ∥ γ,O q,s + ∥Φ ∞ -Id∥ γ,O O-d,q,s ∥ρ∥ γ,O q,s0 ≲ δ 0 (s h )∥ρ∥ γ,O q,s + δ 0 (s h ) + δ 0 s + τ 2 q + τ 2 + 1 ∥ρ∥ γ,O q,s0 ≲ δ 0 (s h )∥ρ∥ γ,O q,s + δ 0 s + τ 2 q + τ 2 + 1 ∥ρ∥ γ,O q,s0 .
Hence we find from (7.308) and (7.236) combined with Sobolev embeddings and (7.243)

Φ ∞ -Id ρ γ,O q,s ≲ εγ -2 + δ 0 (s h ) ∥ρ∥ γ,O q,s + εγ -2 ∥I 0 ∥ γ,O q,s+σ4 ∥ρ∥ γ,O q,s0
≲ εγ -2 ∥ρ∥ γ,O q,s + εγ -2 ∥I 0 ∥ γ,O q,s+σ4 ∥ρ∥ γ,O q,s0 .

(7.310)

The estimates Φ -1 ∞ and Φ -1 ∞ -Φ -1 n follow from the same type pf arguments. ➢ In what follows we plan to study the asymptotic of the eigenvalues. Summing up in m the estimates (7.287) and using Lemma A.5, we find

∞ m=0 ∥µ m+1 j -µ m j ∥ γ,O q ⩽ Cγ δ 0 (s h )N µ2 0 ∞ m=0 N -µ2 m ⩽ Cγδ 0 (s h ). ( 7 

.311)

Part I

Thus for each j ∈ S c 0 the sequence (µ m j ) m∈N converges in the space W q,∞,γ (O, C) to an element denoted by µ ∞ j ∈ W q,∞,γ (O, C). Moreover, for any m ∈ N, we find in view of (7.287)

∥µ ∞ j -µ m j ∥ γ,O q ⩽ ∞ n=m ∥µ n+1 j -µ n j ∥ γ,O q ⩽ Cγ δ 0 (s h )N µ2 0 ∞ n=m N -µ2 n . Applying Lemma A.5 sup j∈S c 0 ∥µ ∞ j -µ m j ∥ γ,O q ⩽ Cγδ 0 (s h )N µ2 0 N -µ2 m . (7.312)
Therefore, we deduce

µ ∞ j = µ 0 j + ∞ m=0 µ m+1 j -µ m j ≜ µ 0 j + r ∞ j , ( 7.313) 
where (µ 0 j ) is described in Proposition 7.4 and takes the form

µ 0 j (λ, ω, i 0 ) = Ω j (λ) + j c i0 (λ, ω) -I 1 (λ)K 1 (λ) .
Hence (7.311), (7.243) and (7.236) yield

∥r ∞ j ∥ γ,O q ⩽ C γ δ 0 (s h ) ⩽ C εγ -1
and this gives the first result in (7.239). We define the diagonal operator D ∞ , acting on the normal modes, as follows

∀(l, j) ∈ Z d × S c 0 , D ∞ e l,j = iµ ∞ j e l,j . (7.314)
By the norm definition we obtain

∥D m -D ∞ ∥ γ,O O-d,q,s0 = sup j∈S c 0 ∥µ m j -µ ∞ j ∥ γ,O q ,
which gives by virtue of (7.312)

∥D m -D ∞ ∥ γ,O O-d,q,s0 ⩽ C γ δ 0 (s h )N µ2 0 N -µ2 m . (7.315)
➢ The next goal is to prove that the Cantor set O γ,τ1,τ2 ∞,n (i 0 ) defined in Proposition 7.5 satisfies

O γ,τ1,τ2 ∞,n (i 0 ) ⊂ n+1 m=0 O γ m = O γ n+1 ,
where the intermediate Cantor sets are defined in (7.272). For this aim we shall proceed by finite induction on m with n fixed. First, we get by construction O γ,τ1,τ2 ∞,n

(i 0 ) ⊂ O ≜ O γ 0 . Now assume that O γ,τ1,τ2 ∞,n (i 0 ) ⊂ O γ m for m ⩽ n and let us check that O γ,τ1,τ2 ∞,n (i 0 ) ⊂ O γ m+1 . (7.316) Let (λ, ω) ∈ O γ,τ1,τ2
∞,n (i 0 ) and (l, j, j 0 ) ∈ Z d × (S c 0 ) 2 such that 0 ⩽ |l| ⩽ N m and (l, j) ̸ = (0, j 0 ). Then, the triangle inequality, (7.312), (7.235) and (7.244) imply

|ω • l + µ m j (λ, ω) -µ m j0 (λ, ω)| ⩾ |ω • l + µ ∞ j (λ, ω) -µ ∞ j0 (λ, ω)| -2 sup j∈S c 0 ∥µ m j -µ ∞ j ∥ γ,O q ⩾ 2γ⟨j-j0⟩ ⟨l⟩ τ 2 -2γδ 0 (s h )N µ2 0 N -µ2 m ⩾ 2γ⟨j-j0⟩ ⟨l⟩ τ 2 -2γε 0 ⟨l⟩ -µ2 ⟨j -j 0 ⟩.
Thus for ε 0 small enough and by (7.235) (implying that µ 2 ⩾ τ 2 ) we get

ω • l + µ m j (λ, ω) -µ m j0 (λ, ω) > γ⟨j-j0⟩ ⟨l⟩ τ 2
which shows that (λ, ω) ∈ O γ m+1 and therefore the inclusion (7.316) is satisfied. ➢ Next we shall discuss the convergence of the sequence (L m ) m∈N introduced in (7.266) towards the 

diagonal operator L ∞ ≜ ω • ∂ φ Π ⊥ S0 + D ∞ ,
∥L m -L ∞ ∥ γ,O O-d,q,s0 ⩽ ∥D m -D ∞ ∥ γ,O O-d,q,s0 + ∥R m ∥ γ,O O-d,q,s0 ⩽ C γ δ 0 (s h )N µ2 0 N -µ2 m , (7.317) 
which gives in particular that

lim m→∞ ∥L m -L ∞ ∥ γ,O O-d,q,s0 = 0. (7.318)
By virtue of (7.295) and (7.267) one gets

∀(λ, ω) ∈ O γ n+1 , Φ -1 n L 0 Φ n = ω • ∂ φ + D n+1 + R n+1 Π ⊥ S0 = L ∞ + D n+1 -D ∞ + R n+1 Π ⊥ S0 . It follows that any (λ, ω) ∈ O γ n+1 Φ -1 ∞ L 0 Φ ∞ = L ∞ + D n+1 -D ∞ + R n+1 Π ⊥ S0 + Φ -1 ∞ L 0 Φ ∞ -Φ n + Φ -1 ∞ -Φ -1 n L 0 Φ n ≜ L ∞ + E 2 n,1 + E 2 n,2 + E 2 n,3 ≜ L ∞ + E 2 n .
For the estimate E 2 n,1 we use (7.315) combined with (7.275), (7.276), (7.243) and (7.236)

∥E 2 n,1 ∥ γ,O O-d,q,s0 ⩽ C γ δ 0 (s h )N µ2 0 N -µ2 n+1 ⩽ Cεγ -1 N µ2 0 N -µ2 n+1 . (7.319)
According to Lemma A.25 with (7.319) we obtain

∥E 2 n,1 ρ∥ γ,O q,s0 ⩽ Cεγ -1 N µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0 .
Part I Now let us move to the estimates of E 2 n,2 and E 2 n,3 . They can be treated in a similar way. Therefore we shall restrict the discussion to the term E 2 n,2 . Using (7.237) yields

∥E 2 n,2 ρ∥ γ,O q,s0 ≲ L 0 Φ ∞ -Φ n ρ γ,O q,s0 + εγ -2 ∥I 0 ∥ γ,O q,s0+σ4 L 0 Φ ∞ -Φ n ρ γ,O q,s0 . (7.320)
Therefore we get from (7.174) combined with (7.236)

∥E 2 n,2 ρ∥ γ,O q,s0 ≲ L 0 Φ ∞ -Φ n ρ γ,O q,s0 ≲ Φ ∞ -Φ n ρ γ,O q,s0+1 .
Applying (7.299) with Lemma A.25, (7.236) and (7.243) allow to get

∥E 2 n,2 ρ∥ γ,O q,s0 ≲ Φ ∞ -Φ n γ,O O-d,q,s0 +1 ∥ρ∥ γ,O q,s0+1 ⩽ C δ 0 (s h )N µ2 0 N -µ2 m+1 ∥ρ∥ γ,O q,s0+1 ⩽ C εγ -2 N µ2 0 N -µ2 m+1 ∥ρ∥ γ,O q,s0+1 .
Notice that for E 2 n,3 we get the same estimate as the preceding one. Consequently, putting together the foregoing estimates yields (7.240). ➢ The goal now is to prove (7.239). We set

δ m (s) ≜ max γ -1 ∥∂ θ R m ∥ γ,O O-d,q,s , γ -1 ∥R m ∥ γ,O O-d,q,s .
Then we shall prove by induction on m ∈ N that

δ m (s 0 ) ⩽ δ 0 (s h )N µ2 0 N -µ2 m and δ m (s h ) ⩽ 2 -1 m+1 δ 0 (s h ). ( 7 

.321)

According to Sobolev embeddings, the property is trivially satisfied for m = 0. Notice that from (7.172) and (7.236) one gets

δ 0 (s h ) ≲ εγ -2 1 + ∥I 0 ∥ γ,O q,s h +σ4 ≲ εγ -2 . (7.322)
We assume that (7.321) is satisfied at the order m and let us check it at the order m + 1. Applying ∂ θ to the second identity in (7.268) and using (7.277) we obtain the expression

∂ θ R m+1 = Φ -1 m P ⊥ Nm ∂ θ R m + ∂ θ R m Ψ m -Ψ m ∂ θ P Nm R m -∂ θ , Ψ m P Nm R m + ∂ θ , Σ m P ⊥ Nm R m + R m Ψ m -Ψ m P Nm R m . ≜ U 1 m + U 2 m with U 2 m = ∂ θ , Σ m P ⊥ Nm R m + R m Ψ m -Ψ m P Nm R m .
It is easy to check that for any Toeplitz in time operator T (λ, ω), we have

∂ θ , T (λ, ω) e l0,j0 = i (l,j)∈Z d+1
(j -j 0 )T j j0 (λ, ω, l -l 0 )e l,j , which implies using the norm definition

[∂ θ , T ] γ,O O-d,q,s ⩽ ∥T ∥ γ,O O-d,q,s+1 . (7.323)
Since Φ -1 m = Id + Σ m , then applying Lemma A.6, we obtain successively for S ⩾ s ⩾ s ⩾ s 0

∥U 1 m ∥ γ,O O-d,q,s ⩽ C∥Σ m ∥ γ,O O-d,q,s ∥∂ θ R m ∥ γ,O O-d,q,s0 1 + ∥Ψ m ∥ γ,O O-d,q,s0 + ∥ [∂ θ , Ψ m ] ∥ γ,O O-d,q,s0 ∥R m ∥ γ,O O-d,q,s0 + C∥Σ m ∥ γ,O O-d,q,s0 ∥∂ θ R m ∥ γ,O O-d,q,s 1 + ∥Ψ m ∥ γ,O O-d,q,s0 + ∥∂ θ R m ∥ γ,O O-d,q,s0 ∥Ψ m ∥ γ,O O-d,q,s (7.324) +∥ [∂ θ , Ψ m ] ∥ γ,O O-d,q,s ∥R m ∥ γ,O O-d,q,s0 + ∥ [∂ θ , Ψ m ] ∥ γ,O O-d,q,s0 ∥R m ∥ γ,O O-d,q,s + ∥P ⊥ Nm ∂ θ R m ∥ γ,O O-d,q,s
and

∥U 2 m ∥ γ,O O-d,q,s ≲ ∥ [∂ θ , Σ m ] ∥ γ,O O-d,q,s0 ∥R m ∥ γ,O O-d,q,s0 ∥Ψ m ∥ γ,O O-d,q,s + ∥R m ∥ γ,O O-d,q,s 1 + ∥Ψ m ∥ γ,O O-d,q,s0 + ∥ [∂ θ , Σ m ] ∥ γ,O O-d,q,s ∥R m ∥ γ,O O-d,q,s0 1 + ∥Ψ m ∥ γ,O O-d,q,s0 . (7.325)
By using (7.323), (7.258) and Lemma A.6, we obtain

∥ [∂ θ , Ψ m ] ∥ γ,O O-d,q,s ⩽ ∥Ψ m ∥ γ,O O-d,q,s+1 ⩽ Cγ -1 ∥P Nm R m ∥ γ,O O-d,q,s+τ2q+τ2+1 ⩽ CN τ2q+τ2+1 m δ m (s).
Coming back to (7.278), we obtain

∥ [∂ θ , Σ m ] ∥ γ,O O-d,q,s ⩽ ∥Σ m ∥ γ,O O-d,q,s+1 ⩽ CN τ2q+τ2+1 m δ m (s).
Then inserting the preceding estimates and (7.290) into (7.324) we deduce that

∀ S ⩾ s ⩾ s ⩾ s 0 , δ m+1 (s) ⩽ N s-s m δ m (s) + CN τ2q+τ2+1 m δ m (s) δ m (s 0 ). (7.326)
In particular, for s = s 0 we get by the induction assumption (7.321),

δ m+1 (s 0 ) ⩽ N s0-s h m δ m (s h ) + CN τ2q+τ2+1 m δ m (s 0 ) 2 ⩽ 2 -1 m+1 δ 0 (s h )N s0-s h m + CN 2µ2 0 N τ2q+τ2+1-2µ2 m δ 0 (s h ) 2 ⩽ δ 0 (s h ) 2N s0-s h m + CN 2µ2 0 N τ2q+τ2+1-2µ2 m δ 0 (s h ) .
If we fix s 2 and µ 2 such that

N s0-s h m ⩽ 1 4 N µ2 0 N -µ2 m+1 and CN 2µ2 0 N τ2q+τ2+1-2µ2 m δ 0 (s h ) ⩽ 1 2 N µ2 0 N -µ2 m+1 , (7.327)
then we find

δ m+1 (s 0 ) ⩽ δ 0 (s h )N µ2 0 N -µ2 m+1 .
Notice that (7.235) implies in particular

s h ⩾ 3 2 µ 2 + s 0 + 1 and µ 2 ⩾ 2(τ 2 q + τ 2 + 1) + 1.
Part I Hence, using (6.94), we see that the assumptions of (7.327) hold true provided that

4N -µ2 0 ⩽ 1 and 2C δ 0 (s h ) ⩽ N -µ2 0 .
Remark that these conditions are satisfied thanks to (7.281), (7.322) and (7.236). Now, we turn to the proof of the second estimate in (7.321). By (7.326) and (7.321)

δ m+1 (s h ) ⩽ δ m (s h ) + CN τ2q+τ2+1 m δ m (s h ) δ m (s 0 ) ⩽ 2 -1 m+1 δ 0 (s h ) 1 + CN µ2 0 N τ2q+τ2+1-µ2 m δ 0 (s h ) .
Taking the parameters s 2 and µ 2 such that

2 -1 m+1 1 + CN µ2 0 N τ2q+τ2+1-µ2 m δ 0 (s h ) ⩽ 2 -1 m+2 , ( 7.328) 
then we obtain

δ m+1 (s h ) ⩽ 2 -1 m+2 δ 0 (s h ),
which achieves the induction argument in (7.321). Now observe that (7.328) is quite similar to (7.282) using in particular µ 2 ⩾ 2(τ 2 q + τ 2 ) + 1 and one may proceed following the same lines. Next let us see how to get the estimate (7.239). Recall that

r ∞ j = ∞ m=0 r m j with r m j = -i P Nm R m e 0,j , e 0,j L 2 (T d+1 ) .
Then it is clear that P Nm R m e 0,j , e 0,j L 2 (T d+1 ,C) = i j P Nm R m e 0,j , ∂ θ e 0,j L 2 (T d+1 ) .

Therefore integration by parts leads to

P Nm R m e 0,j , ∂ θ e 0,j L 2 (T d+1 ,C) = -P Nm ∂ θ R m e 0,j , e 0,j L 2 (T d+1 ) .
Using a duality argument H s0 -H -s0 combined with Lemma A.6 and (7.321), we obtain

∥⟨P Nm ∂ θ R m e 0,j , e 0,j ⟩ L 2 (T d+1 ) ∥ γ,O q ⩽ Cγ δ m (s 0 ) ⩽ Cγ δ 0 (s h )N µ2 0 N -µ2 m .
Putting together the preceding estimates with (7.322) and Lemma A.5 yields

∥r ∞ j ∥ γ,O q ≲ γ |j| -1 δ 0 (s h )N µ2 0 ∞ m=0 N -µ2 m ≲ |j| -1 εγ -1 .
This achieves the proof of (7.239).

(ii)

We shall now work with fixed values (minimal) of µ 2 and s h denoted respectively by µ c and s c , namely 

µ c ≜ µ 2 + 2τ 2 q + 2τ 2 and s c ≜ 3 2 µ c + s l + 1 = s h + 4τ 2 q + 4τ 2 . ( 7 
R m+1 = (Id + Σ m ) U m ,
where

U m ≜ P ⊥ Nm R m + R m Ψ m -Ψ m P Nm R m . (7.330)
After straightforward computations, we get

∆ 12 U m =P ⊥ Nm ∆ 12 R m + (∆ 12 R m )(Ψ m ) r1 + (R m ) r2 (∆ 12 Ψ m ) -(∆ 12 Ψ m ) P Nm (R m ) r1 -(Ψ m ) r2 P Nm ∆ 12 R m (7.331)
and

∆ 12 R m+1 = ∆ 12 U m + (∆ 12 Σ m )(U m ) r1 + (Σ m ) r2 ∆ 12 U m . (7.332)
We have used the notation (f ) r = f (r). Elementary manipulations based on (7.277) give

∆ 12 Σ m = ∆ 12 Φ -1 m = -(Φ -1 m ) r2 (∆ 12 Ψ m )(Φ -1 m ) r1 .
The product laws of Lemma A.6 together with (7.294) and (7.236) imply

∀ s ∈ [s 0 , s c ], ∥∆ 12 Σ m ∥ γ,O O-d,q,s ≲ ∥∆ 12 Ψ m ∥ γ,O O-d,q,s . (7.333)
Using once again the product laws of Lemma A.6, (7.333) and (7.332) we obtain

∥∆ 12 R m+1 ∥ γ,O O-d,q,s0 ⩽ ∥∆ 12 U m ∥ γ,O O-d,q,s0 + ∥(∆ 12 Ψ m )∥ γ,O O-d,q,s0 ∥(U m ) r1 ∥ γ,O O-d,q,s0 + ∥(Σ m ) r2 ∥ γ,O O-d,q,s0 ∥∆ 12 U m ∥ γ,O O-d,q,s0 (7.334) 
and

∥∆ 12 R m+1 ∥ γ,O O-d,q,sc ⩽ ∥∆ 12 U m ∥ γ,O O-d,q,sc + ∥(∆ 12 Ψ m )∥ γ,O O-d,q,s0 ∥(U m ) r1 ∥ γ,O O-d,q,sc + ∥(∆ 12 Ψ m )∥ γ,O O-d,q,sc ∥(U m ) r1 ∥ γ,O O-d,q,s0 + ∥(Σ m ) r2 ∥ γ,O O-d,q,s0 ∥∆ 12 U m ∥ γ,O O-d,q,sc + ∥(Σ m ) r2 ∥ γ,O O-d,q,sc ∥∆ 12 U m ∥ γ,O O-d,q,s0 . (7.335)
For the estimate (U m ) r1 (to alleviate the notation we shall remove in this part remove the subscript r 1 )

described by (7.330) we use the product laws leading to

∥U m ∥ γ,O O-d,q,s0 ⩽ ∥R m ∥ γ,O O-d,q,s0 + ∥R m ∥ γ,O O-d,q,s0 ∥Ψ m ∥ γ,O O-d,q,s0 (7.336) 
and 

∥U m ∥ γ,O O-d,q,sc ⩽ ∥R m ∥ γ,O O-d,q,sc + ∥R m ∥ γ,O O-d,q,s0 ∥Ψ m ∥ γ,O O-d,q,sc + ∥R m ∥ γ,O O-d,q,sc ∥Ψ m ∥ γ,O O-d,q,s0 . ( 7 
∥U m ∥ γ,O O-d,q,s0 ⩽ Cεγ -1 N µc 0 N -µc m . ( 7 
∥(Ψ m ) rj ∥ γ,O O-d,q,sc ≲ N τ2q+τ2 m δ m (s c ) ≲ εγ -2 N τ2q+τ2 m . ( 7 
∥∆ 12 R m+1 ∥ γ,O O-d,q,sc ⩽ ∥∆ 12 U m ∥ γ,O O-d,q,sc + Cεγ -1 ∥∆ 12 Ψ m ∥ γ,O O-d,q,s0 + Cεγ -1 N µc 0 N -µc m ∥∆ 12 Ψ m ∥ γ,O O-d,q,sc + ∥(Σ m ) r2 ∥ γ,O O-d,q,s0 ∥∆ 12 U m ∥ γ,O O-d,q,sc + ∥(Σ m ) r2 ∥ γ,O O-d,q,sc ∥∆ 12 U m ∥ γ,O O-d,q,s0 . ( 7 
∥(Σ m ) r2 ∥ γ,O O-d,q,s0 ⩽ Cεγ -2 N µc 0 N -µc m and ∥(Σ m ) r2 ∥ γ,O O-d,q,sc ⩽ Cεγ -2 N τ2q+τ2 m . ( 7 
∥∆ 12 R m+1 ∥ γ,O O-d,q,sc ⩽ 1 + Cεγ -2 N µc 0 N -µc m ∥∆ 12 U m ∥ γ,O O-d,q,sc + Cεγ -2 N τ2q+τ2 m ∥∆ 12 U m ∥ γ,O O-d,q,s0 + Cεγ -1 N µc 0 N -µc m ∥∆ 12 Ψ m ∥ γ,O O-d,q,sc + Cεγ -1 ∥∆ 12 Ψ m ∥ γ,O O-d,q,s0 . (7.343) 
In a similar way, by combining (7.338), (7.342) with (7.334) we find

∥∆ 12 R m+1 ∥ γ,O O-d,q,s0 ⩽ 1 + Cεγ -2 N µc 0 N -µc m ∥∆ 12 U m ∥ γ,O O-d,q,s0 + Cεγ -1 N µc 0 N -µc m ∥∆ 12 Ψ m ∥ γ,O O-d,q,s0 . (7.344)
From (7.331) and the product laws of Lemma A.6 we obtain ∀ s ∈ [s 0 , s c ],

∥∆ 12 U m ∥ γ,O O-d,q,s ⩽N s-sc m ∥∆ 12 R m ∥ γ,O O-d,q,sc + C∥∆ 12 R m ∥ γ,O O-d,q,s max j=1,2 ∥(Ψ m ) rj ∥ γ,O O-d,q,s0 + C∥∆ 12 R m ∥ γ,O O-d,q,s0 max j=1,2 ∥(Ψ m ) rj ∥ γ,O O-d,q,s + C∥∆ 12 Ψ m ∥ γ,O O-d,q,s max j=1,2 ∥(R m ) rj ∥ γ,O O-d,q,s0 + C∥∆ 12 Ψ m ∥ γ,O O-d,q,s0 max j=1,2 ∥(R m ) rj ∥ γ,O O-d,q,s .
Combining the foregoing estimate with (7.339), (7.276) and (7.290) yields

∥∆ 12 U m ∥ γ,O O-d,q,s0 ⩽N s0-sc m ∥∆ 12 R m ∥ γ,O O-d,q,sc + Cεγ -2 N µc 0 N -µc m ∥∆ 12 R m ∥ γ,O O-d,q,s0 + Cεγ -1 N µc 0 N -µc m ∥∆ 12 Ψ m ∥ γ,O O-d,q,s0 (7.345) 
and

∥∆ 12 U m ∥ γ,O O-d,q,sc ⩽ 1 + Cεγ -2 N µc 0 N -µc m ∥∆ 12 R m ∥ γ,O O-d,q,sc + CN τ2q+τ2 m εγ -2 ∥∆ 12 R m ∥ γ,O O-d,q,s0 + Cεγ -1 N µc 0 N -µc m ∥∆ 12 Ψ m ∥ γ,O O-d,q,sc + Cεγ -1 ∥∆ 12 Ψ m ∥ γ,O O-d,q,s0 .
Putting together the preceding estimate with (7.343), (7.344), (7.235) and (7.236) we deduce that

∥∆ 12 R m+1 ∥ γ,O O-d,q,sc ⩽ 1 + Cεγ -2 N µc 0 N -µc m + Cεγ -2 N s0-sc+τ2q+τ2 m ∥∆ 12 R m ∥ γ,O O-d,q,sc + CN τ2q+τ2 m εγ -2 ∥∆ 12 R m ∥ γ,O O-d,q,s0 + Cεγ -1 N µc 0 N -µc m ∥∆ 12 Ψ m ∥ γ,O O-d,q,sc + Cεγ -1 ∥∆ 12 Ψ m ∥ γ,O O-d,q,s0 . (7.346)
In a similar way, by making appeal to (7.344), (7.345) and (7.236) we find

∥∆ 12 R m+1 ∥ γ,O O-d,q,s0 ⩽ N s0-sc m ∥∆ 12 R m ∥ γ,O O-d,q,sc + Cεγ -2 N µc 0 N -µc m ∥∆ 12 R m ∥ γ,O O-d,q,s0 + Cεγ -1 N µc 0 N -µc m ∥∆ 12 Ψ m ∥ γ,O O-d,q,s0 . (7.347)
We shall now estimate ∆ 12 Ψ m . Remark that

∥∆ 12 Ψ m ∥ γ,O O-d,q,s = α∈N d+1 |α|⩽q γ α sup (λ,ω)∈O    (l,k)∈Z d+1 |l|,|k|⩽Nm ⟨l, k⟩ 2(s-|α|) sup j∈Z ∂ α λ,ω ∆ 12 (Ψ m ) j j+k (λ, ω, l) 2    1 2
.

By virtue of (7.273), we get

(Ψ m ) j j0 (λ, ω, l) = -(ϱ m ) j j0 (λ, ω, l)r j j0,m (λ, ω, l) if (l, j) ̸ = (0, j 0 ) 0 if (l, j) = (0, j 0 ),
where

(ϱ m ) j j0 (λ, ω, l) ≜ χ (ω • l + µ m j (λ, ω) -µ m j0 (λ, ω))(γ⟨j -j 0 ⟩) -1 ⟨l⟩ τ2 ω • l + µ m j (λ, ω) -µ m j0 (λ, ω)
• Recall from (7.249), that {ir j j0,m (λ, ω, l)} are the Fourier coefficients of P Nm R m , that is i r j j0,m (λ, ω, l) = ⟨P Nm R m e 0,j0 , e l,j ⟩ L 2 (T d+1 ) . (7.348)

We can write for non-zero coefficients ∆ 12 (Ψ m ) j j+k (λ, ω, l) = ∆ 12 (ϱ m ) j j+k (λ, ω, l) r j j+k,m r1 (λ, ω, l) + (ϱ m ) j j+k r2 (λ, ω, l)∆ 12 r j j+k,m (λ, ω, l).

Hence, using Lemma A.1-(iv)

∀q ′ ∈ 0, q , ∥∆ 12 (Ψ m ) j j+k ( * , l)∥ γ,O q ′ ≲ ∥∆ 12 (ϱ m ) j j+k ( * , l)∥ γ,O q ′ max i∈{1,2} ∥ r j j+k,m ri ( * , l)∥ γ,O q ′ + max i∈{1,2} ∥ (ϱ m ) j j+k ri ( * , l)∥ γ,O q ′ ∥∆ 12 r j j+k,m ( * , l)∥ γ,O q ′ . (7.349)
From (7.348), we deduce i∆ 12 r j j0,m (λ, ω, l) = ⟨P Nm ∆ 12 R m e 0,j0 , e l,j ⟩ L 2 (T d+1 ) .

One can write (ϱ m ) j j0 (λ, ω, l) = b l,j,j0,m χ b l,j,j0,m B l,j,j0,m (λ, ω) ,

Part I with b l,j,j0,m ≜ (γ⟨j -j 0 ⟩) -1 ⟨l⟩ τ2 , B l,j,j0,m (λ, ω) ≜ ω • l + µ m j (λ, ω) -µ m j0 (λ, ω), χ(x) = χ(x) x •
Notice that from (7.288), one obtains

∀q ′ ∈ 0, q , ∥B l,j,j0,m ∥ γ,O q ′ ≲ ⟨l, j -j 0 ⟩. (7.350)
In a similar way to (7.257), one gets from (7.288)

∀q ′ ∈ 0, q , ∥(ϱ m ) j j0 ( * , l)∥ γ,O q ′ ≲ γ -(q ′ +1) ⟨l, j -j 0 ⟩ τ2q ′ +τ2+q ′ . (7.351)
Using Taylor formula in a similar way to (7.100), we find (to simplify the notation we remove the dependence in (λ, ω))

∆ 12 (ϱ m ) j j0 (l) = b 2 l,j,j0,m (∆ 12 B l,j,j0,m ) ˆ1 0 χ ′ b l,j,j0,m (1 -τ )(B l,j,0,m ) r1 + τ (B l,j,0,m ) r2 dτ.
We shall estimate ∆ 12 B l,j,j0,m . For that purpose, we use (7.270) to write

µ m j = µ 0 j + m-1 n=0
⟨P Nn R n e 0,j , e 0,j ⟩ L 2 (T d+1 ) .

We recall from Proposition 7.4 that

µ 0 j (λ, ω, i 0 ) = Ω j (λ) + jr 1 (λ, ω, i 0 ), r 1 (λ, ω, i 0 ) = c i0 (λ, ω) -V 0 (λ). Therefore ∆ 12 µ m j = ∆ 12 µ 0 j + m-1 n=0
⟨∆ 12 P Nn R n e 0,j , e 0,j ⟩ L 2 (T d+1 )

and

∆ 12 B l,j,j0,m = ∆ 12 µ m j -µ m j0 = (j -j 0 )∆ 12 c i + m-1 n=0 ⟨∆ 12 P Nn R n e 0,j , e 0,j ⟩ L 2 (T d+1 ) - m-1 n=0 ⟨∆ 12 P Nn R n e 0,j0 , e 0,j0 ⟩ L 2 (T d+1 ) .
Hence, using (7.21), one gets

∀q ′ ∈ 0, q , ∥∆ 12 B l,j,j0,m ∥ γ,O q ′ ≲ ε|j -j 0 |∥∆ 12 i∥ γ,O q ′ ,s h +2 + m-1 n=0 ∥P Nn ∆ 12 R n ∥ γ,O O-d,q ′ ,s0 . (7.352)
Then, one obtains from Lemma A.1-(vi), (7.350) and (7.352)

∀q ′ ∈ 0, q , ∥∆ 12 (ϱ m ) j j0 ( * , l)∥ γ,O q ′ ≲ εγ -2-q ′ ⟨l, j -j 0 ⟩ τ2q ′ +2τ2+q ′ +1 ∥∆ 12 i∥ γ,O q ′ ,s h +2 (7.353) + γ -2-q ′ ⟨l, j -j 0 ⟩ τ2q ′ +2τ2+q ′ m-1 n=0 ∥P Nn ∆ 12 R n ∥ γ,O O-d,q ′ ,s0 .
Gathering (7.349), (7.351) and (7.353) gives for all q ′ ∈ 0, q ,

∥∆ 12 (Ψ m ) j j+k ( * , l)∥ γ,O q ′ ≲ εγ -2-q ′ ⟨l, k⟩ τ2q ′ +2τ2+q ′ +1 ∥∆ 12 i∥ γ,O q ′ ,s h +2 max i∈{1,2} ∥ r j j+k,m ri ( * , l)∥ γ,O q ′ + γ -2-q ′ ⟨l, k⟩ τ2q ′ +2τ2+q ′ max i∈{1,2} ∥ r j j+k,m ri ( * , l)∥ γ,O q ′ m-1 n=0 ∥P Nn ∆ 12 R n ∥ γ,O O-d,q ′ ,s0 + γ -1-q ′ ⟨l, k⟩ τ2q ′ +τ2+q ′ ∥∆ 12 r j j+k,m ( * , l)∥ γ,O q ′ .
We deduce that for all s ∈ [s 0 , S],

∥∆ 12 Ψ m ∥ γ,O O-d,q,s ≲ εγ -2-q ∥∆ 12 i∥ γ,O q,s h +2 ∥P Nm R m ∥ γ,O O-d,q,s+τ2 q+2τ2+1 + γ -2-q ∥P Nm R m ∥ γ,O O-d,q,s+τ2 q+2τ2 m-1 n=0 ∥P Nn ∆ 12 R n ∥ γ,O O-d,q,s0 + γ -1-q ∥P Nm ∆ 12 R m ∥ γ,O O-d,q,s+τ2q+τ2 . (7.354)
We set

δ m (s) = γ -1 ∥∆ 12 R m ∥ γ,O O-d,q,s and κ m (s) ≜ m-1 n=0 δ n (s). (7.355)
Then, using (7.354), (7.275) and ( 7.3), we get

∥∆ 12 Ψ m ∥ γ,O O-d,q,s0 ≲ εγ -1-q N τ2 m ∥∆ 12 i∥ γ,O q,s h +2 δ m (s l ) + γ -q N τ2 m δ m (s l )κ m (s 0 ) + γ -q N τ2q+τ2 m δ m (s 0 ) (7.356)
and

∥∆ 12 Ψ m ∥ γ,O O-d,q,sc ≲ εγ -1-q N τ2q+2τ2+1 m ∥∆ 12 i∥ γ,O q,s h +2 δ m (s c ) + γ -q N τ2q+2τ2 m δ m (s c )κ m (s 0 ) + γ -q N τ2q+τ2 m δ m (s c ). (7.357)
According to (7.322), one has

δ m (s l ) ≲ εγ -2 N µc 0 N -µc m and sup m∈N δ m (s c ) ≲ εγ -2 ≲ 1. (7.358)
Putting together (7.358) and (7.356) and using (7.236) yields

∥∆ 12 Ψ m ∥ γ,O O-d,q,s0 ≲ εγ -1 N τ2-µc m ∥∆ 12 i∥ γ,O q,s h +2 + N τ2-µc m κ m (s 0 ) + γ -q N τ2q+τ2 m δ m (s 0 ). (7.359)
In a similar way, on gets by (7.358), (7.357) and (7.236) 

∥∆ 12 Ψ m ∥ γ,O O-d,q,sc ≲ εγ -1 N τ2q+2τ2+1 m ∥∆ 12 i∥ γ,O q,s h +2 + N τ2q+2τ2 m κ m (s 0 ) + γ -q N τ2q+τ2 m δ m (s c ). ( 7 
δ m+1 (s 0 ) ⩽ N s0-sc m δ m (s c ) + CN τ2q+τ2-µc m δ m (s 0 ) + CN τ2-2µc m κ m (s 0 ) + Cεγ -1 N τ2-2µc m ∥∆ 12 i∥ γ,O q,s h +2 . (7.361) Part I
Therefore, inserting (7.359), (7.360) into (7.346) and using (7.236) implies

δ m+1 (s c ) ⩽ 1 + CN τ2q+τ2-µc m + CN s0-sc+τ2q+τ2 m δ m (s c ) + Cεγ -2-q N τ2q+τ2 m δ m (s 0 ) + CN τ2q+τ2-µc m κ m (s 0 ) + Cεγ -1 N τ2q+2τ2+1-µc m ∥∆ 12 i∥ γ,O q,s h +2 . (7.362)
Next, we intend to prove by induction in m ∈ N that

∀ k ⩽ m, δ k (s 0 ) ⩽ N µc 0 N -µc k ν(s c ) and δ k (s c ) ⩽ 2 -1 k+1 ν(s c ), (7.363) with ν(s) ≜ δ 0 (s) + εγ -1 ∥∆ 12 i∥ γ,O q,s h +2 .
The estimate (7.363) is obvious for m = 0 by Sobolev embeddings. Now let us assume that the preceding property holds true at the order m and let us check it at the order m + 1. Thus by applying (7.355) and Lemma A.5, we get

sup m∈N κ m (s 0 ) ⩽ Cν(s c ).
Putting together this estimate with the induction assumption, (7.361), (7.362), (7.329) and (7.236) yields

δ m+1 (s 0 ) ⩽ 2N s0-sc m + CN µc 0 N τ2q+τ2-2µc m ν(s c )
and

δ m+1 (s c ) ⩽ 1 + CN τ2q+τ2-µc m + CN s0-sc+τ2q+τ2 m 2 - 1 m + 1 ν(s c ) + C N τ2q+τ2-µc m + N τ2q+2τ2+1-µc m ν(s c ).
Since (7.329) implies in particular µ c ⩾ 2τ 2 q + 2τ 2 + 1 and s c ⩾ 3 2 µ c + s 0 + τ 2 q + τ 2 + 1, then proceeding similarly to the proof of (7.276), we conclude that

δ m+1 (s 0 ) ⩽ N µc 0 N -µc m+1 ν(s c ) and δ m+1 (s c ) ⩽ 2 -1 m+2 ν(s c ),
which achieves the induction. The next target is to estimate ∆ 12 r ∞ j . Then similarly to (7.286) we obtain through a duality argument, Lemma A.6, (7.363) and Lemma A.5

∥∆ 12 r ∞ j ∥ γ,O q ⩽ ∞ m=0 ⟨P Nm ∆ 12 R m e 0,j , e 0,j ⟩ L 2 (T d+1 ) γ,O q ≲ ∞ m=0 ∆ 12 R m γ,O O-d,q,s0 ≲ γν(s c ) ∞ m=0 N µc 0 N -µc m ⩽ Cγ ν(s c ).
From the particular value of p in (7.168), we infer

s c = s h + 4τ 2 q + 4τ 2 = s h + p. (7.364)
Then, applying (7.173) we obtain

∥∆ 12 r ∞ j ∥ γ,O q ⩽ Cγ ν(s h + 4τ 2 q + 4τ 2 ) ⩽ Cεγ -1 ∥∆ 12 i∥ γ,O q,s h +σ4 .
Finally, combining the previous estimate with (7.313) and ( 7.170) we deduce

∀j ∈ S c 0 , ∥∆ 12 µ ∞ j ∥ γ,O q ≲ ∥∆ 12 µ 0 j ∥ γ,O q + ∥∆ 12 r ∞ j ∥ γ,O q ≲ εγ -1 |j|∥∆ 12 i∥ γ,O q,s h +σ4 .
The achieves the proof of Proposition 7.5.

Approximate inverse in the normal directions

In this section we plan to construct an approximate right inverse in the normal directions for the linearized operator L ω defined in (6.102) when the parameters are restricted in a Cantor like set. Our main result is the following.

Proposition 7.6. Let (γ, q, d, τ 1 , s 0 , µ 2 , s h , S) satisfying (A.2), (A.1) and (7.235). There exists σ ≜

σ(τ 1 , τ 2 , q, d) ⩾ σ 4 such that if εγ -2-q N µ2 0 ⩽ ε 0 and ∥I 0 ∥ γ,O q,s h +σ ⩽ 1, (7.365)
then the following assertions hold true.

(i) Consider the operator L ∞ defined in Proposition 7.5, then there exists a family of linear operators

T n n∈N defined in O satisfying the estimate ∀s ∈ [s 0 , S], sup n∈N ∥T n ρ∥ γ,O q,s ≲ γ -1 ∥ρ∥ γ,O q,s+τ1q+τ1
and such that for any n ∈ N, in the Cantor set

Λ γ,τ1 ∞,n (i 0 ) = (l,j)∈Z d ×S c 0 |l|⩽Nn (λ, ω) ∈ O s.t. ω • l + µ ∞ j (λ, ω, i 0 ) > γ⟨j⟩ ⟨l⟩ τ 1 ,
we have

L ∞ T n = Id + E 3 n , with ∀s 0 ⩽ s ⩽ s ⩽ S, ∥E 3 n ρ∥ γ,O q,s ≲ N s-s n γ -1 ∥ρ∥ γ,O q,s+1+τ1q+τ1 .
(ii) There exists a family of linear operators T ω,n n∈N satisfying

∀ s ∈ [s 0 , S], sup n∈N ∥T ω,n ρ∥ γ,O q,s ≲ γ -1 ∥ρ∥ γ,O q,s+σ + ∥I 0 ∥ γ,O q,s+σ ∥ρ∥ γ,O
q,s0+σ (7.366) and such that in the Cantor set

G n (γ, τ 1 , τ 2 , i 0 ) ≜ O γ,τ1 ∞,n (i 0 ) ∩ O γ,τ1,τ2 ∞,n (i 0 ) ∩ Λ γ,τ1 ∞,n (i 0 ),
we have

L ω T ω,n = Id + E n ,
where E n satisfies the following estimate

∀ s ∈ [s 0 , S], ∥E n ρ∥ γ,O q,s0 ≲ N s0-s n γ -1 ∥ρ∥ γ,O q,s+σ + εγ -2 ∥I 0 ∥ γ,O q,s+σ ∥ρ∥ γ,O q,s0+σ + εγ -3 N µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+σ .
Recall that L ω , O γ,τ1 ∞,n (i 0 ) and O γ,τ1,τ2 ∞,n (i 0 ) are given in Propositions 7.1, 7.2 and 7.5, respectively.

(iii) In the Cantor set G n (γ, τ 1 , τ 2 , i 0 ), we have the following splitting

L ω = L ω,n + R n with L ω,n T ω,n = Id and R n = E n L ω,n ,
where the operators L ω,n and R n are defined in O and satisfy the following estimates

∀s ∈ [s 0 , S], sup n∈N ∥ L ω,n ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s+1 + εγ -2 ∥I 0 ∥ γ,O q,s+σ ∥ρ∥ γ,O q,s0+1 , ∀s ∈ [s 0 , S], ∥ R n ρ∥ γ,O q,s0 ≲ N s0-s n γ -1 ∥ρ∥ γ,O q,s+σ + εγ -2 ∥I 0 ∥ γ,O q,s+σ ∥ρ∥ γ,O q,s0+σ + εγ -3 N µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+σ .
Proof. (i) From Proposition 7.5 we recall that

L ∞ = ω • ∂ φ Π ⊥ S0 + D ∞ .
Then we may split this operator as follows, using the projectors defined in (A.5)

L ∞ = Π Nn ω • ∂ φ Π Nn Π ⊥ S0 + D ∞ -Π ⊥ Nn ω • ∂ φ Π ⊥ Nn Π ⊥ S0 ≜ L n -R n , (7.367) with R n ≜ Π ⊥ Nn ω • ∂ φ Π ⊥ Nn Π ⊥ S0 .
From this definition and the structure of D ∞ in Proposition 7.5 we deduce that

∀(l, j) ∈ Z d × S c 0 , e -l,-j L n e l,j = i ω • l + µ ∞ j if |l| ⩽ N n i µ ∞ j if |l| > N n .
Define the diagonal operator T n by

T n ρ(λ, ω, φ, θ) ≜ -i (l,j)∈Z d ×S c 0 |l|⩽Nn χ((ω•l+µ ∞ j (λ,ω,i0))γ -1 ⟨l⟩ τ 1 ) ω•l+µ ∞ j (λ,ω,i0) ρ l,j (λ, ω) e i(l•φ+jθ) -i (l,j)∈Z d ×S c 0 |l|>Nn ρ l,j (λ,ω) µ ∞ j (λ,ω,i0) e i(l•φ+jθ) ,
where χ is the cut-off function defined in (6.92) and (ρ l,j (λ, ω)) l,j are the Fourier coefficients of ρ. We recall from Proposition 7.5 that

µ ∞ j (λ, ω, i 0 ) = Ω j (λ) + jr 1 (λ, ω, i 0 ) + r ∞ j (λ, ω, i 0 ) with r 1 (λ, ω, i 0 ) = c i0 (λ, ω) -V 0 (λ),
with the estimates

∀j ∈ S c 0 , ∥µ ∞ j ∥ γ,O q ≲ |j|,
where we use in part the estimate (7.265), (7.239) and (7.170). According to Lemma 5.3-(iii), (7.265), (7.239) and the smallness condition (7.236) we infer

|j| ≲ ∥µ ∞ j ∥ γ,O 0 ⩽ ∥µ ∞ j ∥ γ,O q .
Implementing the same arguments as for (7.258) one gets

∀s ⩾ s 0 , ∥T n ρ∥ γ,O q,s ≲ γ -1 ∥ρ∥ γ,O q,s+τ1q+τ1 . (7.368)
Moreover, by construction

L n T n = Id in Λ γ,τ1 ∞,n (i 0 ) (7.369) since χ(•) = 1 in this set. It follows from (7.367) that ∀ (λ, ω) ∈ Λ γ,τ1 ∞,n (i 0 ), L ∞ T n = Id -R n T n ≜ Id + E 3 n . (7.370) Notice that by Lemma A.1-(ii), ∀ s 0 ⩽ s ⩽ s, ∥R n ρ∥ γ,O q,s ≲ N s-s n ∥ρ∥ γ,O q,s+1 .
Combining this estimate with (7.368) yields

∀ s 0 ⩽ s ⩽ s, ∥E 3 n ρ∥ γ,O q,s ≲ N s-s n ∥T n ρ∥ γ,O q,s+1
≲ N s-s n γ -1 ∥ρ∥ γ,O q,s+1+τ1q+τ1 . (7.371)

(ii) Let us define T ω,n ≜ B ⊥ Φ ∞ T n Φ -1 ∞ B -1 ⊥ , (7.372)
where the operators B ⊥ and Φ ∞ are defined in Propositions 7.4 and 7.5 respectively. Notice that T ω,n is defined in the whole range of parameters O. Since the condition (7.365) is satisfied, then, both Propositions 7.2 and 7.5 apply and from (7.150) we obtain

∀s ∈ [s 0 , S], ∥T ω,n ρ∥ γ,O q,s ≲ ∥Φ ∞ T n Φ -1 ∞ B -1 ⊥ ρ∥ γ,O q,s + ∥I 0 ∥ γ,O q,s+σ ∥Φ ∞ T n Φ -1 ∞ B -1 ⊥ ρ∥ γ,O q,s0 .
By using (7.237) and ( 7.365), one gets

∀s ∈ [s 0 , S], ∥Φ ∞ T n Φ -1 ∞ B -1 ⊥ ρ∥ γ,O q,s ≲ ∥T n Φ -1 ∞ B -1 ⊥ ρ∥ γ,O q,s + ∥I 0 ∥ γ,O q,s+σ ∥T n Φ -1 ∞ B -1 ⊥ ρ∥ γ,O q,s0 .
Thus the point (i) of the current proposition implies

∀s ⩾ s 0 , ∥T n Φ -1 ∞ B -1 ⊥ ρ∥ γ,O q,s ≲ γ -1 ∥Φ -1 ∞ B -1 ⊥ ρ∥ γ,O q,s+τ1q+τ1 .
Applying (7.237) and (7.150) with (7.365) yields

∀s ∈ [s 0 , S], ∥Φ -1 ∞ B -1 ⊥ ρ∥ γ,O q,s ≲ ∥B -1 ⊥ ρ∥ γ,O q,s + ∥I 0 ∥ γ,O q,s+σ ∥B -1 ⊥ ρ∥ γ,O q,s0
≲ ∥ρ∥ γ,O q,s + ∥I 0 ∥ γ,O q,s+σ ∥ρ∥ γ,O q,s0 .

Part I

Putting together the preceding three estimates gives (7.366). Now combining Propositions 7.4 and 7.5, we find that in the Cantor set O γ,τ1 ∞,n (i 0 ) ∩ O γ,τ1,τ2 ∞,n (i 0 ) the following decomposition holds

Φ -1 ∞ B -1 ⊥ L ω B ⊥ Φ ∞ = Φ -1 ∞ L 0 Φ ∞ + Φ -1 ∞ E 1 n Φ ∞ = L ∞ + E 2 n + Φ -1 ∞ E 1 n Φ ∞ . It follows that in the Cantor set O γ,τ1 ∞,n (i 0 ) ∩ O γ,τ2 ∞,n (i 0 ) ∩ Λ γ,τ1
∞,n (i 0 ) one has by virtue of the identity (7.370)

Φ -1 ∞ B -1 ⊥ L ω B ⊥ Φ ∞ T n = Id + E 3 n + E 2 n T n + Φ -1 ∞ E 1 n Φ ∞ T n ,
which gives, using (7.372), the following identity in G n (γ, τ 1 , τ 2 , i 0 )

L ω T ω,n = Id + B ⊥ Φ ∞ E 3 n + E 2 n T n + Φ -1 ∞ E 1 n Φ ∞ T n Φ -1 ∞ B -1 ⊥ ≜ Id + B ⊥ Φ ∞ E 4 n Φ -1 ∞ B -1 ⊥ ≜ Id + E n . (7.373)
The estimate of the first term of E 4 n is given in (7.371). For the second term of E 4 n we use (7.240) and (7.368) leading to

∥E 2 n T n ρ∥ γ,O q,s0 ≲ εγ -2 N µ2 0 N -µ2 n+1 ∥T n ρ∥ γ,O q,s0+1 ≲ εγ -3 N µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+1+τ1q+τ1 . (7.374)
For the estimate of Φ -1 ∞ E 1 n Φ ∞ T n , we combine (7.237), (7.171), (7.368) and ( 7.365) to get

∥Φ -1 ∞ E 1 n Φ ∞ T n ρ∥ γ,O q,s0 ≲ ∥E 1 n Φ ∞ T n ρ∥ γ,O q,s0 ≲ εN µ2 0 N -µ2 n+1 ∥Φ ∞ T n ρ∥ γ,O q,s0+2 ≲ εγ -1 N µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+2+τ1q+τ1 . (7.375)
Putting together (7.371) and (7.374) and ( 7.375) we find

∥E 4 n ρ∥ γ,O q,s0 ≲ N s0-s n γ -1 ∥ρ∥ γ,O s+2+τ1q+τ1 + εγ -3 N µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+2+τ1q+τ1 . (7.376)
Set Ψ = B ⊥ Φ ∞ then from (7.237), (7.150) and ( 7.365) we deduce that

∀s ∈ [s 0 , S], ∥Ψ ±1 ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s + εγ -2 ∥I 0 ∥ γ,O q,s+σ ∥ρ∥ γ,O q,s0 . (7.377)
Straightforward computations based on (7.376), (7.377) and (7.365) yields

∥ΨE 4 n Ψ -1 ρ∥ γ,O q,s0 ≲ ∥E 4 n Ψ -1 ρ∥ γ,O q,s0 ≲ N s0-s n γ -1 ∥Ψ -1 ρ∥ γ,O s+2+τ1q+τ1 + εγ -3 N µ2 0 N -µ2 n+1 ∥Ψ -1 ρ∥ γ,O q,s0+2+τ1q+τ1 ≲ N s0-s n γ -1 ∥ρ∥ γ,O q,s+2+τ1q+τ1 + εγ -2 ∥I 0 ∥ γ,O q,s+σ ∥ρ∥ γ,O q,s0 + εγ -3 N µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+2+τ1q+τ1 .
Consequently, taking σ large enough, we get

∥E n ρ∥ γ,O q,s0 ≲ N s0-s n γ -1 ∥ρ∥ γ,O q,s+σ + εγ -2 ∥I 0 ∥ γ,O q,s+σ ∥ρ∥ γ,O q,s0+σ + εγ -3 N µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+σ .
(iii) According to (7.373), one can write in the Cantor set G n (γ, τ 1 , τ 2 , i 0 )

L ω = T -1 ω,n + E n T -1 ω,n . (7.378)
Gathering (7.372) and ( 7.369), one obtains in the Cantor set

G n (γ, τ 1 , τ 2 , i 0 ) L ω,n ≜ T -1 ω,n = B ⊥ Φ ∞ L n Φ -1 ∞ B -1 ⊥ = ΨL n Ψ -1 .
Hence, (7.378) can be rewritten

L ω = L ω,n + R n with R n ≜ E n L ω,n . (7.379)
Putting together (7.367), (7.377) and ( 7.365), we obtain

∀s ∈ [s 0 , S], ∥ L ω,n ρ∥ γ,O q,s = ∥ΨL n Ψ -1 ρ∥ γ,O q,s ≲ ∥L n Ψ -1 ρ∥ γ,O q,s + εγ -2 ∥I 0 ∥ γ,O q,s+σ ∥L n Ψ -1 ρ∥ γ,O q,s0 ≲ ∥Ψ -1 ρ∥ γ,O q,s+1 + εγ -2 ∥I 0 ∥ γ,O q,s+σ ∥Ψ -1 ρ∥ γ,O q,s0+1 ≲ ∥ρ∥ γ,O q,s+1 + εγ -2 ∥I 0 ∥ γ,O q,s+σ ∥ρ∥ γ,O q,s0+1 . (7.380)
Hence combining this estimate with (7.378) yields

∀s ∈ [s 0 , S], ∥ R n ρ∥ γ,O q,s0 ≲ N s0-s n γ -1 ∥ρ∥ γ,O q,s+σ + εγ -2 ∥I 0 ∥ γ,O q,s+σ ∥ρ∥ γ,O q,s0+σ + εγ -3 N µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+σ .
This achieves the proof of the third point and the proof of the proposition is now complete.

Proof of the main result

This section is devoted to the proof of Theorem 3.1. For this aim we intend to implement Nash-Moser scheme in order to construct zeros for the nonlinear functional F i, α, λ, ω, ε defined in (6.21). We shall be able to capture the solutions when the parameters (λ, ω) belong to a suitable final Cantor set G γ ∞ obtained as the intersection of all the Cantor sets required during the steps of the scheme to invert the linearized operator.

More precisely, we get a relatively smooth function

(λ, ω) ∈ O → U ∞ (λ, ω) = i ∞ (λ, ω), α ∞ (λ, ω) such that ∀(λ, ω) ∈ G γ ∞ , F U ∞ (λ, ω), λ, ω, ε = 0.
To generate solutions to the initial Hamiltonian equation ( 6.2) we should adjust the parameters so that

α ∞ (λ, ω) = -ω Eq (λ)
, where ω Eq corresponds to the equilibrium frequency vector defined in (5.32). As a consequence, nontrivial solutions are constructed when the scalar parameter λ is selected in the final Cantor set

C ε ∞ = λ ∈ (λ 0 , λ 1 ) s.t. (λ, ω(λ, ε)) ∈ G γ ∞ with α ∞ (λ, ω(λ, ε)) = -ω Eq (λ) .
The measure of this set will be discussed in Section 8.2.

Nash-Moser scheme

In this section we implement the Nash-Moser scheme, which is a modified Newton method implemented with a suitable Banach scales and through a frequency cut-off. Basically, it consists in a recursive

Part I construction of approximate solutions to the equation F i, α, λ, ω, ε = 0 where the functional F is defined in (6.21). At each step of this scheme, we need to construct an approximate inverse of the linearized operator at a state near the equilibrium by applying the reduction procedure developed in Section 7. This enables to get the result of Theorem 6.1 with the suitable tame estimates associated to the final loss of regularity σ that could be arranged to be large enough. We point out that σ depends only on the shape of the Cantor set through the parameters τ 1 , τ 2 , d and on the non degeneracy of the equilibrium frequency through q = 1 + q 0 , where q 0 be defined in Lemma 5.5. However, σ is independent of the regularity of the solutions that we want to construct. Now, we shall fix the following parameters needed to implement Nash-Moser scheme and related to the geometry of the Cantor sets encoded in τ 1 , τ 2 , d fixed by (A.1) and to the parameter q = q 0 + 1,

                         a = τ 2 + 2 µ 1 = 3q(τ 2 + 2) + 6σ + 6 a 1 = 6q(τ 2 + 2) + 12σ + 15 a 2 = 3q(τ 2 + 2) + 6σ + 9 µ 2 = 2q(τ 2 + 2) + 5σ + 7 s h = s 0 + 4q(τ 2 + 2) + 9σ + 11 s m = 2s h -s 0 . (8.1)
The numbers a 1 and a 2 will describe the rate of convergence for the regularity s 0 and s 0 + σ, respectively.

They appear in the statements (P1) n and (P2) n in the Proposition 8.1. The parameter µ 1 controls the norm inflation at the high regularity index s m and appears in (P3) n . As for the parameter a, it is linked to the thickness of a suitable enlargement of the intermediate Cantor sets, needed to construct classical extensions of our approximate solutions. Finally, the numbers µ 2 and s h correspond to those already encountered before in the reduction of the linearized operator and are now fixed to their minimal required values. In particular, we recall that µ 2 corresponds to the rate of convergence of the error terms emerging in the almost reducibility of the linearized operator, for instance we refer to Theorem 6.1. We should emphasize that, by taking σ large enough, the choice for µ 2 and s h done in (8.1) enables to cover all the required assumptions in (7.15) and (7.235). Another assumption that we need to fix is related to γ, N 0 and ε

0 < a < 1 µ2+q+2 , γ ≜ ε a , N 0 ≜ γ -1 . (8.2)
This constraint is required for the measuring the final Cantor set and to check that it is massive, for more details we refer to Proposition 8.2.

We shall start with defining the finite dimensional subspaces where the approximate solutions are expected to live with controlled estimates. Consider the space,

E n ≜ I = (Θ, I, z) s.t. Θ = Π n Θ, I = Π n I and z = Π n z ,
where Π n is the projector defined by

f (φ, θ) = (l,j)∈Z d ×Z f l,j e i(l•φ+jθ) ⇒ Π n f (φ, θ) = ⟨l,j⟩⩽Nn f l,j e i(l•φ+jθ) ,
where the sequence (N n ) is defined in (6.94). We observe that the same definition applies without ambiguity when the functions depend only on φ such as the action and the angles unknowns. The main result of this section is to prove the following induction statement.

Proposition 8.1 (Nash-Moser). Let (τ 1 , τ 2 , q, d, s 0 ) satisfy (A.2) and (A.1). Consider the parameters fixed by (8.1) and (8.2). There exist C * > 0 and ε 0 > 0 such that for any ε ∈ [0, ε 0 ] we get for all n ∈ N the following properties, (P1) n There exists a q-times differentiable function

W n : O → E n-1 × R d × R d+1 (λ, ω) → I n , α n -ω, 0 satisfying W 0 = 0 and for n ⩾ 1, ∥W n ∥ γ,O q,s0+σ ⩽ C * εγ -1 N qa 0 .
By setting

U 0 = (φ, 0, 0), ω, (λ, ω) and for n ∈ N * , U n = U 0 + W n and H n = U n -U n-1 , then ∀s ∈ [s 0 , S], ∥H 1 ∥ γ,O q,s ⩽ 1 2 C * εγ -1 N qa 0 and ∀ 2 ⩽ k ⩽ n, ∥H k ∥ γ,O q,s0+σ ⩽ C * εγ -1 N -a2 k-1 . (P2) n Define i n = (φ, 0, 0) + I n , γ n = γ(1 + 2 -n ) ∈ [γ, 2γ].
The embedded torus i n satisfies the reversibility condition

Si n (φ) = i n (-φ),
where the involution S is defined in (6.13). Introduce

A γ 0 = O and A γ n+1 = A γ n ∩ G n (γ n+1 , τ 1 , τ 2 , i n ),
where G n (γ n+1 , τ 1 , τ 2 , i n ) is described in Proposition 7. [START_REF] Baldi | Periodic solutions of forced Kirchhoff equations[END_REF] and consider the open sets

∀r > 0, O r n ≜ (λ, ω) ∈ O s.t. dist (λ, ω), A 2γ n < rN -a n ,
where dist(x, A) = inf y∈A ∥x -y∥. Then we have the following estimate

∥F(U n )∥ γ,O 2γ n q,s0 ⩽ C * εN -a1 n-1 . (P3) n ∥W n ∥ γ,O q,sm+σ ⩽ C * εγ -1 N µ1 n-1 . Remark 8.1. Let O be an open subset of O. Since ∀n ∈ N, γ n ∈ [γ, 2γ], then the norms ∥ • ∥ γ,O q,s and ∥ • ∥ γn,O
q,s . are equivalent uniformly in n.

Proof. • Initialization : By construction, U 0 = (φ, 0, 0), ω, (λ, ω) . Notice that the flat torus i flat (φ) = (φ, 0, 0) satisfies obviously the reversibility condition. By (6.21), we have

F(U 0 ) = ε    -∂ I P ε ((φ, 0, 0)) ∂ ϑ P ε ((φ, 0, 0)) -∂ θ ∇ z P ε ((φ, 0, 0))    .
Using Lemma 6.3, we get

∀s ⩾ 0, ∥F(U 0 )∥ γ,O q,s ⩽ C * ε, (8.3)
up to taking C * large enough. The properties (P1) 0 , (P2) 0 and (P3) 0 then follow immediately since N -1 = 1 and O 2γ 0 = O and by setting W 0 = 0.

• Induction step : Given n ∈ N, assume that (P1) k , (P2) k and (P3) k are true for all k ∈ 0, n and let us check them at the next order n + 1. Introduce the linearized operator of F at the state (i n , α n )

L n ≜ L n (λ, ω) ≜ d i,α F(i n λ, ω), α n (λ, ω), (λ, ω) .
In order to construct the next approximation U n+1 , we need an approximate right inverse for L n . Its construction was performed along the preceding sections and we refer to Theorem 6.1 for a precise statement. To apply this result and get some bounds on U n+1 we need to establish first some intermediate results connected to the smallness condition and to some Cantor set inclusions.

▶ Smallness/boundedness properties. First of all, remark that the parameters conditions (7.3) are automatically satisfied by (8.1). Then, provided that the smallness assumption (7.365) is satisfied, Proposition 7.6 applies. It remains to check that (7.365) is satisfied. According to the first condition in (8.2) and choosing ε small enough, we can ensure

εγ -2-q N µ2 0 = ε 1-a(µ2+q+2) ⩽ ε 0 (8.4)
for some a priori fixed ε 0 > 0. Therefore the first assumption in (7.365) holds. We now turn to the second assumption. Since from (8.1) s m = 2s h -s 0 , then by interpolation inequality in Lemma A.1, we have

∥H n ∥ γ,O q,s h +σ ≲ ∥H n ∥ γ,O q,s0+σ 1 2 ∥H n ∥ γ,O q,sm+σ 1 2 . (8.5)
Besides, by using (P1) n , we find

∀s ∈ [s 0 , S], ∥H 1 ∥ γ,O q,s ⩽ 1 2 C * εγ -1 N qa 0 and ∥H n ∥ γ,O q,s0+σ ⩽ C * εγ -1 N -a2 n-1 . (8.6) Now (P3) n and (P3) n-1 imply ∥H n ∥ γ,O q,sm+σ = ∥U n -U n-1 ∥ γ,O q,sm+σ = ∥W n -W n-1 ∥ γ,O q,sm+σ ⩽ ∥W n ∥ γ,O q,sm+σ + ∥W n-1 ∥ γ,O q,sm+σ ⩽ 2C * εγ -1 N µ1 n-1 .
Putting together the foregoing estimates into (8.5) gives for n ⩾ 2,

∥H n ∥ γ,O q,s h +σ ⩽ CC * εγ -1 N 1 2 (µ1-a2) n-1 (8.7)
and for n = 1,

∥H 1 ∥ γ,O q,s h +σ ⩽ 1 2 C * εγ -1 N qa 0 . (8.8)
Now from (8.1) we infer

a 2 ⩾ µ 1 + 2. (8.9)
Thus, by (8.2) and Lemma A.5, we get for small ε

∥W n ∥ γ,O q,s h +σ ⩽ ∥H 1 ∥ γ,O q,s h +σ + n k=2 ∥H k ∥ γ,O q,s h +σ ⩽ 1 2 C * εγ -1 N qa 0 + CC * εγ -1 n k=0 N -1 k ⩽ 1 2 C * εγ -1 N qa 0 + CN -1 0 C * εγ -1 ⩽ C * ε 1-a(1+qa) .
One can check from (8.1) and (8.2) that a ⩽ 1 2(1+qa) (8.10) and therefore, by choosing ε small enough and since σ ⩾ σ, we get

∥I n ∥ γ,O q,s h +σ ⩽ ∥W n ∥ γ,O q,s h +σ ⩽ C * ε 1 2 ⩽ 1.
As we have already mentioned, the parameter σ is the final loss of regularity constructed in Theorem 6.1

and depends only on the parameters τ 1 , τ 2 , q and d but it is independent of the state and the regularity.

Hence it can be selected large enough such that s 0 + σ ⩾ s h + σ 4 where s h and σ 4 are respectively defined in (7.15) and Proposition 7.5. Then using (8.6) and Sobolev embeddings, we obtain

∀n ⩾ 2, ∥H n ∥ γ,O q,s h +σ4 ⩽ C * εγ -1 N -a2 n-1 . (8.11)
▶ Set inclusions. From the previous point, Propositions 7.2, 7.5 and 7.6 apply and allow us to perform the reduction of the linearized operator in the normal directions at the current step. Therefore, the sets A γ k for all k ⩽ n + 1 are well-defined. We shall now prove the following inclusions needed later to establish suitable estimates for the extensions.

A 2γ n+1 ⊂ O 4γ n+1 ⊂ A γ n+1 ∩ O 2γ n . (8.12)
Notice that the first inclusion is obvious by construction since O 4γ n+1 is an enlargement of A 2γ n+1 . It remains to prove the last inclusion. We have the inclusion

∀k ∈ 0, n , O 4γ k+1 ⊂ O 2γ k . (8.13)
Indeed, since by construction A 2γ k+1 ⊂ A 2γ k then taking (λ, ω) ∈ O 4γ k+1 we have the following estimates

dist (λ, ω), A 2γ k ⩽ dist (λ, ω), A 2γ k+1 < 4γN -a k+1 = 4γN -a k N -1 2 a 0 < 2γN -a k ,
provided that 2N

-1 2 a 0 < 1, which is true up to taking N 0 large enough, that is in view of (8.2) for ε small enough. We shall now prove by induction in k that

∀k ∈ 0, n + 1 , O 4γ k ⊂ A γ k . (8.

14)

Part I

The case k = 0 is trivial since O 4γ 0 = O = A γ 0 . Let us now assume that (8.14) is true for the index k ∈ 0, n and let us check it at the next order. From (8.13) and (8.14), we obtain

O 4γ k+1 ⊂ O 2γ k ⊂ O 4γ k ⊂ A γ k .
Therefore, we are left to check that

O 4γ k+1 ⊂ G k γ k+1 , τ 1 , τ 2 , i k . Let (λ, ω) ∈ O 4γ k+1 , then by construction, there exists (λ ′ , ω ′ ) ∈ A 2γ k+1 such that dist ((λ, ω), (λ ′ , ω ′ )) < 4γN -a k+1 .
Hence, for all (l, j) ∈ Z d × S c 0 with |l| ⩽ N k , we have by left triangle and Cauchy-Schwarz inequalities together with (λ

′ , ω ′ ) ∈ Λ 2γ k+1 ,τ1 ∞,k (i k ) ω • l + µ ∞ j (λ, ω, i k ) ⩾ ω ′ • l + µ ∞ j (λ ′ , ω ′ , i k ) -|ω -ω ′ ||l| -µ ∞ j (λ, ω, i k ) -µ ∞ j (λ ′ , ω ′ , i k ) > γ k+1 ⟨j⟩ ⟨l⟩ τ 1 -4γN k N -a k+1 -µ ∞ j (λ, ω, i k ) -µ ∞ j (λ ′ , ω ′ , i k ) > γ k+1 ⟨j⟩ ⟨l⟩ τ 1 -4γN 1-a k+1 -µ ∞ j (λ, ω, i k ) -µ ∞ j (λ ′ , ω ′ , i k ) .
Using the Mean Value Theorem and the definition of O 4γ k+1 yields

µ ∞ j (λ, ω, i k ) -µ ∞ j (λ ′ , ω ′ , i k ) ⩽ |(λ, ω) -(λ ′ , ω ′ )|γ -1 ∥µ ∞ j (i k )∥ γ,O q ⩽ 4N -a k+1 ∥µ ∞ j (i k )∥ γ,O q .
On the other hand,

∀j ∈ S c 0 , ∥µ ∞ j (i k )∥ γ,O q ⩽ ∥µ ∞ j (i k ) -Ω j ∥ γ,O q + ∥Ω j ∥ γ,O q .
Using the asymptotic (5.17) and the smoothness of λ → I j (λ)K j (λ) for all j ∈ N * , one has

∥Ω j ∥ γ,O q ⩽ C|j|.
Since (7.236) is satisfied by the previous point, we can apply (7.238) and obtain

∀j ∈ S c 0 , ∥µ ∞ j (i k ) -Ω j ∥ γ,O q ⩽ C|j|. Hence ∀j ∈ S c 0 , ∥µ ∞ j (i k )∥ γ,O q ⩽ C|j|. It follows that µ ∞ j (λ, ω, i k ) -µ ∞ j (λ ′ , ω ′ , i k ) ⩽ C⟨j⟩N -a k+1 ⩽ Cγ⟨j⟩N 1-a k+1 .
Since |l| ⩽ N k ⩽ N k+1 and γ k+1 ⩾ γ, we obtain

ω • l + µ ∞ j (λ, ω, i k ) ⩾ 2γ k+1 ⟨j⟩ ⟨l⟩ τ 1 -Cγ⟨j⟩N 1-a k+1 ⩾ γ k+1 ⟨j⟩ ⟨l⟩ τ 1 2 -CN τ1+1-a k+1 .
From (8.1) and (A.1) we infer

a ⩾ τ 2 + 2 ⩾ τ 1 + 2 (8.15)
and we can take N 0 sufficiently large to ensure

CN τ1+1-a k+1 ⩽ CN -1 0 < 1,
allowing to finally get

ω • l + µ ∞ j (λ, ω, i k ) > γ k+1 ⟨j⟩ ⟨l⟩ τ 1 • This shows that, (λ, ω) ∈ Λ γ k+1 ,τ1 ∞,k (i k ). Let us now check that (λ, ω) ∈ O γ k+1 ,τ1 ∞,k (i k ). For all (l, j) ∈ Z d × S c 0 with |l| ⩽ N k , we have by Cauchy-Schwarz inequality together with (λ ′ , ω ′ ) ∈ O 2γ k+1 ,τ1 ∞,k (i k ) |ω • l + jc i k (λ, ω)| ⩾ |ω ′ • l + jc i k (λ ′ , ω ′ )| -|ω -ω ′ ||l| -|j| |c i k (λ, ω) -c i k (λ ′ , ω ′ )| > 4γ υ k+1 2 υ ⟨j⟩ ⟨l⟩ τ 1 -4γN 1-a k+1 -⟨j⟩ |c i k (λ, ω) -c i k (λ ′ , ω ′ )| .
Using the Mean Value Theorem and the definition of O 4γ k+1 yields

|c i k (λ, ω) -c i k (λ ′ , ω ′ )| ⩽ CN -a k+1 ∥c i k ∥ γ,O q .
Since (7. 16) is satisfied by the previous point, we can apply (7.17) leading to

∥c i k ∥ γ,O q ⩽ ∥c i k -V 0 ∥ γ,O q + ∥V 0 ∥ γ,O q ⩽ C.
Thus

|c i k (λ, ω) -c i k (λ ′ , ω ′ )| ⩽ Cγγ -1 N -a k+1 ⩽ CγN 1-a k+1 .
Therefore, we obtain from the definition of γ k and υ ∈ (0, 1)

|ω • l + jc i k (λ, ω)| > 4γ υ k+1 2 υ ⟨j⟩ ⟨l⟩ τ 1 -Cγ⟨j⟩N 1-a k+1 ⩾ 4γ υ k+1 ⟨j⟩ ⟨l⟩ τ 1 2 υ -CN τ1+1-a k+1
.

By the choice of a made in (8.15), we can ensure, up to taking N 0 sufficiently large,

2 υ -CN τ1+1-a k+1 ⩾ 2 υ -CN -1 0 > 1, so that |ω • l + jc i k (λ, ω)| > 4γ υ k+1 ⟨j⟩ ⟨l⟩ τ 1 • As a consequence, (λ, ω) ∈ O γ k+1 ,τ1 ∞,k (i k ). Let us now check that (λ, ω) ∈ O γ k+1 ,τ1,τ2 ∞,k (i k ). For all (l, j, j 0 ) ∈ Z d × (S c 0 ) 2 with |l| ⩽ N k ,
we have by the triangle and Cauchy-Schwarz inequalities together with

(λ ′ , ω ′ ) ∈ O 2γ k+1 ,τ1,τ2 ∞,k (i k ) ω • l + µ ∞ j (λ, ω, i k ) -µ ∞ j0 (λ, ω, i k ) ⩾ ω ′ • l + µ ∞ j (λ ′ , ω ′ , i k ) -µ ∞ j0 (λ ′ , ω ′ , i k ) -|ω -ω ′ ||l| -µ ∞ j (λ, ω, i k ) -µ ∞ j0 (λ, ω, i k ) + µ ∞ j0 (λ ′ , ω ′ , i k ) -µ ∞ j (λ ′ , ω ′ , i k ) > 4γ k+1 ⟨j-j0⟩ ⟨l⟩ τ 2 -4γN 1-a k+1 -µ ∞ j (λ, ω, i k ) -µ ∞ j0 (λ, ω, i k ) + µ ∞ j0 (λ ′ , ω ′ , i k ) -µ ∞ j (λ ′ , ω ′ , i k ) .
We recall by virtue of Proposition 7.5 that

µ ∞ j (λ, ω, i k ) = µ 0 j (λ, ω, i k ) + r ∞ j (λ, ω, i k ). Part I Thus µ ∞ j (λ, ω, i k ) -µ ∞ j0 (λ, ω, i k ) + µ ∞ j0 (λ ′ , ω ′ , i k ) -µ ∞ j (λ ′ , ω ′ , i k ) ⩽ µ 0 j (λ, ω, i k ) -µ 0 j0 (λ, ω, i k ) + µ 0 j0 (λ ′ , ω ′ , i k ) -µ 0 j (λ ′ , ω ′ , i k ) + r ∞ j (λ, ω, i k ) -r ∞ j (λ ′ , ω ′ , i k ) + r ∞ j0 (λ, ω, i k ) -r ∞ j0 (λ ′ , ω ′ , i k ) .
According to the Mean Value Theorem, (7.255) and the definition of O 4γ k+1 we find

µ 0 j (λ, ω, i k ) -µ 0 j0 (λ, ω, i k ) + µ 0 j0 (λ ′ , ω ′ , i k ) -µ 0 j (λ ′ , ω ′ , i k ) ⩽ γCN 1-a k+1 ⟨j -j 0 ⟩.
Applying once again the Mean Value Theorem, (7.239), (8.4) and the definition of O 4γ n+1 yields

r ∞ j (λ, ω, i k ) -r ∞ j (λ ′ , ω ′ , i k ) ⩽ CγN -a k+1 εγ -2 ⩽ γCN 1-a k+1 ⟨j -j 0 ⟩.
Putting together the foregoing estimates and the facts that |l| ⩽ N k and γ k+1 ⩾ γ we infer

ω • l + µ ∞ j (λ, ω, i k ) -µ ∞ j0 (λ, ω, i k ) ⩾ γ k+1 ⟨j-j0⟩ ⟨l⟩ τ 2 4 -CN τ2+1-a k+1
.

By virtue of (8.15) and taking N 0 sufficiently large we get

CN τ2+1-a n ⩽ CN -1 0 < 1.
This implies

ω • l + µ ∞ j (λ, ω, i k ) -µ ∞ j0 (λ, ω, i k ) > 2γ k+1 ⟨j-j0⟩ ⟨l⟩ τ 2 .
As a consequence, we deduce that (λ, ω) ∈ O γ k+1 ,τ1,τ2 ∞,k (i n ). Finally, (λ, ω) ∈ G k γ k+1 , τ 1 , τ 2 , i k and therefore (λ, ω) ∈ A γ k+1 . This achieves the induction proof of (8.14).

▶ Construction of the next approximation. We are now going to construct the next approximation U n+1 by using a modified Nash-Moser scheme. The assumption (7.365) being satisfied, we can apply Theorem 6.1 with L n and obtain the existence of an operator T n ≜ T n (λ, ω) well-defined in the whole set of parameters O and satisfying the following estimates

∀s ∈ [s 0 , S], ∥T n ρ∥ γ,O q,s ≲ γ -1 ∥ρ∥ γ,O q,s+σ + ∥I n ∥ γ,O q,s+σ ∥ρ∥ γ,O q,s0+σ (8.16)
and

∥T n ρ∥ γ,O q,s0 ≲ γ -1 ∥ρ∥ γ,O q,s0+σ . (8.17)
Moreover, when it is restricted to the Cantor set G n (γ n+1 , τ 1 , τ 2 , i n ), T n is an approximate right inverse of L n with suitable tame estimates needed later, see Theorem 6.1. Next we define,

U n+1 ≜ U n + H n+1 with H n+1 ≜ ( I n+1 , α n+1 , 0) ≜ -Π n T n Π n F(U n ) ∈ E n × R d × R d+1 ,
where Π n is defined by Π n (I, α, 0) = (Π n I, α, 0) and Π ⊥ n (I, α, 0) = (Π n I, 0, 0). (8.18) Notice that the projectors Π n are reversibility preserving due to the symmetry with respect to the Fourier modes. Then, using the reversibility of T n together with (6.22) and Lemma 4.2, one deduces from

Si n (φ) = i n (-φ) that S I n+1 (φ) = I n+1 (-φ). (8.19)
Note that U n is defined in the full set O and so does U n+1 . Nevertheless, we will not be working with this natural extension but rather with a suitable localized version of it around the Cantor set A γ n+1 . Doing so, we shall get a nice decay property allowing the scheme to converge. Now, introduce the quadratic function

Q n = F(U n + H n+1 ) -F(U n ) -L n H n+1 , (8.20)
then simple transformations give

F( U n+1 ) = F(U n ) -L n Π n T n Π n F(U n ) + Q n = F(U n ) -L n T n Π n F(U n ) + L n Π ⊥ n T n Π n F(U n ) + Q n = F(U n ) -Π n L n T n Π n F(U n ) + (L n Π ⊥ n -Π ⊥ n L n )T n Π n F(U n ) + Q n = Π ⊥ n F(U n ) -Π n (L n T n -Id)Π n F(U n ) + (L n Π ⊥ n -Π ⊥ n L n )T n Π n F(U n ) + Q n . (8.21)
In the sequel we shall prove

∥F(U n+1 )∥ γ,O 2γ n+1 q,s0 ⩽ C * εN -a1 n , with U n+1 a suitable extension of U n+1 | O 2γ n+1 . ▶ Estimates of F( U n+1 ). We shall now estimate F( U n+1 ) with the norm ∥ • ∥ γ,O 4γ n+1 q,s0
by using (8.21).

The localization in O 4γ

n+1 is required for the classical extension in the next point, see (8.48). ➢ Estimate of Π ⊥ n F(U n ). We apply Taylor formula combined with (6.21) and Lemma 6.3 together with (8.3) and (P1) n . Therefore, we obtain

∀s ⩾ s 0 , ∥F(U n )∥ γ,O 2γ n q,s ⩽ ∥F(U 0 )∥ γ,O q,s + ∥F(U n ) -F(U 0 )∥ γ,O 2γ n q,s ≲ ε + ∥W n ∥ γ,O q,s+σ . (8.22)
As a consequence, (8.2) and (P1) n imply

γ -1 ∥F(U n )∥ γ,O 2γ n q,s0 ⩽ 1. ( 8 

.23)

From Lemma A.1-(ii) and (8.22), we get

∥Π ⊥ n F(U n )∥ γ,O 2γ n q,s0 ⩽ N s0-sm n ∥F(U n )∥ γ,O γ n q,sm ≲ N σ-sm n ε + ∥W n ∥ 2γ,O q,sm+σ . (8.24)
Now, (P3) n together (6.94) and (8.2) yield

ε + ∥W n ∥ γ,O q,sm+σ ⩽ ε 1 + C * γ -1 N µ1 n-1 ⩽ 2C * εN 2 3 µ1+1 n . (8.25)
By putting together (8.25) and (8.24) and by making appeal to (8.13), we infer for any n ∈ N,

∥Π ⊥ n F(U n )∥ γ,O 4γ n+1 q,s0 ⩽ ∥Π ⊥ n F(U n )∥ γ,O 2γ n q,s0 ≲ C * εN s0+ 2 3 µ1+1-sm n . ( 8 

.26)

Part I

Remark that one also obtains, combining (8.22) and (8.25),

∥F(U n )∥ γ,O 2γ n q,sm+σ ⩽ C * εN σ+ 2 3 µ1+1 n . (8.27) ➢ Estimate of Π n (L n T n -Id)Π n F(U n ).
In view of (8.14), one has

O 4γ n+1 ⊂ A γ n+1 ⊂ G n γ n+1 , τ 1 , τ 2 , i n .
Then, applying Theorem 6.1, we can write

Π n (L n T n -Id)Π n F(U n ) = E 1,n + E 2,n + E 3,n , with E 1,n ≜ Π n E (n) 1 Π n F(U n ), E 2,n ≜ Π n E (n) 2 Π n F(U n ), E 3,n ≜ Π n E (n) 3 Π n F(U n ) where E (n) 1 , E (n) 2 and E (n) 3
satisfy the estimates (6.131), (6.132) and (6.133) respectively. By (8.13), we get

∥Π n (L n T n -Id)Π n F(U n )∥ γ,O 4γ n+1 q,s0 ⩽ ∥E 1,n ∥ γ,O 2γ n q,s0 + ∥E 2,n ∥ γ,O 2γ n q,s0 + ∥E 3,n ∥ γ,O 2γ n q,s0 . (8.28)
We shall first focus on E 1,n . We need the following interpolation-type inequality

∥F(U n )∥ γ,O 2γ n q,s0+σ ⩽ ∥Π n F(U n )∥ γ,O 2γ n q,s0+σ + ∥Π ⊥ n F(U n )∥ γ,O 2γ n q,s0+σ ⩽ N σ n ∥F(U n )∥ γ,O 2γ n q,s0 + N s0-sm n ∥F(U n )∥ γ,O 2γ n q,sm+σ . (8.29)
Combining (6.131), (8.29), (P 1 ) n , (8.4) and (8.27), we obtain .30) We now turn to E 2,n and E 3,n . Applying (6.132) with b = s m -s 0 and using (8.4), (P 2 ) n and (P 3 ) n , we get

∥E 1,n ∥ γ,O 2γ n q,s0 ≲ γ -1 ∥F(U n )∥ γ,O 2γ n q,s0+σ ∥Π n F(U n )∥ γ,O 2γ n q,s0+σ 1 + ∥I n ∥ γ,O q,s0+σ ≲ γ -1 N σ n N σ n ∥F(U n )∥ γ,O 2γ n q,s0 + N s0-sm n ∥F(U n )∥ γ,O 2γ n q,sm+σ ∥F(U n )∥ γ,O 2γ n q,s0 1 + ∥W n ∥ γ,O q,s0+σ ≲ C * ε N 2σ-4 3 a1 n + N s0+2σ+ 2 3 µ1+1-2 3 a1-sm n . ( 8 
∥E 2,n ∥ γ,O 2γ n q,s0 ≲ γ -1 N s0-sm n ∥Π n F(U n )∥ γ,O 2γ n q,sm+σ + ε∥I n ∥ γ,O q,sm+σ ∥Π n F(U n )∥ γ,O 2γ n q,s0+σ ≲ γ -1 N s0-sm n ∥F(U n )∥ γ,O 2γ n q,sm+σ + εN σ n ∥W n ∥ γ,O q,sm+σ ∥F(U n )∥ γ,O 2γ n q,s0 ≲ C * εN s0+σ+ 2 3 µ1+2-sm n + C * εN s0+σ+ 2 3 µ1+2-2 3 a1-sm n ≲ C * εN s0+σ+ 2 3 µ1+2-sm n . (8.31)
Using the same techniques together with (6.133), (6.94), (8.2) and (8.4), we infer

∥E 3,n ∥ γ,O 2γ n q,s0 ≲ N s0-sm n γ -2 ∥Π n F(U n )∥ γ,O 2γ n q,sm+σ + εγ -2 ∥I n ∥ γ,O q,sm+σ ∥Π n F(U n )∥ γ,O 2γ n q,s0+σ + εγ -4 N µ2 0 N -µ2 n ∥Π n F(U n )∥ γ,O 2γ n q,s0+σ ≲ C * ε N s0+σ+ 2 3 µ1+2-sm n + N σ+1-µ2-2 3 a1 n . (8.32)
Putting together (8.28), (8.30), (8.31) and (8.31), we obtain

∥Π n (L n T n -Id)Π n F(U n )∥ γ,O 4γ n+1 q,s0 ⩽ CC * ε N 2σ-4 3 a1 n + N s0+2σ+ 2 3 µ1+1-sm n + N σ+1-µ2-2 3 a1 n . (8.33)
For n = 0, we deduce from (8.3), (8.4) and by slight modifications of the preceding computations

∥Π 0 (L 0 T 0 -Id)Π 0 F(U 0 )∥ γ,O 4γ 1 q,s0 ⩽ ∥E 1,0 ∥ γ,O 2γ 1 q,s0 + ∥E 2,0 ∥ γ,O 2γ 1 q,s0 + ∥E 3,0 ∥ γ,O 2γ 1 q,s0 ≲ ε 2 γ -1 + εγ -1 + εγ -2 N s0-sm 0 + ε 2 γ -4 ≲ εγ -2 .
(8.34)

➢ Estimate of L n Π ⊥ n -Π ⊥ n L n T n Π n F(U n ).
Combining (6.55) and (6.21), we get for H = ( I, α) with

I = ( Θ, I, z), L n H = ω • ∂ φ I -(0, 0, ∂ θ L(λ) z) -εd i X Pε (i n ) I -( α, 0, 0). (8.35)
Using (8.18) and the fact that ω

• ∂ φ and ∂ θ L(λ) are diagonal leading to [Π ⊥ n , ω • ∂ φ ] = [Π ⊥ n , ∂ θ L(λ)] = 0, one has for H = ( I, α), L n Π ⊥ n -Π ⊥ n L n H = -ε[d i X Pε (i n ), Π ⊥ n ] I.
In view of Lemma 6.3-(ii), Lemma A.6, (8.13) and (P1) n we get

L n Π ⊥ n -Π ⊥ n L n H γ,O 4γ n+1 q,s0 ≲ εN s0-sm n ∥ I∥ γ,O 2γ n q,sm+2 + ∥I n ∥ γ,O q,sm+σ ∥ I∥ γ,O 2γ n q,s0+1 .
Consequently,

N com (s 0 ) ≜ L n Π ⊥ n -Π ⊥ n L n T n Π n F(U n ) γ,O 2γ n+1 q,s0 ≲ εN s0-sm n ∥T n Π n F(U n )∥ γ,O γ n q,sm+2 + εN s0-sm n ∥I n ∥ γ,O q,sm+σ ∥T n Π n F(U n )∥ γ,O γ n q,s0+1 .
Hence, gathering (8.16), Lemma A.1, Sobolev embeddings, (8.4), (8.2) and (P1) n yields

N com (s 0 ) ≲ εγ -1 N s0-sm n ∥Π n F(U n )∥ γ,O 2γ n q,sm+σ+2 + ∥I n ∥ γ,O q,sm+σ+1 ∥Π n F(U n )∥ γ,O 2γ n q,s0+σ + εγ -1 N s0-sm n ∥I n ∥ γ,O q,sm+σ ∥Π n F(U n )∥ γ,O 2γ n q,s0+σ+1 + ∥I n ∥ γ,O q,s0+σ+1 ∥Π n F(U n )∥ γ,O 2γ n q,s0+σ ≲ εN s0+2-sm n ∥F(U n )∥ γ,O 2γ n q,sm+σ + ∥W n ∥ γ,O q,sm+σ ∥Π n F(U n )∥ γ,O 2γ n q,s0+σ .
Applying Lemma A.1-(ii), (P2) n and (6.94), we infer

∥Π n F(U n )∥ γ,O 2γ n q,s0+σ ⩽ N σ n ∥F(U n )∥ γ,O 2γ n q,s0 ⩽ C * εN σ n N -a1 n-1 ⩽ C * εN σ-2 3 a1 n . Part I
Added to (8.1), (8.27) and (P3) n , we obtain for n ∈ N,

∥(L n Π ⊥ n -Π ⊥ n L n )T n Π n F(U n )∥ γ,O 4γ n+1 q,s0 ⩽ CC * εN s0+σ+ 2 3 µ1+3-sm n . (8.36)
➢ Estimate of Q n . We apply Taylor formula together with (8.20) leading to

Q n = ˆ1 0 (1 -t)d 2 i,α F(U n + t H n+1 )[ H n+1 , H n+1 ]dt.
Thus, (8.35) and Lemma 6.3-(iii) allow to get 

∥Q n ∥ γ,O 4γ n+1 q,s0 ≲ ε 1 + ∥W n ∥ γ,O q,s0+2 + ∥ H n+1 ∥ γ,O 4γ n+1 q,s0+2 ∥ H n+1 ∥ γ,O 4γ n+1 q,s0+2 2 . ( 8 
∥ H n+1 ∥ γ,O 4γ n+1 q,s = ∥Π n T n Π n F(U n )∥ γ,O 4γ n+1 q,s ≲ γ -1 ∥Π n F(U n )∥ γ,O 2γ n q,s+σ + ∥I n ∥ γ,O q,s+σ ∥Π n F(U n )∥ γ,O 2γ n q,s0+σ ≲ γ -1 N σ n ∥F(U n )∥ γ,O 2γ n q,s + N 2σ n ∥I n ∥ γ,O q,s ∥F(U n )∥ γ,O 2γ n q,s0 ≲ γ -1 N 2σ n ε + ∥W n ∥ γ,O q,s . (8.38)
In the same way, according to (8.17), (P1) n and (P2) n , we infer

∥ H n+1 ∥ γ,O 4γ n+1 q,s0 ≲ γ -1 N σ n ∥F(U n )∥ γ,O 2γ n q,s0 ≲ C * εγ -1 N σ n N -a1 n-1 . (8.39)
Choosing ε small enough and using (P1) n and (8.39), we find

∥W n ∥ γ,O q,s0+2 + ∥ H n+1 ∥ γ,O 4γ n+1 q,s0+2 ⩽ C * εγ -1 + N 2 n ∥ H n+1 ∥ γ,O 4γ n+1 q,s0 ⩽ 1 + Cεγ -1 N σ+2 n N -a1 n-1 ⩽ 1 + Cεγ -1 N 3+ 3 2 σ-a1 n-1
. Now notice that (8.1) implies

a 1 ⩾ 3 + 3 2 σ. (8.40)
Therefore, we obtain

∥W n ∥ γ,O q,s0+2 + ∥ H n+1 ∥ γ,O 4γ n+1 q,s0+2 ⩽ 2.
Hence, plugging this estimate and (8.39) into (8.37) and using (8.2) and (8.4), we find

∥Q n ∥ γ,O 4γ n+1 q,s0 ≲ ε ∥ H n+1 ∥ γ,O 4γ n+1 q,s0+2 2 ⩽ εN 4 n ∥ H n+1 ∥ γ,O 4γ n+1 q,s0 2 ≲ εC * N 2σ+4 n N -2a1 n-1 .
By using (6.94), we deduce when n ⩾ 1,

∥Q n ∥ γ,O 4γ n+1 q,s0 ⩽ CC * εN 2σ+4-4 3 a1 n .
(8.41)

For n = 0, we come back to (8.38) and (8.3) to obtain for all s ∈ [s 0 , S]

∥ H 1 ∥ γ,O 4γ 1 q,s ≲ γ -1 ∥Π 0 F(U 0 )∥ γ,O q,s+σ ≲ C * εγ -1 . (8.42)
Finally, the inequality (8.41) becomes for n = 0, 

∥Q 0 ∥ γ,O 4γ 0 q,s0 ≲ C * ε 3 γ -2 . ( 8 
∥F( U n+1 )∥ γ,O 4γ n+1 q,s0 ⩽ CC * ε N s0+2σ+ 2 3 µ1+1-sm n + N σ+1-µ2-2 3 a1 n + N 2σ+4-4 3 a1 n .
The parameters conditions stated in (8.1) give

     s 0 + 2σ + 2 3 µ 1 + 2 + a 1 ⩽ s m σ + 1 3 a 1 + 2 ⩽ µ 2 2σ + 5 ⩽ 1 3 a 1 . (8.44)
Thus, by taking N 0 large enough, that is ε small enough, we obtain for n ∈ N,

       CN s0+2σ+ 2 3 µ1+1-sm n ⩽ 1 3 N -a1 n CN σ+1-µ2-2 3 a1 n ⩽ 1 3 N -a1 n CN 2σ+4-4 3 a1 n ⩽ 1 3 N -a1 n , ( 8.45) 
which implies in turn that when n ∈ N * , 

∥F( U n+1 )∥ γ,O 4γ n+1 q,s0 ⩽ C * εN -a1 n . ( 8 
∥F( U 1 )∥ γ,O 4γ 1 q,s0 ⩽ CC * ε N s0+2σ+ 3 2 µ1+1-sm 0 + εγ -2 + ε 2 γ -2 .
From (8.45), one already has

CN s0+2σ+ 3 2 µ1+1-sm 0 ⩽ 1 3 N -a1 0 .
Therefore, we need at this level to take ε small enough to ensure

C εγ -2 + ε 2 γ -2 ⩽ 2 3 N -a1 0 .
This occurs since (8.2) and (8.1) imply 0 < a < 1 2+a1 .

Hence

∥F( U 1 )∥ γ,O 4γ 1 q,s0 ⩽ C * εN -a1 0 .
This completes the proof of the estimates in (P2) n+1 .

▶ Extension and verification of (P1) n+1 -(P3) n+1 . We shall now construct an extention of H n+1 living in the whole set of parameters and enjoying suitable decay properties. This is done by using the

Part I C ∞ cut-off function χ n+1 : O → [0, 1] defined by χ n+1 (λ, ω) = 1 in O 2γ n+1 0 in O \ O 4γ n+1
and satisfying the additional growth conditions

∀α ∈ N d , |α| ∈ 0, q , ∥∂ α λ,ω χ n+1 ∥ L ∞ (O) ≲ γ -1 N a n |α| . (8.47)
Next, we shall deal with the extension H n+1 of H n+1 defined by

H n+1 (λ, ω) ≜ χ n+1 (λ, ω) H n+1 (λ, ω) in O 4γ n+1 0 in O \ O 4γ n+1 (8.48)
and the extension U n+1 of U n+1 by

U n+1 ≜ U n + H n+1 . (8.49)
We remark that

H n+1 = H n+1 and F(U n+1 ) = F( U n+1 ) in O 2γ n+1 .
Looking at the first component of (8.49), one can write with obvious notations

i n+1 = i n + I n+1 .
By the induction assumption (P2) n , (8.48) and ( 8. [START_REF] Berti | KAM for Reversible Derivative Wave Equations[END_REF]), one has

Si n (φ) = i n (-φ) and SI n+1 (φ) = I n+1 (-φ).

Thus

Si n+1 (φ) = i n+1 (-φ). (8.50)

Using Lemma A.1-(iv) together with (8.47) and the fact that

H n+1 = 0 in O \ O 4γ n+1 , we obtain ∀s ⩾ s 0 , ∥H n+1 ∥ γ,O q,s ≲ N qa n ∥ H n+1 ∥ γ,O 4γ n+1 q,s . (8.51)
Applying (8.51) and (8.39) we deduce that for n ∈ N * ,

∥H n+1 ∥ γ,O q,s0+σ ⩽ CN qa n ∥ H n+1 ∥ γ,O 4γ n+1 q,s0+σ ⩽ CN qa+σ n ∥ H n+1 ∥ γ,O 4γ n+1 q,s0 ⩽ CC * εγ -1 N qa+2σ-2 3 a1 n .
From (8.1), we have

a 2 = 2 3 a 1 -qa -2σ -1 ⩾ 1. (8.52)
Therefore, choosing ε small enough, we obtain

∥H n+1 ∥ γ,O q,s0+σ ⩽ CN -1 0 C * εγ -1 N -a2 n ⩽ C * εγ -1 N -a2 n . ( 8 

.53)

As for the case n = 0, we combine (8.51) and (8.42) to obtain, up to taking C * large enough,

∥H 1 ∥ γ,O q,s ⩽ 1 2 C * εγ -1 N qa 0 . (8.54)
We now set

W n+1 ≜ W n + H n+1 , (8.55)
then by construction, we infer

U n+1 = U 0 + W n+1 .
Moreover, applying (P1) n , (8.54) and (8.53) and Lemma A.5, we infer

∥W n+1 ∥ γ,O q,s0+σ ⩽ ∥H 1 ∥ γ,O q,s0+σ + n+1 k=2 ∥H k ∥ γ,O q,s0+σ ⩽ 1 2 C * εγ -1 N qa 0 + C * εγ -1 ∞ k=0 N -1 k ⩽ 1 2 C * εγ -1 N qa 0 + CN -1 0 C * εγ -1 ⩽ C * εγ -1 N qa 0 .
This completes the proof of (P1) n+1 . Now gathering (8.38), (8.51) and (P3) n allows to write

∥W n+1 ∥ γ,O q,sm+σ ⩽ ∥W n ∥ γ,O q,sm+σ + CN qa n ∥H n+1 ∥ γ,O q,sm+σ ⩽ C * εγ -1 N µ1 n-1 + CC * γ -1 N qa+2σ n ε + ∥W n ∥ γ,O q,sm+σ ⩽ CC * εγ -1 N qa+2σ+1+ 2 3 µ1 n .
From (8.1), we can ensure the condition qa + 2σ + 2 = µ1 3 , (8.56) in order to get

∥W n+1 ∥ γ,O q,sm+σ ⩽ CN -1 0 C * εγ -1 N µ1 n ⩽ C * εγ -1 N µ1 n
by taking ε small enough and using (8.2). This proves (P3) n+1 and the proof of Proposition 8.1 is now complete.

Once this sequence of approximate solutions is constructed, we may obtain a non-trivial solution by passing to the limit. This is possible due the decay properties given in Proposition 8.1. Actually, we obtain the following corollary.

Corollary 8.1.

There exists ε 0 > 0 such that for all ε ∈ (0, ε 0 ), the following assertions hold true. We consider the Cantor set G γ ∞ , depending on ε through γ, and defined by

G γ ∞ ≜ n∈N A γ n .
Part I

There exists a function

U ∞ : O → T d × R d × H ⊥ S × R d × R d+1 (λ, ω) → i ∞ (λ, ω), α ∞ (λ, ω), (λ, ω) such that ∀(λ, ω) ∈ G γ ∞ , F(U ∞ (λ, ω)) = 0.
In addition, i ∞ is reversible and

α ∞ ∈ W q,∞,γ (O, R d ) with α ∞ (λ, ω) = ω + r ε (λ, ω) and ∥r ε ∥ γ,O q ≲ εγ -1 N qa 0 . (8.57)
Moreover, there exists a q-times differentiable function λ

∈ (λ 0 , λ 1 ) → ω(λ, ε) ∈ R d with ω(λ, ε) = -ω Eq (λ) + rε (λ), ∥r ε ∥ γ,O q ≲ εγ -1 N qa 0 (8.58) and ∀λ ∈ C ε ∞ , F U ∞ λ, ω(λ, ε) = 0 and α ∞ λ, ω(λ, ε) = -ω Eq (λ),
where the Cantor set C ε ∞ is defined by

C ε ∞ ≜ λ ∈ (λ 0 , λ 1 ) s.t. λ, ω(λ, ε) ∈ G γ ∞ . (8.59)
Proof. Putting together (8.55) and (8.53), we infer

∥W n+1 -W n ∥ γ,O q,s0 = ∥H n+1 ∥ γ,O q,s0 ⩽ ∥H n+1 ∥ γ,O q,s0+σ ⩽ C * εγ -1 N -a2 n .
Thus, the telescopic series associated with the sequence (W n ) n∈N is convergent, so the sequence itself converges. We denote its limit

W ∞ ≜ lim n→∞ W n ≜ (I ∞ , α ∞ -ω, 0, 0)
and

U ∞ ≜ i ∞ , α ∞ , (λ, ω) = U 0 + W ∞ .
Passing to the limit in (8.50), one obtains the reversibility property

Si ∞ (φ) = i ∞ (-φ).
By the point (P2) n of Proposition 8.1, we have for small ε

∀(λ, ω) ∈ G γ ∞ , F i ∞ (λ, ω), α ∞ (λ, ω), (λ, ω), ε = 0, (8.60)
with F the functional defined in (6.21). We highlight that the Cantor set G γ ∞ depends on ε through γ and (8.2). By the point (P1) n of the Proposition 8.1, we have

α ∞ (λ, ω) = ω + r ε (λ, ω) with ∥r ε ∥ γ,O q ≲ εγ -1 N qa 0 .
We now prove the second result and check the existence of solutions to the original Hamiltonian equation.

First recall that the open set O is defined in (6.7) by

O = (λ 0 , λ 1 ) × U with U = B(0, R 0 ) for some large R 0 > 0,
where the ball U is taken to contain the equilibrium frequency vector λ → ω Eq (λ). According to (8.57), we deduce that for any λ ∈ (λ 0 , λ 1 ), the mapping ω → α ∞ (λ, ω) is invertible from U into its image α ∞ (λ, U ) and we have

ω = α ∞ (λ, ω) = ω + r ε (λ, ω) ⇔ ω = α -1 ∞ (λ, ω) = ω + r ε (λ, ω).
This gives the identity

r ε (λ, ω) = -r ε (λ, ω),
which implies in turn after using successive differentiation and (8.57) that r ε satisfies the estimate

∥ r ε ∥ γ,O q ≲ εγ -1 N qa 0 . (8.61)
We now set

ω(λ, ε) ≜ α -1 ∞ (λ, -ω Eq (λ)) = -ω Eq (λ) + r ε (λ) with r ε (λ) ≜ r ε λ, -ω Eq (λ) .
As a consequence of (8.60), if we denote

C ε ∞ ≜ λ ∈ (λ 0 , λ 1 ) s.t. λ, ω(λ, ε) ∈ G γ ∞ , then we have ∀λ ∈ C ε ∞ , F U ∞ λ, ω(λ, ε) = 0.
This gives a nontrivial reversible solution for the original Hamiltonian equation provided that λ ∈ C ε ∞ . Since all the derivatives up to order q of ω Eq are uniformly bounded on [λ 0 , λ 1 ], see , then by chain rule and (8.61), we obtain

∥r ε ∥ γ,O q ≲ εγ -1 N qa 0 and ∥ω(•, ε)∥ γ,O q ≲ 1 + εγ -1 N qa 0 ≲ 1. (8.62)
This ends the proof of Corollary 8.1.

Measure of the final Cantor set

The purpose of this final section is to give a lower bound of the Lebesgue measure of the Cantor set C ε ∞ constructed in Corollary 8.1 via (8.59). We show that this set is massive and asymptotically when ε → 0 it tends to be of full measure in (λ 0 , λ 1 ). Note that Corollary 8.1 allows us to write the Cantor set C ε ∞ in the following form

C ε ∞ = n∈N C ε n where C ε n ≜ λ ∈ (λ 0 , λ 1 ) s.t λ, ω(λ, ε) ∈ A γ n . ( 8 

.63)

The sets A γ n and the perturbed frequency vector ω(λ, ε) are respectively defined in Proposition 8.1 and in (8.57). The main result of this section reads as follows.

Proposition 8.2. Let q 0 be defined as in Lemma 5.5 and assume that (8.1) and (8.2) hold with q = q 0 + 1.

Assume the additional conditions

     τ 1 > dq 0 τ 2 > τ 1 + dq 0 υ = 1 q0+3 . (8.64) Part I
Then, there exists C > 0 such that

C ε ∞ ⩾ (λ 1 -λ 0 ) -Cε aυ q 0 .
In particular,

lim ε→0 C ε ∞ = λ 1 -λ 0 .
The remainder of this section is devoted to the proof of Proposition 8.2. We shall begin by giving the proof using some a priori results. These results will be proved later in Lemmata 8.1, 8.2 and 8.3.

We first give a short insight about the strategy to prove Proposition 8.2. The idea is to measure the complementary set of C ε ∞ in (λ 0 , λ 1 ). To proceed with, we write

(λ 0 , λ 1 ) \ C ε ∞ = (λ 0 , λ 1 ) \ C ε 0 ⊔ ∞ n=0 C ε n \ C ε n+1 . (8.65)
The measure of each set appearing in (8.65) is estimated by using Lemma 5.6. We shall now give the proof of Proposition 8.2.

Proof. By choosing R 0 large enough, one can ensure using (8.58) that

∀λ ∈ (λ 0 , λ 1 ), ω(λ, ε) ∈ U = B(0, R 0 ).
Indeed, U contains by construction the curve λ ∈ (λ 0 , λ 1 ) → ±ω Eq (λ) and by (8.58) and ( 8.2), one has sup λ∈(λ0,λ1) 

|ω(λ, ε) + ω Eq (λ)| ⩽ ∥r ε ∥ γ,O q ⩽ Cεγ -1 N qa 0 = Cε 1-a(1+qa
|ω(λ, ε) + ω Eq (λ)| ⩽ ∥r ε ∥ γ,O q ⩽ 1.
As a consequence,

C ε 0 = (λ 0 , λ 1 ).
By (8.65), we can write

(λ 0 , λ 1 ) \ C ε ∞ ⩽ ∞ n=0 C ε n \ C ε n+1 ≜ ∞ n=0 S n . (8.66)
According to the notation introduced in Proposition 7.5 and Proposition 7.4 one may write

µ ∞,n j (λ, ε) ≜ µ ∞ j λ, ω(λ, ε), i n = Ω j (λ) + jr 1,n (λ, ε) + r ∞,n j (λ, ε), (8.67) with r 1,n (λ, ε) ≜ c n (λ, ε) -Ω -I 1 (λ)K 1 (λ), c n (λ, ε) ≜ c in (λ, ω(λ, ε)), r ∞,n j (λ, ε) ≜ r ∞ j λ, ω(λ, ε), i n .
Coming back to (8.63) and using the Cantor sets introduced in Proposition 7.5, Proposition 7.6 and Proposition 7.2 one obtains by construction that for any n ∈ N,

C ε n \ C ε n+1 = (l,j)∈Z d ×Z\{(0,0)} |l|⩽Nn R (0) l,j (i n ) (l,j,j 0 )∈Z d ×(S c 0 ) 2 |l|⩽Nn R l,j,j0 (i n ) (l,j)∈Z d ×S c 0 |l|⩽Nn R (1) l,j (i n ), (8.68) 
with

R (0) l,j (i n ) ≜ λ ∈ C ε n s.t. |ω(λ, ε) • l + jc n (λ, ε)| ⩽ 4γ υ n+1 ⟨j⟩ ⟨l⟩ τ 1 , R l,j,j0 (i n ) ≜ λ ∈ C ε n s.t. |ω(λ, ε) • l + µ ∞,n j (λ, ε) -µ ∞,n j0 (λ, ε)| ⩽ 2γn+1⟨j-j0⟩ ⟨l⟩ τ 2 , R (1) 
l,j (i n ) ≜ λ ∈ C ε n s.t. |ω(λ, ε) • l + µ ∞,n j (λ, ε)| ⩽ γn+1⟨j⟩ ⟨l⟩ τ 1 .
Notice that using the inclusion

W q,∞,γ (O, C) → C q-1 (O, C)
and the fact that q = q 0 + 1, one gets that for all n ∈ N and (l, j, j 0

) ∈ Z d × (S c 0 ) 2 , the curves λ → ω(λ, ε) • l + jc n (λ, ε), λ → ω(λ, ε) • l + µ ∞,n j (λ, ε) -µ ∞,n j0 (λ, ε), λ → ω(λ, ε) • l + µ ∞,n j (λ, ε)
have a C q0 regularity. Then, applying Lemma 5.6 combined with Lemma 8.3 gives for any n ∈ N,

R (0) l,j (i n ) ≲ γ υ q 0 ⟨j⟩ 1 q 0 ⟨l⟩ -1-τ 1 +1 q 0 , R (1) 
l,j (i n ) ≲ γ 1 q 0 ⟨j⟩ 1 q 0 ⟨l⟩ -1-τ 1 +1 q 0 , (8.69) R l,j,j0 (i n ) ≲ γ 1 q 0 ⟨j -j 0 ⟩ 1 q 0 ⟨l⟩ -1-τ 2 +1 q 0 .
Let us now move to the estimate of S 0 and S 1 defined in (8.66) that should be treated differently from the other terms. This is related to the discussion done at the beginning of the proof of Lemma 8.1 dealing with the validity of the estimate (8.74). By using Lemma 8.2, we find for all k ∈ {0, 1}, 

S k ≲ (l,j)∈Z d ×Z\{(0,0)} |j|⩽C 0 ⟨l⟩,|l|⩽N k R (0) l,j (i k ) + (l,j,j0)∈Z d ×(S c 0 ) 2 |j-j 0 |⩽C 0 ⟨l⟩,|l|⩽N k min(|j|,|j 0 |)⩽c 2 γ -υ 1 ⟨l⟩ τ 1 R l,j,j0 (i k ) + (l,j)∈Z d ×S c 0 |j|⩽C 0 ⟨l⟩,|l|⩽N k R (1) l,j (i k ) . ( 8 
S k ≲ γ 1 q 0 |j|⩽C0⟨l⟩ |j| 1 q 0 ⟨l⟩ -1-τ 1 +1 q 0 + |j-j0|⩽C0⟨l⟩ min(|j|,|j 0 |)⩽c 2 γ -υ ⟨l⟩ τ 1 |j -j 0 | 1 q 0 ⟨l⟩ -1-τ 2 +1 q 0 + γ υ q 0 |j|⩽C0⟨l⟩ |j| 1 q 0 ⟨l⟩ -1-τ 1 +1 q 0 .
Consequently, we obtain max k∈{0,1}

S k ≲ γ 1 q 0 l∈Z d ⟨l⟩ -τ 1 q 0 + γ -υ l∈Z d ⟨l⟩ τ1-1-τ 2 q 0 + γ υ q 0 l∈Z d ⟨l⟩ -τ 1 q 0 (8.71) ≲ γ min υ q 0 , 1 q 0 -υ .
Notice that the last estimate is obtained provided that we choose the parameters τ 1 and τ 2 in the following way in order to make the series convergent 

τ 1 > d q 0 and τ 2 > τ 1 + d q 0 . ( 8 
S n ⩽ (l,j)∈Z d ×Z\{(0,0)} |j|⩽C 0 ⟨l⟩,N n-1 <|l|⩽Nn R (0) l,j (i n ) + (l,j,j0)∈Z d ×(S c 0 ) 2 |j-j 0 |⩽C 0 ⟨l⟩,N n-1 <|l|⩽Nn min(|j|,|j 0 |)⩽c 2 γ -υ n+1 ⟨l⟩ τ 1 R l,j,j0 (i n ) + (l,j)∈Z d ×S c 0 |j|⩽C 0 ⟨l⟩,N n-1 <|l|⩽Nn R (1) l,j (i n ) . Remark that if |j -j 0 | ⩽ C 0 ⟨l⟩ and min(|j|, |j 0 |) ⩽ γ -υ n+1 ⟨l⟩ τ1 , then max(|j|, |j 0 |) = min(|j|, |j 0 |) + |j -j 0 | ⩽ γ -υ n+1 ⟨l⟩ τ1 + C 0 ⟨l⟩ ≲ γ -υ ⟨l⟩ τ1 .
Therefore, (8.69) implies

S n ≲ γ 1 q 0 |l|>Nn-1 ⟨l⟩ -τ 1 q 0 + γ -υ |l|>Nn-1 ⟨l⟩ τ1-1-τ 2 q 0 + γ υ q 0 |l|>Nn-1 ⟨l⟩ -τ 1 q 0 .
Under the assumption, we obtain (8.72) 

∞ n=2 S n ≲ γ min υ q 0 , 1 q 0 -υ . ( 8 
(λ 0 , λ 1 ) \ C ε ∞ ≲ γ min υ q 0 , 1 q 0 -υ
provided that the condition (8.72) is satisfied. The condition (8.64) implies that

min υ q0 , 1 q0 -υ = υ q0 .
We then find, since γ = ε a according to (8.2),

(λ 0 , λ 1 ) \ C ε ∞ ≲ ε aυ q 0 .
This completes the proof of Proposition 8. (i) For j ∈ Z with (l, j) ̸ = (0, 0), we get R

(0) l,j (i n ) = ∅.
(ii) For (j, j 0 ) ∈ (S c 0 ) 2 with (l, j) ̸ = (0, j 0 ), we get R l,j,j0 (i n ) = ∅.

(iii) For j ∈ S c 0 , we get R

(1)

l,j (i n ) = ∅.
(iv) For any n ∈ N \ {0, 1},

C ε n \ C ε n+1 = (l,j)∈Z d ×Z\{(0,0)} N n-1 <|l|⩽Nn R (0) l,j (i n ) ∪ (l,j,j0)∈Z d ×(S c 0 ) 2 N n-1 <|l|⩽Nn R l,j,j0 (i n ) ∪ (l,j)∈Z d ×S c 0 N n-1 <|l|⩽Nn R (1) l,j (i n ).
Proof. In all the proof, we shall use the following estimate coming from (8.11), namely, for all n ⩾ 2,

∥i n -i n-1 ∥ γ,O q,s h +σ4 ⩽ ∥U n -U n-1 ∥ γ,O q,s h +σ4 ⩽ ∥H n ∥ γ,O q,s h +σ4 ⩽ C * εγ -1 N -a2 n-1 . (8.74)
The fact that the previous estimate is valid only for n ⩾ 2 is the reason why we had to treat the cases of S 0 and S 1 sparately in the proof of Proposition 8.2.

(i) We begin by proving that if |l| ⩽ N n-1 and (l, j) ̸ = (0, 0), then R

(0) l,j (i n ) ⊂ R (0)
l,j (i n-1 ). Assume for a while this inclusion and let us check how this implies that R (0) l,j (i n ) = ∅. In view of (8.68) one obtains

R (0) l,j (i n ) ⊂ R (0) l,j (i n-1 ) ⊂ C ε n-1 \ C ε n . Now (8.68) implies in particular R (0) l,j (i n ) ⊂ C ε n \ C ε n+1 and thus we conclude R (0) l,j (i n ) ⊂ C ε n \ C ε n+1 ∩ C ε n-1 \ C ε n = ∅.
We now turn to the proof of the inclusion. Let us consider λ ∈ R (0) l,j (i n ). By construction, we get in particular that λ ∈ C ε n ⊂ C ε n-1 . Moreover, by the triangle inequality, we obtain

ω(λ, ε) • l + jc n-1 (λ, ε) ⩽ ω(λ, ε) • l + jc n (λ, ε) + |j| c n (λ, ε) -c n-1 (λ, ε) ⩽ 4γ υ n+1 ⟨j⟩ ⟨l⟩ τ 1 + C|j|∥c in -c in-1 ∥ γ,O q .
Therefore, combining (7.21), (8.74), (8.2) and the fact tht σ 4 ⩾ 2, we infer

ω(λ, ε) • l + jc n-1 (λ, ε) ⩽ 4γ υ n+1 ⟨j⟩ ⟨l⟩ τ 1 + Cε⟨j⟩∥i n -i n-1 ∥ γ,O q,s h +2 ⩽ 4γ υ n+1 ⟨j⟩ ⟨l⟩ τ 1 + Cε 2-a ⟨j⟩N -a2 n-1 .
Part I

In view of the definition of γ n in Proposition 8.1-(P2) n one gets 

∃c 0 > 0, ∀n ∈ N, γ υ n+1 -γ υ n ⩽ -c 0 γ υ 2 -
ω(λ, ε) • l + jc n-1 (λ, ε) ⩽ 4γ υ n ⟨j⟩ ⟨l⟩ τ 1 + C ⟨j⟩γ υ 2 n ⟨l⟩ τ 1 -4c 0 + Cε2 n N -a2+τ1 n-1 ⩽ 4γ υ n ⟨j⟩ ⟨l⟩ τ 1 . Consequently λ ∈ R (0)
l,j (i n-1 ) and this achieves the proof. (ii) Let (j, j 0 ) ∈ (S c 0 ) 2 and (l, j) ̸ = (0, j 0 ). If j = j 0 then by construction R l,j0,j0

(i n ) = R (0)
l,0 (i n ) and then the result follows from the point (i). Now let us discuss the case when j ̸ = j 0 . Similarly to the point (i), in order to get the result it is enough to check that R l,j,j0 (i n ) ⊂ R l,j,j0 (i n-1 ). Let λ ∈ R l,j,j0 (i n ) then from the definition of this set introduced in (8.68) we deduce that

λ ∈ C ε n ⊂ C ε n-1 and ω(λ, ε) • l + µ ∞,n-1 j (λ, ε) -µ ∞,n-1 j0 (λ, ε) ⩽ 2γn+1⟨j-j0⟩ ⟨l⟩ τ 2 + ϱ n j,j0 (λ, ε), ( 8.76) 
where we set

ϱ n j,j0 (λ, ε) ≜ µ ∞,n j (λ, ε) -µ ∞,n j0 (λ, ε) -µ ∞,n-1 j (λ, ε) + µ ∞,n-1 j0 (λ, ε) .
Then coming back to (8.67), one gets

ϱ n j,j0 (λ, ε) ⩽ |j -j 0 | r 1,n (λ, ε) -r 1,n-1 (λ, ε) + r ∞,n j (λ, ε) -r ∞,n-1 j (λ, ε) + r ∞,n j0 (λ, ε) -r ∞,n-1 j0 (λ, ε) . (8.77)
In view of (7.170), (8.74), (8.2) and the fact that σ 4 ⩾ σ 3 , one obtains

r 1,n (λ, ε) -r 1,n-1 (λ, ε) ≲ ε∥i n -i n-1 ∥ γ,O q,s h +σ3 ≲ ε 2 γ -1 N -a2 n-1 ≲ ε 2-a N -a2 n-1 .
In a similar line, using (7.241), (8.74) and (8.2) yields

r ∞,n j (λ, ε) -r ∞,n-1 j (λ, ε) ≲ εγ -1 ∥i n -i n-1 ∥ γ,O q,s h +σ4 ≲ ε 2 γ -2 N -a2 n-1 ≲ ε 2(1-a) ⟨j -j 0 ⟩N -a2 n-1 .
Inserting the preceding two estimates into (8.77) gives

ϱ n j,j0 (λ, ε) ≲ ε 2(1-a) ⟨j -j 0 ⟩N -a2 n-1 . ( 8.78) 
Putting together (8.78) and (8.76) and using

γ n+1 = γ n -ε a 2 -n-1 , we deduce ω(λ, ε) • l + µ ∞,n-1 j (λ, ε) -µ ∞,n-1 j0 (λ, ε) ⩽ 2γn⟨j-j0⟩ ⟨l⟩ τ 2 -ε a ⟨j -j 0 ⟩2 -n ⟨l⟩ -τ2 + Cε 2(1-a) ⟨j -j 0 ⟩N -a2 n-1 .
Since |l| ⩽ N n-1 ,we can write

-ε a 2 -n ⟨l⟩ -τ2 + Cε 2(1-a) N -a2 n-1 ⩽ ε a 2 -n ⟨l⟩ -τ2 -1 + Cε 2-3a 2 n N -a2+τ2 n-1
. Now remark that (8.1) and (8.2) yield in particular

a 2 > τ 2 and a < 2 3 . (8.79)
Hence, we find for ε small enough

∀ n ∈ N, -1 + Cε 2-3a 2 n N -a2+τ2 n-1 ⩽ 0 and therefore ω(λ, ε) • l + µ ∞,n-1 j (λ, ε) -µ ∞,n-1 j0 (λ, ε) ⩽ 2γn⟨j-j0⟩ ⟨l⟩ τ 2 • Consequently, λ ∈ R l,j,j0 (i n-1
) and the proof of the second point is now achieved.

(iii) Let j ∈ S c 0 . In particular, one has (l, j) ̸ = (0, 0). We shall first prove that if |l| ⩽ N n-1 and then R

(1) l,j (i n ) ⊂ R (1) l,j (i n-1 ). As in the point (i) this implies that R (1) l,j (i n ) = ∅. Remind that the set R (1) l,j (i n ) is defined below (8.68). Consider λ ∈ R (1) l,j (i n ) then by construction λ ∈ C ε n ⊂ C ε n-1 .
Now by the triangle inequality we may write in view of (7.242) and (8.74) and the choice

γ = ε a ω(λ, ε) • l + µ ∞,n-1 j (λ, ε) ⩽ ω(λ, ε) • l + µ ∞,n j (λ, ε) + |µ ∞,n j (λ, ε) -µ ∞,n-1 j (λ, ε)| ⩽ γn+1⟨j⟩ ⟨l⟩ τ 1 + Cεγ -1 |j|∥i n -i n-1 ∥ γ,O q,s h +σ4 ⩽ γn+1⟨j⟩ ⟨l⟩ τ 1 + Cε 2(1-a) ⟨j⟩N -a2 n-1 . Since γ n+1 = γ n -ε a 2 -n-1 and |l| ⩽ N n-1 , then ω(λ, ε) • l + µ ∞,n-1 j (λ, ε) ⩽ γn⟨j⟩ ⟨l⟩ τ 1 + ⟨j⟩ε a 2 n+1 ⟨l⟩ τ 1 -1 + ε 2-3a 2 n+1 N -a2+τ1 n-1 .
Notice that (8.79) implies in particular

a 2 > τ 1 and a < 2 3 (8.80)
and taking ε small enough we find that

∀ n ∈ N, -1 + ε 2-3a 2 n+1 N -a2+τ1 n-1 ⩽ 0, which implies in turn that ω(λ, ε) • l + µ ∞,n-1 j (λ, ε) ⩽ γn⟨j⟩ ⟨l⟩ τ 1 . Consequently, λ ∈ R (1) 
l,j (i n-1 ) and this ends the proof of the third point. (iv) It is an immediate consequence of (8.68) and the points (i)-(ii) and (iii) of Lemma 8.1.

The next result deals with necessary conditions such that the sets in (8.68) are nonempty. Lemma 8.2. There exists ε 0 such that for any ε ∈ [0, ε 0 ] and n ∈ N the following assertions hold true.

Part I (i) Let (l, j) ∈ Z d × Z \ {(0, 0)}. If R (0) l,j (i n ) ̸ = ∅, then |j| ⩽ C 0 ⟨l⟩. (ii) Let (l, j, j 0 ) ∈ Z d × (S c 0 ) 2 . If R l,j,j0 (i n ) ̸ = ∅, then |j -j 0 | ⩽ C 0 ⟨l⟩. (iii) Let (l, j) ∈ Z d × S c 0 . If R (1) l,j (i n ) ̸ = ∅, then |j| ⩽ C 0 ⟨l⟩. (iv) Let (l, j, j 0 ) ∈ Z d × (S c 0 ) 2 . There exists c 2 > 0 such that if min(|j|, |j 0 |) ⩾ c 2 γ -υ n+1 ⟨l⟩ τ1 , then R l,j,j0 (i n ) ⊂ R (0) l,j-j0 (i n ). Proof. (i) Assume R (0)
l,j (i n ) ̸ = ∅, then we can find λ ∈ (λ 0 , λ 1 ) such that, using triangle and Cauchy-Schwarz inequalities,

|c n (λ, ε)||j| ⩽ 4|j|γ υ n+1 ⟨l⟩ -τ1 + |ω(λ, ε) • l| ⩽ 4|j|γ υ n+1 + C⟨l⟩ ⩽ 8ε aυ |j| + C⟨l⟩,
where we have used γ = ε a and the fact that (λ, ε)

→ ω(λ, ε) is bounded. Notice that c n (λ, ε) = Ω + I 1 (λ)K 1 (λ) + r 1,n (λ, ε) and inf λ∈(λ0,λ1) Ω + I 1 (λ)K 1 (λ) > Ω.
Then, from (7.17), (7.239) and Proposition 8.1 (P1) n , we obtain ∀k ∈ 0, q , sup n∈N sup λ∈(λ0,λ1)

|∂ k λ r 1,n (λ, ε)| ⩽ γ -k sup n∈N ∥r 1,n ∥ γ,O q ≲ εγ -k ≲ ε 1-ak . ( 8.81) 
Thus, by choosing ε small enough, we can ensure by (8.81)

inf n∈N inf λ∈(λ0,λ1) |c n (λ, ε)| ⩾ Ω 2 .
Hence, by taking ε small enough we find that |j| ⩽ C 0 ⟨l⟩ for some C 0 > 0.

(ii) In the case j = j 0 we get by definition R l,j0,j0

(i n ) = R (0)
l,0 (i n ), and then we use the point (i). In what follows we take j ̸ = j 0 and we assume that R l,j,j0 (i n ) ̸ = ∅ then there exists λ ∈ (λ 0 , λ 1 ) such that

|µ ∞,n j (λ, ε) -µ ∞,n j0 (λ, ε)| ⩽ 2γ n+1 |j -j 0 |⟨l⟩ -τ2 + |ω(λ, ε) • l| ⩽ 2γ n+1 |j -j 0 | + C⟨l⟩ ⩽ 4ε a |j -j 0 | + C⟨l⟩.
Similarly to (8.81), we can prove

∀k ∈ 0, q , sup n∈N sup j∈S c 0 sup λ∈(λ0,λ1) |j||∂ k λ r ∞,n j (λ, ε)| ⩽ γ -k sup n∈N sup j∈S c 0 |j|∥r ∞,n j ∥ γ,O q ≲ εγ -1-k ≲ ε 1-a(1+k) . (8.82)
By using the triangle inequality, Lemma 5.3-(v), (8.81) and (8.82) we get for j ̸ = j 0 ,

|µ ∞,n j (λ, ε) -µ ∞,n j0 (λ, ε)| ⩾ |Ω j (λ) -Ω j0 (λ)| -|r 1,n (λ, ε)||j -j 0 | -|r ∞,n j (λ, ε)| -|r ∞,n j0 (λ, ε)| ⩾ C 0 -Cε 1-a |j -j 0 | ⩾ C0 2 |j -j 0 |
provided that ε is small enough. Putting together the previous inequalities yields for ε small enough |j -j 0 | ⩽ C 0 ⟨l⟩, for some C 0 > 0.

(iii) First remark that the case j = 0 is trivial. Now for j ̸ = 0 we assume that R

(1)

l,j (i n ) ̸ = ∅ then there exists λ ∈ (λ 0 , λ 1 ) such that |µ ∞,n j (λ, ε)| ⩽ γ n+1 |j|⟨l⟩ τ1 + |ω(λ, ε) • l| ⩽ 2ε a |j| + C⟨l⟩.
Using the definition (8.67) combined with the triangle inequality, Lemma 5.3-(iv), (8.81) and (8.82), we get

|µ ∞,n j (λ, ε)| ⩾ Ω|j| -|j||r 1,n (λ, ε)| -|r ∞,n j (λ, ε)| ⩾ Ω|j| -Cε 1-a |j|.
Combining the previous two inequalities and the second condition in (8.80) implies

Ω -Cε 1-a -2ε a |j| ⩽ C⟨l⟩.
Thus, by taking ε small enough we obtain |j| ⩽ C 0 ⟨l⟩, for some C 0 > 0.

(iv) First notice that the case j = j 0 is trivial and follows from the definition (8.68). Let j ̸ = j 0 and λ ∈ R l,j,j0 (i n ), then by definition

ω(λ, ε) • l + µ ∞,n j (λ, ε) -µ ∞,n j0 (λ, ε) ⩽ 2γn+1⟨j-j0⟩ ⟨l⟩ τ 2 .
Combining (8.67) and (5.14) with the triangle inequality we infer

ω(λ, ε) • l + (j -j 0 )c n (λ, ε) ⩽ ω(λ, ε) • l + µ ∞,n j (λ, ε) -µ ∞,n j0 (λ, ε) + |jI j (λ)K j (λ) -j 0 I j0 (λ)K j0 (λ)| + r ∞,n j (λ, ε) -r ∞,n j0 (λ, ε) .
Thus, we find

ω(λ, ε) • l + (j -j 0 )c n (λ, ε) ⩽ 2γn+1⟨j-j0⟩ ⟨l⟩ τ 2 + |jI j (λ)K j (λ) -j 0 I j0 (λ)K j0 (λ)| + r ∞,n j (λ, ε) -r ∞,n j0 (λ, ε) . (8.83)
Without loss of generality, we can assume that |j 0 | ⩾ |j| and remind that j ̸ = j 0 . Then, from (5.24) and

(5.22), we easily find

|jI j (λ)K j (λ) -j 0 I j0 (λ)K j0 (λ)| ⩽ |j| I j (λ)K j (λ) -I j0 (λ)K j0 (λ) + |j -j 0 | I j0 (λ)K j0 (λ) ⩽ ⟨j-j0⟩ min(|j|,|j0|) • Part I Applying (7.239), we find for j ̸ = j 0 ∈ S c 0 , r ∞,n j (λ, ε) -r ∞,n j0 (λ, ε) ⩽Cε 1-a |j| -1 + |j 0 | -1 ⩽Cε 1-a ⟨j-j0⟩ min(|j|,|j0|) •
Plugging the preceding estimates into (8.83) yields

ω(λ, ε) • l + (j -j 0 )c n (λ, ε) ⩽ 2γn+1⟨j-j0⟩ ⟨l⟩ τ 2 + C ⟨j-j0⟩ min(|j|,|j0|) • Therefore, if we assume min(|j|, |j 0 |) ⩾ 1 2 Cγ -υ n+1 ⟨l⟩ τ1 and τ 2 > τ 1 , then we deduce ω(λ, ε) • l + (j -j 0 )c n (λ, ε) ⩽ 4γ υ n+1 ⟨j-j0⟩ ⟨l⟩ τ 1 •
This ends the proof of the lemma by taking c 2 = C 2 .

We shall now establish that the perturbed frequencies ω(λ, ε) satisfy the Rüssmann conditions. This is done by a perturbation argument from the equilibrium linear frequencies ω Eq (λ) for which we already know by Lemma 5.5 that they satisfy the transversality conditions.

Lemma 8.3. Let q 0 , C 0 and ρ 0 as in Lemma 5.5. There exist ε 0 > 0 small enough such that for any ε ∈ [0, ε 0 ] the following assertions hold true.

(i) For all l ∈ Z d \ {0}, we have inf λ∈[λ0,λ1] max k∈ 0,q0 ∂ k λ (ω(λ, ε) • l) ⩾ ρ0⟨l⟩ 2 .
(ii) For all (l, j) ∈ Z d+1 \ {(0, 0)} such that |j| ⩽ C 0 ⟨l⟩, we have

∀n ∈ N, inf λ∈[λ0,λ1] max k∈ 0,q0 |∂ k λ ω(λ, ε) • l + jc n (λ, ε) | ⩾ ρ0⟨l⟩ 2 .
(iii) For all (l, j)

∈ Z d × S c 0 such that |j| ⩽ C 0 ⟨l⟩, we have ∀n ∈ N, inf λ∈[λ0,λ1] max k∈ 0,q0 ∂ k λ ω(λ, ε) • l + µ ∞,n j (λ, ε) ⩾ ρ0⟨l⟩ 2 .
(iv) For all (l, j, j 0

) ∈ Z d × (S c 0 ) 2 such that |j -j 0 | ⩽ C 0 ⟨l⟩, we have ∀n ∈ N, inf λ∈[λ0,λ1] max k∈ 0,q0 ∂ k λ ω(λ, ε) • l + µ ∞,n j (λ, ε) -µ ∞,n j0 (λ, ε) ⩾ ρ0⟨l⟩ 2 .
Proof. (i) From the triangle and Cauchy-Schwarz inequalities together with (8.62), (8.2) and Lemma 5.5-(i), we deduce max k∈ 0,q0

|∂ k λ (ω(λ, ε) • l) | ⩾ max k∈ 0,q0 |∂ k λ (ω Eq (λ) • l) | -max k∈ 0,q |∂ k λ (r ε (λ) • l) | ⩾ ρ 0 ⟨l⟩ -Cεγ -1-q N qa 0 ⟨l⟩ ⩾ ρ 0 ⟨l⟩ -Cε 1-a(1+q+qa) ⟨l⟩ ⩾ ρ0⟨l⟩ 2 provided that ε is small enough and 1 -a(1 + q + qa) > 0. (8.84)
Notice that the condition (8.84) is automatically satisfied by (8.2) and (8.1).

(ii) As before, using the triangle and Cauchy-Schwarz inequalities combined with (8.62), (8.81), Lemma 5.5-(ii) and the fact that |j| ⩽ C 0 ⟨l⟩, we get max k∈ 0,q0

|∂ k λ (ω(λ, ε) • l + jc n (λ, ε)) | ⩾ max k∈ 0,q0 ∂ k λ ω Eq (λ) • l + j(Ω + I 1 (λ)K 1 (λ)) -max k∈ 0,q |∂ k λ r ε (λ) • l + jr 1,n (λ, ε) | ⩾ ρ 0 ⟨l⟩ -Cε 1-a(1+q+qa) ⟨l⟩ -Cε 1-aq |j| ⩾ ρ0⟨l⟩ 2
for ε small enough and with the condition (8.84).

(iii) As before, performing the triangle and Cauchy-Schwarz inequalities combined with (8.62), (8.81), (8.82), Lemma 5.5-(iii) and the fact that |j| ⩽ C 0 ⟨l⟩, we get max k∈ 0,q0

∂ k λ ω(λ, ε) • l + µ ∞,n j (λ, ε) ⩾ max k∈ 0,q0 |∂ k λ (ω Eq (λ) • l + Ω j (λ)) | -max k∈ 0,q ∂ k λ r ε (λ) • l + jr 1,n (λ, ε) + r ∞,n j (λ, ε)) ⩾ ρ 0 ⟨l⟩ -Cε 1-a(1+q+qa) ⟨l⟩ -Cε 1-a(1+q) |j| ⩾ ρ0⟨l⟩ 2
for ε small enough with the condition (8.84).

(iv) Arguing as in the preceding point, using (

) and the fact that 0 < |j -j 0 | ⩽ C 0 ⟨l⟩ (notice that the case j = j 0 is trivial), we have max k∈ 0,q0

∂ k λ ω(λ, ε) • l + µ ∞,n j (λ, ε) -µ ∞,n j0 (λ, ε) ⩾ max k∈ 0,q0 ∂ k λ ω Eq (λ) • l + Ω j (λ) -Ω j0 (λ) -max k∈ 0,q ∂ k λ r ε (λ) • l + (j -j 0 )r 1,n (λ, ε) + r ∞,n j (λ, ε) -r ∞,n j0 (λ, ε) ⩾ ρ 0 ⟨l⟩ -Cε 1-a(1+q+qa) ⟨l⟩ -Cε 1-a(1+q) |j -j 0 | ⩾ ρ0⟨l⟩ 2
for ε small enough. This ends the proof of Lemma 8.3.

Introduction

We shall now present the second result of this thesis and discuss the key ideas of its proof. We first consider a polar parametrization of a patch boundary close to the stationary solution bD, namely

z(t, θ) ≜ R(b, t, θ)e iθ , R(b, t, θ) ≜ b 2 + 2r(t, θ).
The quantity of interest is the radial deformation r assumed to be of small size. We emphasize that our ansatz is slightly different from the one in the papers [START_REF] Hassainia | KAM theory for active scalar equations[END_REF][START_REF] Hmidi | Time quasi-periodic vortex patches for quasi-geostrophic shallow-water equations[END_REF] where the parametrization is written in a rotating frame with an angular velocity Ω to remedy to the degeneracy of the first frequency. This is not the case in our context due to the non-degeneracy of the first frequency according to (1.22). As explained in Lemma 10.1 and Proposition 10.1, the radial deformation solves a nonlinear and nonlocal transport PDE which admits a Hamiltonian formulation in the form

∂ t r = 1 2 ∂ θ ∇E(r), (9.1) 
where E is the kinetic energy related to the stream function given by (1.4). In view of Lemma 11.1, the linearized operator at a state r close to the Rankine patch bD takes the form

L r = ∂ t + ∂ θ V r • +L r -S r , (9.2) 
where

V r (b, t, θ) ≜ 1 2 ˆT R 2 (b,t,η) R 2 (b,t,θ) dη - 1 R(b,t,θ) ˆT log A r (b, t, θ, η) ∂ η R(b, t, η) sin(η -θ) dη (9.3) - 1 R 3 (b,t,θ) ˆT log B r (b, t, θ, η) ∂ η R(b, t, η) sin(η -θ) dη, (9.4) 
L r is a nonlocal operator in the form

L r (ρ)(b, t, θ) ≜ ˆT ρ(t, η) log (A r (b, t, θ, η)) dη, A r (b, t, θ, η) ≜ R(b, t, θ)e iθ -R(b, t, η)e iη (9.5) 
and S r is a smoothing nonlocal operator in the form

S r (ρ)(b, t, θ) ≜ ˆT ρ(t, η) log (B r (b, t, θ, η)) dη, B r (b, t, θ, η) ≜ 1 -R(b, t, θ)R(b, t, η)e i(η-θ) . (9.6)
The operator L r is of order zero and reflects the planar Euler action. Moreover, we observe two boundary effects of D. The first one is quasi-linear in the transport part through the last term of V r , but with a smoothing action. The second one is given by the operator S r which is smoothing since it involves a smooth kernel. At the equilibrium state r = 0, the linearized operator is a Fourier multiplier given by

L 0 = ∂ t + 1 2 ∂ θ + ∂ θ K 1,b * • -∂ θ K 2,b * •,
where

K 1,b (θ) ≜ 1 2 log sin 2 θ 2 and K 2,b (θ) ≜ log |1 -b 2 e iθ | .
Notice that the convolution with the kernel ∂ θ K 1,b is exactly the Hilbert transform in the periodic setting.

From direct computations, we may show that the kernel of L 0 is given by the set of functions in the form

(t, θ) → j∈Z * r j e i(jθ-Ωj (b)t) ,
where

∀j ∈ Z * , Ω j (b) ≜ sgn(j) 2 |j| -1 + b 2|j| , (9.7) 
where we denote by sgn the sign function. Consider a finite number of Fourier modes

S = j 1 , . . . , j d ⊂ N * with 1 ⩽ j 1 < . . . < j d , (d ∈ N * ).
Then, from Proposition 11.1, we deduce that, for any 0

< b 0 < b 1 < 1, for almost all b ∈ [b 0 , b 1 ], any function in the form r : (t, θ) → j∈S r j cos(jθ -Ω j (b)t), r j ∈ R
is a quasi-periodic solution with frequency ω Eq (b) ≜ (Ω j (b)) j∈S of the equation L 0 r = 0 which is reversible, namely r(-t, -θ) = r(t, θ). The measure of the Cantor set in b generating these solutions is estimated using Rüssmann Lemma 5.6 requiring a lower bound on the maximal derivative of a given function up to order q 0 . In our case, the value of q 0 is explicit, namely q 0 ≜ 2j d + 2 which is due to the polynomial structure of the Ω j (b). The aim of this part is to prove that these structures persist at the nonlinear level, more precisely, our result reads as follows. where Ω j (b) are the equilibrium frequencies defined in (9.7) and the perturbation p : T d+1 → R is an even function satisfying for some large index of regularity s depending only on the set S,

∥p∥ H s (T d+1 ,R) = a→0 o(|a|).
We shall now sketch the main steps used to prove the previous theorem. First remark that small divisors problems already appear in the proof of Proposition 11.1 to find quasi-periodic structures at the linear level from the equilibrium. We can invert the linearized operator at the equilibrium with some fixed loss of regularity. Hence, we need to use a Nash-Moser scheme to find quasi-periodic solutions for the nonlinear model. To do so, we must invert the linearized operator in a neighborhood of the equilibrium state. Since L r has non constant coefficients, the task is more delicate. The basic idea consists in diagonalizing, namely to conjugate to constant coefficients operator. Actually, we may follow the procedure presented in [START_REF] Berti | A Nash-Moser approach to KAM theory[END_REF],

slightly modified in [START_REF] Hassainia | KAM theory for active scalar equations[END_REF][START_REF] Hmidi | Time quasi-periodic vortex patches for quasi-geostrophic shallow-water equations[END_REF], where the dynamics is decoupled into tangential and normal parts. On the tangential modes, we introduce action-angles variables (I, ϑ) allowing to reformulate the problem in terms of embedded tori. More precisely, we shall look for the zeros of the following functional

F(i, α, b, ω, ε) ≜    ω • ∂ φ ϑ(φ) -α -ε∂ I P ε (i(φ)) ω • ∂ φ I(φ) + ε∂ ϑ P ε (i(φ)) ω • ∂ φ z(φ) -∂ θ L(b)z(φ) + ε∇ z P ε i(φ)    .
It turns out that it is more convenient to introduce one degree of freedom through the parameter α which provides at the end of the scheme a solution for the original problem when it is fixed to -ω Eq (b). Given any small reversible embedded torus i 0 : φ → (ϑ 0 (φ), I 0 (φ), z 0 (φ)) and any α 0 ∈ R d , conjugating the linearized operator d i,α F(i 0 , α 0 ) via a suitable linear diffeomorphism of the toroidal phase space

T d × R d × L 2 ⊥
, we obtain a triangular system in the action-angle-normal variables up to error terms. To solve the triangular system, we only have to invert the linearized operator in the normal directions, which is denoted by L ω . This is done using KAM reducibility techniques in a similar way to [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF][START_REF] Hassainia | KAM theory for active scalar equations[END_REF][START_REF] Hmidi | Time quasi-periodic vortex patches for quasi-geostrophic shallow-water equations[END_REF]. According to Proposition 13.1, we can write

L ω = Π ⊥ S0 L εr -ε∂ θ R Π ⊥ S0 ,
where Π ⊥ S0 is the projector in the normal directions, R is an integral operator and L εr is defined by (9.2). First, following the KAM reducibility scheme in [START_REF] Baldi | Quasi-periodic incompressible Euler flows in 3D[END_REF][START_REF] Feola | Reducibility of first order linear operators on tori via Moser's theorem[END_REF][START_REF] Hmidi | Time quasi-periodic vortex patches for quasi-geostrophic shallow-water equations[END_REF], we can reduce the transport part and the zero order part by conjugating by a quasi-periodic symplectic invertible change of variables in the form

Bρ(µ, φ, θ) ≜ 1 + ∂ θ β(µ, φ, θ) ρ µ, φ, θ + β(µ, φ, θ) .
More precisely, as stated in Proposition 13.2, we can find a function

V ∞ i0 = V ∞ i0 (b, ω) and a Cantor set O γ,τ1 ∞,n (i 0 ) ≜ (l,j)∈Z d ×Z\{(0,0)} |l|⩽Nn (b, ω) ∈ O s.t. ω • l + jV ∞ i0 (b, ω) > 4γ υ ⟨j⟩ ⟨l⟩ τ 1
in which the following decomposition holds

B -1 L εr B = ω • ∂ φ + V ∞ i0 ∂ θ + ∂ θ K 1,b * • -∂ θ K 2,b * • + ∂ θ R εr + E 0 n ,
where R εr is a real and reversibility preserving Toeplitz in time integral operator enjoying good smallness properties. The operator E 0 n is an error term of order one associated to the time truncation of the Cantor set O γ,τ1 ∞,n (i 0 ). Notice that N n is defined by

N n = N ( 3 2 ) n 0 with N 0 ≫ 1.
Then, we project in the normal directions by considering the operator

B ⊥ ≜ Π ⊥ S0 BΠ ⊥ S0 .
Therefore, in view of Proposition 13.3, we obtain the following decomposition in O γ,τ1 ∞,n (i 0 )

B -1 ⊥ L ω B ⊥ = ω • ∂ φ + D 0 + R 0 + E 1 n ≜ L 0 + E 1 n ,
where D 0 ≜ (iµ 0 j (b, ω)) j∈S c 0 is a diagonal and reversible operator and R 0 = Π ⊥ S0 R 0 Π ⊥ S0 is a real and reversible Toeplitz in time remainder integral operator in OP S -∞ in space and satisfying nice smallness properties.

The term E 1 n plays a similar role as the previous one E 0 n . The next goal is to reduce the remainder term R 0 . For this aim, we implement a KAM reduction process in the Toeplitz topology as in [START_REF] Hmidi | Time quasi-periodic vortex patches for quasi-geostrophic shallow-water equations[END_REF]Prop. 6.5].

The result is stated in Proposition 13.4 and provides two operators Φ ∞ and D ∞ ≜ (iµ ∞ j (b, ω)) j∈S c 0 , with D ∞ a diagonal and reversible operator whose spectrum is described by

∀j ∈ S c 0 , µ ∞ j (b, ω) = Ω j (b) + j V ∞ i0 (b, ω) -1 2 + r ∞ j (b, ω),
such that in the Cantor set

O γ,τ1,τ2 ∞,n (i 0 ) ≜ (l,j,j 0 )∈Z d ×(S c 0 ) 2 ⟨l,j-j 0 ⟩⩽Nn (l,j)̸ =(0,j 0 ) (b, ω) ∈ O γ,τ1 ∞,n (i 0 ) s.t. ω • l + µ ∞ j (b, ω) -µ ∞ j0 (b, ω) > 2γ⟨j-j0⟩ ⟨l⟩ τ 2
the following decomposition holds

Φ -1 ∞ L 0 Φ ∞ = ω • ∂ φ + D ∞ + E 2 n ≜ L ∞ + E 2 n .
Now, we can invert the operator L ∞ when the parameters are restricted to the Cantor set

Λ γ,τ1 ∞,n (i 0 ) ≜ (l,j)∈Z d ×S c 0 |l|⩽Nn (b, ω) ∈ O s.t. ω • l + µ ∞ j (b, ω) > γ⟨j⟩ ⟨l⟩ τ 1 .
Therefore, we are able to construct an approximate right inverse of L ω in the Cantor set

G γ n (i 0 ) ≜ O γ,τ1 ∞,n (i 0 ) ∩ O γ,τ1,τ2 ∞,n (i 0 ) ∩ Λ γ,τ1 ∞,n (i 0 ).
We refer to Proposition 13.5 for more details. Now we can implement a Nash-Moser scheme in a similar way to [START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF][START_REF] Hassainia | KAM theory for active scalar equations[END_REF][START_REF] Hmidi | Time quasi-periodic vortex patches for quasi-geostrophic shallow-water equations[END_REF] to find a solution (b, ω)

→ (i ∞ (b, ω), α ∞ (b, ω)) to the equation F(i, α, b, ω, ε) = 0
provided that the parameters (b, ω) are selected among a Cantor set G γ ∞ which is constructed as the intersection of all the Cantor sets appearing in the scheme to invert at each step the linearized operator.

Part II

To find a solution to the original problem we construct a frequency curve b → ω(b, ε) implicitly defined by solving the equation

α ∞ (b, ω(b, ε)) = -ω Eq (b).
Hence, we obtain the desired result for any value of b in the Cantor set

C ε ∞ ≜ b ∈ (b 0 , b 1 ) s.t. (b, ω(b, ε)) ∈ G γ ∞ .
Then, it remains to check that this set is non-trivial. This is done by estimating its measure using perturbed Rüssmann conditions from the equilibrium. In Proposition 14.2, we find a lower bound for the

measure of C ε ∞ , namely |C ε ∞ | ⩾ (b 1 -b 0 ) -Cε δ for some δ = δ(q 0 , d, τ 1 , τ 2 ) > 0.

Hamiltonian reformulation

In this section, we shall write down the equation governing the boundary dynamics. For that purpose, we shall consider a polar parametrization of the boundary and see that the radial deformation in there is subject to a nonlinear and nonlocal Hamiltonian equation of transport type.

Equation satisfied by the radial deformation of the patch

Given b ∈ (0, 1), consider a vortex patch t → 1 Dt , near the Rankine vortex 1 bD with a smooth boundary whose polar parametrization is given by

z(t, θ) ≜ b 2 + 2r(t, θ) 1 2 e iθ , ( 10.1) 
where r is the radial deformation assumed to be small, namely |r(t, θ)| ≪ 1. In the sequel, we shall frequently use the following notations

R(b, t, θ) ≜ b 2 + 2r(t, θ) 1 2 , ( 10.2) 
A r (b, t, θ, η) ≜ R(b, t, θ)e iθ -R(b, t, η)e iη , (

B r (b, t, θ, η) ≜ 1 -R(b, t, θ)R(b, t, η)e i(η-θ) . ( 10.3) 
The equation satisfied by r is given by the following lemma.

Lemma 10.1. For short time T > 0, the radial deformation r, defined through (10.2), satisfies the following nonlinear and nonlocal transport PDE:

∀(t, θ) ∈ [0, T ] × T, ∂ t r(t, θ) + F b [r](t, θ) = 0, (10.5) 
where

F b [r] ≜ -F 0 b [r] -F 1 b [r] + F 2 b [r], (10.6) 
F 0 b [r] ≜ 1 2 ∂ θ r(t, θ) ˆT R 2 (b,t,η) R 2 (b,t,θ) dη, ( 10.7 
)

F 1 b [r] ≜ ˆT log A r (b, t, θ, η) ∂ 2 θη R(b, t, θ)R(b, t, η) sin(η -θ) dη, ( 10.8) 
F 2 b [r] ≜ ˆT log B r (b, t, θ, η) ∂ 2 θη R(b,t,η) R(b,t,θ) sin(η -θ) dη, ( 10.9) 
where R(b, t, θ), A r (b, t, θ, η) and B r (b, t, θ, η) are given by (10.2)-(10.4).

Proof. We start with the vortex patch equation. Denoting n the outward normal vector to the boundary of the patch, the evolution equation of the boundary can be written as

∂ t z(t, θ) • n(t, z(t, θ)) = -∂ θ Ψ(t, z(t, θ)).
For a detailed proof see for instance [99, p.174]. Since n(t, z(t, θ)) = -i ∂ θ z(t, θ) (up to a real constant of renormalization) then the complex formulation of the vortex patch equation is given by

Im ∂ t z(t, θ)∂ θ z(t, θ) = ∂ θ Ψ(t, z(t, θ)).
Using the parametrization (10.1), one easily checks that

Im ∂ t z(t, θ)∂ θ z(t, θ) = -∂ t r(t, θ).
Thus, the vortex patch equation writes in the following way

∂ t r(t, θ) + ∂ θ Ψ(t, z(t, θ)) = 0. (10.10) 
Now we shall compute ∂ θ Ψ(t, z(t, θ)). Using complex notations, we have Let ϵ > 0. We set

∂ θ Ψ(t, z(t, θ)) = ∇Ψ(t, z(t, θ)) • ∂ θ z(t, θ) = 2Re ∂ w Ψ(t, z(t, θ))∂ θ z(t, θ) . ( 10 
f ϵ (ξ, ξ) ≜ (ξ -w) log |ξ -w| 2 + ϵ -1 -ξ -1 w log |1 -wξ| 2 -1 .
Then

∂ ξ f ϵ (ξ, ξ) = log |w -ξ| 2 + ϵ - ϵ |w -ξ| 2 + ϵ -log |ξw -1| 2 .
Using the complex version of Stokes' Theorem,

2i ˆD ∂ ξ f ϵ (ξ, ξ)dA(ξ) = ˆ∂D f ϵ (ξ, ξ)dξ,
then passing to the limit as ϵ goes to 0, using in particular dominated convergence theorem, we obtain

Ψ(t, w) = 1 8iπ ˆ∂Dt (ξ -w) log |ξ -w| 2 -1 dξ -1 8iπ ˆ∂Dt ξ -1 w log |1 -wξ| 2 -1 dξ.
Performing the change of variables ξ = z(t, η), given by (10.1), and using the notation (A.3) we can write

Ψ(t, w) = 1 4i ˆT(z(t, η) -w) log |z(t, η) -w| 2 -1 ∂ η z(t, η)dη -1 4i ˆT z(t, η) -1 w log |1 -wz(t, η)| 2 -1 ∂ η z(t, η)dη. Part II It follows that ∂ w Ψ(t, w) = -1 4i ˆT log |z(t, η) -w| 2 ∂ η z(t, η)dη -1 4i ˆT z(t, η) - 1 w 1 w 2 z(t, η) -1 w + 1 w ∂ η z(t, η)dη. ( 10.13) 
Direct computations lead to

z(t, η) -1 w z(t, η) -1 w ∂ η z(t, η) = ∂ η log z(t, η) - 1 w 2 + log |w| 2 z(t, η) - 1 w -∂ η z(t, η).
Inserting this identity into (10.13), integrating by parts, using the morphism property of the logarithm and the periodicity imply

∂ w Ψ(t, w) = -1 4i ˆT log |z(t, η) -w| 2 ∂ η z(t, η)dη + 1 4i ˆT log |1 -wz(t, η)| 2 ∂ η z(t, η) 1 w 2 dη -1 4i ˆT z(t, η)∂ η z(t, η) 1 w dη. ( 10.14) 
As a consequence, one gets

2Re ∂ w Ψ(t, z(t, θ))∂ θ z(t, θ) = -1 2 ˆT log |z(t, η) -z(t, θ)| 2 Im ∂ η z(t, η)∂ θ z(t, θ) dη + 1 2 ˆT log |1 -z(t, θ)z(t, η)| 2 Im ∂ η z(t, η) ∂ θ z(t, θ) z(t, θ) 2 dη -1 2 ˆT Im z(t, η)∂ η z(t, η) ∂ θ z(t, θ) z(t, θ) dη.
That is, by (10.11),

∂ θ Ψ(t, z(t, θ)) = -1 2 ˆT log |z(t, η) -z(t, θ)| 2 ∂ 2 θη Im z(t, η)z(t, θ) dη + 1 2 ˆT log |1 -z(t, θ)z(t, η)| 2 ∂ 2 θη Im z(t, η) z(t, θ) dη -1 2 ˆT Im z(t, η)∂ η z(t, η) ∂ θ z(t, θ) z(t, θ) dη.
From (10.1) we immediately get

Im z(t, η)z(t, θ) = R(b, t, θ)R(b, t, η) sin(η -θ), Im z(t, η) z(t, θ) = R(b, t, θ) R(b, t, η) sin(η -θ), Im z(t, η)∂ η z(t, η) ∂ θ z(t, θ) z(t, θ) = R 2 (b, t, η) R 2 (b, t, θ) ∂ θ r(t, θ) -∂ η r(t, η).
Combining the last four identities with (10.10) and using the notations (10.1)-(10.4) we conclude the desired result.

We look for time quasi-periodic solutions of (10.5); that are functions in the form

r(t, θ) = r(ωt, θ),
where r = r(φ, θ) :

T d+1 → R, ω ∈ R d , d ∈ N * .
With this ansatz, the equation (10.5) becomes

ω • ∂ φ r(φ, θ) + F b [r](φ, θ) = 0. (10.15)

Hamiltonian structure

In this section, we show that the contour dynamics equation (10.5) has a Hamiltonian structure related to the kinetic energy

E(r)(t) ≜ - 1 2π ˆDt Ψ(t, z)dA(z), (10.16) 
which is a conserved quantity for (1.5). It is well-known that the bidimensional Euler equations admits a

Hamiltonian structure and we shall see here that such structure still persists at the level of the boundary equation, which is a stronger formulation.

Proposition 10.1. The equation (10.5) is a Hamiltonian equation in the form

∂ t r = ∂ θ ∇H(r)
, where H(r) ≜ 1 2 E(r), (10.17

)
and ∇ is the L 2 θ (T)-gradient associated with the L 2 θ (T) normalized inner product

ρ 1 , ρ 2 L 2 (T) ≜ ˆT ρ 1 (θ)ρ 2 (θ)dθ.
Proof. In polar coordinates, the stream function, given by (10.12), at some point w ∈ D writes

Ψ(t, w) = ˆT ˆR(b,t,η) 0 G w, ℓ 2 e iη ℓ 2 dℓ 2 dη with G (w, ξ) ≜ log w -ξ 1 -wξ (10.18)
and kinetic energy E, in (10.16), reads

E(r)(t) = - ˆT ˆT ˆR(b,t,θ) 0 ˆR(b,t,η) 0 G ℓ 1 e iθ , ℓ 2 e iη ℓ 2 dℓ 2 ℓ 1 dℓ 1 dθdη.
Differentiating with respect to r in the direction ρ and using the symmetry of the kernel

G(w, ξ) = G(ξ, w) yields d r E(r)[ρ](t) = -2 ˆT ρ(t, θ) ˆT ˆR(b,t,η) 0 G R(b, t, θ)e iθ , ℓ 2 e iη ℓ 2 dℓ 2 dη dθ = -2 ˆT ρ(t, θ)Ψ t, R(b, t, θ)e iθ dθ. Since d r E(r)[ρ] = ⟨∇E, ρ⟩ L 2 (T) then ∇E(r)(t, θ) = -2Ψ t, R(b, t, θ)e iθ . ( 10.19) 
Finally, using (10.19) and comparing (10.17) with (10.10) we conclude the desired result. This achieves the proof of Proposition 10.1. Now, we shall present the symplectic structure associated with the Hamiltonian equation (10.17). This will be relevant later in Section 12.1 when introducing the action-angle variables. We shall also explore

Part II some symmetry property for (10.17). Observe that this latter equation implies

d dt ˆT r(t, θ)dθ = 0.
Therefore, we will consider the phase space with zero average in the space variable L 2 0 (T) defined in (4.23). The equation (10.17) induces on the phase space L 2 0 (T) a symplectic structure given by the symplectic 2-form W defined in (4.24). The Hamiltonian vector field is X H (r) = ∂ θ ∇H(r) is defined similarly to (4.25). We shall now look at the reversibility property of the equation (10.17). Using the change of variables η → -η and parity arguments, one gets

F b • S = -S • F b ,
where F b is given by (10.6) and S is the involution introduced in (4.27). Then we conclude by Lemma 10.1, (10.17) and (4.28) that the Hamiltonian vector field X H satisfies

X H • S = -S • X H .
Thus, we will look for quasi-periodic solutions satisfying the reversibility condition r(-t, -θ) = r(t, θ).

Linearization and structure of the equilibrium frequencies

In the current section, we linearize the equation (10.5) at a given small state r close to the equilibrium. At this latter, we shall see that the linear operator is a Fourier multiplier with polynomial linear frequencies with respect to the radius of the Rankine patch bD. At the end of this section, we also check the transversality conditions for the unperturbed frequency vector.

Linearized operator

We shall first prove that the linearized operator at a general small state r can be decomposed into the sum of a variable coefficients transport operator, a nonlocal operator of order 0 and a smoothing nonlocal operator in the variable θ. More precisely, we have the following lemma.

Lemma 11.1. The linearized Hamiltonian equation of (10.17) at a state r is the time-dependent Hamiltonian system

∂ t ρ(t, θ) = -∂ θ V r (b, t, θ)ρ(t, θ) + L r (ρ)(b, t, θ) -S r (ρ)(b, t, θ) ,
where the function V r is defined by

V r (b, t, θ) = -1 2 ˆT R 2 (b,t,η) R 2 (b,t,θ) dη (11.1) - 1 R(b,t,θ) ˆT log A r (b, t, θ, η) ∂ η R(b, t, η) sin(η -θ) dη - 1 R 3 (b,t,θ) ˆT log B r (b, t, θ, η) ∂ η R(b, t, η) sin(η -θ) dη, L r is a nonlocal operator in the form L r (ρ)(b, t, θ) = ˆT ρ(t, η) log (A r (t, θ, η)) dη (11.2)
and S r is a smoothing nonlocal operator in the form

S r (ρ)(b, t, θ) = ˆT ρ(t, η) log (B r (t, θ, η)) dη. (11.3)
We recall that A r , B r and R are defined by (10.3), (10.4) and (10.2), respectively.

Moreover, if r(-t, -θ) = r(t, θ), then V r (b, -t, -θ) = V r (b, t, θ). ( 11.4) 
Proof. In all the proof, we shall omit the dependence of our quantities with respect to the variables b and t. Notice that linearizing (10.10) amounts to compute the Gâteaux derivative of the stream function

Ψ(r, z(θ)) ≜ Ψ(z(θ))
given by ( 10.12) at point r in the direction ρ (real-valued). All the computations are done at a formal level, but can be rigorously justified in a classical way in the functional context introduced in Section A. Applying the chain rule gives

d r Ψ r, z(θ) [ρ] = d r Ψ(r, w)[ρ] |w=z(θ) + 2Re ∂ w Ψ(r, w) |w=z(θ) d r z(θ)[ρ] . ( 11.5) 
Differentiating (10.18) gives

d r Ψ(r, w)[ρ] = ˆT log w -R(η)e iη 1 -R(η)e -iη w ρ(η)dη. ( 11.6) 
On the other hand, from (10.14) and the identity

d r z(θ)[ρ](θ) = ρ(θ) R(θ) e iθ , we obtain 2Re ∂ w Ψ(r, w) |w=z(θ) d r z(θ)[ρ] = -ρ(θ) R(θ) 1 2 ˆT log |z(η) -z(θ)| 2 ∂ η Im z(η)e -iθ dη -ρ(θ) R 3 (θ) 1 2 ˆT log |1 -z(θ)z(η)| 2 ∂ η Im z(η)e iθ dη + ρ(θ) R 2 (θ) 1 2 ˆT Im ∂ η z(η)z(η) dη. ( 11.7) 
Putting together (11.6), (11.5), (11.7) and using the identities

Im z(η)e -iθ = R(η) sin(η -θ), Im ∂ η z(η)z(η) = -R 2 (η),
we conclude the desired result. The symmetry property (11.4) is an immediate consequence of (11.1) with the change of variables η → -η. This achieves the proof of Lemma 11.1.

The following lemma shows that the linearized operator at the equilibrium state is a Fourier multiplier.

This provides an integrable Hamiltonian equation from which we shall generate, in Proposition 11.1, quasi-periodic solutions.

Lemma 11.2. The following properties hold true.

1. The linearized equation of (10.17) at the equilibrium state (r = 0) writes

∂ t ρ = ∂ θ L(b)ρ = ∂ θ ∇H L (ρ), (11.8) 
where L(b) is the self-adjoint operator on L 2 0 (T) defined by

L(b) ≜ - 1 2 -K b * • (11.9)
with

K b ≜ K 1,b -K 2,b , (11.10) 
K 1,b (θ) ≜ 1 2 log sin 2 θ 2 , ( 11.11) 
K 2,b (θ) ≜ log |1 -b 2 e iθ | . (11.
12) 

It is generated by the quadratic Hamiltonian

H L (ρ) ≜ 1 2 ⟨L(b)ρ, ρ⟩ L 2 (T) . ( 11 
L(b)ρ(θ) = - j∈Z * Ωj (b) j ρ j e ijθ and H L (ρ) = - j∈Z * Ωj (b) 2j |ρ j | 2 , ( 11.14) 
where Ω j (b) j∈Z * is defined by

∀j ∈ N * , Ω j (b) = j -1 + b 2j 2 and Ω -j (b) = -Ω j (b). (11.15)
Moreover, the reversible solutions of the equation (11.8) take the form

ρ(t, θ) = j∈Z * ρ j cos (jθ -Ω j (b)t), ρ j ∈ R. (11.16) 
Proof. 1. Notice that the quantities A r and B r , introduced in (10.3), (10.4), can be rewritten as follows

A r (b, t, θ, η) = R 2 (b, t, θ) + R 2 (b, t, η) -2R(b, t, θ)R(b, t, η) cos(η -θ) 1 2 = R(b, t, θ) -R(b, t, η) 2 + 4R(b, t, θ)R(b, t, η) sin 2 (η -θ) 1 2
(11.17 and

B r (b, t, θ, η) = R 2 (b, t, θ)R 2 (b, t, η) -2R(b, t, θ)R(b, t, η) cos(η -θ) + 1 1 2 . ( 11.18) 
Taking r = 0 in (11.17), (10.4) and (10.2) gives

A 0 (b, t, θ, η) = 2b sin η-θ 2 , B 0 (b, t, θ, η) = |1 -b 2 e i(η-θ) | and R(b, t, θ) = b. (11.19)
According to (11.1), (11.2) and (11.3) we obtain, after straightforward simplifications using (11.19),

V 0 (b, t, θ) = -1 2 -1 2 ˆT log 4b 2 sin 2 η 2 cos(η)dη - 1 b 2 ˆT log |1 -b 2 e iη | cos(η)dη, L 0 (ρ)(b, t, θ) = ˆT log 2b sin η-θ 2 ρ(t, η)dη, S 0 (ρ)(b, t, θ) = ˆT log 1 -b 2 e i(η-θ) ρ(t, η)dη.
We then see that L 0 and S 0 are convolution operators given by

L 0 = K 1,b * • with K 1,b (θ) ≜ 1 2 log sin 2 θ 2 , S 0 = K 2,b * • with K 2,b (θ) ≜ log |1 -b 2 e iθ | .

2.

To describe the operators above, it suffices to look for their actions on the Fourier basis (e j ) j∈Z * of L 2 0 (T). We first study the operator L 0 . Recall the following formula which can be found in [START_REF] Castro | Uniformly rotating analytic global patch solutions for active scalars[END_REF]Lem. A.3]

∀j ∈ Z * , ˆT log sin 2 η 2 cos(jη)dη = - 1 |j| . ( 11.20) 
Using (11.20) together with symmetry arguments, one obtains

∀j ∈ Z * , K 1,b * e j (θ) = 1 2 ˆT log sin 2 η 2 e ij(θ-η) dη = e j (θ) 2 ˆT log sin 2 η 2 cos (jη)dη (11.21) 
= -e j (θ) 2|j| . (11.22) We now turn to the study of the operator S 0 . Using the following identity proved in [START_REF] Roulley | Vortex rigid motion in quasi-geostrophic shallow-water equations[END_REF]Lem. 3.2]

∀j ∈ Z * , ˆT log |1 -b 2 e iη | cos(jη)dη = - b 2|j| 2|j| , ( 11.23) 
we obtain

∀j ∈ Z * , K 2,b * e j (θ) = e j (θ) ˆT log |1 -b 2 e iη | cos(jη)dη = - b 2|j| e j (θ) 2|j| . ( 11.24) 
In view of the expression of V 0 and using formulae (11.20) and (11.23) we find 

V 0 (b, t, θ) = 1 2 . ( 11 
∀j ∈ Z * , ρj = -i Ω j (b)ρ j ,
where Ω j (b) is defined by (11.15). Solving the previous ODE gives

ρ(t, θ) = j∈Z * ρ j (0)e i(jθ-Ωj (b)t) .
Therefore, every real-valued reversible solution to (11.8) has the form (11.16). This ends the proof of Lemma 11.2.

Properties of the equilibrium frequencies

The goal of this section is to explore some important properties of the equilibrium frequencies. We shall first show some bounds on these frequencies then discuss their non-degeneracy through the transversality conditions. Such conditions are crucial in the measure estimates of the final Cantor set giving rise to quasi-periodic solutions for the linear and the nonlinear problems.

Lemma 11.3. The following properties hold true.

(i) For all b ∈ (0, 1), the sequence Ωj (b) j j∈N * is strictly increasing.

(ii) For all j ∈ Z * , we have

∀ 0 < b 0 ⩽ b < 1, |Ω j (b)| ⩾ b 2 0 2 |j|.
(iii) For all j, j ′ ∈ Z * , we have

∀ 0 < b 0 ⩽ b < 1, |Ω j (b) ± Ω j ′ (b)| ⩾ b 2 0 6 |j ± j ′ |. (iv) Given 0 < b 0 < b 1 < 1 and q 0 ∈ N, there exists C 0 > 0 such that ∀j, j ′ ∈ Z * , max q∈ 0,q0 sup b∈[b0,b1] ∂ q b Ω j (b) -Ω j ′ (b) ⩽ C 0 |j -j ′ |.
Proof. (i) This point was proved in [86, Prop. 2].

(ii) By symmetry (11.15), it suffices to show the inequality for j ∈ N * . From (i) we have

Ω j (b) j ⩾ Ω 1 (b) = b 2 2 ⩾ b 2 0 2 • (iii)
In view of the symmetry (11.15), it suffices to check the property for j, j ′ ∈ N * . By symmetry in j, j ′ we may assume that j ⩾ j ′ . For j = j ′ = 1 one has

Ω 1 (b) + Ω 1 (b) = b 2 ⩾ b 2 0 •
In the case where j ⩾ 2 and j ′ ⩾ 1 we get

Ω j (b) + Ω j ′ (b) = j + j ′ -2 2 + b 2j + b 2j ′ 2 ⩾ (j + j ′ ) j + j ′ -2 2(j + j ′ ) ⩾ j + j ′ 6 •
Now we shall move to the difference. Using Taylor formula we obtain, for all j > j ′ ⩾ 1,

Ω j (b) -Ω j ′ (b) = j -j ′ 2 + b 2j -b 2j ′ 2 = j -j ′ 2 + log(b) ˆj j ′ b 2x dx ⩾ j -j ′ 2 (1 + 2 log(b)b 2j ) ⩾ j -j ′ 4 •
(iv) The case j = j ′ is trivial, then from the symmetry (11.15) and without loss of generality we shall assume that j > j ′ ⩾ 1. First, remark that

∀b ∈ (0, 1), |Ω j (b) ± Ω j ′ (b)| ⩽ (j -1) ± (j ′ -1) 2 + b 2j ′ ± b 2j 2 ⩽ j ± j ′ .
Now, for all q ∈ N * , one has

∂ q b Ω j (b) ± Ω j ′ (b) = 1 2 ∂ q b b 2j ± b 2j ′ .
Moreover, for all q ∈ 1, q 0 and n ∈ N * ,

0 ⩽ ∂ q b (b n ) ⩽ q! n q b n-q ⩽ n q0 b n 1 b q0 0 • Since b 1 ∈ (0, 1) then the sequence (n q0 b n 1 ) n∈N is bounded. Therefore, there exists C 0 ≜ C 0 (q 0 , b 0 , b 1 ) > 0 such that ∀n ∈ N, 0 ⩽ ∂ q b (b n ) ⩽ C 0 . ( 11.26) 
We deduce that for all q ∈ 1, q 0 ,

∂ q b Ω j (b) ± Ω j ′ (b) ⩽ C 0 ⩽ C 0 (j ± j ′ ).
This concludes the proof of Lemma 11.3.

Let us consider finitely many Fourier modes, called tangential sites, gathered in the tangential set S defined by

S ≜ {j 1 , . . . , j d } ⊂ N * with 1 ⩽ j 1 < j 2 < . . . < j d . ( 11.27) 
Now, we define the equilibrium frequency vector by

ω Eq (b) ≜ (Ω j (b)) j∈S , (11.28) 
where Ω j (b) is defined by (11.15). We shall now investigate the non-degeneracy and the transversality properties satisfied by ω Eq . We have the following result. Arguing by contradiction, suppose that there exists c

≜ (c 1 , . . . , c d ) ∈ R d \{0} such that ∀b ∈ [b 0 , b 1 ], d k=1 c k Ω j k (b) = 0. (11.29) 
Since Ω j (b) is polynomial in b then, from (11.15), one has

∀b ∈ R, d k=1 c k (j k -1 + b 2j k ) = 0. (11.30)
Taking the limit b → 0 in (11.30) gives the relation

d k=1 c k (j k -1) = 0, which, inserted into (11.30), implies ∀b ∈ R, d k=1 c k b 2j k = 0. Since j 1 < j 2 < . . . < j d , then ∀k ∈ 1, d , c k = 0,
which contradicts the assumption.

▶ Next, we shall check that the function (ω Eq , 1) is non-degenerate on [b 0 , b 1 ]. Suppose, by contradiction, that there exists c

≜ (c 1 , . . . , c d , c d+1 ) ∈ R d+1 \{0} such that ∀b ∈ [b 0 , b 1 ], c d+1 + d k=1 c k Ω j k (b) = 0. (11.31) 
Since Ω j (b) is polynomial in b then, from (11.15), one may writes

∀b ∈ R, c d+1 + 1 2 d k=1 c k (j k -1 + b 2j k ) = 0. (11.32) 
Taking the limit b → 0 in (11.32) yields

c d+1 + 1 2 d k=1 c k (j k -1) = 0.
Inserting this relation into (11.32) gives

∀b ∈ R, d k=1 c k b 2j k = 0.
Reasoning as in the previous point, we obtain

∀k ∈ 1, d , c k = 0
and then c d+1 = 0, by coming back to (11.32), contradicting the assumption.

We shall now state the transversality conditions satisfied by the unperturbed frequencies.

Lemma 11.5.

[Transversality] Let 0 < b 0 < b 1 < 1. Set q 0 = 2j d + 2.
Then, there exists ρ 0 > 0 such that the following results hold true. Recall that ω Eq and Ω j are defined in (11.28) and (11.15), respectively.

(i) For all l ∈ Z d \ {0}, we have

inf b∈[b0,b1] max q∈ 0,q0 |∂ q b ω Eq (b) • l| ⩾ ρ 0 ⟨l⟩. (ii) For all (l, j) ∈ Z d × (N * \ S) inf b∈[b0,b1] max q∈ 0,q0 ∂ q b ω Eq (b) • l ± j 2 ⩾ ρ 0 ⟨l⟩. (iii) For all (l, j) ∈ Z d × (N * \ S) inf b∈[b0,b1] max q∈ 0,q0 ∂ q b ω Eq (b) • l ± Ω j (b) ⩾ ρ 0 ⟨l⟩. (iv) For all l ∈ Z d , j, j ′ ∈ N * \ S with (l, j) ̸ = (0, j ′ ), we have inf b∈[b0,b1] max q∈ 0,q0 ∂ q b ω Eq (b) • l + Ω j (b) ± Ω j ′ (b) ⩾ ρ 0 ⟨l⟩.
Proof. (i) Assume by contradiction that for all ρ 0 > 0, there exist

l ∈ Z d \ {0} and b ∈ [b 0 , b 1 ] such that max q∈ 0,q0 |∂ q b ω Eq (b) • l| < ρ 0 ⟨l⟩.
In particular, for the choice Therefore, denoting

ρ 0 = 1 m+1 , we can construct sequences l m ∈ Z d \ {0} and b m ∈ [b 0 , b 1 ] such that ∀q ∈ 0, q 0 , ∂ q b ω Eq (b m ) • lm ⟨lm⟩ < 1 m+1 • (11.33) 
P 0 ≜ ω Eq (X) • c ∈ R 2j d [X]
then passing to the limit in (11.33) as m → ∞ leads to ∀q ∈ 0, q 0 , P (q) 0 ( b) = 0.

Hence, using the particular choice of q 0 , we conclude that the polynomial (Xb)

2j d +3 divides P 0 , (X -b) 2j d +3 |P 0 .
Since deg(P 0 ) ⩽ 2j d , we conclude that P 0 is identically zero. This contradicts the non-degeneracy of the equilibrium frequency vector ω Eq stated in Lemma 11.4.

(ii)

The case l = 0, j ∈ N * is trivially satisfied. Thus, we shall consider the case j ∈ N, l ∈ Z d \ {0}. By the triangle inequality combined with the boundedness of ω Eq we find

ω Eq (b) • l + j 2 ⩾ 1 2 |j| -|ω Eq (b) • l| ⩾ 1 2 |j| -C|l| ⩾ |l|
provided that |j| ⩾ C 0 |l| for some C 0 > 0. Thus, we shall restrict the proof to indices j and l with

|j| ⩽ C 0 |l|, j ∈ N, l ∈ Z d \ {0}. (11.34) 
Arguing by contradiction as in the previous case, we may assume the existence of sequences Denoting

l m ∈ Z d \{0}, Part II j m ∈ N satisfying (11.34) and b m ∈ [b 0 , b 1 ] such that ∀q ∈ 0, q 0 , ∂ q b ω Eq (b m ) • lm ⟨lm⟩ + jm 2⟨lm⟩ < 1 1+m . ( 11 
Q 0 ≜ ω Eq (X) • c + d ∈ R 2j d [X]
and letting m → ∞ in (11.35) we obtain ∀q ∈ 0, q 0 , Q

(q) 0 ( b) = 0.
Consequently, using the particular choice of q 0 , we get

(X -b) 2j d +3 |Q 0 .
Since deg(Q 0 ) ⩽ 2j d , we conclude that Q 0 is identically zero. This contradicts Lemma 11.4.

(iii) Consider (l, j) ∈ Z d × (N * \ S).
Then applying the triangle inequality and Lemma 11.3-(ii), yields

|ω Eq (b) • l ± Ω j (b)| ⩾ |Ω j (b)| -|ω Eq (b) • l| ⩾ b 2 0 2 j -C|l| ⩾ ⟨l⟩
provided j ⩾ C 0 ⟨l⟩ for some C 0 > 0. Thus as before we shall restrict the proof to indices j and l with 0 ⩽ j < C 0 ⟨l⟩, j ∈ N * \ S and l ∈ Z d \{0}. (11.36) Proceeding by contradiction, we may assume the existence of sequences 

l m ∈ Z d \ {0}, j m ∈ N \ S satisfying (11.36) and b m ∈ [b 0 , b 1 ] such that ∀q ∈ 0, q 0 , ∂ q b ω Eq (b) • lm |lm| ± Ωj m (b) |lm| |b=bm < 1 m+1 • (11.37) 
P 0,ȷ ≜ ω Eq (X) • l ± Ω ȷ(X ) ∈ R max(2j d ,2ȷ) [X],
then taking the limit m → ∞ in (11.37), yields ∀q ∈ 0, q 0 , P

(q) 0,ȷ ( b) = 0.
If ȷ < j d , then in a similar way to the point (i), we find that P 0,ȷ = 0 which contradicts Lemma 11.4, applied with ω Eq , Ω ȷ in place of ω Eq . Hence, we shall restrict the discussion to the case ȷ > j d . Since ω Eq (X) • l is of degree 2j d , then we obtain in view of our choice of q 0 that

1 2 q! 2ȷ q b 2ȷ-2j d -1 = ∂ 2j d +1 b Ω ȷ( b) = 0.
This implies that b = 0 which contradicts the fact that b ∈ [b 0 , b 1 ] ⊂ (0, 1).

▶ Case ❷ : (l m ) m is unbounded. Up to an extraction we can assume that lim

m→∞ |l m | = ∞.
We have two sub-cases.

• Sub-case ① : (j m ) m is bounded. In this case and up to an extraction we can assume that it converges. Then, taking the limit m → ∞ in (11.37), we find

∀q ∈ 0, q 0 , ∂ q b ω Eq ( b) • c = 0.
Therefore, we obtain a contradiction in a similar way to the point (i).

• Sub-case ② : (j m ) m is unbounded. Then up to an extraction we can assume that lim m→∞ j m = ∞. We write according to (11.15)

Ω jm (b) |l m | = j m 2|l m | - 1 2|l m | + b 2jm 2|l m | . ( 11.38) 
By (11.36), the sequence jm Consequently, taking the limit m → ∞ in (11.37), we have

∀q ∈ 0, q 0 , ∂ q b ω Eq (b) • c ± d |b= b = 0.
Then, in a similar way the the point (ii), we deduce that the polynomial ω Eq (X) • c + d is identically zero, which is in contradiction with Lemma 11.4.

(iv) Consider l ∈ Z d , j, j ′ ∈ N * \ S with (l, j) ̸ = (0, j ′ ). Then applying the triangle inequality combined with Lemma 11.3-(iii), we infer that

|ω Eq (b) • l + Ω j (b) ± Ω j ′ (b)| ⩾ |Ω j (b) ± Ω j ′ (b)| -|ω Eq (b) • l| ⩾ b 2 0 6 |j ± j ′ | -C|l| ⩾ ⟨l⟩ provided that |j ± j ′ | ⩾ c 0 ⟨l⟩ for some c 0 > 0.
Then it remains to check the proof for indices satisfying

|j ± j ′ | < c 0 ⟨l⟩, l ∈ Z d \{0}, j, j ′ ∈ N * \ S. (11.39) 
Reasoning by contradiction as in the previous cases, we get for all m ∈ N, real numbers

l m ∈ Z d \ {0}, j m , j ′ m ∈ N * \ S satisfying (11.39) and b m ∈ [b 0 , b 1 ] such that ∀q ∈ 0, q 0 , ∂ q b ω Eq (b) • lm |lm| + Ωj m (b)±Ω j ′ m (b) |lm| |b=bm < 1 m+1 • (11.40) 
Up to an extraction we can assume that lim Part II ▶ Case ❶ : (l m ) m is bounded. Up to an extraction we may assume that lim m→∞ l m = l ̸ = 0. Now according to (11.39) we have two sub-cases to discuss depending whether the sequences (j m ) m and (j ′ m ) m are simultaneously bounded or unbounded.

• Sub-case ① : (j m ) m and (j ′ m ) m are bounded. In this case, up to an extraction we may assume that these sequences are stationary j m = ȷ and j ′ m = ȷ′ with ȷ, ȷ′ ∈ N * \ S. Hence, denoting

P 0,ȷ,ȷ ′ ≜ ω Eq (X) • l + Ω ȷ(X ) ± Ω ȷ′ (X) ∈ R max(2j d ,2ȷ,2ȷ ′ ) [X],
then, taking the limit m → ∞ in (11.37), we have ∀q ∈ 0, q 0 , P

(q) 0,ȷ,ȷ ′ ( b) = 0.
If max(ȷ, ȷ′ ) < j d , then, we deduce that P 0,ȷ,ȷ ′ = 0 which gives a contradiction as the previous cases, up to replacing ω Eq by ω Eq , Ω ȷ, Ω ȷ′ . Therefore, we are left to study the case max(ȷ, ȷ′ ) > j d . Notice that the cases ȷ = ȷ′ and min(ȷ, ȷ′ ) > j d are byproducts of point (i) and (iii). Without loss of generality, we may assume that ȷ > ȷ′ ⩾ j d + 1. In particular, since ω Eq (X) • l is of degree 2j d , then, according to our choice of q 0 , we obtain

C 1 bα ± C 2 bβ = 0 C 1 α bα ± C 2 β bβ = 0, (11.41) 
with

α ≜ 2ȷ -2j d -1, β ≜ 2ȷ ′ -2j d -1, C 1 ≜ q 0 ! 2ȷ q 0 and C 2 ≜ q 0 ! 2ȷ ′ q 0 .
Since C 1 and C 2 are positive, we immediately get from the first equation in (11.41) that

C 1 bα + C 2 bβ = 0 ⇒ b = 0.
This contradicts the fact that b ∈ [b 0 , b 1 ] ⊂ (0, 1). In the case where we have the difference, the system (11.41) gives

C 2 C 1 = C 2 β C 1 α ,
which implies in turn that α = β, that is ȷ = ȷ′ which is excluded by hypothesis.

• Sub-case ② : (j m ) m and (j ′ m ) m are both unbounded and without loss of generality we can assume that lim (11.15) we get the splitting

m→∞ j m = lim m→∞ j ′ m = ∞. Coming back to
Ω jm (b) ± Ω j ′ m (b) |l m | = j m ± j ′ m 2|l m | + b 2jm ± b 2j ′ m 2|l m | .
Using once again (11.39) and up to an extraction we have lim

m→∞ jm±j ′ m |lm| = d. Thus lim m→∞ |l m | -1 ∂ q b Ω jm (b) ± Ω j ′ m (b) |b=bm = d if q = 0 0 if q ̸ = 0.
By taking the limit as m → ∞ in (11.40), we find

∀q ∈ 0, q 0 , ∂ q b ω Eq (b) • c + d |b=b = 0.
This leads to a contradiction as in the point (ii).

▶ Case ❷ : (l m ) m is unbounded. Up to an extraction we can assume that lim m→∞ |l m | = ∞. We shall distinguish three sub-cases.

• Sub-case ①. The sequences (j m ) m and (j ′ m ) m are bounded. In this case and up to an extraction they will converge and then taking the limit in (11.40) yields,

∀q ∈ 0, q 0 , ∂ q b ω Eq ( b) • c = 0.
which leads to a contradiction as before.

• Sub-case ②. The sequences (j m ) m and (j ′ m ) m are both unbounded. This is similar to the sub-case ② of the case ❶.

• Sub-case ③. The sequence (j m ) m is unbounded and (j ′ m ) m is bounded (the symmetric case is similar). Without loss of generality we can assume that lim 

|l m | -1 ∂ q b Ω jm (b) ± Ω j ′ m (b) |b=bm = d if q = 0 0 if q ̸ = 0.
Hence, taking the limit in (11.40) implies

∀q ∈ 0, q 0 , ∂ q b ω Eq (b) • c + d b=b = 0,
which also gives a contradiction as the previous cases. This completes the proof of Lemma 11.5.

Notice that by selecting only a finite number of frequencies, the sum in (11.16) give rise to quasi-periodic solutions of the linearized equation (11.8), up to selecting the parameter b in a Cantor-like set of full measure. We have the following result. 

ρ(t, θ) = j∈S ρ j cos jθ -Ω j (b)t , ρ j ∈ R * (11.42)
is a time quasi-periodic reversible solution to the equation (10.17) with the vector frequency

ω Eq (b) = Ω j (b) j∈S .
The proof of this proposition follows in a similar way to Proposition 5.1.

Functional of interest and regularity aspects

The main goal of this section is to reformulate the problem in a dynamical system language more adapted to KAM techniques. More precisely, we shall write the equation (10.17) as a Hamiltonian perturbation of an integrable system, given by the linear dynamics at the equilibrium state. Then, by selecting finitely-many tangential sites and decomposing the phase space into tangential and normal subspaces we can introduce action-angle variables on the tangential part allowing to reformulate the problem in terms of embedded tori. This reduces the problem into the search for zeros of a functional F to which the Nash-Moser implicit function theorem will be applied. We shall also study in this section some regularity aspects for the perturbed Hamiltonian vector field appearing in F and needed during the Nash-Moser scheme. This approach has been intensively used before, for instance in [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Baldi | KAM for autonomous quasi-linear perturbations of KdV[END_REF][START_REF] Berti | Traveling quasi-periodic water waves with constant vorticity[END_REF][START_REF] Berti | Pure gravity traveling quasi-periodic water waves with constant vorticity[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF].

Notice that, according to Lemmata 10.1 and 11.2, the equation (10.17), that is also (10.5), can be written

Part II in the form

∂ t r = ∂ θ L(b)(r) + X P (r) with X P (r) ≜ 1 2 ∂ θ r + ∂ θ K b * r -F b [r], (12.1) 
where the nonlinear functional F b [r] is introduced in (10.6) and the convolution kernel is given by (11.10).

Since we shall look for small amplitude quasi-periodic solutions then it is more convenient to rescale the solution as follows r → εr with r bounded. Hence, the Hamiltonian equation (10.17) takes the form

∂ t r = ∂ θ L(b)(r) + εX Pε (r), (12.2) 
where X Pε is the Hamiltonian vector field defined by X Pε (r) ≜ ε -2 X P (εr). Notice that (12.2) is the Hamiltonian system generated by the rescaled Hamiltonian

H ε (r) = ε -2 H(εr) ≜ H L (r) + εP ε (r), (12.3) 
with H L the quadratic Hamiltonian defined in Lemma 11.2 and εP ε (r) containing terms of higher order more than cubic.

Reformulation with the action-angle and normal variables

Recall from (11.27) that the tangential set is defined by

S ≜ {j 1 , . . . , j d } ⊂ N * with 1 ⩽ j 1 < j 2 < . . . < j d .
We now define the symmetrized tangential sets S and S 0 by S ≜ S ∪ (-S) = {±j, j ∈ S} and S 0 = S ∪ {0}. (12.4)

Since the application b → ω Eq (b) is continuous then ω Eq ([b 0 , b 1 ]) is a compact subset of R d . In particular, there exists R 0 > 0 such that ω Eq ((b 0 , b 1 )) ⊂ U ≜ B(0, R 0 ).
Then we define the set of parameters as

O ≜ (b 0 , b 1 ) × U . ( 12.5) 
Then we decompose the phase space L 2 0 (T) into the following L 2 (T)-orthogonal direct sum

L 2 0 (T) = L S ⊥ ⊕ L 2 ⊥ , L S ≜ j∈S r j e j , r j = r -j , L 2 ⊥ ≜ z = j∈Z\S0 z j e j ∈ L 2 0 (T) , ( 12.6) 
where we denote e j (θ) = e ijθ . The associated orthogonal projectors Π S , Π ⊥ S0 are defined by

r = j∈Z * r j e j = v + z, v ≜ Π S r ≜ j∈S r j e j , z ≜ Π ⊥ S0 r ≜ j∈Z\S0 r j e j , ( 12.7) 
where v and z are respectively called the tangential and normal variables. For fixed small amplitudes Observe that the function v(-ω Eq (b)t, 0), where ω Eq is defined in (11.28), corresponds to the solution of the linear system (11.8) described by (11.42). In these new coordinates, the involution S defined in (4.27) reads S : (ϑ, I, z) → (-ϑ, I, S z) (12.11) and the symplectic 2-form in (4.24) becomes, after straightforward computations using (12.8) and (12.9),

(a j ) j∈S ∈ (R * + ) d satisfying a -j = a j ,
W = j∈S dϑ j ∧ dI j + 1 2 j∈Z\S0 1 ij dr j ∧ dr -j = j∈S dϑ j ∧ dI j ⊕ W |L 2 ⊥ , ( 12.12) 
where W |L 2 ⊥ denotes the restriction of W to L 2 ⊥ . This proves that the transformation A defined in (12.10) is symplectic and in the action-angle and normal coordinates (ϑ,

I, z) ∈ T d × R d × L 2
⊥ , the Hamiltonian system generated by H ε in (12.3) transforms into the one generated by the Hamiltonian

H ε = H ε • A. ( 12.13) 
Since L(b) in Lemma 11.2 preserves the subspaces L S and L 2 ⊥ then the quadratic Hamiltonian H L in (11.13) (see (11.14)) in the variables (ϑ, I, z) reads, up to an additive constant,

H L • A = - j∈S Ω j (b)I j + 1 2 ⟨L(b) z, z⟩ L 2 (T) = -ω Eq (b) • I + 1 2 ⟨L(b) z, z⟩ L 2 (T) , ( 12.14) 
where ω Eq ∈ R d is the unperturbed tangential frequency vector defined by (11.28). By (12.3) and (12.14),

the Hamiltonian H ε in (12.13) reads

H ε = N + εP ε with N ≜ -ω Eq (b) • I + 1 2 ⟨L(b) z, z⟩ L 2 (T) and P ε ≜ P ε • A. ( 12.15) 
We look for an embedded invariant torus i :

T d → R d × R d × L 2 ⊥ φ → i(φ) ≜ (ϑ(φ), I(φ), z(φ)) (12.16)
of the Hamiltonian vector field

X Hε ≜ (∂ I H ε , -∂ ϑ H ε , Π ⊥ S0 ∂ θ ∇ z H ε ) (12.17)
filled by quasi-periodic solutions with Diophantine frequency vector ω. We point out that for the value ε = 0 the Hamiltonian system

ω • ∂ φ i(φ) = X H0 (i(φ))
possesses, for any value of the parameter b ∈ (b 0 , b 1 ), the invariant torus i flat (φ) ≜ (φ, 0, 0). (12.18) Part II

Now we consider the family of Hamiltonians, (12.19) which depends on the constant vector α ∈ R d . For the value α = -ω Eq (b) we have H α ε = H ε . The parameter α is introduced in order to ensure the validity of some compatibility conditions during the approximate inverse process. We look for zeros of the nonlinear operator

H α ε ≜ N α + εP ε where N α ≜ α • I + 1 2 ⟨L(b) z, z⟩ L 2 (T) ,
F(i, α, (b, ω), ε) ≜ ω • ∂ φ i(φ) -X H α ε (i(φ)) =    ω • ∂ φ ϑ(φ) -α -ε∂ I P ε (i(φ)) ω • ∂ φ I(φ) + ε∂ ϑ P ε (i(φ)) ω • ∂ φ z(φ) -∂ θ L(b)z(φ) + ε∇ z P ε i(φ)    , ( 12.20) 
where P ε is defined in (12.3). For any α ∈ R d , the Hamiltonian H α ε is invariant under the involution S defined in (12.11),

H α ε • S = H α ε .
Thus, we look for reversible solutions of F(i, α, (b, ω), ε) = 0, namely satisfying

ϑ(-φ) = -ϑ(φ), I(-φ) = I(φ), z(-φ) = (S z)(φ). ( 12.21) 
We define the periodic component I of the torus i by

I(φ) ≜ i(φ) -(φ, 0, 0) = (Θ(φ), I(φ), z(φ)) with Θ(φ) = ϑ(φ) -φ
and the weighted Sobolev norm of I as ∥I∥ γ,O q,s ≜ ∥Θ∥ γ,O q,s + ∥I∥ γ,O q,s + ∥z∥ γ,O q,s .

Regularity of the perturbed Hamiltonian vector field

This section is devoted to some regularity aspects of the Hamiltonian involved in the equation (10.17).

We shall need the following lemma.

Lemma 12.1. Let (γ, q, s 0 , s) satisfy (A.2). There exists ε 0 ∈ (0, 1] such that if

∥r∥ γ,O q,s0+2 ⩽ ε 0 ,
then the operators ∂ θ L r and ∂ θ S r , defined in (11.2) and (11.3) write

∂ θ L r = ∂ θ K 1,b * • + ∂ θ L r,1 with L r,1 (ρ)(b, φ, θ) ≜ ˆT ρ(φ, η)K r,1 (b, φ, θ, η)dη, ( 12.22 
)

∂ θ S r = ∂ θ K 2,b * • + ∂ θ S r,1 with S r,1 (ρ)(b, φ, θ) = ˆT ρ(φ, η)K r,1 (b, φ, θ, η)dη (12.23)
where K 1,b , K 2,b are given by (11.11)-(11.12) and the kernels K r,1 (b, φ, θ, η), K r,1 (b, φ, θ, η) ∈ R satisfy the following symmetry property: if r(-φ, -θ) = r(φ, θ) then K r,1 (b, -φ, -θ, -η) = K r,1 (b, φ, θ, η), (12.24)

K r,1 (b, -φ, -θ, -η) = K r,1 (b, φ, θ, η) (12.25)
and the following estimates

∥K r,1 ∥ γ,O q,H s φ,θ,η ≲ ∥r∥ γ,O q,s+1 , (12.26) ∥K r,1 ∥ γ,O q,H s φ,θ,η ≲ ∥r∥ γ,O q,s . (12.27)
Moreover,

∥∂ θ K 1,b * ρ∥ γ,O
q,s ≲ ∥ρ∥ γ,O q,s , (12.28)

∥∂ θ K 2,b * ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s , (12.29) 
∥∂ θ L r,1 ρ∥ γ,O q,s ≲ ∥r∥ γ,O q,s0+2 ∥ρ∥ γ,O q,s + ∥r∥ γ,O q,s+2 ∥ρ∥ γ,O q,s0 , (

∥∂ θ S r,1 ρ∥ γ,O q,s ≲ ∥r∥ γ,O q,s0+1 ∥ρ∥ γ,O q,s + ∥r∥ γ,O q,s+1 ∥ρ∥ γ,O q,s0 . (12.31) Proof. According to (11.17) we may write

A r (φ, θ, η) = 2b sin η-θ 2 R(b, φ, η) -R(b, φ, θ) 2b sin η-θ 2 2 + 1 b 2 R(b, φ, η)R(b, φ, θ) 1 2 ≜ 2b sin η-θ 2 v r,1 (b, φ, θ, η). (12.32)
Notice that v r,1 is smooth when r is smooth and small enough, and v 0,1 = 1. More precisely, by using Lemma A.1-(iv)-(v) combined with Lemma A.2-(ii) and the smallness condition on r, we get

∥v r,1 -1∥ γ,O q,H s φ,θ,η ≲ ∥r∥ γ,O q,s+1 . (12.33) 
Using the morphism property of the logarithm, we can write log(A r (b, φ, θ, η)) = log 2b + 1 2 log sin 2 η-θ 2 + log (v r,1 (b, φ, θ, η)) 

≜ log 2b + K 1,b (η -θ) + K r,
B 2 r (b, φ, θ, η) = B 2 0 (b, φ, θ, η) + R 2 (b, φ, θ)R 2 (b, φ, η) -b 4 -2 R(b, φ, θ)R(b, φ, η) -b 2 cos(η -θ) = B 2 0 (b, φ, θ, η) 1 + P r (b, φ, θ, η) with P r (b, φ, θ, η) ≜ R 2 (b,φ,θ)R 2 (b,φ,η)-b 4 -2 R(b,φ,θ)R(b,φ,η)-b 2 cos(η-θ) 1+b 4 -2b 2 cos(η-θ)
so that we can write log B r (b, φ, θ, η) = log B 0 (b, φ, θ, η) + 1 2 log 1 + P r (b, φ, θ, η) ≜ K 2,b (η -θ) + K r,1 (b, φ, θ, η) (12.35) and (12.25) immediately follows. Moreover, (11.3) and (12.35) give (12.23). Notice that that P r is smooth with respect to each variable and with respect to r with P 0 = 0. We conclude by Lemma A.1-(iv)-(v) and the smallness property on r that

∥P r ∥ γ,O q,H s φ,θ,η ≲ ∥r∥ γ,O q,s .
As a consequence, composition laws in Lemma A.1 together with the smallness property on r imply (12.27). Then, using (12.27), Lemma A.7-(ii) and the smallness property on r, we get (12.31). The estimates (12.28)-(12.29) can be obtained using (11.22), (11.24) and Leibniz rule combined with the following estimate

sup n∈N ∥b → b n ∥ γ,O q ≲ 1.
This ends the proof of Lemma 12.1.

We now provide tame estimates for the vector field X P defined in (12.1).

Lemma 12.2. Let (γ, q, s 0 , s) satisfy (A.2). There exists ε 0 ∈ (0, 1] such that if ∥r∥ γ,O q,s0+2 ⩽ ε 0 , then the vector field X P , defined in (12.1) satisfies the following estimates (i) ∥X P (r)∥ γ,O q,s ≲ ∥r∥ γ,O q,s+2 ∥r∥ γ,O q,s0+1 .

(ii) ∥d r X P (r)[ρ]∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s+2 ∥r∥ γ,O q,s0+1 + ∥r∥ γ,O q,s+2 ∥ρ∥ γ,O q,s0+1 .

(iii) ∥d 2 r X P (r)[ρ 1 , ρ 2 ]∥ γ,O q,s ≲ ∥ρ 1 ∥ γ,O q,s0+1 ∥ρ 2 ∥ γ,O q,s+2 + ∥ρ 1 ∥ γ,O q,s+2 + ∥r∥ γ,O q,s+2 ∥ρ 1 ∥ γ,O q,s0+1 ∥ρ 2 ∥ γ,O q,s0+1 .
Proof. We first prove the estimate (iii) and the estimates (ii) and (i) then follow by Taylor formula since d r X P (0) = 0 and X P (0) = 0. Recall from Lemma 11.1, (12.22) and (12.23) that

d r X H (r)[ρ] = -d r F b (r)[ρ] = -∂ θ (V r ρ) -∂ θ K b * ρ -∂ θ L r,1 ρ + ∂ θ S r,1 ρ.
According to (12.1), P is is the Hamiltonian generated by higher order more than cubic terms H ⩾3 . Then differentiating with respect to r the last expression we obtain

d 2 r X P (r)[ρ 1 , ρ 2 ] = -∂ θ d r V r [ρ 2 ] ρ 1 -∂ θ (d r L r,1 [ρ 2 ]ρ 1 ) + ∂ θ (d r S r,1 [ρ 2 ]ρ 1 ) . (12.36)
Recall, from (12.22) and (12.34), that L r,1 (ρ)(b, φ, θ) = ˆT ρ(φ, η) log(v r,1 (b, φ, θ, η))dη. (12.37) Hence by differentiation we obtain

d r L r,1 (r)[ρ 2 ]ρ 1 (b, φ, θ) = 1 2 ˆT ρ 1 (φ, η) drv 2 r,1 [ρ2](b,φ,θ,η) v 2 r,1 (b,φ,θ,η)
dη. (12.38) Coming back to (12.32) it is obvious that the dependence in r of the functional v 2 r,1 is smooth. Straightforward calculations lead to

1 2 d r v 2 r,1 (r)[ρ 2 ](b, φ, θ, η) = R(b,φ,θ)-R(b,φ,η) sin 2 ( η-θ 2 ) ρ2(φ,θ) R(b,φ,θ) -ρ2(φ,η) R(b,φ,η) + ρ2(φ,θ)R 2 (b,φ,η)+ρ2(φ,η)R 2 (b,φ,θ) R(b,φ,θ)R(b,φ,η)
.

Using (12.33) combined with the law products stated in Lemma A.1, Lemma A.2-(ii) and the smallness condition of Lemma 12.2 we find that

∥d r v 2 r,1 (r)[ρ 2 ]∥ γ,O q,H s φ,θ,η
≲ ∥ρ 2 ∥ γ,O q,s + ∥r∥ γ,O q,s+1 ∥ρ 2 ∥ γ,O q,s0 . (12.39) According to (12.39), (12.38) and using Lemma A.1-(iv)-(v), Lemma A.7-(ii) and the smallness condition we obtain,

∥∂ θ d r L r,1 (r)[ρ 2 ]ρ 1 ∥ γ,O q,s ≲∥d r L r,1 (r)[ρ 2 ]ρ 1 ∥ γ,O q,s+1 ≲∥ρ 1 ∥ γ,O q,s+1 ∥ρ 2 ∥ γ,O q,s0+1 + ∥ρ 1 ∥ γ,O q,s0 ∥ρ 2 ∥ γ,O q,s+1 + ∥r∥ γ,O q,s+2 ∥ρ 2 ∥ γ,O q,s0+1 . (12.40)
Now we shall move to the estimate of d r S r,1 (r)[ρ 2 ]ρ 1 (b, φ, θ). By differentiating with respect to r in (12.23) and (12.35), we obtain

d r S r,1 (r)[ρ 2 ]ρ 1 (b, φ, θ) = 1 2 ˆT ρ 1 (φ, η) drB 2 r [ρ2](b,φ,θ,η) B 2 r (b,φ,θ,η)
dη.

In view of (11.18), direct computations yield

1 2 d r B 2 r (r)[ρ 2 ](b, φ, θ, η) = ρ 2 (φ, θ)R 2 (b, φ, η) + ρ 2 (φ, η)R 2 (b, φ, θ) -ρ 2 (φ, θ) R(b,φ,η) R(b,φ,θ) + ρ 2 (φ, η) R(b,φ,θ) R(b,φ,η) cos(η -θ).
Then, Lemma A.1-(iv)-(v) and the smallness condition on r imply

∥d r B 2 r (r)[ρ 2 ]∥ γ,O q,H s φ,θ,η ≲ ∥ρ 2 ∥ γ,O q,s + ∥r∥ γ,O q,s ∥ρ 2 ∥ γ,O q,s0 .
It follows from Lemma A.7-(ii), that

∥∂ θ d r S r,1 (r)[ρ 2 ]ρ 1 ∥ γ,O q,s ≲∥d r S r,1 (r)[ρ 2 ]ρ 1 ∥ γ,O q,s+1 ≲∥ρ 1 ∥ γ,O q,s+1 ∥ρ 2 ∥ γ,O q,s0+1 + ∥ρ 1 ∥ γ,O q,s0 ∥ρ 2 ∥ γ,O q,s+1 + ∥r∥ γ,O q,s+1 ∥ρ 2 ∥ γ,O q,s0+1 . (12.41) 
Next we shall move to the estimate of d r V r [ρ 2 ]. From Lemma 11.1, we can write

V r = V 0 r + V 1 r + V 2 r , with V 0 r (b, φ, θ) ≜ -1 2 ˆT R 2 (b,φ,η) R 2 (b,φ,θ) dη, V 1 r (b, φ, θ) ≜ -1 R(b,φ,θ) ˆT log A r (b, φ, θ, η) ∂ η R(b, φ, η) sin(η -θ) dη, V 2 r (b, φ, θ) ≜ - 1 R 3 (b,φ,θ) ˆT log B r (b, φ, θ, η) ∂ η R(b, φ, η) sin(η -θ) dη.
Differentiating V 0 r with respect to r in the direction ρ 2 yields

d r V 0 r (r)[ρ 2 ](θ) = -ˆT ρ2(φ,θ)R 2 (b,φ,η)-ρ2(φ,η)R 2 (b,φ,θ) R 4 (b,φ,θ) dη.
Law products in Lemma A.1 and the smallness condition in r then imply

∥d r V 0 r (r)[ρ 2 ]∥ γ,O q,s ≲ ∥ρ 2 ∥ γ,O q,s + ∥r∥ γ,O q,s ∥ρ 2 ∥ γ,O q,s0 . (12.42)
Differentiating V 1 r with respect to r in the direction ρ 2 gives

d r V 1 r (r)[ρ 2 ](θ) = -ˆT log (A r (b, φ, θ, η)) ∂ η d r f r [ρ 2 ](b, φ, θ, η)dη - 1 2 ˆT drv 2 r,1 [ρ2](b,φ,θ,η) v 2 r,1 (b,φ,θ,η) ∂ η f r (b, φ, θ, η)dη ≜ I 1 (θ) + I 2 (θ), Part II with f r (b, φ, θ, η) ≜ R(b,φ,η) R(b,φ,θ) sin(η -θ).
Straightforward computations give

d r f r [ρ 2 ](b, φ, θ) = ρ2(φ,η)R 2 (b,φ,θ)-ρ2(φ,θ)R 2 (b,φ,η) R 3 (b,φ,θ)R(b,φ,η) sin(η -θ).
Then, by law products and composition laws in Lemma A.1 we immediately deduce that

∥∂ η f r ∥ γ,O q,H s φ,θ,η ≲ 1 + ∥r∥ γ,O q,s+1 , (12.43 
)

∥∂ η d r f r [ρ 2 ]∥ γ,O q,H s φ,θ,η ≲ 1 + ∥r∥ γ,O q,s0+1 ∥ρ 2 ∥ γ,O q,s+1 + 1 + ∥r∥ γ,O q,s+1 ∥ρ 2 ∥ γ,O q,s0+1 . (12.44)
The following estimate on I 2 can be obtained combining (12.39), (12.33) and (12.43) together with Lemma A.1-(iv)-(v) and the smallness property on r.

∥I 2 ∥ γ,O q,s ≲ ∥ρ 2 ∥ γ,O q,s + ∥r∥ γ,O q,s+1 ∥ρ 2 ∥ γ,O q,s0 . (12.45)
As for I 1 we argue in a similar way to Lemma 12.1 to get

∥I 1 ∥ γ,O q,s ≲ ∥ρ 2 ∥ γ,O q,s+1 + ∥r∥ γ,O q,s+1 ∥ρ 2 ∥ γ,O q,s0+1 . (12.46) 
Putting together (12.45) and (12.46) yields

∥d r V 1 r (r)[ρ 2 ]∥ γ,O q,s ≲ ∥ρ 2 ∥ γ,O q,s+1 + ∥r∥ γ,O q,s+1 ∥ρ 2 ∥ γ,O q,s0+1 . (12.47)
Differentiating V 2 r with respect to r in the direction ρ 2 yields

d r V 2 r (r)[ρ 2 ](b, φ, θ) = -ˆT log B r (b, φ, θ, η) ∂ η ρ2(φ,η)R 2 (b,φ,θ)-3ρ2(φ,θ)R 2 (b,φ,η) R 5 (b,φ,θ)R(b,φ,η) sin(η -θ) dη - 1 2 ˆT drB 2 r [ρ2](b,φ,θ,η) B 2 r (b,φ,θ,η) ∂ η R(b,φ,η) R 3 (b,φ,θ) sin(η -θ) dη.
Arguing in a similar way as above we find

∥d r V 2 r (r)[ρ 2 ]∥ γ,O q,s ≲ ∥ρ 2 ∥ γ,O q,s+1 + ∥r∥ γ,O q,s+1 ∥ρ 2 ∥ γ,O q,s0+1 . (12.48)
Putting together (12.42), (12.47) and (12.48) gives

∥d r V r (r)[ρ 2 ]∥ γ,O q,s ≲ ∥ρ 2 ∥ γ,O q,s+1 + ∥r∥ γ,O q,s+1 ∥ρ 2 ∥ γ,O q,s0+1 . (12.49)
Therefore, according to the law products in Lemma A.1, (12.49) and the smallness condition we obtain

∂ θ d r V r (r)[ρ 2 ]ρ 1 γ,O q,s ⩽ ∥d r V r (r)[ρ 2 ]ρ 1 ∥ γ,O q,s+1 ≲ d r V r (r)[ρ 2 ] γ,O q,s+1 ρ 1 γ,O q,s0 + d r V r (r)[ρ 2 ] γ,O q,s0 ρ 1 γ,O q,s+1 ≲ ∥ρ 1 ∥ γ,O q,s0 ∥ρ 2 ∥ γ,O q,s+2 + ∥r∥ γ,O q,s+2 ∥ρ 1 ∥ γ,O q,s0 ∥ρ 2 ∥ γ,O q,s0+1 + ∥ρ 1 ∥ γ,O q,s+1 ∥ρ 2 ∥ γ,O q,s0+1 .
Combining the latter estimate with (12.36), (12.40) and (12.41) allows to get

∥d 2 r X P (r)[ρ 1 , ρ 2 ]∥ γ,O q,s ≲ ∥ρ 1 ∥ γ,O q,s0 ∥ρ 2 ∥ γ,O q,s+2 + ∥r∥ γ,O q,s+2 ∥ρ 1 ∥ γ,O q,s0 ∥ρ 2 ∥ γ,O q,s0+1 + ∥ρ 1 ∥ γ,O q,s+1 ∥ρ 2 ∥ γ,O q,s0+1 .
Using Sobolev embeddings we get the desired result. This concludes the proof of Lemma 12.2.

Notice in particular that Lemma 12.2-(i) implies that there is no singlarity in ε for the rescaled vector field X Pε defined in (12.2). Based on the previous lemma we obtain tame estimates for the Hamiltonian vector field

X Pε = (∂ I P ε , -∂ ϑ P ε , Π ⊥ S ∂ θ ∇ z P ε )
defined by (12.15) and (12.17). The proof can be done in a similar way to [33, Lem. 5.1].

Lemma 12.3. Let (γ, q, s 0 , s) satisfy (A.2). There exists ε 0 ∈ (0, 1) such that if

ε ⩽ ε 0 and ∥I∥ γ,O q,s0+2 ⩽ 1,
then the perturbed Hamiltonian vector field X Pε satisfies the following tame estimates,

(i) ∥X Pε (i)∥ γ,O q,s ≲ 1 + ∥I∥ γ,O q,s+2 . (ii) d i X Pε (i)[ i ] γ,O q,s ≲ ∥ i ∥ γ,O q,s+2 + ∥I∥ γ,O q,s+2 ∥ i ∥ γ,O q,s0+1 . (iii) d 2 i X Pε (i)[ i, i ] γ,O q,s ≲ ∥ i ∥ γ,O q,s+2 ∥ i ∥ γ,O q,s0+1 + ∥I∥ γ,O q,s+2 ∥ i ∥ γ,O q,s0+1 2 .

Construction of an approximate right inverse

In order to apply a modified Nash-Moser scheme, we need to construct an approximate right inverse of the linearized operator associated to the functional F, that is

d (i,α) F(i 0 , α 0 )[ ı , α] = ω • ∂ φ ı -d i X H α 0 ε (i 0 (φ))[ ı] -( α, 0, 0). (13.1)
where F is defined in (12.20), α 0 : O → R d is a vector-valued function and i 0 = (ϑ 0 , I 0 , z 0 ) is an arbitrary torus close to the flat one and satisfying the reversibility condition ϑ 0 (-φ) = -ϑ 0 (φ), I 0 (-φ) = I 0 (φ) and z 0 (-φ) = (S z 0 )(φ). (13.2) For this aim, we may follow the procedure introduced in [START_REF] Berti | A Nash-Moser approach to KAM theory[END_REF] and slightly simplified in [START_REF] Hassainia | KAM theory for active scalar equations[END_REF]Sec. 6].

The main idea consists in conjugating (13.1) by a linear diffeomorphism of the toroidal phase space

T d × R d × L 2
⊥ to a triangular system in the action-angles-normal variables up to small fast decaying error terms and terms vanishing at an exact solution. Then, to solve the triangular system we are led to almost invert the linearized operator in the normal directions, given by

L ω ≜ Π ⊥ S0 ω • ∂ φ -∂ θ (∂ z ∇ z H α0 ε )(i 0 (φ)) -ε∂ θ R(φ) Π ⊥ S0 , ( 13.3) 
where H α0 ε is given by (12.19),

R(φ) ≜ L ⊤ 2 (φ)∂ I ∇ I P ε (i 0 (φ))L 2 (φ) + L ⊤ 2 (φ)∂ z ∇ I P ε (i 0 (φ)) + ∂ I ∇ z P ε (i 0 (φ))L 2 (φ), (13.4) 
P ε is defined by (12.15) and

L 2 (ϕ) ≜ -[(∂ ϑ z 0 )(ϑ 0 (ϕ))] ⊤ ∂ -1 θ , z 0 (ϑ) ≜ z 0 (ϑ -1 0 (ϑ)). (13.5)
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Here, for any linear operator A ∈ L(R d , L 2 ⊥ ) the transposed operator A ⊤ : L 2 ⊥ → R d is defined through the duality relation

∀ u ∈ L 2 ⊥ , ∀ v ∈ R d , A ⊤ u, v R d = u, Av L 2 (T d ) . (13.6)
We point out the presence of the remainder term due to the linear change of variables performed to decouple the dynamics of the action-angle components from the normal ones. For more details we refer the reader to [START_REF] Hassainia | KAM theory for active scalar equations[END_REF]Sec. 6].

Linearized operator in the normal direction

Our main goal here is to explore the structure of the linear operator L ω , introduced in (13.3). We have the following result. The following lemma describes the asymptotic structure of L ω around the equilibrium state, described in Lemma 11.1.

Proposition 13.1. Let (γ, q, d, s 0 ) satisfy (A.2). Then, the operator L ω defined in (13.3) takes the form

L ω = Π ⊥ S0 L εr -ε∂ θ R Π ⊥ S0 , ( 13.7) 
where (i) the operator L εr is given by

L εr ≜ ω • ∂ φ + ∂ θ V εr • + ∂ θ L εr -∂ θ S εr , (13.8) 
with V εr , L εr and S εr defined by (11.1), (11.2) and (11.3).

(ii) the function r is given by r(φ, •) = A(i 0 (φ)), (13.9) satisfies the following symmetry property r(-φ, -θ) = r(φ, θ) (13.10) and the following estimates

∥r∥ γ,O q,s ≲ 1 + ∥I 0 ∥ γ,O q,s , (13.11 
)

∥∆ 12 r∥ γ,O q,s ≲ ∥∆ 12 i∥ γ,O q,s + ∥∆ 12 i∥ γ,O q,s0 max j∈{1,2}
∥I j ∥ γ,O q,s . (13.12)

(iii) the operator R, defined in (13.4), is an integral operator with kernel J satisfying the symmetry property J(-φ, -θ, -η) = J(φ, θ, η) (13.13) and the following estimates: for all ℓ ∈ N,

sup η∈T ∥(∂ ℓ θ J)( * , •, , η + )∥ γ,O q,s ≲ 1 + ∥I 0 ∥ γ,O q,s+3+ℓ , (13.14) sup η∈T ∥∆ 12 (∂ ℓ θ J)( * , •, , η + )∥ γ,O q,s ≲ ∥∆ 12 i∥ γ,O q,s+3+ℓ + ∥∆ 12 i∥ γ,O q,s0+3 max j∈{1,2}
∥I j ∥ γ,O q,s+3+ℓ . (13.15) where * , •, , denote successively the variables b, φ, θ and I j (φ) = i j (φ) -(φ, 0, 0).

Proof. From (12.19), (12.13), (12.10) and ( 12.3) we obtain

(∂ z ∇ z H α0 ε )(i 0 (φ)) = L(b)Π ⊥ S0 + ε∂ z ∇ z P ε (i 0 (φ)) = L(b)Π ⊥ S0 + εΠ ⊥ S0 ∂ r ∇ r P ε (A(i 0 (φ))) = Π ⊥ S0 ∂ r ∇ r H ε (A(i 0 (φ))) = Π ⊥ S0 ∂ r ∇ r H(εA(i 0 (φ))).
According to the general form of the linearized operator stated in Lemma 11.1 one has

-∂ θ (∂ z ∇ z H α0 ε )(i 0 (φ)) = Π ⊥ S0 ∂ θ V εr (b, φ, ) • + ∂ θ L εr -∂ θ S εr Π ⊥ S0 .
Inserting this identity into (13.3) gives (13.7). The operator R(φ) in (13.4) may be written as

R(φ) = R 1 (φ) + R 2 (φ) + R 3 (φ), with R 1 (φ) ≜ L ⊤ 2 (φ)∂ I ∇ I P ε (i 0 (φ))L 2 (φ), R 2 (φ) ≜ L ⊤ 2 (φ)∂ z ∇ I P ε (i 0 (φ)), R 3 (φ) ≜ ∂ I ∇ z P ε (i 0 (φ))L 2 (φ).
Notice that R 1 (φ), R 2 (φ) and R 3 (φ) have a finite-dimensional rank. In fact, from (13.5) and (13.6) one may write

L 2 (φ)[ρ] = d k=1 L 2 (φ)[ρ], e k R d e k = d k=1 ρ, L ⊤ 2 (φ)[e k ] L 2 (T) e k ,
with (e k ) d k=1 being the canonical basis of R d . Hence

R 1 (φ)[ρ] = d k=1 ρ, L ⊤ 2 (φ)[e k ] L 2 (T) A 1 (φ)[e k ] with A 1 (φ) = L ⊤ 2 (φ)∂ I ∇ I P ε (i 0 (φ)), R 3 (φ)[ρ] = d k=1 ρ, L ⊤ 2 (φ)[e k ] L 2 (T) A 3 (φ)[e k ] with A 3 (φ) = ∂ I ∇ z P ε (i 0 (φ)). Analogously, since A 2 (φ) ≜ ∂ z ∇ I P ε (i 0 (φ)) : L 2 ⊥ → R d , then we may write R 2 (φ)[ρ] = d k=1 ρ, A ⊤ 2 (φ)[e k ] L 2 (T) L ⊤ 2 (φ)[e k ].
By setting

g k,1 (φ, θ) = g k,3 (φ, θ) = χ k,2 (φ, θ) ≜ L ⊤ 2 (φ)[e k ](θ), g k,2 (φ, θ) ≜ A ⊤ 2 (φ)[e k ](θ), χ k,1 (φ, θ) ≜ A 1 (φ)[e k ](θ), χ k,3 (φ, θ) ≜ A 3 (φ)[e k ](θ),
we can see that the operator R takes the integral form

Rρ(φ, θ) = ˆT ρ(φ, η)J(φ, θ, η)dη, with J(φ, θ, η) ≜ 3 k ′ =1 d k=1 g k,k ′ (φ, η)χ k,k ′ (φ, θ).
The symmetry property (13.13) is a consequence of the definition of r and the reversibility condition (13.2) imposed on the torus i 0 . The estimates (13.15), (13.14), (13.11) and (13.12) are straightforward and follow in a similar way to Proposition 7.1.
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Diagonalization of the linearized operator in the normal directions

This section is devoted to the reduction of the linearized operator L ω , defined in (13.7), to constant coefficients. This procedure is done in three steps. First, we reduce the operator L εr introduced in (13.8) up to smoothing reminders. Then we study the action of the localization in the normal directions. Finally, we almost eliminate the remainders by using a KAM reduction procedure. We fix the following parameters.

s l ≜ s 0 + τ 1 q + τ 1 + 2, µ 2 ≜ 4τ 1 q + 6τ 1 + 3, s l ≜ s l + τ 2 q + τ 2 , s h ≜ 3 2 µ 2 + s l + 1.
(13.16)

Leading orders reduction

In this section, we shall straighten the transport part by using a suitable quasi-periodic symplectic change of variables and look at its conjugation action on the nonlocal terms. The reduction of the transport part is done by a KAM iterative scheme in a similar way to Proposition 7.2. The result reads as follows.

Proposition 13.2. Let (γ, q, d, τ 1 , s 0 , µ 2 , s l , s h , S) satisfy (A.2), (A.1) and (13.16). Let υ ∈ 0, 1 q+2 . We set σ 1 = s 0 + τ 1 q + 2τ 1 + 4 and σ 2 = s 0 + σ 1 + 3.

(13.17)

For any (µ 2 , p, s h ) satisfying

µ 2 ⩾ µ 2 , p ⩾ 0, s h ⩾ max 3 2 µ 2 + s l + 1, s h + p , ( 13.18) 
there exists ε 0 > 0 such that if εγ -1 N µ2 0 ⩽ ε 0 and ∥I 0 ∥ γ,O q,s h +σ2 ⩽ 1, (13.19) then following assertions hold true.

1. There exist

V ∞ i0 ∈ W q,∞,γ (O, C) and β ∈ W q,∞,γ (O, H S )
such that with B defined in (A.12) one gets the following results.

(i) The function V ∞ i0 satisfies the estimate:

∥V ∞ i0 -1 2 ∥ γ,O q ≲ ε. (13.20)
(ii) The transformations B ±1 , B ±1 , β and β satisfy the following estimates: for all s ∈ [s 0 , S], 

∥B ±1 ρ∥ γ,O q,s + ∥B ±1 ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s + εγ -1 ∥I 0 ∥ γ,O q,s+σ1 ∥ρ∥ γ,O q,s0 , (13.21) 
∥ β∥ γ,O q,s ≲ ∥β∥ γ,O q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1 . ( 13 
O γ,τ1 ∞,n (i 0 ) = (l,j)∈Z d ×Z\{(0,0)} |l|⩽Nn (b, ω) ∈ O s.t. ω • l + jV ∞ i0 (b, ω) > 4γ υ ⟨j⟩ ⟨l⟩ τ 1 , ( 13.24) 
we have the decomposition

L εr ≜ B -1 L εr B = ω • ∂ φ + V ∞ i0 ∂ θ + ∂ θ K b * • + ∂ θ R εr + E 0 n ,
where L εr is given by (13.8), K b is defined in Lemma 11.2 and E 0 n = E 0 n (b, ω, i 0 ) is a linear operator satisfying

∥E 0 n ρ∥ γ,O q,s0 ≲ εN µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+2 . (13.25)
The operator R εr is a real and reversibility preserving integral operator satisfying 

∀s ∈ [s 0 , S], max k∈{0,1,2} ∥∂ k θ R εr ∥ γ,O O-d,q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ2 . ( 13 
∥∆ 12 V ∞ i ∥ γ,O q ≲ ε∥∆ 12 i∥ γ,O q,s h +2 , ( 13.27) 
∥∆ 12 β∥ γ,O q,s h +p + ∥∆ 12 β∥ γ,O q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ1 . (13.28)

In addition, we have

max k∈{0,1} ∥∆ 12 (∂ k θ R εr )∥ γ,O O-d,q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ2 . ( 13.29) 
Proof. Notice that along the proof, to simplify the notation, we shall omit the dependence with respect to the parameters b, ω kipping in mind that the functions appearing actually depend on them. We begin by setting

V 0 = 1 2 and f 0 (φ, θ) ≜ V εr (φ, θ) -1 2 , ( 13.30) 
with V εr defined by (11.1). According to (13.10) and (11.4), one gets f 0 (-φ, -θ) = f 0 (φ, θ). (13.31) Notice that according to (11.1), (12.49) and Taylor formula, one has

∥f 0 ∥ γ,O q,s ≲ ε 1 + ∥I 0 ∥ γ,O q,s+1 . (13.32)
These properties allow to apply Proposition 7.2, whose proof is based on a KAM iterative scheme reduction of the perturbation term f 0 and construct β and V ∞ i0 . In particular, for any n ∈ N, we are able to construct a Cantor set O γ,τ1 ∞,n (i 0 ) in the form (13.24) in which the following reduction holds

B -1 ω • ∂ φ + ∂ θ V εr • B = ω • ∂ φ + V ∞ i0 ∂ θ + E 0 n , ( 13.33) 
where E 0 n is an operator enjoying the decay property stated in (13.25). Using (13.33), (12.22), (12.23) and Lemma A.3-(i), one obtains in the Cantor set O γ,τ1 ∞,n (i 0 ) the following decomposition

B -1 L εr B = B -1 ω • ∂ φ + ∂ θ (V εr •) B + B -1 ∂ θ L εr B -B -1 ∂ θ S εr B = ω • ∂ φ + V ∞ i0 ∂ θ + B -1 ∂ θ K 1,b * • B + B -1 ∂ θ L εr,1 B -B -1 ∂ θ K 2,b * • B -B -1 ∂ θ S εr,1 B + E 0 n = ω • ∂ φ + V ∞ i0 ∂ θ + ∂ θ K 1,b * • -∂ θ K 2,b * • + ∂ θ R εr + E 0 n ,
where

R εr ≜ B -1 K 1,b * • B -K 1,b * • -B -1 K 2,b * • B -K 2,b * • + B -1 L εr,1 B -B -1 S εr,1 B. (13.34)
Direct computations using (11.11) lead to

B -1 (K 1,b * (Bρ))(φ, θ) = ˆT ρ(φ, η) log(A β (φ, θ, η))dη, where A β (φ, θ, η) ≜ sin η-θ 2 + h(φ, θ, η) with h(φ, θ, η) ≜ β(φ,θ)-β(φ,η) 2 •
Using elementary trigonometric identities, we can write

A β (φ, θ, η) = sin η-θ 2 v β (φ, θ, η) with v β (φ, θ, η) ≜ cos h(φ, θ, η) + sin h(φ,θ,η) tan η-θ 2 •
In view of (13.23), one finds that v β enjoys the following symmetry property

v β (-φ, -θ, -η) = v β (φ, θ, η). (13.35)
Using the morphism property of the logarithm, one gets 

B -1 K 1,b * ρ B -K 1,b * ρ (φ, θ) = ˆT ρ(φ, η)K β,2 (φ,
∥v β -1∥ γ,O q,H s φ,θ,η ≲ ∥ β∥ γ,O q,s+1 ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+1+σ1 .
Moreover, by (13.28) and the Mean Value Theorem (applied with p replaced by p + s 0 + 2), we find

∥∆ 12 v β ∥ γ,O q,H s h +p+s 0 +1 φ,θ,η ≲ ∥∆ 12 β∥ γ,O q,s h +p+s0+2
≲ εγ -1 ∥∆ 12 i∥ q,s h +p+s0+2+σ1 .

In a similar way, we deduce that 

∥K β,2 ∥ γ,O q,H s φ,θ,η ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+1+σ1
∂ k θ B -1 K 1,b * • B -K 1,b * • γ,O O-d,q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+s0+3+σ1 , (13.40) max k∈{0,1} ∆ 12 ∂ k θ B -1 K 1,b * • B -K 1,b * • γ,O O-d,q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+s0+2+σ1 . (13.41)
According to (11.12), one finds

B -1 K 2,b * (Bρ) (φ, θ) -K 2,b * ρ(φ, θ) = ˆT ρ(φ, η)K β,2 (φ, θ, η)dη, with K β,2 (φ, θ, η) ≜ 1 2 log 1 + b 4 -2b 2 cos(η -θ + h(φ, θ, η)) -log 1 + b 4 -2b 2 cos(η -θ) = 1 2 log 1+b 4 -2b 2 cos η-θ+ h(φ,θ,η) 1+b 4 -2b 2 cos(η-θ)
.

From (13.23), we deduce that 

K β,2 (-φ, -θ, -η) = K β,2 (φ, θ, η) ∈ R. ( 13 
∥K β,2 ∥ γ,O q,H s φ,θ,η ≲ ∥ β∥ γ,O q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ1 . ( 13.43) 
Using Mean Value theorem, applied with p replaced by p + s 0 + 1, one also gets by (13.28)

∥∆ 12 K β,2 ∥ γ,O q,H s h +p+s 0 +1 φ,θ,η ≲ ∥∆ 12 β∥ γ,O q,s h +p+s0+1 ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+s0+1+σ1 . (13.44)
Consequently, in view of Lemma A.7, we get from (13.43) (13.45) and from (13.44) max k∈{0,1} 

max k∈{0,1,2} ∂ k θ B -1 K 2,b * • B -K 2,b * • γ,O O-d,q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+s0+2+σ1
∆ 12 ∂ k θ B -1 K 2,b * • B -K 2,b * • γ,O O-d,q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+s0+1+σ1 . ( 13 
∥∂ k θ B -1 L εr,1 B∥ γ,O O-d,q,s ≲ ∥K εr,1 ∥ γ,O q,H s+s 0 +2 φ,θ,η + ∥β∥ γ,O q,s+s0+2 ∥K εr,1 ∥ γ,O q,H s 0 φ,θ,η ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+s0+2+σ1 . ( 13 
∥∆ 12 ∂ k θ B -1 L εr,1 B∥ γ,O O-d,q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+s0+1+σ1 . ( 13 
∥∂ k θ B -1 S εr,1 B∥ γ,O O-d,q,s ≲ ∥K εr,1 ∥ γ,O q,H s+2 φ,θ,η + ∥β∥ γ,O q,s+2 ∥K εr,1 ∥ γ,O q,H s 0 φ,θ,η ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+s0+2+σ1 . ( 13 
∥∂ k θ R εr ∥ γ,O O-d,q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+s0+3+σ1 .
In addition, combining (13.41), (13.46), (13.48) and (13.50) yields max k∈{0,1}

∥∆ 12 ∂ k θ R εr ∥ γ,O O-d,q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+s0+2+σ1 .
This ends the proof of Proposition 13.2.

Projection in the normal directions

In this section, we study the effects of the localization in the normal directions for the reduction of the transport part. For that purpose, we consider the localized quasi-periodic symplectic change of coordinates defined by

B ⊥ = Π ⊥ S0 BΠ ⊥ S0 .
Then, the main result of this section reads as follows.

Proposition 13.3. Let (γ, q, d, τ 1 , s 0 , s h , s h , p, S) satisfy the assumptions (A.2), (A.1) and (13.18).

There exist ε 0 > 0 and σ 3 = σ 3 (τ 1 , q, d, s 0 ) ⩾ σ 2 such that if εγ -1 N µ2 0 ⩽ ε 0 and ∥I 0 ∥ γ,O q,s h +σ3 ⩽ 1, (13.51)

then the following assertions hold true.

(i) The operators B ±1 ⊥ satisfy the following estimate

∥B ±1 ⊥ ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s + εγ -1 ∥I 0 ∥ γ,O
q,s+σ3 ∥ρ∥ γ,O q,s0 . (13.52)

(ii) For any n ∈ N * , in the Cantor set O γ,τ1 ∞,n (i 0 ) introduced in Proposition 13.2, we have

B -1 ⊥ L ω B ⊥ = ω • ∂ φ + V ∞ i0 ∂ θ + ∂ θ K b * • Π ⊥ S0 + R 0 + E 1 n ≜ ω • ∂ φ Π ⊥ S0 + D 0 + R 0 + E 1 n ≜ L 0 + E 1 n , where R 0 = Π ⊥ S0 R 0 Π ⊥ S0 is reversible and D 0 = Π ⊥ S0 D 0 Π ⊥ S0 is a reversible Fourier multiplier operator given by ∀(l, j) ∈ Z d × S c
0 , D 0 e l,j = i µ 0 j e l,j , with µ 0 j (b, ω, i 0 ) = Ω j (b) + jr 1 (b, ω, i 0 ) and r 1 (b, ω, i 0 ) = V ∞ i0 (b, ω) - 

∥∂ k θ R 0 ∥ γ,O O-d,q,s ≲ εγ -1 1 + ∥I 0 ∥ γ,O q,s+σ3 (13.56) 
and (ii) From (13.7) and the decomposition Id = Π S0 + Π ⊥ S0 we write

∥∆ 12 R 0 ∥ γ,O O-d,q,s h +p ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +p+σ3 . (13.57) (v) Furthermore the operator L 0 satisfies ∀s ∈ [s 0 , S], ∥L 0 ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s+1 + εγ -1 ∥I 0 ∥ γ,O q,s+σ3 ∥ρ∥ γ,O q,s0 . ( 13 
B -1 ⊥ L ω B ⊥ = B -1 ⊥ Π ⊥ S0 (L εr -ε∂ θ R)B ⊥ = B -1 ⊥ Π ⊥ S0 L εr BΠ ⊥ S0 -B -1 ⊥ Π ⊥ S0 L εr Π S0 BΠ ⊥ S0 -εB -1 ⊥ Π ⊥ S0 ∂ θ RB ⊥ .
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According to the definitions of L εr and L εr seen in Proposition 13.2 and in Lemma 11.1 and using (12.22), (12.23) and (11.10), one has in the Cantor set O γ,τ1 ∞,n (i 0 )

L εr B = BL εr and L εr = ω • ∂ φ + ∂ θ (V εr •) + ∂ θ K b * • + ∂ θ L εr,1 -∂ θ S εr,1
and therefore

B -1 ⊥ L ω B ⊥ =B -1 ⊥ Π ⊥ S0 BL εr Π ⊥ S0 -B -1 ⊥ Π ⊥ S0 (∂ θ (V εr •) + ∂ θ L εr,1 -∂ θ S εr,1 ) Π S0 BΠ ⊥ S0 -εB -1 ⊥ ∂ θ RB ⊥ ,
where we have used the identities

B -1 ⊥ Π ⊥ S0 = B -1 ⊥ and [Π ⊥ S0 , T ] = 0 = [Π S0 , T ],
for any Fourier multiplier T . The structure of L εr is detailed in Proposition 13.2, and from this we deduce that

Π ⊥ S0 BL εr Π ⊥ S0 = Π ⊥ S0 B ω • ∂ φ + V ∞ i0 ∂ θ + ∂ θ K b * • + ∂ θ R εr + E 0 n Π ⊥ S0 = Π ⊥ S0 BΠ ⊥ S0 ω • ∂ φ + V ∞ i0 ∂ θ + ∂ θ K b * • + Π ⊥ S0 B∂ θ R εr Π ⊥ S0 + Π ⊥ S0 BE 0 n Π ⊥ S0 = B ⊥ ω • ∂ φ + V ∞ i0 ∂ θ + ∂ θ K b * • + Π ⊥ S0 B∂ θ R εr Π ⊥ S0 + Π ⊥ S0 BE 0 n Π ⊥ S0 .
It follows that

B -1 ⊥ Π ⊥ S0 BL εr Π ⊥ S0 = ω • ∂ φ + V ∞ i0 ∂ θ + ∂ θ K b * • Π ⊥ S0 + B -1 ⊥ Π ⊥ S0 B∂ θ R εr Π ⊥ S0 + B -1 ⊥ Π ⊥ S0 BE 0 n Π ⊥ S0 = ω • ∂ φ + V ∞ i0 ∂ θ + ∂ θ K b * • Π ⊥ S0 + Π ⊥ S0 ∂ θ R εr Π ⊥ S0 + B -1 ⊥ BΠ S0 ∂ θ R εr Π ⊥ S0 + B -1 ⊥ Π ⊥ S0 BE 0 n Π ⊥ S0 .
Consequently, in the Cantor set O γ,τ1 ∞,n (i 0 ), one has the following reduction

B -1 ⊥ L ω B ⊥ = ω • ∂ φ + V ∞ i0 ∂ θ + ∂ θ K b * • Π ⊥ S0 + Π ⊥ S0 ∂ θ R εr Π ⊥ S0 + B -1 ⊥ BΠ S0 ∂ θ R εr Π ⊥ S0 -B -1 ⊥ Π ⊥ S0 (∂ θ (V εr •) + ∂ θ L εr,1 -∂ θ S εr,1 ) Π S0 BΠ ⊥ S0 -εB -1 ⊥ ∂ θ RB ⊥ + B -1 ⊥ Π ⊥ S0 BE 0 n Π ⊥ S0 ≜ω • ∂ φ Π ⊥ S0 + D 0 + R 0 + E 1 n , ( 13.59) 
where we set 

D 0 ≜ V ∞ i0 ∂ θ + ∂ θ K b * • Π ⊥ S0 and E 1 n ≜ B -1 ⊥ Π ⊥ S0 BE 0 n Π ⊥ S0 . ( 13 

Elimination of the remainder term

We perform here the KAM reduction of the remainder R 0 of Proposition 13.3. This procedure allows to diagonalise the linearized operator in the normal directions, namely to conjugate it to a constant coefficients operator L ∞ , up to fast decaying terms. We omit the proof due to its similarity with Proposition 7.5.

Proposition 13.4. Let (γ, q, d, τ 1 , τ 2 , s 0 , s l , s l , s h , µ 2 , S) satisfy (A.2), (A.1), (13.16). For any (µ 2 , s h ) satisfying µ 2 ⩾ µ 2 + 2τ 2 q + 2τ 2 , and s h ⩾ 3 2 µ 2 + s l + 1, (13.61) there exist ε 0 ∈ (0, 1) and σ 4 = σ 4 (τ 1 , τ 2 , q, d) ⩾ σ 3 such that if εγ -2-q N µ2 0 ⩽ ε 0 and ∥I 0 ∥ γ,O q,s h +σ4 ⩽ 1, (13.62) then the following assertions hold true.

(i) There exists a family of invertible linear operator

Φ ∞ : O → L H s ∩ L 2 ⊥ satisfying the estimates ∀s ∈ [s 0 , S], ∥Φ ±1 ∞ ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s + εγ -2 ∥I 0 ∥ γ,O q,s+σ4 ∥ρ∥ γ,O q,s0 . (13.63)
There exists a diagonal operator L ∞ = L ∞ (b, ω, i 0 ) taking the form

L ∞ = ω • ∂ φ Π ⊥ S0 + D ∞ where D ∞ = D ∞ (b, ω, i 0 ) = Π ⊥ S0 D ∞ Π ⊥
S0 is a reversible Fourier multiplier operator given by,

∀(l, j) ∈ Z d × S c 0 , D ∞ e l,j = i µ ∞ j e l,j , with ∀j ∈ S c 0 , µ ∞ j (b, ω, i 0 ) = µ 0 j (b, ω, i 0 ) + r ∞ j (b, ω, i 0 ) (13.64)
and

sup j∈S c 0 |j|∥r ∞ j ∥ γ,O q ≲ εγ -1 (13.65)
such that in the Cantor set

O γ,τ1,τ2 ∞,n (i 0 ) ≜ (l,j,j 0 )∈Z d ×(S c 0 ) 2 |l|⩽Nn (l,j)̸ =(0,j 0 ) (b, ω) ∈ O γ,τ1 ∞,n (i 0 ), ω • l + µ ∞ j (b, ω, i 0 ) -µ ∞ j0 (b, ω, i 0 ) > 2γ⟨j-j0⟩ ⟨l⟩ τ 2
we have

Φ -1 ∞ L 0 Φ ∞ = L ∞ + E 2 n ,
and the linear operator E 2 n satisfies the estimate

∥E 2 n ρ∥ γ,O q,s0 ≲ εγ -2 N µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+1 . (13.66)
Notice that the Cantor set O γ,τ1 ∞,n (i 0 ) was introduced in Proposition 13.2, the operator L 0 and the frequencies µ 0 j (b, ω, i 0 ) j∈S c 0 were stated in Proposition 13.3.

(ii) Given two tori i 1 and i 2 both satisfying (13.62), then

∀j ∈ S c 0 , ∥∆ 12 r ∞ j ∥ γ,O q ≲ εγ -1 ∥∆ 12 i∥ γ,O q,s h +σ4 (13.67) ∀j ∈ S c 0 , ∥∆ 12 µ ∞ j ∥ γ,O q ≲ εγ -1 |j|∥∆ 12 i∥ γ,O q,s h +σ4 .
(13.68)

Construction and tame estimates for the approximate inverse

At this step, we can construct an almost approximate right inverse for L ω defined in (13.7). This enables to find in turn an almost approximate right inverse for the whole operator d i,α F(i 0 , α 0 ) given by (13.1).

Proposition 13.5. Let (γ, q, d, τ 1 , s 0 , s h , µ 2 , S) satisfying (A.2), (A.1) and (13.61). There exists σ ≜ σ(τ 1 , τ 2 , q, d) ⩾ σ 4 such that if εγ -2-q N µ2 0 ⩽ ε 0 and ∥I 0 ∥ γ,O q,s h +σ ⩽ 1, (13.69)

then, the following assertions hold true.

(i) Consider the operator L ∞ defined in Proposition 13.4, then there exists a family of linear reversible operators T n n∈N defined in O satisfying the estimate

∀s ∈ [s 0 , S], sup n∈N ∥T n ρ∥ γ,O q,s ≲ γ -1 ∥ρ∥ γ,O q,s+τ1q+τ1
and such that for any n ∈ N, in the Cantor set

Λ γ,τ1 ∞,n (i 0 ) = (l,j)∈Z d ×S c 0 |l|⩽Nn (b, ω) ∈ O s.t. ω • l + µ ∞ j (b, ω, i 0 ) > γ⟨j⟩ ⟨l⟩ τ 1 ,
we have

L ∞ T n = Id + E 3 n , with ∀s 0 ⩽ s ⩽ s ⩽ S, ∥E 3 n ρ∥ γ,O q,s ≲ N s-s n γ -1 ∥ρ∥ γ,O q,s+1+τ1q+τ1 .
(ii) There exists a family of linear reversible operators T ω,n n∈N satisfying (13.70) and such that in the Cantor set

∀ s ∈ [s 0 , S], sup n∈N ∥T ω,n ρ∥ γ,O q,s ≲ γ -1 ∥ρ∥ γ,O q,s+σ + ∥I 0 ∥ γ,O q,s+σ ∥ρ∥ γ,O q,s0+σ
G n (γ, τ 1 , τ 2 , i 0 ) ≜ O γ,τ1 ∞,n (i 0 ) ∩ O γ,τ1,τ2 ∞,n (i 0 ) ∩ Λ γ,τ1 ∞,n (i 0 ), (13.71) 
we have

L ω T ω,n = Id + E n ,
where E n satisfies the following estimate

∀ s ∈ [s 0 , S], ∥E n ρ∥ γ,O q,s0 ≲ N s0-s n γ -1 ∥ρ∥ γ,O q,s+σ + εγ -2 ∥I 0 ∥ γ,O q,s+σ ∥ρ∥ γ,O q,s0 + εγ -3 N µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+σ . (13.72)
Recall that L ω , O γ,τ1 ∞,n (i 0 ) and O γ,τ1,τ2 ∞,n (i 0 ) are given by (13.7) and Propositions 13.2 and 13.4, respectively.

(iii) In the Cantor set G n (γ, τ 1 , τ 2 , i 0 ), we have the following splitting

L ω = L ω,n + R n with L ω,n T ω,n = Id and R n = E n L ω,n ,
where L ω,n and R n are reversible operators defined in O and satisfy the following estimates ∀s ∈ [s 0 , S], sup n∈N ∥ L ω,n ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s+1 + εγ -2 ∥I 0 ∥ γ,O q,s+σ ∥ρ∥ γ,O q,s0+1 , (13.73)

∀s ∈ [s 0 , S], ∥ R n ρ∥ γ,O q,s0 ≲ N s0-s n γ -1 ∥ρ∥ γ,O q,s+σ + εγ -2 ∥I 0 ∥ γ,O q,s+σ ∥ρ∥ γ,O q,s0+σ
+ εγ -3 N µ2 0 N -µ2 n+1 ∥ρ∥ γ,O q,s0+σ . (13.74)

Proof. (i) First recall from Proposition 13.4 that

L ∞ = ω • ∂ φ Π ⊥ S0 + D ∞ .
Using the projectors defined in (A.5), we can split this operator as follows

L ∞ = Π Nn ω • ∂ φ Π Nn Π ⊥ S0 + D ∞ -Π ⊥ Nn ω • ∂ φ Π ⊥ Nn Π ⊥ S0 ≜ L n -R n , ( 13.75) 
where

R n ≜ Π ⊥ Nn ω • ∂ φ Π ⊥ Nn Π ⊥ S0 .
According to the structure of D ∞ in Proposition 13.4, we obtain from (13.75),

∀(l, j) ∈ Z d × S c 0 , e -l,-j L n e l,j = i ω • l + µ ∞ j if |l| ⩽ N n i µ ∞ j if |l| > N n .
Let us now consider the diagonal operator T n defined by

T n ρ(b, ω, φ, θ) ≜ -i (l,j)∈Z d ×S c 0 |l|⩽Nn χ((ω•l+µ ∞ j (b,ω,i0))γ -1 ⟨l⟩ τ 1 ) ω•l+µ ∞ j (b,ω,i0) ρ l,j (b, ω) e i(l•φ+jθ) -i (l,j)∈Z d ×S c 0 |l|>Nn ρ l,j (b,ω) µ ∞ j (b,ω,i0) e i(l•φ+jθ) ,
where χ is the cut-off function introduced in (6.92) and (ρ l,j (b, ω)) l,j are the Fourier coefficients of ρ. Now recall the expansion of the perturbed eigenvalues given by Proposition 13.4, namely

µ ∞ j (b, ω, i 0 ) = Ω j (b) + jr 1 (b, ω) + r ∞ j (b, ω) with r 1 (b, ω) = V ∞ i0 (b, ω) -1 2 .
In view of Lemma 11.3-(iv), (13.54) and (13.65), they satisfy the following estimates

∀j ∈ S c 0 , ∥µ ∞ j ∥ γ,O q ≲ |j|.
According to Lemma 11.3-(ii), (13.54), (13.65) and the smallness condition (13.69) we infer

|j| ≲ ∥µ ∞ j ∥ γ,O 0 ⩽ ∥µ ∞ j ∥ γ,O q .
Computations based on Lemma A.1-(vi) give ∀s ⩾ s 0 , ∥T n ρ∥ γ,O q,s ≲ γ -1 ∥ρ∥ γ,O q,s+τ1q+τ1 .

(13.76)

Part II

In addition, by construction

L n T n = Id in Λ γ,τ1 ∞,n (i 0 ) (13.77)
since χ(•) = 1 in this set. Gathering (13.77) and (13.75) yields

∀ (b, ω) ∈ Λ γ,τ1 ∞,n (i 0 ), L ∞ T n = Id -R n T n ≜ Id + E 3 n . ( 13.78) 
Remark that by Lemma A.1-(ii),

∀ s 0 ⩽ s ⩽ s ⩽ S, ∥R n ρ∥ γ,O q,s ≲ N s-s n ∥ρ∥ γ,O q,s+1 .
Putting this estimate with (13.76) implies 

∀ s 0 ⩽ s ⩽ s ⩽ S, ∥E 3 n ρ∥ γ,O q,s ≲ N s-s n γ -1 ∥ρ∥ γ,O q,s+1+τ1q+τ1 . (13.79) (ii) We set T ω,n ≜ B ⊥ Φ ∞ T n Φ -1 ∞ B -1 ⊥ , ( 13 
(i 0 ) ∩ O γ,τ1,τ2 ∞,n (i 0 ) the following decomposition holds Φ -1 ∞ B -1 ⊥ L ω B ⊥ Φ ∞ = Φ -1 ∞ L 0 Φ ∞ + Φ -1 ∞ E 1 n Φ ∞ = L ∞ + E 2 n + Φ -1 ∞ E 1 n Φ ∞ .
According to (13.78), one finds that in the Cantor set

O γ,τ1 ∞,n (i 0 ) ∩ O γ,τ2 ∞,n (i 0 ) ∩ Λ γ,τ1 ∞,n (i 0 ) the following identity holds Φ -1 ∞ B -1 ⊥ L ω B ⊥ Φ ∞ T n = Id + E 3 n + E 2 n T n + Φ -1 ∞ E 1 n Φ ∞ T n ,
which implies in turn, in view of (13.80), the following identity in G n (γ, τ 1 , τ 2 , i 0 ) 

L ω T ω,n = Id + B ⊥ Φ ∞ E 3 n + E 2 n T n + Φ -1 ∞ E 1 n Φ ∞ T n Φ -1 ∞ B -1 ⊥ ≜ Id + E n . ( 13 
L ω,n ≜ T -1 ω,n = B ⊥ Φ ∞ L n Φ -1 ∞ B -1 ⊥ .
Therefore, (13.82) can be rewritten

L ω = L ω,n + R n with R n ≜ E n L ω,n .
The estimate (13.73) is obtained gathering (13.75), (13.52), (13.63) and (13.69). Finally, (13.73) together with (13.72) implies (13.74). This ends the proof of Proposition 13.5.

The following theorem, see also Theorem 6.1, states that the linearized operator d i,α F(i 0 , α 0 ) in (13.1) admits an approximate right inverse on a suitable Cantor set.

Theorem 13.1. (Approximate inverse) Let (γ, q, d, τ 1 , τ 2 , s 0 , s h , µ 2 ) satisfy (A.2), (A.1), (13.16) and (13.61). Then there exists σ = σ(τ 1 , τ 2 , d, q) > 0 and a family of reversible operators T 0 ≜ T 0,n (i 0 ) such that if the smallness condition (13.69) holds, then for all g = (g 1 , g 2 , g 3 ), satisfying g 1 (φ) = g 1 (φ), g 2 (-φ) = -g 2 (φ) and g 3 (-φ) = (S g 3 )(φ), the function T 0 g satisfies the following estimate ∀s ∈ [s 0 , S], ∥T 0 g∥ γ,O q,s ≲ γ -1 ∥g∥ γ,O q,s+σ + ∥I 0 ∥ γ,O q,s+σ ∥g∥ γ,O q,s0+σ .

Moreover T 0 is an almost-approximate right inverse of d i,α F(i 0 , α 0 ) in the Cantor set G n (γ, τ 1 , τ 2 , i 0 )
defined by (13.71). More precisely,

∀(b, ω) ∈ G n (γ, τ 1 , τ 2 , i 0 ), d i,α F(i 0 ) • T 0 -Id = E (n) 1 + E (n) 2 + E (n) 3 ,
where the operators

E (n) 1 , E (n) 2
and E

(n) 3

are defined in the whole set O with the estimates

∥E (n) 1 g∥ γ,O q,s0 ≲ γ -1 ∥F(i 0 , α 0 )∥ γ,O q,s0+σ ∥g∥ γ,O q,s0+σ , ∀b ⩾ 0, ∥E (n) 2 g∥ γ,O q,s0 ≲ γ -1 N -b n ∥g∥ γ,O q,s0+b+σ + ε∥I 0 ∥ γ,O q,s0+b+σ g∥ γ,O q,s0+σ , ∀b ∈ [0, S], ∥E (n) 3 g∥ γ,O q,s0 ≲ N -b n γ -2 ∥g∥ γ,O q,s0+b+σ + εγ -2 ∥I 0 ∥ γ,O q,s0+b+σ ∥g∥ γ,O q,s0+σ + εγ -4 N µ2 0 N -µ2 n ∥g∥ γ,O q,s0+σ .

Nash-Moser iteration and measure of the final Cantor set

In this last section, we shall find a non-trivial solution (b, ω) → (i ∞ (b, ω), α ∞ (b, ω)) to the equation

F(i, α, b, ω, ε) = 0,
where F is the functional defined in (12.20). This is done by using a Nash-Moser scheme in a similar way as the series of papers [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF][START_REF] Hassainia | KAM theory for active scalar equations[END_REF][START_REF] Hmidi | Time quasi-periodic vortex patches for quasi-geostrophic shallow-water equations[END_REF]. The solutions are constructed for parameters (b, ω) belonging to the intersection of all the Cantor sets G γ ∞ on which we are able to invert the linearized operator at the different steps. In order to find a solution to the original problem, we must rigidify the frequencies ω so that they coincide with the equilibrium frequencies. This amounts to considering a frequency curve b → ω(b, ε) implicitly defined by the equation

α ∞ b, ω(b, ε) = -ω Eq (b).
Part II Considering the associated rigidified Cantor set

C ε ∞ = b ∈ (b 0 , b 1 ) s.t. b, ω(b, ε) ∈ G γ ∞ ,
we have a solution to the original problem provided that the measure of C ε ∞ is non-zero. This will be checked, in Section 14.2, by perturbative arguments in the spirit of the previous works [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Baldi | KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF][START_REF] Hassainia | KAM theory for active scalar equations[END_REF][START_REF] Hmidi | Time quasi-periodic vortex patches for quasi-geostrophic shallow-water equations[END_REF]. This proves in particular Theorem 9.1.

Nash-Moser iteration

In this section we implement the Nash-Moser scheme, which is a modified Newton method consisting in a recursive construction of approximate solutions of the equation F i, α, b, ω ≜ F i, α, b, ω, ε = 0 where the functional F is defined in (12.20). At each step of this procedure, we need to construct an approximate inverse of the linearized operator at a state near the equilibrium by applying the reduction procedure developed in Section 13. This allows to get Theorem 13.1 with the suitable tame estimates associated to the final loss of regularity σ that could be arranged to be large enough. We point out that σ depends only on the shape of the Cantor set through the parameters τ 1 , τ 2 , d and q but it is independent of the regularity of the solutions that we want to construct. The main result of this section can be stated as follows. The proof is similar to Proposition 8.1.

Proposition 14.1. (Nash-Moser)

Let (τ 1 , τ 2 , q, d, s 0 ) satisfy (A.2) and (A.1). Consider the parameters fixed by (8.1) and (8.2). There exist C * > 0 and ε 0 > 0 such that for any ε ∈ [0, ε 0 ] we get for all n ∈ N the following properties.

(P1) n There exists a q-times differentiable function

W n : O → E n-1 × R d × R d+1 (b, ω) → I n , α n -ω, 0 satisfying W 0 = 0 and for n ∈ N * , ∥W n ∥ γ,O q,s0+σ ⩽ C * εγ -1 N qa 0 .
By setting

U 0 = (φ, 0, 0), ω, (b, ω) and for n ∈ N * , U n = U 0 + W n and H n = U n -U n-1 , (14.1) then ∀s ∈ [s 0 , S], ∥H 1 ∥ γ,O q,s ⩽ 1 2 C * εγ -1 N qa 0 and ∀ 2 ⩽ k ⩽ n, ∥H k ∥ γ,O q,s0+σ ⩽ C * εγ -1 N -a2 k-1 . (14.2)
We also have for n ⩾ 2,

∥H n ∥ γ,O q,s h +σ4 ⩽ C * εγ -1 N -a2 n-1 . (14.3) (P2) n Define i n = (φ, 0, 0) + I n , γ n = γ(1 + 2 -n ), (14.4) 
then i n satisfies the following reversibility condition

Si n (φ) = i n (-φ), (14.5) where S is defined by (12.11). Define also 

A γ 0 = O and A γ n+1 = A γ n ∩ G n (γ n+1 , τ 1 , τ 2 , i n ) where G n (γ n+1 , τ 1 , τ 2 , i n ) is
∥F(U n )∥ γ,O 2γ n q,s0 ⩽ C * εN -a1 n-1 . (P3) n ∥W n ∥ γ,O q,b1+σ ⩽ C * εγ -1 N µ1 n-1 .
A non trivial reversible quasi-periodic solution of our problem is obtained as the limit of the sequence (U n ) n∈N according to the fast convergence stated in Proposition 14.1. This is explained in the following corollary.

Corollary 14.1. There exists ε 0 > 0 such that, for all ε ∈ (0, ε 0 ), the following assertions hold true. We consider the Cantor set G γ ∞ , related to ε through γ, and defined by

G γ ∞ ≜ n∈N A γ n .
There exists a function

U ∞ : O → T d × R d × L 2 ⊥ ∩ H s0 × R d × R d+1 (b, ω) → i ∞ (b, ω), α ∞ (b, ω), (b, ω) such that ∀(b, ω) ∈ G γ ∞ , F(U ∞ (b, ω)) = 0.
In addition, i ∞ is reversible and

α ∞ ∈ W q,∞,γ (O, R d ) with α ∞ (b, ω) = ω + r ε (b, ω) and ∥r ε ∥ γ,O q ≲ εγ -1 N qa 0 . (14.6)
Moreover, there exists a q-times differentiable function b

∈ (b 0 , b 1 ) → ω(b, ε) with ω(b, ε) = -ω Eq (b) + rε (b), ∥r ε ∥ γ,O q ≲ εγ -1 N qa 0 , ( 14.7 
)

and ∀b ∈ C ε ∞ , F U ∞ (b, ω(b, ε)) = 0 and α ∞ b, ω(b, ε) = -ω Eq (b),
where the Cantor set C ε ∞ is defined by

C ε ∞ = b ∈ (b 0 , b 1 ) s.t. b, ω(b, ε) ∈ G γ ∞ . (14.8)
Proof. In view of (14.1) and (14.2), we obtain

∥W n+1 -W n ∥ γ,O q,s0 = ∥H n+1 ∥ γ,O q,s0 ⩽ ∥H n+1 ∥ γ,O q,s0+σ ⩽ C * εγ -1 N -a2 n .
Part II

This implies the convergence of the sequence (W n ) n∈N . Its limit is denoted by

W ∞ ≜ lim n→∞ W n ≜ (I ∞ , α ∞ -ω, 0, 0)
and we set

U ∞ ≜ i ∞ , α ∞ , (b, ω) = U 0 + W ∞ .
Taking n → ∞ in (14.5) gives Si ∞ (φ) = i ∞ (-φ).

According to Proposition 14.1-(P2) n , we get for small values of ε

∀(b, ω) ∈ G γ ∞ , F i ∞ (b, ω), α ∞ (b, ω), (b, ω), ε = 0, ( 14.9) 
where F is the functional defined in (12.20). We emphasize that the Cantor set G γ ∞ depends on ε through γ fixed in (8.2). Now, from Proposition 14.1-(P1) n , we deduce that

α ∞ (b, ω) = ω + r ε (b, ω) with ∥r ε ∥ γ,O q ≲ εγ -1 N qa 0 .
Next we shall prove the second result and check the existence of solutions to the original Hamiltonian equation. First recall that the open set O is defined in (12.5) by

O = (b 0 , b 1 ) × U with U = B(0, R 0 ) for some large R 0 > 0,
where the ball U is taken to contain the equilibrium frequency vector b → ω Eq (b). In view of (14.6), we obtain that for any b ∈ (b 0 , b 1 ), the mapping ω → α ∞ (b, ω) is invertible from U into its image α ∞ (b, U ) and we have

ω = α ∞ (b, ω) = ω + r ε (b, ω) ⇔ ω = α -1 ∞ (b, ω) = ω + r ε (b, ω).
In particular, r ε (b, ω) = -r ε (b, ω).

Differentiating the previous relation and using (14.6), we find

∥ r ε ∥ γ,O q ≲ εγ -1 N qa 0 . (14.10) Now, we set ω(b, ε) ≜ α -1 ∞ (b, -ω Eq (b)) = -ω Eq (b) + r ε (b) with r ε (b) ≜ r ε b, -ω Eq (b)
and consider the following Cantor set

C ε ∞ ≜ b ∈ (b 0 , b 1 ) s.t. b, ω(b, ε) ∈ G γ ∞ .
Then, according to (14.9), we get

∀b ∈ C ε ∞ , F U ∞ b, ω(b, ε) = 0.
This gives a nontrivial reversible solution for the original Hamiltonian equation provided that b ∈ C ε ∞ . From Lemma 11.3, we obtain that all the derivatives up to order q of ω Eq are uniformly bounded on [b 0 , b 1 ]. As a consequence, the chain rule and (14.10) imply (14.11) This achieves the proof of Corollary 14.1.

∥r ε ∥ γ,O q ≲ εγ -1 N qa 0 and ∥ω(•, ε)∥ γ,O q ≲ 1 + εγ -1 N qa 0 ≲ 1.

Measure estimates

In this last section, we check that the Cantor set C ε ∞ , defined in (14.8), of parameters generating non-trivial quasi-periodic solutions is non trivial. More precisely, we have the following proposition giving a lower bound measure for C ε ∞ .

Proposition 14.2. Let q 0 be defined as in Lemma 11.5 and impose (8.1) and (8.2) with q = q 0 + 1.

Assume the additional conditions

     τ 1 > dq 0 τ 2 > τ 1 + dq 0 υ = 1 q0+3 .
(14.12)

Then there exists C > 0 such that

C ε ∞ ⩾ (b 1 -b 0 ) -Cε aυ q 0 .
In particular,

lim ε→0 C ε ∞ = b 1 -b 0 .
Remark 14.1. The constraints listed in (14.12) appear naturally in the proof, see (14.20) and (14.25), for the convergence of series and for smallness conditions. Notice that these conditions agree with (A.1)

and Proposition 13.2.

Proof. According to Corollary 14.1, we can decompose the Cantor set C ε ∞ in the following intersection

C ε ∞ ≜ n∈N C ε n where C ε n ≜ b ∈ (b 0 , b 1 ) s.t b, ω(b, ε) ∈ A γ n . ( 14.13) 
Recall that the intermediate sets A γ n and the perturbed frequency vector ω(b, ε) are respectively defined in Proposition 14.1 and in (14.6). Instead of measuring directly C ε ∞ , we rather estimate the measure of its complementary set in (b 0 , b 1 ). Thus, we write

(b 0 , b 1 ) \ C ε ∞ = (b 0 , b 1 ) \ C ε 0 ⊔ ∞ n=0 C ε n \ C ε n+1 . (14.14)
Then, we have to measure all the sets appearing in the decomposition (14.14). This can be done by using Lemma 5.6 together with some trivial inclusions allowing to link the time and space Fourier modes in order to make the series converge. For more details, we refer to Lemmata 14. 

|ω(b, ε) + ω Eq (b)| ⩽ ∥r ε ∥ γ,O q ⩽ Cεγ -1 N qa 0 = Cε 1-a(1+qa) .
Notice that the conditions (8.1) and (8.2) imply in particular 0 < a < 1 1 + qa .

Part II Therefore, taking ε small enough yields sup b∈(b0,b1)

|ω(b, ε) + ω Eq (b)| ⩽ ∥r ε ∥ γ,O q ⩽ 1.
Recall that U = B(0, R 0 ), then, up to taking R 0 large enough, we get

∀b ∈ (b 0 , b 1 ), ∀ε ∈ [0, ε 0 ), ω(b, ε) ∈ U = B(0, R 0 ).
Recall that A γ 0 = O = (b 0 , b 1 ) × U then, from (14.13),

C ε 0 = (b 0 , b 1 )
and coming back to (14.14), we find

(b 0 , b 1 ) \ C ε ∞ ⩽ ∞ n=0 C ε n \ C ε n+1 ≜ ∞ n=0 S n . (14.15)
In accordance with the notations used in Propositions 13.3 and 13.4, we denote the perturbed frequencies associated with the reduced linearized operator at state i n in the following way

µ ∞,n j (b, ε) ≜ µ ∞ j b, ω(b, ε), i n = Ω j (b) + jr 1,n (b, ε) + r ∞,n j (b, ε), ( 14.16) 
where

r 1,n (b, ε) ≜ V ∞ n (b, ε) -1 2 , V ∞ n (b, ε) ≜ V ∞ in (b, ω(b, ε)), r ∞,n j (b, ε) ≜ r ∞ j b, ω(b, ε), i n .
Now, according to (14.13), Propositions 13.4, 13.5 and 13.2 one can write for any n ∈ N,

C ε n \ C ε n+1 = (l,j)∈Z d ×Z\{(0,0)} |l|⩽Nn R (0) l,j (i n ) (l,j,j 0 )∈Z d ×(S c 0 ) 2 |l|⩽Nn R l,j,j0 (i n ) (l,j)∈Z d ×S c 0 |l|⩽Nn R (1) l,j (i n ), (14.17) 
where we denote

R (0) l,j (i n ) ≜ b ∈ C ε n s.t. ω(b, ε) • l + jV ∞ n (b, ε) ⩽ 4γ υ n+1 ⟨j⟩ ⟨l⟩ τ 1 , R l,j,j0 (i n ) ≜ b ∈ C ε n s.t. ω(b, ε) • l + µ ∞,n j (b, ε) -µ ∞,n j0 (b, ε) ⩽ 2γn+1⟨j-j0⟩ ⟨l⟩ τ 2 , R (1) 
l,j (i n ) ≜ b ∈ C ε n s.t. ω(b, ε) • l + µ ∞,n j (b, ε) ⩽ γn+1⟨j⟩ ⟨l⟩ τ 1 .
In view of the inclusion

W q,∞,γ (O, C) → C q-1 (O, C)
and the fact that q = q 0 + 1, one obtains that for any n

∈ N the curves b → ω(b, ε) • l + jV ∞ n (b, ε), (l, j) ∈ Z d × Z\{(0, 0)} b → ω(b, ε) • l + µ ∞,n j (b, ε) -µ ∞,n j0 (b, ε), (l, j, j 0 ) ∈ Z d × (S c 0 ) 2 b → ω(b, ε) • l + µ ∞,n j (b, ε), (l, j) ∈ Z d × S c
0 are of regularity C q0 . Therefore, applying Lemma 5.6 together with Lemma 14.3 yields

R (0) l,j (i n ) ≲ γ υ q 0 ⟨j⟩ 1 q 0 ⟨l⟩ -1-τ 1 +1 q 0 , R (1) 
l,j (i n ) ≲ γ 1 q 0 ⟨j⟩ 1 q 0 ⟨l⟩ -1-τ 1 +1 q 0 , (14.18) R l,j,j0 (i n ) ≲ γ 1 q 0 ⟨j -j 0 ⟩ 1 q 0 ⟨l⟩ -1-τ 2 +1 q 0 .
We first estimate the measure of S 0 and S 1 defined in (14.15). From Lemma 14.2, we have some trivial inclusions allowing us to write for n ∈ {0, 1},

S n ≲ (l,j)∈Z d ×Z\{(0,0)} |j|⩽C 0 ⟨l⟩,|l|⩽Nn R (0) l,j (i n ) + (l,j,j0)∈Z d ×(S c 0 ) 2 |j-j 0 |⩽C 0 ⟨l⟩,|l|⩽Nn min(|j|,|j 0 |)⩽c 2 γ -υ 1 ⟨l⟩ τ 1 R l,j,j0 (i n ) + (l,j)∈Z d ×S c 0 |j|⩽C 0 ⟨l⟩,|l|⩽Nn R (1) l,j (i n ) . (14.19)
Inserting (14.18) into (14.19) implies that for n ∈ {0, 1},

S n ≲ γ 1 q 0 |j|⩽C0⟨l⟩ |j| 1 q 0 ⟨l⟩ -1-τ 1 +1 q 0 + |j-j0|⩽C0⟨l⟩ min(|j|,|j 0 |)⩽c 2 γ -υ ⟨l⟩ τ 1 |j -j 0 | 1 q 0 ⟨l⟩ -1-τ 2 +1 q 0 + γ υ q 0 |j|⩽C0⟨l⟩ |j| 1 q 0 ⟨l⟩ -1-τ 1 +1 q 0 .
The first two conditions listed in (14.12) write τ 1 > d q 0 and τ 2 > τ 1 + d q 0 . (14.20)

Hence, we can make the series appearing in the following expression converge and write max n∈{0,1}

S n ≲ γ

1 q 0 l∈Z d ⟨l⟩ -τ 1 q 0 + γ -υ l∈Z d ⟨l⟩ τ1-1-τ 2 q 0 + γ υ q 0 l∈Z d ⟨l⟩ -τ 1 q 0 (14.21) ≲ γ min υ q 0 , 1 q 0 -υ .
Let us now move to the estimate of S n for n ⩾ 2 defined by (14.15). Using Lemma 14.1 and Lemma 14.2, we infer

S n ⩽ (l,j)∈Z d ×Z\{(0,0)} |j|⩽C 0 ⟨l⟩,N n-1 <|l|⩽Nn R (0) l,j (i n ) + (l,j,j0)∈Z d ×(S c 0 ) 2 |j-j 0 |⩽C 0 ⟨l⟩,N n-1 <|l|⩽Nn min(|j|,|j 0 |)⩽c 2 γ -υ n+1 ⟨l⟩ τ 1 R l,j,j0 (i n ) + (l,j)∈Z d ×S c 0 |j|⩽C 0 ⟨l⟩,N n-1 <|l|⩽Nn R (1) l,j (i n ) . Notice that if |j -j 0 | ⩽ C 0 ⟨l⟩ and min(|j|, |j 0 |) ⩽ γ -υ n+1 ⟨l⟩ τ1 , then max(|j|, |j 0 |) = min(|j|, |j 0 |) + |j -j 0 | ⩽ γ -υ n+1 ⟨l⟩ τ1 + C 0 ⟨l⟩ ≲ γ -υ ⟨l⟩ τ1 .
Part II Hence, we deduce from (14.18) that

S n ≲ γ 1 q 0 |l|>Nn-1 ⟨l⟩ -τ 1 q 0 + γ -υ |l|>Nn-1 ⟨l⟩ τ1-1-τ 2 q 0 + γ υ q 0 |l|>Nn-1 ⟨l⟩ -τ 1 q 0 .
Now according to (14.20), we obtain 

∞ n=2 S n ≲ γ min υ q 0 , 1 q 0 -υ . ( 14 
(b 0 , b 1 ) \ C ε ∞ ≲ γ min υ q 0 , 1 q 0 -υ .
Remark also that (14.12) implies min υ q0 , 1 q0 -υ = υ q0 .

Consequently, using the fact that γ = ε a due to (8.2), we finally get

(b 0 , b 1 ) \ C ε ∞ ≲ ε aυ q 0 .
This ends the proof of Proposition 14.2.

We shall now prove Lemmata 14.1, 14. (i) For j ∈ Z with (l, j) ̸ = (0, 0), we get R (0) l,j (i n ) = ∅.

(ii) For (j, j 0 ) ∈ (S c 0 ) 2 with (l, j) ̸ = (0, j 0 ), we get R l,j,j0 (i n ) = ∅.

(iii) For j ∈ S c 0 , we get R

l,j (i n ) = ∅.

(iv) For any n ∈ N \ {0, 1},

C ε n \ C ε n+1 = (l,j)∈Z d ×Z\{(0,0)} N n-1 <|l|⩽Nn R (0) l,j (i n ) ∪ (l,j,j0)∈Z d ×(S c 0 ) 2 N n-1 <|l|⩽Nn R l,j,j0 (i n ) ∪ (l,j)∈Z d ×S c 0 N n-1 <|l|⩽Nn R (1) l,j (i n ).
Proof. The following estimate, obtained from (14.3), turns to be very useful in the sequel. For any n ⩾ 2, we have (i) Assume that |l| ⩽ N n-1 and (l, j) ̸ = (0, 0). Let us prove that

∥i n -i n-1 ∥ γ,O q,s h +σ4 ⩽ ∥U n -U n-1 ∥ γ,O q,s h +σ4 ⩽ ∥H n ∥ γ,O q,s h +σ4 ⩽ C * εγ -1 N -a2 n-1 . ( 14 
R (0) l,j (i n ) ⊂ R (0) l,j (i n-1 ). (14.24) Take b ∈ R (0)
l,j (i n ). In view of (14.17), we have in particular that b ∈ C ε n ⊂ C ε n-1 . In addition, the triangle inequality gives

ω(b, ε) • l + jV ∞ n-1 (b, ε) ⩽ ω(b, ε) • l + jV ∞ n (b, ε) + |j| V ∞ n (b, ε) -V ∞ n-1 (b, ε) ⩽ 4γ υ n+1 ⟨j⟩ ⟨l⟩ τ 1 + C|j|∥V ∞ in -V ∞ in-1 ∥ γ,O q .
Thus, putting together (13.27), (14.23), (8.2) and the fact that σ 4 ⩾ 2, we obtain

ω(b, ε) • l + jV ∞ n-1 (b, ε) ⩽ 4γ υ n+1 ⟨j⟩ ⟨l⟩ τ 1 + Cε⟨j⟩∥i n -i n-1 ∥ γ,O q,s h +2 ⩽ 4γ υ n+1 ⟨j⟩ ⟨l⟩ τ 1 + Cε 2-a ⟨j⟩N -a2 n-1 .
According the definition of γ n in Proposition 14.1-(P2) n , we infer

∃c 0 > 0, ∀n ∈ N, γ υ n+1 -γ υ n ⩽ -c 0 γ υ 2 -n .
Notice that (14.12), (8. 

2 n N -a2+τ1 n-1 < ∞.
Consequently, for ε small enough and |l|

⩽ N n-1 , ω(b, ε) • l + jV ∞ n-1 (b, ε) ⩽ 4γ υ n ⟨j⟩ ⟨l⟩ τ 1 + C ⟨j⟩γ υ 2 n ⟨l⟩ τ 1 -4c 0 + Cε2 n N -a2+τ1 n-1 ⩽ 4γ υ n ⟨j⟩ ⟨l⟩ τ 1 .
It follows that b ∈ R (0) l,j (i n-1 ) and this proves (14.24). Now, from (14.17) we deduce

R (0) l,j (i n ) ⊂ R (0) l,j (i n-1 ) ⊂ C ε n-1 \ C ε n .
In view of (14.24) and (14.17), we get R

(0) l,j (i n ) ⊂ C ε n \ C ε n+1 and thus we conclude R (0) l,j (i n ) ⊂ C ε n \ C ε n+1 ∩ C ε n-1 \ C ε n = ∅.
This proves the first point.

(ii) Let (j, j 0 ) ∈ (S c 0 ) 2 and (l, j) ̸ = (0, j 0 ). If j = j 0 then by construction R l,j0,j0

(i n ) = R (0)
l,0 (i n ) and then the result is an immediate consequence of the first point. Then, we restrict the discussion to the case j ̸ = j 0 . In a similar way to the point (i), we only have to check that R l,j,j0 (i n ) ⊂ R l,j,j0 (i n-1 ). Take b ∈ R l,j,j0 (i n ). Then coming back to (14.17), we deduce from the triangle inequality that b

∈ C ε n ⊂ C ε n-1 and ω(b, ε) • l + µ ∞,n-1 j (b, ε) -µ ∞,n-1 j0 (b, ε) ⩽ 2γn+1⟨j-j0⟩ ⟨l⟩ τ 2 + ϱ n j,j0 (b, ε), ( 14.26) 
where

ϱ n j,j0 (b, ε) ≜ µ ∞,n j (b, ε) -µ ∞,n j0 (b, ε) -µ ∞,n-1 j (b, ε) + µ ∞,n-1 j0 (b, ε) .
Part II

According to (14.16), one obtains

ϱ n j,j0 (b, ε) ⩽ |j -j 0 | r 1,n (b, ε) -r 1,n-1 (b, ε) + r ∞,n j (b, ε) -r ∞,n-1 j (b, ε) + r ∞,n j0 (b, ε) -r ∞,n-1 j0 (b, ε) . (14.27)
From (13.54), (14.23), (8.2) and the fact that σ 4 ⩾ σ 3 , we deduce that

r 1,n (b, ε) -r 1,n-1 (b, ε) ≲ ε∥i n -i n-1 ∥ γ,O q,s h +σ3 ≲ ε 2 γ -1 N -a2 n-1 ≲ ε 2-a N -a2 n-1 .
Similarly, (13.67), (14.23) and (8.2) imply

r ∞,n j (b, ε) -r ∞,n-1 j (b, ε) ≲ εγ -1 ∥i n -i n-1 ∥ γ,O q,s h +σ4 ≲ ε 2 γ -2 N -a2 n-1 ≲ ε 2(1-a) ⟨j -j 0 ⟩N -a2 n-1 .
Plugging the preceding two estimates into (14.27) yields

ϱ n j,j0 (b, ε) ≲ ε 2(1-a) ⟨j -j 0 ⟩N -a2 n-1 . ( 14.28) 
Gathering (14.28) and (14.26) and using

γ n+1 = γ n -ε a 2 -n-1 , we obtain ω(b, ε) • l + µ ∞,n-1 j (b, ε) -µ ∞,n-1 j0 (b, ε) ⩽ 2γn⟨j-j0⟩ ⟨l⟩ τ 2 -ε a ⟨j -j 0 ⟩2 -n ⟨l⟩ -τ2 + Cε 2(1-a) ⟨j -j 0 ⟩N -a2 n-1 .
Using the fact that |l| ⩽ N n-1 , we deduce

-ε a 2 -n ⟨l⟩ -τ2 + Cε 2(1-a) N -a2 n-1 ⩽ ε a 2 -n ⟨l⟩ -τ2 -1 + Cε 2-3a 2 n N -a2+τ2 n-1 .
Notice that (8.1) and (8.2) imply in particular a 2 > τ 2 and a < 2 3 . (14.29)

Therefore, for ε small enough, we get

∀ n ∈ N, -1 + Cε 2-3a 2 n N -a2+τ2 n-1 ⩽ 0, which implies in turn ω(b, ε) • l + µ ∞,n-1 j (b, ε) -µ ∞,n-1 j0 (b, ε) ⩽ 2γn⟨j-j0⟩ ⟨l⟩ τ 2 • Finally, b ∈ R l,j,j0 (i n-1
). This achieves the proof of the second point.

(iii) Let j ∈ S c 0 . In particular, one has (l, j) ̸ = (0, 0). In a similar line to the first point, we shall prove that if |l| ⩽ N n-1 and then

R (1) l,j (i n ) ⊂ R (1) l,j (i n-1 ),
where the set R (1) l,j (i n ) is defined below (14.17). Take b ∈ R

(1) l,j (i n ). Then, by construction, b ∈ C ε n ⊂ C ε n-1 .
Part II together with (13.20), (13.65) and Proposition 14.1-(P1) n imply ∀k ∈ 0, q , sup n∈N sup b∈(b0,b1) 

|∂ k b r 1,n (b, ε)| ⩽ γ -k sup n∈N ∥r 1,n ∥ γ,O q ≲ εγ -k ≲ ε 1-ak . ( 14 
|V ∞ n (b, ε)| ⩾ 1 4 .
Therefore, up to choosing ε small enough we can ensure |j| ⩽ C 0 ⟨l⟩ for some C 0 > 0.

(ii) In the case j = j 0 we get by definition R l,j0,j0

(i n ) = R (0)
l,0 (i n ), so this case can be treated by the first point. Then, we shall restrict the discussion to the case j ̸ = j 0 . Let us assume that R l,j,j0

(i n ) ̸ = ∅. Then, there exists b ∈ (b 0 , b 1 ) such that |ω(b, ε) • l + µ ∞,n j (b, ε) -µ ∞,n j0 (b, ε)| ⩽ 2γn+1|j-j0| ⟨l⟩ τ 2
.

By using triangle and Cauchy-Schwarz inequalities, (14.4) and (8.2), we get

|µ ∞,n j (b, ε) -µ ∞,n j0 (b, ε)| ⩽ 2γ n+1 |j -j 0 |⟨l⟩ -τ2 + |ω(b, ε) • l| ⩽ 2γ n+1 |j -j 0 | + C⟨l⟩ ⩽ 4ε a |j -j 0 | + C⟨l⟩.
In a similar way to (14.31), we may obtain 

∀k ∈ 0, q , sup n∈N sup j∈S c 0 sup b∈(b0,b1) |j||∂ k b r ∞,n j (b, ε)| ⩽ γ -k sup n∈N sup j∈S c 0 |j|∥r ∞,n j ∥ γ,O q ≲ εγ -1-k ≲ ε 1-a(1+k
̸ = j 0 , |µ ∞,n j (b, ε) -µ ∞,n j0 (b, ε)| ⩾ |Ω j (b) -Ω j0 (b)| -|r 1,n (b, ε)||j -j 0 | -|r ∞,n j (b, ε)| -|r ∞,n j0 (b, ε)| ⩾ b 2 0 6 -Cε 1-a |j -j 0 | ⩾ b 2 0 12 |j -j 0 |.
Notice that the last inequality is obtained for ε sufficiently small. Gathering the previous inequalities implies that, up to choosing ε small enough, we can ensure |j -j 0 | ⩽ C 0 ⟨l⟩, for some C 0 > 0.

(iii) First notice that the case j = 0 is obvious. Now for j ̸ = 0 we assume that R

(1)

l,j (i n ) ̸ = ∅. Then, there exists b ∈ (b 0 , b 1 ) such that |ω(b, ε) • l + µ ∞,n j (b, ε)| ⩽ γn+1|j| ⟨l⟩ τ 1 .
Thus, triangle and Cauchy-Schwarz inequalities, (14.4) and (8.2) imply

|µ ∞,n j (b, ε)| ⩽ γ n+1 |j|⟨l⟩ -τ1 + |ω(b, ε) • l| ⩽ 2ε a |j| + C⟨l⟩.
According to the definition (14.16) together with the triangle inequality, Lemma 11.3-(ii), (14.31) and (14.32), we obtain

|µ ∞,n j (b, ε)| ⩾ b 2 0 2 |j| -|j||r 1,n (b, ε)| -|r ∞,n j (b, ε)| ⩾ b 2 0 2 |j| -Cε 1-a |j|.
Putting together the previous two inequalities and the second condition in (14.30) yields

b 2 0 2 -Cε 1-a -2ε a |j| ⩽ C⟨l⟩.
Finally, by choosing ε small enough we get |j| ⩽ C 0 ⟨l⟩, for some C 0 > 0.

(iv) First remark that the case j = j 0 is obvious as a direct consequence of the definition (14.17). Let j ̸ = j 0 . In view of the symmetry property µ ∞,n -j = -µ ∞,n j of the perturbed eigenvalues, we can always assume that 0 < j < j 0 . Take b ∈ R l,j,j0 (i n ). Then by construction

ω(b, ε) • l + µ ∞,n j (b, ε) ± µ ∞,n j0 (b, ε) ⩽ 2γn+1⟨j±j0⟩ ⟨l⟩ τ 2
.

Putting together (14.16), (11.15) and the triangle inequality, we find

ω(b, ε) • l + (j ± j 0 )V ∞ n (b, ε) ⩽ ω(b, ε) • l + µ ∞,n j (b, ε) ± µ ∞,n j0 (b, ε) + 1 2 |b 2j ± b 2j0 | + 1 2 (j -1) ± (j 0 -1) -(j ± j 0 ) + r ∞,n j (b, ε) ± r ∞,n j0 (b, ε) .
Hence, we deduce

ω(b, ε) • l + (j ± j 0 )V ∞ n (b, ε) ⩽ 2γn+1⟨j±j0⟩ ⟨l⟩ τ 2 + 1 2 |b 2j ± b 2j0 | + 1 2 (j -1) ± (j 0 -1) -(j ± j 0 ) + r ∞,n j (b, ε) ± r ∞,n j0 (b, ε) . (14.33) Notice that b 2j + b 2j0 ⩽ C ⟨j+j0⟩ j .
In addition, Taylor formula implies

b 2j -b 2j0 ⩽ -2 ln(b) ˆj0 j b 2x dx ⩽ c1⟨j-j0⟩ j ,
where c 1 = sup j∈N,b∈(0,1)

-2 ln(b)jb 2j > 0. On the other hand, one has

(j -1) ± (j 0 -1) -(j ± j 0 ) = 1 ± 1 ⩽ ⟨j+j0⟩ j .
Applying (13.65), we find for j ̸ = j 0 ,

r ∞,n j (b, ε) ± r ∞,n j0 (b, ε) ⩽Cε 1-a |j| -1 + |j 0 | -1 ⩽Cε 1-a ⟨j±j0⟩ j •
Plugging the preceding estimates into (14.33) yields

ω(b, ε) • l + (j ± j 0 )V ∞ n (b, ε) ⩽ 2γn+1⟨j±j0⟩ ⟨l⟩ τ 2 + C ⟨j±j0⟩ j • Part II
Therefore, if we assume j ⩾ 1 2 Cγ -υ n+1 ⟨l⟩ τ1 and τ 2 > τ 1 , then we deduce

ω(b, ε) • l + (j ± j 0 )V ∞ n (b, ε) ⩽ 4γ υ n+1 ⟨j±j0⟩ ⟨l⟩ τ 1 •
This achieves the proof of Lemma 14.2, taking c 2 = C 2 .

We shall now establish that the perturbed frequencies ω(b, ε) satisfy the Rüssmann conditions. This is done by a perturbation argument on the transversality conditions of the equilibrium linear frequencies ω Eq (b) stated in Lemma 11.5.

Lemma 14.3. Let q 0 , C 0 and ρ 0 as in Lemma 11.5. There exist ε 0 > 0 small enough such that for any ε ∈ [0, ε 0 ] the following assertions hold true.

(i) For all l ∈ Z d \ {0}, we have

inf b∈[b0,b1] max k∈ 0,q0 ∂ k b (ω(b, ε) • l) ⩾ ρ0⟨l⟩ 2 .
(ii) For all (l, j) ∈ Z d+1 \ {(0, 0)} such that |j| ⩽ C 0 ⟨l⟩, we have

∀n ∈ N, inf b∈[b0,b1] max k∈ 0,q0 |∂ k b ω(b, ε) • l + jV ∞ n (b, ε) | ⩾ ρ0⟨l⟩ 2 . (iii) For all (l, j) ∈ Z d × S c 0 such that |j| ⩽ C 0 ⟨l⟩, we have ∀n ∈ N, inf b∈[b0,b1] max k∈ 0,q0 ∂ k b ω(b, ε) • l + µ ∞,n j (b, ε) ⩾ ρ0⟨l⟩ 2 .
(iv) For all (l, j, j 0

) ∈ Z d × (S c 0 ) 2 such that |j -j 0 | ⩽ C 0 ⟨l⟩, we have ∀n ∈ N, inf b∈[b0,b1] max k∈ 0,q0 ∂ k b ω(b, ε) • l + µ ∞,n j (b, ε) -µ ∞,n j0 (b, ε) ⩾ ρ0⟨l⟩ 2 .
Proof. (i) From the triangle and Cauchy-Schwarz inequalities together with (14.11), (8.2) and Lemma 11.5-(i), we deduce max k∈ 0,q0 

|∂ k b (ω(b, ε) • l) | ⩾ max k∈ 0,q0 |∂ k b (ω Eq (b) • l) | -max k∈ 0,q |∂ k b (r ε (b) • l) | ⩾ ρ 0 ⟨l⟩ -Cεγ -1-q N qa 0 ⟨l⟩ ⩾ ρ 0 ⟨l⟩ -Cε 1-a(1+q+qa) ⟨l⟩ ⩾ ρ0⟨l⟩ 2 provided that ε is small enough and 1 -a(1 + q + qa) > 0. ( 14 
|∂ k b (ω(b, ε) • l + jV ∞ n (b, ε)) | ⩾ max k∈ 0,q0 ∂ k b ω Eq (b) • l + j 2 -max k∈ 0,q |∂ k b r ε (b) • l + jr 1,n (b, ε) | ⩾ ρ 0 ⟨l⟩ -Cε 1-a(1+q+qa) ⟨l⟩ -Cε 1-aq |j| ⩾ ρ0⟨l⟩ 2
for ε small enough and with the condition (14.34).

(iii) As before, using triangle and Cauchy-Schwarz inequalities combined with (14.11), (14.31), (14.32), Lemma 11.5-(iii) and the fact that |j| ⩽ C 0 ⟨l⟩, we get max k∈ 0,q0

∂ k b ω(b, ε) • l + µ ∞,n j (b, ε) ⩾ max k∈ 0,q0 |∂ k b (ω Eq (b) • l + Ω j (b)) | -max k∈ 0,q ∂ k b r ε (b) • l + jr 1,n (b, ε) + r ∞,n j (b, ε)) ⩾ ρ 0 ⟨l⟩ -Cε 1-a(1+q+qa) ⟨l⟩ -Cε 1-a(1+q) |j| ⩾ ρ0⟨l⟩ 2
for ε small enough with the condition (14.34).

(iv) Arguing as in the preceding point, using (14.31), (14.32), Lemma 11.5-(iv) and the fact that 0 < |j -j 0 | ⩽ C 0 ⟨l⟩ (notice that the case j = j 0 is trivial), we have

max k∈ 0,q0 ∂ k b ω(b, ε) • l + µ ∞,n j (b, ε) -µ ∞,n j0 (b, ε) ⩾ max k∈ 0,q0 ∂ k b ω Eq (b) • l + Ω j (b) -Ω j0 (b) -max k∈ 0,q ∂ k b r ε (b) • l + (j -j 0 )r 1,n (b, ε) + r ∞,n j (b, ε) -r ∞,n j0 (b, ε) ⩾ ρ 0 ⟨l⟩ -Cε 1-a(1+q+qa) ⟨l⟩ -Cε 1-a(1+q) |j -j 0 | ⩾ ρ0⟨l⟩ 2
for ε small enough. This ends the proof of Lemma 14.3.

Introduction

We shall present here the last result obtained during the PhD related to the existence of relative equilibria with holes for QGSW equations. The result reads as follows. 

Ω ± m (λ, b) = 1 -b 2 2b Λ 1 (λ, b) + 1 2 Ω m (λ) -Ω m (λb) ± 1 2b b Ω m (λ) + Ω m (λb) -(1 + b 2 )Λ 1 (λ, b) 2 -4b 2 Λ 2 m (λ, b),
where Ω m (λ) is defined in (1.23) and

Λ m (λ, b) ≜ I m (λb)K m (λ)
with I m and K m being the modified Bessel functions of first and second kind. In addition, the boundary of each V-state is analytic.

Before sketching the proof some remarks are in order.

Remark 15.1. The spectrum is continuous with respect to λ and b. In particular, when we shrink λ → 0 we find the spectrum of Euler equations detailed in (1.21). However, when we shrink b → 0 we obtain in part the simply connected spectrum (1.23) . In other words,

   Ω ± m (λ, b) -→ λ→0 Ω ± m (b) Ω + m (λ, b) -→ b→0 Ω m (λ).
These asymptotics are obtained for sufficiently large values of m. For more details see Lemma 17.2. Now, we intend to discuss the key steps of the proof of Theorem 15.1. Notice that for a given continuous function f : T → C, we define its mean value by

T f (τ )dτ ≜ 1 2iπ ˆT f (τ )dτ ≜ 1 2π ˆ2π 0 f e iθ e iθ dθ, ( 15.1) 
where dτ stands for the complex integration.

First, in Section 16, we reformulate the vortex patch equation by using conformal maps. We opted for this approach to take advantage of the computations already done in [START_REF] Dritschel | Imperfect bifurcation for the shallowwater quasi-geostrophic equations[END_REF] in this framework. Nevertheless, one could choose to formulate the problem in polar coordinates as in the previous sections. Consider an initial doubly-connected domain D 0 = D 1 \ D 2 , with D 1 and D 2 are two simply-connected domains close to the discs of radii 1 and b respectively. We introduce for j ∈ {1, 2} the conformal mappings Φ j :

D c → D c j taking the form Φ 1 (z) = z + f 1 (z) = z + ∞ n=0 a n z n , Φ 2 (z) = bz + f 2 (z) = bz + ∞ n=0 b n z n .
Thus, from the contour dynamics equation, rotating doubly-connected V-states amounts to finding non-trivial zeros of the nonlinear functional G = (G 1 , G 2 ), defined for j ∈ {1, 2} and w ∈ T by

G j (λ, b, Ω, f 1 , f 2 )(w) ≜ Im ΩΦ j (w) + S(λ, Φ 2 , Φ j )(w) -S(λ, Φ 1 , Φ j )(w) wΦ ′ j (w) , with ∀w ∈ T, S(λ, Φ i , Φ j )(w) ≜ T Φ ′ i (τ )K 0 (λ|Φ j (w) -Φ i (τ )|) dτ.
For this aim, we shall implement Crandall-Rabinowitz's Theorem, starting from the elementary observation that the annulus A b defined by (1.20) generates a trivial line of solutions for any Ω ∈ R, which will play the role of the bifurcation parameter. In the same section, we also study the regularity of G and prove that it is of class C 1 with respect to the functional spaces introduced in Section 16.2. Then, in Section 17, we compute the linearized operator at the equilibrium state and prove that it is a Fourier matrix multiplier. More precisely, for

∀w ∈ T, h 1 (w) = ∞ n=0 a n w n and h 2 (w) = ∞ n=0 b n w n , we have d (f1,f2) G(λ, b, Ω, 0, 0)[h 1 , h 2 ](w) = ∞ n=0 (n + 1)M n+1 (λ, b, Ω) a n b n Im(w n+1 ),
where

M n (λ, b, Ω) ≜ Ω n (λ) -Ω -bΛ 1 (λ, b) bΛ n (λ, b) -Λ n (λ, b) Λ 1 (λ, b) -b Ω n (λb) + Ω .
We refer to Proposition 17.1 for more details and point out that some difficulties appear there when computing some integrals related to Bessel functions. Then, the kernel for the linearized operator 

d (f1,f2) G(λ, b, Ω, 0, 0) is non trivial for Ω = Ω ± m (λ,
m (λ, b) ≜ b Ω m (λ) + Ω m (λb) -(1 + b 2 )Λ 1 (λ, b) 2 -4b 2 Λ 2 m (λ, b) > 0,
required in the transversality condition of Crandall-Rabinowitz's Theorem and second to get the monotonicity of the sequences Ω ± n (λ, b) n⩾N (λ,b) (to get a one-dimensional kernel), obtained from tricky asymptotic analysis on the modified Bessel functions. For more details, we refer to Proposition 18.1. The previous bifurcation occurs a priori in C 1+α regularity with α ∈ (0, 1), but using an elliptic regularity argument, we prove in Lemma 18.1 the analyticity of the boundary for these V-states.

In this section, we shall reformulate the problem of finding V-states looking at the zeros of a nonlinear functional G. We also introduce the function spaces used in the analysis and study some regularity aspects for the functional G with respect to these functions spaces.

Boundary equations

In this subsection we shall obtain the system governing the patch motion. The starting point is the vortex patch equation in complex notation (1.17), which we recall here

Im ∂ t z(t, θ) -v(t, z(t, θ)) ∂ θ z(t, θ) = 0, ( 16.1) 
where θ → z(t, θ) is a parametrization of the boundary of D t . Assuming that the patch is uniformly rotating with an angular velocity Ω, we can choose a parametrization γ in the form

z(t, θ) = e iΩt z(0, θ). ( 16.2) 
One readily has

Im ∂ t z(t, θ)∂ θ z(t, θ) = ΩRe z(0, θ)∂ θ z(0, θ) . ( 16.3) 
Now, to study the second term in the equation (16.1), we use (4.4). By using (16.2), we obtain

v(t, z(t, θ)) = 1 2π ˆ∂Dt K 0 (λ|z(t, θ) -ξ|) dξ = 1 2π ˆ1 0 K 0 λ|e iΩt z(0, θ) -e iΩt z(0, η)| ∂ η z(t, η)dη = e iΩt 2π ˆ1 0 K 0 (λ|z(0, θ) -z(0, η)|) ∂ η z(0, η)dη = e iΩt 2π ˆ∂D0 K 0 (λ|z(0, θ) -ξ|) dξ = e iΩt v(0, z(0, θ)).
Consequently using again (16.2), we get Let us assume that our starting domain D 0 is doubly-connected, that is

Im v(t, z(t, θ))∂ θ z(t, θ) = Im v(0, z(0, θ))∂ θ z(0, θ) . ( 16 
D 0 = D 1 \D 2 with D 2 ⊂ D 1 ,
where 

∈ ∂D 0 = ∂D 1 ∪ ∂D 2 , ΩRe zz ′ = Im 1 2π ˆ∂D0 K 0 (λ|z -ξ|) dξz ′ = Im 1 2π ˆ∂D1 K 0 (λ|z -ξ|) dξ - 1 2π ˆ∂D2 K 0 (λ|z -ξ|) dξ z ′ , ( 16.6) 
where z ′ denotes a tangent vector to the boundary ∂D 0 at the point z. The minus sign in front of the integral on ∂D 2 is here because of the orientation convention for the application of Stokes' Theorem.

Following the works initiated by Burbea, see for instance [START_REF] Burbea | Motions of vortex patches[END_REF][START_REF] Dritschel | Imperfect bifurcation for the shallowwater quasi-geostrophic equations[END_REF][START_REF] Hmidi | Boundary Regularity of Rotating Vortex Patches[END_REF][START_REF] Hmidi | On rotating doubly connected vortices[END_REF], we give the equation(s) to solve by using conformal mappings. For this purpose, we shall recall Riemann mapping Theorem. 

Φ(z) = az + ∞ n=0 a n z n , with a > 0 and (a n ) n∈N ∈ C N .
Notice that in the previous theorem, the domain is only assumed to be simply-connected and bounded.

In particular, the existence of the conformal mapping does not depend on the regularity of the boundary.

However, information on the regularity of the conformal mapping implies some regularity of the boundary. This is given by the following result which can be found in [START_REF] Warschawski | On the higher derivatives at the boundary in conformal mapping[END_REF] or in [START_REF] Pommerenke | Boundary behaviour of conformal maps[END_REF]Thm. 3.6]. Assuming that D 1 and D 2 are respectively small deformations of the discs of radii 1 and b, so that the shape of D 0 is close to the annulus A b defined in (1.20), we shall consider the parametrizations by the conformal mapping Φ j : C\D → C\D j satisfying

Φ 1 (z) = z + f 1 (z) = z 1 + ∞ n=1 a n z n and Φ 2 (z) = bz + f 2 (z) = z b + ∞ n=1 b n z n .
We shall now rewrite the equations by using the conformal parametrizations Φ 1 and Φ 2 . First remark that for w ∈ T, a tangent vector on the boundary ∂D j at the point z = Φ j (w) is given by

z ′ = -iwΦ ′ j (w).
Inserting this into (16.6) and using the change of variables ξ = Φ j (τ ) gives

∀j ∈ {1, 2}, ∀w ∈ T, G j (λ, b, Ω, f 1 , f 2 )(w) = 0,
where

G j (λ, b, Ω, f 1 , f 2 )(w) ≜ Im ΩΦ j (w) + S(λ, Φ 2 , Φ j )(w) -S(λ, Φ 1 , Φ j )(w) wΦ ′ j (w) , (16.7) Part III with ∀(i, j) ∈ {1, 2} 2 , ∀w ∈ T, S(λ, Φ i , Φ j )(w) ≜ T Φ ′ i (τ )K 0 (λ|Φ j (w) -Φ i (τ )|) dτ. (16.8)
Then, finding a non trivial uniformly rotating vortex patch for (1.6) reduces to finding zeros of the nonlinear functional

G ≜ (G 1 , G 2 ).
As stated in the introduction, these non trivial solutions may be obtained by bifurcation techniques from trivial solutions which are annuli. Let us recover with this formalism that indeed the annuli rotate for any angular velocity. This is given by the following result. Proof. Taking f 1 = f 2 = 0 by in (16.7), we get

G 1 (λ, b, Ω, 0, 0)(w) = Im bw T K 0 (λ|w -bτ |) dτ -w T K 0 (λ|w -τ |) dτ .
Using the changes of variables τ → wτ and the fact that |w| = 1, we have

G 1 (λ, b, Ω, 0, 0)(w) = Im b T K 0 (λ|1 -bτ |) dτ - T K 0 (λ|1 -τ |) dτ = 0.
Indeed for a ∈ {1, b}, we have by (C.3) and the change of variables θ → -θ

T K 0 (λ|1 -aτ |) dτ = 1 2π ˆ2π 0 K 0 (λ|1 -ae iθ |) e iθ dθ = 1 2π ˆ2π 0 K 0 λ|1 -ae iθ | e -iθ dθ = 1 2π ˆ2π 0 K 0 λ|1 -ae -iθ | e iθ dθ = 1 2π ˆ2π 0 K 0 λ|1 -ae iθ | e iθ dθ = T K 0 (λ|1 -aτ |) dτ. ( 16.9) 
Similarly, we find

G 2 (λ, b, Ω, 0, 0)(w) = 0.
This proves Lemma 16.1.

Function spaces and regularity of the functional

We introduce here the function spaces used along this work. Throughout this part it is more convenient to think of 2π-periodic function g : R → C as a function of the complex variable w = e iθ . To be more precise, let f : T → R 2 , be a continuous function, then it can be assimilated to a 2π-periodic function g : R → R 2 via the relation

f (w) = g(θ), w = e iθ .
Hence, when f is smooth enough, we get

f ′ (w) ≜ df dw = -ie -iθ g ′ (θ).
Since d dw and d dθ differ only by a smooth factor with modulus one, we shall in the sequel work with d dw instead of d dθ which appears more suitable in the computations. In addition, if f is of class C 1 and has real Fourier coefficients, then we can easily check that (i) We denote by C α (T) the space of continuous functions f such that

f ′ (w) = - f ′ (w) w 2 . ( 16 
∥f ∥ C α (T) ≜ ∥f ∥ L ∞ (T) + sup (τ,w)∈T 2 τ ̸ =w |f (τ ) -f (w)| |τ -w| α < ∞.
(ii) We denote by C 1+α (T) the space of C 1 functions with α-Hölder continuous derivative

∥f ∥ C 1+α (T) ≜ ∥f ∥ L ∞ (T) + df dw C α (T) < ∞.
For α ∈ (0, 1), we set

X 1+α ≜ X 1+α 1 × X 1+α 1 with X 1+α 1 ≜ f ∈ C 1+α (T) s.t. ∀w ∈ T, f (w) = ∞ n=0 f n w n , f n ∈ R and Y α ≜ Y α 1 × Y α 1 with Y α 1 ≜ g ∈ C α (T) s.t. ∀w ∈ T, g(w) = ∞ n=1
g n e n (w), g n ∈ R , where e n (w) ≜ Im(w n ).

We denote

B 1+α r ≜ f ∈ X 1+α 1 s.t. ∥f ∥ C 1+α (T) < r .
We can encode the m-fold structure in the functional spaces by setting

X 1+α m ≜ X 1+α 1,m × X 1+α 1,m with X 1+α 1,m ≜ f ∈ X 1+α 1 s.t. ∀w ∈ T, f (w) = ∞ n=1 f mn-1 w mn-1 and Y α m ≜ Y α 1,m × Y α 1,m with Y α 1,m ≜ g ∈ Y α 1 s.t. ∀w ∈ T, g(w) = ∞ n=1
g mn e mn (w) .

The spaces X 1+α and X 1+α m resp. Y α and Y α m are equipped with the strong product topology of C 1+α (T) × C 1+α (T) resp. C α (T) × C α (T) . We also denote

B 1+α r,m ≜ f ∈ X 1+α 1,m s.t. ∥f ∥ C 1+α (T) < r = B 1+α r ∩ X 1+α 1,m .
We shall now investigate the regularity of the nonlinear functional G defined by (16. Proof. (i) The proof proceeds in three steps. The first step is to show the well-posedness of the function

G(λ, b, •, •, •) from R × B 1+α r × B 1+α r
to Y α for some r small enough. Then, in the second step, we shall prove the existence and give the computation of the Gâteaux derivative of G(λ, b, •, •, •). Finally, in the third step, we shall prove that these Gâteaux derivatives are continuous. This will show the

C 1 regularity of G(λ, b, •, •, •). ▶ Step 1 : Show that G(λ, b, •, •, •) : R × B 1+α r × B 1+α r → Y α is well-defined :
For this purpose, we split G j into two terms, the self-induced term S j and the interaction term I j ,

G j (λ, b, Ω, f 1 , f 2 ) = S j (λ, b, Ω, f j ) + I j (λ, b, f 1 , f 2 ), (16.11) 
where S j (λ, b, Ω, f j )(w) ≜ Im ΩΦ j (w) + (-1) j S(λ, Φ j , Φ j )(w) wΦ ′ j (w) ,

I j (λ, b, f 1 , f 2 ) ≜ (-1) j-1 Im S(λ, Φ i , Φ j )(w)wΦ ′ j (w) .
➢ We refer to [START_REF] Dritschel | Imperfect bifurcation for the shallowwater quasi-geostrophic equations[END_REF]Prop. 5.7] for the study of S j . Only the (-1) j defers, but has no consequence. We recall here the results. There exists r ∈ (0, 1) such that for all α ∈ (0, 1), we have

• S j (λ, b, •, •) : R × B 1+α r → Y α 1 is of class C 1 . • The restriction S j (λ, b, •, •) : R × B 1+α r,m → Y α m is well-defined.
Moreover, we have

d fj S j (λ, b, Ω, f j )h j (w) = ΩIm h j (w)wΦ ′ j (w) + Φ j (w)wh ′ j (w) + (-1) j Im S(λ, Φ j , Φ j )(w)wh ′ j (w) + wΦ ′ j (w) [A 1 (λ, Φ j , h j )(w) + B 1 (λ, Φ j , h j )(w)] , ( 16.12) 
where

A 1 (λ, Φ j , h j )(w) ≜ T h ′ j (τ )K 0 (λ|Φ j (w) -Φ j (τ )|) dτ, B 1 (λ, Φ j , h j )(w) ≜ λ T Φ ′ j (τ )K ′ 0 (λ|Φ j (w) -Φ j (τ )|) Re h j (w) -h j (τ ) (Φ j (w) -Φ j (τ )) |Φ j (w) -Φ j (τ )| dτ.
Actually, this is the most difficult part of this proof since in this case, the integrals appearing have singular kernel and the proof uses some results about singular kernels. As we shall see in the remaining of the proof, the terms concerning I j are not singular. ➢ We shall first show that for (f

1 , f 2 ) ∈ B 1+α r × B 1+α r , we have I j (λ, b, f 1 , f 2 ) ∈ C α (T).
According to the algebra structure of C α (T), it suffices to show that for i ̸ = j, S(λ, Φ i , Φ j ) ∈ C α (T). For that purpose, we consider the operator T defined by

∀w ∈ T, T ij χ(w) ≜ T χ(τ )K 0 (λ|Φ j (w) -Φ i (τ )|) dτ. (16.13)
But for w, τ ∈ T, we have taking f 1 and f 2 small functions,

|Φ 1 (w) -Φ 2 (τ )| ⩽ |w -bτ | + |f 1 (w)| + |f 2 (τ )| ⩽ (1 + b) + ∥f 1 ∥ L ∞ (T) + ∥f 2 ∥ L ∞ (T) ⩽ 2(1 + b) (16.14)
and

|Φ 1 (w) -Φ 2 (τ )| ⩾ |w -bτ | -|f 1 (w)| -|f 2 (τ )| ⩾ (1 -b) -∥f 1 ∥ L ∞ (T) -∥f 2 ∥ L ∞ (T) ⩾ 1 -b 2 . (16.15) Since K 0 is continuous on λ(1-b) 2 , 2λ(1 + b) , we have ∥T ij χ∥ L ∞ (T) ≲ ∥χ∥ L ∞ (T) .
Moreover, taking w 1 ̸ = w 2 ∈ T, we have by mean value Theorem, since from (C.4)

K ′ 0 = -K 1 is continuous on λ(1-b) 2 , 2λ(1 + b) ,

and left triangle inequality

|T ij χ(w 1 ) -T ij χ(w 2 )| ≲ ˆT |χ(τ )| |K 0 (λ|Φ j (w 1 ) -Φ i (τ )|) -K 0 (|λ||Φ j (w 2 ) -Φ i (τ )|)| |dτ | ≲ ∥χ∥ L ∞ (T) |Φ j (w 1 ) -Φ j (w 2 )| . Using that Φ j ∈ C 1+α (T) → C α (T), we conclude that |T ij χ(w 1 ) -T ij χ(w 2 )| ≲ ∥χ∥ L ∞ (T) ∥Φ j ∥ C α (T) |w 1 -w 2 | α .
We deduce that

∥T ij χ∥ C α (T) ≲ 1 + ∥Φ j ∥ C α (T) ∥χ∥ L ∞ (T) . ( 16.16) 
Applying this with χ = Φ ′ j , we find

∥S(λ, Φ i , Φ j )∥ C α (T) ≲ 1 + ∥Φ j ∥ C α (T) ∥Φ ′ i ∥ L ∞ (T) ≲ 1 + ∥Φ j ∥ C 1+α (T) ∥Φ i ∥ C 1+α (T) < ∞.
The last point to check is that the Fourier coefficients of I j (λ, f 1 , f 2 ) are real. According to the definition of the space X 1+α , the mapping Φ j has real coefficients. We deduce that the Fourier coefficients of Φ ′ j are also real. Due to the stability of such property under conjugation and multiplication, we only have to prove that the Fourier coefficients of S(λ, Φ i , Φ j ) are real. This is checked by the following computations. 

S(λ, Φ i , Φ j )(w) = T Φ ′ i (τ )K 0 (λ|Φ j (w) -Φ i (τ )|) dτ = 1 2iπ ˆ2π 0 Φ ′ i (e iη ) K 0 (λ|Φ j (w) -Φ i (e iη ))|) ie iη dη = 1 2π ˆ2π 0 Φ ′ i e -iη K 0 λ|Φ j (w) -Φ i e -iη | e -iη dη = 1 2iπ ˆ2π 0 Φ ′ i e iη K 0 λ|Φ j (w) -Φ i e iη | ie iη dη = T Φ ′ i (τ )K 0 (λ|Φ j (w) -Φ i (τ )|) dτ = S(λ, Φ i , Φ j )(w).
▶ Step 2 : Show the existence and compute the Gâteaux derivatives of G(λ, b,

•, •, •) : ➢ The Gâteaux derivative of I j at (f 1 , f 2 ) in the direction h = (h 1 , h 2 ) ∈ X 1+α is given by d (f1,f2) I j (λ, b, f 1 , f 2 )h = d f1 I j (λ, b, f 1 , f 2 )h 1 + d f2 I j (λ, b, f 1 , f 2 )h 2 ≜ lim t→0 1 t [I j (λ, b, f 1 + th 1 , f 2 ) -I j (λ, b, f 1 , f 2 )] + lim t→0 1 t [I j (λ, b, f 1 , f 2 + th 2 ) -I j (λ, b, f 1 , f 2 )] . ( 16.17) 
The previous limits are understood in the sense of the strong topology of Y α . As a consequence, we need to to prove first the pointwise existence of these limits and then we shall check that these limits exist in the strong topology of C α (T). To be able to compute the Gâteaux dérivatives, we have to precise that since the beginning of this study we have identified C with R 2 . Hence C is naturally endowed with the Euclidean scalar product which writes for z 1 = a 1 + ib 1 and

z 2 = a 2 + ib 2 ⟨z 1 , z 2 ⟩ ≜ Re(z 1 z 2 ) = 1 2 (z 1 z 2 + z 1 z 2 ) = a 1 a 2 + b 1 b 2 .
By straightforward computations, we infer

d fj I j (λ, b, f 1 , f 2 )h j (w) = (-1) j-1 Im wh ′ j (w)S(λ, Φ i , Φ j )(w) + λ 2 wΦ ′ j (w) h j (w)A(λ, Φ i , Φ j )(w) + h j (w)B(λ, Φ i , Φ j )(w) , ( 16.18) 
where

A(λ, Φ i , Φ j )(w) ≜ T Φ ′ i (τ )K ′ 0 (λ|Φ j (w) -Φ i (τ )|) Φ j (w) -Φ i (τ ) |Φ j (w) -Φ i (τ )| dτ ≜ T Φ ′ i (τ )K(λ, w, τ )dτ and B(λ, Φ i , Φ j )(w) ≜ T Φ ′ i (τ )K ′ 0 (λ|Φ j (w) -Φ i (τ )|) Φ j (w) -Φ i (τ ) |Φ j (w) -Φ i (τ )| dτ = T Φ ′ i (τ )K(λ, w, τ )dτ.
Since B differs from A only with a conjugation, then, they both satisfy the same estimates in the coming analysis. For all w ∈ T, we have

|A(λ, Φ i , Φ j )(w)| ≲ ˆT |Φ ′ i (τ )|K 0 (λ|Φ j (w) -Φ i (τ )|) |dτ | ≲ ∥Φ ′ i ∥ L ∞ (T) . So ∥A(λ, Φ i , Φ j )∥ L ∞ (T) ≲ ∥Φ ′ i ∥ L ∞ (T) . Let w 1 ̸ = w 2 ∈ T. let τ ∈ T. Then |K(λ, w 1 , τ ) -K(λ, w 2 , τ )| = K ′ 0 (λ|Φ j (w 1 ) -Φ i (τ )|) Φ j (w 1 ) -Φ i (τ ) |Φ j (w 1 ) -Φ i (τ )| -K ′ 0 (λ|Φ j (w 2 ) -Φ i (τ )|) Φ j (w 2 ) -Φ i (τ ) |Φ j (w 2 ) -Φ i (τ )| ⩽ |K ′ 0 (λ|Φ j (w 1 ) -Φ i (τ )|) -K ′ 0 (λ|Φ j (w 2 ) -Φ i (τ )|)| + |K ′ 0 (λ|Φ j (w 2 ) -Φ i (τ )|)| Φ j (w 1 ) -Φ i (τ ) |Φ j (w 1 ) -Φ i (τ )| - Φ j (w 2 ) -Φ i (τ ) |Φ j (w 2 ) -Φ i (τ )| .
But by right and left triangle inequalities, we get

Φ j (w 1 ) -Φ i (τ ) |Φ j (w 1 ) -Φ i (τ )| - Φ j (w 2 ) -Φ i (τ ) |Φ j (w 2 ) -Φ i (τ )| = Φ j (w 1 ) -Φ j (w 2 ) |Φ j (w 1 ) -Φ i (τ )| + (Φ j (w 2 ) -Φ i (τ )) 1 |Φ j (w 1 ) -Φ i (τ )| - 1 |Φ j (w 2 ) -Φ i (τ )| ⩽ |Φ j (w 1 ) -Φ j (w 2 )| |Φ j (w 1 ) -Φ i (τ )| + |Φ j (w 2 ) -Φ i (τ )| ||Φ j (w 2 ) -Φ i (τ )| -|Φ j (w 1 ) -Φ i (τ )|| |Φ j (w 1 ) -Φ i (τ )| |Φ j (w 2 ) -Φ i (τ )| ⩽ 2 |Φ j (w 1 ) -Φ j (w 2 )| |Φ j (w 1 ) -Φ i (τ )| ≲ |Φ j (w 1 ) -Φ j (w 2 )| .
Hence,

|K(λ, w 1 , τ ) -K(λ, w 2 , τ )| ≲ |Φ j (w 1 ) -Φ j (w 2 )| ≲ ∥Φ j ∥ C α (T) |w 1 -w 2 | α .
Thus,

∥A(λ, Φ i , Φ j )∥ C α (T) ≲ ∥Φ i ∥ C 1+α (T) + ∥Φ j ∥ C 1+α (T) .
We conclude that,

∥d fj I j (λ, f 1 , f 2 )h j ∥ C α (T) ≲ ∥h j ∥ C 1+α (T) , which means that d fj I j (λ, b, f 1 , f 2 ) ∈ L(C 1+α (T), C α (T)).
➢ Concerning the other differentiation, we have

d fi I j (λ, b, f 1 , f 2 )h i (w) = (-1) j-1 Im wΦ ′ j (w) T h ′ i (τ )K 0 (λ|Φ j (w) -Φ i (τ )|) dτ - λ 2 wΦ ′ j (w) T h i (τ )Φ ′ i (τ )K ′ 0 (λ|Φ j (w) -Φ i (τ )|) Φ j (w) -Φ i (τ ) |Φ j (w) -Φ i (τ )| dτ - λ 2 wΦ ′ j (w) T h i (τ )Φ ′ i (τ )K ′ 0 (λ|Φ j (w) -Φ i (τ )|) Φ j (w) -Φ i (τ ) |Φ j (w) -Φ i (τ )| dτ ≜ (-1) j-1 Im wΦ ′ j (w) C(λ, Φ i , Φ j )(h i )(w) + D(λ, Φ i , Φ j )(h i )(w) + E(λ, Φ i , Φ j )(h i )(w) . (16.19)
Using the algebra structure of C α (T), we obtain

∥d fi I j (λ, b, f 1 , f 2 )h i ∥ C α (T) ≲ ∥C(λ, Φ i , Φ j )h i ∥ C α (T) + ∥D(λ, Φ i , Φ j )h i ∥ C α (T) + ∥E(λ, Φ i , Φ j )h i ∥ C α (T) .
From (16.16), we find

∥C(λ, Φ i , Φ j )h i ∥ C α (T) ≲ ∥h ′ i ∥ L ∞ (T) ⩽ ∥h i ∥ C 1+α (T) .
In the same way as for A(λ, Φ i , Φ j ), we infer

∥D(λ, Φ i , Φ j )h i ∥ C α (T) + ∥E(λ, Φ i , Φ j )h i ∥ C α (T) ≲ ∥h i ∥ L ∞ (T) ⩽ ∥h i ∥ C 1+α (T) .
Gathering the foregoing computations leads to

∥d fi I j (λ, b, f 1 , f 2 )h i ∥ C α (T) ≲ ∥h i ∥ C 1+α (T) , that is, d fi I j (λ, b, f 1 , f 2 ) ∈ L(C 1+α (T), C α (T)).
➢ The last thing to check is that the convergence in (16.17) occurs in the strong topology of C α (T). Since there are many terms involved, we shall select the more complicated one and study it. The other terms can be treated in a similar way, up to slight modifications. Let us focus on the first term of the right-hand side of (16.18). We shall prove,

lim t→0 S(λ, Φ i , Φ i + th j ) -S(λ, Φ i , Φ j ) = 0 in C α (T).
For more convenience, we use the following notation

T ij (λ, t, w) ≜ S(λ, Φ i , Φ i + th j )(w) -S(λ, Φ i , Φ j )(w).
Consider t > 0 such that t∥h j ∥ L ∞ (T) < r. According to (16.8), we get

T ij (λ, t, w) = T Φ ′ i (τ ) (K 0 (λ |Φ j (w) -Φ i (τ ) + th j (w)|) -K 0 (λ |Φ j (w) -Φ i (τ )|)) dτ ≜ T Φ ′ i (τ )K(λ, t, w, τ )dτ.
Applying mean value Theorem and left triangle inequality, we obtain

|K(λ, t, w, τ )| ≲ t∥h j ∥ L ∞ (T) .
Consequently,

|T ij (λ, t, w)| ≲ t∥h j ∥ L ∞ (T) . This implies that lim t→0 ∥T ij (λ, t, •)∥ L ∞ (T) = 0.
Let us now consider w 1 ̸ = w 2 ∈ T. In view of the mean value Theorem, one obtains the following estimate .20) Now remark that we can write

|T ij (λ, t, w 1 ) -T ij (λ, t, w 2 )| ≲ ˆT |K(λ, t, w 1 , τ ) -K(λ, t, w 2 , τ )| |dτ | ≲ |w 1 -w 2 | ˆT sup w∈T |∂ w K(λ, t, w, τ )| |dτ |. ( 16 
K(λ, t, w, τ ) = ˆt 0 ∂ s g(λ, s, w, τ )ds with g(λ, t, w, τ ) ≜ K 0 (λ |Φ j (w) -Φ i (τ ) + τ h j (w)|) .
According to (16.10), one obtains

∂ w g(λ, t, w, τ ) = λ 2 K ′ 0 (λ |Φ j (w) -Φ i (τ ) + th j (w)|) × Φ ′ j (w) + th ′ j (w) Φ j (w) -Φ i (τ ) + th j (w) -w 2 Φ ′ j (w) + th ′ j (w) (Φ j (w) -Φ i (τ ) + th j (w)) |Φ j (w) -Φ i (τ ) + th j (w)| .
After straightforward computations, we obtain for s ∈ [0, t],

|∂ s ∂ w g(λ, s, w, τ )| ≲ 1.
As a consequence, we infer

|∂ w K(λ, t, w, τ )| ≲ |t|.
Coming back to (16.20) and using the fact that α ∈ (0, 1), we conclude

|T ij (λ, t, w 1 ) -T ij (λ, t, w 2 )| ≲ |t||w 1 -w 2 | ≲ |t||w 1 -w 2 | α . Therefore, lim t→0 ∥T ij (t, •)∥ C α (T) = 0.
The second step is now achieved. Using the algebra structure of C α (T), we deduce from (16.19) and (16.18) that we only have to study the continuity of the terms S(λ, Φ i , Φ j ), A(λ, Φ i , Φ j ),

B(λ, Φ i , Φ j ), C(λ, Φ i , Φ j )h i , D(λ, Φ i , Φ j )h i and E(λ, Φ i , Φ j )h i .
As before, we shall focus on the term S(λ, Φ i , Φ j ) for i ̸ = j and remark that the other terms are similar. We denote

Φ 1 ≜ Id + f 1 , Ψ 1 ≜ Id + g 1 , Φ 2 ≜ bId + f 2 , Ψ 2 ≜ bId + g 2 , with (f 1 , f 2 ) ∈ B 1+α r × B 1+α r and (g 1 , g 2 ) ∈ B 1+α r × B 1+α r . Let us show that ∥S(λ, Φ i , Φ j ) -S(λ, Ψ i , Ψ j )∥ C α (T) ≲ ∥f 1 -g 1 ∥ C 1+α (T) + ∥f 2 -g 2 ∥ C 1+α (T) .
According to (16.8), we get

S(λ, Φ i , Φ j )(w) -S(λ, Ψ i , Ψ j )(w) = T [Φ ′ i (τ )K 0 (λ |Φ j (w) -Φ i (τ )|) -Ψ ′ i (τ )K 0 (λ |Ψ j (w) -Ψ i (τ )|)] dτ ≜ T Ψ ′ i (τ )K 2 (λ, w, τ )dτ + T (Φ ′ i (τ ) -Ψ ′ i (τ )) K 0 (λ |Φ j (w) -Φ i (τ )|) dτ,
where

K 2 (λ, w, τ ) ≜ K 0 (λ |Φ j (w) -Φ i (τ )|) -K 0 (λ |Ψ j (w) -Ψ i (τ )|) .
We have directly

T (Φ ′ i (τ ) -Ψ ′ i (τ )) K 0 (λ |Φ j (•) -Φ i (τ )|) dτ C α (T) ≲ ∥f ′ i -g ′ i ∥ L ∞ (T) ⩽ ∥f i -g i ∥ C 1+α (T) . Part III Now set L i (λ, w) ≜ T K 2 (λ, w, τ )Ψ ′ i (τ )dτ,
By a new use of the mean value Theorem and left triangle inequality, we obtain

|K 2 (λ, w, τ )| ≲ |Φ j (w) -Φ i (τ )| -|Ψ j (w) -Ψ i (τ )| ⩽ |Φ j (w) -Ψ j (w)| + |Φ i (τ ) -Ψ i (τ )| ⩽ ∥Ψ j -Φ j ∥ L ∞ (T) + ∥Ψ i -Φ i ∥ L ∞ (T) .
Hence, we deduce

∥L i (λ, •)∥ L ∞ (T) ≲ ∥Ψ ′ i ∥ L ∞ (T) ∥Ψ j -Φ j ∥ L ∞ (T) + ∥Ψ i -Φ i ∥ L ∞ (T) ≲ ∥f j -g j ∥ C 1+α (T) + ∥f i -g i ∥ C 1+α (T) .
Take w 1 ̸ = w 2 ∈ T. Applying the mean value Theorem yields

|L i (λ, w 1 ) -L i (λ, w 2 )| ≲ |w 1 -w 2 | T sup w∈T |∂ w K 2 (λ, w, τ )| |dτ |.
By (16.10), we have

∂ w K 2 (λ, w, τ ) = λ 2 J (λ, w, τ ) -w 2 J (λ, w, τ ) ,
where

J (λ, w, τ ) ≜ Φ ′ j (w)(Φ j (w)-Φ i (τ ))K ′ 0 (λ|Φ j (w) -Φ i (τ )|)-Ψ ′ j (w)(Ψ j (w)-Ψ i (τ ))K ′ 0 (λ|Ψ j (w) -Ψ i (τ )|) .
Notice that it can be written in the following form

J (λ, w, τ ) = J 1 (λ, w, τ ) + J 2 (λ, w, τ ) + J 3 (λ, w, τ ), with J 1 (λ, w, τ ) ≜ Φ ′ j (w) [(Φ j -Ψ j )(w) -(Φ i -Ψ i )(τ )] K ′ 0 (λ|Φ j (w) -Φ i (τ )|) , J 2 (λ, w, τ ) ≜ Φ ′ j (w) -Ψ ′ j (w) [Ψ j (w) -Ψ i (τ )] K ′ 0 (λ|Ψ j (w) -Ψ i (τ )|) , J 3 (λ, w, τ ) ≜ Φ ′ j (w) [Ψ j (w) -Ψ i (τ )] [K ′ 0 (λ|Φ j (w) -Φ i (τ )|) -K ′ 0 (λ|Ψ j (w) -Ψ i (τ )|)] .
By the same techniques as already used above, we get

∥∂ w K 2 (λ, •, τ )∥ L ∞ (T) ≲ ∥f j -g j ∥ C 1+α (T) + ∥f i -g i ∥ C 1+α (T) .
We deduce that Hence, by using the change of variables τ → e 2iπ m τ , we have for all (i, j) ∈ {1, 2} 2 and for all w ∈ T,

∥S(λ, Φ i , Φ j ) -S(λ, Ψ i , Ψ j )∥ C α (T) ≲ ∥f j -g j ∥ C 1+α (T) + ∥f i -g i ∥ C 1+α ( 
S(λ, Φ i , Φ j ) e 2iπ m w = T Φ ′ i (τ )K 0 λ Φ j e 2iπ m w -Φ i (τ ) dτ = e 2iπ m T Φ ′ i e 2iπ m τ K 0 λ Φ j e 2iπ m w -Φ i e 2iπ m τ dτ = e 2iπ m T Φ ′ i (τ )K 0 (λ |Φ j (w) -Φ i (τ )|) dτ = e 2iπ m S(λ, Φ i , Φ j )(w).
By definition (16.7) of G j , this immediately implies that

∀j ∈ {1, 2}, ∀w ∈ T, G j (λ, b, Ω, f 1 , f 2 ) e 2iπ m w = G j (λ, b, Ω, f 1 , f 2 ) (w) . So G(λ, b, •, •, •) : R × B 1+α r,m × B 1+α r,m → Y α m .
(iii) Fix j ∈ {1, 2}. By (16.11) and (16.12), we have for

f j ∈ B 1+α r and h j ∈ C 1+α (T), ∂ Ω d fj G j (λ, b, Ω, f j )(h j )(w) = ∂ Ω d fj S j (λ, b, Ω, f j )(h j )(w) = Im h j (w)wΦ ′ j (w) + Φ j (w)wh ′ j (w) .
As a consequence, we deduce that for (f j , g j ) ∈ (B 1+α r ) 2 and h j ∈ C 1+α (T),

∂ Ω d fj G j (λ, b, Ω, f j )(h j ) -∂ Ω d fj G j (λ, b, Ω, g j )(h j ) C α (T) ≲ ∥f j -g j ∥ C 1+α (T) ∥h j ∥ C 1+α (T) .
This proves the continuity of

∂ Ω d (f1,f2) G(λ, b, •, •, •) : R × B 1+α r × B 1+α r → L(X 1+α , Y α
) and achieves the proof of Proposition 16.1.

Spectral study

In this section, we study the linearized operator at the equilibrium state and look for the degeneracy conditions for its kernel.

Linearized operator

In this subsection, we compute the differential d (f1,f2) G(λ, b, Ω, 0, 0) and show that it acts as a Fourier multiplier. More precisely, we prove the following proposition. Proposition 17.1. Let λ > 0, b ∈ (0, 1) and α ∈ (0, 1). Then for all Ω ∈ R and for all (h 1 , h 2 ) ∈ X 1+α , if we write

h 1 (w) = ∞ n=0 a n w n and h 2 (w) = ∞ n=0 b n w n , Part III we have for all w ∈ T d (f1,f2) G(λ, b, Ω, 0, 0)(h 1 , h 2 )(w) = ∞ n=0 (n + 1)M n+1 (λ, b, Ω) a n b n e n+1 (w),
where for all n ∈ N * , the matrix M n (λ, b, Ω) is defined by

M n (λ, b, Ω) ≜ Ω n (λ) -Ω -bΛ 1 (λ, b) bΛ n (λ, b) -Λ n (λ, b) Λ 1 (λ, b) -b Ω n (λb) + Ω ,
with Ω n defined in (1.23) and

Λ n (λ, b) ≜ I n (λb)K n (λ).
Recall that the modified Bessel functions I n and K n are defined in Appendix C.

Proof. Since G = (G 1 , G 2 ), then for given (h 1 , h 2 ) ∈ X 1+α , we have

d (f1,f2) G(λ, b, Ω, 0, 0)(h 1 , h 2 ) = d f1 G 1 (λ, b, Ω, 0, 0)h 1 + d f2 G 1 (λ, b, Ω, 0, 0)h 2 d f1 G 2 (λ, b, Ω, 0, 0)h 1 + d f2 G 2 (λ, b, Ω, 0, 0)h 2 . ( 17.1) 
But, with the notation introduced in the proof of Proposition 16.1, we can write

           d f1 G 1 (λ, b, Ω, 0, 0)h 1 = d f1 S 1 (λ, b, Ω, 0)h 1 + d f1 I 1 (λ, b, 0, 0)h 1 d f2 G 2 (λ, b, Ω, 0, 0)h 2 = d f2 S 2 (λ, b, Ω, 0)h 2 + d f2 I 2 (λ, b, 0, 0)h 2 d f2 G 1 (λ, b, Ω, 0, 0)h 2 = d f2 I 1 (λ, b, 0, 0)h 2 d f1 G 2 (λ, b, Ω, 0, 0)h 1 = d f1 I 2 (λ, b, 0, 0)h 1 . ( 17.2) 
We write

h 1 (w) = ∞ n=0 a n w n and h 2 (w) = ∞ n=0 b n w n .
It has already been proved in [START_REF] Dritschel | Imperfect bifurcation for the shallowwater quasi-geostrophic equations[END_REF]Prop. 5.8] that for all w ∈ T,

d f1 S 1 (λ, b, Ω, 0)h 1 (w) = ∞ n=0 (n + 1) (Ω n+1 (λ) -Ω) a n e n+1 (w), (17.3) 
where

Ω n (λ) ≜ I 1 (λ)K 1 (λ) -I n (λ)K n (λ).
By a similar calculation, we get

d f2 S 2 (λ, b, Ω, 0)h 2 (w) = - ∞ n=0 (n + 1)b (Ω n+1 (λb) + Ω) b n e n+1 (w). ( 17.4) 
In view of (16.18), we can write

d f1 I 1 (λ, b, 0, 0)h 1 (w) = L 1 (h 1 )(w) + L 2 (h 1 )(w), with L 1 (h 1 )(w) ≜ Im wh ′ 1 (w)b T K 0 (λ|w -bτ |) dτ , L 2 (h 1 )(w) ≜ Im λb 2 w T K ′ 0 (λ|w -bτ |) h 1 (w)(w -bτ ) + h 1 (w)(w -bτ ) |w -bτ | dτ .
By using the change of variables τ → wτ and the fact that |w| = 1, we deduce

w T K 0 (λ|w -bτ |) dτ = T K 0 (λ|1 -bτ |) dτ.
Moreover, from (16.9), we know that 

T K 0 (λ|1 -bτ |) dτ ∈ R. So using that |1 -be iθ | = 1 -2b cos(θ) + b 2 1 2 with b ∈ (0, 1), ( 17 
ˆ2π 0 K 0 λ|1 -be iθ | cos(nθ)dθ = 1 2π ˆ2π 0 ∞ m=-∞ I m (λb)K m (λ) cos(mθ) cos(nθ)dθ = 1 2π ∞ m=-∞ I m (λb)K m (λ) ˆ2π 0 cos(mθ) cos(nθ)dθ = I n (λb)K n (λ). (17.6) 2π 
Notice that the inversion of symbols of summation and integration is possible due to the geometric decay at infinity given by (C.18). Then, we deduce by (16.10) that

L 1 (h 1 )(w) = - ∞ n=0 nbI 1 (λb)K 1 (λ)a n e n+1 (w).
By using the change of variables τ → wτ and the fact that |w| = 1, we infer

w T K ′ 0 (λ|w -bτ |) h 1 (w)(w -bτ ) + h 1 (w)(w -bτ ) |w -bτ | dτ = T K ′ 0 (λ|1 -bτ |) h 1 (w)w(1 -bτ ) + h 1 (w)w(1 -bτ ) |1 -bτ | dτ. But T K ′ 0 (λ|1 -bτ |) h 1 (w)w(1 -bτ ) |1 -bτ | dτ = ∞ n=0 a n T K ′ 0 (λ|1 -bτ |) (1 -bτ ) |1 -bτ | dτ w n+1 and T K ′ 0 (λ|1 -bτ |) h 1 (w)w(1 -bτ ) |1 -bτ | dτ = ∞ n=0 a n T K ′ 0 (λ|1 -bτ |) (1 -bτ ) |1 -bτ | dτ w n+1 .
Moreover, by writting the line integral with the parametrization τ = e iθ and making the change of variables θ → -θ, we get as in (16.9)

T K ′ 0 (λ|1 -bτ |) (1 -bτ ) |1 -bτ | dτ ∈ R and T K ′ 0 (λ|1 -bτ |) (1 -bτ ) |1 -bτ | dτ ∈ R. Part III Since Im w n+1 = -Im w n+1 , we obtain L 2 (h 1 )(w) = ∞ n=0 a n λb 2 T K ′ 0 (λ|1 -bτ |) b(τ -τ ) |1 -bτ | dτ Im(w n+1
).

An integration by parts together with (17.5) and (17.6) gives

λb 2 T K ′ 0 (λ|1 -bτ |) b(τ -τ ) |1 -bτ | dτ = λb 4π ˆ2π 0 K ′ 0 λ|1 -be iθ | b(e -iθ -e iθ )e iθ |1 -be iθ | dθ = -b 2π ˆ2π 0 K 0 λ|1 -be iθ | e iθ dθ = -b 2π ˆ2π 0 K 0 λ|1 -be iθ | cos(θ)dθ = -bI 1 (λb)K 1 (λ).
Therefore,

L 2 (h 1 )(w) = - ∞ n=0 bI 1 (λb)K 1 (λ)a n e n+1 (w).
Finally, According to (16.19), we can write

d f1 I 1 (λ, b, 0, 0)h 1 (w) = - ∞ n=0 b(n + 1)I 1 (λb)K 1 (λ)a n e n+1 (w). ( 17 
d f2 I 1 (λ, b, 0, 0)h 2 (w) = L 3 (h 2 )(w) + L 4 (h 2 )(w), with L 3 (h 2 )(w) ≜ Im w T h ′ 2 (τ )K 0 (λ|w -bτ |) dτ , L 4 (h 2 )(w) ≜ - λb 2 Im w T K ′ 0 (λ|w -bτ |) h 2 (τ )(w -bτ ) + h 2 (τ )(w -bτ ) |w -bτ | dτ .
The change of variables τ → wτ implies

L 3 (h 2 )(w) = Im T h ′ 2 (wτ )K 0 (λ|1 -bτ |) dτ = - ∞ n=0 nb n T τ n+1 K 0 (λ|1 -bτ |) dτ Im(w n+1 ) = ∞ n=0 nb n T τ n+1 K 0 (λ|1 -bτ |) dτ e n+1 (w).
But by symmetry and (17.6)

T τ n+1 K 0 (λ|1 -bτ |) dτ = 1 2π ˆ2π 0 e -i(n+1)θ K 0 λ|1 -be iθ | e iθ dθ = 1 2π ˆ2π 0 K 0 λ|1 -be iθ | cos(nθ)dθ = I n (λb)K n (λ).
Hence,

L 3 (h 2 )(w) = ∞ n=0 nI n (λb)K n (λ)b n e n+1 (w).
By using the change of variables τ → wτ and the fact that |w| = 1, we have

L 4 (h 2 )(w) = -λb 2 Im T K ′ 0 (λ|1 -bτ |) h 2 (wτ )w(1 -bτ ) + h 2 (wτ )w(1 -bτ ) |1 -bτ | dτ ,
which also writes

L 4 (h 2 )(w) = -λb 2 ∞ n=0 b n T K ′ 0 (λ|1 -bτ |) (τ n -τ n ) -b(τ n+1 -τ n+1 ) |1 -bτ | dτ Im(w n ).
We denote

I ≜ -λb 2 T K ′ 0 (λ|1 -bτ |) (τ n -τ n ) -b(τ n+1 -τ n+1 ) |1 -bτ | dτ.
Since I ∈ R, we have

I = -λb 4π ˆ2π 0 K ′ 0 λ|1 -be iθ | (e inθ -e -inθ ) -b(e i(n+1)θ -e -i(n+1)θ ) |1 -be iθ | e iθ dθ = λb 2π ˆ2π 0 K ′ 0 λ|1 -be iθ | sin(θ) |1 -be iθ | (sin(nθ) -b sin((n + 1)θ))dθ.
Integrating by parts with (17.5) and using (17.6) yield

I = 1 2π ˆ2π 0 K 0 (λ|1 -be iθ |) (b(n + 1) cos((n + 1)θ) -n cos(nθ)) = b(n + 1)I n+1 (λb)K n+1 (λ) -nI n (λb)K n (λ).
Therefore, 

d f2 I 1 (λ, b, 0, 0)(h 2 )(w) = ∞ n=0 b(n + 1)I n+1 (λb)K n+1 (λ)b n e n+1 (w). ( 17 
d f1 I 2 (λ, b, 0, 0)(h 1 )(w) = - ∞ n=0 (n + 1)I n+1 (λb)K n+1 (λ)a n e n+1 (w). ( 17 

Asymptotic monotonicity of the eigenvalues

This subsection is devoted to the proof of Proposition 17.2 concerning the asymptotic monotonicity of the eigenvalues needed to ensure the one dimensional kernel assumption of Crandall-Rabinowitz's Theorem.

But first, we have to prove their existence and this is the purpose of the following lemma.

Lemma 17.1. Let λ > 0 and b ∈ (0, 1). There exists N 0 (λ, b) ∈ N * such that for all integer n ⩾ N 0 (λ, b), there exist two angular velocities

Ω ± n (λ, b) ≜ 1 -b 2 2b Λ 1 (λ, b) + 1 2 Ω n (λ) -Ω n (λb) ± 1 2b b Ω n (λ) + Ω n (λb) -(1 + b 2 )Λ 1 (λ, b) 2 -4b 2 Λ 2 n (λ, b) (17.11) for which the matrix M n λ, b, Ω ± n (λ, b) is singular. Proof. The determinant of M n (λ, b, Ω) is det M n (λ, b, Ω) = Ω n (λ) -Ω -bΛ 1 (λ, b) Λ 1 (λ, b) -b Ω n (λb) + Ω + bΛ 2 n (λ, b) = bΩ 2 -B n (λ, b)Ω + C n (λ, b), ( 17.12) 
where

B n (λ, b) ≜ (1 -b 2 )Λ 1 (λ, b) + b Ω n (λ) -Ω n (λb) , C n (λ, b) ≜ b Λ 1 (λ, b) - 1 b Ω n (λ) bΩ n (λb) -Λ 1 (λ, b) + Λ 2 n (λ, b) .
It is a polynomial of degree two in Ω which has at most two roots. Let us compute its discriminant. After straightforward computations, we find

∆ n (λ, b) ≜ B 2 n (λ, b) -4bC n (λ, b) = b Ω n (λ) + Ω n (λb) -(1 + b 2 )Λ 1 (λ, b) 2 -4b 2 Λ 2 n (λ, b). (17.13)
Using the asymptotic expansion of large order (C.14), we infer

∀λ > 0, ∀b ∈ (0, 1], I n (λb)K n (λ) -→ n→∞ 0. (17.14) As a consequence, ∆ n (λ, b) -→ n→∞ ∆ ∞ (λ, b), ( 17.15) 
where

∆ ∞ (λ, b) = δ 2 ∞ (λ, b) with δ ∞ (λ, b) ≜ b I 1 (λ)K 1 (λ) + I 1 (λb)K 1 (λb) -(1 + b 2 )I 1 (λb)K 1 (λ). (17.16) We can rewrite δ ∞ (λ, b) as δ ∞ (λ, b) = bI 1 (λ) -I 1 (λb) K 1 (λ) + bI 1 (λb) K 1 (λb) -bK 1 (λ) .
According to (C.12) and (C.3), we find K ′ 1 < 0 on (0, ∞), which implies in turn the strict decay property of K 1 on (0, ∞). Therefore, since b ∈ (0, 1), we get Proof. The convergence is an immediate consequence of (17.11), (17.15), (17.16) and (17.14). Then, we turn to the asymptotic monotonicity. For that purpose, we study the sign of the difference On the other hand, we set for ε > 0,

bK 1 (λ) < K 1 (λ) < K 1 (λb).
Ω ± n+1 (λ, b)-Ω ± n (λ, b) =
K ε 0 (x) = K 0 (εx) + log ε 2 .
Remark that (C. Thus, using also (C.3), we obtain ∀x > 0, φ(x) ∈ (0, 1).

Therefore, we deduce that there exists N (λ) ∈ N * such that ∀n ∈ N * , n ⩾ N (λ) ⇒ Ω n (λ) + n-1 2n -λK1(λ) 2 > 0.

In addition, using (C. Unfortunately, we cannot prove bifurcation from these eigenvalues.

Bifurcation from simple eigenvalues

We prove here the following result which implies the main It remains to prove the regularity, that is (h 1 , h 2 ) ∈ X 1+α m . For that purpose, we show

w → h 1 (w) -a 1 w m-1 h 2 (w) -a 2 w m-1 ∈ C 1+α (T) × C 1+α (T).
We may focus on the first component, the second one being analogous. We set I 2 nm (λb)K 2 nm (λb)

1 2 ⩽ 1 2m ∞ n=2 1 n 2 1 2 < ∞.
We also have We now prove that H 1 and H 2 are with regularity C 1+α (T).

▶ Regularity of H 2 :

First observe that by Cauchy-Schwarz inequality and the embedding C α (T)( → L ∞ (T)) → L 2 (T), we have

∥H 2 ∥ L ∞ (T) ⩽ ∞ n=2 |B n | n ⩽ ∞ n=2 1 n 2 1 2 ∞ n=2 |B n | 2 1 2 ≲ ∥g 2 ∥ L 2 (T)
≲ ∥g 2 ∥ C α (T) . (18.7)

We now have to prove that H ′ 2 ∈ C α (T). We show that it coincides, up to slight modifications, with g 2 which is of regularity C α (T). For that purpose, we show that we can differentiate H 2 term by term.

We denote (S N ) N ⩾2 (resp. (R N ) N ⩾2 ) the sequence of the partial sums (resp. the sequence of the remainders) of the series of functions H 2 . One has

R N (w) = ∞ n=N +1 B n n w n .
Using Cauchy-Schwarz inequality, we obtain similarly to (18.7) from C α (T) into itself (see [START_REF] Hassainia | On the V-States for the generalized quasi-geostrophic equations[END_REF] for more details) added to the fact that g 2 ∈ C α (T), we deduce that g + 2 ∈ C α (T). Applying Bernstein Theorem of Fourier series gives that g + 2 is the uniform limit of its Fourier series, namely

∥R N ∥ L ∞ (T) ⩽ ∞ n=N +1 1 n 2
∥S ′ N -wg + 2 ∥ L ∞ (T) -→ N →∞ 0.
(18.9)

Gathering (18.8) and (18.9), we conclude that we can differentiate H 2 term by term and get

H ′ 2 (ω) = wg + 2 (w).
As a consequence, Using again the continuity of the Szegö projection, we have If r > 0 is small enough, then the boundaries ∂D 1 and ∂D 2 are analytic.

H 2 ∈ C 1+α (T). ( 18 
g + 1 ∈ C 1+α (T) ⊂ L ∞ (T) ⊂ L 1 (T)
Proof. The proof is done in the spirit of [START_REF] Hassainia | Global bifurcation of rotating vortex patches[END_REF]Sec. 5.4] by applying [START_REF] Kinderlehrer | Regularity in elliptic free boundary problems[END_REF]Thm. 3.1']. We highlight that the positive number r quantifies the smallness of f 1 and f 2 in the C 1+α topology. We mention that (16.5) can also be written as follows Ω 2 ∂ s γ(0, s) 2 = ∂ s Ψ 0, γ(0, s) , (18.21) where Ψ is the velocity potential given by v(t, z) = ∇ ⊥ Ψ(t, z) = 2i∂ z Ψ(t, z), (∆ -λ 2 )Ψ(t, z) = 1 Dt (z). (18.22) Therefore, integrating the relation (18.21), there exists for each j ∈ {1, 2} a constant c j ∈ R such that ∀z ∈ ∂D j , u j (z) := Ψ(0, z) -Ω 2 |z| 2 -c j = 0.

Fix j ∈ {1, 2}. By compactness of ∂D j , there exist M ∈ N * , (x k,j ) 1⩽k⩽M ∈ (∂D j ) M and ε > 0 (small) such that we can write

∂D j ⊂ M k=1
B(x k,j , ε), with B(x k,j , ε) ∩ ∂D 3-j = ∅. where F, F ′ are bounded at 0 and F ′′ is integrable at the origin. Notice that Ψ 1 corresponds to the classical Euler velocity potential. Since D 0 is of regularity C 1+α then one can classically prove that

Ψ 1 ∈ C 1+α R 2 , R ∩ C 2+α D 0 , R ∩ C 2+α R 2 \ D 0 , R .
For instance, the C 1+α regularity is obtained by using [START_REF] Gilbarg | Elliptic Partial Differential Equations of Second Order[END_REF]Exercise 4.8 (a)]. As for the C 2+α regularity, one may use in particular the "Main Lemma" in [START_REF] Mateu | Extra cancellation of even Calderón-Zygmund operators and quasiconFIX YOURSELF!!!!formal mappings[END_REF] applied to the Calderón-Zygmund type operator

1 D0 → ∇∇ ⊥ Ψ 1 .
The term Ψ 2 being less singular, we get

Ψ(0, •) ∈ C 1+α R 2 , R ∩ C 2+α D 0 , R ∩ C 2+α R 2 \ D 0 , R Part III
and then

u j ∈ C 1 B(x k,j , ε) , R ∩ C 2 O - k,j ∪ Γ k,j , R ∩ C 2 O + k,j ∪ Γ k,j , R .
One can easily find from (18.22) that ∀z ∈ O + k,j , 0 = F j (z, u j , Du j , D 2 u j ) := (∆ -λ 2 )u j (z) -λ 2 2 Ω|z| 2 -λ 2 c j + 2Ω, ∀z ∈ O - k,j , 0 = G j (z, u j , Du j , D 2 u j ) := (∆ -λ 2 )u j (z) -λ 2 2 Ω|z| 2 -λ 2 c j + 2Ω -1.

Observe that the functions F j and G j are analytic. Thus it remains to prove that ∀z ∈ ∂D j , ∇u j (z) • n j (z) ̸ = 0, (18.23) where n j is a normal unitary vector to ∂D j . We can write We shall now prove that the terms J 1 , J 2 and J 3 are small. Let us start with J 3 . Recalling the notation (16.13), one has

|J 3 | ⩽ ∥T 1j f ′ 1 ∥ L ∞ (T) + ∥T 2j f ′ 2 ∥ L ∞ (T) .
(18.27)

From (16.16), we get We mention that the triangle inequality and the mean value theorem imply that Φ i is bi-Lipschitz, namely Therefore, for any δ ∈ (0, 1), we have

∀(i, j) ∈ {1, 2} 2 , i ̸ = j ⇒ ∥T ij f ′ i ∥ L ∞ (T) ≲ ∥f ′ i ∥ L ∞ (T) ≲ ∥f i ∥ C 1+α (T) ≲ r. ( 18 
|K i (w, τ )| ≲ 1 |w -τ | δ and |∂ w K i (w, τ )| ≲ 1 |w -τ | 1+δ .
Thus, applying [83, Lem. 1], we infer As for J 1 , we may use Taylor formula to write

∥T ii f ′ i ∥ L ∞ (T) ≲ ∥f ′ i ∥ L ∞ (T) ≲ r. ( 18 
K 0 λ|Φ j (w) -Φ i (τ )| -K 0 λ|b j w -b i τ | = λ |Φ j (w) -Φ i (τ )| -|b j w -b i τ | ˆ1 0 K ′ 0 λ|b j w -b i τ | + λt |Φ j (w) -Φ i (τ )| -|b j w -b i τ | dt.
The triangular inequality and the mean value theorem imply

|Φ j (w) -Φ i (τ )| -|b j w -b i τ | ⩽ |f j (w) -f i (τ )| ⩽    2r if i ̸ = j, r|w -τ | if i = j.
Hence using (18.30) 

A P P E N D I C E S

A Functional setting and technical lemmata

In this appendix, we set up the general topological framework for both the functions and the operators classes that are used in Parts I and II. We also provide some classical results on the law products, composition rule, Toeplitz operators, etc... First we begin by presenting some notations.

Notations. Along this document we shall make use of the following parameters and sets.

• We denote by

N ≜ {0, 1, • • • }, Z ≜ {• • • , -1, 0, 1, • • • }
the set of natural numbers and the set of integers, respectively, and we set

N * ≜ N\{0}, Z * ≜ Z\{0}.
The set of real (resp. complex) numbers is denoted R (resp. C). We also use the following notation

R * + ≜ (0, ∞), R + ≜ R * + ∪ {0}.
• The integer d is the number of excited frequencies that will generate the quasi-periodic solutions. This is the dimension of the space where lies the frequency vector ω ∈ R d , that will be a perturbation of the equilibrium frequency vectors.

• The integer q is the index of regularity of our functions/operators with respect to the parameters λ or b and ω. It is chosen as q ≜ q 0 + 1, with q 0 being the non-degeneracy index provided by Lemmata 5.5 or 11.5.

• The real parameters γ, τ 1 and τ 2 satisfy

0 < γ < 1, τ 2 > τ 1 > d (A.1)
and are linked to different Diophantine conditions, see for instance Propositions 7.2 and 7.5. The choice of τ 1 and τ 2 will be finally fixed in (8.64). We point out that the parameter γ appears in the weighted Sobolev spaces and will be fixed in Proposition 8.1 with respect to the rescaling parameter ε giving the smallness condition of the solutions around the equilibrium.

• The real number s is the Sobolev index regularity of the functions in the variables φ and θ. The index s will vary between s 0 and S, S ⩾ s ⩾ s 0 > d+1 2 + q + 2, (A.2)

where S is a fixed large number.

• For a given continuous complex function f : T n → C, n ⩾ 1, T ≜ R/2πZ, we denote by

ˆTn f (x)dx ≜ 1 (2π) n ˆ[0,2π] n f (x)dx. (A.3)
Notice that T will also be considered as the unit circle, namely, the boundary of the unit disc D.

• We denote by (e l,j ) (l,j)∈Z d ×Z the Hilbert basis of the L 2 (T d+1 , C), e l,j (φ, θ) ≜ e i(l•φ+jθ) , and we endow this space with the Hermitian inner product 

A.1 Function spaces

We shall introduce the function spaces that will be frequently used along the document. They are given by weighted Sobolev spaces with respect to the parameter γ in (A.1). Given ρ ∈ L 2 (T d+1 , C), we may decompose it in Fourier expansion as ρ =

(l,j)∈Z d+1 ρ l,j e l,j where ρ l,j ≜ ρ, e l,j L 2 (T d+1 ,C) .

Next, we introduce for s ∈ R the complex Sobolev space H s (T d+1 , C) by The real Sobolev spaces can be viewed as closed sub-spaces of the preceding one,

H s (T d+1 , C) ≜ ρ ∈ L 2 (T d+1 , C) s.t.
H s ≜ H s (T d+1 , R) ≜ ρ ∈ H s (T d+1 , C) s.t. ∀ (φ, θ) ∈ T d+1 , ρ(φ, θ) = ρ(φ, θ)
= ρ ∈ H s (T d+1 , C) s.t. ∀ (l, j) ∈ Z d+1 , ρ -l,-j = ρ l,j .

We shall also make use of the following subspaces of H s taking into account of some particular symmetries on odd and even functions, = ρ ∈ H s s.t. ∀ (l, j) ∈ Z d+1 , ρ -l,-j = -ρ l,j .

For N ∈ N * , we define the cut-off frequency projectors on H s (T d+1 , C) as follows Π N ρ ≜ (l,j)∈Z d+1 ⟨l,j⟩⩽N ρ l,j e l,j and Π ⊥ N = Id -Π N . (A.5)

We shall also make use of the following mixed weighted Sobolev spaces. Note that a function ρ ∈ W q,∞,γ (O, H s ) can be written in the form ρ(µ, φ, θ) = (l,j)∈Z d+1 ρ l,j (µ)e l,j (φ, θ).

W q,∞
Remark A.1.

• From Sobolev embeddings, we obtain W q,∞,γ (O, C) → C q-1 (O, C).

• The spaces W q,∞,γ (O, H s ), ∥ • ∥ γ,O q,s and W q,∞,γ (O, C), ∥ • ∥ γ,O q are complete.

• For needs related to the use of the kernels of integral operators, we will have to duplicate the variable θ. Thus we may define the weighted Sobolev space W q,∞,γ (O, H s φ,θ,η ) similarly as above and denote the corresponding norm by ∥ • ∥ γ,O q,H s φ,θ,η .

In the next lemma we collect some useful classical results dealing with various operations in weighted Sobolev spaces. The proofs are very close to those in [START_REF] Berti | Traveling quasi-periodic water waves with constant vorticity[END_REF][START_REF] Berti | Pure gravity traveling quasi-periodic water waves with constant vorticity[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF], so we omit them.

Lemma A.1. Let (γ, q, d, s 0 , s) satisfying (A.2), then the following assertions hold true.

(i) Space translation invariance: Let ρ ∈ W q,∞,γ (O, H s ), then for all η ∈ T, the function (φ, θ) → ρ(φ, η + θ) belongs to W q,∞,γ (O, H s ), and satisfies ∥ρ(•, η + •)∥ γ,O q,s = ∥ρ∥ γ,O q,s .

(ii) Projectors properties: Let ρ ∈ W q,∞,γ (O, H s ), then for all N ∈ N * and for all t ∈ R * + , ∥Π N ρ∥ γ,O q,s+t ⩽ N t ∥ρ∥ γ,O q,s and ∥Π ⊥ N ρ∥ γ,O q,s ⩽ N -t ∥ρ∥ γ,O q,s+t , where the projectors are defined in (A.5).

(iii) Interpolation inequality: Let q < s 1 ⩽ s 3 ⩽ s 2 and θ ∈ [0, 1], with s 3 = θs 1 + (1 -θ)s 2 .

If ρ ∈ W q,∞,γ (O, H s2 ), then ρ ∈ W q,∞,γ (O, H s3 ) and ∥ρ∥ γ,O q,s3 ≲ ∥ρ∥ γ,O q,s1 θ ∥ρ∥ γ,O q,s2 1-θ .

(iv) Product laws:

(a) Let ρ 1 , ρ 2 ∈ W q,∞,γ (O, H s ). Then ρ 1 ρ 2 ∈ W q,∞,γ (O, H s ) and ∥ρ 1 ρ 2 ∥ γ,O q,s ≲ ∥ρ 1 ∥ γ,O q,s0 ∥ρ 2 ∥ γ,O q,s + ∥ρ 1 ∥ γ,O q,s ∥ρ 2 ∥ γ,O q,s0 .

(b) Let ρ 1 , ρ 2 ∈ W q,∞,γ (O, C). Then ρ 1 ρ 2 ∈ W q,∞,γ (O, C) and

∥ρ 1 ρ 2 ∥ γ,O q ≲ ∥ρ 1 ∥ γ,O q ∥ρ 2 ∥ γ,O q .
(c) Let (ρ 1 , ρ 2 ) ∈ W q,∞,γ (O, C) × W q,∞,γ (O, H s ). Then ρ 1 ρ 2 ∈ W q,∞,γ (O, H s ) and ∥ρ 1 ρ 2 ∥ γ,O q,s ≲ ∥ρ 1 ∥ γ,O q ∥ρ 2 ∥ γ,O q,s .

(v) Composition law: Let f ∈ C ∞ (O × R, R) and ρ 1 , ρ 2 ∈ W q,∞,γ (O, H s ) such that ∥ρ 1 ∥ γ,O q,s , ∥ρ 2 ∥ γ,O q,s ⩽ C 0 for an arbitrary constant C 0 > 0 and define the pointwise composition ∀(µ, φ, θ) ∈ O × T d+1 , f (ρ)(µ, φ, θ) ≜ f (µ, ρ(µ, φ, θ)).

Then f (ρ 1 ) -f (ρ 2 ) ∈ W q,∞,γ (O, H s ) with ∥f (ρ 1 ) -f (ρ 2 )∥ γ,O q,s ⩽ C(s, d, q, f, C 0 )∥ρ 1 -ρ 2 ∥ γ,O q,s .

(vi) Composition law 2: Let f ∈ C ∞ (R, R) with bounded derivatives. Let ρ ∈ W q,∞,γ (O, C). Then

∥f (ρ) -f (0)∥ γ,O q ⩽ C(q, d, f )∥ρ∥ γ,O q 1 + ∥ρ∥ q-1 L ∞ (O) .
This estimate is also true for γ = 1, corresponding to the classical Sobolev space W q,∞ (O, C).

The following technical lemma turns out to be very useful in the study of the linearized operators.

Lemma A.2. Let (γ, q, d, s 0 , s) satifying (A.2) and f ∈ W q,∞,γ (O, H s ). q,s ≲ ∥∂ θ f ∥ γ,O q,s+k ≲ ∥f ∥ γ,O q,s+k+1 .

(ii) ∥g∥ γ,O q,H s φ,θ,η ≲ ∥f ∥ γ,O q,s+1 .

Proof. (i) Since the differentiation with respect to µ can be transported from g to f , then it is enough to check the result for q = 0 and therefore we shall remove the dependence in µ. We start with expanding f into its Fourier series, f (φ, θ) = (l,j)∈Z d+1 f l,j e l,j (φ, θ).

Thus, one can write g(φ, θ, η) = For all j ∈ N * , we consider the function f j defined by f j (θ) = U j-1 (cos(θ)) = sin(jθ) sin(θ) .

Notice that f j is even and 2π-periodic. Thus, we restrict its study to the interval [0, π]. Also remark that f j (π -θ) = (-1) j f j (θ).

Hence, we restrict the study to the interval [0, π 2 ]. We first consider the function f j on the interval [ π 6 , π 2 ]. There, the function f j writes as the quotient of two smooth functions with non vanishing denominator. This concludes the proof of Lemma A.2.

(ii) It suffices to prove the case q = 0. Now we shall state the following result proved in [START_REF] Feola | Reducibility of first order linear operators on tori via Moser's theorem[END_REF] for q = 1 and which can be obtained by induction for a general q ∈ N * up to slight modifications. We also refer to [28, (A.2)].

Lemma A.4. Let (q, d, γ, s 0 ) as in (A.2). Let β ∈ W q,∞,γ O, H ∞ (T d+1 ) such that ∥β∥ γ,O q,2s0 ⩽ ε 0 , (A.15)

with ε 0 small enough. Then the following assertions hold true.

(i) The linear operators B, B : W q,∞,γ O, H s (T d+1 ) → W q,∞,γ O, H s (T d+1 ) are continuous and invertible, with ∀s ⩾ s 0 , ∥B ±1 ρ∥ γ,O q,s ⩽ ∥ρ∥ γ,O q,s 1 + C∥β∥ γ,O q,s0 + C∥β∥ γ,O q,s ∥ρ∥ γ,O q,s0 (A.16) and ∀s ⩾ s 0 , ∥B ±1 ρ∥ γ,O q,s ⩽ ∥ρ∥ γ,O q,s 1 + C∥β∥ γ,O q,s0 + C∥β∥ γ,O q,s+1 ∥ρ∥ γ,O q,s0 . (A.17)

(ii) The functions β and β are linked through ∀s ⩾ s 0 , ∥ β∥ γ,O q,s ⩽ C∥β∥ γ,O q,s . (A.18) q,s .

(iii) Let β 1 , β 2 ∈ W q,∞
Thus, applying the law product in Lemma A.1 implies ∥∆ 12 β∥ γ,O q,s ≲ 1 + ∥I ∥ γ,O q,s ∥B -1 2 ∆ 12 β∥ γ,O q,s0 + 1 + ∥I ∥ γ,O q,s0 ∥B -1 2 ∆ 12 β∥ γ,O q,s .

Using (A.16), (A.18) and (A.15) yields ∥B -1 2 ∆ 12 β∥ γ,O q,s ≲ ∥∆ 12 β∥ γ,O q,s 1 + ∥ β 2 ∥ γ,O q,s0 + ∥ β 2 ∥ γ,O q,s ∥∆ 12 β∥ γ,O q,s0 ≲ ∥∆ 12 β∥ γ,O q,s + ∥ β 2 ∥ γ,O q,s ∥∆ 12 β∥ γ,O q,s0 ≲ ∥∆ 12 β∥ γ,O q,s + ∥β 2 ∥ γ,O q,s ∥∆ 12 β∥ γ,O q,s0 and ∥I ∥ γ,O q,s ≲ ∥β 1 ∥ γ,O q,s+1 1 + ∥ β 1 ∥ γ,O q,s0 + ∥∆ 12 β∥ γ,O q,s0 + ∥ β 1 ∥ γ,O q,s + ∥∆ 12 β∥ γ,O q,s

∥β 1 ∥ γ,O q,s0+1
≲ ∥β 1 ∥ γ,O q,s+1 + ∥∆ 12 β∥ γ,O q,s ∥β 1 ∥ γ,O q,s0+1 .

Putting together the foregoing estimates gives ∥∆ 12 β∥ γ,O q,s ⩽ C 1 + ∥β 1 ∥ γ,O q,s+1 + ∥∆ 12 β∥ γ,O q,s ∥β 1 ∥ γ,O q,s0+1 1 + ∥β 2 ∥ γ,O q,s0 ∥∆ 12 β∥ γ,O q,s0 + C 1 + ∥β 1 ∥ γ,O q,s0+1 + ∥∆ 12 β∥ γ,O q,s0 ∥β 1 ∥ γ,O q,s0+1 ∥∆ 12 β∥ γ,O q,s + ∥β 2 ∥ γ,O q,s ∥∆ 12 β∥ γ,O q,s0 . (A.20)

From the triangle inequality, (A.18) and (A.15), one has

∥∆ 12 β∥ γ,O q,s0 ⩽ ∥ β 1 ∥ γ,O q,s0 + ∥ β 2 ∥ γ,O q,s0
⩽ ∥β 1 ∥ γ,O q,s0 + ∥β 2 ∥ γ,O q,s0 ⩽ 2ε 0 .

From Sobolev embeddings we infer that max j∈{1,2}

∥β j ∥ γ,O q,s0+1 ⩽ max j∈{1,2}

∥β j ∥ γ,O q,2s0 ⩽ ε 0 .

Thus, by choosing ε 0 small enough, we can ensure C∥∆ 12 β∥ γ,O q,s ∥β 1 ∥ γ,O q,s0+1 1 + ∥β 2 ∥ γ,O q,s0 ∥∆ 12 β∥ γ,O q,s0 ⩽ 1 2 ∥∆ 12 β∥ γ,O q,s .

Inserting this term into the left hand side in (A.20) and using Sobolev embeddings, we find ∥∆ 12 β∥ γ,O q,s ⩽ C ∥∆ 12 β∥ γ,O q,s + ∥∆ 12 β∥ γ,O q,s0 max j∈{1,2}

∥β j ∥ γ,O q,s+1 .

This ends the proof of Lemma A.4.

We shall also prove here the following result which is frequently used in the reduction procedure for the linearized operators.

Lemma A.5. Let N 0 ⩾ 2. Consider the sequence (N m ) m∈N defined by (6.94). Then for all α > 0, we have

∞ k=m N -α k ∼ m→∞ N -α m .
In what follows, we shall focus on two particular cases of operators which will be of constant use throughout this document. Namely, multiplication and integral operators.

Definition A.3. Let T be an operator as in Section A.2. We say that

• T is a multiplication operator if there exists a function M : (µ, φ, θ) → M (µ, φ, θ) such that (T ρ)(µ, φ, θ) = M (µ, φ, θ)ρ(µ, φ, θ).

• T is an integral operator if there exists a function (called the kernel) K : (µ, φ, θ, η) → K(µ, φ, θ, η)

such that (T ρ)(µ, φ, θ) = ˆT ρ(µ, φ, η)K(µ, φ, θ, η)dη.

We intend to prove the following lemma.

Lemma A.7. Let (γ, q, d, s 0 , s) satisfy (A.2), then the following assertions hold true.

(i) Let T be a multiplication operator by a real-valued function M , then the following holds true.

• If M (µ, -φ, -θ) = M (µ, φ, θ), then T is real and reversibility preserving Toeplitz in time and space operator.

• If M (µ, -φ, -θ) = -M (µ, φ, θ), then T is real and reversible Toeplitz in time and space operator.

Moreover, ∥T ∥ γ,O O-d,q,s ≲ ∥M ∥ γ,O q,s+s0 .

(ii) Let T be an integral operator with a real-valued kernel K.

• If K(µ, -φ, -θ, -η) = K(µ, φ, θ, η), then T is a real and reversibility preserving Toeplitz in time operator.

• If K(µ, -φ, -θ, -η) = -K(µ, φ, θ, η), then T is a real and reversible Toeplitz in time operator.

In addition, ∥T ∥ γ,O O-d,q,s ≲ ˆT ∥K( * , •, , η + )∥ γ,O q,s+s0 dη ≲ ∥K∥ γ,O q,H s+s 0 φ,θ,η and ∥T ρ∥ γ,O q,s ≲ ∥ρ∥ γ,O q,s0 ˆT ∥K( * , •, , η + )∥ γ,O q,s dη + ∥ρ∥ γ,O q,s ˆT ∥K( * , •, , η + )∥ γ,O q,s0 dη ≲ ∥ρ∥ γ,O q,s0 ∥K∥ γ,O q,H s φ,θ,η

+ ∥ρ∥ γ,O q,s ∥K∥ γ,O q,H s 0 φ,θ,η
where the notation * , •, denote µ, φ, θ, respectively.

Proof. We point out that the proofs will be implemented for the particular case q = 0 and the general case can be done similarly by differentiating with respect to µ and using Leibniz rule. This gives the desired result. As to the reversible Toepliz structure, it can be checked in a similar way. To achieve the proof of the first point it remains to establish the suitable estimate. Using a duality argument H s+s0 -H -s-s0 , we may write, This concludes the proof of Lemma A.7.

In the following lemma we shall study the action of a change of variables as in (A. pseudo-differential integral operators, so we omit the proof here. We also include the difference estimate which is useful to study the stability of the Cantor sets in Section 8.2. The proof of the difference estimate is standard and we shall also skip it here.

Lemma A.8. Let (γ, q, d, s 0 , s) satisfy (A.2). Given r ∈ W q,∞,γ (O, H s ), we consider a C ∞ function in the form K : (µ, φ, θ, η) → K(µ, φ, θ, η).

We consider the integral operator associated to K, namely T ρ(µ, φ, θ) = ˆT ρ(φ, η)K(µ, φ, θ, η)dη.

Then the following assertions hold true. Consider B, B be quasi-periodic changes of variables as in (A.12)-(A.13), then

• if K(µ, -φ, -θ, -η) = K(µ, φ, θ, η), then B -1 T B is a real and reversibility preserving Toeplitz in time integral operator.

• if K(µ, -φ, -θ, -η) = -K(µ, φ, θ, η), then B -1 T B is a real and reversible Toeplitz in time inegral operator.

In this case, for any k ∈ N, ∥β ri ∥ γ,O q,s+s0+k+1 ∥∆ 12 β r ∥ γ,O q,s0 .

∥∂ k θ B -1

B Crandall-Rabinowitz's Theorem

Now, we recall the classical Crandall-Rabinowitz's Theorem. This result was first proved in [START_REF] Crandall | Bifurcation from simple eigenvalues[END_REF] and it is one of the most common theorems appearing in the bifurcation theory. A convenient reference in the subject is [START_REF] Kielhöfer | Bifurcation Theory: An Introduction With Applications to Partial Differential Equations[END_REF]. We briefly explain the core of local bifurcation theory.

Consider a function F : R × X → Y with X and Y two Banach spaces. Assume that for all Ω in a non-empty interval I we have F (Ω, 0) = 0. This provides a line of solutions (Ω, 0), Ω ∈ I .

Now take some (Ω 0 , 0) with Ω 0 ∈ I. The implicit function Theorem explains that if DF (Ω 0 , 0) is invertible, then the line {(Ω, 0), |Ω -Ω 0 | ⩽ ε} is the only curve of solutions close to (Ω 0 , 0), i.e. for ε small enough.

(Local) bifurcation theory is the study of situations where this is not true, that is, close to (Ω 0 , 0)

there exists (at least) another line of solutions. In this case, we say that (Ω 0 , 0) is a bifurcation point.

Crandall-Rabinowitz's Theorem gives sufficient conditions to construct a bifurcation curve and states as follows.

Theorem B.1 (Crandall-Rabinowitz). Let X and Y be two banach spaces. Let V be a neighborhood of 0 in X and let ▶ Holomorphic property of the product I j K j : Let j ∈ N. Then the function z → (I j K j )(z) is holomorphic on the half plane Re(z) > 0.

F : R × V → Y (Ω, x) → F (Ω, x)
▶ Decay property for the product I ν K ν (see [START_REF] Baricz | On a product of modified Bessel functions[END_REF] and [START_REF] Dritschel | Imperfect bifurcation for the shallowwater quasi-geostrophic equations[END_REF]) :

The application (λ, ν) → I ν (λ)K ν (λ) is strictly decreasing in each variable (λ, ν) ∈ (R * + ▶ Ratio bounds (see [START_REF] Baricz | On Turán type inequalities for modified Bessel functions[END_REF]) : For all n ∈ N, for all λ ∈ R * + , we have ▶ Asymptotic expansion of high order for the product I j K j (see [START_REF] Hoggan | Asymptotics of modified Bessel functions of high order[END_REF]) :

           λI ′ n (λ) I n (λ) < λ 2 + n 2 λK ′ n (λ) K n (λ) < -λ 2 + n 2
∀λ > 0, ∀b ∈ (0, 1], I j (λb)K j (λ) ∼ Vortex patches are weak solutions in the Yudovich class described by the evolution of planar domains whose study relies on their boundary dynamics. Any radial initial domain provides a stationary solution and it is natural to ask whether we can find, close to these equilibrium points, periodic or quasi-periodic solutions. The first case has been widely studied in the past by using bifurcation theory, and here we give a result in this direction concerning the existence of doubly-connected uniformly rotating patches for QGSW equations. The second in less obvious and is the core of this thesis. By using KAM and Nash-Moser theories, we show that up to select a parameter among an admissible massive Cantor-like set, it is possible to construct quasi-periodic vortex patch solutions close to Rankine vortices ; stationary solutions associated with discs. For the QGSW equations, the Rossby radius plays the role of this parameter appearing naturally in the equations. For Euler equations set in the unit disc, the non-invariance by radial dilation allows to create a geometrical parameter : the radius of the Rankine vortices.

Figure 1 :

 1 Figure 1: (a) Ordered fluid structures. (b) Hexagon vortex at the north pole of Saturn (Cassini spacecraft 2017).

Figure 2 :

 2 Figure 2: Pictures in false colors of the North (a) and South (b) poles of Jupiter where polygonal vortex sturctures are rotating (Juno spacecraft 2017).

  cos(θ))dθdr. Simple arguments based on the symmetry of trigonometric functions allow to get the identity ˆ2π 0 cos(|z|r cos(θ))dθ = 2 ˆπ 0 cos(|z|r sin(θ))dθ. Consequently, we get in view of (C.1) T 1 (z) = 1 2π ˆ∞ 0 rJ 0 (|z|r) 1 + r 2 dr, where J n denotes the Bessel function. Applying (C.8) with ν = µ = 0, a = 1 and b = |z|, we finally deduce the representation

  (x, y) = O(L) and (u, v) = O(U ). Now we define the Rossby number R 0 and the Rossby radius L d by R 0 ≜ U ω c L and L d ≜ √ gH ω c .

Figure 4 :

 4 Figure 4: Numerical simulations of V-states by Deem and Zabusky in [52].

Figure 5 :

 5 Figure 5: Local bifurcation diagram of uniformly rotating vortex patch solutions for Euler equation [78].

  To fix the terminology, a bounded open domain D 0 is said doubly-connected if D 0 = D 1 \D 2 , where D 1 and D 2 are two bounded open simply-connected domains with D 2 ⊂ D 1 . This means that the boundary of D 0 is given by two interfaces, one of them is contained in the open region delimited by the second one. In [94, Thm. B], the authors proved for Euler equations that under the condition 1 + b mm(1 -b 2 ) 2 < 0, b ∈ (0, 1), m ∈ N * one can find two branches of m-fold doubly-connected V-states bifurcating from the normalized annulus A b , defined by A b ≜ z ∈ C s.t. b < |z| < 1 (1.20)

Kolmogorov's Theorem :

  Consider an Hamiltonian H in the form (1.27) being real-analytic on the closure of a domain D × T d . Assume that for some I * ∈ D, the following conditions hold. 1. The frequency vector ω(I * ) ≜ ∇h(I * ) is Diophantine, namely ω(I * ) ∈ DC(γ, τ ) where for given γ ∈ (0, 1) and τ > d -1, the Diophantine set DC(γ, τ ) is given by

Theorem 2 . 2 .

 22 Given 0 < b 0 < b 1 < 1 and ε small enough, there exists a Cantor-like set C ∞ with almost full Lebesgue measure in (b 0 , b 1 ), such that any parameter b ∈ C ∞ generates a quasi-periodic vortex patch, solution of (1.5) set in the unit disc, in the form

Theorem 2 . 3 .

 23 For fixed λ ∈ (0, ∞) and b ∈ (0, 1), there exist non-trivial analytic doubly-connected V-states close to the annulus A b defined in (1.20) for (QGSW ) λ equations with m-fold symmetry for any m larger than a threshold depending on λ and b. Notice that the proof of Theorem 2.3 (or more precisely Theorem 15.1) is the content of Part III. The related paper is [138]. More precisely, these solutions are implicitly obtained as branches of bifurcation emerging from the annulus A b as in (1.20) for specific angular velocities related to modified Bessel functions. The proof is based on local bifurcation theory and more precisely on Crandall-Rabinowitz's Theorem B.1

Theorem 3 . 1 .

 31 Let λ 1 > λ 0 > 0, d ∈ N * and S ⊂ N * with |S| = d. There exist ε 0 ∈ (0, 1) small enough with the following properties : For every amplitudes a = (a j ) j∈S ∈ (R * + ) d satisfying |a| ⩽ ε 0 , there exists a Cantor-like set C ∞ ⊂ (λ 0 , λ 1 ) with asymptotically full Lebesgue measure as a → 0, i.e. lim a→0 |C ∞ | = λ 1 -λ 0 , such that for any λ ∈ C ∞ , the equation (3.3) admits a time quasi-periodic solution with diophantine frequency vector ω pe (λ, a) ≜ (ω j (λ, a)) j∈S ∈ R d and taking the form

Lemma 4 . 1 .Proposition 4 . 1 .

 4141 The kinetic energy E and the angular impulse J are conserved during the motion, In what follows we shall state the main result of this section on the Hamiltonian structure governing the equation (4.10). The equation (4.10) is Hamiltonian and takes the form

  )

37 )

 37 Since the sequences lm ⟨lm⟩ m and (λ m ) m are bounded, then by compactness and up to an extraction we can assume that lim m→∞ lm ⟨lm⟩ = c ̸ = 0 and lim m→∞ λ m = λ.

  m ) m are bounded, then up to an extraction we can assume that lim

41 )

 41 Since the sequences lm |lm| m and (λ m ) m are bounded, then up to an extraction we can assume that lim m→∞ lm |lm| = c ̸ = 0 and lim m→∞ λ m = λ. Now we shall distinguish two cases. ▶ Case ❶ : (l m ) m is bounded. In this case, by (5.40) we find that (j m ) m is bounded too and thus up to an extraction we may assume lim m→∞ l m = l and lim m→∞ j m = j. Since (j m ) m and (|l m |) m are sequences of integers, then they are necessary stationary. In particular, the condition (5.40) implies l ̸ = 0. Hence, taking the limit n → ∞ in (5.41), yields

. 42 )

 42 By(5.40), the sequence jm |lm| n

  m→∞ lm |lm| = c ̸ = 0 and lim m→∞ λ m = λ. As before we shall distinguish two cases.

vanishing which contradicts Lemma 5 . 4 .

 54 Now we shall move to the second case. ▶ Case ❷ : (l m ) m is unbounded. Up to an extraction we can assume that lim m→∞ |l m | = ∞. We shall distinguish three sub-cases.

  m→∞ j m = ∞ and j ′ m = j. By (5.44) and up to an extraction one gets lim m→∞ jm±j ′ m |lm| = d. One may use (5.14) combined with (5.43) and

  is identically zero with (c, d) ̸ = 0 which contradicts Lemma 5.4.This completes the proof of Lemma 5.5.Part I

Proposition 5 . 1 .

 51 Let λ 1 > λ 0 > 0, d ∈ N * and S ⊂ N * with |S| = d. Then, there exists a Cantor-like set C ⊂ [λ 0 , λ 1 ] satisfying |C| = λ 1 -λ 0 and such that for all λ ∈ C, every function in the form

. 63 ) 6 . 1 .

 6361 PropositionThe conjugation of the linearized operator d i,α F(i 0 , α 0 ) by the linear change of variables DG 0 (u 0 ) writes as follows

. 59 )

 59 Using (7.49) and the previous estimate, we deduce that sup m∈N ∥V m ∥ γ,O q ⩽ C and δ m (s 0 )N τ1q+τ1+1 m ⩽ ε 0 . (7.60)

  3-(iii) the latter equation reads ∀k ∈ S 0 , g + h, e k L 2 θ (T) = 0 with e k (φ, θ) ≜ Be k (φ, θ) = e ik(θ+β(φ,θ)) , which will fix h. Indeed, by expanding h(φ, θ) = m∈S0 a m (φ)e m (θ), we can transform the preceding system into ∀k ∈ S 0 , m∈S0 a m (φ) e m , e k L 2 θ (T) = -g, e k L 2 θ (T) .

  .156) One can check by slight adaptation of the composition law in Lemma A.1 and using the smallness condition (7.122) and(7.19) 

  .163) with g m (φ, θ) ≜ k∈S0 α m,k (φ)e k (θ). (7.164) From (7.161) and the symmetry of S 0 , we infer

  .220) Combining (7.23),(7.5) and the change of variables η ′ → -η ′ , one finds J(-φ, -θ, -η) = J(φ, θ, η) ∈ R.(7.221) 

  .268) Remark that D m and ⌊P Nm R m ⌋ are Fourier multiplier Toeplitz operators that can be identified to their spectra (iµ m j ) j∈S c 0 and (ir m j ) j∈S c 0 , namely∀(l, j) ∈ Z d × S c0 , D m e l,j = iµ m j e l,j and ⌊P Nm R m ⌋e l,j = ir m j e l,j .

  .274) This enables to construct by induction the sequence of operators (L m+1 ) in the full set O. Similarly the operator Φ -1 m L m Φ m admits an extension in O induced by the extension of Φ ±1 m . However, by construction the identity L m+1 = Φ -1 m L m Φ m in (7.267) occurs in the Cantor set O γ m+1 and may fail outside this set. We define

  .294) ▶ KAM conclusion. Let us examine the sequence of operators Φ m m∈N defined by Φ 0 ≜ Φ 0 and ∀m ⩾ 1, Φ m ≜ Φ 0 • Φ 1 • ... • Φ m . (7.295) It is obvious from the identity Φ m = Id + Ψ m that Φ m+1 = Φ m + Φ m Ψ m+1 . Applying the product laws yields

  .300) Part I Using (7.298) combined with (7.292) for m = 0 and (7.235)

  [START_REF] Gao | KAM tori for reversible partial differential equations[END_REF]) into (8.70) yields for all k ∈ {0, 1},

2 . 2 . 8 . 1 .

 2281 Now we are left to prove Lemma 8.1 and Lemma 8.2 used in the proof of Proposition 8.Lemma Let n ∈ N \ {0, 1} and l ∈ Z d such that |l| ⩽ N n-1 . Then the following assertions hold true.

Theorem 9 . 1 .

 91 Let 0 < b 0 < b 1 < 1, d ∈ N * and S ⊂ N * with |S| = d. There exists ε 0 ∈ (0, 1) small enough with the following properties : For every amplitudes a = (a j ) j∈S ∈ (R * + ) d satisfying |a| ⩽ ε 0 , there exists a Cantor-like set C ∞ ⊂ (b 0 , b 1 ) with asymptotically full Lebesgue measure as a → 0, i.e. lim a→0 |C ∞ | = b 1 -b 0 , such that for any b ∈ C ∞ , the equation (9.1) admits a time quasi-periodic solution with diophantine Part II frequency vector ω pe (b, a) ≜ (ω j (b, a)) j∈S ∈ R d and taking the form r(t, θ) = j∈S a j cos jθ + ω j (b, a)t + p ω pe (b, a)t, θ , with ω pe (b, a) -→ a→0 (-Ω j (b)) j∈S ,

. 11 )

 11 Recall, from (1.4), that the stream function Ψ writes ∀w ∈ D, Ψ(t, w) = 1 4π ˆDt log |w -ξ| 2 dA(ξ) -1 4π ˆDt log |ξw -1| 2 dA(ξ). (10.12)

  )

. 25 )

 25 Notice that, the kernels K 1,b and K 2,b being even, the operator L(b) is self-adjoint. The identities in(11.14) follows immediately from (11.9),(11.22),(11.24) and(11.25). Then, according to(11.14), a real function ρ with Fourier representation ρ(t, θ) = j∈Z * ρ(t)e ijθ is a solution to (11.8) if and only if

Lemma 11 . 4 .

 114 The equilibrium frequency vector ω Eq and the vector-valued function (ω Eq , 1) are nondegenerate on [b 0 , b 1 ] in the sense of Definition 5.1. Proof. ▶ We shall first prove that the equilibrium frequency vector ω Eq is non-degenerate on [b 0 , b 1 ].

Since the sequences lm ⟨lm⟩ m

  and (b m ) m are bounded, then by compactness arguments and, up to an extraction, we can assume that lim m→∞ lm ⟨lm⟩ = c ̸ = 0 and lim m→∞ b m = b.

. 35 )

 35 Since the sequences (b m ) m , jm 2⟨lm⟩ and lm ⟨lm⟩ are bounded, then up to an extraction we can assume that lim m→∞ b m = b, lim m→∞ jm 2⟨lm⟩ = d ̸ = 0 and lim m→∞ lm ⟨lm⟩ = c ̸ = 0.

Since the sequences lm |lm| m

  and (b m ) m are bounded, then up to an extraction we can assume that lim m→∞ lm |lm| = c ̸ = 0 and lim m→∞ b m = b. Now we shall distinguish two cases. ▶ Case ❶ : (l m ) m is bounded. In this case, by (11.36) we find that (j m ) m is bounded too and thus up to an extraction we may assume lim m→∞ l m = l and lim m→∞ j m = ȷ. Since (j m ) m and (|l m |) m are sequences of integers, then they are necessary stationary. In particular, the condition (11.36) implies l ̸ = 0 and ȷ ∈ N \ S. Hence, denoting

  2|lm| n is bounded, thus up to an extraction we can assume that it converges to d. Moreover, since lim m→∞ j m = lim m→∞ |l m | = ∞ and b m ∈ (b 0 , b 1 ), then taking the limit in (11.38), one obtains from (11.26),

  m→∞ lm |lm| = c ̸ = 0 and lim m→∞ b m = b. As before we shall distinguish two cases.

  m→∞ j m = ∞ and j ′ m = ȷ′ . By (11.39) and up to an extraction one gets lim m→∞ jm±j ′ m |lm| = d. Once again, we have lim m→∞

Proposition 11 . 1 .

 111 Let 0 < b 0 < b 1 < 1, d ∈ N * and S ⊂ N * with |S| = d. Then, there exists a Cantor-like set C ⊂ [b 0 , b 1 ] satisfying |C| = b 1 -b 0 and such that for all λ ∈ C, every function in the form

  we introduce the action-angle variables on the tangential set L S by making the following symplectic polar change of coordinates ∀j ∈ S, r j = a 2 j + |j|I j e iϑj , (12.8) where ∀j ∈ S, I -j = I j ∈ R and ϑ -j = -ϑ j ∈ T. (12.9) Thus, any function r of the phase space L 2 0 can be represented as r = A(ϑ, I, z) ≜ v(ϑ, I) + z where v(ϑ, I) ≜ j∈S a 2 j + |j|I j e iϑj e j . (12.10)

. 22 )

 22 Moreover, β and β satisfy the following symmetry condition:β(µ, -φ, -θ) = -β(µ, φ, θ) and β(µ, -φ, -θ) = -β(µ, φ, θ). (13.23) (iii) Let n ∈ N, then in the truncated Cantor set

-θ 2 ,

 2 θ, η)dη where K β,2 (φ, θ, η) ≜ log v β (φ, θ, η) .(13.36) Notice that(13.36) and (13.35) implyK β,2 (-φ, -θ, -η) = K β,2 (φ, θ, η) ∈ R. (13.37)Hence, we deduce from Lemma A.7 thatB -1 K 1,b * • B -K 1,b* • is a real and reversibility preserving Toeplitz in time operator. Writing v β (φ, θ, η) = 1 + cos h(φ, θ, η) -1 + sin h(φ,θ,η) tan ηone finds, by Lemma A.1-(v), Lemma A.2 and (13.22),

. 42 )

 42 It follows from LemmaA.7 that B -1 K 2,b * • B -K 2,b* • is a real and reversibility preserving Toeplitz in time operator. Arguying as for (12.27) and using(13.22), we obtain

. 58 )

 58 Proof. (i) Follows from (13.21) and Lemma A.1-(ii).

. 60 )

 60 (iii) Results from (13.60), (13.52), (13.21), (13.25) and Lemma A.1-(ii).(iv) For the estimates (13.56) and (13.57), we refer to Lemma 7.1 and Proposition 7.4. They are based on suitable duality representations of B ±1 ⊥ linked to B ±1 . (v) It is obtained by (12.28), (12.29), (13.20), (13.56) and Lemma A.6-(iv).

defined in Proposition 7 . 6 .

 76 Consider the open sets ∀r > 0, O r n ≜ (b, ω) ∈ O s.t. dist (b, ω), A 2γ n < rN -a n where dist(x, A) = inf y∈A ∥x -y∥. Then we have the following estimate

2 . 14 . 1 .

 2141 2 and 14.3 used in the proof of Proposition 14.Lemma Let n ∈ N \ {0, 1} and l ∈ Z d such that |l| ⩽ N n-1 . Then the following assertions hold true.

Theorem 15 . 1 .

 151 Let λ > 0 and b ∈ (0, 1). There exists N (λ, b) ∈ N * such that for every m ∈ N * , with m ⩾ N (λ, b), there exist two curves of m-fold doubly-connected V-states bifurcating from the annulus A b defined in (1.20), at the angular velocities

  b), as defined in Theorem 15.1, with m large enough. The restriction to higher symmetry m ⩾ N (λ, b) is needed first to ensure the condition ∆

. 4 )

 4 Putting together(16.3) and(16.4), the equation (16.1) can be rewritten ΩRe z(0, θ)∂ θ z(0, θ) = Im v(0, z(0, θ))∂ θ z(0, θ) .(16.5) 

D 1 and D 2

 2 are simply-connected bounded open domains of C. Then combining (4.4) and (16.5), one obtains for all z

Theorem 16 . 1 (

 161 Riemann Mapping). Let D denote the unit open ball and D 0 ⊂ C be a simply connected bounded domain. Then there exists a unique bi-holomorphic map called also conformal map, Φ : C\D → C\D 0 taking the form

Theorem 16 . 2 (

 162 Kellogg-Warschawski). We keep the notations of Riemann mapping Theorem. If the conformal map Φ : C\D → C\D 0 has a continuous extension to C\D which is of class C n+1+β with n ∈ N and β ∈ (0, 1), then the boundary Φ(T) is a Jordan curve of class C n+1+β .

Lemma 16 . 1 .

 161 Let b ∈ (0, 1). Then the annulus A b defined in (1.20) is a rotating patch for (1.6) for any angular velocity Ω ∈ R.

. 10 )Definition 16 . 1 .

 10161 We shall now recall the definition of Hölder spaces on the unit circle. Let α ∈ (0, 1).

Proposition 16 . 1 .

 161 [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF]. Indeed, Crandall-Rabinowitz's Theorem B.1 requires some regularity assumptions to apply and this is what we Part III check here. Let λ > 0, b ∈ (0, 1), α ∈ (0, 1) and m ∈ N * . There exists r > 0 such that(i) G(λ, b, •, •, •) : R × B 1+α r × B 1+α r → Y α is well-defined and of classe C 1 . (ii) The restriction G(λ, b, •, •, •) : R × B 1+α r,m × B 1+α r,m → Y α m is well-defined. (iii) The partial derivative ∂ Ω d (f1,f2) G(λ, b, •, •, •) : R × B 1+α r × B 1+α r → L(X 1+α , Y α )exists and is continuous.The following proof follows closely the lines of the proof of[START_REF] Hassainia | Doubly connected V-states for the generalized surface quasi-geostrophic equations[END_REF] Prop. 4.1].

  Part IIIBy using (C.3) and the change of variables η → -η, one has

▶ Step 3 :

 3 Show that the Gâteaux derivatives of G(λ, b, •, •, •) are continuous : Now we investigate for the continuity of the Gâteaux derivatives seen as operators from the neighborhood

  T) . (ii) Looking at Proposition 16.1, it is sufficient to prove the preservation of the m-fold symmetry. Let r be as in Proposition 16.1. Let (f 1 , f 2 ) ∈ B 1+α r,m × B 1+α r,m . Let Φ 1 and Φ 2 be the associated conformal maps Φ 1 (z) = z + ∞ n=0 a n z mn-1 and Φ 2 (z) = bz + ∞ n=0 b n z mn-1 . One easily obtains ∀j ∈ {1, 2}, ∀w ∈ T, Φ j e 2iπ m w = e 2iπ m Φ j (w) and Φ ′ j e 2iπ m w = Φ ′ j (w).

. 5 )2π ˆ2π 0 K 0 1 2π ˆ2π 0 K

 50010 we obtain from (C.3), T K 0 (λ|1 -bτ |) dτ = Re 1 λ|1 -be iθ | e iθ dθ = 0 λ|1 -be iθ | cos(θ)dθ. Now, by (C.11) and (C.3), one obtains for all n ∈ N * , 1

. 7 )

 7 Similar computations taking into acount the modification with b, change of signs and the fact that|b -e iθ | = |1 -be iθ | yield d f2 I 2 (λ, b, 0, 0)(h 2 )(w) = ∞ n=0(n + 1)I 1 (λb)K 1 (λ)b n e n+1 (w).(17.8) 

. 9 )

 9 Similar computations taking into acount the modification with b, change of signs and the fact that |b -e iθ | = |1 -be iθ | imply

  Now since b ∈ (0, 1), we obtain from (C.2),

Finally,∆ 2 - 1 . 17 . 2 .-I 1

 211721 ∞ (λ, b) > 0. Thus ∃N 0 (λ, b) ∈ N * , ∀n ∈ N * , n ⩾ N 0 (λ, b) ⇒ ∆ n (λ, b) > 0. (17.17) Therefore, for n ⩾ N 0 (λ, b) there exist two angular velocities Ω - n (λ, b) and Ω + n (λ, b) for which the matrix M n (λ, b, Ω ± n (λ, b)) is singular. These angular velocities are defined byΩ ± n (λ, b) ≜ B n (λ, b) ± ∆ n (λ, b) 2b = 1 -b 2 2b Λ 1 (λ, b) + 1 2 Ω n (λ) -Ω n (λb) ± 1 2b b Ω n (λ) + Ω n (λb) -(1 + b 2 )Λ 1 (λ, b) 4b 2 Λ 2 n (λ, b).This ends the proof of Lemma 17.1.We shall now study the monotonicity of the eigenvalues obtained in Lemma 17.1. This is a crucial point to obtain later the one dimensional condition for the kernel of the linearized operator given by Proposition 17.PropositionLet λ > 0 and b ∈ (0, 1). There exists N (λ, b) ∈ N * with N (λ, b) ⩾ N 0 (λ, b) where N 0 (λ, b) is defined in Lemma 17.1 such that (i) The sequence Ω + n (λ, b) n⩾N (λ,b) is strictly increasing and converges to Ω + ∞ (λ, b) = I 1 (λ)K 1 (λ) -bΛ 1 (λ, b). (ii) The sequence Ω - n (λ, b) n⩾N (λ,b) is strictly decreasing and converges to Ω - ∞ (λ, b) = Λ1(λ,b) b (λb)K 1 (λb). Then, we have for all (m, n) ∈ (N * ) 2 with N (λ, b) ⩽ n < m, Ω - ∞ (λ, b) < Ω - m (λ, b) < Ω - n (λ, b) < Ω + n (λ, b) < Ω + m (λ, b) < Ω + ∞ (λ, b).

1 2 Ω▶ 2 Ω▶ 2 + o λ,b b n n 2 . 2 .bbb 2 n 2 n( 1 -b 2 ) 2 - 1 2- 1 - 2 -= 1 2 ˆ∞ 0 J 0 2λ sinh t 2 - 1 eJ 0 2λ sinh t 2 - 1 = 1 π ˆπ 0 cos 2λ sinh t 2 2 and sinh(x) ⩽ e x 2 provide the following estimate for t ⩾ 0 J 0 2λ sinh t 2 - 1 ⩽

 122222212112202121222021 n+1 (λ)-Ω n (λ) -Ω n+1 (λb)-Ω n (λb) ± 1 2b ∆ n+1 (λ, b) -∆ n (λ, b)for n large enough. We first study the difference term before the square roots. We can writeΩ n+1 (λ) -Ω n+1 (λb) -Ω n (λ) -Ω n (λb) = Ω n+1 (λ) -Ω n (λ) -Ω n+1 (λb) -Ω n (λb) = I n (λ)K n (λ) -I n+1 (λ)K n+1 (λ) -I n (λb)K n (λb) -I n+1 (λb)K n+1 (λb) ≜ φ n (λ) -φ n (λb).Part III By vitue of (C.18), we deduceI n (λ)K n (λ) = n (λ) -φ n (λb) = n→∞ λ 2 (b 2 -1) (n + 1) 3 -n 3 4n 3 (n + 1) 3 + o λ,b n+1 (λ) -Ω n (λ) -Ω n+1 (λb) -Ω n (λb) The next task is to look at the asymptotic sign of the difference ∆ n+1 (λ, b) -∆ n (λ, b). We can write ∆ n+1 (λ, b) -∆ n (λ, b) = ∆ n+1 (λ, b) -∆ n (λ, b) ∆ n+1 (λ, b) + ∆ n (λ, b) with ∆ n+1 (λ, b) -∆ n (λ, b) = b Ω n+1 (λ) -Ω n (λ) + Ω n+1 (λb) -Ω n (λb) × b Ω n+1 (λ) + Ω n (λ) + Ω n+1 (λb) + Ω n (λb) -2(1 + b 2 )Λ 1 (λ, b) + 4b 2 Λ n (λ, b) -Λ n+1 (λ, b) Λ n (λ, b) + Λ n+1 (λ, b) .By using (C.18), we haveΛ n (λ, b) = n→∞ b n 2n + λ 2 b n (b 2 -1)2nHence, the following asymptotic expansion holdsΛ n (λ, b) ± Λ n+1 (λ, b) = n→∞ o λ,b 1 n As a consequence, 4b 2 Λ n (λ, b) -Λ n+1 (λ, b) Λ n (λ, b) + Λ n+1 (λ, b) Ω n+1 (λ) -Ω n (λ) + Ω n+1 (λb) -Ω n (λb) = b φ n (λ) + φ n (λb) Ω n+1 (λ) + Ω n (λ) + Ω n+1 (λb) + Ω n (λb) -2(1 + b 2 )Λ 1 (λ, b) = 2b I 1 (λ)K 1 (λ) + I 1 (λb)K 1 (λb) -2(1 + b 2 )I 1 (λb)K 1 (λ) -b I n+1 (λ)K n+1 (λ) + I n+1 (λb)K n+1 (λb) + I n (λ)K n (λ) + I n (λb)K n (λb) -→ n→∞ 2δ ∞ (λ, b),(17.21)Part III This polynomial of degree two in Ω has the discriminant ∆ n (b) ≜ b 2n . Thus, provided ∆ n (b) > 0, i.e. for 1 + b nn(b 2n . Then, we recover the result found in [94, Thm. B.]. Now, observe that the sequence n → 1 + b nn(1-b 2 ) 2 is decreasing. Then there exists N (b) ∈ N * and c 0 > 0 such that inf n∈N * n⩾ N (b) ∆ n (b) ⩾ c 0 > 0. We use the integral representation (C.10), allowing to write ∀n ∈ N * , I n (λ)K n (λ) -1 2n -nt dt. Now using the integral representation (C.1), we find sin(θ) -1 dθ. The classical inequalities ∀x ∈ R, | cos(x) -1| ⩽ x 2 λ 2 e t .We conclude that ∀λ > 0, sup n∈N\{0,1}I n (λ)K n (λ) -1 2n ⩽ λ 2 . (17.25) 

2 2-Ω 2 .

 22 By the dominated convergence theorem, one has ∀n ∈ N * , lim ε→0 ˆT K ε 0 (|1 -be iθ |) cos(nθ)dη = -ˆT log(|1 -be iθ |) cos(nθ)dθ. 298 17. Spectral study Now one obtains from (17.6)∀n ∈ N * , ˆT K ε 0 (|1 -be iθ |) cos(nθ)dη = ˆT K 0 (ε|1 -be iθ |) cos(nθ)dθ = I n (εb)K n (ε).Putting together the last two equality with (17.23) yields∀n ∈ N * , ˆT log |1 -be iθ | dθ = -b n 2n .Added to (17.6), we have∀λ > 0, ∀n ∈ N * , I n (λb)K n (λ) -b n 2n = ˆT K 0 λ|1 -be iθ | + log |1 -be iθ | cos(nθ)dθ.Then, making appeal to the power series decompositions (C.7) and (C.2), we get∀λ > 0, sup n∈N * I n (λb)K n (λ) -b n 2n ≲ max(| log(λ)|, 1)λ 2 . (17.26) Combining (17.13), (17.25), (17.26) and (17.23) one obtainssup n∈N * ∆ n (λ, b) -∆ n (b) -→ λ→0 0.Hence, there exists λ 0 (b) > 0 such that infλ∈(0,λ0(b)] inf n∈N * n⩾ N (b) ∆ n (λ, b) ⩾ c0 2 > 0.Therefore, we deduce from(17.11) and (17.23) that,∀n ∈ N * , n ⩾ N (b) ⇒ Ω ± n (λ, b) -→ λ→0 Ω ± n (b).(ii)In what follows, we fix λ > 0. By using the asymptotic (C.13), we findΛ 1 (λ, b) b -→ b→0 λK 1 (λ) 2 and ∀n ∈ N * , Λ n (λ, b) ∼ b→0 (λb) n 2 n n! K n (λ).Using the power series decomposition (C.2), the decay property of λ → I n (λ)K n (λ) and the asymptotic (17.23), we get∀n ∈ N * , I n (λb)K n (λ) -(λb) n 2 n n! K n (λ) ⩽ b 2 I n (λ)K n (λ) ⩽ b 2 .Thus, we obtain from (17.13),(17.25) and(17.23) supn∈N * ∆ n (λ, b) -b 2 Ω n (λ) + n-1 2n -λK1(λ) (λb) 2n 2 2n (n!) 2 K 2 n (λ) n (λ) + n-1 2n -λK1(λ) 2 -→ n→∞ I 1 (λ)K 1 (λ) + 1-λK1(λ)Consider the function φ defined by ∀x > 0, φ(x) = xK 1 (x). From (C.4), we getφ ′ (x) = K 1 (x) + xK ′ 1 (x) = -xK 0 (x) < 0.Part IIIHence φ is strictly decreasing on (0, ∞). Moreover, in view of the asymptotic (C.13), we infer lim x→0 φ(x) = 1.

  [START_REF] Baricz | On Turán type inequalities for modified Bessel functions[END_REF] and up to increasing the value of N (λ) one gets∀n ∈ N * , n ⩾ N (λ) ⇒ (λb) 2n 2 2n (n!) 2 K 2 n (λ) ⩽ 1.Coming back to (17.27), we infer the existence of b 0 (λ) ∈ (0, 1) such that∀b ∈ (0, b 0 (λ)), ∀n ∈ N * , n ⩾ N (λ) ⇒ ∆ n (λ, b) > 0.Thus, we get from (17.11)∀n ∈ N * , n ⩾ N (λ) ⇒ Ω + n (λ, b) -→ b→0 Ω n (λ).Then, we partially recover the result found in [54, Thm.5.1.]. We also obtain, up to increasing the value of N (λ),∀n ∈ N * , n ⩾ N (λ) ⇒ Ω - n (λ, b) -→ b→0 Ω - n (λ) ≜ λnK 1 (λ) -n + 1 2n .

1 . 18 . 1 . 1 b 1 ∈ 1 b 1 = A 1 B 1 .For n = 1 , 1

 118111111111 Theorem 15.1 by a direct application of Crandall-Rabinowitz's Theorem B.Proposition Let λ > 0, b ∈ (0, 1), α ∈ (0, 1) and m ∈ N * such that m ⩾ N (λ, b). Then the following assertions hold true. (i) There exists r > 0 such that G(λ, b, •, •, •) : R × B 1+α r,m × B 1+α r,m → Y α m is well-defined and of class C 1 .(ii) The kernel kerd (f1,f2) G λ, b, Ω ± m (λ, b), 0, 0 is one-dimensional and generated by v 0,m : T → C 2 w → b Ω m (λb) + Ω ± m (λ, b) -Λ 1 (λ, b) -Λ m (λ, b) w m-1 . (iii) The range R d (f1,f2) G λ, b, Ω ± m (λ, b), 0, 0 is closed and of codimension one in Y α m .(iv) Tranversality condition :∂ Ω d (f1,f2) G λ, b, Ω ± m (λ, b), 0, 0 (v 0,m ) ̸ ∈ R d (f1,f2) G λ, b, Ω ± m (λ, b), 0, 0 .Proof. (i) Follows from Proposition 16.1.(ii) Let (h 1 , h 2 ) ∈ X 1+α m . We write h 1 (w) = ∞ n=1 a n w nm-1 and h 2 (w) = ∞ n=1 b n w nm-1 . (18.1) Proposition 17.1 gives ∀w ∈ T, d (f1,f2) G(λ, b, Ω, 0, 0)(h 1 , h 2 )(w) = ∞ n=1 nmM nm (λ, b, Ω) a nb n e nm (w). (18.2)For Ω ∈ Ω - m (λ, b), Ω + m (λ, b) , we have det M m λ, b, Ω ± m (λ, b) = 0.Thus, the kernel of d (f1,f2) G λ, Ω ± m (λ, b), 0, 0 is non trivial and it is one dimensional if and only if∀n ∈ N * , n ⩾ 2 ⇒ det M nm λ, b, Ω ± m (λ, b) ̸ = 0. (18.3)The previous condition is satisfied in view of Proposition 17.2. Hence, we have the equivalence(h 1 , h 2 ) ∈ ker d (f1,f2) G λ, b, Ω ± m (λ, b), 0, 0 ⇔ * , n ⩾ 2 ⇒ a n = 0 = b n a ker M m λ, b, Ω ± m (λ, b) .Therefore, we can select as generator of ker d (f1,f2) G λ, b, Ω ± m (λ, b), 0, 0 the following pair of functionsv 0,m : T → C 2 w → b Ω m (λb) + Ω ± m (λ, b) -Λ 1 (λ, b) -Λ m (λ, b) w m-1 .(iii) We consider the set Z m defined byZ m ≜ g = (g 1 , g 2 ) ∈ Y α m s.t. ∀w ∈ T, g(w) = ∞ n=1 A n B n e nm (w), ∀n ∈ N * , (A n , B n ) ∈ R 2 and ∃(a 1 , b 1 ) ∈ R 2 , M m λ, b, Ω ± m (λ, b) aClearly, Z m is a closed sub-vector space of codimension one in Y α m . It remains to prove that it coincides with the range of d (f1,f2) G λ, b, Ω ± m (λ, b), 0, 0 . Obviously, we have the inclusionR d (f1,f2) G λ, b, Ω ± m (λ, b), 0, 0 ⊂ Z m .We are left to prove the converse inclusion. Let (g 1 , g 2 ) ∈ Z m . We shall prove that the equationd (f1,f2) G λ, b, Ω ± m (λ, b), 0, 0 (h 1 , h 2 ) = (g 1 , g 2 ) admits a solution (h 1 , h 2 ) ∈ X 1+αm in the form (18.1). According to (18.2), the previous equation is Part III equivalent to the following countable set of equations ∀n ∈ N * , nmM nm λ, b, Ω ± m (λ, the existence follows from the definition of Z m . Thanks to (18.3), the sequences (a n ) n⩾2 and (b n ) n⩾2 are uniquely determined by ∀n ∈ N * , n ⩾ 2 ⇒ a n (λ, b) -b Ω nm (λb) + Ω ± m (λ, b) nm det M nm λ, b, Ω ± m (λ, b) A n -bΛ nm (λ, b) nm det M nm λ, b, Ω ± m (λ, b) B n b n = Λ nm (λ, b) nm det M nm λ, b, Ω ± m (λ, b) A n + Ω nm (λb) + Ω ± m (λ, b) -bΛ 1 (λ, b) nm det M nm λ, b, Ω ± m (λ, b) B n .

H 1 (G 1

 11 λ, b, m)(w) ≜ ∞ n=2 A n n det M nm λ, b, Ω ± m (λ, b) w n , H 2 (w) ≜ (λ, b, m)(w) ≜ ∞ n=2 I nm (λb)K nm (λb)w n , G 2 (λ, b, m)(w) ≜ ∞ n=2 Λ nm (λ, b) det M nm λ, b, Ω ± m (λ, b) w n .If we denote h 1 (w) ≜ h 1 (w) -a 1 w m-1 , then we can writeh 1 (w) =C 1 (λ, b, m)wH 1 (λ, b, m) (w m ) + C 2 (b, m)w(G 1 (λ, b, m) * H 1 (λ, b, m)) (w m ) + C 2 (b, m)w(G 2 (λ, b, m) * H 2 ) (w m ) , (18.4)whereC 1 (λ, b, m) ≜ Λ 1 (λ, b) -bΩ ± m (λ, b) -bI 1 (λb)K 1 (λb) m , C 2 (b, m) ≜ -b m .The convolution must be understood in the usual sense, that is∀w = e iθ ∈ T, f * g(w) = T f (τ )g(wτ ) dτ τ = 1 2π ˆ2π 0 f e iη g e i(θ-η) dη.We shall use the classical convolution lawL 1 (T) * C 1+α (T) → C 1+α (T). (18.5) By using the decay property of the product I n K n and the asymptotic (C.13), we have ∥G 1 (λ, b, m)∥ L 1 (T) ≲ ∥G 1 (λ, b, m)∥ L 2 (T) = ∞ n=2

∥G 2 (

 2 λ, b, m)∥ L 1 (T) ⩽ ∥G 2 (λ, b, m)∥ L ∞ (T) ≲ ∞ n=2 b nm < ∞. Hence G 1 (λ, b, m), G 2 (λ, b, m) ∈ L 1 (T) 2 .(18.6)

1 2 ∥g 2 ∥B

 122 C α (T) n w n ≜ wg N 2 (w).We setg + 2 (w) ≜ ∞ n=2 B n w n .Part III By continuity of the Szegö projection defined by Π :n∈Z α n w n → n∈N α n w n

. 10 )▶ 2 ∞ 2 ∞- 1 d 2 ∞ 2 ∞ 2 ∞ 3 .

 10222223 Regularity of H 1 (λ, b, m) : By using (17.12) and (C.18), we have the asymptotic expansiondet M nm (λ, b, Ω ± m (λ, b)) = n→∞ d ∞ (λ, b, m) + d ∞ (λ, b, m) n + O λ,b,m 1 n 3 , (18.11)with, using Proposition 17.2,d ∞ (λ, b, m) ≜ I 1 (λ)K 1 (λ) -Ω ± m (λ, b) -bΛ 1 (λ, b) Λ 1 (λ, b) -bΩ ± m (λ, b) -bI 1 (λb)K 1 (λb) = b Ω + ∞ (λ, b) -Ω ± m (λ, b) Ω - ∞ (λ, b) -Ω ± m (λ, b) < 0and, using(17.16),d ∞ (λ, b, m) ≜ b 2m I 1 (λ)K 1 (λ) -Ω ± m (λ, b) -bΛ 1 (λ, b) -1 2m Λ 1 (λ, b) -bΩ ± m (λ, b) -bI 1 (λb)K 1 (λb) = b (I 1 (λ)K 1 (λ) + I 1 (λb)K 1 (λb)) -(1 + b 2 )Λ 1 (λ, b) 2m = δ ∞ (λ, b) 2m .We denoter n (λ, b, m) ≜ det M nm (λ, b, Ω ± m (λ, b)) -d ∞ (λ, b, m) = n→∞ d ∞ (λ, b, (λ, b, m) det M nm λ, b, Ω ± m (λ, b) -r n (λ, b, m) d 2 ∞ (λ, b, m) + 1 d ∞ (λ, b, m) .Thus we can writeH 1 (λ, b, m)(w) = 1 d (λ, b, m) ∞ n=2 A n r 2 n (λ, b, m) n det M nm λ, b, Ω ± m (λ, b) w n (λ, b, m) ∞ n=2 A n r n (λ, b, m) (λ, b, m) H 1,1 (λ, b, m)(w) -1 d (λ, b, m) H 1,2 (λ, b, m)(w) (18.13) + 1 d ∞ (λ, b, m) H 1,3 (λ, b, m)(w). (18.14) Now since (A n ) n∈N * ∈ l 2 (N * ) ⊂ l ∞ (N * ), we have A n r 2 n (λ, b, m) n det M nm λ, b, Ω ± m (λ, b) = n→∞ O λ,b,m 1 nBy using the link regularity/decay of Fourier coefficients, we deduce thatH 1,1 (λ, b, m) ∈ C 1+α (T).(18.15)Similarly to (18.10), we can obtainH 1,3 (λ, b, m) ∈ C 1+α (T).(18.16)By the same method, we can also differentiate term by term H 1,2 (λ, b, m) and obtain∀w ∈ T, H 1,2 (λ, b, m) ′ (w) = w ∞ n=2 A n r n (λ, b, m)w n .Notice that from (18.12), we can write∀w ∈ T, w H 1,2 (λ, b, m) ′ (w) = d ∞ (λ, b, m)H 1,3 (λ, b, m) + (C * g + 1 )(w), where ∀w ∈ T, g + 1 (w) ≜ ∞ n=2 A n w n and C (w) ≜ ∞ n=2 C n w n with C n = O λ,b,m 1 n 3 .

(∂ 2 -b 2 Λ 2 m

 22 iv) Ω ± m (λ, b) is a simple eigenvalue since ∆ m (λ, b) > 0. From(16.11) and (16.12), we deduce Ω d (f1,f2) G 1 λ, b, Ω ± m (λ, b), 0, 0 (h 1 , h 2 )(w) = Im h ′ 1 (w) + wh 1 (w) = -∞ n=0nma n e nm (w)∂ Ω d (f1,f2) G 2 λ, b, Ω ± m (λ, b), 0, 0 (h 1 , h 2 )(w) = bIm h ′ 2 (w) + wh 2 (w) = -∞ n=0bnmb n e nm (w).Thus,∂ Ω d (f1,f2) G λ, b, Ω ± m (λ, b), 0, 0 (v 0,m )(w) = m Λ 1 (λ, b) -b Ω m (λb) + Ω ± m (λ, b) bΛ m (λ, b)e m (w).Notice that the previous expression belongs to the range ofd (f1,f2) G λ, b, Ω ± m (λ, b), 0, 0 if and only if the vector Λ 1 (λ, b) -b Ω m (λb) + Ω ± m (λ, b) bΛ m (λ, b) is a scalar multiple of one column of the matrix M m λ, b, Ω ± m (λ, b) . This occurs if and only if Λ 1 (λ, b) -b Ω m (λb) + Ω ± m (λ, b) (λ, b) = 0. (18.20)Putting(18.20) together with det M m λ, b,Ω ± m (λ, b) = 0 implies Λ 1 (λ, b) -b Ω m (λb) + Ω ± m (λ, b) (1 -b 2 )Λ 1 (λ, b) + b Ω m (λ) -Ω m (λb) -2bΩ ± m (λ, b) = 0.Now remark that the above equation is equivalent toΛ 1 (λ, b) -b Ω m (λb) + Ω ± m (λ, b) = 0 or Ω ± m (λ, b) = 1 2b (1 -b 2 )Λ 1 (λ, b) + b Ω m (λ) -Ω m (λb) .Since b ̸ = 0 and Λ m (λ, b) ̸ = 0, then in view of (18.20), the first equation can't be solved. Then, necessary, the second equation must be satisfied. But we notice that it corresponds to a multiple eigenvalue (∆ m (λ, b) = 0), which is excluded here. Therefore, we conclude that∂ Ω d (f1,f2) G λ, b, Ω ± m (λ, b), 0, 0 (v 0,m ) ̸ ∈ R d (f1,f2) G λ, b, Ω ± m (λ, b), 0, 0 .This ends the proof of Proposition 18.1. The previous proposition allows to construct, for any fixed λ > 0, b ∈ (0, 1), α ∈ (0, 1) and m ⩾ N (λ, b) two branches of m-fold doubly-connected V-states with regularity C 1+α bifurcating from the annulus A b at the angular velocities Ω ± m (λ, b) for the (QGSW ) λ equations. Actually, we have the following better result for the regularity of the boundary. Lemma 18.1. Let λ > 0, b ∈ (0, 1) and m ⩾ N (λ, b). Consider a m-fold doubly-connected V-state close to A b for (QGSW ) λ equations, rotating with an angular velocity Ω and associated with an initial domain D 0 = D 1 \ D 2 , where D 1 and D 2 are simply-connected domains satisfying D 2 ⊂ D 1 and parametrized by the following conformal mappings Φ 1 (w) = w + f 1 (w), Φ 2 (w) = bw + f 2 (w), f 1 , f 2 ∈ B 1+α r,m .

Fix k ∈ 1 ,

 1 M and denote Γ k,j := B(x k,j , ε)∩ ∂D j , O - k,j := B(x k,j , ε) ∩ D 0 , O + k,j := B(x k,j , ε) ∩ R 2 \ D 0 .Solving the Helmoltz problem(18.22) as in[START_REF] Hmidi | Time quasi-periodic vortex patches for quasi-geostrophic shallow-water equations[END_REF], the stream function writesΨ(0, z) = -1 2π ˆD0 K 0 (λ|z -ξ|)dA(ξ),where dA denotes the planar Lebesgue measure. From (C.7)-(C.2), we can writeΨ(0, z) = 1 2π ˆD0 log(|z -ξ|)dA(ξ) + ˆD0 F(|z -ξ|)dA(ξ) := Ψ 1 (z) + Ψ 2 (z).

1 = 1 TK 0

 110 ∇u j (z) • n j (z) = ∇Ψ(0, z) • n j (z) -Ωz • n j (z) = ∇ ⊥ Ψ(0, z) • in j (z) -Ωz • n j (z) = v(0, z) • in j (z) -Ωz • n j (z).(18.24)The normal unitary vector can be expressed as follows in terms of the conformal mappingn j (z) = w Φ ′ j (w) |Φ ′ j (w)| if z = Φ j (w), w ∈ T.On one hand, denoting b 1 := 1 and b 2 := b, we have forz = Φ j (w) ∈ ∂D j , z • n j (z) = Re Φ j (w)w Φ ′ j (w) |Φ ′ j (w)| = b j + Re f j (w)w Φ ′ j (w) |Φ ′ j (w)| + b j b j + f ′ j (w) |b j + f ′ j (w)| b j + O(r). (18.25)On the other hand,v(0, z) • in j (z) = Re w Φ ′ j (w) |Φ ′ j (w)| T Φ ′ 1 (τ )K 0 λ|Φ j (w) -Φ 1 (τ )| dτ -T Φ ′ 2 (τ )K 0 λ|Φ j (w) -Φ 2 (τ )| dτ = Re w T K 0 λ|b j w -τ | dτ -b T K 0 λ|b j w -bτ | dτ + J 1 + J 2 + J 3 , (18.26)whereJ 1 := Re w T K 0 λ|b j w -τ | dτ -T K 0 λ|Φ j (w) -Φ 1 (τ )| dτ -Re wb T K 0 λ|b j w -bτ | dτ -T K 0 λ|Φ j (w) -Φ 2 (τ )| dτ , J 2 := Re w b j + f ′ j (w) |b j + f ′ j (w)| -λ|Φ j (w) -Φ 1 (τ )| dτ -b T K 0 λ|Φ j (w) -Φ 2 (τ )| dτ , J 3 := Re w Φ ′ j (w) |Φ ′ j (w)| T f ′ 1 (τ )K 0 λ|Φ j (w) -Φ 1 (τ )| dτ -T f ′ 2 (τ )K 0 λ|Φ j (w) -Φ 2 (τ )| dτ .

. 28 )

 28 Now fix i ∈ {1, 2} and denoteK i (w, τ ) := K 0 (λ|Φ i (w) -Φ i (τ )|).

( 1 -

 1 r)|w -τ | ⩽ |Φ i (w) -Φ i (τ )| ⩽ (1 + r)|w -τ |. (18.29)Recall that K 0 behaves like a logarithm at 0 and using (C.7) we can writeK ′ 0 (z) = -1 z + G(z), G bounded at 0. (18.30) 

. 31 )

 31 Putting together(18.27),(18.28) and (18.31), we deduce|J 3 | ≲ r.(18.32)From the previous computations, one also obtains |J 2 | ≲ r.(18.33) 

ρ 1 ,

 1 ρ 2 L 2 (T d+1 ,C) ≜ ˆTd+1 ρ 1 (φ, θ)ρ 2 (φ, θ)dφdθ.(A.4)

  ∥ρ∥ 2 H s ≜ (l,j)∈Z d+1 ⟨l, j⟩ 2s |ρ l,j | 2 < ∞ ,where ⟨l, j⟩ ≜ max(1, |l|, |j|) with | • | denoting either the ℓ 1 norm in R d or the absolute value in R.

  H s even ≜ ρ ∈ H s s.t. ∀ (φ, θ) ∈ T d+1 , ρ(-φ, -θ) = ρ(φ, θ) = ρ ∈ H s s.t. ∀ (l, j) ∈ Z d+1 , ρ -l,-j = ρ l,jandH s odd ≜ ρ ∈ H s s.t. ∀ (φ, θ) ∈ T d+1 , ρ(-φ, -θ) = -ρ(φ, θ)

2

 2 We consider the function g: O × T d φ × T θ × T η → C defined by g(µ, φ, θ, η) if θ ̸ = η 2∂ θ f (µ, φ, θ) if θ = η. Then (i) ∀k ∈ N, sup η∈T ∥(∂ k θ g)( * , •, , η + )∥ γ,O

2 e 2 e(j 2 .

 222 il•φ .We shall introduce the Chebychev polynomials of second kind (U n ) n∈N . They are defined for all n ∈ N by the following relation∀θ ∈ R, sin(θ)U n (cos(θ)) = sin((n + 1)θ).Using these polynomials, we obtain a new formulation for g, namelyg(φ, θ, η) = 2i (l,j)∈Z d+1 j̸ =0 jf l,j |j| e ij θ+η 2 U |j|-1 cos θ-η il•φ .Differentiating in θ yields by Leibniz rule∂ k θ g(φ, θ, η) = 2i k+1-m f l,j i k-m |j|2 k-m e ij θ+η 2 ∂ m θ U |j|-1 cos θ-η

Therefore, differentiating in θ leads 2 ≲ 2 ≲

 22 f j (θ) ≲ |j| k .Now we look at the behaviour close to 0 by looking at the function f j restricted to [0,π 4 ]. Using Taylor Formula, we can writef j (θ) = sin(jθ) θ × θ sin(θ) = j ˆ1 0 cos(tjθ)dt × θ sin(θ) .The function θ → θ sin(θ) being smooth on [0, π 4 ], then differentiating in θ leads to f j (θ) ≲ |j| k+1 .Combining the previous estimates, one gets∀j ∈ N * , ∀k ∈ N, sup θ∈R ∂ k θ U j-1 (cos (θ)) ≲ |j| k+1 . (A.8)Gathering (A.7) and (A.8), we deduce that(∂ k θ g)(φ, θ, η + θ) = (l,j)∈Z d+1 j̸ =0 c l,j,k (η)e l,j (φ, θ), with sup η∈T |c l,j,k (η)| ≲ |j| k+1 |f l,j |. j)∈Z d+1 j̸ =0 ⟨l, j⟩ 2s sup η∈T |c l,j,k (η)| (l,j)∈Z d+1 ⟨l, j⟩ 2s |j| 2k+2 |f l,j | ∥∂ θ f ∥ 2 H s+k .

(

  iii) Denote by B ⋆ the L 2 θ (T)-adjoint of B, thenB ⋆ = B -1 and B ⋆ = B -1 .

≲ 1 +

 1 ) is obtained from (A.[START_REF] Veiga | Kato's perturbation theory and well-posedness for the Euler equations in bounded domain[END_REF]) and law product in Lemma A.1.(iii) One has by Taylor Formula∆ 12 β(y) = β 1 (y) -β 2 (y) = β 2 (y + β 2 (y)) -β 1 (y + β 1 (y)) = -∆ 12 β(y + β 2 (y)) -∆ 12 β(y) ˆ1 0 ∂ θ β 1 (y + β 1 (y) -t∆ 12 β(y))dt. Hence ∆ 12 β(y) = -B -1 2 ∆12β(y) 1+I (y) with I (y) ≜ ˆ1 0 ∂ θ β 1 (y + β 1 (y) -t∆ 12 β(y))dt.By composition estimate in Lemma A.1, one has ∥I ∥ γ,O

( i )

 i Since M is a real-valued function, then we get by the definitionT -l,-j -l0,-j0 = ˆTd+1 M (φ, θ)e -l0,-j0 (φ, θ)e l,j (φ, θ)dφdθ = ˆTd+1 M (φ, θ)e l0,j0 (φ, θ)e -l,-j (φ, θ)dφdθ = T l,j l0,j0 .This shows in view of Proposition A.1 that the operator T is a real. It remains to check the reversibility preserving property. We write from the definitionT (S 2 ρ)(φ, θ) = M (φ, θ)ρ(-φ, -θ) = M (-φ, -θ)ρ(-φ, -θ)= S 2 (T ρ) (φ, θ).

2 ≲∥M ∥ 2 H

 22 |T j ′ j (l)| = ˆTd+1 M (φ, θ)e l,j-j ′ (φ, θ)dφdθ ≲ ⟨l, j -j ′ ⟩ -s-s0 ∥M ∥ H s+s 0 .It follows that∥T ∥ 2 O-d,s = (l,m)∈Z d+1 ⟨l, m⟩ 2s sup j-j ′ =m |T j ′ j (l)| s+s 0 (l,m)∈Z d+1 ⟨l, m⟩ 2s ⟨l, m⟩ -2s-2s0 ≲∥M ∥ 2 H s+s 0 .Therefore we find∥T ∥ O-d,s ≲ ∥M ∥ H s+s 0 .(ii) By assumption, K is real and thusT -l,-j -l0,-j0 = ˆTd+2 K(φ, θ, η)e -l0,-j0 (φ, η)e l,j (φ, θ)dφdθ = ˆTd+2 K(φ, θ, η)e l0,j0 (φ, η)e -l,-j (φ, θ)dφdθdη = T l,j l0,j0 .This implies, according to Proposition A.1, that T is a real operator. Now we shall check the reversibility preserving. The reversibility can be checked in a similar way. By the change of variables η → -η, we may write,T (S 2 ρ)(φ, θ) = ˆT K(φ, θ, η)ρ(-φ, -η)dη = ˆT K(-φ, -θ, -η)ρ(-φ, -η)dη = ˆT K(-φ, -θ, η)ρ(-φ, η)dη = S 2 (T ρ) (φ, θ).From Fubini's theorem and the dualityH s+s0 φ,θ -H -s-s0 φ,θ, we infer,|T j ′ j (l)| = ˆTd+2 K(φ, θ, η)e i(l•φ+jθ-j ′ η) dφdθdη = ˆTd+1 e i(l•φ+(j-j ′ )θ) ˆT K(φ, θ, η + θ)e -ij ′ η dη dφdθ ≲ ⟨l, j -j ′ ⟩ -s-s0 ˆT ∥K( * , •, , η + )∥ H s+s 0 φ,θ dη.324 Hence, we deduce that∥T ∥ O-d,s ≲ ˆT ∥K( * , •, , η + )∥ H s+s 0 φ,θ dη.The last estimate in Lemma A.7 can be obtained from the expression (T ρ)(φ, θ) = ˆT ρ(φ, θ + η)K(φ, θ, θ + η)dη, combined with the law products and the translation invariance in Lemma A.1-(i)-(iv).

∥B 1 B 2 K∥Now, assume that β 1 = β 2 =

 1212 (i) Let B 1 and B 2 as in (A.27) associated to β 1 and β 2 , respectively and enjoying the smallness condition (A.15). Then, β satisfies the following symmetry conditions β(µ, -φ, -θ) = -β(µ, φ, θ).(A.29)

be a function of classe C 1 ▶ 1 ) 2 0K 0

 1120 with the following properties (i) (Trivial solution) ∀ Ω ∈ R, F (Ω, 0) = 0. (ii) (Regularity) ∂ Ω F , d x F and ∂ Ω d x F exist and are continuous. (iii) (Fredholm property) ker (d x F (0, 0)) = ⟨x 0 ⟩ and Y /R (d x F (0, 0)) are one dimensional and R (d x F (0, 0))is closed in Y. (iv) (Transversality assumption) ∂ Ω d x F (0, 0)(x 0 ) ̸ ∈ R (d x F (0, 0)). Power series extension for K j (see[1, p. 375]) : ≜ -γ (Euler's constant) and ∀m ∈ N * , ψ(m + 1) ) 2 ψ(m + 1), (C.7) so K 0 behaves like a logarithm at 0.▶ Integral representation for K ν (see[121, p. 133]) : For all a, b > 0 for any ν, µ∈ C satisfying -1 < Re(ν) < 2Re(µ) + 3 2 one has ˆ∞ 0 x ν+1 J ν (bx) (x 2 + a 2 ) µ+1 dx = a ν-µ b µ 2 µ Γ(µ + 1) K ν-µ (ab). (C.8) ▶ Nicholson's integral representation (see [145, p. 441]) : Let j ∈ N then (I j K j )(z) = 2(-1) j π ˆπ (2z cos(τ )) cos(2jτ )dτ. (C.9) Another similar representation can be found in [121, p. 140] (I j K j )(λ) = 1 2 ˆ∞ 0 J 0 2λ sinh(t/2) e -jt dt. (C.10)

) 2 .▶

 2 Beltrami's summation formula (see[145, p. 361]) : Let 0 < b < a. Then ∀θ ∈ R, K 0 a 2 + b 2 -2ab cos(θ) = ∞ m=-∞ I m (b)K m (a) cos(mθ). (C.[START_REF] Baldi | Quasi-periodic incompressible Euler flows in 3D[END_REF] 

(C. 12 )▶▶▶

 12 Asymptotic expansion of small argument (see[1, p. 375]) : ∀n ∈ N * , I n (λ) Asymptotic expansion of high order (see[1, p. 377]) : ∀λ > 0, I ν (λ) ∼ Asymptotic expansion of large argument for the product I j K j (see[1, p. 378]) :∀N ∈ N * , I j (λ)K j (λ) ∼ m ≜ (-1) m (2m)! 4 m m! 2 P m (µ j ), P m (X) ≜ m ℓ=1 X -(2ℓ -1) 2 , µ j ≜ 4j 2 .(C.16)In particular,I j (λ)K j (λ)

(- 1 ) 4 k

 14 m b m (λ) j m , (C.18) where for each m ∈ N, b m (λ) is a polynomial of degree m in λ 2 defined by b 0 (λ) ≜ 1 and ∀m ∈ N * , b m (λ) and the S(m, k) are Stirling numbers of second kind defined recursively by∀(m, k) ∈ (N * ) 2 , S(m, k) = S(m -1, k -1) + kS(m -1, k), with S(0, 0) = 1, ∀m ∈ N * , S(m, 1) = 1 and S(m, 0) = 0 and if m < k then S(m, k) = 0. Titre : Structures quasi-périodiques pour des modèles de transport non-linéaires issus de la mécanique des fluides Mot clés : Poches de tourbillon, Théorie KAM, Schéma de Nash-Moser, Solutions quasipériodiques Résumé : Nous étudions l'existence de poches de tourbillon quasi-périodiques en temps pour les équations d'Euler et les équations quasi-geostrophic shallow-water (QGSW) qui sont deux modèles de transport non-linéaires et non-locaux bidimensionnels. Les poches sont des solutions faibles de la classe de Yudovich décrites par l'évolution de domaines planaires dont l'étude repose sur la dynamique de leur bord. Tout domaine initial radial fournit une solution stationnaire et il est naturel de se demander si l'on peut trouver, proche de ses points d'équilibre, des solutions périodiques ou quasi-périodiques. Le premier cas a été largement étudié par le passé via des techniques de bifurcation, et nous apportons ici un résultat dans cette lignée pour le cas des poches doublement-connexe en rota-tion uniforme pour les équations QGSW. Le second cas est moins évident et constitue le noyau dur de cette thèse. En utilisant les théories de KAM et de Nash-Moser, nous montrons que quitte à choisir un paramètre dans un ensemble admissible de type Cantor et de mesure presque pleine, il est possible de générer des poches quasi-périodiques proches des tourbillons de Rankine ; solutions stationnaires associées aux disques. Pour les équations QGSW, le rayon de Rossby joue le rôle de ce paramètre qui apparaît naturellement dans les équations. Pour les équations d'Euler dans le disque unité, la non-invariance par dilatation du modèle permet de créer un paramètre géométrique : le rayon des tourbillons de Rankine. Title: Quasi-periodic structures for nonlinear tranport fluid models Keywords: Vortex patches, KAM theory, Nash-Moser scheme, Quasi-periodic solutions Abstract: We study the existence of time quasi-periodic vortex patches for Euler and quasi-geostrophic shallow-water (QGSW) equations which are bidimensional nonlinear and nonlocal transport-type fluid models.

  

  

  Therefore, we deduce from(7.32) and Leibniz rule that for all α ∈ N d+1 with |α| ⩽ q

		.37)
	Our choice of υ in Proposition 7.2 implies in particular that	
	υ ⩽ 1 q+1 .	(7.38)

  dτ.Therefore, by our previous choice of σ 2 , we obtain in view of (7.[START_REF] Berti | KAM for Reversible Derivative Wave Equations[END_REF]), (7.22) (applied with p replaced by p + s 0 ) and the smallness condition (7.122),

	Part I	
	∀i ∈ {1, 2},	max
		k∈{0,1}

  .148) Using similar techniques based on Taylor Formula, one can estimate ∆ 12 ∂ θ K εr,1 . We use in particular the

	identity (7.136) combined with (6.48), (7.19), (7.22) and the smallness condition (7.122) allowing to get
	max	sup
	k∈{0,1}	η∈T

  .338)

	Part I
	Putting together the first estimate of (7.292), (7.276) and (7.243) we deduce that
	max j=1,2

  ) .

	Now, the conditions (8.1) and (8.2) imply in particular	
	0 < a <	1 1 + qa	•
	Hence, by taking ε small enough, we find		
	sup		
	λ∈(λ0,λ1)		

  n .

	Now remark that (8.64), (8.1) and (8.2) imply
		2 -a -aυ > 1 and a 2 > τ 1 ,	(8.75)
	and therefore one gets sup n∈N	2 n N -a2+τ1 n-1

< ∞. It follows that, for ε small enough and |l| ⩽ N n-1 ,

  .26) 2. Given two tori i 1 and i 2 both satisfying (13.19), we have

  .46) Next, putting together (12.24),(13.23) and Lemma A.8, we infer that B -1 L εr,1 B is a real and reversibility preserving Toeplitz in time operator. Moreover, we obtain from (A.30) in Lemma A.8, (13.22), (12.26),

	Part II
	(13.11) and the smallness condition (13.19),
	max
	k∈{0,1,2}

  .[START_REF] Craig | Travelling two and three dimensional capillary gravity water waves[END_REF] The next task is to estimate the term B -1 S εr,1 B in(13.34). Note that (12.25), (13.23) and Lemma A.8 imply that B -1 S εr,1 B is a real and reversibility preserving Toeplitz in time operator. In addition, Lemma

	A.8 together with the estimates (12.27), (13.11) and (13.22) give
	max
	k∈{0,1,2}

  .[START_REF] Grébert | On reducibility of quantum harmonic oscillators on R d with a quasi-periodic in time potential[END_REF] where the operators B ⊥ and Φ ∞ are defined in Propositions 13.3 and 13.4 respectively. Notice that T ω,n is defined in the whole range of parameters O. Since the condition (13.69) is satisfied, then, both Propositions 13.2 and 13.4 apply and the estimate (13.70) is obtained combining (13.52), (13.63),(13.76) and(13.69). Now combining Propositions 13.3 and 13.4, we find that in the Cantor set O γ,τ1 ∞,n

  By virtue of(13.81), one can write in the Cantor set G n (γ, τ 1 , τ 2 , i 0 ) Putting together (13.80) and(13.77), one finds in the Cantor set G n (γ, τ 1 , τ 2 , i 0 )

		.81)
	Combining (13.81), (13.55), (13.66), (13.79), (13.76), (13.52), (13.63) and (13.69), we get (13.72), up to
	taking σ large enough.	
	(iii) L ω = T -1 ω,n + E n T -1 ω,n .	(13.82)

  and C ∈ C 1+α (T).Putting together (18.4),(18.19), (18.10), (18.6) and (18.5), we finally conclude h 1 ∈ C 1+α (T).

	Part III
	(18.17)
	Using (18.16), (18.17) and (18.5), we deduce that
	H 1,2 (λ, b, m)

′ ∈ C 1+α (T) ⊂ C α (T). Thus H 1,2 (λ, b, m) ∈ C 1+α (T).

(18.18)

Gathering (18.15), (18.18) and (18.16), we conclude that

H 1 (λ, b, m) ∈ C 1+α

(

T).

(18.19) 

  ,γ (O, H s ) ≜ ρ : O → H s s.t. ∥ρ∥ γ,O q,s < ∞ , W q,∞,γ (O, C) ≜ ρ : O → C s.t. ∥ρ∥ γ,O

					q	< ∞ ,
	where µ ∈ O → ρ(µ) ∈ H s and					
	∥ρ∥ γ,O q,s ≜	α∈N d+1	γ |α| sup µ∈O	∥∂ α µ ρ(µ, •)∥ H s-|α| ,
			|α|⩽q			
	∥ρ∥ γ,O q	≜	α∈N d+1	γ |α| sup µ∈O	|∂ α µ ρ(µ)|.	(A.6)
			|α|⩽q			

  Recall the following classical norm estimateUsing the first point and the symmetry g in (η, θ) we obtain Introducing the Bessel potential J s defined in Fourier by ∀j ∈ Z d , (J s u) j = max(1, |j|) s u j ,

	∥g∥ H s φ,θ,η ≲ ∥g∥ H s φ,θ L 2 η + ∥g∥ L 2 θ H s φ,η .	(A.9)
	By the translation invariance property			
			ˆ2π	
	∥g∥ 2 L 2 θ H s φ,η	=	0	∥g(•, θ + , )∥ 2 H s φ,η dθ
		≲ sup	
	∥g∥ L ∞ θ H s φ,η ≲ ∥f ∥ s+1 .
					(A.10)
	a use of Fubini's Theorem implies			
	∥g∥ H s φ,θ L 2 η = ∥J s φ,θ g∥ L 2 φ L 2 θ L 2 η = ∥J s φ,θ g∥ L 2 η L 2 φ L 2

θ∈T ∥g( * , •, θ + , )∥ H s φ,η . θ = ∥g∥ L 2 η H s φ,θ .

  ,γ (O, H ∞ (T d+1 )) satisfying (A.15). If we denote∆ 12 β ≜ β 1 -β 2 and ∆ 12 β ≜ β 1 -β 2 ,then they are linked through ∀s ⩾ s 0 , ∥∆ 12 β∥ γ,O q,s ⩽ C ∥∆ 12 β∥ γ,O q,s + ∥∆ 12 β∥ γ,O q,s0 max For (A.[START_REF] Veiga | Kato's perturbation theory and well-posedness for the Euler equations in bounded domain[END_REF]) and (A.18), we refer to[28, (A.2)] and[START_REF] Feola | Reducibility of first order linear operators on tori via Moser's theorem[END_REF] Lem. A.3.]. The estimate (A.17

	j∈{1,2}	∥β j ∥ γ,O q,s+1 .	(A.19)
	Proof. (i)-(ii)		

  [START_REF] Baricz | On a product of modified Bessel functions[END_REF]) on an integral operator. More precisely, we shall need two partial change of coordinates B 1 and B 2 acting respectively on the variables θ and η and defined through(B 1 ρ)(µ, φ, θ, η) ≜ ρ µ, φ, θ + β 1 (µ, φ, θ), η , (A.27) (B 2 ρ)(µ, φ, θ, η) ≜ ρ µ, φ, θ, η + β 2 (µ, φ, η) ,with β 1 , β 2 two smooth functions satisfying (A.15). A similar result is proved in [33, Lem. 2.34] for

  (ii) Introduce B r a quasi-periodic change of variables as in (A.13) associated to β r (linked to r) Considerr 1 , r 2 ∈ W q,∞,γ (O, H s ). Denote ∆ 12 r ≜ r 1 -r 2 , ∆ 12 f r ≜ f r1 -f r2for any quantity f r depending on r and assume that there exist ε 0 > 0 small enough such that ∀i ∈ {1, 2},∥β ri ∥ γ,O q,2s0 + ∥K ri ∥ γ,OThen, for any k ∈ N, the following estimate holds∥∆ 12 ∂ k θ B -1 r T r B r ∥ γ,O O-d,q,s ≲ ∥∆ 12 K r ∥ γ,O

				φ,θ,η q,H s 0 +1	⩽ ε 0 .	(A.31)
		φ,θ,η q,H s+s 0 +k	+ ∥∆ 12 β r ∥ γ,O q,s+s0+k	(A.32)
	+ max i∈{1,2}	∥β ri ∥ γ,O q,s+s0+k ∥∆ 12 K r ∥ γ,O q,H φ,θ,η s 0
	+ max i∈{1,2}	∥K ri ∥ γ,O q,H φ,θ,η s+s 0 +k+1	+ max i∈{1,2}

T B∥ γ,O O-d,q,s ≲ ∥K∥ γ,O q,H s+s 0 +k φ,θ,η + ∥β∥ γ,O q,s+s0+k ∥K∥ γ,O q,H s 0 φ,θ,η . (A.30)

Pa rt I I

Boundary effects on the emergence of quasi-periodic solutions for Euler equations

By using the triangle inequality, (13.68), (14.23) and the choice γ = ε a , we obtain

Now recalling that γ n+1 = γ n -ε a 2 -n-1 and |l| ⩽ N n-1 , we get

.

As a byproduct of (14.29), we infer a 2 > τ 1 and a < 2 3 . (14.30) Therefore, up to taking ε small enough, we deduce

Finally, b ∈ R

l,j (i n-1 ) and the proof of the third point is now complete. (iv) Follows immediately from (14.17) and the points (i)-(ii)-(iii).

The following lemma provides necessary constraints on the time and space Fourier modes so that the sets in (14.17) are not void.

Lemma 14.2.

There exists ε 0 such that for any ε ∈ [0, ε 0 ] and n ∈ N the following assertions hold true.

From triangle and Cauchy-Schwarz inequalities, (14.4) and (8.2), we deduce

Remark that we used the fact that (b, ε) → ω(b, ε) is bounded. Also notice that the identity 

We conclude that there exists

) is strictly increasing (resp. decreasing). This achieves the proof of Proposition 17.2.

We shall now study both important asymptotic behaviours λ → 0 and b → 0.

The first one corresponds to the Euler case and the second one corresponds to the simply-connected case.

We remark that we formally recover (at least partially) [START_REF] Hmidi | Doubly connected V-states for the planar Euler equations[END_REF]Thm. B.] and [START_REF] Dritschel | Imperfect bifurcation for the shallowwater quasi-geostrophic equations[END_REF]Thm. 5.1.] looking at these limits. More precisely, we have the following result. 

where Ω ± n (b) is defined in (1.21).

(ii) Let λ > 0. There exists N (λ) such that

where Ω n (λ) is defined in (1.23).

Proof. (i)

In view of (C.13), we deduce

In what follows, we fix b ∈ (0, 1). By virtue of (17.23), the matrices M n defined in Proposition 17.1, satisfy the following convergence

2n

-bΩ .

After straightforward computations, we find

Therefore, in view of (18.26), (18.32), (18.33), (18.34), (18.35) and Proposition 17.2, we infer

and

Combining (18.24), (18.25), (18.36) and (18.37), we deduce by triangular inequality

The Crandall-Rabinowitz Theorem implies that Ω is close to Ω ± m (λ, b). Hence, according to Proposition 17.2, we can say

Thus, up to take r sufficiently small, we get (18.23). Consequently, Γ k,j is analytic from which we deduce by reconstruction that ∂D j is also analytic.

Since g is symmetric in the variables θ and η, we get

Combining the foregoing estimates leads to

This ends the proof of Lemma A.2.

We now turn to the presentation of quasi-periodic symplectic change of variables needed for the reduction of the transport part of the linearized operators in the construction of the approximate inverses in the normal directions. Let β : O × T d+1 → T be a smooth function such that sup

is a diffeomorphism with inverse having the form

Moreover, one has the relation By straightforward computations we obtain

and

The following lemma gives some elementary algebraic properties for B ±1 and B ±1 .

Lemma A.3. The following assertions hold true.

(i) The action of B -1 on the derivative is given by

(ii) The conjugation of the transport operator by B keeps the same structure

Proof. We consider the positive decaying function

and apply to it a series-integral comparison, namely

2 ) e m ln( 3 2 ) du.

Now remark that

2 ) e m ln( 3 2 ) .

Since

then we deduce that

Applying dominated convergence theorem, we obtain

As a consequence

A.2 Operators

We shall focus in this section on some useful norms related to suitable operators class. These notions were used before in [START_REF] Baldi | Time quasi-periodic gravity water waves in finite depth[END_REF][START_REF] Berti | Traveling quasi-periodic water waves with constant vorticity[END_REF][START_REF] Berti | Pure gravity traveling quasi-periodic water waves with constant vorticity[END_REF][START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF]. We consider a smooth family of bounded operators on Sobolev spaces T l,j l0,j0 (µ)e l,j where T l,j l0,j0 (µ) ≜ T (µ)e l0,j0 , e l,j L 2 (T d+1 ) .

(A.21)

Next, we need to fix a notation that we are implicitly using along the document. For a given family of multi-parameter operators T (µ), it acts on W q,∞,γ (O, H s (T d+1 , C)) in the following sense,

A.2.1 Toeplitz in time operators

In this short section we shall introduce a suitable class of Toeplitz operators.

Definition A.1. We say that an operator T (µ) is Toeplitz in time (actually in the variable φ) if its Fourier coefficients defined by (A.21), satisfy ∀ l, l 0 , j, j 0 ∈ Z, T l,j l0,j0 (µ) = T l-l0,j 0,j0 (µ).

Or equivalently

The action of a Toeplitz operator T (µ) on a function ρ = (l0,j0)∈Z d+1 ρ l0,j0 e l0,j0 is then given by

We encounter several operators acting only on the variable θ and that can be considered as φ-dependent operators T (µ, φ) taking the form

One can easily check that those operators are Toeplitz and therefore they satisfy (A.22).

For q ∈ N and s ∈ R, we can equip Toeplitz operators with the off-diagonal norm given by,

where

We mention that the off-diagonal norm (A.24) has first been introduced in [START_REF] Berti | Quasi-periodic solutions with Sobolev regularity of NLS on T d with a multiplicative potential[END_REF]Def. 3.2]. This norm is of important use during the KAM reduction of the remainder. The cut-off projectors (P N ) N ∈N * are defined as follows:

T l,j l0,j0 (µ)e l,j and

In the next lemma we shall gather classical results whose proofs are very close to those in [START_REF] Berti | Quasi-periodic standing wave solutions of gravitycapillary water waves[END_REF] concerning pseudo-differential operators. We recall that the weighted norms on functions that will be used below are defined in (A.6).

Lemma A.6. Let (γ, q, d, s 0 , s) satisfying (A.2). Let T, T 1 and T 2 be Toeplitz in time operators.

1-θ .

(iii) Composition law :

(iv) Link between operators and off-diagonal norms :

In particular

A.2.2 Reversible and reversibility preserving operators

In this section we intend to collect some definitions and properties related to different reversibility notions for operators and give practical characterizations. We shall also come back to Toeplitz operators defined before in Section A.2.1 and discuss two important examples frequently encountered in this document and given by multiplications and integral operators. First, we give the following definitions following [10, Def.

2.2].

Definition A.2. Introduce the following involution

We say that an operator T (µ) is

• real if for all ρ ∈ L 2 (T d+1 , C), we have

• reversibility preserving if

We now detail the following characterizations needed at several places in this document and the proofs are quite easy and follow from Fourier expansion. One can find a similar result in [10, Lem. 2.6].

Proposition A.1. Let T be an operator. Then T is

• real if and only if

• reversible if and only if

• reversibility-preserving if and only if

If χ is any complement of ker (d x F (0, 0)) in X, then there exist a neighborhood U of (0, 0), an interval (-a, a) (a > 0) and continuous functions ψ : (-a, a) → R and ϕ : (-a, a) → χ such that ψ(0) = 0, ϕ(0) = 0 and

C Modified Bessel functions

In this appendix we shall collect some properties about Bessel and modified Bessel functions that were used in the preceding sections. We refer to [START_REF] Watson | A Treatise on the Theory of Bessel Functions[END_REF] for an almost exhaustive presentation of these special functions.

We define first the Bessel functions of order ν ∈ C by