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R É S U M É

Cette thèse s’inscrit dans le cadre de l’étude mathématique de la mécanique des fluides.
Nous nous intéressons aux équations d’Euler et QGSW (Quasi-Geostrophic Shallow-Water
en anglais) bidimensionnelles, qui prennent la forme d’équations de transport non-linéaires
et non-locales. Nous étudions en particulier l’émergence de structures quasi-périodiques
sous la forme de poches de tourbillon pour ces modèles.

La mécanique des fluides est une branche de la Physique dont l’objet est la description
des propriétés dynamiques des fluides (généralement des liquides ou des gaz mais aussi
parfois des plasmas). Rappelons que les équations d’Euler décrivent l’évolution d’un fluide
homogène incompressible non-visqueux. Elles peuvent être posées en n’importe quelle
dimension d’espace, mais nous nous limiterons au cas de la dimension deux qui a l’avantage
de présenter une structure de transport sur la vorticité. Leur présentation sera faite en
Section 1.1.1. Les équations QGSW quant à elles décrivent la circulation des océans ou
de l’atmosphère sur des échelles de temps et d’espace assez larges. Elles sont obtenues
à partir des équations Shallow-Water en effectuant un développement asymptotique au
premier ordre par rapport au nombre de Rossby proche de l’équilibre géostrophique. Cet
équilibre correspond à une compensation entre les effets de rotation et de stratification du
fluide étudié. Analytiquement, les équations QGSW peuvent se voir comme une générali-
sation des équations d’Euler écrites en formulation vitesse-tourbillon via l’introduction
d’un paramètre appelé rayon de Rossby relié à la fréquence de Coriolis, la constante de
gravitation et la hauteur moyenne du fluide étudié. Nous renvoyons à la Section 1.1.2 pour
une présentation plus détaillée de ce modèle.

Dans ce travail, nous étudions quelques propriétés dynamiques des poches de tourbillon
planaires, qui sont des solutions faibles de la classe de Yudovich pour les modèles cités
plus haut. Les poches décrivent l’évolution temporelle de domaines bidimensionnels
bornés et l’étude de leur dynamique est réduite à celle de leur contour qui est soumis
à une équation intégro-différentielle. Grâce à la structure des équations, les fonctions
radiales fournissent des solutions stationnaires, en particulier les poches associées aux
disques appelées tourbillons de Rankine. L’analyse des portraits de phase autour de ces
points d’équilibre a suscité beaucoup d’intérêts. Notons qu’une activité assez riche s’est
développée durant la dernière décennie autour des solutions périodiques. Dans le cas
rigide, où la forme de la solution ne change pas au cours du temps (appelée V-state), de
nombreuses structures dépendant de la topologie ont été mise en évidence grâce à des
techniques de bifurcation. Ces solutions implicites effectuent une rotation uniforme autour
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de leur centre de masse à vitesse angulaire constante. Par contre, dans le cas non-rigide,
peu de résultats sont connus à ce jour. A la suite de ces travaux, une question naturelle
s’est alors imposée :

Peut-on trouver des solutions quasi-périodiques (plus générales que périodiques)
proches de certains de ces points d’équilibre ?

Cette thèse a pour vocation à apporter une réponse positive à cette question. Les tech-
niques employées sont empruntées aux théories de KAM (nomée d’après ses fondateurs
Kolmogorov, Arnold et Moser) et de Nash-Moser dans l’esprit des récents travaux de
Massimiliano Berti et de ses collaborateurs. Rappelons que la théorie de KAM originelle
décrit (sous de bonne conditions de régularité et de non-dégénérescence) la persistance de
tores invariants supportant des trajectoires quasi-périodiques pour de petites perturbations
de systèmes hamiltoniens intégrables en dimension finie. Cette théorie fut développée
dans les années 50-60 et a commencé à être étendue aux EDP hamiltoniennes et/ou
réversibles, i.e. en dimension infinie, à partir des années 80-90 avec notamment les travaux
de Kuksin, Wayne, Pöschel et Bourgain. Une présentation plus exhaustive de l’utilisation
des techniques KAM en EDP est faite à la Section 1.3. Le schéma de Nash-Moser, quant
à lui, est un processus itératif généralisant la méthode de Newton au moyen d’opérateurs
de régularisation (typiquement des projections sur un nombre fini de modes de Fourier)
afin de trouver certains zéros d’une fonctionnelle. Son utilisation permet d’effectuer un
théorème des fonctions implicites "à la main" dans le cas d’existence d’un inverse approché
à droite satisfaisant de bonnes estimées douces avec perte fixe de régularité. Tout comme
la méthode classique de Newton, l’avantage majeur de ce procédé, introduit par John Nash
dans les années 50, réside dans son caractère quadratique, ce qui implique une vitesse de
convergence exponentielle.

Les modèles qui nous intéressent ici et en particulier leurs formulations au niveau des
poches de tourbillon sont des EDP hamiltoniennes. De plus, elles peuvent être décrites
comme des perturbations quasi-linéaires de leurs linéarisations aux tourbillons de Rankine
qui, elles, forment des systèmes intégrables. Nous sommes donc précisément dans le
cadre adapté à l’utilisation des techniques KAM. Nous arrivons à générer des poches de
tourbillon quasi-périodiques en jouant avec un paramètre qui apparaît soit naturellement
dans l’équation soit géométriquement dû à des propriétés de non-invariance par changement
d’échelle. Pour de bonnes valeurs de ce paramètre choisies dans un ensemble de type
Cantor nous arrivons à montrer l’existence de telles structures. Voici à présent un plan
succint de la thèse.

➤ La première partie de la thèse (Part I) est consacrée à l’étude de l’existence de poches
de tourbillon quasi-périodiques proche du disque unité pour les équations QGSW.
Ces structures apparaissant naturellement au niveau linéaire persistent au niveau
non-linéaire modulo un choix du rayon de Rossby parmi un ensemble possible de
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mesure presque pleine. Il est à noté que ce choix revient à sélectionner des équations
pour lesquelles on est capable de construire des solutions, mais en aucun cas les
équations sont fixées à l’avance. Ce travail a été effectué avec mon directeur Taoufik
Hmidi.

➤ La seconde partie (Part II) est dédiée à l’obtention de poches quasi-périodiques
proches des tourbillons de Rankine pour les équations d’Euler posées dans le disque
unité. Cette fois, c’est un paramètre géométrique, le rayon des tourbillons de Rankine,
qui permet de générer les solutions quasi-périodiques. L’apparition de ce paramètre
est reliée à la non-invariance du problème par dilatation. En effet, dans le plan entier,
cette approche n’est pas possible dû notamment à des résonances triviales entre les
fréquences à l’équilibre. L’ensemble des rayons admissibles est de type Cantor et de
mesure presque pleine. L’analyse est plus simple dans ce cadre car les effets du bord
se font au travers de termes réguliers. Ce travail a été fait en collaboration avec Zineb
Hassainia.

Techniquement, les difficultés rencontrées dans les preuves de ces deux résultats peuvent
être classifiées en trois composantes.

• La première est de nature spectrale. Comme mentionné plus haut, chaque équation
est quasi-linéaire et sa linéarisation est à coefficients variables. Au cours du schéma
de Nash-Moser, il nous faut construire un inverse approché à droite du linéarisé ce
qui se fait en conjuguant celui-ci à un opérateur à coefficients constants en choisissant
les paramètres parmi des ensembles de Cantor liés au spectre de l’opérateur. Cette
procédure est assez coûteuse et est basée sur les techniques KAM. En particulier, pour
les équations QGSW, le spectre est relié à des fonctions de Bessel modifiées et l’on
doit faire appel à des propriétés fines de ces dernières, reliées à leurs asymptotiques,
leurs représentations intégrales etc...

• La seconde est de nature fonctionnelle. En vue de l’application du schéma de Nash-
Moser, nous devons montrer des estimées douces et des propriétés de symétrie pour
l’inverse approché ce qui nous oblige à être attentif aux lois de produit et composition
en lien avec les fonctions et opérateurs utilisés lors de la réduction du linéarisé à
coefficients constants. Pour faire converger le schéma de réduction, il nous faut utiliser
à certains endroits une topologie particulière sur les opérateurs Toeplitz en temps,
plus forte que la topologie standard sur les opérateurs. Enfin, l’analyse est basée
sur l’étude d’opérateurs à noyaux qui sont assez singuliers et requièrent donc une
attention particulière. Le travail direct avec la structure du noyau et non du symbole
de l’opérateur (techniques de calcul pseudo-différentiel) est en contraste avec les
travaux précédents dans l’étude de l’émergence de solutions quasi-périodiques en
EDP. Il est important de remarquer que, pour les équations qui nous intéressent,
les singularités du noyau apparaissent comme des convolutions. C’est un point clé
qui, grâce à des changements de variables, permet d’estimer le noyau. Les parties
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non-singulières étant régularisantes à tous ordres, leurs estimations sont relativement
simples.

• La dernière difficulté est plutôt relative à la théorie des nombres. En effet, l’application
des techniques KAM implique la résolution d’équations dites homologiques qui néces-
sitent des conditions de non-résonance en lien avec l’approximation diophantienne.
Afin d’assurer ces conditions, il nous faut sélectionner des paramètres admissibles
en exploitant une rigidité des fréquences à l’équilibre qui se manifeste par la non-
dégénérescence et la transversalité.

➤ La troisième partie de la thèse (Part III) est consacrée à l’étude de l’existence de
V-states doublement-connexes analytiques pour les équations QGSW. Il s’agit de
solutions dont le domaine possède un trou et qui sont en rotation uniforme. Ces
poches, obtenues par des techniques de bifurcation, satisfont des conditions de hautes
symétries (non explicites) et les branches de bifurcations associées émergent de
l’anneau pour des vitesses angulaires bien spécifiques reliées aux fonctions de Bessel
modifiées. Le point délicat de l’analyse est en lien avec des propriétés fines sur ces
fonctions spéciales. Ce résultat est dans la lignée de ceux obtenus dans la dernière
décennie concernant les poches périodiques.
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A B S T R A C T

This thesis takes place in the mathematical study of fluid mechanics. We are interested in bidimensional
Euler and quasi-geostrophic shallow-water (QGSW) equations, which take the form of nonlinear and
nonlocal transport-type equations. We study in particular the emergence of quasi-periodic vortex patch
structures for these models.

Recall that Euler equations describe the evolution of an inviscid homogeneous and incompressible fluid.
They can be set in any space dimension but we shall restrict our discussion to the dimension two since
in this case the vorticity solves a transport equation. Their presentation is done in Section 1.1.1. As to
the QGSW equations, they describe the circulation of the ocean and the atmosphere at large time and
space scales. They are obtained from shallow-water equations by making some asymptotic expansions
with respect to the Rossby number close to the quasi-geostrophic balance. This equilibrium corresponds
to a balance between rotation and stratification effects. Analytically, these equations can be seen as a
generalization of Euler equations written in velocity-vorticity formulation through the introduction of a
parameter called Rossby radius. We refer to Section 1.1.2 for a detailed presentation of this model.

In this work, we study some dynamical properties of planar vortex patches, which are weak solutions in
the Yudovich class for the above mentioned models. They describe the evolution of bidimensional bounded
domains and the study of their dynamics is reduced to the one of their boundary which is subject to an
integro-differential equation. Thanks to the structure of the equations, radial profiles provide stationary
solutions, in particular vortex patches associated with the discs called Rankine vortices. The analysis
of the phase portraits close to these equilibrium points has aroused great interest. Notice that, during
the last decade, a quite rich activity has been developed around periodic solutions. In the rigid motion
case, where the solution keeps the same shape (and is called V-state), several structures depending on the
topology were found by using bifurcation theory. These implicit solutions perform a uniform rotation
around their center of mass with constant angular velocity. However, very few results are known in the
non-rigid case. After these works, a natural question appeared :

Can we find quasi-periodic solutions (more general than periodic)
close to some of these equilibrium points ?

This thesis answers positively to this question. The techniques involved are borrowed from KAM and
Nash-Moser theories in the spirit of the recents works of Massimiliano Berti and his collaborators. Recall
that the original KAM theory describes (in suitable regularity) the persistence of invariant tori supporting
quasi-periodic motions for small perturbations of integrable Hamiltonian systems in finite dimension.
This theory was developed in the 50-60s and started to be extended to Hamiltonian PDE, i.e. in infinite
dimension, in the 80-90s. The Nash-Moser scheme is an iterative procedure generalizing the Newton’s
method through the use of regularizing operators. It allows to perform an implicit function theorem
in case of existence of an approximate right inverse satisfying nice tame estimates with fixed loss of regularity.

The models of interest here and in particular their formulations at the level of vortex patches are
Hamiltonian PDE. In addition, they can be seen as quasilinear perturbations of their linearizations at the
Rankine vortices which one are integrable. Then, we are exactly in a well-adapted situation for applying
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KAM techniques. We can generate quasi-periodic vortex patch solutions by playing with a parameter
appearing either naturally in the equations or geometrically due to non-invariance scaling properties. For
suitable selected values of this parameter among a Cantor-type set, we can generate these solutions. We
shall now present a short plan of the memoir.

➤ The first part of the thesis (Part I) is devoted to proving the existence of time quasi-periodic vortex
patches close to the unit disc for QGSW equations. These structures appearing naturally at the
linear level persist at the nonlinear one modulo the choice of the Rossby radius among a massive
Cantor-like set. This work has been done together with my PhD advisor Taoufik Hmidi.

➤ The second part (Part II) of the thesis is devoted to proving the existence of quasi-periodic in time
vortex patches close to the Rankine vortices for Euler equations set in the unit disc. Here this is a
geometrical parameter, the radius of the Rankine vortices, which allows to generate quasi-periodic
solutions. The apparition of this parameter is related to the non-invariance by radial dilation of
the problem. Indeed, in the whole plane, this approach fails in particular due to trivial resonances
between the equilibrium frequencies. The set of admissible parameters is of Cantor-type with almost
full Lebesgue measure. The analysis is simpler in this case since the boundary effects make appear
smooth terms. This work has been done in collaboration with Zineb Hassainia.

From a technical point of view, the difficulties encountered in the proofs of the previous two results can
be classified into three components.

• The first one is of spectral nature. As already mentioned, each equation is quasilinear and its
linearization has variable coefficients. Along the Nash-Moser scheme, we need to construct an
approximate right inverse for the linearized operator which is done by conjugating it to a constant
coefficients operator provided the choice of parameters among Cantor sets related to the spectrum
of the operator. This procedure is expensive and based on KAM reductions.

• The second is linked to functional analysis. In view of the Nash-Moser iteration, we need to show
tame estimates and symmetry properties for the approximate inverse which forces us to pay attention
to products and composition laws related to functions and operators used during the reduction of
the linearized operator to constant coefficients. In order to make the reduction scheme convergent,
we have to deal with a special Toeplitz in time topology for operators which is stronger than the
classical one. Finally, the analysis is based on the study of integral operators whose kernels are quite
singular and require particular attention.

• The last difficulty is related to number theory. Indeed, the implementation of KAM techniques
implies to solve some equations called homological which require non-resonance conditions linked
to Diophantine approximation. In order to ensure these conditions, we must select admissible
parameters by exploiting the rigidity of the equilibrium frequencies through the non-degeneracy and
the transversality.

➤ The third part (Part III) deals with the existence of analytic doubly-connected V-states for QGSW
equations. These patches, obtained by bifurcation techniques, have high symmetries and the
associated branches of bifurcation emerge from the annulus for very specific angular velocities related
to modified Bessel functions. The delicate point in the analysis is linked to rafined properties of
these special functions. This result follows the previous works in the field obtained during the past
decade.
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Introduction

Le progrès n’est que l’accomplissement
des utopies.

Oscar Wilde

1 Historical and mathematical contexts

Fluid mechanics is a branch of Physics studying the dynamics of fluids, namely, liquids, gases or even
plasmas. The literature in the subject is huge so we may restrict our discussion to the case of an inviscid,
homogeneous and incompressible fluid for which the Euler equations [61] and their generalizations are
well-adapted to describe the dynamics. We refer to Section 1.1 for a mathematical presentation of the
fluid models of interest in this work. Such models (or at least the Eulerian one) have been widely studied
numerically, experimentally and analytically, so we may focus on some aspects which fit with our purpose.

This thesis is devoted to the study of the emergence of ordered structures for some fluid models.
More precisely, we are interested in the vortex patch dynamics. Their study goes back to the works of
Helmoltz [92, 91], Kirchhoff [114] and Kelvin [111]. Helmoltz introduced in [91] the notion of vorticity for
Euler equations, which is in the bidimensional case a scalar function quantifying the local rotation of the
mesoscopic particles. He proved that the vorticity is a solution to an active scalar equation driven by the
solenoidal velocity field of the fluid. Therefore, the initial profile is transported by the flow associated to
the velocity. In particular, if the initial condition is given by the characteristic function of a bounded
domain, then, at later time, the solution will keep the same structure and the resulting solution is called
vortex patch. These structures can be seen as a simple modelization of hurricanes and in this context, the
nature provides some interesting examples (see Figure 1-(b) and 2). We refer to Section 1.2 for a detailed
mathematical presentation of vortex patches.

(a) (b)

Figure 1: (a) Ordered fluid structures. (b) Hexagon vortex at the north pole of Saturn (Cassini spacecraft
2017).

When renormalized by its area, then taking the diameter of the vortex patch going to zero, we find a
point vortex. The point vortex system is the equivalent of the N-body problem in fluid mechanics. It was
first introduced by Helmoltz in [92]. Later on, Kirchhoff [114] proved the Hamiltonian structure of this
system. Then, Poincaré [129] and Gröbli [82] studied the 3-point vortex configuration and showed that it

18



Introduction

(a) (b)

Figure 2: Pictures in false colors of the North (a) and South (b) poles of Jupiter where polygonal vortex
sturctures are rotating (Juno spacecraft 2017).

is integrable. The inverse problem of desingularizing a point vortex configuration to get a vortex patch
motion has been recently studied [70, 71, 90, 98] and numerical simulations like in [4] on point vortices
are helpful in this task.

We shall look for the emergence of quasi-periodic solutions in the patch form for different models.
Quasi-periodic functions are a generalization of periodic ones and are natural structures appearing in
Hamiltonian systems. Their study goes back to the works of Kolmogorov [115], Arnold [5] and Moser
[126] who proved the persistence of invariant tori supporting quasi-periodic motion for perturbations of
integrable Hamiltonian systems in finite dimension. KAM theory was extended and refined for several
Hamiltonian PDE with small divisors problems. For instance, it has been implemented for the 1-d
semilinear wave and Schrödinger equations in several papers [39, 47, 49, 119, 131, 134, 147]. Many results
were also obtained for semilinear perturbations of PDE [20, 19, 40, 60, 69, 109, 117, 118, 123]. However
the case of quasi-linear or fully nonlinear perturbations were explored in [10, 8, 9, 21, 32, 67]. Many
interesting results have also been obtained in the past few years on the periodic and quasi-periodic settings
for the water-waves equations as in [2, 7, 29, 28, 33, 108, 128]. For Euler equations, only few results are
known [11, 51]. We refer the reader to Section 1.3 for more details about KAM theory and its applications
to PDE.

Figure 3: Numerical simulation of quasi-periodic point vortex motion [37].

19



Introduction

1.1 Nonlinear and nonlocal transport-type fluid models

In this section, we present the various partial differential equations of interest in this PhD. These are
bidimensional nonlinear fluid models which can be written as an active scalar equation, namely

∂tω + v · ∇ω = 0, (t, x) ∈ R+ ×D

for a certain scalar unknown function ω = ω(t, x) driven by a time dependent solenoidal vector field
v = v(t, x) related to ω through singular integrals. The equation is set in a planar domain D taken either
as the full plane or the unit disc in our discussions

D = R2 or D = D ≜
{

(x1, x2) ∈ R2 s.t. x2
1 + x2

2 ⩽ 1
}
.

The divergence-free condition allows to introduce a velocity potential Ψ = Ψ(t, x) such that

v = ∇⊥Ψ, ∇⊥ ≜

(
−∂2

∂1

)
.

In each considered model, the stream function Ψ is given by an integral in the form

Ψ(t, x) =
ˆ
D

G(x, y)ω(t, y) dA(y),

with a Green function G satisfying the following symmetry properties

∀θ ∈ R, ∀(x, y) ∈ D2, G
(
eiθx, eiθy

)
= G(x, y) = G(y, x). (1.1)

Here and in the sequel, we use the notation dA for the planar Lebesgue measure. Notice that along the
document, we shall identify C with R2. In particular, the Euclidean structure of R2 is seen in the complex
sense through the usual inner product defined for all z1 = a1 + i b1 ∈ C and z2 = a2 + i b2 ∈ C by

z1 · z2 ≜ ⟨z1, z2⟩R2 = Re (z1z2) = a1a2 + b1b2. (1.2)

Several examples of such nonlinear transport-type equations are known in fluid mechanics :

Equations Domain D Unknown ω Potential G(x, y)

Euler R2 vorticity ω 1
2π log(|x− y|)

Euler D vorticity ω 1
2π log

(∣∣∣ x−y
1−xy

∣∣∣)
(QGSW )λ with λ ∈ R∗

+ R2 potential vorticity q − 1
2πK0 (λ|x− y|)

(SQG)α with α ∈ (0, 1) R2 temperature θ
Γ( α

2 )
π22−αΓ( 2−α

2 )
1

|x−y|α

Remark 1.1. Observe at this stage that according to the symmetry properties in (1.1), every radial initial
profile generates a trivial stationary solution. In this memoir, we shall look for quasi-periodic structures
living close to the stationary solutions given by discs and for periodic structures living close to the annuli.

1.1.1 Euler equations

We first introduce the 2D-Euler equations which is the master model in fluid dynamics describing the
evolution of an inviscid homogeneous incompressible fluid in a domain D. It was first introduced by Euler
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in [61] and writes in the following way

(E)


∂tv + v · ∇v + ∇p = 0, in R+ ×D

∇ · v = 0
v(0, ·) = v0.

(1.3)

The quantity v = v(t, x) denotes the velocity field of the fluid. It is obtained as an average of the velocities
of particles contained in a mesoscopic volume of fluid at time t and centered around a position x. The scalar
function p = p(t, x) denotes the pressure of the fluid at time t and position x. More generally, the gradient
term can represent the sum of all conservative forces acting on the fluid. Notice that the incompressibility
condition is encoded in the divergence-free condition for the vector field v (second equation in (1.3)). In
the case D = D, the system (1.3) is supplemented with the non penetration condition v · ν = 0 where ν is
the outward normal vector to the boundary ∂D.

The global well-posedness theory for these equations set in the full plane goes back to the work
of Wolibner [148] for smooth initial data. Later on, for classical solutions in Sobolev spaces Hs(R2)
(s > 2) the local well-posedness was proved by Kato and Ponce in [110]. Then, the question of the global
existence of these solutions was solved in [15]. Notice that the global well-posedness in Hölder spaces was
also obtained in [45]. The case of supercritical Besov spaces was studied in [44] and the critical cases
were proved in [143] and [95]. As regards the situation in a bounded domain, the first result was given
by Ebin and Marsden [58] in Sobolev and Hölder spaces, see also [57]. Their proof was very technical
and based on Riemannian geometry on infinite dimensional manifolds. A simpler proof was proposed in [16].

We shall now present the velocity-vorticity formulation of Euler equations. In the planar case, this
new system is equivalent to the Euler system (1.3) under nice decay property at infinity. We introduce
the vorticity

ω ≜ ∇⊥ · v = ∂1v2 − ∂2v1.

This quantity measures the rotation effects inside the fluid. Applying the operator ∇⊥· to the first equation
in (1.3), we get the following active scalar equation

∂tω + v · ∇ω = 0.

In the planar case, the stream function is solution of the Laplace problem

∆Ψ = ω

and then is given by
∀x ∈ R2, Ψ(t, x) = 1

2π

ˆ
R2

log
(
|x− y|

)
ω(t, y) dA(y).

In the case of the unit disc D, the stream function Ψ solves the following Dirichlet problem{
∆Ψ = ω

Ψ|∂D = 0.

Thus, by using the Green function of the unit disc, we get the expression

∀x ∈ D, Ψ(t, x) = 1
4π

ˆ
D

log
(∣∣∣∣ x− y

1 − xy

∣∣∣∣2
)

ω(t, y) dA(y). (1.4)
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Then, the new formulation of Euler equations is given by
∂tω + v · ∇ω = 0, in R+ ×D

v = ∇⊥Ψ
ω(0, ·) = ω0.

(1.5)

The study of weak solutions for the system (1.5) will be discussed in Section 1.2.

1.1.2 Quasi-geostrophic shallow-water equations

The quasi-geostrophic shallow-water equations (QGSW)λ is considered as one of the most common
asymptotic models used to describe the large scale motion of the atmospheric and oceanic circulation
and can be derived asymptotically from the rotating shallow-water equations when Rossby and Froude
numbers are small enough, for more details we refer to [56, 142] and the references therein. We also refer
to the formal derivation below. This model is planar and the evolution of the potential vorticity q takes
the form of a nonlinear and nonlocal transport equation,

(QGSW)λ


∂tq + v · ∇q = 0, in R+ × R2

v = ∇⊥(∆ − λ2)−1q,

q(0, ·) = q0.

(1.6)

Here v denotes the velocity field which is solenoidal and q is a scalar function. Physically, the parameter
λ is defined by

λ ≜
ωc√
gH

,

where g is the gravity constant, H is the mean active layer depth and ωc is the Coriolis frequency, assumed
to be constant. In the literature, the number 1

λ is called the Rossby deformation length or Rossby radius
and measures the length scale at which the rotation effects are balanced by the stratification. Notice
that small values of λ corresponds to a free surface which is nearly rigid and when λ = 0 we get Euler
equations written in the formulation velocity-vorticity. The velocity field v writes v = ∇⊥Ψ where Ψ is
the stream function governed by the Helmholtz equation,

(∆ − λ2)Ψ(t, ·) = q(t, ·).

To invert this operator we shall make appeal to the Green function Tλ solution of the equation

(−∆ + λ2)Tλ = δ0 in S ′(R2).

Using the Fourier transform yields

∀ξ ∈ R2, T̂λ(ξ) = 1
|ξ|2 + λ2 ·

Thus by Fourier inversion theorem and using a scaling argument, we find

Tλ(z) = T1(λz) with T1(z) ≜ 1
4π2

ˆ
R2

eiz·ξ

1 + |ξ|2
dξ.

Applying a polar change of variables gives

T1(z) = 1
4π2

ˆ ∞

0

r

1 + r2

ˆ 2π

0
cos(|z|r cos(θ))dθdr.
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Simple arguments based on the symmetry of trigonometric functions allow to get the identity

ˆ 2π

0
cos(|z|r cos(θ))dθ = 2

ˆ π

0
cos(|z|r sin(θ))dθ.

Consequently, we get in view of (C.1)

T1(z) = 1
2π

ˆ ∞

0

rJ0(|z|r)
1 + r2 dr,

where Jn denotes the Bessel function. Applying (C.8) with ν = µ = 0, a = 1 and b = |z|, we finally deduce
the representation

T1(z) = 1
2πK0(|z|).

Therefore, one obtains the following expression for the stream function

Ψ(t, z) = − 1
2π

ˆ
R2
K0(λ|z − ξ|)q(t, ξ) dA(ξ), (1.7)

where K0 is the zero-th order modified Bessel function of second kind which expresses as

K0(z) = log(z)F (z) +G(z), F,G analytic functions. (1.8)

A more precise description of the kernel K0 can be found in (C.7). We point out that K0 behaves like
a logarithm at zero which explains the link with Euler equations whenever the parameter λ tends to 0.
We mention that the well-posedness theory of classical solutions for (QGSW )λ equations is not properly
written in the literature, but due to the similarity with Euler equations, one can easily prove it for instance
in supercritical or even critical Besov regularity.

Formal derivation :
We may follow the calculation developed in [142] with the stronger assumption that the Coriolis frequency
is constant. Let us consider a fluid with constant density and such that the height variation scale is
small compared to the depth of the fluid. This is typically the case of the ocean and the atmosphere.
Then, we can assume the hydrostatic approximation namely the gravitational force and the pressure
terms compensate each other. We assume the rotation frequency of the planet to be constant equal to ωc.
Finally, we assume that the bottom of the fluid is flat and at the origin. The velocity field can be written
in this context in the following way

U(x, y, z) = u(x, y) + w(x, y, z)
−→
k , u(x, y) = u(x, y)−→i + v(x, y)−→j .

We also denote h(x, y) the thickness of the fluid at point (x, y) and H the average height. Newton’s
general law allows us to write

∂tu + u · ∇u + ωc
−→
k ∧ u + g∇h = 0, ∇ = ∇x,y. (1.9)

The incompressibility of the fluid provides

∇x,y,z · U = 0, i.e. ∂zw = −∇ · u.

Integrating the last equation with respect to z yields

w(h) = w(0) − h∇ · u = −h∇ · u.
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But at the surface, the vertical velocity corresponds to the material derivative of the position of the
particle, namely

w(h) = ∂th+ u · ∇h.

Therefore, combining the foregoing formulae, we obtain the new formulation of the mass conservation

∂th+ u · ∇h+ h∇ · u = 0. (1.10)

The system (1.9)-(1.10) is called rotating shallow-water model and we shall derive from this the model of
interest by using some asymptotics in a small parameter called Rossby number. For that purpose, we
introduce characteristic length L and velocity U assumed to be horizontally isotropic.

(x, y) = O(L) and (u, v) = O(U).

Now we define the Rossby number R0 and the Rossby radius Ld by

R0 ≜
U

ωcL
and Ld ≜

√
gH

ωc
.

The Rossby number is a ratio between advection and rotation term in the equation (1.9). The number
Ld, also called Rossby deformation length is a length scale measuring the balance between rotation and
stratification in (1.9).

R0 Ld

Ocean 0.01 25-100km
Atmosphere 0.1 1000-1500km

Then consider the adimensionalized variables

(
x̂, ŷ, ẑ, ĥ, û, ω̂c

)
=
( x
L
,
y

L
,
z

L
,
h

L
,

u
U
, 1
)
.

Now we assume the quasi-geostrophic hypothesis, namely R0 is small and the height variations are small.
We write that the height h is a perturbation of its mean value H

h(x, y) = H + ∆h(x, y)

with the following scale
∆h
H

∼ R0

(
L

Ld

)2
= O(R0).

Therefore, we have

h = H

(
1 + ∆h

H

)
= H

(
1 +R0

L2

L2
d

ĥ

)
.

We assume that the advection term dominates and that the time scale can be choosen as

T = L

U
.

Adimensionalizing the equations (1.9) and (1.10) leads to

R0

[
∂
t̂
û + û · ∇û

]
+

−→
k ∧ û = −∇ĥ (1.11)

and

R0

(
L

Ld

)2 [
∂
t̂
ĥ+ û · ∇ĥ

]
+
[
1 +R0

(
L

Ld

)2
ĥ
]
∇ · û = 0. (1.12)
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We expend our quantities into power series with respect to the small parameter R0
ĥ = ĥ0 +R0 ĥ1 +R2

0 ĥ2 + ...

û = û0 +R0 û1 +R2
0 û2 + ...

v̂ = v̂0 +R0 v̂1 +R2
0 v̂2 + ...

Taking the zero-th order terms in R0 in (1.11), we obtain

(
û0, v̂0

)
=
(

− ∂
ŷ
ĥ0, ∂x̂ĥ0

)
. (1.13)

Denoting û0 =
(
û0, v̂0

)
, then we deduce from (1.13) the following mass conservation equation

∇ · û0 = 0.

At the next order, we get (
L

Ld

)2
∂
t̂
ĥ0 +

(
L

Ld

)2
û0 · ∇ĥ0 + ∇ · û1 = 0. (1.14)

Notice that this equation is not closed since it makes appear û1. Hence, we go to the next order in the
momentum equation

∂
t̂
û0 + (û0 · ∇)û0 +

−→
k ∧ û1 = −∇ĥ1.

To get rid of the gradient term in ĥ1, we introduce ξ̂0 ≜ ∇⊥ · û0, and apply the operator ∇⊥· to the
previous equation leading to

∂
t̂
ξ̂0 + û0 · ∇ξ̂0 = −∇ · û1. (1.15)

Inserting (1.14) into (1.15), we infer

∂
t̂
ξ̂0 + û0 · ∇ξ̂0 =

(
L

Ld

)2
∂
t̂
ĥ0 +

(
L

Ld

)2
û0 · ∇ĥ0.

Denoting Ψ̂ ≜ ĥ0, we have by virtue of (1.13)

(
û0, v̂0

)
=
(

− ∂
ŷ

Ψ̂, ∂
x̂

Ψ̂
)
, ξ̂0 = ∆Ψ̂

and the previous equation becomes

∂
t̂

(
∆Ψ̂ −

(
L

Ld

)2
Ψ̂
)

+ û0 · ∇

(
∆Ψ̂ −

(
L

Ld

)2
Ψ̂
)

= 0.

Coming back to the dimensionalized quantities, denoting v ≜ u0 = (u0, v0), λ ≜ 1
Ld

and q ≜ (∆ − λ2)Ψ

v = ∇⊥Ψ, ∂tq + v · ∇q = 0.

1.2 Vortex patches : general facts and periodic rigid motion

This section provides an introduction to the vortex patch theory and more precisely to the study of
uniformly rotating solutions. During the past decade, this theory has been well-developed for Euler and
SQG equations using bifurcation theory. Only few theoretical results were obtained in [54] for QGSW
equations. For our purpose, we may briefly deal with SQG equations in the discussion and rather focus on
the other two models.
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For (1.5), the global existence and uniqueness for weak solutions bounded and integrable follows from
Yudovich’s theory [149] for Euler equations in the plane or in the unit disc. One can adapt the theory to
the case of QGSW equations due to the logarithmic behaviour of the kernel K0 at the origin. In particular,
if the initial datum is a vortex patch, that is, the characteristic function of a bounded planar domain D0,
then the solution keeps a patch form 1Dt

for any time t > 0, where Dt is the transported domain D0 by
the flow map associated to the velocity field v, namely

Dt ≜ Φt(D0), Φt(x) ≜ x+
ˆ t

0
v(s,Φs(x))ds.

The boundary motion in the smooth case reduces to tackle the evolution of a curve in the complex
plane surrounding a constant area domain and subject to the deformation induced by its own effect.
Local/global in time persistence of the boundary regularity is a relevant subject in fluid dynamics and
has attracted a lot of attention during the past decades, not only for Euler equations but also for similar
active scalar equations such as generalized surface quasi-geostrophic equations or the aggregation equation.
The persistence of the regularity of the boundary was proved in [35, 46, 45] for the full plane Eulerian case
and in [53] for the case of the unit disc. Let us now briefly see how to write down the contour dynamics
equations, more details can be found in [99, 100]. Given a smooth parametrization z(t, ·) : T → ∂Dt of
the boundary of the patch, then as particles located at the boundary move with the boundary then we get
the evolution equation [

∂tz(t, θ) − v(t, z(t, θ))
]

· n(t, z(t, θ)) = 0, (1.16)

where n(t, z(t, θ)) is the outward normal vector to the boundary ∂Dt of Dt at the point z(t, θ). This
equation reflects the fact that the particle velocity and the boundary velocity admit the same normal
components which is a classical fact for free boundary problems. As we shall see later along the document,
the equation (1.16) is the starting point for our discussions. More precisely, we may start with the complex
formulation of (1.16). Since one has, up to a real constant of renormalization, n(t, z(t, θ)) = −i∂θz(t, θ),
then we find the complex form of the contour dynamics motion,

Im
([
∂tz(t, θ) − v(t, z(t, θ))

]
∂θz(t, θ)

)
= 0. (1.17)

Notice that due to the symmetry property (1.1) of the Green kernel, any radial profile generates a
stationary solution. It is a classical fact to look for periodic or quasi-periodic solutions close to these
equilibrium state solutions for Hamiltonian systems like (1.5)-(1.6). Looking for particular solutions where
the domain moves without any shape deformation is a traditional subject in fluid dynamics and important
developments have been performed a long time ago. In the literature, these structures appear under
different names: relative equilibria, V-states, long-lived structures, vortex crystals, etc. . . A particular class
of periodic solutions is given by the rigid body rotating vortex patches around the origin described by

ω(t, ·) = 1Dt
with Dt = eitΩD0, (1.18)

where Ω is a time independent angular velocity. These solutions are periodic in time with period 2π
Ω or

equivalently with frequency Ω. Such solutions are called V-states according to the terminology introduced
by Deem and Zabusky in [52] where they numerically obtained the first examples of m-fold uniformly
rotating vortex patches solutions to Euler equations for small values of m. Recall that a domain D0 is
called m-fold if it is invariant under the action of the diedral group Dm, with the convention that 1-fold
(resp. 2-fold) means to admit one (resp. two) axis of symmetry. Consequently, a m-fold uniformly rotating
vortex patch is a solution in the form (1.18) with m-fold inital domain D0.
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Figure 4: Numerical simulations of V-states by Deem and Zabusky in [52].

The first explicit example, discovered by Kirchhoff in [114], is the ellipse which rotates about its center
of mass with the constant angular velocity

Ω = ab

(a+ b)2 ,

where a and b are the semi-axes of the ellipse. Further families of implicit solutions with higher symmetries
were established by Burbea in [42] using local bifurcation tools and complex analysis. More precisely,
he proved the existence of branches of m-fold rotating solutions bifurcating from the discs at angular
velocities

Ωm ≜
m − 1

2m , m ⩾ 1. (1.19)

Notice that the mode m = 1 corresponds to a translation of the trivial solution and the second branch,
emerging at Ω2 = 1

4 , describes the Kirchhoff ellipses. Moreover, all the bifurcation angular velocities Ωm

are in the range (0, 1
2 ). Outside this interval, the only uniformly rotating solutions are the radial ones, as

proved in the series of papers [68, 78, 93]. The boundary regularity was first discussed in [43, 88, 99] and
the global bifurcation diagram was studied in [88].

Figure 5: Local bifurcation diagram of uniformly rotating vortex patch solutions for Euler equation [78].

Note also that countable branches of rotating patches bifurcating from the ellipses at implicit angular
velocities were found in [96, 97], however, the shapes have in fact less symmetry and being at most
two-folds. The doubly-connected case has also been explored. To fix the terminology, a bounded open
domain D0 is said doubly-connected if

D0 = D1\D2,

where D1 and D2 are two bounded open simply-connected domains with D2 ⊂ D1. This means that the
boundary of D0 is given by two interfaces, one of them is contained in the open region delimited by the
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second one. In [94, Thm. B], the authors proved for Euler equations that under the condition

1 + bm − m(1 − b2)
2 < 0, b ∈ (0, 1), m ∈ N∗

one can find two branches of m-fold doubly-connected V-states bifurcating from the normalized annulus
Ab, defined by

Ab ≜
{
z ∈ C s.t. b < |z| < 1

}
(1.20)

at the following angular velocities

Ω±
m(b) ≜ 1 − b2

4 ± 1
2m

√(
m(1 − b2)

2 − 1
)2

− b2m. (1.21)

Figure 6: Exemples of 12-fold doubly-connected V-states for Euler equations [94].

Figure 7: 3-fold V-states for Euler equations in the unit disc [86].

Let us now turn to the case where Euler equations (1.5) are set in the unit disc. The theory of weak
solutions and vortex patches is still valid in this context and the persistence of the boundary regularity of
vortex patches remains true, as proved in [53]. The existence of V-states close to the discs bD (b ∈ (0, 1)),
also called Rankine vortices, were obtained in [86]. These curves of solutions have m-fold symmetry,
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perform a uniform rotation and emerge at the angular velocities

Ωm(b) ≜ m − 1 + b2m

2m , m ⩾ 1. (1.22)

It is of paramount importance to highlight different boundary effects observable at this periodic level.
First, Burbea’s frequencies (1.19) are shifted to the right, implying in particular that the 1-fold patches,
which are not centered at the origin, are no longer associated to the trivial solution. Second, the numerical
observations in [86] show that the bifurcation curves have oscillations, see Figure 8.

Figure 8: Oscillations in the bifucation curves for Euler equations in the unit disc [86].

In the same paper, the authors also studied the bifurcation from the annulus

Ab1,b2 ≜
{
z ∈ C s.t. b2 < |z| < b1

}
, 0 < b2 < b1 < 1,

which occurs for the following angular velocities (b = b2
b1

)

Ω±
m(b1, b2) ≜ 1 − b2

4 + b2m
1 − b2m

2
4m ±

√[
1 − b2

2 − 2 − b2m
1 − b2m

2
2m

]2

− b2m
(

1 − b2m
1

m

)2

provided that the following condition is fullfilled

m >
2 + 2bm − (bm

1 + bm
2 )2

1 − b2 ·

Concerning (QGSW)λ there are few results dealing with relative equilibria. Interesting numerical
simulations showing the complexity and the richness of the bifurcation diagram with respect to the
parameter λ was studied in [54, 55]. In [54], using bifurcation tools the authors proved analoguous results
to those of Burbea. They show in particular the existence of branches of m-fold symmetric V-states
(m ≥ 2) bifurcating from the Rankine vortex 1D with the angular velocity

Ωm(λ) ≜ I1(λ)K1(λ) − Im(λ)Km(λ), (1.23)

where Im and Km are the modified Bessel functions of first and second kind. For more details about these
functions, we refer to the Appendix C. Notice that in the same paper the authors explored the two-fold
branch when λ is small and proved first that it is located close to the ellipse branch of Euler equations
and second it is not connected (see Figure 9) and from numerical simulations they put in evidence the
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fragmentation of this branch in multiple connected pieces. The second bifurcation from this branch was
also analyzed leading to similar results as for Euler equations.

Figure 9: Disconnected bifurcation diagram for 2-fold bifurcation curves from Kirchhoff branch for QGSW
equations [54].

We point out that numerical simulations showed the behaviour of the end of branches of bifurcation
for the different models. The corresponding patches are called limiting V-states and seem to present
singularities in their boundary. Nevertheless, no theorical result is known so far. We also mention that
more investigations on the V-states have been implemented during the past decade by several authors in
different settings like for the SQG equations [43, 77, 83, 85, 137] or for the multipole case [70, 71, 84, 90,
98].

1.3 Quasi-periodic solutions for Hamiltonian systems : KAM theory

In this section, we present the basis of KAM and Nash-Moser theories. We also discuss some recent results
about the application of these theories to PDE. The methods developed in this section will be the one
used all along the document in the proofs of our results. First, we give the definition of quasi-periodic
functions which is the notion of interest in this study. A function f : R → C is said to be quasi-periodic if
there exists a continuous function F : Td → C such that

∀ t ∈ R, f(t) = F (ωt)

for some frequency vector ω ∈ Rd (d ∈ N∗) which is non-resonant, that is

∀ l ∈ Zd \ {0}, ω · l ̸= 0. (1.24)

Here and in the sequel, we denote T = R/2πZ. In the case d = 1, we recover from this definition periodic
functions with frequency ω ∈ R∗. The variable living in the d-dimensional torus Td will be generically
denoted φ in the remainder of the document. The archetype of quasi-periodic function is given by

f(t) =
d∑
j=1

ajeiωjt, aj ∈ C, ω = (ω1, . . . , ωd) ∈ Rd non-resonant.

From a dynamical point of view, the trajectory is densely contained in a d-dimensional torus, see Figure
10. We say that this torus is invariant and supports a quasi-periodic motion with frequency vector ω.
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Figure 10: Quasi-periodc trajectory in an invariant torus [116].

Consider a finite dimensional Hamiltonian system with 2d variables associated to a Hamiltonian H{
ṗ = −∇qH(p, q)
q̇ = ∇pH(p, q)

, i.e.
(
ṗ

q̇

)
= J∇p,qH(p, q), J ≜

(
0 −Id
Id 0

)
(1.25)

This is a particular class of ODE appearing naturally in Physics whenever the energy of a system is
conserved and in this case, the Hamiltonian H is related to this energy. Indeed, in presence of conservative
forces, the Newton’s law can be written in such a form. Lagrangian/Hamiltonian formalism is an
important and elegant mathematical aspect of Physics allowing to simplify the computations. The cost is
a mathematical abstraction into the world of symplectic geometry. Here we discuss the finite dimensional
Hamiltonian systems but the same formalism can be transposed into infinite dimension through PDE. The
latter is the context for the next sections. The Hamiltonian H in (1.25) is said to be Liouville-integrable
if there exist (Fj)1⩽j⩽d ∈ C∞(R2d,R)d such that

• ∀j ∈ J1, dK, {Fj , H} = 0 (i.e. the Fj are intragrals of the motion).

• ∀(j, k) ∈ J1, dK2, {Fj , Fk} = 0 (i.e. the Fj are in involution).

• (∇p,qFj)1⩽j⩽N is a free family.

Notice that {·, ·} is the Poisson structure induced by the Hamiltonian system (1.25) and defined by

{
F,G

}
≜

d∑
i=1

∂qi
F∂pi

G− ∂pi
F∂qi

G.

Then, the Arnold-Liouville Theorem asserts that if we assume that H is Liouville-integrable and that
there exists c ∈ Rd such that the set

Mc ≜
{

(p, q) ∈ R2d s.t. ∀j ∈ J1, dK, Fj(p, q) = cj

}
is connected and compact. Then, there exist a neighbourhood U of Mc, a neighbourhood D of 0 in Rd

and a symplectic (that is which preserves Hamiltonian structures) change of variables

A : D × Td → U

(I, ϑ) 7→ (p, q)

31



Introduction

such that H ◦A(I, ϑ) = h(I) is a function of I only. Therefore, the equations become{
İ = 0
ϑ̇ = ∇Ih(I) ≜ ω(I).

Thus, we can integrate the system and obtain{
I(t) = I(0) ≜ I0

ϑ(t) = ω(I0)t+ ϑ(0).

Consequently, the motion is confined in the torus {I0} × Td and given by the linear flow ϑ. Therefore, the
nature of the motion depends on the arithmetic properties of ω(I). In particular, if ω(I) is non-resonnant,
then the phase space is foliated by Lagrangian invariant tori carrying a quasi-periodic dynamics with
frequency vector ω(I). Recall that a torus is said to be Lagrangian if the restriction of the symplectic
form dI ∧ dϑ to its tangent space vanishes and the dimension of the torus is maximal (equal to d) for this
property. Notice that the variables (I, ϑ) are called action-angle variables and such denomination can be
justified by the archetype of Hamiltonian satisfying the Arnold-Liouville conditions, namely the harmonic
oscillator on R2

H(p, q) = 1
2
(
p2 + q2)

with
F1 = H, (p, q) = A(I, ϑ) =

(√
2I cos(ϑ),

√
2I sin(ϑ)

)
, H ◦A(I, ϑ) = I. (1.26)

Indeed, one can easily check that the application A is symplectic since

dp ∧ dq = dI ∧ dϑ.

The study of quasi-periodic solutions to perturbations of integrable Hamiltonian systems goes back to the
pioneering works of Kolmogorov [115], Arnold [5] and Moser [126] where they proved, in finite dimension
and under suitable non degeneracy and smoothness conditions, the persistence of invariant tori for small
perturbations of integrable Hamiltonian systems. In the action-angle variables (I, ϑ), such perturbation
can be written as

H(I, ϑ) = h(I) + εP (I, ϑ), ε ≪ 1. (1.27)

The various techniques and ideas used to study such kind of problems are now gathered under the name
of KAM theory, in honor of Kolmogorov, Arnold and Moser. Kolmogorov’s Theorem states as follows.

Kolmogorov’s Theorem :
Consider an Hamiltonian H in the form (1.27) being real-analytic on the closure of a domain D × Td.
Assume that for some I∗ ∈ D, the following conditions hold.

1. The frequency vector ω(I∗) ≜ ∇h(I∗) is Diophantine, namely ω(I∗) ∈ DC(γ, τ) where for given
γ ∈ (0, 1) and τ > d− 1, the Diophantine set DC(γ, τ) is given by

DC(γ, τ) ≜
⋂

l∈Zd\{0}

{
ω ∈ Rd s.t. |ω · l| > γ

⟨l⟩τ

}
, ⟨l⟩ ≜ max(1, |l|). (1.28)

2. Non-degeneracy/twist condition

det
(

∂2h

∂Ii∂Ij
(I∗)

)
1⩽i,j⩽d

̸= 0.
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Then for ε small enough, the torus {I∗} × Td persits for the pertubed Hamiltonian system associated
with H, being just slightly deformed, as a Lagrangian invariant torus carrying a quasi-periodic motion
with the same frequency vector ω(I∗).

For a complete and pedagogical proof of Kolmogorov’s result, we refer the reader to [132, 146]. It is
based on a Newton method, where at each step, we shall remove some terms from the perturbation P

which imply at the end the preservation of one invariant torus.

Figure 11: Three steps of the classical Newton scheme un+1 = un −
(
DF (un)

)−1
F (un) [67].

We shall now discuss the hypothesis and the main points in the proof of Kolmogorov’s Theorem. First,
at each step of the Newton method, we compose the previous Hamiltonian by a well-chosen symplectic
change of variables in order to improve the structure of the Hamiltonian system in terms of normal form
plus a perturbation. This transformation is chosen as the solution of a functional equation called the
homological equation and we shall explain the typical difficulty appearing at this level by discussing the
fundamental theorem of calculus in the quasi-periodic setting, namely the inversion of the operator ω · ∂φ.
Given g : Td → R with zero average, we look for a function f solution of the equation

ω · ∂φf = g. (1.29)

To solve (1.29), we expand into Fourier series which yields

f(φ) =
∑

l∈Zd\{0}

gl
ω · l

eil·φ. (1.30)

For a long time people like Poincaré thought that it was not possible to make such series convergent due to
the possible smallness of the denominator. The key idea of Kolmogorov was to introduce the Diophantine
conditions (1.28) for ω to control the small divisors problem and get only an algebraic loss of regularity.
Such kind of non-resonance conditions are called zero-th order Melnikov conditions. We mention that
when looking for lower dimensional invariant tori (i.e. non-Lagrangian), one should need to deal with
other type of non-resonant condition called first or second order Melnikov conditions. We refer the reader
to [125, 133]. Notice that for the Hamiltonian PDE as of interest is this document, we are led to consider
this type of non-resonant conditions, see Propositions 7.5 and 13.4. Taking ω ∈ DC(γ, τ), then we can
estimate f , given by (1.30), in Sobolev norm and we obtain the following estimate with loss of regularity τ

∥f∥s ≲ γ−1∥g∥s+τ .

In the analytic setting, treated by Kolmogorov and Arnorld, the fixed loss of regularity τ corresponds
to a shrinkness of the domain of analyticity and the quadratic convergence of the Newton method is
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sufficient to overcome the small divisors problem so that the final domain of analyticity is non-empty.
Nevertheless, in the finitely many differentiable case, this is an important issue and the method may fail.
Moser overcame this problem using what is now called "Nash-Moser procedure". The twist condition
ensures that the application I 7→ ω(I) is a local diffeomorphism which allows to consider the frequencies
as independant parameters and to follow the shift of frequencies along the scheme in terms of tori. This
condition, which is not satisfied by the harmonic oscillator for instance, is quite strong and actually it is
now known since the works of Rüssmann [140], see also Sevryuk [141], that the minimal assumption is that
the frequency map I 7→ ω(I) is not contained in an hyperplane of Rd. We call this fact the non-degeneracy
property. Notice that such properties are the one used later in the proofs of the main results of this thesis,
see Lemmata 5.4 and 11.4. In particular they are used to prove the so-called Rüssmann transversality
conditions Lemmata 5.5 and 11.5, useful for measuring the Cantor sets of admissible parameters generating
quasi-periodic solutions similarly to [12] and based on the application of [139, Thm. 17.1].

We shall now present the main steps concerning a Nash-Moser procedure, an iterative scheme used
in this document for the construction of quasi-periodic vortex patches. The Nash-Moser iteration is a
modification of the standard Newton scheme making appeal to regularizing operators (ΠN )N in order to
solve an equation F (U) = 0 in a Banach scale allowing some fixed loss of derivatives at each step. This
strategy was first introduced by Nash in [127] to prove the isometric embedding theorem. There exist
many versions of the Nash-Moser scheme and we refer the interested reader to [3, 18, 103, 150, 151]. For
our later purpose, we may present one of them adapted to the Sobolev Banach scale (Hs)s⩾0 and taken
from the book of Massimiliano Berti [18, Thm. 3.6]. We consider a differentiable function F satisfying the
following tame estimates : there exists α ⩾ 0 such that for any s ⩾ 0, for any (u, u′, h) ∈ Hs+α,

∥F (u)∥s ≲ 1 + ∥u∥s+α

∥DF (u)[h]∥s ≲ ∥h∥s+α

∥F (u) − F (u′) −DF (u)[u′ − u]∥s ≲ ∥u− u′∥2
s+α

Assume that there exists a right inverse T of the linearized operator with fixed loss τ ⩾ 0 of derivatives,
namely

DF (u) ◦ T(u)[h] = h, ∥T(u)[h]∥s ≲ ∥h∥s+τ .

We shall also assume that there exists a Sobolev index s0 > α+ τ such that

∥F (0)∥s0+τ ≪ 1.

Then introducing the family of projectors (ΠN )N and
(
Π⊥
N

)
N

defined by

ΠN

∑
j∈Z

fje
ijθ

 =
∑
j∈Z

|j|⩽N

fje
ijθ, Π⊥

N = Id − ΠN

and satisfying

∀t ⩾ 0,
{

∥ΠNu∥s+t ⩽ N t∥u∥s
∥Π⊥

Nu∥s ⩽ N−t∥u∥s+t
,

we can make the following scheme convergent

u0 = 0, un+1 = un − ΠNn
T(un)F (un), Nn = N

( 3
2 )n

0 , N0 ≫ 1.
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Indeed, one has the induction inequality for some a priori free large parameter β.

∥un+1 − un∥s0 ≲ N
α+τ− 2

3β
n ∥T(un−1)F (un−1)∥s0+β +Nα+τ

n ∥un − un−1∥2
s0
.

Observe that the previous inequality makes appear a fast decaying term linear in a high regularity norm
(s0 + β) and a quadratic term in low regularity norm (s0). Then, one can prove by induction that for
suitable selected values of β and for some well-chosen parameter ν > 0, we have

∥T(un)F (un)∥s0+β ⩽ N
ν
n and ∥un+1 − un∥s0 ⩽ N

−ν
n .

The second estimate allows to make the scheme convergent and one obtains the convergence F (un) → 0
for n → ∞ due to the relation

∥F (un)∥s0−α ≲ N
− 2

3β
n ∥T(un−1)F (un−1)∥s0+β + ∥un − un−1∥2

s0
.

The reader is refered to [18, Thm. 3.6] for the missing details hidden here to avoid too much technicality.

Later on, in the 80-90’s, started the investigation for quasi-periodic solutions to PDE viewed as lower
dimensional invariant tori for infinite dimensional Hamiltonian systems. Such equations can generally be
written as

∂tu = J∇H(u), (1.31)

where H is a functional over an infinite dimensional Hilbert function space H and J is an antisymmetric
non-degenerate operator. Normal forms KAM methods and Nash-Moser implicit function iterative schemes
were explored and developed in partial differential equations by several authors leading to important
contributions and opening new perspectives. The complexity of the problem depends on the space
dimension and on the structure of the equations (semilinear, quasilinear, fully nonlinear, asymptotic of
the linear frequencies). The first use of KAM methods for PDE was proposed by Kuksin [119] in 1987 and
Wayne [147] in 1990 regarding parameter dependant (through a potential) one dimensional NLS and NLW
with Dirichlet boundary conditions. The corresponding proofs are based on KAM reducibilty techniques
whose main feature is the following. Consider a quasi-periodically time dependant linear system

∂th+A(ωt)h = 0, (1.32)

with h ∈ H. In practice (1.32) corresponds to the linearization of (1.31), up to a restriction to a closed
subspace of the phase space H, at a quasi-periodic solution with frequency ω ∈ Rd, namely A(ωt) =
−J(D2H)[u(ωt), ·]. One wants to find a bounded invertible linear transformation Φ(φ) : H → H, depending
smoothly on φ ∈ Td, such that under the change of unknown

h = Φ(ωt)[v],

the equation (1.32) reduces to
∂tv +Bv = 0, (1.33)

with B = diagj(bj) a diagonal time independant operator. Therefore, denoting (vj)j the decomposition of
v in a Hilbert basis of eigenvectors of B, the equation (1.33) decouples into

∂tvj + bjvj = 0, i.e. vj(t) = e−bjtvj(0).

Then, if bj = iµj ∈ iR, one recovers the linear stability in the sense of dynamical systems related to
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the Floquet exponents theory. In addition, the knowledge of the asymptotic expansion of the µj allows
to control the small divisors problems that can appear. A particular case (of interest in the sequel) of
application of KAM reducibilty techniques is when

A = D +R, D = diagj(idj),

with (idj)j simple eigenvalues and R a perturbation. In this case, the choice of Φ is done in such a way to
reduce quadratically the size of the remainder up to an additional diagonal contribution. At this stage the
second order Melnikov conditions naturally appear. These are Diophantine constraints in the form

∀(l, j, j′) ∈ Zd × Z2,
∣∣ω · l + dj − dj′

∣∣ > γ

⟨l⟩τ
,

with γ and τ as in the statement of Kolmogorov’s Theorem. Iterating the procedure allows to diagonalize
the oparator A. For more details, we refer to [24] and to Section 7.3.2. The works of Kuksin and Wayne
were later extended to parameter independant situations by Kuksin-Pöschel [120] for the NLS and Pöschel
[134] for the nonlinear Klein-Gordon equation. Then for one dimensional equations with periodic boundary
conditions the first result is due to Craig-Wayne [49] for time periodic solutions for the NLW. They
introduced a completely different approach with respect to Kuksin and Wayne, with a Lyapunov-Schmidt
decomposition and a multiscale approach to invert the linearized operator with tame estimates for the
inverse. Then, Bourgain extended this work to the search of quasi-periodic solutions to the one dimensional
semilinear NLS and NLW in [39]. The KAM reducibility approach was extended later by Chierchia-You
[47] for 1D semilinear wave equations with periodic boundary conditions. The first KAM reducibility
result for NLS with x ∈ T has been proved by Eliasson-Kuksin in [60]. Then, the Nash-Moser scheme
was used to find periodic solutions for completely resonant nonlinear 1D wave equations with Dirichlet
boundary conditions, both with analytic and differentiable nonlinearities, see [22, 23]. We also refer to
[74].

The case of higher dimension was first studied by Bourgain in [41] looking for time quasi-periodic
solutions for the NLS on T2, followed by the results on the NLW on Td, for time periodic [38] and
quasi-periodic solutions [40]. His solutions were analytic. The existence of quasi-periodic solutions for
bounded perturbations (cubic or convolution-type) of the multidimensional NLS has been studied in the
series of papers [60, 72, 135]. We also mention the result of Grébert-Kappeler [79], were they obtained the
existence of quasi-periodic solutions for Hamiltonian perturbations of the defocusing NLS. The extension
of the regularization method to finite Sobolev regularity in higher dimensions was considered by Berti and
Bolle for quasi-periodic solutions on Td of the NLW [26] and of the NLS [25] with an external potential.
We also mention [34, 27], where they provided an abstract Nash-Moser theorem for the NLS and the NLW
on compact Lie groups. More recently, Berti and Bolle obtained in [24] the existence of small amplitude
time quasi-periodic solutions for the NLW with multiplicative potential and cubic nonlinearity for the
NLW in any dimensional torus. KAM results have been proved for parameter dependent beam equations
by Geng-You [73], Procesi [136], and, more recently, in Eliasson-Grébert-Kuksin [59] for multidimensional
beam equations. We also mention the KAM result by Grébert-Thomann [81] for smoothing nonlinear
perturbations of the 1d harmonic oscillator and Grébert-Paturel [80] in higher space dimension.

KAM theory was also developed for equations involving unbounded nonlinearities. In this case,
the symplectic transformation at each step of the KAM iteration may lose space derivatives which
destroys the convergence of the scheme. The first results in this direction for semilinear PDE with
unbounded perturbations were obtained by Kuksin [117] and Kappeler-Pöschel [109] for Hamiltonian,
analytic perturbations of the KdV equation on the torus. The case of quasilinear or even fully nonlinear
is much harder and the pioneering works in this situation were presented by Plotnikov-Toland [128] and
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Iooss-Plotnikov-Toland [108], for the existence of 2D periodic standing waves with finite and infinite depth,
respectively. We also mention that in the same decade, Baldi [6] studied a forced quasilinear Kirchhoff
equation on a bounded domain in Rd with Dirichlet boundary condition and on the d-dimensional periodic
domain. The nonlinearity is there space-independent and he found time periodic solutions in this context.
The first existence results for time quasi-periodic solutions for quasilinear and fully nonlinear PDE are due
to Baldi-Berti-Montalto for some quasilinear and fully nonlinear perturbations of the forced Airy equation
[10], of the autonomous KdV [8] and of the autonomous modified KdV [9]. These results are obtained
with a Nash-Moser iteration as stated in [21], where the analysis of the linearized operator is inspired by
the descent regularization procedure introduced by Plotnikov-Toland [128] via pseudo-differential calculus
combined with the KAM reducibility scheme. The Nash-Moser approach was applied also by Feola-Procesi
[67], who considered a class of fully nonlinear forced and reversible Schrödinger equations on the torus and
proved existence and stability of quasi-periodic solutions, see also [62] for the quasi-linear Hamiltonian case
and [66] for the fully nonlinear autonomous case. We refer also to the work of Giuliani [76] for quasilinear
perturbations of generalized KdV equations, the result by Feola-Giuliani-Procesi [65] for Hamiltonian
perturbations of the Degasperis-Procesi equation and the recent works of Berti-Kappeler-Montalto [31,
32], who provided the existence of finite dimensional invariant tori of any size for perturbations of the
defocusing NLS and of KdV, respectively.

Several results have been obtained concerning the water-waves equations both for the standing and
traveling waves. Let us first deal with the periodic standing waves. The case of 2D gravity in finite
depth was treated by Plotnikov-Toland [128]. Then, the infinite depth situation was covered in 2D by
Iooss-Plotnikov-Toland [108], see also [105, 106]. Later, the 2D gravity-capillary water-waves in infinite
depth was done by Alazard-Baldi [2]. The quasi-periodic standing waves have been obtained first by
Berti-Montalto [33] where the authors constructed these solutions in the gravity-capillary case for most
values of the surface tension. In this case, the linear eigenvalues grow like |j| 3

2 . Then, the more difficult
pure gravity case in finite depth, where the equilibrium frequencies admit the asymptotic |j| 1

2 and vary
exponentially with the depth parameter, has been treated in [7] with quasi-periodic solutions constructed
for most values of the depth. Notice that in this case one may impose Diophantine conditions that lose
also space derivatives. Let us now turn to the traveling periodic solutions. First, Levi-Civita [122] proved
the 2D gravity case. Then, the 2D/3D gravity-capillary situation was studied by Craig-Nicholls [48]. And
the 3D with pure gravity was developed by Iooss-Plotnikov [107, 104]. The first results about traveling
quasi-periodic water-waves were very recently exposed in [29] for the gravity-capillary in finite depth with
constant vorticity, [28] for the pure gravity in finite depth with constant vorticity and [63] for the pure
gravity in infinite depth.

Concerning Euler equations, the first result for quasi-periodic solutions was obtained by Crouseilles-
Faou [51] in the two dimensional torus and was not invloving small divisors difficulties. More recently, a
quasi-periodic forcing term was used in [11] to generate quasi-periodic solutions for the 3D case.

Next we shall give more details on the general scheme performed to construct quasi-periodic solutions
that was developed by Berti and Bolle in [21]. This approach is robust and flexible and will be adapted to
our framework with the suitable modifications. The first step is to write in a standard way the equations
using the action-angle variables for the tangential part. When we linearize the nonlinear functional around
a state near the equilibrium we end with an operator with variable coefficients that we should invert
approximately up to small errors provided the external parameters belong to a suitable Cantor set defined
through various Diophantine conditions. To do that we first look for an approximate inverse using an
isotropic torus built around the initial one. It has the advantage to transform the linearized operator via
symplectic change of coordinates into a triangular system up to errors that vanish when tested against an
invariant torus. Notice that the outcome is that the Hamiltonian has a good normal form structure such
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that we can almost decouple the dynamics in the phase space in tangential and normal modes. On the
tangential part the system can be solved in a triangular way provided we can invert the linearized operator
on the normal part up to a small coupling error term. This is more or less a finite dimensional KAM theory
appearing here. Then, the analysis reduces to invert the linearized operator on the normal part which is a
small perturbation of a diagonal infinite dimensional matrix. This is done by conjugating the linearized
operator to a diagonal one with constant coefficients. This step is long and technical and most of the
non-resonance conditions in the Cantor set arise during this process. This allows the construction of an
approximate inverse for the linearized operator with adequate tame estimates required along Nash-Moser
scheme. Finally, we point out that the use of suitable isotropic tori is a commodity but it is not essential
to get the triangular structure up to small errors, we will come back on this remark later on.

2 Main contributions of the thesis

The purpose of this thesis is to gather the previous two theories looking for the emergence of quasi-periodic
structures in the patch form for Euler and quasi-geostrophic shallow-water equations. We shall now present
the main theorems proved during the PhD and briefly discuss the key steps of their proofs. More detailed
proof structures will be given in the introduction of the corresponding parts. We mention that in parallel
to this thesis, similar results have been obtained for SQG equations [87] and for Euler equations close to
Kirchhoff ellipses [30].

2.1 Time quasi-periodic vortex patches for QGSW equations

In this section, we present the first contribution of this PhD concerning the existence of quasi-periodic in
time solutions in the patch form close to the unit disc for the quasi-geostrophic shallow-water equations
(1.6) with parameter λ. The result can be found in [101] and we refer to Theorem 3.1 for a precise
statement. Fixing two real numbers λ0 and λ1 such that 0 < λ0 < λ1, the parameter λ lies in the interval
(λ0, λ1). Nevertheless, at the end it will belong to a Cantor set for which invariant torus can be constructed.
Using the following polar parametrization of the boundary ∂Dt

z(t, θ) ≜ R(t, θ)ei(θ−Ωt) with R(t, θ) ≜
(
1 + 2r(t, θ)

) 1
2 , (2.1)

the vortex patch equation (1.17) becomes an Hamiltonian equation satisfied by the radial deformation
r. Notice that the parametrization is well-defined at least for short time when the initial patch is close
to the equilibrium state given by the Rankine vortex 1D where D is the unit disc of R2. The particular
choice for the radius is inspired from (1.26) to get a Hamiltonian equation for r. We emphasize that
the parameter Ω is introduced to get rid of the degeneracy of the first eigenvalue associated with the
linearized operator at the equilibrium state, see (2.6). The radial deformation r is subject to a nonlinear
and nonlocal transport-type Hamiltonian equation in the form

∂tr = ∂θ∇H(r), (2.2)

where the Hamiltonian H is related to the kinetic energy and the angular momentum which are prime
integrals of the system. The Hamiltonian system (2.2) is reversible, namely, if (t, θ) 7→ r(t, θ) is a solution,
then so is (t, θ) 7→ r(−t,−θ). The purpose is to find a reversible quasi-periodic solution of (2.2), that is to
find a frequency vector ω ∈ Rd, such that the equation (2.2) admits solutions in the form r(t, θ) = r̂(ωt, θ)
with r̂ being a smooth (2π)d+1−periodic even function. Then r̂ satisfies the equation (2.2) replacing ∂t
by ω · ∂φ, therefore, we should use the same notation for r and r̂. To explore quasi-periodic solutions we
should first check their existence at the linear level. The linearized operator around a given small state r
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is given by

Lr = ω · ∂φ + ∂θ [Vr · −Lr] , (2.3)

where Vr is a scalar function depending on λ defined in (3.6) and Lr is a nonlocal operator depending on λ
given in (3.7). At the equilibrium state r ≡ 0, we find that the linearized operator is a Fourier multiplier,

L0 = ω · ∂φ + V0(λ)∂θ − ∂θKλ ∗θ ·, V0(λ) ≜ Ω + I1(λ)K1(λ), Kλ(θ) ≜ K0
(
2λ
∣∣sin ( θ2)∣∣) . (2.4)

We refer to Appendix C for the definition of the modified Bessel functions I1, K1 and K0. The equation
L0ρ = 0 is integrable and its reversible quasi-periodic solutions take the form

ρ(t, θ) =
∑
j∈S

ρj cos
(
jθ − Ωj(λ)t

)
, ρj ∈ R, S ⊂ N∗, |S| = d ∈ N∗, (2.5)

with frequency vector

ωEq(λ) ≜
(
Ωj(λ)

)
j∈S, Ωj(λ) ≜ j

(
Ω + I1(λ)K1(λ) − Ij(λ)Kj(λ)

)
(2.6)

provided that the vector ωEq(λ) satisfies the non-resonant condition (1.24). Observe that Ω0 ≡ 0 and
therefore may create trivial resonances. This can be fixed by working in a phase space with zero space
average which is possible due to the structure of (3.3). Similarly, notice that for Ω = 0, the frequency Ω1

vanishes. This is the reason for the introduction of Ω which is taken to be strictly positive to remedy to
this defect and avoid resonances.

Observe that small divisors already appear at this level and the non-resonant condition is obtained
by selecting the parameter λ such that the vector ωEq(λ) belong to a Diophantine set in the form (1.28).
Actually, this property holds true for almost all the values of λ. Our main result concerns the persistence
of quasi-periodic solutions for the nonlinear model (2.2) when the perturbation is small enough and the
parameter λ is subject to be in a massive Cantor set. We state here a simplified version of the result and
refer the reader to Theorem 3.1 for a precise statement.

Theorem 2.1. Given λ1 > λ0 > 0 and ε small enough, there exists a Cantor-like set C∞ with almost full
Lebesgue measure in (λ0, λ1), such that any parameter λ ∈ C∞ generates a quasi-periodic vortex patch for
(QGSW )λ equations in the form

q(t, ·) = 1Dt
, Dt =

{
ℓei(θ−Ωt), θ ∈ [0, 2π], 0 ⩽ ℓ ⩽ R(t, θ)

}
, R(t, θ) =

√
1 + 2r

(
ω(λ, ε)t, θ

)
,

where r : Td+1 → R is a perturbation of the equilibrium quasi-periodic solutions (2.5) with ε-amplitudes
and associated frenquency vector ω(λ, ε) which is an ε-perturbation of the equilibrium frequency vector
ωEq(λ) defined in (2.6).

The proof of Theorem 2.1 (or more precisely Theorem 3.1) is the content of Part I, but let us make
some comments about the main steps of the proof and the novelties in there.

▶ Step 1. Reformulation with embedded tori and restriction to the normal directions :
After a rescaling r 7→ εr, we remark that the equation (2.2) can be seen as a perturbation of the integrable
system given by the linear dynamics at the equilibrium state. This allows us to hope using ideas from
KAM theory as presented in Section 1.3. More precisely, we may use and adapt the method developed
in [21], slightly modified in [87], and successfully implemented for instance in [7, 33]. The dynamics is
decoupled into tangential and normal parts. On the tangential modes, we introduce action-angles variables
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(I, ϑ), seen as symplectic polar variables for the Fourier coefficients, allowing to reformulate the problem
in terms of embedded tori i. More precisely, we shall look for the zeros of a certain functional, namely to
solve an equation in the form

F(i, α, µ, ε) = 0, µ ≜ (λ, ω). (2.7)

It turns out that it is more convenient to introduce one degree of freedom through a parameter α which
provides at the end of the scheme a solution for the original problem when it is fixed to −ωEq(λ). At
this stage one cannot apply the classical implicit function theorem because of resonances preventing the
invertibility of the linearized operator at the equilibrium state. The restriction of the parameter λ to a
suitable Cantor-like set related to some Diophantine conditions on the linear frequency ωEq(λ) allows in
particular to control the small divisors problem as explained before and therefore avoid the resonances.
This provides an inverse at the equilibrium state but with algebraic loss of regularity. Unfortunately,
this is not sufficient to apply Nash-Moser scheme requiring the construction of a right inverse with tame
estimates in a small neighborhood of the equilibrium. Indeed, the linearized operator is no longer with
constant coefficients as for the integrable case and its main part is not a Fourier multiplier. At this level we
are dealing with a quasilinear problem where the perturbation is unbounded. Given any small reversible
embedded torus i0 and any α0 ∈ Rd, we shall construct an approximate right inverse for the linear
operator di,αF(i0, α0). For that purpose, we conjugate the linearized operator di,αF(i0, α0) via a suitable
linear diffeomorphism of the toroidal phase space associated to the action-angle-normal formulation. We
obtain a triangular system in the action-angle-normal variables up to error terms. To solve the triangular
system, we only have to invert the linearized operator in the normal directions, which is denoted by
L̂ω. Notice that the approach used here is slightly different from [21] where they linearized around an
isotropic torus close enough to the original one and then use a symplectic change of coordinates leading to
a triangular system up to small errors, essentially of "type Z" (that is vanishing at an exact solution) or
highly decaying in frequency, that can be incorporated in Nash-Moser scheme. Here, and similarly to
[87], we can bypass the use of isotropic torus by a slight modification of Berti-Bolle approach. Actually,
according to Proposition 6.1, we can conjugate the linearized operator with the transformation described
by (6.58) computed at the torus i0 and get a triangular system with small errors mainly of "type Z". The
computations are performed in a straightforward way using in a crucial way the Hamiltonian structure of
the original system. The main advantage that simplifies some arguments is to require the invertibility for
the linearized operator only at the torus itself and not necessary at a closer isotropic one. By this way,
we can avoid the accumulation of different errors induced by the isotropic torus that one encounters for
example in the estimates of the approximate inverse or in the multiple Cantor sets generated along the
different reduction steps where the coefficients should be computed at the isotropic torus.

▶ Step 2. Approximate inverse in the normal directions :
Therefore, the main issue consists in the construction of an approximate inverse of the linearized operator
in the normal direction. Notice that the latter expresses as

L̂ω = Π⊥
S0

(Lεr − ε∂θR) Π⊥
S0
,

where Π⊥
S0

denotes the projector in the normal directions, Lεr is defined through (3.5) and ε∂θR is a
perturbation of finite rank encoding a coupling between tangential and normal dynamics. Notice that even
for ε small, this operator is with non-constant coefficients since the perturbation affects the main part of
the operator in a similar way to water waves [7, 33] or generalized SQG equation [87]. Nevertheless, it
has constant coefficients at the equilibrium state ε = 0. Therefore, to invert it, the idea is to conjugate it
to a constant coefficient by suitable bounded operators close to the identity. The reduction is done in
decreasing positive orders in the spirit of [7, 33, 128].
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First, we reduce the transport part and look at the effects on the lower orders and as regards the
localization in the normal modes. This provides a diagonal operator plus a small remainder term of order
0. Then, we also reduce the remainder term. Let us begin with general remarks about these reduction
procedures. Each reduction is based on KAM techniques at the level of functions or operators and makes
appear small divisors problems through a countable family of non-resonant conditions. Notice that in our
work, for each reduction, the final Cantor set is built on the final state, which is slightly different from
[7, 33] where they perform the reduction procedure simultaneously with the Nash-Moser scheme. Also
remark that one needs to consider time truncation in the Cantor set implying the addition of error terms
that can be later included in the Nash-Moser procedure so that the latter runs. We mention that the
KAM reductions allow to diagonalize the operator when the parameters belong to a Cantor-like set, even
though all the involved transformations and operators can be extended in the whole set of parameters
using standard cut-off functions for the Fourier coefficients. This extension with adequate estimates is
needed later during the implementation of the Nash-Moser scheme. This is not the only way to produce
suitable extensions and one expects Whitney extension to be also well adapted as in [7, 33]. In our case,
we opt for the first procedure which can be easily set up and manipulated using classical functional tools.
The last general comment is related to a technical point in KAM reduction. Contrary to the preceding
papers such as [7, 33], we do not need to use pseudo-differential operators techniques. In fact, they can be
avoided since all the involved operators can be described through their kernels and therefore instead of
splitting the symbols we simply expand the kernels which sounds to be more appropriate in our context.
Now let us make some specific comments on the different reductions. The reduction of the transport part
basically follows the ideas in [8, 28, 29, 32, 64] conjugating the linearized operator Lεr to an operator with
constant coefficients transport part, through a suitable quasi-periodic symplectic change of coordinates B

in the form
Bρ(µ, φ, θ) =

(
1 + ∂θβ(µ, φ, θ)

)
ρ
(
µ, φ, θ + β(µ, φ, θ)

)
.

The symplectic form has the advantage to avoid the apparition of zero order terms at the end of the
reduction. Notice that the action of this conjugation on the nonlocal term is tricky due to the structure
(1.8)-(C.7) of K0. This makes appear a singular kernel which can be carefully treated in the analysis. The
projection in the normal directions is done by the operator

B⊥ ≜ Π⊥
S0

BΠ⊥
S0
,

for which we obtained a nice duality representation linked to B useful for doing estimates. A similar
relation is obtained for the inverse transformation. Then we obtain

B−1
⊥ L̂ωB⊥ = ω · ∂φΠ⊥

S0
+ D0 + R0 + fast decaying error terms,

where D0 is a diagonal operator whose spectrum (iµ0
j )j satisfies

µ0
j (λ, ω, i0) = Ωj(λ) + jr1(λ, ω, i0), r1 = O(ε)

and the remainder term R0 is a reversible Toeplitz in time integral operator enjoying nice smallness
property. The Toeplitz structure and the revesibility are crucial properties that need to be checked along
the KAM reduction of the remainder term. The first one allows to work with a nice operator topology
well-adapted to the convergence of the scheme. The second is required for the construction of a reversible
approximate right inverse in order to construct, later in the Nash-Moser scheme, a reversible invariant
tori. Also this provides pure imaginary spectrum diagonal operators ensuring the linear stability. This
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reduction provides a completely diagonalized operator with spectrum (iµ∞
j )j ,

µ∞
j (λ, ω, i0) = Ωj(λ) + jr1(λ, ω, i0) + r∞

j (λ, ω, i0), sup
j
jr∞
j = O(ε)

and easily invertible up to new restrictions of the parameters. We mention the Lipschitz dependence of
these eigenvalues with respsect to the torus. Such property is required in studying the stability of Cantor
sets in the Nash-Moser scheme and allows to construct a final massive Cantor set.

▶ Step 3. Construction of a non-trivial solution :
Now we can implement a Nash-Moser procedure to find non-trivial zeros for the nonlinear function F for
small ε in the spirit of the papers [7, 33]. We can build by induction a sequence of approximate solutions
Un

Un+1 ≜ Un − ΠNnTnΠNnF(Un), Un ≜ (in, αn).

with Tn an approximate right inverse of di,αF(Un) obtained at step n using the above mentioned
construction (Steps 1 and 2). At each step of the scheme, we needed to construct classical extensions to
the whole set of parameters O. This is different from the papers [7, 33] where they considered Whitney
extensions. Actually, we get a precise statement in Proposition 8.1 allowing to deduce that the sequence
(Un)n converges in a strong topology towards a profile U∞ =

(
i∞, α∞

)
solution of (2.7) whenever the

parameters (λ, ω) are selected among a Cantor-like set G∞ which is constructed as the intersection of
all the Cantor sets appearing in the scheme to invert at each step the linearized operator. To find a
solution to the original problem we construct a frequency curve λ 7→ ω(λ, ε) implicitly defined by solving
the equation

α∞(λ, ω(λ, ε)) = −ωEq(λ).

Hence, we obtain the desired result for any value of λ in the rigidified Cantor set

Cε∞ ≜
{
λ ∈ (λ0, λ1) s.t. (λ, ω(λ, ε)) ∈ G∞

}
.

Then, it remains to check that this set is non-trivial. The proof of this fact is inspired from [10] with
adaptations to the structure of our Cantor set, namely contructed on the final states of each KAM
reduction procedure. We can prove

|Cε∞| ⩾ (λ1 − λ0) − Cεδ,

with small δ connected to the geometry of the Cantor set and the non degeneracy of the equilibrium
spectrum. There are two main ingredients to get this result. The first one is the stability of the intermediate
Cantor sets following from the fast convergence of Nash-Moser scheme. However the second one is the
transversality property stated in Lemma 8.3 used in the spirit of [12] and [139]. This property will be first
established for the linear frequencies in Proposition 5.5, using the analyticity of the eigenvalues and their
asymptotic behavior. Then the extension of the transversality assumption to the perturbed frequencies is
done using perturbative arguments together with the asymptotic description of the approximate eigenvalues
detailed in (8.67), (8.82) and (8.81). We emphasize that the transversality is strongly related to the
non-degeneracy of the eigenvalues in the sense of the Definition 5.1 . For instance, we show that the curve
λ ∈ [λ0, λ1] 7→

(
Ωj1(λ), ...,Ωjd

(λ)
)

is not contained in any vectorial hyperplane. This is proved in Lemma
5.4 and follows from the asymptotic of the eigenvalues for large values of λ according to the law (C.15)
combined with the invertibility of Vandermonde matrices.
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2.2 Boundary effects on the emergence of quasi-periodic solutions to Euler
equations

We shall now present the second result obtained during the thesis and presented in [89]. This work is
based on the remark that the Euler equations set in the unit disc D are not invariant under dilation.
Therefore, we can introduce a geometric parameter b ∈ (0, 1) such that the Rankine vortices 1bD are not
equivalent and provide a family of stationary solutions. Hence, as in the previous mentioned result, we
can expect to play with this parameter to generate quasi-periodic solutions. For that purpose, we consider
a polar parametrization of a patch boundary close to the stationary solution 1bD, namely

z(t, θ) ≜ R(b, t, θ)eiθ, R(b, t, θ) ≜
√
b2 + 2r(t, θ).

The parameter b is assumed to live in an interval (b0, b1), where

0 < b0 < b1 < 1.

However, as in the previous result, at the end this parameter will belong to a Cantor set for which invariant
torus can be constructed. We emphasize that this ansatz no longer depends on Ω as in (2.1). Indeed, in
this context the first frequency is non-degenerate according to (1.22). The radial deformation r solves a
nonlinear and nonlocal transport Hamiltonian PDE taking the form

∂tr = 1
2∂θ∇E(r),

where E is the kinetic energy related to the stream function given by (1.4). The linearized operator close
to the Rankine patch 1bD, i.e. at a small state r writes

Lr = ∂t + ∂θ

(
Vr · +Lr − Sr

)
,

where Vr is a scalar function depending on b, Lr is a nonlocal operator with logarithmic singular kernel
reflecting the planar Euler action and Sr is a smoothing nonlocal operator. We refer to (9.3), (9.5) and
(9.6) for their definitions. The boundary effects of D are observed through a quasilinear smoothing action in
the transport part and through the smoothing operator Sr. At the equilibrium state r = 0, the linearized
operator is a Fourier multiplier given by

L0 = ∂t + 1
2∂θ + ∂θK1,b ∗ · − ∂θK2,b ∗ ·,

where

K1,b(θ) ≜ 1
2 log

(
sin2 ( θ

2
) )

and K2,b(θ) ≜ log
(
|1 − b2eiθ|

)
.

Now, almost every b ∈ (b0, b1) generates reversible quasi-periodic solutions to L0ρ = 0 in the form

ρ(t, θ) =
∑
j∈S

ρj cos(jθ − Ωj(b)t), ρj ∈ R, S ⊂ N∗, |S| = d ∈ N∗, (2.8)

with frequency vector
ωEq(b) ≜

(
Ωj(b)

)
j∈S, Ωj(b) ≜ 1

2
(
j − 1 + b2j). (2.9)

The measure of the Cantor set in b generating these solutions is estimated using Rüssmann Lemma 5.6
requiring a lower bound on the maximal derivative of a given function up to order q0. It is a remarkable
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fact that here the value of q0 is explicit, namely q0 = 2 max(S)+2 which is due to the polynomial structure
of the Ωj(b). The aim of the following result is to state that these structures persist at the nonlinear level.
We mention that this is a simplified version and the interested reader may be refered to Theorem 9.1 for a
complete statement.

Theorem 2.2. Given 0 < b0 < b1 < 1 and ε small enough, there exists a Cantor-like set C∞ with almost
full Lebesgue measure in (b0, b1), such that any parameter b ∈ C∞ generates a quasi-periodic vortex patch,
solution of (1.5) set in the unit disc, in the form

ω(t, ·) = 1Dt
, Dt =

{
ℓeiθ, θ ∈ [0, 2π], 0 ⩽ ℓ ⩽ R(b, t, θ)

}
, R(b, t, θ) =

√
b2 + 2r

(
ω(b, ε)t, θ

)
,

where r : Td+1 → R is a perturbation of the equilibrium quasi-periodic solutions (2.8) with ε-amplitudes
and associated frenquency vector ω(b, ε) which is an ε-perturbation of the equilibrium frequency vector
ωEq(b) defined in (2.9).

The proof of Theorem 2.2 (or more precisely Theorem 9.1) is the content of Part II and is similar to
the previous one. Indeed, we reformulate the problem in terms of embedded tori, looking for the zeros
of a certain nonlinear functional. We obtain a non-trivial solution by applying a Nash-Moser scheme,
where at each step, we construct an approximate right inverse with nice tame estimates for the linearized
operator. This inverse is obtained from the application of the Berti-Bolle theory reducing the problem
to the search of an approximate right inverse for the normal projection of the linearized operator. This
latter is obtained by using KAM reducibility techniques which imply restrictions of parameters (b, ω) to a
Cantor-like set. The iterative implicit function procedure generates a solution provided that we ensure
all the required restrictions of parameters along the scheme. Then we rigidify the frequency vector ω in
terms of b and we estimate, through the perturbed Rüssmann conditions, the measure of the final Cantor
set proving that it has almost full Lebesgue measure. The main difference with the previous result is the
smoothing effects of the boundary observable on the linearized operator. In particular, in this case, the
remainder term obtained after the reduction of the transport part and the projection in the normal modes
is directly regularizing at every order, which simplifies the analytical study.

2.3 Doubly-connected V-states for QGSW equations

The main purpose of this section is to present the last result obtained in this thesis concerning the
emergence of time periodic solutions in the patch form close to the annulus of radii 1 and b for the system
(QGSW)λ with fixed λ > 0 and b ∈ (0, 1). A simplified version of the result can be written as follows, we
refer the reader to Theorem 15.1 for a precise statement.

Theorem 2.3. For fixed λ ∈ (0,∞) and b ∈ (0, 1), there exist non-trivial analytic doubly-connected
V-states close to the annulus Ab defined in (1.20) for (QGSW )λ equations with m-fold symmetry for any
m larger than a threshold depending on λ and b.

Notice that the proof of Theorem 2.3 (or more precisely Theorem 15.1) is the content of Part III. The
related paper is [138]. More precisely, these solutions are implicitly obtained as branches of bifurcation
emerging from the annulus Ab as in (1.20) for specific angular velocities related to modified Bessel functions.
The proof is based on local bifurcation theory and more precisely on Crandall-Rabinowitz’s Theorem B.1
in the spirit of the previous works mentioned in Section 1.2. Indeed, by using conformal mappings, we can
reformulate the contour dynamics equation (1.17) in the context of uniformly rotating solutions as the
zeros of a suitable nonlinear and nonlocal functional. Remarking that the annulus Ab is a solution for any
angular velocity, we obtain a line of trivial solutions. Therefore, we may expect to apply bifurcation theory
to find other curves of solutions provided that the linearized operator is a Fredholm operator with zero
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index and one dimensional kernel supplemented with a transversality assumption. Actually, the linearized
operator at the equilibrium state is a Fourier multiplier and its kernel is one dimensional for explicit
angular velocities Ω±

n (λ, b) related to Bessel functions of imaginary argument. This last property is based
on the asymptotic monotonicity for large modes n of the sequence

(
Ω±
n (λ, b)

)
n

which is obtained from
the asymptotic properties of the involved special functions. The bifurcation is proved in the regularity
C1+α with α ∈ (0, 1) and using a regularity argument for elliptic equations, we find the analyticity of the
boundaries.
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Time quasi-periodic vortex patches
for QGSW equations
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La façon dont on trouve n’est pas celle dont
on prouve.

Albert Einstein

This part is devoted to the proof of Theorem 2.1. We also refer to Theorem 3.1 below for a more
precise statement. This result is the subject of the following preprint [101] which is submitted to the
journal Mémoires de la Société Mathématique de France and entitled "Time quasi-periodic vortex patches
for quasi-geostrophic shallow-water equations".

Abstract

We shall implement KAM theory in order to construct a large class of time quasi-periodic solutions for an
active scalar model arising in fluid dynamics. More precisely, the construction of invariant tori is

performed for quasi-geostrophic shallow-water equations when the Rossby deformation length belongs to a
massive Cantor set. As a consequence, we construct pulsating vortex patches whose boundary is localized

in a thin annulus for any time.

3 Introduction

We shall present here the main result obtained during the thesis and related to the existence of quasi-
periodic vortex patches close to the unit disc for QGSW equations. We shall also present the main steps
of its proof with more details than in Section 2.1. The contour dynamics equation stated in (1.16) can be
written in a more tractable way using polar coordinates. This is meaningful at least for short time when
the initial patch is close to the equilibrium state given by the Rankine vortex 1D where D is the unit disc
of R2. Thus the boundary ∂Dt will be parametrized as follows

z(t, θ) ≜ R(t, θ)ei(θ−Ωt) with R(t, θ) ≜
(
1 + 2r(t, θ)

) 1
2 . (3.1)

We shall prove in Section 4.1 that the function r satisfies a nonlinear and non-local transport equation
taking the form

∂tr + Ω∂θr + Fλ[r] = 0, (3.2)

with

Fλ[r](t, θ) ≜

ˆ
T

K0 (λAr(t, θ, η)) ∂2
θη

(
R(t, η)R(t, θ) sin(η − θ)

)
dη

and
Ar(t, θ, η) ≜

∣∣R(t, θ)eiθ −R(t, η)eiη
∣∣ .

The function K0 is a Bessel function of imaginary parts and it is defined in Appendix C. We point out
that the introduction of the parameter Ω seems at this level artificial but it will be used later to fix the
degeneracy of the first eigenvalue associated with the linearized operator at the equilibrium state. As we
shall see in Proposition 4.1, the equation (3.2) has an Hamiltonian structure

∂tr = ∂θ∇H(r), (3.3)

where the Hamiltonian H is related to the kinetic energy and the angular momentum which are prime
integrals of the system. In the quasi-periodic setting, we should find a frequency vector ω ∈ Rd, such that
the equation (3.2) admits solutions in the form r(t, θ) = r̂(ωt, θ) with r̂ being a smooth (2π)d+1−periodic
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function. Then r̂ satisfies (to alleviate the notation we keep the notation r for r̂)

ω · ∂φr + Ω∂θr + Fλ[r] = 0. (3.4)

To explore quasi-periodic solutions we should first check their existence at the linear level. Then according
to Lemma 5.1 the linearized operator to (3.4) around a given small state r is given by the linear Hamiltonian
equation,

Lrρ = 0 with Lr = ∂t + ∂θ [Vr · −Lr] , (3.5)

where Vr is a scalar function defined by

Vr(λ, t, θ) ≜ Ω + 1
R(t, θ)

ˆ
T
K0 (λAr(t, θ, η)) ∂η (R(t, η) sin(η − θ)) dη (3.6)

and Lr is a non-local operator in the form

Lr(ρ)(λ, t, θ) ≜
ˆ
T
K0 (λAr(t, θ, η)) ρ(t, η)dη. (3.7)

At the equilibrium state r ≡ 0, we find that the linearized operator is a Fourier multiplier, see Lemma 5.2,

L0ρ = ∂tρ+ V0(λ)∂θρ− ∂θKλ ∗ ρ, (3.8)

where ∗ denotes the convolution product in the variable θ and

V0(λ) ≜ Ω + I1(λ)K1(λ) and Kλ(θ) ≜ K0
(
2λ
∣∣sin ( θ2)∣∣) .

Expanding into Fourier series
ρ(t, θ) =

∑
j∈Z

ρj(t)eijθ,

yields

ρ ∈ ker(L0) ⇐⇒ ρ(t, θ) =
∑
j∈Z

ρj(0)ei(jθ−Ωj(λ)t), (3.9)

where the eigenvalues Ωj are defined by

Ωj(λ) ≜ j
(

Ω + I1(λ)K1(λ) − Ij(λ)Kj(λ)
)

(3.10)

and the Bessel functions of imaginary argument In and Kn are given by (C.2). It is worthy to point out
that the frequency associated to the mode j = 0 is vanishing and therefore it creates trivial resonance.
This can be fixed by imposing a zero space average which can be maintained at the nonlinear level by
virtue of the structure of (3.3). Hence we shall work with the phase space of real functions enjoying this
property, namely,

L2
0 ≜ L

2
0(T,R) =

{
r =

∑
j∈Z∗

rjej s.t. r−j = rj and
∑
j∈Z∗

|rj |2 < ∞
}
.

Another similar comment concerns the mode j = 1 which vanishes for any λ when Ω = 0. This is why we
have introduced Ω which should be strictly positive to remedy to this defect and avoid any resonance at
higher frequencies. The reversibility of the system (3.3) can be also exploited to find the requested parity
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property of the solutions. Actually, we can check that if (t, θ) 7→ r(t, θ) is a solution then (t, θ) 7→ r(−t,−θ)
is a solution too. Then the solutions to the linear problem with this symmetry are in the form

ρ(t, θ) =
∑
j∈Z∗

ρj cos
(
jθ − Ωj(λ)t

)
. (3.11)

Now, in order to generate quasi-periodic solutions to the linear problem it suffices to excite a finite number
of frequencies from the linear spectrum. We shall then consider the following frequency vector.

ωEq(λ) ≜
(
Ωj(λ)

)
j∈S with S ≜ {j1, . . . , jd} ⊂ N∗.

Notice that the vector ωEq(λ) gives periodic solutions provided that it satisfies the non-resonant condition
(1.24). This property holds true for almost all the values of λ as it is proved in Proposition 5.1. Observe
that this latter is based on the equilibrium Rüssmann conditions proved in Lemma 5.5 and which make
appear an index of regularity q0 with respect to the parameter λ. Our main result concerns the persistence
of quasi-periodic solutions for the nonlinear model (3.3) when the perturbation is small enough and the
parameter λ is subject to be in a massive Cantor set.

Theorem 3.1. Let λ1 > λ0 > 0, d ∈ N∗ and S ⊂ N∗ with |S| = d. There exist ε0 ∈ (0, 1) small enough
with the following properties : For every amplitudes a = (aj)j∈S ∈ (R∗

+)d satisfying

|a| ⩽ ε0,

there exists a Cantor-like set C∞ ⊂ (λ0, λ1) with asymptotically full Lebesgue measure as a → 0, i.e.

lim
a→0

|C∞| = λ1 − λ0,

such that for any λ ∈ C∞, the equation (3.3) admits a time quasi-periodic solution with diophantine
frequency vector ωpe(λ, a) ≜ (ωj(λ, a))j∈S ∈ Rd and taking the form

r(t, θ) =
∑
j∈S

aj cos
(
jθ + ωj(λ, a)t

)
+ p(ωpet, θ),

with
ωpe(λ, a) −→

a→0

(
− Ωj(λ)

)
j∈S,

where Ωj(λ) are the equilibrium frequencies defined in (3.10) and the perturbation p : Td+1 → R is an
even function satisfying for some large index of regularity s = s(d, q0)

∥p∥Hs(Td+1,R) =
a→0

o(|a|).

We shall now outline the main steps of the proof which will be developed following standard scheme
as in the preceding works [8, 7, 21, 33] with different variations connected to the models structure. We
mainly use techniques from KAM theory combined with Nash Moser scheme. This will be implemented
along several steps which are detailed below.

▶ Step 1. Action-angle reformulation. We first notice that the equation (3.3) can be seen as a perturbation
of the integrable system given by the linear dynamics at the equilibrium state. Indeed, by combining
(3.8), (3.10) and (3.3) we may write

∂tr = ∂θL(λ)(r) +XP (r),
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where L(λ) and the perturbed Hamiltonian vector field XP are defined by

L(λ)(r) ≜ −
(
Ω + (I1K1)(λ)

)
r + Kλ ∗ r and XP (r) ≜ I1(λ)K1(λ)∂θr − ∂θKλ ∗ r − Fλ[r].

Since we are looking for small solutions then we find it convenient to rescale the solution r ⇝ εr with ε a
small positive number and consequently the new unknown still denoted by r satisfies

∂tr = ∂θL(λ)(r) + εXPε
(r),

where XPε
is the Hamiltonian vector field defined by XPε

(r) ≜ ε−2XP (εr). Then finding quasi-periodic
solutions with frequency ω ∈ Rd amounts to solve the equation

ω · ∂φr = ∂θL(λ)(r) + εXPε
(r).

Here we still use the same notation r for the new profile which depends in the variables (φ, θ) ∈ Td+1.
The next step consists in splitting the phase space L2

0 into an orthogonal sum of tangential and normal
subspaces as follows

L2
0 = LS

⊥
⊕ L2

⊥,

where LS is the finite dimensional subspace of real functions generated by {eijθ, j ∈ S} with S ≜ S ∪ (−S).
For more details on this description we refer to Section 6.1. To track the dynamics it seems to be more
suitable to use the action-angle variables (I, ϑ) seen as symplectic polar variables for the Fourier coefficients
of the tangential part in LS. This leads to reformulate the problem in terms of the embedded torus,

i : Td → Td × Rd × L2
⊥

φ 7→ (ϑ(φ), I(φ), z(φ)),

with

r(φ, θ) = v(ϑ(φ), I(φ))(θ)︸ ︷︷ ︸
∈LS

+ z(φ, θ)︸ ︷︷ ︸
∈L2

⊥

≜ A(i(φ))(θ)

and
v(ϑ, I) ≜

∑
j∈S

√
a2
j + |j|Ij eiϑjej , ej(θ) ≜ eijθ .

Notice that the action and angle variables should satisfy the symmetry properties

∀j ∈ S, I−j = Ij ∈ R and ϑ−j = −ϑj ∈ T.

Therefore we reduce the problem in the new variables to construct invariant tori with non-resonant
frequency vector ω to the system

ω · ∂φi(φ) = XHε
(i(φ)), (3.12)

where XHε
is the Hamiltonian vector field associated to the Hamiltonian Hε given by

Hε ≜ −ωEq(λ) · I + 1
2 ⟨L(λ)z, z⟩L2(T) + εPε,

with Pε defined by Pε ≜ Pε ◦A. A useful trick used in [21, 125] consists in solving first the relaxed problem

ω · ∂φi(φ) = XHα
ε

(i(φ)),
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where the vector field XHα
ε

is associated to the modified Hamiltonian Hα
ε given by

Hα
ε ≜ α · I + 1

2 ⟨L(λ)z, z⟩L2(T) + εPε.

The advantage of this procedure is to get one degree of freedom with the vector α ∈ Rd that will be
used to ensure some compatibility assumptions during the construction of an approximate inverse of the
linearized operator. At the end of Nash-Moser scheme we shall adjust implicitly the frequency ω so that α
coincides with the equilibrium frequency −ωEq(λ), which enables to finally get solutions to the original
Hamiltonian equation. The relaxed problem can be written in the following form

F(i, α, λ, ω, ε) = 0,

with

F(i, α, λ, ω, ε) ≜ ω · ∂φi(φ) −XHα
ε

(i(φ))

=

 ω · ∂φϑ(φ) − α− ε∂IPε(i(φ))
ω · ∂φI(φ) + ε∂ϑPε(i(φ))

ω · ∂φz(φ) − ∂θ (L(λ)z(φ) + ε∇zPε(i(φ)))

 . (3.13)

We point out that the linear torus corresponding to the linear solution

r(φ, θ) =
∑
j∈S

aj eiφjeijθ

is given in the new coordinates system by iflat(φ) = (φ, 0, 0) and it is obvious that

F
(
iflat,−ωEq(λ), λ,−ωEq(λ), 0

)
= 0.

We emphasize that at this stage the classical implicit function theorem does not work because the
linearized operator at the equilibrium state is not invertible due to resonances. One can avoid resonances
by restricting the parameter λ to a suitable Cantor set according to some Diophantine conditions on
the linear frequency ωEq(λ) allowing in particular to control the small divisors problem. By this way we
get an inverse at the equilibrium state but with algebraic loss of regularity. Unfortunately, this is not
enough to apply Nash-Moser scheme which requires to construct a right inverse with tame estimates in a
small neighborhood of the equilibrium and this is the challenging deal in this topic. Indeed, the linearized
operator is no longer with constant coefficients as for the integrable case and its main part is not a Fourier
multiplier. At this level we are dealing with a quasilinear problem where the perturbation is unbounded.
▶ Step 2. Approximate inverse. Let α0 ∈ Rd (actually α0 is a function of the parameters ω and λ) and
consider an embedded torus i0 = (ϑ0, I0, z0) near the flat one with the reversible structure,

ϑ0(−φ) = −ϑ0(φ), I0(−φ) = I0(φ) and z0(−φ,−θ) = z0(φ, θ).

To deal with the linearized operator di,αF(i0, α0), which exhibits complicated structure, and see whether
we can construct an approximate inverse we should fix two important issues. One is related to the coupling
structure in the new coordinates system and the second is that the linearized operator is with variable
coefficients. For this aim we shall follow the approach conceived by Berti and Bolle in [21] with making
suitable modifications. This approach consists in linearizing around an isotropic torus close enough to the
original one and then use a symplectic change of coordinates leading to a triangular system up to small
errors, essentially of "type Z" or highly decaying in frequency, that can be incorporated in Nash-Moser
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scheme. Therefore to invert this triangular system it suffices to get an approximate right inverse for the
linearized operator in the normal direction, denoted in what follows by L̂ω. We notice that in Section
6.3, and similarly to [87], we can bypass the use of isotropic torus by a slight modification of Berti-Bolle
approach. Actually, according to Proposition 6.1, we can conjugate the linearized operator with the
transformation described by (6.58) computed at the torus i0 and get a triangular system with small errors
mainly of "type Z". The computations are performed in a straightforward way using in a crucial way the
Hamiltonian structure of the original system. The main advantage that simplifies some arguments is to
require the invertibility for the linearized operator only at the torus itself and not necessary at a closer
isotropic one. By this way, we can avoid the accumulation of different errors induced by the isotropic torus
that one encounters for example in the estimates of the approximate inverse or in the multiple Cantor sets
generated along the different reduction steps where the coefficients should be computed at the isotropic
torus. The final outcome of this first step is to reduce the invertibility to finding an approximate inverse
of L̂ω which takes, according to Proposition 7.1, the form

L̂ω = Π⊥
S0

(Lεr − ε∂θR) Π⊥
S0

with Lεr = ω · ∂φ + ∂θ [Vεr · −Lεr] ,

where ε∂θR is a perturbation of finite rank, the function Vεr and the nonlocal operator Lεr are defined in
(3.6) and (3.7), respectively. At the equilibrium state (corresponding to ε = 0) L̂ω is diagonal and we
shall see that the set of parameters (λ, ω) leading to the existence of a right inverse is almost full. Now
remark that even for ε small, the perturbation affects the main part of the operator in a similar way to
water waves [7, 33] or generalized SQG equation [87] and then we should construct the suitable change of
coordinates in order to reduce the positive part of the operator to a diagonal operator. Later we should
implement KAM scheme to diagonalize the zero-order part. This will be done in three steps.
a⃝ Reduction of the transport part. This procedure will be discussed in Proposition 7.2 and
Proposition 7.3. We basically use KAM techniques as in [29, 64] in order to conjugate the operator
Lεr, through a suitable quasi-periodic symplectic change of coordinates B, to a transport operator with
constant coefficients. Indeed, we may construct an invertible transformation

Bρ(φ, θ) =
(
1 + ∂θβ(φ, θ)

)
ρ
(
φ, θ + β(φ, θ)

)
and a constant ci0(λ, ω) such that for any given number n ∈ N, if the parameter (λ, ω) belongs to the
truncated set defined through the first order Melnikov condition

Oγ,τ1
∞,n(i0) ≜

⋂
(l,j)∈Zd×Z\{(0,0)}

|l|⩽Nn

{
(λ, ω) ∈ O s.t. |ω · l + jci0(λ, ω)| > 4γυ⟨j⟩

⟨l⟩τ1

}
,

then we have
Lεr ≜ B−1LεrB = ω · ∂φ + ci0(λ, ω)∂θ − ∂θKλ ∗ · + ∂θRεr + E0

n, (3.14)

with Nn = N
( 3

2 )n

0 , N0 ⩾ 2, υ ∈ (0, 1), O = (λ0, λ1) × U , 0 < λ0 < λ1 and U ≜ B(0, R0) being an open
ball of Rd containing the curve of the linear vector frequency λ ∈ (λ0, λ1) 7→ −ωEq(λ). The operator Rεr

is a self-adjoint Toeplitz integral operator satisfying the estimates

∀s ∈ [s0, S], max
k∈{0,1,2}

∥∂kθRεr∥γ,OO-d,q,s ≲ εγ
−1
(

1 + ∥I0∥γ,Oq,s+σ

)
,

where the off-diagonal norm ∥ · ∥γ,OO-d,q,s is defined in (A.23) and the loss of regularity σ is connected to τ1

and d but it is independent of the index regularity s. Concerning the operator E0
n, we can show that it is
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a small fast decaying remainder with the following estimate for low regularity

∥E0
nρ∥γ,Oq,s0

≲ εNµ2
0 N−µ2

n ∥ρ∥γ,Oq,s0+2, (3.15)

where the weighted norms ∥ · ∥γ,Oq,s0
are defined in (A.6). For the number µ2, it is connected to the regularity

of the torus i0 and can be taken large enough allowing to identify the contributions of E0
n as small errors in

the construction of the approximate inverse. The next step will be discussed in Proposition 7.4 where we
explore the effect of the transport reduction on the original operator L̂ω which is localized to the normal
direction. We prove that with the localized transformation B⊥ defined by

B⊥ ≜ Π⊥
S0

BΠ⊥
S0
,

one obtains in the Cantor set Oγ,τ1
∞,n(i0),

B−1
⊥ L̂ωB⊥ = ω · ∂φΠ⊥

S0
+ D0 + R0 + E1

n, (3.16)

where D0 is a diagonal operator whose spectrum {iµ0
j , j ∈ Sc0} satisfies

µ0
j (λ, ω, i0) ≜ Ωj(λ) + jr1(λ, ω, i0) with ∥r1∥γ,Oq ≲ ε

and R0 is a remainder term taking the form of an integral operator with Toeplitz and reversibility
structures with the estimates the asymptotic

∀s ∈ [s0, S], max
k∈{0,1}

∥∂kθR0∥γ,OO-d,q,s ≲ εγ
−1
(

1 + ∥I0∥γ,Oq,s+σ

)
,

We remark that the operator E1
n satisfies similar estimates as for E0

n seen before in (3.15). Finally, we want
to emphasize that the derivation of the asymptotic structure of the operator Lεr seen before in (3.14)
requires some refined analysis. The delicate point concerns the expansion of the operator Lr defined in
(3.7) and for this part we use the kernel structure detailed in (C.7)

K0(z) = − log
(
z
2
)
I0(z) +

∞∑
m=0

ψ(m+1)
(m!)2

(
z
2
)2m

.

with I0 being analytic. This is different from the cases discussed before as for the water waves in [7, 33]
where the kernel is given by that of Euler equations (corresponding to λ = 0), that is, K(z) = − log

(
z
2
)
.

In this latter case the deformed kernel enjoys the structure

− log (2Ar(t, θ, η)) = − log
∣∣∣sin( θ−η

2

)∣∣∣+ smooth nonhomogeneous kernel.

This means that the associated operator is given by a diagonal operator of order −1 up to a smoothing
non diagonal pseudo-differential operator in OPS−∞. In our context, this decomposition fails for λ > 0
and we get a similar one but with less smoothing operator. Actually we obtain from (6.39) the splitting

K0 (2λAr(t, θ, η)) = K0

(
2λ sin

(
θ−η

2

))
+ K (η − θ)K 1

r,1(λ, φ, θ, η) + K 2
r,1(λ, φ, θ, η), (3.17)

where the kernels K 1
r,1 and K 2

r,1 are smooth whereas K is slightly singular taking the form

K (θ) ≜ sin2 ( θ
2
)

log
(∣∣sin ( θ2)∣∣) .

Therefore, the change of variable η 7→ η + θ kills the dependence in theta in the singular part, which
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allows to estimate the corresponding integral operator in Hs.

b⃝ KAM reduction of the remainder term. This is the main target of Section 7.3.2 and the result is
stated in Proposition 7.5. The goal is to conjugate the remainder R0 of (3.16) and transform it into a
diagonal operator. This will be developed in a standard way by constructing successive transformations
through the KAM reduction allowing to replace at each step the old remainder by a new one which is
much smaller provided that we make the suitable parameters extraction. This scheme can be achieved
unless we solve the associated homological equation. To avoid resonances we should at each step make an
extraction from the parameters set through the second order Melnikov conditions and the final outcome is
as follows,

L∞ ≜ Φ−1
∞ L0Φ∞ = ω · ∂φΠ⊥

S0
+ D∞,

where D∞ =
(
iµ∞
j (λ, ω, i0)

)
(l,j)∈Zd×Sc

0
is a diagonal operator with pure imaginary spectrum and Φ∞ is

a reversible invertible operator. This reduction is possible when the parameters (λ, ω) belong to the
following Cantor-like set,

Oγ,τ1,τ2
∞,n (i0) ≜

⋂
(l,j,j0)∈Zd×(Sc

0)2

|l|⩽Nn

{
(λ, ω) ∈ Oγ,τ1

∞,n(i0) s.t.
∣∣ω · l + µ∞

j (λ, ω, i0) − µ∞
j0

(λ, ω, i0)
∣∣ > 2γ⟨j−j0⟩

⟨l⟩τ2

}
.

The eigenvalues admit the following asymptotic

µ∞
j (λ, ω, i0) ≜ Ωj(λ) + jr1(λ, ω, i0) + r∞

j (λ, ω, i0),

where r1 and r∞
j are real small coefficients with Lipschitz dependence with respect to the torus. Indeed,

we have

∥r1∥γ,Oq + sup
j∈Sc

0

|j|∥r∞
j ∥γ,Oq ≲ εγ−1,

∥∆12r
1∥γ,Oq + sup

j∈Sc
0

∥∆12r
∞
j ∥γ,Oq ≲ εγ−1∥∆12i∥γ,Oq,sh+σ,

for some index regularity sh + σ and ∆12r
1 = r1(λ, ω, i1) − r1(λ, ω, i2).

c⃝ Construction of the approximate inverse. The next step is to invert approximately the operator
L̂ω detailed in Proposition 7.6. First we establish an approximate inverse for L∞, on the Cantor set

Λγ,τ1
∞,n(i0) ≜

⋂
(l,j)∈Zd×Sc

0
|l|⩽Nn

{
(λ, ω) ∈ O s.t. |ω · l + µ∞

j (λ, ω)| > γ⟨j⟩
⟨l⟩τ1

}
.

Then, introducing the Cantor set

Gn(γ, τ1, τ2, i0) ≜ Oγ,τ1
∞,n(i0) ∩ Oγ,τ1,τ2

∞,n (i0) ∩ Λγ,τ1
∞,n(i0),

we are able to construct an approximate inverse of L̂ω in the following sense,

L̂ωTω,n = Id + En in Gn,

where En is a fast frequency decaying operator as in (3.15) and Tω,n satisfies tame estimates uniformly in
n. Therefore coming back to Section 6.3, more precisely to Theorem 6.1, this enables to construct an
approximate right inverse T0 for the full differential di,αF(i0, α0) enjoying suitable tame estimates.
In what follows we want to make some comments. The first one concerns the Lipschitz dependence of
the eigenvalues with respsect to the torus. This is required in studying the stability of Cantor sets in
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Nash-Moser scheme and allows to construct a final massive Cantor set. As for the second one, it concerns
the KAM reduction which allows to diagonalize the operator when the parameters belong to a Cantor
set like, even though all the involved transformations and operators can be extended in the whole set of
parameters using standard cut-off functions for the Fourier coefficients. This extension with adequate
estimates will be needed later during the implementation of Nash-Moser scheme. This is not the only
way to produce suitable extensions and one expects Whitney extension to be also well adapted as in
[7, 33]. In our case we privilege the first procedure which can be easily set up and manipulated using
classical functional tools. The last comment is related to a technical point in KAM reduction, Contrary to
the preceding papers such as [7, 33], we do not need to use pseudo-differential operators techniques in
the description of the aforementioned asymptotic structures of Lεr and B−1

⊥ L̂ωB⊥. In fact, they can be
avoided since all the involved operators can be described through their kernels and therefore instead of
splitting the symbols we simply expand the kernels as in (3.17) which sounds to be more appropriate in
our context.

▶ Step 3. Nash-Moser scheme. This is the main purpose of Section 8.1 where we construct zeros for the
nonlinear function F defined in (3.13) for small ε following Nash-Moser scheme in the spirit of the papers
[7, 33]. Let us quickly sketch this scheme. We build by induction a sequence of approximate solutions Un

Un+1 ≜ Un +Hn+1 with Hn+1 ≜ −ΠNn
TnΠNn

F(Un).

with Tn an approximate inverse of di,αF(Un) constructed in Step 2. Thus using Taylor Formula we may
write

F(Un+1) = Π⊥
Nn

F(Un) − ΠNn

(
LnTn − Id

)
ΠNn

F(Un) +
(
LnΠ⊥

n − Π⊥
Nn
Ln
)
TnΠNn

F(Un) +Qn,

where Qn is a quadratic functional. Consider the Cantor set

Aγ
n ≜

n−1⋂
k=0

Gk(γk+1, τ1, τ2, ik),

with γn ≜ γ(1 + 2−n), then we show by induction that

∥Un∥γ,Oq,s0+σ ≲ εγ
−1Nqa

0 , ∥Un∥γ,Oq,b1+σ ≲ εγ
−1Nµ

n−1, ∥F(Un)∥γ,O
γ
n

q,s0 ≲ εN
−a1
n−1 (3.18)

for a suitable choice of the parameters a1, b1, a, µ, σ > 0 and Oγ
n is an open enlargement of Aγ

n needed
to construct classical extensions to the whole set of parameters O. Actually, we get a precise statement
in Proposition 8.1 allowing to deduce that the sequence (Un)n converges in a strong topology towards a
sufficient smooth profile (λ, ω) ∈ O 7→ U∞(λ, ω) =

(
i∞(λ, ω), α∞(λ, ω), (λ, ω)

)
with

∀(λ, ω) ∈ Gγ∞, F(U∞(λ, ω)) = 0, Gγ∞ ≜
⋂
n∈N

Aγ
n.

Moreover, we get in view of Corollary 8.1 a smooth function λ ∈ (λ0, λ1) 7→ (λ, ω(λ, ε)) with

ω(λ, ε) = −ωEq(λ) + r̄ε(λ), ∥r̄ε∥γ,Oq ≲ εγ−1Nqa
0 (3.19)

and
∀λ ∈ Cε∞, F

(
U∞(λ, ω(λ, ε))

)
= 0 with α∞

(
λ, ω(λ, ε)

)
= −ωEq(λ),
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4. Hamiltonian formulation of the patch motion

where the Cantor set Cε∞ is defined by

Cε∞ ≜
{
λ ∈ (λ0, λ1) s.t.

(
λ, ω(λ, ε)

)
∈ Gγ∞

}
. (3.20)

This gives solutions to the original equation (3.12) provided that λ belongs to the final Cantor set Cε∞ and
the last point to deal with aims to measure this set.

▶ Step 4. Measure estimates. The measure of the final Cantor set Cε∞ will be explored in Section 8.2.
We show in Proposition 8.2 that by fixing γ = εa for some small a we get

|Cε∞| ⩾ (λ1 − λ0) − Cεδ,

with small δ connected to the geometry of the Cantor set and the non degeneracy of the equilibrium
spectrum. There are two main ingredients to get this result. The first one is the stability of the
intermediate Cantor sets (Aγ

n)n following from the fast convergence of Nash-Moser scheme. However the
second one is the transversality property stated in Lemma 8.3 used in the spirit of [12] and [139]. This
property will be first established for the linear frequencies in Proposition 5.5, using the analyticity of the
eigenvalues and their asymptotic behavior. Then the extension of the transversality assumption to the
perturbed frequencies is done using perturbative arguments together with the asymptotic description of
the approximate eigenvalues detailed in (8.67), (8.82) and (8.81). We emphasize that the transversality is
strongly related to the non-degeneracy of the eigenvalues in the sense of the Definition 5.1 . For instance,
we show that the curve λ ∈ [λ0, λ1] 7→

(
Ωj1(λ), ...,Ωjd

(λ)
)

is not contained in any vectorial plane, that is,
if there exists a constant vector c = (c1, .., cd) such that

∀λ ∈ [λ0, λ1],
d∑
j=1

ckΩjk
(λ) = 0,

then c = 0. This is proved in Lemma 5.4 and follows from the asymptotic of the eigenvalues for large
values of λ according to the law (C.15) combined with the invertibility of Vandermonde matrices.

4 Hamiltonian formulation of the patch motion

In this section we shall set up the contour dynamics equation governing the patch motion. A particular
attention will be focused on the vortex patch equation in the polar coordinates system. We shall see that
the Hamiltonian structure still survives at the level of the patch dynamics, which is the starting point
towards the construction of quasi-periodic solutions.

4.1 Contour dynamics equation in polar coordinates

The Rankine vortex 1D (actually any radial function) is a stationary solution to (QGSW)λ. To look for
ordered structure like periodic or quasi-periodic vortex patches t 7→ 1Dt

around this equilibrium state, we
find it convenient to consider a polar parametrization of the boundary

z(t, θ) ≜
(

1 + 2r(t, θ)
) 1

2
eiθ. (4.1)

57



Part I

Here r is the radial deformation of the patch which is small, namely |r(t, θ)| ≪ 1. Taking r = 0 gives a
parametrization of the unit circle T. We shall introduce the new symplectic unknown

R(t, θ) ≜
(

1 + 2r(t, θ)
) 1

2
. (4.2)

which will be useful to write down the equations into the Hamiltonian form. In what follows we want to
explicit the contour dynamics equation with the polar coordinates. The starting point is the complex
formulation of the vortex patches equation (1.17), which we recall here

Im
([
∂tz(t, θ) − v(t, z(t, θ))

]
∂θz(t, θ)

)
= 0.

In order to transform it into a nonlinear PDE, we need to recover the velocity field v from the patch
parametrization. To do so, recall that v = ∇⊥Ψ with Ψ given by (1.7) To get an explicit form of the
velocity in terms of the patch boundary we shall use the complex version of Stokes theorem

2i
ˆ
D

∂ξf(ξ, ξ)dA(ξ) =
ˆ
∂D

f(ξ, ξ)dξ. (4.3)

In view of v(t, z) = 2i∂zΨ(t, z), one deduces that

v(t, z) = 1
2π

ˆ
∂Dt

K0(λ|z − ξ|)dξ. (4.4)

Notice that to rigorously apply Stokes theorem one may use a regularization procedure. This is purely
technical and we refer the reader to the proof of Proposition 4.1 for more details. Next we intend to write
down the boundary motion in terms of the contour dynamics. First, from the polar parametrization, it is
easy to check from (4.1) that

Im
(
∂tz(t, θ)∂θz(t, θ)

)
= −∂tr(t, θ).

On the other hand, using (4.4) and (C.3), we infer

Im
(

v(t, z(t, θ))∂θz(t, θ)
)

=
ˆ
T
K0 (λ|z(t, θ) − z(t, η)|) Im

(
∂ηz(t, η)∂θz(t, θ)

)
dη.

Next we observe that,

Im
(
∂ηz(t, η)∂θz(t, θ)

)
= ∂2

θηIm
(
z(t, η)z(t, θ)

)
= ∂2

θη

(
R(t, η)R(t, θ) sin(η − θ)

)
.

Thus, by setting
Ar(t, θ, η) ≜ |z(t, θ) − z(t, η)| = |R(t, θ)eiθ −R(t, η)eiη| (4.5)

and
Fλ[r](t, θ) ≜

ˆ
T
K0 (λAr(t, θ, η)) ∂2

θη

(
R(t, η)R(t, θ) sin(η − θ)

)
dη, (4.6)

we get the vortex patch equation in the polar coordinates

∂tr(t, θ) + Fλ[r](t, θ) = 0. (4.7)

Now, we fix a parameter Ω that will be used later to get rid of trivial resonances, and we shall look for
solutions in the form

r(t, θ) = r̃(t, θ + Ωt). (4.8)
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4. Hamiltonian formulation of the patch motion

Then elementary change of variables applied with (4.6) show that

Fλ[r̃](t, θ+Ωt) = Fλ[r](t, θ) . (4.9)

Thus, the equation (4.7) becomes (to alleviate the notation we simply use r instead of r̃)

∂tr(t, θ) + Ω∂θr(t, θ) + Fλ[r](t, θ) = 0, (4.10)

which is a nonlinear and nonlocal transport PDE. To fix the terminology, we mean by a time quasi-periodic
solution of (4.10), a solution in the form

r(t, θ) = r̂(ωt, θ),

where r̂ : (φ, θ) ∈ Td+1 7→ r̂(φ, θ) ∈ R, ω ∈ Rd and d ∈ N∗. Hence in this setting, the equation (4.10)
becomes

ω · ∂φr̂(φ, θ) + Ω∂θ r̂(φ, θ) + Fλ[r̂](φ, θ) = 0.

In the sequel, we shall alleviate the notation and denote r̂ simply by r and the foregoing equation writes

∀(φ, θ) ∈ Td+1, ω · ∂φr(φ, θ) + Ω∂θr(φ, θ) + Fλ[r](φ, θ) = 0. (4.11)

4.2 Hamiltonian structure

We now move to a new consideration related to the analysis of the Hamiltonian structure behind the
transport equation (4.10). This structure sounds to be essential if one wants to explore quasi-periodic
solutions near Rankine vortices. Notice that it is a classical fact that incompressible active scalar
equations such as 2D Euler equations are Hamiltonian and as we shall see in this section, we can find a
suitable interpretation of this property at the level of the contour dynamics equations which is a stronger
reformulation.

4.2.1 Hamiltonian reformulation

We consider the kinetic energy and the angular impulse associated to the patch ω(t) = 1Dt
and defined by

E(t) ≜ − 1
2π

ˆ
Dt

Ψ(t, z)dA(z) and J(t) ≜ 1
2π

ˆ
Dt

|z|2dA(z), (4.12)

where the stream function Ψ is defined according to (1.7). Notice that the sign convention ensures the
kinetic energy to be positive. The following result dealing with the time conservation of the preceding
quantities is classical and can be proved in a similar way to Euler equations.

Lemma 4.1. The kinetic energy E and the angular impulse J are conserved during the motion,

dE(t)
dt

= 0 = dJ(t)
dt

·

In what follows we shall state the main result of this section on the Hamiltonian structure governing
the equation (4.10).

Proposition 4.1. The equation (4.10) is Hamiltonian and takes the form

∂tr = ∂θ∇H(r), (4.13)
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where ∇ is the L2
θ(T)-gradient with respect to the L2

θ(T)-normalized scalar product defined by

〈
ρ1, ρ2

〉
L2(T) ≜

ˆ
T
ρ1(θ)ρ2(θ)dθ

and the hamiltonian H is defined by

H(r) ≜ 1
2

(
E(r) − ΩJ(r)

)
.

In particular, we get the conservation of the average, that is,

d

dt

ˆ
T
r(t, θ)dθ = 0. (4.14)

Proof. ▶ Using Stokes formula (4.3), we may write

J(r)(t) = 1
8iπ

ˆ
∂Dt

|ξ|2ξdξ.

Then from the parametrization detailed in (4.1) one gets easily

J(r)(t) = 1
4i

ˆ
T

|z(t, θ)|2z(t, θ)∂θz(t, θ)dθ

= 1
16i

ˆ
T
∂θ
(
R4(t, θ)

)
dθ + 1

4

ˆ
T
R4(t, θ)dθ

= 1
4

ˆ
T
R4(t, θ)dθ.

Consequently,
J(r)(t) = 1

4

ˆ
T

(1 + 2r(t, θ))2
dθ. (4.15)

Differentiating in r one gets for ρ ∈ L2(T)

⟨∇J(r), ρ⟩L2(T)(t) =
ˆ
T
(1 + 2r(t, θ))ρ(θ)dθ, i.e. ∇J(r) = 1 + 2r.

It follows that
1
2 Ω∂θ∇J(r) = Ω∂θr. (4.16)

▶ Next, we shall compute the Gâteaux derivative of E in a given direction ρ ∈ L2(T). The first step is to
express the energy

E(t) = − 1
2π

ˆ
Dt

Ψ(t, z)dA(z)

in terms of the boundary parametrization of ∂Dt, which shall be done by using Stokes theorem (4.3).
Recall from (1.7) that the potential velocity expresses as follows

Ψ(t, z) = − 1
2π

ˆ
Dt

K0(λ|ξ − z|)dA(ξ).

In order to apply Stokes theorem we shall a priori formally compute an anti-derivative of K0(λ|ξ − z|)
with respect to ξ. We shall search it in the form

(ξ − z)f(λ|ξ − z|).
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4. Hamiltonian formulation of the patch motion

Then we should get

K0(λ|ξ − z|) = ∂ξ
(
(ξ − z)f(λ|ξ − z|)

)
= f(λ|ξ − z|) + λ|ξ−z|

2 f ′(λ|ξ − z|).

Hence f is a solution on R∗
+ of the ordinary differential equation

1
2xf

′(x) + f(x) = K0(x), i.e. (x2f(x))′ = 2xK0(x). (4.17)

Using (C.5), we obtain
f(x) = − 2xK1(x)+C

x2 ,

where C is a constant to be fixed so that the integral converges. Using (C.6), one has on the real line

K1(x) =
x→0

1
x + x

2 log
(
x
2
)

+ o
(
x log

(
x
2
))
,

so that
xK1(x) =

x→0
1 + x2

2 log
(
x
2
)

+ o
(
x2 log

(
x
2
))
.

Making the choice C = −2 we get
f(x) = − 2(xK1(x)−1)

x2 , (4.18)

which behaves like a logarithm near 0 and thus it is integrable. But notice that Stokes theorem requires
some smoothness on the integrated function to be applied. Consequently, we shall rather consider for
ϵ > 0 the smooth quantity

Fϵ(ξ, z) ≜ ∂ξ
(

(ξ − z)f
(
λ
√

|ξ − z|2 + ϵ2
))

.

Then applying Stokes theorem (4.3) yields

2i
ˆ
Dt

Fϵ(ξ, z)dA(ξ) =
ˆ
∂Dt

(ξ − z)f
(
λ
√

|ξ − z|2 + ϵ2
)
dξ.

According to the structure of f described above, a simple application of dominated convergence theorem
gives

lim
ϵ→0

ˆ
∂Dt

(ξ − z)f
(
λ
√

|ξ − z|2 + ϵ2
)
dξ =

ˆ
∂Dt

(ξ − z)f (λ|ξ − z|) dξ.

Now observe that by virtue of (4.17), we can write

Fϵ(ξ, z) = K0

(
λ
√

|ξ − z|2 + ϵ2
)

− λϵ2

2
√

|ξ − z|2 + ϵ2
f ′
(
λ
√

|ξ − z|2 + ϵ2
)
.

Using the fact that f ′(x) is equivalent to 1
x at 0, we obtain by dominated convergence theorem

lim
ϵ→0

ˆ
Dt

ϵ2√
|ξ − z|2 + ϵ2

f ′
(
λ
√

|ξ − z|2 + ϵ2
)
dA(ξ) = 0.

Thus, still by dominated convergence theorem, we get

lim
ϵ→0

ˆ
Dt

Fϵ(ξ, z)dA(ξ) =
ˆ
Dt

K0(λ|ξ − z|)dA(ξ).
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Gathering the foregoing computations implies

Ψ(t, z) = 1
4iπ

ˆ
∂Dt

(ξ − z)f(λ|ξ − z|)dξ.

Therefore using the parametrization (4.1) we find

Ψ(t, z(t, θ)) = 1
iλ2

ˆ
T

(z(t, η) − z(t, θ)) [λ|z(t, θ) − z(t, η)|K1 (λ|z(t, η) − z(t, θ)|) − 1]
|z(t, η) − z(t, θ)|2 ∂ηz(t, η)dη.

Making appeal to f and removing the time dependence, we get

Ψ(z(θ)) = i
2

ˆ
T
(z(θ) − z(η))f(λ|z(θ) − z(η)|)∂ηz(η)dη. (4.19)

At this stage we need to look for an anti-derivative with respect to z of −1
2 (ξ − z)f(λ|ξ − z|) in the form

(ξ − z)2g(λ|ξ − z|).

Therefore we deduce the constraint

−1
2 (ξ − z)f(λ|ξ − z|) = ∂z

(
(ξ − z)2g(λ|ξ − z|)

)
= −(ξ − z)

(
2g(λ|ξ − z|) + λ|ξ−z|

2 g′(λ|ξ − z|)
)
.

Hence, g should be a solution on R∗
+ of the ordinary differential equation

x
2 g

′(x) + 2g(x) = f(x)
2 , i.e. (x4g(x))′ = x3f(x) = 2x− 2x2K1(x). (4.20)

Using once again (C.5) yields
g(x) = x2+2x2K2(x)+C

x4 ,

where C is again a constant used to cancel the violent singularity. From (C.6) and (C.2), one obtains the
asymptotic

K2(x) =
x→0

2
x2 − 1

2 +O
(
x2 log(x)

)
.

Thus
x2K2(x) =

x→0
2 − x2

2 +O(x4 log(x)).

Then by choosing C = −4 we deduce that the function below

g(x) = x2+2x2K2(x)−4
x4

is integrable. Hence, applying once again Stokes theorem (4.3) together with a regularization procedure
as above, we infer

E(r)(t) = 1
4π2λ4

ˆ
∂Dt

ˆ
∂Dt

(ξ − z)2 [λ2|ξ − z|2 (1 + 2K2(λ|ξ − z|)) − 4
]

|ξ − z|4
dzdξ

= 1
λ4

ˆ
T

ˆ
T

(z(t,η)−z(t,θ))2[λ|z(t,η)−z(t,θ)|(1+2K2(λ|z(t,η)−z(t,θ)|))−4]
|z(t,η)−z(t,θ)|2 ∂θz(t, θ)∂ηz(t, η)dηdθ.

Hence using g and removing the dependence in time, we find

E(r) = 1
2

ˆ
T

ˆ
T
(z(θ) − z(η))2g(λ|z(θ) − z(η)|)∂θz(θ)∂ηz(η)dθdη. (4.21)
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The next goal is to compute the derivative of E with respect to r in the direction ρ, which is straightforward

⟨∇E(r),ρ⟩L2(T) =

ˆ
T

ˆ
T

(z(θ) − z(η)) g (λ|z(θ) − z(η)|)
(
ρ(θ)e−iθ

R(θ) − ρ(η)e−iη

R(η)

)
∂θz(θ)∂ηz(η)dθdη

+ λ
2

ˆ
T

ˆ
T

(z(θ)−z(η))2

|z(θ)−z(η)| g
′ (λ|z(θ) − z(η)|) ρ(θ)

R(θ) Re
(
(z(θ) − z(η))e−iθ) ∂θz(θ)∂ηz(η)dθdη

+ λ
2

ˆ
T

ˆ
T

(z(θ)−z(η))2

|z(θ)−z(η)| g
′ (λ|z(θ) − z(η)|) ρ(η)

R(η) Re
(
(z(η) − z(θ))e−iη) ∂θz(θ)∂ηz(η)dθdη

+ 1
2

ˆ
T

ˆ
T

(z(θ) − z(η))2
g (λ|z(θ) − z(η)|) ∂θ

(
ρ(θ)eiθ

R(θ)

)
∂ηz(η)dθdη

+ 1
2

ˆ
T

ˆ
T

(z(θ) − z(η))2
g (λ|z(θ) − z(η)|) ∂θz(θ)∂η

(
ρ(η)eiη

R(η)

)
dθdη.

By exchanging in the double integral θ and η, we deduce

⟨∇E(r),ρ⟩L2(T) = 2

ˆ
T

ˆ
T

(z(θ) − z(η)) g (λ|z(θ) − z(η)|) ρ(θ)e−iθ

R(θ) ∂θz(θ)∂ηz(η)dθdη

+ λ

ˆ
T

ˆ
T

(z(θ)−z(η))2

|z(θ)−z(η)| g
′ (λ|z(θ) − z(η)|) ρ(θ)

R(θ) Re
(
(z(θ) − z(η))e−iθ) ∂θz(θ)∂ηz(η)dθdη

+

ˆ
T

ˆ
T

(z(θ) − z(η))2
g (λ|z(θ) − z(η)|) ∂θ

(
ρ(θ)eiθ

R(θ)

)
∂ηz(η)dθdη.

An integration by parts in the last integral leads toˆ
T

ˆ
T

(z(θ) − z(η))2
g (λ|z(θ) − z(η)|) ∂θ

(
ρ(θ)eiθ

R(θ)

)
∂ηz(η)dθdη

= −2

ˆ
T

ˆ
T

(z(θ) − z(η))g(λ|z(θ) − z(η)|)ρ(θ)eiθ

R(θ) ∂θz(θ)∂ηz(η)dθdη

− λ

ˆ
T

ˆ
T

(z(θ)−z(η))2

|z(θ)−z(η)| g
′(λ|z(θ) − z(η)|)ρ(θ)eiθ

R(θ) Re [(z(θ) − z(η))∂θz(θ)] ∂ηz(η)dθdη.

Using the identities
eiθ∂θz(θ) − e−iθ∂θz(θ) = −2iR(θ)

and
Re [(z(θ) − z(η))∂θz(θ)] eiθ − ∂θz(θ)Re

[
(z(θ) − z(η))e−iθ] = −iR(θ)(z(θ) − z(η)),

we infer

⟨∇E(r), ρ⟩L2(T) = 4
i

ˆ
T

ˆ
T
(z(θ) − z(η))g(λ|z(θ) − z(η)|)∂ηz(η)ρ(θ)dθdη

+λ
i

ˆ
T

ˆ
T
(z(θ) − z(η))|z(θ) − z(η)|g′(λ|z(θ) − z(η)|)∂ηz(η)ρ(θ)dθdη.

Applying (4.20), we find

⟨∇E(r), ρ⟩L2(T) = 1
i

ˆ
T

ˆ
T
(z(θ) − z(η))f(λ|z(θ) − z(η)|)∂ηz(η)ρ(θ)dθdη,
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which implies by virtue of (4.19)

∇E(r) = 1
i

ˆ
T
(z(θ) − z(η))f(λ|z(θ) − z(η)|)∂ηz(η)dη = −2Ψ(z(θ)).

Now, using the complex notation we deduce that

∂θΨ(z(θ)) = ∇Ψ(z(θ)) · ∂θz(θ)

= Im
(

v(z(θ))∂θz(θ)
)

= Fλ[r](θ),

where we used (1.2) and the facts that ∇⊥Ψ = v and Ψ is real-valued. Recall that the functional Fλ[r]
was introduced in (4.6). Hence

∂θ∇E(r) = −2∂θΨ(z(θ)) = −2Fλ[r](θ).

Finally we get
1
2∂θ∇E(r) = −Fλ[r](θ). (4.22)

The conservation of the average is easy to check from the Hamiltonian equation. Therefore the proof of
Proposition 4.1 is achieved.

4.2.2 Symplectic structure and reversibility

The main concern is to investigate the symplectic structure together with the reversibility property
associated to the Hamiltonian equation (4.13). These properties will be used in a crucial way to fix the
symmetry in the function spaces and by this way remove from the phase space the trivial resonances. For
more details we refer to Section A.1 and Section 6.

According to Proposition 4.1, it seems more convenient to work with the phase space

L2
0(T) ≜

r =
∑
j∈Z∗

rjej s.t. r−j = rj and
∑
j∈Z∗

|rj |2 < ∞

 , ej(θ) ≜ eijθ. (4.23)

The symplectic structure on L2
0(T) induced by (4.13) is given by the symplectic 2-form

W(r, h) ≜
ˆ
T
∂−1
θ r(θ)h(θ)dθ with ∂−1

θ r(θ) =
∑
j∈Z∗

rj
ij e

ijθ. (4.24)

Then for a given function H, its symplectic gradient XH is defined through the identity

dH(r)[·] = W(XH(r), ·). (4.25)

Using the Fourier expansion
r(θ) =

∑
j∈Z∗

rje
ijθ with r−j = rj ,

we easily find that the symplectic form W writes

W(r, h) =
∑
j∈Z∗

1
ij rjh−j =

∑
j∈Z∗

1
ij rjhj ,
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that is
W = 1

2
∑
j∈Z∗

1
ij drj ∧ dr−j =

∑
j∈N∗

1
ij drj ∧ dr−j , (4.26)

where for all j ∈ Z∗, the exterior product drj ∧ dr−j is defined by

drj ∧ dr−j(r, h) = rjh−j − r−jhj .

To define the reversibility, we shall introduce the involution S

(S r)(θ) ≜ r(−θ), (4.27)

which satisfies the obvious properties

S 2 = Id and ∂θ ◦ S = −S ◦ ∂θ. (4.28)

The following elementary result is useful and can be easily checked from the structure of the Hamiltonian.
Actually, it suffices to make changes of variables.

Lemma 4.2. The Hamiltonian H and its associated vector field XH = ∂θ∇H satisfy

H ◦ S = H and XH ◦ S = −S ◦XH .

5 Linearization and frequencies structure

This section is devoted to some aspects of the linearized operator associated to the evolution equation
(4.10) or its Hamiltonian version (4.13). We shall in particular compute it at any state close to the
equilibrium and reveal some of its main general feature. As we shall see, the radial shape is very special
and gives rise to a Fourier multiplier and thus the spectral properties follow immediately. This latter case
serves as a toy model to check the emergence of quasi-periodic solutions at the linear level provided that
the Rossby radius λ belongs to a Cantor set, see Proposition 5.1 . However, around this ideal state the
situation is roughly uncontrolled and the operator is no longer diagonal and its spectral study is extremely
delicate due to resonances that prevent to diagonalize the operator. To deal with this problem we will
implement some important tools borrowed from KAM theory as we shall see in Section 7.

5.1 Linearized operator

The main goal of this section is to compute the differential of the nonlinear operator in (4.10) for any small
state r. The computations will be conducted at a formal level by simply computing Gateaux derivatives
which are related to Frechet derivatives. This formal part can be justified rigorously in a classical way for
the suitable functional setting fixed in Section A.1.

5.1.1 The general form

In what follows we shall derive a formula for the linearized operator associated to the equation (4.13). We
shall see that it can be split into a transport part with variable coefficients and a nonlocal operator of
order zero. More precisiely, we shall establish the following lemma.

Lemma 5.1. The linearized equation of (4.13) at a given small state r is given by the time-dependent
linear Hamiltonian equation,

∂tρ(t, θ) = ∂θ

(
− Vr(λ, t, θ)ρ(t, θ) + Lrρ(λ, t, θ)

)
,
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where Vr is a scalar function defined by

Vr(λ, t, θ) ≜ Ω + 1
R(t,θ)

ˆ
T
K0 (λAr(t, θ, η)) ∂η (R(t, η) sin(η − θ)) dη (5.1)

and Lr is a nonlocal operator given by

Lr(ρ)(λ, t, θ) ≜
ˆ
T
K0
(
λAr(t, θ, η)

)
ρ(t, η)dη. (5.2)

We recall that K0, Ar and R are defined by (C.7), (4.5) and (4.2), respectively.
Moreover, if r(−t,−θ) = r(t, θ), then

Vr(λ,−t,−θ) = Vr(λ, t, θ). (5.3)

Proof. Throughout the proof, we shall remove the time dependency of the involved quantities except when
it is relevant to keep it. The computations of the Gâteaux derivative of Fλ defined by (4.6) at a point r in
the direction ρ are straightforward and standard and we shall only sketch the main lines. Notice that the
functional Fλ is smooth in a suitable functional setting and therefore its differential should be recovered
from its Gâteaux derivative. First, we observe that the function Ar defined in (4.5) can be written in the
form

Ar(θ, η) =
(
R2(θ) +R2(η) − 2R(θ)R(η) cos(η − θ)

) 1
2

=
(

(R(θ) −R(η))2 + 4R(θ)R(η) sin2
(
η−θ

2

)) 1
2
. (5.4)

This identity (5.4) will be of constant use in the sequel. Second, after straightforward computations, we
obtain from (4.6),

drFλ[r](ρ) = ∂τFλ[r + τρ]|τ=0

= I1 + I2 + I3 + I4,

where

I1 ≜ λρ(θ)
ˆ
T
Br(θ, η)K ′

0 (λAr(θ, η)) ∂2
θη (R(θ)R(η) sin(η − θ)) dη,

I2 ≜ λ

ˆ
T
ρ(η)Br(η, θ)K ′

0 (λAr(θ, η)) ∂2
θη (R(θ)R(η) sin(η − θ)) dη,

I3 ≜

ˆ
T
K0 (λAr(θ, η)) ∂2

θη

(
ρ(θ)R(η) sin(η−θ)

R(θ)

)
dη,

I4 ≜

ˆ
T
K0 (λAr(θ, η)) ∂2

θη

(
ρ(η)R(θ) sin(η−θ)

R(η)

)
dη,

with
Br(θ, η) ≜ R(θ) −R(η) cos(η − θ)

R(θ)Ar(θ, η) · (5.5)
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Next, we shall compute I1 + I3. To do that, we split I3 into two terms as follows,

I3 = ∂θρ(θ)
ˆ
T
K0 (λAr(θ, η)) ∂η

(
R(η) sin(η−θ)

R(θ)

)
dη

+ ρ(θ)
ˆ
T
K0 (λAr(θ, η)) ∂2

θη

(
R(η) sin(η−θ)

R(θ)

)
dη

≜ ∂θρ(θ)V r(λ, θ) + ρ(θ)I3.

An integration by parts in I3 allows to get,

I3 = −λ
ˆ
T
∂ηAr(θ, η)K ′

0 (λAr(θ, η))R(η)∂θ
(

sin(η−θ)
R(θ)

)
dη.

Putting together the preceding identities yields

I1 + I3 = ∂θρ(θ)Vr(λ, θ) + ρ(θ)V1(λ, θ) (5.6)

with

V1(λ, θ) ≜ λ
ˆ
T
Br(θ, η)∂2

θη

(
R(θ)R(η) sin(η − θ)

)
K ′

0 (λAr(θ, η)) dη

− λ

ˆ
T
∂ηAr(θ, η)∂θ

(
R(η) sin(η−θ)

R(θ)

)
K ′

0 (λAr(θ, η)) dη. (5.7)

Differentiating term by term Vr with respect to θ gives

∂θVr(λ, θ) = λ

ˆ
T
∂θAr(θ, η)K ′

0 (λAr(θ, η)) ∂η
(
R(η) sin(η−θ)

R(θ)

)
dη

+
ˆ
T
K0 (λAr(θ, η)) ∂2

θη

(
R(η) sin(η−θ)

R(θ)

)
dη

≜ J1 + J2.

Integrating by parts in J2 yields

J2 = −λ
ˆ
T
R(η)∂ηAr(θ, η)K ′

0 (λAr(θ, η)) ∂θ
(

sin(η−θ)
R(θ)

)
dη.

Combining the preceding identities allows to deduce that

∂θVr(λ, θ) = λ

ˆ
T
K ′

0 (λAr(θ, η))
[
∂θAr(θ, η)∂η

(
R(η) sin(η−θ)

R(θ)

)
− ∂ηAr(θ, η)∂θ

(
R(η) sin(η−θ)

R(θ)

)]
dη.

Next we shall check the following identity

∂θAr(θ, η)∂η
(
R(η) sin(η−θ)

R(θ)

)
= Br(θ, η)∂2

θη (R(θ)R(η) sin(η − θ)) − ∂ηAr(θ, η). (5.8)

Indeed, by (5.4) and (5.5), one finds

∂θAr(θ, η)∂η
(
R(η) sin(η−θ)

R(θ)

)
= ∂θR(θ)Br(θ, η)∂η(R(η) sin(η − θ)) − R(η) sin(η−θ)∂η(R(η) sin(η−θ))

Ar(θ,η)

67



Part I

and

Br(θ, η)∂2
θη (R(θ)R(η) sin(η − θ)) = ∂θR(θ)Br(θ, η)∂η(R(η) sin(η − θ))

− (R(θ)−R(η) cos(η−θ))∂η(R(η) cos(η−θ))
Ar(θ,η) ·

Putting together the foregoing identities leads to

∂θAr(θ, η)∂η(R(η) sin(η − θ))
R(θ) = Br(θ, η)∂2

θη (R(θ)R(η) sin(η − θ)) + g(θ, η),

where

g(θ, η) ≜ 1
Ar(θ,η) [(R(θ) −R(η) cos(η − θ))∂η(R(η) cos(η − θ)) −R(η) sin(η − θ)∂η(R(η) sin(η − θ))]

= R(θ)∂η(R(η) cos(η−θ))−R(η)∂ηR(η)
Ar(θ,η)

= −∂ηAr(θ, η).

This achieves the proof of (5.8). From the periodicity we get
ˆ
T
λ∂ηAr(θ, η)K ′

0 (λAr(θ, η)) dη =
ˆ
T
∂η [K0 (λAr(θ, η))] dη = 0

and thus we get the following important identity

∂θVr(λ, θ) = V1(λ, θ).

Plugging this into (5.6) allows to get

I1 + I3 = ∂θ
(
Vr(λ, θ)ρ(θ)

)
.

Notice that it is easy to check that if r(−t,−θ) = r(t, θ), then

Vr(λ,−t,−θ) = Vr(λ, t, θ). (5.9)

The next task is to compute I2 + I4. Using integration by parts in I4 gives,

I4 = −λ
ˆ
T
ρ(η)∂ηAr(θ, η)K ′

0 (λAr(θ, η)) ∂θ
(
R(θ) sin(η−θ)

R(η)

)
dη.

From the symmetry property Ar(θ, η) = Ar(η, θ) and by exchanging the roles of θ and η in (5.8), one
deduces

Br(η, θ)∂2
θη (R(θ)R(η) sin(η − θ)) − ∂ηAr(θ, η)∂θ

(
R(θ) sin(η−θ)

R(η)

)
= −∂θAr(θ, η).

Therefore we obtain

I2 + I4 = −∂θ
(ˆ

T
ρ(η)K0 (λAr(θ, η)) dη

)
≜ −∂θLr(ρ)(λ, θ).

Finally, by setting
Vr(λ, t, θ) ≜ Ω + Vr(λ, t, θ)

and combining the preceding identities, we end the proof of Lemma 5.1.
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5.1.2 The integrable case

The main purpose here is to explore the structure of the linearized operator at the equilibrium state.
We shall see that the radial shape is reflected on the structure the linearized operator which is a Fourier
multiplier (of a convolution type). More precisely, we have the following result.

Lemma 5.2. The following properties hold true.

1. The linearized equation of (4.13) at the equilibrium state (r = 0) writes,

∂tρ = ∂θL(λ)ρ = ∂θ∇HL(ρ), (5.10)

where L(λ) is the self-adjoint operator defined by L(λ) ≜ −V0(λ) + Kλ∗θ with

V0(λ) ≜ Ω + I1(λ)K1(λ) (5.11)

and
Kλ(θ) ≜ K0

(
2λ
∣∣sin ( θ2)∣∣) . (5.12)

We refer to the Appendix A for the definitions of the modified Bessel functions I1, K1 and K0.

Moreover, the Hamiltonian HL is quadratic and takes the form

HL(ρ) ≜ 1
2 ⟨L(λ)ρ, ρ⟩L2(T).

2. The solutions to (5.10) with zero space average are given by

ρ(t, θ) =
∑
j∈Z∗

ρj(0)ei(jθ−Ωj(λ)t), (5.13)

with
Ωj(λ) ≜ j

[
Ω + (I1K1)(λ) − (IjKj)(λ)

]
. (5.14)

and for ρ(θ) =
∑
j∈Z∗

ρje
ijθ we have

L(λ)ρ(θ) = −
∑
j∈Z∗

Ωj(λ)
j ρje

ijθ and HLρ = −
∑
j∈Z∗

Ωj(λ)
2j |ρj |2, (5.15)

Before proceeding with the proof we want to give some remarks.

Remark 5.1. • When Ω = 0 the eigenvalue Ω1(λ) vanishes for any λ due to the rotation invariance
of the equation and the use of the free parameter Ω is to avoid this degeneracy. However the trivial
resonance Ω0(λ) = 0 can be removed by imposing the zero space average which is preserved by the
nonlinear dynamics from the Hamiltonian structure as we have seen before in (4.14).

• The solutions to the linear equation at the equilibrium are aperiodic and if we excite only a finite
number of frequencies with non-resonances assumption we get quasi-periodic solutions. We will make
a precise comment later on Proposition 5.1.

Proof. 1. First observe that from (5.4), one deduces for r = 0 that A0(θ, η) = 2
∣∣∣sin(η−θ

2

)∣∣∣. Then we
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obtain from (5.1) and (5.2),

L0ρ(λ, θ) =
ˆ
T
ρ(η)K0

(
2λ
∣∣∣sin(η−θ

2

)∣∣∣) dη
= Kλ ∗ ρ(θ),

with Kλ defined in (5.12) and using the change of variables η 7→ η + θ we obtain

V0(λ, θ) = Ω +
ˆ
T
K0

(
2λ
∣∣∣sin(η−θ

2

)∣∣∣) cos(η − θ)dη

= Ω +
ˆ
T
K0
(
2λ
∣∣sin (η2 )∣∣) cos(η)dη

≜ V0(λ).

We remark that if we write ej(θ) = eijθ, then direct computations yield

(Kλ ∗ ej)(θ) =
ˆ
T
K0
(
2λ
∣∣sin (η2 )∣∣) eij(θ−η)dη

= ej(θ)
ˆ
T
K0
(
2λ
∣∣sin (η2 )∣∣) e−ijηdη.

Since the function η 7→ K0
(
2λ
∣∣sin (η2 )∣∣) is even, we deduce using the change of variables η = 2τ + π and

the formula (C.9) that
ˆ
T
K0
(
2λ
∣∣sin (η2 )∣∣) e−ijηdη =

ˆ
T
K0
(
2λ
∣∣sin (η2 )∣∣) cos (jη) dη

= (−1)j

π

ˆ π
2

− π
2

K0(2λ cos(τ)) cos(2jτ)dτ

= (IjKj)(λ).

Hence, the Fourier coefficients of Kλ are

(Kλ)j = (IjKj)(λ). (5.16)

Similar arguments as before with j = 1 allow to get

V0(λ) = Ω + (I1K1)(λ).

Recall that Kλ is even and then we find that L(λ) is self-adjoint in L2(T).
2. Starting from the Fourier expansion ρ(t, θ) =

∑
j∈Z∗

ρj(t)eijθ, then we can easily ensure from direct

computations using the previous results, that ρ solves the equation (5.10) if and only if

ρ̇j = −iΩj(λ)ρj with Ωj(λ) = j
[
Ω + (I1K1)(λ) − (IjKj)(λ)

]
,

and therefore
ρ(t, θ) =

∑
j∈Z∗

ρj(0)ei(jθ−Ωj(λ)t).

Concerning the identities (5.15) they can be obtained from straightforward computations. This ends the
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proof of Lemma 5.2.

5.2 Structure of the linear frequencies

The main target in this section is to explore some interesting structures of the equilibrium frequencies.
We shall in particular focus on their monotonicity and detail some asymptotic behavior for large modes.
Another important discussion will be devoted to the non-degeneracy of these frequencies through the
so-called Rüssmann conditions. This is the cornerstone step in measuring the final Cantor set giving rise
to quasi-periodic solutions for the linear/nonlinear problems. Actually, in the nonlinear case the final
Cantor appears as a perturbation of the Cantor set constructed from the equilibrium eigenvalues and
therefore perturbative arguments based on their non-degeneracy are very useful and will be performed in
Section 8.2.

5.2.1 Monotonicity and asymptotic behaviour

Our purpose is to establish some useful properties related to the monotonicity and the asymptotic behavior
for large modes of the eigenvalues of the linearized operator at the equilibrium state. Notice that their
explicit values are detailed in (5.14). Our result reads as follows.

Lemma 5.3. Let Ω > 0 and λ ∈ R, then the frequencies (Ωj(λ))j∈Z∗ satisfy the following properties.

(i) For any j ∈ Z∗, λ > 0 we have Ω−j(λ) = −Ωj(λ).

(ii) For any λ > 0, the sequences (Ωj(λ))j∈N∗ and
(

Ωj(λ)
j

)
j∈N∗

are strictly increasing.

(iii) For any λ > 0, the following expansion holds

Ωj(λ) =
j→∞

V0(λ)j − 1
2 + λ2

4j2 +Oλ

(
1
j4

)
, (5.17)

where V0(λ) is defined in (5.11).

(iv) For any j ∈ Z∗, λ > 0 we have
|Ωj(λ)| ⩾ Ω|j|.

(v) Given 0 < λ0 < λ1, there exists C0 > 0 such that

∀λ ∈ [λ0, λ1],∀j, j0 ∈ Z, |Ωj(λ) ± Ωj0(λ)| ⩾ C0|j ± j0|.

(vi) Given 0 < λ0 < λ1 and q0 ∈ N, there exists C0 > 0 such that

∀ j, j0 ∈ Z∗, max
q∈J0,q0K

sup
λ∈[λ0,λ1]

|∂qλ (Ωj(λ) − Ωj0(λ))| ⩽ C0|j − j0|.

Proof. (i) It is an immediate consequence of (5.14) and (C.3).
(ii) The monotonicity of the sequence

(
Ωj(λ)
j

)
j∈N∗

is proved in [54, Prop. 5.9. (1)], see also the Appendix
C. It follows that the sequence (Ωj(λ))j∈N∗ is strictly increasing as the product of two strictly increasing
positive sequences.
(iii) It is an immediate consequence of (5.14) and the asymptotic expansion (C.14)
(iv) Recall that j 7→ Ωj(λ) is odd and vanishes at j = 0. Then it suffices to check the result for j ∈ N∗.

According to the Appendix C, the sequence j 7→ (IjKj)(λ) is decreasing and therefore

∀λ > 0, (I1K1)(λ) − (IjKj)(λ) ⩾ 0. (5.18)
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It follows that
∀λ > 0, |Ωj(λ)| ⩾ Ωj.

(v) By the oddness of j 7→ Ωj(λ) it is enough to establish the estimate for j, j0 ∈ N. We shall first focus on
the estimate of the difference Ωj(λ) − Ωj0(λ). Without loss of generality we can assume that j > j0 ⩾ 1,
(The case j = j0 is obvious and the case j0 = 0 brings us back to the previous point). One may write by
(5.14) that for λ > 0,

Ωj(λ) − Ωj0(λ) = (j − j0)
(

Ω + I1(λ)K1(λ) − Ij(λ)Kj(λ)
)

+ j0

(
Ij0(λ)Kj0(λ) − Ij(λ)Kj(λ)

)
. (5.19)

Combining this identity with the estimate (5.18) yields

Ωj(λ) − Ωj0(λ) ⩾ (j − j0)Ω + j0

(
Ij0(λ)Kj0(λ) − Ij(λ)Kj(λ)

)
. (5.20)

We need to get refined estimate for the last term of the right hand side. For this goal we use the formulae
(C.10) to write

(InKn)(λ) = 1
2

ˆ ∞

0
J0
(
2λ sinh( t2 )

)
e−ntdt. (5.21)

This allows to construct for a fixed λ a smooth extension n ∈ (0,∞) 7→ (InKn)(λ). Thus differentiating
term by term using change of variable we get for any m ∈ N

sup
λ∈R

|∂mn (InKn)(λ)| ⩽ 1
2

ˆ ∞

0
tme−ntdt

⩽ m!
2nm+1 , (5.22)

where we have used the classical estimates for Bessel functions (applied with n = q = 0)

sup
n,q∈N

x∈R

|J (q)
n (x)| ⩽ 1, (5.23)

which follows easily from the integral representation (C.1). In particular, for m = 1 we find that for for
any n ⩾ 1

sup
λ∈R

∣∣∣∂n(InKn)(λ)
∣∣∣ ⩽ 1

2n2 ·

Therefore applying Taylor Formula we infer for j > j0 ⩾ 1

sup
λ∈R

∣∣∣(IjKj)(λ) − (Ij0Kj0)(λ)
∣∣∣ ⩽ 1

2

ˆ j

j0

dn

n2

⩽ |j−j0|
2 j j0

· (5.24)

Inserting this estimate into (5.20) gives

Ωj(λ) − Ωj0(λ) ⩾ (j − j0)
(

Ω − 1
2j

)
.

Therefore for j > N =
[
Ω−1] and j > j0 ⩾ 1 we get

Ωj(λ) − Ωj0(λ) ⩾ 1
2 Ω (j − j0). (5.25)
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Now for j ̸= j0 ∈ J1, NK we get from the point (ii) that the map λ ∈ [λ0, λ1] 7→ Ωj(λ) − Ωj0(λ) does not
vanish and therefore we can find by a compactness argument a constant C > 0 such that

∀λ ∈ [λ0, λ1], |Ωj(λ) − Ωj0(λ)| ⩾ C|j − j0|.

Taking C0 = min(C, 1
2 Ω) and combining the preceding inequality with (5.25) we obtain

∀λ ∈ [λ0, λ1],∀j ⩾ j0 ⩾ 1, |Ωj(λ) − Ωj0(λ)| ⩾ C0|j − j0|.

Finally we get
∀λ ∈ [λ0, λ1],∀j, j0 ∈ N, |Ωj(λ) − Ωj0(λ)| ⩾ C0|j − j0|.

Let us now move to the estimate Ωj(λ) + Ωj0(λ) for j, j0 ∈ N. Since both quantities are positive then
using the point (iv) yields

∀λ ∈ [λ0, λ1], |Ωj(λ) + Ωj0(λ)| = Ωj(λ) + Ωj0(λ) ⩾ Ω(j + j0) ⩾ C0(j + j0).

This completes the proof of the desired estimate.
(vi) Let q0 ∈ N∗. let q ∈ J0, q0K. Differentiating q times (5.19) in λ, one obtains

∂qλ
(
Ωj(λ) − Ωj0(λ)

)
= (j − j0)

(
∂qλΩ + ∂qλ

(
I1(λ)K1(λ)

)
− ∂αλ

(
Ij(λ)Kj(λ)

))
+ j0∂

q
λ

(
Ij0(λ)Kj0(λ) − Ij(λ)Kj(λ)

)
. (5.26)

Similarly, we get by differentiating q times in λ the identity (5.21)

∂qλ(InKn)(λ) = 2q−1λq
ˆ ∞

0
J

(q)
0
(
2λ sinh( t2 )

)
sinhq( t2 )e−ntdt. (5.27)

From (5.23) we deduce for any λ ∈ [λ0, λ1],

|∂qλ(InKn)(λ)| ⩽ 2q−1λq1

ˆ ∞

0
sinhq( t2 )e−ntdt.

Then using the inequality sinh x ⩽ ex

2 for x ⩾ 0 we get for n > q
2

|∂qλ(InKn)(λ)| ⩽ λq
1

2

ˆ ∞

0
e

( q
2 −n

)
t
dt

⩽ λq
1

2n−q · (5.28)

By compactness argument, we deduce that

sup
j∈N

max
q∈J0,q0K

sup
λ∈[λ0,λ1]

∣∣∂qλ(Ij(λ)Kj(λ)
)∣∣ ⩽ C. (5.29)

Differentiating in n (5.27) yields

∂qλ∂n(InKn)(λ) = −2q−1λq
ˆ ∞

0
J

(q)
0
(
2λ sinh(t/2)

)
sinhq(t/2)te−ntdt.
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Therefore applying similar arguments used to show (5.28) gives for 2n > q

|∂qλ∂n(InKn)(λ)| ⩽ λq
1

2

ˆ ∞

0
te

−
(
n− q

2
)
t
dt

⩽
2λq1

(2n− q)2 · (5.30)

Then Taylor Formula allows to get for j, j0 >
q
2

sup
λ∈[λ0,λ1]

|∂qλ(IjKj − Ij0Kj0)(λ)| ⩽ C |j−j0|
jj0

· (5.31)

Setting N = ⌊ q0
2 ⌋ + 1, one obtains for any j, j0 ⩾ N

max
q∈J0,q0K

sup
λ∈[λ0,λ1]

|j0∂
q
λ(IjKj − Ij0Kj0)(λ)| ⩽ C|j − j0|·

By compactness argument, one obtains for any j, j0 ∈ J1, NK

max
q∈J0,q0K

sup
λ∈[λ0,λ1]

|j0∂
q
λ(IjKj − Ij0Kj0)(λ)| ⩽ C|j − j0|·

Now for the remaining case j0 ∈ J1, NK and j ⩾ N one has gathering the previous two estimates

max
q∈J0,q0K

sup
λ∈[λ0,λ1]

|j0∂
q
λ(IjKj − Ij0Kj0)(λ)| ⩽ N max

q∈J0,q0K
sup

λ∈[λ0,λ1]
|∂qλ(IjKj − INKN )(λ)|

+N max
q∈J0,q0K

sup
λ∈[λ0,λ1]

|∂qλ(INKN − Ij0Kj0)(λ)|

⩽ C|j −N | + C|N − j0| ⩽ C|j − j0|·

Thus we can find C > 0 such that for any j, j0 ∈ N∗

max
q∈J0,q0K

sup
λ∈[λ0,λ1]

|j0∂
q
λ(IjKj − Ij0Kj0)(λ)| ⩽ C|j − j0|·

Putting together (5.26), (5.29) and (5.14) yields

max
q∈J0,q0K

sup
λ∈[λ0,λ1]

|∂qλ (Ωj(λ) − Ωj0(λ))| ⩽ C|j − j0|.

This ends the proof of Lemma 5.3.

5.2.2 Non-degeneracy and transversality

Fix finitely many tangential sites

S ≜ {j1, . . . , jd} ⊂ N∗ with d ⩾ 1 and 1 ⩽ j1 < · · · < jd.

We consider the linear vector frequency at the equilibrium state

ωEq(λ) ≜ (Ωj(λ))j∈S, (5.32)

where Ωj(λ) is defined by (5.14). The main purpose is to study some Diophantine structure of the curve
λ ∈ (λ0, λ1) 7→ ωEq(λ) for fixed 0 < λ0 < λ1. In particular, we shall focus on the non-degeneracy and the
transversality conditions of these eigenvalues which are essential in getting non trivial Cantor set from
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which quasi-periodic solutions emerge at the linear and nonlinear levels. Notice that the approach that we
shall implement here has been developed before in several papers such as [7, 12, 139]. Before exploring
these properties we need to fix some definitions.

Definition 5.1. Given two numbers λ0 < λ1 and d ∈ N∗, a vector-valued function f = (f1, ..., fd) :
[λ0, λ1] → Rd is called non-degenerate if, for any vector c = (c1, ..., cd) ∈ Rd \ {0}, the function f · c =
f1c1 + ...+ fdcd is not identically zero on the whole interval [λ0, λ1]. This means that the curve of f is
not contained in an hyperplane.

Now we shall prove the following result on the non-degeneracy of the linear frequencies which is related
to the asymptotic behavior of Bessel functions (IjKj)(λ) for large values of λ. This property will be
crucial to check a suitable transversality assumption.

Lemma 5.4. Let Ω ∈ R∗ and 0 < λ0 < λ1, then the frequency curve ωEq defined by (5.32) and the
vector-valued function λ 7→ (Ω + I1K1, ωEq) ∈ Rd+1 are non degenerate on [λ0, λ1] in the sense of the
Definition 5.1.

Proof. ▶ Let us start with checking the non-degeneracy of ωEq. For this aim, we shall argue by contradiction
and assume the existence of a fixed vector c = (ck)0⩽k⩽d ∈ Rd such that

∀λ ∈ [λ0, λ1],
d∑
k=1

ckΩjk
(λ) = 0. (5.33)

Since for all j ∈ N∗, the application λ 7→ (IjKj)(λ) admits a holomorphic extension in the open connected
set
{
λ ∈ C,Re(λ) > 0

}
(see Appendix C) then by the continuation principle we obtain

∀λ > 0,
d∑
k=1

ckjk(Ijk
Kjk

)(λ) =
(

d∑
k=1

ckjk

)(
(I1K1)(λ) + Ω

)
. (5.34)

Using the asymptotic expansion (C.15) obtained for IjKj with large λ, we first get

∀j ∈ N∗, lim
λ→∞

(IjKj)(λ) = 0.

Then taking the limit in (5.34) as λ → ∞ implies

Ω
d∑
k=1

ckjk = 0.

Since we assumed that Ω ̸= 0, then necessary we find that
d∑
k=1

ckjk = 0 which implies in turn according to

(5.34)

∀λ > 0,
d∑
k=1

ckjk(Ijk
Kjk

)(λ) = 0.

Applying once again the expansion (C.15) yields

∀m ∈ J1, dK,
d∑
k=1

ckjkαjk,m = 0. (5.35)

We consider the matrix Ad = (Am,k)1⩽m,k⩽d ∈ Md(R) defined by

∀(m, k) ∈ J1, dK2, Am,k ≜ jkαjk,m.

75



Part I

Then the system (5.35) is equivalent to Adc = 0 with c =


c1
...
cd

 . To get the desired result, c = 0, it

suffices to check that det
(
Ad
)

̸= 0. Using the expression of the coefficients αjk,m in (C.16) one deduces
that

αjk,m = am(µjk
− 1)Qm

(
µjk

)
, am = (−1)m (2m)!

4m
(
m!
)2 , µj = 4j2, (5.36)

with Q1(X) = 1 and for m ≥ 2

Qm(X) =
m∏
ℓ=2

(
X − (2ℓ− 1)2).

Remark that Qm is a unitary polynomial of degree m − 1. Using the homogeneity of the determinant
with respect to each column and row we find

det
(
Ad
)

=
d∏

m,k=1
am(µjk

− 1) det
(
Bd
)
,

with Bd the matrix given by

Bd ≜


Q1(µj1) · · · Q1(µjd

)
...

...
Qd(µj1) · · · Qd(µjd

)

 .

Therefore we infer that Ad is nonsingular if det
(
Bd
)

≠ 0. On the other hand, the computation of det
(
Bd
)

can be done in a similar way to Vandermonde determinant. Indeed, define the polynomial given by the
determinant

P (X) ≜

∣∣∣∣∣∣∣∣
Q1(µj1) · · · Q1(µjd−1) Q1(X)

...
...

...
Qd(µj1) · · · Qd(µjd−1) Qd(X)

∣∣∣∣∣∣∣∣ .
Then P is a polynomial of degree d − 1 and vanishes at all the points X = µjk

for k ∈ J1, d − 1K.
Consequently, we get

det
(
Bd
)

= P (µjd
) = det

(
Bd−1

) d−1∏
k=1

(
µjd

− µjk

)
.

Therefore, iterating this identity yields

det
(
Bd
)

=
∏

1⩽k<ℓ⩽d−1

(
µjℓ

− µjk

)
.

Since µjℓ
̸= µjk

for ℓ ̸= k we get det
(
Bd
)

̸= 0 which achieves the proof of the first point.
▶ Next we move to the second point of the lemma and show that if

∀λ ∈ [λ0, λ1], c0

(
Ω + (I1K1)(λ)

)
+

d∑
k=1

ckjk

(
Ω + (I1K1)(λ) − (Ijk

Kjk
)(λ)

)
= 0,

then necessary c0 = ... = cd = 0. As before we can extend by analyticity the preceding identity to (0,∞)
By checking the terms in 1

λ in the preceding identity using (C.15) we find immediately that c0 = 0.
Therefore the system reduces to (5.33) and then we may apply the result of the first point in order to get
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c1 = ... = cd = 0. This completes the proof of Lemma 5.4.

The next goal is to check that Rüssemann transversality conditions are satisfied for the linear frequencies
of the equilibrium state. Namely, we shall prove the following result in the spirit of the papers [7, 12, 139].

Lemma 5.5. [Transversality] Given 0 < λ0 < λ1, there exist q0 ∈ N and ρ0 > 0 such that the following
results hold true. Recall that ωEq and Ωj are defined in (5.32) and (5.14) respectively.

(i) For any l ∈ Zd \ {0}, we have

inf
λ∈[λ0,λ1]

max
q∈J0,q0K

|∂qλωEq(λ) · l| ⩾ ρ0⟨l⟩.

(ii) For any (l, j) ∈ (Zd × N) \ {(0, 0)}

inf
λ∈[λ0,λ1]

max
q∈J0,q0K

∣∣∣∂qλ(ωEq(λ) · l ± j
(
Ω + (I1K1)(λ)

))∣∣∣ ⩾ ρ0⟨l⟩.

(iii) For any (l, j) ∈ Zd × (N∗ \ S)

inf
λ∈[λ0,λ1]

max
q∈J0,q0K

∣∣∂qλ (ωEq(λ) · l ± Ωj(λ))
∣∣ ⩾ ρ0⟨l⟩.

(iv) For any l ∈ Zd, j, j′ ∈ N∗ \ S with (l, j) ̸= (0, j′), we have

inf
λ∈[λ0,λ1]

max
q∈J0,q0K

∣∣∂qλ(ωEq(λ) · l + Ωj(λ) ± Ωj′(λ)
)∣∣ ⩾ ρ0⟨l⟩.

Proof. (i) We argue by contradiction by assuming that for any q0 ∈ N and ρ0 > 0, there exist l ∈ Zd \ {0}
and λ ∈ [λ0, λ1] such that

max
q∈J0,q0K

|∂qλ(ωEq(λ) · l)| < ρ0⟨l⟩.

It follows that for any m ∈ N, and by taking q0 = m and ρ0 = 1
m+1 , there exist lm ∈ Zd \ {0} and

λm ∈ [λ0, λ1] such that
max

q∈J0,mK
|∂qλωEq(λm) · lm| < ⟨lm⟩

m+1

and therefore
∀q ∈ N, ∀m ⩾ q,

∣∣∣∂qλωEq(λm) · lm
⟨lm⟩

∣∣∣ < 1
m+1 · (5.37)

Since the sequences
(
lm

⟨lm⟩

)
m

and (λm)m are bounded, then by compactness and up to an extraction we
can assume that

lim
m→∞

lm
⟨lm⟩ = c̄ ̸= 0 and lim

m→∞
λm = λ̄.

Hence, passing to the limit in (5.37) as m → ∞ leads to

∀q ∈ N, ∂qλωEq(λ̄) · c̄ = 0.

Thus, we conclude that the real analytic function λ 7→ ωEq(λ) · c̄ is identically zero which contradicts the
non-degeneracy condition stated in Lemma 5.4.

(ii) We shall first check the result for the case l = 0 and j ∈ N∗. Obviously, one has from the monotonicity
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of λ 7→ I1(λ)K1(λ) stated in Appendix C,

inf
λ∈[λ0,λ1]

max
q∈J0,q0K

∣∣∣∂qλ(j(Ω + (I1K1)(λ)
))∣∣∣ ⩾ Ω + (I1K1)(λ1)

⩾ ρ0⟨l⟩,

for some ρ0 > 0. Now let us consider l ∈ Zd\{0} and j ∈ N. Then we may write according to the
triangle and Cauchy-Schwarz inequalities combined with the boundedness of ωEq and the monotonicity of
λ 7→ I1(λ)K1(λ) stated in Appendix C,∣∣∣ωEq(λ) · l ± j

(
Ω + I1(λ)K1(λ)

)∣∣∣ ⩾ j(Ω + I1(λ1)K1(λ1)
)

− |ωEq(λ) · l| ⩾ c0j − C⟨l⟩ ⩾ ⟨l⟩

provided that j ⩾ C0⟨l⟩ for some C0 > 0. Therefore we reduce the proof to indices j and l with

0 ⩽ j < C0⟨l⟩, j ∈ N and l ∈ Zd\{0}. (5.38)

Arguing by contradiction as in the previous case, we may assume the existence of sequences lm ∈ Zd \ {0},
jm ∈ N satisfying (5.38) and λm ∈ [λ0, λ1] such that

max
q∈J0,mK

∣∣∣∣∂qλ (ωEq(λ) · lm
|lm| ± jm

Ω+(I1K1)(λ)
|lm|

)
|λ=λm

∣∣∣∣ < 1
m+1

and therefore

∀q ∈ N, ∀m ⩾ q,
∣∣∣∣∂qλ (ωEq(λ) · lm

|lm| ± jm
Ω+(I1K1)(λ)

|lm|

)
|λ=λm

∣∣∣∣ < 1
m+1 · (5.39)

Since the sequences
(
lm

|lm|

)
m

,
(
jm

|lm|

)
m

and (λm)m are bounded, then up to an extraction we can assume
that

lim
m→∞

lm
|lm| = c̄ ̸= 0, lim

m→∞
jm

|lm| = d̄ and lim
m→∞

λm = λ̄.

Hence, by letting m → ∞ in (5.39), using that λ 7→ (I1K1)(λ) is smooth, we find

∀q ∈ N, ∂qλ

(
ωEq(λ) · c̄± d̄

(
Ω + (I1K1)(λ)

))
|λ=λ

= 0.

Thus, the real analytic function λ 7→ ωEq(λ) · c̄± d̄
(
Ω + I1(λ)K1(λ)

)
with (c̄, d̄) ̸= (0, 0) is identically zero

and this contradicts Lemma 5.4.

(iii) Consider (l, j) ∈ Zd × (N∗ \ S). Then applying the triangle inequality and Lemma 5.3-(iv), yields

|ωEq(λ) · l ± Ωj(λ)| ⩾ |Ωj(λ)| − |ωEq(λ) · l|

⩾ Ωj − C|l| ⩾ ⟨l⟩

provided j ⩾ C0⟨l⟩ for some C0 > 0. Thus as before we shall restrict the proof to indices j and l with

0 ⩽ j < C0⟨l⟩, j ∈ N∗ \ S and l ∈ Zd\{0}. (5.40)

Proceeding by contradiction as in the previous case, we may assume the existence of sequences lm ∈ Zd\{0},
jm ∈ N \ S satisfying (5.40) and λm ∈ [λ0, λ1] such that

max
q∈J0,mK

∣∣∣∣∂qλ (ωEq(λ) · lm
|lm| ± Ωjm (λ)

|lm|

)
|λ=λm

∣∣∣∣ < 1
m+1
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and therefore
∀q ∈ N, ∀m ⩾ q,

∣∣∣∣∂qλ (ωEq(λ) · lm
|lm| ± Ωjm (λ)

|lm|

)
|λ=λm

∣∣∣∣ < 1
m+1 · (5.41)

Since the sequences
(
lm

|lm|

)
m

and (λm)m are bounded, then up to an extraction we can assume that

lim
m→∞

lm
|lm| = c̄ ̸= 0 and lim

m→∞
λm = λ̄.

Now we shall distinguish two cases.
▶ Case ❶ : (lm)m is bounded. In this case, by (5.40) we find that (jm)m is bounded too and thus up
to an extraction we may assume lim

m→∞
lm = l̄ and lim

m→∞
jm = j̄. Since (jm)m and (|lm|)m are sequences

of integers, then they are necessary stationary. In particular, the condition (5.40) implies l̄ ̸= 0. Hence,
taking the limit n → ∞ in (5.41), yields

∀q ∈ N, ∂qλ
(
ωEq(λ) · l̄ ± Ωj̄(λ)

)
|λ=λ = 0.

Thus, the analytic function λ 7→ ωEq(λ) · l̄± Ωj̄(λ) with (l̄, 1) ̸= (0, 0) is identically zero which contradicts
Lemma 5.4.
▶ Case ❷ : (lm)m is unbounded. Up to an extraction we can assume that lim

m→∞
|lm| = ∞. We have two

sub-cases.
• Sub-case ① : (jm)m is bounded. In this case and up to an extraction we can assume that it converges.
Then, taking the limit m → ∞ in (5.41), we find

∀q ∈ N, ∂qλωEq(λ̄) · c̄ = 0.

As before we conclude that function λ 7→ ωEq(λ) · c̄ with c̄ ≠ 0 is identically zero which contradicts Lemma
5.4.
• Sub-case ② : (jm)m is unbounded. Then up to an extraction we can assume that lim

m→∞
jm = ∞. We

write according to (5.14)

Ωjm (λ)
|lm| = jm

|lm|

(
Ω + (I1K1)(λ) − (Ijm

Kjm
)(λ)

)
. (5.42)

By (5.40), the sequence
(
jm

|lm|

)
n

is bounded, thus up to an extraction we can assume that it converges to
d̄. Using the first inequality of (5.22) we deduce that

∀m ∈ N, sup
λ∈R

∣∣(Ijm
Kjm

)(λ)
∣∣ ≤ 1

2jm
,

which implies that
lim
m→∞

sup
λ∈R

(Ijm
Kjm

)(λ) = 0.

Moreover by (5.28), we have

lim
m→∞

sup
λ∈[λ0,λ1]

|∂qλ(Ijm
Kjm

)(λ)| = 0. (5.43)

Taking the limit in (5.42) and using (5.43) yields

lim
m→∞

∂q
λ

Ωjm (λm)
|lm| = ∂qλ

(
d
(
Ω +

(
I1K1

)
(λ)
))

|λ=λ.
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Consequently, taking the limit m → ∞ in (5.41), we have

∀q ∈ N, ∂qλ

(
ωEq(λ) · c̄± d̄

(
Ω +

(
I1K1

)
(λ)
))

|λ=λ
= 0.

By continuation the analytic function λ 7→ ωEq(λ) · c̄± d̄
(
Ω + I1(λ)K1(λ)

)
with (c̄, d̄) ̸= 0 is identically

zero which contradicts Lemma 5.4.

(iv) Consider l ∈ Zd, j, j′ ∈ N∗ \ S with (l, j) ̸= (0, j′). Then applying the triangle inequality com-
bined with Lemma 5.3-(v), we infer

|ωEq(λ) · l + Ωj(λ) ± Ωj′(λ)| ⩾ |Ωj(λ) ± Ωj′(λ)| − |ωEq(λ) · l| ⩾ C0|j ± j′| − C|l| ⩾ ⟨l⟩

provided that |j ± j′| ⩾ c0⟨l⟩ for some c0 > 0. Then it remains to check the proof for indices satisfying

|j ± j′| < c0⟨l⟩, l ∈ Zd\{0} and j, j′ ∈ N∗ \ S. (5.44)

Reasoning by contradiction as in the previous cases, we get for all m ∈ N, real numbers lm ∈ Zd \ {0},
jm, j

′
m ∈ N∗ \ S satisfying (5.44) and λm ∈ [λ0, λ1] such that

max
q∈J0,mK

∣∣∣∣∂qλ (ωEq(λ) · lm
|lm| +

Ωjm (λ)±Ωj′
m

(λ)
|lm|

)
|λ=λm

∣∣∣∣ < 1
m+1

implying in turn that

∀q ∈ N, ∀m ⩾ q,
∣∣∣∣∂qλ (ωEq(λ) · lm

|lm| +
Ωjm (λ)±Ωj′

m
(λ)

|lm|

)
|λ=λm

∣∣∣∣ < 1
m+1 · (5.45)

Up to an extraction we can assume that lim
m→∞

lm
|lm| = c̄ ̸= 0 and lim

m→∞
λm = λ̄.

As before we shall distinguish two cases.
▶ Case ❶ : (lm)m is bounded. We shall only focus on the most delicate case associated to the difference
Ωjm − Ωj′

m
. Up to an extraction we may assume that lim

m→∞
lm = l̄ ̸= 0. Now according to (5.44) we have

two sub-cases to discuss depending whether the sequences (jm)m and (j′
m)m are simultaneously bounded

or unbounded.
• Sub-case ① : (jm)m and (j′

m)m are bounded. In this case, up to an extraction we may assume that
these sequences are stationary jm = j̄ and j′

m = j̄′ with j̄, j̄′ ∈ N∗ \ S. Hence taking the limit as m → ∞
in (5.45), we infer

∀q ∈ N, ∂qλ
(
ωEq(λ) · l̄ + Ωj̄(λ) − Ωj̄′(λ)

)
|λ=λ = 0.

Thus, the analytic function λ 7→ ωEq(λ) · l̄+Ωj̄(λ)−Ωj̄′(λ) is identically zero. If j̄ = j̄′ then this contradicts
Lemma 5.4 since l̄ ≠ 0. However in the case j̄ ≠ j̄′ ∈ N∗ \ S this still contradicts this lemma applied with
the vector frequency (ωEq,Ωj̄ ,Ωj̄′) instead of ωEq.

• Sub-case ② : (jm)m and (j′
m)m are both unbounded and without loss of generality we can assume that

lim
m→∞

jm = lim
m→∞

j′
m = ∞. From (5.31) combined with (5.44) and the boundedness of (lm)m we deduce

that

∣∣∂qλ(Ijm
Kjm

− Ij′
m
Kj′

m
)(λm)

∣∣ ⩽ C
jmj′

m
,

which implies in turn

lim
m→∞

j′
m ∂

q
λ(Ijm

Kjm
− Ij′

m
Kj′

m
)(λm) = 0. (5.46)
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5. Linearization and frequencies structure

Coming back to (5.14) we get the splitting

Ωjm(λ) − Ωj′
m

(λ) =(jm − j′
m)
(
Ω + (I1K1)(λ)

)
− (jm − j′

m)(IjmKjm)(λ)

+ j′
m

(
(Ij′

m
Kj′

m
)(λ) − (Ijm

Kjm
)(λ)

)
. (5.47)

Therefore by applying (5.43) and (5.46) we get for any q ∈ N,

lim
m→∞

∂qλ

(
Ωjm(λ) − Ωj′

m
(λ)−(jm − j′

m)
(
Ω + (I1K1)(λ)

))
|λ=λm

= 0.

Using once again (5.44) and up to an extraction we have lim
m→∞

jm−j′
m

|lm| = d̄. Thus

lim
m→∞

|lm|−1∂qλ
(
Ωjm

(λ) − Ωj′
m

(λ)
)

|λ=λm
= d̄ ∂qλ

(
Ω + (I1K1)(λ)

)
|λ=λ.

By taking the limit as m → ∞ in (5.45), we find

∀q ∈ N, ∂qλ

(
ωEq(λ) · c̄+ d̄

(
Ω + (I1K1)(λ)

))
|λ=λ

= 0.

Thus, the analytic function λ 7→ ωEq(λ) · c̄ + d̄(Ω + I1(λ)K1(λ)) with (c̄, d̄) ̸= 0 is vanishing which
contradicts Lemma 5.4. Now we shall move to the second case.
▶ Case ❷ : (lm)m is unbounded. Up to an extraction we can assume that lim

m→∞
|lm| = ∞.

We shall distinguish three sub-cases.
• Sub-case ①. The sequences (jm)m and (j′

m)m are bounded. In this case and up to an extraction they
will converge and then taking the limit in (5.45) yields,

∀q ∈ N, ∂qλωEq(λ̄) · c̄ = 0.

which leads to a contradiction as before.
• Sub-case ②. The sequences (jm)m and (j′

m)m are both unbounded. This is similar to the sub-case ② of
the case ❶.
• Sub-case ③. The sequence (jm)m is unbounded and (j′

m)m is bounded (the symmetric case is similar).
Without loss of generality we can assume that lim

m→∞
jm = ∞ and j′

m = j. By (5.44) and up to an extraction

one gets lim
m→∞

jm±j′
m

|lm| = d̄. One may use (5.14) combined with (5.43) and (5.46) in order to get for any
q ∈ N,

lim
m→∞

|lm|−1∂qλ

(
Ωjm

(λ) ± Ωj′
m

(λ) − (jm ± j′
m)
(
Ω + (I1K1)(λ)

))
|λ=λm

=

lim
m→∞

∂qλ

(
(jm±j′

m)
|lm| (IjmKjm)(λ) ± j′

m

|lm|

(
(IjmKjm)(λ) − (Ij′

m
Kj′

m
)(λ)

)
|λ=λm

= 0.

Hence, taking the limit in (5.45) implies

∀q ∈ N, ∂qλ
(
ωEq(λ) · c̄+ d̄

(
Ω + (I1K1)(λ)

))
λ=λ

= 0.

Thus, the analytic function λ 7→ ωEq(λ) · c̄+ d̄
(
Ω + I1(λ)K1(λ)

)
is identically zero with (c̄, d̄) ̸= 0 which

contradicts Lemma 5.4.This completes the proof of Lemma 5.5.
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5.2.3 Linear quasi-periodic solutions

Notice that all the solutions of (5.10) taking the form (5.13) are either periodic, quasi-periodic or almost
periodic in time, with linear frequencies of oscillations Ωj(λ) defined by (5.14) These different notions
depend on the irrationality properties of the frequencies {Ωj(λ)} and on the cardinality of the Fourier-space
support (finite for quasi-periodic functions and possibly infinite for almost periodic ones). Remark that
we have the implications

Periodic ⇒ Quasi-periodic ⇒ Almost periodic.

We shall prove here the existence of quasi-periodic solutions for the linear equation (5.10) when λ belongs
to a massive Cantor set.

Proposition 5.1. Let λ1 > λ0 > 0, d ∈ N∗ and S ⊂ N∗ with |S| = d. Then, there exists a Cantor-like set
C ⊂ [λ0, λ1] satisfying |C| = λ1 − λ0 and such that for all λ ∈ C, every function in the form

ρ(t, θ) =
∑
j∈S

ρj cos(jθ − Ωj(λ)t), ρj ∈ R∗ (5.48)

is a time quasi-periodic reversible solution to the equation (5.10) with the vector frequency

ωEq(λ) ≜
(
Ωj(λ)

)
j∈S.

Proof. It is easy to check that any function in the form (5.48) is a reversible solution to (5.10), that is a
solution satisfying the property

r(−t,−θ) = r(t, θ).

Then, it remains to check the non-resonance condition (1.24) for the frequency vector ωEq for almost every
λ ∈ [λ0, λ1]. For that purpose, we consider τ1 > 0, γ ∈ (0, 1) and define the set Cγ by

Cγ ≜
⋂

l∈Zd\{0}

{
λ ∈ [λ0, λ1] s.t. |ωEq(λ) · l| > γ

⟨l⟩τ1

}
.

Therefore its complement set takes the form

[λ0, λ1] \ Cγ =
⋃

l∈Zd\{0}

Rl where Rl ≜
{
λ ∈ [λ0, λ1] s.t. |ωEq(λ) · l| ⩽ γ

⟨l⟩τ1

}
.

It follows that ∣∣∣[λ0, λ1] \ Cγ
∣∣∣ ⩽ ∑

l∈Zd\{0}

|Rl| .

Now applying Lemma 5.6 together with Lemma 5.5-(i), one obtains

|Rl| ≲ γ
1

q0 ⟨l⟩−1− τ1+1
q0 .

Then by imposing
τ1 > (d− 1)q0 − 1,

one gets a convergent series with ∣∣[λ0, λ1] \ Cγ
∣∣ ⩽ Cγ 1

q0 .
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6. Hamiltonian toolkit and approximate inverse

Now, we define the Cantor set
C ≜

⋃
γ>0

Cγ .

Then one gets easily for any γ > 0

λ1 − λ0 − Cγ
1

q0 ⩽ |Cγ | ⩽ |C| ⩽ λ1 − λ0.

Passing to the limit as γ → 0 yields
|C| = λ1 − λ0,

which achieves the proof of Proposition 5.1.

In the previous proof, we used the following Lemma whose proof can be found in [139, Thm. 17.1].
Notice that in all the document, we use the notation |A| as the Lebesgue measure of a given measurable
set A.

Lemma 5.6. Let q0 ∈ N∗, a, b ∈ R with a < b and m, M ∈ (0,∞). Let f ∈ Cq0([a, b],R) such that

inf
x∈[a,b]

max
q∈J0,q0K

|f (q)(x)| ⩾ m.

Then, there exists C = C(a, b, q0, ∥f∥Cq0 ([a,b],R)) > 0 such that

∣∣∣ {x ∈ [a, b] s.t. |f(x)| ⩽ M}
∣∣∣ ⩽ C M

1
q0

m1+ 1
q0

·

6 Hamiltonian toolkit and approximate inverse

In this section, we shall reformulate the problem into the form of searching for zeros of a functional F .
We first rescale the equation by introducing a small parameter ε. This allows us to see the Hamiltonian
equation (4.13) as a perturbation of the equilibirum one (5.10). The latter being integrable and admitting
quasi-periodic solutions in view of Lemma 5.2-2 and Lemma 5.1, we can hope using KAM techniques to
find quasi-periodic solutions to the first one. This approach has been intensively used before in [7, 8, 29,
28, 33]. We select finitely-many tangential sites S and decompose the phase space into tangential and
normal subspaces described by the selection of Fourier modes belonging to S or not. On the tangential
part, containing the main part of the quasi-periodic solutions, we introduce action-angle variables allowing
to reformulate the problem in terms of embedded invariant tori. We shall also be concerned with some
regularity aspects for the perturbed Hamiltonian vector field appearing in F and needed during the Nash-
Moser scheme. Finally, we construct an approximate right inverse for the linearized operator associated to
F .
Next, with the result of Lemma 5.2 we can easily check that the equation (4.13) can be written in the form

∂tr = ∂θL(λ)(r) +XP (r),

where XP is the Hamiltonian vector field defined by

XP (r) ≜ I1(λ)K1(λ)∂θr − ∂θKλ ∗ r − Fλ[r]. (6.1)

Remind that Fλ[r] is introduced in (4.6) and the convolution kernel is stated in (5.12). To measure the
smallness condition it seems to be more convenient to introduce a small parameter ε and rescale the
Hamiltonian as done for instance in the papers [7, 33]. To do that we rescale the solution as follows
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r 7→ εr with r bounded. Therefore the Hamiltonian equation takes the form

∂tr = ∂θL(λ)(r) + εXPε(r), (6.2)

where XPε is the rescaled Hamiltonian vector field defined by XPε(r) ≜ ε−2XP (εr). Notice that (6.2) can
be recast in the Hamiltonian form

∂tr = ∂θ∇Hε(r), (6.3)

where the rescaled Hamiltonian Hε(r) is given by

Hε(r) ≜ ε−2H(εr)

≜ HL(r) + εPε(r), (6.4)

with HL being the quadratic Hamiltonian defined in Lemma 5.2 and εPε(r) is composed with terms of
higher order more than cubic.

6.1 Action-angle reformulation

Let us consider finitely many Fourier-frenquencies, called tangential sites, gathered in the tangantial set S
defined by

S ≜ {j1, . . . , jd} ⊂ N∗ with 1 ⩽ j1 < j2 < . . . < jd.

We now define the symmetrized tangential sets S and S0 by

S ≜ S ∪ (−S) = {±j, j ∈ S} and S0 ≜ S ∪ {0}. (6.5)

Recall from (5.32) that we denote the unperturbed tangential frequency vector by

ωEq(λ) =
(
Ωj(λ)

)
j∈S, (6.6)

where Ωj(λ) are given by (5.14). Since the application λ 7→ ωEq(λ) is continuous then ωEq
(
[λ0, λ1]

)
is a

compact subset of Rd. In particular, there exists R0 > 0 such that

ωEq
(
[λ0, λ1]

)
⊂ U ≜ B(0, R0).

Therefore, the parameters set O is defined as

O ≜ (λ0, λ1) × U . (6.7)

For s ∈ R, we decompose the phase space of L2
0(T) as the direct sum

L2
0(T) =LS

⊥
⊕ L2

⊥, (6.8)

LS ≜
{
v =

∑
j∈S

rjej , rj = r−j

}
, L2

⊥ ≜
{
z =

∑
j∈Z\S0

zjej ∈ L2, zj = z−j

}
,

where ej(θ) = eijθ. We denote by ΠS,Π
⊥
S0

the corresponding orthogonal projectors defined by

r = v + z, v ≜ ΠSr ≜
∑
j∈S

rjej , z ≜ Π⊥
S0
r ≜

∑
j∈Z\S0

rjej , (6.9)
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6. Hamiltonian toolkit and approximate inverse

where v and z are called the tangential and normal variables, respectively. Fix some small amplitudes
(aj)j∈S ∈ (R∗

+)d and set a−j = aj . We shall now introduce the action-angle variables on the tangential set
HS by making the following symplectic polar change of coordinates

∀ j ∈ S, rj =
√

a2
j + |j|Ij eiϑj , (6.10)

where
∀ j ∈ S, I−j = Ij ∈ R and ϑ−j = −ϑj ∈ T. (6.11)

Thus, any function of the phase space L2
0 decomposes as

r = A(ϑ, I, z) ≜ v(ϑ, I) + z where v(ϑ, I) ≜
∑
j∈S

√
a2
j + |j|Ij eiϑjej . (6.12)

In these coordinates the solutions (5.48) of the linear system (5.10) simply read as v(−ωEq(λ)t, I) where
ωEq is defined in (6.6) and I ∈ Rd such that the quantity under the square root is positive. The involution
S defined in (4.27) now reads in the new variables

S : (ϑ, I, z) 7→ (−ϑ, I,S z) (6.13)

and the symplectic 2-form in (4.26) becomes after straightforward computations using (6.10) and (6.11)

W =
∑
j∈S

dϑj ∧ dIj + 1
2i

∑
j∈Z\S0

1
j
drj ∧ dr−j =

(∑
j∈S

dϑj ∧ dIj

)
⊕ W|L2

⊥
, (6.14)

where W|L2
⊥

denotes the restriction of W to L2
⊥. This proves that the transformation A is symplectic. The

next goal is to study the Hamiltonian system generated by the Hamiltonian Hε in (6.4), in the action-angle
and normal coordinates (ϑ, I, z) ∈ Tν × Rν × L2

⊥ . We consider the Hamiltonian Hε defined by

Hε ≜ Hε ◦A, (6.15)

where A is the map described before in (6.12). Since L(λ) in (5.15) is a Fourier multiplier keeping invariant
the subspaces LS and L2

⊥, then the quadratic Hamiltonian HL in (5.15) in the variables (ϑ, I, z) reads, up
to an additive constant which can be removed since it does not change the dynamics in view of (4.13),

HL ◦A = −
∑
j∈S

Ωj(λ)Ij + 1
2 ⟨L(λ) z, z⟩L2(T) = −ωEq(λ) · I + 1

2 ⟨L(λ) z, z⟩L2(T), (6.16)

where ωEq ∈ Rd is the unperturbed tangential frequency vector defined by (5.14). According to (6.4) and
(6.16), one deduces that the Hamiltonian Hε in (6.15) has the form

Hε = N + εPε with N ≜ −ωEq(λ) · I + 1
2 ⟨L(λ) z, z⟩L2(T) and Pε ≜ Pε ◦A. (6.17)

We look for an embedded invariant torus

i : Td → Rd × Rd × L2
⊥

φ 7→ i(φ) ≜ (ϑ(φ), I(φ), z(φ))
(6.18)

of the Hamiltonian vector field

XHε ≜ (∂IHε,−∂ϑHε,Π⊥
S0
∂θ∇zHε) (6.19)
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filled by quasi-periodic solutions with Diophantine frequency vector ω. Remark that for the value ε = 0,
the Hamiltonian system reduces to the linear equation

ω · ∂φi(φ) = XH0(i(φ))

which admits the trivial solution given by the flat torus iflat(φ) = (φ, 0, 0) provided that ω = −ωEq(λ). In
what follows we shall consider the modified Hamiltonian equation indexed with a parameter α ∈ Rd,

Hα
ε ≜ Nα + εPε where Nα ≜ α · I + 1

2 ⟨L(λ) z, z⟩L2(T). (6.20)

For the value α = −ωEq(λ) we have Hα
ε = Hε. The parameter α will play the role of a Lagrangian

multiplier in order to satisfy a compatibility condition during the approximate inverse process. Notice
that the initial problem is reduced to finding the zeros of the nonlinear operator

F(i, α, µ, ε) ≜ ω · ∂φi(φ) −XHα
ε

(i(φ)) =

 ω · ∂φϑ(φ) − α− ε∂IPε(i(φ))
ω · ∂φI(φ) + ε∂θPε(i(φ))

ω · ∂φz(φ) − ∂θ
[
L(λ)z(φ) + ε∇zPε

(
i(φ)

)]
 , (6.21)

where µ ≜ (λ, ω) and where Pε is defined in (6.4). We point out that we can easily check that the
Hamiltonian Hα

ε is reversible in the sense of the Definition A.2, that is,

Hα
ε ◦ S = Hα

ε , (6.22)

where the involution S is defined in (6.13). Thus, we shall look for reversible solutions of

F(i, α, µ, ε) = 0,

that is, solutions satisfying
Si(φ) = i(−φ),

or equivalently,
ϑ(−φ) = −ϑ(φ), I(−φ) = I(φ), z(−φ) = (S z)(φ). (6.23)

We define the periodic component I of the torus i by

I(φ) ≜ i(φ) − (φ, 0, 0) =
(
Θ(φ), I(φ), z(φ)

)
with Θ(φ) ≜ ϑ(φ) − φ.

We define the weighted Sobolev norm of I as

∥I∥γ,Oq,s ≜ ∥Θ∥γ,Oq,s + ∥I∥γ,Oq,s + ∥z∥γ,Oq,s .

6.2 Hamiltonian regularity

This section is devoted to some regularity aspects of the Hamiltonian vector field introduced in (6.1),
together with the rescaled one associated to the Hamiltonian described in (6.17). First, we shall give a
useful decomposition of the nonlocal operator appearing in Lemma 5.1.

Lemma 6.1. We have the following decomposition of the operator Lr defined in (5.2).

Lr = Kλ ∗ · + Lr,1, (6.24)
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where Kλ is introduced in (5.12) and Lr,1 is an integral operator with kernel Kr,1 taking the following form

Kr,1(λ, φ, θ, η) ≜ K (η − θ)K 1
r,1(λ, φ, θ, η) + K 2

r,1(λ, φ, θ, η), (6.25)

with K defined by
K (θ) ≜ sin2 ( θ

2
)

log
(∣∣sin ( θ2)∣∣) (6.26)

and K 1
r,1, K 2

r,1 smooth kernels. Moreover, the kernel Kr,1 satisfies the following symmetry property

r(−φ,−θ) = r(φ, θ) ⇒ Kr,1(λ,−φ,−θ,−η) = Kr,1(λ, φ, θ, η). (6.27)

In addition,
∥∂θKλ ∗ r∥γ,Oq,s ≲ ∥r∥γ,Oq,s . (6.28)

Proof. We start by proving (6.28). According to (5.16), the Fourier coefficients of ∂θKλ are (ijIj(λ)Kj(λ))j∈Z.
Hence

∥∂θKλ ∗ r∥2
Hs =

∑
(l,j)∈Zd×Z

⟨l, j⟩2sj2I2
|j|(λ)K2

|j|(λ)|rl,j |2 ⩽ 1
4 ∥r∥2

Hs .

Notice that the last inequality is obtained by the decay property of the product IjKj on R∗
+, (C.3) and

(C.13). Thus we deduce that
∥∂θKλ ∗ r∥Hs ⩽ 1

2 ∥r∥Hs ⩽ ∥r∥Hs .

Now, from (5.16), we infer that

∂θKλ ∗ r =
∑

(l,j)∈Zd×Z

ijIj(λ)Kj(λ)rl,j(λ, ω)el,j . (6.29)

At this stage we need to explore the regularity of the multiplier with respect to λ. By using (C.9), we
write

Ij(λ)Kj(λ) = 2(−1)j

π

ˆ π
2

0
K0 (2λ cos(τ)) cos(2jτ)dτ.

From (C.7), we have the decomposition

K0(z) = − log(z/2)I0(z) + f(z), (6.30)

with I0 being the modified Bessel function of the first kind and f an analytic function. By the morphism
property of the logarithm, we get

Ij(λ)Kj(λ) = − log(λ) 2(−1)j

π

ˆ π
2

0
I0(2λ cos(τ)) cos(2jτ)dτ

− 2(−1)j

π

ˆ π
2

0
log(cos(τ)) cos(2jτ)dτ

− 2(−1)j

π

ˆ π
2

0
log(cos(τ)) (I0(2λ cos(τ)) − 1) cos(2jτ)dτ

+ 2(−1)j

π

ˆ π
2

0
f(2λ cos(τ)) cos(2jτ)dτ

≜ I1,j(λ) + I2,j + I3,j(λ) + I4,j(λ).

Since I0 and f are analytic, then the above expressions are smooth with respect to the parameter
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λ ∈ (λ0, λ1) ⊂ R∗
+. An integration by parts in I1,j(λ) and I4,j(λ) yields

∀ i ∈ {1, 4}, sup
j∈Z

(
|j| max

n∈J0,qK
∥∂(n)
λ Ii,j∥L∞([λ0,λ1])

)
≲ 1.

Looking at the definition of I0 in (C.2), we see that we have uniformly in λ ∈ [λ0, λ1],

∀n ∈ J0, qK, ∂
(n)
λ (I0 (2λ cos(τ)) − 1) = O (cos(τ)) .

Hence, an integration by parts in I3,j(λ) yields

sup
j∈Z

(
|j| max

n∈J0,qK
∥∂(n)
λ I3,j∥L∞([λ0,λ1])

)
≲ 1.

It remains to study the integral I2,j . One can easily check from the above decomposition that

I2,j = lim
λ→0+

Ij(λ)Kj(λ).

Using (C.13), we then find
I2,j = 1

2j ·

Putting together the preceding estimates, we obtain

sup
j∈Z

(
|j| max

n∈J0,qK
∥∂(n)
λ (IjKj) ∥L∞([λ0,λ1])

)
≲ 1.

Then coming back to (6.29) and using Leibniz formula, we obtain (6.28). Now we turn to the proof of
(6.24). According to (5.4) we may write

Ar(φ, θ, η) = 2
∣∣∣sin(η−θ

2

)∣∣∣((R(φ,η)−R(φ,θ)
2 sin( η−θ

2 )

)2
+R(φ, η)R(φ, θ)

) 1
2

≜ 2
∣∣∣sin(η−θ

2

)∣∣∣ vr,1(φ, θ, η). (6.31)

Notice that vr,1 is smooth when r is smooth and small enough, and v0,1 = 1. More precisely, Lemma
A.1-(v) combined with Lemma A.2 allow to get

sup
η∈T

∥vr,1(∗, ·, �, η + �) − 1∥γ,Oq,s ≲ ∥r∥γ,Oq,s+1,

∀k ∈ N∗, sup
η∈T

∥(∂kθ vr,1)(∗, ·, �, η + �)∥γ,Oq,s ≲ ∥r∥γ,Oq,s+1+k. (6.32)

Here and in the sequel, the symbols ∗, ·, � denote the variables µ = (λ, ω), φ, θ, respectively. Then from
the identity (6.30) we infer

K0(λAr(φ, θ, η)) = K0

(
2λ
∣∣∣sin(η−θ

2

)∣∣∣)+ log
(
λ
∣∣∣sin(η−θ

2

)∣∣∣) [I0

(
2λ
∣∣∣sin(η−θ

2

)∣∣∣)− I0
(
λAr(φ, θ, η)

)]
− log

(
vr,1(φ, θ, η)

)
I0
(
λAr(φ, θ, η)

)
+ f(λAr

(
φ, θ, η)

)
− f

(
2λ
∣∣∣sin(η−θ

2

)∣∣∣) . (6.33)

By virtue of the expansion (C.2), we can write

I0

(
2λ
∣∣∣sin(η−θ

2

)∣∣∣)− I0
(
λAr(φ, θ, η)

)
= sin2

(
η−θ

2

)
K 1
r,1(λ, φ, θ, η),
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with K 1
r,1 being smooth and vanishing at r = 0. More precisely, we have the expansion

K 1
r,1(λ, φ, θ, η) =

∞∑
m=1

(2λ)2m

(m!)2 sin2m−2
(
η−θ

2

) (
1 − v2m

r,1 (φ, θ, η)
)
. (6.34)

Now our aim is to establish the following estimate.

∀ k ∈ N, sup
η∈T

∥(∂kθK 1
r,1)(∗, ·, �, η + �)∥γ,Oq,s ≲ ∥r∥γ,Oq,s+1+k. (6.35)

For this goal we apply Taylor Formula at the order 2,

I0
(
λAr(φ, θ, η)

)
− I0

(
2λ
∣∣∣sin(η−θ

2

)∣∣∣) = 2λ
∣∣∣sin(η−θ

2

)∣∣∣ (vr,1(φ, θ, η) − 1
)
I ′

0

(
2λ
∣∣∣sin(η−θ

2

)∣∣∣)
+ 4λ2 sin2

(
η−θ

2

)(
vr,1(φ, θ, η) − 1

)2
ˆ 1

0
(1 − t)I ′′

0

(
2λ
∣∣∣sin(η−θ

2

)∣∣∣ (1 − t+ tvr,1(φ, θ, η)
))
dt.

Consequently, the kernel K 1
r,1 can be rewritten into the form

K 1
r,1(λ, φ, θ, η) = 2λ

(
1 − vr,1(φ, θ, η)

)I ′
0

(
2λ
∣∣∣sin(η−θ

2

)∣∣∣)∣∣∣sin(η−θ
2

)∣∣∣ (6.36)

− 4λ2
(
vr,1(φ, θ, η) − 1

)2 ˆ 1

0
(1 − t)I ′′

0

(
2λ
∣∣∣sin(η−θ

2

)∣∣∣ (1 − t+ tvr,1(φ, θ, η))
)
dt.

Using the structure (C.2) and Lemma A.1-(iv)-(v) combined with (6.32) we deduce the estimate (6.35).
Coming back to (6.33) and set

K 2
r,1(λ, φ, θ, η) = log(λ) sin2

(
η−θ

2

)
K 1
r,1(λ, φ, θ, η) − log(vr,1(φ, θ, η))I0(λAr(φ, θ, η))

+ f(λAr(φ, θ, η)) − f
(

2λ
∣∣∣sin(η−θ

2

)∣∣∣) . (6.37)

Then, by virtue of the product laws and the composition laws of Lemma A.1 combined with (6.32), (6.35)
and the fact that f is analytic and even, we get

∀k ∈ N, sup
η∈T

∥(∂kθK 2
r,1)(∗, ·, �, η + �)∥γ,Oq,s ≲ ∥r∥γ,Oq,s+1+k. (6.38)

Consequently we obtain the decomposition

K0(λAr(φ, θ, η)) = K0

(
2λ
∣∣∣sin(η−θ

2

)∣∣∣)+ K (η − θ)K 1
r,1(λ, φ, θ, η) + K 2

r,1(λ, φ, θ, η), (6.39)

where K is defined by (6.26) and the functions K 1
r,1 and K 2

r,1 satisfy the estimates (6.35) and (6.38). We
can obviously check that K is an even function satisfying

K , ∂θK ∈ L∞(T,R) ⊂ L1(T,R) and ∂2
θK ∈ L1(T,R) \ L∞(T,R). (6.40)

Introduce the kernel Kr,1 as in (6.25). Hence, putting together (6.35), (6.38) and (6.40), we obtain

∀k ∈ {0, 1}, sup
η∈T

∥(∂kθKr,1)(∗, ·, �, η + �)∥γ,Oq,s ≲ ∥r∥γ,Oq,s+1+k. (6.41)

The symmetry property (6.27) is obtained by straightforward computations. From (5.2), (5.12), (6.39)
and (6.25) we deduce the decomposition (6.24).
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The main result of this section reads as follows.

Lemma 6.2. Let (γ, q, s0, s) satisfying (A.2). There exists ε0 ∈ (0, 1) such that if

∥r∥γ,Oq,s0+2 ⩽ ε0,

then the vector field XP defined in (6.1) satisfies the following estimates

(i) ∥XP (r)∥γ,Oq,s ≲ ∥r∥γ,Oq,s+2∥r∥γ,Oq,s0+1.

(ii) ∥drXP (r)[ρ]∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s+2∥r∥γ,Oq,s0+1 + ∥r∥γ,Oq,s+2∥ρ∥γ,Oq,s0+1.

(iii) ∥d2
rXP (r)[ρ1, ρ2]∥γ,Oq,s ≲ ∥ρ1∥γ,Oq,s0+1∥ρ2∥γ,Oq,s+2 + ∥ρ1∥γ,Oq,s+2∥ρ2∥γ,Oq,s0+1 + ∥r∥γ,Oq,s+2∥ρ1∥γ,Oq,s0+1∥ρ2∥γ,Oq,s0+1.

Proof. Remarking that XP (0) = 0 and drXP (0) = 0, it suffices to prove the point (iii) and we immediately
obtain (i)-(ii) by applying Taylor formula. From Lemma 5.1 and its proof we find

drFλ[r]ρ = ∂θ ((Vr − Ω)ρ) − ∂θKλ ∗ ρ− ∂θLr,1ρ.

Thus, we get according to the definition (6.1)

drXP (r)ρ = ∂θLr,1ρ− ∂θ ((Vr − V0)ρ) . (6.42)

Coming back to (5.1) and using the kernel decomposition (6.39) together with the product laws, the
composition laws in Lemma A.1 and the smallness condition, we deduce for any s ⩾ s0,

∥Vr − V0∥γ,Oq,s ≲ ∥r∥γ,Oq,s+1. (6.43)

Therefore, we obtain from the product laws, (6.43) and the smallness property on r,

∥∂θ ((Vr − V0)) ρ) ∥γ,Oq,s ≲ ∥Vr − V0∥γ,Oq,s+1∥ρ∥γ,Oq,s0+1 + ∥Vr − V0∥γ,Oq,s0+1∥ρ∥γ,Oq,s+1

≲ ∥ρ∥γ,Oq,s+1 + ∥r∥γ,Oq,s+2∥ρ∥γ,Oq,s0+1.

Differentiating in r the identity (6.42) yields,

d2
rXP (r)[ρ1, ρ2] = ∂θ (drLr,1(r)[ρ2]ρ1) − ∂θ

((
drVr(r)[ρ2]

)
ρ1
)
. (6.44)

For the first member of the right-hand side we first recall from (6.25) that

Lr,1ρ(φ, θ) =
ˆ
T
ρ(φ, η)

[
K (η − θ)K 1

r,1(λ, φ, θ, η) + K 2
r,1(λ, φ, θ, η)

]
dη.

Hence, by differentiation and change of variables, we obtain

drLr,1(r)[ρ2]ρ1(φ, θ) =
ˆ
T
ρ1(φ, η)

[
K (η − θ)

(
drK

1
r,1
)
[ρ2](φ, θ, η) + drK

2
r,1
)
[ρ2](φ, θ, η)

]
dη (6.45)

=
ˆ
T
ρ1(φ, θ + η)

[
K (η)

(
drK

1
r,1
)
[ρ2](φ, θ, θ + η) + drK

2
r,1
)
[ρ2](φ, θ, θ + η)

]
dη.

Coming back to (6.36), we emphasize that the dependence in r of the functional K 1
r,1 is smooth since

the function vr,1, introduced in (6.31), depends smoothly in r. In addition drK 1
r,1 can be easily related

to drvr,1. From straightforward calculations we see that, for the sake of simple notation we remove the
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dependence in the parameters and φ,

drvr,1(r)[ρ](θ, η) = 1
vr,1(θ, η)

R(θ) −R(η)
sin2

(
η−θ

2

) ( ρ(θ)
R(θ) − ρ(η)

R(η)

)
+ ρ(θ)R2(η) + ρ(η)R2(θ)

2R(θ)R(η)

 . (6.46)

Therefore using (6.32) combined with the product laws stated in Lemma A.1, Lemma A.2 and the smallness
condition of Lemma 6.2, we find that

sup
η∈T

∥drvr,1(r)[ρ](∗, ·, �, η + �)∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s+1 + ∥ρ∥γ,Oq,s0+1∥r∥γ,Oq,s+1. (6.47)

Similarly to (6.47), one gets from (6.36) and (6.37),

∀ i ∈ {1, 2}, sup
η∈T

∥drK i
r,1[ρ](∗, ·, �, η + �)∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s+1 + ∥ρ∥γ,Oq,s0+1∥r∥γ,Oq,s+1. (6.48)

Inserting (6.48) into (6.45) and using once again the product laws and the smallness condition we obtain,

∥∂θdrLr,1(r)[ρ2]ρ1∥γ,Oq,s ≲∥drLr,1(r)[ρ2]ρ1∥γ,Oq,s+1

≲∥ρ1∥γ,Oq,s+1∥ρ2∥γ,Oq,s0+1 + ∥ρ1∥γ,Oq,s0
∥ρ2∥γ,Oq,s+2 + ∥r∥γ,Oq,s+2∥ρ1∥γ,Oq,s0

∥ρ2∥γ,Oq,s0+1. (6.49)

Next we shall move to the estimate of the last member of (6.44). Differentiating the definition of Vr in
the proof of Lemma 5.1, we infer

drVr(r)[ρ2](θ) =
ˆ
T
K0 (λAr(θ, η)) ∂η

(
ρ2(η)R2(θ)−ρ2(θ)R2(η)

R3(θ)R(η) sin(η − θ)
)
dη

+ λ
R(θ)

ˆ
T

(R(θ)−R(η))
(
ρ2(θ)
R(θ) −

ρ2(η)
R(η)

)
Ar(θ,η) K ′

0 (λAr(θ, η)) ∂η(R(η) sin(η − θ))dη

+ 2λ
ˆ
T

ρ2(θ)R2(η)+ρ2(η)R2(θ)
R2(θ)R(η)Ar(θ,η) sin2

(
η−θ

2

)
K ′

0 (λAr(θ, η)) ∂η(R(η) sin(η − θ))dη

≜ I1(θ) + I2(θ) + I3(θ).

The estimate of I1 is obtained using the decomposition (6.39) together with the estimates (6.35), (6.38)
and the Lemma A.1-(iv)-(v). We get

∥I1∥γ,Oq,s ≲ ∥ρ2∥γ,Oq,s+1 + ∥ρ2∥γ,Oq,s0+1∥r∥γ,Oq,s+1. (6.50)

For the terms I2 and I3 the computations are straightforward and we shall only extract their main parts
and give the suitable estimates. For this goal we differentiate (C.7), leading to

K ′
0(z) = −1

z
+ log(z)F (z) +G(z),

with F and G being entire functions. Hence, applying (6.31), we deduce that I2 takes the form

I2(θ) = −1
4

ˆ
T

(R(θ)−R(η))
(

ρ2(θ)
R(θ) − ρ2(η)

R(η)

)
R2(θ)v2

r,1(θ,η) sin2( η−θ
2 ) ∂η(R(η) sin(η − θ))dη + l.o.t.

Hence we proceed as for (6.48) and one finds

∥I2∥γ,Oq,s ≲ ∥ρ2∥γ,Oq,s+1 + ∥ρ2∥γ,Oq,s0+1∥r∥γ,Oq,s+1. (6.51)
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As for the last term I3, we write

I3(θ) = −1
2

ˆ
T

ρ2(θ)R2(η)+ρ2(η)R2(θ)
R2(θ)R(η)v2

r,1(θ,η) ∂η(R(η) sin(η − θ))dη + l.o.t.

Then, we get
∥I3∥γ,Oq,s ≲ ∥ρ2∥γ,Oq,s + ∥ρ2∥γ,Oq,s0

∥r∥γ,Oq,s+1. (6.52)

Putting together (6.50), (6.51) and (6.52) yields

∥drVr(r)[ρ2]∥γ,Oq,s ≲ ∥ρ2∥γ,Oq,s+1 + ∥ρ2∥γ,Oq,s0+1∥r∥γ,Oq,s+1. (6.53)

Therefore we obtain according to the product laws in Lemma A.1, (6.53) and the smallness condition,

∥∥∂θ(drVr(r)[ρ2]ρ1
)∥∥γ,O
q,s
≲
∥∥drVr(r)[ρ2]

∥∥γ,O
q,s+1

∥∥ρ1
∥∥γ,O
q,s0

+
∥∥drVr(r)[ρ2]

∥∥γ,O
q,s0

∥∥ρ1
∥∥γ,O
q,s+1

≲ ∥ρ1∥γ,Oq,s0
∥ρ2∥γ,Oq,s+2 + ∥r∥γ,Oq,s+2∥ρ1∥γ,Oq,s0

∥ρ2∥γ,Oq,s0+1 + ∥ρ1∥γ,Oq,s+1∥ρ2∥γ,Oq,s0+1.

Combining the latter estimate with (6.44) and (6.49) allows to get

∥d2
rXP (r)[ρ1, ρ2]∥γ,Oq,s ≲ ∥ρ1∥γ,Oq,s0

∥ρ2∥γ,Oq,s+2 + ∥r∥γ,Oq,s+2∥ρ1∥γ,Oq,s0
∥ρ2∥γ,Oq,s0+1 + ∥ρ1∥γ,Oq,s+1∥ρ2∥γ,Oq,s0+1.

Using Sobolev embeddings we get the desired result. This achieves the proof of Lemma 6.2.

As an application of Lemma 6.2, we shall establish tame estimates for the Hamiltonian vector field

XPε = (∂IPε,−∂ϑPε,Π⊥
S ∂θ∇zPε)

defined through (6.17) and (6.19).

Lemma 6.3. Let (γ, q, s0, s) satisfy (A.2). There exists ε0 ∈ (0, 1) such that if

ε ⩽ ε0 and ∥I∥γ,Oq,s0+2 ⩽ 1,

then the perturbed Hamiltonian vector field XPε
satisfies the following estimates,

(i) ∥XPε
(i)∥γ,Oq,s ≲ 1 + ∥I∥γ,Oq,s+2.

(ii)
∥∥diXPε

(i)[ î ]
∥∥γ,O
q,s
≲ ∥ î ∥γ,Oq,s+2 + ∥I∥γ,Oq,s+2∥ î ∥γ,Oq,s0+2.

(iii)
∥∥d2

iXPε
(i)[ î, î ]

∥∥γ,O
q,s
≲ ∥ î ∥γ,Oq,s+2∥ î ∥γ,Oq,s0+1 + ∥I∥γ,Oq,s+2

(
∥ î ∥γ,Oq,s0+1

)2
.

Proof. These estimates can be recovered from Lemma 6.2 combined with the following estimate on the
action-angle change of variables introduced in (6.12)

∀α, β ∈ Nd, ∥∂αϑ∂
β
I v(ϑ, I)∥γ,Oq,s ≲ 1 + ∥I∥γ,Oq,s . (6.54)

This estimate follows from Lemma A.1-(iv)-(v) provided that ∥ϑ∥γ,Oq,s0
, ∥I∥γ,Oq,s0

⩽ 1. This latter condition is
satisfied due to the smallness condition in the Lemma. For more details, we refer to [33, Lem. 5.1].
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6.3 Berti-Bolle approach for the approximate inverse

In this section, we shall follow the remarkable procedure developed by Berti and Bolle in [21] to construct
an approximate right inverse for the linearized operator

di,αF(i0, α0)[̂i, α̂] = ω · ∂φî− diXH
α0
ε

(i0(φ))[̂i] − (α̂, 0, 0), (6.55)

where F is the nonlinear functional defined in (6.21). This construction is crucial for the Nash-Moser
scheme that we shall perform later in Section 8. From (6.18), we denote by i0 an embedded torus with

i0(φ) = (ϑ0(φ), I0(φ), z0(φ)) and I0(φ) = i0(φ) − (φ, 0, 0).

Throughout this section, we shall assume the following smallness condition : the application (λ, ω) 7→
I0(λ, ω) is q-times differentiable on O and there exists ε0 ∈ (0, 1) (small enough) such that

∥I0∥γ,Oq,s0+2 + ∥α0 − ω∥γ,Oq ⩽ ε0. (6.56)

We mainly follow the same approach as in [21] which reduces the search of an approximate right inverse
of (6.55) to the search of an approximate right inverse in the normal directions. The main difference with
[21] is to be able to bypass the use of the isotropic torus in a similar way to the recent paper [87].

6.3.1 Triangularization up to error terms

Given a linear operator A ∈ L(Rd, L2
⊥), we define the transposed operator A⊤ : L2

⊥ → Rd by the duality
relation

∀(u, v) ∈ L2
⊥ × Rd, ⟨A⊤u, v⟩Rd = ⟨u,Av⟩L2(T). (6.57)

We introduce the following change of coordinates G0 : (ϕ, y, w) → (ϑ, I, z) of the phase space Td×Rd×L2
⊥

defined by ϑI
z

 ≜ G0

ϕy
w

 ≜
 ϑ0(ϕ)
I0(ϕ) + L1(ϕ)y + L2(ϕ)w

z0(ϕ) + w

 , (6.58)

where

L1(ϕ) ≜ [∂ϕϑ0(ϕ)]−⊤, (6.59)

L2(ϕ) ≜ [(∂ϑz̃0)(ϑ0(ϕ))]⊤∂−1
θ , (6.60)

z̃0(ϑ) ≜ z0(ϑ−1
0 (ϑ)), (6.61)

provided that ϑ0 : Rd → Rd is a diffeomorphism. Notice that one recovers the torus i0 by taking in the
new coordinates, the flat torus iflat(φ) = (φ, 0, 0) namely

G0(iflat(φ)) = i0(φ).

Next, we shall adopt the notation u = (ϕ, y, w) to denote the new coordinates induced by G0 in (6.58)
and we simply set u0(φ) = iflat(φ). Now, to measure to which extent an embedded torus i0(T) is close to
be invariant for the Hamiltonian vector field XH

α0
ε

, we shall make appeal to the error function

Z(φ) ≜ (Z1, Z2, Z3)(φ) ≜ F(i0, α0)(φ) = ω · ∂φi0(φ) −XH
α0
ε

(i0(φ)) . (6.62)
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We say that a quantity is of "type Z" is it is O(Z), and particular it is vanishing at an exact solution. In
the next Proposition, we study the conjugation of the linear operator di,αF(i0, α0) by the linear change of
variables induced by G0 defined in (6.58),

DG0(φ, 0, 0)

ϕ̂ŷ
ŵ

 ≜
∂φϑ0(φ) 0 0
∂φI0(φ) L1(φ) L2(φ)
∂φz0(φ) 0 I


ϕ̂ŷ
ŵ

 . (6.63)

Proposition 6.1. The conjugation of the linearized operator di,αF(i0, α0) by the linear change of variables
DG0(u0) writes as follows

[DG0(u0)]−1di,αF(i0, α0)DG̃0(u0)[ϕ̂, ŷ, ŵ, α̂] = D[ϕ̂, ŷ, ŵ, α̂] + E[ϕ̂, ŷ, ŵ], (6.64)

where G̃0 is defined by
G̃0(u, α) ≜ (G0(u), α)

and where

(i) the operator D admits a triangular structure in the variables (ϕ̂, ŷ, ŵ) in the form

D[ϕ̂, ŷ, ŵ, α̂] ≜

 ω · ∂φϕ̂−
[
K20(φ)ŷ + K⊤

11(φ)ŵ + L⊤
1 (φ)α̂

]
ω · ∂φŷ + B(φ)α̂

ω · ∂φŵ − ∂θ
[
K11(φ)ŷ + K02(φ)ŵ + L⊤

2 (φ)α̂
]
 ,

B(φ) and K20(φ) are d× d real matrices given by

B(φ) ≜ [∂φϑ0(φ)]⊤∂φI0(φ)L⊤
1 (φ) + [∂φz0(φ)]⊤L⊤

2 (φ), (6.65)

K20(φ) ≜ εL⊤
1 (φ)(∂IIPε)(i0(φ))L1(φ), (6.66)

K02(φ) is a linear self-adjoint operator of L2
⊥ in the form

K02(φ) ≜ (∂z∇zH
α0
ε )(i0(φ)) + εL⊤

2 (φ)(∂IIPε)(i0(φ))L2(φ)

+ εL⊤
2 (φ)(∂zIPε)(i0(φ)) + ε(∂I∇zPε)(i0(φ))L2(φ) (6.67)

and K11(φ) ∈ L(Rd, L2
⊥) is given by

K11(φ) ≜ εL⊤
2 (φ)(∂IIPε)(i0(φ))L1(φ) + ε(∂I∇zPε)(i0(φ))L1(φ). (6.68)

(ii) the operator E is an error term in the form

E[ϕ̂, ŷ, ŵ] ≜ [DG0(u0)]−1∂φZ(φ)ϕ̂

+

 0
A(φ)

[
K20(φ)ŷ + K⊤

11(φ)ŵ
]

−R10(φ)ŷ −R01(φ)ŵ
0

 ,

where A(φ) and R10(φ) are d× d matrices defined by

A(φ) ≜ [∂φϑ0(φ)]⊤∂φI0(φ) − [∂φI0(φ)]⊤∂φϑ0(φ) + [∂φz0(φ)]⊤∂−1
θ ∂φz0(φ), (6.69)

R10(φ) ≜ [∂φZ1(φ)]⊤L1(φ) (6.70)
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and R01(φ) ∈ L(L2
⊥,Rd) with

R01(φ) ≜ [∂φZ1(φ)]⊤L2(φ) − [∂φZ3(φ)]⊤∂−1
θ . (6.71)

Proof. Under the map G0, the nonlinear functional F in (6.21) is transformed into

F(G0(u(φ)), α) = ω · ∂φ
(
G0(u(φ))

)
−XHα

ε

(
G0(u(φ))

)
. (6.72)

Differentiating (6.72) at (u0, α0) in the direction (û, α̂) gives

d(u,α)(F ◦G0)(u0, α0)[(û, α̂)](φ) = ω · ∂φ
(
DG0(u0)û

)
− ∂ϕ

[
XH

α0
ε

(
G0(u(φ))

)]
u=u0

ϕ̂ (6.73)

− ∂y
[
XH

α0
ε

(
G0(u(φ))

)]
u=u0

ŷ − ∂w
[
XH

α0
ε

(
G0(u(φ))

)]
u=u0

ŵ −

 α̂

0
0

 .

From the expression of DG0(u0) in (6.63), we obtain

ω · ∂φ
(
DG0(u0)[û](φ)

)
= DG0(u0)ω · ∂φû + ∂φ

(
ω · ∂φi0

)
ϕ̂ (6.74)

+

 0
(ω · ∂φL1(φ))ŷ +

(
ω · ∂φL2(φ)

)
ŵ

0

 .

In view of (6.59) and (6.62) we have

ω · ∂φL1(φ) = −[∂φϑ0(φ)]−⊤(ω · ∂φ[∂φϑ0(φ)]⊤)[∂φϑ0(φ)]−⊤

= −[∂φϑ0(φ)]−⊤
([
∂φZ1(φ)

]⊤ +
[
∂φ
(
(∂IHα

ε )(i0(φ))
)]⊤)[∂φϑ0(φ)]−⊤.

(6.75)

By (6.60) we can easily check that

∂φz0(φ) = (∂ϑz̃0)(ϑ0(φ))∂ϕϑ0(φ) (6.76)

and thus, we may write the operator L2(φ) in term of the matrix L1(φ),

L2(φ) = [∂φϑ0(φ)]−⊤[∂φz0(φ)]⊤∂−1
θ = L1(φ)[∂φz0(φ)]⊤∂−1

θ . (6.77)

Then, by (6.75), (6.77) we have

ω · ∂φL2(φ) = −[∂φϑ0(φ)]−⊤(ω · ∂φ[∂φϑ0(φ)]⊤)[∂φϑ0(φ)]−⊤[∂φz0(φ)]⊤∂−1
θ

+ [∂φϑ0(φ)]−⊤[∂φ(ω · ∂φz0)(φ)]⊤∂−1
θ

and from (6.62) we get

ω · ∂φL2(φ) = −[∂φϑ0(φ)]−⊤
([
∂φZ1(φ)

]⊤ +
[
∂φ
(
(∂IHα

ε )(i0(φ))
)]⊤)

L2(φ)

+ [∂φϑ0(φ)]−⊤
([
∂φZ3(φ)

]⊤ −
[
∂φ
(
(∇zH

α
ε )(i0(φ))

)]⊤
∂θ

)
∂−1
θ . (6.78)
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Putting together (6.74), (6.75) and (6.78) we conclude that

ω · ∂φ
(
DG0(u0)[û](φ)

)
= DG0(u0)ω · ∂φû + ∂φ

(
ω · ∂φi0

)
ϕ̂

−

 0
[∂φϑ0(φ)]−⊤[CI(φ)L1(φ) +R10(φ)

]
ŷ

0



−

 0
[∂φϑ0(φ)]−⊤[CI(φ)L2(φ) + Cz(φ) +R01(φ)

]
ŵ

0

 , (6.79)

where R10(φ) and R01(φ) are given by (6.70)-(6.71) and

CI(φ) ≜
[
∂φ
(
(∂IHα0

ε )(i0(φ))
)]⊤

= [∂φI0(φ)]⊤(∂IIHα0
ε )(i0(φ)) + [∂φϑ0(φ)]⊤(∂ϑIHα

ε )(i0(φ))

+ [∂φz0(φ)]⊤(∂I∇zH
α0
ε )(i0(φ)), (6.80)

Cz(φ) ≜
[
∂φ
(
(∇zH

α0
ε )(i0(φ))

)]⊤
= [∂φI0(φ)]⊤(∂zIHα0

ε )(i0(φ)) + [∂φϑ0(φ)]⊤(∂zϑHα0
ε )(i0(φ))

+ [∂φz0(φ)]⊤(∂z∇zH
α0
ε )(i0(φ)). (6.81)

On the other hand, in view of (6.21) and (6.58) we obtain

∂ϕ
[
XH

α0
ε

(
G0(u(φ))

)]
u=u0

ϕ̂ = ∂φ
[
XH

α0
ε

(i0(φ)))
]
ϕ̂, (6.82)

∂y
[
XH

α0
ε

(
G0(u(φ))

)]
u=u0

ŷ =

 (∂IIHα0
ε )(i0(φ))L1(φ)ŷ

−(∂IϑHα0
ε )(i0(φ))L1(φ)ŷ

∂θ
[
(∂I∇zH

α0
ε )(i0(φ))L1(φ)ŷ

]
 , (6.83)

∂w
[
XH

α0
ε

(
G0(u(φ))

)]
u=u0

ŵ =

 (∂IIHα0
ε )(i0(φ))L2(φ)ŵ + (∂zIHα0

ε )(i0(φ))ŵ
−(∂IϑHα0

ε )(i0(φ))L2(φ)ŵ − (∂zϑHα0
ε )(i0(φ))ŵ

∂θ
[
(∂I∇zH

α0
ε )(i0(φ))L2(φ)ŵ + (∂z∇zH

α0
ε )(i0(φ))ŵ

]
 . (6.84)

Plugging (6.79), (6.82), (6.83) and (6.84) into (6.73) we find

d(u,α)(F ◦G0)(u0, α0)[(û, α̂)] = DG0(u0)ω · ∂φû + ∂φ
[
F(i0(φ))

]
ϕ̂

+

 −(∂IIHα0
ε )(i0(φ))L1(φ)ŷ

(∂IϑHα0
ε )(i0(φ))L1(φ)ŷ − [∂φϑ0(φ)]−⊤[CI(φ)L1(φ) +R10(φ)]ŷ

−∂θ(∂I∇zH
α0
ε )(i0(φ))L1(φ)ŷ



+

 −(∂IIHα0
ε )(i0(φ))L2(φ)ŵ − (∂zIHα0

ε )(i0(φ))ŵ[
(∂IϑHα0

ε )(i0(φ))L2(φ) + (∂zϑHα0
ε )(i0(φ))

]
ŵ

−∂θ
[
(∂I∇zH

α0
ε )(i0(φ))L2(φ)ŵ + ∂θ(∂z∇zH

α0
ε )(i0(φ))ŵ

]


−

 0
[∂φϑ0(φ)]−⊤[CI(φ)L2(φ)ŵ + Cz(φ)ŵ +R01(φ)ŵ

]
0

−

 α̂

0
0

 . (6.85)

According to (6.63) and using the identities (6.76) and (6.77), the inverse of the linear operator DG0(u0)
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is given by

[DG0(u0)]−1 =

 [∂φϑ0(φ)]−1 0 0
−B(φ) [∂φϑ0(φ)]⊤ −[∂φz0(φ)]⊤∂−1

θ

−(∂ϑz̃0)(ϑ0(φ)) 0 I

 (6.86)

where B(φ) is given by (6.65). Applying [DG0(u0)]−1 to (6.85) and using the identities (6.80), (6.81) and
the fact that

B(φ) = A(φ)[∂φϑ0(φ)]−1 + [∂φI0(φ)]⊤, (6.87)

where A(φ) is defined in (6.69), we obtain

[DG0(u0)]−1d(u,α)(F ◦G0)(u0, α0)[û, α̂] = ω · ∂φû + [DG0(u0)]−1∂φ
[
F(i0(φ))

]
ϕ̂

+

 −K20(φ)ŷ
A(φ)K20(φ)ŷ −R10(φ)ŷ

−∂θK11(φ)ŷ

+

 −K⊤
11(φ)ŵ

A(φ)K⊤
11(φ)ŵ −R01(φ)ŵ
−∂θK02(φ)ŵ

+

 −L⊤
1 (ϕ)α̂

B(φ)α̂
−∂θL⊤

2 (φ)α̂

 ,

with

K20(φ) ≜ L⊤
1 (φ)(∂IIHα0

ε )(i0(φ))L1(φ) ,

K11(φ) ≜ L⊤
2 (φ)(∂IIHα0

ε )(i0(φ))L1(φ) + (∂I∇zH
α0
ε )(i0(φ))L1(φ) ,

K02(φ) ≜ (∂z∇zH
α0
ε )(i0(φ)) + L⊤

2 (φ)(∂IIHα0
ε )(i0(φ))L2(φ) + L⊤

2 (φ)(∂zIHα0
ε )(i0(φ))

+ (∂I∇zH
α0
ε )(i0(φ))L2(φ).

Finally, by (6.20) we conclude the desired identity and this ends the proof of Proposition 6.1.

Now we recall the following result, for the proof we refer to [33, Lem. 5.6 and 5.7].

Lemma 6.4. The following assertions hold true.

(i) The operator DG0(u0) and [DG0(u0)]−1 satisfy for all û = (ϕ̂, ŷ, ŵ),

∀s ∈ [s0, S], ∥[DG0(u0)]±1[û]∥γ,Oq,s ≲ ∥û∥γ,Oq,s + ∥I0∥γ,Oq,s+1∥û∥γ,Oq,s0
.

(ii) The operators R10 and R01, defined in (6.70) and (6.71), satisfy the estimates

∀s ∈ [s0, S], ∥R10ŷ∥γ,Oq,s ≲ ∥Z∥γ,Oq,s+1∥ŷ∥γ,Oq,s0+1 + ∥Z∥γ,Oq,s0+1∥I0∥γ,Oq,s+1∥ŷ∥γ,Oq,s0+1,

∀s ∈ [s0, S], ∥R01ŵ∥γ,Oq,s ≲ ∥Z∥γ,Oq,s+1∥ŵ∥γ,Oq,s0+1 + ∥Z∥γ,Oq,s0+1∥I0∥γ,Oq,s+1∥ŵ∥γ,Oq,s0+1 .

(iii) The operators K20 and K11, defined in (6.66) and (6.68), satisfy the estimates

∀s ∈ [s0, S], ∥K20∥γ,Oq,s ≲ ε
(
1 + ∥I0∥γ,Oq,s+3

)
,

∀s ∈ [s0, S], ∥K11ŷ∥γ,Oq,s ≲ ε
(
∥ŷ∥γ,Oq,s+3 + ∥I0∥γ,Oq,s+3∥ŷ∥γ,Oq,s0+3

)
,

∀s ∈ [s0, S], ∥K⊤
11ŵ∥γ,Oq,s ≲ ε

(
∥ŵ∥γ,Oq,s+3 + ∥I0∥γ,Oq,s+3∥ŵ∥γ,Oq,s0+3

)
.

(iv) The matrices A and B defined in (6.69) and (6.65) satisfy

∀s ∈ [s0, S], ∥A∥γ,Oq,s + ∥B∥γ,Oq,s ≲ ∥I0∥γ,Oq,s+1.
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Notice that the matrix A(φ) measures the defect of the symplectic structure. In the following, we shall
see that it is of order O(Z). Notice that according to (6.69) and [21, Lem. 5], the coefficients Ajk of the
matrix A can be written

Ajk(φ) = ∂φk
I0(φ) · ∂φj

ϑ0(φ) − ∂φk
ϑ0(φ) · ∂φj

I0(φ) + ⟨∂−1
θ ∂φk

z0(φ), ∂φj
z0(φ)⟩L2(T), (6.88)

and satisfy

ω · ∂φAjk(φ) = W
(
∂φZ(φ)ek, ∂φi0(φ)ej

)
+ W

(
∂φi0(φ)ek, ∂φZ(φ)ej

)
, (6.89)

where W is the symplectic form defined in (4.24) and (e1, . . . , ed) denotes the canonical basis of Rd. In
order to estimate Ajk(φ), we shall discuss the invertibility of the operator ω ·∂φ. This task was accomplished
in several papers [7, 21, 33, 87] and we shall outline here the main lines.
Let γ ∈ (0, 1] and τ1 > 0 be defined as in (A.2). We introduce the Diophantine Cantor set

DC(γ, τ1) ≜
⋂

l∈Zd\{0}

{
ω ∈ Rd s.t. |ω · l| > γ

⟨l⟩τ1

}

and for N ∈ N∗ we define the truncated Diophantine Cantor set

DCN (γ, τ1) ≜
⋂

l∈Zd\{0}
|l|⩽N

{
ω ∈ Rd s.t. |ω · l| > γ

⟨l⟩τ1

}
. (6.90)

Given f : O × Td+1 → R a smooth function with zero φ-average, that can be expanded in Fourier series
as follows

f =
∑

(l,j)∈Zd+1
l̸=0

fl,j(λ, ω)el,j , el,j(φ, θ) ≜ ei(l·φ+jθ).

If ω ∈ DC(γ, τ1), then the equation ω · ∂φu = f has a periodic solution u : Td+1 → R given by

u(λ, φ, θ) = −i
∑

(l,j)∈Zd+1
l̸=0

fl,j(λ)
ω · l

el,j(φ, θ).

For all ω ∈ O, we define the smooth extension of u by

(ω · ∂φ)−1
extf ≜ −i

∑
(l,j)∈Zd+1

l ̸=0

χ
(
γ−1⟨l⟩τ1 ω · l

)
fl,j(λ)

ω · l
el,j . (6.91)

where χ ∈ C ∞(R, [0, 1]) is an even positive cut-off function such that

χ(ξ) =
{

0 if |ξ| ⩽ 1
3

1 if |ξ| ⩾ 1
2 .

(6.92)

Notice that this operator is well-defned in the whole set of parameters O and coincides with the formal
inverse of (ω · ∂φ)−1 when the frequency ω belongs to DC(γ, τ1). The next result is the fundamental
theorem of calculus in the quasi-periodic setting.

Lemma 6.5. Let γ ∈ (0, 1], q ∈ N∗. Then for any s ⩾ q we have

∥∥(ω · ∂φ)−1
extf

∥∥γ,O
q,s
≲ γ−1∥f∥γ,Oq,s+τ1q+τ1

.
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In addition, for any N ∈ N∗ and for any ω ∈ DCN (γ, τ1) we have

(ω · ∂φ)(ω · ∂φ)−1
extΠN = ΠN ,

where ΠN is the orthogonal projection defined by

ΠN

∑
(l,j)∈Zd+1

fl,jel,j =
∑

(l,j)∈Zd+1
|l|⩽N

fl,jel,j .

Proof. The proof of the first point can be done using Faá di Bruno’s formula in a similar way to [7, Lem.
2.5]. We also refer to the proof of Proposition 7.2.
By construction, one has for ω ∈ DCN (γ, τ1) and |l| ⩽ N ,

χ
(
(ω · l)γ−1⟨l⟩τ1

)
= 1,

Thus, according to the explicit extension (6.91),

(ω · ∂φ)−1
extΠNh = −i

∑
l∈Zd\{0}

|l|⩽N

χ
(
(ω · l)γ−1⟨l⟩τ1

)
hl(λ)

ω · l
el,0

= −i
∑

l∈Zd\{0}
|l|⩽N

hl(λ)
ω · l

el,0. (6.93)

Therefore, we obtain

(ω · ∂φ)(ω · ∂φ)−1
extΠNh =

∑
l∈Zd\{0}

|l|⩽N

hl(λ)el,0

= ΠNh.

This concludes the proof of the lemma.

For later purposes we need to fix some notation that will be adopted in the sequel. Take N0 ⩾ 2 and
define the sequence

N−1 = 1, ∀n ∈ N, Nn = N
( 3

2 )n

0 . (6.94)

Next, we shall split the coefficients of the matrix A = A(φ) defined in (6.69) as

Akj = A(n)
kj + A(n),⊥

kj , A(n)
kj ≜ ΠNn

Akj , A(n),⊥
kj ≜ Π⊥

Nn
Akj . (6.95)

The proof of the following lemma is quite similar to Lemma 5.3. in [11] with the a minor difference in the
weighted norms.

Lemma 6.6. Let n ∈ N, then the following results hold true.

(i) The function A(n),⊥
kj satisfies

∀b ⩾ 0, ∀s ∈ [s0, S], ∥A(n),⊥
kj ∥γ,Oq,s ≲ N−b

n ∥I0∥γ,Oq,s+2+b.

(ii) There exist functions A(n),ext
kj defined for any (λ, ω) ∈ O, q-times differentiable with respect to λ and
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satisfying the estimate

∀s ∈ [s0, S], ∥A(n),ext
kj ∥γ,Oq,s ≲ γ−1(∥Z∥γ,Os+τ1q+τ1+1 + ∥Z∥γ,Oq,s0+1∥I0∥γ,Oq,s+τ1q+τ1+1

)
.

Moreover, A(n),ext
kj coincides with A(n)

kj in the Cantor set DCNn
(γ, τ1).

Proof. (i) Follows immediately from (6.88), (6.95) and Lemma A.1-(ii).
(ii) Applying the projector to the identity (6.89) we obtain

ω · ∂φA(n)
jk (φ) = ΠNn

[
W
(
∂φZ(φ)ek, ∂φi0(φ)ej

)
+ W

(
∂φi0(φ)ek, ∂φZ(φ)ej

)]
.

Then, by (6.56) and Lemma A.1-(ii)-(iv), we get

∥∥ΠNn

[
W
(
∂φZ(φ)ek, ∂φi0(φ)ej

)
+ W

(
∂φi0(φ)ek, ∂φZ(φ)ej

)]∥∥q,κ
s
≲s
(
∥Z∥q,κs+1 + ∥Z∥q,κs0+1∥I0∥q,κs+1

)
.

We define the the function A(n),ext
kj as

A(n),ext
kj (φ) ≜ (ω · ∂φ)−1

extΠNn

[
W
(
∂φZ(φ)ek, ∂φi0(φ)ej

)
+ W

(
∂φi0(φ)ek, ∂φZ(φ)ej

)]
.

Applying Lemma 6.5 concludes the proof of the Lemma.

6.3.2 Construction of the approximate inverse

This section is devoted to the construction of an approximate right inverse of the operator di,αF(i0, α0)
that will be discussed in Theorem 6.1. One first may observe according to Proposition 6.1-(ii) and Lemmata
6.4 and 6.6, that the operator E vanishes at an exact solution up to fast decaying remainder terms. As a
consequence, getting an approximate inverse for the full operator di,αF(i0, α0) amounts simply to invert
the operator D up to small errors of type "Z" mixed with fast frequency decaying error. Let us consider
the triangular system given by

D[ϕ̂, ŷ, ŵ, α̂] =

g1

g2

g3

 , (6.96)

where D is defined in Proposition 6.1-(i). The system (6.96) writes more explicitly in the following way
ω · ∂φϕ̂ = g1 + [K20(φ)ŷ + K⊤

11(φ)ŵ + L⊤
1 (φ)α̂]

ω · ∂φŷ = g2 − B(φ)α̂(
ω · ∂φ − ∂θK02(φ)

)
ŵ = g3 + ∂θ[K11(φ)ŷ + L⊤

2 (φ)α̂].
(6.97)

The strategy to solve the above system in the variables (ϕ̂, ŷ, ŵ) is first to solve the second action-component
equation, then to solve the third normal-component equation and finally to solve the first angle-component
equation. Due to the fact that the Cantor set should be truncated then we need to solve approximately
the system (6.97) and for this aim we need the following statement.

Lemma 6.7. The following results hold true.

(i) There exists a function g : Zd \ {0} → {−1, 1} such that

∀l ∈ Zd \ {0}, g(−l) = −g(l).
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(ii) For all (λ, ω) ∈ O the operator ω · ∂φ can be split as follows

ω · ∂φ = D(n) + D⊥
(n),

with

D(n) ≜ ω · ∂φ ΠNn
+ Π⊥

Nn,g (6.98)

D⊥
(n) ≜ ω · ∂φ Π⊥

Nn
− Π⊥

Nn,g , (6.99)

where
Π⊥
Nn,g

∑
(l,j)∈Zd+1

fl,jel,j ≜
∑

(l,j)∈Zd+1
|l|>Nn

g(l)fl,jel,j .

(iii) The operator D⊥
(n) satisfies

∀b ⩾ 0, ∀s ∈ [s0, S], ∥D⊥
(n)h∥γ,Oq,s ⩽ N−b

n ∥h∥γ,Oq,s+b+1.

(iv) There exists a family of linear operators
(
[D(n)]−1

ext
)
n

satisfying, for any h ∈ W q,∞,γ(O, Hs
0(Td+1)),

∀s ∈ [s0, S], sup
n∈N

∥[D(n)]−1
exth∥γ,Oq,s ≲ γ−1∥h∥γ,Oq,s+τ1q+τ1

.

Moreover, for all ω ∈ DCNn
(γ, τ1) one has the identity

D(n)[D(n)]−1
ext = Id. (6.100)

Proof. (i) The function g : Zd \ {0} → {−1, 1} is defined, for all l = (l1, · · · , ld) ∈ Zd \ {0}, as the sign of
the first non-zero component in the vector l. Thus, it satisfies

∀l ∈ Zd \ {0}, g(−l) = −g(l).

(ii) Immediate.
(iii) Follows immediately from Lemma A.1-(ii).
(iv) We define the operator [D(n)]−1

ext as

[D(n)]−1
ext ≜ (ω · ∂φ)−1

extΠNn
+ Π⊥

Nn,
1
g
. (6.101)

From (6.93), (6.98), (6.99) and (6.101) we get, for all ω ∈ DCNn
(γ, τ1),

D(n)[D(n)]−1
ext = ω · ∂φ ΠNn

[
(ω · ∂φ)−1

extΠNn + Π⊥
Nn,

1
g

]
+ Π⊥

Nn,g
[
(ω · ∂φ)−1

extΠNn + Π⊥
Nn,

1
g

]
= ω · ∂φ (ω · ∂φ)−1

extΠNn
+ Π⊥

Nn
.

Applying Lemma 6.5-(ii) we conclude that

D(n)[D(n)]−1
ext = ΠNn

+ Π⊥
Nn

= Id.

The estimate on [D(n)]−1
ext follows from (6.101), Lemma A.1-(ii) and Lemma 6.5.
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Consider the linearized operator restricted to the normal directions L̂ω and defined by

L̂ω ≜ Π⊥
S0

(
ω · ∂φ − ∂θK02(φ)

)
Π⊥

S0
, (6.102)

which appears in the last equation of (6.97). The construction of an approximate right inverse of this
operator is the heart part of this work and will be discussed in Proposition 7.6. Here we give only a partial
statement.

Proposition 6.2. Let (γ, q, d, τ1, τ2, s0, sh, µ2, S) satisfy (A.2) (A.1) and (7.235). There exist ε0 > 0 and
σ = σ(τ1, τ2, q, d) > 0 such that if

εγ−2−qNµ2
0 ⩽ ε0 and ∥I0∥γ,Oq,sh+σ ⩽ 1, (6.103)

then there exist a family of linear operator (Tω,n)n satisfying

∀ s ∈ [s0, S], sup
n∈N

∥Tω,nh∥γ,Oq,s ≲ γ−1
(

∥h∥γ,Oq,s+σ + ∥I0∥γ,Oq,s+σ∥h∥γ,Oq,s0+σ

)
(6.104)

and a family of Cantor sets {Gn = Gn(γ, τ1, τ2, i0)}n, satisfying the inclusion

Gn ⊂ (λ0, λ1) × DCNn
(γ, τ1)

such that in each set Gn we have the splitting

L̂ω = L̂ω,n + R̂n,

with
L̂ω,nTω,n = Id, (6.105)

where the operators L̂ω,n and R̂n are defined in the whole set O with the estimates

∀ s ∈ [s0, S], ∥L̂ω,nρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s+1 + εγ−2∥I0∥γ,Oq,s+σ∥ρ∥γ,Oq,s0+1,

∀ b ∈ [0, S], ∥R̂nρ∥γ,Oq,s0
≲ N−b

n γ−1
(

∥ρ∥γ,Oq,s0+b+σ + εγ−2∥I0∥γ,Oq,s0+b+σ∥ρ∥γ,Oq,s0+σ

)
+ εγ−3Nµ2

0 N−µ2
n+1 ∥ρ∥γ,Oq,s0+σ.

For the splitting below which follows from the foregoing results we refer to (6.45) in [87]. Consider the
linear operator Lext defined by

Lext = Dn + Eext
n + Pn + Qn, (6.106)
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where, for any (ϕ̂, ŷ, ŵ, α̂) ∈ Td × Rd × L2
⊥ × Rd

Dn[ϕ̂, ŷ, ŵ, α̂] ≜

 D(n)ϕ̂− K20(φ)ŷ − K⊤
11(φ)ŵ − L⊤

1 (φ)α̂
D(n)ŷ + B(φ)α̂

L̂ω,nŵ − ∂θ
[
K11(φ)ŷ + L⊤

2 (φ)α̂
]

 , (6.107)

Eext
n [ϕ̂, ŷ, ŵ, α̂] ≜ [DG0(u0(φ))]−1∂φZ(φ)ϕ̂−

 0
R10(φ)ŷ +R01(φ)ŵ

0



+

 0
A(n),ext(φ)

[
K20(φ)ŷ + K⊤

11(φ)ŵ
]

0

 , (6.108)

Pn[ϕ̂, ŷ, ŵ, α̂] ≜

 D⊥
(n)ϕ̂

D⊥
(n)ŷ + A(n),⊥(φ)

[
K20(φ)ŷ + K⊤

11(φ)ŵ
]

0

 , (6.109)

Qn[ϕ̂, ŷ, ŵ, α̂] ≜

 0
0

R̂n[ŵ]

 . (6.110)

Then, the operator Lext is defined on the whole set O and when it is restricted to the Cantor set Gn it
coincides with the conjugated linearized operator obtained in (6.64), that is,

Lext = [DG0(u0)]−1di,αF(i0, α0)DG̃0(u0) in Gn. (6.111)

In the next result, we give some useful estimates for the different terms appearing in Lext needed to obtain
good tame estimates for the approximate inverse.

Proposition 6.3. Let (γ, q, d, τ1, s0, µ2) satisfy (A.2) and (7.235) and assume the conditions (6.56) and
(6.103). Then, denoting v̂ = (ϕ̂, ŷ, ŵ, α̂), the following assertions hold true.

(i) The operator Eext
n satisfies the estimate

∥Eext
n [v̂]∥γ,Oq,s0

≲ ∥Z∥γ,Oq,s0+σ∥v̂∥γ,Oq,s0+σ.

(ii) The operator P(n) satisfies the estimate

∀b ⩾ 0, ∥Pn[v̂]∥γ,Oq,s0
≲ N−b

n

(
∥v̂∥γ,Oq,s0+σ+b + ε∥I0∥γ,Oq,s0+σ+b

∥∥v̂∥γ,Oq,s0+σ
)
.

(iii) The operator Qn satisfies the estimate

∀ b ∈ [0, S], ∥Qnv̂∥γ,Oq,s0
≲ N−b

n γ−1
(

∥ŵ∥γ,Oq,s0+b+σ + εγ−2∥I0∥γ,Oq,s0+b+σ∥ŵ∥γ,Oq,s0+σ

)
+ εγ−3Nµ2

0 N−µ2
n+1 ∥ŵ∥γ,Oq,s0+σ.

(iv) There exists a family of operators
(
[Dn]−1

ext
)
n

such that for all g ≜ (g1, g2, g3) satisfying the reversibility
property

g1(φ) = g1(−φ) , g2(φ) = −g2(−φ) , g3(φ) = −(S g3)(−φ) ,

the function [Dn]−1
extg satisfies the estimate

∀ s ∈ [s0, S], ∥[Dn]−1
extg∥γ,Oq,s ≲ γ−1(∥g∥γ,Oq,s+σ + ∥I0∥γ,Oq,s+σ∥g∥γ,Oq,s0+σ

)
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and for all (λ, ω) ∈ Gn one has
Dn [Dn]−1

ext = Id.

Proof. (i) The estimate of Eext
n is obtained from (6.108), Lemma 6.4, Lemma A.1-(iv) and Lemma 6.6-(ii).

(ii) From (6.109), Lemma 6.7-(iii), Lemma A.1-(iv), Lemma 6.6-(i), Lemma 6.4-(ii) we obtain the estimate
on Pn.
(iii) It is a consequence of (6.110) and Proposition 6.2.
(iv) The proof can be found in [87, Prop. 6.3] and for the sake of completeness we shall sketch the main
ideas. We intend to look for an exact inverse of Dn by solving the system

Dn[ϕ̂, ŷ, ŵ, α̂] =

g1

g2

g3

 , (6.112)

where (g1, g2, g3) satisfy the reversibility property

g1(φ) = g1(−φ) , g2(φ) = −g2(−φ) , g3(φ) = −(S g3)(−φ), (6.113)

with S being the involution defined in (4.27). Note that in view of (6.107), the system (6.112) writes
D(n)ϕ̂ = g1 + [K20(φ)ŷ + K⊤

11(φ)ŵ + L⊤
1 (φ)α̂]

D(n)ŷ = g2 − B(φ)α̂
L̂ω,nŵ = g3 + ∂θ[K11(φ)ŷ + L⊤

2 (φ)α̂].
(6.114)

We first consider the second action-component equation in (6.114), namely

D(n)ŷ = g2 − B(φ)α̂.

In view of (6.113), (6.65) and (6.88), g2 and B are odd in the variable φ. Thus, the φ-average of the right hand
side of this equation is zero. Then, by Lemma 6.7-(iv) its solution in the Cantor set DCNn

(γ, τ1) is given by

ŷ ≜ [D(n)]−1
ext
(
g2 − B(φ)α̂

)
. (6.115)

Then we turn to the third normal-component equation in (6.114), namely

L̂ω,nŵ = g3 + ∂θ[K11(φ)ŷ + L⊤
2 (φ)α̂].

By Proposition 6.2, this equation admits as a solution

ŵ ≜ Tω,n
(
g3 + ∂θ[K11(φ)ŷ + L⊤

2 (φ)α̂]
)
. (6.116)

Finally, we solve the first angle-equation in (6.114), which, substituting (6.115), (6.116), becomes

D(n)ϕ̂ = g1 +M1(φ)α̂+M2(φ)g2 +M3(φ)g3 , (6.117)

where

M1(φ) ≜ L⊤
1 (φ) −M2(φ)B(φ) +M3(φ)∂θL⊤

2 (φ) , (6.118)

M2(φ) ≜ K20(φ)[D(n)]−1
ext + K⊤

11(φ)Tω,n∂ϑK11(φ)[D(n)]−1
ext , (6.119)

M3(φ) ≜ K⊤
11(φ)Tω,n . (6.120)
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To solve the equation (6.117) we choose α̂ such that the right hand side has zero φ-average. Notice that
Lemma 6.4, (6.56), (6.104) and Lemma 6.7-(ii) imply

∀s ∈ [s0, S], ∥M2g2∥γ,Oq,s + ∥M3g3∥γ,Oq,s ≲ ε
(

∥g∥γ,Oq,s+σ + ∥I0∥γ,Oq,s+σ∥g∥γ,Oq,s0+σ

)
. (6.121)

By Lemma 6.4-(iii), (6.56), the ϕ-averaged matrix is ⟨M1⟩ = Id + O(εγ−1). Therefore, for εγ−1 small
enough, ⟨M1⟩ is invertible and ⟨M1⟩−1 = Id +O(εγ−1). We thus define

α̂ ≜ −⟨M1⟩−1(⟨g1⟩ + ⟨M2g2⟩ + ⟨M3g3⟩) . (6.122)

Remark that α̂ satisfies
∥α̂∥γ,Oq ≲ ∥g∥γ,Oq,s0+σ. (6.123)

Coming back to (6.115) and using (6.123), (6.56) together with Lemma 6.7-(iv) and Lemma 6.4-(iv), we
obtain

∀s ∈ [s0, S], ∥ŷ∥γ,Oq,s ≲ γ−1
(

∥g∥γ,Oq,s+σ + ∥I0∥γ,Oq,s+σ∥g∥γ,Oq,s0+σ

)
. (6.124)

Putting together (6.116), (6.104), Lemma 6.4-(iii), (6.123), (6.124) and (6.56), one should get, up to
redefining the value of σ,

∀s ∈ [s0, S], ∥ŵ∥γ,Oq,s ≲ γ−1
(

∥g∥γ,Oq,s+σ + ∥I0∥γ,Oq,s+σ∥g∥γ,Oq,s0+σ

)
. (6.125)

With the choice (6.122) of α̂, the equation (6.117) admits as a solution

ϕ̂ ≜ [D(n)]−1
ext
(
g1 +M1(φ)α̂+M2(φ)g2 +M3(φ)g3

)
. (6.126)

Putting together (6.126), Lemma 6.7-(ii), (6.123) and (6.121), one obtains

∀s ∈ [s0, S], ∥ϕ̂∥γ,Oq,s ≲ γ−1
(

∥g∥γ,Oq,s+σ + ∥I0∥γ,Oq,s+σ∥g∥γ,Oq,s0+σ

)
. (6.127)

In conclusion, we have obtained a solution (ϕ̂, ŷ, ŵ, α̂) ≜ [Dn]−1
extg of the linear system (6.112) satisfying in

virtue of (6.123), (6.127), (6.125) and (6.124),

∀s ∈ [s0, S], ∥[Dn]−1
extg∥γ,Oq,s ≲ γ−1

(
∥g∥γ,Oq,s+σ + ∥I0∥γ,Oq,s+σ∥g∥γ,Oq,s0+σ

)
.

Notice that the relation
Dn[Dn]−1

ext = Id in Gn

is a direct consequence of (6.100) and (6.105).

The last point is to prove that the operator

T0 ≜ T0(i0) ≜ (DG̃0)(u0) ◦ [Dn]−1
ext ◦ (DG0)(u0)−1 (6.128)

is an approximate right inverse for di,αF(i0, α0).

Theorem 6.1 (Approximate inverse). Let (γ, q, d, τ1, τ2, s0, sh, µ2, S) satisfy (A.2), (A.1), (7.235) and
(7.3). Then there exists σ = σ(τ1, τ2, d, q) > 0 such that if the smallness conditions (6.56) and (6.103)
hold, then the operator T0 defined in (6.128) is reversible and satisfies for all g = (g1, g2, g3), with (6.113),

∀s ∈ [s0, S], ∥T0g∥γ,Oq,s ≲ γ−1
(

∥g∥γ,Oq,s+σ + ∥I0∥γ,Oq,s+σ∥g∥γ,Oq,s0+σ

)
. (6.129)
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Moreover T0 is an almost-approximate right inverse of di,αF(i0, α0) in the Cantor set Gn. More precisely,
for all (λ, ω) ∈ Gn one has

di,αF(i0) ◦ T0 − Id = E(n)
1 + E(n)

2 + E(n)
3 , (6.130)

where the operators E(n)
1 , E(n)

2 and E(n)
3 are defined in the set O with the estimates

∥E(n)
1 g∥γ,Oq,s0

≲ γ−1∥F(i0, α0)∥γ,Oq,s0+σ∥g∥γ,Oq,s0+σ, (6.131)

∀b ⩾ 0, ∥E(n)
2 g∥γ,Oq,s0

≲ γ−1N−b
n

(
∥g∥γ,Oq,s0+b+σ + ε∥I0∥γ,Oq,s0+b+σ

∥∥g∥γ,Oq,s0+σ
)
, (6.132)

∀b ∈ [0, S], ∥E(n)
3 g∥γ,Oq,s0

≲ N−b
n γ−2

(
∥g∥γ,Oq,s0+b+σ + εγ−2∥I0∥γ,Oq,s0+b+σ∥g∥γ,Oq,s0+σ

)
+ εγ−4Nµ2

0 N−µ2
n ∥g∥γ,Oq,s0+σ. (6.133)

Proof. The estimate (6.129) is a consequence of (6.128), Proposition 6.3-(iv) and Lemma 6.4-(i). Then,
according to (6.106) and (6.111), in the Cantor set Gn we have the decomposition

di,αF(i0, α0) = DG0(u0) ◦ Lext ◦D[G̃0(u0)]−1

= DG0(u0) ◦ Dn ◦D[G̃0(u0)]−1 +DG0(u0) ◦ Eext
n ◦ [G̃0(u0)]−1

+DG0(u0) ◦ Pn ◦ [G̃0(u0)]−1 +DG0(u0) ◦ Qn ◦ [G̃0(u0)]−1.

By applying T0, defined in (6.128), to the last identity we get for all (λ, ω) ∈ Gn

di,αF(i0, α0) ◦ T0 − Id = E(n)
1 + E(n)

2 + E(n)
3 ,

with

E(n)
1 ≜ DG0(u0) ◦ Eext

n ◦ [G̃0(u0)]−1 ◦ T0,

E(n)
2 ≜ DG0(u0) ◦ Pn ◦ [G̃0(u0)]−1 ◦ T0,

E(n)
3 ≜ DG0(u0) ◦ Qn ◦ [G̃0(u0)]−1 ◦ T0.

The estimates on E(n)
1 , E(n)

2 and E(n)
3 come from (6.129), Proposition 6.3 and Lemma 6.4-(i).

7 Reduction of the linearized operator in the normal directions

In this section, we fix a torus i0 = (ϑ0, I0, z0) close to the flat one and satisfying the reversibility condition
(6.23), that is

ϑ0(−φ) = −ϑ0(φ), I0(−φ) = I0(φ), z0(−φ) = (S z0)(φ). (7.1)

As in the previous section, we denote I0(φ) = i0(φ) − (φ, 0, 0). Our main goal here is to explore the
invertibility of the operator

L̂ω = L̂ω(i0) = Π⊥
S0

(ω · ∂φ − ∂θK02(φ)) Π⊥
S0

(7.2)

defined through (6.102) and (6.67) with the suitable tame estimates for the inverse. For a precise statement
we refer to Proposition 7.6. Notice that this operator will be described as a quasilinear perturbation of the
diagonal operator stated in Lemma 5.1 and we expect that suitable standard reductions can be performed
to conjugate it to a diagonal one provided that the exterior parameters are subject to live in a Cantor set
allowing to prevent resonances. For this aim, we shall implement with suitable adaptions the strategy
developed in the works [7, 33]. We distinguish two long reduction steps. First, we perform a quasi-periodic
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change of variables such that in the new coordinates system the transport part is straightened to a constant
coefficient operator. The construction of this transformation is based on a KAM reducibility procedure
as in [64]. The outcome of this first step is a new operator whose positive part is diagonal with a small
nonlocal perturbation of order −1. Then the second step consists in applying KAM scheme in order to
reduce the remainder and conjugate the resulting operator from step 1 into a diagonal one up to small
errors. The proof follows basically a common procedure that can be found for instance in [17]. We point
out that our results differ slightly from the preceding ones in [7, 33], especially at the level of Cantor sets
which are constructed over the final targets.
We shall use throughout the proofs some frequency cut-offs with respect to the sequence defined in (6.94),
with N0 a constant needed to be large enough. In the current section, the numbers N0 ⩾ 2 and γ ∈ (0, 1)
are a priori free parameters, but during the Nash-Moser scheme, see Proposition 8.1, they will be adjusted
with respect to ε according to the relations

N0 = γ−1 and γ = εa for some a > 0.

We shall set the following parameters required along the different reductions that we intend to perform,

sl ≜ s0 + τ1q + τ1 + 2, µ2 ≜ 4τ1q + 6τ1 + 3,
sl ≜ sl + τ2q + τ2, sh ≜ 3

2µ2 + sl + 1,
(7.3)

supplemented with the assumptions (A.2) and (A.1).

7.1 Localization on the normal directions

According to Theorem 6.1, the construction of an approximate inverse for di,αF(i0, α0) is based on
Proposition 6.2 dealing with finding an approximate right inverse for the operator L̂ω. This program will
be achieved along several steps and in the first one we shall describe its asymptotic structure around the
linearized operator at the equilibrium state described in Lemma 5.1. More precisely, we shall prove the
following result.

Proposition 7.1. Let (γ, q, d, s0) satisfy (A.2). Then the operator L̂ω defined in (7.2) takes the form

L̂ω = Π⊥
S0

(Lεr − ε∂θR) Π⊥
S0
, Lεr = ω · ∂φ + ∂θ (Vεr·) − ∂θLεr,

where Vεr and Lεr are defined in Lemma 5.1, and from (6.12) we have

r(φ) = A
(
ϑ0(φ), I0(φ), z0(φ)

)
= v
(
ϑ0(φ), I0(φ)

)
+ z0(φ),

supplemented with the reversibility assumption

r(λ, ω,−φ,−θ) = r(λ, ω, φ, θ). (7.4)

Moreover, R is an integral operator in the sense of the Definition A.3, whose kernel J satisfies the
symmetry property

J(λ, ω,−φ,−θ,−η) = J(λ, ω, φ, θ, η). (7.5)

and under the assumption
∥I0∥γ,Oq,s0

⩽ 1, (7.6)

we have for all s ⩾ s0,
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(i) The function r satisfies the estimates,

∥r∥γ,Oq,s ≲ 1 + ∥I0∥γ,Oq,s (7.7)

and
∥∆12r∥γ,Oq,s ≲ ∥∆12i∥γ,Oq,s + ∥∆12i∥γ,Oq,s0

max
j=1,2

∥Ij∥γ,Oq,s . (7.8)

(ii) The kernel J satisfies the following estimates for all ℓ ∈ N,

sup
η∈T

∥(∂ℓθJ)(∗, ·, �, η + �)∥γ,Oq,s ≲ 1 + ∥I0∥γ,Oq,s+3+ℓ (7.9)

and

sup
η∈T

∥∆12(∂ℓθJ)(∗, ·, �, η + �)∥γ,Oq,s ≲ ∥∆12i∥γ,Oq,s+3+ℓ + ∥∆12i∥γ,Oq,s0+3 max
j=1,2

∥Ij∥γ,Oq,s+3+ℓ. (7.10)

Here ∗, ·, � stand for (λ, ω), φ, θ, respectively and Iℓ(φ) = iℓ(φ) − (φ, 0, 0). In addition, for any
function f , ∆12f ≜ f(i1) − f(i2) refers for the difference of f taken at two different states i1 and i2
satisfying (7.6).

Proof. To alleviate the notation we shall at several stages of the proof remove the dependence of the
involved functions/operators with respect to (λ, ω) and keep it when we deem it relevant. Recall that the
operator L̂ω is defined in (7.2). To describe K02(φ) we follow [7, 33]. First, we observe from (6.67) and
(6.20) that

K02(φ) = L(λ) + ε∂w∇w(Pε(i0(φ)) + εR(φ),

with
R(φ) = R1(φ) + R2(φ) + R3(φ),

where

R1(φ) ≜ L⊤
2 (φ)∂I∇IPε(i0(φ))L2(φ),

R2(φ) ≜ L⊤
2 (φ)∂z∇IPε(i0(φ)),

R3(φ) ≜ ∂I∇zPε(i0(φ))L2(φ).

As we shall see, all the operators R1(φ), R2(φ) and R3(φ) have a finite-dimensional rank. This property
is obvious for the operator L2(φ) defined in (6.60), which sends in view of (6.57) the space L2

⊥ to Rd and
therefore for any ρ ∈ L2

⊥ we write

L2(φ)[ρ] =
d∑
k=1

〈
L2(φ)[ρ], ek

〉
Rd ek =

d∑
k=1

〈
ρ, L⊤

2 (φ)[ek]
〉
L2(T) ek,

with (ek)dk=1 being the canonical basis of Rd. Hence

R1(φ)[ρ] =
d∑
k=1

〈
ρ, L⊤

2 (φ)[ek]
〉
L2(T)A1(φ)[ek] with A1(φ) = L⊤

2 (φ)∂I∇IPε(i0(φ)),

R3(φ)[ρ] =
d∑
k=1

〈
ρ, L⊤

2 (φ)[ek]
〉
L2(T)A3(φ)[ek] with A3(φ) = ∂I∇zPε(i0(φ)).
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In a similar way, by setting A2(φ) ≜ ∂z∇IPε(i0(φ)) : L2
⊥ → Rd, then we may write

R2(φ)[ρ] =
d∑
k=1

〈
ρ,A⊤

2 (φ)[ek]
〉
L2 (T)L

⊤
2 (φ)[ek].

Define
gk,1(φ, θ) = gk,3(φ, θ) = χk,2(φ, θ) ≜ L⊤

2 (φ)[ek](θ), gk,2(φ, θ) ≜ A⊤
2 (φ)[ek](θ)

and
χk,1(φ, θ) ≜ A1(φ)[ek](θ), χk,3(φ, θ) ≜ A3(φ)[ek](θ),

then we can see that the operator R takes the integral form

Rρ(φ, θ) =
3∑

k′=1

d∑
k=1

⟨ρ(φ, ·), gk,k′(φ, ·)⟩L2(T)χk,k′(φ, θ)

=
ˆ
T
ρ(φ, η)J(φ, θ, η)dη,

with

J(φ, θ, η) ≜
3∑

k′=1

d∑
k=1

gk,k′(φ, η)χk,k′(φ, θ).

Now we remark that by construction gk,k′ , χk,k′ ∈ L2
⊥ with

∥gk,k′∥γ,Oq,s + ∥χk,k′∥γ,Oq,s ≲ 1 + ∥I0∥γ,Oq,s+3 (7.11)

and straightforward computations yield

∥digk,k′ [̂i]∥γ,Oq,s + ∥diχk,k′ [̂i]∥γ,Oq,s ≲ ∥̂i∥γ,Oq,s+2 + ∥I0∥γ,Oq,s+4∥̂i∥γ,Oq,s0+2. (7.12)

On the other hand, one has from direct computations that

∀ℓ ∈ N, (∂ℓθJ)(φ, θ, η + θ) =
3∑

k′=1

d∑
k=1

gk,k′(φ, η + θ)(∂ℓθχk,k′)(φ, θ).

Hence, we may combine (7.11) with Lemma A.1-(iv) and (7.6) allowing to get

sup
η∈T

∥(∂ℓθJ)(∗, ·, �, η + �)∥γ,Oq,s ≲
3∑

k′=1

d∑
k=1

∥gk,k′(∗, ·, η + �)∥γ,Oq,s ∥χk,k′(∗, ·, �)∥γ,Oq,s0+ℓ

+
3∑

k′=1

d∑
k=1

∥gk,k′(∗, ·, η + �)∥γ,Oq,s0
∥χk,k′(∗, ·, �)∥γ,Oq,s+ℓ

≲ 1 + ∥I0∥γ,Oq,s+3+ℓ,

where we have used the interpolation inequality: for s ⩾ s0

∥gk,k′(∗, ·, η + �)∥γ,Oq,s ∥χk,k′(∗, ·, �)∥γ,Oq,s0+ℓ ≲ ∥gk,k′(∗, ·, η + �)∥γ,Oq,s+ℓ∥χk,k′(∗, ·, �)∥γ,Oq,s0

+ ∥gk,k′(∗, ·, η + �)∥γ,Oq,s0
∥χk,k′(∗, ·, �)∥γ,Oq,s+ℓ.
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In addition, to estimate the difference we simply write

∀ℓ ∈ N, ∆12(∂ℓθJ)(φ, θ, η + θ) =
3∑

k′=1

d∑
k=1

∆12gk,k′(φ, η + θ)(∂ℓθ(χk,k′)r1)(φ, θ)

+
3∑

k′=1

d∑
k=1

(gk,k′)r2(φ, η + θ)(∆12∂
ℓ
θχk,k′)(φ, θ).

By applying the mean value theorem combined with (7.12), (7.6) and interpolation inequalities

sup
η∈T

∥∆12(∂ℓθJ)(∗, ·, �, η + �)∥γ,Oq,s ≲
3∑

k′=1

d∑
k=1

∥∆12gk,k′(∗, ·, η + �)∥γ,Oq,s ∥χk,k′(∗, ·, �)∥γ,Oq,s0+ℓ

+
3∑

k′=1

d∑
k=1

∥∆12gk,k′(∗, ·, η + �)∥γ,Oq,s0
∥χk,k′(∗, ·, �)∥γ,Oq,s+ℓ

+
3∑

k′=1

d∑
k=1

∥gk,k′(∗, ·, η + �)∥γ,Oq,s0
∥∆12χk,k′(∗, ·, �)∥γ,Oq,s+ℓ

+
3∑

k′=1

d∑
k=1

∥gk,k′(∗, ·, η + �)∥γ,Oq,s ∥∆12χk,k′(∗, ·, �)∥γ,Oq,s0+ℓ

≲ ∥∆12i∥γ,Oq,s+3+ℓ + ∥∆12i∥γ,Oq,s0+3 max
j=1,2

∥Ij∥γ,Oq,s+3+ℓ.

The symmetry property detailed in (7.5) is a consequence of the definition of r and the reversibility
condition (7.1) imposed on the torus i0. Consequently, putting together (6.4) and (6.12) gives

K02(φ) = L(λ)Π⊥
S0

+ ε∂z∇zPε(i0(φ)) + εR(φ)

= L(λ)Π⊥
S0

+ εΠ⊥
S0
∂r∇rPε(A(i0(φ)))Π⊥

S0
+ εR(φ)

= Π⊥
S0
∂r∇rHε(A(i0(φ)))Π⊥

S0
+ εR(φ)

= Π⊥
S0
∂r∇rH(εA(i0(φ)))Π⊥

S0
+ εR(φ).

Recall from (6.12) that
r(φ, ·) = A(i0(φ)), (7.13)

then according to the general form of the linearized operator stated in Lemma 5.1 one has

−∂θ∂r∇rH(εr(φ, ·)) = ∂θ (Vεr·) − ∂θLεr,

which implies in turn
−K02(φ) = Π⊥

S0

(
∂θ (Vεr·) − ∂θLεr) − εR(φ)

)
Π⊥

S0
.

Plugging this identity into (7.2) gives the desired result. Next, using (7.13), (6.12) and (6.54), we obtain

∥r∥γ,Oq,s ≲ ∥v(ϑ0, I0)∥γ,Oq,s + ∥z0∥γ,Oq,s
≲ 1 + ∥I0∥γ,Oq,s .

We shall now move to the proof of the bound (7.8). First, we observe from (6.12) that

∥∆12r∥γ,Oq,s ≲ ∥∆12v(ϑ, I)∥γ,Oq,s + ∥∆12z∥γ,Oq,s .
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Therefore, Taylor Formula with (6.54) and product laws allow to get

∥∆12v(ϑ, I)∥γ,Oq,s ≲ ∥∆12(I, ϑ)∥γ,Oq,s + ∥∆12(I, ϑ)∥γ,Oq,s0
max
j=1,2

∥Ij∥γ,Oq,s ,

which implies that

∥∆12r∥γ,Oq,s ≲ ∥∆12i∥γ,Oq,s + ∥∆12i∥γ,Oq,s0
max
j=1,2

∥Ij∥γ,Oq,s .

This achieves the proof of Proposition 7.1.

7.2 Reduction of order 1

In this section, we perform the reduction of the transport part of the linearized operator Lεr described in
Proposition 7.1. More precisely, we conjugate the operator Lεr by a quasi-periodic symplectic change
of variables B leading to a transport part with constant coefficients depending only on the torus i0
and the parameters ε, λ and ω. To get a precise information on the remainder, which is of order −1 in
θ, we need to describe the action of this conjugation on the nonlocal term using the kernel structure
rather than pseudo-differential theory. The reduction to a constant coefficient operator is based on KAM
scheme through the construction of successive quasi-periodic symplectic change of coordinates. This will
be implemented in the spirit of [8, 64]. Here we need to extend their construction to the framework
of symplectic change of coordinates with Cq regularity. We point out that similar results with slight
variations have been established in [11, 28, 32].

7.2.1 Reduction of the transport part

Now we shall state the main result of this section concerning the reduction of the transport part of the
linearized operator Lεr.

Proposition 7.2. Let (γ, q, d, τ1, s0, S, sl, sh, µ2) satisfy (A.2), (A.1) and (7.3). Let υ ∈
(

0, 1
q+2

]
. We set

σ1 ≜ s0 + τ1q + 2τ1 + 4. (7.14)

For any (µ2, p, sh) satisfying

µ2 ⩾ µ2 ≜ 4τ1q + 6τ1 + 3, p ⩾ 0, sh ⩾ max
(

3
2µ2 + sl + 1, sh + p

)
, (7.15)

there exists ε0 > 0 such that if

εγ−1Nµ2
0 ⩽ ε0 and ∥I0∥γ,Oq,sh+σ1

⩽ 1, (7.16)

there exist
ci0 ∈ W q,∞,γ(O,R) and β ∈

⋂
s∈[s0,S]

W q,∞,γ(O, Hs
odd)

such that with B defined in (A.12) one gets the following results.

(i) The function ci0 satisfies the following estimate,

∥ci0 − V0∥γ,Oq ≲ ε, (7.17)

where V0 is defined in Lemma 5.2.
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(ii) The transformations B±1,B±1, β and β̂ satisfy the following estimates for all s ∈ [s0, S]

∥B±1ρ∥γ,Oq,s + ∥B±1ρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s + εγ−1∥I0∥γ,Oq,s+σ1
∥ρ∥γ,Oq,s0

(7.18)

and
∥β̂∥γ,Oq,s ≲ ∥β∥γ,Oq,s ≲ εγ−1

(
1 + ∥I0∥γ,Oq,s+σ1

)
. (7.19)

(iii) Let n ∈ N, then in the truncated Cantor set

Oγ,τ1
∞,n(i0) =

⋂
(l,j)∈Zd×Z\{(0,0)}

|l|⩽Nn

{
(λ, ω) ∈ O s.t.

∣∣ω · l + jci0(λ, ω)
∣∣ > 4γυ⟨j⟩

⟨l⟩τ1

}
,

we have
B−1(ω · ∂φ + ∂θ

(
Vεr ·

))
B = ω · ∂φ + ci0∂θ + E0

n,

with E0
n = E0

n(λ, ω, i0) a linear operator satisfying

∥E0
nρ∥γ,Oq,s0

≲ εNµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+2. (7.20)

(iv) Given two tori i1 and i2 both satisfying (7.16), we have

∥∆12ci∥γ,Oq ≲ ε∥∆12i∥γ,Oq,sh+2 (7.21)

and
∥∆12β∥γ,Oq,sh+p + ∥∆12β̂∥γ,Oq,sh+p ≲ εγ

−1∥∆12i∥γ,Oq,sh+p+σ1
. (7.22)

Before giving the proof, some remarks are in order.

Remark 7.1. • The final Cantor set Oγ,τ1
∞,n(i0) is constructed over the limit coefficient ci0 but it is still

truncated in the time frequency, that is |l| ⩽ Nn, leading to a residual remainder with enough decay.
This induces a suitable stability property that is crucial during the Nash-Moser scheme achieved with
the nonlinear functional.

• Notice that, since 4γυ ⩾ γ, then looking at j = 0 we find that the Cantor set Oγ,τ1
∞,n(i0) is contained

in the Diophantine Cantor set (λ0, λ1) × DCNn(γ, τ1) introduced in (6.90).

• The parameter υ is introduced for technical reasons appearing later in the measure estimates of the
final Cantor set and it will be fixed in (8.64).

• The constant 4 used in the definition of the Cantor set Oγ,τ1
∞,n(i0) is useful to ensure the inclusion of

this set in all the Cantor sets built in the KAM procedure (see (7.81) in the proof below) and also to
establish some inclusions related to the final Cantor set (see the proof of Lemma 8.2).

• We emphasize here that the functions β and β̂ are odd in the sense

β(λ, ω,−φ,−θ) = −β(λ, ω, φ, θ) and β̂(λ, ω,−φ,−θ) = −β̂(λ, ω, φ, θ) (7.23)

which will be crucial later to get the Toeplitz structure of the new remainder term emerging after
this reduction.

Proof. Since we are looking at a state near the disc, we can split Vεr defined by (5.1) according to

Vεr(λ, φ, θ) = V0(λ) + f0(λ, φ, θ), (7.24)

112



7. Reduction of the linearized operator in the normal directions

with f0 being a perturbation term of small size. We refer to (7.47) for a more precise quantification of this
smallness. The proof is an iteration process introducing at each step a linear quasi-periodic symplectic
change of coordinates. This transformation is linked to the remainder term of the previous step. Roughly
speaking, if the latter is of size ε, then we choose the change of coordinates in such a way that we extract
the main diagonal part of the previous remainder and keep a new perturbation term of size ε2. The choice
of the transformation is done through the resolution of an homological equation requiring non-resonance
conditions capted by a suitable selection of the parameters of the system. Thus, by iteration, we can
construct a final Cantor set gathering all the parameters restrictions of all steps in which we completely
reduced the transport operator into a constant coefficient one. We shall now explain a typical step of the
procedure Later, we shall implement the scheme.
(i)-(ii) ▶ KAM step. Let us consider a transport operator in the form,

ω · ∂φ + ∂θ

(
V + f

)
for suitable parameters (λ, ω) that belong to a subset Oγ

− ⊂ O, where O is the ambient set and

V = V (λ, ω) and f = f(λ, ω, φ, θ),

where f enjoys the following symmetry condition

f(λ, ω,−φ,−θ) = f(λ, ω, φ, θ). (7.25)

To alleviate the notations we shall use during the proof the variable µ ≜ (λ, ω). We consider a symplectic
quasi-periodic change of coordinates close to the identity taking the form

G ρ(µ, φ, θ) ≜
(
1 + ∂θg(µ, φ, θ)

)
Gρ(µ, φ, θ)

≜
(
1 + ∂θg(µ, φ, θ)

)
ρ
(
µ, φ, θ + g(µ, φ, θ)

)
,

(7.26)

where g : O × Td+1 → R is a small function which will be later linked to f. Then, by using Lemma A.3,
we can write for any N ⩾ 2

G −1
(
ω · ∂φ + ∂θ (V + f)

)
G = ω · ∂φ + ∂θG−1 (V + ω · ∂φg + V ∂θg + ΠNf + Π⊥

Nf + f∂θg
)
. (7.27)

Recall that the projections ΠN are defined in (A.5). The basic idea is to obtain after this transformation
a new transport operator in the form

G −1
(
ω · ∂φ + ∂θ (V + f)

)
G = ω · ∂φ + ∂θ

(
V+ + f+

)
, (7.28)

where
V+ = V+(µ) and f+ = f+(µ, φ, θ),

with f+ quadratically smaller than f. In order to get rid of the terms wich are not small of quadratic in f
in the right hand-side of (7.27), we shall select g as a solution of the following homological equation

ω · ∂φg + V ∂θg + ΠNf = ⟨f⟩φ,θ, (7.29)

where
⟨f⟩φ,θ(µ) ≜

ˆ
Td+1

f(µ, φ, θ)dφdθ.

To find a solution to the homological equation (7.29), we use Fourier decomposition and look for g in the
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form
g(µ, φ, θ) ≜ i

∑
(l,j)∈Zd+1\{0}

⟨l,j⟩⩽N

fl,j(µ)
ω·l+jV (µ)e

i(l·φ+jθ). (7.30)

The denominators appearing in the Fourier decomposition of g may be small and generate problems in the
convergence of the series in (7.30) for large N. This is a well-known phenomenon in KAM theory called
"small divisors problem". To overcome this difficulty, one has to avoid the resonances and, following the
ideas of Kolmogorov, we introduce Diophantine conditions gathered in the following Cantor set

Oγ
+ ≜

⋂
(l,j)∈Zd+1\{0}

⟨l,j⟩⩽N

{
µ ∈ Oγ

− s.t.
∣∣ω · l + jV (µ)

∣∣ > γυ⟨j⟩
⟨l⟩τ1

}
. (7.31)

Such a selection of the external parameters allows us to control the size of the denominators in (7.30). As
we shall see in (7.39), the quantification of this control, linked to the parameters γ and τ1, allows to get
suitable estimates for g with some loss of regularity uniform with respect to N . Before performing this
estimate, we shall first construct an extension of g to the whole set O. In what follows, we still denote g
this extension. This is done by extending the Fourier coefficients of g using the cut-off function χ defined
in (6.92). More precisely, we define

gl,j(µ) ≜ iχ
(

(ω·l+jV (µ))(γυ⟨j⟩)−1⟨l⟩τ1
)

ω·l+jV (µ) fl,j(µ) (7.32)

≜ g̃l,j(µ)fl,j(µ).

Notice that the extension g is a solution to (7.29) only when the parameters are restricted to the Cantor
set Oγ

+. Then, we define

V+ ≜ V + ⟨f⟩φ,θ and f+ ≜ G−1(Π⊥
Nf + f∂θg

)
,

so that in restriction to the Cantor set Oγ
+, the identity (7.28) holds. Remark that V+ and f+ are

well-defined in the whole set of parameters O and the function g is smooth since it is generated by a finite
number of frequencies. According to (7.25), we obtain that g is odd. As a consequence,

g ∈
⋂
s⩾0

W q,∞,γ(O, Hs
odd). (7.33)

Our next task is to estimate the Fourier coefficients g̃l,j defined by (7.32). Notice that we can write them
in the following form

g̃l,j(µ) = i al,jχ̂(al,jAl,j(µ)), χ̂(x) ≜ χ(x)
x (7.34)

Al,j(µ) ≜ ω · l + jV (µ), al,j ≜ (γυ⟨j⟩)−1⟨l⟩τ1 .

Since χ̂ is C∞ with bounded derivatives and χ̂(0) = 0, then applying Lemma A.1-(vi), we obtain

∀q′ ∈ J0, qK, ∥g̃l,j∥γ,Oq′ ≲ a2
l,j∥Al,j∥

γ,O
q′

(
1 + aq

′−1
l,j ∥Al,j∥q

′−1
L∞(O)

)
.

Direct computations lead to

∀(l, j) ∈ Zd+1, ∀α ∈ Nd+1, |α| ⩽ q, sup
µ∈O

∣∣∂αµAl,j(µ)
∣∣ ≲ ⟨l, j⟩ max

(
1, sup
µ∈O

∣∣∂αµV (µ)
∣∣)

≲ γ−|α|⟨l, j⟩ max
(
1, ∥V ∥γ,Oq

)
.

114



7. Reduction of the linearized operator in the normal directions

Assuming
∥V ∥γ,Oq ⩽ C, (7.35)

we then obtain
∀q′ ∈ J0, qK, ∀(l, j) ∈ Zd+1, ∥Al,j∥γ,Oq′ ≲ ⟨l, j⟩. (7.36)

Added to the fact that 0 ⩽ al,j ⩽ γ−υ⟨l⟩τ1 , we then find that

∀q′ ∈ J0, qK, ∥g̃l,j∥γ,Oq′ ≲ γ−υ(q′+1)⟨l, j⟩τ1q
′+τ1+q′

. (7.37)

Our choice of υ in Proposition 7.2 implies in particular that

υ ⩽ 1
q+1 . (7.38)

Therefore, we deduce from (7.32) and Leibniz rule that for all α ∈ Nd+1 with |α| ⩽ q

γ2|α|∥∂αµg(µ, ·, �)∥2
Hs−|α| ≲

∑
(l,j)∈Zd+1\{(0,0)}

⟨l,j⟩⩽N

∑
β∈Nd+1

β⩽α

γ2|α|−2|β|∣∣∂α−β
µ g̃l,j(µ)

∣∣2γ2|β|∣∣∂βµfl,j(µ)
∣∣2⟨l, j⟩2s−2|α|

≲
∑

(l,j)∈Zd+1\{(0,0)}
⟨l,j⟩⩽N

∑
β∈Nd+1

β⩽α

(
∥g̃l,j∥γ,O|α|−|β|

)2
γ2|β|∣∣∂βµfl,j(µ)

∣∣2⟨l, j⟩2s−2|α|

≲
∑

(l,j)∈Zd+1\{(0,0)}
⟨l,j⟩⩽N

∑
β∈Nd+1

β⩽α

γ−2γ2|β|∣∣∂βµfl,j(µ)
∣∣2⟨l, j⟩2(s+τ1q+τ1−|β|).

As a consequence, by interverting the summation symbols, we find

∥g∥γ,Oq,s ≲ γ−1∥ΠNf∥γ,Oq,s+τ1q+τ1
. (7.39)

Assume now that
γ−1Nτ1q+τ1+1∥f∥γ,Oq,s0

⩽ ε0. (7.40)

Then added to (7.39) and Lemma A.1-(ii), we get

∥g∥γ,Oq,s0
⩽ Cγ−1Nτ1q+τ1∥f∥γ,Oq,s0

⩽ Cε0.

On the other hand if we assume
∥f∥γ,Oq,s ≲ ε

(
1 + ∥I0∥γ,Oq,s+1

)
,

then (7.39) gives

∥g∥γ,Oq,2s0+1 ≲ γ
−1∥f∥γ,Oq,2s0+τ1q+τ1+1

≲ εγ−1
(

1 + ∥I0∥γ,Oq,2s0+τ1q+τ1+2

)
≲ εγ−1

(
1 + ∥I0∥γ,Oq,sh+σ1

)
.

Notice that to obtain the last inequality we used the fact that (7.15) and (7.14) imply

2s0 + τ1q + τ1 + 2 ⩽ sh + σ1.
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Using interpolation inequality and (7.16), one gets for some θ ∈ (0, 1)

∥g∥γ,Oq,2s0
≲
(
∥g∥γ,Oq,s0

)θ (∥g∥γ,Oq,2s0+1

)1−θ

≲ ε0. (7.41)

Thus, taking ε0 small enough, we can ensure the smallness condition in Lemma A.4 and get that the
linear operator G is invertible. Now, we introduce

u ≜ Π⊥
Nf + f∂θg.

By the triangle inequality, Lemma A.1-(ii) and (7.39), we obtain for all s ∈ [s0, S]

∥u∥γ,Oq,s ⩽ ∥Π⊥
Nf∥γ,Oq,s + C

(
∥f∥γ,Oq,s0

∥∂θg∥γ,Oq,s + ∥f∥γ,Oq,s ∥∂θg∥γ,Oq,s0

)
⩽ ∥Π⊥

Nf∥γ,Oq,s + C
(

∥f∥γ,Oq,s0
∥g∥γ,Oq,s+1 + ∥f∥γ,Oq,s ∥g∥γ,Oq,s0+1

)
⩽ ∥Π⊥

Nf∥γ,Oq,s + Cγ−1Nτ1q+τ1+1∥f∥γ,Oq,s0
∥f∥γ,Oq,s .

Combined with Lemma A.4, Lemma A.1-(ii) and (7.40), we get for all s ∈ [s0, S]

∥f+∥γ,Oq,s = ∥G−1(u)∥γ,Oq,s

⩽ ∥u∥γ,Oq,s + C
(

∥u∥γ,Oq,s ∥ĝ∥γ,Oq,s0
+ ∥ĝ∥γ,Oq,s ∥u∥γ,Oq,s0

)
⩽ ∥u∥γ,Oq,s + C

(
∥u∥γ,Oq,s ∥g∥γ,Oq,s0

+ ∥g∥γ,Oq,s ∥u∥γ,Oq,s0

)
⩽ ∥Π⊥

Nf∥γ,Oq,s + Cγ−1Nτ1q+τ1+1∥f∥γ,Oq,s0
∥f∥γ,Oq,s .

Using once again Lemma A.1-(ii), we find for S ⩾ s ⩾ s ⩾ s0

∥f+∥γ,Oq,s ⩽ Ns−s∥f∥γ,Oq,s + Cγ−1Nτ1q+τ1+1∥f∥γ,Oq,s0
∥f∥γ,Oq,s . (7.42)

▶ KAM scheme. Let us now assume that we have constructed Vm and fm, well-defined in the whole set of
parameters O and satisfying the assumptions (7.35) and (7.40). We shall now construct the corresponding
quantity at the next order, namely Vm+1 and fm+1, still satisfying (7.35) and (7.40). For this aim, we shall
implement the KAM step with (V, f, V+, f+, N) replaced by (Vm, fm, Vm+1, fm+1, Nm). More precisely,
we will shall prove by induction the existence of a sequence {Vm, fm}m∈N such that

δm(sl) ⩽ δ0(sh)Nµ2
0 N−µ2

m and δm(sh) ⩽
(

2 − 1
m+1

)
δ0(sh) (7.43)

and
∥Vm∥γ,Oq ⩽ C and Nτ1q+τ1+1

m δm(s0) ⩽ ε0, (7.44)

with fm satisfying the following symmetry condition

fm(µ,−φ,−θ) = fm(µ, φ, θ) (7.45)

and where we denote
δm(s) ≜ γ−1∥fm∥γ,Oq,s .

Recall that the parameters sl and sh were introduced in (7.3) and (7.15).
➢ Initialization. We shall first check that the estimates (7.43) and (7.44) are satisfied for m = 0. In which
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case the functions V0 and f0 are defined by (5.11) and (7.24). By (6.43) and (7.7) we infer

δ0(s) = γ−1∥Vεr − V0∥γ,Oq,s
≲ εγ−1∥r∥γ,Oq,s+1

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+1

)
. (7.46)

Thus, the notation (7.15) and the smallness condition (7.16) imply that

Nµ2
0 δ0(sh) ⩽ Cε0. (7.47)

In addition, by (7.4) and (5.3), we deduce that f0 satisfies the following symmetry condition

f0(λ,−φ,−θ) = f0(λ, φ, θ). (7.48)

We set Oγ
0 = O and consider N0 ⩾ 2. Our next task is to check that the assumptions (7.35) and (7.40)

are satisfied by V0 and f0. First recall that V0 is defined by

V0(λ) = Ω + I1(λ)K1(λ).

Using the smooth regularity of (C.10), we obtain

∥V0∥γ,Oq ⩽ C. (7.49)

Therefore, the required boundedness property (7.35) is satisfied with V = V0. Now by (7.15), we have

µ2 ⩾ τ1q + τ1 + 2. (7.50)

Hence, using (7.47), we obtain

γ−1Nτ1q+τ1+1
0 ∥f0∥γ,Oq,s0

= Nτ1q+τ1+1
0 δ0(s0)

⩽ Nτ1q+τ1+1−µ2
0 Nµ2

0 δ0(sh)

⩽ Cε0N
−1
0 .

By taking N0 large enough we get
CN−1

0 ⩽ 1, (7.51)

so that
γ−1Nτ1q+τ1+1

0 ∥f0∥γ,Oq,s0
⩽ ε0.

Hence, the assumption (7.40) is satisfied for f = f0. This ends the initialization step.
➢ Iteration. let us now assume that we have constructed Vm and fm enjoying the properties (7.43), (7.44)
and (7.45). We shall see how to construct Vm+1 and fm+1. According to the KAM step, we consider a
symplectic quasi-periodic change of variables Gm taking the form

Gmρ(µ, φ, θ) ≜
(
1 + ∂θgm(µ, φ, θ)

)
Gmρ(µ, φ, θ)

=
(
1 + ∂θgm(µ, φ, θ)

)
ρ
(
µ, φ, θ + gm(µ, φ, θ)

)
,
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with
gm(µ, φ, θ) ≜ i

∑
(l,j)∈Zd+1\{0}

⟨l,j⟩⩽Nm

χ
(

(ω·l+jVm(µ))(γυ⟨j⟩)−1⟨l⟩τ1
)

ω·l+jVm(µ) (fm)l,j(µ) ei(l·φ+jθ), (7.52)

where χ is the cut-off function introduced in (6.92) and Nm is defined in (6.94). As explained in the KAM
step, gm is well-defined on the whole set of parameters O and solves the homological equation

ω · ∂φgm + Vm∂θgm + ΠNm
fm = ⟨fm⟩φ,θ

when restricted to the Cantor set

Oγ
m+1 ≜

⋂
(l,j)∈Zd+1\{0}

⟨l,j⟩⩽Nm

{
µ = (λ, ω) ∈ Oγ

m s.t.
∣∣ω · l + jVm(µ)

∣∣ > γυ⟨j⟩
⟨l⟩τ1

}
. (7.53)

Hence, in the Cantor set Oγ
m+1, the following reduction holds

G −1
m

(
ω · ∂φ + ∂θ(Vm + fm)

)
Gm = ω · ∂φ + ∂θ(Vm+1 + fm+1),

with Vm+1 and fm+1 defined by {
Vm+1 ≜ Vm + ⟨fm⟩φ,θ
fm+1 ≜ G−1

m

(
Π⊥
Nm

fm + fm∂θgm

)
.

(7.54)

In view of (7.45), the function fm is even and therefore gm is odd. Consequently, we deduce through
elementary manipulations that fm+1 is also even. This allows us to follow the symmetry persistence along
the scheme. Besides, in a similar way to (7.33), one obtains

gm ∈
⋂
s⩾0

W q,∞,γ(O, Hs
odd). (7.55)

Now, we set
B−1 ≜ G−1 ≜ Id and ∀m ∈ N, Bm ≜ G0 ◦ G1 ◦ ... ◦ Gm.

One easily finds that

Bmρ(µ, φ, θ) =
(
1 + ∂θβm(µ, φ, θ)

)
Bmρ(µ, φ, θ)

=
(
1 + ∂θβm(µ, φ, θ)

)
ρ
(
µ, φ, θ + βm(µ, φ, θ)

)
,

where the sequence (βm)m∈N is defined by β−1 ≜ g−1 ≜ 0 and

β0 ≜ g0 and βm(µ, φ, θ) ≜ βm−1(µ, φ, θ) + gm
(
µ, φ, θ + βm−1(µ, φ, θ)

)
. (7.56)

A trivial induction based on (7.55) yields

βm ∈
⋂
s⩾0

W q,∞,γ(O, Hs
odd). (7.57)
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7. Reduction of the linearized operator in the normal directions

According to Sobolev embeddings, (7.54) and the induction assumption (7.43), we infer

∥Vm − Vm−1∥γ,Oq = ∥⟨fm−1⟩φ,θ∥γ,Oq
⩽ ∥fm−1∥γ,Oq,s0

= γδm−1(s0)

⩽ γδ0(sh)Nµ2
0 N−µ2

m−1. (7.58)

As a consequence, by using the triangle inequality, (7.47) and choosing ε0 small enough we deduce

∥Vm∥γ,Oq ⩽ ∥Vm−1∥γ,Oq + γδ0(sh)Nµ2
0 N−µ2

m−1

⩽ ∥V0∥γ,Oq + γδ0(sh)Nµ2
0

(
m−1∑
k=0

N−µ2
k

)

⩽ ∥V0∥γ,Oq +
∞∑
k=0

N−µ2
k .

Now, remark that (7.15) implies in particular

µ2 ⩾ τ1q + τ1 + 2.

Hence, by the induction hypothesis (7.43), (7.47), (7.50) and (7.51), we have

δm(s0)Nτ1q+τ1+1
m ⩽ δ0(sh)Nµ2

0 Nτ1q+τ1+1−µ2
m

⩽ ε0N
−1
0

⩽ ε0. (7.59)

Using (7.49) and the previous estimate, we deduce that

sup
m∈N

∥Vm∥γ,Oq ⩽ C and δm(s0)Nτ1q+τ1+1
m ⩽ ε0. (7.60)

Thus, the KAM step applies and, in particular, the estimate (7.42) becomes

δm+1(s) ⩽ Ns−s
m δm(s) + CNτ1q+τ1+1

m δm(s)δm(s0). (7.61)

If we apply (7.61) with s = sl and s = sh, we obtain

δm+1(sl) ⩽ Nsl−sh
m δm(sh) + CNτ1q+τ1+1

m δm(sl)δm(s0).

Using the induction assumption (7.43) and the fact that sl ⩾ s0 yields

δm+1(sl) ⩽ Nsl−sh
m δm(sh) + CNτ1q+τ1+1

m (δm(sl))2

⩽
(

2 − 1
m+1

)
Nsl−sh
m δ0(sh) + CN2µ2

0 Nτ1q+τ1+1−2µ2
m (δ0(sh))2

⩽ 2Nsl−sh
m δ0(sh) + CN2µ2

0 Nτ1q+τ1+1−2µ2
m (δ0(sh))2.

The conditions (7.15) imply

sh ⩾ 3
2µ2 + sl + 1, and µ2 ⩾ 2(τ1q + τ1 + 1) + 1.
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Also, using the fact that N0 ⩾ 2 and choosing ε0 small enough, we get in view of (7.47),

4N−µ2
0 ⩽ 1 and 2Cδ0(sh)Nµ2

0 ⩽ 1.

As a consequence, one has

Nsl−sh
m ⩽ 1

4N
µ2
0 N−µ2

m+1 and CN2µ2
0 Nτ1q+τ1+1−2µ2

m δ0(sh) ⩽ 1
2N

µ2
0 N−µ2

m+1, (7.62)

which implies in turn
δm+1(sl) ⩽ δ0(sh)Nµ2

0 N−µ2
m+1.

This proves the first statement of the induction in (7.43) and we now turn to the proof of the second
statement. Applying (7.61) with s = s = sh and using the induction (7.43), we get

δm+1(sh) ⩽ δm(sh)
(
1 + CNτ1q+τ1+1

m δm(s0)
)

⩽
(

2 − 1
m+1

)
δ0(sh)

(
1 + CNµ2

0 Nτ1q+τ1+1−µ2
m δ0(sh)

)
.

Notice that if the condition(
2 − 1

m+1

) (
1 + CNµ2

0 Nτ1q+τ1+1−µ2
m δ0(sh)

)
⩽ 2 − 1

m+2 (7.63)

holds true, then
δm+1(sh) ⩽

(
2 − 1

m+2

)
δ0(sh),

which achieves the induction argument of (7.43). Notice that (7.63) is equivalent to(
2 − 1

m+1

)
CNµ2

0 Nτ1q+τ1+1−µ2
m δ0(sh) ⩽ 1

(m+1)(m+2) ·

Using (7.50), the preceding condition holds true if

CNµ2
0 N−1

m δ0(sh) ⩽ 1
(m+1)(m+2) · (7.64)

Since N0 ⩾ 2, then in view of (6.94) there exists a small enough constant c0 > 0 such that

∀m ∈ N, c0N
−1
m ⩽ 1

(m+1)(m+2) ·

Consequently, (7.64) is ensured provided that

CNµ2
0 δ0(sh) ⩽ c0. (7.65)

Choosing ε0 small enough and making use of (7.47), we obtain

CNµ2
0 δ0(sh) ⩽ Cε0

⩽ c0.

Hence, the condition (7.65) is satisfied and the proof of (7.43) is now achieved.
➢ Persistence of the regularity. Putting together (7.61), applied with s = s ∈ [s0, S], (7.43) and (7.50),
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7. Reduction of the linearized operator in the normal directions

we infer

δm+1(s) ⩽ δm(s)
(
1 + CNτ1q+τ1+1

m δm(s0)
)

⩽ δm(s)
(
1 + Cδ0(sh)Nµ2

0 Nτ1q+τ1+1−µ2
m

)
⩽ δm(s)

(
1 + CN−1

m

)
.

Gathering this estimate with (7.46), implies, up to a trivial induction,

δm(s) ⩽ δ0(s)
∞∏
k=0

(
1 + CN−1

k

)
⩽ Cδ0(s) (7.66)

⩽ Cεγ−1
(

1 + ∥I0∥γ,Oq,s+1

)
.

Then, (7.39), interpolation inequality in Lemma A.1 and (7.43) give

∥gm∥γ,Oq,s ⩽ Cδm(s+ τ1q + τ1)

⩽ C (δm(s0))θ(s) (
δm(s+ τ1q + τ1 + 1)

)1−θ(s)

⩽ Cδθ(s)
0 (sh)δ1−θ(s)

0 (s+ τ1q + τ1 + 1)Nθ(s)µ2
0 N−θ(s)µ2

m ,

with θ(s) ≜ 1
s+τ1q+τ1+1−s0

. From (7.66), (7.16) and (7.46), we deduce

∥gm∥γ,Oq,s ⩽ Cεγ−1
(

1 + ∥I0∥γ,Oq,sh+1

)(
1 + ∥I0∥γ,Oq,s+τ1q+τ1+2

)
N
θ(s)µ2
0 N−θ(s)µ2

m

⩽ Cεγ−1
(

1 + ∥I0∥γ,Oq,s+τ1q+τ1+2

)
N
θ(s)µ2
0 N−θ(s)µ2

m . (7.67)

Using (7.56) and (A.16), we get for all s ∈ [s0, S]

∥βm∥γ,Oq,s ⩽ ∥βm−1∥γ,Oq,s
(
1 + C∥gm∥γ,Oq,s0

)
+ C

(
1 + ∥βm−1∥γ,Oq,s0

)
∥gm∥γ,Oq,s . (7.68)

If we apply this estimate with s = s0 and use Sobolev embeddings, we deduce

∥βm∥γ,Oq,s0
⩽ ∥βm−1∥γ,Oq,s0

(
1 + C∥gm∥γ,Oq,s0

)
+ C∥gm∥γ,Oq,s0

.

The previous two expressions make appear recurrent relation for the weighted norms of the sequence
(βm)m. To get good estimate for βm, we shall make use of the following result which is quite easy to prove
by induction : Given three positive sequences (an)n∈N, (bn)n∈N and (cn)n∈N satisfying

∀n ∈ N, an+1 ⩽ bnan + cn,

we have

∀n ⩾ 2, an ⩽ a0

n−1∏
i=0

bi +
n−2∑
k=0

ck

n−1∏
i=k+1

bi + cn−1

⩽
(
a0 +

n−1∑
k=0

ck

) n−1∏
i=0

bi. (7.69)
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In particular, if
∞∏
n=0

bn and
∞∑
n=0

cn converge then

sup
n∈N

an ⩽
(
a0 +

∞∑
n=0

cn

) ∞∏
n=0

bi. (7.70)

Since the conditions (7.15) and (7.14) imply

s0 + τ1q + τ1 + 2 ⩽ sh + σ1 and θ(s0)µ2 ⩾ 1, (7.71)

then, from (7.67) and (7.16), we deduce

∥gm∥γ,Oq,s0
⩽ Cεγ−1Nµ2

0

(
1 + ∥I0∥γ,Oq,s0+τ1q+τ1+2

)
N−θ(s0)µ2
m

⩽ Cε0N
−1
m .

Choosing ε0 small enough to ensure Cε0 ⩽ 1, N0 sufficiently large to ensure
∞∑
m=0

N−1
m < ∞ and we can

apply (7.70) together with the fact that β0 = g0 to obtain

sup
m∈N

∥βm∥γ,Oq,s0
⩽

(
∥β0∥γ,Oq,s0

+ C

∞∑
k=0

∥gk∥γ,Oq,s0

) ∞∏
k=0

(
1 + C∥gk∥γ,Oq,s0

)
⩽

(
1 + C

∞∑
k=0

N−1
k

) ∞∏
k=0

(
1 +N−1

k

)
⩽ C. (7.72)

Hence the sequence
(
∥βm∥γ,Oq,s0

)
m∈N is bounded and inserting this information in (7.68) gives for all

s ∈ [s0, S]
∥βm∥γ,Oq,s ⩽ ∥βm−1∥γ,Oq,s

(
1 + C∥gm∥γ,Oq,s0

)
+ C∥gm∥γ,Oq,s .

Similarly to what preceeds, if we apply (7.70) and (7.67), we infer

sup
m∈N

∥βm∥γ,Oq,s ⩽

(
∥β0∥γ,Oq,s + C

∞∑
k=0

∥gk∥γ,Oq,s

) ∞∏
k=0

(
1 + C∥gk∥γ,Oq,s0

)
⩽ Cεγ−1

(
1 + ∥I0∥γ,Oq,s+τ1q+τ1+2

)(
1 +N

θ(s)µ2
0

∞∑
k=0

N
−θ(s)µ2
k

)
.

From Lemma A.5 we get

∀s ∈ [s0, S], N
θ(s)µ2
0

∞∑
k=0

N
−θ(s)µ2
k ≲ 1

which implies in turn

∀s ∈ [s0, S], sup
m∈N

∥βm∥γ,Oq,s ⩽ Cεγ−1
(

1 + ∥I0∥γ,Oq,s+τ1q+τ1+2

)
. (7.73)

From the condition (7.3) we have sl = s0 + τ1q + τ1 + 2, and consequently we deduce from (A.16), (7.72),
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7. Reduction of the linearized operator in the normal directions

(7.39) and (7.43),

∥βm − βm−1∥γ,Oq,s0+2 ⩽ C∥gm∥γ,Oq,s0+2

(
1 + ∥βm−1∥γ,Oq,s0+2

)
⩽ C∥gm∥γ,Oq,s0+2 ⩽ Cδm(sl)

⩽ CNµ2
0 N−µ2

m δ0(sh). (7.74)

Applying once again Lemma A.5, we deduce that

∞∑
m=0

∥βm − βm−1∥γ,Oq,s0+2 ⩽ Cδ0(sh).

Hence there exists β ∈ W q,∞,γ(O, Hs0+2) such that

βm −→
m→∞

β (strongly) in W q,∞,γ(O, Hs0+2).

By (7.73) the sequence (βm)m∈N is bounded in W q,∞,γ(O, Hs), then by a weak-compactness argument
we find that β ∈ W q,∞,γ(O, Hs). Using (7.73), we obtain

∀s ∈ [s0, S], ∥β∥γ,Oq,s ⩽ lim inf
m→∞

∥βm∥γ,Oq,s

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+τ1q+τ1+2

)
. (7.75)

We then can consider the quasi-periodic symplectic change of variables B associated with β and defined
by

Bρ(λ, ω, φ, θ) = (1 + ∂θβ(λ, ω, φ, θ)) Bρ(λ, ω, φ, θ)

= (1 + ∂θβ(λ, ω, φ, θ)) ρ(λ, ω, φ, θ + β(λ, ω, φ, θ)).

By (7.75), (7.71) and (7.16), we have

∥β∥γ,Oq,s0
≲ εγ−1

(
1 + ∥I0∥γ,Oq,s0+τ1q+τ1+2

)
≲ ε0. (7.76)

Proceeding as for (7.41), using interpolation (7.75), (7.76), (7.16) and the fact that 2s0+τ1q+τ1+3 ⩽ sh+σ1,
one obtains

∥β∥γ,Oq,2s0
≲ ε0.

Therefore, choosing ε0 small enough, we deduce in view of Lemma A.4 that B is an invertible operator.
Moreover, by (A.17) and (7.75), we get

∥B±1ρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s + εγ−1∥I0∥γ,Oq,s+τ1q+τ1+3∥ρ∥γ,Oq,s0
. (7.77)

In addition, by (7.57), and Sobolev embeddings (to get pointwise convergence), we find

β ∈
⋂

s∈[s0,S]

W q,∞,γ(O, Hs
odd).
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We also have an estimate of the rate of convergence for the sequence (βm)m towards β,

∥β − βm∥γ,Oq,s0+2 ⩽
∞∑
k=m

∥βk+1 − βk∥γ,Oq,s0+2

≲ γδ0(sh)Nµ2
0

∞∑
k=m+1

N−µ2
k . (7.78)

From Lemma A.5, one obtains
∞∑
k=m

N−µ2
k =

m→∞
O
(
N−µ2
m

)
. (7.79)

Gathering (7.79), (7.78) and (7.46), we get

∥β − βm∥γ,Oq,s0+2 ≲ γδ0(sh)Nµ2
0 N−µ2

m+1

≲ εNµ2
0 N−µ2

m+1. (7.80)

▶ KAM conclusion
By (7.58), we have

∞∑
m=0

∥Vm+1 − Vm∥γ,Oq ⩽ γδ0(sh)Nµ2
0

∞∑
m=0

N−µ2
m

≲ γδ0(sh).

We deduce that the sequence (Vm)m∈N is convergent in W q,∞,γ(O,C) and let us denote by ci0 its limit.
Moreover, we have by (7.79), (7.46) and (7.16)

∥ci0 − V0∥γ,Oq ⩽
∞∑
m=0

∥Vm+1 − Vm∥γ,Oq

≲ γδ0(sh) ≲ ε
(

1 + ∥I0∥γ,Oq,sh+1

)
≲ ε.

Now, we introduce the truncated Cantor set

Oγ,τ1
∞,n(i0) =

⋂
(l,j)∈Zd×Z\{(0,0}

|l|⩽Nn

{
µ ≜ (λ, ω) ∈ O s.t.

∣∣ω · l + jci0(µ)
∣∣ > 4γυ⟨j⟩

⟨l⟩τ1

}
.

In what follows, we shall prove that the Cantor set Oγ,τ1
∞,n(i0) satisfies the inclusion

Oγ,τ1
∞,n(i0) ⊂

n+1⋂
m=0

Oγ
m = Oγ

n+1,

where the intermediate Cantor sets are defined in (7.53). For this aim, we shall argue by induction. We
first remark that by construction Oγ,τ1

∞,n(i0) ⊂ O ≜ Oγ
0 . Now assume that Oγ,τ1

∞,n(i0) ⊂ Oγ
m for m ⩽ n and

let us check that
Oγ,τ1

∞,n(i0) ⊂ Oγ
m+1. (7.81)
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Putting together (7.58) and (7.79) we infer

∥Vm − ci0∥γ,Oq ⩽
∞∑
l=m

∥Vl+1 − Vl∥γ,Oq

⩽ γδ0(sh)Nµ2
0

∞∑
l=m

N−µ2
l

≲ γδ0(sh)Nµ2
0 N−µ2

m . (7.82)

Given µ ∈ Oγ,τ1
∞,n(i0) and (l, j) ∈ Zd × Z \ {(0, 0)} such that 0 ⩽ |l| ⩽ Nm, we have then |l| ⩽ Nn and by

triangle inequality,

|ω · l + jVm(µ)| ⩾ |ω · l + jci0(µ)| − |j||Vm(µ) − ci0(µ)|

⩾ 4γυ⟨j⟩
⟨l⟩τ1 − C⟨j⟩γδ0(sh)Nµ2

0 N−µ2
m

⩾ 4γυ⟨j⟩
⟨l⟩τ1 − C⟨j⟩γυε0⟨l⟩−µ2 .

Since (7.15) implies µ2 ⩾ τ1, then taking ε0 ⩽ 1
C , we deduce from the previous estimate

|ω · l + jVm(µ)| > γυ⟨j⟩
⟨l⟩τ1 .

Consequently, µ ∈ Oγ
m+1 and the inclusion (7.81) holds.

(iii) We can write for all n ∈ N,

B−1
(
ω · ∂φ + ∂θ (V0 + f0)

)
B =

(
B−1 − B−1

n

) (
ω · ∂φ + ∂θ (V0 + f0)

)
B

+ B−1
n

(
ω · ∂φ + ∂θ (V0 + f0)

)
(B − Bn)

+ B−1
n

(
ω · ∂φ + ∂θ (V0 + f0)

)
Bn.

In view of (7.81) and the definition of Bn, we have in the Cantor set Oγ,τ1
∞,n(i0)

B−1
n

(
ω · ∂φ + ∂θ (V0 + f0)

)
Bn = ω · ∂φ + ∂θ (Vn+1 + fn+1) .

Therefore, in the Cantor set Oγ,τ1
∞,n(i0), the following decomposition holds

B−1
(
ω · ∂φ + ∂θ (V0 + f0)

)
B = ω · ∂φ + ci0∂θ + E0

n(i0),

where

E0
n(i0) ≜ (Vn+1 − ci0) ∂θ + ∂θ (fn+1·) +

(
B−1 − B−1

n

) (
ω · ∂φ + ∂θ (V0 + f0)

)
B

+ B−1
(
ω · ∂φ + ∂θ (V0 + f0)

)
(B − Bn)

≜ E0
n,1 + E0

n,2 + E0
n,3 + E0

n,4.

By the product laws in Lemma A.1, (7.82) and (7.46) we have

∥E0
n,1ρ∥γ,Oq,s0

≲ ∥Vn+1 − ci0∥γ,Oq ∥ρ∥γ,Oq,s0+1

≲ γδ0(sh)Nµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+1

≲ εNµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+1. (7.83)
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From (7.43) and since (7.3) implies in particular sl ⩾ s0 + 1, we obtain

∥E0
n,2ρ∥γ,Oq,s0

≲ γδn+1(s0 + 1)∥ρ∥γ,Oq,s0+1

≲ γδ0(sh)Nµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+1

≲ εNµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+1. (7.84)

We now turn to the estimate of E0
n,4. First remark that by the product laws in Lemma A.1, we have

∥ω · ∂φρ+ ∂θ (Vεrρ) ∥γ,Oq,s0
⩽ ∥ω · ∂φρ∥γ,Oq,s0

+ ∥∂θ (Vεrρ) ∥γ,Oq,s0

≲ ∥ρ∥γ,Oq,s0+1

(
1 + ∥Vεr∥γ,Oq,s0+1

)
.

But combining (7.24), (7.49), (7.66) and (7.16), we obtain

∥Vεr∥γ,Oq,s0
⩽ ∥V0∥γ,Oq + ∥f0∥γ,Oq,s0

⩽ C + Cεγ−1∥I0∥γ,Oq,s0+1

⩽ C.

Therefore, we get
∥ω · ∂φρ+ ∂θ (Vεrρ) ∥γ,Oq,s0

≲ ∥ρ∥γ,Oq,s0+1. (7.85)

Putting together (7.85), (7.77) and (7.16), gives

∥E0
n,4ρ∥γ,Oq,s0

≲ ∥(B − Bn)ρ∥γ,Oq,s0+1. (7.86)

Applying Taylor Formula, we may write

(B − Bn)ρ(θ) = (1 + ∂θβ(θ))ρ(θ + β(θ)) − (1 + ∂θβn(θ))ρ(θ + hn(θ))

= (1 + ∂θβ(θ)) [ρ(θ + β(θ)) − ρ(θ + βn(θ))] + ∂θ (β − βn) (θ)ρ(θ + βn(θ))

≜ (1 + ∂θβ(θ))(β − βn)(θ)In(θ) + ∂θ(β − βn)(θ)Bnρ(θ),

where
Inρ(θ) ≜

ˆ 1

0
(∂θρ) (θ + βn(θ) + t(β(θ) − βn(θ))) dt.

Hence, we get by the product laws, A.16 and (7.80)

∥∂θ (β − βn) Bnρ∥γ,Oq,s0+1 ≲ ∥β − βn∥γ,Oq,s0+2∥ρ∥q,s0+1

(
1 + ∥βn∥γ,Oq,s0+1

)
≲ εNµ2

0 N−µ2
n+1 ∥ρ∥γ,Oq,s0+1.

Using the product laws together with (7.80), (7.72) and (7.76) we find∥∥∥(1 + ∂θβ) (β − βn) Inρ
∥∥∥γ,O
q,s0+1

≲
(

1 + ∥β∥γ,Oq,s0+2

)
∥β − βn∥γ,Oq,s0+1∥ρ∥γ,Oq,s0+2

×
(

1 + ∥βn∥γ,Oq,s0+1 + ∥β − βn∥γ,Oq,s0+1

)
≲ εNµ2

0 N−µ2
n+1 ∥ρ∥γ,Oq,s0+2.

Gathering the foregoing estimates leads to

∥(B − Bn)ρ∥γ,Oq,s0+1 ≲ εN
µ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+2. (7.87)
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Plugging (7.87) into (7.86) gives

∥E0
n,4ρ∥γ,Oq,s0

≲ εNµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+2. (7.88)

Proceeding in a similar way as before using in particular the identity (A.14) and (A.18) we find

∥E0
n,3ρ∥γ,Oq,s0

≲ εNµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+2. (7.89)

Putting together (7.83), (7.84), (7.88), (7.89) allows to get

∥E0
nρ∥γ,Oq,s0

≲ εNµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+2.

(iv) ▶ Estimate of ∆12β. First notice that, since β−1 = 0, then

∆12β =
∞∑
m=0

∆12(βm − βm−1). (7.90)

The triangle inequality allows us to write

∥∆12β∥γ,Oq,sh+p ⩽
∞∑
m=0

∥∆12(βm − βm−1)∥γ,Oq,sh+p. (7.91)

According to Taylor Formula and (7.56), we infer

∆12βm(θ) = ∆12βm−1(θ) + (Bm−1)r1(∆12gm)(θ)

+ ∆12βm−1(θ)
ˆ 1

0
(∂θ(gm)r2)

(
θ + (βm−1)r2(θ) + t∆12βm−1(θ)

)
dt.

Thus,

∆12(βm − βm−1)(θ) = (Bm−1)r1(∆12gm)(θ)

+ ∆12βm−1(θ)
ˆ 1

0
(∂θ(gm)r2)

(
θ + (βm−1)r2(θ) + t∆12βm−1(θ)

)
dt.

Consequently, using the law product in Lemma A.1, Lemma A.4 and Sobolev embeddings we obtain

∥∆12(βm − βm−1)∥γ,Oq,sh+p ⩽ ∥∆12gm∥γ,Oq,sh+p

(
1 + C∥(βm−1)r1∥γ,Oq,s0

)
+ ∥∆12gm∥γ,Oq,s0

∥(βm−1)r1∥γ,Oq,sh+p

+ C∥∆12βm−1∥γ,Oq,s0
∥(gm)r2∥γ,Oq,sh+p+1

(
1 + ∥(βm−1)r2∥γ,Oq,s0

+ ∥∆12βm−1∥γ,Oq,s0

)
+ C∥∆12βm−1∥γ,Oq,s0

∥(gm)r2∥γ,Oq,s0+1

(
∥(βm−1)r2∥γ,Oq,sh+p + ∥∆12βm−1∥γ,Oq,sh+p

)
+ C∥∆12βm−1∥γ,Oq,sh+p∥(gm)r2∥γ,Oq,s0+1

(
1 + ∥(βm−1)r2∥γ,Oq,s0

+ ∥∆12βm−1∥γ,Oq,s0

)
and for all s ∈ [s0, sh + p]

∥∆12βm∥γ,Oq,s ⩽ ∥∆12gm∥γ,Oq,s
(
1 + C∥(βm−1)r1∥γ,Oq,s0

)
+ ∥∆12gm∥γ,Oq,s0

∥(βm−1)r1∥γ,Oq,s
+ C∥∆12βm−1∥γ,Oq,s0

∥(gm)r2∥γ,Oq,s+1
(
1 + ∥(βm−1)r2∥γ,Oq,s0

+ ∥∆12βm−1∥γ,Oq,s0

)
+ C∥∆12βm−1∥γ,Oq,s0

∥(gm)r2∥γ,Oq,s0+1
(
∥(βm−1)r2∥γ,Oq,s + ∥∆12βm−1∥γ,Oq,s

)
+ ∥∆12βm−1∥γ,Oq,s

(
1 + C∥(gm)r2∥γ,Oq,s0+1

(
1 + ∥(βm−1)r2∥γ,Oq,s0

+ ∥∆12βm−1∥γ,Oq,s0

))
.

Notice that (7.15) implies in particular sh + p + τ1q+ τ1 + 3 ⩽ sh + σ1. Therefore, using (7.67) and (7.16),
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we get

sup
m∈N

max
k∈{1,2}

∥(gm)rk
∥γ,Oq,sh+p+1 ⩽ Cεγ

−1
(

1 + max
k∈{1,2}

∥Ik∥γ,Oq,sh+p+τ1q+τ1+3

)
⩽ C. (7.92)

Notice that the previous estimate is sufficient to easily get rid of most of terms in the estimates of ∆12βm

and ∆12(βm − βm−1), but not enough to make the series (7.90) convergent. For this purpose, we shall
refine the estimates. By (7.67), (7.15) and (7.16), we have

max
k∈{1,2}

∥(gm)rk
∥q,sh+p+1 ⩽ Cεγ

−1
(

1 + ∥Ik∥γ,Oq,sh+p+τ1q+τ1+3

)
N
θ(sh+p+1)µ2
0 N−θ(sh+p+1)µ2

m

⩽ Cεγ−1N
θ(sh+p+1)µ2
0 N−θ(sh+p+1)µ2

m . (7.93)

Combining (7.73) and (7.16)

sup
m∈N

max
k∈{1,2}

∥(βm)rk
∥q,sh+p ⩽ Cεγ

−1
(

1 + max
k∈{1,2}

∥Ik∥γ,Oq,sh+p+τ1q+τ1+3

)
⩽ C. (7.94)

Hence, using (7.92), (7.94) and Sobolev embeddings, the previous two estimates can be reduced to

∥∆12(βm − βm−1)∥γ,Oq,sh+p ⩽ C
(

∥∆12gm∥γ,Oq,sh+p + ∥∆12βm−1∥γ,Oq,sh+p∥(gm)r2∥γ,Oq,sh+p+1

)
, (7.95)

∥∆12βm∥γ,Oq,s0
⩽ C∥∆12gm∥γ,Oq,s0

+ ∥∆12βm−1∥γ,Oq,s0

(
1 + C∥(gm)r2∥γ,Oq,s0+1

)
(7.96)

and

∥∆12βm∥γ,Oq,sh+p ⩽ C
(

∥∆12gm∥γ,Oq,sh+p + ∥∆12βm−1∥γ,Oq,s0
∥(gm)r2∥q,sh+p+1

)
+ ∥∆12βm−1∥γ,Oq,sh+p

(
1 + C∥(gm)r2∥γ,Oq,s0+1

)
. (7.97)

From (7.96), using (7.70) and the fact that β0 = g0, we deduce that

sup
m∈N

∥∆12βm∥γ,Oq,s0
⩽

(
∥∆12g0∥γ,Oq,s0

+ C

∞∑
k=0

∥∆12gk∥γ,Oq,s0

) ∞∏
k=0

(
1 + ∥(gk)r2∥γ,Oq,s0+1

)
.

Adding (7.93), we obtain

sup
m∈N

∥∆12βm∥γ,Oq,s0
⩽ C

∞∑
k=0

∥∆12gk∥γ,Oq,s0
.

Similarly, (7.97), (7.70), (7.93) and the previous estimate allow to get

sup
m∈N

∥∆12βm∥γ,Oq,sh+p ⩽ C
∞∑
k=0

∥∆12gk∥γ,Oq,sh+p.

Putting together the previous bounds, (7.95) and (7.93) gives

∥∆12(βm − βm−1)∥γ,Oq,sh+p ≲ ∥∆12gm∥γ,Oq,sh+p + εγ−1N
θ(sh+p+1)µ2
0 N−θ(sh+p+1)µ2

m

∞∑
k=0

∥∆12gk∥γ,Oq,sh+p. (7.98)
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Thus, the main delicate point is to estimate ∆12gm. First remark that according to (7.34) and (7.52), we
can make the splitting

gm(µ, φ, θ) = i
∑

(l,j)∈Zd+1\{0}
⟨l,j⟩⩽Nm

al,jχ̂
(
al,j(Al,j)r2(µ)

)
(∆12fm)l,j(µ)el,j

+ i
∑

(l,j)∈Zd+1\{0}
⟨l,j⟩⩽Nm

al,j∆12χ̂
(
al,jAl,j(µ)

)
((fm)r1)l,j(µ)el,j

≜ I1 + I2.

Similarly to (7.39), one obtains

∥I1∥γ,Oq,s ≲ γ−1∥ΠNm
∆12fm∥γ,Oq,s+τ1q+τ1

. (7.99)

We shall now estimate the second term. Applying Taylor Formula, we get

I2 = i
∑

(l,j)∈Zd+1\{0}
⟨l,j⟩⩽Nm

a2
l,j(∆12Al,j)

ˆ 1

0
χ̂′
(
al,j

[
τ(Al,j)r1(µ) + (1 − τ)(Al,j)r2(µ)

])
dτ((fm)r1)l,jel,j

≜
∑

(l,j)∈Zd+1\{0}
⟨l,j⟩⩽Nm

h̃l,j(µ)((fm)r1)l,j(µ)el,j . (7.100)

Remark that direct computations yield

∀q′ ∈ J0, qK, ∥∆12Al,j∥γ,Oq′ ≲ ⟨l, j⟩∥∆12Vm∥γ,Oq′ . (7.101)

Since that χ̂′ ∈ C∞ with χ̂′(0) = 0, then applying Lemma A.1-(iv)-(vi) together with (7.36) and (7.101),
we get

∀q′ ∈ J0, qK, ∥h̃l,j∥γ,Oq′ ≲ a3
l,j∥∆12Al,j∥γ,Oq′

(
∥(Al,j)r1∥γ,Oq′ + ∥(Al,j)r2∥γ,Oq′

)
×
(

1 + aq
′−1
l,j

(
∥(Al,j)r1∥L∞(O) + ∥(Al,j)r2∥L∞(O)

)q′−1
)

≲ γ−υ(q′+2)⟨l, j⟩τ1q
′+2τ1+q′+1∥∆12Vm∥γ,Oq′ .

By assumption in Proposition 7.2, we have
υ ⩽ 1

q+2 (7.102)

and using Leibniz rule, we deduce that

∥I2∥γ,Oq ≲ γ−1∥∆12Vm∥γ,Oq ∥ΠNm(fm)r1∥γ,Oq,s+τ1q+2τ1+1. (7.103)

Putting together (7.99) and (7.103), we obtain for all s ⩾ s0

∥∆12gm∥γ,Oq,s ≲ γ−1∥ΠNm
∆12fm∥γ,Oq,s+τ1q+τ1

+ γ−1∥∆12Vm∥γ,Oq ∥ΠNm
(fm)r1∥γ,Oq,s+τ1q+2τ1+1 (7.104)

≲ γ−1Nτ1q+τ1
m ∥∆12fm∥γ,Oq,s + γ−2Nτ1q+2τ1+1

m ∥∆12Vm∥γ,Oq ∥(fm)r1∥γ,Oq,s .

Therefore, estimating ∆12gm can be done through the estimate of ∆12fm. To do so, we shall argue by
induction. For that purpose, we shall consider a parameter p̃ (which can depend on the parameter p, see

129



Part I

for instance (7.118)) satisfying the following constraint

sh + p̃ + 3 ⩽ sh + σ1. (7.105)

We denote
um ≜ Π⊥

Nm
fm + fm∂θgm.

Then, we can write
∆12fm+1 = (G−1

m )r1∆12um +
(
∆12G−1

m

)
(um)r2 ,

with
∆12um = Π⊥

Nm
∆12fm + ∆12fm∂θ(gm)r1 + (fm)r2∂θ∆12gm.

By the triangle inequality, we have for all s ⩾ s0

∥∆12fm+1∥γ,Oq,s ⩽ ∥(G−1
m )r1∆12um∥γ,Oq,s + ∥(∆12G−1

m )(um)r2∥γ,Oq,s . (7.106)

Therefore, combining (A.16), (A.18), (7.39) and Lemma A.1-(ii), we get for all s ⩾ s0

∥(G−1
m )r1∆12um∥γ,Oq,s ⩽ ∥∆12um∥γ,Oq,s

(
1 + C∥(ĝm)r1∥γ,Oq,s0

)
+ C∥(ĝm)r1∥γ,Oq,s ∥∆12um∥γ,Oq,s0

⩽ ∥∆12um∥γ,Oq,s
(
1 + C∥(gm)r1∥γ,Oq,s0

)
+ C∥(gm)r1∥γ,Oq,s ∥∆12um∥γ,Oq,s0

⩽ ∥∆12um∥γ,Oq,s
(

1 + Cγ−1Nτ1q+τ1
m max

k∈{1,2}
∥(fm)rk

∥γ,Oq,s0

)
+ Cγ−1Nτ1q+τ1

m max
k∈{1,2}

∥(fm)rk
∥γ,Oq,s ∥∆12um∥γ,Oq,s0

.

Using (7.66),(7.105) and (7.16), one gets

γ−1 sup
m∈N

max
k∈{1,2}

∥(fm)rk
∥γ,O
q,sh+p̃+1

⩽ Cεγ−1
(

1 + max
k∈{1,2}

∥Ik∥γ,O
q,sh+p̃+2

)
⩽ C. (7.107)

Therefore, from (7.43) and (7.107), we get for all s ∈ [s0, sh]

∥(G−1
m )r1∆12um∥γ,Oq,s ⩽ ∥∆12um∥γ,Oq,s

(
1 + CN

µ2
0 Nτ1q+τ1−µ2

m

)
+ CNτ1q+τ1

m ∥∆12um∥γ,Oq,s0
.

At this level we need to give a suitable estimate for ∆12um. For this aim, we apply the product laws in
Lemma A.1, ensuring that for all s ⩾ s0

∥∆12um∥γ,Oq,s ⩽ ∥Π⊥
Nm

∆12fm∥γ,Oq,s + C∥∆12fm∥γ,Oq,s ∥∂θ(gm)r1∥γ,Oq,s0
+ C∥∆12fm∥γ,Oq,s0

∥∂θ(gm)r1∥γ,Oq,s
+ C∥(fm)r2∥γ,Oq,s ∥∆12gm∥γ,Oq,s0

+ C∥(fm)r2∥γ,Oq,s0
∥∆12gm∥γ,Oq,s .

Hence we deduce by (7.39) and Lemma A.1-(ii),

∥∆12um∥γ,Oq,s ⩽ ∥Π⊥
Nm

∆12fm∥γ,Oq,s + Cγ−1Nτ1q+τ1+1
m ∥∆12fm∥γ,Oq,s max

k∈{1,2}
∥(fm)rk

∥γ,Oq,s0

+ Cγ−1Nτ1q+τ1+1
m ∥∆12fm∥γ,Oq,s0

max
k∈{1,2}

∥(fm)rk
∥γ,Oq,s

+ C max
k∈{1,2}

∥(fm)rk
∥γ,Oq,s ∥∆12gm∥γ,Oq,s0

+ C max
k∈{1,2}

∥(fm)rk
∥γ,Oq,s0

∥∆12gm∥γ,Oq,s .
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Added to (7.104), we finally obtain for all s ⩾ s0

∥∆12um∥γ,Oq,s ⩽ ∥Π⊥
Nm

∆12fm∥γ,Oq,s + Cγ−1Nτ1q+τ1+1
m ∥∆12fm∥γ,Oq,s max

k∈{1,2}
∥(fm)rk

∥γ,Oq,s0

+ Cγ−1Nτ1q+τ1+1
m ∥∆12fm∥γ,Oq,s0

max
k∈{1,2}

∥(fm)rk
∥γ,Oq,s

+ Cγ−2Nτ1q+2τ1+1
m max

k∈{1,2}
∥(fm)rk

∥γ,Oq,s max
k∈{1,2}

∥(fm)rk
∥γ,Oq,s0

∥∆12Vm∥γ,Oq .

Consequently, we find from (7.43), Lemma A.1-(ii) and (7.107),

∥∆12um∥γ,Oq,s0
⩽ Ns0−sh−p̃

m ∥∆12fm∥γ,O
q,sh+p̃

+ CN
µ2
0 Nτ1q+τ1+1−µ2

m δ1,2
0 (sh)∥∆12fm∥γ,Oq,s0

+ CN
2µ2
0 Nτ1q+2τ1+1−2µ2

m δ1,2
0 (sh)∥∆12Vm∥γ,Oq

and

∥∆12um∥γ,O
q,sh+p̃

⩽ ∥∆12fm∥γ,O
q,sh+p̃

(
1 + CN

µ2
0 Nτ1q+τ1+1−µ2

m δ1,2
0 (sh)

)
+ CNτ1q+τ1+1

m δ1,2
0 (sh)∥∆12fm∥γ,Oq,s0

+ CN
µ2
0 Nτ1q+2τ1+1−µ2

m δ1,2
0 (sh)∥∆12Vm∥γ,Oq ,

where we use the notation
δ1,2

0 (s) ≜ γ−1 max
k∈{1,2}

∥(f0)rk
∥γ,Oq,s .

It follows from the preceding estimates that,

∥(G−1
m )r1∆12um∥γ,Oq,s0

⩽ CNτ1q+τ1
m ∥∆12um∥γ,Oq,s0

⩽ CNs0+τ1q+τ1−sh−p̃
m ∥∆12fm∥γ,O

q,sh+p̃
+ CN

µ2
0 N2(τ1q+τ1)+1−µ2

m δ1,2
0 (sh)∥∆12fm∥γ,Oq,s0

+ CN
2µ2
0 N2τ1q+3τ1+1−2µ2

m δ1,2
0 (sh)∥∆12Vm∥γ,Oq . (7.108)

In a similar way, direct computations yield

∥(G−1
m )r1∆12um∥γ,O

q,sh+p̃
⩽ ∥∆12fm∥γ,O

q,sh+p̃

(
1 +Ns0+τ1q+τ1−sh−p̃

m + CN
µ2
0 Nτ1q+τ1+1−µ2

m δ1,2
0 (sh)

)
+ C

(
N
µ2
0 N2(τ1q+τ1)+1−µ2

m +Nτ1q+τ1+1
m

)
δ1,2

0 (sh)∥∆12fm∥γ,Oq,s0

+ CN
µ2
0 N2τ1q+3τ1+1−µ2

m δ1,2
0 (sh)∥∆12Vm∥γ,Oq . (7.109)

By a new use of Taylor Formula, we can write

(∆12G−1
m )(um)r2(θ) = ∆12ĝm(θ)

ˆ 1

0
∂θ(um)r2

(
θ + (ĝm)r2(θ) + t∆12ĝm(θ)

)
dt.

Applying Lemma A.1 and (7.39), we deduce for all s ⩾ s0

∥um∥γ,Oq,s ⩽ ∥Π⊥
Nm

fm∥γ,Oq,s + C∥fm∥γ,Oq,s ∥∂θgm∥γ,Oq,s0
+ C∥fm∥γ,Oq,s0

∥∂θgm∥γ,Oq,s
⩽ ∥fm∥q,s

(
1 + CNτ1q+τ1+1

m ∥fm∥γ,Oq,s0

)
⩽ C∥fm∥γ,Oq,s . (7.110)
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Using once again the product laws in Lemma A.1 combined with (A.16) yield for all s ⩾ s0

∥(∆12G−1
m )(um)r2∥γ,Oq,s ⩽ C∥∆12ĝm∥γ,Oq,s ∥(um)r2∥q,s0+1

(
1 + ∥(ĝm)r2∥γ,Oq,s0

+ ∥∆12ĝm∥γ,Oq,s0

)
+ C∥∆12ĝm∥γ,Oq,s0

∥(um)r2∥γ,Oq,s+1
(
1 + ∥(ĝm)r2∥γ,Oq,s0

+ ∥∆12ĝm∥γ,Oq,s0

)
+ C∥∆12ĝm∥q,s0∥(um)r2∥γ,Oq,s0+1

(
∥(ĝm)r2∥γ,Oq,s + ∥∆12ĝm∥γ,Oq,s

)
.

In view of (A.19), (7.93) and Sobolev embeddings, one gets for all s ∈ [s0, sh + p]

∥∆12ĝm∥γ,Oq,s ⩽ C
(

∥∆12gm∥γ,Oq,s + ∥∆12gm∥γ,Oq,s0
max
k∈{1,2}

∥(gm)rk
∥γ,Oq,s+1

)
⩽ C∥∆12gm∥γ,Oq,s .

Putting together the previous estimates, (7.92) and (A.18) gives for all s ∈ [s0, sh]

∥(∆12G−1
m )(um)r2∥γ,Oq,s ⩽ C∥∆12gm∥γ,Oq,s ∥(um)r2∥q,s0+1 + C∥∆12gm∥γ,Oq,s0

∥(um)r2∥γ,Oq,s+1.

Thus, by virtue of (7.104), (7.110), we get for all s ∈ [s0, sh]

∥(∆12G−1
m )(um)r2∥γ,Oq,s ⩽ Cγ−1Nτ1q+τ1

m ∥∆12fm∥γ,Oq,s max
k∈{1,2}

∥(fm)rk
∥γ,Oq,s0+1

+ Cγ−1Nτ1q+τ1
m ∥∆12fm∥γ,Oq,s0

max
k∈{1,2}

∥(fm)rk
∥γ,Oq,s+1

+ Cγ−2Nτ1q+2τ1+1
m ∥∆12Vm∥γ,Oq max

k∈{1,2}
∥(fm)rk

∥γ,Oq,s0+1 max
k∈{1,2}

∥(fm)rk
∥γ,Oq,s+1.

Hence, (7.43), (7.66) and (7.107) allow to get (since sl ⩾ s0 + 1)

∥(∆12G−1
m )(um)r2∥γ,Oq,s0

⩽ CNµ2
0 Nτ1q+τ1−µ2

m δ1,2
0 (sh)∥∆12fm∥γ,Oq,s0

+ CN
2µ2
0 Nτ1q+2τ1+1−2µ2

m δ1,2
0 (sh)∥∆12Vm∥γ,Oq (7.111)

and

∥(∆12G−1
m )(um)r2∥γ,O

q,sh+p̃
⩽ CNµ2

0 Nτ1q+τ1−µ2
m δ1,2

0 (sh)∥∆12fm∥γ,O
q,sh+p̃

+ CNτ1q+τ1
m δ1,2

0 (sh + p̃ + 1)∥∆12fm∥γ,Oq,s0

+ CN
µ2
0 Nτ1q+2τ1+1−µ2

m δ1,2
0 (sh + p̃ + 1)∥∆12Vm∥γ,Oq . (7.112)

Gathering (7.106), (7.108) and (7.111) implies (since N−p̃
m ⩽ 1)

∥∆12fm+1∥γ,Oq,s0
⩽ Ns0+τ1q+τ1−sh

m ∥∆12fm∥γ,O
q,sh+p̃

+ CN
µ2
0 N2(τ1q+τ1)+1−µ2

m δ1,2
0 (sh)∥∆12fm∥γ,Oq,s0

+ CN
2µ2
0 N2τ1q+3τ1+1−2µ2

m δ1,2
0 (sh)∥∆12Vm∥γ,Oq . (7.113)

In a similar war, we get in view of (7.106), (7.109) and (7.112)

∥∆12fm+1∥γ,O
q,sh+p̃

⩽ ∥∆12fm∥γ,O
q,sh+p̃

(
1 +Ns0+τ1q+τ1−sh−p̃

m + CN
µ2
0 Nτ1q+τ1+1−µ2

m δ1,2
0 (sh)

)
+ C

(
N
µ2
0 N2(τ1q+τ1)+1−µ2

m +Nτ1q+τ1+1
m

)
δ1,2

0 (sh + p̃ + 1)∥∆12fm∥γ,Oq,s0

+ CN
µ2
0 N2τ1q+3τ1+1−µ2

m δ1,2
0 (sh + p̃ + 1)∥∆12Vm∥γ,Oq . (7.114)
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In the sequel, we shall use the following notations

δm(s) = γ−1∥∆12fm∥γ,Oq,s and κm = γ−1∥∆12Vm∥γ,Oq .

Notice that
∆12Vm+1 = ∆12Vm + ⟨∆12fm⟩φ,θ and ∆12V0 = 0.

Then, by using Sobolev embeddings, we obtain

κm ⩽
m−1∑
k=0

δk(s0). (7.115)

We shall now prove by induction that, for all p̃ satisfying the condition (7.105), we have

∀k ⩽ m, δk(s0) ⩽ Nµ2
0 N

−µ2
k ν(sh + p̃) and δk(sh + p̃) ⩽

(
2 − 1

k+1

)
ν(sh + p̃), (7.116)

with
ν(s) ≜ δ0(s) + εγ−1∥∆12i∥s0+2.

First remark that the property (7.116) is trivially satisfied for m = 0 according to Sobolev embeddings.
We now assume that (7.116) is true at the order m and let us check it at the next order. By the induction
assumption (7.116) and (7.115), one obtains the following estimate

sup
m∈N

κm ⩽ Cν(sh + p̃). (7.117)

Using (7.113), (7.117) and hypothesis of induction (7.116), we find

δm+1(s0) ⩽ Ns0+τ1q+τ1−sh
m δm(sh + p̃) + CN

µ2
0 N2(τ1q+τ1)+1−µ2

m δ1,2
0 (sh)δm(s0)

+ CN
2µ2
0 N2τ1q+3τ1+1−2µ2

m δ1,2
0 (sh)κm

⩽
[
2Ns0+τ1q+τ1−sh

m + CN
2µ2
0 N2τ1q+3τ1+1−2µ2

m δ1,2
0 (sh)

]
ν(sh + p̃).

Then, in view of (7.15), we infer

2Ns0+τ1q+τ1−sh
m = 2N− 3

2µ2−3
m = 2N−3

m N
−µ2
m+1

⩽ 2N−3
0 N

−µ2
m+1

⩽
1
2N

µ2
0 N

−µ2
m+1.

To prove the last inequality, we remark that since N0 ⩾ 2 and µ2 ⩾ 0 (according to (7.3)), then

4 ⩽ Nµ2+3
0 .

Similarly, from the expression of µ2 in (7.15) and using (6.94) one obtains

CN
2µ2
0 N2τ1q+3τ1+1−2µ2

m δ1,2
0 (sh) ⩽ Cεγ−1N

µ2
0 N

2τ1q+3τ1+1− 1
2µ2

m N
µ2
0 N

−µ2
m+1

⩽ Cεγ−1N
2τ1q+3τ1+1+ 1

2µ2
0 N

µ2
0 N

−µ2
m+1

⩽ Cεγ−1N
µ2
0 N

µ2
0 N

−µ2
m+1.
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Hence, choosing ε0 small enough and using (7.16) we deduce that

CN
2µ2
0 N2τ1q+3τ1+1−2µ2

m δ1,2
0 (sh) ⩽ 1

2N
µ2
0 N

−µ2
m+1.

Gathering the preceding estimates gives

δm+1(s0) ⩽ Nµ2
0 N

−µ2
m+1ν(sh + p̃).

This ends the proof of the first statement in (7.116). As for the second one, we shall first write in view of
(7.114),

δm+1(sh + p̃) ⩽ δm(sh + p̃)
(

1 +Ns0+τ1q+τ1−sh
m + CN

µ2
0 Nτ1q+τ1+1−µ2

m δ1,2
0 (sh)

)
+ C

(
Nτ1q+τ1+1
m +N

µ2
0 N2(τ1q+τ1)+1−µ2

m

)
δ1,2

0 (sh + p̃ + 1)δm(s0)

+ CN
µ2
0 N2τ1q+3τ1+1−µ2

m δ1,2
0 (sh + p̃ + 1)κm.

Notice that since sh + p̃ + 2 ⩽ sh + σ1, then by (7.46) and (7.16), one has

δ1,2
0 (sh + p̃ + 1) ≲ εγ−1

(
1 + max

k∈{1,2}
∥Ik∥γ,O

q,sh+p̃+2

)
≲ εγ−1.

It follows from (7.116) and (7.117),

δm+1(sh + p̃) ⩽
(

2 − 1
m+1

)(
1 +Ns0+τ1q+τ1−sh

m + CN
µ2
0 Nτ1q+τ1+1−µ2

m

)
ν(sh + p̃)

+ C
(
Nτ1q+τ1+1
m +N

µ2
0 N2τ1q+3τ1+1−µ2

m

)
N
µ2
0 N−µ2

m εγ−1ν(sh + p̃).

Proceeding as for (7.63), taking ε0 small enough and thanks to (7.15), we obtain(
2 − 1

m+1

)(
1 +Ns0+τ1q+τ1−sh

m + CN
µ2
0 Nτ1q+τ1+1−µ2

m

)
+ C

(
Nτ1q+τ1+1
m +N

µ2
0 N2τ1q+3τ1+1−µ2

m

)
N
µ2
0 N−µ2

m εγ−1

⩽ 2 − 1
m+2 ,

so that
δm+1(sh + p̃) ⩽

(
2 − 1

m+2

)
ν(sh + p̃).

This completes the proof of the second statement in (7.116).
➢ Conclusion. From (7.104), we get for s = s0.

∥∆12gm∥γ,Oq,s0
≲ δm(s0 + τ1q + τ1) + κmδm(s0 + τ1q + 2τ1 + 1).

By interpolation inequality in Lemma A.1, (7.43) applied with µ2 = µ2, (7.116) applied with p̃ = 0 and
Sobolev embeddings, we have for some θ ∈ (0, 1)

δm(s0 + τ1q + τ1) ⩽ δm(s0 + τ1q + 2τ1 + 1)

≲ δm(s0)θδm(sh)1−θ

≲ Nθµ2
0 N−θµ2

m ν(sh)
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and

δm(s0 + τ1q + 2τ1 + 1) ≲ δm(s0)θδm(sh)1−θ

≲ Nθµ2
0 N−θµ2

m δ0(sh)

≲ Nθµ2
0 N−θµ2

m .

Therefore
∥∆12gm∥γ,Oq,s0

≲ Nθµ2
0 N−θµ2

m ν(sh).

Now from (7.104), we have

∥∆12gm∥γ,Oq,sh+p+1 ≲ δm(sh + p + τ1q + τ1 + 1) + κmδm(sh + p + τ1q + 2τ1 + 2).

Applying (7.116) with
p̃ = p + τ1q + τ1 + 1, (7.118)

which is possible since from (7.3), (7.15) and (7.14), one has sh + p + τ1q + τ1 + 4 ⩽ sh + σ1, we find

δm(sh + p + τ1q + τ1 + 1) ⩽ 2ν(sh + p + τ1q + τ1 + 1)

⩽ 2δ0(sh + p + τ1q + τ1 + 1) + 2εγ−1∥∆12i∥γ,Oq,s0+2.

Implementing a similar proof to (6.43) based on the kernel decomposition (6.39), the composition laws
and (7.8), we find

∀s ⩾ s0, δ0(s) = γ−1∥∆12Vεr∥γ,Oq,s

≲ εγ−1
(

∥∆12i∥γ,Oq,s+1 + ∥∆12i∥γ,Oq,s0+1 max
ℓ=1,2

∥rℓ∥γ,Oq,s+1

)
.

On the other hand, since
sh + p + τ1q + 2τ1 + 3 ⩽ sh + σ1,

one may obtain through combining (7.66) and (7.16)

δm(sh + p + τ1q + 2τ1 + 2) ⩽ Cεγ−1
(

1 + ∥I0∥γ,Oq,sh+p+τ1q+2τ1+3

)
⩽ Cεγ−1.

Thus, by interpolation inequality in Lemma A.1, we finally obtain for some θ ∈ (0, 1)

∥∆12gm∥γ,Oq,sh+p ≲ N
θµ2
0 N−θµ2

m ν(sh + p + τ1q + τ1 + 1). (7.119)

Choosing N0 sufficiently large, then the composition law in Lemma A.1 allows to get

∞∑
k=0

∥∆12gk∥γ,Oq,sh+p ≲ ν(sh + p + τ1q + τ1 + 1)Nθµ2
0

∞∑
k=0

N−θµ2
m

≲ εγ−1∥∆12i∥γ,Oq,sh+p+τ1q+τ1+2. (7.120)

Finally, gathering (7.91), (7.98), (7.119) and (7.120), we get

∥∆12β∥γ,Oq,sh+p ≲ εγ
−1∥∆12i∥q,sh+p+τ1q+τ1+2.
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Putting together this estimate, (A.19) and (7.94) yields

∥∆12β̂∥γ,Oq,sh+p ≲ ∥∆12β∥γ,Oq,sh+p

≲ εγ−1∥∆12i∥q,sh+p+τ1q+τ1+2.

▶ Estimate on ∆12ci. Since V0 = Ω + I1K1 is independent of r, then

∆12ci =
∞∑
m=0

∆12(Vm+1 − Vm).

Therefore we obtain in view of (7.54), Sobolev embeddings and (7.116) applied with p̃ = 0,

∥∆12(Vm+1 − Vm)∥γ,Oq = ∥⟨∆12fm⟩φ,θ∥γ,Oq
⩽ Cγδm(s0)

⩽ CγNµ2
0 N−µ2

m ν(sh).

Hence by the composition law in Lemma A.1, Lemma A.5 and (7.8) one may find

∥∆12ci∥γ,Oq ⩽
∞∑
m=0

∥∆12(Vm+1 − Vm)∥γ,Oq

⩽ Cγν(sh)Nµ2
0

∞∑
m=0

N−µ2
m

⩽ Cε∥∆12i∥γ,Oq,sh+2.

This achieves the proof of Proposition 7.2.

7.2.2 Action on the nonlocal term

In this section, we shall analyze the conjugation action by B on the nonlocal term appearing in the
linearized operator Lεr described in Proposition 7.1. The main result reads as follows.

Proposition 7.3. Let (γ, q, d, τ1, s0, sh, σ1, S) satisfy (A.2), (A.1), (7.3) and (7.14). We set

σ2 ≜ s0 + σ1 + 3. (7.121)

For any (µ2, p, sh) satisfying the condition (7.15), there exists ε0 > 0 such that if

εγ−1Nµ2
0 ⩽ ε0 and ∥I0∥γ,Oq,sh+σ2

⩽ 1, (7.122)

then in the Cantor set Oγ,τ1
∞,n(i0), we have

Lεr ≜ B−1LεrB = ω · ∂φ + ci0∂θ − ∂θKλ ∗ · + ∂θRεr + E0
n,

where Kλ is defined in (5.12), E0
n is introduced in Proposition 7.2 and Rεr is a real and reversibility

preserving self-adjoint integral operator satisfying

∀s ∈ [s0, S], max
k∈{0,1,2}

∥∂kθRεr∥γ,OO-d,q,s ≲ εγ
−1
(

1 + ∥I0∥γ,Oq,s+σ2

)
. (7.123)
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In addition, if i1 and i2 are two tori satisfying the smallness property (7.122), then

max
k∈{0,1}

∥∆12∂
k
θRεr∥γ,OO-d,q,sh+p ≲ εγ

−1∥∆12i∥γ,Oq,sh+p+σ2
. (7.124)

Proof. We recall from Proposition 7.1 and Lemma 5.1. that

Lεr = ω · ∂φ + ∂θ (Vεr·) − ∂θLεr,

where Lεr is a nonlocal operator defined by

Lεr(ρ)(φ, θ) =
ˆ
T
ρ(φ, η)K0(λAεr(φ, θ, η))dη,

with
Aεr(φ, θ, η) =

((
R(φ, η) −R(φ, θ)

)2 + 4R(φ, η)R(φ, θ) sin2
(
η−θ

2

)) 1
2

and
R(φ, θ) =

(
1 + 2εr(φ, θ)

) 1
2 .

Notice that we have removed the dependance in (λ, ω) from the functions in order to alleviate the notation.
Hence by Proposition 7.2, Lemma A.3-(i) and (6.24), we have in the Cantor set Oγ,τ1

∞,n(i0)

Lεr ≜ B−1LεrB

= B−1(ω · ∂φ + ∂θ (Vεr·)
)
B − B−1∂θLεrB

= ω · ∂φ + ci0∂θ − ∂θB−1LεrB + E0
n

= ω · ∂φ + ci0∂θ − ∂θ

(
B−1 (Kλ ∗ ·) B + B−1Lεr,1B

)
+ E0

n. (7.125)

From a direct computation using (5.12) combined with (A.14) and (A.12), we find

B−1(Kλ ∗ Bρ
)
(φ, θ) =

ˆ
T
ρ(φ, η)K0

(
λA

β̂
(φ, θ, η)

)
dη,

where
A
β̂
(φ, θ, η) ≜ 2

∣∣∣sin(η−θ
2 + ĥ(φ, θ, η)

)∣∣∣ ,
with

ĥ(φ, θ, η) ≜ β̂(φ,η)−β̂(φ,θ)
2 ·

Using elementary trigonometric identities, we can write

A
β̂
(φ, θ, η) = 2

∣∣∣sin(η−θ
2

)∣∣∣ v
β̂,2(φ, θ, η), (7.126)

with
v
β̂,2(φ, θ, η) ≜ cos

(
ĥ(φ, θ, η)

)
+

sin
(
ĥ(φ,θ,η)

)
tan( η−θ

2 ) ·

Notice that v0,2 = 1 and one may write

v
β̂,2(θ, η) = 1 +

(
cos
(
ĥ(θ, η)

)
− 1
)

+ ĥ(θ,η)
tan( η−θ

2 ) +
(

sin(̂h(θ,η))
ĥ(θ,η)

− 1
)

ĥ(θ,η)
tan( η−θ

2 )
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and then using Lemma A.1-(iv)-(v), Lemma A.2 and (7.19), we obtain

sup
η∈T

∥∥v
β̂,2(∗, ·, �, η + �) − 1

∥∥γ,O
q,s
≲ ∥β̂∥γ,Oq,s+1 ≲ εγ

−1
(

1 + ∥I0∥γ,Oq,s+σ1+1

)
,

∀k ∈ N∗, sup
η∈T

∥∥(∂kθ vβ̂,2)(∗, ·, �, η + �)
∥∥γ,O
q,s
≲ ∥β̂∥γ,Oq,s+k+1 ≲ εγ

−1
(

1 + ∥I0∥γ,Oq,s+σ1+1+k

)
. (7.127)

Proceeding as for (6.39), one obtains the decomposition

K0(λA
β̂
(λ, ω, φ, θ, η)) = K0

(
2λ
∣∣∣sin(η−θ

2

)∣∣∣)+ K (η − θ)K 1
β̂,2

(φ, θ, η) + K 2
β̂,2

(φ, θ, η)

with similar estimates to (6.35) and (6.38), that is, for all k ∈ N,

sup
η∈T

(∥∥(∂kθK 1
β̂,2

)(∗, ·, �, η + �)
∥∥γ,O
q,s

+
∥∥(∂kθK 2

β̂,2
)(∗, ·, �, η + �)

∥∥γ,O
q,s

)
≲ ∥β̂∥γ,Oq,s+1+k

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+σ1+1+k

)
, (7.128)

where the symbols ∗, ·, � stand for (λ, ω), φ, θ, respectively. Now we shall denote by Lεr,2 the integral
operator with the kernel Kεr,2 defined by

Kεr,2(φ, θ, η) ≜ K (η − θ)K 1
β̂,2

(φ, θ, η) + K 2
β̂,2

(φ, θ, η). (7.129)

Then we find the decomposition

B−1 (Kλ ∗ ·) B = Kλ ∗ · + Lεr,2.

Inserting this identity into (7.125) allows to get

Lεr = B−1LεrB = ω · ∂φ + ci0∂θ − ∂θKλ ∗ · + ∂θRεr + E0
n,

with
Rεr ≜ −Lεr,2 − B−1Lεr,1B. (7.130)

Observe that by (7.4) and (7.23) we can easily check that the kernel Kεr,2 satisfies the following symmetry
property

Kεr,2(−φ,−θ,−η) = Kεr,2(φ, θ, η) ∈ R, (7.131)

which implies in turn, according to Lemma A.7, that Lεr,2 is a real and reversibility preserving operator.
Moreover, one obtains from (7.128)

max
k∈{0,1,2}

∥∥(∂kθKεr,2)(∗, ·, �, η + �)
∥∥γ,O
q,s
≲ εγ−1

(
1 + ∥I0∥γ,Oq,s+σ1+3

) (
1 − log

∣∣sin (η2 )∣∣) . (7.132)

Our next purpose is to highlight some properties of the operator B−1Lεr,1B which takes the integral form

(
B−1Lεr,1B

)
ρ(φ, θ) =

ˆ
T
ρ(φ, η)K̂εr,1(φ, θ, η)dη, (7.133)

where the kernel K̂εr,1 is related to the kernel Kεr,1 defined in (6.25) through the formula,

K̂εr,1(φ, θ, η) ≜ Kεr,1
(
φ, θ + β̂(φ, θ), η + β̂(φ, η)

)
. (7.134)
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It is quite easy to check from (6.27) and (7.23), that

K̂εr,1(−φ,−θ,−η) = K̂εr,1(φ, θ, η) ∈ R. (7.135)

According to (6.25), one gets the decomposition

K̂εr,1(φ, θ, η) = K̂ (φ, θ, η)K̂ 1
εr,1(φ, θ, η) + K̂ 2

εr,1(φ, θ, η), (7.136)

with

K̂ (φ, θ, η) ≜ K
(
η − θ + β̂(φ, η) − β̂(φ, θ)

)
,

K̂ 1
εr,1(φ, θ, η) ≜ K 1

εr,1
(
φ, θ + β̂(φ, θ), η + β̂(φ, η)

)
,

K̂ 2
εr,1(φ, θ, η) ≜ K 2

εr,1
(
φ, θ + β̂(φ, θ), η + β̂(φ, η)

)
.

Coming back to (6.26) and using the morphism property of the logarithm, combined with (7.126) we
deduce that

K̂ (φ, θ, η) = sin2
(
η−θ

2

)
v2
β̂,2

(φ, θ, η)
(

log
∣∣∣ sin(η−θ

2

)∣∣∣+ log
∣∣v
β̂,2(φ, θ, η)

∣∣)
= K

(
η − θ

)
+ K

(
η − θ

)(
v2
β̂,2

(φ, θ, η) − 1
)

+ sin2
(
η−θ

2

)
v2
β̂,2

(φ, θ, η) log
∣∣v
β̂,2(φ, θ, η)

∣∣.
Combining Lemma A.1-(iv)-(v), (7.127), (7.19) gives for any η ∈ T

max
k∈{0,1,2}

∥∥(∂kθ K̂ )
(
∗, ·, �,η + �

)∥∥γ,O
q,s
≲
∥∥β̂∥γ,Oq,s+3

(
1 − log

∣∣∣sin(η2)∣∣∣)− log
∣∣sin (η2 )∣∣+ 1

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+σ2

)(
1 − log

∣∣∣sin(η2)∣∣∣)− log
∣∣sin (η2 )∣∣+ 1. (7.137)

The next goal is to prove that

max
k∈{0,1,2}

sup
η∈T

∥∥(∂kθ K̂ 1
εr,1)

(
∗, ·, �, η + �

)∥∥γ,O
q,s
≲ εγ−1

(
1 + ∥I0∥γ,Oq,s+σ2

)
. (7.138)

For this aim we first write from (6.36) and (C.2)

K 1
εr,1(φ, θ, η) = 4λ2(1 − vεr,1(φ, θ, η)

)
Ĩλ(η − θ)

− 4λ2(vεr,1(φ, θ) − 1)2
ˆ 1

0
(1 − t)I ′′

0

(
2λ sin

(
η−θ

2

)
(1 − t+ tvεr,1(φ, θ, η))

)
dt

≜ 4λ2(1 − vεr,1(φ, θ, η)
)
Ĩλ(η − θ) +G(φ, θ, η), (7.139)

with

Ĩλ(η) ≜
I ′

0
(
2λ
∣∣sin (η2 )∣∣)

2λ
∣∣sin (η2 )∣∣

= 1
2

∞∑
m=0

λ2m sin2m (η
2
)

m!(m+ 1)! ·

Then we get the decomposition

K̂ 1
εr,1(φ, θ, η) = 4λ2[1 − v̂εr,1(φ, θ, η)

]
Îλ(φ, θ, η) + Ĝ(φ, θ, η),
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with

v̂εr,1(φ, θ, η) ≜ vεr,1
(
φ, θ + β̂(φ, θ), η + β̂(φ, η)

)
,

Îλ(φ, θ, η) ≜ Ĩλ
(
η + β̂(φ, η) − θ − β̂(φ, θ)

)
,

Ĝ(φ, θ, η) ≜ G
(
φ, θ + β̂(φ, θ), η + β̂(φ, η)

)
.

It follows that

K̂ 1
εr,1(φ, θ, θ + η) =4λ2[1 − vεr,1

(
φ, θ + β̂(φ, θ), θ + η + β̂(φ, θ + η)

)]
Ĩλ
(
η + β̂(φ, θ + η) − β̂(φ, θ)

)
+G

(
φ, θ + β̂(φ, θ), η + θ + β̂(φ, η + θ)

)
. (7.140)

Notice that (λ, η) 7→ Ĩλ(η) is C∞, then using Lemma A.1-(v) and (7.19) yields for any k ∈ N

sup
η∈T

∥(∂kθ Îλ)(∗, ·, �, η + �)∥γ,Oq,s ≲ 1 + ∥β̂∥γ,Oq,s+k

≲ 1 + εγ−1∥I0∥γ,Oq,s+σ1+k.

Now using (6.31), Lemma A.1-(v), (7.18), (7.7), (7.127) and proceeding as in (6.32) we obtain

sup
η∈T

∥v̂εr,1
(
∗, ·, �, η + �

)
− 1∥γ,Oq,s ≲ ε∥r∥

γ,O
q,s+1 + ε2γ−1∥I0∥γ,Oq,s+σ1+1∥r∥γ,Oq,s0+1

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+σ1+1

)
and

max
k∈{1,2}

sup
η∈T

∥(∂kθ v̂εr,1)
(
∗, ·, �, η + �

)
∥γ,Oq,s ≲ ε∥r∥

γ,O
q,s+3 + ε2γ−1∥I0∥γ,Oq,s+σ1+3∥r∥γ,Oq,s0+3

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+σ1+3

)
.

Arguing as above using the structure of G detailed in (7.139) allows to get

sup
η∈T

∥Ĝ
(
∗, ·, �, η + �

)
− 1∥γ,Oq,s ≲ εγ−1

(
1 + ∥I0∥γ,Oq,s+σ1+1

)
and

max
k∈{1,2}

sup
η∈T

∥(∂kθ Ĝ
(
∗, ·, �, η + �

)
∥γ,Oq,s ≲ εγ−1

(
1 + ∥I0∥γ,Oq,s+σ1+3

)
.

Thus applying the product laws in Lemma A.1 and using the preceding estimates combined with (7.140)
imply

max
k∈{0,1,2}

sup
η∈T

∥
(
∂kθ K̂

1
εr,1
)
(∗, ·, �, η + �)∥γ,Oq,s ≲ εγ−1

(
1 + ∥I0∥γ,Oq,s+σ1+3

)
, (7.141)

which gives in particular (7.138). The estimate of the last term K 2
εr,1 in (7.136), which is connected to

(6.37), can be treated in a similar way to the estimate (7.141) and one finds

max
k∈{0,1,2}

sup
η∈T

∥∥(∂kθ K̂ 2
εr,1)

(
∗, ·, �, η + �

)∥∥γ,O
q,s
≲ εγ−1

(
1 + ∥I0∥γ,Oq,s+σ1+3

)
. (7.142)
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Consequently, putting together (7.136),(7.137), (7.138) and (7.142) yields

max
k∈{0,1,2}

∥∥(∂kθ K̂εr,1)
(
∗, ·, �, η + �

)∥∥γ,O
q,s
≲ εγ−1

(
1 + ∥I0∥γ,Oq,s+σ1+3

) (
1 − log

∣∣sin (η2 )∣∣) . (7.143)

By (7.130) we infer that Rεr is an integral operator of kernel Kεr given by

Kεr ≜ −K̂εr,1 − Kεr,2.

Therefore, by virtue of Lemma A.7 combined with (7.132) and (7.143) we find, taking σ2 = s0 + σ1 + 3,

max
k∈{0,1,2}

∥∂kθRεr∥γ,OO-d,q,s ≲ max
k∈{0,1,2}

ˆ
T

(
∥(∂kθ K̂εr,1)(∗, ·, �, η + �)∥γ,Oq,s+s0

+ ∥(∂kθKεr,2)(∗, ·, �, η + �)∥γ,Oq,s+s0

)
dη

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+s0+σ1+3

) ˆ
T

(
1 − log

∣∣sin (η2 )∣∣) dη
≲ εγ−1

(
1 + ∥I0∥γ,Oq,s+σ2

)
.

Notice that by (7.135), (7.131), the kernel Kεr satisfies the following symmetry property

Kεr(−φ,−θ,−η) = Kεr(φ, θ, η) ∈ R, (7.144)

which implies in view of Lemma A.7 that Rεr is a real and reversibility preserving Toeplitz in time integral
operator. It remains to estimate the quantity max

k∈{0,1}
∥∆12∂

k
θRεr∥γ,OO-d,q,sh+p. This is will be implemented

as before and we shall here sketch the main ideas. First we observe that for k ∈ {0, 1} the kernel of
∆12∂

k
θRεr is given by

∆12∂
k
θKεr = −∆12∂

k
θ K̂εr,1 − ∆12∂

k
θKεr,2.

To estimate ∆12∂
k
θKεr,2 we shall use (7.129) leading to

∆12Kεr,2(φ, θ, η) = K (θ − η)∆12K
1
β̂,2

(φ, θ, η) + ∆12K
2
β̂,2

(φ, θ, η) (7.145)

and

∆12∂θKεr,2(φ, θ, η) = K (θ − η)∆12∂θK
1
β̂,2

(φ, θ, η) + K ′(θ − η)∆12K
1
β̂,2

(φ, θ, η)

+ ∆12∂θK
2
β̂,2

(φ, θ, η). (7.146)

Observe from (7.126) that the preceding kernels can be expressed with respect to β̂. Then proceeding in
a similar way to (6.48) we obtain

∀ i ∈ {1, 2}, max
k∈{0,1}

sup
η∈T

∥d
β̂
∂kθK

i

β̂,2
[ρ](∗, ·, �, η + �)∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s+2 + ∥ρ∥γ,Oq,s0+1∥β̂∥γ,Oq,s+2. (7.147)

Applying Taylor Formula yields for all i ∈ {1, 2} and for all k ∈ {0, 1},

∆12∂
k
θK

i

β̂,2
(φ, θ, θ + η) =

ˆ 1

0
d
β̂
∂kθK

i

(1−τ)β̂2+τβ̂1,2
[β̂1 − β̂2](φ, θ, θ + η) dτ.

It follows from (7.147) that for all i ∈ {1, 2} and for all k ∈ {0, 1}

∥∥∆12∂
k
θK

i

β̂,2
(∗, ·, �, η + �)

∥∥γ,O
q,s
≲ ∥β̂2 − β̂1∥γ,Oq,s+2 + ∥β̂2 − β̂1∥γ,Oq,s0+1

ˆ 1

0
∥(1 − τ)β̂2 + τ β̂1∥γ,Oq,s+2 dτ.
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Therefore, by our previous choice of σ2, we obtain in view of (7.19), (7.22) (applied with p replaced by
p + s0) and the smallness condition (7.122),

∀i ∈ {1, 2}, max
k∈{0,1}

∥∥∆12∂
k
θK

i

β̂,2
(∗, ·, �, η + �)

∥∥γ,O
q,sh+p+s0

≲ εγ−1∥∆12i∥γ,Oq,sh+p+σ2

(
1 + εγ−1(1 + ∥I0∥γ,Oq,sh+p+σ2

))
≲ εγ−1∥∆12i∥γ,Oq,sh+p+σ2

.

Inserting this estimate into (7.145) and (7.146) yields

max
k∈{0,1}

sup
η∈T

∥∥∆12∂
k
θKεr,2(∗, ·, �, η + �)

∥∥γ,O
q,sh+p+s0

≲ εγ−1∥∆12i∥γ,Oq,sh+p+σ2
. (7.148)

Using similar techniques based on Taylor Formula, one can estimate ∆12∂θK̂εr,1. We use in particular the
identity (7.136) combined with (6.48), (7.19), (7.22) and the smallness condition (7.122) allowing to get

max
k∈{0,1}

sup
η∈T

∥∥∆12∂
k
θ K̂εr,1(∗, ·, �, η + �)

∥∥γ,O
q,sh+p+s0

≲ εγ−1∥∆12i∥γ,Oq,sh+p+σ2
. (7.149)

Putting together (7.148) and (7.149) gives

max
k∈{0,1}

sup
η∈T

∥∥∆12∂
k
θKεr(∗, ·, �, η + �)

∥∥γ,O
q,sh+p+s0

≲ εγ−1∥∆12i∥γ,Oq,sh+p+σ2
.

Comibining this estimate with Lemma A.7 yields

max
k∈{0,1}

∥∆12∂
k
θRεr∥γ,OO-d,q,sh+p ≲ max

k∈{0,1}

ˆ
T

∥∆12∂
k
θKεr(∗, ·, �, η + �)∥γ,Oq,sh+p+s0

dη

≲ εγ−1∥∆12i∥γ,Oq,sh+p+σ2
.

This completes the proof of the Proposition 7.3.

7.3 Diagonalization up to small errors

The main goal of this section is to diagonalize, up to small errors, the operator L̂ω discussed in Proposition
7.1 and given by

L̂ω = Π⊥
S0

(Lεr − ε∂θR)Π⊥
S0
.

This will be performed in two main steps. First, we shall explore the effect of the frequency localization
in the normal direction on the transport reduction discussed in Section 7.2. We essentially get the
same structure up to a small perturbation of finite-dimensional rank. Then, in the second step we shall
implement a KAM reducibility scheme in order to reduce the remainder to a diagonal one modulo small
fast decaying operators. This will be performed through the use of a suitable strong topology on continuous
operators given by (A.23). With this topology one has tame estimates and the Toeplitz structure of the
remainder is very important in this part. The reduction will be conducted by assuming non resonance
conditions stemming from the second order Melnikov conditions needed in the resolution of adequate
homological equations during the scheme.

7.3.1 Projection in the normal directions

In this section, we study the effects of the reduction of the transport part when the linearized operator is
localized in the normal directions. Notice that the change of coordinates does not stabilize the normal
subspace and as we shall see the defect of the commutation can be modeled by projectors of finite ranks.
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7. Reduction of the linearized operator in the normal directions

Let us define
B⊥ ≜ Π⊥

S0
BΠ⊥

S0
,

where the transformation B is introduced in (A.12) and constructed in Proposition 7.2. Recall that the
projection Π⊥

S0
and the space L2

⊥ were respectively defined in (6.9) and (6.8). We also recall the following
notations

el,j(φ, θ) = ei(l·φ+jθ) and em(θ) = eimθ.

In the sequel, we may use the following notation

Hs
⊥ ≜ H

s ∩ L2
⊥.

The first main result of this section reads as follows.

Lemma 7.1. Let B the transformation constructed in Proposition 7.2, then under the condition (7.122)
and (7.15), the following assertions hold.

(i) For all s ∈ [s0, S], the operator B⊥ : W q,∞,γ
(
O, Hs

⊥
)

→ W q,∞,γ
(
O, Hs

⊥
)

is continuous and invertible,
with

∥B±1
⊥ ρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s + εγ−1∥I0∥γ,Oq,s+σ3

∥ρ∥γ,Oq,s0
. (7.150)

In addition, we have the representations

B⊥ρ = Bρ−
∑
m∈S0

〈
ρ,
(
B−1 − Id

)
em
〉
L2

θ
(T)em

and

B−1
⊥ ρ = B−1ρ−

∑
m∈S0

〈
ρ,
(
B − Id

)
gm
〉
L2

θ
(T)B

−1em,

where

A(φ) ≜
(〈
em,Bek

〉
L2

θ
(T)

)
m∈S0
k∈S0

, A−1(φ) ≜
(
αk,m

)
m∈S0
k∈S0

, gm(φ, θ) ≜
∑
k∈S0

αk,m(φ)ek(θ),

with the estimate

sup
k,m∈S0

∥αk,m − δkm∥γ,Oq,s ≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+σ1+1

)
.

(ii) Given two tori i1 and i2 satisfying the smallness condition (7.122), one has

max
m∈S0

∥∆12gm∥γ,Oq,sh+p ≲ εγ
−1∥∆12i∥γ,Oq,sh+p+σ1+1. (7.151)

Proof. (i) The first estimate concerning B⊥ follows easily from the continuity of the orthogonal projector
Π⊥

S0
on the space L2

⊥, combined with (7.18). For the representation of B⊥, take ρ ∈ W q,∞,γ(O, Hs
⊥) and

set
B⊥ρ = Π⊥

S0
BΠ⊥

S0
ρ = Π⊥

S0
Bρ ≜ g.

Next, we write the following splitting

Bρ = g + h with ΠS0h = h. (7.152)
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Notice that the projector ΠS0 is defined by

ΠS0ρ =
∑
j∈S0

ρjej = ΠSρ+ ⟨ρ⟩θ,

where ΠS is defined in (6.9) and ⟨·⟩θ denotes the average in the variable θ. Therefore

h(φ, θ) =
∑
m∈S0

hm(φ)em(θ),

supplemented with the orthogonal conditions

∀ k ∈ S0, ⟨Bρ− h, ek⟩L2
θ

(T) = 0.

This implies
h(φ, θ) =

∑
m∈S0

⟨Bρ, em⟩L2
θ

(T)em(θ).

Using Lemma A.3-(iii) leads to

h(φ, θ) =
∑
m∈S0

⟨ρ,B−1em⟩L2
θ

(T)em(θ).

Inserting this identity into (7.152) yields

B⊥ρ = g = Bρ−
∑
m∈S0

〈
ρ,B−1em

〉
L2

θ
(T)em.

Since ∀m ∈ S0,
〈
ρ, em

〉
L2

θ
(T) = 0, then

B⊥ρ = g = Bρ−
∑
m∈S0

〈
ρ,
(
B−1 − Id

)
em
〉
L2

θ
(T)em.

This ensures the desired representation of B⊥.
Next, we intend to establish similar representation for B−1

⊥ . Let g ∈ W q,∞,γ(O, Hs
⊥) and we need to solve

the equation
f ∈ W q,∞,γ(O, Hs

⊥), B⊥f = Π⊥
S0

Bf = g.

This is equivalent to
Bf = g + h, with ΠS0h = h and ΠS0f = 0.

Then we get

f = B−1(g + h
)
, with ΠS0h = h and ΠS0f = 0. (7.153)

The condition ΠS0f = 0 is equivalent to,

∀k ∈ S0,
〈
B−1(g + h

)
, ek
〉
L2

θ
(T) = 0.

Therefore using Lemma A.3-(iii) the latter equation reads

∀k ∈ S0,
〈
g + h, êk

〉
L2

θ
(T) = 0 with êk(φ, θ) ≜ Bek(φ, θ) = eik(θ+β(φ,θ)),
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which will fix h. Indeed, by expanding h(φ, θ) =
∑
m∈S0

am(φ)em(θ), we can transform the preceding system

into

∀k ∈ S0,
∑
m∈S0

am(φ)
〈
em, êk

〉
L2

θ
(T) = −

〈
g, êk

〉
L2

θ
(T). (7.154)

Define the matrix

A(φ) ≜
(
cm,k(φ)

)
(m,k)∈S2

0
, cm,k(φ) ≜ ⟨em, êk⟩L2

θ
(T) =

ˆ
T
ei((m−k)θ−kβ(φ,θ))dθ. (7.155)

Notice that according to (7.23) and the change of variables θ 7→ −θ, one obtains

∀(m, k) ∈ S2
0, ∀φ ∈ Td, cm,k(−φ) = c−m,−k(φ) = cm,k(φ, θ). (7.156)

One can check by slight adaptation of the composition law in Lemma A.1 and using the smallness condition
(7.122) and (7.19)

∥cm,m − 1∥γ,Oq,s ⩽
ˆ
T

∥e−imβ(·,θ)) − 1∥γ,Oq,Hs
φ
dθ

≲ ∥β∥γ,Oq,s

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+σ1

)
. (7.157)

For k ̸= m ∈ S0 we use integration by parts,

cm,k(φ) = k
i(m−k)

ˆ
T
ei((m−k)θ−kβ(φ,θ))∂θβ(φ, θ)dθ.

Then using product laws and composition laws in Lemma A.1 combined with (7.19) yield

sup
(m,k)∈S2

0
m̸=k

∥cm,k∥γ,Oq,s ≲ ∥β∥γ,Oq,s+1

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+σ1+1

)
.

Finally, we get that
A(φ) = Id + R(φ) with ∥R∥γ,Oq,s ≲ ∥β∥γ,Oq,s+1. (7.158)

Hence under the smallness condition ∥β∥γ,Oq,s0
≪ 1 following from (7.122), combined with the product laws

in Lemma A.1 we get that A is invertible with

∥A−1 − Id∥γ,Oq,s ≲ ∥β∥γ,Oq,s+1

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+σ1+1

)
. (7.159)

Therefore the system (7.154) is invertible and one gets a unique solution given by

am(φ) = −
∑
k∈S0

αm,k(φ)
〈
g, êk

〉
L2

θ
(T) with A−1(φ) ≜

(
αm,k(φ)

)
(m,k)∈S2

0

. (7.160)

We claim that the coefficients of A−1 admit the same symmetry conditions as (7.156), that is

∀(m, k) ∈ S2
0, ∀φ ∈ Td, αm,k(−φ) = α−m,−k(φ) = αm,k(φ). (7.161)
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This can be done through the series expansion A−1 =
∑
n∈N

(−1)n(A− Id)n together with the fact that the

entries of the monomials (A− Id)n satisfy in turn (7.156). Next, using the product laws yields

sup
m∈S0

∥am∥γ,Oq,s ≲ sup
k∈S0

(
∥A−1∥γ,Oq,s ∥

〈
g, êk

〉
L2

θ
(T)∥

γ,O
q,H

s0
φ

+ ∥A−1∥γ,Oq,s0
∥
〈
g, êk

〉
L2

θ
(T)∥

γ,O
q,Hs

φ

)
. (7.162)

Notice that one gets from (7.159)

sup
(m,k)∈S2

0

∥αk,m − δkm∥γ,Oq,s ≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+σ1+1

)
,

where δkm denotes the Kronecker symbol. Let us now move to the estimate of the partial scalar product
containing g in (7.162). Using the product laws in Lemma A.1 with Cauchy-Schwarz inequality gives

∥
〈
g, êk

〉
L2

θ
(T)∥

γ,O
q,Hs

φ
≲

ˆ
T

(
∥g(·, θ)∥γ,Oq,Hs

φ
∥eiβ(·,θ)∥γ,O

q,H
s0
φ

+ ∥g(·, θ)∥γ,O
q,H

s0
φ

∥eiβ(·,θ)∥γ,Oq,Hs
φ

)
dθ

≲ ∥g∥γ,O
q,L2

θ
Hs

φ
∥eiβ∥γ,O

q,L2
θ
H

s0
φ

+ ∥g∥γ,O
q,L2

θ
H

s0
φ

∥eiβ∥γ,O
q,L2

θ
Hs

φ

≲ ∥g∥γ,Oq,s ∥eiβ∥γ,Oq,s0
+ ∥g∥γ,Oq,s0

∥eiβ∥γ,Oq,s .

Then applying the composition law as in (7.157) combined with with (7.19) and the smallness condition
(7.122) gives

∥
〈
g, êk

〉
L2

θ
(T)∥

γ,O
q,Hs

φ
≲ ∥g∥γ,Oq,s + ∥g∥γ,Oq,s0

∥β∥γ,Oq,s

≲ ∥g∥γ,Oq,s + εγ−1
(

1 + ∥I0∥γ,Oq,s+σ1

)
∥g∥γ,Oq,s0

.

Plugging this estimate into (7.162) and using (7.19), (7.159) combined with the smallness condition (7.122)
and Sobolev embeddings implies

sup
m∈S0

∥am∥γ,Oq,s ≲ ∥g∥γ,Oq,s + εγ−1
(

1 + ∥I0∥γ,Oq,s+σ1+1

)
∥g∥γ,Oq,s0

≲ ∥g∥γ,Oq,s + εγ−1∥I0∥γ,Oq,s+σ1+1∥g∥γ,Oq,s0
.

Therefore we obtain

∥h∥γ,Oq,s ≲
∑
m∈S0

∥am∥γ,Oq,Hs
φ

≲ ∥g∥γ,Oq,s + εγ−1∥I0∥γ,Oq,s+σ1+1∥g∥γ,Oq,s0
.

Coming back to (7.153) and using (7.18), we get

∥f∥γ,Oq,s ≲ ∥g + h∥γ,Oq,s + εγ−1∥I0∥γ,Oq,s+σ1+1∥g + h∥γ,Oq,s0

≲ ∥g∥γ,Oq,s + εγ−1∥I0∥γ,Oq,s+σ1+1∥g∥γ,Oq,s0
.

It follows that

∥B−1
⊥ g∥γ,Oq,s ≲ ∥g∥γ,Oq,s + εγ−1∥I0∥γ,Oq,s+σ1+1∥g∥γ,Oq,s0

.
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In addition, from (7.160) and (7.153) we deduce the formula

B−1
⊥ g(φ, θ) = B−1g(φ, θ) −

∑
m∈S0
k∈S0

αm,k(φ)
〈
g,Bek

〉
L2

θ
(T)B

−1em(θ)

= B−1g(φ, θ) −
∑
m∈S0

〈
g,Bgm

〉
L2

θ
(T)

(
B−1em

)
(φ, θ), (7.163)

with
gm(φ, θ) ≜

∑
k∈S0

αm,k(φ)ek(θ). (7.164)

From (7.161) and the symmetry of S0, we infer

∀m ∈ S0, ∀(φ, θ) ∈ Td+1, gm(−φ,−θ) = g−m(φ, θ) = gm(φ, θ). (7.165)

Since Π⊥
S0
g = g and Π⊥

S0
gm = 0 then

〈
g, gm

〉
L2

θ
(T) = 0 and therefore

〈
g,Bgm

〉
L2

θ
(T) =

〈
g,
(
B − Id

)
gm
〉
L2

θ
(T).

Plugging this identity into (7.163) yields

B−1
⊥ g = B−1g −

∑
m∈S0

〈
g,
(
B − Id

)
gm
〉
L2

θ
(T)B

−1em.

(ii) Coming back to the definition of cm,k in (7.155), one can write

∀(m, k) ∈ S2
0, ∆12cm,k = ⟨em, (∆12B)ek⟩L2

θ
(T).

Hence, using Taylor Formula and (7.22), we have

max
(m,k)∈S2

0

∥∆12cm,k∥γ,Oq,sh+p ≲ εγ
−1∥∆12i∥γ,Oq,sh+p+σ1

.

From (7.164), one has
∆12gm =

∑
k∈S0

∆12αm,k ek.

Thus
max
m∈S0

∥∆12gm∥γ,Oq,sh+p ≲ max
(m,k)∈S2

0

∥∆12αm,k∥γ,Oq,sh+p. (7.166)

Using Neumann series, we can write

A−1(φ) = Id +
∞∑
n=1

(−1)nRn(φ).

Therefore, the product laws in Lemma A.1 combined with (7.158) and the smallness condition (7.122)
lead to

∥∆12A−1∥γ,Oq,sh+p ≲
∞∑
n=1

∥∆12Rn∥γ,Oq,sh+p

≲ ∥∆12R∥γ,Oq,sh+p

≲ εγ−1∥∆12i∥γ,Oq,sh+p+σ1+1.
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As a consequence,
max

(m,k)∈S2
0

∥∆12αm,k∥γ,Oq,sh+p ≲ εγ
−1∥∆12i∥γ,Oq,sh+p+σ1+1. (7.167)

Gathering (7.167) and (7.166) finally gives

max
m∈S0

∥∆12gm∥γ,Oq,sh+p ≲ εγ
−1∥∆12i∥γ,Oq,sh+p+σ1+1.

This achieves the proof of Lemma 7.1.

In Lemma 7.1, the parameter p is subject to the constraint (7.15) and from now on, we shall fix it to
the value

p ≜ 4τ2q + 4τ2. (7.168)

This particular choice is determined through some constraints in the proof of the remainder reduction.
More precisely, it appears in (7.364). Next we shall establish the second main result of this section.

Proposition 7.4. Let (γ, q, d, τ1, s0, sh, sh, µ2, p, σ2, S) satisfy the assumptions (A.2), (A.1), (7.3), (7.15),
(7.121) and (7.168). Consider the operator L̂ω defined in Proposition 7.1.
There exist ε0 > 0 and σ3 = σ3(τ1, q, d, s0) ⩾ σ2 such that if

εγ−1Nµ2
0 ⩽ ε0 and ∥I0∥γ,Oq,sh+σ3

⩽ 1, (7.169)

then the following assertions hold true.

(i) For any n ∈ N∗, in the Cantor set Oγ,τ1
∞,n(i0) introduced in Proposition 7.2, we have

B−1
⊥ L̂ωB⊥ =

(
ω · ∂φ + ci0∂θ − ∂θKλ ∗ ·

)
Π⊥

S0
+ R0 + E1

n

≜
(
ω · ∂φ + D0

)
Π⊥

S0
+ R0 + E1

n

≜ L0 + E1
n,

where D0 is a reversible Fourier multiplier given by

∀(l, j) ∈ Zd × Sc0, D0el,j = iµ0
j el,j ,

with
µ0
j (λ, ω, i0) ≜ Ωj(λ) + jr1(λ, ω, i0) and r1(λ, ω, i0) ≜ ci0(λ, ω) − V0(λ)

and such that
∥r1∥γ,Oq ≲ ε and ∥∆12r

1∥γ,Oq ≲ ε∥∆12i∥γ,Oq,sh+2. (7.170)

(ii) The operator E1
n satisfies the following estimate

∥E1
nρ∥γ,Oq,s0

≲ εNµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+2. (7.171)

(iii) R0 is a real and reversible Toeplitz in time operator satisfying R0 = Π⊥
S0

R0Π⊥
S0

with

∀s ∈ [s0, S], max
k∈{0,1}

∥∂kθR0∥γ,OO-d,q,s ≲ εγ
−1
(

1 + ∥I0∥γ,Oq,s+σ3

)
(7.172)

and
∥∆12R0∥γ,OO-d,q,sh+p ≲ εγ

−1∥∆12i∥γ,Oq,sh+p+σ3
. (7.173)
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(iv) The operator L0 satisfies

∀s ∈ [s0, S], ∥L0ρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s+1 + εγ−1∥I0∥γ,Oq,s+σ3
∥ρ∥γ,Oq,s0

. (7.174)

Proof. (i) We shall first start with finding a suitable expansion for B−1
⊥ L̂ωB⊥. Using the expression of

L̂ω given in Proposition 7.1 and the decomposition Id = ΠS0 + Π⊥
S0

we write

B−1
⊥ L̂ωB⊥ = B−1

⊥ Π⊥
S0

(Lεr − ε∂θR)B⊥

= B−1
⊥ Π⊥

S0
LεrBΠ⊥

S0
− B−1

⊥ Π⊥
S0

LεrΠS0BΠ⊥
S0

− εB−1
⊥ Π⊥

S0
∂θRB⊥.

According to the definitions of Lεr and Lεr seen in Proposition 7.3 and in Lemma 5.1 and using (6.24),
one has in the Cantor set Oγ,τ1

∞,n(i0)

LεrB = BLεr and Lεr = ω · ∂φ + ∂θ (Vεr·) − ∂θLεr,1 − ∂θKλ ∗ ·

and therefore

B−1
⊥ L̂ωB⊥ =B−1

⊥ Π⊥
S0

BLεrΠ⊥
S0

− B−1
⊥ Π⊥

S0
(∂θ (Vεr·) − ∂θLεr,1) ΠS0BΠ⊥

S0
− εB−1

⊥ ∂θRB⊥,

where we have used the identities

B−1
⊥ Π⊥

S0
= B−1

⊥ and [Π⊥
S0
, T ] = 0 = [ΠS0 , T ],

for any Fourier multiplier T . The structure of Lεr is detailed in Proposition 7.3, and from this we deduce
that

Π⊥
S0

BLεrΠ⊥
S0

= Π⊥
S0

B
(
ω · ∂φ + ci0∂θ − ∂θKλ ∗ · + ∂θRεr + E0

n

)
Π⊥

S0

= Π⊥
S0

BΠ⊥
S0

(
ω · ∂φ + ci0∂θ − ∂θKλ ∗ ·

)
+ Π⊥

S0
B∂θRεrΠ⊥

S0
+ Π⊥

S0
BE0

nΠ⊥
S0

= B⊥
(
ω · ∂φ + ci0∂θ − ∂θKλ ∗ ·

)
+ Π⊥

S0
B∂θRεrΠ⊥

S0
+ Π⊥

S0
BE0

nΠ⊥
S0
.

It follows that

B−1
⊥ Π⊥

S0
BLεrΠ⊥

S0
=
(
ω · ∂φ + ci0∂θ − ∂θKλ ∗ ·

)
Π⊥

S0
+ B−1

⊥ Π⊥
S0

B∂θRεrΠ⊥
S0

+ B−1
⊥ Π⊥

S0
BE0

nΠ⊥
S0

=
(
ω · ∂φ + ci0∂θ − ∂θKλ ∗ ·

)
Π⊥

S0
+ Π⊥

S0
∂θRεrΠ⊥

S0
+ B−1

⊥ BΠS0∂θRεrΠ⊥
S0

+ B−1
⊥ Π⊥

S0
BE0

nΠ⊥
S0
.

Consequently, in the Cantor set Oγ,τ1
∞,n(i0), one has the following reduction

B−1
⊥ L̂ωB⊥ =

(
ω · ∂φ + ci0∂θ − ∂θKλ ∗ ·

)
Π⊥

S0
+ Π⊥

S0
∂θRεrΠ⊥

S0
+ B−1

⊥ BΠS0∂θRεrΠ⊥
S0

− B−1
⊥ Π⊥

S0
(∂θ (Vεr·) − ∂θLεr,1) ΠS0BΠ⊥

S0
− εB−1

⊥ ∂θRB⊥ + B−1
⊥ Π⊥

S0
BE0

nΠ⊥
S0

≜
(
ω · ∂φ + ci0∂θ − ∂θKλ ∗ ·

)
Π⊥

S0
+ R0 + E1

n, (7.175)

where we set
E1
n ≜ B−1

⊥ Π⊥
S0

BE0
nΠ⊥

S0
.

Notice that the estimates (7.170) are simple reformulations of (7.17) and (7.21) since ∆12r
1 = ∆12ci.
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(ii) By using (7.150), (7.18), the continuity of the projectors, (7.20) and (7.169), one obtains

∥E1
nρ∥γ,Oq,s0

≲ ∥BE0
nΠ⊥

S0
ρ∥γ,Oq,s0

≲ ∥E0
nΠ⊥

S0
ρ∥γ,Oq,s0

≲ εNµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+2.

(iii) Now, we shall prove the following estimates,

max
k∈{0,1}

∥∂kθR0∥γ,OO-d,q,s ≲ εγ
−1
(

1 + ∥I0∥γ,Oq,s+σ3

)
(7.176)

and
∥∆12R0∥γ,OO-d,q,sh+p ≲ εγ

−1∥∆12i∥γ,Oq,sh+p+σ3
. (7.177)

To do that, we shall study separately the different terms appearing in (7.175) in the definition of R0.

Notice that in the various estimates below, we use the notation σ3 to denote some loss of regularity. This
index depends only on τ1, q, d, s0 and may change increasingly from one line to another and it is always
taken greater than the σ2 introduced in Proposition 7.3.
▶ Study of the term Π⊥

S0
∂θRεrΠ⊥

S0
. One gets easily according to (7.123) and (7.124)

max
k∈{0,1}

∥∂kθΠ⊥
S0
∂θRεrΠ⊥

S0
∥γ,OO-d,q,s ≲ max

k∈{0,1,2}
∥∂kθRεr∥γ,OO-d,q,s

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+σ3

)
(7.178)

and

∥∆12
(
Π⊥

S0
∂θRεrΠ⊥

S0

)
∥γ,OO-d,q,sh+p ≲ ∥∆12∂θRεr∥γ,OO-d,q,sh+p

≲ εγ−1∥∆12i∥γ,Oq,sh+p+σ3
. (7.179)

▶ Study of the term B−1
⊥ BΠS0∂θRεrΠ⊥

S0
. Using the first point of Proposition 7.4 yields

B−1
⊥ BΠS0∂θRεrΠ⊥

S0
= ΠS0∂θRεrΠ⊥

S0
− T0S1, (7.180)

where

T0ρ =
∑
m∈S0

〈
ρ,
(
B − Id

)
gm
〉
L2

θ
(T)B

−1em and S1 ≜ BΠS0∂θRεrΠ⊥
S0
. (7.181)

To estimate the first term, we use Proposition 7.3

max
k∈{0,1}

∥∂kθΠS0∂θRεrΠ⊥
S0

∥γ,OO-d,q,s ≲ max
k∈{0,1,2}

∥∂kθRεr∥γ,OO-d,q,s

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+σ3

)
. (7.182)

As for the second term, we write

T0S1ρ =
∑
m∈S0

〈
S1ρ,

(
B − Id

)
gm
〉
L2

θ
(T)B

−1em

=
∑
m∈S0

〈
ρ,S⋆1

(
B − Id

)
gm
〉
L2

θ
(T)B

−1em,
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where S⋆1 is the L2
θ(T)-adjoint of S1. This is an integral operator taking the form

(
T0S1ρ

)
(φ, θ) =

ˆ
T

K1(φ, θ, η)ρ(φ, η)dη,

K1(φ, θ, η) ≜
∑
m∈S0

(
S⋆1
(
B − Id

)
gm
)
(φ, η)

(
B−1em

)
(φ, θ).

Recall from Proposition 7.3 that Rεr is self-adjoint and using Lemma A.3 we have the identities B⋆ = B−1

and B⋆ = B−1, then
S⋆1 = −Π⊥

S0
Rεr∂θΠS0B−1. (7.183)

Therefore, combining (7.165), (7.23) and (7.144) imply

K1(−φ,−θ,−η) = −K1(φ, θ, η) ∈ R. (7.184)

Applying Lemma A.7 combined with the product laws yields for any k ∈ N

∥∂kθ T0S1∥γ,OO-d,q,s ≲

ˆ
T

∥(∂kθK1)(∗, ·, �, η + �)∥γ,Oq,s+s0
dη (7.185)

≲
∑
m∈S0

(∥∥S⋆1
(
B − Id

)
gm
∥∥γ,O
q,s+s0

∥∥B−1em
∥∥γ,O
q,s0+k +

∥∥S⋆1
(
B − Id

)
gm
∥∥γ,O
q,s0

∥∥B−1em
∥∥γ,O
q,s+s0+k

)
.

Remark that (7.183) implies

S⋆1
(
B − Id

)
gm = −Π⊥

S0
Rεr∂θΠS0

(
Id − B−1)gm.

Hence according to Lemma A.6 combined with Proposition 7.3 we find

∥S⋆1
(
B − Id

)
gm∥γ,Oq,s ≲ ∥Rεr∥γ,OO-d,q,s∥∂θΠS0

(
Id − B−1)gm∥γ,Oq,s0

+ ∥Rεr∥γ,OO-d,q,s0
∥∂θΠS0

(
Id − B−1)gm∥γ,Oq,s

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+σ3

)
∥
(
Id − B−1)gm∥γ,Oq,s0+1

+ εγ−1
(

1 + ∥I0∥γ,Oq,s0+σ3

)
∥
(
Id − B−1)gm∥γ,Oq,s+1. (7.186)

Using (7.18) together with Lemma 7.1 and the smallness condition (7.169) leads to

∥∥(Id − B−1)gm∥∥γ,Oq,s ≲ ∥gm∥γ,Oq,s + εγ−1∥I0∥γ,Oq,s+σ3
∥gm∥γ,Oq,s0

≲ sup
k,m∈S0

∥αk,m∥γ,Oq,Hs
φ

+ εγ−1∥I0∥γ,Oq,s+σ3
sup

k,m∈S0

∥αk,m∥γ,O
q,H

s0
φ

≲ 1 + εγ−1∥I0∥γ,Oq,s+σ3
. (7.187)

Therefore, inserting this estimate into (7.186) and using (7.169) allow to get

∥S⋆1
(
B − Id

)
gm∥γ,Oq,s ≲ εγ−1

(
1 + ∥I0∥γ,Oq,s+σ3

)
.

Plugging this estimate into (7.185) and using (7.18) ensure

max
k∈{0,1}

∥∂kθ T0S1∥γ,OO-d,q,s ≲ εγ
−1
(

1 + ∥I0∥γ,Oq,s+σ3

)
. (7.188)

Consequently, by combining (7.180), (7.182) and (7.188), we find

max
k∈{0,1}

∥∂kθB−1
⊥ BΠS0∂θRεrΠ⊥

S0
∥γ,OO-d,q,s ≲ εγ

−1
(

1 + ∥I0∥γ,Oq,s+σ3

)
. (7.189)
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We now turn to the difference estimate. From (7.180), it is obvious that

∆12
(
B−1

⊥ BΠS0∂θRεrΠ⊥
S0

)
= ΠS0∆12∂θRεrΠ⊥

S0
− ∆12(T0S1). (7.190)

To estimate the first term, we use (7.124)

∥ΠS0∆12∂θRεrΠ⊥
S0

∥γ,OO-d,q,sh+p ≲ ∥∆12∂θRεr∥γ,OO-d,q,sh+p

≲ εγ−1∥∆12i∥γ,Oq,sh+p+σ3
. (7.191)

As for the second term, we notice that ∆12
(
T0S1

)
is an integral operator whose kernel ∆12K1 is

∆12K1(φ, θ, η) =
∑
m∈S0

∆12
(
S⋆1
(
B − Id

)
gm
)
(φ, η)

(
Br1em

)
(φ, θ)

+
(
S⋆1
(
B − Id

)
gm
)
r2

(φ, η)
(
∆12Bem

)
(φ, θ).

Hence, using Lemma A.7-(ii) together with the product laws we deduce that

∥∆12T0S1∥γ,OO-d,q,sh+p ≲
ˆ
T

∥∆12K1(∗, ·, �, η + �)∥γ,Oq,sh+p+s0
dη

≲
∑
m∈S0

∥∆12
(
S⋆1
(
B − Id

)
gm
)
∥γ,Oq,sh+p+s0

∥Br1em∥γ,Oq,sh+p+s0

+ ∥
(
S⋆1
(
B − Id

)
gm
)
r2

∥γ,Oq,sh+p+s0
∥∆12Bem∥γ,Oq,sh+p+s0

.

Notice that by Taylor Formula and (7.22) (applied with p replaced by p + s0), one has

sup
m∈S0

∥∆12B
−1em∥γ,Oq,sh+p+s0

≲ εγ−1∥∆12i∥q,sh+p+σ3 . (7.192)

On the other hand, we have

∆12S⋆1 = −Π⊥
S0

∆12Rεr∂θΠS0B−1
r1

− Π⊥
S0
Rεr2∂θΠS0∆12B−1,

leading to

∆12
(
S⋆1
(
B − Id

)
gm
)

= − Π⊥
S0

∆12Rεr∂θΠS0

(
Id − B−1

r1

)
gm,r1 − Π⊥

S0
Rεr2∂θΠS0∆12B−1(Br1 − Id

)
gm,r1

+ S⋆1,r2

(
∆12B

)
gm,r1 + S⋆1,r2

(
Br2 − Id

)
∆12gm.

According to Lemma A.6, we obtain

∥Π⊥
S0

∆12Rεr∂θΠS0

(
Id − B−1

r1

)
gm,r1∥γ,Oq,sh+p+s0

≲ ∥∆12Rεr∥γ,OO-d,q,sh+p+s0
∥
(
Id − B−1

r1

)
gm,r1∥γ,Oq,sh+p+s0+1.

From (7.187), one has

∥
(
Id − B−1

r1

)
gm,r1∥γ,Oq,s ≲ 1 + εγ−1∥I1∥γ,Oq,s+σ3

.

Thus, from (7.124) and (7.169), we infer

∥Π⊥
S0

∆12Rεr∂θΠS0

(
Id − B−1

r1

)
gm,r1∥γ,Oq,sh+p+s0

≲ εγ−1∥∆12i∥γ,Oq,sh+p+σ3
. (7.193)
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Applying Lemma A.6, (7.123) and (7.169) we deduce that

∥S⋆1,r2

(
∆12B

)
gm,r1∥γ,Oq,sh+p+s0

≲ ∥Rεr2∥O-d,q,sh+s0∥Br2

(
∆12B

)
gm,r1∥γ,Oq,sh+p+s0+1

≲ ∥Br2

(
∆12B

)
gm,r1∥γ,Oq,sh+p+s0+1.

To estimate the right hand side member, it suffices to use (7.18) and (7.169), leading to

∥Br2

(
∆12B

)
gm,r1∥γ,Oq,sh+p+s0+1 ≲ ∥

(
∆12B

)
gm,r1∥γ,Oq,sh+p+s0+1.

By Taylor Formula, we may write

∆12Bρ(θ) = ∆12β(θ)
ˆ 1

0
∂θρ
(
θ + β2(θ) + t∆12β(θ)

)
dt.

It follows from the product laws in Lemma A.1, (7.22) and (7.169) that

∥
(
∆12B

)
gm,r1∥γ,Oq,sh+p+1 ≲ ∥∆12β∥γ,Oq,sh+p+s0+1∥gm,r1∥γ,Oq,sh+p+s0+2

≲ εγ−1∥∆12i∥γ,Oq,sh+p+σ3
.

Thus
∥S⋆1,r2

(
∆12B

)
gm,r1∥γ,Oq,sh+p+s0

≲ εγ−1∥∆12i∥γ,Oq,sh+p+σ3
. (7.194)

In the same way, using Taylor Formula together with (7.22), we get

∥Π⊥
S0
Rεr2∂θΠS0∆12B−1(Br1 − Id

)
gm,r1∥γ,Oq,sh+p+s0

≲ εγ−1∥∆12i∥γ,Oq,sh+p+σ3
. (7.195)

By Lemma A.6, (7.123) and (7.169), one finds

∥S⋆1,r2

(
Br2 − Id

)
∆12gm∥γ,Oq,sh+p+s0

≲ ∥Rεr2∥γ,OO-d,q,sh+p+s0
∥
(
Br2 − Id

)
∆12gm∥γ,Oq,sh+p+s0+1

≲ ∥
(
Br2 − Id

)
∆12gm∥γ,Oq,sh+p+s0+1.

Applying (7.18) and (7.169), we obtain

∥
(
Br2 − Id

)
∆12gm∥γ,Oq,sh+p+s0+1 ≲ ∥∆12gm∥γ,Oq,sh+p+s0+1.

Using (7.151) (applied with p = s0 + 1), we finally get

∥S⋆1,r2

(
Br2 − Id

)
∆12gm∥γ,Oq,sh+p+s0

≲ εγ−1∥∆12i∥γ,Oq,sh+p+σ3
. (7.196)

Gathering (7.192), (7.193), (7.194), (7.195) and (7.196) implies

∥∆12
(
T0S1

)
∥γ,OO-d,q,sh+p ≲ εγ

−1∥∆12i∥γ,Oq,sh+p+σ3
. (7.197)

Putting together (7.190), (7.191) and (7.197), one obtains

∥∆12
(
B−1

⊥ BΠS0∂θRεrΠ⊥
S0

)
∥γ,OO-d,q,sh+p ≲ εγ

−1∥∆12i∥γ,Oq,sh+p+σ3
. (7.198)

▶ Study of the term B−1
⊥ Π⊥

S0
(∂θ (Vεr·) − ∂θLεr,1) ΠS0BΠ⊥

S0
. We first write,

B−1
⊥ Π⊥

S0
(∂θ (Vεr·) − ∂θLεr,1) ΠS0BΠ⊥

S0
≜ B−1

⊥ ∂θS2BΠ⊥
S0
,
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with
S2 =

((
Vεr − ci0

)
· −Lεr,1

)
ΠS0 .

Notice that to get the above identity we have used the identity

Π⊥
S0
∂θ(ci0 ·)ΠS0 = 0.

Recall from (6.24) and (6.25) that

Lεr,1ρ(φ, θ) =
ˆ
T
Kεr,1(φ, θ, η)ρ(φ, η)dη.

Then from elementary computations we find

S2ρ(φ, θ) =
ˆ
T

K2(φ, θ, η)ρ(φ, η)dη,

with

K2(φ, θ, η) ≜
(
Vεr(φ, θ) − ci0

)
DS0(θ − η) −

ˆ
T
Kεr,1(φ, θ, η′)DS0(η′ − η)dη′,

DS0(θ) ≜
∑
n∈S0

einθ.

Combining (6.27), (7.4), (5.3) and the change of variables η′ 7→ η′, one gets

K2(−φ,−θ,−η) = K2(φ, θ, η) ∈ R. (7.199)

Proceeding as in (7.180) we obtain

B−1
⊥ ∂θS2BΠ⊥

S0
= B−1∂θS2BΠ⊥

S0
− T0∂θS2BΠ⊥

S0
. (7.200)

It follows that

∥∥∂kθB−1
⊥ ∂θS2BΠ⊥

S0

∥∥γ,O
O-d,q,s

≲
∥∥∂k+1

θ B−1S2B
∥∥γ,O

O-d,q,s
+
∥∥∂kθ T0∂θS2B

∥∥γ,O
O-d,q,s

. (7.201)

The expression of the first term is similar to that of (7.133), namely, one has

(
B−1S2B

)
ρ(φ, θ) =

ˆ
T
ρ(φ, η)K̂2(φ, θ, η)dη,

with
K̂2(φ, θ, η) ≜ K2

(
φ, θ + β̂(φ, θ), η + β̂(φ, η)

)
.

Combining (7.199) and (7.23), one gets

K̂2(−φ,−θ,−η) = K̂2(φ, θ, η) ∈ R. (7.202)

Then coming back to (7.134) and arguing as for (7.143), we find

sup
k∈{0,1,2}

∥∥(∂kθ K̂2)
(
∗, ·, �, η + �

)∥∥γ,O
q,s
≲ εγ−1

(
1 + ∥I0∥γ,Oq,s+σ3

)(
1 − log

∣∣ sin (η/2)∣∣). (7.203)
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By virtue of Lemma A.7 and (7.203) we obtain

sup
k∈{0,1}

∥∥∂k+1
θ B−1S2B

∥∥γ,O
O-d,q,s

≲ sup
k∈{0,1}

ˆ
T

∥∥(∂k+1
θ K̂2)

(
∗, ·, �, η + �

)∥∥γ,O
q,s+s0

dη

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+σ3

)
. (7.204)

Notice that from (7.181), we can write

T0∂θS2Bρ =
∑
m∈S0

〈
∂θS2Bρ,

(
B − Id

)
gm
〉
L2

θ
(T)B

−1em

= −
∑
m∈S0

〈
ρ,B−1S⋆2∂θ

(
B − Id

)
gm
〉
L2

θ
(T)B

−1em,

where S⋆2 is the adjoint of S2 and is given by

S⋆2 = ΠS0

((
Vεr − ci0

)
· −Lεr,1

)
. (7.205)

This is an integral operator taking the form

(
T0∂θS2Bρ

)
(φ, θ) =

ˆ
T

K3(φ, θ, η)ρ(φ, η)dη,

K3(φ, θ, η) ≜
∑
m∈S0

(
B−1S⋆2∂θ

(
B − Id

)
gm
)
(φ, η)

(
B−1em

)
(φ, θ).

According to (7.165), (7.23), (7.205), (7.4), (5.3) and (6.27), one gets

K3(−φ,−θ,−η) = −K3(φ, θ, η) ∈ R. (7.206)

On the other hand, applying Lemma A.7 combined with the product laws yield for any k ∈ N

∥∂kθ T0∂θS2B∥γ,OO-d,q,s ≲
ˆ
T

∥(∂kθK3)(∗, ·, �, η + �)∥γ,Oq,s+s0
dη

≲
∑
m∈S0

(
∥B−1S⋆2∂θ

(
B − Id

)
gm∥γ,Oq,s+s0

∥B−1em∥γ,Oq,s0+k + ∥B−1S⋆2∂θ
(
B − Id

)
gm∥γ,Oq,s0

∥B−1em∥γ,Oq,s+s0+k

)
.

Applying (7.18) we find

∥B−1S⋆2∂θ
(
B − Id

)
gm∥γ,Oq,s ≲ ∥S⋆2∂θ

(
B − Id

)
gm∥γ,Oq,s + εγ−1∥I0∥γ,Oq,s+σ∥S⋆2∂θ

(
B − Id

)
gm∥γ,Oq,s0

.

Now, from (7.205), the product laws and Lemma A.6, we find

∥S⋆2ρ∥γ,Oq,s ≲∥Vεr − ci0∥γ,Oq,s0
∥ρ∥γ,Oq,s + ∥Vεr − ci0∥γ,Oq,s ∥ρ∥γ,Oq,s0

+ ∥Lεr,1∥γ,OO-d,q,s0
∥ρ∥γ,Oq,s + ∥Lεr,1∥γ,OO-d,q,s∥ρ∥γ,Oq,s0

.

From the composition law and (7.17), one has

∥Vεr − ci0∥γ,Oq,s ⩽ ∥Vεr − V0∥γ,Oq,s + ∥V0 − ci0∥γ,Oq

≲ ε
(

1 + ∥I0∥γ,Oq,s+σ3

)
.
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According to Lemma A.7 and (6.41), we deduce that

∥Lεr,1∥γ,OO-d,q,s ≲
ˆ
T

∥Kεr,1(∗, ·, �, η + �)∥γ,Oq,s+s0
dη

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+σ3

)
.

Using (7.169), one gets
∥S⋆2ρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s + εγ−1∥I0∥γ,Oq,s+σ3

∥ρ∥γ,Oq,s0
.

Combining this with (7.18) allows to get

∥S⋆2∂θ
(
B − Id

)
gm∥γ,Oq,s ≲ ∥gm∥γ,Oq,s+1 + εγ−1∥I0∥γ,Oq,s+σ3

∥gm∥γ,Oq,s0

≲ 1 + εγ−1∥I0∥γ,Oq,s+σ3
.

Therefore,
max
k∈{0,1}

∥∥∂kθ T0∂θS2B
∥∥γ,O

O-d,q,s
≲ εγ−1

(
1 + ∥I0∥γ,Oq,s+σ3

)
. (7.207)

Plugging the estimates (7.204) and (7.207) into (7.201) we find

max
k∈{0,1}

∥∥∂kθB−1
⊥ ∂θS2BΠ⊥

S0

∥∥γ,O
O-d,q,s

≲ max
k∈{0,1}

∥∥∂k+1
θ B−1S2B

∥∥γ,O
O-d,q,s

+ max
k∈{0,1}

∥∥∂kθ T0∂θS2B
∥∥γ,O

O-d,q,s

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+σ3

)
. (7.208)

We now turn to the estimate of the difference. Coming back to (7.200), one can write

∆12
(
B−1

⊥ ∂θS2BΠ⊥
S0

)
= ∆12

(
B−1∂θS2BΠ⊥

S0

)
− ∆12

(
T0∂θS2BΠ⊥

S0

)
.

It follows that

∥∥∆12
(
B−1

⊥ ∂θS2BΠ⊥
S0

)∥∥γ,O
O-d,q,sh+p ≲

∥∥∆12
(
∂θB−1S2B

)∥∥γ,O
O-d,q,sh+p +

∥∥∆12
(
T0∂θS2B

)∥∥γ,O
O-d,q,sh+p. (7.209)

Arguing as for (7.149), one obtains

∥∆12(∂θK̂2)(∗, ·, �, η + �)∥q,sh+p+s0 ≲ εγ
−1∥∆12i∥γ,Oq,sh+p+σ3

(
1 − log

∣∣sin (η2 )∣∣) .
Then, using Lemma A.7 implies

∥∥∆12
(
∂θB−1S2B

)∥∥γ,O
O-d,q,sh+p ≲

ˆ
T

∥∆12(∂θK̂2)(∗, ·, �, η + �)∥q,sh+p+s0dη

≲ εγ−1∥∆12i∥γ,Oq,sh+p+σ3
. (7.210)

On the other hand, proceeding as for (7.197), and using in particular (7.21),

∥∥∆12
(
T0∂θS2B

)∥∥γ,O
O-d,q,sh+p ≲ εγ

−1∥∆12i∥γ,Oq,sh+p+σ3
. (7.211)

Putting together (7.210), (7.211) and (7.209), ensures that

∥∥∆12
(
B−1

⊥ ∂θS2BΠ⊥
S0

)∥∥γ,O
O-d,q,sh+p ≲ εγ

−1∥∆12i∥γ,Oq,sh+p+σ3
. (7.212)

156



7. Reduction of the linearized operator in the normal directions

▶ Study of the term εB−1
⊥ ∂θRB⊥. Using the relation Id = ΠS0 + Π⊥

S0
, we can write

∂kθB
−1
⊥ ∂θRB⊥ = ∂k+1

θ B−1RB⊥ − ∂kθ T0∂θRB⊥

= ∂k+1
θ B−1RΠ⊥

S0
BΠ⊥

S0
− ∂kθ T0∂θRΠ⊥

S0
BΠ⊥

S0

= ∂k+1
θ B−1RBΠ⊥

S0
− ∂k+1

θ B−1RΠS0BΠ⊥
S0

− ∂kθ T0∂θRBΠ⊥
S0

+ ∂kθ T0∂θRΠS0BΠ⊥
S0
. (7.213)

Hence

∥∂kθB−1
⊥ ∂θRB⊥∥γ,OO-d,q,s ⩽∥∂k+1

θ B−1RB∥γ,OO-d,q,s + ∥∂k+1
θ B−1RΠS0B∥γ,OO-d,q,s

+ ∥∂kθ T0∂θRB∥γ,OO-d,q,s + ∥∂kθ T0∂θRΠS0B∥γ,OO-d,q,s. (7.214)

Recall that from Proposition 7.1 that R is an integral operator of kernel J and therefore direct computations
give (

B−1RBρ
)
(φ, θ) =

ˆ
T
ρ(φ, η)Ĵ(φ, θ, η)dη, (7.215)

with
Ĵ(φ, θ, η) ≜ J

(
φ, θ + β̂(φ, θ), η + β̂(φ, η)

)
. (7.216)

Combining (7.23) and (7.5), one gets

Ĵ(−φ,−θ,−η) = Ĵ(φ, θ, η) ∈ R. (7.217)

Using the composition law and (7.9), we obtain

max
k∈{0,1,2}

sup
η∈T

∥(∂kθ Ĵ)
(
∗, ·, �, η + �

)
∥γ,Oq,s ≲ 1 + ∥I0∥γ,Oq,s+σ3

.

Thus, applying Lemma A.7-(ii) implies

max
k∈{0,1}

∥∂k+1
θ B−1RB∥γ,OO-d,q,s ≲ max

k∈{0,1,2}

ˆ
T

∥(∂kθ Ĵ)
(
∗, ·, �, η + �

)
∥γ,Oq,s+s0

dη

≲ 1 + ∥I0∥γ,Oq,s+σ3
. (7.218)

On the other hand we notice from (7.215) that we get the structure

(
B−1RΠS0Bρ

)
(φ, θ) =

ˆ
T
ρ(φ, η)J̃(φ, θ, η)dη, (7.219)

with
J̃(φ, θ, η) ≜

ˆ
T
J
(
φ, θ + β̂(φ, θ), η′)DS0(η′ − η)dη′. (7.220)

Combining (7.23), (7.5) and the change of variables η′ 7→ −η′, one finds

J̃(−φ,−θ,−η) = J̃(φ, θ, η) ∈ R. (7.221)

Using the change of variables η′ 7→ η′ + θ yields

J̃(φ, θ, η + θ) ≜
ˆ
T
J
(
φ, θ + β̂(φ, θ), η′ + θ

)
DS0(η′ − η)dη′.
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Then by the composition law, we infer

max
k∈{0,1,2}

sup
η∈T

∥(∂kθ J̃)(∗, ·, �, η + �)∥γ,Oq,s ≲ 1 + ∥I0∥γ,Oq,s+σ3
.

Consequently, we find in view of Lemma A.7

max
k∈{0,1}

∥∂kθB−1RΠS0B∥γ,OO-d,q,s ≲ max
k∈{0,1,2}

ˆ
T

∥(∂kθ J̃)
(
∗, ·, �, η + �

)
∥γ,Oq,s+s0

dη

≲ 1 + ∥I0∥γ,Oq,s+σ3
. (7.222)

If wet set
S3 = ∂θRB or ∂θRΠS0B,

then using (7.181), we deduce that

T0S3ρ =
∑
m∈S0

〈
S3ρ,

(
B − Id

)
gm
〉
L2

θ
(T)B

−1em

=
∑
m∈S0

〈
ρ,S⋆3

(
B − Id

)
gm
〉
L2

θ
(T)B

−1em,

with S⋆3 is the adjoint of S3 given by

S⋆3 = −B−1R⋆∂θ or − B−1ΠS0R⋆∂θ, (7.223)

and R⋆ the adjoint of R which is an integral operator with kernel

J⋆(φ, θ, η) ≜
3∑

k′=1

d∑
k=1

gk,k′(φ, θ)χk,k′(φ, η), (7.224)

where we use the notations of the proof of Proposition 7.1. Notice that similarly to (7.9) and (7.5), the
kernel J⋆ satisfies

max
k∈{0,1,2}

sup
η∈T

∥(∂kθ J⋆)(∗, ·, �, η + �)∥γ,Oq,s ≲ 1 + ∥I0∥γ,Oq,s+σ3
(7.225)

and
J⋆(−φ,−θ,−η) = J⋆(φ, θ, η) ∈ R. (7.226)

Now, we have the integral representation

(
T0S3ρ

)
(φ, θ) =

ˆ
T

K4(φ, θ, η)ρ(φ, η)dη,

K4(φ, θ, η) ≜
∑
m∈S0

(
S⋆3
(
B − Id

)
gm
)
(φ, η)

(
B−1em

)
(φ, θ).

Then by virtue of (7.165), (7.23), (7.205) and (7.226) we obtain

K4(−φ,−θ,−η) = −K4(φ, θ, η) ∈ R. (7.227)
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Applying Lemma A.7 combined with the product laws, we get for all k ∈ {0, 1}

∥∂kθ T0S3∥γ,OO-d,q,s ≲
ˆ
T

∥(∂kθK4)(∗, ·, �, η + �)∥γ,Oq,s+s0
dη

≲
∑
m∈S0

(
∥S⋆3

(
B − Id

)
gm∥γ,Oq,s+s0

∥B−1em∥γ,Oq,s0+k + ∥S⋆3
(
B − Id

)
gm∥γ,Oq,s0

∥B−1em∥γ,Oq,s+s0+k

)
.

Consequently, using Lemma A.7 and (7.225), we get

∥R⋆∥γ,OO-d,q,s ≲
ˆ
T

∥J⋆(∗, ·, �, η + �)∥γ,Oq,s+s0

≲ 1 + ∥I0∥γ,Oq,s+σ3
.

Applying (7.18), Lemma A.6 and the previous estimate implies

∥S⋆3ρ∥γ,Oq,s ≲ ∥R⋆∂θρ∥γ,Oq,s + εγ−1∥I0∥γ,Oq,s+σ3
∥R⋆∂θρ∥γ,Oq,s0

≲
(
εγ−1

(
1 + ∥I0∥γ,Oq,s+σ3

)
+ ∥R⋆∥γ,OO-d,q,s

)
∥ρ∥γ,Oq,s0+1 + ∥R⋆∥γ,OO-d,q,s0

∥ρ∥γ,Oq,s+1

≲ ∥ρ∥γ,Oq,s+1 + ∥I0∥γ,Oq,s+σ3
∥ρ∥γ,Oq,s0+1.

Thus

∥S⋆3
(
B − Id

)
gm∥γ,Oq,s ≲ ∥gm∥γ,Oq,s+1 + ∥I0∥γ,Oq,s+σ3

∥gm∥γ,Oq,s0+1

≲ 1 + ∥I0∥γ,Oq,s+σ3
.

Hence
max
k∈{0,1}

∥∂kθ T0S3∥γ,OO-d,q,s ≲ 1 + ∥I0∥γ,Oq,s+σ3
. (7.228)

Putting together (7.214), (7.218), (7.222) and (7.228) allows to get

max
k∈{0,1}

ε
∥∥∂kθB−1

⊥ ∂θRB⊥
∥∥γ,O

O-d,q,s
≲ εγ−1

(
1 + ∥I0∥γ,Oq,s+σ3

)
. (7.229)

We now move to the estimate of the difference. From (7.213), one has

∥∆12
(
B−1

⊥ ∂θRB⊥
)
∥γ,OO-d,q,sh+p ⩽ ∥∆12

(
∂θB−1RB

)
∥γ,OO-d,q,sh+p + ∥∆12

(
∂θB−1RΠS0B

)
∥γ,OO-d,q,sh+p

+ ∥∆12
(
T0∂θRB

)
∥γ,OO-d,q,sh+p + ∥∆12

(
T0∂θRΠS0B

)
∥γ,OO-d,q,sh+p. (7.230)

Combining Lemma A.7 with Taylor Formula, (7.215), (7.216), (7.10) and (7.22) one obtains

∥∆12
(
∂θB−1RB

)
∥γ,OO-d,q,sh+p ≲

ˆ
T

∥∆12(∂θĴ)(∗, ·, �, η + �)∥γ,Oq,sh+p+s0
dη

≲ ∥∆12i∥γ,Oq,sh+p+σ3
. (7.231)

In the same spirit, (7.219) and (7.220) give

∥∆12
(
∂θB−1RΠS0B

)
∥γ,OO-d,q,sh+p ≲

ˆ
T

∥∆12(∂θJ̃)(∗, ·, �, η + �)∥γ,Oq,sh+p+s0
dη

≲ ∥∆12i∥γ,Oq,sh+p+σ3
. (7.232)

According to the structure of J⋆ detailed in (7.224) one can check that J⋆ satisfies similar estimates as
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(7.10). Then using (7.22), one finds in a similar way to (7.197),

∥∆12(T0S3)∥γ,OO-d,q,sh+p ≲
ˆ
T

∥∆12K4(∗, ·, �, η + �)∥γ,Oq,sh+p+s0
dη

≲ ∥∆12i∥γ,Oq,sh+p+σ3
. (7.233)

Hence, putting together (7.231), (7.232), (7.233) and (7.230) gives

ε∥∆12
(
B−1

⊥ ∂θRB⊥
)
∥γ,OO-d,q,sh+p ≲ εγ

−1∥∆12i∥q,sh+p+σ3 . (7.234)

On the other hand, gathering (7.175), (7.144), (7.184), (7.202), (7.206), (7.227), (7.217) and (7.221)
together with Lemma A.7, we find that R0 is a real and reversible Toeplitz in time integral operator.
In addition, (7.175), (7.178), (7.189), (7.208) and (7.229) give (7.176).
Furthermore, (7.175), (7.179), (7.198), (7.212) and (7.234) imply (7.177).
(iv) Using Lemma A.6 together with (7.172), (6.28), (7.17) and (7.169), one obtains for all s ∈ [s0, S]

∥L0ρ∥γ,Oq,s ⩽ ∥
(
ω · ∂φ + ci0∂θ + ∂θKλ ∗ ·)

)
ρ∥γ,Oq,s + ∥R0ρ∥γ,Oq,s

≲ ∥ρ∥γ,Oq,s+1 + ∥R0∥γ,OO-d,q,s∥ρ∥γ,Oq,s0
+ ∥R0∥γ,OO-d,q,s0

∥ρ∥γ,Oq,s
≲ ∥ρ∥γ,Oq,s+1 + εγ−1∥I0∥γ,Oq,s+σ3

∥ρ∥γ,Oq,s0
.

This ends the proof of Proposition 7.4.

7.3.2 KAM reduction of the remainder term

The goal of this section is to conjugate L0 defined in Proposition 7.4 to a diagonal operator, up to a
fast decaying small remainder. This will be achieved through standard KAM reducibility techniques
in the spirit of Proposition 7.2 but well-adapted to the operators setting. This will be implemented by
taking advantage of the exterior parameters which are restricted to a suitable Cantor set that prevents the
resonances in the second Melnikov assumption. Notice that one gets from this study some estimates on
the distribution of the eigenvalues and their stability with respect to the torus parametrization. This is
considered as the key step not only to get an approximate inverse but also to achieve Nash-Moser scheme
with a final massive Cantor set. The main result of this section reads as follows.

Proposition 7.5. Let (γ, q, d, τ1, τ2, s0, sl, µ2, S) satisfy (A.2), (A.1) and (7.3). For any (µ2, sh) satisfying

µ2 ⩾ µ2 + 2τ2q + 2τ2 and sh ⩾
3
2µ2 + sl + 1, (7.235)

there exist ε0 ∈ (0, 1) and σ4 = σ4(τ1, τ2, q, d) ⩾ σ3, with σ3 defined in Proposition 7.4, such that if

εγ−2−qNµ2
0 ⩽ ε0 and ∥I0∥γ,Oq,sh+σ4

⩽ 1, (7.236)

then the following assertions hold true.

(i) There exists a family of invertible linear operator Φ∞ : O → L
(
Hs

⊥
)

satisfying the estimates

∀s ∈ [s0, S], ∥Φ±1
∞ ρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s + εγ−2∥I0∥γ,Oq,s+σ4

∥ρ∥γ,Oq,s0
. (7.237)

There exists a diagonal operator L∞ = L∞(λ, ω, i0) taking the form

L∞ ≜ ω · ∂φΠ⊥
S0

+ D∞
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where D∞ = D∞(λ, ω, i0) is a reversible Fourier multiplier operator given by,

∀(l, j) ∈ Zd × Sc0, D∞el,j = iµ∞
j el,j ,

with
∀j ∈ Sc0, µ∞

j (λ, ω, i0) ≜ µ0
j (λ, ω, i0) + r∞

j (λ, ω, i0), ∥r∞
j ∥γ,Oq ≲ εγ−1 (7.238)

and

sup
j∈Sc

0

|j|∥r∞
j ∥γ,Oq ≲ εγ−1, (7.239)

such that in the Cantor set

Oγ,τ1,τ2
∞,n (i0) ≜

⋂
(l,j,j0)∈Zd×(Sc

0)2

|l|⩽Nn
(l,j) ̸=(0,j0)

{
(λ, ω) ∈ Oγ,τ1

∞,n(i0),
∣∣ω · l + µ∞

j (λ, ω, i0) − µ∞
j0

(λ, ω, i0)
∣∣ > 2γ⟨j−j0⟩

⟨l⟩τ2

}

we have

Φ−1
∞ L0Φ∞ = L∞ + E2

n,

and the linear operator E2
n satisfies the estimate

∥E2
nρ∥γ,Oq,s0

≲ εγ−2Nµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+1. (7.240)

Notice that the Cantor set Oγ,τ1
∞,n(i0) was introduced in Proposition 7.2, the operator L0 and the

frequencies
(
µ0
j (λ, ω, i0)

)
j∈Sc

0
were stated in Proposition 7.4.

(ii) Given two tori i1 and i2 both satisfying (7.236), then

∀j ∈ Sc0, ∥∆12r
∞
j ∥γ,Oq ≲ εγ−1∥∆12i∥γ,Oq,sh+σ4

(7.241)

and
∀j ∈ Sc0, ∥∆12µ

∞
j ∥γ,Oq ≲ εγ−1|j|∥∆12i∥γ,Oq,sh+σ4

. (7.242)

Proof. (i) We shall introduce the quantity

δ0(s) ≜ γ−1∥R0∥γ,OO-d,q,s,

where R0 is the remainder seen in Proposition 7.4. By applying (7.172), we deduce that

δ0(s) ⩽ Cεγ−2
(

1 + ∥I0∥γ,Oq,s+σ3

)
. (7.243)

Therefore with the notation of (7.235), (7.236) and the fact that σ4 ⩾ σ3 we obtain

Nµ2
0 δ0(sh) ⩽ CNµ2

0 εγ−2

⩽ Cε0. (7.244)

▶ KAM step. Recall from Proposition 7.4 that in the Cantor set Oγ,τ1
∞,n(i0) one has

B−1
⊥ L̂ωB⊥ = L0 + E1

n,
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where the operator L0 has the following structure

L0 =
(
ω · ∂φ + D0

)
Π⊥

S0
+ R0, (7.245)

with D0 a diagonal operator of pure imaginary spectrum and R0 a real and reversible Toeplitz in time
operator of zero order satisfying Π⊥

S0
R0Π⊥

S0
= R0. Similarly to the reduction of the transport part, we

shall first expose a typical step of the iteration process of the KAM scheme whose goal is to reduce to
a diagonal part R0. Notice that the scheme is flexible and has been used in the literature to deal with
various equations. Assume that we have a linear operator L taking the following form in restriction to
some Cantor set O one has

L =
(
ω · ∂φ + D

)
Π⊥

S0
+ R,

where D is real and reversible diagonal Toeplitz in time operator, that is,

Del,j = iµj(λ, ω) el,j and µ−j(λ, ω) = −µj(λ, ω). (7.246)

The operator R is assumed to be a real and reversible Toeplitz in time operator of zero order satisfying
Π⊥

S0
RΠ⊥

S0
= R. Consider a linear invertible transformation close to the identity

Φ = Π⊥
S0

+ Ψ : O → L(Hs
⊥),

where Ψ is small and depends on R. Then straightforward calculations show that in O

Φ−1L Φ = Φ−1
(

Φ (ω · ∂φ + D) Π⊥
S0

+
[
ω · ∂φΠ⊥

S0
+ D ,Ψ

]
+ R + RΨ

)
=
(
ω · ∂φ + D

)
Π⊥

S0
+ Φ−1

([(
ω · ∂φ + D

)
Π⊥

S0
,Ψ
]

+ PNR + P⊥
NR + RΨ

)
,

where the projector PN was defined in (A.25). The main idea consists in replacing the remainder R

with another quadratic one up to a diagonal part and provided that the parameters (λ, ω) belongs to a
Cantor set connected to non-resonance conditions associated to the homological equation. Iterating this
scheme will generate new remainders which become smaller and smaller up to new contributions on the
diagonal part and with more extraction on the parameters. Then by passing to the limit we expect to
diagonalize completely the operators provided that the parameters belong to a limit Cantor set. Notice
that the Cantor set should be truncated in the time mode in order to get a stability form required later in
Nash-Moser scheme and during the measure of the final Cantor set. This will induce a diagonalization up
to small fast decaying remainders modeled by the operators E2

n in Proposition 7.5. Now the first step is to
impose the following homological equation,

[(
ω · ∂φ + D

)
Π⊥

S0
,Ψ
]

+ PNR = ⌊PNR⌋, (7.247)

where ⌊PNR⌋ is the diagonal part of the operator PNR. We emphasize that the notation ⌊R⌋ with a
general operator R is defined as follows, for all (l0, j0) ∈ Zd × Sc0,

Rel0,j0 =
∑

(l,j)∈Zd×Sc
0

Rl,j
l0,j0

el,j =⇒ ⌊R⌋el0,j0 = Rl0,j0
l0,j0

el0,j0 =
〈
Rel0,j0 , el0,j0

〉
L2(Td+1) el0,j0 . (7.248)

Remind the notation el0,j0(φ, θ) = ei(l0·φ+j0θ). The Fourier coefficients of Ψ are defined through

Ψel0,j0 =
∑

(l,j)∈Zd×Sc
0

Ψl,j
l0,j0

el,j , Ψl,j
l0,j0

∈ C.
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From direct computations based on the above Fourier decomposition, we infer

[
ω · ∂φΠ⊥

S0
,Ψ
]
el0,j0 = i

∑
(l,j)∈Zd×Sc

0

Ψl,j
l0,j0

ω · (l − l0) el,j

and using the diagonal structure of D ,

[D0,Ψ]el0,j0 = i
∑

(l,j)∈Zd×Sc
0

Ψl,j
l0,j0

(µj(λ, ω) − µj0(λ, ω)) el,j .

By hypothesis, R is a real and reversible Toeplitz in time operator. Hence its Fourier coefficients write in
view of Proposition A.1,

Rl,j
l0,j0
≜ i rjj0

(λ, ω, l0 − l) ∈ iR and R−l,−j
−l0,−j0

= −Rl,j
l0,j0

. (7.249)

Consequently Ψ is a solution of (7.247) if and only if

Ψel0,j0 =
∑

|l−l0|⩽N

|j−j0|⩽N

Ψl,j
l0,j0

el,j

and

Ψl,j
l0,j0

(
ω · (l − l0) + µj(λ, ω) − µj0(λ, ω)

)
=
{

−rjj0
(λ, ω, l0 − l) if (l, j) ̸= (l0, j0)

0 if (l, j) = (l0, j0).

In particular, we get that Ψ is a Toeplitz in time operator with Ψj
j0

(l0 − l) ≜ Ψl,j
l0,j0

. Moreover, for
(l, j, j0) ∈ Zd × (Sc0)2 with |l|, |j − j0| ⩽ N, one obtains

Ψj
j0

(λ, ω, l) =


−rj

j0
(λ,ω,l)

ω·l+µj(λ,ω)−µj0 (λ,ω) if (l, j) ̸= (0, j0)
0 if (l, j) = (0, j0),

(7.250)

provided that the denominator is non zero. In addition, from Π⊥
S0

RΠ⊥
S0

= R, one easily gets

∀ l ∈ Zd, ∀ j or j0 ∈ S0, rjj0
(λ, ω, l) = 0.

Therfore, we should impose the compatibility condition

∀ l ∈ Zd, ∀ j or j0 ∈ S0, Ψj
j0

(λ, ω, l) = 0.

This implies that Π⊥
S0

ΨΠ⊥
S0

= Ψ. To justify the formula given by (7.250) we need to avoid resonances and
restrict the parameters to the following open set according to the so-called second Melnikov condition,

Oγ
+ =

⋂
(l,j,j0)∈Zd×(Sc

0)2

|l|⩽N

(l,j)̸=(0,j0)

{
(λ, ω) ∈ O s.t. |ω · l + µj(λ, ω) − µj0(λ, ω)| > γ⟨j−j0⟩

⟨l⟩τ2

}
.

In view of this restriction, the identity (7.250) is well defined and to extend Ψ to the whole set O we shall
use the cut-off function χ of (6.92). We set

Ψj
j0

(λ, ω, l) =
{

−ϱjj0
(λ, ω, l) rjj0

(λ, ω, l), if (l, j) ̸= (0, j0)
0, if (l, j) = (0, j0),

(7.251)
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with

ϱjj0
(λ, ω, l) ≜

χ
(
(ω · l + µj(λ, ω) − µj0(λ, ω))(γ⟨j − j0⟩)−1⟨l⟩τ2

)
ω · l + µj(λ, ω) − µj0(λ, ω) · (7.252)

To simplify the notation, in the sequel we shall still write Ψ to denote this extension. Note that the
extension (7.251) is smooth and its restriction to the Cantor set Oγ

+ coincides with Ψ. On the other hand,
(7.249) and (7.251) imply that Ψj

j0
(l) ∈ R. In addition, (7.252) combined with (7.246) give

Ψ−j
−j0

(−l) = Ψj
j0

(l).

Consequently, in view of Proposition A.1, we deduce that Ψ is a real and reversibility preserving operator.
Now consider,

D+ = D + ⌊PNR⌋, R+ = Φ−1(− Ψ ⌊PNR⌋ + P⊥
NR + RΨ

)
(7.253)

and
L+ ≜

(
ω · ∂φ + D+ + R+

)
Π⊥

S0
.

Therefore, in restriction to the Cantor set Oγ
+, we can write

L+ = Φ−1L Φ.

Our next task is to estimate ϱjj0
defined by (7.252). Notice that this quantity can be written in the

following form

ϱjj0
(λ, ω, l) = al,j,j0 χ̂

(
al,j,j0Al,j,j0(λ, ω)

)
, χ̂(x) = χ(x)

x
,

Al,j,j0(λ, ω) = ω · l + µj(λ, ω) − µj0(λ, ω), al,j,j0 = (γ⟨j − j0⟩)−1⟨l⟩τ2 , (7.254)

where χ̂(x) ≜ χ(x)
x is C∞ with bounded derivatives. Assume now the following estimate

∀ (j, j0) ∈ (Sc0)2, max
|α|∈J0,qK

sup
(λ,ω)∈O

∣∣∂αλ,ω (µj(λ, ω) − µj0(λ, ω))
∣∣ ⩽ C |j − j0|. (7.255)

Then, we find

∀ (l, j, j0) ∈ Zd × (Sc0)2, max
α∈Nd+1

|α|∈J0,qK

sup
(λ,ω)∈O

∣∣∂αλ,ωAl,j,j0(λ, ω)
∣∣ ⩽ C ⟨l, j − j0⟩. (7.256)

In a similar way to (7.37), using Lemma A.1-(vi) and (7.256), we obtain

∀α ∈ Nd+1, |α| ∈ J0, qK, sup
(λ,ω)∈O

∣∣∂αλ,ωϱjj0
(λ, ω, l)

∣∣ ⩽ Cγ−(|α|+1)⟨l, j − j0⟩τ2|α|+τ2+|α|. (7.257)

Similarly to (7.39), using Leibniz rule, we get

∥Ψ∥γ,OO-d,q,s ⩽ Cγ
−1∥PNR∥γ,OO-d,q,s+τ2q+τ2

. (7.258)

We also assume that the following smallness condition holds

γ−1∥R∥γ,OO-d,q,s0+τ2q+τ2
⩽ Cε0. (7.259)
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Hence, by virtue of (7.258), we get

∥Ψ∥γ,OO-d,q,s0
⩽ Cγ−1∥R∥γ,OO-d,q,s0+τ2q+τ2

⩽ Cε0. (7.260)

As a consequence, up to taking ε0 small enough, the operator Φ is invertible and

Φ−1 =
∞∑
n=0

(−1)nΨn ≜ Id + Σ.

According to the product laws in Lemma A.1, Lemma A.6, (7.258) and (7.260) one gets

∥Σ∥γ,OO-d,q,s ⩽ ∥Ψ∥γ,OO-d,q,s

(
1 +

∞∑
n=1

(
C∥Ψ∥γ,OO-d,q,s0

)n)
⩽ C γ−1Nτ2q+τ2∥R∥γ,OO-d,q,s. (7.261)

Therefore, we conclude with the assumption (7.259) that Φ−1 satisfies the following estimate

∥Φ−1 − Id∥γ,OO-d,q,s⩽Cγ
−1Nτ2q+τ2∥R∥γ,OO-d,q,s. (7.262)

From (7.253), we can write

R+ = P⊥
NR + Φ−1RΨ − Ψ ⌊PNR⌋ + Σ

(
P⊥
NR − Ψ ⌊PNR⌋

)
.

Thus, by virtue of Lemma A.6 and (7.262), we infer

∥R+∥γ,OO-d,q,s ⩽ ∥P⊥
NR∥γ,OO-d,q,s + C∥Σ∥γ,OO-d,q,s

(
∥P⊥

NR∥γ,OO-d,q,s0
+ ∥Ψ∥γ,OO-d,q,s0

∥R∥γ,OO-d,q,s0

)
+ C

(
1 + ∥Σ∥γ,OO-d,q,s0

) (
∥Ψ∥γ,OO-d,q,s∥R∥γ,OO-d,q,s0

+ ∥Ψ∥γ,OO-d,q,s0
∥R∥γ,OO-d,q,s

)
. (7.263)

By Lemma A.6, (7.258), (7.260) and (7.262), we get for all S ⩾ s ⩾ s ⩾ s0,

∥R+∥γ,OO-d,q,s ⩽ N
s−s∥R∥γ,OO-d,q,s + Cγ−1Nτ2q+τ2∥R∥γ,OO-d,q,s0

∥R∥γ,OO-d,q,s. (7.264)

▶ Initialization We shall verify that the assumptions (7.255) and (7.259) required along the KAM
step to get the final form (7.264) are satisfied for L = L0 in (7.245). Indeed, (7.255) is an immediate
consequence of Lemma 5.3-(vi), that is

∃C > 0, ∀(j, j0) ∈ Z2, max
|α|∈J0,qK

sup
λ∈(λ0,λ1)

|∂αλ (Ωj(λ) − Ωj0(λ))| ⩽ C |j − j0|. (7.265)

Thus, applying (7.170) we obtain

∃C > 0, ∀(j, j0) ∈ Z2, max
|α|∈J0,qK

sup
(λ,ω)∈O

∣∣∂αλ,ω (µ0
j (λ, ω) − µ0

j0
(λ, ω)

)∣∣ ⩽ C |j − j0|.

Concerning the second assumption (7.259), we may combine (7.172) and (7.236) to find

γ−1∥R0∥γ,OO-d,q,s0+τ2q+τ2
⩽ Cεγ−2

(
1 + ∥I0∥γ,Oq,sh+σ4

)
⩽ Cε0.
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▶ KAM iteration. Let m ∈ N and consider a linear operator

Lm ≜
(
ω · ∂φ + Dm + Rm

)
Π⊥

S0
(7.266)

with Dm a diagonal real reversible operator and Rm a real and reversible Toeplitz in time operator of zero
order satisfying Π⊥

S0
RmΠ⊥

S0
= Rm. We assume that both assumptions (7.255) and (7.259) are satisfied for

Dm and Rm. Remark that for m = 0 we take the operator L0 defined in (7.245). Let Φm = Id + Ψm be
a linear invertible operator such that

Φ−1
m LmΦm ≜

(
ω · ∂φ + Dm+1 + Rm+1

)
Π⊥

S0
, (7.267)

with Ψm satisfying the homological equation

[(
ω · ∂φ + Dm

)
Π⊥

S0
,Ψm

]
+ PNm

Rm = ⌊PNm
Rm⌋.

Recall that Nm was defined in (6.94). The diagonal parts (Dm)m∈N and the remainders (Rm)m∈N are
defined similarly to (7.253) by the recursive formulas,

Dm+1 = Dm + ⌊PNm
Rm⌋ and Rm+1 = Φ−1

m

(
−Ψm ⌊PNm

Rm⌋ + P⊥
Nm

Rm + RmΨm

)
. (7.268)

Remark that Dm and ⌊PNm
Rm⌋ are Fourier multiplier Toeplitz operators that can be identified to their

spectra (iµmj )j∈Sc
0

and (irmj )j∈Sc
0
, namely

∀(l, j) ∈ Zd × Sc0, Dmel,j = iµmj el,j and ⌊PNm
Rm⌋el,j = irmj el,j . (7.269)

By construction, we find

µm+1
j = µmj + rmj . (7.270)

In a similar way to (7.250) we obtain

(Ψm)jj0
(λ, ω, l) =


−rj

j0,m
(λ,ω,l)

ω·l+µm
j

(λ,ω)−µm
j0

(λ,ω) if (l, j) ̸= (0, j0)

0 if (l, j) = (0, j0),
(7.271)

where the collection {rjj0,m
(λ, ω, l)} describes the Fourier coefficients of Rm, that is,

Rmel0,j0 = i
∑

(l,j)∈Zd+1

rjj0,m
(λ, ω, l0 − l)el,j .

Now we shall define the open Cantor set where the preceding formula is meaningful,

Oγ
m+1 =

⋂
(l,j,j0)∈Zd×(Sc

0)2

|l|⩽Nm

(l,j)̸=(0,j0)

{
(λ, ω) ∈ Oγ

m s.t. |ω · l + µmj (λ, ω) − µmj0
(λ, ω)| > γ⟨j−j0⟩

⟨l⟩τ2

}
. (7.272)

Similarly to (7.251) and (7.252) we can extend (7.271) as follows

(Ψm)jj0
(λ, ω, l) =

 −
χ((ω·l+µm

j (λ,ω)−µm
j0 (λ,ω))(γ|j−j0|)−1⟨l⟩τ2)rj

j0,m
(λ,ω,l)

ω·l+µm
j

(λ,ω)−µm
j0

(λ,ω) if (l, j) ̸= (0, j0)

0 if (l, j) = (0, j0).
(7.273)
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We point out that working with this extension for Ψm allows to extend both Dm+1 and the remainder
Rm+1 provided that the operators Dm and Rm are defined in the whole range of parameters. Thus the
operator defined by the right-hand side in (7.267) can be extended to the whole set O and we denote this
extension by Lm+1, that is,

(
ω · ∂φ + Dm+1 + Rm+1

)
Π⊥

S0
≜ Lm+1. (7.274)

This enables to construct by induction the sequence of operators (Lm+1) in the full set O. Similarly the
operator Φ−1

m LmΦm admits an extension in O induced by the extension of Φ±1
m . However, by construction

the identity Lm+1 = Φ−1
m LmΦm in (7.267) occurs in the Cantor set Oγ

m+1 and may fail outside this set.
We define

δm(s) ≜ γ−1∥Rm∥γ,OO-d,q,s (7.275)

and we want to prove by induction in m ∈ N that

∀m ∈ N, ∀s ∈ [s0, sl], δm(s) ⩽ δ0(sh)Nµ2
0 N−µ2

m and δm(sh) ⩽
(

2 − 1
m+1

)
δ0(sh), (7.276)

with sl and sh fixed by (7.3) and (7.235). Moreover, we should check the validity of the assumptions
(7.255) and (7.259) for Dm+1 and Rm+1. Notice that by Sobolev embeddings, it is sufficient to prove the
first inequality with s = sl. The property is obvious for m = 0. Now, assume that the property (7.276) is
true for m ∈ N and let us check it at the next order. We write

Φ−1
m = Id + Σm with Σm =

∞∑
n=1

(−1)nΨn
m. (7.277)

Thus similarly to (7.261), using in particular (7.258) and (7.260) we deduce successively

∥Σm∥γ,OO-d,q,s0
⩽ ∥Ψm∥γ,OO-d,q,s0

(
1 +

∞∑
n=0

(
C∥Ψm∥γ,OO-d,q,s0

)n)

⩽ δm(s0 + τ2q + τ2)
(

1 +
∞∑
n=0

(
Cδm(s0 + τ2q + τ2)

)n)

and for any s ∈ [s0, S],

∥Σm∥γ,OO-d,q,s ⩽ ∥Ψm∥γ,OO-d,q,s

(
1 +

∞∑
n=0

(
C∥Ψm∥γ,OO-d,q,s0

)n)

⩽ Nτ2q+τ2
m δm(s)

(
1 +

∞∑
n=0

(
Cδm(s0 + τ2q + τ2)

)n)
.

Hence, from the induction assumption, the fact that Nm ⩾ N0 and since (7.3) implies in particular
s0 + τ2q + τ2 ⩽ sl, we obtain

∥Σm∥γ,OO-d,q,s0
⩽ CNµ2

0 N−µ2
m δ0(sh)

(
1 +

∞∑
n=0

(
CNµ2

0 N−µ2
m δ0(sh)

)n)

⩽ CNµ2
0 N−µ2

m δ0(sh)
(

1 +
∞∑
n=0

(
Cδ0(sh)

)n)
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and for any s ∈ [s0, S],

∥Σm∥γ,OO-d,q,s ⩽ N
τ2q+τ2
m δm(s)

(
1 +

∞∑
n=0

(
CNµ2

0 N−µ2
m δ0(sh)

)n)

⩽ Nτ2q+τ2
m δm(s)

(
1 +

∞∑
n=0

(
Cδ0(sh)

)n)
.

It follows from the condition (7.244) that

∥Σm∥γ,OO-d,q,s0
⩽ CNµ2

0 N−µ2
m δ0(sh) and ∥Σm∥γ,OO-d,q,s ⩽ CN

τ2q+τ2
m δm(s). (7.278)

One also gets

∥Σm∥γ,OO-d,q,s ⩽ Cδm(s+ τ2q + τ2). (7.279)

From KAM step (7.264) and Sobolev embeddings, we infer

δm+1(sl) ⩽ Nsl−sh
m δm(sh) + CNτ2q+τ2

m (δm(sl))2
.

Using the induction assumption (7.276) yields

δm+1(sl) ⩽ Nsl−sh
m

(
2 − 1

m+1

)
δ0(sh) + CNτ2q+τ2

m δ2
0(sh)N2µ2

0 N−2µ2
m

⩽ 2Nsl−sh
m δ0(sh) + CNτ2q+τ2

m δ2
0(sh)N2µ2

0 N−2µ2
m .

At this level we need to select the parameters sl, sh and µ2 in such a way

Nsl−sh
m ⩽

1
4N

µ2
0 N−µ2

m+1 and CNτ2q+τ2
m δ0(sh)N2µ2

0 N−2µ2
m ⩽

1
2N

µ2
0 N−µ2

m+1 (7.280)

leading to
δm+1(sl) ⩽ δ0(sh)Nµ2

0 N−µ2
m+1.

The conditions (7.235) imply in particular

sh ⩾
3
2µ2 + sl + 1 and µ2 ⩾ 2(τ2q + τ2) + 1.

Then, using (6.94), we conclude that the assumptions of (7.280) hold true provided that

4N−µ2
0 ⩽ 1 and 2CNµ2

0 δ0(sh) ⩽ 1, (7.281)

which follow from (7.244), since the first condition 4N−µ2
0 ⩽ 1 is automatically satisfied because N0 ⩾ 2

and µ2 ⩾ 2, according to (7.235). Therefore, under the assumptions (7.235) we get the first statement
of the induction in (7.276). The next goal is to establish the second estimate in (7.276). By KAM step
(7.264) combined with the induction assumptions (7.276) we deduce that

δm+1(sh) ⩽ δm(sh) + CNτ2q+τ2
m δm(s0)δm(sh)

⩽
(

2 − 1
m+1

)
δ0(sh)

(
1 + CNµ2

0 Nτ2q+τ2−µ2
m δ0(sh)

)
.

Thus if one has (
2 − 1

m+1

)(
1 + CNµ2

0 Nτ2q+τ2−µ2
m δ0(sh)

)
⩽ 2 − 1

m+2 , (7.282)
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then we get
δm+1(sh) ⩽

(
2 − 1

m+2

)
δ0(sh),

which ends the induction argument of (7.276). Remark that with the choice µ2 ⩾ 2(τ2q + τ2) fixed in
(7.235), the condition (7.282) is staisfied if

CNµ2
0 N−τ2q−τ2

m δ0(sh) ⩽ 1
(2m+1)(m+2) · (7.283)

Since N0 ⩾ 2 we may find a constant c0 > 0 small enough such that

∀m ∈ N, c0N
−1
m ≤ 1

(2m+1)(m+2) ·

Consequently, (7.283) is satisfied provided that

CNµ2
0 N−τ2q−τ2+1

m δ0(sh) ⩽ c0. (7.284)

By virtue of the assumption (A.1) we get in particular

τ2q + τ2 − 1 ⩾ 0. (7.285)

Thus (7.284) is satisfied in view of (7.244). To conclude the induction proof of (7.276) it remains to
check that the assumptions (7.255) and (7.259) are satisfied for Dm+1 and Rm+1. First, the assumption
(7.259) is a consequence of the first inequality of (7.276) applied at the order m+ 1 with the regularity
index s = s0 + τ2q + τ2 ⩽ sl supplemented with (7.244). Concerning the validity of (7.255) for Dm+1, we
combine (7.269), (7.270) and (7.248), in order to find

∥µm+1
j − µmj ∥γ,Oq =

∥∥⟨PNm
Rmel,j , el,j⟩L2(Td+1)

∥∥γ,O
q

.

From the Topeplitz structure of Rm we may write

∥µm+1
j − µmj ∥γ,Oq =

∥∥⟨PNm
Rme0,j , e0,j⟩L2(Td+1)

∥∥γ,O
q

.

By a duality argument combined with Lemma A.6 and (7.275) we infer

∥µm+1
j − µmj ∥γ,Oq ≲

∥∥Rme0,j∥γ,Oq,s0
⟨j⟩−s0

≲
∥∥Rm

∥∥γ,O
O-d,q,s0

∥e0,j∥Hs0 ⟨j⟩−s0

≲
∥∥Rm

∥∥γ,O
O-d,q,s0

= γδm(s0). (7.286)

Hence we deduce from (7.276), (7.243) and (7.236)

∥µm+1
j − µmj ∥γ,Oq ⩽ Cγ δ0(sh)Nµ2

0 N−µ2
m

⩽ Cεγ−1Nµ2
0 N−µ2

m . (7.287)

As the assumption (7.255) is satisfied with Dm, that is,

∀ (j, j0) ∈ (Sc0)2, max
|α|∈J0,qK

sup
(λ,ω)∈O

∣∣∂αλ,ω (µmj (λ, ω) − µmj0
(λ, ω)

)∣∣ ⩽ C |j − j0|, (7.288)
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then we obtain by (7.287)

∀ (j, j0) ∈ (Sc0)2, max
|α|∈J0,qK

sup
(λ,ω)∈O

∣∣∂αλ,ω (µm+1
j (λ, ω) − µm+1

j0
(λ, ω)

)∣∣ ⩽ C(1 + εγ−1−qNµ2
0 N−µ2

m

)
|j − j0|.

Consequently, the convergence of the series
∑
N−µ2
m gives the required assumption with the same constant

C independently of m. This completes the induction principle. In what follows, we shall provide some
estimates for Ψm that will be used later to study the string convergence. Using (7.258) combined with
Lemma A.6 and s0 + τ2q + τ2 + 1 ⩽ sl we find

∥Ψm∥γ,OO-d,q,s0+1 ⩽ Cγ
−1∥PNm

Rm∥γ,OO-d,q,s0+τ2q+τ2+1

⩽ C δm(sl). (7.289)

Thus (7.276) and (7.244) yield

∥Ψm∥γ,OO-d,q,s0+1 ⩽ C δ0(sh)Nµ2
0 N−µ2

m

⩽ C εγ−2Nµ2
0 N−µ2

m . (7.290)

Next, we discuss the persistence of higher regularity. Let s ∈ [s0, S], then from (7.264), (7.276) and (7.244)
and (7.285)

δm+1(s) ⩽ δm(s)
(

1 + CNτ2q+τ2
m δm(s0)

)
⩽ δm(s)

(
1 + CNµ2

0 Nτ2q+τ2−µ2
m δ0(sh)

)
⩽ δm(s)

(
1 + CN−1

m

)
.

Combining this estimate with (6.94) and (7.243) yields

∀ s ⩾ s0, ∀m ∈ N, δm(s) ⩽ δ0(s)
∞∏
n=0

(
1 + CN−1

n

)
⩽ Cδ0(s)

⩽ Cεγ−2
(

1 + ∥I0∥γ,Oq,s+σ4

)
. (7.291)

Using (7.258) combined with Lemma A.6, applying in particular interpolation inequalities, leads to

∥Ψm∥γ,OO-d,q,s ⩽ Cγ
−1∥PNm

Rm∥γ,OO-d,q,s+τ2q+τ2

⩽ C δm(s+ τ2q + τ2)

⩽ C δθm(s0)δ1−θ
m (s+ τ2q + τ2 + 1), (7.292)

with θ = 1
s−s0+τ2q+τ2+1 . Inserting (7.276) and (7.291) into (7.292) and using (7.244) give

∥Ψm∥γ,OO-d,q,s ⩽ C δθ0(s2)δ1−θ
0 (s+ τ2q + τ2 + 1)Nµ2θ

0 N−µ2θ
m

⩽ C ε0
θδ1−θ

0 (s+ τ2q + τ2 + 1)N−µ2θ
m . (7.293)

We point out that one also finds from (7.279), the second inequality of (7.292) and (7.291) that

∀ s ∈ [s0, S], sup
m∈N

(
∥Σm∥γ,OO-d,q,s + ∥Ψm∥γ,OO-d,q,s

)
⩽ Cεγ−2

(
1 + ∥I0∥γ,Oq,s+σ4

)
. (7.294)
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▶ KAM conclusion. Let us examine the sequence of operators
(

Φ̂m
)
m∈N

defined by

Φ̂0 ≜ Φ0 and ∀m ⩾ 1, Φ̂m ≜ Φ0 ◦ Φ1 ◦ ... ◦ Φm. (7.295)

It is obvious from the identity Φm = Id + Ψm that Φ̂m+1 = Φ̂m + Φ̂mΨm+1. Applying the product laws
yields

∥Φ̂m+1∥γ,OO-d,q,s0+1 ⩽ ∥Φ̂m∥γ,OO-d,q,s0+1

(
1 + C∥Ψm+1∥γ,OO-d,q,s0+1

)
.

By iterating this inequality and using (7.290) we infer

∥Φ̂m+1∥γ,OO-d,q,s0+1 ⩽ ∥Φ0∥γ,OO-d,q,s0+1

m+1∏
n=1

(
1 + C∥Ψn∥γ,OO-d,q,s0+1

)
⩽

∞∏
n=0

(
1 + C ε0N

−µ2
n

)
.

Using the first condition of (7.244) and (6.94) imply

∥Φ̂m+1∥γ,OO-d,q,s0+1 ⩽
∞∏
n=0

(
1 + C ε04−( 3

2 )n
)

and since the infinite product converges, we obtain for ε0 small enough

sup
m∈N

∥Φ̂m∥γ,OO-d,q,s0+1 ⩽ 2. (7.296)

Now we shall estimate the difference Φ̂m+1 − Φ̂m and for this aim we use the product laws combined with
(7.290) and (7.296)

∥Φ̂m+1 − Φ̂m∥γ,OO-d,q,s0+1 ⩽ C∥Φ̂m∥γ,OO-d,q,s0+1∥Ψm+1∥γ,OO-d,q,s0+1

⩽ C δ0(sh)Nµ2
0 N−µ2

m+1. (7.297)

Applying Lemma A.5 gives

∞∑
m=0

∥Φ̂m+1 − Φ̂m∥γ,OO-d,q,s0+1 ⩽ C δ0(sh). (7.298)

Therefore, by a completeness argument we deduce that the series
∑
m∈N

(Φ̂m+1 − Φ̂m) converges to an

element Φ∞. In addition, we get in view of (7.297) and Lemma A.5

∥Φ̂m − Φ∞∥γ,OO-d,q,s0+1 ⩽
∞∑
j=m

∥Φ̂j+1 − Φ̂j∥γ,OO-d,q,s0+1

⩽ C δ0(sh)Nµ2
0

∞∑
j=m

N−µ2
j+1

⩽ C δ0(sh)Nµ2
0 N−µ2

m+1. (7.299)

Remark that one also finds from (7.296)

∥Φ∞∥γ,OO-d,q,s0+1 ⩽ 2. (7.300)
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Using (7.298) combined with (7.292) for m = 0 and (7.235)

∥Φ∞ − Id∥γ,OO-d,q,s0+1 ⩽
∞∑
m=0

∥Φ̂m+1 − Φ̂m∥γ,OO-d,q,s0+1 + ∥Ψ0∥γ,OO-d,q,s0+1

⩽ C δ0(sh). (7.301)

Let us now check the convergence with higher order norms. Take s ∈ [s0, S], then using the product laws,
(7.290), (7.293) and (7.296) we infer

∥Φ̂m+1∥γ,OO-d,q,s ⩽ ∥Φ̂m∥γ,OO-d,q,s

(
1 + C∥Ψm+1∥γ,OO-d,q,s0

)
+ C∥Φ̂m∥γ,OO-d,q,s0

∥Ψm+1∥γ,OO-d,q,s (7.302)

⩽ ∥Φ̂m∥γ,OO-d,q,s

(
1 + C ε0 N

−µ2
m+1

)
+ C δθ0(sh)Nµ2θ

0 δ1−θ
0 (s+ τ2q + τ2 + 1)N−µ2θ

m .

According to the first condition of (7.244) and (6.94) one finds

∞∏
n=0

(
1 + C ε0 N

−µ2
n

)
⩽

∞∏
n=0

(
1 + C ε04−( 3

2 )n
)

⩽ 2,

where the last inequality holds if ε0 is chosen small enough. Applying (7.70) together with (7.302) and
Lemma A.5 and using (7.258) yield

sup
m∈N

∥Φ̂m∥γ,OO-d,q,s ⩽ C
(

∥Φ0∥γ,OO-d,q,s + δθ0(sh)Nµ2θ
0 δ1−θ

0 (s+ τ2q + τ2 + 1)
)

⩽ C
(

1 + δ0(s+ τ2q + τ2) + δθ0(sh)Nµ2θ
0 δ1−θ

0
(
s+ τ2q + τ2 + 1

))
.

Interpolation inequalities and (7.244) allow to get

sup
m∈N

∥Φ̂m∥γ,OO-d,q,s ⩽ C
(

1 + δ0
(
s+ τ2q + τ2 + 1

))
. (7.303)

The next task is to estimate the difference ∥Φ̂m+1 − Φ̂m∥γ,Oq,s . By the product laws combined with the
first inequality in (7.290), (7.293), (7.296) and (7.303) we obtain

∥Φ̂m+1 − Φ̂m∥γ,OO-d,q,s ⩽ C
(

∥Φ̂m∥γ,OO-d,q,s∥Ψm+1∥γ,OO-d,q,s0
+ ∥Φ̂m∥γ,OO-d,q,s0

∥Ψm+1∥γ,OO-d,q,s

)
⩽ C δ0(sh)Nµ2

0 N−µ2
m+1

(
1 + δ0

(
s+ τ2q + τ2 + 1

))
+ C δθ0(sh)Nµ2θ

0 δ1−θ
0
(
s+ τ2q + τ2 + 1

)
N−µ2θ
m+1 .

Thus, we obtain in view of Lemma A.5

∞∑
m=0

∥Φ̂m+1 − Φ̂m∥γ,OO-d,q,s ⩽ C δ0(sh)
(

1 + δ0
(
s+ τ2q + τ2 + 1

))
+ C δθ0(sh)δ1−θ

0
(
s+ τ2q + τ2 + 1

)
.

Combining the interpolation inequalities with the second condition in (7.244) gives

∞∑
m=0

∥Φ̂m+1 − Φ̂m∥γ,OO-d,q,s ⩽ C
(
δ0(sh) + δ0

(
s+ τ2q + τ2 + 1

))
. (7.304)
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From this latter inequality combined with (7.244) and (7.303) we infer

∥Φ∞∥γ,OO-d,q,s ⩽
∞∑
m=0

∥Φ̂m+1 − Φ̂m∥γ,OO-d,q,s + ∥Φ̂0∥γ,OO-d,q,s

⩽ C
(

1 + δ0
(
s+ τ2q + τ2 + 1

))
. (7.305)

On the other hand, using (7.304) and the second inequality in (7.292) with m = 0, one can check that

∥Φ∞ − Id∥γ,OO-d,q,s ⩽
∞∑
m=0

∥Φ̂m+1 − Φ̂m∥γ,OO-d,q,s + ∥Ψ0∥γ,OO-d,q,s

⩽ C
(
δ0(sh) + δ0

(
s+ τ2q + τ2 + 1

))
. (7.306)

Therefore, Lemma A.6 together with (7.300), (7.305) and Sobolev embeddings give

∥Φ∞ρ∥γ,Oq,s ≲ ∥Φ∞∥γ,OO-d,q,s0
∥ρ∥γ,Oq,s + ∥Φ∞∥γ,OO-d,q,s∥ρ∥γ,Oq,s0

≲ ∥ρ∥γ,Oq,s +
(

1 + δ0
(
s+ τ2q + τ2 + 1

))
∥ρ∥γ,Oq,s0

≲ ∥ρ∥γ,Oq,s + δ0
(
s+ τ2q + τ2 + 1

)
∥ρ∥γ,Oq,s0

. (7.307)

Applying (7.172) and (7.275) we obtain

δ0
(
s+ τ2q + τ2 + 1

)
= γ−1∥R0∥γ,OO-d,q,s

≲ εγ−2
(

1 + ∥I0∥γ,Oq,s+σ4

)
. (7.308)

Plugging (7.308) into (7.307) and using (7.236) combined with Sobolev embeddings and (7.235) yield

∥Φ∞ρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s + εγ−2
(

1 + ∥I0∥γ,Oq,s+σ4

)
∥ρ∥γ,Oq,s0

≲ ∥ρ∥γ,Oq,s + εγ−2∥I0∥γ,Oq,s+σ4
∥ρ∥γ,Oq,s0

. (7.309)

In a similar way to (7.307) we get by Lemma A.6 combined with (7.306) and (7.301)

∥∥(Φ∞ − Id
)
ρ
∥∥γ,O
q,s
≲ ∥Φ∞ − Id∥γ,OO-d,q,s0

∥ρ∥γ,Oq,s + ∥Φ∞ − Id∥γ,OO-d,q,s∥ρ∥γ,Oq,s0

≲ δ0(sh)∥ρ∥γ,Oq,s +
(
δ0(sh) + δ0

(
s+ τ2q + τ2 + 1

))
∥ρ∥γ,Oq,s0

≲ δ0(sh)∥ρ∥γ,Oq,s + δ0
(
s+ τ2q + τ2 + 1

)
∥ρ∥γ,Oq,s0

.

Hence we find from (7.308) and (7.236) combined with Sobolev embeddings and (7.243)

∥∥(Φ∞ − Id
)
ρ
∥∥γ,O
q,s
≲
(
εγ−2 + δ0(sh)

)
∥ρ∥γ,Oq,s + εγ−2∥I0∥γ,Oq,s+σ4

∥ρ∥γ,Oq,s0

≲ εγ−2∥ρ∥γ,Oq,s + εγ−2∥I0∥γ,Oq,s+σ4
∥ρ∥γ,Oq,s0

. (7.310)

The estimates Φ−1
∞ and Φ−1

∞ − Φ̂−1
n follow from the same type pf arguments.

➢ In what follows we plan to study the asymptotic of the eigenvalues. Summing up in m the estimates
(7.287) and using Lemma A.5, we find

∞∑
m=0

∥µm+1
j − µmj ∥γ,Oq ⩽ Cγ δ0(sh)Nµ2

0

∞∑
m=0

N−µ2
m

⩽ Cγδ0(sh). (7.311)
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Thus for each j ∈ Sc0 the sequence (µmj )m∈N converges in the space W q,∞,γ(O,C) to an element denoted
by µ∞

j ∈ W q,∞,γ(O,C). Moreover, for any m ∈ N, we find in view of (7.287)

∥µ∞
j − µmj ∥γ,Oq ⩽

∞∑
n=m

∥µn+1
j − µnj ∥γ,Oq

⩽ Cγ δ0(sh)Nµ2
0

∞∑
n=m

N−µ2
n .

Applying Lemma A.5

sup
j∈Sc

0

∥µ∞
j − µmj ∥γ,Oq ⩽ Cγδ0(sh)Nµ2

0 N−µ2
m . (7.312)

Therefore, we deduce

µ∞
j = µ0

j +
∞∑
m=0

(
µm+1
j − µmj

)
≜ µ0

j + r∞
j , (7.313)

where (µ0
j ) is described in Proposition 7.4 and takes the form

µ0
j (λ, ω, i0) = Ωj(λ) + j

(
ci0(λ, ω) − I1(λ)K1(λ)

)
.

Hence (7.311), (7.243) and (7.236) yield

∥r∞
j ∥γ,Oq ⩽ C γ δ0(sh)

⩽ C εγ−1

and this gives the first result in (7.239). We define the diagonal operator D∞, acting on the normal modes,
as follows

∀(l, j) ∈ Zd × Sc0, D∞el,j = iµ∞
j el,j . (7.314)

By the norm definition we obtain

∥Dm − D∞∥γ,OO-d,q,s0
= sup
j∈Sc

0

∥µmj − µ∞
j ∥γ,Oq ,

which gives by virtue of (7.312)

∥Dm − D∞∥γ,OO-d,q,s0
⩽ C γ δ0(sh)Nµ2

0 N−µ2
m . (7.315)

➢ The next goal is to prove that the Cantor set Oγ,τ1,τ2
∞,n (i0) defined in Proposition 7.5 satisfies

Oγ,τ1,τ2
∞,n (i0) ⊂

n+1⋂
m=0

Oγ
m = Oγ

n+1,

where the intermediate Cantor sets are defined in (7.272). For this aim we shall proceed by finite
induction on m with n fixed. First, we get by construction Oγ,τ1,τ2

∞,n (i0) ⊂ O ≜ Oγ
0 . Now assume that
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Oγ,τ1,τ2
∞,n (i0) ⊂ Oγ

m for m ⩽ n and let us check that

Oγ,τ1,τ2
∞,n (i0) ⊂ Oγ

m+1. (7.316)

Let (λ, ω) ∈ Oγ,τ1,τ2
∞,n (i0) and (l, j, j0) ∈ Zd × (Sc0)2 such that 0 ⩽ |l| ⩽ Nm and (l, j) ̸= (0, j0). Then, the

triangle inequality, (7.312), (7.235) and (7.244) imply

|ω · l + µmj (λ, ω) − µmj0
(λ, ω)| ⩾ |ω · l + µ∞

j (λ, ω) − µ∞
j0

(λ, ω)| − 2 sup
j∈Sc

0

∥µmj − µ∞
j ∥γ,Oq

⩾ 2γ⟨j−j0⟩
⟨l⟩τ2 − 2γδ0(sh)Nµ2

0 N−µ2
m

⩾ 2γ⟨j−j0⟩
⟨l⟩τ2 − 2γε0⟨l⟩−µ2⟨j − j0⟩.

Thus for ε0 small enough and by (7.235) (implying that µ2 ⩾ τ2) we get

∣∣ω · l + µmj (λ, ω) − µmj0
(λ, ω)

∣∣ > γ⟨j−j0⟩
⟨l⟩τ2

which shows that (λ, ω) ∈ Oγ
m+1 and therefore the inclusion (7.316) is satisfied.

➢ Next we shall discuss the convergence of the sequence (Lm)m∈N introduced in (7.266) towards the
diagonal operator L∞ ≜ ω · ∂φΠ⊥

S0
+ D∞, where D∞ is detailed in (7.314). Applying (7.315) and (7.276)

∥Lm − L∞∥γ,OO-d,q,s0
⩽ ∥Dm − D∞∥γ,OO-d,q,s0

+ ∥Rm∥γ,OO-d,q,s0

⩽ C γ δ0(sh)Nµ2
0 N−µ2

m , (7.317)

which gives in particular that

lim
m→∞

∥Lm − L∞∥γ,OO-d,q,s0
= 0. (7.318)

By virtue of (7.295) and (7.267) one gets

∀(λ, ω) ∈ Oγ
n+1, Φ̂−1

n L0Φ̂n =
(
ω · ∂φ + Dn+1 + Rn+1

)
Π⊥

S0

= L∞ +
(
Dn+1 − D∞ + Rn+1

)
Π⊥

S0
.

It follows that any (λ, ω) ∈ Oγ
n+1

Φ−1
∞ L0Φ∞ = L∞ +

(
Dn+1 − D∞ + Rn+1

)
Π⊥

S0

+ Φ−1
∞ L0

(
Φ∞ − Φ̂n

)
+
(

Φ−1
∞ − Φ̂−1

n

)
L0Φ̂n

≜ L∞ + E2
n,1 + E2

n,2 + E2
n,3 ≜ L∞ + E2

n.

For the estimate E2
n,1 we use (7.315) combined with (7.275), (7.276), (7.243) and (7.236)

∥E2
n,1∥γ,OO-d,q,s0

⩽ C γ δ0(sh)Nµ2
0 N−µ2

n+1

⩽ Cεγ−1Nµ2
0 N−µ2

n+1 . (7.319)

According to Lemma A.25 with (7.319) we obtain

∥E2
n,1ρ∥γ,Oq,s0

⩽ Cεγ−1Nµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0
.
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Now let us move to the estimates of E2
n,2 and E2

n,3. They can be treated in a similar way. Therefore we
shall restrict the discussion to the term E2

n,2. Using (7.237) yields

∥E2
n,2ρ∥γ,Oq,s0

≲
∥∥L0

(
Φ∞ − Φ̂n

)
ρ
∥∥γ,O
q,s0

+ εγ−2∥I0∥γ,Oq,s0+σ4

∥∥L0
(
Φ∞ − Φ̂n

)
ρ
∥∥γ,O
q,s0

. (7.320)

Therefore we get from (7.174) combined with (7.236)

∥E2
n,2ρ∥γ,Oq,s0

≲
∥∥L0

(
Φ∞ − Φ̂n

)
ρ
∥∥γ,O
q,s0

≲
∥∥(Φ∞ − Φ̂n

)
ρ
∥∥γ,O
q,s0+1.

Applying (7.299) with Lemma A.25, (7.236) and (7.243) allow to get

∥E2
n,2ρ∥γ,Oq,s0

≲
∥∥Φ∞ − Φ̂n

∥∥γ,O
O-d,q,s0+1∥ρ∥γ,Oq,s0+1

⩽ C δ0(sh)Nµ2
0 N−µ2

m+1∥ρ∥γ,Oq,s0+1

⩽ C εγ−2Nµ2
0 N−µ2

m+1∥ρ∥γ,Oq,s0+1.

Notice that for E2
n,3 we get the same estimate as the preceding one. Consequently, putting together the

foregoing estimates yields (7.240).
➢ The goal now is to prove (7.239). We set

δ̂m(s) ≜ max
(
γ−1∥∂θRm∥γ,OO-d,q,s, γ

−1∥Rm∥γ,OO-d,q,s

)
.

Then we shall prove by induction on m ∈ N that

δ̂m(s0) ⩽ δ̂0(sh)Nµ2
0 N−µ2

m and δ̂m(sh) ⩽
(

2 − 1
m+1

)
δ̂0(sh). (7.321)

According to Sobolev embeddings, the property is trivially satisfied for m = 0. Notice that from (7.172)
and (7.236) one gets

δ̂0(sh) ≲ εγ−2
(

1 + ∥I0∥γ,Oq,sh+σ4

)
≲ εγ−2. (7.322)

We assume that (7.321) is satisfied at the order m and let us check it at the order m+ 1. Applying ∂θ to
the second identity in (7.268) and using (7.277) we obtain the expression

∂θRm+1 = Φ−1
m

(
P⊥
Nm

∂θRm + ∂θRmΨm − Ψm∂θ
⌊
PNmRm

⌋
−
[
∂θ,Ψm

]⌊
PNmRm

⌋)
+
[
∂θ,Σm

](
P⊥
Nm

Rm + RmΨm − Ψm

⌊
PNmRm

⌋)
.

≜ U1
m + U2

m

with
U2
m =

[
∂θ,Σm

](
P⊥
Nm

Rm + RmΨm − Ψm

⌊
PNmRm

⌋)
.

It is easy to check that for any Toeplitz in time operator T (λ, ω), we have

[
∂θ, T (λ, ω)

]
el0,j0 = i

∑
(l,j)∈Zd+1

(j − j0)T jj0
(λ, ω, l − l0)el,j ,
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7. Reduction of the linearized operator in the normal directions

which implies using the norm definition

∥∥[∂θ, T ]
∥∥γ,O

O-d,q,s
⩽ ∥T∥γ,OO-d,q,s+1. (7.323)

Since Φ−1
m = Id + Σm, then applying Lemma A.6, we obtain successively for S ⩾ s ⩾ s ⩾ s0

∥U1
m∥γ,OO-d,q,s ⩽ C∥Σm∥γ,OO-d,q,s

[
∥∂θRm∥γ,OO-d,q,s0

(
1 + ∥Ψm∥γ,OO-d,q,s0

)
+ ∥ [∂θ,Ψm] ∥γ,OO-d,q,s0

∥Rm∥γ,OO-d,q,s0

]
+ C∥Σm∥γ,OO-d,q,s0

[
∥∂θRm∥γ,OO-d,q,s

(
1 + ∥Ψm∥γ,OO-d,q,s0

)
+ ∥∂θRm∥γ,OO-d,q,s0

∥Ψm∥γ,OO-d,q,s (7.324)

+∥ [∂θ,Ψm] ∥γ,OO-d,q,s∥Rm∥γ,OO-d,q,s0
+ ∥ [∂θ,Ψm] ∥γ,OO-d,q,s0

∥Rm∥γ,OO-d,q,s

]
+ ∥P⊥

Nm
∂θRm∥γ,OO-d,q,s

and

∥U2
m∥γ,OO-d,q,s ≲ ∥ [∂θ,Σm] ∥γ,OO-d,q,s0

(
∥Rm∥γ,OO-d,q,s0

∥Ψm∥γ,OO-d,q,s + ∥Rm∥γ,OO-d,q,s

(
1 + ∥Ψm∥γ,OO-d,q,s0

))
+ ∥ [∂θ,Σm] ∥γ,OO-d,q,s∥Rm∥γ,OO-d,q,s0

(
1 + ∥Ψm∥γ,OO-d,q,s0

)
. (7.325)

By using (7.323), (7.258) and Lemma A.6, we obtain

∥ [∂θ,Ψm] ∥γ,OO-d,q,s ⩽ ∥Ψm∥γ,OO-d,q,s+1

⩽ Cγ−1∥PNm
Rm∥γ,OO-d,q,s+τ2q+τ2+1

⩽ CNτ2q+τ2+1
m δm(s).

Coming back to (7.278), we obtain

∥ [∂θ,Σm] ∥γ,OO-d,q,s ⩽ ∥Σm∥γ,OO-d,q,s+1

⩽ CNτ2q+τ2+1
m δm(s).

Then inserting the preceding estimates and (7.290) into (7.324) we deduce that

∀S ⩾ s ⩾ s ⩾ s0, δ̂m+1(s) ⩽ Ns−s
m δ̂m(s) + CNτ2q+τ2+1

m δ̂m(s)δ̂m(s0). (7.326)

In particular, for s = s0 we get by the induction assumption (7.321),

δ̂m+1(s0) ⩽ Ns0−sh
m δ̂m(sh) + CNτ2q+τ2+1

m

(
δ̂m(s0)

)2

⩽
(

2 − 1
m+1

)
δ̂0(sh)Ns0−sh

m + CN2µ2
0 Nτ2q+τ2+1−2µ2

m

(
δ̂0(sh)

)2

⩽ δ̂0(sh)
(

2Ns0−sh
m + CN2µ2

0 Nτ2q+τ2+1−2µ2
m δ̂0(sh)

)
.

If we fix s2 and µ2 such that

Ns0−sh
m ⩽ 1

4N
µ2
0 N−µ2

m+1 and CN2µ2
0 Nτ2q+τ2+1−2µ2

m δ̂0(sh) ⩽ 1
2N

µ2
0 N−µ2

m+1, (7.327)

then we find
δ̂m+1(s0) ⩽ δ̂0(sh)Nµ2

0 N−µ2
m+1.

Notice that (7.235) implies in particular

sh ⩾ 3
2µ2 + s0 + 1 and µ2 ⩾ 2(τ2q + τ2 + 1) + 1.
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Hence, using (6.94), we see that the assumptions of (7.327) hold true provided that

4N−µ2
0 ⩽ 1 and 2Cδ̂0(sh) ⩽ N−µ2

0 .

Remark that these conditions are satisfied thanks to (7.281), (7.322) and (7.236). Now, we turn to the
proof of the second estimate in (7.321). By (7.326) and (7.321)

δ̂m+1(sh) ⩽ δ̂m(sh) + CNτ2q+τ2+1
m δ̂m(sh)δ̂m(s0)

⩽
(

2 − 1
m+1

)
δ̂0(sh)

(
1 + CNµ2

0 Nτ2q+τ2+1−µ2
m δ̂0(sh)

)
.

Taking the parameters s2 and µ2 such that(
2 − 1

m+1

)(
1 + CNµ2

0 Nτ2q+τ2+1−µ2
m δ̂0(sh)

)
⩽ 2 − 1

m+2 , (7.328)

then we obtain
δ̂m+1(sh) ⩽

(
2 − 1

m+2

)
δ̂0(sh),

which achieves the induction argument in (7.321). Now observe that (7.328) is quite similar to (7.282)
using in particular µ2 ⩾ 2(τ2q + τ2) + 1 and one may proceed following the same lines. Next let us see
how to get the estimate (7.239). Recall that

r∞
j =

∞∑
m=0

rmj with rmj = −i
〈
PNm

Rme0,j , e0,j
〉
L2(Td+1).

Then it is clear that

〈
PNmRme0,j , e0,j

〉
L2(Td+1,C) = i

j

〈
PNmRme0,j , ∂θe0,j

〉
L2(Td+1).

Therefore integration by parts leads to

〈
PNm

Rme0,j , ∂θe0,j
〉
L2(Td+1,C) = −

〈
PNm

∂θRme0,j , e0,j
〉
L2(Td+1).

Using a duality argument Hs0 −H−s0 combined with Lemma A.6 and (7.321), we obtain

∥⟨PNm∂θRme0,j , e0,j⟩L2(Td+1)∥γ,Oq ⩽ Cγ δ̂m(s0)

⩽ Cγ δ̂0(sh)Nµ2
0 N−µ2

m .

Putting together the preceding estimates with (7.322) and Lemma A.5 yields

∥r∞
j ∥γ,Oq ≲ γ |j|−1δ̂0(sh)Nµ2

0

∞∑
m=0

N−µ2
m

≲ |j|−1εγ−1.

This achieves the proof of (7.239).
(ii) We shall now work with fixed values (minimal) of µ2 and sh denoted respectively by µc and sc, namely

µc ≜ µ2 + 2τ2q + 2τ2 and sc ≜
3
2µc + sl + 1 = sh + 4τ2q + 4τ2. (7.329)
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7. Reduction of the linearized operator in the normal directions

From (7.268) and (7.277), we can write

Rm+1 = (Id + Σm)Um,

where

Um ≜ P
⊥
Nm

Rm + RmΨm − Ψm

⌊
PNm

Rm

⌋
. (7.330)

After straightforward computations, we get

∆12Um =P⊥
Nm

∆12Rm + (∆12Rm)(Ψm)r1 + (Rm)r2(∆12Ψm)

− (∆12Ψm)
⌊
PNm

(Rm)r1

⌋
− (Ψm)r2

⌊
PNm

∆12Rm

⌋
(7.331)

and

∆12Rm+1 = ∆12Um + (∆12Σm)(Um)r1 + (Σm)r2∆12Um. (7.332)

We have used the notation (f)r = f(r). Elementary manipulations based on (7.277) give

∆12Σm = ∆12Φ−1
m = −(Φ−1

m )r2(∆12Ψm)(Φ−1
m )r1 .

The product laws of Lemma A.6 together with (7.294) and (7.236) imply

∀ s ∈ [s0, sc], ∥∆12Σm∥γ,OO-d,q,s ≲ ∥∆12Ψm∥γ,OO-d,q,s. (7.333)

Using once again the product laws of Lemma A.6, (7.333) and (7.332) we obtain

∥∆12Rm+1∥γ,OO-d,q,s0
⩽ ∥∆12Um∥γ,OO-d,q,s0

+ ∥(∆12Ψm)∥γ,OO-d,q,s0
∥(Um)r1∥γ,OO-d,q,s0

+ ∥(Σm)r2∥γ,OO-d,q,s0
∥∆12Um∥γ,OO-d,q,s0

(7.334)

and

∥∆12Rm+1∥γ,OO-d,q,sc
⩽ ∥∆12Um∥γ,OO-d,q,sc

+ ∥(∆12Ψm)∥γ,OO-d,q,s0
∥(Um)r1∥γ,OO-d,q,sc

+ ∥(∆12Ψm)∥γ,OO-d,q,sc
∥(Um)r1∥γ,OO-d,q,s0

+ ∥(Σm)r2∥γ,OO-d,q,s0
∥∆12Um∥γ,OO-d,q,sc

+ ∥(Σm)r2∥γ,OO-d,q,sc
∥∆12Um∥γ,OO-d,q,s0

. (7.335)

For the estimate (Um)r1 (to alleviate the notation we shall remove in this part remove the subscript r1)
described by (7.330) we use the product laws leading to

∥Um∥γ,OO-d,q,s0
⩽ ∥Rm∥γ,OO-d,q,s0

+ ∥Rm∥γ,OO-d,q,s0
∥Ψm∥γ,OO-d,q,s0

(7.336)

and

∥Um∥γ,OO-d,q,sc
⩽ ∥Rm∥γ,OO-d,q,sc

+ ∥Rm∥γ,OO-d,q,s0
∥Ψm∥γ,OO-d,q,sc

+ ∥Rm∥γ,OO-d,q,sc
∥Ψm∥γ,OO-d,q,s0

. (7.337)

By (7.276), (7.243) and (7.290) together with (7.336) we infer

∥Um∥γ,OO-d,q,s0
⩽ Cεγ−1Nµc

0 N−µc
m . (7.338)
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Putting together the first estimate of (7.292), (7.276) and (7.243) we deduce that

max
j=1,2

∥(Ψm)rj ∥γ,OO-d,q,sc
≲ Nτ2q+τ2

m δm(sc)

≲ εγ−2Nτ2q+τ2
m . (7.339)

Hence we get in view of (7.337), (7.276) and (7.236)

∥Um∥γ,OO-d,q,sc
⩽ Cεγ−1. (7.340)

Plugging (7.338) and (7.340) into (7.335) implies

∥∆12Rm+1∥γ,OO-d,q,sc
⩽ ∥∆12Um∥γ,OO-d,q,sc

+ Cεγ−1∥∆12Ψm∥γ,OO-d,q,s0

+ Cεγ−1Nµc

0 N−µc
m ∥∆12Ψm∥γ,OO-d,q,sc

+ ∥(Σm)r2∥γ,OO-d,q,s0
∥∆12Um∥γ,OO-d,q,sc

+ ∥(Σm)r2∥γ,OO-d,q,sc
∥∆12Um∥γ,OO-d,q,s0

. (7.341)

Applying (7.278) and (7.243) gives

∥(Σm)r2∥γ,OO-d,q,s0
⩽ Cεγ−2Nµc

0 N−µc
m and ∥(Σm)r2∥γ,OO-d,q,sc

⩽ Cεγ−2Nτ2q+τ2
m . (7.342)

Inserting (7.342) into (7.341) allows to get

∥∆12Rm+1∥γ,OO-d,q,sc
⩽
(
1 + Cεγ−2Nµc

0 N−µc
m

)
∥∆12Um∥γ,OO-d,q,sc

+ Cεγ−2Nτ2q+τ2
m ∥∆12Um∥γ,OO-d,q,s0

+ Cεγ−1Nµc

0 N−µc
m ∥∆12Ψm∥γ,OO-d,q,sc

+ Cεγ−1∥∆12Ψm∥γ,OO-d,q,s0
. (7.343)

In a similar way, by combining (7.338), (7.342) with (7.334) we find

∥∆12Rm+1∥γ,OO-d,q,s0
⩽
(
1 + Cεγ−2Nµc

0 N−µc
m

)
∥∆12Um∥γ,OO-d,q,s0

+ Cεγ−1Nµc

0 N−µc
m ∥∆12Ψm∥γ,OO-d,q,s0

. (7.344)

From (7.331) and the product laws of Lemma A.6 we obtain ∀ s ∈ [s0, sc],

∥∆12Um∥γ,OO-d,q,s ⩽N
s−sc
m ∥∆12Rm∥γ,OO-d,q,sc

+ C∥∆12Rm∥γ,OO-d,q,s max
j=1,2

∥(Ψm)rj
∥γ,OO-d,q,s0

+ C∥∆12Rm∥γ,OO-d,q,s0
max
j=1,2

∥(Ψm)rj
∥γ,OO-d,q,s + C∥∆12Ψm∥γ,OO-d,q,s max

j=1,2
∥(Rm)rj

∥γ,OO-d,q,s0

+ C∥∆12Ψm∥γ,OO-d,q,s0
max
j=1,2

∥(Rm)rj
∥γ,OO-d,q,s.

Combining the foregoing estimate with (7.339), (7.276) and (7.290) yields

∥∆12Um∥γ,OO-d,q,s0
⩽Ns0−sc

m ∥∆12Rm∥γ,OO-d,q,sc
+ Cεγ−2Nµc

0 N−µc
m ∥∆12Rm∥γ,OO-d,q,s0

+ Cεγ−1Nµc

0 N−µc
m ∥∆12Ψm∥γ,OO-d,q,s0

(7.345)

and

∥∆12Um∥γ,OO-d,q,sc
⩽
(
1 + Cεγ−2Nµc

0 N−µc
m

)
∥∆12Rm∥γ,OO-d,q,sc

+ CNτ2q+τ2
m εγ−2∥∆12Rm∥γ,OO-d,q,s0

+ Cεγ−1Nµc

0 N−µc
m ∥∆12Ψm∥γ,OO-d,q,sc

+ Cεγ−1∥∆12Ψm∥γ,OO-d,q,s0
.
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Putting together the preceding estimate with (7.343), (7.344), (7.235) and (7.236) we deduce that

∥∆12Rm+1∥γ,OO-d,q,sc
⩽
(

1 + Cεγ−2Nµc

0 N−µc
m + Cεγ−2Ns0−sc+τ2q+τ2

m

)
∥∆12Rm∥γ,OO-d,q,sc

+ CNτ2q+τ2
m εγ−2∥∆12Rm∥γ,OO-d,q,s0

+ Cεγ−1Nµc

0 N−µc
m ∥∆12Ψm∥γ,OO-d,q,sc

+ Cεγ−1∥∆12Ψm∥γ,OO-d,q,s0
. (7.346)

In a similar way, by making appeal to (7.344), (7.345) and (7.236) we find

∥∆12Rm+1∥γ,OO-d,q,s0
⩽ Ns0−sc

m ∥∆12Rm∥γ,OO-d,q,sc
+ Cεγ−2Nµc

0 N−µc
m ∥∆12Rm∥γ,OO-d,q,s0

+ Cεγ−1Nµc

0 N−µc
m ∥∆12Ψm∥γ,OO-d,q,s0

. (7.347)

We shall now estimate ∆12Ψm. Remark that

∥∆12Ψm∥γ,OO-d,q,s =
∑

α∈Nd+1
|α|⩽q

γα sup
(λ,ω)∈O

 ∑
(l,k)∈Zd+1
|l|,|k|⩽Nm

⟨l, k⟩2(s−|α|) sup
j∈Z

∣∣∣∂αλ,ω∆12(Ψm)jj+k(λ, ω, l)
∣∣∣2


1
2

.

By virtue of (7.273), we get

(Ψm)jj0
(λ, ω, l) =

{
−(ϱm)jj0

(λ, ω, l)rjj0,m
(λ, ω, l) if (l, j) ̸= (0, j0)

0 if (l, j) = (0, j0),

where

(ϱm)jj0
(λ, ω, l) ≜

χ
(
(ω · l + µmj (λ, ω) − µmj0

(λ, ω))(γ⟨j − j0⟩)−1⟨l⟩τ2
)

ω · l + µmj (λ, ω) − µmj0
(λ, ω) ·

Recall from (7.249), that {irjj0,m
(λ, ω, l)} are the Fourier coefficients of PNm

Rm, that is

i rjj0,m
(λ, ω, l) = ⟨PNmRme0,j0 , el,j⟩L2(Td+1). (7.348)

We can write for non-zero coefficients

∆12(Ψm)jj+k(λ, ω, l) = ∆12(ϱm)jj+k(λ, ω, l)
(
rjj+k,m

)
r1

(λ, ω, l)

+
(
(ϱm)jj+k

)
r2

(λ, ω, l)∆12r
j
j+k,m(λ, ω, l).

Hence, using Lemma A.1-(iv)

∀q′ ∈ J0, qK, ∥∆12(Ψm)jj+k(∗, l)∥γ,Oq′ ≲ ∥∆12(ϱm)jj+k(∗, l)∥γ,Oq′ max
i∈{1,2}

∥
(
rjj+k,m

)
ri

(∗, l)∥γ,Oq′

+ max
i∈{1,2}

∥
(
(ϱm)jj+k

)
ri

(∗, l)∥γ,Oq′ ∥∆12r
j
j+k,m(∗, l)∥γ,Oq′ . (7.349)

From (7.348), we deduce

i∆12r
j
j0,m

(λ, ω, l) = ⟨PNm
∆12Rme0,j0 , el,j⟩L2(Td+1).

One can write
(ϱm)jj0

(λ, ω, l) = bl,j,j0,mχ̂
(
bl,j,j0,mBl,j,j0,m(λ, ω)

)
,
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with

bl,j,j0,m ≜ (γ⟨j − j0⟩)−1⟨l⟩τ2 , Bl,j,j0,m(λ, ω) ≜ ω · l + µmj (λ, ω) − µmj0
(λ, ω), χ̂(x) = χ(x)

x
·

Notice that from (7.288), one obtains

∀q′ ∈ J0, qK, ∥Bl,j,j0,m∥γ,Oq′ ≲ ⟨l, j − j0⟩. (7.350)

In a similar way to (7.257), one gets from (7.288)

∀q′ ∈ J0, qK, ∥(ϱm)jj0
(∗, l)∥γ,Oq′ ≲ γ−(q′+1)⟨l, j − j0⟩τ2q

′+τ2+q′
. (7.351)

Using Taylor formula in a similar way to (7.100), we find (to simplify the notation we remove the
dependence in (λ, ω))

∆12(ϱm)jj0
(l) = b2

l,j,j0,m(∆12Bl,j,j0,m)
ˆ 1

0
χ̂′
(
bl,j,j0,m

[
(1 − τ)(Bl,j,0,m)r1 + τ(Bl,j,0,m)r2

])
dτ.

We shall estimate ∆12Bl,j,j0,m. For that purpose, we use (7.270) to write

µmj = µ0
j +

m−1∑
n=0

⟨PNn
Rne0,j , e0,j⟩L2(Td+1).

We recall from Proposition 7.4 that

µ0
j (λ, ω, i0) = Ωj(λ) + jr1(λ, ω, i0), r1(λ, ω, i0) = ci0(λ, ω) − V0(λ).

Therefore

∆12µ
m
j = ∆12µ

0
j +

m−1∑
n=0

⟨∆12PNn
Rne0,j , e0,j⟩L2(Td+1)

and

∆12Bl,j,j0,m = ∆12
(
µmj − µmj0

)
= (j − j0)∆12ci +

m−1∑
n=0

⟨∆12PNn
Rne0,j , e0,j⟩L2(Td+1)

−
m−1∑
n=0

⟨∆12PNnRne0,j0 , e0,j0⟩L2(Td+1).

Hence, using (7.21), one gets

∀q′ ∈ J0, qK, ∥∆12Bl,j,j0,m∥γ,Oq′ ≲ ε|j − j0|∥∆12i∥γ,Oq′,sh+2 +
m−1∑
n=0

∥PNn
∆12Rn∥γ,OO-d,q′,s0

. (7.352)

Then, one obtains from Lemma A.1-(vi), (7.350) and (7.352)

∀q′ ∈ J0, qK, ∥∆12(ϱm)jj0
(∗, l)∥γ,Oq′ ≲ εγ−2−q′

⟨l, j − j0⟩τ2q
′+2τ2+q′+1∥∆12i∥γ,Oq′,sh+2 (7.353)

+ γ−2−q′
⟨l, j − j0⟩τ2q

′+2τ2+q′
m−1∑
n=0

∥PNn
∆12Rn∥γ,OO-d,q′,s0

.
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Gathering (7.349), (7.351) and (7.353) gives for all q′ ∈ J0, qK,

∥∆12(Ψm)jj+k(∗, l)∥γ,Oq′ ≲ εγ−2−q′
⟨l, k⟩τ2q

′+2τ2+q′+1∥∆12i∥γ,Oq′,sh+2 max
i∈{1,2}

∥
(
rjj+k,m

)
ri

(∗, l)∥γ,Oq′

+ γ−2−q′
⟨l, k⟩τ2q

′+2τ2+q′
max
i∈{1,2}

∥
(
rjj+k,m

)
ri

(∗, l)∥γ,Oq′

m−1∑
n=0

∥PNn
∆12Rn∥γ,OO-d,q′,s0

+ γ−1−q′
⟨l, k⟩τ2q

′+τ2+q′
∥∆12r

j
j+k,m(∗, l)∥γ,Oq′ .

We deduce that for all s ∈ [s0, S],

∥∆12Ψm∥γ,OO-d,q,s ≲ εγ
−2−q∥∆12i∥γ,Oq,sh+2∥PNmRm∥γ,OO-d,q,s+τ2q+2τ2+1

+ γ−2−q∥PNmRm∥γ,OO-d,q,s+τ2q+2τ2

m−1∑
n=0

∥PNn∆12Rn∥γ,OO-d,q,s0

+ γ−1−q∥PNm
∆12Rm∥γ,OO-d,q,s+τ2q+τ2

. (7.354)

We set

δm(s) = γ−1∥∆12Rm∥γ,OO-d,q,s and κm(s) ≜
m−1∑
n=0

δn(s). (7.355)

Then, using (7.354), (7.275) and (7.3), we get

∥∆12Ψm∥γ,OO-d,q,s0
≲ εγ−1−qNτ2

m ∥∆12i∥γ,Oq,sh+2δm(sl) + γ−qNτ2
m δm(sl)κm(s0)

+ γ−qNτ2q+τ2
m δm(s0) (7.356)

and

∥∆12Ψm∥γ,OO-d,q,sc
≲ εγ−1−qNτ2q+2τ2+1

m ∥∆12i∥γ,Oq,sh+2δm(sc) + γ−qNτ2q+2τ2
m δm(sc)κm(s0)

+ γ−qNτ2q+τ2
m δm(sc). (7.357)

According to (7.322), one has

δm(sl) ≲ εγ−2Nµc

0 N−µc
m and sup

m∈N
δm(sc) ≲ εγ−2 ≲ 1. (7.358)

Putting together (7.358) and (7.356) and using (7.236) yields

∥∆12Ψm∥γ,OO-d,q,s0
≲ εγ−1Nτ2−µc

m ∥∆12i∥γ,Oq,sh+2 +Nτ2−µc
m κm(s0) + γ−qNτ2q+τ2

m δm(s0). (7.359)

In a similar way, on gets by (7.358), (7.357) and (7.236)

∥∆12Ψm∥γ,OO-d,q,sc
≲ εγ−1Nτ2q+2τ2+1

m ∥∆12i∥γ,Oq,sh+2 +Nτ2q+2τ2
m κm(s0)

+ γ−qNτ2q+τ2
m δm(sc). (7.360)

Plugging (7.359) into (7.347) yields by virtue of (7.276) and (7.236)

δm+1(s0) ⩽ Ns0−sc
m δm(sc) + CNτ2q+τ2−µc

m δm(s0) + CNτ2−2µc
m κm(s0)

+ Cεγ−1Nτ2−2µc
m ∥∆12i∥γ,Oq,sh+2. (7.361)
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Therefore, inserting (7.359), (7.360) into (7.346) and using (7.236) implies

δm+1(sc) ⩽
(

1 + CNτ2q+τ2−µc
m + CNs0−sc+τ2q+τ2

m

)
δm(sc) + Cεγ−2−qNτ2q+τ2

m δm(s0)

+ CNτ2q+τ2−µc
m κm(s0) + Cεγ−1Nτ2q+2τ2+1−µc

m ∥∆12i∥γ,Oq,sh+2. (7.362)

Next, we intend to prove by induction in m ∈ N that

∀ k ⩽ m, δk(s0) ⩽ Nµc

0 N−µc

k ν(sc) and δk(sc) ⩽
(

2 − 1
k+1

)
ν(sc), (7.363)

with
ν(s) ≜ δ0(s) + εγ−1∥∆12i∥γ,Oq,sh+2.

The estimate (7.363) is obvious for m = 0 by Sobolev embeddings. Now let us assume that the preceding
property holds true at the order m and let us check it at the order m+ 1. Thus by applying (7.355) and
Lemma A.5, we get

sup
m∈N

κm(s0) ⩽ Cν(sc).

Putting together this estimate with the induction assumption, (7.361), (7.362), (7.329) and (7.236) yields

δm+1(s0) ⩽
(
2Ns0−sc

m + CNµc

0 Nτ2q+τ2−2µc
m

)
ν(sc)

and

δm+1(sc) ⩽
(

1 + CNτ2q+τ2−µc
m + CNs0−sc+τ2q+τ2

m

)(
2 − 1

m+ 1

)
ν(sc)

+ C
(
Nτ2q+τ2−µc
m +Nτ2q+2τ2+1−µc

m

)
ν(sc).

Since (7.329) implies in particular

µc ⩾ 2τ2q + 2τ2 + 1 and sc ⩾ 3
2µc + s0 + τ2q + τ2 + 1,

then proceeding similarly to the proof of (7.276), we conclude that

δm+1(s0) ⩽ Nµc

0 N−µc

m+1ν(sc) and δm+1(sc) ⩽
(

2 − 1
m+2

)
ν(sc),

which achieves the induction. The next target is to estimate ∆12r
∞
j . Then similarly to (7.286) we obtain

through a duality argument, Lemma A.6, (7.363) and Lemma A.5

∥∆12r
∞
j ∥γ,Oq ⩽

∞∑
m=0

∥∥∥⟨PNm∆12Rme0,j , e0,j⟩L2(Td+1)

∥∥∥γ,O
q

≲
∞∑
m=0

∥∥∆12Rm

∥∥γ,O
O-d,q,s0

≲ γν(sc)
∞∑
m=0

Nµc

0 N−µc
m

⩽ Cγ ν(sc).

From the particular value of p in (7.168), we infer

sc = sh + 4τ2q + 4τ2 = sh + p. (7.364)
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Then, applying (7.173) we obtain

∥∆12r
∞
j ∥γ,Oq ⩽ Cγ ν(sh + 4τ2q + 4τ2)

⩽ Cεγ−1 ∥∆12i∥γ,Oq,sh+σ4
.

Finally, combining the previous estimate with (7.313) and (7.170) we deduce

∀j ∈ Sc0, ∥∆12µ
∞
j ∥γ,Oq ≲ ∥∆12µ

0
j∥γ,Oq + ∥∆12r

∞
j ∥γ,Oq

≲ εγ−1|j|∥∆12i∥γ,Oq,sh+σ4
.

The achieves the proof of Proposition 7.5.

7.4 Approximate inverse in the normal directions

In this section we plan to construct an approximate right inverse in the normal directions for the linearized
operator L̂ω defined in (6.102) when the parameters are restricted in a Cantor like set. Our main result is
the following.

Proposition 7.6. Let (γ, q, d, τ1, s0, µ2, sh, S) satisfying (A.2), (A.1) and (7.235). There exists σ ≜
σ(τ1, τ2, q, d) ⩾ σ4 such that if

εγ−2−qNµ2
0 ⩽ ε0 and ∥I0∥γ,Oq,sh+σ ⩽ 1, (7.365)

then the following assertions hold true.

(i) Consider the operator L∞ defined in Proposition 7.5, then there exists a family of linear operators(
Tn
)
n∈N defined in O satisfying the estimate

∀s ∈ [s0, S], sup
n∈N

∥Tnρ∥γ,Oq,s ≲ γ−1∥ρ∥γ,Oq,s+τ1q+τ1

and such that for any n ∈ N, in the Cantor set

Λγ,τ1
∞,n(i0) =

⋂
(l,j)∈Zd×Sc

0
|l|⩽Nn

{
(λ, ω) ∈ O s.t.

∣∣ω · l + µ∞
j (λ, ω, i0)

∣∣ > γ⟨j⟩
⟨l⟩τ1

}
,

we have
L∞Tn = Id + E3

n,

with
∀s0 ⩽ s ⩽ s ⩽ S, ∥E3

nρ∥γ,Oq,s ≲ Ns−s
n γ−1∥ρ∥γ,Oq,s+1+τ1q+τ1

.

(ii) There exists a family of linear operators
(
Tω,n

)
n∈N satisfying

∀ s ∈ [s0, S], sup
n∈N

∥Tω,nρ∥γ,Oq,s ≲ γ−1
(

∥ρ∥γ,Oq,s+σ + ∥I0∥γ,Oq,s+σ∥ρ∥γ,Oq,s0+σ

)
(7.366)

and such that in the Cantor set

Gn(γ, τ1, τ2, i0) ≜ Oγ,τ1
∞,n(i0) ∩ Oγ,τ1,τ2

∞,n (i0) ∩ Λγ,τ1
∞,n(i0),

we have
L̂ωTω,n = Id + En,
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where En satisfies the following estimate

∀ s ∈ [s0, S], ∥Enρ∥γ,Oq,s0
≲ Ns0−s

n γ−1
(

∥ρ∥γ,Oq,s+σ + εγ−2∥I0∥γ,Oq,s+σ∥ρ∥γ,Oq,s0+σ

)
+ εγ−3Nµ2

0 N−µ2
n+1 ∥ρ∥γ,Oq,s0+σ.

Recall that L̂ω, Oγ,τ1
∞,n(i0) and Oγ,τ1,τ2

∞,n (i0) are given in Propositions 7.1, 7.2 and 7.5, respectively.

(iii) In the Cantor set Gn(γ, τ1, τ2, i0), we have the following splitting

L̂ω = L̂ω,n + R̂n with L̂ω,nTω,n = Id and R̂n = EnL̂ω,n,

where the operators L̂ω,n and R̂n are defined in O and satisfy the following estimates

∀s ∈ [s0, S], sup
n∈N

∥L̂ω,nρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s+1 + εγ−2∥I0∥γ,Oq,s+σ∥ρ∥γ,Oq,s0+1,

∀s ∈ [s0, S], ∥R̂nρ∥γ,Oq,s0
≲ Ns0−s

n γ−1
(

∥ρ∥γ,Oq,s+σ + εγ−2∥I0∥γ,Oq,s+σ∥ρ∥γ,Oq,s0+σ

)
+ εγ−3Nµ2

0 N−µ2
n+1 ∥ρ∥γ,Oq,s0+σ.

Proof. (i) From Proposition 7.5 we recall that

L∞ = ω · ∂φΠ⊥
S0

+ D∞.

Then we may split this operator as follows, using the projectors defined in (A.5)

L∞ = ΠNn
ω · ∂φΠNn

Π⊥
S0

+ D∞ − Π⊥
Nn
ω · ∂φΠ⊥

Nn
Π⊥

S0

≜ Ln − Rn, (7.367)

with Rn ≜ Π⊥
Nn
ω · ∂φΠ⊥

Nn
Π⊥

S0
. From this definition and the structure of D∞ in Proposition 7.5 we deduce

that

∀(l, j) ∈ Zd × Sc0, e−l,−jLnel,j =
{

i
(
ω · l + µ∞

j

)
if |l| ⩽ Nn

iµ∞
j if |l| > Nn.

Define the diagonal operator Tn by

Tnρ(λ, ω, φ, θ) ≜− i
∑

(l,j)∈Zd×Sc
0

|l|⩽Nn

χ((ω·l+µ∞
j (λ,ω,i0))γ−1⟨l⟩τ1)

ω·l+µ∞
j

(λ,ω,i0) ρl,j(λ, ω) ei(l·φ+jθ)

− i
∑

(l,j)∈Zd×Sc
0

|l|>Nn

ρl,j(λ,ω)
µ∞

j
(λ,ω,i0) e

i(l·φ+jθ),

where χ is the cut-off function defined in (6.92) and (ρl,j(λ, ω))l,j are the Fourier coefficients of ρ. We
recall from Proposition 7.5 that

µ∞
j (λ, ω, i0) = Ωj(λ) + jr1(λ, ω, i0) + r∞

j (λ, ω, i0) with r1(λ, ω, i0) = ci0(λ, ω) − V0(λ),

with the estimates
∀j ∈ Sc0, ∥µ∞

j ∥γ,Oq ≲ |j|,
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7. Reduction of the linearized operator in the normal directions

where we use in part the estimate (7.265), (7.239) and (7.170). According to Lemma 5.3-(iii), (7.265),
(7.239) and the smallness condition (7.236) we infer

|j| ≲ ∥µ∞
j ∥γ,O0 ⩽ ∥µ∞

j ∥γ,Oq .

Implementing the same arguments as for (7.258) one gets

∀s ⩾ s0, ∥Tnρ∥γ,Oq,s ≲ γ−1∥ρ∥γ,Oq,s+τ1q+τ1
. (7.368)

Moreover, by construction
LnTn = Id in Λγ,τ1

∞,n(i0) (7.369)

since χ(·) = 1 in this set. It follows from (7.367) that

∀ (λ, ω) ∈ Λγ,τ1
∞,n(i0), L∞Tn = Id − RnTn

≜ Id + E3
n. (7.370)

Notice that by Lemma A.1-(ii),

∀ s0 ⩽ s ⩽ s, ∥Rnρ∥γ,Oq,s ≲ Ns−s
n ∥ρ∥γ,Oq,s+1.

Combining this estimate with (7.368) yields

∀ s0 ⩽ s ⩽ s, ∥E3
nρ∥γ,Oq,s ≲ Ns−s

n ∥Tnρ∥γ,Oq,s+1

≲ Ns−s
n γ−1∥ρ∥γ,Oq,s+1+τ1q+τ1

. (7.371)

(ii) Let us define

Tω,n ≜ B⊥Φ∞TnΦ−1
∞ B−1

⊥ , (7.372)

where the operators B⊥ and Φ∞ are defined in Propositions 7.4 and 7.5 respectively. Notice that Tω,n is
defined in the whole range of parameters O. Since the condition (7.365) is satisfied, then, both Propositions
7.2 and 7.5 apply and from (7.150) we obtain

∀s ∈ [s0, S], ∥Tω,nρ∥γ,Oq,s ≲ ∥Φ∞TnΦ−1
∞ B−1

⊥ ρ∥γ,Oq,s + ∥I0∥γ,Oq,s+σ∥Φ∞TnΦ−1
∞ B−1

⊥ ρ∥γ,Oq,s0
.

By using (7.237) and (7.365), one gets

∀s ∈ [s0, S], ∥Φ∞TnΦ−1
∞ B−1

⊥ ρ∥γ,Oq,s ≲ ∥TnΦ−1
∞ B−1

⊥ ρ∥γ,Oq,s + ∥I0∥γ,Oq,s+σ∥TnΦ−1
∞ B−1

⊥ ρ∥γ,Oq,s0
.

Thus the point (i) of the current proposition implies

∀s ⩾ s0, ∥TnΦ−1
∞ B−1

⊥ ρ∥γ,Oq,s ≲ γ−1∥Φ−1
∞ B−1

⊥ ρ∥γ,Oq,s+τ1q+τ1
.

Applying (7.237) and (7.150) with (7.365) yields

∀s ∈ [s0, S], ∥Φ−1
∞ B−1

⊥ ρ∥γ,Oq,s ≲ ∥B−1
⊥ ρ∥γ,Oq,s + ∥I0∥γ,Oq,s+σ∥B−1

⊥ ρ∥γ,Oq,s0

≲ ∥ρ∥γ,Oq,s + ∥I0∥γ,Oq,s+σ∥ρ∥γ,Oq,s0
.
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Putting together the preceding three estimates gives (7.366). Now combining Propositions 7.4 and 7.5, we
find that in the Cantor set Oγ,τ1

∞,n(i0) ∩ Oγ,τ1,τ2
∞,n (i0) the following decomposition holds

Φ−1
∞ B−1

⊥ L̂ωB⊥Φ∞ = Φ−1
∞ L0Φ∞ + Φ−1

∞ E1
nΦ∞

= L∞ + E2
n + Φ−1

∞ E1
nΦ∞.

It follows that in the Cantor set Oγ,τ1
∞,n(i0) ∩ Oγ,τ2

∞,n(i0) ∩ Λγ,τ1
∞,n(i0) one has by virtue of the identity (7.370)

Φ−1
∞ B−1

⊥ L̂ωB⊥Φ∞Tn = Id + E3
n + E2

nTn + Φ−1
∞ E1

nΦ∞Tn,

which gives, using (7.372), the following identity in Gn(γ, τ1, τ2, i0)

L̂ωTω,n = Id + B⊥Φ∞
(
E3
n + E2

nTn + Φ−1
∞ E1

nΦ∞Tn
)
Φ−1

∞ B−1
⊥

≜ Id + B⊥Φ∞E4
nΦ−1

∞ B−1
⊥

≜ Id + En. (7.373)

The estimate of the first term of E4
n is given in (7.371). For the second term of E4

n we use (7.240) and
(7.368) leading to

∥E2
nTnρ∥γ,Oq,s0

≲ εγ−2Nµ2
0 N−µ2

n+1 ∥Tnρ∥γ,Oq,s0+1

≲ εγ−3Nµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+1+τ1q+τ1
. (7.374)

For the estimate of Φ−1
∞ E1

nΦ∞Tn, we combine (7.237), (7.171), (7.368) and (7.365) to get

∥Φ−1
∞ E1

nΦ∞Tnρ∥γ,Oq,s0
≲ ∥E1

nΦ∞Tnρ∥γ,Oq,s0

≲ εNµ2
0 N−µ2

n+1 ∥Φ∞Tnρ∥γ,Oq,s0+2

≲ εγ−1Nµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+2+τ1q+τ1
. (7.375)

Putting together (7.371) and (7.374) and (7.375) we find

∥E4
nρ∥γ,Oq,s0

≲ Ns0−s
n γ−1∥ρ∥γ,Os+2+τ1q+τ1

+ εγ−3Nµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+2+τ1q+τ1
. (7.376)

Set Ψ = B⊥Φ∞ then from (7.237), (7.150) and (7.365) we deduce that

∀s ∈ [s0, S], ∥Ψ±1ρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s + εγ−2∥I0∥γ,Oq,s+σ∥ρ∥γ,Oq,s0
. (7.377)

Straightforward computations based on (7.376), (7.377) and (7.365) yields

∥ΨE4
nΨ−1ρ∥γ,Oq,s0

≲ ∥E4
nΨ−1ρ∥γ,Oq,s0

≲ Ns0−s
n γ−1∥Ψ−1ρ∥γ,Os+2+τ1q+τ1

+ εγ−3Nµ2
0 N−µ2

n+1 ∥Ψ−1ρ∥γ,Oq,s0+2+τ1q+τ1

≲ Ns0−s
n γ−1(∥ρ∥γ,Oq,s+2+τ1q+τ1

+ εγ−2∥I0∥γ,Oq,s+σ∥ρ∥γ,Oq,s0

)
+ εγ−3Nµ2

0 N−µ2
n+1 ∥ρ∥γ,Oq,s0+2+τ1q+τ1

.

Consequently, taking σ large enough, we get

∥Enρ∥γ,Oq,s0
≲ Ns0−s

n γ−1(∥ρ∥γ,Oq,s+σ + εγ−2∥I0∥γ,Oq,s+σ∥ρ∥γ,Oq,s0+σ
)

+ εγ−3Nµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+σ.
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(iii) According to (7.373), one can write in the Cantor set Gn(γ, τ1, τ2, i0)

L̂ω = T−1
ω,n + EnT−1

ω,n. (7.378)

Gathering (7.372) and (7.369), one obtains in the Cantor set Gn(γ, τ1, τ2, i0)

L̂ω,n ≜ T−1
ω,n = B⊥Φ∞LnΦ−1

∞ B−1
⊥ = ΨLnΨ−1.

Hence, (7.378) can be rewritten

L̂ω = L̂ω,n + R̂n with R̂n ≜ EnL̂ω,n. (7.379)

Putting together (7.367), (7.377) and (7.365), we obtain

∀s ∈ [s0, S], ∥L̂ω,nρ∥γ,Oq,s = ∥ΨLnΨ−1ρ∥γ,Oq,s
≲ ∥LnΨ−1ρ∥γ,Oq,s + εγ−2∥I0∥γ,Oq,s+σ∥LnΨ−1ρ∥γ,Oq,s0

≲ ∥Ψ−1ρ∥γ,Oq,s+1 + εγ−2∥I0∥γ,Oq,s+σ∥Ψ−1ρ∥γ,Oq,s0+1

≲ ∥ρ∥γ,Oq,s+1 + εγ−2∥I0∥γ,Oq,s+σ∥ρ∥γ,Oq,s0+1. (7.380)

Hence combining this estimate with (7.378) yields

∀s ∈ [s0, S], ∥R̂nρ∥γ,Oq,s0
≲ Ns0−s

n γ−1
(

∥ρ∥γ,Oq,s+σ + εγ−2∥I0∥γ,Oq,s+σ∥ρ∥γ,Oq,s0+σ

)
+ εγ−3Nµ2

0 N−µ2
n+1 ∥ρ∥γ,Oq,s0+σ.

This achieves the proof of the third point and the proof of the proposition is now complete.

8 Proof of the main result

This section is devoted to the proof of Theorem 3.1. For this aim we intend to implement Nash-Moser scheme
in order to construct zeros for the nonlinear functional F

(
i, α, λ, ω, ε

)
defined in (6.21). We shall be able to

capture the solutions when the parameters (λ, ω) belong to a suitable final Cantor set Gγ∞ obtained as the
intersection of all the Cantor sets required during the steps of the scheme to invert the linearized operator.
More precisely, we get a relatively smooth function (λ, ω) ∈ O 7→ U∞(λ, ω) =

(
i∞(λ, ω), α∞(λ, ω)

)
such

that
∀(λ, ω) ∈ Gγ∞, F

(
U∞(λ, ω), λ, ω, ε

)
= 0.

To generate solutions to the initial Hamiltonian equation (6.2) we should adjust the parameters so that
α∞(λ, ω) = −ωEq(λ), where ωEq corresponds to the equilibrium frequency vector defined in (5.32). As
a consequence, nontrivial solutions are constructed when the scalar parameter λ is selected in the final
Cantor set

Cε∞ =
{
λ ∈ (λ0, λ1) s.t. (λ, ω(λ, ε)) ∈ Gγ∞ with α∞(λ, ω(λ, ε)) = −ωEq(λ)

}
.

The measure of this set will be discussed in Section 8.2.

8.1 Nash-Moser scheme

In this section we implement the Nash-Moser scheme, which is a modified Newton method implemented
with a suitable Banach scales and through a frequency cut-off. Basically, it consists in a recursive
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construction of approximate solutions to the equation F
(
i, α, λ, ω, ε

)
= 0 where the functional F is defined

in (6.21). At each step of this scheme, we need to construct an approximate inverse of the linearized
operator at a state near the equilibrium by applying the reduction procedure developed in Section 7. This
enables to get the result of Theorem 6.1 with the suitable tame estimates associated to the final loss of
regularity σ that could be arranged to be large enough. We point out that σ depends only on the shape
of the Cantor set through the parameters τ1, τ2, d and on the non degeneracy of the equilibrium frequency
through q = 1 + q0, where q0 be defined in Lemma 5.5. However, σ is independent of the regularity of the
solutions that we want to construct. Now, we shall fix the following parameters needed to implement
Nash-Moser scheme and related to the geometry of the Cantor sets encoded in τ1, τ2, d fixed by (A.1) and
to the parameter q = q0 + 1, 

a = τ2 + 2
µ1 = 3q(τ2 + 2) + 6σ + 6
a1 = 6q(τ2 + 2) + 12σ + 15
a2 = 3q(τ2 + 2) + 6σ + 9
µ2 = 2q(τ2 + 2) + 5σ + 7
sh = s0 + 4q(τ2 + 2) + 9σ + 11
sm = 2sh − s0.

(8.1)

The numbers a1 and a2 will describe the rate of convergence for the regularity s0 and s0 + σ, respectively.
They appear in the statements (P1)n and (P2)n in the Proposition 8.1. The parameter µ1 controls the
norm inflation at the high regularity index sm and appears in (P3)n. As for the parameter a, it is linked
to the thickness of a suitable enlargement of the intermediate Cantor sets, needed to construct classical
extensions of our approximate solutions. Finally, the numbers µ2 and sh correspond to those already
encountered before in the reduction of the linearized operator and are now fixed to their minimal required
values. In particular, we recall that µ2 corresponds to the rate of convergence of the error terms emerging
in the almost reducibility of the linearized operator, for instance we refer to Theorem 6.1. We should
emphasize that, by taking σ large enough, the choice for µ2 and sh done in (8.1) enables to cover all the
required assumptions in (7.15) and (7.235). Another assumption that we need to fix is related to γ,N0

and ε

0 < a < 1
µ2+q+2 , γ ≜ εa, N0 ≜ γ

−1. (8.2)

This constraint is required for the measuring the final Cantor set and to check that it is massive, for more
details we refer to Proposition 8.2.
We shall start with defining the finite dimensional subspaces where the approximate solutions are expected
to live with controlled estimates. Consider the space,

En ≜
{
I = (Θ, I, z) s.t. Θ = ΠnΘ, I = ΠnI and z = Πnz

}
,

where Πn is the projector defined by

f(φ, θ) =
∑

(l,j)∈Zd×Z

fl,je
i(l·φ+jθ) ⇒ Πnf(φ, θ) =

∑
⟨l,j⟩⩽Nn

fl,je
i(l·φ+jθ),

where the sequence (Nn) is defined in (6.94). We observe that the same definition applies without
ambiguity when the functions depend only on φ such as the action and the angles unknowns. The main
result of this section is to prove the following induction statement.

Proposition 8.1 (Nash-Moser). Let (τ1, τ2, q, d, s0) satisfy (A.2) and (A.1). Consider the parameters
fixed by (8.1) and (8.2). There exist C∗ > 0 and ε0 > 0 such that for any ε ∈ [0, ε0] we get for all n ∈ N
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the following properties,

(P1)n There exists a q-times differentiable function

Wn : O → En−1 × Rd × Rd+1

(λ, ω) 7→
(
In, αn − ω, 0

)
satisfying

W0 = 0 and for n ⩾ 1, ∥Wn∥γ,Oq,s0+σ ⩽ C∗εγ
−1Nqa

0 .

By setting

U0 =
(

(φ, 0, 0), ω, (λ, ω)
)

and for n ∈ N∗, Un = U0 +Wn and Hn = Un − Un−1,

then

∀s ∈ [s0, S], ∥H1∥γ,Oq,s ⩽ 1
2C∗εγ

−1Nqa
0 and ∀ 2 ⩽ k ⩽ n, ∥Hk∥γ,Oq,s0+σ ⩽ C∗εγ

−1N−a2
k−1 .

(P2)n Define
in = (φ, 0, 0) + In, γn = γ(1 + 2−n) ∈ [γ, 2γ].

The embedded torus in satisfies the reversibility condition

Sin(φ) = in(−φ),

where the involution S is defined in (6.13). Introduce

Aγ
0 = O and Aγ

n+1 = Aγ
n ∩ Gn(γn+1, τ1, τ2, in),

where Gn(γn+1, τ1, τ2, in) is described in Proposition 7.6 and consider the open sets

∀r > 0, Or
n ≜

{
(λ, ω) ∈ O s.t. dist

(
(λ, ω),A2γ

n

)
< rN−a

n

}
,

where dist(x,A) = inf
y∈A

∥x− y∥. Then we have the following estimate

∥F(Un)∥γ,O
2γ
n

q,s0 ⩽ C∗εN
−a1
n−1 .

(P3)n ∥Wn∥γ,Oq,sm+σ ⩽ C∗εγ
−1Nµ1

n−1.

Remark 8.1. Let O be an open subset of O. Since ∀n ∈ N, γn ∈ [γ, 2γ], then the norms ∥ · ∥γ,Oq,s and
∥ · ∥γn,O

q,s . are equivalent uniformly in n.

Proof. • Initialization : By construction, U0 =
(

(φ, 0, 0), ω, (λ, ω)
)
. Notice that the flat torus iflat(φ) =

(φ, 0, 0) satisfies obviously the reversibility condition. By (6.21), we have

F(U0) = ε

 −∂IPε((φ, 0, 0))
∂ϑPε((φ, 0, 0))

−∂θ∇zPε((φ, 0, 0))

 .

Using Lemma 6.3, we get
∀s ⩾ 0, ∥F(U0)∥γ,Oq,s ⩽ C∗ε, (8.3)
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up to taking C∗ large enough. The properties (P1)0, (P2)0 and (P3)0 then follow immediately since
N−1 = 1 and O2γ

0 = O and by setting W0 = 0.

• Induction step : Given n ∈ N, assume that (P1)k, (P2)k and (P3)k are true for all k ∈ J0, nK and let
us check them at the next order n+ 1. Introduce the linearized operator of F at the state (in, αn)

Ln ≜ Ln(λ, ω) ≜ di,αF(in
(
λ, ω), αn(λ, ω), (λ, ω)

)
.

In order to construct the next approximation Un+1, we need an approximate right inverse for Ln. Its
construction was performed along the preceding sections and we refer to Theorem 6.1 for a precise
statement. To apply this result and get some bounds on Un+1 we need to establish first some intermediate
results connected to the smallness condition and to some Cantor set inclusions.

▶ Smallness/boundedness properties. First of all, remark that the parameters conditions (7.3)
are automatically satisfied by (8.1). Then, provided that the smallness assumption (7.365) is satisfied,
Proposition 7.6 applies. It remains to check that (7.365) is satisfied. According to the first condition in
(8.2) and choosing ε small enough, we can ensure

εγ−2−qNµ2
0 = ε1−a(µ2+q+2) ⩽ ε0 (8.4)

for some a priori fixed ε0 > 0. Therefore the first assumption in (7.365) holds. We now turn to the second
assumption. Since from (8.1) sm = 2sh − s0, then by interpolation inequality in Lemma A.1, we have

∥Hn∥γ,Oq,sh+σ ≲
(

∥Hn∥γ,Oq,s0+σ

) 1
2
(

∥Hn∥γ,Oq,sm+σ

) 1
2
. (8.5)

Besides, by using (P1)n, we find

∀s ∈ [s0, S], ∥H1∥γ,Oq,s ⩽ 1
2C∗εγ

−1Nqa
0 and ∥Hn∥γ,Oq,s0+σ ⩽ C∗εγ

−1N−a2
n−1 . (8.6)

Now (P3)n and (P3)n−1 imply

∥Hn∥γ,Oq,sm+σ = ∥Un − Un−1∥γ,Oq,sm+σ

= ∥Wn −Wn−1∥γ,Oq,sm+σ

⩽ ∥Wn∥γ,Oq,sm+σ + ∥Wn−1∥γ,Oq,sm+σ

⩽ 2C∗εγ
−1Nµ1

n−1.

Putting together the foregoing estimates into (8.5) gives for n ⩾ 2,

∥Hn∥γ,Oq,sh+σ ⩽ CC∗εγ
−1N

1
2 (µ1−a2)
n−1 (8.7)

and for n = 1,
∥H1∥γ,Oq,sh+σ ⩽

1
2C∗εγ

−1Nqa
0 . (8.8)

Now from (8.1) we infer
a2 ⩾ µ1 + 2. (8.9)
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Thus, by (8.2) and Lemma A.5, we get for small ε

∥Wn∥γ,Oq,sh+σ ⩽ ∥H1∥γ,Oq,sh+σ +
n∑
k=2

∥Hk∥γ,Oq,sh+σ

⩽ 1
2C∗εγ

−1Nqa
0 + CC∗εγ

−1
n∑
k=0

N−1
k

⩽ 1
2C∗εγ

−1Nqa
0 + CN−1

0 C∗εγ
−1

⩽ C∗ε
1−a(1+qa).

One can check from (8.1) and (8.2) that
a ⩽ 1

2(1+qa) (8.10)

and therefore, by choosing ε small enough and since σ ⩾ σ, we get

∥In∥γ,Oq,sh+σ ⩽ ∥Wn∥γ,Oq,sh+σ ⩽ C∗ε
1
2

⩽ 1.

As we have already mentioned, the parameter σ is the final loss of regularity constructed in Theorem 6.1
and depends only on the parameters τ1, τ2, q and d but it is independent of the state and the regularity.
Hence it can be selected large enough such that s0 + σ ⩾ sh + σ4 where sh and σ4 are respectively defined
in (7.15) and Proposition 7.5. Then using (8.6) and Sobolev embeddings, we obtain

∀n ⩾ 2, ∥Hn∥γ,Oq,sh+σ4
⩽ C∗εγ

−1N−a2
n−1 . (8.11)

▶ Set inclusions. From the previous point, Propositions 7.2, 7.5 and 7.6 apply and allow us to perform
the reduction of the linearized operator in the normal directions at the current step. Therefore, the sets
Aγ
k for all k ⩽ n+ 1 are well-defined. We shall now prove the following inclusions needed later to establish

suitable estimates for the extensions.

A2γ
n+1 ⊂ O4γ

n+1 ⊂
(
Aγ
n+1 ∩ O2γ

n

)
. (8.12)

Notice that the first inclusion is obvious by construction since O4γ
n+1 is an enlargement of A2γ

n+1. It remains
to prove the last inclusion. We have the inclusion

∀k ∈ J0, nK, O4γ
k+1 ⊂ O2γ

k . (8.13)

Indeed, since by construction A2γ
k+1 ⊂ A2γ

k then taking (λ, ω) ∈ O4γ
k+1 we have the following estimates

dist
(
(λ, ω),A2γ

k

)
⩽ dist

(
(λ, ω),A2γ

k+1
)

< 4γN−a
k+1 = 4γN−a

k N
− 1

2a
0

< 2γN−a
k ,

provided that 2N− 1
2a

0 < 1, which is true up to taking N0 large enough, that is in view of (8.2) for ε small
enough. We shall now prove by induction in k that

∀k ∈ J0, n+ 1K, O4γ
k ⊂ Aγ

k . (8.14)
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The case k = 0 is trivial since O4γ
0 = O = Aγ

0 . Let us now assume that (8.14) is true for the index
k ∈ J0, nK and let us check it at the next order. From (8.13) and (8.14), we obtain

O4γ
k+1 ⊂ O2γ

k ⊂ O4γ
k ⊂ Aγ

k .

Therefore, we are left to check that

O4γ
k+1 ⊂ Gk

(
γk+1, τ1, τ2, ik

)
.

Let (λ, ω) ∈ O4γ
k+1, then by construction, there exists (λ′, ω′) ∈ A2γ

k+1 such that

dist ((λ, ω), (λ′, ω′)) < 4γN−a
k+1.

Hence, for all (l, j) ∈ Zd × Sc0 with |l| ⩽ Nk, we have by left triangle and Cauchy-Schwarz inequalities
together with (λ′, ω′) ∈ Λ2γk+1,τ1

∞,k (ik)

∣∣ω · l + µ∞
j (λ, ω, ik)

∣∣ ⩾ ∣∣ω′ · l + µ∞
j (λ′, ω′, ik)

∣∣− |ω − ω′||l| −
∣∣µ∞
j (λ, ω, ik) − µ∞

j (λ′, ω′, ik)
∣∣

> γk+1⟨j⟩
⟨l⟩τ1 − 4γNkN−a

k+1 −
∣∣µ∞
j (λ, ω, ik) − µ∞

j (λ′, ω′, ik)
∣∣

> γk+1⟨j⟩
⟨l⟩τ1 − 4γN1−a

k+1 −
∣∣µ∞
j (λ, ω, ik) − µ∞

j (λ′, ω′, ik)
∣∣ .

Using the Mean Value Theorem and the definition of O4γ
k+1 yields

∣∣µ∞
j (λ, ω, ik) − µ∞

j (λ′, ω′, ik)
∣∣ ⩽ |(λ, ω) − (λ′, ω′)|γ−1∥µ∞

j (ik)∥γ,Oq
⩽ 4N−a

k+1∥µ∞
j (ik)∥γ,Oq .

On the other hand,
∀j ∈ Sc0, ∥µ∞

j (ik)∥γ,Oq ⩽ ∥µ∞
j (ik) − Ωj∥γ,Oq + ∥Ωj∥γ,Oq .

Using the asymptotic (5.17) and the smoothness of λ 7→ Ij(λ)Kj(λ) for all j ∈ N∗, one has

∥Ωj∥γ,Oq ⩽ C|j|.

Since (7.236) is satisfied by the previous point, we can apply (7.238) and obtain

∀j ∈ Sc0, ∥µ∞
j (ik) − Ωj∥γ,Oq ⩽ C|j|.

Hence
∀j ∈ Sc0, ∥µ∞

j (ik)∥γ,Oq ⩽ C|j|.

It follows that ∣∣µ∞
j (λ, ω, ik) − µ∞

j (λ′, ω′, ik)
∣∣ ⩽ C⟨j⟩N−a

k+1 ⩽ Cγ⟨j⟩N1−a
k+1 .

Since |l| ⩽ Nk ⩽ Nk+1 and γk+1 ⩾ γ, we obtain

∣∣ω · l + µ∞
j (λ, ω, ik)

∣∣ ⩾ 2γk+1⟨j⟩
⟨l⟩τ1 − Cγ⟨j⟩N1−a

k+1

⩾ γk+1⟨j⟩
⟨l⟩τ1

(
2 − CNτ1+1−a

k+1

)
.

From (8.1) and (A.1) we infer
a ⩾ τ2 + 2 ⩾ τ1 + 2 (8.15)
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and we can take N0 sufficiently large to ensure

CNτ1+1−a
k+1 ⩽ CN−1

0 < 1,

allowing to finally get ∣∣ω · l + µ∞
j (λ, ω, ik)

∣∣ > γk+1⟨j⟩
⟨l⟩τ1 ·

This shows that, (λ, ω) ∈ Λγk+1,τ1
∞,k (ik). Let us now check that (λ, ω) ∈ Oγk+1,τ1

∞,k (ik). For all (l, j) ∈ Zd × Sc0
with |l| ⩽ Nk, we have by Cauchy-Schwarz inequality together with (λ′, ω′) ∈ O2γk+1,τ1

∞,k (ik)

|ω · l + jcik (λ, ω)| ⩾ |ω′ · l + jcik (λ′, ω′)| − |ω − ω′||l| − |j| |cik (λ, ω) − cik (λ′, ω′)|

>
4γυ

k+12υ⟨j⟩
⟨l⟩τ1 − 4γN1−a

k+1 − ⟨j⟩ |cik (λ, ω) − cik (λ′, ω′)| .

Using the Mean Value Theorem and the definition of O4γ
k+1 yields

|cik (λ, ω) − cik (λ′, ω′)| ⩽ CN−a
k+1∥cik ∥γ,Oq .

Since (7.16) is satisfied by the previous point, we can apply (7.17) leading to

∥cik ∥γ,Oq ⩽ ∥cik − V0∥γ,Oq + ∥V0∥γ,Oq
⩽ C.

Thus
|cik (λ, ω) − cik (λ′, ω′)| ⩽ Cγγ−1N−a

k+1 ⩽ CγN
1−a
k+1 .

Therefore, we obtain from the definition of γk and υ ∈ (0, 1)

|ω · l + jcik (λ, ω)| > 4γυ
k+12υ⟨j⟩
⟨l⟩τ1 − Cγ⟨j⟩N1−a

k+1

⩾
4γυ

k+1⟨j⟩
⟨l⟩τ1

(
2υ − CNτ1+1−a

k+1

)
.

By the choice of a made in (8.15), we can ensure, up to taking N0 sufficiently large,

2υ − CNτ1+1−a
k+1 ⩾ 2υ − CN−1

0 > 1,

so that
|ω · l + jcik (λ, ω)| > 4γυ

k+1⟨j⟩
⟨l⟩τ1 ·

As a consequence, (λ, ω) ∈ Oγk+1,τ1
∞,k (ik). Let us now check that (λ, ω) ∈ O

γk+1,τ1,τ2
∞,k (ik). For all (l, j, j0) ∈

Zd × (Sc0)2 with |l| ⩽ Nk, we have by the triangle and Cauchy-Schwarz inequalities together with
(λ′, ω′) ∈ O

2γk+1,τ1,τ2
∞,k (ik)

∣∣ω · l + µ∞
j (λ, ω, ik) − µ∞

j0
(λ, ω, ik)

∣∣ ⩾ ∣∣ω′ · l + µ∞
j (λ′, ω′, ik) − µ∞

j0
(λ′, ω′, ik)

∣∣− |ω − ω′||l|

−
∣∣µ∞
j (λ, ω, ik) − µ∞

j0
(λ, ω, ik) + µ∞

j0
(λ′, ω′, ik) − µ∞

j (λ′, ω′, ik)
∣∣

> 4γk+1⟨j−j0⟩
⟨l⟩τ2 − 4γN1−a

k+1

−
∣∣µ∞
j (λ, ω, ik) − µ∞

j0
(λ, ω, ik) + µ∞

j0
(λ′, ω′, ik) − µ∞

j (λ′, ω′, ik)
∣∣ .

We recall by virtue of Proposition 7.5 that

µ∞
j (λ, ω, ik) = µ0

j (λ, ω, ik) + r∞
j (λ, ω, ik).
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Thus

∣∣µ∞
j (λ, ω, ik) − µ∞

j0
(λ, ω, ik) + µ∞

j0
(λ′, ω′, ik) − µ∞

j (λ′, ω′, ik)
∣∣

⩽
∣∣µ0
j (λ, ω, ik) − µ0

j0
(λ, ω, ik) + µ0

j0
(λ′, ω′, ik) − µ0

j (λ′, ω′, ik)
∣∣

+
∣∣r∞
j (λ, ω, ik) − r∞

j (λ′, ω′, ik)
∣∣+
∣∣r∞
j0

(λ, ω, ik) − r∞
j0

(λ′, ω′, ik)
∣∣ .

According to the Mean Value Theorem, (7.255) and the definition of O4γ
k+1 we find

∣∣µ0
j (λ, ω, ik) − µ0

j0
(λ, ω, ik) + µ0

j0
(λ′, ω′, ik) − µ0

j (λ′, ω′, ik)
∣∣ ⩽ γCN1−a

k+1 ⟨j − j0⟩.

Applying once again the Mean Value Theorem, (7.239), (8.4) and the definition of O4γ
n+1 yields

∣∣r∞
j (λ, ω, ik) − r∞

j (λ′, ω′, ik)
∣∣ ⩽ CγN−a

k+1εγ
−2 ⩽ γCN1−a

k+1 ⟨j − j0⟩.

Putting together the foregoing estimates and the facts that |l| ⩽ Nk and γk+1 ⩾ γ we infer

∣∣ω · l + µ∞
j (λ, ω, ik) − µ∞

j0
(λ, ω, ik)

∣∣ ⩾ γk+1⟨j−j0⟩
⟨l⟩τ2

(
4 − CNτ2+1−a

k+1

)
.

By virtue of (8.15) and taking N0 sufficiently large we get

CNτ2+1−a
n ⩽ CN−1

0 < 1.

This implies ∣∣ω · l + µ∞
j (λ, ω, ik) − µ∞

j0
(λ, ω, ik)

∣∣ > 2γk+1⟨j−j0⟩
⟨l⟩τ2 .

As a consequence, we deduce that (λ, ω) ∈ O
γk+1,τ1,τ2
∞,k (in). Finally, (λ, ω) ∈ Gk

(
γk+1, τ1, τ2, ik

)
and there-

fore (λ, ω) ∈ Aγ
k+1. This achieves the induction proof of (8.14).

▶ Construction of the next approximation. We are now going to construct the next approximation
Un+1 by using a modified Nash-Moser scheme. The assumption (7.365) being satisfied, we can apply
Theorem 6.1 with Ln and obtain the existence of an operator Tn ≜ Tn(λ, ω) well-defined in the whole set
of parameters O and satisfying the following estimates

∀s ∈ [s0, S], ∥Tnρ∥γ,Oq,s ≲ γ−1
(

∥ρ∥γ,Oq,s+σ + ∥In∥γ,Oq,s+σ∥ρ∥γ,Oq,s0+σ

)
(8.16)

and
∥Tnρ∥γ,Oq,s0

≲ γ−1∥ρ∥γ,Oq,s0+σ. (8.17)

Moreover, when it is restricted to the Cantor set Gn(γn+1, τ1, τ2, in), Tn is an approximate right inverse
of Ln with suitable tame estimates needed later, see Theorem 6.1. Next we define,

Ũn+1 ≜ Un + H̃n+1 with H̃n+1 ≜ (În+1, α̂n+1, 0) ≜ −ΠnTnΠnF(Un) ∈ En × Rd × Rd+1,

where Πn is defined by

Πn(I, α, 0) = (ΠnI, α, 0) and Π⊥
n (I, α, 0) = (ΠnI, 0, 0). (8.18)

Notice that the projectors Πn are reversibility preserving due to the symmetry with respect to the Fourier
modes. Then, using the reversibility of Tn together with (6.22) and Lemma 4.2, one deduces from
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Sin(φ) = in(−φ) that
SÎn+1(φ) = În+1(−φ). (8.19)

Note that Un is defined in the full set O and so does Ũn+1. Nevertheless, we will not be working with this
natural extension but rather with a suitable localized version of it around the Cantor set Aγ

n+1. Doing so,
we shall get a nice decay property allowing the scheme to converge. Now, introduce the quadratic function

Qn = F(Un + H̃n+1) − F(Un) − LnH̃n+1, (8.20)

then simple transformations give

F(Ũn+1) = F(Un) − LnΠnTnΠnF(Un) +Qn

= F(Un) − LnTnΠnF(Un) + LnΠ⊥
nTnΠnF(Un) +Qn

= F(Un) − ΠnLnTnΠnF(Un) + (LnΠ⊥
n − Π⊥

nLn)TnΠnF(Un) +Qn

= Π⊥
nF(Un) − Πn(LnTn − Id)ΠnF(Un) + (LnΠ⊥

n − Π⊥
nLn)TnΠnF(Un) +Qn. (8.21)

In the sequel we shall prove
∥F(Un+1)∥γ,O

2γ
n+1

q,s0 ⩽ C∗εN
−a1
n ,

with Un+1 a suitable extension of Ũn+1|O2γ
n+1

.

▶ Estimates of F(Ũn+1). We shall now estimate F(Ũn+1) with the norm ∥ · ∥γ,O
4γ
n+1

q,s0 by using (8.21).
The localization in O4γ

n+1 is required for the classical extension in the next point, see (8.48).
➢ Estimate of Π⊥

nF(Un). We apply Taylor formula combined with (6.21) and Lemma 6.3 together with
(8.3) and (P1)n. Therefore, we obtain

∀s ⩾ s0, ∥F(Un)∥γ,O
2γ
n

q,s ⩽ ∥F(U0)∥γ,Oq,s + ∥F(Un) − F(U0)∥γ,O
2γ
n

q,s

≲ ε+ ∥Wn∥γ,Oq,s+σ. (8.22)

As a consequence, (8.2) and (P1)n imply

γ−1∥F(Un)∥γ,O
2γ
n

q,s0 ⩽ 1. (8.23)

From Lemma A.1-(ii) and (8.22), we get

∥Π⊥
nF(Un)∥γ,O

2γ
n

q,s0 ⩽ Ns0−sm
n ∥F(Un)∥γ,O

γ
n

q,sm

≲ Nσ−sm
n

(
ε+ ∥Wn∥2γ,O

q,sm+σ

)
. (8.24)

Now, (P3)n together (6.94) and (8.2) yield

ε+ ∥Wn∥γ,Oq,sm+σ ⩽ ε
(
1 + C∗γ

−1Nµ1
n−1
)

⩽ 2C∗εN
2
3µ1+1
n . (8.25)

By putting together (8.25) and (8.24) and by making appeal to (8.13), we infer for any n ∈ N,

∥Π⊥
nF(Un)∥γ,O

4γ
n+1

q,s0 ⩽ ∥Π⊥
nF(Un)∥γ,O

2γ
n

q,s0

≲ C∗εN
s0+ 2

3µ1+1−sm
n . (8.26)
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Remark that one also obtains, combining (8.22) and (8.25),

∥F(Un)∥γ,O
2γ
n

q,sm+σ ⩽ C∗εN
σ+ 2

3µ1+1
n . (8.27)

➢ Estimate of Πn(LnTn − Id)ΠnF(Un). In view of (8.14), one has

O4γ
n+1 ⊂ Aγ

n+1 ⊂ Gn
(
γn+1, τ1, τ2, in

)
.

Then, applying Theorem 6.1, we can write

Πn(LnTn − Id)ΠnF(Un) = E1,n + E2,n + E3,n,

with

E1,n ≜ ΠnE(n)
1 ΠnF(Un),

E2,n ≜ ΠnE(n)
2 ΠnF(Un),

E3,n ≜ ΠnE(n)
3 ΠnF(Un)

where E(n)
1 , E(n)

2 and E(n)
3 satisfy the estimates (6.131), (6.132) and (6.133) respectively. By (8.13), we get

∥Πn(LnTn − Id)ΠnF(Un)∥γ,O
4γ
n+1

q,s0 ⩽ ∥E1,n∥γ,O
2γ
n

q,s0 + ∥E2,n∥γ,O
2γ
n

q,s0 + ∥E3,n∥γ,O
2γ
n

q,s0 . (8.28)

We shall first focus on E1,n. We need the following interpolation-type inequality

∥F(Un)∥γ,O
2γ
n

q,s0+σ ⩽ ∥ΠnF(Un)∥γ,O
2γ
n

q,s0+σ + ∥Π⊥
nF(Un)∥γ,O

2γ
n

q,s0+σ

⩽ Nσ
n ∥F(Un)∥γ,O

2γ
n

q,s0 +Ns0−sm
n ∥F(Un)∥γ,O

2γ
n

q,sm+σ. (8.29)

Combining (6.131), (8.29), (P1)n, (8.4) and (8.27), we obtain

∥E1,n∥γ,O
2γ
n

q,s0 ≲ γ−1∥F(Un)∥γ,O
2γ
n

q,s0+σ∥ΠnF(Un)∥γ,O
2γ
n

q,s0+σ

(
1 + ∥In∥γ,Oq,s0+σ

)
≲ γ−1Nσ

n

(
Nσ
n ∥F(Un)∥γ,O

2γ
n

q,s0 +Ns0−sm
n ∥F(Un)∥γ,O

2γ
n

q,sm+σ

)
∥F(Un)∥γ,O

2γ
n

q,s0

(
1 + ∥Wn∥γ,Oq,s0+σ

)
≲ C∗ε

(
N

2σ− 4
3a1

n +N
s0+2σ+ 2

3µ1+1− 2
3a1−sm

n

)
. (8.30)

We now turn to E2,n and E3,n. Applying (6.132) with b = sm − s0 and using (8.4), (P2)n and (P3)n, we
get

∥E2,n∥γ,O
2γ
n

q,s0 ≲ γ−1Ns0−sm
n

(
∥ΠnF(Un)∥γ,O

2γ
n

q,sm+σ + ε∥In∥γ,Oq,sm+σ∥ΠnF(Un)∥γ,O
2γ
n

q,s0+σ

)
≲ γ−1Ns0−sm

n

(
∥F(Un)∥γ,O

2γ
n

q,sm+σ + εNσ
n ∥Wn∥γ,Oq,sm+σ∥F(Un)∥γ,O

2γ
n

q,s0

)
≲ C∗εN

s0+σ+ 2
3µ1+2−sm

n + C∗εN
s0+σ+ 2

3µ1+2− 2
3a1−sm

n

≲ C∗εN
s0+σ+ 2

3µ1+2−sm
n . (8.31)
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Using the same techniques together with (6.133), (6.94), (8.2) and (8.4), we infer

∥E3,n∥γ,O
2γ
n

q,s0 ≲ Ns0−sm
n γ−2

(
∥ΠnF(Un)∥γ,O

2γ
n

q,sm+σ + εγ−2∥In∥γ,Oq,sm+σ∥ΠnF(Un)∥γ,O
2γ
n

q,s0+σ

)
+ εγ−4Nµ2

0 N−µ2
n ∥ΠnF(Un)∥γ,O

2γ
n

q,s0+σ

≲ C∗ε
(
N
s0+σ+ 2

3µ1+2−sm
n +N

σ+1−µ2− 2
3a1

n

)
. (8.32)

Putting together (8.28), (8.30), (8.31) and (8.31), we obtain

∥Πn(LnTn − Id)ΠnF(Un)∥γ,O
4γ
n+1

q,s0 ⩽ CC∗ε
(
N

2σ− 4
3a1

n +N
s0+2σ+ 2

3µ1+1−sm
n +N

σ+1−µ2− 2
3a1

n

)
. (8.33)

For n = 0, we deduce from (8.3),(8.4) and by slight modifications of the preceding computations

∥Π0(L0T0 − Id)Π0F(U0)∥γ,O
4γ
1

q,s0 ⩽ ∥E1,0∥γ,O
2γ
1

q,s0 + ∥E2,0∥γ,O
2γ
1

q,s0 + ∥E3,0∥γ,O
2γ
1

q,s0

≲ ε2γ−1 + εγ−1 +
(
εγ−2Ns0−sm

0 + ε2γ−4)
≲ εγ−2. (8.34)

➢ Estimate of
(
LnΠ⊥

n − Π⊥
nLn

)
TnΠnF(Un). Combining (6.55) and (6.21), we get for H = (Î, α̂) with

Î = (Θ̂, Î, ẑ),
LnH = ω · ∂φÎ − (0, 0, ∂θL(λ)ẑ) − εdiXPε

(in)Î − (α̂, 0, 0). (8.35)

Using (8.18) and the fact that ω · ∂φ and ∂θL(λ) are diagonal leading to [Π⊥
n , ω · ∂φ] = [Π⊥

n , ∂θL(λ)] = 0,
one has for H = (Î, α̂), (

LnΠ⊥
n − Π⊥

nLn
)
H = −ε[diXPε(in),Π⊥

n ]Î.

In view of Lemma 6.3-(ii), Lemma A.6, (8.13) and (P1)n we get

∥∥(LnΠ⊥
n − Π⊥

nLn
)
H
∥∥γ,O4γ

n+1
q,s0

≲ εNs0−sm
n

(
∥Î∥γ,O

2γ
n

q,sm+2 + ∥In∥γ,Oq,sm+σ∥Î∥γ,O
2γ
n

q,s0+1

)
.

Consequently,

Ncom(s0) ≜
∥∥(LnΠ⊥

n − Π⊥
nLn

)
TnΠnF(Un)

∥∥γ,O2γ
n+1

q,s0
≲ εNs0−sm

n ∥TnΠnF(Un)∥γ,O
γ
n

q,sm+2

+ εNs0−sm
n ∥In∥γ,Oq,sm+σ∥TnΠnF(Un)∥γ,O

γ
n

q,s0+1.

Hence, gathering (8.16), Lemma A.1, Sobolev embeddings, (8.4), (8.2) and (P1)n yields

Ncom(s0) ≲ εγ−1Ns0−sm
n ∥ΠnF(Un)∥γ,O

2γ
n

q,sm+σ+2 + ∥In∥γ,Oq,sm+σ+1∥ΠnF(Un)∥γ,O
2γ
n

q,s0+σ

+ εγ−1Ns0−sm
n ∥In∥γ,Oq,sm+σ

(
∥ΠnF(Un)∥γ,O

2γ
n

q,s0+σ+1 + ∥In∥γ,Oq,s0+σ+1∥ΠnF(Un)∥γ,O
2γ
n

q,s0+σ

)
≲ εNs0+2−sm

n

(
∥F(Un)∥γ,O

2γ
n

q,sm+σ + ∥Wn∥γ,Oq,sm+σ∥ΠnF(Un)∥γ,O
2γ
n

q,s0+σ

)
.

Applying Lemma A.1-(ii), (P2)n and (6.94), we infer

∥ΠnF(Un)∥γ,O
2γ
n

q,s0+σ ⩽ N
σ
n ∥F(Un)∥γ,O

2γ
n

q,s0

⩽ C∗εN
σ
nN

−a1
n−1

⩽ C∗εN
σ− 2

3a1
n .
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Added to (8.1), (8.27) and (P3)n, we obtain for n ∈ N,

∥(LnΠ⊥
n − Π⊥

nLn)TnΠnF(Un)∥γ,O
4γ
n+1

q,s0 ⩽ CC∗εN
s0+σ+ 2

3µ1+3−sm
n . (8.36)

➢ Estimate of Qn. We apply Taylor formula together with (8.20) leading to

Qn =
ˆ 1

0
(1 − t)d2

i,αF(Un + tH̃n+1)[H̃n+1, H̃n+1]dt.

Thus, (8.35) and Lemma 6.3-(iii) allow to get

∥Qn∥γ,O
4γ
n+1

q,s0 ≲ ε

(
1 + ∥Wn∥γ,Oq,s0+2 + ∥H̃n+1∥γ,O

4γ
n+1

q,s0+2

)(
∥H̃n+1∥γ,O

4γ
n+1

q,s0+2

)2
. (8.37)

Combining (8.14), (8.16), (8.22) and (8.23), we find for all s ∈ [s0, S]

∥H̃n+1∥γ,O
4γ
n+1

q,s = ∥ΠnTnΠnF(Un)∥γ,O
4γ
n+1

q,s

≲ γ−1
(

∥ΠnF(Un)∥γ,O
2γ
n

q,s+σ + ∥In∥γ,Oq,s+σ∥ΠnF(Un)∥γ,O
2γ
n

q,s0+σ

)
≲ γ−1

(
Nσ
n ∥F(Un)∥γ,O

2γ
n

q,s +N2σ
n ∥In∥γ,Oq,s ∥F(Un)∥γ,O

2γ
n

q,s0

)
≲ γ−1N2σ

n

(
ε+ ∥Wn∥γ,Oq,s

)
. (8.38)

In the same way, according to (8.17), (P1)n and (P2)n, we infer

∥H̃n+1∥γ,O
4γ
n+1

q,s0 ≲ γ−1Nσ
n ∥F(Un)∥γ,O

2γ
n

q,s0

≲ C∗εγ
−1Nσ

nN
−a1
n−1 . (8.39)

Choosing ε small enough and using (P1)n and (8.39), we find

∥Wn∥γ,Oq,s0+2 + ∥H̃n+1∥γ,O
4γ
n+1

q,s0+2 ⩽ C∗εγ
−1 +N2

n∥H̃n+1∥γ,O
4γ
n+1

q,s0

⩽ 1 + Cεγ−1Nσ+2
n N−a1

n−1

⩽ 1 + Cεγ−1N
3+ 3

2σ−a1
n−1 .

Now notice that (8.1) implies
a1 ⩾ 3 + 3

2σ. (8.40)

Therefore, we obtain
∥Wn∥γ,Oq,s0+2 + ∥H̃n+1∥γ,O

4γ
n+1

q,s0+2 ⩽ 2.

Hence, plugging this estimate and (8.39) into (8.37) and using (8.2) and (8.4), we find

∥Qn∥γ,O
4γ
n+1

q,s0 ≲ ε

(
∥H̃n+1∥γ,O

4γ
n+1

q,s0+2

)2

⩽ εN4
n

(
∥H̃n+1∥γ,O

4γ
n+1

q,s0

)2

≲ εC∗N
2σ+4
n N−2a1

n−1 .

By using (6.94), we deduce when n ⩾ 1,

∥Qn∥γ,O
4γ
n+1

q,s0 ⩽ CC∗εN
2σ+4− 4

3a1
n . (8.41)
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For n = 0, we come back to (8.38) and (8.3) to obtain for all s ∈ [s0, S]

∥H̃1∥γ,O
4γ
1

q,s ≲ γ−1∥Π0F(U0)∥γ,Oq,s+σ

≲ C∗εγ
−1. (8.42)

Finally, the inequality (8.41) becomes for n = 0,

∥Q0∥γ,O
4γ
0

q,s0 ≲ C∗ε
3γ−2. (8.43)

➢ Conclusion. Inserting (8.26), (8.33), (8.36) and (8.41), into (8.21) implies for n ∈ N∗,

∥F(Ũn+1)∥γ,O
4γ
n+1

q,s0 ⩽ CC∗ε
(
N
s0+2σ+ 2

3µ1+1−sm
n +N

σ+1−µ2− 2
3a1

n +N
2σ+4− 4

3a1
n

)
.

The parameters conditions stated in (8.1) give
s0 + 2σ + 2

3µ1 + 2 + a1 ⩽ sm

σ + 1
3a1 + 2 ⩽ µ2

2σ + 5 ⩽ 1
3a1.

(8.44)

Thus, by taking N0 large enough, that is ε small enough, we obtain for n ∈ N,
CN

s0+2σ+ 2
3µ1+1−sm

n ⩽ 1
3N

−a1
n

CN
σ+1−µ2− 2

3a1
n ⩽ 1

3N
−a1
n

CN
2σ+4− 4

3a1
n ⩽ 1

3N
−a1
n ,

(8.45)

which implies in turn that when n ∈ N∗,

∥F(Ũn+1)∥γ,O
4γ
n+1

q,s0 ⩽ C∗εN
−a1
n . (8.46)

However, when n = 0, we plug (8.26), (8.34), (8.36) and (8.43) into (8.21) in order to get

∥F(Ũ1)∥γ,O
4γ
1

q,s0 ⩽ CC∗ε
(
N
s0+2σ+ 3

2µ1+1−sm

0 + εγ−2 + ε2γ−2
)
.

From (8.45), one already has
CN

s0+2σ+ 3
2µ1+1−sm

0 ⩽ 1
3N

−a1
0 .

Therefore, we need at this level to take ε small enough to ensure

C
(
εγ−2 + ε2γ−2) ⩽ 2

3N
−a1
0 .

This occurs since (8.2) and (8.1) imply
0 < a < 1

2+a1
.

Hence
∥F(Ũ1)∥γ,O

4γ
1

q,s0 ⩽ C∗εN
−a1
0 .

This completes the proof of the estimates in (P2)n+1.

▶ Extension and verification of (P1)n+1 − (P3)n+1. We shall now construct an extention of H̃n+1

living in the whole set of parameters and enjoying suitable decay properties. This is done by using the
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C∞ cut-off function χn+1 : O → [0, 1] defined by

χn+1(λ, ω) =
{

1 in O2γ
n+1

0 in O \ O4γ
n+1

and satisfying the additional growth conditions

∀α ∈ Nd, |α| ∈ J0, qK, ∥∂αλ,ωχn+1∥L∞(O) ≲
(
γ−1Na

n

)|α|
. (8.47)

Next, we shall deal with the extension Hn+1 of H̃n+1 defined by

Hn+1(λ, ω) ≜
{

χn+1(λ, ω)H̃n+1(λ, ω) in O4γ
n+1

0 in O \ O4γ
n+1

(8.48)

and the extension Un+1 of Ũn+1 by
Un+1 ≜ Un +Hn+1. (8.49)

We remark that
Hn+1 = H̃n+1 and F(Un+1) = F(Ũn+1) in O2γ

n+1.

Looking at the first component of (8.49), one can write with obvious notations

in+1 = in + In+1.

By the induction assumption (P2)n, (8.48) and (8.19), one has

Sin(φ) = in(−φ) and SIn+1(φ) = In+1(−φ).

Thus
Sin+1(φ) = in+1(−φ). (8.50)

Using Lemma A.1-(iv) together with (8.47) and the fact that Hn+1 = 0 in O \ O4γ
n+1, we obtain

∀s ⩾ s0, ∥Hn+1∥γ,Oq,s ≲ Nqa
n ∥H̃n+1∥γ,O

4γ
n+1

q,s . (8.51)

Applying (8.51) and (8.39) we deduce that for n ∈ N∗,

∥Hn+1∥γ,Oq,s0+σ ⩽ CN
qa
n ∥H̃n+1∥γ,O

4γ
n+1

q,s0+σ

⩽ CNqa+σ
n ∥H̃n+1∥γ,O

4γ
n+1

q,s0

⩽ CC∗εγ
−1N

qa+2σ− 2
3a1

n .

From (8.1), we have

a2 = 2
3a1 − qa− 2σ − 1 ⩾ 1. (8.52)

Therefore, choosing ε small enough, we obtain

∥Hn+1∥γ,Oq,s0+σ ⩽ CN
−1
0 C∗εγ

−1N−a2
n

⩽ C∗εγ
−1N−a2

n . (8.53)
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As for the case n = 0, we combine (8.51) and (8.42) to obtain, up to taking C∗ large enough,

∥H1∥γ,Oq,s ⩽ 1
2C∗εγ

−1Nqa
0 . (8.54)

We now set
Wn+1 ≜Wn +Hn+1, (8.55)

then by construction, we infer
Un+1 = U0 +Wn+1.

Moreover, applying (P1)n, (8.54) and (8.53) and Lemma A.5, we infer

∥Wn+1∥γ,Oq,s0+σ ⩽ ∥H1∥γ,Oq,s0+σ +
n+1∑
k=2

∥Hk∥γ,Oq,s0+σ

⩽ 1
2C∗εγ

−1Nqa
0 + C∗εγ

−1
∞∑
k=0

N−1
k

⩽ 1
2C∗εγ

−1Nqa
0 + CN−1

0 C∗εγ
−1

⩽ C∗εγ
−1Nqa

0 .

This completes the proof of (P1)n+1. Now gathering (8.38), (8.51) and (P3)n allows to write

∥Wn+1∥γ,Oq,sm+σ ⩽ ∥Wn∥γ,Oq,sm+σ + CNqa
n ∥Hn+1∥γ,Oq,sm+σ

⩽ C∗εγ
−1Nµ1

n−1 + CC∗γ
−1Nqa+2σ

n

(
ε+ ∥Wn∥γ,Oq,sm+σ

)
⩽ CC∗εγ

−1N
qa+2σ+1+ 2

3µ1
n .

From (8.1), we can ensure the condition

qa+ 2σ + 2 = µ1
3 , (8.56)

in order to get

∥Wn+1∥γ,Oq,sm+σ ⩽ CN
−1
0 C∗εγ

−1Nµ1
n

⩽ C∗εγ
−1Nµ1

n

by taking ε small enough and using (8.2). This proves (P3)n+1 and the proof of Proposition 8.1 is now
complete.

Once this sequence of approximate solutions is constructed, we may obtain a non-trivial solution by
passing to the limit. This is possible due the decay properties given in Proposition 8.1. Actually, we
obtain the following corollary.

Corollary 8.1. There exists ε0 > 0 such that for all ε ∈ (0, ε0), the following assertions hold true. We
consider the Cantor set Gγ∞, depending on ε through γ, and defined by

Gγ∞ ≜
⋂
n∈N

Aγ
n.
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There exists a function

U∞ : O →
(
Td × Rd ×H⊥

S
)

× Rd × Rd+1

(λ, ω) 7→
(
i∞(λ, ω), α∞(λ, ω), (λ, ω)

)
such that

∀(λ, ω) ∈ Gγ∞, F(U∞(λ, ω)) = 0.

In addition, i∞ is reversible and α∞ ∈ W q,∞,γ(O,Rd) with

α∞(λ, ω) = ω + rε(λ, ω) and ∥rε∥γ,Oq ≲ εγ−1Nqa
0 . (8.57)

Moreover, there exists a q-times differentiable function λ ∈ (λ0, λ1) 7→ ω(λ, ε) ∈ Rd with

ω(λ, ε) = −ωEq(λ) + r̄ε(λ), ∥r̄ε∥γ,Oq ≲ εγ−1Nqa
0 (8.58)

and
∀λ ∈ Cε∞, F

(
U∞
(
λ, ω(λ, ε)

))
= 0 and α∞

(
λ, ω(λ, ε)

)
= −ωEq(λ),

where the Cantor set Cε∞ is defined by

Cε∞ ≜
{
λ ∈ (λ0, λ1) s.t.

(
λ, ω(λ, ε)

)
∈ Gγ∞

}
. (8.59)

Proof. Putting together (8.55) and (8.53), we infer

∥Wn+1 −Wn∥γ,Oq,s0
= ∥Hn+1∥γ,Oq,s0

⩽ ∥Hn+1∥γ,Oq,s0+σ ⩽ C∗εγ
−1N−a2

n .

Thus, the telescopic series associated with the sequence (Wn)n∈N is convergent, so the sequence itself
converges. We denote its limit

W∞ ≜ lim
n→∞

Wn ≜ (I∞, α∞ − ω, 0, 0)

and
U∞ ≜

(
i∞, α∞, (λ, ω)

)
= U0 +W∞.

Passing to the limit in (8.50), one obtains the reversibility property

Si∞(φ) = i∞(−φ).

By the point (P2)n of Proposition 8.1, we have for small ε

∀(λ, ω) ∈ Gγ∞, F
(
i∞(λ, ω), α∞(λ, ω), (λ, ω), ε

)
= 0, (8.60)

with F the functional defined in (6.21). We highlight that the Cantor set Gγ∞ depends on ε through γ and
(8.2). By the point (P1)n of the Proposition 8.1, we have

α∞(λ, ω) = ω + rε(λ, ω) with ∥rε∥γ,Oq ≲ εγ−1Nqa
0 .

We now prove the second result and check the existence of solutions to the original Hamiltonian equation.
First recall that the open set O is defined in (6.7) by

O = (λ0, λ1) × U with U = B(0, R0) for some large R0 > 0,
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8. Proof of the main result

where the ball U is taken to contain the equilibrium frequency vector λ 7→ ωEq(λ). According to (8.57),
we deduce that for any λ ∈ (λ0, λ1), the mapping ω 7→ α∞(λ, ω) is invertible from U into its image
α∞(λ,U ) and we have

ω̂ = α∞(λ, ω) = ω + rε(λ, ω) ⇔ ω = α−1
∞ (λ, ω̂) = ω̂ + r̂ε(λ, ω̂).

This gives the identity
r̂ε(λ, ω̂) = −rε(λ, ω),

which implies in turn after using successive differentiation and (8.57) that r̂ε satisfies the estimate

∥̂rε∥γ,Oq ≲ εγ−1Nqa
0 . (8.61)

We now set

ω(λ, ε) ≜ α−1
∞ (λ,−ωEq(λ)) = −ωEq(λ) + rε(λ) with rε(λ) ≜ r̂ε

(
λ,−ωEq(λ)

)
.

As a consequence of (8.60), if we denote

Cε∞ ≜
{
λ ∈ (λ0, λ1) s.t.

(
λ, ω(λ, ε)

)
∈ Gγ∞

}
,

then we have
∀λ ∈ Cε∞, F

(
U∞
(
λ, ω(λ, ε)

))
= 0.

This gives a nontrivial reversible solution for the original Hamiltonian equation provided that λ ∈ Cε∞.
Since all the derivatives up to order q of ωEq are uniformly bounded on [λ0, λ1], see Lemma 5.3-(vi), then
by chain rule and (8.61), we obtain

∥rε∥γ,Oq ≲ εγ−1Nqa
0 and ∥ω(·, ε)∥γ,Oq ≲ 1 + εγ−1Nqa

0 ≲ 1. (8.62)

This ends the proof of Corollary 8.1.

8.2 Measure of the final Cantor set

The purpose of this final section is to give a lower bound of the Lebesgue measure of the Cantor set Cε∞
constructed in Corollary 8.1 via (8.59). We show that this set is massive and asymptotically when ε → 0
it tends to be of full measure in (λ0, λ1). Note that Corollary 8.1 allows us to write the Cantor set Cε∞ in
the following form

Cε∞ =
⋂
n∈N

Cεn where Cεn ≜
{
λ ∈ (λ0, λ1) s.t

(
λ, ω(λ, ε)

)
∈ Aγ

n

}
. (8.63)

The sets Aγ
n and the perturbed frequency vector ω(λ, ε) are respectively defined in Proposition 8.1 and in

(8.57). The main result of this section reads as follows.

Proposition 8.2. Let q0 be defined as in Lemma 5.5 and assume that (8.1) and (8.2) hold with q = q0 +1.
Assume the additional conditions 

τ1 > dq0

τ2 > τ1 + dq0

υ = 1
q0+3 .

(8.64)
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Then, there exists C > 0 such that ∣∣Cε∞∣∣ ⩾ (λ1 − λ0) − Cε
aυ
q0 .

In particular,
lim
ε→0

∣∣Cε∞∣∣ = λ1 − λ0.

The remainder of this section is devoted to the proof of Proposition 8.2. We shall begin by giving
the proof using some a priori results. These results will be proved later in Lemmata 8.1, 8.2 and 8.3.
We first give a short insight about the strategy to prove Proposition 8.2. The idea is to measure the
complementary set of Cε∞ in (λ0, λ1). To proceed with, we write

(λ0, λ1) \ Cε∞ =
(
(λ0, λ1) \ Cε0

)
⊔

∞⊔
n=0

(
Cεn \ Cεn+1

)
. (8.65)

The measure of each set appearing in (8.65) is estimated by using Lemma 5.6. We shall now give the
proof of Proposition 8.2.

Proof. By choosing R0 large enough, one can ensure using (8.58) that

∀λ ∈ (λ0, λ1), ω(λ, ε) ∈ U = B(0, R0).

Indeed, U contains by construction the curve λ ∈ (λ0, λ1) 7→ ±ωEq(λ) and by (8.58) and (8.2), one has

sup
λ∈(λ0,λ1)

|ω(λ, ε) + ωEq(λ)| ⩽ ∥rε∥γ,Oq ⩽ Cεγ−1Nqa
0 = Cε1−a(1+qa).

Now, the conditions (8.1) and (8.2) imply in particular

0 < a <
1

1 + qa
·

Hence, by taking ε small enough, we find

sup
λ∈(λ0,λ1)

|ω(λ, ε) + ωEq(λ)| ⩽ ∥rε∥γ,Oq ⩽ 1.

As a consequence,
Cε0 = (λ0, λ1).

By (8.65), we can write

∣∣∣(λ0, λ1) \ Cε∞
∣∣∣ ⩽ ∞∑

n=0

∣∣∣Cεn \ Cεn+1

∣∣∣
≜

∞∑
n=0

Sn. (8.66)

According to the notation introduced in Proposition 7.5 and Proposition 7.4 one may write

µ∞,n
j (λ, ε) ≜ µ∞

j

(
λ, ω(λ, ε), in

)
= Ωj(λ) + jr1,n(λ, ε) + r∞,n

j (λ, ε), (8.67)
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8. Proof of the main result

with

r1,n(λ, ε) ≜ cn(λ, ε) − Ω − I1(λ)K1(λ),

cn(λ, ε) ≜ cin(λ, ω(λ, ε)),

r∞,n
j (λ, ε) ≜ r∞

j

(
λ, ω(λ, ε), in

)
.

Coming back to (8.63) and using the Cantor sets introduced in Proposition 7.5, Proposition 7.6 and
Proposition 7.2 one obtains by construction that for any n ∈ N,

Cεn \ Cεn+1 =
⋃

(l,j)∈Zd×Z\{(0,0)}
|l|⩽Nn

R(0)
l,j (in)

⋃
(l,j,j0)∈Zd×(Sc

0)2

|l|⩽Nn

Rl,j,j0(in)
⋃

(l,j)∈Zd×Sc
0

|l|⩽Nn

R(1)
l,j (in), (8.68)

with

R(0)
l,j (in) ≜

{
λ ∈ Cεn s.t. |ω(λ, ε) · l + jcn(λ, ε)| ⩽ 4γυ

n+1⟨j⟩
⟨l⟩τ1

}
,

Rl,j,j0(in) ≜
{
λ ∈ Cεn s.t. |ω(λ, ε) · l + µ∞,n

j (λ, ε) − µ∞,n
j0

(λ, ε)| ⩽ 2γn+1⟨j−j0⟩
⟨l⟩τ2

}
,

R(1)
l,j (in) ≜

{
λ ∈ Cεn s.t. |ω(λ, ε) · l + µ∞,n

j (λ, ε)| ⩽ γn+1⟨j⟩
⟨l⟩τ1

}
.

Notice that using the inclusion
W q,∞,γ(O,C) ↪→ Cq−1(O,C)

and the fact that q = q0 + 1, one gets that for all n ∈ N and (l, j, j0) ∈ Zd × (Sc0)2, the curves

λ 7→ ω(λ, ε) · l + jcn(λ, ε),

λ 7→ ω(λ, ε) · l + µ∞,n
j (λ, ε) − µ∞,n

j0
(λ, ε),

λ 7→ ω(λ, ε) · l + µ∞,n
j (λ, ε)

have a Cq0 regularity. Then, applying Lemma 5.6 combined with Lemma 8.3 gives for any n ∈ N,∣∣∣R(0)
l,j (in)

∣∣∣ ≲ γ υ
q0 ⟨j⟩

1
q0 ⟨l⟩−1− τ1+1

q0 ,∣∣∣R(1)
l,j (in)

∣∣∣ ≲ γ 1
q0 ⟨j⟩

1
q0 ⟨l⟩−1− τ1+1

q0 , (8.69)∣∣∣Rl,j,j0(in)
∣∣∣ ≲ γ 1

q0 ⟨j − j0⟩
1

q0 ⟨l⟩−1− τ2+1
q0 .

Let us now move to the estimate of S0 and S1 defined in (8.66) that should be treated differently from
the other terms. This is related to the discussion done at the beginning of the proof of Lemma 8.1 dealing
with the validity of the estimate (8.74). By using Lemma 8.2, we find for all k ∈ {0, 1},

Sk ≲
∑

(l,j)∈Zd×Z\{(0,0)}
|j|⩽C0⟨l⟩,|l|⩽Nk

∣∣∣R(0)
l,j (ik)

∣∣∣+
∑

(l,j,j0)∈Zd×(Sc
0)2

|j−j0|⩽C0⟨l⟩,|l|⩽Nk

min(|j|,|j0|)⩽c2γ
−υ
1 ⟨l⟩τ1

∣∣∣Rl,j,j0(ik)
∣∣∣+

∑
(l,j)∈Zd×Sc

0
|j|⩽C0⟨l⟩,|l|⩽Nk

∣∣∣R(1)
l,j (ik)

∣∣∣. (8.70)
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Plugging (8.69) into (8.70) yields for all k ∈ {0, 1},

Sk ≲ γ
1

q0

( ∑
|j|⩽C0⟨l⟩

|j|
1

q0 ⟨l⟩−1− τ1+1
q0 +

∑
|j−j0|⩽C0⟨l⟩

min(|j|,|j0|)⩽c2γ−υ⟨l⟩τ1

|j − j0|
1

q0 ⟨l⟩−1− τ2+1
q0

)

+ γ
υ

q0
∑

|j|⩽C0⟨l⟩

|j|
1

q0 ⟨l⟩−1− τ1+1
q0 .

Consequently, we obtain

max
k∈{0,1}

Sk ≲ γ
1

q0

(∑
l∈Zd

⟨l⟩− τ1
q0 + γ−υ

∑
l∈Zd

⟨l⟩τ1−1− τ2
q0

)
+ γ

υ
q0
∑
l∈Zd

⟨l⟩− τ1
q0 (8.71)

≲ γmin
(

υ
q0
, 1

q0
−υ
)
.

Notice that the last estimate is obtained provided that we choose the parameters τ1 and τ2 in the following
way in order to make the series convergent

τ1 > d q0 and τ2 > τ1 + d q0. (8.72)

This condition is exactly what we required in (8.64). Concerning the estimate of Sn for n ⩾ 2 in (8.66)
we may use Lemma 8.1 and Lemma 8.2, in order to get

Sn ⩽
∑

(l,j)∈Zd×Z\{(0,0)}
|j|⩽C0⟨l⟩,Nn−1<|l|⩽Nn

∣∣∣R(0)
l,j (in)

∣∣∣+
∑

(l,j,j0)∈Zd×(Sc
0)2

|j−j0|⩽C0⟨l⟩,Nn−1<|l|⩽Nn

min(|j|,|j0|)⩽c2γ
−υ
n+1⟨l⟩τ1

∣∣∣Rl,j,j0(in)
∣∣∣+

∑
(l,j)∈Zd×Sc

0
|j|⩽C0⟨l⟩,Nn−1<|l|⩽Nn

∣∣∣R(1)
l,j (in)

∣∣∣.

Remark that if |j − j0| ⩽ C0⟨l⟩ and min(|j|, |j0|) ⩽ γ−υ
n+1⟨l⟩τ1 , then

max(|j|, |j0|) = min(|j|, |j0|) + |j − j0| ⩽ γ−υ
n+1⟨l⟩τ1 + C0⟨l⟩ ≲ γ−υ⟨l⟩τ1 .

Therefore, (8.69) implies

Sn ≲ γ
1

q0

( ∑
|l|>Nn−1

⟨l⟩− τ1
q0 + γ−υ

∑
|l|>Nn−1

⟨l⟩τ1−1− τ2
q0

)
+ γ

υ
q0

∑
|l|>Nn−1

⟨l⟩− τ1
q0 .

Under the assumption, we obtain (8.72)

∞∑
n=2

Sn ≲ γmin
(

υ
q0
, 1

q0
−υ
)
. (8.73)

Plugging (8.73) and (8.71) into (8.66) gives∣∣∣(λ0, λ1) \ Cε∞
∣∣∣ ≲ γmin

(
υ

q0
, 1

q0
−υ
)

provided that the condition (8.72) is satisfied. The condition (8.64) implies that

min
(
υ
q0
, 1
q0

− υ
)

= υ
q0
.
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We then find, since γ = εa according to (8.2),∣∣∣(λ0, λ1) \ Cε∞
∣∣∣ ≲ ε aυ

q0 .

This completes the proof of Proposition 8.2.

Now we are left to prove Lemma 8.1 and Lemma 8.2 used in the proof of Proposition 8.2.

Lemma 8.1. Let n ∈ N \ {0, 1} and l ∈ Zd such that |l| ⩽ Nn−1. Then the following assertions hold true.

(i) For j ∈ Z with (l, j) ̸= (0, 0), we get R(0)
l,j (in) = ∅.

(ii) For (j, j0) ∈ (Sc0)2 with (l, j) ̸= (0, j0), we get Rl,j,j0(in) = ∅.

(iii) For j ∈ Sc0, we get R(1)
l,j (in) = ∅.

(iv) For any n ∈ N \ {0, 1},

Cεn \ Cεn+1 =
⋃

(l,j)∈Zd×Z\{(0,0)}
Nn−1<|l|⩽Nn

R(0)
l,j (in) ∪

⋃
(l,j,j0)∈Zd×(Sc

0)2

Nn−1<|l|⩽Nn

Rl,j,j0(in) ∪
⋃

(l,j)∈Zd×Sc
0

Nn−1<|l|⩽Nn

R(1)
l,j (in).

Proof. In all the proof, we shall use the following estimate coming from (8.11), namely, for all n ⩾ 2,

∥in − in−1∥γ,Oq,sh+σ4
⩽ ∥Un − Un−1∥γ,Oq,sh+σ4

⩽ ∥Hn∥γ,Oq,sh+σ4

⩽ C∗εγ
−1N−a2

n−1 . (8.74)

The fact that the previous estimate is valid only for n ⩾ 2 is the reason why we had to treat the cases of
S0 and S1 sparately in the proof of Proposition 8.2.

(i) We begin by proving that if |l| ⩽ Nn−1 and (l, j) ̸= (0, 0), then R(0)
l,j (in) ⊂ R(0)

l,j (in−1). Assume for a
while this inclusion and let us check how this implies that R(0)

l,j (in) = ∅. In view of (8.68) one obtains

R(0)
l,j (in) ⊂ R(0)

l,j (in−1) ⊂ Cεn−1 \ Cεn.

Now (8.68) implies in particular R(0)
l,j (in) ⊂ Cεn \ Cεn+1 and thus we conclude

R(0)
l,j (in) ⊂

(
Cεn \ Cεn+1

)
∩
(
Cεn−1 \ Cεn

)
= ∅.

We now turn to the proof of the inclusion. Let us consider λ ∈ R(0)
l,j (in). By construction, we get in

particular that λ ∈ Cεn ⊂ Cεn−1. Moreover, by the triangle inequality, we obtain

∣∣ω(λ, ε) · l + jcn−1(λ, ε)
∣∣ ⩽ ∣∣ω(λ, ε) · l + jcn(λ, ε)

∣∣+ |j|
∣∣cn(λ, ε) − cn−1(λ, ε)

∣∣
⩽

4γυ
n+1⟨j⟩
⟨l⟩τ1 + C|j|∥cin − cin−1∥γ,Oq .

Therefore, combining (7.21), (8.74), (8.2) and the fact tht σ4 ⩾ 2, we infer

∣∣ω(λ, ε) · l + jcn−1(λ, ε)
∣∣ ⩽ 4γυ

n+1⟨j⟩
⟨l⟩τ1 + Cε⟨j⟩∥in − in−1∥γ,Oq,sh+2

⩽
4γυ

n+1⟨j⟩
⟨l⟩τ1 + Cε2−a⟨j⟩N−a2

n−1 .
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In view of the definition of γn in Proposition 8.1-(P2)n one gets

∃c0 > 0, ∀n ∈ N, γυn+1 − γυn ⩽ −c0 γ
υ2−n.

Now remark that (8.64), (8.1) and (8.2) imply

2 − a− aυ > 1 and a2 > τ1, (8.75)

and therefore one gets sup
n∈N

2nN−a2+τ1
n−1 < ∞. It follows that, for ε small enough and |l| ⩽ Nn−1,

∣∣ω(λ, ε) · l + jcn−1(λ, ε)
∣∣ ⩽ 4γυ

n⟨j⟩
⟨l⟩τ1 + C ⟨j⟩γυ

2n⟨l⟩τ1

(
− 4c0 + Cε2nN−a2+τ1

n−1

)
⩽ 4γυ

n⟨j⟩
⟨l⟩τ1 .

Consequently λ ∈ R(0)
l,j (in−1) and this achieves the proof.

(ii) Let (j, j0) ∈ (Sc0)2 and (l, j) ̸= (0, j0). If j = j0 then by construction Rl,j0,j0(in) = R(0)
l,0 (in) and then

the result follows from the point (i). Now let us discuss the case when j ̸= j0. Similarly to the point (i), in
order to get the result it is enough to check that Rl,j,j0(in) ⊂ Rl,j,j0(in−1). Let λ ∈ Rl,j,j0(in) then from
the definition of this set introduced in (8.68) we deduce that λ ∈ Cεn ⊂ Cεn−1 and

∣∣ω(λ, ε) · l + µ∞,n−1
j (λ, ε) − µ∞,n−1

j0
(λ, ε)

∣∣ ⩽ 2γn+1⟨j−j0⟩
⟨l⟩τ2 + ϱnj,j0

(λ, ε), (8.76)

where we set
ϱnj,j0

(λ, ε) ≜
∣∣µ∞,n
j (λ, ε) − µ∞,n

j0
(λ, ε) − µ∞,n−1

j (λ, ε) + µ∞,n−1
j0

(λ, ε)
∣∣.

Then coming back to (8.67), one gets

ϱnj,j0
(λ, ε) ⩽ |j − j0|

∣∣r1,n(λ, ε) − r1,n−1(λ, ε)
∣∣+
∣∣r∞,n
j (λ, ε) − r∞,n−1

j (λ, ε)
∣∣

+
∣∣r∞,n
j0

(λ, ε) − r∞,n−1
j0

(λ, ε)
∣∣. (8.77)

In view of (7.170), (8.74), (8.2) and the fact that σ4 ⩾ σ3, one obtains

∣∣r1,n(λ, ε) − r1,n−1(λ, ε)
∣∣ ≲ ε∥in − in−1∥γ,Oq,sh+σ3

≲ ε2γ−1N−a2
n−1

≲ ε2−aN−a2
n−1 .

In a similar line, using (7.241), (8.74) and (8.2) yields

∣∣r∞,n
j (λ, ε) − r∞,n−1

j (λ, ε)
∣∣ ≲ εγ−1∥in − in−1∥γ,Oq,sh+σ4

≲ ε2γ−2N−a2
n−1

≲ ε2(1−a)⟨j − j0⟩N−a2
n−1 .

Inserting the preceding two estimates into (8.77) gives

ϱnj,j0
(λ, ε) ≲ ε2(1−a)⟨j − j0⟩N−a2

n−1 . (8.78)
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Putting together (8.78) and (8.76) and using γn+1 = γn − εa2−n−1, we deduce

∣∣ω(λ, ε) · l + µ∞,n−1
j (λ, ε) − µ∞,n−1

j0
(λ, ε)

∣∣ ⩽ 2γn⟨j−j0⟩
⟨l⟩τ2 − εa⟨j − j0⟩2−n⟨l⟩−τ2

+ Cε2(1−a)⟨j − j0⟩N−a2
n−1 .

Since |l| ⩽ Nn−1,we can write

−εa2−n⟨l⟩−τ2 + Cε2(1−a)N−a2
n−1 ⩽ ε

a2−n⟨l⟩−τ2
(

− 1 + Cε2−3a2nN−a2+τ2
n−1

)
.

Now remark that (8.1) and (8.2) yield in particular

a2 > τ2 and a < 2
3 . (8.79)

Hence, we find for ε small enough

∀n ∈ N, −1 + Cε2−3a2nN−a2+τ2
n−1 ⩽ 0

and therefore ∣∣ω(λ, ε) · l + µ∞,n−1
j (λ, ε) − µ∞,n−1

j0
(λ, ε)

∣∣ ⩽ 2γn⟨j−j0⟩
⟨l⟩τ2 ·

Consequently, λ ∈ Rl,j,j0(in−1) and the proof of the second point is now achieved.
(iii) Let j ∈ Sc0. In particular, one has (l, j) ̸= (0, 0). We shall first prove that if |l| ⩽ Nn−1 and then
R(1)
l,j (in) ⊂ R(1)

l,j (in−1). As in the point (i) this implies that R(1)
l,j (in) = ∅. Remind that the set R(1)

l,j (in) is
defined below (8.68). Consider λ ∈ R(1)

l,j (in) then by construction λ ∈ Cεn ⊂ Cεn−1. Now by the triangle
inequality we may write in view of (7.242) and (8.74) and the choice γ = εa

∣∣ω(λ, ε) · l + µ∞,n−1
j (λ, ε)

∣∣ ⩽ ∣∣ω(λ, ε) · l + µ∞,n
j (λ, ε)

∣∣+ |µ∞,n
j (λ, ε) − µ∞,n−1

j (λ, ε)|

⩽ γn+1⟨j⟩
⟨l⟩τ1 + Cεγ−1|j|∥in − in−1∥γ,Oq,sh+σ4

⩽ γn+1⟨j⟩
⟨l⟩τ1 + Cε2(1−a)⟨j⟩N−a2

n−1 .

Since γn+1 = γn − εa2−n−1 and |l| ⩽ Nn−1, then

∣∣ω(λ, ε) · l + µ∞,n−1
j (λ, ε)

∣∣ ⩽ γn⟨j⟩
⟨l⟩τ1 + ⟨j⟩εa

2n+1⟨l⟩τ1

(
− 1 + ε2−3a2n+1N−a2+τ1

n−1

)
.

Notice that (8.79) implies in particular

a2 > τ1 and a < 2
3 (8.80)

and taking ε small enough we find that

∀n ∈ N, −1 + ε2−3a2n+1N−a2+τ1
n−1 ⩽ 0,

which implies in turn that ∣∣ω(λ, ε) · l + µ∞,n−1
j (λ, ε)

∣∣ ⩽ γn⟨j⟩
⟨l⟩τ1 .

Consequently, λ ∈ R(1)
l,j (in−1) and this ends the proof of the third point.

(iv) It is an immediate consequence of (8.68) and the points (i)-(ii) and (iii) of Lemma 8.1.

The next result deals with necessary conditions such that the sets in (8.68) are nonempty.

Lemma 8.2. There exists ε0 such that for any ε ∈ [0, ε0] and n ∈ N the following assertions hold true.
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(i) Let (l, j) ∈ Zd × Z \ {(0, 0)}. If R(0)
l,j (in) ̸= ∅, then |j| ⩽ C0⟨l⟩.

(ii) Let (l, j, j0) ∈ Zd × (Sc0)2. If Rl,j,j0(in) ̸= ∅, then |j − j0| ⩽ C0⟨l⟩.

(iii) Let (l, j) ∈ Zd × Sc0. If R(1)
l,j (in) ̸= ∅, then |j| ⩽ C0⟨l⟩.

(iv) Let (l, j, j0) ∈ Zd × (Sc0)2. There exists c2 > 0 such that if min(|j|, |j0|) ⩾ c2γ
−υ
n+1⟨l⟩τ1 , then

Rl,j,j0(in) ⊂ R(0)
l,j−j0

(in).

Proof. (i) Assume R(0)
l,j (in) ̸= ∅, then we can find λ ∈ (λ0, λ1) such that, using triangle and Cauchy-

Schwarz inequalities,

|cn(λ, ε)||j| ⩽ 4|j|γυn+1⟨l⟩−τ1 + |ω(λ, ε) · l|

⩽ 4|j|γυn+1 + C⟨l⟩

⩽ 8εaυ|j| + C⟨l⟩,

where we have used γ = εa and the fact that (λ, ε) 7→ ω(λ, ε) is bounded. Notice that

cn(λ, ε) = Ω + I1(λ)K1(λ) + r1,n(λ, ε) and inf
λ∈(λ0,λ1)

(
Ω + I1(λ)K1(λ)

)
> Ω.

Then, from (7.17), (7.239) and Proposition 8.1 (P1)n, we obtain

∀k ∈ J0, qK, sup
n∈N

sup
λ∈(λ0,λ1)

|∂kλr1,n(λ, ε)| ⩽ γ−k sup
n∈N

∥r1,n∥γ,Oq

≲ εγ−k

≲ ε1−ak. (8.81)

Thus, by choosing ε small enough, we can ensure by (8.81)

inf
n∈N

inf
λ∈(λ0,λ1)

|cn(λ, ε)| ⩾ Ω
2 .

Hence, by taking ε small enough we find that |j| ⩽ C0⟨l⟩ for some C0 > 0.
(ii) In the case j = j0 we get by definition Rl,j0,j0(in) = R(0)

l,0 (in), and then we use the point (i). In what
follows we take j ̸= j0 and we assume that Rl,j,j0(in) ̸= ∅ then there exists λ ∈ (λ0, λ1) such that

|µ∞,n
j (λ, ε) − µ∞,n

j0
(λ, ε)| ⩽ 2γn+1|j − j0|⟨l⟩−τ2 + |ω(λ, ε) · l|

⩽ 2γn+1|j − j0| + C⟨l⟩

⩽ 4εa|j − j0| + C⟨l⟩.

Similarly to (8.81), we can prove

∀k ∈ J0, qK, sup
n∈N

sup
j∈Sc

0

sup
λ∈(λ0,λ1)

|j||∂kλr
∞,n
j (λ, ε)| ⩽ γ−k sup

n∈N
sup
j∈Sc

0

|j|∥r∞,n
j ∥γ,Oq

≲ εγ−1−k

≲ ε1−a(1+k). (8.82)
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By using the triangle inequality, Lemma 5.3-(v), (8.81) and (8.82) we get for j ̸= j0,

|µ∞,n
j (λ, ε) − µ∞,n

j0
(λ, ε)| ⩾ |Ωj(λ) − Ωj0(λ)| − |r1,n(λ, ε)||j − j0| − |r∞,n

j (λ, ε)| − |r∞,n
j0

(λ, ε)|

⩾
(
C0 − Cε1−a)|j − j0|

⩾ C0
2 |j − j0|

provided that ε is small enough. Putting together the previous inequalities yields for ε small enough
|j − j0| ⩽ C0⟨l⟩, for some C0 > 0.
(iii) First remark that the case j = 0 is trivial. Now for j ̸= 0 we assume that R(1)

l,j (in) ̸= ∅ then there
exists λ ∈ (λ0, λ1) such that

|µ∞,n
j (λ, ε)| ⩽ γn+1|j|⟨l⟩τ1 + |ω(λ, ε) · l|

⩽ 2εa|j| + C⟨l⟩.

Using the definition (8.67) combined with the triangle inequality, Lemma 5.3-(iv), (8.81) and (8.82), we
get

|µ∞,n
j (λ, ε)| ⩾ Ω|j| − |j||r1,n(λ, ε)| − |r∞,n

j (λ, ε)|

⩾ Ω|j| − Cε1−a|j|.

Combining the previous two inequalities and the second condition in (8.80) implies

(
Ω − Cε1−a − 2εa

)
|j| ⩽ C⟨l⟩.

Thus, by taking ε small enough we obtain |j| ⩽ C0⟨l⟩, for some C0 > 0.
(iv) First notice that the case j = j0 is trivial and follows from the definition (8.68). Let j ̸= j0 and
λ ∈ Rl,j,j0(in), then by definition

∣∣ω(λ, ε) · l + µ∞,n
j (λ, ε) − µ∞,n

j0
(λ, ε)

∣∣ ⩽ 2γn+1⟨j−j0⟩
⟨l⟩τ2 .

Combining (8.67) and (5.14) with the triangle inequality we infer

∣∣ω(λ, ε) · l + (j − j0)cn(λ, ε)
∣∣ ⩽ ∣∣ω(λ, ε) · l + µ∞,n

j (λ, ε) − µ∞,n
j0

(λ, ε)
∣∣

+ |jIj(λ)Kj(λ) − j0Ij0(λ)Kj0(λ)| +
∣∣r∞,n
j (λ, ε) − r∞,n

j0
(λ, ε)

∣∣.
Thus, we find

∣∣ω(λ, ε) · l + (j − j0)cn(λ, ε)
∣∣ ⩽ 2γn+1⟨j−j0⟩

⟨l⟩τ2 + |jIj(λ)Kj(λ) − j0Ij0(λ)Kj0(λ)|

+
∣∣r∞,n
j (λ, ε) − r∞,n

j0
(λ, ε)

∣∣. (8.83)

Without loss of generality, we can assume that |j0| ⩾ |j| and remind that j ̸= j0. Then, from (5.24) and
(5.22), we easily find

|jIj(λ)Kj(λ) − j0Ij0(λ)Kj0(λ)| ⩽ |j|
∣∣Ij(λ)Kj(λ) − Ij0(λ)Kj0(λ)

∣∣+ |j − j0|
∣∣Ij0(λ)Kj0(λ)

∣∣
⩽ ⟨j−j0⟩

min(|j|,|j0|) ·
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Applying (7.239), we find for j ̸= j0 ∈ Sc0,

∣∣r∞,n
j (λ, ε) − r∞,n

j0
(λ, ε)

∣∣ ⩽Cε1−a(|j|−1 + |j0|−1)
⩽Cε1−a ⟨j−j0⟩

min(|j|,|j0|) ·

Plugging the preceding estimates into (8.83) yields

∣∣ω(λ, ε) · l + (j − j0)cn(λ, ε)
∣∣ ⩽ 2γn+1⟨j−j0⟩

⟨l⟩τ2 + C ⟨j−j0⟩
min(|j|,|j0|) ·

Therefore, if we assume min(|j|, |j0|) ⩾ 1
2Cγ

−υ
n+1⟨l⟩τ1 and τ2 > τ1, then we deduce

∣∣ω(λ, ε) · l + (j − j0)cn(λ, ε)
∣∣ ⩽ 4γυ

n+1⟨j−j0⟩
⟨l⟩τ1 ·

This ends the proof of the lemma by taking c2 = C
2 .

We shall now establish that the perturbed frequencies ω(λ, ε) satisfy the Rüssmann conditions. This is
done by a perturbation argument from the equilibrium linear frequencies ωEq(λ) for which we already
know by Lemma 5.5 that they satisfy the transversality conditions.

Lemma 8.3. Let q0, C0 and ρ0 as in Lemma 5.5. There exist ε0 > 0 small enough such that for any
ε ∈ [0, ε0] the following assertions hold true.

(i) For all l ∈ Zd \ {0}, we have

inf
λ∈[λ0,λ1]

max
k∈J0,q0K

∣∣∂kλ (ω(λ, ε) · l)
∣∣ ⩾ ρ0⟨l⟩

2 .

(ii) For all (l, j) ∈ Zd+1 \ {(0, 0)} such that |j| ⩽ C0⟨l⟩, we have

∀n ∈ N, inf
λ∈[λ0,λ1]

max
k∈J0,q0K

|∂kλ
(
ω(λ, ε) · l + jcn(λ, ε)

)
| ⩾ ρ0⟨l⟩

2 .

(iii) For all (l, j) ∈ Zd × Sc0 such that |j| ⩽ C0⟨l⟩, we have

∀n ∈ N, inf
λ∈[λ0,λ1]

max
k∈J0,q0K

∣∣∂kλ(ω(λ, ε) · l + µ∞,n
j (λ, ε)

)∣∣ ⩾ ρ0⟨l⟩
2 .

(iv) For all (l, j, j0) ∈ Zd × (Sc0)2 such that |j − j0| ⩽ C0⟨l⟩, we have

∀n ∈ N, inf
λ∈[λ0,λ1]

max
k∈J0,q0K

∣∣∂kλ(ω(λ, ε) · l + µ∞,n
j (λ, ε) − µ∞,n

j0
(λ, ε)

)∣∣ ⩾ ρ0⟨l⟩
2 .

Proof. (i) From the triangle and Cauchy-Schwarz inequalities together with (8.62), (8.2) and Lemma
5.5-(i), we deduce

max
k∈J0,q0K

|∂kλ (ω(λ, ε) · l) | ⩾ max
k∈J0,q0K

|∂kλ (ωEq(λ) · l) | − max
k∈J0,qK

|∂kλ (rε(λ) · l) |

⩾ ρ0⟨l⟩ − Cεγ−1−qNqa
0 ⟨l⟩

⩾ ρ0⟨l⟩ − Cε1−a(1+q+qa)⟨l⟩

⩾ ρ0⟨l⟩
2

provided that ε is small enough and
1 − a(1 + q + qa) > 0. (8.84)
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Notice that the condition (8.84) is automatically satisfied by (8.2) and (8.1).
(ii) As before, using the triangle and Cauchy-Schwarz inequalities combined with (8.62), (8.81), Lemma
5.5-(ii) and the fact that |j| ⩽ C0⟨l⟩, we get

max
k∈J0,q0K

|∂kλ (ω(λ, ε) · l + jcn(λ, ε)) | ⩾ max
k∈J0,q0K

∣∣∂kλ(ωEq(λ) · l + j(Ω + I1(λ)K1(λ))
)∣∣

− max
k∈J0,qK

|∂kλ
(
rε(λ) · l + jr1,n(λ, ε)

)
|

⩾ ρ0⟨l⟩ − Cε1−a(1+q+qa)⟨l⟩ − Cε1−aq|j|

⩾ ρ0⟨l⟩
2

for ε small enough and with the condition (8.84).
(iii) As before, performing the triangle and Cauchy-Schwarz inequalities combined with (8.62), (8.81),
(8.82), Lemma 5.5-(iii) and the fact that |j| ⩽ C0⟨l⟩, we get

max
k∈J0,q0K

∣∣∂kλ(ω(λ, ε) · l + µ∞,n
j (λ, ε)

)∣∣ ⩾ max
k∈J0,q0K

|∂kλ (ωEq(λ) · l + Ωj(λ)) |

− max
k∈J0,qK

∣∣∂kλ(rε(λ) · l + jr1,n(λ, ε) + r∞,n
j (λ, ε))

)∣∣
⩾ ρ0⟨l⟩ − Cε1−a(1+q+qa)⟨l⟩ − Cε1−a(1+q)|j|

⩾ ρ0⟨l⟩
2

for ε small enough with the condition (8.84).
(iv) Arguing as in the preceding point, using (8.81), (8.82), Lemma 5.5-(iv)-(v) and the fact that
0 < |j − j0| ⩽ C0⟨l⟩ (notice that the case j = j0 is trivial), we have

max
k∈J0,q0K

∣∣∂kλ(ω(λ, ε) · l + µ∞,n
j (λ, ε) − µ∞,n

j0
(λ, ε)

)∣∣ ⩾ max
k∈J0,q0K

∣∣∂kλ(ωEq(λ) · l + Ωj(λ) − Ωj0(λ)
)∣∣

− max
k∈J0,qK

∣∣∂kλ(rε(λ) · l + (j − j0)r1,n(λ, ε) + r∞,n
j (λ, ε) − r∞,n

j0
(λ, ε)

)∣∣
⩾ ρ0⟨l⟩ − Cε1−a(1+q+qa)⟨l⟩ − Cε1−a(1+q)|j − j0|

⩾ ρ0⟨l⟩
2

for ε small enough. This ends the proof of Lemma 8.3.
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Part II

L’essence des mathématiques, c’est la liberté.

Georg Cantor

This part is devoted to the proof of Theorem 2.2. We also refer to Theorem 9.1 below for a more
precise statement. This result is the subject of the following preprint [89] which is submitted to the journal
Annals of PDE and entitled "Boundary effects on the emergence of quasi-periodic solutions for Euler
equations".

Abstract

We highlight the importance of the boundary effects on the construction of quasi-periodic vortex patches
solutions close to Rankine vortices and whose existence is not known in the whole space due to the

resonances of the linear frequencies. Availing of the lack of invariance by radial dilation of Euler equations
in the unit disc and using a Nash-Moser implicit function iterative scheme we show the existence of such

structures when the radius of the Rankine vortex belongs to a suitable massive Cantor-like set with
almost full Lebesgue measure.

9 Introduction

We shall now present the second result of this thesis and discuss the key ideas of its proof. We first
consider a polar parametrization of a patch boundary close to the stationary solution bD, namely

z(t, θ) ≜ R(b, t, θ)eiθ, R(b, t, θ) ≜
√
b2 + 2r(t, θ).

The quantity of interest is the radial deformation r assumed to be of small size. We emphasize that our
ansatz is slightly different from the one in the papers [87, 101] where the parametrization is written in a
rotating frame with an angular velocity Ω to remedy to the degeneracy of the first frequency. This is not
the case in our context due to the non-degeneracy of the first frequency according to (1.22). As explained
in Lemma 10.1 and Proposition 10.1, the radial deformation solves a nonlinear and nonlocal transport
PDE which admits a Hamiltonian formulation in the form

∂tr = 1
2∂θ∇E(r), (9.1)

where E is the kinetic energy related to the stream function given by (1.4). In view of Lemma 11.1, the
linearized operator at a state r close to the Rankine patch bD takes the form

Lr = ∂t + ∂θ

(
Vr · +Lr − Sr

)
, (9.2)

where

Vr(b, t, θ) ≜ 1
2

ˆ
T

R2(b,t,η)
R2(b,t,θ)dη − 1

R(b,t,θ)

ˆ
T

log
(
Ar(b, t, θ, η)

)
∂η
(
R(b, t, η) sin(η − θ)

)
dη (9.3)

− 1
R3(b,t,θ)

ˆ
T

log
(
Br(b, t, θ, η)

)
∂η
(
R(b, t, η) sin(η − θ)

)
dη, (9.4)

Lr is a nonlocal operator in the form

Lr(ρ)(b, t, θ) ≜
ˆ
T
ρ(t, η) log (Ar(b, t, θ, η)) dη, Ar(b, t, θ, η) ≜

∣∣R(b, t, θ)eiθ −R(b, t, η)eiη∣∣ (9.5)
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and Sr is a smoothing nonlocal operator in the form

Sr(ρ)(b, t, θ) ≜
ˆ
T
ρ(t, η) log (Br(b, t, θ, η)) dη, Br(b, t, θ, η) ≜

∣∣1 −R(b, t, θ)R(b, t, η)ei(η−θ)∣∣. (9.6)

The operator Lr is of order zero and reflects the planar Euler action. Moreover, we observe two boundary
effects of D. The first one is quasi-linear in the transport part through the last term of Vr, but with a
smoothing action. The second one is given by the operator Sr which is smoothing since it involves a
smooth kernel. At the equilibrium state r = 0, the linearized operator is a Fourier multiplier given by

L0 = ∂t + 1
2∂θ + ∂θK1,b ∗ · − ∂θK2,b ∗ ·,

where

K1,b(θ) ≜ 1
2 log

(
sin2 ( θ

2
) )

and K2,b(θ) ≜ log
(
|1 − b2eiθ|

)
.

Notice that the convolution with the kernel ∂θK1,b is exactly the Hilbert transform in the periodic setting.
From direct computations, we may show that the kernel of L0 is given by the set of functions in the form

(t, θ) 7→
∑
j∈Z∗

rje
i(jθ−Ωj(b)t),

where
∀j ∈ Z∗, Ωj(b) ≜ sgn(j)

2
(
|j| − 1 + b2|j|), (9.7)

where we denote by sgn the sign function. Consider a finite number of Fourier modes

S =
{
j1, . . . , jd

}
⊂ N∗ with 1 ⩽ j1 < . . . < jd, (d ∈ N∗).

Then, from Proposition 11.1, we deduce that, for any 0 < b0 < b1 < 1, for almost all b ∈ [b0, b1], any
function in the form

r : (t, θ) 7→
∑
j∈S

rj cos(jθ − Ωj(b)t), rj ∈ R

is a quasi-periodic solution with frequency ωEq(b) ≜ (Ωj(b))j∈S of the equation L0r = 0 which is reversible,
namely r(−t,−θ) = r(t, θ). The measure of the Cantor set in b generating these solutions is estimated
using Rüssmann Lemma 5.6 requiring a lower bound on the maximal derivative of a given function up
to order q0. In our case, the value of q0 is explicit, namely q0 ≜ 2jd + 2 which is due to the polynomial
structure of the Ωj(b). The aim of this part is to prove that these structures persist at the nonlinear level,
more precisely, our result reads as follows.

Theorem 9.1. Let 0 < b0 < b1 < 1, d ∈ N∗ and S ⊂ N∗ with |S| = d. There exists ε0 ∈ (0, 1) small
enough with the following properties : For every amplitudes a = (aj)j∈S ∈ (R∗

+)d satisfying

|a| ⩽ ε0,

there exists a Cantor-like set C∞ ⊂ (b0, b1) with asymptotically full Lebesgue measure as a → 0, i.e.

lim
a→0

|C∞| = b1 − b0,

such that for any b ∈ C∞, the equation (9.1) admits a time quasi-periodic solution with diophantine
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frequency vector ωpe(b, a) ≜ (ωj(b, a))j∈S ∈ Rd and taking the form

r(t, θ) =
∑
j∈S

aj cos
(
jθ + ωj(b, a)t

)
+ p
(
ωpe(b, a)t, θ

)
,

with
ωpe(b, a) −→

a→0
(−Ωj(b))j∈S,

where Ωj(b) are the equilibrium frequencies defined in (9.7) and the perturbation p : Td+1 → R is an even
function satisfying for some large index of regularity s depending only on the set S,

∥p∥Hs(Td+1,R) =
a→0

o(|a|).

We shall now sketch the main steps used to prove the previous theorem. First remark that small divisors
problems already appear in the proof of Proposition 11.1 to find quasi-periodic structures at the linear
level from the equilibrium. We can invert the linearized operator at the equilibrium with some fixed loss of
regularity. Hence, we need to use a Nash-Moser scheme to find quasi-periodic solutions for the nonlinear
model. To do so, we must invert the linearized operator in a neighborhood of the equilibrium state. Since
Lr has non constant coefficients, the task is more delicate. The basic idea consists in diagonalizing, namely
to conjugate to constant coefficients operator. Actually, we may follow the procedure presented in [21],
slightly modified in [87, 101], where the dynamics is decoupled into tangential and normal parts. On the
tangential modes, we introduce action-angles variables (I, ϑ) allowing to reformulate the problem in terms
of embedded tori. More precisely, we shall look for the zeros of the following functional

F(i, α, b, ω, ε) ≜

 ω · ∂φϑ(φ) − α− ε∂IPε(i(φ))
ω · ∂φI(φ) + ε∂ϑPε(i(φ))

ω · ∂φz(φ) − ∂θ
[
L(b)z(φ) + ε∇zPε

(
i(φ)

)]
 .

It turns out that it is more convenient to introduce one degree of freedom through the parameter α which
provides at the end of the scheme a solution for the original problem when it is fixed to −ωEq(b). Given any
small reversible embedded torus i0 : φ 7→ (ϑ0(φ), I0(φ), z0(φ)) and any α0 ∈ Rd, conjugating the linearized
operator di,αF(i0, α0) via a suitable linear diffeomorphism of the toroidal phase space Td × Rd × L2

⊥, we
obtain a triangular system in the action-angle-normal variables up to error terms. To solve the triangular
system, we only have to invert the linearized operator in the normal directions, which is denoted by
L̂ω. This is done using KAM reducibility techniques in a similar way to [7, 33, 87, 101]. According to
Proposition 13.1, we can write

L̂ω = Π⊥
S0

(
Lεr − ε∂θR

)
Π⊥

S0
,

where Π⊥
S0

is the projector in the normal directions, R is an integral operator and Lεr is defined by (9.2).
First, following the KAM reducibility scheme in [11, 64, 101], we can reduce the transport part and the
zero order part by conjugating by a quasi-periodic symplectic invertible change of variables in the form

Bρ(µ, φ, θ) ≜
(

1 + ∂θβ(µ, φ, θ)
)
ρ
(
µ, φ, θ + β(µ, φ, θ)

)
.

More precisely, as stated in Proposition 13.2, we can find a function V ∞
i0

= V ∞
i0

(b, ω) and a Cantor set

Oγ,τ1
∞,n(i0) ≜

⋂
(l,j)∈Zd×Z\{(0,0)}

|l|⩽Nn

{
(b, ω) ∈ O s.t.

∣∣ω · l + jV ∞
i0 (b, ω)

∣∣ > 4γυ⟨j⟩
⟨l⟩τ1

}
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in which the following decomposition holds

B−1LεrB = ω · ∂φ + V ∞
i0 ∂θ + ∂θK1,b ∗ · − ∂θK2,b ∗ · + ∂θRεr + E0

n,

where Rεr is a real and reversibility preserving Toeplitz in time integral operator enjoying good smallness
properties. The operator E0

n is an error term of order one associated to the time truncation of the Cantor
set Oγ,τ1

∞,n(i0). Notice that Nn is defined by

Nn = N
( 3

2 )n

0 with N0 ≫ 1.

Then, we project in the normal directions by considering the operator

B⊥ ≜ Π⊥
S0

BΠ⊥
S0
.

Therefore, in view of Proposition 13.3, we obtain the following decomposition in Oγ,τ1
∞,n(i0)

B−1
⊥ L̂ωB⊥ = ω · ∂φ + D0 + R0 + E1

n ≜ L0 + E1
n,

where D0 ≜ (iµ0
j (b, ω))j∈Sc

0
is a diagonal and reversible operator and R0 = Π⊥

S0
R0Π⊥

S0
is a real and reversible

Toeplitz in time remainder integral operator in OPS−∞ in space and satisfying nice smallness properties.
The term E1

n plays a similar role as the previous one E0
n. The next goal is to reduce the remainder term

R0. For this aim, we implement a KAM reduction process in the Toeplitz topology as in [101, Prop. 6.5].
The result is stated in Proposition 13.4 and provides two operators Φ∞ and D∞ ≜ (iµ∞

j (b, ω))j∈Sc
0
, with

D∞ a diagonal and reversible operator whose spectrum is described by

∀j ∈ Sc0, µ∞
j (b, ω) = Ωj(b) + j

(
V ∞
i0 (b, ω) − 1

2
)

+ r∞
j (b, ω),

such that in the Cantor set

Oγ,τ1,τ2
∞,n (i0) ≜

⋂
(l,j,j0)∈Zd×(Sc

0)2

⟨l,j−j0⟩⩽Nn

(l,j)̸=(0,j0)

{
(b, ω) ∈ Oγ,τ1

∞,n(i0) s.t.
∣∣ω · l + µ∞

j (b, ω) − µ∞
j0

(b, ω)
∣∣ > 2γ⟨j−j0⟩

⟨l⟩τ2

}

the following decomposition holds

Φ−1
∞ L0Φ∞ = ω · ∂φ + D∞ + E2

n ≜ L∞ + E2
n.

Now, we can invert the operator L∞ when the parameters are restricted to the Cantor set

Λγ,τ1
∞,n(i0) ≜

⋂
(l,j)∈Zd×Sc

0
|l|⩽Nn

{
(b, ω) ∈ O s.t.

∣∣ω · l + µ∞
j (b, ω)

∣∣ > γ⟨j⟩
⟨l⟩τ1

}
.

Therefore, we are able to construct an approximate right inverse of L̂ω in the Cantor set

Gγn(i0) ≜ Oγ,τ1
∞,n(i0) ∩ Oγ,τ1,τ2

∞,n (i0) ∩ Λγ,τ1
∞,n(i0).

We refer to Proposition 13.5 for more details. Now we can implement a Nash-Moser scheme in a similar
way to [33, 87, 101] to find a solution (b, ω) 7→ (i∞(b, ω), α∞(b, ω)) to the equation F(i, α, b, ω, ε) = 0
provided that the parameters (b, ω) are selected among a Cantor set Gγ∞ which is constructed as the
intersection of all the Cantor sets appearing in the scheme to invert at each step the linearized operator.
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To find a solution to the original problem we construct a frequency curve b 7→ ω(b, ε) implicitly defined by
solving the equation

α∞(b, ω(b, ε)) = −ωEq(b).

Hence, we obtain the desired result for any value of b in the Cantor set

Cε∞ ≜
{
b ∈ (b0, b1) s.t. (b, ω(b, ε)) ∈ Gγ∞

}
.

Then, it remains to check that this set is non-trivial. This is done by estimating its measure using
perturbed Rüssmann conditions from the equilibrium. In Proposition 14.2, we find a lower bound for the
measure of Cε∞, namely

|Cε∞| ⩾ (b1 − b0) − Cεδ for some δ = δ(q0, d, τ1, τ2) > 0.

10 Hamiltonian reformulation

In this section, we shall write down the equation governing the boundary dynamics. For that purpose, we
shall consider a polar parametrization of the boundary and see that the radial deformation in there is
subject to a nonlinear and nonlocal Hamiltonian equation of transport type.

10.1 Equation satisfied by the radial deformation of the patch

Given b ∈ (0, 1), consider a vortex patch t 7→ 1Dt
, near the Rankine vortex 1bD with a smooth boundary

whose polar parametrization is given by

z(t, θ) ≜
(
b2 + 2r(t, θ)

) 1
2 eiθ, (10.1)

where r is the radial deformation assumed to be small, namely |r(t, θ)| ≪ 1. In the sequel, we shall
frequently use the following notations

R(b, t, θ) ≜
(
b2 + 2r(t, θ)

) 1
2 , (10.2)

Ar(b, t, θ, η) ≜
∣∣R(b, t, θ)eiθ −R(b, t, η)eiη∣∣ , (10.3)

Br(b, t, θ, η) ≜
∣∣∣1 −R(b, t, θ)R(b, t, η)ei(η−θ)

∣∣∣ . (10.4)

The equation satisfied by r is given by the following lemma.

Lemma 10.1. For short time T > 0, the radial deformation r, defined through (10.2), satisfies the
following nonlinear and nonlocal transport PDE:

∀(t, θ) ∈ [0, T ] × T, ∂tr(t, θ) + Fb[r](t, θ) = 0, (10.5)

where

Fb[r] ≜ −F 0
b [r] − F 1

b [r] + F 2
b [r], (10.6)

F 0
b [r] ≜ 1

2∂θr(t, θ)
ˆ
T

R2(b,t,η)
R2(b,t,θ)dη, (10.7)

F 1
b [r] ≜

ˆ
T

log
(
Ar(b, t, θ, η)

)
∂2
θη

(
R(b, t, θ)R(b, t, η) sin(η − θ)

)
dη, (10.8)

F 2
b [r] ≜

ˆ
T

log
(
Br(b, t, θ, η)

)
∂2
θη

(
R(b,t,η)
R(b,t,θ) sin(η − θ)

)
dη, (10.9)
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where R(b, t, θ), Ar(b, t, θ, η) and Br(b, t, θ, η) are given by (10.2)-(10.4).

Proof. We start with the vortex patch equation. Denoting n the outward normal vector to the boundary
of the patch, the evolution equation of the boundary can be written as

∂tz(t, θ) · n(t, z(t, θ)) = −∂θΨ(t, z(t, θ)).

For a detailed proof see for instance [99, p.174]. Since n(t, z(t, θ)) = −i ∂θz(t, θ) (up to a real constant of
renormalization) then the complex formulation of the vortex patch equation is given by

Im
(
∂tz(t, θ)∂θz(t, θ)

)
= ∂θΨ(t, z(t, θ)).

Using the parametrization (10.1), one easily checks that

Im
(
∂tz(t, θ)∂θz(t, θ)

)
= −∂tr(t, θ).

Thus, the vortex patch equation writes in the following way

∂tr(t, θ) + ∂θΨ(t, z(t, θ)) = 0. (10.10)

Now we shall compute ∂θΨ(t, z(t, θ)). Using complex notations, we have

∂θΨ(t, z(t, θ)) = ∇Ψ(t, z(t, θ)) · ∂θz(t, θ) = 2Re
(
∂wΨ(t, z(t, θ))∂θz(t, θ)

)
. (10.11)

Recall, from (1.4), that the stream function Ψ writes

∀w ∈ D, Ψ(t, w) = 1
4π

ˆ
Dt

log
(
|w − ξ|2

)
dA(ξ) − 1

4π

ˆ
Dt

log
(
|ξw − 1|2

)
dA(ξ). (10.12)

Let ϵ > 0. We set

fϵ(ξ, ξ) ≜ (ξ − w)
[

log
(
|ξ − w|2 + ϵ

)
− 1
]

−
(
ξ − 1

w

) [
log
(
|1 − wξ|2

)
− 1
]
.

Then
∂ξfϵ(ξ, ξ) = log

(
|w − ξ|2 + ϵ

)
− ϵ

|w − ξ|2 + ϵ
− log

(
|ξw − 1|2

)
.

Using the complex version of Stokes’ Theorem,

2i
ˆ
D

∂ξfϵ(ξ, ξ)dA(ξ) =
ˆ
∂D

fϵ(ξ, ξ)dξ,

then passing to the limit as ϵ goes to 0, using in particular dominated convergence theorem, we obtain

Ψ(t, w) = 1
8iπ

ˆ
∂Dt

(ξ − w)
[

log
(
|ξ − w|2

)
− 1
]
dξ − 1

8iπ

ˆ
∂Dt

(
ξ − 1

w

) [
log
(
|1 − wξ|2

)
− 1
]
dξ.

Performing the change of variables ξ = z(t, η), given by (10.1), and using the notation (A.3) we can write

Ψ(t, w) = 1
4i

ˆ
T
(z(t, η) − w)

[
log
(
|z(t, η) − w|2

)
− 1
]
∂ηz(t, η)dη

− 1
4i

ˆ
T

(
z(t, η) − 1

w

) [
log
(
|1 − wz(t, η)|2

)
− 1
]
∂ηz(t, η)dη.
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It follows that
∂wΨ(t, w) = − 1

4i

ˆ
T

log
(
|z(t, η) − w|2

)
∂ηz(t, η)dη

− 1
4i

ˆ
T

(
z(t, η) − 1

w

)[ 1
w2

z(t, η) − 1
w

+ 1
w

]
∂ηz(t, η)dη.

(10.13)

Direct computations lead to

[z(t, η) − 1
w

z(t, η) − 1
w

]
∂ηz(t, η) = ∂η

[
log
(∣∣z(t, η) − 1

w

∣∣2)+ log
(
|w|2

)](
z(t, η) − 1

w

)
− ∂ηz(t, η).

Inserting this identity into (10.13), integrating by parts, using the morphism property of the logarithm
and the periodicity imply

∂wΨ(t, w) = − 1
4i

ˆ
T

log
(
|z(t, η) − w|2

)
∂ηz(t, η)dη

+ 1
4i

ˆ
T

log
(
|1 − wz(t, η)|2

)
∂ηz(t, η) 1

w2 dη

− 1
4i

ˆ
T
z(t, η)∂ηz(t, η) 1

w
dη.

(10.14)

As a consequence, one gets

2Re
(
∂wΨ(t, z(t, θ))∂θz(t, θ)

)
= − 1

2

ˆ
T

log
(
|z(t, η) − z(t, θ)|2

)
Im
(
∂ηz(t, η)∂θz(t, θ)

)
dη

+ 1
2

ˆ
T

log
(
|1 − z(t, θ)z(t, η)|2

)
Im
(
∂ηz(t, η)∂θz(t, θ)

z(t, θ)2

)
dη

− 1
2

ˆ
T

Im
(
z(t, η)∂ηz(t, η)∂θz(t, θ)

z(t, θ)

)
dη.

That is, by (10.11),

∂θΨ(t, z(t, θ)) = − 1
2

ˆ
T

log
(
|z(t, η) − z(t, θ)|2

)
∂2
θηIm

(
z(t, η)z(t, θ)

)
dη

+ 1
2

ˆ
T

log
(
|1 − z(t, θ)z(t, η)|2

)
∂2
θηIm

(
z(t, η)
z(t, θ)

)
dη

− 1
2

ˆ
T

Im
(
z(t, η)∂ηz(t, η)∂θz(t, θ)

z(t, θ)

)
dη.

From (10.1) we immediately get

Im
(
z(t, η)z(t, θ)

)
= R(b, t, θ)R(b, t, η) sin(η − θ),

Im
(
z(t, η)
z(t, θ)

)
= R(b, t, θ)
R(b, t, η) sin(η − θ),

Im
(
z(t, η)∂ηz(t, η)∂θz(t, θ)

z(t, θ)

)
= R2(b, t, η)
R2(b, t, θ)∂θr(t, θ) − ∂ηr(t, η).

Combining the last four identities with (10.10) and using the notations (10.1)-(10.4) we conclude the
desired result.

We look for time quasi-periodic solutions of (10.5); that are functions in the form

r̂(t, θ) = r(ωt, θ),
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where r = r(φ, θ) : Td+1 → R, ω ∈ Rd, d ∈ N∗. With this ansatz, the equation (10.5) becomes

ω · ∂φr(φ, θ) + Fb[r](φ, θ) = 0. (10.15)

10.2 Hamiltonian structure

In this section, we show that the contour dynamics equation (10.5) has a Hamiltonian structure related to
the kinetic energy

E(r)(t) ≜ − 1
2π

ˆ
Dt

Ψ(t, z)dA(z), (10.16)

which is a conserved quantity for (1.5). It is well-known that the bidimensional Euler equations admits a
Hamiltonian structure and we shall see here that such structure still persists at the level of the boundary
equation, which is a stronger formulation.

Proposition 10.1. The equation (10.5) is a Hamiltonian equation in the form

∂tr = ∂θ∇H(r), where H(r) ≜ 1
2E(r), (10.17)

and ∇ is the L2
θ(T)-gradient associated with the L2

θ(T) normalized inner product

〈
ρ1, ρ2

〉
L2(T) ≜

ˆ
T
ρ1(θ)ρ2(θ)dθ.

Proof. In polar coordinates, the stream function, given by (10.12), at some point w ∈ D writes

Ψ(t, w) =
ˆ
T

ˆ R(b,t,η)

0
G
(
w, ℓ2e

iη) ℓ2dℓ2dη with G (w, ξ) ≜ log
(∣∣∣∣ w − ξ

1 − wξ

∣∣∣∣) (10.18)

and kinetic energy E, in (10.16), reads

E(r)(t) = −
ˆ
T

ˆ
T

ˆ R(b,t,θ)

0

(ˆ R(b,t,η)

0
G
(
ℓ1e

iθ, ℓ2e
iη) ℓ2dℓ2

)
ℓ1dℓ1dθdη.

Differentiating with respect to r in the direction ρ and using the symmetry of the kernel

G(w, ξ) = G(ξ, w)

yields

drE(r)[ρ](t) = −2
ˆ
T
ρ(t, θ)

(ˆ
T

ˆ R(b,t,η)

0
G
(
R(b, t, θ)eiθ, ℓ2e

iη) ℓ2dℓ2dη

)
dθ

= −2
ˆ
T
ρ(t, θ)Ψ

(
t, R(b, t, θ)eiθ)dθ.

Since drE(r)[ρ] = ⟨∇E, ρ⟩L2(T) then

∇E(r)(t, θ) = −2Ψ
(
t, R(b, t, θ)eiθ). (10.19)

Finally, using (10.19) and comparing (10.17) with (10.10) we conclude the desired result. This achieves
the proof of Proposition 10.1.

Now, we shall present the symplectic structure associated with the Hamiltonian equation (10.17). This
will be relevant later in Section 12.1 when introducing the action-angle variables. We shall also explore
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some symmetry property for (10.17). Observe that this latter equation implies

d

dt

ˆ
T
r(t, θ)dθ = 0.

Therefore, we will consider the phase space with zero average in the space variable L2
0(T) defined in (4.23).

The equation (10.17) induces on the phase space L2
0(T) a symplectic structure given by the symplectic

2-form W defined in (4.24). The Hamiltonian vector field is XH(r) = ∂θ∇H(r) is defined similarly to
(4.25). We shall now look at the reversibility property of the equation (10.17). Using the change of
variables η 7→ −η and parity arguments, one gets

Fb ◦ S = −S ◦ Fb,

where Fb is given by (10.6) and S is the involution introduced in (4.27). Then we conclude by Lemma
10.1, (10.17) and (4.28) that the Hamiltonian vector field XH satisfies

XH ◦ S = −S ◦XH .

Thus, we will look for quasi-periodic solutions satisfying the reversibility condition

r(−t,−θ) = r(t, θ).

11 Linearization and structure of the equilibrium frequencies

In the current section, we linearize the equation (10.5) at a given small state r close to the equilibrium. At
this latter, we shall see that the linear operator is a Fourier multiplier with polynomial linear frequencies
with respect to the radius of the Rankine patch bD. At the end of this section, we also check the
transversality conditions for the unperturbed frequency vector.

11.1 Linearized operator

We shall first prove that the linearized operator at a general small state r can be decomposed into the
sum of a variable coefficients transport operator, a nonlocal operator of order 0 and a smoothing nonlocal
operator in the variable θ. More precisely, we have the following lemma.

Lemma 11.1. The linearized Hamiltonian equation of (10.17) at a state r is the time-dependent Hamil-
tonian system

∂tρ(t, θ) = −∂θ
(
Vr(b, t, θ)ρ(t, θ) + Lr(ρ)(b, t, θ) − Sr(ρ)(b, t, θ)

)
,

where the function Vr is defined by

Vr(b, t, θ) = − 1
2

ˆ
T

R2(b,t,η)
R2(b,t,θ)dη (11.1)

− 1
R(b,t,θ)

ˆ
T

log
(
Ar(b, t, θ, η)

)
∂η
(
R(b, t, η) sin(η − θ)

)
dη

− 1
R3(b,t,θ)

ˆ
T

log
(
Br(b, t, θ, η)

)
∂η
(
R(b, t, η) sin(η − θ)

)
dη,

Lr is a nonlocal operator in the form

Lr(ρ)(b, t, θ) =
ˆ
T
ρ(t, η) log (Ar(t, θ, η)) dη (11.2)
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and Sr is a smoothing nonlocal operator in the form

Sr(ρ)(b, t, θ) =
ˆ
T
ρ(t, η) log (Br(t, θ, η)) dη. (11.3)

We recall that Ar, Br and R are defined by (10.3), (10.4) and (10.2), respectively.
Moreover, if r(−t,−θ) = r(t, θ), then

Vr(b,−t,−θ) = Vr(b, t, θ). (11.4)

Proof. In all the proof, we shall omit the dependence of our quantities with respect to the variables b
and t. Notice that linearizing (10.10) amounts to compute the Gâteaux derivative of the stream function
Ψ(r, z(θ)) ≜ Ψ(z(θ)) given by (10.12) at point r in the direction ρ (real-valued). All the computations
are done at a formal level, but can be rigorously justified in a classical way in the functional context
introduced in Section A. Applying the chain rule gives

dr
(
Ψ
(
r, z(θ)

))
[ρ] =

(
drΨ(r, w)[ρ]

)
|w=z(θ) + 2Re

((
∂wΨ(r, w)

)
|w=z(θ)drz(θ)[ρ]

)
. (11.5)

Differentiating (10.18) gives

drΨ(r, w)[ρ] =
ˆ
T

log
(∣∣∣∣ w −R(η)eiη

1 −R(η)e−iηw

∣∣∣∣) ρ(η)dη. (11.6)

On the other hand, from (10.14) and the identity

drz(θ)[ρ](θ) = ρ(θ)
R(θ)e

iθ,

we obtain

2Re
((
∂wΨ(r, w)

)
|w=z(θ)drz(θ)[ρ]

)
= − ρ(θ)

R(θ)
1
2

ˆ
T

log
(
|z(η) − z(θ)|2

)
∂ηIm

(
z(η)e−iθ) dη

− ρ(θ)
R3(θ)

1
2

ˆ
T

log
(

|1 − z(θ)z(η)|2
)
∂ηIm

(
z(η)eiθ) dη

+ ρ(θ)
R2(θ)

1
2

ˆ
T

Im
(
∂ηz(η)z(η)

)
dη. (11.7)

Putting together (11.6), (11.5), (11.7) and using the identities

Im
(
z(η)e−iθ) = R(η) sin(η − θ), Im

(
∂ηz(η)z(η)

)
= −R2(η),

we conclude the desired result. The symmetry property (11.4) is an immediate consequence of (11.1) with
the change of variables η 7→ −η. This achieves the proof of Lemma 11.1.

The following lemma shows that the linearized operator at the equilibrium state is a Fourier multiplier.
This provides an integrable Hamiltonian equation from which we shall generate, in Proposition 11.1,
quasi-periodic solutions.

Lemma 11.2. The following properties hold true.

1. The linearized equation of (10.17) at the equilibrium state (r = 0) writes

∂tρ = ∂θL(b)ρ = ∂θ∇HL(ρ), (11.8)
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where L(b) is the self-adjoint operator on L2
0(T) defined by

L(b) ≜ −1
2 − Kb ∗ · (11.9)

with

Kb ≜ K1,b − K2,b, (11.10)

K1,b(θ) ≜ 1
2 log

(
sin2 ( θ

2
))
, (11.11)

K2,b(θ) ≜ log
(
|1 − b2eiθ|

)
. (11.12)

It is generated by the quadratic Hamiltonian

HL(ρ) ≜ 1
2 ⟨L(b)ρ, ρ⟩L2(T). (11.13)

2. From Fourier point of view, if we write ρ(t, θ) =
∑
j∈Z∗

ρj(t)eijθ with ρ−j(t) = ρj(t), then the self-

adjoint operator L(b) and the Hamiltonian HL write

L(b)ρ(θ) = −
∑
j∈Z∗

Ωj(b)
j ρje

ijθ and HL(ρ) = −
∑
j∈Z∗

Ωj(b)
2j |ρj |2, (11.14)

where
(
Ωj(b)

)
j∈Z∗ is defined by

∀j ∈ N∗, Ωj(b) = j − 1 + b2j

2 and Ω−j(b) = −Ωj(b). (11.15)

Moreover, the reversible solutions of the equation (11.8) take the form

ρ(t, θ) =
∑
j∈Z∗

ρj cos (jθ − Ωj(b)t), ρj ∈ R. (11.16)

Proof. 1. Notice that the quantities Ar and Br, introduced in (10.3), (10.4), can be rewritten as follows

Ar(b, t, θ, η) =
(
R2(b, t, θ) +R2(b, t, η) − 2R(b, t, θ)R(b, t, η) cos(η − θ)

) 1
2

=
((
R(b, t, θ) −R(b, t, η)

)2 + 4R(b, t, θ)R(b, t, η) sin2(η − θ)
) 1

2 (11.17)

and

Br(b, t, θ, η) =
(
R2(b, t, θ)R2(b, t, η) − 2R(b, t, θ)R(b, t, η) cos(η − θ) + 1

) 1
2
. (11.18)

Taking r = 0 in (11.17), (10.4) and (10.2) gives

A0(b, t, θ, η) = 2b
∣∣∣sin(η−θ

2

)∣∣∣ , B0(b, t, θ, η) = |1 − b2ei(η−θ)| and R(b, t, θ) = b. (11.19)
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According to (11.1), (11.2) and (11.3) we obtain, after straightforward simplifications using (11.19),

V0(b, t, θ) = − 1
2 − 1

2

ˆ
T

log
(
4b2 sin2 (η

2
))

cos(η)dη − 1
b2

ˆ
T

log
(
|1 − b2eiη|

)
cos(η)dη,

L0(ρ)(b, t, θ) =
ˆ
T

log
(

2b
∣∣∣sin(η−θ

2

)∣∣∣) ρ(t, η)dη,

S0(ρ)(b, t, θ) =
ˆ
T

log
(∣∣1 − b2ei(η−θ)∣∣) ρ(t, η)dη.

We then see that L0 and S0 are convolution operators given by

L0 = K1,b ∗ · with K1,b(θ) ≜ 1
2 log

(
sin2 ( θ

2
))
,

S0 = K2,b ∗ · with K2,b(θ) ≜ log
(
|1 − b2eiθ|

)
.

2. To describe the operators above, it suffices to look for their actions on the Fourier basis (ej)j∈Z∗ of
L2

0(T). We first study the operator L0. Recall the following formula which can be found in [43, Lem. A.3]

∀j ∈ Z∗,

ˆ
T

log
(
sin2 (η

2
))

cos(jη)dη = − 1
|j|
. (11.20)

Using (11.20) together with symmetry arguments, one obtains

∀j ∈ Z∗, K1,b ∗ ej(θ) = 1
2

ˆ
T

log
(
sin2 (η

2
))
eij(θ−η)dη

= ej(θ)
2

ˆ
T

log
(
sin2 (η

2
))

cos(jη)dη (11.21)

= −ej(θ)
2|j|

. (11.22)

We now turn to the study of the operator S0. Using the following identity proved in [138, Lem. 3.2]

∀j ∈ Z∗,

ˆ
T

log
(
|1 − b2eiη|

)
cos(jη)dη = −b2|j|

2|j|
, (11.23)

we obtain

∀j ∈ Z∗, K2,b ∗ ej(θ) = ej(θ)
ˆ
T

log
(
|1 − b2eiη|

)
cos(jη)dη

= −b2|j|ej(θ)
2|j|

. (11.24)

In view of the expression of V0 and using formulae (11.20) and (11.23) we find

V0(b, t, θ) = 1
2 . (11.25)

Notice that, the kernels K1,b and K2,b being even, the operator L(b) is self-adjoint. The identities in
(11.14) follows immediately from (11.9), (11.22), (11.24) and (11.25). Then, according to (11.14), a real
function ρ with Fourier representation ρ(t, θ) =

∑
j∈Z∗

ρ(t)eijθ is a solution to (11.8) if and only if

∀j ∈ Z∗, ρ̇j = −i Ωj(b)ρj ,
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where Ωj(b) is defined by (11.15). Solving the previous ODE gives

ρ(t, θ) =
∑
j∈Z∗

ρj(0)ei(jθ−Ωj(b)t).

Therefore, every real-valued reversible solution to (11.8) has the form (11.16). This ends the proof of
Lemma 11.2.

11.2 Properties of the equilibrium frequencies

The goal of this section is to explore some important properties of the equilibrium frequencies. We shall
first show some bounds on these frequencies then discuss their non-degeneracy through the transversality
conditions. Such conditions are crucial in the measure estimates of the final Cantor set giving rise to
quasi-periodic solutions for the linear and the nonlinear problems.

Lemma 11.3. The following properties hold true.

(i) For all b ∈ (0, 1), the sequence
(Ωj(b)

j

)
j∈N∗ is strictly increasing.

(ii) For all j ∈ Z∗, we have

∀ 0 < b0 ⩽ b < 1, |Ωj(b)| ⩾
b2

0
2 |j|.

(iii) For all j, j′ ∈ Z∗, we have

∀ 0 < b0 ⩽ b < 1, |Ωj(b) ± Ωj′(b)| ⩾ b2
0
6 |j ± j′|.

(iv) Given 0 < b0 < b1 < 1 and q0 ∈ N, there exists C0 > 0 such that

∀j, j′ ∈ Z∗, max
q∈J0,q0K

sup
b∈[b0,b1]

∣∣∂qb (Ωj(b) − Ωj′(b)
)∣∣ ⩽ C0|j − j′|.

Proof. (i) This point was proved in [86, Prop. 2].
(ii) By symmetry (11.15), it suffices to show the inequality for j ∈ N∗. From (i) we have

Ωj(b)
j
⩾ Ω1(b) = b2

2 ⩾
b2

0
2 ·

(iii) In view of the symmetry (11.15), it suffices to check the property for j, j′ ∈ N∗. By symmetry in j, j′

we may assume that j ⩾ j′. For j = j′ = 1 one has

Ω1(b) + Ω1(b) = b2 ⩾ b2
0·

In the case where j ⩾ 2 and j′ ⩾ 1 we get

Ωj(b) + Ωj′(b) = j + j′ − 2
2 + b2j + b2j′

2 ⩾ (j + j′)j + j′ − 2
2(j + j′) ⩾

j + j′

6 ·
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11. Linearization and structure of the equilibrium frequencies

Now we shall move to the difference. Using Taylor formula we obtain, for all j > j′ ⩾ 1,

Ωj(b) − Ωj′(b) = j − j′

2 + b2j − b2j′

2

= j − j′

2 + log(b)
ˆ j

j′
b2xdx

⩾
j − j′

2 (1 + 2 log(b)b2j) ⩾ j − j′

4 ·

(iv) The case j = j′ is trivial, then from the symmetry (11.15) and without loss of generality we shall
assume that j > j′ ⩾ 1. First, remark that

∀b ∈ (0, 1), |Ωj(b) ± Ωj′(b)| ⩽ (j − 1) ± (j′ − 1)
2 + b2j′ ± b2j

2 ⩽ j ± j′.

Now, for all q ∈ N∗, one has
∂qb

(
Ωj(b) ± Ωj′(b)

)
= 1

2∂
q
b

(
b2j ± b2j′

)
.

Moreover, for all q ∈ J1, q0K and n ∈ N∗,

0 ⩽ ∂qb (bn) ⩽ q!
(
n

q

)
bn−q ⩽

nq0bn1
bq0

0
·

Since b1 ∈ (0, 1) then the sequence (nq0bn1 )n∈N is bounded. Therefore, there exists C0 ≜ C0(q0, b0, b1) > 0
such that

∀n ∈ N, 0 ⩽ ∂qb (bn) ⩽ C0. (11.26)

We deduce that for all q ∈ J1, q0K,∣∣∣∂qb(Ωj(b) ± Ωj′(b)
)∣∣∣ ⩽ C0 ⩽ C0(j ± j′).

This concludes the proof of Lemma 11.3.

Let us consider finitely many Fourier modes, called tangential sites, gathered in the tangential set S
defined by

S ≜ {j1, . . . , jd} ⊂ N∗ with 1 ⩽ j1 < j2 < . . . < jd. (11.27)

Now, we define the equilibrium frequency vector by

ωEq(b) ≜ (Ωj(b))j∈S, (11.28)

where Ωj(b) is defined by (11.15). We shall now investigate the non-degeneracy and the transversality
properties satisfied by ωEq. We have the following result.

Lemma 11.4. The equilibrium frequency vector ωEq and the vector-valued function (ωEq, 1) are non-
degenerate on [b0, b1] in the sense of Definition 5.1.

Proof. ▶ We shall first prove that the equilibrium frequency vector ωEq is non-degenerate on [b0, b1].
Arguing by contradiction, suppose that there exists c ≜ (c1, . . . , cd) ∈ Rd\{0} such that

∀b ∈ [b0, b1],
d∑
k=1

ckΩjk
(b) = 0. (11.29)
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Since Ωj(b) is polynomial in b then, from (11.15), one has

∀b ∈ R,
d∑
k=1

ck(jk − 1 + b2jk ) = 0. (11.30)

Taking the limit b → 0 in (11.30) gives the relation
d∑
k=1

ck(jk − 1) = 0, which, inserted into (11.30), implies

∀b ∈ R,
d∑
k=1

ckb
2jk = 0.

Since j1 < j2 < . . . < jd, then
∀k ∈ J1, dK, ck = 0,

which contradicts the assumption.
▶ Next, we shall check that the function (ωEq, 1) is non-degenerate on [b0, b1]. Suppose, by contradiction,
that there exists c ≜ (c1, . . . , cd, cd+1) ∈ Rd+1\{0} such that

∀b ∈ [b0, b1], cd+1 +
d∑
k=1

ckΩjk
(b) = 0. (11.31)

Since Ωj(b) is polynomial in b then, from (11.15), one may writes

∀b ∈ R, cd+1 + 1
2

d∑
k=1

ck(jk − 1 + b2jk ) = 0. (11.32)

Taking the limit b → 0 in (11.32) yields

cd+1 + 1
2

d∑
k=1

ck(jk − 1) = 0.

Inserting this relation into (11.32) gives

∀b ∈ R,
d∑
k=1

ckb
2jk = 0.

Reasoning as in the previous point, we obtain

∀k ∈ J1, dK, ck = 0

and then cd+1 = 0, by coming back to (11.32), contradicting the assumption.

We shall now state the transversality conditions satisfied by the unperturbed frequencies.

Lemma 11.5. [Transversality] Let 0 < b0 < b1 < 1. Set q0 = 2jd + 2. Then, there exists ρ0 > 0 such that
the following results hold true. Recall that ωEq and Ωj are defined in (11.28) and (11.15), respectively.

(i) For all l ∈ Zd \ {0}, we have

inf
b∈[b0,b1]

max
q∈J0,q0K

|∂qbωEq(b) · l| ⩾ ρ0⟨l⟩.
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11. Linearization and structure of the equilibrium frequencies

(ii) For all (l, j) ∈ Zd × (N∗ \ S)

inf
b∈[b0,b1]

max
q∈J0,q0K

∣∣∂qb (ωEq(b) · l ± j
2
)∣∣ ⩾ ρ0⟨l⟩.

(iii) For all (l, j) ∈ Zd × (N∗ \ S)

inf
b∈[b0,b1]

max
q∈J0,q0K

∣∣∂qb (ωEq(b) · l ± Ωj(b)
)∣∣ ⩾ ρ0⟨l⟩.

(iv) For all l ∈ Zd, j, j′ ∈ N∗ \ S with (l, j) ̸= (0, j′), we have

inf
b∈[b0,b1]

max
q∈J0,q0K

∣∣∂qb (ωEq(b) · l + Ωj(b) ± Ωj′(b)
)∣∣ ⩾ ρ0⟨l⟩.

Proof. (i) Assume by contradiction that for all ρ0 > 0, there exist l ∈ Zd \ {0} and b ∈ [b0, b1] such that

max
q∈J0,q0K

|∂qbωEq(b) · l| < ρ0⟨l⟩.

In particular, for the choice ρ0 = 1
m+1 , we can construct sequences lm ∈ Zd \ {0} and bm ∈ [b0, b1] such

that
∀q ∈ J0, q0K,

∣∣∂qbωEq(bm) · lm
⟨lm⟩

∣∣ < 1
m+1 · (11.33)

Since the sequences
(
lm

⟨lm⟩

)
m

and (bm)m are bounded, then by compactness arguments and, up to an
extraction, we can assume that

lim
m→∞

lm
⟨lm⟩ = c̄ ̸= 0 and lim

m→∞
bm = b̄.

Therefore, denoting
P0 ≜ ωEq(X) · c̄ ∈ R2jd

[X]

then passing to the limit in (11.33) as m → ∞ leads to

∀q ∈ J0, q0K, P
(q)
0 (b̄) = 0.

Hence, using the particular choice of q0, we conclude that the polynomial (X − b̄)2jd+3 divides P0,

(X − b̄)2jd+3|P0.

Since deg(P0) ⩽ 2jd, we conclude that P0 is identically zero. This contradicts the non-degeneracy of the
equilibrium frequency vector ωEq stated in Lemma 11.4.
(ii) The case l = 0, j ∈ N∗ is trivially satisfied. Thus, we shall consider the case j ∈ N, l ∈ Zd \ {0}. By
the triangle inequality combined with the boundedness of ωEq we find

∣∣ωEq(b) · l + j
2
∣∣ ⩾ 1

2 |j| − |ωEq(b) · l| ⩾ 1
2 |j| − C|l| ⩾ |l|

provided that |j| ⩾ C0|l| for some C0 > 0. Thus, we shall restrict the proof to indices j and l with

|j| ⩽ C0|l|, j ∈ N, l ∈ Zd \ {0}. (11.34)

Arguing by contradiction as in the previous case, we may assume the existence of sequences lm ∈ Zd\{0},
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jm ∈ N satisfying (11.34) and bm ∈ [b0, b1] such that

∀q ∈ J0, q0K,
∣∣∣∂qb (ωEq(bm) · lm

⟨lm⟩ + jm

2⟨lm⟩

)∣∣∣ < 1
1+m . (11.35)

Since the sequences (bm)m,
(

jm

2⟨lm⟩
)

and
(
lm

⟨lm⟩
)

are bounded, then up to an extraction we can assume that

lim
m→∞

bm = b̄, lim
m→∞

jm

2⟨lm⟩ = d̄ ̸= 0 and lim
m→∞

lm
⟨lm⟩ = c̄ ̸= 0.

Denoting
Q0 ≜ ωEq(X) · c̄+ d̄ ∈ R2jd

[X]

and letting m → ∞ in (11.35) we obtain

∀q ∈ J0, q0K, Q
(q)
0 (b̄) = 0.

Consequently, using the particular choice of q0, we get

(X − b̄)2jd+3|Q0.

Since deg(Q0) ⩽ 2jd, we conclude that Q0 is identically zero. This contradicts Lemma 11.4.
(iii) Consider (l, j) ∈ Zd × (N∗ \ S). Then applying the triangle inequality and Lemma 11.3-(ii), yields

|ωEq(b) · l ± Ωj(b)| ⩾ |Ωj(b)| − |ωEq(b) · l|

⩾ b2
0
2 j − C|l| ⩾ ⟨l⟩

provided j ⩾ C0⟨l⟩ for some C0 > 0. Thus as before we shall restrict the proof to indices j and l with

0 ⩽ j < C0⟨l⟩, j ∈ N∗ \ S and l ∈ Zd\{0}. (11.36)

Proceeding by contradiction, we may assume the existence of sequences lm ∈ Zd \{0}, jm ∈ N\S satisfying
(11.36) and bm ∈ [b0, b1] such that

∀q ∈ J0, q0K,
∣∣∣∣∂qb (ωEq(b) · lm

|lm| ± Ωjm (b)
|lm|

)
|b=bm

∣∣∣∣ < 1
m+1 · (11.37)

Since the sequences
(
lm

|lm|

)
m

and (bm)m are bounded, then up to an extraction we can assume that

lim
m→∞

lm
|lm| = c̄ ̸= 0 and lim

m→∞
bm = b̄.

Now we shall distinguish two cases.
▶ Case ❶ : (lm)m is bounded. In this case, by (11.36) we find that (jm)m is bounded too and thus up
to an extraction we may assume lim

m→∞
lm = l̄ and lim

m→∞
jm = ȷ̄. Since (jm)m and (|lm|)m are sequences

of integers, then they are necessary stationary. In particular, the condition (11.36) implies l̄ ̸= 0 and
ȷ̄ ∈ N \ S. Hence, denoting

P0,ȷ̄ ≜ ωEq(X) · l̄ ± Ωȷ̄(X) ∈ Rmax(2jd,2ȷ̄)[X],

then taking the limit m → ∞ in (11.37), yields

∀q ∈ J0, q0K, P
(q)
0,ȷ̄ (b̄) = 0.
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If ȷ̄ < jd, then in a similar way to the point (i), we find that P0,ȷ̄ = 0 which contradicts Lemma 11.4,
applied with

(
ωEq,Ωȷ̄

)
in place of ωEq. Hence, we shall restrict the discussion to the case ȷ̄ > jd. Since

ωEq(X) · l̄ is of degree 2jd, then we obtain in view of our choice of q0 that

1
2q!
(

2ȷ̄
q

)
b2ȷ̄−2jd−1 = ∂2jd+1

b Ωȷ̄(b̄) = 0.

This implies that b̄ = 0 which contradicts the fact that b̄ ∈ [b0, b1] ⊂ (0, 1).
▶ Case ❷ : (lm)m is unbounded. Up to an extraction we can assume that lim

m→∞
|lm| = ∞. We have two

sub-cases.
• Sub-case ① : (jm)m is bounded. In this case and up to an extraction we can assume that it converges.
Then, taking the limit m → ∞ in (11.37), we find

∀q ∈ J0, q0K, ∂qbωEq(b̄) · c̄ = 0.

Therefore, we obtain a contradiction in a similar way to the point (i).
• Sub-case ② : (jm)m is unbounded. Then up to an extraction we can assume that lim

m→∞
jm = ∞. We

write according to (11.15)

Ωjm(b)
|lm|

= jm
2|lm|

− 1
2|lm|

+ b2jm

2|lm|
. (11.38)

By (11.36), the sequence
(

jm

2|lm|

)
n

is bounded, thus up to an extraction we can assume that it converges
to d̄. Moreover, since lim

m→∞
jm = lim

m→∞
|lm| = ∞ and bm ∈ (b0, b1), then taking the limit in (11.38), one

obtains from (11.26),

lim
m→∞

∂q
b

Ωjm (b)|b=bm

|lm| =
{

d̄ if q = 0
0 else.

Consequently, taking the limit m → ∞ in (11.37), we have

∀q ∈ J0, q0K, ∂qb
(
ωEq(b) · c̄± d̄

)
|b=b̄ = 0.

Then, in a similar way the the point (ii), we deduce that the polynomial ωEq(X) · c̄+ d̄ is identically zero,
which is in contradiction with Lemma 11.4.
(iv) Consider l ∈ Zd, j, j′ ∈ N∗ \ S with (l, j) ̸= (0, j′). Then applying the triangle inequality combined
with Lemma 11.3-(iii), we infer that

|ωEq(b) · l + Ωj(b) ± Ωj′(b)| ⩾ |Ωj(b) ± Ωj′(b)| − |ωEq(b) · l| ⩾ b2
0
6 |j ± j′| − C|l| ⩾ ⟨l⟩

provided that |j ± j′| ⩾ c0⟨l⟩ for some c0 > 0. Then it remains to check the proof for indices satisfying

|j ± j′| < c0⟨l⟩, l ∈ Zd\{0}, j, j′ ∈ N∗ \ S. (11.39)

Reasoning by contradiction as in the previous cases, we get for all m ∈ N, real numbers lm ∈ Zd \ {0},
jm, j

′
m ∈ N∗ \ S satisfying (11.39) and bm ∈ [b0, b1] such that

∀q ∈ J0, q0K,
∣∣∣∣∂qb (ωEq(b) · lm

|lm| +
Ωjm (b)±Ωj′

m
(b)

|lm|

)
|b=bm

∣∣∣∣ < 1
m+1 · (11.40)

Up to an extraction we can assume that lim
m→∞

lm
|lm| = c̄ ̸= 0 and lim

m→∞
bm = b̄.

As before we shall distinguish two cases.
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▶ Case ❶ : (lm)m is bounded. Up to an extraction we may assume that lim
m→∞

lm = l̄ ̸= 0. Now according
to (11.39) we have two sub-cases to discuss depending whether the sequences (jm)m and (j′

m)m are
simultaneously bounded or unbounded.
• Sub-case ① : (jm)m and (j′

m)m are bounded. In this case, up to an extraction we may assume that
these sequences are stationary jm = ȷ̄ and j′

m = ȷ̄′ with ȷ̄, ȷ̄′ ∈ N∗ \ S. Hence, denoting

P0,ȷ̄,ȷ̄′ ≜ ωEq(X) · l̄ + Ωȷ̄(X) ± Ωȷ̄′(X) ∈ Rmax(2jd,2ȷ̄,2ȷ̄′)[X],

then, taking the limit m → ∞ in (11.37), we have

∀q ∈ J0, q0K, P
(q)
0,ȷ̄,ȷ̄′(b̄) = 0.

If max(ȷ̄, ȷ̄′) < jd, then, we deduce that P0,ȷ̄,ȷ̄′ = 0 which gives a contradiction as the previous cases, up to
replacing ωEq by

(
ωEq,Ωȷ̄,Ωȷ̄′

)
. Therefore, we are left to study the case max(ȷ̄, ȷ̄′) > jd. Notice that the

cases ȷ̄ = ȷ̄′ and min(ȷ̄, ȷ̄′) > jd are byproducts of point (i) and (iii). Without loss of generality, we may
assume that ȷ̄ > ȷ̄′ ⩾ jd + 1. In particular, since ωEq(X) · l̄ is of degree 2jd, then, according to our choice
of q0, we obtain {

C1b̄
α ± C2b̄

β = 0
C1αb̄

α ± C2βb̄
β = 0,

(11.41)

with
α ≜ 2ȷ̄− 2jd − 1, β ≜ 2ȷ̄′ − 2jd − 1, C1 ≜ q0!

(
2ȷ̄
q0

)
and C2 ≜ q0!

(
2ȷ̄′

q0

)
.

Since C1 and C2 are positive, we immediately get from the first equation in (11.41) that

C1b̄
α + C2b̄

β = 0 ⇒ b̄ = 0.

This contradicts the fact that b̄ ∈ [b0, b1] ⊂ (0, 1). In the case where we have the difference, the system
(11.41) gives

C2

C1
= C2β

C1α
,

which implies in turn that α = β, that is ȷ̄ = ȷ̄′ which is excluded by hypothesis.
• Sub-case ② : (jm)m and (j′

m)m are both unbounded and without loss of generality we can assume that
lim
m→∞

jm = lim
m→∞

j′
m = ∞. Coming back to (11.15) we get the splitting

Ωjm
(b) ± Ωj′

m
(b)

|lm|
=jm ± j′

m

2|lm|
+ b2jm ± b2j′

m

2|lm|
.

Using once again (11.39) and up to an extraction we have lim
m→∞

jm±j′
m

|lm| = d̄. Thus

lim
m→∞

|lm|−1∂qb
(
Ωjm

(b) ± Ωj′
m

(b)
)

|b=bm
=
{

d̄ if q = 0
0 if q ̸= 0.

By taking the limit as m → ∞ in (11.40), we find

∀q ∈ J0, q0K, ∂qb
(
ωEq(b) · c̄+ d̄

)
|b=b = 0.

This leads to a contradiction as in the point (ii).
▶ Case ❷ : (lm)m is unbounded. Up to an extraction we can assume that lim

m→∞
|lm| = ∞.

We shall distinguish three sub-cases.
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• Sub-case ①. The sequences (jm)m and (j′
m)m are bounded. In this case and up to an extraction they

will converge and then taking the limit in (11.40) yields,

∀q ∈ J0, q0K, ∂qbωEq(b̄) · c̄ = 0.

which leads to a contradiction as before.
• Sub-case ②. The sequences (jm)m and (j′

m)m are both unbounded. This is similar to the sub-case ② of
the case ❶.
• Sub-case ③. The sequence (jm)m is unbounded and (j′

m)m is bounded (the symmetric case is similar).
Without loss of generality we can assume that lim

m→∞
jm = ∞ and j′

m = ȷ̄′. By (11.39) and up to an

extraction one gets lim
m→∞

jm±j′
m

|lm| = d̄. Once again, we have

lim
m→∞

|lm|−1∂qb
(
Ωjm(b) ± Ωj′

m
(b)
)

|b=bm
=
{

d̄ if q = 0
0 if q ̸= 0.

Hence, taking the limit in (11.40) implies

∀q ∈ J0, q0K, ∂qb
(
ωEq(b) · c̄+ d̄

)
b=b = 0,

which also gives a contradiction as the previous cases. This completes the proof of Lemma 11.5.

Notice that by selecting only a finite number of frequencies, the sum in (11.16) give rise to quasi-periodic
solutions of the linearized equation (11.8), up to selecting the parameter b in a Cantor-like set of full
measure. We have the following result.

Proposition 11.1. Let 0 < b0 < b1 < 1, d ∈ N∗ and S ⊂ N∗ with |S| = d. Then, there exists a Cantor-like
set C ⊂ [b0, b1] satisfying |C| = b1 − b0 and such that for all λ ∈ C, every function in the form

ρ(t, θ) =
∑
j∈S

ρj cos
(
jθ − Ωj(b)t

)
, ρj ∈ R∗ (11.42)

is a time quasi-periodic reversible solution to the equation (10.17) with the vector frequency

ωEq(b) =
(
Ωj(b)

)
j∈S.

The proof of this proposition follows in a similar way to Proposition 5.1.

12 Functional of interest and regularity aspects

The main goal of this section is to reformulate the problem in a dynamical system language more adapted to
KAM techniques. More precisely, we shall write the equation (10.17) as a Hamiltonian perturbation of an
integrable system, given by the linear dynamics at the equilibrium state. Then, by selecting finitely-many
tangential sites and decomposing the phase space into tangential and normal subspaces we can introduce
action-angle variables on the tangential part allowing to reformulate the problem in terms of embedded
tori. This reduces the problem into the search for zeros of a functional F to which the Nash-Moser implicit
function theorem will be applied. We shall also study in this section some regularity aspects for the
perturbed Hamiltonian vector field appearing in F and needed during the Nash-Moser scheme. This
approach has been intensively used before, for instance in [7, 8, 29, 28, 33].
Notice that, according to Lemmata 10.1 and 11.2, the equation (10.17), that is also (10.5), can be written
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in the form
∂tr = ∂θL(b)(r) +XP (r) with XP (r) ≜ 1

2∂θr + ∂θKb ∗ r − Fb[r], (12.1)

where the nonlinear functional Fb[r] is introduced in (10.6) and the convolution kernel is given by (11.10).
Since we shall look for small amplitude quasi-periodic solutions then it is more convenient to rescale the
solution as follows r 7→ εr with r bounded. Hence, the Hamiltonian equation (10.17) takes the form

∂tr = ∂θL(b)(r) + εXPε
(r), (12.2)

where XPε is the Hamiltonian vector field defined by XPε(r) ≜ ε−2XP (εr). Notice that (12.2) is the
Hamiltonian system generated by the rescaled Hamiltonian

Hε(r) = ε−2H(εr)

≜ HL(r) + εPε(r), (12.3)

with HL the quadratic Hamiltonian defined in Lemma 11.2 and εPε(r) containing terms of higher order
more than cubic.

12.1 Reformulation with the action-angle and normal variables

Recall from (11.27) that the tangential set is defined by

S ≜ {j1, . . . , jd} ⊂ N∗ with 1 ⩽ j1 < j2 < . . . < jd.

We now define the symmetrized tangential sets S and S0 by

S ≜ S ∪ (−S) = {±j, j ∈ S} and S0 = S ∪ {0}. (12.4)

Since the application b 7→ ωEq(b) is continuous then ωEq ([b0, b1]) is a compact subset of Rd. In particular,
there exists R0 > 0 such that

ωEq ((b0, b1)) ⊂ U ≜ B(0, R0).

Then we define the set of parameters as

O ≜ (b0, b1) × U . (12.5)

Then we decompose the phase space L2
0(T) into the following L2(T)-orthogonal direct sum

L2
0(T) = LS

⊥
⊕ L2

⊥, LS ≜
{∑
j∈S

rjej , rj = r−j

}
, L2

⊥ ≜
{
z =

∑
j∈Z\S0

zjej ∈ L2
0(T)

}
, (12.6)

where we denote ej(θ) = eijθ. The associated orthogonal projectors ΠS,Π
⊥
S0

are defined by

r =
∑
j∈Z∗

rjej = v + z, v ≜ ΠSr ≜
∑
j∈S

rjej , z ≜ Π⊥
S0
r ≜

∑
j∈Z\S0

rjej , (12.7)

where v and z are respectively called the tangential and normal variables. For fixed small amplitudes
(aj)j∈S ∈ (R∗

+)d satisfying a−j = aj , we introduce the action-angle variables on the tangential set LS by
making the following symplectic polar change of coordinates

∀j ∈ S, rj =
√

a2
j + |j|Ij eiϑj , (12.8)
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where
∀j ∈ S, I−j = Ij ∈ R and ϑ−j = −ϑj ∈ T. (12.9)

Thus, any function r of the phase space L2
0 can be represented as

r = A(ϑ, I, z) ≜ v(ϑ, I) + z where v(ϑ, I) ≜
∑
j∈S

√
a2
j + |j|Ij eiϑjej . (12.10)

Observe that the function v(−ωEq(b)t, 0), where ωEq is defined in (11.28), corresponds to the solution
of the linear system (11.8) described by (11.42). In these new coordinates, the involution S defined in
(4.27) reads

S : (ϑ, I, z) 7→ (−ϑ, I,S z) (12.11)

and the symplectic 2-form in (4.24) becomes, after straightforward computations using (12.8) and (12.9),

W =
∑
j∈S

dϑj ∧ dIj + 1
2
∑

j∈Z\S0

1
ij drj ∧ dr−j =

(∑
j∈S

dϑj ∧ dIj

)
⊕ W|L2

⊥
, (12.12)

where W|L2
⊥

denotes the restriction of W to L2
⊥. This proves that the transformation A defined in (12.10)

is symplectic and in the action-angle and normal coordinates (ϑ, I, z) ∈ Td × Rd × L2
⊥, the Hamiltonian

system generated by Hε in (12.3) transforms into the one generated by the Hamiltonian

Hε = Hε ◦A. (12.13)

Since L(b) in Lemma 11.2 preserves the subspaces LS and L2
⊥ then the quadratic Hamiltonian HL in

(11.13) (see (11.14)) in the variables (ϑ, I, z) reads, up to an additive constant,

HL ◦A = −
∑
j∈S

Ωj(b)Ij + 1
2 ⟨L(b) z, z⟩L2(T) = −ωEq(b) · I + 1

2 ⟨L(b) z, z⟩L2(T), (12.14)

where ωEq ∈ Rd is the unperturbed tangential frequency vector defined by (11.28). By (12.3) and (12.14),
the Hamiltonian Hε in (12.13) reads

Hε = N + εPε with N ≜ −ωEq(b) · I + 1
2 ⟨L(b) z, z⟩L2(T) and Pε ≜ Pε ◦A. (12.15)

We look for an embedded invariant torus

i : Td → Rd × Rd × L2
⊥

φ 7→ i(φ) ≜ (ϑ(φ), I(φ), z(φ))
(12.16)

of the Hamiltonian vector field

XHε
≜ (∂IHε,−∂ϑHε,Π⊥

S0
∂θ∇zHε) (12.17)

filled by quasi-periodic solutions with Diophantine frequency vector ω. We point out that for the value
ε = 0 the Hamiltonian system

ω · ∂φi(φ) = XH0(i(φ))

possesses, for any value of the parameter b ∈ (b0, b1), the invariant torus

iflat(φ) ≜ (φ, 0, 0). (12.18)
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Now we consider the family of Hamiltonians,

Hα
ε ≜ Nα + εPε where Nα ≜ α · I + 1

2 ⟨L(b) z, z⟩L2(T), (12.19)

which depends on the constant vector α ∈ Rd. For the value α = −ωEq(b) we have Hα
ε = Hε. The

parameter α is introduced in order to ensure the validity of some compatibility conditions during the
approximate inverse process. We look for zeros of the nonlinear operator

F(i, α, (b, ω), ε) ≜ ω · ∂φi(φ) −XHα
ε

(i(φ))

=

 ω · ∂φϑ(φ) − α− ε∂IPε(i(φ))
ω · ∂φI(φ) + ε∂ϑPε(i(φ))

ω · ∂φz(φ) − ∂θ
[
L(b)z(φ) + ε∇zPε

(
i(φ)

)]
 ,

(12.20)

where Pε is defined in (12.3). For any α ∈ Rd, the Hamiltonian Hα
ε is invariant under the involution S

defined in (12.11),
Hα
ε ◦ S = Hα

ε .

Thus, we look for reversible solutions of F(i, α, (b, ω), ε) = 0, namely satisfying

ϑ(−φ) = −ϑ(φ), I(−φ) = I(φ), z(−φ) = (S z)(φ). (12.21)

We define the periodic component I of the torus i by

I(φ) ≜ i(φ) − (φ, 0, 0) = (Θ(φ), I(φ), z(φ)) with Θ(φ) = ϑ(φ) − φ

and the weighted Sobolev norm of I as

∥I∥γ,Oq,s ≜ ∥Θ∥γ,Oq,s + ∥I∥γ,Oq,s + ∥z∥γ,Oq,s .

12.2 Regularity of the perturbed Hamiltonian vector field

This section is devoted to some regularity aspects of the Hamiltonian involved in the equation (10.17).
We shall need the following lemma.

Lemma 12.1. Let (γ, q, s0, s) satisfy (A.2). There exists ε0 ∈ (0, 1] such that if

∥r∥γ,Oq,s0+2 ⩽ ε0,

then the operators ∂θLr and ∂θSr, defined in (11.2) and (11.3) write

∂θLr = ∂θK1,b ∗ · + ∂θLr,1 with Lr,1(ρ)(b, φ, θ) ≜
ˆ
T
ρ(φ, η)Kr,1(b, φ, θ, η)dη, (12.22)

∂θSr = ∂θK2,b ∗ · + ∂θSr,1 with Sr,1(ρ)(b, φ, θ) =
ˆ
T
ρ(φ, η)Kr,1(b, φ, θ, η)dη (12.23)

where K1,b, K2,b are given by (11.11)-(11.12) and the kernels Kr,1(b, φ, θ, η),Kr,1(b, φ, θ, η) ∈ R satisfy the
following symmetry property: if r(−φ,−θ) = r(φ, θ) then

Kr,1(b,−φ,−θ,−η) = Kr,1(b, φ, θ, η), (12.24)

Kr,1(b,−φ,−θ,−η) = Kr,1(b, φ, θ, η) (12.25)
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and the following estimates

∥Kr,1∥γ,Oq,Hs
φ,θ,η

≲ ∥r∥γ,Oq,s+1, (12.26)

∥Kr,1∥γ,Oq,Hs
φ,θ,η

≲ ∥r∥γ,Oq,s . (12.27)

Moreover,

∥∂θK1,b ∗ ρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s , (12.28)

∥∂θK2,b ∗ ρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s , (12.29)

∥∂θLr,1ρ∥γ,Oq,s ≲ ∥r∥γ,Oq,s0+2∥ρ∥γ,Oq,s + ∥r∥γ,Oq,s+2∥ρ∥γ,Oq,s0
, (12.30)

∥∂θSr,1ρ∥γ,Oq,s ≲ ∥r∥γ,Oq,s0+1∥ρ∥γ,Oq,s + ∥r∥γ,Oq,s+1∥ρ∥γ,Oq,s0
. (12.31)

Proof. According to (11.17) we may write

Ar(φ, θ, η) = 2b
∣∣∣sin(η−θ

2

)∣∣∣ ((R(b, φ, η) −R(b, φ, θ)
2b sin

(
η−θ

2
) )2

+ 1
b2R(b, φ, η)R(b, φ, θ)

) 1
2

≜ 2b
∣∣∣sin(η−θ

2

)∣∣∣ vr,1(b, φ, θ, η). (12.32)

Notice that vr,1 is smooth when r is smooth and small enough, and v0,1 = 1. More precisely, by using
Lemma A.1-(iv)-(v) combined with Lemma A.2-(ii) and the smallness condition on r, we get

∥vr,1 − 1∥γ,Oq,Hs
φ,θ,η

≲ ∥r∥γ,Oq,s+1. (12.33)

Using the morphism property of the logarithm, we can write

log(Ar(b, φ, θ, η)) = log
(
2b
)

+ 1
2 log

(
sin2

(
η−θ

2

))
+ log (vr,1(b, φ, θ, η))

≜ log
(
2b
)

+ K1,b(η − θ) + Kr,1(b, φ, θ, η) (12.34)

and (12.24) immediately follows. Moreover, (11.2) and (12.34) give (12.22). Applying Lemma A.1-(v)
together with (12.33) and the smallness condition on r, we obtain (12.26). Using (12.26), Lemma A.7-(ii)
and the smallness property on r, we get (12.30). Similarly, from (11.18) we can link B2

r to B2
0 by

B2
r (b, φ, θ, η) = B2

0(b, φ, θ, η) +
(
R2(b, φ, θ)R2(b, φ, η) − b4

)
− 2
(
R(b, φ, θ)R(b, φ, η) − b2

)
cos(η − θ)

= B2
0(b, φ, θ, η)

(
1 + Pr(b, φ, θ, η)

)
with

Pr(b, φ, θ, η) ≜
(
R2(b,φ,θ)R2(b,φ,η)−b4

)
−2
(
R(b,φ,θ)R(b,φ,η)−b2

)
cos(η−θ)

1+b4−2b2 cos(η−θ)

so that we can write

log
(
Br(b, φ, θ, η)

)
= log

(
B0(b, φ, θ, η)

)
+ 1

2 log
(
1 + Pr(b, φ, θ, η)

)
≜ K2,b(η − θ) + Kr,1(b, φ, θ, η) (12.35)

and (12.25) immediately follows. Moreover, (11.3) and (12.35) give (12.23). Notice that that Pr is smooth
with respect to each variable and with respect to r with P0 = 0. We conclude by Lemma A.1-(iv)-(v) and
the smallness property on r that

∥Pr∥γ,Oq,Hs
φ,θ,η

≲ ∥r∥γ,Oq,s .

241



Part II

As a consequence, composition laws in Lemma A.1 together with the smallness property on r imply
(12.27). Then, using (12.27), Lemma A.7-(ii) and the smallness property on r, we get (12.31). The
estimates (12.28)-(12.29) can be obtained using (11.22), (11.24) and Leibniz rule combined with the
following estimate

sup
n∈N

∥b 7→ bn∥γ,Oq ≲ 1.

This ends the proof of Lemma 12.1.

We now provide tame estimates for the vector field XP defined in (12.1).

Lemma 12.2. Let (γ, q, s0, s) satisfy (A.2). There exists ε0 ∈ (0, 1] such that if

∥r∥γ,Oq,s0+2 ⩽ ε0,

then the vector field XP , defined in (12.1) satisfies the following estimates

(i) ∥XP (r)∥γ,Oq,s ≲ ∥r∥γ,Oq,s+2∥r∥γ,Oq,s0+1.

(ii) ∥drXP (r)[ρ]∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s+2∥r∥γ,Oq,s0+1 + ∥r∥γ,Oq,s+2∥ρ∥γ,Oq,s0+1.

(iii) ∥d2
rXP (r)[ρ1, ρ2]∥γ,Oq,s ≲ ∥ρ1∥γ,Oq,s0+1∥ρ2∥γ,Oq,s+2 +

(
∥ρ1∥γ,Oq,s+2 + ∥r∥γ,Oq,s+2∥ρ1∥γ,Oq,s0+1

)
∥ρ2∥γ,Oq,s0+1.

Proof. We first prove the estimate (iii) and the estimates (ii) and (i) then follow by Taylor formula since
drXP (0) = 0 and XP (0) = 0. Recall from Lemma 11.1, (12.22) and (12.23) that

drXH(r)[ρ] = −drFb(r)[ρ] = −∂θ (Vrρ) − ∂θKb ∗ ρ− ∂θLr,1ρ+ ∂θSr,1ρ.

According to (12.1), P is is the Hamiltonian generated by higher order more than cubic terms H⩾3. Then
differentiating with respect to r the last expression we obtain

d2
rXP (r)[ρ1, ρ2] = −∂θ

((
drVr[ρ2]

)
ρ1
)

− ∂θ (drLr,1[ρ2]ρ1) + ∂θ (drSr,1[ρ2]ρ1) . (12.36)

Recall, from (12.22) and (12.34), that

Lr,1(ρ)(b, φ, θ) =
ˆ
T
ρ(φ, η) log(vr,1(b, φ, θ, η))dη. (12.37)

Hence by differentiation we obtain

drLr,1(r)[ρ2]ρ1(b, φ, θ) = 1
2

ˆ
T
ρ1(φ, η)

(
drv

2
r,1

)
[ρ2](b,φ,θ,η)

v2
r,1(b,φ,θ,η) dη. (12.38)

Coming back to (12.32) it is obvious that the dependence in r of the functional v2
r,1 is smooth. Straight-

forward calculations lead to

1
2drv

2
r,1(r)[ρ2](b, φ, θ, η) = R(b,φ,θ)−R(b,φ,η)

sin2( η−θ
2 )

(
ρ2(φ,θ)
R(b,φ,θ) − ρ2(φ,η)

R(b,φ,η)

)
+ ρ2(φ,θ)R2(b,φ,η)+ρ2(φ,η)R2(b,φ,θ)

R(b,φ,θ)R(b,φ,η) .

Using (12.33) combined with the law products stated in Lemma A.1, Lemma A.2-(ii) and the smallness
condition of Lemma 12.2 we find that

∥drv2
r,1(r)[ρ2]∥γ,Oq,Hs

φ,θ,η
≲ ∥ρ2∥γ,Oq,s + ∥r∥γ,Oq,s+1∥ρ2∥γ,Oq,s0

. (12.39)

According to (12.39), (12.38) and using Lemma A.1-(iv)-(v), Lemma A.7-(ii) and the smallness condition
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we obtain,

∥∂θdrLr,1(r)[ρ2]ρ1∥γ,Oq,s ≲∥drLr,1(r)[ρ2]ρ1∥γ,Oq,s+1

≲∥ρ1∥γ,Oq,s+1∥ρ2∥γ,Oq,s0+1 + ∥ρ1∥γ,Oq,s0

(
∥ρ2∥γ,Oq,s+1 + ∥r∥γ,Oq,s+2∥ρ2∥γ,Oq,s0+1

)
. (12.40)

Now we shall move to the estimate of drSr,1(r)[ρ2]ρ1(b, φ, θ). By differentiating with respect to r in (12.23)
and (12.35), we obtain

drSr,1(r)[ρ2]ρ1(b, φ, θ) = 1
2

ˆ
T
ρ1(φ, η)

(
drB

2
r

)
[ρ2](b,φ,θ,η)

B2
r (b,φ,θ,η) dη.

In view of (11.18), direct computations yield

1
2drB

2
r (r)[ρ2](b, φ, θ, η) = ρ2(φ, θ)R2(b, φ, η) + ρ2(φ, η)R2(b, φ, θ)

−
(
ρ2(φ, θ)R(b,φ,η)

R(b,φ,θ) + ρ2(φ, η)R(b,φ,θ)
R(b,φ,η)

)
cos(η − θ).

Then, Lemma A.1-(iv)-(v) and the smallness condition on r imply

∥drB2
r (r)[ρ2]∥γ,Oq,Hs

φ,θ,η
≲ ∥ρ2∥γ,Oq,s + ∥r∥γ,Oq,s ∥ρ2∥γ,Oq,s0

.

It follows from Lemma A.7-(ii), that

∥∂θdrSr,1(r)[ρ2]ρ1∥γ,Oq,s ≲∥drSr,1(r)[ρ2]ρ1∥γ,Oq,s+1

≲∥ρ1∥γ,Oq,s+1∥ρ2∥γ,Oq,s0+1 + ∥ρ1∥γ,Oq,s0

(
∥ρ2∥γ,Oq,s+1 + ∥r∥γ,Oq,s+1∥ρ2∥γ,Oq,s0+1

)
. (12.41)

Next we shall move to the estimate of drVr[ρ2]. From Lemma 11.1, we can write

Vr = V 0
r + V 1

r + V 2
r , with V 0

r (b, φ, θ) ≜ − 1
2

ˆ
T

R2(b,φ,η)
R2(b,φ,θ)dη,

V 1
r (b, φ, θ) ≜ − 1

R(b,φ,θ)

ˆ
T

log
(
Ar(b, φ, θ, η)

)
∂η
(
R(b, φ, η) sin(η − θ)

)
dη,

V 2
r (b, φ, θ) ≜ − 1

R3(b,φ,θ)

ˆ
T

log
(
Br(b, φ, θ, η)

)
∂η
(
R(b, φ, η) sin(η − θ)

)
dη.

Differentiating V 0
r with respect to r in the direction ρ2 yields

drV
0
r (r)[ρ2](θ) = −

ˆ
T

ρ2(φ,θ)R2(b,φ,η)−ρ2(φ,η)R2(b,φ,θ)
R4(b,φ,θ) dη.

Law products in Lemma A.1 and the smallness condition in r then imply

∥drV 0
r (r)[ρ2]∥γ,Oq,s ≲ ∥ρ2∥γ,Oq,s + ∥r∥γ,Oq,s ∥ρ2∥γ,Oq,s0

. (12.42)

Differentiating V 1
r with respect to r in the direction ρ2 gives

drV
1
r (r)[ρ2](θ) = −

ˆ
T

log (Ar(b, φ, θ, η)) ∂ηdrfr[ρ2](b, φ, θ, η)dη

− 1
2

ˆ
T

(
drv

2
r,1

)
[ρ2](b,φ,θ,η)

v2
r,1(b,φ,θ,η) ∂ηfr(b, φ, θ, η)dη

≜ I1(θ) + I2(θ),
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with

fr(b, φ, θ, η) ≜ R(b,φ,η)
R(b,φ,θ) sin(η − θ).

Straightforward computations give

drfr[ρ2](b, φ, θ) = ρ2(φ,η)R2(b,φ,θ)−ρ2(φ,θ)R2(b,φ,η)
R3(b,φ,θ)R(b,φ,η) sin(η − θ).

Then, by law products and composition laws in Lemma A.1 we immediately deduce that

∥∂ηfr∥γ,Oq,Hs
φ,θ,η

≲ 1 + ∥r∥γ,Oq,s+1, (12.43)

∥∂ηdrfr[ρ2]∥γ,Oq,Hs
φ,θ,η

≲
(
1 + ∥r∥γ,Oq,s0+1

)
∥ρ2∥γ,Oq,s+1 +

(
1 + ∥r∥γ,Oq,s+1

)
∥ρ2∥γ,Oq,s0+1. (12.44)

The following estimate on I2 can be obtained combining (12.39), (12.33) and (12.43) together with Lemma
A.1-(iv)-(v) and the smallness property on r.

∥I2∥γ,Oq,s ≲ ∥ρ2∥γ,Oq,s + ∥r∥γ,Oq,s+1∥ρ2∥γ,Oq,s0
. (12.45)

As for I1 we argue in a similar way to Lemma 12.1 to get

∥I1∥γ,Oq,s ≲ ∥ρ2∥γ,Oq,s+1 + ∥r∥γ,Oq,s+1∥ρ2∥γ,Oq,s0+1. (12.46)

Putting together (12.45) and (12.46) yields

∥drV 1
r (r)[ρ2]∥γ,Oq,s ≲ ∥ρ2∥γ,Oq,s+1 + ∥r∥γ,Oq,s+1∥ρ2∥γ,Oq,s0+1. (12.47)

Differentiating V 2
r with respect to r in the direction ρ2 yields

drV
2
r (r)[ρ2](b, φ, θ) = −

ˆ
T

log
(
Br(b, φ, θ, η)

)
∂η

(
ρ2(φ,η)R2(b,φ,θ)−3ρ2(φ,θ)R2(b,φ,η)

R5(b,φ,θ)R(b,φ,η) sin(η − θ)
)
dη

− 1
2

ˆ
T

(
drB

2
r

)
[ρ2](b,φ,θ,η)

B2
r (b,φ,θ,η) ∂η

(
R(b,φ,η)
R3(b,φ,θ) sin(η − θ)

)
dη.

Arguing in a similar way as above we find

∥drV 2
r (r)[ρ2]∥γ,Oq,s ≲ ∥ρ2∥γ,Oq,s+1 + ∥r∥γ,Oq,s+1∥ρ2∥γ,Oq,s0+1. (12.48)

Putting together (12.42), (12.47) and (12.48) gives

∥drVr(r)[ρ2]∥γ,Oq,s ≲ ∥ρ2∥γ,Oq,s+1 + ∥r∥γ,Oq,s+1∥ρ2∥γ,Oq,s0+1. (12.49)

Therefore, according to the law products in Lemma A.1, (12.49) and the smallness condition we obtain

∥∥∂θ(drVr(r)[ρ2]ρ1
)∥∥γ,O
q,s
⩽ ∥drVr(r)[ρ2]ρ1∥γ,Oq,s+1

≲
∥∥drVr(r)[ρ2]

∥∥γ,O
q,s+1

∥∥ρ1
∥∥γ,O
q,s0

+
∥∥drVr(r)[ρ2]

∥∥γ,O
q,s0

∥∥ρ1
∥∥γ,O
q,s+1

≲ ∥ρ1∥γ,Oq,s0
∥ρ2∥γ,Oq,s+2 + ∥r∥γ,Oq,s+2∥ρ1∥γ,Oq,s0

∥ρ2∥γ,Oq,s0+1 + ∥ρ1∥γ,Oq,s+1∥ρ2∥γ,Oq,s0+1.
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Combining the latter estimate with (12.36), (12.40) and (12.41) allows to get

∥d2
rXP (r)[ρ1, ρ2]∥γ,Oq,s ≲ ∥ρ1∥γ,Oq,s0

∥ρ2∥γ,Oq,s+2 + ∥r∥γ,Oq,s+2∥ρ1∥γ,Oq,s0
∥ρ2∥γ,Oq,s0+1 + ∥ρ1∥γ,Oq,s+1∥ρ2∥γ,Oq,s0+1.

Using Sobolev embeddings we get the desired result. This concludes the proof of Lemma 12.2.

Notice in particular that Lemma 12.2-(i) implies that there is no singlarity in ε for the rescaled vector
field XPε

defined in (12.2). Based on the previous lemma we obtain tame estimates for the Hamiltonian
vector field

XPε
= (∂IPε,−∂ϑPε,Π⊥

S ∂θ∇zPε)

defined by (12.15) and (12.17). The proof can be done in a similar way to [33, Lem. 5.1].

Lemma 12.3. Let (γ, q, s0, s) satisfy (A.2). There exists ε0 ∈ (0, 1) such that if

ε ⩽ ε0 and ∥I∥γ,Oq,s0+2 ⩽ 1,

then the perturbed Hamiltonian vector field XPε
satisfies the following tame estimates,

(i) ∥XPε
(i)∥γ,Oq,s ≲ 1 + ∥I∥γ,Oq,s+2.

(ii)
∥∥diXPε

(i)[ î ]
∥∥γ,O
q,s
≲ ∥ î ∥γ,Oq,s+2 + ∥I∥γ,Oq,s+2∥ î ∥γ,Oq,s0+1.

(iii)
∥∥d2

iXPε(i)[ î, î ]
∥∥γ,O
q,s
≲ ∥ î ∥γ,Oq,s+2∥ î ∥γ,Oq,s0+1 + ∥I∥γ,Oq,s+2

(
∥ î ∥γ,Oq,s0+1

)2
.

13 Construction of an approximate right inverse

In order to apply a modified Nash-Moser scheme, we need to construct an approximate right inverse of
the linearized operator associated to the functional F , that is

d(i,α)F(i0, α0)[̂ı , α̂] = ω · ∂φ ı̂− diXH
α0
ε

(i0(φ))[̂ı] − (α̂, 0, 0). (13.1)

where F is defined in (12.20), α0 : O → Rd is a vector-valued function and i0 = (ϑ0, I0, z0) is an arbitrary
torus close to the flat one and satisfying the reversibility condition

ϑ0(−φ) = −ϑ0(φ), I0(−φ) = I0(φ) and z0(−φ) = (S z0)(φ). (13.2)

For this aim, we may follow the procedure introduced in [21] and slightly simplified in [87, Sec. 6].
The main idea consists in conjugating (13.1) by a linear diffeomorphism of the toroidal phase space
Td × Rd × L2

⊥ to a triangular system in the action-angles-normal variables up to small fast decaying error
terms and terms vanishing at an exact solution. Then, to solve the triangular system we are led to almost
invert the linearized operator in the normal directions, given by

L̂ω ≜ Π⊥
S0

(
ω · ∂φ − ∂θ(∂z∇zH

α0
ε )(i0(φ)) − ε∂θR(φ)

)
Π⊥

S0
, (13.3)

where Hα0
ε is given by (12.19),

R(φ) ≜ L⊤
2 (φ)∂I∇IPε(i0(φ))L2(φ) + L⊤

2 (φ)∂z∇IPε(i0(φ)) + ∂I∇zPε(i0(φ))L2(φ), (13.4)

Pε is defined by (12.15) and

L2(ϕ) ≜ −[(∂ϑz̃0)(ϑ0(ϕ))]⊤∂−1
θ , z̃0(ϑ) ≜ z0(ϑ−1

0 (ϑ)). (13.5)
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Here, for any linear operator A ∈ L(Rd, L2
⊥) the transposed operator A⊤ : L2

⊥ → Rd is defined through
the duality relation

∀u ∈ L2
⊥ , ∀ v ∈ Rd,

〈
A⊤u, v

〉
Rd =

〈
u,Av

〉
L2(Td). (13.6)

We point out the presence of the remainder term due to the linear change of variables performed to
decouple the dynamics of the action-angle components from the normal ones. For more details we refer
the reader to [87, Sec. 6].

13.1 Linearized operator in the normal direction

Our main goal here is to explore the structure of the linear operator L̂ω, introduced in (13.3). We have the
following result. The following lemma describes the asymptotic structure of L̂ω around the equilibrium
state, described in Lemma 11.1.

Proposition 13.1. Let (γ, q, d, s0) satisfy (A.2). Then, the operator L̂ω defined in (13.3) takes the form

L̂ω = Π⊥
S0

(
Lεr − ε∂θR

)
Π⊥

S0
, (13.7)

where

(i) the operator Lεr is given by

Lεr ≜ ω · ∂φ + ∂θ
(
Vεr ·

)
+ ∂θLεr − ∂θSεr, (13.8)

with Vεr, Lεr and Sεr defined by (11.1), (11.2) and (11.3).

(ii) the function r is given by
r(φ, ·) = A(i0(φ)), (13.9)

satisfies the following symmetry property

r(−φ,−θ) = r(φ, θ) (13.10)

and the following estimates

∥r∥γ,Oq,s ≲ 1 + ∥I0∥γ,Oq,s , (13.11)

∥∆12r∥γ,Oq,s ≲ ∥∆12i∥γ,Oq,s + ∥∆12i∥γ,Oq,s0
max
j∈{1,2}

∥Ij∥γ,Oq,s . (13.12)

(iii) the operator R, defined in (13.4), is an integral operator with kernel J satisfying the symmetry
property

J(−φ,−θ,−η) = J(φ, θ, η) (13.13)

and the following estimates: for all ℓ ∈ N,

sup
η∈T

∥(∂ℓθJ)(∗, ·, �, η + �)∥γ,Oq,s ≲ 1 + ∥I0∥γ,Oq,s+3+ℓ, (13.14)

sup
η∈T

∥∆12(∂ℓθJ)(∗, ·, �, η + �)∥γ,Oq,s ≲ ∥∆12i∥γ,Oq,s+3+ℓ + ∥∆12i∥γ,Oq,s0+3 max
j∈{1,2}

∥Ij∥γ,Oq,s+3+ℓ. (13.15)

where ∗, ·, �, denote successively the variables b, φ, θ and Ij(φ) = ij(φ) − (φ, 0, 0).
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Proof. From (12.19), (12.13), (12.10) and (12.3) we obtain

(∂z∇zH
α0
ε )(i0(φ)) = L(b)Π⊥

S0
+ ε∂z∇zPε(i0(φ))

= L(b)Π⊥
S0

+ εΠ⊥
S0
∂r∇rPε(A(i0(φ)))

= Π⊥
S0
∂r∇rHε(A(i0(φ)))

= Π⊥
S0
∂r∇rH(εA(i0(φ))).

According to the general form of the linearized operator stated in Lemma 11.1 one has

−∂θ(∂z∇zH
α0
ε )(i0(φ)) = Π⊥

S0

(
∂θ
(
Vεr(b, φ, �) ·

)
+ ∂θLεr − ∂θSεr

)
Π⊥

S0
.

Inserting this identity into (13.3) gives (13.7). The operator R(φ) in (13.4) may be written as

R(φ) = R1(φ) + R2(φ) + R3(φ), with R1(φ) ≜ L⊤
2 (φ)∂I∇IPε(i0(φ))L2(φ),

R2(φ) ≜ L⊤
2 (φ)∂z∇IPε(i0(φ)),

R3(φ) ≜ ∂I∇zPε(i0(φ))L2(φ).

Notice that R1(φ), R2(φ) and R3(φ) have a finite-dimensional rank. In fact, from (13.5) and (13.6) one
may write

L2(φ)[ρ] =
d∑
k=1

〈
L2(φ)[ρ], ek

〉
Rd ek =

d∑
k=1

〈
ρ, L⊤

2 (φ)[ek]
〉
L2(T) ek,

with (ek)dk=1 being the canonical basis of Rd. Hence

R1(φ)[ρ] =
d∑
k=1

〈
ρ, L⊤

2 (φ)[ek]
〉
L2(T)A1(φ)[ek] with A1(φ) = L⊤

2 (φ)∂I∇IPε(i0(φ)),

R3(φ)[ρ] =
d∑
k=1

〈
ρ, L⊤

2 (φ)[ek]
〉
L2(T)A3(φ)[ek] with A3(φ) = ∂I∇zPε(i0(φ)).

Analogously, since A2(φ) ≜ ∂z∇IPε(i0(φ)) : L2
⊥ → Rd, then we may write

R2(φ)[ρ] =
d∑
k=1

〈
ρ,A⊤

2 (φ)[ek]
〉
L2 (T)L

⊤
2 (φ)[ek].

By setting

gk,1(φ, θ) = gk,3(φ, θ) = χk,2(φ, θ) ≜ L⊤
2 (φ)[ek](θ), gk,2(φ, θ) ≜ A⊤

2 (φ)[ek](θ),

χk,1(φ, θ) ≜ A1(φ)[ek](θ), χk,3(φ, θ) ≜ A3(φ)[ek](θ),

we can see that the operator R takes the integral form

Rρ(φ, θ) =
ˆ
T
ρ(φ, η)J(φ, θ, η)dη, with J(φ, θ, η) ≜

3∑
k′=1

d∑
k=1

gk,k′(φ, η)χk,k′(φ, θ).

The symmetry property (13.13) is a consequence of the definition of r and the reversibility condition
(13.2) imposed on the torus i0. The estimates (13.15), (13.14), (13.11) and (13.12) are straightforward
and follow in a similar way to Proposition 7.1.
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13.2 Diagonalization of the linearized operator in the normal directions

This section is devoted to the reduction of the linearized operator L̂ω, defined in (13.7), to constant
coefficients. This procedure is done in three steps. First, we reduce the operator Lεr introduced in (13.8)
up to smoothing reminders. Then we study the action of the localization in the normal directions. Finally,
we almost eliminate the remainders by using a KAM reduction procedure. We fix the following parameters.

sl ≜ s0 + τ1q + τ1 + 2, µ2 ≜ 4τ1q + 6τ1 + 3,
sl ≜ sl + τ2q + τ2, sh ≜ 3

2µ2 + sl + 1.
(13.16)

13.2.1 Leading orders reduction

In this section, we shall straighten the transport part by using a suitable quasi-periodic symplectic change
of variables and look at its conjugation action on the nonlocal terms. The reduction of the transport part
is done by a KAM iterative scheme in a similar way to Proposition 7.2. The result reads as follows.

Proposition 13.2. Let (γ, q, d, τ1, s0, µ2, sl, sh, S) satisfy (A.2), (A.1) and (13.16). Let υ ∈
(

0, 1
q+2

]
.

We set
σ1 = s0 + τ1q + 2τ1 + 4 and σ2 = s0 + σ1 + 3. (13.17)

For any (µ2, p, sh) satisfying

µ2 ⩾ µ2, p ⩾ 0, sh ⩾ max
(

3
2µ2 + sl + 1, sh + p

)
, (13.18)

there exists ε0 > 0 such that if

εγ−1Nµ2
0 ⩽ ε0 and ∥I0∥γ,Oq,sh+σ2

⩽ 1, (13.19)

then following assertions hold true.

1. There exist
V ∞
i0 ∈ W q,∞,γ(O,C) and β ∈ W q,∞,γ(O, HS)

such that with B defined in (A.12) one gets the following results.

(i) The function V ∞
i0

satisfies the estimate:

∥V ∞
i0 − 1

2 ∥γ,Oq ≲ ε. (13.20)

(ii) The transformations B±1,B±1, β and β̂ satisfy the following estimates: for all s ∈ [s0, S],

∥B±1ρ∥γ,Oq,s + ∥B±1ρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s + εγ−1∥I0∥γ,Oq,s+σ1
∥ρ∥γ,Oq,s0

, (13.21)

∥β̂∥γ,Oq,s ≲ ∥β∥γ,Oq,s ≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+σ1

)
. (13.22)

Moreover, β and β̂ satisfy the following symmetry condition:

β(µ,−φ,−θ) = −β(µ, φ, θ) and β̂(µ,−φ,−θ) = −β̂(µ, φ, θ). (13.23)

(iii) Let n ∈ N, then in the truncated Cantor set

Oγ,τ1
∞,n(i0) =

⋂
(l,j)∈Zd×Z\{(0,0)}

|l|⩽Nn

{
(b, ω) ∈ O s.t.

∣∣ω · l + jV ∞
i0 (b, ω)

∣∣ > 4γυ⟨j⟩
⟨l⟩τ1

}
, (13.24)
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we have the decomposition

Lεr ≜ B−1LεrB = ω · ∂φ + V ∞
i0 ∂θ + ∂θKb ∗ · + ∂θRεr + E0

n,

where Lεr is given by (13.8), Kb is defined in Lemma 11.2 and E0
n = E0

n(b, ω, i0) is a linear
operator satisfying

∥E0
nρ∥γ,Oq,s0

≲ εNµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+2. (13.25)

The operator Rεr is a real and reversibility preserving integral operator satisfying

∀s ∈ [s0, S], max
k∈{0,1,2}

∥∂kθRεr∥γ,OO-d,q,s ≲ εγ
−1
(

1 + ∥I0∥γ,Oq,s+σ2

)
. (13.26)

2. Given two tori i1 and i2 both satisfying (13.19), we have

∥∆12V
∞
i ∥γ,Oq ≲ ε∥∆12i∥γ,Oq,sh+2, (13.27)

∥∆12β∥γ,Oq,sh+p + ∥∆12β̂∥γ,Oq,sh+p ≲ εγ
−1∥∆12i∥γ,Oq,sh+p+σ1

. (13.28)

In addition, we have

max
k∈{0,1}

∥∆12(∂kθRεr)∥γ,OO-d,q,sh+p ≲ εγ
−1∥∆12i∥γ,Oq,sh+p+σ2

. (13.29)

Proof. Notice that along the proof, to simplify the notation, we shall omit the dependence with respect to
the parameters b, ω kipping in mind that the functions appearing actually depend on them. We begin by
setting

V0 = 1
2 and f0(φ, θ) ≜ Vεr(φ, θ) − 1

2 , (13.30)

with Vεr defined by (11.1). According to (13.10) and (11.4), one gets

f0(−φ,−θ) = f0(φ, θ). (13.31)

Notice that according to (11.1), (12.49) and Taylor formula, one has

∥f0∥γ,Oq,s ≲ ε
(

1 + ∥I0∥γ,Oq,s+1

)
. (13.32)

These properties allow to apply Proposition 7.2, whose proof is based on a KAM iterative scheme reduction
of the perturbation term f0 and construct β and V ∞

i0
. In particular, for any n ∈ N, we are able to construct

a Cantor set Oγ,τ1
∞,n(i0) in the form (13.24) in which the following reduction holds

B−1(ω · ∂φ + ∂θ
(
Vεr ·

))
B = ω · ∂φ + V ∞

i0 ∂θ + E0
n, (13.33)

where E0
n is an operator enjoying the decay property stated in (13.25). Using (13.33), (12.22), (12.23) and

Lemma A.3-(i), one obtains in the Cantor set Oγ,τ1
∞,n(i0) the following decomposition

B−1LεrB = B−1(ω · ∂φ + ∂θ (Vεr·)
)
B + B−1∂θLεrB − B−1∂θSεrB

= ω · ∂φ + V ∞
i0 ∂θ + B−1∂θ

(
K1,b ∗ ·

)
B + B−1∂θLεr,1B

− B−1∂θ
(
K2,b ∗ ·

)
B − B−1∂θSεr,1B + E0

n

= ω · ∂φ + V ∞
i0 ∂θ + ∂θK1,b ∗ · − ∂θK2,b ∗ · + ∂θRεr + E0

n,
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where

Rεr ≜
[
B−1(K1,b ∗ ·

)
B − K1,b ∗ ·

]
−
[
B−1(K2,b ∗ ·

)
B − K2,b ∗ ·

]
+ B−1Lεr,1B − B−1Sεr,1B. (13.34)

Direct computations using (11.11) lead to

B−1(K1,b ∗ (Bρ))(φ, θ) =
ˆ
T
ρ(φ, η) log(A

β̂
(φ, θ, η))dη,

where
A
β̂
(φ, θ, η) ≜

∣∣∣sin(η−θ
2 + ĥ(φ, θ, η)

)∣∣∣ with ĥ(φ, θ, η) ≜ β̂(φ,θ)−β̂(φ,η)
2 ·

Using elementary trigonometric identities, we can write

A
β̂
(φ, θ, η) =

∣∣∣sin(η−θ
2

)∣∣∣ v
β̂
(φ, θ, η) with v

β̂
(φ, θ, η) ≜ cos

(
ĥ(φ, θ, η)

)
+

sin
(
ĥ(φ,θ,η)

)
tan
(
η−θ

2
) ·

In view of (13.23), one finds that v
β̂

enjoys the following symmetry property

v
β̂
(−φ,−θ,−η) = v

β̂
(φ, θ, η). (13.35)

Using the morphism property of the logarithm, one gets[
B−1(K1,b ∗ ρ

)
B − K1,b ∗ ρ

]
(φ, θ) =

ˆ
T
ρ(φ, η)K

β̂,2(φ, θ, η)dη

where
K
β̂,2(φ, θ, η) ≜ log

(
v
β̂
(φ, θ, η)

)
. (13.36)

Notice that (13.36) and (13.35) imply

K
β̂,2(−φ,−θ,−η) = K

β̂,2(φ, θ, η) ∈ R. (13.37)

Hence, we deduce from Lemma A.7 that B−1(K1,b ∗ ·
)
B − K1,b ∗ · is a real and reversibility preserving

Toeplitz in time operator. Writing

v
β̂
(φ, θ, η) = 1 +

(
cos
(
ĥ(φ, θ, η)

)
− 1
)

+
sin
(
ĥ(φ,θ,η)

)
tan
(
η−θ

2
) ,

one finds, by Lemma A.1-(v), Lemma A.2 and (13.22),

∥v
β̂

− 1∥γ,Oq,Hs
φ,θ,η

≲ ∥β̂∥γ,Oq,s+1

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+1+σ1

)
.

Moreover, by (13.28) and the Mean Value Theorem (applied with p replaced by p + s0 + 2), we find

∥∆12vβ̂∥γ,O
q,H

sh+p+s0+1
φ,θ,η

≲ ∥∆12β̂∥γ,Oq,sh+p+s0+2

≲ εγ−1∥∆12i∥q,sh+p+s0+2+σ1 .
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13. Construction of an approximate right inverse

In a similar way, we deduce that

∥K
β̂,2∥γ,Oq,Hs

φ,θ,η
≲ εγ−1

(
1 + ∥I0∥γ,Oq,s+1+σ1

)
, (13.38)

∥∆12Kβ̂,2∥γ,O
q,H

sh+p+s0+1
φ,θ,η

≲ εγ−1∥∆12i∥γ,Oq,sh+p+s0+2+σ1
. (13.39)

In view of Lemma A.7 we get, from (13.38) and (13.39),

max
k∈{0,1,2}

∥∥∥∂kθ [B−1(K1,b ∗ ·
)
B − K1,b ∗ ·

]∥∥∥γ,O
O-d,q,s

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+s0+3+σ1

)
, (13.40)

max
k∈{0,1}

∥∥∥∆12∂
k
θ

[
B−1(K1,b ∗ ·

)
B − K1,b ∗ ·

]∥∥∥γ,O
O-d,q,sh+p

≲ εγ−1∥∆12i∥γ,Oq,sh+p+s0+2+σ1
. (13.41)

According to (11.12), one finds

B−1(K2,b ∗ (Bρ)
)
(φ, θ) − K2,b ∗ ρ(φ, θ) =

ˆ
T
ρ(φ, η)K

β̂,2(φ, θ, η)dη,

with

K
β̂,2(φ, θ, η) ≜ 1

2

[
log
(
1 + b4 − 2b2 cos(η − θ + ĥ(φ, θ, η))

)
− log

(
1 + b4 − 2b2 cos(η − θ)

)]
= 1

2 log
(

1+b4−2b2 cos
(
η−θ+ĥ(φ,θ,η)

)
1+b4−2b2 cos(η−θ)

)
.

From (13.23), we deduce that

K
β̂,2(−φ,−θ,−η) = K

β̂,2(φ, θ, η) ∈ R. (13.42)

It follows from Lemma A.7 that B−1(K2,b ∗ ·
)
B − K2,b ∗ · is a real and reversibility preserving Toeplitz in

time operator. Arguying as for (12.27) and using (13.22), we obtain

∥K
β̂,2∥γ,Oq,Hs

φ,θ,η
≲ ∥β̂∥γ,Oq,s

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+σ1

)
. (13.43)

Using Mean Value theorem, applied with p replaced by p + s0 + 1, one also gets by (13.28)

∥∆12Kβ̂,2∥γ,O
q,H

sh+p+s0+1
φ,θ,η

≲ ∥∆12β̂∥γ,Oq,sh+p+s0+1

≲ εγ−1∥∆12i∥γ,Oq,sh+p+s0+1+σ1
. (13.44)

Consequently, in view of Lemma A.7, we get from (13.43)

max
k∈{0,1,2}

∥∥∥∂kθ [B−1(K2,b ∗ ·
)
B − K2,b ∗ ·

]∥∥∥γ,O
O-d,q,s

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+s0+2+σ1

)
(13.45)

and from (13.44)

max
k∈{0,1}

∥∥∥∆12∂
k
θ

[
B−1(K2,b ∗ ·

)
B − K2,b ∗ ·

]∥∥∥γ,O
O-d,q,sh+p

≲ εγ−1∥∆12i∥γ,Oq,sh+p+s0+1+σ1
. (13.46)

Next, putting together (12.24), (13.23) and Lemma A.8, we infer that B−1Lεr,1B is a real and reversibility
preserving Toeplitz in time operator. Moreover, we obtain from (A.30) in Lemma A.8, (13.22), (12.26),
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(13.11) and the smallness condition (13.19),

max
k∈{0,1,2}

∥∂kθB−1Lεr,1B∥γ,OO-d,q,s ≲ ∥Kεr,1∥γ,O
q,H

s+s0+2
φ,θ,η

+ ∥β∥γ,Oq,s+s0+2∥Kεr,1∥γ,O
q,H

s0
φ,θ,η

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+s0+2+σ1

)
. (13.47)

Applying Lemma A.1, we get from (12.32), Lemma A.2 and (13.12),

∥∆12Kεr,1∥γ,Oq,Hs
φ,θ,η

≲ ∥∆12vεr,1∥γ,Oq,Hs
φ,θ,η

≲ εγ−1
(

∥∆12i∥γ,Oq,s+1 + ∥∆12i∥γ,Oq,s0
max
j∈{1,2}

∥Ij∥γ,Oq,s+1

)
.

Added to Lemma A.8-(ii), (13.28), (13.22), (12.26) and (13.19), we infer

max
k∈{0,1}

∥∆12∂
k
θB−1Lεr,1B∥γ,OO-d,q,sh+p ≲ εγ

−1∥∆12i∥γ,Oq,sh+p+s0+1+σ1
. (13.48)

The next task is to estimate the term B−1Sεr,1B in (13.34). Note that (12.25), (13.23) and Lemma A.8
imply that B−1Sεr,1B is a real and reversibility preserving Toeplitz in time operator. In addition, Lemma
A.8 together with the estimates (12.27), (13.11) and (13.22) give

max
k∈{0,1,2}

∥∂kθB−1Sεr,1B∥γ,OO-d,q,s ≲ ∥Kεr,1∥γ,O
q,Hs+2

φ,θ,η

+ ∥β∥γ,Oq,s+2∥Kεr,1∥γ,O
q,H

s0
φ,θ,η

≲ εγ−1
(

1 + ∥I0∥γ,Oq,s+s0+2+σ1

)
. (13.49)

Applying Lemma A.1, we get from (12.35) and (13.12),

∥∆12Kεr,1∥γ,Oq,Hs
φ,θ,η

≲ εγ−1
(

∥∆12i∥γ,Oq,s + ∥∆12i∥γ,Oq,s0
max
i∈{1,2}

∥Ii∥γ,Oq,s
)
.

Then, combining Lemma A.8-(ii), (13.28), (13.22), (12.27) and (13.19), we get

max
k∈{0,1}

∥∆12∂
k
θB−1Sεr,1B∥γ,OO-d,q,sh+p ≲ εγ

−1∥∆12i∥γ,Oq,sh+p+s0+1+σ1
. (13.50)

In view of (13.34), Lemma A.8 and the previous computations, we conclude that Rεr is a real and
reversibility preserving toeplitz in time integral operator which satisfies, by (13.40), (13.45), (13.47) and
(13.49),

max
k∈{0,1,2}

∥∂kθRεr∥γ,OO-d,q,s ≲ εγ
−1
(

1 + ∥I0∥γ,Oq,s+s0+3+σ1

)
.

In addition, combining (13.41), (13.46), (13.48) and (13.50) yields

max
k∈{0,1}

∥∆12∂
k
θRεr∥γ,OO-d,q,sh+p ≲ εγ

−1∥∆12i∥γ,Oq,sh+p+s0+2+σ1
.

This ends the proof of Proposition 13.2.

13.2.2 Projection in the normal directions

In this section, we study the effects of the localization in the normal directions for the reduction of the
transport part. For that purpose, we consider the localized quasi-periodic symplectic change of coordinates
defined by

B⊥ = Π⊥
S0

BΠ⊥
S0
.
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Then, the main result of this section reads as follows.

Proposition 13.3. Let (γ, q, d, τ1, s0, sh, sh, p, S) satisfy the assumptions (A.2), (A.1) and (13.18).
There exist ε0 > 0 and σ3 = σ3(τ1, q, d, s0) ⩾ σ2 such that if

εγ−1Nµ2
0 ⩽ ε0 and ∥I0∥γ,Oq,sh+σ3

⩽ 1, (13.51)

then the following assertions hold true.

(i) The operators B±1
⊥ satisfy the following estimate

∥B±1
⊥ ρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s + εγ−1∥I0∥γ,Oq,s+σ3

∥ρ∥γ,Oq,s0
. (13.52)

(ii) For any n ∈ N∗, in the Cantor set Oγ,τ1
∞,n(i0) introduced in Proposition 13.2, we have

B−1
⊥ L̂ωB⊥ =

(
ω · ∂φ + V ∞

i0 ∂θ + ∂θKb ∗ ·
)
Π⊥

S0
+ R0 + E1

n

≜ ω · ∂φΠ⊥
S0

+ D0 + R0 + E1
n

≜ L0 + E1
n,

where R0 = Π⊥
S0

R0Π⊥
S0

is reversible and D0 = Π⊥
S0

D0Π⊥
S0

is a reversible Fourier multiplier operator
given by

∀(l, j) ∈ Zd × Sc0, D0el,j = iµ0
j el,j ,

with
µ0
j (b, ω, i0) = Ωj(b) + jr1(b, ω, i0) and r1(b, ω, i0) = V ∞

i0 (b, ω) − 1
2 (13.53)

and such that
∥r1∥γ,Oq ≲ ε and ∥∆12r

1∥γ,Oq ≲ ε∥∆12i∥γ,Oq,sh+2. (13.54)

(iii) The operator E1
n satisfies the following estimate

∥E1
nρ∥γ,Oq,s0

≲ εNµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+2. (13.55)

(iv) The operator R0 is a real and reversible Toeplitz in time operator satisfying

∀s ∈ [s0, S], max
k∈{0,1}

∥∂kθR0∥γ,OO-d,q,s ≲ εγ
−1
(

1 + ∥I0∥γ,Oq,s+σ3

)
(13.56)

and
∥∆12R0∥γ,OO-d,q,sh+p ≲ εγ

−1∥∆12i∥γ,Oq,sh+p+σ3
. (13.57)

(v) Furthermore the operator L0 satisfies

∀s ∈ [s0, S], ∥L0ρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s+1 + εγ−1∥I0∥γ,Oq,s+σ3
∥ρ∥γ,Oq,s0

. (13.58)

Proof. (i) Follows from (13.21) and Lemma A.1-(ii).
(ii) From (13.7) and the decomposition Id = ΠS0 + Π⊥

S0
we write

B−1
⊥ L̂ωB⊥ = B−1

⊥ Π⊥
S0

(Lεr − ε∂θR)B⊥

= B−1
⊥ Π⊥

S0
LεrBΠ⊥

S0
− B−1

⊥ Π⊥
S0

LεrΠS0BΠ⊥
S0

− εB−1
⊥ Π⊥

S0
∂θRB⊥.
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According to the definitions of Lεr and Lεr seen in Proposition 13.2 and in Lemma 11.1 and using (12.22),
(12.23) and (11.10), one has in the Cantor set Oγ,τ1

∞,n(i0)

LεrB = BLεr and Lεr = ω · ∂φ + ∂θ (Vεr·) + ∂θKb ∗ · + ∂θLεr,1 − ∂θSεr,1

and therefore

B−1
⊥ L̂ωB⊥ =B−1

⊥ Π⊥
S0

BLεrΠ⊥
S0

− B−1
⊥ Π⊥

S0
(∂θ (Vεr·) + ∂θLεr,1 − ∂θSεr,1) ΠS0BΠ⊥

S0
− εB−1

⊥ ∂θRB⊥,

where we have used the identities

B−1
⊥ Π⊥

S0
= B−1

⊥ and [Π⊥
S0
, T ] = 0 = [ΠS0 , T ],

for any Fourier multiplier T . The structure of Lεr is detailed in Proposition 13.2, and from this we deduce
that

Π⊥
S0

BLεrΠ⊥
S0

= Π⊥
S0

B
(
ω · ∂φ + V ∞

i0 ∂θ + ∂θKb ∗ · + ∂θRεr + E0
n

)
Π⊥

S0

= Π⊥
S0

BΠ⊥
S0

(
ω · ∂φ + V ∞

i0 ∂θ + ∂θKb ∗ ·
)

+ Π⊥
S0

B∂θRεrΠ⊥
S0

+ Π⊥
S0

BE0
nΠ⊥

S0

= B⊥
(
ω · ∂φ + V ∞

i0 ∂θ + ∂θKb ∗ ·
)

+ Π⊥
S0

B∂θRεrΠ⊥
S0

+ Π⊥
S0

BE0
nΠ⊥

S0
.

It follows that

B−1
⊥ Π⊥

S0
BLεrΠ⊥

S0
=
(
ω · ∂φ + V ∞

i0 ∂θ + ∂θKb ∗ ·
)
Π⊥

S0
+ B−1

⊥ Π⊥
S0

B∂θRεrΠ⊥
S0

+ B−1
⊥ Π⊥

S0
BE0

nΠ⊥
S0

=
(
ω · ∂φ + V ∞

i0 ∂θ + ∂θKb ∗ ·
)
Π⊥

S0
+ Π⊥

S0
∂θRεrΠ⊥

S0
+ B−1

⊥ BΠS0∂θRεrΠ⊥
S0

+ B−1
⊥ Π⊥

S0
BE0

nΠ⊥
S0
.

Consequently, in the Cantor set Oγ,τ1
∞,n(i0), one has the following reduction

B−1
⊥ L̂ωB⊥ =

(
ω · ∂φ + V ∞

i0 ∂θ + ∂θKb ∗ ·
)
Π⊥

S0
+ Π⊥

S0
∂θRεrΠ⊥

S0
+ B−1

⊥ BΠS0∂θRεrΠ⊥
S0

− B−1
⊥ Π⊥

S0
(∂θ (Vεr·) + ∂θLεr,1 − ∂θSεr,1) ΠS0BΠ⊥

S0
− εB−1

⊥ ∂θRB⊥ + B−1
⊥ Π⊥

S0
BE0

nΠ⊥
S0

≜ω · ∂φΠ⊥
S0

+ D0 + R0 + E1
n, (13.59)

where we set
D0 ≜

(
V ∞
i0 ∂θ + ∂θKb ∗ ·

)
Π⊥

S0

and
E1
n ≜ B−1

⊥ Π⊥
S0

BE0
nΠ⊥

S0
. (13.60)

(iii) Results from (13.60), (13.52), (13.21), (13.25) and Lemma A.1-(ii).
(iv) For the estimates (13.56) and (13.57), we refer to Lemma 7.1 and Proposition 7.4. They are based on
suitable duality representations of B±1

⊥ linked to B±1.

(v) It is obtained by (12.28), (12.29), (13.20), (13.56) and Lemma A.6-(iv).

13.2.3 Elimination of the remainder term

We perform here the KAM reduction of the remainder R0 of Proposition 13.3. This procedure allows to
diagonalise the linearized operator in the normal directions, namely to conjugate it to a constant coefficients
operator L∞, up to fast decaying terms. We omit the proof due to its similarity with Proposition 7.5.

Proposition 13.4. Let (γ, q, d, τ1, τ2, s0, sl, sl, sh, µ2, S) satisfy (A.2), (A.1), (13.16). For any (µ2, sh)
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satisfying

µ2 ⩾ µ2 + 2τ2q + 2τ2, and sh ⩾
3
2µ2 + sl + 1, (13.61)

there exist ε0 ∈ (0, 1) and σ4 = σ4(τ1, τ2, q, d) ⩾ σ3 such that if

εγ−2−qNµ2
0 ⩽ ε0 and ∥I0∥γ,Oq,sh+σ4

⩽ 1, (13.62)

then the following assertions hold true.

(i) There exists a family of invertible linear operator Φ∞ : O → L
(
Hs ∩ L2

⊥
)

satisfying the estimates

∀s ∈ [s0, S], ∥Φ±1
∞ ρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s + εγ−2∥I0∥γ,Oq,s+σ4

∥ρ∥γ,Oq,s0
. (13.63)

There exists a diagonal operator L∞ = L∞(b, ω, i0) taking the form

L∞ = ω · ∂φΠ⊥
S0

+ D∞

where D∞ = D∞(b, ω, i0) = Π⊥
S0

D∞Π⊥
S0

is a reversible Fourier multiplier operator given by,

∀(l, j) ∈ Zd × Sc0, D∞el,j = iµ∞
j el,j ,

with
∀j ∈ Sc0, µ∞

j (b, ω, i0) = µ0
j (b, ω, i0) + r∞

j (b, ω, i0) (13.64)

and

sup
j∈Sc

0

|j|∥r∞
j ∥γ,Oq ≲ εγ−1 (13.65)

such that in the Cantor set

Oγ,τ1,τ2
∞,n (i0) ≜

⋂
(l,j,j0)∈Zd×(Sc

0)2

|l|⩽Nn
(l,j)̸=(0,j0)

{
(b, ω) ∈ Oγ,τ1

∞,n(i0),
∣∣ω · l + µ∞

j (b, ω, i0) − µ∞
j0

(b, ω, i0)
∣∣ > 2γ⟨j−j0⟩

⟨l⟩τ2

}

we have

Φ−1
∞ L0Φ∞ = L∞ + E2

n,

and the linear operator E2
n satisfies the estimate

∥E2
nρ∥γ,Oq,s0

≲ εγ−2Nµ2
0 N−µ2

n+1 ∥ρ∥γ,Oq,s0+1. (13.66)

Notice that the Cantor set Oγ,τ1
∞,n(i0) was introduced in Proposition 13.2, the operator L0 and the

frequencies
(
µ0
j (b, ω, i0)

)
j∈Sc

0
were stated in Proposition 13.3.

(ii) Given two tori i1 and i2 both satisfying (13.62), then

∀j ∈ Sc0, ∥∆12r
∞
j ∥γ,Oq ≲ εγ−1∥∆12i∥γ,Oq,sh+σ4

(13.67)

∀j ∈ Sc0, ∥∆12µ
∞
j ∥γ,Oq ≲ εγ−1|j|∥∆12i∥γ,Oq,sh+σ4

. (13.68)
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13.3 Construction and tame estimates for the approximate inverse

At this step, we can construct an almost approximate right inverse for L̂ω defined in (13.7). This enables
to find in turn an almost approximate right inverse for the whole operator di,αF(i0, α0) given by (13.1).

Proposition 13.5. Let (γ, q, d, τ1, s0, sh, µ2, S) satisfying (A.2), (A.1) and (13.61). There exists σ ≜
σ(τ1, τ2, q, d) ⩾ σ4 such that if

εγ−2−qNµ2
0 ⩽ ε0 and ∥I0∥γ,Oq,sh+σ ⩽ 1, (13.69)

then, the following assertions hold true.

(i) Consider the operator L∞ defined in Proposition 13.4, then there exists a family of linear reversible
operators

(
Tn
)
n∈N defined in O satisfying the estimate

∀s ∈ [s0, S], sup
n∈N

∥Tnρ∥γ,Oq,s ≲ γ−1∥ρ∥γ,Oq,s+τ1q+τ1

and such that for any n ∈ N, in the Cantor set

Λγ,τ1
∞,n(i0) =

⋂
(l,j)∈Zd×Sc

0
|l|⩽Nn

{
(b, ω) ∈ O s.t.

∣∣ω · l + µ∞
j (b, ω, i0)

∣∣ > γ⟨j⟩
⟨l⟩τ1

}
,

we have
L∞Tn = Id + E3

n,

with
∀s0 ⩽ s ⩽ s ⩽ S, ∥E3

nρ∥γ,Oq,s ≲ Ns−s
n γ−1∥ρ∥γ,Oq,s+1+τ1q+τ1

.

(ii) There exists a family of linear reversible operators
(
Tω,n

)
n∈N satisfying

∀ s ∈ [s0, S], sup
n∈N

∥Tω,nρ∥γ,Oq,s ≲ γ−1
(

∥ρ∥γ,Oq,s+σ + ∥I0∥γ,Oq,s+σ∥ρ∥γ,Oq,s0+σ

)
(13.70)

and such that in the Cantor set

Gn(γ, τ1, τ2, i0) ≜ Oγ,τ1
∞,n(i0) ∩ Oγ,τ1,τ2

∞,n (i0) ∩ Λγ,τ1
∞,n(i0), (13.71)

we have
L̂ωTω,n = Id + En,

where En satisfies the following estimate

∀ s ∈ [s0, S], ∥Enρ∥γ,Oq,s0
≲ Ns0−s

n γ−1
(

∥ρ∥γ,Oq,s+σ + εγ−2∥I0∥γ,Oq,s+σ∥ρ∥γ,Oq,s0

)
+ εγ−3Nµ2

0 N−µ2
n+1 ∥ρ∥γ,Oq,s0+σ. (13.72)

Recall that L̂ω, Oγ,τ1
∞,n(i0) and Oγ,τ1,τ2

∞,n (i0) are given by (13.7) and Propositions 13.2 and 13.4,
respectively.

(iii) In the Cantor set Gn(γ, τ1, τ2, i0), we have the following splitting

L̂ω = L̂ω,n + R̂n with L̂ω,nTω,n = Id and R̂n = EnL̂ω,n,
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where L̂ω,n and R̂n are reversible operators defined in O and satisfy the following estimates

∀s ∈ [s0, S], sup
n∈N

∥L̂ω,nρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s+1 + εγ−2∥I0∥γ,Oq,s+σ∥ρ∥γ,Oq,s0+1, (13.73)

∀s ∈ [s0, S], ∥R̂nρ∥γ,Oq,s0
≲ Ns0−s

n γ−1
(

∥ρ∥γ,Oq,s+σ + εγ−2∥I0∥γ,Oq,s+σ∥ρ∥γ,Oq,s0+σ

)
+ εγ−3Nµ2

0 N−µ2
n+1 ∥ρ∥γ,Oq,s0+σ. (13.74)

Proof. (i) First recall from Proposition 13.4 that

L∞ = ω · ∂φΠ⊥
S0

+ D∞.

Using the projectors defined in (A.5), we can split this operator as follows

L∞ = ΠNn
ω · ∂φΠNn

Π⊥
S0

+ D∞ − Π⊥
Nn
ω · ∂φΠ⊥

Nn
Π⊥

S0

≜ Ln − Rn, (13.75)

where
Rn ≜ Π⊥

Nn
ω · ∂φΠ⊥

Nn
Π⊥

S0
.

According to the structure of D∞ in Proposition 13.4, we obtain from (13.75),

∀(l, j) ∈ Zd × Sc0, e−l,−jLnel,j =
{

i
(
ω · l + µ∞

j

)
if |l| ⩽ Nn

iµ∞
j if |l| > Nn.

Let us now consider the diagonal operator Tn defined by

Tnρ(b, ω, φ, θ) ≜− i
∑

(l,j)∈Zd×Sc
0

|l|⩽Nn

χ((ω·l+µ∞
j (b,ω,i0))γ−1⟨l⟩τ1)

ω·l+µ∞
j

(b,ω,i0) ρl,j(b, ω) ei(l·φ+jθ)

− i
∑

(l,j)∈Zd×Sc
0

|l|>Nn

ρl,j(b,ω)
µ∞

j
(b,ω,i0) e

i(l·φ+jθ),

where χ is the cut-off function introduced in (6.92) and (ρl,j(b, ω))l,j are the Fourier coefficients of ρ. Now
recall the expansion of the perturbed eigenvalues given by Proposition 13.4, namely

µ∞
j (b, ω, i0) = Ωj(b) + jr1(b, ω) + r∞

j (b, ω) with r1(b, ω) = V ∞
i0 (b, ω) − 1

2 .

In view of Lemma 11.3-(iv), (13.54) and (13.65), they satisfy the following estimates

∀j ∈ Sc0, ∥µ∞
j ∥γ,Oq ≲ |j|.

According to Lemma 11.3-(ii), (13.54), (13.65) and the smallness condition (13.69) we infer

|j| ≲ ∥µ∞
j ∥γ,O0 ⩽ ∥µ∞

j ∥γ,Oq .

Computations based on Lemma A.1-(vi) give

∀s ⩾ s0, ∥Tnρ∥γ,Oq,s ≲ γ−1∥ρ∥γ,Oq,s+τ1q+τ1
. (13.76)
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In addition, by construction
LnTn = Id in Λγ,τ1

∞,n(i0) (13.77)

since χ(·) = 1 in this set. Gathering (13.77) and (13.75) yields

∀ (b, ω) ∈ Λγ,τ1
∞,n(i0), L∞Tn = Id − RnTn

≜ Id + E3
n. (13.78)

Remark that by Lemma A.1-(ii),

∀ s0 ⩽ s ⩽ s ⩽ S, ∥Rnρ∥γ,Oq,s ≲ Ns−s
n ∥ρ∥γ,Oq,s+1.

Putting this estimate with (13.76) implies

∀ s0 ⩽ s ⩽ s ⩽ S, ∥E3
nρ∥γ,Oq,s ≲ Ns−s

n γ−1∥ρ∥γ,Oq,s+1+τ1q+τ1
. (13.79)

(ii) We set

Tω,n ≜ B⊥Φ∞TnΦ−1
∞ B−1

⊥ , (13.80)

where the operators B⊥ and Φ∞ are defined in Propositions 13.3 and 13.4 respectively. Notice that Tω,n is
defined in the whole range of parameters O. Since the condition (13.69) is satisfied, then, both Propositions
13.2 and 13.4 apply and the estimate (13.70) is obtained combining (13.52), (13.63), (13.76) and (13.69).
Now combining Propositions 13.3 and 13.4, we find that in the Cantor set Oγ,τ1

∞,n(i0) ∩ Oγ,τ1,τ2
∞,n (i0) the

following decomposition holds

Φ−1
∞ B−1

⊥ L̂ωB⊥Φ∞ = Φ−1
∞ L0Φ∞ + Φ−1

∞ E1
nΦ∞

= L∞ + E2
n + Φ−1

∞ E1
nΦ∞.

According to (13.78), one finds that in the Cantor set Oγ,τ1
∞,n(i0)∩Oγ,τ2

∞,n(i0)∩Λγ,τ1
∞,n(i0) the following identity

holds

Φ−1
∞ B−1

⊥ L̂ωB⊥Φ∞Tn = Id + E3
n + E2

nTn + Φ−1
∞ E1

nΦ∞Tn,

which implies in turn, in view of (13.80), the following identity in Gn(γ, τ1, τ2, i0)

L̂ωTω,n = Id + B⊥Φ∞
(
E3
n + E2

nTn + Φ−1
∞ E1

nΦ∞Tn
)
Φ−1

∞ B−1
⊥

≜ Id + En. (13.81)

Combining (13.81), (13.55), (13.66), (13.79), (13.76), (13.52), (13.63) and (13.69), we get (13.72), up to
taking σ large enough.
(iii) By virtue of (13.81), one can write in the Cantor set Gn(γ, τ1, τ2, i0)

L̂ω = T−1
ω,n + EnT−1

ω,n. (13.82)

Putting together (13.80) and (13.77), one finds in the Cantor set Gn(γ, τ1, τ2, i0)

L̂ω,n ≜ T−1
ω,n = B⊥Φ∞LnΦ−1

∞ B−1
⊥ .
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Therefore, (13.82) can be rewritten

L̂ω = L̂ω,n + R̂n with R̂n ≜ EnL̂ω,n.

The estimate (13.73) is obtained gathering (13.75), (13.52), (13.63) and (13.69). Finally, (13.73) together
with (13.72) implies (13.74). This ends the proof of Proposition 13.5.

The following theorem, see also Theorem 6.1, states that the linearized operator di,αF(i0, α0) in (13.1)
admits an approximate right inverse on a suitable Cantor set.

Theorem 13.1. (Approximate inverse)
Let (γ, q, d, τ1, τ2, s0, sh, µ2) satisfy (A.2), (A.1), (13.16) and (13.61). Then there exists σ = σ(τ1, τ2, d, q) >
0 and a family of reversible operators T0 ≜ T0,n(i0) such that if the smallness condition (13.69) holds,
then for all g = (g1, g2, g3), satisfying

g1(φ) = g1(φ), g2(−φ) = −g2(φ) and g3(−φ) = (S g3)(φ),

the function T0g satisfies the following estimate

∀s ∈ [s0, S], ∥T0g∥γ,Oq,s ≲ γ−1
(

∥g∥γ,Oq,s+σ + ∥I0∥γ,Oq,s+σ∥g∥γ,Oq,s0+σ

)
.

Moreover T0 is an almost-approximate right inverse of di,αF(i0, α0) in the Cantor set Gn(γ, τ1, τ2, i0)
defined by (13.71). More precisely,

∀(b, ω) ∈ Gn(γ, τ1, τ2, i0), di,αF(i0) ◦ T0 − Id = E(n)
1 + E(n)

2 + E(n)
3 ,

where the operators E(n)
1 , E(n)

2 and E(n)
3 are defined in the whole set O with the estimates

∥E(n)
1 g∥γ,Oq,s0

≲ γ−1∥F(i0, α0)∥γ,Oq,s0+σ∥g∥γ,Oq,s0+σ,

∀b ⩾ 0, ∥E(n)
2 g∥γ,Oq,s0

≲ γ−1N−b
n

(
∥g∥γ,Oq,s0+b+σ + ε∥I0∥γ,Oq,s0+b+σ

∥∥g∥γ,Oq,s0+σ
)
,

∀b ∈ [0, S], ∥E(n)
3 g∥γ,Oq,s0

≲ N−b
n γ−2

(
∥g∥γ,Oq,s0+b+σ + εγ−2∥I0∥γ,Oq,s0+b+σ∥g∥γ,Oq,s0+σ

)
+ εγ−4Nµ2

0 N−µ2
n ∥g∥γ,Oq,s0+σ.

14 Nash-Moser iteration and measure of the final Cantor set

In this last section, we shall find a non-trivial solution (b, ω) 7→ (i∞(b, ω), α∞(b, ω)) to the equation

F(i, α, b, ω, ε) = 0,

where F is the functional defined in (12.20). This is done by using a Nash-Moser scheme in a similar way
as the series of papers [7, 33, 87, 101]. The solutions are constructed for parameters (b, ω) belonging to
the intersection of all the Cantor sets Gγ∞ on which we are able to invert the linearized operator at the
different steps. In order to find a solution to the original problem, we must rigidify the frequencies ω
so that they coincide with the equilibrium frequencies. This amounts to considering a frequency curve
b 7→ ω(b, ε) implicitly defined by the equation

α∞
(
b, ω(b, ε)

)
= −ωEq(b).
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Considering the associated rigidified Cantor set

Cε∞ =
{
b ∈ (b0, b1) s.t.

(
b, ω(b, ε)

)
∈ Gγ∞

}
,

we have a solution to the original problem provided that the measure of Cε∞ is non-zero. This will be
checked, in Section 14.2, by perturbative arguments in the spirit of the previous works [7, 10, 33, 87, 101].
This proves in particular Theorem 9.1.

14.1 Nash-Moser iteration

In this section we implement the Nash-Moser scheme, which is a modified Newton method consisting
in a recursive construction of approximate solutions of the equation F

(
i, α, b, ω

)
≜ F

(
i, α, b, ω, ε

)
= 0

where the functional F is defined in (12.20). At each step of this procedure, we need to construct an
approximate inverse of the linearized operator at a state near the equilibrium by applying the reduction
procedure developed in Section 13. This allows to get Theorem 13.1 with the suitable tame estimates
associated to the final loss of regularity σ that could be arranged to be large enough. We point out that σ
depends only on the shape of the Cantor set through the parameters τ1, τ2, d and q but it is independent
of the regularity of the solutions that we want to construct. The main result of this section can be stated
as follows. The proof is similar to Proposition 8.1.

Proposition 14.1. (Nash-Moser)
Let (τ1, τ2, q, d, s0) satisfy (A.2) and (A.1). Consider the parameters fixed by (8.1) and (8.2). There exist
C∗ > 0 and ε0 > 0 such that for any ε ∈ [0, ε0] we get for all n ∈ N the following properties.

(P1)n There exists a q-times differentiable function

Wn : O → En−1 × Rd × Rd+1

(b, ω) 7→
(
In, αn − ω, 0

)
satisfying

W0 = 0 and for n ∈ N∗, ∥Wn∥γ,Oq,s0+σ ⩽ C∗εγ
−1Nqa

0 .

By setting

U0 =
(

(φ, 0, 0), ω, (b, ω)
)

and for n ∈ N∗, Un = U0 +Wn and Hn = Un − Un−1, (14.1)

then

∀s ∈ [s0, S], ∥H1∥γ,Oq,s ⩽
1
2C∗εγ

−1Nqa
0 and ∀ 2 ⩽ k ⩽ n, ∥Hk∥γ,Oq,s0+σ ⩽ C∗εγ

−1N−a2
k−1 . (14.2)

We also have for n ⩾ 2,
∥Hn∥γ,Oq,sh+σ4

⩽ C∗εγ
−1N−a2

n−1 . (14.3)

(P2)n Define
in = (φ, 0, 0) + In, γn = γ(1 + 2−n), (14.4)

then in satisfies the following reversibility condition

Sin(φ) = in(−φ), (14.5)
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where S is defined by (12.11). Define also

Aγ
0 = O and Aγ

n+1 = Aγ
n ∩ Gn(γn+1, τ1, τ2, in)

where Gn(γn+1, τ1, τ2, in) is defined in Proposition 7.6. Consider the open sets

∀r > 0, Or
n ≜

{
(b, ω) ∈ O s.t. dist

(
(b, ω),A2γ

n

)
< rN−a

n

}
where dist(x,A) = inf

y∈A
∥x− y∥. Then we have the following estimate

∥F(Un)∥γ,O
2γ
n

q,s0 ⩽ C∗εN
−a1
n−1 .

(P3)n ∥Wn∥γ,Oq,b1+σ ⩽ C∗εγ
−1Nµ1

n−1.

A non trivial reversible quasi-periodic solution of our problem is obtained as the limit of the sequence
(Un)n∈N according to the fast convergence stated in Proposition 14.1. This is explained in the following
corollary.

Corollary 14.1. There exists ε0 > 0 such that, for all ε ∈ (0, ε0), the following assertions hold true. We
consider the Cantor set Gγ∞, related to ε through γ, and defined by

Gγ∞ ≜
⋂
n∈N

Aγ
n.

There exists a function

U∞ : O →
(
Td × Rd × L2

⊥ ∩Hs0
)

× Rd × Rd+1

(b, ω) 7→
(
i∞(b, ω), α∞(b, ω), (b, ω)

)
such that

∀(b, ω) ∈ Gγ∞, F(U∞(b, ω)) = 0.

In addition, i∞ is reversible and α∞ ∈ W q,∞,γ(O,Rd) with

α∞(b, ω) = ω + rε(b, ω) and ∥rε∥γ,Oq ≲ εγ−1Nqa
0 . (14.6)

Moreover, there exists a q-times differentiable function b ∈ (b0, b1) 7→ ω(b, ε) with

ω(b, ε) = −ωEq(b) + r̄ε(b), ∥r̄ε∥γ,Oq ≲ εγ−1Nqa
0 , (14.7)

and
∀b ∈ Cε∞, F

(
U∞(b, ω(b, ε))

)
= 0 and α∞

(
b, ω(b, ε)

)
= −ωEq(b),

where the Cantor set Cε∞ is defined by

Cε∞ =
{
b ∈ (b0, b1) s.t.

(
b, ω(b, ε)

)
∈ Gγ∞

}
. (14.8)

Proof. In view of (14.1) and (14.2), we obtain

∥Wn+1 −Wn∥γ,Oq,s0
= ∥Hn+1∥γ,Oq,s0

⩽ ∥Hn+1∥γ,Oq,s0+σ ⩽ C∗εγ
−1N−a2

n .
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This implies the convergence of the sequence (Wn)n∈N . Its limit is denoted by

W∞ ≜ lim
n→∞

Wn ≜ (I∞, α∞ − ω, 0, 0)

and we set
U∞ ≜

(
i∞, α∞, (b, ω)

)
= U0 +W∞.

Taking n → ∞ in (14.5) gives
Si∞(φ) = i∞(−φ).

According to Proposition 14.1-(P2)n, we get for small values of ε

∀(b, ω) ∈ Gγ∞, F
(
i∞(b, ω), α∞(b, ω), (b, ω), ε

)
= 0, (14.9)

where F is the functional defined in (12.20). We emphasize that the Cantor set Gγ∞ depends on ε through
γ fixed in (8.2). Now, from Proposition 14.1-(P1)n, we deduce that

α∞(b, ω) = ω + rε(b, ω) with ∥rε∥γ,Oq ≲ εγ−1Nqa
0 .

Next we shall prove the second result and check the existence of solutions to the original Hamiltonian
equation. First recall that the open set O is defined in (12.5) by

O = (b0, b1) × U with U = B(0, R0) for some large R0 > 0,

where the ball U is taken to contain the equilibrium frequency vector b 7→ ωEq(b). In view of (14.6), we
obtain that for any b ∈ (b0, b1), the mapping ω 7→ α∞(b, ω) is invertible from U into its image α∞(b,U )
and we have

ω̂ = α∞(b, ω) = ω + rε(b, ω) ⇔ ω = α−1
∞ (b, ω̂) = ω̂ + r̂ε(b, ω̂).

In particular,
r̂ε(b, ω̂) = −rε(b, ω).

Differentiating the previous relation and using (14.6), we find

∥̂rε∥γ,Oq ≲ εγ−1Nqa
0 . (14.10)

Now, we set

ω(b, ε) ≜ α−1
∞ (b,−ωEq(b)) = −ωEq(b) + rε(b) with rε(b) ≜ r̂ε

(
b,−ωEq(b)

)
and consider the following Cantor set

Cε∞ ≜
{
b ∈ (b0, b1) s.t.

(
b, ω(b, ε)

)
∈ Gγ∞

}
.

Then, according to (14.9), we get

∀b ∈ Cε∞, F
(
U∞
(
b, ω(b, ε)

))
= 0.

This gives a nontrivial reversible solution for the original Hamiltonian equation provided that b ∈ Cε∞.
From Lemma 11.3, we obtain that all the derivatives up to order q of ωEq are uniformly bounded on
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[b0, b1]. As a consequence, the chain rule and (14.10) imply

∥rε∥γ,Oq ≲ εγ−1Nqa
0 and ∥ω(·, ε)∥γ,Oq ≲ 1 + εγ−1Nqa

0 ≲ 1. (14.11)

This achieves the proof of Corollary 14.1.

14.2 Measure estimates

In this last section, we check that the Cantor set Cε∞, defined in (14.8), of parameters generating non-trivial
quasi-periodic solutions is non trivial. More precisely, we have the following proposition giving a lower
bound measure for Cε∞.

Proposition 14.2. Let q0 be defined as in Lemma 11.5 and impose (8.1) and (8.2) with q = q0 + 1.
Assume the additional conditions 

τ1 > dq0

τ2 > τ1 + dq0

υ = 1
q0+3 .

(14.12)

Then there exists C > 0 such that ∣∣Cε∞∣∣ ⩾ (b1 − b0) − Cε
aυ
q0 .

In particular,
lim
ε→0

∣∣Cε∞∣∣ = b1 − b0.

Remark 14.1. The constraints listed in (14.12) appear naturally in the proof, see (14.20) and (14.25),
for the convergence of series and for smallness conditions. Notice that these conditions agree with (A.1)
and Proposition 13.2.

Proof. According to Corollary 14.1, we can decompose the Cantor set Cε∞ in the following intersection

Cε∞ ≜
⋂
n∈N

Cεn where Cεn ≜
{
b ∈ (b0, b1) s.t

(
b, ω(b, ε)

)
∈ Aγ

n

}
. (14.13)

Recall that the intermediate sets Aγ
n and the perturbed frequency vector ω(b, ε) are respectively defined

in Proposition 14.1 and in (14.6). Instead of measuring directly Cε∞, we rather estimate the measure of its
complementary set in (b0, b1). Thus, we write

(b0, b1) \ Cε∞ =
(
(b0, b1) \ Cε0

)
⊔

∞⊔
n=0

(
Cεn \ Cεn+1

)
. (14.14)

Then, we have to measure all the sets appearing in the decomposition (14.14). This can be done by using
Lemma 5.6 together with some trivial inclusions allowing to link the time and space Fourier modes in
order to make the series converge. For more details, we refer to Lemmata 14.1, 14.2 and 14.3. From (8.2)
and (14.7), one obtains

sup
b∈(b0,b1)

|ω(b, ε) + ωEq(b)| ⩽ ∥rε∥γ,Oq ⩽ Cεγ−1Nqa
0 = Cε1−a(1+qa).

Notice that the conditions (8.1) and (8.2) imply in particular

0 < a <
1

1 + qa
.
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Therefore, taking ε small enough yields

sup
b∈(b0,b1)

|ω(b, ε) + ωEq(b)| ⩽ ∥rε∥γ,Oq ⩽ 1.

Recall that U = B(0, R0), then, up to taking R0 large enough, we get

∀b ∈ (b0, b1), ∀ε ∈ [0, ε0), ω(b, ε) ∈ U = B(0, R0).

Recall that Aγ
0 = O = (b0, b1) × U then, from (14.13),

Cε0 = (b0, b1)

and coming back to (14.14), we find

∣∣∣(b0, b1) \ Cε∞
∣∣∣ ⩽ ∞∑

n=0

∣∣∣Cεn \ Cεn+1

∣∣∣
≜

∞∑
n=0

Sn. (14.15)

In accordance with the notations used in Propositions 13.3 and 13.4, we denote the perturbed frequencies
associated with the reduced linearized operator at state in in the following way

µ∞,n
j (b, ε) ≜ µ∞

j

(
b, ω(b, ε), in

)
= Ωj(b) + jr1,n(b, ε) + r∞,n

j (b, ε), (14.16)

where

r1,n(b, ε) ≜ V ∞
n (b, ε) − 1

2 ,

V ∞
n (b, ε) ≜ V ∞

in (b, ω(b, ε)),

r∞,n
j (b, ε) ≜ r∞

j

(
b, ω(b, ε), in

)
.

Now, according to (14.13), Propositions 13.4, 13.5 and 13.2 one can write for any n ∈ N,

Cεn \ Cεn+1 =
⋃

(l,j)∈Zd×Z\{(0,0)}
|l|⩽Nn

R(0)
l,j (in)

⋃
(l,j,j0)∈Zd×(Sc

0)2

|l|⩽Nn

Rl,j,j0(in)
⋃

(l,j)∈Zd×Sc
0

|l|⩽Nn

R(1)
l,j (in), (14.17)

where we denote

R(0)
l,j (in) ≜

{
b ∈ Cεn s.t.

∣∣∣ω(b, ε) · l + jV ∞
n (b, ε)

∣∣∣ ⩽ 4γυ
n+1⟨j⟩
⟨l⟩τ1

}
,

Rl,j,j0(in) ≜
{
b ∈ Cεn s.t.

∣∣∣ω(b, ε) · l + µ∞,n
j (b, ε) − µ∞,n

j0
(b, ε)

∣∣∣ ⩽ 2γn+1⟨j−j0⟩
⟨l⟩τ2

}
,

R(1)
l,j (in) ≜

{
b ∈ Cεn s.t.

∣∣∣ω(b, ε) · l + µ∞,n
j (b, ε)

∣∣∣ ⩽ γn+1⟨j⟩
⟨l⟩τ1

}
.

In view of the inclusion
W q,∞,γ(O,C) ↪→ Cq−1(O,C)
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and the fact that q = q0 + 1, one obtains that for any n ∈ N the curves

b 7→ ω(b, ε) · l + jV ∞
n (b, ε), (l, j) ∈ Zd × Z\{(0, 0)}

b 7→ ω(b, ε) · l + µ∞,n
j (b, ε) − µ∞,n

j0
(b, ε), (l, j, j0) ∈ Zd × (Sc0)2

b 7→ ω(b, ε) · l + µ∞,n
j (b, ε), (l, j) ∈ Zd × Sc0

are of regularity Cq0 . Therefore, applying Lemma 5.6 together with Lemma 14.3 yields∣∣∣R(0)
l,j (in)

∣∣∣ ≲ γ υ
q0 ⟨j⟩

1
q0 ⟨l⟩−1− τ1+1

q0 ,∣∣∣R(1)
l,j (in)

∣∣∣ ≲ γ 1
q0 ⟨j⟩

1
q0 ⟨l⟩−1− τ1+1

q0 , (14.18)∣∣∣Rl,j,j0(in)
∣∣∣ ≲ γ 1

q0 ⟨j − j0⟩
1

q0 ⟨l⟩−1− τ2+1
q0 .

We first estimate the measure of S0 and S1 defined in (14.15). From Lemma 14.2, we have some trivial
inclusions allowing us to write for n ∈ {0, 1},

Sn ≲
∑

(l,j)∈Zd×Z\{(0,0)}
|j|⩽C0⟨l⟩,|l|⩽Nn

∣∣∣R(0)
l,j (in)

∣∣∣+
∑

(l,j,j0)∈Zd×(Sc
0)2

|j−j0|⩽C0⟨l⟩,|l|⩽Nn

min(|j|,|j0|)⩽c2γ
−υ
1 ⟨l⟩τ1

∣∣∣Rl,j,j0(in)
∣∣∣+

∑
(l,j)∈Zd×Sc

0
|j|⩽C0⟨l⟩,|l|⩽Nn

∣∣∣R(1)
l,j (in)

∣∣∣. (14.19)

Inserting (14.18) into (14.19) implies that for n ∈ {0, 1},

Sn ≲ γ
1

q0

( ∑
|j|⩽C0⟨l⟩

|j|
1

q0 ⟨l⟩−1− τ1+1
q0 +

∑
|j−j0|⩽C0⟨l⟩

min(|j|,|j0|)⩽c2γ−υ⟨l⟩τ1

|j − j0|
1

q0 ⟨l⟩−1− τ2+1
q0

)

+ γ
υ

q0
∑

|j|⩽C0⟨l⟩

|j|
1

q0 ⟨l⟩−1− τ1+1
q0 .

The first two conditions listed in (14.12) write

τ1 > d q0 and τ2 > τ1 + d q0. (14.20)

Hence, we can make the series appearing in the following expression converge and write

max
n∈{0,1}

Sn ≲ γ
1

q0

(∑
l∈Zd

⟨l⟩− τ1
q0 + γ−υ

∑
l∈Zd

⟨l⟩τ1−1− τ2
q0

)
+ γ

υ
q0
∑
l∈Zd

⟨l⟩− τ1
q0 (14.21)

≲ γmin
(

υ
q0
, 1

q0
−υ
)
.

Let us now move to the estimate of Sn for n ⩾ 2 defined by (14.15). Using Lemma 14.1 and Lemma 14.2,
we infer

Sn ⩽
∑

(l,j)∈Zd×Z\{(0,0)}
|j|⩽C0⟨l⟩,Nn−1<|l|⩽Nn

∣∣∣R(0)
l,j (in)

∣∣∣+
∑

(l,j,j0)∈Zd×(Sc
0)2

|j−j0|⩽C0⟨l⟩,Nn−1<|l|⩽Nn

min(|j|,|j0|)⩽c2γ
−υ
n+1⟨l⟩τ1

∣∣∣Rl,j,j0(in)
∣∣∣+

∑
(l,j)∈Zd×Sc

0
|j|⩽C0⟨l⟩,Nn−1<|l|⩽Nn

∣∣∣R(1)
l,j (in)

∣∣∣.

Notice that if |j − j0| ⩽ C0⟨l⟩ and min(|j|, |j0|) ⩽ γ−υ
n+1⟨l⟩τ1 , then

max(|j|, |j0|) = min(|j|, |j0|) + |j − j0| ⩽ γ−υ
n+1⟨l⟩τ1 + C0⟨l⟩ ≲ γ−υ⟨l⟩τ1 .
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Hence, we deduce from (14.18) that

Sn ≲ γ
1

q0

( ∑
|l|>Nn−1

⟨l⟩− τ1
q0 + γ−υ

∑
|l|>Nn−1

⟨l⟩τ1−1− τ2
q0

)
+ γ

υ
q0

∑
|l|>Nn−1

⟨l⟩− τ1
q0 .

Now according to (14.20), we obtain

∞∑
n=2

Sn ≲ γmin
(

υ
q0
, 1

q0
−υ
)
. (14.22)

Inserting (14.22) and (14.21) into (14.15) yields∣∣∣(b0, b1) \ Cε∞
∣∣∣ ≲ γmin

(
υ

q0
, 1

q0
−υ
)
.

Remark also that (14.12) implies
min

(
υ
q0
, 1
q0

− υ
)

= υ
q0
.

Consequently, using the fact that γ = εa due to (8.2), we finally get∣∣∣(b0, b1) \ Cε∞
∣∣∣ ≲ ε aυ

q0 .

This ends the proof of Proposition 14.2.

We shall now prove Lemmata 14.1, 14.2 and 14.3 used in the proof of Proposition 14.2.

Lemma 14.1. Let n ∈ N \ {0, 1} and l ∈ Zd such that |l| ⩽ Nn−1. Then the following assertions hold
true.

(i) For j ∈ Z with (l, j) ̸= (0, 0), we get R(0)
l,j (in) = ∅.

(ii) For (j, j0) ∈ (Sc0)2 with (l, j) ̸= (0, j0), we get Rl,j,j0(in) = ∅.

(iii) For j ∈ Sc0, we get R(1)
l,j (in) = ∅.

(iv) For any n ∈ N \ {0, 1},

Cεn \ Cεn+1 =
⋃

(l,j)∈Zd×Z\{(0,0)}
Nn−1<|l|⩽Nn

R(0)
l,j (in) ∪

⋃
(l,j,j0)∈Zd×(Sc

0)2

Nn−1<|l|⩽Nn

Rl,j,j0(in) ∪
⋃

(l,j)∈Zd×Sc
0

Nn−1<|l|⩽Nn

R(1)
l,j (in).

Proof. The following estimate, obtained from (14.3), turns to be very useful in the sequel. For any n ⩾ 2,
we have

∥in − in−1∥γ,Oq,sh+σ4
⩽ ∥Un − Un−1∥γ,Oq,sh+σ4

⩽ ∥Hn∥γ,Oq,sh+σ4

⩽ C∗εγ
−1N−a2

n−1 . (14.23)

Since (14.23) is only true for n ⩾ 2, we had to estimate the measures of S0 and S1 differently in the proof
of Proposition 14.2.
(i) Assume that |l| ⩽ Nn−1 and (l, j) ̸= (0, 0). Let us prove that

R(0)
l,j (in) ⊂ R(0)

l,j (in−1). (14.24)
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Take b ∈ R(0)
l,j (in). In view of (14.17), we have in particular that b ∈ Cεn ⊂ Cεn−1. In addition, the triangle

inequality gives

∣∣ω(b, ε) · l + jV ∞
n−1(b, ε)

∣∣ ⩽ ∣∣ω(b, ε) · l + jV ∞
n (b, ε)

∣∣+ |j|
∣∣V ∞
n (b, ε) − V ∞

n−1(b, ε)
∣∣

⩽
4γυ

n+1⟨j⟩
⟨l⟩τ1 + C|j|∥V ∞

in − V ∞
in−1

∥γ,Oq .

Thus, putting together (13.27), (14.23), (8.2) and the fact that σ4 ⩾ 2, we obtain

∣∣ω(b, ε) · l + jV ∞
n−1(b, ε)

∣∣ ⩽ 4γυ
n+1⟨j⟩
⟨l⟩τ1 + Cε⟨j⟩∥in − in−1∥γ,Oq,sh+2

⩽
4γυ

n+1⟨j⟩
⟨l⟩τ1 + Cε2−a⟨j⟩N−a2

n−1 .

According the definition of γn in Proposition 14.1-(P2)n, we infer

∃c0 > 0, ∀n ∈ N, γυn+1 − γυn ⩽ −c0 γ
υ2−n.

Notice that (14.12), (8.1) and (8.2) give

2 − a− aυ > 1 and a2 > τ1, (14.25)

which implies in turn
sup
n∈N

2nN−a2+τ1
n−1 < ∞.

Consequently, for ε small enough and |l| ⩽ Nn−1,

∣∣ω(b, ε) · l + jV ∞
n−1(b, ε)

∣∣ ⩽ 4γυ
n⟨j⟩

⟨l⟩τ1 + C ⟨j⟩γυ

2n⟨l⟩τ1

(
− 4c0 + Cε2nN−a2+τ1

n−1

)
⩽ 4γυ

n⟨j⟩
⟨l⟩τ1 .

It follows that b ∈ R(0)
l,j (in−1) and this proves (14.24). Now, from (14.17) we deduce

R(0)
l,j (in) ⊂ R(0)

l,j (in−1) ⊂ Cεn−1 \ Cεn.

In view of (14.24) and (14.17), we get R(0)
l,j (in) ⊂ Cεn \ Cεn+1 and thus we conclude

R(0)
l,j (in) ⊂

(
Cεn \ Cεn+1

)
∩
(
Cεn−1 \ Cεn

)
= ∅.

This proves the first point.
(ii) Let (j, j0) ∈ (Sc0)2 and (l, j) ̸= (0, j0). If j = j0 then by construction Rl,j0,j0(in) = R(0)

l,0 (in) and then
the result is an immediate consequence of the first point. Then, we restrict the discussion to the case
j ̸= j0. In a similar way to the point (i), we only have to check that

Rl,j,j0(in) ⊂ Rl,j,j0(in−1).

Take b ∈ Rl,j,j0(in). Then coming back to (14.17), we deduce from the triangle inequality that b ∈ Cεn ⊂
Cεn−1 and ∣∣ω(b, ε) · l + µ∞,n−1

j (b, ε) − µ∞,n−1
j0

(b, ε)
∣∣ ⩽ 2γn+1⟨j−j0⟩

⟨l⟩τ2 + ϱnj,j0
(b, ε), (14.26)

where
ϱnj,j0

(b, ε) ≜
∣∣µ∞,n
j (b, ε) − µ∞,n

j0
(b, ε) − µ∞,n−1

j (b, ε) + µ∞,n−1
j0

(b, ε)
∣∣.
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According to (14.16), one obtains

ϱnj,j0
(b, ε) ⩽ |j − j0|

∣∣r1,n(b, ε) − r1,n−1(b, ε)
∣∣+
∣∣r∞,n
j (b, ε) − r∞,n−1

j (b, ε)
∣∣

+
∣∣r∞,n
j0

(b, ε) − r∞,n−1
j0

(b, ε)
∣∣. (14.27)

From (13.54), (14.23), (8.2) and the fact that σ4 ⩾ σ3, we deduce that

∣∣r1,n(b, ε) − r1,n−1(b, ε)
∣∣ ≲ ε∥in − in−1∥γ,Oq,sh+σ3

≲ ε2γ−1N−a2
n−1

≲ ε2−aN−a2
n−1 .

Similarly, (13.67), (14.23) and (8.2) imply

∣∣r∞,n
j (b, ε) − r∞,n−1

j (b, ε)
∣∣ ≲ εγ−1∥in − in−1∥γ,Oq,sh+σ4

≲ ε2γ−2N−a2
n−1

≲ ε2(1−a)⟨j − j0⟩N−a2
n−1 .

Plugging the preceding two estimates into (14.27) yields

ϱnj,j0
(b, ε) ≲ ε2(1−a)⟨j − j0⟩N−a2

n−1 . (14.28)

Gathering (14.28) and (14.26) and using γn+1 = γn − εa2−n−1, we obtain

∣∣ω(b, ε) · l + µ∞,n−1
j (b, ε) − µ∞,n−1

j0
(b, ε)

∣∣ ⩽ 2γn⟨j−j0⟩
⟨l⟩τ2 − εa⟨j − j0⟩2−n⟨l⟩−τ2

+ Cε2(1−a)⟨j − j0⟩N−a2
n−1 .

Using the fact that |l| ⩽ Nn−1, we deduce

−εa2−n⟨l⟩−τ2 + Cε2(1−a)N−a2
n−1 ⩽ ε

a2−n⟨l⟩−τ2
(

− 1 + Cε2−3a2nN−a2+τ2
n−1

)
.

Notice that (8.1) and (8.2) imply in particular

a2 > τ2 and a < 2
3 . (14.29)

Therefore, for ε small enough, we get

∀n ∈ N, −1 + Cε2−3a2nN−a2+τ2
n−1 ⩽ 0,

which implies in turn

∣∣ω(b, ε) · l + µ∞,n−1
j (b, ε) − µ∞,n−1

j0
(b, ε)

∣∣ ⩽ 2γn⟨j−j0⟩
⟨l⟩τ2 ·

Finally, b ∈ Rl,j,j0(in−1). This achieves the proof of the second point.
(iii) Let j ∈ Sc0. In particular, one has (l, j) ̸= (0, 0). In a similar line to the first point, we shall prove that
if |l| ⩽ Nn−1 and then

R(1)
l,j (in) ⊂ R(1)

l,j (in−1),

where the set R(1)
l,j (in) is defined below (14.17). Take b ∈ R(1)

l,j (in). Then, by construction, b ∈ Cεn ⊂ Cεn−1.
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By using the triangle inequality, (13.68), (14.23) and the choice γ = εa, we obtain

∣∣ω(b, ε) · l + µ∞,n−1
j (b, ε)

∣∣ ⩽ ∣∣ω(b, ε) · l + µ∞,n
j (b, ε)

∣∣+ |µ∞,n
j (b, ε) − µ∞,n−1

j (b, ε)|

⩽ γn+1⟨j⟩
⟨l⟩τ1 + Cεγ−1|j|∥in − in−1∥γ,Oq,sh+σ4

⩽ γn+1⟨j⟩
⟨l⟩τ1 + Cε2(1−a)⟨j⟩N−a2

n−1 .

Now recalling that γn+1 = γn − εa2−n−1 and |l| ⩽ Nn−1, we get

∣∣ω(b, ε) · l + µ∞,n−1
j (b, ε)

∣∣ ⩽ γn⟨j⟩
⟨l⟩τ1 + ⟨j⟩εa

2n+1⟨l⟩τ1

(
− 1 + ε2−3a2n+1N−a2+τ1

n−1

)
.

As a byproduct of (14.29), we infer

a2 > τ1 and a < 2
3 . (14.30)

Therefore, up to taking ε small enough, we deduce

∀n ∈ N, −1 + ε2−3a2n+1N−a2+τ1
n−1 ⩽ 0,

which implies in turn that ∣∣ω(b, ε) · l + µ∞,n−1
j (b, ε)

∣∣ ⩽ γn⟨j⟩
⟨l⟩τ1 .

Finally, b ∈ R(1)
l,j (in−1) and the proof of the third point is now complete.

(iv) Follows immediately from (14.17) and the points (i)-(ii)-(iii).

The following lemma provides necessary constraints on the time and space Fourier modes so that the
sets in (14.17) are not void.

Lemma 14.2. There exists ε0 such that for any ε ∈ [0, ε0] and n ∈ N the following assertions hold true.

(i) Let (l, j) ∈ Zd × Z \ {(0, 0)}. If R(0)
l,j (in) ̸= ∅, then |j| ⩽ C0⟨l⟩.

(ii) Let (l, j, j0) ∈ Zd × (Sc0)2. If Rl,j,j0(in) ̸= ∅, then |j − j0| ⩽ C0⟨l⟩.

(iii) Let (l, j) ∈ Zd × Sc0. If R(1)
l,j (in) ̸= ∅, then |j| ⩽ C0⟨l⟩.

(iv) Let (l, j, j0) ∈ Zd × (Sc0)2. There exists c2 > 0 such that if min(|j|, |j0|) ⩾ c2γ
−υ
n+1⟨l⟩τ1 , then

Rl,j,j0(in) ⊂ R(0)
l,j−j0

(in).

Proof. (i) Let us assume that R(0)
l,j (in) ̸= ∅. Then, there exists b ∈ (b0, b1) such that

|ω(b, ε) · l + jV ∞
n (b, ε)| ⩽ 4γυ

n+1⟨j⟩
⟨l⟩τ1 .

From triangle and Cauchy-Schwarz inequalities, (14.4) and (8.2), we deduce

|V ∞
n (b, ε)||j| ⩽ 4|j|γυn+1⟨l⟩−τ1 + |ω(b, ε) · l|

⩽ 4|j|γυn+1 + C⟨l⟩

⩽ 8εaυ|j| + C⟨l⟩.

Remark that we used the fact that (b, ε) 7→ ω(b, ε) is bounded. Also notice that the identity

V ∞
n (b, ε) = 1

2 + r1,n(b, ε)
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together with (13.20), (13.65) and Proposition 14.1-(P1)n imply

∀k ∈ J0, qK, sup
n∈N

sup
b∈(b0,b1)

|∂kb r1,n(b, ε)| ⩽ γ−k sup
n∈N

∥r1,n∥γ,Oq

≲ εγ−k

≲ ε1−ak. (14.31)

Hence, taking ε small enough, we infer

inf
n∈N

inf
b∈(b0,b1)

|V ∞
n (b, ε)| ⩾ 1

4 .

Therefore, up to choosing ε small enough we can ensure |j| ⩽ C0⟨l⟩ for some C0 > 0.
(ii) In the case j = j0 we get by definition Rl,j0,j0(in) = R(0)

l,0 (in), so this case can be treated by the first
point. Then, we shall restrict the discussion to the case j ̸= j0. Let us assume that Rl,j,j0(in) ̸= ∅. Then,
there exists b ∈ (b0, b1) such that

|ω(b, ε) · l + µ∞,n
j (b, ε) − µ∞,n

j0
(b, ε)| ⩽ 2γn+1|j−j0|

⟨l⟩τ2 .

By using triangle and Cauchy-Schwarz inequalities, (14.4) and (8.2), we get

|µ∞,n
j (b, ε) − µ∞,n

j0
(b, ε)| ⩽ 2γn+1|j − j0|⟨l⟩−τ2 + |ω(b, ε) · l|

⩽ 2γn+1|j − j0| + C⟨l⟩

⩽ 4εa|j − j0| + C⟨l⟩.

In a similar way to (14.31), we may obtain

∀k ∈ J0, qK, sup
n∈N

sup
j∈Sc

0

sup
b∈(b0,b1)

|j||∂kb r
∞,n
j (b, ε)| ⩽ γ−k sup

n∈N
sup
j∈Sc

0

|j|∥r∞,n
j ∥γ,Oq

≲ εγ−1−k

≲ ε1−a(1+k). (14.32)

From the triangle inequality, Lemma 11.3-(iii), (14.31) and (14.32) we infer for j ̸= j0,

|µ∞,n
j (b, ε) − µ∞,n

j0
(b, ε)| ⩾ |Ωj(b) − Ωj0(b)| − |r1,n(b, ε)||j − j0| − |r∞,n

j (b, ε)| − |r∞,n
j0

(b, ε)|

⩾
( b2

0
6 − Cε1−a)|j − j0|

⩾ b2
0

12 |j − j0|.

Notice that the last inequality is obtained for ε sufficiently small. Gathering the previous inequalities
implies that, up to choosing ε small enough, we can ensure |j − j0| ⩽ C0⟨l⟩, for some C0 > 0.
(iii) First notice that the case j = 0 is obvious. Now for j ̸= 0 we assume that R(1)

l,j (in) ̸= ∅. Then, there
exists b ∈ (b0, b1) such that

|ω(b, ε) · l + µ∞,n
j (b, ε)| ⩽ γn+1|j|

⟨l⟩τ1 .

Thus, triangle and Cauchy-Schwarz inequalities, (14.4) and (8.2) imply

|µ∞,n
j (b, ε)| ⩽ γn+1|j|⟨l⟩−τ1 + |ω(b, ε) · l|

⩽ 2εa|j| + C⟨l⟩.
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According to the definition (14.16) together with the triangle inequality, Lemma 11.3-(ii), (14.31) and
(14.32), we obtain

|µ∞,n
j (b, ε)| ⩾ b2

0
2 |j| − |j||r1,n(b, ε)| − |r∞,n

j (b, ε)|

⩾ b2
0
2 |j| − Cε1−a|j|.

Putting together the previous two inequalities and the second condition in (14.30) yields

( b2
0
2 − Cε1−a − 2εa

)
|j| ⩽ C⟨l⟩.

Finally, by choosing ε small enough we get |j| ⩽ C0⟨l⟩, for some C0 > 0.
(iv) First remark that the case j = j0 is obvious as a direct consequence of the definition (14.17). Let
j ≠ j0. In view of the symmetry property µ∞,n

−j = −µ∞,n
j of the perturbed eigenvalues, we can always

assume that 0 < j < j0. Take b ∈ Rl,j,j0(in). Then by construction

∣∣ω(b, ε) · l + µ∞,n
j (b, ε) ± µ∞,n

j0
(b, ε)

∣∣ ⩽ 2γn+1⟨j±j0⟩
⟨l⟩τ2 .

Putting together (14.16), (11.15) and the triangle inequality, we find

∣∣ω(b, ε) · l + (j ± j0)V ∞
n (b, ε)

∣∣ ⩽ ∣∣ω(b, ε) · l + µ∞,n
j (b, ε) ± µ∞,n

j0
(b, ε)

∣∣+ 1
2 |b2j ± b2j0 |

+ 1
2
∣∣(j − 1) ± (j0 − 1) − (j ± j0)

∣∣+
∣∣r∞,n
j (b, ε) ± r∞,n

j0
(b, ε)

∣∣.
Hence, we deduce

∣∣ω(b, ε) · l + (j ± j0)V ∞
n (b, ε)

∣∣ ⩽ 2γn+1⟨j±j0⟩
⟨l⟩τ2 + 1

2 |b2j ± b2j0 |

+ 1
2
∣∣(j − 1) ± (j0 − 1) − (j ± j0)

∣∣+
∣∣r∞,n
j (b, ε) ± r∞,n

j0
(b, ε)

∣∣. (14.33)

Notice that

b2j + b2j0 ⩽ C ⟨j+j0⟩
j .

In addition, Taylor formula implies

b2j − b2j0 ⩽ −2 ln(b)
ˆ j0

j

b2xdx ⩽ c1⟨j−j0⟩
j ,

where c1 = sup
j∈N,b∈(0,1)

(
− 2 ln(b)jb2j) > 0. On the other hand, one has

∣∣(j − 1) ± (j0 − 1) − (j ± j0)
∣∣ = 1 ± 1 ⩽ ⟨j+j0⟩

j .

Applying (13.65), we find for j ̸= j0,

∣∣r∞,n
j (b, ε) ± r∞,n

j0
(b, ε)

∣∣ ⩽Cε1−a(|j|−1 + |j0|−1)
⩽Cε1−a ⟨j±j0⟩

j ·

Plugging the preceding estimates into (14.33) yields

∣∣ω(b, ε) · l + (j ± j0)V ∞
n (b, ε)

∣∣ ⩽ 2γn+1⟨j±j0⟩
⟨l⟩τ2 + C ⟨j±j0⟩

j ·
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Therefore, if we assume j ⩾ 1
2Cγ

−υ
n+1⟨l⟩τ1 and τ2 > τ1, then we deduce

∣∣ω(b, ε) · l + (j ± j0)V ∞
n (b, ε)

∣∣ ⩽ 4γυ
n+1⟨j±j0⟩

⟨l⟩τ1 ·

This achieves the proof of Lemma 14.2, taking c2 = C
2 .

We shall now establish that the perturbed frequencies ω(b, ε) satisfy the Rüssmann conditions. This is
done by a perturbation argument on the transversality conditions of the equilibrium linear frequencies
ωEq(b) stated in Lemma 11.5.

Lemma 14.3. Let q0, C0 and ρ0 as in Lemma 11.5. There exist ε0 > 0 small enough such that for any
ε ∈ [0, ε0] the following assertions hold true.

(i) For all l ∈ Zd \ {0}, we have

inf
b∈[b0,b1]

max
k∈J0,q0K

∣∣∂kb (ω(b, ε) · l)
∣∣ ⩾ ρ0⟨l⟩

2 .

(ii) For all (l, j) ∈ Zd+1 \ {(0, 0)} such that |j| ⩽ C0⟨l⟩, we have

∀n ∈ N, inf
b∈[b0,b1]

max
k∈J0,q0K

|∂kb
(
ω(b, ε) · l + jV ∞

n (b, ε)
)
| ⩾ ρ0⟨l⟩

2 .

(iii) For all (l, j) ∈ Zd × Sc0 such that |j| ⩽ C0⟨l⟩, we have

∀n ∈ N, inf
b∈[b0,b1]

max
k∈J0,q0K

∣∣∂kb (ω(b, ε) · l + µ∞,n
j (b, ε)

)∣∣ ⩾ ρ0⟨l⟩
2 .

(iv) For all (l, j, j0) ∈ Zd × (Sc0)2 such that |j − j0| ⩽ C0⟨l⟩, we have

∀n ∈ N, inf
b∈[b0,b1]

max
k∈J0,q0K

∣∣∂kb (ω(b, ε) · l + µ∞,n
j (b, ε) − µ∞,n

j0
(b, ε)

)∣∣ ⩾ ρ0⟨l⟩
2 .

Proof. (i) From the triangle and Cauchy-Schwarz inequalities together with (14.11), (8.2) and Lemma
11.5-(i), we deduce

max
k∈J0,q0K

|∂kb (ω(b, ε) · l) | ⩾ max
k∈J0,q0K

|∂kb (ωEq(b) · l) | − max
k∈J0,qK

|∂kb (rε(b) · l) |

⩾ ρ0⟨l⟩ − Cεγ−1−qNqa
0 ⟨l⟩

⩾ ρ0⟨l⟩ − Cε1−a(1+q+qa)⟨l⟩

⩾ ρ0⟨l⟩
2

provided that ε is small enough and
1 − a(1 + q + qa) > 0. (14.34)

Notice that the condition (14.34) is automatically satisfied by (8.2) and (8.1).
(ii) As before, using the triangle and Cauchy-Schwarz inequalities combined with (14.11), (14.31), Lemma
11.5-(ii) and the fact that |j| ⩽ C0⟨l⟩, we get

max
k∈J0,q0K

|∂kb (ω(b, ε) · l + jV ∞
n (b, ε)) | ⩾ max

k∈J0,q0K

∣∣∂kb (ωEq(b) · l + j
2
)∣∣− max

k∈J0,qK
|∂kb
(
rε(b) · l + jr1,n(b, ε)

)
|

⩾ ρ0⟨l⟩ − Cε1−a(1+q+qa)⟨l⟩ − Cε1−aq|j|

⩾ ρ0⟨l⟩
2
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for ε small enough and with the condition (14.34).
(iii) As before, using triangle and Cauchy-Schwarz inequalities combined with (14.11), (14.31), (14.32),
Lemma 11.5-(iii) and the fact that |j| ⩽ C0⟨l⟩, we get

max
k∈J0,q0K

∣∣∂kb (ω(b, ε) · l + µ∞,n
j (b, ε)

)∣∣ ⩾ max
k∈J0,q0K

|∂kb (ωEq(b) · l + Ωj(b)) |

− max
k∈J0,qK

∣∣∂kb (rε(b) · l + jr1,n(b, ε) + r∞,n
j (b, ε))

)∣∣
⩾ ρ0⟨l⟩ − Cε1−a(1+q+qa)⟨l⟩ − Cε1−a(1+q)|j|

⩾ ρ0⟨l⟩
2

for ε small enough with the condition (14.34).
(iv) Arguing as in the preceding point, using (14.31), (14.32), Lemma 11.5-(iv) and the fact that
0 < |j − j0| ⩽ C0⟨l⟩ (notice that the case j = j0 is trivial), we have

max
k∈J0,q0K

∣∣∂kb (ω(b, ε) · l + µ∞,n
j (b, ε) − µ∞,n

j0
(b, ε)

)∣∣ ⩾ max
k∈J0,q0K

∣∣∂kb (ωEq(b) · l + Ωj(b) − Ωj0(b)
)∣∣

− max
k∈J0,qK

∣∣∂kb (rε(b) · l + (j − j0)r1,n(b, ε) + r∞,n
j (b, ε) − r∞,n

j0
(b, ε)

)∣∣
⩾ ρ0⟨l⟩ − Cε1−a(1+q+qa)⟨l⟩ − Cε1−a(1+q)|j − j0|

⩾ ρ0⟨l⟩
2

for ε small enough. This ends the proof of Lemma 14.3.
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Part III

Un Anneau pour les gouverner tous. Un
Anneau pour les trouver. Un Anneau pour
les amener tous et dans les ténèbres les lier.

J. R. R. Tolkien

This part is devoted to the proof of Theorem 2.3. We also refer to Theorem 15.1 below for a more
precise statement. This result is the subject of the following preprint [138] which is accepted for publication
in the journal Asymptotic Analysis and entitled "Vortex rigid motion in quasi-geostrophic shallow-water
equations".

Abstract

We prove the existence of analytic relative equilibria with holes for quasi-geostrophic shallow-water
equations. More precisely, using bifurcation techniques, we establish for any m large enough the existence

of two branches of m-fold doubly-connected V-states bifurcating from any annulus of arbitrary size.

15 Introduction

We shall present here the last result obtained during the PhD related to the existence of relative equilibria
with holes for QGSW equations. The result reads as follows.

Theorem 15.1. Let λ > 0 and b ∈ (0, 1). There exists N(λ, b) ∈ N∗ such that for every m ∈ N∗, with
m ⩾ N(λ, b), there exist two curves of m-fold doubly-connected V-states bifurcating from the annulus Ab
defined in (1.20), at the angular velocities

Ω±
m(λ, b) = 1 − b2

2b Λ1(λ, b) + 1
2

(
Ωm(λ) − Ωm(λb)

)
± 1

2b

√(
b
[
Ωm(λ) + Ωm(λb)

]
− (1 + b2)Λ1(λ, b)

)2
− 4b2Λ2

m(λ, b),

where Ωm(λ) is defined in (1.23) and

Λm(λ, b) ≜ Im(λb)Km(λ)

with Im and Km being the modified Bessel functions of first and second kind. In addition, the boundary of
each V-state is analytic.

Before sketching the proof some remarks are in order.

Remark 15.1. The spectrum is continuous with respect to λ and b. In particular, when we shrink λ → 0
we find the spectrum of Euler equations detailed in (1.21). However, when we shrink b → 0 we obtain in
part the simply connected spectrum (1.23) . In other words, Ω±

m(λ, b) −→
λ→0

Ω±
m(b)

Ω+
m(λ, b) −→

b→0
Ωm(λ).

These asymptotics are obtained for sufficiently large values of m. For more details see Lemma 17.2.

Now, we intend to discuss the key steps of the proof of Theorem 15.1. Notice that for a given continuous
function f : T → C, we define its mean value by

 
T
f(τ)dτ ≜ 1

2iπ

ˆ
T
f(τ)dτ ≜ 1

2π

ˆ 2π

0
f
(
eiθ) eiθdθ, (15.1)
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where dτ stands for the complex integration.
First, in Section 16, we reformulate the vortex patch equation by using conformal maps. We opted for this
approach to take advantage of the computations already done in [54] in this framework. Nevertheless, one
could choose to formulate the problem in polar coordinates as in the previous sections. Consider an initial
doubly-connected domain D0 = D1 \D2, with D1 and D2 are two simply-connected domains close to the
discs of radii 1 and b respectively. We introduce for j ∈ {1, 2} the conformal mappings Φj : Dc → Dc

j

taking the form

Φ1(z) = z + f1(z) = z +
∞∑
n=0

an
zn
, Φ2(z) = bz + f2(z) = bz +

∞∑
n=0

bn
zn
.

Thus, from the contour dynamics equation, rotating doubly-connected V-states amounts to finding
non-trivial zeros of the nonlinear functional G = (G1, G2), defined for j ∈ {1, 2} and w ∈ T by

Gj(λ, b,Ω, f1, f2)(w) ≜ Im
{(

ΩΦj(w) + S(λ,Φ2,Φj)(w) − S(λ,Φ1,Φj)(w)
)
wΦ′

j(w)
}
,

with
∀w ∈ T, S(λ,Φi,Φj)(w) ≜

 
T

Φ′
i(τ)K0 (λ|Φj(w) − Φi(τ)|) dτ.

For this aim, we shall implement Crandall-Rabinowitz’s Theorem, starting from the elementary observation
that the annulus Ab defined by (1.20) generates a trivial line of solutions for any Ω ∈ R, which will play
the role of the bifurcation parameter. In the same section, we also study the regularity of G and prove
that it is of class C1 with respect to the functional spaces introduced in Section 16.2. Then, in Section
17, we compute the linearized operator at the equilibrium state and prove that it is a Fourier matrix
multiplier. More precisely, for

∀w ∈ T, h1(w) =
∞∑
n=0

anw
n and h2(w) =

∞∑
n=0

bnw
n,

we have

d(f1,f2)G(λ, b,Ω, 0, 0)[h1, h2](w) =
∞∑
n=0

(n+ 1)Mn+1(λ, b,Ω)
(
an

bn

)
Im(wn+1),

where

Mn(λ, b,Ω) ≜
(

Ωn(λ) − Ω − bΛ1(λ, b) bΛn(λ, b)
−Λn(λ, b) Λ1(λ, b) − b

[
Ωn(λb) + Ω

]) .
We refer to Proposition 17.1 for more details and point out that some difficulties appear there when
computing some integrals related to Bessel functions. Then, the kernel for the linearized operator
d(f1,f2)G(λ, b,Ω, 0, 0) is non trivial for Ω = Ω±

m(λ, b), as defined in Theorem 15.1, with m large enough.
The restriction to higher symmetry m ⩾ N(λ, b) is needed first to ensure the condition

∆m(λ, b) ≜
(
b
[
Ωm(λ) + Ωm(λb)

]
− (1 + b2)Λ1(λ, b)

)2
− 4b2Λ2

m(λ, b) > 0,

required in the transversality condition of Crandall-Rabinowitz’s Theorem and second to get the monotonic-
ity of the sequences

(
Ω±
n (λ, b)

)
n⩾N(λ,b) (to get a one-dimensional kernel), obtained from tricky asymptotic

analysis on the modified Bessel functions. For more details, we refer to Proposition 18.1. The previous
bifurcation occurs a priori in C1+α regularity with α ∈ (0, 1), but using an elliptic regularity argument,
we prove in Lemma 18.1 the analyticity of the boundary for these V-states.
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16 Functional settings

In this section, we shall reformulate the problem of finding V-states looking at the zeros of a nonlinear
functional G. We also introduce the function spaces used in the analysis and study some regularity aspects
for the functional G with respect to these functions spaces.

16.1 Boundary equations

In this subsection we shall obtain the system governing the patch motion. The starting point is the vortex
patch equation in complex notation (1.17), which we recall here

Im
{[
∂tz(t, θ) − v(t, z(t, θ))

]
∂θz(t, θ)

}
= 0, (16.1)

where θ 7→ z(t, θ) is a parametrization of the boundary of Dt. Assuming that the patch is uniformly
rotating with an angular velocity Ω, we can choose a parametrization γ in the form

z(t, θ) = eiΩtz(0, θ). (16.2)

One readily has
Im
{
∂tz(t, θ)∂θz(t, θ)

}
= ΩRe

{
z(0, θ)∂θz(0, θ)

}
. (16.3)

Now, to study the second term in the equation (16.1), we use (4.4). By using (16.2), we obtain

v(t, z(t, θ)) = 1
2π

ˆ
∂Dt

K0 (λ|z(t, θ) − ξ|) dξ

= 1
2π

ˆ 1

0
K0
(
λ|eiΩtz(0, θ) − eiΩtz(0, η)|

)
∂ηz(t, η)dη

= eiΩt

2π

ˆ 1

0
K0 (λ|z(0, θ) − z(0, η)|) ∂ηz(0, η)dη

= eiΩt

2π

ˆ
∂D0

K0 (λ|z(0, θ) − ξ|) dξ

= eiΩtv(0, z(0, θ)).

Consequently using again (16.2), we get

Im
{

v(t, z(t, θ))∂θz(t, θ)
}

= Im
{

v(0, z(0, θ))∂θz(0, θ)
}
. (16.4)

Putting together (16.3) and (16.4), the equation (16.1) can be rewritten

ΩRe
{
z(0, θ)∂θz(0, θ)

}
= Im

{
v(0, z(0, θ))∂θz(0, θ)

}
. (16.5)

Let us assume that our starting domain D0 is doubly-connected, that is

D0 = D1\D2 with D2 ⊂ D1,
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where D1 and D2 are simply-connected bounded open domains of C. Then combining (4.4) and (16.5),
one obtains for all z ∈ ∂D0 = ∂D1 ∪ ∂D2,

ΩRe
{
zz′
}

= Im
{

1
2π

ˆ
∂D0

K0 (λ|z − ξ|) dξz′
}

= Im
{(

1
2π

ˆ
∂D1

K0 (λ|z − ξ|) dξ − 1
2π

ˆ
∂D2

K0 (λ|z − ξ|) dξ
)
z′
}
, (16.6)

where z′ denotes a tangent vector to the boundary ∂D0 at the point z. The minus sign in front of the
integral on ∂D2 is here because of the orientation convention for the application of Stokes’ Theorem.
Following the works initiated by Burbea, see for instance [42, 54, 99, 100], we give the equation(s) to solve
by using conformal mappings. For this purpose, we shall recall Riemann mapping Theorem.

Theorem 16.1 (Riemann Mapping). Let D denote the unit open ball and D0 ⊂ C be a simply connected
bounded domain. Then there exists a unique bi-holomorphic map called also conformal map, Φ : C\D →
C\D0 taking the form

Φ(z) = az +
∞∑
n=0

an
zn
,

with a > 0 and (an)n∈N ∈ CN.

Notice that in the previous theorem, the domain is only assumed to be simply-connected and bounded.
In particular, the existence of the conformal mapping does not depend on the regularity of the boundary.
However, information on the regularity of the conformal mapping implies some regularity of the boundary.
This is given by the following result which can be found in [144] or in [130, Thm. 3.6].

Theorem 16.2 (Kellogg-Warschawski). We keep the notations of Riemann mapping Theorem. If the
conformal map Φ : C\D → C\D0 has a continuous extension to C\D which is of class Cn+1+β with n ∈ N
and β ∈ (0, 1), then the boundary Φ(T) is a Jordan curve of class Cn+1+β .

Assuming that D1 and D2 are respectively small deformations of the discs of radii 1 and b, so that the
shape of D0 is close to the annulus Ab defined in (1.20), we shall consider the parametrizations by the
conformal mapping Φj : C\D → C\Dj satisfying

Φ1(z) = z + f1(z) = z

(
1 +

∞∑
n=1

an
zn

)

and

Φ2(z) = bz + f2(z) = z

(
b+

∞∑
n=1

bn
zn

)
.

We shall now rewrite the equations by using the conformal parametrizations Φ1 and Φ2. First remark that
for w ∈ T, a tangent vector on the boundary ∂Dj at the point z = Φj(w) is given by

z′ = −iwΦ′
j(w).

Inserting this into (16.6) and using the change of variables ξ = Φj(τ) gives

∀j ∈ {1, 2}, ∀w ∈ T, Gj(λ, b,Ω, f1, f2)(w) = 0,

where

Gj(λ, b,Ω, f1, f2)(w) ≜ Im
{(

ΩΦj(w) + S(λ,Φ2,Φj)(w) − S(λ,Φ1,Φj)(w)
)
wΦ′

j(w)
}
, (16.7)
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with
∀(i, j) ∈ {1, 2}2, ∀w ∈ T, S(λ,Φi,Φj)(w) ≜

 
T

Φ′
i(τ)K0 (λ|Φj(w) − Φi(τ)|) dτ. (16.8)

Then, finding a non trivial uniformly rotating vortex patch for (1.6) reduces to finding zeros of the
nonlinear functional

G ≜ (G1, G2).

As stated in the introduction, these non trivial solutions may be obtained by bifurcation techniques from
trivial solutions which are annuli. Let us recover with this formalism that indeed the annuli rotate for any
angular velocity. This is given by the following result.

Lemma 16.1. Let b ∈ (0, 1). Then the annulus Ab defined in (1.20) is a rotating patch for (1.6) for any
angular velocity Ω ∈ R.

Proof. Taking f1 = f2 = 0 by in (16.7), we get

G1(λ, b,Ω, 0, 0)(w) = Im
{
bw

 
T
K0 (λ|w − bτ |) dτ − w

 
T
K0 (λ|w − τ |) dτ

}
.

Using the changes of variables τ 7→ wτ and the fact that |w| = 1, we have

G1(λ, b,Ω, 0, 0)(w) = Im
{
b

 
T
K0 (λ|1 − bτ |) dτ −

 
T
K0 (λ|1 − τ |) dτ

}
= 0.

Indeed for a ∈ {1, b}, we have by (C.3) and the change of variables θ 7→ −θ

 
T
K0 (λ|1 − aτ |) dτ = 1

2π

ˆ 2π

0
K0 (λ|1 − aeiθ|) eiθdθ

= 1
2π

ˆ 2π

0
K0
(
λ|1 − aeiθ|

)
e−iθdθ

= 1
2π

ˆ 2π

0
K0
(
λ|1 − ae−iθ|

)
eiθdθ

= 1
2π

ˆ 2π

0
K0
(
λ|1 − aeiθ|

)
eiθdθ

=
 
T
K0 (λ|1 − aτ |) dτ. (16.9)

Similarly, we find
G2(λ, b,Ω, 0, 0)(w) = 0.

This proves Lemma 16.1.

16.2 Function spaces and regularity of the functional

We introduce here the function spaces used along this work. Throughout this part it is more convenient
to think of 2π-periodic function g : R → C as a function of the complex variable w = eiθ. To be more
precise, let f : T → R2, be a continuous function, then it can be assimilated to a 2π-periodic function
g : R → R2 via the relation

f(w) = g(θ), w = eiθ.

Hence, when f is smooth enough, we get

f ′(w) ≜ df

dw
= −ie−iθg′(θ).

280
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Since d
dw and d

dθ differ only by a smooth factor with modulus one, we shall in the sequel work with d
dw

instead of d
dθ which appears more suitable in the computations. In addition, if f is of class C1 and has

real Fourier coefficients, then we can easily check that

(
f
)′ (w) = −f ′(w)

w2 . (16.10)

We shall now recall the definition of Hölder spaces on the unit circle.

Definition 16.1. Let α ∈ (0, 1).

(i) We denote by Cα(T) the space of continuous functions f such that

∥f∥Cα(T) ≜ ∥f∥L∞(T) + sup
(τ,w)∈T2

τ ̸=w

|f(τ) − f(w)|
|τ − w|α

< ∞.

(ii) We denote by C1+α(T) the space of C1 functions with α-Hölder continuous derivative

∥f∥C1+α(T) ≜ ∥f∥L∞(T) +
∥∥∥ df
dw

∥∥∥
Cα(T)

< ∞.

For α ∈ (0, 1), we set

X1+α ≜ X1+α
1 ×X1+α

1 with X1+α
1 ≜

{
f ∈ C1+α(T) s.t. ∀w ∈ T, f(w) =

∞∑
n=0

fnw
n, fn ∈ R

}

and

Y α ≜ Y α1 × Y α1 with Y α1 ≜

{
g ∈ Cα(T) s.t. ∀w ∈ T, g(w) =

∞∑
n=1

gnen(w), gn ∈ R

}
,

where
en(w) ≜ Im(wn).

We denote
B1+α
r ≜

{
f ∈ X1+α

1 s.t. ∥f∥C1+α(T) < r
}
.

We can encode the m-fold structure in the functional spaces by setting

X1+α
m ≜ X1+α

1,m ×X1+α
1,m with X1+α

1,m ≜

{
f ∈ X1+α

1 s.t. ∀w ∈ T, f(w) =
∞∑
n=1

fmn−1w
mn−1

}

and

Y αm ≜ Y
α

1,m × Y α1,m with Y α1,m ≜

{
g ∈ Y α1 s.t. ∀w ∈ T, g(w) =

∞∑
n=1

gmnemn(w)
}
.

The spaces X1+α and X1+α
m

(
resp. Y α and Y αm

)
are equipped with the strong product topology of

C1+α(T) × C1+α(T)
(
resp. Cα(T) × Cα(T)

)
. We also denote

B1+α
r,m ≜

{
f ∈ X1+α

1,m s.t. ∥f∥C1+α(T) < r
}

= B1+α
r ∩X1+α

1,m .

We shall now investigate the regularity of the nonlinear functional G defined by (16.7). Indeed,
Crandall-Rabinowitz’s Theorem B.1 requires some regularity assumptions to apply and this is what we
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check here.

Proposition 16.1. Let λ > 0, b ∈ (0, 1), α ∈ (0, 1) and m ∈ N∗. There exists r > 0 such that

(i) G(λ, b, ·, ·, ·) : R ×B1+α
r ×B1+α

r → Y α is well-defined and of classe C1.

(ii) The restriction G(λ, b, ·, ·, ·) : R ×B1+α
r,m ×B1+α

r,m → Y αm is well-defined.

(iii) The partial derivative ∂Ωd(f1,f2)G(λ, b, ·, ·, ·) : R × B1+α
r × B1+α

r → L(X1+α, Y α) exists and is
continuous.

The following proof follows closely the lines of the proof of [85, Prop. 4.1].

Proof. (i) The proof proceeds in three steps. The first step is to show the well-posedness of the function
G(λ, b, ·, ·, ·) from R ×B1+α

r ×B1+α
r to Y α for some r small enough. Then, in the second step, we shall

prove the existence and give the computation of the Gâteaux derivative of G(λ, b, ·, ·, ·). Finally, in the
third step, we shall prove that these Gâteaux derivatives are continuous. This will show the C1 regularity
of G(λ, b, ·, ·, ·).

▶ Step 1 : Show that G(λ, b, ·, ·, ·) : R ×B1+α
r ×B1+α

r → Y α is well-defined :
For this purpose, we split Gj into two terms, the self-induced term Sj and the interaction term Ij ,

Gj(λ, b,Ω, f1, f2) = Sj(λ, b,Ω, fj) + Ij(λ, b, f1, f2), (16.11)

where

Sj(λ, b,Ω, fj)(w) ≜ Im
{[

ΩΦj(w) + (−1)jS(λ,Φj ,Φj)(w)
]
wΦ′

j(w)
}
,

Ij(λ, b, f1, f2) ≜ (−1)j−1Im
{
S(λ,Φi,Φj)(w)wΦ′

j(w)
}
.

➢ We refer to [54, Prop. 5.7] for the study of Sj . Only the (−1)j defers, but has no consequence. We
recall here the results. There exists r ∈ (0, 1) such that for all α ∈ (0, 1), we have

• Sj(λ, b, ·, ·) : R ×B1+α
r → Y α1 is of class C1.

• The restriction Sj(λ, b, ·, ·) : R ×B1+α
r,m → Y αm is well-defined.

Moreover, we have

dfj
Sj(λ, b,Ω, fj)hj(w) = ΩIm

{
hj(w)wΦ′

j(w) + Φj(w)wh′
j(w)

}
+ (−1)jIm

{
S(λ,Φj ,Φj)(w)wh′

j(w) + wΦ′
j(w) [A1(λ,Φj , hj)(w) +B1(λ,Φj , hj)(w)]

}
, (16.12)

where

A1(λ,Φj , hj)(w) ≜
 
T
h′
j(τ)K0 (λ|Φj(w) − Φj(τ)|) dτ,

B1(λ,Φj , hj)(w) ≜ λ
 
T

Φ′
j(τ)K ′

0 (λ|Φj(w) − Φj(τ)|)
Re
((
hj(w) − hj(τ)

)
(Φj(w) − Φj(τ))

)
|Φj(w) − Φj(τ)| dτ.

Actually, this is the most difficult part of this proof since in this case, the integrals appearing have singular
kernel and the proof uses some results about singular kernels. As we shall see in the remaining of the
proof, the terms concerning Ij are not singular.
➢ We shall first show that for (f1, f2) ∈ B1+α

r ×B1+α
r , we have Ij(λ, b, f1, f2) ∈ Cα(T). According to the
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algebra structure of Cα(T), it suffices to show that for i ̸= j, S(λ,Φi,Φj) ∈ Cα(T). For that purpose, we
consider the operator T defined by

∀w ∈ T, Tijχ(w) ≜
 
T
χ(τ)K0 (λ|Φj(w) − Φi(τ)|) dτ. (16.13)

But for w, τ ∈ T, we have taking f1 and f2 small functions,

|Φ1(w) − Φ2(τ)| ⩽ |w − bτ | + |f1(w)| + |f2(τ)| ⩽ (1 + b) + ∥f1∥L∞(T) + ∥f2∥L∞(T) ⩽ 2(1 + b) (16.14)

and

|Φ1(w) − Φ2(τ)| ⩾ |w − bτ | − |f1(w)| − |f2(τ)| ⩾ (1 − b) − ∥f1∥L∞(T) − ∥f2∥L∞(T) ⩾
1 − b

2 . (16.15)

Since K0 is continuous on
[
λ(1−b)

2 , 2λ(1 + b)
]
, we have

∥Tijχ∥L∞(T) ≲ ∥χ∥L∞(T).

Moreover, taking w1 ̸= w2 ∈ T, we have by mean value Theorem, since from (C.4) K ′
0 = −K1 is continuous

on
[
λ(1−b)

2 , 2λ(1 + b)
]
, and left triangle inequality

|Tijχ(w1) − Tijχ(w2)| ≲
ˆ
T

|χ(τ)| |K0 (λ|Φj(w1) − Φi(τ)|) −K0 (|λ||Φj(w2) − Φi(τ)|)| |dτ |

≲ ∥χ∥L∞(T) |Φj(w1) − Φj(w2)| .

Using that Φj ∈ C1+α(T) ↪→ Cα(T), we conclude that

|Tijχ(w1) − Tijχ(w2)| ≲ ∥χ∥L∞(T)∥Φj∥Cα(T)|w1 − w2|α.

We deduce that
∥Tijχ∥Cα(T) ≲

(
1 + ∥Φj∥Cα(T)

)
∥χ∥L∞(T). (16.16)

Applying this with χ = Φ′
j , we find

∥S(λ,Φi,Φj)∥Cα(T) ≲
(
1 + ∥Φj∥Cα(T)

)
∥Φ′

i∥L∞(T) ≲
(
1 + ∥Φj∥C1+α(T)

)
∥Φi∥C1+α(T) < ∞.

The last point to check is that the Fourier coefficients of Ij(λ, f1, f2) are real. According to the definition
of the space X1+α, the mapping Φj has real coefficients. We deduce that the Fourier coefficients of Φ′

j are
also real. Due to the stability of such property under conjugation and multiplication, we only have to
prove that the Fourier coefficients of S(λ,Φi,Φj) are real. This is checked by the following computations.
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By using (C.3) and the change of variables η 7→ −η, one has

S(λ,Φi,Φj)(w) =
 
T

Φ′
i(τ)K0 (λ|Φj(w) − Φi(τ)|) dτ

= 1
2iπ

ˆ 2π

0
Φ′
i (eiη)K0 (λ|Φj(w) − Φi (eiη))|) ieiηdη

= 1
2π

ˆ 2π

0
Φ′
i

(
e−iη)K0

(
λ|Φj(w) − Φi

(
e−iη) |

)
e−iηdη

= 1
2iπ

ˆ 2π

0
Φ′
i

(
eiη)K0

(
λ|Φj(w) − Φi

(
eiη) |

)
ieiηdη

=
 
T

Φ′
i(τ)K0 (λ|Φj(w) − Φi(τ)|) dτ

= S(λ,Φi,Φj)(w).

▶ Step 2 : Show the existence and compute the Gâteaux derivatives of G(λ, b, ·, ·, ·) :
➢ The Gâteaux derivative of Ij at (f1, f2) in the direction h = (h1, h2) ∈ X1+α is given by

d(f1,f2)Ij(λ, b, f1, f2)h = df1Ij(λ, b, f1, f2)h1 + df2Ij(λ, b, f1, f2)h2

≜ lim
t→0

1
t

[Ij(λ, b, f1 + th1, f2) − Ij(λ, b, f1, f2)]

+ lim
t→0

1
t

[Ij(λ, b, f1, f2 + th2) − Ij(λ, b, f1, f2)] . (16.17)

The previous limits are understood in the sense of the strong topology of Y α. As a consequence, we need
to to prove first the pointwise existence of these limits and then we shall check that these limits exist in
the strong topology of Cα(T). To be able to compute the Gâteaux dérivatives, we have to precise that
since the beginning of this study we have identified C with R2. Hence C is naturally endowed with the
Euclidean scalar product which writes for z1 = a1 + ib1 and z2 = a2 + ib2

⟨z1, z2⟩ ≜ Re(z1z2) = 1
2 (z1z2 + z1z2) = a1a2 + b1b2.

By straightforward computations, we infer

dfj
Ij(λ, b, f1, f2)hj(w) = (−1)j−1Im

{
wh′

j(w)S(λ,Φi,Φj)(w)

+λ

2wΦ′
j(w)

(
hj(w)A(λ,Φi,Φj)(w) + hj(w)B(λ,Φi,Φj)(w)

)}
, (16.18)

where

A(λ,Φi,Φj)(w) ≜
 
T

Φ′
i(τ)K ′

0 (λ|Φj(w) − Φi(τ)|) Φj(w) − Φi(τ)
|Φj(w) − Φi(τ)|dτ ≜

 
T

Φ′
i(τ)K(λ,w, τ)dτ

and

B(λ,Φi,Φj)(w) ≜
 
T

Φ′
i(τ)K ′

0 (λ|Φj(w) − Φi(τ)|) Φj(w) − Φi(τ)
|Φj(w) − Φi(τ)|dτ =

 
T

Φ′
i(τ)K(λ,w, τ)dτ.

Since B differs from A only with a conjugation, then, they both satisfy the same estimates in the coming
analysis. For all w ∈ T, we have

|A(λ,Φi,Φj)(w)| ≲
ˆ
T

|Φ′
i(τ)|K0 (λ|Φj(w) − Φi(τ)|) |dτ | ≲ ∥Φ′

i∥L∞(T).
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So
∥A(λ,Φi,Φj)∥L∞(T) ≲ ∥Φ′

i∥L∞(T).

Let w1 ̸= w2 ∈ T. let τ ∈ T. Then

|K(λ,w1, τ) −K(λ,w2, τ)|

=
∣∣∣∣K ′

0 (λ|Φj(w1) − Φi(τ)|) Φj(w1) − Φi(τ)
|Φj(w1) − Φi(τ)| −K ′

0 (λ|Φj(w2) − Φi(τ)|) Φj(w2) − Φi(τ)
|Φj(w2) − Φi(τ)|

∣∣∣∣
⩽ |K ′

0 (λ|Φj(w1) − Φi(τ)|) −K ′
0 (λ|Φj(w2) − Φi(τ)|)|

+ |K ′
0 (λ|Φj(w2) − Φi(τ)|)|

∣∣∣∣ Φj(w1) − Φi(τ)
|Φj(w1) − Φi(τ)| − Φj(w2) − Φi(τ)

|Φj(w2) − Φi(τ)|

∣∣∣∣ .
But by right and left triangle inequalities, we get∣∣∣∣ Φj(w1) − Φi(τ)

|Φj(w1) − Φi(τ)| − Φj(w2) − Φi(τ)
|Φj(w2) − Φi(τ)|

∣∣∣∣
=
∣∣∣∣Φj(w1) − Φj(w2)
|Φj(w1) − Φi(τ)| + (Φj(w2) − Φi(τ))

(
1

|Φj(w1) − Φi(τ)| − 1
|Φj(w2) − Φi(τ)|

)∣∣∣∣
⩽

|Φj(w1) − Φj(w2)|
|Φj(w1) − Φi(τ)| + |Φj(w2) − Φi(τ)| ||Φj(w2) − Φi(τ)| − |Φj(w1) − Φi(τ)||

|Φj(w1) − Φi(τ)| |Φj(w2) − Φi(τ)|

⩽
2 |Φj(w1) − Φj(w2)|

|Φj(w1) − Φi(τ)|

≲ |Φj(w1) − Φj(w2)| .

Hence,
|K(λ,w1, τ) −K(λ,w2, τ)| ≲ |Φj(w1) − Φj(w2)| ≲ ∥Φj∥Cα(T)|w1 − w2|α.

Thus,
∥A(λ,Φi,Φj)∥Cα(T) ≲ ∥Φi∥C1+α(T) + ∥Φj∥C1+α(T).

We conclude that,
∥dfj

Ij(λ, f1, f2)hj∥Cα(T) ≲ ∥hj∥C1+α(T),

which means that dfj
Ij(λ, b, f1, f2) ∈ L(C1+α(T), Cα(T)).

➢ Concerning the other differentiation, we have

dfiIj(λ, b, f1, f2)hi(w) = (−1)j−1Im
{
wΦ′

j(w)
 
T
h′
i(τ)K0 (λ|Φj(w) − Φi(τ)|) dτ

− λ

2wΦ′
j(w)

 
T
hi(τ)Φ′

i(τ)K ′
0 (λ|Φj(w) − Φi(τ)|) Φj(w) − Φi(τ)

|Φj(w) − Φi(τ)|dτ

−λ

2wΦ′
j(w)

 
T
hi(τ)Φ′

i(τ)K ′
0 (λ|Φj(w) − Φi(τ)|) Φj(w) − Φi(τ)

|Φj(w) − Φi(τ)|dτ
}

≜ (−1)j−1Im
{
wΦ′

j(w)
[
C(λ,Φi,Φj)(hi)(w) +D(λ,Φi,Φj)(hi)(w) + E(λ,Φi,Φj)(hi)(w)

]}
.

(16.19)

Using the algebra structure of Cα(T), we obtain

∥dfiIj(λ, b, f1, f2)hi∥Cα(T) ≲ ∥C(λ,Φi,Φj)hi∥Cα(T) + ∥D(λ,Φi,Φj)hi∥Cα(T) + ∥E(λ,Φi,Φj)hi∥Cα(T).

From (16.16), we find
∥C(λ,Φi,Φj)hi∥Cα(T) ≲ ∥h′

i∥L∞(T) ⩽ ∥hi∥C1+α(T).
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In the same way as for A(λ,Φi,Φj), we infer

∥D(λ,Φi,Φj)hi∥Cα(T) + ∥E(λ,Φi,Φj)hi∥Cα(T) ≲ ∥hi∥L∞(T) ⩽ ∥hi∥C1+α(T).

Gathering the foregoing computations leads to

∥dfi
Ij(λ, b, f1, f2)hi∥Cα(T) ≲ ∥hi∥C1+α(T),

that is, dfi
Ij(λ, b, f1, f2) ∈ L(C1+α(T), Cα(T)).

➢ The last thing to check is that the convergence in (16.17) occurs in the strong topology of Cα(T). Since
there are many terms involved, we shall select the more complicated one and study it. The other terms
can be treated in a similar way, up to slight modifications. Let us focus on the first term of the right-hand
side of (16.18). We shall prove,

lim
t→0

S(λ,Φi,Φi + thj) − S(λ,Φi,Φj) = 0 in Cα(T).

For more convenience, we use the following notation

Tij(λ, t, w) ≜ S(λ,Φi,Φi + thj)(w) − S(λ,Φi,Φj)(w).

Consider t > 0 such that t∥hj∥L∞(T) < r. According to (16.8), we get

Tij(λ, t, w) =
 
T

Φ′
i(τ) (K0 (λ |Φj(w) − Φi(τ) + thj(w)|) −K0 (λ |Φj(w) − Φi(τ)|)) dτ

≜
 
T

Φ′
i(τ)K(λ, t, w, τ)dτ.

Applying mean value Theorem and left triangle inequality, we obtain

|K(λ, t, w, τ)| ≲ t∥hj∥L∞(T).

Consequently,
|Tij(λ, t, w)| ≲ t∥hj∥L∞(T).

This implies that
lim
t→0

∥Tij(λ, t, ·)∥L∞(T) = 0.

Let us now consider w1 ≠ w2 ∈ T. In view of the mean value Theorem, one obtains the following estimate

|Tij(λ, t, w1) − Tij(λ, t, w2)| ≲
ˆ
T

|K(λ, t, w1, τ) − K(λ, t, w2, τ)| |dτ |

≲ |w1 − w2|
ˆ
T

sup
w∈T

|∂wK(λ, t, w, τ)| |dτ |. (16.20)

Now remark that we can write

K(λ, t, w, τ) =
ˆ t

0
∂sg(λ, s, w, τ)ds with g(λ, t, w, τ) ≜ K0 (λ |Φj(w) − Φi(τ) + τhj(w)|) .
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According to (16.10), one obtains

∂wg(λ, t, w, τ) = λ

2K
′
0 (λ |Φj(w) − Φi(τ) + thj(w)|)

×

(
Φ′
j(w) + th′

j(w)
) (

Φj(w) − Φi(τ) + thj(w)
)

− w2
(

Φ′
j(w) + th′

j(w)
)

(Φj(w) − Φi(τ) + thj(w))

|Φj(w) − Φi(τ) + thj(w)| .

After straightforward computations, we obtain for s ∈ [0, t],

|∂s∂wg(λ, s, w, τ)| ≲ 1.

As a consequence, we infer
|∂wK(λ, t, w, τ)| ≲ |t|.

Coming back to (16.20) and using the fact that α ∈ (0, 1), we conclude

|Tij(λ, t, w1) − Tij(λ, t, w2)| ≲ |t||w1 − w2| ≲ |t||w1 − w2|α.

Therefore,
lim
t→0

∥Tij(t, ·)∥Cα(T) = 0.

The second step is now achieved.

▶ Step 3 : Show that the Gâteaux derivatives of G(λ, b, ·, ·, ·) are continuous :
Now we investigate for the continuity of the Gâteaux derivatives seen as operators from the neighborhood
B1+α
r × B1+α

r into the Banach space L
(
X1+α

1 , Y α1
)
. Using the algebra structure of Cα(T), we deduce

from (16.19) and (16.18) that we only have to study the continuity of the terms S(λ,Φi,Φj), A(λ,Φi,Φj),
B(λ,Φi,Φj), C(λ,Φi,Φj)hi, D(λ,Φi,Φj)hi and E(λ,Φi,Φj)hi. As before, we shall focus on the term
S(λ,Φi,Φj) for i ̸= j and remark that the other terms are similar. We denote

Φ1 ≜ Id + f1, Ψ1 ≜ Id + g1, Φ2 ≜ bId + f2, Ψ2 ≜ bId + g2,

with (f1, f2) ∈ B1+α
r ×B1+α

r and (g1, g2) ∈ B1+α
r ×B1+α

r . Let us show that

∥S(λ,Φi,Φj) − S(λ,Ψi,Ψj)∥Cα(T) ≲ ∥f1 − g1∥C1+α(T) + ∥f2 − g2∥C1+α(T).

According to (16.8), we get

S(λ,Φi,Φj)(w) − S(λ,Ψi,Ψj)(w) =
 
T

[Φ′
i(τ)K0 (λ |Φj(w) − Φi(τ)|) − Ψ′

i(τ)K0 (λ |Ψj(w) − Ψi(τ)|)] dτ

≜
 
T

Ψ′
i(τ)K2(λ,w, τ)dτ +

 
T

(Φ′
i(τ) − Ψ′

i(τ))K0 (λ |Φj(w) − Φi(τ)|) dτ,

where
K2(λ,w, τ) ≜ K0 (λ |Φj(w) − Φi(τ)|) −K0 (λ |Ψj(w) − Ψi(τ)|) .

We have directly∥∥∥ 
T

(Φ′
i(τ) − Ψ′

i(τ))K0 (λ |Φj(·) − Φi(τ)|) dτ
∥∥∥
Cα(T)

≲ ∥f ′
i − g′

i∥L∞(T) ⩽ ∥fi − gi∥C1+α(T).
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Now set
Li(λ,w) ≜

 
T
K2(λ,w, τ)Ψ′

i(τ)dτ,

By a new use of the mean value Theorem and left triangle inequality, we obtain

|K2(λ,w, τ)| ≲
∣∣ |Φj(w) − Φi(τ)| − |Ψj(w) − Ψi(τ)|

∣∣
⩽ |Φj(w) − Ψj(w)| + |Φi(τ) − Ψi(τ)|

⩽ ∥Ψj − Φj∥L∞(T) + ∥Ψi − Φi∥L∞(T).

Hence, we deduce

∥Li(λ, ·)∥L∞(T) ≲ ∥Ψ′
i∥L∞(T)

(
∥Ψj − Φj∥L∞(T) + ∥Ψi − Φi∥L∞(T)

)
≲ ∥fj − gj∥C1+α(T) + ∥fi − gi∥C1+α(T).

Take w1 ̸= w2 ∈ T. Applying the mean value Theorem yields

|Li(λ,w1) − Li(λ,w2)| ≲ |w1 − w2|
 
T

sup
w∈T

|∂wK2(λ,w, τ)| |dτ |.

By (16.10), we have
∂wK2(λ,w, τ) = λ

2

(
J (λ,w, τ) − w2J (λ,w, τ)

)
,

where

J (λ,w, τ) ≜ Φ′
j(w)(Φj(w)−Φi(τ))K ′

0 (λ|Φj(w) − Φi(τ)|)−Ψ′
j(w)(Ψj(w)−Ψi(τ))K ′

0 (λ|Ψj(w) − Ψi(τ)|) .

Notice that it can be written in the following form

J (λ,w, τ) = J1(λ,w, τ) + J2(λ,w, τ) + J3(λ,w, τ),

with

J1(λ,w, τ) ≜ Φ′
j(w) [(Φj − Ψj)(w) − (Φi − Ψi)(τ)]K ′

0 (λ|Φj(w) − Φi(τ)|) ,

J2(λ,w, τ) ≜
[
Φ′
j(w) − Ψ′

j(w)
]

[Ψj(w) − Ψi(τ)]K ′
0 (λ|Ψj(w) − Ψi(τ)|) ,

J3(λ,w, τ) ≜ Φ′
j(w) [Ψj(w) − Ψi(τ)] [K ′

0 (λ|Φj(w) − Φi(τ)|) −K ′
0 (λ|Ψj(w) − Ψi(τ)|)] .

By the same techniques as already used above, we get

∥∂wK2(λ, ·, τ)∥L∞(T) ≲ ∥fj − gj∥C1+α(T) + ∥fi − gi∥C1+α(T).

We deduce that

∥S(λ,Φi,Φj) − S(λ,Ψi,Ψj)∥Cα(T) ≲ ∥fj − gj∥C1+α(T) + ∥fi − gi∥C1+α(T).

(ii) Looking at Proposition 16.1, it is sufficient to prove the preservation of the m-fold symmetry. Let r
be as in Proposition 16.1. Let (f1, f2) ∈ B1+α

r,m ×B1+α
r,m . Let Φ1 and Φ2 be the associated conformal maps

Φ1(z) = z +
∞∑
n=0

an
zmn−1 and Φ2(z) = bz +

∞∑
n=0

bn
zmn−1 .
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One easily obtains

∀j ∈ {1, 2}, ∀w ∈ T, Φj
(
e

2iπ
m w

)
= e

2iπ
m Φj(w) and Φ′

j

(
e

2iπ
m w

)
= Φ′

j(w).

Hence, by using the change of variables τ 7→ e
2iπ
m τ , we have for all (i, j) ∈ {1, 2}2 and for all w ∈ T,

S(λ,Φi,Φj)
(
e

2iπ
m w

)
=
 
T

Φ′
i(τ)K0

(
λ
∣∣∣Φj (e 2iπ

m w
)

− Φi (τ)
∣∣∣) dτ

= e
2iπ
m

 
T

Φ′
i

(
e

2iπ
m τ
)
K0

(
λ
∣∣∣Φj (e 2iπ

m w
)

− Φi
(
e

2iπ
m τ
)∣∣∣) dτ

= e
2iπ
m

 
T

Φ′
i(τ)K0 (λ |Φj (w) − Φi (τ)|) dτ

= e
2iπ
m S(λ,Φi,Φj)(w).

By definition (16.7) of Gj , this immediately implies that

∀j ∈ {1, 2}, ∀w ∈ T, Gj (λ, b,Ω, f1, f2)
(
e

2iπ
m w

)
= Gj (λ, b,Ω, f1, f2) (w) .

So
G(λ, b, ·, ·, ·) : R ×B1+α

r,m ×B1+α
r,m → Y αm.

(iii) Fix j ∈ {1, 2}. By (16.11) and (16.12), we have for fj ∈ B1+α
r and hj ∈ C1+α(T),

∂Ωdfj
Gj(λ, b,Ω, fj)(hj)(w) = ∂Ωdfj

Sj(λ, b,Ω, fj)(hj)(w)

= Im
{
hj(w)wΦ′

j(w) + Φj(w)wh′
j(w)

}
.

As a consequence, we deduce that for (fj , gj) ∈ (B1+α
r )2 and hj ∈ C1+α(T),∥∥∥∂Ωdfj

Gj(λ, b,Ω, fj)(hj) − ∂Ωdfj
Gj(λ, b,Ω, gj)(hj)

∥∥∥
Cα(T)

≲ ∥fj − gj∥C1+α(T)∥hj∥C1+α(T).

This proves the continuity of ∂Ωd(f1,f2)G(λ, b, ·, ·, ·) : R ×B1+α
r ×B1+α

r → L(X1+α, Y α) and achieves the
proof of Proposition 16.1.

17 Spectral study

In this section, we study the linearized operator at the equilibrium state and look for the degeneracy
conditions for its kernel.

17.1 Linearized operator

In this subsection, we compute the differential d(f1,f2)G(λ, b,Ω, 0, 0) and show that it acts as a Fourier
multiplier. More precisely, we prove the following proposition.

Proposition 17.1. Let λ > 0, b ∈ (0, 1) and α ∈ (0, 1). Then for all Ω ∈ R and for all (h1, h2) ∈ X1+α,

if we write

h1(w) =
∞∑
n=0

anw
n and h2(w) =

∞∑
n=0

bnw
n,

289



Part III

we have for all w ∈ T

d(f1,f2)G(λ, b,Ω, 0, 0)(h1, h2)(w) =
∞∑
n=0

(n+ 1)Mn+1(λ, b,Ω)
(
an

bn

)
en+1(w),

where for all n ∈ N∗, the matrix Mn(λ, b,Ω) is defined by

Mn(λ, b,Ω) ≜
(

Ωn(λ) − Ω − bΛ1(λ, b) bΛn(λ, b)
−Λn(λ, b) Λ1(λ, b) − b

[
Ωn(λb) + Ω

]) ,
with Ωn defined in (1.23) and

Λn(λ, b) ≜ In(λb)Kn(λ).

Recall that the modified Bessel functions In and Kn are defined in Appendix C.

Proof. Since G = (G1, G2), then for given (h1, h2) ∈ X1+α, we have

d(f1,f2)G(λ, b,Ω, 0, 0)(h1, h2) =
(
df1G1(λ, b,Ω, 0, 0)h1 + df2G1(λ, b,Ω, 0, 0)h2

df1G2(λ, b,Ω, 0, 0)h1 + df2G2(λ, b,Ω, 0, 0)h2

)
. (17.1)

But, with the notation introduced in the proof of Proposition 16.1, we can write
df1G1(λ, b,Ω, 0, 0)h1 = df1S1(λ, b,Ω, 0)h1 + df1I1(λ, b, 0, 0)h1

df2G2(λ, b,Ω, 0, 0)h2 = df2S2(λ, b,Ω, 0)h2 + df2I2(λ, b, 0, 0)h2

df2G1(λ, b,Ω, 0, 0)h2 = df2I1(λ, b, 0, 0)h2

df1G2(λ, b,Ω, 0, 0)h1 = df1I2(λ, b, 0, 0)h1.

(17.2)

We write

h1(w) =
∞∑
n=0

anw
n and h2(w) =

∞∑
n=0

bnw
n.

It has already been proved in [54, Prop. 5.8] that for all w ∈ T,

df1S1(λ, b,Ω, 0)h1(w) =
∞∑
n=0

(n+ 1) (Ωn+1(λ) − Ω) anen+1(w), (17.3)

where
Ωn(λ) ≜ I1(λ)K1(λ) − In(λ)Kn(λ).

By a similar calculation, we get

df2S2(λ, b,Ω, 0)h2(w) = −
∞∑
n=0

(n+ 1)b (Ωn+1(λb) + Ω) bnen+1(w). (17.4)

In view of (16.18), we can write

df1I1(λ, b, 0, 0)h1(w) = L1(h1)(w) + L2(h1)(w),

with

L1(h1)(w) ≜ Im
{
wh′

1(w)b
 
T
K0 (λ|w − bτ |) dτ

}
,

L2(h1)(w) ≜ Im
{
λb

2 w
 
T
K ′

0 (λ|w − bτ |) h1(w)(w − bτ) + h1(w)(w − bτ)
|w − bτ |

dτ

}
.
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By using the change of variables τ 7→ wτ and the fact that |w| = 1, we deduce

w

 
T
K0 (λ|w − bτ |) dτ =

 
T
K0 (λ|1 − bτ |) dτ.

Moreover, from (16.9), we know that
 
T
K0 (λ|1 − bτ |) dτ ∈ R.

So using that
|1 − beiθ| =

(
1 − 2b cos(θ) + b2) 1

2 with b ∈ (0, 1), (17.5)

we obtain from (C.3),

 
T
K0 (λ|1 − bτ |) dτ = Re

{
1

2π

ˆ 2π

0
K0
(
λ|1 − beiθ|

)
eiθdθ

}
= 1

2π

ˆ 2π

0
K0
(
λ|1 − beiθ|

)
cos(θ)dθ.

Now, by (C.11) and (C.3), one obtains for all n ∈ N∗,

1
2π

ˆ 2π

0
K0
(
λ|1 − beiθ|

)
cos(nθ)dθ = 1

2π

ˆ 2π

0

∞∑
m=−∞

Im(λb)Km(λ) cos(mθ) cos(nθ)dθ

= 1
2π

∞∑
m=−∞

Im(λb)Km(λ)
ˆ 2π

0
cos(mθ) cos(nθ)dθ

= In(λb)Kn(λ). (17.6)

Notice that the inversion of symbols of summation and integration is possible due to the geometric decay
at infinity given by (C.18). Then, we deduce by (16.10) that

L1(h1)(w) = −
∞∑
n=0

nbI1(λb)K1(λ)anen+1(w).

By using the change of variables τ 7→ wτ and the fact that |w| = 1, we infer

w

 
T
K ′

0 (λ|w − bτ |) h1(w)(w − bτ) + h1(w)(w − bτ)
|w − bτ |

dτ

=
 
T
K ′

0 (λ|1 − bτ |) h1(w)w(1 − bτ) + h1(w)w(1 − bτ)
|1 − bτ |

dτ.

But  
T
K ′

0 (λ|1 − bτ |) h1(w)w(1 − bτ)
|1 − bτ |

dτ =
∞∑
n=0

an

( 
T
K ′

0 (λ|1 − bτ |) (1 − bτ)
|1 − bτ |

dτ

)
wn+1

and  
T
K ′

0 (λ|1 − bτ |) h1(w)w(1 − bτ)
|1 − bτ |

dτ =
∞∑
n=0

an

( 
T
K ′

0 (λ|1 − bτ |) (1 − bτ)
|1 − bτ |

dτ

)
wn+1.

Moreover, by writting the line integral with the parametrization τ = eiθ and making the change of variables
θ 7→ −θ, we get as in (16.9)

 
T
K ′

0 (λ|1 − bτ |) (1 − bτ)
|1 − bτ |

dτ ∈ R and
 
T
K ′

0 (λ|1 − bτ |) (1 − bτ)
|1 − bτ |

dτ ∈ R.
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Since Im
(
wn+1) = −Im

(
wn+1) , we obtain

L2(h1)(w) =
∞∑
n=0

an

(
λb

2

 
T
K ′

0 (λ|1 − bτ |) b(τ − τ)
|1 − bτ |

dτ

)
Im(wn+1).

An integration by parts together with (17.5) and (17.6) gives

λb

2

 
T
K ′

0 (λ|1 − bτ |) b(τ − τ)
|1 − bτ |

dτ = λb

4π

ˆ 2π

0
K ′

0
(
λ|1 − beiθ|

) b(e−iθ − eiθ)eiθ

|1 − beiθ|
dθ

= −b
2π

ˆ 2π

0
K0
(
λ|1 − beiθ|

)
eiθdθ

= −b
2π

ˆ 2π

0
K0
(
λ|1 − beiθ|

)
cos(θ)dθ

= −bI1(λb)K1(λ).

Therefore,

L2(h1)(w) = −
∞∑
n=0

bI1(λb)K1(λ)anen+1(w).

Finally,

df1I1(λ, b, 0, 0)h1(w) = −
∞∑
n=0

b(n+ 1)I1(λb)K1(λ)anen+1(w). (17.7)

Similar computations taking into acount the modification with b, change of signs and the fact that
|b− eiθ| = |1 − beiθ| yield

df2I2(λ, b, 0, 0)(h2)(w) =
∞∑
n=0

(n+ 1)I1(λb)K1(λ)bnen+1(w). (17.8)

According to (16.19), we can write

df2I1(λ, b, 0, 0)h2(w) = L3(h2)(w) + L4(h2)(w),

with

L3(h2)(w) ≜ Im
{
w

 
T
h′

2(τ)K0 (λ|w − bτ |) dτ
}
,

L4(h2)(w) ≜ −λb

2 Im
{
w

 
T
K ′

0 (λ|w − bτ |) h2(τ)(w − bτ) + h2(τ)(w − bτ)
|w − bτ |

dτ

}
.

The change of variables τ 7→ wτ implies

L3(h2)(w) = Im
{ 

T
h′

2(wτ)K0 (λ|1 − bτ |) dτ
}

= −
∞∑
n=0

nbn

( 
T
τn+1K0 (λ|1 − bτ |) dτ

)
Im(wn+1)

=
∞∑
n=0

nbn

( 
T
τn+1K0 (λ|1 − bτ |) dτ

)
en+1(w).
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But by symmetry and (17.6)

 
T
τn+1K0 (λ|1 − bτ |) dτ = 1

2π

ˆ 2π

0
e−i(n+1)θK0

(
λ|1 − beiθ|

)
eiθdθ

= 1
2π

ˆ 2π

0
K0
(
λ|1 − beiθ|

)
cos(nθ)dθ

= In(λb)Kn(λ).

Hence,

L3(h2)(w) =
∞∑
n=0

nIn(λb)Kn(λ)bnen+1(w).

By using the change of variables τ 7→ wτ and the fact that |w| = 1, we have

L4(h2)(w) = −λb
2 Im

{ 
T
K ′

0 (λ|1 − bτ |) h2(wτ)w(1 − bτ) + h2(wτ)w(1 − bτ)
|1 − bτ |

dτ

}
,

which also writes

L4(h2)(w) = −λb
2

∞∑
n=0

bn

( 
T
K ′

0 (λ|1 − bτ |) (τn − τn) − b(τn+1 − τn+1)
|1 − bτ |

dτ

)
Im(wn).

We denote
I ≜

−λb
2

 
T
K ′

0 (λ|1 − bτ |) (τn − τn) − b(τn+1 − τn+1)
|1 − bτ |

dτ.

Since I ∈ R, we have

I = −λb
4π

ˆ 2π

0
K ′

0
(
λ|1 − beiθ|

) (einθ − e−inθ) − b(ei(n+1)θ − e−i(n+1)θ)
|1 − beiθ|

eiθdθ

= λb

2π

ˆ 2π

0
K ′

0
(
λ|1 − beiθ|

) sin(θ)
|1 − beiθ|

(sin(nθ) − b sin((n+ 1)θ))dθ.

Integrating by parts with (17.5) and using (17.6) yield

I = 1
2π

ˆ 2π

0
K0(λ|1 − beiθ|) (b(n+ 1) cos((n+ 1)θ) − n cos(nθ))

= b(n+ 1)In+1(λb)Kn+1(λ) − nIn(λb)Kn(λ).

Therefore,

df2I1(λ, b, 0, 0)(h2)(w) =
∞∑
n=0

b(n+ 1)In+1(λb)Kn+1(λ)bnen+1(w). (17.9)

Similar computations taking into acount the modification with b, change of signs and the fact that
|b− eiθ| = |1 − beiθ| imply

df1I2(λ, b, 0, 0)(h1)(w) = −
∞∑
n=0

(n+ 1)In+1(λb)Kn+1(λ)anen+1(w). (17.10)

Gathering (17.1), (17.2), (17.7), (17.10), (17.3), (17.9), (17.8) and (17.4), we get the desired result. The
proof of Proposition 17.1 is now complete.
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17.2 Asymptotic monotonicity of the eigenvalues

This subsection is devoted to the proof of Proposition 17.2 concerning the asymptotic monotonicity of the
eigenvalues needed to ensure the one dimensional kernel assumption of Crandall-Rabinowitz’s Theorem.
But first, we have to prove their existence and this is the purpose of the following lemma.

Lemma 17.1. Let λ > 0 and b ∈ (0, 1). There exists N0(λ, b) ∈ N∗ such that for all integer n ⩾ N0(λ, b),
there exist two angular velocities

Ω±
n (λ, b) ≜ 1 − b2

2b Λ1(λ, b) + 1
2

(
Ωn(λ) − Ωn(λb)

)
± 1

2b

√(
b
[
Ωn(λ) + Ωn(λb)

]
− (1 + b2)Λ1(λ, b)

)2
− 4b2Λ2

n(λ, b) (17.11)

for which the matrix Mn

(
λ, b,Ω±

n (λ, b)
)

is singular.

Proof. The determinant of Mn(λ, b,Ω) is

det
(
Mn(λ, b,Ω)

)
=
(

Ωn(λ) − Ω − bΛ1(λ, b)
)(

Λ1(λ, b) − b
[
Ωn(λb) + Ω

])
+ bΛ2

n(λ, b)

= bΩ2 −Bn(λ, b)Ω + Cn(λ, b), (17.12)

where

Bn(λ, b) ≜ (1 − b2)Λ1(λ, b) + b
[
Ωn(λ) − Ωn(λb)

]
,

Cn(λ, b) ≜ b
[(

Λ1(λ, b) − 1
b

Ωn(λ)
)(

bΩn(λb) − Λ1(λ, b)
)

+ Λ2
n(λ, b)

]
.

It is a polynomial of degree two in Ω which has at most two roots. Let us compute its discriminant. After
straightforward computations, we find

∆n(λ, b) ≜ B2
n(λ, b) − 4bCn(λ, b)

=
(
b
[
Ωn(λ) + Ωn(λb)

]
− (1 + b2)Λ1(λ, b)

)2
− 4b2Λ2

n(λ, b). (17.13)

Using the asymptotic expansion of large order (C.14), we infer

∀λ > 0, ∀b ∈ (0, 1], In(λb)Kn(λ) −→
n→∞

0. (17.14)

As a consequence,
∆n(λ, b) −→

n→∞
∆∞(λ, b), (17.15)

where

∆∞(λ, b) = δ2
∞(λ, b) with δ∞(λ, b) ≜ b

[
I1(λ)K1(λ) + I1(λb)K1(λb)

]
− (1 + b2)I1(λb)K1(λ). (17.16)

We can rewrite δ∞(λ, b) as

δ∞(λ, b) =
[
bI1(λ) − I1(λb)

]
K1(λ) + bI1(λb)

[
K1(λb) − bK1(λ)

]
.

According to (C.12) and (C.3), we find K ′
1 < 0 on (0,∞), which implies in turn the strict decay property

of K1 on (0,∞). Therefore, since b ∈ (0, 1), we get

bK1(λ) < K1(λ) < K1(λb).
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Now since b ∈ (0, 1), we obtain from (C.2),

I1(λb) =
∞∑
m=0

(
λb
2
)1+2m

m!Γ(m+ 2) < b

∞∑
m=0

(
λ
2
)1+2m

m!Γ(m+ 2) = bI1(λ).

Finally,
∆∞(λ, b) > 0.

Thus
∃N0(λ, b) ∈ N∗, ∀n ∈ N∗, n ⩾ N0(λ, b) ⇒ ∆n(λ, b) > 0. (17.17)

Therefore, for n ⩾ N0(λ, b) there exist two angular velocities Ω−
n (λ, b) and Ω+

n (λ, b) for which the matrix
Mn(λ, b,Ω±

n (λ, b)) is singular. These angular velocities are defined by

Ω±
n (λ, b) ≜

Bn(λ, b) ±
√

∆n(λ, b)
2b

= 1 − b2

2b Λ1(λ, b) + 1
2

(
Ωn(λ) − Ωn(λb)

)
± 1

2b

√(
b
[
Ωn(λ) + Ωn(λb)

]
− (1 + b2)Λ1(λ, b)

)2
− 4b2Λ2

n(λ, b).

This ends the proof of Lemma 17.1.

We shall now study the monotonicity of the eigenvalues obtained in Lemma 17.1. This is a crucial
point to obtain later the one dimensional condition for the kernel of the linearized operator given by
Proposition 17.1.

Proposition 17.2. Let λ > 0 and b ∈ (0, 1). There exists N(λ, b) ∈ N∗ with N(λ, b) ⩾ N0(λ, b) where
N0(λ, b) is defined in Lemma 17.1 such that

(i) The sequence
(
Ω+
n (λ, b)

)
n⩾N(λ,b) is strictly increasing and converges to Ω+

∞(λ, b) = I1(λ)K1(λ) −
bΛ1(λ, b).

(ii) The sequence
(
Ω−
n (λ, b)

)
n⩾N(λ,b) is strictly decreasing and converges to Ω−

∞(λ, b) = Λ1(λ,b)
b −

I1(λb)K1(λb).

Then, we have for all (m,n) ∈ (N∗)2 with N(λ, b) ⩽ n < m,

Ω−
∞(λ, b) < Ω−

m(λ, b) < Ω−
n (λ, b) < Ω+

n (λ, b) < Ω+
m(λ, b) < Ω+

∞(λ, b).

Proof. The convergence is an immediate consequence of (17.11), (17.15), (17.16) and (17.14). Then, we
turn to the asymptotic monotonicity. For that purpose, we study the sign of the difference

Ω±
n+1(λ, b)−Ω±

n (λ, b) = 1
2

([
Ωn+1(λ)−Ωn(λ)

]
−
[
Ωn+1(λb)−Ωn(λb)

])
± 1

2b

[√
∆n+1(λ, b) −

√
∆n(λ, b)

]
for n large enough.
▶ We first study the difference term before the square roots. We can write

[
Ωn+1(λ) − Ωn+1(λb)

]
−
[
Ωn(λ) − Ωn(λb)

]
=
[
Ωn+1(λ) − Ωn(λ)

]
−
[
Ωn+1(λb) − Ωn(λb)

]
=
[
In(λ)Kn(λ) − In+1(λ)Kn+1(λ)

]
−
[
In(λb)Kn(λb) − In+1(λb)Kn+1(λb)

]
≜ φn(λ) − φn(λb).
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By vitue of (C.18), we deduce

In(λ)Kn(λ) =
n→∞

1
2n − λ2

4n3 + oλ

(
1
n4

)
.

Therefore,

φn(λ) − φn(λb) =
n→∞

λ2(b2 − 1)(n+ 1)3 − n3

4n3(n+ 1)3 + oλ,b

(
1
n4

)
=

n→∞

3λ2(b2 − 1)
4n4 + oλ,b

(
1
n4

)
.

We conclude that

1
2

([
Ωn+1(λ) − Ωn(λ)

]
−
[
Ωn+1(λb) − Ωn(λb)

])
=

n→∞
Oλ,b

(
1
n4

)
. (17.18)

▶ The next task is to look at the asymptotic sign of the difference
√

∆n+1(λ, b) −
√

∆n(λ, b). We can
write √

∆n+1(λ, b) −
√

∆n(λ, b) = ∆n+1(λ, b) − ∆n(λ, b)√
∆n+1(λ, b) +

√
∆n(λ, b)

with

∆n+1(λ, b) − ∆n(λ, b) = b
(

Ωn+1(λ) − Ωn(λ) + Ωn+1(λb) − Ωn(λb)
)

×
(
b
[
Ωn+1(λ) + Ωn(λ) + Ωn+1(λb) + Ωn(λb)

]
− 2(1 + b2)Λ1(λ, b)

)
+ 4b2

(
Λn(λ, b) − Λn+1(λ, b)

)(
Λn(λ, b) + Λn+1(λ, b)

)
.

By using (C.18), we have

Λn(λ, b) =
n→∞

bn

2n + λ2bn(b2 − 1)
2n2 + oλ,b

(
bn

n2

)
.

Hence, the following asymptotic expansion holds

Λn(λ, b) ± Λn+1(λ, b) =
n→∞

oλ,b

(
1
n2

)
.

As a consequence,

4b2
(

Λn(λ, b) − Λn+1(λ, b)
)(

Λn(λ, b) + Λn+1(λ, b)
)

=
n→∞

oλ,b

(
1
n2

)
. (17.19)

In addition,

b
(

Ωn+1(λ) − Ωn(λ) + Ωn+1(λb) − Ωn(λb)
)

= b
(
φn(λ) + φn(λb)

)
∼

n→∞

b

n2 (17.20)

and

b
[
Ωn+1(λ) + Ωn(λ) + Ωn+1(λb) + Ωn(λb)

]
− 2(1 + b2)Λ1(λ, b)

= 2b
[
I1(λ)K1(λ) + I1(λb)K1(λb)

]
− 2(1 + b2)I1(λb)K1(λ)

− b
[
In+1(λ)Kn+1(λ) + In+1(λb)Kn+1(λb) + In(λ)Kn(λ) + In(λb)Kn(λb)

]
−→
n→∞

2δ∞(λ, b),

(17.21)
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where δ∞(λ, b) is defined in (17.16). From (17.15), (17.16), (17.19), (17.20) and (17.21), we obtain

√
∆n+1(λ, b) −

√
∆n(λ, b) ∼

n→∞

b

n2 . (17.22)

▶ Combining (17.18) and (17.22), we get

Ω±
n+1(λ, b) − Ω±

n (λ, b) ∼
n→∞

± 1
2n2 .

We conclude that there exists N(λ, b) ⩾ N0(λ, b) such that

∀n ∈ N∗, n ⩾ N(λ, b) ⇒

{
Ω+
n+1(λ, b) − Ω+

n (λ, b) > 0
Ω−
n+1(λ, b) − Ω−

n (λ, b) < 0,

i.e. the sequence
(
Ω+
n (λ, b)

)
n⩾N(λ,b)

(
resp.

(
Ω−
n (λ, b)

)
n⩾N(λ,b)

)
is strictly increasing (resp. decreasing).

This achieves the proof of Proposition 17.2.

We shall now study both important asymptotic behaviours

λ → 0 and b → 0.

The first one corresponds to the Euler case and the second one corresponds to the simply-connected case.
We remark that we formally recover (at least partially) [94, Thm. B.] and [54, Thm. 5.1.] looking at these
limits. More precisely, we have the following result.

Lemma 17.2. The spectrum is continuous in the following sense.

(i) Let b ∈ (0, 1). There exists Ñ(b) such that

∀n ∈ N∗, n ⩾ Ñ(b) ⇒ Ω±
n (λ, b) −→

λ→0
Ω±
n (b),

where Ω±
n (b) is defined in (1.21).

(ii) Let λ > 0. There exists Ñ(λ) such that

∀n ∈ N∗, n ⩾ Ñ(λ) ⇒ Ω+
n (λ, b) −→

b→0
Ωn(λ),

where Ωn(λ) is defined in (1.23).

Proof. (i) In view of (C.13), we deduce

∀n ∈ N∗, ∀ b ∈ (0, 1], In(λb)Kn(λ) −→
λ→0

bn

2n. (17.23)

In what follows, we fix b ∈ (0, 1). By virtue of (17.23), the matrices Mn defined in Proposition 17.1, satisfy
the following convergence

∀n ∈ N∗, Mn(λ, b,Ω) −→
λ→0

Mn(b,Ω) ≜
(
n−1
2n − b2

2 − Ω bn+1

2n
− bn

2n
b
2 − b(n−1)

2n − bΩ

)
.

After straightforward computations, we find

det
(
Mn(b,Ω)

)
= bΩ2 − b(1 − b2)

2 Ω + b

4n2

[
n(1 − b2) − 1 + b2n] .
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This polynomial of degree two in Ω has the discriminant

∆n(b) ≜ b2

n2

[(
n(1 − b2)

2 − 1
)2

− b2n

]
.

Thus, provided ∆n(b) > 0, i.e. for

1 + bn − n(1 − b2)
2 < 0, (17.24)

we have two roots

Ω±
n (b) ≜ 1 − b2

4 ± 1
2n

√(
n(1 − b2)

2 − 1
)2

− b2n.

Then, we recover the result found in [94, Thm. B.]. Now, observe that the sequence n 7→ 1 + bn − n(1−b2)
2

is decreasing. Then there exists Ñ(b) ∈ N∗ and c0 > 0 such that

inf
n∈N∗

n⩾Ñ(b)

∆n(b) ⩾ c0 > 0.

We use the integral representation (C.10), allowing to write

∀n ∈ N∗, In(λ)Kn(λ) − 1
2n = 1

2

ˆ ∞

0

[
J0
(
2λ sinh

(
t
2
))

− 1
]
e−ntdt.

Now using the integral representation (C.1), we find

J0
(
2λ sinh

(
t
2
))

− 1 = 1
π

ˆ π

0

[
cos
(
2λ sinh

(
t
2
)

sin(θ)
)

− 1
]
dθ.

The classical inequalities

∀x ∈ R, | cos(x) − 1| ⩽ x2

2 and sinh(x) ⩽ ex

2

provide the following estimate for t ⩾ 0∣∣∣J0
(
2λ sinh

(
t
2
))

− 1
∣∣∣ ⩽ λ2et.

We conclude that
∀λ > 0, sup

n∈N\{0,1}

∣∣In(λ)Kn(λ) − 1
2n
∣∣ ⩽ λ2. (17.25)

On the other hand, we set for ε > 0,

Kε
0(x) = K0(εx) + log

(
ε
2
)
.

Remark that (C.7) implies
lim
ε→0

Kε
0(x) = − log

(
x
2
)

− γ.

By the dominated convergence theorem, one has

∀n ∈ N∗, lim
ε→0

ˆ
T
Kε

0(|1 − beiθ|) cos(nθ)dη = −
ˆ
T

log(|1 − beiθ|) cos(nθ)dθ.
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Now one obtains from (17.6)

∀n ∈ N∗,

ˆ
T
Kε

0(|1 − beiθ|) cos(nθ)dη =
ˆ
T
K0(ε|1 − beiθ|) cos(nθ)dθ

= In(εb)Kn(ε).

Putting together the last two equality with (17.23) yields

∀n ∈ N∗,

ˆ
T

log
(
|1 − beiθ|

)
dθ = − bn

2n .

Added to (17.6), we have

∀λ > 0, ∀n ∈ N∗, In(λb)Kn(λ) − bn

2n =
ˆ
T

[
K0
(
λ|1 − beiθ|

)
+ log

(
|1 − beiθ|

)]
cos(nθ)dθ.

Then, making appeal to the power series decompositions (C.7) and (C.2), we get

∀λ > 0, sup
n∈N∗

∣∣In(λb)Kn(λ) − bn

2n
∣∣ ≲ max(| log(λ)|, 1)λ2. (17.26)

Combining (17.13), (17.25), (17.26) and (17.23) one obtains

sup
n∈N∗

∣∣∆n(λ, b) − ∆n(b)
∣∣ −→
λ→0

0.

Hence, there exists λ0(b) > 0 such that

inf
λ∈(0,λ0(b)]

inf
n∈N∗

n⩾Ñ(b)

∆n(λ, b) ⩾ c0
2 > 0.

Therefore, we deduce from (17.11) and (17.23) that,

∀n ∈ N∗, n ⩾ Ñ(b) ⇒ Ω±
n (λ, b) −→

λ→0
Ω±
n (b).

(ii) In what follows, we fix λ > 0. By using the asymptotic (C.13), we find

Λ1(λ, b)
b

−→
b→0

λK1(λ)
2 and ∀n ∈ N∗, Λn(λ, b) ∼

b→0
(λb)n

2nn! Kn(λ).

Using the power series decomposition (C.2), the decay property of λ 7→ In(λ)Kn(λ) and the asymptotic
(17.23), we get

∀n ∈ N∗,
∣∣In(λb)Kn(λ) − (λb)n

2nn! Kn(λ)
∣∣ ⩽ b2In(λ)Kn(λ) ⩽ b2.

Thus, we obtain from (17.13), (17.25) and (17.23)

sup
n∈N∗

∣∣∣∆n(λ, b) − b2
[(

Ωn(λ) + n−1
2n − λK1(λ)

2
)2 − (λb)2n

22n(n!)2K
2
n(λ)

]∣∣∣ −→
b→0

0. (17.27)

Notice that
Ωn(λ) + n−1

2n − λK1(λ)
2 −→

n→∞
I1(λ)K1(λ) + 1−λK1(λ)

2 .

Consider the function φ defined by ∀x > 0, φ(x) = xK1(x). From (C.4), we get

φ′(x) = K1(x) + xK ′
1(x) = −xK0(x) < 0.
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Hence φ is strictly decreasing on (0,∞). Moreover, in view of the asymptotic (C.13), we infer

lim
x→0

φ(x) = 1.

Thus, using also (C.3), we obtain
∀x > 0, φ(x) ∈ (0, 1).

Therefore, we deduce that there exists Ñ(λ) ∈ N∗ such that

∀n ∈ N∗, n ⩾ Ñ(λ) ⇒ Ωn(λ) + n−1
2n − λK1(λ)

2 > 0.

In addition, using (C.14) and up to increasing the value of Ñ(λ) one gets

∀n ∈ N∗, n ⩾ Ñ(λ) ⇒ (λb)2n

22n(n!)2K
2
n(λ) ⩽ 1.

Coming back to (17.27), we infer the existence of b0(λ) ∈ (0, 1) such that

∀b ∈ (0, b0(λ)), ∀n ∈ N∗, n ⩾ Ñ(λ) ⇒ ∆n(λ, b) > 0.

Thus, we get from (17.11)

∀n ∈ N∗, n ⩾ Ñ(λ) ⇒ Ω+
n (λ, b) −→

b→0
Ωn(λ).

Then, we partially recover the result found in [54, Thm. 5.1.]. We also obtain, up to increasing the value
of Ñ(λ),

∀n ∈ N∗, n ⩾ Ñ(λ) ⇒ Ω−
n (λ, b) −→

b→0
Ω−
n (λ) ≜ λnK1(λ) − n+ 1

2n .

Unfortunately, we cannot prove bifurcation from these eigenvalues.

18 Bifurcation from simple eigenvalues

We prove here the following result which implies the main Theorem 15.1 by a direct application of
Crandall-Rabinowitz’s Theorem B.1.

Proposition 18.1. Let λ > 0, b ∈ (0, 1), α ∈ (0, 1) and m ∈ N∗ such that m ⩾ N(λ, b). Then the
following assertions hold true.

(i) There exists r > 0 such that G(λ, b, ·, ·, ·) : R ×B1+α
r,m ×B1+α

r,m → Y αm is well-defined and of class C1.

(ii) The kernel ker
(
d(f1,f2)G

(
λ, b,Ω±

m(λ, b), 0, 0
))

is one-dimensional and generated by

v0,m : T → C2

w 7→

(
b
[
Ωm(λb) + Ω±

m(λ, b)
]

− Λ1(λ, b)
−Λm(λ, b)

)
wm−1.

(iii) The range R
(
d(f1,f2)G

(
λ, b,Ω±

m(λ, b), 0, 0
))

is closed and of codimension one in Y αm.

(iv) Tranversality condition :

∂Ωd(f1,f2)G
(
λ, b,Ω±

m(λ, b), 0, 0
)
(v0,m) ̸∈ R

(
d(f1,f2)G

(
λ, b,Ω±

m(λ, b), 0, 0
))
.
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Proof. (i) Follows from Proposition 16.1.
(ii) Let (h1, h2) ∈ X1+α

m . We write

h1(w) =
∞∑
n=1

anw
nm−1 and h2(w) =

∞∑
n=1

bnw
nm−1. (18.1)

Proposition 17.1 gives

∀w ∈ T, d(f1,f2)G(λ, b,Ω, 0, 0)(h1, h2)(w) =
∞∑
n=1

nmMnm(λ, b,Ω)
(
an

bn

)
enm(w). (18.2)

For Ω ∈
{

Ω−
m(λ, b),Ω+

m(λ, b)
}
, we have

det
(
Mm

(
λ, b,Ω±

m(λ, b)
))

= 0.

Thus, the kernel of d(f1,f2)G
(
λ,Ω±

m(λ, b), 0, 0
)

is non trivial and it is one dimensional if and only if

∀n ∈ N∗, n ⩾ 2 ⇒ det
(
Mnm

(
λ, b,Ω±

m(λ, b)
))

̸= 0. (18.3)

The previous condition is satisfied in view of Proposition 17.2. Hence, we have the equivalence

(h1, h2) ∈ ker
(
d(f1,f2)G

(
λ, b,Ω±

m(λ, b), 0, 0
))

⇔


∀n ∈ N∗, n ⩾ 2 ⇒ an = 0 = bn(
a1

b1

)
∈ ker

(
Mm

(
λ, b,Ω±

m(λ, b)
))
.

Therefore, we can select as generator of ker
(
d(f1,f2)G

(
λ, b,Ω±

m(λ, b), 0, 0
))

the following pair of functions

v0,m : T → C2

w 7→

(
b
[
Ωm(λb) + Ω±

m(λ, b)
]

− Λ1(λ, b)
−Λm(λ, b)

)
wm−1.

(iii) We consider the set Zm defined by

Zm ≜

{
g = (g1, g2) ∈ Y αm s.t. ∀w ∈ T, g(w) =

∞∑
n=1

(
An

Bn

)
enm(w),

∀n ∈ N∗, (An,Bn) ∈ R2 and ∃(a1, b1) ∈ R2, Mm
(
λ, b,Ω±

m(λ, b)
)(a1

b1

)
=
(

A1

B1

)}
.

Clearly, Zm is a closed sub-vector space of codimension one in Y αm. It remains to prove that it coincides
with the range of d(f1,f2)G

(
λ, b,Ω±

m(λ, b), 0, 0
)
. Obviously, we have the inclusion

R
(
d(f1,f2)G

(
λ, b,Ω±

m(λ, b), 0, 0
))

⊂ Zm.

We are left to prove the converse inclusion. Let (g1, g2) ∈ Zm. We shall prove that the equation

d(f1,f2)G
(
λ, b,Ω±

m(λ, b), 0, 0
)
(h1, h2) = (g1, g2)

admits a solution (h1, h2) ∈ X1+α
m in the form (18.1). According to (18.2), the previous equation is
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equivalent to the following countable set of equations

∀n ∈ N∗, nmMnm
(
λ, b,Ω±

m(λ, b)
)(an

bn

)
=
(

An

Bn

)
.

For n = 1, the existence follows from the definition of Zm. Thanks to (18.3), the sequences (an)n⩾2 and
(bn)n⩾2 are uniquely determined by

∀n ∈ N∗, n ⩾ 2 ⇒

(
an

bn

)
= 1
nmM−1

nm
(
λ, b,Ω±

m(λ, b)
)(An

Bn

)
,

or equivalently,

an =
Λ1(λ, b) − b

[
Ωnm(λb) + Ω±

m(λ, b)
]

nm det
(
Mnm

(
λ, b,Ω±

m(λ, b)
)) An − bΛnm(λ, b)

nm det
(
Mnm

(
λ, b,Ω±

m(λ, b)
))Bn

bn = Λnm(λ, b)
nm det

(
Mnm

(
λ, b,Ω±

m(λ, b)
))An + Ωnm(λb) + Ω±

m(λ, b) − bΛ1(λ, b)
nm det

(
Mnm

(
λ, b,Ω±

m(λ, b)
)) Bn.

It remains to prove the regularity, that is (h1, h2) ∈ X1+α
m . For that purpose, we show

w 7→

(
h1(w) − a1w

m−1

h2(w) − a2w
m−1

)
∈ C1+α(T) × C1+α(T).

We may focus on the first component, the second one being analogous. We set

H1(λ, b,m)(w) ≜
∞∑
n=2

An

ndet
(
Mnm

(
λ, b,Ω±

m(λ, b)
))wn, H2(w) ≜

∞∑
n=2

Bn

n
wn

and

G1(λ, b,m)(w) ≜
∞∑
n=2

Inm(λb)Knm(λb)wn, G2(λ, b,m)(w) ≜
∞∑
n=2

Λnm(λ, b)
det
(
Mnm

(
λ, b,Ω±

m(λ, b)
))wn.

If we denote h̃1(w) ≜ h1(w) − a1w
m−1, then we can write

h̃1(w) =C1(λ, b,m)wH1(λ, b,m) (wm)

+ C2(b,m)w(G1(λ, b,m) ∗H1(λ, b,m)) (wm)

+ C2(b,m)w(G2(λ, b,m) ∗H2) (wm) , (18.4)

where

C1(λ, b,m) ≜ Λ1(λ, b) − bΩ±
m(λ, b) − bI1(λb)K1(λb)

m ,

C2(b,m) ≜ − b

m .

The convolution must be understood in the usual sense, that is

∀w = eiθ ∈ T, f ∗ g(w) =
 
T
f(τ)g(wτ)dτ

τ
= 1

2π

ˆ 2π

0
f
(
eiη) g (ei(θ−η)

)
dη.
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We shall use the classical convolution law

L1(T) ∗ C1+α(T) ↪→ C1+α(T). (18.5)

By using the decay property of the product InKn and the asymptotic (C.13), we have

∥G1(λ, b,m)∥L1(T) ≲ ∥G1(λ, b,m)∥L2(T) =
( ∞∑
n=2

I2
nm(λb)K2

nm(λb)
) 1

2

⩽
1

2m

( ∞∑
n=2

1
n2

) 1
2

< ∞.

We also have

∥G2(λ, b,m)∥L1(T) ⩽ ∥G2(λ, b,m)∥L∞(T) ≲
∞∑
n=2

bnm < ∞.

Hence (
G1(λ, b,m),G2(λ, b,m)

)
∈
(
L1(T)

)2
. (18.6)

We now prove that H1 and H2 are with regularity C1+α(T).
▶ Regularity of H2 :
First observe that by Cauchy-Schwarz inequality and the embedding Cα(T)(↪→ L∞(T)) ↪→ L2(T), we have

∥H2∥L∞(T) ⩽
∞∑
n=2

|Bn|
n

⩽

( ∞∑
n=2

1
n2

) 1
2
( ∞∑
n=2

|Bn|2
) 1

2

≲ ∥g2∥L2(T)

≲ ∥g2∥Cα(T). (18.7)

We now have to prove that H ′
2 ∈ Cα(T). We show that it coincides, up to slight modifications, with g2

which is of regularity Cα(T). For that purpose, we show that we can differentiate H2 term by term.
We denote (SN )N⩾2 (resp. (RN )N⩾2) the sequence of the partial sums (resp. the sequence of the
remainders) of the series of functions H2. One has

RN (w) =
∞∑

n=N+1

Bn

n
wn.

Using Cauchy-Schwarz inequality, we obtain similarly to (18.7)

∥RN∥L∞(T) ⩽

( ∞∑
n=N+1

1
n2

) 1
2

∥g2∥Cα(T) −→
N→∞

0.

Hence
∥SN −H2∥L∞(T) −→

N→∞
0. (18.8)

One has

S′
N (w) = w

N∑
n=2

Bnw
n ≜ wgN2 (w).

We set

g+
2 (w) ≜

∞∑
n=2

Bnw
n.
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By continuity of the Szegö projection defined by

Π :
∑
n∈Z

αnw
n 7→

∑
n∈N

αnw
n

from Cα(T) into itself (see [83] for more details) added to the fact that g2 ∈ Cα(T), we deduce that
g+

2 ∈ Cα(T). Applying Bernstein Theorem of Fourier series gives that g+
2 is the uniform limit of its Fourier

series, namely
∥S′

N − wg+
2 ∥L∞(T) −→

N→∞
0. (18.9)

Gathering (18.8) and (18.9), we conclude that we can differentiate H2 term by term and get

H ′
2(ω) = wg+

2 (w).

As a consequence,
H2 ∈ C1+α(T). (18.10)

▶ Regularity of H1(λ, b,m) :
By using (17.12) and (C.18), we have the asymptotic expansion

det
(
Mnm(λ, b,Ω±

m(λ, b))
)

=
n→∞

d∞(λ, b,m) + d̃∞(λ, b,m)
n

+Oλ,b,m

(
1
n3

)
, (18.11)

with, using Proposition 17.2,

d∞(λ, b,m) ≜
[
I1(λ)K1(λ) − Ω±

m(λ, b) − bΛ1(λ, b)
] [

Λ1(λ, b) − bΩ±
m(λ, b) − bI1(λb)K1(λb)

]
= b

[
Ω+

∞(λ, b) − Ω±
m(λ, b)

] [
Ω−

∞(λ, b) − Ω±
m(λ, b)

]
< 0

and, using (17.16),

d̃∞(λ, b,m) ≜ b

2m
[
I1(λ)K1(λ) − Ω±

m(λ, b) − bΛ1(λ, b)
]

− 1
2m

[
Λ1(λ, b) − bΩ±

m(λ, b) − bI1(λb)K1(λb)
]

= b (I1(λ)K1(λ) + I1(λb)K1(λb)) − (1 + b2)Λ1(λ, b)
2m

= δ∞(λ, b)
2m .

We denote

rn(λ, b,m) ≜ det
(
Mnm(λ, b,Ω±

m(λ, b))
)

− d∞(λ, b,m) =
n→∞

d̃∞(λ, b,m)
n

+Oλ,b,m

(
1
n3

)
. (18.12)

We can write

1
det
(
Mnm

(
λ, b,Ω±

m(λ, b)
)) = r2

n(λ, b,m)
d2

∞(λ, b,m) det
(
Mnm

(
λ, b,Ω±

m(λ, b)
)) − rn(λ, b,m)

d2
∞(λ, b,m) + 1

d∞(λ, b,m) .
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18. Bifurcation from simple eigenvalues

Thus we can write

H1(λ, b,m)(w) = 1
d2

∞(λ, b,m)

∞∑
n=2

Anr
2
n(λ, b,m)

ndet
(
Mnm

(
λ, b,Ω±

m(λ, b)
))wn − 1

d2
∞(λ, b,m)

∞∑
n=2

Anrn(λ, b,m)
n

wn

+ 1
d∞(λ, b,m)

∞∑
n=2

An

n
wn

≜
1

d2
∞(λ, b,m)H1,1(λ, b,m)(w) − 1

d2
∞(λ, b,m)H1,2(λ, b,m)(w) (18.13)

+ 1
d∞(λ, b,m)H1,3(λ, b,m)(w). (18.14)

Now since (An)n∈N∗ ∈ l2(N∗) ⊂ l∞(N∗), we have∣∣∣∣∣∣ Anr
2
n(λ, b,m)

ndet
(
Mnm

(
λ, b,Ω±

m(λ, b)
))
∣∣∣∣∣∣ =
n→∞

Oλ,b,m

(
1
n3

)
.

By using the link regularity/decay of Fourier coefficients, we deduce that

H1,1(λ, b,m) ∈ C1+α(T). (18.15)

Similarly to (18.10), we can obtain
H1,3(λ, b,m) ∈ C1+α(T). (18.16)

By the same method, we can also differentiate term by term H1,2(λ, b,m) and obtain

∀w ∈ T,
(
H1,2(λ, b,m)

)′(w) = w

∞∑
n=2

Anrn(λ, b,m)wn.

Notice that from (18.12), we can write

∀w ∈ T, w
(
H1,2(λ, b,m)

)′(w) = d̃∞(λ, b,m)H1,3(λ, b,m) + (C ∗ g+
1 )(w),

where

∀w ∈ T, g+
1 (w) ≜

∞∑
n=2

Anw
n and C (w) ≜

∞∑
n=2

Cnw
n with Cn = Oλ,b,m

(
1
n3

)
.

Using again the continuity of the Szegö projection, we have

g+
1 ∈ C1+α(T) ⊂ L∞(T) ⊂ L1(T) and C ∈ C1+α(T). (18.17)

Using (18.16), (18.17) and (18.5), we deduce that

(
H1,2(λ, b,m)

)′ ∈ C1+α(T) ⊂ Cα(T).

Thus
H1,2(λ, b,m) ∈ C1+α(T). (18.18)

Gathering (18.15), (18.18) and (18.16), we conclude that

H1(λ, b,m) ∈ C1+α(T). (18.19)
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Putting together (18.4), (18.19), (18.10), (18.6) and (18.5), we finally conclude

h̃1 ∈ C1+α(T).

(iv) Ω±
m(λ, b) is a simple eigenvalue since ∆m(λ, b) > 0. From (16.11) and (16.12), we deduce
∂Ωd(f1,f2)G1

(
λ, b,Ω±

m(λ, b), 0, 0
)
(h1, h2)(w) = Im

{
h′

1(w) + wh1(w)
}

= −
∞∑
n=0

nmanenm(w)

∂Ωd(f1,f2)G2
(
λ, b,Ω±

m(λ, b), 0, 0
)
(h1, h2)(w) = bIm

{
h′

2(w) + wh2(w)
}

= −
∞∑
n=0

bnmbnenm(w).

Thus,

∂Ωd(f1,f2)G
(
λ, b,Ω±

m(λ, b), 0, 0
)
(v0,m)(w) = m

(
Λ1(λ, b) − b

[
Ωm(λb) + Ω±

m(λ, b)
]

bΛm(λ, b)

)
em(w).

Notice that the previous expression belongs to the range of d(f1,f2)G
(
λ, b,Ω±

m(λ, b), 0, 0
)

if and only if the
vector (

Λ1(λ, b) − b
[
Ωm(λb) + Ω±

m(λ, b)
]

bΛm(λ, b)

)

is a scalar multiple of one column of the matrix Mm
(
λ, b,Ω±

m(λ, b)
)
. This occurs if and only if

(
Λ1(λ, b) − b

[
Ωm(λb) + Ω±

m(λ, b)
])2

− b2Λ2
m(λ, b) = 0. (18.20)

Putting (18.20) together with det
(
Mm

(
λ, b,Ω±

m(λ, b)
))

= 0 implies

(
Λ1(λ, b) − b

[
Ωm(λb) + Ω±

m(λ, b)
])(

(1 − b2)Λ1(λ, b) + b
[
Ωm(λ) − Ωm(λb)

]
− 2bΩ±

m(λ, b)
)

= 0.

Now remark that the above equation is equivalent to

Λ1(λ, b) − b
[
Ωm(λb) + Ω±

m(λ, b)
]

= 0 or Ω±
m(λ, b) = 1

2b

(
(1 − b2)Λ1(λ, b) + b

[
Ωm(λ) − Ωm(λb)

])
.

Since b ≠ 0 and Λm(λ, b) ̸= 0, then in view of (18.20), the first equation can’t be solved. Then, necessary,
the second equation must be satisfied. But we notice that it corresponds to a multiple eigenvalue
(∆m(λ, b) = 0), which is excluded here. Therefore, we conclude that

∂Ωd(f1,f2)G
(
λ, b,Ω±

m(λ, b), 0, 0
)
(v0,m) ̸∈ R

(
d(f1,f2)G

(
λ, b,Ω±

m(λ, b), 0, 0
))
.

This ends the proof of Proposition 18.1.

The previous proposition allows to construct, for any fixed λ > 0, b ∈ (0, 1), α ∈ (0, 1) and m ⩾ N(λ, b)
two branches of m-fold doubly-connected V-states with regularity C1+α bifurcating from the annulus Ab
at the angular velocities Ω±

m(λ, b) for the (QGSW )λ equations. Actually, we have the following better
result for the regularity of the boundary.

Lemma 18.1. Let λ > 0, b ∈ (0, 1) and m ⩾ N(λ, b). Consider a m-fold doubly-connected V-state close
to Ab for (QGSW )λ equations, rotating with an angular velocity Ω and associated with an initial domain
D0 = D1 \D2, where D1 and D2 are simply-connected domains satisfying D2 ⊂ D1 and parametrized by
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the following conformal mappings

Φ1(w) = w + f1(w), Φ2(w) = bw + f2(w), f1, f2 ∈ B1+α
r,m .

If r > 0 is small enough, then the boundaries ∂D1 and ∂D2 are analytic.

Proof. The proof is done in the spirit of [88, Sec. 5.4] by applying [113, Thm. 3.1’]. We highlight that the
positive number r quantifies the smallness of f1 and f2 in the C1+α topology. We mention that (16.5)
can also be written as follows

Ω
2 ∂s
∣∣γ(0, s)

∣∣2 = ∂s

(
Ψ
(
0, γ(0, s)

))
, (18.21)

where Ψ is the velocity potential given by

v(t, z) = ∇⊥Ψ(t, z) = 2i∂zΨ(t, z), (∆ − λ2)Ψ(t, z) = 1Dt
(z). (18.22)

Therefore, integrating the relation (18.21), there exists for each j ∈ {1, 2} a constant cj ∈ R such that

∀z ∈ ∂Dj , uj(z) := Ψ(0, z) − Ω
2 |z|2 − cj = 0.

Fix j ∈ {1, 2}. By compactness of ∂Dj , there exist M ∈ N∗, (xk,j)1⩽k⩽M ∈ (∂Dj)M and ε > 0 (small)
such that we can write

∂Dj ⊂
M⋃
k=1

B(xk,j , ε), with B(xk,j , ε) ∩ ∂D3−j = ∅.

Fix k ∈ J1,MK and denote

Γk,j := B(xk,j , ε) ∩ ∂Dj , O−
k,j := B(xk,j , ε) ∩D0, O+

k,j := B(xk,j , ε) ∩
(
R2 \D0

)
.

Solving the Helmoltz problem (18.22) as in [101], the stream function writes

Ψ(0, z) = − 1
2π

ˆ
D0

K0(λ|z − ξ|)dA(ξ),

where dA denotes the planar Lebesgue measure. From (C.7)-(C.2), we can write

Ψ(0, z) = 1
2π

ˆ
D0

log(|z − ξ|)dA(ξ) +
ˆ
D0

F(|z − ξ|)dA(ξ)

:= Ψ1(z) + Ψ2(z).

where F, F′ are bounded at 0 and F′′ is integrable at the origin. Notice that Ψ1 corresponds to the classical
Euler velocity potential. Since D0 is of regularity C1+α then one can classically prove that

Ψ1 ∈ C1+α(R2 , R
)

∩ C2+α(D0 , R
)

∩ C2+α(R2 \D0 , R
)
.

For instance, the C1+α regularity is obtained by using [75, Exercise 4.8 (a)]. As for the C2+α regularity,
one may use in particular the "Main Lemma" in [124] applied to the Calderón-Zygmund type operator
1D0 7→ ∇∇⊥Ψ1. The term Ψ2 being less singular, we get

Ψ(0, ·) ∈ C1+α(R2 , R
)

∩ C2+α(D0 , R
)

∩ C2+α(R2 \D0 , R
)
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and then
uj ∈ C1(B(xk,j , ε) , R

)
∩ C2(O−

k,j ∪ Γk,j , R
)

∩ C2(O+
k,j ∪ Γk,j , R

)
.

One can easily find from (18.22) that

∀z ∈ O+
k,j , 0 = Fj(z, uj , Duj , D2uj) := (∆ − λ2)uj(z) − λ2

2 Ω|z|2 − λ2cj + 2Ω,

∀z ∈ O−
k,j , 0 = Gj(z, uj , Duj , D2uj) := (∆ − λ2)uj(z) − λ2

2 Ω|z|2 − λ2cj + 2Ω − 1.

Observe that the functions Fj and Gj are analytic. Thus it remains to prove that

∀z ∈ ∂Dj , ∇uj(z) · nj(z) ̸= 0, (18.23)

where nj is a normal unitary vector to ∂Dj . We can write

∇uj(z) · nj(z) = ∇Ψ(0, z) · nj(z) − Ωz · nj(z)

= ∇⊥Ψ(0, z) · inj(z) − Ωz · nj(z)

= v(0, z) · inj(z) − Ωz · nj(z). (18.24)

The normal unitary vector can be expressed as follows in terms of the conformal mapping

nj(z) = w
Φ′
j(w)

|Φ′
j(w)| if z = Φj(w), w ∈ T.

On one hand, denoting b1 := 1 and b2 := b, we have for z = Φj(w) ∈ ∂Dj ,

z · nj(z) = Re
{

Φj(w)w
Φ′
j(w)

|Φ′
j(w)|

}

= bj + Re
{
fj(w)w

Φ′
j(w)

|Φ′
j(w)| + bj

(
bj + f ′

j(w)
|bj + f ′

j(w)| − 1
)}

= bj +O(r). (18.25)

On the other hand,

v(0, z) · inj(z) = Re
{
w

Φ′
j(w)

|Φ′
j(w)|

( 
T

Φ′
1(τ)K0

(
λ|Φj(w) − Φ1(τ)|

)
dτ −

 
T

Φ′
2(τ)K0

(
λ|Φj(w) − Φ2(τ)|

)
dτ

)}

= Re
{
w

( 
T
K0
(
λ|bjw − τ |

)
dτ − b

 
T
K0
(
λ|bjw − bτ |

)
dτ

)}
+ J1 + J2 + J3, (18.26)

where

J1 := Re
{
w

( 
T
K0
(
λ|bjw − τ |

)
dτ −

 
T
K0
(
λ|Φj(w) − Φ1(τ)|

)
dτ

)}
− Re

{
wb

( 
T
K0
(
λ|bjw − bτ |

)
dτ −

 
T
K0
(
λ|Φj(w) − Φ2(τ)|

)
dτ

)}
,

J2 := Re
{
w

(
bj + f ′

j(w)
|bj + f ′

j(w)| − 1
)( 

T
K0
(
λ|Φj(w) − Φ1(τ)|

)
dτ − b

 
T
K0
(
λ|Φj(w) − Φ2(τ)|

)
dτ

)}
,

J3 := Re
{
w

Φ′
j(w)

|Φ′
j(w)|

( 
T
f ′

1(τ)K0
(
λ|Φj(w) − Φ1(τ)|

)
dτ −

 
T
f ′

2(τ)K0
(
λ|Φj(w) − Φ2(τ)|

)
dτ

)}
.

We shall now prove that the terms J1, J2 and J3 are small. Let us start with J3. Recalling the
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notation (16.13), one has
|J3| ⩽ ∥T1jf

′
1∥L∞(T) + ∥T2jf

′
2∥L∞(T). (18.27)

From (16.16), we get

∀(i, j) ∈ {1, 2}2, i ̸= j ⇒ ∥Tijf ′
i∥L∞(T) ≲ ∥f ′

i∥L∞(T) ≲ ∥fi∥C1+α(T) ≲ r. (18.28)

Now fix i ∈ {1, 2} and denote
Ki(w, τ) := K0(λ|Φi(w) − Φi(τ)|).

We mention that the triangle inequality and the mean value theorem imply that Φi is bi-Lipschitz, namely

(1 − r)|w − τ | ⩽ |Φi(w) − Φi(τ)| ⩽ (1 + r)|w − τ |. (18.29)

Recall that K0 behaves like a logarithm at 0 and using (C.7) we can write

K ′
0(z) = −1

z
+ G(z), G bounded at 0. (18.30)

Therefore, for any δ ∈ (0, 1), we have

|Ki(w, τ)| ≲ 1
|w − τ |δ

and |∂wKi(w, τ)| ≲ 1
|w − τ |1+δ .

Thus, applying [83, Lem. 1], we infer

∥Tiif ′
i∥L∞(T) ≲ ∥f ′

i∥L∞(T) ≲ r. (18.31)

Putting together (18.27), (18.28) and (18.31), we deduce

|J3| ≲ r. (18.32)

From the previous computations, one also obtains

|J2| ≲ r. (18.33)

As for J1, we may use Taylor formula to write

K0
(
λ|Φj(w) − Φi(τ)|

)
−K0

(
λ|bjw − biτ |

)
= λ

(
|Φj(w) − Φi(τ)| − |bjw − biτ |

)ˆ 1

0
K ′

0

(
λ|bjw − biτ | + λt

(
|Φj(w) − Φi(τ)| − |bjw − biτ |

))
dt.

The triangular inequality and the mean value theorem imply

∣∣∣|Φj(w) − Φi(τ)| − |bjw − biτ |
∣∣∣ ⩽ |fj(w) − fi(τ)| ⩽

2r if i ̸= j,

r|w − τ | if i = j.

Hence using (18.30), (18.29), (16.14) and (16.15), we deduce

|J1| ≲ r. (18.34)

Moreover, according to the computations carried out in Proposition 17.1 (see also [101, Lem. 3.2]), we

309



Part III

have

w

 
T
K0(λ|z−τ |)dτ = I1(λ)K1(λ), w

 
T
K0(λ|w−bτ |)dτ = w

 
T
K0(λ|bw−τ |)dτ = Λ1(λ, b). (18.35)

Therefore, in view of (18.26), (18.32), (18.33), (18.34), (18.35) and Proposition 17.2, we infer

∀z ∈ ∂D1, v(0, z) · in1(z) = I1(λ)K1(λ) − bΛ1(λ, b) +O(r)

= Ω+
∞(λ, b) +O(r) (18.36)

and

∀z ∈ ∂D2, v(0, z) · in2(z) = Λ1(λ, b) − bI1(λb)K1(λb) +O(r)

= bΩ−
∞(λ, b) +O(r). (18.37)

Combining (18.24), (18.25), (18.36) and (18.37), we deduce by triangular inequality

∀z ∈ ∂D1, |∇u1(z) · n1(z)| ⩾ |Ω+
∞(λ, b) − Ω| − Cr

and

∀z ∈ ∂D2, |∇u2(z) · n2(z)| ⩾ b|Ω−
∞(λ, b) − Ω| − Cr.

The Crandall-Rabinowitz Theorem implies that Ω is close to Ω±
m(λ, b). Hence, according to Proposition

17.2, we can say
Ω±

∞(λ, b) − Ω ̸= 0.

Thus, up to take r sufficiently small, we get (18.23). Consequently, Γk,j is analytic from which we deduce
by reconstruction that ∂Dj is also analytic.
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A P P E N D I C E S

A Functional setting and technical lemmata

In this appendix, we set up the general topological framework for both the functions and the operators
classes that are used in Parts I and II. We also provide some classical results on the law products,
composition rule, Toeplitz operators, etc... First we begin by presenting some notations.

Notations. Along this document we shall make use of the following parameters and sets.

• We denote by
N ≜ {0, 1, · · · }, Z ≜ {· · · ,−1, 0, 1, · · · }

the set of natural numbers and the set of integers, respectively, and we set

N∗ ≜ N\{0}, Z∗ ≜ Z\{0}.

The set of real (resp. complex) numbers is denoted R (resp. C). We also use the following notation

R∗
+ ≜ (0,∞), R+ ≜ R∗

+ ∪ {0}.

• The integer d is the number of excited frequencies that will generate the quasi-periodic solutions.
This is the dimension of the space where lies the frequency vector ω ∈ Rd, that will be a perturbation
of the equilibrium frequency vectors.

• The integer q is the index of regularity of our functions/operators with respect to the parameters λ
or b and ω. It is chosen as

q ≜ q0 + 1,

with q0 being the non-degeneracy index provided by Lemmata 5.5 or 11.5.

• The real parameters γ, τ1 and τ2 satisfy

0 < γ < 1, τ2 > τ1 > d (A.1)

and are linked to different Diophantine conditions, see for instance Propositions 7.2 and 7.5. The
choice of τ1 and τ2 will be finally fixed in (8.64). We point out that the parameter γ appears in the
weighted Sobolev spaces and will be fixed in Proposition 8.1 with respect to the rescaling parameter
ε giving the smallness condition of the solutions around the equilibrium.

• The real number s is the Sobolev index regularity of the functions in the variables φ and θ. The
index s will vary between s0 and S,

S ⩾ s ⩾ s0 >
d+1

2 + q + 2, (A.2)

where S is a fixed large number.
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• For a given continuous complex function f : Tn → C, n ⩾ 1, T ≜ R/2πZ, we denote by

ˆ
Tn

f(x)dx ≜ 1
(2π)n

ˆ
[0,2π]n

f(x)dx. (A.3)

Notice that T will also be considered as the unit circle, namely, the boundary of the unit disc D.

• We denote by (el,j)(l,j)∈Zd×Z the Hilbert basis of the L2(Td+1,C),

el,j(φ, θ) ≜ ei(l·φ+jθ),

and we endow this space with the Hermitian inner product

〈
ρ1, ρ2

〉
L2(Td+1,C) ≜

ˆ
Td+1

ρ1(φ, θ)ρ2(φ, θ)dφdθ. (A.4)

A.1 Function spaces

We shall introduce the function spaces that will be frequently used along the document. They are given
by weighted Sobolev spaces with respect to the parameter γ in (A.1). Given ρ ∈ L2(Td+1,C), we may
decompose it in Fourier expansion as

ρ =
∑

(l,j)∈Zd+1

ρl,j el,j where ρl,j ≜
〈
ρ, el,j

〉
L2(Td+1,C).

Next, we introduce for s ∈ R the complex Sobolev space Hs(Td+1,C) by

Hs(Td+1,C) ≜
{
ρ ∈ L2(Td+1,C) s.t. ∥ρ∥2

Hs ≜
∑

(l,j)∈Zd+1

⟨l, j⟩2s|ρl,j |2 < ∞
}
,

where ⟨l, j⟩ ≜ max(1, |l|, |j|) with | · | denoting either the ℓ1 norm in Rd or the absolute value in R.
The real Sobolev spaces can be viewed as closed sub-spaces of the preceding one,

Hs ≜ Hs(Td+1,R) ≜
{
ρ ∈ Hs(Td+1,C) s.t. ∀ (φ, θ) ∈ Td+1, ρ(φ, θ) = ρ(φ, θ)

}
=
{
ρ ∈ Hs(Td+1,C) s.t. ∀ (l, j) ∈ Zd+1, ρ−l,−j = ρl,j

}
.

We shall also make use of the following subspaces of Hs taking into account of some particular symmetries
on odd and even functions,

Hs
even ≜

{
ρ ∈ Hs s.t. ∀ (φ, θ) ∈ Td+1, ρ(−φ,−θ) = ρ(φ, θ)

}
=
{
ρ ∈ Hs s.t. ∀ (l, j) ∈ Zd+1, ρ−l,−j = ρl,j

}
and

Hs
odd ≜

{
ρ ∈ Hs s.t. ∀ (φ, θ) ∈ Td+1, ρ(−φ,−θ) = −ρ(φ, θ)

}
=
{
ρ ∈ Hs s.t. ∀ (l, j) ∈ Zd+1, ρ−l,−j = −ρl,j

}
.
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For N ∈ N∗, we define the cut-off frequency projectors on Hs(Td+1,C) as follows

ΠNρ ≜
∑

(l,j)∈Zd+1

⟨l,j⟩⩽N

ρl,jel,j and Π⊥
N = Id − ΠN . (A.5)

We shall also make use of the following mixed weighted Sobolev spaces.

W q,∞,γ(O, Hs) ≜
{
ρ : O → Hs s.t. ∥ρ∥γ,Oq,s < ∞

}
,

W q,∞,γ(O,C) ≜
{
ρ : O → C s.t. ∥ρ∥γ,Oq < ∞

}
,

where µ ∈ O 7→ ρ(µ) ∈ Hs and

∥ρ∥γ,Oq,s ≜
∑

α∈Nd+1
|α|⩽q

γ|α| sup
µ∈O

∥∂αµρ(µ, ·)∥Hs−|α| ,

∥ρ∥γ,Oq ≜
∑

α∈Nd+1
|α|⩽q

γ|α| sup
µ∈O

|∂αµρ(µ)|. (A.6)

Note that a function ρ ∈ W q,∞,γ(O, Hs) can be written in the form

ρ(µ, φ, θ) =
∑

(l,j)∈Zd+1

ρl,j(µ)el,j(φ, θ).

Remark A.1. • From Sobolev embeddings, we obtain

W q,∞,γ(O,C) ↪→ Cq−1(O,C).

• The spaces
(
W q,∞,γ(O, Hs), ∥ · ∥γ,Oq,s

)
and

(
W q,∞,γ(O,C), ∥ · ∥γ,Oq

)
are complete.

• For needs related to the use of the kernels of integral operators, we will have to duplicate the variable
θ. Thus we may define the weighted Sobolev space W q,∞,γ(O, Hs

φ,θ,η) similarly as above and denote
the corresponding norm by ∥ · ∥γ,Oq,Hs

φ,θ,η
.

In the next lemma we collect some useful classical results dealing with various operations in weighted
Sobolev spaces. The proofs are very close to those in [29, 28, 33], so we omit them.

Lemma A.1. Let (γ, q, d, s0, s) satisfying (A.2), then the following assertions hold true.

(i) Space translation invariance: Let ρ ∈ W q,∞,γ(O, Hs), then for all η ∈ T, the function (φ, θ) 7→
ρ(φ, η + θ) belongs to W q,∞,γ(O, Hs), and satisfies

∥ρ(·, η + ·)∥γ,Oq,s = ∥ρ∥γ,Oq,s .

(ii) Projectors properties: Let ρ ∈ W q,∞,γ(O, Hs), then for all N ∈ N∗ and for all t ∈ R∗
+,

∥ΠNρ∥γ,Oq,s+t ⩽ N
t∥ρ∥γ,Oq,s and ∥Π⊥

Nρ∥γ,Oq,s ⩽ N−t∥ρ∥γ,Oq,s+t,

where the projectors are defined in (A.5).

(iii) Interpolation inequality: Let q < s1 ⩽ s3 ⩽ s2 and θ ∈ [0, 1], with s3 = θs1 + (1 − θ)s2.
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If ρ ∈ W q,∞,γ(O, Hs2), then ρ ∈ W q,∞,γ(O, Hs3) and

∥ρ∥γ,Oq,s3
≲
(
∥ρ∥γ,Oq,s1

)θ (∥ρ∥γ,Oq,s2

)1−θ
.

(iv) Product laws:

(a) Let ρ1, ρ2 ∈ W q,∞,γ(O, Hs). Then ρ1ρ2 ∈ W q,∞,γ(O, Hs) and

∥ρ1ρ2∥γ,Oq,s ≲ ∥ρ1∥γ,Oq,s0
∥ρ2∥γ,Oq,s + ∥ρ1∥γ,Oq,s ∥ρ2∥γ,Oq,s0

.

(b) Let ρ1, ρ2 ∈ W q,∞,γ(O,C). Then ρ1ρ2 ∈ W q,∞,γ(O,C) and

∥ρ1ρ2∥γ,Oq ≲ ∥ρ1∥γ,Oq ∥ρ2∥γ,Oq .

(c) Let (ρ1, ρ2) ∈ W q,∞,γ(O,C) ×W q,∞,γ(O, Hs). Then ρ1ρ2 ∈ W q,∞,γ(O, Hs) and

∥ρ1ρ2∥γ,Oq,s ≲ ∥ρ1∥γ,Oq ∥ρ2∥γ,Oq,s .

(v) Composition law: Let f ∈ C∞(O × R,R) and ρ1, ρ2 ∈ W q,∞,γ(O, Hs) such that

∥ρ1∥γ,Oq,s , ∥ρ2∥γ,Oq,s ⩽ C0

for an arbitrary constant C0 > 0 and define the pointwise composition

∀(µ, φ, θ) ∈ O × Td+1, f(ρ)(µ, φ, θ) ≜ f(µ, ρ(µ, φ, θ)).

Then f(ρ1) − f(ρ2) ∈ W q,∞,γ(O, Hs) with

∥f(ρ1) − f(ρ2)∥γ,Oq,s ⩽ C(s, d, q, f, C0)∥ρ1 − ρ2∥γ,Oq,s .

(vi) Composition law 2: Let f ∈ C∞(R,R) with bounded derivatives. Let ρ ∈ W q,∞,γ(O,C). Then

∥f(ρ) − f(0)∥γ,Oq ⩽ C(q, d, f)∥ρ∥γ,Oq
(

1 + ∥ρ∥q−1
L∞(O)

)
.

This estimate is also true for γ = 1, corresponding to the classical Sobolev space W q,∞(O,C).

The following technical lemma turns out to be very useful in the study of the linearized operators.

Lemma A.2. Let (γ, q, d, s0, s) satifying (A.2) and f ∈ W q,∞,γ(O, Hs).
We consider the function g : O × Tdφ × Tθ × Tη → C defined by

g(µ, φ, θ, η) ≜


f(µ,φ,η)−f(µ,φ,θ)

sin
(
η−θ

2

) if θ ̸= η

2∂θf(µ, φ, θ) if θ = η.

Then

(i) ∀k ∈ N, sup
η∈T

∥(∂kθ g)(∗, ·, �, η + �)∥γ,Oq,s ≲ ∥∂θf∥γ,Oq,s+k ≲ ∥f∥γ,Oq,s+k+1.

(ii) ∥g∥γ,Oq,Hs
φ,θ,η

≲ ∥f∥γ,Oq,s+1.
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Proof. (i) Since the differentiation with respect to µ can be transported from g to f , then it is enough to
check the result for q = 0 and therefore we shall remove the dependence in µ. We start with expanding f
into its Fourier series,

f(φ, θ) =
∑

(l,j)∈Zd+1

fl,jel,j(φ, θ).

Thus, one can write

g(φ, θ, η) =
∑

(l,j)∈Zd+1

fl,j
eijη−eijθ

sin
(
η−θ

2

)eil·φ

= 2i
∑

(l,j)∈Zd+1
j ̸=0

fl,je
ij θ+η

2
sin
(
j
η−θ

2

)
sin
(
η−θ

2

) eil·φ.

We shall introduce the Chebychev polynomials of second kind (Un)n∈N. They are defined for all n ∈ N by
the following relation

∀θ ∈ R, sin(θ)Un(cos(θ)) = sin((n+ 1)θ).

Using these polynomials, we obtain a new formulation for g, namely

g(φ, θ, η) = 2i
∑

(l,j)∈Zd+1
j ̸=0

jfl,j

|j| e
ij θ+η

2 U|j|−1

(
cos
(
θ−η

2

))
eil·φ.

Differentiating in θ yields by Leibniz rule

∂kθ g(φ, θ, η) = 2i
∑

(l,j)∈Zd+1
j ̸=0

k∑
m=0

(
k

m

)
jk+1−mfl,j ik−m

|j|2k−m eij θ+η
2 ∂mθ

(
U|j|−1

(
cos
(
θ−η

2

)))
. (A.7)

For all j ∈ N∗, we consider the function fj defined by

fj(θ) = Uj−1(cos(θ)) = sin(jθ)
sin(θ) .

Notice that fj is even and 2π-periodic. Thus, we restrict its study to the interval [0, π]. Also remark that

fj(π − θ) = (−1)jfj(θ).

Hence, we restrict the study to the interval [0, π2 ]. We first consider the function fj on the interval [π6 ,
π
2 ].

There, the function fj writes as the quotient of two smooth functions with non vanishing denominator.
Therefore, differentiating in θ leads to

∀k ∈ N, sup
θ∈[ π

6 ,
π
2 ]

∣∣∂kθ fj(θ)∣∣ ≲ |j|k.

Now we look at the behaviour close to 0 by looking at the function fj restricted to [0, π4 ]. Using Taylor
Formula, we can write

fj(θ) = sin(jθ)
θ × θ

sin(θ)

= j

ˆ 1

0
cos(tjθ)dt× θ

sin(θ) .
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The function θ 7→ θ
sin(θ) being smooth on [0, π4 ], then differentiating in θ leads to

∀k ∈ N, sup
θ∈[0, π4 ]

∣∣∂kθ fj(θ)∣∣ ≲ |j|k+1.

Combining the previous estimates, one gets

∀j ∈ N∗, ∀k ∈ N, sup
θ∈R

∣∣∣∂kθ(Uj−1 (cos (θ))
)∣∣∣ ≲ |j|k+1. (A.8)

Gathering (A.7) and (A.8), we deduce that

(∂kθ g)(φ, θ, η + θ) =
∑

(l,j)∈Zd+1
j ̸=0

cl,j,k(η)el,j(φ, θ),

with
sup
η∈T

|cl,j,k(η)| ≲ |j|k+1|fl,j |.

Therefore,

sup
η∈T

∥(∂kθ g)(·, �, η + �)∥2
Hs

φ,θ
=

∑
(l,j)∈Zd+1

j ̸=0

⟨l, j⟩2s sup
η∈T

|cl,j,k(η)|2

≲
∑

(l,j)∈Zd+1

⟨l, j⟩2s|j|2k+2|fl,j |2

≲ ∥∂θf∥2
Hs+k .

This concludes the proof of Lemma A.2.
(ii) It suffices to prove the case q = 0. Recall the following classical norm estimate

∥g∥Hs
φ,θ,η

≲ ∥g∥Hs
φ,θ

L2
η

+ ∥g∥L2
θ
Hs

φ,η
. (A.9)

By the translation invariance property

∥g∥2
L2

θ
Hs

φ,η
=
ˆ 2π

0
∥g(·, θ + �, �)∥2

Hs
φ,η
dθ

≲ sup
θ∈T

∥g(∗, ·, θ + �, �)∥Hs
φ,η
.

Using the first point and the symmetry g in (η, θ) we obtain

∥g∥L∞
θ
Hs

φ,η
≲ ∥f∥s+1.

Introducing the Bessel potential Js defined in Fourier by

∀j ∈ Zd, (Jsu)j = max(1, |j|)suj , (A.10)

a use of Fubini’s Theorem implies

∥g∥Hs
φ,θ

L2
η

= ∥Jsφ,θ g∥L2
φL

2
θ
L2

η
= ∥Jsφ,θ g∥L2

ηL
2
φL

2
θ

= ∥g∥L2
ηH

s
φ,θ
.
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Since g is symmetric in the variables θ and η, we get

∥g∥L2
ηH

s
φ,θ

= ∥g∥L2
θ
Hs

φ,η
.

Combining the foregoing estimates leads to

∥g∥Hs
φ,θ,η

≲ ∥f∥s+1.

This ends the proof of Lemma A.2.

We now turn to the presentation of quasi-periodic symplectic change of variables needed for the
reduction of the transport part of the linearized operators in the construction of the approximate inverses
in the normal directions. Let β : O × Td+1 → T be a smooth function such that sup

µ∈O
∥β(µ, ·, �)∥Lip < 1

then the map
(φ, θ) ∈ Td+1 7→ (φ, θ + β(µ, φ, θ)) ∈ Td+1

is a diffeomorphism with inverse having the form

(φ, θ) ∈ Td+1 7→ (φ, θ + β̂(µ, φ, θ)) ∈ Td+1.

Moreover, one has the relation

y = θ + β(µ, φ, θ) ⇐⇒ θ = y + β̂(µ, φ, y). (A.11)

Define the operators
B ≜ (1 + ∂θβ)B, (A.12)

with
Bρ(µ, φ, θ) ≜ ρ

(
µ, φ, θ + β(µ, φ, θ)

)
. (A.13)

By straightforward computations we obtain

B−1ρ(µ, φ, y) =
(

1 + ∂yβ̂(µ, φ, y)
)
ρ
(
µ, φ, y + β̂(µ, φ, y)

)
(A.14)

and
B−1ρ(µ, φ, y) = ρ

(
µ, φ, y + β̂(µ, φ, y)

)
.

The following lemma gives some elementary algebraic properties for B±1 and B±1.

Lemma A.3. The following assertions hold true.

(i) The action of B−1 on the derivative is given by

B−1∂θ = ∂θB−1.

(ii) The conjugation of the transport operator by B keeps the same structure

B−1
(
ω · ∂φ + ∂θ

(
V (φ, θ) ·

))
B = ω · ∂φ + ∂y(V (φ, y) ·

)
,

with
V (φ, y) ≜ B−1

(
ω · ∂φβ(φ, θ) + V (φ, θ)

(
1 + ∂θβ(φ, θ)

))
.
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(iii) Denote by B⋆ the L2
θ(T)-adjoint of B, then

B⋆ = B−1 and B⋆ = B−1.

Now we shall state the following result proved in [64] for q = 1 and which can be obtained by induction
for a general q ∈ N∗ up to slight modifications. We also refer to [28, (A.2)].

Lemma A.4. Let (q, d, γ, s0) as in (A.2). Let β ∈ W q,∞,γ
(
O, H∞(Td+1)

)
such that

∥β∥γ,Oq,2s0
⩽ ε0, (A.15)

with ε0 small enough. Then the following assertions hold true.

(i) The linear operators B,B : W q,∞,γ
(
O, Hs(Td+1)

)
→ W q,∞,γ

(
O, Hs(Td+1)

)
are continuous and

invertible, with

∀s ⩾ s0, ∥B±1ρ∥γ,Oq,s ⩽ ∥ρ∥γ,Oq,s
(
1 + C∥β∥γ,Oq,s0

)
+ C∥β∥γ,Oq,s ∥ρ∥γ,Oq,s0

(A.16)

and
∀s ⩾ s0, ∥B±1ρ∥γ,Oq,s ⩽ ∥ρ∥γ,Oq,s

(
1 + C∥β∥γ,Oq,s0

)
+ C∥β∥γ,Oq,s+1∥ρ∥γ,Oq,s0

. (A.17)

(ii) The functions β and β̂ are linked through

∀s ⩾ s0, ∥β̂∥γ,Oq,s ⩽ C∥β∥γ,Oq,s . (A.18)

(iii) Let β1, β2 ∈ W q,∞,γ(O, H∞(Td+1)) satisfying (A.15). If we denote

∆12β ≜ β1 − β2 and ∆12β̂ ≜ β̂1 − β̂2,

then they are linked through

∀s ⩾ s0, ∥∆12β̂∥γ,Oq,s ⩽ C
(

∥∆12β∥γ,Oq,s + ∥∆12β∥γ,Oq,s0
max
j∈{1,2}

∥βj∥γ,Oq,s+1

)
. (A.19)

Proof. (i)-(ii) For (A.16) and (A.18), we refer to [28, (A.2)] and [64, Lem. A.3.]. The estimate (A.17) is
obtained from (A.16) and law product in Lemma A.1.
(iii) One has by Taylor Formula

∆12β̂(y) = β̂1(y) − β̂2(y)

= β2(y + β̂2(y)) − β1(y + β̂1(y))

= −∆12β(y + β̂2(y)) − ∆12β̂(y)
ˆ 1

0
∂θβ1(y + β̂1(y) − t∆12β̂(y))dt.

Hence
∆12β̂(y) = −B−1

2 ∆12β(y)
1+I (y) with I (y) ≜

ˆ 1

0
∂θβ1(y + β̂1(y) − t∆12β̂(y))dt.

By composition estimate in Lemma A.1, one has∥∥∥ 1
1+I

∥∥∥γ,O
q,s
≲ 1 + ∥I ∥γ,Oq,s .
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Thus, applying the law product in Lemma A.1 implies

∥∆12β̂∥γ,Oq,s ≲
(
1 + ∥I ∥γ,Oq,s

)
∥B−1

2 ∆12β∥γ,Oq,s0
+
(
1 + ∥I ∥γ,Oq,s0

)
∥B−1

2 ∆12β∥γ,Oq,s .

Using (A.16), (A.18) and (A.15) yields

∥B−1
2 ∆12β∥γ,Oq,s ≲ ∥∆12β∥γ,Oq,s

(
1 + ∥β̂2∥γ,Oq,s0

)
+ ∥β̂2∥γ,Oq,s ∥∆12β∥γ,Oq,s0

≲ ∥∆12β∥γ,Oq,s + ∥β̂2∥γ,Oq,s ∥∆12β∥γ,Oq,s0

≲ ∥∆12β∥γ,Oq,s + ∥β2∥γ,Oq,s ∥∆12β∥γ,Oq,s0

and

∥I ∥γ,Oq,s ≲ ∥β1∥γ,Oq,s+1

(
1 + ∥β̂1∥γ,Oq,s0

+ ∥∆12β̂∥γ,Oq,s0

)
+
(

∥β̂1∥γ,Oq,s + ∥∆12β̂∥γ,Oq,s
)

∥β1∥γ,Oq,s0+1

≲ ∥β1∥γ,Oq,s+1 + ∥∆12β̂∥γ,Oq,s ∥β1∥γ,Oq,s0+1.

Putting together the foregoing estimates gives

∥∆12β̂∥γ,Oq,s ⩽ C
(

1 + ∥β1∥γ,Oq,s+1 + ∥∆12β̂∥γ,Oq,s ∥β1∥γ,Oq,s0+1

) (
1 + ∥β2∥γ,Oq,s0

)
∥∆12β∥γ,Oq,s0

+ C
(

1 + ∥β1∥γ,Oq,s0+1 + ∥∆12β̂∥γ,Oq,s0
∥β1∥γ,Oq,s0+1

) (
∥∆12β∥γ,Oq,s + ∥β2∥γ,Oq,s ∥∆12β∥γ,Oq,s0

)
. (A.20)

From the triangle inequality, (A.18) and (A.15), one has

∥∆12β̂∥γ,Oq,s0
⩽ ∥β̂1∥γ,Oq,s0

+ ∥β̂2∥γ,Oq,s0

⩽ ∥β1∥γ,Oq,s0
+ ∥β2∥γ,Oq,s0

⩽ 2ε0.

From Sobolev embeddings we infer that

max
j∈{1,2}

∥βj∥γ,Oq,s0+1 ⩽ max
j∈{1,2}

∥βj∥γ,Oq,2s0
⩽ ε0.

Thus, by choosing ε0 small enough, we can ensure

C∥∆12β̂∥γ,Oq,s ∥β1∥γ,Oq,s0+1
(
1 + ∥β2∥γ,Oq,s0

)
∥∆12β∥γ,Oq,s0

⩽
1
2∥∆12β̂∥γ,Oq,s .

Inserting this term into the left hand side in (A.20) and using Sobolev embeddings, we find

∥∆12β̂∥γ,Oq,s ⩽ C
(

∥∆12β∥γ,Oq,s + ∥∆12β∥γ,Oq,s0
max
j∈{1,2}

∥βj∥γ,Oq,s+1

)
.

This ends the proof of Lemma A.4.

We shall also prove here the following result which is frequently used in the reduction procedure for
the linearized operators.

Lemma A.5. Let N0 ⩾ 2. Consider the sequence (Nm)m∈N defined by (6.94). Then for all α > 0, we
have

∞∑
k=m

N−α
k ∼

m→∞
N−α
m .
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Proof. We consider the positive decaying function

t ∈ R∗
+ 7→ N

−α( 3
2 )t

0 = exp
(

−α ln(N0)et ln( 3
2 )
)
,

and apply to it a series-integral comparison, namely

∞∑
k=m+1

N−α
k ⩽

ˆ ∞

m

exp
(

−α ln(N0)et ln( 3
2 )
)
dt =

ˆ ∞

0
exp

(
−α ln(N0)eu ln( 3

2 )em ln( 3
2 )
)
du.

Now remark that

Nα
m exp

(
−α ln(N0)eu ln( 3

2 )em ln( 3
2 )
)

= exp
(
α ln(N0)

(
1 − eu ln( 3

2 )
)
em ln( 3

2 )
)
.

Since
∀u ∈ R∗

+, 1 − eu ln( 3
2 ) < 0,

then we deduce that

∀u ∈ R∗
+, Nα

m exp
(

−α ln(N0)eu ln( 3
2 )em ln( 3

2 )
)

−→
m→∞

0

and

∀u ∈ R∗
+,∀m ∈ N, 0 ⩽ Nα

m exp
(

−α ln(N0)eu ln( 3
2 )em ln( 3

2 )
)
⩽ Nα

0 exp
(

−α ln(N0)eu ln( 3
2 )
)

∈ L1(R+).

Applying dominated convergence theorem, we obtain

∞∑
k=m+1

N−α
k =

m→∞
o
(
N−α
m

)
.

As a consequence
∞∑
k=m

N−α
k = N−α

m +
∞∑

k=m+1
N−α
k ∼

m→∞
N−α
m .

A.2 Operators

We shall focus in this section on some useful norms related to suitable operators class. These notions
were used before in [7, 29, 28, 33]. We consider a smooth family of bounded operators on Sobolev spaces
Hs(Td+1,C), that is a smooth map T : µ = (λ, ω) ∈ O 7→ T (µ) ∈ L(Hs(Td+1,C)) of linear continuous
operators on Sobolev space Hs(Td+1,C), with O being an open bounded set of Rd+1. Then we find it
convenient to encode T (µ) in terms of the infinite dimensional matrix

(
T l,jl0,j0

(µ)
)

(l,l0)∈(Zd)2

(j,j0)∈Z2

with

T (µ)el0,j0 =
∑

(l,j)∈Zd+1

T l,jl0,j0
(µ)el,j where T l,jl0,j0

(µ) ≜
〈
T (µ)el0,j0 , el,j

〉
L2(Td+1). (A.21)

Next, we need to fix a notation that we are implicitly using along the document. For a given family of
multi-parameter operators T (µ), it acts on W q,∞,γ(O, Hs(Td+1,C)) in the following sense,

ρ ∈ W q,∞,γ(O, Hs(Td+1,C)), (Tρ)(µ, φ, θ) ≜ T (µ)ρ(µ, φ, θ).
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A.2.1 Toeplitz in time operators

In this short section we shall introduce a suitable class of Toeplitz operators.

Definition A.1. We say that an operator T (µ) is Toeplitz in time (actually in the variable φ) if its
Fourier coefficients defined by (A.21), satisfy

∀ l, l0, j, j0 ∈ Z, T l,jl0,j0
(µ) = T l−l0,j0,j0

(µ).

Or equivalently
T l,jl0,j0

(µ) = T jj0
(µ, l − l0) with T jj0

(µ, l) ≜ T l,j0,j0
(µ).

The action of a Toeplitz operator T (µ) on a function ρ =
∑

(l0,j0)∈Zd+1

ρl0,j0el0,j0 is then given by

T (µ)ρ =
∑

(l,l0)∈(Zd)2

(j,j0)∈Z2

T jj0
(µ, l − l0)ρl0,j0el,j . (A.22)

We encounter several operators acting only on the variable θ and that can be considered as φ-dependent
operators T (µ, φ) taking the form

T (µ, φ)ρ(φ, θ) =
ˆ
T
K(µ, φ, θ, η)ρ(φ, η)dη.

One can easily check that those operators are Toeplitz and therefore they satisfy (A.22).
For q ∈ N and s ∈ R, we can equip Toeplitz operators with the off-diagonal norm given by,

∥T∥γ,OO-d,q,s ≜
∑

α∈Nd+1
|α|⩽q

γ|α| sup
µ∈O

∥∂αµ (T )(µ)∥O-d,s−|α|, (A.23)

where
∥T∥2

O-d,s ≜
∑

(l,m)∈Zd+1

⟨l,m⟩2s sup
j−k=m

|T kj (l)|2. (A.24)

We mention that the off-diagonal norm (A.24) has first been introduced in [25, Def. 3.2]. This norm is of
important use during the KAM reduction of the remainder. The cut-off projectors (PN )N∈N∗ are defined
as follows:

(PNT (µ)) el0,j0 =
∑

(l,j)∈Zd+1

|l−l0|,|j−j0|⩽N

T l,jl0,j0
(µ)el,j and P⊥

N T = T − PNT. (A.25)

In the next lemma we shall gather classical results whose proofs are very close to those in [33] concerning
pseudo-differential operators. We recall that the weighted norms on functions that will be used below are
defined in (A.6).

Lemma A.6. Let (γ, q, d, s0, s) satisfying (A.2). Let T, T1 and T2 be Toeplitz in time operators.

(i) Projectors properties : Let N ∈ N∗. Let t ∈ R+. Then

∥PNTρ∥γ,OO-d,q,s+t ⩽ N
t∥Tρ∥γ,OO-d,q,s and ∥P⊥

N Tρ∥γ,OO-d,q,s ⩽ N
−t∥Tρ∥γ,OO-d,q,s+t.

(ii) Interpolation inequality : Let q < s1 ⩽ s3 ⩽ s2, θ ∈ [0, 1] with s3 = θs1 + (1 − θ)s2. Then

∥T∥γ,OO-d,q,s3
≲
(
∥T∥γ,OO-d,q,s1

)θ (∥T∥γ,OO-d,q,s2

)1−θ
.
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(iii) Composition law :

∥T1T2∥γ,OO-d,q,s ≲ ∥T1∥γ,OO-d,q,s∥T2∥γ,OO-d,q,s0
+ ∥T1∥γ,OO-d,q,s0

∥T2∥γ,OO-d,q,s.

(iv) Link between operators and off-diagonal norms :

∥Tρ∥γ,Oq,s ≲ ∥T∥γ,OO-d,q,s0
∥ρ∥γ,Oq,s + ∥T∥γ,OO-d,q,s∥ρ∥γ,Oq,s0

.

In particular
∥Tρ∥γ,Oq,s ≲ ∥T∥γ,OO-d,q,s∥ρ∥γ,Oq,s .

A.2.2 Reversible and reversibility preserving operators

In this section we intend to collect some definitions and properties related to different reversibility notions
for operators and give practical characterizations. We shall also come back to Toeplitz operators defined
before in Section A.2.1 and discuss two important examples frequently encountered in this document and
given by multiplications and integral operators. First, we give the following definitions following [10, Def.
2.2].

Definition A.2. Introduce the following involution

(S2ρ)(φ, θ) ≜ ρ(−φ,−θ). (A.26)

We say that an operator T (µ) is

• real if for all ρ ∈ L2(Td+1,C), we have

ρ = ρ =⇒ Tρ = Tρ.

• reversible if
T (µ) ◦ S2 = −S2 ◦ T (µ).

• reversibility preserving if
T (µ) ◦ S2 = S2 ◦ T (µ).

We now detail the following characterizations needed at several places in this document and the proofs
are quite easy and follow from Fourier expansion. One can find a similar result in [10, Lem. 2.6].

Proposition A.1. Let T be an operator. Then T is

• real if and only if
∀(l, l0, j, j0) ∈ (Zd)2 × Z2, T−l,−j

−l0,−j0
= T l,jl0,j0

.

• reversible if and only if

∀(l, l0, j, j0) ∈ (Zd)2 × Z2, T−l,−j
−l0,−j0

= −T l,jl0,j0
.

• reversibility-preserving if and only if

∀(l, l0, j, j0) ∈ (Zd)2 × Z2, T−l,−j
−l0,−j0

= T l,jl0,j0
.
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In what follows, we shall focus on two particular cases of operators which will be of constant use
throughout this document. Namely, multiplication and integral operators.

Definition A.3. Let T be an operator as in Section A.2. We say that

• T is a multiplication operator if there exists a function M : (µ, φ, θ) 7→ M(µ, φ, θ) such that

(Tρ)(µ, φ, θ) = M(µ, φ, θ)ρ(µ, φ, θ).

• T is an integral operator if there exists a function (called the kernel) K : (µ, φ, θ, η) 7→ K(µ, φ, θ, η)
such that

(Tρ)(µ, φ, θ) =
ˆ
T
ρ(µ, φ, η)K(µ, φ, θ, η)dη.

We intend to prove the following lemma.

Lemma A.7. Let (γ, q, d, s0, s) satisfy (A.2), then the following assertions hold true.

(i) Let T be a multiplication operator by a real-valued function M , then the following holds true.

• If M(µ,−φ,−θ) = M(µ, φ, θ), then T is real and reversibility preserving Toeplitz in time and
space operator.

• If M(µ,−φ,−θ) = −M(µ, φ, θ), then T is real and reversible Toeplitz in time and space
operator.

Moreover,
∥T∥γ,OO-d,q,s ≲ ∥M∥γ,Oq,s+s0

.

(ii) Let T be an integral operator with a real-valued kernel K.

• If K(µ,−φ,−θ,−η) = K(µ, φ, θ, η), then T is a real and reversibility preserving Toeplitz in
time operator.

• If K(µ,−φ,−θ,−η) = −K(µ, φ, θ, η), then T is a real and reversible Toeplitz in time operator.

In addition,

∥T∥γ,OO-d,q,s ≲
ˆ
T

∥K(∗, ·, �, η + �)∥γ,Oq,s+s0
dη ≲ ∥K∥γ,O

q,H
s+s0
φ,θ,η

and

∥Tρ∥γ,Oq,s ≲ ∥ρ∥γ,Oq,s0

ˆ
T

∥K(∗, ·, �, η + �)∥γ,Oq,s dη + ∥ρ∥γ,Oq,s
ˆ
T

∥K(∗, ·, �, η + �)∥γ,Oq,s0
dη

≲ ∥ρ∥γ,Oq,s0
∥K∥γ,Oq,Hs

φ,θ,η
+ ∥ρ∥γ,Oq,s ∥K∥γ,O

q,H
s0
φ,θ,η

where the notation ∗, ·, � denote µ, φ, θ, respectively.

Proof. We point out that the proofs will be implemented for the particular case q = 0 and the general
case can be done similarly by differentiating with respect to µ and using Leibniz rule.
(i) Since M is a real-valued function, then we get by the definition

T−l,−j
−l0,−j0

=
ˆ
Td+1

M(φ, θ)e−l0,−j0(φ, θ)el,j(φ, θ)dφdθ

=
ˆ
Td+1

M(φ, θ)el0,j0(φ, θ)e−l,−j(φ, θ)dφdθ = T l,jl0,j0
.
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This shows in view of Proposition A.1 that the operator T is a real. It remains to check the reversibility
preserving property. We write from the definition

T (S2ρ)(φ, θ) = M(φ, θ)ρ(−φ,−θ)

= M(−φ,−θ)ρ(−φ,−θ)

= S2 (Tρ) (φ, θ).

This gives the desired result. As to the reversible Toepliz structure, it can be checked in a similar way. To
achieve the proof of the first point it remains to establish the suitable estimate. Using a duality argument
Hs+s0 −H−s−s0 , we may write,

|T j
′

j (l)| =
∣∣∣∣ˆ

Td+1
M(φ, θ)el,j−j′(φ, θ)dφdθ

∣∣∣∣ ≲ ⟨l, j − j′⟩−s−s0∥M∥Hs+s0 .

It follows that

∥T∥2
O-d,s =

∑
(l,m)∈Zd+1

⟨l,m⟩2s sup
j−j′=m

|T j
′

j (l)|2

≲∥M∥2
Hs+s0

∑
(l,m)∈Zd+1

⟨l,m⟩2s⟨l,m⟩−2s−2s0

≲∥M∥2
Hs+s0 .

Therefore we find
∥T∥O-d,s ≲ ∥M∥Hs+s0 .

(ii) By assumption, K is real and thus

T−l,−j
−l0,−j0

=
ˆ
Td+2

K(φ, θ, η)e−l0,−j0(φ, η)el,j(φ, θ)dφdθ

=
ˆ
Td+2

K(φ, θ, η)el0,j0(φ, η)e−l,−j(φ, θ)dφdθdη = T l,jl0,j0
.

This implies, according to Proposition A.1, that T is a real operator. Now we shall check the reversibility
preserving. The reversibility can be checked in a similar way. By the change of variables η 7→ −η, we may
write,

T (S2ρ)(φ, θ) =
ˆ
T
K(φ, θ, η)ρ(−φ,−η)dη

=
ˆ
T
K(−φ,−θ,−η)ρ(−φ,−η)dη

=
ˆ
T
K(−φ,−θ, η)ρ(−φ, η)dη = S2 (Tρ) (φ, θ).

From Fubini’s theorem and the duality Hs+s0
φ,θ −H−s−s0

φ,θ , we infer,

|T j
′

j (l)| =
∣∣∣∣ˆ

Td+2
K(φ, θ, η)ei(l·φ+jθ−j′η)dφdθdη

∣∣∣∣
=
∣∣∣∣ˆ

Td+1
ei(l·φ+(j−j′)θ)

(ˆ
T
K(φ, θ, η + θ)e−ij′ηdη

)
dφdθ

∣∣∣∣
≲ ⟨l, j − j′⟩−s−s0

ˆ
T

∥K(∗, ·, �, η + �)∥
H

s+s0
φ,θ

dη.
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Hence, we deduce that
∥T∥O-d,s ≲

ˆ
T

∥K(∗, ·, �, η + �)∥
H

s+s0
φ,θ

dη.

The last estimate in Lemma A.7 can be obtained from the expression

(Tρ)(φ, θ) =
ˆ
T
ρ(φ, θ + η)K(φ, θ, θ + η)dη,

combined with the law products and the translation invariance in Lemma A.1-(i)-(iv).
This concludes the proof of Lemma A.7.

In the following lemma we shall study the action of a change of variables as in (A.13) on an integral
operator. More precisely, we shall need two partial change of coordinates B1 and B2 acting respectively
on the variables θ and η and defined through

(B1ρ)(µ, φ, θ, η) ≜ ρ
(
µ, φ, θ + β1(µ, φ, θ), η

)
, (A.27)

(B2ρ)(µ, φ, θ, η) ≜ ρ
(
µ, φ, θ, η + β2(µ, φ, η)

)
,

with β1, β2 two smooth functions satisfying (A.15). A similar result is proved in [33, Lem. 2.34] for
pseudo-differential integral operators, so we omit the proof here. We also include the difference estimate
which is useful to study the stability of the Cantor sets in Section 8.2. The proof of the difference estimate
is standard and we shall also skip it here.

Lemma A.8. Let (γ, q, d, s0, s) satisfy (A.2). Given r ∈ W q,∞,γ(O, Hs), we consider a C∞ function in
the form

K : (µ, φ, θ, η) 7→ K(µ, φ, θ, η).

We consider the integral operator associated to K, namely

Tρ(µ, φ, θ) =
ˆ
T
ρ(φ, η)K(µ, φ, θ, η)dη.

Then the following assertions hold true.

(i) Let B1 and B2 as in (A.27) associated to β1 and β2, respectively and enjoying the smallness condition
(A.15). Then,

∥B1B2K∥γ,Oq,Hs
φ,θ,η

≲ ∥K∥γ,Oq,Hs
φ,θ,η

+
(

max
i∈{1,2}

∥βi∥γ,Oq,s
)

∥K∥γ,O
q,H

s0
φ,θ,η

. (A.28)

Now, assume that β1 = β2 = β satisfies the following symmetry conditions

β(µ,−φ,−θ) = −β(µ, φ, θ). (A.29)

Consider B, B be quasi-periodic changes of variables as in (A.12)-(A.13), then

• if K(µ,−φ,−θ,−η) = K(µ, φ, θ, η), then B−1TB is a real and reversibility preserving Toeplitz
in time integral operator.

• if K(µ,−φ,−θ,−η) = −K(µ, φ, θ, η), then B−1TB is a real and reversible Toeplitz in time
inegral operator.

In this case, for any k ∈ N,

∥∂kθB−1TB∥γ,OO-d,q,s ≲ ∥K∥γ,O
q,H

s+s0+k

φ,θ,η

+ ∥β∥γ,Oq,s+s0+k∥K∥γ,O
q,H

s0
φ,θ,η

. (A.30)
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(ii) Introduce Br a quasi-periodic change of variables as in (A.13) associated to βr (linked to r) Consider
r1, r2 ∈ W q,∞,γ(O, Hs). Denote

∆12r ≜ r1 − r2, ∆12fr ≜ fr1 − fr2

for any quantity fr depending on r and assume that there exist ε0 > 0 small enough such that

∀i ∈ {1, 2}, ∥βri
∥γ,Oq,2s0

+ ∥Kri
∥γ,O
q,H

s0+1
φ,θ,η

⩽ ε0. (A.31)

Then, for any k ∈ N, the following estimate holds

∥∆12∂
k
θB−1

r TrBr∥γ,OO-d,q,s ≲ ∥∆12Kr∥γ,O
q,H

s+s0+k

φ,θ,η

+ ∥∆12βr∥γ,Oq,s+s0+k (A.32)

+
(

max
i∈{1,2}

∥βri
∥γ,Oq,s+s0+k

)
∥∆12Kr∥γ,Oq,Hs0

φ,θ,η

+
(

max
i∈{1,2}

∥Kri∥
γ,O
q,H

s+s0+k+1
φ,θ,η

+ max
i∈{1,2}

∥βri∥
γ,O
q,s+s0+k+1

)
∥∆12βr∥γ,Oq,s0

.

B Crandall-Rabinowitz’s Theorem

Now, we recall the classical Crandall-Rabinowitz’s Theorem. This result was first proved in [50] and it is
one of the most common theorems appearing in the bifurcation theory. A convenient reference in the
subject is [112]. We briefly explain the core of local bifurcation theory.

Consider a function F : R ×X → Y with X and Y two Banach spaces. Assume that for all Ω in a
non-empty interval I we have F (Ω, 0) = 0. This provides a line of solutions

{
(Ω, 0), Ω ∈ I

}
.

Now take some (Ω0, 0) with Ω0 ∈ I. The implicit function Theorem explains that if DF (Ω0, 0) is invertible,
then the line {(Ω, 0), |Ω − Ω0| ⩽ ε} is the only curve of solutions close to (Ω0, 0), i.e. for ε small enough.
(Local) bifurcation theory is the study of situations where this is not true, that is, close to (Ω0, 0)
there exists (at least) another line of solutions. In this case, we say that (Ω0, 0) is a bifurcation point.
Crandall-Rabinowitz’s Theorem gives sufficient conditions to construct a bifurcation curve and states as
follows.

Theorem B.1 (Crandall-Rabinowitz). Let X and Y be two banach spaces. Let V be a neighborhood of 0
in X and let

F : R × V → Y

(Ω, x) 7→ F (Ω, x)

be a function of classe C1 with the following properties

(i) (Trivial solution) ∀ Ω ∈ R, F (Ω, 0) = 0.

(ii) (Regularity) ∂ΩF , dxF and ∂ΩdxF exist and are continuous.

(iii) (Fredholm property) ker (dxF (0, 0)) = ⟨x0⟩ and Y/R (dxF (0, 0)) are one dimensional and R (dxF (0, 0))
is closed in Y.

(iv) (Transversality assumption) ∂ΩdxF (0, 0)(x0) ̸∈ R (dxF (0, 0)) .
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If χ is any complement of ker (dxF (0, 0)) in X, then there exist a neighborhood U of (0, 0), an interval
(−a, a) (a > 0) and continuous functions

ψ : (−a, a) → R and ϕ : (−a, a) → χ

such that ψ(0) = 0, ϕ(0) = 0 and{
(Ω, x) ∈ U s.t. F (Ω, x) = 0

}
=
{(
ψ(s), sx0 + sϕ(s)

)
s.t. |s| < a

}
∪
{

(Ω, 0) ∈ U
}
.

C Modified Bessel functions

In this appendix we shall collect some properties about Bessel and modified Bessel functions that were
used in the preceding sections. We refer to [145] for an almost exhaustive presentation of these special
functions.
We define first the Bessel functions of order ν ∈ C by

Jν(z) ≜
∞∑
m=0

(−1)m
(
z
2
)ν+2m

m!Γ(ν +m+ 1) , |arg(z)| < π.

Notice that when ν ∈ N we have the following integral representation, see [121, p. 115].

Jν(x) = 1
π

ˆ π

0
cos
(
x sin θ − νθ

)
dθ. (C.1)

We shall also introduce the Bessel functions of imaginary argument also called modified Bessel functions
of first and second kind

Iν(z) ≜
∞∑
m=0

(
z
2
)ν+2m

m!Γ(ν +m+ 1) , |arg(z)| < π (C.2)

and
Kν(z) ≜ π

2
I−ν(z) − Iν(z)

sin(νπ) , ν ∈ C \ Z, |arg(z)| < π.

For j ∈ Z, we define Kj(z) = lim
ν→j

Kν(z). We give now useful properties of modified Bessel functions.
▶ Symmetry and positivity properties (see [1, p. 375]) :

∀j ∈ N, ∀λ ∈ R∗
+, I−j(λ) = Ij(λ) ∈ R∗

+ and K−j(λ) = Kj(λ) ∈ R∗
+. (C.3)

▶ Derivatives and anti-derivatives (see [1, p. 376]) :
If we set Zν(z) = Iν(z) or eiνπKν(z), then for all ν ∈ R, we have

Z ′
ν(z) = Zν−1(z) − ν

z
Zν(z) = Zν+1(z) + ν

z
Zν(z). (C.4)

and
d

dz

(
zν+1Zν+1(z)

)
= zν+1Zν(z). (C.5)
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▶ Power series extension for Kj (see [1, p. 375]) :

Kj(z) =1
2

(z
2

)−j j−1∑
k=0

(j − k − 1)!
k!

(
−z
4

)k
+ (−1)j+1 ln

(z
2

)
Ij(z)

+ 1
2

(
−z
2

)j ∞∑
k=0

(ψ(k + 1) + ψ(j + k + 1))

(
z2

4

)k
k!(j + k)! , (C.6)

where

ψ(1) ≜ −γ (Euler’s constant) and ∀m ∈ N∗, ψ(m+ 1) ≜
m∑
k=1

1
k

− γ.

In particular

K0(z) = − log
(z

2

)
I0(z) +

∞∑
m=0

(
z
2
)2m

(m!)2 ψ(m+ 1), (C.7)

so K0 behaves like a logarithm at 0.

▶ Integral representation for Kν (see [121, p. 133]) :
For all a, b > 0 for any ν, µ ∈ C satisfying −1 < Re(ν) < 2Re(µ) + 3

2 one has

ˆ ∞

0

xν+1Jν (bx)
(x2 + a2)µ+1 dx = aν−µbµ

2µΓ(µ+ 1)Kν−µ(ab). (C.8)

▶ Nicholson’s integral representation (see [145, p. 441]) :
Let j ∈ N then

(IjKj)(z) = 2(−1)j

π

ˆ π
2

0
K0(2z cos(τ)) cos(2jτ)dτ. (C.9)

Another similar representation can be found in [121, p. 140]

(IjKj)(λ) = 1
2

ˆ ∞

0
J0
(
2λ sinh(t/2)

)
e−jtdt. (C.10)

▶ Holomorphic property of the product IjKj :
Let j ∈ N. Then the function z 7→ (IjKj)(z) is holomorphic on the half plane Re(z) > 0.

▶ Decay property for the product IνKν (see [13] and [54]) :
The application (λ, ν) 7→ Iν(λ)Kν(λ) is strictly decreasing in each variable (λ, ν) ∈ (R∗

+)2.

▶ Beltrami’s summation formula (see [145, p. 361]) : Let 0 < b < a. Then

∀θ ∈ R, K0

(√
a2 + b2 − 2ab cos(θ)

)
=

∞∑
m=−∞

Im(b)Km(a) cos(mθ). (C.11)

▶ Ratio bounds (see [14]) :
For all n ∈ N, for all λ ∈ R∗

+, we have
λI ′
n(λ)

In(λ) <
√
λ2 + n2

λK ′
n(λ)

Kn(λ) < −
√
λ2 + n2

(C.12)
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▶ Asymptotic expansion of small argument (see [1, p. 375]) :

∀n ∈ N∗, In(λ) ∼
λ→0

( 1
2λ
)n

Γ(n+ 1) and Kn(λ) ∼
λ→0

Γ(n)
2
( 1

2λ
)n . (C.13)

▶ Asymptotic expansion of high order (see [1, p. 377]) :

∀λ > 0, Iν(λ) ∼
ν→∞

1√
2πν

(
eλ

2ν

)ν
and Kν(λ) ∼

ν→∞

√
π

2ν

(
eλ

2ν

)−ν

. (C.14)

▶ Asymptotic expansion of large argument for the product IjKj (see [1, p. 378]) :

∀N ∈ N∗, Ij(λ)Kj(λ) ∼
λ→∞

1
2λ

(
1 +

N∑
m=1

αj,m

(2λ)2m

)
, (C.15)

with

αj,m ≜ (−1)m (2m)!

4m
(
m!
)2Pm(µj), Pm(X) ≜

m∏
ℓ=1

(
X − (2ℓ− 1)2), µj ≜ 4j2. (C.16)

In particular,
Ij(λ)Kj(λ) −→

λ→∞
0. (C.17)

▶ Asymptotic expansion of high order for the product IjKj (see [102]) :

∀λ > 0, ∀b ∈ (0, 1], Ij(λb)Kj(λ) ∼
n→∞

bj

2j

( ∞∑
m=0

bm(λb)
jm

)( ∞∑
m=0

(−1)m bm(λ)
jm

)
, (C.18)

where for each m ∈ N, bm(λ) is a polynomial of degree m in λ2 defined by

b0(λ) ≜ 1 and ∀m ∈ N∗, bm(λ) ≜
m∑
k=1

(−1)m−k S(m, k)
k!

(
λ2

4

)k
and the S(m, k) are Stirling numbers of second kind defined recursively by

∀(m, k) ∈ (N∗)2, S(m, k) = S(m− 1, k − 1) + kS(m− 1, k),

with

S(0, 0) = 1, ∀m ∈ N∗, S(m, 1) = 1 and S(m, 0) = 0 and if m < k then S(m, k) = 0.
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Titre : Structures quasi-périodiques pour des modèles de transport non-linéaires issus de la
mécanique des fluides

Mot clés : Poches de tourbillon, Théorie KAM, Schéma de Nash-Moser, Solutions quasi-
périodiques

Résumé : Nous étudions l’existence de
poches de tourbillon quasi-périodiques en
temps pour les équations d’Euler et les
équations quasi-geostrophic shallow-water
(QGSW) qui sont deux modèles de transport
non-linéaires et non-locaux bidimensionnels.
Les poches sont des solutions faibles de la
classe de Yudovich décrites par l’évolution de
domaines planaires dont l’étude repose sur la
dynamique de leur bord. Tout domaine initial
radial fournit une solution stationnaire et il est
naturel de se demander si l’on peut trouver,
proche de ses points d’équilibre, des solutions
périodiques ou quasi-périodiques. Le premier
cas a été largement étudié par le passé via
des techniques de bifurcation, et nous appor-
tons ici un résultat dans cette lignée pour le
cas des poches doublement-connexe en rota-

tion uniforme pour les équations QGSW. Le
second cas est moins évident et constitue le
noyau dur de cette thèse. En utilisant les théo-
ries de KAM et de Nash-Moser, nous mon-
trons que quitte à choisir un paramètre dans
un ensemble admissible de type Cantor et de
mesure presque pleine, il est possible de gé-
nérer des poches quasi-périodiques proches
des tourbillons de Rankine ; solutions station-
naires associées aux disques. Pour les équa-
tions QGSW, le rayon de Rossby joue le rôle
de ce paramètre qui apparaît naturellement
dans les équations. Pour les équations d’Euler
dans le disque unité, la non-invariance par di-
latation du modèle permet de créer un para-
mètre géométrique : le rayon des tourbillons
de Rankine.

Title: Quasi-periodic structures for nonlinear tranport fluid models

Keywords: Vortex patches, KAM theory, Nash-Moser scheme, Quasi-periodic solutions

Abstract: We study the existence of time
quasi-periodic vortex patches for Euler and
quasi-geostrophic shallow-water (QGSW)
equations which are bidimensional nonlinear
and nonlocal transport-type fluid models. Vor-
tex patches are weak solutions in the Yudovich
class described by the evolution of planar do-
mains whose study relies on their boundary
dynamics. Any radial initial domain provides
a stationary solution and it is natural to ask
whether we can find, close to these equilib-
rium points, periodic or quasi-periodic solu-
tions. The first case has been widely studied in
the past by using bifurcation theory, and here
we give a result in this direction concerning

the existence of doubly-connected uniformly
rotating patches for QGSW equations. The
second in less obvious and is the core of this
thesis. By using KAM and Nash-Moser theo-
ries, we show that up to select a parameter
among an admissible massive Cantor-like set,
it is possible to construct quasi-periodic vor-
tex patch solutions close to Rankine vortices ;
stationary solutions associated with discs. For
the QGSW equations, the Rossby radius plays
the role of this parameter appearing naturally
in the equations. For Euler equations set in the
unit disc, the non-invariance by radial dilation
allows to create a geometrical parameter : the
radius of the Rankine vortices.
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