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Expression Description (Units)
A Vector or tensor

A with A ∈ Rm Norm of the vector A
A · B with A,B ∈ Rm Usual scalar product of the two vector A and B
A×B with A,B ∈ Rm Usual cross product between two vectors A and B
A⊗B ∈ Rm × Rm with

A,B ∈ Rm
Usual tensorial product between two vectors A and
B as (A⊗B)ij = AiBj with i, j ∈ [1,m]

∂t (resp. ∂x) Temporal derivative operator: ∂
∂t (resp. spatial:

∂
∂x )

∇ Operator Nabla: ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z )

∇A Gradient of scalar A
∇· A Divergence of vector A
∇×A Rotational of vector A

∇⊥A
Perpendicular 2D gradient operator of the scalar A
defined as ∇⊥A =

(
−∂A∂y ,

∂A
∂x

)
ρs

Mass density of fluid s (e for electrons, i for ions,
and n for neutrals) with ρs = msns

V ∈ R3 Velocity vector of plasma

Vs ∈ R3 Velocity vector of fluid s (e for electrons, i for ions,
and n for neutrals)

p Pressure of plasma
pm Magnetic pressure
pt Total pressure of plasma (Fluid + Magnetic)

ps
Pressure of fluid s (e for electrons, i for ions, and n
for neutrals)

E Mechanical energy of plasma
EEM Electromagnetic energy

Et
Total energy of plasma (Mechanical and
electromagnetic)

Es
Mechanical energy of fluid s (e for electrons, i for
ions, and n for neutrals)

n Plasma density

ns
Density of fluid s, (e for electrons, i for ions, and n
for neutrals)

E Electric field
B Magnetic field
J Electric current density
Q Electric charge density
ηj Electrical resistivity
σ Electrical conductivity

me (resp. mi)
Mass of an electron (resp. an ion)
(me ≈ 9.1× 10−31 kg)

ma Atomic mass (≈ 1.66× 10−27 kg)
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ωpe (resp. ωpi) Plasma frequency of electrons (resp. ions)
Ωce (resp. ωci) Cyclotron frequency of electrons (resp. ions)

ναβ
Momentum exchange collision frequency between
particles α and β

Fαβ
Friction drag force due to collision between the
species α et β

γ Adiabatic index
e Elementary electric charge (≈ 1.6× 10−19 C)
ε0 Vacuum permittivity (≈ 1

36π × 10−9 F.m−1)
µ0 Vacuum permeability (≈ 4π × 10−7 H.m−1)
c Celerity of light in vacuum with C2 = 1/µ0ε0

U Vector of conservative variables
F(U) Flux function

∆t (resp. ∆x) Time step of numerical scheme (resp. Spacial step)
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Acronyms
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CFL Courant-Friedrichs-Lewy
CHAMP Challenging Minisatellite Payload
COSPAR COmmittee on SPAce Research
C/NOFS Communication/Navigation Outrage Forecasting System
DDFV Discrete Duality Finite Volume
DEMETER Detection of Electro-Magnetic Emissions Transmitted From Earthquake Regions
DMSP Defense Meteorological Satellite Program
DNS Direct Numerical Simulation
EPB Equatorial Plasma Bubble
ESF Equatorial Spread F
GDI Gradient Drift Instability
GNSS Global Navigation Satellite Systems
GPS Global Position System
GRTI Generalized Rayleigh-Taylor Instability
HLL Harten, Lax and van Leer
HIRB HIgh-Resolution bubble
ICF Inertial Confinement Fusion
IRI International Reference Ionosphere
JRO Jicamarca Radio Observatory
KHI Kelvin-Helmholtz Instability
SuperDARN Super Dual Auroral Radar Network
MC Monotonized Central
MHD MagnetoHydroDynamic
MUSCL Monotonic Upstream Scheme for Conservation Laws
NLTE Non Local Thermodynamic Equilibrium
ODE Ordinary Differential Equation
RMI Ritchmeyer-Meshkov Instability
RTI Rayleigh-Taylor Instability
UV Ultra-Violet
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Introduction

Now that our world has entered the telecommunication era, we are more and more dependent
and reliant on satellites as a mean to get and transfer information. A great example of such
applications is the Global Navigation Satellite Systems (GNSS), which permits control of
the position and velocity of a vehicle in real time, a great help when traveling. However, the
integrity of the earth’s and satellites’ communication is not empty of partial or total signals
losses. Such signal losses could lead to a fatal accident if not acknowledged when it comes
to more critical applications like aeronautical navigation. As a result, one current challenge
is to predict, and perhaps even prevent, these signal losses, which appear to occur primarily
in the ionosphere.

The ionosphere is a plasma or charged particle layer that extends from 60 km to 1000 km
in altitude. Created by UV and X-ray radiation absorption, this plasma layer plays the role
of the interface between the atmosphere and the space environment. Ionospheric dynamics
is quite complex since it involves different physical aspects, among them chemistry and
electromagnetism (due to the earth’s magnetic field), and it is prone to high variability,
being influenced by external factors, among which one can cite the earth’s seasonal and
diurnal cycle or the solar magnetic activity cycle [1]. The high variability of ionospheric [1]Kelley 2009a;

Lilensten and
Blelly 2021; Can-
der 2019

conditions leads to a great number of irregularities, in particular in regard to the plasma
density. Indeed, it is not uncommon to witness a depletion or surplus of plasma up to a
few orders of magnitude compared to the ambient plasma density. Some of such variation in
plasma density, being one of the primary causes of signal losses, is provoked by interchange
instabilities, and more particularly by the generalized Rayleigh-Taylor instability (GRTI).
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The Rayleigh-Taylor Instability (RTI) [2] is a seminal hydrodynamic instability, ubiqui- [2]Zhou 2017a,b

tous in the universe. It can be witnessed at all scales, from Bose Einstein condensates [3] to [3]Sasaki et al 2009
astrophysical distances [4], by way of Inertial Confinement Fusion (ICF) [5]. The classical [4]Chevalier and

Klein 1978; Bell et
al 2004
[5]Takabe et al
1985; Betti et al
1993, 1995, 1996,
1998; Goncharov et
al 1996a,b; Casner
et al 2015, 2018

RTI occurred at the interface between two fluids subjected to an external force pointing from
heavy to light fluid. The most common example is an upside-down glass of water. In this
case, the water and the air represent, respectively, the heavy and the light fluid, while the
earth’s gravitational field represents the acceleration. Upon small perturbations, the inter-
face starts structuring itself through the RTI process. Bubbles of air start rising in the glass
while fingers or spikes of water fall to the ground.

The term "generalized" in GRTI accounts for the friction drag due to the coupling between
the neutral atmosphere and the ionospheric plasma through collision. This structuring pro-
cess is responsible for Equatorial Plasma Bubble (EPBs), which is a large depletion of plasma
rising to the upper ionosphere. We can also mention striations structures that form in high
plasma density regions, such as those caused by barium releases, though this instability is
more commonly referred to in the literature as "gradient drift instability," because the desta-
bilizing force is the friction drag caused by velocity drift between the neutral atmosphere
and the ionospheric plasma.

Although these instabilities can seem quite simple, determining their evolution at such
late times is complex and difficult. To understand the late dynamics of these instabilities, the
community relies heavily on numerical code that takes into account ever more physical aspects
[6]. In terms of analytical work, a number of models have been developed to quantify the [6]Huba et al 2008;

Huba and Liu
2020; Yokoyama et
al 2014

evolution of the RTI in the non-linear regime [7]. Comparison with laboratory experiments

[7]Abarzhi et al
2003a; Sohn 2003;
Zhang and Guo
2016; Haan 1991;
Goncharov 2002;
Alon et al 1993,
1994; Hecht et al
1994

[8] and simulations [9] have even been conducted, showing relatively good agreement with

[8]Wilkinson
and Jacobs
2007; White et
al 2010; Rigon
et al 2021; Read
1984; Dimonte
and Schneider
1996; Dimonte
1999; Dimonte and
Schneider 2000;
Youngs 1992

[9]Dimonte et al
2005; Ramaprbhu
and Dimonte 2005;
Liang et al 2021;
Dimonte et al 2004

the analytical results. However, we note that the analytic research on the GRTI, at late
stage, has not attained the same level of maturity as its hydrodynamic counterparts.

An opportunity seems to arise since adding specific physical aspects, mainly the friction
drag force due to collisions between neutrals and ions, to these analytical models could
increase our understanding of ionospheric phenomena such as EPBs and striations. It leads
to the problematic part of this thesis:

What is the influence of the ionospheric environment upon the non-linear
behavior of the Rayleigh-Taylor and similar interchange instabilities?

Thus, starting with the analytical models of the hydrodynamic (or classic) RTI as a
basis, we derived a single-mode non-linear model, describing the temporal evolution of a
single bubble or spike, by adding the friction drag force due to collisions between neutrals
and ions. This puts into evidence two regimes with different behaviors, one being the already
known inertial regime, which refers to the classical RTI, and the other being the collisional
regime specific to the ionosphere’s instability, like EPB. To help us create this model, we use
two numerical codes, namely CLOVIS, which works in the ideal MHD approximation and
permits us to evaluate the structure dynamic in the two regimes, and ERINNA, which works
in the electrostatic approximation, more widespread in the ionospheric community [10], so

[10]Mcdonald et al
1981; Zabusky et al
1973; Zargham and
Seyler 1987

that it is confined to the purely collisional regime.
Following up on these preliminary findings, we investigated multi-mode perturbation. In

this case, the non-linearly growing bubbles or spikes will interact with their neighbors, leading
to what we call a competition stage. We demonstrate the different interaction processes
known as merging and bifurcation, as well as their properties depending on the regimes we
are working in, using back and forth from the analytical competition model and numerical
simulations performed with CLOVIS.
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In the first chapter, we begin with a brief description of the ionosphere and its particu-
larities, followed by a discussion of its impact on human activities. We follow with an outline
of the observation of ionospheric irregularities such as Equatorial Spread F (ESF) and stri-
ations which result from interchange instabilities similar to RTI. We end this chapter with
a description of the numerical tools available to us, CLOVIS and ERINNA, to study these
types of ionospheric irregularities, as well as their respective models.

In the second chapter, we present the generalized RTI, where the term "generalized"
accounts for the extension with physical aspects specific to the ionosphere, among which
the coupling with the preponderant neutral atmosphere. We compare it to its classical
counterpart, which is more widespread and documented. Naturally, we start with a linear
phase analysis either for a gradient or a discontinuity mass density profile. Then we report
the previous understanding of the non-linear phase, either obtained through basic non-linear
analytic models or complex numerical simulations. Finally, we listed various non-linear
models used to study the classical RTI either in the case of single-mode or multi-mode
perturbations.

In the third chapter, we extend the single mode non-linear model proposed by Goncharov
[11], in the case of a density discontinuity, by including a friction drag term due to collisions [11]Goncharov

2002between neutrals and ions. We put into evidence the existence of two different regimes,
namely the inertial regime, which refers to the classical RTI, and the collisional regime, which
refers to the low-altitude ionospheric case. Then, we compare the model with simulations
performed with our codes, CLOVIS and ERINNA. We show that the model and simulations
agree relatively well in terms of asymptotic bubble or spike velocities, with the exception
that higher harmonics are required in the model to be accurate in the collisional regime.

After the question of single-mode is investigated in the non-linear phase, comes the one
of multi-mode. It will be studied in the fourth chapter, starting with various simulations
associated with the numerical treatment proposed by Dimonte et al. [12]. Thus, we obtains [12]Dimonte et al

2004characteristic quantities of the bubble front, hb, evolution, such as, for example, its temporal
growth or the average bubble diameter. These primary results will allow us to extend the non-
linear competition model developed by Alon and his collaborators [13]. This type of model [13]Alon et al

1995, 1993, 1994;
Hecht et al 1994

is based on the merging process by which larger structures absorb their smaller neighbors,
leading to still larger ones, which grow faster than their smaller counterparts in the case of the
classical RTI. The inclusion of the friction drag due to the collisions between neutrals and ions
in the computation of the merger rate explains partly why the averaged bubble diameter,
Db, and bubble front velocity are reduced in the low collisional regime compared to the
complete inertial one. However, it does not explain why, in the highly collisional regime, the
averaged bubble diameter saturated in the simulations. By including a bifurcation process
(inverse of the merging process) in the competition model, we retrieve similar behavior, but,
unfortunately, the question of the determination of the bifurcation rate is still left open.

We end with the fifth chapter, where we will extend even further the single mode model
to the dipolar geometry imposed by the earth’s magnetic field. We show that the difference
in velocities between the planar and dipolar geometries never exceeds 20%. Nevertheless,
it works as a basis for an integrated flux tube non-linear model that retrieves in the non-
linear phase properties already put into evidence in the linear phase [14]. We also look at [14]Basu 2002;

Haerendel et al
1992

2D simulation cases of the Equatorial Plasma Bubble (EPB) and barium cloud release and
compare them to our results obtained in the previous two chapters. The majority of the
qualitative behaviors demonstrated in the previous two chapters, such as the dependence of
structure velocity and size on collision frequency, are confirmed. Nevertheless, it proves to
be only a starting point, and an exhaustive and quantitative investigation is still necessary
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to ensure the accuracy of this new understanding of the non-linear growth of these two
structures.

In summary, this work allows for the analytical evaluation of some of the
nonlinear characteristics of ionospheric irregularities (EPB and striations), such
as their nonlinear velocity growth or typical scale sizes. As a result, it lays the
groundwork for the computation of input describing hydrodynamic fluctuation,
allowing quantification of their direct and indirect influence on telecommunica-
tion without the use of costly numerical simulations.
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18 1. Ionosphere

1
Ionosphere

Summary
In the section 1.2, we describe the structure of the ionosphere, which can be decomposed in
three layers D, E, and F. Their typical composition, density and property are given. Although
the E layer is responsible for the reflection of radio wave, it is the F layer which represent
most of the electron density composing the ionosphere. We also note that the D and E layers
disappear during nighttime due to recombination.

In the brief discretion about the impact of ionospheric properties on human activities,
among which we have radio waves earth/satellites communications.

In the section 1.3, we presented the two ionospheric perturbations that will be studies
in this thesis; the Equatorial Spread F (ESF) and the striations in chemical releases. To
get a better understanding of these two perturbations, we found it worth to first explain
some mean of measurement as ionosonde, Incoherent/coherent backscatter radar, airglow
imager, GNSS and in situ probes (rocket or satellites). With this various observation tools,
we show the link between wave perturbations either from radio stations (ionosondes, Inco-
herent/coherent backscatter) or satellites communications (scintillation) are linked to plasma
density fluctuations perpendicular to the earth’s magnetic field.

Thus, ESF is the consequence of what we call Equatorial Plasma Bubble (EPB) which
are large plasma density depletion rising in the F region during early nighttime due to
generalized Rayleigh-Taylor instability process. From the density gradient on the side of
the rising bubble, secondary irregularities know as striations are triggered. Striations are
an alternated density fluctuation perpendicular to the magnetic field that occur frequently
in the ionosphere, whether in the equatorial or the auroral regions. ESF and striations are
both natural events, but striations have the particularity of being easily observable through
active experiments using chemical release.

In the section 1.4, we derived, starting from the bi-fluid euler equations (for ions and
electrons) and Maxwell equations, different models used in literature and this thesis. By
rescaling the set of equations with meaningful quantity, we have derived the dimentionlees
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parameters, which permit us to simplified further our equation depending on the condition.
This is important to know what are taken into account or neglected by two available codes
to us: CLOVIS and ERINNA.

The first one, CLOVIS, is an ideal MHD code developed in our team which used Finite
Volume method associated Riemann solvers know as HLLD [1], and ROE (8Wave) [2]. Note [1]Miyoshi and

Kusano 2005;
Miyoshi et al 2010

[2]Powell et al
1999; Roe 1981;
Barth 1999

that we are currently extending it to the Hall-MHD model by adding ohmic diffusion and
Hall term in the Ohm law (see appendix A).

The second one, is a code developed by F.Hermeline in another team and which resolves
either the electrostatic or striation models. The striation model is a reduction of ideal MHD
model where the inertial term has been neglected and the magnetic field is assumed constant.
As for the elctrostatic model is derived from the Hall-MHD model with roughly doing the
same approximation, which come back to add non-ideal term to the striation model (ohmic
diffusion, Hall term, electron pressure).
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1.1 Introduction
The Earth is perpetually bombarded by radiations and particles coming from the sun. For-
tunately, we are granted two protections: the Earth’s magnetic field and the atmosphere.

The atmosphere absorbs most of the radiations in the form of X and UV rays before they
reach the ground. This process dissociates and ionizes molecules or atoms, resulting in the
formation of the ionosphere, a plasma layer that surrounds the Earth. The ionosphere is
strongly coupled through electromagnetic force with the Earth’s magnetic field and through
collisions with the thermosphere, i.e., the neutral layer equivalent of the atmosphere. More-
over, in the bottom part of the ionosphere, the complexity of its dynamics is even further
increased by chemical processes as for example recombination, charge exchange...

As for the Earth’s magnetic field, it protects us by trapping charged particles coming
from the solar wind. However, we are not interested in this shielding magnetic field property
since, in our case, this flux has little influence on the equatorial ionosphere. Indeed, the
main impact of the magnetic field at the equator is that it conducts the electric field from
low altitude to high altitude, which is then translated by E×B drift.

Despite its complex dynamics, the ionosphere has been widely studied due to its impact
on telecommunication since its existence was demonstrated in 1925 by Appleton and Barnett
in England [3] and Breit and Tuve in the USA [4]. [3]Appleton and

Barnett 1925a,b

[4]Breit and Tuve
1925

This chapter will concentrate on some aspects of the ionosphere. After a brief overview of
its structure and a digression on its influence on human technologies, we will describe some
ionospheric means of measurement and irregularities. Second, we will derive a hierarchy of
models used to describe the ionosphere dynamic and how they can be resolved with numerical
codes, with their limitations and strengths.

1.2 Generality
The atmosphere’s mass is mostly concentrated below 50 km, where it represents 99.9% of
its total mass. Nevertheless, the upper part is still of great interest since this is where the
UV and X rays emitted by the sun are absorbed, creating a layer of ionized gas from 50 km
to 2000 km which is called the ionosphere. The ionosphere is highly dependent on the solar
radiation flux, so that electronic density will vary with the diurnal, seasonal, and the 11-year
solar cycles. Indeed, when the solar radiation flux is at its peak, electron density increases;
however, at night, electron density decreases due to recombination, particularly at altitudes
below 150 ∼ 200 km.

Another influence of the sun on the ionosphere comes through the magnetic field. In
the case of a rare event such as a corona mass ejection or solar proton event, the high-
intensity flux of charged particles will result in a high-intensity electric current that will
perturb the Earth’s magnetic field and launch strong electromagnetic waves. This magnetic
disturbance [5], which generally stays confined to the magnetosphere, can propagate as low [5]Cander 2019

as the ionosphere in the case of an extreme event. Added to the solar flare that produces
high bursts of UV and X rays, this type of event contributes to increasing the complexity of
the ionosphere by triggering or mitigating irregularities [6]. [6]Cander 2019;

Lilensten and
Blelly 2021

In this section, we will describe the main trends of the ionosphere and will mostly ignore
the cases of extreme conditions, except when it comes to their influences on human activities.
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1.2.1 Structure of the ionosphere
The ionosphere is structured into three different regions, namely the D, E, and F layers, which
are mostly defined by their respective properties and altitudes. Although a small distinction
between daytime and nighttime can be made for the F layer. The ionosphere coexists with
the upper part of the atmosphere subdivided into the mesosphere and thermosphere which
are collocated with the D layer for the former and with E and F layers for the latter, as
seen in Figure 1.1. The interaction between neutral gas and the ionized gas is of greater
importance in determining the ionospheric dynamics since, as seen in the Figure 1.2, the
neutrals are predominant in a wide range of the considered altitude.

Figure 1.1: Typical profiles of neutral atmospheric temperature and ionospheric plasma density with the various layers
designated. [Kelley (2009a)]

Figure 1.2: Ionospheric and atmospheric density in function of altitude for the meaningful species [ Kelley (2009a)]

D layer (from 50 km 90 km)
The D layer is the lower part of the ionosphere, being between 50 km and 90 km corresponding
to the same altitude as the mesosphere, as seen in Figure 1.1. Due to the relatively high
density of neutrals at this altitude, the D layer exists only in the daytime when the solar flux
compensates for the recombination process, and the electron density is rather low compared
to the rest of the ionosphere (ne ≈ 108 ∼ 1010 m−3).
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Furthermore, due to high collisionality, chemistry plays an important role in this layer,
creating various molecular ions, as seen in Figure 1.2 with even an abundance of negative
ones (as O−2 for example).

E layer (from 90 km to 150 km)
The E layer is above the D layer from 90 km and 150 km. The E layer is mostly composed
of molecular ions such as NO+, O+

2 and some N+
2 with an electron density that becomes

relatively large during the day (ne ≈ 1011 m−3) as seen in Figures 1.1 and 1.2. As for the D
layer, chemistry plays an important role at this altitude, even if the recombination process
is slightly lower and no negative ions seem to be present.

For the neutral atmosphere, this altitude corresponds to the bottom of the thermosphere
composed of N2, O2 and O. The name, thermosphere, comes from the fact that the tem-
perature of the particles increase form few hundred of K to a maximum around 1000 K and
2000 K. Note that it is only a kinetic temperature and not a thermodynamic temperature.
Indeed, due to the extremely low density, an object at this altitude will cool faster from dark
body radiation than it will be heated due to particle collisions.

The E layer may also contain trace of metallic ions (Fe+, Mg+...) caused by meteors
entering the ionosphere.

F layer (from 150 km to 500 ∼ 1000 km)
The F region forms the largest part of the ionosphere, above the E layer and limited by the
protonosphere at between 500 ∼ 800 km (there is no consensus on the upper limit). In the
F layer, the electron density encounters its maximum ne ≈ 1012 m−3 at around 400 km, as
seen in Figure 1.1. Also, molecular ions gradually disappear to give place to atomic ions at
around 200 km, as seen in Figure 1.2. During daytime, the F layer is subdivided into the F1
and the F2 layers, which are delimited by this transition between molecular and atomic ions.
In the night, due to the absence of solar flux, most of the molecular ions recombine and this
distinction vanishes, so that we only consider the F layer as a whole.

At this altitude, collision rates are low enough so that the stratification of the layer is
mostly determined by molecular diffusion and not chemistry as before. As a result, molecular
ions (NO+, O+

2 and N2
+) can only be found at the bottom of the F layer. Then, atomic

oxygen (O+) contributes to the majority of the ion until it transitions to atomic hydrogen (H+

or proton) with some trace of helium (He+ ) marking the transition to the protonosphere. In
the same time, the thermosphere would also let its place to the exosphere for the atmospheric
structure where the temperature attains a constant value.

1.2.2 Impact on human activities
Radio waves propagation
During the first half of the 20th century, one of the main methods for long-range communi-
cation was radio waves (MHz). Indeed, radio waves can propagate beyond the horizon by
bouncing between the ionosphere and the Earth. Due to its simplicity, it was one of our
first means of transoceanic communication, either by telephone or telegraph. However, since
this method of communication relies on the reflection of radio waves on the ionosphere, the
quality and distance are very variable and unreliable. They will depend on the time of day
or night, seasons, weather, and the 11-year sun cycle. Therefore, it has been mostly replaced
by intercontinental wire and is only still used by a rare broadcasting station, amateur radio,
etc.
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Mechanism
When a radio wave reaches the ionosphere, the electron will be thrown into motion by
the wave electric field component. Since electrons are more mobile than ions, they will
create, by coulomb force due to the charge displacement, an induced electric wave. Then the
oscillating electrons, if not lost by recombination, will re-radiate the original wave energy,
leading to a total reflection of the electromagnetic wave. This mechanism is limited by the
collision frequency for the recombination part and electron mobility quantified by the plasma
pulsation or Langmuir pulsation:

ωpe =

√
nee2

meε0
. (1.1)

If the frequency of the electromagnetic wave were higher than the electron plasma pulsa-
tion, then the electric field would vary too fast for the electrons to follow it, so that no plasma
oscillation would be produced. Therefore, the ionosphere can be seen as a high-pass filter,
so that all waves above the critical frequency, fc = ωpe/(2π) ≈ 9√ne, would be transmitted
through the ionosphere and the waves below the critical frequency would be reflected.

Of course, this explanation is only valid for a normal incidence of the wave, which would
only permit a reflection of the wave toward the emitter. By using Snell-Descartes law, we
can determine the maximum usable frequency with:

fmu ≈
fc

sin(α) , (1.2)

where α is the angle between the wave and the horizon.

Earth/Satellite communications
Earth/Satellite communications are performed at frequency much higher than the critical
frequency, permitting transmission of the wave through the ionosphere. However the trans-
mission through ionosphere is not always perfect and lost of the signal intensity, by various
mechanism, can perturb the accuracy of the communication, including GPS among other
things.

Other aspects
Communications are one of the main reasons why the ionosphere is studied, but they are not
the only aspects. As an example, we have:

� Ionosphere dynamic can contribute to the geomagnetically induced current during a
geomagnetic storm that could damage the electricity grid in the upper part of the
northern hemisphere.

� Some satellites use a tether system, which benefits from the ionospheric electric poten-
tial or current via a conductive wire as propulsion for electric generation.

1.3 Ionospheric perturbations
As already mentioned above, the ionosphere is subject to a great variability of external effects,
some of which are cyclic, such as day and night, seasonal, the 11-year sunspot cycle, and
others are nearly unpredictable, such as for example, atmospheric perturbation, geomagnetic
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storm, lightning induced effect [7]... Moreover, due to the complexity of hydrodynamical, [7]Kelley 2009a

chemical, and electromagnetic effects, a variety of structures and anomalies can be observed
in the ionosphere that will perturb telecommunications.

In this section, we concentrated on two different density perturbations that are observed
in the F region of the ionosphere, namely the Equatorial Spread F (ESF) and the striations.

But, before going through some of the ionospheric perturbations, I would like to briefly
describe some methods to observe the characteristics of the ionosphere since it will help to
understand where our present knowledge comes from.

1.3.1 Measurement tools
Ionosonde
The ionosonde is a rather simple device since it uses the principle of radio wave reflection
to determine the density profile of the ionosphere. It was how the presence of plasma in the
upper atmosphere was first demonstrated [8]. Ionosondes are mainly composed of a radio [8]Appleton and

Barnett 1925a,b;
Breit and Tuve
1925

antenna that will weep a wide range of frequencies (f ≈ 1 ∼ 40 MHz) and a receptor. The
electron density versus height can be calculated by measuring the delay between the emitted
radio wave and the received one that bounced on the ionospheric plasma (sometimes multiple
times). Due to its simplicity, it has also been used by the Broadcast Station to determine
the optimum wave. It can easily lead, among other characteristic values, to the altitude of
h′F , which is the vertical position of the steep density gradient at the bottom of the F layer.

Incoherent/Coherent backscatter radar
In the middle of the 20th century, incoherent/coherent backscatter radar has been a great
improvement for ground based observation of Earth’s ionosphere. Incoherent backscatter,
proposed by W.E. Gordon in 1958 [9], allows, with more effective antennas, a more local [9]Gordon 1958

description of the plasma parameters, as for example its temperature, density or fluid velocity.
The radar use an electromagnetic wave with a frequency higher than the plasma frequency

at the ionosphere pic density. This wave, even if it will pass through ionosphere will also
excite electrons on its path, which will then oscillate and diffuse some energy. Since the
distribution of the electrons are random there is little chance of this wave being cancel out
by a wave emitted by an electron in opposition of phase. Thus, the wave is diffused by the
inhomogeneity of the ionosphere. this process is called incoherent backscatter.

An example of the general form of the spectrum of an incoherent backscatter wave is pre-
sented in the figure 1.3. The ionic-acoustic spectrum is centered on the frequency of emission
on a bandwidth of few kHz. Farther, at around few MHz, the plasma line, corresponding to
the mobile electrons, can be found. However, precedent studies did not succeed interpreting
them, as theorized by Gordon in his paper [10], because their detections are difficult since [10]Gordon 1958

they are relatively thin and subject to high frequency fluctuations. Thankfully, the ionic
spectrum already provide a lot of information:

� The total power surface of the ionic-acoustic spectrum (backscatter power) is function
of the number of re-emitter, or said in the simpler way the electronic density.

� The relative bandwidth of this spectrum can be linked to the ionic temperature.

� The height of the two spike of re-emission on both side of the spectrum is caused by the
difference in temperature between ions and electrons, having determined Ti we readily
obtained Te.

� The Doppler shift is caused by the ions velocity along the line of the sight of the radar.

University of Paris-Saclay Dated: January 31, 2023 Cauvet Quentin



1. Ionosphere 25

Figure 1.3: Representation of the incoherent backscatter spectra (left) with the quantity that can be determine with it
and the associated Fourier transform (left) which is the function of auto-correlation of the backscatter signal [Lilensten
and Blelly (2021)].

As a conclusion this methods permit to obtain ne, Te, Ti and Vi. The ions composition
could also be determined but it will need the prior knowledge of the number of collision. The
precision of such method is relatively good, since the incertitude are of the order of 1% for
ne, 1 à 10 m.s−1 for Vi, and around 10 K for the temperatures [11]. [11]Lilensten and

Blelly 2021For the coherent radar, they use the coherent wave emitted by a diffusion of Bragg,
which appears when a electromagnetic wave propagates perpendicularly to the magnetic
field. Although it reduces the possibility incidence angle, it allows the use of smaller emission
power than the incoherent diffusion (from an average of 600 W against 100 ∼ 300 kW) [12]. [12]Lilensten and

Blelly 2021Thus, coherent radars are less costly and easier to implement.
Among the facilities using such detection methods, we can cite the Jicamarca Radio

Observatory (JRO), which was the first to implement incoherent backscatter radar, and the
Super Dual Auroral Radar Network (SuperDARN) [13], which regroups different antennas [13]Greenwald et

al 1995around the world, like the one at Kerguelen Islands or Goose Bay in Canada.

All-sky Airglow imager
The airglow phenomenon was known even before the demonstration of the existence of the
ionosphere, since it was identified in 1868 by Anders Ângström and was first observed by
Simon Newcomb in 1901.

Airglow is a faint source of light (electromagnetic wave emission) due to recombination
and other chemistry processes. While it isn’t visible in the daytime due to sunlight, it
can be seen with the bare eyes at some locations just above the horizon, as seen in Figure
1.4. Contrary to the process described before, airglow can give us a direct way to observe
the structure of ionospheric observation. It is noted that while airglow is an opportunity
for observing the ionosphere, it is a hindrance for astrophysicists since it perturbs space
observation performed by ground facilities, which was partly one of the reasons for satellite
Hubble.

The electromagnetic wave emissions at the origins of the airglow are the result of all
the chemical processes that occur in the ionosphere. Transitions into excited molecular or
atomic states (excited electron, vibrational, or rotational states) are caused by recombination,
molecular reactions, or simply light absorption. When the molecules or atoms go back to
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Figure 1.4: Airglow observed in Auvergne (France) on 13 August 2015 from Clame Reporter

a more stable state, they will lose the excess energy through a photon, which can later be
measured by a ground receptor.

The most powerful airglow emissions are the atomic emission of oxygen (O) (with its
green and red line) and the molecular emissions of hydroxyl (OH) [14] and nitric oxide (NO) [14]Meine 1950a;

Meine et al 1950b[15], but other species can also be detected as molecular oxygen (O2), nitrogen (N2), helium
[15]Krasovski and
Sefov 1965

(He), hydrogen (H) [16], sodium (Na) and lithium (Li) [17]. As a consequence, airglow

[16]Krasovski and
Sefov 1965
[17]Donahue 1959

permits us to retrieve indirectly the area density of some ionospheric components. The only
drawback is that we need to speculate on the vertical repartition of the molecules or atoms.

GNSS
An indirect way of detecting an ionospheric irregularity is to look at the signal loss or pertur-
bation of the GNSS systems. This communication problem’s intensity losses are measured
using scintillations [18]. The common index of scintillation is S4, defined by: [18]Yeh and Liu

1982; Fejer and
Kelley 1980

S2
4 =

〈
I2〉− 〈I〉2
〈I〉2

, (1.3)

where I is the power intensity of the signal.
At first, it only allows us to detect the existence of an ionospheric irregularity. However,

with the more recent computational power, some people have also derived other values such as
the maximum density gradient altitude or the plasma velocity from the scintillation pattern
formed by ionospheric irregularities [19]. [19]Kim et al 2017

In situ measurement probes and other instruments
In situ measurements (with the Langmuir probe and other instruments) provide useful in-
formation on scalar variables such as temperature, local electron densities, electric field, and
so on. At first, only rockets were used since satellites were still expansive and were not
"democratised" like today [20]. [20]Kelley et al

1986
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With time, low altitude satellites have become available for ionospheric studies, with for
example: C/NOFS (Communication Navigation Outrage Forecasting System) [21], DMSP [21]Jeong 2010;

Beaujardiére et al
2004

(Defense Meteorological Satellite Program) [22], DEMETER (Detection of Electro-Magnetic

[22]Nichols 1975
Emissions Transmitted from Earthquake Regions) [23], CHAMP (Challenging Minisatellite

[23]Parrot 2002
Payload) [24]... This permits a more systemic measurement of the local behavior of the

[24]Reigber et al
2004

ionospheric plasma.

1.3.2 Equatorial Spread F
First observations
Equatorial spread F (ESF) was first observed in 1938 through an ionosonde by Booker and
Wells [25]. This irregularity, as its name implies, is seen at the magnetic equator and results [25]Booker and

Wells 1938from perturbations in the F region, which provoke a spread in frequency and altitude on
ionosonde measurements.

As seen in Figure 1.5 and the first panels (a, b, and c), the ionogram will usually show
a slim range of altitude matching the frequency. However, when an equatorial spread F is
present (usually after sunset), the ionosonde measurement will show a large band of frequency
and altitude as seen on panels (d, e, f, g, and h) of Figure 1.5 [26]. ESF has been linked to [26]Dùjanga et al

2018satellite communication outrages and scintillations [27]. Thus, studies of ESF have become
[27]Burke et al
2003

of strategic interest for long distance communications in the equatorial region.

Figure 1.5: Ionograms from the Maseno Ionosonde on 30 October 2012. The vertical axis represents range in km (LT
= 3:00+UT ) [Dùjanga et al (2018)]

In the 70s and 80s, new technologies (backscatter radar) permitted the first 2D images of
the ESF [28]. Indeed, Jicamarca radars were a pioneer in the domain of equatorial ionospheric [28]Woodman and

Hoz 1976; Kelley
et al 1986; Hysell
2000

observation with their incoherent backscatter radar and interferometer.
The thin structures in Figure 1.6 (below the 450 km of altitude) at the bottom are present

nearly every night and lead to weak frequency spread on the ionogram. The larger frequency
spreads of Figure 1.5 are mostly the result of the large structures, which extend up to 1000 km
of altitude (sometimes called "plumes" in the literature). These types of observations were
the first to give us an idea of the shape of the plasma irregularities provoking ESFs.
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Knowing that at this hour the ionosphere is subject to an eastward drift of the order
of 100 m.s−1, it is sometimes considered that the evolution of the structure is negligible
compared to the drift. Thus, the time evolution of a measurement can be tabulated into a
spatial coordinate. This simple analogy would be some filming a landscape in a moving car
with a certain velocity, except here the moving car is the earth’s ground and the landscape
(supposed to be un-evolving) is the ionosphere.

Figure 1.6: An ESF event observed with the Jicamarca radar. (Left) Range–time–intensity plot, showing the signal-to-
noise ratio in dB versus altitude and local time. (Right) Zonal plasma drifts measured with radar interferometry. The
gray scales for the signed drift data have been coarsely quantized to ease viewing in black and white [Hysell (2000)].

Characteristics
During the same time period and up to the present, in situ measurements by rockets [29] [29]Hysell et al

1994a,b; Labelle
and Kelley 1986

and satellites [30] have allowed us to establish that the main characteristics of the structures

[30]Burke et al
2003; Kelley et al
2009b; Stolle et al
2006

responsible for ESF were a strong and localized decrease in plasma density compared to the
ionospheric background.

These observations concord with a theory [31], which describes the ESF as the result

[31]Dungey 1956
of a rising bubble in the ionosphere that would, through a process similar to Kolmogorov’s
cascading, breaks into smaller scales that interact with radio waves and satellite communi-
cations [32]. The instability at the origin of the rise of this bubble (the generalised Rayleigh [32]Kelley et al

1986; Labelle and
Kelley 1986

Taylor instability) will be thoroughly explained in the following chapter 2, but for now we
can describe it as an interchange instability. After sunset, the D and E layers will recombine,
forming a strong plasma density gradient at the bottom of the F layer, which is necessary
for instability growth. Thus, at night, the pseudo vacuum that replaces the E layer can rise
higher in the form of large scaled bubble, since it is lighter than the ambient F layer plasma,
like an air bubble in a glass of water [33]. [33]Hysell 2000;

Kelley et al 2011;
Woodman 2009
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Figure 1.7: Airglow images from Panhala on 6 January 2008 ( OI 630.0 nm ). Top and right corresponds to the north
and the east, respectively [Narayanan et al (2016)].

These Equatorial Plasma Bubbles (EPBs) are plasma depletions of a few orders of mag-
nitude greater than the background that extends along the entire magnetic field lines. As a
consequence, the temporal evolution of the EPBs can be seen on airglow image as show as
in Figure 1.7 [34], since low plasma density is translated by a low spectral emission (here [34]Pautet et al

2009; Mendillo et al
2005

one of the emission lines of atomic oxygen). We also see some structuration processes, such
as bifurcation (upper part of panels c and d) [35] where a bubble splits into smaller ones or [35]Aggson et al

1996; Anderson
and Mendillo 1983

merging (bottom part of panels b and c) where two bubbles join to form a single ones [36].

[36]Narayanan et
al 2016; Huang et
al 2011, 2012

EPBs appear mostly once or twice in the same night, separated by a few hundred kilome-
ters, even if sometimes we can see a bunch of smaller bubbles around a large one separated
by roughly ten kilometers [37]. They rise in a matter of hours from 200 km to a thousand

[37]Hysell 2000
kilometers of altitude. Bubble rising velocity were measured between 50 m.s−1 to 300 m.s−1

[38].
[38]Abdu et al
1983; Tsunoda
1981; Dabas and
Reddy 1990

Theory could not explain, alone, the horizontal size of EPB, so people resort to a seeding
mechanism that will be the starting point of our rising bubbles. The most common expla-
nation is that gravity waves, which propagate through the upper atmosphere and, through
collisions between neutrals and ions, produce waves in the lower part of the ionosphere. When
the conditions allow it, these waves will grow into a full EPB [39]. Nevertheless, other seeding [39]Fritts et al

2009; Abdu et al
2009; Kelley et al
2009b

mechanisms have also been proposed, for example, structures induced by the velocity shear
between the bottom and upper part of the ionosphere (process similar to Kelvin-Helmotz
instability) [40]. [40]Kudeki et al

2007; Hysell et al
2005
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Climatology
With further improvement of the measurements and computers, systemic observations are
now available, allowing us to store a huge database of informations on a great number of nights
[41]. As a consequence, climatology studies of EPB have become possible. The importance [41]Hysell and

Burcham 2002of a few parameters, for example, the h′F altitude (vertical position of the intense gradient
at the bottom of the F layer at night) and the Pre-reversal drift (intense vertical velocities
of the plasma after sunset) in EPB events becomes evident [42]. [42]Carter et al

2014; Yizengaw
and Groves 2018;
Stolle et al 2006;
Wan et al 2018;
Retterer and
Roddy 2014

Seasonal and local behavior of EPB could be retrieved in the same way that meteorological
phenomena such as tornadoes or cyclones. The Atlantic and African sectors are where EPB
mainly occurs, with a preference for winter and equinox seasons [43].

[43]Stolle et al
2006; Wan et al
2018; Retterer and
Roddy 2014

Finally, people are also working on forecasting models that could predict with relatively
good assumption if an EPB is likely to happen on a given night, even if it is only a few hours
prior to the event [44].

[44]Huang
2018; Anderson
and Rendmon
2017; Kelley and
Retterer 2008;
Retterer et al 2005;
Su et al 2009

1.3.3 Chemical Releases
Since the 50s, diverse chemical releases have been performed to enhance the plasma density
locally. Metalic release (with sometimes termite heating to increase ionization rate) is used
to maximize the spectral emission, with the preference for barium, but one can also find
lithium, calcium, strontium, or samarium release [45]. The final goals for this type of density

[45]Bernhardt
1992; Caton et al
2017

enhancement are diverse and won’t be the object of this section, but one can note that it
was sometimes used to trigger or inhibit EPB [46].

[46]Klobuchar and
Abdu 1989; Gao et
al 2020; Zawdie et
al 2019; Caton et al
2017

Figure 1.8: Photographs and density contours of the barium release, as well as a computer projection of a model, are
shown in this montage. Views from three sites at 930 s after release[Rosenberg (1971)].

What is interesting to us here is the structuration of such a release in the ionospheric
region. As seen in Figure 1.8, on one side of the barium cloud, striations (a spatial alternance
between high and low density) are clearly visible (left panels). On the scheme obtained by
computer (right panels), that reconstructs the form of the release, we clearly see the barium
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cloud that extends as a tube along the magnetic field line and perpendicular to it, jets of
high-density plasma are growing.

This structuration has been observed in a number of barium release experiments [47], [47]Volk and
Haerendel 1971;
Lust 2001; Kelley
and Livingston
2003

and, as for ESF, in situ measurements performed with rockets have revealed a correlation
between the structure and plasma density fluctuation [48]. This was due to a different type

[48]Fejer and
Kelley 1980;
Baker and Ulwick
1978; Kelley and
Livingston 2003;
Kelley et al 1979

of interchange instability, known as gradient drift instability (GDI) (or E × B instability),
which will also be discussed in the following chapter 2.

We note that GDI is not only present in Barium cloud releases as it has also been observed
in other natural structures such as EPB [49] and polar patch [50] (great surface in the auroral

[49]Cakir et al
1992
[50]Oksavik et al
2012; Spicher et al
2015

zone with a density at least a few times larger than the usual background), where it has led
to scintillation [51].

[51]Liszka 1961;
Sojka et al 1998

As GDI is present in other observations, all barium cloud striations aren’t always produced
by GDI. It will depend on the altitude and the intensity of the release. Thus, barium
releases at altitudes far above the ionosphere (a few Earth Radii) are more susceptible to the
unmagnetized Rayleigh-Taylor instability [52].

[52]Huba et al
1992

1.3.4 And many others
The two ionospheric irregularities presented above are only a portion of all the events wit-
nessed at this altitude. Many other instabilities, such as elves, sprites, or polar patches,
have been observed at different altitudes and latitudes, and we invite the reader to refer to
Kelley’s book for more details [53]. [53]Kelley 2009a

1.4 Ionospheric dynamic modelling
In this section, we will concentrate ourselves on the fluid model used to describe the iono-
sphere. We will see how we can reduce the fluid equations for ions and electrons into a
single fluid set of equations and further hierachize the different approximations. Secondly,
a numerical method to solve these equations will be presented. Finally, an overview of the
possible results obtained with this code would also be given. Here, the multi-species aspect of
the ionosphere dynamic is ignored, which permits neglecting most of the chemistry process.

1.4.1 Plasma fluid equations
Fundamental fluid equations
A plasma is composed of ions and electrons, both subject to electromagnetic force determined
by the electric field E and the magnetic field B. To obtain the equations governing the
dynamics of the plasma, we must first consider the hydrodynamical equations for both fluids.
Beginning with the mass conservation equations, with ρs the mass density of the fluid s and
Vs the velocity of fluid s,

∂tρe,i +∇· (ρe,iVe,i) = 0 (+S − L), (1.4)

the momentum conservation equations,

∂t(ρe,iVe,i) +∇· (ρe,iVe,i ⊗Ve,i) = −∇pe,i + qe,ine,i(E + Ve,i ×B)

+Fei,ie (+Fen,in + ρe,ig + FSLe,i ),
(1.5)

and the hydrodynamical energy conservation equations, with the energy Es define by Es =
ps
γs−1 + 1

2ρsV
2
s with γs the adiabatic index of the fluid s (for mono-atomic gas γe = γi = 5

3 =
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γ),

∂tEe,i+∇· [(Ee,i+pe,i)Ve,i] = qe,ine,iE · Ve,i+Qei,ie (+Qen,in+ρe,iVe,i · g+QSLe,i ), (1.6)

where e, i, and n refer to electrons, ions, and neutrals, respectively, ps is the internal pressure
of fluid s, qs is the electric charge of particle s (here qi = −qe = e, we don’t take into account
multiple ionization and negative ions), ns is the density of the fluid s, Fαβ is the friction
drag force on particles α colliding on particles β define by Fαβ = −ναβρα(Vα−Vβ), Qαβ is
the variation of energy associated by the friction drag force Fαβ , g is the gravitational field ,
S is source terms coming from ionization of neutrals by various phenomena, L is a loss term
due to recombination between ions and electrons into neutral atoms, FSLs and QSLs represent
the variation of momentum and energy respectively due to the source and loss term for fluid
s.

The terms between parenthesis in equations (1.4)-(1.6) represent the effects of gravity and
the collision with the neutral fluid since the plasma is only partially ionized, so that they are
specific to the studies of the ionosphere. We’ve left out the heat flux and the viscosity term
∇σvs, where σvs is the tensor of the viscous constraint of fluid s.

To complete this set of equations, we need Maxwell equations that describe the temporal
and spatial evolution of the electromagnetic field:


∇×E = −∂tB, (Maxwell-Faraday)
∇×B = µ0J + 1

c2 ∂tE, (Maxwell-Ampère)
∇· E = Q

ε0
, (Maxwell-Gauss)

∇· B = 0, (Maxwell-Flux)

(1.7)

where J is the current density define by J =
∑
e,i

qsnsVs, Q is the electric density charge define

by Q =
∑
e,i

qsns, µ0 is vacuum permeability, ε0 is the vacuum permittivity and c is the light

velocity in vacuum with c2 = 1/ε0µ0.
The conservation of electromagnetic energy is obtained by the Poynting’s theorem:

∂tEEM +∇·
(

E×B
µ0

)
= −E · J, (1.8)

where EEM = ε0E2

2 + B2

2µ0
.

Dimensionless equations
In the previous section, we have described the complete set of equations describing the fluid
approach of the ionosphere dynamic. However, all the terms present in this set of equations
aren’t relevant to our problem, and we can simplify by going through a normalization of the
equations. Table 1.1 lists the different quantities of our problems and their classical values
for EPBs studies. A problem arising from these normalization studies is that while some
values are rather constant inside the ionosphere (magnetic field, temperature...), others vary
by a few orders of magnitude (density, collision frequency...).
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Quantity Scaling unit Scaled quantity Value
Length L0 x′, y′, z′ = x/L0, y/L0, z/L0 105 m
Time t0 t′ = t/t0 103 s
Velocity V0 = L0/t0 V′s = Vs/V0 100 m.s−1

Magnetic field B0 B′ = B/B0 10−5 T
Electric field E0 = B0V0 E′ = E/E0 10−3 V.m−1

Density n0 n′s = ns/n0 1012 ∼ 1015 m−3

Temperature T0 T ′s = Ts/T0 1000 K
Mass Density ρ0 = min0 ρ′s = ρs/ρ0 10−14 ∼ 10−11 kg.m−3

Pressure p0 = kBn0T0 p′s = ps/p0 10−8 ∼ 10−5 Pa
Fluid energy E0 = ρ0V

2
0 E ′s = Es/E0 10−10 ∼ 10−7 J.m−3

Charge density Q0 = en0 Q′ = Q/Q0 C.m−3

Current density J0 = en0V0 J′ = J/J0 Am−2

e-n Collision frequency νen - 1 ∼ 102 s−1

i-n Collision frequency νin = me
mi
νen - 10−2 ∼ 1 s−1

Gravity field g - 10 kg.m.s−2

e-i Collision constant k - 10−39 kg.m3.s−1

e-i Collision frequency νei = k
me
n0 - 101 ∼ 104 s−1

i-e Collision frequency νie = k
mi
n0 - 10−1 ∼ 102 s−1

Table 1.1: Scaling units and scaled quantities.

Therefore, when performing the normalization of the mass and momentum conservation
equations,

∂ρ′e
∂t′

+∇· (ρ′eV′e) = 0, (1.9)

ετ

[
∂ρ′eV′e
∂t′

+∇· (ρ′eV′e ⊗V′e)
]

= − τ

M2
a

∇p′e − τBn′e (E′ + V′e ×B′)

−Kρ′e (V′e −V′i)− ρ′e (V′e −V′n)−Mgερ
′
e

g
| g | ,

(1.10)

∂ρ′i
∂t

+∇· (ρ′iV′i) = 0, (1.11)

τ

[
∂ρ′iV′i
∂t′

+∇· (ρ′iV′i ⊗V′i)
]

= − τ

M2
a

∇p′i + τBn
′
i (E′ + V′i ×B′)

−Kρ′i (V′i −V′e)− ρ′i (V′i −V′n)−Mgρ
′i

g
| g | ,

(1.12)

the Maxwell’s equations,

∇×E′ = −∂B′

∂t′
, (1.13)

∇×B′ = βM2
aτB
τ

J′ + α2 ∂E′

∂t′
, (1.14)
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M2
aα

2τ

βτB
∇· E′ = Q′, (1.15)

∇· B′ = 0, (1.16)

and the conservation of energy equations, (using Qα,β ∼ VαFα,β),

τ

[
∂E ′e
∂t′

+∇· (E ′eV′e)
]

+ τ

M2
a

∇· (p′eV′e) = −τBn′eE · V′e +KQ′ei

+Q′en −Mgερ
′
eV′e

g
| g | ,

(1.17)

τ

[
∂E ′i
∂t′

+∇· (E ′iV′i)
]

+ τ

M2
a

∇· (p′iV′i) = +τBn′iE′· V′i +KQ′ie

+Qin −Mgρ
′
iV′i

g
| g | ,

(1.18)

τ

M2
aβ

[
∂

∂t

(
α2E′2

2 + B′2

2

)
+∇· (E′ ×B′)

]
= −τBE′· J′. (1.19)

We obtain a set of dimensionless parameters, listed in table 1.2, which themselves vary
strongly in the ionosphere. As a consequence, different approximations can be performed from
this same set of equations depending on the researched physical accuracy or the position in
the ionosphere. For example, at low altitude, νin is large (due to the higher neutral density)
so that τ will be very small (10−3) and the first terms in the momentum and energy equations
can be easily neglected, whereas at higher altitude this approximation is not as evident.

Dimentionless parameter Meaning Value
ε = me

mi
Electron to ion mass ratio 10−3

β = p0
B2

0µ0
Internal pressure to magnetic pressure ratio 10−4 ∼ 10−1

Ma = V0
Cs

=
√

mi
kBT0

V0 Mach number 10−1

Mg = g
V0νin

Gravity to collision term ratio 10−1 ∼ 10
τ = 1

νint0
Mean-time between i-n collisions 10−1 ∼ 10−3

(dimentionless)
τB = eB0

miνin
= eB0

meνen
Number rotation period in B0-field 104 ∼ 102

per between i-n (e-n) collision
K = νie

νin
= νei

νen
Measure of the e-i collision frequency 1 ∼ 102

α = V0
c Fluid velocity to vacuum light velocity ratio 10−6

Table 1.2: Value of dimensionless parameters

1.4.2 Model Hierarchy
Hall-MHD
The Hall-MHD limits correspond to the cases ε → 0 and α → 0, which represent the
massless electron and non-relativistic approximations, respectively. When looking at the
dimensionless parameter in table 1.2, these two approximations are obvious and assuming
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the other parameters are bound, the Maxwell-Gauss equation (ni ≈ ne) leads to quasi-
neutrality. It also allows for the omission of electron inertial and gravitational terms in its
conservation of momentum and the displacement current in the Maxwell-Ampère equation.
The equations reduce them to:

∂n

∂t
+∇· (nV) = 0, (1.20)

0 = − τ

M2
a

1
n
∇pe − τB (E + Ve ×B)−K (Ve −V)− (Ve −Vn) , (1.21)

τ

[
∂nV
∂t

+∇· (nV⊗V)
]

= − τ

M2
a

∇pi + τBn (E + V×B)

−Kn (V−Ve)− n (V−Vn)−Mgn
g
| g | ,

(1.22)

∇×E = −∂B
∂t
, (1.23)

∇×B = βM2
aτB
τ

J. (1.24)

We removed the upperscript ′ for clarity, and we dropped the subscript i for the ion
velocity. Normally the velocity of the plasma is computed as V = (meVe+miVi)/(me+mi),
but V ≈ Vi in the ε→ 0 approximation.

The Ohm law can be rewritten as:

E + V×B = − τ

M2
aτB

1
n
∇pe + τ

M2
aβτB

(∇×B)×B
n

+ K

τB

τ

M2
aβτB

∇×B
n

− 1
τB

(V−Vn) + 1
τB

τ

M2
aβτB

∇×B
n

.

(1.25)

On the right hand side we have, the thermo-electronic term, the hall term, the resistive
term and other terms specific to ionosphere.

Equation (1.22) can be rewritten as:

τ

[
∂nV
∂t

+∇· (nV⊗V)
]

= − τ

M2
a

∇p+ τB
τ

M2
aβτB

((∇×B )×B)

−2n (V−Vn) + τ

M2
aβτB

∇×B−Mgn
g
| g | ,

(1.26)
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with p = pi + pe. We can also write the total energy conservation equation as:

τ

[
∂Et
∂t

+∇· ((Ei + Ee)V)−∇
(
Ee

J
n

)]
+ τ

M2
a

[
∇· (pV) +∇·

(
pe

J
n

)]
+ τ

M2
aβ
∇· (E×B) = Qn −MgρV g

| g | ,
(1.27)

with Et = Ei + Ee + 1
M2
aβ

B2

2 , Qn = Qen +Qin.
The Hall-MHD model contains all the physical terms relevant to ionospheric physics.

However, this type of equation is complex to solve analytically and time-consuming to ap-
proximate with a numerical solver, so it is rarely used in EPBs and striations studies.

Ideal-MHD
To retrieve the ideal-MHD limits, the approximation 1/τB → 0 is added to the Hall-MHD
model. This approximation is particularly valid at high altitudes, where νin is small. Then,
the Ohm’s law is simplified to:

E + V×B = 0, (1.28)

so that the ideal MHD set of equations can be rewritten as:

∂n

∂t
+∇· (nV) = 0, (1.29)

τ

[
∂nV
∂t

+∇· (nV⊗V)
]

= − τ

M2
a

∇pt+
τ

M2
aβ
∇· (B⊗B)−2n(V−Vn)−Mgn

g
| g | , (1.30)

τ

[
∂Et
∂t

+∇· ((Et + pt)V)
]

+ τ

M2
a

∇· (ptV) + τ

M2
aβ
∇· [V · (B⊗B)] = Qn

−MgρV · g
| g | ,

(1.31)

with pt = p+ (1/β)(B2/2).
The ideal-MHD is easier to solve analytically and numerically than the Hall-MHD. A

great number of numerical methods have been developed to approximate complex non-linear
and 3D problems with this model. However, when compared to other models, which will be
discussed below, a long computational time is still required to simulate ionospheric irregu-
larities, while it neglects non-ideal terms which play an important role in their evolution at
low altitude.

The computational cost of the various models is strongly related to the Courant-Friedrichs-
Lewy (CFL) condition cmax∆t/∆x ≤ CFL < 1 , which must be verified for stability with
cmaxthe fastest wave velocity of the problem. The fastest wave in the HALL-MHD model is
the whistler wave (cw), which is frequently much larger than the fastest wave in the Ideal-
MHD model, namely the fast magnetosonic wave (cf ). Obviously, the larger the fastest wave
is, the smaller the time step is in tune and the larger the computational cost becomes for
similar real-time simulation. See annex A for more explanations.
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Two dimensional electrostatic model
For this part, we go back to the dimensionless system of section 1.4.1. Again we made the
approximation α → 0 and retrieve quasi-neutrality (n = ne = ni) and the reduced Faraday
equation become,

∇×B = βM2
aτB
τ

J. (1.32)

We add the approximation, Mg → 0 and τ → 0 while τ/M2
a stay finite and not null.

This implies that Ma → 0 as well, which means the fluid motion is confined to the subsonic
regime (V0 � Cs). As a consequence, equations (1.10) and (1.12) reduce to,

0 = − τ

M2
a

∇pe − τBn (E + Ve ×B)−Kn (Ve −Vi)− n (Ve −Vn) , (1.33)

0 = − τ

M2
a

∇pi + τBn (E + Vi ×B)−Kn (Vi −Ve)− n (Vi −Vn) . (1.34)

We assume the magnetic field to be stationary in the z direction (B = B(x, y)ez). The
equation (1.23) reads as:

∇×E = 0, (1.35)

so the electric field can be written as a potential E = −∇φE .

Reformatting equation: We now switch back to dimensioned equations.

With the addition of isothermal approximation (Te = Ti = constant) the energy equa-
tion become redundant. The pressure gradient ∇ps can be rewritten (using the perfect gas
equation of state) as ∇ps = (kBTs/ms)∇ρs/ρs. Note that ∇ρe/ρe = ∇ρi/ρi = ∇ρ/ρ . By
solving the system on Ve and Vi , we can rewrite the equations as:

Ve = Ae∇φE + Be
∇ρ
ρ

+ CeVn, (1.36)

Vi = Ai∇φE + Bi
∇ρ
ρ

+ CiVn, (1.37)

with:

Ae =
(
Ne + νeiνieN−1

i

)−1
(
e

me
I3 + e

mi
νeiN−1

i

)
, (1.38)

Ai =
(
Ni + νeiνieN−1

e

)−1
(
e

mi
I3 −

e

me
νieN−1

e

)
, (1.39)
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Be =
(
Ne + νeiνieN−1

i

)−1
(
−kBTe

me
I3 + kBTi

mi
νeiN−1

i

)
, (1.40)

Bi =
(
Ni + νeiνieN−1

e

)−1
(
kBTi
mi

I3 + kBTe
me

νieN−1
e

)
, (1.41)

Ce =
(
Ne + νeiνieN−1

i

)−1 (
νenI3 − νeiνinN−1

i

)
, (1.42)

Ci =
(
Ni + νeiνieN−1

e

)−1 (−νinI3 − νieνenN−1
e

)
, (1.43)

where

Ne =
(
νe Ωe
−Ωe νe

)
, (1.44)

Ni =
(
−νi Ωi
−Ωi −νi

)
, (1.45)

N−1
e = 1

ν2
e + Ω2

e

(
νe −Ωe
Ωe νe

)
, (1.46)

N−1
i = 1

ν2
i + Ω2

i

(
−νi −Ωi
Ωi −νi

)
, (1.47)

and νe = νen+νei, νi = νin+νie, Ωi = eB/mi and Ωe = eB/me are the cyclotron frequencies
of the ion and electron, respectively.

Using ρ = (me +mi)n V = (meVe +miVi)/(me +mi), J = eρ(Vi−Ve)/(me +mi) and
∇· J = 0, we obtain the system:

∂ρ

∂t
+∇· [ρ (P∇φE + RVn)] +∇· (Q∇ρ) = 0, (1.48)

∇· (ρS∇φE) +∇· (ρUVn + T∇ρ) = 0, (1.49)

with

P = 1
me +mi

(meAe +miAi) , (1.50)
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Q = 1
me +mi

(meBe +miBi) , (1.51)

R = 1
me +mi

(meCe +miCi) , (1.52)

S = e

me +mi
(−Ae + Ai) , (1.53)

T = e

me +mi
(−Be + Bi) , (1.54)

U = e

me +mi
(−Ce + Ci) . (1.55)

Electrostatic type models are widely used by the community studying striations and EPBs
(if we didn’t neglect the gravity terms) since their numerical approximation is rather fast
while containing most of the physics necessary to describe ionospheric irregularities. Here we
presented a 2D version that is used in one of our numerical codes, but 3D transport codes
are also available althoug the potential field is taken as 2D since it is constant along with
the magnetic field. The limits of this type of model reside in cases where the bulk of ions are
at very high altitudes or in "violent" phenomena such as a very strong barium release. It is
worth noting that by including the approximation ε→ 0, we can retrieve the dynamo model
provided by Besse in his hierarchy [54]. [54]Besse et al

2004
Striation model
The striation model can be derived starting from either the Ideal-MHD or two-dimensional
electrostatic models.

Starting from the MHD model, we need to assume Mg → 0, τ → 0 while maintaining
τ/M2

a finite. The magnetic field is considered constant and uniform B = Bezand Ti ≈ Te.
Starting from the two dimensional electrostatic model, we need to assume ε → 0 and

1/τb → 0. We add the uniformity of the magnetic field B(x, y) = constant.
The momentum equation can then be rewritten as:

J = ∇p×B
B2 + [νinρ (V−Vn)]× B

B2 . (1.56)

Remembering that ∇· J = 0 and with the ideal Ohm’s law, one can write, assuming νin
constant, the mass and momentum conservation equations as:

∂ρ

∂t
− 1
B
∇· (ρ∇⊥φE) = 0, (1.57)

1
B
∇· (ρ∇φE) +∇· (ρVn × ez) = 0. (1.58)

University of Paris-Saclay Dated: January 31, 2023 Cauvet Quentin



40 1. Ionosphere

The striation model is the simplest of all the models and contains the strict minimum
necessary for striations to form. It can be easily approximated with a numerical code.
However, if one is interested in more specific influences on the GDI (compressibility, inertia
effect, magnetic field...), it is necessary to use one of the more complex and appropriate
models described above.

Summary
We have demonstrated how we can obtain different models, and cited few of their strengths
and drawbacks. This subsection can be summerize in the diagram 1.9.

Figure 1.9: Diagram representing the different models in function of their approximations, in blue the models presented
here and in orange models presented in literature.

1.4.3 CLOVIS (Ideal-MHD)
CLOVIS is a 3D finite volume code developed by CEA to improve our understanding of iono-
spheric and magnetospheric events. CLOVIS handles the evolution of three fluids (neutrals,
ions, and electrons) with a four-temperature model (NLTE) by solving the Euler equation for
neutrals and Ideal-MHD for the plasma. Different approximate Riemann solvers are available
with CLOVIS: For plasma, HLLD [55], and ROE (8Wave) [56], and for neutrals, HLLC [57] [55]Miyoshi and

Kusano 2005;
Miyoshi et al 2010

[56]Powell et al
1999; Roe 1981;
Barth 1999
[57]Toro 2009;
Toro et al 1994; Li
2005

and ROE [58] .

[58]Roe 1981

Due to the complexity of the problems involved, many modules are available to improve
the accuracy of the simulation (high order reconstruction [59], contraint transport [60],

[59]Toro 2009

[60]Evans and
Hawley 1988

Powell source terms... ), add different physical terms (chemistry, non-ideal MHD, solar
flux...), or to accelerate the computation time (Boris approximation [61]).

[61]Gombosi et al
2002; Matsumoto et
al 2019; Boris 1970

In this section, we will give a brief description of the approximate Riemann solver used
to solve Ideal-MHD. Note that most of these solvers can also be degenerate to solve Hydro-
dynamique Euler equations. The Riemann solver uses an exact or approximated solution of
the Riemann problem, which permits computing the flux between cells in the Finite Volumes
method.
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Riemann’s problem
The Riemann problem constitutes for study the temporal evolution of two initial states
separated by a discontinuity and that follows a system of hyperbolic equations of the form.
The Riemann problem for a hyperbolic system of order n× n takes the following form:

PDEs: ∂tU + A∂xU = 0

IC: U(x, 0) = U(0)(x) =
{

UL x < 0,
UR x > 0

 , (1.59)

with A the jacobian matrix defined by A = ∂F(U)
∂U .

The structure of the solution to the Riemann problem is presented in the Figure 1.10. It
constitutes of n waves coming from the origin, one from each eigenvalue λi of A. We classify
the eigenvalue in the increasing order λ1 < ... < λi < ... < λn. Each wave corresponds to a
discontinuity jump in U propagating at the velocity λi. Naturally, the solution to the left
of λ1 is the initial state UL and the solution to the right of λn is the initial state UR. The
goal of a Riemann solver is to find the solution in the spaces between the waves 1 and n.

Figure 1.10: Structure of the solution of Riemann problem for a hyperbolic system n× n with constant coefficients.

Application to Ideal-MHD equations
The equations of conservation written in the generic form are:

∂tU +∇· F(U) = 0, (1.60)

where U is the vector of conservative variables and F(U) is the flux vector.
In the Ideal-MHD case, the one dimensional components of U are:

U =



ρ

ρu

ρv

ρw

By

Bz

Et


, (1.61)
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where V = (u, v, w)T is the velocity vector and B = (Bx, By, Bz)T is the magnetic field.
Here, because of the conservation of the magnetic flux (Maxwell-Flux (1.7)), Bx is considered
constant in the one dimensional case.

We will first rewrite the equation of Ideal-MHD to determine the flux F(U). Firstly, the
equation of mass conservation becomes:

∂tρ+ ∂x(ρu) = 0. (1.62)

Then, for the conservation of momentum equation, we use the Maxwell-Ampère equation
(1.7), we can express J×B as:

J×B =
(

1
µ0
∇×B

)
×B = 1

µ0

[
∇· (B⊗B)−∇B

2

2

]
, (1.63)

where B2 = B · B. The momentum conservation equation then becomes:

∂tρV +∇· (ρV⊗V + ptI−
1
µ0

B⊗B) = 0, (1.64)

where pt is the total pressure defined by pt = p + B2

2µ0
. It gives in the one dimensional

approach:


∂tρu+ ∂x(ρu2 + pt − B2

x

µ0
) = 0,

∂tρv + ∂x(ρuv − BxBy
µ0

) = 0,
∂tρw + ∂x(ρuw − BxBz

µ0
) = 0.

(1.65)

Combining the Maxwell Faraday equation (1.7) with the ideal Ohm’s law (1.28), we
obtain:

∂tB = ∇× (V×B) = ∇· (B⊗V−V⊗B), (1.66)

and in one dimension:{
∂tBy + ∂x(Byu−Bxv) = 0,
∂tBz + ∂x(Bzu−Bxw) = 0.

(1.67)

Finally the equation of energy conservation can be obtain by adding the conservation of
the fluid energy E = p

γ−1 + 1
2ρV2 and the electromagnetic energy EEM = B2

2µ0
, which are

respectively:

∂tE +∇· [(E + p)V] = E · J,
∂tEEM +∇· (E×B

µ0
) = −E · J,

(1.68)

in one dimension, using Maxwell-Ampère (1.7), one obtains :

∂tEt + ∂x

[
(Et + pt)u− (V · B)Bx

µ0

]
= 0, (1.69)
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where Et is the total energy defined by Et = p
γ−1 + 1

2ρV2 + B2

2µ0
. We will now simplify

the equation by including the vacuum permeability in the magnetic field as B̃ = B/√µ0.
Omitting the tilde, that leads to:

F(U) =



ρu

ρu2 + pt −B2
x

ρuv −BxBy
ρuw −BxBz
Byu−Bxv
Bzu−Bxw

(Et + pt)u− (V · B)Bx


. (1.70)

In the ideal MHD case, we have a total of seven distinct egeinvalues which correspond
to the velocity of propagation of the two Alfvén waves (with velocity λ2 and λ6), the four
magnetosonic waves (two fast with velocity λ1 and λ7 and two slow with velocity λ3 and λ5),
a entropy wave and a contact wave (with the same velocity λ4):

λ1,7 = u± cf , λ2,6 = u± ca, λ3,5 = u± cs, λ4 = u, (1.71)

where

ca = ‖Bx‖√
ρ , cf,s =

(
γp+‖B‖2±

√
(γp+‖B‖2)2−4γpB2

x

2ρ

) 1
2

. (1.72)

The fast and slow magnetosonic waves can be written in the form:

cf,s =

√
C2
s + v2

a ±
√

(C2
s + v2

a)2 − 4C2
s c

2
a

2 , (1.73)

where Cs is the sound velocity defined by vs =
√
γ pρ and va = B√

ρ . Trivially, we obtain the
following inequalities:

λ1 ≤ λ2 ≤ λ3 ≤ λ4 ≤ λ5 ≤ λ6 ≤ λ7. (1.74)

HLL type Riemann solvers
Solver HLL
We will now describe the Riemann solver of the Godunov type proposed by Harten, Lax and
van Leer, hence the name HLL [62]. [62]Harten et al

1983We consider the integral form of the hyperbolic conservation law for a rectangle (x1, x2)×
(t1, t2) to be:∫ x2

x1

U(x, t2)dx−
∫ x2

x1

U(x, t1)dx+
∫ t2

t1

F(U(x1, t))dt−
∫ t2

t1

F(U(x2, t))dt = 0. (1.75)

Harten et al. [63] have shown that the Godunow type scheme can be written in the form: [63]Harten et al
1983

Un+1
i = Un

i −
∆t
∆x [F(R(0,Un

i ,Un
i+1))− F(R(0,Un

i−1,Un
i ))], (1.76)

where i indicates the i-umpteenth cell or volume, n the n-umpteenth time step and R(0,Un
i ,Un

i+1)
is the approximation of the Riemann solution at interface xi+1/2. Under this form, the ap-
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propriate numerical flux is obtained with the integral form (1.75) of the conservation law on
the rectangle (xi, xi+1/2)× (tn, tn+1):

Fi+1/2 = Fi −
1

∆t

∫ xi+1/2

xi

R
(
x− xi+1/2

∆t ,Un
i ,Un

i+1

)
dx+

xi − xi+1/2

∆t Un
i . (1.77)

Figure 1.11: Structure of the Riemann fan with one intermediary state U∗.

The HLL solver is constructed by assuming one averaged intermediary state between the
two fastest waves, as can be seen in the Figure 1.11. So we consider a Riemann problem
solution with one intermediary state, a left state UL and a right state UR, separated by
the smallest wave velocity SL and the largest wave velocity SR. By using the integral form
(1.76) on the Riemann fan (∆tSL,∆tSR) × (0,∆t), we obtain the intermediary state given
by :

U∗ = SRUR − SLUL − FR + FL
SR − SL

, (1.78)

which gives, by using the flux (1.77):

F∗ = SRFL − SLFR + SRSL(UR −UL)
SR − SL

(1.79)

Thus, the HLL flux is:

FHLL


FL si 0 ≤ SL,
F ∗ si SL ≤ 0 ≤ SR,
FR si SR ≤ 0.

(1.80)

It stays only to determine an approximation of SL and SR; one of the approximation
used in literature is:

SL = min(λ1(UL), λ1(UR)),
SR = max(λ7(UL), λ7(UR)),

(1.81)

where λ1 and λ7 are the smallest and largest eigenvalues of A, respectively. The method
of estimating SL and SR is not unique. The one presented here is used by Davis [64], but [64]Davis 1988

others exist as well as the method used by Einfeldt [65] based on the Roe average. Thus, in [65]Einfeldt et al
1991the following part, we will not define the value of SL and SR anymore because of the large

variation of possible approximations.
Although the HLL solver is very robust, it stays very diffusive nonetheless because it

takes only one intermediary state and two velocities out of the seven present in the ideal
MHD.
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Solver HLLC
The C in HLLC stands for "contact," since this scheme permits us to model the discontinuity
of contact in hydrodynamics. We will quickly describe the function of this scheme since it
follows the same idea as the HLL scheme [66]. [66]Toro et al

1994; Toro 2009

Figure 1.12: Structure of the Riemann fan with two intermediary states U∗L and U∗R.

The HLLC scheme, in contrast to the HLL scheme, is made up of two intermediary states,
UR∗ and UL∗, separated by a contact wave SM , as illustrated in the Figure 1.12. We assume
as well that the normal component of the velocity and the pressure are constant through the
contact discontinuity with:

u∗R = u∗L = SM , (1.82)

and

SM = (SR − uR)ρRuR − (SL − uL)ρLuL − pR + pL
(SR − uR)ρR − (SL − uL)ρL

, (1.83)

with SL and SR defined by 1.81. We can also determine the flux for each intermediary states,
which gives us the HLLC flux:

FHLLC


FL si 0 ≤ SL,
F ∗L si SL ≤ 0 ≤ SM ,
F ∗R si SM ≤ 0 ≤ SR,
FR si SR ≤ 0.

(1.84)

For conciseness’s sake, the fluxes F ∗R, F ∗L, FR, and FL are not explicited here, but they
can be determined with Rankine-Hugoniot jump-conditions and Riemann invariants through
the different waves. Although this scheme is ideal to solve a hydrodynamic problem, it is
still not precise enough for an MHD problem.

Solver HLLD
HLLD is a recent scheme proposed by Miyoshi and al. [67] especially designed to solve [67]Miyoshi and

Kusano 2005the MHD equations with precision. As shown in the Figure 1.13, it is made up of four
intermediary states separated by two Alvén waves, S∗L and S∗R, and a contact wave, SM . The
wave velocities are defined by:

SM = (SR − uR)ρRuR − (SL − uL)ρLuL − ptR + ptL
(SR − uR)ρR − (SL − uL)ρL

, (1.85)

and

S∗L = SM − |Bx|√
ρ∗
L

, S∗R = SM + |Bx|√
ρ∗
R

. (1.86)
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Figure 1.13: Structure of the Riemann fan with four intermediary states.

The HLLD flux is given by:

FHLLD



FL si 0 ≤ SL,
F ∗L si SL ≤ 0 ≤ S∗L,
F ∗∗L si S∗L ≤ 0 ≤ SM ,
F ∗∗R si SM ≤ 0 ≤ S∗R,
F ∗R si S∗R ≤ 0 ≤ SR,
FR si SR ≤ 0.

(1.87)

For more information on the HLLD scheme, one can refer to Miyoshi et al. [68]. [68]Miyoshi and
Kusano 2005

Roe solver
The solver of Roe [69] is another solver widely used in the code dedicated to studying MHD [69]Roe 1981

problems. We will now describe the approach used by Roe [70] in a broad manner [71]. [70]Roe 1981

[71]Toro 2009Roe’s solver is a Riemann solver which uses a linearised form of the Jacobian. We recall that
the explicit conservative form of our problem is:

Un+1
i = Un

i + ∆t
∆x (Fi−1/2 − Fi+1/2), (1.88)

where Fi+1/2 = F(Ui+1/2(0)). The approach of Roe uses the laws of conservation in a form
including a Jacobean A:

∂tU + A(U)∂xU = 0. (1.89)

Indeed, the key element in the Roe approach is to approximate the Jacobian matrix by
a constant Jacobian matrix during the time step ∆t:

Ã = Ã(UL,UR), (1.90)

which gives:

∂tU + Ã(U)∂xU = 0. (1.91)

For a hyperbolic system of m laws of conservation, the Jacobian matrix of Roe Ã needs
to satisfy the following properties:

University of Paris-Saclay Dated: January 31, 2023 Cauvet Quentin



1. Ionosphere 47

A): To obtain a hyperbolic system, Ã needs to be diagonalizable and have the eigen
values λ̃j = λ̃j(UL,UR) reals, which we will order as:

λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃m, (1.92)

and a complete sequence of independent eigenvectors:

K̃(1), K̃(2), · · · , K̃(m). (1.93)

B): Coherence with the real Jacobian matrix:

Ã(U,U) = A(U). (1.94)

C): Conservation through the discontinuity:

F(UR)− F(UL) = Ã(UR −UL). (1.95)

Then we define the amplitude of the wave j as being α̃j = α̃(UL,UR) and verifying:

∆U = UR −UL =
m∑
j=1

α̃jK̃(j). (1.96)

Thus we can show that:

Fi+1/2 = 1
2(FL + FR)− 1

2

m∑
j=1

α̃j‖λ̃j‖K̃(j). (1.97)

Test-case
When developing a code as complex as CLOVIS, one needs to compare results obtained
with test-cases in the literature [72]. Test-cases are some analytic or physical simulations [72]Brio and Wu

1988; Stone et al
2008; Orszag and
Tang 1979

performed to know if the code is able to grasp physical aspects inherent to the equations or
is robust enough to be used for more complex simulations. In this part, we will present the
Brio and Wu shock-tube and the Orszag-Tang vortex. The former is mainly used to see if
the code is able to propagate different physical waves, and the latter is used to check the
robustness of the numerical method.

Brio and Wu shock-tube
This test permits the first verification of CLOVIS. Indeed, the Brio and Wu shock-tube is
a very simple case of the propagation of different types of shockwave: waves of rarefaction,
contact discontinuity, and so on. It can also be seen as an extension to MHD of the Sod test
for hydrodynamics. The goal is to verify that each wave induced by an initial discontinuity
is well represented by the code.
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Initialisation The case is initialized with the left value ρl = 1, ul = vl = 0, pl = 1,
(By)l = 1, and right value ρr = 0.125, ur = vr = 0, pr = 0.1 and (By)r = −1, with also
Bx = 0.75 and γ = 2. This case involves two fast rarefaction waves, a slow compound wave,
a contact discontinuity and a slow shock wave. The grid used is of 800 cells with x ∈ [0; 1]
and the separation between the left and right state at x = 0.5.

Figure 1.14: Results of simulation performed with HLLD solver at the first spatial order with a CFL of 0.5 at t = 0.1 s
: from top left, the ions density ρ, the magnetic field By, the fluid velocity along x, then along y, the internal pressure
p and the rapport between internal pressure p and density ρ.

Results We can see in the Figure 1.14 from left to right, (1) a fast rarefaction wave,(2)
a slow compound, (3) a discontinuity of contact,(4) a slow shock, and (5) another rarefaction
wave. This result is comparable to the one obtained in literature, which permits us to validate
the capacity of our code to grasp physical waves [73]. [73]Brio and Wu

1988; Stone et al
2008Orszag-Tang vortex

The Orszag-tang vortex allows an evaluation of the robustness of the code, that is, in its
capacity to solve the propagation of shock waves or keep the constraint ∇· B = 0. Indeed,
it is a 2D problem starting with a continuous initial condition, which generates a supersonic
shock wave that eventually collides. Nevertheless, in the absence of an analytical solution,
this test remains rather qualitative.

Initialization the domain is [0,2π]× [0,2π] with values:

V = [− sin y; sin x] B = [− sin y; sin 2x]
ρ = γ2 p = γ

γ = 5/3
(1.98)

Results By comparing with result from the literature [74], we can say that CLOVIS is [74]Stone et al
2008; Orszag and
Tang 1979

able to perform complex simulations such as the Orszag-Tang vortex.
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at t = 0 s at t = 0,2π s

at t = 0,5π s at t = π s

Figure 1.15: Mass density obtained from CLOVIS’s simulation of the Orszag-Tang vortex with the HLLD solver to first
spatial order on a grid 256× 256 with a CFL of 0.1.

1.4.4 ERINNA (Electrostatic/Striation)
Numerical methods
ERINNA is another code developed by the CEA and solves arbitrary convection-diffusion
equations. It permits to solve the two dimensional electrostatic model or the striation model.
The code uses a combination of Discrete Duality Finite Volume (DDFV) and Monotonic
Upstream Scheme for Conservation Laws (MUSCL with limiters) methods. The time of
integration is then performed using either the first order Euler or second order Runge-Kutta
methods. The particularity of ERINNA is that it can use a large variety of meshes (triangular,
rectangular,...) even if simulations shown in this work we will stay with the usual rectangular
cartesian meshes [75]. [75]Hermeline

2012
Test-case
In this work, we use ERINNA to solve the slightly modified striation equations,

∂ρ

∂t
− 1
B
∇· (ρ∇⊥φE)− κ∆ρ = 0, (1.99a)

− 1
B
∇· (ρ∇φE) +∇· (ρVn × ez) = 0, (1.99b)

where κ is a diffusion coefficient. Note that in equation (1.99a), the diffusion term κ∇ρ has
been added compared to the striation model. This diffusion term is necessary to maintain
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the independence of the solution with regard to the grid size, as it will be explained further
in this section.

Barium Cloud
The goal of this test-case is straightforward since, it is used to demonstrate the capacity of
ERINNA to retrieve striation from a barium cloud initialization. It also shows one of the
shortcoming of the striation model and why the diffusion term is necessary.

Initialization The test-case is initialized with the ambient plasma density ρ0 = 1 kg.m3

and an exceeding density ρ1 = 1 in the barium cloud, so that the maximum density is
ρmax = ρ0 + ρ1. The barium cloud plasma deposition is chosen to take a Gaussian profile
and a circular perturbation was added so that the plasma density is given by:

ρ = ρ0

(
1 + ρ1e

−(r/R)2
)(

1 + α sin
[
2πm r

R

])
, (1.100)

where α = 0.03, R = 103 m, m = 5, and r =
√

(x− x0)2 + (y − y0)2 with x0 = 1500 m and
y0 = 1500 m. The domain is [0, 3000] m × [0, 12000] m. The boundary conditions are taken
as φE = 0 on at x = 0 or x = 3000 m, −∇φE at y = 0 and y = 12000 m, for the electric
potential and ∇ρ· n = 0 at every boundaries with n as the normal vector.

Results Simulations with different grids and values of κ were performed and are pre-
sented in Figure 1.16. What we can see on all panels is that the density gradient increased
on one side of the barium cloud and a structuration begins to form [76] (explanation of the [76]Zabusky et al

1973phenomena can be seen in the following chapter). Thus, the striation model is sufficient to
witness the formation of such a structure. However, as seen in the upper panels of Figure
1.16, the more resolution increases, the more structures appear. This is one of the drawbacks
of the striation model. Indeed, with this model, the size of the striation structure in a barium
cloud will depend strongly on the mesh grid size, which is clearly unphysical.

This is why, to compensate for this problem, it has been chosen to add a diffusion term to
the mass conservation equation. When the diffusion coefficient κ is large enough, as shown in
the bottom panels of Figure 1.16, increasing the grid resolution does not make the structure
thinner. As a consequence, the diffusion coefficient κ is required to prevent our single mode
from cascading into smaller ones, but the physical meaning of this term is not obvious, since
it can be seen as the traduction of thermal, electric, or viscous diffusion processes [77]. [77]Besse et al

2005In chapter 4, another possible physical explanation for this diffusion coefficient would be
presented.
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at t = 0 s.
at t = 240 s
with κ = 0

and 100× 400 grid.

at t = 240 s
with κ = 0

and 400× 1600 grid.

at t = 240 s
with κ = 20 m2.s−1

and 100× 400 grid.

at t = 240 s
with κ = 20 m2.s−1

and 200× 800 grid.

at t = 240 s
with κ = 20 m2.s−1

and 400× 1600 grid.

Figure 1.16: Mass density profiles from simulations performed with ERINNA. The upper-left panel shows the initial
mass density while the other panel shows the late time density profile for different value of κ and grid resolution. From
upper-left to bottom-right, we have, the initial density profile shows at t = 0 s, late time density profiles at t = 240 s
with κ = 0, and a grid of 100, and next 400× 1600, and, finally, with κ = 20 m2.s−1 with grid of 100× 400, 200× 800,
and 400× 1600 For all simulations Vn = U0ey with U0 = 100 m.s−1.
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2
Generalized Rayleigh-Taylor Instability (GRTI)

overview

Summary
In section 2.2, we begin with an explanation of the mechanism of the classical RTI, with
pressure consideration, followed by its ionospheric extended counterpart, the Generalized
Rayleigh-Taylor Instability (GRTI), with electric field and plasma current consideration.

In section 2.3, we perform the linear growth rate analysis of the GRTI either with a
discontinuity density profile,

γ = νin
2k

(√
1 + 4geffkAt

ν2
in

− 1
)

(2.1)

where k is the wave number and At is the Atwood number, or a exponential gradient density
profile.

γ = νin
2

(√
1 + 4 geff

Lν2
in

− 1
)

(2.2)

where l is the gradient length. It already put into evidence the two regime important for
our studies determined by the parameter C = geffkAt/ν

2
in or C = geff/Lν

2
in depending on

which density profile is chosen.
We present as well the properties that can be derived from a flux tube integrated growth

rate,

γEPB = ΣFP0
ΣEP0 + ΣFP0

(
V p − V pn −

ge
νeff

)
Lp −Rp, (2.3)

where ΣFP0 and ΣEP0 represent the integrated Pedersen conductivity of the F an E layer, V p

is the perpendicular to magnetic field integrated plasma velocities, V pn is the perpendicular
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to magnetic field integrated neutral velocities, νeff is the effective neutral-ions collision
frequency along magnetic lines, Lp is the integrated densities gradient length, ge = g0/L

2
M

where L2
M is the Mcliwain parameter (geocentric distance measured in units of Earth radii,

RE) , and Rp is the integrated recombination rate.
In section 2.4, we begin by presenting the scarce non-linear analysis work. The two early

single-mode non-linear model gave EPB velocity of the form g/νin. They seem coherent
with observations, but they still let a number of free parameters. In the case of multi-mode
non-linear studies, only one model has been formulated that predicts a slowdown in EPB
growth due to multiple bubble interactions.

We complete this lack of analytical materials with a discussion of the various non-linear
results derived from numerical simulations. Some interesting behaviors are put into evi-
dence, such as the impact of plasma-neutral friction on EPB growth or the structuration by
cascading processes known as bifurcation.

In section 2.5, we present a list of non-linear models designed to study the classical RTI.
Among them we present the single-mode non-linear models derived by,

� Layzer,

� Goncharov,

� Zufiria,

� Sohn,

� Abarzhi, Nishihara and Glimm,

� Zhang and Guo,

and the multi-mode non-linear models derived by,

� Zufiria,

� Alon and his collaborators,

� Glimm and his collaborators.
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2.1 Introduction
In the previous chapter, we have put into evidence the impact of ionospheric irregularities,
such as Equatorial Spread F and striations in the barium cloud, on human activities. In
this chapter, we will explain the mechanisms responsible for this growth, which are the
Rayleigh-Taylor and Gradient Drift Instabilities (RTI and GDI).

The difference between the two mechanisms is that RTI is driven by gravitational force,
whereas GDI is driven by the differential drift between neutrals and ions, often through the
intermediary of the electric field. RTI and GDI are both contributing to EPB growth, the
underlying structure behind ESF. For striations, only the GDI contributes to their growth.

First we will explain in a simple way the principle of these instabilities, and then we
will redemonstrate the linear growth rate. We will also show some of the recent advances
in the understanding of these instabilities in the non-linear stage, which will be used as
comparison for this work. Finally, we will describe some tools used to analytically study
the hydrodynamic Rayleigh-Instability, which will be the basis of this thesis to improve the
understanding of complex mechanisms like EPB rising.

2.2 Simple explanation of the instability
2.2.1 Hydro RTI

A simple example, to put into evidence the well-known Rayleigh-Taylor instability, is a simple
glass of water. g being the gravitational constant and l the liquid height, then the water
pressure pwater at the interface of water/air is (in x):

pwater = ρwater gl ≈ 103 Pa for l = 10 cm. (2.4)

Knowing that the atmospheric pressure is roughly 105 Pa, the pressure gradient is strong
enough to maintain the water inside the glass. However, we all witness in our everyday lives
that the water will fall to the ground, but why does it?

Figure 2.1: Perturbation at the interface water/air

Our computation is only valid in the case of a perfectly plane interface. In reality, small
ripples are always present. Pressure equilibrium must not be taken globally. We need to
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consider the small perturbation of the interface. Indeed, considering a point of interface as
x′ = l − ε (ε > 0) (see Figure 2.1), the pressure is then:

p′water = ρwaterg(l − ε) < pwater. (2.5)

Since the atmospheric pressure stays the same at all points of the interface,

patm
p′water

>
patm
pwater

. (2.6)

The gradient of pressure exerts a larger force on the water at x′ than x. As a consequence,
the water around x′ will be pushed by a bubble of air so that in x, some water will fall toward
the ground. This is the difference in pressure gradient along the interface that will put the
two fluids into movement. This phenomenon was first put into evidence by Lord Rayleigh
[1] hence the name Rayleigh-Taylor instability. [1]Rayleigh 1882

2.2.2 Ionospheric version of the instability
Our instability can also be described in a MHD framework by considering the electric and
magnetic fields.

Figure 2.2: Schematic representation of small perturbation on an interface between two fluids. It explains how, starting
from an equilibrium state and in an electrostatic description, the perturbation will grow in the case ρ1 > ρ2.

In the case of two fluids of one density, ρ1, above a fluid of one density, ρ2, with ρ1 > ρ2.
The force F = −ρfey is considered, with f being a positive constant. The magnetic field
is also considered constant and in the ez direction. The conditions are assumed such that
we can use a momentum conservation equation similar to the striation model 54, with an
arbitrary force instead of the friction drag between neutrals and ions, so that:

J×B = F. (2.7)

According to this equation, the force F induces an electric current in both fluids in the
ex direction, as J1,2 = ρ1,2f/B. Due to the difference in density between the two fluids,
if a small perturbation of the interface is present, as shown in Figure 2.2, we will have a
separation of charge between the two interfaces. This charge separation will induce a small
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electric field δE from both sides of the interface. Recalling the ideal of Ohm’s law,

0 = E + V×B. (2.8)

We obtain that this electric field will induce small fluid velocity in the ey direction. This
small velocity, δV, will amplify the perturbation of the interface. As a consequence, this
configuration is unstable and a structuration of the interface in the form of a bubble of light
fluid and a jet of heavy fluid will grow.

It is worth noticing that in the case of f negative or ρ1 < ρ2, we will witness a stabilizing
effect.

2.3 Linear analysis
In this section we will study the stability and derive the linear growth rate for the general-
ized Rayleigh-Taylor instability (GRTI). Two cases would be presented, one starting from a
discontinuity density profile and the second from an exponential gradient density profile.

In this thesis, we will most of the time use the code CLOVIS, so that we will perform our
analysis in the ideal MHD approximation, as written in equations 2.9.

∂tρ+∇· (ρV) = 0,
∂t(ρV) +∇· (ρV⊗V) = −∇p+ J×B− ρνin(V−Vn) + ρg,
∂tB = ∇× (V×B),
∂tEt = −∇ [V (Et + pt) + V · (B⊗B)] +Qn − ρV · g.

(2.9)

Moreover, when using ERINNA we will mostly stay in the striation approximation, a
reduction of the ideal MHD model, so that our results can be easily used in this model as
well.

2.3.1 Discontinuity density profile
We will start in this part with the stability analysis of a discontinuity density profile. This
case will be our focus for most of the work in this thesis, since most of the non-linear models
work with a discontinuity density profile. The discontinuity assumption is valid when the
density gradient length L, defined by L = (1/ρ)(∂ρ/∂y), is negligible before the perturbation
wavelength λ (meaning L� λ).

Figure 2.3: Representation of the equilibrium state for a discontinuity density profile case.
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The initial configuration, also found in Figure 2.3, is defined by a mean fluid velocity:
V0 = (u0(x, y), v0(x, y)) with u0(x, y) = v0(x, y) = 0. The gravitational field is g = gŷ and
the neutral friction drag is F = −ρνin (V−Vn) with Vn = U0ey. An interface in y = 0
separate the fluids with density ρ1 for y < 0 and ρ2 for y > 0.

We suppose a small velocity field perturbation of our system, written as V′ = (u′(x, y), v′(x, y)).In
the incompressible case, the velocity field can be described by a streamline function ψ, with
V = ∇⊥ψ.

V′ = (u′(x, y), v′(x, y)) = (∂yψ,−∂xψ). (2.10)

The velocity field is assumed irrotational ∇ ×V′ = 0, such that the streamlines verify
∇2ψ = 0. Since the system is invariant along x, we searched for a solution in the form:

ψ(x, y, t) = eik(x−vφt)Ψ(y), (2.11)

where k is the spatial wave number, vφ is the phase velocity, and Ψ(y) is a function to be
determined. The problem is reduced to the resolution of the equation:

(∂2
y − k2)ψ1,2 = 0, (2.12)

where the index 1 refers to the fluid in the inferior zone (−∞ < y < 0) and the index 2 refers
to the fluid in the superior zone (0 < y < +∞). To determine the complete solution, we
need to use the boundary conditions at infinity and the interface continuity equations, which
will permit us to obtain vφ, and our stability condition, as well.

The boundary condition at infinity imposes a zero velocity field, since we work with finite
energy. Thus, v′1 = 0 in y = −∞ and v′2 = 0 in y = +∞, which gives for the streamline:

Ψ1(−∞) = 0, and, Ψ2(+∞) = 0. (2.13)

Three other conditions are given by the continuity equations at the interface, y = η(x, t).

The continuity of the vertical velocity component, in y = η, imposes that v′1 = v′2. In
terms of streamlines, it gives:

Ψ1(η) = Ψ2(η). (2.14)

By a Taylor development in y = 0, we obtain:

Ψ1(0) = Ψ2(0) + o(y). (2.15)

The surface free condition imposes that, along y = η(x, t), the following kinetical condi-
tion is met:

∂tη + u′∂xη = v′(η). (2.16)
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By linearisation, we obtain:

∂tη = v′(0). (2.17)

By using the modal representation and the streamlines, this condition can be written as
vφη = Ψ.

The absence of pressure discontinuity at the interface imposes ( neglecting surface ten-
sion):

ptotal2 (y = η)− ptotal2 (y = η) = 0, (2.18)

where ptotal represents the combination of internal pressure and magnetic pressure. By
separating the equilibrium pressure and the perturbed pressure, it gives:

[ptotal02 (η) + p′total2 ]− [ptotal01 (η) + p′total1 ] = 0. (2.19)

Linearising the total pressure with the hydrostatic pressure, we have:

ptotal02 = −ρ2(g − νinU0)η + ptotal0 (0) ptotal01 = −ρ1(g − νinU0)η + ptotal0 (0), (2.20)

so that

p′total2 − p′total1 = geffη(ρ2 − ρ1), (2.21)

where geff = g−νinU0. Then using the momentum conservation equation, ∂tu′i = − 1
ρi
∂xp
′
i−

νinu
′
i, with i = 1, 2, we obtain:

p′i = ρi

(
vφ + i

νin
k

)
∂yΨ. (2.22)

Our pressure continuity condition becomes:

(
vφ + i

νin
k

)
(ρ2∂yΨ2 − ρ1∂yΨ1) = geffη(ρ2 − ρ1). (2.23)

Using vφη = Ψ, we obtain:

vφ

(
vφ + i

νin
k

)
(ρ2∂yΨ2 − ρ1∂yΨ1) = geffΨ(ρ2 − ρ1). (2.24)

Notes that only the derivative of Ψ are indexed since Ψ1 = Ψ2 in y = 0. Equation (2.12)
and the conditions at infinity give:

Ψ1 = A1e
ky, Ψ2 = A2e

−ky, (2.25)
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and since Ψ1 = Ψ2 in y = 0, we have A1 = A2 = A. Finally by injecting our solution in
equation (2.24), we obtain:

v2
φ + i

νin
k
vφ −

geff
k

ρ1 − ρ2

ρ2 + ρ1
= 0. (2.26)

Searching the roots of our polynomial, we obtain, if geff > 0 (one can shows that the
other case is stable):

vφ = iνin
2k

(
±

√
1 + 4geffkAt

ν2
in

− 1
)
, (2.27)

where At = (ρ2 − ρ1)/(ρ2 + ρ1) is the Atwood number. So our growth rate γ = −ik=(vφ)
and our solution is of the form,

ψ(x, y, t) = Aeγteikx−k|y|. (2.28)

We obtain the growth rate in two different regimes. The first regime, which we will call
the collisional regime, is the case when ν2

in � geffk and gives a growth rate similar to the
ones obtained with striation model [2]: [2]Besse et al 2005

γ ≈ geffkAt
νin

. (2.29)

The second case, called the inertial regime, is valid when ν2
in � geffk, and gives:

γ ≈
√
geffkAt, (2.30)

which represents the growth rate of the classical RTI with geff instead of g [3]. [3]Chandrasekhar
1961; Drazin 2002;
Rayleigh 18822.3.2 Exponential gradient density profile

In this part, we will derive the stability analysis for an exponential gradient density profile.
The gradient density profile is more studied in the literature since it proves to be more
universal compared to the discontinuity case. It has even been extended to the integrated
flux tube configuration, as we will see further in this chapter. The gradient profile assumption
is valid when the perturbation wavelength λ is negligible before the density gradient length
L (meaning L� λ).

Equilibrium state We consider the unperturbed state (ρ0,V0,B0). The plasma is
taken at rest with an exponential density profile in the x direction, i.e., ρ0 = ρ̄ exp(y/L),
where L > 0 is the gradient length. We suppose that the neutral wind is uniform and along
the y direction, Vn0 = (0, U0, 0). The gravitational force is on the form g = −gey and the
magnetic field is along the z direction, B0 = (0, 0, B0(y)). The initial configuration can be
visualize in Figure 2.4.
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Figure 2.4: Representation of the equilibrium state for a exponential gradient density profile case.

We note that in this equilibrium state, we must verify (from the momentum conservation
equation):

−∇p+ J×B + ρνinVn + ρg = 0. (2.31)

First, we will gather the acceleration force from friction drag with neutral and the gravi-
tational field into an effective gravitational field, ρgeff = −ρgeffey with geff = g − νinU0,
as done previously. Then the equation 2.31 must be verified. Contrary to the purely hydro-
dynamic case, the acceleration field can be compensated not only with the internal pressure
gradient but also with a magnetic field pressure gradient. For the sake of simplicity, we
choose to use the latter and neglect internal pressure since it permits us to ignore the energy
conservation equation. So the system can be taken as:


∂tρ+∇· (ρV) = 0,
∂t(ρV) +∇· (ρV⊗V) = J×B + ρνin(Vn −V),
∂tB = ∇× (V×B).

(2.32)

The equilibrium magnetic field verifies:

∂B0

∂y
B0 = −geffρ0. (2.33)

Small perturbation: The linear perturbation is defined as follows:


δρ = δρ1e

−i(k1x+k2y−ωt),

δu = δu1e
−i(k1x+k2y−ωt),

δv = δv1e
−i(k1x+k2y−ωt),

δB = δB1e
−i(k1x+k2y−ωt).

(2.34)
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An easy computation gives the linearized system governing the perturbation:


iωδρ+ 1

Lρ0δv − ik1ρ0δu− ik2ρ0δv = 0,
iωρ0δu = +ik1B0δB − ρ0νinδu,

iωρ0δv = ik2B0δB − ∂B0
∂x δB − geffδρ− ρ0νinδv,

iωδB = +ik1B0δu+ ik2B0δv − ∂B0
∂y δv.

(2.35)

To obtain the dispersion relation, we need to compute the determinant of the matrix:

M =


iω −ik1ρ0 ρ0( 1

L − ik2) 0
0 −(iω + νin)ρ0 0 ik1B0

−geff 0 −(iω + νin)ρ0 ik2B0 − ∂B0
∂x

0 −ik1B0 −ik2B0 + ∂B0
∂x iω

 . (2.36)

We obtain the following relationship using the fact that ∂B0
∂y B0 = −ρ0geff :

ω4 − 2iνinω3 +
[
−(k2

1 + k2
2)V 2

a +−
(
−1
L
− ik2

)
geff +

(
g2
eff

νinV 2
a

− 1
)
ν2
in

]
ω2

+
[
i(k2

1 + k2
2)V 2

a −
(
i

L
− k2

)
geff − i

g2
eff

V 2
a

]
νinω − k2

1geff

(
V 2
a

L
+ geff

)
= 0,

(2.37)

where Va is the Alfvèn velocity defines by Va = B0√
ρ0
.

Strong magnetic field case In the case of Va → ∞ (equivalent to small β) the
dispersion relation reduces to:

ω2(k2
1 + k2

2)− iωνin(k2
1 + k2

2) + geff
k2

1
L

= 0. (2.38)

In the generalized case we have:

∆ = −ν2
in − 4geff

L

k2
1

k2
1 + k2

2
. (2.39)

If geff < 0 the wave is stable and propagate at the speed
√

∆/2. If geff > 0, we get the
two following solutions:

ω = iνin ± i
√
−∆

2 , (2.40)

which leads to one stable and one unstable wave propagations. In the unstable configuration,
two limit cases can be derived.
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In the case of 4 |geff |L
k2

1
k2

1+k2
2
� ν2

in, ( equivalent to τ finite, which means that the inertial
terms are not negligible ) the solutions are:

ω ≈ ±i

√
−geff

L

k2
1

k2
1 + k2

2
. (2.41)

We obtain a different growth rate since it goes like
√
−U0
L νin and the collision rate plays

a role.
In the case of 4 |geff |L

k2
1

k2
1+k2

2
� ν2

in (equivalent to small τ) and k1 6= 0., we get the following
dispersion relation :

ω = −i geff
νinL

k2
1

k2
1 + k2

2
. (2.42)

Thus, we have retrieve the growth rate of the GRTI in the two regimes which agrees with
previous studies [4]. [4]Zargham and

Seyler 1989; Linson
and Workman
1970; Besse et al
2005; Volk and
Haerendel 1971;
Rayleigh 1882;
Chandrasekhar
1961

2.3.3 Application to ionospheric irregularities
These two derivations of the linear growth rate of the GRTI are purely academic. Thus, it
should be adapted to the ionospheric specificities to highlight some of the behavior of EPBs
and striations. In this subsection, we will mostly concentrate on the local and flux tube
integrated growth rates describing the EPB linear phase.

Equatorial plasma bubble
Local growth rate
Although we can only observe the full non-linear process of EPB growth, linear studies can
give us useful information on the behavior of EPB. The growth rate of equation (2.42) can
be rewritten as for EPB:

γ = VPRE
L

+ g

νinL
, (2.43)

where g is the earth’s gravitational acceleration, L is the density gradient length defined as
L = 1/(d ln(n0)/dr) and VPRE is the intensity of the Pre-reversal drift. The Pre-reversal drift
is a plasma convection velocity (equivalent to a differential vertical drift between neutrals
and ions) caused by the strong electric field generated by the E layer’s rapid recombination
at sunset.

We deduce from this growth rate:

� The growth rate does not depend on the wavelength of the perturbation. So as men-
tioned in the previous chapter 1, we need a seeding mechanism to explain the wave-
length of the EPB. As a result, studies of potential seeding due to gravity waves, which
have a periodicity of ten to hundred kilometers, as EPB, were investigated [5]. [5]Fritts et al 2009;

Abdu et al 2009;
Kelley et al 2009b� The growth rate is inversely proportional to the gradient length L, which is smaller

at night due to the recombination of the E layer. This explains why EPBs are not
developing during daylight [6]. [6]Kelley 2009a
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� On the right term of equation (2.43) (g/νinL), we see that the smaller the collision
frequency, the higher the linear growth rate is. This characteristic explains the impor-
tance of a few parameters, such as the h′F altitude (vertical position of the intense
gradient at the bottom of the F layer). Indeed, the collision frequency decreases with
altitude, and having h′F at a higher altitude results in a faster growth rate [7]. [7]Retterer et al

2005; Anderson
and Rendmon
2017

� For the left term of equation (2.43) VPRE/L, it seems different from the growth rate
obtained in the equation (2.42 ), but it is only due to a change in referential. For our
linear analysis, we place ourselves in the plasma frame so that a downward neutral
flow contributes to the instability. Here we place ourselves in the ground referential
(quasi-equivalent to the neutral atmosphere), so that the plasma moving upward is
destabilizing for the instability. As a consequence, the Pre-reversal drift (an intense
vertical drift of the plasma that happens post-sunset due to the recombination of the
E layer) contributes greatly to the growth of an EPB, especially at low altitude where
the collsion frequency is high [8]. [8]Carter et al

2014; Yizengaw
and Groves 2018;
Retterer et al 2005;
Huang 2018

Flux tube integrated growth rate
This simple linear growth rate was, and still, is a starting point to understand the process
behind the occurrence of EPB. However, it is a little too simple and can be upgraded to
enlighten more physicists. One of the main and most important thing, we need to take into
account is the high conductivity along magnetic field lines, such that magnetic field lines can
be considered equipotential. Thus, we need to use a flux integrated description that takes
into account the whole field line process and not only a local analysis.

This integrated flux tube growth rate has been studied in a number of different way [9]. [9]Haerendel et
al 1992; Basu
2002; Sultan 1996;
Perkins 1973

We choose to present here, as an example, the linear growth rate obtained by Sultan [10]:

[10]Sultan 1996
γEPB = ΣFP0

ΣEP0 + ΣFP0

(
V p − V pn −

ge
νeff

)
Lp −Rp, (2.44)

where ΣFP0 and ΣEP0 represents the integrated Pedersen conductivity of the F and E layers, V p

is the perpendicular to magnetic field integrated plasma velocities, V pn is the perpendicular to
magnetic field integrated neutral velocity, νeff is the effective neutral-ion collision frequency
along magnetic lines, Lp is the integrated density gradient length, ge = g0/L

2
M where L2

M is
the Mcliwain parameter (geocentric distance measured in units of Earth radius, RE) , and
Rp is the integrated recombination rate.

Dynamo coupling effect: In this form, we see the importance of the E and F layer
coupling in the first fraction of the flux tube integrated growth rate. The E layer will serve
as a shortcut for the instability.

Using the dynamo coordinate vector (q, φ, µ), with eµ is the unit vector along magnetic
field lines (B = Beµ), eφ is the vector in west-east direction (φ being the magnetic longitude)
and eq is perpendicular to B in the meridional plane (positive upward) and verifying eq =
eφ × eµ, one can write the electrostatic Ohm’s law on the form,

J = σ (E + V×B) , (2.45)

University of Paris-Saclay Dated: January 31, 2023 Cauvet Quentin



64 2. Generalized Rayleigh-Taylor Instability (GRTI) overview

Dipolar geometry

Slab geometry

Figure 2.5: Configuration of the coupling between E and F layer

with

σ =

σP −σH 0
σH σP 0
0 0 σ0

 , (2.46)

where σ0, σP and σH are the specific, Pedersen and Hall conductivities, respectively. Note
that σH 6= 1/ηH where ηH is the Hall resistivity. Using the fact that σ0 � σP , one can
assume that the magnetic field lines are equipotential so that Eφ = 0.

To explain the coupling effect between the E and F layers, we will work in a simplified
version of the real problem. Using the fact that σH � σp, we neglect its contribution by
assuming σH = 0. We suppose that there is no current in the φ direction (Jφ = 0). As
mentioned above, a velocity shear exists between the E and F layers. To be more precise,
the F layer plasma experiences a velocity of few hundred meters per second in the eastward
direction when the E layer is practically at rest or even moving westward [11]. To take this [11]Kelley 2009a

into account, we suppose that the plasma velocity is of the form:

V = V eφ, in the F layer,
0, in the E layer.

(2.47)

By doing so, we ignore the upward velocity of the plasma, which is consistent with the
fact that it is an order of magnitude slower that the eastward drift in the F layer.
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From now on, we will furthermore simplify the problem by assuming that it can be
expressed as a slab geometry, as seen in the second panel of Figure 2.5. This is equivalent of
assuming the scale factor, that appears in the equation due to the dipolar geometry, is equal
to one (hq = 1, hφ = 1, and hµ = 1). This is a strong assumption, but since it will render
computation more complicated as one would see in chapter 5, we have preferred to neglect
this effect for this simple explanation.

Using ∇· J = 0 and the equation (2.45), one obtains in the F layer,

dσP (Eq + V B)
dq

= −dJµ
dµ

, (2.48)

and in the E layer,

dσP (Eq)
dq

= −dJµ
dµ

. (2.49)

Integrating along magnetic field lines, it becomes,∫ µ1

0

dσP (Eq + V B)
dq

dµ = −Jµ(µ1) + Jµ(0), (2.50)

and ∫ µ2

µ1

dσP (Eq)
dq

= −Jµ(µ2) + Jµ(µ1). (2.51)

Assuming symmetry between the north and south hemispheres, Jµ(0) = 0. The at-
mosphere being a insulator, no current flow through the bottom of the ionosphere so that
Jµ(µ2) = 0. Supposing V B invariant along magnetic field line we can write, using equations
(2.50) and (2.51):

Eq = ΣFP0
ΣEP0 + ΣFP0

V B. (2.52)

Two limit cases can be seen through this equation:

� If ΣEP0 � ΣF , then Eq = 0 meaning that the E layer will be highly conductive and
short-cutting F layer. This case is achieved by the fact that the collisions in the E
layer are far more important that in the F layer, so that, at daytime, the relative small
electron density in E layer is sufficient to obtain a larger Pedersen conductivity.

� In the case of ΣFP0 � ΣE , we obtain Eq = V B, meaning the F layer plasma will be
free to follow the thermospheric wind of the neutral. This case is mostly relevant at
nighttime, when the peak density is in high enough altitude.

This very simple demonstration explains the impact of the factor in the integrated growth
rate of equation (2.44). Moreover, it explains how the plasma and neutral can possess very
different relative drifts between both, even at equilibrium.

Meridional wind effect The flux tube integrated growth rate contains more informa-
tion than the local growth rate. An interesting matter can be, for example, the impact of a
meridional wind [12]. [12]Maruyama

1988The influence of a meridional neutral wind has two aspects, and for illustration, we choose
to look at a wind coming from the north toward the south, as seen in Figure 2.6. The first
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Figure 2.6: Representation of the contribution of the meridional wind on the EPB growth

one is the direct contribution to the linear growth rate by having a destabilizing effect on
the north part since it is in the density gradient direction or a stabilizing effect on the south
part. The second contribution is more tricky to see. Due to the force exerted by the neutrals
friction drag, the equilibrium along the magnetic field line will be modified. As a consequence,
if the wind is strong in the north, it will push ions to higher altitudes, which will decrease
the conductivity in the E layer, as in Figure 2.6. The growth rate will be enhanced by this
effect (it will also affect νeff in the same way). For a meridional wind to have the maximum
destabilizing effect, it needs to be directed toward the south. It will be strong in the north
hemisphere and weak in the south hemisphere. The inverse will have a stabilizing effect.

Striation
For striation formed with the GDI, the explanation is more straightforward. Indeed we have
explain how the coupling between the E and F regions permits to have high difference in the
drift between the ions and neutrals (V −Vn = 200 ∼ 100ms−1). Knowing that geff = −νinU0,
where U0 is the neutral velocity in the plasma frame, we obtain, in the highly collisional case,
either a growth rate γ = U0kAt or γ = U0/L depending on the discontinuity or gradient
approximation (which will depend of the diffusion of the barium cloud in the background
ionosphere).

Of course, flux tube integrated linear analysis can also be performed to add more precision,
but in this case, it is not a stringent necessity since a barium cloud often increases the electron
density enough to avoid any short-cutting by the E layer. Making a local analysis is mostly
sufficient to study this type of instability.

2.4 Non-linear studies of GRTI
In the previous section, we presented the development of the linear theory of GRTI and how
it can be used to explain the behavior of ionospheric irregularities such as EPB and striation.
However, one can argue that the concordance with theory and observation is fortuitous since
the two are in total different regimes; one describes the linear growth rate while the other
observes non-linear structure. One would like to perform non-linear analysis or a default
simulation to assert that the qualitative features of the linear regime hold for the non-linear
regime.
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2.4.1 Analytic
Single mode growth
Two parallel analytical derivations of an EPB non-linear growth were performed, one by
Ossakow in 1979 exclusively in the collisional case [13]: [13]Ossakow et al

1979

Vb = g

νin
f

(
δn

n0

)
, (2.53)

where f is a function dependent of the shape of the bubble and which increases with increase
of δn/n0, where δn is the amplitude of the density perturbation in the EPB.

The other was performed by Ott in 1978 and is extended to either the inertial or collisional
regime [14]: [14]Ott 1978

Vb = 1
8R
(√

ν2
in + 16g

R
− νin

)
, (2.54)

where R is the radius of the bubble curvature at its top.
These two works, despite their differences, demonstrate that the nonlinear growth rate

exhibits nearly the same trend as the linear growth rate, namely the g/νin term in the
collisional regime. The only disadvantages are that they are both performed in a local
analysis and have an indeterminate shape.

Multi-mode growth
An attempt to extend the Ossakow model [15] to multiple non-linear bubble (or jet) interac- [15]Ossakow et al

1979tions in the non-linear regime was made by Chen [16]. Chen assumes that the bubble (or the
[16]Chen et al
1983, 1984

jet) can be seen as a cylindrical dielectric structure. The result was that multiple bubbles
grew slower than a single one.

To our knowledge, no other analytical work has been performed on the EPB or striation
non-linear growth.

2.4.2 Simulation
With the complexity of ionospheric irregularities, scientist have begun to rely greatly on
numerical simulation. In this subsection, we will show the advances in this domain by other
researchers and how it can reproduce some specific phenomena.

EPB
Due to computational constraints, EPB simulation was first performed in local 2D in the
1970s and 1980s (and even later) [17]. However, using a three layer approximation, as in [17]Zalesak and

Ossakow 1980;
Keskinen et al
1980; Huang and
Kelley 1996a,b,c,d;
Sekar et al 2001;
Huba and Joyce
2007

Figure 2.7,which is valid in regards to the high conductivities along magnetic field lines, sci-
entists could take into account the E and F layer coupling effects while keeping computational
costs relatively low [18].

[18]Zalesak et al
1982
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Figure 2.7: All plasma in the vicinity of the equatorial plane has been compressed into layer 2, while the remaining
northern and southern hemisphere plasma has been compressed into layers 1 and 3, respectively. Further, the magnetic
field lines have been straightened so we can deal in Cartesian coordinates x, y, and z as shown in the Figure. The
plasma in layers 1 and 3 is assumed to be uniform and free of any external driving force such as a neutral wind. [Zalesak
et al (1982)]

Today, complete 3D transport codes with multiple ion species have been developed (even if
the electric potential is still often used in a 2D model due to the electrostatic approximation).
We can cite for example the work perform by Retterer and collaborators, [19] , the High- [19]Retterer

2010a,b; Huang et
al 2012

Resolution Bubble (HIRB)[20] model developed and used by Yokoyama and his collabarators

[20]Yokoyama et
al 2014, 2015, 2019;
Rino et al 2018a,b

or also the code Sami3 developed and used by Huba and his collaborators [21], among

[21]Huba et al
2008, 2009a,b;
Huba and Krall
2013; Huba et al
2015; Krall et al
2009, 2010a,b,c

others[22].

[22]Keskinen et al
2003

We can see an example of an EPB simulation performed with the HIRB model in Figure
2.8. We see a bubble of low density that has developed to a high altitude, and small structures
have begun to appear (right panel). Another interesting feature is the propagation of this
density depletion along the whole magnetic field line, as seen on the left panel.

Researchers were able to reproduce some features of EPB that were predicted by theory
or observed with direct measurements using numerical simulation, among them:

� The effect of meridional wind was investigated using the code Sami3, with results
partially similar to the explanation done above (section 11) [23]. [23]Krall et al

2009; Huba and
Krall 2013� ESF is subject to an eastward tilt. The explanation comes from the difference in

eastward velocity as a function of altitude and the E and F layer coupling. It has been
reproduced by numerical simulation [24]. [24]Zalesak et al

1982; Yokoyama et
al 2015; Huba et al
2009a

� The problem of seeding mechanics has also been extensively studied. Some have con-
centrated on the aspect of gravity waves [25] which enhance the effect of the plasma-

[25]Yokoyama et
al 2019; Huang and
Kelley 1996a,b

neutral friction drag, and others, on the shear instability, driven by the difference in
eastward drift between the E and F layers (similar to Kelvin-Helmholtz instability)
[26]. [26]Kudeki et al

2007; Retterer
2010a; Huang and
Kelley 1996d
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Figure 2.8: Plasma density distribution at t = 3600 s in a three dimensional domain. Longitude altitude planes placed
at the equator are common for both panels. Other planes in left and right panels are along magnetic field meridian at
a longitude of 1.83◦ and a horizontal plane at an altitude of 300 km, respectively [Yokoyama et al (2014)]

� A point of interest lies also in the cascading process from the large scale of EPB to
the smaller scale structures that will provoke scintillation of the satellite signal. This
is often performed by applying a spectral analysis to EPB simulations, either in 2D or
in 3D [27]. Of course, this type of study is limited by the transition between fluid and [27]Rino et al

2018a,b; Keskinen
et al 1980; Zargham
and Seyler 1987

kinetic approximation.

� For the linear analysis, we have presented the fact that the integrated version of the
growth rate was more precise than the local. One could ask if this extends to the
non-linear regime of EPBs. The simplest way to confirm it is to investigate why EPB
stops rising. Is it the equilibration of the local density or the integrated flux tube
density? Simulations performed with Sami3 found that a bubble stops rising when the
integration flux tube density is nearly equal inside or outside of the bubble, even if the
local density at the top of the bubble still shows a jump of a few orders of magnitude
[28]. They even go further by looking at the " fossilization" process of EPB [29]. [28]Krall et al

2010b
[29]Krall et al
2010c

� Despite the fact that simulation is a powerful tool, some questions are still unresolved,
as for example, when EPB bifurcates as seen in Figure 2.8 [30] or inversely, why do they

[30]Carrasco et al
2020; Yokoyama et
al 2014; Huba and
Joyce 2007

merge together, [31]. Both have been reproduced by simulations, and some hypotheses

[31]Huang et al
2012; Huba et al
2015

have been advanced, but none demarcates.

This list of phenomena is non-exhaustive but shows the potential of numerical simulation in
understanding EPB and also the richness of physical mechanisms.

More recently, amazing results have been obtained as self-generated ESF by simulation
[32] by coupling two numerical codes: SAMI3 for the ionospheric part (ions and electrons) [32]Huba and Liu

2020and WACCM-X [33] for the thermospheric part (neutrals). This simulation succeeded in
[33]Liu et al 2018reproducing the observation with initial data.
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Striation
For striation, similar simulations were performed either in 2D with the striation model [34] [34]Zargham and

Seyler 1989; Besse
et al 2005; Zabusky
et al 1973

or in 3D with the electrostatic model [35]. The point of interest in this case is often the

[35]Yang 2011;
Besse et al 2007,
2011

spectral energy density analysis to see the effect of the structure degradation.

2.5 Non linear hydro-RTI analysis
As seen previously, a number of studies have been performed to observe the nonlinear growth
of EPB driven by GRTI through numerical simulation. However, we witness a lake of interest
for theoretical analysis, contrary to the more classical hydrodynamic RTI, which presents a
plethora of different methods to study the non-linear growth of bubbles or spikes.

2.5.1 Single mode analysis of hydro-RTI
There are a number of distinctive approaches to performing a non-linear analysis with a
single-mode perturbation. We will here concentrate on the case of the potential flow modeling
approach, valid for an inviscide, imcompressible, and irrotational fluid. More complete list
can be found in Zhou (2017) review and reference theirin [36]. [36]Zhou 2017a,b

Layzer type model
The potential flow modeling approach, pioneered by Layzer [37] for RTI, attempts a solution [37]Layzer 1955

to the governing equations in the form of a local expansion near the bubble tip . This trick
permits one to simplify the boundary conditions of the Euler equations at the interface into
a set of ordinary equations.

The model was performed with a fluid-vacuum interface (meaning that the Atwood num-
ber equals unity). Two cases were considered by Layzer: a 2D bubble in parabolic form with
velocity assumed as a single Fourier mode and a 3D rising in a cylindrical tube with velocity
assumed as a Bessel function mode. The following results were obtained:

2D : vb =
√
gλ

6π 3D : vb =

√
gD

2β1
, (2.55)

where λ is the wavelength, D is the diameter and β1 ≈ 3.83171 is the first zero of the
Bessel function J0(r). While being simple, this approach gave similar results to the complex
calculation [38]. [38]Garabedian

1957
Goncharov model
Goncharov (2002) [39] extended the Layzer’s model to arbitrary Atwood numbers. He derived [39]Goncharov

2002an approximation of the bubble tip dynamics by performing an expansion of its shape and
assuming a Fourier series for both heavy (subscript h) and light fluid (subscript l).

At the second order, the fluid interface shape is taken as y = η0(t) + η2(t)x2 in 2D or
z = η0(t) + η2(t)r2 and the velocity potential φ, obeying the Laplace equation and the jump
condition at the fluid interface, is written as: in 2D,

φh(x, y, t) = a1(t) cos (kx)e−k(y−η0(t)),

φl(x, y, t) = b0(t)y + b1(t) cos (kx)ek(y−η0(t)),

(2.56)
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and in 3D ,

φh(r, z, t) = a1(t)J0(kr)e−kz,

φl(r, z, t) = b0(t)z + b1(t)J0(kr)ekz,
(2.57)

where k is the perturbation wave number given by k = 2π/λ in 2D and k = 2β1/D in 3D.
Note again that Fourier mode (2D case) and Bessel function (3D case) expansions were used.
Five ordinary differential equations are obtained for the parameters η0(t), η2(t), a1(t), b0(t)
and b1(t), which describe the evolution of the bubble tip from the exponential linear stage
to the terminal non-linear stage. Also, in order to close the set of equations, Goncharov
chose to include a constant velocity part in the lighter fluid (first term of φl), rendering this
potential flow invalid in y → −∞(ot z → −∞). It was acknowledged by Goncharov that his
approximation was only valid in the vicinity of the bubble tip.

In this model the bubble velocity saturated at,

in 2D, vb =

√
2Atg

(1 +At)3k
, and in 3D, vb =

√
2Atg

(1 +At)k
. (2.58)

In the 2D case, Goncharov even goes further by performing a complete Fourier series
expansion, with the velocity potential of the form:

φh(y, x, t) = b0(t)y +
∞∑
j=0

b2j+1(t) cos((2j + 1)kx)e+(2j+1)k(y−η0(t)), (2.59)

φl(y, x, t) =
∞∑
j=0

a2j+1(t) cos((2j + 1)kx)e−(2j+1)k(y−η0(t)), (2.60)

but he found little differences in the terminal velocity, which becomes,

v∞b = 1.025

√
2Atg

(1 +At)3k
. (2.61)

Simulations concord relatively well with this model, but often witness reacceleration in
the later stages [40]. It was believed to be due to a vorticity effect. Thus, an extention [40]Liang et

al 2014, 2016;
Ramaprbhu and
Dimonte 2005;
Ramaprabhu et al
2006

of the Goncharov model by Betti (2006) by including the effect of vorticity [41] permits to

[41]Betti and
Sanz 2006

drastically reduce numerical and theoretical discrepancies [42].

[42]Bian et al 2020

Other physical aspect has been added to Goncharov model as compressibility[43] , surface

[43]Gupta et al
2009; Zhao et al
2020

tension[44], magnetic field [45], viscosity, or a combination of them [46].

[44]Sohn 2009

[45]Gupta et al
2010
[46]Banerjee et
al 2011; Banerjee
2016, 2019; Mitra et
al 2015, 2016
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The model can also be rewritten to determine the spike tip velocity, but as Goncharov
and others [47] have pointed out it appears only valid at low Atwood number (At < 0.1). [47]Mikaelian

2008It is worthwhile to note that in order to approximate the growth of RTI in Inertial
Confinement Fusion (ICF) experiments, the model was transported in spherical geometry,
using Legendre polynomial, with variable density in time [48]. [48]Goncharov and

Li 2005
Zufiria model
Zufiria (1988)[49] followed Layzer’s idea of approximating the equations near the top of the [49]Zufiria 1988a

bubble, but did not take a Fourier mode for the velocity potential. Instead, a point source
form was taken, giving the bubble the possibility to change size. It was latter extended to
arbitrary Atwood number by Sohn [50], with a potential flow of the form, [50]Sohn 2004a,

2007

W1(ẑ, t) = Q1(t) ln[1− e−k(ẑ+H(t))]− U(t)ẑ,

W2(ẑ, t) = Q2(t) ln[1− e−k(ẑ−H(t))] + (K(t)− U(t))ẑ,
(2.62)

where k = 2π/λ is the wave number and R(t) the local radius curvature. ẑ = ŷ + ix̂ is
the local coordinate on the complex form in the bubble tip referential. The potential W1

describes the source flow of strength Q1, located at (x̂, ŷ) = (−H, 0), in the uniform stream
U . The potential W2 gives the source flow of strength Q2, located at (x̂, ŷ) = (H, 0), in the
uniform stream U −K. Again, assuming an interface of the form η(x̂, ŷ, t) = x̂2 + 2R(t)ŷ,
the problem is solved with the interface jump conditions and the Bernoulli equation, to give
ordinary differential equations for Q1, Q2, H, K, U and R. We obtain an asymptotic bubble
velocity as:

vb =
√

6 + 4
√

3
2 +
√

3

√
2Atg

(1 +At)3k
. (2.63)

When comparing Zufiria’s model with Layzer’s model (or the extended versions for ar-
bitrary Atwood number [51]), we found that the value of the terminal bubble velocity is [51]Sohn 2004a;

Goncharov 2002qualitatively the same at the exeption of the factor
√

6 + 4
√

3/(2 +
√

3) ≈ 0.963, making the
velocity obtain with Zufiria’s model 3 to 4% lower than Layzer’s one. However when looking
at the curvature we obtain completely different results since we obtain η2 = −k/6 in Layzer
case and η2 = −k/2

√
3 in Zufiria case [52]. [52]Sohn and

Zhang 2001Zufiria’s model was also extended with other physical aspects, as, for example, recently
with surface tension [53]. [53]Sohn and

Baek 2017; Xia et
al 2015; Sohn 2008Sohn model

Sohn (2003) [54] also generalized the Layzer’s model to arbitrary Atwood numbers. In this [54]Sohn 2003,
2005model, the velocity potential is taken in the form:

φh = a1(t) cos(kx)e−ky, φl = −a1(t) cos(kx)e−ky. (2.64)

By approximating equation at the top of the bubble interface y = η0(t) + η2(t)x2, we can
obtain ordinary differential equations for η0, η2 and a1. The asymptotic velocities obtained
with this model are:

2D : vb =

√
Atg

(2 +At)k
3D : vb =

√
Atg

k
. (2.65)
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This model suffers from the fact that the potential does not verify the boundary condition
at y → −∞ in the light fluid (as Goncharov). Moreover, over a long time, the parameters
will also grow exponentially away from the initial interface.

Note that, in more recent papers, instead of using the model he has developed, Sohn
chooses either the Goncharov or Zufiria model [55] [55]Sohn 2009,

2004a, 2007; Sohn
and Baek 2017Abarzhi, Nishihara, and Glimm model

Abarzhi et al. (2003) [56] extended Layzer model to an arbitrary Atwood number by adopting [56]Abarzhi et al
2003aa multiple harmonic approach that retains more of the Fourier modes and thus potentially

possesses greater accuracy. Contrary to Goncharov’s [57] and Sohn’s [58], this method results [57]Goncharov
2002
[58]Sohn 2003

in a physical velocity potential at infinity in the light fluid. The asymptotic growth rate for
the bubble in 2D is:

vb =
(
Ag

3k
−2(η2/k)

A[3− 8(η2/k)]2 − (1−A)(η2/k)

)1/2
× (9− 64(η2/k)2), (2.66)

with η2 function of k and At. The asymptotic velocity of the bubble is qualitatively similar
to the one obtained by Goncharov with a maximum of 20% difference between the two, but in
this model the curvature obtained a dependency with the Atwood number At. At At ≈ 1,the
asymptotic curvature is similar to the classical Layzer type curvature (meaning η2 = k/6)
whereas it goes to zero as we get close to At ≈ 0.

While this approximation permits to verify boundary condition at y → −∞, it fails to
give a flatten velocity in the bubble light fluid [59]. A modification of the multiple harmonic [59]Goncharov

2002problem was proposed by Sohn, but it ended up achieving the same result as Goncharov [60].
[60]Sohn 2012

Zhang-Guo model
Zhang and Guo’s model[61] is one of the most recent ones. It also extended the Layzer [61]Zhang and

Guo 2016approach [62] to an arbitrary Atwood number, but also to the case of the spike. The goal of
[62]Layzer 1955this model was to respond to Mikaelian’s criticism (2008) [63] of the previous extension of
[63]Mikaelian
2008

Layzer’s model that could not retrieve the expected shape of the spike, in the case of At 6= 1
[64]. It used the velocity potential of the form: [64]Goncharov

2002; Zhang 1998

φh(t, x, y) = a1(t) cos(kx)e−ky + b1(t) cos(c(t)kx)e−c(t)ky,

φl(t, x, y) = a2(t) cos(kx)eky + b2(t) cos(c(t)kx)ec(t)ky,
(2.67)

where c(t) is a function of time, but also of the Atwood number At and wave number k.
The first term in the equation (2.67) represents the dominant behavior of the bubble (or
spike), while the second term represents the collective behavior of all the Fourier harmonics.
With this potential form, Zhang and Guo hoped to obtain a bubble curvature that would
satisfy the current knowledge of late spike behavior. After the usual calculation with the
interface boundary condition and Bernoulli equation, one obtains the curvature of the bubble
(or spike) tip:

η2

k
= − 3 +At

12
√

2(1 +At)
, (2.68)
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and its velocity

vb =

Atg3k
8

(1 +At)(3 +At)

[
3 +At +

√
2(1 +At)

]2
4(3 +At) +

√
2(1 +At)(9 +At)


1/2

. (2.69)

This formula has the particularity of being valid either for the bubble or the spike by
assuming At and g positives for the bubble and negatives for the spike. Here, like in Abarzhi
et al. model, the curvature is dependent of the Atwood number, but has the supplementary
property to go to Layzer’s model curvature (−k/6) for At → 1 (fluid/vacuum bubble) and
infinity for At → −1 (fluid/vacuum spike). This model seems to give good agreement with
RTI simulations for both structures, even if some divergences were imputed to the turbulent
behavior of the instability [65]. It is worth noting that in the case of the Richtmeyer- [65]Sohna 2004b;

Zhang and Guo
2016

Meshkov instability (RMI) [66], which is often studied with the same technique as RTI, the

[66]Richtmyer
and Taylor 1954;
Meshkov 1969

convergence between model and simulation is rather outstanding [67].

[67]Zhang
and Guo 2016;
Dimonte and
Ramaprabhu 2010;
Sohna 2004b; Alon
et al 1995

Summary and discussion

Model Asymptotic 2D bubble velocity vb Asymptotic curvature η2
Layzer (only
for At = 1)

√
g
3k −k6

Goncharov √
2Atg

(1+At)3k −k6
Zufiria √

6+4
√

3
2+
√

3

√
2Atg

(1+At)3k
− k

2
√

3

Sohn √
Atg

(2+At)k −k6

Abarzhi,
Nishihara,
and Glimm

(
Ag
3k

−2(η2/k)
A[3−8(η2/k)]2−(1−A)(η2/k)

)1/2
×

9 × (9− 64(η2/k)2)

Solution of equation
3AtX4 + 8X3 + 6AtX2 −
At = 0, with X = −2η2/k

and X > 0

Zhang-Guo
(
Atg
3k

8
(1+At)(3+At)

[
3+At+

√
2(1+At)

]2

4(3+At)+
√

2(1+At)(9+At)

)1/2
− 3+At

12
√

2(1+At)

Table 2.1: Ensemble of asymptotic 2D bubble velocity and curvature obtained with the
different single-mode non-linear models presented above.

The list, summarized in table 2.1, is not an exhaustive list of all the models used to
study the RTI [68]. One can refer to the review done by Zhou and references theirin for [68]Mikaelian

1998, 2003; Abarzhi
1999

more information [69] . We note, nevertheless, that work has been perform to give a more

[69]Zhou 2017a,b
rigorous analysis to Layzer’s idea [70] or include other geometric aspects [71].

[70]Layzer 1955;
Krechetnikov 2009
[71]Banerjee et al
2013b; Clark and
Tabak 2005a,b,
2006

Having so many models to describe the non-linear behavior of a single mode RTI bubble
raises a simple question. Which one is the right one? All the models give more or less the
same velocity for At ≈ 1, but their velocity varies greatly for At 6= 1.

From a theoretical standpoint, all processes default, such as breaking the boundary con-
dition at y → −∞ or retrieving a flat velocity profile near the bubble top.

People have tried to determine which was the best. Goncharov’s model seems to give a
closer velocity approximation compared to simulation for the quasi-steady state regime [72]. [72]Dimonte et al

2005; Ramaprbhu
and Dimonte 2005;
Liang et al 2021

It is also worth noticing that the extension of Goncharov’s model with vorticity permits
obtaining a very close approximation of the bubble velocity in the re-acceleration regime
compared to simulation [73]. [73]Betti and

Sanz 2006; Bian et
al 2020
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Goncharov’s model also seems to give relatively good approximation in some experimental
measurement of the bubble velocity for RTI [74] (or RMI [75]). However, this result isn’t [74]Wilkinson

and Jacobs 2007;
White et al 2010
[75]Jacobs and
Krivets 2005

unanimous since other experiments give larger bubble velocity, [76] which would surely be

[76]Morgan et al
2018

closer to the Abarzhi, Nishihara and Glimm model.
Abarzhi et al. (2003) [77] argue that the answer to the question "Does the curva-

[77]Abarzhi et al
2003a

ture of the RT bubble have a strong dependence on the Atwood number or reach an At-
independent value?" will allow us to differentiate the right model from the bad one. While
being hard to quantify with experiment, numerical simulation shows that curvature varies
rather weakly with Atwood number and found result closer with Zufiria’s model [78] (com- [78]Zufiria 1988a
pare with Abarzhi’s model [79] and Goncharov’s model [80]) [81]. We didn’t find any [79]Abarzhi et al

2003a
[80]Goncharov
2002
[81]Sohna 2004b;
Sohn 2012, 2007

experimental data on the bubble curvature that could corroborate this result. The most re-
cent Zhang-Guo model [82] has yet to be compared with others for the RTI, but has already

[82]Zhang and
Guo 2016

proven to be a good approximation for the RMI bubble [83]. As a consequence, the only

[83]Liang et al
2019

conclusion that can be made regarding current literature is that Sohn’s model [84] seems the

[84]Sohn 2003

most unlikely to be validated by experiments and simulations.

Another point that needs further investigation is the spike behavior in the non-linear
stage. Some models have been exclusively derivated for this structure [85] while others

[85]Banerjee et al
2013a; Clavin and
Williams 2005;
Zhang 1998

try to extend bubble models to the case of the spike [86]. The main controversy over the

[86]Zhang and
Guo 2016; Gon-
charov 2002

spike’s non-linear velocity lies in the question of whether the spike enters a free fall motion or
constant velocity at an early non-linear stage? Simulations [87] and experiments [88] have

[87]Liang et al
2021; Ramaprabhu
et al 2012; Sohna
2004b; Glimm et al
2002
[88]White et al
2010; Ratafia 1973

both witnessed the two possibilities and it seems that for low Atwood numbers, the velocity
of the spike reach a constant (like the bubble) and for Atwood numbers close to unity, the
spike encounters a free fall motion. However, it is still unclear at which Atwood number the
transition between the two behaviors is performed.

2.5.2 Multi-mode hydro-RTI
Perturbation model
The perturbation model, with the use of expansion of the flow equations, provided the
expression for the nonlinear evolution. It was pioneered by Jacob[89] and Haan[90]. The

[89]Jacobs and
Catton 1988
[90]Haan 1989

latter constructs a second order analysis mode coupling equation for a slightly perturbed
interface[91].

[91]Haan 1991

As with previous models, the analysis is carried out with the assumptions of inviscid
and incompressible fluids. Here the interface is taken on a 3D form with z = Z(x, t) with
x = (x, y) a two-dimensional vector. The two fluids are assumed to be in a periodic box
with a box length of L in the x and y directions, and the usual conditions are assumed at
z → ±∞. Contrary to the Layzer model, which performs a second-order expansion in space
at one point, Haan performs an expansion of second order in amplitude by using a Fourier
decomposition of the interface

Zk(t) = L−2
∫
Z(x, t)e−x · kdz, (2.70)

and the velocity potentials

φh(x, z, t) =
∑
k

φhk(t)e−kzeik · x, (2.71)
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φl(x, z, t) =
∑
k

φlk(t)ekzeik · x. (2.72)

Using the interfacial boundary condition and the Bernoulli equation, at second order, we
can obtain a differential equation describing modal coupling.

Z̈k = α(k)2Zk+Atk
∑
k2

[
Z̈k2Zk′2

(
1− k̂2 · k̂

)
+ Żk2Żk′2

(
1
2 − k̂2 · k̂− 1

2 k̂2 · k̂′2
)]

, (2.73)

where γ(k) is the linear growth rate of the wave number k, k′2 = k− k2.
It is also denoted as a weakly non-linear model since it is no longer valid after a long

time. Nonetheless, it allows us to study the transition between linear and nonlinear regimes,
perform spectral analysis, and saturation growth, which is why it has been widely used in
the literature [92]. [92]Ofer et al

1996; Garnier
and Masse 2005;
Dunning and Haan
1995; Liu et al
2012; Ikegawa
and Nishihara
2003; Nishihara
and Ikegawa 1999;
Vandenboomgaerde
et al 2003; Ruiz
2020

Competition model
When an interface subject to the RTI is perturbed with white noise, it forms what is called a
mixing layer. This represents a complex structure between the two fluids (heavy and light).
Although it can seem chaotic, some characteristics can still be put into evidence. First, we
see that the bubbles’ scale length will increase with time, meaning that the small structure
that grows faster in the linear stage lets place to a bigger structure in the non-linear stage.
Indeed, as shown above, the nonlinear velocities of a single bubble are of the form

√
g/k

meaning a larger bubble will move faster than a smaller one in the nonlinear stage. This is
demonstrated by the larger bubble becoming still larger by absorbing its neighbors, so that
they will move faster. As a consequence, the bubble front hb would be accelerated and it was
found that it takes the form hb = αbAtgt

2, with αb a dimensionless parameter. Experimental
measurements give value of αb between 0.05 and 0.08 [93]. [93]Read 1984;

Dimonte and
Schneider 1996;
Dimonte 1999;
Dimonte and
Schneider 2000;
Youngs 1992

Zufiria Model
Zufiria’s model [94] already presented above has an advantage compared to Layzer’s model,

[94]Zufiria 1988a

namely the fact that it can be easily extended to the case of multiple bubbles (even with an
arbitrary Atwood number [95]). The complex potential velocity for an array of N periodic

[95]Sohn 2007

bubbles is written as:

W j
1 (ẑ) =

∑N
l=1Q

l
1
[
ln
(
1− ek/2(Zl−Hl−Zj−ẑ)

)
+ ln

(
1− ek/2(Z∗l −Hl−Zj−ẑ)

)]
− Uj ẑ,

W j
2 (ẑ) =

∑N
l=1Q

l
2
[
ln
(
1− ek/2(Zl+Hl−Zj−ẑ)

)
+ ln

(
1− ek/2(Z∗l +Hl−Zj−ẑ)

)]
+ (Kj − Uj)ẑ,

(2.74)

where Zj = Yj +Xj , j = 1, 2, . . . , N are the bubble tip positions. Under the approximation
of non-horizontal motion (meaning Xj constant) and using interface boundary conditions
and Bernoulli equation, we can obtain 4N ordinary differential equations for Yj , Rj , Qj1 and
Hj , the parameters Kj , Uj and Qj2 being direct function of the others.

This model has demonstrated relative agreement with numerical simulation and achieves
a bubble front with temporal motion of the form αgt2, with α ≈ 0.054 [96]. [96]Zufiria 1988b
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Statistical model
Pioneered by Sharp and Wheeler [97], the basis of the model assumes a sample of different [97]Sharp and

Wheeler 1961;
Sharp 1983

bubbles large enough to be considered statically, such that the ensemble of bubbles follow
a distribution function of its radius (3D) or wavelength (2D). Then the dynamic will follow
some determined rules, mainly:

� The velocity of a single bubble is given by asymptotic single-mode non-linear growth.

� A merger law that will tell us when two adjacent bubbles will merge into one.

� Different quantities are conserved. It can be either the radius or wavelength, the area
or the volume of the bubble, depending on the assumption made and/or if we are in
2D or 3D.

This type of model, after some computational work, will permit us to derive a constant
acceleration of the bubble front as measured in experiment and simulation.

Today, we can separate the work performed on this type of model in two branches,
one being conducted by Alon[98] and his collaborators and another one by Glimm and his [98]Alon et al

1995, 1993, 1994;
Shvarts et al 1995,
2000; Rikanati
2000; Oron et al
2001; Kartoon et al
2003

collaborators [99].

[99]Glimm and
Sharp 1990b;
Glimm et al 1991,
1996; Zhang 1990;
Cheng et al 2002,
2003, 2020

The main difference between the two branches is that Glimm’s Renormalization-Group
fixed point method considers the variation in height of the bubbles at the front, such that
the velocity of the bubble is dependent on its height and wavelength. Whereas for Alon’s
scale invariant model, the velocity of the bubble will depend only on its wavelength and the
height of the bubble front will be determined by integrating the mean velocity of the bubble
distribution function.

Recent numerical simulations appear to give the Alon model a slight advantage over the
Glimm model, even though both still require improvement to perfectly concord [100].

[100]Zhou et al
20182.6 Conclusion

In this chapter, we briefly recapitulated our understanding of the EPB and striation irregu-
larities caused by GRTI and GDI. We have shown that the linear stage has been extensively
studied, but deplore that for the non-linear stage, people tend to prefer numerical simulation
due to the complexity of the problem. However, in other fields of studies, such as Iner-
tial Confinement Fusion and astrophysics, a great number of analytic methods have been
developed for the hydrodynamic RTI.

This point has motivated my thesis work because it appears to be an opportunity for
theoretical models to catch up with current and amazing simulation results (for example,
Sami3 cites [101]). [101]Huba et al

2008In the next few chapters, we will try to use some of the tools developed to study hydro-
dynamical RTI for the GRT problem. Will we start with the Layzer’s type model [102], [102]Layzer 1955

specifically the Goncaharov extension [103], and then move on to the competition model, [103]Goncharov
2002specifically the approach given by Alon and his collaborators [104].
[104]Alon et al
1993, 1994, 1995
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3
Non-linear model of a single mode Generalized

Rayleigh-Taylor Instability (GRTI)

Summary
In this chapter, we will study the non-linear evolution of the single-mode GRTI and more
particularly the dynamic of the top of the bubble and/or of the tip of the spike.

In the section 3.2, we extend Goncharov’s model [1] used for classical RTI to the GRTI. [1]Goncharov 2002

We start from the hydrodynamical set of equation, containing the gravity field g, from which
the Lorentz force J × B and friction drag force Fn = ρνin (Vn −V) due to the collision
between the ions and neutrals have been added. This set of equations has already been
presented in the previous chapter when deriving the GRTI growth rate.

Supposing an irrotational motion and incompressibility of the fluid, we can write the
evolution of the top of the bubble (or tip of the spike) as,

dU
dτ

= F (U, C,At), (3.1)

where U = (ξ1, ξ2, ξ3)t, with ξ1, ξ2 and ξ3 are, respectively, the dimensionless (with respect
to the wave number and the effective acceleration field) displacement, curvature and velocity
of the top of the bubble (resp the tip of the spike), F is a determined function, At is the
Atwood number, and C is the dimensionless parameter which represent the ratio of collision
frequency over the classical growth rate of the discontinuous RTI. Thus, U represent the
variable describing the evolution of the top of the bubble (resp the tip of the spike), and C
and At are the parameters of the problem.

One can show that this system of equation will reach a stationary state where dξ1/dτ = ξ3

and dξ2/dτ = dξ3/dτ = 0. As a consequence, we obtain an asymptotic value of the top of
the bubble (resp the tip of the spike) velocity. The result are summaries in table 3.1, where
we have put into evidence two extreme regimes in regards to the parameter C; the inertial
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regime (C � 1) represents the classical RTI and the collisional regime (C � 1) is more
representative of the dynamic in the ionosphere.

Inertial (or
classical) regime

(C � 1)
Transition regime (arbitrary C) Collisional regime

(C � 1)

Top of the bubble
velocity vb

√
geff
3k

2At
1+At νin

6k
At+3
At+1

(√
1 + 12 2At(At+1)

C2(At+3)2 − 1
) geff

νin
2At

3+At

Tip of the spike
velocity vs

√
λgeff

6π
2At

1−At νin
6k

3−At
1−At

(√
1 + 12 2At(1−At)

C2(3−At − 1
) geff

νin
2At

3−At

Table 3.1: Asymptotic velocity for either the top of the bubble or the tip of the spike in the
different regime define by the parameter C. Note that the velocities given for the transition
regime is valid regardless of the value of C.

In Section 3.3, we compared the assumptions and asymptotic velocities of the model with
various simulations of GRTI with CLOVIS, which can simulate RTI and GDI either in the
inertial or collisional regimes, and ERINNA, which can only simulate GDI and exclusively
in the collisional regime.

For the assumption we have verified that,

� A stationary state is reached at late time in simulations.

� The form of the assumed velocity profile is coherent with simulation.

� The total pressure is continuous through the interface.

� Vorticity decrease in the collisional regime compare to the structure velocity, which
verify the irrotational assumption.

Finally looking, at the asymptotic velocities given by the model compare to simulation
in the collisional regime two main results have been made:

� Surprisingly, the tip of the spike asymptotic velocity seem to be well describe by the
model compare to the simulations, which was not the case in the inertial regime.

� The top of the bubble velocity obtained by the simulation seems two time larger than
the one given by the model, while following the same tendencies.

For the latter result, the problem has been found to be the form of the velocity potential.
Indeed, we used a Fourier decomposition of the perturbation with only the fundamental
mode at first. By adding harmonics in the model, the results seems to converge at the cost
of further computation for the model.

Note that we concentrated only in the collisional regime since the inertial regime as
already been extensively studied in literature[2]. [2]Dimonte et al

2005; Ramaprbhu
and Dimonte 2005;
Wilkinson and
Jacobs 2007

University of Paris-Saclay Dated: January 31, 2023 Cauvet Quentin



3. Non-linear model of a single mode Generalized Rayleigh-Taylor Instability (GRTI) 81

3.1 Introduction
In this chapter, we will present an application of the Layzer type non-linear model [3] to [3]Layzer 1955

the Generalized Rayleigh-Taylor Instability (GRTI) Indeed, only rare cases in the literature
performed a non-linear analysis of bubbles driven by the GRTI [4]. Although the method [4]Ossakow and

Chaturvedi 1978;
Ott 1978

used in these models was similar to the Layzer type non-linear model, it did not provide a
specific shape for the top of the bubbles, resulting in a free parameter in the bubble velocity
description. Moreover, these models have only been compared qualitatively with simulations
[5]. While it has been found that this model seems to reflect similar behavior to simulation [5]Huba et al

2009a; Ossakow et
al 1979

(or observation), we found it interesting to know precisely at which point the analytic model
and simulations are in good agreement.

Besides, most of the observations of EPBs and striations are performed when the struc-
tures have attained the late non-linear stage. Comparing these structures with the linear
growth rate, as it is often done [6], seems inconsistent to us. This is why Layzer’s type [6]Anderson and

Rendmon 2017;
Retterer et al 2005;
Kelley 2009a

non-linear model can be interesting since it can describe the early linear phase as well as
the late non-linear phase, giving a thorough analytic description of the EPBs and striations
structures growth.

This chapter has been divided into two main sections. The first one is the extension of
Goncharov’s non-linear model (which is itself an extension of the Layzer model to an arbitrary
Atwood number) by including the friction drag force induced by collision between neutrals
and ions. We chose to use the extension provided by Goncharov since, compared to other
non-linear models (Abarzhi’s model [7] and Sohn’s model [8]) it has been found to be the best [7]Abarzhi et al

2003a
[8]Sohn 2003

prediction of the bubble terminal velocity either using simulations [9] or experimentations

[9]Dimonte et al
2005; Ramaprbhu
and Dimonte 2005

[10], so far. In the second section, we will compare the results of this analytical model in

[10]Wilkinson and
Jacobs 2007

the late phase with our two codes: CLOVIS and ERINNA. It will be shown the limits of
validity of this model as well as some means of improvement in cases where it shows a large
discrepancy with simulations.

3.2 Non-Linear System Derivation
Our coordinate system is defined as follows: ez is the unit vector along the magnetic field B,
while ex, ey are the transverse coordinates (see Figure 3.1). The initial state is given by two
plasma fluids separated by an undisturbed plane interface at y = 0, with the heavier fluid
(with mass density ρh) occupying the y > 0 region while the lighter fluid (with mass density
ρl) occupying the y < 0 region and, as a consequence, the magnetic field is taken parallel to
the interface. Moreover the system is supposed to be invariant by translation along z-axis
(2D-geometry).

The two plasma fluids are subject to a gravitational acceleration field taken as g = −gey
(where g =| g |) and to a friction drag force – per unit volume – with a neutral fluid defined
as Fnh(l) = ρh(l)νin

(
Vn −Vh(l)

)
, where νin is the momentum exchange collision frequency

between ions and neutrals, Vn is the velocity of neutrals and is assumed to be constant
with Vn = U0ey (U0 is either negative or positive). Initially, the two fluids are supposed at
hydrostatic equilibrium so that Vh(l) = 0.

Remark 3.2.1 Dynamical equilibrium Vh(l) = Vn could also be considered without lack of
generality. Nevertheless, such an approach would miss the important contribution of GDI in
destabilization processes, in case for instance of ionosphere. Indeed, in the case of g = 0 the
interface can still be destabilized by GDI process, if Vh(l) 6= Vn, but Vh(l) = Vn will not
produce any structures.
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Figure 3.1: Geometry of the unperturbed (left) and perturbed (right) states

Note that on the right drawing in Figure 3.1, g has been replaced with geff . This new
acceleration accounts for the combination of the gravitational force and the friction force,
i.e. geff = g − νinU0 (see below).

In the 2D plane approach, the magnetic field is given by:

B = Bl(x, y, t)ez, y < 0,
= Bh(x, y, t)ez, y > 0,

(3.2)

In general, we assume Bl 6= Bh at y = 0 and, as a consequence a discontinuity for B
takes place at the interface. Since the z-component of B does not depend upon the variable
z, the condition ∇· B = 0 is always satisfied.

We consider a single mode perturbation of wave number k at the interface and from this
unstable configuration a bubble and a spike grow in the non-linear regime by RTI processes:
a bubble of light fluid rises in the heavy fluid, and a spike of heavy fluid falls down into the
light fluid. This behavior is depicted in the right part of Figure 3.1 and the equation of the
perturbed interface writes y = η(x, t).

Our non-linear study follows the work done by Gupta and his collaborators [11] and [11]Gupta et al
2010by Khan and his collaborators [12] on the non-linear RTI, which itself follows the initial
[12]Khan et al
2011

approach developed by Layzer [13], and improved later by Goncharov [14]. Mitra and his

[13]Layzer 1955

[14]Goncharov
2002

colleagues [15] have even included compressibility effects, but since equatorial ionospheric

[15]Mitra et al
2015

phenomena are unlikely to involve compressible flows, we have performed our study under
the hypothesis of an incompressible fluid, as Gupta et al. [16] did previously.

[16]Gupta et al
2010

We consider that the top of the bubble (resp. tip of the spike) is located at x = 0 and
that the bubble (resp. spike) evolves with a parabolic form,

η(x, t) = η0(t) + η2(t)x2, (3.3)

where η0 corresponds to the elevation along y-axis of the top (resp. the position of the tip)
of a bubble (resp. of a spike); η0 is positive for a bubble and η0 is negative for a spike. The
quantity η2 corresponds to the half value of the curvature of the top of a bubble (η2 < 0)
or the tip of a jet (η2 > 0). Equation (3.3) is a perturbative expression in x of the bubble
(resp. spike) shape at the second order (neglecting terms greater than O(xi)(i ≥ 3)) [17]. [17]Gupta et al

2010Moreover, according to Layzer’s approach [18], we suppose that the fluids are incom-
[18]Layzer 1955pressible (∇· V = 0) and have an irrotational motion, so that the velocity derives from

a potential φ such as V = −∇φ. The velocity potential for the heavier and lighter fluids
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obeying the Laplacian equation are assumed to be given by [19]: [19]Gupta et al
2010

φh(x, y, t) = a1(t) cos (kx)e−k(y−η0(t)), y > 0,

φl(x, y, t) = b0(t)y + b1(t) cos (kx)ek(y−η0(t)), y < 0,
(3.4)

with:

Vh(l) = −∇φh(l), (3.5)

where k is the wave number of the perturbation and the functions a1(t), b0(t) and b1(t), will
be determined later on [20]. The velocity potential presented here is a local solution at the [20]Gupta et al

2010interface vicinity.

Remark 3.2.2 It is well known that such an expression (b0(t)y) can not match the boundary
condition at y → −∞ as previously pointed out by Goncharov [21] [21]Goncharov

2002
. Indeed this term (b0(t)y)

should be multiply by a slowly decreasing function, but it would only make computation more
cumbersome and the use of perturbation series necessary without modifying the solution at
interface vicinity. Moreover, direct numerical simulations [22] [22]Dimonte et al

2005; Ramaprbhu
and Dimonte 2005

have shown better agreement
with Goncharov’s model than with others (Abarzhi’s model and Sohn’s model), satisfying by
this way our previous approximation.

The fluid motion is governed by the following transport equation:

ρh(l)

[
∂Vh(l)

∂t
+ (Vh(l) ·∇)Vh(l)

]
= −∇ph(l) + ρh(l)g + ρh(l)νin(Vn −Vh(l))

+ 1
µh(l)

(∇×Bh(l))×Bh(l),

(3.6)

where µh(l) is the permeability of the fluid and ph(l) is the fluid pressure.
The Lorentz J×B force can be rewritten as:

1
µh(l)

(∇×Bh(l))×Bh(l) = 1
µh(l)

(Bh(l) ·∇)Bh(l) − 1
2µh(l)

∇B2
h(l),

where the first term on the right hand side refers to the magnetic tension force (which is zero
in our case, since the magnetic field is invariant along ez) and the second term refers to the
magnetic pressure force. Using equation (3.5) in (3.6) for the heavier and lighter fluids one
obtains the following Bernoulli’s equation:

ρh

[
−∂φh
∂t

+ 1
2(∇φh)2

]
− ρl

[
−∂φl
∂t

+ 1
2(∇φl)2

]
=

−geff (ρh − ρl)y + νin(ρhφh − ρlφl)− (ph − pl)−
(
B2
h

2µh
− B2

l

2µl

)
+ fh(t)− fl(t),

(3.7)

where geff = −νinU0 +g is the effective acceleration field and fh(l)(t) is an arbitrary function
of time, that we won’t need to determine in our studies. To trigger the GRTI, geff > 0 is
required and we conclude that a downward, U0 < 0 (resp. upward, U0 > 0) neutral wind will
contribute to destabilize (resp. stabilize) the interface.
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By balancing the total pressure defined as pt,h(l) = ph(l) +B2
h(l)/(2µh(l)) on the two sides

of the interface, equation (3.7) is much simplified and it reduces now to:

ρh

[
−∂φh
∂t

+ 1
2(∇φh)2

]
− ρl

[
−∂φl
∂t

+ 1
2(∇φl)2

]
=

−geff (ρh − ρl)y + νin(ρhφh − ρlφl) + fh(t)− fl(t).
(3.8)

This equation differs from the equation derived by Gupta et al. [23] Actually, these authors [23]Gupta et al
2010do not consider the total magnetic field for the pressure continuity equation. According to

us, this assumption is however not correct because the only way to avoid the formation of a
shock wave at the interface consists in requesting continuity of the total pressure through the
interface. Moreover, in our case, the magnetic field does not play a role in RTI formation,
since there is not any magnetic tension, which agrees with linear [24] and weakly-nonlinear [24]Chandrasekhar

1961theories [25]. Therefore, our approach seems correct with our knowledge of the magnetized
[25]Ruiz 2020RTI.

The kinematical boundary conditions satisfied at the interface surface y = η(x, t) are:

∂η

∂t
− ∂φh

∂x

∂η

∂x
= −∂φh

∂y
, (3.9a)(

∂φh
∂x
− ∂φl
∂x

)
∂η

∂x
= ∂φh

∂y
− ∂φl

∂y
. (3.9b)

Finally by substituting in these equations the expression of η from (3.3) and the expression
of φh(l) from (3.4), one obtains the following two ordinary differential equations [26]: [26]Gupta et al

2010
dξ1
dτ

= ξ3, (3.10)

dξ2
dτ

= −1
2(6ξ2 + 1)ξ3, (3.11)

b0 = − 6ξ2
3ξ2 − 1/2 ka1, (3.12)

b1 = 3ξ2 + 1/2
3ξ2 − 1/2 a1, (3.13)

where

ξ1 = kη0,

ξ2 = η2/k,

ξ3 = k2a1/
√
kgeff ,

τ = t
√
kgeff .

(3.14)

In these equations, ξ1, ξ2 and ξ3 are, respectively, the dimensionless (with respect to the
wave number and the effective acceleration field) displacement, curvature and velocity of the
top of the bubble (resp the tip of the spike) and τ is the dimensionless time.
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At this step, three unknowns, namely ξ1, ξ2 and ξ3, have been introduced and only two
differential equations have been derived. The third equation governing the variable ξ3 can
be obtained by doing the same in Bernoulli equation (3.8) and equating coefficient of x2 on
both sides. We obtain the equation (3.15) which completes the set of equations describing
the perturbation in its nonlinear regime (with (3.10) and (3.11)):

dξ3
dτ

= − 6ξ2 − 1
D(ξ2, r)

{
N(ξ2, r)ξ32

(6ξ2 − 1)2 − 2(r − 1)ξ2

−Cξ3
[
r(2ξ2 + 1)− 24ξ22

6ξ2 − 1 + (2ξ2 − 1)6ξ2 + 1
6ξ2 − 1

]}
,

(3.15)

where

r = ρh/ρl ,

C = νin/
√
kgeff ,

D(ξ2, r) = 12(1− r)ξ2
2 + 4(r − 1)ξ2 + (r + 1),

N(ξ2, r) = 36(1− r)ξ2
2 + 12(4 + r)ξ2 + (7− r),

(3.16)

where r is the ratio of the mass densities and C is a dimensionless parameter representing
the collision drag over gravitational force. The above set of three differential equations
describes the time evolution of the top of the bubble (resp. tip of the spike). Actually,
following Goncharov idea [27], the time evolution of the spike is obtained from the same set [27]Goncharov

2002by making the transformation ξ1 → −ξ1, ξ2 → −ξ2, r → 1/r and geff → −geff .
This set of equations is only valid in the case geff > 0. For the case geff < 0, the

dimensionless velocity, time and parameter C become, ξ3 = k2a1/
√
−kgeff , τ = t/

√
−kgeff

and C = νin/
√
−kgeff . The only other modification is the sign of the second term in the

brackets of the equation (3.15). This case is easily demonstrated to be stable for the GRTI,
and when τ → +∞, we have ξ2 → 0 and ξ3 → 0.

Equation (3.15) corresponds to an extension of the studies done by Goncharov [28] and [28]Goncharov
2002by Gupta et al.[29] The difference with our analysis comes from the additional contribution
[29]Gupta et al
2010

of the collisions with neutral flow to the RTI. By setting geff = g and C = 0 in (3.15), we
recover the equation derived by Goncharov [30]. However, our approach does not recover [30]Goncharov

2002fully Gupta et al. [31] results mainly due to differences in treatment of the total pressure
[31]Gupta et al
2010

continuity through the interface that they do not conserve.

Remark 3.2.3 It is worth noting that we can rewrite the equation (3.15) using the standard
Atwood number, At = (ρh−ρl)/(ρh+ρl), by using the transformation r = (1+At)/(1−At).

Finally, let us address the physical interpretation of the dimensionless number C, where
νin appears both in the numerator and the denominator. Two limit cases can be obtained
according to the values of νin, U0, and g. First, if the condition | νinU0 |� g is satisfied, then
the dimensionless number reduces to C1 = νin/

√
kg, which represents the ratio between the

collision frequency and the classical RTI growth rate, for At = 1. Second, for | νinU0 |� g,
the dimensionless number is C2 =

√
−νin/(kU0) (remember that U0 is destabilizing), which

describes the GDI. In our definition, C combines the two independent phenomena, i.e. the
RTI and the GDI, in a single one, and C, C1, and C2 obey the relationship 1/C2 = 1/C2

1 +
1/C2

2 .
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3.2.1 Linear approximation
One of the strengths of the Layzer approach is that even if it is used to determine the
non-linear behavior of the Rayleigh-Taylor structure, the linear regime can be retrieved by
linearising the set of equations (3.10), (3.11) and (3.15). By doing so, we can easily obtain a
linear temporal ordinary equation for ξ3:

d2ξ3
dτ2 + C

dξ3
dτ
− (r − 1)

r + 1 ξ3 = 0. (3.17)

Assuming the dimensionless velocity of the top of the bubble to be of the form ξ3 = ξ0
3e
γ′τ

and injecting it into equation (3.17), we obtain the dimensionless growth rate (with At =
(r − 1)/(r + 1) = (ρh − ρl)/(ρh + ρl)):

γ′ =
√
C2 + 4At − C

2 , (3.18)

which yields the dimension grow rate:

γ =
√
kgeff

√
C2 + 4At − C

2 . (3.19)

In the collisionless (inertial) case (meaning C � 1), we obtain the classical growth rate [32] [32]Rayleigh 1882

, γ =
√
Atgeffk except for the effective gravity. In the collisional regime, we obtain the

growth rate γ = Atkgeff/νin, which is similar to the one derived in the literature [33]. In [33]Besse et al
2005; Zargham and
Seyler 1989

the two regimes, we retrieve the linear growth rate.

3.2.2 Asymptotic Bubble Velocity
To determine an analytical asymptotic velocity of the top of a bubble, we consider the limit
dξ2/dτ → 0 and dξ3/dτ → 0 when τ → ∞ so that the shape of the bubble is invariant
and the top of the bubble moves upward at constant velocity. This leads to a constant
dimensionless curvature, ξ2 = −1/6 from equation (3.11). Finally, the dimensionless velocity
ξ3 is a solution of the following second degree polynomial:

3rξ2
3 + (1 + 2r)Cξ3 − (r − 1) = 0, (3.20)

and the solution is:

ξ3 = 1 + 2r
6r

(√
C2 + 12 r(r − 1)

(1 + 2r)2 − C

)
. (3.21)

The other root is always negative and is not considered since a downward velocity of the
bubble remains unphysical in our case. This form is similar to the one obtained by Ott [34], [34]Ott 1978

who assumed a circular shaped bubble. But, using the model described by Goncharov [35] [35]Goncharov
2002allows us to describe the temporal evolution of the non-linear bubble at arbitrary Atwood

number and not only the asymptotic case.
Let us examine the asymptotic behavior of the top of the bubble velocity vb. By con-

struction, one has vb = dη0/dt and together with (3.10) and the definition (3.14) of the
dimensionless quantities, one gets vb = (

√
geff/k)ξ3. Thus, asymptotic expression of the
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bubble velocity reads as:

vb = νin
k

1 + 2r
6r

(√
1 + 12 r(r − 1)

C2(1 + 2r)2 − 1
)
, (3.22)

or using the Atwood number,

vb = νin
6k

At + 3
At + 1

(√
1 + 12 2At(At + 1)

C2(At + 3)2 − 1
)
. (3.23)

This quantity does not correspond to the velocity inside the bubble, but the velocity of its
tip at x = 0 and y = η0(t). This is all the more true considering that we do not verify
the boundary condition at infinity (zero velocity) in the light fluid. For the collisional case
(meaning C � 1), we obtain :

vb = geff
νin

r − 1
1 + 2r . (3.24)

For a light fluid much lighter than the heavy one (the light fluid corresponds almost to
vacuum), then r →∞ and the expression (3.24) becomes:

vb = geff
2νin

, (3.25)

which is a form similar to the one described by Ossakow and Chaturvedi [36]. [36]Ossakow and
Chaturvedi 1978Using the Atwood number At = (ρh−ρl)/(ρh+ρl), we can put the velocity in the form:

vb = geff
νin

2At
3 +At

. (3.26)

In contrast in the collisionless (inertial) case (meaning C � 1), we obtain:

vb =
√
geff
3k

r(r − 1)
r2 , (3.27)

and using the Atwood number and the wavelength λ = 2π/k, (3.27) transforms in an equation
similar to the result deduced by Goncharov [37], but with our effective acceleration field geff [37]Goncharov

2002instead of g:

vb =
√
λgeff

6π
2At

1 +At
. (3.28)

For r →∞ (At → 1) and geff = g, this equation leads to the well known formula:

vb =
√
λg/(6π) (3.29)

derived for the first time by Mikaelian [38] and Zhang [39] independently. [38]Mikaelian
1998
[39]Zhang 1998

It is worth to notice the differences of the bubble velocity dependency in the wavenumber
k for the to limit cases C →∞ and C = 0. Indeed, in the first case, vb is not dependent on
k while in the later, vb ∝ k−1/2. Thus, in the strongly collisional case, the bubble can evolve
with an asymptotic velocity that is always the same whatever its size, similarly to the linear
growth rate [40]. [40]Besse et al

2005
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3.2.3 Asymptotic Spike Velocity
To apply the same method to the spike, we need to transform η → −η and geff → −geff and
used the velocity potentials φh(x, y, t) = b0(t)y + b1(t) cos (kx)e−k(y−η0(t)) for heavier fluid
(y > 0) and φl(x, y, t) = a1(t) cos (kx)ek(y−η0(t)) for lighter fluid (y < 0). This is equivalent
to applying the transformation 2(r− 1)ξ2 → −2(r− 1)ξ2 where 2(r− 1)ξ2 is the second term
inside the brackets of equation (3.15) and then the transformation ξ1 → −ξ1, ξ2 → −ξ2,
r → 1/r in equations (3.10)-(3.15). To determine the analytical asymptotic velocity, if any,
of the spike we assume that when τ → ∞, dξ2/dτ → 0 and dξ3/dτ → 0 so that the shape
of a spike is invariant and that its tip moves downward at constant velocity (only valid in
the collisional regime). The solutions of equations (3.10)-(3.15) are a constant dimensionless
curvature ξ2 = 1/6 and a constant dimensionless velocity:

ξ3 = − (r + 2)
6

(√
C2 + 12 r − 1

(r + 2)2 − C

)
. (3.30)

The asymptotic expression of the spike velocity reads as:

vs = νin
k

r + 2
6

(√
1 + 12 r − 1

C2(r + 2)2 − 1
)
, (3.31)

or using the Atwood number,

vs = νin
6k

3−At
1−At

(√
1 + 122At(1−At)

C2(3−At
− 1
)
. (3.32)

For the collisional case, in the asymptotic limit C � 1, the velocity vs of the tip of a spike
is given by:

vs = geff
νin

r − 1
r + 2 = geff

νin

2At
3−At

. (3.33)

This expression is not the same as for the bubbles and for At → 1, we get vs ' geff/νin
where the factor 2 in the denominator is missing compared to the expression of vb.

In contrast, in the collisionless case (C � 1), we obtain the same result as Goncharov
[41]: [41]Goncharov

2002

vs =
√
λgeff

6π (1− r) =
√
λgeff

6π
2At

1−At
. (3.34)

The discontinuity in the case At is explained by the free falling motion into vacuum [42], [42]Zhang 1998

vs ∼ gt .
Similarly to bubble velocity, spike velocity does not depend on the wavenumber k for the

to limit case C →∞ while for C = 0, vs ∝ k−1/2. Thus, in the strongly collisional case, the
bubble can evolve with an asymptotic velocity that is always the same whatever its size is.

3.3 Numerical simulations
In this part, we aim to compare the results of this model with numerical simulations per-
formed with two codes: CLOVIS and ERINNA. CLOVIS works in an ideal MHD approxi-
mation and ERINNA in the striation approximation. We start with qualitative observations
describing the difference between the two regimes, as, for example, the presence or absence
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of secondary instability, or more particularly, the symmetric growth between the bubble and
spike in the collisional regime.

Then, we see if all our assumptions seem valid compared to simulations, as our choice
regarding the total pressure continuity (different from Gupta [43]) or the velocity potential [43]Gupta et al

2010form of Goncharov [44], which is not universal among the single-mode non-linear models
[44]Goncharov
2002

[45], especially inside the bubble or the spike. Finally, we compare the asymptotic velocities

[45]Abarzhi et al
2003a; Sohn 2003

of the bubble and spike obtained with the model and simulations. Some discrepancies will
be put into evidence that we will explain by the contribution of vorticity or higher harmonics
depending on the regimes.

3.3.1 Initialization
CLOVIS
CLOVIS, as an MHD algorithm, allows us to observe the effect of the parameter C on
the terminal velocity of the GRTI structures. The domain is defined by x ∈ [−1; 1] m and
y ∈ [−12; 12] m with a resolution of 300 × 50. Periodic boundary conditions in the lateral
directions and wall boundary conditions in the direction of gravity were used. The density
of the light fluid is ρl = 1 kg.m−3. The ambient pressure field is p0 = 100 Pa for At = 1/3
and p0 = 200 Pa for At = 9/11. The ambient magnetic field is B0 = 100 Pa1/2. Notice that
in CLOVIS the magnetic field as been normalized to √µ0 so that the magnetic pressure can
be written as B2.

Remark 3.3.1 This configuration is used to verify the incompressibility condition | Vh(l) |�
Cs, where Cs is the sound velocity, which was required since CLOVIS is a compressible
code. Furthermore, in order to be entirely consistent with ionospheric conditions, we verified
Cs � Va, where Va is the Alfvén velocity.

A gravitational field of intensity g = 1m.s−2 is exerted on the two fluids. The neutral
are supposed at rest so that geff = g. Finally, we adjust the collisional frequency (νin ∈
[0.7, 1, 2, 3, 5, 7, 10, 20, 30] s−1) to see its impact on the terminal velocity of RTI structure.
The correspondence between the collision frequency νin and the normalized parameter C
can be found on table 3.2.

νin en (s−1) 0.7 1 2 3 5 7 10 20 30
C 0.39 0.56 1.13 1.69 2.82 3.94 5.64 11.3 16.9

Table 3.2: Correspondence between the collision frequency νin and the normalized parameter
C.

We pertube our equilibrium state with the velocity field:

vy0 = α (1 + cos(kx)) cos(3ky/4), (3.35)

where α is the initial amplitude.
The gravity and the collision drag with neutral have both been implemented as source

term. The gravity is solve in a semi-implicit way by updating the vertical velocity

(ρVy)n+1 = (ρVy)n −∆tgρn, (3.36)
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and the energy.

En+1
t = Ent −∆tg

[
(ρVy)n − 1

2∆tρng
]
. (3.37)

For the collision drag we use an explicit part for the velocity component.

(
ρVx(y)

)n+1 =
(
ρVx(y)

)n −∆tρnνin
(
Vn,x(y) − V nx(y)

)
. (3.38)

The energy is recalculated after this update by assuming isotherm momentum exchange
in our case.

ERINNA
The domain is defined by x ∈ [0, 12000] m and y ∈ [0, 12000] m. The density of the light
fluid is ρl = 1 kg.m−3 for y > 6000 m and ρh varied for y < 6000 m. A neutral wind is added
as Vn = U0ey with U0 = 100 m.s−1. For information, in our simulation, B = 500 nT, even
if it doesn’t play on our result as mentioned previously. The boundary condition is φE = 0
at x = 0 or x = 12000 m and ∇φE = 0 at y = 0 and y = 12000 m. Due to the lack of a
periodic condition in this code, we initialize an array of bubbles or jets to compensate for
the boundary effect. The wavelength is λ = 1500 m between x ∈ [1500; 10500] m resulting in
seven bubbles or jets, allowing us to ignore the border effect by measuring the growth rate
of the central one. We apply a perturbation on the ion density of the form:

ρ(x, y) = ρs [1± α cos (k(x− x0))] , (3.39)

where α = 0.01, s ∈ {h, l}, x0 = 6000 m and the perturbation is negative for a bubble
and positive for a spike. The advantage of ERINNA over CLOVIS is that it allows for fully
collisional simulations at a far lower computing cost. Nonetheless, new issues emerge, such as
the bifurcation of our instability structure into smaller scales [46]. To prevent our bubble or [46]Besse et al

2005jet array from bifurcating, we must include an artificial diffusion in the conservation density
equation (1.99a). As previously stated, when the density ratio is larger, a higher diffusion is
required to maintain a jet unity [47], therefore we modify κ as consequence (κ = 100 m2.s−1 [47]Mcdonald et al

1981for ρh ∈ [1.25, 1.5, 2] kg.m−3, κ = 200 m2.s−1 for ρh ∈ [3, 5] kg.m−3 and κ = 600 m2.s−1 for
ρh ∈ [7, 10, 20] kg.m−3).

3.3.2 Qualitative observations
Clovis
Figure 3.2 presents the evolution of the mass density obtained for the GRTI in different time
periods and the two different regimes (collisional and inertial).

The top panels show the evolution of the ion mass density profile for the classical RTI,
meaning no collisions between ions and neutrals were taken into account. In the first two pan-
els, we see the transition from the linear regime to the weakly non-linear regime. Then, in the
third panel, as we enter the fully non-linear regime, we see the apparition of a re-circulation
process on the edge of the bubble and spike, indicating the presence of the secondary Kelvin-
Helmholtz instability. This instability will be fully developed in the fourth panel. Other
notable characteristics can be seen in the mushroom shape of the bubble’s top and the fact
that the spike grows faster than the bubble.
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Figure 3.2: Temporal evolution of ions mass density 2D profile subject to the GRTI obtained through CLOVIS simula-
tion. The top panels correspond to the classical RTI (meaning νin = 0) and the bottom panels correspond to a GRTI
in highly collisional regime (meaning νin = 5 s−1). We used a grid of 200 × 1200, a Roe solver to first order, and the
parameter r = 2 and g = 1 m.s−2.

Now, looking at the bottom panels of Figure 3.2 permits us to see the difference between
the inertial and collisional regimes. The first panel gives similar results as for the inertial
case, albeit for the different time scale, which is larger since the growth rate has been reduced
by the introduction of the collision between ions and neutrals. It is in the fully non-linear
phase that we see most of the divergence between the two regimes. Firstly, the secondary
Kelvin-Helmholtz structures are absent on the last two panels. It was expected because,
as for the GRTI, the Kelvin-Helmholtz instability growth rate is reduced by the collision
frequencies between ions and neutrals. Gondarenko and Guzdar have already performed
simulations showing similar behavior for the GDI [48]. Secondly, the growths of the bubble [48]Gondarenko

and Guzdar 1999and the spike seem symmetrical in the highly collisional regime.

Remark 3.3.2 It is noted that all simulations presented here have been performed at the
first spatial order. This is due to the fact that our second order reconstruction, although
it reduced the diffusion, also introduced some assymetry which produced bifurcation in the
collisional regime. This will be discussed in the next chapter.
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Figure 3.3: Ions mass density 2D profile subject to the GRTI obtained through CLOVIS simulation using Roe solver
to first order with different grid from left to right 25 × 150, 50 × 300, 100 × 600 and 200 × 1200. The top panels
correspond to the classical RTI (meaning νin = 0) and the bottom panels correspond to a GRTI in highly collisional
regime (meaning νin = 5 s−1). The parameter are r = 2 and g = 1 m.s−2.

Figure 3.3 presented the same results as the last panels of Figure 3.2, but for different
grid sizes. This study has two main purposes.

Firstly, our more early simulations have been done with a resolution (50 × 300 grid
size) because we did not have the numerical tools, at the time, to perform highly resolution
simulations (200×1200 grid size) which needed longer computational time. Thus, a relatively
high diffusion can be seen in the velocity measured in these simulations, although it will not
change drastically the trend that we put into evidence.

Secondly, we show the capacity of CLOVIS to converge toward a solution in the two
regimes. Thus, for the inertial regime (top panels of Figure 3.3) only the vertical size of the
bubble is similar between the last three panels. The spike and secondary instability growth
were more subject to diffusion, so that the growth still increased for the former and the latter
only appeared in the last two panels. For the highly collisional regime (bottom panels of
Figure 3.3) the structure is very similar in all the simulations and only an underestimate of
the growth due to diffusion seems relevant.
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ERINNA

Bubble Spike

Figure 3.4: Mass density obtained with ERINNA one centered on a bubble (left) and one centered on a spike (right),
with the parameter U0 = 100 m.s−1 and r = 3.

Figure 3.4 presents the evolution of the mass density obtained with ERINNA. Here we
find the same structure as in the highly collisional case presented previously with CLOVIS
(Figure 3.2), with the difference that we have an array instead of a single mode. This is due
to the incapacity of ERINNA to treat periodic boundary conditions. Indeed, by performing
an array we can see that the middle structures do not seem to be deformed as much as the
ones near the boundaries. Moreover, all structures have grown to the nonlinear stage at a
similar velocity, which will permit us to assume that the equivalent of a periodic array is
fulfilled. These simulations confirmed the absence of secondary instability (KHI) and the
symmetric behavior between the spike and bubble in the collisional regime ( already seen in
Figure 3.3).

3.3.3 Verification of pressure continuity conditions
A question arises in section 3.2: Is the total pressure continuous through the interface or
is a small jump present? Indeed, we have supposed that the incompressibility of the fluid
imposes a continuity of the total pressure everywhere in the two fluids and at the interface.
However, this approach is different from the one assumed by Gupta and his collabotrator
[49], where a small discontinuity of the total pressure is assumed in the form of a magnetic [49]Gupta et al

2010jump. If our assumption were wrong and the latter right, we would see a discontinuity on
the side of the bubble top.

In Figure 3.5 obtained with CLOVIS, we have represented the fluid pressure, the magnetic
pressure, and the total pressure in the non-linear regime. The fluid pressure and the magnetic
pressure showed a discontinuity at the level of the interface between the heavy and light fluid.
However, it seems to be only a trade between the fluid pressure and the magnetic pressure
since, as seen in the last panel of Figure 3.5, the total pressure seems to be continuous
everywhere, which is in good agreement with our approximation. Moreover, the difference
in fluid pressure (or magnetic pressure) inside and outside the bubble is only a few percent,
and we found different repartition when using a second-order spatial reconstruction. Thus,
an explanation of this difference can be from numerical truncation and not of any physical
meaning.

Simulations is not a trustworthy discriminant between our and Gupta’s assumptions,
but it agrees nonetheless with what we would expect from an incompressible problem. As
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ρ p B2/2µ0 pt

Figure 3.5: Values obtained by simulations of GRTI with CLOVIS. From left to right, we have the mass density (ρ),the
fluid pressure (p), the magnetic pressure (B2/2µ0) and the total pressure pt = p+B2/2µ0. We have a grid of 200×1200
and the parameter νin = 2 s−1, r = 2 and g = 1m.s−2.

a consequence, in the case of incompressible and irrotational fluids, the inclusion of the
magnetic field made by Gupta and et al. [50] in the non-linear growth of RTI seems to be an [50]Gupta et al

2010analytic artifact, but this does not undermine subsequent works performed in a compressible
approximation [51]. Further work with both simulations and experiments is still needed to [51]Mitra et al

2015solve this question.

3.3.4 Comparison of bubble simulation with the model
Non linear velocity potential profile verification
The particularity of Goncharov’s model is the form of his potential profile. Indeed, Goncharov
decided to include a b0y term in the light potential profile due to the system’s supplementary
degree of liberty at an arbitrary Atwood number. This term, as already mentioned, is in
contradiction with the boundary condition at infinity and is equivalent to assuming a constant
vertical velocity in the bubble when in the late non-linear stage. Goncharov has shown by 2D
simulation in Figure 1 of his paper [52], that the vertical velocity inside the bubble flattens [52]Goncharov

2002while the transverse velocity goes to zero when the bubble amplitude becomes non-linear. It
confirms that the potential velocity inside the bubble takes a form similar φl ≈ b0y in the
non-linear stage (b1 → 0 when t→∞ ).

We performed the same verification with CLOVIS and ERINNA, Figure 3.6 represented
the vertical velocity at the center of the bubble (the 2D mass density profile for CLOVIS
can be seen in Figure 3.5 and in Figure 3.4 for Erinna). As Goncharov, we witness a small
plateau in the vertical velocity confirming that the term b0y is not as nonphysical as it may
seem.
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Bubble (x = 0) with CLOVIS
Bubble (x = 6000 m) with ERINNA

Figure 3.6: On left panel, fluid vertical velocity (solid blue) at x = 0 on Y-axis and analytical terminal velocity of the
bubble (dashed black). Simulation perform with CLOVIS, with a grid 200 × 1200 and parameter g = 1m.s−2, r = 2
and νin = 2 s−1. On right panel, fluid vertical velocity (solid blue) at x = 6000 m on Y-axis for bubble and analytical
terminal velocity (dashed black). Simulation perform with ERINA, with U0 = 100 m.s−1 and r = 3.

The acceleration that follows the plateau, either for the bubble or the spike, is only
due to the topology of our 2D structure. The flux of fluid rising and falling must remain
constant throughout the height of the structure, but some parts show a smaller width, which
leads to the acceleration of the fluid. Finally, the velocity go to zero as imposed by the
boundary condition. It is worth noticing that none of the models seem to acknowledge this
simple geometric reacceleration in the light fluid, either by the models verifying a flat velocity
profile inside the bubble [53] or the models imposing a zero velocity at infinity [54]. As a [53]Goncharov

2002; Sohn 2012

[54]Zhang and
Guo 2016; Sohn
2003; Abarzhi et al
2003a,b

result, we believe it is prudent to consider the validity of these potentials near the top of the
bubble not only for small x, but also for y close to η0, as described by Goncharov [55].

[55]Goncharov
2002

The velocities given by the model and the simulation performed with CLOVIS are rather
similar, although they do not match perfectly, as seen in Figure 3.6. The error found in
our simulation can be as high as 20%, but given the numerical diffusion and other ignored
effects discussed later, it remains within an acceptable range. Moreover, previous comparison
with various models does not seem to give better results than what we have obtained [56]. [56]Abarzhi et

al 2003b; Di-
monte et al 2005;
Ramaprbhu and
Dimonte 2005

However, on the left panel of Figure 3.6, we see that the velocity obtained with the simulations
performed in ERINNA is nearly two times larger than the one given by our analytical model.
We also see that the plateau is less marked. This discrepancy, which will be discussed and
explained farther in this chapter, is a particularity of the highly collisional regime.

Temporal evolution of the velocity
Now that we have verified that the form of the potential velocity used in the model is
consistent with simulation, we must make sure that the velocity of the top of the bubble
attains a constant asymptotic regime. To put this into evidence, we have plotted the tem-
poral evolution of the bubble velocity obtained through CLOVIS simulations. Since the
range of variation of velocity between the different simulations is rather larger, we have nor-
malized both the velocities and the time scale. We defined a normalised bubble velocity
v̂b = vsimb /vtheob where vsimb is the simulations velocity and vtheob is the theoretical velocity
from equation (3.22) which vary with νin. In the same way, we define a normalized time
scale as t̂ = tvtheob /Lx.

In Figure 3.7, we see three different results. The first is the case with νin = 0.7 s−1. It
was the smallest value of the collision frequency with which we obtained a relatively long
constant velocity behavior. For smaller collision frequencies, we obtain either very short
or non-existent temporal saturation of the velocity. We did not thoroughly investigate this
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Figure 3.7: Normalized bubble velocity v̂b in function of the normalised time t̂ obtained through CLOVIS simulation
with a grid 50 × 300 and parameter g = 1 m.s−2 and r = 2. The curves are the asymptotic velocity obtained trough
equation 3.22 (dashed black line) and the velocities of the top of bubble from simulations with νin = 0.7 s−1, νin = 2 s−1,
and νin = 10 s−1 (blue square, orange triangle and green circle respectively).

behavior of the non-linear phase in what corresponds to the inertial regime since it has
already been widely studied in the literature. Indeed, Ramaprabhu and his colleagues have
performed simulations in the classical regime and show the limitations of Goncharov’s model,
especially at low Atwood numbers, which is our case here (At = 1/3). They witness that the
saturation velocity only hold for a transiant period when At ≤ 0.5, after which the bubble
experience a late time reacceleration [57]. The explanation of this reacceleration is due to [57]Ramaprabhu et

al 2006, 2012the vortex and would be discussed later.
For the case of νin = 2 s−1, the velocity saturates through all the simulations. It corre-

sponds to a moderately collisional case (C ≈ 1), as shown in table 3.2. Adding the fact that
the saturation velocities are close to our theoretical model, we conclude that Goncharov’s
model extension to the collisional regime is legitimate since all the hypotheses have been
verified so far. We also presented, the highly collisional case νin = 10 s−1 (C ≈ 5.6). Surpris-
ingly, a second saturation velocity is present after a light reacceleration. This behavior seems
typical of the highly collisional regime since we have witness it for simulation with higher
collisional frequency (νin = 20 s−1 or νin = 30 s−1). This problem has been investigated with
further simulations and theoretical work.

Variation of the terminal velocity in function of the normalized parameters
Figure 3.8 compares the calculations obtained with CLOVIS to the analytical results for the
variation of the bubble normalized velocity ξ3b as a function of the collision parameter C
using equation (3.21) for a fluid interface with At = 1/3 (r = 2) and At = 9/11 (r = 10).
For large values of C, equation (3.24) shows that ξ3b ∼ 1/C and this behavior is clearly
recovered for At = 1/3 with a good agreement between simulations and theory. The same
variation takes place for At = 9/11, however the numerical values of the velocity are about
twice larger than the analytical ones. We believe this discrepancy originates in the value of
the Atwood number close to unity – see Figure 3.9 and Table 3.4 below.

In what follows, we restrict ourselves to the strongly collisional case (C � 1) and, as
a consequence, our analytical model is compared to numerical simulations achieved with
ERINNA. In Figure 3.9 the terminal velocity of the top of a bubble is plotted in terms of At.
Actually, we plot the parameter α defined according to the relation vb = αgeff/νin. At this
stage we focus on the black curve (labelled n = 1, where n is the order of the expansion –
see further for the significance of the index n) and as expected from equation (3.25), we get
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Figure 3.8: Comparison of the asymptotic velocity of the top of the bubble as a function of the collision parameter
calculated by our model and CLOVIS for At = 1/3 (r = 2), (solid blue line and filled squares) and At = 9/11 (r = 10)
(dashed red line and emptied squares)

Figure 3.9: Comparison of the asymptotic velocity of the top of the bubble as a function of Atwood number calculated
by our model (solid, dashed and dotted-dashed lines for n = 1, n = 2 and n = 3, respectively) and ERINNA (triangles)
.

α = 1/2 for At = 1. For At < 0.2, the agreement between ERINNA and the analytical model
is not bad but for At > 0.5, the numerical values are about twice larger than the theoretical
ones and, especially, α ' 1 for At = 1. This discrepancy is an interesting issue and in the
next section we are going to extend the model in order to improve the agreement between
simulations and theory. Furthermore, it is well known that in the collisionless regime, the
potential flow model exhibits some limitation [58]. This question is going also to be addressed [58]Mikaelian

2008and the difference between the collisional and the collisionless cases will be highlighted.

Problem of vorticty
Theory
In the collisionless regime, the irrotational motion assumption (also known as potential flow)
is not well satisfied at low Atwood number. It has been shown in previous works that bubble
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terminal velocity is maintained only for a transient time due to vorticity which reaccelerates
the bubble [59]. Using Layzer’s method, Betti and Sanz [60] have improved Goncharov [59]Ramaprabhu et

al 2006
[60]Betti and
Sanz 2006

work by including the effect of vorticity in the bubble asymptotic velocity. This is done by
considering a rotational flow in the light fluid with vorticity ∇×Vl = ωez. The authors use
a stream function Ψ (Vl = ∇ψ× ez) which satisfies ∆Ψ = −ω and taking the simple ansatz
ω = −ω0(t) sin(kx) for the vorticity, the stream function can be written as:

Ψ(x, y, t) = −b0(t)x+
[
b1(t)ek(y−η0(t)) + ω0(t)

k2

]
sin(kx), (3.40)

which is equivalent to Vl = −∇φl +∇χ× ez with χ = (ω0/k
2) sin(kx) [61]. The asymptotic [61]Banerjee et

al 2011; Banerjee
2016, 2019

bubble velocity then becomes [62]:

[62]Betti and
Sanz 2006vrotb ≈

√
g

3k
r(r − 1)
r2 + 1

r

ω2
0

4k2 . (3.41)

This approach has recently shown promising results to explain the discrepancy between
Goncharov model and simulations at low Atwood number [63]. It may also explain why [63]Bian et al 2020

there was no evident saturation in our simulation when C < 1 as seen in Figure 3.8.
This problem cannot arise in the collisional regime. Indeed in this case the vorticity obeys

the following equation:

∂ω

∂t
+ Vl ·∇ω = −νinω, (3.42)

and its solution shows that the vorticity decays exponentially with time along stream lines
[64]. [64]Ott 1978

This property associated with our simulation results shows that the potential flow model
developed by Goncharov is appropriate to describe the non-linear regime of the collisional
limit of the GRTI. Yet, our present purpose is improving the agreement between theory and
ERINNA simulations as pointed out in the previous section about Figure 3.9.

Simulation verification
To put into evidence the impact of the collision frequency νin on the vorticity, we have
computed the integrated absolute value of the vorticity in CLOVIS simulations as:

w = 1
mx − 1

1
my − 1

mx−1∑
i=0

my−1∑
j=0

| ωi,j |, (3.43)

where ωi,j is the averaged vorticity computed between cell point [(i, j), (i+1, j), (i, j+1), (i+
1, j+1)] as ωi,j = [vi,j +vi,j+1− (vi+1,j +vi+1,j+1)]/2− [ui,j +ui+1,j− (ui,j+1 +ui+1,j+1)]/2.

We plotted the integrated absolute value of the vorticity w in function of the collision
frequency νin on the left panel of Figure 3.10. There, we readily see that the vorticity w
decreases as the collision increases. To go further, we plotted, on the right panel of Figure
3.10, the normalized integrated vorticity ŵ = w/(kg/νin) in function of the normalized
parameter C. The value of ŵ seems to stay around 0.004 which would mean w is nearly
inversely proportional to νin in our simulations. By looking at the equations (3.24) and
(3.41), we can make the following conjecture: in the collisional regime, when the collision
frequency increases by a factor two, in the bubble asymptotic velocity, the term induced by
the gravitational force will decrease by a factor two, while the term induced by vorticity
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Figure 3.10: Integrated absolute value of the vorticity w in function of the collision frequency νin (left) and normalised
integrated vorticity ŵ in function of the parameter C (right)(grid 50× 300).

will decrease by a factor four due to the quadratic dependence. Thus, the intensity of the
vorticity term will decrease two times faster than the gravitational one, making it irrelevant
if the collision frequency is high enough.

Remark 3.3.3 Note that due to the construction of the striation model, the vorticity is directly
absent from the calculation performed with ERINNA. As a consequence, it cannot be the
source of the discrepancy seen in the Figure 3.8 and 3.9 between simulations and the model.

Harmonics contribution
Presentation
In the original paper by Layzer [65], only the first harmonics was used and Goncharov has [65]Layzer 1955

shown that higher harmonic contributions can be neglected in the collisionless regime [66]. [66]Goncharov
2002Some earlier attempts in the case of Atwood number equal to unity (At = 1) have been

performed to derive an exact solution for the flow by using velocity potential near the top of
the bubble decomposed in a Fourier series according to [67]: [67]Inogamov

and Abarzhi 1995;
Abarzhi 1999

φ =
+∞∑
j=1

aj e
jk(ix−y). (3.44)

To avoid imaginary solutions, we follow the approach by Goncharov by taking into account
the odd modes only of the Fourier series [68]: [68]Goncharov

2002

φh =
+∞∑
j=0

a2j+1 cos[(2j + 1)kx] e−(2j+1)k(y−η0), (3.45)

φl =
+∞∑
j=0

b2j+1 cos[(2j + 1)kx] e(2j+1)k(y−η0) + b0y, (3.46)

and accordingly the interface follows the expansion:

η(x, t) =
+∞∑
j=0

η2jx
2j . (3.47)
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As it is impossible to solve analytical an infinity of variable coupled non-linearly, we per-
form numerical integration of the first few terms. We defined the order n of the potententiel
velocities as:

φh(y, x, t) =
n−1∑
j=0

a2j+1(t) cos((2j + 1)kx)e−(2j+1)k(y−η0(t)), (3.48)

φl(y, x, t) = b0(t)y +
n−1∑
j=0

b2j+1(t) cos((2j + 1)kx)e+(2j+1)k(y−η0(t)), (3.49)

and the interface as,

η(x, t) =
n∑
j=0

η2jx
2j . (3.50)

Note that taking n = 1 we retrieve the interface and velocity potential approximations of
Section 3.2.

By injecting the new expression of φh, φl and η in the kinematic boundary condition (3.9)
and Bernoulli (3.8) equations, then equating coefficient up to order x2n we can obtain the
ordinary differential equation for all the η2j and the a2j+1 (the b2j+1 and b0 being function
of the η2j and the a2j+1).

Since solving these equations manually will be cumbersome and prone to error, we have
used Mathematica software to retrieve the ordinary differential equation of our problem. The
following steps are performed with our program :

� Inject φh, φl and η and in the second kinematic boundary condition (3.9b) and lin-
earising equation to obtain a linear system of b0 and the b2j+1

� Solve the system to obtain b0 and the b2j+1 in function of the ηj and the a2j+1.

� Inject φh, φl and η and in the first kinematic boundary condition (3.9a) and linearising
equation to obtain the first part of the ODE system for the η2j (meaning obtaining the
functions F ′j as η̇2j = F ′j(a1, ..., a2d−1, η2, ..., η2d))

� Compute the temporal derivative ∂φh/∂t and ∂φl/∂t in function of the ȧ2j+1, a2j+1,
η2j . (We use the expressions obtained in the previous step to replace the terms ḃ0,
ḃ2j+1, b0, b2j+1 and η̇2j+1 by their respective functions of the variables ȧ2j+1, a2j+1,
η2j .)

� Inject φh, φl and η and in the second kinematical Bernouilli equation (3.8) and lin-
earising equation to obtain a linear system of ȧ2j+1

� Solve the system obtained in the previous step to obtain the second part of the ODE sys-
tem for the a2j+1 (meaning obtaining the functionsG′j as ȧ2j+1 = G′j(a1, ..., a2d−1, η2, ..., η2d))

� Finally, integrate in time the complete system of 2n ODEs to get the bubble temporal
evolution.
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The bubble velocity can be easily computed since we have:

vb = η̇0 =
∞∑
l=0

(2l + 1)a2l+1. (3.51)

Determination of the stationary solution :
In the first approach, we try to compute the stationary solution of our non-linear problem.
We assume that all dη2j/dt = 0 and da2j+1/dt = 0 and since we are mostly interested in the
collisional regime, we simplified the Bernoulli equation to the striation model:

0 = −geff (ρh − ρl)y + νin(ρhφh − ρlφl) + fh(t)− fl(t), (3.52)

which correspond to the case νin →∞.

Solution a1 a3 η2 η4 b0
First 0.192456 0.0301947 -0.361803 -0.065408 -0.28304
Second 0.236842 0.00877193 -0.25 -0.015625 -0.26158
Third 0.175658 -0.00153582 -0.138197 -0.00954915 -0.17105

Table 3.3: Result of the non-linear equations of the bubble terminal velocity in the collisional
regime for n = 2, At = 1/3 geff = 1, and k = 1 using Mathematica software

In the table 3.3, we have removed the solutionq that did not have the following physical
condition: η2 < 0 and a1 > 0. In these three cases, we have b1 = b3 = 0.

At first, the third solution seemed to give the new set of asymptotic variables since it
had the lowest velocity. We perform a numerical temporal integration of the complete set of
equations in the case of C = 10. The results are presented in Figure 3.11 and, contrary to
our initial belief, the variable did not converge toward the third solution but diverge, proving
that it was not stable.

Then we search for a stabilising point by initialising the integration of our ODE system
with the saturated collisional solution obtained at the first order (n = 1). The idea is not as
arbitrary as it seems since it comes from the observation of the two plateaus in Figure 3.7.
So, one could assume that for the first time, the first order grows nearly alone and converges
toward our analytical solution, and then the higher order terms are excited and provoke a
slight re-acceleration. In the Figure 3.12, all variables converge toward the second solution of
table 3.3 (the slight differences come from the nearly negligible inertial contribution). When
trying to converge toward the first solution of table 3.3, the numerical integration has shown
divergence of all variables again.

Thus to choose among the different time independent solutions, it had been decided to
take the attractor the closer to the solution at the previous order. The solution to up to
order n = 4 for purely collisional regime and At = 1 are presented in table 3.4. The method
chosen is only empirical and the fact that the solution fails to be an attractor directly from
the linear regime still leaves something to be desired. A more mathematical proof is still
needed, but compared to our simulation results as presented below, it seems like a good first
approximation.

Harmonics contribution vs simulation
The results have been plotted in Figure 3.9: dashed red line for n = 2 and dotted-dashed
green line for n = 3. It turns out that the accordance between simulations and theory
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Figure 3.11: Integration in time of the non-linear system with n = 2, At = 1/3, geff = 1 m.s−2, k = 1 m−1 and
νin = 10 s−1. The initialization are as follow, a1(t = 0) = 0.01, η2(t = 0) = −0.01 and a3(t = 0) = η4(t = 0) = 0.

increases for increasing order and for n = 3 a good agreement between the numerical and
the analytical results is observed.

One could have predicted that high harmonics are more important in the collisional
regime since it is well known that plasma bubbles bifurcate [69], i.e. a bubble splits into [69]Carrasco et al

2020two smaller bubbles, while in the classical case, it is rather a merging process [70] (two
[70]Cheng et al
2002

neighboring bubbles fuse into a bigger one). Bifurcations have been studied numerically [71]

[71]Besse et al
2005; Mcdonald et
al 1981

and it has been observed that the splitting is strongly dependent on the value of the diffusion
coefficient κ. They have found that the larger κ is, the later bifurcations take place. As a
consequence, if we want our numerical simulations with ERINNA to be consistent with the
single mode potential model, the value of κ should be large enough to prevent the formation of
bubbles at smaller scale. Actually, for an Atwood number near unity, the diffusion coefficient
has been adjusted in such a way that the characteristic diffusion time tnc = (λn)2/κ for the
fourth harmonics (n = 4 and λn = 2π/[(2n + 1)k]) is the same order of magnitude as the
computational time of our simulations with ERINNA. This condition implies that harmonics
up to n = 3 do not bifurcate and for this reason the theoretical curve n = 4 has not been
computed in Figure 3.9.

We solve equations (3.8) and (3.9) for At = 1 (r →∞) in the collisional regime in order
to derive the non-linear bubble saturation velocity. In that case, the Bernouilli equation
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Figure 3.12: Integration in time of the non-linear system with n = 2, At = 1/3, geff = 1 m.s−2, k = 1 m−1 and
νin = 10 s−1. The initialization are as follow, a1(t = 0) = 0.02, η2(t = 0) = −0.16 and a3(t = 0) = η4(t = 0) = 0.

(3.8) takes the especially simple form −geffρhy + νinφh + fh(t) = 0, which is equivalent to
the elliptic equation (1.99b) used by ERINNA. This approximation holds because C � 1
meaning that 1/

√
C = 1/(

√
kgeffνin) � 1 which represent the dimensionless mean-time

between ion and neutral collisions (see the hierarchy defined by Besse and his co-authors[72] [72]Besse et al
2004for more explanation). Using then the expression (3.45) for φh and (3.47) for η, the expansion

of the equations to order x2n, i.e. only the coefficients a2j+1 with j ≤ n − 1 are kept non
zero, provides the coefficient α (still defined by vb = αgeff/νin). Equation (3.25) shows that
α = 1/2 for n = 1 and we have seen that the dimensionless curvature is ξ2 = 1/6 = 0.16666.
These values are reported in Table 3.4 together with the values derived for n = 2, n = 3 and
n = 4.

Expansion to order x2n α such as vb = αgeff/νin ξ2
n = 1 0.500 −0.16666
n = 2 0.714 −0.2500
n = 3 0.793 −0.27346
n = 4 0.843 −0.30098

Table 3.4: Result of the non-linear equation of the bubble terminal velocity in the collisional
regime for At = 1 using Mathematica software
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It is seen that the impact of high harmonics can not be neglected in the collisional regime
of the GRTI contrary to the classical RTI, i.e. the collisionless GRTI. The terminal velocity
of the top of the bubble clearly increases when adding higher frequency terms on the one
hand, and the bubble curvature decreases which gives a sharper shape of the bubble on the
other hand. It is instructive to notice that for n = 4 (expansion up to x8), we have α ≈ 0.85
that agrees rather well with the extrapolation of the values obtained with ERINNA (blue
triangles in Figure 3.9) for At = 1.

We conclude that even though the elementary model with equation (3.4) gives a good
order of magnitude of the velocity of the bubble, it underestimates vb by a factor of two
roughly. This shortcoming can be removed by taking into account the harmonics in the
model, the price to pay is the more complex computations.

3.3.5 Comparison of spike simulation with the model
Preliminary discussion
In section 3.2, it is outlined that the model is applicable to spikes. This is inspired from the
previous studies by Zhang (for At = 1) [73] and Goncharov (for arbitrary Atwood number) [73]Zhang 1998

[74] where non-linear models for the classical RTI spikes are proposed. Although the work [74]Goncharov
2002by Zhang [75] seems quite successful as it gives a free fall motion of the spike, generally
[75]Zhang 1998speaking, spike modeling is rarely in agreement with simulations and experiments contrary

to bubble models. Indeed, as pointed out by the authors and outlined by Mikaelian [76], [76]Mikaelian
2008Goncharov model [77] fails most of the time. For At ≥ 0.1 numerical simulations do not
[77]Goncharov
2002

lead to a constant velocity of spikes as predicted by theory. According to Goncharov, this
deviation is due to vorticity which is not included in his theory. Another missing ingredient
is the contribution of the harmonics. Actually, he took them into account for bubbles but
very little effect was observed and he decided therefore not to include them for the spikes.
In 2013, a new model has been published by Banerjee and his collaborators [78] where the [78]Banerjee et al

2013avelocity potential in the spike is changed from the form φh = b0(t)y+b1(t) cos(kx)eik(y−η0(t))

to φh = b1(t) cos(kx)eik(y−η0(t)) + b2(t) cos(2kx)ei2k(y−η0(t)), i.e. a dependence in the second
harmonic, 2k, is accounted for. Although the model cannot be solved analytically in contrast
to Goncharov approach, the authors find that i.) the value of the bubble velocity is almost
not modified compared to (3.28) where geff = g ii.) the spike experiences a free fall motion
at arbitrary Atwood number. This result shows that by considering the second harmonic we
can drastically change the spike behavior while the effect on the bubble is very little.

Non linear velocity potential profile and temporal evolution of the velocity ver-
ification
Despite the voices opposed to the use of the Goncharov model for the spike in the classical
regime, we still wonder if it could not be applied to the collisional regime. We plot the
vertical velocity on Figure 3.13 and witness a plateau of constant velocity inside the spike in
both CLOVIS and ERINNA simulations. Notice that this time the velocities obtained with
ERINNA are not substantially larger than the theoretical ones. We also plot, in Figure 3.14,
the temporal evolution velocity of the spike’s tip, using the normalization v̂s = vsims /vtheos ,
where vsims is the simulations velocity and vtheos is the theoretical velocity from equation
(3.31) which varies with νin and t̂ = tvtheos /Lx. Again, in the case of νin = 0.7 s−1, we obtain
barely a saturation velocity. It was expected because spike velocty saturation is uncommon
in the classical regime [79] (only for very small Atwood numbers). On the contrary, clear [79]Ramaprabhu et

al 2012, 2006saturation of the spike velocity is observed for the cases of νin = 2 s−1 and νin = 10 s−1 and
the value of these velocities is relatively close to their theoretical counterpart. Note that
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Spike (x = ±1) with CLOVIS Spike (x = 6000) with ERINNA

Figure 3.13: On left panel, fluid vertical velocity (solid blue) at x = ±1 on Y-axis and analytical terminal velocity of
the spike (dashed black). Simulation perform with CLOVIS, with a grid 200× 1200 and parameter g = 1 m.s−2, r = 2
and νin = 2 s−1. On right panel, fluid vertical velocity (solid blue) at x = 6000 m on Y-axis for spike and analytical
terminal velocity (dashed black). Simulation perform with ERINA, with U0 = 100 m.s−1 and r = 3.

Figure 3.14: Normalized spike velocity v̂s in function of the normalised time t̂ obtained through CLOVIS simulation with
a grid 50×300 and parameter g = 1 m.s−2 and r = 2. The curves are the asymptotic velocity obtained trough equation
(3.31) (dashed black line) and the velocities of the top of bubble from simulations with νin = 0.7 s−1, νin = 2s−1, and
νin = 10s−1 (blue square, orange triangle and green circle respectively).

there is no second saturation of the spike velocity for the case of νin = 10 s−1 as we have
seen for the bubble in Figure 3.7.

From this brief verification, we show that using Goncharov’s model to describe the non-
linear behavior of the spike in the collisional regime seems consistent with our preliminary
simulation results.

Variation of the terminal velocity in function of the normalized parameters
Now an interesting question arises. In opposition to the classical RTI (collisionless GRTI),
we have seen that for the collisional GRTI the motion of bubbles is strongly dependent upon
the harmonics. Does the same behavior occur for the spikes?

Results obtained from simulations with CLOVIS are exhibited in Figure 3.15 (blue and
red open squares) where they are compared to the model (solid blue line and dashed red
line). As aforementioned, there was no velocity saturation in the inertial regime (C � 1)
[80]. Similarly to bubbles (Figure 3.8) a good agreement between numerical calculations and [80]Ramaprabhu et

al 2012theory is observed for At = 1/3. Moreover, and in opposition to bubbles, the same good
agreement occurs for At = 9/11. This unexpected behavior has been checked with the code
ERINNA as shown in Figure 3.16 where the coefficient α, defined according to vs = αgeff/νin

[see equation (3.33)], is plotted. The blue triangles correspond to the simulations and they
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Figure 3.15: Comparison of the asymptotic velocity of the tip of a spike as a function of the collision parameter
calculated by our model and CLOVIS for At = 1/3 (r = 2), (solid blue line and blue squares) and At = 9/11 (r = 10)
(dashed red line and open red squares).

are compared to the analytical results for n = 1, n = 2 and n = 3. Three properties need to
be highlighted.

Figure 3.16: Comparison of the asymptotic velocity of the tip of a spike as a function of Atwood number calculated by
our model (solid, dashed and dotted-dashed lines for n = 1, n = 2 and n = 3, respectively) and ERINNA (triangles).

First, for At → 1, one obtains α→ 1 in all cases. This value fully agrees with the analyt-
ical formula (3.33). Second, irrespectively of the value of the index n, the three theoretical
curves are almost superimposed, and finally these curves fit pretty well the numerical re-
sults. The Layzer model (n = 1) is therefore a good approximation for the description of the
behavior of the spikes for the collisional GRTI. Although this conclusion is quite opposite
to the one deduced for the classical RTI (collisionless GRTI), it could have been expected.
Indeed, in the collisional regime, the friction prevents the spikes to enter a free fall stage and,
in addition, since the vorticity decays exponentially, the spikes cannot be re-accelerated by
rotational motions.
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3.4 Conclusion
In this chapter, we have studied the non linear evolution of the generalized Rayleigh–Taylor
instability (GRTI). For a plasma with very few collisions (collisionless case), the GRTI reduces
to the "classical" RTI while for collision-dominated plasmas (collisional GRTI), the friction
between ions and neutrals has significant effects on the dynamics of both the bubbles and the
spikes. These effects are examined analytically from an extension of the potential flow model
presented by Goncharov [81], and numerically with two dedicated codes, namely CLOVIS and [81]Goncharov

2002ERINNA. This model is known to reproduce efficiently the terminal velocity of bubbles in the
collisionless GRTI (classical RTI), however it fails to describe the behavior of spikes mainly
due to the missing vorticity in the potential approach. The collisional GRTI leads to an
opposite conclusion. Due to the friction, we have shown first that any vorticity contribution
decays exponentially and second the spike terminal velocity is a constant. These predictions
have been checked numerically and a good agreement between theory and simulations has
been obtained. However, unexpectedly the critical point regards the bubbles. Despite the
correct order of magnitude of the bubble terminal velocity, the numerical values are about
twice larger than the theoretical ones at any Atwood number. Following an idea initially
developed by Abarzhi [82] and Inogamov and Abarzhi [83] and used later on by Goncharov [82]Abarzhi 1999

[83]Inogamov and
Abarzhi 1995

[84], we have been able to overcome the issue by adding higher harmonics in the velocity

[84]Goncharov
2002

potential. With such a correction, the discrepancy for the bubble velocity has been removed
while, interestingly, the spike velocity was mostly kept unchanged. This property is in
contrast with the classical RTI case for which Goncharov model is reliable for bubbles but
incorrect for spikes.

In the situation of At 6= 1, a comparison with alternative models [85] would be inter- [85]Abarzhi et al
2003a; Sohn 2003;
Zhang and Guo
2016; Zufiria 1988a

esting for further studies to examine if our results are universal or intrinsic to Goncharov’s
model [86]. Nonetheless, the various models [87] converge to the same solution for At = 1,

[86]Goncharov
2002
[87]Zhang and
Guo 2016; Sohn
2003; Abarzhi et al
2003a; Goncharov
2002

indicating that our model is trustworthy in this physical range.
Comparisons between the model and experiments or observations remain still needed to

validate completely this theoretical work. However, it seems promising to us to understand
geophysical interchange instabilities.

Nevertheless, a great number of assumptions have been taken into account in this chapter.
While it is coherent for a first theoretical approach, it can lead to a discrepancy between our
model and EPB observation. This is why in the next chapter 5 we will try to improve our
model, starting with the geometry.

As for striation, this model seems sufficient in the case of a large barium release. Indeed, if
the quantity of ions forming the barium cloud is large enough, it will short-cut the effect of the
integrated field line, rendering a local analysis valid. Furthermore, it will mean an Atwood
number close to unity, which will remove the remaining uncertainty in the model. The only
shortcoming comes from the fact that a single mode perturbation seems rather unlikely. This
is why we have studies in the next chapter 4 the multimode non-linear behavior of the GRTI.
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4
Non-linear Multi-mode study of the Generalized

Rayleigh-Taylor instability (GRTI)

Summary
In this chapter the goal is to study the multi-mode non-linear behavior of the GRTI in the
collisional regime with both analytical models and DNS.

In the section 4.2, we will show non-linear simulations of GRTI performed with CLOVIS.
In contrary to what we have done in chapter 3, this time, we have not disturbed the interface
with a single-mode perturbation, but with a white noise. It permits to see the multi-mode
non-linear evolution of the GRTI in the two regimes.

Indeed, after numerical treatments [1], we retrieve the constant acceleration of the bubble [1]Dimonte et al
2004front of the form αbgt

2 in the inertial regime, simultaneously the averaged bubble diameter
show the same behavior. When looking at the collisional regime, we find that the growth of
the bubble front converge toward a constant velocity of the form geff/νin. In the same time,
the bubble size seems to stay at a constant size along simulation (neglecting diffusion).

This difference of behavior has been expected due to consideration with single-mode non-
linear growth. In the inertial regime, the difference in velocity in regards to the bubble
wavelength, lead to a preference for large structures, which will tend to absorb their smaller
neighbors. This process called merging explained with the bubble front accelerate in the
inertial regime. However, since in the collisional regime the asymptotic single-mode bubble
velocities is nearly constant in function of bubble wavelength, merging is fairly reduced.
We even witness the inverse process know as bifurcation which seems to compensate for
the eventual merging. A s a consequence, the bubble front experience a constant velocity
and maintain relatively constant transverse scale size along the simulation. The results are
summarized in table 4.1.

In the section 21, basing on the work of Hecht et al. [2], we obtain from analytical [2]Hecht et al 1994
equations a way to computed the merger rate between two bubbles in the non-linear phase.
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Inertial (or classical)
regime (C � 1)

Collisional regime
(C � 1)

Bubbles front
evolution hb

≈ αbgeff t2 ≈ γb geffνin

Size of the dominant
bubbles Db

∼ geff t2 ∼ λc

Table 4.1: Averaged parameters describing the behavior of the bubble front in the non-linear
phase in both inertial and collisional regime.

We find that in the collisional regime the merger rate is far smaller than in the inertial regime,
which coincides with the trend in our simulations.

This result allows us to move forward and, in the section 4.4, we extend in the statistical
model designed by Alon et al. [3], by injecting the GRTI merger rate in equation: [3]Alon et al 1993,

1994, 1995

N(t)∂g(λ, t)
∂t

= −2g(λ, t)
∫ ∞

0
g(λ′, t)ω(λ, λ′)dλ′+

∫ ∞
0

g(λ−λ′, t)g(λ′, t)ω(λ−λ′, λ′)dλ′ (4.1)

where g(λ, t) is the wavelength distribution function of the bubble front, N(t) =
∫
g(λ, dt)dλ

is the number of bubbles, and ω(λ, λ′) is the merger rate between two bubbles of wavelength
λ and λ′.

By integrating in time this equation and by integrating again in function of the wavelength
we can obtained the time evolution of various averaged quantities as the number of bubbles,
the averaged wavelength and, using the single-mode model, the bubble front growth velocity.
We find that in this model the growth of the bubble front and dominant wavelength is
considerably reduced in the collisional regime compare to its inertial counterpart. In contrast,
the scale invariant distribution function does not varies that much between the two regime.

However, when comparing the extended model and the simulations, in the section 4.5, the
two only give similar results in low collisional case, while diverging in the highly collisional
regime. We believe that it is due to the absence of bifurcation process in the model which
did not counterbalanced the merging as in simulation.

We work on remedying this shortcoming in section 4.6, by including bifurcation processes,
which are not completely understood yet [4], in the model. We will show that this allows us [4]Carrasco et al

2020to reconcile the results from our model and simulations, even if some investigations, regarding
the value of the bifurcation rate, are still necessary.
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4.1 Introduction
In chapter 3, we have obtained an analytic non-linear growth velocity for a single-mode
perturbation. While it represents an interesting result, one can easily argue that such per-
turbation is rather rare in natural phenomena, so that the utility of such a model is limited.
Indeed, most of the irregularities are born from random perturbations.

Nevertheless, it does not mean that single-mode non-linear models are useless. Firstly,
some instabilities as EPBs supposedly grow from a single mode impulse (gravity waves).
Secondly, some of the multi-mode non-linear properties can be interpreted from the single-
mode results. As for example, in the inertial regime, the non-linear asymptotic bubble
velocities vb is shown to be proportional to the square-root of wavelength, vb ∝

√
λ. Thus,

larger bubbles grow faster than smaller ones. This preferential motion of large structures
is that small bubbles tend to be absorbed by larger bubbles, which makes them larger and
faster. As a consequence, the bubble front hb, which represents the amplitude of the bubbles
ensemble, experiences an acceleration of the form of hb = αbgt

2 with αb ≈ 0.05 ∼ 0.06 [5]. [5]Read 1984;
Dimonte and
Schneider 1996;
Dimonte 1999;
Dimonte and
Schneider 2000;
Youngs 1992

A question arises: how does the non-linear multimode interaction behave in the collisional
regime? Contrary to the inertial regime, in the collisional regime, the asymptotic velocity
is independent of the wavelength, so that two bubbles, even with different size, will growth
nearly at the same velocities in the non-linear phase. As a consequence, we can suppose that
no or very little merging occurs in the collisional regime. However, being only a supposition,
we need to look further into this subject to reach a conclusion.

For the first time, we will look at simulation by first looking at the qualitative results
and then quantitatively with numerical treatment borrowed from classical RTI studies. We
will also compare our results to some obtained in the literature with similar or more precise
codes. Then, a second time, we will try to extend the multimode analytic model to the
collisional regime. We start by computing a merger rate between two bubbles in function
of their sizes and the parameter C, and then use the same merger in a statistical model. A
comparison with the simulation will be performed as well to take into account some points
lacking in the model, as, for example, the bifurcation process.

4.2 Simulation with CLOVIS
With CLOVIS, a numerical code which can simulate either the inertial or the collisional
regime, we have performed simulations to understand the change in behavior between these
two regimes. This section is divided into three parts. The first one describes our initialization.
The second describes qualitatively our numerical simulations. Finally, in the third part,
we have performed a numerical treatment based on previous studies [6] on our simulation, [6]Dimonte et al

2004putting in evidence the major differences and similitudes between meaningful characteristic
quantities, such as the growth of the bubble front or the averaged bubble diameter, in the
two regimes.

Remark 4.2.1 ERINNA is not used in this chapter for two reasons. Firstly, ERINNA works
only in the purely collisional regime restricting the possibility. Secondly, the multi-mode
structuration is dependent of the arbitrary diffusion parameter κ a seen in chapter 1. As a
consequence, most of the properties studied in this chapter (size of the structures, transition
inertial/collisional regime...) are either impossible to obtain with ERINNA or strongly biased
by the diffusion parameter κ.
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4.2.1 Initialization
The simulations are performed with CLOVIS in a box of [−6; 6] m×[−12; 12] m with a number
of cells of 600× 600. The boundary conditions are periodic in the x direction and reflective
wall in the y direction. The gravity field is downward with g = 1 m.s−2.

Since most of the current models [7], which some will be presented and extended further [7]Alon et al 1995,
1993, 1994; Hecht
et al 1994; Glimm
and Sharp 1990b;
Glimm et al 1991,
1996; Cheng et al
2002

in this chapter (or in appendix B), are valid for an interface between a fluid and vacuum, we
initialize the density of the heavy fluid as ρh = 10 kg.m−3 and the density of the light fluid
as ρl = 1 kg.m−3. In this configuration, it permits us to have an Atwood number relatively
close to unity without applying too much strain on the time steps.

p = p0 − gρy, (4.2)

where p0 = 400 Pa. The magnetic field is taken as Bz/
√
µ0 = 0.1 Pa1/2. Here we maintain

the incompressibility criterion V � Cs, but we have relax the sub-Alfvénic flow criterion
(here Va < Cs), since it has been shown that a magnetic field perpendicular to the 2D plane
has little effect on the instability growth. As a consequence, we have chosen to use a smaller
magnetic field to reduce our computation cost.

The perturbation is taken on the velocity field V = δvey with

δv = β(x, y)αρe−y
2
, (4.3)

with α = 0.001 and β(x, y) is a random function.
We have performed multiple simulations where we have varied the collision frequency be-

tween ions and neutrals. The list can be found in table 4.2 with there respective maximum
and minimum parameter C which are defined as, Cmin(max) = νin

√
λmin(max)/

√
2πg respec-

tively, where λmin(max) is the minimum (resp. maximum) scale size available in the simula-
tion. This means λmin = Lx/nx and λmax = Lx with Lx = 12 m and nx = 600. We can also
define a pseudo cut-off wavelength λC verifying C(λC) = 1 which gives λC = 2πg/ν2

in. The
pseudo cut-off can give an idea at which scale the transition between the inertial (λ � λC)
and collisional (λ � λC) regimes occurs. We have also computed the relative growth rate
for both the maximum and minimum scale sizes of our simulations, recalling its expression:

γ = kνin

(√
4At
C2 + 1− 1

)
. (4.4)

4.2.2 Preliminary results
Time evolution
Here we presented the evolution of two multimode simulations, one in the inertial regime
(Figure 4.1), the other in the highly collisional regime (Figure 4.2). In the linear phase, the
difference between the two regimes is the growth time, as seen in the upper left panel of
Figures 4.1 and 4.2. It needs nearly four times more time for the instability to grow in the
collisional than in the inertial regime. This behavior is consistent when looking at the linear
growth rate and the C parameter in table 4.2. Indeed, except at the smaller characteristic
length, which gives a similar growth rate for the two simulations, all the perturbation wave-
lengths are well into the collisional regime, leading to a reduction of the growth rate of the
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νin en s−1 Cmin Cmax λC en m γmaxen s−1 γminen s−1

0.1 0.00564 0.1382 628.3 1.1× 104 0.71
0.5 0.02821 0.6910 25.13 1.1× 104 0.53
1 0.0564 1.382 6.283 1.1× 104 0.40
2 0.1128 2.764 1.57 1.1× 104 0.25
5 0.2821 6.910 0.251 1.0× 104 0.11
10 0.564 13.82 0.06283 8.4× 103 5.5× 10−2

20 1.128 27.64 0.0157 6.5× 103 2.7× 10−2

30 1.693 41.46 6.981× 10−3 5.2× 103 1.8× 10−2

50 2.821 69.10 2.51× 10−3 3.5× 103 1.1× 10−2

100 5.64 138.2 6.283× 10−4 1.9× 103 5.4× 10−3

Table 4.2: List of the minimum and maximum C parameter and the pseudo cut-off wave-
length in our simulation in function of the collision frequency.

instability. When going further into the collisional regime, the linear (and non-linear) growth
time of our structure becomes inversely proportional to the collisional frequency as expected
by theory.

For the inertial regime case, we see through the different panels of Figure 4.1 that the
size of the dominant structures increases with time. For example, between the left bottom
panel and the right bottom panel, it seems that the number of bubbles goes from five or six
to around two or three. This transfer from small to large scale is the classical inverse cascade
that occurs in the non-linear stage of the Rayleigh-Taylor instability. As already explained,
it is due to the differential growth velocity between the larger and the smaller bubbles.

This structuring process has also been acknowledged by GDI non-linear simulation done
by Gondarenko and Guzdar [8], but they did not concentrate their work on the matter as [8]Gondarenko and

Guzdar 1999we are trying to do in this chapter. They mostly study the impact of secondary instability
such as Kelvin-Helmotz instability and shear instability. In our case, we chose an Atwood
number near unity to prevent any substantial growth of this secondary instability.

In the collisional case, we do not witness the classical inverse cascade. Instead, the scale
of the structure stays nearly constant during all the simulations. It seems that the constant
non-linear growth in function of the wavelength means that no significant merging occurs. It
is even the contrary that appears. Indeed we witness the breaking of large structures form
into smaller structures through, the so-called bifurcation process. Bifurcation is widely know
to occur in the collisional regime either in GDI [9] or EPB [10] simulations. However, a [9]Gondarenko

and Guzdar 1999;
Besse et al 2005;
Mcdonald et al
1981
[10]Huba and
Joyce 2007; Car-
rasco et al 2020

consensual theoretical explanation has not been provided yet, and this will be why we will
not consider it at first.

Grid convergence
Using different grid sizes in our inertial simulation gave roughly the same results as can be
seen in Figure 4.3. The number of bubbles stays roughly around two or three. They also
attain the same maximum vertical size of around six meters (hb ≈ 6 m) despite the interface
being much sharper for a more precise grid. The only notable difference lays in the smaller
vertical size of the spike for the most coarse grid. The explanation comes surely from the
larger diffusion, which gives a less sharp spike and consequently a slower growth caused by
the friction drag.

For the collisional regime, as seen in Figure 4.4, the structures grow at a relatively similar
size for different grids. However, a notable difference becomes apparent, which is the presence
of some sort of filaments for the more coarse grid. These filaments, which are the size of
grid cells and grow faster than the other bubbles, are most likely numerical artifacts. When

University of Paris-Saclay Dated: January 31, 2023 Cauvet Quentin



4. Non-linear Multi-mode study of the Generalized Rayleigh-Taylor instability (GRTI) 113

Figure 4.1: Mass density evolution of GRTI starting with a white noise perturbation, here At = 9/11, g = 1 m.s−2 and
νin = 0.1 s−1 with 600× 600 grid

increasing the grid, they seem to disappear, as seen on the last panel of Figure 4.4. After,
investigating the problem, we find out that these filaments are present when the cell size has
not attain the inertial regime. Indeed, for the most precise grid (900 × 900), we obtained
C ≈ 0.23 (νin = 5 s−1), but for νin = 10 s−1, even this precise grid (900 × 900) did not
suffice to remove all the filament, whereas they were not present for the case of νin = 2 s−1),
even for a coarser grid (600× 600). We conclude that the minimum parameter C must be of
the order of 0.2 for the simulation to be free of numerical artifacts, but given the increasing
growth time of the instability structure and the increasing number of cells to converge, we
believe this is too expensive for cases with νin ≥ 10 s−1 due to the unreasonable numerical
cost.
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Figure 4.2: Mass density evolution of GRTI starting with a white noise perturbation, here At = 9/11, g = 1 m.s−2 and
νin = 10 s−1 with 600× 600 grid

Thankfully, since the filaments are extremely thin, they have little impact on the numer-
ical treatment that will be derived further to determine the different characteristics of our
multi-mode instability, such as the size, diameter, etc. The only problem is the fact that
some fluid reaches the upper boundary prematurely, distorting the late time result for the
bubbles (see Figure 4.21).

4.2.3 Numerical treatment/Quantitative results
In this subsection, we will look at more quantitative results from our simulations, by com-
puting, for instance, the volume fraction or the bubble front height or velocity. To do so, we
follow the example of Dimonte et al. [11]. [11]Dimonte et al

2004
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Figure 4.3: Mass density evolution of GRTI starting with a white noise perturbation, here At = 9/11, g = 1 m.s−2 and
νin = 0.1 s−1 with grid size from left to right 300× 300, 900× 900 and 1200× 1200.

In their paper, Dimonte et al. performed numerical simulations of the multi-mode RTI
with various codes, most of which did not have interface reconstruction. They have shown
how all the codes retrieve the same tendencies for a large panel of different quantities. The
classical acceleration of the bubble front has been retrieved (hb = αbAtgt

2 ) although the
value of αb was two times smaller than experiments. This discrepancy is reduced with
interface reconstruction and has been imputed to numerical diffusion. Otherwise, except for
the difference between the codes that possess interface reconstruction and the ones that do
not, they all give similar results.

Thus, we will compare some of our results in the inertial regime with the ones presented
by Dimonte et al. to show that CLOVIS is able to describe the classical turbulent RTI
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Figure 4.4: Mass density evolution of GRTI starting with a white noise perturbation, here At = 9/11, g = 1 m.s−2 and
νin = 5 s−1 with grid size from left to right 300× 300, 600× 600 and 900× 900.

phase. At the same time, we will see how the different parameters change when entering the
collisional regime and which trends seem to arise.

These results will also be useful as groundwork in the development of a multi-mode non-
linear model. Indeed, it will give us some tendencies to follow and, by comparing the two, it
will put into evidence any missing mechanism.

Species concentration/volume fraction profiles
The volume fraction of the heavy (resp. of the light) fluid fh (resp. fl ) can be defined in
different ways. Here, we use the fact that CLOVIS can take into account a variety of ion
species. By initializing one specie in the heavy (with subscript h) and another in the light
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fluid (with subscript l), one can quantify the portion of each fluid composing each cell. Then
fh is defined by:

fh = nh
nl + nh

. (4.5)

The value of fh has the property of being equal to 1 in the heavy fluid and 0 in the
light one (reciprocally for fl). Remark fh + fl = 1. We have arbitrary changed the atomic
mass density of our two species by setting mh = 10ml = 10a.m.u which permits us to have
similar concentration in the light and heavy fluids from both side of the interface at t = 0
(nh(t = 0) = nl(t = 0)).

The averaged volume fraction of the heavy fluid fh in the span-wise direction is defined
by:

〈fh〉 = 1
Lx

∫
fhdx, (4.6)

where Lx is horizontal size of the box. Note that it differs from the one defined in Dimonte
2004 [12] since here we are in a 2D configuration instead of their 3D simulation. [12]Dimonte et al

2004

Early (hb/Ly = 0.1) Late (hb/Ly = 0.5)

Figure 4.5: Averaged volume fraction of the heavy fluid in the span-wise direction 〈fh〉 in function of the normalized
height y/hb.The left panel is the early stage hb/Ly = 0.1 and the right panel is the late stage hb/Ly = 0.5. Different
collision frequency are presented: blue solid line represents νin = 0.1 s−1, dashed orange line represents νin = 2 s−1,
dashed-dotted green line represents νin = 5 s−1 and dotted red line represents νin = 10 s−1.

In Figure 4.5, we have plotted the averaged volume fraction of the heavy fluid in function
of the normalized vertical axis for early time and late time. The normalization employs the
bubble front amplitude hb, which represents the mean height of the dominant bubbles and
will be defined in greater detail in the following subsection. Thus, in both panels, the bubble
front has grown to the same size for all simulations, despite needing different times.

At early times, see left panel of Figure 4.5, the averaged volume fraction of the heavy
fluid 〈fh〉 gave similar results for all the simulations. It was expected since we are in the late
linear or early non-linear phase.

On the contrary, at late time, right panel of Figure 4.5, we see that the averaged heavy
fluid 〈fh〉 becomes quite erratic in function of y/hb, especially in the inertial cases, since we
have entered the turbulent regime. It is particularly evident when looking at the curve for
νin = 0.1 s−1 in the late stage. Around y/hb = 0 the curve suddenly decreases, meaning a
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weaker proportion of the heavy fluid around this height. It can be explained for both heavy
and light fluids by the presence of bottleneck structures. On the last panel of Figure 4.1, we
can see that a large bubble grows upward while only being connected by a very thin tube of
light fluid.

The fact that 〈fh〉 profile is smoother and more monotonous in the collisional case can
be the result of the absence of this phenomenon. Indeed, bubble merging and secondary
instability, as Kelvin-Helmholtz, are both mitigated in the highly collisional simulation, which
probably causes the more homogeneous mixing.

Another interesting behavior is the value of y/hb when the averaged heavy fluid 〈fh〉
goes to zero or unity. For the later case, it is nearly always toward y/hb ≈ 1, since as we
will see later, it is the definition of bubble front amplitude hb. For the reverse case, which
represent the spike front amplitude hs, we see that in the inertial regime case it happens
around y/hb ≈ −2. It is consistent with the fact that in the inertial regime, the spike grows
faster than the bubble. Finally, when increasing the collision frequency, we found that 〈fh〉
goes to zero around y/hb ≈ −1, which again agrees with our knowledge that the bubbles and
spikes grow with similar velocities in the collisional regime (see chapter 3).

Evolution of the bubble/spike front amplitude
The bubble and spike amplitudes hb and hs are defined by the y-location of the 〈fh〉 = 0.95
and 0.05, respectively, relative to the interface.

Bubble Spike

Figure 4.6: Bubble hb (left) and spike hs (right) front amplitude normalized by the box size Ly in func-
tion of the time normalized by the first harmonic theoretical velocities vtheob = (νin/6k)(At + 3)/(At +
1)(
√

1 + (12/C2)At(At + 1)/(At + 3)3 − 1) obtained in chapter 3 (note that the velocities are different for each curve)
and the vertical box size Ly for different values of collision frequency: blue squares represent νin = 0.1 s−1, orange
triangle represent νin = 2 s−1, green circles represent νin = 5 s−1 and red hexagons represent νin = 10 s−1.

The normalized bubble and spike amplitudes are plotted on Figure 4.6. Keep in mind
that the theoretical velocities are different for all cases. It is difficult to interpret this Figure,
but it still puts into evidence two tendencies.

When the collision frequency increases, the curves νin = 5 s−1 and νin = 10 s−1 seem
to converge toward a self-similar behavior. At the same time, it exhibit a linear growth
in function of time, meaning hb ∝ t. This is different from the behavior in the inertial
regime (see curve νin = 0.1 s−1), but agrees with our primary assumption, that hb ∝ t in
the collisional regime. Note that increasing the collision frequency (νin > 10 s−1) gives the
same behavior as the curves νin = 5 s−1 and νin = 10 s−1, but we choose to not plot them
for clarity.
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The jumps seen on the different Figures, which will also be present in the following,
are due either to the erratic behavior of the turbulent regime or the dissipation of runaway
bubbles or spikes that grow farther from the main bubble or spike front. Indeed, due to the
diffusion and dissipation of this bubble or spike, the amplitude of the bubble or spike front
can be reduced nearly instantly.

Bubble/spike constant acceleration or velocity
The bubble (resp. spike) constant acceleration αb (resp, αs) is obtained by differentiating
hb (resp. hb ) with respect to Atgt2. In the case of the inertial regime, we obtained similar
results to what is shown in Figure 12 of Dimonte et al. paper [13]. First, as seen on the [13]Dimonte et al

2004left panel of Figure 4.7, the evolution of αb (and αs) exhibits a transition phase due to the
amplification of the initial mode and weakly non-linear mode-coupling process. Then, αb
saturates at around 0.02 ∼ 0.025 (and αs saturates around 0.03 ∼ 0.035), which while being
lower that experimental data (αb ≈ 0.05− 0.06), is similar to other simulations by Dimonte
et al.. This discrepancy can be reduced by using more precise codes which use interface
tracking or reconstruction methods to better follow the interface between the two fluids.
Indeed, without interface tracking or reconstruction methods, locally, the Atwood number is
lowered due to diffusion. Dimonte et al. demonstrated that by replacing ρl with a measured
ρb (density inside the numerical bubble), an acceleration constant closer to experiments can
be obtained. However, since we are interested in the trend of behavior between the inertial
and collisional regimes , this degree of precision is not necessary.

Remark 4.2.2 To compute the acceleration constants αb(s), we could have also used the ap-
proach proposed by Cabot and Cook [14] [14]Cabot and

Cook 2006
. Indeed, to compute the αb(s), they use the following

equation:

αb(s) = 1
4Atghb(s)

(
dhb(s)

dt

)2
. (4.7)

We choose to stick with Dimonte et al. method because it averages the temporal uncertainty
on the bubbles (or spikes) front hb(s), whereas Cabot and Cook methods magnifies it . It
can result in high fluctuations of the αb(s), as it can be seen in Figure 2 or 5 of Shimony et
al. paper [15] [15]Shimony et al

2018
. Nevertheless, such a method has the good property of removing the linear

temporal term that can hinder the interpretation of the αb(s).

In the collisional regime the result are very different since, after a transient time, αb and
αs decrease slowly in time. This demonstrates that the scaling of hb ∝ t2 is invalid in the
collisional regime as shown in the right panel of Figure 4.7.

From our single-mode theory and results shown in Figure 4.6, in the collisional regime,
the bubble and spike front amplitude should be linear in time (hb ∝ t). To put in evidence
this behavior we have plotted in Figure 4.8, hb(s)/vtheob(s) t in function of vtheob(s) t/Ly, where vtheob

(resp. vtheos ) is the theoretical bubble (resp. spike) velocity obtained from chapter 3.
When looking at the pseudo velocity, plotted on Figures 4.8, two things seem interesting.

First, as expected, the velocity seems to enter a constant behavior either for the bubble or
the spike for case with νin > 2 s−1.

Secondly, the velocity is smaller for the spike than the one from theory, as seen on the
right panel of Figure 4.8. We can suppose that it is the combination of diffusion, bifurcation,
and merging which slows down the spike front by roughly forty percent compared to the single
mode case. For the bubble velocity, on the left panel, it may seem to be nearly identical to
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Inertial (νin = 0.1 s−1) Collisional (νin = 5 s−1)

Figure 4.7: Representation of the bubble (blue squares) and spike (orange triangles) acceleration for (left) νin = 0.1 s−1

and (right) νin = 5 s−1 in function of the the normalized time Atgt2/Ly.

Bubble Spike

Figure 4.8: Normalized velocity of the bubble vb/vtheob (left panel) and spike vs/vtheos (right panel) in function of the
bubble (resp. spike) normalized front height hb/Ly for different values of collision frequency: blue squares represent
νin = 0.1 s−1, orange triangles represent νin = 2 s−1, green circles represent νin = 5 s−1 and red hexagons represent
νin = 10 s−1.

the theoretical velocity, but one must remain that we ignore the harmonics and it should
probably be decreased by a factor of two. In doing so, we will find the same behavior as the
spike.

One could argue that our conclusion of constant velocity in the collisional regime can
be biased by looking at the curve for νin = 5 s−1 on the left panel of Figure 4.8, since it
seems to increase slightly over times. To remove this ambiguity, we plot the same value, but
the constant collision frequency of νin = 5 s−1 with different grid sizes. We see on the left
panel of Figure 4.9 that for the larger grid size, meaning 900× 900, we did not witness any
increase in the velocity over time. We can suppose that at a smaller grid size, the bifurcation
is mitigated and that numerical filaments appear, leading to a light overestimating of the
velocity of the bubble front.

We should normally perform a grid convergence for all our simulations. However, due
to the significant increase in numerical cost required for higher collisional frequencies, we
determined that a 600× 600 grid would be a good compromise between simulation time and
numerical precision for our studies.
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Figure 4.9: Normalized velocity of the bubble vb/vtheob (left panel) and spike vs/vtheos (right panel) in function of the
bubble (resp. spike) normalized front height hb/Ly with νin = 5 s−1 for different grid size: blue squares represent
300× 300, orange triangles represent 600× 600 and green circles represent 900× 900.

Bubbles/spikes diameter
As presented in Dimonte 2004 [16], the diameter of the dominant bubbles Db (resp. spike [16]Dimonte et al

2004Ds) is obtained by performing a correlation analysis of the bubble (resp. spike) front Yb(x)
(resp. Ys(x)). The bubble (resp. spike) front is defined as the isosurface where fh = 0.95
(resp. fh = 0.05).

Bubble Spike

Figure 4.10: Bubbles (left) and spikes (right) front representation at late time, meaning hb/Ly = 0.5, for collision
frequency νin = 0.1 s−1 solid blue line and νin = 5 s−1 dashed-dotted orange line.

Representation of Yb and Ys are shown in Figure 4.10. In the early stage (not shown
here), the number of bubbles and spikes is comparable in the inertal and collisional regimes.
When we enter the late non-linear stage, we observe that in the inertial regime, bubble
and spike have coalesced into a larger structure. One could have expected the spike to still
be narrow due to entering free fall motion in the absence of vorticity. However, a spike
having a similar size to the bubble has also been witnessed in other simulations and did
not seem to be attributed to the viscosity either [17]. In the highly collisional case, we see [17]Dimonte et al

2004that the number of structures is far more important. On the right panel of Figure 4.10,
we count around three to four spike for the case νin = 0.1 s−1 and nearly a dozen for the
case νin = 5 s−1. Nevertheless, this is a visual observation, and we will perform a more
quantitative computation of this value through their diameters.

University of Paris-Saclay Dated: January 31, 2023 Cauvet Quentin



122 4. Non-linear Multi-mode study of the Generalized Rayleigh-Taylor instability (GRTI)

The diameter of the dominants bubbles Db (resp. spikes Ds ) is obtained from the
correlation function:

ζb(x) =

Lx∑
x′=0

(Yb(x′)− 〈Yb〉)(Yb(x′ + x)− 〈Yb〉)

Lx∑
x′=0

(Yb(x′)− 〈Yb〉)2
, (4.8)

of the bubble front Yb(x) (resp. of the spike front Ys(x) ). The summations are performed
over 0 ≤ x′ < Lx. Results of ζb at early and late stage can be seen on Figure 4.11.

Early (hb/Ly = 0.1) Late (hb/Ly = 0.5)

Figure 4.11: Correlation function of the bubble at early stage, meaning hb/Ly = 0.1, (left panel) and late stage,
meaning hb/Ly = 0.5 (right panel) for different values of collision frequencies: blue solid line represents νin = 0.1 s−1,
dashed orange line represents νin = 2 s−1, dashed-dotted green line represents νin = 5 s−1 and dotted red line represents
νin = 10 s−1.

At the early stage, the correlation function is very similar for all simulations, decreasing
drastically to noise level. At the late stage, a notable difference can be seen between the
low collisional case, νin = 0.1 s−1 and the highly collisional case, νin > 5 s−1. In the low
collisional case, the early decrease in the correlation function is slower than in the highly
collisional case.

The bubble diameter (resp. spike diameter) is defined as the length displacement when
ζb(Db/2) = 0.3 (resp. ζs(Ds/2) = 0.3).

Results are show in Figure 4.12. For low collisional cases, meaning νin ≤ 2 s−1, the
diameter of the bubble or spike increases erratically, surely from bubble fusion. It attains a
value of up to 4 meter for the case of νin = 0.1 s−1 making it around two or three bubbles in
all the simulations. It matches with our direct observations (see Figure 4.1).

In the highly collisional regime, the increase in bubble or spike diameter, while still being
present, can be surely imputed more by diffusion than the actual bubble merger process,
as no notable difference can be seen through all the cases. Indeed, for a similar grid size,
we witness a convergence of the bubble and spike diameter for collision frequencies above
five (νin > 5 s−1). Furthermore, it rarely shows the erratic growth often witnessed in the
inertial regime, which, we think, shows the abrupt disappearance of a bubble absorbed by
its neighbor.

Note that the spike diameter has the tendency of being smaller than the bubble diameter,
especially for the low collisional case. It agrees with what we know of this structure in the
inertial regime, even if it was not visible at first sight.
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Bubble Spike

Figure 4.12: Diameter of the bubbleDb (left panel) and the spikeDs (right panel) obtained from the correlation function
in function of the normalized bubble front hb/Ly or spike front hs/Ly, respectively, and for different collision frequencies:
blue square νin = 0.1 s−1, orange triangle νin = 2 s−1, green circle νin = 5 s−1 and red hexagon νin = 10 s−1.

The bubble number (or similarity, the spike number) can be obtained as the inverse
function of Db by assuming Nb = Lx/2Db or Nb = Lx/Db depending on whether we consider
that the bubble fills only half or the whole domain. Since it does not give supplementary
information, we have not plotted it in the present manuscript.

4.2.4 Conclusion
At the beginning of this chapter, we assumed that the difference in the form of the asymptotic
single-mode non-linear velocity in the two regimes, inertial and collisional, would lead to
different structuration processes in the multi-mode non-linear case. It was confirmed by
various simulations performed with CLOVIS. We show that the widely known merger process
in the inertial regime does not extend to the highly collisional regime, since the bubble front
velocity and the averaged bubbles diameter seem to saturate. We even witness the inverse
process, known as bifurcation by the geophysics community. In the following, we will try
to adapt the multi-mode model used in the classical RTI to the GRTI and retrieve similar
results to our simulation.

4.3 First step of the competition model: Computation of the
merger rate
In the previous section, we have put into evidence the different behavior trends of the non-
linear multi-mode GRTI either in the inertial or the collisional regimes. In this and the
following sections, we will look at extending an already known competition model developed
for the classical RTI in the collisional regime.

Among the multitude of such models, we choose to work with the ones developed by Alon
and his collaborators [18], starting in this section with the computation of the merger rate. [18]Alon et al

1995, 1993, 1994;
Hecht et al 1994

The merger rate quantifies the time in which a larger bubble absorbs its smaller neighbor
by non-linear interaction. Hecht et al. [19] describe a way to compute the merger rate. The [19]Hecht et al

1994starting point of this model is similar to the single model of Layzer [20] or Goncharov [21],
[20]Layzer 1955

[21]Goncharov
2002

while also using its asymptotic velocity, except that here we are looking at an interaction
between two bubbles’ tips.
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Remark 4.3.1 We also tried to extend the model developed by Zufiria [22] [22]Zufiria
1988a,b; Sohn
2004a, 2007

, but we find that
in the collisional regime, the system of equations cannot be solved. The description of our
work in this model can be found in appendix B.

4.3.1 Equations
The initial state is again given by a plasma fluid and vacuum separated by an undisturbed
plane interface at y = 0, with the plasma lying at y > 0. The plasma fluid is subject to an
effective gravitationnal acceleration field taken as geff = −geffey and a fiction drag force
-per unit volume - with a neutral fluid defined by Fn = ρνin (Vn −V) where νin is the
momentum exchange collision frequency between ions and neutrals, Vn is the velocity of
neutrals (taken as Vn = 0 in our configuration) and the fluid is considered at rest so that
V(t = 0) = 0. In a periodic array of length L, we consider two assymetric bubbles growing
through the RTI process. We followed the idea described by Hecht in his paper [23]. The [23]Hecht et al

1994interface is designated as y = η(x, t) and we consider that the tops of the bubbles are located
at x = 0 and x = L/2 and that the bubbles evolve with a parabolic form, respectively,

η1(x, t) = η0,1(t) + η2,1(t)(x)2, (4.9)

and

η2(x, t) = η0,2(t) + η2,2(t)
(
x− L

2

)2
, (4.10)

where η0,j with j ∈ {1, 2} corresponds to the elevation along y-axis of the tops of the
bubbles and η2,j corresponds to the half value of the curvature of the tops of the bubbles.
Equations (4.9) and (4.10) are perturbed expression in x where x = δx for the first bubble
and x = L/2 + δx for the second bubble respectively, we neglected the term of order greater
than O(δx3) in the two expression.

Moreover according to Layzer’s approach [24], we suppose that the fluid are incom- [24]Layzer 1955

pressible (∇· V = 0) and have an irrotational motion, so that the velocity derives from a
potential φ as V = −∇φ. The velocity potential for the fluid obeying the Laplacian equation
is assumed to be given by [25]: [25]Hecht et al

1994

φ = a1(t) cos(kx)e−k(y−η0,1(t)) + a2(t) cos(2kx)e−k(y−η0,1(t))e−k(y−η0,2(t))

+a3(t) cos(3kx)e−3k(y−η0,1(t)),
(4.11)

with

V = −∇φ, (4.12)

where k = 2π/L is the wave number of our modal perturbation, nonetheless we precise that
it will not be the directly linked to the wavelength of our non-linear bubbles. The functions
a1(t), a2(t) and a3(t) will be determined later on.

Remark 4.3.2 In a two bubbles interaction at At = 1, we have three degrees of liberty and
this is why we have the third harmonic 3k in addition to the second one (2k). This velocity
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potential model has the advantage of being symmetric at x = 0 and x = L/2, which implies
that the two bubbles that we will study will not move laterally.

Remark 4.3.3 The exponentials on the cosine side had been added to keep the function a1(t),
a2(t) and a3(t) the more relevant possible, meaning not going to infinity with position of the
top of the bubble as in Hecht’s model. It follows Goncharov’s idea who did the same for
Zhang’s model [26] [26]Goncharov

2002; Zhang 1998
.

The kinetical boundary equations satisfied at the interface y = η(x, t) is:

[
∂η

∂t
− ∂φ

∂x

∂η

∂x
= −∂φ

∂y

]
{1,2}

, (4.13)

or [
∂η

∂t
+ vx

∂η

∂x
= vy

]
{1,2}

, (4.14)

where vx and vy are the components in x and y of the velocity vector V = (vx, vy). Using
this equation at the top of the two bubbles, we obtain the set of equations:

dη0,1

dt
= +vy,0,1, (4.15)

dη2,1

dt
= −2vx,1,1η2,1 + vy,2,1, (4.16)

dη0,2

dt
= +vy,0,2, (4.17)

dη2,2

dt
= −2vx,1,2η2,2 + vy,2,2, (4.18)

where vx,i,j or vy,i,j design the correspondent velocity component for the jumpteenth bubble
at the order i in δx.

The Bernoulli equation is:

[
−∂φ
∂t

+ 1
2(V)2 + geffy − νinφ+ f(t)

]
{1,2}

= 0, (4.19)

[
−∂φ
∂t

+ 1
2(V)2 + geffy − νinφ

]
1

=
[
−∂φ
∂t

+ 1
2(V)2 + geffy − νinφ

]
2
. (4.20)
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It provides three equations, two of which are obtained by verifying the second order term
in δx at the top of the two top bubble points and one by equating the zero order terms
between the two points:

3∑
n=1

cn,2,1
dan
dt

+ b2,1 + 1
2(vx,1,1)2 + vy,0,1vy,2,1 + gη2,1 − νinφ2,1 = 0, (4.21)

3∑
n=1

cn,2,2
dan
dt

+ b2,2 + 1
2(vx,1,2)2 + vy,0,2vy,2,2 + gη2,2 − νinφ2,2 = 0, (4.22)

3∑
n=1

cn,1,1
dan
dt

+ b0,1 + 1
2vy,0,1 + gη0,1 − νinφ0,1 =

3∑
n=1

cn,1,2
dan
dt

+ b0,2 + 1
2vy,0,2 + gη0,2 − νinφ0,2

, (4.23)

The seven equations (4.15-4.18) and (4.21 - 4.23) permit us to describe the temporal
evolution of the seven variables η0,1, η0,2, η2,1, η2,2, a1, a2 and a3. The values of the inter-
mediary constants cn,i,j , vx,i,j , vy,i,j , φi,j , bi,j are given in the appendix C. For the first four,
the computation is immediate, but we need to solve the linear problem for the last three. It
is easier to write it in matrix form.

A = −N−1M, (4.24)

where

A =

a1
a2
a3

 , (4.25)

N =

 c1,2,1 c2,2,1 c3,2,1
c1,2,2 c2,2,2 c3,2,2

c1,1,1 − c1,1,2 c2,1,1 − c2,1,2 c3,1,1 − c3,1,2

 , (4.26)

and

M =

 +b2,1 + 1
2 (vx,1,1)2 + vy,0,1vy,2,1 + gη2,1 − νinφ2,1

+b2,2 + 1
2 (vx,1,2)2 + vy,0,2vy,2,2 + gη2,2 − νinφ2,2

b0,1 − b0,2 + 1
2 (vy,0,1 − vy,0,2) + g(η0,1 − η0,2)− νin(φ0,1 − φ0,2)

 . (4.27)

Remark 4.3.4 Having a third harmonic at 3k may seem illogical since here we are interested
in the merging of two bubbles into one. When reducing the velocity potential from an infinite
to a finite number of harmonics, one would suggest taking only the first two harmonics (k
and 2k). However, doing so will give an unsolvable system. Indeed, if we used a symmetrical
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velocity potential, as for example,

φ = a1 cos(kx)e−k(y−η0,1) +a2 cos(kx)e−k(y−η0,2) +a3 cos(2kx)e−k(y−η0,1)e−k(y−η0,2). (4.28)

It gives a non-invertible matrix N due to the additional degree of liberty provided by equation
(4.20). Thus„ the addition of the third harmonic become necessary to resolve our system.

4.3.2 Integration of equations and interpretations
Now, to obtain the evolution of the interaction of two bubbles, we only need to integrate
the seven parameters in time. We initialize with a perturbation on the parameter a2 which
contributes to the two bubble growth. We also perturb a1 by a smaller amount (as a1(t =
0) � a2(t = 0) ) leading to a disymmetry between the first and second bubble with a
preference for the former.

Figure 4.13: Bubbles vertical positions (upper-left), velocities (upper-right), curvature (bottom-left) and coefficient a1,
a2 and a3 in a box of length L = 1 m with g = 1 m.s−2. The initial condition for the flow potential parameters are
a1 = 1.26×10−6, a2 = 6.35×10−5 and a3 = 0 (reproducing Alon et al (1994) example, we found q = 1.03 and ω = 0.37
as well).

As seen in Figure 4.13 the two bubbles first evolve linearly and independently from
each other. Thus, at the beginning, we see an exponentially growing velocity which later
saturate in the non-linear regime. The two bubbles coexist for a while, with the velocity and
curvature obtained by the single-mode model. After some time, the smaller bubble is washed
downstream by the larger bubble. The larger bubble is also accelerated in this process. We
define the end of the merging processes when the smaller bubble obtains a negative velocity.
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Remark 4.3.5 Notice that the coefficient a3 stays small, which supports the idea that its role
is only to buffer the integration.

Now we will define the length of the wave of our two bubbles. t1 is the time when the
smaller bubble velocity is at its maximum. vb,1(t) and vb,2(t) are the velocities of the larger
and smaller bubbles, respectively. The catch of Alon method consist in using the velocities
at t1 of the two bubbles to determine their wavelength, which are defined as λ1 = f(vb,1(t1))
and λ2 = f(vb,2(t1)). Recalling that the non-linear saturation velocities can be determined
by the formula:

vb = νin
kb

1
3

(√
1 + 3

C2 − 1
)
, (4.29)

with C = νin/
√
kbgeff here kb = 2π/λ where λ is the wavelength of the bubble to not

be mistaken with k the wave number of our modal perturbation. We can now obtain the
wavelength of the bubble i using the formula:

λj = 18π(vb,j)2

νin

(
1

6vb,j − 3 geffνin

)
. (4.30)

Figure 4.14: Scale size λ1 + λ2 in function of the effective wavlength ratio q = λ1/λ2 in a box of length L = 1 m with
g = 1 m.s−2 and different value of νin.

However, this method shows an inconstancy in the fact that the two wavelengths do
not match the size of the boxes in which they grow. As we can see in the Figure 4.14
the sum of the two wavelengths is smaller than the whole box when in the inertial regime
and becomes larger in the collisional regime. Moreover, another problem arises due to the
model’s response in the collisionnal regime. Indeed, as it has been shown in the collisional
regime, higher harmonics accelerate the bubble, which in our case can lead to velocities of
the first bubble higher than the asymptotic velocities given by the simplified method due to
the second and third harmonic.

To prevent this problem, we chose a different way to determine the wavelength of the
first bubble. We suppose that λ1 = L − λ2, like this we are sure that the two bubbles fit
perfectly in our competition box.
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The function of the merger time is τ(λ1, λ2, geff , νin) = t2−t1, we readily have the merger
rate ω(λ1, λ2, geff , νin) = τ(λ1, λ2, geff , νin)−1. We define the effective wavelength ratio as
q = λ1/λ2. t2 is the time when the smaller bubble velocity becomes negative (v2

b (t2) = 0),
so that we write the dimensionless merger rate as:

ω∗(q, C) =
[

2πgeff
λ1 + λ2

]1/2
ω(λ1, λ2, geff , νin). (4.31)

4.3.3 Results and discussion

Figure 4.15: Bubbles dimensionless merger rates ω∗ in function of the effective wavelength ratio q in a box of length
L = 1 m with g = 1 m.s−2 and different value of C

Figure 4.15 shows that the merger frequency decreases strongly when the collision fre-
quency increases. In the case of C ≈ 10−6 and C ≈ 0.1, we are still in the inertial regime
and the merger rate stay more or less the same. When we enter the transition between the
two regime (C ≈ 1.), we see that the merger rate begin to decrease to finally plummet in
the strong collisional regime (C > 10.). At this stage, we can already conclude that in the
collisional regime, merging is far more unlikely to happen than in the inertial regime.

Remark 4.3.6 This work differentiated from the one of Chen et al. [27] [27]Chen et al
1983, 1984

. Indeed, Chen’s
model supposes a number of bubbles of similar and invariant size moving together. Here,
when using the Hecht model, we permit the bubbles to have time dependent sizes and to
move at different velocities. Chen only witnesses the slowing process from the bubbles non-
linear interaction, and it is true that our numerical simulation gave velocities of the bubble
front slower than independent bubbles. However, it did not take into account the change in
structuration that can occur in the multi-mode non-linear regime. It discards the growth or
decrease of bubble sizes, with their acceleration or deceleration associated with the merging
process. By using the Hecht model, we could partially answer some of the bubble or spike
interactions that are present in the ionosphere, giving complementary analytic information
compared to the previous model.

Finally and foremost, the fact that the merger rate decreases with the collision frequency
agrees with our previous simulations. Indeed, we have shown that the number of bubbles
increases more slowly in the collisional regime than in the inertial one. The goal, in the next
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section, will be to see if we can obtain the same evolution in time of the bubble diameter or
number with a statistical model using this merger rate.

4.4 Second step of the competition model: statistical assump-
tion
We use the competition model derived from an idea first established by Sharp-Wheeler [28]. [28]Sharp 1983

It served as the foundation for subsequent models [29], which showed promising results [29]Glimm and
Sharp 1990b;
Glimm et al 1991

through numerical benchmarks [30]. Then it was later simplified by Alon and his collabora-

[30]Gardner et al
1988; Glimm et al
1990a

tors to take into account only the bubble wavelength (or radius) as parameter [31]. These

[31]Alon et al
1993, 1994, 1995

models still include all the physics necessary for competition models, and are also easier to
analyze mathematically, as we will show in next sections.

4.4.1 Presentation of the model
We consider an ensemble of bubbles of wavelength λi. Two adjacent bubbles of wavelength λ
and λ′ merge at a rate ω(λ, λ′) forming a new bubble of wavelength λ′′ = λ+λ′. The physics
of the competition model comes from this merger rate ω, derived in the previous section. In
this model, the other parameters, such as the bubble height or velocities, are taken only as
averaged values.

We define g(λ, t) as the temporal distribution function of our ensemble of bubbles. The
number of bubbles of wavelength λ within dλ at time t is given by g(λ, t)dλ. The evolution
of g(λ, t) is obtained with:

N(t)∂g(λ, t)
∂t

= −2g(λ, t)
∫ ∞

0
g(λ′, t)ω(λ, λ′)dλ′+

∫ ∞
0

g(λ−λ′, t)g(λ′, t)ω(λ−λ′, λ′)dλ′,

(4.32)

where N(t) is the number of bubble at time t, linked by the distribution function as:

N(t) =
∫ ∞

0
g(λ, t)dλ. (4.33)

The first term on the right-hand side of equation (4.32) is the rate of merger of bubble
of wavelength λ with its neighbors. The second term is the rate of creation of bubble of
wavelength λ by the merging of smaller bubbles of wavelength λ′ and λ − λ′. Integrating
equation (4.32) over λ gives:

dN(t)
dt

= −〈ω〉N(t), (4.34)

where 〈ω〉 is the merger rate averaged over the scale size distribution, given by:

〈ω〉 = N(t)−2
∫ ∞

0

∫ ∞
0

g(λ, t)g(λ′, t)ω(λ, λ′)dλdλ′. (4.35)

The averaged wavelength 〈λ〉 evolution equation can also be obtained by multiplying by
λ and integrating equation (4.32),

d 〈λ〉
dt

= 〈ω〉 〈λ〉 , (4.36)
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where

〈λ〉 = 1
N(t)

∫ ∞
0

λg(λ, t)dλ. (4.37)

The interface height, h(t), defined as the averaged bubble height, is found by using the
average bubble velocity,

dh(t)
dt

= 〈vb〉 , (4.38)

where the average bubble velocity 〈vb〉 is obtained by using the analytic single mode asymp-
totic velocity vb,

〈vb〉 = 1
N(t)

∫ ∞
0

vb(λ)g(λ, t)dλ. (4.39)

This point is what differentiated this model developed by Alon and his collaborators
[32] from the previous model [33]. Here the interface height is obtained directly by the [32]Alon et al

1993, 1994, 1995

[33]Sharp 1983;
Glimm and Sharp
1990b; Glimm et al
1991

model without going through the determination of the individual bubble height, which was
previously another parameter of the problem.

4.4.2 Particular case of time dependent merger law
In this section, we will use simplified and non-physical merger rates, which permit an analytic
resolution of the equation (4.32). The goal here is to give a feel of the physics at play and
to familiarize with the model.

Application to the inertial regime
Depending on the type of merger rate used, the model can be integrated completely analyt-
ically. Particularly in the case of a merger only time-dependent, meaning ω(λ, λ′) = ω(t),
i.e., the merger rate is independent of the bubble wavelength. Alon and his collaborators
have shown that the model can be reduced to finding and integrating the following system
of equations,

dN(t)
dt

= −ω(t)N(t), (4.40)

〈λ(t)〉 = 〈λ(t = 0)〉 N(t = 0)
N(t) , (4.41)

g(λ, t) = N(t)2 exp(−λ/ 〈λ(t)〉)
N(t = 0) 〈λ〉 . (4.42)

A simple merger rate can be constructed by using the gravitational acceleration g and
the average bubble wavelength: ω =

√
ag/ 〈λ〉, where a is a constant. This merger law falls
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within the framework described above. So integrating equations (4.40) and (4.41) it readily
follow that,

N(t) = N0

(
1 + 1

2

√
ag

λ0
t

)−2

, (4.43)

〈λ〉 = λ0(1 + 1
2

√
ag

r0
t)2, (4.44)

where N0 is the initial number of bubbles and λ0 is the initial average wavelength. Thus after
a transient period (t � 2

√
λ0/ag), the average wavelength attains a constant acceleration

〈λ〉 → (ag/4)t2, independent of the initial conditions. Regarding the wavelength distribution
function, it attains the asymptotic form,

g(λ, t) = N0
λ2

0
ag
t−4 exp(−4λ/agt2). (4.45)

As seen previously, the velocity of a single bubble is proportional to the square root of its
wavelength, so that the average velocity of the bubble front is proportional to the average
root wavelength, i.e., 〈vb(t)〉 = b

〈√
λ(t)

〉
. Thus, the bubble front moves asymptotically with

an acceleration of the form √πagb/4, independent of initial condition. So with this simple
merger rate, we can obtain a bubble front moving with a form h(t) = αbt

2 as simulation and
experiment describe.

However, the distribution does not seem to be representative of what we witness in
simulation. It was to be expected since the merger rate was independent of the wavelength.

Application to the collisional regime
Using the previous example as inspiration, we can extend this case to depict what happens
in the collisionnal regime. We will give the merger rate on the form,

ω(t) =
√

ag

〈λ(t)〉

(
1− 〈λ(t)〉

λc

)
, (4.46)

where λc is the cut-off wavelength from which merging cease. By integrating equation 4.40,
we obtain:

N(t) = λ0

λc
N0

(
c(t)− 1
c(t) + 1

)2
, (4.47)

with

c(t) = e−
√

ag
λc
t

1 +
√

λc
λ0

1−
√

λc
λ0

 . (4.48)
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In the case λc/λ0 > λc/ 〈λ〉 � 1 and
√
ag/λct� 1, meaning we are far from the transient

period in the early non-linear phase, while the bubble has not reached the collisional regime
yet, we obtain the same asymptotic behavior:

N(t) ∼ N0

(
1
2

√
ag

λ0
t

)−2

, (4.49)

〈λ(t)〉 ∼ λ0

(
1
2

√
ag

λ0
t

)2

, (4.50)

which is similar to what is obtained by Alon.
In the case t→∞, the number of bubbles will saturate at:

N∞ = λ0N0

λc
. (4.51)

In the same way the mean radius of bubble will saturate at:

〈λ∞〉 = λc. (4.52)

Now, using the equation (4.42) we obtain the asymptotic distribution function:

g(λ, t) = N0λ0

λc

exp (−λ/λc)
λc

. (4.53)

Again, we retrieve a behavior close to what is known from our simulations for the number
of bubbles and the averaged bubble wavelength, despite having a distribution function that
is probably erroneous. This type of computation can be the source of a further simplified
model where only the number of bubbles and the averaged bubble wavelength are of interest.
One would need to find an appropriate form of the merger rate. However, if the distribution
function is necessary, one should perform the complete calculation as presented below.

4.4.3 Scaled wavelength distribution function
Before going further, it is worth introducing the scaled wavelength distribution function f .
Indeed, it has been shown that after a transient regime, the system attains a scale invariant
regime. This scaled system becomes independent of initial conditions and dependent on time
only through the fraction of bubble remaining (or equivalently the bubble mean wavelength).
So we define f as follows:

g(λ, t) = N(t)
〈λ(t)〉f(λ/ 〈λ(t)〉)). (4.54)

Using (4.34) we readily have:

∫ ∞
0

f(x)dx = 1. (4.55)
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Inserting definition (4.54) into equation (4.32), we get an integro-differential equation for
the scaled distribution f :

〈ω(C)〉
[
f(x) + 1

2xf
′(x)

]
= f(x)

∫ ∞
0

f(x′)ω(x, x′, C)dx′

−
∫ x/2

0
f(x− x′)f(x′)ω(x− x′, x′, C)dx′,

(4.56)

where x = λ/ 〈λ(t)〉 and ω(x, x′, C) is the scaled merger rate. This equation hold if ω may
be scaled, meaning ω(λ, λ′) = Γ(a)ω(λ/a, λ′/a, C) for any a, which is true for our case from
equation (4.31).

4.4.4 Numerical integration with our merger rate
Computation of the merger rate
Since we have taken into account the parameter C, mapping the merger rate will need a
heavier computational cost since it now depends on two parameters.

We want to integrate equation (4.32) between [0, T ] on a domain [λmin, λmax] with the
parameters g and νin. To compute the merger rate ω(λ, λ′, g, νin), we first compute the
dimensionless merger rate ω∗(q, C).

Discretizing our domain [λmin, λmax]2 will give two table of λi, with i ∈ [1, Nλ] and
λi+1 = λi + dλ, where dλ = (λmax − λmin)/(Nλ − 1). It becomes in the dimensionless form
[Cmin, Cmax] × [qmin, qmax], with Cmin =

√
2λminνin/

√
2πg, Cmax =

√
2λmaxνin/

√
2πg,

qmin = λmax/(λmax − dλ) and qmax = λmax/λmin. Evidently we have dq = (qmax −
qmin)/(Nλ − 1) and dC = (Cmax − Cmin)/(Nλ − 1).

It may seem pretty simple, but the problem is to obtain the ω∗ for a given q one need to
find the value of a a1 from a trial and error process. In practice, we compute, with various
value of a1 an ω∗, until it is linked to a q′ that is comprise between q− δq and q+ δq, where
δq is an accepted error. Concretely knowing the a1 that result in to an ω∗(q, Cj) and a q
verifying qi < q < qi+1, we find a′1 that give ω∗(q′, Cj) and a q′ verifying qi+1 < q′ < qi+2,
using the formula a′1 = a1 + δa1. δa1 being multiply by 2 if q′ end up smaller that qi+1 and
divide by 2.1 if q′ end up greater than qi+2.

This process ends up being computationally costly due to a number of useless integrations.
Fortunately, it can be easily parallelizable due to the independent behavior of the Cj . Other
problems especially at q → 1 appear as the precision on δa1 being close to the epsilon machine
or integration time being particularly long in the collisional regime. As a consequence, our
merger rate ω(λ, λ′, g, νin) 2D profile is not very smooth, especially when λ ∼ λ′ as seen in
Figure 4.16.

Nevertheless, despite our lack of precision, this computation permits us to obtain the
qualitative behavior of the merger rate in weakly and highly collisional cases. In Figure 4.16,
the value of the merger rate ω in function of the wavelengths λ and λ′ for two value of the
collisional frequency νin. The inertial and collisional are both represented since for the first
case we have C ∈ [0.04; 0.4] and for the second case we have C ∈ [0, 8; 18]. λmax was only
5, in the collisional case since the determination of the merger rate began to give aberrant
values near q → 1.

The first striking point is the decrease of more than one order of magnitude in the
collisional case compared to the inertial one. It confirms what has already been pointed out.
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νin = 1 s−1 νin = 20 s−1

Figure 4.16: Merger rate ω in function of λ and λ′ for two value of νin. Here g = 1 m.s−2.

Another remarkable thing is the fact that on the half-line λ constant λ′ > λ, when λ′ increase
the merger rate increases in the inertial case whereas it decreases in the collisional case.

Averaged variable temporal evolution
Now that we have the merger rate, we can integrate the equation 4.32 in time. One can
find the result of such integration in the Figure 4.17. The number of bubbles (rep. the
averaged wavelength) decreases (resp. increases) way slower in the collisional regime than in
the inertial regime. It was to be expected, but now we have verified that this result holds
even if the two bubble fronts reach similar values. Only the bubble front velocity seems to be
saturated in the highly collisional regime, but in can hope that the greatly reduced growth
of the wavelength is sufficient to retrieve the behavior seen in our simulations. It will be
verified in the next section.

Scale invariant distribution function
As already mentioned by Alon, no matter the form of the initial distribution function, after
enough time the scaled wavelength distribution function will converge toward an invariant
form. This is clearly visible in Figure 4.18, where the scaled wavelength distribution function
has been plotted at different times. We see how the initial distribution function, which was
constant over a small wavelength, evolved and converged toward a single form.

The two invariant scale distribution functions, obtained through our integration, are
compared in Figure 4.19. First we wanted to precise that our profile in the lowly collisional
regime is the same that the one obtain by Alon [34]. The two profiles have relatively little [34]Alon et al 1994

differences. The maximum density moved closer to λ/ 〈λ〉 = 1, and the decrease is stronger
for values of λ/ 〈λ〉 > 1, in the highly collisional regime. This result is rather odd since we
would have expected a greater difference in the scale invariant profile when looking at the
structuration seen in both regimes in our simulations.

4.5 Comparison between the model and the simulations
As a mean of comparison between this model and the simulation, we chose to look at the
bubble diameter, because we think it is more visual than the bubble number. The result
would have been similar anyway, since one is proportional to the inverse of the other.

When comparing results from the model or the simulations in a straight-forward way, we
could not see similitude. There are, of course, a number of factors.
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N(t) for νin = 1 s−1 N(t) for νin = 20 s−1

〈λ(t)〉 for νin = 1 s−1 〈λ(t)〉 for νin = 20 s−1

vb(t) for νin = 1 s−1
vb(t) for νin = 20 s−1

Figure 4.17: We have respectively from top to bottom the number of bubble, the mean wavelength and the front velocity
in function of times for inertial case (left) and collisional case (right).

� Both the model and the simulation cut off or prevent the birth of larger structures than
the box.

� The αb is already shown to be different, approximately two times slower for the simu-
lation.

� Our simulation have shown an aspect ratio relatively small β ≈ 0.25 which is far from
the experimental value β ≈ 0.5 ∼ 0.6 given by Dimonte et al.

� As pointed out by Zhou [35], the multi-mode interaction is composed of two phases: [35]Zhou et al
2018merging and independent growth of structures that alternate. Alon model takes only

the former into account.
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νin = 1 s−1 νin = 20 s−1

Figure 4.18: Scale invariant in function of times for both cases

Figure 4.19: Comparison of the two scale invariant distribution: Inertial at t = 9.19 s and collsional at t = 73.54 s.

� The treatment used for obtaining the bubble diameter from the simulation had an error
which Dimonte et al. quantified to 10-20%. We have not verified that it stays in this
range of error for 2D simulations.

In order to mitigate the discrepancy between the simulation and the model, we have
re-scaled the time dependence on the bubble and spike diameters. We use the two relations
Db = βhb, where β is the aspect ratio, and hb = αbgt

2 to obtain the following relation:

Db(t) = βαbgt
2. (4.57)
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We already know that an error of a factor two lower appear on the value of β and αb

in our simulation compare to models and experiments [36]. This implies that the bubble [36]Alon et al
1994; Dimonte
et al 2004; Zhou
et al 2018; Read
1984; Dimonte
and Schneider
1996; Dimonte
1999; Dimonte and
Schneider 2000;
Youngs 1992

diameter given by the model should grow two times faster than the one obtained with our
simulations. As a consequence, we choose to multiply the time used in our model by two
when comparing it to simulation (tPlot = tSim = 2tModel), since the goal here is not to
emphasize the reliability of the model or CLOVIS in the description of the classical RTI, but
to put into evidence the difference between the inertial and collisional regime of the GRTI.

Figure 4.20: Diameter of the bubble Db (left panel) and the spike Ds (right panel) in function of the time for the case
of νin = 0.1 s−1. The solid black line corresponds to the model and the and the blue squares, orange triangles, green
circles and red hexagons correspond respectively to grid size of 300× 300, 600× 600, 900× 900 and 1200× 1200.

In inertial case ( meaning νin = 0.1 s−1), results are presented in Figure 4.20. We assumed
that the spike and bubble diameters would evolve similarly in our case, although it was
not always the case in experiments [37]. We see that after performing our re-scaling, the [37]Dimonte et al

2004simulation and the model fit approximately well up to t = 18 s. After t = 18 s, the results are
not as trustworthy. For the model, a number of bubbles is lost due to the finite size of our
integration model. For simulation, some spikes have attained the lower boundary, changing
the dynamics of the instability, and the number of bubbles in our domain has become so
small that a statistical approach would not be relevant.

Figure 4.21: Diameter of the bubble Db (left panel) and the spike Ds (right panel) in function of the time for the case
of νin = 5 s−1. The solid black line corresponds to the model and the and the blue squares, orange triangles and green
circles correspond respectively to grid size of 300× 300, 600× 600 and 900× 900.

In regards to this discrepancy between the model and the simulations, in the highly
collisional regime, the only thing that could explain it is the breaking of large bubbles into
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smaller ones. This process, known as bifurcation, has already been mentioned and was neither
observed in the inertial regime nor in the light collisional regime, while it is preponderant
in the purely collisional regime. This is why in the next section we proposed a possible
implementation of this process in the statistical model.

4.6 Bifurcation process in multi-mode non-linear model
When comparing the model and simulations, it becomes evident that the process of bifurca-
tion of large bubble into smaller one is necessary in the model, if we want to match results
obtained with CLOVIS.

This is why we will propose way to incorporate bifurcation process in Alon’s model.
However, since the process responsible for bifurcation had not been determined yet, to spec-
ify a realistic bifurcation rate it will be necessary to derived from either observations or
simulations. Indeed, a lot of hypothesis has been done, but none have demarcated [38]. [38]Carrasco et al

2020As a consequence, in this section, we will first expend the statistical model of Alon’s
presented in section 4.4, with a pseudo bifurcation process. With the help of simple analytical
form of the merger rate and bifurcation rate, we will reproduce some of the properties witness
through the simulations and Hecht’s merger rate derivation. Then, we will give a preview
of how this extended model could be able to reproduce simulations result in the collisional
regime.

4.6.1 Adding bifurcation process to Alon’s model
We define the function b(λ, λ′) as the bifurcation rate which can be decomposed as,

b(λ, λ′) = b1(λ)b2
(
λ′

λ

)
, (4.58)

with b1(λ) the rate at which a bubble of wavelength λ bifurcate and b2
(
λ′

λ

)
the proba-

bility of a bubble λ bifurcating to break in two bubbles of wavelength λ′ and λ − λ′, with∫ λ
0 b2

(
λ′

λ

)
dλ′ = 1.

The equation taking in to account the time evolution of g(λ, t) os transformed with
bifurcation to:

N(t)∂g(λ, t)
∂t

= −2g(λ, t)
∫ ∞

0
g(λ′, t)ω(λ, λ′)dλ′ +

∫ ∞
0

g(λ− λ′, t)g(λ′, t)ω(λ− λ′, λ′)dλ′

−N(t)g(λ, t)
∫ λ

0
b(λ, λ′, λ− λ′)dλ′ + 2N(t)

∫ ∞
λ

g(λ′, t)b(λ′, λ, λ′ − λ)dλ′

(4.59)

The first added term take into account the bubble of wavelength λ lost by bifurcation into
smaller bubbles, when the last term take into account the bubble gain through bifurcation
of larger bubble. By integrating over λ we obtain the equation:

dN(t)
dt

= (−〈ω〉+ 〈b〉)N(t), (4.60)
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with

〈b〉 = N(t)−1
∫ ∞

0

∫ ∞
0

g(λ, t)b(λ, λ′)dλ′dλ = N(t)−1
∫ ∞

0
g(λ, t)b1(λ)dλ. (4.61)

Properties:
Even if theoretically it is impossible to give a simple analytical form for both the merger
rate and bifurcation rate. With the help of simulation performed, either by calculating the
merger rate or DNS of striation, we can determine some properties that they must verify:

� In the inertial regime, we want to retrieve the same result obtained by Alon and his
collaborators, so the merger rate and bifurcation rate must verify ω � b when C → 0.

� In the collsional case, we witness bubble structure braking into smaller ones, so the
merger rate and bifurcation rate must verify ω < b when C → +∞

� We know that ω decrease with C.

Particular case, analytic integration
From the properties described above and the resutls obtained in section 21, we try to con-
struct a new merger law representation used in equation (4.46), we adapt it in a different
way as

ω(t) =
√

ag

〈λ(t)〉e
−C(〈λ(t)〉) (4.62)

with C(〈λ(t)〉) = νin
√
〈λ(t)〉 /2πg, again we recall that this merger rate is fictive, but

can help us understand the behavior of the number of bubble and the mean radius, however
the distribution function would obviously be erroneous.

For the bifurcation rate we ignore the b2 part for now and concentrated on the b1 part.
From simulation we know that the more we increase the collision growth rate the more we
observed bubble bifurcation.

Two possibility can be given for the bifurcation rate,

� The bircation rate increase with the parameter C explaining the increase in bifurcation
in high collisional regime.

� The bifurcation rate is constant or lightly decreasing with C meaning that the decrease
in the merger rate explain alone the increase in bifurcation rate.

Supposing the second point we write the bifurcation rate as

b(t) = β = Constant. (4.63)

Now, integrating the equation (4.59), we obtain:

dN(t)
dt

=
[
−
√

ag

〈λ(t)〉e
−C(〈λ(t)〉) + β

]
N(t), (4.64)

which traduce in

dN(t)
dt

=
[
−
√

ag

N0λ0

√
N(t)e−(N(t))−1/2

(
νin
√
λ0N0/2πg

)
+ β

]
N(t). (4.65)
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Without bifurcation
Before looking at the effect of bifurcation we want to show the behavior of the model with the
newly proposed merger rate. Indeed, contrarily to the form given in section 4.4, the merger
rate does not force the saturation of the number of bubbles or their averaged wavelength.

Removing the bifurcation terms in equation (4.65), we obtained

dN(t)
dt

= −
√

ag

N0λ0

√
N(t)e−(N(t))−1/2

(
νin
√
λ0N0/2πg

)
N(t). (4.66)

Furthermore, knowing that,

∫ 1
−e−b/

√
a(t)

a′(t)
a(t)3/2 = 2eb/

√
a(t)

b
, (4.67)

permit us to integrate it as,

N(t) =
( √

2πg
νin
√
λ0N0

ln
[
νina

2
√

2π
t+ eC0

])−2

, (4.68)

with C0 = νin
√
λ0/2πg.

Inertial range: In the case of C0 � 1 and tνin � 1 one can write

N(t) =
( √

2πg
νin
√
λN0

[
2νin
√
λ0N0√

2πg

√
agλ0

N0
t+ C0 +O

(
νin
√
λ0N0

2
√

2πg

√
ag

N0λ0
t

)2])
. (4.69)

Thus, we retrieve again the same result that Alon,

N(t) ≈ N(0)
(

1 + 1
2

√
ag

λ0
t

)−2

. (4.70)

Collisional range: In the case of tνin � 1 one can write

N(t) = N0C
2
0

ln
(
νint/2

√
2
)2 . (4.71)

In conclusion, as for the numerical integration we obtained a solution that verifies for-
mer results in the inertial regime and increases very slowly in the collisional regime. As a
consequence, we did not witness a saturation as in shown by simulations (see section 4.2).

Saturation range:
Now returning to equation (4.65), we can readily show that with bifurcation number of
bubble saturate if it verify the equation:

−
√

ag

N0λ0

√
N(t)e−(N(t))−1/2

(
νin
√
λ0N0/2πg

)
+ β = 0 (4.72)

which give solution as:

N(t) = ν2
inλ0N0

2πg
1

ProductLog
( √

ag√
N0λ0β

νin
√
λ0N0√

2πg

)2 (4.73)
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where ProductLog[y] is the solution z for the equation y = zez.

4.6.2 Numerical integration with an arbitrary bifurcation rate
We performed numerical integration of equation (4.59) with the a constant bifurcation rate
b1(λ) = β of bubble λ and a parabolic probability that such bifurcating bubble do so into
two bubble of wavelengths λ′ and λ− λ′, which gives:

b2(λ′) = −6(λ′/λ)(λ′/λ− 1)/λ, (4.74)

so that
∫ λ

0 b2(λ′)dλ′ = 1 and the resulting bubble are most likely to be of wavelength around
λ/2. Of course, the merger rate is computed in the same way that previously, using Hecht’s
model [39]. [39]Hecht et al

1994

β = 0.1 s−1 β = 0.2 s−1

Figure 4.22: Averaged wavelength 〈λ(t)〉 in function of time obtained by numerical integration of the extension of the
statistical model with a bifurcation procese (here νin = 5 s−1).

We readily see on Figure 4.22 that as expected by including bifurcation process in the
statistical model the averaged wavelength converge after a long time toward a constant value.
Two cases are presented with different bifurcation rates, in which the averaged wavelength
converge to 2.2 ∼ 2.3 m with β = 0.1 s−1 and 0.9 m with β = 0.2 s−1.

Remark 4.6.1 Since no theoretical exist to determine a bifurcation rate of our structure, we
could propose from these results a way to evaluate the bifurcation rate in an empirical way.
One could imagine that comparing the saturated averaged bubbles diameters obtained from
simulations with the ones computed with the statistical models while varying parameters as
the collision frequency and the arbitrary bifurcation rates would permit to associate them
so that we obtained a relation as Dsat

b = f(C, b1), where f is the function derived from the
model giving the saturated averaged bubble diameter in function of the suitable bifurcation
rate b1 and the dimensionless parameter C.

4.6.3 Scale invariant distribution function
Figure 4.23 shows the scale invariant distribution function for a collisional case with different
bifurcation rates. Here we see that the bifurcation rate has a strong influence on the shape
of the scale invariant distribution function. The higher the bifurcation rate, the more packed
the number of bubbles are around a certain wavelength.
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Figure 4.23: Comparison of the scale invariant distribution for different bifurcation rates with νin = 10 s−1.

4.6.4 Comparison with simulations
Now that we have show that adding the bifrucation procees in the statistical model allow for
the averaged bubbles diameter to saturate, we want to see if it also look closer to what we
obtained from simulations.

Figure 4.24: Diameter of the bubble Db (left panel) and the spike Ds (right panel) in function of the time for the case of
νin = 5 s−1. The solid black line corresponds to the model without bifurcation, the dashed blue and the dash-dotted red
lines are respectively the extended model with a bifurcation rate of β = 0.1 s−1 and β = 0.2 s−1, and the and the blue
squares, orange triangles and green circles correspond respectively to grid size of 300× 300, 600× 600 and 900× 900.

We see on Figure 4.24, that adding bifurcation with a rate close to permit us to be closer
to our simulation results. Indeed the curves obtained from the model with a bifurcation rate
β = 0.1 s−1 is really close to the averaged spike diameter measured on simulations with the
more precise grid while only underestimating a little the averaged bubble diameter. On the
other hand, the with a bifurcation rate of β = 0.2 s−1 is well under the measured averaged
diameter either for the bubble or the spike.

Our hypothesis of constant bifurcation rate may not be unlikely when looking at the
Figure 4.25. Indeed, the model, with the constant bifurcation rate β s−1, did not a great
deviate much between the averaged bubble diameter and only underestimate slightly the
averaged spike diameter.

Following previous remark we can say that, in regards to our simulations, a bifurcation
rate close 0.1 s−1 and that assuming it to be a constant of C is not as erroneous as it may
seem. However, this is a little premature at the moment to enshrine this observation as a
fact.
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Figure 4.25: Diameter of the bubble Db (left panel) and the spike Ds (right panel) in function of the time for the case
of νin = 0.1 s−1.The solid black line corresponds to the model without bifurcation, the dashed blue and the dash-dotted
red lines are respectively the extended model with a bifurcation rate of β = 0.1 s−1 and β = 0.2 s−1, and the and
the blue squares, orange triangles, green circles and red hexagons correspond respectively to grid size of 300 × 300,
600× 600, 900× 900 and 1200× 1200.

4.6.5 Discussion
Thus, by adding the bifurcation process in Alon’s model [40], we have successfully reconcile [40]Alon et al

1993, 1994, 1995the averaged structures diameter derived from the model and measured from simulations in
the collision regime, without deviating to much from previous results in the inertial regime.

Since there is no analytical work explaining quantitatively the bifurcation process [41], we [41]Carrasco et al
2020can imagine the creation of a meta-model on b1 by extensively studying numerical simulations.

It could either agree well with our constant approximation or give a form b1 function of the
parameter C. We think that amusing a parabolic probability for the function b2(λ′/λ) is a
good approximation for now, although it would also need further investigation.

Remark 4.6.2 We note that their is also possible numerical improvement of our numerical
integration of the model. Indeed, we could increase our precision by changing our method of
integration, which, for now are the Euler’s method at first order for the temporal integration
and Newton-Cote rectangular rule for the spatial integration (in λ). It was not a priority for
us, because computing the merger rate ω was already expensive.

As a conclusion, we seem very close to obtained an 0D statistical model that would
determine the size of structures generated by GDI.
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4.7 Conclusion
In this chapter, we have shown the difference in behavior of the multi-mode non-linear phase
of the GRTI in either the inertial or the collisional regime. In the inertial regime, we found,
using numerical simulation performed with CLOVIS, the traditional inverse cascade due
to the merging processes. The constant acceleration αb of the bubble front was similar
to the ones obtained with analogous codes [42], although noticeably lower than the one [42]Dimonte et al

2004obtained through experiments [43]. This is a classical problem from simulation performed
[43]Read 1984;
Dimonte and
Schneider 1996;
Dimonte 1999;
Dimonte and
Schneider 2000;
Youngs 1992

without interface reconstruction or any similar method. More importantly, when increasing
the collision frequency toward the collision regime, we witness a constant velocity of the
bubble front, as well as a decrease in the size of the structure obtained. Furthermore, when
entering the highly collisional regime, some of the bubbles experience the inverse process of
merging, the breaking of a large bubble into smaller ones, known as bifurcation.

With the problem well delimited, we tried to know if by extending multi-mode non-linear
model use for the classical RTI, as we did in the previous chapter, could permit us to describe
the same behavior. Using Hecht’s method [44], we computed, with the addition of the friction [44]Hecht et al

1994drag force with a neutral fluid, a merger rate, which quantifies the time necessary for a large
bubble to absorb its smaller neighbor. The slowing down of the merging process when the
collision frequency is increased was put into evidence.

Using this extended merging rate in Alon’s statistical model [45] we have found similar [45]Alon et al
1993, 1994, 1995behavior to that of the simulation in the inertial and low collisional regimes. Indeed, the

averaged bubble diameter grows more slowly as the collision frequency increases. Moreover,
the bubble front velocity approaches a constant behavior toward the highly collisional regime.
However, the model and simulations averaged bubble diameter begin to diverge from the
simulation when increasing the collisional parameter into the highly collisional regime. We
believe that the problem resides in the absence of a bifurcation process in this regime.

As a result, we extend Alon’s model by including a bifurcation process. We found that
it allowed us to reconcile the averaged bubble diameter obtained with the model and the
simulations in the highly collisional regime without diverging too much from inertial re-
sults. Nevertheless, some investigation is still necessary to confirm this work, mainly on the
quantification of the bifurcation rate.

As a conclusion, in this chapter we have derived the first non-linear competition model
adapted to ionospheric instabilities. In doing so, we put into evidence the difference in
behavior between the inertial and collisional regimes.

As a result, we hoped that this model would answer the question, "What determines the
size of striations in the barium cloud?" Diffusion effects have been shown to be too small to
explain the width of striations [46]. Here, we proposed that the size of striations (bubbles and [46]Besse et al

2005spikes created by GDI) be the result of an equilibrium between the merging and bifurcation
processes. In the next chapter, we will see if it can indeed be relevant for simulations closer
to barium cloud release.
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5
Application of the non-linear models to ionospheric

instabilities

Summary
In this chapter, the goal is to apply, adapt, and confront the previous theoretical work to
physical conditions closer to the real ionospheric instabilities. We will concentrate ourselves
on two main points:

� Firstly, we want to extend further the single-mode non-linear model by taking into
account the geometry of the problem induced by the earth’s magnetic field.

� Secondly, we also want to check if the conclusion made with the model and extremely
simplified simulations holds for more realistic cases.

We begin with an extension of the single-mode non-linear model of chapter 3 to the
dipolar geometries. This is well adapted by the EPB which is strongly influenced by the
earth’s magnetic field. After some long but straightforward computation, we will obtain a
new asymptotic velocity of the top of the EPB:

vb = fg
νin
k

1 + 2r
6

(√
1 + 12δgeff

C2f2
g

r(r − 1)
1 + 2r − 1

)
, (5.1)

where r = ρh/ρl, fg = q1/RE , geff = g0 − νinU0, δgeff =
(
g0
f2
g
− νinU0fg

)
/geff , and

C = νin/
√
kgeff with RE the earth’s radius and q1 the position of the magnetic field line,

where the top of the EPB is located, compared to the earth’s center at the equator.
Thus, the only difference between the planar and dipolar geometries lies in the parameter

fg. We will show that the difference in velocities between the two will neither exceed 20%
since the altitude attained by EPB is smaller than the earth’s radius.

Nevertheless, this work will give the basis for an integrated flux tube non-linear model.
We will show that in the case of r → +∞, the asymptotic integrated velocity can be put on
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the form:

vb = fg
νin
3k

(√
1 + 3

kgeff

f2
g ν

2
in

− 1
)
, (5.2)

where νin = νinρh
ρh

and geff = g0
f2
g
−U0νinρh

ρh
fg, with ρh, νinρh and U0νinρh being the integrated

value along magnetic field lines.
Using this model with the ionospheric density profile given by IRI or COSPAR, we will

retrieved the same tendencies observed by multiple EPB measures and explained by linear
regimes, as, for example, the impact of the PRE drift and the altitude of the maximum
density layer.

Then, we will perform a simulation of 2D EPB with CLOVIS with different collision
frequencies. We find similar results compared to other simulations given by the literature,
but compared to our model, we obtain velocities far greater than expected, even if it follows
the same tendencies.

Finally, we will perform simulations of 2D GDI with a high density layer of plasma with
different collision frequencies. We have shown that some of the properties demonstrated in
chapter 4 could explain the size of striation structure in respect to the transition between
the inertial and collisional regimes. The qualitative results seem promising, and with a more
quantitative approach, it may be possible to dimension an appropriate diffusion coefficient
for a striation model.
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5.1 Introduction
Up until now, our work has been mostly of the theoretical kind. We have simplified the
problem of EPBs and striations to the maximum. Although it has permitted us to show
some tendencies and properties of the underlying instabilities (GRTI or GDI), which have
not been investigated as thoroughly in the past (to our knowledge), we still need to see if
these results hold for more realistic conditions or at least propose some way of amelioration.

One of the main suppositions of our different models was that they worked for mass
density discontinuity. However, this discontinuity approximation is not as stringent as it
seems since it holds if density gradient length is negligible compared to instability wavelength.
Nevertheless, a number of other approximations have been made in chapter 3 and 4, which
limits the use and validity of these results. As a consequence, in this chapter, we will try
to extend some parts of our models while checking if we can retrieve some of our results
properties with more realistic simulations.

First, we extend the model developed in chapter 3 by taking into account the dipolar
geometry induced by the earth’s magnetic field. It also leads to a flux integrated field line
description similar to the one described in chapter 2 for the linear regime. Then, we perform
2D EPB simulations following the example of Huba [1]. Finally, we look at the difference [1]Huba and Joyce

2007between an inertial and collisional regime on simulations similar to the one obtained with
the striation model following the example of Besse [2]. [2]Besse et al 2005

5.2 Application of single mode non-linear model to EPB
5.2.1 Non-Linear Theory of GRTI

In the chapter 3, we have developed a non-linear model giving the rising velocities of a
bubble in a planar geometry. It had given consistent results with numerical simulations
performed with our two code (CLOVIS and ERINNA), and are also coherent with others
studies [3]. However, for EPBs, it seems more appropriate to use the dipolar geometry, since [3]Goncharov

2002; Ossakow and
Chaturvedi 1978;
Ott 1978

their evolution are strongly dependent of the earth’s magnetic field. As a consequence, we
will transpose our non-linear model of a GRTI bubble derived in a planar geometry to a
dipolar geometry.

In this part, we start with a description of the dipolar coordinates system followed by
how it modify our assumption on the interface profile and the velocity potentials. After, we
derive the new system of temporal evolution for the top of the bubble position, curvature,
and velocities, we will, finally, check the differences between the two geometries in the earth’s
environment.

Dipolar Coordinates System
The magnetic earth dipole is given in spherical coordinates (r, θ, ϕ) (here r is the radius from
the Earth’s center, ϕ is the magnetic longitude, and θ is the magnetic latitude) as:

B0 = Brer +Bθeθ = B0
R3
E

r3 [−2 sin(θ)er + cos(θ)eθ], (5.3)

where B0 is the value of the magnetic field at the magnetic equator at Earth’s surfaces
(B0 ≈ 3 × 10−5 T ), and RE is the mean Earth’s radius (RE ≈ 6370 km) [4]. This form [4]Basu 2002

verifies that ∇×B0 = 0, and ∇· B0 = 0.
It permits us to define the dipolar coordinates (q, µ, ϕ′) as shown in Figure 5.1. eµ is

the unit vector along B, eq is perpendicular to eµ , and contained in the meridional plane
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(positive upward), and eϕ is perpendicular to the meridional plane and the magnetic field
verifying eϕ′ = eµ × eq (note that ϕ′ is still the magnetic longitude).

The dipole coordinate system (q, µ, ϕ′) and the spherical coordinates (r, θ, ϕ) are related
through [5]: [5]Swisdak 2006

q = r
cos2(θ) , µ = sin(θ)

r2 , ϕ′ = ϕ. (5.4)

For the sake of simplicity, we will now write ϕ instead of ϕ′.

Figure 5.1: Scheme of EPB in the meridional plane

Initialization
We suppose an initial state where two fluids are separated by an unperturbed interface at
q = q0 (see Figures 5.1 and 5.2), with the heavier fluid (ρh) occupying the q > q0 region while
the lighter fluid (ρl) occupies the q < q0 region. The transverse coordinates of the interface
in the dipolar geometry become (µ, ϕ).

Figure 5.2: Scheme of EPB in the equatorial plane

The two plasma fluids are subject to a gravitational acceleration field taken as g =
−g(r)er (where g =| g |) and to a friction drag force – per unit volume – with a neutral
fluid defined as Fnh(l) = ρh(l)νin

(
Vn −Vh(l)

)
, where νin is the momentum exchange collision

frequency between ions and neutrals, Vn is the velocity of neutrals and is assumed to be
constant with Vn = U0er (U0 is either negative or positive).
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Remark 5.2.1 It’s worth noting that talking about a neutral wind is a little imprecise, because
mathbfVn is actually a convection drift.Indeed, it comes from the neutral wind at lower
altitudes, whose destabilizing effect is transmitted toward the high altitudes via the electric
field. The neutral can only contribute to the rise of EPB due to the dynamo effect. Without
this mechanism, the neutral density, being too low in the upper F region, would not have a
substantial effect). However, we think it is easier to see it as a neutral wind in our case.

Initially, the two fluids are supposed at hydrostatic equilibrium so that Vh(l) = 0. Note
that in Figure 5.2, g and Vn have been already replaced with geff . Similarly to what we did
in chapter 3. This new acceleration accounts for the combination of the gravitational force
and the friction force (see further in this section). This gives the dipolar coordinates:

g = −g0R
2
e

r2 er = −g0R
2
e cos4(θ)
q2

(
−2 sin(θ)

δ
eµ + cos(θ)

δ
eq
)
, (5.5)

and

Vn = U0er = U0

(
−2 sin(θ)

δ
eµ + cos(θ)

δ
eq
)
, (5.6)

where g0 ≈ 10 ms−2 is the gravity at the Earth’s surface near the equator.
Here we place ourselves in the plasma frame so that the equilibrium state is a plasma at

rest. The PRE-drift contribution is seen in this case as a downward neutral wind, while in
the earth’s neutral frame this is the plasma, which is seen as moving upward.

We consider a single mode perturbation in the eϕ direction that has entered its non-linear
regime, with the wavelength λ separating two bubble tips, as show on Figure 5.2. Like in
chapter 3, we will use the extension of Layzer’s theory [6] developed by Goncharov [7]. We [6]Layzer 1955

[7]Goncharov 2002assume that the shape of the perturbed interface near the top of the EPB, where the lighter
fluid pushes into the heavier fluid, has a parabolic form in ϕ.

η(ϕ, t) = q0 + η0(t) + η2(t)ϕ2, (5.7)

where q0 is the height in dipolar coordinates of the initial interface with η0 > 0, η2 < 0 and
ϕ = 0 at the tip of the bubble. η0 is the position of the tip of the bubble compare to q0

and η2 is linked to the bubble curvature. Here we assume that the evolution of the interface
η(ϕ, t) will follow the magnetic field line as shown in Figure 5.1.

Furthermore, due to the high conductivity along the magnetic field lines in the F region,
the perturbed plasma velocity component, Vµ, is neglected (see Figure 5.1), where V =
(Vq, Vµ, Vϕ) is the plasma velocity. As a result, the velocity potentials of the heavier, φh, and
lighter, φl, fluids describing the irrotational motion (Vh(l) = ∇φh(l) implying ∇×Vh(l) = 0)
are assumed to be only in the plane (q, ϕ). This approximation is equivalent to Zalesak’s
simulations [8], where the fluid motion along the magnetic field line was discarded. The [8]Zalesak et al

1982physical explanation of this assumption comes from the fact that the high conductivity along
the magnetic field line permits to reach hydrostatic equilibrium at a time scale substantially
smaller than the EPB motion time scale. Therefore, we have φh(q, ϕ, t) and φl(q, ϕ, t) given
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by

Vh = −∇φh = − 1
hq

∂φh
∂q

eq −
1
hϕ

∂φh
∂ϕ

eϕ, (5.8a)

Vl = −∇φl = − 1
hq

∂φl
∂q

eq −
1
hϕ

∂φl
∂ϕ

eϕ, (5.8b)

where hs is the scale factor of the coordinate system with s ∈ (q, µ, ϕ).
Also, we suppose the fluid to be incompressible (∇· V = 0), so that ∆φ = 0. The

velocity potential has to be the solution of the dipolar Laplace’s equation:

∆φ = δ2

r6
∂2φ

∂µ2 + δ2

cos6(θ)
∂2φ

∂q2 + 4
r cos4(θ)

∂φ

∂q
+ 1
r2 cos2(θ)

∂2φ

∂ϕ2 = 0, (5.9)

where δ2 = 1 + 3 sin2 (θ).

Remark 5.2.2 In reality, the equality ∇· V = 0 is not totally verified in the ionosphere. Due
to the electric field coupling along magnet field lines, there are still some small compressibility
effects. However, since the rising velocities of EPB are generally smaller than the sound speed,
it should still represent a good approximation.

To simplify this differential equation, we recall that φ depends only on q and ϕ. The
evolution of the EPB during ESF is known to be close to the equator, implying θ → 0. So,
we can perform a first order expansion of the Laplace’s equation in θ (we neglect terms of
order O(θ2)), and equation (5.9) becomes:

q2 ∂
2φ

∂q2 + 4q ∂φ
∂q

+ ∂2φ

∂ϕ2 = 0. (5.10)

Searching solution of the form φ = A(t)F (q)G(ϕ), we obtain the following class of solu-
tions:

φ(t) =
(
q

q0

)−3
2

a(t)
(
q

q0

)√9+4k2
ϕ

2

+ b(t)
(
q

q0

)−√9+4k2
ϕ

2

 cos(kϕϕ). (5.11)

As a consequence, we assume that the potential flows in the heavy and light fluids are
given by:

φh = a1(t)
(
q

q1

)− 3
2−
√

9+4k2
ϕ

2

cos(kϕϕ), (5.12a)

φl = b0(t)q
3
1
q3 + b1(t)

(
q

q1

)− 3
2 +
√

9+4k2
ϕ

2

cos(kϕϕ), (5.12b)
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where q1 = q0 + η0 and kϕ = 2πRE/λ = REk with k is the wave number define by 2π/λ.
Doing the same assumption on our metric factor scale we obtain hq = 1, hµ = q3 and hϕ = q.
We also apply this assumption to the gravity and neutral wind:

g = g0R
2
E

q2 eq, (5.13)

and

Vn = U0eq. (5.14)

The contribution along eµ is not taken in to account since we consider equilibrium at
every instant along magnetic field line.

Equations and boundary conditions
The kinematical boundary conditions satisfied at the interface q = η(ϕ, t) are:

∂η

∂t
− ∂φh

∂ϕ

1
h2
ϕ

∂η

∂ψ
= −∂φh

∂q

1
hq
, (5.15a)(

−∂φh
∂ϕ

+ ∂φl
∂ϕ

)
1
h2
ψ

∂η

∂ϕ
= 1
hq

(
−∂φh
∂q

+ ∂φl
∂q

)
. (5.15b)

After replacing η and φh(l) using equations (5.7) and (5.8) in equation (5.15), expanding
in powers of the transverse coordinate ϕi up to i = 2, neglecting terms of order O(ϕi)(i ≥ 3),
assuming q1 � η2ϕ

2, and then, equating coefficients of ϕi with i ∈ (0, 2), we obtain the
following new set of equations:

dξ1
dτ

= −αh
kϕ

1
fg
ξ3, (5.16)

dξ2
dτ

= − ξ3
fg

(
ξ2
fg

(
2 + αhβh

k2
ϕ

)
− αh

2kϕ

)
, (5.17)

b1 = a1

ξ2
fg

ch
k2
ϕ
− αh

kϕ

ξ2
fg

cl
k2
ϕ
− αl

kϕ

, (5.18)

b0 = kϕa1

3

ξ2
fg

(αlch−clαh)
k3
ϕ

ξ2
fg

cl
k2
ϕ
− αl

kϕ

, (5.19)
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with

ξ1 = kη0,

ξ2 = kη2/k
2
ϕ,

ξ3 = k2a1/
√
kgeff ,

τ = t
√
kgeff ,

geff = g0 − νinU0,

fg = q1/Re,

(5.20)

and

αh = − 3
2 −
√

9+4k2
ϕ

2 ,

βh = αh − 1 = − 5
2 −
√

9+4k2
ϕ

2 ,

αl = − 3
2 +
√

9+4k2
ϕ

2 ,

βl = αl − 1 = − 5
2 +
√

9+4k2
ϕ

2 ,

ch = αhβh + 2k2
ϕ + 4αh,

cl = αlβl + 2k2
ϕ + 4αl.

(5.21)

In these equations, ξ1, ξ2 and ξ2 are again, respectively, the dimensionless (with respect
to the wave number, kϕ, and the effective acceleration field considered on the ground) dis-
placement, curvature, and velocity of the top of the bubble, τ is the dimensionless time, and
fg is a geometrical parameter describing the ratio between the top of the bubble altitude in
dipolar geometry and earth’s radius.

Now, we use the momentum conservation equation:

ρh(l)

[
∂Vh(l)

∂t
+ (Vh(l) ·∇)Vh(l)

]
= −∇ph(l) − ρh(l)g− ρh(l)νin(Vn −Vh(l))

+Jh(l) ×Bh(l)

(5.22)

By integration, we obtain the Bernoulli equation:

ρh

[
−∂φh
∂t

+ 1
2(∇φh)2

]
− ρl

[
−∂φl
∂t

+ 1
2(∇φl)2

]
= +g0R

2
E

q
(ρh − ρl)

+U0νin(ρh − ρl)q + νin(ρhφh − ρlφl) + fh(t)− fl(t).
(5.23)

In equation 5.23, we have already equalized the total pressure pt,h(l) = ph(l)+B2
h(l)/(2µh(l)),

and we have also ignored the effect of magnetic tension allowing us to remove all the terms
derived from the Lorentz J×B force.

Like previously, we replace q by η(ϕ, t) = q0 + η0(t) + η2(t)ϕ2 in equation (5.23) and we
assume q1 � η2(t)ψ2. Then, we equate coefficients of ψ2.

Because the complete temporal equation of ξ3 in the dipolar case is more complicated
than the one obtained previously in planar geometry (see chapter 3), we used two more ap-
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proximations to simplify our results. To begin, we expand in kϕ, because kϕ = 2πRE/λ� 1,
where λ is the longitudinal size of the GRTI structure (classical EPB have a longitudinal
wavelength ranging from 100 km to 10 km). Second, we assume that ξ2 and ξ3 are time in-
variant. This approximation holds in the saturated nonlinear regime depicted in the previous
chapter 3, and for EPB it is equivalent to assuming that spatial variation along the eq axis
of our physical parameters is negligible (ρh(l), νin nearly constant as a function of q). The
set of equations without these two approximations can be found in D. Finally, we obtain the
solution for ξ2 and ξ3:

ξ2 = −fg6 +O
(

1
kϕ

)
, (5.24)

and

ξ3 = f2
g

1 + 2r
6

(√
C2 + 12δgeff

f2
g

r(r − 1)
1 + 2r − C

)
, (5.25)

where r = ρh/ρl, δgeff =
(
g0
f2
g
− νinU0fg

)
/ (g0 − νinU0), and C = νin/

√
kgeff .

Except for the geometrical parameter fg and the spatial variation of the effective gravi-
tational acceleration, the values of ξ2 and ξ3 are identical to the ones obtained in the planar
geometry.

Recalling ξ3 = (
√
geff/k/fg)vb, we obtain the expression of the bubble velocity:

vb = fg
νin
k

1 + 2r
6

(√
1 + 12δgeff

C2f2
g

r(r − 1)
1 + 2r − 1

)
. (5.26)

As in the chapter 3, we can obtain the asymptotic bubble velocity in the collisional regime
(C � 1),

vb = δgeff
fg

geff
νin

r − 1
1 + 2r , (5.27)

and in the inertial regime (C � 1),

vb =
√
δgeff

geff
3k

r(r − 1)
r2 . (5.28)

Comparison between planar and dipolar geometry
The difference between the the planar and dipolar geometry is not straightforward because it
operate differently for the two destabilizing components of the GRI (RTI +GDI) via δgeff .
Indeed, the asymptotic bubble velocity, for r → ∞, can be rewritten, in a pure RTI case,
meaning δgeff = 1/f2

g ( with geff = g0 = 1 m.s−2), as,

v̄b = Cfg√
3

(√
1 + 3

f4
gC

2 − 1
)
, (5.29)

and in a pure GDI case, meaning δgeff = fg, (with geff = −U0νin = 1 m.s−2), as,

v̄b = Cfg√
3

(√
1 + 3

fgC2 − 1
)
, (5.30)

University of Paris-Saclay Dated: January 31, 2023 Cauvet Quentin



156 5. Application of the non-linear models to ionospheric instabilities

where v̄b is the normalized velocity of the top of the bubble (with respect to the asymptotic
velocity in the inertial regime).

Figure 5.3: Non-linear normalized bubble velocity for pure RTI (left) and pure GDI (right) as a function of C for planar
and dipolar geometries (fg = 6/5 for dipolar case which corresponds to an altitude of approximately ∼ 1270 km )

The normalized velocity is close for both planar and dipolar geometries, as seen in Figure
5.3. The larger difference between the velocity in dipolar geometry and the velocity in the
planar geometry is in the inertial regime for the pure RTI case (right panel), but still does
not exceed 20%. This small difference is expected since we have an approximation of small
θ and the altitude is much smaller than the earth’s radius, fg ∈ [1, 1.2] .

5.2.2 Flux Tube Integrated Description
In the previous subsections, we have adapted the model derived in chapter 3 to the geomag-
netic geometry. When comparing the two geometries (planar and dipolar), we found that
the difference was slim and rarely greater than 20%.

This interesting result is only a first step in our extension of Goncharov’s model [9] to the [9]Goncharov 2002

geomagnetic geometry. Indeed, now that we have a model in the local dipolar geometry, we
can derive, in a conscientious way, a flux tube integrated non-linear model. This is justified
by the high conductivity along magnetic field lines and has previously been done for the
linear regime [10]. Doing so will allow us, in a simplified way, to take into account some of [10]Haerendel et al

1992; Basu 2002;
Sultan 1996

the 3D effects relevant to non-linear EPB growth.

Velocity Derivation
Equation (5.23) is valid along magnetic field lines as long as θ2 � 1, even if we allow ρh, ρl,
U0 and νin to be function of µ. By integrating it along a magnetic field line, one obtains:

ρh

[
−∂φh
∂t

+ 1
2(∇φh)2

]
− ρl

[
−∂φl
∂t

+ 1
2(∇φl)2

]
= +g0R

2
E

q
(ρh − ρl)

+(U0νinρh − U0νinρl)q + (νinρhφh − νinρlφl) + fh(t)− fl(t),
(5.31)

with

ρs =
∫
q2
1ρsdµ, (5.32)

U0νinρs =
∫
q2
1U0νinρsdµ, (5.33)
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νinρs =
∫
q2
1νinρsdµ, (5.34)

where s ∈ h, l.
In contrast to linear integrated theory [11], we have no weights of integration because we [11]Haerendel et al

1992; Basu 2002;
Sultan 1996

have neglected terms of order O(θ2) and above to simplify our calculation. This implies that
most of the error in our integrated EPB velocity comes from its low altitude contribution.

The effect of Pedersen and Hall conductivities is also missing since we consider J =
1
µ0
∇×B . Another option would have been to not ignore the magnetic tension and to work

with a three-fluid Ohm’s Law J = σ· (E + V×B) [12], where σ is the conductivity matrix. [12]Song et al 2001

However, we leave it to future studies.
By taking ρh � ρl for simplicity (since most ESF present depletion of 3 order of magni-

tude), we obtain the integrated velocity of the top of the bubble:

vb = fg
νin
3k

(√
1 + 3

kgeff

f2
g ν

2
in

− 1
)
, (5.35)

where νin = νinρh
ρh

and geff = g0
f2
g
− U0νinρh

ρh
fg.

Numerical Application
To compute the integration along the magnetic field line, we have to use a profile of ion density
and neutral density. So we compute ion-neutral and electron-neutral collision frequencies
using the formula given by Kelley [13]: [13]Kelley 2009a

νin = 2.6× 10−15(nn + ni)A−
1
2 , (5.36)

νen = 5.4× 10−16nnT
− 1

2
e , (5.37)

where A is the atomic number, Te is the electron temperature in Kelvin (here we choose
Te ≈ 0.1 ∼ 0.4eV ≈ 1000 ∼ 4000K), ni and nn are ion and neutral densities in m−3.

The limit of integration is defined as the altitude at which σ0 = 1 S.m−1, where σ0 is
the conductivity parallel to the magnetic field line. This condition is rather arbitrary, but it
coincides well with the altitude where plasma density becomes negligible. To determine σ0,
we again use a formula given by Kelley [14]: [14]Kelley 2009a

σ0 = e2ni
miνin

+ e2ne
meνen

. (5.38)

We choose to use the ionospheric conditions over Jicamarca longitude on March 9th, 2013
at 21h00 LT, since the equinox is favorable for spread F generation and it has already been
studied by [15]. The velocity is computed with the equation (5.35) which assumes a great [15]Anderson and

Rendmon 2017difference in densities between the bubble and the background. The profiles of ions and
neutrals needed are taken from IRI [16]for ions and COSPAR for neutrals. [16]Bilitza et al

2011; Bilitza 2018The drift between the plasma and the neutrals is taken into account in the model. Since
we place our studies in the plasma frame (unmoving ambient plasma), it goes by the addition
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Figure 5.4: Non-linear and flux tube integrated velocities of an EPB as a function of altitude. Two different values of
neutral wind are set: without neutral wind for the blue curve and U0 = 100 m.s−1 for the red curve. The black curve
represent the local velocities of the EPB without neutral wind. The IRI ions density profile of March 9th 2013 is used.
Here g0 = 10 m.s−2 and λ = 100 km.

of a neutral wind. In Figure 5.4, the velocity of the rising bubble is increased by the neutral
wind by nearly U0

2 . So, by adding 100 m.s−1, we see that the bubble’s rising velocity is
increased by nearly 50 m.s−1 at low altitude. We see that in the case of a strongly collisional
regime (200 ∼ 300 km), the neutral wind is the main contributor to non-linear growth, which
is consistent with bottomside ESF occurences [17]. [17]Huang 2018;

Retterer et al 2005;
Abdu 2001

Figure 5.5: Non-linear velocities (a),(c),(e) for different ion density profiles (b),(d),(f) in function of altitude. Dashed
line (b),(d),(f) are the IRI ion density profile of March 9th 2013 respectively shifted with 0 km, −50 km, 50 km. Here
g0 = 10 m.s−2 and λ = 100 km.

The non-linear growth of the EPB also depends on the height of the maximum of the ion
density layer. Indeed, the velocity in the collisional regime will increase vb ∝ 1

νin
if the value

of νin = νinρh
ρh

decreases. If we switch the IRI profile with a Dirac function at the altitude
of the maximum of density layer qmax, we understand that νin = νin (qmax). Thus, if the
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maximum ion density is higher, then an EPB will have a larger asymptotic velocity since νin
decreases.

We can also roughly assume that before qmax the velocity follows the local evolution
Vb ≈ geff/νin(q) since the ion density grows exponentially. Moreover, once it attain an
altitude well above qmax it will converge its asymptotic value Vb ≈ geff/νin(qmax).

In Figure 5.5, we have shifted the maximum density layer of March 9th 2013 by ±50 km.
We see that the maximum velocity does not exceed 20 m.s−1 when its altitude is reduced
by 50 km, when it goes to 70 m.s−1 by increasing it from 50 km. This result was already
enlightened by local analysis and simulations [18] but, to our knowledge, never with an [18]Ossakow et al

1979analytic flux tube integrated analytic description.
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Summary and perspectives
We highlight the effect of the maximum density layer height and the PRE drift on our
analytical non-linear EPB growth. This agrees with their measured correlation with the
ESF and scintillation occurrence and intensity [19]. The value of the bubble rising velocity [19]Anderson

and Rendmon
2017; Huang 2018;
Retterer et al 2005;
Abdu 2001

given by the model is also close, although a little smaller, with EPB velocity observations,
which lie between 50 m.s−1 and 300 m.s−1 [20]. However, we can extrapolate the results on

[20]Tsunoda 1981;
Abdu et al 1983,
2020

the impact of higher harmonics in planar geometry (from chapter 3) to the dipolar geometry,
which permits us to gain nearly a factor two on the bubble velocity given by the model. We
can also combine the effect of the neutral wind and the maximum density layer height, shown
in the Figures 5.4 and 5.5 to further increase our velocity.

We also note that the flux tube integrated description is the cause of velocity saturation,
because νin was never small enough to enter the inertial regime. Further investigation is
still needed to quantify the model accuracy compared to ionospheric variability, but it seems
promising to evaluate EPB non-linear growth and may be determined when a bottomside
ESF growth into topside ones [21]. [21]Hysell 2000

Finally, other properties could also be studied with this model. One aspect is an answer
to why did EPB stop rising? Indeed, if we put a defined height on the EPB, we can explain
why an EPB stops rising. For example, a bubble with a vertical size of 100 km and the density
profile of Figure 5.4, when the tops of the bubble attain 700 km, its impact on integrated
quantities would look as if no discontinuity would be present. Thus, the rising velocities given
by the model will be close to zero, which is similar to what Krall obtained by simulation
[22]. [22]Krall et al

2010bThe second aspect is that here we have assumed the profile of the ion density along the
magnetic field line to be symmetrical on both sides of the equator. We could have instead
recomputed the density equilibrium by taking into account an asymmetric neutral wind in
the north-south direction. Doing so will have put in evidence the effect of meridional wind
on EPB as done analytically by Maruyama [23] and with simulations by Huba [24]. [23]Maruyama

1988
[24]Huba and
Krall 2013

As a consequence, the two main factors, which are the PRE drift and the maximum
density layer height, determining the evolution of EPBs, have been put into evidence for
the first time in a flux tube integrated non-linear model. Indeed, this demonstration was
only confined until now to simulations, observations, and speculations from the linear model
results. Besides, other minor properties inherent to the flux tube integrated linear growth
rate could also be extended to the non-linear phase in a conscious way thanks to this model.
This will direct some of our future work.

5.2.3 2D simulations of EPB with CLOVIS
In this section, we perform simulations of EPB to see if our analytic model succeeds in pre-
dicting its non-linear velocity or if some physical aspects are still missing. Unfortunately, we
had to settle for a 2D simulation. 3D simulation in an MHD code requires more computa-
tional resources than dynamo and striation type codes used in the literature to study EPB
[25]. Moreover, the initial equilibrium state is not as trivial as it will be shown farther, since [25]Huba et al

2008; Yokoyama et
al 2014; Retterer
2010a,b

the inertial terms are not neglected and the magnetic field is not taken constant. However, it
is still a good starting point to put into evidence some of the limits of our analytic models, as
well as their strengths. Indeed, we will show that the qualitative behavior can be explained
by our models. For example, the fact that there are more bifurcations and the EPB slows
down when the collision frequency increases. Nevertheless, EPB velocities obtained from
simulations did not match perfectly with the single-mode model.
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Initialization
The initial density profile is taken from Huba 2007 [26] and represents a Chapman layer [27] [26]Huba and

Joyce 2007

[27]Lilensten and
Blelly 2021

of oxygen ions with:

ρ(y) = ρ0e
1−ζ−e−ζ + ρ1, (5.39)

where ρ0 = 2.65× 10−14 kg.m−3, ρ1 = 2.65× 10−19 kg.m−3, ζ = (y − y0)/∆y, y0 = 438 km,
and ∆y = 70 km.

The ion-neutral collision frequency is taken to be constant. The gravitational acceleration
field is taken downward and constant, g = −gey, with g = 9.8 m.s−2 and for simplicity we
do not impose a neutral wind, Vn = 0 and take the temperature as constant, Ti = 1000 K.

Contrary to Huba [28], who used a striation type model, we used an MHD model. As a [28]Huba and
Joyce 2007consequence, we need to find an initial equilibrium state, verifying:

0 = −Cs∇ρ(y) + ρ(y)g−∇pmagn, (5.40)

where Cs is the sound speed define by Cs = kbTi/mi and pmagn is the magnetic pressure
define by pmagn = B2/2µ0. The plasma is at rest in this case,V = 0. Since we have
assumed an isothermal plasma, it leaves us no choice but to modify the magnetic field to
verify equilibrium. By integrating equation 5.40, we get:

pmagn = Csρ0

(
1− e1−ζ−e−ζ

)
+Dygρ0

(
e− e1−e−ζ

)
+ gρ1 (ymax − y) , (5.41)

where ymax = 650 km. We readily obtain the magnetic field Bz = √pmagn.

Remark 5.2.3 We could have used the formula Bz =
√
pmagn +B2

0/µ0 to add a constant
magnetic field B0, but we choose not to because it allows us a computational cost gain and
we have not seen any difference in previous simulations with or without this magnetic field
(see chapter 3).

The simulation domain is 250 km in the x-direction (i.e. east-west), and from 250 km to
850 km in the y-direction (i.e altitude). The mesh size is 200× 800 so the grid resolution is
δx = 1.25 km and δy = 0.75 km.

To simplify our initialization, we choose to perturb the equilibrium state on the vertical
velocity as:

δV = δV0 cos(kx), (5.42)

where δV0 = 50 m.s−1, and k = 2π/λ, with λ = 250 km.

νin Cmax Cmin λC in km
0.1 6.37 0.45 6.2
0.2 12.74 0.90 1.5

Table 5.1: List of the minimum and maximum C parameter and the pseudo cut-off wave-
length in our simulation in function of the collision frequency.
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The visualization of the initial density profile can be seen on the first panel of Figure 5.6.
For the minimum and maximum value of the C parameter, as well as, the pseudo cut-off
wavelength, one can refer to table 5.1.

Results

Figure 5.6: Evolution of the mass density under the GRTI performed with CLOVIS with HLLD solver to the second
order. The condition are g = 9.8 m2.s−1 and νin = 0.1 s−1.

As seen in the second panel of Figure 5.6, the initial single mode perturbation was not
the only structure grown in the domain. We can count between five or eight bubbles rising
in the early non-linear phase. The interface breaking into smaller modes could be expected
from our result in Chapter 4, since as seen in table 5.1, our single mode perturbation is well
in the collisional regime. As a consequence, it is prone to bifurcation, as in our simulation.
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After a long time, the middle bubble, which was born from our perturbation, prevailed and
overtook its neighbors in the third panel of Figure 5.6. It finally slows down after the fourth
panel due to the reduced density gap between the bubble and its surroundings.

When increasing the collision frequency by a factor of two, the number of secondary
structures is even more marked, as seen in the two first panels of Figure 5.7. Contrary to
the previous simulation, the middle bubble does not overtake its neighbors completely, and
the two other bubbles grow at relatively the same velocity. It is consistent with our previous
conclusion that the more we increase the collision frequency, the thinner and more numerous
the structuration will be. At the bottom of the fourth panel of Figure 5.7 more smaller
bubbles are also present compared to their counterparts in the fourth panel of Figure 5.6.

Remark 5.2.4 The fact that we witness secondary structures in the present simulations but
not in the ones from chapter 3 can be explained by two factors. The ratio of densities between
the heavy and light fluids is greater in the present simulations, and at the same time, we
have used a second-order spatial reconstruction method instead of a first-order one. These
modifications allow for a higher density gradient in the present simulations, which favors
bifurcation processes.

If we compare this simulation to observations performed with Incoherent backscatter
radar around Jicamarca, we can see some similitude. A large structure is frequently sur-
rounded by several smaller structures [29], with the exception that, due to the intense east- [29]Hysell 2000;

Kelley et al 1986;
Woodman and Hoz
1976

ward drift, the secondary perturbation develops only on the east side.
On a more quantitative approach, we measure bubble rising velocity of the order of

few km.s−1 for the case of νin = 0.1 s−1 and around few hundred of m.s−1 for the case of
νin = 0.2 s−1. Although these results are coherent with the ones obtained by Huba with his
2D simulations (from 800 m.s−1 to 2 km.s−1) [30]. However, it is far more than the velocity [30]Huba and

Joyce 2007given by our model, which, for the single-mode approximation, turns around 100 m.s−1 for
νin = 0.1 s−1 and 50 m.s−1 for νin = 0.2 s−1. Even with a completely inertial regime, we only
obtained a bubble rising velocity of 360 m.s−1.

For the first time in these studies, we found a larger quantitative discrepancy between
simulations and the single-mode analytic model. Various things can explain this behavior.
First and foremost, with a plasma velocity of a few kilometres per second, we attained
supersonic flow so that the incompressible assumption does not hold anymore. Secondly, the
model does not take into account the really thin path taken by the light fluid. It can lead to
a conservation of the volume between light and heavy fluids to the acceleration of the former
as the latter falls.

It could have been interesting to see what happens with higher collision frequencies and
in 3D geometry. Unfortunately, due to numerical stability and high computational real time,
we could not perform simulation with a higher collision frequency in the limited period of
this thesis.

Discussion
Confronting our model with observations and simulations gave very different results. On one
hand, the extensiton in the flux tube integrated model seems to give velocity of the same
order as the one obtained through observation, meaning between 50 m.s−1 and 300 m.s−1

[31]. On the other hand, our analytical bubble rising velocities fall well below, nearly an [31]Tsunoda 1981;
Abdu et al 1983,
2020

order of magnitude, in front of the 2D simulation performed by CLOVIS.
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Figure 5.7: Evolution of the mass density under the GRTI performed with CLOVIS with HLLD solver to the second
order. The condition are g = 9.8 m2.s−1 and νin = 0.2 s−1.

It is worth noting that for subsequent simulations performed in 3D with SAMI3, Huba
et al. found various results from 1.1km.s−1 in Huba 2009 [32] (where the maximum inertial [32]Huba et al

2009bvelocity from our model is around 450 m.s−1) and 842 m.s−1 or 182 m.s−1 for single or five
bubble perturbation respectively Huba 2015 [33](where the maximum inertial velocity from [33]Huba et al

2015the model is around 400 m.s−1 or 180 m.s−1 respectively). In his paper, Huba referred to the
supersonic EPB velocities described by Aggson et al. [34]. Indeed, in his paper, Aggson et [34]Aggson et al

1992al. show the observation of EPB rising with an upward velocity of around 2 km.s−1 which
is coherent with our simulation and the one performed by Huba. However, as they admit in
their paper, such supersonic flow had only been measured twice by the time of publication,
and lower EPB rising velocities were measured in general. They gave two explanations:
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either it was caused by an intense Alfvén wave, which made the observation fortuitous, or
supersonic velocity held only for a small moment of the order of a few minutes before slowing
down, leading to a rare observation.

The model could be further extended by adding compressibility effects, as done by Gupta
[35] or adding 3D behavior by taking the magnetic field tension. However, this would need [35]Gupta et al

2009to start over from the beginning with more basic simulations as we did in chapter 3.

Remark 5.2.5 We have tried ourselves to extend Goncharov’s 2D model [36] [36]Goncharov
2002

by taking into
account a magnetic field parallel to the perturbation. It would have permitted us to perform
a 3D bubble rising model with a magnetic field included. Unfortunately, we only managed
to retrieve the linear growth rate, and our analytical model and simulation show too much
discrepancies to validate this work.

In conclusion, we have found a quantitative difference between the velocities given by
the single-mode non-linear model derived in chapter 3 and these simplified EPB simulations.
However, it is too soon to say if it is the model or the simulations that are erroneous. Indeed,
as we mentioned, simulations and observations rarely agree among themselves on the value of
EPB rising velocity. As a result, much improvement is still required in terms of measurement
reliability, code accuracy, or the physics included in the model to address this specific point.

Nevertheless, we have shown that the trends of the single-mode non-linear model of
chapter 3 and the multi-mode results of chapter 4, regarding the structuration and the
velocity dependence on the collision frequency, have been retrieved.

5.3 Application to barium cloud
In this section, we will use the work performed in the chapter 4 to try to explain the struc-
turation in barium cloud experiments. Of course, we do not pretend to explain all the
mechanisms present in ionospheric instabilities. Some questions are still unanswered to this
day, although a number of possible explanations have been given, like for example in Car-
rasco et al. paper "Why do equatorial plasma bubbles bifurcate?" [37]. What we want to [37]Carrasco et al

2020do is to answer an analogous question, which take this particular problem the others way
around; "Why do striations or EPBS do not bifurcate more?". Indeed, we do not have any
new explanation for the bifurcation process. However, using the results from chapter 4, we
can attempt to explain why the striations observed in barium are of a certain size and do
not bifurcate further.

Previously, the explanation was associated with diffusion, which should determine the size
of the perturbations. However, the dissipation due to finite temperature and conductivity
in the dynamo model is proven to be too small to obtain a structure size similar to the one
observed [38]. The cascading process caused by the bifurcation reduces the wavelength of [38]Besse et al

2005the structure to the point where the instability enters the inertial regime, and since C ∝
√
λ,

there comes a point where the cascading process is balanced by the merging process.
In this part, we will try to determine if the structuration is really that different when

we change the collision frequency for the GDI. Thus, we have performed simulations with
CLOVIS with a density gradient profile and different values of the collision frequency.

5.3.1 Simulation with CLOVIS
Initialization
We have inspired ourselves from Besse’s work [39]. The initial density is unformed along the [39]Besse et al

2005
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x-axis and follows a Gaussian profile in the y-axis, centered around y0 = 10 km and given
by:

ρ = ρ0

(
1 + δρe

−
(
y−y0
R0

)2
)
, (5.43)

where ρ0 = 2.7× 10−15 kg.m−3, δρ = 10, which corresponds to a maximum mass density of
roughly ρmax = 3× 10−14 kg.m−3, and R0 = 2 km.

The plasma is assumed at rest with a constant internal pressure of p = 1.3 × 10−7 Pa.
The domain is defined as [0, 10]× [0, 40] km with 300× 600 grid. The neutral wind is taken
constant in the y-direction as Vn = U0ey with U0 = 30 m.s−1.

CLOVIS being a code working in the ideal MHD approximation, means that, contrarily
to Besse’s simulation, the equilibrium is not guaranteed unless we add a magnetic pressure
that will compensate for the friction drag force with neutrals. Indeed, at equilibrium, with
a plasma at rest and constant internal pressure, the momentum conservation equation is
reduced to:

0 = −∇pmagn + ρνinVn. (5.44)

The magnetic field is taken in the z-direction and constant along the x-axis, meaning
B = B(y)ez. We obtain the following equality,

B2(y) =
∫
νinU0ρ(y′)dy′ + Cst, (5.45)

which give,

B2(y) = ρ0νinU0y + ρ1

√
π

2 U0νinerf
(
y − y0

R0

)
+ Cst. (5.46)

where ρ1 = ρ0 × δρ and erf is the error function defined by

erf(y) = 2√
π

∫ y

0
e−t

2
dt. (5.47)

To avoid any negative magnetic pressure, we used the integration constant Cst = ρ1
√
πU0νin/2.

The magnetic field is then of the form:

B(y) =
[
ρ0νinU0y + ρ1

√
π

2 U0νin

(
1 + erf

(
y − y0

R0

))]1/2

. (5.48)

Finally, we perturb this equilibrium state with a random perturbation on the vertical ion
velocity, meaning δV = δV ey, of the form:

δV = αβe
−
(
y−y0
R0

)2

(5.49)

where α = 1 m.s−1 and β is a random number between zero and unity.
The initial density profile is shown in the first panel of Figure 5.9, and the minimum and

maximum values of the parameter C, as well as the pseudo cut-off, are shown in the table
5.2.
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νin Cmin Cmax λC (km)
7 1.112 19.3 0.027
0.01 0.04 0.72 18.8

Table 5.2: List of the minimum and maximum C parameter and the pseudo cut-off wave-
length in our simulation in function of the collision frequency.

Results
Remark 5.3.1 Before examining them in detail, we want to correct a possible misconception.

In the previous section we looked at the case of EPB. In this type of irregularity, we
work at a constant wavelength and it is mostly the collision frequency that varies. The cause
is that the instability is probably born from gravity waves in the bottom of the F region
[40] [40]Fritts et al

2009; Abdu et al
2009; Kelley et al
2009b

(explanation accepted by the majority, but no consensus has been reached yet) and by
rising to upper altitude, the collision frequency at the top of the bubble (local or field line
integrated) decreases. It can be clearly seen when following the vertical axis, meaning the
altitude of Figure 5.8. This can give the impression that the velocity in the inertial regime is
faster than in the collisional regime. Indeed, we can see from our asymptotic velocity obtained
in chapter 3 that the velocity increases linearly as the inverse of the collision frequency from
a highly collisional regime and finally saturate at the asymptotic inertial velocity.

However, barium cloud releases are more localized in altitude and the density is often so
high compared to the background that the current loop formed by interaction along magnetic
field lines with the lower altitude plasma is negligible. As a consequence, we work in the case
of GDI with a constant collision frequency but a variable wavelength. In this case, the
velocity starting from the inertial regime increased as the square root of the wavelength
until it saturated at the asymptotic collisional velocity. This behavior corresponds to the
horizontal axis, meaning the wavelength, of Figure 5.8.

To summarize, either greater altitude or larger wavelength leads to larger growth velocity,
even if the two give different variations of the dimensionless parameter C as seen in Figure
5.8.

Using the result of chapter 4, another interesting interpretation can be done. It is that
the striation in the barium cloud starts from the ambient white noise in the inertial regime
where the merging process takes place. After some time, the perturbation size has increased
and has attained the collisional regime and the merging stops (surely counterbalanced by
the bifurcation process). Thus, the size of the striation structure in the barium cloud is
determined by the transition between the two regimes and not by the diffusion process as
previously thought.

Figure 5.9 represents an inertial case, since as seen of table 5.2, with a collision frequency
of 0.01 s−1, the collision parameter C is always below unity. The first thing we remarked in
this simulation is the presence of secondary instability as Kelvin-Helmholtz creating modu-
lation along the y-axis and triggered by the tangential velocity shear of the structure. It is
one of the properties of the inertial regime, as it has already been noted in literature [41]. [41]Gondarenko

and Guzdar 1999Contrarily to what we expected, we still witnessed the presence of a relatively small
structure. This is due to two effects. Firstly, the bubble and spike appear to show bottleneck
or very small width structures, which cause breaking and the separation of independent
droplets, as seen near 30 km in the fourth panel of Figure 5.9. Secondly, the more visible
structure is the spike, and in the inertial regime, it experiences a pseudo "free fall" so that it
results in thin structures that grow at nearly the same velocity regarding their size. Indeed,
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Figure 5.8: Local dimensionless parameter C in function of the altitude and the instability wavelength, λ. The collision
frequency was computed using the IRI ions density profile of March 9th 2013 and the equation (5.36). Here g0 =
9.8 m.s−2.

it is only through the merging of the bubbles that spikes sizes change since they do not merge
on their own, and here it is limited by the finite width of the excess density. Thus, we can
see only two main spikes if we look around 10 to 15 km, but there are around five to seven
spikes present between 20 to 30 km.

When looking at the collisional case of Figure 5.10, we see a strong similarity with the
results presented by Besse [42] using a striation model approximation. The structure shows [42]Besse et al

2005a straighter pattern since the secondary instability is damped by the high collision frequency.
When we compare the two cases, we can see that the GDI grows slower in the inertial regime
than in the collisional regime, as predicted by our theory (see chapter 3). On the contrary,
the diameter of the spike is smaller in the collisional regime than in the inertial. This is
consistent with our previous assumption.
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Figure 5.9: Evolution of the mass density under the GDI performed with CLOVIS with Roe (8wave) solver to the
second order. The conditions are U0 = 30 m.s−1 and νin = 0.01 s−1
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Figure 5.10: Evolution of the mass density under the GDI performed with CLOVIS with Roe (8wave) solver to the
second order. The conditions are U0 = 30 m.s−1 and νin = 0.01 s−1

University of Paris-Saclay Dated: January 31, 2023 Cauvet Quentin



5. Application of the non-linear models to ionospheric instabilities 171

5.4 Conclusion
In this chapter, we compared the theoretical results obtained in the previous chapters 3 and
4, to more realistic cases. We began with an extension of our non-linear single model to
dipolar geometry. Our first result is that the asymptotic velocity obtained in the dipolar
geometry differs only by up to 20% compared to the planar case. Besides, the extension
of our single-mode non-linear model into the dipolar geometry was a necessary step for the
derivation of a flux tube integrated non-linear model. Some qualitative properties of the
EPB non-linear growth, which have up until now been explained by speculations on the
linear growth rate, have been put into evidence by this extended non-linear model. Among
them, we have the impact of the PRE drift and the altitude of the maximum plasma density
on the EPB rising velocity.

In the second part, we performed a simple 2D simulation of EPB starting with a Chapman
layer. We obtained rise velocities of the same order as those obtained by Huba [43], but these [43]Huba and

Joyce 2007values differ from the asymptotic velocity derived from our single-mode non-linear model.
This result is not a proof of failure of the single-mode model since there is still room for
improvement, and, up to our knowledge, simulations and measures agree only rarely on the
value of EPB rising velocity.

Moreover, the single-mode non-linear model was an essential step to derive the multi-
mode non-linear model, which can explain the variety of structuration for EPBs. Indeed,
simulations show a greater number of small structures when the collision frequency increases,
as well as more bubbles that reach the upper part of the simulation domain.

In the last part, we looked at the structuration of striation resulting from the GDI in
the two regimes. We have retrieved qualitatively some of the theoretic results described in
the other chapters, as, for example, a smaller size of the striation in the collisional regime.
Nevertheless, a more thorough study is still needed by treating the present simulation in a
more quantitative manner and also by looking at the effect of different parameters, such as
the width of the high density layer. The goal in the long run would be to dimension a pseudo
diffusion term that mimics the inertial effect in the striation model.

As a conclusion, by putting into evidence the effect between the inertial and collisional
regimes, we have shown a possible explanation for the structuration of EPBs and striations
in function of the collision frequency between ions and neutrals. Further investigation are
still necessary to consolidate this promising result.
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Conclusion and perspectives

Conclusion
The objective of this thesis has been to investigate the non-linear dynamics of ionospheric
instabilities known as EPBs and striations, which are grouped in this thesis under the appel-
lation "GRTI". We used the fact that such instabilities were similar to the hydrodynamical
RTI. A number of models have already been developed to study this ubiquitous RTI in
the non-linear phase. We can cite Goncharov’s model [44] which permits determining the [44]Goncharov

2002temporal evolution of a single mode perturbation for the RTI from the linear phase to the
late stage. There is also the statistical model of Alon [45], which, using the results of a [45]Alon et al

1993, 1994; Hecht
et al 1994

single-mode model, performed a competition between non-linear bubbles in the case of a
multi-mode perturbation.

However, despite the similarity between hydrodynamical RTI and the ionospheric GRTI,
some physical aspects are missing in this analytical model to describe the late dynamics of
EPBs and striations, among which is the force drag due to collision between ionospheric
ions and the atmospheric neutrals. As a result, we have worked on expanding these models
to include some ionospheric specificity in order to predict the late-stage evolution of such
structures of interest without relying too heavily on direct numerical simulations.

Firstly, using Goncharov’s model, we have obtained a non-linear description of the single-
mode growth of GRTI. We confronted this analytical description with simulation and found
good agreements within the model’s range of validity. The results were pretty similar to
those obtained by Ott and Ossakow [46] , but with further improvement and investigation, [46]Ossakow and

Chaturvedi 1978;
Ott 1978

especially with the confrontation with simulations performed either by the ideal MHD code,
CLOVIS, which works in inertial and collisional regimes, or the electrostatic code, ERINNA,
which works in the purely collisional regime, but is closer to the code in the literature. Some
unexpected results, such as the fact that spike velocity matched nearly perfectly, between
simulations and the model in the collisional regime or that in the same regime the contribution

University of Paris-Saclay Dated: January 31, 2023 Cauvet Quentin



174

of higher harmonics is necessary for a precise description of the top of bubble velocity, have
been put into evidence.

This first work could explain some of the non-linear multi-mode behaviors. Indeed, in the
inertial regime, the fact that the bubble’s non-linear velocity increases with its wavelength
explains why multi-mode perturbation bubbles merge. This merging process induces a bubble
front acceleration, which has been witnessed in experiments and simulations and retrieved
by analytical competition models. Starting with numerical simulations with the ideal-MHD
code CLOVIS, we look at the property in both regimes of the non-linear growth of the GRTI
with a multi-mode perturbation. In the inertial regime, we found good agreement in regards
to the bubble acceleration compared with simulations already performed in the literature
[47]. In contrast, in the collisional regime, we obtained a bubble front with a constant [47]Dimonte et al

2004velocity , while the averaged bubble diameter remained mostly constant across simulations
(ignoring the numerical diffusion effect).

Then, we worked on expanding competition models used for the hydrodynamic RTI to
reproduce the results obtained with simulations. We demonstrated that including the fric-
tional drag due to collision with neutrals and ions in the computation of the merging rate
of two bubbles reduced the same merger in the collisional regime. This leads to two prop-
erties with the complete statistical model: the bubble front also reaches a constant velocity,
while the averaged diameter of the bubble grows more slowly as collision frequency increases.
However, this extension of the non-linear competition model is not sufficient to explain the
saturation of the averaged bubble diameter seen with simulations in the highly collisional
regime. Thus, we showed that the bifurcation process is necessary in the model to obtain an
agreement with simulations. However, for now the bifurcation rate is purely arbitrary and
will need further investigation.

The results of this theoretical work can be summarize in the following table,

Quantity Inertial (or classical) regime Collisional regime
Single-mode bubble velocity ∝

√
geffλ

6π
∝ geff

νin

Multi-mode evolution of the
bubble front ∼ αbgeff t2 ∝ geff

νin

Multi-mode evolution of the
structure size ∼ geff t2 ∼ λC

Table 5.3: Main results of this thesis

Finally in the last chapter, we continue to work in improving the models to take into
account the specificity of EPBs, while also quantifying the impact of the transition between
inertial and collisional regimes through simulation. First, we performed another extension
of Goncharov’s model to take into account geophysical geometry. It permit to obtained a
integrated flux tube non-linear asymptotic velocity of the top of EPBs, that retrieves the
behaviors confirmed until now only by using linear theory [48]. We talked, among others, of [48]Basu 2002;

Haerendel et al
1992

the impact of the maximum density layer altitude and of the PRE drift on the EPB’s rising
velocity.

Then we performed simulations closer to EPBs and striations with CLOVIS. In the EPB’s
case, we mostly compare the rising velocity of the bubble with the single-mode model.

We discovered a discrepancy between the velocities given by the model or the simulations,
as was the case for observations and simulations in the literature. We still note that the
velocity from the model is of the same order of magnitude as measurements. Nevertheless,
the structuring and the meaningful trend were well described by the two models. In the case
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of striations, we demonstrated how the scale of its main structures changes depending on
which regimes (collisional or inertial) the GDI grows in. The results qualitatively agree with
what we found in the previous chapter.

Perspectives
In our studies, we have worked on the development of non-linear models adapted to iono-
spheric instabilities. Such non-linear models are interesting due to their scarcity in the case
of ionospheric instabilities. They increase our understanding of the late-time behaviors of
EPBs and striations. Here, we want to propose some direct application of these models,
although some investigation is still needed.

Thus, there are still some fundamental aspects to investigate, mainly in regards to the
bifurcation rate. Finding an analytical expression of this bifurcation seems more unlikely
since no explanation of the process has been delineated yet [49]. However, with the help of [49]Carrasco et al

2020simulations and the present extended model, it could be possible to map the bifurcation rate
as a function of the parameter C and maybe derive a meta-model.

Once this shortcoming is treated, we can imagine that by using the single-mode non-linear
model in its flux tube integrated version, combined with the statistical competition model,
we could determine the growth of multiple EPBs. Indeed, EPB interactions either through
bifurcation or merging should depend strongly on the flux tube integrated parameters like
the collision frequency.

One could even add further physical aspects, such as compressibility or magnetic tension,
in the single-mode models and then in the competition ones. However, we would need to
start our studies from scratch with our already defined methodology. Nevertheless, with such
models, we could hope to increase our understanding of rising EPBs without relying heavily
on numerical simulations.

Talking about numerical tools, two corresponding applications could be envisioned.
First, it could be the answer to the weakness of some electrostatic codes, like ERINNA,

whose results depend heavily on an arbitrary diffusion coefficient. Indeed, by investigating
further the difference in structures in striations due to the transition between the inertial and
collisional regimes, we could surely dimension a diffusion coefficient that mimics the inertial
term in the striation approximation.

Secondly, once we have confirmed the validity and reliability of the statistical statistical
0D model, it can provide the characteristic properties (size, intensity, etc.) of density fluc-
tuation caused by GDI as a function of local parameters such as collision frequency between
ions and neutrals and the relative atmospheric wind compared to the ionosphere. To exploit
this model, we could couple it with a numerical code that used coarse grids to give accurate
information on smaller scales at a lower computational cost. And maybe in the far future,
this could be used as input for electromagnetic wave codes describing the propagation of
telecommunication in the ionosphere.

As a conclusion, with this work we have laid the groundwork for the creation of a brand-
new multi-mode competition model in the late non-linear phase for ionospheric instabilities
and shown promising results in explaining various physical phenomena. We can cite, as exam-
ples, the merging and bifurcation processes, which both seem essential in the understanding
of the structuration of EPBs and striations.
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A
Possible implementation of the Hall term in CLOVIS

As presented in chapter 1, the most precise single-fluid model to describe the ionosphere is
the Hall-MHD approximation. The ideal MHD approximation permits a good description
of the high altitude ionosphere, whereas electrostatic models are more adapted to the low
altitude ionosphere where collisions are the most important, but only the Hall-MHD model
can be seen as a thorough model for ionosphere fluid dynamics. Indeed, we do not know if the
collision at low altitude, which increases the importance of the non-ideal terms such as the
resisitvity and the Hall MHD term, can influence the dynamic of the ionospheric structure
over long times, even at high altitude through magnetic field lines. This is why one of my
early tasks in my thesis was to find a method to implement this non-ideal term in CLOVIS
and then verify it with a test-case.

For the resistivity term, which can be put on the form η0J in equation 1.25, the imple-
mentation reveal to be easy. By replacing the electric field in the Maxwell-Faraday law 1.23,
the resistive term ∇× η0J can be decomposed in two terms η0∆B and ∇η0×J. In a bi-fluid
approximation (electron + ion), the second term is nearly zero, since η0 can be assumed
constant (in the ionosphere as well as long νei � νen). The first is a diffusion term with a
Laplacian added to the magnetic field induction equation; its explicit implementation in a
source term is trivial. The only problem that can arise is if the time step of this resistive
term becomes far smaller than the ideal MHD time step, but it can be easily resolved by
using super-time stepping methods [1] or by using an implicit scheme instead. [1]Alexiades et al

1996; Meyer et al
2012, 2013, 2014

On the contrary, the implementation of the Hall term is more complex since the Hall
term is dispersive and not diffusive [2]. There are two main ways of implementing the Hall

[2]Lesur et al 2014term.
The first method combines it with resistive and ambipolar diffusion with super-time

stepping or similar forms [3]. Note that this method needs to be reduced to a classical [3]Bai 2012;
O’Sullivan and
Downes 2006

explicit scheme if the time step induced by the Hall term is smaller than the one from the
other diffusive terms.
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The secondary method is to add the Hall terms directly into the flux computation. This
method has been pioneered by Toth [4] in the code Batsrus with a Lax-Friedrchs solver, but [4]Toth et al 2008

has been quickly extend to the less diffusive HLL solver, either in the 1D [5] or 2D forms [6] [5]Porth et al 2014;
Lesur et al 2014
[6]Marchand et al
2018

In the first part, we will present our own HLL implementation with primary results
demonstrated with a simple test-case. Then, we will derive an extension of this model to the
HLLC solver and the problem that an extension to the HLLD solver can bring. In the end,
another method (not presented here) has been used to implement the Hall effect.

A.1 Rewritting the equations into conservative form
A.1.1 Starting equations

The set of equations describing the ideal MHD and the Hall terms are:



∂tρ+∇· (ρV) = 0
∂t(ρV) +∇· (ρV⊗V) = J×B−∇p
∂tE +∇· [(E + p)V] = E · J
∂tB = −∇×E
µ0J = ∇×B
E = −V×B− ηHJ×B
∇· B = 0

(A.1)

In the ionosphere, the expression of ηH , can be very complicated. Indeed, it will depend
on the different collision frequencies between the three fluids, which are the electrons, ions,
and neutrals [7]. [7]Song et al 2001

In the ionosphere, the expression of ηH , can be very complicated. Indeed, it will depend
on the different collision frequencies between the three fluids, which are the electrons, ions,
and neutrals [8]. Since we are more interested in the direct implementation of the Hall [8]Song et al 2001

terms, we will use the bi-fluid approximation in this chapter, so that ηH reduces to ε/ρ with
ε = mi/e.

A.1.2 Conservative form
The equation of ideal-MHD, including the Hall term in the Ohm law, can be put into the
form:

∂U
∂t

+∇· F(U) = 0, (A.2)

where:

U =

 ρ
ρV
B
Et

 , (A.3)

F =


ρV

ρV⊗V + Ip+ IB2

2 −B⊗B
V⊗B−B⊗V− (VH ⊗B−B⊗VH)
V.(E + p) + (V−VH) · (IB2 −B⊗B

 , (A.4)
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with:

VH =

uHvH
wH

 = ηHJ = ε

ρ
J. (A.5)

In the monodimensional approximation, it is reduced to:

F =



ρu
ρu2 + pt −Bx
ρuv −BxBy
ρuw −BxBz

Byu−Bxv − (ByuH −BxvH)
Bzu−Bxw − (BzuH −BzwH)

(Et + pt)u− (V · B)Bx −B2uH + (VH · B)Bx


. (A.6)

By adding the Hall term in ideal-MHD equations, two challenges arise:

� The seven eigenvalues and their associated wave velocities corresponding to our new
flux have been modified by adding the Hall terms. The complexity of the new set
of equations makes it difficult to compute them analytically in all physical ranges.
Moreover, even considering only the fastest wave is tricky since the fast magneto-sonic
wave speed can be smaller than the whistler wave speed, which is inversely proportional
to the wave length.

� In the induction equation and energy equation, there is an implicit second-order spatial
derivative of the magnetic field that appears via VH . As previously stated, these terms
cannot be rewritten into a simple Laplace operator.

A.1.3 Consistency problem
The fastest wave of the Riemann fan can be approximated as follows:

c =| u | +Max(cf , cw) (A.7)

where cf denotes the classical MHD fast magnetosonic speed and cw = ε | B | π/ρ∆x
denotes the maximum whistler speed from the grid size. The physical derivation of the
whistler wave can be found below in section A.2.1. Thus, the maximum stable time step for
an explicit time integration scheme in the case of cw � cf , which is always true for small
enough ∆x, is,

∆t < ∆x
cw
∝ ∆x2. (A.8)

This has two consequences. The first one being that explicit time integration algorithms
become rapidly inefficient as the grid resolution increases. The second is that since the nu-
merical dissipation required for stability of the explicit numerical scheme is also proportional
to the fastest wave speed of the hyperbolic system of equations, this can reduce the spatial
order of accuracy by one order. This was demonstrated by Toth [9] and, as a consequence, [9]Toth et al 2008
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when using a Lax-Fridrichs or HLL scheme, one must use a reconstruction of the left or right
state of at least second order to avoid inconsistency.

A.1.4 Spatial discretisation of the current
Due to the Hall term, we have to calculate the current J = ∇ ×B, at the cell faces before
solving the flux for the magnetic field and energy. To maintain consistency, a second-order
accurate calculation of the cell face values must be performed. Following Toth’s example,
for the x face of a uniform Cartesian grid, we use a simple central difference and average
computation:


Jxi+1/2,j,k = Bzi,j+1,k+Bzi+1,j+1,k−B

z
i,j−1,k−B

z
i+1,j−1,k

4∆y − By
i,j,k+1+By

i+1,j,k+1−B
y
i,j,k−1−B

y
i+1,j,k−1

4∆z

Jyi+1/2,j,k = Bxi,j,k+1+Bxi+1,j,k+1−B
x
i,j,k−1−B

x
i+1,j,k−1

4∆z − Bzi+1,j,k−B
z
i,j,k

∆x

Jzi+1/2,j,k = By
i+1,j,k−B

y
i,j,k

∆x − Bxi,j+1,k+Bxi+1,j+1,k−B
x
i,j−1,k−B

x
i+1,j−1,k

4∆y

(A.9)

A.2 HALL-HLL solver
The first step of the HALL-HLCC solver is to define our left and right states, and since we
need to avoid inconsistency, we need to perform a second order reconstruction. As a result,
the states UL and UR are provided by:

UL
i+1/2 = Ui + 1

2∆̄Ui

UR
i+1/2 = Ui+1 + 1

2∆̄Ui+1
(A.10)

∆̄Ui is the value obtained with a slope limiter. We have used either the classical mimod
or monotize-centered (MC) limiter defined by:

minmod : ∆̄Ui = minmod(Ui+1 − Ui, Ui − Ui−1)
MC : ∆̄Ui = minmod[β(Ui+1 − Ui), β(Ui − Ui−1), Ui+1−Ui−1

2 ]
(A.11)

with 1 < β ≤ 2 (we used β = 1.5) and minmod(a, b) = min(| a |, | b |). The limiter serves
to prevent our reconstruction from inducing spurious oscillations (maintain TVD property)
[10]. For the HALL terms, we also used VL

H = εJi+1/2/ρL and VR
H = εJi+1/2/ρR. [10]Toro 2009

Note that this second reconstruction differed from the MUSCL-Hancock [11] method used [11]Toro 2009

in the previous chapters’ ideal MHD simulation. This is due to the fact that this work was
performed anterior to the improvement done on the second order reconstruction in CLOVIS.

Either for the Lax-Friedrichs or the HLL Rieman solver, we also need to define the two
wave SL and SR. We have used

SL = uL −Max(cLf , cLaw), (A.12)

and

SR = uR + Max(cRf , cRaw) (A.13)
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where caw is the the Alvèn-whistler wave of the grid is given by

caw = cw
2 +

√
c2w
4 + c2a (A.14)

with cL,Rf , cL,Ra , cL,Rw and cL,Raw being respectively the monodimensional fast wave speed,
Alfvèn speed, whistler speed and Alfvèn-whistler speed computed with the left or right states.

Now that everything has been defined, the flux can be computed with the classical HLL
solver (see section 61).

A.2.1 Test-Case: Circularly polarized Alfvèn-whistler wave
Theory
Consider a plasma at rest of uniform density ρ0 and pressure p0, subject to a uniform magnetic
field in the x direction, B0 = B0ex. We assume a perturbation, δV, on the velocity, and , δB,
on the magnetic field with the form ei(wt−k · x), where k = kex. From the incompressible
assumption, meaning ∇· δV = k · V = 0 and the zero divergence of the magnetic field
condition, one can deduce that δBx = δu = 0.

The momentum conservation and induction equations written in the incompressible case
are:

ρ∂tV− ρV∇· V = −∇p+ J×B,
∂tB = ∇× [(V + VH)×B],

(A.15)

with J = ∇×B and VH = ε
ρ0

J. From linearizing to the first order the set of equations,
which includes the perturbation, we obtain:

iωδV = −i (k×δB×B0)
ρ0

+ i δpρ0
k,

iωδB = −i(k.B0)δV + ε
ρ0

(k · B0)(k× δB)
(A.16)

by applying the divergence (k ·) at both sides of the momentum conservation, we get δp =
−δB · B0 = 0. Thus, the wave can be considered incompressible even with a compressible
fluid. We can simplify the equation (A.16) into:

ωδV = −kB0
ρ0
δB,

(ω2 − k2c2a)δB = −iωερ0
kB0(k× δB),

(A.17)

where ca = B0/
√
ρ0 is the Alfvèn speed along the axis ex. The magnetic field compo-

nents verify δBy = ±iδBz, which corresponds to the circularly polarized Alfvèn wave. The
dispersion relation is, then:

ω2 − k2c2a = ±ωkcw (A.18)

where cw = kεB0/ρ0 is the whistler velocity. The phase velocity of the wave is then:

caw = cw
2 ±

√
c2a + c2w

4 (A.19)
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where the plus (resp. minus) corresponds to the polarized Alfvèn-whistler propagating
toward the right (resp. propagating toward the left [12]. [12]Bai 2012

Initialization
This test-case is analogous to the classical polarized Alfvén wave used in MHD. It enables
us to quantify the error between the simulation and the theorical propagation of the wave.
We follow the initialization proposed by Toth [13]. [13]Toth et al 2008

The domain is x ∈ [−100; 100] with periodic boundary conditions. The uniform state’s
initial conditions are ρ = 1, u = 0, Bx = 100 and p = 1. To get comparable whistler and
Alfvén wave, we assume ε = 35.1076 (which reveals to be completely arbitrary). We study
the first mode of our domain λ = 200 (so k = 2π/λ = π/100). The initial perturbation is
given by :

v = −0.000590511 cos kx
w = +0.000590511 sin kx
By = −0.001 cos kx
Bz = −0.001 sin kx

(A.20)

Result
With this test-case we have compared the maximum initial amplitude of the wave after it
propagated once through the domain and came back to its initial position. The results
are summarized in table A.1. The more interesting feature is that while the asymmetrical
Minmod limiter is only of order 1, the symmetrical MC limiter is of order 2. This feature
has been demonstrated for the Lax-Friedrichs Riemann solver and is found again with the
HLL Riemann solver [14]. The wave can also be visualized in the Figure A.1. [14]Toth et al 2008

Resolution Minmod MC
16 49.669 15.663
32 24.359 3.108
64 11.264 0.9476
128 5.533 0.4272

Table A.1: The numerical diffusion of the Alfvén-whistler wave after a one-wavelength
propagation measured using different grid resolutions and limiters

A.3 Extension to an HALL-HLLC solver
A.3.1 Description

As already mentioned, the Lax-Friedrichs and HLL solvers are very diffusive. We have tried
to adapt the HLLC solveur to include the HALL term. We follow the same method given
by Gurski in ideal-MHD [15]. The principle behind the solver of HLLC is to consider the [15]Gurski 2004;

Toro 2009approximation of our Riemann problem by a Riemann fan composed of two intermediary
states UL and UR separated by a contact wave SM and two waves SL and SR.

We recall the Rankine-Hugoniot jump conditions,

SLU∗L − F∗L = SLUL − FL,
SMU∗R − F∗R = SMU∗L − F∗L,
SRUR − FR = SRU∗R − F∗R.

(A.21)
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Again, Bx is considered a constant in the Riemann fan. We suppose that u∗L = u∗R = SM .
Thus, we evaluate the value of the wave SM by using the mean HLL value.

SM = (SR − uR)ρRuR − (SL − uL)ρLuL − pR + pL
(SR − uR)ρR − (SL − uL)ρL

(A.22)

The total pressure must be continuous through the wave SM , as in the Ideal-MHD case,
which gives:

p∗t = ptL + ρL(SL − uL)(SM − uL)
= ptR + ρR(SR − uR)(SM − uR)

(A.23)

Using the jump conditions for density, we obtain:

ρ∗α = ρα
Sα − uα
Sα − SM

(A.24)

where α refer to index L or R. We use a similar approach to the previous HALL-HLL

[16] and consider J as an external parameter constant along the Riemann fan. It should be [16]Porth et al
2014; Lesur et al
2014; Marchand et
al 2018

noted, however, that VH is not constant because ρ is involved in its expression. Indeed, we
have:

V∗Hα = εJ
ρ∗α

(A.25)

In the case where Bx = 0, we obtain the other variable as:

v∗α = vα (A.26)

w∗α = wα (A.27)

B∗yα = Byα

(
Sα − (uα − uHα)
Sα − (SM − u∗Hα)

)
(A.28)

B∗zα = Bzα

(
Sα − (uα − uHα)
Sα − (SM − u∗Hα)

)
(A.29)

e∗tα =
(Sα − uα)etα − ptαuα + p∗tαSM + (B2

yα +B2
zα)uHα −B∗2yα +B∗2zα)u∗Hα

Sα − SM
(A.30)
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and in the case Bx 6= 0, we have:

v∗ = ρLvL(uL − SL) ∗ ρRvR(uR − SR) +Bx(ByR −ByL)
ρL(uL − SL) ∗ ρR(uR − SR) (A.31)

w∗ = ρLwL(uL − SL) ∗ ρRwR(uR − SR) +Bx(BzR −BzL)
ρL(uL − SL) ∗ ρR(uR − SR) (A.32)

B∗yL =
ByL(SL − (uL − uHL))−ByR(SR − (uR − uHR)) +Bx((vL − vHL + v∗HL)− (vR − vHR + v∗HR))

(sL + u∗HL)− (sR + u∗HR)
(A.33)

e∗tα =
(Sα − uα)etα − ptαuα + p∗tαSM +Bx(V∗α · B∗α −Vα · Bα)− uHαB2 + u∗HαB∗2

Sα − SM
(A.34)

It is worth noting that the total energy corresponds to the expression (A.30) in the limit
Bx = 0.

A.3.2 Comparison HALL-HLL/HALL-HLLC
In Figure A.1, we have compared the results obtained with the new HALL-HLLC solver and
the previous HALL-HLL solver. It was found that the HALL-HLLC solver was remarkably
less diffusive since, with only a grid of 32 points, we obtained results similar to the simulation
done with a grid of 128 points with the HALL-HLL solver.

A.4 Possibility of an extension of the HLLD solver
The eventuality of increasing the precision by extending the HLLD solver used in ideal MHD
to the HALL-MHD case is attractive. Pluto’s developers have already tried and failed [17], [17]Lesur et al

2014which they imputed to the second order derivative of the magnetic field. On the other hand,
we found another explanation for the difficulty in extending the HLLD solver to HALL-MHD.

As show on right scheme of Figure A.2, one of the assumption of the HLLD solver [18] [18]Miyoshi and
Kusano 2005;
Miyoshi et al 2010

was that the jump through the waves S∗L, SM , and S∗R are incompressible, so that the total
pressure p∗ is conserved among the fan. However, when looking at a case where the dynamic
would be strongly influenced by the Hall terms, one finds a different behavior. SM will
remain a incompressible contact wave. S∗L and S∗R will reduce to a sonic compressible wave.
SL and SR will reduce to the whistler wave which is incompressible by nature [19]. As for [19]Hameri et al

2005the slow waves, they are ignored in the HLLD solver. It appeared that the keeping the total
pressure constant along the fan may turn out to be unphysical.

Two possibilities could be considered to circumvent this problem. One of the possibility
would be to compute the jump through the different wave keeping the pressure constant
through the wave SL, SM , and SR in the Hall dominant regime, as show in the left scheme
of Figure A.2. Another possibility would be to keep the assumption made with the classical
HLLD and see if the unprecision in the pressure jump is revealed to be problematic or not.
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Figure A.1: Simulation of the polarized Alfvén-whistler wave done with CLOVIS with the new HALL-HLLC and the
old HALL-HLL solvers, with a 32 point grid.

Figure A.2: Scheme of the Riemann fan of the HLLD solver. We represented the conservation of the pressure through
incompressible jumps in the case of the Ideal-MHD dominated regime (left) and the case of the HALL term dominated
regime (right).

A.5 Conclusion
This work, while being interesting, was left incomplete since only simple simulations such as
the Alfvén-whistler wave were performed. The heavy computational cost generated by adding
the Hall terms, since the integrating time step plummeted, was part of the difficulty. We note
that Toth [20] bypasses that problem since his code (BATSRUS) can work in a completely [20]Toth et al 2008

implicit way. Second, because this method requires at least second order reconstruction and
has a second order derivative, its numerical stability with CLOVIS has been compromised,
which requires further investigation. Finally, another method, adding the Hall terms through
a source term, has been developed in our team, making this project not a priority for us.
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B
Zufiria model

Different models have been derived to study the multi-mode non-linear stage of the RTI.
Among them, the two simplest are Hann’s model [1] and Zufiria’s model [2]. Since the [1]Haan 1989,

1991
[2]Zufiria 1988a

former only studies the weakly non-linear stage and as we are interested in late time multi-
mode, we choose to start with Zufiria’s model. As stated in the chapter 2, Zufiria’s model was
first defined for a single mode perturbation, but can be extended in a straightforward way
to multiple bubbles. The problem changes from a system of 2 ordinary differential equations
describing the temporal evolution of a single bubble to a system of 2N ordinary differential
equations describing the temporal evolution of N bubbles. The model has proven to produce
acceptable results compared to simulations and experiments [3] and was even extended to [3]Zufiria 1988a

an arbitrary Atwood number by Sohn [4]. [4]Sohn 2007

However, when trying to extend it to the collisional regime, we found that the model ended
up not being invertible. Our numerical integration works in the inertial regime, but when
increasing the collision frequency, the solution becomes unstable. We will briefly explain
our work on this model, and why, in our opinion, it may not be extended to the collisional
regime. For the sake of simplicity, the demonstration will only be performed in the single
mode approximation.

B.1 Description of the model
The configuration is identical to the one described in chapter 3. We consider a perturbation
at the interface between a heavy fluid ρh above a light fluid ρl. The two fluids are subject to
a gravitational acceleration field taken as g = −gey (where g =| g |) and to a friction drag
force – per unit volume – with a neutral fluid defined as Fnh(l) = ρh(l)νin

(
Vn −Vh(l)

)
, Vn

is assumed to be constant with Vn = U0ey (U0 is either negative or positive). Initially, the
two fluids are supposed to be in hydrostatic equilibrium.

The bubble tips is defined on the complex form as Z(t) = Y (t) + iX(t). In our frame, we
suppose that X(t) = L/2 meaning that the bubble is not moving horizontally and is initially
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in the middle of our domain of length L (equivalent to our perturbation wavelength). The
bubble is moving in the y direction at the velocity U(t), meaning:

dY (t)
dt

= U(t). (B.1)

We position ourselves in the frame of reference (x̂, ŷ) comoving with the top of the bubble.
In this moving frame, we define the interface η(x̂, ŷ, t) around the top of the bubble that
verifies:

η(x̂, ŷ, t) = x̂2 + 2R(t)ŷ = 0, (B.2)

where R is the local radius of curvature. The fluids are assumed to be incompressible, inviscid,
and irrotational. There exist complex potentials Wh(ẑ) = φh + iψh and Wl(ẑ) = φl + iψl for
each fluids, where φ is the velocity potential and ψ the stream function.

The complexe velocity potentials extended to arbitratry Atwood number are given on the
form [5]: [5]Zufiria 1988a;

Sohn 2007

Wh(ẑ) = Qh ln
(

1− e−k(ẑ−H)
)
− Uẑ, (B.3)

and

Wl(ẑ) = Ql ln
(

1− e−k(ẑ+H)
)

+ (K − U)ẑ, (B.4)

where k = 2π/L is the wave number. The potential Wh describes the source flow of strength
Qh, located at (x̂, ŷ) = (0,−H), in the uniform stream U . Similarly, the potential Wl

describes the source flow of strength Ql, located at (x̂, ŷ) = (0, H), in the uniform stream
U−K. The relation dWs/dẑ = vs− ius, where s = {h, l}, gives the expression of the velocity
Vs = (us, vs) for both fluids.

For comparison with Goncharov’s model, the velocity potential in the frame of reference
(x̂, ŷ) comoving with the tip of the bubble are given as:

φh = Qh
2 ln (cosh(k(ŷ +H))− cos(kx̂))−

(
kQh

2 + U

)
ŷ, (B.5)

and

φl = Ql
2 ln (cosh(k(ŷ −H))− cos(kx̂))−

(
kQl

2 + U −K
)
ŷ. (B.6)

This is where the two models differentiate, aside from working in the complex form and
the frame comoving with the tip of the bubbles (since it gives a simpler velocity potential
form). Goncharov’s model used a Fourier decomposition of the velocity potential, whereas the
Zufiria model used a source point velocity potential. It is worth noting that, like Goncharov’s
model, Sohn’s extension at any arbitrary Atwood number [6] implies a constant velocity of [6]Sohn 2007

K inside the bubble, breaking the boundary condition at y → −∞.
Otherwise, from there, the process stays identical. We inject the velocity potential into

the kinematic boundary conditions at the interface,

dη(x̂, ŷ, t)
dt

= 2dR
dt
ŷ + 2Rvs + 2x̂us = 0, (B.7)
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and the Bernoulli equation,

ρh

[
∂φh
∂t

+ dU

dt
x̂+ 1

2 (∇φh)2 + U2

2

]
− ρl

[
∂φl
∂t

+ dU

dt
x̂+ 1

2 (∇φl)2 + U2

2

]
=

−geff (ρh − ρl) ŷ − νin [ρh (φh + Uŷ)− ρl (φl + Uŷ)] + Fh(t)− Fl(t),
(B.8)

where s = h, d. Then, expanding in function of ŷ (equivalent to x̂2), one obtains a system of
ordinary differential equations as:

dU
dt

= F (U), (B.9)

where U = (X,U,Qh, H). The function F is given in section B.4 as the relations between K
and Ql with the other variables.

By integrating this solution in the inertial regime, we found the result presented by
Zufiria [7] and Sohn [8], meaning the bubble enters an asymptotic stage at a late time with [7]Zufiria 1988a

[8]Sohn 2007the constant velocity given by:

vb =
√

6 + 4
√

3
2 +
√

3

√
2Atgeff

(1 +At)3k
. (B.10)

However, when increasing the collision frequency, we found that the numerical integra-
tion diverges. Because we directly wrote the 4Nproblem, we initially thought it was badly
conditioned, but even when reduced to a single mode, the problem persisted.

B.2 Simplified asymptotic solution in the collisional regime
In this subsection, we will show a possible explanation of why the Zufiria model does not
work in the collisional regime.

The solution to the problem described above is taken in a fully collisional regime so that
the inertial terms are dropped. At = 1 is assumed, reducing the number of unknowns to
(R,H,Qh). Further, we assumed that the asymptotic stage has already been attained, so
that the temporal derivative is also dropped. The system of equations is simplified to:

3c2 + c3R = 0, (B.11)

−Q2
hc

2
2R+ g + νin(c1 + c2R)Qh, (B.12)

1
2Fh + νin

(
c2
2 + c3R+ c4

R2

6

)
Qh, (B.13)

where the cn are function of H and there expression as the expression of Fh can be found in
Annex B.4. The expression for the curvature and the velocity are then

R = −3c2
c3

= 3(ekH − 1)
k(ekH + 1) , (B.14)
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and

Qh = − g

νin
(c1 + c2R) = kg

νin

2ekH − 1
(ekH + 1)(ekH − 1) . (B.15)

The value of H is given as the solution of the equation:

e2kH − ekH + 1 = 0. (B.16)

This is where the problem arises. There are no solutions to this equation in the set of
real numbers R. The physical interpretation of this result remains a mystery to us since we
do not know what a complex source point could mean.

B.3 Conclusion
The idea of Zufiria to sum the independent velocity potential of a bunch of bubbles at their
tops to get evolution in order to take into account their interaction was too convenient for us
to stop there. Thus, we also tried to use the same idea but with Goncharov’s type potential
and others, without success. In the end, we chose to give up on this part and resort to
a statistical model. We use the model developed by Hecht [9] and Alon [10] and their [9]Hecht et al 1994

[10]Alon et al
1993, 1994, 1995

collaborators. It will be presented in the next section.
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B.4 Zufiria model complete derivation
B.4.1 Potential expansion

Expanding the complex potentials B.3 and B.4 in powers of ẑ, we obtain:

Wh = Qh

∞∑
n=0

cn
n! ẑ

n − Uẑ, (B.17)

Wl = Ql

∞∑
n=0

c̃n
n! ẑ

n + (Z − U) ẑ. (B.18)

The cn and c̃n sequence can be obtained by:

c0 = ln
(
1− e−kH

)
, (B.19)

cn+1 = dcn(H)
dH

, (B.20)

c̃0 = ln
(
1− ekH

)
, (B.21)

c̃n+1 = −dc̃n(H)
dH

. (B.22)

The first five cn necessary to resolve the problem are given by:

c1 = k

ekH − 1 , (B.23)

c2 = − k2ekH

(ekH − 1)2 , (B.24)

c3 = k3ekH(ekH + 1)
(ekH − 1)3 , (B.25)

c4 = −k
4ekH(e2kH + 4ekH + 1)

(ekH − 1)4 , (B.26)

c5 = k5ekH(e3kH + 11e2kH + 11ekH + 1)
(ekH − 1)5 . (B.27)

To obtain the c̃n, we used the relation c̃n(H) = cn(−H).
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B.4.2 Resolution of our problem
Using the velocity potential expansion in the kinematic boundary condition equations at the
interface we obtained the first part of our system,

dX

dt
= c1Qh, (B.28)

dR

dt
= −Qh (3c2 + c3R)R, (B.29)

as well that the expression of K and Ql in function of the other variable:

Ql = 3c2 + c3R

3c̃2 + c̃3R
Qh, (B.30)

K = c1Ql − c̃1Qh. (B.31)

Now using the Bernoulli equation we obtain the rest of our system,

dQh
dt

= d6d2 − d3d5

d4d2 − d1d5
, (B.32)

and

dH

dt
= −d1

d2

dQh
dt

+ d3

d2
, (B.33)

with

d1 = (c1 + c2R)− r(c̃1 + c̃2R)b1 − rb4, (B.34)

d2 = Qh(c2 + c3R) + rQl(c̃2 + c̃3R)− r(c̃1 + c̃2R)b2 − rb5, (B.35)

d3 = Q2
hc

2
2R− g − νin(c1 + c2R)Qh + r

[
−Q2

l c̃
2
2R+ g + νin(c̃1 + c̃2R)Ql + νinK

]
+r (c̃1 + c̃2R) b3 + rb6,

(B.36)

d4 =
(
c2
2 + c3R+ c4

R2

6

)
− r

(
c̃2
2 + c̃3R+ c̃4

R2

6

)
b1, (B.37)

d5 = Qh

(
c3
2 + c4R+ c5

R2

6

)
+rQl

(
c̃3
2 + c̃4R+ c̃5

R2

6

)
−r
(
c̃2
2 + c̃3R+ c̃4

R2

6

)
b2, (B.38)
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d6 = −1
2Fh − νin

(
c2
2 + c3R+ c4

R2

6

)
Qh + r

[
+1

2Fl + νin

(
c̃2
2 + c̃3R+ c̃4

R2

6

)
Ql

]
+r
(
c̃2
2 + c̃3R+ c̃4

R2

6

)
b3,

(B.39)

b1 = 3c2 + c3R

3c̃2 + c̃3R
, (B.40)

b2 = 1
3c̃2 + c̃3R

((3c3 + c4R)Qh + (3c̃3 + c̃4R)Ql) , (B.41)

b3 = 1
(3c̃2 + c̃3R)R ((3c2 + 2c3R)Qh − (3c̃2 + 2c̃3R)Ql)

dR

dt
, (B.42)

b4 = c1 − c̃1b1, (B.43)

b5 = c2(Qh +Ql)− c̃1b2, (B.44)

b6 = −c̃1b3, (B.45)

Fh = Q2
h

(
c22 − 2c2c3R+ (3c23 − 4c2c4)R

2

3

)
, (B.46)

and

Fh = Q2
l

(
c̃22 − 2c̃2c̃3R+ (3c̃23 − 4c̃2c̃4)R

2

3

)
. (B.47)
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C
Hech’s model intermediary constant

In this annex you can find the intermidiarry constant use in the computation of Hecht’s
model system 4.

c111 = −1, (C.1)

c211 = +e−k(η2
0−η

1
0), (C.2)

c121 = −e−k(η1
0−η

2
0), (C.3)

c221 = −e−k(η2
0−η

1
0), (C.4)

c131 = −1, (C.5)

c231 = e−3k(η2
0−η

1
0), (C.6)

c112 =
(
k2

2 + kη1
2

)
, (C.7)
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c212 =
(
k2

2 + kη2
2

)
, (C.8)

c122 =
(
2k2 + 2kη1

2
)
e−k(η1

0−η
2
0), (C.9)

c222 =
(
2k2 + 2kη2

2
)
e−k(η2

0−η
1
0), (C.10)

c132 =
(

9k2

2 + 3kη1
2

)
, (C.11)

c232 =
(
−9k2

2 − 3kη2
2

)
e−3k(η2

0−η
1
0), (C.12)

b11 = −a1kη̇
1
0 − ka2

(
η̇1

0 + η̇2
0
)
e−k(η1

0−η
2
0) − 3ka3η̇

1
0 , (C.13)

b21 = a1kη̇
1
0e
−k(η2

0−η
1
0) − ka2

(
η̇1

0 − η̇2
0
)
e−k(η2

0−η
1
0) + 3ka3η̇

1
0e
−3k(η2

0−η
1
0), (C.14)

b12 = a1kη̇
1
0

(
k2

2 + kη1
2

)
+ ka2

(
η̇1

0 + η̇2
0
) (

2k2 + 2kη1
2
)
e−k(η1

0−η
2
0)

+3ka3η̇
1
0

(
9k2

2 + 3kη1
2

)
,

(C.15)

b22 = a1kη̇
1
0

(
−k

2

2 − kη
2
2

)
e−k(η2

0−η
1
0) + ka2

(
η̇1

0 + η̇2
0
) (

2k2 + 2kη2
2
)
e−k(η2

0−η
1
0)

+3ka3η̇
1
0

(
−9k2

2 − 3kη2
2

)
e−3k(η2

0−η
1
0),

(C.16)

v1
x1 = −

[
−k2a1 − 4k2a2e

−2k(k(η1
0−η

2
0)) − 9k2a3

]
, (C.17)

v2
x1 = −

[
+k2a1e

−k(η2
0−η

1
0) − 4k2a2e

−k(η2
0−η

1
0) + 9k2a3e

−3k(η2
0−η

1
0)
]
, (C.18)

v1
y0 = −

[
−ka1 − 2ka2e

−k(η1
0−η

2
0) − 3ka3

]
, (C.19)
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v2
y0 = −

[
∂φ

∂y
/1 = +ka1e

−k(η2
0−η

1
0) − 2ka2e

−k(η2
0−η

1
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−3k(η2
0−η

1
0)
]
, (C.20)
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2

2 − kη
1
2
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(
−2k2 − 2kη1

2
)
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0−η
2
0)

−3ka3

(
−9k2

2 − 3kη1
2

)]
,

(C.21)

v2
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[
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(
−k

2

2 − kη
2
2
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e−k(η2

0−η
1
0) − 2ka2

(
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2
)
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0−η
1
0)

−3ka3

(
−9k2

2 − 3kη2
2
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e−3k(η2

0−η
1
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]
,

(C.22)

φ1
0 = a1 + a2e

−k(η1
0−η

2
0) + a3, (C.23)

φ2
0 = −a1e

−k(η2
0−η

1
0) + a2e

−k(η2
0−η

1
0) − a3e

−3k(η2
0−η

1
0), (C.24)
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(
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0−η
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)
, (C.25)

and

φ2
2 = −a1

(
−k

2

2 − kη
2
2
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1
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2
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1
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1
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(C.26)
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D
Complete set of Equations with Local Dipolar

Description

To obtain the complete set of equations in dipolar coordinates without doing the approxi-
mation of kϕ � 1 , ∂ξ2

∂t = 0 and ∂ξ3
∂t = 0, one only needs to do lengthy, but straightforward

calculation. For simplicity, we define:

H(ξ2, fg) = −
(
ξ2
fg

(
2 + αhβh

k2
ϕ

)
− αh

2kϕ

)
, (D.1)

B00(ξ2, fg) = 1
3

ξ2
fg

(αlch−clαh)
k3
ϕ

ξ2
fg

cl
k2
ϕ
− αl

kϕ

, (D.2)

B01(ξ2, fg) = B00

kϕH(ξ2)

 1
ξ2
−

cl
fgk2

ϕ

ξ2
fg

cl
k2
ϕ
− αl

kϕ

− αh
kϕ

1
f2
g

fg − clξ2
k2
ϕ

ξ2
fg

cl
k2
ϕ
− αl

kϕ

 , (D.3)

B10(ξ2, fg) =
ξ2
fg

ch
k2
ϕ
− αh

kϕ

ξ2
fg

cl
k2
ϕ
− αl

kϕ

, (D.4)

B11(ξ2, fg) = B10

H(ξ2)

 1
ξ2
−

cl
fgk2

ϕ

ξ2
fg

cl
k2
ϕ
− αl

kϕ

− αh
k2
ϕ

1
f2
g

fg − clξ2
k2
ϕ

ξ2
fg

cl
k2
ϕ
− αl

kϕ

 , (D.5)
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so that,

dξ2
dt

=
√
kgeff

ξ3
fg
H(ξ2), (D.6)

b0 = kϕa1B00, (D.7)

b1 = a1B10, (D.8)

db0
dt

= geff
k

(
kϕ
∂ξ3
∂τ

B00 + ξ2
3
fg
B01

)
, (D.9)

db1
dt

= geff
k

(
∂ξ3
∂τ

B10 + ξ2
3
fg
B11

)
. (D.10)

Finally, we obtain the equation describing the temporal evolution of ξ3:

(rC1(ξ2, fg) + C2(ξ2, fg))
dξ3
dt

= − (rC3(ξ2, fg) + C4(ξ2, fg)) ξ2
3

+νin (rC5(ξ2, fg) + C6(ξ2, fg))− geff (r − 1) ξ2
fg
,

(D.11)

with
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fg
− 1

2k
2
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fg
− 1
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2
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(D.15)

C5(ξ2, fg) =
(
αhkϕ

ξ2
fg
− 1

2k
2
ϕ

)
, (D.16)
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C6(ξ2, fg) = 3k2
ϕB00

ξ2
fg
−B10

(
αlkϕ

ξ2
fg
− 1

2kϕ
)
. (D.17)
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Titre:Étude non-linéaire d’instabilité d’interchange, de type Rayleigh-Taylor, dans le milieu ionosphèrique
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Résumé:
À l’ère de l’information, la fiabilité des télécommuni-

cations par ondes radio et/ou par satellites est devenue
un défi important. Dans ce contexte, il devient crucial
de quantifier la perte d’intensité du signal provoquée par
des irrégularités dans l’ionosphère. Parmi celles-ci, nous
avons l’"Equatorial Plasma Bubble" (EPB) et les stria-
tions, qui résultent d’instabilités d’interchange, similaires
à l’instabilité de Rayleigh-Taylor (RTI). C’est à partir de
ce constat que nous essayons d’adapter les modèles non
linéaires déjà connus et utilisés pour la RTI hydrodynamique
à son pendant pour les plasmas ionosphériques, à savoir
l’Instabilité Rayleigh-Taylor généralisée (GRTI). La GRTI
tient compte du fait que le plasma ionosphérique n’est que
faiblement ionisé, de sorte que la force de friction avec
l’atmosphère neutre ne peut être négligée. En conséquence,
nous avons étendu ces modèles non linéaires et mis en évi-
dence deux régimes : le régime inertiel, où nous retrouvons
les résultats précédents de la RTI et le régime collisionnel,
où la collision entre les neutres et les ions est prédomi-

nante. Elles ont également été confrontées à des simula-
tions numériques réalisées avec deux codes développés au
CEA-DAM, CLOVIS, travaillant avec un modèle de MHD
idéale et ERINNA, travaillant avec un modèle électrosta-
tique. Ainsi, nous montrons avec des nouveaux modèles
analytiques et des simulations que dans le cas d’un mono-
mode, la croissance de la structure suit

√
gλ/6π dans le

régime inertiel et g/νin dans le régime collisionnel. Dans le
cas d’un multi-mode, la croissance du front de bulles suit
αbgt

2 dans le régime inertiel, tandis que sa taille transverse
suit la même tendance, et g/νin dans le régime collisionnel,
tout en maintenant une taille plutôt constante de bulles.
En conclusion, nous présentons de nouveaux modèles ana-
lytiques qui décrivent la croissance non linéaire des instabil-
ités ionosphériques, comme les EPB et les striations, ainsi
que l’interaction non linéaire entre plusieurs bulles. Nous
espérons qu’un jour ils pourront être couplés avec des codes
de propagation d’ondes électromagnétiques pour quantifier
les pertes en télécommunication.

Title: Study in the non-linear regime of interchange instability, of the Rayleigh-Taylor kind, in the ionospheric environment
Keywords: ionosphere, Rayleigh-Taylor instability, non-linear, Magneto-hydrodynamic (MHD)

Abstract: In the era of information, the reliability of
telecommunication by radio wave and/or via satellites had
become an important challenge. In this context, it is crucial
to quantify the lost of signal intensity provoked by irregular-
ities in the ionosphere. Among them, we have Equatorial
Plasma Bubble (EPB) and striations, which results from
interchange instabilities, similar to the classical Rayleigh-
Taylor Instability (RTI). This is starting from this ascertain-
ment that we try to adapt already known non-linear models
used for hydrodynamical RTI to ionospheric plasma coun-
terpart, namely the generalized Rayleigh-Taylor Instability
(GRTI). The GRTI takes into account for the fact that iono-
spheric plasma is only weakly ionized, so that the friction
drag with the neutral atmosphere cannot be neglected. As
a consequence, we extended theses non-linear models and
put into evidence two regimes: the inertial regime, where
we retrieve previous result of RTI and the collisional regime,
where the collision between neutrals and ions is predomi-

nant. It has also been confronted to numerical simulations
performed with two codes developed in CEA-DAM, CLO-
VIS, working with a ideal-MHD model and ERINNA, work-
ing with a electrostatic model. Thus, we show, with new
analaytical models and simulations, that in the single mode
case the structure grows as

√
gλ/6π in the inertial regime

and as g/νin in the collisional regime, For multi-mode case
the bubble front grows as αbgt

2 in the inertial, while its
transverse scale follows the same tendency, and as g/νin

in the collisional case, while maintaining a rather constant
size of bubbles. In conclusion, we present new analytical
models that describe the non-linear growth of ionospheric
instabilities, like EPBs and striations, as well as the non-
linear interaction between multiple bubbles. We hope that
one day they could be coupled with electromagnetic wave
propagation codes to quantify the loss in telecommunica-
tion.
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