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Abstract

Mobile devices are ubiquitous: nowadays most people own a mobile telephone. Because of this global

presence, it is a target of interest for attackers. These attacks are delivered via malicious applications that can

harm mobile device, for example by obtaining illegal control of it, gaining unauthorized access to the user’s

personal information or scamming a person with a ransom, among other malicious intents. Researchers in

malware analysis put their effort to recognize these types of programs before they are installed on a user

device. To do this, they perform experiments to automatically detect malware, for example with machine

learning, where a learning phase is done over a set of already known malware and goodware. Afterwards,

researchers make a performance evaluation over several new datasets, independent of the one in the learning

phase. Depending on their choice of datasets, the evaluation of the experiments can yield acceptable results,

or outstanding but overestimated results. Consequently, datasets with malware and benign samples are

important elements to consider when designing an experiment.

Researchers in Android malware detection encounter several obstacles to create good experimental datasets.

Many different markets are available to take applications from. Because of their nature, they are not suited

for experiments: there is no clear and easy way to extract applications from them and to know the ground

truth about being a malware or not. Additionally, malware could be underrepresented in a extract of the

market. As a result, researchers use other experimental datasets, including their ground truth, that other

researchers have shared to the research community. These shared datasets slowly became old and cited, and

other researchers decide to craft their own experimental dataset from these shared datasets with applications

from other sources. We wonder if these crafted experimental datasets have an influence over the results of

conducted experiments, and if so, if some crafting methodology is more suitable than others.

This thesis presents, first, a method to evaluate the quality of datasets based on a statistical test that helps to

compare a crafted dataset against a large set of applications such as markets. We show that historical datasets

of the literature are of low quality, which justifies the need to create new up-to-date datasets. Second, we

introduce an algorithm to update mixed datasets of malware/goodware of low quality in order to resemble a

target dataset that cannot be used directly, e.g. a market. We evaluate the updated mixed datasets using a

machine learning algorithm and we show that the detection of malware in our up-to-date dataset becomes a

more difficult problem to solve. Lastly, we introduce DaViz, a dataset visualization tool for exploring and

comparing Android malware datasets, which enables researchers to visualize the biases in datasets of the

literature, and obtain useful information from them.





Résumé

Les dispositifs mobiles sont ubiquitaires: aujourd’hui la majorité des gens possèdent un téléphone mobile.

A cause de leur présence global, ces dispositifs sont une cible d’intérêt pour les attaquants. Ces attaques

sont véhiculées au travers des applications malveillantes qui peuvent nuire aux dispositifs mobiles, par

exemple en obtenant leur contrôle illégale, en gagnant accès aux informations personnelles de l’utilisateur,

ou en menaçant les données à l’aide d’un rançongiciel – exemples parmi d’autres types de malveillances.

Les chercheurs en analyse de malware travaillent à reconnaître ces types de programmes avant qu’ils soient

installés sur un dispositif utilisateur. Pour faire cela, ils réalisent des expériences pour automatiquement

détecter ces malware, par exemple avec de l’apprentissage automatique, où une phase d’apprentissage est

réalisée sur un ensemble de malware et des applications bénignes déjà connues. Ensuite, les chercheurs

réalisent une évaluation de la performance sur plusieurs nouveaux datasets, indépendants de ceux utilisés

dans la phase d’apprentissage. Selon le dataset choisi, les résultats des expériences peuvent être acceptables ou

bien exceptionnellement bons parce que surestimés. Par conséquent, les datasets de malware et applications

bénignes sont des éléments importants à considérer quand nous élaborons une expérience.

Les chercheurs en détection de malware Android rencontre plusieurs obstacles pour créer un bon dataset

expérimental. D’abord, beaucoup de magasins d’applications sont disponibles pour récupérer des applications.

Leur façon de distribuer ces applications ne convient pas pour faire des expériences: il n’y a pas de méthode

aisée pour extraire des applications et connaître la vérité terrain sur le fait d’être un malware ou non. De

plus, les malware peuvent être sur ou sous-représentés dans un extrait du magasin d’applications. De

ce fait, les chercheurs utilisent d’autres datasets expérimentaux, incluant la vérité terrain, que d’autres

chercheurs ont partagés à la communauté scientifique. Ces datasets partagés deviennent peu à peu de vieux

datasets avec de nombreuses citations. D’autres chercheurs ont aussi décidé de créer leurs propres datasets

expérimentaux avec des applications provenant d’autres sources. Nous pouvons alors nous demander si tous

ces datasets expérimentaux ont une influence sur les résultats des expériences conduites, et si c’est le cas, si

une méthodologie de création est plus propice que d’autres.

Cette thèse présente, premièrement, une méthode pour évaluer la qualité des datasets basée sur un test

statistique qui aide à comparer un dataset créé avec un grand ensemble d’applications par exemple issu d’un

magasin d’applications. Nous montrons alors que les datasets historiques de la littérature sont de mauvaise

qualité, ce qui justifie le besoin de créer des nouveaux datasets plus à jour. Deuxièmement, nous introduisons

un algorithme pour mettre à jour des datasets mixtes de malware/goodware de mauvaise qualité afin de

ressembler à un dataset cible qui ne peut pas être utilisé directement, e.g. un magasin d’applications. Nous

évaluons les datasets mixtes mis à jour en utilisant un algorithme d’apprentissage automatique et nous

montrons que la détection de malware sur notre dataset mis à jour devient un problème plus difficile à

résoudre. Enfin, nous introduisons DaViz, un outil de visualisation de datasets pour explorer et comparer

des datasets d’applications Android. Cet outil permet aux chercheurs de visualiser les biais dans les datasets

de la littérature, et d’obtenir des informations utiles à leur propos.





Résumé substantiel en français

Introduction

Les dispositifs mobiles sont ubiquitaires: aujourd’hui la majorité des gens possèdent un téléphone mobile. A

cause de leur présence global, ces dispositifs sont une cible d’intérêt pour les attaquants. Ces attaques sont

véhiculées au travers des applications malveillantes qui peuvent nuire aux dispositifs mobiles, par exemple en

obtenant leur contrôle illégal, en gagnant accès aux informations personnelles de l’utilisateur, ou en menaçant

les données à l’aide d’un rançongiciel – exemples parmi d’autres types de malveillances. Les chercheurs en

analyse de malware travaillent à reconnaître ces types de programmes avant qu’ils soient installés sur un

dispositif utilisateur. Pour faire cela, ils réalisent des expériences pour automatiquement détecter ces malware,

par exemple avec de l’apprentissage automatique, où une phase d’apprentissage est réalisée sur un ensemble

de malware et des applications bénignes déjà connues. Ensuite, les chercheurs réalisent une évaluation de la

performance sur plusieurs nouveaux datasets, indépendants de ceux utilisés dans la phase d’apprentissage.

Selon le dataset choisi, les résultats des expériences peuvent être acceptables ou bien exceptionnellement bons

parce que surestimés. Par conséquent, les datasets de malware et applications bénignes sont des éléments

importants à considérer quand nous élaborons une expérience.

Les chercheurs en détection de malware Android rencontre plusieurs obstacles pour créer un bon dataset

expérimental. D’abord, beaucoup de magasins d’applications sont disponibles pour récupérer des applications.

Leur façon de distribuer ces applications ne convient pas pour faire des expériences: il n’y a pas de méthode

aisée pour extraire des applications et connaître la vérité terrain sur le fait d’être un malware ou non. De

plus, les malware peuvent être sur ou sous-représentés dans un extrait du magasin d’applications. De

ce fait, les chercheurs utilisent d’autres datasets expérimentaux, incluant la vérité terrain, que d’autres

chercheurs ont partagés à la communauté scientifique. Ces datasets partagés deviennent peu à peu de vieux

datasets avec de nombreuses citations. D’autres chercheurs ont aussi décidé de créer leurs propres datasets

expérimentaux avec des applications provenant d’autres sources. Nous pouvons alors nous demander si tous

ces datasets expérimentaux ont une influence sur les résultats des expériences conduites, et si c’est le cas, si

une méthodologie de création est plus propice que d’autres.

Contributions

Cette thèse travaille sur deux axes: la qualité des datasets et la visualisation de ceux-ci. La thèse propose des

contributions indépendantes sur ces deux axes bien que les contributions de visualisation des datasets aide à

comprendre les enjeux de qualité.

Ainsi, la thèse débute par la présentation de l’état de l’art relatif aux datasets d’applications Android, que ce

soit pour les goodware ou les malware. Nous analysons les datasets utilisés par la communauté scientifique

et nous montrons que certains travaux souffrent d’irrégularités, par exemple sur l’équilibrage des dates des

applications utilisés. Ces irrégularités confirment des travaux similaires conduits par Pendlebury etal et Allix

etal. Cette première analyse n’étant basée que sur la lecture des méthodologies employées dans la littérature,

la thèse poursuit l’investigation de ce problème en cherchant à représenter graphiquement ces irrégularités.

Une première contribution concerne donc la visualisation de datasets d’applications Android. Nous proposons

une méthode intéractive pour visualiser et comparer des datasets, au travers d’un outil nommé DaViz.

DaViz offre des fonctionnalités non rencontrées dans les outils existants: la possibilité de comparer plusieurs

datasets, de sélectionner des sous parties interactivement, et de visualiser des caractéristiques grâce à trois

représentations différentes. Le bénéfice attendu est de pouvoir réaliser des explorations de datasets inconnus

ou de comparer deux à deux des datasets pour en saisir les différences notables. L’outil est exploité sur les

datasets de la littérature (Drebin, AMD) mais aussi sur des extractions récentes de goodware et de malware.



Il confirme visuellement les irrégularités identifiées précédemment. Cette partie du travail de thèse nous a

conduit à vouloir quantifier formellement ces différences, ce qui l’objet de la contribution suivante.

Une seconde contribution est dédiée à l’élaboration d’une méthode pour évaluer la qualité des datasets à

l’aide d’un test statistique. Ce test permet de comparer un dataset créé manuellement avec un grand ensemble

d’applications par exemple extrait d’un magasin d’applications. A l’aide de cette méthode statistique, nous

montrons alors que les datasets historiques de la littérature sont de mauvaise qualité, ce qui justifie le besoin

de créer des nouveaux datasets plus à jour. D’autres raisons, comme le manque de labels goodware/malware

dans les sources possibles d’applications, par exemple le Google Play Store, nous a poussé à nous intéresser

à la création de datasets dits "mixtes" i.e. contenant des goodware et des malwares. L’enjeu est alors de

construire de tels datasets correctement labellisés, tout en étant proche de la réalité, c’est-à-dire de ce que l’on

obtiendrait en échantillonnant un magasin d’application.

Une troisième contribution est dédiée à l’élaboration d’un algorithme qui travaille sur un dataset mixte

mais biaisée, c’est-à-dire que certaines caractéristiques sont sur ou sous-représentées comparée à ce que

l’on trouverait dans un magasin d’application. Notre algorithme va chercher à modifier autant que faire ce

peut le dataset mixte afin de le faire ressembler au dataset dit "cible" par exemple un extrait du magasin

d’application. L’intérêt de l’algorithme est de travailler sur un dataset mixte dont les labels sont connus i.e. la

caractéristique "être un malware" est établie. Nous obtenons en un nombre optimal d’itérations un dataset dit

"débiaisé" dont l’éloignement du dataset cible est contrôlé par un paramètre 𝛿.

Nos expérimentations montrent qu’il est difficile de modifier les très anciens datasets comme Drebin, vu

leur éloignement du dataset cible. Pour les datasets mixtes que nous avons construit avec des sources plus

récentes, la convergence est plus aisée. Les datasets débiaisés produits ont été évalués en les utilisant dans

des expérimentations de détection basés sur des algorithmes classiques de machine learning. Ces expériences

montrent qu’il est plus difficile de détecter les malware quand on utilise des datasets débiaisés. De plus,

apprendre sur des datasets débiaisés donnent de meilleurs résultats lors de la détection sur les ensembles de

tests.

Conclusion

Les résultats obtenus dans ces travaux de thèses ouvrent différentes perspectives. D’autres outils statistiques

pour mesurer la qualité des datasets pourraient être employés afin de mieux quantifier la “distance” existant

entre deux datasets. De plus, les méthodes employées sur les datasets d’applications Android pourraient être

utilisées pour des datasets qui concernent les applications x86. L’outil de visualisation pourrait être étendu

pour être capable de basculer de la visualisation d’ensembles à la visualisation d’une seule application: l’enjeu

est alors de produire des vues internes des applications qui soient pertinentes pour l’analyste explorant un

dataset inconnu.
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Introduction 1
Mobile devices, primarily smartphones, have become ubiquitous: most

people own at least one of them. They represent, according to statcounter
1

1: https://gs.statcounter.com/platform-

market-share/desktop-mobile-tablet
as of June 2022, 59.77% of all types of computers used in the world nowa-

days. Among the different mobile operating systems (OS), Android is the

most popular in the world with 72.12% of market share as of June 2022
2
. 2: https://gs.statcounter.com/os-

market-share/mobile/worldwide
These devices are used for many purposes, from everyday actions such

as communication between persons and media consumption, to sensitive

operations such as money transferring and business communication.

Because of the number of people using smartphones, and all the possible

tasks that can be accomplished with them, the Android system has

become a top target for attackers.

Of all the types of possible attacks, there are programs that may harm a

system or trick its users to obtain a gain, without the user’s knowledge

and consent. These types of programs are called malware. Although there

is no practical definition of what a "malware" is, there are definitions for

types of malicious applications based on how they work. Among these

types, we can mention: spyware, which sends personal information to

the attackers without the user’s knowledge; ransomware, which blocks

the access of users to a system and demand them a ransom to grant

access to it again, and bankbots, which steal login credentials for banking

applications from users.

To protect users from such threats, experts in malware analysis take

measures to detect these applications before they arrive to the end user.

To do this, they take applications from the places users tend to obtain

them, such as Google Play, and conduct experiments to verify what

these applications do. If analysts discover any malicious behavior in an

application, they flag it as malware, and depending of this behavior, they

can classify this malware into one of the numerous types there exists.

Analysts can operate manually, when a specific application is performing

suspicious actions or upon request of users. Nevertheless, with the high

number of applications on different online stores, it is impossible to rely

on manual analysis for each new application or update of an application.

This is why the research community has worked on automatic analysis

procedures to extract relevant data from applications and eventually

decide if an application is performing malicious activities.

Machine learning (ML) based algorithms have been used extensively

in automating the attribution of maliciousness of applications [1–4].

By extracting properties from applications, called "features" in the ML

jargon, either statically (directly from their code) or dynamically (from

executing them and registering their behavior), an ML algorithm can

obtain outstanding results at detecting malicious applications. Academics

contributing in this research area need to compare their results with

previous ones published in the literature. As a consequence, they use

datasets, literally "sets of data", as inputs to compare multiple detection

algorithms.

https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://gs.statcounter.com/platform-market-share/desktop-mobile-tablet
https://gs.statcounter.com/os-market-share/mobile/worldwide
https://gs.statcounter.com/os-market-share/mobile/worldwide
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The first seminal paper that released a dataset has been published by

Arp et al. [5]. They released the Drebin dataset. At the time, it was the[5]: Arp et al. (2014), ‘DREBIN: Effective

and Explainable Detection of Android

Malware in Your Pocket’

largest dataset containing malware samples available to the research

community. Subsequent papers reused this dataset in order to provide

incremental and reproducible results. In the meantime, whereas Google

was releasing new versions of the Android OS, Google Play drastically

increased in the number of applications. This effort of collecting and

labeling malware samples is not trivial, making Drebin and AMD [6],[6]: Wei et al. (2017), ‘Deep Ground Truth

Analysis of Current Android Malware’
another bigger Android malware dataset, an easy and fast way to obtain

samples. As a consequence, few new datasets were published and released

in the next ten years, and the old and widely cited Drebin dataset

continued to be used. At the time of writing this thesis, Drebin is cited

more than 2 000 times according to Google Scholar, which is an impressive

score for only a single paper.

The reader should recall that the intent behind a dataset in a malware

detection experiment is to mimic, in a laboratory, the conditions en-

countered in the reality. This "reality" is also called the "ground truth"

in the literature, and we call it the "target" set of applications in this

chapter. That is, for malware detection, mimicking the difficulty for an

automatic program to discover malware hidden in Google Play, where

thousands of applications are uploaded each day. We believe that it

would be surprising that Drebin could mimic such a problem on the

current Google Play, with recent sophisticated malware.

The context of this thesis is, thus, focused on the quality of the datasets

of the literature and, if the quality is confirmed to be low – which is our

intuition, on the elaboration of new methods to produce datasets of high

quality, i. e., able to mimic the reality.

This thesis explores the creation and usage of experimental datasets for

various usages, such as the typical malware detection problem. One of

the issues we intend to solve is that experimental datasets are created,

disregarding the target set of applications that the experiment aims. Thus,

even though the experiment’s results are excellent, its method would fail

when operated on the target production environment.

The term "quality" for a dataset is undefined at this stage of writing,

which we formalize in Chapter 4. For now, we explain what we believe

are the problems of quality in datasets. We illustrate these problems with

two hypotheses (that will be confirmed later in the manuscript):

▶ H1: Experiments with 99% accuracy are suspicious

▶ H2: Input datasets influence the results of the experiments

H1: Experiments with 99% accuracy are suspicious Malware detectors

using ML would predict a sample as a positive (i. e., is a malware), or

negative (i. e., is a goodware). Since we know in advance the labels

(i. e., which are malware and goodware), we can evaluate how well

the detector predicted malware (true positives) and goodware (true

negatives) correctly. Results from malware detectors using ML algorithms

are usually given in the form of:

▶ accuracy (the concentration of true predictions among all predic-

tions)
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▶ precision (the concentration of true positives among all positive

predictions)

▶ recall (the concentration of true positives among all true samples)

▶ F1-score (a harmonic mean of precision and recall)

For all these scores given in percentage, 100% is a perfect score. With

the increasing popularity of ML techniques, analysts have focused in

developing better discriminants used by these machine learning algo-

rithms to differentiate malware from benign programs. There are several

studies that show very good results with over 99% [7–9] of detection [7]: Idrees et al. (2017), ‘PIndroid: A novel

Android malware detection system us-

ing ensemble learning methods’

[8]: Karbab et al. (2018), ‘MalDozer: Au-

tomatic framework for android malware

detection using deep learning’

[9]: P. et al. (2019), ‘A machine learning

based approach to detect malicious an-

droid apps using discriminant system

calls’

accuracy. We can think that with these types of results, Android malware

should no longer be a problem if these experiments were transferred

from prototypes to real antiviruses. But unfortunately, this is still not

the case: we observe that malicious programs are still discovered, for

example, on the Google Play. Even if their choice of discriminant features

is sound, we suspect that the way the chosen experimental dataset was

created may have produced overestimated results.

H2: Input datasets influence the results of the experiments During

this thesis, two papers were published suggesting that input datasets

influence experiments in Android malware detection. Allix et al. [10] [10]: Allix et al. (2015), ‘Are Your Training

Datasets Yet Relevant?’
discuss the influence of the applications’ date in experimental datasets

used in Android malware detection. The authors have found that the way

researchers create their experimental datasets leads to biased results, in

Android malware detection using ML. They compare a typical experiment

configuration using ML to a more real-life scenario one, and the results of

both experiments tended to differ. This indicates that experiments with

the typical configuration are not suited to work against new malware

just like in real-life, which is misleading despite having announced high

detection accuracy in their results. Pendlebury et al. [11] also discuss the [11]: Pendlebury et al. (2019), ‘TESSER-

ACT: Eliminating Experimental Bias in

Malware Classification across Space and

Time’

influence of date on Android malware detection experiments using ML.

Results of their experiments show a decay in performance of state-of-

the-art ML Android malware detection algorithms, when applications

in the test dataset are newer than in the training set. The authors also

indicate the proportion of malware and benign application in the dataset

as a way to influence the results of experiments.

We believe that this idea of "distribution resemblance", whether it is about

date or malware proportions in experimental datasets, can be generalized

to a wide variety of characteristics of Android applications in order to

obtain a dataset that resembles more the target set of applications the

experiment aims.

As a conclusion, this thesis focus on three main research questions:

▶ Is it possible to quantify the quality of a dataset of applications

with respect to the target set of applications? This question suggests

that a metric should be elaborated to compare a dataset with the

"target" set of applications.

▶ Can other characteristics, besides the date and the ratio of mal-

ware/benign applications, be used to detect differences between

datasets? Because inconsistencies have already been identified in

previous works concerning the date of applications and the ratio of

malware and benign applications of the dataset, this thesis intends
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to confirm and extend these works on more attributes than solely

the date and malware/benign ratio.

▶ Given an arbitrary set of applications of low quality, can we investi-

gate the reasons behind this low quality? This question is related

to the fact that researchers may obtain datasets from different

sources and eventually untrusted third parties without reliable

information on the building process of this obtained dataset. In

such a case, researchers would want to legitimately explore and

assert the quality of the dataset.

Contributions

To answer the previous research questions, we propose three main

contributions in this thesis:

1. We introduce a new tool to visually explore and compare datasets

called DaViz [12]. With this tool, researchers can inspect datasets

to find interesting patterns about them, and also distinguish at a

glance the differences between various datasets.

2. We give guidelines on how to calculate the size of an experimental

dataset, and introduce the notion of "representativity" using combi-

nations of characteristics we call "classes" [13]. We also propose the

use of a statistical test to verify that datasets are indeed different

against a reference dataset chosen to study.

3. We then use these classes to create a "debiasing" method [13] for

datasets to resemble another reference dataset of choice. We use

this method to create several "debiased" datasets that resemble

more the "target" dataset than datasets from the literature. We use

one of these "debiased" datasets in a malware detection experiment

based on ML algorithms, showing that the detection performance

is lower for old datasets.

Associated publications

Our work on visualization and DaViz have been presented in the RESSI

2022 conference [12]. The method for debiasing datasets, alongside the[12]: Concepción Miranda et al. (2022),

‘DaViz: Visualization for Android Mal-

ware Datasets’

code and the datasets used in the experiment, are available in the Dada

dataset [14]. Lastly, the results from our debiasing experiments were

[14]: Concepcion Miranda et al. (2021),

Dada: Debiased Android DAtasets published in the IEEE Transactions on Information Forensics and Security

journal [13].[13]: Concepción Miranda et al. (2022),

‘Debiasing Android Malware Datasets:

How Can I Trust Your Results If Your

Dataset Is Biased?’

Outline

This dissertation is divided in two parts. The first part consists of this

introduction and Chapter 2, that gives a background on the usage of

datasets for experiments in Android malware.

The second part is dedicated to our contributions of this thesis. First,

Chapter 3 explores a new visualization tool called DaViz. Next, Chapter 4

introduces and defines the notion of representativity of datasets. It also
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shows a procedure to differentiate datasets using statistical tests. Then,

Chapter 5 presents a new method for generating "debiased" datasets to

resemble a studied dataset that is much more difficult to use directly.

Finally, Chapter 6 summarizes the contributions of this thesis and gives

perspectives for future works.
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In order to start an experiment in malware research, malware samples,

as well as goodware samples, must be collected to form an experimental

dataset. Researchers have resorted to a variety of places to find malware

samples: from VX (Virus eXchange) forums to research teams willing to

share their samples to the community. The quality of the input dataset

in an experiment is important, as it can have an influence in the results

of the experiment. The way it is constructed, its size, and the sources,

among other properties, need to be taken into account.

This chapter focuses on the study of Android datasets in malware

research, the different uses of them, and the irregularities and biases

encountered in their usage. In Section 2.1, we start by defining what a

dataset is. After that, we explore the different platforms for software

distribution in Android that users utilize to download and install

applications, alongside the various research datasets used in security

studies on Android malware. Finally, in Section 2.2, we review the

biases that experiments suffer due to the construction of its experimen-

tal dataset, with a review of Android malware detection experiments

to see from which irregularities they suffer, and lastly notice what

missing type of bias experiments do not pay attention to.

2.1 Datasets used in the literature

In this section, we discuss the several datasets and repositories used in

Android malware research.

We begin by defining the notion of dataset: the Cambridge dictionary

defines a dataset as "a collection of separate sets of information that

is treated as a single unit by a computer". For this thesis, an Android

application dataset (that can be an "Android malware dataset" when it

includes malware) fulfills at least one of the following criteria:

▶ A dataset is a collection of raw Android applications (.apk files)

▶ A dataset is a collection of results from analyses done to Android

applications that includes a hash value for each application

In this matter, we can categorize the diverse datasets according to their

main purpose. This section presents and discusses three types of datasets:

markets, market archives, and specific datasets. Markets are repositories

where users download applications. Market archives are application

repositories that collect samples from markets. Specific datasets are ones

created by researchers to aid in the creation of experimental datasets.

2.1.1 Markets

In this section, we start by defining what a market is, what they contain,

what security mechanisms they offer to avoid the distribution of malicious
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applications, and the different markets in existence and those no longer

available. At the end of the section, we conclude with the value of markets

for researchers.

Markets are software distribution platforms where users can find and

download applications, and developers can distribute their software.

These types of datasets have a dynamic behavior in regards to how their

applications are managed: new ones can be added increasing the size

of the dataset, old ones could be removed and never found again, and

newer versions replace the existing ones.

Google Play

The first Android application dataset to be considered is Google Play [15][15]: Google LLC (2022), Google Play
(also known as Google Play Store, and previously known as Android

Market). This is the main repository where Android users can officially

download applications from. It has around 2.5 million applications [16],[16]: AppBrain (2022), Android and Google
Play statistics

which has peaked in 2018 [17] to a little more than 3.7 million applications.

[17]: AppBrain (2018), Number of Android
apps on Google Play

Previously, applications could be downloaded directly from the Google

Play website, allowing the use of scraping methods to obtain as many

applications as possible. This was done through the use of an API that

Google changed at some point in time, which is not openly disclosed [18].[18]: Viennot et al. (2014), ‘A Measure-

ment Study of Google Play’
Nowadays, users use the official "Play Store" application to search,

download and manage installed applications. Other alternative clients

exits [19, 20], but they violate Google’s terms of service.[19]: Rahul Patel (2022), AuroraOSS
[20]: Yeriomin (2016), Yalp Store

Although Google Play is the main platform for obtaining Android

applications, its usage in research is limited. Firstly, because of the

changing nature of the market, applications may be removed or updated,

forbidding researchers to obtain samples from previous experiments

and worsening reproducibility. And secondly, because of the lack of

transparent API to interact with the platform, and limitations to download

applications, it is difficult for researchers to get samples from the official

market.

Third-party markets

Besides Google Play, other third-party markets exist that also offer

software distribution to Android. They operate in a similar fashion to

Google Play: they are backed by a company or organization, they have

an application to contact the repository and download the applications.

They also tend to have a different distribution model than the official

market, or have certain regulations to what type of applications they

offer.

One of those is SlideME [21]. It is one of the first third-party markets[21]: SlideME LLC (2022), SlideME
launched in 2008. Developers who want their application in this market

must pass an approval process before being published. Samsung, which

is a manufacturer of Android devices, has its own market called Galaxy

Store [22] since 2009. It mainly comes preinstalled on Samsung Galaxy[22]: Samsung Electronics Co., Ltd.

(2022), Galaxy Store
smartphones, but it can be installed in other devices. As recently as 2021,

it hosted malware in the form of clones of other applications, in this

case one for movie piracy [23]. Caterpillar also provides a specialized[23]: Hager (2021), Samsung’s Galaxy Store
is distributing apps that could infect phones
with malware

application store for their phones [24]. Aptoide [25] is another third-party

[24]: Bullitt Mobile Ltd (2022), Toolbox
App
[25]: Aptoide S.A. (2022), Aptoide



2.1 Datasets used in the literature 11

market launched in 2011 with development starting in 2009. Their main

repository offer applications for users to download and install. Besides

the main store, this market has allowed the "decentralization" of the

"stores": it has partnered with other companies to allow the redistribution

of applications throughout different stores like Softsonic, Multilaser,

and Aptoko. Amazon started distributing Android applications since

2011 in its Amazon Appstore [26]. It shares few of the most popular [26]: Amazon.com, Inc. (2022), Amazon
Appstore

applications also found in Google Play. F-Droid [27] is a market special-

[27]: F-Droid Limited (2022), F-Droid
ized in distributing free and open-source software (FOSS). It offers their

own repository with its official application to download and manage

the applications it contains. Since F-Droid offers FOSS, the source code

of each application is provided in the description. This allows users

and other external auditors to more easily verify the code for security

flaws or for malicious behavior. The market itself builds and signs each

application before distribution
*
. External repositories can be added to the

client, which allows developers to distribute their software directly with-

out passing through the F-Droid publishing process. AndroidOut [28] [28]: GLOBAL PTE LTD (2022), Android-
Out

is a web-based market where applications, some that can be found in

Google Play, are curated by a community of people. According to their

website [29], they count with more than 2.3 million registered users [29]: GLOBAL PTE LTD (2022), Android-
out corporate - Who we are - What we do
Androidout.com

and more than a million reviewed applications. It had reached over 2

million downloads in 2012 [30]. Other smaller markets we can mention

[30]: Sanford (2013), MiKandi Reaches
Milestone With Mobile Devices, Registered
Users

are MiKandi [31] (which is defunct), 1mobile [32] and GetJar [33] (where

[31]: MiKandi LLC (2022), MiKandi
[32]: 1Mobile Market (2022), 1Mobile Mar-
ket
[33]: Laurs (2022), GetJar

malware have been found [34]).

[34]: AndroidAdvices (2012), Remove An-
droid:Plankton [PUP] Virus from Android
Device after Downloading Apps from GetJar

Several database services exists that gather information about mar-

kets. These are aimed for developers to provide data about these

markets for business intelligence, but may also provide useful infor-

mation for researchers that study these markets. Services like App-

Brain [35], MixRank [36], anroidrank.org [37], SimilarWeb [38], Tap-

[35]: Vogelzang et al. (2022), AppBrain
[36]: Milliken (2022), MixRank
[37]: Katrenic (2022), ANDROIDRANK
[38]: SimilarWeb LTD (2022), Top Apps
Ranking

Tap [39], data.ai [40] and SensorTower [41] provide information about

[39]: TapTap Pte. Ltd. (2022), TapTap
[40]: DATA.AI EUROPE LIMITED (2022),

data.ai
[41]: SensorTower, Inc (2022), SensorTower

numerous indicators, like downloads, SDK usage, release dates, etc.

Regional third party markets

Besides those markets that can be accessed by everyone in the world,

there are others aimed towards a specific group of people or region.

These regional markets has emerged because of restrictions in their

home countries, or their target audience’s language. The Android market

ecosystem in China is primarily ruled by regional markets, where they

offer applications mainly in Chinese language. One of the reasons behind

this is the restriction of Google services in China [42]. Therefore, Chinese [42]: Quinn (2012), ‘Google services

blocked in China’
markets target mainly only China and neighboring countries. Example

of these are Baidu, 360 and Tencent, as well as markets created by phone

manufacturers like Huawei, Xiaomi and Lenovo, which offer applications

to the Chinese community. A study about these Chinese markets and a

comparison to Google Play have been done by Wang et al. [43]. Another re- [43]: Wang et al. (2018), ‘Beyond Google

Play: A Large-Scale Comparative Study

of Chinese Android App Markets’

gional market is Cafe Bazaar [44], an Iranian-based marketplace founded

[44]: Hezardastan Information Technol-

ogy Development Group (2022), Cafe
Bazaar

in 2011. It is a popular market in Iran, with 97% of country’s share in

2017 [45]. Uptodown [46] is a Spanish-based marketplace founded in

[45]: Niayesh (2017), How developers can
make money in Iran’s app market?
[46]: Domínguez et al. (2022), We are
Uptodown

2002. Since 2011 [47], it provides Android applications, and nowadays it

[47]: Domínguez et al. (2011), Uptodown

*
FAQ - General | F-Droid

https://f-droid.org/en/docs/FAQ_-_General/
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focuses on them according to their "About" page, with a store application

to access it.

Discussion

Researchers that aim to study markets face the dynamicity of these

platforms. It is a problem in terms of reproducibility: since applications

can be removed (or replaced by newer versions), experiments can

no longer be reproduced with the same data. Besides this, none

of these markets provide an API to interact with them, making it

difficult to obtain applications and metadata from the sites. Malware

required for experiments is very hard to find in markets, because

these platforms tend to remove malicious applications once they find

one. The quantity of markets available is another source of problem:

because markets are different from each other, studies done on one

market do not apply directly to others. And because of the difficulty

to interact with markets to obtain applications, market metanalyses

would take a lot of effort and time to perform. Nevertheless, since

markets are the main focus of security for finding and mitigating the

spread of malicious applications, they need to be considered when

testing security solutions for them.

2.1.2 Market archives

In comparison to markets, market archives are software repositories

that add applications from markets to their collection. They tend to use

crawlers or rely on user submissions to obtain applications.

One of the first archives for Google Play available was PlayDrone [18].[18]: Viennot et al. (2014), ‘A Measure-

ment Study of Google Play’
The issue this archive tackled is crawling the Google Play. Google limits

its access by requiring clients to use registered accounts and exclusively

use the Google Play application to request Google’s servers. To bypass

this, PlayDrone uses real accounts in combination with the API they

reverse engineered from the store application. The system is designed

so that it can scale with more servers. Using this crawler, the authors

have collected over one million applications, which they used to make a

study of the market. An archive of their applications can be found [48][48]: jakej (2022), Android Apps
in the Internet Archive [49]. APKMirror [50] is an Android applications[49]: The Internet Archive (2022), The

Internet Archive
[50]: Illogical Robot LLC (2022), APKMir-
ror

archive, with one of their primary purposes being to "provide an archive

of popular applications along with changelogs and descriptions". It

contains multiple versions of the applications it hosts, but only free of

cost ones can be found. Users can download and install applications from

the site, or use their installer on the phone. APKPure [51], APKLinker [52][51]: APKPure, Inc. (2022), APKPure
[52]: APKLinker (2022), APKLinker and APK4Fun [53] are also archives that provide different versions of the

[53]: APK4Fun (2022), APK4Fun cost free applications they hosts. As well as in markets, archive can hosts

malware [54]. Some application clients for these archives had malware[54]: Golovin (2021), Infected Android app
store

found in them [55].

[55]: Golovin et al. (2021), Malicious code
in APKPure app
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Discussion

Market archives are more desirable to use for researchers because

they maintain applications available for longer than markets, allowing

better reproducibility of experiments. Another advantage is that we

can recover missing applications from markets if the hash value is

known. These market archives also provide certain metadata about

the applications, such as the type of application, user reviews, and

different versions of the same program. Note that, in a study aimed

towards one or a set of markets, market archives cannot replace

those. They can, however, be used to obtain applications previously

in markets if these applications are unavailable. Despite all these

advantages, researchers performing an experiment on one market

archive, would obtain slightly different results from another archive

or even a normal market. Particularly, there are no paid applications,

and there are lot of clones of the same application, as they keep

different versions of it. For these reason, using markets archives is not

suitable for performing studies. This is why researchers use specific

research datasets, which we explain in the next section.

2.1.3 Specific research datasets

These datasets are collections of applications made by researchers in

Android malware. They tend to contain primarily malicious applications,

as well as benign ones and metadata associated to the applications from

results of analyses of these programs. This is the main difference between

these datasets and the previous ones: these ones can contain malware

deliberately, because it was used for an experiment or it was part of the

design of the dataset to contain malware. These specific datasets are then

shared among researchers to conduct experiments in Android malware,

as malware is not easily found.

When we reviewed the literature datasets, we decided to divide these

datasets in three main categories based on their usage goal:

▶ Malware archives: a collection of applications where we can find

malware.

▶ Experimental datasets: collection of applications used in an experi-

ment and made available by researchers conducting this study.

▶ Novelty datasets: collection fo applications made by researchers

with particular properties to fulfill a specific need.

Malware archive datasets These datasets are special archives main-

tained by researchers to primarily gather and share malware and even-

tually goodware (benign applications). They are different from market

archives seen in the previous section because these datasets tend to

require permission to access them, where market archives are more

open to end users. We can further subdivide this category into collection

archives and collaborative repositories.

Collection archives are repositories whose main aim is to gather appli-

cations and sharing them to the research community. Among them, we

can cite VirusTotal [56], theZoo [57], VirusShare [58] that gather all types [56]: Hispasec Sistemas (2022), Virus To-
tal
[57]: Yuval Nativ @ytisf (2015), theZoo -
A Live Malware Repository web site
[58]: VirusShare (2011), VirusShare.com -
Because Sharing is Caring
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of malicious files. Other collection archives focus on Android malware,

such as Andrubis [59] and Contagio [60].[59]: Lindorfer et al. (2014), ‘ANDRUBIS –

1,000,000 Apps Later: A View on Current

Android Malware Behaviors’

[60]: Mila (2011), Contagio Mobile
The biggest of all Android malware and goodware collection archives is

AndroZoo [61]. This repository contains more than 19 millions Android

[61]: Allix et al. (2016), ‘AndroZoo: Col-

lecting Millions of Android Apps for the

Research Community’

applications from Google Play and multiple other sources. Because good-

ware and malware are collected from these sources, AndroZoo provides

additional metadata in order to distinguish them. These metadata is cal-

culated using VirusTotal, where the number of detections by antiviruses

and the date of analysis are provided. Even if these metadata cannot

be considered a totally reliable ground truth, as antivirus detection

may change over time, it has become the reference for experiments in

Android malware analysis because of its size, its easy to use API for

requesting applications and its ever evolving dataset, continuing to add

more applications since 2016. Even if VirusTotal’s detection accuracy is

an independent problem that can be studied, we consider in is thesis that

AndroZoo’s metadata is reliable. Thus, in our contributions of this thesis,

we use applications and metadata from AndroZoo.

Collaborative repositories have the aim to provide not only malware

samples, but also a platform for researchers to share their samples

with other members of the community. Such is the case of sites like

MalShare [62], Koodous [63], Malware Bazaar [64], and Malpedia [65].[62]: Silas Cutler (2013), MalShare
[63]: Koodous Team (2015), Koodous
Project
[64]: abuse.ch (2022), Malware Bazaar
[65]: Plohmann et al. (2018), ‘Malpedia:

A Collaborative Effort to Inventorize the

Malware Landscape’

Compared to markets, these collections are more useful for researchers, as

well as being able to reference the samples to these repositories instead of

hosting their experimental datasets. There is a trade-off with the ground

truth of being malware with these repositories. On one side, smaller

repositories have less malware samples but they are more accurate in the

description of their malware samples, like in the case of Malpedia [65]. On[65]: Plohmann et al. (2018), ‘Malpedia:

A Collaborative Effort to Inventorize the

Malware Landscape’

the other hand, bigger repositories have more malware but their malware

samples are less accurately described, like in the case of VirusShare [58]

[58]: VirusShare (2011), VirusShare.com -
Because Sharing is Caring which relies in VirusTotal detections.

Experimental datasets These datasets where created for a particular

experiment, and then shared to the research community. Particularly,

researchers are interested in malware detection and family classification

using machine learning techniques. Because there is theoretically a

experimental dataset per experiment, thousands of datasets must be

considered to make this section exhaustive. However, not all experiments

share their experimental datasets, not even a list of hashes. We decided

to take into account the datasets that are cited by others studies, because

they are more discoverable than other ones, thus more prone to be used

for other experiments.

The most significant of these experimental datasets is Drebin created by

Arp et al. [5]. Their work focused on malware detection using machine[5]: Arp et al. (2014), ‘DREBIN: Effective

and Explainable Detection of Android

Malware in Your Pocket’

learning, and the authors share the feature dataset in addition to the

malware samples used in the study. Another dataset is DroidKin [66],

[66]: Gonzalez et al. (2015), ‘DroidKin:

Lightweight Detection of Android Apps

Similarity’

used to evaluate a method for detecting similarities between Android

applications. APIGraph [67], which is a framework to improve some

[67]: Zhang et al. (2020), ‘Enhancing

State-of-the-art Classifiers with API Se-

mantics to Detect Evolved Android Mal-

ware’

of the state-of-the-art Android malware detection, also provides its

experimental dataset. We made a contribution by releasing the GM19 [68]

[68]: Viet Triem Tong et al. (2019), ‘Isolat-

ing malicious code in Android malware

in the wild’

experimental dataset, used as part of an experiment on obtaining the

part of the application’s code that has a malicious behavior.
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The Canadian Institute for Cybersecurity (CIC) has released several

datasets that accompany their experiments. These are, in chronological

order: the Android Botnet 2015 dataset [69] released as part of a study [69]: Abdul Kadir et al. (2015), ‘Android

Botnets: What URLs are Telling Us’
on Android botnets families and behaviors, the CIC-AAGM2017 [70]

[70]: Lashkari et al. (2017), ‘Towards a

Network-Based Framework for Android

Malware Detection and Characteriza-

tion’

"Android Adware and General Malware Dataset" used on an experiment

of a new method that utilizes network traffic features to detect and classify

malware, the CIC-InvesAndMal2019 [71] dataset that is a second part

[71]: Taheri et al. (2019), ‘Extensible An-

droid Malware Detection and Family

Classification Using Network-Flows and

API-Calls’

of the previous one from 2017 [72] with more features like permissions,

intents, API calls and log files from dynamic analysis, and the CCCS-

CIC-AndMal-2020 [73] [74] dataset used on a new Android malware

[73]: Rahali et al. (2020), ‘DIDroid: An-

droid Malware Classification and Char-

acterization Using Deep Image Learning’

classification method called DIDroid.

The Hacking and Countermeasure Research Lab (HCRL) in Korea has also

released various datasets alongside their experiments. In chronological

order: the AndroTracker [75] dataset used for malware detection using [75]: Kang et al. (2015), ‘Detecting and

Classifying Android Malware Using

Static Analysis along with Creator In-

formation’

certificate features like serial numbers, Andro-AutoPsy [76] used in an

[76]: Jang et al. (2015), ‘Andro-AutoPsy:

Anti-malware system based on similar-

ity matching of malware and malware

creator-centric information’

Android malware detection method that uses a matching algorithm based

on static characteristics, Andro-Dumpsys [77] used to evaluate a new

[77]: Jang et al. (2016), ‘Andro-Dumpsys:

Anti-malware system based on the sim-

ilarity of malware creator and malware

centric information’

Android malware detection system of the same name, SAPIMMDS [78]

[78]: Jang et al. (2016), ‘Function-

Oriented Mobile Malware Analysis as

First Aid’

used on and Android malware detection method using suspicious API

call patterns, Andro-Profiler [79] used hybrid client/server analysis

[79]: Jang et al. (2016), ‘Detecting and

classifying method based on similarity

matching of Android malware behavior

with profile’

method for Android malware behavior, and Andro-Simnet [80] used in

[80]: Kim et al. (2018), ‘Andro-Simnet:

Android Malware Family Classification

using Social Network Analysis’

an Andriod malware family classification technique.

These datasets provide applications than can be used to reproduce their

experiments, or as sources for researchers to take samples from and

make their own. However, the use of experimental datasets come with

some problems. One of the problems is that the calculation of the ground

truth relies on VirusTotal. It have been shown that for Android, there is

discrepancy between the expected detection rate of Android malware

and the one from VirusTotal. Another problem is that static datasets tend

to be useful for two to three years before they start getting old. This is

the case for Drebin, which is widely used in the literature as a source

of malware, despite containing samples from 2012. This influence the

results of experiments using Drebin as we show in section 2.2.

Novelty datasets The main motivation for the creation of these datasets

is to provide one that has desirable properties not found in other research

datasets. While experimental datasets may contain the metadata used in

their experiments (such as the feature vectors for machine learning), in

addition to the binaries of the applications, these novelty datasets are

constructed explicitly to provide one with applications and metadata

that the authors deemed rare or scarce.

For example, Genome [81] is a collection of manually analyzed Android [81]: Zhou et al. (2012), ‘Dissecting An-

droid Malware: Characterization and

Evolution’

malware, with a study about what each family does. Similarly, the

Kharon dataset [82] provides reversed malware samples to the research

[82]: Kiss et al. (2016), ‘Kharon Dataset:

Android Malware under a Microscope’
community, explaining what the sample does, which part of the code is

the trigger of the malicious behavior and a visual replay of the program

execution. The Android Malware Dataset (AMD) [6] dataset provides [6]: Wei et al. (2017), ‘Deep Ground Truth

Analysis of Current Android Malware’
a more "up-to-date" dataset than previous efforts, notably Genome [81]

which was already aging and no longer representing the current state of

Android malware. CICAndMal2017 [72] is another initiative to create a [72]: Lashkari et al. (2018), ‘Toward

Developing a Systematic Approach to

Generate Benchmark Android Malware

Datasets and Classification’

reference malware dataset, arguing that a good reference dataset must
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contain multiple different categories and families, and also have a large

number of samples. UpDroid [83] is a dataset whose main goal is to[83]: Aktas et al. (2018), ‘UpDroid: Up-

dated Android Malware and Its Familial

Classification’

provide up-to-date samples of malware that employ a specific type of

evasion technique called "update attack". RmvDroid [84] is a dataset

[84]: Wang et al. (2019), ‘RmvDroid:

Towards A Reliable Android Malware

Dataset with App Metadata’

created due to the lack of datasets with metadata information available

and recent samples. The AndroZooOpen [85] dataset is a collection

[85]: Liu et al. (2020), ‘AndroZooOpen:

Collecting Large-Scale Open Source An-

droid Apps for the Research Commu-

nity’

of mainly open-source applications from Github, as well as F-Droid,

AndroZoo and Google Play, aiming to provide a "representative picture of

Github-hosted Android apps". AndroCT [86] is a recent Android dataset

[86]: Li et al. (2021), ‘AndroCT: Ten Years

of App Call Traces in Android’

whose goal is to provide run-time data for studies using dynamic and

hybrid analysis techniques of old and new applications. KronoDroid [87]

[87]: Guerra-Manzanares et al.

(2021), ‘KronoDroid: Time-based

Hybrid-featured Dataset for Effective

Android Malware Detection and

Characterization’

provides a large quantity of samples with several types of metadata

from static and dynamic covering a large time range. MalRadar [88]

[88]: Wang et al. (2022), ‘MalRadar: De-

mystifying Android Malware in the New

Era’

is the most recent Android malware dataset, whose goal is provide

one using malware reports, such as the ones provided by TrendMicro,

ESET, Kaspersky and other, as the their ground truth, instead of using

VirusTotal.

Discussion

Although there is a wide variety of datasets, very different from

one another in terms of size and content, researchers construct their

datasets with different properties (number of malware, number of

goodware, date of the samples, etc) each time they perform a new

experiment. On the contrary, all these malware archives, experimental

and novelty datasets allow researches to either reproduce previous

experiments, or take samples for their own experiment from a source

that is recognized by other researchers in the field and that others

can also take samples from. Using existing datasets is useful for the

reproducibility of experiments, as these ones can be compared using

the same data [11][11]: Pendlebury et al. (2019), ‘TESSER-

ACT: Eliminating Experimental Bias in

Malware Classification across Space and

Time’

.

The variety of dataset results to be a problem too. Since there are too

many datasets to choose from, researchers tend to select datasets like

Drebin [5] and AMD [6], as they are widely used in many studies. It

should be noted these datasets, Drebin and AMD, contain old samples,

which may not resemble recent malware. This difference can be more

properly appreciated using visual representation of the characteristics

of their samples. A method to visually compare datasets is proposed

in Chapter 3, where we compare these older malware dataset with

newer ones.

2.2 Irregularities and biases in experimental
datasets

Through the years, researchers created their experimental datasets and

gathered applications by crawling the various markets, or by requesting

access to other source or archive datasets. The choice of which Android

applications should be included or excluded from an experimental dataset

has an important impact on the measured performance of algorithms.

An experiment can give bad results because of the nature of its input

dataset. Conversely, it can artificially give good results with a specific
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dataset, but gives bad results with any other dataset. Both scenarios are

undesirable effects that researchers would want to avoid.

In this section, we will study the impact of irregularities in experimental

datasets and their influence in the experiments results. First, in Sec-

tion 2.2.1 we categorize the different experimental scenarios in Android

malware research. Then in Section 2.2.2, we describe the possible irregu-

larities and biases that experiments may suffer due to its experimental

dataset. Finally, in Section 2.2.3, we make a review of the literature and

see that these irregularities still exist in experimental datasets.

2.2.1 Experimental scenarios

We have identified three types of scenarios typically experienced by

security researchers. Each of these scenarios has various issues and

therefore requires the use of datasets with different expected properties.

Markets profiling Researchers may want to estimate a statistical char-

acteristic of a market [43, 61, 89], e.g. “What proportion of Google Play [43]: Wang et al. (2018), ‘Beyond Google

Play: A Large-Scale Comparative Study

of Chinese Android App Markets’

[61]: Allix et al. (2016), ‘AndroZoo: Col-

lecting Millions of Android Apps for the

Research Community’

[89]: Dong et al. (2018), ‘Understand-

ing Android Obfuscation Techniques: A

Large-Scale Investigation in the Wild’

applications have an API version lower than some threshold?”. For this

case, one needs to obtain a dataset that is representative of the market,

where results of analysis on this dataset can be extrapolated to the whole

market. Chapter 4 gives more details on how such a representative dataset

should be extracted.

Algorithm evaluation Some experiments aim to compute a characteris-

tic of interest from an application. Examples of interesting characteristics

include detecting malicious behavior in an application [90], whether the [90]: Grace et al. (2012), ‘RiskRanker: Scal-

able and Accurate Zero-Day Android

Malware Detection’

sample is repackaged [91], identifying its malware family [92], detecting

[91]: Gonzalez et al. (2015), ‘Exploring Re-

verse Engineering Symptoms in Android

Apps’

[92]: Battista et al. (2016), ‘Identifica-

tion of Android Malware Families with

Model Checking’

similar applications [93], whether it leaks personal information to the

[93]: Crussell et al. (2013), ‘AnDarwin:

Scalable Detection of Semantically Simi-

lar Android Applications’

network [94]. To answer these questions, researchers implement algo-

[94]: Li et al. (2015), ‘IccTA: Detecting

Inter-Component Privacy Leaks in An-

droid Apps’

rithms using various analysis techniques, and run them on a dataset to

estimate their precision. This evaluation dataset should be representative

(formalized later in Chapter 4) and labeled, i. e. the characteristic of interest

for each application should be known beforehand.

Machine Learning In supervised learning methods, researchers learn a

model that classifies inputs into a set of classes. Two datasets are used in

this setting: a training dataset and a test dataset. The training set is used

during the learning phase, and the test set is used to evaluate the learned

model on new data. Both datasets should be labeled. The training set

needs to be selected carefully to avoid biases, as discussed in more detail

in Section 2.2.2. The test set should be representative, as for the Algorithm
evaluation scenario.

For any of the three kinds of experiments above, building an appropriate

dataset is a non-trivial task. Before presenting our contribution for

this task in Chapter 4, we have investigated the literature to see how

researchers have built their datasets. Because the number of papers for

the three experimental scenarios, market profiling, algorithm evaluation

and machine learning is quite important, we have restricted our review

to papers dedicated to machine learning scenarios. From these reviews,
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we extracted irregularities that we classified in the categories presented

in the next section.

2.2.2 Categories of irregularities

In this section we present the main categories of irregularities found in

datasets that cause biases in experimental results. A bias is defined as a

systematic error that influences the results of an experiment [95]. This[95]: Dodge et al. (2006), The Oxford Dic-
tionary of Statistical Terms

error may be minimal, so that the experiment yields results very close

to the real value. We could identify three main irregularities in input

datasets: class imbalance, presence of clones and time incoherence.

Class imbalance In supervised learning, a class is a property of an

element that a machine learning algorithm uses to group different

elements of the training set. It is also called category or label. In the

case of malware detection, the possible classes of an application can be

is a malware or is not a malware, and for malware family classification,

each class correspond to the name of a family. Class imbalance occurs

when a dataset contains significantly more units of one class than of

others [96]. An overrepresented class may push a learning algorithm[96]: Weiss et al. (2001), The effect of class
distribution on classifier learning: an empir-
ical study

towards preferring this class. For malware detection, if there are more

samples of goodware, this has the effect of decreasing the recall but

improving the precision [11].[11]: Pendlebury et al. (2019), ‘TESSER-

ACT: Eliminating Experimental Bias in

Malware Classification across Space and

Time’

This problem has been addressed in the machine learning commu-

nity [97]: the overrepresented class is undersampled, i. e., some elements

[97]: Susan et al. (2020), ‘The balancing

trick: Optimized sampling of imbalanced

datasets—A brief survey of the recent

State of the Art’

are removed while the underrepresented class is oversampled. The un-

dersampling can be random or rely on a more sophisticated method,

such as removing elements in dense clusters [98]. The most popular

[98]: Tomek (1976), ‘Two modifications

of CNN’

oversampling technique is SMOTE [99] that creates new instances from

[99]: Chawla et al. (2002), ‘SMOTE: syn-

thetic minority over-sampling technique’

the interpolation of close samples. This technique would be interesting

for machine learning experiments because it solves the class imbalance

problem. Nevertheless, the new interpolated characteristics vector used

in the experiments would not have any corresponding application. As a

consequence, the application dataset cannot be provided by researchers,

if is a problem for reproducibility of malware analysis experiments.

Besides, class balancing is mostly restricted to binary classes [97], while[97]: Susan et al. (2020), ‘The balancing

trick: Optimized sampling of imbalanced

datasets—A brief survey of the recent

State of the Art’

we are interested in balancing more diverse classes.

In the case of a dataset evaluating a detection algorithm, class imbalance

does not pose a threat to the validity of the results: since a representative

dataset is needed for evaluation in this scenario, it does not need to be

balanced, as the proportion of malware and goodware may be dispropor-

tionate but accurate to the reality of the set of applications the experiment

is interested in.

Presence of clones Another irregularity is the presence of clones, where

the abundance of several very similar apps in the training set prevents

the algorithm from learning unique units [100]. Because experiments do[100]: Pfaff et al. (2019), ‘Code Clones

Considered Harmful? Quantifying and

Exploiting the Effects of Code Clones in

Static Malware Classifiers for JavaScript’

not usually share the list of used applications, it is not possible to check

the presence of clones in their datasets. Pan et al. [101] show a method

[101]: Pan et al. (2005), ‘Finding Repre-

sentative Set from Massive Data’
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to reduce redundancy in a dataset by extracting representatives of cloned

units using mutual information and relative entropy.

Clones in a evaluation dataset to evaluate detection algorithm are admit-

ted, since the samples are obtained in the proper way (as shown in Chapter

4), even if clones appear, they are representative of the applications in

the target set of applications of interested for the experiment.

Time incoherence This irregularity concerns the dates of the samples

in the test and learning sets used in machine learning algorithms. It was

shown that, when evaluating the accuracy of state-of-the-art algorithms,

using a test set made of applications newer than those in the training set,

the performance of these algorithms decreases [11, 102]. [11]: Pendlebury et al. (2019), ‘TESSER-

ACT: Eliminating Experimental Bias in

Malware Classification across Space and

Time’

[102]: Fu et al. (2019), ‘On the Deteriora-

tion of Learning-Based Malware Detec-

tors for Android’

Pendlebury et al. [11] formalized the idea of time incoherence induced

by time and features in malware classification: experimental evidence

shows a decay in performance, when experiments are done with datasets

that have other time distribution, rather than a 10-fold cross-validation

as most of the experiments do. This induce what they call temporal bias.

Besides this, in the same study, the authors introduce a "spatial bias"

which, according to them [11], is a bias caused by the distribution of the

class training and test sets. To remedy these biases, they propose three

constraints that experiments should follow in order to avoid temporal

and spatial biases:

▶ C1 "All the objects in the training must be strictly temporally

precedent to the testing ones" [11]: the samples in the training set

must be older than those in the test set.

▶ C2 "In every testing slot of size Δ, all test objects must be from the

same time window" [11]: malware and goodware must come from

the same time intervals.

▶ C3 "To have a realistic evaluation, the average percentage of malware

in the testing must be as close as possible to the percentage of

malware in the wild" [11]: while the distribution of malware and

goodware in the test set must approach as the one in-the-wild, it

is possible to tune this distribution in the training set (to counter

class imbalance).

Even if we apply these restrictions to build an experimental dataset,

it is not guarantied that applications will behave the same way in the

future. In [103, 104] and [105], Cai states that the main reason that [103]: Cai et al. (2018), ‘Towards Sustain-

able Android Malware Detection’

[104]: Cai (2020), ‘Assessing and Improv-

ing Malware Detection Sustainability

through App Evolution Studies’

[105]: Cai (2020), ‘Embracing Mobile

App Evolution via Continuous Ecosys-

tem Mining and Characterization’

existing Android malware detection techniques do not sustain well lies

in their failure to account for the evolutionary dynamics of the Android

ecosystem. Android malware classifiers may not be sustainable – they

would need to be retrained constantly for later use, or their performance

could downgrade over time. This is further explained on a recent study by

Guerra-Manzanares et al. [106]. A supplementary problem is one in [67],

[106]: Guerra-Manzanares et al. (2022),

‘Concept drift and cross-device behavior:

Challenges and implications for effective

android malware detection’

[67]: Zhang et al. (2020), ‘Enhancing

State-of-the-art Classifiers with API Se-

mantics to Detect Evolved Android Mal-

ware’

where Zhang et al. observes that malware samples often implement the

same functionalities over time but change their implementation because

of the evolution of APIs or changes of third-party libraries. These changes

allow such malware to avoid detection by older classifiers.

Solutions are proposed to mitigate this phenomena. The first one consist

of re-training a model, where a new test set is used to create a model

using newer data. Regular re-training can solve this problem, however,
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it is not always a solution, as new samples are not always available as

quickly as needed or in sufficient diversity. One way to limit this problem

is to choose more semantic than syntactic features, as stated by Zhang et
al. in [67]. Finally, in [107], Xu et al. propose to enhance malware detection[67]: Zhang et al. (2020), ‘Enhancing

State-of-the-art Classifiers with API Se-

mantics to Detect Evolved Android Mal-

ware’

[107]: Xu et al. (2019), ‘DroidEvolver: Self-

Evolving Android Malware Detection

System’

over time by making necessary updates to their detection models with

evolving feature sets. For that purpose they maintain a pool of different

detection models initialized with a set of labeled applications using

various online learning algorithms.

Discussion

These three irregularities can be threats to the validity of experiments

if present in the input dataset of an experiment. Researchers should

take into account these irregularities, so that the results of their

experiments give an appropriate result. In the case of an algorithm

evaluation, we see that none have a significant impact on this type of

experiment we are interested in. Nevertheless, a representative dataset

must be used in order to ensure pertinent results when evaluating a

detection algorithm. We show how to obtain a representative dataset

in Chapter 4. Furthermore, we use the constraints C1, C2 and C3

proposed by Pendlebury et al. [11] in our experiments in Chapter 5.

For machine learning, these irregularities are concerning and should

be addressed.

2.2.3 Results of evaluation of the literature

We saw that researchers have plenty of sources to take applications

and perform their experiments. Taking samples from heterogeneous

sources may introduce irregularities into the built dataset. To confirm

this hypothesis, we made a review of different experiments to see how

they constructed their datasets.

We reviewed 28 articles published between 2016 and 2019 to evaluate if

these irregularities may have an impact on past results. Table 2.1 presents

the details of this review.

We extracted the following information from each article:

▶ Column "Paper" gives the name of the tool or the authors’ names.

▶ Next, column "Goodware source" contains the datasets used in

the experiment. Sometimes, several sets are used in a paper: we

note these subsets D𝑖 and we give their size in other columns

accordingly.

▶ Next, columns "GS year" and "Nb Goodware" are the year range

and number of goodware according to the article, if available.

▶ The next three colmuns give the same information for the used

malware.

▶ Next, columns "Training set" and "Test set" correspond to the

number of applications used in the respective sets.

▶ The notation "(M/G)" reports the Malware/Goodware for each

experiment. The use of "𝑘-fold cross validation" will be specified in

these columns. Any other special cases are reported in these two

columns.
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Table 2.1: Details on the dataset usage in detection experiments. GP = Google Play, VT = VirusTotal, GM = GM, DB = Drebin, AZ =

AndroZoo, CT = Contagio, VS = VirusShare, PD = PlayDrone, MSL = MobiSec Lab, TZ = theZoo, MS = MalShare, N/A = Not applicable

Paper Goodware source

Goodware

source year

Goodware

size

Malware

source

Malware

source year

Malware

Size

Training set

(M/G)

Test set (M/G)

Class Im-

balance

Time

Incoher-

ence

MADAME [108]

GM

CT

VS

2010-2011

2016

2012-2015

1 242

1 923

2,784/0

(Total)

X

DroidDetector [109] GP 2016 20 000
CT

GM

2016

2010-2011

500

1 260

880/800 880/880 X

ICCDetector [110] GP 2014 12 026 DB 2010-2012 5 264

15 561

(mixed)

1 203/526 X X

Androdialysis [111] GP 2016 1 846 DB 2010-2012 5 560

10-fold cross-

validation

5 560/1 846 X X

MaMaDroid [112]
PD

GP

2013-2014

2016

8 447

2 843

DB

VS

"

"

"

2010-2012

2013

2014

2015

2016

5 560

6 228

15 417

5 314

2 974

10-fold cross-

validation

DB/PD

2013/PD

2014/PD

2014/GP

2015/GP

2016/GP

X

StormDroid [113] GP 2015 4 350

MSL

GM

CT

2015

2010-2011

2012-2015

2 000

1 260

360

(900+500+100)
1500

(600+300+100)
1000

X

PIndroid [7]

GP

AppBrain

F-Droid

Getjar

Aptoid

Mobango

up to 2016 445

CT

DB

GM

VT

TZ[57]

MS[62]

VS

2012-2015

2010-2012

2010-2011

?

2016

?

2016

60

100

1 000

70

70

25

25

80% (from

1300/445

total)

20% (from 1300/445

total)

X X

Vinod et al. [9]

GP (D1 ,D2 ,D3 ,D4 ,D5)

Baidu (D1 ,D2)

Koodous(D1 ,D2)(1,514)

1Mobile (D1 ,D2)

9apps (D1 ,D2)

2016 3 130

DB (D1 ,D2)

Koodous (D2)

[114] (D4)

GM (D5)

2010-2012

?

2011-2015

2010-2011

1 514

1 000

1 206

10-fold cross-

validation

D1 2 520/3 130

D2 1 514/3 130

D3 2 474/2 474

D4 1 000/14 000

D5 1 206/1 206

X X

MalDozer [8] GP 2016 38 000

GM

DB

Own
“Merged"

2010-2011

2010-2012

1 000

5 500

20 000

33 000

Each malware dataset

individually/37 627

X X

IntelliAV [115]
VT

"

2011-2016

2017

10 058

2 898

VT

"

2011-2016

2017

9 664

2 311

9 664/10 058

2 311/2 898

X

Martín et al. [116] GP 2015 ∼ 49 000 GP 2015 69 000

10-fold cross validation with 9

subsets of 50 000 samples, varying

malware concentration from 2%,

25%, 50% of the whole subset, and

the number of antivirus alerts: 1-AV,

2-AV, 4-AV (4-AV, 50% subset only

contains 36 000)

X

HinDroid [117]

Comodo Cloud

Security Center

2017

920 (D1 Tr)

198 (D1 Te)

15 000 (D2)

Comodo

Cloud

Security

Center

2017

914 (D1 Tr)

302 (D1 Te)

15 000 (D2)

914/920 (D1)

15 000/15

000 (D2)

500 (D1)

10-fold CV

(D2)

RevealDroid [118] GP (AZ) 2016 24 600
VS

DB

2016

2010-2012

22 592

5 538

10-fold CV Training-Test with date

separation (Training date < Test

date)

X X

Demontis et al. [119] DB 2010-2012 121 329

DB

Mod DB and

CT

2010-2012

2010-2012,

2016

5 615 10

500

10 runs, where 30 000 for training,

and the rest for test

X Too Old

McLaughlin et al. [120]

GM (GP)

McAfee Labs

"

2010-2011

2016 ?

2016 ?

863

3 627

9 268

GM

McAfee Labs

"

2010-2011

2016 ?

2016 ?

1 260

2 475

9 902

10-fold CV, with same GW/MW

ratio In training and test

X

Alzaylaee et al. [121]

Intel Security

(McAfee Labs)

2016 ? 1 222 GM 2010-2011 1 222

2/3 of

GW/MW

1/3 of GW/MW X

Melis et al. [122] DB 2010-2012 121 329 DB 2010-2012 5 615

5 runs, where 60 000 units are

randomly selected for training, And

the rest for testing

X Too Old

MKLDroid [123]

GP1

GP2

AndroidDrawer

(AD)

AnZhi (AZ)

AppsApk (AA)

F-Droid (FD)

SlideMe (SM)

2012-2014

2012-2014

2013-2016

2013-2016

2013-2016

2013-2016

2013-2016

5 000

10 000

2 399

3 027

2 481

1 007

5 770

DR

VS

MYST

2010-2012

2013-2014

2015

5 560

24 317

3 000

CE1: 70% of DR

+ GP1

CE2: 70% of VS

+ GP2

CE3: DR + GP1

WEx: DR + VS

+ GP1 + GP2

MCLEx:
2

⁄3 of

MYST + GP1

CE1: 30% of DR

+ GP1

CE2: 30% of VS

+ GP2

CE3: VS + GP2

WEx: AD + AZ

+ AA + FD + SM

MCLEx:
1
⁄3 of

MYST + GP1

X X

Li et al. [124]

apkpure

360

HKUST

2019 16 753
DB

AMD

2010-2011

2010-2016

5 560

16 753

5-fold CV X X

SMART [125] GP 2015 5 600 DB 2010-2012 5 560 10-fold CV X

Xiao et al. [126] GP 2016 ? 3 536 DB 2010-2013 3 567 10-fold CV X

DroidCat [127]

GP (AZ)

"

"

"

2016-2017

2014-2015

2012-2013

2009-2011

5 346

6 545

5 035

439

VS, AZ

VS, AZ

VS, AZ, GM, DB

VS, AZ, GM, DB

2016-2017

2014-2015

2012-2013

2009-2011

3 450

3 190

9 084

1 254

70% of older

apps

30% of newer apps X

Rana et al. [128] DB 2010-2012 5 560 DB 2010-2012 5 560 80% training and 20% testing Too Old

Ma et al. [129] AZ ? 10 010 AMD 2010-2016 10 683

Everything divided in 10 parts,

Then 10-CV for each part

? ?

Huang et al. [130] GP 2018 ? 3 312 VS ? 3 312 10-fold CV N/A
Liu et al. [131] DB 2010-2012 123 453 DB 2010-2012 5 560 X Too Old

HG-Learning [132]

Tencent

Security Lab

(Tr)

" (Te)

2018 ?

2018 ?

83 784

13 313

Tencent

Security Lab

(Tr)

" (Te)

2018 ?

2018 ?

106 912

4 433

83 784/106

912

13 313/4 433 X

BRIDEMAID [133] GP 2016 9 804

DB

GM

CT

2010-2012

2010-2011

2016

2 794 2 974 applications tested X X
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▶ Finally, columns "Class imbalance" and "Time Incoherence" indicate

whether the datasets used in the experiments suffer from these

irregularities, introduced in Section 2.2.

Out of the 28 articles, we found that 17 suffer from class imbalance: the

goodware/malware ratio is often too high. Time incoherence happens in

15 articles: experimental datasets often contain recent applications from

Google Play and older malware from Drebin or Genome. Additionally,

4 articles have a too old dataset age, compared to the publication date.

Because experiments do not usually share the list of used applications, it

is not possible to verify the presence of clones in their datasets. However,

we can notice that 3 experiments use Drebin and Genome at the same

time, and Genome is a subset of Drebin, thus having the algorithms

trained and tested with several instances of the same APKs.

We notice that the test dataset is constructed from the input dataset in

various ways. One common way is to perform a 𝑘-fold cross validation,

where the input dataset is split into several subsets. If the input dataset is

not a representative dataset of the studied set of applications, the subset

of the 𝑘-fold split, and therefore the test set, will not be representative

either. This invalidates results aiming to the studied set of applications.

But, since we want to avoid class imbalance in the training set, the

class proportion would probably be not the same as the studied set

of applications, so avoiding class imbalance and being representative

are incompatible properties for a training set. On the other hand, if the

input dataset is a representative dataset of a market, the classes/labels

is a malware/is not a malware are most of the time unavailable at the

time of creating the representative dataset. This problem of crafting a

representative and labeled is test dataset for machine learning, which

also works for evaluating an algorithm, is tackled in Chapter 5.

Discussion

We saw the types of scenarios researchers in security encounter,

namely market profiling, algorithm evaluation and machine learning.

Specially for this last one, we saw the different irregularities that exper-

imental datasets introduce to experiments, with proposed methods to

mitigate these irregularities. Nevertheless, there is one bias that none

of these experiments address: in the case of an experiment claiming

that it works on a certain set of applications (e.g. a market), its test

dataset must be either the whole set of applications or a sample of

this set such that the results can be extrapolated to the whole set [134][134]: Arp et al. (2022), ‘Dos and Don’ts of

Machine Learning in Computer Security’

.

The previously cited works do not solve the problem of researchers

having to evaluate their algorithm on an up-to-date dataset. Of course,

this problem is different than adapting a classifier to an evolving

market – even if this problem is of independent interest. Researcher

would primarily focus on getting a dataset that mimics the whole set

of applications that they targets.

Additionally, the ground truth of the dataset should be known, for

example with a malware/goodware label if the study concerns a

detection algorithm. These labels can be missing in the source from

which applications are picked. As a consequence, we propose in the

following to define the notion of representativity of a dataset against
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the population it represents. A representative dataset has to be used

to validate an experimental results at the time of the experiment. The

representativity property is linked to a population at a period of time.

Pendlebury et al. [11] has recommendations for this irregularity related

to time, namely time incoherence. A dataset that is representative at a

date will not necessarily be so in the future because the population

may change significantly. Such a representative dataset will help the

researcher to assess results for real-world scenarios [10] [10]: Allix et al. (2015), ‘Are Your Training

Datasets Yet Relevant?’

.

2.3 Conclusion

In this chapter we explored the different sources of applications re-

searchers use to create their experimental datasets. Markets are the prime

source of recent, up-to-date applications. Although they are not free of

malware, they provide a view of what to expect in the wild (at least for a

specific market). In order to allow experiments be reproduced, a handful

of researchers have provided their experimental datasets, which have

also contributed to help other researchers obtain samples that would be

otherwise not available. In addition to this, efforts to provide samples for

researchers are still ongoing, with datasets like ViruShare, AndroZoo,

Malpedia, and Malware Bazaar, aiding the reproducibility of experiments

by hosting a large quantity of samples. We saw the differences between

all these datasets in terms of size, dynamicity, availability, content, and

experimental goal. Despite this, a more intuitive approach for comparing

datasets could be performed with analysis data from their samples. This

would allow to compare datasets based on their content, where we could

find differences in the amount of applications with certain interesting

properties. Such a comparison, and eventual exploration, of datasets

can be done using visualization techniques. This can be done using our

approach discussed in Chapter 3. We will see that old and new datasets

are different in terms of certain properties, and that malware datasets

alone are different from a population we fixed to study.

We saw the various experimental scenarios that researchers face, and the

different irregularities that affect experimental results if these are present

in the input dataset. While the landscape of research datasets seems to

be booming, trying to provide ones with more and richer information,

and with solutions to known irregularities, none of these studies seem

to address the problem of representation, i. e. the usage of a dataset to

represent another one. This representation could be useful to perform the

following: instead of testing a machine learning model or an algorithm

over a market, a "representative" dataset of a studied population (e.g. a

market) could be used in place, allowing to obtain results using a sample

that are very similar as if the test would have been performed to the

population itself. A method for creating such a representative dataset

is detailed in Chapter 4. Even so, samples from market do not have the

properties available immediately to be used for testing. Such properties

are mostly available in researches datasets that are biased, that is, they are

not representative of the studied population. In order to use a dataset with

samples from research datasets, it has to be debiased so that it resembles a

representative dataset. We developed and test an algorithm to perform

this procedure. We tested a debiased dataset produced by this technique
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against other established datasets, and results show that our debiased

dataset have a better performance overall than the other datasets used in

the test in Chapter 5.
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With millions of Android malware samples available from many different

datasets, researchers have a large amount of applications to perform

malware detection and classification, specially with the help of machine

learning. Others take advantage of newer samples to perform reverse

engineering and study in detail the malicious behavior of these applica-

tions. Choosing a proper dataset for an experiment is not a trivial process,

and the fact that there are various, and widely different datasets to get

applications from make this task harder. Researchers would appreciate

to benefit from an intuitive way to differentiate or examine Android

malware datasets, which would help them obtain an overview of the

contents of these datasets, and help them choose one with the desired

properties, e.g. the right amount of a certain characteristic or set of

characteristics, for their experiments.

Visualization tools can help to obtain meaningful information from the

large amount of data contained in a dataset. Representation of datasets

allow their exploration and comparison, taking advantage of our visual

system to easily spot differences between the represented values. This is

a first step that helps researchers to understand the content of a dataset

and infer the differences between datasets.

In this chapter we introduce a new visualization tool called DaViz.

This tool is aimed at providing visual representation of datasets for

exploring and comparing them. This would allow users to obtain

useful information for certain tasks associated with datasets, like

understanding their composition and the differences between them.

In Section 3.1 we start by discussing the other visualization methods

in the literature and understand the limitations of these tools for

the tasks we want to perform. Then, in Section 3.2, we propose our

solution to these problems, DaViz. Finally, we visualize datasets from

the literature in Section 3.3, where we highlight how different datasets

can be between each other and through time. This work has been

published in the RESSI 2022 conference [12] [12]: Concepción Miranda et al. (2022),

‘DaViz: Visualization for Android Mal-

ware Datasets’

.

3.1 Motivation for Android malware datasets
visualization

In order to take advantage of the abundance of applications available

to study, researchers need to be able to navigate through large amount

of applications in a dataset, often comparing datasets between them. In

this section, we analyze the tasks involved when researchers examine

datasets, then we inspect the literature in Android malware visualization

for tools that aid in the achievement of these tasks.
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3.1.1 Tasks and objectives for visualization

Let us imagine a situation where, in a research group or in an industry

group, a dataset of unknown APKs is given to researchers working in

malware analysis. A first step is to examine the content of this dataset, e.g.
what types of applications can be found, what are their characteristics,

whether there is any known malware/benign samples, etc. Once they

recognize the content of a dataset, researchers can then compare it against
other datasets. This comparison would allow them to discover similarities

to other datasets and find correlations between them, or differences that

would require a further study of the dataset in question.

From the previous remarks, we identify two main analysis tasks that

researchers perform with datasets:

▶ an examination task that we call dataset exploration,

▶ a comparison task that we call dataset comparison.

We investigated how such tasks should be represented by following

the methodology by Muzner [135]. Using her methodology, we took[135]: Munzner (2015), Visualization Anal-
ysis and Design

into consideration the volume and type of data to visualize, and the

type of tasks we found. With this knowledge, we examined the types of

visualization techniques (e.g. charts, graphs), alongside their interactions

(e.g. selection, filter, zoom) to proposed a visualization method suited to

the data, the tasks and the possible interactions using the tool. During this

phase of investigation using the methodology of Muzner, we extracted

the following properties about the analysis tasks:

Dataset exploration The first task, dataset exploration, has a "discovery"

and "exploration" goals according to the different goals defined by

Munzner [135]. By "discovering" datasets, users can gain new knowledge,

verify hypothesis, or generate new sub datasets from the data at hand.

For example, users can verify that more than half of the applications

contain a specific set of characteristics. Users can also just "explore" the

datasets when they do not know what they are looking for and where.

This can be useful to users that look for outliers or unanticipated patterns

in the data.

Dataset comparison The second task is associated to a "comparison"

goal according to Munzner [135]: once users choose the datasets they are

interested in, they can create charts to show differences between datasets.

Multiple datasets can be compared at once, but a one by one comparison

allows a more focused approach by concentrating on only two datasets

at a time. Users can verify visually the difference of two datasets by

comparing the proportion of applications with certain characteristics,

or the presence of characteristics in either dataset (e.g. whether they

characteristics A and B, A and not B, or B and not A).

3.1.2 Malware analysis visualization techniques

Now we examine the literature for visualization techniques for Android

malware that fulfill both exploration and comparison tasks. The use of

visualization for malware analysis is not new [136], whether the results are[136]: Yoo (2004), ‘Visualizing Win-

dows Executable Viruses Using Self-

Organizing Maps’
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Figure 3.1: Five applications shown as

images using the method by Jain et al.
to recognize the usage of DexGuard in

applications (a) and (b) (taken from [139])

used as input for an image recognition machine learning algorithm [137], [137]: Panas (2008), ‘Signature Visualiza-

tion of Software Binaries’
or for aiding malware analysts understand what an application does and

how [138]. We divide these methods into two groups: those for visualizing [138]: Quist et al. (2009), ‘Visualizing

compiled executables for malware analy-

sis’

a single application and those for visualizing sets of applications.

Visualization for single applications

In this part we present techniques that show a visual representation of a

single application in general.

2D image of an APK’s file structure Jain et al. [139] propose a method to [139]: Jain et al. (2015), ‘Enriching reverse

engineering through visual exploration

of Android binaries’

visualize the program’s .dex file into a color 2D image to help recognize

patterns in the bytecode. Figure 3.1 shows five different applications (a to

d) in form of figures using the method elaborated by Jain et al. [139]. We

see a representation of APK files as a 2D image, where the sections of the

application are shown with different colors: the header of the file is shown

as a red line in the top left corner of the image, followed by the index

list of strings, types, prototypes, fields, methods and classes in different

shades of green, and then the data section. In this last section we can find

the string list, where string constants, class names and method names

can be found. In Figure 3.1 it is encircled in red. Applications produced

by DexGuard tend to have their string list before classes code in the data

section, as shown in Figure 3.1 (a, b), whereas it should normally be after

the classes code (like in Figure 3.1 (c, d, e)). These types of patterns can

be easily detected by experts when searching for applications obfuscated

using DexGuard.
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Figure 3.2: Reverse call graph used by

Santhanam et al. (taken from [140])

Android Malicious Flow Visualization Toolbox Santhanam et al. [140][140]: Santhanam et al. (2017), ‘Interactive

Visualization Toolbox to Detect Sophisti-

cated Android Malware’

present a tool to visualize artifacts of an Android program (control flow

graphs, system flow graphs, information flow graphs, or a combination

of these) in order to help an analyst studying an unknown application

decide if it violates confidentiality, integrity or availability. As an example

of view proposed by the tool, we explain part of the case study of

a confidentiality leak in an application. Part of the process involves

the hypothesis that the application sends sensitive information in a

message and sends it via the method Message.sendToTarget. To verify

this, users can check the callers of this function to discover which other

function is responsible for the possible information leak. Figure 3.2

is a "reverse call graph", where it shows all the functions that call

sendToTarget. It the graph, we can see that this method is called by

Camera.PreviewCallback.onPreviewFrame, an API overridden by the

application. By inspecting the PreviewCallback.onPreviewFrame, users

can see, in this example, that the preview image used by this method is

sent using Message.sendToTarget, thus in part validating the hypothesis.

GroDDViewer: dynamic analysis replayer Lalande et al. [141] propose[141]: Lalande et al. (2020), ‘GroD-

DViewer: Dynamic Dual View of An-

droid Malware’

GroDDViewer for representing the dynamic execution of an application’s

system flow graph with a replay option, alongside its method control

flow. Figure 3.3 shows an example of the tool’s interface analyzing a

ransomware, in this case a Simplelocker sample. On the left side, we

see the "system flow graph", a graph showing the interactions between
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Figure 3.3: The GroDDViewer [141] interface showing the analysis of a Simplelocker sample

processes, sockets and files seen as nodes in the graph. The red outline

shows what nodes are interacting at that moment. We see, in this case,

calls done between various processes. At the bottom of the figure, we can

see a timeline in orange, with the ordinate representing the frequency of

information flow event at kernel level. On the right side, is the "method

flow graph", a graph showing methods, classes and packages as nodes,

and explicit calls between methods as edges. This dual view allows to

see the events occurring during application’s execution on the right side

of the interface, and the static structure of the application on the left side

for further inspection of the code on the left side.

We mention with a more brief description other tools used in Android

malware analysis, since these tools do not present much interesting

information about an application. Yoo et al. [142][143] present a tool for [142]: Yoo et al. (2017), ‘Personal Vi-

sual Analytics for Android Security Risk

Lifelog’

visualizing security risks of an application on the smartphone. Story-

Droid [144] generates a storyboard of the application’s activities, that also

[144]: Chen et al. (2019), ‘StoryDroid: Au-

tomated Generation of Storyboard for

Android Apps’

functions as a graph of transitions between them. Jenkins et al. [145]

[145]: Jenkins et al. (2017), ‘Dissecting

Android Inter-Component Communica-

tions via Interactive Visual Explorations’

propose a tool to better understand ICC and intents in an application.

These tools use diverse techniques to deliver information for very specific

tasks. Different parts of an application are exploited to obtain meaningful

information about the studied application.

These techniques are useful for analysts as they provide a visual aid

for the analysis of an application. Analysts can also extract significant

information from a single program by using these tools. However, these

methods can not be directly used to visualize a collection of applications

at once.
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Figure 3.4: Screenshot of the tool’s prototype proposed by Saxe et al. (taken from [146])

Visualization of datasets

Instead of visualizing a single sample, other visualization tools focus

on a set of programs. As far as we know, there are no tools dedicated

for Android applications for this type of task, however there exists tools

tested with x86 programs [146, 147]. Thus, we decided to review these

tools in order to see if they meet the same goals than our tasks, and if

some visualization method could be adopted. The following papers try to

represent a collection of applications, by either presenting information of

every element it has, by showing similarities between subsets of elements,

or both.

Similarity in system call sequences Saxe et al. [146] present a tool that[146]: Saxe et al. (2012), ‘Visualization of

Shared System Call Sequence Relation-

ships in Large Malware Corpora’

shows similarities between applications in a malware dataset, according

to their sequence of system call sequences. Semantic sequences of system

calls in logs are calculated, and then compared between the different

applications in the dataset. Figure 3.4, taken from the study, shows an

overview of the tool’s interface with their different parts. On the top left

we see various colored blocks besides the name of various samples, each

block representing a sequence of system calls, with unique colors for

different sequences. On the left side, a filter panel of behavioral traits such

as "registry key modifications, network communications, and file drops"

allows to highlight the samples on the right that contain this behavior.

And on the right is a grid called "Sample Similarity Map", computed

using principal component analysis and project in 2D using a Hilbert

curve. The grid shows the samples grouped in such a way that similar

samples are put together, and take identical colors, with known samples

as circles, and unknown ones as squares. It allows users to inspect a

dataset for applications with similar behavior based on their system call

sequences, where they can visually recognize similar samples grouped

together by their colors. Although this tool allows the exploration of a

single dataset, it does not allow for comparison of various datasets at the

same time.
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Figure 3.5: Screenshot of the SEEM interface by Gove et al. (taken from [147])

SEEM: comparing a sample to a dataset Gove et al. [147] propose a tool, [147]: Gove et al. (2014), ‘SEEM: A Scal-

able Visualization for Comparing Multi-

ple Large Sets of Attributes for Malware

Analysis’

called SEEM, to compare sets of attributes of a single malware sample

(called focal sample) to a dataset. Figure 3.5 shows an overview of the

tool’s interface, with selected parts listed from A to G. On the top left

(A), it shows several metadata about the applications such as different

hash values, file size, and dates. From the left, we see multiple categories

(B) such as capabilities, strings, DLLs, and functions. These are followed

by a "similarity axis" (C), where it shows how similar is the focal sample

with respect to the dataset, and allows users to filter samples to a range.

Besides it on the left, a "Venn diagram list" (D) shows Venn diagrams

for the top 20 most similar malware samples of the dataset to the focal

sample (E). These Venn diagrams show the type of similarity for each

category, whether there is an overlap, strict subset, or disjoint between the

focal sample and an application of the dataset. It helps reverse engineers

to speed up their work with new applications, and analysts to discern

whether new samples are based on other older samples, or if they are

different applications. As this tool does, we also use Venn diagrams, in

our case to represent relationships between characteristics as we explain

in section 3.2.3.

Despite the ability to compare the samples a dataset between them, the

tool by Saxe et al. [146] does not allow a comparison between sets of

applications. And on the other hand, with the tool by Gove et al. [147],

an exploratory task is not possible without having a comparison of one

sample with a dataset.
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Discussion

Visualization tools for single applications provide analysts with

visual aid when performing reverse engineering and manual malware

detection and classification, but they lack the ability to visualize more

than one application at a time. Visualization for sets of applications so

far enable researchers to: compare samples between them, or compare

a single sample to a dataset.

For now, the tools for comparing features are specialize on x86

applications. For the comparison and exploration of Android malware

datasets, no tool performs these tasks simultaneously.

3.2 DaViz - Dataset Visualization for Android
malware datasets

So far we saw in Section 3.1 the tools used to visualize Android applica-

tions and datasets. We realized that there are no tools in the state-of-the-art

for exploring and comparing Android datasets. This section presents

DaViz
*
, shown in Figure 3.6,a new visualization tool with the goal of

aiding in the exploration and comparison of Android malware datasets.

We know intuitively that researchers in malware analysis can identify

differences in datasets when the characteristics of these are shown vi-

sually. This new knowledge can help researchers select better datasets

fitted for their experiments than randomly selecting applications from

different sources, or using an already made dataset.

Section 3.2.2, we explain the characteristics used as input data for visu-

alization. Next, in section 3.2.3, we explain the different charts used by

DaViz and what type of information can be obtained from them. After

that, in section 3.2.4, we explain the interactivity features exploited by

DaViz. Later, in section 3.2.5, we describe the technical implementation

of DaViz. Finally, in section 3.3 a use case to exemplify an usage scenario

of DaViz.

3.2.1 Interface

Figure 3.6 presents an overview of DaViz’s interface. On the top right

of the figure, we see the name of the current’s workspace, named as

default "Workspace 1". Just below we see the user selection interface to

create charts. On the left there is a dropdown list to select which graph

to create:

▶ Venn diagram

▶ Bar chart

▶ Bar chart for categorical characteristics

▶ Heat maps

Next to it, a button "Select characteristics" for choosing the characteristics

to display in the chart (see section 3.2.2), in this case for a Venn diagram.

Next to this is a "Draw" button to create the chart once the user has

*
Short for Dataset Vizulisation
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Figure 3.6: Overview of the DaViz’s interface in Firefox 104

chose the characteristics to display. Finally in the left, there is a "Current

selection", which display the characteristics chosen by the user before

creating the chart. Since there is currently no characteristic chosen,

"Current selection" display "(none)"

Below is the chart section of the display, where the charts are created. We

can see three datasets displayed at the same time:

▶ AndroZoo 30k 2020, an extract of 30,000 applications from Andro-

Zoo in 2020,

▶ VirusShare 2018, a collection of all Android malware collected by

this platform in 2019,

▶ and AMD, a collection of malware from 2010 to 2016.

AndroZoo 30k 2020 is hidden, but can be unfolded by pressing the

triangle button next to its name. Below is VirusShare 2018 showing three

charts from left to right:

▶ a Venn diagram presenting the relationship of proportions of

applications with the characteristics "Use reflection", "Use Accessi-

bilityService", "DexClassLoader", and "LoadClass",

▶ a bar chart displaying the number of applications by MinSDK

version,

▶ and a heatmap showing the proportion of applications that have

"Use Java JNI", "Recieve SMS", "Send SMS" on abscissa, and "Use

MMS", "Place calls", "Get CPU ABI", and "loadClass" on the ordi-

nate.

And below this one is AMD, showing the same charts for this dataset.
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On the top left corner there are four elements to change the current view.

First, on the right, a dropdown list displaying "List View", which allows

the user to select between this current view ("List View") and a "Compare

View". Next, on the right, there are three icons:

▶ the left one allows to save a workspace with all the selections

applied to the last chart,

▶ the middle one allows to switch between saved workspaces,

▶ and the right one allows to save the session, including their

workspaces, for future use.

3.2.2 Input data: characteristics

The data we used to represent the datasets are characteristics: properties

extracted from applications, e.g. their size, the number of classes they

contain, whether they make a specific API call, etc. These characteristics

are computed using Droidlysis [148], a "property extractor for Android

apps"
†
: for each application it outputs different boolean characteristics

from patterns in the code, alongside other ones from the application’s

Manifest file (like permissions, intents, activities, application size, number

of classes, etc.).

Some characteristics, like the date and size, are shown in intervals

parameterized by the user, like the date in the range of years, while the

rest of characteristics with boolean attributes are shown in a characteristics

tree, as we explain later. New characteristics can be added accordingly,

by modifying Droidlysis or by using other analysis tools that output

data about programs. Using this output data from Droidlysis, we can

calculate the proportion of applications that have a certain characteristic

in the dataset. With the computed proportions, we propose several

visualization methods, using user interactivity.

Since there are 171 characteristics calculated using Droidlysis, we decided

to arrange them in categories when the user is invited to select the set

of characteristics to display. They are displayed as a tree, divided in

categories, sub-categories, and finally the characteristics as shown in

Figure 3.7. These categories are the following:

▶ "code": These are code-based characteristics that represent what

the application can potentially do.

Figure 3.7: Hierarchical visualization of

characteristics divided in several cate-

gories. Selected characteristics are high-

lighted in green

†
Droidlysis’ github page

https://github.com/cryptax/droidlysis
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• "code_exec": These are actions linked to external code exe-

cution, e.g. any "change" command (chmod, chown, chattr),

load a DEX class, start activity via shell, etc.

• "crypto": These are properties linked to the usage of crypto-

graphy, e.g. compute CRC32 and traces of encryption schemes

usage (cipher method and key specification).

• "exploit": These are traces of known vulnerabilities found in

several CVEs specific to Android applications, e.g. CVE-2020-

0069, CVE-2012-0025, among others.

• "info_leak": These are methods to allow attackers obtain infor-

mation collected by the application, e.g. usage of SSH, create

a network socket, usage of HTTP GET, etc.

• "native": These are properties linked to the usage of native

code in the application, e.g. usage of Java JNI, load native

libraries, use of BusyBox, etc.

• "obfuscation": These are traces that indicate the use of methods

to hinder the analysis of the application, e.g. use of reflection,

use of APKProtect, usage of base64 strings, etc.

• "payload": These are methods mostly used in the application’s

payload, e.g. send and recieve SMSs, stop/kill processes, usage

of cryptominers, etc.

▶ "intelligence": These are information collection methods the appli-

cation potentially can perform.

• "intel_device": These methods obtain information related to

the current device the application runs in, e.g. IMEI, hardware

information, bootloader’s version, etc.

• "intel_execution_environment": These methods obtain infor-

mation related to the application’s execution environment,

e.g. emulation detection (like Andydroid, bluestacks, QEMU

and other emulators), hardware sensors, check for debugger,

etc.

• "intel_network": These methods obtain information related to

network connectivity of the phone: e.g. MAC address, WiFi

SSID and RSSI, scan for WiFi hotspots, and cellular operator

name.

• "intel_user": These methods obtain information related to

the user: e.g. call logs, IP address, phone email, SIM country,

access to microphone, etc.

▶ "misc": These are other miscellaneous characteristics that could not

fit in the last two categories.

• "integrity": These are actions the application does that mod-

ifies the system in one way or another, e.g. install an APK,

mute microphone, place calls, bypass idling mechanisms, use

adb internally, etc.

• "interesting_behavior": These are actions the application per-

forms that may be of interest in combination with other char-

acteristics, e.g. IP addresses found in files, phone numbers

found in files, call intent chooser, parse URI, etc.
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Figure 3.8: Example of a bar chart, show-

ing for each bar the proportion, in per-

centage, of applications in the dataset

with the given characteristic

3.2.3 Output views: charts

DaViz allows users to browse datasets using different types of charts and

the multiple characteristics available. We will explain what these charts

are, what type of information they convey, and in what cases they can be

used.

Bar charts These charts show the size relationship between bars. An

example of a bar chart is given in Figure 3.8. Each bar represent a single

characteristic and its size represents a value such as:

▶ Number of applications

▶ Average average size

▶ Average Min SDK version

▶ Average Max SDK version

Users specify both abscissa and ordinate before creating the chart. In the

case of characteristics such as size and the application’s date year, users

specify the range for each bar.

According to Munzner [135], bar charts are used to lookup the values

and compare them. In the dataset exploration task, users can identify

which characteristics are present the most or the least in a dataset. On

the other hand, in the dataset comparison task, users can compare which

characteristics are more present in one dataset than the other, or equally

present in both. These observations can lead to further investigation

concerning the characteristics found to be, for example, more present in

a goodware dataset than in a malware dataset. However, with bar charts,

it is not possible to make the same analysis for proportion of applications

with more than one characteristic simultaneously.



3.2 DaViz - Dataset Visualization for Android malware datasets 39

Figure 3.9: Example of a three by three

heatmap, with the number of APK as

color intensity

Heatmaps These charts show the magnitude between two dimensions

with a color hue. An example of a heatmap chart is given in Figure 3.9.

This example shows that the dataset contains mostly applications that

use the Java JNI, and inform Android which application binary interface

(ABI) it uses to load the correct native program or library (in x86, ARM

or MIPS). Each cell represents the proportion of applications that have

the two corresponding characteristics in abscissa and ordinate at the

same time in the dataset. A "third" dimension is used, the color hue,

to represent a value corresponding to one element of the abscissa and

one of the ordinate. Users can specify the different characteristics for the

abscissa and ordinate, and lastly the value for each intersection (number

of applications having both characteristics, the average size, etc.).

According to Munzner [135], heatmaps are used to find clusters and out-

liers, but also to summarize the data. In the dataset exploration task, users

can compare, within the dataset, the proportion of pairwise presence of

several characteristics in applications at once. For the dataset comparison

task, users can compare, between datasets, these pairwise proportions to

identify a difference in presence of the chosen characteristics. For exam-

ple, when looking for a pair of characteristics highly used at the same

time, the heatmap will show a cell with a more intense color than the

rest of the cells, which can be spotted easily. When this chart is used for

dataset comparison, users take advantage of the color intensity to locate

proportion differences with pairs of characteristics between datasets.

Although with heatmaps we can observe the proportion of applications

with two characteristics in a dataset, we show in the following how it

is possible to generalize these characteristics’ relationships using Venn

diagrams.

Venn (Euler) charts In order to see the proportion of applications that

have multiple characteristics, we have to treat each characteristic as a set of

applications that present it. A common way to do this is through the use of

Venn diagrams. They allow to see the set relationships between different

characteristics as sets, where the size of each set corresponds to the

number of applications with that characteristic. Figures 3.10a and 3.10b

show examples of Venn diagrams. Intersections between sets correspond

to applications that have all the characteristics of the intersecting sets.
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Figure 3.10a: A Venn diagram in DaViz

Figure 3.10b: The same Venn diagram with the whole dataset included
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The methodology by Munzner [135] does not cover the use of Venn

diagrams. However, the study made by Alsallakh et al. [149] explores the [149]: Alsallakh et al. (2016), ‘The State-

of-the-Art of Set Visualization’
uses of Venn diagrams to show and present sets. They propose different

tasks that users may want to perform with these sets. These tasks can

be related to elements, to sets and set relations, or element attributes.

Among the tasks established by Alsallakh et al. [149], DaViz allows to

perform the following tasks related to sets and set relations:

▶ (B2) Analyze inclusion relations, e.g., identify which sets are fully

included in other sets, intersections or unions.

▶ (B3) Analyze inclusion hierarchies, e.g., identify if a set A is included

in B, and B is then included in C, and so on.

▶ (B4) Analyze exclusion relations, e.g., if a set does not intersect with

another, or if it does not have any intersection at all.

▶ (B5) Analyze intersection relations, e.g., if certain sets form inter-

sections.

▶ (B7) Identify the sets that constitute a certain intersection. Users

can hover the intersections and see which are the sets constitute it.

▶ (B8) Identify set intersections contained in a specific set.

▶ (B10) Analyze and compare set and intersection cardinalities. This

is done by comparing the sizes shown in diagram.

Venn diagrams allow to identify the relationship of the chosen character-

istics: if many of them are mutually exclusive, they will appear separate

from each other. On the contrary, if they are highly present in a group

of applications, the diagram will show them overlap each other, up to

the point of perfectly fit in each other if there is a one to one correlation

between (e.g. a group of applications all have these characteristics, but

there are none without one of them). In the dataset exploration task, this

helps to visually identify correlations between several characteristics.

In the dataset comparison task, these correlations can be compared,

identifying differences in the usage of a set of characteristics between

datasets.

3.2.4 Interactivity

Interactivity is one of the key features of DaViz: once a chart is created,

users can create more charts that will appear from left to right (or from

top to bottom) of the first chart, and an interaction performing a selection

on one of the charts will affect the charts that follows (on the bottom or

on the right, depending of the chart’s flow).

The intent behind this behavior is to allow users select sub-parts of the

datasets based on the selection of characteristics in a chart. This will

affect all the following charts of the flow, as they will only consider

elements with the selected characteristics in the previous charts where

the selection was made. For example, Figure 3.11 shows, on the left, an

extract of F-Droid in 2021 with a Venn diagram followed by a bar chart on

the bottom. The chart shows the proportion for 3,587 elements. When we

select the set in the middle of the Venn diagram, the intersection of "Get

SD card state" and "Get phone IMEI", the bar chart is updated, as seen

on the right, to consider only elements with these two characteristics.

In this case, we get, as seen in the bar chart, a higher concentration of

applications that use native methods, among a new total of 82 elements.
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Figure 3.11: Selection of elements with

"Get SD card state" and "Get phone IMEI"

on the F-Droid 2021 dataset

Select (click)

This principle of interaction have been implemented for all three types of

charts: bar charts, heat maps, and Venn diagrams.

We took inspiration from the study by Alsallakh et al. [149] to implement

this behavior in DaViz. The study formalizes the tasks related to elements

in Venn diagrams:

▶ (A1) Select elements that belong to a specific set. By clicking in the

diagram, the user can select those elements, filtering out those that

do not belong to the set.

▶ (A3) Select elements based on their set memberships. Users are

allowed to select internal parts of intersections, without taking into

account certain sets that are of the intersection.

▶ (A5) Filter out elements based on their set memberships. This is

done by selecting sets or intersections in the diagram. The resulting

selection appears in the next diagrams, as explained earlier.

Additionally, a specific interaction action have been implemented for

Venn diagrams for displaying elements when they are not concerned by

the characteristics, and thus not displayed. In Figure 3.10a, we can see

that the "Exec command" is the biggest set (the characteristic is present

the most in comparison to the others), with almost all other sets inside it,

meaning that "Exec command" is always present in an application if these

other are. We can see a difference in the intersection of "DexClassLoader"

and "loadClass" between the two datasets: in AndroZoo 30k 2020 there

is less use of both characteristics simultaneously than in VirusShare 2019.

Notice that the sets’ sizes represent the proportion between them in one

dataset, which can be misleading for comparison: the sets’ sizes cannot

be visually compared because the number of considered applications is

not the same. In order to fix this, users can include the whole dataset to

the diagram. By selecting the scale option, the previous Venn diagram

changes to Figure 3.10b. Now we can see that the "Exec command",

although is the most present characteristic among the others selected, is

not as present as in the malware dataset, where almost every application
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Android APK

Droidlysis

Users

Figure 3.12: Diagram of the system implementation of DaViz

use it. The user can conclude that the VirusShare dataset contains mostly

malware that try to execute code more frequently compared to the

general case of applications in AndroZoo, and further inspection may be

performed.

As a summary, DaViz can perform a one-to-one comparison of datasets

using bar charts, heat maps and Venn diagrams. DaViz’s chained charts

allow users to navigate datasets with different characteristics in each

chart. Moreover, the selection of characteristics in the charts allows to

concentrate the view on the selected characteristics in subsequent charts.

This can help filter out applications of a dataset that do not apply to the

criteria selected by the user, and consolidate those of interest for further

inspection.

3.2.5 Implementation

Figure 3.12 shows the diagram of the implementation for DaViz, showing

the flow of data from Droidlysis analyses of APKs to the display of charts

to users. We analyze each application of the datasets with Droidlysis, and

store the results in a MariaDB relational database. The data is structured

so that each application is represented by its SHA-256 hash value.

When users create their charts, the data has to be received as fast a

possible. Delays in generating changes in the charts would impact the

interactivity of the tool. To allow a more responsive response, the Elastic

stack is used. It is composed of a data collection tool called Logstash and

the Elasticsearch search engine. The former is used to transform the data

from MariaDB to the data interpretation used by Elasticsearch. This last

one handles the requests from the display client. Elasticsearch, on the

other hand, is fast enough to allow rapid changes in the charts with short

delays between a click on the chart and the corresponding reaction on

it.
1

1: An earlier version of DaViz used

MongoDB instead of Elasticsearch, and

it suffered from performance issues.A third part is the display client that the user will interact with, which is

based on React to arrange the user interface and make requests to the
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Elasticsearch instance. It also uses the D3 library to create the charts and

manage the interactions with them, like clicking on a bar or one of the

intersections of the Venn diagram. Because analyses to malware must

be performed in a secure environment, and to preserve the data from

external attackers, all these instances are hosted in the High Security

Laboratory (Laboratoire de haute sécurité or LHS) at INRIA in Rennes,

France.

In the next section, we will explain our usage of interactivity to help

users take advantage of the tool.

Discussion

With the variety of charts and characteristics available, users can

gain knowledge from unknown datasets, by inspecting the differ-

ent concentration of applications with selected characteristics in the

dataset. Users can also examine the relationships between different

characteristics inside a dataset. Additionally, the use of a fast imple-

mentation permit to change rapidly the views with new charts and

filters, allowing users to explore continuously the data, which helps in

the verification of hypotheses. This accomplishes our "Dataset explo-

ration" goal in accordance with the methodology of Munzner [135].

By looking at the graphs, we see the differences in the proportion

of individual characteristics between datasets, and differences in the

proportion of multiple characteristics between datasets. This informa-

tion can be useful to researchers when they create their experimental

datasets. On one hand, they can inspect datasets to see the relationship

between the characteristics of interest and other ones. This would al-

low researchers to identify unexpected patterns about the presence of

these relationships. On the other hand, researchers can compare their

newly created dataset to another one, to see whether their dataset

does not differ with the expected proportion of characteristics of

another one. This accomplishes the "Datastet comparison" goal in

accordance with the methodology of Munzner [135].

With the variety of characteristics available, researchers can system-

atically explore a dataset. While doing this, they can also compare

datasets using the same charts. The use of interactivity and fast imple-

mentations allow to rapidly make changes in the charts. A comparison

between other datasets from the literature would further exemplify

the utility of this new tool.

3.3 Visualization of datasets in the literature

With DaViz explained in the last section, we now show its use with

a comparison of Android malware datasets. Several datasets from the

literature were analyzed and imported into DaViz. In this section we are

going to compare some of these datasets and see the differences between

them. We start by comparing older and newer malware datasets to

identify and discover key differences between them, and then comparing

malware datasets from the literature with AndroZoo.
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3.3.1 Differences between older and newer malware
datasets

We are going to compare Drebin and AMD, particularly old but still

widely used Android malware datasets, with applications dating from

2010 to 2012, to VirusShare 2018, a collection of all Android malware

collected by the VirusShare platform in 2018. We will see the changes

in the composition of these Android datasets malware dataset through

time.

This first chart in Figure 3.13 shows the seven characteristics, automatically

computed by DaViz, that have the biggest proportion difference between

these datasets. At first glance, we see that around 60% of all applications

VirusShare 2018 contains one of these characteristics, while Drebin never

exceeds 20%. Among these, there is "Exec command", "Load DEX class",

"Change command", "Load class". These are mainly code execution

techniques used to hide the payload somewhere else, and then load it

when the malware is ready to activate its malicious activity. On the other

hand, few applications in Drebin have these characteristics. From this, we

can assume that execution methods have changed over the years from the

samples in Drebin to VirusShare 2018. And so, applications from Drebin

are less complex compared to those in VirusShare 2018. As a consequence,

we can suspect that studies using Drebin as an evaluation dataset will

have significantly different results, compared to an evaluation using

VirusShare 2018.

Let us examine the influence of "Change command"
2
, one of the charac- 2: "Change command" refer to any of

either chown, chmod, chgrp, chcon or

chattr patterns found in the applica-

tion’s code

teristics with the most concentration in VirusShare 2018, in these datasets:

we click over "Change command" in the bar chart of Figure 3.13 and

we obtain Figure 3.14. In this last figure, we can see that the number

of applications in Drebin is reduced to 168. Indeed, it is only 3.02% of

Drebin, compared to 66.64% of VirusShare 2018.. Nevertheless, with

these few samples, we see the use of "Start activity via shell" and "Load

native library" in almost the same proportions in Drebin as in VirusShare

2018 in relation to "Use Java JNI", but with more applications using

these characteristics at the same time in VirusShare 2018 than in Drebin.

We also see that "Load native library" and "Use Java JNI" are present

simultaneously in both datasets. These observation indicate a shift in the

behavior of applications to one using more native methods.

The same analysis is done with AMD and VirusShare 2018. Figure 3.15

shows again the seven characteristics, automatically computed by DaViz,

with the biggest proportion difference between these datasets. Even if

samples in AMD are older by two years, the figure presents the same

characteristics as the previous comparison of Drebin and VirusShare

2018, just with a slightly different order. We can see that characteristics

such as "Detect screen off", "Load DEX class", "Load class" and "URL in

executable" are less used in VirusShare 2018 compared to AMD.

Again, we examine the influence of the "Change command" in these

datasets as seen in Figure 3.16. In this case, "Change command" is present

in only 2.21% of AMD, or 526 of samples presenting this characteristic,

while this characteristic is present in 66.64% of VirusShare 2018. In both

AMD and VirusShare 2018 we see that "Load native library" and "Use

Java JNI" are both present, almost with the same proportions. Although
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Figure 3.13: Top seven characteristics with the most proportion difference between Drebin and VirusShare 2018

Figure 3.14: Venn diagrams showing some of the top seven characteristics with the most proportion difference between Drebin and

VirusShare 2018
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Figure 3.15: Top seven characteristics with the most proportion difference between AMD and VirusShare 2018

Figure 3.16: Venn diagrams showing some of the top seven characteristics with the most proportion difference between AMD and

VirusShare 2018
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"DexClassLoader" and "Start activity via shell" are present in AMD, we

can see that there is more presence of these characteristics in VirusShare

2018. This evidences a change of behavior, where newer applications

tend to use more native programs to hide their malicious behavior.

Now we compare Drebin to AMD using previous figures. Comparing

Figure 3.13 and Figure 3.15, AMD has more "Detect screen off", "Load DEX

class", "Load class" and "URL in executable" than Drebin. And comparing

Figure 3.14 and Figure 3.16, "Change command" is present in only 2.21%

of AMD, which is lower in proportion compared to Drebin but with more

samples (526 vs 168). We also see applications with "DexClassLoader"

and "Load native library" in AMD, whereas in Drebin there are very few

with "Load native library" or none with "DexClassLoader". Again, there

is a trend of more recent malware to use native programs and loading

external classes than in older malware samples.

We see a significant change in malware characteristics from Drebin to

ViruShare 2018: newer applications tend to use more loading techniques

than older ones, most probably to hide its malicious execution, with

only few old applications that use these techniques. With AMD, these

differences were also the same for some characteristics, as there are no

significant changes between this dataset and Drebin. And although there

are less applications in AMD and Drebin that use native libraries than

VirusShare 2018, in all three datasets the use of JNI and library loading

are present simultaneously.

3.3.2 Differences between literature datasets and
AndroZoo

In this section, we intent to compare the same specific datasets, Drebin

and AMD, with the "target" dataset that represent markets. Because

markets cannot be easily retrieved, we use AndroZoo for this purpose.

Indeed, as we said in the previous chapter, AndroZoo is a collection

of applications from many sources, particularly from Google Play and

Chinese markets. This dataset broadly represent applications found in the

wild, that is, in environments where users can download them. As with

any other market, malware can also be present in a AndroZoo sample, as

they could be undetected at the moment AndroZoo collected them, so

malware may appear in the sample. Drebin, being a malware dataset with

applications dating between 2011 and 2012, should present a significant

difference in certain characteristics with respect to AndroZoo.

Figure 3.17 shows the seven characteristics with the biggest proportion

difference between Drebin and a 30 000 applications sample of AndroZoo

in 2020. The biggest difference between these datasets is the lack of

"Google Play services" in Drebin versus 60% of applications in Andro-

Zoo using it. Another interesting but expected observation is the more

prominent use of "Send SMS" in Drebin than in AndroZoo. In fact, SMS

is one of the attack vectors of malware, as they use it to subscribe the

victim to a premium rate service, or to make the victim pay a service

for the attacker through SMS. The IMEI is a number used to identify

phones in the GSM network, and can be used to blacklist a stolen phone

from being used in a network. It can be also used to identify a phone

regardless of the phone number. Malware, such as the Gemini [150] and[150]: F-Secure (2010), Tro-
jan:Android/Geinimi
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Figure 3.17: Top seven characteristics with the most proportion difference between Drebin and a 30 000 sample of AndroZoo in 2020

Figure 3.18: Top seven characteristics with the most proportion difference between AMD and a 30 000 sample of AndroZoo in 2020
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GingerMaster [151] families, tend to use this to identify victims and gather[151]: FortiGuard Labs (2011), An-
droid/GingerMaster.A!tr

as much information about them as possible. We see that more than 60%

of malware in Drebin gets the phone’s IMEI compared to AndroZoo

(around 30%). This indicate clearly identifiable characteristics of Drebin,

such a the lack of Google Play services, the use of SMS, and the extraction

of identifiable information from the phone.

In the case of a comparison between AMD and AndroZoo, some changes

appear compared to Drebin. First, as wee see in Figure 3.18, samples

in AMD collect the phone’s number (40% of application with the "Get

phone number" characteristic) in addition to the IMEI (63%). They also

appears to collect MAC addresses (46% of applications with "Get MAC

address" characteristic), as well as the SIM operator numeric name (43% of

applications with "Get SIM operator" characteristic). Another interesting

behavior is "Get installed packages" in more than 40% of applications

in AMD. These information are not only of interest to malware authors.

This feature can be exploited to profile users’ behavior by legitimate

application [152], where it is mostly third party libraries that perform[152]: Scoccia et al. (2020), ‘Leave My

Apps Alone! A Study on How Android

Developers Access Installed Apps on

User’s Device’

this type of data collection [153].

[153]: Pham et al. (2019), ‘HideMyApp:

Hiding the Presence of Sensitive Apps

on Android’ As seen previously, both Drebin and AMD have very few applications

with "Native lib with JNI_OnLoad", "Exec command", "Load DEX class",

"Change command", and "loadClass" compared to VirusShare 2018. Com-

paring these characteristics with AndroZoo, we see that, again, both

Drebin (in Figure 3.19) and AMD (in Figure 3.20) have less applications

with these characteristics than AndroZoo. This is another notable differ-

ence between recent applications and older malware. If we examine a

comparison between VirusShare 2018 and AndroZoo, Figure 3.21 shows

us that almost all applications in VirusShare have these characteristics.

More precisely, in Figure 3.22, we see that more than 80% of applications

in VirusShare have "Native lib with JNI_OnLoad" and "Exec Command",

and around 60% have "Load DEX class", "Change command" and "load-

Class", while these characteristics are only present in around 20% of

applications in AndroZoo. Indeed, there is an increase in usage of native

methods in malware nowadays than ten years ago.

Discussion

Through the use of visualization we make a comparison between

older and newer malware datasets, and between widely used malware

datasets of the literature, Drebin and AMD, and AndroZoo. We see

differences in terms of characteristics proportions such as "Native lib

with JNI_OnLoad", "Exec command", "Load DEX class" and "Change

command", which leads us to notice the evolution of malware towards

the use of native code. We also made a comparison of a sample from

AndroZoo against these three malware datasets from the literature.

We see that malware in general tend not to use Google Play services;

on the other hand, they tend to ask more frequently identifiable data

such as the phone’s IMEI, MAC address or SIM operator, besides the

use of SMS.
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Figure 3.19: Venn diagrams showing the relationships between "Native lib with JNI_OnLoad", "Change command", "loadClass", "Exec

command", "Load DEX class" in Drebin and a 30 000 sample of AndroZoo in 2020

Figure 3.20: Venn diagrams showing the relationships between "Native lib with JNI_OnLoad", "Change command", "loadClass", "Exec

command", "Load DEX class" in AMD and a 30 000 sample of AndroZoo in 2020
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Figure 3.21: Venn diagrams showing the relationships between "Native lib with JNI_OnLoad", "Change command", "loadClass", "Exec

command", "Load DEX class" in VirusShare 2018 and a 30 000 sample of AndroZoo in 2020

Figure 3.22: Top eight characteristics with the most proportion difference between VirusShare 2018 and a 30 000 sample of AndroZoo in

2020
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3.4 Conclusion

In this chapter we presented DaViz, a new dataset visualization tool

to explore and compare Android malware datasets. It uses different

techniques such as filtering and reordering, that users can take advantage

of to gain an insight of malware datasets. We presented the usage of

Venn diagrams, bar charts, and heat maps to represent multiple values

in different ways. We took advantage of interactivity to allow the user to

perform two main analysis tasks: dataset exploration and comparison of

datasets.

Then, we presented a comparison of Drebin and AMD, two old and

recognized malware datasets from the literature, and a more recent

malware dataset VirusShare 2018. We also presented a comparison of

Drebin and AMD against an extract of AndroZoo. We found that the

samples in the malware datasets are very different from AndroZoo. This

is an expected result, because malware have, in general, a very different

behavior than an average application found in markets. We also found

that the malware datasets we inspected are different between each other.

This confirms the works of Allix et al. [10] and Pendlebury et al. [11] over

other characteristics than just the date.

DaViz gives an intuitive and visual difference between all these datasets.

This tool has been presented at the RESSI 2022 conference [12]. In the [12]: Concepción Miranda et al. (2022),

‘DaViz: Visualization for Android Mal-

ware Datasets’

next chapter, we introduce a statistical procedure in order to qualify

formally the differences we witnessed intuitevely with DaViz.
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Before performing experiments, researchers set the purpose of the study,

i. e. malware detection, family classification or a market study, and the

set of applications that the experiments are aimed for. They then create

their experimental datasets by either using another one found in other

experiments, or creating their own by gathering applications from various

sources. We have seen that such a process can lead to irregularities in the

dataset. These irregularities can be observed graphically as presented

in Chapter 3. The term irregular suggests that we express a comparison

against a real production environment, e.g. Google Play, called the "target"

dataset. The expected consequence is that, if an experiment obtains good

results with a regular dataset, then it should have the same good results on

the larger dataset, that we call in this thesis the target dataset. Because of

this, for the rest of this thesis, we introduce the notion of representativity

between two datasets. An experimental dataset is said to be representative
if it comes from this larger target dataset, and if it has similar proportions

of characteristics compared to this larger target dataset.

In this section, we will define the notion of being representative: how

we define representativity, how to sample such a dataset, and how

we can measure a difference between datasets. In section 4.1, we start

by defining what is a representative dataset with the new concept

of 𝛿-representativity. Then, in section 4.2, we establish a method to

create a representative dataset from a target set of applications. Later,

we propose the usage of a statistical test to calculate if two datasets

are statistically homogeneous to each other. And lastly, in section 4.3,

we evaluate various datasets from the literature and compare them to

a representative dataset of our choice.

4.1 Definition of a representative dataset

In statistics, population is a set of objects from which a study wants to

be conducted [154]. In most science studies, such as medicine, psychol- [154]: Cochran (1977), Sampling Techniques
ogy and biology, researchers pick a set of individuals from a defined

population to study. In the case of research in Android applications,

the population would be the set of programs from a defined source

or sources. For example, a study of a new Android malware detection

algorithm claims its solution works properly in Google Play. To verify this

assumption, the researchers must test their new method with applications

from Google Play.

Instead of performing a census of the population, which means to study

all the individuals of a population, it is convenient to obtain a sample from

the population. A sample, then, would be an subset of programs from a

specified population. From here on, we refer to a sample as a "dataset",

since it satisfies the characteristics of one as seen in the previous chapter.

Obtaining a sample from the population have two main advantages:
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1. Performing a census could be infeasible, as it would require too

much time or resources that the researchers do not have. By taking

a sample, it significantly reduces the number of individuals to

study.

2. If the sample is representative of the population, the results from

the experiment using this sample would be valid for the population.

In the case of evaluating a detection algorithm against applications from

Google Play, the researchers then must get a sample from this market to

perform their tests.

To formalize the definition a representative dataset, we consider a pop-

ulation P that contains 𝑁 applications. Then, a dataset D of size 𝑛 is

representative of P if it satisfies the following properties:

1. 𝑛 is significantly smaller than 𝑁

2. evaluating the proportion �̂� of a specific characteristic on D gives

similar results as evaluation 𝑝 on P for the same characteristic

3. evaluating an algorithm on D gives similar results as performing

the same evaluation on P

The individuals that compose a sample have characteristics inherent to

them, and are of interest for a study. A characteristic is a property of an

individual. In the case of Android applications, a characteristic can be

properties such as the file size (evaluated as a integer), the number of

classes in the code (an integer), or whether the applications contain a

certain library (a boolean).

For a single characteristic, we could consider that some dataset D is

representative of a population P for a single characteristic if the pro-

portion of applications exhibiting is the same in D and P, (i. e. 𝑝 = �̂�).

Despite of this, there are cases where this is not possible: if 𝑝 = 1/𝑁 ,

meaning that only one element in Phas this characteristic, then, in order

to have exactly the same proportion in D, the whole population have to be

sampled. This would result in a contradiction of the first property about

representative datasets. Therefore, a margin of error 𝛿 must be used,

which is a difference between �̂� and 𝑝 one allows to have considering

that D is representative of P. And so, a dataset is representative of a

population if it has the same proportion for a given characteristic up to a

maximum difference of 𝛿.

The way 𝛿 is considered for a single characteristic can be replicated

for multiple characteristics. Let us consider a set of 𝑑 characteristics

{𝑐1 , ..., 𝑐𝑑} that can take the values 𝑣1 , ..., 𝑣𝑑 respectively. This generates

𝑣1 × ... × 𝑣𝑑 different combinations. In the following, these combinations

will be considered as classes, and K as the set of these classes. A class,

then, is the set of applications that share the same values for the same

set of characteristics. This term is not related to malware family names,

which correspond to tags given to a set of malware that have the same

behavior [155]. Then, a dataset D could be considered representative of

P for a set of classes K if the proportion of each class 𝑘 ∈ K is equal to

P and D.
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Definition 4.1.1 Let 0 ≤ 𝛿 ≤ 1. A dataset D is 𝛿-representative of a
population P for a finite set of classes K if ∀𝑘 ∈ K, |𝑝D,𝑘 − 𝑝P,𝑘 | ≤ 𝛿,
where 𝑝D,𝑘 (resp. 𝑝P,𝑘) is the proportion of class 𝑘 in D (resp. P).

4.2 Sampling representative datasets

Once we have a definition for a representative dataset, we can talk about

how to sample one from a target dataset. We take again the example of

malware classification, where researchers have to take a sample from

Google Play for doing the evaluation of their method. However, Google

Play prevents user to crawl the platform to obtain information about

a large quantity of applications, and so it is very difficult to obtain a

complete snapshot of Google Play to get a representative sample from

it. As a substitute, for the rest of this thesis, we use AndroZoo as a the

population or our target dataset. As we explain in Chapter 2 (Section 2.1.3),

this dataset is the largest dataset available with 19 553 370 (as of June 14,

2022), it is regularly updated with new applications from Google Play

and other markets, and it keeps the applications they collect. Because

of this, AndroZoo is the best option available to represent Google Play.

This does not makes the assumptions of this work less relevant, as the

methods proposed works beyond any specific dataset.

To obtain a representative sample of P of size 𝑛, a simple random sampling
is performed [154]. This technique consist in drawing 𝑛 units out of the

𝑁 without replacement. Following definition 4.1.1, we fix a maximum

difference 𝛿 that we accept. This will precondition 𝑛 to a minimum

sample size in order to get an error less or equal than 𝛿. In statistics,

studies quantify the probability of obtaining an error smaller than 𝛿. This

is denoted as a confident level 𝐶. For example, "with a confident level 𝐶 =

95%, the error is smaller than 𝛿". Such estimations are performed because

of the random sampling, as it may yield to differences in proportions

bigger than 𝛿 just by chance. To minimize this, a minimum 𝑛 is choose

based on 𝛿.

4.2.1 Sample size for one boolean characteristic

Once the maximum error 𝛿 and the confidence level 𝐶 is are defined in

accordance to the experiment’s requirements, a lower bound for 𝑛 can

be calculated. The margin of error formula [156] with finite population [156]: De Veaux et al. (2016), Stats: Data
and Models

correction [154] is used for this:

𝛿 ≤ 𝑧(𝐶)
√

�̂�(1 − �̂�)
𝑛

√
𝑁 − 𝑛

𝑁 − 1

This formula is used to calculate the margin of error 𝛿 given the sample

size 𝑛, the population size 𝑁 , the sample proportion �̂� and the standard

deviation 𝑧(𝐶) at confident level 𝐶 for the standard normal distribution

with mean 0 and standard deviation 1. The term �̂�(1 − �̂�) is maximized

when �̂� = 0.5, so we can bound this value by 0.5(1 − 0.5) = 1

4
, namely:
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Table 4.1: Sample size of representative

datasets of Google Play and AndroZoo

for one or multiple characteristics (𝛿 =

0.01 and 𝐶 = 99%). Dataset Size

Sample size

for one

characteristic

(𝛿 = 0.01 and

𝐶 = 99%)

Sample size

for 36 864

characteristics

(𝛿 = 0.015 and

𝐶 = 99%)

Google Play 2 664 893 16 485 29 062

AndroZoo 19 553 370 16 574 29 383

𝛿 ≤ 𝑧(𝐶)
√

�̂�(1 − �̂�)
𝑛

√
𝑁 − 𝑛

𝑁 − 1

≤ 𝑧(𝐶)
√

𝑁 − 𝑛

4𝑛(𝑁 − 1)

Since we already know 𝛿, we can rearrange the inequality to bring 𝑛 to

one side of the equation:

𝑛 ≥ 𝑁

(
4(𝑁 − 1)𝛿2

𝑧(𝐶)2 + 1

)−1

(4.1)

By using this formula, there are some light assumptions about the sample

and population. First, we assume that 𝑛 is not to small and that it has

at least 30 elements [157]. Secondly, that the population proportion 𝑝 is[157]: Hogg et al. (2015), Probability and
Statistical Inference

not close to 0 or 1. In the case these assumptions fail, other confidence

interval formulas can be used, like the Hoeffding inequality [158].[158]: Bardenet et al. (2015), ‘Concentra-

tion inequalities for sampling without

replacement’ Notice that the population size 𝑁 influence the sample size 𝑛 in the

formula. Despite of this, if 𝑁 is relatively large, this influence is negli-

gible. For example, the size of Google Play is estimated to be 2 664 893

applications as of June 06, 2022. For a representative sample of Google

Play with 𝛿 = 0.01 and 𝐶 = 99%, the minimum required sample size

is 𝑛 = 16 485, or only 0.62% of the total population. Surprisingly, for

a representative dataset for AndroZoo, using the same 𝛿 and 𝐶, its

size 𝑛 = 16 574, or 0.08%, a difference of 89 applications compared to

the size of a representative sample of Google Play. Table 4.1 shows a

summary of the sample size of a representative dataset for Google Play

and AndroZoo respectively, for one or multiple characteristics. Next, we

explain how to calculate the sample size of a representative dataset for

multiple characteristics.

4.2.2 Sample size for multiple characteristics

The previous formula for calculating the minimum size for a repre-

sentative dataset is only valid for a single boolean characteristic. This

only applies for |K| = 2 classes, as a single boolean characteristic only

has two possible values. When more than one boolean or non-boolean

characteristics are considered, the number of classes increase, and so

increases the sample’s size, as more combinations have to be taken into

account for the sample to be representative.

Just as in the case of a single boolean characteristic, the margin of

error formula can be used with a slight modification. According to

the Bonferroni correction [159], representing a set of classes Kwith a[159]: Dunn (1961), ‘Multiple Compar-

isons among Means’
confidence level 𝐶 using random sampling is more likely than correctly
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Figure 4.1: Diagram of the evolution of Google Play and the sampling of a representative dataset. From Google’s point of view, there are

four malware samples to detect, while the sample taken on the right would only have one malware to detect.

representing one boolean characteristic with a confidence level 1 − (1 −
𝐶)/(|K| − 1). This correction implies the modification of the standard

deviation 𝑧(𝐶) in Equation 4.1 to 𝑧(1 − 1−𝐶
|K|−1
). And so, the size of a

representative dataset D of Pwith |K| classes with a margin of error 𝛿
and a confident level of 𝐶need to be at least:

𝑛 ≥ 𝑁
©«

4(𝑁 − 1)𝛿2

𝑧
(
1 − 1−𝐶

|K|−1

)
2

+ 1

ª®®¬
−1

(4.2)

Considering a set of classes with |K| = 36 864 (the set of classes of the

considered characteristics as seen in Section 4.3.1), a margin of error 𝛿 =

0.015, and a confident level 𝐶 = 99%, the size of a representative sample

of Google Play would be at least 𝑛 = 29 062, the size of one for AndroZoo

𝑛 = 29 339, and for an arbitrarily large population 𝑛 = 29 383.

4.2.3 Application to security experiments

Sampling applications from AndoZoo with the required value of 𝑛

gives a representative dataset for a chosen set of multiple characteristics.

Unfortunately, two problems arise that limits this approach.

Problem 1: some characteristics may be hard-to-compute characteristics
We define as hard-to-compute, a characteristic that the researcher cannot

compute with reliability, for example being a malware or not, containing a

packer, etc. These characteristics may be missing from the population (for

example Google Play) and recomputing them would require a manual

analysis of the sampled applications.

Problem 2: underrepresentation of samples with the hard-to-compute
characteristic Even if we suppose that the hard-to-compute charac-

teristic could be calculated for the samples found up to now, sampling
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applications from a population would lead to new problems for the

produced dataset. Indeed, the previous equation that have been pre-

sented in this chapter guaranty that the characteristics are homogeneous

with the population for the given time. Let us imagine that a detection

experiment is performed to Google Play at Google. The researcher’s goal

would be to create a dataset that resembles Google Play with the same

malware/goodware proportion Google is facing, i. e., considering all the

applications added to Google Play throughout all 10+ years this platform

have been available. We represented this scenario in Figure 4.1. We see

that, during this time:

▶ Goodware and malware are added to the store

▶ Applications continue to stay over the years

▶ Goodware are removed

▶ Malware may be detected and removed

A researcher using our sampling method would obtain a representative

dataset of Google Play at that time. We see that, for Google, the detection

experiment would be to detect four malware out of nine applications,

while for a researcher, the detection experiment would be to only detect

one malware out of five applications. As a consequence, the drawn dataset

would contain malware, but underrepresented compared to the reality

of the detection problem. These two problems, a detection experiment at

Google and a detection experiment for a researchers with representative

dataset of Google Play, are indeed different.

Consequently, for these two reasons, we cannot push further a method
based on simple random sampling of applications. As a fallback,

we will switch to methods that consist in mixing applications that

have different values for the hard-to-compute characteristics. For the

malware/goodware example, it consists in mixing malware samples and

goodware samples. The resulting dataset may be very heterogeneous

from the population. In the next section, we propose a method, using a

statistical test, to judge whether two datasets are different.

4.3 Evaluating existing datasets

In this section, our aim is to measure if a dataset D is statistically

different from the population. This test will be based on the considered

characteristics of applications. Before moving on the precise definition of

the test, we need to discuss what happens if we include in our test all the

possible characteristics of applications.

We recall the reader that our goal is to compare mixed datasets containing

malware and goodware with the population. If the population is Google

Play, there is little chance that our test answers that a mixed dataset is

statistically the same as the population. Indeed, a lot of characteristics

related to malware behavior would be different for the malware part of

the dataset. On the contrary, the goodware part could be very similar to

an extract of Google Play. These remarks hold only if Google Play does

not contain too much malware, which is a reasonable hypothesis. As a

result, comparing a set of malware with an extract of the Google Play is

useless: there is a high chance that the characteristics are very different.

As our mixed dataset of goodware/malware should have a significant
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amount of malware, comparing a mixed dataset to an extract of Google

Play will give the same results: they will be different.

It comes from the previous remarks that we should more precisely discuss

the considered characteristics. We can split the characteristics into two

groups:

▶ Characteristics related to security: permissions, sensitive APIs,

native libraries, etc.

▶ Characteristics not related to security: size, date, number of classes,

etc.

The group of security related characteristics should be obviously different

for malware compared to the population. If they are not, it means that

malware are disguised perfectly as goodware and will not be spotted

by any detection algorithm; this hypothesis is very uncertain, and we

expect a difference. The group of non-security related characteristics

should be similar to the population. For example, the date has no reason

to be different in a malware dataset, in term of distribution, than in the

population.

As a consequence, we propose to build a test of homogeneity considering

the characteristics not related to security, letting other characteristics

ignored because they are not homogeneous. Such a test would help to

compare a mixed dataset to the population. Our goal is to compare the

datasets of the literature, such as Drebin and AMD to the population.

Later, in Chapter 5, our debiasing algorithm that modify datasets will

also work on the group on non-security related characteristics, for the

same reasons.

4.3.1 Non-security related characteristics to consider

When we choose these non-security related characteristics, it is important

to notice that the number of combinations grows exponentially with the

number of characteristics, and eventually grow bigger than the size of the

dataset. With three boolean characteristics we have 8 classes, with four

we have 16 classes, and with five there are 32 classes. As a result, we have

to limit the number of these classes, because too much of them will lead

to have classes with no application belonging to them. For numerical

characteristics, they can be split into intervals so to have a value associated

to each interval These intervals can be designed according to the study

parameters. For example, one of those characteristics would be the file

size, where the values are integers and this range can be split in intervals

to designate "small", "medium", or "big" applications.

For this experiment, we decided to use the following characteristics that

are not-security related:

▶ APK size (4 values)

0. 1 MB < size

1. 1 MB ≤ size ≤ 5 MB

2. 5 MB ≤ size ≤ 20 MB

3. size > 20 MB

▶ year (9 values): {< 2011, 2011-2012, 2012-2013, 2013-2014, 2014-2015,

2015-2016, 2016-2017, 2017-2018, > 2018}
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▶ Internet permission (bool)

▶ External or internal storage access (bool)

▶ Uses Google play services (bool)

▶ Generates UUIDs (bool)

▶ Vibrate phone permission (bool)

▶ NFC permission (bool)

▶ Bluetooth permission (bool)

▶ Performs HTTP request (bool)

▶ Uses JSON objects (bool)

▶ Specifies User-Agent (bool)

These characteristics were extracted using Droidlysis [148] as we also

explain in Chapter 3. These characteristics are widely different and easy

to evaluate statically, lowering the computational resources needed to

extract and use them in the following experiments. Although dynamic

characteristics could be used, this requires executing the application.

Some applications may not execute in emulated environments [121], nor

run on modern versions of the Android OS because of deprecated APIs

or will just crash during execution [160, 161].

With these 12 characteristics, there is a total of 36 864 classes: The APK

size counts for four possible values for each interval, the year counts for

nine values for the reason, and there are 10 boolean characteristics that

count for two possible values each, so multiplying (4 × 9 × 2
10) = 36 864.

These characteristics will be used to study the homogeneity of a number

of datasets from the literature against an extract of the population,

AndroZoo in 2020, with a statistical test that we explain in the next

section.

4.3.2 Statistical test of homogeneity for datasets

In statistics, the 𝜒2
statistical test for homogeneity [162] is a method[162]: Pearson (1900), ‘X. On the criterion

that a given system of deviations from

the probable in the case of a correlated

system of variables is such that it can be

reasonably supposed to have arisen from

random sampling’

to compare two samples and verify that these are not statistically ho-

mogeneous, i. e., they are not from the same population. To perform

this test, we need a dataset D and a second one D𝑟 , a sample drawn

from a population P. Then, we establish a null hypothesis [156] (denoted

𝐻0), a conjecture proposing that there is no effect or no difference in

the possibilities established in it. In our case, 𝐻0 is the following: D

and D𝑟 are drawn from the same population P (with replacement). Then we

apply a formula (explained later in the section) using the proportion of

applications of each class in K for D and D𝑟 , and we obtain the 𝜒2
test

statistic for these two datasets.

The test result itself does not give a relevant indicator of how different

or equal the datasets are. Instead, we look at the 𝑝-value of the result

after performing the test. In plain terms, the 𝑝-value is the probability of

obtaining a test result as the one obtained given that 𝐻0 is true. Although

it is a rather difficult concept to grasp even for statisticians, it is important

to notice that a low 𝑝-value represents a statistically significant result,

meaning that obtaining this result has a low chance of happening given

that 𝐻0 is true.

The 𝜒2
test, as well as other statistical tests such as the Student’s t-test

or the Z-test, can only reject the null hypothesis but not confirm it.
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Rejecting the null hypothesis means that we admit the dataset D is not

homogeneous to D𝑟 , and therefore dissimilar to the population P. To do

so, a threshold to which the 𝑝-value is low enough to be significant is

established. This threshold is typically set to be 0.05, but it can be lower,

or higher depending of the experiment.

The test is applied as follows: we consider the finite set of classes K. We

denote𝑚D,𝑘 (respectively𝑚D𝑟 ,𝑘) the number of samples in D (respectively

in D𝑟) of class 𝑘 ∈ Kand 𝑝P,𝑘 (respectively 𝑝D,𝑘 and 𝑝D𝑟 ,𝑘) the proportion

of elements of class 𝑘 in P (respectively in D, in D𝑟). If the null hypothesis

holds true, then the three proportions 𝑝P,𝑘 , 𝑝D,𝑘 and 𝑝D𝑟 ,𝑘 of class 𝑘 ∈ K
should be equal or different only by a small margin. The proportion

𝑝P,𝑘 can thus be estimated by

𝑚D𝑟 ,𝑘+𝑚D,𝑘

|D𝑟 |+|D| and the expected number of

occurrences of class 𝑘 in D can be estimated by 𝐸D,𝑘,D𝑟
= |D| × 𝑚D𝑟 ,𝑘+𝑚D,𝑘

|D𝑟 |+|D|
and in D𝑟 by 𝐸D𝑟 ,𝑘,D = |D𝑟 | × 𝑚D𝑟 ,𝑘+𝑚D,𝑘

|D𝑟 |+|D| . The 𝜒2
value of two datasets D

and D𝑟 is defined as:

𝜒2 =
∑
𝑘∈K

(𝑚D,𝑘 − 𝐸D,𝑘,D𝑟 )2

𝐸D,𝑘,D𝑟

+ (𝑚D𝑟 ,𝑘 − 𝐸D𝑟 ,𝑘,D)2

𝐸D𝑟 ,𝑘,D

This formula is related to the 𝜒2
distribution, that is the generalization of

all possible values of this formula for any given number of classes |K|.
The 𝑝-value can then be calculated using the cumulative distribution

function (CDF) of the 𝜒2
distribution. The CDF is parameterized by the

number of degrees of freedom, in this case the number of classes minus

one, i. e. |K| − 1. The 𝑝-value can then be looked up in tables that are

available in most statistics textbooks and statistics software (for example

the Python library scipy).

In the following, we use the 𝜒2
test to measure the difference between

various Android malware datasets of the literature and a representative

dataset of AndroZoo in 2020.

4.3.3 Studied Android datasets

To perform this test, several Android datasets from the literature were

taken and analyzed with Droidlysis. These datasets are the following:

▶ 6 malware datasets: Drebin [5], AMD [6], as well as VS 2015, 2016, [5]: Arp et al. (2014), ‘DREBIN: Effective

and Explainable Detection of Android

Malware in Your Pocket’

[6]: Wei et al. (2017), ‘Deep Ground Truth

Analysis of Current Android Malware’

2017 and 2018, containing all the malware collected by VirusShare

for each of these years;

▶ 2 groups of datasets extracted from AndroZoo [61]:
[61]: Allix et al. (2016), ‘AndroZoo: Col-

lecting Millions of Android Apps for the

Research Community’

• AZ19100k, 100 000 applications randomly drawn in 2019, and

the subsets AZ19100k in 2015, 2016, 2017, 2018 restricted to

applications from each year;

• AZ2010k, AZ2020k, and AZ2030k three datasets randomly

drawn from AndroZoo in 2020, containing respectively 10 000,

20 000 and 30 000 applications.

▶ 1 mix dataset: Dmix composed of 5 560 malware from Drebin and

11 120 goodware from 2018 extracted from AndroZoo. Dmix mimics

the datasets used in previous machine learning papers [110, 111]. [110]: Xu et al. (2016), ‘ICCDetector: ICC-

Based Malware Detection on Android’

[111]: Feizollah et al. (2017), ‘AndroDialy-

sis: Analysis of Android Intent Effective-

ness in Malware Detection’

▶ DroidBench [163]: a collection of applications with source available

[163]: Arzt et al. (2014), ‘FlowDroid:

Precise Context, Flow, Field, Object-

Sensitive and Lifecycle-Aware Taint Anal-

ysis for Android Apps’

designed to evaluate taint-analysis tools.
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Figure 4.2: Distribution of application classes for the top most 200 over 2 874 classes of AZ20
30𝑘 and compared with D𝑚𝑖𝑥 and AMD

As proposed earlier in the chapter, we use AndroZoo as the population

because it is one of the easiest source of Android applications that can

be used to draw a large sample. The goal is to determine which datasets

commonly used in the literature are not representative of AndroZoo. This

dataset contains 19 553 370 applications as of June 15, 2022. Due to its size,

it would be convenient to extract a representative sample as we explained

before. Hence, we represent AndroZoo through AZ2030𝑘 , a dataset of

30 000 randomly selected applications (corresponding to 𝛿 = 0.015 and

𝐶 = 99% for all 36 864 theoretical classes, see Section 4.2.2).

We perform a comparison between an extract of the population, in this

case AndroZoo, called AZ2030𝑘 with some datasets used in the literature

(presented in Chapter 2). To illustrate the difference in class proportions

between some of the datasets, Figure 4.2 shows the distribution of the 200

highest class proportions between AZ2030𝑘 (in blue), the mix dataset D𝑚𝑖𝑥

(in orange) and AMD (in green). The classes are sorted in descending

order of size for AZ2030𝑘 . The figure already shows the differences

between these dataset. We can see that AMD has many classes with

high proportions, between 4 % up to 11 %, than AZ2030𝑘 and D𝑚𝑖𝑥 . On

the other hand, D𝑚𝑖𝑥 has more classes with slightly higher proportions

distributed in the center and the tail of the figure, but still different than

AZ2030𝑘 .

A further comparison is done by performing the 𝜒2
test for homogeneity.

Table 4.2 presents the dataset size, the number of classes represented only

in AZ2030𝑘 (and not in the studied dataset), the number of classes common

to AZ2030𝑘 and the studied dataset, the number of classes represented

only in the studied dataset (and not in AZ2030𝑘), the maximum and

average 𝛿 of class proportions, the value of the 𝜒2
test, the associated

𝑝-value, and the conclusion (or lack of) of the test between the studied

dataset and AZ2030𝑘 . Right away, last column shows that all datasets,

except for the last extract of AndroZoo, have a 𝑝-value lower than

the threshold. For AZ2020𝑘 , this is consistent with the definition of

representativity of Section 4.1.1, as we can see a low 𝛿 and a high 𝑝-

value where the test does not reject the null hypothesis of AZ2020𝑘 and
AZ2030𝑘 are drawn from the same population. We also notice that AZ2010𝑘 ,

even thought is a sample of AndroZoo, has a 𝑝-value that rejects the

null hypothesis. This is mainly due to its size: AZ2010𝑘 ’s size of 9 971

applications is lower compared to AZ2020𝑘 which has the double. This

affects the proportions for each class: since there are less applications to
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Table 4.2: 𝜒2
test for homogeneity over AZ20

30𝑘 for a finite set of non-security characteristics

Datasets Dataset size

# of classes

in common

# of classes only

in the dataset

# of classes

only in AZ2030𝑘
Max

𝛿
Avg 𝛿 𝜒2

value 𝑝-value Conclusion

AZ2030𝑘 29 974 2 411 – – 0 0 0 1

Drebin 5 304 181 141 2 230 0.1184 0.0007 27 902 0

Reject

(C=99%)

AMD 23 258 128 16 2 283 0.0974 0.0007 39 771 0

Reject

(C=99%)

VirusShare

2015

28 896 250 65 2 161 0.1683 0.0007 44 537 0

Reject

(C=99%)

VirusShare

2016

12 651 172 28 2 239 0.1595 0.0007 30 312 0

Reject

(C=99%)

VirusShare

2017

9 945 234 39 2 177 0.0898 0.0006 22 050 0

Reject

(C=99%)

VirusShare

2018

28 543 728 328 1 683 0.5057 0.0006 42 617 0

Reject

(C=99%)

D𝑚𝑖𝑥 16 424 982 447 1 429 0.0359 0.0004 17 852 0

Reject

(C=99%)

AZ19100𝑘 99 999 2 086 2 062 325 0.0320 0.0001 12 662 0

Reject

(C=99%)

DroidBench 119 6 0 2 405 0.4773 0.0008 14 121 0

Reject

(C=99%)

AZ19100𝑘

2015

5 794 648 291 1 763 0.0574 0.0005 15 390 0

Reject

(C=99%)

AZ19100𝑘

2016

27 516 1 183 921 1 228 0.0573 0.0004 30 725 0

Reject

(C=99%)

AZ19100𝑘

2017

6 524 688 274 1 723 0.0381 0.0004 12 378 0

Reject

(C=99%)

AZ19100𝑘

2018

24 549 1 216 547 1 195 0.0285 0.0003 14 754 0

Reject

(C=99%)

AZ2010𝑘 9 971 1 370 423 1 041 0.0443 0.0003 6 296 0

Reject

(C=99%)

AZ2020𝑘 19 927 1 361 397 1 050 0.0245 0.0001 3 560 1

Non-
conclusive

draw, proportions are prone to be overrepresented or underrepresented

to a more larger extend. We can see this in the AZ2010𝑘 ’s maximum 𝛿
for any class of 0.044 3 while for AZ2010𝑘 this 𝛿 is 0.024 5, almost half of

AZ2010𝑘 ’s.

4.4 Conclusion

In this chapter, the notion of dataset representativity of a population

was established using the definition of 𝛿-representativity. We presented

how to sample a representative dataset using this notion, for either

one or more characteristics. Then, we presented a comparison between

a representative dataset of AndroZoo, extracted using the techniques

established in this chapter, and other Android malware datasets of the

literature.

It is clear that none of these datasets are representative of AndroZoo, our

studied population, and only samples of this are. Thus, only by using

a representative sample of AndroZoo, a study can claim that its results

works for this population. However, samples from AndroZoo, or for most

other markets, tend to lack the characteristics the studies use for their

experiments. These characteristics are usually hard-to-compute, like, in

the case of malware detection, being a malware. Note that we know that

AndroZoo contain information about being a malware, which comes

from VirusTotal. But this information cannot really be considered as
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ground truth, as VirusTotal contains false negatives and false positives.

As a result, representative drawn samples cannot be used directly to

perform tests.

To solve this problem, we propose to design a method to push a non-

representative labeled dataset to resemble a representative non-labeled

dataset. This contribution is explained in the next chapter.
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As we saw the differences between datasets, a question arises from these

analyses: what are the consequences of using one dataset or another?

Up to now, we explained how to sample a representative dataset from

a population, and how to tell if a dataset is not representative of a

population. In addition to this, in order to perform a malware detection

evaluation, the dataset needs to be labeled, i. e. each sample have the

metadata indicating if it is a malware or not. In contrast, a representative

dataset is usually unlabeled because the characteristics have not been

calculated yet, in particular the label being a malware or not is very

difficult to obtain. However, the datasets in the literature are valuable for

the reason of being labeled because they contain applications for which

the characteristic of interest is already calculated. We would like to use

these labeled datasets of the literature, while at the same time being

representative of a population. We call such a generated dataset a debiased
one, according to the population.

In this chapter, we propose an algorithm to obtain a representative

and labeled dataset from a representative and unlabeled dateset, and a

labeled dataset. In Section 5.1, we will start by proposing a new method

for this goal, consisting of two algorithms. Then in Section 5.2, we

present the generated debiased datasets we created from various

datasets of the literature. Lastly, in Section 5.3, we use these debiased

datasets in machine learning experiments, and see that they outper-

form old and new datasets from the literature: the malware detection

becomes more difficult.

5.1 Debiasing algorithm

In this section we propose an algorithm to obtain a representative and

labeled dataset from a representative and unlabeled dateset, and a labeled
dataset.

Let us define the following datasets:

▶ a labeled dataset B that is of our interest because of the labels it

contains

▶ a representative unlabeled dataset T of a population P

▶ and a large labeled dataset S.

We propose to design an algorithm to generate a representative dataset

G that resembles T, and that is also labeled. To do this, the algorithm

will add or remove applications from G, initially a copy of B, until the 𝛿
between G and T is less or equal to a predefined threshold.

We will be using the 𝛿-representativity, defined in Chapter 4, for mea-

suring the similarity between two datasets. The margin of error 𝛿 will

be assigned before executing the algorithm. We could have used the 𝜒2

test that, as seen in the previous chapter, is used to tell if a dataset is not

homogeneous to other, but it cannot be used to tell if the datasets are
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similar. In addition to this, the test results have no particular meaning

on itself, and the 𝑝-value is cumbersome to interpret, while the notion

of 𝛿-representativity is easier to grasp. Therefore, this new generated

dataset G will be 𝛿-representative of T and also labeled, so that it can be

used as a test set to evaluate an algorithm or a machine learning model

on P.

To implement the previous idea, we will examine two algorithms. The

first one is a constant-size algorithm, where it keeps the size of the initial

dataset B . The second algorithm called optimal debiasing will optimize

the result dataset G by allowing the modification of the initial dataset’s

size.

5.1.1 Recall of characteristics and classes

As seen in Chapter 4, a characteristic is a property of an element in a dataset.

We represent applications using a set of boolean characteristics. We call

a class 𝑘 a combination of specific values for each characteristic of this

set of characteristics. For example, if we use two boolean characteristics

𝐴 = {𝑐1 , 𝑐2}, each taking two values, we have the following four classes:

▶ 𝑘1 = {0, 0}
▶ 𝑘2 = {0, 1}
▶ 𝑘3 = {1, 0}
▶ 𝑘4 = {1, 1}

Applications sharing the same values for each characteristic in the set of

characteristics are grouped in the same class. Finally, K is the set of all

classes possible with this set of characteristics. In the previous example,

K= {𝑘1 , 𝑘2 , 𝑘3 , 𝑘4} for the set 𝐴.

5.1.2 Constant-size algorithm

Algorithm 1 produces a dataset G whose size is the same as its input B.

For this, the algorithm take as input an initial dataset B, a representative

dataset T of a population P, a large labeled dataset S and 𝛿. This

algorithm consists in adding elements from the source S to the most

underrepresented classes of B and to remove elements from S for the

most overrepresented class. In this case, a class 𝑘 is underrepresented in

G with respect of T if 𝑝G,𝑘 − 𝑝T,𝑘 > 𝛿, and is overrepresented in G with

respect of T if 𝑝G,𝑘 − 𝑝T,𝑘 < −𝛿. Each time an element is added, another

one is removed in order to keep the dataset’s size constant. With this last

constraint, the debiasing process may not be possible for one of following

reasons: either no element can be added to an underrepresented class

(because the source does not contain elements of this class); or it is not

possible to obtain a proportion that lies in [𝑝T,𝑘 − 𝛿; 𝑝T,𝑘 + 𝛿] for some

class 𝑘 because 𝛿 is too small.

Algorithm 1 is optimal in terms of number of modifications.
*

If a class

𝑘𝑢 is underrepresented in B, elements are added to 𝑘𝑢 to increase its

proportion and make it correctly represented. If 𝑎𝑘𝑢 elements are added

to this class while the size of D remains constant (i.e. |D| = |B|), the

*
Proofs are available in the appendix.
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Algorithm 1: Constant size debiasing algorithm

Input: B,T, S, 𝛿
Output: Generated dataset G

1 S’← S; G← B
2 while 𝑚𝑎𝑥𝑘∈K|𝑝G,𝑘 − 𝑝T,𝑘 | > 𝛿 do
3 𝑘ℎ ← arg max𝑘∈K(𝑝G,𝑘 − 𝑝T,𝑘) ⊲ most overrepresented class

4 𝑘𝑙 ← arg min𝑘∈K(𝑝G,𝑘 − 𝑝T,𝑘) ⊲ most underrepresented class

5 if |S’(𝑘𝑙)| = 0 then
6 KS = {𝑘 ∈ K | |S’(𝑘)| > 0}
7 if 𝑝G,𝑘𝑙 ≥ 𝑝T,𝑘𝑙 − 𝛿 and KS ≠ ∅ then
8 𝑘𝑙 ← arg min𝑘∈KS 𝑝G,𝑘 − 𝑝T,𝑘
9 else return “Impossible”;

10 𝑟 ← one element of S’(𝑘𝑙) chosen at random

11 Remove 𝑟 from S’ and add it to G
12 Remove one element of G(𝑘ℎ) chosen at random

13 if 𝑝G,𝑘ℎ < 𝑝T,𝑘ℎ − 𝛿 or 𝑝G,𝑘𝑙 > 𝑝T,𝑘𝑙 + 𝛿 then
14 return “Impossible”

15 return G

proportion of class 𝑘 in D is 𝑝B,𝑘 + 𝑎𝑘
|B| . A class is not underrepresented if

its proportion is greater than 𝑝T,𝑘 − 𝛿, so we are looking for the smallest

𝑎𝑘 such that 𝑝B,𝑘 + 𝑎𝑘
|B| ≥ 𝑝T,𝑘 − 𝛿, hence 𝑎𝑘 ≥ |B|(𝑝T,𝑘 − 𝛿 − 𝑝B,𝑘). By

definition of the ceil function ⌈·⌉, ⌈|B|(𝑝T,𝑘 − 𝛿 − 𝑝B,𝑘)⌉ is the lowest

integer that verifies this inequality. So the minimal number of addition

for an underrepresented class 𝑘 is ⌈|B|(𝑝T,𝑘 − 𝛿 − 𝑝B,𝑘)⌉. If this number

is negative, it means that the class is not underrepresented: in that

case, no addition should be made. We denote, for any class 𝑘, the

minimal number of addition as 𝑛−B(𝑘) = max(0, ⌈|B|(𝑝T,𝑘 − 𝛿 − 𝑝B,𝑘)⌉).
By the same reasoning, we define the minimal number of deletions as

𝑛+B(𝑘) = max(0, ⌈|B|(𝑝B,𝑘 − 𝑝T,𝑘 − 𝛿)⌉). In fact, we prove that Algorithm 1

makes exactly 2 max(∑𝑘 𝑛
+
B(𝑘),

∑
𝑘 𝑛
−
B(𝑘))modifications between its input

B and its output G.

5.1.3 Optimal debiasing algorithm

Algorithm 1 can lead to suboptimal solutions. Algorithm 2 produces

a dataset G without size constraint which is representative of T, with

minimal modifications to B. This algorithm calls Algorithm 1 multiple

times with different dataset sizes and maintains two variables: G𝑏𝑒𝑠𝑡 is

the best dataset found so far, i. e. the one that minimizes the number

of modifications to B; and 𝑑𝑚𝑖𝑛 is this distance between G𝑏𝑒𝑠𝑡 and B.

The algorithm starts with G𝑏𝑒𝑠𝑡 = ”𝐼𝑚𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒” and 𝑑𝑚𝑖𝑛 = ∞ (line

1). First, it calls Algorithm 1 (line 4) with the initial dataset B. If this

succeeds, 𝑑𝑚𝑖𝑛 is updated with the appropriate number of additions and

deletions, and G𝑏𝑒𝑠𝑡 becomes the result of Algorithm 1. Then, in lines 6 to

12, it tries to remove applications from the most overrepresented classes

from B. Finally, in lines 14 to 25, it tries to add applications to the most

underrepresented classes to B. For each modification to B, Algorithm 1 is

called to update 𝑑𝑚𝑖𝑛 and G𝑏𝑒𝑠𝑡 .
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Algorithm 2: Optimal debiasing Algorithm

Input: B, T, S, 𝛿
Output: Generated dataset

1 𝑑𝑚𝑖𝑛 ←∞; G𝑏𝑒𝑠𝑡 ← "Impossible"

2 if 𝐴𝑙𝑔𝑜1(B, T, S, 𝛿) ≠ "Impossible" then
3 𝑑𝑚𝑖𝑛 ← 2 max(∑𝑘 𝑛

+
B(𝑘),

∑
𝑘 𝑛
−
B(𝑘))

4 G𝑏𝑒𝑠𝑡 ← 𝐴𝑙𝑔𝑜1(B,T, S, 𝛿)
5 G← B
6 for 𝑖 from 1 to 𝑑𝑚𝑖𝑛 − 1 do ⊲ Search smaller datasets

7 if G = ∅ then break;

8 𝑘ℎ ← arg max𝑘∈K(𝑝G,𝑘 − 𝑝T,𝑘)
9 Remove one random element of class 𝑘ℎ from G

10 𝑑← | |B| − |G| | + 2 max(∑𝑘 𝑛
+
G(𝑘),

∑
𝑘 𝑛
−
G(𝑘))

11 if 𝑑 < 𝑑𝑚𝑖𝑛 and 𝐴𝑙𝑔𝑜1(G, T, S, 𝛿) ≠ "Impossible" then
12 𝑑𝑚𝑖𝑛 ← 𝑑; G𝑏𝑒𝑠𝑡 ← 𝐴𝑙𝑔𝑜1(G,T, S, 𝛿)

13 G← B
14 for 𝑖 from 1 to 𝑑𝑚𝑖𝑛 − 1 do ⊲ Search larger datasets

15 𝑘𝑙 ← arg min𝑘∈K(𝑝G,𝑘 − 𝑝B,𝑘)
16 if |S(𝑘𝑙)| = 0 then
17 KS = {𝑘 ∈ K | |S(𝑘)| > 0}
18 if 𝑝

G,𝑘𝑙 ≥ 𝑝
T,𝑘 − 𝛿 and KS ≠ ∅ then

19 𝑘𝑙 ← arg min𝑘∈KS 𝑝G,𝑘 − 𝑝T,𝑘
20 else break;

21 𝑟 ← one element of S(𝑘𝑙) chosen at random

22 Remove 𝑟 from S and add it to G
23 𝑑← | |B| − |G| | + 2 max(∑𝑘 𝑛

+
G(𝑘),

∑
𝑘 𝑛
−
G(𝑘))

24 if 𝑑 < 𝑑𝑚𝑖𝑛 and 𝐴𝑙𝑔𝑜1(G, T, S, 𝛿) ≠ "Impossible" then
25 𝑑𝑚𝑖𝑛 ← 𝑑; G𝑏𝑒𝑠𝑡 ← 𝐴𝑙𝑔𝑜1(G,T, S, 𝛿)

26 return G𝑏𝑒𝑠𝑡

Theorem 5.1.1 Let B, S, T be three datasets and 𝛿 > 0. If there exists at least
one 𝛿-representative dataset of T that is composed of elements of B and S, then
Algorithm 2 produces such a dataset G such that the number of additions and
deletions from the initial dataset B is minimal. If such a dataset does not exist,
it returns "Impossible".

Its worst-case temporal complexity is 𝑂
(
( 1𝛿 + |B|)2 |K|

)
.

While Algorithm 2 computes the closest dataset to the original one, it

may happen that the solution found contains only a few applications

from the original dataset. This is an indication that the original dataset

was very biased.

If B has been debiased towards a target dataset T randomly drawn from

a population P, with a tolerated difference of 𝛿debiasing, we can estimate

its error with the population P by taking into account the error 𝛿sampling
and confidence interval 𝐶 used to derive the size of T with Eq. (4.2): with

confidence level 𝐶, the error between the debiased dataset and P is less

than 𝛿sampling + 𝛿debiasing.
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5.2 Generating debiased datasets

In this section, we are interested in producing datasets for experiments

concerning Android malware detection. As identified in Chapter 2, three

types of experimental scenarios can occur. The first scenario (market

profiling) requires only unlabeled representative datasets that can be

drawn randomly without requiring debiasing, as seen in Chapter 4. The

two other cases, Algorithm evaluation and Machine learning, require

labeled datasets with different proportions of malware/goodware sam-

ples. Therefore, we propose in Section 5.2.2 to debias datasets containing

only malware or only goodware and mix them, in Section 5.2.4, to obtain

mixed datasets directly usable for machine learning algorithms.

5.2.1 Characteristics used for debiasing

For our debiasing algorithm, we decided to use the non-security related

characteristics as we explain in Chapter 4 Section 4.3.1. We want to

homogenize a dataset to a target dataset in such a way that we leave dis-

criminant characteristics for malware detection, i. e., security related ones,

intact. Otherwise, if we debias using security related characteristics, we

would obtain a dataset with malware indistinguishable from goodware,

which would be artificially harder for a detection algorithm to make the

difference between goodware and malware. Thus, the debiased dataset

should be similar to the target dataset in relation to non-security related
characteristics.

5.2.2 Debiasing datasets

The following details the use of our algorithm to produce representative

datasets and in particular the choice of the base, reference and source

datasets. Through these objectives, we discuss three main questions:

1. Is it always possible to debias a strongly biased dataset such as

Drebin or VirusShare?

2. How many modifications (deletions/additions) are required?

3. Is a debiased malware dataset stable over time?

Debiasing 100% goodware datasets We have randomly drawn a New

AndrooZoo Extract (NAZE-18-G) and filtered it by relying on Virus Total

to keep only goodware with a date no greater than 2018. This dataset

should be close to a representative dataset of the Android app population

in 2020. Indeed, by taking as reference dataset AZ2030𝑘 and as source

dataset AZ19100𝑘G, we successfully build a representative goodware

dataset when 𝛿 reaches 0.001, as shown in Table 5.1. Indeed, for 𝛿 = 0.04

the dataset is already homogeneous: no addition/deletion is required,

but the p-value is 0. Then, we decrease 𝛿 until the p-value becomes close

to 1. For 𝛿 = 0.001, 19.53% of the resulting dataset are new applications

and more than 50% of applications have been removed from the original

one.
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Table 5.1: Results after debiasing datasets

Base Dataset Reference Source Diff Del Add Debiased dataset G Duration

|B| |T| |S| 𝛿 |G| Add ratio 𝜒2 𝑝-value validity

Debiasing Goodware datasets

NAZE-18-G → AZ20
30𝑘 AZ19

100𝑘G NAZE
Debiased

18-G

11 120 29 974 72 131 0.04 0 0 11 120 0.00 12 589 0

0.02 438 50 10 732 0.47 12 058 0

0.01 1 026 223 10 317 2.16 11 291 0

0.005 1 885 632 9 867 6.41 9 726 0

0.002 5 2 685 1 280 9 715 13.18 7 998 0

0.001 5 808 1 289 6 601 19.53 5 104 0.999 44

Debiasing Malware datasets

Drebin → AZ20
30𝑘 VS 15-18, AMD DrebinDebiased

5 304 29 974 103 293 0.04 892 81 4 493 1.80 25 781 0

0.02 3 634 116 1 786 6.49 20 178 0

0.01 4 596 103 811 12.70 15 833 0

0.005

VS 15-18 → AZ20
30𝑘 Drebin, AMD, AZ-17-18-M VS

Debiased
15-18

80 035 29 974 32 562 0.04 66 475 21 13 581 0.15 16 709 0

0.02 75 825 31 4 241 0.73 7 406 0

0.01 78 074 43 2 004 2.15 4 349 1

0.005 79 063 29 1 001 2.90 915 1

0.002 5

Debiasing the VirusShare dataset over time

VS 15 → AZ19
100𝑘 15 Drebin VSDebiased15

28 896 5 792 5 304 0.04 13 877 4 15 023 0.03 29 475 0 0

0.02 19 832 90 9 154 0.98 21 828 0 0

0.01

VS 16 → AZ19
100𝑘 16 Drebin, VS 15 VSDebiased16

12 651 27 516 34 200 0.04 4 549 1 8 103 0.01 23 204 0 0

0.02

VS 17 → AZ19
100𝑘 17 Drebin, VS 15-16, AMD VSDebiased17

9 945 6 524 70 109 0.04 580 0 9 365 0.00 21 073 0 0

0.02

VS 18 → AZ19
100𝑘 18 Drebin, VS 15-17, AMD VSDebiased18

28 543 24 549 80 054 0.04 27 644 7 906 0.77 4 997 0.356 52 1

0.02 28 189 7 361 1.94 1 809 1 1

0.01

Debiasing 100% malware datasets We were first interested in investi-

gating whether it is possible to debias a small and old dataset (Drebin)

on the one hand and a more recent and larger dataset on the other hand

(malware from VirusShare between 2015 and 2018, namely VS 15, VS 16,

VS 17, VS 17 and VS 15-18). We want the produced datasets to resemble

AndroZoo, using an extract from 2020.

The debiasing results show us that Drebin is strongly biased as we need

to add from 1.8% to 12.7% of new samples, because a lot of classes of the

population are underrepresented or missing in Drebin. Even with these

modifications, the resulting dataset, DrebinDebiased, is not homogeneous

to the population. On the contrary, VirusShare can be debiased with

few additions (less than 2.9%) but requires removing more than 90% of

the dataset. In that case, the resulting dataset VSDebiased15-18, obtains a

𝑝-value of 1. We conclude that the VirusShare dataset already contains

enough material to be representative of AndroZoo for certain classes but

that a lot of these classes are overrepresented.

As seen in the results, Algorithm 2 can generate a new dataset statistically

indistinguishable from the target dataset with a margin of error 𝛿.

However, the algorithm may fail (see grey cells in Table 5.1) when some

classes are underrepresented in the source, as discussed in Section 5.1.2.

This limitation can be overcome by providing a large and diverse enough
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source dataset.

On the other hand, when the algorithm succeeds, the generated datasets’

size tends to be much smaller than the base dataset. This is due to a lot

of overrepresented classes, from which the algorithm removes elements

at line 9. This is especially the case for historical malware datasets.

The number of classes to consider may also limit the debiasing: intuitively,

more characteristics would help to resemble the target dataset better, but

it spreads the elements into more classes and makes it more difficult to

find elements for certain classes.

5.2.3 Visual exploration of debiased datasets

Comparing using selected characteristics In Figure 5.1, we compare

VS15-18 to AZ2030𝑘 and see how much they differ. We see that there

are very few applications with Google Play services in VS15-18, while

there are more than 60% of applications with this characteristic in the

AndroZoo sample. In contrast, we see, in Figure 5.2, when we compare

VSDebiased15-18 to AZ2030𝑘 , Google Play services has increased, while the

proportion of the other characteristics have not changed considerably.

Comparing using the seven characteristics with the most proportion
difference This is the worst case visual comparison, i. e., other char-

acteristics are more similar than the present ones. We hide all other

characteristics that are similar and we show the most similar ones. In

Figure 5.3, when we compare these VS15-18 and AZ2030𝑘 , we see right

away in the first column "Google Play services" as the characteristic with

the most proportion difference between them. Next, we see most of the

characteristics that are present in VS15-18 (more than 40%) in comparison

to AZ2030𝑘 (less than 30%). If we compare that with VSDebiased15-18, as

shown in Figure 5.4, we see that Google Play services appears at more

than 40% of the applications in VSDebiased15-18. On the other hand, all

of the other characteristics more present in VS15-18 start to lower, up to

the point that even "Exec command" is no longer present. Although we

cannot visually confirm a total similarity between VSDebiased15-18 and

AZ2030𝑘 , we can observe how much the debiased dataset is more similar

than the original one. Indeed, it is an expected result because the amount

of labeled source available is limited, so the algorithm cannot achieve a

perfect proportion balance in the debiased dataset.

5.2.4 Building mixed datasets for machine learning

We finally produced two mixed datasets (goodware/malware) usable

for training and testing machine learning algorithms. These datasets are

built on top of the debiased malware datasets previously discussed. The

goodware are taken from NAZEDebiased18-G dataset. These two datasets

are:

▶ DR-AG𝐷𝑒𝑏 (standing for Drebin+AndroZoo Goodware), that mixes

the debiased version of Drebin with 𝛿 = 0.01 and the goodware.
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Figure 5.1: Comparison of VS15-18 to AZ20
30𝑘 for some of the selected characteristics

Figure 5.2: Comparison of VS
Debiased

15-18 to AZ20
30𝑘 for some of the selected characteristics
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Figure 5.3: Comparison of VS15-18 to AZ20
30𝑘 for the seven characteristics with the most proportion difference

Figure 5.4: Comparison of VS
Debiased

15-18 to AZ20
30𝑘 for the seven characteristics with the most proportion difference
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▶ VS-AG𝐷𝑒𝑏 (standing for VirusShare+AndroZoo Goodware), that

mixes the debiased version of VSDebiased15-18 when 𝛿 = 0.1 and the

goodware.

Because the goal is to use mixed datasets for machine learning algorithms,

we have to follow additional recommendations from Pendlebury et al. [11].

We build our mixed sets by extracting random samples from goodware

and malware and by following the recommendations C1 (APK of the

training set should be older than the ones of the test set) and C3 (realistic

malware-to-goodware ratio, i. e., 5% or 10%). In Table 5.2 we call "Pivot

year" the year that delimitates the train and test sets. Note also that a

consequence of C1 is that applications in the training and test sets are

disjoint (which correspond to an added C4*: Train ∩ Test = ∅). For C2

(temporal window consistency) we do not enforce the constraint as we

already balanced the classes on the year when performing the debiasing

algorithms. Nevertheless, we can enforce them if needed, at the cost of

reducing the output size of the training/tests sets. For example, the set

VS-AG-C2𝐷𝑒𝑏 has fewer samples than VS-AG𝐷𝑒𝑏 . In the rest of the paper

we only use the set that does not enforce C2 to decrease the quantity of

results to discuss.

We recomputed the average 𝛿 of these mixed datasets: it is still quite

low (worst case of 0.0012 for VS-AG𝐷𝑒𝑏). The 𝑝-value falls to zero for

some sets because applying the constraints of Pendlebury et al. drives

the datasets away from the population. Nevertheless, we believe that

respecting the time consistency for machine learning algorithms is of

higher importance.

Finally, for evaluating these datasets when used for machine learning

purposes, Table 5.2 includes additional datasets:

▶ VS-AG𝐷𝑒𝑏,𝛿=0.4 a relaxed version of the debiasing of VSDebiased15-

18 with 𝛿 = 0.4. This dataset as a p-value of 0 but contains more

samples in the training set.

▶ DR-AG: a mixed version of Drebin and goodware.

▶ VS-AG: a mixed version of VS 15-18 and goodware.

▶ ACT14 and ACT17: a mixed version of AndroCT [86] with pivot

year 2014 and 2017 respectively.

▶ AZL14 and AZL17: a mixed version of random samples extracted

from AZ2030𝑘 for which we took the goodware/malware label of

AndroZoo as an oracle.

All these datasets will be used to compare the efficiency of machine

learning algorithms when using our debiased datasets. In particular,

AZL14 and AZL17 are the biggest extract of the population. AndroCT [86]

is a new recent datasets that cover ten years of applications: it will be

used to observe its performances when learning with it and testing on

AZL14/17.
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Table 5.2: Mixed datasets for machine learning training and evaluation

Malware Goodware Pivot Set MalGood Constraints [11] Mixed dataset
year prop.prop. C1 C2 C3 C4* Name Size Avg 𝛿 𝑝-value

DrebinDebiased

(𝛿 = 0.01)

NAZEDebiased18-G

(𝛿 = 0.001)
2014

Training 50% 50%

✓ × ✓ ✓ DR-AG𝐷𝑒𝑏 1 614 0.017 0

✓ ✓ ✓ ✓ DR-AG-C2𝐷𝑒𝑏 572 0.054 0

Test 10% 90%

✓ × ✓ ✓ DR-AG𝐷𝑒𝑏 40 0.071 1

✓ ✓ ✓ ✓ DR-AG-C2𝐷𝑒𝑏 40 0.089 1

VSDebiased15-18

(𝛿 = 0.01)

NAZEDebiased18-G

(𝛿 = 0.001)
2017

Training 50% 50%

✓ × ✓ ✓ VS-AG𝐷𝑒𝑏 3 492 0.012 1

✓ ✓ ✓ ✓ VS-AG-C2𝐷𝑒𝑏 2 858 0.013 1

Test 10% 90%

✓ × ✓ ✓ VS-AG𝐷𝑒𝑏 1 333 0.057 0

✓ ✓ ✓ ✓ VS-AG-C2𝐷𝑒𝑏 1 333 0.057 0

VSDebiased15-18

(𝛿 = 0.04)

NAZEDebiased18-G

(𝛿 = 0.01)
2017

Training 50% 50% ✓ × ✓ ✓ VS-AG𝐷𝑒𝑏,𝛿=0.4 16 862 0.018 0

Test 10% 90% ✓ × ✓ ✓ VS-AG𝐷𝑒𝑏,𝛿=0.4 2 095 0.057 0

Drebin AZ19100𝑘G 2014 Training 50% 50% ✓ × ✓ ✓ DR-AG 10 608 - -

VS 15-18 AZ19100𝑘G 2017

Training 50% 50% ✓ × ✓ ✓ VS-AG 133 244 - -

Test 10% 90% ✓ × ✓ ✓ VS-AG 6 113 - -

AndroCT [86]

2014

Training 50% 50% ✓ × ✓ ✓ ACT14 19 351 0.065 0

Test 10% 90% ✓ × ✓ ✓ ACT14 12 241 0.057 0

2017

Training 50% 50% ✓ × ✓ ✓ ACT17 26 389 0.054 0

Test 10% 90% ✓ × ✓ ✓ ACT17 4 580 0.093 0

AZ2030𝑘 with labels

2014

Training 50% 50% ✓ × ✓ ✓ AZL14 4 890 0.015 0

Test 10% 90% ✓ × ✓ ✓ AZL14 8 785 0.057 0

2017

Training 50% 50% ✓ × ✓ ✓ AZL17 9 474 0.019 0.894

Test 10% 90% ✓ × ✓ ✓ AZL17 2 033 0.059 0

5.3 Experiments with debiased datasets

We evaluate the performance of various machine learning classifiers

depending on their training datasets to assess the contribution of debiased

datasets. The datasets used in this experiments are those computed in

the previous section, cf. Table 5.2.

5.3.1 Classifying with machine learning

The machine learning classifiers rely on a total of 262 characteristics. The

first 12 characteristics are those used to debiased the datasets that are not

related to security. Additionally, we included the characteristics related

to security computed from two sources:

▶ Droidlysis that computes 168 booleans about the use of some APIs

or behaviors (loading a DEX file, using cryptography, etc.); along

with 34 permissions found in the Manifest file.

▶ FalDroid [164] that computes 48 characteristics representing score

values related to graph-based features (with parameters 𝜖 =

0.8, � = 0.1 [164]). As FalDroid is intended to classify families,

Table 5.3: Mean and max AUC of machine learning classifiers depending on their training set and their test set when the pivot year is

2017. In bold face: best AUC on a test set

PPPPPPPPTrain

Test ACT17 AZL17 VS-AG VS-AG𝐷𝑒𝑏

Mean Max Mean Max Mean Max Mean Max

ACT17 0.62 0.65 0.67 0.71 0.76 0.85 0.74 0.78

AZL17 0.72 0.81 0.78 0.86 0.71 0.89 0.75 0.80

VS-AG 0.62 0.68 0.66 0.73 0.96 0.97 0.74 0.84

VS-AG𝐷𝑒𝑏 0.70 0.74 0.71 0.75 0.86 0.89 0.83 0.87
DR-AG 0.54 0.57 0.53 0.60 0.57 0.63 0.54 0.58
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Table 5.4: Mean and max AUC of machine learning classifiers depending on their training set and their test set when the pivot year is

2014. In bold face: best AUC on a test set

PPPPPPPPTrain

Test ACT14 AZL14 DR-AG𝐷𝑒𝑏

Mean Max Mean Max Mean Max

ACT14 0.69 0.73 0.71 0.74 0.69* 0.83*

AZL14 0.75 0.81 0.76 0.82 0.72* 0.99*

DR-AG 0.57 0.58 0.56 0.58 0.48* 0.50*

DR-AG𝐷𝑒𝑏 0.62 0.66 0.61 0.66 0.72* 0.80*

* due to the very limited size of the test set of DR-AG𝐷𝑒𝑏 , these results are unreliable

we configured the software with only two families (goodware/-

malware) and we extracted features related to control flow graph

that manipulates sensitve APIs.

We base this evaluation on the area under the receiver operating charac-

teristic curve (AUC), a classical metric in machine learning. This metric

can be interpreted as the probability that a classifier considers a ran-

domly chosen goodware to be more probably benign than a randomly

chosen malware. A perfect classifier has an AUC of 1 (every goodware is

ranked higher than all malware), meaning that there exists a threshold

to separate exactly goodware and malware. A random classifier has an

AUC of 0.5. Besides, this metric does not depend on some threshold

selection.

We evaluate various machine learning techniques: 𝑘-nearest neighbors

[165] (neighborhood-based technique), decision trees [166], random forest

[167] (bagging ensemble technique with decision trees), Gaussian naive

Bayes [168] (statistical model), and AdaBoost [169] (boosting ensemble

models with decision trees). We used the scikit-learn [170] implementation

with default parameters. Since the decision trees, random forest and

AdaBoost learning algorithms are stochastic, we took the average AUC

over 25 seeds.

5.3.2 Results

Average and max AUC are presented in Tables 5.3 (pivot year of 2017)

and 5.4 (pivot year of 2014) where each line corresponds to a different

training set and each column to a different test set. The mean AUC over

the various classifiers helps to estimate the global quality of a training

dataset for machine learning. The max AUC reflects what performances

could be obtained with the best classifiers.

The datasets go by pair: there is one training set and one test set (cf.

Table 5.2). In Table 5.3, we can see that generally learning on one training

set yields the best results on the associated test set (i.e., the diagonal is

in bold). The unique exception is that learning on AZL17 yields better

results than learning on ACT17 when testing with ACT17. In fact, we

can see that the AZL17 training set allows learning the best classifiers on

ACT17 (max AUC: 0.77) and AZL17 (max AUC: 0.84), probably because it

is a real randomly sampled dataset, and therefore it is less prone to bias.

However, this training set was built using VirusTotal as an oracle, so it is,

in general, not available for training.
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Moreover, the most interesting results are the comparison of the per-

formances of VS-AG and VS-AG𝐷𝑒𝑏 on ACT17 and AZL17 test sets. We

see that the debiased dataset always performs better than the original
one. Another important result is that it is notably better to train on
the debiased dataset VS-AG𝐷𝑒𝑏 than on ACT17 (AndroCT [86]), which

is the most recent dataset we have. Finally, the debiased test dataset
VS-AG𝐷𝑒𝑏 is more difficult to predict than the test set VS-AG. It is a

sign that the bias in the test set of VS-AG makes it easier for a model to

correctly classify it, probably because some difficult cases are absent.

Finally, we can remark that the DR-AG training set yields poor results on

all test sets, which is an expected result, as no applications in this dataset

after 2015. We tried to confirm this result with an additional experiment

with the pivot year of 2014, in Table 5.4. In this experiment, we evaluate

if the debiased version of Drebin can obtain good results, even if it is old

and quite small. The row in Table 5.4 concerning DR-AG𝐷𝑒𝑏 shows that

this dataset is far from being effective compared to ACT14. This is due to

its size and the failing of debiasing when 𝛿 reaches 0.05 (cf. Table 5.1).

Discussion

This section discusses the validity of the datasets through time. We

also compare these results with related works [105, 171, 172] that have

studied this question and the relation with Android history.

First, Cai et al. [171] focus on the evolution of usage of the system’s API

over time, using a dedicated analysis framework [105]. They conclude

three main points: the decrease of usage of callbacks for methods of the

app activities’ lifecycle, a stable and small usage of inter-component

communication, and a stable distribution of source/sink categories

of callbacks. Second, Cai et al. [172] characterize this evolution for

goodware and malware applications. Newer malware tend to access

system APIs more often through third-party libraries than older

malware. The use of activities and services has increased over time,

while the use of ICC components has decreased. The diversity of

callback categories has also increased.

Our experiments confirm this evolution at a higher level. We study

the evolution of representativity of our debiased dataset over the

years. More precisely, we debiased several extracts of VirusShare 2015,

2016, 2017 and 2018, and checked whether these debiased datasets

stay representative of an evolving population over time. The target

datasets are extracts of applications from AndroZoo 2019 (𝐴𝑍19100𝑘)

filtered on the corresponding period of time (T = 𝐴𝑍19100𝑘 𝑖, with

𝑖 = 15, 16, 17, 18). The source datasets are known datasets of malware

such as Drebin and AMD, available at date 𝑖.

When the 𝑝-value confirms that the dataset is not statistically different,

we tested the produced debiased version 𝑉𝑆𝐷𝑒𝑏𝑖𝑎𝑠𝑒𝑑 𝑖 with the next

years’ population, i. e.,𝐴𝑍19100𝑘 𝑖+1, 𝑖+2, .... The last column indicates

contains 0 if the 𝑝-value is 0: no discussion can be done for such

debiased datasets. The only debiased dataset of the parts of VirusShare

is VS 18. As it is the last set of applications we have, we only conclude

that this set can be used during 1 year.
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5.4 Conclusion

In this chapter we defined a new method for creating a dataset that is

both representative of a population and labeled. This method relies on

two algorithms: a first one that aims to produce a debiased dateset with

the same size as the input dataset. The second one takes the solution

of the previous algorithm and improves it by allowing the addition or

subtraction of applications to the debiased dataset. Then, we created

several debiased datasets using our new method, using AndroZoo

as the population. We used datasets from the literature as sources of

applications, and a representative sample of AndroZoo as the dataset

we want the target dataset to resemble. When using our algorithm for a

security experiment, we explained that the set of characteristics to use

should be those that are not related to security. Lastly, we used our new

generated datasets in a machine learning malware detection approach.

We saw in the results that, despite the size of our debiased dataset (VS-

AG𝐷𝑒𝑏), it outperforms the others biased ones (like AndroCT) in almost

every test. Learning with VS-AG𝐷𝑒𝑏 gives the best results. Surprisingly,

testing with VS-AG𝐷𝑒𝑏 is not harder than with others, but it is very close.

A possible explanation is the limited size of VS-AG𝐷𝑒𝑏 test set. The other

generated debiased dataset, DR-AG𝐷𝑒𝑏 , as its original dataset is too biased,

the algorithm reduces considerably its size. Consequently, this reduces

efficiency in accuracy for malware detection using machine learning. This

indicates that, by removing the differences of unrelated characteristics

between the training and test set, the model can more easily identify

the differences in characteristics more linked to the detection scheme,

in this case being a malware. Besides the use in malware detection,

these debiased datasets can be used for other types of experiments.

Researchers can use these datasets to concentrate their efforts in relevant

characteristics, knowing that their dataset is similar for unrelated ones to

the population they are studying.

All materials used in the experiments (SHA256 hashes of samples com-

posing the datasets and the code) are published in the Dada dataset [14].[14]: Concepcion Miranda et al. (2021),

Dada: Debiased Android DAtasets
Our debiasing method, alongside the definition of representativity in

Chapter 4, were published in the IEEE Transactions on Information

Forensics and Security journal [13].[13]: Concepción Miranda et al. (2022),

‘Debiasing Android Malware Datasets:

How Can I Trust Your Results If Your

Dataset Is Biased?’
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Conclusion 6
Contributions of this thesis

In this thesis we described three main contributions targeting the usage

of experimental datasets in Android malware detection.

First, we introduced DaViz, a visualization tool for exploring and com-
paring Android datasets. This new tool allows researchers to investigate

and discover new insights about a dataset, such as unusual patterns and

unexpected values. It also allows researchers to more easily identify dif-

ferences between datasets, for example the difference of concentration of

samples with a given set of characteristics between datasets. By exploiting

our visual system, researchers can easily distinguish and locate trends in

chart, and so identify differences between various characteristics. Using

this tool, we observed that various old and recurrent Android malware

datasets from the literature, namely Drebin and AMD, are very different

to our reference dataset, an extract of AndroZoo. We also compared the

Drebin and AMD datasets with a more recent VirusShare 2018 dataset.

We saw specific differences in certain characteristics between the old and

the new datasets. This visually confirms the evolutionary changes in

malware.

For our second contribution, we focused on the representativity of

datasets in relation to a studied population. We introduced the notion of

representativity by defining 𝛿-representativity. We presented a method

to sample a representative dataset using this notion, for either one or

multiple characteristics. Hard-to-compute characteristics, such as being
a malware, even if they could be calculated, may be over- or underrep-

resented in an extract of the population. Therefore, we need to use

mixed datasets and evaluate their heterogeneity against the population.

We presented a comparison between datasets of the literature and a
representative dataset of AndroZoo, our studied population, using a
statistical test. Using our sampling method, we saw that, for some cases,

a sample of 15,000 application is statistically enough to get results with a

low bias error. We showed that none of the datasets in the comparison,

except an extract of AndroZoo, are representative of all AndroZoo, the

studied population.

In our last contribution, we presented a method to transform a labeled non-

representative dataset into a labeled representative dataset that resembles

a non-labeled representative dataset extracted from the studied population.

We used this method to create several "debiased" datasets from various
datasets of the literature. We also debiased several datasets from different

years and checked their validity against reference datasets of the next

year. Results revealed that debiased datasets are only valid at most one

year, before they are no longer representative. This confirms that static

datasets, the older they get, the less they resemble other more dynamic

datasets, such as markets.

We also conducted an Android malware detection experiment using

machine learning techniques with one of our debiased datasets. Results
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of the malware detection experiment show that our debiased dataset per-

forms better than a bigger, more recent dataset like AndroCT, composed

of 17 697 malware and 18 277 goodware samples ranging from 2010 to

2019.

Perspectives for future work

In this section we present our vision on how to improve and expand

DaViz and our debiasing method.

Other types of characteristics can be included for visualization DaViz.

For example, opcode frequencies, frequency of API sequences, code

density, and others. These new characteristics may need modifications in

Droidlysis or the use of new specialized extraction techniques to calculate

them, including those that rely on dynamic analysis. This would expand

the usage of our characteristics database to more machine learning

experiments concerning other types of characteristics.

With these new characteristic, new challenges arise concerning how to

manage these new characteristics. Because there are a lot of (potentially

infinite) characteristics, users would have too much possibilities to explore

datasets. This poses a problem in choosing which characteristic would

be adequate to visualize. A solution would involve a recommendation

system that would calculate the most pertinent charts and characteristics

to explore a dataset. This way, users would choose their charts and

characteristics based on the suggestions given by the system.

Additional views could be implemented in DaViz to visualize individual

applications on their own, such as those showing the control-flow graph

(CFG), data-flow or information-flow graphs of the application’s code

or execution. This would allow a more detailed exploration of the

applications that compose a dataset. For example, our visualization

system would switch from a datasets view to an individual applications

view. Additionally, the use of graphs could be extended not only to

individual applications. Indeed, in malware family classification, some

techniques use CFGs to classify samples into malware families, i. e.
malicious applications with similar behavior. [173]. An implementation[173]: Zhou et al. (2017), ‘Analysis of

Android Malware Family Characteris-

tic Based on Isomorphism of Sensitive

API Call Graph’

idea is to calculate and show a CFG of a dataset comprised of samples

from a single family. This CFG would be calculated by obtaining the most

commons nodes and edges of all the CFGs in the dataset. Additionally,

this technique could be used to compare datasets composed of varieties

of a family, which would allow to see similarities and differences of

samples inside a family. These types of analyses would help researchers

in malware family classification, as this topic is an ongoing research

problem [174].[174]: Joyce et al. (2022), ‘MOTIF: A Mal-

ware Reference Dataset with Ground

Truth Family Labels’ So far we use the 𝜒2
test to proof the statistical difference between two

datasets. Unfortunately, this test cannot be used to proof the homogeneity

of two datasets, as it only allows to proof that two datasets are statistically

different. To evaluate the homogeneity of datasets, a distance measure

could be used for this, e.g. using Kullback–Leibler divergence or Hellinger

distance. In this case, a threshold must be established to set a boundary

between similar and different when comparing two datasets. Beside this,

other tests exists, just as the Kolmogorov–Smirnov test, that could be
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used besides the 𝜒2
test. Because the data we use is primarily categorical

data, as far as we know, there are not many distance measures available

for this type of data. We believe that this work would require background

knowledge in statistics to properly adjust existing tests and distances to

categorical data.

Another scenario we consider as a possibility is the usage of our solutions,

aimed toward the Android OS, for x86 programs. Of course, both DaViz

and our debiasing method is platform agnostic, because they operate with

characteristics rather than raw binaries. Therefore, with the extraction

of characteristics from x86 and their importation to DaViz, it could be

possible to explore and compare x86 malware datasets, in the same way

it is done with Android datasets. Although the basic idea is easy to

contemplate, x86 programs pose a problem in regard with the extraction

of characteristics. In Android, the structure of an APK is known and

it is possible to locate its Manifest file, native libraries and assets (i. e.
images, documents, other code and data defined by the developer). The

Manifest XML file contains important data such as permissions, intents,

and others declared in it. Despite obfuscation techniques, it is possible

to disassemble the code in an Android application. Thus, it is relatively

easy to extract static information from an Android APK. In contrast, x86

executable formats do not follow this convention. In Portable Executable

(PE) and Executable and Linkable Format (ELF) files, besides the header

and the code section, no other valuable data is available for extraction.

Because of this, there are less static characteristics that can be extracted

from x86 programs. Despite this, it could be possible to extract more

characteristics from dynamic analysis.

Once characteristics are extracted, it is possible to debias an x86 dataset

to another using our method. However, even with various experimental

and malware datasets available in x86, there is no particular dataset of

interest. In Android, markets are specially interesting because these are

the main attack vector of malware distribution. In the case of x86, there

is no market or "app store" of the same scale and usage as in Android.

Rather, attack vectors in x86 includes download through phishing, P2P

sharing, malicious websites, and USB drives. Datasets for x86 tend to be

malware datasets where the ground truth is known [174], but not a general

repository of applications for users. Such a "reality" of applications for

x86 and the generation of "general" datasets could be a subject of study.





Algorithm proofs A
For the sake of brevity and clarity, we introduce the notation ΔT𝑝G,𝑘 =

𝑝G,𝑘 − 𝑝T,𝑘 . So a class 𝑘 is overrepresented w.r.t. T if ΔT𝑝G,𝑘 > 𝛿 and

underrepresented if ΔT𝑝G,𝑘 < −𝛿.

Theorem A.0.1 Algorithm 1 always halts.

Proof. First, remark that if a class 𝑘 is correctly represented at some

iteration, i.e., if |ΔT𝑝G,𝑘 | ≤ 𝛿, then it will be correctly represented in

the next iteration. Besides, a class that is overrepresented in G cannot

become underrepresented in the following iteration (and vice versa)

without the algorithm halting. Both remarks are ensured by the "If" block

on line 13 that halts the program by verifying whether a class with an

added element is overrepresented or a class with a removed element is

underrepresented.

Let’s assume that this case never happens. At each iteration of the

algorithm, there is at least one class 𝑘 such that |ΔT𝑝G,𝑘 | > 𝛿 that

is modified in G: one element is added if 𝑘 is underrepresented and

one element is removed if 𝑘 is overrepresented in G. So

∑
𝑘 |ΔT𝑝G,𝑘 | is

reduced by at least
1

|B| in the updated value of G. With enough iterations,∑
𝑘 |ΔT𝑝G,𝑘 | will so low that every class will be correctly represented. At

that point, the algorithm halts.

Besides, a representative dataset always exists. This is necessary to prove

the termination and the complexity of Algorithm 2.

Theorem A.0.2 Let T be a dataset, 𝛿 > 0 and 𝑛 > 0 such as 𝑛 ≥ 1

𝛿 . There
exists a dataset D of size 𝑛 such as D is 𝛿-representative of T.

Proof. To prove the existence of such dataset of size 𝑛, we construct it.

More precisely, we associate to each class 𝑘 a number of element 𝑏𝑘
such as this class is 𝛿-representative of T, i.e.,

𝑏𝑘
𝑛 ∈ [𝑝T,𝑘 − 𝛿; 𝑝T,𝑘 + 𝛿].

For each class 𝑘, define 𝑎𝑘 such as
𝑎𝑘
𝑛 < 𝑝T,𝑘 ≤ 𝑎𝑘+1

𝑛 . Remark that

𝑝T,𝑘 − 𝛿 ≤ 𝑎𝑘
𝑛 < 𝑝T,𝑘 ≤ 𝑎𝑘+1

𝑛 ≤ 𝑝T,𝑘 + 𝛿 since 𝛿 ≥ 1

𝑛 . As

∑
𝑘 𝑝T,𝑘 = 1,∑

𝑘 𝑎𝑘 < 𝑛 and

∑
𝑘(𝑎𝑘 + 1) ≥ 𝑛. So there exist 𝑏𝑘 such as for all class 𝑘

either 𝑏𝑘 = 𝑎𝑘 or 𝑏𝑘 = 𝑎𝑘 + 1 and that verify

∑
𝑘 𝑏𝑘 = 𝑛.

Denote the dataset D such as 𝑝D,𝑘 =
𝑏𝑘
𝑛 . The size of D is

∑
𝑘 𝑏𝑘 = 𝑛 and

D is 𝛿-representative of T since
𝑏𝑘
𝑛 ∈ [𝑝T,𝑘 − 𝛿; 𝑝T,𝑘 + 𝛿] for every class 𝑘.

It proves the existence of such a dataset.

Theorem A.0.3 If there exists a dataset D consisting of elements of B and
S (i.e., D ⊆ B ∪ S) such as D is representative of T and |D| = |B|, then
Algorithm 1 returns a representative dataset. If no such dataset exists, the
algorithm returns "Impossible".
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Proof. Assume such dataset D exists. Let us first prove that the return
on line 9 cannot be reached. This line is reached if S is empty or if

ΔT𝑝G,𝑘𝑙 < −𝛿.

Consider the case where ΔT𝑝G,𝑘𝑙 < −𝛿: we will prove by contradiction

that this case is impossible when D exists. Since the algorithm never

removes an element of an underrepresented class, at each iteration

𝑝G,𝑘𝑙 =
B(𝑘𝑙 )+𝑚

𝑛 where 𝑚 is the number of elements added to the class

from S. If S(𝑘𝑙) = 0, then 𝑝G,𝑘𝑙 is maximized, i.e., 𝑝G,𝑘𝑙 ≥ 𝑝D,𝑘𝑙 . So

ΔT𝑝D,𝑘𝑙 ≤ ΔT𝑝G,𝑘𝑙 < −𝛿 which means that D is not representative of T.

This is a contradiction: therefore this case is not possible.

Consider the case where S is empty and ΔT𝑝G,𝑘𝑙 ≥ −𝛿. Once again, we

will prove by contradiction that this case is impossible when D exists.

The fact that ΔT𝑝G,𝑘𝑙 ≥ −𝛿 implies that ΔT𝑝G,𝑘ℎ ≥ 𝛿, otherwise the

"While" condition would not have been true. Denote 𝑚 the number of

completed iterations so far. Since one element of S is removed at each

iteration, we conclude that initially |S| = 𝑚. Denote BD ⊆ B and SD ⊆ S
such as D = BD ∪ SD. Due to the definition of 𝑘ℎ and the fact that

ΔT𝑝G,𝑘ℎ ≥ 𝛿, it means that for each previous iterations one element has

been removed from an overrepresented class. So there are at least 𝑚 + 1

elements of B that are absent in BD, i.e., |BD | ≤ |B| − 𝑚. However, since

|B| = |D| = |BD | + |SD |, it means that |S| ≥ 𝑚+1. This is in contradiction

with the fact that |S| = 𝑚. So S cannot be empty. Finally, the return on

line 9 cannot be reached when D exists.

We now prove that the "If" condition on line 13 cannot be true in Algorithm

1 when D exists. For algorithm 1 to return an error on line 14, the

condition 𝑚𝑎𝑥𝑘∈K|ΔT𝑝G,𝑘 | > 𝛿 must be true. Let us assume (without

loss of generality) that there exists 𝑘′ such as ΔT𝑝G,𝑘′ > 𝛿 (the case

ΔT𝑝G,𝑘′ < −𝛿 is similar).

Consider now the value of 𝑘ℎ . Since 𝑘ℎ ← arg max𝑘∈KΔT𝑝G,𝑘 , we can

conclude that ΔT𝑝G,𝑘ℎ ≥ ΔT𝑝G,𝑘′ > 𝛿. Denote 𝑛 = |B| and G′ the dataset

obtained from G by removing one element from 𝑘ℎ and adding one

element to 𝑘𝑙 . The proportions of the classes of G′ are:

𝑝G′ ,𝑘 =


𝑝G,𝑘 − 1

𝑛 if 𝑘 = 𝑘ℎ

𝑝G,𝑘 + 1

𝑛 if 𝑘 = 𝑘𝑙

𝑝G,𝑘 otherwise

Our goal is to prove that the "If" condition will never be true, i.e., that

ΔT𝑝G′ ,𝑘ℎ ≥ −𝛿 and ΔT𝑝G′ ,𝑘𝑙 ≤ 𝛿.

Let 𝑎1 and 𝑎2 be two naturals such as 𝑝G,𝑘ℎ =
𝑎1

𝑛 and 𝑝D,𝑘ℎ =
𝑎2

𝑛 . Since

ΔT𝑝G,𝑘ℎ > 𝛿 and ΔT𝑝D,𝑘ℎ ≤ 𝛿 (due to D being representative), we can

conclude that 𝑝G,𝑘ℎ > 𝑝D,𝑘ℎ , i.e., 𝑎1 > 𝑎2. Since 𝑝G′ ,𝑘ℎ = 𝑝G,𝑘ℎ − 1

𝑛 =
𝑎1−1

𝑛

and 𝑎1 − 1 ≥ 𝑎2, we conclude that 𝑝G′ ,𝑘ℎ ≥ 𝑝D,𝑘ℎ and ΔT𝑝G′ ,𝑘ℎ ≥ ΔT𝑝D,𝑘ℎ .

Since D is itself representative of T, we know that ΔT𝑝D,𝑘ℎ ≥ −𝛿 and

therefore that ΔT𝑝G′ ,𝑘ℎ ≥ −𝛿.

Let us show that there exists 𝑘′
𝑙

such as ΔT𝑝G,𝑘𝑙 < ΔT𝑝D,𝑘′
𝑙
≤ 𝛿. Since

ΔT𝑝G,𝑘ℎ > ΔT𝑝D,𝑘ℎ and

∑
𝑘 ΔT𝑝G,𝑘 =

∑
𝑘 ΔT𝑝D,𝑘 , we can conclude that

there exists 𝑘′
𝑙
such as ΔT𝑝G,𝑘′

𝑙
< ΔT𝑝D,𝑘′

𝑙
. Furthermore, 𝑘′

𝑙
∈ K𝑆 because

if S were empty it would not be possible for D to have more elements

than G for this class.
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Due to the definition of 𝑘𝑙 , ΔT𝑝G,𝑘𝑙 ≤ ΔT𝑝G,𝑘′
𝑙
< ΔT𝑝D,𝑘′

𝑙
≤ 𝛿. Let

𝑏1 , 𝑏2 , 𝑏3 , 𝑏4 four naturals such as 𝑝G,𝑘𝑙 =
𝑏1

𝑛 , 𝑝T,𝑘𝑙 =
𝑏2

𝑛 , 𝑝D,𝑘′
𝑙
=

𝑏3

𝑛 and

𝑝T,𝑘′
𝑙
=

𝑏4

𝑛 . We can conclude of the previous inequalities that 𝑏1 − 𝑏2 <

𝑏3−𝑏4. Therefore 𝑏1−𝑏2+1 ≤ 𝑏3−𝑏4 andΔT𝑝G′ ,𝑘𝑙 = 𝑝G,𝑘𝑙 + 1

𝑛 −𝑝D,𝑘𝑙 ≤ 𝛿.

This proves that the "If" condition is never true if D exists.

Finally, if D exists, then Algorithm 1 returns a dataset. This dataset is

representative because the "While" condition is true for the last iteration.

When the algorithm outputs a dataset, it is representative and its size is

the same as B. If such dataset does not exist, the algorithm cannot output

one. Since the algorithm always halts, it must return "Impossible".

We denote 𝑑𝐻(A,B) the number of modifications between A and B. More

precisely, we extend the Hamming distance to a distance between two

sets by defining 𝑑𝐻(A,B) as 𝑑𝐻(A,B) = |(A ∖ B) ∪ (B ∖ A)|. 𝑑𝐻(A,B)
is the number of elements present in only one dataset, A or B. In other

words, it is the minimal number of addition and deletions to transform

A into B (and vice-versa).

Theorem A.0.4 Let B be a biased dataset, D a dataset representative of 𝑃
such as D ⊆ B ∪ S and G = 𝐴𝑙𝑔𝑜1(B). If |B| = |D|, then 𝑑𝐻(B,D) ≥
𝑑𝐻(B,G) = 2 max(∑𝑘 𝑛

+
B
(𝑘),∑𝑘 𝑛

−
B
(𝑘)). So Algorithm 1 outputs a repre-

sentative dataset with minimal distance to B.

Proof. Let A = D ∖ B be the set of elements added to B and R = B ∖D
be the set of elements removed from B. So D = (B ∖ R) ∪ A and

𝑑𝐻(B,D) = |A| + |R|. Due to the hypothesis |B| = |D|, we know that

|A| = |R| (there are as many additions as removals).

For any class 𝑘 that is overrepresented in B, 𝑛+B(𝑘) is the minimal number

of removal of elements of class 𝑘 such as 𝑘 is not overrepresented anymore.

𝑛−B(𝑘) = max(0, ⌈−|B|(ΔT𝑝B,𝑘 + 𝛿)⌉) is similar for underrepresented

classes.

To make a representative dataset from B, one must remove at least∑
𝑘 𝑛
+
B(𝑘) elements and add

∑
𝑘 𝑛
−
B(𝑘)), i.e., |A| ≥ ∑

𝑘 𝑛
+
B(𝑘) and |R| ≥∑

𝑘 𝑛
−
B(𝑘)). However, since |A| = |R|, we conclude that |A| = |R| ≥

max(∑𝑘 𝑛
+
B(𝑘),

∑
𝑘 𝑛
−
B(𝑘)). It means that 𝑑𝐻(B,D) ≥ 2 max(∑𝑘 𝑛

+
B(𝑘),

∑
𝑘 𝑛
−
B(𝑘)).

Let now show that 𝑑𝐻(B,G) = 2 max(∑𝑘 𝑛
+
B(𝑘),

∑
𝑘 𝑛
−
B(𝑘)). At each iter-

ation of the algorithm, if

∑
𝑘 𝑛
+
G(𝑘) > 0, then an overrepresented class

has one of its elements removed, so

∑
𝑘 𝑛
+
G′(𝑘) <

∑
𝑘 𝑛
+
G(𝑘). For the

same reason, at each iteration,

∑
𝑘 𝑛
−
G′(𝑘) <

∑
𝑘 𝑛
−
G(𝑘). When

∑
𝑘 𝑛
+
G(𝑘) =∑

𝑘 𝑛
−
G(𝑘) = 0, then the algorithm halts. So there are max(∑𝑘 𝑛

+
G(𝑘) =∑

𝑘 𝑛
−
G(𝑘)) iterations. Since each iteration makes two modifications of the

dataset, we can conclude that 𝑑𝐻(B,G) = 2 max(∑𝑘 𝑛
+
B(𝑘),

∑
𝑘 𝑛
−
B(𝑘)).

So 𝑑𝐻(B,G) ≤ 𝑑𝐻(B,D).

Proof of theorem 5.1.1. Let us first prove that at each step of the algorithm,

𝑑 is equal to the number of additions and deletions between B and

𝐴𝑙𝑔𝑜1(G). This number can be decomposed as the sum of the number of

additions and deletions between B and G and between G and 𝐴𝑙𝑔𝑜1(G).
The number of modifications between G and B is simply the difference
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of their size, i.e., | |B| − |G| |. The number of modification between

G and 𝐴𝑙𝑔𝑜1(G) is 2 max(∑𝑘 𝑛
+
G(𝑘),

∑
𝑘 𝑛
−
G(𝑘)) (cf. the previous proof

algorithm). So the number of modifications between B and 𝐴𝑙𝑔𝑜1(G) is
| |B| − |G| | + 2 max(∑𝑘 𝑛

+
G(𝑘),

∑
𝑘 𝑛
−
G(𝑘)).

First, let us show that the algorithm always halts. This algorithm halts

either if 𝑑𝑚𝑖𝑛 ≠ ∞ (so both loops have a finite number of iterations) or

if the source dataset lacks some element (lines 16 to 20). If a solution

G exists, then at some point Algorithm 2 will call Algorithm 1 with a

dataset whose size is the same as G (either at line 2 if |G| = |B|, at line

10 if |G| < |B| or at line 26 if |G| > |B|) and Algorithm 1 will find a

solution (due to Theorem A.0.4). If at some point it is not possible to add

an element to a underrepresented class because there is no such element

in the source dataset, then the algorithm halts (lines 5 to 9).

Second, we show that doing 𝑑𝑚𝑖𝑛 − 1 iterations per loop is sufficient

(lines 6 and 15). Let G𝑏𝑒𝑠𝑡 be the best dataset found so far, associated to a

distance 𝑑𝑚𝑖𝑛 , and a better solution G’ associated to a distance 𝑑′ such

as 𝑑′ < 𝑑𝑚𝑖𝑛 . Remark that at each step, 𝑖 = | |B| − |G| | as one element is

modified per iteration. Denote 𝑗 the iteration at which G’ could be found.

Since 𝑑′ = | |B| − |G| | + 2 max(∑𝑘 𝑛
+
G(𝑘),

∑
𝑘 𝑛
−
G(𝑘)) ≥ 𝑗 and 𝑑′ < 𝑑𝑚𝑖𝑛 ,

we conclude that 𝑗 ≤ 𝑑𝑚𝑖𝑛 and therefore that G’ will be found by the

algorithm.

Theorem A.0.5 The worst-case temporal complexity of Algorithm 2 is
𝑂

(
( 1𝛿 + |B|)2 |K|

)
.

Proof. Remark that for all datasets A and B, the number of additions

and deletions required to obtain B from A is lower than or equal to

|A| + |B|. Theorem A.0.2 shows that there exists a representative dataset

D of size ⌈ 1

𝛿 ⌉. So the minimal distance 𝑑𝑚𝑖𝑛 to reach a representative

dataset D from the initial base dataset B is bounded by ⌈ 1

𝛿 ⌉ + |B|. So

Algo. 2 will do at most 2(⌈ 1

𝛿 ⌉ + |B|) iterations. Each iteration calls Algo. 1,

whose temporal complexity is 𝑂(|G| · |K|)where the size of G is at most

|B| + 𝑑𝑚𝑖𝑛 ≤ ⌈ 1

𝛿 ⌉ + 2|B|. So the worst-case temporal complexity of Algo.

2 is 𝑂
(
( 1𝛿 + |B|)2 |K|

)
.
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Titre : Profilage et Visualisation de Datasets d’Applications Android Malveillantes
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Résumé : Les dispositifs mobiles sont ubiquitaires: au-

jourd’hui la majorité des gens possèdent un téléphone

mobile. A cause de ce fait, ces dispositifs sont une cible

d’intérêt pour les attaquants. Ces attaques sont véhiculées

au travers des applications malveillantes qui peuvent nuire

aux dispositifs mobiles. Les chercheurs en analyse de mal-

ware travaillent à reconnaître ces types de programmes

avant qu’ils soient installés sur un dispositif utilisateur. Pour

faire cela, ils réalisent des expériences pour automatique-

ment détecter ces malware, où ils utilisent des ensembles

de malware et des applications bénignes déjà connues.

Selon le dataset choisi, les résultats des expériences peu-

vent être acceptables ou bien exceptionnellement bons parce

que surestimés. Par conséquent, les datasets de malware

et applications bénignes sont des éléments importants à

considérer quand nous élaborons une expérience.

Cette thèse présente, premièrement, une méthode pour

évaluer la qualité des datasets basée sur un test statis-

tique qui aide à comparer un dataset créé avec un grand

ensemble d’applications par exemple issu d’un magasin

d’applications. Nous montrons alors que les datasets his-

toriques de la littérature sont de mauvaise qualité, ce qui

justifie le besoin de créer des nouveaux datasets plus à jour.

Deuxièmement, nous introduisons un algorithme pour

mettre à jour des datasets mixtes de malware/goodware

de mauvaise qualité afin de ressembler à un dataset cible

qui ne peut pas être utilisé directement, e.g. un magasin

d’applications. Nous évaluons les datasets mixtes mis à

jour en utilisant un algorithme d’apprentissage automa-

tique et nous montrons que la détection de malware sur

notre dataset mis à jour devient un problème plus difficile à

résoudre. Enfin, nous introduisons DaViz, un outil de visu-

alisation de datasets pour explorer et comparer des datasets

d’applications Android. Cet outil permet aux chercheurs

de visualiser les biais dans les datasets de la littérature, et

d’obtenir des informations utiles à leur propos.
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Abstract: Mobile devices are ubiquitous: nowadays most

people own a mobile telephone. Because of this, it is a target

of interest for attackers. Researchers in malware analysis

put their effort to recognize these types of programs before

they are installed on a user device. To do this, they perform

experiments to automatically detect malware, for exam-

ple with machine learning, where they use sets of already

known malware and goodware. Depending on their choice

of datasets, the evaluation of the experiments can yield

acceptable results, or outstanding but overestimated results.

Consequently, datasets with malware and benign samples

are important elements to consider when designing an

experiment.

This thesis presents, first, a method to evaluate the quality

of datasets based on a statistical test that helps to compare

a crafted dataset against a large set of applications such as

markets. We show that historical datasets of the literature

are of low quality, which justifies the need to create new

up-to-date datasets. Second, we introduce an algorithm

to update mixed datasets of malware/goodware of low

quality in order to resemble a target dataset that cannot

be used directly, e.g. a market. We evaluate the updated

mixed datasets using a machine learning algorithm and

we show that the detection of malware in our up-to-date

dataset becomes a more difficult problem to solve. Lastly,

we introduce DaViz, a dataset visualization tool for ex-

ploring and comparing Android malware datasets, which

enables researchers to visualize the biases in datasets of the

literature, and obtain useful information from them.
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