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Résumé : Cette thèse s’intéresse à la modélisation et la résolution de problèmes d’optimisation stochas-
tique de grande taille provenant de problèmes d’investissements dans les réseaux électriques. Ces travaux
ont été motivés par la complexité numérique des problèmes d’investissement stochastiques résolus dans le
cadre d’études prospectives menées à RTE (Réseau de Transport d’Electricité), le gestionnaire de réseau
électrique français. A partir d’un réseau, ces problèmes modélisent des investissement sur des capacités
de production sur les noeuds, ou des capacités de transport sur les arcs pour satisfaire des demandes en
électricité sur un horizon de temps donné avec des pas de temps discrets. Les demandes en électricité, les
prévision météorologiques ou les coûts opérationnels sont aléatoires et modélisés par un ensemble fini de
scénarios d’aléas. On s’intéresse à deux problèmes particuliers.

Premièrement, nous présentons un algorithme amélioré basé sur une décomposition de Benders pour
résoudres de grand problèmes linéaires stochastiques à deux étapes modélisés avec un ensemble fini de
scénarios. De tels modèles sont utilisés dans les études prospectives menées à RTE mais les résolutions
actuelles sont limitées dans le nombre de scénarios apparaissant dans les modèles pour conserver des
temps de calculs raisonnables. L’algorithme proposé est basé sur une partition des sous-problèmes et
sur une modification du critère d’arrêt. Le critère d’arrêt proposé permet de ne résoudre qu’un petit
sous-ensemble de sous-problèmes à la plupart des itérations de l’algorithme. Nous présentons aussi une
méthode générique pour stabiliser notre algorithme, et montrons son efficacité au travers d’une étude
numérique étendue. Les résultats montrent que l’algorithme proposé peut être jusqu’à 25 fois plus rapide
qu’un algorithme de faisceaux (level bundle) et jusqu’à 5 fois plus rapide qu’un algorithme basé sur
la décomposition de Benders avec une stabilisation in-out et une méthode statique d’aggrégation de coupes.

Deuxièmement, nous étudions un modèle d’expansion de réseau stochastique prenant en compte une
contrainte de fiabilité. Cette contrainte à pour but de limiter, en moyenne sur les scénarios d’aléas, le
nombre de noeuds et de pas de temps auxquels la demande n’est pas entièrement satisfaite dans une
solution du problème. Nous montrons que le fait d’ajouter une telle contrainte, qui prend en compte
des variables provenant de différents scénarios dans sa formulation, implique de modéliser le problème
comme un problème bi-niveaux. Les fonctions objectifs sont les mêmes dans les deux niveaux du problème.
Malgré cette structure particulière, nous montrons que le problème n’est pas équivalent à sa high-point
relaxation. Le problème obtenu est un très grand problème bi-niveaux en variables mixtes, et les algorithmes
classiques pour résoudre ces problèmes ne sont pas en mesure de résoudre des problèmes de cette taille.
Nous présentons une méthode heuristique basée sur une décomposition de Benders et une dichotomie
sur les coûts d’investissements pour trouver des solutions réalisables de ce problème. Cette méthode est
capable de trouver des solutions réalisables sur des problèmes générés aléatoirement avec plusieurs millions
de variables et contraintes.

Mots-clés : Optimisation des systèmes de grande taille, Programmation stochastique, Décomposition
de Benders, Optimisation bi-niveaux, Programmation linéaire, Programmation linéaire en nombres entiers
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Abstract: This thesis addresses large-scale stochastic optimization programs arising from investment
problems in power systems. This work has been motivated by the numerical complexity of stochastic
investment problems that are solved in prospective studies conducted by RTE (Réseau de Transport
d’Electricité), the French transmission system operator. Considering a network, these problems consist of
investing on production capacities on the nodes or transmission capacities on the arcs in order to satisfy
demands during a discrete time horizon. We model stochastic demands, weather forecasts or operational
costs by a finite number of random scenarios. We focus on two particular numerically challenging opti-
mization problems.

Firstly, we present an enhanced Benders decomposition algorithm to solve large-scale two-stage
linear stochastic programs formulated with a large discrete set of scenarios. Such problems arise in
prospective studies performed at RTE but models are currently limited in the number of scenarios to
maintain reasonable computing times. The proposed algorithm relies on a partition of the subproblems
into separated batches and a modified stopping criterion. This stopping criterion allows to solve only
a few subproblems at most iterations. We also present a generic framework to stabilize the proposed
algorithm, and show its efficiency on an extensive numerical study. We show, on the tested instances, that
our algorithm can be up to 25 times faster than Benders decomposition with level bundle stabilization or
5 times faster than Benders decomposition with in-out stabilization and static cut aggregation.

Secondly, we study an extension of the proposed stochastic linear expansion planning problem, taking
into account a network reliability constraint. This constraint aims at limiting the expected number of
nodes and time steps at which the demand is not fully satisfied in an optimal solution. We show that
adding such a constraint, involving variables from different scenarios, leads to a bilevel formulation of
the problem, and show how a single-level linear formulation may lead to inconsistent solutions. As the
resulting problem is a very large-scale mixed-integer bilevel program, we do not expect classical bilevel
algorithms to solve real-life instances. We introduce a heuristic method based on Benders decomposition
and on a binary search on the investment costs to find feasible solutions. We show that the proposed
heuristic is able to find feasible solutions on randomly generated instances with up to several million
variables and constraints.

Keywords: Large-scale optimization, Stochastic programming, Benders decomposition, Bilevel optimiza-
tion, Linear programming, Integer linear programming

Unité de recherche
UMR CNRS 5251 Université de Bordeaux, 33400 Talence, France.
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Résumé long [French]

Suite aux accords de Paris votés durant la COP21, le gouvernement français prévoit de ne plus
produire d’électricité à partir d’énergies fossiles et d’atteindre la neutralité carbone à l’horizon
2050. Ces objectifs impliquent de modifier en profondeur les sources de production d’électricité
et la structure du réseau électrique français (RTE, 2021). Les études prospectives évaluant les
stratégies d’investissement concernant les moyens de production ou de transport d’électricité ont
de ce fait une importance cruciale dans les prises de décisions publiques. Nous nous intéressons
dans cette thèse à deux problèmes d’optimisation mathématique provenant de telles études
d’investissement dans les réseaux électriques.

Contexte industriel

RTE (Réseau de Transport d’Electricité) est le gestionnaire du réseau de transport d’électricité
français, et est responsable du réseau haute tension en France. L’entreprise est notamment
garante du maintien de l’équilibre entre la consommation et la production d’électricité à tout
instant. De par son rôle majeur dans l’équilibre offre-demande en France, la législation française
impose à RTE de produire chaque année des études prospectives concernant l’évolution du
réseau électrique à des horizons allant de 5 à 30 ans. Ces études ont pour but d’évaluer les
risques de déséquilibres entre la demande et la production électriques en France, et d’analyser
des stratégies d’investissement sur le réseau pour assurer la sécurité d’approvisionnement selon
différents scénarios économiques, politiques ou environnementaux.

Dans les études auxquelles on s’intéresse ici, le réseau de transport est modélisé de manière
grossière. La France est modélisée par une dizaine de noeuds, tandis que les pays voisins sont
généralement modélisés par entre un et trois noeuds. A chaque noeud, on modélise une capacité
de production agrégée pour chaque source d’énergie (solaire, éolien, nucléaire,...). Ces études ont
pour objectif d’analyser des tendances globales et d’évaluer s’il serait intéressant de construire
ou renforcer des capacités de transport d’électricité entre différentes régions, ou l’impact de
différent mix énergétiques possibles. Ces études s’adressent avant tout aux décideurs politiques
et n’ont pas pour but de décider d’investissements réels et précis sur le réseau. On s’intéresse
dans cette thèse à la modélisation et à la résolution de problèmes d’optimisation mathématique
utilisés dans les études prospectives de RTE appelés problèmes d’expansion de réseau stochastiques.

On considère un graphe G = (N ,A). Chaque noeud du graphe correspond à une région
géographique, et chaque arc à une capacité d’échange en électricité entre deux régions. Le but
du problème est de choisir des investissements dans des capacités de production sur les noeuds
ou dans des capacités de transport sur les arcs pour satisfaire des demandes en électricité sur
un horizon de temps à pas de temps discrets T donné. Plusieurs paramètres peuvent être aléa-
toires, tels que la demande en électricité en un noeud du graphe, les prévisions météorologiques,
la disponibilité des moyens de production ou de transport ou encore les coûts de production
d’électricité. L’aléa est modélisé par un ensemble fini de scénarios S. Pour chaque scénario, un
problème opérationnel modélise un planning opérationnel (quantité produite à chaque noeud et
chaque pas de temps et routage de l’énergie sur le réseau) dont le but est de satisfaire la demande
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en électricité à coût minimum. L’objectif total du problème d’expansion de réseau stochastique
est de minimiser la somme des coûts d’investissement et des coûts opérationnels, en moyenne
sur l’ensemble des scénarios d’aléa. On considère des problèmes d’optimisation stochastiques à
deux étapes. Les variables d’investissement et les variables opérationnelles sont traitées comme
des variables continues, et toutes les contraintes sont linéaires. Ceci est rendu possible grâce à
l’approximation du courant continu notamment (Roldán et al., 2018; Zhang and Conejo, 2018;
Wu et al., 2018).

L’algorithme de Benders par paquets

Les problèmes d’expansion de réseau stochastique résolus chez RTE sont de très grande taille.
Dans le but de maintenir des temps de résolution raisonnables, les instances résolues ne prennent
en compte qu’un nombre très limité de scénarios d’aléas. Pour palier cette limite, on présente
un algorithme basé sur la décomposition de Benders dans le but de résoudre efficacement des
problèmes linéaires stochastiques à deux étapes modélisés avec un grand nombre de scénarios
d’aléas. Ces problèmes peuvent être modélisés comme suit:

min c⊤x+
∑
s∈S

psg
⊤
s ys

s.t. : Wsys = ds − Tsx, ∀s ∈ S

ys ∈ Rn2
+ , ∀s ∈ S

x ∈ X

(1)

où x ∈ Rn1 , c ∈ Rn1 , S est un ensemble fini de scénarios, ps ∈ R+ est un poids positif associé
au scénario s ∈ S (e.g., une probabilité), gs ∈ Rn2 , Ws ∈ Rm×n2 , Ts ∈ Rm×n1 , ds ∈ Rm, et
X ⊂ Rn1 est un ensemble polyédral. Les variables x sont appelées variables de première étape et
les variables ys sont appelées variables de seconde étape ou variables de recours. Le problème (1)
est appelé formulation extensive d’un problème d’optimisation stochastique à deux étapes.

L’algorithme proposé dans cette section repose sur la reformulation de Benders du problème
(1) (Benders, 1962; Van Slyke and Wets, 1969), en particulier la reformulation multicut de
Benders (Birge and Louveaux, 1988). Cette reformulation est basée sur l’observation suivante
: si on fixe les variables x à une valeur donnée x̄ ∈ X , le problème devient séparable selon les
scénarios. De plus, la fonction de valeur du problème résultant associé à chaque scénario est
polyédrale (convexe, continue et linéaire par morceaux). En remplaçant la fonction objectif
par cette fonction polyédrale dans la formulation précédente, on obtient la reformulation de
Benders du problème, qui contient un nombre exponentiel de contraintes par rapport à la taille
du problème. On appelle ces contraintes les coupes de Benders.

L’idée des algorithmes classiques de résolution est le suivant. On résout le problème avec un
sous-ensemble de coupes de Benders. Comme le problème ainsi formulé est une relaxation du
problème initial, il fournit une borne inférieure sur la valeur optimale du problème (1). On choisit
une solution de première étape x ∈ X , et on évalue les problèmes associés à chaque scénario pour
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cette valeur de x donnée. La résolution de ces problèmes nous permet de générer des coupes de
Benders qui ne sont pas présentes dans la formulation actuelle. Plus on ajoute des coupes de
Benders dans la formulation, plus la borne inférieure fournie est proche de la valeur optimale du
problème. De plus, cela nous permet d’évaluer une solution réalisable pour le problème initial, et
donc de fournir une borne supérieure sur la valeur du problème. Lorsque l’écart entre la borne
inférieure et la borne supérieure devient inférieur à un certaint seuil d’optimalité, l’algorithme
s’arrête. De nombreux algorithmes de la littérature recquièrent de résoudre l’ensemble des
problèmes associés à tous les scénarios à chaque itération de l’algorithme (Song and Luedtke,
2015; van Ackooij et al., 2017; Trukhanov et al., 2010; Linderoth and Wright, 2003). Lorsque le
nombre de scénarios d’aléas est grand, cela peut être très couteux en temps de calcul. Certains
algorithmes proposés dans la littérature permettent de ne pas résoudre systématiquement tous les
sous-problèmes. Cependant, ces algorithmes ne convergent pas nécessairement en un nombre fini
d’itérations (Higle and Sen, 1991), ou recquièrent que les fonctions objectifs des sous-problèmes
ne dépendent pas de l’aléa (Crainic et al., 2021; Wets, 1983; Dantzig and Infanger, 1991).

Nous proposons dans cette thèse un algorithme basé sur la décomposition de Benders dans
lequel seulement un petit nombre de sous-problèmes sont résolus à chaque itération appelé
l’algorithme de Benders par paquets. Cet algorithme ne requiert pas que les fonctions objectifs des
sous-problèmes soient déterministes, est exact et converge en un nombre fini d’itérations. Nous
introduisons un critère d’arrêt qui permet de déterminer, après la résolution d’un sous-ensemble
de sous-problèmes, si la solution de première étape courante peut être prouvée optimale ou non
à ce stade de la résolution. Si elle n’est pas optimale, nous pouvons arrêter la résolution des
sous-problèmes et définir une nouvelle solution de première étape. De cette manière, l’algorithme
proposé permet d’explorer un grand nombre de solutions de première étape en peu de temps, et
ainsi de converger plus rapidement vers une solution optimale.

Nous proposons aussi une méthode pour stabiliser l’algorithme proposé. Un des problèmes
majeurs associés à la convergence des algorithmes de Benders est le phénomène d’oscillation des
variables de première étape. Les méthodes de stabilisation (Lemaréchal et al., 1995; Ben-Ameur
and Neto, 2007) permettent de palier ce problème et ainsi d’accélérer de manière significative les
algorithmes. Cependant, ces méthodes ne peuvent pas être appliquées directement si l’ensemble
des sous-problèmes n’est pas résolu à chaque itération, comme c’est le cas dans l’algorithme
de Benders par paquets. Nous présentons donc une méthode générique pour stabiliser notre
algorithme. Sous certaines conditions sur la méthode de stabilisation, nous montrons que
l’algorithme stabilisé reste exact et converge en un nombre fini d’itérations. Finalement, nous
évaluons les performances de l’algorithme de Benders par paquets sur des instances de la littérature
d’optimisation stochastique avec jusqu’a 20.000 scénarios d’aléas. Les expérimentations montrent
que l’algorithme de Benders par paquet peut résoudre jusqu’à 23 fois moins de sous-problèmes
qu’un algorithme équivalent qui résout tous les sous-problèmes à chaque itérations. Dans sa
verison stabilisée, l’algorithme est jusqu’à 25 fois plus rapide que l’algorithme du level bundle,
et jusqu’à 5 fois plus rapide que la décomposition de Benders avec stabilisation in-out et une
méthode d’agrégation de coupes statique.
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Une contrainte de fiabilité pour un problème d’expansion de réseau stochastique

On s’intéresse dans cette partie à la structure des solutions optimales du problème d’expansion
de réseau stochastique. Dans les formulations utilisées chez RTE, il existe un coût associé
à la quantité d’énergie non distribuée dans une solution. Ce coût, d’environ 20.000€/MWh,
n’est généralement pas sufffisant pour que toutes les demandes en électricité soient entièrement
satisfaites dans une solution optimale du problème. En effet, les coûts d’investissement étant
très élevés, il est parfoit moins cher de payer ce coût et de ne pas satisfaire une demande plutôt
que d’investir dans de nouveaux moyens de production ou de transport. Les solutions optimales
des problèmes d’expansion de réseau stochastique présentent souvent une grande quantité de
demandes non satisfaites.

La législation française impose à RTE qu’en moyenne le nombre d’heures de défaillance soit
inférieur à 3h (Article D141-12-6 du code de l’Energie). De fait, les solutions optimales du
problèmes d’expansion de réseau ne permettent pas de satisfaire cette contrainte légale et ne
sont pas considérées comme valides par les économistes de RTE. Actuellement, ils modifient
les solutions à la main après la phase d’optimisation pour obtenir des solutions qui satisfont ce
critère de 3h de défaillance.

RTE ne dispose pas de modèle mathématique prenant en compte cette contrainte pour le
problème d’expansion de réseau stochastique. Nous présentons dans cette section un tel modèle,
avec une contrainte qui limite, en espérance sur l’ensemble des scénarios, le nombre de noeuds
et de pas de temps auxquels une demande n’est pas entièrement satisfaite dans une solution
optimale. Nous montrons que ce problème peut être naturellement modélisé par un problème
bi-niveaux. Un problème bi-niveaux est un problème dans lequel certaines contraintes doivent
être satisfaites par les solution optimales d’un autre problème d’optimisation. Dans le cas qui
nous intéresse, la structure bi-niveaux vient du fait que la contrainte sur la défaillance doit être
satisfaite par les solutions optimales des problèmes opérationnels de satisfaction de la demande.
On présente deux formulations équivalentes pour le problème. La première met en évidence le
caractère stochastique à deux étapes de la formulation, tandis que la seconde permet de présenter
le problème comme un problème bi-niveaux linéaire en variables mixtes. On montre finalement
que la contrainte bi-niveaux est nécessaire pour maintenir la cohérence du modèle.

Le problème ainsi obtenu est de très grande taille, et présente un très grand nombre de vari-
ables binaires. Les algorithmes classiques de résolution des problèmes bi-niveaux ne permettent
pas de résoudre des instances aussi grandes (Fortuny-Amat and McCarl, 1981; Siddiqui and
Gabriel, 2013). Nous présentons une méthode heuristique pour trouver des solutions réalisables
à ce problème. Cette méthode est basée sur une décomposition de Benders, et une dichotomie
sur les coûts d’investissement. On génère ainsi une suite de problèmes d’optimisation à un
niveau dont les solutions convergent en un nombre fini d’itérations vers une solution réalisable
du problème à deux niveaux.

Nous montrons que l’heuristique proposée permet de trouver des solutions réalisables sur des
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instances possédant plusieurs millions de variables et de contraintes en moins de six heures. La
méthode SOS-1 pour résoudre la reformulation KKT du problème ne trouve aucune solution
réalisable en six heures. Ces résultats, réalisés sur des instances générées aléatoirement, sont
encourageant. Des travaux futurs, permettant d’appliquer cette heuristique sur des instances de
RTE, permettront de valider la méthode.
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Chapter 1

Introduction

Following the Paris agreements voted during the COP21, the French government plans to get
out of fossil fuels electricity production and achieve carbon neutrality by 2050. This process
will involve deep changes in the electricity production and the structure of the power system
(RTE, 2021). In this context, studies evaluating different investment strategies on the electricity
production mix and on the transmission system are crucial. We study in this thesis optimization
problems arising from such investment studies on power systems.

1.1 Industrial context

RTE is the French transmission system operator, and is in charge of the management of the
high-voltage transmission system in France. One of the major roles of RTE is to guarantee, at
all times, that the electricity demand is satisfied in France. Everyday, the company forecasts
the next day’s electricity consumption, and provides an electricity production schedule. The
company is committed to the French government by a public service contract. RTE is also
part of the ENTSO-E (European Network of Transmission System Operators for Electricity),
which represents 39 European transmission system operators from 36 different countries. RTE
is in charge of the electricity exchanges with the neighbor countries in order to maintain an
equilibrium in the interconnected European electricity network. We present for example in Figure
1.1 some data representing the exchanges between France and its neighbors on the 1st of January,
2022 and how electricity was produced in France at this time.

Because of its major role in the equilibrium between the electricity demand and production
in France, RTE is asked by French legislation to produce every year a prospective report on
the evolution of the transmission system to horizons from 5 to 30 years. These reports aim
at measuring the risk of imbalance between electricity production and demand, and analyze
investment strategies on the network in order to ensure the security of supply according to
different technical, economical, environmental and political situations called systemic scenarios.
These systemic scenarios represent evolutions that cannot be associated to probabilities. For
each presented systemic scenario, an independent study is performed. The notion of systemic
scenario in this industrial context should not be confused with the notion of scenario in stochastic
programming that we will present later, where a scenario represents a given sample of a random
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Figure 1.1: Sharing of the exchanges of electricity between France and its neighbors and sharing of
the different sources of electricity production in France on January 1st, 2022 at 8a.m.. Data taken
from RTE Eco2Mix (https://www.rte-france.com/en/eco2mix) on September 12th, 2022.

variable, associated to a probability distribution. We present in Figure 1.2 some of the systemic
scenarios associated to energy consumption in France at horizon 2050 presented in (RTE, 2021),
a prospective study with a 30 years horizon planning.

In prospective studies we are interested in, the transmission network is modeled in a very
coarse way. France is generally modeled with around 10 nodes and neighbor countries are modeled
with one or a few nodes. We show such a coarse representation in Figure 1.3. At each node,
there is an aggregated production capacity for each source of energy (solar production, wind
turbines, nuclear power plants, ...). Those studies aim at understanding global and structural
trends, and to understand if it could be interesting to build or reinforce transmission capacities
between large region or the possible electricity production mix according to different systemic
scenarios. They are intended to inform decision-makers and not to model actual investment on
the network. Other studies are performed at RTE in order to decide to build or reinforce specific
transmission lines, in which there is a fine network representation, with only a fewer variables
(many variables have been filtered with the results of the prospective studies). However, such
studies are out of the scope of the present work.

Since RTE is a public service company entrusted by the government, the company must
ensure the balance between electricity production and demand at all times. The French legislation
allows a maximum of three hours of power system outage per year (Article D141-12-6 from the
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Figure 1.2: Some of the hypotheses leading to different prospective studies given in (RTE, 2021)

Figure 1.3: A representation of the French transmission network with only a few nodes, one for
each region, and one to three node to represent other countries. Taken from (RTE, 2019).

French Energy Code). This legal criterion, called the “3 hours criterion", ensures the reliability
of the power system. In prospective studies conducted at RTE, this criterion have to be satisfied
by the system with the proposed investment solutions.
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1.2 Modeling hypotheses

The prospective studies presented in the previous section involve the resolution of mathematical
programming problems the stochastic expansion planning problems. Considering a network, these
problems aim at finding investments on transmission lines or production capacities in order
to satisfy the electricity demand over a given time horizon modeled by a finite set of times
steps T . Many parameters are stochastic, such as the electricity demand, weather forecasts,
operational costs, production and transmission lines availability or total capacity. We model the
uncertainty with a finite set of scenarios. Each scenario represents one possible realization of
the random variables (e.g., a given demand at each node and each time step in the given time
horizon). For every scenario, we model an operational problem. This problem consists of finding
a minimum cost operational planning (electricity productions and flows on the graph) to satisfy
the electricity demands at every time steps, according to operational constraints. The objective
of the stochastic epxansion planning problem is to minimize the sum of the investment costs and
the expected operational costs over the scenarios (Alvarez Lopez et al., 2007; van der Weijde and
Hobbs, 2012). We model it as a two-stage stochastic program.

In the general case, such two-stage expansion planning problems involve integer variables in
order to model investment solutions, such as large power plants for which the invested capacity
is either 0 or a large value, but nothing in between. We will consider hereafter only continuous
investment variables. This hypothesis is reasonable in a first approximation of the problem as
we consider a large aggregated system. Some investments can also be treated as continuous
variables as they are made of large numbers of small units, such as solar panels or wind turbines.
Moreover, investment capacities with very large integer steps, such as the number of nuclear
power plants, are generally taken as hypotheses in the studies and are not decision variables. The
variables modeling operations of the network are also treated as continuous variables and power
flows are treated with the direct current hypothesis (DC hypothesis). The DC hypothesis is used
in many studies such as in (Roldán et al., 2018; Zhang and Conejo, 2018; Wu et al., 2018), as it
allows to model the problem with linear programs. It is a reasonable hypothesis to model such
strategic decisions at long term horizon planning. We therefore consider large-scale two-stage
stochastic optimization problems in this thesis.

The model also allows that demands may not be satisfied at every node and every time
step. If all the demands in every scenario had to be satisfied, there would be some investment
capacities which were almost never used in optimal solutions, leading to very expensive and
conservative solutions. A compromise have to be found between a guaranteed supply of electricity
in all scenarios and reasonable investment costs. This is modeled with a price associated to
an unsatisfied demand: the higher this price, the lower the probability that a demand is not
satisfied in an optimal solution. In RTE studies, this price is generally set to 20000€/MWh, the
estimated cost for the collectivity of one hour of power system outage.

At RTE, more precise simulations are performed in order to validate investment solutions
proposed in prospective studies or to evaluate short-term investment decisions on the transmission
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network. In such studied, investments decisions are integer and the models take into account the
alternative current power flow (AC power flow). AC power flow models take into account voltage
angles and Kirchhoff’s laws with non-linear equations. The resulting problems are numerically
and theoretically challenging non-convex problems. Such studies are out of the scope of this
work. For further information about the different models used in transmission and generation
expansion planning problems, the reader is referred to (Lumbreras and Ramos, 2016; Micheli
and Vespucci, 2021) and the references therein.

1.3 Objectives and thesis organization

This thesis aims at satisfying different objectives from a mathematical programming point of
view, given the modeling hypotheses presented in Section 1.2.

Firstly, randomness is modeled with random variables with discrete distribution and finite
support. Each possible realization of the random variable is called scenario in stochastic program-
ming. In the prospective studies performed at RTE, there should be a large number of scenarios
in the models in order to take precisely into account the large number of random parameters
that impact the value of the problem. However, this would lead to very large-scale stochastic
programs which are numerically challenging to solve. Currently, problems with a limited number
of scenarios are solved in order to maintain reasonable computing times. The first objective of
this work is to develop an efficient algorithmic procedure to solve linear stochastic programs with
a large number of scenarios.

Secondly, a reliability criterion is used at RTE to validate or reject an investment solution
given by the optimization model. Reliability is a largely studied question in transmission expan-
sion planning literature (Choi et al., 2005; Li et al., 2021). However, there is in general no clear
formulation of what is a reliable system (Lei et al., 2018). Reliability criteria are often penalized
in the objective function in order to find a compromise between investment cost and reliability.
The constraint used at RTE can be expressed as a limit on the expected number of nodes and
time steps at which the demand is not fully satisfied in an optimal solution. However, this
constraint is currently not taken into account in the models run at RTE. After the optimization
step, the reliability criterion is checked. If it is not satisfied, the solution is modified by hand, by
adding production capacities at the nodes where demands are not satisfied, in order to obtain
a solution that satisfies this reliability criterion. The second objective of this work is to add
this reliability constraint in optimization programs used at RTE and to develop an algorithmic
procedure to solve the resulting problem. This thesis is organized as follows.

We introduce in Chapter 2 the classical mathematical concepts used in the following chapters.
We describe basic concepts of linear programming such as the decomposition theorem of polyhe-
drons and its link to the polyhedral structure of parametric problems, which arise in stochastic
programming. We then introduce the concept of two-stage stochastic programming and the
Benders decomposition algorithm, a classical algorithmic procedure to solve such programs.
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We present in Chapter 3 a literature review on mathematical programming methods to
solve large-scale stochastic linear programs. We show classical acceleration methods used with
Benders decomposition algorithms such as primal and dual stabilization methods. We also
present methods focusing on problems with a large number of scenarios. Then, we present
classical methods to solve mixed-integer linear bilevel programs, as such problems arise in models
presented in Chapter 5.

In Chapter 4, we present an efficient algorithm to solve two-stage stochastic linear programs
with a large number of scenarios, based on their multicut Benders reformulation. This algorithm
allows to solve only a few subproblems at most iterations of the Benders decomposition algorithm.
The core idea is to detect early in the subproblems solution process if a first-stage solution cannot
be proven optimal. As soon as the algorithm detects that the current first-stage solution cannot
be proven optimal, it stops solving the subproblems. We show that the algorithm is exact and
converges in a finite number of iterations, and, contrary to many proposed algorithms in the
literature, it does not require additional hypotheses on the subproblems, such as fixed recourse or
a deterministic cost function in the subproblems. We also propose a generic framework to stabilize
the proposed algorithm and show its numerical efficiency compared to classical algorithms of
the literature on some generic instances taken from the stochastic programming literature. We
show acceleration rates up to 25 times faster than Benders decomposition with level bundle
stabilization or 5 times faster than Benders decomposition with in-out stabilization and static
cut aggregation, on large-scale instances with up to 20.000 subproblems.

Chapter 5 presents an extension of stochastic expansion planning problems, taking into
account a reliability constraint used in RTE prospective studies. This constraint aims at limiting
the expected number of nodes and time steps at which there is an unsatisfied demand in a
solution. We show that taking into account such a constraint in expectation in a two-stage
framework leads to a bilevel formulation. We also present that a single-level linear formulation
is not a two-stage stochastic program anymore, and may lead to invalid solutions. We present
an example in which, in an optimal solution, some recourse variables have a cost as large as we
want compared to the optimal cost of the recourse function of the associated scenario, which is
inconsistent. We finally obtain a very large-scale mixed-integer bilevel linear program, which can
be very challenging to solve even on very small instances. We then propose to use a heuristic
method to find feasible solutions in a reasonable time. The heuristic is based on a binary search
on the investment cost and a Benders decomposition algorithm to solve, at each iteration of
the binary search, a modified single-level stochastic expansion planning problem. We show the
existence of a bilevel feasible solution under some reasonable assumptions. We finally present
on randomly generated instances that our solution method allows to produce feasible solutions
when a classical bilevel algorithm fails to find any feasible solution in 6 hours.

We finally conclude in Chapter 6 and present some perspectives to the current work that focus
on improving the efficiency of the proposed methods or on solving more challenging problems,
such as problems with integer investment variables.
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Chapter 2

Preliminaries

We present in this chapter some mathematical notions used in this thesis. We first recall
some general linear programming results. Then, we present classical formulations of two-stage
stochastic linear programs and the Benders decomposition algorithm, a classical algorithm to
solve such problems. We refer the reader to (Schrijver, 1998) or (Conforti et al., 2014) for the
proofs of the theorems.

2.1 Linear programming - Basic notions

A linear optimization program (P ) is a program of the following form

(P ) :


min

x
c⊤x

s.t. Ax ≥ b

x ∈ Rn
+

where n ∈ N∗ is the number of variables, m ∈ N the number of constraints, c ∈ Rn, b ∈ Rm and
A ∈ Rm×n. To every linear program (P ), we can associate a dual program (D), which is defined
as:

(D) :


max

λ
b⊤λ

s.t. A⊤λ ≤ c

λ ∈ Rm
+

Both sets ΠP = {x ∈ Rn
+ : Ax ≥ b} and ΠD = {λ ∈ Rm

+ : A⊤λ ≤ c} are polyhedrons and we
will refer to those respectively as the primal polyhedron for ΠP and the dual polyhedron for ΠD

in the following. In the following, we say that a linear optimization problem (P ) is infeasible if
ΠP = ∅. We say that a linear optimization problem (P ) is unbounded if there exists a sequence
(xn)n∈N of solutions of ΠP such that lim

n→+∞
c⊤xn = −∞ if (P ) is a minimization problem or if

lim
n→+∞

c⊤xn = +∞ if (P ) is a maximization problem.

Theorem 1. Weak duality theorem Let (P ) a linear optimization program and (D) its dual. If
ΠP and ΠD are both non empty, then, for every x ∈ ΠP and every λ ∈ ΠD, we have b⊤λ ≤ c⊤x.
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This can be easily shown by noticing that if Ax ≥ b and λ ≥ 0 then λ⊤Ax ≥ λ⊤b, and if
λ⊤A ≤ c⊤ and x ≥ 0 then λ⊤Ax ≤ c⊤x.

Corollary 1. If a linear program (P ) is unbounded, then its dual is infeasible.

Corollary 2. If the primal polyhedron ΠP of a linear program (P ) is non-empty and its dual is
infeasible, then program (P ) is unbounded.

An important extension to the weak duality theorem is known as the strong duality theorem.
It can be formulated as follows.

Theorem 2. Strong duality theorem Let (P ) be a linear optimization program and (D) its
dual. Let ΠP and ΠD be their primal and dual polyhedrons. If ΠP and ΠD are both non empty,
if x∗ is an optimal solution to (P ) and λ∗ an optimal solution to (D), then:

b⊤λ∗ = c⊤x∗

This theorem allows to reformulate a linear optimization program with its dual when the
latter have an exploitable structure.

Decomposition theorem of polyhedrons

We first present some definitions in order to formally write the decomposition theorem of
polyhedrons.

Definition 1. Let E be a vector space of dimension n ∈ N∗. Let A and B be two sets included
in E. Set C is called the Minkowski sum of A and B, denoted by C = A+B if:

C = {a+ b : a ∈ A, b ∈ B}

Definition 2. Let n ∈ N∗ and ℓ ∈ N. A bounded polyhedron Q is a finitely generated convex set
for which there exists a family (ui)1≤i≤ℓ of vectors of Rn such that:

Q = {x ∈ Rn : x =
ℓ∑

i=1
αiui,

ℓ∑
i=1

αi = 1, αi ≥ 0, ∀i ∈ J1, ℓK}

Definition 3. Let n ∈ N∗ and q ∈ N. A polyhedral cone C is a finitely generated convex set for
which there exists a family (vj)1≤j≤q of vectors of Rn such that:

C = {x ∈ Rn : x =
q∑

j=1
βjvj , βj ≥ 0, ∀j ∈ J1, qK}

Theorem 3. Decomposition theorem of polyhedrons Let n ∈ N∗ and Π ⊂ Rn a polyhedron.
There exists a bounded polyhedron Q a polyhedral cone C such that Π is the Minkowski sum of Q
and C, Π = Q+ C.

This theorem states that, for every polyhedron Π ⊂ Rn, there exists two families of vectors
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(ui)1≤i≤ℓ and (vj)1≤j≤q such that:

Π =
{
x ∈ Rn : x =

ℓ∑
i=1

αiui +
q∑

j=1
βjvj ,

ℓ∑
i=1

αi = 1, αi ≥ 0, ∀i ∈ J1, ℓK, βj ≥ 0, ∀j ∈ J1, qK
}

We show a geometrical representation of this theorem in Figure 2.1. We can easily notice
that such a representation is not unique, for example by adding in the family of generators of
the cone any convex combination of the currently present generators. However, there exists a
unique minimal (in the sense of the cardinality) family of generators for the bounded polyhedron
and the polyhedral cone. We will refer to those minimal families as, respectively the extreme
points of the polyhedron for the generators of the bounded polyhedron, and as the extreme
rays of the polyhedron for the generators of the polyhedral cone. This theorem allows to formally
write some property of an optimization problem defined on a polyhedron Π. For example, a
linear optimization program has a finite optimal value if Π ̸= ∅ and its optimization direction c

satisfies c⊤v ≤ 0 for every extreme ray v of Π.

Figure 2.1: Geometrical representation of the decomposition theorem of polyhedrons

Polyhedral structure of parametric optimization programs

In this work, we are interested in parametric programs of the following form, for any x ∈ Rn:

ϕ(x) =


min

y
g⊤y

s.t. Wy ≥ d− Tx

y ∈ Rn2
+

(2.1)

where ϕ(x) ∈ R ∪ {−∞,+∞} denotes the optimal value of the problem, g ∈ Rn2 , d ∈ Rm,
W ∈ Rm×n2 and T ∈ Rm×n. We will refer to this program as (P (x)). Such problems arise
naturally in stochastic programming. In this problem, the value of x modifies the constraints
polyhedron, and thus, the optimal value. A way to study such problems is to analyze its dual
polyhedron ΠD = {λ ∈ Rm

+ : W⊤λ ≤ g}. We denote by Vert(ΠD) the set of extreme points of
ΠD and by Rays(ΠD) the set of extreme rays of ΠD. As we saw with the decomposition theorem
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of polyhedrons, if there exists an extreme ray v ∈ Rays(ΠD) such that (d− Tx)⊤v > 0, then the
dual of (P (x)) is unbounded, and (P (x)) is infeasible.

Property 1. Let ΠD define the dual polyhedron of a parametric problem (2.1), and Rays(ΠD)
the set of its extreme rays. We have:

dom(ϕ(·)) = {x ∈ Rn1 : (d− Tx)⊤v ≤ 0, v ∈ Rays(ΠD)}

An other property arises when, for a given x0 ∈ Rn, the dual is feasible and bounded. Then,
there exists an extreme point u of ΠD which is an optimal solution to the dual of (P (x0)), and
the optimal value of (P (x0)) is ϕ(x0) = (d− Tx0)⊤u, by the strong duality theorem. Moreover,
the dual polyhedron ΠD = {λ ∈ Rm

+ : W⊤λ ≤ g} does not depend on the value of x0. Then,
for any x ∈ Rn, we know, as the dual is a maximization problem and as ui is dual feasible, that
ϕ(x) ≥ (d− Tx)⊤u. Finally, we have:

ϕ(x0) = (d− Tx0)⊤u

ϕ(x) ≥ (d− Tx)⊤u, ∀x ∈ Rn

which means that u⊤T is a subgradient of ϕ at x0. This shows that the extreme points of the
dual polyhedron define the subgradients of mapping ϕ.

The two previous results show that the extreme rays of the dual polyhedron allow to define
the domain of ϕ, and that the extreme points allow to define the subgradients. As the number of
extreme points is finite, the union set of the subgradients of ϕ on its domain is a finite set, which
means that ϕ is a polyhedral application (continuous, convex and piecewise linear). An other
way to see it is that, for any extreme point u of the dual polyhedron ΠD, there exists a cone,
such that, for any optimization direction d̄ belonging to this cone, u is an optimal solution to
the problem of maximizing d̄⊤λ over ΠD. Let x0 ∈ Rn be in the interior of dom(ϕ), and u an
optimal extreme solution of the dual of (P (x0)). Then, there exists a ball of radius r > 0 such
that x0 belongs to this ball, and for every x in this ball, u is also an optimal solution to the dual
of (P (x)). Then, ϕ(x) = (d− Tx)⊤u, for every x in this ball, and ϕ is linear on this set. As this
is true for every feasible solution x0, ϕ is polyhedral on its domain.

2.2 Two-stage stochastic programming

We now present the principle of two-stage stochastic programming, which is a core concept of
the models we are interested in. Stochastic programs are optimization programs in which some
parameters are not fully known. They are modeled with some random variables. Two-stage
stochastic programs are special cases of stochastic programs in which optimization decisions
are taken in two steps. First, some decisions are to be taken before knowing the realization
of the random variables. Those decisions are called first-stage variables. Then, the realization
of the random variables is revealed, and other decisions can be made, taking into account the
realization of the random variables. Those decisions are called second-stage variables, or recourse
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variables. We will focus in this thesis on two-stage stochastic linear programs, where both the
objective function and constraints are linear functions. A two-stage stochastic linear program
can be modeled as follows: min

x
c⊤x+ Eω[ϕ(x,ω)]

s.t. x ∈ X
(2.2)

where X ⊂ Rn1 is a polyhedral set, x ∈ Rn1 are the first-stage variables and ω is a random
variable. For any realization ωs of ω, the value of ϕ(x, ωs) is computed as the value of the
following parametric optimization program:

ϕ(x, ωs) =


min

y
g⊤

ωs
y

s.t. Wωsy ≥ dωs − Tωsx

y ∈ Rn2
+

(2.3)

with gωs ∈ Rn2 , Wωs ∈ Rm×n2 , Tωs ∈ Rm×n1 and dωs ∈ Rm.
Depending on the probability distribution of the random variable ω, when it is known, it can

be hard to compute the value of problem (2.2). Often, stochasticity is tackled by the introduction
of scenarios, a finite sample of realizations of ω. The aim of a scenario representation is to
approximate the random variable ω by an other random variable s with a discrete and finite
distribution. We denote by S the set of scenarios and by ps the probability associated to the
scenario s ∈ S. When such a representation is used, there exists a reformulation of the two-stage
stochastic program (2.2) as the following linear program:

min
x,(ys)s∈S

c⊤x+
∑
s∈S

psg
⊤
s ys

s.t. : Wsys ≥ ds − Tsx, ∀s ∈ S

ys ∈ Rn2
+ , ∀s ∈ S

x ∈ X

(2.4)

This reformulation is called deterministic reformulation, or extensive formulation of the stochastic
program. By Monte-Carlo sampling scenarios from the initial probability distribution, and solving
iteratively the resulting deterministic reformulations, one can solve problem (2.2) by Sample
Average Approximation, see e.g. (Linderoth et al., 2006). Moreover, the single-stage structure of
the deterministic reformulation allows the use of classical optimization techniques to solve the
problem, such as the simplex algorithm when there are no integer variables, or decomposition
techniques when the problem becomes larger. In the following, we only consider such discrete
and finite probability distributions.

Benders decomposition

A successful decomposition method to solve such programs is the Benders decomposition (Benders,
1962), also called L-shaped method (Van Slyke and Wets, 1969) in the stochastic case. It is
based on a reformulation of program (2.4). This reformulation can be obtained in three steps:

• A projection of the problem on the space of the first-stage variables
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• A dualization of the projected problem

• A discretization of the resulting problem by enumeration of the extreme solutions of a
polyhedron

The idea behind Benders decomposition is that, if we fix some variables, the resulting problem
is easy to solve (decomposability, max flow on a network, ...). In our case, when we fix the
first-stage variables x, the resulting problem becomes decomposable according to the scenarios.
The resulting problem associated to a scenario s ∈ S, called subproblem associated to scenario s
and denoted by (SP (x, s)), is the following:

min
y

g⊤
s y

s.t. Wsy = ds − Tsx

y ∈ Rn2
+

(2.5)

We denote, when it does exist, its value by ϕ(x, s). As we saw before, for every scenario s ∈ S,
the domain of ϕ(·, s) can be expressed according to the extreme rays of the polyhedron of the
dual of the subproblem ΠD(s) = {λ ∈ Rm

+ : W⊤
s λ ≤ gs}. We denote by Rays(ΠD(s)) the set of

the extreme rays of ΠD(s). We have:

dom(ϕ(·, s)) = {x ∈ Rn1 : (ds − Tsx)⊤v ≤ 0, v ∈ Rays(ΠD)}

We can now write problem (2.4) with the value function of the subproblems ϕ(·, s), by writing
formally its domain:

min
x

c⊤x+
∑
s∈S

psϕ(x, s)

s.t. : (ds − Tsx)⊤vs ≤ 0, ∀s ∈ S, ∀vs ∈ Rays(ΠD(s))

x ∈ X

(2.6)

Then, by dualizing the subproblems, we can express the value functions ϕ(·, s) with the extreme
points of the dual polyhedron ΠD(s). Let us denote by ϕ the expected value mapping, such that,
∀x ∈ Rn1 , ϕ(x) = ∑

s∈S psϕ(x, s), and by ΠD the dual polyhedron associated with the problem
generated by concatenation of all the subproblems. We have ΠD = ΠD(1)×ΠD(2)× ...×ΠD(S),
and ∀u ∈ ΠD, ∃ (u1, ..., u|S|) such that u = (u1, ..., u|S|). We also define Vert(ΠD) the set of the
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extreme points of polyhedron ΠD. We have:

ϕ(x) =
∑
s∈S

psϕ(x, s)

=


min

(ys)s∈S

∑
s∈S

ps
(
g⊤

s ys
)

s.t. : Wsys ≥ ds − Tsx, ∀s ∈ S

ys ∈ Rn2
+ , ∀s ∈ S

=


max

(πs)s∈S

∑
s∈S

ps(ds − Tsx)⊤πs

s.t. : W⊤
s πs ≤ gs, ∀s ∈ S

πs ∈ Rm2
+ , ∀s ∈ S

= max
(u1,...,u|S|)∈Vert(ΠD)

{∑
s∈S

ps(ds − Tsx)⊤us

}

Then, by replacing ϕ with the last equation in formulation (2.6), and by introducing an epigraph
variable θ, we obtain the Benders reformulation of problem (2.4):

min
x,θ

c⊤x+ θ

s.t. : θ ≥
∑
s∈S

ps(ds − Tsx)⊤us, ∀(u1, ..., u|S|) ∈ Vert(ΠD) (i)

(ds − Tsx)⊤vs ≤ 0, ∀s ∈ S, ∀vs ∈ Rays(ΠD(s)) (ii)

x ∈ X , θ ∈ R

(2.7)

Constraints (i) are called optimality cuts, and constraints (ii), feasibility cuts. We obtain
an equivalent formulation of problem (2.4) with an exponential number of constraints. This
formulation is not directly usable, as a total enumeration of the extreme points and extreme rays
of the polyhedrons of the duals of the subproblems would be way too expensive. However, this
allows the use of constraints generation methods, such as Kelley’s cutting planes (Kelley, 1960),
or more advanced techniques, to efficiently solve the problem.

We we call hereafter a Benders decomposition algorithm an algorithm designed to solve
the Benders reformulation of a problem. The idea behind Benders decomposition algorithms is
first to relax both the optimality and feasibility cuts. The resulting program is called the relaxed
master program. Then, the algorithms consist of defining iteratively a first-stage solution,
called hereafter separation point, and to solve the subproblems at this first-stage solution in
order to discover new dual extremal solutions and to add new Benders cuts in the relaxed master
program until convergence is proven. We present in Algorithm 2.1 a classical algorithm based
on Kelley’s cutting-planes algorithm to solve Benders reformulation of problem (2.4). At line 4,
the algorithm solves the relaxed master program and retrieves its optimal solution. The relaxed
master program is used as an oracle to get the separation point. As it is a relaxation of the
original problem, it also defines a lower bound on the optimal value of the problem, computed
at line 5. From lines 6 to 9, the subproblems are solved and their dual extremal solutions are
retrieved. At line 9, the algorithm add feasibility cuts if some subproblems are infeasible. If all
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the subproblems are feasible, an optimality cut is added at line 11, and the algorithm computes
the value of the objective function in the original problem at the separation point at line 12,
which defines an uppper bound on the optimal value of the problem. Finally, at line 2, the
optimality gap between the lower bound and the best upper bound is checked and the algorithms
stops when it reaches a given optimality gap.

Algorithm 2.1: Kelley’s classical version of the monocut Benders decomposition
algorithm

Parameters : ϵ > 0 the selected optimality gap
1 Initialization: k ← 0, UB(0) ← +∞, LB(0) ← −∞
2 while UB(k) > LB(k) + ϵ do
3 k ← k + 1
4 Solve (RMP )(k) and retrieve (x̌(k), (θ̌(k)

s )s∈S)
5 LB(k) ← c⊤x̌(k) +

∑
s∈S psθ̌

(k)
s

6 for s ∈ S do
7 Solve (SP (x̌(k), s)) and retrieve πs ∈ Vert(ΠD(s)) or πs ∈ Rays(ΠD(s))
8 if (SP (x̌(k), s)) is infeasible then
9 Add 0 ≥ π⊤

s (ds − Tsx) to (RMP )(k)

10 if (SP (x̌(k), s)) is feasible ∀s ∈ S then
11 Add θ ≥

∑
s∈S π

⊤
s (ds − Tsx) to (RMP )(k)

12 UB(k) ← min
(
UB(k−1), c⊤x̌(k) +

∑
s∈S psπ

⊤
s (ds − Tsx̌

(k))
)

13 (RMP )(k+1) ← (RMP )(k)

14 Return x̌(k)
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Chapter 3

Literature review

We focus in this literature review on two fields of mathematical programming: two-stage linear
stochastic programs and bilevel programs. As presented in Chapter 1, classical formulations of
network expansion studies such as the ones conducted by RTE are based on two-stage stochastic
programs. We present in Section 3.1 a review on methods to solve such two-stage stochastic
linear programs, with a focus on problems formulated with a large number of scenarios. We then
present in Section 3.2 a review on algorithms to solve bilevel programs with a linear lower level,
as the reliability constraint presented in Chapter 5 relies on a bilevel formulation with linear
lower levels.

3.1 Benders decomposition to solve two-stage stochastic pro-
grams

We focus in this section on the resolution of two-stage stochastic linear programs with Benders
decomposition algorithms. We will focus here on problems with scenario-based uncertainty,
although some researchers proposed methods to solve two-stage stochastic programs with general
probability distributions, such as Ramirez-Pico and Moreno (2021) or Forcier and Leclère (2021).
Then, we focus on problems with the following structure:

min c⊤x+
∑
s∈S

psg
⊤
s ys

s.t. : Wsys ≥ ds − Tsx, ∀s ∈ S

ys ∈ Rn2
+ , ∀s ∈ S

x ∈ X

(3.1)

Those acceleration techniques can be partitioned in four types. First, we present methods
working on the formulation, such as the so-called mono-cut and multi-cut formulations and
their extensions. Then we present the primal stabilization techniques. Those techniques aim
at improving the quality of the separation point in the algorithm. Next, we present the dual
stabilization methods to improve the quality of the cuts. Finally, we show some methods with a
focus on large-scale stochastic programs.
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3.1.1 Monocut and multicut reformulations

We presented in Section 2.2 the Benders reformulation of a linear optimization problem as stated
in the seminal paper (Benders, 1962). This reformulation is also called monocut reformulation,
or single cut reformulation, as we approximate the recourse function with only one cut at each
iteration. The reformulation is based on one unique epigraph reformulation for the whole recourse
function. In the stochastic case, the recourse function is separable over the scenarios, and is
then the sum of one polyhedral function for each scenario. Birge and Louveaux (1988) proposed
a reformulation in which there is one independent epigraph variable for each scenario. This
reformulation, that we present in problem (3.2), is called the multicut Benders reformulation of
problem (3.1). 

min
x,(θs)s∈S

c⊤x+
∑
s∈S

psθs

s.t. : θs ≥ (ds − Tsx)⊤us, ∀s ∈ S, ∀us ∈ Vert(ΠD(s)) (i)

(ds − Tsx)⊤vs ≤ 0, ∀s ∈ S, ∀vs ∈ Rays(ΠD(s)) (ii)

x ∈ X , θs ∈ R, ∀s ∈ S

(3.2)

The cutting planes algorithm based on the multicut reformulation usually requires less
iterations to converge. However, the large number of cuts added to the master program in a
multicut framework at each iteration might become a bottleneck of the algorithm. As card(S)
constraints are added to the master program at each iteration, its size grows quickly, and
the time to solve the relaxed master program at each iteration can be too long to produce
a competitive algorithm. You and Grossmann (2013) showed the numerical efficiency of the
multicut reformulation on a supply chain planning problem. However, the choice between a
monocut or a multicut reformulation may be in general problem dependent.

Trukhanov et al. (2010) proposed a framework to aggregate some optimality cuts with the
aim of finding a compromise between the monocut and pure multicut versions of the algorithm.
They show the numerical efficiency of the proposed methods, as local cut aggregations allows
to reduce the number of iterations compared to pure monocut algorithm, while the size of the
master program remains reasonable. Wolf et al. (2014) proposed a different way to use jointly
the monocut and multicut formulations. They use a monocut master problem, but maintain
also a multicut model during the solution process. For any given first-stage solution, they also
evaluate the multicut model at the first-stage solution to the relaxed monocut master program,
and check if it gives a larger value than the monocut one. If this occurs, they propose to generate
a cut by aggregating the actives cuts from the multicut model, and add it in the monocut master
program. In this way, they generate sub-optimal cuts improving the current relaxation of the
master program, without the need to solve any subproblem. As evaluating the multicut model at
a given first-stage solution involves only to find the maximum of the cuts for each scenario, this
can be done in a linear time in the number of cuts and avoids the costly resolution of a multicut
master program.

Finally, the multicut formulation allows the development of asynchronous parallel methods,
such as in (Linderoth and Wright, 2003). They propose to solve the master problem when a
given percentage of the subproblems have been solved, from 50% to 85% in their numerical study,
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Figure 3.1: Evolution of the upper bound over the iterations of the monocut Benders de-
composition algorithm on a stochastic problem with and without primal stabilization (in-out
stabilization).

so that the core containing the master program does not wait too long that all the subproblems
have been solved.

3.1.2 Primal stabilization

A classical drawback to the Benders decomposition algorithm, and more generally to every cutting
plane method (Kelley, 1960), is the so-called bang-bang effect of first-stage variables (Vanderbeck,
2005; Pessoa et al., 2013) leading both to poor quality cuts, and a slow and erratic decrease in
the upper bound (see e.g. Fig 3.1). Many successful methods have been proposed to alleviate
this effect which we refer to as primal stabilization techniques as they aim at finding better
sequences of primal solutions during the solution process. A large class of acceleration techniques
are the bundle methods (Lemaréchal et al., 1995). We present here the bundle methods as primal
stabilization methods. Those methods try to restrict the search of an optimal solution to points
close to a given first-stage solution called stability center. This stability center is generally defined
as the separation point with the smallest objective function value among those evaluated so far:
x̂(k) = arg minj∈J0,k−1K {c⊤x(j) +∑

s∈S psϕ(x(j), s)}. Bundle methods are often implemented as
quadratic stabilization techniques. They can be seen, in the case of Benders decomposition, as
stabilization methods based on a modified relaxed master program, in which the solution have
to stay close to the stability center. Among the most used methods, one can cite the proximal
bundle, the level bundle or the trust-region. Proximal bundle methods penalize the distance to
the stability center in the objective function, as proposed also by (Ruszczyński, 1986), whereas
trust-region methods restrict the search to an optimal solution in a ball around the stability
center according to a given norm. In the level bundle method, the relaxed master program returns
a separation point as the projection of the stability center on a level set of the objective function,
according to a value flev ∈ R. This value is computed as flev = (1− λ)UB(x̂) + λLB, where λ is

28



the level parameter, UB(x̂) the objective value of the stability center in the original problem, and
LB a given lower bound on the objective function of the relaxed master program.The modified
master program is the following:

min
x,θ

1
2 ||x− x̂||

2
2

s.t. : θ ≥
∑
s∈S

psu
⊤
s (ds − Tsx), ∀s ∈ S, ∀us ∈ Vert(Πs)

c⊤x+ θ ≤ flev

x ∈ X , θ ∈ R

We can remark that, if the value flev is too low, this program can be infeasible. This shows that
flev, which is greater than LB by construction, is a valid lower bound on the model, and LB can
be updated to flev.

(Zverovich et al., 2012) presented a computational study of bundle methods. Their results
show, on some instances of the literature, that the level bundle scales better than proximal or
trust-region method when the number of scenarios increases. This justifies the choice made
in Section 4.4 to compare the presented algorithm to the level bundle algorithm as a state-
of-the-art primal stabilization method. Bundle methods have been successfully applied on
some stochastic programs, as the level bundle in (van Ackooij et al., 2017), the proximal bundle
in (Oliveira et al., 2011) or the trust-region, with an infinite norm in (Linderoth and Wright, 2003).

An other successful method to stabilize the algorithm is the so-called in-out stabilization
method (Ben-Ameur and Neto, 2007). It has been initially developed for a general framework of
cutting-planes methods, in order to generate cuts closer to a given domain D. Let xin ∈ D a
known feasible solution, and xout the solution to a relaxation of D at a given iteration of the
algorithm. Let α ∈ [0, 1) a given parameter. The in-out separation scheme consists in separating
a solution xsep = αxin + (1−α)xout instead of separating solution xout (see Fig 3.2). If xsep ∈ D,
then xsep has a lower cost in the objective function than xin, and one improves the upper
bound. Else, the cut generated to separate solution xsep is deeper than the one computed at xout.
However, in the case of Benders decomposition, the domain D that we want to approximate is
the epigraph of the recourse function. The cuts are always tangents to the recourse function.
Moreover, in order to generate a cut, the subproblem requires only the information about the
first-stage solution x, regardless of its current epigraph solution θ. We show in Fig 3.3 the
difference between a textbook application of in-out stabilization, and how it is done in Benders
decomposition in practice. The in-point is then comparable to the stability center of bundle
methods. We denote x̂(k) the in-point at iteration k of the algorithm to unify the notations
with bundle methods. It is equal to the separation point (among those calculated so far) with
the smallest objective function value: x̂(k) = arg minj∈J0,k−1K {c⊤x(j) +∑

s∈S psϕ(x(j), s)}. As
bundle methods, the in-out stabilization aims at generating cuts close to the anchored solution
in-point in order to alleviate the bang-bang effect of primal variables. The separation point x(k)

is then defined on the segment between x̂(k) (in point) and x̌(k) (out-point):

x(k) = αx̌(k) + (1− α)x̂(k)
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Figure 3.2: In-out scheme in a general framework, optimizing over an approximation of a given
domain D

The in-out approach creates a sequence of stability centers with decreasing objective values
converging to an optimal solution to the problem. As it performs a linear search between the
in-point and the solution to the relaxed master program, it can rely on the numerical efficiency
of linear programming solvers. The in-out separation approach has been applied successfully in a
cutting plane algorithm to solve a survivable network design problem (Ben-Ameur and Neto,
2007), in column generation (Pessoa et al., 2013), in a branch-and-cut algorithm based on a
Benders decomposition approach to solve facility location problems (Fischetti et al., 2016), and
in a cutting plane algorithm applied to disjunctive optimization (Fischetti and Salvagnin, 2010).

Primal stabilization methods for cutting plane based algorithms are essential to develop
competitive algorithms (Vanderbeck, 2005). We show in Figure 3.4 how stabilization (with an
in-out method) affects the evolution of the space in which the algorithm seeks an optimal solution,
given the level set of the best first-stage solution evaluated so far.

3.1.3 Dual stabilization

Another family of acceleration techniques focuses on the quality of the optimality cuts. We
refer to them as dual stabilization methods. The polyhedral structure of the recourse function
implies a degeneracy of the dual subproblem. In the singular points of the recourse function,
many equivalent extreme dual solutions exist for the subproblem, each one defining a different
optimality cut. The subdifferential of the second-stage function in a singular point is a cone, and
the extremal solutions of the dual subproblem define the generators of this cone. Among all of
those cuts, Magnanti and Wong (1981) proposed a method to find what they call a pareto-optimal
cut. We first define the notion of dominance between cuts. We say that a cut θ ≥ g1x + ν1

dominates or is stronger than θ ≥ g2x+ ν2 if

1. g1x+ ν1 ≥ g2x+ ν2,∀x ∈ X

2. ∃ x̄ ∈ X , g1x̄+ ν1 > g2x̄+ ν2
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Figure 3.3: Classical in-out stabilization scheme (on the left) and the way it is done in Benders
decomposition, as the separation problem does not depend on the epigraph variable θ. The grey
set is the set we want to approximate. Red lines are the cuts generated so far, and the green
segment represents the segment on which the new separation point is chosen.

Then, a cut is said to be pareto-optimal if no cut dominates it. Let x̊ ∈ int(Conv(X)), the relative
interior of the convex hull of X , and x̌ ∈ X the solution to the relaxed master program at a given
iteration of the Benders decomposition algorithm. Let U(x̌, s) = Vert(argmaxπ∈Rm{(ds − Tsx̌)π :
W⊤

s π ≥ gs}), the set of extreme points of (DSP (x̌, s)). The authors propose to find a pareto-
optimal cut in a two-step framework. At each iteration, they first solve the subproblems to
retrieve a dual optimal solution, π0. Then, they solve an auxiliary problem :

max
π∈Rm

(ds − Tsx̊)⊤π

s.t. W⊤
s π ≤ gs

(ds − Tsx̌)⊤π ≥ (ds − Tsx̌)⊤π0

π ∈ Rm
+

(3.3)

in order to find, among the optimal solutions of the dual subproblems, one which maximizes
the cost at a solution x̊ ∈ int(Conv(X )). The importance of using a first-stage solution in the
relative interior of X is illustrated in Figure 3.5. In this example, choosing a point x̊ < x1 would
have led to generate the blue cut C1 which is strictly dominated by the cut C2 on the first-stage
feasible subset X\{x1}. We can however remark that this problem does not occur at first-stage
solution x2, as the subdifferential of the recourse function at this point is a singleton, or at every
non-singular first-stage solution. Then, solving the classical Benders subproblem once at those
points is already sufficient to get a pareto-optimal cut. Moreover, we see that if the solution to
the relaxed master program x̌ is already in int(Conv(X )), then all the possible cuts generated
at x̌ are pareto-optimal. Then, it seems that the practical application of the Magnanti-Wong
method is restricted to first-stage solutions on the edge of the feasible space. However, the
methods allows to discriminate dual solutions in practice, even between different pareto-optimal
cuts. With a wisely chosen core point, close to an optimal solution to the problem, this method
allows to generate deeper cuts, accelerating the convergence of the cutting-plane algorithm.

Papadakos (2008) propose then to extend the algorithm of Magnanti and Wong (1981),
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Figure 3.4: Two iteration of Benders decomposition, without stabilization (on the left) and with
in-out stabilization (on the right). The level sets of the objective function are represented in
blue. x̌ represents the solution to the relaxed master program at each iteration, and the straight
lines in red represent the cuts, at the level of the separation point. The gray sets represent the
level sets, in the relaxed master program, at the value of the best first-stage solution evaluated.
At a given iteration of the algorithm, we only know that the optimal solution belongs to this set.
We clearly see the impact of the primal stabilization, as the volume of this set decreases way
faster in the stabilized method.
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Figure 3.5: A polyhedral function where the first-stage feasible set X = [x1, x2], and x1 is singular.
However, as x1 is not in the relative interior of X , only the red cut C2 is pareto-optimal, as the
blue one is dominated by the red on X .

adding also cuts from first-stage solutions known to generate directly a pareto-optimal cut, and
a practical procedure to generate such points. Finally, Sherali and Lunday (2013) interpret
the Magnanti-Wong procedure as a multi-objective optimization problem and propose a unique
subproblem leading to pareto-optimal cuts by adding a penalization term in the right-hand side
of the primal subproblems. They show that, with a small enough perturbation value, they can
bypass the two-phase resolution proposed by Magnanti and Wong (1981). In their computational
experiments, they also propose to use perturbation values independent to the problem values,
such as 10−6, which could lead to sub-optimal global solutions, but already allows to accelerate
significantly the global optimization procedure on the tested instances.

3.1.4 Deterministic second-stage cost function

Many works on Benders decomposition to solve stochastic two-stage programs focus on solving a
specific type of stochastic programs which satisfy two hypotheses :

• Fixed-recourse hypothesis, which means that matrices Ws in subproblems (2.5) are the
same for every scenario : Ws = W, ∀s ∈ S

• Deterministic second-stage cost function, which means that vectors gs in subproblems
(2.5) are the same for every scenario : gs = g, ∀s ∈ S

Under those two conditions, the subproblems have an interesting property, they have the
same dual polyhedron. This means that the polyhedron of the dual subproblem for a given
scenario s ∈ S, Πs = {π ∈ Rm|W⊤

s π ≤ gs} = {π ∈ Rm|W⊤π ≤ g}, does not depend on the
scenario anymore. Those hypotheses allow the development of efficient specific methods.
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Wets (1983) first propose the so-called bunching method. After the resolution of a given
subproblem s0 ∈ S at a given first-stage solution x0 ∈ X , they get, when it is feasible, a dual
solution, say π0 ∈ Π. As the feasible space of all the subproblems is the same, this solution
is dual feasible for the subproblems associated with every scenario. The principle of bunching
is to verify if this solution is primal feasible for the other scenarios. This solution π0 is dual
optimal for every scenario where primal feasibility is satisfied, and we can skip the resolution of
the associated subproblems.

An other successful method based on those hypotheses is the stochastic decomposition proposed
in (Higle and Sen, 1991). The idea is to compute cuts based on samples of the uncertainty, and
samples of the dual vertices. As the sample of the uncertainty converges to its actual probability
distribution by the law of large numbers, and the set of known dual vertices converges to the
whole set of vertices, the cuts computed tend to be closer to actual Benders cuts and the algorithm
converges to an optimal solution. Using notations of Section 2.2, we denote by

(
ui
)

1≤i≤ℓ
the set

of extreme points of the dual polyhedron Π. The idea of stochastic decomposition is to sample
only one scenario sk at each iteration k of the algorithm according to the probability distribution,
and to store its dual optimal solution in a set, say V (k). At each iteration, a cut is computed as
follow

θ ≥ cx+ 1
k

k∑
t=1

πk
t (dt

s − T t
sx)

where πk
t ∈ Argmax(π(dt

s − T t
sx

(k))|π ∈ Vk) with x(k) the separation point at iteration k. As the
cuts are computed only on samples of scenarios, the cuts are not valid. They may cut some parts
of the recourse function epigraph. To ensure the validity of the method, the coefficients of the
cuts are multiplied at each iteration by k−1

k at iteration k of the algorithm, so that they become
inactive when the number of iteration increases. The idea of the convergence of the method is
based on the population of set V (k) to contain all the desired dual optimal solutions, and on the
law of large numbers, so that the expected cut computed converge to actual Benders cuts as
the weight associated to each scenario will converge to its probability. Some enhancements have
been proposed to stochastic decomposition, such as in (Higle and Sen, 1994) where the use of a
quadratic stabilization allows to delete some cuts in the master program, or in (Gangammanavar
et al., 2018) where the authors adapt the method to the case where the subproblem do not
share the same dual polyhedron, by checking primal feasibility as in the bunching method before
computing the cuts. It has also been used successfully in (Gangammanavar et al., 2016) to solve
an economic energy dispatch problem in the presence of wind farms.

Crainic et al. (2021) propose to add in the master program existing or artificial subproblems,
so that, in the early iterations, the master program would not be totally blind about subproblems
information. They propose, among other propositions, to add an artificial subproblem in the
master where the coefficients are computed as the expectation of all the random coefficients
of the subproblems. The hypothesis of fixed recourse and deterministic cost function ensures
that the epigraph formulation of the artificial scenario contains the epigraph formulation of the
recourse function. Said differently, the value of the artificial scenario give, for every x ∈ X , a
lower bound on the value of the recourse function. They show the efficiency of the method
on some stochastic network design problems. The method has also been successfully applied
on some network design problems applied to logistic services (Belieres et al., 2022). Finally
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Song and Luedtke (2015) propose the adaptative partition-based method. They show, under the
hypotheses of fixed recourse and deterministic second-stage function, that there exists a partition
of the subproblems such that the problem formulated with the expected subproblem over each
elements of the partition leads to an optimal solution to the original problem. (van Ackooij et al.,
2017) proposed to solve the resulting problem with Benders decomposition and a level bundle
stabilization at each iteration to accelerate the solution process and show noticeable accelerations
compared to classical level bundle algorithm. We show in Table 3.1 a comparison between
methods of the literature designed to solve large-scale two-stage stochastic linear programs.

Paper Randomness Solve all Monocut or Exact Finite Cut Stabilization
hypothesis* SPs multicut method convergence aggregation

(Crainic et al., 2021) gs = g, Ws = W ∀s ∈ S Yes Both Yes Yes No No
(Song and Luedtke, 2015) gs = g, Ws = W ∀s ∈ S Yes Not applicable Yes Yes No No
(van Ackooij et al., 2017) gs = g, Ws = W ∀s ∈ S No Both Yes Yes No Level

(Wets, 1983) gs = g, Ws = W ∀s ∈ S No Both Yes Yes No No
(Dantzig and Infanger, 1991) gs = g, Ws = W ∀s ∈ S No Monocut No Yes No No

(Higle and Sen, 1991) gs = g, Ws = W ∀s ∈ S No Monocut Yes No No No
(Trukhanov et al., 2010) No Yes Multicut Yes Yes Yes No

(Linderoth and Wright, 2003) No Yes Multicut Yes Yes No Trust-region
(Wolf et al., 2014) No All or none Monocut and Multicut Yes Yes No Level

(Oliveira et al., 2011) Ws = W ∀s ∈ S No Monocut Inexact Yes No Proximal bundle
* in addition to random parameters having a discrete finite probability distribution

Table 3.1: Comparison of stochastic methods to accelerate Benders decomposition. (SPs:
subproblems)

3.2 Bilevel programming

As stated in Chapter 1, we also study in this work some extensions of stochastic expansion
planning problems which can be modeled with bilevel programming. In particular, we focus in
this section on methods to solve bilevel linear programs in which there might be integer variables
only in the upper level. We first introduce some formulations and notations, and present classical
applications of bilevel programming. Then, we present classical methods to solve linear bilevel
programs, and finally some tailored methods focusing on the mixed-integer structure of the
upper-level program.

3.2.1 General principle and applications

The notion of bilevel programming initially comes from economics, more specifically from Stack-
elberg games (von Stackelberg and Von, 1952). In Stackerberg games, a leader - for example a
company - takes a decision, and an other company, called follower, reacts to this decision. They
both want to maximize their utility. Bilevel programming is particularly adapted to situations
in which different actors (a leader and followers, an attacker and a defender, ...) take decisions
in a sequential way. Bilevel programming has been successfully applied in several fields. Early
applications were motivated by security or military subjects such as in Bracken and McGill
(1974) or traffic and transportation (LeBlanc and Boyce, 1986; Marcotte, 1986; Ben-Ayed et al.,
1988). The question of bilevel optimization in network design is still an active research field
(Fontaine and Minner, 2014; Basciftci and Van Hentenryck, 2020) with applications to air traffic
scheduling for example (Liu et al., 2013). It has also been appllied to supply chain problem (Ryu
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et al., 2004; Yue and You, 2017; Reisi et al., 2019) and portfolio optimization Leal et al. (2020);
González-Díaz et al. (2021). Bilevel optimization have also been very sucessfully applied to
pricing problems and toll optimization, in which the leader decides prices to set on some arcs, and
followers minimizes their cost (Bialas and Karwan, 1984; Labbé et al., 1998). Some extensions
have been proposed such as in (Brotcorne et al., 2008), in which the leader fixes the prices
and the design of the graph. A survey on network pricing can be found in (Labbé and Violin, 2016).

Many applications to bilevel programming arise in the field of energy. Motto et al. (2005)
analyze a security problem in power grids under disruptive threats. Generation and transmission
expansion planning in markets environments have been studied in (Garces et al., 2009; Jin and
Ryan, 2011; Baringo and Conejo, 2012). Grimm et al. (2019); Kleinert and Schmidt (2019) study
the optimal price zones in electricity markets. A recent survey on bilevel programming in energy
and electricity market can be found in (Wogrin et al., 2020). We refer the reader to (Kleinert
et al., 2021) and the references therein for a recent survey on bilevel programming.

Bracken and McGill (1973) first formalized the notations of a bilevel program. A linear bilevel
program is a program of the following form:



min c⊤x+ q⊤y

s.t. Ax ≥ b

Cx+Dy ≥ f

y ∈ arg min
{
g⊤y′ : Wy′ + Tx ≥ d, y′ ∈ Rn2

+
}

x ∈ Zn1,I × Rn1,C

(3.4)

where c ∈ Rn1 , q ∈ Rn2 , A ∈ Rm1×n1 , b ∈ Rm1 , C ∈ Rp1×n1 , D ∈ Rp1×n2 , f ∈ Rp1 , g ∈ Rn2 ,
W ∈ Rm2×n2 , T ∈ Rm2×n1 , d ∈ Rm2 . Variables x are called upper-level variables. n1 = n1,I +n1,C ,
with n1,I ∈ N represents the number of integer upper-level variables and n1,C ∈ N represents the
number of continuous upper-level variables. Variables y are called lower-level variables as they
are variables of the inner optimization problem. This problem is called lower-level program and
defined as a parametric optimization program. Let x ∈ Zn1,I × Rn1,C , the lower-level program of
the bilevel program (3.4) evaluated at x can be formulated as the following linear parametric
program:

ϕ(x) =


min g⊤y

s.t. Wy′ ≥ d− Tx

y′ ∈ Rn2
+

(3.5)

where ϕ(x) denotes its optimal value. Constraints Cx + Dy ≥ f are called the coupling con-
straints. Those constraints couple, in the upper-level program, the upper-level variables with the
lower-level variables, and have to be satisfied only by optimal solutions to the lower-level program.
Finally, we call linking variables the upper-level variables which appear in the lower-level variables.
In many situations, only a subset of the upper-level variables have non-zero coefficients in matrix
T . The notation MIP-LP bilevel program means that upper-level program is a mixed-integer
program and that the lower-level program is a linear program, following the nomenclature
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presented in (Kleinert et al., 2021).

We also define the value-function reformulation of a bilevel program (Ye and Zhu, 1995;
Mitsos et al., 2008) as: 

min c⊤x+ q⊤y

s.t. Ax ≥ b

Cx+Dy ≥ f

g⊤y ≤ ϕ(x)

Wy + Tx ≥ d

y ∈ Rn2
+

x ∈ Zn1,I × Rn1,C

(3.6)

in which the optimality conditions of the lower-level variables is hidden in the cost constraint
g⊤y ≤ ϕ(x).

We finally define the so-called high-point relaxation of the bilevel program (3.4) (Bialas and
Karwan, 1984) as the following single-level program:

min c⊤x+ q⊤y

s.t. Ax ≥ b

Cx+Dy ≥ f

Wy + Tx ≥ d

y ∈ Rn2
+

x ∈ Zn1,I × Rn1,C

(3.7)

The high-point relaxation consists of the relaxation of the optimality condition on the lower-level
program. This leads to a single-level program which is indeed a relaxation of the initial bilevel
program. In the following, we will denote by (HPR(P )) the high-point relaxation of a bilevel
program (P ).

Bilevel programs are in general complex programs. One of the reason is that the feasible
region of such programs is generally non-convex, and may be also defined as the union of several
disconnected spaces because of some coupling constraints. We illustrate this with the example
provided in the survey of Kleinert et al. (2021), in Section 3.1. The feasible region of the following
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bilevel program 

min y

s.t. 0 ≤ x ≤ 1

y ≤ 1.5

y ∈ arg min
{
− y′ : y′ ≤ 1 + x,

y′ ≤ 3− x,

y′ ∈ R+
}

x ∈ R

(3.8)

is represented in Figure 3.6 and is indeed non-convex and defined as the union of two disconnected
spaces.

Figure 3.6: An example of the feasible region of a LP-LP bilevel program. The feasible region is
the union of the two green lines, which defines a non-convex and disconnected feasible space.
Figure taken from (Kleinert et al., 2021)

Because of this structure, designing generic methods to solve bilevel program is complex, and
many methods from the literature require some additional assumptions on the problem, such as
no coupling constraints, or that every linking variable being integer.

3.2.2 Solution techniques

We present in this subsection several general solution techniques to solve MIP-LP bilevel programs.
One of the most successful reformulations used to solve bilevel programs with continuous convex
lower-lever is the so-called KKT-reformulation. It is based on the Karush-Kuhn-Tucker
conditions on a couple of primal-dual variables to define an optimal solution of a problem. By
reformulating the optimality condition of the lower-level variables in problem (3.4) with the KKT
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conditions, we obtain the following single-level non linear problem:

min c⊤x+ q⊤y

s.t. Ax ≥ b

Cx+Dy ≥ f

Wy + Tx ≥ d

W⊤λ ≤ g

λ⊤(Wy + Tx− d) = 0

y ∈ Rn2
+ , λ ∈ Rm2

+

x ∈ Zn1,I × Rn1,C

(3.9)

Constraints Wy + Tx ≤ d are the primal feasibility constraints, constraints W⊤λ ≤ g define the
dual feasibility, and λ⊤(Wy + Tx− d) = 0 are the complementary slackness constraints. Those
are the only non linear constraints in formulation (3.9).

Fortuny-Amat and McCarl (1981) first proposed to linearize the complementary slackness
constraints. Let m2 ∈ N be the number of constraints in the lower-level problem. For every index
1 ≤ i ≤ m2, the ith constraint of the lower-level problem is denoted as Wi·y + Ti·x ≥ di. The
complementary slackness constraints say that, for every constraint Wi·y + Ti·x ≥ di, 1 ≤ i ≤ m2,
either the constraint is satisfied to equality or the dual variable associated to this constraint is
equal to zero. Then, each complementary slackness constraint is equivalent to the two following
constraints: λi ≤Mzi

Wi·y + Ti·x ≤M(1− zi)

where zi is a binary variable and M a large enough constant value. This allows to reformu-
late the bilevel program (3.4) as a mixed-integer single-level program, and to use for example
Branch&Bound techniques to solve it. However, M have to define a valid upper bound on dual
variables λ. In a general setting, this problem can be hard to solve. In fact, Kleinert et al. (2020)
showed that finding a correct Big-M value is as hard as solving the bilevel program in general.
Moreover, Pineda and Morales (2019) showed that the classical way to define Big-M values,
consisting of setting a value, and increasing it if there exists a binding constraint λi ≤Mzi, may
lead to invalid solutions. Then, from a theoretical point of view, this method should be used
only if a valid upper bound on dual variables can be easily found from the formulation. Pineda
et al. (2018) show in an extensive computational study that the method of Fortuny-Amat and
McCarl (1981) is able to solve to optimality even some large-scale instances (with only continuous
variables in both levels) when the value of Big-M is wisely chosen. However, choosing a too
small value of M may lead to incorrect solutions, and a too large value may lead to numerical
instabilities in the solvers and then to poor numerical results.

An other successful method to solve the KKT reformulation is the SOS-1 method proposed
in (Siddiqui and Gabriel, 2013). By adding a new variable u = Wy + Tx − d, one can notice
that the sets {λi, ui} define a SOS-1 for every 1 ≤ i ≤ m2. Then, this problem can be solved
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with a branching procedure. Beginning by solving the problem without any complementary
slackness constraint, one can define a new branching rule. Is a complementary slackness con-
straint is violated, then the algorithm creates two nodes, the first with the additional constraint
λi = 0 and the second with the additional constraint ui = 0. The branching procedure was
initially proposed by Bard and Moore (1990) to solve LP-QP bilevel programs. The use of SOS-1
allow to embed this branching procedure in a more general branching scheme, and to solve
MIP-LP bilevel programs directly with MIP solvers. The procedure is similar to the procedure
proposed by Fortuny-Amat and McCarl (1981), and converges to an optimal solution to the
bilevel program. Moreover, this allows to alleviate the Big-M problems mentioned earlier. In
their computational study, Pineda et al. (2018) show that the SOS-1 method is able to solve to
global optimality many instances (their small and middle sized instances and some large instances).

On the other hand, the non linear KKT reformulation of problem (3.4) also leads to so-
lution techniques from non-linear programming to solve LP-LP bilevel programs. White and
Anandalingam (1993) first proposed a penalty approach to solve linear programs with comple-
mentarity constraints, and Hu and Ralph (2004) further studied the convergence property of the
method. It consists of a lagrangian relaxation of the complementarity constraints. This leads to
a single-level program with a non-linear objective defined on a polytope. It can then be solved
to local optimality with off-the-shelf non-linear solvers. Lv et al. (2007) apply the method to
bilevel programs. Scholtes (2001) proposed a regularization method to solve linear programs
with complementarity constraints. The method consists of modifying the right-hand side of the
complementarity constraints by a positive value t, and to solve iteratively the resulting problem
while making the value of t decrease to 0. Both the regularization and the penalty methods
converge to good quality solutions in a very small amount of time (a few seconds compared
to many hours for the mixed-integer techniques) in the computational study of Pineda et al. (2018).

Finally, from seminal papers to recent works, many papers have proposed tailored solution
techniques to special cases of MIP-MIP bilevel programs. Those algorithms often require the
problem to satisfy particular assumptions, such as the absence of coupling constraints, the
integrity of all linking upper-level variables, or the compactness of the high-point relaxation
feasible region.

Bard and Moore (1992) first proposed a Branch&Bound algorithm when there are only binary
variables in both levels. They were able to solve problems with up to 45 variables in a few
minutes, but reached their time limit of 900s with problems with 50 variables. Faísca et al. (2007)
proposed to use the fact that the lower-level program is a parametric program and that its value
function is piecewise linear. They assume that variables of both levels are continuous or binary
and that the high-point relaxation is compact. Then, by enumeration of the linear parts of the
value function of the lower-level and binary variables of the lower-level, they derive an exponential
number of single-level programs which can be evaluated separately to find an optimal solution.
They only test their algorithm on a toy example. Saharidis and Ierapetritou (2009) proposed a
Benders-like method also under the hypothesis of compact high-point relaxation. They consider
continuous and binary variables in the upper-level and continuous variables in the lower-level.
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They also present their algorithm on a toy example. Zeng and An (2014) proposed a method
based on strong duality reformulation and an enumeration of integer lower-level variables. They
apply a column and constraint generation procedure and solve problems with up to 20 variables
and 30 constraints. Lozano and Smith (2017) proposed a method based on the value-function
reformulation to solve problems with only integer variables in the upper-level. They test their
algorithm on the test set of Xu and Wang (2014) containing instances with up to 920 variables
and 368 constraints.

More recently, several Branch&Cut methods have been developed. DeNegre and Ralphs
(2009) proposed a Branch&Cut in the case of general integer problems in both levels. They
assume that there are no coupling constraint, and propose to discard infeasible bilevel solutions
by applying no-good cuts. Tahernejad et al. (2020) proposed an extension to the method when
there are continuous variables in both levels. Xu and Wang (2014) proposed to apply a multi-way
branching procedure when upper-level variables are all integer and bounded. They solve randomly
generated instances with up to 460 variables and 184 constraints in both stage. Wang and Xu
(2017) proposed the so-called Watermelon algorithm for problems with only integer variables.
They also apply a multi-way branching to exclude polyhedrons containing only infeasible solutions.
Finally Fischetti et al. (2018) proposed a Branch&Cut method using off the shelf MIP solvers.
They use intersection cuts and tailored fathoming rules to solve problems with integer coupling
variables. They accept coupling constraints and do not require the high-point relaxation to be
compact. They also performed extended numerical experiments containing problems with up
to 80000 variables and 5000 constraints. Their algorithms solved to optimality 104 out of 125
interdiction problems in one hour and 20 out of 57 of very challenging instances derived from the
MIPLIB test set.

We summarize the different algorithms to solve MIP-MIP bilevel programs presented here in
Table 3.2. We show some of the hypotheses of the algorithms such as the type of variables that
they can handle, the possibility of having coupling constraint and the compactness requirement
of the high-point relaxation. When the authors provide an experimental study based on an
implementation of their algorithm, we also show the maximum number of constraints and
variables in the problems that they were able to solve. It is clear that bilevel programs are very
challenging programs, and it seems that the largest instances that we can solve have around a
few thousands variables and constraints in the general case.
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Paper x ∈ Z x ∈ R y ∈ Z y ∈ R Coupling HP R Max Max
Constraint Compact Variables Constraints

Bard and Moore (1992) ✓(b) ✓(b) ✓ 45 18
Faísca et al. (2007) ✓(b) ✓ ✓(b) ✓ ✓ ✓ - -

Saharidis and Ierapetritou (2009) ✓(b) ✓ ✓ ✓ ✓ - -
Zeng and An (2014) ✓ ✓ ✓ ✓ 20 30

Lozano and Smith (2017) ✓ ✓ ✓ ✓ 920 368
Xu and Wang (2014) ✓ ✓ ✓ ✓ ✓ 920 368

DeNegre and Ralphs (2009) ✓ ✓ 20 40
Wang and Xu (2017) ✓ ✓ ✓ 920 1288
Fischetti et al. (2018) ✓ ✓* ✓ ✓ ✓ 80000(1) 5000(1)

Tahernejad et al. (2020) ✓ ✓* ✓ ✓ ✓ 4961 4944
*But should not appear in the lower-level program
✓(b) stands for only binary variables
(1) : The algorithms solves to optimality 20 out of the 57 largest instances, and reaches an average optimality gap
of 26.12% of those 57 instances

Table 3.2: Comparison of algorithms to solve MIP-MIP bilevel programs
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Chapter 4

The Benders by batch algorithm

Design and stabilization of an enhanced algorithm to solve multicut Benders
reformulation of two-stage stochastic programs

4.1 Introduction

We propose in this chapter an algorithm to solve two-stage stochastic linear programs. We
assume that the probability distribution is given by a finite set of scenarios and focus on problems
with a large number of scenarios. We consider the following linear program with a scenario block
structure: 

min c⊤x+
∑
s∈S

psg
⊤
s ys

s.t. : Wsys = ds − Tsx, ∀s ∈ S

ys ∈ Rn2
+ , ∀s ∈ S

x ∈ X

(4.1)

where x ∈ Rn1 , c ∈ Rn1 , S is a finite set of scenarios, ps ∈ R+ is a positive weight associated
with a scenario s ∈ S (e.g., a probability), gs ∈ Rn2 , Ws ∈ Rm×n2 , Ts ∈ Rm×n1 , ds ∈ Rm, and
X ⊂ Rn1 is a polyhedral set. Variables x are called first-stage variables and variables ys are called
second-stage variables or recourse variables. Problem (4.1) is called the extensive formulation of
a two-stage stochastic problem.

When the number of scenarios is large, problem (4.1) becomes intractable for LP solvers. Its
reformulation as 

min c⊤x+
∑
s∈S

psϕ(x, s)

s.t. x ∈ X
(4.2)

where for every s ∈ S and every x ∈ X ,

ϕ(x, s) =


min

y
g⊤

s y

s.t. Wsy = ds − Tsx

y ∈ Rn2
+

(4.3)

makes the use of decomposition methods attractive. If we fix the first-stage variables to x̂ ∈ X ,
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then the resulting problem becomes separable according to the scenarios. We denote by (SP (x̂, s))
the subproblem associated with a scenario s ∈ S and by ϕ(x̂, s) its value.

Let Πs = {π ∈ Rm : W⊤
s π ≤ gs} be the polyhedron associated with the dual of (SP (x̂, s)),

which does not depend on first-stage variables x. We denote by Rays(Πs) the set of extreme rays of
Πs, and by Vert(Πs) the set of extreme points of Πs. By Farkas’ Lemma, we can write an expression
of the domain of ϕ(·, s) as dom

(
ϕ(·, s)

)
= {x ∈ Rn1 : r⊤

s (ds − Tsx) ≤ 0, ∀rs ∈ Rays(Πs)}. Then
we can replace in formulation (4.2) the polyhedral mapping x 7→ ϕ(x, s) by its outer linearization
on its domain. Using an epigraph variable θs for every s ∈ S, we obtain the multicut Benders
reformulation (Birge and Louveaux, 1988) of problem (4.1):

min
x,θ

c⊤x+
∑
s∈S

psθs

s.t. : θs ≥ π⊤
s (ds − Tsx), ∀s ∈ S, ∀πs ∈ Vert(Πs) (i)

0 ≥ r⊤
s (ds − Tsx), ∀s ∈ S, ∀rs ∈ Rays(Πs) (ii)

x ∈ X , θ ∈ Rcard(S)

(4.4)

Constraints (i) are called optimality cuts, and constraints (ii), feasibility cuts. Without loss of
generality, we assume that the problem has relatively complete recourse (i.e., X ⊂ dom (ϕ(·, s))
for every scenario s ∈ S), meaning that every subproblem is feasible for every x ∈ X . As a
result, only optimality cuts are required in the Benders decomposition algorithm, and every
x ∈ X defines an upper bound on the optimal value of the problem. Every two-stage linear
stochastic program can be reformulated to a problem satisfying this hypothesis by introducing
slack variables with large enough coefficients in the objective function (see e.g. (Bodur and
Luedtke, 2022) or (Shapiro and Nemirovski, 2005)).

When the total number of subproblems is large, solving all the subproblems at each iteration,
like in Algorithm 1, can be time-consuming. To overcome this issue, we introduce a new exact
algorithm to solve problem (4.1), referred to as the Benders by batch algorithm. The term batch
refers to a given fixed partition of all subproblems into separate batches. We propose a new
stopping criterion that allows us to identify that a solution cannot be proven optimal at the
current iteration without necessarily having to solve all the subproblems. As a result, only few
subproblems are generally solved at a first-stage candidate solution. To prevent introducing too
many cuts in the relaxed master program, the algorithm can use partial cut aggregation, thus
generating a single cut from all subproblems that belong to an identical batch. If the number of
batches is equal to one, the Benders by batch algorithm is equivalent to the classical version of the
Benders decomposition algorithm (multicut or monocut, depending on the use of cut aggregation).

Several existing methods based on similar ideas require fixed recourse (Ws = W, ∀s ∈ S
in problem (4.1)) (Oliveira et al., 2011) and deterministic second-stage objective function
(gs = g, ∀s ∈ S in problem (4.1)) (Wets, 1983; Dantzig and Infanger, 1991; Higle and Sen,
1991).Moreover, some of them do not have finite convergence (Higle and Sen, 1991), or are
not exact (Dantzig and Infanger, 1991). The method proposed in this work is exact, has finite
convergence, and does not require any assumption on the value of the random parameters
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gs,Ws, ds, Ts in problem (4.1).

We also show how to stabilize the proposed algorithm. As the classical primal stabilization
methods of the literature (Ben-Ameur and Neto, 2007; Lemaréchal et al., 1995) are designed
for algorithms which solve all the subproblems at each iteration, it is not possible to apply
them directly. They require the actual value of the recourse function at each iteration, at least
to evaluate their stopping criterion. We therefore propose a generic framework to stabilize
the Benders by batch algorithm and prove the finite convergence and exact behavior of the
stabilized algorithm. Our algorithm is also compatible with classical dual stabilization techniques
(Magnanti and Wong, 1981; Papadakos, 2008; Sherali and Lunday, 2013). We show in Table 4.1
a comparison between the current work and classical algorithm to solve large-scale two-stage
stochastic programs.

Paper Randomness Solve all Monocut or Exact Finite Cut Stabilization
hypothesis* SPs multicut method convergence aggregation

(Crainic et al., 2021) gs = g, Ws = W ∀s ∈ S Yes Both Yes Yes No No
(Song and Luedtke, 2015) gs = g, Ws = W ∀s ∈ S Yes Not applicable Yes Yes No No
(van Ackooij et al., 2017) gs = g, Ws = W ∀s ∈ S No Both Yes Yes No Level

(Wets, 1983) gs = g, Ws = W ∀s ∈ S No Both Yes Yes No No
(Dantzig and Infanger, 1991) gs = g, Ws = W ∀s ∈ S No Monocut No Yes No No

(Higle and Sen, 1991) gs = g, Ws = W ∀s ∈ S No Monocut Yes No No No
(Trukhanov et al., 2010) No Yes Multicut Yes Yes Yes No

(Linderoth and Wright, 2003) No Yes Multicut Yes Yes No Trust-region
(Wolf et al., 2014) No All or none Monocut and Multicut Yes Yes No Level

(Oliveira et al., 2011) Ws = W ∀s ∈ S No Monocut Inexact Yes No Proximal bundle
This work No No Multicut Yes Yes Yes In-out

* in addition to random parameters having a discrete finite probability distribution

Table 4.1: Comparison of stochastic methods to accelerate Benders decomposition. (SPs:
subproblems)

The contributions of this chapter can be summarized as follows:

• We propose a new exact algorithm to solve the Benders reformulation of two-stage linear
stochastic programs with finite probability distribution. This algorithm is based on a
sequential stopping criterion relying on a partition of the subproblems. This stopping
criterion allows the algorithm to solve only a few subproblems at most iterations by detecting
that a first-stage candidate solution cannot be proven optimal early in the subproblems
solution process.

• We develop a general framework to apply primal stabilization to the Benders by batch
algorithm, as classical primal stabilization methods cannot be applied if all the subproblems
are not solved at each iteration. We state sufficient conditions for the stabilized algorithm
to be exact and have finite convergence and provide two effective primal stabilization
schemes.

• We perform an extensive numerical study showing the efficiency of the developed algorithm
on some classical stochastic instances from the literature compared to classical implementa-
tions of the monocut and multicut Benders decomposition algorithm, with and without
in-out stabilization, the static multicut aggregation approach of Trukhanov et al. (2010),
and a level bundle method.

The paper is organized as follows. In section 4.2, we present the Benders by batch algorithm.
Section 4.3 presents a general framework to stabilize our algorithm and two stabilization schemes:
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the first one based on the classical in-out separation scheme, and the second one based on
exponential moving averages. Section 4.4 presents extensive computational experiments. Then,
section 4.5 concludes and outlines perspectives.

4.2 The Benders by batch algorithm

We propose a new algorithm, hereafter referred to as the Benders by batch algorithm, to solve
exactly the multicut Benders reformulation (4.4) of a two-stage stochastic linear program. The
algorithm consists of solving the subproblems by batch and stopping solving subproblems at an
iteration as soon as we identify that the current first-stage solution cannot be proven optimal.
This is made possible by checking, after solving of a subset of subproblems, if the gap between
their optimal values and their epigraph approximations in the relaxed master program already
exceeds the optimality gap.

We first present some notations necessary to formally describe the algorithm. We consider
an ordered set of scenarios S = {s1, s2, ..., scard(S)} and a given batch size 1 ≤ η ≤ card(S).
We define κ = ⌈card(S)/η⌉ as the number of batches of subproblems. For every i ∈ J1, κK, the
ith batch of subproblems Si is defined as Si = {s(i−1)η+1, ..., s(i−1)η+ηi

}, where ηi is the size of
batch i, η1 = · · · = ηκ−1 = η and ηκ = (card(S) mod η). Family (Si)i∈J1,κK defines a partition
of S. We restrict ourselves to batches of the same size, but the method remains valid for any
partition of S. We denote by (x̌(k), (θ̌(k)

s )s∈S) the optimal solution to (RMP )(k) at iteration
k of the algorithm, where x̌(k) denotes the optimal value to the first-stage variables and θ̌

(k)
s

the optimal value to the epigraph variable associated with scenario s ∈ S. A lower bound on
the optimal value of problem (4.1) is then computed as LB(k) = c⊤x̌(k) +∑

s∈S psθ̌
(k)
s . For a

first-stage solution x ∈ X , we denote by UB(x) = c⊤x+∑
s∈S psϕ(x, s) an upper bound on the

optimal value of problem (4.1). Let ε ≥ 0 be the optimality gap of the algorithm. We first define
the notion of provable optimality in cutting-planes methods.

Definition 4. Let ε ≥ 0 be the optimality gap of the algorithm and k an iteration of the
algorithm. We say that a first-stage solution x ∈ X cannot be proven optimal at an iteration k of
the algorithm iff UB(x)− LB(k) > ε.

Saying that a first-stage solution x cannot be proven optimal at an iteration k of the algorithm
means that, either x is not an optimal solution to problem (4.1), or the current lower bound given
by (RMP )(k) is too low to prove the optimality of an optimal solution. The classical stopping
criterion UB − LB ≤ ε of the Benders decomposition algorithm is based on such an optimality
proof, but cannot be directly applied if not all the subproblems are solved. Specifically, an upper
bound on the optimal value of the problem is only known after computing, for a first-stage
solution x ∈ X , the optimal value ϕ(x, s) of every subproblem (SP (x, s)).

We propose hereafter a new stopping criterion, which detects, when it occurs, that the current
first-stage solution x̌(k) to (RMP )(k) cannot be proven optimal without necessarily having to
solve all the subproblems. If after having solved some batches of subproblems, the sum of the
differences between their value and their epigraph approximation in (RMP )(k) already exceeds
the optimality gap ε, the algorithm does not solve the remaining batches of subproblems, as we
already know that x̌(k) cannot be proven optimal (see Proposition 1). In this way, the Benders by
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batch algorithm is likely to explore more first-stage solutions than classical Benders decomposition
algorithms as it tends to solve only a few number of subproblems at most iterations. The proposed
stopping criterion is based on the concept of εi-approximation that we define below.

Definition 5 (εi-approximation). Let ε ≥ 0 be the optimality gap of the algorithm, k ∈ Z+

an iteration and σ a permutation of J1, κK. For every i ∈ J1, κK, we say that batch Sσ(i) is
εi-approximated by (RMP )(k) if

∑
s∈Sσ(i)

ps

(
ϕ(x̌(k), s)− θ̌(k)

s

)
≤ εi (4.5)

with εi = ε−
i−1∑
t=1

∑
s∈Sσ(t)

ps

(
ϕ
(
x̌(k), s

)
− θ̌(k)

s

)
.

We refer to εi as the remaining gap of batch Sσ(i) according to the permutation σ and the
optimality gap ε. For every index i ∈ J2, κK, we have εi = εi−1−

∑
s∈Sσ(i−1)

ps

(
ϕ
(
x̌(k), s

)
− θ̌(k)

s

)
,

which means that computing the successive remaining gaps consists in filling the gap ε with the
differences between the true values of the subproblems and their epigraph approximations in
(RMP )(k).

The following proposition shows that εi-approximation can be used to derive a stopping
criterion for the Benders by batch algorithm.

Proposition 1. Let ε ≥ 0 be the optimality gap of the algorithm, k ∈ Z+ an iteration of the
algorithm, and σ a permutation of J1, κK. The first-stage solution x̌(k) is an optimal solution to
problem (1) if and only if batch Sσ(i) is εi-approximated by (RMP )(k) for every index i ∈ J1, κK.

Proof of proposition 1. (⇒) Assume that x̌(k) is an optimal solution to problem 1. We have:

UB(x̌(k))− LB(k) ≤ ε

⇐⇒ c⊤x̌(k) +
∑
s∈S

psϕ(x̌(k), s)−
(
c⊤x̌(k) +

∑
s∈S

psθ̌
(k)
s

)
≤ ε

⇐⇒
∑
s∈S

ps

(
ϕ
(
x̌(k), s

)
− θ̌(k)

s

)
≤ ε

As family
(
Sσ(1),Sσ(2), ...,Sσ(κ)

)
defines a partition of S, the previous equation gives:

κ∑
t=1

∑
s∈Sσ(t)

ps

(
ϕ
(
x̌(k), s

)
− θ̌(k)

s

)
≤ ε

⇐⇒
κ∑

t=i

∑
s∈Sσ(t)

ps

(
ϕ
(
x̌(k), s

)
− θ̌(k)

s

)
≤ εi, ∀i ∈ {1, . . . , κ}

As ps ≥ 0, ∀s ∈ S, and as (RMP )(k) is a relaxation of problem 1, by independence of the batches,
we have: ∑

s∈Sσ(t)

ps

(
ϕ(x̌(k), s)− θ̌(k)

s

)
≥ 0, ∀t ∈ {1, . . . , κ}. We therefore have:

∑
s∈Sσ(i)

ps

(
ϕ
(
x̌(k), s

)
− θ̌(k)

s

)
≤ εi, ∀i ∈ {1, . . . , κ}
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which is the definition of batch Sσ(i) being εi-approximated by (RMP )(k).
(⇐) Assume that for every index i ∈ J1, κK, we have ∑s∈Sσ(i)

ps

(
ϕ(x̌(k), s)− θ̌(k)

s

)
≤ εi and

therefore: ∑
s∈Sσ(κ)

ps

(
ϕ(x̌(k), s)− θ̌(k)

s

)
≤ εκ (4.6)

By definition of εκ we have:

εκ = ε−
κ−1∑
i=1

[ ∑
s∈Sσ(i)

ps

(
ϕ
(
x̌(k), s

)
− θ̌(k)

s

) ]

⇐⇒ εκ +
κ−1∑
i=1

[ ∑
s∈Sσ(i)

ps

(
ϕ
(
x̌(k), s

)
− θ̌(k)

s

) ]
= ε

Then, using equation (4.6), we have:

κ∑
i=1

[ ∑
s∈Sσ(i)

ps

(
ϕ
(
x̌(k), s

)
− θ̌(k)

s

) ]
≤ ε

⇐⇒ UB(x̌(k))− LB(k) ≤ ε

which implies that x̌(k) is an optimal solution to problem (4.2).

Corollary 3. Let ε ≥ 0 be the optimality gap of the algorithm, k ∈ Z+ an iteration, and σ a
permutation of J1, κK. If there exists an index i ∈ J1, κK such that

∑
s∈Sσ(i)

ps

(
ϕ(x̌(k), s)− θ̌(k)

s

)
> εi,

then x̌(k) cannot be proven optimal.

Remark 1. As stated in Proposition 1, the proposed stopping criterion is equivalent to the
classical stopping criterion UB − LB ≤ ε. This means that, given a relaxed master program with
some Benders cuts, and a first-stage solution x̌, either x̌ can be proven optimal by both stopping
criteria, or both will reject it and let the algorithm continue.

We now present the Benders by batch algorithm (Algorithm 4.1). The while loop from lines
3 to 20 will be referred hereafter as the master loop. Each pass of this loop corresponds to an
iteration of the algorithm. At iteration k, the relaxed master program (RMP )(k) is solved to
obtain a new first-stage solution x̌(k). A permutation σ of J1, κK is then chosen. This permutation
defines the order in which the batches of subproblems (S1,S2, ...,Sκ) will be solved at the current
first-stage solution. The while loop from lines 8 to 19 will be referred as the optimality loop. In
each pass in this loop:

• the subproblems of the current batch Sσ(i) are solved (lines 9 to 10). This part of the
algorithm can be parallelized, as in the classical Benders decomposition algorithm, to
accelerate the procedure.

• the cuts defined by the solutions of the subproblems are added to the relaxed master
program (lines 11 to 15). We add a parameter cutAggr to the algorithm. If this parameter
is set to False, the cuts of each subproblem are added independently to the relaxed master
program, as it is the case in the classical multicut Benders decomposition algorithm. If
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Algorithm 4.1: The Benders by batch algorithm
Parameters : ε ≥ 0, η ∈ J1, card(S)K the batch size, cutAggr ∈ {True, False}

1 Initialization: i← 1, k ← 0, stay_at_x← True
2 Define a partition

(
Si

)
i∈J1,κK of the subproblems according to batch size η

3 while i < κ+ 1 do
4 k ← k + 1
5 Solve (RMP )(k) and retrieve x̌(k), (θ̌(k)

s )s∈S
6 i← 1, ε1 ← ε, stay_at_x← True
7 Choose a permutation σ of J1, κK
8 while stay_at_x = True and i < κ+ 1 do
9 for s ∈ Sσ(i) do

10 Solve (SP (x̌(k), s)) and retrieve ϕ(x̌(k), s) and πs ∈ Vert(Πs)
11 if cutAggr then
12 Add

∑
s∈Sσ(i)

psθs ≥
∑

s∈Sσ(i)

ps

(
π⊤

s (ds − Tsx)
)

to (RMP )(k)

13 else
14 for s ∈ Sσ(i) do
15 Add θs ≥ π⊤

s (ds − Tsx) to (RMP )(k)

16 if
∑

s∈Sσ(i)

ps

(
ϕ(x̌(k), s)− θ̌(k)

s

)
≤ εi then

17 εi+1 ← εi −
∑

s∈Sσ(i)

ps

(
ϕ
(
x̌(k), s

)
− θ̌(k)

s

)
18 i← i+ 1
19 else stay_at_x← False

20 (RMP )(k+1) ← (RMP )(k)

21 Return x̌(k)

this parameter is set to True, we add only one cut, computed as the weighted sum of all
the cuts of the batch according to the probability distribution.

• the gap between the value of the subproblems and the value of their outer linearization is
checked (line 16 to 19). If the batch is εi-approximated by (RMP )(k), then i is increased
by one, and the boolean stay_at_x still equals True. The algorithm returns to line 8
and solves a new batch at the same first-stage solution, as i has been incremented. If
it reaches i = κ + 1, then all batches are εi-approximated by (RMP )(k) according to
permutation σ, and x̌(k) is an optimal solution to problem (4.2). If one of the batches is
not εi-approximated by (RMP )(k), then x̌(k) cannot be proven optimal. Then there exists
at least one of the cuts which excludes the solution (x̌(k), θ̌(k)) from the relaxed master
program. The algorithm exits the optimality loop, and goes to line 3 to solve again the
relaxed master program.

Remark 2 (Partial cut aggregation). One of the most important drawbacks of the multicut
Benders decomposition algorithm is the large number of cuts added to the relaxed master program
at each iteration. As this number of cuts increases, the time needed to solve the master program
can increase dramatically. The Benders by batch algorithm might suffer from the same effect,
even if this effect might be delayed by the method (it adds fewer cuts at each iteration). We
propose to aggregate the cuts of a batch, and add only one cut computed as

∑
s∈Sσ(i)

psθs ≥
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∑
s∈Sσ(i)

ps

(
π⊤

s (ds − Tsx)
)
. As the subproblems are linearly independent, this cut is the Benders

cut associated with the problem created by concatenation of the subproblems of a batch. As the
partition of the subproblems into batches is done prior to the algorithm, the cuts of the same
subproblems are always aggregated together. This can be seen as the static cut aggregation strategy
used in (Trukhanov et al., 2010).

The following proposition is related to the finite convergence of the algorithm.

Proposition 2. Let ε ≥ 0 be the optimality gap. The Benders by batch algorithm converges to
an optimal solution to problem (4.1) in a finite number of iterations.

Proof of proposition 2. We solve each subproblem at most once for every optimal solution to
(RMP )(k) because (S1,S2, ...,Sκ) defines a partition of S. Then if there exists a cut violated
by

(
x̌(k), (θ̌(k)

s )s∈S
)
, we find it in at most card(S) iterations in the optimality loop. Then, as

the total number of optimality cuts is finite and equal to ∑s∈S card(Vert(Πs)), this algorithm
converges in at most card(S)×∑s∈S card(Vert(Πs)) iterations. When the cuts are aggregated,
if the cut of a subproblem separates the solution to the relaxed master program

(
x̌(k), (θ̌(k)

s )s∈S
)
,

then the aggregated cut of the batch also separates it, and the result remains true.

We propose an ordered strategy to choose the permutation σ at each iteration. We assume
that there exists an initial and arbitrary ordering of the batches S1,S2, ...,Sκ and σ = id at the
first iteration. When we choose a new permutation, at the beginning of a master loop, the ordered
strategy consists of starting from the first batch of subproblems that has not been solved at the
previous first-stage solution. We introduce the following cyclic permutation µ of the batches:

µ =

1 2 ... κ− 1 κ

2 3 ... κ 1


Let N be the number of batches solved at the previous first-stage solution. Then, the ordered
strategy consists of defining the new permutation σ at line 7 of Algorithm 4.1 as σ ← µN ◦ σ.

This strategy has a deterministic behavior and implies solving all the subproblems the same
number of times during the optimization process. A pure random strategy, shuffling the set of
batches at the beginning of each master loop, showed a high variance in the total number of
iterations. In preliminary computational experiments, we observed factors up to two between
the running times of the fastest and the longest run on the same instance. As such a behavior is
not desirable, we did not pursue this path.

4.3 Stabilization of the Benders by batch algorithm

The Benders by batch algorithm introduced in the previous section (Algorithm 4.1) may suffer, as
every cutting-plane algorithm, from strong oscillations of the first-stage variables, and thus may
compute, in the early iterations, cuts that exclude solutions that are far away from the optimal
solution (see e.g. (Vanderbeck, 2005) section 7). However, the classical primal stabilization
procedures presented in Chapter 3 do not apply directly if we do not solve all the subproblems
at each iteration as they require the value of the recourse function for the current first-stage
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solution. We propose in this section a general framework to stabilize our algorithm, and show a
sufficient condition for the convergence of the stabilized algorithm.

4.3.1 The stabilized Benders by batch algorithm

Many effective primal stabilization methods for cutting-plane algorithms solve, at each iteration,
a separation problem in a point x(k) (hereafter referred to as the separation point) that is different
from the current optimal first-stage solution x̌(k) to the relaxed master program (Zverovich et al.,
2012; Pessoa et al., 2013). We define hereafter formally a primal stabilization scheme, in which
the separation point is computed as the image by a given mapping of a vector defining the state
of the stabilization. Such a scheme must also incorporate a way to update this state vector.

Definition 6 (Primal stabilization scheme). A primal stabilization scheme is characterized by
a triplet (D, ψ1, ψ2) where D is a stabilization state space and (ψ1, ψ2) is a pair of mappings{
ψ1 : X ×D → D
ψ2 : D → X

such that ψ2 is surjective.

At an iteration k of the stabilized algorithm, mapping ψ1 computes the state vector of the
stabilization to be used at the current iteration from the precedent state vector and the optimal
solution to the current relaxed master program. This state vector may contain some elements
of X , such as the last optimal solution to the relaxed master program. An initial stabilization
state vector d0 ∈ D is required when using the primal stabilization scheme in the first iteration
of our algorithm. From the current stabilization state vector, mapping ψ2 is then responsible for
generating a first-stage solution x(k) at which the subproblems are solved and cuts are generated.
Function ψ2 is required to be surjective to ensure that every first-stage solution can be separated.

We now present how to adapt the Benders by batch algorithm (Algorithm 4.1) when such a
primal stabilization scheme is used. We generalize Definition 5 and Proposition 1 to take into
account that the lower bound at a given iteration k is computed based on the current optimal
solution x̌(k) to RMP, while the subproblems are solved at a separation point x that is usually
different from x̌(k). As this difference between the first-stage solutions induces a difference in the
first-stage cost, we subtract in the definition of the remaining gap εi the difference c⊤(x− x̌(k)).
Because θ̌(k)

s is a lower bound on ϕ
(
x̌(k), s

)
, but not on ϕ (x, s), we also need to account for

cases where ϕ (x, s)− θ̌(k)
s < 0.

Definition 7 (εi(x)-approximation at a first-stage solution x). Let ε ≥ 0 be the optimality gap
of the algorithm, k ∈ Z+ an iteration and σ a permutation of J1, κK. For every i ∈ J1, κK, we say
that batch Sσ(i) is εi(x)-approximated by (RMP )(k) at x ∈ X if

[ ∑
s∈Sσ(i)

ps

(
ϕ (x, s)− θ̌(k)

s

) ]+
≤ εi(x)

with εi(x) = ε − c⊤(x − x̌(k)) −
[ i−1∑

t=1

∑
s∈Sσ(t)

ps

(
ϕ (x, s)− θ̌(k)

s

) ]+
and ζ+ = max{ζ, 0} for any

ζ ∈ R.

Remark 3. Saying that a batch Sσ(i) is εi(x̌(k))-approximated by (RMP )(k) is equivalent to
saying that Sσ(i) is εi-approximated by (RMP )(k) in Algorithm 4.1.
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The following proposition introduces a valid stopping criterion for our stabilized version of
the Benders by batch algorithm.

Proposition 3. Let ε ≥ 0 be the optimality gap of the algorithm, k ∈ Z+ an iteration of the
algorithm, and σ a permutation of J1, κK. If there exists a first-stage solution x ∈ X such that
batch Sσ(i) is εi(x)-approximated by (RMP )(k), for all i ∈ J1, κK, then x is an optimal solution
to problem (4.2).

Proof of proposition 3. Let x ∈ X be a first-stage solution such that batch Sσ(i) is εi(x)-
approximated by (RMP )(k), for all i ∈ J1, κK. Then, Sσ(κ) is εκ(x)-approximated by (RMP )(k).
This means:

[ ∑
s∈Sσ(κ)

ps

(
ϕ (x, s)− θ̌(k)

s

) ]+
≤ ε− c⊤(x− x̌(k))−

κ−1∑
t=1

[ ∑
s∈Sσ(t)

ps

(
ϕ (x, s)− θ̌(k)

s

) ]+

⇒
[ ∑

s∈Sσ(κ)

ps

(
ϕ (x, s)− θ̌(k)

s

) ]+
+
[ κ−1∑

t=1

∑
s∈Sσ(t)

ps

(
ϕ (x, s)− θ̌(k)

s

) ]+
≤ ε− c⊤(x− x̌(k))

As ζ ≤ ζ+ for any ζ ∈ R, we have:

κ∑
t=1

∑
s∈Sσ(t)

ps

(
ϕ (x, s)− θ̌(k)

s

)
≤ ε− c⊤(x− x̌(k))

⇒
∑

s∈S
ps

(
ϕ (x, s)− θ̌(k)

s

)
≤ ε− c⊤(x− x̌(k))

⇒
(
c⊤x+ ∑

s∈S
psϕ (x, s)

)
−
(
c⊤x̌(k) + ∑

s∈S
psθ̌

(k)
s

)
≤ ε

⇒ UB(x)− LB(k) ≤ ε

and x is an optimal solution to problem (4.2).

We now present the stabilized Benders by batch algorithm (Algorithm 4.2).
As, at each iteration, the cuts are now generated from a first-stage solution x(k) that may be

different from the first-solution to (RMP )(k), there is no guarantee that the cuts added separate
the solution to the relaxed master program (x̌(k), (θ̌(k)

s )s∈S). When there is no cut, among added
cuts, that separates the solution to the relaxed master program, we say that first-stage solution
x(k) induces a mis-pricing (Pessoa et al., 2013). We represent such a case in Figure 4.1. Then,
there is no need to solve again the relaxed master program as its solution remains the same. A
boolean variable misprice appears in Algorithm 3 to handle such a case.

The algorithm is structured in three nested while loops. The while loop from line 3 to 31 is
called the master loop. In this loop, the relaxed master program is solved in order to define a
new first-stage solution x̌(k). The while loop from line 5 to 31 is called the separation loop. This
loop updates the current separation point x(k) while the solution to the relaxed master program
x̌(k) remains constant. We increment the iteration counter k each time a new separation point is
calculated. The while loop from line 12 to 29 is called the optimality loop. In the optimality loop,
the subproblems of current batch Sσ(i) are solved in x(k). There are three possibilities at the end
of this loop:
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Algorithm 4.2: The stabilized Benders by batch algorithm
Parameters : ε ≥ 0 , η ∈ J1, card(S)K the batch size, cutAggr ∈ {True, False}, a primal

stabilization scheme (D, ψ1, ψ2) and an initial stabilization state vector d(0) ∈ D.
1 Initialization: i← 1, k ← 0, misprice← False, stay_at_x← True
2 Define a partition

(
Si

)
i∈J1,κK of the subproblems according to batch size η

3 while i < κ+ 1 do
4 Solve (RMP )(k+1) and retrieve x̌(k+1), (θ̌(k+1)

s )s∈S
5 do
6 k ← k + 1
7 d(k) ← ψ1(x̌(k), d(k−1))
8 x(k) ← ψ2(d(k))
9 i← 1, εi ← ε− c⊤(x(k) − x̌(k)), stay_at_x← True

10 Choose a permutation σ of J1, κK
11 misprice← True
12 while stay_at_x = True and i < κ+ 1 do
13 for s ∈ Sσ(i) do
14 Solve (SP (x(k), s)) and retrieve ϕ(x(k), s) and πs ∈ Vert(Πs)
15 if cutAggr then
16 Add

∑
s∈Sσ(i)

psθs ≥
∑

s∈Sσ(i)

ps

(
π⊤

s (ds − Tsx)
)

to (RMP )(k)

17 else
18 for s ∈ Sσ(i) do
19 Add θs ≥ π⊤

s (ds − Tsx) to (RMP )(k)

20 if
∑

s∈Sσ(i)

[
ps

(
ϕ(x(k), s)− θ̌(k)

s

) ]+
≤ εi then

21 εi+1 ← ε− c⊤(x(k) − x̌(k))−
[ i∑

t=1

∑
s∈Sσ(t)

ps

(
ϕ(x(k), s)− θ̌(k)

s

) ]+

22 i← i+ 1
23 else
24 stay_at_x← False

25 if cutAggr then
26 if

∑
s∈Sσ(i)

psθ̌
(k)
s <

∑
s∈Sσ(i)

ps

(
π⊤

s (ds − Tsx̌
(k))
)

then misprice← False

27 else
28 for s ∈ Sσ(i) do
29 if θ̌(k)

s < π⊤
s (ds − Tsx̌

(k)) then misprice← False

30 (RMP )(k+1) ← (RMP )(k), x̌(k+1) ← x̌(k), (θ̌(k+1)
s )s∈S ← (θ̌(k)

s )s∈S
31 while misprice

32 Return x(k)

• Case 1: The current batch is εi(x(k))-approximated by (RMP )(k). It satisfies the condition
of line 20 of Algorithm 4.2. Then, stay_at_x still equals True at the end of the loop, and
i is incremented by one. If the algorithm reaches i = κ+ 1, then the algorithm stops, and
x(k) is an optimal solution to the problem with an optimality gap ε ≥ 0. Otherwise, the
algorithm solves the next batch of subproblems at the same first-stage solution.

• Case 2: The current batch Sσ(i) is not εi(x(k))-approximated by (RMP )(k) and there
exists no cut derived from this batch of subproblems, or a previous batch, which separates
the solution (x̌(k), (θ̌(k)

s )s∈S) to the relaxed master program [see Figure 4.1]. The variable
misprice still equals True. As the solution to the relaxed master program has not been
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cut, it is useless to solve the relaxed master program again. We exit the optimality loop,
but stay in the separation loop. We define a new separation point x(k), a new permutation
of J1, κK, and begin a new optimality loop.

• Case 3: The current batch Sσ(i) is not εi(x(k))-approximated by (RMP )(k) and at least one
of the cuts derived from this batch of subproblems separates the solution (x̌(k), (θ̌(k)

s )s∈S)
to the relaxed master program [see Figure 4.2]. This means that misprice is set to False.
The variable stay_at_x is set to False and we exit the optimality loop. Since misprice

equals False, we exit the separation loop. We then go to line 3, and solve again the relaxed
master program.

Figure 4.1: The cut derived from first-
stage solution x(k) does not separate the
solution to the relaxed master program
(x̌(k), (θ̌(k)

s )s∈S). The solution to (RMP )(k)

remains the same. The separation point x(k)

induces a mis-pricing.

Figure 4.2: The cut derived from first-stage
solution x(k) separates the solution to the
relaxed master program (x̌(k), (θ̌(k)

s )s∈S).

4.3.2 A sufficient condition for the convergence of the stabilized Benders by
batch algorithm

In this section we prove that, if the sequence of separation points produced by the primal
stabilization scheme converges to the solution to the relaxed master program when this latter
solution remains constant over the iterations (i.e., during a mis-pricing sequence), then the
stabilized Benders by batch algorithm (Algorithm 4.2) converges to an optimal solution to
problem (4.1) in a finite number of iterations.

Definition 8 (Convergence property and finite convergence property of a primal stabilization
scheme). Let (D, ψ1, ψ2) be a primal stabilization scheme. For every (x, d) ∈ X ×D we define
(dℓ

x)ℓ∈N∗ as

dℓ
x =

{
ψ1(x, dℓ−1

x ) ℓ > 1
ψ1(x, d) ℓ = 1

∀ℓ ∈ N∗

the sequence of stabilization state vectors obtained by successive applications of ψ1 on a constant
first-stage solution x ∈ X .

• We say that a primal stabilization scheme (D, ψ1, ψ2) satisfies the convergence property
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if:
∀(x, d) ∈ X ×D, lim

ℓ→+∞
ψ2
(
dℓ

x

)
= x

• We say that a primal stabilization scheme (D, ψ1, ψ2) satisfies the finite convergence
property if:

∀(x, d) ∈ X ×D, ∃ℓ0 ∈ N∗, ψ2
(
dℓ0

x

)
= x

We first need to prove the following intermediate results to show that the stabilized Benders
by batch algorithm effectively converges to an optimal solution to problem (4.1).

Proposition 4. Let ε > 0 (resp. ε ≥ 0) be the optimality gap of Algorithm 4.2, k ∈ Z+ an
iteration, and (x̌(k), (θ̌(k)

s )s∈S) an optimal solution to (RMP )(k). If
(
x(k+r))

r∈N is a sequence of
elements of X converging to x̌(k) (resp. converging to x̌(k) in a finite number of iterations) and(
σ(k+r))

r∈N a sequence of permutations of J1, κK, then there exists t ∈ N such that one of the
following assertions is true:

1. First-stage solution x(k+t) is proven to be an optimal solution to problem (4.1) with an
optimality gap of ε > 0 (resp. ε ≥ 0).

2. There exists a cut generated in x(k+t) which separates (x̌(k), (θ̌(k)
s )s∈S).

Proof of proposition 4. The proof consists of two cases:

1. ε > 0 and
(
x(k+r))

r∈N converges to x̌(k)

2. ε ≥ 0 and
(
x(k+r))

r∈N converges to x̌(k) in a finite number of iterations

• Case 1: Let ε > 0 be the optimality gap and
(
x(k+r))

r∈N be a sequence of elements
of X converging to x̌(k). We focus on the solution (x̌(k), (θ̌(k)

s )s∈S) to the relaxed master
program. There are two possible sub-cases:

– Sub-case 1.1 There exists t0 ∈ N such that for all l ≥ t0 and for each index i ∈ J1, κK,
batch Sσ(k+l)(i) is εi(x̌(k))-approximated by (RMP )(k) with an optimality gap of ε

4

– Sub-case 1.2 For all t0 ∈ N, there exists l ≥ t0 and an index i ∈ J1, κK such that
batch Sσ(k+l)(i) is not εi(x̌(k))-approximated by (RMP )(k) with an optimality gap of ε

4

Sub-case 1.1: Assume that there exists t0 ∈ N such that for all l ≥ t0 and for each index
i ∈ J1, κK, batch Sσ(k+l)(i) is εi(x̌(k))-approximated by (RMP )(k) with an initial gap of ε

4 . This
means that for every l ≥ t0 and for every index i ∈ J1, κK,

[ ∑
s∈S

σ(k+l)(i)

ps

(
ϕ
(
x̌(k), s

)
− θ̌(k)

s

) ]+
≤ ε

4 −
[ i−1∑

t=1

∑
s∈S

σ(k+l)(t)

ps

(
ϕ
(
x̌(k), s

)
− θ̌(k)

s

) ]+
(4.7)

As the number of permutations of J1, κK is finite, as for every l ≥ t0 and for each index
i ∈ J1, κK, the application x 7→

[∑
s∈S

σ(k+l)(i)
ps

(
ϕ (x, s)− θ̌(k)

s

) ]+
is continuous, and as sequence
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(
x(k+r))

r∈N converges to x̌(k), there exists t1 ∈ N, t1 ≥ t0 such that, for every l ≥ t1 and for every
index i ∈ J1, κK:

[ ∑
s∈S

σ(k+l)(i)

ps

(
ϕ
(
x(k+l), s

)
− θ̌(k)

s

) ]+
≤
[ ∑

s∈S
σ(k+l)(i)

ps

(
ϕ
(
x̌(k), s

)
− θ̌(k)

s

) ]+
+ ε

4 (4.8)

Moreover, as for every l ≥ t0 and for every index i ∈ J1, κK, the application x 7→[ i−1∑
t=1

∑
s∈S

σ(k+l)(i)

ps

(
ϕ (x, s)− θ̌(k)

s

) ]+
is continuous, there exists t2 ∈ N, t2 ≥ t0 such that, for

every l ≥ t2 and for every index i ∈ J1, κK:

[ i−1∑
t=1

∑
s∈S

σ(k+l)(i)

ps

(
ϕ
(
x(k+l), s

)
− θ̌(k)

s

) ]+
− ε

4 ≤
[ i−1∑

t=1

∑
s∈S

σ(k+l)(t)

ps

(
ϕ
(
x̌(k), s

)
− θ̌(k)

s

) ]+

⇒ −
[ i−1∑

t=1

∑
s∈S

σ(k+l)(i)

ps

(
ϕ
(
x̌(k), s

)
− θ̌(k)

s

) ]+
≤ −

[ i−1∑
t=1

∑
s∈S

σ(k+l)(t)

ps

(
ϕ
(
x(k+l), s

)
− θ̌(k)

s

) ]+
+ ε

4

(4.9)
And, as (x(k+r))r∈N converges to x̌(k), there exists t3 ∈ N such that, ∀l ≥ t3, 0 ≤ ε

4 − c
⊤(x(k+l) −

x̌(k)).
Then, by setting t4 = max{t1, t2, t3}, and jointly using (4.7), (4.8) and (4.9), we have, for

every l ≥ t4 and for every index i ∈ J1, κK:

[ ∑
s∈S

σ(k+l)(i)

ps

(
ϕ
(
x(k+l), s

)
− θ̌(k)

s

) ]+
≤ ε

4 + ε

4 + ε

4 −
[ i−1∑

t=1

∑
s∈S

σ(k+l)(t)

ps

(
ϕ
(
x(k+l), s

)
− θ̌(k)

s

) ]+

⇒
[ ∑

s∈S
σ(k+l)(i)

ps

(
ϕ
(
x(k+l), s

)
− θ̌(k)

s

) ]+
≤ 3ε

4 −
[ i−1∑

t=1

∑
s∈S

σ(k+l)(t)

ps

(
ϕ
(
x(k+l), s

)
− θ̌(k)

s

) ]+

⇒
[ ∑

s∈S
σ(k+l)(i)

ps

(
ϕ
(
x(k+l), s

)
− θ̌(k)

s

) ]+
≤ ε−c⊤(x(k+l)−x̌(k))−

[ i−1∑
t=1

∑
s∈S

σ(k+l)(t)

ps

(
ϕ
(
x(k+l), s

)
− θ̌(k)

s

) ]+

And for every index i ∈ J1, κK, batch Sσ(k+t4)(i) is εi(x(k+t4))-approximated by (RMP )(k) with
an optimality gap of ε, which implies, by Proposition 3, that x(k+t4) is an optimal solution to
problem (4.2).

Sub-case 1.2: Now assume that for all t0 ∈ N, there exists l ≥ t0 and an index i ∈ J1, κK
such that batch Sσ(k+l)(i) is not εi(x̌(k))-approximated by (RMP )(k) with an initial optimality
gap of ε

4 . This means, that for all t0 ∈ N, there exists l ≥ t0 and an index i ∈ J1, κK such that:

[ ∑
s∈S

σ(k+l)(i)

ps

(
ϕ
(
x̌(k), s

)
− θ̌(k)

s

) ]+
>
ε

4 −
[ i−1∑

t=1

∑
s∈S

σ(k+l)(t)

ps

(
ϕ
(
x̌(k), s

)
− θ̌(k)

s

) ]+
(4.10)

Then, there exists δ > 0 such that, for all t0 ∈ N, there exists l ≥ t0 and an index i ∈ J1, κK (the
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first index such that (4.10) occurs) such that:

∑
s∈S

σ(k+l)(i)

ps

(
ϕ(x̌(k), s)− θ̌(k)

s

)
> δ (4.11)

Let g(k+τ)
i ∈ Rn1 be a subgradient associated with the function x 7→

∑
s∈S

σ(k+τ)(i)
psϕ(x(k+τ), s)

at point x(k+τ). The aggregated cut obtained after solving batch Sσ(k+τ)(i) can be written as
follows:

g
(k+τ)⊤
i (x− x(k+τ)) +

∑
s∈S

σ(k+τ)(i)

psϕ(x(k+τ), s) ≤
∑

s∈S
σ(k+τ)(i)

psθs

By continuity of ϕ(., s) for all s ∈ S and as the total number of cuts is finite, there exists L > 0
such that for every l ∈ N and for every i ∈ J1, κK, ||g(k+l)

i ||2 ≤ L. Then, as sequence
(
x(k+r))

r∈N
converges to x̌(k), there exists t1 ∈ N such that for all l ≥ t1 and for all i ∈ J1, κK,

|g(k+l)⊤
i (x̌− x(k+l))| < δ

3 (4.12)

Moreover, as sequence
(
x(k+r))

r∈N converges to x̌(k) and by continuity of ϕ(., s), there exists
t2 ∈ N such that for all l ≥ t2 and for each index i ∈ J1, κK:

∑
s∈S

σ(k+l)(i)

psϕ(x̌(k), s) <
∑

s∈S
σ(k+l)(i)

psϕ(x(k+l), s) + δ

3 (4.13)

Then, let t3 = max{t1, t2}. Let i ∈ J1, κK and l0 ≥ t3 be the first indices such that (4.11) occurs.
We have, by combining (4.11), (4.12) and (4.13):

g
(k+l0)⊤
i (x̌(k) − x(k+l0)) +

∑
s∈S

σ(k+l0)(i)

psϕ(x(k+l0), s)−
∑

s∈S
σ(k+l0)(i)

psθ̌
(k)
s >

δ

3

Then, at x(k+l0), the aggregated cut of the batch Sσ(k+l0)(i) separates the solution to the relaxed
master program, as its value at x̌(k) is strictly larger than the outer linearization given by the
relaxed master program. If cutAggr = False, there exists at least one of the cuts associated
with a subproblem of the batch which separates the solution to the relaxed master program.

• Case 2: Let ε ≥ 0 be the optimality gap and
(
x(k+r))

r∈N be a sequence of elements of X
converging to x̌(k) in a finite number of iterations.

As
(
x(k+r))

r∈N converges to x̌(k), the proof of case 1 holds also in this case for every ε > 0.
We need to prove that the proposition is true if ε = 0. Let t0 be the first iteration such that
x(k+t0) = x̌(k). Either, for each index i ∈ J1, κK, batch Sσ(k+t0)(i) is εi(x̌(k))-approximated
by (RMP )(k) with an optimality gap of 0, and by proposition 3, x(k+t0) is an optimal
solution to problem (4.2) with an optimality gap ε = 0, or there exists a batch which is
not εi(x̌(k))-approximated by (RMP )(k), and the aggregated cut derived from this batch
separates the solution to the relaxed master program.
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Proposition 5. If the primal stabilization scheme satisfies the convergence property (resp.
finite convergence property) of Definition 8, then the stabilized Benders by batch algorithm
converges to an optimal solution to problem (4.1) in a finite number of iterations, for every ε > 0
(resp. ε ≥ 0).

Proof of proposition 5. Let k ∈ Z+ an iteration of the algorithm, σ a permutation of J1, κK, and
x(k) ∈ X the separation point. There are three possible cases:

1. ∀i ∈ J1, κK, batch Sσ(i) is εi(x(k))-approximated by (RMP )(k). Then x(k) is an optimal
solution to problem (4.1) with an optimality gap of ε > 0 (resp. ε ≥ 0).

2. There exists an index i ∈ J1, κK such that solving the subproblems of batch Sσ(i) generates
a cut which separates the solution to (RMP )(k). As the total number of cuts is finite, we
can only be in this situation a finite number of times.

3. There exists no cut derived at x(k) which separates the solution to (RMP )(k). Then,
x(k) induces a mis-pricing. The solution to (RMP )(k+1) remains the same. Let suppose
that this happens during an infinite number of consecutive iterations. Then, as the
primal stabilization scheme satisfies the convergence property (resp. the finite convergence
property) , the sequence of separation points converges to x̌(k) (resp. in a finite number of
iterations) . Prop. 4 states that in that case, we end up in a finite number of iterations in
case 1 or case 2.

In conclusion, the stabilized Benders by batch algorithm ends in a finite number of iterations
in case 1, and finds an optimal solution to problem (4.1).

Remark 4. The classical Benders decomposition algorithm is equivalent to the Benders by batch
algorithm with a batch size η = card(S). Therefore, Algorithm 4.2 describes a valid way to add
primal stabilization to the classical Benders decomposition algorithm (providing that the primal
separation scheme satisfies the convergence property).

4.3.3 Two primal stabilization schemes satisfying the convergence property

We introduce in this section two primal stabilization schemes satisfying the convergence property,
based on the in-out stabilization approach (Ben-Ameur and Neto, 2007). In the in-out approach,
the stability center x̂(k) at iteration k is equal to the separation point (among those calculated so
far) with the smallest objective function value: x̂(k) = arg minj∈J0,k−1K {c⊤x(j) +∑

s∈S psϕ(x(j), s)}.
Then the separation point x(k) is then defined on the segment between x̂(k) (in-point) and x̌(k)

(out-point): x(k) = αx̌(k) + (1 − α)x̂(k). The in-out approach creates a sequence of stability
centers with decreasing objective values converging to an optimal solution to the problem. The
definition of x̂(k) requires computing the value ϕ(x(j), s) for every scenario s ∈ S, meaning that
all the subproblems need to be solved at every separation point. As we generally do not solve all
the subproblems at a given iteration, the in-out stabilization approach needs to be adapted for
use in the Benders by batch algorithm.

We present below two primal stabilization schemes.
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Scheme 1 - Basic stabilization: Let α ∈ (0, 1] be a stabilization parameter. The
separation point at iteration k is computed as follows:

x(k) = αx̌(k) + (1− α)x(k−1)

for k ≥ 1, and x(0) ∈ X is a feasible first-stage solution. This basically consists in doing 100α%
of the way from the previous separation point to the solution to the master program. This can
be seen as an in-out stabilization, updating the stability center to the last separation point at
each iteration. By convexity of X , x(k) belongs to X for every k ∈ N.

The basic stabilization scheme can be expressed according to Definition 6 as:

D = X 2

ψ1 :
{
X ×D → D
x, (y, z) 7→ (x, αy + (1− α)z)

ψ2 :
{
D → X
(x, y) 7→ αx+ (1− α)y

with d0 = (x(0), x(0)) where x(0) ∈ X is a feasible first-stage solution. The vector of parameters
d(k) computed at the iteration k is equal to (x̌(k), x(k−1)).

Proposition 6. The basic stabilization scheme satisfies the convergence property.

Proof of proposition 6. Let (x, (y, z)) ∈ X ×D. We have:

d1
x =

(
x, αy + (1− α)z

)
d2

x =
(
x, αx+ (1− α)αy + (1− α)2z

)
Let u = αy + (1− α)z − x, we have d2

x =
(
x, x+ (1− α)u

)
. Then, by induction,

∀ℓ ≥ 2, dℓ
x =

(
x, x+ (1− α)ℓ−1u

)
And ∀ℓ ≥ 2, ψ2(dℓ

x) = x+ (1− α)ℓu. Finally, lim
ℓ→+∞

ψ2
(
dℓ

x

)
= x.

Scheme 2 - Solution memory stabilization: This stabilization uses an exponentially
weighted average of the previous master solutions to compute the separation point. We choose
a stabilization parameter α ∈ (0, 1] and a memory parameter β ∈ [0, 1). We also define the
exponentially weighted averaged point x̄(k) on master solutions. The separation point is computed
as follows: {

x̄(k) = βx̄(k−1) + (1− β)x̌(k)

x(k) = αx̄(k) + (1− α)x(k−1)

for k ≥ 1, and x(0) = x̄(0) ∈ X is a feasible first-stage solution. By convexity of X , x(k) belongs
to X for every k ∈ N. This stabilization takes inspiration from the stochastic gradient algorithm
with momentum (Polyak, 1964) that has proven its efficiency in solving large-scale stochastic
programs in the field of deep learning (Sutskever et al., 2013).
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The solution memory stabilization scheme can be expressed according to Definition 6 as:

D = X 2

ψ1 :
{
X ×D → D
x, (y, z) 7→ (βy + (1− β)x, αy + (1− α)z)

ψ2 :
{
D → X
(x, y) 7→ αx+ (1− α)y

with d0 = (x(0), x(0)) where x(0) ∈ X is a feasible first-stage solution. The vector of parameters
d(k) computed at the iteration k is equal to (x̄(k), x(k−1)).

Proposition 7. The solution memory stabilization scheme satisfies the convergence property.

Proof of proposition 7. Let (x, (y, z)) ∈ X ×D. We have:

d1
x =

(
x+ β(y − x), αy + (1− α)z

)
d2

x =
(
x+ β2(y − x), x− (1− α)x+ αβ(y − x) + (1− α)αy + (1− α)2z

)
We define u = y − x and v = αy + (1− α)z − x. Then

d2
x =

(
x+ β2u, x+ αβu+ (1− α)v

)
d3

x =
(
x+ β3u, x+ α(β2 + β(1− α))u+ (1− α)2v

)
By induction, we have

dℓ
x =

(
x+ βℓu, x+ α

(∑ℓ−1
i=1 β

i(1− α)ℓ−i−1)u+ (1− α)ℓ−1v
)
, ∀ℓ ≥ 2

We define δ = max{β, (1−α)}. For all i ≥ 0 and for all ℓ ≥ 2, βi ≤ δi and (1−α)ℓ−i−1 ≤ δℓ−i−1.
Then

ℓ−1∑
i=1

βi(1− α)ℓ−i−1 ≤ (ℓ− 1)δℓ−1

Then, lim
ℓ→+∞

∑ℓ−1
i=1 β

i(1− α)ℓ−i−1 = 0 and lim
ℓ→+∞

dℓ
x = (x, x). Finally, lim

ℓ→+∞
ψ2
(
dℓ

x

)
= x.

It is possible to adapt both schemes so that they satisfy the finite convergence property.
Specifically, the separation point should become equal to the solution to the relaxed master
program in a finite number of iterations when there are successive iterations which induce a
mis-pricing. For the basic stabilization scheme, this implies that the value of α should increase
to become equal to one in a finite number of iterations if successive mis-pricings occur. If t ∈ N
denotes the number of consecutive mis-pricings that have occurred before starting iteration k

of the algorithm, then computing x(k) replacing α by min{1, α(1 + t)} works. For the solution
memory stabilization scheme, in similar cases, the value of α should increase to become equal to
one and the value of β should decrease to become equal to zero in a finite number of iterations.
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4.4 Experimental design and numerical results

We want to estimate the numerical performance of the presented algorithms. We first present the
benchmark we use, and our instance generation method. We then explain the different algorithms
that we used for comparison, and how we implemented them. Finally, we show and analyze the
numerical results we obtained.

4.4.1 Instances

We use seven well studied instances from the literature. The first five, 20term (Mak et al.,
1999), gbd (Dantzig, 1963), LandS (Louveaux and Smeers, 1988), ssn (Sen et al., 1994) and
storm (Mulvey and Ruszczyński, 1995), are available from the following link: www.cs.wisc.

edu/~swright/stochastic/sampling/. The problem 20term is taken from (Mak et al., 1999).
It is a model of motor freight carrier’s operations. The problem consists in choosing the
position of some vehicles at the beginning of the day, the first-stage variables, and then to
use those vehicles to satisfy some random demands on a network. Instance gbd has been
created from chapter 28 of (Dantzig, 1963). It is an aircraft allocation problem. LandS
has been created from an electrical investment planning problem described in (Louveaux and
Smeers, 1988). In (Linderoth et al., 2006), the authors modified the problem to obtain an
instance with 106 scenarios. Problem ssn is a problem of telecommunication network design
taken from (Sen et al., 1994) and storm is a cargo flight scheduling problem described by
(Mulvey and Ruszczyński, 1995). The two last instances come from https://people.orie.

cornell.edu/huseyin/research/research.html. The first one, Product, is the large instance
of the product distribution problem available at https://people.orie.cornell.edu/huseyin/

research/sp_datasets/sp_datasets.html. The second one, Fleet20_3 was found at http://

www.ie.tsinghua.edu.cn/lzhao/ which was itself taken from https://people.orie.cornell.

edu/huseyin/research/research.html. It is a fleet-sizing problem, close to 20term, with a
two-week planning horizon.

As those instances have a tremendous number of scenarios (see Table 4.2), we generate
instances by sampling scenarios from the initial ones. We generated instances with sample sizes
1000, 5000, 10000, and 20000. Three random instances have been generated for each problem
and each sample size S, with random seeds S + k, k ∈ {0, 1, 2} so that two instances of different
sample size should not share sub-samples. This leads to a benchmark of 84 different instances.
In the following, we will refer to the instances of problem prob with #scenarios scenarios as
prob-N#scenarios.

4.4.2 Experimental Design

In order to evaluate the numerical efficiency of our Benders by batch algorithm (BbB), we
compare it to nine different methods.

The experimentations are run on one core (sequential mode), on an Intel® Xeon® Gold
SKL-6130 processor at 2,1 GHz with 96 GB of RAM with the TURBO boost (up to 3.7 GHz).
The time limit is fixed to twelve hours for every algorithm. The optimality gap is fixed to a
relative gap of 10−6 for every algorithm. We set the lower bound on the epigraph variables
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problem first-stage second-stage scenarios
LandS 2× 4 7× 12 106

gbd 4× 17 5× 10 ∼ 105

20term 3× 64 124× 764 ∼ 1012

ssn 1× 89 175× 706 ∼ 1070

storm 185× 121 528× 1259 ∼ 1081

Fleet20_3 3× 60 321× 1921 > 3200

product 75× 1500 700× 1450 3450

Table 4.2: Instances sizes, given in the format lines × columns

associated with the subproblems to 0 as it is a valid lower bound on LandS, gbd, ssn, storm,
Fleet20_3 and 20term instances and to −1010 on product instances as 0 is not a valid lower
bound on those instances.

First, we run IBM ILOG CPLEX 12.10 (IBM, 2019) to solve the deterministic reformulation
with the barrier algorithm (CPLEX Barrier hereafter) and with its multicut Benders imple-
mentation (CPLEX Benders) (Bonami et al., 2020). We also compare to our implementation
of the multicut Benders decomposition algorithm (Classic multicut) and our implementation
of the monocut Benders decomposition algorithm (Classic monocut).

In order to evaluate the effect of primal stabilization, we also run our implementations of
the level bundle method (Lemaréchal et al., 1995) using aggregated cut as in the monocut
Benders decomposition algorithm (Level Bundle), our implementation of the multicut Benders
decomposition algorithm with an in-out stabilization (In-out multicut) and our implementation
of the monocut Benders decomposition algorithm with an in-out stabilization (In-out monocut).
We describe these algorithms in Appendix C of the supplementary material.

As the partial cut aggregation proposed in the Benders by batch algorithm can be seen as
the static cut aggregation scheme described by Trukhanov et al. (2010), which have already
shown improvements compared to pure monocut or multicut Benders decomposition algorithms,
we also implement the Benders decomposition algorithm with the same cut aggregation level
as the one used in the Benders by batch algorithms (Classic CutAggr). Given (Si)i=1,..,η

the same partition of the subproblems into batches than the one used in the Benders by batch
algorithm, we solve all the subproblems at each iteration and add the following cuts ∑s∈Si

psθs ≥∑
s∈Si

ps

(
π⊤

s (ds − Tsx)
)
, ∀i ∈ J1, ηK. Finally, we implement the Benders decomposition with

static cut aggregation and in-out stabilization (In-out CutAggr).
CPLEX Benders is run with the following parameter values: benders strategy 2 (an

annotation file contains the first-stage variables, and CPLEX automatically decomposes the
subproblems), threads 1 (to run CPLEX using one core, as the other methods), timelimit

43200 (time limit of twelve hours). Classic multicut follows Algorithm 2.1. In Classic
monocut and In-out monocut, we compute the cuts as ∑s∈S psθs ≥

∑
s∈S ps

(
π⊤

s (ds − Tsx)
)
.

The subproblems are solved with the dual simplex algorithm for all methods. In all our
implementations, the first-stage variables appear as variables in all the subproblems, and are
fixed to the desired values during the optimization process. The coefficients of the cuts are
computed as the reduced cost of those variables in an optimal solution to the subproblems.

In Level Bundle, In-out multicut, In-out monocut and In-out CutAggr and BbB
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with stabilization, the starting solution x(0) is obtained by solving the mean-value problem. We
use a dynamic strategy to update the stabilization parameter α in In-out monocut, In-out
multicut and In-out CutAggr. If c⊤x(k) +∑s∈S psϕ(s, x(k)) < c⊤x̂(k) +∑s∈S psϕ(s, x̂(k)), then
the separation point has a lower cost than the current stability center. If we had separated farther,
we could have found an even better point, so we increase α with the rule α← min{1.0, 1.2α}.
If c⊤x(k) +∑

s∈S psϕ(s, x(k)) ≥ c⊤x̂(k) +∑
s∈S psϕ(s, x̂(k)), we did not stabilize enough, and we

therefore decrease the stabilization parameter α with the rule α← max{0.1, 0.8α}. We initialize
α to 0.5. Such a procedure cannot be used in the stabilized Benders by batch algorithm as the
actual value of the recourse function is required. Level Bundle is tested with a level parameter
λ = 0.5 and a stability center tolerance κ = 0.1 as in (van Ackooij et al., 2017).

We also evaluate different parameters of BbB. We first run BbB without stabilization, and
try different batch sizes with and without partial cut aggregation. Then, we evaluate the impact
of the two proposed stabilization schemes, with different values for the stabilization parameters.

4.4.3 Numerical results

This section shows the numerical results obtained on the 84 instances of our benchmark. When
an algorithm is stopped at its time limit of 12 hours (43 200s), the computing time is denoted
+∞, and the ratio to the best time will be denoted > 43200

best time in the tables, which means that
this algorithm is at least this ratio slower than the best algorithm present in the table. All the
tables presented in this section show, for each method, the average computing time to solve the
three instances of each size, and the time ratio with respect to the best time obtained in this
table. Results instance by instance are presented in Appendix D of the supplementary material.
We always present the average time on the three instances of each size for each problem, rounded
to the second (when computing times are larger than one second).

We present the results with the performance profiles introduced by Dolan and Moré (2002).
Let P be a set of problems, and M a set of methods. For any problem p ∈ P and method
m ∈M, we denote as tp,m the computing time of method m to solve problem p. We define the
performance ratio of method m ∈M on problem p ∈ P as:

rp,m = tp,m

minm′∈M{tp,m′}

The performance profile of a method m ∈M is the cumulative distribution function of its
performance ratios computed over a set of problems P. It is defined as ρm(τ) = card({p ∈ P :
rp,m ≤ τ})

The ratios presented in the following tables are computed as the expectation of the performance
ratios over the three instances of each problem with the same number of subproblems.

Performance of BbB without stabilization

We first present the results of BbB without stabilization. We analyze the impact of the batch
size, both without (Table 4.3) and with partial cut aggregation (Table 4.4). Each column of
Tables 4.3 and 4.4 contains the average time in second to solve the instances and the ratio to
the best time. We analyze batch sizes from 1% to 20% of the total number of subproblems
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(respectively denoted by BbB 1%, BbB 5%, BbB 10% and BbB 20%). The variants with
cut aggregation are respectively designated by BbB 1% CutAggr, BbB 5% CutAggr, BbB
10% CutAggr and BbB 20% CutAggr.

In order to estimate only the effect of performing an optimality check after solving each batch
of subproblems, we compare the Benders by batch algorithm without cut aggregation (BbB) to
Classic multicut and the Benders by batch algorithm with cut aggregation (BbB CutAggr)
to Classic CutAggr 1% and Classic CutAggr 5%, where 1% and 5% represent the same
partitions of subproblems as the ones used in BbB 1% CutAggr and BbB 5% CutAggr.
Classic multicut can be seen as the Benders by batch algorithm without cut aggregation with
a batch size equal to the total number of subproblems, Classic CutAggr 1% and Classic
CutAggr 5% can be seen as the equivalent algorithms as the Benders by batch algorithm with
partial cut aggregation, in which all the subproblems are solved at each iteration. We also present
the results of Classic monocut in each table, as a classical alternative to Classic multicut in
Table 4.3 and as a fully aggregated method in Table 4.4.

Table 4.3: Results for the Benders by batch algorithm without partial cut aggregation, with
batch sizes from 1% to 20% of the total of subproblems.

Classic Classic BbB BbB BbB BbB
monocut multicut 1% 5% 10% 20%

instance time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000 2 3.0 0.75 1.1 2 2.7 0.83 1.3 0.72 1.1 0.66 1.0
LandS-N5000 11 1.7 9 1.5 13 2.2 8 1.3 7 1.1 6 1.0
LandS-N10000 22 1.1 29 1.5 38 2.0 25 1.3 21 1.1 20 1.0
LandS-N20000 45 1.0 105 2.3 130 2.9 89 2.0 80 1.8 72 1.6
gbd-N1000 2 3.3 0.94 1.4 2 3.6 0.65 1.0 0.84 1.3 0.96 1.5
gbd-N5000 12 1.9 10 1.7 16 2.5 6 1.0 7 1.1 8 1.3
gbd-N10000 23 1.2 33 1.7 47 2.5 19 1.0 22 1.2 25 1.3
gbd-N20000 48 1.0 121 2.5 96 2.0 61 1.3 71 1.5 87 1.8
ssn-N1000 2408 611.6 7 1.8 6 1.6 4 1.0 4 1.1 5 1.2
ssn-N5000 13460 590.1 57 2.5 32 1.4 24 1.0 28 1.2 32 1.4
ssn-N10000 25901 444.1 188 3.2 71 1.2 79 1.3 59 1.0 79 1.3
ssn-N20000 +∞ >364.8 488 4.1 145 1.2 274 2.3 624 5.2 2821 24.9
storm-N1000 24 3.7 11 1.7 21 3.2 8 1.3 6 1.0 8 1.3
storm-N5000 114 2.1 106 1.9 175 3.2 60 1.1 55 1.0 65 1.2
storm-N10000 224 1.4 496 3.2 492 3.2 156 1.0 159 1.0 189 1.2
storm-N20000 458 1.0 2370 5.2 1390 3.0 580 1.3 672 1.5 588 1.3
20term-N1000 577 15.2 757 19.9 38 1.0 82 2.2 49 1.3 74 1.9
20term-N5000 3506 5.6 24429 38.6 634 1.0 2101 3.3 1335 2.1 2247 3.6
20term-N10000 6901 3.0 +∞ >19.9 2270 1.0 10733 4.7 6199 2.7 10413 4.6
20term-N20000 13687 1.3 +∞ >6.2 20625 1.7 +∞ >4.2 +∞ >4.2 +∞ >4.2
Fleet20-N1000 533 9.1 225 3.9 145 2.5 95 1.7 102 1.7 74 1.2
Fleet20-N5000 2757 1.5 5330 2.9 2417 1.3 1950 1.0 1873 1.0 2097 1.1
Fleet20-N10000 5710 1.0 28933 5.1 9903 1.7 19913 3.4 8537 1.5 21383 3.7
Fleet20-N20000 11300 1.0 +∞ >4.1 34900 3.1 +∞ >3.8 +∞ >3.9 +∞ >3.9
productLarge-N1000 1947 19.0 186 1.8 270 2.6 123 1.2 105 1.0 103 1.0
productLarge-N5000 10467 7.6 3497 2.5 3730 2.7 1873 1.4 1483 1.1 1377 1.0
productLarge-N10000 20200 3.7 15200 2.8 13300 2.5 6893 1.3 5583 1.0 5397 1.0
productLarge-N20000 43000 1.9 +∞ >2.0 +∞ >1.9 29700 1.3 24733 1.1 23067 1.0

We first notice in Table 4.3 that BbB 1% solves all the instances, except Fleet20-N20000
where it only succeeds to solve one out of three problems, whereas Classic Multicut fails to
solve optimally four groups of instances. As the algorithm avoids solving many subproblems
and adding cuts in the relaxed master program, it overcomes the issue of the time spent in
solving subproblems and delays the size growth of the relaxed master program. However, as
we still add one cut for each solved subproblem in the Benders by batch algorithm, it still does
not scale well when the number of subproblems becomes large. Classic monocut outperforms
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BbB on large-scale instances such as 20term with 20000 subproblems or Fleet20_3 with 20000
subproblems.

Table 4.4: Results for the Benders by batch algorithm with partial cut aggregation, with batch
sizes from 1% to 20% of the total number of subproblems.

Classic Classic Classic BbB 1% BbB 5% BbB 10% BbB 20%
monocut 1% CutAggr 5% CutAggr CutAggr CutAggr CutAggr CutAggr

instance time ratio time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000 2 2.5 1 1.3 1 1.7 2 2.1 0.88 1.1 0.78 1.0 0.89 1.1
LandS-N5000 11 2.6 7 1.8 8 2.0 9 2.3 5 1.1 4 1.0 4 1.1
LandS-N10000 22 2.7 16 2.0 19 2.3 16 2.0 8 1.0 8 1.0 9 1.2
LandS-N20000 45 2.6 34 1.9 39 2.3 44 2.6 17 1.0 18 1.0 20 1.2
gbd-N1000 2 3.6 1 2.0 2 2.7 2 2.7 0.61 1.0 0.78 1.3 0.93 1.5
gbd-N5000 12 3.6 9 2.6 10 3.0 9 2.7 3 1.0 4 1.1 4 1.3
gbd-N10000 23 3.7 19 3.1 21 3.3 15 2.3 6 1.0 8 1.3 9 1.5
gbd-N20000 48 3.6 41 3.0 46 3.4 41 3.1 14 1.0 15 1.1 19 1.4
ssn-N1000 2408 175.8 24 1.8 142 10.5 14 1.0 61 4.5 134 9.8 242 17.7
ssn-N5000 13460 150.6 399 4.5 1582 17.7 89 1.0 322 3.6 659 7.4 1322 14.8
ssn-N10000 25901 140.4 1246 6.7 4858 26.1 185 1.0 707 3.8 1423 7.7 2914 15.8
ssn-N20000 +∞ >98.4 8603 20.0 26122 58.9 441 1.0 1615 3.7 3386 7.7 6757 15.4
storm-N1000 24 3.8 12 2.0 15 2.4 12 1.9 6 1.0 7 1.1 9 1.5
storm-N5000 114 3.4 72 2.1 94 2.8 52 1.5 34 1.0 36 1.1 55 1.6
storm-N10000 224 3.0 164 2.2 198 2.7 110 1.5 74 1.0 82 1.1 104 1.4
storm-N20000 458 2.9 369 2.3 423 2.6 226 1.4 163 1.0 169 1.1 238 1.5
20term-N1000 577 39.4 272 18.5 313 21.4 15 1.0 37 2.5 68 4.6 141 9.6
20term-N5000 3506 50.3 1604 23.2 1945 28.0 70 1.0 193 2.8 395 5.7 839 12.1
20term-N10000 6901 53.2 3364 26.0 4840 37.4 130 1.0 402 3.1 898 6.9 1978 15.3
20term-N20000 13687 49.1 7032 25.2 16287 57.3 280 1.0 914 3.3 2051 7.3 18312 65.2
Fleet20-N1000 533 18.9 125 4.4 222 7.9 28 1.0 42 1.5 74 2.6 131 4.7
Fleet20-N5000 2757 25.7 903 8.4 1530 14.3 107 1.0 211 2.0 358 3.3 649 6.1
Fleet20-N10000 5710 26.9 2000 9.4 3460 16.3 212 1.0 440 2.1 721 3.4 1310 6.2
Fleet20-N20000 11300 27.0 5053 12.1 7860 18.8 419 1.0 876 2.1 1520 3.6 2777 6.6
product-N1000 1947 20.0 190 2.0 431 4.4 98 1.0 141 1.5 253 2.6 505 5.2
product-N5000 10467 28.9 1523 4.2 3323 9.2 362 1.0 773 2.1 1567 4.3 2873 7.9
product-N10000 20200 25.0 3827 4.8 7757 9.7 823 1.0 1523 1.9 3053 3.8 5530 6.9
product-N20000 43000 25.7 9963 6.0 19367 11.6 1693 1.0 3367 2.0 6320 3.8 12500 7.5

Table 4.4 shows that when partial cut aggregation is used, all the presented methods clearly
outperform Classic monocut. As we aggregate the cuts over each batch, the size of the
relaxed master program remains reasonable, and as the cuts are only computed on samples
of subproblems, the algorithms avoid many symmetries due to the sum of the cuts over the
subproblems. The table shows also that the best batch sizes are 1% and 5% (respectively BbB
1% CutAggr and BbB 5% CutAggr), except for two small instances. The two methods
can be up to 25 times faster than Classic CutAggr 1% and more than 58 times faster than
Classic CutAggr 5%.

The better performance of the Benders by batch algorithm with partial cut aggregation can
be explained by Figure 4.3. We see that at almost all the iterations, BbB CutAggr solves only
one batch of subproblems to show that the current first-stage candidate cannot be proven optimal,
and to separate the solution to the relaxed master program. It follows that BbB CutAggr
1% needs to solve less subproblems than Classic CutAggr 1% to converge. For a storm
instance with 20000 subproblems, BbB CutAggr 1% needs to solve twice less subproblems
than Classic CutAggr 1%, for a 20term instance with 20000 subproblems, BbB CutAggr 1%
needs to solve 23 times less subproblems than Classic CutAggr to converge. Although Classic
CutAggr 1% evaluates almost three times less first-stage solutions for the 20term instance
(and more than 5 times less for the storm instance), it takes ultimately more time to converge
than the Benders by batch algorithm: 1006 seconds for Classic CutAggr 1% compared to
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Figure 4.3: Number of subproblems solved at each iteration by BbB CutAggr 1% and Classic
CutAggr 1% (left plots), with their cumulative evolution (right plots) for a 20term instance
with 20000 subproblems (top plots) and a storm instance with 20000 subproblems (bottom
plots). The “Total" in the legend shows the total number of subproblems evaluated during the
algorithms.

261 seconds for BbB 1% CutAggr to solve the 20term instance and 370 seconds for Classic
CutAggr 1% compared to 216 seconds for BbB 1% CutAggr to solve the storm instance.

Impact of the stabilization on BbB

We now present the results obtained when the two stabilization schemes presented in §4.3.3 are
applied to the most competitive versions of Bbb (batch sizes of 1% and 5%, and with partial cut
aggregation). Figures 4.4 and 4.5 show the performance profiles of BbB CutAggr with and
without stabilization. We present the results with basic stabilization for α ∈ {0.1, 0.5, 0.9} and
with solution memory stabilization for α ∈ {0.1, 0.5, 0.9} and β ∈ {0.1, 0.5, 0.9}. Each stabilized
method is denoted by BbB 1% CutAggr or BbB 5% CutAggr followed by the values for the
parameters.

Figure 4.4 shows that the proposed stabilization schemes accelerate BbB 1% CutAggr, and
can be up to 70% faster than the unstabilized algorithm. Four stabilizations are more efficient
on the tested instances and give similar results, namely the basic stabilization with α = 0.5, and
the solution memory stabilization with (α, β) ∈ {(0.5, 0.1), (0.5, 0.5), (0.9, 0.5)}.

Figure 4.5 shows similar results for BbB 5% CutAggr. The same four methods are the
most efficient and equivalent to each other. The algorithm with a solution memory stabilization
parameterized by (α, β) = (0.1, 0.9) is less efficient than BbB 5% CutAggr. In this case, a
small step size (α = 0.1) and a high memory parameter (β = 0.9) slow down the convergence.
For all the other cases, the use of a primal stabilization scheme accelerates the algorithm.
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Figure 4.4: Performance profiles of the stabilized Benders by batch algorithm with batch size of
1% and cut aggregation.

Figure 4.5: Performance profiles of the stabilized Benders by batch algorithm with batch size of
5% and cut aggregation.

To conclude, results show no clear difference between the two proposed stabilization schemes.
The solution memory stabilization does efficiently stabilize the algorithm, but the basic stabiliza-
tion might be the method of choice as it is much simpler and provides similar computational
results.

Comparison with state-of-the-art methods

We now compare the stabilized Benders by batch algorithm to classical methods of the literature.
We show in Table 4.5 the times and ratios of CPLEX Barrier and all the stabilized methods of
our benchmark, In-out monocut, In-out multicut, Level bundle, In-out CutAggr 1% and
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Table 4.5: Final results, the best stabilized Benders by batch algorithm compared to all stabilized
benchmark methods.

CPLEX Level In-out In-out In-out In-out BbB 1%
Barrier Bundle multicut monocut 1% CutAggr 5% CutAggr CutAggr α = 0.5

instance time ratio time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000 0.07 1.0 1 17.3 0.89 12.4 1 20.0 0.71 9.7 0.98 13.4 0.96 13.2
LandS-N5000 1 1.0 7 9.0 8 10.5 9 10.5 5 6.0 6 7.2 5 6.7
LandS-N10000 1 1.0 14 14.0 24 23.6 16 15.6 10 9.7 11 11.1 9 9.0
LandS-N20000 5 1.0 27 6.8 62 16.5 41 10.4 22 5.6 22 5.5 21 5.4
gbd-N1000 0.04 1.0 2 61.2 1 36.6 2 58.8 1 33.6 2 44.8 0.88 25.6
gbd-N5000 0.17 1.0 10 60.1 10 60.9 10 64.0 7 41.8 8 47.1 4 24.8
gbd-N10000 0.35 1.0 24 69.5 23 67.5 21 61.7 16 45.7 17 50.3 8 22.2
gbd-N20000 0.91 1.0 44 48.8 82 89.8 54 60.6 30 34.3 34 39.1 17 18.5
ssn-N1000 32 6.0 90 17.1 6 1.0 137 27.3 10 1.8 19 3.6 8 1.5
ssn-N5000 310 10.6 657 22.2 31 1.0 795 27.4 70 2.4 133 4.5 47 1.6
ssn-N10000 1223 20.3 1501 25.2 63 1.0 1464 23.3 171 2.9 312 5.2 91 1.5
ssn-N20000 2619 13.7 3109 16.3 243 1.3 2861 15.2 400 2.1 736 3.9 191 1.0
storm-N1000 41 5.8 15 2.1 9 1.3 14 2.1 8 1.1 9 1.4 7 1.0
storm-N5000 316 9.7 76 2.3 41 1.3 62 1.9 49 1.5 52 1.6 33 1.0
storm-N10000 764 11.8 145 2.3 125 1.9 201 3.1 99 1.5 110 1.7 65 1.0
storm-N20000 2390 17.4 288 2.1 573 4.2 252 1.8 211 1.5 232 1.7 137 1.0
20term-N1000 14 1.3 217 20.9 36 3.5 114 10.8 27 2.6 44 4.3 10 1.0
20term-N5000 82 1.7 1044 21.2 482 9.7 681 13.8 197 4.0 269 5.5 50 1.0
20term-N10000 199 2.0 2450 24.4 2805 27.9 1190 11.8 474 4.7 593 5.9 100 1.0
20term-N20000 455 2.3 4843 24.7 10992 56.0 1754 8.9 1010 5.1 1371 7.0 197 1.0
Fleet20-N1000 23 1.3 107 6.2 50 2.9 93 5.4 26 1.5 41 2.4 17 1.0
Fleet20-N5000 269 3.6 500 6.7 719 9.6 473 6.3 184 2.4 250 3.3 75 1.0
Fleet20-N10000 809 5.5 1004 6.9 3747 25.6 1029 7.0 435 3.0 590 4.0 146 1.0
Fleet20-N20000 2446 7.9 2730 8.8 17000 54.7 1780 5.8 1018 3.3 1313 4.2 310 1.0
product-N1000 179 2.3 625 8.2 81 1.1 513 6.7 113 1.5 183 2.4 76 1.0
product-N5000 2121 6.7 3200 10.3 1127 3.6 2690 8.7 787 2.5 1380 4.4 312 1.0
product-N10000 4397 8.0 7173 13.0 5357 9.8 5730 10.4 1970 3.6 3133 5.7 552 1.0
product-N20000 15463 13.6 14300 12.5 +∞ >40.5 12333 10.8 4887 4.3 7983 7.0 1140 1.0

In-out CutAggr 5% with the best performing stabilized Benders by batch BbB 1% CutAggr
with α = 0.5. We first observe that, on the small instances LandS and gbd, CPLEX Barrier
converges faster than all the other methods. As those instances have very few variables both in
first and second stages, they remain small even with 20000 subproblems, and are solved very
efficiently by CPLEX Barrier. However, we can notice that even for these small instances, BbB
1% CutAggr α = 0.5 is the best method among all the cutting planes algorithms. Table 4.5
shows clearly that the stabilized Benders by batch algorithm outperforms all the other methods
on the large instances, and can be up to more than 25 times faster than Level Bundle or 15
times faster than In-out monocut. We also show that, even if In-out CutAggr outperforms
other classical stabilized methods from the literature, the stabilized Benders by batch algorithm
can be up to 5 times faster. This shows that, firstly, using a static cut aggregation combined
with primal stabilization allows to speed up classical methods used to benchmark algorithms
from the literature, and secondly, that not solving systematically all the subproblems allows
to further improve the computing times on the test instances. Indeed, we show in Figure 4.6
that BbB 1% CutAggr α = 0.5 needs to solve way less subproblems than other methods to
converge, and that the time spent in solving the subproblems represent almost all the computing
times in all presented methods.

Figure 4.7 shows the evolution of the relative gap between the lower bound and the optimal
value, of four different algorithms, on four different instances, according to the time. We see that
adding only a few cuts at each iterations allows the lower bound to converge faster to the optimal
value to the problem. Moreover, we observe that, on three of the four presented instances, BbB
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1% CutAggr α = 0.5 reaches a relative gap of 10−6 while all the other algorithms still have a
large relative gap (e.g. 100 on ssn or 10−1 on Fleet).

Figure 4.6: Time spent in solving the master program and the subproblems, for 8 different
instances, solved by Level bundle, In-out monocut, In-out CutAggr 1% and BbB 1% CutAggr
α = 0.5. The total number of solved subproblems is written vertically on the top of each bar.

Figure 4.7: Evolution of the relative gap between the lower bound and the optimal value as a
function of time, on a four different instances with 20000 subproblems
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Sensitivity of BbB to parameters

We finally present the impact on the computing time of two parameters of the Benders by batch
algorithm, the optimality gap and the initial order of the subproblems.

We first analyze the impact of the optimality gap on the convergence of the algorithm. The
choice of a different optimality gap ε in the Benders by batch algorithm might have an impact
on the number of batches that would be solved at each iteration. With a larger optimality gap,
the algorithm tends to solve more batches at each iteration, and to add more cuts. As this might
have an impact on the first-stage iterates, and then on the computing times, we show on Figure
4.8 the cumulative distribution of the computing times to solve our 84 instances with BbB 1%
CutAggr and α = 0.5 with four different optimality gaps {10−3, 10−4, 10−5, 10−6}. The figure
shows that different optimality gaps have a negligible impact on the computing times on most
instances. A smaller optimality gap induces larger computing times on the largest instances of
our test set, but this would also be the case with other classical algorithms.

Figure 4.8: Cumulative distribution of the computing times on our 84 instances, for BbB
with cut aggregation and base stabilization with α = 0.5, and with optimality gaps in
{10−3, 10−4, 10−5, 10−5}

We finally ran several experiments testing different initial orders to assess the sensitivity of
our method to this choice. We ran BbB 1% CutAggr α = 0.5, for 500 different initial orders,
on one instance with 5000 subproblems and one with 10000 subproblems for each tested problem.
We report in Table 4.6 the minimum and maximum times observed, the median, and the first and
ninth decile on computing times. We observe that the initial order has usually a limited impact
on the efficiency of our algorithm. We also remark that the stabilized Benders by batch algorithm
present lower computing times than In-out CutAggr 1%, the best performing method used as
comparison in the numerical results, even for the maximum time observed. Although the impact
is in general limited, we observe that the initial order can have an impact on the computing time
for some instances, such as LandS or gbd. However, the computing times observed are almost
always smaller than the computing times of In-out CutAggr 1%, the best performing method
presented in the paper.
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Table 4.6: Computing times for BbB 1% CutAggr α = 0.5 on 500 different initial orders of
the subproblems

Min 10% 50% 90% Max In-out
Time Time CutAggr 1%

instance time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N5000 4.1 1.0 4.5 1.1 5.3 1.3 6.2 1.5 7.3 1.8 5.0 1.2
LandS-N10000 8.3 1.0 9.2 1.1 10.2 1.2 11.9 1.4 15.6 1.9 10.0 1.2
gbd-N5000 3.1 1.0 3.5 1.1 4.1 1.3 5.0 1.6 7.1 2.3 7.0 2.3
gbd-N10000 6.0 1.0 7.2 1.2 8.3 1.4 10.3 1.7 14.0 2.3 16.0 2.7
ssn-N5000 40.2 1.0 44.3 1.1 46.8 1.2 49.8 1.2 54.1 1.3 70.0 1.7
ssn-N10000 82.5 1.0 87.3 1.1 92.5 1.1 102.0 1.2 122.4 1.5 171.0 2.1
storm-N5000 28.0 1.0 29.8 1.1 31.4 1.1 34.5 1.2 43.5 1.6 49.0 1.8
storm-N10000 58.0 1.0 60.5 1.0 64.2 1.1 69.7 1.2 83.2 1.4 99.0 1.7
20term-N5000 43.5 1.0 47.8 1.1 54.1 1.2 61.6 1.4 77.2 1.8 197.0 4.5
20term-N10000 82.0 1.0 91.5 1.1 103.2 1.3 115.0 1.4 136.2 1.7 474.0 5.8
Fleet20-N5000 72.5 1.0 74.7 1.0 76.6 1.1 78.7 1.1 83.3 1.1 184.0 2.5
Fleet20-N10000 142.0 1.0 148.0 1.0 152.0 1.1 157.0 1.1 166.0 1.2 435.0 3.1
productLarge-N5000 268.0 1.0 279.0 1.0 292.0 1.1 315.0 1.2 355.0 1.3 787.0 2.9
productLarge-N10000 528.0 1.0 553.0 1.0 573.0 1.1 603.0 1.1 679.0 1.3 1970.0 3.7

4.5 Conclusion

We proposed in this paper the Benders by batch algorithm to solve two-stage stochastic linear
programming problems with finite probability distribution. This algorithm solves only a few
subproblems at most iterations. The algorithm is exact and does not need a fixed recourse or
a deterministic objective function. We showed that performing an optimality check after the
resolution of a very few subproblems, each 1% of the numbers of subproblems in our tests, allows
to significantly improve the solution time.

To avoid strong oscillations of the first-stage variables, we also introduced a stabilized version
of the algorithm. This algorithm is based on a primal stabilization scheme responsible for
generating the points at which the subproblems are solved. We presented a sufficient condition
for a primal stabilization scheme that ensures the convergence of the Benders by batch algorithm
and proposed two schemes satisfying it. The stabilized Benders by batch algorithm can be up to
25 times faster than the level bundle method, or 5 times faster than Benders decomposition with
in-out stabilization and static partial cut aggregation of (Trukhanov et al., 2010).

Applying dual stabilization (Magnanti and Wong, 1981; Sherali and Lunday, 2013) to the
Benders by batch algorithm is straightforward and could improve the results. The algorithm can
be parallelized and may benefit from effective parallelized methods, such as the asynchronous
method of Linderoth and Wright (2003). The use of more advanced cut aggregation strategies is
also a path worth exploring. Finally, an interesting perspective is to adapt the Benders by batch
algorithm to solve mixed-integer master programs within a Branch&Cut framework.
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Chapter 5

A reliability constraint for a
stochastic expansion planning
problem

Bilevel formulation and Benders-based heuristic solution method

5.1 Introduction

We propose in this chapter to model a stochastic expansion planning problem taking into account
a reliability constraint imposed to RTE by French legislation. In prospective studies conducted at
RTE, the cost associated to an unsatisfied demand is set to 20000€/MWh. Since the investment
costs are high, optimal solutions to the stochastic expansion planning problem have limited
production and transmission capacities, and present a large number of unsatisfied demands.
French legislation (Article D141-12-6 from the French Energy Code) imposes that there are less
than three hours of power system failure in expectation when RTE operates the system. RTE
applies a similar rule in their prospective studies. In investment solutions presented in their
prospective studies, they require that there are less than three hours at which the demand is
not fully satisfied in expectation over random scenarios. This constraint is currently not taken
into account in the expansion planning models. Solutions have to be modified by hand after
the optimization step in order to satisfy this criterion. We present a formulation of a stochastic
expansion planning problem taking this constraint into account, and a solution method to find
feasible solutions.

The stochastic expansion planning problem we consider here can be formulated as follows.
Considering a network, the problem consists in investing in production capacities on the nodes or
in transmission capacities on the arcs. Many parameters can be random such as the electricity
demands or the weather forecasts, and randomness is modeled with a finite set of scenarios. For
each scenario and each investment solution, we model an operational problem. In this problem,
there is a finite and discrete time horizon, and an electricity demand at each node of the network
and each time step. Given a set of linear operational constraints, the operational problem finds
how the electricity is produced and routed over the network to satisfy the demands at every time
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step. The global objective of the problem is to minimize the sum of the investment costs and the
expectation of the operational costs over the scenarios. The reliability constraint we add to this
problem limits, in expectation over the scenarios, the number of nodes and time steps at which
the demand is not fully satisfied in a solution. We formulate this problem as a bilevel program
and propose a heuristic based on a Benders decomposition algorithm to obtain feasible solutions.

We describe hereafter the problem without the reliability constraint. Let G = (N ,A) be
a graph, S a finite set of scenarios modeling the uncertainty and T a finite set of time steps.
We denote by x ∈ Rn1 the vector of first-stage variables modeling investment decisions. These
decisions are either to invest on transmission capacities on the arcs of the network, or on
production capacities on the nodes of the network. Then, for every scenario s ∈ S, a linear
problem models a minimum cost operational planning to satisfy stochastic demands. The
stochastic linear expansion planning problem can be modeled as follows:

min c⊤x+
∑
s∈S

psϕ(x, s)

s.t. x ∈ X
(5.1)

where X ⊂ Rn1 is a polyhedral set containing constraints on the investment decisions. First-stage
variables are continuous. In every scenario s ∈ S, and at each node and time step (n, t) ∈ N ×T ,
we introduce a positive variable us,n,t that represents the amount of demand that is not satisfied
at node n and time step t. For every s ∈ S, we denote by us the vector of variables us,n,t of
size card(N × T ). These variables us are penalized by a constant cost M ∈ R+ in the objective
function. We denote by e the vector of 1′s of size card(N × T ). All other operational variables
such as production variables or flow variables are included in variables ys ∈ Rn2 . For every x ∈ X
and every s ∈ S:

ϕ(x, s) =


min g⊤

s ys +Me⊤us

s.t. Wsys +Qus ≥ ds − Tsx

ys ∈ Rn2
+ , us ∈ Rcard(N ×T )

+

(5.2)

Vector c ∈ Rn1 represents the investment costs. The operational costs are modeled with vector
gs ∈ Rn2 . the value m ∈ N is the number of operational constraints. Matrix Ws ∈ Rm×n2

and matrix Ts ∈ Rm×n1 . The probability associated to scenario s ∈ S is ps ∈ (0, 1]. Matrix
Q ∈ {0, 1}m×card(N ×T ).

5.1.1 On the necessity of a reliability constraint

Generally, in optimization problems, every single demand has to be satisfied, and variables us are
associated to a very high cost in order to ensure feasibility of the second-stage for any first-stage
decision x ∈ X , as stated in (Bodur and Luedtke, 2022) for example. In the problem we study,
the value of M is an economic cost. This cost is always high enough so that when it is possible,
it is cheaper to produce and route electricity to a demand rather than paying this cost. But
depending on the investment costs, it may be cheaper to choose an investment solution for which
all the demands are not satisfied, and to pay the penalty cost associated to these demands. Then,
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optimal solutions to problem (5.1) can present a large number of unsatisfied demands. We show
this situation in Example 1.

Example 1. We consider the example presented in the following figure, with a network with two
nodes, one time step and two scenarios.

It is possible to invest in production capacity at node 1, and the demands are located at node
2. The investment cost is equal to 50, the production cost equal to 1 and the cost associated
with the quantity of unsatisfied demand equal to 100. The arcs have unlimited capacity and the
transmission cost is 0, which means that no cost has to be paid when sending a flow along an arc.
This example is associated with the following formulation:

min 50x+ 0.9(y1 + 100u1) + 0.1(y2 + 100u2)

s.t. : ys + us ≥ ds, s ∈ {1, 2}

ys ≤ x, s ∈ {1, 2}

y1, y2 ∈ R+

u1, u2 ∈ R+

x ∈ R+

where ys models the production in scenario s ∈ {1, 2}, and us counts the unsatisfied electricity
demand in scenario s ∈ {1, 2}. We show in the following table the distribution of the cost for
different investment solutions. The unsatisfied demands are denoted by (u1, u2).

Value of x Investment cost Operational Cost Total cost Unsatisfied demand
x = 0 0 550 550 (5, 10)
x = 5 250 55 305 (0, 5)
x = 10 500 5.5 505.5 (0, 0)

The optimal solution is associated with investment solution x = 5. We observe that in this
solution, the demand is not fully satisfied in scenario 2. Investing more in order to satisfy all the
demands in every scenario is more expensive, and is not economically viable as the probability
associated with this demand is low (0.1 in this example).

The example shows that if a given level of reliability of the system must be ensured, it is
necessary to explicitly add a constraint to the problem. The reliability constraint that we consider
here limits, in expectation over the scenarios, the number of nodes and time steps at which the
demand is not fully satisfied in an optimal solution.

The question of the reliability of the transmission system have been widely studied in the
literature. There is in general no clear formulation of what is a reliable system in the literature
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(Leite da Silva et al., 2010; Lei et al., 2018). Several methods consider reliability by penalizating
the quantity of unsatisfied demands in the objective function (Contreras and Wu, 2000; Gil and
da Silva, 2001). In (Choi et al., 2005), the reliability of the system is checked by a Monte-Carlo
simulation procedure. Braga and Saraiva (2005) consider the reliability as an other objective,
and develop a method to compute different pareto-optimal solutions. Alizadeh and Jadid (2011)
consider a general reliability criterion, but does not include it in the formulation. A heuristic
method is used to converge to feasible solutions. It imposes sequentially demands in different
scenarios to be satisfied until the required reliability criterion is satisfied.

5.1.2 Contribution and chapter organization

In this chapter, we model and analyze the formulation of a stochastic expansion planning problem
with the reliability constraint described above. We show that this problem can be naturally
formulated as a bilevel program with the same objective function in both levels. Despite this
particular structure, we show that this problem remains a bilevel program. We analyze it
high-point relaxation, and prove that it does not satisfy the time-consistency principle, a classical
property of two-stage stochastic programs. We finally show that, in a optimal solution to the
high-point relaxation, the ratio between the cost of the optimal recourse variables and the optimal
recourse value associated with the first-stage solution is not bounded.

Solving instances with reasonable size is out of reach of exact classical solution methods.
We then propose a heuristic method to produce good quality solutions based on a Benders
decomposition algorithm and a binary search on the investment costs. We show that, under
some assumptions on the stochastic expansion planning problem, there exists a feasible solution
for the bilevel stochastic expansion planning problem with the reliability constraint, and that the
proposed heuristic converges to a feasible solution in a finite number of iterations. Finally, we
show on randomly generated instances with up to 6 million variables and 8 million constraints
that the proposed method allows to find feasible solutions in a reasonable time, whereas the SOS-1
method to solve the KKT reformulation of bilevel programs (Fortuny-Amat and McCarl, 1981; Sid-
diqui and Gabriel, 2013) is not able to find any feasible solution in 6 hours, even on small instances.

The chapter is organized as follows. In Section 5.2, we present the reliability constraint that
we want to add to the stochastic expansion planning problem. We also show that a single-level
linear formulation, obtained by adding the reliability constraint in the extensive formulation
of the stochastic expansion planning problem, would not be a two-stage stochastic program
anymore. In Section 5.3, we present a heuristic based on Benders decomposition and a binary
search on investment costs to find feasible solutions in a reasonable time. In Section 5.4, we
present the result of our heuristic and we compare them to the results obtained by solving the
KKT reformulation of the bilevel program with the SOS-1 method. We finally conclude and
present several perspectives to this work in Section 5.5.
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5.2 Bilevel formulation of the reliable stochastic expansion plan-
ning problem

In this section we present the bilevel formulation of the stochastic expansion planning problem
with the reliability constraint in Subsection 5.2.1 and analyze the high-point relaxation in
Subsection 5.2.2.

5.2.1 Reliability constraint and bilevel formulation

We want to add in formulation (5.1) a constraint which limits, in expectation over the scenarios,
the number of nodes and time steps at which the demand is not fully satisfied. We call this
constraint the reliability constraint. In order to formalize this constraint, we introduce the
following notations.

For every x ∈ X , the set of feasible first-stage solutions in program (5.1), and for every
scenario s ∈ S, we define Ωs(x) =

{
(y, u) ∈ Rn2 × Rcard(N ×T )

+ : Wsy + Qu + Tsx ≥ ds
}

the
set of feasible recourse solutions and Rs(x), the set of optimal recourse solutions as Rs(x) =
arg min

{
g⊤

s y +Me⊤u : (y, u) ∈ Ωs(x)}. As, for every x ∈ X , the value of the recourse function
is defined as the optimal value to the recourse problem, the recourse solutions are restricted by
the formulation to belong to Rs(x) for every s ∈ S.

Let ε > 0 be a given threshold. We say that there is an unsatisfied demand at node n ∈ N
and time step t ∈ T for a given scenario s ∈ S if us,n,t > ε. Such a threshold ε is required to count
with binary variables the nodes and times steps at which demands are not fully satisfied. For
every x ∈ X , s ∈ S, and for every (ys, us) ∈ Rs(x), we denote by Uε(x, ys, us) = card

(
{(n, t) ∈

N × T : us,n,t > ε}
)

the number of unsatisfied demands in scenario s. We define the expected
number of unsatisfied demands in solution (x, (ys, us)s∈S) as ∑s∈S psUε(x, ys, us). Let α ≥ 0 be
the parameter defining the maximal value of the expected number of unsatisfied demands that we
authorize in a solution. We say that a solution (x, (ys, us)s∈S) satisfies the reliability constraint
if: {

(ys, us) ∈ Rs(x), ∀s ∈ S∑
s∈S psUε(x, ys, us) ≤ α

This leads to the following bilevel formulation:


min c⊤x+
∑
s∈S

psϕ(x, s)

s.t.
∑
s∈S

psUε(x, ys, us) ≤ α

(ys, us) ∈ Rs(x), ∀s ∈ S

x ∈ X

(5.3)

We call problem (5.3) the reliable stochastic expansion planning problem hereafter.

We now present an equivalent formulation to problem (5.3) highlighting its two-stage stochastic
structure. For every scenario s ∈ S, we introduce binary variables δs ∈ {0, 1}card(N ×T ) such that
for every node and time step (n, t) ∈ N × T , variable δs,n,t equals 1 if the quantity of unsatisfied
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demand exceeds a given threshold ε and 0 otherwise. We define mapping gs : Rn1 7→ R as the
following parametric problem:

gs(x) =



min e⊤δs

s.t. (ys, us) ∈ Rs(x)

Cδs ≥ us − εe (5.4)

δs ≤ (1/ε)us (5.5)

δs ∈ {0, 1}card(N ×T ) (5.6)

where e is the vector of 1′s of size card(N × T ) and C a large enough positive real number (an
upper bound on variables u).

Proposition 8. For every x ∈ X , gs(x) = min
{
Uε(x, ys, us) : (ys, us) ∈ Rs(x)

}
Proof. For any (n, t) ∈ N × T , if us,n,t < ε then, constraint (5.4) is inactive, and by constraint
(5.5), δs,n,t ≤ (1/ε)us,n,t < 1. As δs,n,t is a binary variable, δs,n,t = 0.

If us,n,t > ε then constraint (5.5) is inactive, and by constraint (5.4), δs,n,t ≥ us,n,t − ε > 0.
As δs,n,t is a binary variable, δs,n,t = 1.

If there exists (n, t) ∈ N × T such that us,n,t = ε, then constraints (5.4) - (5.5) lead
to 0 ≤ δs,n,t ≤ 1, which means that δs,n,t can be either 0 or 1. As the objective function
minimizes the number of variables δs equal to 1, δs,n,t will be set to 0. Finally, for every x ∈ X ,
gs(x) = min

{
card({(n, t) ∈ N × T : us,n,t > ε}) : (ys, us) ∈ Rs(x)

}
.

Proposition 9. The bilevel formulation of the reliable stochastic expansion planning problem
(5.3) is equivalent to the following problem:



min c⊤x+
∑
s∈S

psϕ(x, s)

s.t.
∑
s∈S

psgs(x) ≤ α

x ∈ X

(5.7)

Proof. (⇒) Let x ∈ X be a feasible solution to problem (5.7). We have ∑s∈S psgs(x) ≤ α. For
every scenario s ∈ S, we denote by (y∗

s , u
∗
s, δ

∗
s) an optimal solution to the problem defining

mapping gs(x). Then, by Proposition 8, ∑s∈S psUε(x∗, y∗
s , u

∗
s) ≤ α and (x, (y∗

s , u
∗
s)s∈S) is a

feasible solution to problem (5.3).

(⇐) If (x, (ys, us)s∈S) is a feasible solution to problem (5.3), then∑s∈S psUε(x, ys, us) ≤ α. By
Proposition 8 and as, ∀s ∈ S, ps ≥ 0,∑s∈S psgs(x) ≤∑s∈S psUε(x, ys, us), and∑s∈S psgs(x) ≤ α.
Then, x is a feasible solution to problem (5.7).

Finally, the two problems are equivalent since they have the same objective function.

Formulation (5.7) highlights that the reliability constraint is a constraint on first-stage
variables, as remarked by Birge and Louveaux (2011), page 68, on a similar constraint.
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Remark 5. Formulation (5.7) defines an optimistic bilevel problem. Indeed the formulation
requires that only one recourse solution of every scenario satisfies the reliability constraint to
obtain bilevel feasibility. It is possible to model the pessimistic version of the bilevel reliable
stochastic expansion planning problem by replacing mapping gs for every s ∈ S with the following
mapping rs:

rs(x) =


max e⊤δs

s.t. (ys, us) ∈ Rs(x)

(5.4)− (5.6)

leading to the following bilevel program:

min c⊤x+
∑
s∈S

psϕ(x, s)

s.t.
∑
s∈S

psrs(x) ≤ α

x ∈ X

(5.8)

The maximum in the objective function ensures that every follower optimal solution satisfies the
constraint, which is the definition of a pessimistic bilevel feasible solution. In this formulation, if
there exists a variable us,n,t = ε in a feasible solution, the associated variable δs,n,t will be set to
1. Then, in such a formulation, a node and time step (n, t) is considered to have an unsatisfied
demand if us,n,t = ε.

Finally, as in formulation (5.3), variables (ys, us) are required to belong to Rs(x) for every
x ∈ X , we know that the second-stage cost associated to these solutions is equal to ϕ(x, s) for
every scenario s ∈ S. Then, we can reformulate the bilevel reliable stochastic expansion planning
problem as the following program:

min c⊤x+
∑
s∈S

ps
(
g⊤

s ys +Me⊤us
)

s.t.
∑
s∈S

pse
⊤δs ≤ α

Cδs ≥ us − εe, ∀s ∈ S

δs ≤ (1/ε)us, ∀s ∈ S

(ys, us) ∈ Rs(x), ∀s ∈ S

x ∈ X

(5.9)

This formulation defines an optimistic bilevel problem with one leader and card(S) followers,
corresponding to the recourse problem for each scenario s ∈ S. For every x ∈ X , the set Rs(x)
is called the reaction set associated to scenario s of upper-level variable x.

Remark 6. The objective function in the formulation of Rs(x) is the same as in formulation of
ϕ(·, s), for every s ∈ S. As c⊤x is constant in the lower-level, we can add it to the lower-level
objective function without modifying the optimal solutions. Then, both levels in formulation (5.9)
have the same objective function.

We have presented three equivalent formulations for the reliable stochastic expansion plan-
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ning problem. Formulation 5.3 is a natural formulation of the problem. Formulation 5.7 shows
the two-stage stochastic structure of the problem. Finally, formulation (5.9) shows the bilevel
structure of the reliable stochastic expansion planning problem. Each lower-level problem is a
linear program. Depending on the number of scenarios, there might be a large number of linear
lower-level problems to solve. The complexity of the problem comes from the upper-level problem.
First, the variables x that appear in the lower-level are continuous, which prevent the use of
algorithms from the literature based on implicit enumeration of the coupling variables (Xu and
Wang, 2014; Lozano and Smith, 2017; Fischetti et al., 2018). Then, there are coupling constraints,
which means constraints in the upper-level problem involving lower-level variables. Finally, the
upper-level problem involves a large number of binary variables: there are card(S × N × T )
variables δs. With such a large number of binary variables, even the high-point relaxation can
be really challenging to solve for real-size instances. One can think that, because the objective
functions in both levels are the same, the reliable stochastic expansion planning problem is
equivalent to its high-point relaxation and can be reformulated as a single-level linear program.
We show in the following that despite this particular structure, we cannot replace (ys, us) ∈ Rs(x)
by (ys, us) ∈ Ωs(x) in problem (5.9).

5.2.2 High-point relaxation and inconsistency of a single-level linear formula-
tion

In this section, we analyze the high-point relaxation of problem (5.9). We first show that the
high-point relaxation does not satisfy the time-consistency principle, which is a classical property
of two-stage stochastic programs. The high-point relaxation of problem (5.9) can be formulated
as follows: 

min c⊤x+
∑
s∈S

ps
(
g⊤

s ys +Me⊤us
)

s.t. Tsx+Wsys +Qus ≥ ds, ∀s ∈ S∑
s∈S

pse⊤δs ≤ α

(5.4)− (5.6)

ys ∈ Rn2
+ , us ∈ Rcard(N ×T )

+ , ∀s ∈ S

x ∈ X

(5.10)

This problem could have been formulated equivalently by adding the reliability constraint directly
in the extensive formulation of problem (5.1). We show the structure of the constraint matrix of
problem (5.10) in Figure 5.1. We see that the reliability constraint couples the scenarios together
in this formulation.

We now show that this formulation violates the time-consistency principle, as presented in
a multistage setting by Shapiro et al. (2009), Chapter 6 page 321: “At every state of a stochastic
program, optimality of a decision should not depend on realizations which we already know cannot
happen in the future". In the case of two-stage stochastic programming, after the first-stage
decision is taken, a realization of the randomness is observed. At this time, we know that all
the other scenarios will not happen. Then, the set of feasible solutions associated with a given
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Figure 5.1: Structure of the matrix associated to problem (5.10). Each blue block corresponds
to the coefficients of the matrix of the subproblems associated with each scenario. The yellow
block in the bottom line correspond to the reliability constraint.

scenario must not depend on the other scenarios.
In order to formalize the time-consistency principle in the case of two-stage stochastic

programming, we first introduce several notations. Let S be a finite set of scenarios. A mapping
p : S 7→ [0, 1] is a probability distribution over S if and only if ∑s∈S p(s) = 1. The support of a
probability distribution p over S, denoted by S(p) is the following set S(p) = {s ∈ S : p(s) ̸= 0}.

Definition 9. Let S be a finite set of scenarios. For any probability distribution p over S, we
define a mathematical program (Θ(p)) parameterized by p. Let n1 ∈ N the number of first-stage
variables and for every s ∈ S, ns ∈ N the number of recourse variables in scenario s ∈ S. We
denote by x ∈ Rn1 , the first-stage variables and by vs ∈ Rns the recourse variables associated with
scenario s ∈ S. We formulate program (Θ(p)) as follows:

min fp(x, (vs)s∈S)

s.t. hp(x, (vs)s∈S) ≥ 0

vs ∈ Rns , ∀s ∈ S

x ∈ Rn1

For any given first-stage solution x̄ ∈ Rn1 and any probability distribution p′, we define the set of
optimal recourse solutions parameterized p′ as:

V(x̄, p′) =
{

(vs)s∈S(p′) : (vs)s∈S ∈ argmin{fp′(x̄, (vs)s∈S) : hp′(x̄, (vs)s∈S) ≥ 0, vs ∈ Rns , ∀s ∈ S}
}

For a given probability distribution p̄ over S such that S(p̄) = S, problem (Θ(p̄)) satisfies
the time-consistency principle if, for any first-stage solution x ∈ Rn1 and for any probability
distribution p′ over S, V(x̄, p′) is the set of the subfamilies of optimal recourse solutions to (Θ(p̄)),
on the subset of scenarios S(p′):{

(vs)s∈S(p′) : (vs)s∈S ∈ V(x̄, p̄)
}
⊆ V(x̄, p′)
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Proposition 10. Formulation (5.10) violates the time-consistency principle.

Proof. We present an instance of problem (5.10) which violates the time-consistency principle.
The instance is formulated on a graph with four nodes, one time step and two scenarios. The
instance can be represented as follows:

The demand at node i in scenario s is denoted by ds,i. The production is only located at note
0. There is unlimited transmission capacity, and the transmission cost is equal to 2 on the arcs
from node 0 to node 1 and 3, and equal to 1 on the arc from node 0 to node 2. The investment
cost on production capacity is set to 20. The cost associated with an unsatisfied demand is set
to 10. We set ε = 0.1 and α = 2.0. Variables (vs)s∈S of Definition 9 are variables (ys, us, δs)s∈S

in Formulation (5.10). We show that this problem, associated with the probability distribution p̄
such that p̄(1) = 0.9 and p̄(2) = 0.1, does not satisfy the time-consistency principle. We analyze
the set of recourse solutions at x̄ = 0 with distribution probability p̄.

There exists a unique optimal solution to problem (5.10) such that x = 0. In scenario 1, 1− ε
unit of flow is sent to node 1 and ε unit of flow is sent to node 2, 0 to node 3. The number of
unsatisfied demands in scenario 1 is equal to 1 (only node 2). In scenario 2, 1 unit of flow is sent
to node 2. The total number of unsatisfied demands is equal to 3 in scenario 2. The expected
number of unsatisfied demands is equal to 1.2 ≤ α = 2. We show this solution hereafter:

As the total production capacity is equal to 1 for x = 0, the total number of unsatisfied
demands in scenario 2 is equal to 3 in any feasible solution. If, in scenario 1, we send less than
1− ε unit of flow to node 1, the number of unsatisfied demands in scenario 1 increases to 2 and
the solution is no longer feasible as ∑s∈S pse⊤δs = 2.1 > α. So this solution is the only optimal
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solution to problem (5.10) such that x = 0.

We now consider the following probability distribution p′: p′(1) = 1 and p′(2) = 0. We have
S(p′) = {1}. Now, the expected number of unsatisfied demands is equal to the total number of
unsatisfied demands in scenario 1: ∑s∈S p

′(s)e⊤δs = e⊤δ1. In the solution consisting of sending
1 unit of flow to node 2 in scenario 1, there are 2 unsatisfied demands. Then this solution is
feasible as α = 2. We show this solution on the following figure:

This solution is optimal as the transmission cost are larger than 1 on the other arcs. Then
V(0, p′) is a singleton containing only this solution.

Finally, in the optimal solution to problem (5.10) such that x = 0, obtained with the
probability distribution p′, the flow sent to node 1 in scenario 1 is lower than 1− ε. Then this
solution is not part of any feasible solution obtained with the initial probability distribution p̄.
Then,

{
(vs)s∈S(p′) : (vs)s∈S ∈ V(0, p̄)

}
⊈ V(0, p′) and this problem violates the time-consistency

principle.

Corollary 4. Problem (5.10) is not the extensive formulation of a two-stage stochastic program.

Proof. By definition, a two-stage stochastic program can be written according to formulation
(5.1). Then, for any given fixed first-stage solution x ∈ X , the problem becomes decomposable
according to the scenarios. Let p̄ the initial probability distribution, and p′ a probability
distribution over the set of scenarios S. For any first-stage solution x ∈ X , we have

{
(vs)s∈S(p′) :

(vs)s∈S ∈ V(x, p̄)
}

= V(x, p′). This means that any two-stage stochastic program satisfies the
time-consistency principle. By contrapositive, formulation (5.10) does not satisfied the time-
consistency principle, and therefore is not a formulation of a two-stage stochastic program.

This result shows that constraint ∑s∈S pse⊤δs ≤ α, which couples the scenarios together,
breaks the two-stage stochastic structure of the problem. The bilevel formulation presented in
Subsection 5.2.1 is required to formulate the problem as a two-stage stochastic program.

Let (x∗, (y∗
s , u

∗
s, δ

∗
s)s∈S) an optimal solution to problem (5.10). Violating the time-consistency

principle implies that there exists a scenario s ∈ S such that g⊤
s y

∗
s +Me⊤u∗

s > ϕ(x∗, s). We show
in the following proposition that the ratio between these two values in not bounded.

Proposition 11. Let A > 0 a positive real value. There exists a stochastic expansion planning
problem in which, in any optimal solution (x∗, (y∗

s , u
∗
s)s∈S), g⊤

s y
∗
s +Me⊤u∗

s > Aϕ(x∗, s).
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Proof. We show this with the following stochastic expansion planning problem parameterized by
n ∈ N∗, with three nodes, one time step and two scenarios:

We denote by ds,i the demand at node i in scenario s. The production is only located at
note 0. cf

s,i represents the flow cost on arc from node 0 to node i in scenario sand there is
unlimited transmission capacity. The investment cost on production capacity is set to 20n. The
cost associated with an unsatisfied demand is set to 10. We set ε = 0.1 and α = 1.5.

With the high-point relaxation formulation (5.10), we remark that, by sending 1− ε unit of
flow to node 1 in scenario 1, one can satisfy the reliability constraint, as the expected number of
unsatisfied demands will be equal to 0.9 + 0.1 ∗ 2 = 1.1 < 1.5 = α. We show this solution in the
following figure:

This solution is the optimal solution of the high-point relaxation (5.10). The cost associated
with recourse variables of scenario 1 is then equal to v∗

n = (1 − ε)n + ε + 3M . The optimal
value of the recourse problem (5.2) associated with scenario 1 evaluated at x = 0 is equal to
ϕ(0, 1) = 1 + 3M , as it is cheaper to send all the energy to node 2. Then we have:

lim
n→∞

v∗
n

ϕ(x∗, 1) = +∞

Proposition 11 means that, for any value A > 0, we can create a problem in which, in an
optimal solution, there exists a scenario for which we pay A times more than an optimal recourse
solution in order to satisfy the reliability constraint. This does not make sense as, after the
realization of the random variables, there would be no reason to pay for example 1000 times
the cost of an optimal recourse solution to satisfy a constraint involving other scenarios that we
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already know will not realize. This shows the fundamental difference between problem (5.9) and
its high-point relaxation. This also shows that, despite the objectives functions in both levels are
the same, we cannot replace (ys, us) ∈ Rs(x) by (ys, us) ∈ Ωs(x) in problem (5.9).

5.3 A Benders-based heuristic solution procedure

We present in this section a Benders-based heuristic to find feasible solutions to problem (5.9).
As the stochastic expansion planning problems involved in studies from RTE may have up to
several million variables, we do not expect classical methods from the literature to be able to
solve them in practice (see e.g. Table 3.2). The objective of our approach is to define a sequence
of single-level problems that converges to feasible solutions to problem (5.9), using the fact
that, if we relax the reliability constraint, problem (5.9) becomes a single-level problem. We
propose a procedure based on a binary search on total the investment cost, and show that under
some assumptions, such a binary search converges to a bilevel feasible solution. We introduce
hereafter the investment free problem, and an hypothesis based on this problem which ensures
both the feasibility of the bilevel problem, and the convergence of the proposed heuristic to
feasible solutions.

Definition 10. The investment free stochastic expansion planning problem, hereafter referred to
as the investment free problem, is the following stochastic program:

min
∑
s∈S

ps
(
g⊤

s ys +Me⊤us
)

s.t. : Tsx+Wsys +Qus ≥ ds, ∀s ∈ S

ys ∈ Rn2
+ , ∀s ∈ S

us ∈ Rcard(N ×T )
+ , ∀s ∈ S

x ∈ X

(5.11)

In the following, we make the following assumption:

Assumption 1. In any optimal solution to problem (5.11), variables us = 0 for every scenario
s ∈ S.

We refer to this assumption as the investment free problem hypothesis. This means that, if adding
production or transmission capacities costs nothing, we always choose to add enough capacities in
order to satisfy all the demands in every scenarios. This basically traduces the fact that the cost
M associated to an unsatisfied demand is large enough to prefer satisfying a demand whenever
it is possible. This also implies that there exists a feasible investment which allows to satisfy all
the demands. This hypothesis is reasonable in industrial instances.

Proposition 12. Let (xf , yf , uf ) denote an optimal solution to the investment free problem.
(xf , yf , uf ) is a bilevel feasible solution to problem (5.9) for any α ≥ 0 and any ε ≥ 0, and there
exists no bilevel solution with a higher investment cost and a lower total cost.

Proof. Due to the investment free problem hypothesis, we have uf = 0, and (xf , yf , uf ) is
therefore a bilevel feasible solution for any α ≥ 0 and any ε ≥ 0.
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Now for any Λ such that Λ ≥ c⊤xf , we denote by (xΛ, yΛ, uΛ) a feasible solution to (Inv(Λ)).
As (xf , yf , uf ) is a solution to the investment free problem, we know that ∑s∈S ps

(
g⊤

s yΛ,s +
Me⊤uΛ,s

)
≥
∑

s∈S ps
(
g⊤

s yf,s +Me⊤uf,s

)
. Then, the investment cost constraint Λ ≥ c⊤xf implies

that c⊤xΛ ≥ c⊤xf . Finally, any solution with a higher investment cost than the investment free
problem has a higher cost than (xf , yf , uf ).

This property allows to restrict the search of a solution to the bilevel program. An optimal
solution to problem (5.9) has necessary an investment cost lower than the investment cost of an
optimal solution to the investment free program (5.11).

In order to formally describe our Benders-based heuristic, we introduce the minimum invest-
ment problem, formulated as follows:

Definition 11. Let Λ ≥ 0 be a positive real number, the minimum investment problem is denoted
as (Inv(Λ)) and formulated as:

v(Λ) =



min c⊤x+
∑
s∈S

ps
(
g⊤

s ys +Me⊤us
)

s.t. : Tsx+Wsys +Qus ≥ ds, ∀s ∈ S

c⊤x ≥ Λ

ys ∈ Rn2
+ , ∀s ∈ S

us ∈ Rcard(N ×T )
+ , ∀s ∈ S

x ∈ X

(5.12)

Algorithm 5.1 outlines the general structure of our heuristic. The core idea is to perform
a binary search on the minimum investment value Λ, and to solve the minimum investment
problem (Inv(Λ)) for every value of Λ selected during the binary search. Given a lower bound
Λmin on the investment value (initially 0) and an upper bound on the investment value Λmax (the
investment cost of a first-stage optimal solution to the investment free problem), we solve the
minimum investment problem for an investment value Λ = τΛmin + (1− τ)Λmax, with τ ∈ (0, 1)
the binary search parameter. If there is no bilevel feasible solution with a cost lower than the
best bilevel feasible solution computed so far, then Λmin is set to Λ. Otherwise Λmax is set to the
lowest invest cost associated to a bilevel feasible solution. At the first iteration of the binary
search, the minimum investment value is set to 0, which means that we solve the stochastic
expansion planning problem (5.1). Indeed, if the solution to the stochastic expansion planning
problem is bilevel feasible, there is no need to perform a binary search as this would be a bilevel
optimal solution (an optimal solution to a relaxation which is feasible for the original problem).

Since the problem (Inv(Λ)) is as hard as the stochastic expansion planning problem (5.1), we
solve (Inv(Λ)) with a Benders decomposition algorithm (Lines 7 to 16 in Algorithm 5.1). The
subproblem associated with scenario s ∈ S, evaluated at first-stage solution x ∈ X , denoted by
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(SP (x, s)), is the following:

ϕ(x, s) =


min g⊤

s ys +Me⊤us

s.t. Wsys +Qus ≥ ds − Tsx

ys ∈ Rn2
+ , us ∈ Rcard(N ×T )

+

We denote by Πs = {πs ∈ Rm : W⊤
s πs ≤ gs, Q

⊤
s πs ≤Me} the set of feasible dual variables of

(SP (x, s)), for any x ∈ X , and by Vert(Πs) the set of extreme points of Πs. At iteration k of
the Benders decomposition algorithm, we denote by Vert(Πs)(k) the subset of extreme points
defining the cuts present in the relaxed master program. The relaxed master program, denoted
by (RMP )(k), is the following program:

min c⊤x+
∑
s∈S

psθs

s.t. : θs ≥ π⊤
s (ds − Tsx), ∀s ∈ S, ∀πs ∈ Vert(Πs)(k)

c⊤x ≥ Λ

x ∈ X , θs ∈ R, ∀s ∈ S

The benefit of using the Benders decomposition is that we can perform the entire binary search
with only one relaxed master program. The Benders cuts computed when solving (Inv(Λ)) for
a given Λ ≥ 0 are still valid when solving (Inv(Λ′)) for any Λ′ ≥ 0. Also, it allows to check if
every first-stage solution evaluated during the Benders decomposition algorithm is bilevel feasible
(lines 17 to 21 in Algorithm 5.1).

In Algorithm 5.1 line 19, we check if the optimal recourse solution returned by the solver
satisfies the reliability constraint or not. We refer to this strategy as the Random strategy.
However, if this solution does not satisfy the constraint, there might exist an other optimal
recourse solution which does satisfy the constraint. We then introduce the Min strategy based
on the auxiliary subproblem defined hereafter. Let x ∈ X be a feasible first-stage solution for
the minimum investment problem. Let ϕ(x, s) be the optimal cost associated to scenario s ∈ S
evaluated at x. The auxiliary subproblem, denoted (Aux(x, s)) hereafter, is the following:

N(x, s) =



min
∑

n∈N

∑
t∈T

δn,t

s.t. Wsy +Qu+ Tsx ≥ ds∑
s∈S

ps
(
g⊤

s y +Me⊤u
)
≤ ϕ(x, s)

δn,t ≤
1
ε
un,t, ∀n ∈ N , ∀t ∈ T

Cδn,t ≥ un,t − ε, ∀n ∈ N , ∀t ∈ T

y ∈ Rn2

u ∈ Rcard(N ×T )

δ ∈ {0, 1}card(N )×card(T )

(5.13)
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Algorithm 5.1: Benders-based heuristic (All-Rand version)
Parameters : εopt > 0, εinv > 0, heuristic parameters α ≥ 0, ε > 0, binary search parameter

t ∈ (0, 1)
1 Initialization: k ← 0, found_feasible← False, Λ← 0,Λmin ← 0
2 Solve invest free problem (5.11) and retrieve xbest an optimal first-stage solution, and

(ϕ(xbest, s))s∈S
3 vbest ← c⊤xbest +

∑
s∈S psϕ(xbest, s)

4 Λmax ← c⊤xbest
5 while Λmax − Λmin > εinv do

/* Chosing a new bound on investment */
6 Set investment constraint to c⊤x ≥ Λ in (RMP )(k)

7 UB(k) ← +∞,LB(k) ← −∞
8 found_feasible← False

/* Solving the Benders decomposition associated with investment constraint
*/

9 while UB(k) > LB(k) + εopt do
10 k ← k + 1
11 Solve (RMP )(k) and retrieve (x̌(k), (θ̌(k)

s )s∈S)
12 LB(k) ← c⊤x̌(k) +

∑
s∈S psθ̌

(k)
s

13 for s ∈ S do
14 Solve (SP (x̌(k), s))
15 Retrieve πs ∈ Vert(Πs) and (ys, us) optimal solution
16 Add θs ≥ π⊤

s (ds − Tsx) to (RMP )(k)

17 UB(k) ← min
(
UB(k−1), c⊤x̌(k) +

∑
s∈S psπ

⊤
s (ds − Tsx̌

(k))
)

18 (RMP )(k+1) ← (RMP )(k)

/* Checking bilevel feasibility */
19 if

∑
s∈S psUε(x̌(k), ys, us) ≤ α and c⊤x̌(k) +

∑
s∈S psπ

⊤
s (ds − Tsx̌

(k)) < vbest then
20 found_feasible← True
21 xbest ← x̌(k)

22 vbest ← c⊤x̌(k) +
∑

s∈S psπ
⊤
s (ds − Tsx̌

(k))
23 Λmax ← min{Λmax, c

⊤x̌(k)}

24 if found_feasible = False then
25 Λmin ← Λ
26 Λ← τΛmin + (1− τ)Λmax

27 Return xbest

We denote by N(x, s) its optimal value. This auxiliary subproblem searches, among all optimal
solutions of the subproblem, the one which minimizes the number of unsatisfied demands. Solving
all the auxiliary subproblems for a given first-stage allows to determine if this latter is bilevel
feasible or not. We formalize this statement in the following proposition.

Proposition 13. Let α ≥ 0, ε ≥ 0 be the parameters of the reliability constraint and x ∈ X .
There exists (y, u) feasible recourse solution such that (x, y, u) is bilevel feasible if and only if∑

s∈S psN(x, s) ≤ α.

Proof. For every s ∈ S, let (ys, us, δs) an optimal solution to (Aux(x, s)).
(⇒) Assume that (x, (ys)s∈S , (us)s∈S) is bilevel feasible. Then, by definition of the auxiliary

subproblem, N(x, s) ≤ Uε(x, ys, us), ∀s ∈ S. Because (x, (ys)s∈S , (us)s∈S) is bilevel feasible, we
have ∑s∈ psUε(x, ys, us) ≤ α and therefore ∑s∈S psN(x, s) ≤ α.
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(⇐) Assume ∑s∈S psN(x, s) ≤ α. The constraint ∑s∈S ps
(
g⊤

s y +Me⊤u
)
≤ ϕ(x, s) ensures

that (ys, us) is an optimal solution to (SP (x, s)), and (x, (ys)s∈S , (us)s∈S) is bilevel feasible.

This proposition shows that the bilevel feasibility of a solution can be checked using the
separability of the subproblems, whereas the constraint couples them together.

We present in detail the Min strategy in Algorithm 5.2. Applying the Min strategy
consists of calling Algorithm 5.2 instead of checking the condition of Line 17 in Algorithm 5.1. If
the Min strategy procedure returns True, then we apply Lines 18-21 in Algorithm 5.1.

Algorithm 5.2: Min strategy
Parameters : α ≥ 0, ε > 0, x̌(k), (ys, us, πs)s∈S , vbest

1 if
∑

s∈S psUε(x̌(k), ys, us) ≤ α and c⊤x̌(k) +
∑

s∈S psπ
⊤
s (ds − Tsx̌

(k)) < vbest then
2 Return True
3 else
4 for s ∈ S do
5 Solve (Aux(x̌(k), s))
6 Retrieve N(x̌(k), s) optimal value of (Aux(x̌(k), s))
7 if

∑
s∈S psN(x̌(k), s) ≤ α then

8 Return True

9 Return False

The Min strategy involves solving many integer program, with card(N × T ) binary variables
in each, which can be quite large. We accelerate this procedure by stopping solving the auxiliary
subproblems after having solved a subset S0 ⊂ S as soon as ∑s∈S0 psN(x̌(k), s) > α.

The algorithm proposed in this section uses the Benders decomposition algorithm as a way to
sample possible first-stage solutions in order to find good feasible solutions. A similar procedure
can be done by only checking the bilevel feasibility of an optimal solution to the minimum
investment problem (5.12). We define the frequency of the bilevel feasibility checking. This
parameter can be set to All, if the algorithm checks the bilevel feasibility for all the first-stage
solutions evaluated during the optimization process, or to Opt, if the algorithm checks the bilevel
feasibility of only optimal solutions to the minimum investment problem. We finally obtain four
different values of parameters to run the heuristic:

1. All-Rand : Using a Benders decomposition algorithm, the algorithm evaluates the bilevel
feasibility of every first-stage solution evaluated, using the random optimal solution of the
subproblems given by the solver.

2. All-Min : Using a Benders decomposition algorithm, the algorithm evaluates the bilevel
feasibility of every first-stage solution evaluated by solving the auxiliary subproblems.

3. Opt-Rand : The algorithm only evaluates the bilevel feasibility of the optimal solution to
the minimum investment problem, using the random optimal solution of the subproblems
given by the solver.
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4. Opt-Min : The algorithm only evaluates the bilevel feasibility of the optimal solution to
the minimum investment problem by solving the auxiliary subproblems.

5.4 Experimental design and numerical results

We present in this section the results we obtain for the four versions of the heuristic presented in
Section 5.3 on randomly generated instances. We compare these results to the results obtained
by using the classical SOS-1 method to solve the KKT-reformulation of the bilevel program.
We first present our instance generation procedure and the parameters we used to generate our
instances, then we present the numerical results.

5.4.1 Instance generation

We present here the method we use to generate instances of reliable stochastic expansion planning
problems. The instance generation is divided in two parts. First, we generate a random graph
representing a network. Then, on this network, we generate random data to model investments
and the operational behavior.

Graph generation

We first present the graph generation algorithm we use. In preliminary experiments, we noticed
that classical graph generation algorithms such as the ones proposed in (Erdos and Rényi, 1960;
Hakimi, 1962; Viger and Latapy, 2005) did not produce satisfying results. Either the produced
graphs did not model well the actual structure of transmission systems networks, or they were not
similar to networks generated based on geographical positions. To address this issue, we propose
a dedicated graph generation method described in Algorithm 5.3. This method is composed of
three parts:

1. Sampling nodes positions

2. Adding edges until connectivity

3. Removing edges until a desired density is reached

The first part consists of sampling some integer positions on a rectangular grid. Let N be
number of nodes of the graph we want to create. Let R be the ratio between the horizontal
size and the vertical size of the rectangle, and P be the proportion on integer points on which
there will be a node of the graph. We define the limits on the horizontal and vertical coordinates
as Xmax =

√
NG
P and Ymax =

√
N

P G . Then, the algorithm starts by sampling N uniformly
distributed integer positions on the grid defined by [1, Xmax] × [1, Ymax]. Figure 5.2 shows a
possible result of such a sampling procedure. In the example, Xmax ≈ 8.66 and Ymax ≈ 5.77. We
finally observe an exact proportion of sampled points of 8/40 = 12.5%.

The second part consists of adding edges to the graph so that we obtain connectivity. The
procedure is the following. We begin with a distance Dmax = 1, and we add all the edges between
nodes which are at an Euclidean distance of at most Dmax. If the resulting graph is connected,
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Algorithm 5.3: Undirected graph generation procedure
Parameters : Number of nodes N , Grid ratio G, proportion of nodes P , final density d,

max_try ∈ N∗

1 Initialization: V ← ∅ the set of nodes, E ← ∅ the set of edges, try← 0
/* Sampling nodes */

2 Compute Xmax =
√

NG
P and Ymax =

√
N

P G

3 Sample N integer points in [1, Xmax]× [1, Ymax] and add them to V
4 Let Dmax ← 0

/* Adding edges until connectivity */
5 while G not connected do
6 Dmax ← Dmax + 1
7 E ← {(i, j), 1 ≤ i ≤ N, i+ 1 ≤ j ≤ N | dist(i, j) ≤ Dmax}

/* Removing edges to get required density */
8 while 2card(E)

N(N−1) > d do
9 try← 1

10 Choose (i, j) in E
11 while (V,E\{(i, j)} is not connected do
12 if try = max_try then
13 Return G = (V,E) // Unable to reach density

14 try← try + 1
15 Choose (i, j) in E

16 E ← E\{(i, j)}s
17 Return G = (V,E)

Figure 5.2: A possible result of sampling 5 nodes on a grid with ratio G = 1.5 and a proportion
parameter P = 0.1.

we stop, otherwise, Dmax ← Dmax + 1 and we restart the process. In the example presented in
Figure 5.2, this leads to the connected graph of Figure 5.3.

After this procedure, we get a graph with a given density. A parameter of the graph generation
procedure is the density d the user want to get at the end. Then, the algorithm removes random
edges letting the graph connected until it reaches the required density or it fails at having a
connected graph after a given number of trials. For example, in the graph of Figure 5.3, edge CE
cannot be removed as it would lead to a disconnected graph. We finally present a random graph
with 30 nodes and a final tree that we would obtain by removing all the possible arcs according
to a given order in Figure 5.5 and Figure 5.6.
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Figure 5.3: First connected graph, obtained after adding all the edges between points at an
Euclidean distance of at most 5.

Figure 5.4: Final graph obtained after removing edges to reach a density of 0.5.

Figure 5.5: A random graph of 30 nodes,
before deleting edges. Initial density =
124/870 ≈ 0.14

Figure 5.6: Final tree obtained after delet-
ing the maximum number of edges. Final
density = 2 ∗ 29/870 ≈ 0.067

Model and data generation

We present hereafter the model we use to evaluate the performance of our proposed heuristic.
Let T be a set of time steps, G = (N , E) an undirected graph and S a set of scenarios. We
denote by NP ⊂ N the set of nodes where the is a production capacity. One can invest on
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any transmission capacity, and any production capacity on production nodes. We assume that
investment variables are continuous here. The flow in the recourse model is algebraic, and
counted as its absolute value in the objective function. There exists a maximum gradient value
on production variables. Demands, production costs, and transmission costs are stochastic. We
list hereafter the parameters of the problem:

• ε > 0: Threshold above which an unsupplied demand is accounted
• α ≥ 0: Maximum number of expected unsatisfied demands
• cprod

inv ∈ Rcard(NP ): Vector of production capacity investment costs for each node n ∈ NP

• cflow
inv ∈ Rcard(A): Vector of transmission capacity investment costs for each arc a ∈ A

• ps ∈ [0, 1]: probability associated with scenario s ∈ S
• gprod

s ∈ Rcard(NP ×T ):Vector of production costs, for each node n ∈ NP and each time step
t ∈ T , in scenario s ∈ S

• gflow ∈ R: Transmission cost, the same for each arc a ∈ A and each time step t ∈ T

• M ≥ 0: Cost associated with an unsatisfied demand
• C > 0: Large enough real number to set variables δs to one when required
• F init ∈ Rcard(A): Vector of initial transmission capacities, on each arc a ∈ A
• ∆ ∈ [0, 1]: Maximum gradient on production variables, as a proportion of the total

production capacity
• ds ∈ Rcard(N ×T ): Vector of demands in scenario s ∈ S, for each node n ∈ N and time step
t ∈ T

We also present hereafter the optimization variables:

• Pmax ∈ Rcard(NP ): Vector of production capacity investment variables
• Fmax ∈ Rcard(A): Vector of transmission capacity investment variables
• δs ∈ {0, 1}card(N ×T ): Vector of binary variable counting if there is an unsatisfied demand

of at least ε in scenario s ∈ S, for each node n ∈ N and time step t ∈ T

• πs ∈ Rcard(NP ×T ): Vector of production variables, in scenario s ∈ S, for each production
node n ∈ NP and time step t ∈ T

• fs ∈ Rcard(A×T ): Vector of algebraic flow variables in scenario s ∈ S, for each edge a ∈ A
and time step t ∈ T

• f̄s ∈ Rcard(A×T ): Vector of absolute value of flows in scenario s ∈ S, for each edge a ∈ A
and time step t ∈ T

• us ∈ Rcard(N ×T ): Vector of unsatisfied demands in scenario s ∈ S, for each node n ∈ N
and time step t ∈ T
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We can now write formally the proposed bilevel stochastic expansion planning problem:

min (cprod
inv )⊤Pmax + (cflow

inv )⊤Fmax

+
∑
s∈S

ps

(
(gprod

s )⊤πs + gflow
∑
a∈A

∑
t∈T

f̄s,a,t +Me⊤us

)
s.t. : (πs, fs, f̄s, us) ∈ Rs(x), ∀s ∈ S

us − εe ≤ Cδs, ∀s ∈ S

δs ≤ ε−1us, ∀s ∈ S∑
s∈S

pse⊤δs ≤ α, ∀s ∈ S

Pmax ∈ Rcard(NP )
+ , Fmax ∈ Rcard(A)

+

δs ∈ {0, 1}card(N×T ), ∀s ∈ S

(5.14)

where Rs(x) is defined as the following set:

Rs(x) =



arg min (gprod
s )⊤πs + gflow

s

∑
a∈A

∑
t∈T

f̄s,a,t +Me⊤us

s.t. : πs,n,t ≤ Pmax
n , ∀(n, t) ∈ N × T

− (F init
a + Fmax

a ) ≤ fs,a,t ≤ F init
a + Fmax

a , ∀(a, t) ∈ A× T

f̄s,a,t ≥ fs,a,t, ∀(a, t) ∈ A× T

f̄s,a,t ≥ −fs,a,t, ∀(a, t) ∈ A× T

πs,n,t ≤ πs,n,t−1 + ∆Pmax
n , ∀(n, t) ∈ N × (T \{0})

πs,n,t ≥ πs,n,t−1 −∆Pmax
n , ∀(n, t) ∈ N × (T \{0})

πs,n,0 ≤ πs,n,T + ∆Pmax
n , ∀n ∈ N

πs,n,0 ≥ πs,n,T −∆Pmax
n , ∀n ∈ N

πs,n,t +
∑

a∈Γ+(n)
fs,a,t −

∑
a∈Γ−(n)

fs,a,t + us,n,t ≥ ds,n,t, ∀(n, t) ∈ NP × T

∑
a∈Γ+(n)

fs,a,t −
∑

a∈Γ−(n)
fs,a,t + us,n,t ≥ ds,n,t, ∀(n, t) ∈ (N\NP)× T

πs ∈ Rcard(NP ×T )
+ , fs, f̄s ∈ Rcard(A×T ), us ∈ Rcard(N ×T )

+
(5.15)

We generate random data with the following parameters:

Nodes Scenarios Time steps Flow cost
10 5 5 {0.1, 1, 5}
20 {50, 250} {24, 168} {0.1, 1, 5}
30 {50, 250} {24, 168} {0.1, 1, 5}

Table 5.1: Parameters of the random generated data

For each set of parameters, we generate three random instances with seeds in {|N |+|T |+|S|+i :
i = 0, 1, 2}. All the other parameters are listed hereafter. Notation [a : b] means that the values
are samples randomly (with a uniform law) between a and b:

• ε = 10−3
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• α = 3
• cprod

inv,n ∈ [1000, 8000], ∀n ∈ NP

• cflow
inv,a ∈ [1000, 8000], ∀a ∈ A

• gprod
s,n,t ∈ [20, 80], ∀(n, t) ∈ NP × T , ∀s ∈ S

• M = 1000
• C = 800
• F init

a ∈ [0, 100], ∀a ∈ A
• ∆ = 0.3
• ds,n,t ∈ [50, 400], ∀(n, t) ∈ (N × T ), ∀s ∈ S

This leads to a dataset of 81 instances. The minimum and maximum number of variables and
constraints of instances for each number of nodes, time steps and scenarios are given in Table 5.2.

Nodes Time steps Scenarios Min - Max Vars Min - Max Constr
10 5 5 1267 - 1319 1526 - 1676
20 24 50 128836 - 127238 153601 - 160801
30 24 50 190856 - 194459 237601 - 248401
20 24 250 624036 - 642039 768001 - 822001
30 24 250 936053 - 984061 1134001 - 1278001
20 168 50 873636 - 890438 1075201 - 1125601
30 168 50 1352458 - 1402864 1713601 - 1864801
20 168 250 4410037 - 4494039 5502001 - 5754001
30 168 250 6594054 - 6720057 8064001 - 8442001

Table 5.2: Minimum and maximum number of variables and constraints of instances, for each
number of nodes, time steps and scenarios.

5.4.2 Numerical results

In order to evaluate the proposed heuristic, we run the four strategies, namely All-Rand,
All-Min, Opt-Rand, Opt-Min on one core (sequential mode), on an Intel® Xeon® Gold
SKL-6130 processor at 2,1 GHz with 96 GB of RAM with the TURBO boost (up to 3.7 GHz).
The time limit is fixed to six hours for every algorithm. Julia JuMP is used a modeler, and the
solver is CPLEX 12.10 (IBM, 2019). We also solve every bilevel problem directly with CPLEX
12.10, by using the SOS-1 KKT-reformulation with the Julia Package BilevelJuMP (Garcia et al.,
2022), referred to as SOS-1 hereafter.

We first show a plot of the evolution of the expected number of unsatisfied demands according
to the minimum investment value Λ on an instance with 10 nodes, 5 time steps and 5 scenarios
in Figure 5.7. We sample 500 different values of Λ according to a normal law. The mean is
computed as the best feasible solution value obtained with the All-Rand heuristic. The standard
deviation is computed so that the probability to sample a value 20% higher than the mean
is 0.1. For every value of Λ, we show the expected number of unsatisfied demands given by
the solver in an optimal solution to the minimum investment problem. We also evaluate, with
the auxiliary subproblems, the minimum number of unsatisfied demands. Finally, we solve the
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auxiliary subproblems in maximizing the number of unsatisfied demands.

Figure 5.7: Evolution of the expected number of unsatisfied demands according to the minimum
investment value Λ, on an instance with 10 nodes, 5 time steps and 5 scenarios.

We first observe that the three curves are not perfectly decreasing, although there is a clear
correlation between a higher value of Λ with a lower number of unsatisfied demands. The curves
are decreasing almost everywhere, which justifies the use of the proposed heuristic in order to find
a good feasible solution. We also observe that for many investment values, there exists several
equivalent optimal solutions, as the difference between the minimum and the maximum expected
number of unsatisfied demands is positive. This shows that solving the auxiliary subproblems
may help to find better solutions.

We present in Table 5.3 the results obtained on the 81 instances we generated. On each line,
we write the expected time and expected gap to the best feasible solution found on the three
instances with the same parameters. We denote by P(N,T, S, gflow) the set of three instances
with N nodes, T time steps, S scenarios and a flow cost of gflow. LetM be the set of the different
methods to solve the instances. We denote by vp,m the best value obtained on problem p with
method m, and by v̄p = minm∈M{vp,m} the best value obtained with all the methods on problem p.
The expected gap shown in Table 5.3 is computed as 1

card(P(N,T,S,gflow))
∑

p∈P(N,T,S,gflow)
vp,m−v̄p

v̄p
.

We first remark that, even on the small instances with 10 nodes, 5 time steps and 5 scenarios,
the SOS-1 method of CPLEX12.10 to solve the KKT reformulation of the bilevel program is not
able to find any feasible solution in 6 hours. This result encourages the use of a heuristic solution
method in an operational setting to find feasible solutions to the bilevel stochastic expansion
planning problem. We also see, as we could expect, that the All-Min strategy is not able to finish

95



Opt-Rand All-Rand Opt-Min All-Min SOS-1
Instance Time Gap Time Gap Time Gap Time Gap Time Gap
N10-S5-T5-flow01 11.56 0.29% 11.67 0.29% 12.59 0.00% 14.45 0.00% 21600.00 −
N10-S5-T5-flow1 11.76 0.47% 11.86 0.12% 12.58 0.35% 14.36 0.00% 21600.00 −
N10-S5-T5-flow5 11.57 0.57% 11.62 0.25% 12.57 0.00% 14.82 0.00% 21600.00 −
N20-S50-T24-flow01 66.45 0.28% 69.65 0.18% 145.80 0.00% 403.40 0.00% 21600.00 −
N20-S50-T24-flow1 70.95 0.29% 74.24 0.22% 135.28 0.04% 411.81 0.00% 21600.00 −
N20-S50-T24-flow5 73.05 0.38% 76.41 0.18% 156.13 0.05% 451.74 0.00% 21600.00 −
N30-S50-T24-flow01 171.32 2.11% 178.72 0.70% 343.67 0.37% 1217.57 0.00% 21600.00 −
N30-S50-T24-flow1 154.42 0.78% 162.17 0.42% 341.48 0.10% 1168.56 0.00% 21600.00 −
N30-S50-T24-flow5 156.59 1.81% 164.05 0.79% 317.82 1.23% 1174.49 0.00% 21600.00 −
N20-S250-T24-flow01 422.90 0.27% 436.77 0.16% 847.50 0.00% 1729.02 0.00% 21600.00 −
N20-S250-T24-flow1 465.59 0.40% 486.82 0.15% 860.54 0.16% 1901.98 0.00% 21600.00 −
N20-S250-T24-flow5 455.92 0.38% 476.75 0.21% 861.77 0.10% 2036.31 0.00% 21600.00 −
N30-S250-T24-flow01 1203.59 0.25% 1232.15 0.19% 2025.75 0.02% 4456.90 0.00% 21600.00 −
N30-S250-T24-flow1 1147.62 0.29% 1179.92 0.25% 1979.65 0.17% 4367.37 0.00% 21600.00 −
N30-S250-T24-flow5 1226.13 0.29% 1255.79 0.21% 2049.97 0.09% 4822.33 0.00% 21600.00 −
N20-S50-T168-flow01 406.94 14.55% 472.96 0.00% 2439.40 13.90% 19943.22 0.00% 21600.00 −
N20-S50-T168-flow1 412.26 10.25% 470.42 0.08% 2078.35 10.25% 20080.08 0.00% 21600.00 −
N20-S50-T168-flow5 380.15 5.40% 437.25 0.11% 1611.97 5.27% 18766.62 0.00% 21600.00 −
N20-S250-T168-flow01 2355.89 6.20% 2966.55 0.00% 13030.07 5.85% 21600.00 1.74% 21600.00 −
N20-S250-T168-flow1 2468.53 3.96% 3050.63 0.00% 13780.36 3.96% 21600.00 0.47% 21600.00 −
N20-S250-T168-flow5 2643.71 2.02% 3097.23 0.00% 17224.53 1.97% 21600.00 34.22% 21600.00 −
N30-S50-T168-flow01 1092.90 9.80% 1204.49 0.00% 7928.70 9.13% 21600.00 2.07% 21600.00 −
N30-S50-T168-flow1 1019.33 6.28% 1130.36 0.00% 7869.48 5.50% 21600.00 0.00% 21600.00 −
N30-S50-T168-flow5 975.12 3.73% 1084.62 0.00% 5210.29 3.49% 21600.00 3.25% 21600.00 −
N30-S250-T168-flow01 4947.79 15.35% 6430.68 0.00% 21600.00 14.84% 21600.00 63.89% 21600.00 −
N30-S250-T168-flow1 5324.71 16.67% 6669.99 0.00% 16568.41 16.67% 21600.00 65.80% 21600.00 −
N30-S250-T168-flow5 6763.42 10.89% 8364.26 0.00% 19465.20 10.89% 21600.00 26.51% 21600.00 −

Table 5.3: Solving time and gap to the best feasible solution found for the four heuristic strategies
and the SOS-1 method to solve the KKT reformulation.

the binary search in 6 hours on the largest instances. Indeed, even if we manage to verify the
bilevel feasibility by using the separability of the subproblems, every auxiliary subproblem is
a large-scale binary program. Solving the auxiliary subproblems for every first-stage solution
evaluated during the algorithm is very time-consuming and the algorithm does not manage to
finish the binary search in 6 hours. We can see that, even for the Opt-Min strategy, in which
the auxiliary subproblems are only solved for an optimal solution to the minimum investment
problem, the heuristic terminates almost at the time limit.

The second remark is that both the All-Rand and the All-Min strategies show the best results,
mostly on the large instances with 168 time steps. They can find solution up to 16% better
than the Opt strategy. This shows that the use of the Benders decomposition as an exploratory
algorithm to find several first-solutions allows to improve the results. The result of the All
strategy are always better than their Opt equivalent (All-Rand compared to Opt-Rand and
All-Min compared to Opt-Min), except when the All-Min strategy does not finish in the time
limit. We see however, for example for the N30-S250-T168-flow1 instances, the All-Min strategy
finds the best solutions, whereas it reaches the time limit of 6 hours. Finally, it seems that,
depending on the size of the problem, either the All-Min or the All-Rand are the best methods.

We now analyze the sensitivity of the heuristic to the optimality gap of the Benders decom-
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position. As we can see on Figure 5.8, when the optimality gap of the Benders decomposition
algorithm solved at each iteration is larger, the evolution of the expected number of unsatisfied
demands tends to be fuzzier. Indeed, with a larger optimality gap, the Benders decomposition
algorithm may return investment solutions in which the total quantity of unsatisfied demands
is larger than in an optimal solution, and then may present a larger expected number of nodes
with unsatisfied demands. Then, a lower optimality gap tends to produce better results, whereas
solving the minimum investment problem at each iteration may be more time-consuming. We
therefore present in Table 5.4 the results on our 81 instances for the All-Rand strategy in which
the optimality gap to the Benders decomposition algorithm is set to a relative gap of 10−6, as in
the results of Table 5.3, and to 10−10.

All-Rand 10−6 All-Rand 10−10 All-Min
Instance Time Gap Time Gap Time Gap
N10-S5-T5-flow01 11.67 0.29% 11.72 0.21% 14.45 0.00%
N10-S5-T5-flow1 11.86 0.12% 11.93 0.11% 14.36 0.00%
N10-S5-T5-flow5 11.62 0.32% 11.91 0.26% 14.82 0.07%
N20-S50-T24-flow01 69.65 0.42% 95.20 0.00% 403.40 0.24%
N20-S50-T24-flow1 74.24 0.44% 100.20 0.00% 411.81 0.22%
N20-S50-T24-flow5 76.41 0.28% 102.71 0.00% 451.74 0.10%
N30-S50-T24-flow01 178.72 1.96% 305.37 0.00% 1217.57 1.25%
N30-S50-T24-flow1 162.17 1.41% 288.43 0.01% 1168.56 0.99%
N30-S50-T24-flow5 164.05 0.79% 281.32 0.44% 1174.49 0.00%
N20-S250-T24-flow01 436.77 0.22% 706.59 0.14% 1729.02 0.06%
N20-S250-T24-flow1 486.82 0.19% 737.62 0.22% 1901.98 0.04%
N20-S250-T24-flow5 476.75 0.21% 788.50 0.18% 2036.31 0.00%
N30-S250-T24-flow01 1232.15 0.45% 2321.90 0.00% 4456.90 0.26%
N30-S250-T24-flow1 1179.92 0.35% 2544.04 0.00% 4367.37 0.10%
N30-S250-T24-flow5 1255.79 0.24% 2612.04 0.05% 4822.33 0.03%
N20-S50-T168-flow01 472.96 2.10% 696.77 0.01% 19943.22 2.10%
N20-S50-T168-flow1 470.42 1.13% 680.51 0.00% 20080.08 1.05%
N20-S50-T168-flow5 437.25 0.60% 668.13 0.71% 18766.62 0.49%
N20-S250-T168-flow01 2966.55 0.70% 7003.94 0.34% 21600.00 2.44%
N20-S250-T168-flow1 3050.63 1.86% 5100.85 0.02% 21600.00 2.34%
N20-S250-T168-flow5 3097.23 2.29% 5104.82 0.00% 21600.00 35.35%
N30-S50-T168-flow01 1204.49 1.35% 2178.98 0.00% 21600.00 3.46%
N30-S50-T168-flow1 1130.36 1.26% 2082.04 0.33% 21600.00 1.26%
N30-S50-T168-flow5 1084.62 3.69% 2032.77 0.00% 21600.00 7.06%
N30-S250-T168-flow01 6430.68 6.16% 11648.15 0.00% 21600.00 73.79%
N30-S250-T168-flow1 6669.99 3.30% 12146.08 2.37% 21600.00 70.47%
N30-S250-T168-flow5 8364.26 1.75% 14958.71 33.63% 21600.00 28.79%

Table 5.4: Solving time and gap to the best feasible solution found for the All-Rand heuristic
with an optimality gap of 10−10 in Benders decomposition compared to All-Rand and All-Min
with an optimality gap of 10−6.

As expected, we can see in Table 5.4 that the total computing time for the All-Rand heuristic
is significantly increased when the optimality gap of the Benders decomposition is smaller.
However, the All-Rand heuristic with an optimality gap of 10−10 in the Benders decomposition
gives indeed better results than with an optimality gap of 10−6, as we could have expected from
the results presented in Figure 5.8. It is competitive with the All-Min heuristic on middle-sized
instances, and outperforms the other methods on large sized instances. It seems that, in order
to get the best possible results from this heuristic, one should try to reach the best possible
optimality gap in the Benders decomposition algorithm. However, a small optimality gap might
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be hard to reach on large-scale instance, and one should find a compromise between the quality
of the solution and the computing time.

We finally present in Table 5.5 a comparison between the best feasible solutions found
with the proposed heuristic compared with an optimal solution to the stochastic expansion
planning problem without the reliability constraint. We see in the column Unsatisfied that
optimal solutions to the stochastic expansion planning without the reliability constraint have
large expected numbers of unsatisfied demands. The best lower bound on the optimal value of
the reliable expansion planning problem is evaluated as the maximum between the value to the
problem without the reliability constraint, and the best bound obtained in the SOS-1 method to
solve the KKT reformulation. We do not expect these bounds to give a good approximation of
the optimal value to the reliable expansion planning problem. However, they allow to compute a
first evaluation of the quality of the solutions returned by the heuristic.

Instance Unsatisfied Not reliable value Best LB Best Gap
N10-S5-T5-eps01 32.85 9.256.106 1.286.107 21.54%
N10-S5-T5-eps1 28.61 9.258.106 1.291.107 21.10%
N10-S5-T5-eps5 30.11 9.266.106 1.302.107 20.21%
N20-S50-T24-eps01 54.15 4.184.107 4.222.107 11.80%
N20-S50-T24-eps1 56.54 4.193.107 4.232.107 11.73%
N20-S50-T24-eps5 56.27 4.231.107 4.273.107 11.85%
N30-S50-T24-eps01 83.24 5.998.107 6.014.107 18.81%
N30-S50-T24-eps1 83.92 6.011.107 6.035.107 18.20%
N30-S50-T24-eps5 87.03 6.065.107 6.090.107 16.81%
N20-S250-T24-eps01 55.93 4.087.107 4.087.107 13.53%
N20-S250-T24-eps1 54.47 4.095.107 4.095.107 13.41%
N20-S250-T24-eps5 56.97 4.130.107 4.130.107 13.35%
N30-S250-T24-eps01 65.98 5.801.107 5.801.107 14.85%
N30-S250-T24-eps1 66.45 5.815.107 5.815.107 14.73%
N30-S250-T24-eps5 65.79 5.875.107 5.875.107 14.61%
N20-S50-T168-eps01 28.22 7.638.107 7.638.107 8.84%
N20-S50-T168-eps1 30.74 7.695.107 7.695.107 11.22%
N20-S50-T168-eps5 30.81 7.941.107 7.941.107 7.02%
N30-S50-T168-eps01 46.97 1.129.108 1.129.108 15.34%
N30-S50-T168-eps1 42.99 1.138.108 1.138.108 13.89%
N30-S50-T168-eps5 45.93 1.173.108 1.173.108 9.64%
N20-S250-T168-eps01 26.74 7.456.107 7.456.107 8.90%
N20-S250-T168-eps1 25.26 7.518.107 7.518.107 9.08%
N20-S250-T168-eps5 26.29 7.779.107 7.779.107 6.73%
N30-S250-T168-eps01 53.26 1.212.108 1.212.108 16.20%
N30-S250-T168-eps1 45.64 1.223.108 1.223.108 19.37%
N30-S250-T168-eps5 49.27 1.268.108 1.268.108 13.88%

Table 5.5: Comparison between the solution to the stochastic expansion planning problem
without the reliability constraint and the best bilevel solution found. Unsatisfied represents the
expected number of unsatisfied demands in an optimal solution without the reliability constraint.
Not reliable value is the optimal value to the stochastic expansion planning problem without
the reliability constraint. Best LB is the best lower bound found, computed as the maximum
between the Stochastic Value and the best bound found in the SOS-1 method. Best Gap is the
gap between the best feasible solution found with our heuristic and the Best LB.
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↓ Optimality gap of 10−10 in the Benders decomposition algorithm

↓ Optimality gap of 10−8 in the Benders decomposition algorithm

↓ Optimality gap of 10−6 in the Benders decomposition algorithm

Figure 5.8: A zoom on the evolution of the solutions to the minimum investment problem
according to the minimum investment value, for three different relative optimality gaps in
Benders decomposition : 10−10 in the upper figure, 10−8, and 10−6 in the last figure, on an
instance with 10 nodes, 5 time steps and 5 scenarios.
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5.5 Conclusion

We presented in this chapter a new model to take into account a reliability constraint is stochastic
expansion planning problems to limit the expected number of nodes and time steps at which
the demands are not fully satisfied in an optimal solution. We have shown that modeling such
a constraint induces a bilevel formulation. We have also presented that the relaxation of the
optimality conditions of the lower-level, leading to a single-level linear formulation which could
be seen as the extensive formulation of the stochastic program in which we added the reliability
constraint, is not anymore a two-stage stochastic program. Such a single-level linear formulation
may lead to invalid solutions, as the ratio between the cost of the recourse variables in an
optimal solution and the optimal recourse value may be unbounded. Finally, because of the
complexity of the resulting program, we proposed a heuristic solution method based on iterative
solutions of stochastic expansion planning problems with minimum investment constraints. This
solution method allows to find feasible solutions even on large-scale instances with several millions
variables and constraints in less than 6 hours.

Because of the numerical complexity of the studied problem, we did not produce good enough
lower bounds on the optimal value in order to evaluate the quality of the solutions given by the
heuristics. Finding such lower-bounds is a important perspective to further evaluate the efficiency
of the method. The high-point relaxation may give such good lower bounds. Although being a
very large-scale two-stage stochastic mixed-integer program, its structure seems adapted to so-
lution methods based on Benders decomposition, by setting all variables δs in the master program.

We presented numerical results on instances with continuous investment variables. However,
the method remains valid if some investment variables are integer. As the Benders cuts found
during one iteration of the heuristic are valid for any minimum investment value, it is possible
to solve at each iteration a Benders decomposition with a Branch&Cut method using all the
previously found cuts as a warm-start. Finally, this solution method will be applied in real-world
instances from RTE, in order to evaluate if it allows to produce better solutions than the ones
produced by transmission system experts.
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Chapter 6

Conclusion

We have studied in this thesis two different problems arising in stochastic expansion planning
studies performed at RTE from a mathematical programming point of view.

First, we have presented in Chapter 4 an efficient algorithm to solve the multicut reformula-
tion of two-stage stochastic linear programs formulated with a large number of scenarios. Such
problems arise in stochastic expansion planning problems as the number of uncertain parameters
may be large. The presented Benders by batch algorithm neither requires the fixed recourse
hypothesis nor the second-stage cost function to be deterministic. It is based on a sequential
stopping criterion that allows to not solve all the subproblems at most iterations. We also
presented a general framework to stabilize this algorithm and two stabilization procedures. We
have shown in an extensive numerical study that the proposed algorithm outperforms some
classical algorithms from the literature, namely the level bundle method and a Benders de-
composition with in-out stabilization and static cut aggregation. Any acceleration technique
that does not require an upper bound on the optimal value can be directly applied to the
Benders by batch algorithm, such as dual stabilization techniques (Magnanti and Wong, 1981;
Sherali and Lunday, 2013) or asynchronous parallelization methods (Linderoth and Wright, 2003).

We presented in Chapter 4 a random way to generate batches of subproblems. Depending on
the solved problem, finding better ways to generate the batches of subproblems could improve
significantly the performance of the algorithm. Clustering methods that find groups of subprob-
lems based on their objective functions and right-hand sides can be an interesting perspective.
The choice of the permutation defining in what order the batches of subproblems are solved at
each iteration can also have an impact on the performance of the algorithm. The idea is to solve
the batches of subproblems that are the worse approximated in the relaxed master problem first,
in order to exclude non-optimal first-stage solutions as fast as possible. This can be based on
criteria such as the distance between the separation point and the first-stage solutions at which
cuts were generated for a given batch of subproblems, or with more complex oracles such as
neural networks if there are sufficient data to train them.

There are other interesting and valuable perspectives to improve this algorithm. First, as
only a few number of subproblems are solved at most iteration, the algorithm does not provide
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any upper bound on the optimal value of the problem. This means that, if the algorithm stops
at its time limit before finding an optimal solution, it does not provides any evaluated feasible
solution. This drawback can be circumvented by solving all the subproblems at some iterations
of the algorithm. Secondly, the algorithm could be extended to problems with integer first-stage
variables in a Branch&Cut framework. The core point of such an extension should be to solve
all the subproblems when the solution of the relaxed master problem at a given node of the
Branch&Bound tree is integer and then may improve the upper bound. Finally, the proposed
procedure could be extended to any problems with convex and separable subproblems.

In Chapter 5, we have extended the models used in prospective studies performed at RTE to
take into account a reliability constraint. This constraint limits the number of nodes and time
steps at which the demands are not fully satisfied in an optimal solution, in expectation over the
scenarios. We have shown that adding this constraint in the models implies a bilevel formulation.
We have also shown that solving the high-point relaxation may lead to inconsistent solutions.
Then, we have presented a heuristic solution method based on Benders decomposition and a
binary search on the investment costs. We have performed a numerical study on large-scale
instance with up to several million variables and constraints. The proposed heuristic finds feasible
solutions in 6 hours whereas the classical SOS-1 method to solve the KKT reformulation is not
able to find any feasible solution.

An important limitation of the numerical experiment presented in Section 5.4 is that we
could not compute tight lower bounds on the optimal values of the reliable expansion planning
problems. The quality of the solutions found with the proposed heuristic could not be evaluated.
The high-point relaxation can give a tighter lower bound on the optimal value of the problem.
As it is a large-scale mixed-integer program, this problem is hard to solve. Developing tailored
solution methods to solve the high-point relaxation is an interesting perspective. By affecting
the investment variables and the binary variables δ in a master program, the problem can
be solved with a Benders decomposition algorithm. The number of binary variables is large.
Generating only the binary variables δs,n,t at nodes and time steps where unsatisfied demands are
observed could lead to solution methods in which the number of binary variables in the program
is reasonable. Finally, the problem could be solved with a Dantzig-Wolfe reformulation and a
column generation algorithm. In such an algorithm, each column represents a global affectation
of the authorized unsatisfied demands.

In the heuristic proposed in Section 5.3, after solving only a subset of subproblems, if the
expected unsatisfied demands in their recourse solutions already exceeds the maximal number of
authorized unsatisfied demands, we know that the solution is not bilevel feasible. Then, solving
first the subproblems with a large number of unsatisfied demands is an interesting perspective,
an the heuristic could be done with an adapted Benders by batch algorithm.

The question of the existence of an exact algorithm to solve the reliable expansion planning
problem is still open, and is a very interesting research perspective. We proposed in this work a
methods based on a binary search on the investment costs. One could search for feasible solutions
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to this problem with a partition of the first-stage feasible space, and a procedure to refine this
partition. A tree-search method, choosing at each node a first-stage variable, and generating two
child nodes by defining a bound on the variable is a promising method. At each node, on could
evaluate one first-stage solution in the resulting feasible space.

Finally, the proposed methods have to be tested on real-size instances at RTE. The Benders by
batch algorithm have already been tested on a few instances and showed noticeable improvements
on the computing times compared to the classical Benders decomposition algorithm currently
used at RTE. This now has to be tested on other prospective studies instances to see if it allows
to solve instances with larger number of subproblems. In the case of RTE instances, it is possible
to generate batches of subproblems by putting together subproblems associated with winter
weeks together, and summer weeks together for example.

The heuristic proposed in Chapter 5 has not currently been tested on RTE instances.
Comparing the proposed feasible solutions to the solutions found by experts is a first step to
validate the method. Applying experts rules in the proposed heuristic could also significantly
improved the quality of the solutions.
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Appendix A

Appendices of chapter 4

A.1 Detailed benchmark algorithms

Algorithm A.1 describes our implementation of In-out monocut (cutAggr=True) and In-out
multicut (cutAggr=False).

Algorithm A.1: The Benders decomposition algorithm with in-out stabilization
Parameters : ϵ ≥ 0, x(0) ∈ X, cutAggr ∈ {True, False}, α ∈ (0; 1]

1 Initialization: k ← 0, x̂(1) ← x(0), UB(0) ← c⊤x(0) +
∑

s∈S psπ
⊤
s (ds − Tsx

(0)), LB(0) ← −∞,
α1 ← α

2 while UB(k) > LB(k) + ϵ do
3 k ← k + 1
4 Solve (RMP )(k) and retrieve x̌(k), (θ̌(k)

s )s∈S

5 LB(k) ← c⊤x̌(k) +
∑

s∈S psθ̌
(k)

6 x(k) ← αkx̌
(k) + (1− αk)x̂(k)

7 for s ∈ S do
8 Solve (SP (x(k), s)) and retrieve πs an extreme point of Πs

9 if cutAggr then
10 Add

∑
s∈S psθs ≥

∑
s∈S psπ

⊤
s (ds − Tsx)

11 else
12 for s ∈ S do
13 Add θs ≥ π⊤

s (ds − Tsx) to (RMP )(k)

14 if UB(k−1) > c⊤x(k) +
∑

s∈S psπ
⊤
s (ds − Tsx

(k)) then
15 UB(k) ← c⊤x(k) +

∑
s∈S psπ

⊤
s (ds − Tsx

(k))
16 x̂(k+1) ← x(k)

17 αk+1 ← min{1.0, 1.2αk}
18 else
19 x̂(k+1) ← x̂(k), UB(k) ← UB(k−1)

20 αk+1 ← max{0.1, 0.8αk}
21 (RMP )(k+1) ← (RMP )(k)

22 Return x̂(k+1)

We now describe the level bundle method. We first define the quadratic master program. Let
λ ∈ (0, 1) denote the level parameter, LB a lower bound on the optimal value of the problem,
and UB an upper bound. We define flev = (1− λ)UB + λLB and a stability center x̂ as in the
in-out stabilization approach. The quadratic master program (QMP )(x̂, flev) parametrized by x̂
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and flev is the following:

min
x,θ

1
2 ||x− x̂||

2
2

s.t. :
∑
s∈S

psθs ≥
∑
s∈S

psπ
⊤
s (ds − Tsx), ∀s ∈ S, ∀πs ∈ Vert(Πs)

c⊤x+
∑
s∈S

psθs ≤ flev

x ∈ X, θ ∈ RCard(S)

We denote by (RQMP )(k)(x̂, flev) its relaxation at iteration k of the algorithm and by
κ ∈ (0, λ) a acceptation tolerance to update the stability center. Algorithm A.2 describes our
implementation of Level bundle.

Algorithm A.2: Level bundle method
Parameters : ϵ ≥ 0, x(0) ∈ X, λ ∈ [0, 1), LB(0) a valid lower bound on the objective value,

κ ∈ (0, λ)
1 Initialization: k ← 0, UB(0) ← c⊤x(0) +

∑
s∈S psπ

⊤
s (ds − Tsx̂

(0)), x̂(1) ← x(0)

2 while UB(k) > LB(k) + ϵ do
3 k ← k + 1
4 f

(k)
lev = (1− λ)UB(k−1) + λLB(k−1)

5 Solve (RQMP )(k)(x̂(k), f
(k)
lev )

6 if (RQMP )(k)(x̂(k), f
(k)
lev ) is infeasible then

7 LB(k) ← flev(k)
8 x̂(k+1) ← x̂(k)

9 UB(k) ← UB(k−1)

10 else
11 Retrieve x(k) solution to (RQMP )(k)(x̂(k), f

(k)
lev )

12 for s ∈ S do
13 Solve (SP (x(k), s)) and retrieve πs an extreme point of Πs

14 Add
∑

s∈S psθs ≥
∑

s∈S psπ
⊤
s (ds − Tsx)

15 if c⊤x(k) +
∑

s∈S psπ
⊤
s (ds − Tsx

(k)) < (1− κ)UB(k−1) + κf
(k)
lev then

16 UB(k) ← c⊤x(k) +
∑

s∈S psπ
⊤
s (ds − Tsx

(k))
17 x̂(k+1) ← x(k)

18 else
19 x̂(k+1) ← x̂(k)

20 UB(k) ← UB(k−1)

21 LB(k) ← LB(k−1)

22 (RQMP )(k+1) ← (RQMP )(k)

23 Return x̂(k+1)
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A.2 Detailed numerical results

This section show the detailed numerical results.

Table A.1: Results for the Benders by batch algorithm without aggregation, with batch sizes
from 1% to 20% of the total number of subproblems.

Classic Classic BbB BbB BbB BbB
multicut monocut 1% 5% 10% 20%

instance time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000-s1000 2 3.2 0.81 1.3 2 2.8 0.91 1.5 0.75 1.2 0.62 1.0
LandS-N1000-s1001 2 2.9 0.72 1.0 2 2.4 0.86 1.2 0.74 1.1 0.70 1.0
LandS-N1000-s1002 2 3.0 0.72 1.1 2 2.9 0.71 1.1 0.65 1.0 0.66 1.0
LandS-N5000-s5000 11 1.6 9 1.3 12 1.9 8 1.2 7 1.1 7 1.0
LandS-N5000-s5001 10 1.6 10 1.6 15 2.5 8 1.3 6 1.1 6 1.0
LandS-N5000-s5002 11 1.9 9 1.5 13 2.2 8 1.3 7 1.2 6 1.0
LandS-N10000-s10000 22 1.1 26 1.3 41 2.0 25 1.2 20 1.0 21 1.0
LandS-N10000-s10001 22 1.1 30 1.5 36 1.8 25 1.2 22 1.1 20 1.0
LandS-N10000-s10002 20 1.1 30 1.7 37 2.0 25 1.4 22 1.2 18 1.0
LandS-N20000-s20000 49 1.0 96 1.9 134 2.7 86 1.7 78 1.6 71 1.4
LandS-N20000-s20001 43 1.0 119 2.8 130 3.0 92 2.1 77 1.8 71 1.7
LandS-N20000-s20002 44 1.0 99 2.2 125 2.8 90 2.0 85 1.9 73 1.7
gbd-N1000-s1000 2 2.7 0.95 1.4 2 3.3 0.68 1.0 0.78 1.1 0.95 1.4
gbd-N1000-s1001 2 3.7 0.90 1.4 2 3.8 0.65 1.0 0.90 1.4 0.94 1.5
gbd-N1000-s1002 2 3.6 0.96 1.6 2 3.7 0.62 1.0 0.83 1.3 0.99 1.6
gbd-N5000-s5000 13 2.0 10 1.7 18 2.9 6 1.0 7 1.2 8 1.4
gbd-N5000-s5001 11 1.9 10 1.7 14 2.3 6 1.0 7 1.1 8 1.3
gbd-N5000-s5002 12 1.8 11 1.6 15 2.4 6 1.0 7 1.1 9 1.3
gbd-N10000-s10000 24 1.2 34 1.8 54 2.8 19 1.0 21 1.1 26 1.4
gbd-N10000-s10001 24 1.3 32 1.7 41 2.2 19 1.0 24 1.3 26 1.4
gbd-N10000-s10002 23 1.2 32 1.7 46 2.4 19 1.0 22 1.1 24 1.2
gbd-N20000-s20000 48 1.0 119 2.5 97 2.0 63 1.3 71 1.5 86 1.8
gbd-N20000-s20001 51 1.0 120 2.3 100 2.0 64 1.2 73 1.4 90 1.8
gbd-N20000-s20002 47 1.0 125 2.7 92 2.0 57 1.2 70 1.5 85 1.8
ssn-N1000-s1000 2279 552.2 7 1.7 6 1.3 4 1.0 5 1.1 5 1.2
ssn-N1000-s1001 2720 679.7 7 1.8 6 1.6 4 1.0 4 1.0 5 1.2
ssn-N1000-s1002 2226 602.8 7 1.8 6 1.8 4 1.0 4 1.1 5 1.3
ssn-N5000-s5000 13425 580.9 62 2.7 31 1.3 23 1.0 33 1.4 33 1.4
ssn-N5000-s5001 14260 631.1 45 2.0 33 1.5 23 1.0 27 1.2 31 1.4
ssn-N5000-s5002 12695 558.4 64 2.8 31 1.4 25 1.1 23 1.0 31 1.4
ssn-N10000-s10000 26559 420.0 185 2.9 63 1.0 123 2.0 64 1.0 79 1.3
ssn-N10000-s10001 26228 449.1 193 3.3 72 1.2 58 1.0 59 1.0 78 1.3
ssn-N10000-s10002 24916 463.1 187 3.5 80 1.5 56 1.0 54 1.0 79 1.5
ssn-N20000-s20000 +∞ >382.6 512 4.5 152 1.3 113 1.0 120 1.1 8143 72.1
ssn-N20000-s20001 +∞ >355.0 503 4.1 122 1.0 588 4.8 128 1.1 167 1.4
ssn-N20000-s20002 +∞ >356.6 450 3.7 160 1.3 121 1.0 1624 13.4 154 1.3
storm-N1000-s1000 23 3.6 10 1.6 19 3.0 8 1.3 6 1.0 8 1.3
storm-N1000-s1001 24 3.7 11 1.6 23 3.5 8 1.3 7 1.0 8 1.3
storm-N1000-s1002 24 3.8 11 1.7 21 3.3 8 1.3 6 1.0 8 1.3
storm-N5000-s5000 110 2.0 100 1.8 159 2.9 58 1.1 54 1.0 65 1.2
storm-N5000-s5001 117 2.2 118 2.2 184 3.4 59 1.1 54 1.0 65 1.2
storm-N5000-s5002 116 2.1 99 1.8 181 3.3 63 1.1 55 1.0 65 1.2
storm-N10000-s10000 215 1.4 468 3.0 508 3.2 162 1.0 159 1.0 191 1.2
storm-N10000-s10001 225 1.5 479 3.1 494 3.2 154 1.0 161 1.1 188 1.2
storm-N10000-s10002 233 1.5 542 3.5 474 3.1 153 1.0 157 1.0 189 1.2
storm-N20000-s20000 465 1.0 2240 4.8 1470 3.2 581 1.2 704 1.5 574 1.2
storm-N20000-s20001 434 1.0 2460 5.7 1300 3.0 585 1.3 669 1.5 603 1.4
storm-N20000-s20002 476 1.0 2410 5.1 1400 2.9 574 1.2 642 1.3 587 1.2
20term-N1000-s1000 544 13.5 749 18.6 40 1.0 82 2.0 46 1.1 74 1.8
20term-N1000-s1001 584 16.1 646 17.8 36 1.0 82 2.3 47 1.3 72 2.0
20term-N1000-s1002 604 16.0 877 23.2 38 1.0 82 2.2 53 1.4 76 2.0
20term-N5000-s5000 3095 4.7 29455 44.6 660 1.0 2059 3.1 1497 2.3 1951 3.0
20term-N5000-s5001 3699 5.4 22490 33.0 681 1.0 2066 3.0 1333 2.0 2302 3.4
20term-N5000-s5002 3725 6.6 21342 38.0 561 1.0 2178 3.9 1176 2.1 2486 4.4
20term-N10000-s10000 6803 3.1 +∞ >20.4 2193 1.0 9654 4.4 5526 2.5 11592 5.3
20term-N10000-s10001 6404 2.7 +∞ >19.5 2330 1.0 11062 4.7 7874 3.4 9436 4.1
20term-N10000-s10002 7494 3.3 +∞ >19.6 2288 1.0 11483 5.0 5196 2.3 10212 4.5
20term-N20000-s20000 13429 1.0 +∞ >5.7 +∞ >3.2 +∞ >3.2 +∞ >3.2 +∞ >3.2
20term-N20000-s20001 12763 1.4 +∞ >5.0 9062 1.0 +∞ >4.8 +∞ >4.8 +∞ >4.8
20term-N20000-s20002 14868 1.5 +∞ >8.1 9613 1.0 +∞ >4.5 +∞ >4.6 +∞ >4.6
Fleet20-N1000-s1000 513 9.4 224 4.1 143 2.6 105 1.9 102 1.9 55 1.0
Fleet20-N1000-s1001 539 10.1 228 4.3 139 2.6 110 2.1 100 1.9 53 1.0
Fleet20-N1000-s1002 546 7.7 224 3.2 154 2.2 70 1.0 103 1.5 115 1.6
Fleet20-N5000-s5000 2780 1.5 5530 2.9 2380 1.3 2050 1.1 1880 1.0 2110 1.1
Fleet20-N5000-s5001 2760 1.5 5090 2.8 2260 1.2 1850 1.0 1870 1.0 2070 1.1
Fleet20-N5000-s5002 2730 1.5 5370 2.9 2610 1.4 1950 1.0 1870 1.0 2110 1.1
Fleet20-N10000-s10000 5860 1.0 29600 5.1 10400 1.8 +∞ >7.4 8780 1.5 11000 1.9
Fleet20-N10000-s10001 5480 1.0 28200 5.1 8310 1.5 8350 1.5 8560 1.6 9950 1.8
Fleet20-N10000-s10002 5790 1.0 29000 5.0 11000 1.9 8190 1.4 8270 1.4 +∞ >7.5
Fleet20-N20000-s20000 11400 1.0 +∞ >4.0 +∞ >3.8 +∞ >3.8 +∞ >3.8 +∞ >3.9
Fleet20-N20000-s20001 11500 1.0 +∞ >3.8 18200 1.6 +∞ >3.8 +∞ >3.8 +∞ >3.8
Fleet20-N20000-s20002 11000 1.0 +∞ >4.6 +∞ >3.9 +∞ >3.9 +∞ >3.9 +∞ >4.0
product-N1000-s1000 1920 17.9 184 1.7 259 2.4 123 1.1 109 1.0 107 1.0
product-N1000-s1001 2070 19.9 197 1.9 302 2.9 125 1.2 109 1.0 104 1.0
product-N1000-s1002 1850 19.1 178 1.8 249 2.6 120 1.2 97 1.0 97 1.0
product-N5000-s5000 10500 8.0 3220 2.5 3630 2.8 1830 1.4 1390 1.1 1310 1.0
product-N5000-s5001 10100 7.4 3440 2.5 3830 2.8 1700 1.2 1480 1.1 1360 1.0
product-N5000-s5002 10800 7.4 3830 2.6 3730 2.6 2090 1.4 1580 1.1 1460 1.0
product-N10000-s10000 20200 3.6 15300 2.7 14000 2.5 7330 1.3 5820 1.0 5580 1.0
product-N10000-s10001 19100 3.7 13300 2.5 11800 2.3 6580 1.3 5560 1.1 5230 1.0
product-N10000-s10002 21300 4.0 17000 3.2 14100 2.6 6770 1.3 5370 1.0 5380 1.0
product-N20000-s20000 +∞ >1.7 +∞ >2.0 +∞ >1.7 32700 1.3 26000 1.0 25200 1.0
product-N20000-s20001 42600 2.1 +∞ >2.2 +∞ >2.2 26600 1.3 24100 1.2 20000 1.0
product-N20000-s20002 +∞ >1.8 +∞ >1.8 +∞ >1.8 29800 1.2 24100 1.0 24000 1.0
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Table A.2: Results for the Benders by batch algorithm with aggregation, with batch sizes from
1% to 20% of the total number of subproblems.

Classic Classic Classic BbB 1% BbB 5% BbB 10% BbB 20%
monocut 1% CutAggr 5% CutAggr CutAggr CutAggr CutAggr CutAggr

instance time ratio time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000-s1000 2 2.6 0.94 1.2 1 1.6 2 2.2 0.89 1.2 0.77 1.0 0.86 1.1
LandS-N1000-s1001 2 2.7 1.00 1.3 1 1.8 2 2.1 0.75 1.0 0.75 1.0 0.90 1.2
LandS-N1000-s1002 2 2.3 1 1.3 1 1.7 2 2.0 0.99 1.2 0.84 1.0 0.91 1.1
LandS-N5000-s5000 11 2.7 7 1.8 8 2.0 10 2.6 5 1.2 4 1.0 4 1.1
LandS-N5000-s5001 10 2.3 7 1.6 9 2.0 9 2.1 5 1.2 4 1.0 4 1.0
LandS-N5000-s5002 11 2.9 7 1.9 8 2.1 9 2.2 4 1.0 4 1.0 4 1.1
LandS-N10000-s10000 22 2.7 16 1.9 18 2.2 17 2.0 8 1.0 9 1.1 9 1.1
LandS-N10000-s10001 22 2.8 16 2.0 20 2.5 14 1.8 8 1.0 8 1.0 9 1.2
LandS-N10000-s10002 20 2.6 16 2.0 18 2.2 17 2.1 8 1.0 8 1.0 9 1.2
LandS-N20000-s20000 49 3.0 34 2.0 39 2.3 45 2.7 17 1.0 18 1.1 19 1.2
LandS-N20000-s20001 43 2.4 35 1.9 39 2.2 42 2.4 18 1.0 18 1.0 21 1.2
LandS-N20000-s20002 44 2.6 32 1.9 40 2.3 45 2.6 18 1.0 17 1.0 19 1.1
gbd-N1000-s1000 2 3.5 1 2.4 2 3.1 2 2.9 0.53 1.0 0.68 1.3 0.89 1.7
gbd-N1000-s1001 2 3.6 1 1.6 2 2.5 2 2.4 0.67 1.0 0.99 1.5 1 1.5
gbd-N1000-s1002 2 3.6 1 1.9 2 2.5 2 3.0 0.61 1.0 0.68 1.1 0.88 1.4
gbd-N5000-s5000 13 3.8 8 2.4 11 3.2 10 3.0 3 1.0 4 1.1 4 1.3
gbd-N5000-s5001 11 3.6 9 2.8 10 3.2 8 2.5 3 1.0 4 1.1 4 1.4
gbd-N5000-s5002 12 3.4 9 2.6 9 2.7 9 2.6 3 1.0 4 1.1 5 1.3
gbd-N10000-s10000 24 3.4 18 2.5 21 2.9 18 2.5 7 1.0 8 1.1 9 1.2
gbd-N10000-s10001 24 4.0 19 3.3 19 3.2 13 2.1 6 1.0 8 1.4 9 1.5
gbd-N10000-s10002 23 3.8 20 3.4 23 3.9 14 2.3 6 1.0 8 1.4 11 1.8
gbd-N20000-s20000 48 3.8 39 3.2 47 3.7 50 4.0 12 1.0 16 1.3 20 1.6
gbd-N20000-s20001 51 3.6 42 3.0 45 3.2 31 2.2 15 1.1 14 1.0 19 1.4
gbd-N20000-s20002 47 3.4 41 3.0 45 3.3 43 3.2 14 1.0 14 1.0 19 1.4
ssn-N1000-s1000 2279 168.5 25 1.9 146 10.8 14 1.0 63 4.6 129 9.5 235 17.4
ssn-N1000-s1001 2720 185.6 24 1.7 135 9.2 15 1.0 63 4.3 130 8.8 253 17.3
ssn-N1000-s1002 2226 173.3 23 1.8 146 11.4 13 1.0 59 4.6 144 11.2 238 18.5
ssn-N5000-s5000 13425 152.4 371 4.2 1685 19.1 88 1.0 337 3.8 630 7.2 1342 15.2
ssn-N5000-s5001 14260 158.7 411 4.6 1536 17.1 90 1.0 322 3.6 672 7.5 1343 15.0
ssn-N5000-s5002 12695 140.6 416 4.6 1524 16.9 90 1.0 308 3.4 674 7.5 1280 14.2
ssn-N10000-s10000 26559 151.5 1212 6.9 3343 19.1 175 1.0 672 3.8 1396 8.0 2771 15.8
ssn-N10000-s10001 26228 140.6 1378 7.4 6126 32.8 187 1.0 760 4.1 1477 7.9 3143 16.8
ssn-N10000-s10002 24916 129.1 1147 5.9 5105 26.4 193 1.0 690 3.6 1397 7.2 2827 14.6
ssn-N20000-s20000 +∞ >94.6 7066 15.5 18068 39.6 457 1.0 1651 3.6 3463 7.6 6588 14.4
ssn-N20000-s20001 +∞ >94.3 5558 12.1 40319 88.0 458 1.0 1651 3.6 3065 6.7 6749 14.7
ssn-N20000-s20002 +∞ >106.2 13186 32.4 19979 49.1 407 1.0 1543 3.8 3630 8.9 6934 17.0
storm-N1000-s1000 23 3.7 12 2.0 15 2.4 12 1.9 6 1.0 7 1.1 10 1.6
storm-N1000-s1001 24 3.8 12 1.9 16 2.5 12 1.9 6 1.0 7 1.1 9 1.4
storm-N1000-s1002 24 3.7 13 2.0 15 2.3 13 2.0 6 1.0 7 1.1 9 1.4
storm-N5000-s5000 110 3.3 73 2.2 92 2.8 44 1.3 33 1.0 35 1.1 54 1.6
storm-N5000-s5001 117 3.6 72 2.2 97 3.0 54 1.6 33 1.0 36 1.1 56 1.7
storm-N5000-s5002 116 3.2 72 2.0 93 2.6 58 1.6 37 1.0 36 1.0 55 1.5
storm-N10000-s10000 215 3.0 157 2.2 202 2.8 121 1.7 73 1.0 82 1.1 105 1.4
storm-N10000-s10001 225 3.0 169 2.2 198 2.6 90 1.2 76 1.0 83 1.1 101 1.3
storm-N10000-s10002 233 3.2 166 2.3 194 2.7 118 1.6 73 1.0 80 1.1 107 1.5
storm-N20000-s20000 465 2.9 370 2.3 434 2.7 216 1.3 167 1.0 161 1.0 232 1.4
storm-N20000-s20001 434 2.7 380 2.4 413 2.6 245 1.5 161 1.0 179 1.1 246 1.5
storm-N20000-s20002 476 3.0 356 2.2 422 2.6 218 1.4 160 1.0 167 1.0 236 1.5
20term-N1000-s1000 544 36.7 272 18.4 310 20.9 15 1.0 36 2.5 71 4.8 140 9.5
20term-N1000-s1001 584 40.0 239 16.4 266 18.2 15 1.0 37 2.5 67 4.6 135 9.3
20term-N1000-s1002 604 41.4 305 20.9 364 25.0 15 1.0 37 2.5 65 4.5 148 10.2
20term-N5000-s5000 3095 46.0 1627 24.2 2026 30.1 67 1.0 199 3.0 401 6.0 830 12.4
20term-N5000-s5001 3699 47.2 1453 18.5 1911 24.4 78 1.0 197 2.5 381 4.9 794 10.1
20term-N5000-s5002 3725 57.8 1733 26.9 1898 29.5 64 1.0 182 2.8 404 6.3 893 13.9
20term-N10000-s10000 6803 52.5 3885 30.0 4741 36.6 129 1.0 411 3.2 892 6.9 1874 14.5
20term-N10000-s10001 6404 52.5 3193 26.2 4915 40.3 122 1.0 409 3.3 914 7.5 1970 16.1
20term-N10000-s10002 7494 54.5 3015 21.9 4864 35.4 137 1.0 388 2.8 886 6.4 2089 15.2
20term-N20000-s20000 13429 51.5 7375 28.3 10772 41.3 261 1.0 860 3.3 1913 7.3 7032 27.0
20term-N20000-s20001 12763 43.2 7433 25.1 26284 88.9 296 1.0 985 3.3 2139 7.2 4704 15.9
20term-N20000-s20002 14868 52.5 6287 22.2 11803 41.7 283 1.0 897 3.2 2101 7.4 +∞ >152.6
Fleet20-N1000-s1000 513 18.6 123 4.5 221 8.0 28 1.0 42 1.5 71 2.6 127 4.6
Fleet20-N1000-s1001 539 20.0 126 4.7 219 8.1 27 1.0 40 1.5 73 2.7 131 4.9
Fleet20-N1000-s1002 546 18.2 126 4.2 225 7.5 30 1.0 43 1.4 77 2.6 135 4.5
Fleet20-N5000-s5000 2780 25.7 905 8.4 1570 14.5 108 1.0 218 2.0 354 3.3 675 6.2
Fleet20-N5000-s5001 2760 26.5 930 8.9 1500 14.4 104 1.0 209 2.0 363 3.5 645 6.2
Fleet20-N5000-s5002 2730 24.8 873 7.9 1520 13.8 110 1.0 205 1.9 356 3.2 628 5.7
Fleet20-N10000-s10000 5860 27.4 2030 9.5 3430 16.0 214 1.0 426 2.0 725 3.4 1290 6.0
Fleet20-N10000-s10001 5480 26.2 1960 9.4 3520 16.8 209 1.0 467 2.2 721 3.4 1290 6.2
Fleet20-N10000-s10002 5790 27.2 2010 9.4 3430 16.1 213 1.0 426 2.0 716 3.4 1350 6.3
Fleet20-N20000-s20000 11400 28.4 5200 12.9 8040 20.0 402 1.0 886 2.2 1510 3.8 2810 7.0
Fleet20-N20000-s20001 11500 26.8 4820 11.2 7690 17.9 429 1.0 856 2.0 1490 3.5 2750 6.4
Fleet20-N20000-s20002 11000 25.9 5140 12.1 7850 18.5 425 1.0 885 2.1 1560 3.7 2770 6.5
product-N1000-s1000 1920 18.5 191 1.8 415 4.0 104 1.0 140 1.3 246 2.4 471 4.5
product-N1000-s1001 2070 21.3 197 2.0 452 4.7 97 1.0 149 1.5 266 2.7 528 5.4
product-N1000-s1002 1850 20.2 182 2.0 425 4.6 91 1.0 135 1.5 247 2.7 515 5.6
product-N5000-s5000 10500 29.8 1530 4.3 3290 9.3 352 1.0 734 2.1 1550 4.4 3180 9.0
product-N5000-s5001 10100 29.3 1460 4.2 3250 9.4 345 1.0 787 2.3 1420 4.1 2580 7.5
product-N5000-s5002 10800 27.7 1580 4.1 3430 8.8 390 1.0 797 2.0 1730 4.4 2860 7.3
product-N10000-s10000 20200 28.7 3830 5.4 8170 11.6 704 1.0 1620 2.3 2980 4.2 5670 8.1
product-N10000-s10001 19100 25.3 3910 5.2 7480 9.9 756 1.0 1400 1.9 2980 3.9 5140 6.8
product-N10000-s10002 21300 21.1 3740 3.7 7620 7.5 1010 1.0 1550 1.5 3200 3.2 5780 5.7
product-N20000-s20000 +∞ >24.1 9820 5.5 19300 10.8 1790 1.0 3330 1.9 6740 3.8 13500 7.5
product-N20000-s20001 42600 23.3 9670 5.3 19200 10.5 1830 1.0 3230 1.8 5950 3.3 11500 6.3
product-N20000-s20002 +∞ >29.6 10400 7.1 19600 13.4 1460 1.0 3540 2.4 6270 4.3 12500 8.6

116



Table A.3: Detailed results for the Benders by batch algorithm, with a batch size of 1%, cut
aggregation, and stabilization (basic or solution memory) compared to without stabilization

B
bB

1%
B

bB
1%

B
bB

1%
B

bB
1%

B
bB

1%
B

bB
1%

B
bB

1%
B

bB
1%

B
bB

1%
B

bB
1%

B
bB

1%
B

bB
1%

B
bB

1%
C

ut
A

gg
r

C
ut

A
gg

r
C

ut
A

gg
r

C
ut

A
gg

r
C

ut
A

gg
r

C
ut

A
gg

r
C

ut
A

gg
r

C
ut

A
gg

r
C

ut
A

gg
r

C
ut

A
gg

r
C

ut
A

gg
r

C
ut

A
gg

r
C

ut
A

gg
r

α
=

0.
1

α
=

0.
5

α
=

0.
9

α
=

0.
1

α
=

0.
1

α
=

0.
1

α
=

0.
5

α
=

0.
5

α
=

0.
5

α
=

0.
9

α
=

0.
9

α
=

0.
9

β
=

0.
1

β
=

0.
5

β
=

0.
9

β
=

0.
1

β
=

0.
5

β
=

0.
9

β
=

0.
1

β
=

0.
5

β
=

0.
9

in
st

an
ce

ti
m

e
ra

ti
o

ti
m

e
ra

ti
o

ti
m

e
ra

ti
o

ti
m

e
ra

ti
o

ti
m

e
ra

ti
o

ti
m

e
ra

ti
o

ti
m

e
ra

ti
o

ti
m

e
ra

ti
o

ti
m

e
ra

ti
o

ti
m

e
ra

ti
o

ti
m

e
ra

ti
o

ti
m

e
ra

ti
o

ti
m

e
ra

ti
o

La
nd

S-
N

10
00

-s
10

00
2

2.
0

1
1.

6
1.

00
1.

2
1

1.
3

1
1.

8
2

1.
8

0.
85

1.
0

0.
98

1.
2

0.
95

1.
1

1
1.

8
1

1.
4

0.
95

1.
1

1
1.

7
La

nd
S-

N
10

00
-s

10
01

2
1.

7
2

1.
8

1
1.

1
1

1.
4

2
1.

7
2

1.
6

2
1.

8
0.

97
1.

1
0.

92
1.

0
2

1.
6

1
1.

2
1

1.
1

2
1.

7
La

nd
S-

N
10

00
-s

10
02

2
2.

1
0.

92
1.

1
0.

88
1.

1
1

1.
4

0.
83

1.
0

0.
83

1.
0

0.
90

1.
1

0.
85

1.
0

0.
88

1.
1

0.
92

1.
1

1
1.

5
0.

92
1.

1
0.

90
1.

1
La

nd
S-

N
50

00
-s

50
00

10
2.

3
7

1.
7

4
1.

0
5

1.
2

7
1.

7
7

1.
7

4
1.

0
5

1.
1

5
1.

1
7

1.
7

6
1.

3
5

1.
1

7
1.

6
La

nd
S-

N
50

00
-s

50
01

9
2.

3
5

1.
1

5
1.

3
6

1.
6

4
1.

1
4

1.
0

5
1.

2
5

1.
2

5
1.

2
4

1.
0

6
1.

5
5

1.
3

4
1.

1
La

nd
S-

N
50

00
-s

50
02

9
1.

9
7

1.
6

5
1.

1
5

1.
1

7
1.

7
7

1.
6

8
1.

7
6

1.
2

4
1.

0
7

1.
7

4
1.

0
5

1.
2

7
1.

7
La

nd
S-

N
10

00
0-

s1
00

00
17

2.
0

9
1.

0
9

1.
1

12
1.

4
9

1.
0

15
1.

8
15

1.
8

10
1.

2
10

1.
2

15
1.

8
10

1.
2

10
1.

2
9

1.
0

La
nd

S-
N

10
00

0-
s1

00
01

14
1.

5
15

1.
6

9
1.

0
13

1.
3

15
1.

6
16

1.
6

16
1.

7
11

1.
1

16
1.

7
15

1.
6

10
1.

1
11

1.
1

16
1.

6
La

nd
S-

N
10

00
0-

s1
00

02
17

2.
0

9
1.

0
9

1.
0

10
1.

1
9

1.
0

9
1.

1
15

1.
7

11
1.

3
9

1.
1

9
1.

1
10

1.
2

11
1.

3
9

1.
0

La
nd

S-
N

20
00

0-
s2

00
00

45
2.

4
30

1.
6

21
1.

1
21

1.
1

31
1.

6
32

1.
7

19
1.

0
21

1.
1

21
1.

1
31

1.
6

25
1.

3
21

1.
1

31
1.

6
La

nd
S-

N
20

00
0-

s2
00

01
42

2.
4

31
1.

8
21

1.
2

21
1.

2
31

1.
8

33
1.

9
17

1.
0

20
1.

2
23

1.
3

32
1.

9
24

1.
4

20
1.

2
31

1.
8

La
nd

S-
N

20
00

0-
s2

00
02

45
2.

7
29

1.
7

20
1.

2
29

1.
7

30
1.

8
30

1.
8

30
1.

8
21

1.
2

17
1.

0
31

1.
8

18
1.

1
22

1.
3

31
1.

8
gb

d-
N

10
00

-s
10

00
2

1.
9

1
1.

8
0.

81
1.

0
0.

99
1.

2
2

1.
9

2
1.

9
2

2.
4

0.
90

1.
1

0.
96

1.
2

2
1.

9
1

1.
7

0.
85

1.
0

2
1.

9
gb

d-
N

10
00

-s
10

01
2

2.
0

2
2.

2
1

1.
3

1
1.

8
2

2.
0

2
2.

0
2

2.
3

0.
88

1.
1

0.
83

1.
1

2
1.

9
1

1.
3

0.
79

1.
0

2
2.

2
gb

d-
N

10
00

-s
10

02
2

2.
3

1
1.

9
0.

82
1.

0
1

1.
6

1
1.

9
2

2.
0

2
2.

4
0.

81
1.

0
0.

80
1.

0
2

2.
0

1
1.

3
0.

79
1.

0
1

1.
9

gb
d-

N
50

00
-s

50
00

10
2.

7
7

2.
0

4
1.

0
6

1.
7

7
1.

9
8

2.
1

9
2.

4
4

1.
2

5
1.

4
8

2.
1

6
1.

7
4

1.
2

7
1.

9
gb

d-
N

50
00

-s
50

01
8

2.
3

8
2.

2
4

1.
1

3
1.

0
7

2.
2

8
2.

2
8

2.
4

5
1.

4
4

1.
1

8
2.

2
4

1.
0

5
1.

4
7

2.
2

gb
d-

N
50

00
-s

50
02

9
2.

6
9

2.
4

5
1.

4
4

1.
2

8
2.

4
8

2.
4

8
2.

3
6

1.
6

5
1.

5
8

2.
3

4
1.

0
6

1.
6

8
2.

4
gb

d-
N

10
00

0-
s1

00
00

18
2.

4
14

1.
8

7
1.

0
10

1.
3

15
2.

0
15

2.
0

16
2.

2
10

1.
4

9
1.

2
15

2.
0

8
1.

1
10

1.
4

15
2.

0
gb

d-
N

10
00

0-
s1

00
01

13
1.

7
14

1.
9

7
1.

0
9

1.
2

13
1.

8
14

2.
0

17
2.

3
11

1.
4

8
1.

1
14

2.
0

10
1.

4
10

1.
4

14
1.

9
gb

d-
N

10
00

0-
s1

00
02

14
2.

0
14

2.
1

8
1.

2
7

1.
1

14
2.

0
14

2.
0

19
2.

7
8

1.
2

7
1.

1
15

2.
1

7
1.

0
8

1.
2

14
2.

0
gb

d-
N

20
00

0-
s2

00
00

50
3.

5
52

3.
6

19
1.

3
19

1.
3

32
2.

2
30

2.
1

17
1.

2
15

1.
1

16
1.

1
30

2.
1

14
1.

0
15

1.
1

32
2.

2
gb

d-
N

20
00

0-
s2

00
01

31
1.

9
26

1.
6

17
1.

0
22

1.
3

28
1.

7
29

1.
7

30
1.

8
18

1.
1

19
1.

1
30

1.
8

17
1.

0
18

1.
1

29
1.

7
gb

d-
N

20
00

0-
s2

00
02

43
3.

0
27

1.
9

15
1.

0
14

1.
0

30
2.

1
29

2.
0

32
2.

3
20

1.
4

18
1.

2
30

2.
1

16
1.

1
20

1.
4

30
2.

1
ss

n-
N

10
00

-s
10

00
14

1.
8

10
1.

4
8

1.
0

11
1.

4
9

1.
2

10
1.

3
11

1.
4

9
1.

2
9

1.
2

11
1.

4
10

1.
3

8
1.

1
9

1.
2

ss
n-

N
10

00
-s

10
01

15
1.

9
9

1.
2

8
1.

1
13

1.
6

12
1.

6
9

1.
2

11
1.

4
9

1.
2

8
1.

1
10

1.
3

12
1.

6
8

1.
0

10
1.

3
ss

n-
N

10
00

-s
10

02
13

1.
6

8
1.

0
8

1.
0

11
1.

3
9

1.
1

9
1.

1
11

1.
4

8
1.

0
8

1.
0

10
1.

2
11

1.
3

8
1.

0
9

1.
1

ss
n-

N
50

00
-s

50
00

88
2.

0
51

1.
1

47
1.

1
70

1.
6

54
1.

2
52

1.
2

56
1.

3
47

1.
0

45
1.

0
54

1.
2

64
1.

4
46

1.
0

54
1.

2
ss

n-
N

50
00

-s
50

01
90

2.
0

48
1.

0
46

1.
0

65
1.

4
49

1.
1

52
1.

1
60

1.
3

47
1.

0
46

1.
0

53
1.

2
62

1.
4

46
1.

0
49

1.
1

ss
n-

N
50

00
-s

50
02

90
2.

0
51

1.
1

49
1.

1
68

1.
5

50
1.

1
52

1.
1

58
1.

3
52

1.
1

46
1.

0
52

1.
1

61
1.

3
48

1.
1

52
1.

1
ss

n-
N

10
00

0-
s1

00
00

17
5

2.
1

11
7

1.
4

84
1.

0
12

6
1.

5
10

1
1.

2
10

8
1.

3
12

0
1.

4
92

1.
1

95
1.

1
11

3
1.

3
11

5
1.

4
92

1.
1

10
6

1.
3

ss
n-

N
10

00
0-

s1
00

01
18

7
2.

0
11

2
1.

2
98

1.
1

12
9

1.
4

11
2

1.
2

11
1

1.
2

12
8

1.
4

93
1.

0
10

5
1.

1
10

6
1.

1
11

9
1.

3
93

1.
0

10
6

1.
2

ss
n-

N
10

00
0-

s1
00

02
19

3
2.

2
10

1
1.

2
90

1.
0

13
4

1.
6

10
8

1.
3

10
7

1.
2

12
3

1.
4

93
1.

1
86

1.
0

11
2

1.
3

11
5

1.
3

88
1.

0
10

1
1.

2
ss

n-
N

20
00

0-
s2

00
00

45
7

2.
5

22
1

1.
2

18
1

1.
0

27
9

1.
5

24
2

1.
3

23
5

1.
3

27
0

1.
5

20
3

1.
1

18
3

1.
0

23
2

1.
3

24
4

1.
3

19
8

1.
1

21
3

1.
2

ss
n-

N
20

00
0-

s2
00

01
45

8
2.

5
20

7
1.

1
19

0
1.

0
28

4
1.

6
23

2
1.

3
22

8
1.

3
26

5
1.

5
18

2
1.

0
18

6
1.

0
23

0
1.

3
25

9
1.

4
18

6
1.

0
22

1
1.

2
ss

n-
N

20
00

0-
s2

00
02

40
7

2.
1

21
5

1.
1

20
1

1.
1

30
5

1.
6

21
5

1.
1

22
8

1.
2

25
5

1.
3

19
0

1.
0

20
0

1.
1

23
5

1.
2

25
1

1.
3

19
3

1.
0

22
6

1.
2

st
or

m
-N

10
00

-s
10

00
12

1.
9

9
1.

5
8

1.
2

7
1.

2
10

1.
5

10
1.

6
7

1.
1

8
1.

3
6

1.
0

10
1.

6
7

1.
1

7
1.

0
10

1.
6

st
or

m
-N

10
00

-s
10

01
12

2.
0

7
1.

1
7

1.
2

8
1.

4
7

1.
1

10
1.

6
7

1.
2

6
1.

0
7

1.
2

9
1.

6
7

1.
2

8
1.

3
7

1.
1

st
or

m
-N

10
00

-s
10

02
13

2.
0

9
1.

5
7

1.
0

8
1.

2
10

1.
5

10
1.

5
7

1.
0

7
1.

1
8

1.
2

10
1.

5
7

1.
1

6
1.

0
10

1.
5

st
or

m
-N

50
00

-s
50

00
44

1.
4

33
1.

1
32

1.
1

37
1.

2
32

1.
0

33
1.

1
36

1.
2

31
1.

0
37

1.
2

33
1.

1
35

1.
1

31
1.

0
31

1.
0

st
or

m
-N

50
00

-s
50

01
54

1.
7

47
1.

5
35

1.
1

37
1.

2
47

1.
5

34
1.

1
35

1.
1

42
1.

3
32

1.
0

33
1.

0
33

1.
0

32
1.

0
48

1.
5

st
or

m
-N

50
00

-s
50

02
58

1.
9

33
1.

1
30

1.
0

32
1.

1
34

1.
1

32
1.

1
33

1.
1

32
1.

0
33

1.
1

32
1.

1
37

1.
2

32
1.

1
34

1.
1

st
or

m
-N

10
00

0-
s1

00
00

12
1

2.
0

65
1.

1
64

1.
1

81
1.

4
67

1.
1

67
1.

1
10

9
1.

8
64

1.
1

68
1.

1
68

1.
1

62
1.

0
59

1.
0

67
1.

1
st

or
m

-N
10

00
0-

s1
00

01
90

1.
4

68
1.

1
64

1.
0

68
1.

1
68

1.
1

66
1.

0
10

8
1.

7
67

1.
1

66
1.

0
67

1.
0

71
1.

1
65

1.
0

68
1.

1
st

or
m

-N
10

00
0-

s1
00

02
11

8
1.

9
66

1.
1

66
1.

1
98

1.
6

67
1.

1
10

1
1.

6
70

1.
1

69
1.

1
64

1.
0

10
0

1.
6

62
1.

0
66

1.
1

67
1.

1
st

or
m

-N
20

00
0-

s2
00

00
21

6
1.

7
14

1
1.

1
13

9
1.

1
16

2
1.

3
13

9
1.

1
13

8
1.

1
14

4
1.

1
13

0
1.

0
12

7
1.

0
13

6
1.

1
15

2
1.

2
13

1
1.

0
13

9
1.

1
st

or
m

-N
20

00
0-

s2
00

01
24

5
2.

0
13

4
1.

1
13

7
1.

1
12

7
1.

0
14

0
1.

1
12

9
1.

0
14

6
1.

2
13

0
1.

1
12

3
1.

0
12

8
1.

0
13

7
1.

1
12

6
1.

0
14

1
1.

1
st

or
m

-N
20

00
0-

s2
00

02
21

8
1.

7
14

5
1.

1
13

5
1.

0
13

7
1.

1
13

0
1.

0
13

5
1.

0
14

3
1.

1
14

1
1.

1
13

5
1.

0
13

3
1.

0
19

2
1.

5
15

2
1.

2
13

1
1.

0
20

te
rm

-N
10

00
-s

10
00

15
1.

7
13

1.
5

11
1.

3
14

1.
6

14
1.

6
12

1.
4

16
1.

8
9

1.
0

10
1.

2
10

1.
1

12
1.

4
11

1.
3

15
1.

7
20

te
rm

-N
10

00
-s

10
01

15
1.

5
10

1.
1

10
1.

0
13

1.
4

15
1.

6
17

1.
7

18
1.

9
11

1.
2

11
1.

2
16

1.
7

12
1.

3
10

1.
0

10
1.

0
20

te
rm

-N
10

00
-s

10
02

15
1.

6
11

1.
3

10
1.

2
14

1.
6

18
2.

0
12

1.
4

22
2.

4
11

1.
2

11
1.

2
14

1.
5

12
1.

3
9

1.
0

16
1.

8
20

te
rm

-N
50

00
-s

50
00

67
1.

3
60

1.
2

52
1.

0
64

1.
3

60
1.

2
67

1.
3

84
1.

6
51

1.
0

57
1.

1
51

1.
0

58
1.

1
66

1.
3

61
1.

2
20

te
rm

-N
50

00
-s

50
01

78
1.

8
64

1.
5

43
1.

0
57

1.
3

67
1.

5
67

1.
5

84
1.

9
51

1.
2

46
1.

1
74

1.
7

58
1.

3
48

1.
1

74
1.

7
20

te
rm

-N
50

00
-s

50
02

64
1.

4
54

1.
2

54
1.

2
58

1.
3

70
1.

5
69

1.
5

11
7

2.
6

56
1.

2
45

1.
0

65
1.

4
55

1.
2

53
1.

2
68

1.
5

20
te

rm
-N

10
00

0-
s1

00
00

12
9

1.
3

11
4

1.
1

10
1

1.
0

11
6

1.
2

11
8

1.
2

14
7

1.
5

18
8

1.
9

10
1

1.
0

10
1

1.
0

13
5

1.
3

10
1

1.
0

10
2

1.
0

11
3

1.
1

20
te

rm
-N

10
00

0-
s1

00
01

12
2

1.
3

14
8

1.
6

10
1

1.
1

11
4

1.
3

13
5

1.
5

13
9

1.
5

15
2

1.
7

11
5

1.
3

91
1.

0
15

1
1.

7
11

5
1.

3
11

0
1.

2
17

9
2.

0
20

te
rm

-N
10

00
0-

s1
00

02
13

7
1.

6
13

8
1.

6
10

0
1.

2
12

5
1.

5
12

6
1.

5
12

6
1.

5
16

9
2.

0
87

1.
0

85
1.

0
10

2
1.

2
13

6
1.

6
10

1
1.

2
17

6
2.

1
20

te
rm

-N
20

00
0-

s2
00

00
26

1
1.

4
27

9
1.

5
19

1
1.

0
25

8
1.

4
19

3
1.

0
33

0
1.

7
36

7
1.

9
22

6
1.

2
24

4
1.

3
36

1
1.

9
25

1
1.

3
22

2
1.

2
27

6
1.

4
20

te
rm

-N
20

00
0-

s2
00

01
29

6
1.

4
31

1
1.

5
21

0
1.

0
25

6
1.

2
28

9
1.

4
33

7
1.

6
32

6
1.

6
24

1
1.

2
24

3
1.

2
27

2
1.

3
23

6
1.

1
22

4
1.

1
26

7
1.

3
20

te
rm

-N
20

00
0-

s2
00

02
28

3
1.

8
15

9
1.

0
19

1
1.

2
27

0
1.

7
23

7
1.

5
17

8
1.

1
36

1
2.

3
23

3
1.

5
21

2
1.

3
28

8
1.

8
25

4
1.

6
23

0
1.

4
33

7
2.

1
F

le
et

20
-N

10
00

-s
10

00
28

1.
7

20
1.

2
17

1.
0

19
1.

1
18

1.
1

21
1.

3
24

1.
4

17
1.

0
18

1.
1

22
1.

3
19

1.
1

17
1.

0
19

1.
1

F
le

et
20

-N
10

00
-s

10
01

27
1.

6
17

1.
0

17
1.

0
20

1.
2

18
1.

1
20

1.
2

24
1.

4
17

1.
0

18
1.

0
22

1.
3

19
1.

1
18

1.
1

18
1.

1
F

le
et

20
-N

10
00

-s
10

02
30

1.
7

20
1.

2
18

1.
0

21
1.

2
21

1.
2

21
1.

2
27

1.
5

19
1.

1
18

1.
0

22
1.

2
20

1.
2

18
1.

0
18

1.
1

F
le

et
20

-N
50

00
-s

50
00

10
8

1.
4

86
1.

2
75

1.
0

83
1.

1
89

1.
2

96
1.

3
12

5
1.

7
78

1.
0

84
1.

1
95

1.
3

83
1.

1
76

1.
0

89
1.

2
F

le
et

20
-N

50
00

-s
50

01
10

4
1.

4
95

1.
3

77
1.

0
84

1.
1

90
1.

2
94

1.
2

13
5

1.
8

76
1.

0
81

1.
1

10
5

1.
4

80
1.

1
78

1.
0

10
3

1.
4

F
le

et
20

-N
50

00
-s

50
02

11
0

1.
5

96
1.

3
74

1.
0

84
1.

1
93

1.
3

10
1

1.
4

13
7

1.
9

74
1.

0
79

1.
1

10
7

1.
4

82
1.

1
77

1.
0

10
1

1.
4

F
le

et
20

-N
10

00
0-

s1
00

00
21

4
1.

5
17

2
1.

2
14

7
1.

0
16

3
1.

1
18

4
1.

3
19

7
1.

3
27

0
1.

8
15

5
1.

1
15

9
1.

1
19

1
1.

3
16

3
1.

1
15

2
1.

0
17

4
1.

2
F

le
et

20
-N

10
00

0-
s1

00
01

20
9

1.
4

19
6

1.
3

14
8

1.
0

16
7

1.
1

18
3

1.
2

19
3

1.
3

24
0

1.
6

15
5

1.
0

16
4

1.
1

19
3

1.
3

18
0

1.
2

15
6

1.
1

17
5

1.
2

F
le

et
20

-N
10

00
0-

s1
00

02
21

3
1.

5
19

2
1.

4
14

4
1.

0
16

1
1.

1
20

6
1.

5
22

0
1.

5
27

5
1.

9
15

4
1.

1
16

3
1.

1
21

3
1.

5
16

3
1.

1
14

2
1.

0
18

1
1.

3
F

le
et

20
-N

20
00

0-
s2

00
00

40
2

1.
3

35
8

1.
2

30
2

1.
0

34
7

1.
1

42
6

1.
4

48
2

1.
6

55
7

1.
8

30
7

1.
0

32
7

1.
1

43
4

1.
4

34
0

1.
1

31
5

1.
0

40
1

1.
3

F
le

et
20

-N
20

00
0-

s2
00

01
42

9
1.

4
39

1
1.

3
31

0
1.

0
33

3
1.

1
36

4
1.

2
41

6
1.

4
53

4
1.

8
32

2
1.

1
33

2
1.

1
46

0
1.

5
34

0
1.

1
30

1
1.

0
42

2
1.

4
F

le
et

20
-N

20
00

0-
s2

00
02

42
5

1.
4

42
4

1.
4

31
7

1.
0

35
5

1.
2

38
5

1.
3

46
2

1.
5

56
4

1.
8

31
1

1.
0

33
3

1.
1

46
0

1.
5

33
7

1.
1

30
5

1.
0

38
9

1.
3

pr
od

uc
t-

N
10

00
-s

10
00

10
4

1.
4

87
1.

2
76

1.
0

89
1.

2
96

1.
3

91
1.

2
12

4
1.

6
85

1.
1

76
1.

0
92

1.
2

88
1.

2
80

1.
1

95
1.

3
pr

od
uc

t-
N

10
00

-s
10

01
97

1.
2

88
1.

1
78

1.
0

79
1.

0
83

1.
1

81
1.

0
14

5
1.

9
89

1.
1

82
1.

1
79

1.
0

85
1.

1
88

1.
1

83
1.

1
pr

od
uc

t-
N

10
00

-s
10

02
91

1.
2

84
1.

1
75

1.
0

83
1.

1
82

1.
1

75
1.

0
11

0
1.

5
76

1.
0

77
1.

0
75

1.
0

79
1.

1
76

1.
0

81
1.

1
pr

od
uc

t-
N

50
00

-s
50

00
35

2
1.

3
26

4
1.

0
30

5
1.

2
31

2
1.

2
26

6
1.

0
30

6
1.

2
38

2
1.

4
29

0
1.

1
29

6
1.

1
29

4
1.

1
33

1
1.

3
29

1
1.

1
28

8
1.

1
pr

od
uc

t-
N

50
00

-s
50

01
34

5
1.

3
26

9
1.

0
33

5
1.

2
30

3
1.

1
29

0
1.

1
29

3
1.

1
39

6
1.

5
30

3
1.

1
28

6
1.

1
29

3
1.

1
31

5
1.

2
28

1
1.

0
28

8
1.

1
pr

od
uc

t-
N

50
00

-s
50

02
39

0
1.

4
28

5
1.

0
29

5
1.

0
30

1
1.

1
29

8
1.

1
30

8
1.

1
40

0
1.

4
28

7
1.

0
28

3
1.

0
30

5
1.

1
30

6
1.

1
28

6
1.

0
29

8
1.

1
pr

od
uc

t-
N

10
00

0-
s1

00
00

70
4

1.
3

52
2

1.
0

56
5

1.
1

63
0

1.
2

54
9

1.
1

63
6

1.
2

82
4

1.
6

57
9

1.
1

59
0

1.
1

63
8

1.
2

59
4

1.
1

58
1

1.
1

54
4

1.
0

pr
od

uc
t-

N
10

00
0-

s1
00

01
75

6
1.

4
56

3
1.

1
53

4
1.

0
56

7
1.

1
54

0
1.

0
62

0
1.

2
73

5
1.

4
55

4
1.

0
54

3
1.

0
62

6
1.

2
57

9
1.

1
55

3
1.

0
54

2
1.

0
pr

od
uc

t-
N

10
00

0-
s1

00
02

10
10

1.
8

55
5

1.
0

55
6

1.
0

59
3

1.
1

61
0

1.
1

58
3

1.
1

74
9

1.
3

56
1

1.
0

56
2

1.
0

58
8

1.
1

61
4

1.
1

56
2

1.
0

61
0

1.
1

pr
od

uc
t-

N
20

00
0-

s2
00

00
17

90
1.

6
13

00
1.

1
11

40
1.

0
12

80
1.

1
13

00
1.

1
13

70
1.

2
18

30
1.

6
11

70
1.

0
13

30
1.

2
13

70
1.

2
12

40
1.

1
11

50
1.

0
13

00
1.

1
pr

od
uc

t-
N

20
00

0-
s2

00
01

18
30

1.
6

12
60

1.
1

11
40

1.
0

13
60

1.
2

11
70

1.
1

11
60

1.
0

16
10

1.
5

11
20

1.
0

12
20

1.
1

12
30

1.
1

11
60

1.
0

11
10

1.
0

11
80

1.
1

pr
od

uc
t-

N
20

00
0-

s2
00

02
14

60
1.

3
12

30
1.

1
11

40
1.

0
12

30
1.

1
12

60
1.

1
12

60
1.

1
16

90
1.

5
11

90
1.

1
13

00
1.

2
12

50
1.

1
12

40
1.

1
11

10
1.

0
12

50
1.

1

117



Table A.4: Detailed results for the Benders by batch algorithm, with a batch size of 5%, cut
aggregation, and stabilization (basic or solution memory) compared to without stabilization
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Table A.5: Final results, the best stabilized Benders by batch algorithm compared to all stabilized
benchmark methods.

CPLEX Level In-out In-out In-out In-out BbB 1%
Barrier Bundle monocut multicut 1% CutAggr 5% CutAggr CutAggr α = 0.5

instance time ratio time ratio time ratio time ratio time ratio time ratio time ratio
LandS-N1000-s1000 0.07 1.0 1 17.3 1 15.6 2 29.4 0.71 10.1 1 14.4 1.00 14.2
LandS-N1000-s1001 0.08 1.0 1 17.0 0.59 7.4 1 15.0 0.74 9.3 1 12.7 1 12.8
LandS-N1000-s1002 0.07 1.0 1 17.8 0.99 14.1 1 15.6 0.69 9.9 0.91 13.0 0.88 12.5
LandS-N5000-s5000 1 1.0 8 5.7 8 6.3 10 7.6 5 3.5 5 3.9 4 3.3
LandS-N5000-s5001 0.41 1.0 7 17.2 8 19.4 6 15.5 5 11.2 6 13.5 5 13.2
LandS-N5000-s5002 1 1.0 6 4.2 8 5.8 12 8.4 4 3.2 6 4.3 5 3.5
LandS-N10000-s10000 0.96 1.0 14 14.5 24 24.8 11 11.6 9 9.4 12 12.4 9 9.4
LandS-N10000-s10001 1 1.0 13 12.1 24 22.1 13 11.9 10 9.4 10 9.3 9 8.7
LandS-N10000-s10002 0.97 1.0 15 15.5 23 23.8 23 23.4 10 10.3 11 11.7 9 9.0
LandS-N20000-s20000 7 1.0 28 4.1 71 10.4 42 6.1 22 3.2 26 3.8 21 3.1
LandS-N20000-s20001 2 1.0 26 12.4 67 32.4 40 19.0 22 10.5 21 9.9 21 10.3
LandS-N20000-s20002 7 1.0 29 4.0 48 6.7 43 6.0 22 3.1 21 2.9 20 2.7
gbd-N1000-s1000 0.03 1.0 2 58.1 1 42.2 3 88.7 0.97 32.2 2 57.0 0.81 26.9
gbd-N1000-s1001 0.03 1.0 2 78.4 1 42.0 2 53.0 1 46.8 2 50.9 1 33.6
gbd-N1000-s1002 0.05 1.0 2 46.9 1 25.4 2 34.6 1 21.8 1 26.5 0.82 16.4
gbd-N5000-s5000 0.15 1.0 8 55.7 7 48.5 13 89.3 7 48.3 9 58.5 4 24.4
gbd-N5000-s5001 0.18 1.0 11 61.4 11 63.7 9 50.5 7 37.2 7 41.3 4 20.1
gbd-N5000-s5002 0.17 1.0 11 63.1 12 70.5 9 52.0 7 39.8 7 41.5 5 29.8
gbd-N10000-s10000 0.32 1.0 23 70.9 19 57.9 30 93.1 17 54.5 18 54.8 7 23.0
gbd-N10000-s10001 0.35 1.0 26 74.3 32 91.1 18 50.5 14 39.2 17 47.6 7 21.0
gbd-N10000-s10002 0.37 1.0 23 63.4 20 53.5 15 41.5 16 43.4 18 48.6 8 22.4
gbd-N20000-s20000 1 1.0 45 40.1 107 94.6 56 49.7 30 26.5 34 30.1 19 16.5
gbd-N20000-s20001 0.86 1.0 47 54.1 72 83.4 55 64.5 30 34.7 31 35.9 17 19.4
gbd-N20000-s20002 0.75 1.0 39 52.3 69 91.4 51 67.6 31 41.8 38 51.3 15 19.6
ssn-N1000-s1000 32 7.9 97 24.0 4 1.0 187 46.4 9 2.3 19 4.8 8 1.9
ssn-N1000-s1001 32 5.2 85 13.6 6 1.0 117 18.7 10 1.5 19 3.1 8 1.3
ssn-N1000-s1002 31 4.9 87 13.8 6 1.0 106 16.9 10 1.6 19 3.0 8 1.3
ssn-N5000-s5000 293 8.3 621 17.6 35 1.0 936 26.5 67 1.9 139 3.9 47 1.3
ssn-N5000-s5001 327 9.4 719 20.6 35 1.0 597 17.1 69 2.0 128 3.7 46 1.3
ssn-N5000-s5002 311 14.1 631 28.5 22 1.0 852 38.5 74 3.4 133 6.0 49 2.2
ssn-N10000-s10000 1271 15.1 1440 17.1 86 1.0 1937 23.0 167 2.0 319 3.8 84 1.0
ssn-N10000-s10001 1332 25.0 1613 30.2 53 1.0 1261 23.6 185 3.5 318 6.0 98 1.8
ssn-N10000-s10002 1064 20.8 1451 28.3 51 1.0 1195 23.3 161 3.1 298 5.8 90 1.8
ssn-N20000-s20000 2592 14.3 3232 17.9 245 1.4 3791 21.0 441 2.4 729 4.0 181 1.0
ssn-N20000-s20001 2070 10.9 2986 15.7 237 1.2 2460 12.9 365 1.9 743 3.9 190 1.0
ssn-N20000-s20002 3195 15.9 3108 15.4 246 1.2 2332 11.6 395 2.0 735 3.6 201 1.0
storm-N1000-s1000 41 5.4 14 1.9 10 1.3 11 1.4 8 1.0 10 1.3 8 1.0
storm-N1000-s1001 41 6.0 16 2.2 7 1.0 21 3.0 7 1.0 10 1.4 7 1.1
storm-N1000-s1002 41 6.2 15 2.3 11 1.7 12 1.8 7 1.1 9 1.4 7 1.0
storm-N5000-s5000 348 10.7 74 2.3 41 1.3 63 1.9 52 1.6 53 1.6 32 1.0
storm-N5000-s5001 294 8.4 78 2.2 38 1.1 61 1.7 51 1.5 53 1.5 35 1.0
storm-N5000-s5002 305 10.1 76 2.5 43 1.4 63 2.1 45 1.5 51 1.7 30 1.0
storm-N10000-s10000 808 12.7 140 2.2 108 1.7 212 3.3 94 1.5 100 1.6 64 1.0
storm-N10000-s10001 732 11.5 149 2.3 105 1.6 201 3.2 104 1.6 117 1.8 64 1.0
storm-N10000-s10002 751 11.3 147 2.2 161 2.4 189 2.8 99 1.5 114 1.7 66 1.0
storm-N20000-s20000 2510 18.1 316 2.3 515 3.7 259 1.9 218 1.6 237 1.7 139 1.0
storm-N20000-s20001 2362 17.2 266 1.9 633 4.6 251 1.8 202 1.5 230 1.7 137 1.0
storm-N20000-s20002 2297 17.0 283 2.1 570 4.2 246 1.8 214 1.6 228 1.7 135 1.0
20term-N1000-s1000 14 1.2 197 17.3 27 2.4 128 11.3 24 2.1 41 3.6 11 1.0
20term-N1000-s1001 14 1.4 214 22.1 43 4.5 74 7.6 26 2.7 46 4.8 10 1.0
20term-N1000-s1002 14 1.3 241 23.2 38 3.7 139 13.4 31 3.0 45 4.4 10 1.0
20term-N5000-s5000 83 1.6 994 19.1 581 11.2 661 12.7 188 3.6 271 5.2 52 1.0
20term-N5000-s5001 80 1.8 1059 24.4 423 9.7 650 14.9 206 4.7 277 6.4 43 1.0
20term-N5000-s5002 84 1.6 1078 20.1 443 8.3 732 13.7 198 3.7 257 4.8 54 1.0
20term-N10000-s10000 205 2.0 2305 22.8 2491 24.7 863 8.5 465 4.6 649 6.4 101 1.0
20term-N10000-s10001 199 2.0 2647 26.3 3382 33.6 1389 13.8 491 4.9 560 5.6 101 1.0
20term-N10000-s10002 194 1.9 2400 24.1 2543 25.5 1317 13.2 467 4.7 569 5.7 100 1.0
20term-N20000-s20000 457 2.4 4562 23.9 13423 70.4 1834 9.6 1007 5.3 1412 7.4 191 1.0
20term-N20000-s20001 457 2.2 4378 20.9 10267 49.0 1680 8.0 980 4.7 1407 6.7 210 1.0
20term-N20000-s20002 451 2.4 5588 29.3 9286 48.7 1748 9.2 1043 5.5 1295 6.8 191 1.0
Fleet20-N1000-s1000 24 1.5 104 6.2 61 3.7 71 4.3 27 1.6 42 2.5 17 1.0
Fleet20-N1000-s1001 23 1.3 103 6.0 34 2.0 103 6.0 26 1.5 39 2.3 17 1.0
Fleet20-N1000-s1002 22 1.2 114 6.3 55 3.1 106 5.9 25 1.4 43 2.4 18 1.0
Fleet20-N5000-s5000 266 3.6 485 6.5 933 12.5 552 7.4 181 2.4 239 3.2 75 1.0
Fleet20-N5000-s5001 273 3.6 509 6.6 541 7.1 331 4.3 172 2.2 264 3.4 77 1.0
Fleet20-N5000-s5002 267 3.6 506 6.8 682 9.2 535 7.2 198 2.7 248 3.4 74 1.0
Fleet20-N10000-s10000 784 5.3 988 6.7 3540 24.1 1150 7.8 435 3.0 598 4.1 147 1.0
Fleet20-N10000-s10001 816 5.5 1040 7.0 4750 32.1 1230 8.3 422 2.9 550 3.7 148 1.0
Fleet20-N10000-s10002 826 5.7 984 6.8 2950 20.5 708 4.9 448 3.1 623 4.3 144 1.0
Fleet20-N20000-s20000 2488 8.2 2630 8.7 14900 49.3 2470 8.2 1070 3.5 1270 4.2 302 1.0
Fleet20-N20000-s20001 2469 8.0 2910 9.4 14100 45.5 1490 4.8 945 3.0 1240 4.0 310 1.0
Fleet20-N20000-s20002 2381 7.5 2650 8.4 22000 69.4 1380 4.4 1040 3.3 1430 4.5 317 1.0
productLarge-N1000-s1000 185 2.5 479 6.4 75 1.0 480 6.4 108 1.4 180 2.4 76 1.0
productLarge-N1000-s1001 186 2.4 718 9.2 83 1.1 539 6.9 124 1.6 179 2.3 78 1.0
productLarge-N1000-s1002 165 2.2 677 9.0 84 1.1 519 6.9 108 1.4 189 2.5 75 1.0
productLarge-N5000-s5000 1374 4.5 3290 10.8 1070 3.5 2840 9.3 820 2.7 1460 4.8 305 1.0
productLarge-N5000-s5001 3073 9.2 3150 9.4 1100 3.3 2550 7.6 724 2.2 1330 4.0 335 1.0
productLarge-N5000-s5002 1916 6.5 3160 10.7 1210 4.1 2680 9.1 817 2.8 1350 4.6 295 1.0
productLarge-N10000-s10000 4991 8.8 6910 12.2 4940 8.7 5750 10.2 2030 3.6 3130 5.5 565 1.0
productLarge-N10000-s10001 3850 7.2 6670 12.5 6860 12.8 5920 11.1 2000 3.7 2810 5.3 534 1.0
productLarge-N10000-s10002 4351 7.8 7940 14.3 4270 7.7 5520 9.9 1880 3.4 3460 6.2 556 1.0
productLarge-N20000-s20000 14757 12.9 13200 11.6 +∞ >43.5 12700 11.1 4700 4.1 8300 7.3 1140 1.0
productLarge-N20000-s20001 14346 12.6 13900 12.2 +∞ >46.7 11700 10.3 4690 4.1 7580 6.6 1140 1.0
productLarge-N20000-s20002 17287 15.2 15800 13.9 35600 31.2 12600 11.1 5270 4.6 8070 7.1 1140 1.0
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