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Interpretable Machine Learning models receive growing interest due to the increasing concerns in understanding the reasoning behind some crucial decisions made by modern Artificial Intelligent systems. Due to their structure, especially with small sizes, these interpretable models are inherently understandable for humans. Compared to classical heuristic methods to learn these models, recent exact methods offer more compact models or better prediction quality. In this thesis, we propose two novel exact methods via Maximum Boolean Satisfiability (MaxSAT) to learn optimal interpretable machine learning models.

Our contribution starts with an original MaxSAT-based exact method to learn optimal decision trees. This method optimizes the empirical accuracy to avoid overfitting, and also enriches the constraints to restrict the tree depth. Additionally, we integrate this MaxSAT-based method in AdaBoost, which is a classical Boosting method to improve the generalization performance. The experimental results show competitive prediction quality of this MaxSAT-based method compared to stateof-the-art heuristic and other exact methods. Additionally, clear improvements in prediction performance are observed after the integration in AdaBoost. Our second contribution is an original MaxSAT-based exact method to optimize binary decision diagrams. We introduce an initial Boolean Satisfiability (SAT) encoding to model binary decision diagrams in limited depth with perfect empirical accuracy. Next, we present how to adapt the SAT-based model into MaxSAT approach. Finally, we present a pre-processing for selecting some important features to increase the scalability of our MaxSAT-based method to optimize binary decision diagrams. The experimental results show clear advances of our MaxSAT-based method in prediction quality, compared to state-of-the-art heuristic methods. We also observe a huge shrink in encoding size and model size in comparison between our approach and state-of-the-art exact method without losing the prediction performance. In addition, great reductions in encoding size are displayed after the application of pre-processing, which boosts the scalability.
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Introduction

In the last decade, Machine Learning, received a great success in solving many real world problems. These successes have increased the develpment of eXplainable Artificial Intelligence (XAI), especially for high stakes decision systems. XAI aims to produce AI systems that can be understood by human. The goal is to raise the trust that humans can have in AI systems, by understanding the process leading to a given decision or prediction. The field of XAI covers a broad spectrum of research. In this thesis, we are interested in the interpretability of Machine Learning models. In the literature, two main approaches exist to increase the interpretability of Machine Learning models. The first one, called post hoc approach, focuses on blackbox models, such as neural networks or deep learning, and considers a posteriori explanations [START_REF] Guidotti | [END_REF]. One can produce explanations on the output of the black-box model to detail the reason of a given prediction or a black-box inspection to explain how a given black-box works. In the second approach, called transparency-by-design, the goal is to produce Machine Learning models that can be understood by humans, based on their simple structure. For instance, Decision Trees, Decision Sets, or Decision Rules are considered as interpretable by-design models when they have small size. Some drawbacks of the black-box explanation approach, that can provide misleading or false explanations, have been highlighted in [Rudin 2019, Laugel et al. 2019]. For crucial applications, where decisions may impact individual, such drawbacks raise the need of inherently interpretable Machine Learning models. In [Rudin et al. 2021], ten challenges for the development of inherently interpretable Machine Learning models are detailed. The first challeng concerns how to efficiently compute optimal and sparse Machine Learning models. This thesis is in-line with this challenge.

There are numerous heuristic methods for interpretable machine learning models. Although these classical heuristic methods have reduced computation time, the interpretable machine learning models built are often huge in size, making difficult to understand how the model works. To insure that machine learning models found are truly "interpretable", recently, there is growing interest in exact methods for those models. Compared to heuristic approaches, exact methods offer the promise of optimality, for instance in model size, model depth, or accuracy. In this context, combinatorial optimisation methods, such as Constraint Programming, Mixed Integer Linear Programming, Boolean Satisfiability (SAT), and Dynamic Programming have successfully applied for learning optimal interpretable machine learning models. These declarative approaches are particularly interesting since they offer certain flexibility to handle additional requirements when learning a model.

In this thesis, we focus on Maximum Boolean Satisfiability (MaxSAT) approach, where MaxSAT is an optimisation version of SAT, to learn optimal interpretable models. A disadvantage of recent SAT-based exact methods is the promise of perfect empirical accuracy for a given model size, or model depth, which is risk in over-fitting. However, MaxSAT-based exact methods could avoid this disadvantage by optimizing empirical accuracy. Moreover, MaxSAT has a weighted extension, where weights of clauses could naturally approximate the data distribution of datasets used in machine learning. In addition, this strength makes MaxSAT-based exact methods easy to be adapted in Boosting methods.

Thesis Overview

We offer an overview of the thesis, which contains three chapters. Chapter 1 presents a technical background in Boolean Satisfiability, including Boolean Satisfiability (SAT) and its variant Maximum Boolean Satisfiability (MaxSAT). Then, we present important notions in Machine Learning, including interpretable models and ensemble methods. Finally, Chapter 1 provides a literature review of recent related works in interpretable Machine Learning models, including classical heuristic methods and recent exact methods. Chapter 2 presents our contributions for learning optimal decision trees via MaxSAT and its integration in AdaBoost. Chapter 3 presents our contributions in optimizing binary decision diagrams via MaxSAT. We give a summary of the contributions made in this thesis.

Learning optimal decision trees via MaxSAT and its integration in AdaBoost

As a very popular machine learning model, decision tree benefits from its inherent interpretability, and the wide range of efficient heuristic methods to compute it. However, due to the explosion in tree size and depth, decision trees found by classical heuristic methods suffers the difficulty in interpretability. This weakness motivates the exact methods to learn optimal decision trees with guarantees of mathematical optimality in some metrics, like tree size, tree depth, and accuracy. Some exact methods are SAT-based, where [Bessiere et al. 2009, Narodytska et al. 2018] optimize the tree size, and [Avellaneda 2020, Janota & Morgado 2020] optimize the tree depth. However, all of them must subject to the constraint that the decision tree is perfectly accurate on the training set, which is often criticized as it may entail overfitting.

To offset this drawback, we firstly introduce a MaxSAT approach to learn optimal decision trees by optimizing the accuracy, which is the adaption of the previous SAT approach [START_REF] Narodytska | [END_REF]. At first, we introduce the details of previous SAT encoding, and, we show how to transform the SAT encoding to MaxSAT to optimize the accuracy. Then, we propose new constraints to limit the depths. Next, to improve the prediction quality, we integrate the MaxSAT approach proposed in AdaBoost by adjusting the weights of soft clauses.

Based on large experimental results, we observe the overfitting phenomenon of previous SAT approach. Moreover, we observe competitive prediction per-formance of the proposed MaxSAT approach compared to state-of-the-art heuristic and exact methods. Additionally, we perceive clear improvements in prediction quality after the integration in AdaBoost.

Optimizing binary decision diagrams with MaxSAT

By providing compact representations for Boolean functions, binary decision diagrams are viewed as interpretable in binary classification. Compared to decision trees, ordered reduced binary decision diagrams could avoid the replication problem and the fragmentation problem effectively [Oliver 1992, Kohavi 1994], which are two major flaws suffered by decision trees. To the best of our knowledge, the only exact method to learn optimal binary decision diagrams is [Cabodi et al. 2021], whose target are binary decision diagrams with the smallest sizes that classify all examples correctly. However, this target leads to two drawbacks. The first one is the possible overfitting due to the perfect accuracy. The second one is the lack of restrictions in depth, making it possible that the binary decision diagrams learnt are small in size but high in depth.

To avoid these disadvantages, we propose a MaxSAT-based approach to learn binary decision diagrams limited in depths with the best empirical accuracy. At first, we introduce an initial SAT-based model to encode binary decision diagrams of given depth with perfect accuracy. Then, we lift the SAT-based model into MaxSAT to optimize the accuracy. In addition, as the complexity of MaxSAT encoding relates strongly to the corresponding SAT encoding, we propose two other SAT-based models for the same objective but with tighter encoding sizes. Finally, to increase the scalability of the proposed MaxSAT approach, we present an hybrid version that selecting a subset of important features by heuristic method, then applying the MaxSAT approach proposed.

Our experimental evaluations show the comparison between our MaxSAT approach for optimal binary decision diagrams with state-of-the-art heuristic and exact methods. Firstly, compared to heuristic method, our MaxSAT approach shows clear advantages in prediction quality. Then, compared to exact method (the MaxSAT approach of learning optimal decision trees), our MaxSAT approach shows considerable shrink in encoding sizes and model sizes. Meanwhile, our MaxSAT approach displays competitive prediction performance. Finally, the hybrid version is easier in reporting optimality than the original one, but still remains competitive in prediction quality.

Huguet. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020, page 1170-1176. [Hu et al. 2020] • Optimizing Binary Decision Diagrams with MaxSAT for classification. Hao Hu, Marie-José Huguet, Mohamed Siala. In Proceedings of the Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, page 3767-3775. [Hu et al. 2022] We are honored that the MaxSAT formulas of learning optimal decision trees are selected as benchmarks in MaxSAT Evaluation 2021 [Bacchus et al. 2021a] and 2022 [START_REF] Bacchus | Maxsat evaluation 2022: Solver and benchmark descriptions[END_REF]. The descriptions of benchmarks are detailed in the following document, given in Appendix A.

• Description of Benchmarks on Learning Optimal Decision Trees

and Boosted Trees. Hao Hu, Emmanuel Hébrard, Marie-José Huguet, Mohamed Siala. In MaxSAT Evaluation 2021, page 39-40. [Hu et al. 2021] We have also presented our work on the optimization of binary decision diagrams with MaxSAT, at two francophone conferences: JFPC 2022 (Journées Francophones de Programmation par Contraintes) and CNIA 2022 (Conférence Nationale en Intelligence Artificielle).

Chapter 1

Formal Background & State-Of-The-Art

In this chapter, we present technical background and state-of-the-art methods for Boolean Satisfiability and for Machine Learning. Section 1.1 introduces the Boolean Satisfiability (SAT) and the Maximum Boolean Satisfiability (MaxSAT) problems. Section 1.2 presents supervised Machine Learning, and focuses on interpretable machine learning, and ensemble methods. Section 1.3 provides a literature review of recent related works in interpretable machine learning models. Specifically, it contains the state-of-the-art methods on Decision Trees and Decision Graphs.

SAT and MaxSAT Problems

The Boolean Satisfiability problem (SAT) aims to determine whether a Boolean formula is satisfiable or not. The SAT problem has a key role in computer science, in particular because it is the first problem proven to be NP-complete. In this section, we describe formally some related notions in propositional logic by following the standard terminology from [START_REF] Biere | [END_REF]. Furthermore, we describe the Maximum Boolean Satisfiability problem (MaxSAT), considered in this thesis.

Boolean Satisfiability

An atom x is a propositional (i.e., Boolean) variable. A literal p is either an atom x, called positive literal, or its negation ¬x, called negative literal. A literal p is true iff p is positive and its atom is assigned to the value 1, or p is negative and its atom is assigned to the value 0. Otherwise, the literal p is false, that is ¬p is true.

A clause c is a disjunction of literals (p 1 ∨ • • • ∨ p k ). We suppose that all literals in a clause are pairwise distinct, and that literals p and ¬p do not appear in the same clause. A clause c is satisfied if at least one literal p appearing in the clause (p ∈ c) is true. Conversely, if none of literals appearing in the clause c is true, then c is unsatisfied.

A proposition formula represented by conjunctions of clauses c 1 ∧ • • • ∧ c n is said to be in Conjunctive Normal Form (CNF). A CNF formula corresponds to a SAT instance. The SAT problem consists in determining the satisfiability of a CNF formula. The goal is to find an assignment for all literals appearing in the CNF formula that satisfies all clauses in the formula (the formula is satisfied or "SAT" in short); or to report the failure of finding such assignment (the formula is unsatisfied or "UNSAT" in short).

There are several complete algorithms to solve the SAT problem. One of the oldest method is the Davis-Putnam-Logemann-Loveland (DPLL) algorithm [Davis et al. 1962]. The state-of-the-art method applied in most modern SAT solvers is the Conflict Driven Clause Learning (CDCL) algorithm [START_REF] Silva | [END_REF][START_REF] Silva | [END_REF], Moskewicz et al. 2001[START_REF] Eén | An Extensible SATsolver[END_REF].

In the DPLL algorithm, the search space is explored via search tree where every node corresponds to a decision (branching variable selection and value assignment) restricting the search space to a smaller problem. The search tree is explored in a Depth-First Search (DFS) scheme. The backtrack to the last node happens when an "UNSAT" is detected. Then the last decision is reversed and the exploration is resumed. This kind of backtracking is called chronological backtracking. During the exploration, two steps are executed at each node of the search tree: search and propagation. The search step relates to the branching variable selection and value assignment by heuristic method to explore the search structure. Some classical heuristics include pure random selection, and maximum occurrences on clauses of minimum size (MOM) [START_REF] Zabih | [END_REF], Silva 1999]. And the propagation step relates to the pruning of dead-end branches. The DPLL algorithm uses one type of propagation called Unit-propagation (UP), which is triggered in two possible conditions. The first condition is whenever a clause c has only one unassigned literal p (c is called as a unit clause), the UP enforces p in c to be true as it is the only way to make c satisfied. The second condition is when a clause c is unsatisfied by the assigned literals, the UP return an "UNSAT" of the formula directly.

We describe the principal idea of DPLL algorithm in Algorithm 1. Output: SAT with a satisfied assignment, or UNSAT.

Inspired by DPLL, the major progress of CDCL concerns the conflict analysis when an "UNSAT" is detected. The conflict analysis generates learning clause based on the implication graph to explain the reason of leading to the failure. In addition, CDCL uses an alternative backtracking scheme called non-chronological backtracking (also known as the term backjump) to avoid making the same mistake again. Meanwhile, a number of new techniques are involved in CDCL. Some representative ones include an heuristic in branching variable selection called Variable State Independent Decaying Sum (VSIDS) [Moskewicz et al. 2001], the usage of lazy structure for the representation of formulas [Moskewicz et al. 2001], and the periodically restarting backtrack search [Gomes et al. 1998]. For details of CDCL algorithm, we refer readers to [Marques-Silva et al. 2021]. The representative CDCL solvers include Chaff [Moskewicz et al. 2001], MiniSAT [START_REF] Eén | An Extensible SATsolver[END_REF], and Glucose [START_REF] Audemard | Predicting Learnt Clauses Quality in Modern SAT Solvers[END_REF][START_REF] Audemard | On the Glucose SAT Solver[END_REF].

To evaluate the SAT solvers, from 2002, the International Conference on Theory and Applications of Satisfiability Testing (SAT) organizes annually the SAT 

Maximum Boolean Satisfiability

The Maximum Boolean Satisfiability problem (MaxSAT) consists in finding an assignment of all literals that maximizes the number of satisfied clauses.

A MaxSAT instance is represented by a weighted CNF formula, that is conjunctions of weighted clauses. A weighted clause is a pair (c i , w i ), where c i is a clause, and w i is a positive number indicating its weight. In addition, three variants of MaxSAT problems are mainly studied in the literature:

• Weighted MaxSAT : The weighted MaxSAT problem deals with a weighted CNF formula. The objective is to find an assignment that maximizes the sum of weights of satisfied clauses.

• Partial MaxSAT : The partial MaxSAT problem deals with a CNF formula, in which all clauses are divided into two sets: soft (or relaxed) clauses, and hard (or non-relaxable) clauses. The objective is to find an assignment that maximizes the number of satisfied soft clauses and meanwhile satisfy all hard clauses.

• Weighted Partial MaxSAT : The weighted partial MaxSAT is the combination of weighted MaxSAT and partial MaxSAT. It deals with a weighted CNF formula, where soft clauses are weighted. The objective is to find an assignment that satisfies all hard clauses, and maximizes the sum of weights of satisfied soft clauses.

One can note that the MaxSAT problem could be defined as a weighted MaxSAT problem by considering that all clauses share the same weights, and as Partial MaxSAT problem by declaring all clauses as soft clauses.

The objective of MaxSAT problem is to maximize the number of satisfied clauses, or equivalently to minimize the number of unsatisfied clauses (or MinUNSAT). Similarly, for weighted MaxSAT, the equivalent objective is to minimize the sum of weights of unsatisfied clauses; for partial MaxSAT, the equivalent objective is to minimize the number of unsatisfied soft clauses and meanwhile satisfy all hard clauses declared; and for weighted partial MaxSAT, the equivalent objective is to minimize the sum of weights of satisfied soft clauses and meanwhile satisfy all hard clauses declared.

In this thesis we focus on exact method to to solve the MaxSAT problem and its variants. In exact methods the goal is to compute the optimal solution and to prove the optimality. These methods could be roughly divided into two main groups: Branch-and-Bound (BnB) algorithms [Li & Manyà 2021], which directly tackle MaxSAT with a bounding procedure; and SAT-based algorithms [Bacchus et al. 2021b], which transform MaxSAT into a sequence of SAT instances and call a modern SAT solver to solve them. In practice, we refer to the MinUNSAT problem where upper bound is greater than or equal to the minimum number of unsatisfied clauses, lower bound is smaller than or equal to the minimum number of unsatisfied clauses. The optimality is reported when the upper bound equals to the lower bound.

Branch-and-Bound MaxSAT solvers implement the branch-and-bound scheme and incorporate a look-ahead procedure that detects inconsistent subsets of soft clauses by applying unit propagation and computes a lower bound. They also apply some inference rules at each node of the search tree. Some representative BnB solvers are MaxSatz [START_REF] Li | [END_REF], MiniMaxSat [START_REF] Heras | [END_REF], and Akmaxsat [Kügel 2010]. Especially, a recent solver MaxCDCL [START_REF] Li | Combining Clause Learning and Branch and Bound for MaxSAT[END_REF] integrates the clause learning mechanism in the branch-and-bound, which significantly accelerates the speed of BnB solvers.

SAT-based MaxSAT solvers are based on a reformulation of the MaxSAT problem in a sequence of SAT problems, and consider three types of strategies for exploring the sequence: linear search, core-guided, and minimum hitting-set-based (MHS-based). We introduce them separately.

Linear search solvers use the upper bound approach of the MinUNSAT problem, and iteratively query a SAT solver for a better solution than the current best one. The optimality is reported when no such better solution could be found, and the current best one is the optimal solution. The representative linear search solvers include SAT4J-MaxSAT [START_REF] Berre | [END_REF], QMaxSAT [Koshimura et al. 2012], and Open-WBO [START_REF] Martins | [END_REF].

Core-guided and MHS-based solvers use the lower bound approach of the Mi-nUNSAT problem. At first, they consider the input instance as SAT instance, and obtain an unsatisfied subset of soft clauses (called core) by using a SAT solver. This core is associated to a given lower bound on the number of unsatisfied clauses. Then, the solvers relax this core and solve the relaxed instance to identify another core. This process is repeated until a satisfiable instance is derived indicating the optimality is reached. The difference between core-guided and MHS-guided solvers is that core-guided solvers relax a core using cardinality constraints, while MHSguided solvers minimizes the number of different clauses from the core by solving a minimum hitting set instance with an integer programming solver. The representative core-guided solvers include MSU1.2 [Marques-Silva & Manquinho 2008], Open-WBO [START_REF] Martins | [END_REF], and RC2 [Ignatiev et al. 2019]. The representative MHS-based solvers include MHS [START_REF] Saikko | [END_REF], and MaxHS [START_REF] Davies | [END_REF], Davies & Bacchus 2013].

Moreover, there is an hybrid version called core-boosted linear search, which combines the linear search and the core-guided approaches. At first the MinUN-SAT problem is reformulated with a core-guided solver to produce a lower bound with limited time. Then, the problem is solved with a linear search solver. The exchange of information from the core-guided phase and the linear phase tightens the gap between the lower bound and the upper bound. As a result, this hybrid approach could be more effective than either a pure linear search or a pure core-guided approach. The representative core-boost linear search solver is Loandra [Berg et al. 2019]. The default time out for core-guided phase of Loandra is 30 seconds.

To evaluate the MaxSAT solvers, from 2006, the International Conference on Theory and Applications of Satisfiability Testing (SAT) organizes annually the MaxSAT Evaluation2 . Each year, the evaluation collects new MaxSAT benchmarks, and new open-source MaxSAT solvers.

Machine Learning

As an important part of Artificial Intelligence (AI), Machine Learning (ML) could be viewed as a set of algorithms that construct good models from datasets. Globally, a "model" is a mapping that maps inputs to predictions. A "dataset" is generally a set of feature vectors, where each feature vector is a description of an object using a set of features. The number of features of a dataset is called dimension. In some cases, features are also called as attributes, a feature vector is also called as an instance, or an example. The process of generating "models" from "datasets" is called learning or training. The "models" are also called as learners, or hypotheses.

Based on the existence of labels for examples in the dataset, Machine Learning could be roughly divided as two major categories: Supervised Learning and Unsupervised Learning. Supervised Learning needs label information, where labels reflect the explicit distribution of the datasets, so that the model learnt could make good predictions for unseen examples. However, the goal of Unsupervised Learning is to extract implicit information from the datasets, making the labels are not necessary. For example, Clustering is a typical problem of Unsupervised Learning, which aims to separate "close" examples of a dataset into several clusters. In this thesis, we mainly consider Supervised Learning problems.

The mathematical notations used in this section majorly follow [Zhou 2021, Zhou 2012]. We also refer readers who are not familiar with Machine Learning to some other classical books, like [Mitchell 1997, Hastie et al. 2009]. For more general in Artificial Intelligence, we refer readers to [Russell & Norvig 2020].

Basic Knowledge

Classification and Regression

Supervised Learning could be separated into two types of problems: Classification for making discrete predictions, and Regression for making continual predictions. Especially, if the predictions are limited in two different discrete classes, we call this classification problem as Binary Classification. Normally, one class is called positive class, and the other is called negative class.

A mathematical description for Supervised Learning is as follow. We note a labelled dataset (or a set of examples) containing m examples as E = {e 1 , e 2 , . . . , e m }. Each example, like the i-th one e i , is a pair of (x i , y i ), where x i = (x i1 ; x i2 ; . . . ; x id ) is a feature vector of d features, the x ij indicates the value of j-th feature for x i . The value d is the dimension, the corresponding feature space is noted as X . We denote by F = {f 1 , . . . , f d } the set of features of the dataset. The value y i is the label of e i , it could be a discrete class for classification, or a continual value for regression. We note Y as the ensemble of all possible labels, or label space. The (unknown) data distribution, denoted by D, as a distribution over the feature space X , where the feature vectors x i from E are independently and identically distributed from D. That is, the feature vectors x i share the same implicit data distribution D, and do not influence each other. The difference between data distributions can be reflected in the different probabilities of the feature vectors. In practice, this difference is implied in the different weights of feature vectors in the dataset. In general, if not specially mentioned, the feature vectors in a dataset share the same weight, indicating they share the same probability.

The target of Supervised Learning is to find a mapping (i.e., a model) ϕ from the feature space X to the label space Y, by using the labelled dataset E . We note ϕ : X → Y, the ϕ (x i ) is the prediction made for x i . The learning algorithm that provides the model is denoted by L. We also note L(E , D) as the model learnt by the algorithm L from the dataset E drawn on the distribution D.

For Binary Classification, normally we let Y = {0, 1}. When |Y| > 2, we call it as Multi-class Classification. When Y ⊆ R, it is Regression. In this thesis, we mainly consider the Classification problems, especially the Binary Classification problem.

Evaluation Measures

After a model ϕ is learnt from a labelled dataset E = {(x 1 , y 1 ), (x 2 , y 2 ), . . . , (x m , y m )}, for example (x i , y i ), the prediction ϕ (x i ) = y i indicates the model predicts x i correctly. Otherwise, the prediction is incorrect (or wrong).

We introduce two widely used measures for evaluating the prediction performance of a classification model: the accuracy, and the error rate. The accuracy is the percentage of examples correctly predicted in the whole dataset. In reverse, the error rate is the percentage of examples wrongly predicted. The accuracy is defined as follow using the notation at the beginning:

acc(ϕ; E ) = 1 m m i=1 count(ϕ (x i ) = y i ) (1.1)
where count(•) is an indicator function, the value is 1 when • is True, or 0 when it is False. The error rate could be calculated as err(ϕ; E ) = 1 -acc(ϕ; E ).

More generally, we call the differences between the predictions and the labels as error. We call the labelled dataset used for learning a model as training set, the error of the model learnt on training set as training error, or empirical error.

The error of the model on new unseen examples is called generalization error.

Apparently, we hope the model learnt has small generalization error as it reflects the general prediction performance. However, as we have no idea for the unseen examples, we could only minimize the empirical error. But frequently, a model learnt having small empirical error performs badly in unseen examples. This phenomenon is called overfitting. One major reason of overfitting is the model learnt is so "strong" in the training set so that it considers some specific properties in the training set as general properties. The opposite phenomenon of overfitting is called underfitting, indicating the model does not learn enough general properties from the training set. Compared to overfitting, underfitting is easy to avoid by reducing the empirical error. Overfitting is impossible to avoid entirely, we could only try to "reduce" its possibility.

As it is impossible to list all unseen examples to get the generalization error, we use some unseen examples in reasonable size as the testing set, and the testing error as an approximation of generalization error. We assume that all examples in the testing set has the independently identical distribution to the training set. In addition, to get "closer" approximation to the generalization error, all examples in the training set are not recommended to appear in the testing set. However, in most cases, there is only one labelled dataset E but it needs make training and testing together. We introduce three widely used methods for splitting the training set and testing set: the hold-out method, the cross-validation method, and the bootstrapping method.

Hold-Out Method

The Hold-Out method directly separates the labelled dataset E into two exclusive subsets, the one is chosen as training set E train , the other is chosen as testing set E test , where E train ∪ E test = E , and

E train ∩ E test = ∅.
There are some attention points for the hold-out method. At first, we should choose a reasonable ratio for splitting the training and testing set, so that the testing set split is in sufficient size. In general, to guarantee the fidelity of the evaluation, the testing set split should contain at least 30 examples. Normally, the split ratio for training set varies from 2/3 to 4/5 [Mitchell 1997, Zhou 2021]. Moreover, we should also try to preserve the same distribution of training and testing sets. A common way is called stratified sampling that keeps the percentage of examples of all classes in the training and testing sets similar, or equal. But sometimes, pure random selection is also used as its effectiveness. Finally, to make the evaluation more stable, generally the splitting process is repeated several times, and the final training (testing) error is the average value of all training (testing) errors of each splitting process.

Sometimes in practice, the hold-out method separates the dataset into three exclusive subsets, the training set, the testing set, and the validation set E val . The validation set is used during the training process, as a "substitute" of testing set to estimate the performance of the learning model. The use of validation set could somehow avoid the underfitting, and reduce the possibility of overfitting.

Cross-Validation Method

The Cross-Validation method [Kohavi 1995] at first separates the labelled dataset E into k exclusive subsets with similar (or same) sizes. That is

E = E 1 ∪E 2 ∪• • •∪E k , where for i ̸ = j, it has E i ∩E j = ∅.
For each subset E i , the method choose the left k-1 subsets as the training set, and E i as the testing set. Then, the method generates k pairs of training-testing sets for the evaluation. The final training (testing) error is the average value of the training (testing) errors in k times.

As the cross-validation method strongly relied on the value of k, it is also called as k-fold cross-validation. The value of k is widely chosen as 5, or 10, considering the balance of computational time. In addition, similar to the hold-out method, to make the evaluation more stable, sometimes, cross-validation is also repeated several times with different random seeds to get the average values.

Cross-validation method is one of the most popular validation method. In this thesis, 5-fold cross-validation is widely used in the experiments.

Bootstrapping Method

The Bootstrapping method [Efron & Tibshirani 1993] is based on the bootstrap sampling, which is the sampling with replacement. In detail, for a labelled dataset E of size m, the method uses the m times of sampling with replacement to generate a new labelled dataset E ′ of size m. For example, if an example e i from E is chosen in one time, the method copies the example into E ′ , and then puts this example back to E to let it possibly chosen in the future.

Apparently, some examples in the original dataset E are appeared multiple times in E ′ , and some examples never. The probability that an example is never chosen The bootstrapping method is useful for those datasets in small sizes. In addition, as it could generates multiple different training set, it is also widely used in Ensemble Learning, like Bagging, Random Forest. However, when the dataset is in sufficient size, the hold-out method and the cross-validation method are more recommended, as the bootstrapping method changes the distribution of the dataset.

within m times is (1 -1 m ) m , we have lim m→∞ (1 - 1 m ) m = 1 e ≈ 0.

Interpretable Machine Learning Models

In the last decade, with the great advance in the computational resources, booming effective accurate Machine Learning algorithms are proposed. Especially in the field of Neural Networks, like the AlexNet [Krizhevsky et al. 2012], the Residual-Net [He et al. 2016], the GAN [START_REF] Goodfellow | [END_REF], the Transformer [START_REF] Vaswani | [END_REF], the Informer [START_REF] Zhou | Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting[END_REF], etc; and the field of Ensemble Learning, like the XGBoost [Chen & Guestrin 2016], the Lightgbm [Ke et al. 2017], the Deep Forest [START_REF] Zhou | [END_REF], etc. These algorithms have big successes in many important sub-fields of Machine Learning, like Computer Vision, Natural Language Processing, Video Processing, etc.

However, the models learnt via these algorithms are called as "black-box models" as they lack of interpretability. There are different (non-mathematical) definitions of interpretability [Miller 2019[START_REF] Kim | Examples are not enough, learn to criticize! Criticism for Interpretability[END_REF], the core idea is that, with better interpretability, human could more easily understand why certain decisions or predictions are made by the model learnt.

Recently, there are explosion of works in Machine Learning for better interpretability. They could be classified as two major categories [Molnar 2022]: Intrinsic, or Post hoc. The intrinsic interpretability refers to the ML models that are considered to be interpretable due to their simple structure, like short decision trees. The post hoc interpretability refers to the application of interpretation methods after the black-box models learnt. It creates a second model to explain the black-box model trained. For example, extracting a decision tree for explaining the predictions made by a trained neural network. The methods of post hoc are also called as explainable ML. The author of [Rudin 2019] shows some weaknesses of the explainable ML, and declares the intrinsic models as Interpretable Machine Learning Models. We follow this definition.

In this thesis, we only focus on Interpretable Machine Learning Models for binary classification. We introduce some widely-used interpretable ML models as follow, like Decision Trees, Binary Decision Diagrams, and other popular models, including Decision List and Decision Set.

Decision Trees

Decision Tree (DT) is one of the most popular ML model in supervised learning. The decision process of decision tree is similar as human: make the decision by a series of judgements. This simply logical decision process makes the decision tree intrinsically interpretable.

In general, a decision tree topology is shown in Figure 1.1, which contains a root node, several branching nodes, and leaf nodes. For each branching node (or the root node), a feature is selected as the test for the judgement. Depending on the problem, the leaf node corresponds to a class for classification problem, or to a real value for regression problem. The number of subtrees for a branching node (or the root node), equals to the number of different values of the feature selected. In addition, each subtree indicates a value case of the feature selected. Each path from the root node to a leaf node corresponds to a series of judgements. To make the prediction for an unseen example, finding the corresponding path from the root node to a leaf node based its values for the series of tests, and the prediction is the value associated to the leaf node.

An illustrating example of decision tree for classification is shown in Figure 1.2, learnt from a small dataset shown in Table 1.1. The small dataset concerning a family go out to play based on the weather, comes from [Quinlan 1993]. It is easy to check that the decision tree in Figure 1.2 classifies all examples correctly. The traditional way to learn decision trees is top-down induction based on the divide and conquer methodology. Briefly, each node corresponds to a subset of dataset, where the root node corresponds to the entire dataset. For branching nodes (or the root node), the corresponding subset is split into different pieces for different subtrees based on the feature associated. The leaf nodes end the split, when all examples in the subset have the same class, or the subset contains no examples, or all features in the datasets are used. Detailed algorithm is shown in the Algorithm 2.

Algorithm 2:

The traditional Decision Tree algorithm by top-down induction.

Input: Use the node from DT Generate(E v , F \ f * ) as the subtree.

A labelled Dataset E = {(x

Output: A Decision Tree with node as the root.

There are various famous heuristic decision tree algorithms, like C4.5 [Quinlan 1993], CART(Classification and Regression Tree) [START_REF] Breiman | [END_REF], etc. The differences between them is the heuristic of choosing the best split feature (line 8 in Algorithm 2). We show details of the heuristic used in C4.5 and CART in the section 1.3.1.1 . There are also variants of the traditional decision tree algorithm. For example, unlike using a single feature to make the split, Multivariate Decision Trees [START_REF] Murthy | [END_REF], Brodley & Utgoff 1995] proposed using a combination of features to achieve more complex topology. And some variants [Utgoff 1988, Utgoff et al. 1997] proposed applying incremental learning in the decision trees by reconstruct partly the topology for new-coming data not learn a new model, to reduce the training time.

Binary Decision Diagrams

Binary Decision Diagram (BDD) is another interpretable ML model in supervised learning. Especially, it could only used in binary classification with dataset full of binary features. The decision process of binary decision diagram is same as the decision tree by a series of judgements.

As their compact representations for Boolean functions, binary decision diagrams are widely studied in hardware design, model checking, and knowledge representation [Akers 1978[START_REF] Moret | [END_REF], Bryant 1986, Knuth 2009]. Considering a sequence of Boolean variables [x 1 , . . . , x n ], a binary decision diagram is a rooted, directed, acyclic graph. It contains two types of vertices. A terminal vertex v is associated to a binary value: value(v) ∈ {0, 1}. A nonterminal vertex v is associated to a Boolean variable x i and has exact two children: lef t (v), right(v). Its children are vertices too, and index(v) ∈ {1, . . . , n} is the index of the Boolean variable associated to v.

To guarantee a unique binary decision diagram for a given Boolean function, two restrictions are widely assumed: ordered and reduced. The restriction "ordered" indicates for any nonterminal vertex v, it has index(v) < index (lef t(v)) and index(v) < index (right(v)). The restriction "reduced" indicates the graph contains no nonterminal vertex v with lef t(v) = right(v), nor does it contains distinct nonterminal vertices having isomorphic rooted sub-graphs. The Boolean function represented by the binary decision diagram can be recursively obtained with the Shannon expansion process [Shannon 1938]. That is, for an ordered reduced binary decision diagram defined in the sequence of Boolean variables [x 1 , . . . , x n ] having v as the root node, the Boolean function g v is:

1. If v is a terminal vertex:

g v = value(v). 2. If v is a nonterminal vertex with index(v) = i: g v (x 1 , . . . , x n ) = ¬x i • g lef t(v) (x 1 , . . . , x i-1 , x i+1 , . . . , x n ) + x i • g right(v) (x 1 , . . . , x i-1 , x i+1 , . . . , x n ).
An example of binary decision diagram is shown in Figure 1.3, where dashed(solid) line of each vertex indicates the left(right) child. The Boolean function represented is

g(x 1 , x 2 , x 3 ) = (x 1 ∨ x 2 ) ∧ (x 1 ∨ x 3 ) ∧ (x 2 ∨ x 3 ).
We define the depth of the binary decision diagram as the number of nonterminal vertices of longest path from the root to a terminal node. It is clear that length of the sequence of Boolean variables is equal or greater than the depth. Therefore, the length of the sequence of Boolean variables is equivalent to the maximum depth of the binary decision diagram.

To make the binary classification, the sequence of Boolean variables used in the binary decision diagram is changed as a sequence of binary features with the same length. The nonterminal vertices are associated to binary features, and the terminal vertices are associated to binary classes. As there are exact two terminal vertices, they are also called as sink nodes. There are several ways to transform the multi-value features of the datasets into binary features. A general method we applied in this thesis is called "one-hot encoding", which replaces a multi-value feature with several new binary features. Each new binary feature indicates does the original multi-value feature equals to a value. Table 1.2 shows the transformed dataset by the one-hot encoding in the Table 1.1. To simplify the representation, the value true (f alse) in the feature, and Y es (N o) in the class, are transformed into 1 (0).

f 1 f 2 f 3 f 4 f 5 f 6 Play? 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 f * Feature Implied f 1 Outlook = sunny? f 2 Outlook = overcast? f 3 Outlook = rain? f 4
Temp(>26 1.2 correctly is shown in Figure 1.4. In addition, the binary decision tree corresponding to this binary decision diagram is shown in Figure 1.5. It is clear that the size (number of vertices) of the binary decision diagram is smaller than the size of the corresponding binary decision tree.

Compared to the decision tree, the binary decision diagram could avoid the replication problem and the fragmentation problem effectively [Oliver 1992, Ko- 

f 2 f 1 1 f 6 f 5 1 0 1 0
Figure 1.5: The Decision Tree for the dataset transformed in Table 1.2.

havi 1994], which are two major flaws suffered by the decision tree [Matheus & Rendell 1989[START_REF] Pagallo | Boolean Feature Discovery in Empirical Learning[END_REF][START_REF] Rokach | Data mining with decision trees: Theory and applications[END_REF]. The replication problem appears when two identical subtrees are in the decision tree. The fragmentation problem appears when only few examples are associated to leave nodes. The restriction "reduced" of binary decision diagram could avoid the replication problem entirely, indicating generally the binary decision diagram has more compact topology than the corresponding decision tree in size. To avoid the fragmentation problem, [START_REF] Kohavi | [END_REF] proposed a post-process of merging compatible subtrees. We show details in the section 1.3.2.

In addition, binary decision diagrams are extended for multi-classification, known as decision graphs. There are some heuristic algorithms are proposed to learn a decision graph from a dataset. We show details of some heuristic in the section 1.3.2.

Some Other Models

Except the decision tree, binary decision diagram, there are also some other Interpretable ML models. Here we present two of them, the decision list, and the decision set model.

Decision List was firstly introduced in [Rivest 1987]. The model contains a list of distinct rules, by following a if -then -else if -. . . -else relationship. Each rule is in the format of "π i ⇒ k i ", where k i ∈ Y, corresponding to a conditional statement: "if the predicate π i is satisfied for an example, then the class predicted is k i ". The size of decision list is the number of the distinct rules it contains.

The Figure 1.6 shows an example of decision list for the small dataset in Table 1.2. The model is comprehensive for human as its logical processes.

IF f 2 = 1 THEN Play=1 ELSE IF f 1 = 0 ∧ f 6 = 0 THEN Play=0 ELSE IF f 1 = 1 ∧ f 5 = 0 THEN Play=0 ELSE Play=1
Figure 1.6: The Decision List for the small dataset in Table 1.2.

Decision Set is another rule-based Interpretable ML model, which was first appeared in [Rivest 1987] as an unordered variant of decision list. That is, unlike the decision list relates the rules by the logic if -then -else if -. . . -else, the rules in the decision set are all independent. The Figure 1.7 shows the decision set for the small dataset in Table 1.2.

IF f 2 = 1 THEN Play=1 IF f 2 = 0 ∧ f 1 = 0 ∧ f 6 = 0 THEN Play=0 IF f 2 = 0 ∧ f 1 = 0 ∧ f 6 = 1 THEN Play=1 IF f 2 = 0 ∧ f 1 = 1 ∧ f 5 = 0 THEN Play=0 IF f 2 = 0 ∧ f 1 = 1 ∧ f 5 = 1 THEN Play=1
Figure 1.7: The Decision Set for the small dataset in Table 1.2.

It is easy to transform the decision tree or the binary decision diagram into the decision set, as each path from the root to the leaf node relates to a rule in the decision set. As the rules are unordered, some rules may overlap. That is, for an example, there are may be multiple rules are satisfied. In this case, there are two choices, the one is to apply a tie-break rule to pick the class [Lakkaraju et al. 2016], the other is to declare an overlap [Ignatiev et al. 2018]. For those examples that none of the rules is satisfied, the decision set could apply the default rule for the prediction [Lakkaraju et al. 2016].

Ensemble Methods

Ensemble Methods are a set of algorithms in supervised learning, aim to train multiple learners and combine them to make predictions [Zhou 2012]. A common architecture of Ensemble Methods is shown in Figure 1.8. The multiple learners are called base learners, and each one is learnt from training data by a base learning algorithm, like decision tree, neural network, etc. In general, an ensemble method uses a single base learning algorithm to generate base learners, which is called homogeneous ensemble. Otherwise, when an ensemble method uses multiple base learning algorithms, it is called heterogeneous ensemble. In this thesis, we mainly introduce the homogeneous ensembles. 

The Combination Methods

Ensemble Methods could improve the generalization performance of the base learners. In particular, Ensemble Methods could boost weak learners to strong learners with good generalizations, even those weak learners are just slightly better than random guess. The key reason of this improvement due to the combination methods.

[Dietterich 2000a] attributed three benefits from the combination:

• Statistical Issue: It is often that the training data is limited compared to the feature space. And there may be several models (hypotheses) with same accuracy on the training data. The combination of the hypotheses could reduce the risk of wrongly choosing the best one.

• Computational Issue: It is often that many learning algorithms are stuck in local optima. The combination of the hypotheses could reduce the risk of leading to a wrong local minimum.

• Representation Issue: The combination of the hypotheses may be possible to expand the space of representable functions, and form a more accurate approximation to the true unknown hypothesis.

For numerical outputs, Averaging is the most popular combination method; For discrete outputs, Voting is the most widely used combination method. In this thesis, we use voting since we mainly consider the classification problem. There are mainly three different voting methods: the majority voting, the plurality voting, and the weighted voting. We introduce a mathematical description for Ensemble Methods before presenting them.

In general, for a multi-classification task with the label space Y = {c 1 , . . . , c N }, we consider an ensemble containing T base learners. And, we note the i-th base learner as ϕ i , the ensemble model as Φ. For a given feature vector x, ϕ i (x) is the prediction made by the i-th base learner, and Φ(x) is the prediction made by the ensemble after the combination. In addition, ϕ j i (x) is 1 if ϕ i (x) = c j , otherwise 0. The majority voting chooses the class received more than half votes (each base learner has one vote), or rejects if none of class received more than half votes.

Φ(x) =    c j , if T i=1 ϕ j i (x) > ⌊T /2 + 1⌋ reject, otherwise (1.3)
The plurality voting is less strict than the majority voting as it chooses the most voted class. There is no rejection option in plurality voting.

Φ(x) = c arg max j T i=1 ϕ j i (x) (1.4)
The weighted voting is a weighted version of plurality voting. Different base learners have different weights, and the weighted voting finds the class that has the highest highest weight. It is reasonable as it should give more power to stronger base learners in the voting. The weight of ϕ i is denoted as w i .

Φ(x) = c arg max j T i=1 w i ϕ j i (x) (1.5)
In general, the weights are positive and normalized (w i ≥ 0 and T i=1 w i = 1) to realise the weighted averaging.

We shortly explain why the combination could boost weak learners to strong learners. Assuming the output of all base learners are independent, and each one makes a correct classification at the probability p. Therefore, the probability of the ensemble that using majority voting (p mv ) is as follow, by guaranteeing at least ⌊T /2 + 1⌋ base learners make correct classifications [START_REF] Hansen & Salamon ; Lars | Neural Network Ensembles[END_REF]:

p mv = T k=⌊T /2+1⌋ T k p k (1 -p) T -k (1.6)
From [START_REF] Lam | [END_REF], when p > 0.5, p mv is monotonically increasing in T , and lim T →∞ p mv = 1; when p < 0.5, p mv is monotonically decreasing in T , and lim T →∞ p mv = 0; when p = 0.5, p mv = 0.5 for any T .

In practice, the assume that all base learners are independent is not possible. In general, the base learners are highly related as they are trained on the same problem. Therefore, to generate an ensemble with good prediction performance, it needs not only accurate base learners, but also diverse learners. In fact, one core research of the Ensemble Methods is, how to find a good trade-off between the accuracy and the diversity of the base learners [Zhou 2012, Brown et al. 2005, Tang et al. 2006].

There are two major paradigms of Ensemble Methods: The one is to generate base learners sequentially, the other is to generate base learners in parallel. The Boosting methods are the representative of the former one, and the Bagging methods and the Random Forest are the representative of the later one.

[Dietterich 2000b] provides an experimental comparison between Bagging, Boosting, and Random Forest based on decision trees. And [START_REF] Rokach | Decision forest: Twenty years of research[END_REF]] provides a literature review of recent ensemble methods based on decision trees.

Boosting

Boosting methods are a family of algorithms generating base learners sequentially. The general mechanism of Boosting is simple: at first, train a base learner with the given dataset. Then, adjust the data distribution of the given dataset by the prediction of the base learner, that is, increase the weights of examples wrongly predicted so that they have more attentions in the next iterations. Next, use the adjusted dataset to train a new base learner. Repeat this process until it arrives the number of iterations preset, and finally combine those base learners. The Algorithm 3 shows this general mechanism [Zhou 2012]. 

Output: Φ(x) = Combine({ϕ 1 (x), . . . , ϕ T (x)}).
There are lots of Boosting methods, some famous of them are AdaBoost(Adaptive Boosting) [Freund & Schapire 1997, Friedman et al. 2000], GBDT (Gradient-Boosted Decision Trees) [Friedman 2001, Friedman 2002], XGBooost(eXtreme Gradient Boosting) [Chen & Guestrin 2016], etc. We introduce the AdaBoost in detail as it is the representative Boosting method.

Considering the binary classification on classes {-1, +1}, the AdaBoost from [Freund & Schapire 1997] is shown in Algorithm 4, where sign(•) is an sign function, the value is +1 when • > 0, or -1 when • ≤ 0. 

D t+1 (x) = Dt zt • exp (α t • count(ϕ t (x i ) ̸ = y i )).
// zt is a normalization factor for the distribution

Output: Φ(x) = sign T t=1 α t ϕ t (x) .
The AdaBoost algorithm uses additive weighted voting for the final prediction, where the base learners with better prediction performances gain higher weights in the final voting. In addition, in the AdaBoost algorithm, the base learner trained in t-th iteration will influence the base learner in the next iteration by updating the data distribution. That is, the algorithm increases the weights of examples wrongly predicted by the current base learner, making those examples have more chance to CHAPTER 1. FORMAL BACKGROUND & STATE-OF-THE-ART be correctly predicted in future iterations.

Bagging and Random Forest

As introduced before, the diversity between base learners in an ensemble method is important to achieve good prediction performance. For a given labelled dataset, a practical way to generate diverse base learners is to train base learners by different diverse subsets sampled from the dataset. Meanwhile, each subset should contain sufficient examples to avoid training base learner with poor prediction performance.

Bagging (Bootstrap AGGregatING) [Breiman 1996] adopts the bootstrap sampling [Efron & Tibshirani 1993] to generate different diverse subsets with duplication for training base learners. In detail, when a labelled dataset E containing m given examples, a subset containing m examples with duplication will be generated by sampling with replacement. This process is repeated T times to generate T different subsets. The Bagging algorithm uses those T subsets to train T base learners. Then, in classification, the algorithm combines those base learners by plurality voting. The Bagging is shown in the Algorithm 5. Compared with Boosting methods, Bagging could train base learners in parallel. Moreover, unlike Boosting methods need be modified for multi-classification, Bagging could directly adapted in multi-classification, since the diversity comes from the different subsets generated by bootstrap sampling. There is another advantage of Bagging indicated by [Breiman 1996], the out-of-bag examples for estimating the generalization performance.

Random Forest [Breiman 2001] is an extension of Bagging. At first, Random Forest uses decision trees as the learning algorithm to generate base learners. Then, to increase the diversity between decision trees generated, the algorithm involves randomness in the feature selection. That is, during the construction of a base decision tree, in each split, unlike traditional methods using the whole features as candidate set, the algorithm randomly chooses a subset of features to choose the best feature for making the splits. The algorithm to generate a random base decision tree in the Random Forest follows the procedures of Algorithm 2, but instead of choosing the best split feature from the whole feature set of the dataset (the line 8), it uses a subset containing K features selected randomly from the whole feature set. The K is a preset parameter that imports the randomness.

The term forest was first introduced by [Ho 1995]. There are also lots of variants of generating random trees with different measures of randomness, some popular are Extremely Randomized Trees [Geurts et al. 2006], Rotation Forest [Rodríguez et al. 2006], etc.

Related Works in Interpretable ML Models

In this section, we provide a literature review of several methods for computing two Interpretable ML models: decision trees and decision graphs. For each ML model, we present the traditional heuristic methods and the recent exact methods. Traditional heuristic methods still obtain great interest due to their scalability. The exact methods for Interpretable ML models offer guarantee of mathematical optimality, for instance on model size or prediction error, and received lots of interest in recent papers. In this section, we focus on those exact methods using combinatorial optimization approaches.

Related Methods for Decision Trees

In this section, we introduce standard heuristic algorithms and several exact combinatorial optimization approaches.

Traditional Heuristic Algorithms

We present here some traditional top-down heuristic algorithms for decision trees. The core difference between them is the heuristic of choosing the best feature to split the dataset.

ID3 and C4.5 Algorithms

The methods C4.5 [Quinlan 1993] and ID3 [Quinlan 1986] are classical heuristic algorithms to learn decision trees. They are based on top-down induction, as shown in Algorithm 2. The heuristic used in these methods to choose the best split feature (line 8 in Algorithm 2) is based on the Gain Ratio. We explain this concept step by step.

At first, we introduce the concept of information entropy [Shannon 1948], which is based on the fraction of the different labels of the examples. Considering a labelled dataset E , we note the rate (in percent) of examples with class c j (j = 1, . . . , |Y|) as per j , then the information entropy for E is defined as follow.

Ent(E ) = - |Y| j=1 per j log 2 per j (1.7)
The information entropy Ent(E ) is used to measure the purity of a given example set. When Ent(E ) has smaller value, the dataset E is purer, indicating more examples share same labels. For example, when all examples in E have same class, then per 1 = 1, leading Ent(E ) = 0. Otherwise, the information entropy is positive.

From Algorithm 2, in general, we hope that the subsets of examples become purer after the split by the feature selected. Therefore, assuming the feature selected to make the split is f * , which has V different possible values {f 1 * , . . . , f V * }. As in Algorithm 2, we use E v to denote the subset of examples in E having the value f v * for the feature f * . The information gain of using feature f * as the split for dataset E is defined as follow.

Gain(E , f * ) = Ent(E ) - V v=1 |E v | |E | Ent(E v ) (1.8)
The information gain uses the factor |E v |/|E | to reflect that the subsets split with more examples have more influences. In general, the bigger value of information gain indicates the bigger improvement in the purity when using f * as the split feature. Therefore, using the feature with the biggest value in information gain is an useful heuristic to choose the best split feature f, which is f = arg max f∈F Gain(E , f).

The ID3 algorithm [Quinlan 1986] applies this heuristic to select the best feature. However, the information gain prefers those features with more different values, which could easily cause the problem of overfitting. To reduce this disadvantage, the C4.5 algorithm proposes the concept called Gain Ratio, which is a variant of the heuristic information gain. It is defined as follow.

Gain_ratio(E ,f

* ) = Gain(E , f * ) IV (f * ) IV (f * ) = - V v=1 |E v | |E | log 2 |E v | |E | (1.9)
where the IV (f * ) is called the intrinsic value of the feature f * . When f * has more values, the value IV (f * ) is generally bigger. The C4.5 algorithm choose the best split feature f, that f = arg max f∈F Gain_ratio(E , f).

We show how the heuristic is applied for the toy dataset E given in Table 1.2. The information entropy of E is:

Ent(E ) = - 1 j=0 per j log 2 per j = -( 5 12 log 2 5 12 + 7 12 log 2 7 12 ) = 0.9799
The information gain of each possible feature for the dataset E are as follow.

Gain(E , f 1 ) = 0.0718 Gain(E , f 2 ) = 0.3436 Gain(E , f 3 ) = 0.0616

Gain(E , f 4 ) = 0.0102 Gain(E , f 5 ) = 0.1043 Gain(E , f 6 ) = 0.0207
Therefore, the first best feature to split is f 2 . Repeat this process as the ID3 algorithm propose, the decision tree found is shown in Figure 1.9.

As the dataset in Table 1.2 contains only binary features, there are no great influences of using the factor of intrinsic values. The decision tree found by using the Gain Ratio proposed in the C4.5 algorithm is same as the ID3 algorithm, as the Figure 1.9 shown.

f 2 f 4 1 f 1 0 f 6 f 5 1 0 1 0 Figure 1
.9: The Decision Tree for the dataset in Table 1.2 by ID3 and C4.5. The ID3 and C4.5 algorithm could be easily applied with different data distribution. The idea is when calculating the information entropy, the per j does not represent the percentage of examples with class c j , but the percentage of the sum of weights of examples for this class. We consider the toy example E with different weights for each example. The new weighted dataset, denoted E w , is shown in Table 1.3. Therefore, the per w 0 and per w 1 of E w are calculated as follow:

w f 1 f 2 f 3 f 4 f 5 f 6 Play? 1 1 0 0 0 0 1 1 3 1 0 0 1 1 1 0 2 1 0 0 1 1 0 0 3 1 0 0 0 1 0 0 1 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 2 0 1 0 1 1 0 1 2 0 1 0 0 0 1 1 2 0 1 0 1 0 0 1 3 0 0 1 0 1 1 0 2 0 0 1 0 0 1 0 1 0 0 1 0 1 0 1
per w 0 = 3 + 2 + 3 + 3 + 2 23 = 13 23 
per w 1 = 1 + 1 + 1 + 2 + 2 + 2 + 1 23 = 10 23
The information entropy related is The decision tree found by the heuristic information gain (ID3 ) is shown in the left one of Figure 1.10, the heuristic gain ratio (C4.5 ) is shown in the right one.

Ent(E w ) = - 1 j=0 per w j log 2 per w j = -( 13 

CART (Classification and Regression Tree) Algorithm

The CART (Classification and Regression Tree) method [START_REF] Breiman | [END_REF] is another classical heuristic algorithm to learn a decision tree. The heuristic used to

f 2 f 5 1 f 1 f 1 0 1 0 f 6 1 0 f 2 f 4 1 f 5 0 f 1 f 1 0 1 0 f 6 1 0
Figure 1.10: The Decision Tree for the weighted dataset in Table 1.3 by ID3 (left) and C4.5 (right).

choose the best split feature is based on the concept of Gini Index to measure the purity of a given example set.

Firstly, CART uses the concept Gini Value, which is defined as follow.

Gini

(E ) = 1 - |Y| j=1 per 2 j (1.10)
As for the information entropy, it is clear that when Gini(E ) has smaller values, the dataset E is purer. The Gini Index of using feature f * as the split for dataset E is defined as follow by using the Gini Value.

Gini_index(E , f

* ) = V v=1 |E v | |E | Gini(E v ) (1.11)
Similar as the information gain, the Gini Index considers the influence of the different sizes of subsets after split. The CART algorithm choose the best split feature f, which is f = arg min f∈F Gini_index(E , f). We consider the toy example E of Table 1.2. After computing the Gini Index, the best split feature for E is f 2 as it relates to the smallest value.

Gini_index(E , f 1 ) = 0.4095 Gini_index(E , f 2 ) = 0.2031 Gini_index(E , f 3 ) = 0.4431 Gini_index(E , f 4 ) = 0.4911 Gini_index(E , f 5 ) = 0.3844 Gini_index(E , f 6 ) = 0.4702
Repeat this process, the decision tree found is shown the left one in Figure 1.11. The CART method could be easily applied with different data distribution by changing the way of calculating the per j values. The right one in Figure 1.11 is the decision tree found by CART algorithm for the weighted dataset E w of Table 1.3.

f 2 f 6 1 f 1 f 1 1 f 5 0 f 4 1 0 0 1 f 2 f 5 1 f 1 f 4 0 1 f 1 0 f 6 0 1 0
Figure 1.11: The Decision Tree for the toy dataset of Table 1.2 (the weighted dataset of Table 1.3) by CART is shown in the left (right) one.

Recent Exact Methods

Recently, there are increasing interests in exact methods to find the optimal decision trees, which is known as a NP-Hard problem [START_REF] Hyafil | [END_REF]. In particular, it is essential to specify the goal of each exact method as each one needs an objective to optimize, indicating the metric of the optimal decision tree. The metrics widely used are tree size, tree depth, and accuracy leading to the three following goals.

• In this literature review, we focus on recent exact methods based on combinatorial optimization, including Boolean Satisfiability, Maximum Boolean Satisfiability, Constraint Programming (CP), Mixed Integer Programming (MIP), and Dynamic Programming (DP). We separate this review on recent exact methods into two parts chronologically by our contribution [START_REF] Hu | [END_REF]. In each part, we review those exact methods by the categories of combinatorial optimization method.

Depending on the different goals, SAT-based exact methods are divided into two families. At first, [Bessiere et al. 2009, Narodytska et al. 2018] consider the Goal 1, aiming to optimize the tree size. Then, [Avellaneda 2020, Janota & Morgado 2020] share the Goal 2, purposing to optimize the tree depth. In general, those methods deal with the binary classification and consider binarized datasets (with only binary features). The common process of SAT-based methods to find optimal decision trees in smallest tree sizes (respectively, tree depths) with perfect empirical accuracy, is based on a sequence of SAT queries. Each SAT query answers the existence of a decision tree in given tree size (respectively, tree depth) with perfect accuracy. The sequence of SAT queries starts from the query of tree size (respectively, tree depth) of an upper bound received by heuristic methods, continues with the queries of decreasing tree sizes (respectively, tree depth), until the answer is unsatisfied, and the last decision tree found is the optimal one.

To reach the Goal 1, [Bessiere et al. 2009] proposes the fist SAT encoding for decision tree of fixed tree size. At first, the encoding captures the relationship between tree nodes and features by propositional variables. Then, it realise the perfect accuracy by ensuring that each pair of examples with opposite classes would not be lead to the same leaf node. This pioneering work suffers greatly from its formulation size, making it unrealistic to work for trees with more than fifteen nodes. After that, [START_REF] Narodytska | [END_REF] proposes a new SAT encoding for decision tree of fixed tree size, which significantly reduces the encoding size. The reduction accounts majorly for the way of realising the perfect accuracy, where the new SAT encoding ensures all leaf nodes reject all examples with the opposite classes. The details of this encoding will be introduced in Section 2.2, as it plays an essential role in our contribution.

A motivation of the Goal 2 is that compared to tree size, the metric tree depth could not only control the tree structure, but also provide better understanding by limiting the number of judgements. Additionally, it could avoid producing decision trees with small sizes but with high depths. [Avellaneda 2020] and [Janota & Morgado 2020] are two SAT encodings to model decision tree in given depth, which are proposed almost at same time. In [Avellaneda 2020], the author encodes a full complete binary decision tree in fixed depth. This pre-assumed tree structure benefits from its preset parent-child relationship. Therefore, this encoding reduces formulation size by eliminating variables and constraints to describe the connections between nodes. Analogously, in [Janota & Morgado 2020], the authors propose a SAT encoding for explicit paths of decision trees, which also contains no constraints to describe tree topology. This encoding restricts tree depth by the number of steps in each explicit path, meanwhile, tree size by the number of explicit paths.

The only CP-based exact method [START_REF] Verhaeghe | [END_REF] focuses on the Goal 3, aiming to optimize empirical accuracy for depth-restricted decision trees. This method explores the left subtrees and right subtrees of a node in decision tree independently with a form of AND/OR search tree. In addition, to avoid searching equivalent subtrees, this method applies a caching system to store the optimal subtrees already found so that the search space could be reduced.

The MIP-based exact methods include OCT [Bertsimas & Dunn 2017], and BinOCT [Verwer & Zhang 2017, Verwer & Zhang 2019], where all of them focus on the Goal 3 to optimize the misclassification. In [Bertsimas & Dunn 2017], the authors consider to learn optimal classification trees (OCT), where the decision trees are assumed as multi-variate. The resulting decision trees were shown more accurate than heuristic trees. The main limitation of this method is the scalability, which is able to handle datasets with a few thousands examples. In [Verwer & Zhang 2017], the authors propose similar MIP approach to learn optimal classification trees, but as well to learn optimal regression trees. The reductions in formulation size are achieved in BinOCT [Verwer & Zhang 2019] by applying binary linear program to learn optimal decision trees. Therefore, this method compute solutions much faster than the previous MIP methods.

The DP-based exact methods include DL8 [START_REF] Nijssen | [END_REF], DL8.5 [Aglin et al. 2020], and OSDT [START_REF] Hu | [END_REF], where all of them also focus on the Goal 3 that minimize the empirical prediction error. In DL8 [START_REF] Nijssen | [END_REF], the algorithm extracts optimal decision trees by encapsulating the itemset lattices. The dynamic programming nature arises because once the split feature is determined, the optimal solutions of the left subtree and the right subtree are independent. To enforce the depth constraint in DL8, DL8.5 [Aglin et al. 2020] is introduced. This algorithm uses a branch-and-bound search with caching to safely enumerate trees under the depth constraint. Both DL8 and DL8.5 have the drawback in the need of massive memory to deal with datasets in small sizes. A slightly different direction is to learn Optimal Sparse Decision Tree (OSDT) proposed in [START_REF] Hu | [END_REF], where each node in the tree is considered as equal to some numbers of misclassifications. The aim of this method is to reach a balance between misclassification and number of nodes.

In our contribution [START_REF] Hu | [END_REF], which is detailed in Chapter 2, we propose an original MaxSAT-based encoding extending the SAT encoding of [START_REF] Narodytska | [END_REF], to reach the Goal 3, purposing to optimize the accuracy. Then, there are some new SAT or MaxSAT exact methods with different goals. For the Goal 1, [Alos et al. 2021] follows the principal encoding in [START_REF] Narodytska | [END_REF]], but directly finds the optimal decision tree in tree size via MaxSAT approach. Meanwhile, this method also proposes to generate multiple different decision trees in optimal size to avoid overfitting. However, slight improvements in generalization performance are observed from its experimental results. For the Goal 2, [Schidler & Szeider 2021] proposes a SAT-based local improvement method to optimize tree depth. The brief idea is to improve an heuristic decision tree iteratively, which replaces its subtrees with the subtrees of smaller depths with perfect empirical accuracy found by the SAT-based exact method. In addition, [Shati et al. 2021] proposes another novel SAT-based exact method to optimize tree depth which treats numeric features directly without binarized transformation. For the Goal 3, [Shati et al. 2021] extends their own SAT encoding for decision tree restricted in depth into MaxSAT formulation to optimize accuracy. The technique to generate soft clauses shares the same idea as our contribution. Next, a novel DP-based exact method named MurTree [START_REF] Demirovic | MurTree: Optimal Decision Trees via Dynamic Programming and Search[END_REF]] is proposed to reach the Goal 3. Compared to previous DP-based methods, this method additionally introduces constraints on both depth and number of nodes to improve the scalability of decision tree optimization.

Related Methods for Decision Graphs

In this section, we introduce standard heuristic algorithms and several exact combinatorial optimization approaches for decision graphs.

Decision graphs

Decision graphs, also called decision diagrams, are proposed in [Oliver 1992] and are still studied in Machine Learning [START_REF] Zhu | Tree in Tree: from Decision Trees to Decision Graphs[END_REF] and in Combinatorial Optimization [Bergman et al. 2016]. This model is introduced to face some limitations of decision trees, especially the replication and the fragmentation problem. Decision graph is a layered directed acyclic graph with a single node at the first layer (the root note) and one or several nodes at the last layer (sink nodes or leaves, for instance the labels of the dataset in machine learning context). Each internal node is associated to a variable (for instance a feature of the dataset). An arc from a node of a given layer to a node of a next level is valuated by the assignment of the variable associated to the originating node.

A standard variant of decision graph is binary decision diagram, where each internal node has only two successors). They are widely studied in hardware design and model checking [Bryant 1986], and are introduced with details in Section 1.2.2.2.. To sum up, binary decision diagrams allow to represent Boolean function and are adapted for binary classification on binary dataset. In addition, they are assumed as reduced and ordered, which are described in Section 1.2.2.2.

The Oblivious Read-Once Decision Graph or OODG, introduced in [Kohavi 1994], is a variant of decision graph with additional properties.

• The "read-once" property indicates that each feature is selected at most once along any path from the root to a category node.

• The "levelled" property indicates that the nodes are partitioned into a sequence of pairwise disjoint sets, representing the level. The outgoing edges from each level terminate at the next level.

• The "oblivious" property extends the "levelled" property by setting that all nodes at a given level are associated to the same feature.

From the definition of OODG, we can highlight some similarities and differences between it and ordered reduced binary decision diagram. For the similarities, OODG and binary decision diagram share the same topology. In detail, the category nodes and the branching nodes in the OODG model relate to the terminal vertices (leaves) and the non-terminal vertices in binary decision diagram; the combination of the "read-once" property and "oblivious" properties for OODG are the same as the "ordered" restriction for binary decision diagram. For the differences, the OODG is not limited in binary classification, as the leaves nodes in OODG could be associated to multiple values. In addition, the OODG considers multi-values features by allowing multiple outgoing edges for a branching node. However, especially for binary classification for binary datasets, the OODG could be considered as equivalent to the binary decision diagram.

Algorithm 6: The algorithm to grow the Oblivious Decision Tree (ODT) in limited depth.

Input:

A labelled Dataset E = {(x 1 , y 1 ), . . . , (x m , y m )}; The feature set of dataset F = {f 1 , . . . , f d };
The preset depth d. 

S ′ = S ′ ∪ {s v }.

18

Create a node for s v and link to the node related to s with

f v * . 19 S = S ′ . F = F \ f * . d = d -1.
Output: An Oblivious Decision Tree with node as the root.

Heuristic methods for OODG

To build an OODG for the classification, two heuristic methods: bottom-up induction [Kohavi 1994] and top-down induction [START_REF] Kohavi | [END_REF], are proposed. The objective of the bottom-up induction is to build an OODG with no classification error from the bottom to the top. The heuristic is to choose the feature leading to the "narrowest" level in the number of branching nodes. In reverse, the top-down induction of OODG contains two critical phases. At first, growing an oblivious decision tree (ODT) by using the mutual information heuristic. Then, merging the isomorphic and compatible subtrees in the ODT from top to down to build the OODG. Unlike the bottom-up induction, the top-down approach could control the depth of the OODG built as a preset parameter. We introduce the top-down induction in detail. The first step of the top-down induction is to grow an oblivious decision tree (ODT) with heuristic. This process is similar to the traditional decision tree. The difference between them is the process of the traditional decision tree is recursive, but the process of the top-down induction for ODT is iterative. The Algorithm 6 shows how to grow an ODT in limited depth. The heuristic to choose the best split feature for a level (line 6 in Algorithm 6), is based on the mutual information.

To explain the concept of mutual information, we introduce the concept of conditional entropy [Cover & Thomas 2001] at first. Similar to the information entropy, conditional entropy is also used to measure the amount of information of a given example set after a sequence of features is selected. Considering a labelled dataset E , the conditional entropy for E after the sequence of features [f 1 , . . . , f l ] is selected is defined as follow:

H(E |f 1 , . . . , f l ) = - f * 1 ∈f 1 ,...,f * l ∈f l ,c j ∈Y ∆ ∆ = per(c j , f * 1 , . . . , f * l ) log 2 per(c j |f * 1 , . . . , f * l ) (1.12)
where f * l indicates a general case of all possible values for f l . The per(c j , f * 1 , . . . , f * l ) indicates the percentage of examples with label c j that satisfy the assignments 

f 1 = f * 1 , . . . , f l = f * l for
f 1 = f * 1 , . . . , f l = f * l .
Similar to the information entropy, the conditional entropy has smaller value when the sequence of features chosen making E purer. Given a new feature f * , the mutual information is defined as the difference between the original conditional entropy and the updated conditional entropy with f * :

I(E ; f * |f 1 , . . . , f l ) = H(E |f 1 , . . . , f l ) -H(E |f 1 , . . . , f l , f * ) (1.13)
To choose the first feature (when l = 0), the mutual information is defined with the help of information entropy:

I(E ; f * ) = Ent(E ) -H(E |f * ) (1.14)
In general, the bigger value of mutual information indicates the bigger improvement in the purity when adding f * into the existing sequence of features. Therefore, the heuristic to choose the best feature f into the existing feature sequence, which is f = arg max f∈F I(E ; f|f 1 , . . . , f l ) in mathematical format.

Therefore, based on the heuristic of the mutual information, when the preset depth is 3, the sequence of feature of size 3 selected for the small dataset in Table 1

.2 is [f 2 , f 4 , f 1 ].
The ODT of the depth 3 is shown in Figure 1.12, where the leaf nodes labelled "u" are the "unknown" nodes indicating they capture no example.

f 2 f 4 f 4 f 1 f 1 f 1 f 1 1 1 u 0 1 u 1 u Figure 1
.12: The Oblivious Decision Tree (ODT) for the small dataset in Table 1.2.

f 2 f 4 f 1 f 1 1 1 1 0
Figure 1.13: The ODT after merging the compatible subtrees of the root.

To build the OODG by merging subtrees of the ODT generated from top to down, we introduce the concept of isomorphic and compatible subtrees separately. Before judging two subtrees are isomorphic or compatible, there is an assume that the roots of them should be in the same level, indicating they are either branching nodes associated to the same feature, or category nodes.

Two subtrees are isomorphic if they are both category nodes with same class, or if the corresponding children are the roots of isomorphic subtrees. For example, in Figure 1.12, the two subtrees of the leftmost branching node associated to f 1 are isomorphic, same as the two subtrees of the rightmost branching node associated to f 4 . Merging isomorphic subtrees reduces the size of the model without changing the bias of the original decision structure.

Two subtrees are compatible if either at least one root is labelled "unknown", or if the corresponding children are the roots of compatible subtrees. As the "unknown" nodes capture no example, they could match anything when we judge two subtrees are compatible. For example, in Figure 1.12 the two subtrees of the root are compatible, the ODT after merging them is shown in Figure 1.13. Merging compatible subtrees could help assign classes for those "unknown" nodes, which solves the fragmentation problem of the decision tree. This post-process changes the bias by assuming that they are likely to behave the same as the corresponding child in the compatible subtree.

f 2 f 4 f 1 f 1 1 0 f 4 f 1 1 0 Figure 1.14:
The OODG of depth 3 that merges isomorphic and compatible subtrees. The corresponding OODG after merging isomorphic and compatible subtrees of the ODT in Figure 1.12 is shown as the left one in Figure 1.14. It is clear that the OODG contains some constant nodes, such the node that all edges emanating from it terminate at the same node of the next level. For example, the root and the leftmost branching node associated to f 1 are constant nodes. These constant nodes could be removed as they made useless splits to make the OODG more compact and readable. The OODG after removing all constant nodes is shown in the right one in Figure 1.14. In addition, this OODG of depth 3 does not correctly classify all examples of the small dataset. The OODG with the smallest depth that well classifies all examples is shown in the Figure 1.15, which is in depth 5, with [f 2 , f 4 , f 1 , f 5 , f 6 ] as the sequence of features selected.

f 2 f 4 f 1 f 1 f 5 f 6 0 1

Recent Exact Methods

As the binary decision diagrams are not widely studied in Machine Learning, there are not many exact methods for this model. We present our MaxSAT-based approach [Hu et al. 2022] in Chapter 3. To the best of our knowledge, there are two other recent exact combinatorial optimization approaches for optimal binary decision diagram or its variant. The first one is based on Boolean Satisfiability [Cabodi et al. 2021], which is before our contribution. The other one is based on Mixed Integer Linear Programming [START_REF] Florio | [END_REF]. We introduce separately the principal ideas of these methods.

In [Cabodi et al. 2021], the authors proposed the first SAT-based approach to find the optimal binary decision diagrams. In detail, the binary decision diagrams found are ordered and reduced. The goal is similar as the one proposed in [START_REF] Narodytska | [END_REF], shown as follow:

• Goal : For a given set of examples E , find the Binary Decision Diagram in the smallest size (number of nodes) classifying all examples in E correctly.

The principal idea to achieve this objective is to apply an iterative approach. In each step of the iterative approach, a SAT problem is asked for the existence of a binary decision diagram of a given size N that classifying all examples in E correctly. In [Cabodi et al. 2021], the authors proposed the starting lower bound of the size is 3, it would double the size until the SAT response is found. Then to find the optimal size, a binary search would be performed between the identified range.

The SAT model of a binary decision diagram in a given size contains two major categories of constraints: The constraints to form a valid binary decision diagram in given size; and the constraints to let the model classify all examples correctly.

Briefly speaking, to form a valid binary decision diagram in given size, the constraints consists of two parts as follow:

• Constraints to describe the parent-children relationship between nodes, including for each node (except the root) has at least 1 parent; for the two terminal nodes must not be a parent of the other; for each node (except the terminal nodes) has two identical children (the reduced restriction).

• Constraints to relates the features and nodes, including for each node is associated to exactly one feature; for preserving the global feature ordering; for relating the global feature ordering with the nodes by the parent-children relationship (the ordered restriction).

To let the valid binary decision diagram found classify all examples correctly, the constraints ensure that each example is predicted correctly along one path in the binary decision diagram. We refer readers to [Cabodi et al. 2021] for details.

As the first exact combinatorial method for the binary decision diagram, this SAT-based approach aims to find the optimal model in the smallest size classifying all examples correctly. However, there are some weakness of this approach. At first, there is no limit in the (maximum) depth in the proposed SAT model. It possibly leads to the binary decision diagram found is small in size by deep in depth, which decreases the interpretability. Then, classifying all examples correctly could easily raise the overfitting, which affect the generalization performance. Finally, from the experiments of the paper, the proposed SAT-based approach suffers a lot in the scalability problem.

In [START_REF] Florio | [END_REF], the authors proposed the first MILP-based approach to learn optimal decision diagrams (ODDs). Compared to the binary decision diagrams, the decision diagrams found by this approach are more general in the skeleton. At first, the decision diagrams are not ordered. Then, the topology of the decision diagrams found is limited by a preset skeleton, which is defined by a sequence of maximum number of nodes in each layer. For example, 121212) are some different skeletons proposed in the experiments of the paper. The decision diagrams found are decided by the activated nodes and their mutual connections. Moreover, the decision diagrams are designed as multi-variate. That is, a linear combination of multiple features could be associated to the non-terminal nodes in the decision diagrams. The decision diagrams could also be single-variate, too. The final difference is the decision diagrams found could handle multi-classification by arranging a dedicated terminal node for each class.

Unlike the SAT-based approach, the MILP-based approach optimizes the combination of accuracy and an additional regularization term in the model size, which is shown as follow:

• Goal: For a given set of examples E and a preset skeleton, find the Decision Diagram ϕ with the best value in the objective function as follow:

min (err(ϕ; E ) + α∥ϕ∥)
, where ∥ϕ∥ is the size of the Decision Diagram found (the number of activated nodes), and α is a regularization parameter to control the penalty of model size.

Briefly speaking, the MILP-based approach firstly introduces the flow variables to represent the trajectory of the examples within the diagram. Then, it connects these flow variables to the design variables that defines the valid topology of decision diagram, and those variables making the splits. We refer readers to [START_REF] Florio | [END_REF] for details in the mathematical formulation.

As the first MILP-based approach for optimal decision diagrams, this approach has a general objective in ML by considering the regularization term. From the experiments, the authors show the fact that compared to the optimal decision tree, the optimal decision diagram has a much more balanced data fragmentation.

Chapter 2

Learning Optimal Decision

Trees via MaxSAT In this chapter, we present our contribution to learn optimal decision trees via MaxSAT approach. This chapter is an extended version of the paper [START_REF] Hu | [END_REF]. It is divided into six sections. Section 2.1 describes the motivation of this work, and the target problem. Section 2.2 introduces the details of the SAT encoding from [START_REF] Narodytska | [END_REF], which is the essential basic of our research. Section 2.3 introduces the details of the proposed MaxSAT model, and some experimental results. Section 2.5 shows how we adapt our MaxSAT formulation to the wellknown AdaBoost Algorithm for better performance. Section 2.6 synthesizes the results obtained by different MaxSAT solvers of the MaxSAT Evaluation 2021 and 2022, used in our MaxSAT formulations. Section 2.7 provides a brief summary this chapter.

Motivation and Problem Description

As a very popular machine learning model, decision tree majorly benefits from its interpretability, and the wide range of efficient methods to compute it. Several classic greedy heuristic methods are introduced in Section 1.3.1.1. Those methods typically build the tree from the top to the bottom, by splitting the datasets with the features selected by different heuristics, like the highest information gain. However, those heuristic methods suffer from the difficulty in interpretability, due to the explosion in tree size and depth. In addition, a complex decision tree leads to the overfitting problem. Therefore, a simpler (e.g smaller) decision tree is not only better in interpretability, but is also often more accurate on unknown data.

Recently, several exact methods to learn optimal decision trees are proposed to offer guarantees of mathematical optimality. Section 1.3.1.2 provides the literature review of some combinatorial optimization approaches for optimal decision trees. As mentioned in Section 1.3.1.2, the metrics widely used for optimal decision trees are tree size, tree depth, and accuracy. Unlike other combinatorial optimization approaches (Constraint Programming, Mixed Integer Linear Programming, Dynamic Programming), there are no exact methods based on Boolean Satisfiability (or its variants) to optimize the accuracy for the decision tree before our research. In fact, the previous SAT-based exact methods [Bessiere et al. 2009, Narodytska et al. 2018] optimize the tree size, and, [Avellaneda 2020, Janota & Morgado 2020] optimize the tree depth. All of them must subject to the constraint that the decision tree is perfectly accurate on the training set, which is often criticized as it may entail overfitting.

Corresponding to the Goal 1 (tree size) described in Section 1.3.1.2, the decision problem solved by the SAT model of [START_REF] Narodytska | [END_REF]] is:

• P dt (E , N ): Given a set of examples E ,

is there a valid binary decision tree (each internal node has exactly two children) of size N that classifies correctly all examples in E ?

The SAT approach finds the decision tree with the smallest size by a linear search of this decision problem. The initial tree size is provided by a heuristic decision tree method, like ITI [Utgoff et al. 1997]. Then, the tree size decreases until the answer is unsatisfiable, and, the last decision tree is the optimal one. In contrast, the optimisation problem considered in our research corresponding to the Goal 3 (accuracy), is: Moreover, the previous SAT-based methods have the limit in scalability. The principal reasons are the constraint of perfect accuracy and the iterative SAT queries to check the smallest size/depth. Although solving the MaxSAT formula to optimality is of course harder than solving the corresponding SAT formula, the MaxSATbased approach does not need the iterative processes. In addition, the use of incomplete MaxSAT solver could return the best result within given reasonable time, even the optimality is not reported.

• P * dt (E ,
Finally, the MaxSAT approach can be naturally integrated in AdaBoost to improve the prediction performance. The idea is to update the data distributions by changing the weights of corresponding soft clauses. This technique still improves the scalability, as the individual trees of the ensemble can be smaller.

As our MaxSAT model extends the SAT model in [START_REF] Narodytska | [END_REF]], we introduce the details of the SAT model in the next section. To simplify the notation, we assume that the set of examples E is binary containing M examples, and K binary features.

Additionally, for all possible uses of cardinality constraints in this chapter, we model the cardinality constraints by the sequential counters encodings proposed in [Sinz 2005].

Details of Previous SAT Encoding

In this section, we present the SAT encoding previously proposed in [START_REF] Narodytska | [END_REF] for solving the decision problem P dt (E , N ), that is to find a valid binary decision tree of size N that classifies correctly all the examples of the dataset E . The SAT encoding contains three parts of constraints as follow:

• Part 1: Constraints to encode a valid binary tree of size N .

• Part 2: Constraints to map features (respectively, classes) to internal nodes (respectively, leaf nodes).

• Part 3: Constraints to classify correctly all examples in E .

We show the details of the constraints in different parts separately.

Encoding a Valid Binary Tree of Given Size

As the encoding considers a valid binary tree, where each internal node has two children, therefore the size N must be an odd number.

To represent a binary tree of given size, the encoding uses the numbering of nodes, which is assumed in the breadth-first order from left to right. Namely, the root node of the tree is numbered as 1. Moreover, for a node i, the number of its two children ranges from i + 1 to min (2i + 1, N ). In addition, the number of the left child and the one of the right child are consecutive numbers.

To model whether a node i is an internal node or a leaf node, the encoding applies a propositional variable v i , where v i is true (respectively, f alse) indicates the node i is a leaf node (respectively, internal node). For the child-parent relationship between With the help of the proposed sets of variables, encoding a valid binary tree of given size needs several constraints describing the topology. At first, the root must not be a leaf node as we encode a valid tree.

(¬v 1 )

(2.1)

Then, a leaf node has no children, which is for i = 1, . . . , N -2:

v i → ¬l ij , j ∈ LR(i) (2.2)
Next, the left child and the right child of the node i are numbered consecutively, which is for i = 1, . . . , N -2:

l ij ↔ r ij+1 , j ∈ LR(i) (2.3)
Moreover, an internal node must have exact one left and one right child, which is for i = 1, . . . , N -2:

¬v i → ( j∈LR(i) l ij = 1) (2.4)
Additionally, when node i is a parent then it must have two child, which is for i = 1, . . . , N -2:

p ji ↔ l ij , j ∈ LR(i) p ji ↔ r ij , j ∈ RR(i) (2.5)
Finally, to ensure that the topology must be a tree, except the root, all nodes must have exact one parent, which is for j = 2, . . . , N : 

min (j-1,N ) i=⌊ j 2 ⌋ p ji = 1 (2.

Mapping Features and Classes to Nodes

Given a valid binary tree topology of a given size, it is essential to map features to internal nodes and to map classes to leaf nodes. Three additional variables are needed to capture these constraints. At first, a propositional variable a rj is introduced to relates each binary feature f r to each node j. Then, another propositional variable c j is used to indicate if the class associated to leaf node j is positive or negative. Moreover, to avoid the duplication of feature f r in any paths from the root until the node j, u rj is proposed to store this selection information. The definitions of these variables sets are shown in Table 2.2.

With the use of these propositional variables, the constraints to map features (classes) to internal nodes (leaf nodes) are shown as follow. For an internal node,

Var Description of variables

a rj 1 iff feature f r is assigned to node j, 0 otherwise. ∀r ∈ {1, K}, ∀j ∈ {1, N } u rj 1 iff feature f r is being selected before or in node j, 0 otherwise. ∀r ∈ {1, K}, ∀j ∈ {1, N } c j 1 iff class of leaf node j is 1, 0 otherwise. ∀j ∈ {1, N } Table 2
.2: Description of propositional variables for features and classes mapping in [START_REF] Narodytska | [END_REF].

exactly one feature is assigned, which is for j = 1, . . . , N :

¬v j → ( K r=1 a rj = 1) (2.7)
In reverse, if node j is a leaf node, no feature should be used, which is for j = 1, . . . , N :

v j → ( K r=1 a rj = 0) (2.8)
Then, to judge the feature f r is being selected before or in node j, which is to avoid the duplication of feature in any paths from the root, we consider the following constraint, with r = 1, . . . , K, j = 1, . . . , N :

j-1 i=⌊ j 2 ⌋ (u ri ∧ p ji → ¬a rj ) u rj ↔ (a rj ∨ j-1 i=⌊ j 2 ⌋ (u ri ∧ p ji ))
(2.9)

The first part indicates for all possible paths to node j, if the feature f r is selected before or in its parent, it must not being assigned at the node j. The second part describes that there are two cases for the feature f r to be selected before or in node j: the first one is that the feature f r is assigned to node j, the other one is that the feature f r is selected before or in the parent of node j.

Classifying All Examples Correctly

Considering a valid binary decision tree of given size, solving the decision problem P dt (E , N ) needs constraints for classifying all examples correctly. To ensure the accuracy is perfect, the idea is that all positive examples must not lead to negative leaf nodes. Similarly, all negative examples must not lead to positive leaf nodes. In other words, a positive (resp. negative) leaf node rejects all negative (resp. positive) examples.

To remember the selection of a feature f r and its value along the path from the root to the node j, two variables d 0 rj and d 1 rj are introduced. Concretely, any example having f r = 0 (resp. f r = 1) will be rejected by the node j or by one of its ancestors iff d 0 rj = 1 (resp. d 1 rj = 1). The definitions of these two variables sets are shown in Table 2.3 Considering the constraints for the feature selection at first, there is no feature selected before the root, therefore, with r = 1, . . . , K:

d 0 r1 = 0, d 1 r1 = 0 (2.10)
Then, to obtain the selection of a feature f r = 0 along the path from the root to node j, with j = 1, . . . , N , r = 1, . . . , K:

d 0 rj ↔ ( j-1 i=⌊ j 2 ⌋ ((p ji ∧ d 0 ri ) ∨ (a ri ∧ r ij ))) (2.11)
This constraint implies two cases. The first one is that one ancestor of the node j already rejected any example having f r = 0, and the second one is that the rejection occurs exactly in the parent of node j. In the decision tree, as the value 0 leads the example to the left child, choosing the right child indicates the rejection.

Analogously, to obtain the selection of a feature f r = 1 along the path from the root to node j, with j = 1, . . . , N , r = 1, . . . , K,

d 1 rj ↔ ( j-1 i=⌊ j 2 ⌋ ((p ji ∧ d 1 ri ) ∨ (a ri ∧ l ij ))) (2.12)
To classify all positive examples correctly, let a positive example e q (note as e q ∈ E + ), and the value of feature f r for e q be σ(r, q) ∈ {0, 1}. For every leaf node j, with j = 1, . . . , N :

v j ∧ ¬c j → K r=1 d σ(r,q) rj (2.13)
That is, any positive example must be rejected by the leaf node associated with the negative class.

Similarly, to classify all negative examples correctly, let a negative example e q (note as e q ∈ E -). For every leaf node j, with j = 1, . . . , N :

v j ∧ c j → K r=1 d σ(r,q) rj (2.14)
That is, any negative example must be rejected by the leaf node associated with the positive class. 2.4 gives a binary dataset from [START_REF] Narodytska | [END_REF]]. Solving the decision problem P dt (E , N ) with N = 5 produces the binary decision tree of size 5 given in Figure 2.2. This tree classifies all examples of Table 2.4 correctly. The constraints 2.13 and 2.14 rule out that the second valid binary tree given in Figure 2.1 as it does not ensure perfect classification for this dataset.

Example 3 Continuing with the Example 2. The Table

Ex. L C E S H

e 1 1 0 1 0 0 e 2 1 0 0 1 0 e 3 0 0 1 0 1 e 4 1 1 0 0 0 e 5 0 0 0 1 1 e 6 1 1 1 1 0 e 7 0 1 1 0 0 e 8 0 0 1 1 1 As mentioned before, we consider a dataset E containing M examples and K binary features. The encoding size (on the number of literals) of a target decision tree with N nodes is in O(K × N 2 + M × N × K). The term M × N results from the constraints 2.13 and 2.14, each contains O(K) literals. The term K × N 2 depends. on the remaining constraints. In comparison, the previous model presented in [Bessiere et al. 2009

], is in O(K × N 2 × M 2 + N × K 2 + K × N 3 ),
this proposed model is far lighter.

MaxSAT Model Proposed

In this section, we consider the optimisation problem P * dt (E , H), the goal is to find a valid binary decision tree with maximum/exact depth H that maximises the number of examples in E that are correctly classified. We present MaxSAT model, based on previous SAT model, for this optimization problem. In the experimental evaluation, we first outline the overfitting phenomenon of optimal decision tree with perfect accuracy. Then, we show the comparison between the proposed MaxSAT approach with some state-of-the-art heuristics and exact methods.

The previous SAT encoding for the decision problem P dt (E , N ), considers decision trees of given size N . However, the optimisation problem P * dt (E , H) considers the maximum/exact depth H of decision trees. Then, three adaptions are proposed to solve the optimisation problem P * dt (E , H) by considering a similar optimisation problem P * dt (E , N ) defining as follow:

• P * dt (E , N ): Given a set of examples E , find a valid binary decision tree of size N that maximises the number of examples in E that are correctly classified.

The three adaptions to solve the problem P * dt (E , H) are the following:

• Adaption 1: Solve the optimisation problem P * dt (E , N ) via an adapted MaxSAT encoding.

• Adaption 2: Add new constraints to control the maximum/exact depth H of the tree of given size N .

• Adaption 3: Add new constraints to encode the relaxation of the tree size with N as an upper bound.

We present the three adaptions separately in the next paragraphs.

Maximising Examples Correctly Classified

By transforming the previous SAT encoding to MaxSAT encoding, the target of the first adaption is to change the original decision problem P dt (E , N ) to be solved into the optimized version P * dt (E , N ). As we introduced before, the previous SAT encoding contains three parts of constraints, where the constraints of classifying correctly all examples matter. Therefore, to realise the first adaption, except the constraints of classifying examples, all constraints (Constraints 2.1-2.12) are kept as hard clauses. Then, to classify each example, we introduce one Boolean variable b q for every example e q ∈ E to indicate whether the example e q is correctly classified or not. The definition of b q is shown Table 2.6.

Next, we link the b q variable with the constraints of classifying examples (Constraints 2.13, 2.14) as hard clauses. That is, for every positive example e q ∈ E + , and every leaf node j, with j = 1, . . . , N :

b q → (v j ∧ ¬c j → K r=1 d σ(r,q) rj ) (2.15)
And, for every negative example e q ∈ E -, and every leaf node j, with j = 1, . . . , N :

b q → (v j ∧ c j → K r=1 d σ(r,q) rj ) (2.16)
Finally, in order to model the objective of maximizing the number of examples that are correctly classified, each literal b q is declared as a soft clause. Clearly, based on the definition of b q , the number of satisfied soft clauses is equal to the number of correctly classified examples.

Example 4

The Figure 2.3 shows the decision tree of size 9 found when solving the P * dt (E , N ) optimisation problem on the dataset of Table 2.5. Meanwhile, the smallest decision tree with perfect accuracy via the SAT encoding approach is also in size of 9.

f 1 f 2 f 3 f 4 f 5 f 6 Play? 1 0 0 0 0 1 1 1 0 0 1 1 1 0 1 0 0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 1 1 0 1 0 1 1 0 1 0 1 0 0 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1
Table 2.5: A binary dataset (previously introduced in Table 1.2)

f 2 f 3 1 f 5 f 6 1 0 1 0 Figure 2.
3: An optimal decision tree of size 9 for the dataset in Table 2.5 .

Solving the optimisation problem P * dt (E , N ) with other smaller values of N produces other optimal decision trees. 

f 1 1 f 5 1 0 f 3 f 5 0 1 f 2 0 1
Figure 2.4: Two optimal decision trees in size 5 and 7 maximising examples for the dataset in Table 2.5.

Example 4 shows that the decision trees in small sizes do not lose a lot in the accuracy. However, compared with the decision trees found via previous SAT model, they could provide better interpretability by profiting their simple topologies.

Controlling Depth for Tree of Given Size

The proposed MaxSAT encoding solves the optimisation problem P * dt (E , N ), the second adaption aims to control the depth H for the tree of given size N . As a matter of fact, there exist different topologies for a binary decision tree of a given size. For instance, Figure 2.5 shows the two extreme situations of the binary tree topology using the same size N = 7: a complete (balanced) binary tree (the left one of depth H = 2), and a fully unbalanced binary tree (the right one of depth H = 3). Note that we count the depth of binary tree from the root as depth 0. In binary tree, the corresponding depth of a given node j varies in an interval reflecting these two extreme situations.

• the upper bound of the depth is associated to the fully unbalanced tree, which is ⌈(j -1)/2⌉.

• the lower bound of the depth is associated to the complete (balanced) tree, which is ⌈log(j + 1)⌉ -1.

For example, as shown in Figure 2.5, the node 6 and node 7 could be in depth 3 or depth 2. To reflect this property between node and its depth, we introduce a Boolean variable depth jt to indicate the node j is in depth t or not. The definition of depth jt is given in Table 2.6. The depth interval for a node j is defined as DS(j) in this Table.

Example 5 Considering a valid binary tree with 7 nodes (N = 7), from the previous SAT encoding, there are four sets of variables for the tree structure: {v 1 , . In order to control the maximum allowed depth of the tree with a given size, we introduce the following constraints. At first, we notice that the root is always at depth 0:

(depth 10 ) (2.17)

Then, each node must be at only one depth, which is for j = 1, . . . , N :

t∈DS(j) depth jt = 1 (2.18)
Next, the children relationship implies the increasing of the depth. In detail, if node i is in depth t, and node j is a child of node i, then node j must be in depth t + 1, which is for i = 1, . . . , N :

depth it ∧ l ij → depth j(t+1) , j ∈ LR(i) depth it ∧ r ij → depth j(t+1) , j ∈ RR(i) (2.19)
Finally, to control the tree topology with H as the maximum depth, we set that all possible nodes at depth H must be leaf nodes, which is for j ∈ [2H, min(2 H+1 -1, N )]:

depth jH → v j (2.20)
The interval of the index of possible nodes in the depth H is also based on the two extreme situations, where 2H corresponds to the fully unbalanced situation, and the min(2 H+1 -1, N ) corresponds to the complete (balanced) situation.

In addition, the following constraint can be added if H is given as an exact depth instead of an upper bound. The idea is that not only all possible nodes in the depth H must be leaf nodes, but also at least one node is in the depth H: Considering the maximum depth is 3, we have the following constraints:

min(2 H+1 -1,N ) j=2H depth jH = 1 (2.
depth 63 → v 6 ; depth 73 → v 7
Solving this simple example, the encoding allows five different topologies, where one of depth 2 (the left one in Figure 2.5), and four of depth 3 (the right one of Figure 2.5 and three additional trees in Figure 2.6). If we add the constraints to control the tree topology of exact depth 3, from Constraint 2.21:

depth 63 ∨ depth 73 = 1;
Then, the topologies allowed by the encoding only correspond to the four trees of depth 3. The tree of depth 2 is avoided, as the depth 62 and depth 72 must be false.

To combine the constraints of controlling the depth into the MaxSAT encoding, we simply keep these constraints as hard clauses, as they could be viewed as an extension of structural constraints.

Limiting Tree Size in Given Interval

After the first and second adaption, the MaxSAT encoding could not only solve the optimisation problem P * dt (E , N ), but also control its maximal or exact depth. However, this encoding could not solve the final problem P * dt (E , H) as it models the tree with given size. In this section, we show the final adaption to build a decision tree with an upper bound on the size instead of the exact size.

There is a relationship between the size and the depth in a valid binary tree. That is, when the depth of a valid binary tree is given, the size of the tree is in a corresponding interval. In details, for the maximum depth H, the upper bound of the size is 2 H -1. Moreover, if H is set as exact depth, we additionally get the lower bound of the size as 2H + 1. Recall that the size of a valid binary decision tree can only be an odd number starting from 3. In common, suppose that N is an upper bound of the tree size, we introduce a Boolean variable m j to indicate that there are at least j (j ∈ {3, 5, . . . , N }) nodes to construct the tree. The definition of m j is given in Table 2.6. The constraints for controlling the tree size, are then the following:

As at least 3 nodes are necessary to build a valid tree, so we need to enforce variable m 3 to be true. Then, if at least j + 2 nodes are used to construct the tree, it must use at least j nodes, which is for j ∈ [1, N -2]:

m j+2 → m j (2.22)
Next, we apply the following simple rule to adapt each constraint set as hard clauses: we look at each hard clause C from the encoding separately, and consider j as the largest node index used in C. We simply replace the original hard clause C by the two cases:

m j → C, if j is odd; m j+1 → C, if j is even; (2.23)
That is, if j is odd (respectively even) and at least j (respectively j + 1) nodes are used, then the hard clause C is held. The use of Constraints 2.22 and 2.23 allows the tree size is restricted by an upper bound, which is applicable to control the maximum tree depth. In addition, to set a lower bound N l to limit tree size in a given interval, we simply enforce m N l as true indicating at least N l nodes are used. This adaption could help control the exact tree depth.

Example 7 Considering we control the maximum depth of the target decision trees between 2 and 3, then, the corresponding intervals to limit the tree size are [START_REF] Narodytska | Learning optimal decision trees with SAT[END_REF]7] and [START_REF] Narodytska | Learning optimal decision trees with SAT[END_REF]15]. In addition, for exact depth H = 3, we simply change the interval as [7,15], which increases the lower bound.

For the toy dataset of Table 2.5, solving the optimisation problem P * dt (E , H) with H ≤ 2 produces the decision tree given in the left part of Figure 2.7. This decision tree maximises the number of examples correctly classified (11/12). Solving the optimisation problem with H ≤ 3 gives the decision tree on the right part of Figure 2.5. This tree correctly classifies all examples (12/12) of the dataset.

f 1 f 3 f 5 1 0 1 0 f 3 f 1 f 6 1 f 5 f 2 0 1 0 1 0 Figure 2.7:
The optimal decision trees of maximum depth 2 and 3, that maximise the number of correctly classified examples for the dataset of Table 2.5.

To simplify the notation, we refer to the MaxSAT encoding applying the three adaptions to find the decision tree with maximum depth as MaxSAT-DT-max, and with exact depth as MaxSAT-DT-exact.

Experimental Results

In this section, we present our large experimental studies to evaluate our propositions on different levels. The source code (developed in Python) and datasets are available online at https://gitlab.laas.fr/hhu/maxsat-decision-trees. The outline of the experiments contains two parts. The first experiment aims to highlight the overfitting behaviour of the decision trees found via the existing SAT approach. In the second experiment, we evaluate the prediction performance between our propositions (MaxSAT-DT-max and MaxSAT-DT-exact) with the state-of-the-art heuristic and exact methods. Here the heuristic method used is CART [START_REF] Breiman | [END_REF], and the exact method is DL8.5 [Aglin et al. 2020]. Both of them are described in Section 1.3.1.

We perform experiments on datasets from CP4IM1 . The dataset are binarized with the classical one-hot encoding. In Table 2.7, we present the characteristic of these datasets. In detail, the column M indicates the number of examples in the dataset, the column K orig indicates the original number of features, the column K indicates the number of binary features after binarization, and the column pos indicates the percentage of positive examples in the dataset. We ran all experiments on a cluster using Xeon E5-2695 v3@2.30GHz CPU running xUbuntu 16.04.6LTS.

Dataset

The Overfitting Phenomenon

The first experiment aims to show the existence of the overfitting phenomenon for the SAT approach of learning optimal decision trees with perfect accuracy from [START_REF] Narodytska | [END_REF]]. However, the tendency of the increase of the training accuracy could not be obtained directly by applying the SAT method, because during the iterative process of decreasing the tree size, all the decision trees found have perfect accuracy. To solve this problem, we learn decision trees with our MaxSAT encoding (just applying the Adaption 1, solving the optimisation problem P * dt (E , N )), by increasing the tree size starting from 3 until we find the size that classifies correctly all examples in the training set. The final decision tree obtained via the MaxSAT model is in the same size as the optimal decision tree found via the previous SAT approach, as it is the decision tree in the smallest size with perfect accuracy.

Considering the scalability of the SAT method, in this experiment, for each dataset, we use the hold-out method to split the training and testing set. Following the experiment topology in [START_REF] Narodytska | [END_REF], we choose 3 different small ratios r = {0.05, 0.1, 0.2} to generate the training set, and the remaining examples are used as the testing set. This process is repeated 10 times with different random seeds to avoid the influence of random seeds. The MaxSAT solver we used is RC2 [Ignatiev et al. 2019], which is an effective complete MaxSAT solver. For each training process, the solver is left with no time limit until it finds the optimal solution (in terms of training accuracy). with the increase of tree size for the dataset "breast-cancer" in different ratios.

In Figure 2.8, we report the average training accuracy and testing accuracy of the decision trees with the increase of tree size for the dataset "breast-cancer" using different sampling ratios, where the left one indicates the training accuracy, the right one indicates the testing accuracy. We observe clearly the improvement of training accuracy with the growth of tree size, until reaching a perfect classification. However, the testing accuracy shows that the perfect decision tree overfits the training set, since the smaller trees, while less accurate on the training set have better testing accuracy. The results for the other dataset are detailed in Appendix A. This overfitting phenomenon is not remarkable for every dataset, but we almost systematically observe a plateau whereby the testing accuracy stays constant at best while the training accuracy increases.

Comparison with Different Methods

In the second experiment, we compare the prediction of our propositions (MaxSAT-DT-max and MaxSAT-DT-exact) with the CART method as a state-of-the-art heuristic (with the scikit-learn Python library [Pedregosa et al. 2011]), and DL8.5 as the state-of-the-art exact method (via its Python package in version 0.0.9). Except for the maximum depth, all parameters are kept to their default values for all models.

As the MaxSAT approach faces less scalability problem, for each dataset, we use stratified sampling to preserve the class distribution with 5-fold cross-validation. This process is repeated 10 times with different random seeds to avoid the influence of random seeds. Unlike the first experiment, the MaxSAT solver we used in this experiment is Loandra [Berg et al. 2019], which is the winner of incomplete solver in the MaxSAT Evaluation 2019. In fact, a complete MaxSAT solver could not scale well on the datasets we used, as it only return the solution when the optimality is reported. Whereas, the incomplete MaxSAT solver can return the best solution, or report optimality within limited time.

For each experiment, the timeout for training is set to 15 minutes, and the memory limit is set to 16GB. The candidate maximum depths are restricted to H ∈ {2, 3, 4} for CART, DL8.5, and MaxSAT-DT-max. For MaxSAT-DT-exact, the candidate depths are used as exact depths.

Table 2.8 reports the average training accuracy of the different methods, and Table 2.9 reports the average testing accuracy. Each row corresponds to 50 runs for a given dataset with a given depth (5-fold cross-validation with 10 different random seeds). The column "Acc" stands for accuracy in percent, the column "Opt" indicates the percentage of reporting optimality, and the column "Time" indicates the run-time in seconds. The value "MO" corresponds to a memory out, and the value "TO" is a timeout. The best values between different methods are marked in blue. Moreover, for methods MaxSAT-DT-exact and MaxSAT-DT-max, their training and testing accuracy are marked with " * " if they are within 3% points of the best.

We do not report exact run time of CART as it takes only few seconds. At first, from the results in Table 2.8 and 2.9, we observe that the methods MaxSAT-DTexact and MaxSAT-DT-max are competitive with both heuristic and exact methods in prediction performance. Although both MaxSAT-DT approaches could not always report optimality within limited time, it is close to the optimal solution obtained by DL8.5. In addition, we observe that DL8.5 needs massive memory for deep trees, while the two MaxSAT-DT methods do not. Indeed, as a dynamic programming based approach, DL8.5 benefits its effectiveness in run time, but also suffers from the trade-off between time and memory. For instance, for a maximum depth of 5, DL8.5 runs out of memory on 6 datasets, even when lifting the memory limit into 50GB. This scalability problem explains why we consider small depths. Table 2.9: Evaluation of the testing accuracy between the MaxSAT-DT-max, MaxSAT-DT-exact, CART, and DL8.5.

Boosting the Model

In this section, we explain how the MaxSAT-DT approaches are well adapted to implement the classical Boosting method AdaBoost presented in Section 1.2.3.2.

The motivation of this adaption is to improve the generalization performance of MaxSAT-DT approaches. Then, we conduct an experimental evaluation to show the impact of the proposed integration of the MaxSAT-DT approaches in AdaBoost.

Integration in AdaBoost

Before explaining details of the integration of MaxSAT-DT approaches in AdaBoost, we briefly show the natural resemblance between MaxSAT-DT approaches and Boosting methods. As described in Section 1.2.3.2, the core of Boosting methods is to adjust the data distribution by the predictions made in each iteration. Meanwhile, the MaxSAT formulas generated by MaxSAT-DT could approximate the data distribution by the weights of their soft clauses. In Section 2.3.1, we present that each soft clause indicates whether the corresponding example is correctly classified or not. Originally, we consider that all soft clauses share the same weight, which is equivalently viewed as an average data distribution. In this section, we use the weighted partial MaxSAT to allow different weights for the soft clauses, so that the data distribution is approximated.

In details, the MaxSAT formula used to learn the decision tree at the iteration t is identical to the one at the previous iteration, except for the weight associated to each soft clause b q . Therefore, to approximate the data distribution D t of the iteration t, we associate every soft clause b q to a positive integer weight w t q . We set all weights at the first iteration with the value 1 as initial distribution, indicating the equal importance of each example. Then, the weight for the next iteration w t+1 q , is calculated based on w t q in two steps. Firstly, we update and normalize the weights:

w t+1 q = w t q * f actor t q M q=1 (w t q * f actor t q ) (2.24)
where f actor t q is an updating factor based on the predictions made by the decision tree ϕ t learnt in the iteration t for the example e q = (x q , y q ):

f actor t q =    exp (-α t ) if ϕ t (x q ) = y q exp (α t ) if ϕ t (x q ) ̸ = y q (2.25)
The value α t = 1 2 ln 1-εt εt is the weight of ϕ t in the final voting of AdaBoost, and the value ε t is the error rate of ϕ t in the example set (see Algorithm 4 for details).

The second step is to discretize the weight w t+1 q as follow, as the weighted partial MaxSAT could only accept positive integer weights:

w t+1 q = round( w t+1 q min q∈[1,...,M ] ( w t+1 q ) ) (2.26)
We recall the readers that the final prediction made by AdaBoost is Φ(x) = sign T t=1 α t ϕ t (x) , where T is the number of iterations preset.

Experimental Results

In order to show the influence of the integration of MaxSAT-DT approach in Ad-aBoost, we make this experiment to compare it with the original MaxSAT-DT approach. In addition, to check the differences between different ensemble methods, we also compare our integration of MaxSAT-DT in Adaboost with the integration of MaxSAT-DT approach in Bagging, and with the AdaBoost based on CART, . To simplify the notation, we refer the integration of MaxSAT-DT approach in AdaBoost as MaxSAT-DT-adaboost (or DT-ada in short), the integration of MaxSAT-DT in Bagging as MaxSAT-DT-bagging (or DT-bag in short), and the AdaBoost based in CART as CART-adaboost (or CART-ada in short).

We fix the the parameters of the decision trees for different methods. That is, for each ensemble method, the decision tree learnt in each iteration shares the same parameters. In particular, we use the decision tree found via MaxSAT-DT-max approach as the base learner in the ensemble methods. The candidate maximum depths are H ∈ {2, 3, 4}. The MaxSAT solver used is Loandra, and the timeout is set to 15 minutes. For each ensemble method, we set 21 as the number of learners as it is quite reasonable size, and an odd number could avoid ties in the voting phase.

We selected datasets where MaxSAT-DT approach do not perform well in the previous experiment. Moreover, considering the computational time, we use the hold-out method with the ratio r = 0.8 to split the training set, and the rest are used as testing set. This process is also repeated 10 times with different random seeds to avoid the influence of random seeds.

The results are presented in Table 2.10, where the accuracy are shown in percentage, and the best values are marked in blue. Moreover, the accuracy are marked with " * " if they are within 3% points of the best. The results clearly show that, compared with MaxSAT-DT-max approach, the MaxSAT-DT-adaboost method does improve the prediction performance (both in training and testing accuracy) for almost all instances. For example, for the dataset "car" and "tic-tac-toe", the improvement in prediction accuracy is more than 10%. The method MaxSAT-DTbagging obtains better prediction quality compared to MaxSAT-DT-max approach, reflecting the effectiveness of ensemble methods. However, it presents worse prediction compare to MaxSAT-DT-adaboost. In addition, compared with the boosted trees based on CART, MaxSAT-DT-adaboost is competitive in prediction quality (both in training and testing accuracy).

Performance of Different MaxSAT Solvers

Fortunately, we are honored that the MaxSAT formulas of MaxSAT-DT-max and MaxSAT-DT-adaboost are selected as benchmarks for the MaxSAT Evaluation (MSE) in 2021 [Bacchus et al. 2021a] and 2022 [START_REF] Bacchus | Maxsat evaluation 2022: Solver and benchmark descriptions[END_REF]. In this section, we present a summary of the performance of different MaxSAT solvers on our benchmarks executed during MSE 2021 and MSE 2022. In MSE, the competition between MaxSAT solvers is organized in three main tracks: complete tracks, incomplete tracks and incremental tracks (new in 2022). Depending on the type of MaxSAT formula, there are two sub-tracks in both complete and incomplete tracks, corresponding to unweighted and weighted formula.

The descriptions of the proposed benchmarks are detailed in [START_REF] Hu | [END_REF]] and is given in Appendix B. Our benchmarks (unweighted and weighted formula) are used in both complete and incomplete tracks. Our unweighted instances are produced by the MaxSAT-DT-max approach and our weighted instances are produced by the MaxSAT-DT-adaboost approach.

In the complete tracks of MSE, a time out is imposed (300 seconds) for all MaxSAT solvers. The vast majority of MaxSAT solvers could not report solution in this time limit. Meanwhile, the solver logs do not show sufficient valuable information to make provable analysis. Additionally, in MSE 2022, our weighted instances are used in the new incremental track. However, similarly to the complete track, the results of the incremental track do not produce sufficient valuable information. Therefore, we focus majorly on the results of the incomplete track to compare different MaxSAT solvers on our unweighted and weighted instances.

Incomplete Unweighted Track

The incomplete unweighted track uses the MaxSAT formulas generated by MaxSAT-DT-max. Overall, the benchmarks we provided contain the formulas for 15 datasets from CP4IM. Considering the number of different benchmarks, the MaxSAT Evaluation chooses part of the benchmarks to evaluate the MaxSAT solvers. The benchmarks are randomly chosen for each track. Therefore, we present the summary of evaluations separately by years.

In MSE 2021, six MaxSAT solvers are evaluated in the incomplete unweighted track. These solvers are Exact [Devriendt 2021], Loandra [Berg et al. 2019], SATLike-c and its variant SATLike-ck with control of steps [START_REF] Lei | [END_REF][START_REF] Cai | Old techniques in new ways: Clause weighting, unit propagation and hybridization for maximum satisfiability[END_REF], StableResolve [START_REF] Reisch | [END_REF], and TT-Open-WBO-Inc-21("TT-WBO" in short) [START_REF] Martins | [END_REF], Martins et al. 2021]. Table 2.11 shows the evaluation of these MaxSAT solvers with 300 seconds as the time limit. In this table, the benchmarks are identified by the combination of dataset and the maximum depth, which are shown in the column "Dataset/H". The column "Best" indicates the smallest number of unsatisfied soft clauses between the different MaxSAT solvers, where 0 indicates that all soft clauses are satisfied (for example, there is no unsatisfiable clauses for benchmarks "vote/5 " and "lymph/6 "). Each cell gives the ratio in percent between the best result and the result of each MaxSAT solver. The value in brackets is the number of unsatisfiable clauses obtained by the considered solver. An higher ratio indicates a better performance of corresponding MaxSAT solver. Two special cases need attention. The first case is when the MaxSAT solver could not obtain a solution in the time limit, the ratio is then set to 0 (for example, it is the case for the solver Exact on benchmark splice-1/5 ). The second case is when the best value is 0, the ratio is calculated with (best_value +1) / (corresponding_value +1). The best MaxSAT solver for each benchmark is marked in blue. In addition, we add a summary row to count, for each MaxSAT solver, the number of benchmarks with the best value.

From Table 2.11, we observe that the MaxSAT solver with the best performance on our benchmarks is SATLike-c and its variant SATLike-ck, which is a hybrid solver combining the local search algorithm "SATLike" and the "Open-WBO" MaxSAT solver. Then, Loandra and TT-Open-WBO-Inc-21 rank the second best efficient MaxSAT solvers. Moreover, we observe that, in general, Loandra performs well for benchmarks with small maximum depths (like 3, 4), but badly for benchmarks with large maximum depths (like 5, 6).

In MSE 2022, three new MaxSAT solvers are evaluated in the incomplete unweighted track. The new MaxSAT solvers are DT-Hywalk [Zheng et al. 2022b, Zheng et al. 2022a], noSAT-MaxSAT (noSAT in short) [START_REF] Lübke | [END_REF], and NuWLS-c [START_REF] Chu | [END_REF]. The comparison of these different MaxSAT solvers with 300 seconds as time limit are shown in Table 2.12. The columns are the same as in Table 2.11. The column "TT-OpenWBO-Inc-*" (TT-WBO-* in short) indicates the different variants of the MaxSAT solver TT-Open-WBO-Inc [Nadel 2020 From Table 2.12, we observe that the MaxSAT solver with the best performance in our benchmarks is Loandra. The difference between the Loandra solver in MSE 2022 and the one in MSE 2021 is the pre-processing step. The latest variant of Loandra employs a recent extension of MaxPRE [START_REF] Korhonen | [END_REF], which enables stronger reasoning to improve the upper bound of the number of unsatisfied clauses. Meanwhile, we observe that five benchmarks are used both in MSE 2021 & MSE 2022. These benchmarks are marked in cyan. From the comparison of best values found by the solvers in two years, we observe the great improvement of MaxSAT solvers. For example, for benchmark "splice-1/5 " and "car/6 ", the best values in 2021 are respectively 1122 and 121, but the best values in 2022 are Table 2.12: The evaluation of all MaxSAT solvers in incomplete unweighted track of MaxSAT Evaluation 2022. respectively 853 and 42, which directly shows the progress of MaxSAT solvers.

Incomplete Weighted Track

The incomplete weighted track uses the MaxSAT formulas generated by MaxSAT-DT-adaboost. Considering the number of different benchmarks, each year the MSE chooses randomly part of the benchmarks for the incomplete weighted track. We present the summary of evaluations separately by years.

In MSE 2021, all MaxSAT solvers evaluated in unweighted track also join the weighted track. Additionally, Open-WBO-Inc-bmo-complete (Open-WBO-c in short) [Joshi et al. 2021] and its variant Open-WBO-Inc-bmo-satlike (Open-WBO-s in short) are also evaluated in weighted track. Table 2.13 shows the evaluation of different MaxSAT solvers with 300 seconds as time limit. The columns are the same as for the tables shown in unweighted track. From Table 2.13, we observe that Loandra is the MaxSAT solver with the best performance, which is far more efficient than others in the weighted track.

In MSE 2022, all MaxSAT solvers in unweighted track also join the weighted track. Same as the weighted track in 2021, Open-WBO-Inc-bmo-complete and its variant Open-WBO-Inc-bmo-satlike are then evaluated. The details of the evaluation are shown in Table 2.14, where the columns are the same as in the previous tables. From Table 2.14, we observe that Loandra is also the most efficient solver in the weighted track in 2022. Meanwhile, DT-Hywalk shows its competitive performance compared to Loandra for benchmarks in smaller sizes. In addition, we also observe that there are three shared benchmarks used both in MSE 2021 & MSE 2022, which are marked in cyan. However, unlike the unweighted track, the results do not show progress in the best values. But, it could also be the cause of the small number of shared benchmarks.

Summary of Chapter

In this chapter, we firstly introduced details of the previous SAT approach of learning decision trees in the smallest size with perfect accuracy from [START_REF] Narodytska | [END_REF]. Then, we propose the three adaptions to transform the SAT encoding into MaxSAT to find decision trees of depths restricted with best prediction accuracy, aiming to avoid overfitting and increase the generalization performance. Next, we propose the integration of our MaxSAT approach in AdaBoost to improve the prediction performance. Our computational experiments demonstrate at first the competitive prediction quality of our MaxSAT approach comparing with stateof-the-art heuristic and exact methods. Moreover, the progress in generalization performance is observed in the results of the integration of AdaBoost. At the end, we briefly summarized the performance of different MaxSAT solvers in MaxSAT Evaluation 2021 & 2022 on the formulas generated by our MaxSAT approach. In this chapter, we present our contribution to optimize binary decision diagrams with MaxSAT for classification. This chapter is an extended version of the paper [Hu et al. 2022] and contains five sections. Section 3.1 explains the motivation and the target problem. Section 3.2 introduces an essential proposition from [Knuth 2009] relating the binary decision diagram and the truth table for the same Boolean function. Section 3.3 presents the details of the proposed MaxSAT model to learn the optimal binary decision diagrams for classification, and some experimental results. Section 3.5 proposes a simple heuristic pre-processing step to increase the scalability of the proposed MaxSAT model. Section 3.6 briefly summarizes this chapter.

Motivation and Problem Description

The advantages of binary decision diagrams justify their possible substitution for decision trees in interpretable machine learning, although they fail to gain enough interest as decision trees. In fact, compared to decision trees, binary decision diagrams could avoid the replication problem and fragmentation problem effectively, which are two flaws of decision trees explained in Section 1.2.2.2.

To the best of our knowledge, [Cabodi et al. 2021] is the only exact method of learning optimal binary decision diagrams before our research. This SAT-based exact method extends the core of SAT encoding for decision tree proposed in [START_REF] Narodytska | [END_REF] to learn binary decision diagrams. The target of this approach is to learn optimal binary decision diagrams with the smallest sizes (number of nodes) that correctly classify all examples, which leads to two drawbacks. The first drawback is the possible overfitting due to the perfect accuracy. The other is the lack of restraint in depth of the binary decision diagram learnt, possibly leading the diagram learnt is small in size but high in depth. As the considered binary decision diagrams are ordered, this drawback equivalently indicates that this approach could not limit the number of different features used.

To offset these drawbacks, we consider a new target to learn binary decision diagram controlled by depth that optimizes the accuracy. In detail, this target could be described as the following optimisation problem: This problem shares same objective with P * dt (E , H), the optimisation problem proposed to learn optimal decision trees in chapter 2. Therefore, inspired by the solving methodology of our previous research, we firstly introduce a SAT-based model to find the binary decision diagrams with the smallest number of features classifying all examples correctly, which is described as the following decision problem:

• P bdd (E , H): Given a set of examples E ,

is there a binary decision diagram of depth H that classifies correctly all examples in E ?

Then, we introduce a lifted MaxSAT-based model to solve the optimisation problem P * bdd (E , H). An additional motivation of our research is to face some scalability issues highlighted in Chapter 2. In practice, as the binary decision diagrams have smaller sizes than the corresponding decision trees, the MaxSAT formula for optimizing binary decision diagrams is lighter than the one for decision trees with the same objective. The shrink of encoding size could reduce the time to report optimality, or deal with larger datasets within same limited time. Moreover, in order to increase the scalability of our MaxSAT approach, we propose a heuristic extension based on a simple pre-processing step. The details are shown in Section 3.5.

Almost at the same time, [START_REF] Florio | [END_REF] proposes the first MILP-based exact method for learning optimal decision diagrams. However, we consider this method is quite incomparable because of the difference in the topology. In [START_REF] Florio | [END_REF], the decision diagrams are limited by a preset skeleton, and are not ordered. We refer readers to Section 1.3.1.2 that provides the literature review of the exact methods for optimal (binary) decision diagrams.

Before introducing the details of the proposed SAT & MaxSAT encoding for optimal binary decision diagrams, we present an essential proposition from [Knuth 2009] in the next section. As in Chapter 2, we consider binary datasets E containing M examples, and K binary features.

Additionally, for all possible uses of cardinality constraints in this chapter, we model the cardinality constraints by the sequential counters encodings proposed in [Sinz 2005].

An Essential Proposition

In this section, we present an essential proposition from [Knuth 2009 Then, we describe the subtables of a truth table, which are defined recursively. A truth table β of order n ≥ 1 can be represented by β 0 β 1 , where β 0 and β 1 are truth table of order n -1, indicating the left and right part of β. Therefore, β 0 and β 1 are called the subtables of β. The subtables of subtables are also considered as subtables, and a table is considered as a subtable of itself. All the subtables are unique without duplication.

Next, we explain the concept of bead. A bead of order n (n ≥ 1) is a truth table β of order n that does not contain identical subtables. More formally, β = β 0 β 1 is a bead if β 0 ̸ = β 1 . Equivalently speaking, bead is a restricted truth table that avoids identical left and right parts. Especially, 0 and 1 are two special values that happens to be bead. In addition, the beads of a Boolean function g are the subtables of its truth table that happens to be bead.

Example 8 Considering a Boolean function g

1 (x 1 , x 2 , x 3 ) = (x 1 ∨ x 2 ∨ x 3 ) ∧ (¬x 1 ∨ x 2 ∨ ¬x 3 ) ∧ (¬x 1 ∨ ¬x 2 ∨ ¬x 3 ), the associated truth table β g 1 is 01111010 and is of order 3 (its size is 8 = 2 3 ).
The subtables of β g 1 are {01111010, 0111, 1010, 01, 11, 10, 0, 1}. Duplicated subtables are eliminated. For instance the subtable 1010 of this example, produces only one subtable 10.

In the set of subtables of β g 1 , 01111010, 0111, 01, 10, 0, and 1 are beads; 1010 and 11 are not beads.

The proposition that links binary decision diagram and truth table is based on the concept of beads, it is described as follow:

Proposition 1 All vertices of a binary decision diagram, are in one-to-one correspondence with the beads of the Boolean function g it represents.

Based on Proposition 1, we can produce the binary decision diagram of a Boolean function, by combining its beads and its sequence of variables.

Example 9 Continuing with Example 8, the beads of Boolean function g 1 (x 1 , x 2 , x 3 ) are {01111010, 0111, 01, 10, 0, 1}. We can represent all the subtables of the truth table of the function g 1 as illustrated in the left one of Figure 3 Finally, we describe the algorithm to construct a binary decision diagram of maximum depth H using the beads of the truth table β associated to a sequence of variables [x 1 , x 2 , . . . , x H ], based on the proposition 1. The detailed algorithm is described in Algorithm 7, and some predefined functions are listed in Table 3.1.

The algorithm creates nodes level by level in a breadth-first way. In detail, firstly, the binary decision diagram built is defined by the combination of a list of nodes and a list of edges. Each node is a pair (node_id, variable). The value of node_id is a unique integer called the id of the node, which is non-negative for non-terminal nodes. There are two terminal nodes: the node (-1, 1) associated to the value 1 (i.e., positive class in the context of binary classification), and the node Algorithm 7: GenBDD(β, X ), an algorithm to construct a BDD from a given string β and variable sequence X . 1,1)); nodes.append((-2, 0)) 3 q ← Queue() 4 q.put((β, 0, 1, ∅))) 5 while not q.empty() do 6 (s, parent_id, level, direction) ← q.pop()) ((parent_id, sink, direction)) Output: BDD(nodes, edges) (-2, 0) associated to the value 0 (i.e., negative class in binary classification). Each edge is a tuple (p, c, direction), where p is the id of the parent node, c is the id of the child node, and direction ∈ {lef t, right}) indicates if c is the left or right child of p.

Input: String β, variable sequence X = [x 1 , . . . , x H ]. 1 nodes ← {}; edges ← {}; T ← {} 2 nodes.append((-
7 if Length(s) >
Algorithm 7 uses a FIFO queue q, in which each item follows the format (str, parent_id, current_level, direction). The first item pushed in the queue is a special case indicating the root, denoted by (β, 0, 1, ∅), since the root has no parent.

At each iteration of the main loop, the algorithm pops an element of format (s, parent_id, level, direction) from the queue at Line 6. If s is a bead, the algorithm creates a new node at Line 11 associated with the level level if s is seen for the first time. The set of edges is updated in Line 14 accordingly. The set of left and right children of s are added in the queue in Lines 15 and 16.

When the current string s is not a bead of size > 1, there might be two cases where s leads directly to a terminal node. Either s contains only 0s, or s contains only 1s. Depending on the size of s, the two cases are handled in two parts of the algorithm: from Line 17 to Line 27, and from Line 30 to Line 34, The case where s is not a bead that do not lead to a terminal node, only one child of s is added to the queue without creating nodes (since s is not a bead). The algorithm ends when all the elements of the queue are treated.

Proposed SAT and MaxSAT Models

In this section, we present our approach of learning optimal binary decision diagrams for binary classification. At first, we describe a SAT-based model to solve the decision problem P bdd (E , H). Then, two improved versions are proposed to reduce the encoding size. Next, we show how to lift the SAT-based model into MaxSAT model to solve the optimisation problem P * bdd (E , H). In addition, we propose a post-processing procedure to merge compatible subtrees. Finally, we provide an experimental study to evaluate empirically our models and the compare them between state-of-the-art heuristic and exact methods.

An Initial SAT Model: BDD1

As Proposition 1 shows, a binary decision diagram of depth H could be constructed by the combination of a sequence of Boolean variables of size H: [x 1 , . . . , x H ], and a truth table β of order H associated to a Boolean function. For binary classification, in order to build a binary decision diagram of depth H, we aim to find a sequence of binary features of size H that maps one-to-one the sequence of Boolean variables. To build the binary decision diagram for binary classification, instead of using the sequence of Boolean variables, we consider to find a sequence of binary features of same size that maps one-to-one the sequence of Boolean variables.

To solve the classification problem P bdd (E , H), we need to find the feature ordering of size H, and a truth table β associated to a Boolean function that correctly classifies all examples of the dataset E . Therefore, the SAT encoding contains two parts:

• Part 1: Constraints to select features of the dataset into the feature ordering of size H.

• Part 2: Constraints to generate a truth table that classifies correctly all examples of E with the feature ordering found in the previous part.

We introduce two sets of Boolean variables. These sets are described in Table 3.2. Variables a i r indicate whether the feature f r is selected as i-th feature in the feature ordering. Variables c j stores the information of the j-th value of the truth table/ The definitions of these two Boolean variables are shown in Table 3.2. Using these sets of variables, we present the constraints of Part 1 that capture the ordered restriction. At first, any feature f r can be selected at most once to avoid the duplication, which is for r = 1, . . . , K:

Description of The Variables

a i r 1 iff feature f r is selected as i-th feature in the feature ordering, 0 otherwise ∀i ∈ {1, H}, ∀r ∈ {1, K} c j 1 iff j-th value of the truth table is 1, 0 otherwise ∀j ∈ {1, 2 H }
H i=1 a i r ≤ 1 (3.1)
Then, there is exactly one feature selected for each index of the feature ordering:

K r=1 a i r = 1 (3.2)
Next, to avoid the first feature selected to make useless splits, we need to ensure that the truth table found is a bead.

2 H-1 j=1 (c j ⊕ c j+2 H-1 ) (3.3)
Now, we explain the constraints of Part 2 that generate a truth table classifying all examples correctly. First, we consider the relationship observed between the values of a truth table and the assignments of the given sequence of Boolean variables. As each value in the truth table corresponds to a unique assignment, we can define a function rel(i, j) to obtain the value of the i-th feature in the feature ordering of the size H, when given the j-th value in the truth table.

rel(i, j) = ⌊ j -1 2 H-i ⌋ mod 2, i ∈ [1, H], j ∈ [1, 2 H ] (3.4)
A typical example is the first value of the truth table, which is reachable for the assignment that all features are assigned as zero. The usage of this relationship function is to decide if an example could arrive at a given value in the truth table with the given feature ordering. In detail, for an example e q ∈ E , we denote its value of feature f r as σ(r, q). If σ(r, q) = rel(i, j), then, for example e q , the feature f r can be at the i-th position in the feature ordering to let the example reach the j-th value in the truth table. Oppositely, σ(r, q) ̸ = rel(i, j) indicates that if feature f r is selected as the i-th one in the feature ordering, the j-th value in the truth table is not reachable for the example e q .

To classify all examples correctly, the idea is to ensure that no example following an assignment leads to a value in the truth table with its opposite class. Thus, we propose the following constraints for classification. Let e q be a positive example (noted as e q ∈ E + ), for all values in the truth table, with j = 1, . . . , 2 H :

¬c j → H i=1 K r=1 (a i r ∧ rel(i, j) ⊕ σ(r, q)) (3.5)
That is, for each positive example e q , any negative j-th value in the truth table must contain at least one feature f r in its corresponding position i that raise the inequality between σ(r, q) and rel(i, j), so that e q must not lead to any negative value. Analogously, we apply this idea to negative examples, which considers any positive values in the truth table. Let e q be a negative example e q (noted as e q ∈ E -), for all values in the truth table, with j = 1, . . . , 2 H :

c j → H i=1 K r=1 (a i r ∧ rel(i, j) ⊕ σ(r, q)) (3.6)
Example 10 At first, we recall the binary dataset in Table 3 Using the propositional variables described, the Constraints 3.1,3.2 and 3.3 are:

a 1 1 + a 2 1 ≤ 1, a 1 2 + a 2 2 ≤ 1, a 1 3 + a 2 3 ≤ 1, a 1 4 + a 2 4 ≤ 1, a 1 1 + a 1 2 + a 1 3 + a 1 4 = 1, a 2 1 + a 2 2 + a 2 3 + a 2 4 = 1, (c 1 ⊕ c 3 ) ∨ (c 2 ⊕ c 4 )
We now detail the constraints for classification (i.e., Constraint 3.5 and 3.6).

Ex. L C E S H e 1

0 1 0 0 e 2 0 0 1 0 e 3 0 1 0 1 e 4 1 0 0 0 e 5 0 0 1 1 e 6 1 1 1 0 e 7 1 1 0 0 e 8 0 1 1 The encoding size of BDD1 is quite huge due to the size of clauses generated by the constraints for classification. The massive amount of encoding size makes BDD1 impractical in practice.

A Second SAT Model: BDD2

In order to reduce the encoding size of BDD1, we propose to replace the original constraints for classification (i.e., Constraint 3.5 and 3.6), as they are the key factor of the high complexity. Another idea to realize the perfect classification is to let every positive (respectively, negative) example following an assignment that arrives at a positive (respectively, negative) value of the truth table.

As defined in the previous subsection, Equation 3.4 describes the relationship between the value of the i-th feature in the feature ordering and the j-th value in the truth table. This equation is effective to verify whether an example is in the correct way to a given value of the truth table. However, it fails to provide any information in which value of the truth table that the example leads to. Therefore, we introduce a new set of Boolean variables d q i to catch the value of example e q for the i-th feature selected in the feature ordering. The definition of d q i is shown in Table 3.5.

Description of The Variables

d q i
1 iff for example e q , the value of the i-th feature selected in the feature ordering is 1, 0 otherwise ∀i ∈ {1, H}, ∀q ∈ {1, M } Table 3.5: Description of new propositional Boolean variables for the improved SAT encoding for binary decision diagrams.

We then propose constraints to relate the variables d q i and a i r based on the values of features of each example. For each example e q ∈ E , with i = 1, . . . , H, r = 1, . . . , K:

a i r → d q i if σ(q, r) = 1 a i r → ¬d q i if σ(q, r) = 0 (3.7)
With the conjunction of variables d q i , one capture which value in the truth table that the example leading to. Therefore, fir each e q ∈ E + , we have 2 H constraints to ensure it is correctly classified:

¬d q 1 ∧ ¬d q 2 ∧ • • • ∧ ¬d q H-1 ∧ ¬d q H → c 1 ¬d q 1 ∧ ¬d q 2 ∧ • • • ∧ ¬d q H-1 ∧ d q H → c 2 . . . d q 1 ∧ d q 2 ∧ • • • ∧ d q H-1 ∧ ¬d q H → c 2 H -1 d q 1 ∧ d q 2 ∧ • • • ∧ d q H-1 ∧ d q H → c 2 H (3.8)
That is, for any positive example following an assignment of the feature ordering, they lead to a positive value in the truth table. For the 2 H implication constraints, only one condition of them is satisfied, which indicates the real path of example e q . Similarly, for any e q ∈ E -, we also have 2 H constraints to ensure that it leads to a negative value in the truth table:

¬d q 1 ∧ ¬d q 2 ∧ • • • ∧ ¬d q H-1 ∧ ¬d q H → ¬c 1 ¬d q 1 ∧ ¬d q 2 ∧ • • • ∧ ¬d q H-1 ∧ d q H → ¬c 2 . . . d q 1 ∧ d q 2 ∧ • • • ∧ d q H-1 ∧ ¬d q H → ¬c 2 H -1 d q 1 ∧ d q 2 ∧ • • • ∧ d q H-1 ∧ d q H → ¬c 2 H (3.9)
Example 11 Similarly to the beginning of Example 10, we firstly generate the same constraints as Constraints 3.1,3.2 and 3.3. Next, the constraints generated based on Constraint 3.7 are: For the negative example e 1 , whose feature vector is (1010):

¬a 1 1 ∨ d 1 1 , ¬a 1 2 ∨ ¬d 1 1 , ¬a 1 3 ∨ d 1 1 , ¬a 1 4 ∨ ¬d 1 1 , ¬a 2 1 ∨ d 1 2 , ¬a 2 2 ∨ ¬d 1 2 , ¬a 2 3 ∨ d 1 2 , ¬a 2 4 ∨ ¬d 1 2 ,
For the negative example e 2 , whose feature vector is (1001):

¬a 1 1 ∨ d 2 1 , ¬a 1 2 ∨ ¬d 2 1 , ¬a 1 3 ∨ ¬d 2 1 , ¬a 1 4 ∨ d 2 1 , ¬a 2 1 ∨ d 2 2 , ¬a 2 2 ∨ ¬d 2 2 , ¬a 2 3 ∨ ¬d 2 2 , ¬a 2 4 ∨ d 2 2 ,
For the positive example e 3 , whose feature vector is (0010):

¬a 1 1 ∨ ¬d 3 1 , ¬a 1 2 ∨ ¬d 3 1 , ¬a 1 3 ∨ d 3 1 , ¬a 1 4 ∨ ¬d 3 1 , ¬a 2 1 ∨ ¬d 3 2 , ¬a 2 2 ∨ ¬d 3 2 , ¬a 2 3 ∨ d 3 2 , ¬a 2 4 ∨ ¬d 3 2 ,
For the negative example e 4 , whose feature vector is (1100):

¬a 1 1 ∨ d 4 1 , ¬a 1 2 ∨ d 4 1 , ¬a 1 3 ∨ ¬d 4 1 , ¬a 1 4 ∨ ¬d 4 1 , ¬a 2 1 ∨ d 4 2 , ¬a 2 2 ∨ d 4 2 , ¬a 2 3 ∨ ¬d 4 2 , ¬a 2 4 ∨ ¬d 4 2 ,
For the positive example e 5 , whose feature vector is (0001):

¬a 1 1 ∨ ¬d 5 1 , ¬a 1 2 ∨ ¬d 5 1 , ¬a 1 3 ∨ ¬d 5 1 , ¬a 1 4 ∨ d 5 1 , ¬a 2 1 ∨ ¬d 5 2 , ¬a 2 2 ∨ ¬d 5 2 , ¬a 2 3 ∨ ¬d 5 2 , ¬a 2 4 ∨ d 5 2 ,
For the negative example e 6 , whose feature vector is (1111):

¬a 1 1 ∨ d 6 1 , ¬a 1 2 ∨ d 6 1 , ¬a 1 3 ∨ d 6 1 , ¬a 1 4 ∨ d 6 1 , ¬a 2 1 ∨ d 6 2 , ¬a 2 2 ∨ d 6 2 , ¬a 2 3 ∨ d 6 2 , ¬a 2 4 ∨ d 6 2 ,
For the negative example e 7 , whose feature vector is (0110):

¬a 1 1 ∨ ¬d 7 1 , ¬a 1 2 ∨ d 7 1 , ¬a 1 3 ∨ d 7 1 , ¬a 1 4 ∨ ¬d 7 1 , ¬a 2 1 ∨ ¬d 7 2 , ¬a 2 2 ∨ d 7 2 , ¬a 2 3 ∨ d 7 2 , ¬a 2 4 ∨ ¬d 7 2 ,
For the positive example e 8 , whose feature vector is (0011):

¬a 1 1 ∨ ¬d 8 1 , ¬a 1 2 ∨ ¬d 8 1 , ¬a 1 3 ∨ d 8 1 , ¬a 1 4 ∨ d 8 1 , ¬a 2 1 ∨ ¬d 8 2 , ¬a 2 2 ∨ ¬d 8 2 , ¬a 2 3 ∨ d 8 2 , ¬a 2 4 ∨ d 8 2 ,
To make the classification, the constraints generated based on Constraint 3.8 and 3.9 are shown as follow:

e 1 ∈ E -: d 1 1 ∨ d 1 2 ∨ ¬c 1 , d 1 1 ∨ ¬d 1 2 ∨ ¬c 2 , ¬d 1 1 ∨ d 1 2 ∨ ¬c 3 , ¬d 1 1 ∨ ¬d 1 2 ∨ ¬c 4 , e 2 ∈ E -: d 2 1 ∨ d 2 2 ∨ ¬c 1 , d 2 1 ∨ ¬d 2 2 ∨ ¬c 2 , ¬d 2 1 ∨ d 2 2 ∨ ¬c 3 , ¬d 2 1 ∨ ¬d 2 2 ∨ ¬c 4 , e 3 ∈ E + : d 3 1 ∨ d 3 2 ∨ c 1 , d 3 1 ∨ ¬d 3 2 ∨ c 2 , ¬d 3 1 ∨ d 3 2 ∨ c 3 , ¬d 3 1 ∨ ¬d 3 2 ∨ c 4 , e 4 ∈ E -: d 4 1 ∨ d 4 2 ∨ ¬c 1 , d 4 1 ∨ ¬d 4 2 ∨ ¬c 2 , ¬d 4 1 ∨ d 4 2 ∨ ¬c 3 , ¬d 4 1 ∨ ¬d 4 2 ∨ ¬c 4 , e 5 ∈ E + : d 5 1 ∨ d 5 2 ∨ c 1 , d 5 1 ∨ ¬d 5 2 ∨ c 2 , ¬d 5 1 ∨ d 5 2 ∨ c 3 , ¬d 5 1 ∨ ¬d 5 2 ∨ c 4 , e 6 ∈ E -: d 6 1 ∨ d 6 2 ∨ ¬c 1 , d 6 1 ∨ ¬d 6 2 ∨ ¬c 2 , ¬d 6 1 ∨ d 6 2 ∨ ¬c 3 , ¬d 6 1 ∨ ¬d 6 2 ∨ ¬c 4 , e 7 ∈ E -: d 7 1 ∨ d 7 2 ∨ ¬c 1 , d 7 1 ∨ ¬d 7 2 ∨ ¬c 2 , ¬d 7 1 ∨ d 7 2 ∨ ¬c 3 , ¬d 7 1 ∨ ¬d 7 2 ∨ ¬c 4 , e 8 ∈ E + : d 8 1 ∨ d 8 2 ∨ c 1 , d 8 1 ∨ ¬d 8 2 ∨ c 2 , ¬d 8 1 ∨ d 8 2 ∨ c 3 , ¬d 8 1 ∨ ¬d 8 2 ∨ c 4 ,
An assignment satisfying all constraints corresponds to:

d 1 1 = 1, d 1 2 = 0, d 2 1 = 1, d 2 2 = 0,d 3 1 = 0, d 3 2 = 0, d 4 1 = 1, d = 1, d 5 1 = 0, d 5 2 = 0, d 6 1 = 1, d 6 2 = 1,d 7 1 = 0, d 7 2 = 1, d 8 1 = 0, d = 0, a 1 1 = 1, a 2 1 = 0, a 1 2 = 0, a 2 2 = 1,a 1 3 = 0, a 2 3 = 0, a 1 4 = 0, a = 0 c 1 = 1, c 2 = 0,c 3 = 0, c 4 = 0
It is easy to observe that this assignment constructs the same binary decision diagram as the one obtained in Example 10 and shown in Figure 3.3. We refer to this improved SAT encoding for the problem P bdd (E , H) as BDD2. The complexity of encoding size (the number of literals) of the BDD2 model is in O(M × H × (2 H + K)), for a binary decision diagram of depth H. The term O(M × H × K) results from Constraint 3.7. To make the classification for each example, there are 2 H clauses containing H + 1 literals, which account for the term

O(M × H × 2 H ).
Recall that the complexity of the encoding size of

BDD1 is O(M × H × K × 2 H ).
Compared to BDD1, we observe a clear theoretical advantage of BDD2 in terms of the encoding size, thus the scalability. In addition, the additional Constraint 3.7 is in format of 2-SAT, which is easily propagated.

A Third SAT Model: BDD3

As analysed in the end of the previous subsection, compared to BDD1, BDD2 benefits a lot from its classification constraints (Constraints 3.8 and 3.9). However, as each clause in the constraints for classification is (H + 1)-SAT, we are afraid of the problem of scalability when the depth H grows. Observe, however, that there are massive duplication of information in the conditions of the classification constraints. To view directly the duplication, consider a simple case that classifying a positive example e q by the binary decision diagram of depth 4. The constraint for classification is generated based on Constraint 3.8. In Figure 3.4, we list all duplicated part of the constraints, by using boxes of different colors. Simply from Figure 3.4, we observe the duplication of conjunctions. For example, the only difference between the implications for c 1 and c 9 (c 2 H-1 +1 ) is the negation for the variable d q 1 . To avoid the duplication in the conjunction, for the common case of depth H, we consider the most basic condition of all the conjunctions of the last 2 literals, which are listed as follow:

¬d q 1 ∧ ¬d q 2 ∧ ¬d q 3 ∧ ¬d q 4 → c 1 ¬d q 1 ∧ ¬d q 2 ∧ ¬d q 3 ∧ d q 4 → c 2 ¬d q 1 ∧ ¬d q 2 ∧ d q 3 ∧ ¬d q 4 → c 3 ¬d q 1 ∧ ¬d q 2 ∧ d q 3 ∧ d q 4 → c 4 ¬d q 1 ∧ d q 2 ∧ ¬d q 3 ∧ ¬d q 4 → c 5 ¬d q 1 ∧ d q 2 ∧ ¬d q 3 ∧ d q 4 → c 6 ¬d q 1 ∧ d q 2 ∧ d q 3 ∧ ¬d q 4 → c 7 ¬d q 1 ∧ d q 2 ∧ d q 3 ∧ d q 4 → c 8 d q 1 ∧ ¬d q 2 ∧ ¬d q 3 ∧ ¬d q 4 → c 9 d q 1 ∧ ¬d q 2 ∧ ¬d q 3 ∧ d q 4 → c 10 d q 1 ∧ ¬d q 2 ∧ d q 3 ∧ ¬d q 4 → c 11 d q 1 ∧ ¬d q 2 ∧ d q 3 ∧ d q 4 → c 12 d q 1 ∧ d q 2 ∧ ¬d q 3 ∧ ¬d q 4 → c 13 d q 1 ∧ d q 2 ∧ ¬d q 3 ∧ d q 4 → c 14 d q 1 ∧ d q 2 ∧ d q 3 ∧ ¬d q 4 → c 15 d q 1 ∧ d q 2 ∧ d q 3 ∧ d q 4 → c 16
¬d q H-1 ∧ ¬d q H , ¬d q H-1 ∧ d q H , d q H-1 ∧ ¬d q H , d q H-1 ∧ d q H
To catch this information and make the propagation easier, we introduce a new propositional Boolean variable b q ij to replace the value of the j-th conjunction in order of binary digits of the last i literals for example e q ([d q H , . . . , d q H-i+1 ]). The definition of variable b q ij is shown in Table 3.6. We propose constraints to relate the variables b q ij and the conjunctions of d q i . At first, we link the 4 most basic conjunctions in size of 2 as we mentioned before.

Description of The Variables

b q ij 1 iff for example e q , the value of the j-th conjunction of the last i literals is 1, the conjunction order is same as the order of binary digits with i = 2, . . . , H, j = 1, . . . , 2 i , q = 1, . . . , M . ∀i ∈ {2, H}, ∀j ∈ {1, 2 i }, ∀q ∈ {1, M } Table 3.6: Description of new Boolean variables for the advanced SAT encoding for binary decision diagrams.

For each example e q ∈ E :

¬d q H-1 ∧ ¬d q H ↔ b q 21 , ¬d q H-1 ∧ d q H ↔ b q 22 , d q H-1 ∧ ¬d q H ↔ b q 23 , d q H-1 ∧ d q H ↔ b q 24 (3.10)
Next, we consider the general case for the conjunctions of several literals. Assuming H ≥ 3, for each example e q ∈ E , i = 2, . . . , H -1, j = 1 . . . , 2 i , we have the following constraints:

¬d q H-i ∧ b q ij ↔ b q (i+1)j d q H-i ∧ b q ij ↔ b q (i+1)(j+2 i ) (3.11) 
With the usage of variables b q ij , we can simply rewrite the original constraints for classification of Figure 3.4 for each positive example e q as follow:

b q H1 → c 1 , b q H2 → c 2 , . . . b q H(2 H -1) → c 2 H -1 , b q H2 H → c 2 H (3.12)
For negative examples, the idea of transformation is the same.

Example 12 Consider encoding a binary decision diagram with depth H = 3 by the improved encoding. We can list the constraints for classification of a general example e q (assuming e q is positive), based on Constraint 3.8:

¬d q 1 ∧ ¬d q 2 ∧ ¬d q 3 → c 1 , ¬d q 1 ∧ ¬d q 2 ∧ d q 3 → c 2 , ¬d q 1 ∧ d q 2 ∧ ¬d q 3 → c 3 , ¬d q 1 ∧ d q 2 ∧ d q 3 → c 4 , d q 1 ∧ ¬d q 2 ∧ ¬d q 3 → c 5 , d q 1 ∧ ¬d q 2 ∧ d q 3 → c 6 , d q 1 ∧ d q 2 ∧ ¬d q 3 → c 7 , d q 1 ∧ d q 2 ∧ d q 3 → c 8 .
Therefore, we have eight 4-SAT clauses. For this new encoding, the Constraints 3.10 and 3.11 are:

¬d q 2 ∧ ¬d q 3 ↔ b q 21 , ¬d q 2 ∧ d q 3 ↔ b q 22 , d q 2 ∧ ¬d q 3 ↔ b q 23 , d q 2 ∧ d q 3 ↔ b q 24 , ¬d q 1 ∧ b q 21 ↔ b q 31 , ¬d q 1 ∧ b q 22 ↔ b q 32 , ¬d q 1 ∧ b q 23 ↔ b q 33 , ¬d q 1 ∧ b q 24 ↔ b q 34 , d q 1 ∧ b q 21 ↔ b q 35 , d q 1 ∧ b q 22 ↔ b q 36 , d q 1 ∧ b q 23 ↔ b q 37 , d q 1 ∧ b q 24 ↔ b q 38 ,
Moreover, the original eight 4-SAT clauses are rewritten as the following:

b q 31 → c 1 , b q 32 → c 2 , b q 33 → c 3 , b q 34 → c 4 , b q 35 → c 5 , b q 36 → c 6 , b q 37 → c 7 , b q 38 → c 8
We refer to this new SAT encoding as BDD3. The complexity of the encoding size (the number of literals) of BDD3 is in O(M × H × (2 H + K)), that is the same complexity as the SAT model BDD2. However, for BDD3, we successfully transform all constraints into clauses of 3-SAT or 2-SAT, which could possibly do better in the propagation when H grows bigger. However, we could not guarantee the improvement in execution time. Therefore, we propose to compare BDD1, BDD2 and BDD3 with an experimental study in Section ??.

MaxSAT Transformation

In previous subsections, we presented three SAT encodings to solve the decision problem P bdd (E , H). We now present the MaxSAT transformation for the target optimisation problem P * bdd (E , H) described in Section 3.1. That is, given a set of examples E , find a binary decision diagram of depth H that maximises the number of examples correctly classified.

The technique to transform the SAT encoding of binary decision diagrams into a MaxSAT encoding is quite simple. The key is to keep structural constraints as hard clauses, and classification constraints as soft clauses. All the SAT encodings that we proposed can be transformed, but we consider BDD2 and BDD3 as they have a lighter encoding size. In detail, as constraints for selecting features, Constraints 3.1, 3.2 and 3.3 are kept as hard clauses. For BDD2, Constraint 3.7 is kept as hard clause. Then, to classify the examples, we declare all clauses of Constraints 3.8 and 3.9 as soft clauses. The reason is that for any example e q , the number of satisfied soft clauses associated to e q is either 2 H , which indicates e q is correctly classified, or 2 H -1, which indicates e q is wrongly classified. Therefore, the objective of maximising the number of satisfied soft clauses is equivalent to maximising the number of examples that are correctly classified. For BDD3, the difference is to keep Constraints 3.10 and 3.11 as hard clauses, then declare all clauses of Constraints 3.12 as soft clauses.

To simplify the notation, we refer to the MaxSAT encoding based on BDD2 as MaxSAT-BDD2, and the MaxSAT encoding based on BDD3 as MaxSAT-BDD3.

Merging Compatible Subtrees

Considering a binary decision diagram found by a MaxSAT solver associated to the truth table β. Based on the feature ordering, there might exist some values in β that capture no example, which is equivalent to the "unknown" nodes for the OODG method presented in Section 1.3.2. In fact, such values are decided by the MaxSAT solver in an arbitrary way, giving a certain bias for unseen examples. Inspired by the process of merging compatible subtrees applied to the OODG method, we propose a post-processing procedure to merge the compatible subtrees for the binary decision diagrams found via the MaxSAT approach. This will result in changing the arbitrary values decided by MaxSAT solver in the truth table β.

The post-processing contains the three following phases, where phase 2 and phase 3 are adaptations of Algorithm 7:

1. Update the truth table β by replacing the values of β that capture no example with a special value "u".

2. From top to the bottom, for each level, check the existence of the beads, where "u" can be used to match 1 or 0, and create a node for each bead.

3. Then, for each level, after creating the nodes, we check the matches between all subtables of the next level. For matched ones, update the corresponding beads of current level to eliminate the "u" values.

Example 13 Assume that the truth table β found via a MaxSAT model is 00010111, and the feature ordering found is

[f 1 , f 2 , f 3 ].
We apply the first phase, and assume that the updated truth table β ′ is u0u1011u. Then, as β ′ is a bead, we create a root node at the level 1. Next, we check the subtables of β ′ (u0u1 and 011u), and we move to the next level as they do not match. For level 2, we create a node for u0u1 and a node for 011u as they are all beads. Then, phase 3 is repeated.

That is, we check all subtables of the next level, which are {u0, u1, 01, 1u}. We observe several matches: u0 and 1u, u1 and 01. Then, the original beads u0u1 and 011u are updated as 1001 and 0110 Therefore, the updated beads of β ′ are {u0u1011u, 1001(u0u1), 0110(011u), 10, 01, 0, 1}. Figure 3.5 shows the binary decision diagram built by the truth table β that is found via a given MaxSAT model. To make the comparison, the left part of Figure 3.

shows how the truth table β

′ is updated (with unknown values), and the right one shows the binary decision diagram after the merging post-processing. 

Experimental Results

In this section, we present our large experimental studies to evaluate our propositions on different levels. The source code (developed in Python) and datasets are u0u1011u u0u1 1001 011u 0110 10 01 0 1

f 1 f 2 f 2 f 3 f 3 0 1
Figure 3.6: The binary decision diagram after merging compatible subtrees. The left one shows how the truth table β ′ is updated.

available online at https://gitlab.laas.fr/hhu/bddencoding. The outline of the experiments contains three parts. At first, we make preliminary experiments on the three proposed SAT models (BDD1, BDD2, and BDD3), to confirm the theoretical study of the reduction of the encoding size of BDD2 and BDD3 compared to BDD1. Moreover, we underline the difference between BDD2 and BDD3. Secondly, we evaluate the prediction performance between the proposed MaxSAT-BDD models (MaxSAT-BDD2 and MaxSAT-BDD3) and the heuristic methods (ODT and OODG from [START_REF] Kohavi | [END_REF]). In the third experiment, we compare our best MaxSAT-BDD model with the exact method of learning optimal decision trees via MaxSAT (that we presented in Chapter 2), in terms of prediction quality, model and encoding size. Same as the experiments made in Section 2.4, we also consider datasets from CP4IM 1 . These datasets are binarized by the classical one-hot encoding. In Table 3.7, we give the characteristics of these datasets. In detail, the column M indicates the number of examples in the dataset, the column K orig indicates the original number of features, the column K indicates the number of binary features after binarization, and the column pos indicates the percentage of positive examples in the dataset.

All experiments are run on a cluster using Xeon E5-2695 v3@2.30GHz CPU with xUbuntu 16.04.6LTS.

Comparison of Different SAT Encodings

The first experiment aims to compare the encoding size between different SAT encodings (BDD1, BDD2, and BDD3) for the binary decision diagrams. We consider to find an optimal binary decision diagram having the perfect accuracy in the training set with the minimum depth. We use a simple linear search by solving multiple times the decision problem P bdd (E , H), which decreases the depth when a binary decision diagram of depth H exists, and increases the depth in reverse. We set the initial depth H 0 = 7. Considering the scalability problem, for each dataset, we use the hold-out method to split the training and testing set. We choose 5 different small splitting ratios r = {0.05, 0.1, 0.15, 0.2, 0.25} to generate the training set. The remaining examples are used as the testing set. This process is repeated 10 times with different random seeds to avoid the influence of random seeds. The SAT solver we used is Kissat [Biere et al. 2020], which is the winner of SAT competition 2020. For each training process, we set 20 hours as the global timeout for the SAT solver. Table 3.8 reports the average results of all instances that are solved to optimality by at least one encoding within the given global limited time. In detail, for the training process (with perfect accuracy), the column "dopt" indicate the average optimal depth. The encoding size (the number of literals) is given in column "E_Size", where the values are in thousands (10 3 ). The column "Time" indicates the run-time in seconds of successful runs. In addition, the column "Acc" indicates the average testing accuracy of the 5 random seeds in percent. The value "N/A" indicates the lack of results cause the timeout. Table 3.8 only reports results of instances solved by at least one encoding. However, some instances can not be solved to optimality even by the most efficient models (for example, dataset "anneal" for other ratios except 0.05). The last row summarizes briefly the average results of each encoding for all instances solved. To improve the readability of the table, the best values between the three SAT encodings are marked in blue.

From Table 3.8, we observe the great improvements in terms of encoding size and run-time of BDD2 and BDD3 compared to BDD1. From the average value, we observe that the encoding size of BDD1 is more than 12 times smaller than the encoding size of BDD2, and more than 9 times smaller than the one of BDD3. The run-time of BDD1 is almost 5 times larger than the run-time of BDD2, and 4 times for BDD3. Theses results confirm the massive reduction as the theoretical analysis made before. Meanwhile, compared to BDD2, we observe that BDD3 does not make a breakthrough in reducing the run-time as the trade-off between the searching and propagation. In addition, the optimal depths found between these SAT encodings (except BDD1 as there are some N/A values) are identical, but there are some slight differences in the testing accuracy. This fact is explained by the different structures of the binary decision diagrams with the optimal depths.

Comparison with Existing Heuristic Approaches

In the second experiment, we consider solving the optimisation problem P * bdd (E , H) by the MaxSAT-BDD approaches, where the prediction performance is the major metric to be evaluated.

The structure of this experiment contains two parts. The first part is to compare the differences between MaxSAT-BDD2 and MaxSAT-BDD3 in terms of prediction performance and the effectiveness of reporting optimality, which is an extension of the previous experiment. The second part is the core of this experiment, which is to evaluate the prediction performance between the best MaxSAT-BDD approach and existing heuristic methods (ODT and OODG from [START_REF] Kohavi | [END_REF]). As described in Section 1.3.2, after merging the isomorphic and compatible subtrees of ODT, the OODG method changes the bias for those "unknown" nodes, which makes no difference in the training examples but affects the prediction for unseen examples. Similarly, in Section 3.3.5, we described the post-processing of merging compatible subtrees for the binary decision diagrams found via the MaxSAT approach. Therefore, in this experiment, we consider the following three different biases for the MaxSAT-BDD deciding those "unknown" nodes:

• By assigning for each unknown node the majority class of examples in its parent (denoted as MaxSAT-BDD-P).

• By merging compatible subtrees (MaxSAT-BDD-C).

• By using the class decided by the MaxSAT solver (MaxSAT-BDD-S).

In these experiments, we face lighter scalablity problem than the previous one, and, for each dataset, we use the classical random 5-fold cross-validation with 5 different seeds. The MaxSAT solver we used is Loandra [Berg et al. 2019], which is an efficient incomplete MaxSAT solver. For each experiment of MaxSAT-BDD, the time limit for generating formulas is set to 15 minutes and the time limit for the solver is also set to 15 minutes.

For the fist part of these experiments (comparison between MaxSAT-BDD2 and MaxSAT-BDD3), we consider H ∈ {2, 3, 4, 5, 6, 7, 8}, as a wide range of depths could be better to perceive the differences. For the second part of these experiments (comparison between the best MaxSAT-BDD and heuristic methods), the candidate depths are restricted to H ∈ {2, 3, 4, 5, 6} concerning the scalability. Table 3.9 and 3.10 report the average results of all instances for the MaxSAT-BDD2 and MaxSAT-BDD3 approaches. Each line presents average values over 25 runs (5-folds with 5 random seeds). In detail, the column "Opt" indicates the percentage of instances that report optimality, where 0% indicates that all runs reach the time-out condition. The column "U" indicates the percentage of "unknowned" values in the truth table found, the column "Train" indicates the average training accuracy, the column "Test-S" indicates the average testing accuracy under the bias of MaxSAT-BDD-S, the column "Test-P" indicates the average testing accuracy under the bias of MaxSAT-BDD-P, the column "Test-C" indicates the average testing accuracy under the bias of MaxSAT-BDD-C. Then, the column "E_Size" indicates the encoding size (the number of literals) in thousands ( 103 ). Moreover, the time for generating formulas in seconds is given in column "Time_F", and the run-time used by the MaxSAT solver in seconds is given in column "Time_S". The value "TO" indicates the timeout. To improve the readability of the table, the best values of comparable metrics between MaxSAT-BDD2 and MaxSAT-BDD3 are marked in blue.

Datasets d

MaxSAT-BDD2

MaxSAT-BDD3

From Table 3.9 and 3.10, we can underline some observations. Firstly, although both MaxSAT-BDD approaches share the same complexity theoretically, MaxSAT-BDD2 produces formulas with lighter encoding sizes than MaxSAT-BDD3, and the differences grow bigger when the depth grows. The difference in the time of generating formulas also reflects this fact. Nevertheless, from the results in the percentage of reporting optimality and the run-time used by the MaxSAT solver, the increase of encoding size to reduce the propagation time used in MaxSAT-BDD3 approach does not show clear advantage in improving the percentage of finding optimal solutions and the prediction performance. Therefore, in the following experiments, we use only MaxSAT-BDD2 as it is the most effective MaxSAT-based approach, and we denote it directly as MaxSAT-BDD.

Another observation is there are slight differences (less than 5%) between the testing accuracy under different biases, although the percentage of "unknown" values is quite high for some cases. This observation suggests that the optimal solutions are somewhat robust to the different biases. In addition, we also notice that for all datasets (except one instance), MaxSAT-BDD report optimality when the depth is equal to 2.

We now present the results of the second part of this experiment, which is the comparison between MaxSAT-BDD2 (the best MaxSAT-BDD approach) and heuristic approaches in terms of prediction performance. Figure 3.7 shows the comparison of the average training accuracy between OODG and MaxSAT-BDD model. In this figure, different datasets are marked with different colors, and different depths are labelled with points of different sizes. From this scatter plot, we observe that at first the average training accuracy of both approaches improve with the increase of depth. Moreover, and more importantly, the MaxSAT-BDD model shows clear remarkable advantage in training accuracy than the heuristic OODG.

The Figure 3.8 shows the average testing accuracy of MaxSAT-BDD with different biases, ODT, and OODG using different depths averaged over all datasets. The white line and green triangle of each box indicate the median and the average values, respectively. Clearly, the MaxSAT-BDD models have better generalization performance than the heuristic methods ODT and OODG. This is particularly apparent with small depths. Meanwhile, increasing the depth improves the predictions for all methods as expected. However, this improvement in prediction performance of MaxSAT-BDD approach is not as significant as the improvement of ODT and OODG methods. 

Comparison with the Exact Decision Tree Approach

As the results of previous experiment comparing the MaxSAT-BDD with the heuristic methods shown, MaxSAT-BDD displayed its attraction in prediction performance. In this experiment, the purpose is to make the comparison between MaxSAT-BDD and the exact method learning optimal decision trees via MaxSAT (denoted as MaxSAT-DT, presented in Chapter 2), which we consider as the state-of-the-art method. Unlike the previous experiment applied several different biases for MaxSAT-BDD, we consider only the bias of merging compatible subtrees (MaxSAT-BDD-C) since no substantial difference was observed between different biases.

In detail, we follow the same settings of the previous experiment. That is, for each dataset, we use random 5-fold cross-validation with 5 different seeds. The candidate depths selected are H ∈ {2, 3, 4, 5, 6}, where each depth corresponds respectively to the number of different selected features for MaxSAT-BDD, and to the maximum depth of the decision tree for MaxSAT-DT. The incomplete MaxSAT solver used is Loandra, and for each experiment, the time limit for generating approaches are close. In addition, Table 3.11 presents the complementary results of the evaluation. In detail, the column "Size" indicates the model size (number of nodes of the model), which reflects the interpretability of the model found. The column "E_Size" indicates the encoding size (the number of literals in thousands (10 3 )). The column "F_d" indicates the average number of different features used in the decision tree. The best values are marked in blue.

From the results shown in Table 3.11, we observe that the binary decision diagrams found via MaxSAT-BDD always have smaller model size than the decision trees found via MaxSAT-DT. The same phenomenon is observed for the differences in encoding size. Moreover, such differences in model size and encoding size grow bigger when the depth increases. The reduction in model size provides better interpretability, while the lighter encoding size implies more chance to report optimality within same limited time.

We highlight a particular observation that for the dataset "car" and "hypothyroid" in depth 2, the binary decision diagrams found share the same optimal training accuracy with the decision trees found. However, meanwhile, for the cases mentioned, compared to the optimal binary decision diagrams found via MaxSAT-BDD, the optimal decision trees found via MaxSAT-DT make some useless splits, which is reflected by the average number of different features used in the decision trees. To illustrate this phenomenon, we present, in Figure 3.10, the binary decision diagram and the decision tree found for the dataset "car" of depth 2 . Both model share the same training accuracy, but the decision tree makes one more split (the split of "f 3,2 ") without increasing the prediction performance. 

Heuristic MaxSAT Model

From the experiments made in previous section, although compared to MaxSAT-DT, MaxSAT-BDD approach profits a lot in encoding size. However, it still suffers from the scalability problem by reporting optimality when depth increases within limited time. The encoding size of MaxSAT-BDD is in

O(M × H × (2 H + K)),
where the number of examples M and the depth H are fixed when dataset and the depth are preset. Therefore, to increase the scalability of MaxSAT-BDD, we aim to reduce the number of features K. For this purpose, we propose to apply a pre-processing step to select a subset of (important) features, leading to a heuristic version of the MaxSAT-BDD approach. By doing this, the search space is greatly reduced by focusing only on the selected features.

For the pre-processing step of feature selection, we choose to run CART [START_REF] Breiman | [END_REF], as its efficiency to build a decision tree of given depth H. Then, the features selected in the decision tree are used as the subset of important features for the MaxSAT-BDD model. Meanwhile, other methods of feature selection are also applicable for the pre-processing step, but are not considered in this study.

The experimental evaluation follows the same settings as the previous one. That is, for each dataset, we use random 5-fold cross-validation with 5 different seeds. The candidate depths selected are H ∈ {2, 3, 4, 5, 6}. The incomplete MaxSAT solver used is Loandra, and for each experiment, the time limit for generating formulas and the time limit for the solver are both set to 15 minutes. Figure 3.11 shows the average testing accuracy of the heuristic MaxSAT-BDD and the MaxSAT-BDD without the pre-processing. We observe that the heuristic version is very competitive to the original exact MaxSAT-BDD in terms of learning generalization. This is particularly clear for datasets with a large number of features.

Moreover, Figure 3.12 presents the difference between the heuristic MaxSAT-BDD and the CART, where the left scatter shows the training accuracy, and the right scatter shows the testing accuracy. From this figure, we observe that CART almost always gets better training accuracy, which is reasonable as it decides the subset of important features. However, the heuristic MaxSAT-BDD is still competitive in terms of generalisation. In addition, Table 3.12 displays all details of the results of evaluation between heuristic MaxSAT-BDD, the original one (exact MaxSAT-BDD), and the CART method. As excepted, compared to the original MaxSAT-BDD, the heuristic version has favorable advantage in the encoding size, which helps handle larger problems. The column "Opt" indicates the percentage of instances solved to optimality (for the given subset of selected features). From the results, we observe that it is far easier for heuristic MaxSAT-BDD to report optimality than the original version, which is natural as it treat with fewer candidate features.

Summary of Chapter

In this chapter, we firstly introduced an essential proposition to build a binary decision diagram via the corresponding truth table. Then, with the help of the proposition, we proposed three progressive SAT encodings to find binary decision diagrams in smallest depths with perfect accuracy. Next, we presented how the SAT encodings are adapted to MaxSAT encodings to optimize the accuracy of binary decision diagrams in given depth. Meanwhile, we explained how to apply the post-processing of merging compatible subtrees to the MaxSAT models. Our computational experiments demonstrate the efficiency of our MaxSAT approach to learn optimal binary decision diagrams in terms of prediction performance, model 3.12: Details of evaluation between heuristic MaxSAT-BDD, the original MaxSAT-BDD, and CART. size, and encoding size. At the end, we showed an heuristic version based on feature selection, to increase the scalability of our MaxSAT approach without losing the prediction quality.

Conclusions and Future Works

Conclusions

We brought contributions to MaxSAT-based exact methods to learn optimal interpretable machine learning models, specifically in optimal decision trees and optimal binary decision diagrams.

• Optimal Decision Trees

By adapting the previous SAT encoding of the literature, we propose the first MaxSAT-based exact method to learn optimal decision trees aiming to optimize the empirical accuracy. Then, we introduce some new constraints to restrict the tree depth. Finally, benefiting from the nature of MaxSAT framework, we integrate the proposed encoding in boosting techniques to improve the generalization performance.

The initial motivation behind this work is to avoid the overfitting issue and to address the scalability issue. The experimental results at first confirm the exist of overfitting phenomenon in previous SAT approach. Secondly, they show that a larger tree topology could be explored with our MaxSAT approach. Meanwhile, the decision trees found obtain good prediction quality compared to heuristic method and a recent state-of-the-art exact method. At last, clear improvements in generalization performance are observed after the integration of boosting technique.

• Optimal Binary Decision Diagrams

In particular, we propose the first MaxSAT-based exact method to learn optimal binary decision diagrams, which optimizes the empirical accuracy. At first, we introduce an initial SAT encoding to model binary decision diagrams in limited depth with perfect accuracy. Then, we present how to adapt the SAT-based model into MaxSAT approach. Finally, we present a preprocessing for selecting some important features to increase the scalability of our MaxSAT-based approach.

The initial motivation behind this work is to obtain more compact interpretable machine learning models. Compared to state-of-the-art heuristic methods, the experimental results show clear advances of our MaxSAT-based method in prediction quality. Furthermore, a huge shrink in formulation size and model size is observed in the comparison between our MaxSAT-based method and state-of-the-art exact method with competitive prediction performance. Additionally, great reductions in encoding size are displayed after the application of pre-processing, which somehow reduces the scalability issue.

Future Works

There are a number of potential valuable future research directions in the filed of exact methods to learn optimal interpretable machine learning models. We present some interesting directions that strongly relate to our contributions.

• Optimal Multi-Variate Decision Trees via MaxSAT Currently, recent exact methods mostly aims to find optimal single-variate decision trees, where each branching node corresponds to a single feature. It would be interesting to propose a MaxSAT-based exact method to learn optimal multi-variate decision trees [START_REF] Murthy | [END_REF], Brodley & Utgoff 1995], in which each branching node corresponds to a combination of multiple features. The usage of multi-variate could grow the search space, leading to optimal decision trees with better prediction quality, but without the growth in structure.

• Integration of Incremental Learning in Learning Optimal Decision Trees

To the best of our knowledge, current exact methods of learning optimal decision trees are mostly declarative and independent. The property declarative is that each mathematical formulation corresponds to a search problem of finding a decision tree restricted for a given dataset. The property independent is that there is no connection between mathematical formulations for similar search problems, like finding decision trees with different depths but for the same dataset, or finding decision trees with same restrictions but for different datasets. In addition, in general exact methods suffers the scalability problem, it would be interesting to integrate incremental learning of decision trees [Utgoff et al. 1997] in exact methods. This integration could somehow improve the scalability of exact methods when treating a large dataset part by part incrementally.

• Optimal Multi-Variate Decision Graphs via MaxSAT

In the literature review of exact methods for optimal decision graph, we mention a recent MILP-based exact method [START_REF] Florio | [END_REF], where the decision graphs found are multi-variate. The advantage of multi-variate has been described in the first direction. Based on the MaxSAT-based exact method we proposed, it would be interesting to propose new variables and constraints to realise the multi-variate structure.

• Faster Solvers for Learning Optimal Interpretable Machine Learning Models

As current SAT-based or MaxSAT-based exact methods to learn optimal interpretable machine learning models are generally suffers the scalability problem, it would be an interesting direction to explore faster specific solvers for such problems. One possible way is to integrate some machine learning methods into the branching heuristic of solvers for choosing variables during the search process [START_REF] Bengio | [END_REF]]. This idea is not limited for SAT or MaxSAT solvers, but for all solvers based on search.

Appendices

• "austrlian-credit", 653 examples, 51 original features, 124 binarized features:

• "breast-cancer", 683 examples, 9 original features, 89 binarized features:

• "car", 1728 examples, 6 original features, 21 binarized features:

• "heart-cleveland", 296 examples, 45 original features, 95 binarized features:

• "hypothrid", 3247 examples, 43 original features, 86 binarized features:

• "kr-vs-kp", 3196 examples, 36 original features, 73 binarized features:

• "lymph", 147 examples, 27 original features, 68 binarized features:

• "mushroom", 8124 examples, 21 original features, 112 binarized features:

• "primary-tumor", 336 examples, 15 original features, 31 binarized features:

• "soybean", 630 examples, 16 original features, 50 binarized features:

• "splice-1 ", 3190 examples, 60 original features, 287 binarized features:

• "tic-tac-toe", 958 examples, 9 original features, 27 binarized features:

I. INTRODUCTION
Decision Trees are one of the most essential models in machine learning, as they are both intrepretable and effective to compute. Unlike traditional top-down heuristic induction for computing decision trees, recently, several exact methods have been introduced to find optimal decision trees via different declarative methods, such as Constraint Programming [START_REF] Verhaeghe | Learning optimal decision trees using constraint programming[END_REF], Boolean Satisfiablity(SAT) [START_REF] Narodytska | Learning optimal decision trees with SAT[END_REF], and MaxSAT [2]. The objective of the MaxSAT approach is to find decision trees with limited depths that maximize the number of examples correctly classified. It performs better in prediction for unseen data than the SAT approach, as the SAT approach requires perfect accuracy leading to overfitting.

As other exact methods of learning optimal decision trees, the MaxSAT approach also has scalability issues. However, incomplete MaxSAT solvers can produce high quality solutions within a limited time. In addition, the MaxSAT approach can be easily adapted to classic Boosting methods such as AdaBoost [START_REF] Freund | A decision-theoretic generalization of on-line learning and an application to boosting[END_REF], to improve the prediction performance. The adaptation is realized by updating the weights of soft clauses corresponding to examples to update the data distribution of each iteration in AdaBoost.

II. MAXSAT APPROACH OF LEARNING OPTIMAL DECISION TREES

A. Problem Definition

The problem solved by the MaxSAT approach is the following optimization problem:

P (E, N): Given a set of examples E, find a full binary decision tree of size N that maximizes the number of examples in E that are correctly classified.

Since non-binary features can always be transformed as binary features, binary decision trees can handle all data sets. Moreover, to limit the tree depth described in the Introduction, constraints for controlling the size and depth of the tree can be posted in the MaxSAT approach.

To solve P (E, N), for each example e q E, the MaxSAT approach introduces a Boolean variable b q , where b q is true if and only if e q is correctly classified. Then, all b q are set as soft clauses and other constraints are set as hard clauses. Therefore, assuming the set of examples E used is consistent, the unweighted MaxSAT formulation is used.

B. MaxSAT Encoding

The MaxSAT encoding in [2] is largely based on the SAT model from [START_REF] Narodytska | Learning optimal decision trees with SAT[END_REF] that it extends. The SAT encoding consists of three parts:

• Part 1: Constraints on the structure of a valid binary tree in fixed size.

• Part 2: Constraints for mapping features (respectively, classes) to internal nodes (respectively, leaf nodes).

• Part 3: Constraints for correctly classifying all examples in the example set. To lift the SAT model into a MaxSAT encoding, for each example e q , every constraint of Part 3 concerning e q is linked to a variable b q acting as the blocking literal. Then, to achieve the limit in maximum(or exact) depth for decision trees found, two more parts of constraints are added:

• Part 4: Constraints for controlling trees in fixed depth.

• Part 5: Constraints for controlling tree size under an upper bound not a fixed sized. Finally, all constraints mentioned are set as hard clauses, and all blocking literal b q as soft clauses. There is no weight function on the clauses as in this case we try to learn the tree with optimal accuracy and no example is more important than the others.

III. ADABOOST ADAPTATION

A. AdaBoost Algorithm

Boosting methods are a family of ensemble methods, which train multiple dependent classifiers with the same data set and then combine them to get better predictions than a single classifier. As a typical Boosting method, AdaBoost [START_REF] Freund | A decision-theoretic generalization of on-line learning and an application to boosting[END_REF] builds T classifiers in a sequence of T iterations. At each iteration t, AdaBoost learns a classifier h t and updates the data distribution of the (t + 1)-th iteration D t+1 based on the t-th data distribution D t using the equation 1:

D t+1 (x q ) = D t (x q ) Z t exp( t ) if h t (x q ) = c q exp( t ) if h t (x q ) = c q (1) 
In equation 1, each example e q = (x q , c q ) is a 2-tuple, where x q denotes the value vector for all features of this example, and c q {0, 1} denotes its class. The coefficient t = 1 2 ln( 1 t t ) helps the previously misclassified examples gain more importance in the next iteration, where t is the error rate of t-th iteration. Z t is a normalization factor.

The final predictor is a weighted vote where every classifier h t is associated with a weight t , which is calculated as follows:

H(x q ) = 1 if T t=1
t g(h t (x q )) > 0 and 0 otherwise (2) where g(0) = 1, g(1) = 1. The function H denotes the aggregated predictor.

B. Integration in the MaxSAT Approach

To integrate AdaBoost in the MaxSAT approach, the key idea is to update the data distribution by updating the weights of soft clauses corresponding to examples. The final weighted voting follows the original AdaBoost algorithm in Equation 2.

As the weighted MaxSAT formulation allows only positive integer weights, weights updated from Equation 1are approximated. We set all weights at the first iteration with the value 1 as initial distribution. Then, two steps of approximation are made to calculate the positive integer weight w t+1 q of soft clause b q in (t+1)-th iteration based on w t q , the corresponding weight in previous iteration. Firstly, we update and normalize the weights:

ŵt+1 q = w t q factor t q M q=1 (w t q factor t q ) (3) 
where factor t q is the factor based on the prediction:

factor t q = exp( t ) if h t (x q ) = c q exp( t ) if h t (x q ) = c q (4)
Secondly, we discretize the weight ŵt+1 q as follows:

w t+1 q = round( ŵt+1 q min i {1,...,M } ( ŵt+1 i )) ) (5) 

IV. BENCHMARK INSTANCES

There are two first-level folders in the zip archive. The first one is named "decision-tree" and contains 60 WCNF files that correspond to learning optimal decision trees with 4 different maximum depths for 15 datasets. These benchmarks are suited to the unweighted incomplete track. The other is named "adaboost" and contains 120 WCNF files that correspond to learning boosted trees with 4 different maximum depths for 6 datasets in 5 different iterations. These benchmarks are suited to the weighted incomplete track.

Both first-level folders contains several second-level folders, which correspond to the names of the encoded ML datasets. Each second-level folder contains all WCNF files corresponding to this dataset. The datasets we used to generate WCNF are from CP4IM 1 . More precisely, they are binarized with the onehot-encoding. Since AdaBoost greatly improves the training and test accuracy in some cases, we selected the datasets in which classic decision trees performed poorly to generate 1 https://dtai.cs.kuleuven.be/CP4IM/datasets/ WCNF for AdaBoost. Further information on those datasets is given in Table I, where #s indicates the number of instances, #f b indicates the number of binarized features. The name of each WCNF file follows the format: formula ratio seed atleast size maxdepth reduced incomplete type.WCNF.

• ratio: The sample ratio used when generating a training set using the hold-out method.

• seed: The seed used to make the stratified sampling. By default, we use 2021.

• size: The upper bound on the size of the decision tree.

• maxdepth: The upper bound on the depth of the decision tree.

• type: The application of the decision tree generation problem encoded by this WCNF file. There are two possible types:

tree: This WCNF is for learning a classic decision tree. adaboost iter: This WCNF is for learning decision tree for the (iter)-th iteration of AdaBoost.

C.1 Introduction

Au cours de la dernière décennie, l'apprentissage automatique a remporté de grands succès pour resoudre de nombreux problèmes du monde réel. Ces succès ont accru le besoin d'explications en Intelligence Artificielle (IA), en particulier pour les systèmes d'aide à la décision ayant un impact sur les individus. Le domaine de (Explanaible AI ou XAI) inclut un large spectre de recherche dont un des buts est de produire des systèmes d'IA compréhensibles par les humains afin d'augmenter la confiance qu'ils peuvent avoir dans les systèmes d'IA. L'objectif est de pouvoir comprendre le processus conduisant à une décision ou à une prédiction donnée. Dans cette thèse, nous nous intéressons à l'interprétabilité de l'apprntissage automatique. Dans la littérature, deux approches principales existent pour augmenter cette interprétabilité. La première approche, appelée post hoc, se concentre sur des modèles de type boîte noire, par exemple les réseaux de neurones ou le deep learning, et considère des explications a posteriori [START_REF] Guidotti | [END_REF]. Elle peut produire des explications sur la sortie du modèle de boîte noire pour détailler la raison d'une prédiction donnée ou une inspection de boîte noire pour expliquer comment fonctionne le modèle boîte noire. La deuxième approche est appelée transparenceby-design. Son objectif est de produire des modèles d'apprentissage compréhensibles pour les humains, grâce aux leurs structures simples. Par exemple, les arbres de décision, ou les règles de décision sont considérés comme des modèles interprétables lorsqu'ils sont de petite taille.

Certains inconvénients de l'approche post hoc qui peut fournir des explications trompeuses ou fausses, ont été mis en évidence dans [Rudin 2019, Laugel et al. 2019]. Pour les applications cruciales, où les décisions peuvent avoir un impact sur les individus, de tels inconvénients soulèvent la necessité de modèles transparents en apprentissage automatique. Dans [Rudin et al. 2021], dix défis pour le développement de modèles d'apprentissage interprétables intrinsèquement sont détaillés. Le premier défi concerne la manière d'apprendre efficacement des modèles d'apprentissage optimaux et parcimonieux. Cette thèse s'inscrit dans cet défi.

Il existe de nombreuses méthodes heuristiques permettant d'obtenir des modèles d'apprentissage interprétables. Bien ces méthodes heuristiques classiques aient un temps de calcul réduit, les modèles d'apprentissage interprétables construits sont souvent de grande taille, ce qui rend difficile la compréhension de son fonctionnement. Récemment, de nombreuses méthodes exactes ont été proposées pour obtenir des modèles interprétables. Par rapport aux méthodes heuristiques, les méthodes exactes offrent la promesse d'une optimalité, par exemple sur la taille de modèle ou sa précision. Dans ce contexte, les méthodes d'optimisation combinatoire, telles que la programmation par contraintes, la programmation linéaire mixte en nombres entiers, la satisfaisabilité booléenne (SAT) et la programmation dynamique ont été appliquées avec succès pour l'apprentissage de modèles interprétables optimaux. Ces approches déclaratives sont particulièrement intéressantes car elles offrent une certaine flexibilité pour gérer des exigences supplémentaires pendant l'apprentissage d'un modèle.

Dans cette thèse, nous nous concentrons sur une approche basée sur la Satisfiabilité Booléenne Maximale (MaxSAT), pour apprendre des modèles interprétables optimaux, où MaxSAT est une version d'optimisation de SAT, Un inconvénient des méthodes exactes basées sur SAT est la recherche d'une précision empirique parfaite pour une taille donnée de modèle ce qui présente un risque de sur-apprentissage ou overfitting. Ainsi, il s'agit d'étudier si les méthodes exactes basées sur MaxSAT peuvent éviter cet inconvénient en optimisant la précision empirique. De plus, le formalisme MaxSAT a une extension permettant l'utilisation de clauses pondérées, où les poids des clauses peuvent naturellement se rapprocher de la distribution des exemples composant les jeux de données utilisés dans l'apprentissage. Cette extension rend les méthodes exactes basées sur MaxSAT faciles à adapter avec les méthodes d'apprentissage d'ensemble de type Boosting.

Cette thèse présente deux contributions principales :

1. Une nouvelle formalisation avec MaxSAT pour apprendre des arbres de décisions optimaux, et son extension basée sur AdaBoost. .

Une nouvelle formalisation avec

MaxSAT pour apprendre des diagrammes de décisions binaires optimaux.

Nos contributions sont évaluées par une approche expérimentale. Nous décrivons ces contributions et les résultats obtenus dans les sections suivantes.

C.2 Arbres de décision optimaux par MaxSAT et integration dans AdaBoost

En tant que modèle d'apprentissage très populaire, les arbres de décision bénéficient principalement de leur interprétabilité et du large éventail de méthodes efficaces pour les calculer. Plusieurs méthodes heuristiques classiques construisent généralement l'arbre de haut en bas, en divisant les ensembles de données avec des caractéristiques sélectionnées par différentes métriques heuristiques. Cependant, ces méthodes heuristiques souffrent de la difficulté d'interprétabilité, en raison de l'explosion de la taille et de la profondeur des arbres générés.

Récemment, plusieurs méthodes exactes d'apprentissage d'arbres de décision optimaux ont été proposées pour offrir des garanties d'optimalité. La Section 1.3.1.2 fournit la revue de la littérature de certaines approches d'optimisation combinatoire pour les arbres de décision optimaux. Dans ces approches, les critères largement utilisées pour déterminer des arbres de décision optimaux sont la taille de l'arbre, la profondeur de l'arbre et la précision. Contrairement à d'autres approches d'optimisation combinatoire, il n'existe pas de méthodes exactes basées sur la Satisfaisabilité Booléenne (ou ses variantes) pour optimiser la précision de l'arbre de décision. En fait, les précédentes méthodes exactes en satisfisfiabilité booléenn visent à garantir la précision parfait sur un ensemble d'entrainment et sont basées sur SAT [Bessiere et al. 2009, Narodytska et al. 2018]. Ces méthodes optimisent la taille des arbres, et [Avellaneda 2020, Janota & Morgado 2020] optimisent la profondeur des arbres permettant d'obtenir une precision parfaite sur l'ensemble d'entrainement, ce qui est souvent critiqué car cela peut entraîner un phénomène d'overfitting.

Par exemple, le problème decision résolu par le modèle SAT en [START_REF] Narodytska | [END_REF]] est:

• P dt (E , N ): Pour un ensemble d'exemples E donné, existe-t-il un arbre de décision binaire valide (chaque noeud interne a exactement deux enfants) de taille N , qui classifie correctement tous les exemples de E ?

Ce modèle SAT pour le problème P dt (E , N ) [START_REF] Narodytska | [END_REF] s'appuie sur trois familles de contraintes (les détails sont dans la Section 2.2) :

• Partie 1: Contraintes pour encoder un arbre binaire valide de taille N .

• Partie 2: Contraintes pour relier les attributs (respectivement, les classes) aux noeuds internes (respectivement, noeuds feuilles).

• Partie 3: Contraintes pour classifier tous les exemples correctement.

Pour répondre au risque d'overfitting, les approches MaxSAT peuvent être utilisées pour maximiser le nombre d'exemples correctement classifiés. De plus, la résolution de problème MaxSAT peut s'appuyer sur l'utilisation de solvers MaxSAT dit incomplets, ce qui augmente l'extensibilité, grâce aux meilleurs resultats obtenus dans des temps limités.

Dans cette thèse, le problème d'optimisation considéré est le suivant : -1], H) pour la contrainte sur la profondeur exacte. Additionellement, le modèle MaxSAT peut être intégré dans AdaBoost pour améliorer les performances de prédiction. L'idée est de mettre à jour les distributions de données en modifiant les poids des clauses souples correspondantes. Les détails sont decrits dans la Section 2.5. [START_REF] Narodytska | Learning optimal decision trees with SAT[END_REF], nous proposons une variable booléenne b q pour chaque exemple e q ∈ E , où b q est vrai si et seulement si l'exemple e q est correctement classifié. Ensuite, nous relions la variable b q aux contraintes de classification des exemples (Contraintes de Partie 3 ) en tant que clauses dures. Autrement dit, pour tout exemple positif e q ∈ E + , et tout noeud feuille j, avec j = 1, . . . , N :

C.2.1 Modèle MaxSAT proposé

b q → (v j ∧ ¬c j → K r=1 d σ(r,q) rj ) (C.1)
Pour tout exemple negatif e q ∈ E -, et tout noeud feuille j, avec j = 1, . . . , N :

b q → (v j ∧ c j → K r=1 d σ(r,q) rj ) (C.2)
Les eexpressions dans les parenthèses sont des contraintes de classification pour l'exemple e q dans le noeud feuille j. Afin de modéliser l'objectif de maximisation du nombre d'exemples correctement classifiés, chaque littéral b q est déclaré comme une clause souple. D'après la définition de b q , le nombre de clauses souples satisfaites est égal au nombre d'exemples correctement classifiés. Dans un arbre binaire, la profondeur correspondante d'un noeud j donné varie dans un intervalle reflétant ces deux situations extrêmes (les noeuds sont numérotés par niveau).

• la borne supérieure de la profondeur est associée à l'arbre entièrement déséquilibré, qui est ⌈(j -1)/2⌉.

• la borne inférieure de la profondeur est associée à l'arbre complet (équilibré), qui est ⌈log(j + 1)⌉ -1.

Pour refléter cette propriété entre le noeud et sa profondeur, nous introduisons une variable booléenne depth jt pour indiquer que le noeud j est en profondeur t ou pas, depth jt est vrai si et seulement si le noeud j est en profondeur t. Les idées principales pour exprimer les contraintes controlant la profondeur des noeuds sont données ci-dessous (les détails sont dans la Section 2.3) :

C.2.2 Expérimentations

Nous considerons trois expérimentations pour évaluer nos contributions :

• Experimentation 1: Mettre en évidence le comportement d'overfitting des arbres de décision obtenus avec l'approche SAT de la littérature.

• Experimentation 2: Evaluer les performances de prédiction entre notre modèle MaxSAT avec des méthodes de l'état de l'art : une méthode heuristique (CART [START_REF] Breiman | [END_REF]) et une méthode exacte (DL8.5 [Aglin et al. 2020]).

• Experimentation 3: Evaluer les performances de prédiction entre notre modèle MaxSAT initial et son integration dans AdaBoost [Freund & Schapire 1997].

Nos experimentations portent sur les jeux de données de CP4IM 1 . Ces jeux de données sont binarisés avec l'encodage "one-hot" classique. Nous avons exécuté toutes les experimentations sur un cluster utilisant un processeur Xeon E5-2695 v3@2.30GHz exécutant xUbuntu 16.04.6LTS. Le solver MaxSAT utilisé est Loandra [Berg et al. 2019].

Les détails sur les protocoles expérimentaux et les résultats sont dans la Section 2.4. Nous résumons ci-après les observations principales.

La première observation issue de l'Experimentation 1 est la vérification de l'existence du phénomène d'overfitting pour des arbres de décision optimaux obtenus avec l'approche SAT de la littérature. Des résultats détaillés sont dans l'Appendix A.

La deuxième observation issue de l'Experimentation 2 est que notre modèle MaxSAT obtient une performance de prédiction compétitive par rapport aux méthodes de l'état de l'art (heuristique et exacte). Bien que notre modèle MaxSAT ne peut pas toujours obtenir la solution optimale dans le temps limite fixé (15 minutes), la solution trouvée est proche de la solution optimale trouvée par la méthode exacte DL8.5 de la littérature. Par ailleurs, DL8.5 souffre de limitation de mémoire, alors que notre modèle MaxSAT bénéficie d'une meilleure évolutivité. Les résultats détaillés sont présentés dans les Table 2.8 et 2.9 en Section 2.4.

La dernière observation issue de l'Experimentation 3 est que l'integration de notre modèle MaxSAT dans AdaBoost permet d'améliorer la performance de prédiction du modèle MaxSAT initial. Pour quelques jeux de données, l'amélioration de la précision augmente de plus de 10%. Les résultats détaillés sont présentés dans la Table 2.10 en Section 2.5.

C.3 Diagrammes de décision binaires optimaux par MaxSAT

Les diagrammes de décision binaires (BDD) sont un autre modèle d'apprentissage interprétable en apprentissage supervisé. En particulier, ils peuvent être utilisés pour la classification binaire avec un des données caractérisées par des attributs binaires. En tant que représentation compacte des fonctions booléennes, les diagrammes de décision binaires sont largement étudiés dans la conception de circuits numériques, la vérification de modèles ou la représentation des connaissances [Akers 1978[START_REF] Moret | [END_REF], Bryant 1986, Knuth 2009]. La Figure C.2 fournit un exemple de diagramme de décision binaire de profondeur 3 pour répresenter la fonction booléenne g(x 1 , x 2 , x 3 ) = (x 1 ∨ x 2 ) ∧ (x 1 ∨ x 3 ) ∧ (x 2 ∨ x 3 ). Dans cet exemple, la séquence de variables booléennes choisie est [x 1 , x 2 , x 3 ] et la profondeur du BDD est égale à la longueur de la séquence de variables booléennes. 1.2 (à gauche), et l'arbre de décision correspondant (à droite).

Les diagrammes de décision binaire permettent d'éviter le problème de réplication et le problème de fragmentation dans la classification binaire [Oliver 1992, Kohavi 1994], qui sont deux défauts majeurs dont souffrent les arbres de décision [Matheus & Rendell 1989[START_REF] Pagallo | Boolean Feature Discovery in Empirical Learning[END_REF][START_REF] Rokach | Data mining with decision trees: Theory and applications[END_REF]]. Le problème de réplication apparaît lorsque deux sous-arbres identiques se trouvent dans l'arbre de décision. Un exemple illustratif est dans la Figure C.3, qui montre le BDD est plus compact que l'arbre de décision correspondant pour éviter le problème de réplication. Le problème de fragmentation apparaît lorsque seuls quelques exemples sont associés aux noeuds feuilles. Pour éviter ce problème, [Kohavi 1994] a proposé une post-traitement de fusion de sous-arbres compatibles. Des détails sont fournis dans la Section 1.3.2.

Les avantages des diagrammes de décision binaires justifient leur possible substitution aux arbres de décision dans l'apprentissage interprétable, malgré qu'ils ne suscitent pas autant d'intérêt que les arbres de décision. A notre connaissance, [Cabodi et al. 2021] est la seule méthode exacte récente pour apprendre des diagrammes de décision binaires optimaux avant notre recherche. L'objectif de cette approche est d'apprendre des diagrammes de décision binaires optimaux de plus petites tailles (en nombre de noeuds) avec la précision parfaite, ce qui conduit à deux inconvénients. Le premier est le possible overfitting en raison de l'objectif de précision C.3. DIAGRAMMES DE DÉCISION BINAIRES OPTIMAUX 123 parfaite. L'autre est le manque de controle dans la profondeur du diagramme de décision binaire appris, pouvant produire des diagrammes de petite taille mais de grande profondeur.

Pour éviter ces inconvénients, nous considérons une nouvelle cible consistant à apprendre un diagramme de décision binaire de profondeur limitée qui optimise la précision. Cette cible s'exprime comme le problème d'optimisation suivant : 

C.3.1 Modèle SAT et MaxSAT proposé

C.3.1.1 Une proposition essentielle

Avant d'introduire le modèle SAT ou MaxSAT proposé, nous en expliquons le principe qui est basé sur proposition essentielle vient de [Knuth 2009]. Ctte proposition présente comment construire un diagramme de décision binaire en utilisant sa table de vérité. Des détails sont dans la Section 3.2.

Nous présentons un exemple pour illustrer l'idée principale. Pour la fonction booléenne g 1 (x 1 , x 2 , x 3 ) = (x 1 ∨ x 2 ∨ x 3 ) ∧ (¬x 1 ∨ x 2 ∨ ¬x 3 ) ∧ (¬x 1 ∨ ¬x 2 ∨ ¬x 3 ), la table de vérité correspondant est 01111010. Avec la séquence de variables booléennees [x 1 , x 2 , x 3 ], la proposition nous permet de construire le diagramme de décision binaire dans la partie à droite en Pour encoder ces contraintes, nous proposons trois ensembles de variables booléennees. La variable a i r est vrai si et seulement si l'attribut f r est relié à la i-ème position de la séquence d'attributs. La variable c j est vrai si et seulement si la j-ème valeur dans la table de vérité est 1. La variable d q i est vrai si et seulement si pour l'exemple e q , la valeur de i-ème attribut dans la séquence d'attributs est 1.

Pour encoder les contraintes de Partie 1, les idées principales sont données cidessous (les détails sont dans la Section 3.3.1):

• Chaque attribut f r peut être relié au plus une fois.

• Exactement un attribut est relié à chaque position de la séquence d'attributs.

• Pour éviter que la racine fasse une scission inutile, il faut garantir que la table de vérité générée est un bead (la partie gauche et partie droite sont différentes).

Pour encoder les contraintes de Partie 2, d'abord, nous proposons des contraintes pour relier la variable d q i et la variable a i r par la valeur d'attribut f r d'exemple e q . Nous notons σ(q, r) la valeur de l'attribut f r pour un exemple e q , les contraintes proposées sont les suivantes:

a i r → d q i
si σ(q, r) = 1 a i r → ¬d q i si σ(q, r) = 0 (C.3)

Ensuite, pour classifier correctement tous les exemples, l'idée principale est pour chaque exemple positif (negatif) suite à une affectation de la séquence d'attributs, ils conduisent à une valeur positive (negative) dans la table de vérité. Les 2 H contraintes permettant de garantir qu l'exemple positif e q soit correctement classifié sont données ci-dessous:

¬d q 1 ∧ ¬d q 2 ∧ • • • ∧ ¬d q H-1 ∧ ¬d q H → c 1 ¬d q 1 ∧ ¬d q 2 ∧ • • • ∧ ¬d q H-1 ∧ d q H → c 2 . . . d q 1 ∧ d q 2 ∧ • • • ∧ d q H-1 ∧ ¬d q H → c 2 H -1 d q 1 ∧ d q 2 ∧ • • • ∧ d q H-1 ∧ d q H → c 2 H (C.4)
De la même manière, les 2 H contraintes pour garantir que l'exemple négatif e q soit correctement classifié sont données ci-dessous: 3) comme des clauses souples. La raison est que pour tout exemple e q , le nombre de clauses souples satisfaites associées à e q est soit 2 H , ce que indique que e q est classifié correctement, soit 2 H -1, ce que indique que e q est mal classifié.

¬d q 1 ∧ ¬d q 2 ∧ • • • ∧ ¬d q H-1 ∧ ¬d q H → ¬c 1 ¬d q 1 ∧ ¬d q 2 ∧ • • • ∧ ¬d q H-1 ∧ d q H → ¬c 2 . . . d q 1 ∧ d q 2 ∧ • • • ∧ d q H-1 ∧ ¬d q H → ¬c 2 H -1 d q 1 ∧ d q 2 ∧ • • • ∧ d q H-1 ∧ d q H → ¬c
Par conséquent, l'objectif de maximiser le nombre de clauses souples satisfaites équivaut à maximiser le nombre d'exemples correctement classifiés, ce qui résout le problème d'optimisation P * bdd (E , H).

C.3.2 Expérimentations

Nous considerons deux expérimentations pour évaluer nos contributions:

• Experimentation 1: Comparer les performances de prédiction entre notre modèle MaxSAT avec la méthode heuristique OODG [START_REF] Kohavi | [END_REF].

• Experimentation 2: Comparer les performances de prédiction, les tailles de modèles, et les tailles d'encodage entre notre modèle MaxSAT pour les BDD avec le modèle MaxSAT que nous avons proposé pour les arbres de décision [START_REF] Hu | [END_REF]).

Comme précédemment, nos experimentations portent sur les jeux de données binarisés de CP4IM. Toutes les experimentations sont exécutées sur un cluster utilisant un processeur Xeon E5-2695 v3@2.30GHz fonctionnant sous xUbuntu 16.04.6LTS. Le solver MaxSAT utilisé est Loandra [Berg et al. 2019]. Les détails

Algorithm 1 : 2 while

 12 The DPLL Algorithm. Input: A Set of clauses C = {c 1 , . . . , c n }. 1 Process DPLL(C): there is a unit clause c has literal p unassigned do // Delete the clause c from C due to the unit propagation.

3 C

 3 = U nitP ropagation(p, c) 4 if C = ∅ then // All clauses are satisfied, current assignment of literals is a satisfied assignment. a decision literal by heuristic.
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 13 Figure 1.3: An illustrating example of Binary Decision Diagram of depth 3.
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 14 Figure 1.4: The Binary Decision Diagram of max depth 4 classifying all examples.
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 1 Figure 1.8: A common architecture of Ensemble Methods.[Zhou 2012] 
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 4 The AdaBoost Algorithm. Input: A labelled Dataset E = {(x 1 , y 1 ), . . . , (x m , y m )}; A base learning algorithm L; The number of iterations T . 1 D 1 = 1/m.

Algorithm 5 : 2 ϕ

 52 The Bagging Algorithm. Input: A labelled Dataset E = {(x 1 , y 1 ), . . . , (x m , y m )}; A base learning algorithm L; The number of iterations T . 1 for t = 1, . . . , T do // D bs is the bootstrap distribution, indicating the subset of E t = L(E ; D bs ). Output: Φ(x) = arg max y∈Y T t=1 count(ϕ t (x) = y).

Goal 1 (

 1 tree size): For a given set of examples E , find the Decision Tree with the smallest size (number of nodes) classifying all examples of E correctly. • Goal 2 (tree depth): For a given set of examples E , find the Decision Tree with the smallest depth classifying all examples of E correctly. • Goal 3 (accuracy): For a given set of examples E , find the Decision Tree restricted in topology (generally in depth) that maximizes the number of examples of E correctly classified.

  the whole dataset. The per(c j |f * 1 , . . . , f * l ) indicates the percentage of examples with label c j for all examples that satisfy the assignments
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 1 Figure 1.15: The OODG of depth 5 that classifies all examples correctly.
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 21 Figure 2.1: The two valid binary trees of size 5.
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 11 j, or one of its ancestor, rejects any example having feature f r = 0, ∀r ∈ {1, K}, ∀j ∈ {1, N } d iff node j, or one of its ancestor, rejects any example having feature f r = 1, ∀r ∈ {1, K}, ∀j ∈ {1, N } Table 2.3: Description of propositional variables concerning to classification in [Narodytska et al. 2018].

  Figure 2.4 shows two new optimal decision trees in size 5 (the left one) and 7 (the right one) maximising the accuracy for the same dataset containing 12 examples. The decision tree in size 5 correctly classifies 10 examples, and the other correctly classifies 11 examples.
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 25 Figure 2.5: Two valid binary trees in size 7 with different depths.
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 26 Figure 2.6: The other three valid binary trees in size 7 of depth 3.
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 2 Figure 2.8: The tendency of the training accuracy (left) and testing accuracy (right)with the increase of tree size for the dataset "breast-cancer" in different ratios.
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  Nadel 2022], TT-Open-WBO-Inc-is indicates the usage of IntelSAT and tuned for shorter invocations, and TT-Open-WBO-Inc-g indicates the usage of Glucose 4.1[START_REF] Audemard | On the Glucose SAT Solver[END_REF]).
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 31 Figure 3.1: The binary decision diagram for Boolean function g 1 (x 1 , x 2 , x 3 ).
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 34 Figure 3.4: All duplication in the constraints for classification of depth H = 4.
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 3 Figure 3.5: A binary decision diagram found by a MaxSAT solver.
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 3 Figure 3.7: Comparison between the average training accuracy of OODG and MaxSAT-BDD.
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 3 Figure 3.8: The average testing accuracy of methods with different biases in different depths: MaxSAT-BDD-P, MaxSAT-BDD-C, MaxSAT-BDD-S, ODT, OODG (respectively from left to right).
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 39 Figure 3.9: Comparison between the average prediction performance of MaxSAT-BDD and MaxSAT-DT, the left (right) scatter indicates the training accuracy (testing accuracy).
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 3 Figure 3.10: The illustrating example showing the useless split made by decision tree found via MaxSAT-DT.
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 3 Figure 3.11: Comparison of heuristic MaxSAT-BDD and original MaxSAT-BDD in testing accuracy.
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 3 Figure 3.12: Comparison between the average prediction performance of heuristic MaxSAT-BDD and CART, the left (right) scatter indicates the training accuracy (testing accuracy).
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 211 Modèle MaxSAT adapaté pour P * dt (E , N ) Comme nous l'avons introduit précédemment, le modèle SAT de la littérature contient trois familles de contraintes, où les contraintes de classifier correctement tous les exemples sont importantes. Par conséquent, pour réaliser la première adaptation, les contraintes (Contraintes de Partie 1 et Partie 2 ) sont conservées comme des clauses dures. Ensuite, pour classer chaque exemple (Contraintes de Partie
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 2121 Figure C.1: Deux arbres binaires valides de taille 7 avec des profondeurs différentes.

  Figure C.2: Un exemple illustrant le BDD de profondeur 3.

Figure C. 3 :

 3 Figure C.3: Le BDD avec accuracy parfait pour les données dans Table1.2 (à gauche), et l'arbre de décision correspondant (à droite).

FigureFigure C. 4 :

 4 Figure C.4: Le BDD pour la fonction booléenne g 1 (x 1 , x 2 , x 3 ).

  MaxSAT pour P * bdd (E , H) La technique pour transformer le modèle SAT des diagrammes de décision binaires vers un modèle MaxSAT est simple. Le principe est de conserver les contraintes structurelles (Partie 1) comme des clauses dures et les contraintes de classification (Partie 2 sauf Constrainte C.
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 1 

	Outlook Temp(> 26 • C?) Humidity(> 75%?) Windy? Play?
	sunny	false	false	true	Yes
	sunny	true	true	true	No
	sunny	true	true	false	No
	sunny	false	true	false	No
	sunny	false	false	false	Yes
	overcast	false	true	true	Yes
	overcast	true	true	false	Yes
	overcast	false	false	true	Yes
	overcast	true	false	false	Yes
	rain	false	true	true	No
	rain	false	false	true	No
	rain	false	true	false	Yes
			Outlook		
		sunny	overcast	rain	
	Humidity(> 75%)? true false	Yes	Windy? true false
	No	Yes		No	Yes

1: A small dataset from [Quinlan 1993] Figure 1.2: An illustrating example of Decision Tree

• C?) f 5 Humidity(> 75%?) f 6 Windy? 0 false or No 1 true or YesTable 1 .

 1 2: The transformed binary dataset by one-hot encoding from Table 1.1.

	The binary decision diagram of maximum depth 4 classifying all examples in
	Table

Algorithm 3 :

 3 The general mechanism of Boosting methods.

		Input: A labelled Dataset E in distribution D;
		A base learning algorithm L;
		The number of iterations T .
	1 D 1 = D.		// Initialize the data distribution
	2 for t = 1, . . . , T do	
	3	ϕ t = L(E ; D t ).	// Train a base learner from E under distribution Dt
	4	ε t = err(ϕ t ; E ).		// Calculate the error rate of ϕt
	5	D t+1 = Adjust_Distribution(D t , ε t ).	// Adjust the data distribution

do 3 ϕ t = L(E ; D t ). // Train the base learner in t-th round 4 ε t = err(ϕ t ; E ). // Evaluate the error rate of ϕt // End the iteration if ϕt is weaker than random guess 5 if ε t > 0.5 then 6 break.

  

		// Initialize the distribution with same weight
	2 for t = 1, . . . , T 7 α t = 1 2 ln 1-εt εt .	// αt is the weight of ϕt in final combination
	// Increase the weights of examples wrongly predicted
	8	

Table 1 .

 1 

	3: A weighted binary dataset
	from Table 1.2.
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  H): Given a set of examples E , find a valid binary decision tree with maximum/exact depth H that maximises the number of examples in E that are correctly classified.

Table 2 .

 2 1: Description of propositional variables concerning to tree topology in [Narodytska et al. 2018].

	Var Description of variables
	v i	1 iff node i is a leaf node, and 0 otherwise. ∀i ∈ {1, N }
	l p ji	1 iff node i is the parent of node j, and 0 otherwise. ∀i ∈ {1, N -1}, and ∀j ∈ {2, N }

ij 1 iff node j is the left child of node i, and 0 otherwise. ∀i ∈ {1, N }, and ∀j ∈ LR(i), where LR(i) = even([i + 1, min(2i, N -1)])

r ij

1 iff node j is the right child of node i, and 0 otherwise. ∀i ∈ {1, N }, and ∀j ∈ RR(i), where

RR(i) = odd([i + 2, min(2i + 1, N )])

the node i and the node j, three sets of propositional variables, l ij , r ij , and p ji , are proposed. The definitions of these variables sets are shown in Table

2

.1. Note that l ij and r ij are defined for even/odd indices as a left/right child must be an even/odd node. These shortcuts are defined as j ∈ LR(i) and j ∈ RR(i) in Table

2

.1. Example 1 To encode a valid binary tree with 5 nodes (N = 5), fours sets of variables are introduced, which are {v 1 , . . . , v 5 }, {l 12 , l 24 , l 34 }, {r 13 , r 25 , r 35 }, and {p 21 , p 31 , p 32 , p 42 , p 43 , p 52 , p 53 , p 54 }.

  ; v 1 → ¬l 12 ; v 2 → ¬l 24 ; v 3 → ¬l 34 l 12 ↔ r 13 ; l 24 ↔ r 25 ; l 34 ↔ r 35

	6)
	Example 2 We continue with the Example 1. Based on Constraints 2.1, 2.2, 2.3,
	and 2.4), the following constraints are generated to encode the valid binary tree
	structure:
	¬v 1

¬v 1 → (l 12 = 1); ¬v 2 →(l 24 = 1); ¬v 3 → (l 34 = 1)

Then, the parent-child relations are encoded by

Constraints 2.5 and 2.6 

as follow: p 21 ↔ l 12 ; p 42 ↔ l 24 ; p 43 → l 34 p 31 ↔ r 13 ; p 52 ↔ r 25 ; p 53 → r 35 p 21 = 1; p 31 + p 32 = 1; p 42 + p 43 = 1; p 52 + p 53 + p 54 = 1 Solving this simple example, the encoding allows only two valid binary trees. The first one has the node 1 and 2 as internal nodes (the left one of

Table 2 .

 2 

			L
		C	0
		1	0
		Figure 2.2: The decision tree classi-
	4: A toy dataset from [Nar-	fying all examples in Table 2.4.
	odytska et al. 2018].	

  . . , v 7 }, {l 12 , l 24 , l 34 , l 36 , l 46 , l 56 }, {r 13 , r 25 , r 35 , r 37 , r 47 , r 57 }, {p 21 , p 31 , p 32 , p 42 , p 43 , p 52 , p 53 , p 54 , p 63 , p 64 , p 65 , p 74 , p 75 , p 76 }. The variables controlling the depth are {depth 10 , depth 21 , depth 31 , depth 42 , depth 52 , depth 62 , depth 63 , depth 72 , depth 73 }.

  Continuing with Example 5, the following specific constraints are generated based on Constraints 2.17, 2.18, and 2.19: depth 10 ; depth 10 = 1; depth 21 = 1; depth 31 = 1; depth 42 = 1; depth 52 = 1; depth 62 + depth 63 = 1; depth 72 + depth 73 = 1; depth 10 ∧ l 12 → depth 21 ; depth 21 ∧ l 24 → depth 42 ; depth 31 ∧ l 34 → depth 42 ; depth 10 ∧ r 13 → depth 31 ; depth 21 ∧ r 25 → depth 52 ; depth 31 ∧ r 35 → depth 52 ;

21) Example 6 depth 31 ∧ l 36 → depth 62 ; depth 42 ∧ l 46 → depth 63 ; depth 52 ∧ l 56 → depth 63 ; depth 31 ∧ r 37 → depth 72 ; depth 42 ∧ r 47 → depth 73 ; depth 52 ∧ r 57 → depth 73 ;

Table 2 .

 2 7: Detailed information of datasets from CP4IM used in experiments.

		M	K orig	K	pos
	anneal	812	42	89	0.77
	audiology	216	67	146	0.26
	australian	653	51	124	0.55
	cancer	683	9	89	0.35
	car	1728	6	21	0.30
	cleveland	296	45	95	0.54
	hypothyroid	3247	43	86	0.91
	kr-vs-kp	3196	36	73	0.52
	lymph	148	27	68	0.55
	mushroom	8124	21	112	0.52
	tumor	336	15	31	0.24
	soybean	630	16	50	0.15
	splice-1	3190	60	287	0.52
	tic-tac-toe	958	9	27	0.65
	vote	435	16	48	0.61

Datasets H Testing accuracy Training accuracy DT-max DT-ada CART-ada DT-bag DT-max DT-ada CART-ada DT-bag

  

		2	80.98	80.98	83.99	80.98	83.20	83.36*	85.21	83.17
	anneal	3	82.82	84.90*	86.81	82.82	84.90	88.60	88.26	85.00
		4	82.82	84.82*	87.55	83.30	85.52	90.14*	91.05	85.81
		2	87.12	87.20	85.98	89.20	86.56	89.98	93.84	85.89
	australian	3	87.88	87.54*	87.05	88.72	87.33	89.66	93.80	87.03
		4	87.88	87.88*	85.91	89.14	88.48	90.21	99.31	87.03
		2	84.68	96.53	95.29	84.68	85.75	97.47	96.27	85.75
	car	3	87.86	95.44*	97.83	89.92	89.15	97.10*	98.84	91.08
		4	90.46	98.36*	98.67	95.02	91.24	98.70*	99.91	95.30
		2	73.33	78.33*	79.83	76.85	80.93	90.25	90.13	85.22
	cleveland	3	78.33	83.70	81.17	81.48	83.90	93.97	99.15	88.37
		4	85.0	80.17	77.83	83.89	83.47	96.09	100	90.07
		2	82.35	82.35	81.91	82.03	82.84	86.19*	87.05	83.25
	tumor	3	82.65	84.48	80.74	84.31	86.34	90.92	89.96	87.77
		4	80.88	79.14	78.97	84.80	86.57	88.81	93.77	89.59
		2	68.91	77.14*	78.08	71.27	70.98	80.39*	82.61	72.37
	tic-tac-toe	3	74.61	94.69	93.01	81.46	76.86	95.96*	96.31	89.46
		4	76.74	94.49*	96.94	85.26	81.31	95.80	100	85.37

Table 2

 2 

.10: Evaluation of the different Ensemble Methods.

Table 2 .

 2 ] (TT-Open-WBO-Inc-i indicates the application of IntelSAT

	Dataset/H Best Exact	Loandra SATlike-c Satlike-ck StableResolve TT-WBO
	australian/3	67	0.38 (179) 0.99 (68)	1.00 (67)	0.99 (68)	0.92 (73)	1.00 (67)
	tumor/3	40	0.66 (61)	0.98 (41)	1.00 (40)	0.85 (47)	0.67 (60)	0.89 (45)
	soybean/3	22	0.47 (48)	1.00 (22)	0.85 (26)	1.00 (22)	0.31 (73)	1.00 (22)
	splice-1/3	1176 0.96 (1225) 0.93 (1265) 1.00 (1176) 0.92 (1282)	0.85 (1389)	0.85 (1387)
	vote/3	6	0.64 (10)	1.00 (6)	0.88 (7)	0.88 (7)	0.58 (11)	0.88 (7)
	anneal/4	90	0.59 (153) 1.00 (90)	0.95 (95)	0.95 (95)	0.75 (120)	0.95 (95)
	hypothyroid/4 46	0.10 (475) 0.03 (1612) 1.00 (46)	0.22 (211)	0.46 (102)	0.30 (157)
	tumor/4	36	0.64 (57)	1.00 (36)	0.95 (38)	0.90 (40)	0.31 (118)	0.95 (38)
	soybean/4	12	0.18 (73)	1.00 (12)	1.00 (12)	0.54 (23)	0.18 (73)	1.00 (12)
	tic-tac-toe/4	161 0.55 (296) 0.98 (165) 0.79 (204)	1.00 (161)	0.70 (230)	0.79 (204)
	vote/4	2	0.18 (16)	0.60 (4)	1.00 (2)	1.00 (2)	0.25 (11)	0.75 (3)
	cancer/5	12	0.15 (87)	0.43 (29)	1.00 (12)	0.65 (19)	0.07 (179)	0.81 (15)
	cleveland/5	32	0.25 (132) 0.89 (36)	1.00 (32)	0.83 (39)	0.41 (79)	1.00 (32)
	splice-1/5	1122	0.00 (-)	1.00 (1122) 0.90 (1250) 0.88 (1280)	0.49 (2300)	0.87 (1297)
	tic-tac-toe/5	134 0.52 (261) 1.00 (134) 0.81 (165)	0.77 (175)	0.58 (230)	0.82 (163)
	vote/5	0	0.10 (9)	0.25 (3)	0.33 (2)	0.33 (2)	0.01 (95)	0.25 (3)
	anneal/6	94	0.23 (411) 0.19 (500)	1.00 (94)	1.00 (94)	0.56 (170)	1.00 (94)
	australian/6	109	0.00 (-)	0.35 (316) 0.88 (124)	1.00 (109)	0.53 (205)	0.86 (127)
	car/6	121 0.24 (504) 0.39 (313) 1.00 (121)	0.49 (246)	0.31 (395)	0.91 (133)
	cleveland/6	27	0.37 (75) 0.23 (121)	1.00 (27)	0.64 (43)	0.35 (78)	1.00 (27)
	lymph/6	0	0.02 (40)	0.08 (12)	0.13 (7)	0.08 (11)	0.01 (74)	0.13 (7)
	soybean/6	7	0.03 (237) 0.53 (14)	0.29 (27)	1.00 (7)	0.11 (74)	0.29 (27)
	tic-tac-toe/6	164 0.49 (338) 0.57 (287) 0.72 (227)	1.00 (164)	0.46 (360)	0.72 (227)
	Best Count	-	0/23	7/23	13/23	8/23	0/23	7/23

11: The evaluation of all MaxSAT solvers in incomplete unweighted track of MaxSAT Evaluation 2021.

Table 2 .

 2 13: The evaluation of all MaxSAT solvers in incomplete weighted track of MaxSAT Evaluation 2021.

	Best Count	tumor/6/6	cleveland/6/3	car/6/3	austrlian/6/6	anneal/6/6	
	-	189	56	228	433	637	
	0/17	0.61 (308)	0.52 (108)	0.33 (694)	0.74 (583)	0.74 (861)	
	1/17	0.60 (315)	0.73 (77)	0.92 (249)	0.71 (614)	0.84 (758)	1.00 (290)
	0/17	0.45 (424)	0.39 (145)	0.26 (897)	0.58 (745)	0.61 (1042)	0.55 (531)
	14/17 1/17	1.00 (189) 0.59 (322)	1.00 (56) 0.58 (98)	1.00 (228) 0.58 (396)	1.00 (433) 0.78 (553)	1.00 (637) 0.76 (844)	0.80 (365) 0.88 (330)
	1/17	0.58 (329)	0.58 (98)	0.61 (377)	0.78 (553)	0.75 (852)	0.85 (342)
	0/17	0.49 (389)	0.43 (132)	0.29 (789)	0.61 (709)	0.64 (991)	0.48 (611)
	2/17	0.58 (324)	0.57 (99)	0.58 (397)	0.69 (627)	0.70 (908)	0.81 (358)

/Iteration Best DT-Hywalk Exact Loandra noSAT NuWLS-c Open-WBO-c Open-WBO-s TT-WBO-g TT-WBO-i TT-WBO-is

  

	Best Count	tumor/4/3	tumor/6/6	cleveland/6/4	australian/6/3	cleveland/5/5	australian/5/6	australian/5/5	anneal/5/4	cleveland/4/5	cleveland/4/4	australian/4/4	anneal/4/4	tic-tac-toe/3/6	car/3/2	australian/3/4	anneal/3/2
	-	100	189	39	207	83	288	283	255	107	83	319	314	496	232	307	161
	2/16	0.711 (141)	0.594 (319)	0.328 (121)	0.682 (304)	0.440 (190)	0.660 (437)	0.823 (344)	0.645 (396)	0.603 (178)	0.613 (136)	0.767 (416)	0.873 (360)	1.000 (496)	1.000 (232)	0.875 (351)	0.750 (215)
	0/16 14/16 0/16 0/16	0.727 (138) 1.000 (100) 0.580 (173) 0.711 (148)	0.615 (308) 1.000 (189) 0.434 (437) 0.597 (344)	0.308 (129) 0.667 (59) 0.255 (156) 0.333 (128)	0.698 (297) 1.000 (207) 0.630 (329) 0.756 (291)	0.442 (189) 1.000 (83) 0.313 (267) 0.730 (180)	0.606 (476) 1.000 (288) 0.447 (645) 0.607 (456)	0.578 (490) 1.000 (283) 0.384 (739) 0.599 (500)	0.663 (385) 1.000 (255) 0.574 (445) 0.645 (396)	0.587 (183) 1.000 (107) 0.527 (204) 0.584 (159)	0.604 (138) 1.000 (83) 0.457 (183) 0.622 (141)	0.764 (418) 1.000 (319) 0.495 (646) 0.816 (420)	0.847 (371) 1.000 (314) 0.873 (360) 0.895 (360)	0.640 (776) 0.799 (621) 0.626 (793) 0.813 (578)	0.584 (398) 1.000 (232) 0.546 (426) 0.975 (232)	0.880 (349) 1.000 (307) 0.723 (425) 0.870 (358)	0.835 (193) 1.000 (161) 0.753 (214) 0.839 (214)
	2/16	0.716 (140)	0.601 (315)	1.000 (39)	0.675 (307)	0.583 (143)	0.850 (339)	0.840 (337)	0.508 (503)	0.655 (164)	0.651 (128)	0.597 (535)	0.778 (404)	0.866 (573)	1.000 (232)	0.665 (462)	0.656 (246)
	0/16	0.500 (201)	0.447 (424)	0.180 (221)	0.457 (454)	0.339 (247)	0.495 (583)	0.555 (511)	0.345 (741)	0.464 (232)	0.442 (189)	0.742 (430)	0.553 (569)	0.694 (715)	0.696 (334)	0.665 (462)	0.651 (248)
	0/16	0.765 (131)	0.627 (302)	0.325 (122)	0.762 (272)	0.464 (180)	0.660 (437)	0.574 (494)	0.645 (396)	0.794 (135)	0.609 (137)	0.767 (416)	0.905 (347)	0.900 (551)	0.996 (233)	0.877 (350)	0.775 (208)
	0/16	0.711 (141)	0.597 (317)	0.333 (119)	0.756 (274)	0.730 (114)	0.607 (475)	0.599 (473)	0.645 (396)	0.584 (184)	0.622 (134)	0.816 (391)	0.895 (351)	0.813 (610)	0.975 (238)	0.870 (353)	0.839 (192)
	0/16	0.697 (144)	0.578 (328)	0.339 (117)	0.754 (275)	0.464 (180)	0.743 (388)	0.689 (411)	0.645 (396)	0.584 (184)	0.618 (135)	0.767 (416)	0.897 (350)	0.837 (593)	0.975 (238)	0.875 (351)	0.757 (213)
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 2 14: The evaluation of all MaxSAT solvers in incomplete weighted track of MaxSAT Evaluation 2022.
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  ], which relates the truth table and the binary decision diagram of the same Boolean function. In other words, this proposition shows how to build the binary decision diagram structure by the corresponding truth table. Firstly, we introduce the basic idea and notations for a truth table. Let g be a Boolean function defined over a sequence of n Boolean variables [x 1 , . . . , x n ]. The function g can be represented by a truth table, which is a binary string of size 2 n listing values of all assignments of the n variables. A truth table β of length 2 n is called to be of order n.
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1: Some predefined functions in the algorithm.

  1 and IsBead(s) then // When the current string s is a Bead. Otherwise put the left child into the queue.

	8	if s ̸ ∈ T then
		// s is a new string, i.e., not seen before
	9	T.append(s)
	10	index ← T.index(s) + 1
	11	nodes.append((index, x level ))
	12	index ← T.index(s) + 1
		// s leads to sink nodes
	19	if LeadT oOne(s) then
	20	sink ← -1
	21	else
	22	sink ← -2
	23	if p = 0 then
	24	edges.append((1, sink, lef t))
	25	edges.append((1, sink, right))
	26	else
	27	edges.append((parent_id, sink, direction))
	28	else
	// 29 q.put((F irstHalf (s), parent_id, level + 1 , direction))
	30	else
		// The current string is a sink node.
	31	if s = 1 then
	32	sink ← -1
	33	else
	34	sink ← -2
	35	edges.append

13

if parent_id ≥ 1 then 14 edges.append

((parent_id, index, direction)) 

// Put the left and right child into the queue.

15 q.put((F irstHalf (s), index, level + 1, lef t)) 16 q.put((SecondHalf (s), index, level + 1, right))

17 else if Length(s) > 1 and not IsBead(s) then // When the current string s is not a Bead.

18 if LeadT oOne(s) or LeadT oZero(s) then

Table 3 .
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2: Description of the Boolean variables used in the SAT encoding of a binary decision diagram.

  .3 used in Example 3 and the decision tree of size 5 that classifies all of the examples shown in Figure 3.2. The dataset contains 4 binary features numered from left to right. , c 2 , c 3 , c 4 }.

	We consider to encode a binary decision diagram with depth H = 2. There-
	fore, two sets of variables are introduced, including {a 1 1 , a 2 1 , a 1 2 , a 2 2 , a 1 3 , a 2 3 , a 1 4 , a 2 4 } and
	{c 1

Table 3 .

 3 H results fromConstraints 3.5 and 3.6, each contains O(H × K) literals. For the remaining constraints, it is in O(H × K) for Constraints 3.1 and 3.2, O(2 H ) for Constraint 3.3.

			L
		C	0
		1	0
		Figure 3.2: The decision tree classifying
	3: The toy dataset from [Naro-	all examples of Table 3.3.
	dytska et al. 2018].	

M × 2
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 3 7: Detailed information of datasets from CP4IM used in experiments.

	Dataset	M	K orig	K	pos
	anneal	812	42	89	0.77
	audiology	216	67	146	0.26
	australian	653	51	124	0.55
	cancer	683	9	89	0.35
	car	1728	6	21	0.30
	cleveland	296	45	95	0.54
	hypothyroid	3247	43	86	0.91
	kr-vs-kp	3196	36	73	0.52
	lymph	148	27	68	0.55
	mushroom	8124	21	112	0.52
	tumor	336	15	31	0.24
	soybean	630	16	50	0.15
	splice-1	3190	60	287	0.52
	tic-tac-toe	958	9	27	0.65
	vote	435	16	48	0.61

Datasets r BDD1 BDD2 BDD3 Acc dopt E_Size Time Acc dopt E_Size Time Acc dopt E_Size Time

  

	anneal	0.05 N/A N/A N/A	N/A	68.65 6.3 94.34	192.74 67.44 6.3 128.99 191.85
		0.05 75.99 2.0	8.25	0.46	76.86 2.0	8.32	0.07	76.86 2.0	8.32	0.07
		0.1 91.22 2.5	28.58	0.84	90.97 2.5 20.14	0.07	90.41 2.5 20.82	0.08
	audilogy	0.15 92.54 2.8	53.68	1.39	93.3 2.8	32.6	0.09	93.08 2.8 34.28	0.12
		0.2 90.46 3.1 115.39	4.65	90.0 3.1 46.96	0.17	89.89 3.1	50.3	0.23
		0.25 92.94 3.6 235.28	31.79 92.45 3.6 68.14	0.39	92.52 3.6 74.75	0.54
	australian	0.05 80.21 3.3 0.1 N/A N/A N/A 85.36	21.65 79.02 3.3 33.58 N/A 77.46 6.2 152.12 7473.32 75.35 6.2 192.69 6358.56 0.54 79.94 3.3 36.5 0.58
		0.05 86.97 2.7	35.52	0.49	86.69 2.7 20.37	0.08	87.0 2.7 21.98	0.1
		0.1 89.97 4.0 231.55	4.95	89.24 4.0 60.08	0.55	90.54 4.0 70.85	1.09
	cancer	0.15 90.7 5.2 1048.1 156.32 90.29 5.2 129.32	3.72	90.03 5.2 166.25	6.62
		0.2 91.53 6.4 3907.14 10224.45 91.57 6.4 264.95	55.2	91.88 6.4 368.31 53.17
		0.25 N/A N/A N/A	N/A	92.16 6.4 351.21 200.12 92.03 6.4 491.52 203.52
	car	0.05 N/A N/A N/A	N/A	80.18 7.6 194.25 1924.9 78.67 7.6 320.01 1840.89
		0.05 68.19 2.5	14.06	0.86	64.72 2.5	10.3	0.07	65.25 2.5 10.77	0.07
		0.1 68.58 3.8	91.48	121.11 69.29 3.8 29.36	0.92	69.03 3.8 33.37	1.01
	cleveland	0.15 72.53 4.8	276.5	800.35 70.83 4.8	56.3	15.07 71.71 4.8 68.38	14.21
		0.2 N/A N/A N/A	N/A	68.78 6.1 108.99 2616.23 68.86 6.1 143.96 2547.35
		0.25 N/A N/A N/A	N/A	68.74 6.9 181.28 16405.46 67.61 6.9 251.67 22367.9
	hypothyrold 0.05 96.26 5.0 1318.04 319.09 96.3 5.0 182.24	2.98	96.56 5.0 233.26	3.04
		0.05 67.23 2.0	3.33	0.13	68.79 2.0	3.39	0.07	68.79 2.0	3.39	0.07
		0.1 67.69 2.6	11.08	0.46	70.37 2.6	7.9	0.07	70.75 2.6	8.47	0.07
	lymph	0.15 70.16 3.4	34.11	2.83	71.98 3.4 15.24	0.16	71.83 3.4 17.44	0.29
		0.2 70.34 3.9	69.76	21.77 72.94 3.9 22.36	0.62	71.51 3.9	26.6	0.59
		0.25 72.23 5.1 230.83	410.1 68.48 5.1 39.11	4.31	69.82 5.1 50.54	5.7
		0.05 99.55 5.3 5180.35 3774.19 99.48 5.3 600.28	28.32 99.53 5.3 749.65 42.64
		0.1 99.81 5.8 15236.92 12552.47 99.87 5.8 1387.26 116.07 99.82 5.8 1790.16 168.06
	mushroom	0.15 99.87 5.9 24750.11 20616.09 99.86 5.9 2136.23 210.98 99.85 5.9 2772.52 334.37
		0.2 99.97 6.0 35038.71 29342.71 99.92 6.0 2922.49 278.23 99.94 6.0 3812.44 573.5
		0.25 99.96 6.0 43816.89 33787.52 99.95 6.0 3651.83 437.4 99.95 6.0 4764.82 669.58
	soybean	0.05 80.52 3.9 0.1 84.47 5.9 708.43 1391.79 82.22 5.9 74.81 57.35 2.94 78.58 3.9 17.79	0.21 7.46	79.7 3.9 22.37 81.64 5.9 111.37	0.26 8.47
	tic-tac-toe	0.05 64.46 5.9 235.73 0.1 72.68 7.6 2061.03 18589.3 74.61 7.6 215.21 2846.24 72.49 7.6 353.61 2690.43 41.18 66.37 5.9 38.27 5.62 66.51 5.9 62.82 6.25
		0.05 90.89 2.1	6.07	0.27	91.09 2.1	5.67	0.08	91.09 2.1	5.81	0.08
		0.1 91.93 2.6	19.87	0.57	91.63 2.6 13.35	0.08	91.76 2.6 15.07	0.1
	vote	0.15 92.27 3.4	69.67	1.2	92.27 3.4	27.5	0.16	92.57 3.4 34.07	0.27
		0.2 92.35 4.1 206.77	26.43 92.44 4.1 47.57	0.71	92.29 4.1	63.6	1.1
		0.25 93.0 4.9 539.23 348.56 92.42 4.9 81.31	3.4	91.96 4.9 115.79	4.53
	Average	-84.77 4.18 4112.88 4018.15 83.35 4.55 342.37 841.87 83.24 4.55 448.91 976.86

Table 3 .

 3 8: Evaluation of different SAT encodings (BDD1, BDD2, and BDD3) for finding binary decision diagram of perfect accuracy with the smallest depth.

Opt U Train Test-S Test-P Test-C E_Size Time_F Time_S Opt U Train Test-S Test-P Test-C E_Size Time_F Time_S

  

				hypothyroid							cleveland							car							cancer							australian							audiology							anneal			
	8 0 72.95 95.36 94.81 94.99 94.94 957.42	7 0 61.44 97.47 96.95 97.04 97.06 579.94	6 0 46 98.37 97.92 97.95 97.95 385.4	5 0 33.75 98.3 98.05 98.05 98.05 274.03	4 0 13.75 98.27 98.14 98.14 98.13 200.09	3 0 2 98.09 98.04 98.04 98.04 142.78	2 100 0 97.84 97.84 97.84 97.84 92.65	8 0 53.86 96.01 75.27 75.40 73.58 92.18	7 0 34.12 93.4 75.41 75.95 76.02 57.04	6 0 14.63 90.74 77.42 77.69 77.29 38.66	5 0 3.25 88.65 78.72 78.72 78.72 27.89	4 0 1.75 86.32 79.46 79.46 79.46 20.55	3 0 0 85.07 83.37 83.37 83.37 14.73	2 100 0 79.04 72.57 72.57 72.57 9.48	8 0 56.45 91.41 89.62 89.64 89.64 365.55	7 0 46.09 94.24 93.98 93.98 93.98 182.61	6 0 39.25 93.51 92.99 92.99 92.99 97.06	5 0 25 91.13 89.91 89.91 89.91 55.79	4 0 3 89.84 88.54 88.54 88.54 34.44	3 8 1 88.4 87.41 87.41 87.41 21.95	2 100 0 85.53 85.53 85.53 85.53 13.32	8 0 79.55 97.36 92.95 93.12 93.15 205.24	7 0 71.41 97.15 93.94 94.23 94.12 125.26	6 0 55.56 96.84 94.35 94.29 94.35 83.83	5 0 42 95.94 93.65 93.79 93.74 59.91	4 0 25.50 96.06 95.49 95.49 95.49 43.89	3 100 19 95.02 93.91 93.91 93.91 31.37	2 100 0 93.88 93.59 93.59 93.59 20.29	8 0 53.07 91.49 82.66 82.43 82.77 226.03	7 0 43.03 90.74 83.86 84.11 84.11 145.83	6 0 33.12 90.05 85.67 85.67 85.7 102.49	5 0 22.88 89.36 85.85 85.91 85.91 75.9	4 0 7.50 88.45 86.03 86.03 86.03 56.85	3 0 0 87.45 84.81 84.81 84.81 41.15	2 100 18 86.70 85.94 85.94 85.94 26.79	8 100 85.09 100 93.43 94.64 94.91 82.51	7 48 76.84 99.7 94.36 94.45 94.73 54.93	6 48 59.88 99.17 95.65 95.74 95.84 39.59	5 72 48.50 98.4 95 95.27 94.44 29.82	4 100 25.25 97.73 95.28 95.65 95.56 22.56	3 100 0.50 96.78 95.84 95.84 95.84 16.41	2 100 0 94.91 94.92 94.92 94.92 10.59	8 0 88.12 86.58 83.55 83.64 83.60 243.71	7 0 82.69 86.55 83.77 83.74 83.72 148.69	6 0 73.44 86.26 83.67 83.60 83.70 99.47	5 0 64.38 85.33 83.87 83.87 83.92 71.08	4 0 58.75 84.58 83.82 83.82 83.84 52.06	3 0 49 84 83.55 83.55 83.55 37.21	2 100 25 82.92 82.19 82.19 82.19 24.09
	35.5	23.43	23.03	16.66	12.55	8.83	5.65	3.49	2.3	2.32	1.57	1.19	0.87	0.55	12.48	6.66	5.06	3.04	1.94	1.36	0.79	7.69	5.02	4.87	3.57	2.76	1.89	1.25	8.64	6.04	5.98	4.61	3.45	2.53	1.67	3.29	2.34	2.42	1.90	1.45	1.06	0.68	9.06	6.09	5.63	4.25	3.31	2.29	1.38
	TO	TO	TO	TO	TO	TO	77.76	TO	TO	TO	TO	TO	TO	83.84	TO	TO	TO	TO	TO	TO	24.82	TO	TO	TO	TO	TO	525.59	5.89	TO	TO	TO	TO	TO	TO	167.99	1.37	467.22	613.06	578.99	56.31	6.63	0.46	TO	TO	TO	TO	TO	TO	92.93
	0 77.36 95.5 94.86 95 95.03 1415.63	0 66.12 96.50 96.13 96.21 96.24 838.66	0 49.25 98.16 97.87 97.87 97.88 527.75	0 34.63 98.28 98 98.01 98 349.88	0 15.25 98.27 98.16 98.16 98.16 238.53	0 1.88 98.09 98 98.01 98.01 160.44	100 0 97.84 97.84 97.84 97.84 92.65	0 54.75 95.73 75.34 75.61 74.73 133.95	0 35.19 92.58 75.40 75.80 75.20 80.63	0 18.56 90.66 76.62 76.41 76.48 51.63	0 4.75 88.12 80.34 80.13 80.20 34.80	0 2.50 86.33 79.73 79.66 79.73 24.05	0 0 84.76 83.95 83.95 83.95 16.34	100 0 79.04 72.7 72.7 72.7 9.48	0 57.39 89.92 87.85 87.85 87.88 609.40	0 46.88 93.96 93.52 93.52 93.52 320.29	0 35.50 93.06 92.19 92.19 92.19 172.81	0 25 91.22 90.01 90.01 90.01 96.15	0 10 89.61 88.45 88.45 88.45 54.90	4 1 88.35 87.59 87.59 87.59 31.35	100 0 85.53 85.53 85.53 85.53 13.32	0 82.66 97.46 94.23 94.32 94.20 301.62	0 72.22 96.66 93.56 93.85 93.85 179.68	0 56.19 96.36 93.71 93.65 93.53 113.77	0 43.25 95.94 94.47 94.5 94.5 75.87	0 26.88 96.05 95.21 95.21 95.21 51.98	76 20 95.02 93.65 93.65 93.65 35.09	100 0 93.88 93.63 93.63 93.63 20.29	0 60.86 90.80 83.98 83.12 84.32 318.18	0 47.94 90.26 84.47 84.26 84.62 197.86	0 33.19 89.80 85.21 85.21 85.24 131.12	0 18.62 89.29 85.09 85.12 85.12 91.15	0 10.50 88.51 85.33 85.33 85.33 64.58	0 1 87.45 84.96 84.96 84.96 44.71	100 22.50 86.71 86.41 86.41 86.41 26.79	100 84.97 100 94.07 94.91 95.38 112.99	48 75.53 99.7 94.63 94.90 95.09 72.14	44 60.94 99.17 95.47 95.38 95.19 49.06	54 50.78 98.38 95.14 95.25 95.14 34.87	100 25 97.74 95.84 95.84 95.84 25.12	100 1 96.78 95.74 95.93 95.93 17.59	100 0 94.91 94.92 94.92 94.92 10.59	0 87.83 86.16 83.60 83.60 83.69 358.30	0 85.12 86.21 84.66 84.56 84.63 213.39	0 74.44 86 83.74 83.77 83.77 135.07	0 64.62 85.20 83.84 83.89 83.89 90.05	0 58.75 84.64 84.04 84.01 84.01 61.68	0 49 83.97 83.55 83.55 83.55 41.63	100 25 82.92 82.24 82.24 82.24 24.09
	52.72	31.91	21.08	14.54	10	7.19	4.2	5.26	3.15	2.22	1.44	1	0.73	0.43	21.26	11.45	6.31	3.73	2.15	1.3	0.61	11.35	6.98	4.74	3.21	2.25	1.55	0.95	12.29	8.01	5.36	3.93	2.82	1.91	1.24	4.51	2.96	2.09	1.49	1.11	0.76	0.47	13.48	8.38	5.53	3.76	2.66	1.84	1.06
	TO	TO	TO	TO	TO	TO	91.94	TO	TO	TO	TO	TO	TO	87.71	TO	TO	TO	TO	TO	TO	20.52	TO	TO	TO	TO	TO	657.85	6.23	TO	TO	TO	TO	TO	TO	147.66	5.05	468.41	751.94	636.08	89.93	6.99	0.35	TO	TO	TO	TO	TO	TO	94.67
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 3 9: Evaluation of MaxSAT-BDD2 and MaxSAT-BDD3 in terms of prediction performance and effectiveness of reporting optimality (Part 1).

	Datasets d
	MaxSAT-BDD2

MaxSAT-BDD3 Opt U Train Test-S Test-P Test-C E_Size Time_F Time_S Opt U Train Test-S Test-P Test-C E_Size Time_F Time_S

  

				vote							tic-tac-toe							splice-1							soybean							tumor							mushroom							lymph							kr-vs-kp			
	8 28 59.28 99.75 91.22 92.87 93.24 107.88 3.79	7 20 42.03 99.46 92.64 93.47 93.15 59.75 2.22	6 4 20.62 98.93 93.66 94.34 93.98 36.2 1.95	5 0 7 98.21 94.48 94.62 94.57 23.83 1.37	4 8 5.25 97.4 94.39 94.39 94.39 16.49 0.93	3 100 2 96.69 94.62 94.57 94.57 11.38 0.65	2 100 10 95.68 95.22 95.22 95.22 7.2 0.42	8 0 40.92 86.83 81.86 82.23 82.36 210.37 7.19	7 0 18.78 86.55 82.04 82.29 82.04 107.93 3.98	6 0 5.06 84.82 80.19 80.17 80.08 59.52 2.99	5 0 0.75 81.86 80.29 80.29 80.31 35.67 1.93	4 0 5 76.87 74.22 74.22 74.22 22.88 1.34	3 0 0 74.91 72.36 72.36 72.36 15.01 0.90	2 100 0 71.05 68.35 68.35 68.35 9.25 0.56	8 0 73.70 56.04 55.18 55.23 55.22 1764.15 72.1	7 0 44.97 60.82 59.96 60.01 60.03 1290.34 55.92	6 0 26 62.92 61.88 61.9 61.89 996.27 64.65	5 0 10.25 71.99 70.53 70.53 70.53 783.9 49.73	4 0 14.25 88.3 88.04 88.04 88.04 608.3 39.67	3 0 3 87.25 86.94 86.94 86.94 449.04 28.74	2 0 0 84.04 84.04 84.04 84.04 296.61 18.69	8 0 82 97.52 96.67 96.86 96.79 157.44 5.68	7 0 73.50 96.69 95.49 95.46 95.56 87.65 3.41	6 0 61.38 96.07 95.56 95.52 95.52 53.41 2.92	5 0 44.75 94.31 92.95 93.02 92.95 35.34 2.04	4 0 23.50 93.24 93.21 93.21 93.21 24.54 1.48	3 68 17.50 91.39 90.41 90.41 90.41 16.99 1.02	2 100 0 90.48 90.48 90.48 90.48 10.79 0.64	8 0 65.88 91.52 79.81 79.16 78.92 76 2.6	7 0 50.22 90.16 81.96 81.60 82.02 39.72 1.46	6 0 29.44 88.57 81.72 81.66 81.12 22.44 1.2	5 0 23.75 87.51 86.06 85.77 85.83 13.79 0.8	4 0 4.25 85.52 82.55 82.43 82.49 9.04 0.5	3 0 1.25 83.84 80.43 80.43 80.43 6.02 0.35	2 100 0 82.8 81.60 81.60 81.60 3.72 0.21	8 44 89.16 89.62 89.7 89.7 89.7 2663.93 101.02	7 20 84.84 93.25 93.26 93.26 93.26 1686.1 67.41	6 4 75.44 97.28 97.1 97.1 97.1 1165.88 75.77	5 0 64.50 98.63 98.57 98.57 98.57 853.68 52.90	4 0 49.75 98.78 98.74 98.74 98.74 635.09 40.63	3 0 38 97.74 97.77 97.77 97.77 458.1 28.60	2 100 0 95.13 95.13 95.13 95.13 299.19 18.83	8 24 73.62 99.29 77.56 77.69 78.9 41.41 1.5	7 0 56.78 97.80 79.58 80.79 82.56 24.37 0.93	6 0 37.56 95.88 83.20 84.70 84.82 15.74 0.9	5 0 11.37 93.51 83.21 83.88 83.60 10.94 0.63	4 0 3 90.54 82.40 82.67 82.40 7.86 0.44	3 32 4 86.76 78.35 78.35 78.35 5.55 0.40	2 100 0 84.46 83.23 83.23 83.23 3.5 0.20	8 0 68.80 86.78 86.33 86.36 86.38 889.04 32.56	7 0 51.64 85.84 84.89 84.89 84.92 524.16 20.24	6 0 53 92.80 92.55 92.54 92.55 339.35 19.59	5 0 45.25 94.34 94.18 94.18 94.18 236.39 14.20	4 0 18.75 94.09 94.09 94.09 94.09 170.28 10.20	3 0 0 90.43 90.43 90.43 90.43 120.54 7.54	2 0 0 77.83 77.01 77.01 77.01 77.88 4.72
	647.85 28 58.41 99.75 92.23 92.55 93.15 169.26	776.54 8 40.81 99.44 92.05 93.38 93.38 94.41	TO 0 22 98.93 94.44 94.44 94.11 55.27	TO 0 6.75 98.21 94.67 94.39 94.57 33.99	TO 4 4.50 97.38 94.16 94.16 94.21 21.64	94.11 100 0.50 96.69 94.62 94.62 94.62 13.75	0.70 100 8 95.68 95.08 95.08 95.08 7.2	TO 0 53.84 72.90 65.20 65.80 65.53 345.56	TO 0 26.59 82.28 78.14 78.41 78.35 184.26	TO 0 5.69 83.94 81.4 81.27 81.33 101.52	TO 0 1.62 82.17 79.29 79.33 79.27 58.05	TO 0 9 77.25 74.24 74.24 74.24 34.23	TO 0 0 74.86 72.19 72.19 72.19 20.22	48.01 100 0 71.05 68.35 68.35 68.35 9.25	TO 0 59.58 55.81 54.35 54.48 54.49 2214.33	TO 0 46.66 54.45 52.92 52.93 52.92 1544.52	TO 0 11.44 55.90 55.01 55.03 55.01 1136.12	TO 0 3.62 66.94 66.29 66.29 66.29 858.42	TO 0 12 87.92 87.73 87.73 87.73 646.07	TO 0 5 87.3 86.95 86.95 86.95 466.39	TO 0 0 83.97 83.96 83.96 83.96 296.61	TO 0 81.45 97.14 96.10 96.06 96.25 246.35	TO 0 73.41 96.47 95.30 95.30 95.33 137.84	TO 0 61.37 96.06 95.52 95.56 95.49 81.03	TO 0 47 94.17 93.37 93.40 93.43 50.05	TO 0 24 93.24 93.02 93.02 93.02 32	706.39 54 16.88 91.38 90.40 90.40 90.40 20.41	9.51 100 0 90.48 90.48 90.48 90.48 10.79	TO 0 66.33 91.46 80.35 80.65 80.58 123.42	TO 0 50.75 90.18 83.26 82.49 82.13 66.49	TO 0 31.31 88.53 81.60 82.02 81.66 37.17	TO 0 23.12 87.51 86.36 85.89 85.41 21.64	TO 0 3.75 85.52 82.91 82.97 82.97 13.02	TO 0 1 83.81 80.47 80.53 80.47 7.85	5.46 100 0 82.8 81.78 81.78 81.78 3.72	530.65 N/A N/A N/A N/A N/A N/A N/A	736.99 0 81.88 88.54 88.48 88.48 88.48 2333.42	855.34 8 74.75 92.72 92.89 92.89 92.89 1522.04	TO 0 63.50 96.62 96.48 96.48 96.48 1043.46	TO 0 51 98.64 98.59 98.59 98.59 731.28	TO 0 41 97.94 97.93 97.93 97.93 502.30	425.74 100 0 95.13 95.13 95.13 95.13 299.19	683.94 24 73.73 99.29 76.07 78.25 77.79 62.30	TO 0 57.78 97.84 78.63 79.57 80.94 36.16	TO 0 35.81 95.74 83.35 83.10 84.70 22.23	TO 0 13 93.48 82.53 82.93 83.21 14.40	TO 0 4 90.54 82.81 82.81 82.67 9.61	829.42 28 5 86.76 78.88 78.88 78.88 6.36	2.84 100 0 84.46 84.03 84.03 84.03 3.5	TO 0 66.66 79.38 78.74 78.78 78.78 1340.06	TO 0 53.62 88.8 88.38 88.39 88.4 778.81	TO 0 48 93.26 92.87 92.87 92.87 479.46	TO 0 45 94.29 94.24 94.24 94.24 311.05	TO 0 18.75 94.09 94.09 94.09 94.09 208.12	TO 0 0 90.43 90.43 90.43 90.43 137.92	TO 4 0 77.83 76.95 76.95 76.95 77.88
	6.36	3.56	2.11	1.33	0.87	0.57	0.32	12.42	6.67	3.68	2.21	1.33	0.81	0.41	87.79	64.58	48.06	37.78	29.13	21.23	13.45	9.05	5.19	3.15	1.98	1.33	0.88	0.48	4.55	2.58	1.43	0.83	0.52	0.33	0.18	N/A	91.08	61.65	43.74	31.28	21.93	13.84	2.31	1.40	0.9	0.57	0.41	0.26	0.16	49.04	29.14	18.89	12.59	9	6.11	3.64
	653.15	TO	TO	TO	TO	138.77	0.65	TO	TO	TO	TO	TO	TO	45.67	TO	TO	TO	TO	TO	TO	TO	TO	TO	TO	TO	TO	755.15	8.8	TO	TO	TO	TO	TO	TO	5.28	N/A	TO	852.08	TO	TO	TO	434.89	694.89	TO	TO	TO	TO	858.12	2.88	TO	TO	TO	TO	TO	TO	TO

Table 3 .

 3 10: Evaluation of MaxSAT-BDD2 and MaxSAT-BDD3 in terms of prediction performance and effectiveness of reporting optimality (Part 2).

Train Test Size E_Size Train Test Size E_Size F_d

  

	Datasets H		MaxSAT-BDD			MaxSAT-DT
		2	82.92 82.19	5	24.09	83.18 82.14 6.84	52.72	2.88
		3	84	83.55	7	37.21	85.07 84.66 12.68	126.18	5.76
	anneal	4	84.58 83.84	9.4	52.06	86.05 84.78 18.68	315.45	8.64
		5	85.33 83.92 11.72	71.08	86.44 84.88 23.88	865.26	11.08
		6	86.26 83.70 14.68	99.47	87.6	85.76 39.16 2666.67 17.32
		2	94.91 94.92	4	10.59	95.49 94.92	7	31.35	3
		3	96.78 95.84 5.04	16.41	97.82 95.56 11.56	88.75	5.28
	audiology	4	97.73 95.56 6.96	22.56	99.51 94.54 19.08	272.15	8.68
		5	98.40 94.44 9.88	29.82	99.95 93.98	27	915.29	11.72
		6	99.17 95.84 14.28	39.59	99.86 94.08 24.12 3323.61 10.88
		2	86.70 85.94 4.72	26.79	86.93 85.33 6.68	59.65	2.84
		3	87.45 84.81 5.32	41.15	88.09 84.87 13.08	146.15	5.68
	australian	4	88.45 86.03	7.4	56.85	88.74 85.18 17.48	377.62	7.92
		5	89.36 85.91 10.44	75.9	89.28 84.75 22.52 1076.35 10.08
		6	90.05	85.7 17.32 102.49	89.49 84.84 27.08 3433.64 12.20
		2	93.88 93.59	4	20.29	94.91	94.2	7	45.56	3
		3	95.02 93.91 5.84	31.37	96.6	94.73	15	110.85	6.96
	cancer	4	96.06 95.49 7.96	43.89	97.34 94.17	21	283.77	9.44
		5	95.94 93.74 10.68	59.91	97.99 94.35 29.32	800.89	13.20
		6	96.84 94.35 14.8	83.83	98.87 93.41 45.72 2536.91 19.88
		2	85.53 85.53	4	13.32	85.53 85.53 6.84	32.01	2.92
		3	88.40 87.41 5.08	21.95	89.25 87.45 12.68	71.83	5.64
	car	4	89.84 88.54 6.84	34.44	91.62 89.68 20.36	162.46	7.68
		5	91.13 89.91	9.6	55.79	93.78 92.77 29.56	389.68	10.24
		6	93.51 92.99 13.36	97.06	95.8	95.06 31.96 1044.54 10.88
		2	79.04 72.57	4	9.48	80.76 72.84	7	25.57	3
		3	85.07 83.37	6	14.73	85.68 76.55 12.84	68.93	5.72
	cleveland	4	86.32 79.46 7.84	20.55	86.77 76.75 17.80	200.76	8.04
		5	88.65 78.72 13.08	27.89	87.26 74.45 23.96	646.75	10.84
		6	90.74 77.29 21.04	38.66	88.58 75.81 28.84 2284.76 13.08
		2	97.84 97.84	4	92.65	97.84 97.84 5.96	182.20	2.48
		3	98.09 98.04 5.12	142.78	98.14 97.82 9.72	402.98	4.32
	hypothyroid	4	98.27 98.13 6.72	200.09	98.38 98.01 15.40	885.51	7.12
		5	98.30 98.05 9.28	274.03	98.45	98	20.04 2016.31	8.92
		6	98.37 97.95 13.68	385.4	98.46 97.91 33.16 4957.57 14.04
		2	77.83 77.01	4	77.88	86.92 86.92	7	155.09	3
		3	90.43 90.43 5.28	120.54	93.81 93.79 12.44	342.99	5.08
	kr-vs-kp	4	94.09 94.09 7.56	170.28	94.32 94.14 17.24	753.78	7.12
		5	94.34 94.18 9.52	236.39	94.85 94.69 25.40 1717.14 10.20
		6	92.80 92.55 11.52 339.35	93.91 93.69 29.32 4227.67 12.20
		2	84.46 83.23	4	3.5	86.01 79.27	7	12.33	3
		3	86.76 78.35 5.92	5.55	91.93 80.54 14.68	36.65	6.64
	lymph	4	90.54	82.4	8.72	7.86	94.56 78.46 20.20	117.94	8.88
		5	93.51	83.6 13.52	10.94	97.09 82.46 27.08	413.09	11.88
		6	95.88 84.82 17.64	15.74	99.59 80.92 46.60 1550.34 18.96
		2	95.13 95.13	4	299.19	96.9	96.9	7	565.27	3
		3	97.74 97.77	6.8	458.1	99.9	99.9 13.72 1227.18	6.24
	mushroom	4	98.78 98.74	9	635.09	100	100 19.80 2603.94	9.08
		5	98.63 98.57 11.32 853.68	100	100 23.40 5571.14 10.64
		6	97.28 97.10 14.6 1165.88	100	100 27.56 12376.90	12
		2	82.80	81.6	4	3.72	82.92 81.01 6.76	10.46	2.88
		3	83.84 80.43	5.3	6.02	86.16 82.97 13.88	27.24	6.08
	tumor	4	85.52 82.49 8.64	9.04	87.89 82.85 20.92	76.40	9.16
		5	87.51 85.83 13.32	13.79	90.1	79.34 47.80	239.09	16.84
		6	88.57 81.12 19.84	22.44	90.34 81.31 37.32	838.63	15.04
		2	90.48 90.48	4	10.79	91.27 91.27	7	25.55	3
		3	91.39 90.41 6.52	16.99	95.45	94.7	15	62.30	7
	soybean	4	93.24 93.21 9.04	24.54	97.25	95.9 22.20	160.18	9.88
		5	94.31 92.95 11.92	35.34	97.96	95.3 40.60	455.33	15.72
		6	96.07 95.52 14.88	53.41	98.27 96.03 33.40 1459.87 14.40
		2	84.04 84.04	4	296.61	84.22 83.17 6.92	555.22	2.96
		3	87.25 86.94 5.44	449.04	87.79 87.37 11.32 1231.59	4.64
	splice-1	4	88.3	88.04 7.24	608.3	86.52 85.64 16.60 2717.90	7.12
		5	71.99 70.53 10.28	783.9	77.37 76.32 21.88 6226.75	9.48
		6	62.92 61.89 16.28 996.27	60.36 58.95 29.40 15406.05 12.28
		2	71.05 68.35	4	9.25	71.1	67.49 5.96	22.31	2.48
		3	74.91 72.36 6.16	15.01	77.15 73.55 11.48	51.98	5.20
	tic-tac-toe	4	76.87 74.22 8.84	22.88	82.47 78.68 20.60	125.10	8.44
		5	81.86 80.31 13.88	35.67	83.08 79.50 28.44	328.33	11.16
		6	84.82 80.08 24.16	59.52	84.25 80.86 38.12	979.46	13.24
		2	95.68 95.22 3.76	7.2	96.21 95.03	7	18.33	3
		3	96.69 94.57 5.56	11.38	97.39 93.79 13.96	46.55	6.04
	vote	4	97.40 94.39 8.16	16.49	98.62 94.57 21.16	126.45	9.32
		5	98.21 94.57 12.4	23.83	99.47 93.84 30.52	381.95	12.96
		6	98.93 93.98 18.44	36.2	99.62 94.76 35.40 1292.44 14.88

Table 3 .

 3 11: Comparison of model size and encoding size between MaxSAT-BDD and MaxSAT-DT.

Train Test Size F_d Opt Train Test Size E_Size Time Opt Train Test Size E_Size Time

  

	vote	tic-tac-toe	splice-1	soybean	tumor	mushroom	lymph	kr-vs-kp	hypothyroid	cleveland	car	cancer	australian	audiology	anneal
	2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6 2 3 4 5 6
	81.53 81.21 6.12 2.56 81.72 81.38 11.08 4.92 82.60 81.33 18.04 8.40 84.69 82.29 27.88 12.32 86.32 84.04 39.80 17 94.91 94.92 5 2 97.36 94.82 9 4 98.73 95.37 13.08 6 99.42 95.28 17.08 8 99.88 95.47 19.08 9 86.68 86.62 7 3 86.91 84.26 13.08 6 89.23 85.79 24.92 11.84 90.9 84.53 41.64 19.24 92.86 83.24 64.28 28.84 94.5 93.91 7 3 95.7 94.41 13.24 6.08 96.91 94.26 21.08 9.88 97.83 94.20 30.36 14.04 98.54 94.38 38.84 17.68 85.53 85.53 5 2 88.5 87.53 7 3 89.46 87.86 11 5 93.88 93.47 18.20 7.80 94.9 93.37 28.68 10.32 78.13 72.97 7 2.72 85.68 80.41 15 6.24 88.31 77.09 29.96 13 92.9 76.82 49.88 21.36 96.3 74.79 67.80 28.92 97.84 97.84 6.92 2.96 98.13 97.86 12.84 5.52 98.39 98.15 22.04 9.80 98.48 98.04 31.72 14.24 98.6 97.99 43.56 18.92 77.30 76.35 5 2 90.43 90.43 8.44 3.72 94.09 94.09 13.88 6.44 94.09 94.09 21.88 9.96 94.29 93.87 31.32 14.04 84.53 82.25 7 3 90.07 78.34 14.92 6.52 95.1 80.91 25.80 11.76 98.34 81.58 33.40 14.96 99.76 81.02 36.76 15.76 92.71 92.71 7 3 96.56 96.54 11 5 99.95 99.94 16.92 7.96 99.96 99.94 18.92 8.96 99.97 99.96 20.92 9.76 82.77 80.65 7 3 84.94 79.76 15 6.72 87.01 81.30 28.68 11.96 89.42 81.31 48.20 17.52 91.34 80.24 68.60 21.04 89.13 88.54 6.92 2.76 92.11 90.95 13.08 5.60 94.36 93.05 21 9.40 96.29 94.13 31.88 13.40 97.58 94.89 43.48 16.88 84.04 84.04 7 3 91.34 90.85 15 6.20 95.44 95.34 28.52 10.60 96.29 95.52 46.92 17.20 97.45 95.44 76.44 29.64 70.80 68.58 7 2.96 75.65 73.21 15 6.76 84.14 81.8 27 11.04 91.7 89.73 43.72 16 95.46 92.36 66.68 19.28 95.63 94.90 7 3 96.84 94.94 14.44 6.56 97.86 94.80 24.60 10.72 98.87 94.48 34.20 14.16 99.49 94.16 40.04 16.60
	100 100 100 12 0 100 100 100 100 100 100 100 84 0 0 100 100 100 60 0 100 100 100 24 0 100 100 24 0 0 100 100 100 0 0 100 100 100 20 0 100 100 100 88 40 100 100 100 96 4 100 100 76 0 0 100 100 100 28 0 100 100 4 0 0 100 100 0 0 0 100 100 100 92 60
	81.53 81.13 3.56 1.45 0.13 81.71 81.33 5.24 4.03 1.64 82.57 81.08 7.08 9.64 109.65 84.86 83.37 11.12 20.62 780.08 86.01 83.74 13.56 42.6 845.72 94.91 94.92 4 0.35 0.01 96.78 95.38 5.04 1 0.02 97.73 95.56 7.04 2.27 0.08 98.31 95.28 9.76 4.8 0.49 98.87 95.84 13 9.78 2.13 86.68 86.62 4.92 1.26 0.09 86.83 85.09 5.48 3.59 2.41 88.24 85.30 6.8 9.22 536.16 89.27 85.67 10.64 20.28 845.28 89.95 84.47 16.12 41.85 TO 93.81 93.59 4 1.32 0.06 94.89 94.14 5.64 3.78 0.52 95.71 94.50 7.8 8.77 20.44 96.35 94.35 10.92 18.32 637.98 96.98 94.67 15.20 36.33 864.36 85.53 85.53 4 2.77 0.14 88.5 87.53 5 6.94 0.74 89.45 87.93 6.4 16.64 14.83 91.34 90.08 9.24 37.43 843.14 93.30 92.65 11.76 79.23 TO 77.99 72.43 3.76 0.55 0.04 85.07 84.2 6 1.68 2.28 86.15 81.49 7.6 4.46 811.89 88.21 78.84 13.24 9.82 862.94 90.64 78.64 20.2 19.2 TO 97.84 97.84 4 6.2 0.43 98.09 97.99 5.16 16.95 4.62 98.28 98.2 6.56 41.23 262.45 98.32 98.07 8.84 87.02 TO 98.37 97.99 13.32 175.62 TO 77.30 76.35 4 5.12 0.55 90.43 90.43 5.40 13.92 5.77 94.09 94.09 7.68 33.69 56.23 94.09 94.09 8.48 74.68 795.33 94.42 93.97 11.80 157.84 846.3 84.39 83.89 4 0.29 0.01 86.62 81.59 6 0.88 0.29 90.40 84.97 8.36 2.16 17.38 92.97 83.62 12.88 4.21 277.57 95.37 85.33 17.64 7.78 626.2 91.83 91.83 4 15.61 6.82 95.37 95.37 5.8 40.33 23.11 98.52 98.52 8.24 93.45 89.39 99.41 99.41 11.12 183.13 458.08 99.70 99.69 13.32 367.46 821.83 82.75 80.83 4 0.66 83.71 80.06 5.56 1.99 85.46 82.38 8.48 4.82 87.47 84.69 13.12 10.06 88.60 81.54 20.52 19.12 89.30 88.76 4 1.17 90.71 90.79 5 3.34 92.44 91.75 7.92 7.9 93.90 93.37 11.08 16.58 95.65 95.24 14.56 33.04 84.04 84.04 4 6.13 89.31 89.31 5.32 17.7 92.92 92.92 7.36 42.15 94.48 94.29 9.68 93.08 79.13 78.22 15.12 205.48 70.80 68.58 3.76 1.84 74.26 72.90 6.04 5.6 76.89 73.86 9.04 12.99 79.79 77.02 14.24 27.15 82.97 79.54 24.04 52.34 95.66 95.31 3.12 0.85 96.53 95.03 5.56 2.52 97.16 94.99 8 5.86 97.91 94.62 12.24 11.77 98.69 93.84 18.08 22.77 0.05 3.11 510.07 TO TO 0.05 1.22 96.96 804.03 TO 4.06 67.13 841.79 TO TO 0.65 92.88 TO TO TO 0.02 0.35 13.07 280.12 507.15
	100 0 0 0 0 100 100 100 72 48 100 0 0 0 0 100 100 0 0 0 100 8 0 0 0 100 0 0 0 0 100 0 0 0 0 0 0 0 0 0 100 32 0 0 0 100 0 0 0 4 100 0 0 0 0 100 68 0 0 0 0 0 0 0 0 100 0 0 0 0 100 100 8 0 4
	82.92 82.19 5 24.09 92.93 84 83.55 7 37.21 TO 84.58 83.84 9.40 52.06 TO 85.33 83.92 11.72 71.08 TO 86.26 83.70 14.68 99.47 TO 94.91 94.92 4 10.59 0.46 96.78 95.84 5.04 16.41 6.63 97.73 95.56 6.96 22.56 56.31 98.40 94.44 9.88 29.82 578.99 99.17 95.84 14.28 39.59 613.06 86.7 85.94 4.72 26.79 167.99 87.45 84.81 5.32 41.15 TO 88.45 86.03 7.40 56.85 TO 89.36 85.91 10.44 75.90 TO 90.05 85.7 17.32 102.49 TO 93.88 93.59 4 20.29 5.89 95.02 93.91 5.84 31.37 525.59 96.06 95.49 7.96 43.89 TO 95.94 93.74 10.68 59.91 TO 96.84 94.35 14.8 83.83 TO 85.53 85.53 4 13.32 24.82 88.40 87.41 5.08 21.95 TO 89.84 88.54 6.84 34.44 TO 91.13 89.91 9.60 55.79 TO 93.51 92.99 13.36 97.06 TO 79.04 72.57 4 9.48 83.84 85.07 83.37 6 14.73 TO 86.32 79.46 7.84 20.55 TO 88.65 78.72 13.08 27.89 TO 90.74 77.29 21.04 38.66 TO 97.84 97.84 4 92.65 77.76 98.09 98.04 5.12 142.78 TO 98.27 98.13 6.72 200.09 TO 98.30 98.05 9.28 274.03 TO 98.37 97.95 13.68 385.40 TO 77.83 77.01 4 77.88 TO 90.43 90.43 5.28 120.54 TO 94.09 94.09 7.56 170.28 TO 94.34 94.18 9.52 236.39 TO 92.80 92.55 11.52 339.35 TO 84.46 83.23 4 3.50 2.84 86.76 78.35 5.92 5.55 829.42 90.54 82.40 8.72 7.86 TO 93.51 83.60 13.52 10.94 TO 95.88 84.82 17.64 15.74 TO 95.13 95.13 4 299.19 425.74 97.74 97.77 6.80 458.10 TO 98.78 98.74 9 635.09 TO 98.63 98.57 11.32 853.68 TO 97.28 97.10 14.60 1165.88 855.34 82.8 81.6 4 3.72 83.84 80.43 5.3 6.02 85.52 82.49 8.64 9.04 87.51 85.83 13.32 13.79 88.57 81.12 19.84 22.44 90.48 90.48 4 10.79 91.39 90.41 6.52 16.99 93.24 93.21 9.04 24.54 94.31 92.95 11.92 35.34 96.07 95.52 14.88 53.41 84.04 84.04 4 296.61 87.25 86.94 5.44 449.04 88.30 88.04 7.24 608.30 71.99 70.53 10.28 783.90 62.92 61.89 16.28 996.27 71.05 68.35 4 9.25 74.91 72.36 6.16 15.01 76.87 74.22 8.84 22.88 81.86 80.31 13.88 35.67 84.82 80.08 24.16 59.52 95.68 95.22 3.76 7.20 96.69 94.57 5.56 11.38 97.40 94.39 8.16 16.49 98.21 94.57 12.40 23.83 98.93 93.98 18.44 36.20 5.46 TO TO TO TO 9.51 706.39 TO TO TO TO TO TO TO TO 48.01 TO TO TO TO 0.70 94.11 TO TO TO
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 I OF DATASETS FOR LEARNING OPTIMAL BOOSTED TREES.

	Dataset #s / #f b	anneal 812/89	australian 653/124	car 1728/21 296/95 336/31 heart tumor	tic-tac-toe 958/27

•

  P * dt (E , H): Pour un ensemble d'exemples E donné, trouver un arbre de décision binaire valide de profondeur maximale/exacte fixée H, qui maximise le nombre d'exemples de E correctement classifiés. Trois adapatations sont proposées pour arriver à résoudre le problème d'optimisation P Modèle MaxSAT pour résoudre le problème d'optimisation P * dt (E , N ) : Pour un ensemble d'exemples E donné, trouver un arbre de décision binaire valide de taille N , qui maximise le nombre d'exemples de E correctement classifiés. Ajouter des contraintes pour contrôler la profondeur maximale/exacte de l'arbre de taille donnée N . Cette adaptation consiste à proposer un modèle MaxSAT pour résoudre le problème P * dt (E , N , H): trouver un arbre de décision binaire de taille N avec une profondeur maximale/exacte H, qui maximise le nombre d'exemples de E correctement classifiés. Ajouter des contraintes pour encoder la relaxation de la taille de l'arbre avec N comme borne supérieure. Cette adaptation consiste à proposer un modèle MaxSAT pour résoudre le problème P * dt (E , [N l , N ], H): trouver un arbre de décision binaire dont la taille est dans [N l , N ], avec une profondeur maximale/exacte H, qui maximise le nombre d'exemples de E correctement classifiés. L'intégration de ces trois adaptations permet de résoudre le problème P * dt (E , H) visé. Plus précisément, on peut résoudre le problème P * dt (E , [3, 2 H+1 -1], H) pour la contrainte sur la profondeur maximale, et le problème P * dt (E , [2H + 1, 2 H+1

	• Adapatation 2: • Adapatation 3:

* dt (E , H) :

• Adapatation 1:

•

  P * bdd (E , H): Pour un ensemble d'exemples E donné, trouver un diagramme de décision binaire avec la profondeur H, qui maximise le nombre d'exemples de E correctement classifiés. Inspirés par la méthodologie de résolution de nos recherches précédentes P * dt (E , H), nous introduisons d'abord un modèle SAT pour trouver le diagramme de décision binaire nécessitant le plus petit nombre d'attributs (la profondeur d'un BDD est égale au nombre d'attributs utilisés pour l'apprentissage) pour classifier correctement tous les exemples, qui est décrit comme le problème décision suivant: • P bdd (E , H): Pour un ensemble d'exemples E donné, existe-t-il un diagramme de décision binaire avec la profondeur H, qui classife correctement tous les exemples de E ? Ensuite, nous introduisons un modèle MaxSAT basé sur le modèle SAT pour résoudre le problème d'optimisation P * bdd (E , H), en utilisant la même technique que celle mise en oeuvre pour notre modèle MaxSAT apprenant des arbres de décision.

  C.3.1.2 Modèle SAT proposé pour P bdd (E , H) En s'appuyant sur la proposition précédente, un diagramme de décision binaire de profondeur H peut être construit par la combinaison d'une suite de variables booléennes de taille H : [x 1 , . . . , x H ], et d'une table de vérité associée à une fonction booléenne. Pour la classification binaire, nous cherchons ainsi à trouver une séquence d'attributs binaires de taille H qui mappe un-par-un la séquence de variables booléennes. En résumé, pour résoudre le problème de décision P bdd (E , H), il faut trouver une séquence d'attributs binaires de taille H, et une table de vérité associée à une fonction booléenne qui classifie correctement tous exemples de E . Le modèle SAT proposé s'appuie sur deux familles de contraintes: • Partie 1: Contraintes pour relier les attributs du jeu de données à la séquence d'attributs de taille H. Contraintes pour générer la table de vérité, qui classifie correctement tous les exemples de E avec la séquence d'attributs choisi.

• Partie 2:

Learn more details from http://www.satcompetition.org/.

Learn more details from https://maxsat-evaluations.github.io/.

https://dtai.cs.kuleuven.be/CP4IM/datasets/
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The example e 1 (Table 3.3) is a negative one: e 1 ∈ E -, we then apply Constraint 3.6. We remind the feature vector of e 1 is (1010). For the value of variable c 1 , we have:

This could be simplified as the following clause:

Similarly, we could generate other classification constraints for each example.

For the negative example e 1 , whose feature vector is (1010):

For the negative example e 2 , whose feature vector is (1001):

For the positive example e 3 , whose feature vector is (0010):

For the negative example e 4 , whose feature vector is (1100):

For the positive example e 5 , whose feature vector is (0001):

For the negative example e 6 , whose feature vector is (1111):

For the negative example e 7 , whose feature vector is (0110):

For the positive example e 8 , whose feature vector is (0011):

An assignment satisfying all constraints is the following:

This assignment indicates that the feature ordering is [L, C], and the truth table found is 1000. Table 3.4 illustrates the relationship between the values of truth table and the assignments of the given feature ordering. Figure 3.3 shows the corresponding binary decision diagram, which provides more compact representation than the decision tree shown in Figure 3.2. To simplify the notation, in the following, we refer to this proposed SAT encoding for the problem P bdd (E , H) as BDD1. We now present a theoretical analysis of the model size for BDD1. As we consider the dataset E contains M examples with K binary features, the encoding size of BDD1 (in the number of literals) for the binary decision diagram of depth

Detailed Results for the Overfitting Phenomenon

In this appendix, we present the detailed results for the overfitting phenomenon of previous SAT method to learn optimal decision trees with perfect empirical accuracy, which is described in Section 2.4.

We recall the experimental setting. We use hold-out method to split training and testing set, we choose 4 different ratios r = {0.05, 0.1, 0.2, 0.5} (in Section 2.4 only three small ratios are chosen, but here we show additional results) to generate training set, and the remaining examples are set as testing set. This process is repeated 10 times with different ratios, and the complete MaxSAT solver we used is RC2. Although it should not set time limit until the solver finds optimal solution, considering the scalability, for each experiment, the global time limit for the solver is 30 hours. The overfitting phenomenon is not remarkable for every dataset, but we almost systematically observe a plateau whereby the testing accuracy stays constant at best while the training accuracy increases.

Appendix B

Description of Benchmarks for Learning Optimal Decision Trees and Boosted Trees

Appendix C

Résumé Étendu

Dans cette annexe, nous décrivons les contributions principales de la thèse.

• La racine doit toujours être à la profondeur 0.

• Chaque noeud doit être à une seule profondeur.

• La relation de l'augmentation de la profondeur. En détail, si le noeud i est en profondeur t, et le noeud j est un enfant du noeud i, alors le noeud j doit être en profondeur t + 1.

• Pour contrôler H comme la profondeur maximale, tous les noeuds possibles à la profondeur H doivent être des noeuds feuilles.

• Pour contrôler H comme la profondeur exacte, il faut qu'au moins d'un noeud se trouve à la profondeur H.

Pour combiner les contraintes de contrôle de la profondeur dans le modèle MaxSAT, nous gardons simplement ces contraintes comme des clauses dures, parce qu'elles sont considérées comme une extension des contraintes structurelles.

C.2.1.3 Contraintes pour relaxer la taille de l'arbre

Après la première et la seconde adaptation, le modèle MaxSAT peut non seulement résoudre le problème d'optimisation P * dt (E , N ), mais aussi contrôler la profondeur maximale ou exacte. La dernière adaptation vise à relaxer la taille de l'arbre pour résoudre notre problème d'optimisation original P * dt (E , H). Rappelons l'exemple de la Figure C.1, il existe une relation entre la taille et la profondeur dans un arbre binaire valide. Autrement dit, lorsque la profondeur d'un arbre binaire valide est donnée, la taille de l'arbre est dans un intervalle correspondant. En détail, pour la profondeur maximale H, la borne supérieure de la taille est 2 H -1. De plus, si H est la profondeur exacte, la borne inférieure de la taille est 2H + 1. Rappelons que la taille d'un un arbre binaire valide ne peut être qu'un nombre impair à partir de 3.

Supposons que la borne supérieure de la taille est N , nous introduisons une variable booléenne m j , qui est vrai si et seulement si au moins j noeuds sont utilisés pour construire l'arbre. Les idées principales pour les contraintes de relaxation de la taille de l'arbre sont proposées ci-dessous (les détails sont dans la Section 2.3) :

• Au moins 3 noeuds sont utilisés pour construire l'arbre.

• Si au moins j + 2 noeuds sont utilisés pour construire l'arbre, il doit utiliser au moins j noeuds.

• Pour chaque clause dure, supponsons que j est le noeud de plus grand index, il faut vérifier m j est vrai (ou m j+1 si j est un nombre pair) avant de vérifier si la clause dure est satisfaite.

• Pour respecter la borne inférieure de la taille N l , il faut mettre m N l à vrai, pour contraindre à utiliser au moins N l noeuds.

sur les protocoles expérimentaux et les résultats sont fournis dans la Section 3.4. Nous résumons ci-après les observations principales. La première observation issue de l'Experimentation 1 est que notre modèle MaxSAT obtient toujours de meilleures performances de prédiction par rapport à la méthode heuristique OODG.

La deuxième observation issue de l'Experimenatation 2 est que notre modèle MaxSAT pour les BDD obtient des performances de prédiction compétives par rapport au modèle MaxSAT pour les arbres de décision. En complément, notre modèle MaxSAT pour les BDD obtient un encodage plus léger que l'encodage pour les arbres de décision, et le BDD trouvé par notre modèle MaxSAT est plus compact en taille que l'arbre de décision trouvé par notre modèle MaxSAT générant des arbres de décision. Les résultats détaillés sont dans la Table 3.11 en Section 3.4.