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à Aysha

Ibrahim





iii

Acknowledgment

First of all, I would like to express my sincere gratitude to my Ph.D. supervisor,
Dr. Gilles Vilmart, whose insight and knowledge into the subject matter steered me
throughout this research. I would like to thank him as well for his kindness, patience,
help, motivation, support, as well as his enthusiasm for the project. He always believed in
my abilities and encouraged me to achieve more and more. It would not have been possible
to complete this work without his guidance.

Besides my advisor, I would like to thank Professors Philippe Chartier, Martin Gander,
and Konstantinos Zygalakis for generously offering their time to be the jury of my Ph.D.
defense, and for their valuable comments. I thank as well Professor Assyr Abdulle for his
collaboration and interesting discussions.

I would also like to extend my sincere thanks to my colleagues and friends at the De-
partment of Mathematics. Many thanks go to my academic brothers Adrien, Guillaume,
and Nicolas. Special thanks go to my office mates, Eiichi and Pratik for the interesting
discussions, suggestions, and the nice atmosphere in the office and during coffee breaks.
Many thanks also go to all the other members of the numerical analysis group: Martin,
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Abstract

Explicit stabilized methods are an efficient and powerful alternative to implicit schemes
for the time integration of stiff systems of differential equations in large dimensions. In the
present thesis, we derive new explicit stabilized methods for different types of problems and
we analyze their stability and convergence properties. We rigorously prove their efficiency,
and we provide numerical experiments that illustrate their performance.

We provide in Chapter 1 an introduction to our work as well as a short summary of
the main results presented in this thesis.

Chapter 2 is dedicated to necessary preliminaries, where we recall first the notion
of stability of Runge-Kutta methods and we give a crash course on explicit stabilized
integrators for deterministic ordinary differential equations (ODEs). Then, we explain
briefly some useful notions about numerical integration of stochastic differential equations
(SDEs).

In Chapter 3, we introduce a new explicit stabilized scheme of weak order 1 for stiff and
ergodic stochastic differential equations (SDEs). In the absence of noise, the new method
coincides with the classical deterministic stabilized scheme (or Chebyshev method) for
diffusion dominated advection-diffusion problems. For mean-square stable stiff stochastic
problems, the scheme has an optimally large extended mean-square stability domain that
grows at the same quadratic rate as the deterministic stability domain size in contrast to
known existing methods for stiff SDEs [A. Abdulle and T. Li. Commun. Math. Sci., 6(4),
2008, A. Abdulle, G. Vilmart, and K. C. Zygalakis, SIAM J. Sci. Comput., 35(4), 2013].
Combined with postprocessing techniques, the new methods achieve a convergence rate
of order two for sampling the invariant measure of a class of ergodic SDEs, achieving a
stabilized version of the non-Markovian scheme introduced in [B. Leimkuhler, C. Matthews,
and M. V. Tretyakov, Proc. R. Soc. A, 470, 2014]. All the results are illustrated by
numerical experiments on different types of problems. In the last section, an extension to
advection-diffusion PDEs is discussed.

In Chapter 4, we derive, for the first time, explicit stabilized integrators of orders
1 and 2 for the optimal control of stiff systems. We analyze their favorable stability
properties based on the continuous optimality conditions. Furthermore, we study their
order of convergence taking advantage of the symplecticity of the corresponding partitioned
Runge-Kutta method involved for the adjoint equations. The implementations of the new
methods are done completely using two-term recurrence relations for both state (forward)
and costate (backward) which reduces the effect of round-off errors that appear in standard
Runge-Kutta implementations. The recurrence relations are derived carefully to avoid
order reduction phenomenon and make the methods symplectic. Numerical experiments
including the optimal control of a nonlinear advection-diffusion PDE illustrate the efficiency
of the new approach.

Finally, we give in Chapter 5 an outlook and some ideas for potential future work. We
also draw some conclusions.
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Résumé

Les méthodes explicites stabilisées sont une alternative efficace et puissante aux schémas
implicites pour l’intégration temporelle de systèmes raides d’équations différentielles en
grande dimension. Dans la présente thèse, nous développons de nouvelles méthodes ex-
plicites stabilisées pour différents types de problèmes et nous analysons leurs propriétés
de stabilité et de convergence. Nous prouvons rigoureusement leur efficacité, et nous
présentons des expériences numériques qui illustrent leurs performances.

Le chapitre 1 est une brève introduction ainsi qu’un résumé des résultats principaux
présentés dans cette thèse.

Dans le chapitre 2, nous rappelons d’abord la notion de stabilité des méthodes Runge-
Kutta et nous donnons un cours accéléré sur les intégrateurs explicites stabilisés pour
les équations différentielles ordinaires (EDO) déterministes. Ensuite, nous expliquons
brièvement quelques notions utiles sur l’intégration numérique des équations différentielles
stochastiques (EDS).

Dans le chapitre 3, nous introduisons un nouveau schéma explicite stabilisé d’ordre
faible 1 pour les EDS raides et ergodiques. En l’absence de bruit, la nouvelle méthode
cöıncide avec le schéma stabilisé déterministe classique (ou méthode de Tchebyshev) pour
les problèmes d’advection-diffusion dominés par la diffusion. Pour les problèmes stochas-
tiques raides stables en moyenne quadratique, le schéma a un domaine de stabilité en
moyenne quadratique étendu optimal qui crôıt à la même vitesse quadratique que la taille
du domaine de stabilité déterministe, contrairement aux méthodes existantes connues pour
les EDS raides [A. Abdulle et T. Li. Commun. Math. Sci. 6(4), 2008, A. Abdulle, G. Vil-
mart, et K. C. Zygalakis, SIAM J. Sci. Comput. 4(4), 2013]. Combinées aux techniques
de postprocessing, les nouvelles méthodes atteignent un taux de convergence d’ordre 2
pour l’échantillonnage de la mesure invariante d’une classe de EDS ergodiques, réalisant
une version stabilisée de la méthodes non-markovienne introduite dans [B. Leimkuhler, C.
Matthews, et M. V. Tretyakov, Proc. R. Soc. A, 470, 2014]. Tous les résultats sont il-
lustrés par des expériences numériques sur différents types de problèmes. Dans la dernière
section, une extension aux EDP de type advection-diffusion est discutée.

Dans le chapitre 4, nous dérivons, pour la première fois, des intégrateurs explicites sta-
bilisés des ordres 1 et 2 pour le contrôle optimal des systèmes raides. Nous analysons leurs
propriétés de stabilité favorables en basant sur les conditions d’optimalité continue. En
outre, nous étudions leur ordre de convergence en tirant avantage de la symplecticité de la
méthode Runge-Kutta partitionnée correspondante impliquée pour les équations adjointes.
L’implémentation des nouvelles méthodes est effectuée entièrement en utilisant des rela-
tions de récurrence à deux termes pour l’état et l’adjoint, ce qui réduit l’effet des erreurs
d’arrondi qui apparaissent dans l’implémentation standard des méthodes de Runge-Kutta.
Les relations de récurrence sont obtenues avec soin pour éviter le phénomène de réduction
d’ordre et rendre les méthodes symplectiques. Des expériences numériques incluant le
contrôle optimal d’une EDP d’advection-diffusion non linéaire illustrent l’efficacité de la
nouvelle approche.

Nous présentons dans le chapitre 5 quelques perspectives et idées pour de futurs travaux
potentiels. Nous tirons également quelques conclusions.
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Chapter 1

Introduction and main results

This chapter is dedicated to introduce the topics studied in the thesis and present its main
results briefly. More details and references can be found in the corresponding chapters.

Stiff differential equations are differential equations for which standard explicit numer-
ical integrators are numerically unstable, unless the step size is taken to be extremely
small. Intuitively, such equations usually include one or more terms that cause fast varia-
tions in the solution. One important example of such equations is diffusion equations. The
usage of implicit methods is a good alternative in small dimensions, but for high dimen-
sional problems, in addition to large round-off errors, the cost of implicit methods increases
dramatically especially if the problem is severely nonlinear. Explicit stabilized methods
serve as an alternative to implicit integrators in high dimensional problems. Indeed, these
Runge-Kutta type methods enjoy extended stability domains over the negative real axis
which, on the one hand, efficiently reduces the restriction on the step size faced by stan-
dard explicit methods, and on the other hand, allow us to avoid solving large dimensional
systems of equations. Explicit stabilized methods will be introduced in details in Chapter
2.

In what follows, we present a summary of our main results which will be detailed in
chapters 3 and 4 with more details and references.

1.1 Optimal explicit stabilized integrators for stiff

and ergodic stochastic differential equations

This contribution is published in [5] in collaboration with Assyr Abdulle and Gilles Vil-
mart, and detailed in Chapter 3.

We consider Itô systems of stochastic differential equations of the form

dX(t) = f(X(t))dt+
m∑
r=1

gr(X(t))dWr(t), X(0) = X0 (1.1)

where X(t) is a stochastic process with values in Rd, f : Rd → Rd is the drift term,
gr : Rd → Rd, r = 1, . . . ,m are the diffusion terms, and Wr(t), r = 1, . . . ,m, are

1



2 CHAPTER 1. INTRODUCTION AND MAIN RESULTS

independent one-dimensional Wiener processes fulfilling the usual assumptions. We as-
sume that the drift and diffusion functions are smooth enough and Lipschitz continuous to
ensure the existence and uniqueness of a solution of (1.1) on a given time interval (0, T ).
The simplest numerical method to solve this problem is the Euler-Maruyama method
which, analogously to the Euler method for deterministic ODEs, faces severe time step re-
striction when applied to stiff SDEs like diffusion problems. One can use implicit methods
with favorable stability properties, but for very large dimension they are often very costly
as they require to solve large dimensional nonlinear problems at every time step. Here we
focus on explicit methods which are very useful for large dimensions.

The standard S-ROCK method In 2008, a stochastic explicit stabilized method called
S-ROCK (for stochastic orthogonal Runge-Kutta-Chebyshev) was designed in [8], it is a
Runge-Kutta method defined as follows, using an explicit two term recurrence relation
with s is the number of drift function evaluations

K0 = X0

K1 = X0 + µ1hf(X0)

Ki = µihf(Ki−1) + νiKi−1 + κiKi−2, i = 2, . . . , s,

X1 = Ks +
m∑
r=1

gr(Ks)∆Wr,

(1.2)

where,

ω0 = 1 +
η

s2
, ω1 =

Ts(ω0)

T ′s(ω0)
, µ1 =

w1

w0

, (1.3)

and η is the damping parameter (see Figure 1.2). The coefficients µi, νi, and κi are chosen
in an appropriate way as functions of ω0 and ω1. Ts is the first kind Chebyshev polynomial
defined by Ts(cos θ) = cos(sθ).

Advantages of S-ROCK

• It is very easy to implement (fully explicit) similarly to the Euler-Maruyama method
(recovered for s=1).

• It is consistent, i.e. it has weak order 1 and strong order 1/2.

• Its stability domain grows quadratically with the number of function evaluations
which reduces the cost compared to Euler-Maruyama.

Drawbacks of S-ROCK

• The large damping parameter η = ηs needed to stabilize the stiff noise term is an
increasing function of s which reduces the stability domain size down to ≈ 0.33s2

much lower than the optimal one which is 2s2.

• It has only order 1 of accuracy when approximating the invariant measure of the
overdamped Langevin equation.
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1.1.1 New second kind Chebyshev methods

New SK-ROCK The new S-ROCK method, denoted SK-ROCK (for stochastic second
kind orthogonal Runge-Kutta-Chebyshev method) is defined with a recurrence relation
similar to (1.2) except that the noise is introduced in the first internal stage:

K0 = X0

K1 = X0 + µ1hf(X0 + ν1Q) + κ1Q,

Ki = µihf(Ki−1) + νiKi−1 + κiKi−2, i = 2, . . . , s.

X1 = Ks,

(1.4)

where Q =
∑m

r=1 g
r(X0)∆Wj.

Advantages of SK-ROCK

• The same advantages as S-ROCK.

• The damping parameter η is fixed to a small value η = 0.05 which allows a nearly
optimal stability domain size (about (2 − 4/3η)s2 and 2s2 for η = 0), which makes
SK-ROCK much less expensive than S-ROCK (see Section 1.1.2).

• Combined with postprocessing techniques this method achieves order two for the
invariant measure for a class of ergodic SDEs (see Section 1.1.3).

1.1.2 Mean-square Stability analysis

Let s ≥ 1 and η ≥ 0. Applied to the linear test equation dX = λXdt + µXdW (widely
used in the literature [49]), the new scheme SK-ROCK yields

Xn+1 = RSK−ROCK(λh, µ
√
h, ξn)Xn

where p = λh, q = µ
√
h, ξn ∼ N (0, 1) is a Gaussian variable and the stability function

given by

RSK−ROCK(p, q, ξ) =
Ts(ω0 + ω1p)

Ts(ω0)
+
Us−1(ω0 + ω1p)

Us−1(ω0)
(1 +

ω1

2
p)qξ

= A(p) +B(p)qξ,

(1.5)

where Us are the second kind Chebyshev polynomials of degree s, we have that T ′s(x) =
sUs−1(x) and so Us contains sine function. On the other hand the stability function of
classical S-ROCK is

RS−ROCK(p, q, ξ) =
Ts(ω0 + ω1p)

Ts(ω0)
+
Ts(ω0 + ω1p)

Ts(ω0)
qξ, (1.6)

The new idea is to use second kind Chebyshev polynomials to stabilize the noise. These
polynomials are defined using the sine function and so they are the optimal choice to put
together in a sum of two squares (second moment) with the first kind Chebyshev polynomi-
als which are defined using cosine, and thanks to the relation T 2

s (x) + (1− x2)U2
s−1(x) = 1

we get the optimal stability domain under the corresponding order conditions (see Figure
1.1).
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E(|RSK−ROCK(p, q, ξ)|2) = A(p)2 +B(p)2q2

-100 -80 -60 -40 -20 0
0.

0.5

1.

Figure 1.1: Different parts of the second moment of the stability function of SK-ROCK
with q2 = −2p, and s = 7 stages.

Theorem 1.1.1. There exists η0 > 0 and s0 such that for all η ∈ [0, η0] and all s ≥ s0,
for all p ∈ [−2ω−1

1 , 0] and p+ 1
2
|q|2 ≤ 0, we have E(|Rsk−ROCK(p, q, ξ)|2) ≤ 1.

Theorem 1.1.1 is the first result of this kind in the context of stochastic explicit stabilized
methods that proves rigorously the large size of the mean square stability domain. In
contrast, the stability regions of all the methods previously proposed in the literature were
checked numerically and not rigorously. Theorem states that for all η small enough and all
s large enough, the length of stability domain is 2w−1

1 ≈ (2− 4/3η)s2 which is arbitrarily
close to 2s2 when η → 0. We have checked numerically that the statement remains valid
for any η ≥ 0 and s ∈ N∗.

-100 -80 -60 -40 -20 0

-5

0

5

-100 -80 -60 -40 -20 0

-5

0

5

=0 =0.05 =3.98

Figure 1.2: Deterministic complex stability domain {p ∈ C; |RSK−ROCK(p, 0, 0)| ≤ 1} for
different damping parameters η and s=7 stages.

1.1.3 PSK-ROCK: Postprocessed integrator for overdamped
Langevin equation

We consider the overdamped Langevin equation in Rd (1� d),

dX(t) = −∇V (X(t))dt+ σdW (t),

Under some natural assumptions, the above equation is ergodic with exponential conver-
gence to a unique invariant measure with Gibbs density ρ∞ = Z exp(−2σ−2V (x)), and we
have

|E(φ(X(t))−
∫
Rd
φ(x)ρ∞(x)dx| ≤ Ce−λt,
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(a) Standard S-ROCK method (s = 20, η = 6.95).
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(b) New SK-ROCK method (s = 20, η = 0.05).

Figure 1.3: Stochastic mean-square stability domains. The dashed lines corresponds to the
upper boundary q2 = −2p of the real mean-square stability domain S of the exact solution.

for test function φ and all initial condition X0, where C, λ are independent of t.

A modification to reach high order for the invariant measure The new method
SK-ROCK can be modified to compute efficiently ergodic integrals

∫
Rd φ(x)ρ∞(x)dx in high

dimension d with order 2 of accuracy. We propose to modify the internal stage K1 of the
method as follows:

K1 = X0 + µ1hf(X0 + ν1Q) + κ1Q+ αh
(
f(X0 + ν1Q)

− 2f(X0) + f(X0 − ν1Q)
)
. (1.7)

Theorem 1.1.2. Under the above assumptions, consider the scheme SK-ROCK with mod-
ified internal stage K1 (1.7). Consider in addition a postprocessor defined as

Xn = Xn + cσ
√
hξ.

where α and c are chosen appropriately.
Then, Xn yields order two for the invariant measure,

|E(φ(Xn)−
∫
Rd
φ(x)ρ∞(x)dx| ≤ C1e

−λtn + C2h
2,

for all tn = nh with h small enough. C1 and C2 are independent of h and n.
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Theorem 1.1.2 means that using a posprocessing technique coupled with SK-ROCK, we
can approximate the invariant measure of the overdamped Langevin equation with order
two of accuracy with negligeable overcost (only 2 additional f evaluations per time step)
and we keep the same optimally large stability domain.

Many numerical experiments for stiff linear and nonlinear problems are presented in
Chapter 3. They illustrate the advantage of SK-ROCK and PSK-ROCK over other explicit
stabilized schemes from the literature (S-ROCK, SROCK2...) with respect to the cost and
the order, as well as the error constants.

1.2 Explicit stabilized integrators for stiff optimal

control problems

This contribution is published in [14] in collaboration with Gilles Vilmart, and detailed in
Chapter 4.

We aim to introduce and analyze symplectic explicit stabilized Runge-Kutta methods
of order 2 for the optimal control of systems of ordinary differential equations (ODEs) of
the form

min
u

Ψ(y(T )); ẏ(t) :=
dy

dt
(t) = f(u(t), y(t)), t ∈ [0, T ]; y(0) = y0, (1.8)

where for a fixed final time T > 0 and a given initial condition y0 ∈ Rn, the function
y : [0, T ] → Rn is the unknown state function, u : [0, T ] → Rm is the unknown control
function. Here, f : Rm × Rn → Rn is the given vector field and Ψ : Rn → R is the given
cost function, which are assumed to be C∞ mappings.

We recall that any Runge-Kutta method applied to the linear ODE ẏ = λy, y(0) = y0

yields an induction yn = R(z)ny0 where z = hλ. R(z) is usually a rational function called
the stability function and it reduces to a polynomial in the case of explicit methods. The
stability domain is then defined as S = {z ∈ C; |R(z)| ≤ 1}.

Explicit stabilized methods are Runge-Kutta methods with extended stability domain
over the negative real axis. They have been applied to various types of stiff (diffusion) prob-
lems. Usually, the stability polynomials of these methods are constructed using Chebyshev
polynomials. For more information about Explicit stabilized Runge-Kutta methods we
refer to the review [4]. In Figure 1.4 we plot the stability domains of the second-order
explicit stabilized method called RKC (Runge-Kutta-Chebyshev) for s = 13 stages, and
the well known second-order Heun method.

-100 -80 -60 -40 -20 0

-10
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0

5

10

Figure 1.4: Stability domains of the RKC method for s = 7 stages (in blue) and the Heun
method (in brown).
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If we discretize (1.8) using a Runge-Kutta discretization we naturally get the following
discrete optimization problem,

min Ψ(yN); subject to:

yk+1 = yk + h

s∑
i=1

bif(uki, yki), yki = yk + h

s∑
j=1

aijf(ukj, ykj).
(1.9)

Let us denote by H(u, y, p) := pTf(u, y) the pseudo-Hamiltonian of the system where p
is the Lagrange multiplier (or the costate) associated to the state y. Applying Pontryagin’s
maximum (or minimum) principle, the first order optimality conditions of (1.8) are

ẏ(t) = f(u(t), y(t)) = ∇pH(u(t), y(t), p(t)),

ṗ(t) = −∇yf(u(t), y(t))p = −∇yH(u(t), y(t), p(t)),

0 = ∇uH(u(t), y(t), p(t)). t ∈ [0, T ], y(0) = y0, p(T ) = ∇Ψ(y(T )).

(1.10)

By applying the Lagrange theorem to the finite dimensional optimization problem (1.9),
and supposing that bi 6= 0, a calculation yields the discrete optimality conditions,

yk+1 = yk + h
s∑
i=1

bif(uki, yki), yki = yk + h
s∑
j=1

aijf(ukj, ykj),

pk+1 = pk − h
s∑
i=1

b̂i∇yH(uki, yki, pki), pki = pk − h
s∑
j=1

âij∇yH(ukj, ykj, pkj),

0 = ∇uH(uki, yki, pki), y0 = y0, pN = ∇Ψ(yN),

(1.11)

where k = 0, . . . , N − 1, i = 1, . . . , s, and the coefficients b̂i and âij are defined by the
following relations which correspond to the symplecticity conditions of partitioned Runge-
Kutta methods for ODEs,

b̂i := bi, âij := bj −
bj
bi
aji, i, j = 1, . . . s.

For symplectic Runge-Kutta methods, the following diagram commutes [27, 16]:

(1.8) (1.9)

(1.10) (1.11)

optimality conditions

discretization

discretization

optimality conditions

In [27] Hager showed as well that if the state method (aij, bi) is of order 2 of accuracy,

then the obtained symplectic partitioned scheme (aij, bi)−(âij, b̂i) is automatically of order
2 (no additional coupling order conditions).

A calculation on (1.11) yields the Runge-Kutta method (
bj
bi
aji, bi) for the costate (time

reversed), which is in fact the time adjoint of (âij, b̂i) (which is called in the literature the

adjoint of (aij, bi)). We will call the method (
bj
bi
aji, bi) the double adjoint of (aij, bi), and
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we rewrite the costate equations in (1.11) as

pk = pk+1 + h
s∑
i=1

bi∇yH(uki, yki, pki), k = N − 1, . . . , 0

pki = pk+1 + h

s∑
j=1

bj
bi
aji∇yH(ukj, ykj, pkj), k = N − 1, . . . , 0 i = s, . . . , 1

0 = ∇uH(ukj, ykj, pkj), k = 0, . . . , N − 1 i = 1, . . . , s, pN = ∇Ψ(yN).

(1.12)

The following proposition is crucial in our analysis. It implies that when using an explicit
method to discretize (1.8), the resulting partitioned method is fully explicit.

Proposition 1.2.1. If a Runge-Kutta method (aij, bi) is explicit, then its double adjoint

(
bj
bi
aji, bi) is explicit as well.

1.2.1 New Runge-Kutta-Chebyshev (RKC) method for optimal
control

We consider the following implementation of the RKC method applied to (1.8)

min Ψ(yN), such that

yk0 = yk, yk1 = yk0 + µ1hf(uk0, yk0),

yki = µihf(uk,i−1, yk,i−1) + νiyk,i−1 + (1− νi)yk,i−2, i = 2, . . . , s

yk+1 = asyk0 + bsTs(ω0)yks,

(1.13)

where,

as = 1− bsTs(ω0), bs =
T ′′s (ω0)

(T ′s(ω0)2)
, ω0 = 1 +

η

s2
, ω1 =

T ′s(ω0)

T ′′s (ω0)
, η = 0.15,

and

µi =
2ω1Ti−1(ω0)

Ti(ω0)
, νi =

2ω0Ti−1(ω0)

Ti(ω0)
, i = 2, . . . , s.

The real positive number η is called the damping parameter and its non zero value helps
to include a strip around the negative real axis in the stability domain to make the scheme
robust with respect to small perturbations such as a small advection term. The stability
function of the s-stage RKC method is Rs(z) = as + bsTs(ω0 + ω1z), where Ts(cos θ) =
cos(sθ) are the Chebyshev polynomials. Besides the extended stability domain, this method
has many advantages. The two-term recurrence relations require low memory (only two
stages should be stored) and do not introduce round-off errors for large number of stages, in
contrast to applying the method using the corresponding Runge-Kutta coefficients (aij, bi).
In addition, and as mentioned before, applying RKC in both directions (for y and p) leads
to an order reduction since the coupling order conditions are not satisfied. Hence, the aim
is to search for recurrence formulas of the RKC double adjoint. Before that, we introduce
our first theorem of this section which will be very helpful for stability analysis.

Theorem 1.2.2 (Stability function of the double adjoint). A Runge-Kutta method (aij, bi)

and its double adjoint (
bj
bi
aji, bi) share the same stability function R(z).
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Figure 1.5: Internal stages (thin curves) and stability polynomial (bold curve) of the RKC
method (left) and its double adjoint (right) of order two for s = 10 internal stages.

Theorem 1.2.2 means that RKC and its double adjoint share the same stability region.
A full stability analysis for the internal stages of the new scheme is available in Chapter 4,
and is summarized in Theorem 1.2.4 below.

We may now state our main result in the context of stiff optimal control problems:

Theorem 1.2.3 (Recurrence formulas of the RKC double adjoint). The double adjoint of
the scheme (1.13) is given by the recurrence

pN = ∇Ψ(yN), pks = pk+1,

pk,s−1 = pks +
µs
νs
h∇yH(uk,s−1, yk,s−1, pks),

pk,s−j =
µs−j+1αs−j+1

αs − j
h∇yH(uk,s−j, yk,s−j, pk,s−j+1)

+
νs−j+1αs−j+1

αs−j
pk,s−j+1,

+
(1− νs−j+2)αs−j+2

αs−j
pk,s−j+2, j = 2, . . . , s− 1,

pk0 = µ1α1h∇yH(uk0, yk0, pk1) + α1pk1 + (1− ν2)α2pk2 + aspk+1,

pk = pk0,

∇uH(uk,s−j, yk,s−j, pk,s−j+1) = 0, j = 1, . . . , s,

(1.14)

where the coefficients αj are defined using the induction

αs = bsTs(ω0), αs−1 = νsαs,

αs−j = νs−j+1αs−j+1 + (1− νs−j+2)αs−j+2, j = 2 . . . s− 1.
(1.15)

In Figure 1.5, we plot the internal stages, as well as the stability functions of the RKC
method (1.13) and its double adjoint (1.14) for s = 13 stages. The following two theorems
show the good stability properties, as well as the order 2 of convergence of the new scheme.

Theorem 1.2.4 (Stability). For η = 0, the stability functions of the internal stages Rs,i(z)
of the RKC double adjoint (1.14), are bounded by 1 for all z ∈ [−2

3
s2 + 2

3
, 0] and all s ∈ N.

Remark 1.2.5. As a corollary, using the continuity of the coefficients with respect to the
damping parameter η, the above theorem is true for all small enough damping η > 0.
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Theorem 1.2.6 (Convergence). The method (1.13)-(1.14) has order 2 for the optimal
control problem (1.8).

Numerical experiments of different problems including the optimal control of a nonlinear
advection-diffusion partial differential equation are presented in Chapter 4.



Chapter 2

Preliminaries

In this chapter, we provide the essential tools needed to read and understand the main
chapters of the thesis. We recall some useful definitions and results on Runge-Kutta meth-
ods, especially explicit stabilized methods, and on numerical integration of stochastic dif-
ferential equations. All necessary preliminaries on optimal control are presented in the
corresponding Chapter 4.

2.1 Introduction to explicit stabilized Runge-Kutta

methods

In this section we introduce explicit stabilized methods which are one of the main ingredi-
ents of the results presented in this thesis. First, a crash course on Runge-Kutta methods
and their stability is presented. Then, a short revision on Chebyshev polynomials and
their property is done. Finally, we present explicit stabilized methods in details and we
give examples of three different integrators of this type. We include these explanations for
the sake of completeness since explicit stabilized methods serve as a main ingredient of our
work.

2.1.1 Stability of Runge-Kutta methods

Let us first recall the definition of a Runge-Kutta method for ordinary differential equations
(ODEs),

ẏ(t) :=
dy

dt
= f(t, y(t)), y(t0) = y0, (2.1)

where y : [t0, T ]→ Rn is the unknown solution, f : Rn → Rn is a smooth vertor field, and
y0 ∈ Rn is a given initial condition. For simplicity, we consider a uniform discretization
of the interval [t0, T ] with N + 1 points for N ∈ N, and denote by h = (T − t0)/N the
stepsize.

Definition 2.1.1. For a given integer s and real coefficients bi, aij (i, j = 1, . . . , s), an
s-stage Runge-Kutta method, yk ≈ y(tk), tk = t0+kh, to approximate the solution of (2.1),

11
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is defined, for all k = 0, . . . , N − 1, by

yki = yk + h

s∑
j=1

aijf(tk + cjh, ykj), i = 1, . . . , s,

yk+1 = yk + h
s∑
i=1

bif(tk + cih, yki),

(2.2)

where y0 = y0 and
∑s

j=1 aij = ci.

The coefficients are usually displayed in a Butcher tableau as follows

ci aij
bi

:=
c A

bT
, (2.3)

and we will sometimes use the notation (aij, bi). If the matrix A is strictly lower triangular,
i.e. aij = 0 for all i ≤ j (or strictly upper triangular by reverting the indices), then the
method is explicit, otherwise it is implicit. For s = 1, there exists one and only one
consistent explicit Runge-Kutta method of one stage, which is simply the famous explicit
Euler method yk+1 = yk + hf(tk, yk), with Butcher tableau

0 0
1
.

Definition 2.1.2. A Runge-Kutta method (2.2) with stepsize h, applied to a sufficiently
smooth problem of the form (2.1), is said to be of order p, if its local error (error after one
step) satisfies

‖y(t0 + h)− y1‖ = O(hp+1).

The following tables represent the implicit Euler method of order 1, and the second
order schemes: Heun method (or explicit trapezoidal rule), implicit and explicit midpoint
rules, and (implicit) trapezoidal rule respectively.

1 1
1

0 0 0
1 1 0

1
2

1
2

1
2

1
2

1

0 0 0
1
2

1
2

0
0 1

0 0 0
1 1

2
1
2

1
2

1
2

.

Figure 2.1 illustrates graphically how to get the approximation y1 of y(t1) using Heun
method

y1 = y0 +
h

2
[f(y0) + f(y0 + hf(y0))]

with the following Runge-Kutta formulation

Y1 = f(y0)

Y2 = f(y0 + hf(Y1))

y1 = y0 +
h

2
(f(Y1) + f(Y2)).
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Figure 2.1: Graphical illustration of the approximation by Heun method after one step.

A Runge-Kutta method (aij, bi) is of order one if and only if its coefficients satisfy

s∑
i=1

bi = 1.

For order two, one more condition is required which is

s∑
i,j=1

biaij =
s∑
i=1

bici =
1

2
.

For more details about the order conditions of Runge-Kutta methods in the context of
initial value ODEs, we refer for example to the book [28, Chap. III].

Throughout the thesis, and for simplicity of the presentation, we will consider only
autonomous problems where the vector field f does not depend explicitly on time t

ẏ = f(y), y(t0) = y0. (2.4)

However, we highlight that our results also apply straightforwardly to non-autonomous
problems. A standard approach is to consider the augmented system with z(t) = t, i.e.
dz
dt

= 1, z(0) = 0 and define ỹ(t) = (y(t), z(t))T , see e.g. [28, Chap. III] for details.
We denote by yk+1 = Φh(yk) the numerical flow of (2.2), while the time adjoint method

Φ∗h of Φh is the inverse map of the original method with reversed time step −h, i.e.,
Φ∗h := Φ−1

−h [28, Sect. II.3]. We recall that the time adjoint of an s-stage Runge-Kutta
method (aij, bi) (2.2) is again an s-stage Runge-Kutta method with the same order of
accuracy and its coefficients (a∗ij, b

∗
i ) are given by

a∗ij = bs+1−j − as+1−i,s+1−j and b∗i = bs+1−i, where i, j = 1, . . . , s.
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Stability is a crucial property of numerical integrators for solving stiff problems and
we refer to the book [29] for a detailed study of stiff ODEs and stability of numerical
integrators. We say that the solution y(t) of the ODE (2.4) (with f(0) = 0) is stable if
limt→∞ y(t) = 0. A Runge-Kutta method is said to be stable if the numerical solution
stays bounded along the integration process. Applying a Runge-Kutta method (2.2) to the
linear test problem (with fixed parameter λ ∈ C and whose exact solution is stable when
<(λ) < 0),

ẏ = λy, y(0) = y0, (2.5)

with stepsize h yields a recurrence of the form yk+1 = R(hλ)yk and by induction we get
yk = R(hλ)ky0. The function R(z) is called the stability function of the method and the
stability domain is defined as

S := {z ∈ C; |R(z)| ≤ 1}, (2.6)

and yk remains bounded if and only if hλ ∈ S. The same result also applies to the internal
stages of the Runge-Kutta method, for all i = 1, . . . , s, where s is the number of internal
stages, yki = Ri(hλ)yk, for some rational functions Ri. Remark that R(z) is a rational
function for implicit methods, but in the case of explicit methods the stability function R(z)
reduces to a polynomial which explains that the stability domain is necessarily bounded in
this case. The simplest Runge-Kutta type method to integrate ODEs (2.1) is the order one
explicit Euler method yk+1 = yk + hf(yk) with stability polynomial R(z) = 1 + z. Indeed,
applied to the linear test problem (2.5), the method reads

yk+1 = yk + hλyk = (1 + hλ)yk.

However, its stability domain S is very small. Indeed, it reduces to the disc of center −1
and radius 1 in the complex plane as show in Figure 2.2a, which yields a severe timestep
restriction and makes it very expensive for stiff problems. For instance in the case of ODEs
arising from the space discretization of diffusion partial differential equations (PDEs) with
mesh size ∆x, using the explicit Euler method yields the famous very restrictive CFL
condition h ≤ C∆x2. On the other hand, one can easily prove that the order one implicit
Euler method yk+1 = yk + hf(yk+1) has as stability function R(z) = 1

1−z and hence its
stability domain is the complementary set of the disk of center 1 and radius 1 (Figure 2.2b),
which makes the method unconditionally stable for diffusion problems. Nevertheless, this
comes at the price of solving large systems of size proportional to (1/∆x)d (d is the spatial
dimension) at each time step.

This is the motivation for seeking a new type of methods which combines, as much as
possible, the advantages of explicitness, i.e. ease of implementation and avoiding to solve
large systems, and good stability properties.

Finally we will recall a few useful definitions:

Definition 2.1.3. A Runge-Kutta method is called A-stable if its stability domain contains
the left complex half place C−.

Definition 2.1.4. A Runge-Kutta method is called L-stable if it is A-stable and its stability
function R(z) goes to zero as z tends to ±∞.

Example 2.1.5. The implicit Euler method is L-stable.



2.1. INTRODUCTION TO EXPLICIT STABILIZED METHODS 15

(a) Explicit Euler. (b) Implicit Euler.

Figure 2.2: Stability domains of the explicit and the implicit Euler methods.

2.1.2 A quick revision of Chebyshev polynomials

Let us first recall the definitions and some properties of the first and second kind Chebyshev
polynomials, which will be very useful throughout this thesis.

Definition 2.1.6. The first kind Chebyshev polynomial of degree s is the unique polynomial
satisfying Ts(cos θ) = cos(sθ).

One can easily see that for x ∈ [−1, 1], Ts(x) = cos(s arccosx) and hence |Ts(x)| ≤ 1.
These polynomials are orthogonal on [−1, 1] with respect to the inner product

〈f, g〉 =

∫ 1

−1

f(x)g(x)
dx√

1− x2
,

which means that the family of polynomials (Ti)i≤s forms a basis of the space of polynomials
of degree ≤ s.

The first kind Chebyshev polynomials can be defined for every complex number z by
the recurrence

T0(z) = 1, T1(z) = z,

Ts(z) = 2zTs−1(z)− Ts−2(z), s ≥ 2. (2.7)

Definition 2.1.7. The second kind Chebyshev polynomial of degree s is the unique poly-
nomial satisfying

Us(cos θ) =
sin((s+ 1)θ)

sin θ
.

The second kind Chebyshev polynomials are orthogonal with respect to the inner
product

〈f, g〉 =

∫ 1

−1

f(x)g(x)
√

1− x2dx,

and for every z ∈ C, we have

U0(z) = 1, U1(z) = 2z,

Us(z) = 2zUs−1(z)− Us−2(z), s ≥ 2. (2.8)
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The fact that both first and second kind Chebyshev polynomials have the same re-
currence relation will be very useful in our result of Chapter 3. Note that second kind
Chebyshev polynomials were not used before in the literature for explicit stabilized methods.

Here are also some useful properties: for all s ∈ N, and all z ∈ C,

• Ts(1) = 1,

• T ′s(1) = s,

• Us(z) = 1
s
T ′s+1(z),

• Ts(z)2 − (z2 − 1)Us−1(z)2 = 1.

2.1.3 Explicit stabilized methods

The idea of explicit stabilized methods (as introduced in [54], see the survey [4]) is to con-
struct explicit Runge-Kutta integrators with extended stability domain that grows quadrat-
ically with the number of stages s of the method along the negative real axis, and hence
allows to use large time steps typically for problems arising from diffusion partial differ-
ential equations (or diffusion dominant advection-diffusion-reaction PDEs) for which the
eigenvalues of the Jacobian matrix of the obtained vector field are on (or very close to)
the negative real axis and are very large in modulus (stiff ODEs). In order to construct
an explicit stabilized integrator of order p, the first step is to find a polynomial Rs(z) of
degree s and order p, i.e.

Rs(z) = 1 + z + · · ·+ zp

p!
+O(zp+1), (2.9)

that solves the following problem

Find Rs(z) = 1 + z +
z2

2!
+ · · ·+ zp

p!
+ αp+1z

p+1 + · · ·+ αsz
s,

|Rs(z)| ≤ 1 for z ∈ [−lps , 0], with lps as large as possible.

(2.10)

Note that for p > 2, stability functions of the form (2.9) guarantee the order p only for
linear problems and some additional order conditions have to be satisfied by the method
in order to have order p for nonlinear problems.

In this section we will present some explicit stabilized schemes of orders one and two
from the literature. The presented methods will be the main ingredients to our new results.

2.1.3.1 Optimal first order Chebyshev methods

It is well known in the literature of explicit stabilized methods that the solution of Problem
(2.10) for p = 1 is the shifted Chebyshev polynomials

Rs(z) = Ts

(
1 +

z

s2

)
, (2.11)

where Ts(.) is the first kind Chebyshev polynomial of degree s. For a given integer s and
real number x, this polynomial stays bounded between −1 and 1 for −1 ≤ 1 + x/s2 ≤ 1
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i.e. −2s2 ≤ x ≤ 0, which means that the real negative interval [−2s2, 0] in included in the
stability domain (see Figure 2.3), and l1s = 2s2 is the optimal length. For higher orders we
have

l2s ≈ 0.82s2, l3s ≈ 0.49s2 l4s ≈ 0.34s2.

Approximations of lps up to order p = 11 can be found in [2]. The fact that the length of
the stability domain on the negative real axis enjoys a quadratic growth with respect to
the number of stages s is crucial to the success of explicit stabilized Runge-Kutta methods.

There are many approaches to construct, for a given integer s, a Runge-Kutta method
having (2.11) as stability function, the most reasonable approach with respect to memory
and round-off errors is the one considered by Van der Houwen and Soomeijer [54] which
uses the two term recurrence relation (2.7) of the Chebyshev polynomials to construct the
numerical method given by

yk0 = yk, yk1 = yk +
h

s2
f(yk0),

yki =
2h

s2
f(yk,i−1) + 2yk,i−1 − yk,i−2, i = 2, . . . , s (2.12)

yk+1 = yks,

where k = 0, . . . , N−1. It can be easily verified, by induction and using (2.7), that applied
to the test problem (2.5), the above method leads, for the internal stages, to

yki = Ti(1 + hλ/s2)yk, i = 1 . . . , s,

and produces after one step

yk+1 = yks = Ts(1 + hλ/s2)yk.

The method has low memory requirements (only two stages have to be stored) and rea-
sonable propagation of round-off errors even for large values of s needed in practice [54].

As can be seen in the first plot of Figure 2.3, the width of the stability domain reduces
to zero at some points which are the local extrema of (2.11), i.e. the points xi ∈ R− where
Rs(xi) = Ts(1 + xi/s

2) = ±1 which can cause instability in the case of small perturbations
(small advection term for example). Here comes the importance of what we call damping
to make the scheme robust with respect to small perturbations of the eigenvalues. If one
sets

Rη
s(z)yk =

Ts(ω0 + ω1z)

Ts(ω0)
yk, ω0 := 1 +

η

s2
, ω1 :=

Ts(ω0)

T ′s(ω0)
, (2.13)

then the polynomials (2.13) have the correct order and oscillate between −1 + η and 1− η,
where η > 0 is called the damping parameter. This makes the stability domain a bit wider
and ensures that it includes a strip around the negative real axis (a neighborhood of the
negative real interval [−ls, 0]), but it comes with the cost of loosing a bit of the length of
the stability domain (the length reduces from 2s2 to ≈ 2 − 4

3
η). By increasing the value

of η, a larger strip around the negative real axis can be included in the stability domain
which becomes shorter. A typical value for the damping parameter is η = 0.05, in this case
the loss in the length of the stability domain is negligible, where ls becomes ≈ 1.94s2 (see
Figure 2.3).
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The order one Chebyshev method for solving a stiff ODE (2.1) is defined as an explicit
s-stage Runge-Kutta method by the recurrence

yk0 = yk, yk1 = yk + µ1hf(yk0),

yki = µihf(yk,i−1) + νiyk,i−1 + (1− νi)yk,i−2, i = 2, . . . , s (2.14)

yk+1 = yks,

where k = 0, . . . , N − 1, and

µ1 :=
ω1

ω0

, µi :=
2ω1Ti−1(ω0)

Ti(ω0)
, νi :=

2ω0Ti−1(ω0)

Ti(ω0)
, i = 2, . . . , s. (2.15)

For η = 0 (without damping) we get ω0 = 1, ω1 = 1/s2, µ1 = 1/s2, µi = 2/s2, νi = 2,
for all i = 2, . . . , s, and te method reduces to (2.12). One can easily check that the
(family) of methods (2.14) has the same first order of accuracy as the explicit Euler method
(recovered for s = 1). Note that instead of the standard Runge-Kutta method formulation
(2.2) with coefficients (aij, bi), the one step method yk+1 = Φh(yk) in (2.14) should be
implemented using a recurrence relation (indexed by i) inspired from the relation (2.7)
on Chebyshev polynomials. This implementation (2.14) yields a good stability [54] of the
scheme with respect to round-off errors. The most interesting feature of this scheme is its
stability behavior. Indeed, the method (2.14) applied to (2.5) yields, with z = λh,

yk+1 = Rη
s(z)yk =

Ts(ω0 + ω1z)

Ts(ω0)
yk. (2.16)

A large real negative interval (−Cηs2, 0) is included in the stability domain of the method
S := {z ∈ C; |Rη

s(z)| ≤ 1}. For the internal stages, we have analogously

yki = Rη
s,i(z)yk =

Ti(ω0 + ω1z)

Ti(ω0)
yk.

The constant Cη = 2− 4/3 η +O(η2) depends on the damping parameter η and for η = 0,
it reaches the maximal value C0 = 2 (also optimal with respect to all possible stability
polynomials for explicit schemes of order 1). Hence, given the stepsize h, for dissipative
vector fields with a Jacobian having large real negative eigenvalues (such as diffusion prob-
lems) with spectral radius λmax at yn, the parameter s for the next step yn+1 can be chosen
adaptively as1

s :=

[√
hλmax + 1.5

2− 4/3 η
+ 0.5

]
, (2.17)

see [3] in the context of stabilized schemes of order two with adaptive stepsizes. The
method (2.14) is much more efficient as its stability domain increases quadratically with
the number s of function evaluations while a composition of s explicit Euler steps (same
cost per time step) has a stability domain that only increases linearly with s.

In Figure 2.4 we plot the internal stages for s = 10 and different values η = 0 and
η = 0.05, respectively. We observe that in the absence of damping (η = 0), the stability
function (here a polynomial) is bounded by 1 in the large real interval [−2s2, 0] of width
2 · 102 = 200.

1The notation [x] stands for the integer rounding of real numbers.
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(a) Complex stability domain for different damping parameters η.

-100 -80 -60 -40 -20 0
-1

0

1

η=0 η=0.05 η=3.98

(b) Corresponding stability functions Rη7(z).

Figure 2.3: Stability domains and stability functions of the Chebyshev method for s = 7
and different damping values η = 0, 0.05, 3.98.
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Figure 2.4: Internal stages (thin curves) and stability polynomials (bold curves) of the
Chebyshev method (2.14) for s = 10 with and without damping.

2.1.3.2 Second order RKC methods

To design a second order method, we need the stability polynomial to satisfy2

R(z) = 1 + z +
z2

2
+O(z3). (2.18)

2Indeed, up to order two, the order conditions for nonlinear problems are the same as the order
conditions for linear problems [28, Chap. III].
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In [15], Bakker introduced a correction to the first order shifted Chebyshev polynomials to
get the following second order polynomial

Rη
s(z) = as + bsTs(ω0 + ω2z), (2.19)

where,

as = 1− bsTs(ω0), bs =
T ′′s (ω0)

(T ′s(ω0)2)
, ω0 = 1 +

η

s2
, ω2 =

T ′s(ω0)

T ′′s (ω0)
, η = 0.15. (2.20)

For each s, |Rη
s(z)| remains bounded by as+bs = 1−η/3+O(η2) for z in the stability interval

(except for a small interval near the origin). The stability interval along the negative real
axis is approximately [−0.65s2, 0], and covers about 80% of the optimal stability interval
for second order stability polynomials, and the formula now for calculating s for a given
time step h is

s :=

[√
hλmax + 1.5

0.65
+ 0.5

]
. (2.21)

Using the recurrence relation of the Chebyshev polynomials, the RKC method as intro-
duced in [54] is defined by

yk0 = yk, yk1 = yk0 + hb1ω2f(yk0),

yki = yk0 + µ′ih(f(yk,i−1)− ai−1f(yk0)) + ν ′i(yk,i−1 − yk0) + κ′i(yk,i−2 − yk0),

yk+1 = yks,

(2.22)

where k = 0, . . . , N − 1, and

µ′i =
2biω2

bi−1

, ν ′i =
2biω0

bi−1

, κ′i = − bi
bi−2

, bi =
T ′′i (ω0)

(T ′i (ω0)2)
, ai = 1− biTi(ω0), (2.23)

for i = 2, . . . , s. As in (2.19), the stability functions of the internal stages are given by
Rη
i (z) = ai+biTi(ω0 +ω2z), where i = 0, . . . , s−1, and the parameters ai and bi are chosen

such that the above stages are consistent Rη
i (z) = 1 +O(z). The parameters b0 and b1 are

free (Rη
0(z) is constant and only order 1 is possible for Rη

1(z)) and the values b0 = b1 = b2

are suggested in [52]. Figure 2.5a illustrates the stability polynomials of the internal stages
of the RKC method (2.22) for s = 10 stages.

Figure 2.6 illustrates the advantage of RKC over the known Heun method of order 2
by showing the big difference between the stability domains of both methods, where we
set s = 7 stages for RKC.

2.1.3.3 Nearly optimal second order family: ROCK2 methods

For explicit stabilized methods of higher order with optimal stability domains, no analytical
expressions are known for the stability polynomials. The ROCK methods (for orthogonal
Runge-Kutta-Chebyshev) considered in [2, 3, 9] are explicit stabilized methods of nearly
optimal stability polynomials (cover 98% of the optimal domain), built on a recurrence
relation, and have been obtained for orders 2 and 4. Using the fact that the optimal
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Figure 2.5: Internal stages (thin curves) and stability polynomials (bold curve) of the RKC
method for s = 10 and the ROCK2 method for s = 13 stages.
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Figure 2.6: Stability domains of the RKC method for s = 7 stages (in blue) and the Heun
method (in brown).

stability polynomials of even order p possess exactly p complex zeros [1], the key idea is
then to seek, for a given p, an approximate solution of the problem (2.10) of the form

Rs(z) = wp(z)Ps−p(z), (2.24)

where Ps−p is a member of the family {Pj}j≥0, with Pj is a polynomial of degree j. This
family is orthogonal with respect to the weight function

wp(z)2/
√

1− z2,

where wp(z) is a positive polynomial of degree p, and its zeros are the p complex zeros of
Rs(z) (very close to the complex zeros of (2.10). In particular, for p = 1, we recover the
optimal order 1 shifted Chebyshev polynomials (2.11) with w1(z) = 1. For a given integer
s ≥ 2, the second order ROCK2 method reads

yk0 = yk,

yk1 = yk + µ′′1hf(yk0), (2.25)

yki = µ′′i hf(yk,i−1) + ν ′′i yk,i−1 + (1− ν ′′i )yk,i−2, i = 2, . . . , s− 2,
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and then the quadratic factor w2(z) = 1+2σz+ τz2 is represented by a two-stage finishing
procedure

yk,s−1 = yk,s−2 + hσf(yk,s−2),

y?ks = yk,s−1 + hσf(yk,s−1),

yks = y?ks − hσ(1− τ

σ2
)(f(yk,s−1)− f(yk,s−2)).

yk+1 = yks.

(2.26)

The coefficients µ′′i and ν ′′i are precomputed numerically (independently of f). Applying the
method to the linear test problem y′ = λy, we obtain for all i = 0, . . . , s− 2, yki = Pi(z)yk
and yks = w2(z)yk,s−2, hence yk+1 = Rs(z)yk, where z = λh.

Figure 2.5b, illustrates the internal stages and the stability function of the ROCK2
method for s = 13 stages. We see that ls ≈ 136 ≈ 0.81s2, and the optimal ls for second
order polynomials is approximately 0.82s2.

A fourth order explicit stabilized method called ROCK4 is introduced in [3], and is
constructed in a similar procedure as ROCK2. The additional difficulty for order p > 2 is
that the order conditions are no more the same as for linear problems [28, Chap. III].

2.2 Introduction to numerical integration of

stochastic differential equations

A stochastic differential equation (SDE) is a differential equation in which one or more
terms are random, i.e., depends on a white noise which is the formal derivative of a Brow-
nian motion. We will clarify these terms throughout this section. Stochastic differential
equations have important applications in various domains. Indeed, they are used to model
stock prices, molecular dynamics, physical systems subject to thermal fluctuations, and
other phenomena in physics, chemistry, economy and other domains. In this section, we
will recall some preliminaries about stochastic differential equations (SDEs). A few defini-
tions and main properties of Itô stochastic integrals are introduced. We will recall as well
the definition of mean square stability for the exact and the numerical solution of an SDE.

The reader is supposed to have a basic background knowledge of stochastic processes
and numerical integration of ordinary differential equations (ODEs). We refer to the re-
view article [32] for a practical and more detailed introduction to numerical methods for
stochastic differential equations including useful basic Matlab programs.

2.2.1 Brownian motion and Itô stochastic integral

Let (Ω,F ,P) be a probability space.

Definition 2.2.1. A Brownian motion (or Wiener process) (W (t))t∈[0,T ] over a closed
interval [0, T ] is a stochastic process that satisfies the following:

i. W is real valued and W (0) = 0.

ii. The trajectories of W are continuous almost surely on [0, T ].
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Figure 2.7: A plot of 100 Brownian paths, their average (thick black curve), and their
variance (thick magenta curve).

iii. The increments of W are independent, i.e., for 0 ≤ s < t ≤ u < v ≤ T , the
increments W (t)−W (s) and W (v)−W (u) are independent.

iv. For 0 ≤ s < t ≤ T , the random variable given by the increment W (t) − W (s) is
normally distributed with mean 0 and variance t−s, i.e., W (t)−W (s) ∼ N (0, t−s).

It can be proven that the trajectories of a Brownian motion are differentiable nowhere
with probability 1. In Figure 2.7, we plot 100 trajectories of a Brownian motion together
with their average and variance with respect to time.

2.2.1.1 Stochastic integrals

For a given (integrable) function g : [0, T ]→ R, the integral
∫ T

0
g(t)dt can be approximated

using the Riemann sum
N−1∑
j=0

g(tj)(tj+1 − tj), (2.27)

where tj = jh, and h = T/N for some integer N , then the integral may be defined by
taking the limit of (2.27) when h → 0 (i.e. N → ∞). Using the same analogy, we may
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define the stochastic integral
∫ T

0
g(t)dW (t) as the limit when h→ 0 of

N−1∑
j=0

g(tj)(W (tj+1)−W (tj)). (2.28)

The ”left-hand” sum (2.28) gives rise to what is know as the Itô integral. Evaluating g
in the sum at the midpoint (tj + tj+1)/2 gives the Stratonovich integral. Throughout this
thesis we will use the Itô version, but we recall that a simple transformation converts from
Itô to Stratonovich and vice versa.

Example 2.2.2. We have, using Itô integration,∫ T

0

W (t)dW (t) =
W (T )2

2
− T

2
. (2.29)

Indeed,

W (T )2 =

(
N−1∑
j=0

(W (tj+1)−W (tj))

)2

=
N−1∑
j=0

(W (tj+1)−W (tj))
2 + 2

N−1∑
i=1

i−1∑
j=0

(W (tj+1)−W (tj))(W (ti+1)−W (ti))

=
N−1∑
j=0

(W (tj+1)−W (tj))
2 + 2

N−1∑
i=0

W (ti)(W (ti+1)−W (ti)) (W (t0) = 0),

the term
∑N−1

j=0 (W (tj+1) −W (tj))
2 can be shown to have expected value T and variance

O(h), which means that as h → 0, it converges to T . On the other hand, the term

2
∑N−1

i=0 W (ti)(W (ti+1)−W (ti)) clearly converges to 2
∫ T

0
W (t)dW (t) as h→ 0, and hence

we have the desired equality. Note that using Stratonovich integration we get∫ T

0

W (t) ◦ dW (t) = W (T )2/2,

without the Itô term −T/2.

2.2.2 Itô formula and stochastic differential equations

An autonomous stochastic differential equation can be written in integral form as

X(t) = X0 +

∫ t

0

f(X(s))ds+

∫ t

0

g(X(s))dW (s), 0 ≤ t ≤ T, (2.30)

where the initial condition X0 ∈ Rd is a vector of random variables (it can also be deter-
ministic), and the vector fields f (called the drift) and g (called the diffusion) are functions
from Rd to Rd fulfilling some usual technical assumptions.

Usually, the equation (2.30) is written in the form of differential equation as

dX(t) = f(X(t))dt+ g(X(t))dW (t), X(0) = X0, 0 ≤ t ≤ T. (2.31)
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Here dW (t) is called the white noise and it can be seen formally as the time derivative of
the Wiener process W (t). Now let X(t) be a stochastic process verifying (2.31), and let
u : Rd → Rd be a function of class C2. For simplicity of the notation we set d = 1, then
the Itô differentiation formula (or stochastic chain rule) reads

d(u(X(t))) = u′(X(t))dX(t) +
1

2
u′′(X(t))g(X(t))2dt

= u′(X(t))f(X(t))dt+ u′(X(t))g(X(t))dW (t) +
1

2
u′′(X(t))g(t)2dt.

(2.32)

The term 1
2
u′′(X(t))g(t)2dt is called the ”Itô term”.

Example 2.2.3. 1. Consider the linear SDE

dX = λXdt+ µXdW, X(0) = X0, 0 ≤ t ≤ T. (2.33)

Suppose that X stays different than zero and let Y = ln(X), and let us apply the Itô
formula

dY = Y ′(X)dX +
1

2
µ2X2Y ′′(X)dt

=
1

X
(λXdt+ µXdW )− 1

2
µ2X2 1

X2
dt

= λdt+ µdW − 1

2
µ2dt

= (λ− 1

2
µ2)dt+ µdW,

integrating both sides, we get Y (t) = Y (0) + (λ− 1
2
µ2)t+ µW (t) and hence

X(t) = X0 exp((λ− 1

2
µ2)t+ µW (t)). (2.34)

It can be easily verified that X(t) defined in (2.34) solves (2.33).

2. Another way to prove (2.29) is to consider the SDE dX = dW (t), X(0) = 0
(i.e X(t) = W (t)), and u(X) = X2, we have then u′(X) = 2X and u′′(X) = 2. The
Itô formula yields

du(X(t)) = d(W (t)2) = 1dt+ 2W (t)dW (t).

Using W (0) = 0 we get

W (T )2 = T + 2

∫ T

0

W (t)dW (t),

and hence ∫ T

0

W (t)dW (t) =
W (T )2

2
− T

2
.
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Figure 2.8: Exact solution of (2.33) and its approximation using Euler-Maruyama
method (2.36).

2.2.3 Numerical Integration and mean square stability

In this section we will introduce standard explicit numerical methods to integrate an SDE
of the form (2.31). We will analyze their convergence and stability properties after defining
those notions.

We consider a uniform discretization of the interval [0, T ], t0 = 0 < t1 < · · · < tN = T ,
where tn = nh, h = T/N and n = 0, . . . , N . A one step numerical integrator for the
approximation of (2.31) at time t = nh is a discrete dynamical system of the form

Xn+1 = Ψ(Xn, h, ξn) (2.35)

where Xn is an approximation of X(tn) and ξn are independent random vectors. The
simplest one step method to integrate (2.31) is the Euler-Maruyama method defined as

Xn+1 = Xn + hf(Xn) + g(Xn)∆Wn, X(0) = X0, (2.36)

where ∆Wn = W (tn+1) −W (tn) ∼ N (0, hId) are the discrete Brownian increments. This
is just a generalization of the deterministic Euler method recovered in the absence of noise.
In Figure 2.8, we plot the one realization of the exact solution (2.34) of the linear SDE
(2.33) as well as its approximation using Euler-Maruyama scheme for T = 1 and N = 64.
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Truncating the Itô-Taylor expansion of the exact solution at an appropriate point, we
get the Milstein method

Xn+1 = Xn + hf(Xn) + g(Xn)∆Wn +
1

2
g′(Xn)g(Xn)((∆Wn)2 − h), X(0) = X0, (2.37)

which turns out to be more accurate than the Euler-Maruyama scheme with respect to the
strong order of convergence which will be defined in the next section. Another common
method is the generalization of the well known θ−method defined by

Xn+1 = Xn + h(1− θ)f(Xn) + hθf(Xn+1) + g(Xn)∆Wn, X(0) = X0, (2.38)

which is clearly implicit for θ 6= 0 and coincides with the Euler-Maruyama method (2.36)
for θ = 0.

2.2.3.1 Strong, Weak, and invariant measure convergence of stochastic
numerical integrators

Consider an SDE of the form (2.31), and let us denote by the sequence {Xn}n≥0 a numerical
approximation of its solution. We denote by ‖.‖p the usual p−norm on Rd, and in practice
we often use p = 1, 2. Finally, denote by E(Y ) the expected value of a random variable Y .

Definition 2.2.4. A numerical method {Xn}n≥0 to approximate (2.31) is said to be of
strong order r > 0, if for all h small enough and tn = nh ≤ T , we have

E(‖Xn −X(tn)‖p) ≤ Chr, (2.39)

where C is independent of h and n.

The strong order of convergence measures the decay rate of the mean of the error be-
tween each individual trajectory and its numerical approximation as h→ 0. An alternative
which turns out to be very useful in practice, is to measure the rate at which the error
of the trajectories’ means decay, i.e., measuring the convergence in law of the numerically
computed stochastic process to the exact solution. This introduces the concept of weak
convergence.

Definition 2.2.5. A numerical method {Xn}n≥0 to approximate (2.31) is said to be of
weak order q > 0, if for all test function φ satisfying some smoothness and polynomial
growth conditions, and all h small enough and tn = nh ≤ T , we have

|E(φ(Xn))− E(φ(X(tn)))| ≤ Chq, (2.40)

where C is independent of h and n.

For example, it can be shown that the Euler-Maruyama method (2.36) is of strong 1/2
while the Milstein method (2.37) is of strong order 1. However, they share the same weak
order 1 of convergence. A very useful result is that for Lipschitz test functions φ, if a
method has strong order r this implies that it is of weak order r as well.
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For ergodic SDEs, i.e., when (2.31) has a unique invariant measure µ satisfying for each
test function φ and for any deterministic initial condition X0 = x,

lim
T→∞

1

T

∫ T

0

φ(X(s))ds =

∫
Rd
φ(y)dµ(y), almost surely, (2.41)

one is interested in approximating numerically the long-time dynamics and to design nu-
merical schemes with a unique invariant measure such that∣∣∣∣∣ lim

N→∞

1

N + 1

N∑
n=0

φ(Xn)−
∫
Rd
φ(y)dµ(y)

∣∣∣∣∣ ≤ Chp, (2.42)

where C is independent of h small enough and X0. In such a situation, we say that
the numerical scheme has order p with respect to the invariant measure. This type of
convergence measures the rate at which the numerical method approximates the law of the
solution (or the steady state) over longtime. For instance, the Euler-Maruyama method has
order 1 with respect to the invariant measure. In fact, if a method converges weakly with
order q, then it is of order q with respect to the invariant measure for ergodic SDEs, i.e.,
with the notations of the above definitions, p ≥ q ≥ r. In Chapter 3, we will use the idea
of postprocessors to construct improved integrators in order to approximate the invariant
measure of ergodic SDEs with higher order of convergence with respect to the invariant
measure and with negligible overcost. To make the reader familiar with postprocessing
techniques for SDEs, we refer to the paper [56].

2.2.3.2 Mean square stability

This section is dedicated to introduce the notions of stochastic stability. We consider again
the SDE (2.31) where zero is an equilibrium, i.e. f(0) = g(0) = 0. The idea of stability in
the context of ODE does not generalize straightforwardly to the SDE case, and we should
say more precisely what we mean by ”limt→∞X(t)” . The following definitions introduce
the two main kinds of stochastic stability.

Definition 2.2.6. The solution X(t) of the equation (2.31) is said to be:

• stochastically asymptotically stable (AS) if there exists δ > 0 such that, for all initial
conditions X0 satisfying ‖X0‖ ≤ δ, we have

lim
t→∞
‖X(t)‖ = 0 almust surely. (2.43)

• mean square stable (MS) if there exists δ > 0 such that, for all initial conditions X0

satisfying ‖X0‖ ≤ δ, we have

lim
t→∞

E(X(t)2) = 0. (2.44)

Following the idea of stability of deterministic ODEs, we consider again the scalar linear
test equation

dX = λXdt+ µXdW, X(0) = X0, 0 ≤ t ≤ T, (2.45)
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and we recall that its true solution is

X(t) = X0 exp((λ− 1

2
µ2)t+ µW (t)). (2.46)

It can be proved that the solution (2.46) is asymptotically stable if and only if

<{λ− 1

2
µ2} < 0, (2.47)

and it is mean square stable if and only if

<{λ}+
1

2
|µ|2 < 0. (2.48)

One can easily see that if (2.45) is mean square stable then it is automatically asymp-
totically stable. Thus, throughout our study we will focus on the mean square stability
which turns out to be more required in practice. Now it is time to study the mean square
stability of numerical methods.

Definition 2.2.7. We say that a numerical method {Xn}n≥0 applied to the linear test
problem (2.45) is mean square stable if and only if limn→∞ E(|Xn|2) = 0.

Applying a one-step method to the linear SDE (2.45) with E(|X0|2) < δ for some δ > 0,
yields to a recurrence of the form

Xn+1 = R(p, q, ξn)Xn, (2.49)

where p = λh, q = µ
√
h, and ξn ∼ N (0, 1). The rational function R(p, q, ξ) is called the

stability function of the method. Note that
√
hξn represents ∆Wn ∼ N (0, h). For example,

the Euler-Matuyama method (2.36), which can be written as

Xn+1 = Xn + hλXn + µ
√
hξnXn,

admits R(p, q, ξ) = 1 + p + qξ as stability function, whereas that of Milstein method is
R(p, q, ξ) = 1 + p+ qξ+ 1

2
q2(ξ2− 1). Using the independence of ξn and Xn, and taking the

expected value of (2.49) on both sides, we can write

E(|Xn+1|2) = E(|R(p, q, ξn)|2)E(|Xn|2),

and by induction we get

E(|Xn|2) = E(|R(p, q, ξn)|2)nE(|X0|2).

Naturally we define the numerical mean square stability domain of a one-step method as

SMS
num = {(p, q) ∈ C2 ; |R(p, q, ξ)| < 1}. (2.50)

Definition 2.2.8. A numerical method {Xn}n≥0 is said to be mean square A-stable if

SMS
exact ⊂ SMS

num,

where SMS
exact = {(p, q) ∈ C2 ; <{p}+ 1

2
|q|2 < 0}.

Theorem 2.2.9 (Higham 00’). The θ−method (2.38) is mean square A-stable if and only
if θ ≥ 1

2
.
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2.2.3.3 Monte Carlo method

Consider and SDE with unknown process X : [0, T ] → Rd, which we would like to ap-
proximate using a numerical integrator with time step h = T/N , where T is the final
time and N is the number of steps. In order to approximate expected values of the form
E(φ(X(T ))), we calculate a large number M of independent trajectories {Xk

N}
k=1,...,M
n=0,...,N , then

we approximate the average of φ(XN), using the law of large numbers

E(φ(X(T ))) ≈ E(φ(XN)) ≈ 1

M

M∑
k=1

φ(Xk
N). (2.51)

This method for approximating the expected value of a random variable is called Monte
Carlo method. The central limit theorem implies that the error of this approximation is
O(1/

√
M). For instance, if the numerical integrator used to calculate the trajectories is of

weak order q the weak error will look like∣∣∣∣∣E(φ(X(tn)))− 1

M

M∑
k=1

φ(Xk
n)

∣∣∣∣∣ ≤ |E(φ(X(tn)))− E(φ(XN))|

+

∣∣∣∣∣E(φ(Xn))− 1

M

M∑
k=1

φ(Xk
N)

∣∣∣∣∣
= O(hq + 1/

√
M).

To reach an accuracy ε, supposing that we use the Euler-Maruyama method (weak
order 1) as our numerical integrator, we set h = 1/

√
M = ε, the total cost of the above

approximation is
MT

h
= O

(
M

h

)
= O(ε−3).

In order to reduce this cost, we use variance reduction techniques. Giles introduced in [26]
a variance reduction technique called Multilevel Monte Carlo method (MLMC) to reduce
the computational complexity of estimating an expected value arising from a stochastic
differential equation using Monte Carlo path simulations. In [6], Abdulle and Blumenthal
consider a stabilized MLMC method by coupling standard MLMC with explicit stabilized
integrators. The total cost using MLMC reduces to O(ε2(log ε)2).



Chapter 3

Optimal explicit stabilized integrators
for stiff and ergodic SDEs

Note: Sections 3.1 to 3.6 are quoted identically from the paper [5] in collaboration with
Assyr Abdulle and Gilles Vilmart, while Section 3.7 discusses possible extensions and
outlook.

3.1 Introduction

We consider Itô systems of stochastic differential equations of the form

dX(t) = f(X(t))dt+
m∑
r=1

gr(X(t))dWr(t), X(0) = X0 (3.1)

where X(t) is a stochastic process with values in Rd, f : Rd → Rd is the drift term,
gr : Rd → Rd, r = 1, . . . ,m are the diffusion terms, and Wr(t), r = 1, . . . ,m, are indepen-
dent one-dimensional Weiner processes fulfilling the usual assumptions. We assume that
the drift and diffusion functions are smooth enough and Lipschitz continuous to ensure
the existence and uniqueness of a solution of (3.1) on a given time interval (0, T ). We
consider autonomous problems to simplify the presentation, but we emphasise that the
scheme can also be extended to non-autonomous SDEs. A one step numerical integrator
for the approximation of (3.1) at time t = nh is a discrete dynamical system of the form

Xn+1 = Ψ(Xn, h, ξn) (3.2)

where h denotes the stepsize and ξn are independent random vectors. Analogously to the
deterministic case, standard explicit numerical schemes for stiff stochastic problems, such
as the simplest Euler-Maruyama method defined as

Xn+1 = Xn + hf(Xn) +
m∑
r=1

gr(Xn)∆Wn,r, X(0) = X0, (3.3)

where ∆Wn,r = Wr(tn+1) −Wr(tn) are the Brownian increments, face a severe timestep
restriction [33, 29, 36], and one can use an implicit or semi-implicit scheme with favorable

31
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stability properties. In particular, it is shown in [33] that the implicit θ-method of weak
order one is mean-square A-stable if and only if θ ≥ 1/2, while weak order two mean-square
A-stable are constructed in [11]. An alternative approach is to consider explicit stabilized
schemes with extended stability domains, as proposed in [7, 8]. In [8] the deterministic
Chebyshev method is extended to the context of mean-square stiff stochastic differential
equations with Itô noise, while the Stratonovitch noise case is treated in [7]. In place of
a standard small damping, the main idea in [7, 8] is to use a large damping parameter η
optimized for each number s of stages to stabilize the noise term. This yields a family of
Runge-Kutta type schemes with extended stability domain with size Ls ' 0.33s2. This
stability domain size was improved to Ls ' 0.42s2 in [12] where a family of weak second
order stabilized schemes (and strong order one under suitable assumptions) is constructed
based on the deterministic ROCK2 method [9].

For ergodic SDEs, i.e., when (3.1) has a unique invariant measure µ satisfying for each
test function φ and for any deterministic initial condition X0 = x,

lim
T→∞

1

T

∫ T

0

φ(X(s))ds =

∫
Rd
φ(y)dµ(y), almost surely, (3.4)

one is interested in approximating numerically the long-time dynamics and to design nu-
merical scheme with a unique invariant measure such that∣∣∣∣∣ lim

N→∞

1

N + 1

N∑
n=0

φ(Xn)−
∫
Rd
φ(y)dµ(y)

∣∣∣∣∣ ≤ Chr, (3.5)

where C is independent of h small enough and X0. In such a situation, we say that the
numerical scheme has order r with respect to the invariant measure. For instance, the
Euler-Maruyama method has order 1 with respect to the invariant measure. In [39] the
following non-Markovian scheme with the same cost as the Euler-Maruyama method was
proposed for Brownian dynamics, i.e where the vector field is a gradient f(x) = −∇V (x)
and the noise is additive (g(x) = σ),

Xn+1 = Xn + hf(Xn) + σ
∆Wn,j + ∆Wn+1,j

2
, X(0) = X0, (3.6)

and it was shown in [40] that (3.6) has order 2 with respect to the invariant measure for
Brownian dynamics. However, the admissible stepsizes for such an explicit method to be
stable may face a severe restriction and alternatively to switching to drift-implicit methods,
one may ask if a stabilized version of such an attractive non-Markovian scheme exists.

In this chapter we introduce a new family of explicit stabilized schemes with optimal
mean-square stability domain of size Ls = Cs2, where C ≥ 2 − 4

3
η and η ≥ 0 is a small

parameter. We emphasize that in the deterministic case, Ls = 2s2 is the largest, i.e. op-
timal, stability domain along the negative real axis for an explicit s-stage Runge-Kutta
method [29]. We note that the Chebyshev method (3.8) (with η = 0) realizes such an
optimal stability domain. The new schemes have strong order 1/2 and weak order 1. The
main ingredient for the design of the new schemes is to consider second kind Chebyshev
polynomials, in addition to the usual first kind Chebyshev polynomials involved in the
deterministic Chebychev method and stochastic extensions [8, 7]. For stiff stochastic prob-
lems, the stability domain sizes are close to the optimal value 2s2 and in the deterministic
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setting the method coincide with the optimal first order explicit stabilized method. Thus
these methods are more efficient than previously introduced stochastic stabilized methods
[8, 12]. For ergodic dynamical systems, in the context of the ergodic Brownian dynam-
ics, the new family of explicit stabilized schemes allows for a postprocessing [56] (see also
[17, 38] in the context of Runge-Kutta methods) to achieve order two of accuracy for sam-
pling the invariant measure. In this context, our new methods can be seen as a stabilized
version of the non-Markovian scheme (3.6) introduced in [39, 40].

This chapter is organized as follows. In Section 3.2, we introduce the new family of
schemes with optimal stability domain and we recall the main tools for the study of stiff
integrators in the mean-square sense. We then analyze its mean-square stability properties
(Section 3.3), and convergence properties (Section 3.4). In Section 3.5, using a postpro-
cessor we present a modification with negligible overcost that yields order two of accuracy
for the invariant measure of a class of ergodic overdamped Langevin equation. Finally,
Section 3.6 is dedicated to the numerical experiments that confirm our theoretical analysis
and illustrate the efficiency of the new schemes.

3.2 New second kind Chebyshev methods

In this section we introduce our new stabilized stochastic method. We first briefly recall the
concept of stabilized methods. In the context of ordinary differential equations (ODEs),

dX(t)

dt
= f(X(t)), X(0) = X0, (3.7)

and the Euler method X1 = X0 +hf(X(0)), a stabilization procedure based on recurrence
formula has been introduced in [54]. Its construction relies on Chebyshev polynomials
(hence the alternative name “Chebyshev methods”), Ts(cosx) = cos(sx) and it is based
on the explicit s-stage Runge-Kutta method

K0 = X0, K1 = X0 + hµ1f(K0),

Ki = µihf(Ki−1) + νiKi−1 + κiKi−2, j = 2, . . . , s, (3.8)

X1 = Ks,

where

ω0 = 1 +
η

s2
, ω1 =

Ts(ω0)

T ′s(ω0)
, µ1 =

ω1

ω0

, (3.9)

and for all i = 2, . . . , s,

µi =
2ω1Ti−1(ω0)

Ti(ω0)
, νi =

2ω0Ti−1(ω0)

Ti(ω0)
, κi = −Ti−2(ω0)

Ti(ω0)
= 1− νi. (3.10)

One can easily check that the (family) of methods (3.8) has the same first order accuracy
as the Euler method (recovered for s = 1). In addition, the scheme (3.8) has a low memory
requirement (only two stages should be stored when applying the recurrence formula) and
it has a good internal stability with respect to round-off errors [54]. The attractive feature
of such a scheme comes from its stability behavior. Indeed, the method (3.8) applied to
the linear test problem dX(t)/dt = λX(t) yields, using the recurrence relation

Tj(p) = 2pTj−1(p)− Tj−2(p), (3.11)
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(a) Complex stability domain for different damping parameters η.
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Figure 3.1: Stability domains and stability functions of the deterministic Chebyshev
method for s = 7 and different damping values η = 0, 0.05, 3.98.

where T0(p) = 1, T1(p) = p, with p = λh,

X1 = Rs,η(p)X0 =
Ts(ω0 + ω1p)

Ts(ω0)
X0, (3.12)

where the dependence of the stability function Rs,η on the parameters s and η is emphasized
with a corresponding subscript. The real negative interval (−Cs(η) · s2, 0) is included in
the stability domain of the method

S := {p ∈ C; |Rs,η(p)| ≤ 1}. (3.13)

The constant Cs(η) ' 2 − 4/3 η depends on the so-called damping parameter η and for
η = 0, it reaches the maximal value Cs(0) = 2. Hence, given the stepsize h, for systems
with a Jacobian having large real negative eigenvalues (such as diffusion problems) with
spectral radius λmax at Xn, the parameter s for the next step Xn+1 can be chosen adaptively
as1

s =

[√
hλmax + 1.5

2− 4/3 η
+ 0.5

]
, (3.14)

see [3] in the context of deterministically stabilized schemes of order two with adapta-
tive stepsizes. The method (3.8) is much more efficient as its stability domain increases
quadratically with the number s of function evaluations while a composition of s explicit
Euler steps (same cost) has a stability domain that only increases linearly with s. In Fig-
ure 3.1(a) we plot the complex stability domain {p ∈ C ; |Rs,η(p)| ≤ 1} for s = 7 stages
and different values η = 0, η = 0.05 and η = 3.98, respectively. We also plot in Figure
3.1(b) the corresponding stability function Rs,η(p) as a function of p real, to illustrate

1The notation [x] stands for the integer rounding of real numbers.
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that the stability domain along the negative real axis corresponds to the values for which
|Rs,η(p)| ≤ 1. We observe that in the absence of damping (η = 0), the stability domain
includes the large real interval [−2 · s2, 0] of width 2 · 72 = 98. However for all p that are a
local extrema of the stability function, where |Rs,η(p)| = 1, the stability domain is very thin
and does not include a neighbourhood close to the negative real axis. To make the scheme
robust with respect to small perturbations of the eigenvalues, it is therefore needed to add
some damping and a typical value is η = 0.05, see for instance the reviews [55, 4]. The
advantage is that the stability domain now includes a neighbourhood of the negative real
axis portion. The price of this improvement is a slight reduction of the stability domain
size Cηs

2, where Cη ' 2− 4
3
η. Chebyshev methods have been first generalized for Itô SDEs

in [8] (see [7] for Stratonovitch SDEs) with the following scheme denoted S-ROCK,2

K0 = X0

K1 = X0 + µ1hf(X0)

Ki = µihf(Ki−1) + νiKi−1 + κiKi−2, i = 2, . . . , s,

X1 = Ks +
m∑
r=1

gr(Ks)∆Wr, (3.15)

where the coefficients µi, νi, κi are defined in (3.9),(3.10). In contrast to the deterministic
method (3.8), where η is chosen small and fixed (typically η = 0.05), in stochastic case
for the classical S-ROCK method [8], the damping η = ηs is not small and chosen as an
increasing function of s that plays a crucial role in stabilizing the noise and in obtaining
an increasing portion of the true stability domain (3.19) as s increases.

In the context of stiff SDEs, a relevant stability concept is that of mean-square stability.
A test problem widely used in the literature is [49, 33, 19, 53] ,

dX(t) = λX(t)dt+ µX(t)dW (t), X(0) = 1, (3.16)

in dimensions d = m = 1 with fixed complex parameters λ, µ. Note that other stability
test problems in multiple dimensions are also considered in [18] and references therein.
The exact solution of (3.16) is called mean-square stable if limt→∞ E

(
|X(t)|2

)
= 0 and this

holds if and only if (λ, µ) ∈ SMS, where

SMS =
{

(λ, µ) ∈ C2 ; <(λ) +
1

2
|µ|2 < 0

}
.

Indeed, the exact solution of (3.16) is given by X(t) = exp((λ − 1
2
µ2)t + µW (t)), and an

application of the the Itô formula yields E(|X(t)|2) = exp((<(λ) + 1
2
µ2)t) which tends to

zero at infinity if and only if <(λ) + 1
2
µ2 < 0. We say that a numerical scheme {Xn} for

the test problem (3.16) is mean-square stable if and only if limn→∞ E(|Xn|2) = 0. For a
one-step integrator applied to the test SDE (3.16), we obtain in general a induction of the
form

Xn+1 = R(p, q, ξn)Xn, (3.17)

2A variant with analogous stability properties is proposed in [8] with gr(Ks) replaced by gr(Ks−1) in
(3.15).
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(a) Standard S-ROCK method (s = 7, η = 3.98).
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(b) New SK-ROCK method (s = 7, η = 0.05).
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(d) New SK-ROCK method (s = 20, η = 0.05).

Figure 3.2: Mean-square stability domains of the standard and new stochastic Chebyshev
methods in the p–q2 plane for s = 7, 20 stages, respectively. The dashed lines corresponds
to the upper boundary q2 = −2p of the real mean-square stability domain S ∩ R2 of the
exact solution.

where p = λh, q = µ
√
h, and ξn is a random variable (e.g. a Gaussian ξn ∼ N (0, 1) or

a discrete random variable). Using E(|Xn+1|2) = E(|R(p, q, ξn)|2)E(|Xn|2), we obtain the
mean-square stability condition [49, 33]

lim
n→∞

E(|Xn|2) = 0 ⇐⇒ (p, q) ∈ Snum, (3.18)
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where we define Snum = {(p, q) ∈ C2 ;E|R(p, q, ξ)|2 < 1}. The function R(p, q, ξn) is called
the stability function of the one-step integrator. For instance, the stability function of the
Euler-Maruyama method (3.3) reads R(p, q, ξ) = 1 + p+ qξ and we have E(|R(p, q, ξ)|2) =
(1 + p)2 + q2.

We say that a numerical integrator is mean-square A-stable if SMS ⊂ Snum. This means
that the numerical scheme applied to (3.16) is mean-square stable for all all h > 0 and
all (λ, µ) ∈ SMS for which the exact solution of (3.16) is mean-square stable. An explicit
Runge-Kutta type scheme cannot however be mean-square stable because its stability
domain Snum is necessary bounded along the p-axis. Following [7, 8], we consider the
following portion of the true mean-square stability domain

Sa = {(p, q) ∈ (−a, 0)× R ; p+
1

2
|q|2 < 0}, (3.19)

and define for a given method

L = sup{a > 0 ; Sa ⊂ Snum}. (3.20)

We search for explicit schemes for which the length L of the stability domain is large. For
example, for the classical S-ROCK method [8], the value η = 3.98 is the optimal damping
maximising L for s = 7 stages and we can see in Figure 3.1 that this damping reduces
significantly the stability domain compared to the optimal deterministic domain.

The new S-ROCK method, denoted SK-ROCK (for stochastic second kind orthogonal
Runge-Kutta-Chebyshev method) introduced in this chapter is defined as

K0 = X0

K1 = X0 + µ1hf(X0 + ν1Q) + κ1Q

Ki = µihf(Ki−1) + νiKi−1 + κiKi−2, i = 2, . . . , s.

X1 = Ks, (3.21)

where Q =
∑m

r=1 g
r(X0)∆Wr, and µ1 = ω1/ω0, ν1 = sω1/2, κ1 = sω1/ω0 and µi, νi, κi, i =

2, . . . , s are given by (3.10), with a fixed small damping parameter η. In the absence of
noise (gr = 0, r = 1, . . . ,m, deterministic case), this method coincides with the standard
deterministic order 1 Chebychev method, see the review [4]. We observe that the new class
of methods (3.21) is closely related to the standard S-ROCK method (3.15). Comparing
the two schemes (3.21) and (3.15), the two differences are on the one hand that the noise
term is computed at the first internal stage K1 for (3.21), whereas it is computed at the final
stage in (3.15), and on the other hand, for the new method (3.21) the damping parameter
η involved in (3.9) is fixed and small independently of s (typically η = 0.05), whereas
for the standard method (3.15), the damping η is an increasing function of s, optimized
numerically for each number of stages s.

If we apply the above scheme (3.21) to the linear test equation (3.16), we obtain

Xn+1 = R(p, q, ξn)Xn,

where

E(|R(p, q, ξ)|2) = A(p)2 +B(p)2q2, (3.22)
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and

A(p) =
Ts(ω0 + ω1p)

Ts(ω0)
B(p) =

Us−1(ω0 + ω1p)

Us−1(ω0)
(1 +

ω1

2
p)

correspond to the drift and diffusion contributions, respectively. The above stability func-
tion (see Lemma 3.3.1 in Section 3.3) is obtained by using the recurrence relation for the
first kind Chebyshev polynomials (3.11) and the similar recurrence relation for the second
kind Chebyshev polynomials

Uj(p) = 2pUj−1(p)− Uj−2(p), (3.23)

where U0(p) = 1, U1(p) = 2p. Notice that the relation T ′s(p) = sUs−1(p) between first and
second kind Chebyshev polynomials will be repeatedly used in our analysis.

In Figure 3.2(b)(d), we plot the mean-square stability domain of the SK-ROCK method
for s = 7 and s = 20 stages, respectively and the same small damping η = 0.05 as for the
deterministic Chebyshev method. We observe that the stability domain has length Ls '
(2− 4

3
η)s2. For comparison, we also include in Figure 3.2(a)(c) the mean-square stability

domain of the standard S-ROCK method with smaller stability domain size Ls ' 0.33 · s2.
In Figure 3.3, we plot the stability function E(|R(p, q, ξ)|2) in (3.22) as a function of p

for various scaling of the noise for s = 7 stages and damping η = 0.05. We see that it is
bounded by 1 for p ∈ (−2(1− 2

3
η)s2, 0) which is proved asymptotically in Theorem 3.3.2.

The case q = 0 corresponds to the deterministic case, and we see in Figure 3.3(a), the
polynomial E(|R(p, 0, ξ)|2) = A(p)2. Noticing that E(|R(p, q, ξ)|2) is an increasing function
of q, the case q2 = −2p represented in Figure 3.3(c) corresponds to the upper border of
the stability domain SL defined in (3.19) (note that this is the stability function value
along the dashed boundary in Figure 3.2), while the scaling q2 = −p in Figure 3.3(c) is
an intermediate regime. In Figures 3.3(b)(c), we also include the drift function A(p)2 (red
dotted lines) and diffusion function B(p)2q2 (blue dashed lines), and it can be observed
that their oscillations alternate, which means that any local maxima of one function is close
to a zero of the other function. This is not surprising because A(p) and B(p) are related
to the first kind and second kind Chebyshev polynomials, respectively, corresponding to
the cosine and sine functions. This also explains how a large mean-square stability domain
can be achieved by the new SK-ROCK method (3.21) with a small damping parameter
η, in contrast to the standard S-ROCK method (3.15) from [8] that uses a large and
s-dependent damping parameter η with smaller stability domain size Ls ' 0.33 · s2(see
Figures 3.3(a)(c)).

3.3 Mean-square stability analysis

In this section, we prove asymptotically that the new SK-ROCK methods have an extended
mean-square stability domain with size Cs2 growing quadratically as a function of the
number of internal stages s, where the constant C ≥ 2 − 4

3
η is the same as the optimal

constant of the standard Chebyshev method in the deterministic case, using a fixed and
small damping parameter η.

Lemma 3.3.1. Let s ≥ 1 and η ≥ 0. Applied to the linear test equation

dX = λXdt+ µXdW,
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E(|R(p, q, ξ)|2) = A(p)2 +B(p)2q2
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Figure 3.3: Stability function (3.22) of the new SK-ROCK method as a function of p
in (solid black lines), for s = 7, η = 0.05 and various noise scalings q2 = 0,−p,−2p,
respectively. We also include the drift contribution A(p)2 (red dotted lines) and diffusion
contribution B(p)2q2 (blue dashed lines).

the scheme (3.21) yields

Xn+1 = R(λh, µ
√
h, ξn)Xn

where p = λh, q = µ
√
h, ξn ∼ N (0, 1) is a Gaussian variable and the stability function

given by

R(p, q, ξ) =
Ts(ω0 + ω1p)

Ts(ω0)
+
Us−1(ω0 + ω1p)

Us−1(ω0)
(1 +

ω1

2
p)qξ. (3.24)

Proof. Indeed, we take advantage that Tj and Uj have the same recurrence relations
(3.11),(3.23), and only the initialization changes with T1(x) = x and U1(x) = 2x, we
deduce Q = X0µ

√
hξ, and we obtain by induction on i ≥ 1,

Ki =
Ti(ω0 + ω1p)

Ti(ω0)
X0 +

Ui−1(ω0 + ω1p)

Ti(ω0)
(1 +

ω1p

2
)sω1Q

and we use T ′s(x) = xUs−1(x) and sω1/Ts(ω0) = 1/Us−1(ω0), which yields the result for
X1 = Ks.

For a positive damping η, we prove the following main result of this section, showing
that a quadratic growth L ≥ (2− 4/3 η)s2 of the mean-square stability domain defined in
(3.20) is achieved for all η small enough and all stage number s large enough.

Theorem 3.3.2. There exists η0 > 0 and s0 such that for all η ∈ [0, η0] and all s ≥ s0,
for all p ∈ [−2ω−1

1 , 0] and p+ 1
2
|q|2 ≤ 0, we have E(|R(p, q, ξ)|2) ≤ 1.
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Remark 3.3.3. We deduce from Theorem 3.3.2, that the mean-square stability domain
size (3.20) of SK-ROCK grows as (2 − 4/3 η)s2 which is arbitrarily close to the optimal
stability domain size 2s2 for η → 0. Indeed, for s→∞ and all η ≤ η0, we have

2ω−1
1 s−2 → 2

tanh(
√

2η)√
2η

= 2− 4/3 η +O(η2)

and for all s, η, we have 2ω−1
1 ≥ (2 − 4/3 η)s2. In addition, in the special case of a zero

damping (η = 0), the stability function (3.24) reduces to

R(p, q, ξ) = Ts(1 +
p

s2
) + s−1Us−1(1 +

p

s2
)(1 +

p

2s2
)qξ,

and it holds
E(|R(p, q, ξ)|2) ≤ 1,

for all s ≥ 1, for all p ∈ [−2s2, 0] and all q ∈ C such that p + |q|2/2 ≤ 0. Indeed, for
p ∈ [−2s2, 0], we denote cos θ = 1 + p

s2
∈ [−1, 1] and using

Ts(cos(θ)) = cos(sθ), sin(θ)Us−1(cos(θ)) = sin(sθ),

we obtain

E(|R(p, q, ξ)|2) ≤ E(|R(p,
√
−2p) = cos(sθ)2 + sin(sθ)2 1 + cos θ

2
≤ 1,

where we used −2p = 2s2(1− cos θ), 1 + p
2s2

= 1+cos θ
2

and sin2 θ = (1 + cos θ)(1− cos θ).

Before we prove Theorem 3.3.2, we have the following lemma, see [54] for analogous
results.

Lemma 3.3.4. We have the following convergences as s → ∞ to analytic functions3

uniformly for z in any bounded set of the complex plan,

Ts(1 + z/s2)→ cosh
√

2z,

s−1Us−1(1 + z/s2)→ α(z) :=
sinh
√

2z√
2z

,

ω1s
2 → Ω(η)−1, Ω(η) :=

tanh
√

2η√
2η

.

Proof. We prove the uniform convergence of the first limit only, since it will be useful in
the proof of the next theorem. The others can be proved in a similar way.

First, let us write the two functions of η in Taylor series,

s−1Us−1(ω0) = s−1

s−1∑
n=0

U
(n)
s−1(1)

n!
(
η

s2
)n =

s−1∑
n=0

(
1

n!

n∏
k=0

(1− k2

s2
)

n∏
k=0

1

2k + 1

)
ηn,

α(η) =
∞∑
n=0

2nηn

(2n+ 1)!
=
∞∑
n=0

(
1

n!

n∏
k=0

1

2k + 1

)
ηn,

3Note that for z < 0, we can use
√

2z = i
√
−2z and obtain Ts(1 + z/s2)→ cos(

√
−2z) for s→∞ and

similarly α(z) = sinc(
√
−2z).
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where we used the formula sU
(n−1)
s−1 (1) = T

(n)
s (1) =

∏n−1
k=0

s2−k2
2k+1

. Subtracting the above two
identities, we deduce

sup
η∈[−η0,η0]

∣∣s−1Us−1(ω0)− α(η)
∣∣ ≤ s−1∑

n=0

ηn0
n!

(
1−

n∏
k=0

(1− k2

s2
)

)
n∏
k=0

1

2k + 1
+
∞∑
n=s

ηn0
n!

≤
s−1∑
n=0

ηn0
n!

(
1−

n∏
k=0

(1− k2

s2
)

)
1

2s− 1
+
∞∑
n=s

ηn0
n!

(3.25)

Noticing that
ηn0
n!

(
1−
∏n

k=0(1− k2

s2
)
)

1
2s−1

converges to zero as s→∞ and is bounded by
ηn0
n!

for

all integers s, n, which is the general term of the convergent series of exp(η0) =
∑∞

n=0
ηn0
n!

, the
Lebesgue dominated convergence theorem implies that (3.25) converges to zero as s→∞,
which concludes the proof.

Lemma 3.3.5. For all η small enough and all s large enough, we have the following
estimate:

s2ω1

Ts(w0)2

1− (1− ω1)2

1− (ω0 − ω1)2
≤ 1 (3.26)

Proof of Lemma 3.3.5. Using the Lemma 3.3.4 we have for s → ∞, uniformly for all
η ∈ [0, η0],

s2ω1

Ts(ω0)2
→ 2

√
2η

sinh(2
√

2η)
and

1− (1− ω1)2

1− (ω0 − ω1)2
→ 1

1− Ω(η)η
.

Now if we expand both functions in Taylor series we get:

2
√

2η

sinh(2
√

2η)
= 1− 4

3
η +O(η2),

1

1− Ω(η)η
= 1 + η +O(η2), (3.27)

and this implies that for all s large enough and all η ≤ η0,

s2ω1

Ts(w0)2

1− (1− ω1)2

1− (ω0 − ω1)2
≤ (1− 4

3
η0 +O(η2

0))(1 + η0 +O(η2
0)) = 1− 1

3
η0 +O(η2

0), (3.28)

which is less than 1 for η0 small enough.

Remark 3.3.6. Numerical evidence suggests that the result of Theorem 3.3.2 holds for
all s ≥ 1 and all η ≥ 0. Indeed, it can be checked numerically that (3.26) holds for all
η ∈ (0, 1) and all s ≥ 1.

Proof of Theorem 3.3.2. Setting x = w0 + w1p, a calculation yields

E(|R(p, q, ξ)|2) ≤ E(|R(p,
√
−2p, ξ)|2)

=
Ts(x)2

Ts(w0)2
+

Us−1(x)2

Us−1(w0)2
(1 +

w1

2
p)2(−2p)

The proof is conducted in two steps where we treat separately the cases p ∈ [−2ω−1
1 ,−1] and

p ∈ [−1, 0]. For the first case p ∈ [−2ω−1
1 ,−1], which corresponds to x ∈ [−1+η/s2, ω0−ω1],
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we have

E(|R(p, q, ξ)|2) =
Ts(x)2

Ts(w0)2
+

Us−1(x)2

Us−1(w0)2

(
1− w0 − x

2

)2

2
w0 − x
w1

=
Ts(x)2

Ts(w0)2
+ Us−1(x)2(1− x2)Qs(x)

where we denote

Qs(x) =
s2ω1

Ts(w0)2

(
1 + x− η

s2

2

)
1− (x− η

s2
)2

1− x2

First, we note that
1+x− η

s2

2
∈ [0, 1− ω1

2
]. Next, using η

s2
≤ 2, we deduce

d

dx

(
1− (x− η

s2
)2

1− x2

)
=

2η

s2

1 + x2 − η/s2x

(1− x2)2
≥ 2η

s2

(1− x)2

(1− x2)2
≥ 0.

Thus,
1−(x− η

s2
)2

1−x2 is an increasing function of x, smaller than its value at x = ω0 − ω1,

1− (x− η
s2

)2

1− x2
≤ 1− (1− ω1)2

1− (ω0 − ω1)2

Using Lemma 3.3.5 we obtain |Qs(x)| ≤ 1. This yields E(|R(p, q, ξ)|2) ≤ Ts(x)2+Us−1(x)2(1−
x2) = 1.

For the second case p ∈ [−1, 0] which corresponds to x ∈ [ω0 − ω1, ω0], we deduce from
Ts(x)2 + Us−1(x)2(1− x2) = 1 that

E(|R(p, q, ξ)|2) ≤ 1

Ts(w0)2
+

Us−1(x)2

Us−1(w0)2

(
(1 +

w1

2
p)2(−2p)− (1− x2)Us−1(ω0)2

Ts(w0)2

)
Using Lemma 3.3.4, we get

E(|R(p, q, ξ)|2) ≤ 1

Ts(w0)2
+

Us−1(x)2

Us−1(w0)2

(
(1 +

w1

2
p)2(−2p)− (1− x2)Us−1(ω0)2

Ts(w0)2

)
→ l(η, p) :=

1

cosh2√2η
+
α(η + p/Ω(η))2

α(η)2
(−2p(Ω(η)− 1) + 2Ω(η)2η),

for s → ∞, where the above convergence is uniform for p ∈ [0, 1],η ≤ η0. Using the fact
that Ω(η) = 1− 2

3
η +O(η2), we deduce

∂l

∂η
|η=0 = −2 + α(p)2(−4

3
p+ 2).

By Taylor series in the neighbourhood of zero we have α(p)2 = 1 + 2
3
p+ 8

45
p2 +O(p3), and

for p ∈ [−1, 0], α(p)2 ≤ 1 + 2
3
p+ 8

45
p2, thus for all p ∈ [−1, 0],

∂l

∂η
|η=0 ≤ −2 + (1 +

2

3
p+

8

45
p2)(−4

3
p+ 2) = − 8

135
p2(4p+ 9) ≤ 0.

Therefore, there exists η0 small enough such that for all p ∈ [−1, 0], η ≤ η0, l(η, p) ≤
l(0, p) = 1. This concludes the proof of Theorem 3.3.2.
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3.4 Convergence analysis

We show in this section that the proposed scheme (3.21) has strong order 1/2 and weak
order 1 for general systems of SDEs of the form (3.1) with Lipschitz and smooth vector
fields, analogously to the simplest Euler-Maruyama method.

We denote by C4
P (Rd,Rd) the set of functions from Rd to Rd that are 4 times contin-

uously differentiable with all derivatives with at most polynomial growth. The following
theorem shows that the proposed SK-ROCK has strong order 1/2 and weak order 1 for
general SDEs.

Theorem 3.4.1. Consider the system of SDEs (3.1) on a time interval of length T > 0,
with f, g ∈ C4

P (Rd,Rd), Lipschitz continuous. Then the scheme (3.21) has strong order 1/2
and weak order 1,

E|(‖X(tn)−Xn‖) ≤ Ch1/2, tn = nh ≤ T, (3.29)

|E(φ(X(tn)))− E(φ(Xn))| ≤ Ch, tn = nh ≤ T, (3.30)

for all φ ∈ C4
P (Rd,R), where C is independent of n, h.

For the proof the Theorem 3.4.1, the following lemma will be useful. It relies on the
linear stability analysis of Lemma 3.3.1.

Lemma 3.4.2. The scheme (3.21) has the following Taylor expansion after one timestep,

X1 = X0+hf(X0)+
m∑
r=1

gr(X0)∆Wr+h

(
T ′′s (ω0)ω2

1

Ts(ω0)
+
ω1

2

)
f ′(X0)

m∑
r=1

gr(X0)∆Wr+h
2Rh(X0),

where all the moments of Rh(X0) are bounded uniformly with respect to h assumed small
enough, with a polynomial growth with respect to X0.

Proof. Using the definition (3.21) of the scheme and the recurrence relations (3.11),(3.23),
we obtain by induction on i = 1, . . . , s,

Ki = X0 + h
T ′i (ω0)ω1

Ti(ω0)
f(X0) +

sT ′i (ω0)ω1

iTi(ω0)

m∑
r=1

gr(X0)∆Wr

+ h

(
sT ′′i (ω0)ω2

1

iTi(ω0)
+
sT ′i (ω0)ω2

1

2iTi(ω0)

)
f ′(X0)

m∑
r=1

gr(X0)∆Wr + h2Ri,h(X0), (3.31)

and Ri,h(X0) has the properties claimed on Rh(X0). Using ω1 = Ts(ω0)/T ′s(ω0), this yields
the result for X1 = Ks.

Proof of Theorem 3.4.1. A well-known theorem of Milstein [45] (see [46, Chap. 2.2]) allows
to infer the global orders of convergence from the error after one step. We first show that
for all r ∈ N the moments E(|Xn|2r) are bounded for all n, h with 0 ≤ nh ≤ T uniformly
with respect to all h sufficiently small. Then, it is sufficient to show the local error estimate

|E(φ(X(t1)))− E(φ(X1))| ≤ Ch2,
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for all initial value X(0) = X0 and where C has at most polynomial growth with respect
to X0, to deduce the weak convergence estimate (3.30). For the strong convergence (3.30),
using the classical result from [44], it is sufficient to show in addition the local error estimate

E(‖X(t1)−X1‖) ≤ Ch

for all initial value X(0) = X0 and where C has at most polynomial growth with respect
to X0. These later two local estimates are an immediate consequence of Lemma 3.4.2.

To conclude the proof of the global error estimates, it remains to check that for all
r ∈ N the moments E(|Xn|2r) are bounded uniformly with respect to all h small enough
for all 0 ≤ nh ≤ T . We use here the approach of [46, Lemma 2.2, p. 102] which states that
it is sufficient to show

|E(Xn+1 −Xn|Xn)| ≤ C(1 + |Xn|)h, |Xn+1 −Xn| ≤Mn(1 + |Xn|)
√
h, (3.32)

where C is independent of h and Mn is a random variable with moments of all orders
bounded uniformly with respect to all h small enough. These estimates are a straightfor-
ward consequence of the definition (3.21) of the scheme and the linear growth of f, g (a
consequence of their Lipschitzness). This concludes the proof of Theorem 3.4.1.

Remark 3.4.3. In the case of additive noise, i.e. gr, r = 1, . . . ,m are constant functions,
one can show that the order of strong convergence (3.29) become 1, analogously to the case
of the Euler-Maruyama method. For a general multiplicative noise, a scheme of strong
order one can also be constructed with E(|R(p, q, ξ)|2) ≤ 1 for all p ∈ [−2ω−1

1 , 0] and all q

with p + |q|2
2
≤ 0, as it can be check numerically. The idea is to modify the first stages of

the scheme such that the stability function (3.24) becomes

R(p, q, ξ) =
Ts(ω0 + ω1p)

Ts(ω0)
+
Us−1(ω0 + ω1p)

2

Us−1(ω0)2
(1 +

w1

2
p− ω4

1

2
p2)

(
qξ + q2 ξ

2 − 1

2

)
.

We refer to [12, Remark 3.2] for details.

3.5 Long term accuracy for Brownian dynamics

In this section we discuss the long-time accuracy of the SK-ROCK for Brownian dynam-
ics (also called overdamped Langevin dynamics). We will see that using postprocessing
techniques we can derive an SK-ROCK method that captures the invariant measure of
Brownian dynamics with second order accuracy. In doing so, we do not need our stabilized
method to be of weak order 2 on bounded time intervals and we obtain a method that is
cheaper than the second weak order S-ROCK2 method proposed in [12], as S-ROCK2 uses
many more function evaluations per time-step and a smaller stability domain.

3.5.1 An exact SK-ROCK method for the Orstein-Uhlenbeck
process

We consider the 1-dimensional Orstein-Uhlenbeck problem with 1-dimensional noise with
constants δ, σ > 0,

dX(t) = −δX(t)dt+ σdW (t), (3.33)
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that is ergodic and has a Gaussian invariant measure with mean zero and variance given
by limt→∞ E(X(t)2) = σ2/(2δ). Applying the SK-ROCK method to the above system we
obtain

Xn+1 = A(p)Xn +B(p)σ
√
hξn (3.34)

where p = −δh, ξn ∼ N (0, 1) is a Gaussian variable and similarly as for (3.24) we have

A(p) =
Ts(ω0 + ω1p)

Ts(ω0)
, B(p) =

Us−1(ω0 + ω1p)

Us−1(ω0)
(1 +

ω1

2
p). (3.35)

A simple calculation (using that |A(p)| < 1) gives

lim
n→∞

E(X2
n) =

σ2

2δ
R(p), R(p) =

2pB(p)2

A(p)2 − 1
.

From the above equation, we see that the SK-ROCK method has order r for the invariant
measure of (3.33) if and only if R(p) = 1 + O(pr) and a short calculation using (3.35)
reveals that R(p) = 1 +O(p), it has order one for the invariant measure (this is of course
not surprising because the SK-ROCK has weak order one). We next apply the techniques
of postprocessed integrators popular in the deterministic literature [20] and proposed in the
stochastic context in [56]. The idea is to consider a postprocessed dynamics Xn = Gn(Xn)
(of negligible cost) such that the process Xn approximates the invariant measure of the
dynamical system with higher order. For the process (3.33), we consider the postprocessor

Xn = Xn + cσ
√
hξn, (3.36)

which yields limn→∞ E(X
2

n) = σ2

2δ
(R(p)− 2c2p). In the case of the SK-ROCK method with

η = 0 (zero damping), we have A(p) = Ts(1 + p/s2), B(p) = Us−1(1 + p/s2)(1 + p/(2s2))/s.
Setting c = 1/(2s) and using the identity (1 − x2)U2

s−1(x) = 1 − T 2
s (x) with x = 1 + p/s2

reveals that R(p)− 2c2p = 1 and we obtain

lim
n→∞

E(X
2

n) =
σ2

2δ
. (3.37)

Hence the postprocessed SK-ROCK method (that will be denoted PSK-ROCK) captures
exactly the invariant measure of the 1-dimensional Orstein-Uhlenbeck problem (3.33). Such
a behavior is known for the drift-implicit θ method with θ = 1/2 (see [22] in the context of
the stochastic heat equation) and has recently also been shown for the non-Markovian Euler
scheme [39]. In [56] an interpretation of the scheme [39] as an Euler-Maruyama method
with postprocessing (3.36) with c = 1/2 has been proposed and we observe that this is
exactly the same postprocessor as for the PSK-ROCK method (with s = 1, η = 0). As the
SK-ROCK method with zero damping is mean-square stable (see Remark 3.3.3 for η = 0),
it can be seen as a stabilized version of the scheme [39]. However, the PSK-ROCK method
with s > 1 and zero damping is not robust to use as its stability domain along the drift
axis does not allow for any imaginary perturbation at the points where |Ts(1 + p/s2)| = 1
and it is not ergodic (see Remark 3.5.2 below).
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Stability analysis for Orstein-Uhlenbeck Let M ∈ Rd×d denote a symmetric matrix
with eigenvalues −λd ≤ . . . ≤ −λ1 < 0, and consider the d-dimensional Orstein-Uhlenbeck
problem

dX(t) = MX(t)dt+ σdW (t) (3.38)

where W (t) denotes a d-dimensional standard Wiener process. The following theorem
shows that the damping parameter η > 0 plays an essential role to warranty the convergence
to the numerical invariant measure ρh∞(x)dx at an exponentially fast rate.

Theorem 3.5.1. Let η > 0. Consider the scheme (3.21) with postprocessor (3.36) applied
to (3.38) with stepsize h and stage parameter s such that 2ω−1

1 ≥ hλd. Then, for all
h ≤ η/λ1,φ ∈ C1

P (Rd,R),

|E(φ(Xn))−
∫
Rd
φ(x)ρh∞(x)dx| ≤ C exp(−λ1(1 + η)−1tn)

where C is independent of h, n, s, λ1, . . . , λd.

Proof. It is sufficient to show the estimate

|A(−λjh)| ≤ exp(−λ1(1 + η)−1h) (3.39)

for all h ≤ h0, where we denote A(z) = Ts(ω0 + ω1z)/Ts(ω0). Indeed, considering two initial
conditions X1

0 , X
2
0 for (3.21) and the corresponding numerical solutions X1

n, X
2
n (obtained

for the same realizations of {ξn}) with postprocessors X
1

n, X
2

n, we obtain

X1
n −X2

n = A(hM)(X1
n−1 −X2

n−1)

and using the matrix 2-norm ‖A(hM)‖ = maxj |A(−λjh)| and (3.39), we deduce by induc-
tion on n,

‖X1

n −X
2

n‖ = ‖X1
n −X2

n‖ ≤ exp(−λ1(1 + η)−1tn)‖X1
0 −X2

0‖,

and taking X
2

0 distributed according to the numerical invariant measure yields the result.
For the proof of (3.39), let z = −λjh. Consider first the case z ∈ (−ηω−1

1 s−2, 0).
Using the convexity of A(z) on [−ηω−1

1 s−2, 0] (note that T ′s(x) is increasing on [1,∞)), we
can bound A(z) by the affine function passing by the points (x1, A(x1)), (x2, A(x2)) with
x1 = −ηω−1

1 s−2, x2 = 0,

A(z) ≤ 1 + z(1− 1/Ts(ω0))η−1ω1s
2

Using ω1s
2 ≥ 1 and Ts(ω0) ≥ 1 + η, we obtain

(1− 1/Ts(ω0))η−1ω1s
2 ≥ (1− (1 + η)−1)η−1 = (1 + η)−1.

This yields for all z ∈ [−ηω−1
1 s−2, 0],

A(z) ≤ 1 + z(1 + η)−1 ≤ exp(z(1 + η)−1)

where we used the convexity of exp(z(1 + η)−1) bounded from below by its tangent at
z = 0. We obtain

A(−λjh) ≤ e−λjh(1+η)−1 ≤ e−λ1h(1+η)−1

.
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We now consider the case z ∈ [−Ls,−ηω−1
1 s−2]. We have |ω0 + ω1z| ≤ 1, thus

|Ts(ω0 + ω1z)| ≤ 1

and
|A(z)| ≤ 1/Ts(ω0) ≤ exp(−λ1(1 + η)−1h)

for all h ≤ (1 + η) log(Ts(ω0))/λ1, and thus also for h ≤ η/λ1 where we use Ts(ω0) ≥ 1 + η
and (1 + η) log(1 + η) ≥ η. This concludes the proof.

Remark 3.5.2. Note that η > 0 is a crucial assumption in Theorem 3.5.1. Indeed, the
estimate of Theorem 3.5.1 is false for η = 0 already in dimension d = 1 for all s > 1: for
a stepsize h such that 1− hλ1/s

2 = cos(π/s) we obtain A(−λ1h) = −1 and B(−λ1h) = 0
in (3.35) (corresponding to the local extrema p = −λ1h of A(p) closest to zero) and Xn =
(−1)nX0 for all n, and the scheme is not ergodic. In addition, notice that Theorem 3.5.1

allows to use an h-dependent value of η such as η = hλ̃1 where λ̃1 ≥ λ1 is an upper bound
for λ1. In this case, the exponential convergence of Theorem 3.5.1 holds for all stepsize
h ≤ 1.

We end this section by noting that being exact for the invariant measure of Brownian
dynamics (3.40) is only true for the PSK-ROCK method (or the method in [39]) in the linear
case, i.e. for a quadratic potential V . Second order accuracy for the invariant measure has
been shown for the method [39]) in [40] for general nonlinear Brownian dynamics (3.40).
This will also be shown for the nonlinear PSK-ROCK method in the next section.

3.5.2 PSK-ROCK: a second order postprocessed SK-ROCK
method for nonlinear Brownian dynamics

We consider the overdamped Langevin equation,

dX(t) = −∇V (X(t))dt+ σdW (t), (3.40)

where the stochastic process X(t) takes values in Rd and W (t) is a d-dimensional Wiener
process. We assume that the potential V : Rd → R has class C∞ and satisfies the at least
quadratic growth assumption

xT∇V (x) ≥ C1x
Tx− C2 (3.41)

for two constants C1, C2 > 0 independent of x ∈ Rd. The above assumptions warranty that
the system (3.40) is ergodic with exponential convergence to a unique invariant measure
with Gibbs density ρ∞ = Z exp(−2σ−2V (x)),

|E(φ(X(t))−
∫
Rd
φ(x)ρ∞(x)dx| ≤ Ce−λt,

for test function φ and all initial condition X0, where C, λ are independent of t.
We propose to modify the internal stage K1 = X0 + µ1hf(X0 + ν1Q) + κ1Q of the

method (3.21) as follows:

K1 = X0 + µ1hf(X0 + ν1Q) + κ1Q+ αh
(
f(X0 + ν1Q)− 2f(X0) + f(X0 − ν1Q)

)
, (3.42)

where α is a parameter whose optimal value depends on s and η is discussed below.
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Remark 3.5.3. Notice that for α = 0, we recover the original definition from (3.21). We
note that the parameter α does not modify the stability function of Lemma 3.3.1, and yields
a perturbation of order O(h2) in the definition of X1. Thus, the results of Theorem 3.3.2
and Theorem 3.4.1 remain valid for any value of α for the scheme (3.21) with modified
internal stage (3.42).

Theorem 3.5.4. Consider the Brownian dynamics (3.40), where we assume that
V : Rd → R has class C∞, with ∇V globally Lipschitz and satisfying (3.41). Consider
the scheme (3.21) applied to (3.40) with modified internal stage K1 defined in (3.42) with
α defined in (3.43), and the postprocessor defined as

Xn = Xn + cσ
√
hξ,

where

c2 = −1

4
+
ω1

2
+
ω1T

′′
s (ω0)

T ′s(ω0)
− ω2

1T
′′
s (ω0)

4Ts(ω0)
, α =

2

sω0ω1

(c2 +
ω2

1T
′′
s (ω0)

2Ts(ω0)
− rs), (3.43)

and rs is defined by induction as r0 = 0, r1 =
s2ω3

1

4ω0
:= ∆1 and

ri = νiri−1 + κiri−2 + ∆i, ∆i = µi
sT ′i−1(ω0)ω1

(i− 1)Ti−1(ω0)
, i = 2, . . . s.

Then, Xn yields order two for the invariant measure, i.e. (3.5) holds with r = 2, and in
addition

|E(φ(Xn)−
∫
Rd
φ(x)ρ∞(x)dx| ≤ C1e

−λtn + C2h
2, (3.44)

for all tn = nh, φ ∈ C∞P (Rd,R), where C1, C2 are independent of h assumed small enough,
and C2 is independent of the initial condition X0.

The proof of Theorem 3.5.4 relies on the following postprocessing analysis from [56].
Consider a scheme (3.2) with bounded moments and assumed ergodic when applied to
(3.40), where the potential V satisfies the above ergodicity assumptions. Assume that the
scheme has a weak Taylor expansion after one time step of the form

E(φ(X1)|X0 = x) = φ(x) + hLφ(x) + h2A1φ(x) +O(h3), (3.45)

and consider a postprocessor of the form Xn = Gn(Xn) where

E(φ(X1)|X1 = x) = φ(x) + hA1φ(x) +O(h3), (3.46)

where the constants in O in (3.45),(3.46) have at most a polynomial growth with respect to
x. Here Lφ = φ′f+σ2/2∆φ denotes generator of the SDE and A1,A1 are linear differential
operators with smooth coefficients. Note that A1 6= L2/2 in general (otherwise the scheme
has weak order 2). If the condition (A1 + [L,A1])∗ρ∞ = 0 holds, equivalently,〈

A1φ+ [L,A1]φ
〉

= 0 (3.47)

for all test function φ, where we define 〈φ〉 =
∫
Rd φρ∞dx, then it is shown in [56, Theorem

4.1] that Xn has order two for the invariant measure, i.e. the convergence estimates (3.5)
with r = 2 and (3.44) hold. Before we can apply the above result, the following lemma
allow to compute the weak Taylor expansion of the modified scheme.
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Lemma 3.5.5. Consider the scheme (3.21) with modified stage (3.42) and assume the
hypotheses of Theorem 3.5.4. Then (3.45) holds where the linear differential operator A1

is given by

A1φ =
1

2
φ′′(f, f) +

σ2

2

d∑
i=1

φ′′′(ei, ei, f) +
σ4

8

d∑
i,j=1

φ(4)(ei, ei, ej, ej) + c2φ
′f ′f

+ c3
σ2

2
φ′

d∑
i=1

f ′′(ei, ei) + c4σ
2

d∑
i=1

φ′′(f ′ei, ei), (3.48)

where f = −∇V (x) and

c2 =
ω2

1T
′′
s (ω0)

2Ts(ω0)
, c3 = rs +

ω0

sω1

α, c4 =
T ′′s (ω0)ω1

T ′s(ω0)
+
ω1

2
. (3.49)

Proof. Adapting the proof of Lemma 3.4.2, the internal stage Ki defined in (3.21) (and
(3.42) for i = 1) satisfies (3.31) where h2Ri,h(X0) can be replaced by

ω2
1T
′′
i (ω0)

2Ti(ω0)
h2f ′(X0)f(X0) + r̃i

σ2

2
f ′′(X0)(ξn, ξn) + h5/2R̃i + h3R̃i,h(X0), (3.50)

where E(R̃i) = 0 and all the moments of R̃i, R̃i,h(X0) are bounded with polynomial growth
with respect to X0. Here, r̃i is defined by induction as r̃0 = 0, r̃1 = ∆1 + α, and

r̃i = νir̃i−1 + κir̃i−2 + ∆i, i = 2, . . . , s.

We have E(R̃i) = 0 because R̃i is a linear combination of f ′(X0)f ′(X0)ξn, f ′′(X0)(f(X0), ξn),
and f ′′′(X0)(ξn, ξn, ξn) with zero mean values (recall that odd moments of ξn vanish). Next,
observing that the difference di = r̃i−ri satisfies d0 = 0, d1 = α, and di = νidi−1+κidi−2, i =
2, . . . , s, we deduce

r̃i = ri + di, di =
Ui−1(ω0)

Ti(ω0)
ω0α ∀ i = 0, .., s.

In particular, taking i = s in (3.31),(3.50), and expanding (3.45), we deduce that (3.48)
holds with c2, c3, c4 defined in (3.49) where we note that c3 = r̃s = rs + ds.

Proof of Theorem 3.5.4. Following the proof of [56, Theorem 4.2] (see also [38, Theorem
5.8]) where we apply repeatedly integration by parts for the integral in (3.47), using Lemma
3.5.5 for the expression of A1, we deduce that the quantity in (3.47) satisfies

〈
A1φ+ [L,A1]φ

〉
=

d∑
i=1

〈
(c3 − c2 − c2)

σ2

2
φ′f ′′(ei, ei) + (c4 −

1

4
− c2

2
− c2)σ2φ′′(f ′ei, ei)

〉
,

where we use [L,A1] = −c2σ2
(
1/2φ′

∑d
i=1 f

′′(ei, ei)+
∑d

i=1 φ
′′(f ′ei, ei)

)
forA1φ = c2σ2/2 ∆φ.

We see that the above quantity (3.47) vanishes if c3− c2− c2 = c4− 1
4
− c2

2
− c2 = 0, equiv-

alently,

c3 − c2 = c2 = c4 −
1

4
− c2

2
. (3.51)

For the values of α, c defined in (3.43), we obtain that (3.51) indeed holds and we deduce
that the order two condition (3.47) for the invariant measure is satisfied. This concludes
the proof.
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(a) Weak error
|E(arcsinh(X(T ))− E(arcsinh(XN ))|.
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(b) Strong error E(|X(T )−XN |).

Figure 3.4: Nonlinear problem (3.52). Strong and weak convergence plots using SK-ROCK
with final time T = 1, stepsizes h = 2−p, p = 1..10, 104 samples and number of stages
s = 1, 5, 10, 100.

3.6 Numerical experiments

In this Section, we illustrate numerically our theoretical analysis and we show the perfor-
mance of the proposed SK-ROCK method and its postprocessed modification PSK-ROCK.

3.6.1 A nonlinear nonstiff problem

We first consider the following non-stiff nonlinear SDE,

dX =

(
1

4
X +

1

2

√
X2 + 1

)
dt+

√
1

2
(X2 + 1)dW, X(0) = 0. (3.52)

whose exact solution is X(t) = sinh( t
2

+ W (t)√
2

). In Figure 3.4, we consider the SK-

ROCK method (3.21) and plot the strong error E(|X(T ) − XN | and the weak error
|E(arcsinh(X(T )) − E(arcsinh(XN))| at the final time T = Nh = 1 using 104 samples
and number of stages s = 1, 5, 10, 100. We obtain convergence slopes 1 and 1/2, respec-
tively, which confirms Theorem 3.4.1 stating the strong order 1/2 and weak order 1 of the
proposed scheme. Note that s = 1 stage is sufficient for the stability of the scheme in the
non-stiff case. The results for s = 5, 10, 100 yield nearly identical curves which illustrates
that the error constants of the method are nearly independent of the stage number of the
scheme.

3.6.2 Nonlinear nonglobally Lipschitz stiff problems

Consider the following nonlinear SDE in dimensions d = 2 with a one-dimensional noise
(d = 2,m = 1). This is a modification of a one-dimensional population dynamics model
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(a) Non-stiff case −λ1 = µ1 = 1.
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(b) Stiff case −λ1 = µ2
1 = 100.

Figure 3.5: Nonlinear problem (3.53) with ν = 2, µ2 = 0.5,λ2 = −1. Weak conver-
gence plots using SK-ROCK for E(X(T )2) where T = 1, h = T/[2i/2], i = 1, . . . , 14,
and 106 samples. For the stiff case (b), the method uses the following number of
stages respectively: s = 8, 6, 5, 4, 4, 3, 3, 3, 2, 2, 2, 1, 1, 1 (with damping η = 0.05) and
s = 13, 9, 8, 7, 6, 5, 4, 4, 3, 3, 3, 3, 2, 2 (with damping η = 4).

from [25, Chap. 6.2] considered in [11, 12, 6] for testing stiff integrator performances,

dX = (ν(Y − 1)− λ1X(1−X))dt− µ1X(1−X)dW, X(0) = 0.95,

dY = −λ2Y (1− Y )dt− µ2Y (1− Y )dW, Y (0) = 0.95. (3.53)

Observe that linearizing (3.53) close to the equilibrium (X, Y ) = (1, 1), we recover for
ν = 0 the scalar test problem (3.16). In Figure 3.5 we consider the SK-ROCK method
applied to (3.53) with parameters that are identical to those used in [6, Sect. 4.2]. We take
the initial condition X(0) = Y (0) = 0.95 close to this steady state and use the parameters
ν = 2, µ2 = 0.5,λ2 = −1. In a nonstiff regime (−λ1 = µ1 = 1 in Figure 3.5(a)), we observe a
convergence slope 1 for the second moment E(X(T )2) which illustrates the weak order one
of the scheme, although our analysis in Theorem 3.4.1 applies only for globally Lipschitz
vector fields. The stage number s = 1 is sufficient for stability, but we also include for
comparison the results for s = 10 (note that the results for s = 50, 100 not displayed here
are nearly identical to the case s = 10). The convergence curves are obtained as an average
over 106 samples. In a stiff regime (−λ1 = µ2

1 = 100 in Figure 3.5(b)), we observe for the
standard small damping η = 0.05 a stable but not very accurate convergence, due to the
severe nonlinear stiffness. However, considering a slightly larger damping η = 4, in the
spirit of the S-ROCK method, yields a stable integration for all considered timesteps and
all trajectories and we observe a line with slope one for the SK-ROCK method. Here,
given the timesteps h, the numbers of stages s are adjusted as proposed in (3.54) where
λmax = |λ1| = 100.

Remark 3.6.1. For severely stiff problems, alternatively to switching to drift-implicit
schemes [33, 11], one can consider in SK-ROCK a slightly larger damping η and the corre-
sponding stage parameter s below, similar to (3.14) and chosen such that the mean-square
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(a) SK-ROCK with T = 0.5.
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(b) PSK-ROCK with T = 0.5.
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(c) SK-ROCK with T = 10.
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(d) PSK-ROCK with T = 10.

Figure 3.6: Linear additive problem (3.55). Second moment error E(X(T )2) for for short
time T = 0.5 (top pictures) and long time T = 10 (bottom pictures) without (SK-ROCK)
or with a postprocessor (PSK-ROCK). where, h = T/[10×2i/8] for T = 10, and h = T/[2i/2]
for T = 0.5 with i = 1, . . . , 16, and 108 samples.

stability domain length (3.20) satisfies L > hλmax,

s =

[√
hλmax + 1.5

2Ω(η)
+ 0.5

]
, (3.54)

where Ω(η) is given in Lemma 3.3.4.

3.6.3 Linear case: Orstein-Uhlenbeck process

We now illustrate numerically in details the role of the postprocessor introduced in Theorem
3.5.4 for the linear Orstein-Uhlenbeck process in dimension d = m = 1,

dX = −λXdt+ σdW, X(0) = 2 (3.55)

where we choose λ = 1 and σ =
√

2.
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Figure 3.7: PSK-ROCK without damping (η = 0). Second moment error of problem (3.55),
with T = 10, h = T/[2i/2], and s = 1, 5, 10, 100, using M = 108 samples (the Monte-Carlo
error has size M−1/2 = 10−4).

In Figure 3.6, we consider the SK-ROCK and PSK-ROCK methods with s = 1, 5, 10, 100
stages, respectively. For a short time T = 0.5 (Fig. 3.6(a)(b)), we observe weak con-
vergence slopes one for both SK-ROCK and PSK-ROCK (second moment E(X(T )2)) as
predicted by Theorem 3.4.1, and the postprocessor has nearly no effect of the errors. For
a long time T = 10 where the solution of this ergodic SDE is close to equilibrium, we
observe that the weak order one of SK-ROCK (Fig. 3.6(c)) is improved to order two using
the postprocessor in PSK-ROCK (Fig. 3.6(d)), which confirms the statement of Theorem
3.5.4 that the postprocessed scheme has order two of accuracy for the invariant measure.
For comparison, in Figure 3.7, we also include the results of PSK-ROCK without damping
(η = 0) using M = 108 samples. We recall that for the scalar linear Orstein-Uhlenbeck
process, the PSK-ROCK method with zero damping is exact for the invariant measure
(see Section 3.5.1). We observe only Monte-Carlo errors with size 'M−1/2 = 10−4, which
confirms that the PSK-ROCK method has no bias at equilibrium for the invariant measure
in the absence of damping, as shown in (3.37). We emphasise however that this exactness
results holds only for linear problems, and a positive damping parameter η should be used
for nonlinear SDEs for stabilization, as shown in Sections 3.3 and 3.5.1.

3.6.4 Nonglobally Lipschitz Brownian dynamics

To illustrate the advantage of the PSK-ROCK method applied to nonglobally Lipschitz
ergodic Brownian dynamics, we next consider the following double well potential V (x) =
(1− x2)2/4 and the corresponding one-dimensional Brownian dynamics problem

dX = (−X3 +X)dt+
√

2dW, X(0) = 0, (3.56)

In Figure 3.8, we compare the performances of S-ROCK, S-ROCK2 considered in [12] (a
method with weak order 2 for general SDEs), and the new SK-ROCK and PSK-ROCK
methods at short time T = 0.5 (Figures 3.8(a)(b)) and long time T = 10 (Figures 3.8(c)(d)).
As we focus on invariant measure convergence and not on strong convergence, we consider
here discrete random increments with P(ξn = ±

√
3) = 1/6,P(ξn = 0) = 2/3, which has the

correct moments so that Theorem 3.5.4 remains valid. Our numerical tests indicate that it
makes PSK-ROCK with modified stage (3.42) more stable. For a fair comparison, we use



54 CHAPTER 3. EXPLICIT STABILIZED INTEGRATORS FOR STIFF SDES

10
-3

10
-2

10
-1

10
0

stepsize h

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

e
rr

o
r

S-ROCK

S-ROCK2

SK-ROCK

PSK-ROCK

slope=1

slope=2

(a) Final time T = 0.5, h = T/[2i/2],
i = 1, . . . , 14.

10
2

10
3

10
4

average cost

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

e
rr

o
r

S-ROCK

S-ROCK2

SK-ROCK

PSK-ROCK

(b) Final time T = 0.5, h = T/[2i/2],
i = 1, . . . , 14.

0.1 0.2 0.3 0.4 0.5 0.6 0.7

stepsize h

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

e
rr

o
r

S-ROCK

S-ROCK2

SK-ROCK

PSK-ROCK

slope=1

slope=2

(c) Final time T = 10, h = T/[15× 2i/8],
i = 1, . . . , 18.

10
1

10
2

10
3

10
4

average cost

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

e
rr

o
r

S-ROCK

S-ROCK2

SK-ROCK

PSK-ROCK

(d) Final time T = 10, h = T/[15× 2i/8],
i = 1, . . . , 18.

Figure 3.8: Second moment errors versus the average number of drift function evaluations
for problem (3.56) using S-ROCK, S-ROCK2 and the new method SK-ROCK and its
postprocessed version PSK-ROCK. We use discrete random increments and 108 samples.

the same discrete random increments for all schemes. We plot the second moment error
versus the time stepsize h and versus the average cost which is the total number of function
evaluations during the time integration divided by the total number number of samples.
Indeed, the number of function evaluations depends on the trajectories because the stage
parameter s is adaptive at each time step. For short time, we can see that the S-ROCK
and the SK-ROCK method have order 1 (Figure 3.8(a)) and exhibit similar performance
with nearly identical error versus cost curves in Figure 3.8(b), while PSK-ROCK is less
advantageous for short time. This illustrates that the postprocessing has no advantage for
short times. The S-ROCK2 method is the most accurate for small time steps, and it has
order 2 as shown in Figures 3.8(a)(c), but at the same time it has a larger average cost as
observed in Figures 3.8(b)(d) due to its smaller stability domain with size ' 0.42 · s2. For
long time, the SK-ROCK and S-ROCK both exhibit order 1 of accuracy (Figure 3.8(c)),
with an advantage in terms of error versus cost for the SK-ROCK method that is about
10 times more accurate for large time steps. In contrast, the postprocessed scheme PSK-
ROCK exhibits order 2 of convergence (Figure 3.8(c)) which corroborates Theorem 3.5.4.



3.6. NUMERICAL EXPERIMENTS 55

Since the postprocessing overcost is negligible (two additional vector field evaluations per
timestep due to the modified stage K1 in (3.42)), this makes PSK-ROCK the most efficient
in terms of error versus cost, as shown in Figure 3.8(d). The S-ROCK2 method has order 2
here but with poor accuracy compared to the PSK-ROCK method with approximately the
same cost. Note that typically the SK-ROCK method used s = 1, 2, 3 stages in contrast
to the S-ROCK method using s = 2, . . . , 6 stages per timesteps.

3.6.5 Stochastic heat equation with multiplicative space-time
noise

Although our analysis applies only to finite dimensional systems of SDEs, we consider the
following stochastic partial differential equation (SPDE) obtained by adding multiplicative
noise to the heat equation,

∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
+ u(t, x)Ẇ (t, x), (t, x) ∈ [0, T ]× [0, 1]

u(0, x) = 5 cos(πx), x ∈ [0, 1],

u(t, 0) = 5,
∂u(t, 1)

∂x
= 0, t ∈ [0, T ], (3.57)

where Ẇ (t, x) denotes a space-time white noise that we discretize together with the Laplace
operator with a standard finite difference formula [23]. We obtain the following stiff system
of SDEs where u(xi, t) ≈ ui(t), with xi = i∆x, ∆x = 1/N ,

dui =
ui+1 − 2ui + ui−1

∆x2
dt+

ui√
∆x

dwi, i = 1, . . . , N,

where the Dirichlet and the Neumann conditions impose u0 = 5 and uN+1 = uN−1, re-
spectively. Here, w1, . . . , wN are independent standard Wiener processes and dwi indicates
Itô noise. In Figure 3.9(a), we plot one realization of the SPDE using space stepsize
∆x = 1/100 and timestep size ∆t = 1/50. Note that the Lipchitz constant associated
to the space-discretization of (3.57) has size ρ = 4∆x−2, and the stability condition is
fulfilled for s = 22 stages. For comparison, the standard S-ROCK method would require
s = 46 stages, while applying the standard Euler-Maruyama with a smaller stable timestep
∆t/s would require s ≥ ∆tρ/2 = 400 intermediate steps. Notice that the initial condi-
tion in (3.57) satisfies the boundary conditions, which permits a smooth solution close to
time t = 0. Taking alternatively an initial condition that does not satisfy the boundary
conditions (for instance u(x, 0) = 1) yields an inaccurate numerical solution with large
oscillations close to the boundary x = 0. A simple remedy in such a case is to consider a
larger damping parameter η, as described in Remark 3.6.1.

In Figure 3.9(b), we compare the number of vector field evaluations of the standard
S-ROCK and new SK-ROCK methods when applied to the SPDE (3.57) with finite dif-
ference discretization with parameter ∆x = 1/100. The better performance of SK-ROCK
with damping η = 0.05 is due to its larger stability domain with size ' 1.94 · s2 compared
to the size ' 0.33 · s2 for S-ROCK. Observing the ratio of the two costs in Figure 3.9(b),
we see that the new SK-ROCK methods has a reduced cost for stabilization by an asymp-
totic factor of about

√
1.94/0.33 ' 2.4 for large s and large stepsizes, which confirms the
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Figure 3.9: SPDE problem (3.57) using the space discretization stepsize ∆x = 1/100.
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Figure 3.10: SPDE problem (3.57) with the initial condition u(0, x) = 1. One realiza-
tion with SK-ROCK using ∆t = 1/50, ∆x = 1/100 for different values of the damping
parameter η.

stability analysis of Section 3.3. The convergence analysis of the SK-ROCK method for
the stochastic heat equation is the topic of future work.

Remark 3.6.2. Notice that SK-ROCK with s = 1 stage has the optimal mean-square
stability length (L = 2 for η = 0) as defined in (3.20). In contrast, the S-ROCK method
with s = 1 has the smaller stability length L = 3/2, while the standard Euler-Maruyama
has L = 0. This explains why for the smallest considered stepsize ∆t = 2−15 in Figure
3.9(b), we have s = 1 for SK-ROCK while S-ROCK uses s = 2 stages.
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In Figure 3.10 we consider again one realization with SK-ROCK of the SPDE problem
(3.57) but with a different initial condition u(0, x) = 1 not fulfilling the boundary condi-
tions, i.e. that is outside the domain of the Laplace operator, as considered in [6]. We
compare the result for the same sets of random numbers but for different values of the
damping parameter η. We observe numerically high oscillations in time and space for the
small damping value η = 0.05 in Figure (3.10a) while the larger damping η = 10 yields a
smoother solution in Figure (3.10b). This illustrates again Remark 3.6.1 showing that the
damping parameter η can be increased in the case of severely stiff problems, adjusting the
stage parameter accordingly with (3.54).

3.7 Explicit stabilized method for advection-diffusion

equations with optimal stability domain

We have seen in Chapter 2 that explicit stabilized methods have extended stability domains
along the negative real axis, this property helps in reducing the cost of integration of ODEs
for which the eigenvalues of the Jacobian matrix of the vector field are located very closely
to the negative real axis, and the spectral radius is large in modulus (see Figure 2.3). These
problems usually arise from the space discretization of second order parabolic (diffusion)
PDEs, or diffusion dominated advection-diffusion equations (small Peclet number regime).
In the case of advection-diffusion equations with large Peclet number (of sizeO(1) or more),
these methods fail due to the stability domain limitation in the imaginary direction.

3.7.1 Stability of advection-diffusion problems

In this section we propose an explicit stabilized method for advection-diffusion problems,
with large Peclet number. The new method is of order one of accuracy, but it has stability
domain of optimal length in the real direction (≈ 2s2) and increasing length as

√
2<(z)

in the imaginary direction, which makes it ideal for problems where the imaginary part of
the eigenvalues is of size O(

√
real part), such as advection-diffusion equations.

A partitioned Ruge-Kutta-Chebyshev method (PRKC) of order 2 was designed in [58]
based on the RKC method (2.22) for the integration of ODEs that have moderately stiff
(diffusion) and non-stiff terms (advection or costly reaction terms). PRKC has a limited
stability for the advection term, and it shares with the standard RKC the same limited
stability domain length over the negative real axis. In [10], the authors propose a parti-
tioned implicit-explicit orthogonal Runge-Kutta method ( called PIROCK) for the time
integration of advection-diffusion-reaction problems with possibly severely stiff reaction
terms and stiff stochastic terms. The diffusion terms are solved by the explicit second
order orthogonal Chebyshev method (ROCK2). Applied to advection-diffusion problems,
the method has order 2 of accuracy and can handle the large Peclet number regime but
the length of its stability domain along the negative real axis is limited at most to 0.81s2.
In addition, PIROCK relies on the ROCK2 method, for which no explicit formulas are
available to compute the coefficients for stage-number s (see Section 2.1.3.3). Despite its
order one of accuracy, the scheme presented in this section has two main advantages over
PIROCK:
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• A much longer stability domain over the negative real axis.

• Simple explicit formulas are available for the coefficients.

We consider problems of the form

ẏ(t) = FD(y) + FA(y), y(0) = y0, (3.58)

where FD represents the diffusion term with eigenvalues close to the negative real axis,
and FA represents the advection term with eigenvalues close to the imaginary axis and
symmetric with respect to the origin. The eigenvalues of the system lie in an ellipse in the
left half plane, tangent to the imaginary axis, with center close to the negative real axis.
Usually, such ODE arise when discretizing, in space, advection-diffusion equations of the
form

∂tu(x, t) = d∆u(x, t)− a∂xu(x, t) (+initial and boundary conditions), (3.59)

where d and a are two positive parameters. The eigenvalues of the discrete Laplacian grow
as 1/∆x2 while those of the advection operator ∂x grow as 1/∆x, which means that the
ellipse containing the eigenvalues of the Jacobian of the obtained system, has the length
of the minor axis proportional to the square root of the length of the major axis.

3.7.2 An optimal method of order 1 for advection-diffusion
equations

Consider the linear test problem

ẏ = λy + iµy, y(0) = y0, (3.60)

where λ ∈ R−, µ ∈ R, and i =
√
−1. Applying a Runge-Kutta method to the above

equation, on gets an induction of the form

yn+1 = R(p, q)yn, (3.61)

with p = hλ and q = hµ. We define the stability domain of a Runge-Kutta method applied
to (3.60) by

S = {(p, q) ∈ R2 ; |R(p, q)| ≤ 1}. (3.62)

Equation (3.60) can be seen as the test equation for linear SDEs with the iµ replacing the
noise. Hence, inspired by SK-ROCK, we consider the following stability polynomial

R(p, q) = A(p) +B(p)iq :=
Ts(ω0 + ω1p)

Ts(ω0)
+
Us−1(ω0 + ω1p)

Us−1(ω0)
(1 +

ω1

2
p)iq, (3.63)

where Ts and Us are the first and the second kind Chebyshev polynomials of degree s
(the number of stages), and the coefficients ω0 and ω1 are defined in (3.9). The stability
condition |R(p, q)| ≤ 1 is equivalent to A(p)2 + B(p)2q2 ≤ 1 which is exactly the stability
condition (3.22). By Theorem 3.3.2 and Remark 3.3.6, for all η > 0 and all s ∈ N,
|R(p, q)| ≤ 1 for all p ∈ [−2ω−1

1 , 0] and |q| ≤
√
−2p (See Figure 3.11).
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Figure 3.11: Stability domain of the new DA-ROCK method (3.64) in the p− q plane for
s = 10 and η = 0.05. The dashed lines correspond to ±

√
−2p.

The new AD-ROCK method for advection-diffusion equations is defined in the same
way as the SK-ROCK method (3.21), by replacing the noise term by the advection term,

K0 = y0

K1 = y0 + µ1hFD(y0 + ν1hFA(y0)) + κ1hFA(y0)

Ki = µihFD(Ki−1) + νiKi−1 + κiKi−2, i = 2, . . . , s,

y1 = Ks. (3.64)

All the coefficients are the same as those of the SK-ROCK method (3.21). Note that the
method requires only 1 evaluation of the advection term per time step.

Assuming enough regularity on FD and FA, the convergence proof is straightforward
and based on Lemma (3.4.2).

3.7.3 Numerical experiments

We consider the following nonlinear Burgers equation in 1D,

∂tu = µ∆u− ν

2
∂x(u

2) in (0, T ]× (0, 1),

u(0, x) = x(1− x) in (0, 1),

u(t, 0) = u(t, 1) = 0,

(3.65)

where µ, ν > 0, in dimension d = 1, and the final time is given by T = 2.5.

To perform the numerical experiment we choose µ = 0.1 and ν = 2, hence, a very large
Peclet number equal to 20. We discretize (3.65) in space using finite differences with step
size ∆x = 1/M , where M ∈ N∗, and we solve the obtained M -dimensional ODE using the
AD-ROCK method (3.64) with time step T/N with N ∈ N∗. In Figure 3.12a, we plot the
solution obtained for M=N=30, which required s = 5 stages. We illustrate the convergence
of the method in Figure 3.12b in which we plot the error at the final time in log scale. The
slope 1 is clearly seen. For this convergence lot, we set M = 500 and N ∈ {2i}i=2,...7. The
corresponding numbers of internal stages are s = 181, 128, 91, 64, 46, 32 respectively.
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(a) Solution.
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Figure 3.12: Solution and convergence plot of the DA-ROCK method applied to problem
(3.65).

3.7.4 Conclusion

In this section, we profited from the SK-ROCK method to design an AD-ROCK method for
advection-diffusion problems. The new method is a first order integrator with optimally
large stability domain over the negative real axis that reduces efficiently the time step
restriction induced by the stiffness of the diffusion term. In addition, the scheme enjoys
a sufficient width in the imaginary direction enough to capture the imaginary parts of
the eigenvalues caused by the advection term, even in the large Peclet number regime.
Apart from the first order, the method has many advantages over other schemes from the
literature [10, 58].

This approach could be extended to design higher order explicit stabilized methods for
advection-diffusion PDEs, for example, by constructing partitioned schemes using second
kind Chebyshev polynomials together with RKC or even nearly optimal ROCK polynomi-
als.



Chapter 4

Explicit stabilized integrators for stiff
optimal control problems

Note: This chapter is identical to the paper [14] in collaboration with Gilles Vilmart.

4.1 Introduction

In this chapter, we introduce and analyze numerical methods for the optimal control of
systems of ordinary differential equations (ODEs) of the form

min
u

Ψ(y(T )); ẏ(t) :=
dy

dt
(t) = f(u(t), y(t)), t ∈ [0, T ]; y(0) = y0, (4.1)

where for a fixed final time T > 0 and a given initial condition y0 ∈ Rn, the function
y : [0, T ] → Rn is the unknown state function, u : [0, T ] → Rm is the unknown control
function. Here, f : Rm × Rn → Rn is the given vector field and Ψ : Rn → R is the
given cost function, which are assumed to be C∞ mappings. For simplicity of the presen-
tation, we consider the case of autonomous problems (with f independent of time) but we
highlight that our approach also applies straightforwardly to non-autonomous problems
dy
dt

(t) = f(t, u(t), y(t)).2

There are essentially two approaches for the numerical solution of optimal control prob-
lems: the direct approach, which consists in directly discretizing (4.1) and then applying a
minimization method to the corresponding discrete minimization problem, and the indirect
approach, which is based on Pontryagin’s maximum principle, taking benefit of continuous
optimality conditions (adjoint equation). A natural approach for the accurate numeri-
cal approximation of such optimal control problem (4.1) is to consider Runge-Kutta type
schemes. It was shown in [27, Theorem 4.1] by studying the continuous and discrete op-
timality conditions that additional order conditions for the convergence rate are required
in general by Runge-Kutta methods when applied to optimal control problems, compared
to the integration of standard initial valued ordinary differential equations and conditions
up to order 4 were derived. In [16], general order conditions were derived, in addition

2A standard approach is to consider the augmented system with z(t) = t, i.e. dz
dt = 1, z(0) = 0 and

define ỹ(t) = (y(t), z(t))T , see e.g. [28, Chap. III] for details.

61
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to identifying symplecticity properties. This result is related to the order of symplectic
partitioned Runge-Kutta methods, and it implies in particular that applying naively a
Runge-Kutta method to (4.1) yields in general an order reduction phenomenon. This anal-
ysis was then extended to other classes of Runge-Kutta type schemes in [35, 37, 30], see
also [31, 13] in the context of hyperbolic problems and multistep methods. The use of
symplectic integrators is motivated by the recent publication [42] which proves the con-
vergence of forward-backward iterative algorithm (Algorithm 4.2.3 in the present chapter),
to implement discretized optimal control problems, when using a symplectic Runge-Kutta
method. The work done in [42] generalizes that of [41] in which the authors prove the global
convergence of the algorithm in the continuous time case. We also mention the paper [57]
where automatic differentiation can be efficiently applied for computing the gradient of
the cost function under the assumption that optimal control order conditions are satisfied.
In our algorithms, the Jacobian of the vector field is given as an input, however the idea
of automatic differentiation could be coupled with our approach to compute derivatives
automatically, but this is not the purpose of the present work.

In the case where the vector field f in (4.1) is stiff, due for instance to the multiscale
nature of the model, or due to the spatial discretization of a diffusion operator in a partial
differential equation (PDE) model, standard explicit integrators face in general a severe
time step restriction making standard explicit methods unreasonable to be used due to their
dramatic cost. A standard approach in this stiff case is to consider indirect implicit methods
with good stability properties, as studied in [30] in the context of implicit-explicit (IMEX)
Runge-Kutta methods for stiff optimal control problems. Note however that, already
for initial value ODEs, such implicit methods can become very costly for nonlinear stiff
problems in large dimension, requiring the usage of Newton-type methods and sophisticated
linear algebra tools (preconditioners, etc.). Alternatively to using implicit methods, in this
thesis we focus on fully explicit indirect methods, and introduce new families of explicit
stabilized methods for stiff optimal control problems. The proposed methods rely on the
so-called Runge-Kutta-Chebyshev methods of order one and its extension RKC of order two
[54]. Such explicit stabilized methods are popular in the context of initial value problems
of stiff differential equations, particularly in high dimensions in the context of diffusive
PDEs, see e.g. the survey [4]. It was extended to the stochastic context first in [7, 8] and
recently in [5] for the design of explicit stabilized integrators with optimally large stability
domains in the context of mean-square stable stiff and ergodic problems.

This chapter is organized as follows. In Section 4.2, we recall standard tools on explicit
stabilized methods and classical results on standard Runge-Kutta methods applied to op-
timal control problems. In Section 4.3, we introduce the new explicit stabilized schemes for
optimal control problems and analyze their convergence and stability properties. Finally,
Section 4.4 is dedicated to the numerical experiments where we illustrate the efficiency of
the new approach.
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4.2 Preliminaries

4.2.1 Discretization, order conditions, and symplecticity

Let us first recall the definition of a Runge-Kutta method for ordinary differential equations
(ODEs),

ẏ(t) = F (y(t)), y(0) = y0, (4.2)

where y : [0, T ]→ Rn is the unknown solution, F : Rn → Rn is a smooth vector field, and
y0 ∈ Rn is a given initial condition. We consider for simplicity a uniform discretization
of the interval [0, T ] with N + 1 points for N ∈ N, and denote by h = T/N the stepsize.
For a given integer s and given real coefficients bi, aij (i, j = 1, . . . , s), an s-stage Runge-
Kutta method, yk ≈ y(tk), tk = kh, to approximate the solution of (4.2), is defined, for all
k = 0, . . . , N − 1, by

yki = yk + h
s∑
j=1

aijF (ykj), i = 1, . . . , s, yk+1 = yk + h

s∑
i=1

biF (yki). (4.3)

The coefficients are usually displayed in a Butcher tableau as follows

aij
bi

, (4.4)

and we will sometimes use the notation (aij, bi). For more details about the order conditions
of Runge-Kutta methods in the context of initial value ODEs, we refer for example to the
book [28, Chap. III]. We denote by yk+1 = Φh(yk) the numerical flow of (4.3), while the
time adjoint method Φ∗h of Φh is the inverse map of the original method with reversed
time step −h, i.e., Φ∗h := Φ−1

−h [28, Sect. II.3]. We recall that the time adjoint of an s-stage
Runge-Kutta method (aij, bi) (4.3) is again an s-stage Runge-Kutta method with the same
order of accuracy and its coefficients (a∗ij, b

∗
i ) are given by

a∗ij = bs+1−j − as+1−i,s+1−j and b∗i = bs+1−i, where i, j = 1, . . . , s.

If we discretize (4.1) using a Runge-Kutta discretization as above we naturally get the
following discrete optimization problem,

min Ψ(yN); subject to:

yk+1 = yk + h
s∑
i=1

bif(uki, yki), yki = yk + h
s∑
j=1

aijf(ukj, ykj),
(4.5)

where i = 1 . . . , s, k = 0, . . . , N−1, and y0 = y0. We denote by pode the order of accuracy
of the method (4.3) applied to the ODE problem (4.2) and by poc the order of the method
(4.5) for solving the optimal control problem (4.1). Note that we always have poc ≤ pode.
In general, poc < pode because additional order conditions, described in [27, 16], have to be
satisfied.

Let us denote by H(u, y, p) := pTf(u, y) the pseudo-Hamiltonian of the system where p
is the Lagrange multiplier (or the costate) associated to the state y. Applying Pontryagin’s
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maximum (or minimum) principle, the first order optimality conditions of (4.1) are given
by the following boundary value problem,

ẏ(t) = f(u(t), y(t)) = ∇pH(u(t), y(t), p(t)),

ṗ(t) = −∇yf(u(t), y(t))p = −∇yH(u(t), y(t), p(t)),

0 = ∇uH(u(t), y(t), p(t)).

t ∈ [0, T ], y(0) = y0, p(T ) = ∇Ψ(y(T )).

(4.6)

Applying a Runge-Kutta integrator naively to (4.6) as an initial value system of ODEs
combined with the classical methodology of shooting methods, would lead to severe insta-
bility due to the forward in time integration of the costate equation. For instance, for the
optimal control of a diffusion PDE problem such as ∂ty(t, x) = ∆y(t, x) + u(t, x), where
∆ is the Laplace operator, y(t, x) is the state function, and u(t, x) is the control function
(see also the diffusion-convection PDE problem considered in Sect. 4.4.2), then the costate
equation takes the form of a heat equation with the wrong sign, ∂tp(t, x) = −∆p(t, x),
which is naturally unstable if integrated forward in time. This makes classical shooting
methods not applicable in the context of stiff dissipative optimal control problems consid-
ered in this thesis. Alternatively, we consider a forward-backward iterative algorithm as
described below (Algorithm 4.2.3).

Introducing Lagrange multipliers for the finite dimensional optimization problem (4.5),
and supposing that bi 6= 0 for all i = 1 . . . , s, a calculation [27, 16] yields the following
discrete optimality conditions

yk+1 = yk + h
s∑
i=1

bif(uki, yki), yki = yk + h
s∑
j=1

aijf(ukj, ykj),

pk+1 = pk − h
s∑
i=1

b̂i∇yH(uki, yki, pki), pki = pk − h
s∑
j=1

âij∇yH(ukj, ykj, pkj),

0 = ∇uH(uki, yki, pki), k = 0, . . . , N − 1 i = 1, . . . , s,

y0 = y0, pN = ∇Ψ(yN)

(4.7)

where the coefficients b̂i and âij are defined by the following relations which, as observed in
[16], correspond to the symplecticity conditions of partitioned Runge-Kutta methods for
ODEs,

b̂i := bi, âij := bj −
bj
bi
aji, i = 1, . . . s, j = 1, . . . , s. (4.8)

Note that the vectors pk and pki are the Lagrange multipliers associated to yk and yki
respectively. Assuming that the Hessian matrix ∇2

uH(u, y, p) ∈ Rm×m is invertible along
the trajectory of the exact solution, by the implicit function theorem there exists a C∞

function φ such that u = φ(y, p) and then (4.7) is equivalent to a partitioned Runge-Kutta
(PRK) method. As noticed in [16], if we consider the problem (4.6) as a Hamiltonian
system, with the Hamiltonian function H(y, p) := H(Ψ(y, p), y, p), then the obtained PRK
(4.7) scheme is symplectic thanks to the relations (4.8).

Theorem 4.2.1 (Theorem 4.1 in [27]). Consider a Runge-Kutta method (aij, bi) of order
pode for ODEs, where bi 6= 0, for all i = 1, . . . , s, applied to the optimal control problem
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(4.1). Consider the optimality conditions (4.6), and assume that ∇2
uH(u, y, p) is invertible

in a neighborhood of the solution, then we have the following theorem. If we discretize (4.6)
using an s-stage partitioned Runge-Kutta method (aij, bi)− (âij, b̂i) of order p?ode for ODEs
(as partitioned RK method), and the condition (4.8) is satisfied, then the order poc of (4.5)
satisfies poc = p?ode ≤ pode and the schemes (4.5) and (4.7) are equivalent. In particular,
for pode ≥ 2, equivalently

∑s
i=1 bi = 1 and

∑s
i,j=1 biaij = 1

2
, we get p?ode ≥ 2 and poc ≥ 2.

The proof of Theorem 4.2.1 relies on the commutativity of the following diagram [16,
Sect. 2] which means that methods (4.5) and (4.7), colorredwhere (4.7) is a symplectic
partitioned Runge-Kutta method, yield exactly the same outputs (up to round-off errors)
if derived for Runge-Kutta discretizations of (4.1) and (4.6) respectively. We also refer to
the article [50] where the role of symplectic partitioned Runge-Kutta methods involved in
this commutative diagram is discussed.

(4.1) (4.5)

(4.6) (4.7)

optimality conditions

discretization

discretization

optimality conditions

Remark that in (4.7), if the method (aij, bi) is explicit, then (âij, b̂i) is in contrast an
implicit method. Hence it is useful to consider the costate equation backward in time and
use the time adjoint of (âij, b̂i) which turns out to be explicit as shown in Proposition 4.3.1
in Section 4.3. Indeed, consider method (4.7) and proceed as in [27, 30],

pk+1 + h

s∑
i=1

b̂i∇yH(uki, yki, pki) = pki + h

s∑
j=1

âij∇yH(ukj, ykj, pkj),

we then deduce from the identity bj− âij =
bj
bi
aji the following formulation where pN serves

to initialize the induction on k = N − 1, . . . , 0,

pk = pk+1 + h

s∑
i=1

bi∇yH(uki, yki, pki), pki = pk+1 + h

s∑
j=1

bj
bi
aji∇yH(ukj, ykj, pkj).

The above Runge-Kutta method (ãij, b̃i) := (
bj
bi
aji, bi) for the costate is in fact the time

adjoint of (âij, b̂i). Since the method (âij, b̂i) is called in the literature the adjoint method in
the sense of optimal control because it is applied to the adjoint equation (costate), we call

the method (ãij, b̃i) := (
bj
bi
aji, bi) the double adjoint of (aij, bi), and we rewrite method

(4.7) as
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yk+1 = yk + h
s∑
i=1

bif(uki, yki), k = 0, . . . , N − 1

yki = yk + h

s∑
j=1

aijf(ukj, ykj), k = 0, . . . , N − 1 i = 1, . . . , s

pk = pk+1 + h
s∑
i=1

b̃i∇yH(uki, yki, pki), k = N − 1, . . . , 0

pki = pk+1 + h

s∑
j=1

ãij∇yH(ukj, ykj, pkj), k = N − 1, . . . , 0 i = s, . . . , 1

0 = ∇uH(uki, yki, pki), k = 0, . . . , N − 1 i = 1, . . . , s

y0 = y0, pN = ∇Ψ(yN).

(4.9)

Note that we integrate the state forward in time (increasing indices k) and the costate
backward in time (decreasing k).

An immediate consequence of Theorem 4.2.1 is that applying naively a Runge-Kutta
method yields in general an order reduction, as stated in the following remark.

Remark 4.2.2. Consider a Runge-Kutta method (aij, bi) of order pode = 2 and define
(ãij, b̃i) := (aij, bi), in general the obtained partitioned Runge-Kutta method (4.9) is not of

order poc = 2. Indeed, the coupling order conditions
∑s

i,j=1 biâij = 1
2

and
∑s

i,j=1 b̂iaij = 1
2

are not automatically satisfied in general. In particular, for (aij, bi) being the standard order
two RKC method studied in the next section below, it can be checked that poc = 1. This
makes non trivial the construction of an explicit stabilized scheme of order 2 for optimal
control problems, as described in section 4.3.3. We will see that the notion of double adjoint
of a Runge-Kutta method, as described above, is an essential tool in our study.

To implement (4.9) (equivalent to (4.7)), we shall use the following classical iterative
algorithm which was proposed as a parallel algorithm with N sub-problems in [43, Algo. 4].
For simplicity of the presentation, we only recall the non parallel algorithm, but emphasize
that the parallel version could also be used in our context with explicit stabilized schemes.

Algorithm 4.2.3. (see for instance [43, Algo. 4]). First start with an initial guess for the
internal stages of the control U0 = (u0

ki)
i=1,...,s
k=0...,N−1 where u0

ki ∈ Rm for all k and i. Denote by

yl = (ylk)k=0,...,N−1 and Y l = (ylki)
i=1,...,s
k=0...,N−1 the collection of the state values and its internal

stages respectively at iteration l, and analogously we use the notations pl and P l for costate
and its internal stages at iteration l. Suppose that at the iteration l, U l is known. For the
next iteration l + 1, the computation of U l+1 is achieved as follows.

1. Compute Y l, P l, yl, pl as in (4.9), the computation is done forward in time for the
state yk and backward in time for the costate pk.

2. Compute ũl+1
ki solving the system ∇uH(ũl+1

ki , y
l
ki, p

l
ki) = 0, for all k and i using an

analytical formula if available, or a Newton method for instance.
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3. Denoting Ũ l = (ũlki)
i=1,...,s
k=0...,N−1, define U l+1 by U l+1 = (1− θl)U l + θlŨ l+1, where θl is

defined to minimize the scalar function θ 7→ Ψ(U l+1) using a simple trisection method
for instance, where Ψ : U 7→ Ψ(yN).

We stop when ‖U l+1 − U l‖ ≤ tol, where tol is a prescribed small tolerance.

In the recent paper [42], it was shown that the forward-backward sweep iteration defined
in Algorithm 4.2.3 used in implementing discretized optimal control problems converges
when using a symplectic Runge-Kutta discretization, which strengthens the interest of such
symplectic methods.

For simplicity, we assume in the rest of the chapter that y0 = y0 always holds in (4.7).

4.2.2 Explicit stabilized methods

Stability is a crucial property of numerical integrators for solving stiff problems and we
refer to the book [29]. A Runge-Kutta method is said to be stable if the numerical solution
stays bounded along the integration process. Applying a Runge-Kutta method (4.3) to the
linear test problem (with fixed parameter λ ∈ C),

ẏ = λy, y(0) = y0, (4.10)

with stepsize h yields a recurrence of the form yk+1 = R(hλ)yk and by induction we get
yk = R(hλ)ky0. The function R(z) is called the stability function of the method and the
stability domain is defined as S := {z ∈ C; |R(z)| ≤ 1}, and yk remains bounded if and
only if hλ ∈ S. The same result also applies to the internal stages of the Runge-Kutta
method, for all i = 1, . . . , s, where s is the number of internal stages, yki = Ri(hλ)yk,
for some function Ri. Remark that R(z) is a rational function for implicit methods, but
in the case of explicit methods the stability function R(z) reduces to a polynomial. The
simplest Runge-Kutta type method to integrate ODEs (4.2) is the explicit Euler method
yk+1 = yk + hf(yk) with stability polynomial R(z) = 1 + z. However, its stability domain
S is small (it reduces to the disc of center −1 and radius 1 in the complex plane) which
yields a severe time step restriction and makes it very expensive for stiff problems.

4.2.2.1 Optimal first order Chebyshev methods

The idea of explicit stabilized methods (as introduced in [54], see the survey [4]) is to con-
struct explicit Runge-Kutta integrators with extended stability domain that grows quadrat-
ically with the number of stages s of the method along the negative real axis, and hence
allows to use large time steps typically for problems arising from diffusion partial differen-
tial equations. The family of methods considered in [54] is known as “Chebyshev methods”
since its construction relies on Chebyshev polynomials Ts(x) satisfying Ts(cos θ) = cos(sθ).
These polynomials allow us to obtain a two-step recurrence formula and hence low memory
requirements and good internal stability with respect to round-off errors. The order one
Chebyshev method for solving a stiff ODE (4.2) is defined as an explicit s-stage Runge-
Kutta method by the recurrence

yk0 = yk, yk1 = yk + µ1hF (yk0),

yki = µihF (yk,i−1) + νiyk,i−1 + (1− νi)yk,i−2, j = 2, . . . , s (4.11)

yk+1 = yks,
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where

ω0 := 1 +
η

s2
, ω1 :=

Ts(ω0)

T ′s(ω0)
, µ1 :=

ω1

ω0

, (4.12)

where η is called the damping parameter and is used to make the stability of the method
robust with respect to small perturbations as described below. Finally, for all i = 2, . . . , s,

µi :=
2ω1Ti−1(ω0)

Ti(ω0)
, νi :=

2ω0Ti−1(ω0)

Ti(ω0)
. (4.13)

One can easily check that the (family) of methods (4.11) has the same first order of ac-
curacy as the explicit Euler method (recovered for s = 1). Note that instead of the stan-
dard Runge-Kutta method formulation (4.3) with coefficients (aij, bi), the one step method
yk+1 = Φh(yk) in (4.11) should be implemented using a recurrence relation (indexed by j)
inspired from the relation (4.14) on Chebyshev polynomials

Tj(z) = 2zTj−1(z)− Tj−2(z), (4.14)

where T0(z) = 1, T1(z) = z. This implementation (4.11) yields a good stability [54] of the
scheme with respect to round-off errors. The most interesting feature of this scheme is
its stability behavior. Indeed, the method (4.11) applied to (4.10) yields, with z = λh,

yk+1 = Rη
s(z)yk = Ts(ω0+ω1z)

Ts(ω0)
yk. A large real negative interval (−Cηs2, 0) is included in the

stability domain of the method S := {z ∈ C; |Rη
s(z)| ≤ 1}. For the internal stages, we have

analogously yki = Rη
s,i(z)yk = Ti(ω0+ω1z)

Ti(ω0)
yk. The constant Cη = 2− 4/3 η +O(η2) depends

on the so-called damping parameter η and for η = 0, it reaches the maximal value C0 = 2
(also optimal with respect to all possible stability polynomials for explicit schemes of order
1). Hence, given the stepsize h, for dissipative vector fields with a Jacobian having large
real negative eigenvalues (such as diffusion problems) with spectral radius λmax at yn, the
parameter s for the next step yn+1 can be chosen adaptively as1

s :=

[√
hλmax + 1.5

2− 4/3 η
+ 0.5

]
, (4.15)

see [3] in the context of stabilized schemes of order two with adaptive stepsizes. The method
(4.11) is much more efficient as its stability domain increases quadratically with the number
s of function evaluations while a composition of s explicit Euler steps (same cost) has a
stability domain that only increases linearly with s. In Figure 4.1 we plot the internal
stages for s = 10 and different values η = 0 and η = 0.05 , respectively. We observe that in
the absence of damping (η = 0), the stability function (here a polynomial) is bounded by
1 in the large real interval [−2s2, 0] of width 2 · 102 = 200. However, for all z that are local
extrema of the stability function, where |Rη

s(z)| = 1, the stability domain is very narrow
in the complex plane. Here the importance of some damping appears, to make the scheme
robust with respect to small perturbations of the eigenvalues. A typical recommended
value for the damping parameter is η = 0.05, see [55, 4]. The advantage of this damping
is that the stability polynomial is now strictly bounded by 1 and the stability domain
includes a neighborhood of the negative interval (−Cηs2, 0). This improvement costs a
slight reduction of the stability domain length from 2s2 to Cηs

2 where Cη ≥ 2− 4
3
η.

1The notation [x] stands for the integer rounding of real numbers.
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Figure 4.1: Internal stages (thin curves) and stability polynomials (bold curves) of the
Chebyshev method (4.11) for s = 10 with and without damping.

4.2.2.2 Second order RKC methods

To design a second order method, we need the stability polynomial to satisfy2

R(z) = 1 + z +
z2

2
+O(z3).

In [15], Bakker introduced a correction to the first order shifted Chebyshev polynomials to
get the following second order polynomial

Rη
s(z) = as + bsTs(ω0 + ω2z), (4.16)

where,

as = 1− bsTs(ω0), bs =
T ′′s (ω0)

(T ′s(ω0)2)
, ω0 = 1 +

η

s2
, ω2 =

T ′s(ω0)

T ′′s (ω0)
, η = 0.15. (4.17)

For each s, |Rη
s(z)| remains bounded by as+bs = 1−η/3+O(η2) for z in the stability interval

(except for a small interval near the origin). The stability interval along the negative real
axis is approximately [−0.65s2, 0], and covers about 80% of the optimal stability interval
for second order stability polynomials, and the formula now for calculating s for a given
time step h is

s :=

[√
hλmax + 1.5

0.65
+ 0.5

]
. (4.18)

Using the recurrence relation of the Chebyshev polynomials, the RKC method as intro-
duced in [54] is defined by

yk0 = yk, yk1 = yk0 + hb1ω2f(yk0),

yki = yk0 + µ′ih(f(yk,i−1)− ai−1f(yk0)) + ν ′i(yk,i−1 − yk0)

+ κ′i(yk,i−2 − yk0),

yk+1 = yks,

(4.19)

2Indeed, up to order two, the order conditions for nonlinear problems are the same as the order
conditions for linear problems [28, Chap. III].
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(b) New RKC (4.21).

Figure 4.2: Internal stages (thin curves) and stability polynomials (bold curves) of the
classical (4.19) and the new (4.21) RKC implementations for s = 10 internal stages.

where,

µ′i =
2biω2

bi−1

, ν ′i =
2biω0

bi−1

, κ′i = − bi
bi−2

, bi =
T ′′i (ω0)

(T ′i (ω0)2)
, ai = 1− biTi(ω0), (4.20)

for i = 2, . . . , s. As in (4.16), the stability functions of the internal stages are given by
Rη
i (z) = ai+biTi(ω0 +ω2z), where i = 0, . . . , s−1, and the parameters ai and bi are chosen

such that the above stages are consistent Rη
i (z) = 1 +O(z). The parameters b0 and b1 are

free (Rη
0(z) is constant and only order 1 is possible for Rη

1(z)) and the values b0 = b1 = b2

are suggested in [52]. In this chapter, to facilitate the analysis of the internal stability of
the optimal control methods, making the internal stages of the RKC method analogous to
the Chebyshev method (4.11) of order one, we introduce a new implementation of RKC
method

yk0 = yk, yk1 = yk + µ1hF (yk0),

yki = µihF (yk,i−1) + νiyk,i−1 + (1− νi)yk,i−2, i = 2, . . . , s (4.21)

yk+1 = asyk0 + bsTs(ωo)yks,

where µ1 = ω2

ω0
, as, bs are given in (4.17), and the parameters µi and νi are defined by

(analogously to (4.13), using ω2 instead of ω1), µi = 2ω2Ti−1(ω0)
Ti(ω0)

, νi = 2ω0Ti−1(ω0)
Ti(ω0)

, for i =

2, . . . , s. This new formulation (4.21) yields the same stability function Rη
s(z) in (4.16) but

different internal stages, and it will be helpful when we introduce the double adjoint of
RKC in Section 4.3. We recall that for an accurate implementation, one should not use
the standard Runge-Kutta formulations with coefficients (aij, bi) for (4.11) and (4.19) since
they are unstable due to the accumulated round-off error for large values of s. In contrast,
the low memory induction formulations (4.11) and (4.19) are easy to implement and very
stable with respect to round-off errors [54].

Note that (4.21) is not the same Runge-Kutta method as the standard RKC (4.19) from
[54], it has different internal stages but the same stability function Rη

s(z) in (4.16) and hence
order pode = 2. In Figure 4.2 we can see that the internal stages of the new formulation
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(a) Classical ROCK2.
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(b) Double adjoint of ROCK2.

Figure 4.3: Internal stages (thin curves) and stability polynomials (bold curves) of the
ROCK2 method [9] and its double adjoint for optimal control for s = 13 stages.

(4.21) of RKC have an analogous behavior compared to those of the first order Chebyshev
method oscillating around zero (see Figure 4.1), in contrast to those of the standard RKC
(4.19), oscillating around the value as > 0. In addition, comparing Figures 4.2b and 4.1b,
we see that the internal stages of the new RKC method (4.21) are the same as the order
one Chebyshev method (4.11) up to a horizontal rescaling ω2/ω1. This is because the s
internal stages of the methods have the stability function Ti(ω0 +ωjz)/Ti(ω0), i = 1, . . . , s
for j = 1, 2 respectively.

Notice however that this modification of the standard RKC method (4.19) deteriorates
the order two of accuracy of the internal stages of the method, useful for PDEs with non
homogeneous boundary conditions [34, Chap. V].

Remark 4.2.4. Analogously to the standard RKC method (4.19), the new RKC formula-
tion (4.21) can be equipped with an error estimator to allow a variable time step control.
Since the new formulation (4.21) has the same stability function, one can use the same
error estimator as proposed in [51, Sect. 3.1]. In this chapter we consider only a constant
time step for simplicity of the presentation but emphasize that a variable time step hn can
be used for the new optimal control method of order two.

Remark 4.2.5. Second order Runge-Kutta Orthogonal Chebyshev (ROCK2) methods, as
introduced in [9], are second order explicit stabilized methods for which the stability domain
contains an interval that covers around 98% of the optimal one for second order explicit
methods. It would be interesting to extend such second order methods with nearly optimally
large stability domain to the context of optimal control problems. It turns out however that
such an extension based on ROCK2 (or its order four extension ROCK4 [3]) is difficult
and not analyzed in the present thesis. This difficulty arises from the severe instability of
the internal stages of the double adjoint of the standard ROCK2 method (see Figure 4.3)
which would introduce large round-off errors for stiff problems (large values of s), making
the obtained optimal control method not reliable.
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4.3 Explicit stabilized methods for optimal control

In this section, we derive new two term recurrence relations of the double adjoints of
Chebyshev method (4.11) and RKC method (4.21) that are numerically stable. Indeed,
one cannot rely on standard Runge-Kutta coefficients for the implementation of explicit
stabilized schemes.

4.3.1 Double adjoint of a general Runge-Kutta method

Recall from (4.9) that the Butcher tableau of the double adjoint (ãij, b̃i) of (4.4) is

ãji

b̃i
:=

bj
bi
aji

bi
. (4.22)

Proposition 4.3.1. If a Runge-Kutta method (aij, bi) (4.4) is explicit, then its double
adjoint (4.22) is explicit as well.

Proof. For an explicit Runge-Kutta method we have that aij = 0 for all j ≥ i i.e the matrix
(aij) is strictly lower triangular. Permuting the internal stages in (4.22) for i, j = s, . . . , 2, 1
does not modify the method but yields the following Butcher tableau

bs+1−j
bs+1−i

as+1−j,s+1−i

bs+1−i
(4.23)

which is strictly lower triangular, and thus the method (4.22) is again explicit.

An immediate consequence of Proposition 4.3.1 is that for explicit methods, the stability
function of the double adjoint is again a polynomial. In fact it turns out, as stated in
Theorem 4.3.2 below, that for any Runge-Kutta method, the double adjoint (ãij, b̃i) has
exactly the same stability function as (aij, bi). Note however that this result does not hold
in general for the internal stages (see Remark 4.2.5 about ROCK2).

Theorem 4.3.2. A Runge-Kutta method (aij, bi) and its double adjoint (ãij, b̃i) in (4.22)
share the same stability function R(z).

Proof. Let A = (aij), Ad = (aji bj/bi), and b = (bi), i, j = 1 . . . s. We recall the formula for
the stability function of the Runge-Kutta method (aij, bi),

R(z) =
det(I − zA+ z1bT )

det(I − zA)
, (4.24)

where 1 ∈ Rs is the line vector of size s containing only ones. Using a simple calculation,
one can show that ATd = DAD−1 where D = diag(bi). This implies that I − zATd = D(I −
zA)D−1, and since I−zATd = (I−zAd)T , thus det(I−zA) = det(I−zAd). Using the same
diagonal matrix D we have D1bTD−1 = 1T b, hence I − zATd + z1b = D(I − zA+ z1b)D−1

and det(I − zATd + z1b) = det(I − zA+ z1b) and hence the stability function of (ãij, b̃i) is
again (4.24).
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4.3.2 Chebyshev method of order one for optimal control
problems

For clarity of presentation, we first study Chebyshev method of order one for optimal
control problems before introducing the second order RKC method. Applying the order
one Chebyshev method (4.11) to the problem (4.1) we get

min Ψ(yN), such that

yk0 = yk, yk1 = yk0 + µ1hf(uk0, yk0),

yki = µihf(uk,i−1, yk,i−1) + νiyk,i−1 + (1− νi)yk,i−2, i = 2, . . . , s

yk+1 = yks,

(4.25)

where, k = 0, . . . , N − 1, η > 0 is fixed, and the parameters µi, νi are defined as in (4.12)
and (4.13).

For the implementation of Algorithm 4.2.3 based on the order one Chebyshev method
(4.25) for the state equation, the costate equation can be implemented efficiently using the
recurrence relations given by the following theorem.

Theorem 4.3.3. The double adjoint of scheme (4.25) is given by the recurrence

pN = ∇Ψ(yN), pks = pk+1

pk,s−1 = pks +
µs
νs
h∇yH(uk,s−1, yk,s−1, pks)

pk,s−j =
µs−j+1αs−j+1

αs−j
h∇yH(uk,s−j, yk,s−j, pk,s−j+1)

+
νs−j+1αs−j+1

αs−j
pk,s−j+1

+
(1− νs−j+2)αs−j+2

αs−j
pk,s−j+2, j = 2 . . . , s− 1,

pk0 = µ1α1h∇yH(uk0, yk0, pk1) + α1pk1 + (1− ν2)α2pk2

pk = pk0

∇uH(uk,s−j, yk,s−j, pk,s−j+1) = 0, j = 1, . . . , s.

(4.26)

where k = N − 1, . . . , 2, 1, 0 and the coefficients αj are defined by induction as

αs = 1, αs−1 = νs,

αs−j = νs−j+1αs−j+1 + (1− νs−j+2)αs−j+2, j = 2 . . . s− 1.
(4.27)

The proof of Theorem 4.3.3 uses similar arguments to the proof of Theorem 4.2.1, with
the exception that we now rely on the recurrence formula (4.25) instead of the standard
Runge-Kutta formulation (4.6) to avoid numerical instability.
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Proof of Theorem 4.3.3. The Lagrangian associated to the discrete optimization problem
(4.25) is

L = Ψ(yN) + p0 · (y0 − y0) +
N−1∑
k=0

{
pk+1 · (yks − yk+1)− pk0 · (yk − yk0)

+ pk1 · (yk0 + µ1hf(uk0, yk0)− yk1)

+
s∑
i=2

pki · (µihf(uk,i−1, yk,i−1) + νiyk,i−1

+ (1− νi)yki−2 − yki)
}
.

Here pk+1, pki, and p0 are the Lagrange multipliers. The optimality necessary conditions
are thus given by

∂L
∂yk

= 0,
∂L
∂yki

= 0,
∂L
∂pk

= 0,
∂L
∂pki

= 0,
∂L
∂uki

= 0, (4.28)

where k = 0, . . . , N − 1 and i = 0, . . . , s. By a direct calculation, we obtain the following
system,

yk0 = yk, yk1 = yk0 + µ1hf(uk0, yk0),

yki = µihf(uk,i−1, yk,i−1) + νiyk,i−1 + (1− νi)yk,i−2, i = 2, . . . , s,

yk+1 = yks,

pN = ∇Ψ(yN), pks = pk+1,

pk,s−1 = µsh∇yH(uk,s−1, yk,s−1, pks) + νspks,

pk,s−j = µs−j+1h∇yH(uk,s−j, yk,s−j, pk,s−j+1) + νs−j+1pk,s−j+1

+ (1− νs−j+2)pk,s−j+2, j = 2, . . . , s− 1,

pk0 = µ1h∇yH(uk0, yk0, pk1) + pk1 + (1− ν2)pk2,

pk = pk0,

∇uH(uk,s−j, yk,s−j, pk,s−j+1) = 0, j = 1, . . . , s,

(4.29)

where k = 0, . . . , N − 1. In the above system, observe that the steps pki of the double
adjoint are not internal stages of a Runge-Kutta method, that is because they are not
O(h) perturbations of the pk+1, i.e. pki 6= pk+1 + O(h), for instance, already for the first
step pk,s−1 = νspk+1 +O(h) with νs = 2 +O(η). Since the pseudo-Hamiltonian H(u, y, p)
is linear in p, we can rescale the internal stages of the costate by a factor αj such that for
p̂kj := α−1

j pkj, we obtain p̂kj = pk+1 +O(h). We define

p̂ks := pks, p̂k,s−1 :=
pk,s−1

νs
= p̂ks +

µs
νs
h∇yH(uk,s−1, yk,s−1, p̂ks).

Substituting p̂k,s−2 in (4.29), we obtain

pk,s−2 = µs−1νsh∇yH(uk,s−2, yk,s−2, p̂k,s−1) + νs−1νsp̂k,s−1 + (1− νs)p̂ks,

the quantities p̂k,s−1 and p̂ks are equal to pk+1 +O(h), hence pk,s−2 = (νs−1νs+1−νs)pk+1 +
O(h), this implies that αs−2 = νs−1νs + 1− νs and therefore

p̂k,s−2 :=
pk,s−2

νs−1νs + 1− νs
=

pk,s−2

νs(νs−1 − 1) + 1
.
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Following this procedure for pk,s−j, j = 2, . . . , s− 1, we arrive at the Runge-Kutta formu-
lation (4.26) of the double adjoint of scheme (4.25), where we go back to the notation pki
instead of p̂ki.

Remark 4.3.4. A straightforward calculation yields that without damping (for η = 0), we
have αs−j = j + 1, and method (4.25)-(4.26) reduces to the following recurrence

yk0 = yk, yk1 = yk0 +
h

s2
f(uk0, yk0),

yki =
2h

s2
f(uk,i−1, yk,i−1) + 2yk,i−1 − yk,i−2, i = 2, . . . , s,

yk+1 = yks,

pN = ∇Ψ(yN), pks = pk+1,

pk,s−1 = pks +
h

s2
∇yH(uk,s−1, yk,s−1, pks),

pk,s−j =
2j

(j + 1)s2
h∇yH(uk,s−j, yk,s−j, pk,s−j+1) +

2j

j + 1
pk,s−i+1

+
1− j
j + 1

pk,s−j+2, j = 2, . . . , s− 1,

pk0 =
h

s
∇yH(uk0, yk0, pk1) + spk1 + (1− s)pk2,

pk = pk0,

∇uH(uk,s−j, yk,s−j, pk,s−j+1) = 0, j = 1, . . . , s.

(4.30)

where k = 0, . . . , N − 1. In Section 4.3.4, we shall study the stability of (4.30) (without
damping) and of (4.25)-(4.26) (with damping).

4.3.3 RKC method of order 2

We consider the new implementation (4.21) of the RKC method applied to (4.1) for which
the internal stages behave similarly to that of the order one method, given by

min Ψ(yN), such that

yk0 = yk, yk1 = yk0 + µ1hf(uk0, yk0),

yki = µihf(uk,i−1, yk,i−1) + νiyk,i−1 + (1− νi)yk,i−2, i = 2, . . . , s

yk+1 = asyk0 + bsTs(ω0)yks,

(4.31)

where, k = 0, . . . , N − 1, η = 0.15, and again all the parameters are defined as for the
Chebyshev method using ω2 instead of ω1. The order two RKC method with formula-
tion (4.31) for the state equation can be implemented using Algorithm 4.2.3, the costate
equation being implemented using the recurrence relations given by the following Theorem
4.3.5. Its proof is analogous to that of Theorem 4.3.3 and thus omitted.



76 CHAPTER 4. EXPLICIT STABILIZED METHODS FOR OPTIMAL CONTROL

-200 -150 -100 -50 0

-1

-0.5

0

0.5

1

(a) Double adjoint (4.26) for η = 0.05
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Figure 4.4: Internal stages (thin curves) and stability polynomial (bold curve) of the double
adjoint of the Chebyshev method (4.26) of order one and the RKC method (4.32) of order
two for s = 10 internal stages.

Theorem 4.3.5. The double adjoint of the scheme (4.31) is given by the recurrence

pN = ∇Ψ(yN), pks = pk+1,

pk,s−1 = pks +
µs
νs
h∇yH(uk,s−1, yk,s−1, pks),

pk,s−j =
µs−j+1αs−j+1

αs−j
h∇yH(uk,s−j, yk,s−j, pk,s−j+1)

+
νs−j+1αs−j+1

αs−j
pk,s−j+1,

+
(1− νs−j+2)αs−j+2

αs−j
pk,s−j+2, j = 2, . . . , s− 1,

pk0 = µ1α1h∇yH(uk0, yk0, pk1) + α1pk1 + (1− ν2)α2pk2 + aspk+1,

pk = pk0,

∇uH(uk,s−j, yk,s−j, pk,s−j+1) = 0, j = 1, . . . , s,

(4.32)

where the coefficients αj are defined using the induction

αs = bsTs(ω0), αs−1 = νsαs,

αs−j = νs−j+1αs−j+1 + (1− νs−j+2)αs−j+2, j = 2 . . . s− 1.
(4.33)

In Figure 4.4, we plot the stability function and the internal stages of the double adjoint
(4.26) of Chebyshev (4.11) and the double adjoint (4.32) of RKC (4.21). Comparing with
Figures 4.1b and 4.2b, we observe that the internal stages are not the same for the double
adjoint methods compared to the (4.11) and (4.21), while the stability function itself is
identical as shown in Theorem 4.3.2 for a general Runge-Kutta method.
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4.3.4 Stability and convergence analysis

In this section, we study the stability of the double adjoint of the Chebyshev method
(4.25) and the RKC method (4.31). We recall that for the Chebyshev method of order
one (resp. RKC of order two) the stability domain contains the interval [−β(s, η), 0] where
βCheb(s, η) ≈ (2− 4η/3)s2 (resp. βRKC(s, η) ≈ 0.653s2 for η = 0.15).

Theorem 4.3.6. Consider the Chebyshev (4.25) and the RKC (4.31) methods.
For η = 0, the stability functions of the internal stages Rs,i(z) of the Chebyshev (resp.
RKC) double adjoint (4.26) (resp. (4.32)), are bounded by 1 for all z ∈ [−2s2, 0] (resp.
[−2

3
s2 + 2

3
, 0]) and all s ∈ N.

The proof of Theorem 4.3.6 relies on the following lemma.

Lemma 4.3.7. Let s ≥ 1, and consider the double sequence γ̃ij indexed by i and j,

γ̃ij = 0 ∀ j > i, i = 0, . . . , s− 1,

γ̃0
0 = 1, γ̃1

0 = 0, γ̃1
1 = 2,

(4.34)

γ̃i0 = γ̃i−1
1 − γ̃i−2

0 , γ̃i1 = 2γ̃i−1
0 + γ̃i−1

2 − γ̃i−2
1 i = 2, . . . , s− 1,

γ̃ij = γ̃i−1
j−1 + γ̃i−1

j+1 − γ̃i−2
j i = 2, . . . , s− 1, j = 2, . . . , i,

(4.35)

Then,

γ̃ij = 0 ∀ j > i,

γ̃i0 =

{
1 if i is even

0 if i is odd
γ̃ij =

{
2 if i− j is even

0 otherwise

(4.36)

where i = 0, . . . , s− 1, j = 0, . . . , i.

Proof. It can be checked that the coefficients defined in (4.36) verify the induction (4.35).
Hence using the fact that they have the same initial terms (4.34), we conclude that they
coincide by induction on i and j.

Proof of Theorem 4.3.6. We first consider the Chebyshev method without damping applied
to the linear test problem y′ = λy , λ ∈ C, t ∈ (0, T ], y(0) = 1, with a uniform subdivision
x0 = 0 < x1 < · · · < xN = T of stepsize h. Using Remark 4.3.4, we obtain for k = 0:

yk0 = 1, yk1 = yk0 +
hλ

s2
yk0,

yki =
2ihλ

(i+ 1)s2
yk,i−1 +

2i

i+ 1
yk,i−1 +

1− i
i+ 1

yk,i−2, i = 2, . . . , s− 1,

yks =
hλ

s
yk,s−1 + syk,s−1 + (1− s)yk,s−2,

y1 = yks.

(4.37)

First, notice that since 2i
i+1

+ 1−i
i+1

= 1, we have that for all i = 0, . . . , s, yki = (1 + O(h))
(by induction). Setting z = hλ, it is sufficient to prove the identity

yki =
i∑

j=0

γijTj(1 +
z

s2
) (4.38)
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where yki is a convex combination of the polynomials Tj(1 + z
s2

),

i∑
j=0

γij = 1 and γij ≥ 0 ∀ i, j = 1, . . . s− 1, (4.39)

because |Tj(1 + z
s2

)| ≤ 1 for all j = 0, . . . , s and z ∈ [−β(s, 0), 0] = [−2s2, 0].
Since the Chebyshev polynomials form a basis of the vector space of polynomials, this
already justifies the existence of the expansion (4.38) with some real coefficients γij. The

identity
∑i

j=0 γ
i
j = 1 follows from the fact that yki = 1+O(h) and Tj(1+ z

s2
) = 1+O(h) for

all i, j = 0, . . . , s. Now we can calculate these coefficients for the first two internal stages,
Rs,0(z) = yk0 = yk = 1 = T0(1 + z

s2
), thus γ0

0 = 1. Analogously,

Rs,1(z) = yk1 = yk0 +
hλ

s2
yk0 = 1 +

z

s2
= T1(1 +

z

s2
) we obtain γ1

0 = 0, γ1
1 = 1.

It remains to prove the positivity of the coefficients γij. Coupling (4.38) and (4.39), we
obtain

Rs,i(z) = yki =
2i

i+ 1
(1 +

z

s2
)yk,i−1 +

1− i
i+ 1

yk,i−2

=
2i

i+ 1
(1 +

z

s2
)
i−1∑
j=0

γi−1
j Tj(1 +

z

s2
) +

1− i
i+ 1

i−2∑
j=0

γi−2
j Tj(1 +

z

s2
)

=
2i

i+ 1
γi−1

0 T1(1 +
z

s2
) +

i∑
j=2

i

i+ 1
γi−1
j−1Tj(1 +

z

s2
)

+
i∑

j=2

(
i

i+ 1
γi−1
j−1 −

i− 1

i+ 1
γi−2
j−2

)
Tj−2(1 +

z

s2
)

where we used (4.14). By comparison with (4.38), we obtain the following recurrence

γij = 0 ∀ j > i, i = 0, . . . , s− 1,

γ0
0 = 1, γ1

0 = 0, γ1
1 = 1, γi0 =

i

i+ 1
γi−1

1 − i− 1

i+ 1
γi−2

0 i = 2, . . . , s− 1,

γi1 =
2i

i+ 1
γi−1

0 +
i

i+ 1
γi−1

2 − i− 1

i+ 1
γi−2

1 i = 2, . . . , s− 1,

γij =
i

i+ 1
γi−1
j−1 +

i

i+ 1
γi−1
j+1 −

i− 1

i+ 1
γi−2
j i = 2, . . . , s− 1, j = 2, . . . , i.

Now defining γ̃ij = (i + 1)γij, the above induction relations simplify to (4.34) and (4.35).
The positivity of γ̃ij, and hence of γij, follows from Lemma 4.3.7. For i = s, the stability is
a consequence of Theorem 4.3.2.
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Analogously, the RKC method reads for η = 0,

yk0 = 1, yk1 = yk0 +
3hλ

s2 − 1
yk0,

yki =
6ihλ

(i+ 1)(s2 − 1)
yk,i−1 +

2i

i+ 1
yk,i−1 +

1− i
i+ 1

yk,i−2, i = 2, . . . , s− 1,

yks =
hλ

s
yk,s−1 +

s2 − 1

3s
yk,s−1 −

s3 − s2 − s+ 1

3s2
yk,s−2 +

2s2 + 1

3s2
y0,

y1 = yks,

(4.40)

and we follow the same methodology as above. Note that for RKC we have |Tj(1+ 3
s2−1

z)| ≤
1 for all j = 0, . . . , s and z ∈ [−β(s, 0), 0] = [−2

3
(s2 − 1), 0]. Using the same notations we

search for coefficients satisfying the following

yki =
i∑

j=0

γijTj(1 +
3

s2 − 1
z), where

i∑
j=0

γij = 1 and γij ≥ 0 ∀ i, j = 1, . . . s− 1. (4.41)

Remark that Rs,0(z) = yk0 = yk = 1 = T0(1 + 3
s2−1

z), hence γ0
0 = 1. Analogously,

Rs,1(z) = yk1 = yk0+ 3hλ
s2−1

yk0 = 1+ 3z
s2−1

= T1(1+ 3
s2−1

z), and we deduce that γ1
0 = 0, γ1

1 = 1.
Again we find a relation between these new coefficients to prove their positivity using
yki = 2i

i+1
(1 + 3

s2−1
z)yk,i−1 + 1−i

i+1
yk,i−2. We get a recurrence of the same form as in the

Chebyshev double adjoint method (4.37) but with different parameter, proceeding in the
same we obtain exactly the same coefficients γij, which concludes the proof.

Remark 4.3.8. For the case of positive damping η > 0, the coefficients get very complicated
and it is difficult to find a recurrence relation between them in order to prove their positivity.
However, observing that all the coefficients in the recurrence relations of the internal stages
of the methods are continuous functions of η, then for all s, there exists η0(s) such that the
internal stages are stable (bounded) for all η ∈ [0, η0(s)]. Numerical investigations suggest
that Theorem 4.3.6 remains valid for all η > 0 i.e the methods remain stable with the
stability functions of the internal stages bounded by 1, for all integers s ≥ 1 for Chebyshev
and s ≥ 2 for RKC, and all η > 0. We have verified this numerically for s ≤ 200.

We conclude this section by the following convergence theorem for the new explicit
stabilized methods for stiff optimal control problems.

Theorem 4.3.9. The method (4.25)-(4.26) (resp. (4.31)-(4.32)) has order 1 (resp. 2) of
accuracy for the optimal control problem (4.1).

Proof. The proof follows immediately from Theorem 4.2.1 with poc = pode = 2 for the RKC
method.

Remark 4.3.10. The proposed explicit stabilized integrators for optimal control problems
could be combined with the idea of implicit-explicit (IMEX) integrators as proposed in [30],
where RKC type methods would replace the implicit part in the IMEX integrator. This idea
is already proposed in [58, 10] in the context of advection-diffusion-reaction problems. In
[58], the diffusion part is discretized with an RKC method which typically has a large number
of internal stages, and the advection-reaction part is integrated using a 4-stage explicit
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Runge-Kutta method. In [10], the method integrates the diffusion term using ROCK2
method, the advection term using a 3-stage explicit method, and the nonlinear reaction
term is solved implicitly. Such an extension is however out of the scope of the thesis.

4.4 Numerical experiments

In this Section, we illustrate numerically our theoretical findings of convergence and sta-
bility of the new fully explicit methods for stiff optimal control problems, first on a stiff
three dimensional problem and second on a nonlinear advection-diffusion PDE (Burgers
equation).

4.4.1 A linear quadratic stiff test problem

We start this section by a simple test problem taken from [27]:

min
1

2

∫ 1

0

(u2(t) + 2x2(t))dt subject to

ẋ(t) =
1

2
x(t) + u(t), t ∈ [0, 1], x(0) = 1.

(4.42)

The optimal solution (u∗, x∗) is given by u∗(t) = 2(e3t−e3)

e3t/2(2+e3)
, x∗(t) = 2e3t+e3

e3t/2(2+e3)
. As studied

in [30] we modify problem (4.42) into a singularly perturbed (stiff) problem to illustrate the
good stability properties of our new method. For a fixed ε > 0, we consider the following
stiff optimal control problem,

min c(1) subject to

ċ(t) =
1

2
(u2(t) + x2(t) + 4z2(t)), c(0) = 0,

ẋ(t) = z(t) + u(t), x(0) = 1,

ż(t) =
1

ε

(
1

2
x(t)− z(t)

)
, z(0) =

1

2
,

(4.43)

Figure 4.5 shows the convergence behavior, using the new RKC method (4.31)-(4.32), of
the error in infinity norm between the solutions of the stiff problem (4.43) for
ε = 10−1 and ε = 10−3 and different sizes of the time step hi = 2−i, i = 0, . . . , 5 and the
reference solution is obtained with h = 2−7. We observe lines of slope 2 which confirms the
theoretical order two of accuracy of the scheme (Theorem 4.3.9). In the stiff case (ε = 10−3),
the method uses s = 4 to calculate the reference solution and s = 40, 28, 20, 14, 10, 7 respec-
tively for the different time steps used to illustrate the convergence, these values coincide
with the theoretical values that can be obtained using (4.18). Analogously to the case

of stiff ODEs, the cost of scheme (4.31)-(4.32) is O(ε−
1
2 ) function evaluations of f , while

using Euler method with its double adjoint would cost O(ε−1).
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(a) ε = 10−1.
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(b) ε = 10−3.

Figure 4.5: Convergence plot of RKC (4.31)-(4.32) applied to problem (4.43).

4.4.2 Optimal control of Burgers equation

To illustrate the performance of the new method, we consider the following optimal control
problem of a nonlinear advection-diffusion PDE corresponding to the Burgers equation

min
u∈L2([0,T ];L2(Ω))

J(u) =
1

2
‖y(T )− ytarget‖2

L2(Ω) +
α

2

∫ T

0

‖u(t)‖2
L2(Ω)

subject to

∂ty(t, x) = µ∆y(t, x)− ν

2
∂x(y

2(t, x)) + u(t, x) in (0, T )× Ω,

y(0, x) = g(x) in Ω,

y(t, x) = 0 on ∂Ω,

(4.44)

where µ, ν > 0, in dimension d = 1 with domain Ω = (0, 1) and the final time is given
by T = 2.5. Here the control u is a part of the source that we want to adjust in order to
achieve a given final state ytarget : Ω→ R.

We use a standard central finite difference space discretization for the state equation,
and the trapezoid rule to discretize in space the norm L2(Ω). We consider M + 2 points
in space xm = m∆x, with grid mesh size ∆x = 1

M+1
, and we denote by ym(t) the ap-

proximation to y(t, xm), and define the vector Y (t) = (y0(t), y1(t), . . . , yM+1(t)) ∈ RM+2.
Similar notations are used for U and P . We obtain the following optimal control problem
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semi-discretized in space,

min
U(t)∈RM+2

Ψ(c(T ), Y (T )) =
1

2(M + 1)

M+1∑
m=0

′
(ym(T )− ytarget(xm))2 + αc(T )

subject to

ċ(t) =
1

2(M + 1)

M+1∑
m=0

′
u2
m(t), c(0) = 0,

ẏm(t) = Fm(U(t), Y (t)) :=
µ

∆x2
(ym+1 − 2ym + ym−1)

− ν

4∆x2
(y2
m+1 − y2

m−1) + um,

ym(0) = g(xm), m = 0, . . . ,M + 1,

(4.45)

where m = 0, . . .M + 1 and the primed sum denotes a normal sum where the first and the
last term are divided by 2 and we define y0 = yM+1 = 0 to take into account the homoge-
neous Dirichlet boundary conditions. The function F : RM+2 → RM+2 with components
Fm : RM+2 → R is obtained from the standard central finite difference discretization of the
right hand side of the state equation (4.44), and adapted to the boundary conditions. The
corresponding adjoint system is

ṗc(t) = 0, pc(T ) = ∇cΨ = α,

Ṗ (t) = −∇Y F (U(t), Y (t))P,
(4.46)

where P is a vector of length M + 2 containing the costate values pm, m = 0, . . . ,M + 1.
In all our experiments we take µ = 0.1, ν = 0.02, g(x) = 3

2
x(1 − x)2, and ytarget(x) =

1
2

sin(10x)(1− x).
In Figure 4.6 we plot the optimal control function (Fig. 4.6b) and the corresponding

state function (Fig. 4.6a) obtained using scheme (4.31)-(4.32). When we use a small value
for α in the model, we allow larger control values and thus a final state very close to the
target (Fig. 4.6c), otherwise the control will be more limited and then the final state will
not be that close to the target (Fig. 4.6d). Note that the method required s = 24 stages for
∆x = 1/100 and ∆t = 2.5/30, while using an Euler method with its double adjoint would
require ∆t ≤ ∆tmax,Euler := ∆x2/2 at most. Hence, the standard Euler method would be
∆t/(s∆tmax,Euler) ' 70 times more expensive in terms of number of function evaluations
for ∆x = 1/100, a factor that grows arbitrarily as ∆x→ 0.

In Figure 4.7, we plot the convergence curves for the state and control functions of
the new RKC method (4.31)-(4.32) applied to the diffusion problem discretized in space
(4.45), where the number of stages s is computed adaptively using (4.18). We recover
again lines of slope two, which corroborate the order two of the method. Although our
convergence analysis is valid only in finite dimensions (Theorem 4.3.9), this suggests that
the convergence of order two persists in the PDE case. For comparison, we also included
the results for the following standard diagonally implicit Runge-Kutta method of order
two, inspired from [30, Table 5.1] in the context of stiff optimal control problems, and
given by the following Butcher tableau where γ = 1−

√
2/2 (making the method L-stable),

γ
1− 2γ γ

1/2 1/2
(4.47)
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0 0.2 0.4 0.6 0.8 1

x

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

fi
n
a
l 
s
ta

te

y
target

(x)

y
N

(x)

(c) Final and target states for α = 0.01.
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(d) Final and target states for α = 0.02.

Figure 4.6: State, final state, and control, of problem (4.44). Figures (a), (b), and (c) are
obtained using ∆x = 1/100, ∆t = T/30, and s = 24 stages, and α = 0.01. Figure (d) uses
the same ∆x, g and ytarget but α = 0.02.

Although for a fixed timestep, the second order implicit method (4.47) appears about two
times more accurate than the RKC method (4.31)-(4.32) for the control and almost of the
same accuracy for the state, we emphasize that these convergence plots do not take into
account the extra cost of the implicitness of method (4.47). Indeed, the cost and difficulty
of the implementation of the implicit methods (nonlinear iterations, preconditioners, etc.)
would typically deteriorate in larger dimensions and for a nonlinear diffusion operator, as
it is already the case for initial value PDEs [4], while as an explicit stabilized scheme, the
RKC method (4.31)-(4.32) can be conveniently implemented in the spirit of the simplest
explicit Euler method.
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(a) Error in the state.
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(b) Error in the control.

Figure 4.7: Convergence plot of the RKC method (4.31)-(4.32) and the implicit method
(4.47) applied to problem (4.45) for many time steps ∆ti = T/2i, i = 3, . . . , 8, ∆x = 1/100,
and α = 0.02, The reference solution is obtained using ∆t = T/212, s = 3.



Chapter 5

Conclusion and outlook

We have designed new and explicit stabilized schemes for different types of problems, and
we think that we now have enough material to look at many new interesting ideas related
to our work. Before concluding we would like to present one idea that we looked at, and
we think it is very interesting and promising.

5.1 Towards explicit implementation of implicit

methods using optimization techniques and

explicit stabilized integrators

We aim to implement excellent well established higher order implicit Runge-Kutta methods
explicitly by combining some optimization techniques with an explicit stabilized method
of order 1. We will explain the methodology in the rest of the current section.

In the recent paper [24], the authors proposed an explicit stabilized version of gradient
descent (GD) to replace the standard GD method (5.3) for stiff optimization problems in
large dimension to avoid step size restriction. Here we mean by stiff optimization problems
the case where the gradient of the objective function is stiff. In order to solve the problem

min
x∈ Rd

f(x), (5.1)

where d ∈ N\{0} and f : Rd → R a continuously differentiable function, with L-Lipschitz
gradient, and such that the real parts of the eigenvalues of its Hessian matrix Hf(x) are
strictly positive for all x ∈ Rd, the authors of [24] consider its gradient flow

ẋ = −∇f(x), x(0) = x0 ∈ Rd, (5.2)

where x0 is an initialization. Instead of applying an explicit Euler method to (5.2), which
is equivalent to GD, they apply an explicit stabilized method. Indeed, if we discretize (5.2)
using an explicit Euler method with step size h, we get the famous gradient descent (GD)
method

xn+1 = xn − h∇f(xn), n = 0, 1, 2, ... (5.3)

85
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where xn is the numerical approximation of x(tn). For stiff gradients, this method faces
severe restriction on h in order to be stable. Another approach is to discretize (5.2) using
an implicit Euler method with a step size h

xn+1 = xn − h∇f(xn+1), n = 0, 1, 2, ... (5.4)

It is easy to verify that xn+1 in (5.4) is the unique minimizer of the problem

min
x∈ Rd

hf(x) +
1

2
‖x− xn‖2

2. (5.5)

It is reasonable to think of applying a GD method with step size τ to the gradient flow
of (5.5) to avoid implicitness, and reduce the step size restriction, but this will not reduce
enough the restriction on τ especially if h is large. This pushes us to think of applying
an explicit stabilized method to (5.5) with a step size τ = O(1) and a suitable number of
stages s, and iterate until convergence. The obtained algorithm is in fact explicit. We look
at our stiff ODE as a gradient flow of some optimization problem, for which, the objective
function needs not to be known. We aim to apply this idea to a powerful implicit method of
higher order and perfect stability properties such as RADAU methods. If it works with the
fifth order RADAU IIA for example, we obtain an explicit implementation of an excellent
stiffly accurate method of order 5.

In a general framework, let d be a positive integer and consider the ODE

ẏ = f(y), y(0) = y0, (5.6)

where y0 ∈ Rd, and f : Rd → Rd is an L-Lipschitz vector field. Suppose that the eigenvalues
of the Jacobian matrix of f have strictly negative real parts for all y ∈ Rd. Consider a stiffly
accurate implicit method (for example RADAU IIA of order 5) with m stages, and with
matrix of coefficients A. After some calculations we arrive at the minimization problem

min
Y∈Rd×m

hF (Y) +
1

2
‖Y − Y0‖2

2, (5.7)

where Y is a vector containing all the internal stages of the considered method. The

function F needs not to be known and it is such that −∇F (Y) = A⊗ Id


f(Y1)
f(Y2)

...
f(Ym)

. The

corresponding gradient flow is

Ẏ = hA⊗ Id


f(Y1)
f(Y2)

...
f(Ym)

− Y + Y0, Y(0) = Y0. (5.8)

The idea now is to apply an explicit stabilized integrator to (5.8) with a time step
τ = O(1), and iterate.

Consider the test problem ẏ = −λy, y(0) = y0, where <λ < 0, which leads to

Ẏ = −hλAY − Y + Y0, Y(0) = Y0. (5.9)
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In the case where the eigenvalues of A are real positive, we can apply the standard Cheby-
shev method (2.14). For some implicit methods (RADAU IIA for example) the eigenvalues
of A are complex, which makes the standard Chebyshev method useless.

By diagonalizing A, we compute Ar and Ai such that A = Ar + iAi and the eigenvalues
of Ar are the real parts of the eigenvalues of A, and the eigenvalues of Ai are the imaginary
parts of the eigenvalues of A.

The above splitting of the matrix A requires an explicit stabilized method that is stable
enough in the imaginary direction, and this can be done by stabilizing the part of the vector
field with almost pure imaginary eigenvalues (advection-like) using a new polynomial. The
overall stability function will look like

Qs(hτλA
r) +Bs(hτλA

r)(hτλiAi). (5.10)

For optimization purposes, we ask that the above partition preserves the steady state of
the system in both linear and nonlinear vector fields cases. We consider

Qs(p) =
Ts(ω0 + ω′1p)

2Ts(ω0)
+

1

2

and Bs(p) = (Qs(p)−1)/p, where ω0 = 1 +η/s2, ω′1 = 2Ts(ω0)
T′s(ω0)

and η = 0.1, and the overall
stability function

Rs(p, q) =
Ts(ω0 + ω′1p)

2Ts(ω0)
+

1

2
+

1

p

(
Ts(ω0 + ω′1p)

2Ts(ω0)
− 1

2

)
iq, (5.11)

where p = hτλAr and q = hτλAi. To motivate the above choice, consider the test equation
ẏ = Uy + V y, y(0) = y0, such that Uy0 + V y0 = 0, we want y1 = y0, i.e.

Qs(hU)y0 +Bs(hU)hV y0 = y0,

−Bs(hU)hV y0 = (Qs(hU)− I)y0,

B(hU)hUy0 = (Qs(hU)− I)y0, since − V y0 = Uy0,

Bs(p) = (Qs(p)− 1)/p,

where p = hU .
For problems of the form

ẏ = f(y) + g(y), y(0) = y0, (5.12)

where g contains the imaginary parts of the eigenvalues appearing in the case of RADAU
IIA for example, we consider the following integrator

K0 = y0, K1 = y0 +
ω′1
2ω0

h(f(y0) + g(y0)),

Kj = µjh(f(Kj−1)− 1

2
f(y0) +

1

2
g(y0)) + νjKj−1 + (1− νj)Kj−2, j = 2, . . . , s,

y1 = Ks, (5.13)

where,

µj =
2ω′1Tj−1(ω0)

Tj(ω0)
, νj =

2ω0Tj−1(ω0)

Tj(ω0)
.
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Lemma 5.1.1. Applied to the linear test problem ẏ = λy + iσy the scheme (5.13) yields
the following stability function

Rs(p, q) =
Ts(ω0 + ω′1p)

2Ts(ω0)
+

1

2
+

1

p

(
Ts(ω0 + ω′1p)

2Ts(ω0)
− 1

2

)
iq, (5.14)

where p = hλ and q = hσ.

Theorem 5.1.2. The method (5.13) is of order 1 of accuracy for ODEs of the form (5.12),
with f and g are Lipschitz continuous.

Proposition 5.1.3 (steady state conservation). Let ẏ = f(y) + g(y) and let y(0) = y0

such that f(y0) + g(y0) = 0. Then, y1 = y0, with y1 defined as in (5.13).

Proofs of Lemma 5.1.1 and Theorem 5.1.2 are similar to the proofs of Lemma 3.3.1 and
Theorem 3.4.1 respectively. The proof of Proposition 5.1.3 is straightforward by induction.

5.2 Conclusion

In this thesis, we have constructed novel and efficient explicit stabilized methods for dif-
ferent types of stiff problems by combining techniques from stiff integration and geometric
numerical integration. Part of the work is presented in two research articles [5, 14].

A remarkable feature of the explicit stabilized schemes proposed in Chapter 3 (stiff
stochastic problems) and Chapter 4 (stiff optimal control problems) is that their extended
size of stability domain is not only optimally large in many situations, but it is also based
on rigorous estimates and it does not rely on empirical estimates as proposed in the past
literature. This asset makes the new schemes promising in the context of variance re-
duction techniques (for instance combined with the multilevel Monte-Carlo method for
stiff stochastic problems [6]) or parallel computing (for instance to be combined with the
parareal algorithm for dissipative problems, in particular for optimal control [43]), where
the ability of the integrators to apply large time steps with reliable stability is a key ingre-
dient.

The SK-ROCK method with optimal stability domain presented in Chapter 3 is used in
the article [47] to construct a highly efficient proximal Markov chain Monte Carlo method-
ology to perform Bayesian computation in imaging problems. Instead of the conventional
Euler-Maruyama approximation that underpins existing proximal Monte Carlo methods,
the authors use SK-ROCK method to significantly accelerate the convergence speed, sim-
ilarly to accelerated gradient optimization methods. A multirate version of SK-ROCK is
also used in the thesis [48] to solve stiff multirate stochastic differential equations.

Recently, the idea of stabilized Chebyshev methods was used in [21] in the context of
ODEs arising from the discretization of wave equations. Based on Chebyshev polynomials,
and in the spirit of explicit stabilized methods from the literature, the authors construct
a stabilized version of leapfrog method for linear and semilinear second-order differential
equations.

To conclude, we see that explicit stabilized methods are very useful in many contexts
and not only for stiff dissipative problems, and we believe that they could still be used for
many other classes of stiff problems and hence would give rise to many new interesting
research ideas.
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