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properties. and enjoy numerous characterizations and applications. In this thesis, we study discrepancy of graph classes with bounded expansion.

Discrepancy theory emerged from the study of the irregularities of statistical distributions and number sequences. Combinatorial discrepancy is a significant subject in its own right in this area. It measures the inevitable irregularities of set systems and the inherent difficulty to approximate them. We give a new characterization of bounded expansion classes in terms of discrepancy of definable set systems. In particular, we prove that the maximum discrepancy over all subgraphs H of a graph G of the neighborhood set system of H belongs to both Ω(log deg(G)) and O(deg(G)), where deg(G) denotes the degeneracy of G. We extend this result to inequalities relating weak coloring numbers and discrepancy of graph powers; we derive a new characterization of bounded expansion classes.

The notion of χ-boundedness is a central topic in chromatic graph theory. This thesis studies χ-bounded classes in the context of star colorings and, more generally, χ p -colorings, say χ s -bounded and (strongly and weakly) χ p -bounded classes. This fits to a general scheme of sparsity and leads to natural extensions of the notion of bounded expansion class. Here we solve two conjectures related to star coloring (i.e. χ 2 ) boundedness. One of the conjectures asserts that for any tree T, the class of all (T, C 4 )-free graphs is χ s -bounded. We prove that for any forest T, the class of all (T, K r,t )-free graphs is χ s -bounded if and only if r = 1 or T is a subgraph of the 1-subdivision of a tree. Hence the conjecture is refuted, but a weaker version holds. We give structural characterizations of strongly χ p -bounded classes (for every integer p) in terms of bounded expansion, in terms of topological minors and in terms of restricted dualities. And we give structural characterizations of weakly χ p -bounded classes (for every integer p) in terms of topological minors, etc. We also generalize a result of Wood relating the chromatic number of a graph to the star chromatic number of its 1-subdivision.
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Divers aspects de la coloration de graphes

Résumé :

La coloration des graphes est un sujet central en théorie des graphes, et divers concepts de coloration ont été étudiés dans la littérature. Cette thèse étudie certains de ces concepts de coloration et les problèmes associés. Il s'agit notamment de la coloration des graphes signés généralisés, du nombre de choix fractionnels forts des graphes, du nombre de coloration généralisé des graphes, de la largeur gémellaire des graphes, de la discordance (combinatoire) des systèmes d'ensembles définissables et des classes de graphes χ p -bornées.

Un graphe signé est une paire (G, σ), où G est un graphe et σ : E(G) → {+, -} est une signature qui attribue à chaque arête e un signe σ(e) ∈ {+, -}. Dans une coloration de graphes signés, le signe σ(e) détermine les paires de couleurs qui doivent être évitées aux extrémités de e. Un graphe signé généralisé est également une paire (G, σ), où le signe est un ensemble S de permutations, et la signature σ attribue à chaque arête e une permutation σ(e) ∈ S comme son signe. Dans une coloration f d'un graphe signé généralisé (G, σ), le signe σ(e) détermine les paires de couleurs qui doivent être évitées aux extrémités de e = xy, à savoir f (y) ̸ = σ(e)( f (x)). Une question naturelle motivée par le théorème des quatre couleurs est de savoir pour quels choix de sous-ensembles S de permutations de couleurs, tout graphe planaire est S-4-colorable. Cette question a maintenant une réponse complète : seul S = {id} posséde cette propriété, ce qui signifie que le théorème des quatre couleurs est strict au sens de la coloration généralisée des graphes signés. Ce résulat a été établi par une séquence de six articles, par différents groupes d'auteurs. L'une des contributions de cette thése est le résultat établi dans l'un de ces articles, à savoir que que de nombreux ensembles S n'ont pas la propriété désirée. La thèse considère cette même question pour les graphes planaires sans triangles, sur l'óptimalité du théorème de Grötzsch. Notre résultat montre que le théorème de Grötzsch est quasiment optimal, mais la question n'est pas encore complètement résolue : il reste encore à déterminer si tout graphe planaire sans triangles G est S-3-colorable pour S = {id, (12)}.

Une autre tentative pour renforcer le théorème de Grötzsch est de considérer la coloration de listes multiples de graphes planaires sans triangle. Il a été prouvé par Voigt qu'il existe des graphes planaires sans triangle qui ne sont pas 3-choissables. Cette thèse renforce le résultat de Voigt en considérant le nombre de choix fractionnaire fort des graphes et prouve que le supremum du nombre de choix fractionnaire fort des graphes planaires sans triangle est au moins 3 + 1/17.

Un sujet important de la théorie structurelle des graphes est l'étude de la complexité structurelle des graphes ou des classes de graphes. Si l'on se limite à certaines classes de graphes avec des structures simples, de nombreux problèmes qui sont NP-complets pour les graphes généraux peuvent être rśolus par des algorithmes en temps polynomial. Dans cet esprit, quelques concepts et invariants de graphes sont largement étudiés dans la littérature. Il s'agit notamment de la largeur d'arbre (treewidth) des graphes, de la profondeur d'arbre (treedepth) des graphes, du nombre de coloration généralisé (generalized coloring numbers), etc. Récemment, le concept de largeur gémellaire (twin-width) a été introduit par Bonnet, Kim, Thomassé et Watrigant. Dans cette thèse, nous étudions la relation entre la largeur gémellaire et le nombre de coloration généralisé. Nous prouvons ii qu'un graphe G sans sous-graphe K s,s et de largeur gémellaire (twin-width) d a ses nombres de coloration forts (faibles) r bornés supérieurement par une fonction exponentielle en r et que nous pouvons construire des graphes réalisant une telle dépendance en r.

L'une des deux notions centrales de la théorie structurelle des classes de graphes éparses est celle de classes d'expansion bornée (classes with bounded expansion). Ces classes ont de fortes propriétés algorithmiques et structurelles et bénéficient de nombreuses caractérisations et applications. Dans cette thèse, nous étudions la discrodance combinatoire (combinatorial dsicrepancy) des classes de graphes d'expansion bornée.

La théorie de la discordance est née de l'étude des irrégularités des distributions statistiques et des séquences de nombres. La discordance combinatoire (combinatorial discrepancy) est un sujet important à part entière dans ce domaine. Elle mesure les irrégularités inévitables des systèmes d'ensembles et la difficulté intrinsèque de leur approximation. Nous donnons une nouvelle caractérisation des classes d'expansion bornée, comme corrollaire d'une borne pour les nombres de coloration généralisée (generalized coloring numbers)) que nous établissons en termes de discordance de système définissables. En particulier, nous prouvons que la discordance maximale des voisinages de H, pour H sous-graphe d'un graphe G, appartient à Ω(log deg(G)) et O(deg(G)), où deg(G) désigne la dégénérescence (degeneracy) de G. Nous étendons ce résultat et obtenons des inégalités liant les nombres de coloration faibles (weak coloring numbers) et la et la discordance des voisinages dans les puissances de graphes et en dérivons une nouvelle caractérisation des classes d'expansion.

Le concept de classe χ-bornée a été introduit par Gyárfás en 1985. Les classes χbornées sont étudiées ici dans le contexte des colorations stellaires (star coloring et, plus généralement, des χ p -colorations. Considéré dans le cadre général de l'édute des classes éparses, il conduit à des extensions naturelles de la notion de classe d'expansion bornée. Nous résolvons ici deux conjectures liées à la limitation du nombre chromatique stellaire (i.e. χ 2 ). L'une des conjectures est réfutée et nous déterminons quelle relaxation est vraie. La notion de classe χ p -bornée conduit à une plus grande stabilité et nous donnons des caractérisations structurelles des classes (fortement et faiblement) χ p -bornées.

Mots clefs :
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Many aspects of graph coloring Abstract:

Graph coloring is a central topic in graph theory, and various coloring concepts have been studied in the literature. This thesis studies some of the coloring concepts and related problems. These include coloring of generalized signed graphs, strong fractional choice number of graphs, generalized coloring number of graphs, twin-width of graphs, (combinatorial) discrepancy of definable set systems and χ p -bounded classes of graphs.

A signed graph is a pair (G, σ), where G is a graph and σ : E(G) → {+, -} is a signature which assigns to each edge e a sign σ(e) ∈ {+, -}. In a coloring of signed graphs, the sign σ(e) determines the pairs of colors that need to be avoided as the colors of the end vertices of e. A generalized signed graph is also a pair (G, σ), where the signs is a set S of permutations, and the signature σ assigns to each edge e a permutation σ(e) ∈ S as its sign. In a coloring f of a generalized signed graph (G, σ), the sign σ(e) determines the pairs of colors that need to be avoided as the colors of the end vertices of e = xy, namely f (y) ̸ = σ(e)( f (x)). Let S k be the set of all permutations of [k]. A natural question motivated by the four color theorem is for which subsets S of S 4 , every planar graph is S-4-colorable. This question is now completely answered: only S = {id} has this property, which means that the four color theorem is tight in the sense of generalized signed graph coloring. This answer is obtained in a sequence of six papers, by different groups of authors. The contribution of this thesis is the results in one of the papers, which shows that many sets S do not have the desired property. The thesis also consider the questions for which subsets S of S 3 , every triangle-free planar graph is S-3-colorable. This question can be viewed as exploring the tightness of Grötzsch Theorem. Our result shows that Grötzsch Theorem is almost tight, but the whole question is not completely answered yet. We prove that for any subset S of S 3 , if S is not conjugate to a subset of {id, (12)}, then there exists a triangle-free planar graph which is not S-3-colorable.

Another attempt to strengthen Grötzsch Theorem is to consider multiple list coloring of triangle-free planar graphs. It was proved by Voigt that there are triangle-free planar graphs that are not 3-choosable. This thesis strengthens Voigt's result by considering the strong fractional choice number of graphs and proves that the supremum of the strong fractional choice number of triangle-free planar graphs is at least 3 + 1/17.

One important subject in structural graph theory is to study the structural complexity of graphs or classes of graphs. If restricted to some classes of graphs with simple structures, many problems that are NP-complete for general graphs could have polynomial algorithms. In this spirit, a few concepts and graph invariants are studied extensively in the literature. These include tree-width of graphs, tree-depth of graphs, generalized coloring number, etc. Recently, the concept of twin-width was introduced by Bonnet, Kim, Thomassé and Watrigant in [START_REF] Bonnet | Twin-width I: tractable FO model checking[END_REF]. In this thesis, we study the relation between twin-width and generalized coloring number. We prove that a graph G with no K s,s -subgraph and twin-width d has strong(weak) r-coloring numbers bounded by an exponential function of r and that we can construct graphs achieving such a dependency in r.

One of the two central notions in structural theory of classes of sparse graphs is the classes with bounded expansion. These classes have strong algorithmic and structural

Introduction (en français)

Cette thèse aborde une variété de concepts de coloration et les problèmes associés. Sont notamment étudiés la coloration des graphes signés généralisés, le nombre de choix fractionnels forts des graphes, les nombres de coloration généralisés des graphes, la largeur gémellaire (twin-width) des graphes, la discordance combinatoire (combinatorial discrepancy) des systèmes d'ensembles définissables, ainsi que les classes de graphes χ p -bornées.

La coloration des graphes signés généralisés

Un graphe signé est une paire (G, σ), où G est un graphe et σ : E(G) → {+, -} est une signature qui attribue à chaque arête e un signe σ(e) ∈ {+, -}. La coloration des graphes signés a été étudiée pour la première fois par Zaslavsky [START_REF] Zaslavsky | Signed graph coloring[END_REF] dans les années 1980, et a récemment fait l'objet de nombreuses études. Pour un entier positif k, nous notons [k] = {1, 2, . . . , k} et

N k =
{±1, ±2, . . . , ±q}, si k = 2q est pair, {0, ±1, ±2, . . . , ±q}, si k = 2q + 1 est impair.

Soit Z k = {0, 1, . . . , k -1} le groupe cyclique d'ordre k. Notons que dans le groupe Z k l'inverse -i de i ∈ Z k est ki. Definition 0.1 Soit (G, σ) un graphe signé et soit k un entier positif. Une k-coloration de (G, σ) est une application f : V(G) → N k telle que pour toute arête e = xy de G, on a f (x) ̸ = σ(e) f (y). Une Z k -coloration de (G, σ) est une application f : V(G) → Z k telle que, pour toute arête e = xy de G, on a f (x) ̸ = σ(e) f (y).

Pour les colorations d'un graphe signé, le signe d'une arête définie les paires de couleurs qu'il est interdit d'attribuer à ses extrémités. Il est naturel de considérer des graphes avec une plus grande variété d'arêtes et donc avec plus de types de restrictions sur les paires de couleurs qui ne peuvent être assignées aux deux sommets incidents à une arête. Un graphe signé généralisé est également une paire (G, σ), où la signature σ attribue à chaque arête dirigée e un signe, qui est choisi une permutation σ(e) choisie dans un certain ensemble S. Dans une coloration f d'un graphe signé généralisé (G, σ), le signe σ(e) détermine les paires de couleurs qui ne peuvent être assignées aux extrémités de e = xy, c'est-à-dire : f (y) ̸ = σ(e)( f (x)).

Un ensemble S de permutations d'entiers est appelé fermé par inverse si π -1 ∈ S pour chaque π ∈ S. viii Definition 0.2 Supposons que G est un graphe et S est un ensemble de permutations d'entiers positifs fermé par inverse. Une S-signature de G est une paire (D, σ), où D est une orientation de G et σ : E(D) → S est une application qui attribue à chaque arc e = (u, v) une permutation σ(e) ∈ S, telle que σ(e) = σ -1 (e -1 ), où e -1 = (v, u). Un k-coloration (propre) de (D, σ) est une application f : V(D) → [k], telle que pour chaque arc e = (u, v) de D, σ(e)( f (u)) ̸ = f (v). On dit que (D, σ) est k-coloriable s'il a une k-coloration (propre). Nous disons que G est S-kcoloriable si chaque S-signature (D, σ) de G a une k-coloration (propre).

Nous utilisons id pour désigner la permutation identité. Les autres permutations d'entiers s'écrivent comme produit de cycles. Par exemple, [START_REF] Chazelle | The discrepancy method[END_REF] est la permutation π avec π(1) = 2, π(2) = 1 et π(i) = i pour i ̸ = 1, 2 ; [START_REF] Chazelle | The discrepancy method[END_REF] [START_REF] Grünbaum | Acyclic colorings of planar graphs[END_REF] est la permutation π avec π(1) = 2, π(2) = 1, π(3) = 4, π(4) = 3 et π(i) = i pour i ̸ = 1, 2, 3, 4. Nous désignons par S k l'ensemble de toutes les permutations de [k].

Le concept de coloration des graphes signés généralisés est une généralisation commune de nombreux concepts de coloration. La coloration ordinaire des sommets, la coloration des graphes signés, la coloration de groupe (group coloring) des graphes, la DP-coloration (DP-coloring) des graphes sont tous des cas particuliers de la coloration des graphes signés généralisés, en choisissant différents ensembles de permutations pour les signes.

En particulier, un graphe G est k-coloriable si, et seulement si, G est S-k-coloriable pour S = {id}, et G est DP-k-coloriable si, et seulement si, G est S-k-coloriable pour S = S k . Ainsi, le théorème des quatre couleurs et le théorème de Voigt expriment que tout graphe planaire est {id}-4-coloriable, mais qu'il existe des graphes planaires qui ne sont pas S 4 -4-coloriables.

Une question naturelle motivée par cette observation est la suivante.

Question 0.1 Pour quels sous-ensembles S de S 4 , tout graphe planaire est-il S-4-coloriable ?

Pour S = {id, (12)(34)}, la question de savoir si tout graphe planaire est S-4-coloriable est équivalente à la question de savoir si tout graphe planaire signé sans arêtes parallèles est 4-coloriable, propriété conjecturée par Máčajová, Raspaud, Škoviera [START_REF] Máčajová | The chromatic number of a signed graph[END_REF]. Pour S = {id, (12)}, la question de savoir si tout graphe planaire est S-4-coloriable est équivalente à la question de savoir si tout graphe planaire signé sans arêtes parallèles est Z 4 -coloriable, propriété conjecturée par Kang et Steffen [START_REF] Kang | Circular coloring of signed graphs[END_REF]. Et pour certains autres sous-ensembles S, le problème a été étudié dans le langage de la coloration de groupe. Král, Pangrác et Voss [START_REF] Král | A note on group colorings[END_REF] ont ainsi prouvé qu'il existe un graphe planaire 3-coloriable qui n'est pas groupe 4-coloriable.

La question 0.1 est étudiée dans une séquence de six articles, et a maintenant trouvée une réponse complète : seul S = {id} possède cette propriété. Kardoš et Narboni [START_REF] Kardoš | On the 4-color theorem for signed graphs[END_REF] ont prouvé que pour S = {id, (12)(34)}, il existe des graphes planaires qui ne sont pas S-4-coloriables. Kemnitz et Voigt [START_REF] Kemnitz | A note on non-4-list colorable planar graphs[END_REF] ont montré que pour S = {id, (12)}, il existe des graphes planaires qui ne sont pas S-4-coloriables. Il a été prouvé indépendamment par Kemnitz et Voigt [START_REF] Kemnitz | A note on complex-4-colorability of signed planar graphs[END_REF] et par Naserasr et Pham [START_REF] Naserasr | Complex and Homomorphic Chromatic Number of Signed Planar Simple Graphs[END_REF] que pour S = {(12), (34)}, il existe des graphes planaires non S-4-coloriables. Jin, Wong et Zhu ont prouvé dans [START_REF] Jin | Colouring of S-labelled planar graphs[END_REF] que si id ∈ S et si chaque graphe planaire est S-4-colorable, alors S est conjugué à un sous-ensemble ix de {id, [START_REF] Chazelle | The discrepancy method[END_REF], [START_REF] Grünbaum | Acyclic colorings of planar graphs[END_REF], [START_REF] Chazelle | The discrepancy method[END_REF] [START_REF] Grünbaum | Acyclic colorings of planar graphs[END_REF]}. (Si S et S ′ sont des sous-ensembles de S k , on dit que S ′ est conjugué à S s'il existe une permutation π ∈ S k telle que S ′ = {πσπ -1 : σ ∈ S}.)

La contribution de cette thèse à ce problème est le théorème suivant, qui apporte une réponse complète à la question 0.1 en complétant les résultats mentionnés ci-dessus. Theorem 0.1 ([42]) Si id / ∈ S et si tout graphe planaire est S-4-coloriable, alors S est conjugué à un sous-ensemble de {( 12), (34), (12)(34)}.

Le résultat selon lequel tout graphe planaire est S-4-coloriable si et seulement si S = {id} montre que le théorème des quatre couleurs est optimal dans le sens de la coloration des graphes signés généralisés.

Nous considérons également une question similaire pour les graphes planaires sans triangles, qui peut être formulée comme la question de l'optimalité du théorème de Grötzsch dans le sens de la coloration des graphes signés généralisés. Le théorème de Grötzsch [START_REF] Grötzsch | Ein dreifarbensatz für dreikreisfreie netze auf der kugel[END_REF] établit que les graphes planaires sans triangles sont 3-coloriable. Voigt [START_REF] Voigt | A not 3-choosable planar graph without 3-cycles[END_REF] a prouvé qu'il existe des graphes planaires sans triangles qui ne sont pas 3-choisissables (3-choosable), donc non DP-3-coloriables. Ces résultats signifient que pour S = {id}, tout graphe planaire sans triangles est S-3-coloriable, et que pour S = S 3 , il existe des graphes planaires sans triangles non S-3-coloriable. Question 0.2 Pour quels sous-ensembles S de S 3 , tout graphe planaire sans triangles est-il S-3coloriable ?

Nous prouvons le résultat suivant.

Theorem 0.2 ([39]

) Si S n'est pas conjugué à {id, (12)}, alors tout graphe planaire sans triangles est S-3-coloriable si, et seulement si, S = {id}.

Ce résultat implique que le théorème de Grötzsch est presque optimal. Cependant, la question n'est pas encore complètement résolue. Le seul cas restant est de savoir si tout graphe planaire sans triangles est S-3-coloriable pour S = {id, (12)}.

Nombre de choix fractionnel fort des graphes

Une autre piste pour renforcer le théorème de Grötzsch consiste à considérer la coloration par listes multiples des graphes planaires sans triangles. Le nombre de choix fractionnairede G est

ch f (G) = inf a b : G est (a, b) -choisissable .
Il a été prouvé par Alon, Tuza et Voigt [START_REF] Alon | Choosability and fractional chromatic numbers[END_REF] que pour tout graphe fini G, χ f (G) = ch f (G) et que, de plus, l'infimum dans la définition de ch f (G) est atteint et est donc un minimum. Ceci implique que si G est (a, b)-coloriable, alors pour un certain nombre entier m, G est (am, bm)-coloriable. En particulier, pour tout graphe planaire sans triangles G, il existe un nombre entier m tel que G est (3m, m)-choisissable.

Dans une tentative de raffiner le nombre de choix des graphes, le concept de nombre de choix fractionnel fort d'un graphe a été introduit par Zhu [START_REF] Zhu | Multiple list colouring of planar graphs[END_REF]. Definition 0.5 Pour un nombre réel positif α, on dit qu'un graphe G est fortement fractionnairement α-choisissable si, pour tout entier positif m, G est (⌈αm⌉, m)-choisissable. Nous définissons le nombre de choix fractionnaire fort ch s f (G) de G par

ch s f (G) = inf{α : G est fortement fractionnairement α-choisissable}.
Pour un invariant de graphe f et une classe de graphes C , nous convenons de définir f (C ) = sup G∈C f (G).

Par exemple, le nombre de choix fractionnaire fort d'une classe C de graphes est le supremum des nombres de choix fractionnaires forts ch s f (G) des graphes G de

C , i.e. ch s f (C ) = sup{ch s f (G) : G ∈ C }. Il découle de cette définition que, pour tout graphe G, ch s f (G) ≥ ch(G) -1.
Cependant, la question de savoir si ch s f (G) ≤ ch(G) pour tout graphe G reste ouverte. Néanmoins, il résulte des preuves des théorèmes de Thomassen que tout graphe planaire a un nombre de choix fractionnaire fort d'au plus 5, et que tout graphe planaire sans triangles a un nombre de choix fractionnaire fort d'au plus 4. Des questions naturelles se posent : quel est le supremum du nombre de choix fractionnels forts des graphes planaires et quel est le supremum du nombre de choix fractionnels forts des graphes planaires sans triangles ?

Voigt a prouvé qu'il existe des graphes planaires qui ne sont pas 4-choisissables [START_REF] Voigt | List colourings of planar graphs[END_REF] et qu'il existe des graphes planaires sans triangles qui ne sont pas 3-choisissables [START_REF] Voigt | A not 3-choosable planar graph without 3-cycles[END_REF]. Cependant, pour un entier positif fixé m > 1, les questions de savoir s'il existe des graphes planaires qui ne sont pas (4m, m)-choisissables et s'il existe des graphes planaires sans triangles qui ne sont pas (3m, m)-choisissables restaient ouvertes. En particulier, on ignore s'il existe des graphes planaires non (8, Le cas m = 1 du théorème 0.3 correspond à l'existence des graphes planaires sans triangles non-3-choisissables (prouvé par Voigt [START_REF] Voigt | A not 3-choosable planar graph without 3-cycles[END_REF]).

Largeur gémellaire et nombres de coloration généralisés

Un sujet d'étude important de la théorie structurelle des graphes concerne la complexité structurelle des graphes et des classes de graphes. Si l'on se limite à certaines classes de graphes avec des structures simples, de nombreux problèmes qui sont NP-complets pour les graphes généraux pourraient avoir des algorithmes en temps polynomial. Dans cet esprit, quelques concepts et invariants de graphes sont largement étudiés dans la littérature. Il s'agit notamment de la largeur d'arbre des graphes (tree-width), de la profondeur d'arbre des graphes (tree-depth), des nombres de coloration généralisés, de l'expansion bornée, etc. Récemment, le concept de largeur gémellaire (twin-width) a été introduit par Bonnet, Kim, Thomassé et Watrigant [START_REF] Bonnet | Twin-width I: tractable FO model checking[END_REF]. Dans cette thèse, nous étudions la relation entre la largeur gémellaire et les nombres de coloration généralisés.

La largeur gémellaire est une généralisation d'un invariant de largeur pour les classes de permutations défini par Guillemot et Marx [START_REF] Guillemot | Finding small patterns in permutations in linear time[END_REF]. Ce paramètre a été intensivement étudié récemment dans le contexte de questions structurelles et algorithmiques telles que la complexité paramétrée de la vérification de modèles [START_REF] Bonnet | Twin-width I: tractable FO model checking[END_REF], l'énumération de graphes [START_REF] Bonnet | Twin-width II: small classes[END_REF], la coloration de graphes [START_REF] Bonnet | Twin-width III: max independent set, min dominating set, and coloring[END_REF], les matrices et les graphes ordonnés [START_REF] Bonnet | Twin-width IV: low complexity matrices[END_REF], ainsi que les transductions de classes de permutations [START_REF] Bonnet | Twin-width and permutations[END_REF].

Intuitivement, la largeur gémellaire d'un graphe capture l'erreur accumulée dans une séquence de contractions de sommets ayant des voisinages similaires. Nous donnons la définition formelle de la largeur gémellaire en nous basant sur la notion de trigraphe. La notion de trigraphe utilisée dans cette thèse est légèrement différente de celle utilisée dans [START_REF] Bonnet | Twin-width I: tractable FO model checking[END_REF]. Les deux notions sont néanmoins équivalentes. 

G par contraction de X et Y si V(G ′ ) = V(G) \ {X, Y} ∪ {X ∪ Y}, N G ′ (X ∪ Y) = N G (X) ∪ N G (Y), N E G ′ (X ∪ Y) = N E G (X) ∩ N E G (Y) (and N R G ′ (X ∪ Y) = N G ′ (X ∪ Y) \ N E G ′ (X ∪ Y)),
V(G n ) = {{v} : v ∈ V}, E(G n ) = {({u}, {v}) : (u, v) ∈ E(G)}, R(G n ) = ∅, G 1 est le trigraphe avec un seul noeud V, et G i est obtenu à partir de G i+1 par une seule contraction.
L'entier d minimum tel qu'il existe une séquence de d-contractions d'un un graphe G est la largeur gémellaire de G, notée tww(G).

Il découle de la définition que si G possède une paire de sommets (u, v) telle que

N G (u) = N G (v) (c'est-à-dire que u et v sont des sommets jumeaux) ou N G [u] = N G [v], et que G ′ = G/
{u, v} est obtenu à partir de G en identifiant u et v en un seul sommet, alors G et G ′ ont la même largeur gémellaire. En particulier, la largeur gémellaire des cographes est 0.

Ainsi qu'en témoignent les travaux de Bonnet, Kim, Thomassé et Watrigant [START_REF] Bonnet | Twin-width I: tractable FO model checking[END_REF], la largeur de jumeau est un paramètre de graphe très utile et polyvalent. Par exemple, les classes de graphes excluant un mineur ont une largeur gémellaire bornée.

Une théorie structurelle des classes de graphes épars a émergé récemment, et est basée sur l'étude des densités de mineurs superficiels, des nombres de coloration généralisés, et des orientations contraintes [START_REF] Nešetřil | Sparsity (Graphs, Structures, and Algorithms)[END_REF]. L'une des notions centrales de cette théorie est celle de classe d'expansion bornée. 

→ N avec ∀G ∈ C ∀H ∈ G ▽ r d(H) ≤ f (r).
∈ G ▽ r, ∆(H) ≤ d r .
Ces classes ont de fortes propriétés algorithmiques et structurelles. Une caractéristique importante de la théorie des graphes peu denses est que les classes d'expansion bornée ont de nombreuses caractérisations. Parmi celles-ci, trois concernent les nombres de coloration faibles wcol r et les nombres de coloration forts scol r introduits par Kierstead et Yang [START_REF] Kierstead | Orderings on graphs and game coloring number[END_REF] et la r-admissibilité adm r introduite par Dvořák [START_REF] Dvořák | Constant-factor approximation of the domination number in sparse graphs[END_REF].

Soit Π(G) l'ensemble de tous les ordres linéaires de V(G), et soit L ∈ Π(G). (Nous désignons par ≤ L la relation binaire correspondante pour une meilleure lisibilité). Soit u, v ∈ V(G), et soit r un entier positif. Definition 0.12 Nous disons que u est faiblement r-atteignable à partir de v pour L, s'il existe un chemin P de longueur au plus r reliant u et v, tel que u ≤ L w pour tous les sommets w de P. Soit WReach r [L, v] l'ensemble des sommets faiblement r-atteignables à partir de v pour L. Notons

que v ∈ WReach r [L, v].
Le nombre de coloration faible de r wcol r (G) de G est défini par Nous renvoyons le lecteur intéressé à [START_REF] Grohe | Coloring and covering nowhere dense graphs[END_REF] pour une définition de r-admissibilité. Notons que les définitions de adm r (G) et de wcol r (G) utilisées dans cette thèse et les deux articles cités diffère de 1 par rapport à la définition originale de [START_REF] Dvořák | Constant-factor approximation of the domination number in sparse graphs[END_REF]. Il a été prouvé par Zhu [START_REF] Zhu | Colouring graphs with bounded generalized colouring number[END_REF] que ce qui suit est équivalent pour une classe de graphes C :

wcol r (G) := min L∈Π(G) max v∈V(G) WReach r [L, v] , Definition 
xiv 1. C est d'expansion bornée ; 2. sup{wcol r (G) : G ∈ C } < ∞ pour tout entier r ; 3. sup{scol r (G) : G ∈ C } < ∞ pour tout entier r. De plus, en utilisant l'inégalité adm r (G) ≤ scol r (G) ≤ wcol r (G) ≤ adm r (G) r+1 -1
adm r (G)-1 (cf [START_REF] Dvořák | Constant-factor approximation of the domination number in sparse graphs[END_REF]), nous obtenons encore une nouvelle propriété équivalente :

4. sup{adm r (G) : G ∈ C } < ∞ pour tout nombre entier r.
Une classe de graphes dont la largeur gémellaire est bornée n'est pas nécessairement une classe de graphes épars. Par exemple, la classe des graphes complets a une largeur gémellaire nulle, bien que ce ne soit pas une classe ge graphes épars. Cependant, certaines propriétés supplémentaires peuvent impliquer que les graphes de largeur gémellaire bornées soient épars. Le théorème suivant a été prouvé dans [START_REF] Bonnet | Twin-width II: small classes[END_REF].

Theorem 0.4 ([5]) Une classe de graphes de largeur gémellaire bornée exclut une biclique comme sous-graphe si, et seulement si, elle est d'expansion bornée.

Il découle de ce résultat et des caractérisations des classes d'expansion bornée par les nombres de coloration faibles, par les nombres de coloration forts et par la r-admissibilité que, pour tout entier r, il existe une fonction f r : N × N → N telle que si G est un graphe de largeur gémellaire d et sans sous-graphes K s,s , alors on a wcol r (G) ≤ f r (d, s) et que des bornes similaires existent pour scol r et adm r . Cependant, la preuve donnée dans [START_REF] Bonnet | Twin-width II: small classes[END_REF] que les graphes sans bicliques de largeur gémellaire bornée sont d'expansion bornée n'indique pas comment calculer de telles bornes. Dans cette thèse, nous prouvons qu'un graphe G sans sous-graphes K s,s et de largeur gémellaire d a des nombres de coloration r forts (faibles) bornés supérieurement par une fonction exponentielle de r et que nous pouvons construire des graphes réalisant une telle dépendance en r. En particulier, scol r (G) ≤ (d r + 3)s.

Nous désignons par bω(G) le nombre de biclique de G, c'est-à-dire l'entier maximum s tel que K s,s soit un sous-graphe de G. Theorem 0.5 ([18]) Pour tout graphe G et tout entier positif r, on a 

scol r (G) ≤ 3 + tww(G) r-1 ∑ i=0 (tww(G) -1) i bω(G) ≤ (tww(G) r + 3)bω(G). (
(G) = {N G (v) : v ∈ V(G)}, où N G (v

Des classes χ-bornées aux classes χ p -bornées

Le concept de classe χ-bornée a été introduit par Gyárfás en 1985 dans son article fondateur [START_REF] Gyárfás | Problems from the world surrounding perfect graphs[END_REF]. Definition 0.17 Une classe de graphes C est χ-bornée avec borne f si χ(H) ≤ f (ω(H)) pour tout sous-graphe induit H d'un graphe G ∈ C .

La notion de classe χ-bornée est un sujet central en théorie chromatique des graphes. Puisque la définition de classe χ-bornée implique tous les sous-graphes induits des graphes de la classe, il est naturel de se restreindre aux classes de graphes héréditaires, c'est-à-dire aux classes de graphes fermées par sous-graphes induits.

Par analogie avec la notion de classe χ-bornée, Karthick [START_REF] Karthick | Star coloring of certain graph classes[END_REF] a introduit la notion de classe χ s -bornée, où χ s désigne le nombre chromatique stellaire (star chromatic number). Le nombre chromatique stellaire a été introduit par Grünbaum [START_REF] Grünbaum | Acyclic colorings of planar graphs[END_REF] 

χ s (G) = O(ω(G) 3(t-1) 2 
). Definition 0.21 Le nombre chromatique de profondeur d'arbre de rang p de G, noté χ p (G), est le nombre minimal de couleurs dans une coloration φ des sommets de G telle que pour chaque sous-ensemble I d'au plus p couleurs, le sous-graphe G I de G induit par l'union des classes de couleurs {φ -1 (i) : i ∈ I} a une profondeur d'arbre d'au plus |I|.

Parfois, nous l'appellerons le p-ième nombre chromatique de G.

En particulier, pour tout graphe G, χ 1 (G) est le nombre chromatique habituel de G (i.e.

χ 1 (G) = χ(G)), χ 2 (G) est le nombre chromatique steallaire de G (i.e. χ 2 (G) = χ s (G)), et χ 1 (G) ≤ χ 2 (G) ≤ • • • ≤ χ |G| (G) = td(G).
La notion de classe d'expansion bornée permet de saisir l'idée d'une densité faible uniformément bornée. Rappelons qu'une classe de graphes C est d'expansion bornée si les mineurs superficiels de profondeur r des graphes de C sont de degré moyen borné par une fonction de r. Les deux caractérisations des classes d'expansion bornée ci-dessous sont d'une importance capitale ici.

Pour un graphe G et un entier non négatif r, nous désignons par TM r (G) la classe de tous les graphes H tels qu'une (≤ r)-subdivision de H (c'est-à-dire un graphe obtenu à partir de H en subdivisant chaque arête par au plus r sommets) est un sous-graphe de G (un tel graphe est aussi appelé mineur topologique superficiel de G de profondeur r/2). Plus généralement, si C est une classe de graphes, nous définissons TM r (C ) = G∈C TM r (G). 
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Chapter 1

Introduction

T HIS thesis studies some of the coloring concepts and related problems. These include coloring of generalized signed graphs, strong fractional choice number of graphs, generalized coloring number of graphs, twin-width of graphs, (combinatorial) discrepancy of definable set systems and χ p -boundedness of graph classes.

Generalized signed graph coloring

A signed graph is a pair (G, σ), where G is a graph and σ : E(G) → {+, -} is a signature which assigns to each edge e a sign σ(e) ∈ {+, -}. Coloring of signed graphs was first studied by Zaslavsky [START_REF] Zaslavsky | Signed graph coloring[END_REF] in nineteen-eighties, and has recently attracted a lot of attention. For a positive integer k, let [k] = {1, 2, . . . , k} and let

N k = {±1, ±2, . . . , ±q}, if k = 2q is even, {0, ±1, ±2, . . . , ±q}, if k = 2q + 1 is odd. Let Z k = {0, 1, . . . , k -1} denote the cyclic group of order k. (Note that in the group Z k the inverse -i of i ∈ Z k is k -i.) Definition 1.1 Let (G, σ) be a signed graph and let k be a positive integer. A k-coloring of (G, σ) is a mapping f : V(G) → N k such that for any edge e = xy of G, f (x) ̸ = σ(e) f (y). A Z k -coloring of (G, σ) is a mapping f : V(G) → Z k such that for any edge e = xy of G, f (x) ̸ = σ(e) f (y).
In colorings of a signed graph, the sign of an edge specify which color pairs are forbidden to be assigned to its end vertices. It is natural to consider graphs with more variety of edges and hence with more types of restrictions on color pairs that are forbidden to be assigned to the end vertices of edges. A generalized signed graph is also a pair (G, σ), where the signs form a set S of permutations, and the signature σ assigns to each directed edge e a permutation σ(e) ∈ S as its sign. In a coloring f of a generalized signed graph (G, σ), the sign σ(e) determines the pairs of colors that need to be avoided as the colors of the end vertices of e = xy, namely f (y) ̸ = σ(e)( f (x)).

Below is the precise definition of coloring of an S-signed graph.

A set S of permutations of integers is called inverse closed if for each π ∈ S, π -1 ∈ S.

Chapter 1. Introduction Definition 1.2 Assume G is a graph and S is an inverse closed set of permutations of positive integers. An S-signature of G is a pair (D, σ), where D is an orientation of G and σ : E(D) → S is a mapping which assigns to each arc e = (u, v) a permutation σ(e) ∈ S such that σ(e) = σ -1 (e -1 ), where e

-1 = (v, u). A (proper) k-coloring of (D, σ) is a mapping f : V(D) → [k] such that for each arc e = (u, v) of D, σ(e)( f (u)) ̸ = f (v). (D, σ) is k-colorable if it has a (proper) k-coloring. We say G is S-k-colorable if every S-signature (D, σ) of G has a (proper) k-coloring.
We use id to denote the identity permutation. The other permutations of integers are written as product of cycles. For example, [START_REF] Chazelle | The discrepancy method[END_REF] is the permutation

π with π(1) = 2, π(2) = 1 and π(i) = i for i ̸ = 1, 2; (12)(34) is the permutation π with π(1) = 2, π(2) = 1, π(3) = 4, π(4) = 3 and π(i) = i for i ̸ = 1, 2, 3, 4. We denote by S k the set of all permutation of [k].
The concept of coloring of generalized signed graphs is a common generalization of many coloring concepts. The ordinary vertex coloring, the coloring of signed graphs, the group coloring of graphs, DP-coloring of graphs are all special cases of coloring of generalized signed graphs, by choosing different sets of permutations as signs.

In particular, a graph G is k-colorable is equivalent to say that for

S = {id}, G is S-k- colorable, and G is DP-k-colorable is equivalent to say that for S = S k , G is S-k-colorable.
Thus by the four color theorem and Voigt's theorem, every planar graph is {id}-4-colorable, and there are planar graphs that are not S 4 -4-colorable.

A natural question motivated by this observation is as follow.

Question 1.1 For which subsets S of S 4 , every planar graph is S-4-colorable?

For some special subsets S, the problem whether every planar graph G is S-4-colorable has been studied in the literature, under some other names. For S = {id, (12)(34)}, the question whether every planar graph is S-4-colorable is equivalent to the question whether every signed planar graph with no parallel edges is 4-colorable, and Máčajová, Raspaud, Škoviera [START_REF] Máčajová | The chromatic number of a signed graph[END_REF] conjectured a positive answer. For S = {id, (12)}, the question whether every planar graph is S-4-colorable is equivalent to the question whether every signed planar graph with no parallel edges is Z 4 -colorable, and Kang and Steffen [START_REF] Kang | Circular coloring of signed graphs[END_REF] conjectured a positive answer. And for some other subsets S, the problem has been studied in the language of group coloring. Král, Pangrác and Voss [START_REF] Král | A note on group colorings[END_REF] proved that there exists a 3-colorable planar graph which is not group 4-colorable.

Question 1.1 is studied in a sequence of six papers, and is now completely answered: only S = {id} has this property. It was proved by Kardoš and Narboni [START_REF] Kardoš | On the 4-color theorem for signed graphs[END_REF] that for S = {id, (12)(34)}, there exist planar graphs that are not S-4-colorable. Kemnitz and Voigt [START_REF] Kemnitz | A note on non-4-list colorable planar graphs[END_REF] showed that for S = {id, (12)}, there are planar graphs that are not S-4-colorable. It was proved independently by Kemnitz and Voigt [START_REF] Kemnitz | A note on complex-4-colorability of signed planar graphs[END_REF], Naserasr and Pham [START_REF] Naserasr | Complex and Homomorphic Chromatic Number of Signed Planar Simple Graphs[END_REF] that for S = {( 12), (34)}, not every planar graph is S-4-colorable. Jin, Wong and Zhu proved in [START_REF] Jin | Colouring of S-labelled planar graphs[END_REF] that if id ∈ S and every planar graph is S-4-colorable, then S is conjugate to a subset of {id, (12), ( 34), (12)(34)}. (Note that if S and S ′ are subsets of S k , we say S ′ is conjugate to S if there is a permutation π ∈ S k such that S ′ = {πσπ -1 : σ ∈ S}.)

The contribution of this thesis is the following theorem, together with the above mentioned results, we obtain a complete answer to Question 1.1.

Strong fractional choice number

Theorem 1.1 ([42]) If id /

∈ S and every planar graph is S-4-colorable, then S is conjugate to a subset of {( 12), (34), (12)(34)}.

The result that every planar graph is S-4-colorable if and only if S = {id} shows that the four color theorem is tight in the sense of generalized signed graph coloring.

We also consider a similar question for triangle-free planar graphs, which can be formulated as the question of the tightness of Grötzsch Theorem in the sense of generalized signed graph coloring. The Grötzsch Theorem [START_REF] Grötzsch | Ein dreifarbensatz für dreikreisfreie netze auf der kugel[END_REF] says that triangle-free planar graphs are 3-colorable. Voigt [START_REF] Voigt | A not 3-choosable planar graph without 3-cycles[END_REF] proved that there are triangle-free planar graphs that are not 3-choosable, hence not DP-3-colorable. These results means that for S = {id}, every triangle-free planar graph is S-3-colorable, and for S = S 3 , not every triangle-free planar graph is S-3-colorable. Question 1.2 For which subsets S of S 3 , every triangle-free planar graph is S-3-colorable?

We prove the following result.

Theorem 1.2 ([39])

If S is not conjugate to {id, (12)}, then every triangle-free planar graph is S-3-colorable if and only if S = {id}.

It implies that Grötzsch Theorem is almost tight. However, the whole question is not completely answered yet. The only remaining case is whether every triangle-free planar graph G is S-3-colorable for S = {id, (12)}.

Strong fractional choice number

Another attempt to strengthen Grötzsch Theorem is to consider multiple list coloring of triangle-free planar graphs.

Definition 1.3 A b-fold coloring of a graph G is a mapping φ which assigns to each vertex v of G a set φ(v) of b colors, so that adjacent vertices receive disjoint color sets. An (a, b)-coloring of G is a b-fold coloring φ of G such that φ(v) ⊆ {1, 2, • • • , a} for each vertex v. The fractional chromatic number of G is χ f (G) = inf a b : G is (a, b) -colorable . Definition 1.4 An a-list assignment of G is a mapping L which assigns to each vertex v a set L(v) of a permissible colors. A b-fold L-coloring of G is a b-fold coloring φ of G such that φ(v) ⊆ L(v) for each vertex v. We say G is (a, b)-choosable if for any a-list assignment L of G, there is a b-fold L-coloring of G. The choice number ch(G) of G is ch(G) = min{a : G is (a, 1) -choosable}.
The fractional choice number of G is

ch f (G) = inf a b : G is (a, b) -choosable .
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It was proved by Alon, Tuza and Voigt [START_REF] Alon | Choosability and fractional chromatic numbers[END_REF] that for any finite graph G, χ f (G) = ch f (G) and moreover the infimum in the definition of ch f (G) is attained and hence can be replaced by minimum. This implies that if G is (a, b)-colorable, then for some interger m, G is (am, bm)-choosable. In particular, for every triangle-free planar graph G, there is an integer m such that G is (3m, m)-choosable.

As an attempt for a refinement of the choice number of graphs, the concept of the strong fractional choice number of a graph was introduced by Zhu [START_REF] Zhu | Multiple list colouring of planar graphs[END_REF]. Definition 1.5 For a positive real number α, we say a graph G is strongly fractional α-choosable if for any positive integer m, G is (⌈αm⌉, m)-choosable. We define the strong fractional choice number ch s f (G) of G as

ch s f (G) = inf{α : G is strongly fractional α-choosable}.
For a graph invariant f and a graph class C , it will be convenient to define f (C ) = sup G∈C f (G). For example, the strong fractional choice number of a class C of graphs is the supremum of the strong fractional choice number ch

s f (G) of the graphs G in C , i.e. ch s f (C ) = sup{ch s f (G) : G ∈ C }. It follows from the definition that for any graph G, ch s f (G) ≥ ch(G) -1.
However, it remains as an open question whether ch s f (G) ≤ ch(G) for every graph G. Neverthless, it follows from the proofs of Thomassen's theorems that every planar graph has strong fractional choice number at most 5, and every triangle-free planar graph has strong fractional choice number at most 4. Natural questions arise, what is the supremum of the strong fractional choice number of planar graphs and what is the supremum of the strong fractional choice number of triangle-free planar graphs.

Voigt proved that there are planar graphs that are not 4-choosable [START_REF] Voigt | List colourings of planar graphs[END_REF] and that there are triangle-free planar graphs that are not 3-choosable [START_REF] Voigt | A not 3-choosable planar graph without 3-cycles[END_REF]. However, for a fixed positive integer m > 1, the questions whether there are planar graphs that are not (4m, m)-choosable, whether there are triangle-free planar graphs that are not (3m, m)-choosable remained open. In particular, it was unknown whether there are planar graphs that are not (8, 2)choosable, whether there are triangle-free planar graphs that are not (6, 2)-choosable.

If the answer to the above questions are negative, then what is the smallest real number ε such that every planar graph G is (⌈(4

+ ε)m⌉, m)-choosable, what is the smallest real number ε ′ such that every triangle-free planar graph G is (⌈(3 + ε ′ )m⌉, m)-choosable?
Let P be the class of planar graphs and let P 3 be the class of triangle-free planar graphs.

It was proved by Zhu [84] that ch s f (P) ≥ 4 + 2 9 . Recently, this bound was improved by Xu and Zhu [START_REF] Xu | The strong fractional choice number and the strong fractional paint number of graphs[END_REF] to 4 + 1 3 . In this thesis, we prove the following result.

Theorem 1.3 ([41])

For each positive integer m, there is a triangle-free planar graph G which is not

(3m + ⌈ m 17 ⌉ -1, m)-choosable. Consequently, ch s f (P 3 ) ≥ 3 + 1 17 .
The m = 1 case of Theorem 1.3 is equivalent to say that there are non-3-choosable triangle-free planar graphs, which was proved by Voigt [START_REF] Voigt | A not 3-choosable planar graph without 3-cycles[END_REF].
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Twin-width and generalized coloring numbers

One important subject to study in structural graph theory is the structural complexity of graphs or classes of graphs. If restricted to some classes of graphs with simple structures, many problems that are NP-complete for general graphs could have polynomial time algorithms. In this spirit, a few concepts and graph invariants are studied extensively in the literature. These include tree-width of graphs, tree-depth of graphs, generalized coloring number, bounded expansion, etc. Recently, the concept of twin-width was introduced by Bonnet, Kim, Thomassé and Watrigant in [START_REF] Bonnet | Twin-width I: tractable FO model checking[END_REF]. In this thesis, we study the relation between twin-width and generalized coloring number.

The twin-width is a generalization of a width invariant for classes of permutations defined by Guillemot and Marx [START_REF] Guillemot | Finding small patterns in permutations in linear time[END_REF]. This parameter was intensively studied recently in the context of many structural and algorithmic questions such as FPT model checking [START_REF] Bonnet | Twin-width I: tractable FO model checking[END_REF], graph enumeration [START_REF] Bonnet | Twin-width II: small classes[END_REF], graph coloring [START_REF] Bonnet | Twin-width III: max independent set, min dominating set, and coloring[END_REF], matrices and ordered graphs [START_REF] Bonnet | Twin-width IV: low complexity matrices[END_REF], and transductions of permutations [START_REF] Bonnet | Twin-width and permutations[END_REF].

Intuitively, the twin-width of a graph captures a way of iteratively contracting pairs of vertices with similar neighborhoods, while limiting the amount of difference that are carried on. We give the formal definition of twin-width with the help of trigraphs. The notion of trigraphs used in this thesis is slightly different from the notion used in [START_REF] Bonnet | Twin-width I: tractable FO model checking[END_REF]. The two notions are nevertheless equivalent up to isomorphism.

Definition 1.6

A trigraph G is a simple graph with two edge relations, the black adjacency E and the red adjacency R, whose black and red adjacencies are exclusive (that is: no two elements of G can be adjacent in both relations).

In our studies, a trigraph G is always associated to a graph G, which captures some structural information of the graph. The vertices of G are subsets of V(G) that form a partition of V(G). To distinguish the elements of V(G) from the vertices of G, we will call them nodes and denote them by capital letters, like X, Y, Z. The elements of E(G) and R(G) are respectively called black edges and red edges. The set of neighbors N G (X) of a node X in a trigraph G consists of all the nodes adjacent to X by a black or red edge; the set of E-neighbors N E G (X) consists of all nodes adjacent to X by a black edge and the set of R-neighbors N R G (X) consists of all nodes adjacent to X by a red edge.

Definition 1.7 A d-trigraph is a trigraph G with maximum red degree at most d, i.e., |N R G (X)| ≤ d for all X ∈ V(G).
Definition 1.8 Let G be a trigraph and let X and Y be not necessarily adjacent nodes of G. We say a trigraph

G ′ is obtained from G by contracting X and Y if V(G ′ ) = V(G) \ {X, Y} ∪ {X ∪ Y}, N G ′ (X ∪ Y) = N G (X) ∪ N G (Y) \ {X, Y}, N E G ′ (X ∪ Y) = N E G (X) ∩ N E G (Y) (and N R G ′ (X ∪ Y) = N G ′ (X ∪ Y) \ N E G ′ (X ∪ Y))
, and the red and black adjacencies between all other nodes of G ′ are as in G. Definition 1.9 A d-contraction sequence on a graph G = (V, E) with n vertices is a sequence G n , . . . , G 1 of d-trigraphs, where G n is the trigraph isomorphic to G defined by V(G n ) = {{v} :

v ∈ V}, E(G n ) = {({u}, {v}) : (u, v) ∈ E(G)}, R(G n ) = ∅, G 1 is
the trigraph with single node V, and G i is obtained from G i+1 by performing a single contraction.

The minimum d such that there exists a d-contraction sequence on a graph G is the twin-width of G, denoted by tww(G).

It follows from the definition that if G has a pair of vertices u and v such that

N G (u) = N G (v) (i.e., u, v is a pair of twin vertices) or N G [u] = N G [v],
and G ′ = G/{u, v} is obtained from G by identifying u and v into a single vertex, then G and G ′ have the same twin-width. In particular, cographs have twin-width 0.

Following from the work of Bonnet, Kim, Thomassé and Watrigant [START_REF] Bonnet | Twin-width I: tractable FO model checking[END_REF], it is clear that twin-width is a very versatile and useful graph parameter. For instance, the classes of graphs excluding a fixed minor have bounded twin-width.

A structural theory of classes of sparse graphs emerged recently, which is based on the study of densities of shallow minors, generalized coloring numbers, and constrained orientations [START_REF] Nešetřil | Sparsity (Graphs, Structures, and Algorithms)[END_REF]. In this setting, one of the two central notions is the classes with bounded expansion.

Definition 1.10

A graph H is a shallow minor of a graph G at depth r if H is obtained from a subgraph of G by contracting disjoint connected subgraphs of radius at most r. We denote by G ▽ r the set of all the shallow minors of G at depth r, and define the greatest reduced average density (shortly grad) with rank r of a graph G as ∇ r

(G) = max{|E(H)|/|V(H)| : H ∈ G ▽ r}. Definition 1.11 A class C of graphs has bounded expansion if there exists a function f : N → N with ∀G ∈ C ∀H ∈ G ▽ r d(H) ≤ f (r).
For example, all proper minor-closed classes of graphs and all classes of graphs with bounded maximum degree have bounded expansion. Indeed, if C is a proper minor-closed class of graphs, then for any r, if G ∈ C and H ∈ G ▽ r, then H ∈ C . If d(H) is arbitrarily large, then H contains every graph as a minor, which contradicts the definition of C . Hence there is a constant c such that d(H) ≤ c. Also, the class of graphs with bounded maximum degree have bounded expansion. If G has maximum degree at most d, then for any H ∈ G ▽ r, ∆(H) ≤ d r .

These classes have strong algorithmic and structural properties. One important feature of the theory of sparsity is that classes with bounded expansion can be characterized in many different ways. Among the numerous characterizations of classes with bounded expansion, three relate to the weak coloring number wcol r and strong coloring number scol r introduced by Kierstead and Yang [START_REF] Kierstead | Orderings on graphs and game coloring number[END_REF] and to the r-admissibility adm r introduced by Dvořák [START_REF] Dvořák | Constant-factor approximation of the domination number in sparse graphs[END_REF].

Let Π(G) be the set of all linear orders of the vertices of the graph G, and let L ∈ Π(G). (We denote by ≤ L the corresponding binary relation for better readability.) Let u, v ∈ V(G), and let r be a positive integer. Definition 1. [START_REF] Chazelle | The discrepancy method[END_REF] We say that u is weakly r-reachable from v with respect to L, if there exists a path P of length at most r between u and v such that u ≤ L w for all vertices w of P. Let WReach r [L, v] be the set of vertices that are weakly r-reachable from v with respect to L. Note that

v ∈ WReach r [L, v].
The weak r-coloring number wcol r (G) of G is defined as

wcol r (G) := min L∈Π(G) max v∈V(G) WReach r [L, v] .
Definition 1. [START_REF] Chudnovsky | Induced subgraphs of graphs with large chromatic number. III. Long holes[END_REF] We say that u is strongly r-reachable from v with respect to L, if there is a path P of length at most r connecting u and v such that u ≤ L v and all inner vertices w of P satisfy v < L w. Let SReach r [L, v] be the set of vertices that are strongly r-reachable from v with respect to L. Note that again we have v

∈ SReach r [L, v]. The strong r-coloring number scol r (G) of G is defined as scol r (G) := min L∈Π(G) max v∈V(G) SReach r [L, v] . Note that scol 1 (G) = wcol 1 (G) is the coloring number of G.
Definition 1.14 The r-backconnectivity b r (L, v) of a vertex v is the maximum number of paths of length at most r in G that start in v, share no other vertices except v, and end at vertices that lie before v in the ordering L. The r-admissibility of G is defined as

adm r (G) = min L∈Π(G) max v∈V(G) b r (L, v).
We refer the interested reader to [START_REF] Grohe | Coloring and covering nowhere dense graphs[END_REF] for a definition of r-admissibility. Note that the definition of adm r (G) and wcol r (G) used in this thesis and the two quoted papers differs by 1 from the original definition of [START_REF] Dvořák | Constant-factor approximation of the domination number in sparse graphs[END_REF]. It was proved by Zhu [83] that the following are equivalent for a graph class C :

1. C has bounded expansion;

2. sup{wcol r (G) : G ∈ C } < ∞ for every integer r; 3. sup{scol r (G) : G ∈ C } < ∞ for every integer r.
Moreover, using the inequality adm r (G) ≤ scol r (G) ≤ wcol r (G) ≤ adm r (G) r+1 -1 adm r (G)-1 (see [START_REF] Dvořák | Constant-factor approximation of the domination number in sparse graphs[END_REF]), we get yet another equivalent property.

sup{adm r (G)

: G ∈ C } < ∞ for every integer r.
A class of graphs with bounded twin-width is not necessarily a sparse class. For example, if C is the class of complete graphs, then C has twin-width 0. But it is not sparse. However, bounded twin-width graphs with some additional properties may be sparse. The following theorem was proved in [START_REF] Bonnet | Twin-width II: small classes[END_REF].

Theorem 1.4 ([5]) A graph class with bounded twin-width excludes some biclique as a subgraph if and only if it has bounded expansion.

It follows the above result and the characterization of bounded expansion classes in terms of weak coloring number, strong coloring number and the admissibility that for every integer r there exists a function f r : N × N → N such that if G is a graph with twin-width d and no K s,s -subgraph, then we have wcol r (G) ≤ f r (d, s). Similar bounds also exist for scol r and adm r . However, the proof given in [START_REF] Bonnet | Twin-width II: small classes[END_REF] that biclique-free graphs with bounded twin-width have bounded expansion does not indicate how to compute such binding functions. In this thesis, we prove that a graph G with no K s,s -subgraph and twin-width d has strong(weak) r-coloring numbers bounded from above by an exponential function of r and that we can construct graphs achieving such a dependency in r. In particular, scol r (G) ≤ (d r + 3)s.

We denote by bω(G) the biclique number of G, that is the maximum integer s such that K s,s is a subgraph of G.

Theorem 1.5 ([18]

) For every graph G and every positive integer r we have

scol r (G) ≤ 3 + tww(G) r-1 ∑ i=0 (tww(G) -1) i bω(G) ≤ (tww(G) r + 3)bω(G). (1.1)
On the other hand, for any positive integer s, one can construct a graph G with biclique number s, and with scol r (G) ≥ ( d-4 8 ) r s. Corollary 1.1 ([18]) For every integer d ≥ 14, every positive integer s, and every integer r of the form 2 k , there exists a graph G with tww(G) ≤ d, bω(G) = s, and

scol r (G) ≥ ds 4 d -4 8 r-1 ≥ 2 tww(G) -4 8 r bω(G).

Discrepancy and bounded expansion

Discrepancy theory emerged from the study of the irregularities of statistical distributions and sequences. It is a central tool in computational geometry. Two decades ago, Matoušek [START_REF] Matoušek | Combinatorial discrepancy[END_REF] initiated the study of Combinatorial discrepancy. It is now a significant subject in its own right in this area. It measures the inevitable irregularities of set systems and the inherent difficulty to approximate them.

Let (U, S ) be a set system, where S is a collection of subsets of the ground set U. When the ground set is clear from the context, we refer to the set system as S . For example, the

neighborhood set system S E (G) of a graph G is defined as S E (G) = {N G (v) : v ∈ V(G)}, where N G (v) is the neighborhood of v in G, that is, the set of all the vertices adjacent to v in G.
Definition 1. [START_REF] Corneil | Complement reducible graphs[END_REF] The discrepancy of a mapping χ :

U → {-1, 1} on a set S ∈ S is disc χ (S) = ∑ v∈S χ(v) ; the discrepancy of χ on S is the maximum of disc χ (S) over all S ∈ S , that is, disc χ (S ) = max S∈S disc χ (S). The (combinatorial) discrepancy of S is the minimum discrepancy of a mapping χ : U → {-1, 1} on S , that is, disc(S ) = min χ:U→{-1,1} max S∈S ∑ v∈S χ(v) .

Discrepancy and bounded expansion

Thus, the discrepancy of a set system measures how balanced a 2-coloring of this system can be.

Unfortunately, the discrepancy is known to be a fragile notion, as witnessed by the following standard example (see e.g. [START_REF] Bansal | Algorithmic aspects of combinatorial discrepancy[END_REF]): let S 1 = {S 1 , . . . , S m } be a set system with ground set X 1 and let S ′ 1 = {S ′ 1 , . . . , S ′ m } be a copy of S 1 with ground set X ′ 1 disjoint from X 1 . Then the set system S = {S 1 ∪ S ′ 1 . . . , S m ∪ S ′ m } has always discrepancy zero, independent of the discrepancy of S 1 . A more robust notion is defined as follow.

Definition 1. [START_REF] Cover | Elements of information theory[END_REF] The hereditary discrepancy of a set system (U, S ), is defined as

herdisc(S ) = max U ′ ⊆U disc(S | U ′ ),
where S | U ′ denotes the set system {S ∩ U ′ : S ∈ S }.

In this thesis, we establish a bridge between discrepancy theory and sparsity theory by studying the hereditary discrepancy of classes of graphs with bounded expansion.

We give a characterization of bounded expansion classes in terms of discrepancy of definable set systems. In particular, we prove that the maximum discrepancy over all subgraphs H of a graph G of the neighborhood set system of H belongs to both Ω(log deg(G)) and O(deg(G)), where deg(G) denotes the degeneracy of G.

Theorem 1.6 ([31])

For every graph G we have

log 2 (π deg(G)) 4 -2 ≤ max H⊆G disc(S E (H)) < 3 deg(G). (1.2)
We extend this result to inequalities relating weak coloring numbers and discrepancy of graph powers. Definition 1.17 Let G be a graph. The d-th power of G, denoted by G d , is the graph with vertex set V(G), in which two vertices are adjacent if their distance in G is at most d.

Theorem 1.7 ([31])

Let G be a graph and let d be a positive integer. Then

log 2 (wcol ⌈d/2⌉ (G)) 6(d + 1) - log 2 (d + 1) 3 - 3 2 ≤ max d ′ ≤d max H⊆G herdisc(S E (H d ′ )) < (2dwcol d-1 (G) + 1)wcol d (G).
It was proved by Zhu [83] that a graph class C has bounded expansion if and only if for every integer r, the weak coloring number wcol r (G) of every graph G ∈ C is bounded. Therefore, we have the following characterization of bounded expansion classes as a corollary.

Corollary 1.2 ([31])

Let C be a monotone class of graphs. Then C has bounded expansion if and only if the hereditary discrepancy of S E (G k ) is bounded on C for each positive integer k.

From χ-boundedness to χ p -boundedness

The concept of χ-boundedness was introduced by Gyárfás in 1985 in his seminal paper [START_REF] Gyárfás | Problems from the world surrounding perfect graphs[END_REF].

Definition 1.18 A class of graphs C is χ-bounded with binding function f if χ(H) ≤ f (ω(H)) holds whenever G ∈ C and H is an induced subgraph of G.
The notion of χ-boundedness is a central topic in chromatic graph theory. Because the definition of χ-boundedness involves all the induced subgraphs of the graphs in the class, it is natural to restrict to hereditary classes of graphs, that is to classes of graphs closed under induced subgraphs.

Similar to the notion of χ-boundedness, Karthick [START_REF] Karthick | Star coloring of certain graph classes[END_REF] introduced the notion of χ sbounded class, where χ s denotes the star chromatic number. The star chromatic number is introduced by Grünbaum [START_REF] Grünbaum | Acyclic colorings of planar graphs[END_REF].

Definition 1. [START_REF] Drmota | Sequences, discrepancies and applications[END_REF] The star chromatic number of a graph G is the minimum number of colors in a proper coloring of G with the property that any two color classes induce a star forest.

Definition 1.20 A class of graphs C is χ s -bounded if there exists a function g such that χ s (H) ≤ f (ω(H)) holds whenever G ∈ C and H is an induced subgraph of G.
In this setting, two conjectures were proposed. By an F-free graph we mean a graph not containing F as an induced subgraph and, for a family F of graphs, an F -free graph is a graph which is F-free for all F ∈ F .

Conjecture 1.1 (Karthick [46])

The class of all K 1,t -free graphs (where t ≥ 3) is χ s -bounded. [START_REF] Karthick | Star coloring of certain graph classes[END_REF]) For any tree T, the class of all (T, C 4 )-free graphs is χ s -bounded.

Conjecture 1.2 (Karthick

In this thesis, we prove Conjecture 1.1 (see Theorem 1.8), disprove Conjecture 1.2, and characterize those pairs (T, K r,t ) (with T a forest) such that the (T, K r,t )-free graphs are χ s -bounded (see Theorem 1.9).

Theorem 1.8 ([40])

The class K 1,t -free graphs is polynomially χ s -bounded. The K 1,t -free graphs G satisfy

χ s (G) = O(ω(G) 3(t-1) 2 
).

Theorem 1.9 ([40]) Let T be a forest and let r ≤ t be positive integers. Then the class C of all (T, K r,t )-free graphs is χ s -bounded if and only if r = 1 or T is a subgraph of the 1-subdivision of a tree.

In [START_REF] Nešetřil | Tree-depth, subgraph coloring and homomorphism bounds[END_REF], a generalization of the chromatic number was proposed, which is related to the concept of tree-depth.

The closure of a rooted tree T is the graph obtained by adding edges between a vertex and all its ancestors in T.

Definition 1.21

The tree-depth of a graph G, denoted by td(G), is the minimum height1 of a rooted forest T such that G is a subgraph of the closure of T.

In particular, the tree-depth of a disconnected graph is the maximum of the tree-depths of its connected components.

Definition 1.22

The tree-depth chromatic number of rank p of G, denoted by χ p (G), is the minimum number of colors in a vertex coloring φ of G such that for every subset I of at most p colors, the subgraph G I of G induced by the union of color classes {φ -1 (i) : i ∈ I} has tree-depth at most |I|.

Sometimes briefly, we call it the pth chromatic number of G.

In particular, for every graph

G we have χ 1 (G) is the usual chromatic number of G (i.e. χ 1 (G) = χ(G)), χ 2 (G) is the star chromatic number of G (i.e. χ 2 (G) = χ s (G)), and χ 1 (G) ≤ χ 2 (G) ≤ • • • ≤ χ |G| (G) = td(G).
The notion of bounded expansion captures uniform sparsity of graph classes. Recall that a graph class C has bounded expansion if the shallow minors at depth r of graphs in C have their average degree bounded by some function of r. The two characterizations of bounded expansion classes below are of prime importance here.

For a graph G and a non-negative integer r we denote by TM r (G) the class of all graphs H, with the property that a (≤ r)-subdivision of H (i.e. a graph obtained from H by subdividing each edge by at most r vertices) is a subgraph of G. (Such a graph is also a shallow topological minor of G at depth r/2.) More generally, if C is a class of graphs we define TM r (C ) = G∈C TM r (G). Also, following [START_REF] Dvořák | Induced subdivisions and bounded expansion[END_REF], we denote by ITM e r (G) the class of all graphs H whose (exact) r-subdivision H (r) is an induced subgraph of G, and let ITM e r (C ) = G∈C ITM e r (G). Classes with bounded expansion are characterized by means of the average degrees of topological minors. (See [START_REF] Nešetřil | Sparsity (Graphs, Structures, and Algorithms)[END_REF] for a general background of sparsity.) Motivated by these characterizations, we consider two generalizations of the notion of χ-boundedness. Definition 1.23 A hereditary graph class C is strongly χ p -bounded if, for every G ∈ C we have χ p (G) ≤ f p (ω(G)) (for some fixed binding function f p ) Definition 1.24 A hereditary graph class C is weakly χ p -bounded if, for every G ∈ C we have χ p (G) ≤ g p (ω(TM p-1 (G))) (for some fixed binding function g p ).

We give several examples of strongly χ p -bounded classes and of weakly χ p -bounded classes. We show that the class of complete bipartite graphs is weakly χ p -bounded but not strongly χ p -bounded. Then we give structural characterizations of these two (strong and weak) χ p -bounded classes as follow. (v) C is χ-bounded and for each positive integer s the class {G ∈ C | K s,s ̸ ⊆ i G} is strongly χ p -bounded for every positive integer p.

Contents and organization of the thesis

This thesis is organized as follows: In chapter 2, we study the coloring of generalized signed planar graphs and generalized signed triangle-free graphs, to investigate how tight is the four color theorem and Grötzsch theorem.

In chapter 3, we prove the strong fractional choice number of triangle-free planar graphs is at least 3 + 1/17.

In chapter 4, we prove that a graph G with no K s,s -subgraph and twin-width d has adm r , scol r and wcol r bounded by an exponential function of r, and that we can construct graphs achieving such a dependency in r. In particular, we prove scol r (G) ≤ (d r + 3)s in Section 4.2. Then we get the bounds of wcol r by using the bound of weak coloring number in terms of strong coloring number that we prove in Section 4.1. On the other hand, in Section 4.3, we prove that for any positive integer s, one can construct a graph G with biclique number s, and with scol r (G) ≥ ( d-4 8 ) r s (Corollary 4.4).

Some basic definitions and notions

In chapter 5, we give a characterization of bounded expansion classes in terms of discrepancy of definable set systems. We prove that the maximum discrepancy over all subgraphs H of a graph G of the neighborhood set system of H belongs to both Ω(log deg(G)) and O(deg(G)) in Section 5.2. We extend this result to inequalities relating weak coloring numbers and discrepancy of graph powers in Section 5.3, which implies a new characterization of bounded expansion classes.

In Chapter 6, we prove Conjecture 1.1 (see Theorem 6.4), disprove Conjecture 1.2. We characterize those pairs (T, K r,t ) (with T a forest) such that the (T, K r,t )-free graphs are χ s -bounded in Section 6.1. In Section 6.2 we give several examples of strongly χ p -bounded classes, including induced subgraphs of the d-power of graphs in a bounded expansion class, claw-free graphs, etc. Then we give a characterization of strongly χ p -bounded classes. In Section 6.3, we show that the class of complete bipartite graphs is weakly χ p -bounded but not strongly χ p -bounded. We then give a structural characterization of weakly χ p -bounded classes and deduce (Proposition 6.3) that first-order transductions of bounded expansion classes are weakly χ p -bounded for every p. We also give examples of weakly χ p -bounded classes of graphs, including classes with low twin-width covers and proper vertex-minor-closed classes.

Some basic definitions and notions

In this section, we give some basic definitions and notations that we use in the following chapters. For undefined terms, we refer the readers to the classic graph theory textbook [START_REF] West | Introduction to graph theory[END_REF] by West and Sparsity [START_REF] Nešetřil | Sparsity (Graphs, Structures, and Algorithms)[END_REF] by Nešetřil and Ossona de Mendez. Some concepts and notation will be defined in later chapters, where they are first used.

Let G be a graph. We denote by V(G) the vertex-set of G and by E(G) its edge-set. For a vertex v of G, we denote by N G (v) the neighborhood of v, that is the set of vertices adjacent to v, and by d G (v) its degree, that is:

d G (v) = |N G (v)|.
We denote by δ(G) the minimum degree of G, by ∆(G) the maximum degree of G, and by d(G) the average degree of G, that is 2|E(G)|/|V(G)|. We denote by ω(G) the clique number of G, that is the maximum integer k such that K k is a subgraph of G, and by bω(G) the biclique number of G, that is the maximum integer s such that K s,s is a subgraph of G.

A k-coloring of a graph G is a mapping f : V(G) → S, where |S| = k. Usually we take S = {1, 2, . . . , k}. The elements of S are the colors.

A k-coloring is proper if adjacent vertices receive different colors. A graph is k-colorable if it has a proper k-coloring. The chromatic number χ(G) is the least integer k such that G is k-colorable.
Let G be a graph and let f be a function from

V(G) to N. An f -list assignment of G is a mapping L, which assigns to each vertex v of G a set L(v) of f (v) integers as permissible colors. Given an f -list assignment L of G, an L-coloring of G is a proper coloring φ of G where φ(v) ∈ L(v) for every v ∈ V(G). We say G is L-colorable if there exists an L-coloring of G. We say G is f -choosable if for every f -list assignment L of G, the graph G is L-colorable. We say G is k-choosable if G is f -choosable for the constant function f ≡ k. The choice number ch(G) of G is the least integer k such that G is k-choosable.
A graph G is k-degenerate if every subgraph has a vertex of degree at most k. An equivalent definition is as follow: an n-vertex graph G is k-degenerate if there is a vertex

Chapter 1. Introduction ordering v 1 , v 2 , . . . , v n such that the degree of v i in G -{v i+1 , . . . , v n } is at most k. The degeneracy of G is max H⊆G δ(G), that is the minimum k such that G is k-degenerate. We denote by deg(G) the degeneracy of G. The coloring number of G is defined as col(G) = deg(G) + 1.
An isomorphism from a graph G to a graph H is a bijection f :

V(G) → V(H) such that uv ∈ E(G) if and only if f (u) f (v) ∈ E(H). When an isomorphism exists, we say G is isomorphic to H.
A graph H is a minor of a graph G if we can obtain H from G by repeating the following three operations: Gv (vertex deletion), G \ e (edge deletion) and G/e (edge contraction). A graph H is a (≤ r)-subdivision (resp. the r-subdivision) of a graph G if it can be obtained from G by subdividing each edge by at most r vertices (resp. by exactly r vertices). The r-subdivision of a graph G is denoted by G (r) .

Chapter 2

Coloring of generalized signed graphs

In this chapter, we investigate how tight is the four color theorem and Grötzsch theorem in the sense of generalized signed graph coloring.

Before introducing our main question, we show that the concept of generalized signed graphs coloring is a common generalization of many coloring concepts.

Generalized signed graph coloring

In colorings of a signed graph, the sign of an edge specify which color pairs are forbidden to be assigned to its end vertices. It is natural to consider graphs with more variety of edges and hence with more types of restrictions on color pairs that can be assigned to the end vertices of edges. Indeed, various colorings of graphs corresponding to different restrictions have been studied in the literature. Below are three types of graph colorings that are examples of such constraints.

In 1992, Jaeger, Linial, Payan and Tarsi [START_REF] Jaeger | Group connectivity of graphs-a nonhomogeneous analogue of nowhere-zero flow properties[END_REF] introduced the concept of group coloring. Assume Γ is an Abelian group, D is an orientation of G and σ : E(D) → Γ assigns to each arc e = (u, v) an element σ(e) ∈ Γ. A Γ-coloring of (D, σ) is a mapping f : V(G) → Γ such that for any arc e = (u, v) of D, f (v)f (u) ̸ = σ(e). We say G is Γ-colorable if for any orientation D of G and for any σ : E(D) → Γ, there exists a Γ-coloring of (D, σ). The group chromatic number of G is the minimum integer k such that for any Abelian group Γ of order k, G is Γ-colorable ( see [START_REF] Král | A note on group colorings[END_REF][START_REF] Lai | Group connectivity and group colorings of graphs-a survey[END_REF][START_REF] Montassier | A small non-Z 4 -colorable planar graph[END_REF] for some study on this subject).

In 1995, as a generalization of coloring of signed graphs, Zaslavsky [START_REF] Zaslavsky | Biased graphs. III. Chromatic and dichromatic invariants[END_REF] defined the coloring of gain graphs as follows: A gain graph consists of a graph G, a gain group Γ, and a gain function φ, which assigns each orientation e = (u, v) of an edge uv a group element φ(e) so that φ(e -1 ) = (φ(e)) -1 , where e -1 = (v, u) is the inverse of e. We denote a gain graph as (G, φ). A (proper) k-coloring of (G, φ) assigns to each vertex v of G a color f (v) from the color set {0} ∪ {(i, π) : i ∈ {1, 2, . . . , k}, π ∈ Γ}, so that for each orientation e = (u, v) of an edge uv of G, if f (u) = 0 then f (v) ̸ = 0, and if f (u) = (i, π), then f (v) ̸ = (i, π • φ(e)) (here • is the product in Γ). Note that if Γ is an Abelian group, then a proper 1-coloring of (G, φ) without using color 0 is the same as the Γ-coloring of (G, φ) defined as above by Jaeger, Linial, Payan and Tarsi [START_REF] Jaeger | Group connectivity of graphs-a nonhomogeneous analogue of nowhere-zero flow properties[END_REF]. If Γ = Z 2 , then a k-coloirng of (G, φ) is a (2k + 1)-coloring of the signed graph (G, σ), where σ(e) = 1 if φ(e) = 0 and σ(e) = -1 if φ(e) = 1.

In 2018, Dvořák and Postle [START_REF] Dvořák | Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8[END_REF] defined DP-coloring of a graph as follows: Assume G is a graph. A k-cover of G is a graph H with vertex set V(G) × [k] such that for each Chapter 2. Coloring of generalized signed graphs vertex v, {v} × [k] induces a clique, and for each edge uv of G, edges between {v} × [k] and {u} × [k] is a matching, and there is no other edge. An independent set I of H with |I| = |V(G)| is a DP-coloring of G with respect to H. We say G is DP-k-colorable if for any k-cover H of G, there exists a DP-coloring of G with respect to H. It was shown in [START_REF] Dvořák | Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8[END_REF] that every DP-k-colorable graph is k-choosable, and the concept of DP-coloring is used to show that every planar graph without cycles of lengths 4, 5, 6, 7, 8 is 3-choosable, which is a problem that had remained open for 15 years.

In each of the colorings defined above, edges of G are labeled, and certain pairs of colors are forbidden to be assigned to the end vertices of edges with given label. In this sense, the labels play the same role as the sign of the edges in a signed graph. However, instead of + andsigns, we may have many different signs. Adopting this point of view, we introduce the concept of generalized signed graphs coloring.

Precisely, recall the concept of coloring of S-signed graphs as follow.

A set S of permutations of integers is called inverse closed if for each π ∈ S, π -1 ∈ S.

Definition 2.1 Assume G is a graph and S is an inverse closed set of permutations of positive integers. An S-signature of G is a pair (D, σ), where D is an orientation of G and σ : E(D) → S is a mapping which assigns to each arc e = (u, v) a permutation σ(e) ∈ S such that σ(e) = σ -1 (e -1 ), where e -1 = (v, u). A (proper) k-coloring of (D, σ) is a mapping f :

V(D) → [k] such that for each arc e = (u, v) of D, σ(e)( f (u)) ̸ = f (v). (D, σ) is k-colorable if it has a (proper) k-coloring. We say G is S-k-colorable if every S-signature (D, σ) of G has a (proper) k-coloring.
To define an S-signature of G, we need an orientation D of G and define a mapping σ : E(D) → S. The orientation D is just for reference. Indeed, if E ′ is a subset of E(G) and D ′ is obtained from D by reversing the orientations of edges in E ′ , and

σ ′ (e) = σ(e), if e / ∈ E ′ , (σ(e)) -1 , if e ∈ E ′ ,
then a proper k-coloring of (D, σ) is the same as a proper k-coloring of (D ′ , σ ′ ). In particular, if all the permutations π ∈ S are involutions, i.e., π -1 = π, then the orientation of the edges are irrelevant, and we simply define a mapping σ : E(G) → S.

The k-coloring and the Z k -coloring of signed graphs are all colorings of S-signed graphs for some special sets S of permutations. The sets S consists of involutions only. Thus we do not need orientations of G.

Assume we are considering S-k-coloring of a graph G.

For π ∈ S, if i / ∈ [k] or π(i) / ∈ [ 
k] and e = (x, y) is an arc with σ(e) = π, then coloring x with i (or π(i)) puts no restriction on the color of y. The concept of coloring of generalized signed graphs is a common generalization of many coloring concepts: Observation 2.1 Assume S is a set of permutations of positive integers. Then the following hold:

So for i / ∈ [k] or π(i) / ∈ [k], the image π(i) is irrelevant. Sometimes it is convenient to allow permutations π ∈ S to have i ∈ [k] and π(i) / ∈ [k] or i / ∈ [k] and π(i) ∈ [k].
(1) If S = {id}, then S-k-colorable is equivalent to k-colorable.

(2) If S = {id, (12) [START_REF] Grünbaum | Acyclic colorings of planar graphs[END_REF] . . . ((2q -1)(2q))} and q = ⌊k/2⌋, then S-k-colorable is equivalent to signed k-colorable.

(3) If S = {id, (12) [START_REF] Grünbaum | Acyclic colorings of planar graphs[END_REF] . . . ((2q -1)(2q))} and q = ⌈k/2⌉ -1, then S-k-colorable is equivalent to signed Z k -colorable.

(4) If S = S k , then S-k-colorable is equivalent to DP-k-colorable (also known as correspondence k-colorable) [START_REF] Dvořák | Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8[END_REF].

( 

) 5 
(e) = π ′ if φ(e) = π. (6) A signature σ of a graph G is called k-consistent if for every directed cycle C = (e 1 , e 2 , . . . , e k )
of G, the composition π = σ(e 1 )σ(e 2 ) . . . σ(e k ) of permutations on the edges of the cycle has the following property:

for i ∈ [k], either π(i) = i or for some 1 ≤ j ≤ k, σ(e 1 )σ(e 2 ) . . . σ(e j )(i) / ∈ [k]. A graph G is k-choosable if and only if (G, σ) is k-colorable for every k-consistent signature σ of G.
(Here it is necessary to consider permutations π whose restriction of [k] is a partial permutation, i.e., it is allowed that π

(i) / ∈ [k] for i ∈ [k].) Proof.
(1) is trivial.

(2) As S = {id, (12) [START_REF] Grünbaum | Acyclic colorings of planar graphs[END_REF] . . . ((2q -1)2q)}, an S-signature σ of G is equivalent to a signature τ of G, where τ is defined as

τ(e) = 1, if σ(e) = id, -1, if σ(e) = (12)(34) . . . ((2q -1)2q).
If k = 2q is even, then for a k-coloring f of (G, σ), let g : V(G) → N k be defined as follows:

g(v) = f (v)/2 if f (v) is even, and g(v) = -( f (v) + 1)/2 if f (v) is odd. It is easy to verify that g is a k-coloring of (G, τ). If k = 2q + 1 is odd, then for a k-coloring f of (G, σ), let g : V(G) → N k be defined as follows: g(v) = f (v)/2 if f (v) is even, g(v) = -( f (v) + 1)/2 if f (v) ≤ 2q -1 is odd, and g(v) = 0 if f (v) = 2q + 1.
Again is easy to verify that g is a k-coloring of (G, τ). The converse is also true. For a k-coloring g of (G, τ), by reversing the definitions above, we obtain a k-coloring f of (G, σ).

(3) As S = {id, (12)(34) . . . ((2q -1)2q)}, an S-signature σ of G is equivalent to a signature τ of G, where τ is defined as 12) [START_REF] Grünbaum | Acyclic colorings of planar graphs[END_REF] . . . ((2q -1)2q).

τ(e) = 1, if σ(e) = id, -1, if σ(e) = (
If k = 2q + 2 is even, then for a k-coloring f of (G, σ), let g : V(G) → Z k be defined as follows:

g(v) = f (v) if f (v) ≤ 2q -1 is odd, g(v) = 2q + 3 -f (v) if f (v) ≤ 2q is even, g(v) = 0 if f (v) = 2q + 1, and g(v) = q + 1 if f (v) = 2q + 2. It is easy to verify that g is a k- coloring of (G, τ). If k = 2q + 1 is odd, then for a k-coloring f of (G, σ), let g : V(G) → Z k be defined as follows: g(v) = f (v) if f (v) ≤ 2q -1 is odd, and g(v) = 2q + 2 -f (v) if f (v) ≤ 2q is even, and g(v) = 0 if f (v) = 2q + 1.
Again is easy to verify that g is a k-coloring of (G, τ). The converse is also true. For a k-coloring g of (G, τ), by reversing the definitions above, we obtain a k-coloring f of (G, σ).

(4) As S = S k , an S-signature (D, σ) of G is equivalent to a k-cover H of G. For each arc e = (u, v) in D, σ(e) = π e is a permutation of [k], the mathching between {u} × [k] and {v} × [k] in H is defined as follow: (u, i) is matched to (v, j) if π e (i) = j. For a k-coloring f of (G, σ), let I be an independent set of H defined as follow: (u, i) ∈ I if f (v) = i. It is easy to verify that I is a DP-coloring of G with respect to H. The converse is also true. For a DP-coloring I of of G with respect to k-cover H, by reversing the definitions above, we obtain a k-coloring f of (D, σ) of G.

(

) If (D, σ) is an S-signature of G, then for a k ′ -coloring f of (D, σ), let g : V(G) → {0} ∪ {(i, π) : i ∈ [k], π ∈ Γ} be defined as follows: g(v) = 0 if f (v) = kn + 1, and g(v) = (j + 1, τ -1 (r)) if f (v) = nj + r (j ∈ [k], r ∈ [n]). Let φ : E(G) → Γ be definded as φ(e) = π if σ(e) = π ′ . 5 
According to the definitions of k ′ , π ′ , Γ and τ, it is easy to verify that g is a k-coloring of gain graph (G, φ). The converse is also true. For a k-coloring g of (G, φ), by reversing the definitions above, we obtain a k-coloring f of (D, σ) of G.

(6) Assume (G, σ) is k-colorable for every k-consistent signature σ of G, and L is a k-list assignment of G. Without loss of generality, we may assume that colors in L(v) for v ∈ V(G) are positive integers. For each vertex v, let π v be any permutation of positive integers such that π v ([k]) = L(v). For each arc e = (x, y) of G, let σ(e)(i) = j if π x (i) = π y (j) and σ(e

)(i) / ∈ [k] if π x (i) / ∈ L(y). Assume i ∈ [k], C = (e 1 , e 2 
, . . . , e k ) is a cycle, and for 1 ≤ j ≤ k, σ(e 1 )σ(e 2 ) . . . σ(e j )(i) ∈ [k]. Assume e j = x j x j+1 , where x k+1 = x 1 . If σ(e 1 )σ(e 2 ) . . . σ(e k )(i) = i ′ , then it follows from the definition that π x 1 (i) = π x 1 (i ′ ). Since π x 1 is a permutation of integers, we conclude that i

′ = i. So σ is a k-consistent S-signature of G. Hence (G, σ) has a k-coloring φ. Let ψ(v) = π v (φ(v)). Then it is easy to verify that ψ is an L-coloring of G.
Assume G is k-choosable and σ is a k-consistent signature of G. We build a graph H with vertex set V(G) × [k], in which (x, i)(y, j) is an edge of H if and only if e = (x, y) ∈ E(G) and σ(e

)(i) = j. Since σ is k-consistent, for each vertex x of G, each connected component C of H contains at most one vertex from {x} × [k]. Let C 1 , C 2 , . . . , C p be the connected components of H. For each vertex x of G, let L(x) = {i : C i contains one vertex from {x} × [k]}. Then L is a k-list assignment of G.
By assumption, there is an L-coloring φ of G. For each vertex x of G, let ψ(x) = i if φ(x) = j and C j contains (x, i). It is straightforward to verify that ψ is a k-coloring of (G, σ).

In the following, we concentrate on sets S that are subsets of S k . Observe that if S is a subset of S k and there is an integer a ∈ [k] such that for any π ∈ S, π(a) ̸ = a, then for any S-signature (D, σ) of a graph G, the mapping f (v) = a for all v ∈ V(G) is a k-coloring of (D, σ).
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Definition 2.2 We call a subset S of S k normal if for each a ∈ [k], there is a permutation π ∈ S such that π(a) = a.

By the observation above, we shall restrict to normal subsets of S k . One particular type of normal subsets S of S k consists of those subsets S containing id.

Coloring of generalized signed planar graphs and triangle-free planar graphs

In this chapter, we study 4-coloring of generalized signed planar graphs and 3-coloring of generalized signed triangle-free planar graphs.

In the study of coloring of signed planar graphs, the following two conjectures were proposed in [START_REF] Máčajová | The chromatic number of a signed graph[END_REF] and [START_REF] Kang | Circular coloring of signed graphs[END_REF], respectively.

Conjecture 2.1 (Máčajová, Raspaud and Škoviera [57])

Every signed planar graph is 4-colorable.

Conjecture 2.2 (Kang and Steffen [44])

Every signed planar graph is Z 4 -colorable.

These two conjectures are strengthening of the well-known four color theorem. In the language of generalized signed graph coloring, Conjecture 2.1 can be restated as that if S = {id, (12)(34)}, every planar graph is S-4-colorable; and Conjecture 2.2 can be restated as that if S = {id, (12)}, every planar graph is S-4-colorable. It was shown by Kardoš and Narboni [START_REF] Kardoš | On the 4-color theorem for signed graphs[END_REF] that there are signed planar graphs that are not 4-colorable, and shown by Kemnitz and Voigt [START_REF] Kemnitz | A note on non-4-list colorable planar graphs[END_REF] that there are signed planar graphs that are not Z 4 -colorable.

As a generalization of these two conjectures, the following question was asked in [START_REF] Jin | Colouring of S-labelled planar graphs[END_REF]. 

∈ S k such that S ′ = {πσπ -1 : σ ∈ S}.
It is obvious that if S ′ is a conjugation of S, and S is good, then S ′ is good.

The following result was proved in [START_REF] Jin | Colouring of S-labelled planar graphs[END_REF].

Theorem 2.1 ([43])

If S is a good subset of S 4 and id ∈ S, then S is conjugate to a subset of {id, (12), ( 34), (12)(34)}.

We prove the following theorem.

Theorem 2.2 ([42])

If S is a good subset of S 4 not containing id, then S is conjugate to a subset of {( 12), (34), (12)(34)}.

It follows from Theorem 2.2, Theorem 2.1, and the negative results of Conjecture 2.1 and Conjecture 2.2, besides {id}, the only possible good normal subset of S 4 is {( 12), (34)}.

Let S = {12), (34)}. Then a 4-coloring of a S-signature of a graph G can be equivalently defined as a coloring of a signed graph (G, σ) using colors {1, -1, i, -i}, the Complex 4-coloring of (G, σ), as follows. Definition 2.5 A Complex 4-coloring of a signed graph (G, σ) is a mapping f : V(G) → {1, -1, i, -i} such that for each edge e = xy, f (x) f (y) ̸ = σ(e). We say a signed graph (G, σ) is Complex 4-colorable if it has a Complex 4-coloring.

Thus the question remained open was whether every signed planar graph is Complex-4colorable. We were unable to answer this question and proposed the following conjecture.

Conjecture 2.3 Every signed planar graph is Complex 4-colorable.

Unlike the conjecture of Máčajová, Raspaud, Škoviera and the conjecture of Kang and Steffen, Conjecture 2.3 is not stronger than the four color theorem. This feature makes this conjecture more appealing. It received attention from some researchers, and is now disproved independently by two groups of authors: Kemnitz and Voigt [START_REF] Kemnitz | A note on complex-4-colorability of signed planar graphs[END_REF], Naserasr and Pham [START_REF] Naserasr | Complex and Homomorphic Chromatic Number of Signed Planar Simple Graphs[END_REF].

Thus, the Question 2.1 now is completely answered: only S = {id} has this property, which means that the four color theorem is tight in the sense of generalized signed graph coloring.

We also study the tightness of Grötzsch Theorem [START_REF] Grötzsch | Ein dreifarbensatz für dreikreisfreie netze auf der kugel[END_REF] in the sense of generalized signed graph coloring. It was proved by Grötzsch [33] that every triangle-free planar graph is 3-colorable. This is equivalent to say that for S = {id}, every triangle-free planar graph is S-3-colorable. Recall that Voigt [START_REF] Voigt | A not 3-choosable planar graph without 3-cycles[END_REF] proved that there are triangle-free planar graphs that are not 3-choosable, and hence not S 3 -3-colorable. A natural question is the following: Question 2.2 For which subsets S of S 3 , every triangle-free planar graph is S-3-colorable? Definition 2.6 Assume S is a non-empty subset of S 3 . We say S is TFP-good if every triangle-free planar graph is S-3-colorable, and S is TFP-bad otherwise.

Grötzsch's theorem asserts that S = {id} is TFP-good. And Voigt's construction of non-3-choosable triangle-free graphs asserts that S = S 3 is TFP-bad.

We determine which subsets S of S 3 are TFP-good, except for the case that S is conjugate to {id, (12)}, we still do not know whether S is TFP-good or not.

Theorem 2.3 ([39]

) If S is subset of S 3 and S is not conjugate to {id, (12)}. Then S is TFP-good if and only if S = {id}.

For convenience, the sets S listed in following sections need not be inverse closed. If π ̸ = π -1 and π ∈ S, then π -1 is implicitly assumed to be a member of S, but will not be listed explicitly as a member of S.

Proof of Theorem 2.2

To prove Theorem 2.2, we shall show that if S is a normal subset of S 4 not containing id and S is not conjugate to a subset of {( 12), (34), (12)(34)}, then there is a planar graph G which is not S-4-colorable. Definition 2.7 Assume S is a normal subset of S 4 . A subset S ′ of S is called a core of S if S ′ is a minimal normal subset of S.

For example, the set {id, (12), ( 34), (12)(34)} has two cores: {id}, {( 12), (34)}.

Lemma 2.1 Assume S is a normal subset of S 4 and id / ∈ S. Then up to conjugation, S has a core that is one of the following sets: {( 12), (34)}, {( 12), (13), ( 23)}, {( 12), (13), (234)}, {( 12), (134), (234)}, {(234), (134), ( 124), (123)}.

Proof. Assume S is a minimal normal subset of S 4 not containing id. Then each permutation in S fixes one or two colors in [START_REF] Bednarchak | A note on the Beck-Fiala theorem[END_REF]. So 2 ≤ |S| ≤ 4.

If |S| = 2, then each permutation in S fixes exactly two colors in [START_REF] Bednarchak | A note on the Beck-Fiala theorem[END_REF]. In this case, up to conjugation, S = {( 12), (34)}.

If |S| = 3, then one permutation in S fixes exactly two colors in [START_REF] Bednarchak | A note on the Beck-Fiala theorem[END_REF]. Without loss of generality, we may assume that (12) ∈ S. Since S is a minimal normal subset of S 4 , no permutation in S fixes both 1 and 2. So one of the remaining permutations π 1 ∈ S fixes 1, and the other permutation π 2 ∈ S fixes 2. Thus up to conjugation, π 1 ∈ {( 23), ( 24), (234)} and π 2 ∈ {( 13), ( 14), (134)}. Thus up to conjugation, S is one of the following sets: {( 12), (13), ( 23)}, {( 12), (13), (234)}, {( 12), (134), (234)}.

If |S| = 4, then each permutation in S fixes exactly one color in [START_REF] Bednarchak | A note on the Beck-Fiala theorem[END_REF]. So S = {(234), (134), (124), (123)}. If S is a normal subset of S 4 not containing id, and S is not conjugate to a subset of {( 12), (34), (12)(34)}, then S has a subset which is a conjugation of a member of S.

Proof. If {( 12), (34)} is a core of S, then S contains another permutation π such that π ̸ = id and π ̸ = (12) [START_REF] Grünbaum | Acyclic colorings of planar graphs[END_REF]. Thus up to conjugation, S ∈ {{( 12), (34), (123)}, {( 12), (34), (1234)}, {( 12), (34), (2314)}, {( 12), (34), ( 23)}, {( 12), (34), (23)( 14)}}.

If {( 12), (34)} is not a core of S (up to conjugation), then by Lemma 2.1, the core of S is already conjugate to a member of S.

Thus to prove Theorem 2.2, it suffices to show that for each S ∈ S, there is a planar graph G and an S-signature (D, σ) of G such that (D, σ) is not 4-colorable.

In the remainder of this chapter, let π * = (12).

Lemma 2.3

For any S ∈ S, for any a, b ∈ [START_REF] Bednarchak | A note on the Beck-Fiala theorem[END_REF] for which π * (a) ̸ = b (it is possible that a = b), there is a planar graph H with u, u ′ be two distinct vertices on the boundary of H, such that there is an S-signature (D, σ) of H and there is no 4-coloring φ of (D, σ) with φ(u) = a and φ(u ′ ) = b.

Chapter 2. Coloring of generalized signed graphs

We leave the proof of Lemma 2.3 to the next section. With this lemma, we can complete the proof of Theorem 2.2.

Assume S ∈ S. For each pair (a, b) of integers with a, b ∈ [START_REF] Bednarchak | A note on the Beck-Fiala theorem[END_REF] and π * (a) ̸ = b, let H a,b be a planar graph with u, u ′ be two vertices on the boundary of H a,b , such that there is an S-signature σ of H a,b and there is no 4-coloring φ of (H a,b , σ) with φ(u) = a and φ(u ′ ) = b.

Let G be obtained from the disjoint union of {H a,b : a, b ∈ [4], π * (a) ̸ = b} by identifying all the copies of u into a single vertex u * , all the copies of u ′ into a single vertex v * and adding an edge u * v * .

If [START_REF] Chazelle | The discrepancy method[END_REF] ∈ S, then let (D, σ) be the S-signature of G whose restriction to each H a,b is as defined above and σ(u * v * ) = π * (note that as (π * ) -1 = π * , the orientation of the edge u * v * is irrelevant). It follows that there is no 4-coloring of (D, σ). Indeed, if φ is a 4-coloring of G with φ(u) = a and φ(v) = b, then since σ(u * v * ) = π * , we have π * (a) ̸ = b. Then by Lemma 2.3, the restriction of φ to H a,b is not a proper 4-coloring of H a,b .

If [START_REF] Chazelle | The discrepancy method[END_REF] / ∈ S, i.e., S = {(234), (134), ( 124), (123)}, then let G ′ be obtained from the disjoint union of three copies of G by identifying the three copies of u * into a single vertex, which is still named u * . Let (D, σ) be the S-signature of G whose restriction to each H a,b is as defined above and in the first copy of G, the edge u * v * is oriented as (u * , v * ) and σ(u * , v * ) = (123). In the second copy of G * , the edge u * v * is oriented as (v * , u * ) and σ(v * , u * ) = (123). In the third copy of G * , the edge u * v * is oriented as (v * , u * ) and σ(v * , u * ) = (124). Now we show that there is no 4-coloring of (D, σ). Assume to the contrary that φ is a proper 4-coloring of (D, σ). If φ(u * ) = 1, then φ(v * ) ̸ = 2 for v * in the first copy of G. The same argument as above leads to a contradiction. If φ(u * ) = 2, then φ(v * ) ̸ = 1 in the second copy of G. Similarly, we arrive at a contradiction. If φ(u * ) = 3, then φ(v * ) ̸ = 3 in the third copy of G. Again a contradiction. If φ(u * ) = 4, then φ(v * ) ̸ = 4 in the first copy of G, which also leads to a contradiction. This completes the proof of Theorem 2.2.

Proof of Lemma 2.3

For different sets S ∈ S, the constructions of H and the S-signature (D, σ) are different, but some of them are very similar to each other. By grouping similar constructions together, we divide the proof of Lemma 2.3 into four claims.

The construction will use five graphs H 1 , H 2 , H 3 , H 4 , H 5 as gadgets. These five graphs are depicted in Figures 2. First we assume S = {( 12), (34), (1234)}. Since e = vw has σ(e) = ( 12), we conclude that φ(v) ̸ = φ(w). Assume first that φ(v) = 3 and φ(w) = 4. Then none of x, y, z can be colored by 3 or 4. So x, y, z are all colored by 1 and 2. However, the three edges e connecting x, y, z have σ(e) = (34). Hence no two vertices of x, y, z can be colored by the same color, a contradiction.

If φ(v) = 4 and φ(w) = 3, then x ′ , y ′ , z ′ are all colored by 1 and 2, and no two vertices of x ′ , y ′ , z ′ can be colored by the same color, a contradiction. -If a = b = 1, then let (D, σ) be the S-signature of H 1 defined as in Figure 2.9(a).

-If a = 1, b = 3, then let (D, σ) be the S-signature of H 1 defined as in Figure 2.9(b).

-If a = 1, b = 4, then let (D, σ) be the S-signature of H 2 defined as in Figure 2.9(c).

-If a = 3, b = 4, then let (D, σ) be the S-signature of H 2 defined as in Figure 2.9(d). Assume φ is a coloring of (H 1 , σ) with φ(u) = φ(u ′ ) = 1 for the graph in Figure 2.9(a), or φ(u) = 1 and φ(u ′ ) = 3 for the graph in Figure 2.9(b), or φ(u) = 1 and φ(u ′ ) = 4 for the graph in Figure 2.9(c), or φ(u) = 3 and φ(u ′ ) = 4 for the graph in Figure 2.9(d).

The permutations on the edges uv, uw, u ′ v, u ′ w in both of Figure 2.9(a) and 2.9(b) lead to φ(v) = 3, φ(w) = 4 or φ(v) = 4, φ(w) = 3. This implies that there are only two idenditical colors, 1 and 2, left for either the triangle xyz or x ′ y ′ z ′ , which is a contradiction.

The permutations on the edges uv, uw, u ′ v, u ′ w in both of Figure 2.9(c) and 2.9(d) lead to φ(v) = φ(w) = 1 or φ(v) = φ(w) = 2. In the former case (resp. the later case, in which the permutations on the edges u ′ v ′ , vv ′ , wv ′ force φ(v ′ ) = 3), there are only two identical colors left for the triangle xyz (resp. x ′ y ′ z ′ ), which is impossible. ◀ a) and 2.10(b), the permutations on the edges uv, uw, u ′ v, u ′ w lead to φ(v) = 1, φ(w) = 4 or φ(v) = 4, φ(w) = 1. In the former case (resp. the later case), the permutations on the edges uw ′ , vw ′ , ww ′ (resp. u ′ v ′ , vv ′ , v ′ w) force φ(w ′ ) = 1 (resp. φ(v ′ ) = 1). Then there are only two identical colors, 1 and 4, left for the triangle xyz (resp.

x ′ y ′ z ′ ) , which is impossible.

In Figure 2.10(c), the permutations on the edges uv, uw, u ′ v, u ′ w lead to φ(v) = φ(w) = 1 or φ(v) = φ(w) = 3. In the former case (resp. the later case, in which the permutations on the edges uu ′′ , vu ′′ , wu ′′ force φ(u ′′ ) = 3), there are only two identical colors left for the triangle xyz (resp. x ′ y ′ z ′ ), which is a contradiction. ◀ -If a = b = 1, then let (D, σ) be the S-signature of H 5 defined as in Figure 2.12(a).

-If a = 3, b = 4, then let (D, σ) be the S-signature of H 5 defined as in Figure 2.12(b).

Moreover, for the graph in Figure 2.12(a), -The signature (D, σ) of the copy of T inside triangle uvv ′′ is such that there is no 4-coloring φ of (T, σ) with φ(u) = 1, φ(v) = 2, φ(v ′′ ) = 3. -The signature (D, σ) of the copy of T inside triangle uv ′ v ′′ is such that there is no 4-coloring φ of (T, σ) with

φ(u) = 1, φ(v ′ ) = 3, φ(v ′′ ) = 2.
-The signature (D, σ) of the copy of T inside triangle u ′ vv ′ is such that there is no 4-coloring φ of (T, σ) with φ(u

′ ) = 1, φ(v) = 3, φ(v ′ ) = 2.
For the graph in Figure 2.12(b), -The signature (D, σ) of the copy of T inside triangle uvv ′′ is such that there is no 4-coloring φ of (T, σ) with Consider the graph in Figure 2.12(a). Assume φ is a coloring of (H 5 , σ) with φ(u) = φ(u ′ ) = 1.

φ(u) = 3, φ(v) = 1, φ(v ′′ ) = 2. -The signature (D, σ) of the copy of T inside triangle uv ′ v ′′ is such that there is no 4-coloring φ of (T, σ) with φ(u) = 3, φ(v ′ ) = 2, φ(v ′′ ) = 1. -The signature (D, σ) of the copy of T inside triangle u ′ vv ′ is such that there is no 4-coloring φ of (T, σ) with φ(u ′ ) = 4, φ(v) = 2, φ(v ′ ) = 1. (a) (b)
The permutations on the edges uv, uv 

′ , u ′ v, u ′ v ′ lead to φ(v) = φ(v ′ ) = 2 or φ(v) = φ(v ′ ) = 3 or φ(v) = 3, φ(v ′ ) = 2. The copy of T inside triangle u ′ vv ′ implies that (φ(v), φ(v ′ )) ̸ = (3, 2). If φ(v) = φ(v ′ ) = 2,
If φ(v) = φ(v ′ ) = 3, then the permutations on the edges uv ′′ , vv ′′ , v ′ v ′′ force φ(v ′′ ) = 2. Thus the triangle (u, v ′ , v ′′ ) is colored by colors (1, 3, 2), a contradiction.
For the graph in Figure 2.12(b), assume φ is a coloring of (H 5 , σ) with φ(u) = 3 and φ(u ′ ) = 4.

The permutations on the edges uv, uv

′ , u ′ v, u ′ v ′ lead to φ(v) = φ(v ′ ) = 1 or φ(v) = φ(v ′ ) = 2 or φ(v) = 2, φ(v ′ ) = 1.
The copy of T inside triangle

u ′ vv ′ implies that (φ(v), φ(v ′ )) ̸ = (2, 1). If φ(v) = φ(v ′ ) = 1,
then the permutations on the edges uv ′′ , vv ′′ , v ′ v ′′ force φ(v ′′ ) = 2, a contradiction (as the copy of T inside triangle uvv ′′ forbids such a coloring).

If 

φ(v) = φ(v ′ ) = 2, then the permutations on the edges uv ′′ , vv ′′ , v ′ v ′′ force φ(v ′′ ) =

Proof of Theorem 2.3

To prove Theorem 2.3, we shall show that if S is a normal subset of S 3 and S ̸ = {id, (12)} and S ̸ = {id}, then there is a triangle-free planar graph G which is not S-3-colorable.

It is easily observed as follow..

Observation 2.2

If S is a normal subset of S 3 and S ̸ = {id, (12)} and S ̸ = {id}, then S contains a subset which is conjugate to either {id, (123)} or {id, (12), ( 13)} or {( 12), ( 13), ( 23)}.

Then if we prove that for S ∈ {{id, (123)}, {id, (12), ( 13)}, {( 12), ( 13), ( 23)}}, there is a triangle-free planar graph G which is not S-3-colorable, then Theorem 2.3 is proved.

Let H be the graph depicted in Figure 2.13. 

σ(e) = ( 123 
) e ∈ {(x 1 , u), (x 4 , u), (v, x 1 ), (v, x 4 ), (y 1 , x 2 ), (x 2 , z 1 ), (z 2 , x 3 ), (x 3 , y 2 )} id otherwise. if a = 1, b = 2, then let σ(e) = ( 123 
) e ∈ {(x 1 , u), (x 4 , u), (z 4 , v), (y 1 , x 2 ), (x 2 , z 1 ), (z 2 , x 3 ), (x 3 , y 2 )} id otherwise.
Assume φ is a coloring of (G, σ) with φ(u) = φ(v) = 1 for the graph in Figure 2.14(a), or φ(u) = 1 and φ(v) = 2 for the graph in Figure 2.14(b).

The permutations on the edges ux 1 , ux 4 , vx 1 , vx 4 in both Figure 2.14(a) and Figure 2.14(b) lead to φ(x 1 ) = φ(x 4 ) = 1. This implies that either φ(x 2 ) = 2 and φ(x 3 ) = 3, or φ(x 2 ) = 3 and φ(x 3 ) = 2. The former case (resp. the latter case) leaves only two colors, 2 and 3, to color the 5-cycle y 1 y 2 y 3 y 4 y 5 y 1 (resp. z 1 z 2 z 3 z 4 z 5 z 1 ) with σ e = id on all edges, which is impossible.

Next we consider the case that S = {id, (12), ( 13 (13) e ∈ {(y 5 x 1 ), (z 5 x 1 ), (y 3 x 4 ), (z 3 x 4 ), (y 2 x 3 ), (z 1 x 2 )} ( 12) e ∈ {(uy 4 ), (vx 1 ), (vx 4 ), (y 1 x 2 ), (z 2 x 3 )} id otherwise.

Assume φ is a 3-coloring of (H, σ) with φ(u) = a and φ(v) = b. In each of the cases, the vertices x 1 and x 4 have only one possible color, which is

φ(x 1 ) = φ(x 4 ) = 1 if a = b = 1 or a = 1, b = 2 or a = 2, b = 3 φ(x 1 ) = φ(x 4 ) = 3 if a = b = 2.
This forces φ(x 2 ) = 2 and φ(x 3 ) = 3, or φ(x 2 ) = 3 and φ(x 3 ) = 2. In the former case (resp. the latter case), there are only two colors, 2 and 3, left for the 5-cycle y 1 y 2 y 3 y 4 y 5 y 1 (resp. z 1 z 2 z 3 z 4 z 5 z 1 ) with σ e = id on all edges, which is impossible.

This completes the proof of Claim 2.5. ◀ Lemma 2.5 If S is a normal subset of S 3 containing a subset conjugate to {id, (123)} or conjugate to {id, (12), ( 13)}, then S is TFP-bad.

Proof. Let G be the graph obtained from the disjoint union of 9 copies of H, denoted by H(a, b) for a, b ∈ [START_REF] Beck | Integer-making" theorems[END_REF], by identifying all the copies of u into a single vertex u * , and identifying all the copies of v into a single vertex v * . For S = {id, (123), (132)} or S = {id, (12), ( 13)}, let (D, σ) be the S-signature on G defined in such a way that the restriction of (D, σ) to H(a, b) is such that there is no 3-coloring φ of H(a, b) with φ(u) = a and φ(v) = b. Then (G, σ) is not 3-colorable.

Let H ′ be the graph depicted in Figure 2.16.

Claim 2.6

If S = {(12), (13), (23)}, then for any a, b ∈ [START_REF] Beck | Integer-making" theorems[END_REF], there is an S-signature (H ′ , σ) on H ′ such that there is no 3-coloring φ with φ(u) = a and φ(v) = b.

Proof of the claim. By symmetry, we only need to consider the case a = b = 1 and the case a = 1, b = 2. If a = b = 1, then the S-signature (H ′ , σ) of H ′ is defined as in Figure 2.17(a), i.e.,

σ(e) =    (12) e ∈ {ux 1 , ux 4 , y 1 y 2 , y 4 y 5 , y 1 w 1 , z 1 x 2 , z 1 w 2 , z 1 z 2 , z 4 z 5 } (13) e ∈ {vx 1 , vx 4 , z 2 x 1 , z 2 z 3 , z 5 w 2 , y 2 x 1 , y 2 y 3 , y 5 w 1 , y 5 x 3 } (23) otherwise.
If a = 1 and b = 2, then the S-signature (H ′ , σ) of H ′ is defined as in Figure 2.17(b), which is the same as Figure 2.17(a), except the three edges incident to v are defined differently, namely,

σ(e) = ( 12 
) e = vz 3 (23) e ∈ {vx 1 , vx 4 }.
Assume φ is a 3-coloring of (H ′ , σ) with φ(u) = a and φ(v) = b. In each of the two cases, we must have φ(x 1 ) = φ(x 4 ) = 1. Chapter 2. Coloring of generalized signed graphs This forces x 2 , x 3 be colored as either φ(

x 2 ) = φ(x 3 ) = 2 or φ(x 2 ) = φ(x 3 ) = 3. If φ(x 2 ) = φ(x 3 ) = 2,
then φ(y 1 ) ∈ {1, 2}, and φ(y 5 ) ∈ {1, 3}. Assume φ(y 1 ) = 1. Then φ(y 2 ) = 1, φ(y 3 ) = φ(y 4 ) = 2, and φ(y 5 ) = 3. Then it is impossible to color w 1 . If φ(y 1 ) = 2, then φ(y 3 ) = 3 and φ(y 5 ) = 1, which again leaves no color for w 1 .

Assume φ(x 2 ) = φ(x 3 ) = 3. This implies that φ(z 1 ) ∈ {1, 2} and φ(z 5 ) ∈ {1, 3}. Similar to the above argument, we can not find a color for w 2 . ◀ Lemma 2.6 If S is a normal subset of S 3 and S contains a subset conjugate to {( 12), ( 13), ( 23)}, then S is TFP-bad.

Proof. The proof is the same as the proof of Lemma 2.5. Let G ′ be the graph obtained from the disjoint union of 9 copies of H ′ , denoted by

H ′ (a, b) for a, b ∈ [3]
, by identifying all the copies of u into a single vertex u * , and identifying all the copies of v into a single vertex v * . Let the S-signature (G ′ , σ) on G defined in such a way that the restriction of (G ′ , σ) to

H ′ (a, b) is such that there is no 3-coloring φ of H ′ (a, b) with φ(u) = a and φ(v) = b. Then (G ′ , σ) is not 3-colorable.
Therefore, our proof of Theorem 2.3 is complete.

Chapter 3

Strong fractional choice number

In this chapter, we strengthen Grötzsch's Theorem by considering multiple list coloring of triangle-free planar graphs and investigate the strong fractional choice number of triangle-free planar graphs.

Before going to our main problem, we give a brief survey on strong fractional choice number of graphs.

Some basic properties

As an attempt for a refinement of the choice number of graphs, the concept of the strong fractional choice number of a graph was introduced by Zhu [START_REF] Zhu | Multiple list colouring of planar graphs[END_REF].

We recall the definition as follow.

Definition 3.1 For a positive real number α, we say a graph G is strongly fractional α-choosable if for any positive integer m, G is (⌈αm⌉, m)-choosable. We define the strong fractional choice number ch s f (G) of G as

ch s f (G) = inf{α : G is strongly fractional α-choosable}. For a graph G, the b-fold choice number ch b (G) of G is the minimum a such that G is (a, b)-choosable. Let r = sup{ ch k (G)-1 k : k ∈ N}. Then for any ε > 0, there is an integer k such that (r -ε)k < ch k (G) -1. Thus ⌈(r -ε)k⌉ < ch k (G) and G is not ⌈(r -ε)k⌉, k)- choosable. Therefore, ch s f (G) ≥ r -ε for any ε > 0, which implies that ch s f (G) ≥ r.
On the other hand, for any ε > 0, for any integer k, ⌈(r

+ ε)k⌉ ≥ ch k (G). Hence G is (⌈(r + ε)k⌉, k)-choosable. So ch s f (G) ≤ r + ε for any ε > 0, which implies that ch s f (G) ≤ r. Therefore ch s f (G) = r.
Thus we have the following equivalent definition of the strong fractional choice number of a graph [START_REF] Xu | The strong fractional choice number and the strong fractional paint number of graphs[END_REF].

Definition 3.2

The strong fractional choice number of G can be alternatively defined as

ch s f (G) = sup{ ch k (G) -1 k : k ∈ N}.
Using this definition, Xu and Zhu [START_REF] Xu | The strong fractional choice number and the strong fractional paint number of graphs[END_REF] proved that ch s f (G) is rational.

Chapter 3. Strong fractional choice number Indeed, if ch k (G)-1 k ≤ χ f (G) for all positive integer k, then ch s f (G) ≤ ch f (G) = χ f (G) and hence ch s f (G) = χ f (G) is a rational number. Otherwise ch k 0 (G)-1 k 0 > χ f (G) for some k 0 . Let ε = ch k 0 (G)-1 k 0 -χ f (G) > 0.
As it was proved in [80] that for any ε > 0, there is a

constant k 1 ≥ k 0 such that for k ≥ k 1 , ch k (G) k ≤ χ f (G) + ε. Hence sup{ ch k (G) -1 k : k ∈ N, k ≥ k 1 } ≤ ch k 0 (G) -1 k 0 . Therefore ch s f (G) = sup{ ch k (G) -1 k : k ∈ N} = max{ ch k (G) -1 k : 1 ≤ k ≤ k 1 }
is a rational number. It follows from the definition that for any graph G, ch s f (G) ≥ ch(G) -1. And the lower bound ch s f (G) ≥ ch(G) -1 is attainable. I.e., there are graphs G for which ch s f (G) = ch(G) -1. However, the following question remains open.

Question 3.1 Is it true that ch s f (G) ≤ ch(G)
for any graph G? It was conjectured by Erdős, Rubin and Taylor [START_REF] Erdős | Choosability in graphs[END_REF] that if a graph G is (a, b)-choosable, then for any positive integer m, G is (am, bm)-choosable. If this conjecture were true, then ch s f (G) ≤ ch(G) for any graph G. However, this conjecture was refuted by Dvořák, Hu and Sereni [START_REF] Dvořák | A 4-choosable graph that is not (8 : 2)-choosable[END_REF] who proved that for any integer k ≥ 4, there is a k-choosable graph which is not (2k, 2)-choosable. Nevertheless, for a graph G with ch(G) = k, to show that ch s f (G) ≤ k, it suffices to show that for any integer m ≥ 1, G is (km + 1, m)-choosable. So it is still possible that the inequality ch s f (G) ≤ ch(G) holds for every graph G. Planar graph coloring is a central problem with respect to many coloring concepts. This is also the case for the strong fractional choice number of graphs. Let P be the class of planar graphs and let P k 1 ,...,k q denote the class of planar graphs without k i -cycles for i = 1, . . . , q.

It was proved by Thomassen [75] that every planar graph is 5-choosable. And the same proof also works for the multiple list coloring version, it was proved in [START_REF] Gutowski | Every plane graph is facially-non-repetitively C-choosable[END_REF] that for any positive integer m, every planar graph G is (5m, m)-choosable. So ch s f (P) ≤ 5. On the other hand, it was proved [START_REF] Zhu | Multiple list colouring of planar graphs[END_REF] that ch s f (P) ≥ 4 + 2 9 . Recently this bound was improved by Xu and Zhu [START_REF] Xu | The strong fractional choice number and the strong fractional paint number of graphs[END_REF] to 4 + 1 3 . Hence 4 + 1 3 ≤ ch s f (P) ≤ 5. As triangle free planar graphs are 3-degenerate, we know that for any positive integer m, every triangle free planar graph G is (4m, m)-choosable. So ch s f (P 3 ) ≤ 4. And we give a lower bound 3 + 1 17 in the following sections. Thus, 3 + 1 17 ≤ ch s f (P 3 ) ≤ 4

For triangle-free planar graphs

In this thesis, we focus on the strong fractional choice number of triangle-free planar graphs. We shall show that H is not m-fold L-colorable. Assume to the contrary that φ is an m-fold L-coloring of H.

The vertices y 1 , y 2 , y 3 , y 4 , y 5 induce a 5-cycle. So each color in D ∪ E can be used at most twice on these five vertices. At least (1ε)m colors of C are used on vertex x 3 . Hence at most εm of colors from C can be used at vertex y 5 . Similarly, at most εm of colors from C can be used at vertex y 2 . Assume τm colors from A are used at vertex y 3 . Since altogether we use 5m colors to color these five vertices, we conclude τ + 4ε + 4 ≥ 5. Hence

τ ≥ 1 -4ε.
As m colors from C ∪ E are used by x 1 , we know that at most εm colors of C ∪ E are used at vertex x 2 . As at least (1 -4ε)m of A is used at y 3 , it follows that at most 4εm colors of A are used at vertex x 2 .

So at least (1 -5ε)m colors from B are used at vertex x 2 . At most εm colors from C are used at vertex z 2 . At most 5εm colors from B are used at vertex z 1 . At most 4εm colors from A are used at vertex z 5 . Each color from D ∪ E is used at most twice among vertices z 1 , z 2 , z 3 , z 4 , z 5 . Assume σm colors from C are used at vertex z 4 . Then σ + 12ε + 4 ≥ 5. Hence σ ≥ 1 -12ε. Therefore, at most 4εm colors from A can be used at vertex w, at most 12εm colors from C can be used at vertex w and at most εm colors from E can be used at vertex w. So the total number of color available to w is at most 17εm. Since ε < 1 17 , we arrive at a contradiction.

It can be verified that for the list assignment L defined above, if E is a set of ⌈ m 17 ⌉ colors, then there is an L-coloring of H.

Let p = ( 3m+εm m ), and let G be obtained from the disjoint union of p 2 copies of H by identifying all the copies of u into a single vertex (also named as u) and all the copies of v into a single vertex (also named as v). It is obvious that G is a triangle-free planar graph. Now we show that G is not (3m + εm, m)-choosable. Let X and Y be two disjoint sets of 3m + εm colors. Let L(u) = X and L(v) = Y. There are p 2 possible m-fold L-colorings of u and v. Each such a coloring φ corresponds to one copy of H. In that copy of H, define the list assignment as in the proof of Lemma 3.1, by replacing A with φ(u) and B with φ(v). Now Lemma 2 implies that no m-fold coloring of u and v can be extended to an m-fold L-coloring of G. This completes the proof of Theorem 3.1.

Some open questions

A challenging problem is to determine the value of ch s f (P).

Question 3.2 What is the exact value of ch s f (P)? Is it true that ch s f (P) < 5?

We can also ask such challenging question for triangle-free planar graphs.

Question 3.3

What is the exact value of ch s f (P 3 )? Is it true that ch s f (P 3 ) < 4?

In [START_REF] Xu | The strong fractional choice number and the strong fractional paint number of graphs[END_REF], Xu and Zhu also studied the strong fractional choice number of some other special planar graphs. They proved that 3 + 1 2 ≤ ch s f (P 4 ) ≤ 4, ch s f (P k ) = 4 for k ∈ {5, 6} and 3 + 1 12 ≤ ch s f (P 4,5 ) ≤ 4. For planar graphs without 4 or 5-cycle, although Steinberg's conjecture is false [START_REF] Cohen-Addad | Steinberg's conjecture is false[END_REF], the fractional chromatic number and the strong fractional chromatic number of graphs in mathscrP 4,5 is open. Question 3.4 What is the exact value of ch s f (P 4,5 )? Is it true that ch s f (P 4,5 ) < 4? Questions 3.2, 3.3 and 3.4 may be very difficult. The following questions are easier, but also remain open. Question 3.5 Is there a positive integer m such that every planar graph is (5m -1, m)-choosable? Question 3.6 Is there a positive integer m such that every triangle-free planar graph is (4m -1, m)-choosable? Question 3.7 Is there a positive integer m such that every planar graph without 4 or 5-cycle is (4m -1, m)-choosable?

If such an m exists, then the smallest possible value of m is 2. Question 3.8 Is it true that every planar graph is (9, 2)-choosable? Chapter 4

Twin-width and generalized coloring numbers

In this chapter we study the relation between twin-width and generalized coloring number.

Recall that the following are equivalent for a graph class C :

1. C has bounded expansion;

2. sup{wcol r (G) : G ∈ C } < ∞ for every integer r; 3. sup{scol r (G) : G ∈ C } < ∞ for every integer r; 4. sup{adm r (G) : G ∈ C } < ∞ for every integer r.
The equivalence of the two first items were proved in [START_REF] Zhu | Colouring graphs with bounded generalized colouring number[END_REF] and the equivalence of the three last items follows from the following inequality [START_REF] Dvořák | Constant-factor approximation of the domination number in sparse graphs[END_REF] adm r (G)

≤ scol r (G) ≤ wcol r (G) ≤ adm r (G) r+1 -1 adm r (G) -1 . ( 4.1) 
It was proved in [START_REF] Bonnet | Twin-width II: small classes[END_REF] that a class of graphs with bounded twin-width excluding some biclique has bounded expansion. Therefore, for every integer r there exists a function f r : N × N → N such that if G is a graph with twin-width t and no K s,s -subgraph, then we have wcol r (G) ≤ f r (t, s). Similar bounds also exist for scol r and adm r . However, the proof given in [START_REF] Bonnet | Twin-width II: small classes[END_REF] does not indicate how to compute such binding functions.

In this chapter, we prove that a graph G with no K s,s -subgraph and twin-width d has adm r , scol r and wcol r bounded from above by an exponential function of r, and that we can construct graphs achieving such a dependency in r. In particular, scol r (G) ≤ (d r + 3)s (Theorem 4.1). On the other hand, one can construct a graph G with biclique number s, and with scol r (G) ≥ ( d-4 8 ) r s (Corollary 4.4).

From strong coloring number to weak coloring number

The weak and strong coloring numbers are known [START_REF] Kierstead | Orderings on graphs and game coloring number[END_REF] to be related by

scol r (G) ≤ wcol r (G) ≤ scol r (G) r . ( 4.2) 
Chapter 4. Twin-width and generalized coloring numbers However it is possible to improve the upper bound in the case where the strong coloring numbers increase at least at an exponential rate.

Lemma 4.1 ([18]

) For every graph G and every positive integer r we have

wcol r (G) ≤ 2 r-1 max 1≤k≤r scol k (G) r/k . ( 4.3) 
Proof. Let r be a positive integer and let L be a linear order on V(G) that minimizes max

v∈V(G) WReach r [L, v] .
Let u be a vertex of G, v ∈ WReach r [L, u] \ {u}, and consider a path P certifying that v is weakly r-reachable from u; in particular P has length at most r. Let C(r) be the set of all partitions of r, that is of all tuples (r 1 , . . . , r k ) with r i > 0 (for 1 ≤ i ≤ k), ∑ 1≤i≤k r i = r and k ∈ {1, . . . , r}. A milestone of P is a vertex w of P such that all the vertices of P from u (included) to w (excluded) are greater than w. It is easy to see that the milestones of P are enumerated consistently with the traversal of the path P from u to v. Let v 1 , . . . , v k = v be the milestones of P other than u, and let r 1 , . . . , r k-1 be the lengths of the paths from

v 0 = u to v 1 , v 2 to v 3 , . . . , v k-2 to v k-1 , and let r k = r -∑ k-1
i=1 r i , so that (r 1 , . . . , r k ) ∈ C(r). The subpath of P from v i-1 to v i witnesses that v i is strongly r i -reachable from v i-1 . Note that strong r k -reachability requires the existence of a witness path of length at most r k , hence it is safe to consider r k instead of the length of the subpath of P linking v k-1 and v k . We deduce that WReach r [L, u] ⊆ (r 1 ,...,r k )∈C(r)

v 1 ∈SReach r 1 [L,v 0 ] • • • v k-1 ∈SReach r k-1 [L,v k-2 ] SReach r k [L, v k-1 ].
(Note that we actually have equality, the reverse inclusion following from the concatenation of paths witnessing

v 1 ∈ SReach r 1 [L, v 0 ], . . . , v ∈ SReach r k [L, v k-1 ].) v k-1 v 3 v 2 v 1 v(v k ) u(v 0 ) • • • r k r 3 r 1 P r 2 FIGURE 4.1 -Milestones of P Thus we have wcol r (G) ≤ ∑ (r 1 ,...,r k )∈C(r) k ∏ i=1 scol r i (G). 4.2. Upper bounds 51 Let z = max 1≤k≤r scol k (G) 1/k . Then scol r i (G) ≤ z r i . Thus wcol r (G) ≤ ∑ (r 1 ,...,r k )∈C(r) k ∏ i=1 z r i = |C(r)| z r = 2 r-1 z r .

Upper bounds

Recall that bω(G) is the maximum integer s such that K s,s is a subgraph of G.

Theorem 4.1 ([18]

) For every graph G and every positive integer r we have

scol r (G) ≤ 3 + tww(G) r-1 ∑ i=0 (tww(G) -1) i bω(G) ≤ (tww(G) r + 3)bω(G). (4.4) 
In the proof of Theorem 4.1, we consider an uncontraction sequence instead of a contraction sequence.

Definition 4.1 A d-uncontraction sequence on a graph G = (V, E) with n vertices is a sequence G 1 , . . . , G n of d-trigraphs, where G 1 is the trigraph with a single node V, G n is the trigraph isomorphic to G defined by V(G n ) = {{v} : v ∈ V}, E(G n ) = {({u}, {v}) : (u, v) ∈ E(G)},
and R(G n ) = ∅, and G i+1 is obtained from G i by splitting a node Z of G i into two nodes X and Y with either no edge, or an edge (either black or red) between them in G i+1 .

Observe that a given contraction sequence G n , . . . , G 1 on a graph G = (V, E) can be reversed to G 1 , . . . , G n and seen as an uncontraction sequence on G = (V, E). Thus, the twin-width of G can be also defined as the minimum d such that there exists a duncontraction sequence on G.

Definition 4.2

In an uncontraction sequence on a graph G = (V, E) (with universe U ), for every X ∈ U , the birth time bt(X) is the minimum integer i with X ∈ V(G i ) and the split time st(X) is the maximum integer i with X ∈ V(G i ).

Observe that for every i ∈ {1, . . . , n -1}, there is a unique X ∈ U with st(X) = i; the subsets X ∈ U with st(X) = n are the nodes of G n , that is the singletons {v} with v ∈ V(G). Chapter 4. Twin-width and generalized coloring numbers Note that {Y, Z} is a partition of X and that bt(Y) = bt(Z) = st(X) + 1. Now we give the proof of Theorem 4.1. Proof. Let d = tww(G) and s = bω(G). Without loss of generality, we can assume that G is connected and contains more than s vertices. We consider a d-uncontraction sequence G 1 , . . . , G n of G with universe U .

For every i ∈ {1, . . . , n}, we say a node of G i is small if it contains at most s vertices and it is big, otherwise. A set X ∈ U is nice at step i with bt(X) ≤ i ≤ st(X) if X is small and some black edge is incident to it in G i . Note that if X is nice at step i, it is nice at step j for all i ≤ j ≤ st(X). The set X is nice if it is nice at some step (equivalently, at step st(X)). For every nice set X, we define ρ(X) as the minimum i such that X is nice at step i. (Note that ρ(X) > 1 as G 1 is edgeless.) As G is connected, it is clear that every X ∈ U has a subset Y ∈ U that is nice. Also, if X, Y ∈ U , X ⊆ Y and Y is nice, then X is also nice.

It follows that the family N of all the maximal nice sets in U form a partition of V. We order the elements of N as N 1 , . . . , N k in such a way that for all i < j, either ρ(N i ) < ρ(N j ) holds or ρ(N i ) = ρ(N j ) and bt(N i ) ≥ bt(N j ). We now fix any linear ordering L of V such that for all v ∈ N i , w ∈ N j with i < j holds v < L w. We will use this ordering to bound the strong coloring numbers of G.

For 1 ≤ i ≤ n, we define B i to be the set of all nodes of G i that are not nice at step i. We first establish some easy properties of B i .

Claim 4.1 No small node in B i is incident to a black edge in G i .
Proof of the claim. Assume X ∈ B i is small. Then it is not adjacent to a black edge as it is not nice at step i. ◀ ◀ Let us consider a vertex v ∈ V. In the remainder of the proof, we will bound the number of vertices in G that are strongly r-reachable from v with respect to L. Let a ∈ {1, . . . , k} be such that v ∈ N a and let t = ρ(N a ) -1. Let S be the unique node of G t with st(S) = t, and let Y, Z be the two children of S.

Let L = {X ∈ V(G t ) : (∃i < a), N i ⊇ X}. By the definition of L, all the vertices of G that belong to the nodes in L appear before v in L.

If we set R = V(G t ) \ L, then R ⊆ B t .
Case 1: v ∈ S. Note that if a vertex u ∈ V(G) is strongly r-reachable from v, then u belongs either to S or to a set in L. We consider a BFS-tree T in G t , starting at S, following only red edges, with depth 1 r, and stopping each time it reaches a node in L. Note that, by construction, T has no internal node in L, but it may have leaves that are not in L (e.g. nodes at depth r). We further remove from T any node with no descendant (in T) belonging to L. This way we get a tree T rooted at S, with internal nodes in R, with depth at most r, and with leaves in L. Let I denote the set of all internal nodes of T and let E be the set of all leaves of T. Then |I| ≤ 1 + ∑ r-2 ℓ=0 d(d -1) ℓ and |E | ≤ d(d -1) r-1 . Consider any vertex u that is strongly r-reachable from v, and let P be a path from v to u in G witnessing this. We can project P onto G t by mapping every vertex to the node of G t containing it. The projection is a walk from S to a node X u containing u. From this walk we extract a path Q of length at most r from S to X u .

All the internal nodes of Q as well as S belong to R, hence all the edges of Q (but maybe the last one) are red (according to Claim 4.2). Moreover, X u is either S or it belongs to L. So, either u ∈ S, or X u has been reached by a black edge from some internal node of T, or X u is a leaf of T. It is easily checked that at most |I|s vertices of G can be of the second type (according to Claim 4.3), and at most |E |s are of the last type (as leaves belong to L, so they are small). Regarding the first type, we assume without loss of generality that v ∈ Z and observe that either u ∈ Z, so there are at most s choices for u as Z = N a that is nice hence small at time t + 1, or u ∈ Y but then, as u ≤ L v, Y is nice as well at time t + 1 so |Y| ≤ s. Thus at most 2s vertices of G can be of the first type. Altogether, we get

| SReach[G, L, v]| ≤ 2 + 1 + d + • • • + d(d -1) r-2 + d(d -1) r-1 s ≤ 3 + d r-1 ∑ ℓ=0 (d -1) ℓ s.
Case 2: v / ∈ S. Note that if u is strongly r-reachable from v, then u belongs either to S or to N a , or to a set in L. We consider a BFS-tree T in G t , starting at N a , following only red edges, with depth r, and stopping each time it reaches a node in L. We further remove from T any node with no descendant (in T) belonging to L ∪ {S}. This way we get a tree T rooted at N a , with internal nodes in R, with depth at most r, and with leaves in L. Let I denote the sets of all internal nodes of T and let E be the sets of all leaves of T.

Then |I| ≤ 1 + d + • • • + d(d -1) r-2 and |E | ≤ d(d -1) r-1 as before.
Consider any vertex u that is strongly r-reachable from v, and let P be a path from v to u witnessing this. The path P projects on G t as a walk with length at most r from N a to the vertex X u containing u. From this walk we extract a path Q with length at most r from N a to X u .

All the internal nodes of Q belong to R hence all the edges of Q (but maybe the last one) are red (according to Claim 4.2). Moreover, X u is either N a , or S, or it belongs to L. So, either u ∈ N a , or u ∈ S, or X u has been reached by a black edge from some internal node of T, or X u is a leaf of T. The first type corresponds to at most s vertices. The second type correspond to at most 2s vertices because in this case, Y, Z, or both, have been ordered by L before N a which mean they are nice at step t + 1, hence small. The third type corresponds to at most (|I| -1)s, as the root N a is small hence adjacent to no black edge. The last type Chapter 4. Twin-width and generalized coloring numbers a mapping θ e i : {0, 1} m → {0, 1} m that flips the ith coordinate and preserves all other coordinates, i.e., θ e i ((x 1 , . . . , x m )) = (y 1 , . . . , y m ) with

y j = 1 -x j if j = i x j otherwise.
We define G k to be the graph with vertex set V(G k ) = V(G k-1 ) × {0, 1} m and edge set E(G k ) = {{(u, x), (v, θ uv (x)} : uv ∈ E(G k-1 ) and x ∈ {0, 1} m }.

A 2-lift of a graph G is a graph obtained by adding for every vertex v of G two vertices v 1 and v 2 , and adding for every edge uv of G either the edges u 1 v 1 and u 2 v 2 (parallel edges) or the edges u 1 v 2 and u 2 v 1 (crossing edges). The graph G k+1 can be obtained by a sequence of 2-lifts from G k and therefore also by a sequence of 2-lifts from G 0 = K ∆+1 . We can construct a contraction sequence that "undoes" these 2-lifts by repeatedly contracting all pairs of duplicates. Once we reach K ∆+1 , we simply contract the remaining vertices two by two. While doing so, the red degree never exceeds 2∆ (see also [START_REF] Bonnet | Twin-width II: small classes[END_REF]Lemma 26]). Hence tww(G k ) ≤ 2∆.

It remains to show that the girth of G k is higher than the girth of G k-1 . Let γ be a shortest cycle of G k . Let p V : V(G k ) → V(G k-1 ) be the natural projection, and let p E : E(G k ) → E(G k-1 ) be the associated projection. It is easily checked that applying p E to a cyclic graph yields a cyclic graph, and thus p E (γ) includes a cycle. If we fix a vertex of γ as a starting vertex and apply the composition of all the mappings θ p E (e) for e ∈ γ. Then it follows that each θ e is applied an even number of times. Thus the length of γ is at least twice the length of p E (γ). Hence, the girth of G k is at least twice the girth of G k-1 . Proof. Take the lexicographic product of a graph obtained by Lemma 4.2 and K s . This way we get a graph with twin-width at most d ≥ 14 and no K s+1,s+1 .

Remark 4.1 The 2-lift construction used in the proof of Lemma 4.2 was used in [START_REF] Bonnet | Twin-width II: small classes[END_REF] to prove that there exist cubic expander graphs with twin-width at most 6. It follows from this result and the characterization of classes with polynomial expansion [START_REF] Dvorák | Strongly sublinear separators and polynomial expansion[END_REF] that for d ≥ 6, the value ∇ r (G) is not bounded on the K 2,2 -free graphs with twin-width at most d by a polynomial function of r. We leave as a question whether sup{∇ r (G) : tww(G) ≤ d and bω(G) ≤ s} increases exponentially with r for sufficiently large d.

Admissibility is upper bounded by the strong coloring number. We show below how to construct classes of graphs that have no K s,s -subgraph with low twin-width and high admissibility. We shall first consider the s = 2 case. In particular, the above lemma implies that for every d, there is a graph class of bounded twin-width, whose members contain no K 2,2 , but which has r-admissibility (and thus r-weak and r-strong coloring numbers) at least d 2(r-1) . Proof. Let d, r ∈ N, r ≥ 4 and n = d 2(r-1) . We consider K r-1 n , the graph obtained by subdividing r -1 times each edge of K n . By definition, K r-1 n has no K 2,2 subgraph. Let c = 2 log d and notice that r -1 = log n c . According to Lemma 4.4, K r-1 n has twin-width at most f (c). On the other hand, as r > 3 we have

r -1 < 2(r -1) -2 ≤ log d d 2(r-1) -2 < log d (n -1) -1,
and therefore Lemma 4.3 implies that d ≤ tww(K r-1 n ). In order to prove the bound on admissibility, let us now consider an arbitrary ordering σ of V(K r-1 n ). Notice that K r-1 n has two types of vertices: n vertices of degree n -1, which correspond to the vertices of the n-clique that was used to construct K r-1 n , and vertices of degree 2, which have been introduced by subdivisions. Let x denote the vertex of degree n -1 that appears the latest in σ. Notice that there are n -1 paths of length r that start in x, are otherwise disjoint and end at the n -1 other vertices of degree n -1 of G. By the definition of x, these n -1 vertices appear before x in the ordering. This implies adm r (K r-1 n , σ) ≥ n = d 2(r-1) . As σ was chosen arbitrarily, the same bound holds for the r-admissibility of K r-1 n .

Corollary 4.5 ([18]

) For all integers d, r ≥ 4, there is a constant ε > 0 such that for all positive integers r and n there is a K s+1,s+1 -free graph G with |V(G)| ≥ n, bω(G) = s, and

adm r (G) ≥ (log log tww(G)) ε bω(G). (4.11)
Proof. We first consider the case where s = 1. Let G 0 be the graph given by Lemma 4.5. If |V(G 0 )| ≥ n then G 0 is the desired graph. Otherwise, we denote by G the disjoint union of n copies of G 0 . Clearly this does not create any K 2,2 thus bω(G 0 ) = 1. We have adm r (G) ≥ d 2(r-1) , as otherwise any ordering of G with smaller r-admissibility would give an ordering with smaller r-admissibility for G 0 . Finally, as the twin-width of the disjoint union of two graphs is the maximum of the twin-width of each of them, we have tww(G) = tww(G 0 ), so tww(G) ≤ f (2 log d). The existence of the constant ε > 0 then follows from the fact that f is a triple exponential function.

The case where s > 1 follows by considering the lexicographic product of the graphs obtained above by K s . Let G be a graph obtained above, i.e.

G = G 0 if |V(G 0 )| ≥ n, otherwise G is the disjoint union of n copies of G 0 . Let V(K s ) = {1, 2, . . . , s}. We denote G[K s ] the lexicographic product of G by K s , with V(G[K s ]) = V(G) × V(K s ) = V(G) × [s],
and (u, i) is adjacent to (v, j) if u = v or uv ∈ E(G). Observe that each edge of G generates a K s,s as a subgraph of G[K s ]. As G is K 2,2 -free and bω(G) = 1, then the maximum biclique in G[K s ] has size s. If tww(G) = d, we can find a d-contraction sequence on G[K s ] by first contracting all the pairs of vertices (u, i) and (u, j) in each copy of K s without creating any red edge. Thus we have tww(G[K s ]) = tww(G). Finally, if L is the ordering witness the r-admissibility of G, we define an ordering L ′ as (u, i)

< L ′ (v, j) if u < L v or if u = v and i < j. Hence adm r (G[K s ]) ≤ adm r (G)s ≤ d 2(r-1) s.
Chapter 5

Hereditary discrepancy and bounded expansion

In this chapter, we establish a bridge between discrepancy theory and sparsity theory. We give characterizations of degeneracy, bounded expansion in terms of discrepancy of definable set systems. In particular, we prove that the maximum discrepancy over all subgraphs H of a graph G of the neighborhood set system of H belongs to both Ω(log deg(G)) and O(deg(G)), where deg(G) denotes the degeneracy of G (see Theorem 5.3). We extend this result to inequalities relating weak coloring numbers and discrepancy of graph powers (see Theorem 5.4).

The generalized coloring numbers (see Definition 1.12 and Definition 1.13) were introduced by Kierstead and Yang [START_REF] Kierstead | Orderings on graphs and game coloring number[END_REF] as a generalization of the so-called coloring number.

A characterization of bounded expansion classes in terms of weak coloring number was given by Zhu as follows. Combining the relation between the discrepancy and weak coloring number, we derive a characterization of bounded expansion classes in terms of discrepancy of definable set systems as a corollary (see Corollary 5.1).

Before going to our main results, we firstly give some survey on discrepancy.

(Combinatorial) discrepancy

Discrepancy theory emerged from the study of the irregularities of statistical distributions and number sequences. It developed and became a central tool in computational geometry. Two decades ago, Matoušek [START_REF] Matoušek | Combinatorial discrepancy[END_REF] initiated the study of combinatorial discrepancy, which became a significant subject in its own right. The combinatorial discrepancy measures the inevitable irregularities of set systems and the inherent difficulty to approximate them.

Discrepancy theory offers powerful tools and techniques with many applications in computational geometry, probabilistic algorithms, derandomization, communication complexity, searching, machine learning, pseudorandomness, optimization, computer graphics, and more. Central notions in this theory are also the well known notions of VC-dimension, ε-nets and ε-approximations, the latter corresponding to the expected properties of a pseudorandom set. We refer the reader to the textbooks [START_REF] Chazelle | The discrepancy method[END_REF][START_REF] Drmota | Sequences, discrepancies and applications[END_REF][START_REF] Matoušek | of Algorithms and Combinatorics[END_REF] for a presentation of the discrepancy method and some of its applications.

We usually consider bounds for the discrepancy of a set system (U, S ) in terms of n = S (and sometimes in terms of m = |S |). For instance, by a celebrated result of Spencer [START_REF] Spencer | Six standard deviations suffice[END_REF], the discrepancy of a set system is in O( n log(m/n)), and in the case where m = n we have disc(S ) ≤ 6 √ n. This latter bound is tight up to the constant. Another important result is the Theorem of Beck and Fiala [START_REF] Beck | Integer-making" theorems[END_REF].

Theorem 5.2 (Beck-Fiala Theorem)

The discrepancy of a set system with degree at most t (that is, each element lies in at most t sets) is less than 2t. This theorem was subsequently improved by Bednarchak and Helm [START_REF] Bednarchak | A note on the Beck-Fiala theorem[END_REF], who gave an upper bound of 2d -3 for d ≥ 3. Then Bukh [START_REF] Bukh | An improvement of the Beck-Fiala theorem[END_REF] proved that the upper bound can be decreased to 2dlog * d for sufficiently large d.

Many of the techniques to derive upper bounds for the discrepancy are non-constructive and it is difficult to efficiently find optimal discrepancy colorings. Given a set system on n elements and m ∈ O(n) sets, it is NP-hard to distinguish whether the system has discrepancy 0 or Ω( √ n) [START_REF] Charikar | Tight hardness results for minimizing discrepancy[END_REF]. In particular, under the assumption P ̸ = NP, one cannot compute a function χ whose discrepancy on the set system is within factor o( √ n) of the discrepancy of the system. However, in polynomial time one can compute a coloring χ with discrepancy O( √ n) [START_REF] Levy | Deterministic discrepancy minimization via the multiplicative weight update method[END_REF]. Also, the proof of the Beck-Fiala Theorem is constructive, and gives a polynomial time deterministic algorithm to compute a coloring χ with discrepancy smaller than twice the degree of the set system.

A standard example of set systems with high discrepancy is given by the following.

Example 5.1 (Sylvester's example) Sylvester inductively constructed Hadamard matrices H p of order 2 p for every non-negative integer p as follows: H 0 = ( 1 ), H 1 = 1 1 1 -1 , and for p ≥ 1

H p+1 = H p H p H p -H p = H 1 ⊗ H p ,
where ⊗ denotes the Kronecker product of matrices. Let

S p = {j : (H p ) i,j = 1} : 1 ≤ i ≤ 2 p . Then disc(S p ) = Ω( √ n), where n = | S p |.
Unfortunately, the discrepancy is known to be a fragile notion. Recall the witness example as follow (see e.g. [START_REF] Bansal | Algorithmic aspects of combinatorial discrepancy[END_REF]): let S 1 = {S 1 , . . . , S m } be a set system with ground set X 1 and let S ′ 1 = {S ′ 1 , . . . , S ′ m } be a copy of S 1 with ground set X ′ 1 disjoint from X 1 . Then the set system S = {S 1 ∪ S ′ 1 . . . , S m ∪ S ′ m } has always discrepancy zero, independent of the discrepancy of S 1 . Thus we define a more robust notion, hereditary discrepancy.

Definition 5.1

The hereditary discrepancy of a set system (U, S ), defined as

herdisc(S ) = max U ′ ⊆U disc(S | U ′ ),
where S | U ′ denotes the set system {S ∩ U ′ : S ∈ S }.

Note that the bound in the Beck-Fiala Theorem applies to the hereditary discrepancy as well, as considering the trace over a subset of the universe does not increase the degree of a set system.

Dicrepancy and degeneracy

In this section, we relate the degeneracy of a graph G to the discrepancy of the neighborhood set system S E (G) of G. Our main result is the following theorem, which directly follows from Lemmas 5.2 and 5.1 proved below.

Theorem 5.3 ([31])

For every graph G we have

log 2 (π deg(G)) 4 -2 ≤ max H⊆G disc(S E (H)) < 3 deg(G). (5.1)

About the upper bound

The bipartite graph G with a part of size n and a part of size ( n d ) corresponding to all possible neighborhoods of size d in the part of size n is such that max H⊆G disc(S E (H)) ≥ d = deg(G). Hence, the upper bound of Theorem 5.3 is tight up to a constant factor.

About the lower bound As Spencer's bound disc(S ) ≤ 6 √ n for every set system S on a ground set of size n and O(n) many sets is known to be tight up to a constant factor we have max H⊆K n disc(S E (H)) ∈ Ω(deg(K n ) 1/2 ). It is possible that the lower bound given in Theorem 5.3 might be improved to Ω(deg(G) c ) for some positive constant c.

About the maximum over subgraphs

In the statement, we consider a monotone form of the discrepancy max H⊆G disc(S E (H)). Instead of disc(S E (H)) we could have considered herdisc(S E (H)). However, this would have led to the same result, as for every graph G we have max

H⊆G herdisc(S E (H)) = max H⊆G disc(S E (H)).
Indeed, as herdisc(S E (H)) ≥ disc(S E (H)) we get that max H⊆G herdisc(S E (H)) is at least max H⊆G disc(S E (H)). For the reverse inequality, it will be sufficient to prove herdisc

(S E (G)) ≤ max H⊆G disc(S E (H)). Let V ′ ⊆ V(G) such that herdisc(S E (G)) = disc(S E (G)| V ′ ), let W ⊆ V(G)
be the set of all neighbors in G of some vertex in V ′ , and let H be the subgraph of G with vertex set V ′ ∪ W, where we keep all the edges of G with some endpoint in

V ′ . Then S E (G)| V ′ ⊆ S E (H), thus herdisc(S E (G)) ≤ disc(S E (H)).
We now prove that the discrepancy of the neighborhood set system is linearly bounded by the degeneracy. Lemma 5.1 Let G be a graph. Then herdisc(S E (G)) < 3 deg(G).

Proof. Let d = deg(G) and let ⃗

G be an orientation of G with maximum out-degree d. Let N -(v) and N + (v) denote, respectively, the in-neighborhood and the out-neighborhood of a vertex v. Consider the set system S

1 = {N -(v) : v ∈ V(G)}. Every vertex v in V(G) belongs to at most d sets in S 1 , for if v ∈ N -(u), then u ∈ N + (v)
. By Beck-Fiala Theorem, for every subset X of vertices there exists a function χ : X → {-1, 1} such that for every vertex v we have π -degenerate. Proof. In the following we consider G as a vertex-labeled graph and all subgraphs as vertexlabeled graphs (that is, we do not identify isomorphic subgraphs). First assume that G is bipartite. Let A and B be the two parts of the bipartition with |A| ≥ |B|. 

∑ u∈N -(v)∩X χ(u) < 2d. As |N + (v) ∩ X| ≤ d we have ∑ u∈N G (v)∩X χ(u) < 3d. Hence we have disc(S E (G) |X ) < 3 deg(G).
∈ {-1, 1}, define N α H (v) = N H (v) ∩ γ -1 (α). Then for every spanning subgraph H of G the inequality disc γ (S H ) ≤ c rewrites as ∀v ∈ A |N -1 H (v)| -|N 1 H (v)| ≤ c.
As G is bipartite, these conditions on the neighborhoods of the vertices in A are independent and the number of graphs H in F γ is the product over all vertices v ∈ A of the number of pairs

(X v , Y v ) ⊆ N -1 G (v) × N 1 G (v) with |X v | -|Y v | ≤ c. Let d -1 (v) = |N -1 G (v)| and d 1 (v) = |N 1 G (v)|. By considering supersets of N -1 G (v) and N 1
G (v) obtained by adding c dummy elements, one easily checks that the number of pairs Proof of the claim. By replacing b by b + 1 if necessary, we can assume that a + b is even. Assume first that a < b, hence, a + 1 ≤ b -1. Then for every 0 ≤ k ≤ a we have

(X v , Y v ) ⊆ N -1 G (v) × N 1 G (v) with |X v | -|Y v | ≤ c is bounded by ∑ m(v) k=0 ( d -1 (v)+c k ) ( d 1 (v)+c k ), where m(v) = min(d -1 (v), d 1 (v)) + c. Thus, |F γ | ≤ ∏ v∈A m(v) ∑ k=0 d -1 (v) + c k d 1 (v) + c k .
a+1 a+1-k • b-k b ≥ 1. Thus, a + 1 k b -1 k = a + 1 a + 1 -k a k b -k b b k ≥ a k b k .
It follows that we can reduce to the case a = b.

Then ∑ a k=0 ( a k ) ( b k ) = ∑ s k=0 ( s k ) 2 = ( 2s s ), which is the special case m = n = r = s of the Chu-Vandermonde identity ∑ r k=0 ( m k ) ( n r-k ) = ( m+n r )
. ◀ Now we use the following upper bound. 

< k < n we have n k ≤ n πk(n -k) 2 nH(k/n) ,
where H(p) = -p log 2 (p) -(1p) log 2 (1p), which is the standard entropy function.

As π , as G includes a bipartite subgraph whose degeneracy is at least one fourth of the degeneracy of G. Indeed, we can first give an arbitrary bipartition (X, Y) of V(G). Once we find a vertex u ∈ X with N X (u) > N Y (u) or there is a vertex v ∈ X with N Y (v) > N X (v), we move such a vertex u from X to Y or move such vertex v from Y to X. By this way, we can obtain a bipartition (X, Y) of V(G) such that for every vertex u ∈ X N X (u) ≤ N Y (u) and for every vertex v ∈ Y N Y (v) ≤ N X (v). Then we obtain a bipartite subgraph G ′ from the above bipartition (X, Y) of G by deleting all the edges with both endpoints in the same part, thus |E(G

H(1/2) = 1 we have ( 2s s ) ≤ 4 s √ πs/2 . Let h(v) = ⌈ d(v) 2 + c⌉ ≥ δ(G)/2. We have |F γ | ≤ ∏ v∈A m(v) ∑ k=0 d -1 (v) + c k d 1 (v) + c k ≤ ∏ v∈A 2h(v) h(v) ≤ ∏ v∈A 2 2h(v) πh(v)/2 ≤ ∏ v∈A 2 d(v)+2c+1 πδ(G)/4 = ∏ v∈A 4 c+1 πδ(G) 2 d(v) = 4 c+1 πδ(G) |A| 2 m . As |F γ | ≥ 2 -n 2 m = 2 m-n we get 4 c+1 √ πδ(G) ≥ 2 -n |A| .
′ )| = |E(X, Y)| ≥ |E(G)| 2 . Let H = G ′ . Let v be the vertex with d H (v) = δ(H). If d H (v) < |E(G ′ )| |V(G ′ )| , then let H = H -v.
Do the above process again and again until δ

(H) ≥ |E(G ′ )| |V(G ′ )| , then the degeneracy deg(H) ≥ |E(G ′ )| |V(G ′ )| ≥ |E(G)| 2|V(G)| ≥ deg(G) 4
.

Discrepancy and generalized coloring numbers

In this section, we extend the result of Subsection 5.2 by considering the (generalized) weak coloring numbers.

Our main result is the following.

Theorem 5.4 ([31])

Let G be a graph and let d be a positive integer. Then 

log 2 (wcol ⌈d/2⌉ (G)) 6(d + 1) - log 2 (d + 1) 3 - 3 2 ≤ max d ′ ≤d max H⊆G herdisc(S E (H d ′ )) < (2dwcol d-1 (G) + 1)wcol d (G).
(S E (G d )) < (2dwcol d-1 (G) + 1)wcol d (G). Proof. Let L be a linear ordering such that max v∈V(G) | WReach d [G, L, v]| = wcol d (G). For brevity, in the following proof, for WReach i [G, L, v] we write WReach i [v]. For a vertex v ∈ V(G) we define W 0 (v) = {v} and, for 1 ≤ i ≤ d, W i (v) = WReach i [v] \ WReach i-1 [v]. Hence (W 0 (v), . . . , W d (v)) is a partition of WReach d [v]. In particular, ∑ d i=0 |W i (v)| = | WReach d [v]| ≤ wcol d (G). We further define, for 0 ≤ i ≤ d, WReach * i [v] = {u : v ∈ WReach i [u]}.
For every vertex v, we denote by B d [v] the set of all vertices at distance at most d from v. Note that B d [v] = N G d (v) ∪ {v}. For each pair (u, v) of vertices at distance at most d (including pairs (u, u)) we fix a shortest path P u,v linking u and v, and we denote by m u,v the minimum vertex of P u,v with respect to L.

Note that if dist(m u,v , v) = i, then m u,v ∈ W i (v) ∩ WReach d-i [u],
as otherwise there would exist a shorter path linking u and v.

If W i (v) ∩ WReach d-i [u] is not empty, then u ∈ B d [v]. Thus, B d [v] = d i=0 z∈W i (v) WReach * d-i [z]. Let S ′ = {WReach * i [z] : z ∈ V(G), 1 ≤ i ≤ d}. If u ∈ WReach * i [z], then z ∈ WReach i [u], thus every vertex belongs to at most d • wcol d (G) sets WReach * i [z].
According to the Beck-Fiala Theorem, for every subset X of vertices there exists a function χ : 

X → {-1, 1} such that |disc χ (WReach * i [z] ∩ X)| ≤ 2d • wcol d (G) -1 for all z ∈ V(G) and 1 ≤ i ≤ d. As z∈W d (v) WReach * 0 [z] = W d (v) ⊆ WReach d [v], for every vertex v ∈ V(G), we have disc χ (N G d (v)) ≤ d-1 ∑ i=0 ∑ z∈W i (v) |disc χ (WReach * d-i [z] ∩ X)| + disc χ ((WReach d [v] \ {v}) ∩ X) ≤ wcol d-1 (G)(2dwcol d (G) -1) + (wcol d (G) -1) < (2dwcol d-1 (G) + 1)wcol d (G).
(S E (H d ′ )) ≥ 1 12d log 2 (wcol d (G)) - 1 3 log 2 d - 11 6 . 
Recall that a graph H is a shallow topological minor of a graph G at depth r if a (≤ 2r)subdivision of H is a subgraph of G. We denote by G ▽ r the set of all the shallow topological minors of G at depth r, and define ∇ r (G) = max{|E(H)|/|V(H)| : H ∈ G ▽ r}. Proof. We make use of the following inequalities relating the weak coloring numbers and shallow topological minor average degrees to d-admissibility [72, Theorem 4.1.3] and [START_REF] Grohe | Coloring and covering nowhere dense graphs[END_REF]. 

wcol d (G) ≤ adm d (G) d adm d (G) ≤ 6d ⌈ ∇ d-1 (G)⌉ 3 . Let α = 1 6d 1/3 wcol d (G) 1/3d . Let M be a shallow topological minor of G at depth (d -1) witnessing ∇ d-1 (G) ≥ α. Each edge of M appears in G as a path of length i + 1, for some 0 ≤ i ≤ 2(d -1). Thus, for some 1 ≤ d ′ < 2d, the graph G contains the exact (d ′ -1)-subdivision H 0 of a graph M 0 with |E(M 0 )|/|V(M 0 )| ≥ α/2d. It follows that deg(M 0 ) ≥ α/d. According to Theorem 5.3, M 0 has a subgraph M ′ with disc(S E (M ′ )) ≥ 1 4 log 2 (πα/d) -2. The (d ′ -1)-subdivision H of M ′ is a subgraph of H 0 ,
≥ 1 6(d + 1) log 2 (wcol ⌈d/2⌉ (G)) - 1 3 log 2 (d + 1) - 3 2 . 
In Section 6.2 we give several examples of strongly χ p -bounded classes, including induced subgraphs of the d-power of graphs in a bounded expansion class, claw-free graphs, trivially perfect graphs, even hole-free graphs, and split graphs, and then we give a characterization of strongly χ p -bounded classes (where undefined notions will be defined in Section 6.2).

Strongly χ p -bounded classes are structurally characterized by the following result. In Section 6.3 we show that the class of complete bipartite graphs is weakly χ p -bounded but not strongly χ p -bounded. We then give the next structural characterization of weakly χ p -bounded classes and deduce (Proposition 6.3) that first-order transductions of bounded expansion classes are weakly χ p -bounded for every p. (v) C is χ-bounded and for each positive integer s the class {G ∈ C | K s,s ̸ ⊆ i G} is strongly χ p -bounded for every positive integer p.

In Section 6.3 we also give examples of weakly χ p -bounded classes of graphs, including classes with low twin-width covers and proper vertex-minor-closed classes. ).

χ s -bounded classes of graphs

Lemma 6.9 For a graph class C the following are equivalent:

(i) for each integer t the subclass C t of all the K t+1 -free graphs in C has bounded expansion;

(ii) the class C has ω-bounded expansion;

(iii) the class C is strongly χ p -bounded for each integer p. Explicitly, for every integer p there exists a function f p such that χ p (G) ≤ f p (ω(G)) for every graph G in the class C .

Proof. (i) ⇔ (ii): Assume (i). Then, for each integer t, there exists a function g t : N → N such that for every shallow minor H of G at depth r we have ∥H∥/|H| ≤ g t (r). Defining f (t, r) = g t (r) we deduce that C has ω-bounded expansion. The converse implication is also obvious.

(ii) ⇔ (iii): Assume (ii). According to Lemma 6.2, for every integer p and t, there is a constant c t (p) with χ p (G) ≤ c t (p) for every G ∈ C t . Hence, defining, f p (t) = c t (p) we get χ p (G) ≤ f p (ω(G)) for every G ∈ C . Conversely, assume (iii). Then χ p (G) is bounded by the constant f p (t) on C t . Thus, according to Lemma 6.2, C t has bounded expansion. Hence C has ω-bounded expansion.

It should be noticed that the function f p appearing in Item (iii) of Lemma 6.9 can be bounded in terms of the function f 1 and the diagonal terms f p (p). This is a direct corollary of the next proposition. Inspired by (non valid) Conjecture 6.2, let us mention the following "positive" result. Lemma 6.10 ([23, Theorem 4]) For every graph H and a positive integer r, if C is a class of graphs that do not contain K r , K r,r , and any subdivision of H as an induced subgraph, then C has bounded expansion.

Assume that C has ω-bounded expansion. Conditions (i) and (ii) are obviously satisfied. Let C 3 be the subclass of all triangle-free graphs in C . The class C 3 has bounded expansion hence for every integer r there is a constant f (r) such that if the r-subdivision G of a graph H belongs to C 3 then d(H) ≤ f (r). Thus for every graph H whose r-subdivision G is in C (thus in C 3 ) we have d(H) ≤ f (r) hence (iii) is satisfied.

Strongly χ p -bounded classes of graphs can be also characterized by means of restricted homomorphism dualities (see [START_REF] Nešetřil | Sparsity (Graphs, Structures, and Algorithms)[END_REF] for more background). A homomorphism of a graph ⃗ F to a graph ⃗ G is a mapping f : V( ⃗ F) → V( ⃗ G) that preserve arcs: for every arc uv of ⃗ F, f (u) f (v) is an arc of ⃗ G. We denote by ⃗ F → ⃗ G the existence of a homomorphism of ⃗ F to ⃗ G, and by ⃗ F ↛ ⃗ G the non-existence of such a homomorphism. An oriented graph is a loopless directed graph with no circuits of length 2, that is an orientation of an undirected graph. It is easily checked that the chromatic number of a graph G is the minimum order of a loopless directed graph ⃗ H (which can be required to be an oriented graph) such that some orientation ⃗

G 

⃗ F ↛ ⃗ G ⇐⇒ ⃗ G → ⃗ D. (6.2) 
The class ⃗ C has all restricted dualities if every directed connected graph ⃗ F has a dual ⃗ D for ⃗ C . Lemma 6.12 For a hereditary class C of graphs, let ⃗ C denote the class of all orientations of the graphs in C . Then the following are equivalent:

-every connected acyclically oriented graph has a restricted dual for the class ⃗ C ; -the class C has ω-bounded expansion.

Proof. Let ⃗

C be a hereditary class of oriented graphs closed under reorientation and let C be the underlying class of undirected graphs.

Assume C has ω-bounded expansion. Let ⃗ F be a connected acyclically oriented graph. Let t = 2 | ⃗ F| . As the class ⃗ C t of all oriented graphs in ⃗ C with clique number at most t has bounded expansion, it has all restricted dualities [START_REF] Nešetřil | Grad and classes with bounded expansion III. Restricted graph homomorphism dualities[END_REF]. Thus there exists ⃗ D with ⃗ F ↛ ⃗ D such that for all ⃗ G ∈ ⃗ C t the equivalence (6. First assume that the class C is not χ-bounded or that it includes all complete bipartite graphs. Then there is an integer t such that C contains graphs with arbitrarily large average degrees and clique number at most t. Let ⃗ T t+1 be the transitive tournament on t + 1 vertices, and let ⃗

C ′ = { ⃗ G ∈ ⃗ C | ⃗ T t+1 ↛ ⃗ G}.
By assumption, ⃗ C ′ contains oriented graphs with arbitrarily large average degree hence with arbitrarily large oriented chromatic number, contradicting the property that every graph ⃗ G ∈ ⃗ C ′ satisfies ⃗ G → ⃗ D ⃗ T t+1 . Otherwise, according to Lemma 6.11, for some integer q ≥ 1, the class C contains the q-subdivisions of graphs with arbitrarily large average degrees. Then, according to Lemma 6.7 the class C contains the p-subdivisions of graphs with arbitrarily large average degrees, where p = 2q + 1. Let D be the class of all graphs, whose p-subdivision is in C . As p ≥ 1 and C is hereditary, the class D is monotone. By assumption, there are graphs in D with arbitrarily large chromatic number. By [START_REF] Rödl | On the chromatic number of subgraphs of a given graph[END_REF], D contains triangle free graphs with arbitrarily large chromatic number. Let D ′ be the class of all triangle free graphs in D, and let ⃗ C ′ be the class of the p-subdivisions of all orientations of graphs in D ′ . Let ⃗ F be the p-subdivision of ⃗ T Note that every class C of undirected graphs with ω-bounded expansion has all restricted dualities. Lemma 6.12 should be compared with the following characterization of bounded expansion classes. C has all restricted dualities (see [START_REF] Nešetřil | Sparsity (Graphs, Structures, and Algorithms)[END_REF]). As C does not have bounded expansion there exists an integer p, such that for every integer k there is a graph H with chromatic number k, whose p-subdivision is a subgraph of a graph G H ∈ C [START_REF] Nešetřil | Sparsity (Graphs, Structures, and Algorithms)[END_REF]. Note that we can assume p ≥ 

Weakly χ p -bounded classes of graphs

We illustrate the difference between the notions of strongly χ p -bounded classes and weakly χ p -bounded classes with the following example. Chapter 6. From χ-boundedness to χ p -boundedness Proposition 6. [START_REF] Bansal | Algorithmic aspects of combinatorial discrepancy[END_REF] The class B of all complete bipartite graphs is weakly χ p -bounded but not strongly χ p -bounded.

Proof. The class B is clearly not strongly χ p -bounded as it is triangle free but has unbounded χ 2 . However, the class B is obviously weakly χ 1 -bounded (i.e. χ-bounded). Let p ≥ 2. Let K s,t be a complete bipartite graphs with s ≤ t. Then χ p (K s,t ) ≤ td(K s,t ) ≤ s + 1. Moreover, max H∈TM p-1 (G) ω(H) ≥ max H∈TM 1 (G) ω(H) ≥ √ s. It follows that for every integer p ≥ 2 and every complete bipartite graph K s,t we have

χ p (K s,t ) ≤ max H∈TM p-1 (K s,t ) ω(H) 2 ,
thus B is weakly χ p -bounded.

The class of all 1-subdivision of graphs is an example of a χ-bounded class (as it includes only bipartite graphs) that is not weakly χ p -bounded (as the class is C 4 -free, while χ s is unbounded by Lemma 6.3). This suggests that χ p (G) should be related to the chromatic number of shallow topological minors of G, which is the subject of the next two results. Lemma 6.14 Let G be a graph and let p be a positive integer. Then

χ p (G) ≥ χ(TM p-1 (G)) 1 p . ( 6.3) 
Proof. For p = 1 there is nothing to be proved. For p = 2, the proof of Lemma 6.3 can be easily modified to give the result: let G be a graph and let H ∈ TM 1 (G). We shall consider V(H) as a subset of V(G). Let c be a star coloring (i.e. a χ 2 -coloring) of G with k = χ 2 (G) colors. Let H 0 ⊆ H be the spanning subgraph of H with edge set E(H 0 ) = {uv ∈ E(H) : c(u) = c(v)}. Then every connected component of H 0 is monochromatic under c and all the edges of H 0 correspond to paths of length 2 in G (i.e. are 1-subdivided in G). According to [START_REF] Wood | Acyclic, star and oriented colourings of graph subdivisions[END_REF]Lemma 4], the minimum number of colors in a star colouring of the 1-subdivision H ′ 0 of H 0 in which the original vertices are monochromatic is χ ′ (H 0 ) + 1, where χ ′ (H 0 ) denotes the edge chromatic number of H 0 . Hence χ ′ (H 0 ) ≤ k -1. Thus ∆(H 0 ) ≤ k -1 and χ(H 0 ) ≤ k by Brooks's theorem. Let φ be a vertex k-coloring of H 0 . Now color each vertex v of H by the pair (c(v), φ(v)). Consider an edge uv ∈ E(H). If uv ∈ E(H 0 ) then φ(u) ̸ = φ(v). If uv / ∈ E(H 0 ) then c(u) ̸ = c(v). Thus we have a k 2 -coloring of H, and χ(H) ≤ χ 2 (G) 2 . Now assume p ≥ 3. Let G be a graph and let H ∈ TM p-1 (G). The vertices of H naturally correspond to vertices a 1 , . . . , a |H| of G, and to each edge a i a j of H corresponds a path P i,j of G with length at most p linking a i and a j . Consider a χ p -coloring of G with k = χ p (G) colors (taken in [k]). This coloring naturally defines a coloring of the vertices of H. By the pigeon-hole principle, there exists a color c ∈ [k] such that the subgraph H c of H induced by vertices colored c has chromatic number at least ⌈χ(H)/k⌉. It follows that H c contains an induced subgraph Ĥc with average degree at least ⌈χ(H)/k⌉ -1. For each edge e = a i a j of Ĥc we denote by γ(e) the set of all the colors present (in G) on the path P i,j . To each (p -1)-subset I of [k] \ {c} corresponds a subset E I of edges e of Ĥc with γ(e) ⊆ I ∪ {c}. By pigeon-hole principle, there exists a subset I such that the average degree of the subgraph H c,I of Ĥc induced by E I is at least (⌈χ(H)/k⌉ -1)/( k-1 p-1 ). The graph H c,I defines a subgraph G c,I of G by taking the union of all the paths P i,j for a i a j ∈ E(H c,I ). By construction, the vertices of G c,I are colored by colors in I ∪ {c}, which is a subset of p colors. Thus td(H c,I ) ≤ td(G c,I ) ≤ p. It follows that H c,I has average degree less than 2p -2. It follows that 2p -2 > ⌈χ(H)/k⌉ -1 ( k-1 p-1 )

.

Thus

χ(H) < 2(p -1) k -1 p -1 + 1 k < 2p 2 k p ≤ 2p (p -1)! k p
In particular, if p > 3 then χ(H) < χ p (G) p . So assume p = 3, and let C be a connected component of G c,I with maximal average degree. If we remove the root r of C we are left with a star forest. If r is not colored c it follows that r has degree at most 2 hence C contains a most one cycle thus the average degree of C is at most 2. So assume that r is colored c. Assume some connected component of H c,Ir contains two adjacent vertices u and v, at least one of them (say u) being adjacent to r. Then in a connected component Cr we have a path of length 4 (at least a subdivision vertex for the edge ru, the vertex u, at least a subdivision vertex for the edge uv, then the vertex v), contradicting the hypothesis that the connected components of Cr are stars. Hence H c,I is a star, and its average degree is at most 2. Thus χ(H) < (2( k-1

2 ) + 1)k < k 3 .

We deduce the following generalization of Lemma 6.3, which is of independent interest. Theorem 6.5 Let p be a non negative integer. Let G be a graph and let G (p) be its p-subdivision. Then χ(G) 1 p+1 ≤ χ p+1 (G (p) ) ≤ max(χ(G), p + 2). (6.4)

Proof. If p = 0 the statement obviously holds. According to Lemma 6.14 we only have to prove the inequality χ p+1 (G (p) ) ≤ max(χ(G), p + 2). Consider a proper coloring of G with χ(G) colors and transfer the colors on the corresponding vertices of G (p) . Then, for each edge uv of G, we color the p internal vertices of the path P uv of G (p) corresponding to the edge uv of G by distinct p colors that are also distinct from the color of u and the color of v. It is easily checked that every subset of k ≤ p + 1 colors then induce a subgraph of G (p) with tree-depth at most k.

We now state two lemmas that will lead to the proof of Theorem 6.3.

Lemma 6.15

Let C be a hereditary class of graph and let p be a positive integer. If χ p (G) ≤ f (ω(TM p-1 (G))) holds for all G ∈ C then ITM e p-1 (C ) is χ-bounded. Proof. Without loss of generality, we can assume that f is non-decreasing. Let H ∈ ITM e p-1 (C ). Then there exists G ∈ C such that H (p-1) ⊆ i G. As C is hereditary we deduce H (p-1) ∈ C .

Definition 0. 3 Definition 0 . 4

 304 Une b-coloration d'un graphe G est une application φ qui attribue à chaque sommet v de G un ensemble φ(v) de b couleurs, de sorte que les sommets adjacents reçoivent des ensembles de couleurs disjoints. Une (a, b)-coloration de G est une coloration φ de G telle que φ(v) ⊆ {1, 2, • • • , a} pour chaque sommet v. Le nombre chromatique fractionnaire de G estχ f (G) = inf a b : G est (a, b)coloriable .x Une a-affectation de liste de G est une application L qui associe à chaque sommet v un ensemble L(v) de a couleurs permises. Une b-coloration par liste de G est une coloration φ de G telle que φ(v) ⊆ L(v) pour chaque sommet v. Nous disons que G est (a, b)-choisissable si, pour toute affectation de liste L de G, il existe une b-coloration de liste de G. Le nombre de choix ch(G) de G est ch(G) = min{a : G est (a, 1) -choisissable}.

  et les adjacences rouges et noires entre tous les autres noeuds de G ′ sont telles que dans G. Definition 0.9 Une séquence de d-contractions d'un graphe G = (V, E) avec n sommets est une séquence G n , . . . , G 1 de d-trigraphes, où G n est le trigraphe isomorphe à G défini par

Definition 0. 10

 10 Un graphe H est un mineur superficiel d'un graphe G à profondeur r si H peut être obtenu à partir d'un sous-graphe de G par contraction de sous-graphes connexes disjoints de rayons au plus r. Nous notons G ▽ r l'ensemble des mineurs superficiels de G à la profondeur r et définissons la plus grande densité moyenne réduite (brièvement grad) de rang r d'un graphe G par ∇ r (G) = max{|E(H)|/|V(H)| : H ∈ G ▽ r}. Definition 0.11 Une classe C de graphes est d'expansion bornée s'il existe une fonction f : N

0. 13

 13 Nous disons que u est fortement r-atteignable à partir de v pour L, s'il existe un chemin P de longueur au plus r reliant u et v, tel que u ≤ L v et tel que tous les sommets intérieurs w de P satisfont v < L w. Soit SReach r [L, v] l'ensemble des sommets qui sont fortement r-atteignables à partir de v pour L. Remarquons que v dans SReach r [L, v]. Le nombre de coloration forte r scol r (G) de G est défini par scol r (G) := min L∈Π(G) max v∈V(G) SReach r [L, v] , Notons que scol 1 (G) = wcol 1 (G) est le nombre de coloration de G. Definition 0.14 La r-connectivité arrière b r (L, v) d'un sommet v est le nombre maximum de chemins de longueur au plus r dans G qui commencent en v, ne partagent aucun autre sommet à l'exception de v, et se terminent à des sommets qui se trouvent avant v dans l'ordre L. La r-admissibilité de G est définie par adm r (G) = min L∈Π(G) max v∈V(G) b r (L, v).

Theorem 1 .

 1 10 ([21]) A graph class C has bounded expansion if and only if for every non-negative integer r we have d(TM r (C )) < ∞, where d denotes the average degree. Bounded expansion classes are also characterized by means of the χ p -invariants. Theorem 1.11 ([62]) A graph class C has bounded expansion if and only if for every positive integer p we have χ p (C ) < ∞.

Theorem 1 .

 1 12 ([40]) Let C be a hereditary class of graphs. Then the following are equivalent: (i) The class C is strongly χ p -bounded for every integer p; (ii) For each positive integer t, the class C t = {G ∈ C | ω(G) ≤ t} has bounded expansion; (iii) The class C has ω-bounded expansion, meaning that for every non-negative integer r there is a function f r such that for every G ∈ C we have d(TM r (G)) ≤ f r (ω(G)) (see Section 6.2); (iv) The class C is χ-bounded, does not contain all complete bipartite graphs, and d(ITM e r (C )) < ∞ for every positive integer r; (v) Every connected acyclically oriented graph has a restricted dual for the class of all orientations of graphs in C . Theorem 1.13 ([40]) Let C be a hereditary class of graphs. Then the following are equivalent: (i) The class C is weakly χ p -bounded for every positive integer p; (ii) the class C and all the classes ITM e r (C ) (r ≥ 1) are χ-bounded; (iii) the class C is χ-bounded and d(ITM e r (C )) < ∞ for every positive integer r; (iv) C is χ-bounded and for each positive integer p there is a function f p such that for every graph G ∈ C we have χ p (G) ≤ f p (bω(G)), where bω(G) = max{s | K s,s ⊆ G};

  However, in this chapter, when we consider S-k-colorings of graphs, we are interested in those permutations π with π(i) ∈ [k] for every i ∈ [k]. In other words, the restriction of π to [k] is a permutation of [k]. As the images π(i) of i / ∈ [k]are irrelevant, we simply consider π as a permutation of [k], i.e., S is an inverse closed subset of the symmetric group S k . Recall that S k is the set of all permutations of [k].

Lemma 2 . 2

 22 Let S = {{(12), (34), (123)}, {(12), (34), (1234)}, {(12), (34), (2314)}, {(12), (34), (23)}, {(12), (34), (23)(14)}, {(12), (13), (23)}, {(12), (13), (234)}, {(12), (134), (234)}, {(234), (134), (124), (123)}}.

1

 1 

Claim 2 . 1

 21 and 2.2, where in Figure 2.2, each 3-face of H 5 containing a * contains a copy of T whose boundary triangle is identified with the 3-face. If S ∈ {{(12), (34), (1234)}, {(12), (34), (2314)}, {(12), (34), (23)(14)}, {(12), (34), (23)}, {(12), (13), (234)}, {(12), (134), (234)}}, then for any a, b ∈ [4] with π * (a) ̸ = b, there is an S-signature (D, σ) of H 1 such that there is no 4-coloring φ of (H 1 , σ) with φ(u) = a and φ(u ′ ) = b. Proof of the claim. We consider three cases. Case 1. S ∈ {{(12), (34), (1234)}, {(12), (34), (2314)}, {(12), (34), (23)(14)}}. By symmetry, it suffices to consider the cases that a = b = 1 or a = 1, b = 3 or a = 1, b = 4 or a = 3, b = 4.
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 42145225 FIGURE 2.1 -The graphs H 1 , H 2 , H 3 , H 4
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 223242526272822 FIGURE 2.3 -Cases of that S = {(12), (34), (1234)} is bad, where a directed edge e has σ(e) = (1234), a solid edge e has σ(e) = (12) and a dashed edge e has σ(e) = (34). (a) a = b = 1, (b) a = 1, b = 3, (c) a = 1, b = 4, (d) a = 3, b = 4.
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 29 FIGURE 2.9 -Cases of that S = {(12), (34), (123)} is bad, where an undirected solid edge e has σ(e) = (12), an undirected dashed edge has σ(e) = (34), and a directed edge e has σ(e) = (123). (a) a = b = 1, (b) a = 1, b = 3, (c) a = 1, b = 4, (d) a = 3, b = 4.

Claim 2 . 3

 23 If S = {{(12), (13), (23)}, then for any a, b ∈ [4] with π * (a) ̸ = b, either there is an S-signature (D, σ) of H 3 such that there is no 4-coloring φ of (H 3 , σ) with φ(u) = a and φ(u ′ ) = b or there is an S-signature (D, σ) of H 4 such that there is no 4-coloring φ of (H 4 , σ) with φ(u) = a and φ(u ′ ) = b. Proof of the claim. By symmetry, it suffices to consider the cases that a = b = 1 or a = 1, b = 3 or a = 1, b = 4. -If a = b = 1, then let (D, σ) be the S-signature of H 3 defined as in Figure 2.10(a). -If a = 1, b = 3, then let (D, σ) be the S-signature of H 3 defined as in Figure 2.10(b). -If a = 1, b = 4, then let (D, σ) be the S-signature of H 4 defined as in Figure 2.10(c).
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 210 FIGURE 2.10 -Cases of that S = {(12), (13), (23)}is bad, where a solid edge e has σ(e) = (12), a dashed edge e has σ(e) = (13), and a dotted edge e has σ(e) = (23). (a) a = b = 1, (b) a = 1, b = 3, (c) a = 1, b = 4. Assume φ is a coloring of (H 3 , σ) with φ(u) = φ(u ′ ) = 1 for the graph in Figure 2.10(a), or φ(u) = 1 and φ(u ′ ) = 3 for the graph in Figure 2.10(b), or φ(u) = 1 and φ(u ′ ) = 4 for the graph in Figure 2.10(c).

Chapter 2 .

 2 Coloring of generalized signed graphs In both of Figures 2.10

  (

Lemma 2 . 4

 24 Let S = {(123), (124), (134), (234)}. Then for any three distinct integers α, β, γ ∈ [4], there exists an S-signature (D, σ) of T such that there is no 4-coloring φ of (T, σ) with φ(u) = α, φ(v) = β and φ(v ′ ) = γ.

FIGURE 2 . 11 -Claim 2 . 4

 21124 FIGURE 2.11 -The S-signature of T, where a directed red edge e has σ(e) = (123), a directed blue edge e has σ(e) = (124), a directed green edge e has σ(e) = (134), and a directed black edge e has σ(e) = (234).
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 212 FIGURE 2.12 -Cases of that S = {(123), (124), (134), (234)} is bad, where a directed red edge e has σ(e) = (123), a directed blue edge e has σ(e) = (124), a directed green edge e has σ(e) = (134), and a directed black edge e has σ(e) = (234). (a) a = b = 1 (b) a = 3, b = 4.

  the permutations on the edges uv ′′ , vv ′′ , v ′ v ′′ force φ(v ′′ ) = 3. Thus the triangle (u, v, v ′′ ) is colored by colors (1, 2, 3), a contradiction.Chapter 2. Coloring of generalized signed graphs

FIGURE 2 . 13 -Claim 2 . 5

 21325 FIGURE 2.13 -The graph H

  )}. By symmetry, it suffices to consider the cases that a = b = 1 or a = b = 2 or a = 1, b = 2 or a = 2, b = 3.If a = b = 1, then the S-signature (D, σ) on H is defined as in Figure2.15(a), i.e.,σ(e) =    (13) e ∈ {ux 1 , ux 4 , y 2 x 3 , z 1 x 2 } (12) e ∈ {vx 1 , vx 4 , z 2 x 3 , y 1 x 2 } id otherwise.Note that since π 2 = id for all π ∈ S, we do not need to specify the orientations of the edges.If a = 1, b = 2, then let the S-signature (D, σ) on H is defined as in Figure2.15(b), i.e., e ∈ {ux 1 , ux 4 ,y 2 x 3 , z 1 x 2 } (12) e ∈ {vz 4 , z 2 x 3 , y 1 x 2 } id otherwise.If a = 2, b = 3, then let the S-signature (D, σ) on H is defined as in Figure 2.15(c), i.e., σ(e) =    (13) e ∈ {(vz 4 ), (y 2 x 3 ), (z 1 x 2 )} (12) e ∈ {(uy 4 ), (y 1 x 2 ), (z 2 x 3 )} id otherwise.
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 214 FIGURE 2.14 -Cases of that S = {id, (123)} is TFP-bad, where an undirected edge e has σ(e) = id, a directed edge e has σ(e) = (123). (a) a = b = 1, (b) a = 1, b = 2.
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 215 FIGURE 2.15 -Cases of that S = {id, (12), (13)} is TFP-bad, where a dotted edge e has σ(e) = (12) and a dashed edge e has σ(e) = (13). (a) a = b = 1, (b) a = 1, b = 2, (c) a = 2, b = 3, (d) a = b = 2.

FIGURE 2 . 16 -FIGURE 2 . 17 -

 216217 FIGURE 2.16 -The graph H ′

FIGURE 3 . 1 -

 31 FIGURE 3.1 -The graph H

Definition 4 . 3

 43 If X ∈ U \ {V}, the parent of X is the minimal set Y ∈ U with Y ⊋ X.Conversely, if |X| > 1, the children of X are the two maximal sets Y and Z in U with Y ⊊ X and Z ⊊ X.

Claim 4 . 2 Claim 4 . 3

 4243 No two nodes in B i are adjacent in G i by a black edge. Proof of the claim. Assume for contradiction that X and Y are nodes in B i that are adjacent by a black edge in G i . Hence, G[X ∪ Y] includes K |X|,|Y| as a subgraph. According to Claim 4.1, both X and Y are big, contradicting the assumption bω(G) = s. ◀ Every node X ∈ B i is such that | N E G i (X)| ≤ s. Proof of the claim. Let X ∈ B i and let Y = N E G i (X).Then X and Y induce a biclique in G thus min(|X|, |Y|) ≤ s. As only big nodes in B i are adjacent to black edges (by Claim 4.1), we deduce |X| > s and therefore |Y| ≤ s.

Corollary 4 . 4

 44 For every integer d ≥ 14, every positive integer s, and every integer r of the form 2 k , there exists a graph G with tww(G) ≤ d, bω(G) = s, and scol r (G) ≥ ds 4

Lemma 4 . 3 ([ 5 ,

 435 Proposition 28]) For d ≥ 0 and k > 0, if the clique K n subdivided k times has twin-width less than d, then k ≥ log d (n -1) -1.

Lemma 4 . 4 ([ 5 ,Lemma 4 . 5 ([ 18 ])

 4454518 Proposition 31]) For any c > 0, the class of cliques K n subdivided at least log n ctimes has twin-width at most f (c) for some triple exponential function f . For every integers d and r ≥ 4 there is a graph G such that -G has no K 2,2 subgraph;-d ≤ tww(G) ≤ f (2 log d); adm r (G) ≥ d 2(r-1) , where f is the function of Lemma 4.4.

Theorem 5 . 1 (

 51 [83]) A class C of graphs has bounded expansion if and only if there exists a function f : N → N such that for every graph G ∈ C and every positive integer d we have wcol d (G) ≤ f (d).

Remark 5 . 1 Lemma 5 . 2

 5152 Using Bukh's improvement[START_REF] Bukh | An improvement of the Beck-Fiala theorem[END_REF], if deg(G) is sufficiently large, then the bound can be decreased to 3 deg(G)log * deg(G). Let G be a graph and let c = max H⊆G disc(S E (H)). Then G is 16 c+2

Claim 5 . 1

 51 Let a ≤ b be positive integers and let s = ⌈(a + b)/2⌉. Then a

Claim 5 . 2 ([ 16 ,

 5216 Lemma 17.5.1]) For 0

Corollary 5 . 1 Lemma 5 . 3

 5153 Note that, as wcol 1 (G) = deg(G) + 1, Theorem 5.4 yields (for d = 1) E (H)) < 3 deg(G) + 3, to be compared with Theorem 5.3. As a corollary of Theorem 5.4 we obtain the following characterization of classes with bounded expansion. Let C be a monotone class of graphs. Then C has bounded expansion if and only if the hereditary discrepancy of S E (G k ) is bounded on C for each positive integer k. The proof of Theorem 5.4 will follow from Lemmas 5.4 and 5.3, which we will prove next. Let G be a graph and d a positive integer. Then

  herdisc

Lemma 5 . 4

 54 Let G be a graph and let d be a positive integer. Then there exists a subgraph H of G and an integer d ′ < 2d with herdisc

Theorem 6 . 2 (

 62 [START_REF] Jiang | From χ-to χ p -bounded classes[END_REF]) Let C be a hereditary class of graphs. Then the following are equivalent:(i) The class C is strongly χ p -bounded for every integer p;(ii) For each positive integer t, the classC t = {G ∈ C | ω(G) ≤ t} has bounded expansion;(iii) The class C has ω-bounded expansion, meaning that for every non-negative integer r there is a function f r such that for every G ∈ C we have d(TM r (G)) ≤ f r (ω(G)) (see Section 6.2);(iv) The class C is χ-bounded, does not contain all complete bipartite graphs, and for every positive integer r we have d(ITM e r (C )) < ∞; (v) Every connected acyclically oriented graph has a restricted dual for the class of all orientations of graphs in C .

Theorem 6 . 3 (

 63 [40]) Let C be a hereditary class of graphs. Then the following are equivalent: (i) The class C is weakly χ p -bounded for every positive integer p; (ii) the class C and all the classes ITM e r (C ) (r ≥ 1) are χ-bounded; (iii) the class C is χ-bounded and for every positive integer r we have d(ITM e r (C )) < ∞; (iv) C is χ-bounded and for each positive integer p there is a function f p such that for every graph G ∈ C we have χ p (G) ≤ f p (bω(G)), where bω(G) = max{s | K s,s ⊆ G};

Conjecture 6 .

 6 3 can be proved in an easy way.

Theorem 6 . 4 (

 64 [START_REF] Jiang | From χ-to χ p -bounded classes[END_REF]) The class of K 1,t -free graphs is polynomially χ s -bounded. Precisely, the K 1,t -free graphs G satisfyχ s (G) = O(ω(G)3(t-1) 2

Proposition 6 . 1

 61 Let C be a hereditary strongly χ p -bounded class and let a p = max{χ p (G) : G ∈ C and ω(G) ≤ p}. Then, for every graph G ∈ C and every positive integer p we have χ p (G) ≤ χ(G) a ( χ(G)-1 p-1 ) p . Proof. Let p be a positive integer, let G ∈ C , let χ = χ(G), and let c : V(G) → [χ] be a proper coloring of G. For any subset I of p colors in [χ], let G I be the subgraph of G induced by vertices with color in I. Note that ω(G I ) ≤ p and G I ∈ C as C is hereditary. Thus there exists a χ p -coloring of G I with a p colors. Let γI : V(G I ) → [a p ] be such a χ p -coloring. For v ∈ V(G) define g v : ( [χ]\{c(v)} p-1 ) → [a p ] by g v (J) = γ J∪{c(v)} (v). Consider the coloring ζ : v → ζ(v) = (c(v), g v )). This coloring uses at most χ a( χ-1 p-1 ) p colors. We now prove that ζ is a χ p -coloring of G. Let ζ 1 = (c 1 , g 1 ), . . . , ζ p = (c p , g p ) be p ζ-values, and let I be a subset of size p of [χ] that includes c 1 , . . . , c p . For 1 ≤ i ≤ p let V i be the set of vertices v of G with ζ(v) = ζ i . Obviously, i∈I V i ⊆ V(G I ). Let 1 ≤ i ≤ p and let v ∈ V i . Then γ I (v) = g v (I \ {c(v)}) = g v (I \ {c i }).Thus all the vertices in V i have the same γ I -color. It follows that the subgraph of G induced by the ζ-colors ζ 1 , . . . , ζ p is an induced subgraph of G I induced by at most p γ I -colors thus has tree-depth at most p. Hence ζ is a χ p -coloring of G.

Lemma 6 . 13

 613 For a class C of graphs, let ⃗ C denote the class of all orientations of the graphs in C . Then the following are equivalent: -the class ⃗ C has all restricted dualities; -the class C has bounded expansion. Proof. Assume C has bounded expansion. Then ⃗

  2)-choisissables et des graphes planaires sans triangles non (6, 2)-choisissables. xi Si les réponses aux questions ci-dessus sont négatives, la question se pose de déterminer le plus petit nombre réel ε tel que tout graphe planaire G est (⌈(4 + ε)m⌉, m)-choisissable et le plus petit nombre réel ε ′ tel que tout graphe planaire G sans triangles est (⌈(3 + ε ′ )m⌉, m)-Pour chaque entier positif m, il existe un graphe planaire sans triangles G qui n'est pas (3m + ⌈ m 17 ⌉ -1, m)-choisissable. Par conséquent, ch s f (P 3 ) ≥ 3 + 1 17 .

	choisissable.
	Soit P la classe des graphes planaires et soit P 3 la classe des graphes planaires sans
	triangles. Il a été prouvé par Zhu [84] que ch s f (P) ≥ 4 + 2 9 . Récemment, cette borne a été
	améliorée par Xu et Zhu [80] à 4 + 1 3 . Dans cette thèse, nous prouvons le résultat suivant.
	Theorem 0.3 ([41])

  Un trigraphe G est un graphe avec deux relations d'arêtes, l'adjacence noire E et l'adjacence rouge R, qui sont exclusives (c'est-à-dire que deux éléments de G ne peuvent être adjacents dans les deux relations). Pour distinguer les éléments de V(G) des sommets de G, nous les appellerons noeuds et les désignerons par des lettres majuscules, telles que X, Y, Z. Les éléments de E(G) et R(G) sont respectivement appelées arêtes noires et arêtes rouges. Le voisinage N G (X) d'un noeud X dans un trigraphe G est constitué de tous les noeuds adjacents à X par une arête noire ou rouge ; le voisinage noir N E G (X) est constitué de tous les noeuds adjacents à X par une arête noire et le voisinage rouge N R G (X) est constitué de tous les noeuds adjacents à X par une arête rouge. Un d-trigraphe est un trigraphe G dont tous les degrés rouges sont d'au plus d, c'est-à-dire que |N R G (X)| ≤ d pour tout X dansV(G). Soit G un trigraphe et soit X et Y des noeuds non nécessairement adjacents de G. On dit qu'un trigraphe G ′ est obtenu à partir de

	Definition 0.6 Dans Definition 0.7 Definition 0.8

notre étude, un trigraphe G est toujours associé à un graphe G, dont il capture certaines informations structurelles. Les sommets de G sont les classes d'une partition xii de V(G).

  xiii Par exemple, toutes les classes propres de graphes fermées par mineurs et toutes les classes de graphes à degré maximal borné sont d'expansion bornée. En effet, si C est une classe propre de graphes fermée par mineurs, alors pour tout r, si G ∈ C et H ∈ G ▽ r, alors H ∈ C . Il existe donc une constante c telle que d(H) ≤ c. De même, la classe des graphes dont le degré maximal est borné est d'expansion bornée. Si G a un degré maximal d'au plus d, alors pour tout H

  S ) un système d'ensembles, où S est une collection de sous-ensembles de l'ensemble de base U. Lorsque l'ensemble de base est clair, nous faisons référence au système d'ensembles simplement par S . Par exemple, le système d'ensembles de voisinage S E (G) d'un graphe G est défini par S E

								xv
	Discordance et expansion bornée		
	La théorie de la discordance est née de l'étude des irrégularités des distributions
	statistiques et des séquences de nombres. Il s'agit d'un outil central en géométrie compu-
	tationnelle. Il y a une vingtaine d'années, Matoušek [55] a initié l'étude de la discordance
	combinatoire. Il s'agit maintenant d'un sujet important à part entière dans ce domaine. Elle
	mesure les irrégularités inévitables des systèmes d'ensembles et la difficulté intrinsèque
	de leur approximation.							
	Soit (U,							
								1)
	D'autre part, pour tout entier positif s, on peut construire un graphe G avec un nombre
	de biclique s, tel que scol r (G) ≥ ( d-4 8 ) r s.				
	Corollary 0.1 ([18]) Pour tout entier d ≥ 14, tout entier positif s, et tout entier r de la forme 2 k ,
	il existe un graphe G avec tww(G) ≤ d, bω(G) = s, et		
	scol r (G) ≥	ds 4	d -4 8	r-1	≥ 2	tww(G) -4 8	r	bω(G).

Definition 0.15 La

  ) est le voisinage de v dans G, à savoir l'ensemble de tous les sommets adjacents à v dans G. discordance d'une application χ : U → {-1, 1} sur un ensemble S ∈ S est disc χ (S) = ∑ v∈S χ(v) ; la discordance de χ sur S est le maximum de disc χ (S) pour S dansS , i.e. disc χ (S ) = max S∈S disc χ (S). La discordance (combinatoire) de S est la discordance minimale d'une application χ : U → {-1, 1} sur S , i.e.

	disc(S ) =	min χ:U→{-1,1}	max S∈S ∑ v∈S	χ(v) .
	Ainsi, la discordance d'un système d'ensembles mesure à quel point une bicoloration de
	ce système peut être équilibrée.			
	Malheureusement, on sait que la discordance est une notion fragile, comme en témoigne
	l'exemple standard suivant (cf par exemple [2]) : soit S 1 = {S 1 , . . . , S m } un système d'ensembles d'ensemble de base X 1 et S ′ 1 = {S ′ 1 , . . . , S ′ m } une copie de S 1 d'ensemble de base X ′ 1 (disjoint de X 1 ). Alors, le système d'ensembles S = {S 1 ∪ S ′ m } a 1 . . . , S m ∪ S ′ toujours une discordance nulle,

indépendamment de la discordance de S 1 . Une notion plus robuste est définie comme suit. Definition 0.16 La discordance héréditaire d'un ensemble système (U, S ), définie par herdisc(S ) = max

  S | U ′ désigne le système {S ∩ U ′ : S ∈ S }.

	U ′ ⊆U	disc(S | U ′ ),
	Dans cette thèse, nous établissons un pont entre la théorie de la discordance et la théorie
	des classes de graphes épars en étudiant la discordance héréditaire de classes de graphes
	d'expansion bornée. Nous donnons une nouvelle caractérisation des classes d'expansion
	bornée, comme corollaire d'une borne pour les nombres de coloration généralisée que
	nous établissons en termes de discordance de systèmes définissables. En particulier, nous
	prouvons que la discordance maximale des voisinages de H, pour H sous-graphe d'un
	graphe G, appartient à Ω(log deg(G)) et O(deg(G)), où deg(G) désigne la dégénérescence
	(degeneracy) de G.	

où

xvi Theorem 0.6 ([31]) Pour tout

  Il a été prouvé par Zhu[START_REF] Zhu | Colouring graphs with bounded generalized colouring number[END_REF] qu'une classe de graphes C a une expansion bornée si et seulement si pour tout entier r, le nombre de coloration faible wcol r (G) de chaque graphe G ∈ C est borné. Par conséquent, nous avons comme corollaire la caractérisation suivante des classes d'expansion bornée.

		graphe G, nous avons
	log 2 (π deg(G)) 4	-2 ≤ max H⊆G	disc(S E (H)) < 3 deg(G).	(2)
	Nous étendons ce résultat et obtenons des inégalités liant les nombres de coloration
	faibles et la discordance des puissances de graphes.
	Theorem 0.7 ([31]) Soit G un graphe et soit d un entier positif. Alors,
	log 2 (wcol ⌈d/2⌉ (G)) 6(d + 1)	-	log 2 (d + 1) 3	-	3 2	≤ max d ′ ≤d	max H⊆G	herdisc(S E (H d ′ ))
								< (2dwcol d-1 (G) + 1)wcol d (G).

Corollary 0.2 ([31]) Soit

  C une classe monotone de graphes. Alors, C est d'expansion bornée si, et seulement si, la discordance héréditaire de S E (G k ) est bornée sur C pour chaque entier positif k.

. Definition 0.18 Le

  nombre chromatique stellaire d'un graphe G est le nombre minimal de couleurs dans une coloration propre de G ayant la propriété que deux classes de couleurs quelconques induisent une forêt d'étoiles.Dans ce contexte, deux conjectures ont été proposées. Par graphe F-libre, on entend un graphe ne contenant pas F comme sous-graphe induit et, pour une famille F de graphes, un graphe F -libre est un graphe qui est F-libre pour tous les F ∈ F .

	Definition 0.19 Une classe de graphes C est χ s -bornée s'il existe une fonction g telle que
	χ s (H) ≤ f (ω(H)) pour tout sous-graphe induit d'un graphe G ∈ C .

xvii Conjecture 0.1 (Karthick [46]) La

  classe de tous les graphes K 1,t -libres (où t ≥ 3) est χ s bornée.

Conjecture 0.2 (Karthick [46]) Pour

  tout arbre T, la classe de tous les graphes (T, C 4 )-libres est χ s bornée.

	Dans cette thèse, nous prouvons la Conjecture 0.1 (voir Théorème 0.8), réfutons la
	Conjecture 0.2, et caractérisons les paires (T, K r,t ) (avec T une forêt) telles que les graphes
	(T, K r,t )-libres sont χ s -bornés (voir Théorème 0.9).

Theorem 0.8 ([40]) La

  classe des graphes K 1,t -libres est polynomialement χ s bornée. Les graphes K 1,t -libres G vérifient

Theorem 0.9 ([40]) Soit

  T une forêt et soit r ≤ t des entiers positifs. Alors la classe C de tous les graphes (T, K r,t )-libres est χ s bornée si, et seulement si, r = 1 ou T est un sous-graphe de la 1-subdivision d'un arbre.

	Dans [61], une généralisation du nombre chromatique a été proposée, qui est liée au
	concept de profondeur d'arbre.
	La fermeture d'un arbre enraciné T est le graphe obtenu en ajoutant les arêtes entre un
	sommet et tous ses ancêtres dans T.

Definition 0.20 La

  profondeur d'arbre d'un graphe G, notée td(G), est la hauteur minimale d'une forêt enracinée T telle que G est un sous-graphe de la fermeture de T.

	En particulier, la profondeur d'arbre d'un graphe non-connexe est le maximum des pro-
	fondeurs d'arbre de ses composants connectés.

Theorem 0.10 ([21]) Une classe

  

	xviii
	De même, suivant [23], nous désignons par ITM e r (G) la classe de tous les graphes H dont la subdivision (exacte) de r H (r) est un sous-graphe induit de G, et définissons ITM e r (C ) = G∈C ITM e r (G).
	Les classes d'expansion bornée sont caractérisées au moyen des degrés moyens des
	mineurs topologiques.
	de graphes C est d'expansion bornée si, et seulement si, pour
	tout entier non négatif r on a
	d(TM r (C )) < ∞,
	où d désigne le degré moyen.
	Les classes d'expansion bornée sont également caractérisées au moyen des invariants χ p .
	Theorem 0.11 ([62]) Une classe de graphes C est d'expansion bornée si, et seulement si, pour
	tout entier positif p on a
	χ p (C ) < ∞.
	Motivés par ces caractérisations, nous considérons deux généralisations de la notion de
	classes χ-bornées.

Definition 0.22 Une

  classe de graphes héréditaires C est fortement χ p -bornée si, pour tout G ∈ C on a χ p (G) ≤ f p (ω(G)) (pour une certaine fonction f p )

Definition 0.23 Une

  classe de graphes héréditaires C est faiblement χ p -bornée si, pour tout G ∈ C nous avons χ p (G) ≤ g p (ω(TM p-1 (G))) (pour une certaine fonction g p ).

	Nous donnons plusieurs exemples de classes fortement χ p -bornées et de classes faible-
	ment χ p -bornées. Nous montrons que la classe des graphes bipartis complets est faiblement
	χ p -bornée mais pas fortement χ p -bornée. Ensuite, nous donnons des caractérisations struc-
	turelles des classes

fortement et faiblement χ p -bornées comme suit. Theorem 0.12 ([40]) Soit C une classe héréditaire de graphes. Alors les propositions suivantes sont équivalentes : (i) La classe C est fortement χ p -bornée pour tout entier p ;

  (ii) Pour chaque entier positif t, la classeC t = {G ∈ C | ω(G) ≤ t} est d'expansion bornée ;

	xix
	(i) La classe C est faiblement χ p -bornée pour tout entier p ;
	(ii) la classe C et toutes les classes ITM e r (C ) (r ≥ 1) sont χ-bornées ;
	(iii) la classe C est χ-bornée et d(ITM e r (C )) < ∞ pour tout entier positif r. ;
	(iv) La classe C est χ-borné et pour chaque entier positif p il existe une fonction f p telle que pour
	tout graphe GinC on a χ p (G) ≤ f p (bω(G)), où bω(G) = max{s | K s,s ⊆ G} ;
	(v) La classe C est χ-bornée et pour chaque entier positif s, la classe {G ∈ C | K s,s ̸ ⊆ i G} est
	fortement χ p -bornée pour chaque entier positif p.
	(iii) La classe C est d'expansion ω-bornée, ce qui signifie que pour tout entier non négatif r
	il existe une fonction f r telle que pour tout G ∈ C on a d(TM r (G)) ≤ f r (ω(G)) (cf
	Section refsec :strong ;
	(iv) La classe C est χ-bornée, ne contient pas tous les graphes bipartis complets, et d(ITM e r (C )) <
	∞ pour tout entier positif r. ;
	(v) Chaque graphe acycliquement orienté connexe possède un dual restreint pour la classe de
	toutes les orientations des graphes dans C .
	Theorem 0.13 ([40]) Soit C une classe héréditaire de graphes. Alors les propositions suivantes
	sont équivalentes :

Contenu et organisation de la thèse Cette

  thèse est organisée comme suit : Dans le Chapitre 2, nous étudions la coloration des graphes planaires signés généralisés et des graphes sans triangles signés généralisés, afin de déterminer dans quelle mesure le théorème des quatre couleurs et le théorème de Grötzsch sont optimaux.Dans le Chapitre 3, nous prouvons que le nombre de choix fractionnaire fort des graphes planaires sans triangles est d'au moins 3 + 1/17.Dans le Chapitre 4, nous prouvons que, pour un graphe G sans sous-graphes K s,s et de largeur gémellaire d, les invariants adm r , scol r et wcol r sont bornés par une fonction exponentielle de r, et que nous pouvons construire des graphes réalisant une telle dépendance en r. En particulier, nous prouvons scol r (G) ≤ (d r + 3)s dans la Section 4.2. Ensuite, nous obtenons les bornes pour wcol r en utilisant la borne du nombre de coloration faible en termes de nombre de coloration forte que nous prouvons dans la Section 4.1. Nous caractérisons les paires (T, K r,t ) (avec T une forêt) telles que les graphes sans (T, K r,t ) sont χ s -bornés dans la Section 6.1. Dans la Section 6.2 nous donnons plusieurs exemples de classes fortement chi p -bornées, notamment les sous-graphes induits de la puissance d des graphes dans une classe d'expansion bornée, les graphes sans griffes, etc. Nous donnons ensuite une caractérisation des classes fortement χ p -bornées. Dans la Section 6.3, nous montrons que la classe des graphes bipartis complets est faiblement χ p -bornée mais pas fortement χ p bornée. Nous donnons ensuite une caractérisation structurelle des classes faiblement χ p -bornées et déduisons (Proposition 6.3) que les transductions (en logique du premier ordre) des classes d'expansion bornées sont faiblement χ p -bornées pour tout p. Nous donnons également des exemples de classes de graphes faiblement xx χ p -bornées, y compris des classes avec des couvertures de faible largeur gémellaire et des classes propres de graphes fermées par mineurs de sommets (vertex minor). From χ-boundedness to χ p -boundedness . . . . . . . . . . . . . . . . . . . . 1.6 Contents and organization of the thesis . . . . . . . . . . . . . . . . . . . . . 1.7 Some basic definitions and notions . . . . . . . . . . . . . . . . . . . . . . . .

	D'autre part, dans la Section 4.1, nous prouvons que pour tout entier positif s, on peut construire un graphe G avec nombre de biclique s, et avec scol r (G) ≥ ( d-4 8 ) r s (Corollaire 4.4). Dans le Chapitre 5, nous donnons une caractérisation des classes d'expansion bornée en termes de discordance des systèmes d'ensembles définissables. Nous prouvons que la discordance maximale (pour H sous-graphe d'un graphe G) du système d'ensembles de voisinage de H appartient à la fois à Ω(log deg(G)) et à O(deg(G)) dans la Section 5.2. Nous étendons ce résultat à des inégalités liants nombres de coloration faibles et dis-cordance des puissances de graphes dans la Section 5.3, et en déduisons une nouvelle caractérisation des classes d'expansion bornées. Dans le Chapitre 6, nous prouvons la Conjecture 0.1 (cf Théorème 6.4) et réfutons Contents 1 Introduction 1.1 Generalized signed graph coloring . . . . . . . . . . . . . . . . . . . . . . . . 1.2 Strong fractional choice number . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3 Twin-width and generalized coloring numbers . . . . . . . . . . . . . . . . . 1.4 Discrepancy and bounded expansion . . . . . . . . . . . . . . . . . . . . . . . la Conjecture 0.2. xxi 1.5
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  Assume Γ is a group with |Γ| = n and k is a positive integer. Let τ : Γ → [n] be a one-to-one correspondence from Γ to[n]. Let k ′ = kn + 1 and for each π ∈ Γ, let π ′ be the permutation of [k ′ ] defined as π ′ (nj + r) = nj + τ(τ -1 (r) • π) for r ∈ [n] and j ∈ {0, 1, . . . , k -1}, and π ′ (kn + 1) = kn + 1. Let S = {π

′ : π ∈ Γ}. Then a k-coloring of a gain graph (G, φ) with gain group Γ is equivalent to a k ′ -coloring of an S-signature (D, σ) of G, where σ is defined as σ

  1, a contradiction (as the copy of T inside triangle uv ′ v ′′ forbids such a coloring). ◀ Combining Claims 2.1, 2.2, 2.3 and 2.4, we complete the proof of Lemma 2.3.

  For every subgraphH ⊆ G denote by S H the set system {N H (v) : v ∈ A ∩ V(H)}. Note that S H ⊆ S E (H) and S H ⊆ B. Hence disc(S H ) ≤ c with witness coloring γ H : B → {-1, 1}. Let d = deg(G), n = |B|, and m = |E(G)|.The graph G has 2 m spanning subgraphs and 2 n ways to color B (with colors in {-1, 1}). Hence, there exists a coloring γ such that the set F γ of all spanning subgraphs H of G with disc γ (S H ) ≤ c has size at least 2 m /2 n .For v ∈ A and α

  Hence, as n = |B| ≤ |A|, we get δ(G) ≤ 64 π • 16 c . As this holds for every induced subgraph, we get deg(G) ≤ 64 π • 16 c . Now, if G is not bipartite, we get that the degeneracy is at most 16 c+2

  thus a subgraph 66 Chapter 5. Hereditary discrepancy and bounded expansion of G, and disc(S E (M ′ )) ≤ herdisc(S E (H d ′ )). Hence, the result follows, as If H ⊆ G and d ′ ≤ d, then wcol d ′ (H) ≤ wcol d (G). Thus, we deduce the upper bound of Theorem 5.4 from Theorem 5.3. Apply Theorem 5.4 to G and ⌈d/2⌉ (instead of d), there exists a subgraph H of G and an integer d ′ ≤ d with herdisc(S E (H d ′ )) ≥

	1 4	log 2 (πα/d) -2 =	1 4	log 2 (π/d) -	1 3	log 2 (6d) +	1 3d	log 2 (wcol d (G)) -2
		=	1 12d	log 2 (wcol d (G)) -	1 3	log 2 d +	log 2 (π) 4	-	log 2 6 12	-2
		≥	1 12d	log 2 (wcol d (G)) -	1 3	log 2 d -	11 6	.
	Now we give the proof of Theorem 5.4.			
	Proof. 1 12⌈d/2⌉	log 2 (wcol ⌈d/2⌉ (G)) -	1 3	log 2 ⌈d/2⌉ -	11 6

  of G satisfies ⃗ G → ⃗ H. Let ⃗ C be a class of directed graphs. A directed graph ⃗ D is a restricted dual of a directed graph ⃗ F for the class ⃗ C if ⃗ F ↛ ⃗ D and, for every directed graph ⃗

G ∈ ⃗ C we have

  2) holds. Let ⃗ G ∈ ⃗ C \ ⃗ C t . Then ω( ⃗ G) ≥ 2 | ⃗ F| thus ⃗ G contains a transitive tournament on | ⃗ F| vertices. Hence ⃗ F → ⃗ G. It follows that ⃗ G ↛ ⃗ D,for otherwise we would deduce ⃗ F → ⃗ D by transitivity. It follows that ⃗ D is a restricted dual of ⃗ F for the class ⃗ C . Assume for contradiction that every connected acyclically oriented graph ⃗ F has a restricted dual ⃗ D F for the class ⃗ C , but the class C does not have ω-bounded expansion. We apply Lemma 6.11.

  3 , and let ⃗ D be its dual. Let ⃗ D ′ be the directed graph with vertex set V( ⃗ D), in which uv is an arc if there exists in ⃗ D a directed walk of length p + 1 from u to v. As ⃗ F ↛ ⃗ D the directed graph ⃗ D ′ has no loops. Let D ′ be the undirected graph underlying⃗ D ′ . As ⃗ F ↛ ⃗ G for every ⃗ G ∈ ⃗ C ′ we deduce that every ⃗ G ∈ ⃗ C ′ satisfies ⃗ G → ⃗ D.It follows that for every H ∈ D ′ we have H → D ′ , what contradicts the hypothesis that graphs in D ′ have arbitrarily large chromatic number.

  3. Let ⃗ D ⃗ C p+1 , the directed cycle of length p + 1 and let H be a graph with χ(H) > | ⃗ D ⃗ -subdivision is a subgraph of a graph G H ∈ C . Let ⃗ H be an acyclic orientation of H and let ⃗ G H be an acyclic orientation of G H extending the orientation of the p-subdivision of H inherited from ⃗ H. Let ⃗ D be the directed graph with vertex set V( ⃗ D ⃗ directed walk of length p + 1 from u to v. As ⃗ C p+1 ↛ ⃗ D ⃗

	C p+1	be a restricted dual of
	⃗			C p+1	|, whose
	C p+1	), in which uv is an
	arc if there exists in ⃗ D ⃗ C p+1			C p+1	,
	the directed graph ⃗ D is loopless. As ⃗ C p+1 ↛ ⃗ G H we have ⃗ G H → ⃗ D ⃗ C p+1	thus ⃗ H → ⃗ D,
	which implies χ(H) ≤ | ⃗ D|.		

pa
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Here the height is defined as the maximum number of vertices in a chain from a root to a leaf.

Here the depth is defined as the maximum number of edges in a chain from a root to a leaf.

Acknowledgements

Chapter 2. Coloring of generalized signed graphs or [START_REF] Bednarchak | A note on the Beck-Fiala theorem[END_REF][START_REF] Beck | Integer-making" theorems[END_REF], either the triangle xyz cannot be properly colored or the triangle x ′ y ′ z ′ cannot be properly colored.

The permutations assigned to edges in Figure 2. 3(d) between {u, u ′ } and {v, w} and edge vw force (φ(v), φ(w)) = (1, 1) or [START_REF] Bansal | Algorithmic aspects of combinatorial discrepancy[END_REF][START_REF] Bansal | Algorithmic aspects of combinatorial discrepancy[END_REF]. Depending on whether (φ(v), φ(w)) = (1, 1) or [START_REF] Bansal | Algorithmic aspects of combinatorial discrepancy[END_REF][START_REF] Bansal | Algorithmic aspects of combinatorial discrepancy[END_REF], either the triangle xyz cannot be properly colored or the triangle x ′ y ′ z ′ cannot be properly colored.

Next we consider the case that S = { [START_REF] Chazelle | The discrepancy method[END_REF], [START_REF] Grünbaum | Acyclic colorings of planar graphs[END_REF], (2314)}. For Figures 2.4(a), 2.4(b), 2.4(c), the permutations assigned to edges between {u, u ′ } and {v, w} and edge vw force (φ(v), φ(w)) = [START_REF] Beck | Integer-making" theorems[END_REF][START_REF] Bednarchak | A note on the Beck-Fiala theorem[END_REF] or [START_REF] Bednarchak | A note on the Beck-Fiala theorem[END_REF][START_REF] Beck | Integer-making" theorems[END_REF]. Depending on whether (φ(v), φ(w)) = [START_REF] Beck | Integer-making" theorems[END_REF][START_REF] Bednarchak | A note on the Beck-Fiala theorem[END_REF] or [START_REF] Bednarchak | A note on the Beck-Fiala theorem[END_REF][START_REF] Beck | Integer-making" theorems[END_REF], either the triangle xyz cannot be properly colored or the triangle x ′ y ′ z ′ cannot be properly colored. For Figure 2.4(d), the permutations assigned to edges between {u, u ′ } and {v, w} and edge vw force (φ(v), φ(w)) = (1, 1) or [START_REF] Bansal | Algorithmic aspects of combinatorial discrepancy[END_REF][START_REF] Bansal | Algorithmic aspects of combinatorial discrepancy[END_REF]. Depending on whether (φ(v), φ(w)) = (1, 1) or [START_REF] Bansal | Algorithmic aspects of combinatorial discrepancy[END_REF][START_REF] Bansal | Algorithmic aspects of combinatorial discrepancy[END_REF], either the triangle xyz cannot be properly colored or the triangle x ′ y ′ z ′ cannot be properly colored.

Finally we consider the case S = {( 12), [START_REF] Grünbaum | Acyclic colorings of planar graphs[END_REF], [START_REF] Dvořák | Induced subdivisions and bounded expansion[END_REF] [START_REF] Cohen-Addad | Steinberg's conjecture is false[END_REF]}. In Figures 2.5(a), the permutations assigned to edges between {u, u ′ } and {v, w} and edge vw force (φ(v), φ(w)) = [START_REF] Beck | Integer-making" theorems[END_REF][START_REF] Bednarchak | A note on the Beck-Fiala theorem[END_REF] or [START_REF] Bednarchak | A note on the Beck-Fiala theorem[END_REF][START_REF] Beck | Integer-making" theorems[END_REF].

In Figures 2.5(b) and 2.5(c), the permutations assigned to edges between {u, u ′ } and {v, w} and edge vw force (φ(v), φ(w)) = (2, 2) or [START_REF] Beck | Integer-making" theorems[END_REF][START_REF] Beck | Integer-making" theorems[END_REF].

In Figures 2.5(d), the permutations assigned to edges between {u, u ′ } and {v, w} and edge vw force (φ(v), φ(w)) = (1, 1) or [START_REF] Bansal | Algorithmic aspects of combinatorial discrepancy[END_REF][START_REF] Bansal | Algorithmic aspects of combinatorial discrepancy[END_REF].

In all these cases, either the triangle xyz cannot be properly colored or the triangle x ′ y ′ z ′ cannot be properly colored.

Case 2. S ∈ {{ [START_REF] Chazelle | The discrepancy method[END_REF], [START_REF] Grünbaum | Acyclic colorings of planar graphs[END_REF], [START_REF] Dvořák | Induced subdivisions and bounded expansion[END_REF]}, {(12), [START_REF] Chudnovsky | Induced subgraphs of graphs with large chromatic number. III. Long holes[END_REF], (234)}}. For S = {( 12), [START_REF] Grünbaum | Acyclic colorings of planar graphs[END_REF], [START_REF] Dvořák | Induced subdivisions and bounded expansion[END_REF]}, the corresponding S-signatures are given in Figures 2.6(a), 2.6(b), 2.6(c), 2.6(d), 2.6(e) and 2.6(f), respecitvely.

The vertices v, w are forced to be colored (φ(v), φ(w)) = [START_REF] Beck | Integer-making" theorems[END_REF][START_REF] Bednarchak | A note on the Beck-Fiala theorem[END_REF] or (4, 3) (in Figure 2.6(a) and 2.6(d)), or (φ(v), φ(w)) = (2, 2) or (3, 3) (in Figure 2.6(b) and 2.6(c) and 2.6(e)), or (φ(v), φ(w)) = (1, 2) or (2, 1) (in Figure 2.6(f)). Each leads a contradiction as above.

For S = {(12), (13), (234)}, the corresponding S-signatures are given in Figures 2.7(a), 2.7(b), 2.7(c), 2.7(d), 2.7(e) and 2.7(f), respecitvely.

Coloring of triangle-free planar graphs has been studied extensively in the literature. The Grötzsch theorem says [START_REF] Grötzsch | Ein dreifarbensatz für dreikreisfreie netze auf der kugel[END_REF] that every triangle-free planar graph is 3-colorable. On the other hand, Voigt [START_REF] Voigt | A not 3-choosable planar graph without 3-cycles[END_REF] showed that there are triangle-free planar graphs that are not 3-choosable.

Recall that Alon, Tuza and Voigt [START_REF] Alon | Choosability and fractional chromatic numbers[END_REF] proved that for any finite graph G, χ f (G) = ch f (G) and moreover the infimum in the definition of ch f (G) can be replaced by minimum. This implies that if G is (a, b)-colorable, then for some interger m, G is (am, bm)-choosable. In particular, for every triangle-free planar graph G, there is an integer m such that G is (3m, m)-choosable. However, for a fixed positive integer m ≥ 2, the question whether there are triangle-free planar graphs that are not (3m, m)-choosable remained an open question. In particular, it was unknown whether there are triangle-free planar graphs that are not (6, 2)-choosable.

If the answer to the above question is negative, then what is the smallest real number ε such that every triangle-free planar graph G is (⌈(3 + ε)m⌉, m)-choosable?

In fact, we prove the following result.

Theorem 3.1 ([41])

For each positive integer m, there is a triangle-free planar graph G which is not

The m = 1 case of Theorem 3.1 is equivalent to say that there are non-3-choosable triangle-free planar graphs, which was proved by Voigt [START_REF] Voigt | A not 3-choosable planar graph without 3-cycles[END_REF]. Some other non-3-choosable triangle free planar graphs were constructed by Montassier [START_REF] Montassier | A note on the not 3-choosability of some families of planar graphs[END_REF] and by Glebov, Kostochka and Tashkinov [START_REF] Glebov | Smaller planar triangle-free graphs that are not 3-list-colorable[END_REF].

Proof of Theorem 3.1

In this section, m is an arbitrary but fixed positive integer. We shall construct a trianglefree planar graph G which is not (3m + ⌈ m 17 ⌉ -1, m)-choosable. Lemma 3.1 Let H be the graph as shown in Figure 3.1. Let ε be the real number such that εm = ⌈ m 17 ⌉ -1. Let A, B be disjoint sets of m colors. Then there is a list assignment L of H for which the following hold:

1

3 There is no m-fold L-coloring of H. Let L be the list assignment of H defined as follows:

Proof

- 

Thus in both cases we have that every graph G with tww(G) = d and bω(G) = s satisfies (4.4).

Corollary 4.1

For every graph G and every positive integer r we have 

If tww(G) = 0 then G is a cograph. Let us then show that for every cograph G it holds that scol r (G) ≤ 2bω(G).

The proof is by induction on the number of vertices. The base case |V(G)| = 1 is trivial so we consider a cograph with at least two vertices and assume that the desired bound holds for all cographs on fewer vertices. Being a cograph, G can be obtained from two cographs G 1 and G 2 by disjoint union or complete join [START_REF] Corneil | Complement reducible graphs[END_REF]. Without loss of generality we assume |V(G 1 )| ≤ |V(G 2 )|. By induction, for every i ∈ {1, 2} there is an ordering

Then the order L is obtained by putting first

Combining Lemma 4.1 with Theorem 4.1 we get the following. [START_REF] Zhu | Colouring graphs with bounded generalized colouring number[END_REF]. Hence the next corollary directly follows from Corollary 4.2.

Corollary 4.3

For every graph G and every positive integer r we have

In particular, every class of graphs of bounded clique-width that exclude a biclique as a subgraph has (at most) exponential expansion.

Lower bounds

It is known that high-girth graphs have large strong coloring numbers [START_REF] Grohe | Coloring and covering nowhere dense graphs[END_REF]. On the other hand, there exist expander graphs with high girth and small twin-width [START_REF] Bonnet | Twin-width II: small classes[END_REF]. We combine both results to construct graphs with small twin-width whose strong r-coloring numbers grow exponentially in r. 

Lemma 4.2 ([18]

) For every integer ∆ ≥ 7 and every positive integer r and g ≥ 4r + 1 there exists a ∆-regular graph G with girth at least g, 2∆ -2 ≤ tww(G) ≤ 2∆, and

Proof. We will construct a sequence G 0 , G 1 , . . . of ∆-regular graphs of twin-width at most 2∆ and increasing girth. Once we reach a graph with girth at least g ≥ 4r + 1, the result of this lemma follows from Proposition 4.1. Note that the twin-width of a ∆-regular graph with girth at least 5 is at least 2(∆ -1) (because of the first contraction). We define G 0 to be the complete graph with ∆ + 1 vertices. We fix a graph G k-1 with edges e 1 , . . . , e m and describe how to construct G k . For every edge e i of G k-1 , we define Chapter 6

From χ-boundedness to χ p -boundedness

The concept of χ-boundedness was introduced by Gyárfás in 1985 in his seminal paper [START_REF] Gyárfás | Problems from the world surrounding perfect graphs[END_REF]. The notion of χ-boundedness has attracted much attention and motivated important conjectures (see survey [START_REF] Scott | A survey of χ-boundedness[END_REF]). Because the definition of χ-boundedness involves all the induced subgraphs of the graphs in the class, it will be natural to restrict our attention to hereditary classes of graphs.

In this setting, probably the most important open conjecture is the next one.

Conjecture 6.1 (Gyárfás [37], Sumner [74])

For every tree T, the class of all graphs excluding T as an induced subgraph is χ-bounded.

Indeed, as there exist graphs with arbitrary high girth and chromatic number [START_REF] Erdős | Graph theory and probability[END_REF], excluding an induced subgraph with a cycle does not allow to bind the chromatic number by a function of the clique number. A natural alternative is to forbid some fixed graph as an induced subdivision (that is to forbid all the subdivisions of some fixed graph as induced subgraphs). This motivated the following conjecture.

Conjecture 6.2 (Scott [69])

For every graph F the class of all graphs excluding induced subdivisions of F is χ-bounded.

This conjecture was disproved by Pawlik, Kozik, Krawczyk, Laso ń, Micek, Trotter and Walczak [START_REF] Pawlik | Triangle-free intersection graphs of line segments with large chromatic number[END_REF]. Nevertheless the conjecture motivated several positive results and here we add to this list several new instances. Note that for biclique-free classes of graphs (i.e. classes of graphs excluding some fixed biclique K r,r as a subgraph), both of these conjectures hold. For Conjecture 6.1 this has been proved by Kierstead and Rödl [START_REF] Kierstead | Applications of hypergraph coloring to coloring graphs not inducing certain trees[END_REF], while for Conjecture 6.2 this follows from Kühn and Osthus [START_REF] Kühn | Induced subdivisions in K s,s -free graphs of large average degree[END_REF].

Similar to the notion of χ-boundedness, Karthick [START_REF] Karthick | Star coloring of certain graph classes[END_REF] introduced the notion of χ sbounded class, where χ s denotes the star chromatic number. The star chromatic number is introduced by Grünbaum [START_REF] Grünbaum | Acyclic colorings of planar graphs[END_REF].

In this setting, two conjectures were proposed. (Recall that an H-free graph is a graph excluding H as an induced subgraph and, for a family F of graphs, an F -free graph is a graph which is F-free for all F ∈ F .) Conjecture 6.3 (Karthick [START_REF] Karthick | Star coloring of certain graph classes[END_REF]) The class of all K 1,t -free graphs (where t ≥ 3) is χ s -bounded. Conjecture 6.4 (Karthick [START_REF] Karthick | Star coloring of certain graph classes[END_REF]) For any tree T, the class of all (T, C 4 )-free graphs is χ s -bounded. Chapter 6. From χ-boundedness to χ p -boundedness In Section 6.1 we prove Conjecture 6.3 (see Theorem 6.4), disprove Conjecture 6.4, and characterize those pairs (T, K r,t ) (with T a forest) such that the (T, K r,t )-free graphs are χ s -bounded. Theorem 6.1 ([40]) Let T be a forest and let r ≤ t be positive integers. Then the class C of all (T, K r,t )-free graphs is χ s -bounded if and only if r = 1 or T is a subgraph of the 1-subdivision of a tree.

In [START_REF] Nešetřil | Tree-depth, subgraph coloring and homomorphism bounds[END_REF], a generalization of the chromatic number was proposed, which defines a non-decreasing sequence χ 1 , χ 2 , . . . of graph invariants, where χ 1 is the usual chromatic number (i.e. χ 1 = χ), χ 2 is the star chromatic number (i.e. χ 2 = χ s ), and χ p is the tree-depth chromatic number of rank p.

The notion of bounded expansion captures uniform sparsity of graph classes. The following two characterizations of bounded expansion classes are of prime importance here. One is by means of the average degrees of topological minors while the other is by means of χ p -invariants. (See [START_REF] Nešetřil | Sparsity (Graphs, Structures, and Algorithms)[END_REF] for a general background of sparsity.) Motivated by these two characterizations of bounded expansion, we consider two generalizations of the notion of χ-boundedness. Definition 6.1 A hereditary graph class C is strongly χ p -bounded if, for every G ∈ C we have χ p (G) ≤ f p (ω(G)) (for some fixed binding function f p ). Definition 6.2 A hereditary graph class C is weakly χ p -bounded if, for every G ∈ C we have χ p (G) ≤ g p (ω(TM p-1 (G))) (for some fixed binding function g p ).

This second definition may look arbitrary at first glance. The reason why we consider TM p-1 (G) in the definition of weakly χ p -bounded classes is that χ p (G) has a lower bound in terms of ω(TM p-1 (G)) (see Lemma 6.14) but not in terms of ω(TM p (G)). To see this, let G (p) denote the p-subdivision of a graph G, that is the graph obtained by replacing each edge of G by a path of length p + 1. Then we have χ p (K (p)

This lower bounds suggest a generalization of some inequalities [START_REF] Wood | Acyclic, star and oriented colourings of graph subdivisions[END_REF] binding the chromatic number χ(G) of a graph G and the star chromatic number χ 2 (G (1) ) of the 1-subdivision of G into inequalities binding χ(G) and the pth chromatic number χ p (G (p-1) ) of the (p -1)-subdivision of G (see Theorem 6.5 in Section 6.3). Chapter 6. From χ-boundedness to χ p -boundedness Proof. Excluding K 1,t we get a graph class where the maximum degree ∆(G) of a graph G is bounded by a function of its clique number ω(G). Precisely we have:

where R(n, m) is the Ramsey number for two coloring of edges of a complete graph. Indeed, if the neighborhood of any vertex v has size R(ω(G), t) and does not contain an independent set of size t then it contains a clique of size ω(G), a contradiction. Then the theorem follows from the fact that graphs with degree at most D have star chromatic number O(D 3/2 ) [START_REF] Fertin | On star coloring of graphs[END_REF].

Let us remark that, by the same argument, we get that d(TM r (G)) is bounded by some fixed function of ω(G) and r for every K 1,t -free graph G. In other words, the class of K 1,t -free graphs has ω-bounded expansion (see formal definition in Section 6.2 Definition 6.3). This stronger property actually holds for the more general class of all even hole-free graphs that exclude induced subdivisions of a fixed complete bipartite graph K s,t .

We now disprove Conjecture 6.4 in the following more general form. To this end, we make use of the following result of Wood.

Lemma 6.3 ([79, Theorem 2])

For every graph G the star chromatic number of G (1) satisfies: (1) ) ≤ max(χ(G), 3) Lemma 6. [START_REF] Bednarchak | A note on the Beck-Fiala theorem[END_REF] Let T be a forest that is not a subgraph of a 1-subdivided tree, and let k be a positive integer. Then the class of all (T, C 4 , . . . , C 2k , odd hole)-free graphs is not χ s -bounded.

Proof. Let C be the hereditary closure of the class of 1-subdivisions of all the graphs with girth at least k + 1. The graphs in C are (T, C 4 , . . . , C 2k , odd hole)-free and have no triangle. It is well known that graphs of girth at least k + 1 have unbounded chromatic number [START_REF] Erdős | Graph theory and probability[END_REF]. According to Lemma 6.3 we have χ s (G (1) ) ≥ χ(G) and hence the class C is not χ s -bounded.

We now characterize those forests T and those complete bipartite graphs K r,t with the property that the class of (T, K r,t )-free graphs is χ s -bounded.

For this we shall need the following results, which we restate using our definitions and notations.

Lemma 6.5 ([52, Theorem 2])

For all k, r ∈ N there exists d = d(r, k) such that for every K r,r -free graph G with d(G) ≥ d we have . Then for every graph G with max H⊆G d(H) ≤ t and d(ITM e k (G)) < r we have

We shall need the following nice results of Dvořák. Lemma 6.8 can be equivalently restated by the fact that χ s (G) and χ(TM 1 (G)) are bound to each other, in the sense that there exist functions f and g such that χ s (G) ≤ f (χ(TM 1 (G))) and χ(TM 1 (G)) ≤ g(χ s (G)).

We are now in the position to prove Theorem 6.1. Proof. If r = 1 then the result follows from Theorem 6.4. Thus we can assume r ≥ 2.

According to Lemma 6.4, if C is χ s -bounded then T is a subgraph of a 1-subdivided tree. Assume T is a subgraph of a 1-subdivided tree T ′ . We can assume that T is an induced subgraph of T ′ . We consider the class C ′ of all (T ′ , K r,r )-free graphs (which includes C ). Let k be an integer and let C ′ k be the subclass of C ′ of graphs with clique number at most k. By an easy Ramsey argument, the graphs in the class C ′ exclude some K r ′ ,r ′ as a (non induced) subgraph. Note that C ′ k is a hereditary class. Assume the average degree of graphs in C ′ k is arbitrarily large. By Lemma 6.5 (and as C ′ k is hereditary), the class C ′ k contains the 1-subdivision of graphs with arbitrarily large average degrees, in which we can easily find a copy of T ′ , contradicting our hypothesis.

Thus the average degree of the graphs in C ′ k is bounded by some constant, and so is the chromatic number. Assume that the graphs in C ′ k have unbounded χ s . Then, according to Lemma 6.8 we can find graphs G in C ′ k such that the average degree of the graphs in TM 1 (G) is arbitrarily large. Then, according to Lemma 6.6 the average degrees of the graphs in ITM e 1 (G) are also arbitrarily large, again leading to a contradiction.

Strongly χ p -bounded classes of graphs

Theorem 6.2 characterizes classes that are strongly χ p -bounded. It will directly follow from the following results stated below as Lemma 6.9 (equivalence of (i),(ii), and (iii)), Lemma 6.11 (equivalence of (iii) and (iv)), and Lemma 6.12 (equivalence of (iii) and (v)). Definition 6.3 A graph class C has ω-bounded expansion if there exists a function f : N × N → R such that for every G ∈ C and every non-negative integer r we have

This has the following immediate consequence.

Corollary 6.1 For every graph H and a positive integer r, the class of all graphs excluding both an induced K r,r and all induced subdivisions of H has ω-bounded expansion.

Consequently the following classes have ω-bounded expansion (hence are χ-bounded, χ s -bounded and, more generally, χ p -bounded):

-Any class of graphs with bounded stability number. Indeed, if α(G) < t then G excludes induced K t,t and (every induced subdivision of) tK 1 . This includes, for instance, the class of the complements of shift-graphs. -Any class of graphs such that the neighborhood of every vertex has bounded stability number. (Indeed, this boils down to excluding K 1,t .) Note that this includes claw-free graphs. -Any hereditary class of graphs excluding a complete bipartite graph and having a bound on the diameter. This includes trivially perfect graphs. (Note that a trivially perfect graph is a graph with the property that in each of its induced subgraphs the size of the maximum independent set equals the number of maximal cliques.) -The class of all even hole-free graphs. Actually, it is sufficient to consider theta-free graphs, as this amounts to exclude all subdivisions of K 2,3 . More generally, graphs excluding all induced subdivisions of K r,t form an ω-bounded expansion class. -The class of all split graphs. Indeed, split-graphs exclude C 4 , C 5 , and

Note that every subdivision of 2K 2 includes 2K 2 as an induced subgraph. Some further examples of classes with ω-bounded expansion (and thus strongly χ pbounded) can be obtained from classes with bounded expansion. It follows from [START_REF] Nešetřil | Clustering powers of sparse graphs[END_REF] that if a graph class C has bounded expansion and d is a positive integer, then the class 

(ii) C does not contain all complete bipartite graphs, and (iii) for every integer r ≥ 1 we have d(ITM e r (C )) < ∞.

Proof. Assume the conditions (i),(ii), and (iii) are satisfied. Let t ∈ N and let

By (ii) graphs in C t exclude some K s,s as an induced subgraph. By Ramsey's theorem, as they also exclude K t they exclude K R(t,s),R(t,s) as a subgraph. According to (iii), there exists a constant d = d(ITM e 1 (C )) such that if the 1-subdivision of a graph H is an induced subgraph of a graph G ∈ C t then the average degree of H is at most d. From this property and the exclusion of K R(t,s),R(t,s) as a subgraph we deduce, according to Lemma 6.5 that there exists a constant d ′ such that every graph in C t (as well as every induced subgraph of graphs in C t as C t is hereditary) has average degree at most d ′ . Then, according to Lemma 6.6, it follows from this property, (i) and (iii) that C has ω-bounded expansion.

Chapter 6. From χ-boundedness to χ p -boundedness Hence we have

≤ χ p (H (p-1) ) p (by Lemma 6.14)

It follows that ITM e p-1 (C ) is χ-bounded. The following is an easy but useful lemma. Lemma 6. [START_REF] Cover | Elements of information theory[END_REF] Let D be a monotone class of graph. If D is χ-bounded then χ(D ) < ∞.

Proof. Assume for contradiction χ(D ) = ∞. By [START_REF] Rödl | On the chromatic number of subgraphs of a given graph[END_REF] it follows that D contains triangle-free graphs with arbitrarily large chromatic number, contradicting the assumption that D is χ-bounded.

As ITM e p (C ) is obviously monotone for p ≥ 1 we deduce the following strengthening of Lemma 6.15. Corollary 6.2 Let C be a hereditary class of graphs and let p be a positive integer. If

Proof. (i)⇒(ii): The χ-boundedness of C is simply the case p = 1 of (i) and the other cases directly follow from Corollary 6.2.

(ii)⇒(iii): Assume for contradiction that ITM e r (C ) has unbounded average degree. According to Lemma 6.7 the chromatic number of graphs in ITM e 2r+1 (C ) is unbounded, contradicting (ii).

(iii)⇒(iv): Let s be a positive integer and let C s = {G ∈ C | bω(G) ≤ s}. As d(ITM e 1 (C )) < ∞ we deduce from Lemma 6.5 that d(C ) < ∞. Then, according to Lemma 6.6 we deduce d(TM k (C )) < ∞ for all k. It follows that C s has bounded expansion (by Lemma 6.1) hence χ p (C ) < ∞) for all integers p (by Lemma 6.2). As this holds for each integer s we deduce that there exists a function f p for each integer p such that χ p (G) ≤ f p (bω(G)) holds for every G ∈ C .

(iv)⇒(v): For each integer t, the class {G ∈ C | K s,s ̸ ⊆ i G and ω(G) ≤ t} is included (by Ramsey theorem) in the class {G ∈ C | K s t ,s t ̸ ⊆ G}, which has bounded expansion. It follows that the class {G ∈ C | K s,s ̸ ⊆ i G} is strongly χ p -bounded by Theorem 6.2.

(v)⇒(i): assume C is χ-bounded (i.e. there is a function f with χ(G) ≤ f (ω(G)) for all G ∈ C ) and that for each positive integer s the class {G ∈ C | K s,s ̸ ⊆ i G} is strongly χ p -bounded (i.e. there are functions g p,s with χ p (G) ≤ g p,s (ω(G)) for all graphs G ∈ C with K s,s ̸ ⊆ i G). Let G ∈ C . We have χ 1 (G) ≤ f (ω(G)) by assumption. Let p > 1 and let k = ω(TM p-1 (G)). Note that G has clique number at most k and that it does not contain any induced K k+1,k+1 (as K k+1 ∈ TM p-1 (K k+1,k+1 )). Thus χ p (G) ≤ g p,k+1 (k). We conclude that C is weakly χ p -bounded. With Theorem 6.3 at hand we can give some examples of weakly χ p -bounded classes. First we note the following direct consequence of Lemma 6.10.

Weakly χ p -bounded classes of graphs
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-classes with no holes of length greater than ℓ are weakly χ p -bounded, as they are χ-bounded [START_REF] Chudnovsky | Induced subgraphs of graphs with large chromatic number. III. Long holes[END_REF] and they exclude all subdivisions of C ℓ+1 ; -classes excluding all subdivisions of some tree T are weakly χ p -bounded, as these classes are χ-bounded [START_REF] Scott | Induced trees in graphs of large chromatic number[END_REF]; -The class of graphs with no holes of length equal to 0 mod ℓ is weakly χ p -bounded.

Indeed this class is χ-bounded [START_REF] Scott | Induced subgraphs of graphs with large chromatic number. X. Holes of specific residue[END_REF] and, for each integer r, the class ITM e r (C ) contains no cycle of length 0 mod ℓ hence is also χ-bounded. We now give some further examples, which show a surprising robusteness of the notion of weak χ p -boundedness. For this, we shall need the following result (stated as Lemma 6.17), which is a direct corollary of the main theorem of [START_REF] Gajarský | First-order interpretations of bounded expansion classes[END_REF] (see [START_REF] Nešetřil | Rankwidth meets stability[END_REF] for a formal derivation). A first-order transduction T is a pair (η(x, y), ν(x)) of first-order formulas in the language of vertex-colored graphs. A graph class D is a first-order transduction of a graph class C if there exists a first-order transduction T = (η(x, y), ν(x)), where η is symmetric and for every graph G ∈ D there exists a graph H ∈ C and a vertex-coloring

pairs vertices of G that satisfy ν in H + . As an example, consider the class of all map graphs. Recall that a map graph is the intersection graphs of finitely many simply connected and internally disjoint regions of the plane, and that it can be obtained as induced subgraph of the square of a bipartite planar graph. The class of map graphs is a first-order transduction of the class of planar graphs, as witnessed by the transduction T = (η, ν) where we consider a black/white coloring of the vertices, ν(x) := Black(x), and η(x, y) := (∃z) E(x, z) ∧ E(z, y).

A graph class C has structurally bounded expansion if it is a first-order transduction of a graph class with bounded expansion. For instance, the class of maps, which is a first-order transduction of the class of planar graphs, has structurally bounded expansion.

Lemma 6.17 ([29, 65]) Every structurally bounded expansion class is linearly χ-bounded.

We complement this by Proposition 6.3 Every structurally bounded expansion class is weakly χ p -bounded for every p.

Proof. Let C be a structurally bounded expansion class. According to Lemma 6.17 C is linearly χ-bounded. Moreover, the classes ITM e r (C ) are transductions of C hence are classes with structurally bounded expansion thus are also linearly χ-bounded. By Theorem 6.3-(ii) we deduce that C is weakly χ p -bounded.

For the next example we recall the notion of low P-covers [START_REF] Gajarský | First-order interpretations of bounded expansion classes[END_REF]. Let P be a hereditary class property. A graph class C has low P-covers if, for every positive integer p there exists a graph class D p with property P and an integer n p such that for every graph G ∈ C there exists family F of at most n p subsets of vertices of G with the following property:

1. every subset X of at most p vertices of G is included in some set in F ; 2. every subgraph of G induced by a set in F belongs to D p . Chapter 6. From χ-boundedness to χ p -boundedness If f is a graph invariant, a graph class C has low f -covers if it has low P f -covers for the property P f expressing that f is bounded on the class (i.e. the corresponding classes D p can be chosen of the form {G : f (G) ≤ C p } for some constant C p depending on p).

A graph class C has bω-bounded expansion if there exists a function f such that for every integer r and every graph G ∈ C we have d(TM t (G)) ≤ f (bω(G), r).

Note that it follows from Theorem 6.3 that a graph class is weakly χ p -bounded if and only if it is χ-bounded and it has bω-bounded expansion.

The twin-width invariant has been recently introduced [START_REF] Bonnet | Twin-width I: tractable FO model checking[END_REF][START_REF] Bonnet | Twin-width II: small classes[END_REF][START_REF] Bonnet | Twin-width III: max independent set, min dominating set, and coloring[END_REF][START_REF] Bonnet | Twin-width IV: low complexity matrices[END_REF][START_REF] Bonnet | Twin-width and permutations[END_REF]. Classes with bounded twin-width include proper minor-closed classes and bounded rank-width graphs, and the property of having bounded twin-width is preserved by first-order transductions. Proposition 6.4 Every graph class with low twin-width covers is weakly χ p -bounded.

Proof. Let C be a graph class with low twin-width covers. Then there exist integers n 1 , t 1 such that the vertex set of every graph G in C can be partitioned into at most n 1 parts V 1 , . . . , V n 1 , each inducing a subgraph with twin-width at most t 1 . As classes with bounded twin-width are χ-bounded [START_REF] Bonnet | Twin-width III: max independent set, min dominating set, and coloring[END_REF], there is a function

). Thus C is χ-bounded. As a graph class with bounded twin-width and bounded bω has bounded expansion [START_REF] Bonnet | Twin-width II: small classes[END_REF], classes with low twin-width covers and bounded bω have low bounded expansion covers hence have bounded expansion [START_REF] Nešetřil | Grad and classes with bounded expansion I. Decompositions[END_REF]. Very recently, Davies [START_REF] Davies | Vertex-minor-closed classes are χ-bounded[END_REF] announced that proper vertex-minor-closed classes are χbounded. More generally, we now show that it follows that such classes are weakly χ p -bounded.

The local complementation at a vertex v of a graph G is the operation of replacing the subgraph induced by the neighborhood of v by its complement, and that the resulting graph is denoted by G * v. A graph H is a vertex-minor of a graph G if it can be derived from G by applying a sequence of local complementations and vertex deletions. A graph class is vertex-minor-closed if every vertex-minor of a graph in the class also belongs to the class; it is proper if it does not include all graphs.

It is easily checked that if a subdivision of a graph H is an induced subgraph of a graph G then H is a vertex-minor of G. It follows that proper vertex-minor closed classes of graphs are closed under induced topological minors. It follows then from Proposition 6.5 that χ-boundedness of proper vertex-minor closed classes of graphs implies weak χ pboundedness.