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Résumé en français

Les algorithmes distribués sont dorénavant présents dans de nombreux aspects
de l’Automatique avec des applications pour des systèmes multi-robots, des réseaux
de capteurs, couvrant des sujets tels que la commande, l’estimation d’état, la dé-
tection de défauts, la détection et l’atténuation des cyberattaques sur les systèmes
cyber-physiques, etc. En effet, les systèmes distribués sont confrontés à des prob-
lèmes tels que l’extensibilité à un grand nombre d’agents et la communication
entre eux. Dans les applications de systèmes multi-agents (par exemple, flotte de
robots mobiles, réseaux de capteurs), il est désormais courant de concevoir des
algorithmes d’estimation d’état de manière distribuée afin que les agents puissent
accomplir leurs tâches sur la base de certaines informations partagées au sein de
leur voisinage.

Dans le cas de missions de surveillance, un réseau de capteurs statique et à
faible coût (par exemple, caméras) pourrait ainsi être déployé pour localiser de
manière distribuée des intrus dans une zone donnée. Dans ce contexte, l’objectif
principal de cette thèse est de concevoir des observateurs distribués pour estimer
l’état d’un système dynamique (par exemple, flotte de robots intrus) avec une
charge de calcul réduite tout en gérant efficacement les contraintes et les incerti-
tudes.

Ce manuscrit propose plusieurs variantes d’algorithmes d’estimation d’état dis-
tribués pour les réseaux de capteurs. Ces algorithmes sont fondés sur le paradigme
de l’estimation par horizon glissant et la convergence par consensus. Dans ce
qui suit sont listées les contributions de cette thèse pour chacune des techniques
d’estimation distribuées à horizon glissant proposées.

Dans [Sui et al., 2010] il a été proposé une stratégie d’estimation à horizon
glissant avec une pré-estimation fondée sur un observateur de Luenberger qui a
conduit à de bonnes performances, en termes de précision d’estimation, en par-
ticulier pour de grands horizons d’estimation. Ce travail a également proposé un
problème d’optimisation pour régler les paramètres en minimisant les effets du bruit
de mesure et des erreurs de modèle. L’article [Sui and Johansen, 2014] a généralisé
la formulation en utilisant une matrice pour pondérer la fonction de pénalité et a
également ajouté des contraintes d’état. Une estimation à horizon glissant avec
pré-estimation a également été proposée pour les systèmes non linéaires [Suwan-
tong et al., 2014]. Les auteurs de [Farina et al., 2010a] ont proposé un algorithme
distribué pour les systèmes linéaires avec la preuve de stabilité dans des conditions
d’observabilité faible (en exploitant un consensus sur l’estimation et un terme de
pondération du consensus dans la formulation de l’estimation distribuée à horizon
glissant). Cependant, le problème du temps de calcul devient crucial, car le réseau
est généralement composé de capteurs à faible coût. De plus, l’algorithme de [Fa-
rina et al., 2010a] pour calculer les termes de consensus nécessite des informations
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sur l’ensemble du réseau de capteurs et n’est donc pas adapté à un schéma entière-
ment distribué, en particulier lorsque la topologie de communication change dans
le temps. Fondée sur les résultats de [Sui and Johansen, 2014,Farina et al., 2010a],
la présente thèse propose un algorithme d’estimation distribuée à horizon glissant
avec pré-estimation présenté dans [Venturino et al., 2020] et son extension publiée
dans [Venturino et al., 2021b]. Un observateur de Luenberger à pré-estimation est
considéré dans la formulation du problème local à résoudre par chaque capteur,
ce qui entraîne une réduction significative du temps de calcul. La contribution
principale de cette technique couvre :

• réduire le temps de calcul nécessaire à la résolution du problème d’optimisation
local ;

• préserver la précision des erreurs afin de permettre l’utilisation de ce type
d’algorithmes pour les applications sensibles au facteur temps ;

• mieux ajuster les poids de consensus associés à la topologie du réseau via un
nouvel algorithme de pondération fondé sur le rang d’observabilité qui tire
parti des informations locales disponibles.

[Battistelli, 2018] a introduit un autre mécanisme fondé sur le consensus dans
une approche d’estimation distribuée à horizon glissant afin de fusionner les coûts
d’arrivée locaux et de garantir la stabilité des erreurs d’estimation de manière to-
talement distribuée, c’est-à-dire que chaque capteur est capable de garantir la
convergence de l’estimation vers l’état du système en utilisant uniquement les in-
formations disponibles localement. Dans [Venturino et al., 2020,Venturino et al.,
2021b], nous avons proposé deux algorithmes fondés sur [Farina et al., 2010a]
qui, grâce à l’introduction d’un observateur de pré-estimation et aux pondérations
fondées sur le rang de la matrice d’observabilité, ont permis de réduire le temps
de calcul et d’améliorer la précision de l’estimation. Cette thèse étend l’approche
proposée dans [Venturino et al., 2020] à la formulation d’estimation distribuée à
horizon glissant de [Battistelli, 2018] qui s’est avérée obtenir des résultats de sta-
bilité plus généraux ainsi que des performances améliorées par rapport à [Farina
et al., 2010a]. Par rapport à [Battistelli, 2018], l’algorithme d’estimation distribuée
à horizon glissant avec voisinages à `-pas proposé dans ce manuscrit conduit égale-
ment à un temps de calcul réduit grâce à observateur de pré-estimation. Une autre
contribution concerne l’amélioration de la convergence de l’erreur d’estimation en
atténuant les problèmes d’inobservabilité. Cette situation peut survenir dans les
réseaux de capteurs lorsque certains nœuds n’ont aucune capacité de détection
(capteurs inactifs) ou ne peuvent mesurer que certaines parties de l’état du sys-
tème, ce qui le rendrait non observable en utilisant uniquement ces capteurs. À
cette fin, la nouvelle technique d’estimation distribuée à horizon glissant proposée
exploite les échanges d’informations entre les nœuds locaux sur la base d’un mé-
canisme de diffusion de l’information de voisinage à `-pas, qui est naturel dans
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les données de fenêtre glissante présentes dans le paradigme de l’estimation de
l’horizon glissant.

La dernière contribution porte sur la localisation de systèmes multi-véhicules
à l’aide d’algorithmes distribués d’estimation à horizon glissant. Des travaux sim-
ilaires ont été menés par les auteurs de [Simonetto et al., 2011] et [Yousefi and
Menhaj, 2014]. Dans [Simonetto et al., 2011], le problème de l’estimation dis-
tribuée à horizon glissant a été abordé en se concentrant sur la non-linéarité du
modèle et sur les éventuels problèmes d’observabilité locale au niveau des capteurs.
Dans [Yousefi and Menhaj, 2014], les auteurs ont pris en compte les nœuds mobiles
dans le réseau de capteurs, ce qui a conduit à traiter une topologie dynamique.
Cette contribution se concentre sur l’aspect temps de calcul, qui est un facteur
clé pour la mise en œuvre en temps réel. L’originalité de notre algorithme porte
sur deux directions. Premièrement, en plus d’un temps de calcul réduit et d’une
précision améliorée grâce à la pré-estimation, la technique d’estimation distribuée
à horizon glissant proposée est conçue pour des scénarios réalistes de systèmes
à grande échelle impliquant des mesures sporadiques (c’est-à-dire disponibles à
des instants a priori inconnus). Dans ce but, les contraintes sur les mesures
(provenant de la connaissance de l’environnement dans lequel le système multi-
véhicules évolue) sont incorporées en utilisant des paramètres binaires dans cette
nouvelle formulation d’estimation distribuée à horizon glissant. Ainsi, les informa-
tions sur l’environnement sont exploitées pour mieux estimer l’état du système.
Deuxièmement, nous évaluons la performance de l’approche distribuée proposée
pour l’estimation à l’horizon glissant (en termes de précision et de temps de cal-
cul) sur une étude de cas réaliste, c’est-à-dire la localisation distribuée d’un système
multi-véhicules par un réseau de capteurs statiques, développée sous ROS (Robotic
Operating System) et avec le simulateur Gazebo. Cette implémentation logicielle
permet un déploiement sur un réel. Pour confirmer son efficacité, la formulation
contrainte de l’estimation distribuée à horizon glissant proposée est comparée à
l’algorithme de référence de [Farina et al., 2010a]. En outre, l’approche proposée
pour l’estimation distribuée à horizon glissant est évaluée, en termes de précision
et de temps de calcul, sur trois expérimentations (impliquant des caméras réelles
et des véhicules terrestres autonomes) utilisant différents nombres de capteurs, des
topologies de réseau de communication distinctes et une couverture diverse des
champs de vision des caméras. En effet, l’une des principales contributions porte
sur la validation expérimentale de la technique proposée d’estimation distribuée à
horizon glissant pour la localisation d’un système multi-véhicules. Dans la con-
figuration expérimentale développée, le réseau de capteurs statiques est composé
de caméras à bas coût qui fournissent des mesures sur les positions des véhicules.
Chaque caméra est reliée à une carte Raspberry PI pour les capacités de calcul et
de communication. L’algorithme d’estimation distribuée à horizon glissant proposé
a été mis en œuvre sous ROS pour fonctionner de manière distribuée sur chaque
Raspberry PI. Le système multi-véhicule est composé de cinq robots TurtleBot3
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effectuant des déplacements en formation dans une zone de type route située dans
l’arène de vol de CentraleSupélec équipée d’un système de capture de mouvement.
Une vidéo explicative, permettant une meilleure compréhension des expérimentions
est disponible sur https://youtu.be/1CkSba2wVuI.

Les algorithmes proposés sont également comparés à des résultats de la littéra-
ture en considérant diverses métriques telles que le temps de calcul et la précision
des estimées.

1
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1 - Introduction and research objectives

In the last few years, distributed algorithms have pervaded many aspects of
control engineering with applications for multi-robot systems, sensor networks,
and others, covering topics such as control [Segovia et al., 2021b,Bertrand et al.,
2020,Bono et al., 2019,Ding et al., 2019,Conte et al., 2016], state estimation [Si-
monetto et al., 2011, Sarras et al., 2017, J. Zeng and Liu, 2015], fault detection
and mitigation [Marzat et al., 2018,Wu et al., 2019], cyber-attack detection and
mitigation on cyber-physical systems [Gheitasi et al., 2019,Gallo et al., 2020, Jin
et al., 2021], both control and estimation [Segovia et al., 2019], formation con-
trol [Nguyen et al., 2015,Chevet et al., 2018,Venturino and Lucia, 2019], etc. De-
spite their different purposes, these topics share common characteristics as a con-
sequence of the development in distributed schemes. Indeed, distributed schemes
face problems like scalability (which handles growing or decreasing number of re-
sources by keeping nearly constant the complexity of the problem to solve) and
communication between agents (in particular which and what amount of informa-
tion to share and with whom). If, on one hand, sharing more data could lead to
have better performance in terms of accuracy, on the other hand, the complexity
could raise as well as the communication burden. In centralized frameworks, with
the same purpose, usually a central unit manages all the resources involved in the
network; nevertheless it can hardly deal with scalability issues due to physical and
computational limitations. Moreover, it is not robust with respect to the loss of
the central unit. However, as an ideal objective, distributed algorithms are usually
compared with the centralized counterpart in terms of performance.

In multi-agents applications (fleet of mobile robots, sensor networks) it is now
common to design control or state estimation algorithms in a distributed way so
that the agents can accomplish their tasks based on some shared information within
their neighborhoods [Hespanha et al., 2007]. Using centralized scheme leads to
achieve global optimum, however centralized systems face strong constraints in the
real world. Indeed, they often require full connectivity and most of them hardly
scale up, in particular with the number of agents [Moors et al., 2005]. In addition,
robustness with respect to the loss of the central entity is a major weakness of
centralized approaches [Khauphung et al., 2008].

In surveillance missions, teams of robots could be deployed to track/follow
intruders in a given area [Zhang and Meng, 2010, Pimenta et al., 2009]. In this
case, the problem consists in estimating the trajectory of the intruders from mea-
surements provided by the sensors (cameras, lidars, radars, etc.), see Figure 1.1a.
In the case of mobile sensors/robots, the agents also have to control their own
motion. Estimates of their relative positions, see Figure 1.1b, should be computed
in this case in addition to the intruders’ trajectory. For such problems, distributed
state estimation algorithms proposed in the literature are suitable as theoretical
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basis [Olfati-Saber, 2005,Carli et al., 2008,Robin and Lacroix, 2016].

Intruder

(a) Estimation of the intruder’s trajectory. (b) Estimation of the team’s relative positions.
Figure 1.1: Possible scenarios for teams of mobile robots in surveillance missions.

1.1 Distributed State Estimation

The estimation algorithms used in such applications over sensor network are
mainly formulated as centralized sensor fusion architectures, where all the sensors
transmit their local measurements to a central unit which processes the provided
data to update the estimation. Unlike centralized schemes, in distributed ap-
proaches [Zhang et al., 2019] each sensor computes a local estimation (at least
partially) using the information acquired only from locally connected neighbors or
local measurements. This can improve robustness to sensor failure exploiting redun-
dancy [Tošić et al., 2013,Cărbunar et al., 2006] and also lower the communication
burden since data is transmitted only among local nodes in the network [Hespanha
et al., 2007]. In the context of large-scale systems, the algorithms have to be
scalable to deal with large-scale networks, need low computation load (necessary
when dealing with low-cost sensors with low computation capabilities), have to
minimize the utilization of communication resources, etc.

1.2 State of the art

During the past years, several research works have been dedicated to model,
estimate and control distributed Multi-Agent Systems (MAS), see [Negenborn and
Maestre, 2014,Vadigepalli and Doyle III, 2003,Millán et al., 2013,Nguyen et al.,
2017, Rego et al., 2019a], etc. Considerable studies help to better cope with
Multi-Agent Systems by developing suitable distributed algorithms to deal with
state estimation of large-scale systems [Segovia et al., 2021a,Wang et al., 2018],
with applications on Multi-Vehicle System [Halsted et al., 2021, Vargas et al.,
2022, Mechali et al., 2022], also used to localize such systems. Two different
main classes of problems can be considered, depending whether the localization
is performed by the vehicles themselves and/or accounting for information from
them (cooperative localization) [Nogueira et al., 2010, Franzè et al., 2020], or
by an exogenous system without any exchange of information with the vehicles
(non-cooperative localization) [Mei et al., 2019,Viani et al., 2015]. For example,
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in [D’Alfonso et al., 2015], the authors compared the well-known extended Kalman
filter and unscented Kalman filter for nonlinear models to estimate the pose of
a single mobile robot by fusing the measurements taken by ultrasonic sensors
located onboard the robot. For non-cooperative localization, such experiments
are rare in literature. Nevertheless, in recent decades, the interest in distributed
state estimation increased tremendously. For instance, in [He et al., 2020], the
authors reviewed several outcomes of distributed state estimation over a low-cost
Sensor Network (SN), pointing out their characteristics, benefits, and challenging
issues. In [Halsted et al., 2021], the authors surveyed and compared several classes
of distributed optimization algorithms for multi-robot applications. One critical
point for such Sensor Networks (SN) comes from the limited computation and
communication resources of local sensors, which strongly motivates the current
thesis.

Consensus techniques have often been used for designing distributed state es-
timation algorithms for Sensor Networks. A consensus problem in which the agree-
ment value is a distributed estimation of some non-constant quantity of interest
is referred to as a dynamic consensus, see [Manfredi, 2013]. Recently, such algo-
rithms have pervaded the control engineering literature on numerous topics, e.g.
state estimation [Olfati-Saber, 2007, Soatti et al., 2016], fault detection and iso-
lation [Lauricella et al., 2017, Lauricella et al., 2020], detection and mitigation of
cyber-attacks [Sargolzaei et al., 2019,Ghafouri et al., 2020], combined control and
state estimation [Garin and Schenato, 2010,Zhao and Zelazo, 2015], etc.

1.2.1 Objectives

In this context, the main objective of this work is to design distributed observers
with reduced computation load to estimate the state of multi-robot systems that
efficiently handle constraints and uncertainties. It is, indeed, necessary to be able to
take into account realistic measurement models of the sensors and of the intruder’s
or agent’s dynamics that can both exhibit uncertainties. Moreover, different types
of constraints can be explicitly considered in the estimation problem to account for
some specificity of the application and prior information that could be available:
limitations of sensor field of view, path constraints, bounds on parameters or inputs
of the intruder’s dynamic model and/or on its state (e.g. a priori information on
the maximum speed of the intruder or on the possible trajectories).

The Moving Horizon Estimation (MHE) paradigm is prone to be a good candi-
date for this problem. Indeed, it has the particularity to cope with constraints and
dealing with a sequence of past measurements and predicted output, see Figure 1.2.

1.2.2 Moving Horizon Estimation

Among all state estimation algorithms, MHE techniques have been studied
over the past decades due to their capacity to consider constraints within their
formulation. The first idea of MHE proposed in [Muske et al., 1993] consists in
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Figure 1.2: Moving Horizon Estimation sliding window.

estimating the current state of a system by solving a least-square optimization
problem penalizing on one hand the deviation between the measurements and the
predicted outputs, and on the other hand a distance between the estimated state
and some a priori information about the state, see Figure 1.2. Often considered as
a dual approach to Model Predictive Control for state estimation, MHE is imple-
mented in a receding horizon way by considering a finite number of the most recent
past measurements. Thus, these techniques use an estimation window of speci-
fied size, which moves forward at each instant. Therefore, the problem remains
computationally tractable since only the latest measurements are processed, while
previous information is condensed in the so-called arrival cost [Rao and Rawlings,
2000, Alessandri et al., 2008, Tebbani et al., 2013]. Figure 1.2 shows the state
sequence estimated at time t− 1 (red points), the one estimated at time t (black
points) and real trajectory of the state (black line). In the past decades, the MHE
technique has gained particular attention within the research community. Indeed,
there is a multitude of works dedicated to this approach that address a variety of
aspects within the state estimation domain. For instance [Isaza-Hurtado et al.,
2019] proposed a technique to cope with estimation for Linear Time-Invariant Sys-
tems in the presence of non-uniform sampled measurements. [Alessandri et al.,
2011] proposed an MHE technique for non-linear systems using neural networks
which led to a reduced online computational effort. Although the MHE approach
is functional for control engineers offering the freedom to tune the parameters of
the cost function, a strength and a weakness of this approach is the use of an
optimization problem to be solved within the sampling period. However, for large-
scale systems and centralized approaches, this issue becomes critical due to the
complexity of the optimization problem [Farina et al., 2010b,Wang et al., 2017].
Indeed, the constrained optimization problem brings with it a certain computational
load, which may become problematic for large-scale systems [Haber and Verhae-
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gen, 2013,Vukov et al., 2015], or when using MHEs techniques for computationally
demanding purposes (see e.g. [Famularo et al., 2022] where the authors proposed
a MHE scheme using Linear Matrix Inequalities for fault detection and isolation).
In addition to specific optimization methods, several techniques have been devel-
oped to reduce the computational load in Moving Horizon Estimation. Recent
approaches on learning-based MHE rely on existing machine learning frameworks
to computationally improve the estimator [Muntwiler et al., 2022,Karg and Lucia,
2021]. Another method, inter alia, is to reduce the number of optimization param-
eters by replacing the sequence of unknown inputs (or state noise) to be estimated
in the dynamical model of the system by a Luenberger pre-estimation observer,
which leads to less computation time, while preserving the accuracy of the esti-
mates, as introduced in [Sui and Johansen, 2014] for linear systems, in [Suwantong
et al., 2014] for nonlinear systems.

In the context of MAS, Distributed Moving Horizon Estimation (DMHE) has
received increased attention in recent years, starting from the estimation for linear
systems by [Farina et al., 2010a], where the authors proved the convergence of
the estimation error even under weak observability conditions. An extension of
DMHE to nonlinear systems subject to constraints has been further proposed by
the same authors in [Farina et al., 2012]. A DMHE scheme for a class of non-
linear systems with bounded output measurement noise and process disturbances
is designed in [Zhang and Liu, 2013], while [J. Zeng and Liu, 2015] considered
Distributed Moving Horizon Estimation of nonlinear systems subject to commu-
nication delays and data losses. The authors of [Yin and Liu, 2017] developed
a DMHE for a class of two-time-scale nonlinear systems described in the frame-
work of singularly perturbed systems. In addition, [Battistelli, 2018] developed
a DMHE with fused arrival cost suitable for a fully distributed implementation.
In the context of large-scale systems, [Segovia et al., 2021a] designed a two-step
distributed state estimation scheme in the presence of unknown-but-bounded dis-
turbances and noises, which involves a set-membership-based MHE. A Distributed
Moving Horizon Estimation via operator splitting for automated robust power sys-
tem state estimation has been proposed in [Kim et al., 2021]. More recently,
in [Yin and Huang, 2022] an event-triggered DMHE is proposed for general linear
systems that comprise several subsystems. A consensus variational Bayesian MHE
for distributed Sensor Networks with unknown noise covariances has been proposed
in [Dong et al., 2022], where three consensus tasks are performed in parallel at
each time instant. More recently, [D’Amato et al., 2022] proposed a Decentralized
Moving Horizon Estimation algorithm for a fleet of UAVs, the decentralization of
the scheme is obtained by decomposing the overall estimation problem in several
optimization sub-models whose convergence is guaranteed by consensus.

Various distributed state estimation algorithms have been developed to address
the localization problem of Multi-Vehicle Systems. In distributed cooperative lo-
calization, the vehicles estimate usually by themselves their own state based on
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the information exchanged with their neighbors, over a vehicle-to-vehicle network,
see [Shorinwa et al., 2020, Nogueira and Pereira, 2019, Viegas et al., 2018]. In
distributed non-cooperative localization, Sensor Networks are often considered to
provide localization of the Multi-Vehicle System. In the context of Multi-Vehicle
System localization over a Sensor Network, similar works have been conducted by
the authors of [Petitti et al., 2011], [Simonetto et al., 2011] and [Yousefi and Men-
haj, 2014]. In [Simonetto et al., 2011], the DMHE problem has been addressed by
focusing on the non linearity of the model and on the possible local observability
issues at the sensor level. In [Yousefi and Menhaj, 2014], the authors accounted
for mobile nodes in the Sensor Network that led to a dynamic topology. Indeed,
using a flocking algorithm for the motion control, the mobile sensors attempt to
move in a specific way in order to get the best positions to observe the target and
to avoid collisions between neighboring agents. In this context, distributed state
estimation over not fully reliable Sensor Network could lead to sporadic measure-
ments, i.e. available at time instants a priori unknown, as considered in [Ferrante
et al., 2016], [Postoyan and Nešić, 2011]. In the case of sensors with limited field of
views (e.g. cameras), sporadic measurements are prone to be even more frequent.

1.2.3 Main motivations
This thesis focuses on designing MHE-based distributed state estimation algo-

rithms over Sensor Network (SN) with the final intent to apply them for localizing
Multi-Vehicle System, as detailed in Section 1.2.1. From the literature overview of
Section 1.2.2, it appears that this research topic is quite active.

This thesis aims to apply such algorithms for real application contexts using
low-cost sensors, lifting the priority of dealing with the computation aspects of the
optimization problem within the MHE paradigm. Section 1.2.2 lists some existing
methods in the literature that reduce the computation time of centralized MHE
methods but not for distributed ones. Our first focus is then on investigating
existing methods and designing a DMHE algorithm able to estimate the state of
the system without penalizing the accuracy of the estimation error while reducing
the computational load.

Another essential aspect related to this research topic is the weak observability
condition in which such algorithms have to operate. For example, when tracking
a vehicle using cameras, or other similar sensors with a limited range of actions,
the vehicle can be detected only when it is operating in the camera’s field of view.
Thus, this raises the issue of weak observability, or unobservability, conditions. In
consensus-based distributed algorithms, it is possible to design the consensus strat-
egy to relay information from (sub-)systems with better observability properties.
To the best of our knowledge, this aspect has not been investigated for DMHE
algorithms. Moreover, as pointed out in the perspectives of [Farina et al., 2010a],
DMHE algorithms are prone to use a sequence of past measurements. Hence it
could be possible to mitigate unobservability conditions by exploiting data from
non-direct sensor neighbors.
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Heading toward real hardware setup and experimental implementation, another
aspect that needs more insights within the current manuscript’s application context
is that the measurements are available at time instants a priori unknown, as pointed
out in the example of detecting vehicles with cameras. Thus, this issue is related
to the unobservability conditions but with more difficulty since the distributed
algorithms in the literature address this issue by considering the sensors with fixed
properties. In other words, the problem is addressed by considering some cameras
as always able to detect vehicles and the rest of the cameras always unable to
do so. Indeed, all the algorithms in the literature are evaluated with numerical
simulations, which is easy to fulfill such a restrictive assumption. In the real world,
this is not always possible. Thus, this current thesis investigates how to face
sporadic measurements using DMHE algorithms.

In addition, when designing algorithms for real-world applications, it is possible
to consider some information when the environment is known. The same statement
can be true when the types of the used sensors are known. Since the MHE involves
an optimization problem, it is possible to include such information as constraints,
enhancing the accuracy of the estimates. It has been done in [Brulin et al., 2009],
where image occlusions are treated as visual constraints in the estimation process.

Finally, an actual experimental setup with ground mobile robots and a low-cost
sensor camera network can validate the algorithm designed for this research work.

1.3 Contributions of the thesis

The current manuscript proposes several variants of Distributed State Estima-
tion (DSE) algorithms for Sensor Network (SN). These algorithms are based on
the MHE paradigm and consensus convergence. The following paragraphs detail
the contribution of this thesis for each of the proposed DMHE techniques.

1.3.1 Distributed Moving Horizon Estimation with pre-estimation
over Sensor Network

In [Sui et al., 2010] it has been proposed an MHE strategy with a Luenberger-
based pre-estimation that led to good performance, in terms of estimation accuracy,
especially for large estimation horizons. They also provided an optimization prob-
lem to tune the parameters minimizing the effects of measurement noise and model
errors. The paper [Sui and Johansen, 2014] generalized the formulation using a
matrix for weighting the penalty function and also added states constraints. An
MHE with pre-estimation has been proposed also for non-linear systems [Suwan-
tong et al., 2014]. The authors of [Farina et al., 2010a] proposed a distributed
algorithm for linear systems with the stability proof under weak observability con-
ditions (exploiting a consensus-on-estimate and a consensus weight term in the
DMHE formulation). However, the computation time issue becomes crucial, since
usually the network is composed of low-cost sensors. Moreover, the algorithm
of [Farina et al., 2010a] to compute the consensus terms needs information about
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the entire SN and thus is not suitable for a fully distributed scheme, especially
when the communication topology changes in time.

Based on the results of [Sui and Johansen, 2014, Farina et al., 2010a], the
present thesis proposes a DMHE algorithm with pre-estimation presented in [Ven-
turino et al., 2020] and its extension published in [Venturino et al., 2021b]. A
pre-estimating Luenberger observer is considered in the formulation of the local
problem to be solved by each sensor, resulting in a significant reduction of the
computation time. The main contribution of this technique covers:

• Reducing the computation time required for solving the optimization prob-
lem;

• Preserving the accuracy of the estimation errors, which allows the use of
this type of algorithms for time-sensitive applications;

• Better tuning the consensus weights associated to the network topology via
a new observability rank-based weight algorithm which takes advantage of
the local available information.

1.3.2 `-step Neighborhood Distributed Moving Horizon Estimation
[Battistelli, 2018] introduced another consensus-based mechanism in a DMHE

approach to fuse local arrival costs and guarantee stability of the estimation errors in
a fully distributed way, i.e. each sensor being capable of guaranteeing convergence
of the estimate to the system state using only locally available information. In
[Venturino et al., 2020, Venturino et al., 2021b], we presented two algorithms
based on [Farina et al., 2010a] which, thanks to the introduction of pre-estimating
observer and the observability rank-based weights technique, they were able to
reduce the computation time and to enhance the estimation accuracy.

This PhD thesis extends the approach proposed in [Venturino et al., 2020] to
the DMHE formulation of [Battistelli, 2018] which has proven to obtain more gen-
eral stability results as well as enhanced performance compared to [Farina et al.,
2010a]. With respect to [Battistelli, 2018], the `-step Neighborhood DMHE algo-
rithm proposed in this manuscript also leads to a reduced computation time due
to a pre-estimating observer. Another contribution concerns the improvement of
the convergence of the estimation error by mitigating unobservability issues. This
situation could arise in sensor networks when some nodes may have no sensing ca-
pacities (inactive sensors), or may be able to only measure some parts of the state
of the system that would make it non observable using only these sensors. For
this purpose, the new proposed DMHE technique exploits the exchanges of infor-
mation among local nodes based on an `-step neighborhood information spreading
mechanism, which comes natural in the sliding window data present in the MHE
paradigm.

These contributions have led to the publication of the paper [Venturino et al.,
2021a]. A journal paper is in preparation.
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1.3.3 Constrained DMHE with sporadic measurements for Multi-
Vehicle Systems

The current contribution focuses on Multi-Vehicle System localization using
DMHE algorithms. Similar works have been conducted by the authors of [Simon-
etto et al., 2011] and [Yousefi and Menhaj, 2014]. In [Simonetto et al., 2011],
the DMHE problem has been addressed by focusing on the non linearity of the
model and on the possible local observability issues at the sensor level. In [Yousefi
and Menhaj, 2014], the authors accounted for mobile nodes in the Sensor Network
that led to deal with a dynamic topology. The current contribution focuses on the
computation time aspect, which is a key factor for real-time implementation.

The contribution of the current algorithm is two-fold.
First, in addition to a reduced computation time and an improved accuracy

due to the pre-estimation, the proposed DMHE technique is designed for realistic
large-scale systems scenarios involving sporadic measurements (i.e. available at
time instants a priori unknown). To this aim, constraints on measurements (coming
from the knowledge of the environment where the Multi-Vehicle System is evolving)
are embodied using binary parameters in this novel Distributed Moving Horizon
Estimation formulation. Thus, the environment information is exploited to better
estimate the system state.

Second, we evaluate the performance of the proposed DMHE approach (in
terms of accuracy and computation time) on a realistic case study, i.e. the dis-
tributed localization of a Multi-Vehicle System by a static sensor network, de-
veloped within the Robot Operating System (ROS) framework and Gazebo envi-
ronment. This realistic distributed implementation within ROS and Gazebo would
enable the deployment on a hardware setup. To confirm its efficiency, the proposed
DMHE constrained formulation is compared with the notable DMHE algorithm [Fa-
rina et al., 2010a]. Furthermore, the proposed DMHE approach is evaluated, in
terms of accuracy and computation time, on three experiments (involving real cam-
eras and autonomous ground vehicles) using different numbers of sensors, distinct
communication network topologies and diverse coverage of the cameras’ fields of
view. Indeed, one of the main contributions consists in the experimental validation
of the proposed distributed MHE localization technique of a Multi-Vehicle System.
In the developed experiment setup, the static Sensor Network is composed of low-
cost cameras which provide measurements on the positions of the vehicles. Each
camera is attached to a Raspberry PI for computational and communication ca-
pabilities. The proposed DMHE algorithm has been implemented within the ROS
framework to run in a distributed way on each Raspberry PI. The Multi-Vehicle
System is composed of five TurtleBot3 robots performing formation motion within
a road-like area located in an indoor arena equipped with a motion capture system.

These contributions have led to the publication of the papers [Venturino et al.,
2022a] and [Venturino et al., 2022b].
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1.3.4 Publications
The work during the preparation of this thesis has led to the submission and

publication of several conference and journal papers.
Peer-reviewed journal papers

• A. Venturino, C. Stoica Maniu, S. Bertrand, T. Alamo, and E. F. Camacho.
Distributed moving horizon state estimation for sensor networks with low
computation capabilities. System Theory, Control and Computing Journal,
1(1):81–87, 2021.

• A. Venturino, C. Stoica Maniu, S. Bertrand, T. Alamo, and E. F. Cama-
cho. Multi-vehicle localization by distributed MHE over a sensor network
with sporadic measurements: further developments and experimental results.
Submission to the Control Engineering Practice Journal, 2022.

Peer-reviewed conference papers

• A. Venturino, S. Bertrand, C. Stoica Maniu, T. Alamo, and E. F. Cama-
cho. Distributed moving horizon estimation with pre-estimating observer.
In 24th International Conference on System Theory, Control and Comput-
ing (ICSTCC), pages 174–179, Sinaia, Romania, 8-10 October, 2020. Best
Paper Award

• A. Venturino, S. Bertrand, C. Stoica Maniu, T. Alamo, and E. F. Camacho.
A new `-step neighbourhood distributed moving horizon estimator. In 60th
IEEE Conference on Decision and Control, pages 508–513, Austin, Texas,
USA, 13-17 December, 2021.

• A. Venturino, S. Bertrand, C. Stoica Maniu, T. Alamo, and E. F. Camacho.
Multi-vehicle system localization by distributed moving horizon estimation
over a sensor network with sporadic measurements. In 6th IEEE Confer-
ence on Control Technology and Applications (CCTA), Trieste, Italy, 23-25
August, 2022.

Other publications
Peer-reviewed conference paper

• C. Stoica Maniu, C. Vlad, T. Chevet, S. Bertrand, A. Venturino, G. Rousseau,
and S. Olaru. Control systems engineering made easy: Motivating Students
through experimentation on UAVs. In IFAC 2020-21st IFAC World Congress,
2020.

Oral presentations

• A. Venturino, S. Bertrand, C. Stoica Maniu, T. Alamo, E.F. Camacho,
“Distributed moving horizon localization for Multi-Vehicle System over a
Sensor Network with sporadic measurements”, Journée du Comité Technique
Commande Prédictive Non Linéaire, Paris, June 3, 2022.
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• A. Venturino, C. Stoica Maniu, S. Bertrand, T. Alamo, E.F. Camacho,
“Distributed localization over sensor camera network for vehicles in urban-
like environment”, Workshop L2S Robotique mobile – commande, estimation
et applications, Gif-sur-Yvette, June 8, 2022.

1.4 Thesis outline

The rest of this thesis is organized as follows.

Chapter 2: Distributed Moving Horizon Estimation with pre-estimation
over Sensor Network. This chapter provides centralized and distributed state
estimation algorithms based on the moving horizon estimation paradigm with a
pre-estimation observer. It starts with some notation, definitions, and graph the-
ory, also used in the rest of the thesis. Then, it describes the sensor network with
its characteristics, properties, and assumptions. The centralized MHE with pre-
estimation is next described, and then the distributed one. The distributed MHE,
apart from the local optimization problem that each sensor needs to solve, also
explains how to achieve a consensus convergence, the assumptions on the network
information exchange, and the distributed algorithm. A numerical example shows
the performance of these estimators in terms of computation time and accuracy
of the estimates. An extension of the distributed algorithm is also provided. Such
extension exploits local systems’ observability properties to improve the distributed
estimations’ convergence. Finally, a Monte Carlo simulations analysis offers the
results of this extended algorithm.

Chapter 3: `-step Neighborhood Distributed Moving Horizon Estima-
tion. This chapter follows the idea of the previous one on providing a distributed
moving horizon estimation with pre-estimation. This new algorithm is based on a
different consensus mechanism by fusing arrival costs, and each local sensor exploits
measurements from non-neighbors nodes. It starts by describing the `-step neigh-
borhood set and how each sensor collects information from the sensor network.
Then, it explains the proposed distributed moving horizon estimation technique by
detailing the local optimization problem and the use of the information diffusion
mechanism, how to fuse the arrival costs among neighbors, and the procedure of
the distributed algorithm. Finally, two simulation cases provide the results to ana-
lyze the performance of the proposed algorithm.

Chapter 4: Constrained DMHE with sporadic measurements for Multi-
Vehicle Systems. This chapter aims to apply one of the developed algorithms
for the application context of surveillance missions. Indeed, it provides a new dis-
tributed moving horizon estimator algorithm that localizes a multi-vehicle system
driving in a urban-like environment. It starts explaining the problem under investi-
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gation. Then, it introduces the main elements for the algorithm (which has to deal,
in this context, with sporadic measurements) and it also shows how to make use
of some environment information as constraints. Then, it describes the proposed
constrained DMHE with sporadic measurements for Multi-Vehicle Systems and
details how to deal with the mentioned sporadic measurements and environment
constraints as well as how to adapt the formulation of the optimization problem for
this application context. Since this chapter aims at developing an algorithm for a
realistic scenario, before going trough practice experiments, it investigates realistic
simulations within the ROS and Gazebo environments. Finally, it shows the analy-
sis and the comparison of results obtained by experiments on a real hardware setup.

Chapter 5: Conclusion and perspectives. This chapter finalizes the current
thesis by means of concluding remarks and gathers several open directions of this
work.
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2 - Distributed Moving Horizon Estimation
with pre-estimation over Sensor Network

This chapter proposes a new Distributed Moving Horizon Estimation (DMHE)
algorithm for state estimation of a discrete-time linear system by a sensor network.
The main contribution consists in using a pre-estimating Luenberger observer in
the formulation of the local problem to be solved by each sensor. This results in
a significant reduction of the computation time while preserving at the same time
the accuracy of the estimates. In addition, the state estimate computed by each
sensor is capable to converge even under weak observability conditions, which is
one of the main advantages of the proposed technique. Moreover, the algorithm
has been extended to exploit observability properties of the sensor network. Indeed,
these properties of local sensors are used for tuning the weights related to consen-
sus information fusion built on an observability rank-based condition, in order to
improve the convergence of the estimation error. Results obtained by simulation
examples are provided to compare the performance with existing approaches, in
terms of accuracy of the estimates and computation time. The proposed algo-
rithms have been published in one conference (24th International Conference on
System Theory, Control and Computing) and one journal paper (System Theory,
Control and Computing Journal).

This chapter is structured as follows. Section 2.1 introduces the considered
research topic and summarizes the state of the art. Section 2.2 introduces the
notations, definitions and assumptions, while Sections 2.3 and 2.4 describe the
proposed Centralized MHE and Distributed MHE with pre-estimation, respectively.
A simulation example shows the effectiveness of the proposed algorithms in Sec-
tion 2.5. Furthermore, Section 2.6 describes the extension of the proposed DMHE
by equipping it with an observability rank-based weights method. Before con-
cluding remarks in Section 2.8, a Monte Carlo simulations analysis is provided in
Section 2.7.

2.1 Introduction

In recent decades, there has been an increasing interest on research about
distributed state estimation due to its variety of applications such as target track-
ing [Albert and Imsland, 2018, Petitti et al., 2011], exploration [Vincent et al.,
2008], surveillance [Kong et al., 2009], microgrids [Ghaderyan et al., 2021], etc.
The estimation algorithms used in these applications are mainly formulated as
centralized fusion architectures, where all the sensors transmit their local measure-
ments to a central unit that processes the provided measurements to update the
estimate [Tedesco et al., 2016,Xie et al., 2012,Battistelli et al., 2012]. In general,
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the centralized algorithms are not scalable, since with the increasing number of
sensors the complexity of the problem to solve increases, too. Furthermore, the
central unit cannot efficiently communicate with all sensors for large-scale sensor
networks due to physical constraints, e.g., limited communication bandwidth, com-
munication delay. Unlike centralized schemes [Grahn et al., 2017], in the distributed
approaches [Hespanha et al., 2007,Rego et al., 2019b,Farina et al., 2010a,Farina
et al., 2012] each sensor computes a local estimation using the information acquired
only from locally connected neighbors. This can improve robustness to unexpected
event (component fault, isolation of a specific area due to security concerns, etc.)
exploiting redundancy [Trapiello et al., 2020,Tošić et al., 2013] and also lower the
communication burden since data is transmitted among local nodes in the network.

The continuous decreasing costs of sensors is making these applications realiz-
able, even tough there are still open problems to face with. In fact, the distributed
algorithms need to have particular properties in order to make them attractive
for the industrial community. Indeed, in the context of large-scale systems, the
algorithms must be scalable to be able to deal with large networks, need low com-
putation load since low-cost sensors are not powerful devices, have to minimize
the utilization of communication resources, etc. In [He et al., 2020], the authors
reviewed several works about distributed state estimation over low-cost sensors
networks, pointing out their characteristics, advantages, and challenging issues.

In recent years, Moving Horizon Estimation (MHE) techniques and the Dis-
tributed MHE counterpart have been used to successfully deal with large sensor
networks [Battistelli, 2018]. The first idea of the MHE approach in [Muske et al.,
1993] consists in estimating the current state vector by solving a least-square opti-
mization problem penalizing on one hand the deviation between the measurements
and the predicted outputs, and on the other hand the distance from the estimated
state to some a priori information about the state. MHE is a practical strategy
for constrained state estimation and a lot of research has been devoted to develop
stability guarantees on the estimation error dynamics, e.g., [Rao et al., 2001, Sui
et al., 2010, Suwantong et al., 2014]. Although this approach is functional for
control engineers offering the freedom to tune the parameters of the cost function,
a strength and a weakness of this approach is the use of an optimization prob-
lem to be solved within the sampling time. However, this issue becomes critical
for large-scale systems. There have been several attempts in trying to reduce the
computation load of MHE. One idea is to add a pre-estimating observer in the
formulation. The authors of [Sui et al., 2010] proposed a MHE strategy with a
Luenberger observer that leads to good performance especially for large estima-
tion horizons. They also provided an optimization problem to tune the parameters
minimizing the effects of measurement noise and model errors. The paper [Sui
and Johansen, 2014] generalized the formulation using a weight matrix for the
penalty function and adding states constraints. A MHE with pre-estimation has
been proposed also for non-linear systems [Suwantong et al., 2014]. The authors
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of [Farina et al., 2010a] proposed a distributed algorithm for linear systems with
the stability proof under weak observability conditions (exploiting a consensus-on-
estimate and a consensus weight term in the DMHE formulation). However, the
computation time issue becomes crucial, since usually the network is composed of
low-cost sensors.

Based on the results of [Sui and Johansen, 2014, Farina et al., 2010a], this
chapter proposes a new DMHE algorithm with pre-estimation presented in [Ven-
turino et al., 2020] and its extension published in [Venturino et al., 2021b]. A
pre-estimating Luenberger observer is considered in the formulation of the local
problem to be solved by each sensor, resulting in a significant reduction of the
computation time. The main contribution of this chapter covers:

• Reducing the computation time required for solving the optimization prob-
lem, which allows the use of this type of algorithms for time-sensitive appli-
cations;

• Preserving the accuracy of the estimation errors;

• Better tuning the consensus weights associated to the network topology via
a new observability rank-based weighted distributed algorithm which takes
advantage of the local available information.

Before presenting the developed algorithm, the necessary mathematical back-
ground is further proposed.

2.2 Notations, definitions and assumptions

2.2.1 System modeling
Consider the dynamics of the system under observation described by the fol-

lowing discrete-time linear time invariant (LTI) state-space model:

xt+1 = Axt + wt, (2.1)
where xt ∈ X ⊆ Rn is the state and wt ∈ W ⊆ Rn is a zero mean white noise
with covariance matrix Q.

Remark 1. In the system (2.1) the control input ut is assumed unknown and incorporated
inwt, but in the case that this control input ut is known then the system can be considered
as

xt+1 = Axt +But + wt. (2.2)
Assumption 2.1 Convex constraints set

The sets X and W are assumed to be convex.
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Definition 2.1 Convex set

A set S ∈ Rn is said to be convex if, however we take two points s1, s2 ∈ S,
the line segment that joins them is entirely contained in S, i.e.
∀s1, s2 ∈ S,∀ λ ∈ [0, 1]⇒ λs1 + (1− λ)s2 ∈ S.

(a) A convex set. (b) A non-convex set.
Figure 2.1: Convex and non-convex set examples.

Figures 2.1a and 2.1b show, respectively, convex and non-convex set examples
in a 2-dimensional space.

Assumption 2.2 Unknown initial state

The initial state x0 is assumed to be unknown and modeled by a random variable
of mean µ0 and covariance matrix Π0.

The measurements are performed by nS heterogeneous sensors:

yit = Cixt + vit, i = 1, . . . , nS , (2.3)
where yit ∈ Rpi and vit ∈ Rpi is a zero mean white noise with covariance matrix
Ri.

Remark 2 (Notation for sensor indexing). The superscript (·)i indicates a variable that
refers to the sensor i.

To facilitate the understanding of the sensor network and the distributed algo-
rithms, several notions from graph theory need to be introduced.

2.2.2 Graph theory tools
For the sake of clarity, some notions and definitions from graph theory are

recalled in this subsection.
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Definition 2.2 Undirected graph

An undirected graph (usually called graph) G = (N , E) is a relational struc-
ture composed of a finite number of nodes (or vertices) N , and of a finite
number of edges (or arcs) E that link the nodes among each other.

Definition 2.3 Directed graph

A graph G = (N , E) is a directed graph (or digraph) if E is a set of ordered
pairs of nodes.
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(a) An undirected graph.
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(b) A directed graph.
Figure 2.2: Undirected and directed graphs examples.

Figure 2.2 illustrates examples of undirected graph (Figure 2.2a) and digraph (Fig-
ure 2.2b).

Definition 2.4 Weighted graph

A graph G = (N , E) is a weighted graph if weights are assigned to its nodes
N or edges E .

The graphs could be also weighted. An example is provided in Figure 2.3.
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Figure 2.3: Weighted digraph example.
It is also important to distinguish strongly connected graphs from complete

graphs in order to better describe some properties of the topology of the sensor
network that will be used later on.
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Definition 2.5 Strongly connected graph

A graph G = (N , E) is a strongly connected graph if every node is reachable
from every other node.

Definition 2.6 Complete graph

A graph G = (N , E) is a complete graph if every pair of distinct nodes is
connected by a unique edge.
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(a) A strongly connected graph.
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(b) A complete graph.
Figure 2.4: Strongly connected and complete graphs examples.

After recalling these basic definitions, the sensor network is further described.

2.2.3 Sensor network
The sensor network is described by a digraph G = (N , E), where the nodes

N = {1, 2, . . . , nS} represent the sensors and the edge (j, i) ∈ E ⊆ N × N
represents the communication link from sensor j to sensor i. We assume that all
the nodes have a self-loop (i, i) ∈ E , ∀i ∈ N . The neighborhood N i of the sensor
i is N i = {j ∈ N : (j, i) ∈ E} which defines the set of nodes j ∈ N able to
send information to sensor i. We denote by niS = card(N i) the number of nodes
j ∈ N i.

Definition 2.7 Peer-to-peer sensor network

A peer-to-peer sensor network is a group of sensors that are linked together
with equal permissions and responsibilities for processing data.

In this manuscript all proposed algorithms deal with peer-to-peer sensor net-
work. Before going to the details of the algorithm it is necessary to introduce some
properties about the topology of the sensor network.

Definition 2.8 Static topology sensor network

In a static topology sensor network, the communication links among nodes are
fixed and cannot be modified.
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Definition 2.9 Dynamic topology sensor network

In a dynamic topology sensor network, the communication links among nodes
can variate over time.

Assumption 2.3 Static topology

The topology of the sensor network is static.

The following definition allows to describe the weights that will be assigned to
the communication links of the static topology.

Definition 2.10 Stochastic matrix

A stochastic matrix A = (aij) is a n × n matrix which has non-negative
elements and in which the sum of the elements over each row (or each column)
is equal to 1:

aij > 0, ∀i, j = 1, . . . , n;
n∑
j=1

aij = 1, ∀i = 1, . . . , n

or similarly by adding up on the columns.

n∑
i=1

aij = 1, ∀j = 1, . . . , n.

Under Assumption 2.3 a constant stochastic matrix K ∈ RnS×nS can be
associated to the digraph G such that the elements weight its edges:

kij > 0 if (j, i) ∈ E , (2.4a)
kij = 0 otherwise, (2.4b)

nS∑
j=1

kij = 1, ∀i = 1, . . . , nS . (2.4c)

This matrix will be used to compute the consensus terms in the DMHE algo-
rithm described in Section 2.4. Section 2.6 will present a method that determines
the value of each element kij , compatible with the weighted digraph G, exploit-
ing observability properties. This method contributes to enhance the estimation
accuracy.

Before introducing the centralized and distributed MHE, it is necessary to
distinguish the different types of information involved in such algorithms.
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2.2.4 Local, regional and collective data
In order to recognize local, regional and collective information (as in [Farina

et al., 2010a]) a convenient notation is introduced.

Definition 2.11 Local, regional and collective information

For a considered sensor i, an information is said local if it is related only to the
node i. It is said regional concerning sensor i if it is related to the nodes in
its neighborhood N i. Finally, an information is said collective when the entire
network is involved.

Therefore, for the sake of clarity, we distinguish these information using differ-
ent notations for local, regional and collective variables.

Remark 3. Given a variable z, then zi, z̄i and z represent local, regional and collective
data, respectively.

For example, consider the sensor i and its neighborhood N i = {j1, . . . , jniS},
composed of niS sensors, then its regional measurements are:

ȳit = C̄ixt + v̄it, (2.5)
with the output vector ȳit = [(yj1t )> . . . (y

j
ni
S

t )>]> ∈ Rp̄i of dimension p̄i =∑
i∈N i p

i, the output matrix C̄i = [(Cj1)> . . . (C
j
ni
S )>]> ∈ Rp̄i×n, and the

measurement noise vector v̄it = [(vj1t )> . . . (v
j
ni
S

t )>]> ∈ Rp̄i . In addition, we
denote by R̄i, the covariance matrix related to the regional noise vector v̄it of
sensor i, i.e., R̄i = diag(Rj1 , . . . , R

j
ni
S ). For the sake of exhaustiveness, the

following are examples of collective information. Thus, the collective output is
defined as follows:

yt = Cxt + vt, (2.6)
with the output vector yt = [(y1

t )
> . . . (ynSt )>]> ∈ Rp of dimension p =

∑
i∈N p

i,
the output matrix C = [(C1)> . . . (CnS )>]> ∈ Rp×n and the measurement noise
vector vt = [(v1

t )
> . . . (vnSt )>]> ∈ Rp.

According to this terminology, three different observability notions can be de-
fined.

Definition 2.12 Local, regional and collective observability

The system is locally observable by sensor i if the pair (A,Ci) is observable.
The system is regionally observable by sensor i if the pair (A, C̄i) is observable.
The system is collectively observable if the pair (A,C) is observable.

In the remaining of this manuscript, by abuse of language, one will write that
sensor i is locally (respectively regionally) observable when the system is locally
(respectively regionally) observable by sensor i.

These definitions will be helpful for the algorithms proposed in the next sections.
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2.3 Centralized MHE with pre-estimation

Moving Horizon Estimation with pre-estimation is based on the idea in [Sui
et al., 2010] and [Sui and Johansen, 2014], where the authors proposed a central-
ized MHE formulation relying on a Luenberger observer. This centralized scheme
makes use of the collective information solely.

For a given horizon length N > 1, the proposed strategy determines the esti-
mate x̂t|t of the state at time t, by solving the constrained minimization problem,
hereafter denoted by MHEpre:

x̂t−N |t = arg min
x̂t−N

J(t−N, t, x̂t−N , v̂,Γt−N ) (2.7)
s.t. x̂k+1 = Ax̂k + Lv̂k, ∀k = t−N, . . . , t− 1, (2.8)

ŷk = Cx̂k + v̂k, ∀k = t−N, . . . , t, (2.9)
x̂k ∈ X , ∀k = t−N, . . . , t. (2.10)

The gain matrix L ∈ Rn×p in (2.8), with p =
∑nS

i=1 p
i, is calculated such that

Φ = A − LC is Schur stable. The pre-estimation replaces the input sequence
to be estimated, thus leads to have less optimization parameters involved in the
minimization problem, hence less computation time. At the same time, it helps to
preserve the accuracy of the estimates.

The resulting estimated state x̂t|t at the time instant t is obtained by the
equation (2.8) and using the solution of the optimization problem x̂t−N |t as initial
condition. Indeed, the entire sequence of the estimated state within the horizon
window {x̂k|t}tk=t−N can be obtained. Explicitly, it leads to:{

x̂t−N |t x̂t−N+1|t x̂t−N+2|t . . . x̂t|t
}
. (2.11)

Remark 4. For the sake of clarity, it is important to distinguish a generic optimization
parameter of the minimization problem, indicated with x̂t, from the optimal solution of
this problem obtained at time instant t, indicated with x̂t|t.

The cost function J is given by:

J(t−N, t, x̂t−N , v̂,Γt−N ) =

t∑
k=t−N

‖v̂k‖2R−1 + Γt−N (x̂t−N , x̂t−N |t−1), (2.12)

where R = diag(R1, . . . , RnS ) with nS the number of sensors. The so called initial
penalty function Γt−N (·) in (2.12) is defined as follows:

Γt−N (x̂t−N , x̂t−N |t−1) =
∥∥x̂t−N − x̂t−N |t−1

∥∥2

Π−1
t−N|t−1

, (2.13)
where x̂t−N |t−1 is the second estimated state of the sequence computed at the
previous time t − 1. In order to clarify what is x̂t−N |t−1, consider the optimal
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sequence obtained at time t as in (2.11), then the one obtained at time t− 1 is the
following: {

x̂t−N−1|t−1 x̂t−N |t−1 x̂t−N+1|t−1 . . . x̂t−1|t−1

} (2.14)
where it is evident that x̂t−N |t−1 is the second element of the sequence (2.14).

The positive-definite symmetric weighting matrix Πt−N |t−1 in (2.13) is the
unique solution of the following discrete-time algebraic Riccati equation [Jazwinski,
2007]:

Πt−N |t−1 = Q+AΠt−N−1|t−2A
>−

AΠt−N−1|t−2C>(R + CΠt−N−1|t−2C>)−1CΠt−N−1|t−2A
>,

(2.15)
subject to the initial condition Π0. When t 6 N , it is possible to set N = t,
leading to use the algorithm even if there are not even enough measurements to
fill the sequence of past measurements within the horizon window.

The next section describes the distributed counterpart of this algorithm, which
is one contribution of this chapter.

2.4 Distributed MHE with pre-estimation

In [Farina et al., 2010a] the authors proposed a Distributed Moving Horizon
Estimation method to estimate the state and the input of the model (2.1). In
their strategy, the optimization problem to be solved online at time t involves
the computation of the state trajectory over the past horizon. As in classical
MHE schemes, this computation is done by forward propagating the state, from
its initial condition at t − N , using the dynamic model of the system. This can
accumulate the estimation error, especially when N is large and the system is
unstable. In this section a new DMHE strategy with pre-estimation by introducing
a Luenberger observer in its formulation is proposed. This will mitigate the effect
of model uncertainty in the a priori estimate and thus will contribute to enhance
the estimation accuracy. This improvement will also reduce the computation time
required to solve the optimization problem, because the number of optimization
variables involved is lower. Indeed the algorithm of [Farina et al., 2010a] also
estimates the unknown input sequence {wk}t−1

k=t−N . Further details are given in
the next sections.

2.4.1 Local minimization problem
This subsection formulates the proposed DMHE scheme, from now on denoted

by DMHEpre, where each sensor i ∈ N solves its own local moving horizon esti-
mation problem based on regional measurements ȳit and some shared information1

among the neighborhood N i. For a given estimation horizon N > 1, each node

1Details about the shared information are given later on.
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i ∈ N at time t determines the estimate x̂it|t of the state xt by solving the follow-
ing constrained minimization problem with pre-estimation, hereafter denoted by
DMHEi−pre:

x̂it−N |t = arg min
x̂it−N

J i(t−N, t, x̂it−N , ˆ̄vi,Γit−N ) (2.16)
s.t. x̂ik+1 = Ax̂ik + Li ˆ̄vik, ∀k = t−N, . . . , t− 1, (2.17)

ȳik = C̄ix̂ik + ˆ̄vik, ∀k = t−N, . . . , t, (2.18)
x̂ik ∈ X , ∀k = t−N, . . . , t. (2.19)

Notice that the equations remind the ones of the centralized MHEpre problem in
(2.7) but using regional information instead. The Luenberger gain Li is computed
such that Φi = A−LiC̄i is Schur stable when the sensor i is regionally observable.
Otherwise, as extrema ratio, Li can be computed in order to minimize the propa-
gation of the error along the prediction horizon by keeping the spectrum radius of
Φi the smallest possible.

A quadratic objective function J i is considered:

J i(·) =

t∑
k=t−N

∥∥ˆ̄vik
∥∥2

(R̄i)−1 + Γit−N (x̂it−N , ˆ̄x
i
t−N |t−1), (2.20)

where the initial penalty function Γit−N (x̂it−N , ˆ̄x
i
t−N |t−1) in (2.20) defined as fol-

lows:
Γit−N (·) =

∥∥∥x̂it−N − ˆ̄xit−N |t−1

∥∥∥2

(Π̄i
t−N|t−1

)−1
, (2.21)

involves two consensus terms described below.
1st consensus term. Denote by ˆ̄xit−N |t−1 the weighted mean state estimation

computed by the neighborhood N i as follows:

ˆ̄xit−N |t−1 =
∑
j∈N i

kij x̂
j
t−N |t−1, (2.22)

where x̂jt−N |t−1 is the second estimated state in the sequence computed at the
previous time by sensor j as explained for the sequence in (2.14). Notice that the
penalty function Γit−N includes a consensus-on-estimates term in the sense that it
penalizes deviations of x̂it−N from ˆ̄xit−N |t−1. The penalty function helps to improve
the accuracy of the local estimates and it is necessary to guarantee convergence of
the state estimates to the state of the observed system even if it lacks of regional
observability [Farina et al., 2010a].

2nd consensus term. The positive definite matrix Π̄i
t−N |t−1 is computed as

in [Farina et al., 2010a]. For the sake of completeness, we recall here the procedure
to compute it by:

Π̄i
t−N |t−1 =

∑
j∈N i

njSk
2
ijΠ

j
t−N |t−1, (2.23)
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where the update of Πi
t−N |t−1 is performed by the sensor i on the basis of regionally

available information. Notice that Π̄i
t−N |t−1 is the weighted mean matrix of all

matrices Πj
t−N |t−1 in the neighborhood N i. In particular, the matrix Πi

t−N |t−1,
with i ∈ N , is given by one iteration of the difference Riccati equation associated
to a Kalman filter for the system:

{
xt−N = Axt−N−1 + wt−N−1

z̄it−N = ŌiNxt−N + V̄ i
t−N

where V̄ i
t−N represents the measurements noise and ŌiN defines the i-th sensor

regional observability matrix:

ŌiN =
[
(C̄i)> (C̄iA)> · · · (C̄iAN−1)>

]>
. (2.24)

Then, defining:

CiN =


0 0 · · · 0
C̄i 0 · · · 0
...

...
. . .

...
C̄iAN−2 C̄iAN−3 · · · C̄i

 ∈ Rp̄
iN×n(N−1), (2.25)

R̄iN = diag(R̄i, . . . , R̄i) ∈ Rp̄
iN×p̄iN , (2.26)

QN−1 = diag(Q, . . . , Q) ∈ Rn(N−1)×n(N−1), (2.27)
Cov[V̄ i

t ] = R̄∗iN = R̄iN + CiNQN−1(CiN )>, (2.28)
and setting the covariance of the estimate x̂it−N−1 like in the Kalman filter ap-
proach:

Π∗it−N−1|t−2 =

((
Π̄i
t−N−1|t−2

)−1
+ (C̄i)>(R̄i)−1C̄i

)−1

, (2.29)
the resulting Riccati recursive equation is given by:

Πi
t−N |t−1 = AΠ∗it−N−1|t−2A

> +Q−

AΠ∗it−N−1|t−2

(
ŌiN
)> (ŌiNΠ∗it−N−1|t−2

(
ŌiN
)>

+ R̄∗iN

)−1
ŌiNΠ∗it−N−1|t−2A

>.

(2.30)
Since the communication network topology is assumed to be time-invariant,

these equations could be computed off-line. However, once the matrices Πi
t−N |t−1

have been computed, a consensus weights update is performed in order to compute
the matrices Π̄i

t−N |t−1 according to (2.23).
Remark5. In the proposedDMHE formulation the sequence of the input noise {wk}t−1k=t−N
are no longer considered as optimization parameters, contrary to the DMHE of [Farina
et al., 2010a]. This allows to reduce the computation time required to solve the optimiza-
tion problem.
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2.4.2 Network information exchange

It is worth highlighting the way each node exchanges information within its
neighborhood. For this purpose, we recall here some assumptions that play a
major role.

Assumption 2.4 Network information exchange assumptions

The following assumptions considered with respect to the sensor network:

a) The sensor network can be composed of heterogeneous sensors;

b) The sensors characteristics (noise covariance and type of measurements)
are not time-varying;

c) The network topology is not time-varying;

d) Each sensor i knows its neighborhood N i;

e) There is no time delay nor packet loss in the communication network.

The Assumption 2.4 implies that the matrices Ci in (2.3) can be different for
all i ∈ N . Since the neighborhood N i is known a priori, it is not necessary to
exchange the information on the matrices Ci and Ri at each time. Moreover, this
allows one to compute off-line the Luenberger gains Li.

2.4.3 DMHE procedure

Finally, the procedure of the proposed distributed scheme is described in Algo-
rithm 1.

It is evident that the steps 10, 15 and 19 involve synchronization among neigh-
bors sensors, but these steps could be rearranged to have just one synchronization
in the procedure of exchanging information. However, for clarity reasons with re-
spect to calculation details, they have been described this way. The easiest way to
reorganize the steps and have one synchronization is to put back the steps 15 and
19 at the time of step 10, this leads to receive in one step: from the neighbors
j ∈ N i the collected data in the step 9, the matrices Πj

t−N |t−1 and their estimates

x̂jt−N+1|t.
The following section will evaluate the proposed centralized and distributed

algorithms via a numerical example.
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Algorithm 1 DMHEpre procedure
1: Off-line: ∀i ∈ N2: receive from the nodes j ∈ N i: Lj , Cj , Rj3: compute the pre-observer gain Li4: store the a priori initial estimation x̂i0|0 = x̂0 = µ0 of x0, where µ0 is given, andthe covariance matrix Π0 of x05: Initialization: ∀i ∈ N , at the first time step t = 06: collect a first local measurement yi07: receive from the neighbors j ∈ N i their measurements yj08: Online: ∀i ∈ N , ∀t > 09: collect the local measurement yit10: receive from the neighbors j ∈ N i the collected data in the step 911: if 1 6 t 6 N then12: set the horizon length N = t, the covariance matrix Π̄i

t−N |t−1 = Π̄i
0|t−1 =

Π0 and the a priori initial estimation state x̂it−N |t−1 = x̂i0|t−113: else14: compute Πi
t−N |t−1 according to (2.28), (2.29) and (2.30)15: receive Πj

t−N |t−1 from the nodes j ∈ N i

16: compute Π̄i
t−N |t−1 according to (2.23)

17: solve the local optimization problem of DMHE, minimizing J i as in (2.20) and(2.21) subject to the constraints (2.17)-(2.19)18: store the solution x̂it−N |t and the corresponding estimate x̂it|t19: receive from the neighbors j ∈ N i their estimates x̂jt−N+1|t

2.5 Example

In this section, the effectiveness of the proposed DMHE algorithm with pre-
estimation is investigated. In order to evaluate its performance, it is compared to
the centralized MHE of [Rao et al., 2001] as well as the DMHE algorithm of [Farina
et al., 2010a]. To this end, we consider the system in [Farina et al., 2010a], recalled
below:

xt+1 =


0.9962 0.1949 0 0
−0.1949 0.3819 0 0

0 0 0 1
0 0 −1.21 1.98

xt + wt, (2.31)

where xt =
[
x1,t x2,t x3,t x4,t

]> ∈ X = R4 is the state vector and wt ∈
R4 is a white noise with covariance Q = diag(0.0012, 0.038, 0.0012, 0.038).
Notice that the system is unstable since the eigenvalues of A are 0.9264, 0.4517,
0.99± 0.4795i and |0.99± 0.4795i| > 1.

The initial values of the algorithms are set as µ0 =
[
0 0 0 0

]>, Π0 = I4

and N = 5.
To compare the results of the considered algorithms, nS = 4 sensors are used

both for the centralized and the distributed cases. For the centralized schemes,
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the following measurement equation is considered:

yt =


1 0 0 0
1 0 0 0
0 0 1 0
0 0 1 0

xt + vt,

with Var(vt) = R = I4, while, for the distributed schemes, the following measure-
ment equations are used:

yit =
[
1 0 0 0

]
xt + vit if i ∈ {1, 2},

yit =
[
0 0 1 0

]
xt + vit if i ∈ {3, 4},

where Var(vit) = Ri = 1, i = 1, . . . , 4. Notice that the superscript i in Ri clearly
indicates its association with sensor i, i.e. Ri does not mean R power i. The
nodes are connected as reported by the graph in Figure 2.5a and the associated
matrix is defined as follows:

K =


0.5 0 0 0.5
0.5 0.5 0 0
0 0.5 0.5 0
0 0 0.5 0.5

 . (2.32)

Notice that the sensors 2 and 4 are not observable. The weights kij are then
chosen as in [Xiao et al., 2005], called Metropolis weights described below:

kij =


1

1+max{niS ,n
j
S}

if {i, j} ∈ E
1−

∑
{i,k}∈E kik if i = j

0 otherwise
(2.33)
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(a) Communication network.

1

2

3

4

(b) Sensor network highlighting (in red) non observ-able sensors.
Figure 2.5: Topology of the sensor network.

As pointed out in [Farina et al., 2010a] and recalled next, this example is
challenging due to the non regional observability of some of the sensors. In fact,
it can be noticed that the information available to sensor 1 concerns the first and
third states of the system, i.e. x1,t, which is directly measured, and x3,t, which is
transmitted by sensor 4. Likewise, the information available to sensor 2 consists
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of x1,t, directly measured, and x1,t, transmitted by sensor 1. The same applies
to the sensors 3 and 4, which have information about (x1,t, x3,t) and (x3,t, x3,t),
respectively. Consequently, the sensors 1 and 3 are regionally observable, while the
sensors 2 and 4 are not, since the pairs (A, C̄2) and (A, C̄4) are not observable,
see Fig 2.5b highlighting (in red) non observable sensors.

The Luenberger gains, both for MHEpre and DMHEpre, respectively the pro-
posed centralized and distributed MHE algorithms, have been chosen such that the
eigenvalues of Φ = A − LC, for the centralized scheme, and Φi = A − LiC̄i for
the distributed one, are equals to the values shown in the Table 2.1. These values
ensure that matrices Φ, Φ1 and Φ3 are Schur stable, and minimize the spectrum
radius of Φ2 and Φ4. The eigenvalues λk, ∀k = 1, . . . , 4, of matrices Φ, Φ1 and
Φ3, are chosen arbitrarily with the intention to insure their stability property. Most
probably it is possible to have optimum values, according to some criteria, in order
to have better estimation accuracy, but this is out of the scope of this chapter.

Table 2.1: Eigenvalues of Φ = A− LC and Φi = A− LiC̄i.

λ1 λ2 λ3 λ4

MHEpre 0.9 0.6 0.7 0.8DMHE1−pre 0.9 0.6 0.7 0.8DMHE2−pre 0.45 0.58 0.99 + 0.48i 0.99− 0.48iDMHE3−pre 0.9 0.6 0.7 0.8DMHE4−pre 0.93 0.45 1.17 + 0.98i 1.17− 0.98i

We consider two different performance metrics for the evaluation of the algo-
rithms: the computation time τt (for which it has been examined the sum over the
simulation duration, the minimum and the maximum value) and the Root Mean
Square Error (RMSE):

RMSE =

 tf∑
t=tc

‖et‖2

tf − tc

 1
2

, (2.34)

where tc is the convergence instant of the algorithms, tf is the final time instant,
with tf > tc, and et = xt − x̂t|t is the estimation error, i.e. the error between the
real state xt and the estimated state x̂t|t. In this example, the sampling period Ts
is chosen to be Ts = 1 s, while tf = 20 s corresponds to the simulation duration.

Remark 6. The algorithm is considered converged when the estimation error et remains
below than a given threshold.

The simulation has been carried out by using a setup implemented within
the MATLAB R2019b environment and the solver LMI Lab in YALMIP toolbox
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[Löfberg, 2004] over a Linux Ubuntu 20.04 PC equipped with an Intel Core i7-
7700HQ, 2.80 GHz.
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Figure 2.6: Components of the states xt = [x1,t x2,t x3,t x4,t]
> and the estimates

x̂t = [x̂1,t x̂2,t x̂3,t x̂4,t]
> computed by the MHEpre and DMHEpre algorithms.

Figure 2.6 shows the evolution of the system (2.31) and the estimates using
the MHEpre and DMHEpre algorithms, i.e. the centralized MHE technique with
pre-estimation and the distributed MHE technique with pre-estimation. It is worth
noticing that the last two states have unstable dynamics and, thus, are more
significant in terms of magnitude with respect to the first two. Nevertheless, one
can consider that the convergence time is approximately tc = 5 s. Notice that
DMHEpre refers to the global distributed procedure, while DMHEi−pre refers to
the local constrained minimization problem solved by sensor i.

Figure 2.7 shows the estimation errors produced by the algorithms MHEpre
and DMHEpre. It is noticeable that the MHEpre (in red) compensates the initial
estimation error very fast, within a few iterations, since the system is collective
observable. Regarding DMHEpre, the estimates produced by sensor 2 depicted in
purple (respectively 4 depicted in cyan), relative to the states x3,t, x4,t (respectively
x1,t, x2,t) exhibit large errors for t < 5. In fact, as pointed out before, these states
cannot be observed by these sensors using regional information. Despite this, all
the estimation errors tend to converge to the same values, due to the consensus
terms in the DMHEpre scheme. Thus, the proposed distributed state estimation
algorithm presents similar accuracy to its centralized counterpart in steady state.

For the sake of clarity, in Figure 2.6 and Figure 2.7 the estimates and the
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Figure 2.7: Components of the estimation error et = [e1,t e2,t e3,t e4,t]
> = xt − x̂t|t ofthe MHEpre and DMHEpre algorithms.

estimation errors, respectively, from MHE (centralized MHE [Rao et al., 2001])
and DMHE (distributed MHE [Farina et al., 2010a]) are not shown. It is also
because et and xt from MHE and DMHE are very similar with the ones from
MHEpre and DMHEpre, respectively, as it can be checked by comparing Figure 2.6
and Figure 2.8.

Table 2.2 summarizes the performance metrics that have been taken into ac-
count for quantitative comparison. In particular, the computation time is always
lower for our proposed algorithms, i.e. the centralized and distributed MHE with
pre-estimation (MHEpre, DMHE1−pre, . . ., DMHE4−pre – green rows), with respect
to the ones without pre-estimation (MHE, DMHE1, . . ., DMHE4 – white rows).
This not comes at a cost in terms of accuracy, because the RMSEs produced are
similar among them, see the column at the right. Moreover, the maximum compu-
tation time for the algorithms without pre-estimation is greater than the sampling
period. This means that there are some time steps where real time feasibility is
not obtained. This can be checked on Figure 2.9, indeed, from time t > 10 s, it is
visible that the algorithms without pre-estimation take more than 1 s to estimate,
which is more than the sampling period Ts = 1 s. The pre-estimation enables to
reduce the computation time by a factor close to 5 and would enable real time
implementation without requiring fast optimization or ad hoc implementation.

Figure 2.9 shows the computation time τt for each time instant of all algorithms.
In this figure it is evident that the proposed schemes are less time demanding.
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Figure 2.8: Components of the states xt = [x1,t x2,t x3,t x4,t]
> and the estimates

x̂t = [x̂1,t x̂2,t x̂3,t x̂4,t]
> computed by the MHE and DMHE algorithms.

minτt maxτt ∑
τt RMSE

MHE 0.27 1.13 17.25 1.4MHEpre 0.24 0.27 5.21 0.99DMHE1 0.26 1.10 17.30 0.74DMHE1−pre 0.24 0.29 5.20 0.84DMHE2 0.26 1.02 16.30 1.53DMHE2−pre 0.24 0.27 5.09 1.63DMHE3 0.27 1.08 16.49 0.77DMHE3−pre 0.25 0.29 5.18 0.76DMHE4 0.26 1.10 17.24 0.90DMHE4−pre 0.24 0.27 5.11 1.08

Table 2.2: Minimum, maximum and sum of the computation time τt (in seconds) andRMSE with tc = 5 s of all algorithms collected in the simulation.
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In fact, the computation time mainly depends on the number of optimization
parameters nop, the evaluation of the cost and constraints. As it can be observed
from the evolution of the computation time, nop is the most important, since
the algorithms without pre-estimation have nop = 2 · n · N , while the ones with
pre-estimation have only nop = n · N . Thus, the pre-estimation divides by 2 the
number of optimization parameters. Since N = t for t 6 5 and N = 5 for t > 5,
as expected, the computation time rises more as N increases for MHE and DMHE
(orange, green and cyan lines), i.e. the algorithms without pre-estimation.
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DMHE4−pre

Figure 2.9: Comparison among the computation times of all algorithms run in thesimulation: MHE, MHEpre, DMHE, DMHEpre.
Concluding this section, which presented two MHE algorithms capable to re-

duce the computation time compared with some algorithms in literature, the next
section will extend the obtained results on improving also the estimation accuracy.

2.6 Extension with observability rank-based consensus weights

This section proposes an extension of the Distributed Moving Horizon Estima-
tion with pre-estimation (DMHEpre) by equipping it with an observability rank-
based weights technique, hereafter denoted by DMHEw−pre. This algorithm has
been published in [Venturino et al., 2020].

The objective of this extension is to make the developed estimation approach
fully suitable for a distributed scheme by exploiting only locally available information
on computing the consensus weights terms (2.4). Moreover, relying on observability
properties, this technique helps to enhance the accuracy of the state estimates.

In [Farina et al., 2010a], the authors proposed an algorithm to compute the K
matrix, according to (2.4) and compatible with G = (N , E), to ensure the stabil-
ity of their DMHE. This algorithm requires knowledge about the global network
topology and, thus, the consensus weights have to be globally recomputed when
the network topology changes. In order to overcome this issue, we further present
a new observability rank-based weighted approach built on only local information
available to each sensors i ∈ N , thus representing an enhancement w.r.t. the
algorithm in [Farina et al., 2010a]. The proposed technique relies on observability
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properties associated to each sensor. With the intention to enhance the conver-
gence of the consensus terms, the proposed method gives major importance to
sensors that have better regional observability properties. A description of this
approach is presented in the next subsection.

Observability rank-based weights technique
Consider a sensor i. Its regional observability matrix:

ŌiN =
[
(C̄i)> (C̄iA)> · · · (C̄iAN−1)>

]> (2.35)
is of full rank if and only if the the pair (A, C̄i) is completely observable, i.e.
rank(ŌiN ) = n. Otherwise, its rank is less than n, where n is the number of the
states. For the sake of simplicity, we denote by ρiO = rank(ŌiN ). This information
could be used as reliability of sensor i when choosing the weights, which according
to (2.4) must be averaged among the neighbors, resulting in:

kij =
ρjO∑

j∈N i ρ
j
O
, ∀j ∈ N i. (2.36)

It is worth noticing that each row of the matrix K concerns one sensor, e.g., the
i-th row can be computed by sensor i using data coming from its neighbors j ∈ N i

solely. Hence, it can easily be recomputed online if the topology of the network
changes.

2.7 Simulation results

This section illustrates the effectiveness of the proposed DMHE algorithm with
pre-estimation and observability rank-based weights. In order to evaluate its per-
formance, the proposed technique is compared to the centralized MHE of [Rao
et al., 2001] as well as the DMHE algorithms of [Farina et al., 2010a] (without
pre-estimation) and [Venturino et al., 2020] (with pre-estimation). To this end, we
consider the same unstable system as in Section 2.5, recalled below:

xt+1 =


0.9962 0.1949 0 0
−0.1949 0.3819 0 0

0 0 0 1
0 0 −1.21 1.98

xt + wt, (2.37)

where xt =
[
x1,t x2,t x3,t x4,t

]> ∈ X = R4 is the state vector and wt ∈ R4 is
a zero-mean white noise with covariance matrixQ = diag(0.0012, 0.038, 0.0012, 0.038).

The algorithms are initialized with µ0 =
[
0 0 0 0

]> and Π0 = I4.
To compare the results of all algorithms, we use nS = 9 sensors for the dis-

tributed algorithms. For the centralized scheme we consider the following mea-
surement equation:

yt =

[
1 0 0 0
0 0 1 0

]
xt + vt,
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with Var(vt) = R = I2. The considered distributed approaches are using the
following measurement equations:

yit =
[
1 0 0 0

]
xt + vit if i ∈ {1, 2, 6}

yit =
[
0 0 1 0

]
xt + vit if i ∈ {3, 4, 9}

yit =
[
0 0 0 0

]
xt + vit if i ∈ {5, 7, 8}

where Var(vit) = Ri = 1, i = 1, . . . , 9. The nodes are connected as reported
by the graph in Figure 2.10 and the transition matrix K is computed with the
observability rank-based weighted method (2.36). The different colors highlight
the regional observability properties of each sensor i, thus of the pair (A, C̄i). In
particular, the green nodes mean that the pair (A, C̄i) is completely observable, the
yellow nodes are at least regional detectable, the orange nodes are not detectable
(but having the capability to access to some components of the output, measured
or received from neighbors) and the red node has no sensing information, i.e.
ρiO = 0.

1 2 3

4

5678

9

Figure 2.10: Sensor network.
To evaluate the performance of the proposed algorithm we take into account

two performance metrics both averaged over the nodes in the network. The first
metric is the Root Mean Square Error (RMSE) computed as follows:

RMSEt =
1

nS

nS∑
i=1

∥∥∥xt − x̂it|t∥∥∥ ,
where xt is the real state and x̂it|t is the estimated state by sensor i. Moreover,
nS = 9 for distributed schemes and nS = 1 for the centralized one. The second
metric is the computation time τt needed by each algorithm to solve the local
optimization problem at each time instant t.

We consider two simulations cases with time duration tf = 50s.
Case 1. Setting the horizon length N = 4, one hundred Monte Carlo tri-

als have been performed with each component of the initial state x0 uniformly
distributed in the interval [−100, 100].

Figure 2.11 shows that the proposed algorithm DMHEw−pre with pre-estimation
and observability rank-based weights (purple dotted line) converges and also shows
better performance vs. the DMHE without pre-estimation [Farina et al., 2010a],
denoted by DMHE (red line), and the DMHE only with pre-estimation (2.16) [Ven-
turino et al., 2020], denoted by DMHEpre (orange dashed line), which are one

36



0 10 20 30 4 0

0

20

40

60

80

Figure 2.11: Time behavior of the trials-averaged RMSE for 100 Monte Carlo trials.

above the other because these last two have very similar RMSEs. Moreover, after
the transient period all the distributed algorithms show similar RMSEs compared
to the centralized one. This is more evident in Figure 2.12 which on one hand
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(b) steady state.
Figure 2.12: Sum of RMSEs in the transient period (for t ∈ {1, . . . , 9}s) and in thesteady state (for t ∈ {10, . . . , 50}s).
shows the sum of RMSEs in the transient period and in the steady state. Indeed,
in Figure 2.12a, as expected in the transient period, among the three distributed
methods, the RMSE of DMHEw−pre is the smallest among the DMHEs algorithms.
On the other hand, as it can be seen in Figure 2.12b, all the distributed algorithms
have comparable results in the steady state.

Regarding the second performance metric in Figure 2.13, it is clear that the
algorithms with pre-estimation are less time demanding than the DMHE of [Farina
et al., 2010a] and the centralized MHE. In fact, the computation time τ is reduced
of circa 27% w.r.t. the DMHE of [Farina et al., 2010a] and 49% w.r.t. the
centralized MHE of [Rao et al., 2001]. Notice that the computation time of DMHE
in [Venturino et al., 2020] only with pre-estimation (2.16) and the extended version
proposed in this section are the same. It is due to the fact that the difference
of the extended version (DMHEw−pre) concerns only the consensus weights kij
computation, which can be computed off-line.
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Figure 2.13: Sumof the trials-averaged computation times τ for 100Monte Carlo trials.

Case 2. To better evaluate the proposed algorithm, a second simulation is
performed with the same parameters as the first case except two crucial variables.
First of all, a different horizon length is used, i.e. N ∈ {2, 3, . . . , 10}. The matrix
K used in this simulation results in a convex combination with the parameter
ε ∈ {0, 0.1, . . . , 1} of the matrices K̃ and K̂:

K = εK̃ + (1− ε)K̂ (2.38)
where K̃ is computed with the proposed observability rank-based weighted method,
while K̂ is computed as in [Farina et al., 2010a]. Moreover, a set of 100 different
initial states {x0,z}100

z=0 is uniformly generated with components from [−100, 100].
Therefore, this simulation is composed by 9900 trials as result of the Cartesian
product N × ε× {x0,z}.
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Figure 2.14: Sum of x0-averaged RMSEs of the proposed DMHEw−pre with K varyingas in (2.38).
Figure 2.14 shows the RMSEs of the DMHEw−pre with K as in (2.38). Notice

that these curves should be seen as “discrete” not as continuous. Indeed, the
RMSE is averaged among the z = 1, . . . , 100 trials by changing x0,z, computed as
follows:

RMSE(N,ε) =
1

100

100∑
z=1

tf∑
t=1

RMSEt,x0,z ,

which results in a function of the horizon length N and the parameter ε. As it
can be seen, along the N -axis the slope of the level curves of the RMSE changes
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mildly, with a minimum for N = {3, 4}. Along the ε-axis it is evident that the
minimum is at ε = 1, thus when K = K̃. This means that Figure 2.14 shows
that the performance in terms of RMSE of the proposed observability rank-based
weighted method is better than Algorithm 1 (i.e. with K̂) in [Farina et al., 2010a].
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Figure 2.15: x0-ε-averaged computation time τ .
Idem for this case simulation, the computation time is lower for the two DHMEs

with pre-estimation, thus also for the proposed observability rank-based weighted
method, as shown in Figure 2.15. This figure shows the computation time τ
averaged over the trials in which ε and x0 change, that results in τ as function ofN .
The slope of this function is the same for the two DMHEs with pre-estimation, and
it is lower than the DMHE in [Farina et al., 2010a] and the centralized MHE [Rao
et al., 2001]. Moreover, Figure 2.15 also shows the limits representing the minimum
and maximum computation time of the DMHE algorithms. It can be noticed that
these limits are narrower and less deviating w.r.t. the horizon length N for the
algorithms with pre-estimation. This clearly shows the very promising performance
of the proposed algorithm for implementation on networks of sensors with low
computation capabilities.

2.8 Conclusion

This chapter presented a novel algorithm based on the Moving Horizon Es-
timation (MHE) concept for distributed state estimation of discrete-time linear
time-invariant systems. The use of a pre-estimation observer results in a signifi-
cant reduction of the computation time. The proposed strategy DMHEpre has been
validated via illustrative numerical examples. Due to the consensus terms embod-
ied in the optimization problem, the estimation errors produced by the DMHEpre
are capable to converge even if some sensors in the network are not observable.
Moreover, the accuracy of the estimation errors is preserved (together with a re-
duced computation time), in the sense that it is comparable with the one of the
original formulation [Farina et al., 2010a].
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Moreover, the extended algorithm with observability rank-based weights tech-
nique (DMHEw−pre) showed that the accuracy of the estimation errors is improved
both in the transient period and in the steady state w.r.t. the one of the original
formulation [Farina et al., 2010a], as result of choosing the consensus weight ma-
trix K with the presented rank-based weighted method. Furthermore, this method
allows each sensor to determine its consensus weights on the basis of only local
provided information contrary to Algorithm 1 in [Farina et al., 2010a] that, in-
stead, needs knowledge about the global network topology. Thus the proposed
DMHEw−pre is suitable for a fully distributed scheme and could be extended for
time-varying topology.

Simulation results have shown the effectiveness of the proposed DMHE algo-
rithms even in presence of weak regional observability conditions induced by some
sensors of the considered network.

The proposed algorithms have been presented and published in:

• A. Venturino, S. Bertrand, C. Stoica Maniu, T. Alamo, and E. F. Cama-
cho. Distributed moving horizon estimation with pre-estimating observer.
In 24th International Conference on System Theory, Control and Comput-
ing (ICSTCC), pages 174–179, Sinaia, Romania, 8-10 October, 2020. Best
Paper Award

• A. Venturino, C. Stoica Maniu, S. Bertrand, T. Alamo, and E. F. Camacho.
Distributed moving horizon state estimation for sensor networks with low
computation capabilities. System Theory, Control and Computing Journal,
1(1):81–87, 2021.
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3 - `-step Neighborhood Distributed Moving
Horizon Estimation

This chapter focuses on Distributed State Estimation over a peer-to-peer sen-
sor network composed by possible low-computational sensors. We propose a new
`-step Neighborhood Distributed Moving Horizon Estimation technique with fused
arrival cost and pre-estimation, improving the accuracy of the estimation, while
reducing the computation time compared to other approaches from the litera-
ture. Simultaneously, convergence of the estimation error is improved by means
of spreading the information among neighborhoods, which comes natural in the
sliding window data present in the Moving Horizon Estimation paradigm. Illustra-
tive numerical simulations are provided to analyze the performance of the proposed
approach, with respect to existing algorithms, considering as metrics the accuracy
of the estimates and the computation time. The proposed algorithm has been
presented at the 60th IEEE Conference on Decision and Control.

The chapter is structured as follows. Section 3.1 briefly describes existing re-
sults on Distributed Moving Horizon Estimation. Section 3.2 introduces the prob-
lem formulation, explains the communication protocol, and details the exchanging
information from neighborhood to neighborhood. The proposed `-step Neighbor-
hood DMHE algorithm is presented in Section 3.3. Before concluding remarks,
simulations examples are presented and analyzed in Section 3.4.

3.1 Introduction

In [Farina et al., 2010a], the authors have proposed a DMHE algorithm for
constrained linear systems proving that it is stable even under weak observability
conditions (due to consensus on estimates and a consensus weight term in the
DMHE formulation). The computation of the consensus weight matrix by each
sensor involves a Kalman-like covariance update formula and a stochastic matrix.
The authors also provided an algorithm to weight the components of this ma-
trix. However, the main drawback of this algorithm is that it requires complete
knowledge of the communication network topology, and thus, it is unsuitable for
distributed schemes, where computations performed by each sensor should only
rely on locally available data. More recently, [Battistelli, 2018] introduced another
consensus-based mechanism in a DMHE approach to fuse local arrival costs and
guarantee stability of the estimation errors in a fully distributed way, i.e. each
sensor being capable of guaranteeing convergence of the estimate to the system
state using only information locally available. In Chapter 2 were presented two
algorithms based on [Farina et al., 2010a] which, thanks to the introduction of
pre-estimating observer and the observability rank-based weights technique, they
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were able to reduce the computation time to solve the optimization problem and
to enhance the estimation accuracy.

This chapter extends the approach proposed in Chapter 2 [Venturino et al.,
2020] to the DMHE formulation of [Battistelli, 2018] which has proven to obtain
more general stability results as well as enhanced performance compared to [Farina
et al., 2010a]. The current chapter also leads to a reduced computation time due
to a pre-estimating observer. Another contribution concerns the improvement of
the convergence of the estimation error by mitigating unobservability issues. This
situation could arise in sensor networks when some nodes may have no sensing
capacities (inactive sensors), or are able to only measure some parts of the state
of the system that would make it non observable using only these sensors. For
this purpose, the new proposed DMHE technique exploits the exchanges of infor-
mation among local nodes based on an `-step neighborhood information spreading
mechanism, which comes natural in the sliding window data present in the MHE
paradigm.

In the provided numerical simulations, it is shown the practical efficacy of the
proposed `-step neighborhood Distributed Moving Horizon Estimation technique,
when compared with the DMHE in [Farina et al., 2010a,Battistelli, 2018], in which
no `-step neighborhood mechanism is incorporated. Moreover, thanks to the pre-
estimation concept included in its formulation, the `-step neighborhood DMHE
is also able to decrease the computation time by a significant factor and also to
enhance the convergence of the estimation errors.

The next section gives some definitions, details the communication protocol
used in the sensor network and how the sensors could exploit the shared information
within the MHE paradigm. In the end, it states the problem to be solved in this
chapter.

3.2 Problem statement

This section describes the state estimation problem using a neighborhood diffu-
sion mechanism over a sensor network. The dynamical system under investigation,
the measurement equation and the sensor have already been described in Sec-
tion 2.2, and they are still valid in this chapter. However it is necessary to add
more notations and definitions.

Regarding the sensor network, in addition to the shared data coming from the
neighbor sensors in N i, each sensor i could exploit past information from other
sensors j /∈ N i, if there exists a path from sensors j to sensor i according to the
directions of the edges. For this reason, denoting by d(i, j) the distance, in terms
of number of edges, between nodes i and j, we define the `-step neighborhood set
as follows.
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Definition 3.1 `-step neighborhood set

The set N i
` = {j 6= i ∈ N : d(i, j) 6 `} is named `-step neighborhood set

of sensor i, which is the set of sensors j ∈ N at most distant ` edges from
sensor i.

Notice that N i
1 = N i ⊆ N i

` and N i
0 = ∅. For example, Figure 3.1 shows

three `-step neighborhood sets for sensor 4 when considering ` = 1, ` = 2 and
` = 3, respectively, leading to the sets N 4

1 = {3} (blue), N 4
2 = {2, 3} (red) and

N 4
3 = {1, 2, 3} (green).

1 2 3 4
N 4

1
N 4

2
N 4

3

Figure 3.1: Three `-step neighborhood sets.

Remark 7. The DMHE approach is prone to use past information due to the fact that it
aims atminimizing a distance frompredicted andmeasured outputs over a sliding window
of fixed size N + 1, i.e. [t−N, . . . , t], see [Muske et al., 1993,Rao et al., 2001], as it will be
seen in Section 3.3.

The next subsection describes how the MHE paradigm can exploit this sequence
of past measurements.

3.2.1 Communication protocol

Assumption 3.1 Heterogeneous sensor network

The network is composed of possibly different types of sensor, like cameras,
LIDARs, etc.

According to Assumption 3.1 some sensors could be with no sensing capabil-
ities, i.e. Ci = 0, or at least partially, meaning that a sensor may observe only
some part of the state vector of the system, i.e. the pair (A,Ci) is possibly not de-
tectable. Moreover, the network could be deployed such that some neighborhoods
are composed only of nodes resulting in weak local or regional observability proper-
ties [Farina et al., 2010a], meaning that the pair (A, C̄i) could be not detectable,

where C̄i is the regional output matrix, i.e. C̄i = [(Ci)>, (Cj1)>, . . . , (C
j
ni
S )>]>,

with {j1, . . . , jniS} ∈ N
i and niS the number of sensors in the neighborhood set of

sensor i.
Therefore, with the aim to enhance collective observability [Farina et al., 2010a]

by the network, it is proposed that each node i ∈ N exploits measurements received
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from its `-step neighborhood N i
` . This section details how information coming

from N i
` will be considered in the formulation of the DMHE, by choosing ` = N ,

where N is the length of the horizon of past information considered for state
estimation by the algorithm. An example on a simple sensor network is also provided
to simplify the understanding.

Definition 3.2 Inactive sensor

A sensor with no sensing capabilities is called inactive sensor, therefore sensor i
is inactive if its output matrix is Ci = 0.

Assumption 3.2 Single-hop routing protocol

The communication network uses a single-hop routing protocol, i.e. the data are
exchanged among sensors with one single hop (no intermediary communication
devices involved).

Assumption 3.3 No time delay nor packet losses

In the communication network, it is assumed that there is no delay nor packet
losses.

Assumption 3.4 Time synchronization

All sensors in the network are time synchronized, i.e. each sensor is able to
exchange data with their neighbors at each time instant.

Assumption 3.5 Time-sliding batch

Each node i ∈ N keeps the information received from each of its in-neighbors
nodes in a time-sliding batch of size N and relays this information to out-
neighbors nodes at the next time instant.

Old information (i.e. received from time instant tr < t−N) is removed from
the batch. Therefore, at time t each node disposes of past measurements from
nodes in its `-step neighborhood over the time window [t−N, t]. Since dealing with
a single-hop routing protocol, each sensor i ∈ N receives information only from
its neighbors j ∈ N i at each time t. Let ȳi denote the measurements collected
by sensor i from all the nodes j ∈ N i. Then, at the time instant t, the collected
measurements from nodes j are

ȳi[t−N,...,t] =


yj1t−N . . . yj1t
...

. . .
...

y
j
ni
S

t−N . . . y
j
ni
S

t

 , with j1, . . . , jniS ∈ N
i.
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At the same time, each sensor j ∈ N i has data collected from its own neighbors
z ∈ N j , with z 6= i, from the previous time step t− 1, i.e.

ȳj[t−N,...,t−1] =


yz1t−N . . . yz1t−1
...

. . .
...

y
z
n
j
S

t−N . . . y
z
n
j
S

t−1

 , with z1, . . . , znjS
∈ N j .

that they can share with sensor i. This philosophy can be reiterated back in time,
and so along the communication links in N i

t−k, ∀k = t − N, . . . , t − 1, with a
maximum of N = ` back steps. It is worth to remind that the horizon length N is
reduced when the inequality t 6 N is satisfied, i.e. N = t, thus the just described
mechanism of collecting information works for any t > 0.

To summarize, the node i has the collection of data:{
ȳi[t−N,...,t], ȳ

j
[t−N,...,t−1], . . . , ȳ

z
t−N

}
,with j, . . . , z ∈ N i

` ,

which is useful in the local MHE optimization problem to improve the accuracy of
the estimates. Indeed, the node i disposes of the information available within a
“distance” of ` nodes within the sensor network.

1 2 3 4

Figure 3.2: 4-node digraph sensor network.

In the following, an example clarifies how this information diffusion mechanism
works.

Example. Consider a directed ring network composed of 4 nodes and con-
nected as in Figure 3.2. Assume that the considered communication protocol is
used with N = 3. Only node 1 (in green) is equipped with sensing capabilities,
while the white nodes are inactive sensors. Hence, in this example, there is a single
node that provides sensing information. Starting from t0 = 0, Table 3.1 lists the
measurements data collected from each sensor at each time instant t. Notice that
the nodes get rid of obsolete data even if the window data is not full. For example,
sensor 4 at time t3 has collected data into a two-dimensional vector y1

[t0,t1], and,
at the next step t4, it gets rid of y1

t0 because this is outdated, in other words it is
no longer useful because it is out of the window [t−N, t] = [t1, t4].

It is worth noticing that nodes 3 and 4 will not have any measurement data if the
information comes only from their (one-step) neighborhood N i (i.e. ` = 1).

The next subsection formulates the problem addressed in this chapter.
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Table 3.1: Collected data over time by the considered nodes for N=3.

t 1 2 3 4
t0 = 0 y1

t0
y1
t0

- -
t1 = 1 y1

[t0,t1] y1
[t0,t1] y1

t0
-

t2 = 2 y1
[t0,t1,t2] y1

[t0,t1,t2] y1
[t0,t1] y1

t0

t3 = 3 y1
[t0,t1,t2,t3] y1

[t0,t1,t2,t3] y1
[t0,t1,t2] y1

[t0,t1]

t4 = 4 y1
[t1,t2,t3,t4] y1

[t1,t2,t3,t4] y1
[t1,t2,t3] y1

[t1,t2]

3.2.2 Problem formulation

Definition 3.3 Poorly-Observing Sensor Network

A Poorly-Observing Sensor Network is defined as a network containing at
least one node i ∈ N having any of the following characteristics

• It has no sensing capabilities, i.e. Ci = 0;

• It has sensing capabilities and can provide a measurement on the state of
the system, i.e. Ci 6= 0, but the pair (A,Ci) still remains non detectable;

• Nodes in its neighborhood are such that the pair (A, C̄i) is non detectable.

The problem addressed in this chapter, namely Distributed State Estimation
over a Poorly-Observing Sensor Network can be stated as follows.

Problem 3.1 Distributed State Estimation
over a Poorly-Observing Sensor Network
Given the discrete-time LTI system (2.1), the sensor network G with
linear sensors as in (2.3), under the assumptions that:

• The pair (A,C) is observable, where C = col(Ci) with i ∈ N is the
collective output matrix, i.e. C = [(C1)>, . . . , (CnS )>]>;

• The graph G = (N , E) is strongly connected (see Definition 2.5).

The role of each sensor i ∈ N , at each time t, is to (possibly) get measure-
ment on the system, to exchange information among neighbor nodes N i

and to process locally available information in order to determine a local
estimate x̂it|t of the real state of the system xt.
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The next section describes the distributed algorithm that solves the Prob-
lem 3.1.

3.3 Proposed DMHE technique

This section presents the proposed Distributed Moving Horizon Estimation
approach. It extends the one of [Battistelli, 2018] based on consensus on the
arrival costs, by accounting for information from `-step neighborhoods and taking
advantage of a pre-estimating observer as in [Venturino et al., 2020] to reduce
computation time.

3.3.1 Local optimization problem

At time t, let x̂it−N |t, . . . , x̂
i
t|t be the sequence of estimates of the state of

system (2.1) to be computed by each sensor i ∈ N over a given past horizon of
length N > 1. The estimate of the state xt to be provided by each sensor at time
t corresponds to x̂it|t. To do so, a local minimization problem can be formulated
for each sensor i as follows

x̂it−N |t = argmin
x̂it−N

J it (3.1)
s.t. x̂ik+1 = Ax̂ik + Liv̂ik +

∑
j∈N it−k

Lj v̂jk, ∀k = t−N, . . . , t− 1,

(3.2)
v̂jk = yjk − C

j x̂ik, j ∈ {i} ∪ N i
t−k, ∀k = t−N, . . . , t,(3.3)

x̂ik ∈ X , ∀k = t−N, . . . , t,(3.4)
v̂jk ∈ V

j , j ∈ {i} ∪ N i
t−k, ∀k = t−N, . . . , t.(3.5)

where the set X is used to constrain the system state in its a priori knowledge
and the sets V i are the bounds for the unknown difference between the mea-
sured and predicted output of each sensor i. The sequence of state estimates
x̂it−N+1|t, . . . , x̂

i
t|t is then computed from the optimal solution x̂it−N |t and using

(3.2).
The main difference in this formulation is that a Luenberger observer formu-

lation is used in (3.2) instead of the state equation of the system, as classically
used in MHE formulations and in [Battistelli, 2018], which requires to consider the
disturbance sequence {w}t−1

k=t−N over the past horizon as additional optimization
parameters. Moreover, on not taking into account the disturbance sequence leads
on having different equations when calculating the consensus terms and weights,
as it is described later on. As it is shown in Chapter 2, removing this sequence
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reduces the computation cost, while simultaneously preserving the accuracy of the
state estimate. Under the assumption that the gain Li is computed such that:

Φi = A− LiCi, ∀i ∈ N (3.6)
is Schur stable, then, in order to mitigate the effects on the estimation errors at
certain frequencies or to increase robustness for each frequency, the gain Li can be
computed off-line according to some criteria, for example H2, H∞ [Duan and Yu,
2013, p. 293]. Note that the assumption of (3.6) being Schur can be satisfied only
when the pair (A,Ci) is observable, otherwise, as extrema ratio, it is sufficient to
design Li in order to keep the spectrum radius of Φi as low as possible.

Another difference w.r.t. [Battistelli, 2018] is that the optimization problem
(3.1) uses the set N i

` instead of N i, leading to improve the estimation accuracy.
In fact, N i

` appears in (3.2), (3.3) and (3.5) but also in the objective function J it
defined as:

J it = Γit(x̂
i
t−N |t) +

t∑
k=t−N

∥∥yik − Cix̂ik∥∥2

Ri
+

t∑
k=t−N

∑
j∈N it−k

∥∥∥yjk − Cj x̂ik∥∥∥2

Rj
(3.7)

where the weight matrices Ri (resp. Rj) are positive definite matrices which define
the reliability of sensor i on measuring yi (resp. yj). Thus, it comes natural to
chose Ri (resp. Rj) as the inverse of the covariance matrix of the measurement
noise. The first term is the so called initial penalty function Γit(·), known in
the MHE environment as arrival cost. It is assumed to be non negative and it
summarizes the effect of the past measurements, before time t − N . Further
details on the arrival cost are provided in Section 3.3.2, because it plays a major
role in the convergence and the performance of the algorithm. The second term
is the weighted difference between the measured output, from the sensor i itself,
and the predicted one. The third term is similar with the second one but the
measurements come from the `-step Neighborhood set of sensors.

Note that, when the current time instant t satisfies the inequality t 6 N

then the horizon length N is set to N = t. In this way it is possible to use the
algorithm even if there are not enough measurements to fill in the sequence of past
measurements within the horizon window.

Remark 8. The local optimization problem can be formulated using information coming
only from direct neighbor sensors, in other words ` = 1. For later comparisons, we denote
by:

• DMHE`pre the minimization problem (3.1) having N i
` , with ` = N ;

• DMHE1pre the one with N i
` equal to N i, i.e. ` = 1.

Indeed, DMHE1pre can be seen as a combination of the methods of [Battistelli, 2018] and
[Venturino et al., 2020].

The next subsection describes how the arrival costs are locally fused.
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3.3.2 Fused arrival cost
The objective function (3.7) contains the arrival cost term Γit(·). In the MHE

approach, it usually penalizes deviations from some a priori information x̃it−N on
the state at the beginning of the horizon as detailed in [Muske et al., 1993] and
can be formulated as in [Battistelli, 2018] by:

Γit(x) =
∥∥x− x̃it−N∥∥2

P it−N
, (3.8)

with P it−N a positive and symmetric definite weight matrix. The a priori state x̃it−N
can be computed as a one step prediction from the solution of the optimization
problem at the previous instant. In classical (D)MHE approaches, this prediction
is done using the state equation. In the proposed algorithm with pre-estimation
formulation, this prediction is computed as:

x̃it−N = (A− LiCi)x̂it−N−1|t−1 + Liyit−N−1. (3.9)
The matrix P it−N is defined as the inverse of the covariance matrix of the prediction
x̃it−N and it can be computed recursively, as we explained later on, initialized as
P i0 in order to quantify the confidence on the initial a priori information x̃i0.

In a distributed setting, this cost has an essential role to propagate information
among the sensors in the network in order to ensure convergence of the state
estimations to the real state of the system, since the local observability for one
node or observability among the neighborhood depends on the network topology
and sensing capabilities. As in [Battistelli, 2018], the idea is then to fuse the arrival
costs of the neighborhood N i in a convex combination:

Γit(x) = πi,i
∥∥x− x̃it−N∥∥2

P it−N
+
∑
j∈N i

πi,j
∥∥∥x− x̃jt−N∥∥∥2

P jt−N

, (3.10)

where all the weights πi,i and πi,j are strictly positive and fulfill the condition:

πi,i +
∑
j∈N i

πi,j = 1, ∀i ∈ N . (3.11)

Consequently, the initial penalty function is defined as a consensus on the arrival
costs by means of the expression (3.10) ensuring that the local arrival cost is a
weighted average of the local arrival costs from neighbors.

In the remaining part of this section, it is explained how to compute recursively
the consensus weight matrix P it−N and how to implement the function Γit(x) in
(3.10) by reporting and simplifying the Proposition 1 in [Battistelli, 2018], con-
sidering only one consensus step. Indeed, in [Battistelli, 2018] the algorithm is
developed to have multiple consensus steps within the same sampling period, i.e.
each sensors exchange information among their neighbors to have a faster con-
vergence. The number of consensus steps is denoted by L. Here, the proposed
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algorithm does only one consensus step, then L = 1. Consider the following convex
combination of the weights matrices among the neighborhood:

Ξit = πi,iP it−N +
∑
j∈N i

πi,jP jt−N (3.12)

and the convex combination together with the predictions:

ξit = πi,iP it−N x̃
i
t−N +

∑
j∈N i

πi,jP jt−N x̃
j
t−N . (3.13)

Then the fused arrival cost (3.10) coincides with the following:

Γit(x) =
∥∥∥x− (Ξit)−1

ξit

∥∥∥2

Ξit
. (3.14)

Indeed, by making explicit the weighted norms in (3.10) and by substituting (3.12)
and (3.13) in (3.14), the resulting equations will be equivalent. Notice that now
the arrival cost is no longer formulated as an average of functions, hence its im-
plementation is less complex than (3.10). Moreover, minimizing the objective func-
tion J it with the arrival cost (3.10) or (3.14) leads to obtain the same estimates
x̂it−N |t, . . . , x̂

i
t|t (see [Battistelli, 2018]).

In the following, the covariance matrix P it−N is recursively updated using only
local information available at time t to sensor i. Consider the observability matrix
F i associated to the pair (A−LiCi, Ci) along the horizon length N and its relative
collective output weight matrix:

F i =


Ci

Ci(A− LiCi)
...

Ci(A− LiCi)N

 , Ψi = diag(Ri, . . . , Ri︸ ︷︷ ︸
N+1 times

).

Then a preliminary consensus weight matrix Ωi
t−N−1 can be computed by using

only data locally available at node i from the previous time instant:

Ωi
t−N−1 = πi,iP it−N−1 +

∑
j∈N i

πi,jP jt−N−1 +
(
F i
)>

ΨiF i. (3.15)

Following [Battistelli, 2018], we now introduce a scalar α such that 0 < α < 1

and a positive definite matrix S for any t, and adapt the equations to the proposed
algorithm with pre-estimation. Then the updated consensus covariance matrix is
defined by

P it−N =
α

8

[
AiL
(
Ωi
t−N−1

)−1 (
AiL
)>

+ S−1
]−1

, (3.16)
where AiL = A − LiCi. The interested reader can refer to [Battistelli, 2018] for
the complete proof of (3.16).
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3.3.3 DMHE algorithm
Finally, in this subsection the modus operandi of the proposed distributed

algorithm is described. First of all, it is worth to mention that the steps of the
algorithm could be run in a parallel scheme by each sensor i ∈ N , after they
have sent and received the information from the neighbors at each time t, with the
assumptions on the network and communication protocol provided in Section 3.2.1.
Furthermore, as discussed in Section 3.3.1, for the first N steps, i.e. when 1 6
t 6 N , the horizon length N is reduced to N = t.

The steps of the DMHE`pre procedure are described in Algorithm 2. To get the
one-step DMHE1

pre procedure, it is sufficient to remove the step 10 and to use N i

instead of N i
` .

Algorithm 2 DMHE`pre procedure
1: Off-line: ∀i ∈ N2: compute the Luenberger gain Li3: store the a priori initial estimation x̂i0|0 = x̂0 of x0 and the covariance matrix
P i0 = P0 of x04: receive from the neighbors j ∈ N i: Lj , Cj , Rj , Vj

5: Initialization: ∀i ∈ N , at the first time step t = 06: collect a first local measurement yi07: receive from the neighbors j ∈ N i their measurements yj08: Online: ∀i ∈ N , ∀t > 09: collect the local measurement yit10: gather past information received at time t− 1 from j ∈ N i, as in Section 3.2.111: compute the prediction x̃it−N and the consensus weight matrix P it−N accord-ing to (3.9) and (3.16), resp.12: receive from the neighbors j ∈ N i the collected, gathered and computeddata in the steps 9, 10 and 1113: compute the fused arrival cost Γit according to (3.10)14: solve the local MHE, minimizing J it as in (3.7) subject to the constraints (3.2)-(3.5)15: store the solution x̂it−N |t and the corresponding estimate x̂it|t

Remark 9. All nodes are synchronized at the step 12, since each sensor i needs the data
from its neighbors j ∈ N i. This is the only communication step, in fact the rest of the
online algorithm can be run in parallel by each node i, since only local provided data is
used.

Remark 10. The path length ` of the `-step neighborhood N i
` can also be chosen lower

than the horizon lengthN of the DMHE, i.e. 1 6 ` 6 N . One can design then the DMHE`pre
in order to have a good trade-off between the accuracy of the estimation and the amount
of data exchanged in the network. This trade-off depends on the observability conditions
and the network topology.

The proposed `-step neighborhood DMHE is validated in simulations in the
next section.
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3.4 Simulations

This section provides an evaluation of the proposed DMHE algorithm via simu-
lations examples. They have been performed by a setup implemented in MATLAB
R2019b environment and the solver quadprog in Yalmip [Löfberg, 2004] on a Linux
Ubuntu 20.04 PC equipped with an Intel Core i7-10875H, 2.30 GHz. To compare
it with existing results in literature, the scenario in [Battistelli, 2018] is considered.

-600 -400 -200 0 200 400 600

-600

-400

-200

0

200

400

600 Inactive sensors Active sensors

Figure 3.3: Topology of the sensor network composed by 100 nodes [Battistelli, 2018].
The goal is to track a 2D moving target using a sensor network, that could

model, for example, a distributed camera network. As illustrated in Figure 3.3, the
network is composed of 100 sensors randomly disposed with a uniform distribution
on a plane of [−500, 500] × [−500, 500] m, in which only the 10 green nodes
are active sensors (i.e. with sensing capabilities), while the 90 white nodes are
inactive sensors (i.e. null output matrix). In the following it is considered that a
communication link between two nodes exists if the distance between them is less
than a given communication radius equal to 160 m.

The 2D moving target is modeled as a double integrator system. The state
of the system is represented by x = [px py vx vy]

> which corresponds to the
Cartesian coordinates of its position and velocity vectors. The dynamics of the

target are described by model (2.1) with A =

[
I2 TsI2

0 I2

]
, where Ts = 1 s is

the sampling time used for discretization of the continuous-time dynamics of the
target. The input disturbance wt in (2.1) is a four dimensional vector and is assumed
to be modeled by a noise vector with uniform distribution in W = [−0.5, 0.5] ×
[−0.5, 0.5]× [−0.5, 0.5]× [−0.5, 0.5]. The 10 active sensors provide measurements
of the target’s position in conformity with the matrix Ci = [I2 O2,2], while the
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remaining 90 inactive sensors have no ability to measure, i.e. their output matrix
is Ci = O2,4. The measurement noise vit of each sensor i is a two dimensional
vector with a uniform distribution in V i = [−10, 10]× [−10, 10].

Two simulation cases are further analyzed.
Case 1. A first simulation considers a horizon length N = 4; the a priori informa-
tion about the state x̂i0 is set equal to [0 0 0 0]> for each node; the initial arrival cost
weight matrix is P i0 = diag(10−5, 10−5, 1, 1), taking into account different mag-
nitudes of the states, i.e. first two positions and last two velocities components;
the matrices Q and Ri are set for each sensor i as the inverse of the covariance
matrices of wt and vit, respectively. The weight Q is used in [Farina et al., 2010a]
and [Battistelli, 2018] for (D)MHE algorithms without pre-estimation. This weight
matrix penalizes the norm on the sequence of disturbance input terms in the cost
function of these algorithms. All these parameters are identically set in all the
considered algorithms. The consensus weights πi,j are chosen to be equal among
the neighborhood, i.e. the Metropolis weights as in (2.33), satisfying (3.11).

In order to compare the proposed DMHE1
pre (namely DMHE with pre-estimation)

and DMHE`pre (namely DMHE with `-neighborhood diffusion and pre-estimation)
algorithms with existing techniques, the simulation has been run also for the cen-
tralized MHE of [Muske et al., 1993] (denoted as MHE) and the DMHE of [Farina
et al., 2010a] (denoted as DMHEF ), [Venturino et al., 2020] (denoted as DMHEpre,
i.e. the DMHE with pre-estimation developed in Chapter 2) and [Battistelli, 2018]
(denoted as DMHEB).

The performance metrics that have been taken into account are the Position
Root Mean Square Error (PRMSE) averaged over the nS = 100 nodes of the
network, denoted by:

PRMSE(t) =
1

nS

∑
i∈N

∥∥∥Ci (xt − x̂it|t)∥∥∥ ,
and the computation time τ(t) averaged also over the entire network.

Figure 3.4 shows the time behavior of the PRMSE of all considered algorithms.
The proposed DMHE1

pre (purple dotted-dashed line) technique offers similar results
as DMHEB of [Battistelli, 2018] (green line), with a faster convergence (about
4 seconds) with respect to DMHEF of [Farina et al., 2010a] (yellow line) and
DMHEpre [Venturino et al., 2020] (red dashed line) (about 18 seconds to con-
verge). Further, we can notice that the proposed DMHE`pre (blue dotted) ensures
improved performance in terms of convergence time among the considered dis-
tributed algorithms.

Evaluating the computation times in Figure 3.5 shows that the algorithms
with pre-estimation (red, purple and blue dots) are always less computationally
demanding compared to their respective version without pre-estimation (yellow
and green dots). Indeed, adding the pre-estimation reduces, in this case, the
computation time of about 30%. In particular, the proposed DMHE1

pre technique
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Figure 3.4: PRMSE time behavior comparison.

10 20 30 40 50 60

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 3.5: Computation time comparison.

(purple dots) converges faster and has comparable performances with the DMHE
of [Venturino et al., 2020]. Moreover, it is worth to notice that DMHE`pre has
the best convergence time from all the considered approaches (see Figure 3.4) and
needs almost the same computation time as DMHE1

pre and DMHEpre of [Venturino
et al., 2020].
Case 2. A second simulation of nine trials has been performed using the same
parameters but changing the fixed window size N = {2, 3, . . . , 10}, to the end
of evaluating how the horizon length affects the performance of the considered
DMHE algorithms. In addition, the initial state of the system x0 is randomly
generated with uniform distribution over the plane [−500, 500] × [−500, 500] m
and in velocity [−1, 1] × [−1, 1] m/s, while the initial estimates x̂i0 are chosen as
in Case 1. The simulation duration is chosen to be tf = 20s.
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Figure 3.6: Averaged PRMSE time behavior comparison.

Figure 3.6 shows the time behavior of the PRMSE averaged over all horizons
length N and sensors, i.e.:

PRMSE(t,N) =
1

nS · 9

10∑
N=2

∑
i∈N

∥∥∥Ci (xt − x̂it|t(N)
)∥∥∥ .

We can notice that the trends are equivalent with the first simulation in Figure 3.4.
To emphasize the influence of the horizon length N on the estimations, Figure 3.7
shows the evolution of the sum of the PRMSE over time of each algorithm with
respect to N , i.e.:

PRMSE(N) =
Ts

nS · tf

∑
t∈(0,tf ]

∑
i∈N

∥∥∥Ci (xt − x̂it|t(N)
)∥∥∥ .

As for N = 4 (see Case 1), the proposed technique DMHE`pre (blue line) has
always the best performance with respect to the distributed algorithms. Moreover,
even considering information belonging only to direct neighbors, i.e. N i

` = N i, the
DMHE1

pre (purple dashed line) method has comparable results in terms of PRMSE
with the DMHEB of [Battistelli, 2018] (green line). In fact, this is noticeable in
the zoom part on Figure 3.7 because the PRMSEs are one above the other.

Finally, Figure 3.8 points out the differences among the sum of the computation
time τ of all algorithms when changing the horizon length N , i.e.:

τ(N) =
∑

t∈(0,tf ]

τ(t,N).

As expected, the algorithms with pre-estimation (red, purple and blue lines) are
less computation demanding for every N since their local optimization problems
involves less optimization parameters. Another significant aspect to observe in
Figure 3.8 is that the difference on τ among algorithms with pre-estimation (red,
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Figure 3.7: Comparison of the sum of PRMSE for a different horizon length N .
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Figure 3.8: Comparison of the sum of computation time for a different horizon length
N .

purple and blue lines) and without pre-estimation (yellow and green lines) increases
with N . In addition, Figure 3.8 shows also the bounds representing the minimum
and maximum computation time of the DMHE algorithms. It can be noticed
that these bounds are tighter and less varying w.r.t. N for the algorithms with
pre-estimation.

To summarize, the numerical simulations have shown that the proposed algo-
rithm DMHE`pre with pre-estimation and `-step neighborhood information diffu-
sion, is able to solve the considered distributed estimation problem while, at the
same time, it turns out to be lower computation demanding and enhances the
convergence speed of the estimates w.r.t. other existing methods [Farina et al.,
2010a], [Battistelli, 2018].
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3.5 Conclusion

This chapter proposed the `-step neighborhood Distributed Moving Horizon
Estimation (DMHE) algorithm which is able to solve the Distributed State Es-
timation problem for a linear system over a poorly-observing sensor network. In
particular, the simulation results have shown that the proposed DMHE technique
with pre-estimation DMHE1

pre is able to converge with analogous performance with
respect to the DMHEB of [Battistelli, 2018] and, simultaneously, to reduce by a
significant factor the computation time. The best result comes from the `-step
neighborhood DMHE algorithm DMHE`pre that, spreading out information from
neighborhood to neighborhood, both improves accuracy (in terms of the Position
Root Mean Square Error), convergence speed of the estimates and reduces the
computation time.

The proposed algorithm has been presented in:

• A. Venturino, S. Bertrand, C. Stoica Maniu, T. Alamo, and E. F. Camacho.
A new `-step neighbourhood distributed moving horizon estimator. In 60th
IEEE Conference on Decision and Control, pages 508–513, Austin, Texas,
USA, 13-17 December, 2021.

A journal paper is in preparation.
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4 - Constrained DMHE with sporadic mea-
surements for Multi-Vehicle Systems

This chapter proposes a Distributed Moving Horizon Estimator (DMHE) for
the Multi-Vehicle System localization problem using Sensor Networks with sporadic
measurements, i.e. the problem of localizing vehicles using a sensor network which
does not exchange information with the vehicles. In this context, measurements are
available at time instants a priori unknown and the proposed DHME technique is
designed to face this issue by resorting to time-dependent parameters in the problem
formulation. Moreover, this technique is well-suited to better estimate the system
state thanks to its capability to efficiently exploit environmental information via
constraints. In fact, when dealing with sporadic measurements and biased noisy
sensors data, the use of output constraints can contribute to locally enhance the
estimation accuracy.

The effectiveness of the proposed algorithm is validated via two case studies:

• A realistic case study (video simulation available at https://youtu.be/
bXV5gSmVjoc) is proposed in simulation within the Robot Operating Sys-
tem framework and Gazebo to localize a Multi-Vehicle System using an
inexpensive Sensor Network with low-computation capabilities. A compar-
ative campaign simulation is performed to confirm the effectiveness of the
proposed DMHE algorithm in terms of accuracy, computation time, and
constraints handling with respect to existing result. This result has been
accepted for publication to IEEE Conference on Control Technology and
Applications 2022.

• An experimental setup (video presentation of the experiment available at
https://youtu.be/1CkSba2wVuI) is proposed within an indoor arena. Three
scenarios are considered for the localization of a Multi-Vehicle System com-
posed of five mobile ground robots, where the proposed DMHE technique is
performed using sporadic position measurements provided by a Sensor Net-
work with low-cost cameras and Raspberry PI computers. The estimated
localization is comparable to the real position given by the motion capture
system. In addition, the experimental data are further off-line analyzed.
Online and off-line results are compared in terms of computation time and
accuracy of the estimates with respect to existing results. These exper-
imental results have been submitted to the Control Engineering Practice
journal.

This chapter is structured as follows. Section 4.1 introduces the distributed
state estimation problem using MHE schemes over Sensor Network with sporadic
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measurements. Section 4.2 describes the problem under investigation and intro-
duces the main elements for the algorithm, while Section 4.3 describe the proposed
Constrained DMHE with sporadic measurements for Multi-Vehicle Systems. A re-
alistic simulation scenario within the ROS and Gazebo environments is investigated
in Section 4.4. Section 4.5 focuses on the hardware setup, the analysis and the
comparison of the experimentation results obtained by using a Sensor Network with
different communication topologies. Concluding remarks and further developments
are drawn in Section 4.6.

4.1 Introduction

Numerous studies have been dedicated to Distributed State Estimation (DSE)
over Sensor Network (SN) [Mo et al., 2011, Quevedo et al., 2012, Ding et al.,
2012] during the last few years since these schemes are suitable for diverse ap-
plications and contexts. Some of these works have conducted only theoretical
developments or have exclusively numerically shown the effectiveness of the con-
sidered techniques. Indeed, there is still a judicious need for deep insights such
as applying distributed state estimation algorithms in real experiments and appli-
cations. For example, communication delays and packet losses [J. Zeng and Liu,
2015], computation time [Venturino et al., 2021a], the time-varying topology of
the network [Yousefi and Menhaj, 2014], sporadic measurements [Postoyan and
Nešić, 2011, Ferrante et al., 2016] are still open problems to cope with in theory
and much more in practice.

The current chapter focuses on Multi-Vehicle System localization using DMHE
algorithms. Similar works have been conducted by the authors of [Simonetto et al.,
2011] and [Yousefi and Menhaj, 2014]. In [Simonetto et al., 2011], the DMHE
problem has been addressed by focusing on the non linearity of the model and on
the possible local observability issues at the sensor level. In [Yousefi and Menhaj,
2014], the authors accounted for mobile nodes in the Sensor Network that led to
deal with a dynamic topology. Indeed, using a flocking algorithm for the motion
control, the mobile sensors attempt to move in a specific way in order to get the
best positions to observe the target and to avoid collisions between neighboring
agents. In this chapter, we focus on the computation time aspect, which is a key
factor for real-time implementation.

In Chapters 2 and 3, DMHE algorithms with pre-estimation have been proposed
in order to reduce the computation time while preserving or improving the accuracy
of the state estimation. To this aim, the input sequence of noise to be estimated has
been replaced by a Luenberger observer leading to fewer optimization parameters
to be accounted. Furthermore, an observability rank-based weights technique has
been used to enhance the accuracy. The algorithm proposed in this chapter is
developed using the DMHE in Chapter 2 as a theoretical basis. The main reason
is that it is simpler to implement for experiments on a real harware setup with
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respect to the `-step DMHE algorithm developed in Chapter 3.
The contribution of the current chapter is two-fold. First, in addition to a re-

duced computation time and an improved accuracy due to the pre-estimation, the
proposed DMHE technique is designed for realistic large-scale systems scenarios in-
volving sporadic measurements (i.e. available at time instants a priori unknown).
To this aim, constraints on measurements (coming from the knowledge of the
environment where the Multi-Vehicle System is evolving) are embodied using bi-
nary parameters in this novel Distributed Moving Horizon Estimation formulation.
Thus, the environment information is exploited to better estimate the system state.
Second, this chapter aims at evaluating the performance of the proposed DMHE
approach (in terms of accuracy and computation time) on a realistic case study, i.e.
the distributed localization of a Multi-Vehicle System by a static sensor network,
developed within the ROS framework and Gazebo environment (for the simulation
part). This realistic distributed implementation within ROS and Gazebo has en-
abled the deployment on a hardware setup. Thus, the proposed DMHE approach
is evaluated in terms of accuracy and computation time on three real experiments
using different numbers of sensors, distinct communication network topologies and
diverse coverage of the cameras’ fields of view. Indeed, one of the main con-
tributions of this chapter consists in the experimental validation of the proposed
distributed MHE localization technique of a Multi-Vehicle System. In the devel-
oped experiment setup, the static Sensor Network is composed of low-cost cameras
which provide measurements on the positions of the vehicles. Each camera is at-
tached to a Raspberry PI for computational and communication capabilities. The
proposed DMHE algorithm has been implemented within the ROS framework to
run in a distributed way on each Raspberry PI. The Multi-Vehicle System is com-
posed of five TurtleBot3 robots performing formation motion within a road-like
area located in an indoor arena equipped with a motion capture system. This
allows to compare the real position (provided by the Optitrack motion capture)
with the position estimated by the low cost Logitech camera (webcam) network
using the proposed DMHE algorithm.

The next section describes the problem under investigation and introduces the
main elements for the algorithm.

4.2 Distributed State Estimation over a static Sensor Network
with Sporadic Measurements

This section describes the problem of DSE of a Multi-Vehicle System over a
Sensor Network (SN) with sporadic measurements, the considered models, and the
characteristics of the Sensor Network.

4.2.1 Problem description
Consider the problem of Distributed State Estimation of the state (e.g. 2D

position) of a Multi-Vehicle System by a SN. In this setting, we assume that the
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Sensor Network is composed of nS different sensors performing sporadic measure-
ments, i.e. the measurements are not obtainable at all times by each sensor. For
example, a moving vehicle can be detected by a camera only when it is within its
field of view, or by a beacon when within its detection range, etc. A (formation1

of) vehicle(s) moving in unknown directions can thus be detected by a given sensor
belonging to a Sensor Network at time instants a priori unknown.

The Multi Vehicle System under observation consists of nV ground vehicles
which are restricted to move in specific locations, e.g. on roads in urban envi-
ronments (delimited by the yellow borders in Figure 4.1). We additionally make
use of this environment knowledge as position constraints in the Distributed State
Estimation optimization problem.

Figure 4.1: Experiment scenario setup: Multi-Vehicle System with 5 vehicles in thestarting place and Sensor Network composed of 12 cameras and Raspberry PI com-puters.

4.2.2 Considered dynamical model
Consider nV vehicles. The ν-th vehicle dynamical model is represented as a

discrete-time linear time-invariant (LTI) system:

νxt+1 = νA νxt + νwt, ν = 1, . . . , nV , (4.1)
where νxt ∈ νX ⊆ Rνnx is the state vector and νwt ∈ νW ⊆ Rνnx is an exogenous
input (e.g. an unknown control input, state perturbation, etc.), with νX and νW
convex sets.

1This chapter also deals with the case when only a part of a formation of vehiclescan be within the field of view of a camera.
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Remark 11. Notice that, according to the adopted notation, the state of the globalMulti-
Vehicle System is denoted by xt = [1x>t , . . . ,

nV x>t ]>, where its global dynamics is de-
scribed by A = diag(1A, . . . , nV A).

Given that each vehicle can be detected individually by each sensor i (right
superscript), the following mathematical expression models the measurement pro-
vided by sensor i with respect to the ν-th vehicle:

νyit = νCi νxt + νvit, i = 1, . . . , nS , (4.2)
where νyit ∈ Rniy is the measurement vector and νvit ∈ Rniy is the measurement
noise with covariance Ri.

Remark 12. Notice that in (4.2), the right superscript i refers to the i-th sensor and the
left superscript ν to the ν-th vehicle. In this respect, νCi is the output matrix specifying
that the sensor i is producing a measurement on the state of the vehicle ν. The notation
Ci (without the left superscript ν) refers to the output matrix of the global Multi-Vehicle
System Ci = diag(1Ci, . . . , nV Ci).

For simplicity of the formulation, we assume that each sensor can measure only
the vehicles’ position without losing generality. In this chapter, we consider that all
the measurements are sporadic. This way, we avoid abstruse notation to discern
sporadic and non-sporadic measurements.

The following notation is necessary to denote the global system’s collective
output matrix which aggregates both the measuring and non-measuring situations
of each sensor i:

Ciαt = Di
αtC

i, (4.3)
where Di

αt is a squared diagonal matrix of size
∑nV

ν=1
νny with ναit ∈ {0, 1} as

components, for ν = 1, . . . , nV , defined as:

Di
αt = diag(1αit I1ny , . . . ,

nV αit InV ny), (4.4)
with Iνny the identity matrix of dimension νny.

Remark 13. Notice that ναit is a time-dependent binary parameter marking if the sensor
i can detect the ν-th vehicle at time t (i.e. ναit = 1) or not (i.e. ναit = 0).

Definition 4.1 Active and inactive sensor

The sensor i is called active sensor at time t if there ∃ at least one ν ∈ {1, ..., nν}
such that ναit = 1 (sensor i is considered active iff it sees at least one of the
vehicles), inactive otherwise.

This definition plays an important role for the estimation of the trajectory of
intruder vehicles by a Sensor Network.
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4.2.3 Constraints

This subsection defines measurement constraints exploiting the a priori knowl-
edge of the environment and the cameras composing the Sensor Network. First,
denote by R the subset of planar coordinates corresponding to the road (assumed
to be non-convex and marked by the blue lines in Figure 4.2) on which the vehicles
can drive. Further on, denote by F i the set of the points forming the sensor i field
of view (in yellow in Figure 4.2). The convex hull of the intersection of these two
sets denoted by:

Si = Co(R∩ F i) (4.5)
is further used to constrain the position of the vehicle in the state estimation
process when the mobile vehicle is within the field of view of the sensor i, i.e.
when this sensor detects the vehicle (see Figure 4.2 for a graphic illustration).

Figure 4.2: RoadR (blue line), fields of view F1 and F2 (yellow), and convexified con-straints S1 (red polygone) and S2 (blue polygone).

It is worth noticing that the convex hull operation leads to constraints with
twofold aspects. The first one, is that the constraints are convex, hence easily
tractable within quadratic programming solving algorithms. The second one is
that the set Si might contain points outside the road R since the convex hull is an
outer approximation of a set (see the set S2 in Figure 4.2). Thus, this operation is a
trade-off between simplicity (convex set) and accuracy of the estimation (estimates
outside the road).

4.2.4 Problem statement

The Sensor Network description explained in Section 2.2.3 is used in this chap-
ter.
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Problem 4.1 Distributed State Estimation over Sen-
sor Network with sporadic measurements for Multi-Vehicle Systems
Consider the discrete-time LTI system (4.1) and the Sensor Network G with
the linear measurement equation (4.2), under the assumption that the graph
G = (N , E) is strongly connected, i.e. every node is reachable from every
other node (see Definition 2.5). The role of each sensor i ∈ N , at each
time t, is to (possibly, since measurements are sporadic) get measurement
on (part of) the Multi-Vehicle System, to exchange information among
neighbor nodes of N i and to process locally available information in order
to determine a local estimate x̂it of the real state xt of the Multi-Vehicle
System.

The next section gives the theoretical insights of the proposed DMHE solution
taking into account sporadic measurements and describes the proposed DMHE
algorithm that solves the Problem 4.1.

4.3 Proposed DMHE technique

This section recalls the Distributed Moving Horizon Estimation approach with
pre-estimation and observability rank-based weights proposed in Chapter 2 and
presents its novel formulation to handle the Multi-Vehicle localization application
considered in the current chapter.

4.3.1 Pre-estimation observer
Given sensor i, let us consider the global Multi-Vehicle System dynamical evo-

lution to estimate as follows:

x̂it+1 = A x̂it + ŵit. (4.6)
Equation (4.6) is usually used in classical MHE formulations. In this chapter, it is
replaced by the following pre-estimation Luenberger observer:

x̂it+1 = A x̂it + Liαt
(
yit − Ci x̂it

)
. (4.7)

Thanks to the pre-estimation, the proposed DMHE technique reduces the com-
putation time needed by the sensors (see Chapter 2) to estimate the state of the
system compared to classical DMHE (see [Farina et al., 2010a]). This is due to a
reduced number of optimization variables.

The dependence with ναit is formulated via Liαt = LiDi
αt , with D

i
αt defined

by (4.4). Moreover, the global Luenberger gain Li is computed such that Φi =

A − LiCi is Schur stable when the Multi-Vehicle System is detectable by sensor
i, i.e. the pair (A,Ci) is detectable. One may compute the gain related to the
global Multi-Vehicle System or separately, since Li = [1Li, . . . , nV Li].
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4.3.2 Field of View constraints and sporadic measurements
The binary parameter ναit allows to deal with the sporadic measurements.

Indeed, it is effective to discern when the constraints Si can be used by sensor
i (active constraints) and when not (inactive constraints), i.e., respectively, when
the sensor i can detect a specific vehicle and when not. In particular, considering
the vehicle ν being detected or not by sensor i at time t, the following constraints
νSiαt are defined:

νSiαt =

{
Si if ναit = 1

Rνnx if ναit = 0.

Figure 4.3 shows a graphical illustration example of a vehicle driving in the
road and detected by the sensor 2. In this example then, at the current time t,
νS2

αt = S2 (i.e. sensor 2 is active and uses constraints), while νS1
αt = Rνnx (i.e.

sensor 1 is inactive and does not use constraints).

Figure 4.3: Example of active and inactive sensors.

4.3.3 Objective function with sporadic measurements
The objective function is similar to the one used in Chapter 2 with the difference

of dealing with sporadic measurements. Indeed, the binary parameter ναit plays a
crucial role also in the objective function J iαt , which is defined as:

J iαt(·) =
1

2

t∑
k=t−N

∥∥ȳik − C̄iαk x̂ik∥∥2

(R̄i)−1 + Γit−N (·), (4.8)
where R̄i is the regional covariance matrix of the measurement noise. Here, we
assume that R̄i is a positive definite matrix. The term R̄i weights the difference
between the predicted outputs and the measurements within the fixed window of
size N . Notice that when αik = 0, the following equality holds

∥∥ȳik − C̄iαk x̂ik∥∥ =∥∥ȳik∥∥, thus a term that does not depend on the optimization parameters and does
not effect the solution. The same reasoning can apply when considering each
vehicle individually, i.e. when ναik = 0. The arrival cost Γit−N (·) is a non negative
term summarizing the effect of the past measurements, before time t−N and is
usually approximated by some initial penalty function defined as follows:

Γit−N (·) =
1

2

∥∥∥x̂it−N − ˆ̄xit−N |t−1

∥∥∥2

(Π̄i
t−N|t−1

)−1
, (4.9)
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which involves two consensus terms, ˆ̄xit−N |t−1 and Π̄i
t−N |t−1, described below.

4.3.4 Consensus terms
The consensus terms are also similar to the ones of Chapter 2, but here adapted

to the case of sporadicalness of the measurements. In fact, for this algorithm, the
components kij of the stochastic matrix K are time-varying, denoted by kij|t and
computed as described in the next subsection.

The first term included in the penalty function Γit−N is the consensus-on-
estimates term, denoted by ˆ̄xit−N |t−1. It consists in a weighted average state
estimate computed over the neighborhood N i as follows:

ˆ̄xit−N |t−1 =
∑
j∈N i

kij|tx̂
j
t−N |t−1, (4.10)

where x̂jt−N |t−1 is the estimated state computed at time t−1 by sensor j ∈ N i. It
is a consensus term in the sense that it penalizes deviations of x̂it−N from ˆ̄xit−N |t−1.

The second term is the positive definite matrix Π̄i
t−N |t−1 computed as:

Π̄i
t−N |t−1 =

∑
j∈N i

kij|tΠ
j
t−N |t−1, (4.11)

where the matrices Πj
t−N |t−1 are obtained in the same way as described in Sec-

tion 2.4.1 starting from Equation (2.23).
4.3.5 Observability rank-based weights technique with sporadic mea-

surements
Here, we adjust the weights tuning technique in Chapter 2 for the stochastic

matrix K associated with the graph G for the considered Multi-Vehicle localization
problem by DMHE over a Sensor Network with sporadic measurements.

Thanks to this method, each sensor i computes its components of K based on
only locally available data. Hence, it is appropriate for a distributed scheme, and
furthermore, for the application considered in this chapter with sporadic measure-
ments. Indeed, this technique enables to improve the accuracy of the estimates by
relying more on the sensors that are currently sensing, in other words, by exploiting
the observability properties of the neighborhoods. Since these properties are time-
varying for this Sensor Network due to the sporadicalness aspect, the observability
rank-based weights technique is suitable for enhancing the algorithm’s accuracy
and convergence time.

Consider a sensor i at time t. Its current N -step regional observability matrix:

ŌiN |t =
[
(C̄iαt−N+1

)> (C̄iαt−N+2
A)> · · · (C̄iαtA

N−1)>
]> (4.12)

is of full rank if and only if the the pair (A, C̄iαt) is completely observable at any
instant k within the interval [t−N + 1, . . . , t], i.e. rank(ŌiN |t) =

∑nV
ν=1

νnx. For
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simplicity, we denote by ρiO|t = rank(ŌiN |t). This variable will be considered as an
information on the reliability of node i, i.e. its sensing capability, and will be used
to define the weighting coefficients kij , which must satisfy the constraint (2.4).
Notice that, at some time instants a priori unknown, the entire neighborhood may
not have sensing capabilities at all, i.e. ρiO|t = 0. To avoid division by zero a
lower bound ε smaller than 1 is chosen for the rank, here ε = 0.5 is chosen, i.e.
ρiO|t = max

{
rank(ŌiN |t), ε

}
. Then the components kij|t are computed as follows:

kij|t =
ρjO|t∑

j∈N i ρ
j
O|t
. (4.13)

4.3.6 Local optimization problem with sporadic measurements
Given an estimation horizon length N > 1, at each time t, each sensor i ∈ N

determines the state estimate x̂it|t by solving the following constrained minimization
problem:

x̂it−N |t = arg min
x̂it−N

J iαt(·) (4.14)
s.t. x̂ik+1 = A x̂ik + Liαk

(
yik − Ci x̂ik

)
, ∀k = t−N, . . . , t− 1,

(4.15)
x̂ik ∈ X , ∀k = t−N, . . . , t,(4.16)

C̄i x̂ik ∈ Siαk , ∀k = t−N, . . . , t,
(4.17)

with J iαt given by (4.8). The sequence of state estimates x̂it−N+1|t, . . . , x̂
i
t|t is

obtained from the optimal solution x̂it−N |t and using the dynamics (4.15). The A
matrix in (4.15) refers to the global Multi-Vehicle System. Moreover, the FoV con-
straints, as described in Section 4.2.3, are integrated in the optimization problem
in (4.16).
Remark 14. The local optimization problem could have been also divided in several prob-
lems, one for each vehicle, but solving one for the entire Multi-Vehicle System is less time
demanding and less complex.

4.3.7 DMHE modus operandi
Finally, the procedure of the proposed distributed scheme is described in Algo-

rithm 3.
The specific steps related to sporadic measurements are integrated at step

19, with Di
αt computed at step 11. Notice that the steps 10, 18 and 21 in the

procedure regarding the exchanging information could be rearranged to include
only one synchronization. However, the current formulation has been chosen for
clarity reasons w.r.t. calculation details.
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Algorithm 3 DMHE procedure with sporadic measurements
1: Off-line: ∀i ∈ N2: receive from the neighbor nodes j ∈ N i: Lj , Cj , Rj3: compute the pre-estimation Luenberger gain Li4: store the a priori initial estimation x̂i0|0 = x̂0 of x0, where x̂0 is given, and thecovariance matrix Π0 of x05: Initialization: ∀i ∈ N , at the first time step t = 06: collect a first local measurement yi07: receive from neighbors j ∈ N i their measurements yj08: Online: ∀i ∈ N , ∀t > 09: collect the local measurement yit10: receive from the neighbors j ∈ N i the collected data in step 911: compute the matrixDi

αt
according to (4.4)12: compute the components kij|t according to (4.13)13: if 1 6 t 6 N then14: set the horizon length N = t, the covariance matrix Π̄i

t−N |t−1 = Π̄i
0|t−1 =

Π0 and the a priori initial estimation state x̂it−N |t−1 = x̂i0|t−115: else16: compute Πi
t−N |t−1 according to (2.28), (2.29) and (2.30)17: receive Πj

t−N |t−1 from the neighbor nodes j ∈ N i

18: compute Π̄i
t−N |t−1 according to (4.11)

19: solve the local optimization problem of DMHE, minimizing J i as in (4.8) and(4.9) subject to the constraints (4.15)-(4.16)20: store the solution x̂it−N |t and the corresponding estimate x̂it|t21: receive from the neighbors j ∈ N i their estimates x̂jt−N+1|t

The next section provides the results obtained by implementing the proposed
algorithm for a realistic simulation within the ROS framework and Gazebo simula-
tor.

4.4 Realistic simulations

4.4.1 Scenario and simulation setup

In this section, the proposed DMHE is applied to estimate the positions of a
team of nV = 5 ground vehicles moving together. To evaluate its performance
a realistic implementation in the ROS framework and in the Gazebo simulation
is proposed, see Figure 4.4 showing the simulation scenario, i.e. the five vehicles
at their starting positions, the road in which they have to drive and the final
point to reach, and the cameras’ field of view. A simulation video is available at
https://youtu.be/KRvlQgvHGEo.

For the estimation models used in the DMHE optimization problem, each vehi-
cle is modeled as single integrator, with a 2-dimensional state vector representing
its Cartesian positions in the plane. The control input vector, i.e. Cartesian lin-
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Figure 4.4: Scenario illustrated in Gazebo: Multi-Vehicle System with 5 vehicles in thestarting place.

ear velocities, of each vehicle is assumed to be unknown by the Sensor Network
(non cooperative), and it is further considered as an exogenous input, modeling
νwt ∈ R2 as an uniformly distributed noise with covariance matrix Q = I2.

Figure 4.5: TurtleBot3 within the indoor arena.
To simulate a realistic system, each vehicle is modeled in Gazebo as a differ-

ential drive robot (TurtleBot3, see Figure 4.5).
The Multi-Vehicle System goes from the starting point (1,−2) m towards the

final point (11, 11) m driving within the road and controlled by a leader-follower
formation control strategy.

The Sensor Network is composed of nS = 17 cameras measuring the Cartesian
positions of the vehicles, and connected as in the Figure 4.6 (see the red edges
representing the communication links between the nodes depicting the cameras).
Figure 4.6 also shows the projection on the ground of the field of view of each
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camera (yellow rectangles), and the road (blue solid line). The start and finish
position of the Multi-Vehicle System are clearly indicated in Figures 4.4 and 4.6.
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Figure 4.6: Simulation scenariowith road (blue line), cameras (numbered nodes), pro-jection of the field of viewof each camera (yellow rectangles), and communication linkbetween the sensors (red arrows).
Notice that the graph associated with the Sensor Network (see Figure 4.6)

is not a complete graph, i.e. a graph in which every pair of distinct vertices is
connected by a unique edge (see Definition 2.6). The measurements refer to the
reference frame associated with each camera. Thus, to have them in the absolute
reference frame it is necessary to translate and rotate them with a transformation
matrix. To make the scenario more realistic, we added different biases for each
camera (via the measurement equation (4.2) for each sensor) on these translations
and rotations, allowing to model uncertainties related to the cameras’ poses.

Assuming that these biases can not be easily estimated and compensated in the
considered scenario, the purpose is to investigate the robustness of the proposed
Distributed Moving Horizon Estimation to this additional source of uncertainty (i.e.
sensor biases) and to validate the usefulness of a priori known Field of View (FoV)
constraints considered in the DMHE optimization problem.

A Monte Carlo simulation with 100 runs with different measurements noises
(per run) normally distributed (i.e. a white noise with zero mean and covariance
matrix Ri = 0.5I2, ∀i) was performed. The estimators runs with a sampling time
Ts = 0.5 s and a horizon length N = 4. The initial values of the algorithms
have been set as ν x̂0 =

[
0 0

]>, ∀ν, Π0 = 105I2. The optimization problem
was implemented by using the quadratic programming solver from [Goldfarb and
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Figure 4.7: Averaged RMSE among all the sensors and all the trials.

Idnani, 1983] implemented in Python. The considered performance indexes are
the computation time τ needed by the solver to estimate the positions of the
Multi-Vehicle System, and the RMSE computed as follows:

RMSEt =
1

100 · nS

100∑
σ=1

∑
i∈N

∥∥∥xt(σ)− x̂it|t(σ)
∥∥∥ ,

both averaged among the trials and the sensors, where xt(σ) and x̂it|t(σ) are,
respectively, the realization of the real state of the system and the estimated one,
by sensor i, for the trial σ. The simulation is carried out by a PC Linux Ubuntu
20.04 equipped with an Intel i9-11950H processor.

We compare the proposed Distributed Moving Horizon Estimation without FoV
constraints (denoted by DMHE) and with FoV constraints2 (denoted by DMHES).
We compare the results with the algorithm in [Farina et al., 2010a], denoted here-
after by DMHEF for the case without FoV constraints. We also added the FoV
constraints (4.5) to this approach, denoted hereafter by DMHESF .

4.4.2 Results’ analysis

Figure 4.7 illustrates the averaged RMSE among all the sensors and all the 100
trials. It shows that the proposed DMHE (red dotted curve) and its constrained
case DMHES (solid green curve) have better accuracy w.r.t. to the approach
in [Farina et al., 2010a], with FoV constraints (solid cyan curve) or without FoV
constraints (dark blue dotted curve). Indeed, the RMSE obtained with the proposed
estimation approaches (both DMHE and DMHES) are improved by a factor close
to 30% w.r.t. the RMSE of DMHEF and DMHESF . This figure shows also the
bounds (shaded colors) representing the minimum and the maximum RMSE of each
trial and for each individual local observer. It is worth noticing that these bounds
are narrower for the constrained algorithms w.r.t. their counterparts without FoV
constraints.

2The constraints are added as in (4.5).
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Figure 4.8: Averaged computation time τ among all the sensors and all the trials.

The same trend can be seen in Figure 4.8 showing the computation time
τ averaged among all the sensors and trials. Accounting for FoV constraints is
done at the cost of an increase of the computation time (close to a factor 2).
The proposed pre-estimation mechanism enables to compensate that by drastically
reducing the computation time. Here, the bounds, representing the minimum and
the maximum τ of each trial and for each individual local observer of the proposed
DMHEs are tighter than the bounds obtained with the DMHEF and DMHESF .
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Figure 4.9: Estimation of the position along the x-axis of the fourth vehicle 4p̂x,t by allthe active sensors.
The FoV constraints Si are used in the local optimization problem only when

the camera is actually sensing a vehicle, i.e. when the sensor i is active as described
in Section 4.3.2. In order to show the effects of these FoV constraints Si (4.5),
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consider, for one random trial, the estimations of the position along the x-axis for
the fourth vehicle. In particular, it is more relevant to plot only the estimations
during the time periods when their sensors are active, i.e. when the vehicle belongs
to its field of view. Thus, Figure 4.9 illustrates the simulated position 4px,t (in green
solid line) provided by the Gazebo simulator, the measurements of the cameras
(cyan dots), the estimations using DMHE (red dotted curves) and DMHES (dark
blue dotted curves). The zoomed parts also show the local FoV constraints (black
dashed lines). Due to the measurement noise and bias, some measurements (cyan
dots) could not correspond to possible positions of the vehicle which are constrained
to be within the road boundaries. Accounting explicitly for FoV constraints in the
estimation, therefore, helps to improve the accuracy. Figure 4.9 illustrates that the
estimations with the DMHES (dark blue dotted curves) method respects the FoV
constraints represented by black dashed lines in the zoomed parts.

The next section provides the experimental results obtained by implementing
the proposed algorithm for localizing an actual Multi-Vehicle System using the
developed multi-camera sensor network.

4.5 Experiments

This section describes three conducted experiments within the indoor arena
equipped with an OptiTrack motion capture system used to provide ground truth
localization. This information is compared with the position estimates performed
by the DMHE algorithms in order to evaluate the estimation accuracy. The es-
timation algorithms are using the measurements provided by low cost Logitech
webcams. Figure 4.1 shows the scenario, i.e. five ground vehicles at their starting
point, the finish point, the sensor camera network composed of 12 cameras and
the road boundaries (yellow lines). As in the previous section, in the context of
intruders’ localization, the leading goal is to localize a formation of several mobile
robots moving on a road, by performing the proposed Distributed Moving Horizon
Estimation over a Sensor Network of low-cost cameras within a given communica-
tion topology, performing sporadic measurements. These vehicles are moving in a
formation, along the road, controlled by a distributed algorithm using localization
from the motion capture system. They are considered as non-cooperative vehicles
for the localization problem performed by the Sensor Network.

The experiments are developed within the Robot Operating System (ROS)
framework. Indeed, the distributed state estimation algorithm is deployed on several
Raspberry PI, each one in charge of obtaining measurements from a single low-cost
camera, of exchanging information among neighbors and of locally estimating the
state of the Multi-Vehicle System. The cameras carry out vehicle detection thanks
to the AprilTag algorithm (see [Wang and Olson, 2016]), which uses tags (known
in size and pattern) placed on top of the vehicles to robustly and efficiently detect
the positions of the vehicles. The Raspberry PI are not always able to detect the
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Figure 4.10: Three out of five vehicles detected by one camera.

vehicles even when these are within the field of view of the camera, this leads to
have more sporadic measurements. For example, Figure 4.10 shows three out of
five tags detected by one camera.

The experimentally collected data are further off-line re-processed and analyzed
by adding artificial Gaussian noise to the measurements and changing the topology
of the Sensor Network. We compare online and off-line results w.r.t. the DMHE
algorithm of [Farina et al., 2010a].

4.5.1 Experiments setup

The objective is to track a Multi-Vehicle System composed of nV = 5 ground
vehicles, one leader in the center of a square and four follower vehicles in the
vertices of the square. The Multi-Vehicle System goes from the starting point
(−1.75,−3.25) m towards the final point (0.75, 4) m driving within the road,
clearly indicated in Figures 4.11a-4.13a, controlled by a leader-follower formation
distributed control strategy. The control inputs of the intruders’ vehicles are as-
sumed to be unknown. The details of this control strategy are beyond the scope
of this work and they are omitted here.

In order to analyze the performance of the proposed Distributed Moving Hori-
zon Estimation, we designed three experimental scenarios, with a different number
of sensors involved in the distributed state estimation and different poses for the
cameras:

• Scenario 1 (see Figure 4.11) uses 12 cameras for a maximum coverage
area by their FoV. A video presentation is available at https://youtu.be/
1CkSba2wVuI;

• Scenario 2 (see Figure 4.12) uses 6 cameras for a maximum coverage area
by their FoV;
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(a) FoVs real experiment.
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(b) FoV constraints real experiment.
Figure 4.11: Scenario 1, maximum coverage area with 12 sensors.

(a) FoVs real experiment.
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(b) FoV constraints real experiment.
Figure 4.12: Scenario 2, maximum coverage with area 6 sensors.

76



(a) FoVs real experiment.
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(b) FoV constraints real experiment.
Figure 4.13: Scenario 3, less coverage area with 12 sensors.

• Scenario 3 (see Figure 4.13) uses 12 cameras but with a reduced coverage
area by their FoV w.r.t. Scenario 1.

In Figure 4.11-Figure 4.13, the yellow polyhedra represent the FoV of the Logitech
cameras (together with their reference frames), the solid blue lines define the
road boundaries, the dashed colored polygons are the FoV constraints, and finally,
the red arrows represent the communication links between the computing nodes
(Raspberry PI) associated to the cameras. Notice that the poses of the 12 cameras
used in Scenario 3 (except for the 12th sensor) are defined such that each camera
can detect a maximum of 3 vehicles, i.e. their fields of view point only at half of
the road (see Figure 4.13a).

In the DMHE optimization problem, each vehicle is modeled as single inte-
grator, where the state vector νx = [νpx,

νpy]
> ∈ R2 consists of planar position

coordinates and the control input vector (i.e. the velocity components) is assumed
unknown and considered as an exogenous input νwt ∈ R2, modeled as an uniformly
distributed noise vector with covariance matrix Q = I2.

Each camera provides position measurements of the vehicles in its own ref-
erence frame (indicated in Figure 4.11a-Figure 4.13a). Thus, in order to obtain
position measurements in the common absolute reference frame used for the ex-
periments and associated to the motion capture system, it is necessary to translate
and rotate the measurements with a transformation matrix. To calculate such
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a matrix, the poses of the cameras are necessary. However, these poses are not
always available, or at least not precisely known, as it is the case in these exper-
iments. Indeed, here we obtained the poses of the low-cost cameras using the
OptiTrack motion capture system, which detects 3-4 markers glued on each cam-
eras. The precision of these detections was falling on some areas of the arena,
e.g. less observed areas such as corners, and there is a mismatch between the
frame corresponding to the markers and the one associated to the optical axis of
the camera (used by the AprilTag software). Thus, the resulting measurements
are biased. Such an error in the transform matrix therefore results in some bias
in the measurement translated in the global frame and provided to the estimators.
Despite this, the robustness of the proposed DMHE to this additional source of
uncertainty (i.e. sensor biases and noise) is further investigated by validating the
usefulness of a priori known FoV constraints.

The estimators run with a sampling time Ts = 0.5 s and a horizon length
N = 3. The initial values of the algorithms have been set as ν x̂0 =

[
0 0

]>,
∀ν, Π0 = 105I2. The measurements noises νvit are assumed to be white normally
distributed noises, with zero mean and covariance matrix Ri = I2.

The optimization problem was solved by the quadratic programming solver
from [Goldfarb and Idnani, 1983] implemented in Python on twelve Raspberry PI,
each one associated to a single camera. The considered performance indexes are
the computation time τ needed by the solver to estimate the positions of the
Multi-Vehicle System, and the Root Mean Square Error (RMSE) are computed as
follows:

RMSEt =
1

nS

∑
i∈N

∥∥∥xt − x̂it|t∥∥∥ ,
both averaged among all the sensors. The RMSE should remain small for good
performance.

As for the simulated case, we compare the proposed Distributed Moving Hori-
zon Estimation without FoV constraints (denoted by DMHE) and with FoV con-
straints3 (denoted by DMHES). We also compare the proposed DMHE approach
with the algorithm in [Farina et al., 2010a], denoted hereafter by DMHEF , for
the case without FoV constraints, and by DMHESF when considering the FoV con-
straints (4.5).

4.5.2 Experimental results

It is essential to highlight that between experiments some parameters are not
exactly repeatable (e.g. unpredictable lack of measurements at time instants a
priori unknown, different initial timing synchronization among sensor neighbor-
hoods, initial positions of the vehicles, etc.) and that the qualitative evaluations
may therefore suffer from some bias in the comparison between two experimental
runs. This is why all the measurement data have also been recorded to addi-

3The constraints are added as in (4.5).
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tionally perform offline evaluation from the same data. The video available at
https://youtu.be/1CkSba2wVuI shows the online experiment of Scenario 1 on
using DMHES and offers additional details.

Figure 4.14 illustrates the averaged computation time τ among all the sensors.
The proposed DMHES (dotted lines) shows half of the time needed by DMHESF
(dashed lines) in all the scenarios. It is a consequence of replacing the system
model with unknown input by a Luenberger observer (pre-estimation strategy) in
(4.15). Indeed, the model with a Luenberger pre-estimation involves fewer opti-
mization parameters. These results are coherent with the one obtained in the
Gazebo simulations.

Scenario        

Scenario        

Scenario        

Scenario        

Scenario        

Scenario        

Figure 4.14: Computation time τ of all algorithms with FoV constraints during the realexperiments.

Scenario        

Scenario        

Scenario        

Scenario        

Scenario        

Scenario        

Figure 4.15: RMSE of all algorithms with FoV constraints during the real experiments.
The RMSEs averaged among all the sensors for all scenarios and algorithms

with FoV constraints are shown in Figure 4.15. Regarding Scenario 1, DMHES

(cyan dotted line) is better than DMHESF (blue dashed line) only until cerca t =

70 s. For Scenarios 2 and 3, DMHES has similar or better performance w.r.t.
DMHESF . As explained before, a rigorous comparison is hard due to unrepeatable
conditions, that is why we performed more rigorous comparisons in the next section.
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(a) Entire scenario. (b) Zoom.
Figure 4.16: Scenario 1: Planar trajectory of the vehicles and estimations by DMHESusing 12 cameras (real experiment).

Figure 4.16 illustrates the results of the real experiment of Scenario 1. In
particular, it shows the trajectories estimation (rhombus) by the active sensors
operating with DMHES and the actual trajectories of the vehicles (lines) by the
motion capture system of Scenario 1 on the left hand side and its zoom on the
right hand side. Different colors highlight the vehicles: cyan, red, green, yellow,
and magenta refer to vehicles 1, 2, 3, 4, and 5, respectively. Moreover, Figure 4.16
shows the road boundaries (blue lines) as well as the FoV constraints (dashed
polygones) described as in (4.5). Notice that the starting position is about py =

−3.5 m for the Multi-Vehicle System, which results in a large discrepancy w.r.t.
ν x̂0 considered at the origin. As shown in Figure 4.16b, at the beginning only
vehicles 1 (cyan rhombus), 4 (yellow rhombus), and 5 (magenta rhombus) are
detected by the first camera (i.e. they are within the blue dashed polygone, at the
bottom). Indeed, camera 1 does not detect vehicles 2 and 3 (i.e. no red or green
rhombuses appearing inside this blue dashed polygone). Vehicles 2 and 3 start
being detected later on. The rhombus outside the road are due to the initial state
estimates considered by the observers, which are chosen to be at the origin of the
plan. Notice that the biased sensors data can result in some bias in the estimations
(see the difference between the real trajectories, which are represented in solid
lines, and estimates, which are represented as rhombi, around the arrival position
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in the light green polygone on the top in Figure 4.16a); however, the intensity of
measurement noise is not perceptible (i.e. smooth estimations). This is because
the AprilTag library (see [Wang and Olson, 2016]) provides accurate position of the
tags mounted on the robots, by visual reconstruction using calibration information
of the cameras and tags with known sizes and patterns. This has been one of the
motivations for introducing additional measurement noise on the experimental data
to validate and further analyze the algorithms’ performance when they operate in
a more realistic environment.

4.5.3 Performance evaluation
The ROS framework offered the opportunity to record data for the three scenar-

ios explained above. This data includes time synchronization among measurements
and other useful information. Thus, it allows us to replay these data in order to
replicate the same experiments but with other algorithms and/or by changing pa-
rameters. We also added a posteriori artificial Gaussian noise in the measurements,
with a variance of 0.15 m2, and in the positions of the cameras (biased sensors),
with a variance of 0.1 m2 to make the scenarios more realistic, e.g. when using
a low-cost Sensor Network with video cameras that would run computer vision
algorithms for visual detection and position reconstruction of vehicles without tags
(e.g. area monitoring scenario).

The first aspect we investigate for Scenario 1 is the topology of the Sensor
Network, i.e. how the sensors are connected to each other. For this reason, we
define the radius communication link.

Definition 4.2 Radius communication link

The radius communication link is the number of nodes reachable in communi-
cation by each sensor.

Thus, increasing or decreasing this radius can change the topology of the
network, i.e. the edges of the graph. Then, we define d(i, j) = |i− j| as the
distance, in terms of node numbering, between nodes i and j.

Definition 4.3 Neighborhood based on radius ρ

Given a radius ρ, the neighborhood of sensor i is N i = {j ∈ N : d(i, j) 6 ρ},
i.e. the set of nodes j ∈ N for which there exists a path at maximum distant
ρ nodes from sensor i.

For example, Figure 4.17 shows a Sensor Network composed of four nodes and
its possible different communication topologies by varying the radius communica-
tion link ρ from 1 to 3.

In the next sections, the algorithm performance on the three considered scenar-
ios will be further analyzed by considering noisy measurements and the influence
of the communication topology.
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1 2 3 4

(a) ρ = 1.

1 2 3 4

(b) ρ = 2.

1 2 3 4

(c) ρ = 3 (complete graph).
Figure 4.17: Examples of communication topologies of a Sensor Network composedof 4 nodes.

Scenario 1

The aim of this scenario (see Figure 4.11) is to compare the accuracy of the
algorithms, with and without FoV constraints, changing the topology of the Sensor
Network by varying the radius communication link ρ = {1, 3, 6, 9, 12}. Notice that
when the radius is 12, the graph is complete, i.e. each node is connected to anyone
else (see Definition 2.6). Moreover, we show the effects on using or not the FoV
constraints as in (4.5).

Figure 4.18: Scenario 1: RMSE averaged among the observers and time (all sensors).
The first column of Figure 4.18 shows the RMSE for the four implemented

algorithms with ρ = 1. In this case, the smallest value 2.613 (and thus the best
accuracy) is obtained with the proposed DHME algorithm without FoV constraints.
Figure 4.18 also shows that starting from ρ = 3, the RMSEs are similar to each
other. It means that, for this number of sensors, a graph with a radius communi-
cation link equal to 3 or higher performs as good as a complete graph. Moreover,
the accuracy is always better for the proposed DMHE (lines 3 and 4, respectively)
compared with DMHEF (lines 1 and 2, respectively), for both cases, i.e. with and
without FoV constraints.

To check how the FoV constraints Si influence the accuracy of the estimations,
we have to look at the RMSE of the active sensors only since the FoV constraints
are used in the local optimization problem only when the camera is detecting a
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Figure 4.19: Scenario 1: RMSE averaged among the observers and time (active sensorsonly).

vehicle. In Figure 4.19, the RMSE of FoV constrained algorithms is always better
than their respective version without FoV constraints. Indeed, it can be seen that
the values on line 1 are always lower than the values on line 2, while the values on
line 3 are always lower than the values on line 4.

Figure 4.20: Scenario 1: RMSE of DMHES over time for all communication links radius(all sensors).

We have seen that the radius ρ has a specific effect on the estimation error.
In Figure 4.20, we can see the RMSE overtime for the solely DMHES , for different
values of the radius ρ. It is worth noticing that ρ > 3 (yellow, purple and green
curves) leads to having better RMSE than ρ = 3 (red curve) until the vehicles
stop, around t = 88 s.

Figure 4.21 and its zoom (Figure 4.22) illustrate the planar trajectories of the
vehicles (solid lines) by the motion capture system and their respective estimations
(rhombus) by the active sensors. Different colors highlight the vehicles: cyan, red,
green, yellow, and magenta refer to vehicles 1, 2, 3, 4, and 5, respectively. More-
over, this figure shows the road boundaries (blue line) as well as FoV constraints
(dashed polygones), as in (4.5). In these figures, it is possible to see how the FoV
constraints improve the estimation accuracy since the estimates are lying within
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(a) DMHE with FoV constraints. (b) DMHE without FoV constraints.
Figure 4.21: Scenario 1: Planar trajectory of the vehicles and estimations with FoVconstraints (left) and without (right).

these constraints and are hence consistent with the locations of the vehicles within
the road boundaries. This is more evident in the zoom proposed in Figure 4.22
which shows the final part of the Scenario 1. In particular, Figure 4.22a shows
the results by using the proposed DMHE with FoV constraints (DMHES) and Fig-
ure 4.22b shows the results by using the proposed DMHE without FoV constraints.
Notice that in Figure 4.22a only two points are outside the FoV constraints (due to
mismatch among the considered detection instants by low-cost cameras, Raspberry
PI, ROS), while Figure 4.22b shows a lot of estimates outside the FoV constraints.
Therefore, considering FoV constraints allows a better accuracy for the estimation.

Scenario 2

This scenario (see Figure 4.12) aims to evaluate the algorithms in terms of accuracy
while using fewer sensors and, at the same time, to diversify the communication
topology. Additionally, it highlights the effects on the convergence of the estimates
when using a different number of sensors in such distributed algorithms compared
to Scenario 1. In this case, we used half of the sensors, which led to more spo-
radic measurements since the total covered area by cameras is much smaller (see
Figure 4.12) compared to Scenario 1.

Figure 4.23 shows that for different values of the radius communication links,
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(a) DMHE with FoV constraints. (b) DMHE without FoV constraints.
Figure 4.22: Scenario 1: Part of the planar trajectory of the vehicles and estimationswith FoV constraints (left) and without (right). (Zoom of Figure 4.21)

Figure 4.23: Scenario 2: RMSE averaged among the observers and time (all sensors).
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i.e. ρ = {1, 3, 4, 6}, the RMSEs are not so different from each other, and probably
a radius ρ = 2 would have been the optimum trade-off between the number of
communication links and the accuracy of the estimates. Moreover, comparing
the RMSE values in Figure 4.18 (Scenario 1) and in Figure 4.23 (Scenario 2) it
is evident, as expected, that having less covered area by cameras leads to less
accuracy, when ρ > 1. Although this is not always the case, as illustrated in the
first column of these figures (i.e. for ρ = 1), the RMSE values are comparable
among the same algorithms. Indeed, even though Scenario 1 has a larger covered
area, it also has more sensors, which results in more consensus communication
steps needed for the convergence of all the observers, accentuated by the fact that
ρ = 1. For this reason, even with fewer communication links than in Scenario 1, the
convergence is faster as we can clearly see by comparing the curves in Figures 4.20
and 4.24 around time t = 88 s.

Figure 4.24: Scenario 2: RMSE of DMHES over time with a different communicationlink radius.

Furthermore, Figure 4.24 shows that the RMSE value obtained for ρ > 1 (red,
yellow and purple curves) is better than the one with ρ = 1 (blue curve) only
until the vehicles stop, around t = 88 s. Thus, in the end, the five vehicles are
only detected by sensor 6, which is the only active sensor, thus the only one using
FoV constraints as in (4.5). Moreover, it sends its measurements to its neighbors,
which contributes to the global state estimation convergence without using the FoV
constraints. Hence, the more neighbors sensor 6 has, the more they contribute to
the global estimation without FoV constraints, i.e. emphasizing measurements
noise and biased sensor data.

Figure 4.25a and its zoom (right hand side of Figure 4.25b) show the exact
planar trajectories of the vehicles (solid lines) by the motion capture system and
their respective estimates (rhombus) by the low cost active sensors. Different colors
highlight the vehicles: cyan, red, green, yellow, and magenta refer to vehicles 1,
2, 3, 4, and 5, respectively. This figure also shows the road boundaries (blue line)
as well as the FoV constraints (dashed polygones), as considered in (4.5). It is
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(a) DMHE with FoV constraints. (b) DMHE without FoV constraints.
Figure 4.25: Scenario 2: Planar trajectory of the vehicles and estimates with FoV con-straints (left) and zoom (right).

worth noticing that in Scenario 2 most of the time the vehicles are not detected
(see Figure 4.25a). Indeed, vehicles 2 (red rhombus) and 3 (green rhombus) began
to be detected at around t ' 45 s (see the zoom Figure 4.25b where the green
and red rhombuses appear only inside the light orange dashed polygone, on the
top). Moreover, after some moments when no vehicle is detected, vehicles 1, 2,
3 and 5 are detected again around t ' 70 s (see the corresponding rhombuses in
Figure 4.25a). Only nearby the arrival point all the vehicles are detected at once,
cerca t ' 88 s (see Figure 4.25a). In addition, Figure 4.24 shows that around the
time instants t ' 45 s, t ' 70 s, and t ' 88 s when the vehicles are detected
again, the RMSE decreases and drops significantly especially around t ' 88 s since
all the vehicles are detected (thus leading to a very small value for the RMSE).

Scenario 3

The goal of the last scenario (see Figure 4.13) is to evaluate the performance of
the proposed DMHE when the poses of the cameras are such that a single camera
cannot detect all the vehicles at once, except sensor 12. Moreover, 10 trials have
been run to show the robustness against different realization of measurement noise
and bias. The provided results are averaged among the 10 trials (only for Scenario
3) and compared with the previous scenarios (notice that only one trial is considered
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Scenario        

Scenario        

Scenario        

Figure 4.26: Comparison between the RMSE of the DMHES for the 3 scenarios for
ρ = 1, with an average among 10 trials for Scenario 3.

for Scenarios 1 and 2). The radius communication link is ρ = 1.
Figure 4.26 illustrates the RMSEs of all scenarios considering the proposed

DMHE algorithm with FoV constraints DMHES . The green curve refers to the
RMSE of the third scenario which also shows the bounds of the minimum and
maximum RMSE of each trial (dashed lines). As expected, Scenario 3 (green
curve) offers better accuracy than Scenario 2 (red curve) until the vehicles stop,
since Scenario 3 has double of the sensors w.r.t. Scenario 2, thus leading to a
larger covered area. Moreover, Scenario 3 (green curve) has always worse accuracy
than Scenario 1 (blue curve), since Scenario 3 has the same number of sensors as
Scenario 1 but less covered area. It can also be noticed that around t ' 88 s, the
RMSE drops since all the vehicles are detected.

4.6 Conclusion

This chapter proposed a Distributed Moving Horizon Estimation (DMHE) al-
gorithm for localizing a Multi-Vehicle System over a static sensor camera network
with sporadic measurements, i.e. available at time instants a priori unknown.

The proposed approach, which takes into account measurement constraints,
has been implemented first in a realistic distributed way in the Robot Operating
System (ROS) middleware with a Gazebo simulation environment, then on a real
Sensor Network composed of several low-cost cameras, each of them attached
to a Raspberry PI for distributed implementation of the algorithms (using ROS
middleware) and network communication. The objective was to track a fleet of
autonomous vehicles (ground robots) moving in an urban-like environment with
FoV constraints. Three different experimental scenarios evaluated distinct aspects
of the proposed algorithm, which differ in the number of sensors involved, the
topology of the communication network, and the covered area by the cameras’
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fields of view.
The computation time of the proposed DMHE has been decreased by a factor

two w.r.t. the time needed by the one of [Farina et al., 2010a]. This result is
obtained thanks to the pre-estimation observer included in the optimization prob-
lem that replaces the need to estimate the sequence of unknown inputs of the
model over the estimation window and therefore leads to fewer optimization pa-
rameters. Taking advantage of constraint handling in online optimization required
by MHE, the proposed algorithm exploits a priori information as environment con-
straints (such as the road boundaries) to better estimate the state of the system.
Moreover, the proposed DMHE formulation can deal with sporadic measurements
thanks to the time-varying binary parameters embedded into the algorithm. Finally,
it improves the accuracy of the estimation by utilizing an observability rank-based
method to adjust the components of the consensus matrix associated with the
graph of the Sensor Network. This particular aspect is especially well suited to
cases with sporadic measurements, as the one considered in this chapter.

Several experiments have been realized, and collected data have been re-
executed off-line in order to make rigorous performance analysis and comparison
of the proposed DMHE with one of the reference DMHE algorithms in the open
literature [Farina et al., 2010a] and analyzing the effect of changing some proper-
ties of the application. Indeed, results have been analyzed in terms of accuracy by
changing the number of sensors composing the network and the communication
topology among neighbor nodes.

The proposed algorithm could be further extended by taking into account active
and non active sensors when computing the consensus terms. Furthermore, in a
context of fault detection, the possible sensor faults can be treated in the same
manner as non active sensors, extending the application field of the current chapter.

The proposed algorithms have been presented and submitted in:

• A. Venturino, S. Bertrand, C. Stoica Maniu, T. Alamo, and E. F. Camacho.
Multi-vehicle system localization by distributed moving horizon estimation
over a sensor network with sporadic measurements. In 6th IEEE Confer-
ence on Control Technology and Applications (CCTA), Trieste, Italy, 23-25
August, 2022.

• A. Venturino, C. Stoica Maniu, S. Bertrand, T. Alamo, and E. F. Cama-
cho. Multi-vehicle localization by distributed MHE over a sensor network
with sporadic measurements: further developments and experimental results.
Submitted to the Control Engineering Practice Journal, 2022.
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5 - Conclusion and perspectives

5.1 Conclusion

The present PhD thesis proposed new distributed state estimation algorithms
for discrete-time linear time-invariant systems over a low-cost Sensor Network.
These estimators are based on the Moving Horizon Estimation (MHE) paradigm
and consensus strategies, allowing them to take into account constraints and
achieve the convergence of the distributed estimates. The contributions of this
manuscript are threefold. Firstly, this PhD thesis proposed a Distributed MHE
(DMHE) technique that reduces the computation time needed for the estimation
w.r.t. existing results in the open literature. Then, an extended DMHE technique
that exploits observability properties for the consensus strategy to enhance the es-
timation accuracy is proposed. Secondly, it studied how to take advantage of the
Moving Horizon strategy in the context of distributed algorithms, and proposes a
DMHE technique equipped with an information diffusion mechanism that improves
the convergence time of the estimation. Finally, a DMHE algorithm is provided to
deal with the realistic case study of localizing a Multi-Vehicle System over a Sensor
Network. This algorithm is implemented within the Gazebo environment and on a
real hardware setup, developed during the PhD, using the Robot Operating System
(ROS) framework.

The first disadvantage of MHE is the computational aspect since it involves an
optimization problem to be solved online. For this reason, Chapter 2 proposed cen-
tralized and distributed MHE algorithms with reduced computation load. Indeed,
introducing a pre-estimation observer in the formulation problem led to replace the
sequence of unknown inputs of the system to be estimated and thus to fewer op-
timization parameters than the original formulation of [Farina et al., 2010a]. Thus
reducing significantly the computation time. The proposed distributed algorithm
is able to converge even under weak observability conditions due to the embod-
ied consensus terms within the formulation [Farina et al., 2010a]. In addition, an
extension that exploits regional observability properties to compute the consensus
terms is also proposed. This extension improves the algorithm for two reasons.
First, the stochastic matrix used in the consensus strategy is now calculated based
on only locally available information. Thus, it allows the use of the algorithm
in a fully distributed manner. Second, relying on observability properties speeds
up the convergence of the estimates among sensors since the sensors with more
information are weighted more in the consensus strategy.

The research topic of this manuscript involved designing MHE-based distributed
state estimation algorithms over Sensor Network. In addition, these algorithms
have to deal with weak observability conditions when using sensors that make the
local systems unobservable, as anticipated in Chapter 2. In order to benefit from
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the advantages offered by the MHE paradigm and to mitigate these observabil-
ity issues, Chapter 3 proposed a new DMHE technique which exploits the sliding
time window of data within the MHE formulation. In particular, each sensor can
use measurements from non-direct neighbors thanks to the developed information
diffusion mechanism. This mechanism enhanced the convergence time and the
accuracy of the state estimates. We named the proposed algorithm `-step Neigh-
borhood DMHE. It uses the algorithm of [Battistelli, 2018] as theoretical basis.

Further on, Chapter 4 proposed a novel DMHE algorithm which is able to
localize a Multi-Vehicle System over a static sensor camera network with sporadic
measurements, i.e. available at time instants a priori unknown. In order to take
advantage of the simplicity of the implementation, this algorithm is based on the
results proposed in Chapter 2, which have been adapted to deal with sporadic
measurements by use of additional time-varying binary parameters embedded into
the algorithm. Since the fleet of autonomous vehicles (ground robots) moves in
a known urban-like environment and the Field of View (FoV) of each camera is
known, the proposed algorithm exploits these information using them as constraints
in the local optimization problems. This led to better estimation accuracy. The
proposed approach has been implemented first in a realistic simulation using the
Robot Operating System (ROS) framework and the Gazebo simulator, then on a
real hardware setup, i.e. a Sensor Network composed of several low-cost cameras,
each of them connected to a Raspberry PI, and a Multi-Vehicle System composed
of five ground robots (Turtlebot3). Chapter 4 evaluated the proposed algorithm by
showing the results obtained by three different experimental scenarios. They differ
in the number of sensors involved, the topology of the communication network,
and the covered area by the fields of view of the cameras. The collected data
during the experiments have been re-executed off-line in order to make rigorous
performance analysis and comparison of the proposed DMHE with [Farina et al.,
2010a], in terms of accuracy and computation time, when changing the number of
sensors composing the network and the communication topology among neighbor
nodes.

5.2 Perspectives

Further improvements and directions are discussed below.
First of all, the proposed algorithms include a Luenberger pre-estimation ob-

server which has been computed by considering stability guarantees. It might be
possible to improve the accuracy of the estimates by using different criteria for com-
puting the pre-estimation gain. There are many well-known options in literature
such as H2, H∞, combination of them, etc. (see [Duan and Yu, 2013, p. 293]).
Moreover, it is possible to design a time-varying gain or Kalman-based one as
pre-estimation observer.

Regarding the computation time needed by the sensors to obtain the state
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estimation at each sampling time, it might be possible to further reduce it. Indeed,
it could be possible to design formulation of the optimization problem in order to
solve them with ad hoc solvers. For this purpose, the Alternating Direction Method
of Multipliers is gaining particular attention in literature, see [Boyd et al., 2011].

Chapter 3 proposed the `-step Neighborhood DMHE algorithm which involves
an information diffusion mechanism based on a time-sliding batch of data of fixed
size `. An improvement in terms of communication burden could be to have time-
varying ` depending on the necessity of the current situation, such as convergence
of the estimates among neighbors, all sensors inactive within the neighborhood,
etc.

Chapter 2 proposed an observability rank-based weight technique that enhances
the convergence of the estimates. It has been adapted in Chapter 4 to deal with
sporadic measurements. The results showed that this method could be improved.
In particular, Section 4.5.3 (scenario 2) showed how the increasing number of
inactive neighbors (i.e. not using FoV constraints) can degrade the estimates
by emphasizing measurements noise and biased sensor data. To avoid this, a
solution could have been to directly consider whether the sensor is active or not
in the observability rank-based weight technique (Section 4.3.5). It might lead to
better estimation accuracy. In addition, this technique can be further improved by
considering other properties in its calculation than the solely observability. Indeed,
the current calculation does not take into account how many times the sensor was
active within the horizon length. Thus taking into account this aspect might lead
to better performance.

Furthermore, in a context of fault detection, the possible sensor faults can be
treated in the same manner as non active sensors, extending the application field
of the proposed algorithm.

The assumption of static communication topology can be limited when the
application, for example, involves cameras on-board of vehicles or drones. Indeed,
using mobile sensors would lead to a dynamic (i.e. time-varying) communica-
tion topology as the agents communicate and exchange information while moving.
Thus, deep insights are necessary to enable the use of the proposed algorithms
when the topology of the network cannot stay a priori fixed.

Within the case of cooperative vehicles and Sensor Network, it might be pos-
sible to design the estimation algorithm combined with a control law. Since the
MHE involves a receding horizon as Model Predictive Control, it could be possible
to design a distributed algorithm for estimation and control. Alternatively, if the
computation load is prohibitive for some applications, the DMHE formulation can
be combined with a Command Governor to have a single optimization problem.

This present manuscript proposed distributed algorithms for linear systems.
Further improvements could be designing similar algorithms for non-linear systems.

Stability and robustness analysis of the proposed algorithms are currently under
investigation and will be submitted to a journal paper.
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Finally, experimentation of the `-step DMHE procedure on a real hardware
setup is also one further development of this PhD thesis.
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Titre: Estimation d’état distribuée sous contraintes pour une mission de surveillance multi-capteurs multi-robots
Mots clés: Estimation d’état distribuée, Estimation sous contraintes, Estimation distribuée à horizon glissant, Réseaux de capteurs.

Résumé: Les algorithmes distribués sont dorénavant présents
dans de nombreux aspects de l’Automatique avec des applica-
tions pour des systèmes multi-robots, des réseaux de capteurs,
couvrant des sujets tels que la commande, l’estimation d’état,
la détection de défauts, la détection et l’atténuation des cyber-
attaques sur les systèmes cyber-physiques, etc. En effet, les
systèmes distribués sont confrontés à des problèmes tels que
l’extensibilité à un grand nombre d’agents et la communication
entre eux. Dans les applications de systèmes multi-agents (par
exemple, flotte de robots mobiles, réseaux de capteurs), il est dé-
sormais courant de concevoir des algorithmes d’estimation d’état
de manière distribuée afin que les agents puissent accomplir leurs
tâches sur la base de certaines informations partagées au sein de
leur voisinage. Dans le cas de missions de surveillance, un réseau
de capteurs statique et à faible coût (par exemple, caméras)
pourrait ainsi être déployé pour localiser de manière distribuée
des intrus dans une zone donnée. Dans ce contexte, l’objectif
principal de cette thèse est de concevoir des observateurs dis-
tribués pour estimer l’état d’un système dynamique (par exem-
ple, flotte de robots intrus) avec une charge de calcul réduite tout
en gérant efficacement les contraintes et les incertitudes. Cette
thèse propose de nouveaux algorithmes d’estimation distribuée à
horizon glissant avec une pré-estimation de type Luenberger dans
la formulation du problème local résolu par chaque capteur, en-
traînant une réduction significative du temps de calcul, tout en

préservant la précision de l’estimation. En outre, ce manuscrit
propose une stratégie de consensus pour améliorer le temps de
convergence des estimations entre les capteurs sous des condi-
tions de faible observabilité (par exemple, des véhicules intrus
non visibles par certaines caméras). Une autre contribution con-
cerne l’amélioration de la convergence de l’erreur d’estimation en
atténuant les problèmes de non observabilité à l’aide d’un mé-
canisme de diffusion de l’information sur plusieurs pas (appelé
`-step) entre voisinages. L’estimation distribuée proposée est
conçue pour des scénarios réalistes de systèmes à grande échelle
impliquant des mesures sporadiques (c’est-à-dire disponibles à
des instants a priori inconnus). À cette fin, les contraintes sur
les mesures (par exemple, le champ de vision de caméras) sont in-
corporées dans le problème d’optimisation à l’aide de paramètres
binaires variant dans le temps. L’algorithme développé est im-
plémenté sous le middleware ROS (Robot Operating System) et
des simulations réalistes sont faites à l’aide de l’environnement
Gazebo. Une validation expérimentale de la technique de local-
isation proposée est également réalisée pour un système multi-
véhicules (SMV) à l’aide d’un réseau de capteurs statiques com-
posé de caméras à faible coût qui fournissent des mesures sur les
positions d’une flotte de robots mobiles composant le SMV. Les
algorithmes proposés sont également comparés à des résultats
de la littérature en considérant diverses métriques telles que le
temps de calcul et la précision des estimées.

Title: Constrained distributed state estimation for surveillance missions using multi-sensor multi-robot systems
Keywords: Distributed state estimation, Constrained state estimation, Distributed Moving Horizon Estimation, Sensor Networks.

Abstract: Distributed algorithms have pervaded many aspects
of control engineering with applications for multi-robot systems,
sensor networks, covering topics such as control, state estima-
tion, fault detection, cyber-attack detection and mitigation on
cyber-physical systems, etc. Indeed, distributed schemes face
problems like scalability and communication between agents. In
multi-agent systems applications (e.g. fleet of mobile robots,
sensor networks) it is now common to design state estimation
algorithms in a distributed way so that the agents can accom-
plish their tasks based on some shared information within their
neighborhoods. In surveillance missions, a low-cost static Sen-
sor Network (e.g. with cameras) could be deployed to localize
in a distributed way intruders in a given area. In this context,
the main objective of this work is to design distributed observers
to estimate the state of a dynamic system (e.g. a multi-robot
system) that efficiently handle constraints and uncertainties but
with reduced computation load. This PhD thesis proposes new
Distributed Moving Horizon Estimation (DMHE) algorithms with
a Luenberger pre-estimation in the formulation of the local prob-
lem solved by each sensor, resulting in a significant reduction
of the computation time, while preserving the estimation accu-

racy. Moreover, this manuscript proposes a consensus strategy
to enhance the convergence time of the estimates among sensors
while dealing with weak unobservability conditions (e.g. vehicles
not visible by some cameras). Another contribution concerns
the improvement of the convergence of the estimation error by
mitigating unobservability issues by using a `-step neighborhood
information spreading mechanism. The proposed distributed es-
timation is designed for realistic large-scale systems scenarios
involving sporadic measurements (i.e. available at time instants
a priori unknown). To this aim, constraints on measurements
(e.g. camera field of view) are embodied using time-varying
binary parameters in the optimization problem. Both realistic
simulations within the Robot Operating System (ROS) frame-
work and Gazebo environment, as well as experimental validation
of the proposed DMHE localization technique of a Multi-Vehicle
System (MVS) with ground mobile robots are performed, using a
static Sensor Network composed of low-cost cameras which pro-
vide measurements on the positions of the robots of the MVS.
The proposed algorithms are compared to previous results from
the literature, considering several metrics such as computation
time and accuracy of the estimates.
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