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En fait, c’est cela la chose remarquable, quand
on pose la question : « À quoi sert socialement
la science ? », pratiquement personne n’est
capable de répondre. Les activités scientifiques
que nous faisons ne servent à remplir
directement aucun de nos besoins, aucun des
besoins de nos proches, de gens que nous
puissions connaître. Il y a aliénation parfaite
entre nous-même et notre travail.
Ce n’est pas un phénomène qui soit propre à
l’activité scientifique, je pense que c’est une
situation propre à presque toutes les activités
professionnelles à l’intérieur de la civilisation
industrielle. C’est un des très grands vices de
cette civilisation industrielle.

Alexandre Grothendieck
Allons-continuer la recherche scientifique ?,

1972

Yesterday I found the courage at last to study
your mathematical manuscripts even without
reference books, and I was pleased to find that I
did not need them. I compliment you on your
work. The thing is as clear as daylight, so that
we can’t wonder enough at the way the
mathematicians insist on mystifying it. But
this comes from the one-sided way these
gentlemen think.

Friedrich Engels
Letter to Karl Marx, 1881



Résumé

Cette thèse porte sur l’action de membranes, un mécanisme qui munit l’espace des
extensions de l’opération identité dans une∞-opérade cohérente O⊗ d’une struc-
ture canonique de O-algèbre dans l’∞-catégorie des cocorrespondances d’espaces.

Dans un premier temps, on démontre que la construction donnée par Mann–
Robalo de cette action s’étend aux ∞-opérades cohérentes générales, sans re-
striction sur l’espace des couleurs ni sur celui des opérations unaires. On établit
ensuite l’équivalence entre les modèles de Lurie et de Mann–Robalo de l’espace des
extensions d’une opération, en les reliant par un zigzag explicite d’équivalences
d’homotopie.

Dans le cas monochromatique, on démontre que, contrairement à ce que la
littérature existante suppose, l’espace des extensions au sens de Lurie n’est en
général pas équivalent à la fibre homotopique du morphisme d’oubli associé mais
en est un quotient homotopique par l’action de l’∞-groupe des opérations unaires.
Comme conséquence de ces résultats, on montre que les ∞-opérades de petits
disques à repères tordues sont cohérentes et admettent une action de membranes
reliée aux opérations de topologie des cordes.

Mots-clés

Action de membranes, opérades, ∞-opérades cohérentes, flèches tordues, ∞-
catégorie des cocorrespondances, théorie des catégories supérieures, ensembles
simpliciaux marqués, opérade des petits disques, topologie des cordes et des mem-
branes, théories topologiques des champs.
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Abstract

We study the brane action, which endows the space of extensions of the identity of
a coherent∞-operad O⊗ with a canonical O-algebra structure in the∞-category
of cospans of spaces.

First, we prove that Mann–Robalo’s construction of the brane action extends
to general coherent∞-operads, with possibly multiple colors and non-contractible
spaces of unary operations. Second, we establish that Lurie’s model of the space of
extensions of an operation is equivalent to Mann–Robalo’s model, via an explicit
zigzag of homotopy equivalences.

In the monochromatic case, contrary to what is claimed in existing literature,
we show that the space of extensions in the sense of Lurie is not in general
equivalent to the homotopy fiber of the associated forgetful morphism, but rather
to its homotopy quotient by the∞-group of unary operations. As a consequence
of these results, we prove that the∞-operads of B-framed little disks are coherent
and admit brane actions related to string topology operations.

Keywords

Brane action, operads, coherent∞-operads, twisted arrows, cospans, higher cate-
gory theory, marked simplicial sets, little disks operad, string and brane topology,
topological field theories.
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Chapter 1

Introduction

1.1 A glimpse of algebraic topology and operads

One of the fundamental goals of algebraic topology is to classify topological
spaces, up to homotopy equivalence. The main tool to this end is the use of
algebraic invariants, that is, objects endowed with operations whose algebraic
structure encode the topological properties of the corresponding spaces. The
simplest of these invariants is the homology of a topological space, which forms
an abelian group, graded by the natural numbers.

While extremely useful, considering only the homology of a topological space
does not in general retain all of its structure. To remedy this issue, algebraic
topologists have studied refined versions of homology, in order to encode the
homotopical properties of spaces more faithfully. These new invariants usually
take the form of certain algebraic structures defined on chain complexes associated
with the space. However, such algebraic structures can be intricate; the adequate
language to define and study them is that of operads.

Operads

In a nutshell, an operad is a device that encapsulates all the operations that one
can perform in any algebra of a given sort.

Consider for instance the associative operad, denoted Ass. It contains the
information of all the possible ways one can multiply k inputs a1, . . . , ak in an
associative algebra A: these multiplicative operations are given by all the per-
mutations on the symbols a1, . . . , ak. In other words, we may say that the set
Ass(k) of arity k operations in the associative operad is in bijection with the
symmetric group on k elements. These sets Ass(k), for varying k ∈ N, are related
one another by composition maps

− ◦i − : Ass(k)× Ass(m) −→ Ass(k +m− 1)

given by inserting an operation of arity k as the i-th input of an operation of
arity m, thereby giving rise to a new operation of arity k +m− 1.

10



1.1 A glimpse of algebraic topology and operads 11

An operad is then defined as a collection O = {O(k)}k∈N of sets O(k) equipped
with an action of the symmetric group Σk, together with a distinguished identity
element id ∈ O(1) and composition maps − ◦i − : O(k)× O(m)→ O(k +m− 1)
that are associative, unital and equivariant in an appropriate sense. The set O(k)
encodes all the possible operations with k inputs in an O-algebra.

More generally, one can replace sets and maps by topological spaces and con-
tinuous maps to obtain the notion of a topological operad. A similar definition
gives operads in vector spaces, chain complexes, etc. This greater level of gener-
ality allows to consider new types of algebraic structures, where usual algebraic
equations do not hold in a strict sense, but rather up to some homotopies, which
in turn themselves satisfy some equations up to some higher homotopies, etc.

For example, the based loop space ΩxX := Map∗(S
1, X) of a pointed topo-

logical space (X, x) has a very natural algebraic structure given by concatenation
of loops. This operation is not associative on the nose: the associativity equation
holds only up to some homotopy given by reparametrization of the loops. The
higher homotopies then encode higher coherences, in the sense of associativity-
type relations between the various ways of concatenating multiple loops. The
resulting algebraic structure, which in particular induces a group structure on
the set of connected components π1(X, x) of ΩxX (aka the fundamental group of
X at x), is that of an E1-algebra.

Little disks operads

The topological operad E1 encoding the previous algebraic structure of the based
loop space ΩxX governs, more generally, the structure of all coherently homotopy-
associative algebras. This operad E1 is the first of a sequence of topological oper-
ads En, for n ∈ N∗, whose corresponding algebras are associative up to homotopy
and increasingly commutative up to homotopy, as n tends to infinity. The operad
En, originally introduced by Boardman–Vogt [BV73] and May [May72], is called
the operad of little disks of dimension n and is of major importance in algebraic
topology. The space En(k) of operations of arity k inside this operad is given
by the space of configurations of k open disks of dimension n embedded in a
larger such disk. Composition in the little disks operad is obtained by insertion
of configurations of disks, as depicted in figure 1.1.

In our work, we do not consider topological operads, but instead the closely
related notion of ∞-operads. While topological operads can be viewed as exam-
ples of ∞-operads (via a nerve construction), the latter notion is more flexible
and adequate for the purposes of modern homotopy theory.

The little disks ∞-operads En form the paradigmatic examples of coherent
∞-operads. Together with the brane actions they give rise to, these ∞-operads
are the central objects of this thesis. Other important examples of coherent
∞-operads come from geometry, most notably the operad M0,•+1 of algebraic
curves of genus 0 with marked points, as well as variants of its Deligne–Mumford
compactificationM0,•+1, which governs the structure of genus 0 Gromov–Witten
invariants from enumerative geometry (see also the end of section 1.3).
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Figure 1.1: Composition in the little disks ∞-operad E2 of an operation of arity
3 (on the left) with three operations of arity 2, 3 and 4 (in the middle) yields an
operation of arity 9 (on the right).

To motivate our study of coherent ∞-operads and their brane actions, we
take a detour through string topology. We will then introduce the brane action
in section 1.3 and explain our contribution in section 1.4.

1.2 String topology

For certain classes of spaces, the homology and its complex of singular chains
naturally carry specific algebraic structures, on top of that of a graded abelian
group. The previous example of the E1-algebra structure on the based loop space
ΩxX suggests to consider the related class of free loop spaces.

By the free loop space LX of a topological space X, we mean the space of
continuous maps of the circle into X, endowed with the compact-open topology.
It turns out that such spaces indeed have very rich algebraic structures, whose
study has given rise to a subfield of algebraic topology named string topology.

Topological viewpoint

One of the roots of string topology can be tracked down to the investigations of
the geometry of surfaces from the years 1980–1990’s. A major contribution was
Goldman’s introduction and study of a Lie bracket on the free abelian group on



1.2 String topology 13

isotopy classes of closed curves on a compact surface [Gol86], in relation to his
celebrated work on the symplectic structure of character varieties [Gol84].

String topology started with the construction by Chas and Sullivan [CS99,
CS04] of an associative product on the homology of the free loop space of a
closed oriented manifold X, called the loop product, which restricts to the inter-
section product on the homology of X via the inclusion X → LX of constant
loops. Moreover, the interaction of this operation with the S1-action induced
by rotation of loops gives rise to a Batalin–Vilkovisky-algebra structure, which
recovers Goldman’s Lie algebra on H0(LX) when X is a surface. The operad BV
encoding this algebra is closely related to the little disks operad of dimension 2:
a result of Getzler [Get94] identifies BV with the homology of the framed little
disks operad Efr

2 , a variant of E2 obtained as a semi-direct product of the latter
with the group SO(2) of rotations.

One is led to wonder whether this BV-algebra is part of a larger structure and
if moreover it can be lifted from homology to the level of the underlying chains.
Motivated by such questions, the study of string topology has considerably ex-
panded since Chas–Sullivan’s seminal work, using methods from stable homotopy
[CJ2f, BM19, Mor20, Roy13], combinatorial models of moduli spaces of Riemann
surfaces [TZ06, God07, Kau07, Kup11, DPR15] or algebraic models based on
Hochschild homology [Goo85, Jon87, Mer04, Mal11, GTZ12, Iri17, CHV22]. Cer-
tain string topology operations have also been extended to spaces beyond the case
of manifolds, notably classifying groups [CM12, HL15], Gorenstein spaces [FT09]
or oriented topological stacks [BGNX12].

Field theory viewpoint

This wealth of operations can be extended and organized into the structure of a
topological field theory of dimension 2 (in a sense closely related to the original
definition by Atiyah [Ati88] and Segal [Seg91]): from this perspective, operations
on free loop spaces are induced by surfaces, viewed as cobordisms between their
boundaries (as depicted in figure 1.2). Since the operad of framed little disks
Efr

2 can be realized as the moduli space of Riemann surfaces of genus 0 with
boundaries, we can view the string topology BV-algebra as the genus 0 part of
the homology of this topological field theory.

This viewpoint from field theory has been implemented in various forms
[Cha05, CG04, CV06, Cos07, KS09, CTZ08, BCT09, WW16]. Let us mention
Costello’s approach, which is a form of the noncompact cobordism hypothesis in
dimension 2 (see [Lur09b]): it consists in associating to every Calabi–Yau E1-
algebra A a topological conformal field theory, that is, an action of chains of the
moduli space of Riemann surfaces with boundary on the Hochschild homology of
A. The string topology operations are then obtained by applying this result to
the cochain complex A = C∗(X) of the target manifold X, which is an E1-algebra
with Calabi–Yau structure coming from the Poincaré duality pairing, and whose
Hochschild homology is isomorphic to the cohomology of LX, when X is simply
connected (see [FTVP04]).
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Figure 1.2: A configuration in E2(3) giving rise to a cobordism between circles.

Moreover, the previous approach using topological conformal field theory
makes apparent the strong analogy between string topology operations and the
structure of Gromov–Witten invariants in enumerative geometry. This relation
will come back in the next section, when discussing Toën and Mann–Robalo’s ap-
proach [Toë13, MR18] to Gromov–Witten theory via the study of brane actions.

Symplectic viewpoint

Another aim of algebraic topology is to characterize geometric structures in terms
of algebraic and homotopical data. This question constitutes a further motivation
for the study of free loop spaces, since it has been conjectured that a full set of
string topology operations on a closed oriented smooth manifold could encode
part of its diffeomorphism type, beyond its underlying homotopy type [Sul07].

Such expectations come from the deep connections string topology possess
with symplectic geometry. A central result in this vein is Viterbo’s isomorphism
[Vit98], as well as its generalization by Abouzaid [Abo15], which provides an
isomorphism of BV-algebras between the homology of the free loops space of a
closed oriented manifold X (twisted by a local system) and the so-called sym-
plectic cohomology of its cotangent bundle T ∗X. This relation is expected to be
even stronger: for instance, Cieliebak and Latschev proposed in [CL09] (see also
[CFL20]) that the sympletic field theory of the unit cotangent bundle of X and its
equivariant string topology should form quasi-isomorphic structures of homotopy
involutive Lie bialgebras, which are closely related to algebras over the operad
Efr

2 (see for instance [CMW16]).
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Brane topology

String topology may be generalized to mapping spaces Map(Sn, X) from higher
dimensional spheres: this field is often called brane topology.

For X a closed oriented manifold, Sullivan and Voronov have stated and
sketched a proof that the shifted homology of Map(Sn, X) is an algebra over
the higher dimensional version BVn+1 of the BV-operad, defined as the homol-
ogy of the framed little disks operad Efr

n+1 (as explained in Cohen–Voronov’s book
[CV06]). In particular, this homology inherits an (n + 1)-Poisson algebra struc-
ture, that is, an algebra over the homology of the little disks operad En+1. The
commutative multiplication of these algebras has been constructed by Sullivan–
Voronov and also appears in [Cha05, KS06, HKV06, BGNX12].

This motivates the following conjectural chain level generalization of Sullivan–
Voronov’s construction (which is implicit in [CV06, Section 5.4] and appears
explicitly in the introduction of [GTZ12]).

Conjecture 1.2.1. For X a closed oriented manifold, the chains on Map(Sn, X)
form an algebra over the chains of the framed little disks operad Efr

n+1.

The case of the underlying En+1-algebra structure has been proven by Ginot–
Tradler–Zeinalian in [GTZ12], under the assumption that X is an n-connected
Poincaré duality space whose homology groups are projective k-modules, where k
is an arbitrary ring of coefficients for chains (see also [Hu06] for related results).
Passing from En+1 to Efr

n+1 requires to incorporate the SO(n+ 1)-action on little
disks, which is still an open problem.

One possible approach to the above conjecture is to realize brane topology
operations via the mechanism of brane actions, which we now introduce.

1.3 Brane actions

Let us come back to Chas–Sullivan’s loop product µ. Following a construction of
Cohen and Jones [CJ2f] (completed in [Mor20]), one may construct µ from the
following span diagram of spaces

LX × LX Map(S1 ∨ S1, X) LXoutin (1.1)

by a pull-push operation on homology, that is:

µ = out∗ ◦ in!.

Here, the map "out" is given by evaluation at the base point of the circle and
the map "in" is the natural inclusion, which is of finite codimension, so that an
umkehr (ou wrong-way) map in! can be defined on homology [CK09].

As in the field theory viewpoint, diagrams of the form (1.1) are induced by
certain cobordisms of surfaces, parametrized by the configurations of pairs of
disks in E2(2), as represented in figure 1.2.
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Remarkably, such span diagrams arise canonically from the ∞-operad E2 it-
self. This results from a universal construction introduced by Toën in [Toë13],
called the brane action, which can be loosely described as a formal incarnation
of topological field theory structures in a general operadic context.

Toën’s approach to brane actions

To describe this construction, let us first recall the notion of categories of cospans
(see section 2.1). Given C an ∞-category with finite colimits, we may form its
∞-category of cospans, denoted Cospan(C), whose objects are those of C and
whose morphisms from X0 to X1 are given by diagrams X0 → Y ← X1, called
cospans, where Y is some object of C. Composition of cospans is given by taking
pushouts, in the sense that a composite of X1 → Y12 ← X2 with X0 → Y01 ← X1

is given by
X0 → Y01 ∐X1 Y12 ← X2.

Now let O⊗ be an ∞-operad, which we assume to be monochromatic1 for
simplicity and suppose that O⊗ is unital, that is, the space of nullary operations
O(0) is contractible.

Given an operation σ of arity n, we define an extension of σ to be an operation
σ+ of arity n + 1 that restricts to σ when forgetting the last input (up to some
specified homotopy). More precisely, we consider the morphism O(n+1)→ O(n)
that forgets the last input, by composing with the identity on the first n inputs
and with the unique nullary operation on the last one, and form the following
∞-fiber product (or homotopy pullback) of spaces

Extσ O(n+ 1)

∗ O(n).

y
forget

σ

(1.2)

Definition 1.3.1. We refer to this space

Extσ = O(n+ 1)×h
O(n) {σ}

as Toën’s model of the space of extensions of σ.

Given two operations ν ∈ O(n) and τ ∈ O(m) and an index i ∈ {1, . . . , n},
composition at input i induces a cospan of spaces of extensions

Extτ Extν◦iτ Extν
ν◦i− −◦iτ (1.3)

well-defined in the homotopy category of spaces.
Now assume that the space O(1) of unary operations in the ∞-operad is con-

tractible. In this situation, the space Extid of extensions of the identity operation

1Our ∞-operads are implicitly coloured, as in [Lur17]. By a monochromatic ∞-operad O⊗,
we then mean that O⊗ has an essentially unique color.
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is canonically equivalent to that of binary operations O(2). Let σ be an oper-
ation of arity n. Writing diagram (1.3) successively for (ν, τ) = (id, σ) and for
(ν, τ) = (σ, id⊕n) yields two composable cospans, with composite

O(2)∐n Extσ O(2).σ◦−

ext. of inputs

−◦σ

ext. of outputs
(1.4)

Informally, we may interpret the above diagram as expressing the following prop-
erty: spaces of extensions come canonically equipped with particular elements
of two types, coming either from extensions of the inputs or from extensions of
the output. The mechanism of brane action then consists in assembling cospans
(1.4) obtained for varying σ into the structure of an O-algebra in the∞-category
Cospan(S) of cospans of spaces.

However, to ensure compatibility of the operadic structure with the composi-
tion of cospans, one needs to restrict to a certain class of ∞-operads, originally
called of configuration type in [Toë13] and corresponding to the notion of coherent
∞-operads in more recent literature [Lur17]. We shall emphasize that the proof
that these two notions indeed coincide was unavailable in the literature until our
corollary 1.4.1, which requires the assumption that the space O(1) is contractible.
We will come back to this question when adressing the closely related problem of
comparing Toën’s model Extσ for spaces of extensions with Lurie’s model Ext(σ)
(defined in 1.3.4), at the end of this section (see problem C and also the discussion
of section 5.1.2).

By [Toë13, Proposition 3.5], we may define ∞-operads of configuration type
as follows.

Definition 1.3.2 (∞-operads of configuration type). Let O⊗ be a unital
monochromatic∞-operad with trivial space of unary operations. We say that O⊗

is of configuration type if for every integers n,m > 2, every operations σ ∈ O(n),
τ ∈ O(m) and every integer 1 6 i 6 n, the canonical map

Extτ ∐
O(2)

Extσ −→ Extσ◦iτ

is an equivalence.

The prototypical example of an∞-operad of configuration type is given by the
little disks ∞-operad E⊗

n+1, for every n ∈ N. This follows from the identification
En+1(2) ≃ Sn and the equivalence, for every σ ∈ En+1(m),

Extσ = En+1(m+ 1)×h
En+1(m) {σ} ≃

m∨
Sn.

The construction of the brane action associated to an∞-operad of configura-
tion type is then given by the following result of Toën.

Theorem 1.3.3 ([Toë13]). Let O be a unital monochromatic ∞-operad of con-
figuration type, with contractible space of unary operations. Then the space O(2)
of binary operations has a canonical O-algebra structure in the ∞-category of
cospans of spaces, with structure maps given by the cospan diagrams (1.4).
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Operations on spaces of branes

As a consequence of the previous theorem, one can construct operations on
mapping spaces Map(O(2), X), by a pull-push procedure analogous to the one
sketched at the beginning of this section for the loop product. An important
feature of this construction is its level of generality: indeed, it does not require X
itself to be a topological space and can therefore be applied to various geometric
contexts.

Let X be an∞-topos, which we think of as an∞-category of geometric objects.
Recall that there is a canonical functor S→ X sending a space Z to the colimit of
the constant diagram Z → X with value the terminal object in X. Through this
functor, we can view O(2) as an object in X and transport its O-algebra structure
(given by the brane action) to the ∞-category Cospan(X).

Let X be an object in X. The internal hom object Map(O(2), X) in X, called
the space of O-branes on X by Toën, carries an O-algebra structure in Span(X),
whose structural morphisms

Map(O(2), X)n Map (Extσ, X) Map(O(2), X),inout (1.5)

for σ ∈ O(n), are obtained from the brane action by applying the functor
Map(−, X).

In most applications, one is interested in inverting the "wrong-way" map in
the above spans to obtain an O-algebra structure in some more tractable, linear
∞-category. The general idea is as follows. Given a presentable stable monoidal
(∞, 2)-category C, a functor D : X → C (which we think of as a linear invariant
of objects in X) that satisfies a certain base change condition and an object
X ∈ X with some appropriate finiteness conditions, one can perform a pull-push
operation (see [Ste20]) and obtain morphisms

D(Map(O(2), X))⊗n out∗◦in∗

−−−−−→ D(Map(O(2), X)) (1.6)

that turn D(Map(O(2), X)) into an O-algebra in C.
Following Toën, we now describe an important example of this strategy in an

algebro-geometric context. Let X be the ∞-topos dStk of derived stacks over a
field k of characteristic 0. Consider the functor D = QCoh that assigns to every
derived stack its derived ∞-category of quasi-coherent sheaves, viewed as an
object of the (∞, 2)-category C = dgCatL

k of (possibly large) k-linear presentable
dg-categories with functors preserving small colimits. For X a quasi-projective
derived scheme, or more generally a perfect stack in the sense of [BZFN10] (see
definition 5.4.19), the base change condition is satisfied and the brane action
therefore yields an O-algebra structure on the dg-category QCoh(Map(O(2), X))
of quasi-coherent sheaves on the space of O-branes on X.

In particular, for O⊗ = E⊗
n+1 the ∞-operad of little disks of dimension n +

1, one obtains an En+1-algebra structure on the derived dg-categories of quasi-
coherent sheaves on the space of branes Map(Sn, X) of X, for an important class
of stacks X. Toën deduces from it a higher formality theorem, identifying the dg
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Lie algebra associated to the En+2-algebra of endomorphism of the unit object of
QCoh(Map(Sn, X)) with that of shifted polyvector fields on X.

Program: string topology via brane actions

The work of Toën on operations on spaces of branes naturally suggest the fol-
lowing approach to string and brane topology, as well as further generalizations
beyond the realm of manifolds.

• Can one adapt the linearization strategy described above to the topologi-
cal setting in order to prove conjecture 1.2.1, thereby extending Sullivan–
Voronov’s construction to the chain level?

• Can one develop brane topology operations, including the original string
topology ones, in more general geometric contexts, such as those of derived
differentiable and derived algebraic stacks, and relate them?

Note that the framed little disks∞-operad Efr
n+1 appearing in conjecture 1.2.1

has a non-contractible space of unary operations Efr
n+1(1) ≃ SO(n + 1), so that

Toën’s theorem 1.3.3 does not apply to this case. The first step towards realizing
program 1.3 is therefore to extend the brane action to encompass the cases of
∞-operads with non-contractible spaces of unary operations. Moreover, to incor-
porate module-type structures into the brane action, one would like to drop the
requirement for the input∞-operad O⊗ to be monochromatic in the construction
of brane actions.

Problem A. Extend the brane action to general∞-operads of configuration type,
with possibly multiple colors and non-contractible space of unary operations.

The first contribution of this thesis is to provide a solution to this problem
(see theorem A).

The above program is further motivated by the analogous situation of
Gromov–Witten invariants, for which brane actions turned out to be particu-
larly relevant [MR18].

Gromov–Witten invariants

Since Gromov–Witten theory will play no role in this work but a motivational
one, we only give a very sketchy introduction to these ideas.

Given a smooth projective algebraic variety X over C and some subvarieties of
X, one can associate rational numbers, called Gromov–Witten invariants, which
have an enumerative interpretation in terms of maps from stable curves of pre-
scribed genus to X, transverse to the chosen subvarieties. These invariants, in-
troduced by Kontsevich and Manin [KM94] in the context of algebraic geometry,
can be encoded using different structures: quantum products, cohomological field
theories and Frobenius manifolds, among others. This led Manin and Toën to
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the idea that the Gromov–Witten invariants of X could be detected at the level
of the derived category of X.

The construction of categorified Gromov–Witten invariants was then one of
the major motivation for Toën’s work on brane actions. This was accomplished
by Mann and Robalo in [MR18], for the genus 0 situation, by applying the brane
action to variants of the ∞-operad {M0,n+1}n∈N of stable algebraic curves of
genus 0 with marked points. The strength of this method is that invariants
are constructed at a purely geometric - or motivic - level, in the sense that the
structure exists before taking any invariant, such as cohomology or K-theory.

Mann–Robalo’s approach

The approach taken in [MR18] (see also the survey [MR21]) relies on a new
construction of the brane action, very different from Toën’s original one, and will
be presented in details in section 2.4. For the moment, let us simply note that
their definition of the brane action is encapsulated as an explicit fibration

π : BO −→ Tw(Env(O))⊗

over the twisted arrow ∞-category of the symmetric monoidal envelope of O⊗,
whose classifying functor gives the desired O-algebra structure in cospans of
spaces. We will call this functor π the brane fibration.

On the one hand, Toën’s definition of the brane action uses the model of
Segal operads for ∞-operads and relies on model categorical and strictification
arguments, which have the drawback of making the resulting construction rather
inexplicit. On the other hand, Mann–Robalo’s work is phrased in the language of
quasicategories and involves Lurie’s specific model of∞-operads [Lur17], but has
nevertheless the advantage of coming close to a model-independent construction.

However, contrary to Toën’s original approach, Mann and Robalo do not con-
sider∞-operads of configuration type, but instead the analogous notion of coher-
ent ∞-operads in the sense of Lurie, implicitly identifying these two definitions
without proof.

The definition of coherence for ∞-operads relies on modeling the spaces of
extensions of an operation σ via an explicit simplicial set Ext(σ) (see definition
2.2.32) that we shall call Lurie’s model of the space of extensions of σ. Following
Lurie, we can now informally define coherence as follows.

Definition 1.3.4 (Coherent∞-operads). Let O⊗ be an∞-operad, with possibly
several colors and without any assumption on the space of unary operations. We
say that O⊗ is coherent if it is unital, its underlying∞-category is a Kan complex
and moreover for every composable operations f : X → Y and g : Y → Z, the

2Our definition of the simplicial set Ext(σ) and therefore the corresponding definition of co-
herent∞-operads differ slightly from that of [Lur17]. We refer to remark 2.2.5 for a justification
of this difference.



1.3 Brane actions 21

diagram
Ext(idY ) Ext(g)

Ext(f) Ext(g ◦ f),

(1.7)

which is well-defined in the homotopy category of spaces, is homotopy cocartesian.
We refer to definition 2.2.6 for a more rigorous expression of the above condition.

The construction of the brane action given in [MR18, Theorem 2.1.7] then
takes the form of the following statement, analogous to Toën’s theorem 1.3.3: for
O⊗ a coherent monochromatic ∞-operad with O(0) ≃ O(1) ≃ ∗, there exists a
map of ∞-operads

O
⊗ −→ Cospan(S)⊗

that sends the color c ∈ O to the space Ext(idc) and an operation σ : X → Y to
a cospan

Ext(idX) −→ Ext(σ)←− Ext(idY ). (1.8)

Note that Mann–Robalo’s construction actually relies on yet another model
for the spaces of extensions of an operation σ, given by the fiber BOσ of the
brane fibration they define. More precisely, the above theorem of Mann–Robalo
requires an identification of BOσ with Lurie’s model Ext(σ), but the proof of this
fact is left unexplicit in [MR18].

However, it seems to the author that no straightforward comparison between
those two definitions is available. For instance, simply writing an explicit mor-
phism of simplicial sets relating the two models already seems a non-trivial prob-
lem. We are therefore left with the following issue.

Problem B. Given an operation σ in a unital ∞-operad, prove the equivalence
between Mann–Robalo’s model BOσ and Lurie’s model Ext(σ) parametrizing ex-
tensions of σ.

To apply brane actions to particular examples of coherent ∞-operads, or to
prove that a given ∞-operad is coherent, one needs to compute the spaces of
extensions. For that purpose, Mann–Robalo’s model BOσ and Lurie’s Ext(σ) are
both highly impractical. Identifiying the homotopy type of the space of extensions
Ext(id) supporting the brane action seems unnecessarily difficult if using only the
definition of BOσ and Ext(σ), even in simple examples such as that of the little
disks ∞-operad En.

In particular, we have the following pair of problems.

Problem C. Provide a method to compute spaces of extensions in particular
examples of ∞-operads.

Problem D. Prove that the framed little disks ∞-operad Efr
n is coherent.

In this thesis, we will solve problems B, C and D, via the corresponding
theorems B, C and D.
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Kern’s work

Finally, let us also mention the recent work of Kern [Ker21], who extended Mann–
Robalo’s proof of the brane action to the case of colored ∞-operads, satisfying a
weaker form of unitality3 and without the assumption that O(1) is contractible.

Let us note that, in addition to further applications to Gromov–Witten theory,
Kern explains how in absence of the coherence assumption on O⊗, the brane action
takes the form of a lax morphism of categorical ∞-operads O⊗ → Cospan(S), a
result already present in Toën’s original paper. The approach taken by Kern is
phrased in terms of the algebraic patterns introduced by Chu–Haugseng in [CH21].
As a benefit of this high level of generality, and even if the author has to restrict
eventually to the particular case of the algebraic pattern encoding ∞-operads,
his work paves the way towards generalizations of the brane action for a larger
class of algebraic patterns.

However, Kern’s work takes for granted the equivalence between the spaces
Ext(σ) and BOσ, so that his proof is confronted with the same issue as Mann–
Robalo’s, namely problem B, which is then solved by our theorem B.

1.4 Main results

Extension of the brane action to general coherent ∞-

operads

The first contribution of this thesis is to extend the mechanism of brane operations
to encompass the case of general coherent ∞-operads, without any restrictions
on the space of colors or that of unary operations, thereby generalizing Toën’s
theorem 1.3.3 and solving problem A.

Theorem A. Let O⊗ be a coherent ∞-operad. Then the collection of spaces
Ext(idX), for varying colors X ∈ O, carries a canonical O-algebra structure in
Cospan(S), with structural maps given by cospan diagrams (1.8).

Our approach is based on Mann–Robalo’s construction and relies on a careful
analysis of the brane fibration π : BO → Tw(Env(O))⊗. It was somewhat un-
expected that the assumption of contractibility of the space of unary operations
can simply be dropped from the theorem, since both Mann–Robalo’s and Toën’s
proofs seem to make essential use of this hypothesis.

Comparison of models of spaces of extensions

Our second main result provides a solution to problem B. In other words, we
prove the following statement.

3The precise condition, called hapaxunitality in [Ker21, Definition 2.2.1.2.8], requires that the
∞-operad has a distinguished color whose∞-groupoid of unary endomorphisms is contractible.
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Theorem B (Theorem 4.1.1). Let σ be an active morphism in a unital∞-operad
O⊗. Then the fiber BOσ of the brane fibration and the ∞-category of extensions
Ext(σ) are equivalent.

Note that this result is actually necessary in Mann–Robalo’s approach of the
brane action, and therefore also in our proof of theorem A (as well as in Kern’s
approach). Our strategy to prove theorem B consists in providing an explicit,
ad-hoc zigzag of homotopy equivalences between BOσ and Ext(σ).

We now turn to our solution to problem C.
Recall that in order to compute the homotopy type of the spaces of extensions

in applications, neither of the models Ext(σ) or BOσ of Lurie and Mann–Robalo
is practical. On the other hand, Toën’s model O(n + 1) ×h

O(n) {σ} is very suit-
able to computations in particular examples, and indeed all known computations
involving spaces of extensions rely on the equivalence with Toën’s definition.

Such an equivalence for Lurie’s model Ext(σ) (and therefore also for Mann–
Robalo’s model, by theorem B) is claimed in [Lur17, Section 5.1.1]. More pre-
cisely, a comparison map is defined and asserted to be an equivalence. How-
ever, we find that Lurie’s model Ext(σ) only agrees with Toën’s when the ∞-
operad O⊗ has a contractible space of unary operations. Moreover, we provide
a counter-example when this assumption fails, thereby contradicting the corre-
sponding statement in [Lur17]. We refer to section 5.1.2 for a more detailed
discussion.

The general situation is explained by the following result, which exhibits
Ext(σ) as a quotient of Extσ by an O(1)-action.

Theorem C (Theorem 5.1.1). Let O⊗ be a monochromatic unital ∞-operad
whose underlying ∞-category O is an ∞-groupoid and let σ ∈ O(n) an opera-
tion of arity n. Choose a semi-inert morphism i : 〈n〉 → 〈n + 1〉 in O⊗. Then
the space Ext(σ) is equivalent to the homotopy quotient of O(n + 1)×h

O(n){σ} by
an action of the ∞-group O(1) of unary operations on the additional color of the
extensions.

As a direct consequence of this theorem, we justify that configuration type
and coherent∞-operads agree, at least in absence of non-trivial unary operations.

Corollary 1.4.1. Let O⊗ be a monochromatic ∞-operad with O(1) ≃ ∗. Then
O⊗ is coherent if and only if it is of configuration type.

Recall that the ∞-operad of little disks E⊗
n+1 is coherent for any n > 0, by

Lurie’s result [Lur17, Theorem 5.1.1.1], whose proof relies on the validity of our
theorem C.

Using the computation tool given by the previous theorem, we extend this
coherence result to the variants E⊗

B of E⊗
n+1 obtained by endowing disks with a

framing datum (see [AF15]). These ∞-operads depend on the choice of a Kan
complex B equipped with a Kan fibration B → BTop(n + 1) to the classifying
space of the topological group of self-homeomorphisms of Rn+1; one recovers the
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case of framed little disks Efr
n+1 by taking B = BSO(n+ 1). Thus, the following

general result solves problem D.

Theorem D (Theorem 5.4.8). Let B a Kan complex equipped with a Kan fibration
to BTop(n+ 1). Then the ∞-operad of B-framed little disks E⊗

B is coherent.

One can prove that the space of extensions Ext(idb) of any color b ∈ B is
homotopy equivalent to the sphere Sn. As a consequence of theorems D and A,
we obtain an EB-algebra structure on Sn in cospans of spaces.

Corollary 1.4.2. Let X be a topological space. Then the space of branes
Map(Sn, X) has an EB-algebra structure in Span(S) given by the brane action.

Taking B = BSO(n + 1), this yields an Efr
n+1-algebra structure on the brane

space Map(Sn, X) in the∞-category of spans of spaces, hence proving the conjec-
ture 1.2.1 at the level of spans and thereby providing a first step in the realization
of the general program 1.3.

1.5 Outline of the thesis

We start in chapter 2 by recalling some important constructions: the∞-categories
of spans and that of twisted arrows, the precise definition of Lurie’s model Ext(σ)
for the space of extensions and the definition of coherent ∞-operads. We then
define the brane fibration, following Mann–Robalo, and outline the proof of theo-
rem A. This proof is then completed in chapter 3, by establishing that the functor
π : BO→ Tw(Env(O))⊗ is indeed a cartesian fibration (theorem 2.5.1).

Chapter 4 is devoted to the proof of B, that is the comparison between Mann–
Robalo’s and Lurie’s model of spaces of extensions, via the construction of an
explicit zigzag of homotopy equivalences.

Finally, we deal in chapter 5 with the problem of computing the homotopy
type of spaces of extensions, by establishing an equivalence between Toën’s and
Lurie’s models, thereby proving theorem C. Moreover, we discuss how our results
differ from a claim in [Lur17] and provide a counterexample to the latter state-
ment. The end of chapter 5 concerns applications to string topology, via a proof
of coherence of the ∞-operad of B-framed little disks (theorem D). We end with
a discussion of the new operations on spaces of branes that the previous result
allows to construct, both in the topological context (at the span level) and for
derived algebraic stacks (at the level of derived categories).

An appendix gathers some auxiliary definitions and results that are used
throughout the thesis. Most notably, we prove some results concerning marked
anodyne morphisms, which to the knowledge of the author do not appear in the
literature and might be of independent interest.



1.6 Notations and conventions 25

1.6 Notations and conventions

• We work in the particular model of ∞-category theory given by quasicate-
gories and use Lurie’s presentation of ∞-operads. Our notations generally
follow those of [Lur09a] and [Lur17].

• Particular arrows: monomorphisms are denoted as A B, cofibrations
as A B and atomic morphisms (see definition 2.2.1) as A B.

• When considering a diagram X : P → C from a poset P to an ∞-category
C and a sequence i0 6 i1 6 . . . 6 in in P , we will write Xi0 . . . Xin for the
n-simplex of X ◦ 〈i0 . . . in〉 : ∆n → P → C. For instance, the notation XiXj

denotes the unique morphism Xi → Xj of the diagram.

• Given a finite linear order I = {i0 < i1 < · · · < in}, the full subsimplex of
∆I on the objects ij0 < · · · < ijk will be denoted ∆ij0

...ijk (unless k = 0).
Similarly, Λ

ij0
...ijk

ijp
stands for the horn in ∆ij0

...ijk obtained by removing
the face opposed to vertex ijp . For instance, the horns Λ12

1 and Λ12
2 are

respectively the simplicial subsets ∆{2} and ∆{1} of the 1-simplex ∆12, while
the notation Λ12

0 does not make sense in our convention.

• For simplicity, given an∞-operad O⊗, we will often write E for its symmetric
monoidal envelope Env(O)⊗ and T for the associated twisted arrows ∞-
category Tw(Env(O))⊗ (see notation 2.3.1).

• We let F∗ denote the nerve of the category of pointed finite sets. We usually
identify F∗ with its equivalent full subcategory on the pointed sets 〈n〉 =
({0, . . . , n}, 0).



Chapter 2

The brane fibration

In this chapter, following [MR18], we explain how the brane action of theorem
A arises from a certain fibration, which we call the brane fibration. Before giving
the precise construction, we recall the notions of ∞-categories of (co)spans, of
twisted arrows, of spaces of extensions in the sense Lurie and the definition of
coherent ∞-operads.

Contents

2.1 Categories of spans and of twisted arrows . . . . . . . 26

2.2 Extensions and coherent ∞-operads . . . . . . . . . . 28

2.3 Symmetric monoidal envelope and its twisted arrows 31

2.4 Construction of the brane fibration . . . . . . . . . . . 33

2.5 Proof of theorem A . . . . . . . . . . . . . . . . . . . . 36

2.6 Generalized version of theorem A . . . . . . . . . . . 36

2.1 Categories of spans and of twisted arrows

Given an ∞-category C with finite limits, we may form the ∞-category Span(C)
of spans in C, whose objects are those of C, morphisms between two objects X and
Y are given by span diagrams X Z Y and composition is given by taking
pullback (see [Bar13] or [Hau18] for a rigorous ∞-categorical definition). Dually,
if C has finite colimits, we may consider its ∞-category of cospans Cospan(C)
defined as Span(Cop).

The ∞-category Span(C) has a canonical symmetric monoidal structure
Span(C)⊗× induced from the cartesian monoidal structure on C×, although
Span(C)⊗× is not itself cartesian.

Definition 2.1.1 (Twisted arrow ∞-category). Let s : ∆ → ∆ be the func-
tor given by s[n] = [n] ∗ [n]op. Precomposition with s yields an endofunc-
tor s∗ : sSet → sSet that we shall denote Tw. Left Kan extension of s along
the Yoneda embedding of ∆ induces a functor s∗ : sSet → sSet left adjoint to

26
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Tw. The image under Tw of an ∞-category C is again an ∞-category Tw(C)
called its twisted arrow ∞-category, whose n-simplices are (2n + 1)-simplices
s∗(∆n) = ∆n ∗∆n,op → C, represented as

X0 X1 . . . Xn

X0 X1 . . . Xn.

To depict a morphism in Tw(C), that is, a twisted arrow between two arrows f
and g of C, we will often write f  g.

Remark 2.1.2. Given a 2-simplex σ

Y

X Z

gf

h

in C that exhibits h as a composite of g and f , we obtain twisted arrows h  g
and h f in Tw(C) given respectively by the following commutative squares:

X Z

Y Z

h

hf

g

idZ
and

X Z

X Y

h

f
idX

f

g

in which the 2-simplices are either degenerate, are equal to σ.

By [Lur17, Example 5.2.2.23.], any symmetric monoidal ∞-category C⊗ in-
duces a symmetric monoidal structure Tw(C)⊗ on the twisted arrow ∞-category
Tw(C), in which the tensor product of two morphisms f : x→ y and g : z → t is
the obvious arrow of the form f ⊗ g : x⊗ z → y ⊗ t.

An important feature of the construction of ∞-category of twisted arrows is
the following universal property.

Proposition 2.1.3 (Universal property of Tw and Span). Let C and D be
two ∞-categories and assume that D has all finite limits. Then:

(1) There is a natural equivalence between the space of functors C → Span(D)
and that of functors F : Tw(C) → D satisfying the pullback condition:

namely that for every 2-simplex h : X
f
→ Y

g
→ Z exhibiting h as a composite

of g and f , the induced square

h g

f idY

in Tw(C) is sent by F to a cartesian square in D.
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(2) If C⊗ is a symmetric monoidal ∞-category with underlying ∞-category
C, then there is a natural equivalence between the space of symmetric
monoidal functors C⊗ → Span(D)⊗× and that of symmetric monoidal func-
tors Tw(C)⊗ → D× satisfying the above pullback condition.

A proof of the first part of this result can be found in the appendix of [Ras14,
Section 20]: there, the statement takes the stronger form of an adjunction between
Cat∞ and a certain∞-category Catdir

∞ of small∞-categories with directions, which
fully-faithfully contains the ∞-category of small ∞-categories with finite limits
and functors preserving them. In particular, this requires to enhance Tw to
a functor Cat∞ → Catdir

∞ . The extension to the symmetric monoidal case is
explained in [MR18, Corollary 2.1.3.].

2.2 Extensions and coherent ∞-operads

In this subsection, we recall the definition of the ∞-category of extensions of
an operation in an ∞-operad and the closely related notion of coherence. We
essentially follow [Lur17, Section 3.3.1], except for a small difference in the
definition of Ext(σ) (see remark 2.2.5).

Let p : O⊗ → F∗ be a unital ∞-operad.

Definition 2.2.1 (Semi-inert and atomic maps). Let f : X → Y be a morphism
in O⊗, corresponding to a morphism α = p(f) : 〈n〉 → 〈m〉 in F∗ together with
a family of multimorphisms fj : {Xi}α(i)=j → Yj for j ∈ 〈m〉◦. We say that f is
semi-inert if for every j ∈ 〈m〉◦

• either the set α−1{j} is empty, or

• the set α−1{j} is the singleton {ij} and the map fj : Xij → Yj is an equiv-
alence.

Following the terminology of [Ker21], we say that f is atomic if it is semi-inert
and lies over an inclusion α : 〈n〉 → 〈n + 1〉. In other words, f is atomic if and
only if it is semi-inert with no non-trivial factorization through another semi-inert
morphism. Given a commutative diagram

X Y

X ′ Y ′

fX fY

f

or
X

X ′ Y ′

fX

fY

f

with fX and fY atomic, we say that f is compatible with extension if f sends the
unique color of p(X ′) \ im(p(fX)) to the unique color of p(Y ′) \ im(p(fY )).

Remark 2.2.2. In [Lur17, Definition 3.3.2.3.], the notion of a m-semi-inert mor-
phism is introduced, for m ∈ N. In terms of this definition, a morphism f in O⊗

is atomic if and only if it is 1-semi-inert but not 0-semi-inert.
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Definition 2.2.3 (∞-category of extensions). Let σ : ∆n → O
⊗
act be an n-simplex

corresponding to a sequence of active morphisms X0
f1→ . . .

fn→ Xn. Given a
downward-closed subset S = {0, . . . , r} ⊆ [n], let Ext(σ, S) be the (non-full)
subcategory of Fun(∆n,O⊗)σ/ whose

• objects are diagrams ∆1 ×∆n → O⊗ represented as

X0 . . . Xr Xr+1 . . . Xn

X ′
0 . . . X ′

r X ′
r+1 . . . X ′

n

f1

g0

fr

gr gr+1≀

fn

gn≀

f ′
1 f ′

r f ′
n

satisfying the following conditions:

(1) if i /∈ S, then gi is an equivalence,

(2) if i ∈ S, then gi is atomic,

(3) if i ∈ S \ {0}, then f ′
i is compatible with extension,

(4) each map f ′
i is active;

• morphisms are diagrams ∆2 ×∆n → O⊗ represented as

X0 . . . Xn

X ′
0 . . . X ′

n

X ′′
0 . . . X ′′

n

f1

g0

fn

gn ≀

≀
f ′

1

h0

f ′
n

hn

f ′′
1 f ′′

n

in which the morphisms hi : X ′
i → X ′′

i are compatible with extension for all
i ∈ S.

Given an active morphism σ : ∆1 → O
⊗
act, we write Ext(σ) for Ext(σ, {0}). We

call Ext(σ) the ∞-category of extensions of σ. When the underlying ∞-category
O of O⊗ is an ∞-groupoid, Ext(σ) is a Kan complex and therefore refered to as
the space of extensions of σ.

Example 2.2.4 (Description of Ext(σ) in the discrete case). Let O∆ be an operad
in sets, O⊗ its homotopy coherent nerve and σ : 〈m〉 → 〈1〉 an active morphism
in O⊗. Then the k-simplices of Ext(σ) are those functors between 1-categories
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[1]× [1 + k]→ O∆ whose associated diagrams is of the form

〈m〉 〈1〉

〈m+ 1〉 〈1〉

〈m+ 1〉 〈1〉

〈m+ 1〉 〈1〉.

σ

atomic ∼

...

act

...
act

∼

act

(2.1)

and such that all the left vertical morphism 〈m + 1〉 → 〈m + 1〉 are compatible
with extensions.

Remark 2.2.5 (Difference with the existing definition). The previous definition
is slightly different from the initial definition from [Lur17] in that we impose a
condition on the morphisms in Ext(σ), rather than defining it as a full subcat-
egory of Fun(∆n,O⊗)σ/. The reason for this choice is that the space defined in
[Lur17, Definition 3.3.1.4.], that we shall denote ExtHA(σ) here, does not have the
expected homotopy type. To see this, consider the example of the commutative
∞-operad O⊗ = Comm⊗ and σ : 〈m〉 → 〈1〉 be an active map in Comm⊗. As
described in [Lur17, Example 3.3.1.12], the space of extensions of σ is supposed to
be the singleton set 〈1〉◦, viewed as a discrete space. However, the space ExtHA(σ)
is not discrete. Indeed, consider the object α ∈ ExtHA(σ) given by the following
diagram

〈m〉 〈1〉

〈m+ 1〉 〈1〉

σ

i id

!

where m is a positive integer, ! : 〈m + 1〉 → 〈1〉 is the unique active map and
i the canonical inclusion. We claim that π1(ExtHA(σ), α) is not trivial. Let
µ : 〈m+ 1〉 → 〈m+ 1〉 be the morphism in Comm⊗

act that restricts to the atomic
morphism i on 〈m〉 and sends the remaining color m+ 1 to 1. Then the diagram

〈m〉 〈1〉

〈m+ 1〉 〈1〉

〈m+ 1〉 〈1〉

σ

i

i

id

id

µ

!

id

!

(2.2)

defines a morphism γ : α → α in ExtHA(σ) with the property that [γ] 6= [idα] in
π1(ExtHA(σ), α). Indeed, a homotopy between γ and idα would give a retraction
ρ of µ, which can’t be.
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Note that diagram (2.2) does not define a morphism in Ext(σ) since µ is not
compatible with extensions. We will see that definition 2.2.3 yields the expected
homotopy type for the spaces of extensions: this is the content of theorem C.

Definition 2.2.6 ([Lur17, Definition 3.3.1.9]). An∞-operad O⊗ is coherent if it
satisfies the following conditions:

(a) it is unital,

(b) its underlying ∞-category O is an ∞-groupoid,

(c) for every degenerate 3-simplex σ

Y Z

X Y

idY

g

f

f

g

in O
⊗
act, the commutative diagram

Ext(σ, {0, 1}) Ext(σ|∆{0,1,3} , {0, 1})

Ext(σ|∆{0,2,3} , {0}) Ext(σ|∆{0,3} , {0})

(2.3)

is a homotopy cocartesian square of Kan complexes.

Remark 2.2.7. Let σ and S = {0, . . . , r} be as in definition 2.2.3 and suppose that
O is an ∞-groupoid. As mentionned before, the simplicial set Ext(σ) is a Kan
complex. By remark [Lur17, Remark 3.3.1.6.], if r < [n], there is a canonical map
Ext(σ, S) → Ext(fr+1) which is trivial Kan fibration. Using these equivalences,
we may rewrite the commutative square (2.3) as

Ext(idY ) Ext(g)

Ext(f) Ext(g ◦ f).

(2.4)

Note that the previous square is only well-defined in the homotopy category
of spaces.

2.3 Symmetric monoidal envelope and its

twisted arrows

Recall the construction of the symmetric monoidal envelope Env: Op∞ → Cat⊗
∞,

which is left adjoint to the forgetful functor from symmetric monoidal ∞-
categories to ∞-operads [Lur17, Section 2.2.4]. This left adjoint sends an ∞-
operad P⊗ to the ∞-category

Env(P)⊗ := P
⊗ ×Fun({0},F∗) Funact(∆1,F∗),
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where the superscript act indicates the full subcategory of Fun(∆1,F∗) whose ob-
jects are active morphisms in F∗. This∞-category inherits a symmetric monoidal
structure via the functor p1 : Env(O)⊗ → F∗ given by evaluation at 1 ∈ ∆1. Note
that the underlying ∞-category Env(O) of Env(O)⊗ can be identified with the
wide subcategory O

⊗
act of O⊗ consisting of all objects and only active maps be-

tween them. As explained in 2.1, the ∞-category of twisted arrows Tw (Env(O))
inherits a symmetric monoidal structure from that of the monoidal envelope, also
denoted p1 : Tw(Env(O))⊗ → F∗.

For later purposes, we let p0 : Env(O)⊗ → F∗ denote the functor given by
evaluation at 0.
Notation 2.3.1. For simplicity, we will write E for Env(O)⊗ and T for
Tw(Env(O))⊗.

Let us unravel the definitions of E and T.

• An object in E〈n〉 is given by an object X ∈ O
⊗
〈k〉 together with an active

map 〈k〉 → 〈n〉 in F∗. In terms of the projection functors p0 and p1, we have
that p0(X, 〈k〉 → 〈n〉) = 〈k〉 and p1(X, 〈k〉 → 〈n〉) = 〈n〉. Thus, we may
think of the object (X, 〈k〉 → 〈n〉) in E as a list of n objects (X1, . . . , Xn)
in O⊗, with total arity ⊕ni=1 p0(Xi) ∼= 〈k〉.

• A morphism f in E from (X, p0(X) → 〈n〉) to (Y, p0(Y ) → 〈m〉) is a
morphism X → Y in O⊗ together with a commutative diagram

p0(X) p0(Y )

〈n〉 〈m〉.α

In the case where α is active, the morphism f is p1-cocartesian if and only
if X → Y is an equivalence, by [Lur17, Lemma 2.2.4.15.]

• An object of T〈n〉 is given by an active map g : X → Y in O⊗ together with
a commutative triangle

p0(X) p0(Y )

〈n〉

p0(g)

act act

of active maps in F∗. A morphism in T from the previous object to (g′ : X ′ →
Y ′, p0(Y ′)→ 〈m〉) is given as a pair of commutative diagrams

X X ′

Y Y ′

g g′ and

p0(X) p0(X ′)

p0(Y ) p0(Y ′)

〈n〉 〈m〉

p0(g) p0(g′)

act act

α

(2.5)
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respectively in O⊗ and F∗. If one interprets the objects in E as lists of
objects of O⊗, then the equivalence T〈m〉 ≃ Tw(O⊗

act)m allows to view the
object (g : X → Y, p0(Y ) → 〈n〉) in T〈n〉 as a list of n active morphisms
(X1 → Y1, . . . , Xn → Yn) in O⊗.

• A morphism in T between two objects (σ1 : X1 → Y1, . . . , σn : Xn → Yn)
and (σ′

1 : X ′
1 → Y ′

1 , . . . , σ
′
m : X ′

m → Y ′
m) then corresponds to a morphism

α : 〈n〉 → 〈m〉 in F∗ together with a commutative diagram in O⊗ of the
form ⊕

i∈α−1(j)
Xi X ′

j

⊕
i∈α−1(j)

Yi Y ′
j

act⊕iσi
act

for each j ∈ 〈m〉◦.

Remark 2.3.2. Consider the morphism in T given by diagrams (2.5) and assume
that α is active. Then this morphism is p1-cocartesian if and only if both maps
X → X ′ and Y ′ → Y are equivalences.

2.4 Construction of the brane fibration

To prove theorem A, we will follow the strategy developed by Mann–Robalo in
[MR18, Section 2.1]. Let us recall their approach.

Mann–Robalo’s strategy

First, note that the datum of a map of ∞-operads O⊗ → Cospan(S)⊗ is equiva-
lent to that of a map of symmetric monoidal functors E → Cospan(S)⊗. By the
universal property of spans (proposition 2.1.3), this datum is equivalently that
of a symmetric monoidal functor T → (Sop)∐ satisfying the pullback condition.
By [Lur17, Proposition 2.4.1.7.], since the monoidal structure (Sop)∐ on Sop is
cartesian, this is the same as providing a weak cartesian structure T → Sop satis-
fying the pullback condition. Using the Grothendieck construction, it will suffice
to construct a right fibration π : BO→ T whose classifying functor Fπ : T → Sop

satisfies the conditions described above.
The rest of this section is devoted to the construction of this fibration π.

Definition 2.4.1 (The brane fibration, following [MR18]). Define BO as the
subsimplicial set of Fun(∆1,T) whose

• objects are twisted morphisms σ  σ+ such that

– the projection p1(σ  σ+) in F∗ is the unique active map p1(σ)→ 〈1〉;
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– in the corresponding 3-simplex in O⊗

S0 S+
0

S1 S+
1

σ0

σ σ+

∼
σ1

(2.6)

the map σ0 is atomic and σ1 is an equivalence;

• morphisms from σ  σ+ to τ  τ+ are the morphisms f in Fun(∆1,T)
such that

– the projection p1




σ σ+

τ τ+




in F∗ is the diagram

p1(σ) 〈1〉

p1(τ) 〈1〉,

act

id

act

– in the induced square

S0 S+
0

T0 T+
0 ,

σ0

f0 f+
0

τ0

(2.7)

the morphism f+
0 is compatible with extension, in the sense that p0(f+

0 )
is of the form 〈s+1〉 → 〈t+1〉, sending the singleton 〈s+1〉\im(p0(σ0))
to the singleton 〈t+ 1〉 \ im(p0(τ0)).

Let π : BO→ T be the composite of ev0 with the inclusion BO ⊂ Fun(∆1,T).

Remark 2.4.2. The following properties will be useful throughout this paper.

• Since equivalences and atomic maps are active, the diagram (2.6) is in fact
in O

⊗
act.

• The image of BO under p1 is constant along the fibers of π, in the sense
that there is a commutative diagram

BO Fun(∆1,T)

T

F∗ Fun(∆1,F∗).

π

p1◦−

p1

ε
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Here ε is the unique functor that sends 〈n〉 to the unique active morphism
〈n〉 → 〈1〉 and such that ev0 ◦ ε = idF∗ and ev1 ◦ ε = const〈1〉. Thanks to
this observation, we will often leave implicit the description of the projection
under p1 of various constructions.

Let us mention the following general facts about BO.

Lemma 2.4.3. The inclusion BO ⊂ Fun(∆1,T) is a conservative isofibration.
In particular, BO is an ∞-category.

Proof. We have to show that BO is a replete subcategory (in the sense of [Lur22,
Definition 01CF] and [Lur22, Example 01EX]) of Fun(∆1,T). First, we verify
the conditions of [Lur22, Corollary 01CR] to prove that BO is a subcategory
of Fun(∆1,T). As the condition of compatibility with extension of 2.4.1 only
depends of the image of the morphisms in the 1-category F∗, one easily verifies
that the set of morphisms in BO contain all identities of objects in BO is closed
under homotopy and composition, as desired.
Next, we turn to the proof that BO is replete. Let f+ : σ+ → τ+ be an equivalence
in Fun(∆1,T) with σ+ ∈ BO. We have to show that both τ+ and f+ belong to BO.
Since the canonical functor Tw(O⊗)→ O⊗× (O⊗)op is conservative (being a right
fibration), we deduce that in the diagram induced by f+ in O⊗, all four morphisms
f0 : S0 → T0, f+

0 : S+
0 → T+

0 , f1 : T1 → S1, f+
1 : T+

1 → S+
1 are equivalences. From

this and the commutativity of the square (2.7), one obtains that τ0 : T0 → T+
0 is

semi-inert, lies over an injection 〈t〉 →֒ 〈t + 1〉 and that f+
0 is compatible with

extension. Similarly, the morphisms σ1, f1 and f+
1 are equivalences, therefore so

must be τ1. This concludes the proof.

Lemma 2.4.4. Assume that the underlying∞-category O of O⊗ is an∞-groupoid
and let σ ∈ T. Then the fiber BOσ of π at σ is a Kan complex.

Proof. By the previous lemma, the inclusion BO ⊂ Fun(∆1,T) is a conservative
isofibration. So is the map ev0 : Fun(∆1,T) → T, hence π is an isofibration.
To prove the result, it now suffices to show that π is conservative. Consider a
morphism f : σ+ → τ+ in BO whose image π(f) in T is an equivalence. The data
of f is that of a diagram of the following form:

S+
0 T+

0

S0 T0

S+
1 T+

1 .

S1 T1

σ+
0

f+
0

τ+

σ

f0

σ0

τ

τ0

σ1 τ1

f+
1

f1

(2.8)

Using that the fibration T → E × Eop is conservative, we deduce that f0 and f1

are equivalences. By definition of the objects in BO, the maps σ1 and τ1 are also
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equivalences, therefore so is f+
1 . Finally, we claim that f+

0 is an equivalence. To
see this, write f+

0 as the sum f0 ⊕ f
+
0 |+, where f+

0 |+ : S+
0 \ S0 → T+

0 \ T0 is the
restriction of f+

0 to the new color. Since f+
0 |+ is a map in O, which by assumption

is an ∞-groupoid, it is an equivalence; therefore so is f .

2.5 Proof of theorem A

One of the key steps in the proof of theorem A is the following result, whose proof
is given in chapter 3.

Theorem 2.5.1. Let O⊗ be a unital ∞-operad. Then the functor π : BO→ T is
a cartesian fibration.

Assuming theorems 2.5.1 and B, whose proofs will be given in chapters 3 and
4, we can prove theorem A.

Proof of theorem A. By Mann–Robalo’s argument (as described in section 2.4),
in order to prove the theorem it suffices to construct a right fibration over T, with
fibers equivalent to spaces of extensions and whose associated functor T → Sop

is a weak cartesian structure and satisfies the pullback condition of proposition
2.1.3.

Theorem 2.5.1 ensures that π is a cartesian fibration. By lemma 2.4.4, its fibers
are Kan complexes, hence π is a right fibration. Moreover, theorem B identifies
the fiber BOσ over an object σ ∈ T as its space of extensions Ext(σ). Therefore,
it remains to show that the functor Fπ : T → Sop classifying the right fibration
π is a weak cartesian structure and satisfies the pullback condition. The latter
is exactly the condition that the ∞-operad O⊗ is coherent, using the equivalence
BOσ ≃ Ext(σ). For the weak cartesian condition, let σ in T be decomposed
as a sum σ ≃ ⊕ni=1σi of objects in T〈1〉 ≃ Tw(O⊗

act). Since p1 is constant along
fibers of π (in the sense of remark 2.4.2), the fiber BOσ decomposes as a disjoint
union of the spaces BOσi

, so that the natural map Fπ(σ) ∼
←
∐n
i=1 Fπ(σi) in S is an

equivalence. This shows that Fπ is a lax cartesian structure. To verify that it is in
fact a weak cartesian structure, let f : σ → σ′ in T be a p1-cocartesian lift of the
unique active morphism 〈n〉 → 〈1〉 in F∗. By remark 2.3.2, this implies that the
two maps source(σ) → source(σ′) and target(σ) ← target(σ′) are equivalences,
which in turn ensures that Fπ(f) is an equivalence, as desired.

2.6 Generalized version of theorem A

The brane action given by theorem A can be generalized to the setting where O⊗

is a unital ∞-operad, without assuming that its underlying ∞-category O is an
∞-groupoid (condition (b) in the definition of coherence given in 2.2.6).

To make this claim precise, let us say that an ∞-operad O⊗ is categorically
coherent if it is unital and satisfies the variant (c′) of condition (c) in definition
2.2.6 in which one requires diagram (2.3) to be a categorical pushout square of
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∞-categories (instead of a homotopy pushout square). Note that if O⊗ is unital
with O⊗ an ∞-groupoid, i.e. O⊗ satisfies conditions (a) and (b) from definition
2.2.6, then conditions (c) and (c′) actually coincide, since for Kan complexes,
homotopy pushout squares are automatically categorical pushout squares. As
a consequence, coherent ∞-operads are categorically coherent. The generalized
version of theorem A writes as follows.

Theorem A’. Let O⊗ be a categorically coherent ∞-operad. Then the collec-
tion of ∞-categories {Ext(idc)}c∈O carries a canonical O-algebra structure in
Cospan(Cat∞), which recovers that of theorem A when O is an ∞-groupoid.

The proof of theorem A’ is almost the same as the one given above for
theorem A, only slightly simpler. Indeed, most of the arguments, including the
use of theorems 2.5.1 and B, do not use the assumption that O is an∞-groupoid.
The only difference is that in the situation of theorem A’, π is merely a cartesian
fibration (as opposed to a right fibration) and therefore its classifying functor is
of the form T → Catop

∞.

Following [Toë13], one may go one step further in generality by dropping the
assumption that O⊗ is coherent, that is assuming only that O⊗ is a unital ∞-
operad. In this case the brane action merely gives a lax algebra structure on
the ∞-category Ext(σ) in cospans of ∞-categories, which is an genuine algebra
structure precisely when O⊗ is coherent (in the previous generalized sense). We
refer to Kern’s thesis [Ker21] for more details on this lax structure.



Chapter 3

Cartesianity of the brane

fibration

This chapter is devoted to the proof of theorem 2.5.1, asserting that the brane
fibration π : BO→ Tw(Env(O))⊗ of definition 2.4.1 is indeed a cartesian fibration.
We will define particular lifts of edges along π and then show that these are
cartesian arrows in BO in the rest of the chapter. Note that cartesianity of this
fibration is the property ensures the existence of all the homotopical coherences
involved in the definition of the O-algebra in Cospan(S) given by the brane action.
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3.1 Construction of cartesian lifts

Let f : σ  τ be a morphism in T and let eτ : τ  τ+ be in the fiber BOτ . We
will construct a cartesian edge f+ : σ+  τ+ lying π-above f .

σ+ τ+ BO

σ τ T

f+

π

f

eτ

38
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Unraveling the definition of BO, we are given a diagram of the form

T+
0

S0 T0

T+
1

S1 T1

τ+

σ

f0

τ

τ0

τ1

f1

(3.1)

in E and want to extend it to one of the shape

S+
0 T+

0

S0 T0

S+
1 T+

1

S1 T1

f+
0

τ+

σ

f0

σ0

τ

τ0

σ1 τ1

f+
1

f1

(3.2)

so that the resulting morphism f+ : σ+  τ+ is in BO. We proceed in several
steps, depicted in figure 3.1.

Step 1. Pick a representative f̃ for the composite eτ ◦ f in T. In particular, this
yields a 3-simplex S0T

+
0 T

+
1 S1 and a 5-simplex S0T0T

+
0 T

+
1 T1S1 extending

diagram (3.1).

Step 2. Define the object S+
1 as S1 and the morphism σ1 : S+

1 → S1 as the identity.
Since σ1 is an equivalence, by using Joyal’s lifting theorem [Lur22, Theorem
019F] and several horn fillers, we can extend the 3-simplex S0T

+
0 T

+
1 S1 to a

4-simplex S0T
+
0 T

+
1 S

+
1 S1.

Step 3. We now turn to the key step, namely the construction of the triangle
S0S

+
0 T

+
0 . Decompose T+

0 as a sum of colors

T+
0 = ⊕i∈p0(T0)Ci ⊕ C

+

so that C+ is the color lying above the element p0(T+
0 ) \ im(p0(τ0)). Since

O⊗ is unital, there exists an essentially unique morphism ιC+ from the zero
object of O⊗ to C+. Define S+

0 as the sum S0 ⊕ C
+ and σ0 as idS0 ⊕ιC+ ,

which is clearly an atomic morphism.

It remains to construct f+
0 . Note that p0(f+

0 ) is required to coincide with
the unique morphism h : p0(S+

0 )→ p0(T+
0 ) that restricts to p0(f̃0) on p0(S0)

and preserves p0(C+). Consider the ∞-category

M = (O⊗)∆2

×
(O⊗)∆{2} {T+

0 } ×(O⊗)∆01 {σ0} ×
F

Λ2
2

∗

{(p0(f̃0), h)}
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consisting of all diagrams of the form

S+
0

S0 T+
0

aσ0

b

(3.3)

satisfying p0(a) = h and p0(b) = p0(f̃0). The inclusion ∆02 →֒ ∆2 yields a
morphism

M −→ Mapp0(f̃0)
O⊗ (S0, T

+
0 ) ∼
−→

s∏

i=1

Mapρ
i◦h

O⊗ (S0, Ci). (3.4)

On the other hand, from the inner anodyne inclusion Λ2
1 →֒ ∆2 and the

definition of ∞-operads, we get the following sequence of equivalences

M
∼
−→ Maph

O⊗(S+
0 , T

+
0 )

∼
−→

s∏

i=1

Mapρ
i◦h

O⊗ (S+
0 , Ci)×Mapρ

n+1◦h
O⊗ (S+

0 , C
+)

∼
−→

s∏

i=1

Mapρ
i◦h

O⊗ (S0, Ci)×MapO(C+, C+).

Composing those equivalences with the projection MapO(C+, C+) → ∗ re-
covers exactly the morphism (3.4). Therefore we see that the ∞-category
of diagrams of the form (3.3) satisfying that b = f̃0, which we identify with
the fiber of the morphism (3.4) at f̃0, is equivalent to MapO(C+, C+).

To define f+
0 and a corresponding 2-simplex of diagram (3.3), it then suffices

to specify any object in this ∞-groupoid MapO(C+, C+).

Step 4. At that point, we have extended the 3-simplex S0T
+
0 T

+
1 S1 to a diagram of

shape
∆S0T

+
0 T

+
1 S

+
1 S1 ∪

∆
S0T +

0
∆S0S

+
0 T

+
0 .

A simple computation shows that the inclusion of the latter simplicial set
into ∆S0S

+
0 T

+
0 T

+
1 S

+
1 S1 is inner anodyne; this allows us to choose an extension

of this diagram to a 5-simplex S0S
+
0 T

+
0 T

+
1 S

+
1 S1.

This completes the construction of an edge f+ : σ+  τ+ lifting f . The bulk
of the proof of theorem 2.5.1 consists in proving that f+ is cartesian.

3.2 Outline of the proof of cartesianity

Given a morphism f : σ → τ in T and an object τ+ in BO, we have constructed
a particular edge f+ : σ+ → τ+ lying over f , which can be interpreted as an
object in the ∞-category BO/τ+ ×T/τ

T/f . The purpose of this section is to give
an overview of the proof that f+ is cartesian. The details will be dealt with in
the rest of the chapter.
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T+
0

S0 T0

T+
1

S1 T1

f̃0

T+
0

S0

S+
1 T+

1

S1

S+
0 T+

0

S0

S+
1 T+

1

S1

f+
0

Figure 3.1: Diagrams of steps 1, 2 and 3 of the construction of f+. An arrow is
dashed if it is added at the current step.

Notation 3.2.1. Throughout the proof, we will make use of the notation intro-
duced in A.2.2. In other words, from now on, we fix an object ν+ ∈ BO, write
Dν+ for the ∞-category BO/τ+ ×T/τ

T/f ×BO {ν
+} and fix an object u in it. We

then consider the associated space of lifts

L = BO/f+ ×BO {ν
+} ×Dν+ {u}.

More explicitly, the datum of the object u ∈ Dν+ is that of a triangle u0 in T

of the form
σ

ν τ

f

g

(3.5)

together with a morphism g+ : ν+ → τ+ in BO lying π-above g. An object in L

is a lift of u, that is the datum of a triangle

σ+

ν+ τ+

f+

g+

(3.6)

in BO that lies π-above the triangle u0 depicted in (3.5). In the diagrams
parametrized by this ∞-groupoid L, only the morphism ν+ → σ+ and the
2-simplex filling triangle (3.6) are allowed to vary.

By lemma A.2.3, proving that f+ is π-cartesian amounts to showing the fol-
lowing result.
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Proposition 3.2.2. The space of lifts L is contractible.

The rest of this chapter is devoted to the proof of proposition 3.2.2. To help
the reader, let us first explain the strategy of the argument: we will study the
terminal morphism q : L→ ∗, decompose it as a composition

q : L
q(0)

−→ L
(0) q(1)

−→ L
(1) q(2)

−→ L
(2) q(3)

−→ L
(3) ∼= ∗ (3.7)

and prove that each of the maps q(i) is an equivalence of Kan complexes. The
idea is that each ∞-category L(i) parametrizes diagrams in T of a certain shape
S(i) and with certain data fixed. For i > 0, the functors q(i) : L(i−1) → L(i) can be
interpreted as forgetful maps. The simplicial set S(0) is ∆2×∆1 and corresponds
to the shape of diagrams in E corresponding to triangle in BO (such as diagram
(3.6)). The decreasing sequence of simplicial sets S(0) ⊃ S(1) ⊃ S(2) ⊃ S(3) encode
diagrams with fewer and fewer non-fixed data (see definition 3.4.1).

The following picture illustrates the decomposition of the composite functor
L(0) → L(3).





σ+

ν+ τ+

σ

ν τ





q(1)

−→





σ+

ν+ τ+

σ

ν τ





q(2)

−→





σ+

ν+ τ+

σ

ν τ





q(3)

−→ ∗

(3.8)
In this description, solid arrows stand for morphisms in T that are fixed within
L(i), whereas dashed arrows indicate morphisms that are allowed to vary in that
space. At each step of the composition, the new diagram is obtained from the
previous one by removing one 3-simplex in T (and some simplices of smaller
dimension), namely the 3-simplices νν+σ+τ+, νσσ+τ+ and νσττ+, respectively
for q(1), q(2) and q(3) (as indicated in grey in the picture). The last ∞-category
L(3) ∼= ∗ should be thought of as the fixed data in the L(i).

The functors q(2) and q(3) are both induced by inner anodyne morphisms and
will therefore be trivial Kan fibrations. The case of the functor q(1) is more
delicate, and proving that it is also a trivial fibration will constitute the heart of
the proof of proposition 3.2.2.

We divide the argument outlined above in three steps: each one amounts to
proving that some of the functors q(i) are equivalences. We postpone the most
technical parts of the proof to the end of the chapter (section 3.6).
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3.3 From slices to functor categories: the func-

tor q(0)

The first step is to define the functor q(0) : L→ L(0) and prove that it is a categor-
ical equivalence. The∞-category L(0) will be a slight variation of L, in that these
two ∞-categories both parametrize triangles of the form (3.6) with the following
data fixed: the morphisms f+ and g+ in BO and the triangle u0 underlying u
of shape (3.5). The two ∞-categories thus share the same objects, the difference
being that L is constructed from the slice ∞-category BO/f+ whereas L(0) is ob-
tained from the functor ∞-category Fun(∆2,BO). More precisely, we define L(0)

as
L

(0) = BO
∆2

×
BO

Λ2
2
{(f+, g+)} ×

T∆2 {u0}. (3.9)

Lemma 3.3.1. There exists an equivalence of ∞-categories q(0) : L → L(0). In
particular, L(0) is a Kan complex.

To construct this equivalence q(0), we first need a comparison between slice
∞-categories and corresponding∞-categories of diagrams, given by the following
lemma.

Lemma 3.3.2. Let C be an ∞-category and p : K → C a diagram. Then there is
a canonical equivalence of ∞-categories

C/p
∼
−→ C

K⊳

×CK {p}.

For the sake of completeness, we provide a proof of this folklore result at the
end of this chapter, see 3.6.1. We can now proceed to the proof of lemma 3.3.1.

Proof of lemma 3.3.1. First, note that we can write

L
(0) =

(
BO

∆2

×
BO

∆12 {f+}
)
×P {u},

where P denotes the pullback

P =
(
BO

∆02

×
BO

∆{2} {τ+}
)
×(

T∆02
×

T∆{2} {τ}

)
(
T

∆2

×
T∆12 {f}

)
.

We define the functor q(0) : L → L(0) as the one induced from the commutative
square

BO/f+ BO
∆2

×
BO

∆12 {f+}

BO/τ+ ×T/τ
T/f P

ψ′

ξ′ ξ

ψ

(3.10)

by taking the fiber at u ∈ BO/τ+ ×T/τ
T/f .

To prove that q(0) is an equivalence of ∞-categories, we will use that Joyal’s
model structure is locally right proper (although it is not right proper). This
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property holds for any model structure, and means that for any diagram d =
(Xa → Xb ← Xc) of fibrant objects in which one of the maps is a fibration, the
canonical morphism Xa×Xb

Xc → Xa×
h
Xb
Xc from the pullback to the homotopy

pullback is an equivalence. In particular, if a morphism of such diagrams d→ d′

is a pointwise weak equivalence, then the induced morphism lim d → lim d′ is a
weak equivalence.

Since each of the simplicial sets in diagram (3.10) is an ∞-category (hence a
fibrant object in Joyal’s model structure), to show that q(0) is an equivalence of
∞-categories, it suffices to establish that the following two claims :

(1) ψ and ψ′ are categorical equivalences,

(2) ξ and ξ′ are isofibrations.

To prove the first claim, we make again use of the argument described in the
previous paragraphs. Indeed, the morphism ψ is itself induced from the natural
transformation of diagrams

BO/τ+ T/τ T/f

BO
∆02

×
BO

∆{2} {τ+} T∆02
×

T∆{2} {τ} T∆2
×

T∆12 {f}.

ψa ψb ψc

χ

Lemma 3.3.2 guarantees that each of the vertical morphism are equivalences. We
know that T/f → T/τ is a right fibration (by the dual of Proposition 2.1.2.1 in
[Lur09a]), hence an isofibration.

We now prove that the functor χ : T∆2
×

T∆12 {f} → T∆02
×

T∆{2} {τ} is an
isofibration. Let v be an object in T∆2

×
T∆12 {f} and χ(v) ∼

−→ w an equivalence
in T∆02

×
T∆{2} {τ}. We want to lift this equivalence to one in T∆2

×
T∆12 {f}. The

datum of v is that of a triangle in T of the form

σ

α τ.

f

ℓ

(3.11)

The datum of the morphism χ(v) → w is that of a commutative square of the
form

α τ

α′ τ ′.

ℓ

(3.12)

As a natural transformation is an equivalence if it so pointwise, the fact that
χ(v) → w is an equivalence translates into the statement that α → α′ is an
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equivalence. We want to extend the previous diagram into one of the form

σ

α τ

σ′

α′ τ ′

f

ℓ

f

(3.13)

which represents an equivalence in T∆2
×

T∆12 {f}. We do this construction in
several steps : first, by gluing diagrams (3.11) and (3.12) and adding degenerate
2-simplices σττ ′ and σσ′τ ′, we obtain the diagram

σ

α τ

σ′

α′ τ ′.

f

ℓ

f

From this point, the construction of diagram (3.13) is obtained using successive
horn fillers in T, that is to say a sequence of choices of solutions to lifting problems,
each of the form

Λn
k T.

∆n

First, choosing a filler of the horn of shape Λ3
2 in ασττ ′, we construct the

2-simplex αστ ′. Similarly, by filling the horn Λ2
1 in ασσ′, we obtain a morphism

ασ′. Using a filler of the horn Λ2
1 in ασσ′τ ′, we get a 2-simplex ασ′τ ′. Finally,

using that the morphism αα′ is an equivalence, we can fill the horn Λ2
0 in

αα′σ′, as well as the horn Λ3
0 in αα′σ′τ ′. This yields a diagram of the form

(3.13) in which α → α′ is an equivalence; hence an equivalence v ∼
−→ w lifting

the given morphism χ(v)→ w along χ. This concludes the proof of the first claim.

We now come to the second claim. As ξ′ is a right fibration, it is in particular
an isofibration. It remains to prove that ξ is also an isofibration. Consider an
object x ∈ BO/τ+ ×T/τ

T/f and an equivalence ξ(x) ∼
−→ y in P. We want to

construct an equivalence x → y lifting ξ(x) ∼
−→ y. The data of x is that of a

triangle in BO of the form

σ+

α+ τ+.

f+

ℓ+

(3.14)
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The data of the morphism ξ(x)→ y is that of a diagram of the form (3.13) and
a lift

α+ τ+

α′+ τ ′+

ℓ+

(3.15)

of its subdiagram (3.12) along π. By [Lur22, Corollary 01H4], since the morphism
χ is an isofibration, the maximal ∞-subgroupoid P≃ of P is given by the limit of
the following diagram of ∞-categories

(
BO

∆02

×
BO

∆{2} {τ+}
)≃ (

T∆02
×

T∆{2} {τ}
)≃ (

T∆2
×

T∆12 {f}
)≃
.

χ

The morphism ξ(x) → y being an equivalence therefore translates into the fact
that the morphism α+ → α′+ from is an equivalence. Our aim is to extend
diagrams (3.14) and (3.15) to obtain a lift

σ+

α+ τ+

σ′+

α′+ τ ′+

f+

ℓ+

f+

(3.16)

of the given diagram (3.13) along the functor π. The construction of diagram
(3.16) is given by solutions to the same sequence of horn filling problems as that
of the proof that χ is an isofibration (in claim (1)); the only difference being that
in the present case, the horn filling problems have to be considered relative to
the inner fibration π, that is as problems of lifting of the form

Λn
k BO

∆n T.

π

This construction provides an equivalence x ∼
−→ y as desired, ensuring that ξ is

an isofibration. This concludes the proof of lemma 3.3.1.

3.4 Anodyne extensions: the functors q(2) and

q(3)

We have defined the functor q(0) : L→ L(0) and proved it is an equivalence of∞-
groupoids. We now spell out the rest of the decomposition (3.7) of the terminal
morphism q : L → ∗, by defining the ∞-categories L(i), for i ∈ {1, 2, 3}, as well
as the functors q(i).
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Definition 3.4.1. • First, let S(0) denote the simplicial set ∆2 × ∆1 with
vertices labelled with ν, σ, τ, ν+, σ+, ν+ as in the diagrams represented in
(3.8).

• For i ∈ {1, 2, 3}, we define decreasing subsimplicial sets S(i) of S(0) using
the following formulas:

S(1) = ∆νν+τ+

∪∆ντ+ ∆νσττ+

∪∆νστ+ ∆νσσ+τ+

,

S(2) = ∆νν+τ+

∪∆ντ+ ∆νσττ+

∪∆στ+ ∆σσ+τ+

, (3.17)

S(3) = ∆νν+τ+

∪∆ντ+ Λνσττ+

τ ∪∆στ+ ∆σσ+τ+

.

For i ∈ {0, 1, 2}, the simplicial set S(i) will encode the shape of the diagrams
parametrized by L(i), whereas S(3) will describe the shape of diagrams that are
fixed within L(i). The simplicial sets S(0), . . . , S(3) can be pictured as

σ+

ν+ τ+

σ

ν τ

,

σ+

ν+ τ+

σ

ν τ

,

σ+

ν+ τ+

σ

ν τ

,

σ+

ν+ τ+

σ

ν τ

.

(3.18)
We define L(3) as the terminal ∞-groupoid ; we think of its unique object as

the diagram S(3) → T given by the data (f+, g+, u0) that we fixed earlier on. The
inclusion j(i) : S(i) ⊂ S(i−1) induces a forgetful functor p(i) : TS

(i−1)
→ TS

(i)
that

we use to define the ∞-categories

L
(1) = T

S(1)

×
TS(3) {(f+, g+, u0)},

L
(2) = T

S(2)

×
TS(3) {(f+, g+, u0)}.

Recall that L(0) was defined by formula (3.9) using terms of diagrams with val-
ues in BO. Nevertheless, the following lemma ensures that L(0) actually admits
a simple equivalent description in terms of diagrams in T, following the above
pattern for L(1) and L(2).

Lemma 3.4.2. We have a canonical equivalence of ∞-groupoids

L
(0) ≃ T

S(0)

×
TS(3) {(f+, g+, u0)}.

Proof. It follows from its definition that the ∞-groupoid L(0) fits into the com-
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mutative diagram

L(0) ∗

BO
∆2

BO
Λ2

2 ×T T
∆2

BO
Λ2

2

T∆2×∆1
TS

(3)
TΛ2

2×∆1

y

y

in which the upper left and the bottom right squares are cartesian. To prove
the lemma, it therefore suffices to show that the bottom outer square is carte-
sian. Note that both vertical maps BO

Λ2
2 → TΛ2

2×∆1
and BO

∆2

→ T∆2×∆1
are

subcategories, meaning they are monomorphisms that are inner fibrations. This
implies that the morphism BO

Λ2
2 ×

T
Λ2

2
×∆1 T∆2

→ T∆2×∆1
is also the inclusion of

a subcategory, hence it is enough to verify that the two subcategories BO
∆2

and
BO

Λ2
2 ×

T
Λ2

2
×∆1 T∆2

have the same objects and morphisms. An object in BO
∆2

(respectively in BO
Λ2

2 ×
T

Λ2
2

×∆1 T
∆2

) is a diagram

α+
1

α+
0 α+

2

α1

α0 α2

ts

w

in T in which the maps α0α
+
0 , α1α

+
1 and α2α

+
2 are objects in BO and such that

the morphisms s, t and w (respectively only t and w) lie p1-above id〈1〉 and are
compatible with extension (conditions of definition 2.4.1). The key observation
is that whenever t and w both satisfy these properties, then so does s; this fact
implies that the two subcategories have the same objects. One can use a similar
argument to show that the same is true for morphisms of these two subcategories,
as desired.

Therefore, the functors q(i) and the∞-categories L(i) fit into the commutative
diagram

L(0) L(1) L(2) L(3) ∼= ∗

TS
(0)

TS
(1)

TS
(2)

TS
(3)
,

q(1)

y

q(2)

y

q(3)

y
(f+,g+,u0)

p(1) p(2) p(3)

(3.19)

where all squares are cartesian.
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We now claim that the inclusions j(2) : S(1) ⊂ S(2) and j(3) : S(2) ⊂ S(3) are
inner anodyne. For the latter morphism, this is obvious from the formulas (3.17),
as j(3) is obtained as a pushout of the inner anodyne map Λνσττ+

τ ⊂ ∆νσττ+
. For

the former map, note that we can write j(2) as a pushout of the composition

∆νστ+

∪∆στ+ ∆σσ+τ+

⊂ Λνσσ+τ+

σ ⊂ ∆νσσ+τ+

,

in which both maps are inner anodyne. This shows the claim. We therefore obtain
that the induced functors p(2) and p(3) are trivial Kan fibrations. As every square
in diagram (3.19) is cartesian, we deduce that the functors q(2) and q(3) are also
trivial Kan fibrations. In particular, we see that L(1) and L(2) are contractible
Kan complexes.

3.5 Existence and uniqueness of factorizations:

the functor q(1)

In order to prove theorem 3.2.2, it only remains to prove that q(1) is a trivial Kan
fibration, which is the main step of the proof. Since the inclusion j(1) restricts to
a bijection S(1)

0 ⊂ S
(2)
0 on the sets of 0-simplices, by [Rez22, Proposition 40.6 and

footnote 30], we obtain that p(1) : L(1) → L(2) is an isofibration. Since we already
know that both L(1) and L(2) are Kan complexes, it follows that p(1) is a Kan
fibration. Since the squares in diagram (3.19) are cartesian, we deduce that q(1) is
also a Kan fibration between Kan complexes. To see that it is a weak equivalence,
we have to show that all of its fibers are contractible, which is asserted in the
following proposition.

Proposition 3.5.1. Let d : S(1) → T be a diagram in L(1). Then the fiber L
(0)
d

of q(1) at d is contractible.

Proof. First, we claim that the question can be restricted to the full subdiagram
of d on the objects ν, ν+, σ+ and τ+. Indeed, if we let S(1)′

denote the subsimplicial
set ∆νν+τ+

∪∆ντ+ ∆νσ+τ+
of S(0)′

:= ∆νν+σ+τ+
encoding commutative squares of

the form
ν+ τ+

ν σ+,

(3.20)

we observe that j(1) : S(1) ⊂ S(0) can be written as the pushout

S(1)′
S(0)′

S(1) S(0),
p

j(1)

(3.21)
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of the inclusion. Therefore we can identify the fiber of q(1) at d as

L
(0)
d ≃ T

S(0)′

×
TS(1)′ {d′},

where d′ = d|S(1)′ , thus proving the claim.
Note that the diagram d′, which is of shape (3.20), is essentially determined by

the fixed data (f+, g+, u0). In particular, in this diagram, the morphism σ+τ+ is
the edge f+ constructed in section 3.1 and the 2-simplices νσ+τ+ and νν+τ+ are
given. The proof of the proposition thus consists in showing that, from this data,
the remaining simplices ν+σ+, νν+σ+, ν+σ+τ+ and νν+σ+τ+ can be constructed
in an essentially unique way.

Until now, the simplices were written in the ∞-category T; we need to re-
formulate the problem in terms of diagrams with values in O⊗. The diagram d′

of shape (3.20) corresponds to a certain diagram d′
O

: K → O⊗, which can be
pictured as

V +
0 T+

0

V0 S+
0

V +
1 T+

1

V1 S+
1

def=

1 3

0 2

6 4.

7 5

(3.22)

Here, in order to sometimes simplify notations, we denote the objects V0, V +
0 ,

S+
0 , T+

0 , T+
1 , S+

1 , V +
1 , V1 as the integers 0, . . . , 7, in the same order. This way, we

can write the simplicial set indexing d′
O

as the subsimplicial set

K = ∆013467 ∪∆0347 ∆023457

of ∆7. The fiber L
(0)
d is therefore canonically equivalent to the space L

(0)
d ≃

(O⊗)∆7
×(O⊗)K {d′

O
} parametrizing extensions of the diagram d′

O
to a 7-simplex.

The key step of the proof concerns the space of lifts of the upper part of
diagram (3.22), namely the subdiagram indexed by the full subsimplicial set
K0 ⊆ K on the objects V0, V +

0 , S+
0 and T+

0 . Note that this simplicial set is
isomorphic to ∆1 × ∆1. Define Z as the fiber (O⊗)∆3

×(O⊗)K0 {d′
O
|K0}; this ∞-

category parametrizes extensions of the diagram d′
O
|K0 : K0 → O to a 3-simplex

V0V
+

0 S
+
0 T

+
0 . Since the inclusion K0 ⊂ ∆3 is a bijection on objects, the induced

functor (O⊗)∆3
→ (O⊗)K0 is an isofibration and therefore the ∞-category Z is a

space. We will show the following intermediate result.

Claim 3.5.2. The space Z = (O⊗)∆3
×(O⊗)K0 {d′

O
|K0} of lifts of the upper part of

diagram (3.22) is contractible.
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The argument relies on the observation that the diagram K0 → O⊗ → F∗ has
a decomposition p ◦ d′

O
|K0 = d−

F∗
⊕ d+

F∗
given by

p0(V0)+ p0(T+
0 )

p0(V0) p0(S+
0 )

=

〈n〉 〈k〉

〈n〉 〈m〉

⊕

〈1〉 〈1〉

〈0〉 〈1〉

, (3.23)

where ⊕ stands for the operation of pointwise disjoint union of diagrams in F∗.
Using the identity maps in (3.23), one readily sees that both diagrams d−

F∗
and d+

F∗

extend uniquely to 3-simplices d̃−
F∗

and d̃+
F∗

in F∗, which implies that the diagram
p ◦ d′

O
|K0 also extends uniquely to a 3-simplex, namely d̃′

F∗ := d̃−
F∗
⊕ d̃+

F∗
. In

particular, any diagram ∆3 → O⊗ in Z will be a lift of d̃′
F∗ . This shows that we

can rewrite the space Z as

Z ≃ (O⊗)∆3

×(O⊗)K0 {d
′
O
|K0} ×F∆3

∗
{d̃′

F∗}.

We will make use of decomposition (3.23) to obtain a splitting of the space Z,
using the next lemma. Recall that a simplicial set is said to be braced if every
face of a nondegenerate simplex remains nondegenerate [Lur22, Tag 00XU].

Lemma 3.5.3. Let O⊗ be any ∞-operad. Let J be a braced simplicial set and
I ⊆ J be a subsimplicial set. Consider two diagrams q and r making the following
square commute:

I O⊗

J F∗

r

p

q

(3.24)

and assume that q decomposes as a disjoint union q = ⊕ni=1qi of diagrams J → F∗.
Then there exists a decomposition r ≃ ⊕ni=1ri such that the ∞-category of lifts in
the square (3.24) splits as the following direct product:

(O⊗)J ×(O⊗)I {r} ×FJ
∗
{q} ≃

n∏

i=1

(O⊗)J ×(O⊗)I {ri} ×FJ
∗
{qi}. (3.25)

The proof of this lemma is given at the end of this chapter, in section 3.6.2.
We can now complete the proof of lemma 3.5.3. Through the first of the

equivalences in (3.33), the object r ∈ (O⊗)I is identified with an object ⊕iri.
Now observe that D fits in a diagram of pullback squares

D (O⊗)J ×FJ
∗
{q} (O⊗)J

∗ (O⊗)I ×FI
∗
{q|I} (O⊗)I ×FI

∗
FJ∗

∗ FJ∗ .

y

ρ′
y

ρ

r

y

q
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Since the vertical functor ρ is an isofibration, so is its pullback ρ′. Therefore the
top left pullback square is invariant under equivalence of∞-categories. Using the
above two decompositions, we deduce that D itself can be written as a product

D ≃
n∏

i=1

(O⊗)J ×FJ
∗
{qi} ×

(O⊗)I×
F

I
∗

{qi|I}
{ri} ≃

n∏

i=1

(O⊗)J ×(O⊗)I {ri} ×FJ
∗
{qi},

as desired.

We now come back to the proof of proposition 3.5.1. Using the previous
lemma, since ∆3 is braced, we obtain a decomposition d′

O
|K0 = d−

O
⊕d+

O
lifting that

of equation (3.23) and a corresponding splitting Z = Z− × Z+, with components
given by

Z
± = (O⊗)∆3

×(O⊗)K0

{
d±
O

}
×

F∆3
∗

{
d̃±
F∗

}
.

As before, we note that any diagram ∆3 → O⊗ lifting d±
O

will automatically be
a lift of d̃±

F∗
. Therefore, the space Z± is equivalent to (O⊗)∆3

×(O⊗)K0 {d
±
O
}. We

note that the arrow in d−
O

that lifts the left vertical map id〈n〉 in diagram (3.23)
is an equivalence, since by assumption V0 → V +

0 is semi-inert. Similarly, the
arrow in d+

O
that lifts the right vertical map id〈1〉 in diagram (3.23) is necessarily

an equivalence, by construction of the map S+
0 → T+

0 . We claim that these
properties force the spaces Z− and Z+ to be contractible. To see this, we need
the following version of Joyal’s lifting theorem.

Lemma 3.5.4. Let C be an ∞-category and α an equivalence in C. Consider

an outer horn α : Λn
0 → C, with n > 2, whose restriction along ∆1 〈01〉

−→ Λn
0 is α.

Then the fiber C∆n
×

C
Λn

0
{α} parametrizing extensions of the form

∆1 Λn
0 C

∆n

〈01〉

α

α

(3.26)

is a contractible ∞-groupoid.

Proof of lemma 3.5.4. We want to show that any morphism β : ∂∆m → C∆n
×

C
Λn

0

{α} extends to an m-simplex, for all m > 0. This problem is equivalent to finding
a lift in the commutative square

Λn
0 C∆m

∆n C∂∆m

diag ◦α

i∗

β′

where diag is the diagonal functor C→ C∆m
, i∗ is the inner fibration induced by

the inclusion i : ∂∆m → ∆m and β′ is adjoint to ∂∆m β
→ C∆n

×
C

Λn
0
{α} → C∆n

.
As α is an equivalence, so is diag ◦ α : ∆1 → C∆m

. Therefore, using Joyal’s lifting
theorem [Lur22, Theorem 019F], we obtain the existence of lifts in the above
square, as desired.
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From the above argument and the previous lemma, we deduce that the space
Z is contractible. This proves claim 3.5.2. To finish the proof of proposition 3.5.1,
consider the pushout K̃ = K ∪K0 ∆3 and the inclusion ι : K̃ → ∆7. The fibers
L

(0)
d and Z fit in the commutative diagram

L
(0)
d Z {d′

O
}

(O⊗)∆7
(O⊗)K̃ (O⊗)K

(O⊗)∆3
(O⊗)K0 .

y

∼

y

ι∗

y

Here, both the right outer and the bottom right squares are cartesian, therefore
so is the top right square. As the top outer square is cartesian, so must be the top
right square. To complete the proof that L

(0)
d is contractible, we need a careful

analysis of the morphism ι. The result makes use of the notion of right anodyne
morphism recalled in the appendix in definition A.1.5 and writes as follows.

Lemma 3.5.5. Consider the simplicial set ∆7 as a marked simplicial set, with
6 → 7 as the only nondegenerate marked edge. Then the inclusion ι : K̃ −→ ∆7

is right marked anodyne.

This result is proved using a tedious explicit calculation that we defer to the
end of this chapter, in section 3.6.3.

Using the previous lemma and the observation that the morphism 67 in di-
agram d′|O is an equivalence, it then follows from lemma 3.5.4 that the functor
L

(0)
d → Z induced by ι∗ is an equivalence.

This concludes the proof of proposition 3.5.1, hence that of theorem 3.2.2.

3.6 Proof of technical lemmas

In this section, we complete the proof of theorem 2.5.1 by providing proofs to
lemmas 3.3.2, 3.5.3 and 3.5.5.

3.6.1 Proof of lemma 3.3.2

Proof of lemma 3.3.2. Let W be a simplicial set. By definition of the slice ∞-
category, we have a natural bijection

Hom(W,C/p) = HomK/
(W ⋆K,C),

where the index K/ denotes the subset of those morphisms W ⋆ K → C that
restrict to p on K. On the other hand, we have a natural bijection

Hom(W,CK
⊳

×CK {p}) = HomK/
(W,C),
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where we use the simplicial set

W = (W ×K⊳) ∐
W×K

K.

We now construct a categorical equivalence ϕW : W → W ⋆K, natural in W . It
is obtained by the universal property of the pushout W , induced by the canonical
inclusion K → W ⋆K and a certain morphism W×K⊳ → W ⋆K. To describe the
latter, recall that maps from a simplicial set X to W ⋆K can be identified with
triples of morphisms (X → ∆1, X0 → W,X1 → K), where Xi = {i}×∆1 X is the
fiber at i. Using this description, the morphism W ×K⊳ → W ⋆ K corresponds
to the triple

(can ◦ proj : W ×K⊳ → K⊳ → ∆1, W ×∆0 ∼= W, proj : W ×K → K).

We now prove that ϕW is a categorical equivalence. The argument relies on
the fact that the canonical morphism cA,B : A ⋄ B → A ⋆ B, comparing the two
join constructions, is a categorical equivalence for all simplicial sets A,B [Lur22,
Theorem 01HV]. Observe that W fits in a commutative diagram

W ×K W × (∆0 ⋄K) W ×K⊳

K W ⋄K W

proj

p

idW ×c∆0,K

pcW,K

in which all three squares are cocartesian. Since the top horizontal mapsW×K →
W × (∆0 ⋄K) and W ×K → W ×K⊳ are monomorphisms, the left and outer
squares are categorical pushout squares; therefore, so must be the right one. As
the top right morphism idW ×c∆0,K is a categorical equivalence, so is cW,K . Now
observing that the comparison equivalence cW,K : W ⋄K → W ⋆K factors as

W ⋄K W W ⋆K,
cW,K ϕW

we conclude that ϕW is a categorical equivalence.
The morphisms ϕW for varying W induce a functor of∞-categories ϕ : C/p →

CK
⊳
×CK {p}. To prove that ϕ is an equivalence, we will show that for each

simplicial set W , the induced morphism

ϕ∗ : π0

(
Fun(W,C/p)≃

)
−→ π0

(
Fun(W,CK

⊳

×CK {p})≃
)

(3.27)

is a bijection. By [Lur22, Tag 01KV], we have a canonical bijection

π0

(
Fun(W,C/p)≃

)
∼= π0

(
FunK/

(W ⋆K,C)≃
)
.

We claim that one has a similar bijection for the target of ϕ∗, namely:

Claim. There is a canonical bijection

π0

(
Fun

(
W,CK

⊳

×CK {p}
)≃) ∼= π0

(
FunK/

(W,C)≃
)
. (3.28)



3.6 Proof of technical lemmas 55

Assuming this claim, we see that the morphism ϕ∗ from (3.27) corresponds, under
the previous two bijections, to the map

ϕ∗
W : π0

(
FunK/

(W ⋆K,C)≃
)
−→π0

(
FunK/

(W,C)≃
)
,

induced by ϕW . By assumption, ϕW is a categorical equivalence compatible with
restricting to K; thus ϕ∗

W is a bijection, for all W , as desired.
To complete the proof, we now prove claim (3.28). Let α0, α1 be two functors

W → CK
⊳
×CK {p} and let α0, α1 denote the corresponding objects in FunK/

(W,C)

under the bijection Hom
(
W,CK

⊳
×CK {p}

)
∼= HomK/

(W,C). We wish to prove
that α0 and α1 are equivalent if and only if α0 and α1 are. To this end, we will use
a characterization of equivalences in functor categories. Consider a categorical
mapping cylinder of W , that is a factorization of (idW , idW ) of the form

W ∐W RW W
(s0,s1)

∼

p
(3.29)

where p is a categorical equivalence and (s0, s1) is a monomorphism. From [Lur22,
Corollary 01KD], we know that the objects α0 and α1 are equivalent if and only
if the following condition is satisfied:

(1) there exists α : RW → CK
⊳
×CK {p} such that α ◦ s0 = f0 and α ◦ s1 = f1.

By definition of the functor X 7→ X, one observes that the latter condition is
equivalent to the following:

(2) there exists some α′ : RW → C satisfying α′ ◦ s0 = f 0 and α′ ◦ s1 = f 1.

Using again [Lur22, Corollary 01KD], one sees that this last condition is verified
if and only if the objects f 0 and f 1 are equivalent, provided that the factorization

W ∐K W RW W
(s0,s1) p

(3.30)

is a categorical mapping cylinder for W relative to K; the proof of this last fact
is an easy verification. This proves claim (3.28) and finishes the proof of lemma
3.3.2.

3.6.2 Proof of lemma 3.5.3

Proof of lemma 3.5.3. For ease of notation, let D denote the left hand side of
(3.25). Consider a diagram X ∈ D. For each vertex j ∈ J , we can write
the object X(j) in the form ⊕iX(j)i, with the resulting diagram Xi lying over
qi. Then, for each 1-simplex f : j0 → j1 of J , using the definition of ∞-
operads, we see that the space Mapq(f)

O
(X(j0), X(j1)) decomposes canonically

as
∏
i Mapqi(f)

O
(X(j0)i, X(j1)i). Therefore, up to equivalence, we can write the

morphism X(f) as a disjoint union ⊕iX(f)i with each component lying over
qi(f).
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We now consider the general case. Let σ be a simplex of J of dimension n and
let α : Spn →֒ ∆n denote the spine inclusion. Since Spn is 1-skeletal, the previous
part of the proof gives a decomposition of the space parametrizing diagrams
Spn → O⊗ lifting q(σ ◦ α) as a product

n∏

i=1

(O⊗)Spn

×
F

Spn
∗
{qi(σ ◦ α)} ≃

−→ (O⊗)Spn

×
F

Spn
∗
{q(σ ◦ α)}, (3.31)

with the equivalence given by disjoint union. Now, as α is anodyne, we have a
canonical equivalence between the spaces of diagrams (O⊗)∆n ∼

−→ (O⊗)Spn
, from

which we can extend (3.31) to an equivalence

n∏

i=1

(O⊗)∆n

×F∆n
∗
{qi(σ)} ≃

−→ (O⊗)∆n

×F∆n
∗
{q(σ)}. (3.32)

Claim 3.6.1. Using the previous equivalence for every simplex σ of I and J , we
obtain two decompositions

n∏

i=1

(O⊗)I ×FI
∗
{qi|I} ≃ (O⊗)I ×FI

∗
{q|I},

n∏

i=1

(O⊗)J ×FJ
∗
{qi} ≃ (O⊗)J ×FJ

∗
{q}.

(3.33)

Proof of the claim. We prove the result for J , the case of I being completely sim-
ilar. Consider the category ∆ ↓ J of simplices of J and let ι denote the inclusion
(∆ ↓ J)nd ⊂ ∆ ↓ J of the full subcategory consisting of all nondegenerate sim-
plices. Writing F and Fi for the simplicial presheaves F(σ) = (O⊗)∆n

×F∆n
∗
{q(σ)}

and Fi(σ) = (O⊗)∆n
×F∆n

∗
{qi(σ)} on ∆ ↓ J , the natural equivalences (3.32)

give a natural transformation γ :
∏
iF ⇒ F which is a levelwise categorical

equivalence. Our goal is to show that the equivalence (3.33) is obtained from
ι∗γ : ι∗

∏
iFi ⇒ ι∗F by taking the colimit over (∆ ↓ J)nd.

First, we show that ι∗
∏
iFi and ι∗F are isofibrant diagrams, in the sense of

[Lur22, Tag 0349]. We begin by proving that the forgetful functor U : (∆ ↓ J)nd →
sSet sending ∆n → J to ∆n is projectively cofibrant (that is cofibrant in the
projective global model structure on the diagram category Fun((∆ ↓ J)nd, sSet)).
Observe that each simplicial level Uk of U decomposes as a coproduct

Uk = Und
k

∐
Udeg
k

of subfunctors of nondegenerate and degenerate simplices respectively. Each of
these two subfunctors is a coproduct of representables, so that both are projec-
tively cofibrant. By [Dug01, Corollary 9.4], we deduce that U is projectively
cofibrant. Therefore, the simplicial presheaves Hom(U ,O⊗) and Hom(U ,F∗) on
(∆ ↓ J)nd are isofibrant. Taking pullback, it follows that the simplicial presheaf
F is also isofibrant. The same argument proves that

∏
iFi is isofibrant.

Since ι∗γ is a levelwise categorical equivalence between isofibrant diagrams,
the induced map lim(ι∗γ) : lim

∏
i ι

∗Fi → lim ι∗F on limits is a categorical equiv-
alence. The only remaining step is to identify lim

∏
i ι

∗Fi (respectively lim ι∗F)
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with the left (resp. right) hand side of the second equivalence of (3.33). To this
end, note that since J is braced by assumption, the inclusion ι admits a left ad-
joint and therefore is cofinal. This implies that J ∼= colimU ∼= colim ι∗U , from
which the result follows easily.

The proof of lemma 3.5.3 now follows from claim 3.6.1.

3.6.3 Proof of lemma 3.5.5

Proof of lemma 3.5.5. Recall that the morphism ι is the inclusion

ι : K̃ =


∆013467

⋃

∆0347

∆023457


 ⋃

∆013 ∪
∆03

∆023

∆0123 −→ ∆7

using the numbering introduced in diagram (3.22). First, note that ι factors
through K̂ = K̃ ∪

Λ567
7

∆567 and the right anodyne inclusion K̃ → K̂ satisfies the

conditions of the statement. It therefore suffices to show that the induced map
K̂ → ∆7 is inner anodyne. Note that the spine inclusion Sp7 → ∆7, which is
inner anodyne, factors through K̂. By the right cancellation property for inner
anodyne morphisms, it suffices to show that Sp7 → K̂ is inner anodyne. We
decompose the latter inclusion in several steps; first, it is easy to see that the two
morphisms

Sp7 → Sp7 ∪
Sp0123

∆0123 →

(
Sp7 ∪

Sp0123
∆0123

)
∪

Sp4567
Λ4567

7 =: S

are inner anodyne. As the inclusion Sp7 → ∆7 factors through the composite
map Sp7 → S, the remaining steps consists in adding to S the simplices ∆013467

and ∆023457. One verifies that the intersection between S and ∆013467 is given by

S ∩∆013467 = ∆013 ∪
∆{3}

∆34 ∪
∆{4}

∆467

so that the inner anodyne inclusion Sp013467 → ∆7 factors through S ∩ ∆013467

as an inner anodyne map. Therefore, by right cancellation, we deduce that S ∩
∆013467 → ∆013467 is inner anodyne. Since the inclusion of S into the simplicial
set Ŝ = S ∪

S∩∆013467
∆013467 is the pushout of the inclusion S∩∆013467 → ∆013467, it

is also inner anodyne. Finally, we will prove that the same holds for the inclusion
Ŝ → Ŝ ∪∆023567 = K̂. We proceed as before: the intersection of Ŝ and ∆023457 is
given by

Ŝ ∩∆023457 = ∆023 ∪
∆{3}

∆34 ∪
∆{4}

∆457

and the inclusion Sp023457 → ∆023457 factors through it. To prove that Ŝ → K̂
is inner anodyne, it is then enough to show that Sp023457 → Ŝ ∩∆023457 has this
property, which is obvious.
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Step 1-simplices 2-simplices 3-simplices 4-simp. 5-simp. 6-simp. 7-simp.

Initial
step

K̃

01 02 03 04
05 06 07 12
13 14 16 17
23 24 25 27
34 35 36 37
45 46 47 57

67

012 013 014 016 017
023 024 025 027 034
035 036 037 045 046
047 057 067 123 134
136 137 146 147 167
234 235 237 245 247
257 345 346 347 357

367 457 467

0123 0134 0136 0137
0146 0147 0167 0234
0235 0237 0245 0247
0257 0345 0346 0347
0357 0367 0457 0467
1346 1347 1367 1467
2345 2347 2357 2457

3457 3467

01346 01347
01367 01467
02345 02347
02357 02457
03457 03467
13467 23457

013467
023457

ι1 15 125
ι2 26 236
ι3 56 567
ι4 015 0125
ι5 026 0236
ι6 124 1234
ι7 126 1236
ι8 135 1235
ι9 145 1245

ι10 456 4567
ι11 356 3567
ι12 267 2367
ι13 256 2567
ι14 267 2467
ι15 156 1256
ι16 056 0156
ι17 157 1457
ι18 127 1257
ι19 0124 01234
ι20 0135 01235
ι21 0126 01236
ι22 0145 01245
ι23 0256 01256
ι24 0157 01457
ι25 0127 01257
ι26 0267 02367
ι27 1247 12457
ι28 1237 12347
ι29 1267 12367
ι30 1357 12357
ι31 1567 12567
ι32 0567 01567
ι33 3456 34567
ι34 2456 24567
ι35 2356 23567
ι36 2346 23467
ι37 1456 14567
ι38 1356 13567
ι39 1345 13457
ι40 1246 12467
ι41 0456 04567
ι42 0356 03567
ι43 0246 02467
ι44 01247 012457
ι45 12345 123457
ι46 12346 123467
ι47 12356 123567
ι48 12456 124567
ι49 13456 134567
ι50 23456 234567
ι51 01345 012345
ι52 03456 034567
ι53 01237 012347
ι54 01357 012357
ι55 01267 012367
ι56 02567 012567
ι57 02456 024567
ι58 02356 023567
ι59 02346 023467
ι60 01456 014567
ι61 01356 013567
ι62 01246 012346
ι63 013457 0123457
ι64 012467 0123467
ι65 123456 1234567
ι66 023456 0234567
ι67 013456 0134567
ι68 012456 0124567
ι69 012356 0123567
ι70 0123456 01234567

Figure 3.2: Iterative construction of the non-degenerate simplices of ∆7 using
right horn inclusion, starting from K̃.

Alternative proof of lemma 3.5.5. For the record, we provide another proof of
lemma 3.5.5 by exhibiting an explicit decomposition of ι as a composite of marked
anodyne morphisms.
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The first map of the composition is the canonical morphism

ι1 : K̃ =: K̃1 −→ K̃2 :=
(
K̃ ∪Λ125

2
∆125

)

induced by the inner horn inclusion Λ125
2 ⊂ ∆125; it corresponds to adding to

the diagram K̃ → E a 2-simplex 125 and a 1-simplex 15. The next morphism is
ι2 : K̃2 → K̃2 ∪Λ236

3
∆236.

For a more systematic presentation of the next morphisms ιi, we use figure
3.2. In this table, the initial setup is the list of the non-degenerate simplices of
∆7 that belong to K̃. At step ιi, the line of the table contains exactly two non-
degenerate simplices of ∆7, which are of the form Ji \ {ki} and Ji, representing
the horn inclusion ΛJi

ki
→֒ ∆Ji of which ιi is a pushout.

To verify that the construction is valid, one has to check that each of the non-
degenerate simplices of positive dimension of ∆7 appears exactly once in the above
table, and moreover that at each step of the construction, all the faces of the horn
ΛJi
ki

have already been constructed. For instance, in the step ι2 corresponding to
the horn inclusion Λ236

3 →֒ ∆236, one has to verify that the 2-simplices 23 and
36 have already been built (as well as all non-degenerate simplices of Λ236

3 of
dimension less than 2) and that neither 23 nor 236 have. Verifying similarly the
other steps is a simple but tedious exercise.
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4.1 Statement of the results

We turn to problem B of the introduction, namely the question of the comparison
between Mann–Robalo’s and Lurie’s models for spaces of extensions. We provide
a solution to this problem through theorem 4.1.1.

More precisely, let O⊗ be a unital ∞-operad and fix an active morphism σ,
viewed as an object in the twisted arrow ∞-category T := Tw(Env(O))⊗ of the
monoidal envelope of O⊗.

The goal of the present chapter is to prove the equivalence between the fiber
BOσ of the brane fibration BO→ T (introduced in definition 2.4.1) at the oper-
ation σ coincide with the ∞-category of extensions Ext(σ) of σ, thereby proving

60
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the corresponding claim in [MR18] 1. Our method consist in providing an explicit
zigzag of categorical equivalences between BOσ and Ext(σ).

Theorem 4.1.1 (Theorem B). Let σ be an active morphism in a unital∞-operad
O⊗. Then the fiber BOσ of the brane fibration and the ∞-category of extensions
Ext(σ) are equivalent in Cat∞.

Corollary 4.1.2. Let σ be an active morphism in a unital ∞-operad O⊗, whose
underlying ∞-category is an ∞-groupoid. Then BOσ and Ext(σ) are equivalent
Kan complexes.

The difference between the simplicial sets Ext(σ) and BOσ can be observed
from their set of 0-simplices. Both sets parametrize diagrams in O⊗, respectively
of the form

• •

• •

σ

≀ and
• •

• •,

σ

≀ (4.1)

that is, of respective shape ∆1 ×∆1 and ∆3, such that the following conditions
are satisfied:

• the top horizontal arrow is sent to σ;

• the left vertical arrow is sent to an atomic map;

• the right vertical arrow is sent to an equivalence in O⊗.

Informally, since the right vertical arrow is marked as an equivalence, both
diagrams in (4.1) encode the same data, namely that of a triangle of the form

• •

•

σ

(4.2)

Our proof follows this idea and relies on finding suitable generalizations of the
previous diagram for higher dimensional simplices in Ext(σ) and BOσ.

4.2 Definition of spaces interpolating between

BOσ and Ext(σ)

We first discuss the shape of diagrams represented by general simplices of Ext(σ)
and BOσ. Let K be a simplicial set.

To help the reader with the cumbersome definitions and notations, we recom-
mend to look at figures 4.2.3 and 4.2.3 where the different diagrams introduced
in this section are depicted, for the cases K = ∆0 and K = ∆1.

1More precisely, for the claim BOσ ≃ Ext(σ) to be correct, one needs to adopt definition
2.2.3 as one’s definition of the ∞-category of extensions, instead of [Lur17, Definition 3.3.1.4.]
used in [MR18]. This minor change is argued in remark 2.2.5.
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4.2.1 Diagrams indexed by Ext(σ)

Let F0(K) denote the simplicial set K⊳×∆1 and consider the canonical projection
F0(K)→ ∆1. The vertices in the fiber over 0 will be denoted as x, whereas those
in the fiber over 1 will be written x, where x ∈ K⊳. Unravelling definition
2.2.3, we see that morphisms K → Ext(σ) are identified with those diagrams
α : F0(K)→ O⊗ that send all morphisms in K × {1} ⊂ K⊳ ×∆1 to equivalences
and moreover satisfy the following condition.

Condition (⋆)0,σ: for every vertex k ∈ K,

• the morphism ⊳→ k in F0(K) is sent to an atomic map;

• the morphism k → k in F0(K) is sent to an active map;

• the restriction of α to {⊳} ×∆1 is σ; and

• for every morphism k0 → k1 in K, the corresponding morphism in F0(K)
is compatible with extensions.

Letting F+
0 (K) denote the marked simplicial set obtained from F0(K) by fur-

ther marking the 1-simplices of K⊳ × {1}, one obtains a bijection between
Hom(K,Ext(σ)) and a subset Homσ(F+

0 (K),O⊗) of HomsSet+(F+
0 (K),O⊗,♮) given

by those diagrams that satisfy condition (⋆)0,σ.

4.2.2 Diagrams indexed by BOσ

Observe that the set of diagrams from K to BOσ is a certain subset of

Hom(K,T∆1

×T {σ}) = Hom(K ×∆1,T) ×
Hom(K,T)

{σ ◦ projK}.

Using remark 2.4.2, we may then identify Hom(K,BOσ) with a particular subset
of Hom(G(K),O⊗), where G(K) denotes the pushout

G(K) := s∗(K ×∆1) ∐
s∗(K×{0})

s∗{0}.

Let G+(K) denote the marked simplicial set obtained from G(K)♭ by further
marking the arrows of the form (k, 1) → (k, 0), for all vertices k in K. Un-
raveling the definition of BO, we will identify Hom(K,BOσ) with the subset
Homσ(G+(K),O⊗,♮) of HomsSet+(G+(K),O⊗,♮) consisting of those diagrams veri-
fying the following condition:

Condition (⋆)G,σ:

• the arrow s∗{0} ∼= ∆1 in G+(K) is sent to σ;

• for every k ∈ K, the 3-simplex s∗({k} × ∆1) given by the vertices
(k, 0)(k, 1)(k, 1)(k, 0) is sent to an object of BO;

• for every 1-simplex f : k → k′ in K, the corresponding diagram s∗(f ×∆1)
is sent to a morphism of BO; more explicitly, this conditions means that
the arrow f ×{1} : (k, 1)→ (k′, 1) in G+(K) is sent to a map in O⊗ that is
compatible with extensions (in the sense of definition 2.4.1).
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4.2.3 Definition of intermediate steps

We will relate Ext(σ) and BOσ using intermediate ∞-categories Ci, for i ∈
{1, 2, 3}, whose construction is given by the following procedure. For K a sim-
plicial set, the set Hom(K,Ci) is identified with the subset Homσ(F+

i (K),O⊗,♮)
of HomsSet+(F+

i (K),O⊗,♮) consisting of all diagrams F+
i (K) → O⊗,♮ that satisfy

a certain condition denoted (⋆)i,σ. Here, the marked simplicial sets F+
i (K) are

to be thought of as shapes which interpolate between F+
0 (K) and G+(K). These

marked simplicial sets will fit into a zigzag of the form

F+
0 (K) F+

1 (K) F+
2 (K) F+

3 (K) G+(K),
i0(K) i1(K) i2(K) p(K)

(4.3)

natural in K, which yields a zigzag of functors of ∞-categories

Ext(σ) C1 C2 C3 BOσ.
i∗0 i∗1 i∗2 p∗

(4.4)

Notation 4.2.1. Unless ambiguous, we will write in instead of in(K).

We now describe the different marked simplicial sets F+
i (K), their associated

condition (⋆)i,σ and the morphisms i0, i1, i2 and p.

(F+
1 ) The marked simplicial set F+

1 (K) is obtained from the simplicial set

F1(K) = colim
∆m→K⊳

(∆m ∗∆m),

by marking all edges of the second copy of ∆m.

(i0) Using that F0(K) can be rewritten as colim
∆m→K⊳

(∆m × ∆1), the canonical

inclusions ∆m × ∆1 → ∆m ∗ ∆m induce a map of marked simplicial sets
i0 : F+

0 (K) → F+
0 (K). Similarly to the case of F0(K), we label vertices of

F1(K) as x or x using the obvious projection F1(K)→ ∆1, where x ∈ K⊳.

(F+
2 ) The marked simplicial set F+

2 (K) is defined as F2(K)♭, where

F2(K) = K⊳⊲.

(i1) Using the isomorphism F2(K) ∼= colim
∆m→K⊳

(∆m)⊲, we define the inclusion

i1 : F+
2 (K) → F+

1 (K) as induced by the morphisms i1,m : (∆m)⊲ → F+
1 (K)

sending ∆m to the first copy of itself in ∆m ∗∆m and ⊲ to ⊳.

(F+
3 ) The marked simplicial set F+

3 (K) is obtained from the simplicial set

F3(K) = s∗(K⊳) ∼= colim
∆m→K⊳

(∆m ∗∆m,op)

by marking all edges of the second copy ∆m,op.

(i2) The morphism i2 : F+
2 (K)→ F+

3 (K) is induced by the inclusions (∆m)⊲ →
F+

3 (K), that send ⊲ to ⊳ ∈ F+
3 (K) and ∆m to the first copy of itself in

∆m ∗∆m,op.
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(p) We now define the morphism p : G+(K) → F+
3 (K). We will make use of

the canonical isomorphism

s∗(K ×∆1) ∼= colim
∆n→K

s∗(∆n ×∆1).

Given an n-simplex τn : ∆n → K of K, consider the projection p̃n : ∆n ×
∆1 → (∆n)⊳ that sends the vertex (k, 1) to k and all vertices of the form
(i, 0) to ⊳. The composition τn ◦ p̃n : ∆n ×∆1 → K⊳ yields a map

s∗p̃n : s∗(∆n ×∆1)→ s∗ ((∆n)⊳) ⊆ colim
∆m→K⊳

s∗(∆m) = F3(K).

For varying n-simplices τn, the maps s∗p̃n organize into a map p̃ : s∗(K ×
∆1) → F+

3 (K), whose restriction to s∗(K × {0}) factors through s∗{0}
as the inclusion s∗{0} ∼= ∆⊳⊳ ⊆ F+

3 (K) and therefore induces our map
p : G(K)→ F3(K).

(⋆)n,σ The conditions (⋆)n,σ for n ∈ {1, 2, 3} are given mutatis mutandis by con-
dition (⋆)0,σ.

⊳ ⊳

k0 k0

σ

≀
i0−→

⊳ ⊳

k0 k0

σ

≀
i1←−

⊳ ⊲

k0

σ

i2−→

⊳ ⊳

k0 k0

σ

≀
p
←−

(k0, 0) (k0, 0)

(k0, 1) (k0, 1)

σ

≀

Figure 4.1: Zigzag diagram (4.3) for K = {k0} ∼= ∆0

⊳ ⊳

k0 k0

k1 k1

σ

≀

≀
i0−→

⊳ ⊳

k0 k0

k1 k1

σ

≀

≀

∼

i1←−

⊳ ⊲

k0

k1

σ

i2−→

⊳ ⊳

k0 k0

k1 k1

σ

≀

∼

≀

p
←−

(k0, 0) (k0, 0)

(k1, 0) (k1, 0)

(k0, 1) (k0, 1)

(k1, 1) (k1, 1)

σ

≀

σ

≀

Figure 4.2: Zigzag diagram (4.3) for K = {k0 → k1} ∼= ∆1
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Lemma 4.2.2. Let n ∈ {1, 2, 3} and let K be a simplicial set. Consider the
corresponding morphism in : F+

a (K) → F+
b (K), where the indices a and b are

determined by n. Then a functor α : F+
a (K) → O⊗,♮ satisfies condition (⋆)a,σ if

and only if in(K)∗(α) satisfies condition (⋆)b,σ.

Proof. The lemma follows from inspection of the different conditions.

We now establish that the definition of (Cn)• as Homσ(F+
n (∆•),O⊗,♮) yields

an ∞-category.

Lemma 4.2.3. For n ∈ {1, 2, 3}, the simplicial set Cn is an ∞-category.

Proof. We first prove the result for the simplicial set C1. Let k,m ∈ N with
0 < k < m and f ∈ Homσ(F+

1 (Λm
k ),O⊗,♮). We will show that the existence of a

lift in the following diagram

F+
1 (Λm

k ) O⊗,♮

F+
1 (∆m)

f

by decomposing the vertical map as a sequence of inner anodyne morphisms.
First, let X0 denote the simplicial set ∆⊳0...n ∪ F+

1 (Λm
k ) ∪∆⊳0...m. It is clear that

the inclusion F+
1 (Λm

k ) → X0 is inner anodyne. Since ∅ → ∆m is both right and
left anodyne, we may choose an increasing filtration

∅ = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λr = ∆m (4.5)

of subsimplicial sets of ∆m such that each inclusion Λj → Λj+1 is the pushout of
a horn inclusion Λmj

kj
→ ∆mj , which either is inner anodyne or satisfies mj 6 1.

Note that in the latter case, the horn inclusion is left or right anodyne. Introduce
the simplicial sets

Xj = X0 ∪ (Λ⊳
j ∗ Λ⊳

j)

Yj = X0 ∪ (Λ⊳
j+1 ∗ Λ⊳

j) ∪ (Λ⊳
j ∗ Λ⊳

j+1),

so that the inclusion X0 → F+
1 (∆m) can be written as the sequence of inclusions

X0 ⊆ Y0 ⊆ X1 ⊆ Y1 ⊆ . . . ⊆ Xr−1 ⊆ Yr−1 ⊆ Xr = F+
1 (∆m).

Each inclusion Yj → Xj+1 is the pushout of the morphism (Λ⊳
j ⊆ Λ⊳

j+1) � (Λ⊳
j ⊆

Λ⊳
j+1); lemma A.1.9 implies that it is inner anodyne. For p ∈ [m], let Λj(p)

denote the intersection of Λj with the face of ∆m opposed to vertex p. For every
j with 0 6 j < r, let pj denote the index of the unique face of ∆m that contains
Λj+1 \Λj. Now consider the inclusion Xj → Yj. By construction of the filtration
(4.5), this inclusion is obtained as a pushout of the map

(
Λ⊳
j ∗ Λ⊳

j(pj) ∪ Λ⊳
j(pj) ∗ Λ⊳

j+1(pj)
)
∪
(
Λ⊳
j(pj) ∗ Λ⊳

j ∪ Λ⊳
j+1(pj) ∗ Λ⊳

j(pj)
)

(
Λ⊳
j ∗ Λ⊳

j+1(pj)
)
∪
(
Λ⊳
j+1(pj) ∗ Λ⊳

j

)
.
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This last map is the pushout of the map (Λ⊳
j(pj) ⊆ Λ⊳

j)�(Λ⊳
j(pj) ⊆ Λ⊳

j+1(pj)) with
its symetric; it is therefore an inner anodyne map by lemma A.1.9, as desired.
Therefore f extends to a map f̃ : F+

1 (∆m) → O⊗,♮. The fact that f̃ belongs to
the subset Homσ(F+

1 (∆m),O⊗,♮) follows directly from the similar hypothesis for
f ; this concludes the proof that C1 is an ∞-category.

One can give a very similar proof for C3, simply reversing the direction of the
edges in ∆m; we shall therefore omit the details.

We now turn to the case of C2. As before, let k,m ∈ N with 0 < k < m.
It is enough to prove that the inclusion F+

2 (Λm
k ) → F+

2 (∆m) is inner anodyne.
One simply observes that this inclusion can be described as successively adding
to F+

2 (Λm
k ) = (Λm

k )⊳⊲ fillers of the inner horns Λ0...m
k , Λ⊳0...m

k , Λ0...m⊲
k and Λ⊳0...m⊲

k ,
which proves the claim.

4.3 Proof of theorem 4.1.1

4.3.1 Strategy of proof

We explain our approach to proving that the functors i∗0, i
∗
1 and i∗2

Ext(σ) C1 C2 C3

i∗0 i∗1 i∗2

from zigzag (4.4) are all equivalences of ∞-categories. The remaining case of the
functor p∗ : C3 → BOσ is treated separately, with different arguments, in section
4.3.4.

Fix n ∈ {1, 2, 3} and consider the associated natural transformation in : F+
a →

F+
b , where the indices a, b ∈ {0, 1, 2, 3} are determined by n.

Notation 4.3.1. Let J denote the nerve of free-living isomorphism (i.e. the con-
tractible groupoid on 2 objects), which is an interval object for Joyal’s model
structure (see the book by Cisinski [Cis19] and also [Cam21, Appendix A]). Given
a simplicial set K, we introduce the pushout

F+
a,b,J (K) = F+

a (K × J ) ∐
F+

a (K)∐2
F+
b (K)∐2.

Note that in(K) factors as a composite

F+
a (K × J )

jn−→ F+
a,b,J (K) kn−→ F+

b (K × J ). (4.6)

The following result is central in our approach.

Lemma 4.3.2. Let n ∈ {1, 2, 3}. Suppose that for all simplicial sets K, the mor-
phism in(K) : F+

a (K) → F+
b (K) is marked anodyne and the induced morphism

kn : F+
a,b,J (K)→ F+

b (K × J ) from factorization (4.6) is a monomorphism which
is bijective on 0-simplices. Then the induced map

in(K)∗ : π0 Map(K,Cb)→ π0 Map(K,Ca)

is a bijection for all K.
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Proof. Using the left lifting property of marked anodyne morphisms against mor-
phisms of the form X♮ → ∗ for X an ∞-category (lemma A.1.6), we obtain that
the map

HomsSet+(F+
b (K),O⊗,♮)→ HomsSet+(F+

a (K),O⊗,♮)

is surjective. Hence so is its quotient

in(K)∗ : π0 Map(K,Cb)→ π0 Map(K,Ca).

We now prove that in(K)∗ is also injective. Let α, α′ : F+
b (K)→ O⊗,♮ be such that

i∗n(α) ≃ i∗n(α′) in Map(K,Cn). Using the standard categorical cylinder K ∐K →
K × J → K of K, the latter condition means that we can fill the following
diagram of solid lines

F+
a (K)

F+
a (K × J ) O⊗,♮.

F+
a (K)

i∗n(α)

α

i∗n(α′)

(4.7)

so that α respects conditions (∗)a,σ. To show that α ≃ α′ in Map(K,Cb), we have
to prove that the corresponding diagram for F+

b , namely

F+
b (K)

F+
b (K × J ) O⊗,♮,

F+
b (K)

α

α̃

α′

(4.8)

can be filled by a map α̃ : F+
b (K) → O⊗,♮ that satisfies conditions (∗)b,σ. Now

observe that in(K × J ) factors through the pushout F+
a,b,J (K). By hypothesis,

in(K) is marked anodyne, whence so is jn. Using the right simplification property
of marked anodyne morphisms (Proposition A.1.7), we deduce that there exists
a lift α̃ in the following diagram

F+
a (K × J )

F+
a,b,J (K) O⊗,♮.

F+
b (K × J )

in

jn

α

kn

(α∐α′,α)

α̃

(4.9)
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By lemma 4.2.2, any lift α̃ as above will automatically satisfies conditions (∗)b,σ.
This shows that α and α′ are equivalent as points in Map(K,Cb), as desired.

We will prove that the maps i0, i1 and i2 are marked anodyne and use the
above lemma to deduce that the ∞-categories Ext(σ), C1, C2 and C3 are equiv-
alent. The remaining step will be to deal with the map p, which is a marked
equivalence but not a marked anodyne morphism, so that we cannot use lemma
4.3.2; we will therefore rely on a different argument, involving a careful analysis
of categorical cylinders in C3 and BOσ.

4.3.2 Study of the map i0

Lemma 4.3.3. For every simplicial set K, the morphism k0(K) : F+
0,1,J (K) →

F+
1 (K) is a monomorphism which is bijective on 0-simplices.

Proof. Let K ∈ sSet. Observe that i0(K) : F+
0 (K) → F+

1 (K) is a bijection on
0-simplices. Since K is arbitrary, the map i0(K × J ) also has this property.
Moreover, so does the map j0(K) : F+

0 (K ×J )→ F+
0,1,J (K), as it is obtained as

a cobase change of i0(K)∐2. By 2-out-of-3 property, we deduce that k0(K) also
has this property.

Let us show that k0(K) is a monomorphism. Suppose that t and t′ are two
m-simplices of F+

0,1,J (K) with the same image under k0(K). We separate three
cases:

(1) either both t and t′ lift to simplices of F+
0 (K × J ), or

(2) both lift to F+
1 (K)∐2, or

(3) t lifts to a simplex in F+
0 (K × J ) and t′ to one in F+

1 (K)∐2.

For the first case, note that j0(K×J ) is defined as a pushout of a monomorphism,
hence is a monormophism, so that t = t′ as desired. For the second case, writing
t̃ and t̃′ for choices of lifts of t and t′ in F+

1 (K)∐2, we easily see that either t̃ and
t̃′ belong to the same of the two copies of F+

1 (K), or they factor through (∆⊳⊳)∐2.
Finally, in the third case, the simplices t and t′ have to factor through one of
the two copies of F+

0 (K); since F+
0 (K) → F+

1 (K × J ) is a monomorphism, the
simplices t and t′ must coincide.

Proposition 4.3.4. For every simplicial set K, the map i0 : F+
0 (K) → F+

1 (K)
is marked anodyne.

Proof. Recall the marking on these simplicial sets: on F+
0 (K) = K⊳ × ∆1, the

marked edges are those of the form ⊳ → y, with y ∈ K, whereas for F+
1 (K) =

colim
∆m→K⊳

(∆m ∗∆m), all edges x→ y with x→ y in K⊳ are marked. The morphism

i0 factors through the marked simplicial set F̃+
0 (K) obtained from F+

0 (K) by
further marking the edges (x, 1) → (y, 1), for x → y in K⊳. The resulting
inclusion F+

0 (K)→ F̃+
0 (K) is easily seen to be marked anodyne.
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Let ĩ0 : F̃+
0 (K)→ F+

1 (K) denote the map induced by i0. We will prove that it
is marked anodyne as well. By construction of i0 as a colimit, it is enough to prove
the claim for K = ∆m−1, in which case the morphism ĩ0 is the canonical inclusion
∆m×∆1 → ∆m ∗∆m, where the non-trivial marking occurs in the second copy of
∆m. Therefore, we are left with showing the following combinatorial result.

Lemma 4.3.5. For every m ∈ N, consider the canonical inclusion ĩ0 : ∆m ×
∆1 → ∆m∗∆m, where both simplicial sets are endowed with the minimal marking
that makes (∆m)♯ × {1} a marked simplicial subset of them. Then ĩ0 is marked
anodyne.

Proof. Note that the inclusion ĩ0 factors through the simplicial set

Am = (∆m ×∆1) ∪
∆01...m ∪

∆m
∆mm

∆m01...m. (4.10)

First, we want to show that the inclusion Am → ∆m ∗∆m is marked anodyne. To
this purpose, we consider the inclusion sm : Sm → ∆m ∗ ∆m, where Sm denotes
the spine Sp0...m0...m, endowed with the maximal marking that turns sm into
a morphism of marked simplicial sets. As sm is clearly marked anodyne and
factors through Am, it will suffice to show that the inclusion Sm → Am is marked
anodyne. The underlying simplicial set of Am is a union of m + 2 simplices of
dimension (m+ 1), denoted τ0, . . . , τm, τ and defined as follows:

• for 0 6 k 6 m, the simplex τk is defined as ∆01...k k (k+1)...m,

• the simplex τ is ∆m0 1...m.

In each case, the marking is induced by that of Am. Writing Tk for Sm ∪ τ ∪ τm ∪
· · · ∪ τk, we get a filtration of Am of the form

Sm ⊂ Sm ∪ τ ⊂ Tm ⊂ Tm−1 ⊂ . . . ⊂ T0 = Am. (4.11)

We will prove that at each step, the inclusion is a marked anodyne morphism.
This is clear for Sm ⊂ Sm ∪ τ . The second inclusion Sm ∪ τ ⊂ Tm is obtained as
the pushout

(Sp0...mm)♭ Sm ∪ τ

τm Tm
p

(4.12)

and is therefore marked anodyne, since so is the left vertical map. We now prove
that the inclusion Tk ⊂ Tk−1 is marked anodyne for every 0 < k 6 m. We
introduce the marked simplicial set τk〈k〉 defined as the face opposed to vertex
k in τk, or more explicitly as ∆0...(k−1)k...m, endowed with the induced marking.
The intersection τ ′

k = Tk ∩ τk−1 can then be expressed as

τ ′
k = τk〈k〉 ∪

(∆k...m)♯

(∆(k−1) k...m)♯ (4.13)
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and the inclusion Tk ⊂ Tk−1 as the pushout

τ ′
k Tk

τk−1 Tk−1.
p

(4.14)

To see that Tk → Tk−1 is marked anodyne, it therefore suffices to show that
τ ′
k → τk−1 has this property. Looking at equation (4.13), we observe that the

latter inclusion is of the form (I0 ⊂ I) � (J0 ⊂ J), with I0 = ∅, I = [k − 1],
J0 = {k, . . . ,m} and J = J0 ∪ {(k − 1)}. By lemma A.1.10, we deduce that this
map is marked anodyne, as desired.

It remains to prove that the inclusion ∆m×∆1 → Am is marked anodyne. By
equation (4.10), it suffices to prove that the inclusion ∆0...m∪∆mFm →֒ ∆m0...m is
marked anodyne. Denoting Bi = ∆0...m ∪∆mi...m, the latter map can be written
as the composite

Bm ⊂ Bm−1 ⊂ . . . ⊂ B0.

Each inclusion Bi+1 ⊂ Bi is induced by its restriction Bi+1∩∆mi...m ⊂ Bi∩∆mi...m,
which is marked anodyne by lemma A.1.9 applied with I0 = ∅, I = {m}, J =
{i, . . . ,m} and J0 = J \ {i}; therefore so is the map ∆m × ∆1 → Am. This
completes the proof of lemma 4.3.5.

4.3.3 Study of the maps i1 and i2

Lemma 4.3.6. For K a simplicial set, the morphisms k1(K) : F+
2 (K) →

F+
2,1,J (K) and k2(K) : F+

2 (K) → F+
2,3,J (K) are monomorphisms which are bi-

jective on 0-simplices.

Proof. The argument is completely analogous to that of the proof of lemma 4.3.3.

Lemma 4.3.7. For all simplicial set K, the maps i1 : F+
2 (K) → F+

1 (K) and
i2 : F+

3 (K)→ F+
2 (K) are marked anodyne.

Proof. We only give the proof for i1, the case of the map i2 being very similar.
Recall that i1 is defined by taking the colimit over all simplices ∆m → K⊳ of
the morphisms i1,m : (∆m)⊲ → F+

1 (K), sending ∆m to the first copy of itself in
(∆m)∗2 ⊆ F+

1 (K) and ⊲ to ⊳. Note that we may restrict the colimit to those
simplices ∆m that contains the cone point ⊳, in which case the map i1,m factors
through (∆m)∗2. Let ∆m → K⊳ be such a simplex; it now suffices to show that
the factored map i1,m : (∆m)⊲ → (∆m)∗2 is marked anodyne.

For the rest of this proof, we relabel ⊳ as 0, so that we can identify i1,m with
the obvious inclusion of (∆m)⊲ ∼= ∆0...m0 into (∆m)∗2 ∼= ∆0...m0...m. Now this map
is the composite of the sequence

∆0...m0 ⊂ ∆0...m01 ⊂ . . .∆0...m01...j ⊂ . . .∆0...m01...m.

Since all edges of the form ℓ → p are marked, by lemma A.1.10 we deduce that
each of these inclusions is marked anodyne, whence the result.
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4.3.4 Study of the map p

This subsection is devoted to the last step of the comparison described in zigzag
(4.4), namely we prove the following result.

Proposition 4.3.8. The functor p∗ : C3 → BOσ induced by the natural transfor-
mation p : G+ → F+

3 is an equivalence.

We start with some preliminary results.

Lemma 4.3.9. The functors F3, G : sSet→ sSet both preserve monomorphisms.

Proof. Since s∗ and (−)⊳ preserves monomorphisms, so does their composite F3.
We now turn to the case of G. Let ϕ : A→ B be a monomorphism of simplicial
sets and n ∈ N. Let a0 and a1 be two n-simplices of G+(A) whose image under
G+(ϕ) coincide. We wish to prove that a0 = a1. Since s∗(A × ∆1) → G+(A)
is an epimorphism, we may choose lifts ã0 and ã1 in (s∗(A × ∆1))n of the two
simplices. We distinguish several cases in the argument.

(1) If both ã0 and ã1 belong to the subset (s∗A)n, then their common image
ϕ(a0) = ϕ(a1) actually belongs to (s∗{0})n, which is a subset of G+(A)n,
so that a0 = a1.

(2) If none of ã0 and ã1 belongs to the subset (s∗A)n, since s∗(A × ∆1)n \
s∗(A)n → G+(B)n is an inclusion, we deduce that ã0 = ã1, so that again
a0 = a1.

(3) Finally, the case where exactly one of ã0 and ã1 belong to s∗(A)n is con-
tradictory: indeed, by construction of G+(A) the subset s∗(A)n and its
complement in s∗(A×∆1)n remain disjoint in the quotient G+(A)n, hence
also in G+(B)n.

Lemma 4.3.10. For every simplicial set K, the morphism p(K) : G+(K) →
F+

3 (K) is an equivalence of marked simplicial sets.

Proof. Let U be the class of simplicial setsX for which p(X) is an equivalence. We
will show that U = sSet by proving that U contains every representable ∆m and
is stable under isomorphisms, small coproducts, pushouts along monomorphisms
and sequential colimits along monomorphisms. In other words, we will show that
U is saturated by monomorphisms in the sense of [Cis19, Definition 1.3.9] that
contains all representables.

We first show that all standard simplices are in U . Let m ∈ N and consider
p(∆m) : G+(∆m) → F+

3 (∆m). This morphism admits a section e, non-naturally
in the variable [m] ∈ ∆, whose underlying morphism of simplicial sets is defined
as the composition

e : F3(∆m) = s∗∆⊳0...m ∼= s∗∆00,01,...,0m ⊂ s∗(∆m ×∆1)→ G(∆m).
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where the middle identification of (m + 1)-dimensional simplices sends ⊳ to 00
and the vertex i to 0i (following the notations of sections 4.2.2 and 4.2.3). Let Di

be the non-degenerate (m+ 1)-simplex of ∆m ×∆1 containing the edge i0→ i1,
where we declare all edges contained in ∆m × {0} to be marked. Let Di,i+1

denote the face of Di opposed to vertex i1. The morphism e then factors through
a filtration

F+
3 (∆m) e0−→ G+

0
e1−→ G+

1 −→ . . .
em−→ G+

m = G+(∆m),

where G+
i is the image of s∗(

⋃i
j=0 Dj) by the quotient map s∗(∆m × ∆1) →

G+(∆m), with the induced marking. Since the edge i0→ (i+ 1)0 is marked, the
inclusion s∗(Di,i+1)→ s∗(Di+1) is marked anodyne, hence so is its pushout

s∗

i⋃

j=0

Dj
∼
−→ s∗

i+1⋃

j=0

Dj.

We thus obtain a diagram

s∗{0} s∗∆00,01,...,i0 s∗
⋃i
j=0 Dj

s∗{0} s∗∆00,01,...,(i+1)0 s∗
⋃i+1
j=0 Dj

≀ ≀

where each row defines a cofibrant diagram in the projective model structure on
the category of diagrams Fun(• ← • → •, sSet+). Taking pushouts yields a weak
equivalence ei : Gi

∼
−→ Gi+1. This proves that e is a marked equivalence, hence

∆m ∈ U .
It is clear that U is stable by isomorphisms. Consider a simplicial set of the

form K =
∐
i∈J Ki with all the Ki in U . As (−)⊳ : sSet → sSet∗ and s∗ both

preserve colimits, we can compute

F+
3 (K) = s∗

((
∐

i∈J

Ki

)⊳)

∼= s∗

((
∐

i∈J

K⊳
i

)
/
∐

i∈J

⊳i

)

∼= colim

(
∐

i∈J

s∗(K⊳
i )←−

∐

i∈J

s∗{⊳i} −→ s∗{∗}

)

and

G+(K) ∼= colim

(
∐

i∈J

s∗(Ki ×∆1)←−
∐

i∈J

s∗(Ki × {0}) −→ s∗{0}

)

∼= colim

(
∐

i∈J

G+(Ki)←−
∐

i∈J

s∗{0} −→ s∗{0}

)
.
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Since each map p(Ki) : G+(Ki)→ F+
3 (Ki) = s∗(K⊳

i ) is a marked equivalence and
the diagrams are cofibrant, we deduce that p(K) is also an equivalence. This
proves that U is stable under small colimits.

Suppose now that K is a pushout B
∐
AC, with A, B and C in U and A→ B

a monomorphism. We will prove that K ∈ U . As before, rewriting the colimits
gives isomorphisms

F+
3 (K) ∼= F+

3 (B)
∐

F+
3 (A)

F+
3 (C) and G+(K) ∼= G+(B)

∐

G+(A)

G+(C).

To prove that p(K) is a weak equivalence, it suffices to show that the pushout
diagrams F+

3 (B) ← F+
3 (A) → F+

3 (C) and G+(B) ← G+(A) → G+(C) are
cofibrant. This is a consequence of the fact that F+

3 and G+ both preserve
monomorphisms; in the first case, this is clear whereas in the latter, it is given
by lemma 4.3.9. Finally, the proof that U is stable by sequential colimits along
monomorphisms comes from a similar argument, therefore we omit it.

Recall from 4.3.1 the notation J for the standard interval object. We will use
the fact that Joyal’s model structure on sSet can be obtained à la Cisinski using
J × (−) as an exact cylinder [Cis19].

Lemma 4.3.11. For every simplicial set K, the image of the categorical equiva-
lence q : K × J → K under the functors F+

3 and G+ is a marked equivalence.

Proof. Let UF (respectively UG) be the class of simplicial sets X such that
F+

3 (q) : F+
3 (X×J )→ F+

3 (X) (resp. G+(q) : G+(X×J )→ G+(X)) is a marked
equivalence. We aim at proving that UF = UG = sSet. Using arguments similar
to those of the proof of lemma 4.3.10, one easily shows that both UF and UG are
stable under isomorphisms, small coproducts, pushouts along a monomorphism
and sequential colimits along monomorphisms. It is thus enough to prove that UF
and UG contains every representable ∆m. The key point is the observation that
both F3 and G restricts to an endofunctor on the full subcategory of sSet given
by the essential image of the nerve functor from 1-categories. More precisely, we
have

F3(∆m × J ) ∼= N (s∗([m]× J)⊳)

and

G(∆m × J ) ∼= N


s∗([m]× J× [1])

∐

s∗([m]×J×{0})

s∗{0}


 ,

from which one readily verifies that F+
3 (q) and G+(q) are the image under the

nerve functor of an equivalence of 1-categories, hence are marked equivalence.

We now turn to the proof of the last step in our comparison of BOσ and
Ext(σ), namely the proof that p∗ : C3 → BO is an equivalence of ∞-categories.

Proof of proposition 4.3.8. Let K be a simplicial set. Recall that BOσ is de-
fined by identifying, naturally in K, the set Hom(K,BOσ) with the subset
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Homσ(G+(K),O⊗,♮) of HomsSet+(G+(K),O⊗,♮) of morphisms satisfying conditions
(⋆)G,σ. Similarly, Hom(K,C3) is identified with the set Homσ(F+

3 (K),O⊗,♮). Since
p(K) preserves the conditions (⋆)G,σ, the map

p(K)∗ : Hom(F+
3 (K),O⊗,♮)→ Hom(G+(K),O⊗,♮)

restricts to a map Homσ(F+
3 (K),O⊗,♮)→ Homσ(G+(K),O⊗,♮).

We will need to consider two quotients of these Hom sets, whose associ-
ated equivalence relations we will denote ∼ and ≈. They correspond respec-
tively to the homotopy relations in Fun(K,C3) and Map♭(F+

3 (K),O⊗,♮). We
only describe those two relations in the case of Homσ(F+

3 (K),O⊗,♮), the case
of Homσ(G+(K),O⊗,♮) being similar.

• (Definition of ∼). First, we consider the set of connected components
π0 Map(K,C3), which is defined as the quotient of Hom(F+

3 (K),O⊗,♮) by
the homotopy equivalence relation ∼ in the functor∞-category Fun(K,C3).

• (Definition of ≈). Second, we consider the set of connected compo-
nents π0 Map♯(F+

3 (K),O⊗,♮), that is the quotient of Hom(F+
3 (K),O⊗,♮)

by the homotopy equivalence relation ≈ in the functor ∞-category
Map♭(F+

3 (K),O⊗,♮).

Using the characterization of equivalences in functor∞-categories of [Lur22, The-
orem 01KA] (or more precisely, a slight generalization of this result to marked
simplicial sets), we can rephrase the definitions of ∼ and ≈ more explicitly.

Let f0 and f1 be two maps F+
3 (K)→ O⊗,♮.

∼ Both of the following conditions are equivalent to asserting that f0 ∼ f1.

(i∼) There exists a factorization of the fold map (idK , idK) as K
∐
K →

K
ρ
→ K, with ρ a categorical equivalence, and a lift in the diagram

F+
3 (K)∐2 O⊗,♮

F+
3 (K)

(f0,f1)

(F+
3 (i0),F+

3 (i1))
f

such that f satisfies conditions (⋆)G,σ.

(ii∼) For every factorization of the fold map (idK , idK) as K
∐
K

(s0,s1)
−→

K→K, where s0 and s1 are disjoint monomorphisms, there exists a
lift in the diagram

F+
3 (K)∐2 O⊗,♮

F+
3 (K)

(f0,f1)

(F+
3 (s0),F+

3 (s1))
f

such that f satisfies conditions (⋆)σ.
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≈ Both of the following conditions are equivalent to asserting that f0 ≈ f1.

(i≈) There exists a factorization of the fold map
(
idF+

3 (K), idF+
3 (K)

)
as

F+
3 (K)

∐

∆1

F+
3 (K) ι

−→ F+
3 (K)

ρ
−→ F+

3 (K),

with ρ a cartesian equivalence (in the sense of [Lur09a]) , and a lift in
the diagram

F+
3 (K)

∐
∆1 F+

3 (K) O⊗,♮.

F+
3 (K)

(f0,f1)

ι

f

(ii≈) For every factorization of the fold map
(
idF+

3 (K), idF+
3 (K)

)
as

F+
3 (K)

∐

∆1

F+
3 (K) ι

−→ F+
3 (K)

ρ
−→ F+

3 (K),

where ι is a monomorphism, there exists a lift in the diagram

F+
3 (K)

∐
∆1 F+

3 (K) O⊗,♮.

F+
3 (K)

(f0,f1)

ι

f

Using these descriptions, one easily sees that p(K)∗ induces maps on the quotients
by the equivalence relations ∼ and ≈, that we denote respectively

p∗
σ,∼ : Homσ(F+

3 (K),O⊗,♮)/∼ −→ Homσ(G+(K),O⊗,♮)/∼,

p∗
σ,≈ : Homσ(F+

3 (K),O⊗,♮)/≈ −→ Homσ(G+(K),O⊗,♮)/≈.

By lemma 4.3.10, we know that p(K) is marked weak equivalence, so that

p∗
≈ : Hom(F+

3 (K),O⊗,♮)/≈ −→ Hom(G+(K),O⊗,♮)/≈

is a bijection. It is an easy observation that a morphism f : F+
3 (K) → O⊗,♮

verifies the conditions (⋆)3,σ if and only if f ◦ p(K) : G+(K) → O⊗,♮ satisfies
the corresponding condition (⋆)G,σ. Therefore the induced map p∗

σ,≈ is a bijec-
tion. The fact that p∗

σ,∼ is a bijection is now a consequence of the following result.

Claim. The equivalence relations ∼ and ≈ coincide, both on
Hom(F+

3 (K),O⊗,♮) and on Hom(G+(K),O⊗,♮).

We prove the claim for the functor F+
3 , the case of G+ being similar. Consider

two morphisms f0, f1 : F+
3 (K)→ O⊗,♮.



76 4. Comparison with Lurie’s spaces of extensions

∼⇒≈ Suppose f0 ∼ f1. By assumption (ii∼), there exists a lift f in the diagram

F+
3 (K)∐2 O⊗,♮

F+
3 (K × J )

(f0,f1)

(F+
3 (s0),F+

3 (s1)) f

and by lemma 4.3.11, the map F+
3 (K × J ) → F+

3 (K) is a marked equiva-
lence, so that condition (i≈) is satisfied.

∼⇐≈ Suppose that f0 ≈ f1. We will show that condition (i∼) holds. The factor-
ization of (idK , idK) through q : K × J → K induces a factorization

(
idF+

3 (K), idF+
3 (K)

)
: F+

3 (K)
∐

∆1

F+
3 (K)−→F+

3 (K × J ) −→ F+
3 (K)

where the first map is a monomorphism. We can thus apply assumption
(ii≈) to obtain a lift f in the diagram

F+
3 (K)∐2 O⊗,♮.

F+
3 (K × J )

(f0,f1)

(F+
3 (s0),F+

3 (s1))
f

It now suffices to prove that f satisfies conditions (⋆)3,σ, which is a conse-
quence of the fact that f0 and f1 both do and (K × J )0

∼= (K
∐

2)0.

This shows the above claim and therefore completes our proof of proposition
4.3.8.

Proof of theorem 4.1.1. Combining lemma 4.3.2, proposition 4.3.4, lemma 4.3.7
and proposition 4.3.8, we obtain that each map in the zigzag (4.4) is an equiva-
lence, so that Ext(σ) and BOσ are equivalent Kan complexes.
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5.1 Statement of the results

5.1.1 Motivation

Let O⊗ be a unital ∞-operad, that we now assume to be monochromatic and
such that the underlying ∞-category is an ∞-groupoid. Consider an operation
σ ∈ O(n) of arity n.

In the previous chapter, we provided a zigzag of equivalences between two
models for the space of extensions of σ: on the one hand, the fiber BOσ of Mann–
Robalo’s brane fibration π : BO→ Tw(Env(O))⊗ and on the other hand, Lurie’s
space Ext(σ). As explained in the introduction under the name of problem C,
neither of these two models is suitable for applications, since computing their
homotopy type seems difficult even for simple examples of ∞-operads.

77
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However, there is a third possible model for the space of extensions of the
operation σ, namely Toën’s space Extσ, defined as the homotopy fiber

O(n+ 1)
h
×

O(n)
{σ},

of the morphism i∗ : O(n + 1) → O(n) given by precomposition with a chosen
atomic map i.

In this chapter, we compare Toën’s model Extσ to Lurie’s space Ext(σ). We
will show that, contrary to what one might expect, the models are not equiva-
lent in general, unless the space O(1) of unary operations is contractible. More
precisely, we will prove the following result.

Theorem 5.1.1 (Theorem C). Let O⊗ be a monochromatic unital ∞-operad
whose underlying ∞-category O is an ∞-groupoid and σ ∈ O(n) an operation of
arity n. Choose an atomic morphism i : 〈n〉 → 〈n + 1〉 in O⊗. Then there is a
homotopy cartesian square

O(n+ 1)
h
×

O(n)
{σ} Ext(σ)

∗ BO(1),

(5.1)

well-defined in the homotopy category of spaces, which exhibits Ext(σ) as a ho-

motopy quotient of O(n+ 1)
h
×

O(n)
{σ} by a O(1)-action.

Remark 5.1.2. The restriction to the monochromatic situation is merely there to
make the comparison with Toën’s model more transparent and to slightly simplify
the notations. The results of this chapter readily generalize to the general case
of (coloured) unital ∞-operads.

Notation 5.1.3. Throughout this chapter, when considering a monochromatic∞-
operad O⊗ with unique color c, we shall use the slightly abusive notation of
writing objects of O⊗ in the form 〈n〉, instead of say c⊕n.

5.1.2 Difference with the existing literature

Theorem 5.1.1 contradicts the statement [Lur17, Remark 5.1.1.10], in the case of
∞-operads with non-contractible spaces of unary operations. This statement is
a key result in Lurie’s proof of coherence of the little disks ∞-operad En. Note
that this statement is, however, only used for this example of En, which satisfies
that En(1) ≃ ∗ so that our theorem 5.1.1 actually implies that the conclusion of
Lurie’s statement is true, in this particular case.

We then provide through proposition 5.1.4 an explicit example of an∞-operad
for which this statement is incorrect, without appealing to the above theorem
5.1.1.
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Let us now explain Lurie’s statement. Let O∆ be a unital fibrant simplicial
operad, with underlying ∞-operad O⊗ = N⊗(O∆). By unitality, the canonical
inclusion iF∗ : 〈m〉 → 〈m+1〉 in F∗ lifts uniquely to a morphism i in the simplicial
category O

⊗
∆, which induces a map of simplicial sets

i∗ : Mapact
O

⊗
∆

(〈m+ 1〉, 〈n〉)→ Mapact
O

⊗
∆

(〈m〉, 〈n〉).

Given an active morphism f : 〈m〉 → 〈n〉 in O
⊗
∆, Lurie defines in [Lur17, Notation

5.1.1.8.] the space of strict extensions of f , denoted Ext∆(f), as the fiber of
i∗ at f . Now consider an n-simplex σ of O⊗ corresponding to a sequence of n
composable active morphisms

〈m0〉
f1−→ 〈m1〉

f2−→ . . .
fn−→ 〈mn〉

in O
⊗
∆. In [Lur17, Construction 5.1.1.9.], a comparison map θ : Ext∆(fn) →

Ext(σ) is defined. Then [Lur17, Remark 5.1.1.10] asserts that θ can be identified
with the canonical map fibfn(i∗)→ hofibfn(i∗). In particular, Ext(σ) is supposed
to be equivalent to the fiber of i∗ at fn. However, as a consequence of theorem
5.1.1, this equivalence can only hold when the group of unary operations O(1) is
trivial.

For a direct counterexample to [Lur17, Remark 5.1.1.10] for O(1) 6≃ ∗, con-
sider the operad O∆ = AssInv encoding associative algebras together with an
involution. It is the monochromatic operad in sets freely generated by two
operations µ ∈ O∆(2) and τ ∈ O∆(1) satisfying the relations τ 2 = id and
τ ◦µ(a, b) = µ(τb, τa); it can also be described as a semi-direct product Ass⋊Σ2.
Its homotopy coherent nerve O⊗ = N(O⊗

∆) is a unital monochromatic discrete∞-
operad, in which morphisms from 〈m〉 to 〈n〉 are given by a map α : 〈m〉 → 〈n〉 in
F∗, a linear order on each preimage α−1{i} and a choice of sign ε : 〈m〉 → {+,−}.
The previous morphism will be denoted more compactly

(
k
ε(ki1)
i1 . . . k

ε(kimi
)

imi

)

i∈〈n〉◦
, with α−1{i} = {ki1 < · · · < kimi

}.

Composition is defined so that negative signs reverse the linear order.

Proposition 5.1.4. For O⊗ = N(AssInv)⊗ the ∞-operad of associative algebras
with involution and σ the identity operation on the unique color 〈1〉, the spaces
of extensions Ext(σ) and that of strict extensions Ext∆(σ) are not homotopy
equivalent.

Proof. On the one hand, since O∆ is a discrete simplicial operad, the homo-

topy fiber O∆(2)
h
×

O∆(1)
{σ} coincide with the actual fiber Ext∆(σ), which is the

4-elements set {µ(a, b), µ(a, τb), µ(b, a), µ(τb, a)}.
On the other hand, we claim that the set of connected components π0 Ext(σ)

consists of only two elements. To prove this, recall the description of k-simplices
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of Ext(σ) given in (2.1). In particular, the objects of Ext(σ) are given by com-
mutative squares

〈1〉 〈1〉

〈2〉 〈1〉.

σ=id

i ∼ϕ

α

(5.2)

with i atomic, α active and ϕ an equivalence. The morphisms in Ext(σ) are given
by diagrams

〈1〉 〈1〉

〈2〉 〈1〉

〈2〉 〈1〉

σ=id

i′

i

∼ϕ′

∼ϕ

α

f ∼ψ

α′

(5.3)

with active morphisms and with f compatible with extensions. Consider two
objects x = (i, ϕ, α) and x′ = (i′, ϕ′, α′). There exists a unique morphism ψ
such that ψϕ = ϕ′, whereas there are always two distinct morphisms f that are
compatible with extensions and satisfy fi = i′. For this data (f, ψ) to define a
morphism in Ext(σ), we further need equation α′f = ψα to be satisfied. But
since there are 4 active morphisms 〈2〉 → 〈1〉 (namely 1+2+, 1+2−, 2+1+ and
2+1−), only half of the pairs (x, x′) are in the same connected component; this
concludes the computation.

5.2 Auxiliary models for Ext(σ) and the homo-

topy fiber of O(n + 1)→ O(n)

The first step is to represent the map i∗ : O(n + 1) → O(n), which is only well-
defined in the homotopy category of spaces, by a zigzag of spaces

O(n+ 1) ∼
←− ˜O(n+ 1) −→ O(n).

This will give a strict model of the homotopy fiber O(n+ 1)
h
×

O(n)
{σ}.

Consider the subsimplicial set

∆2
2 = ∆01

∐
∆{2}

of ∆2. Using that Λ2
1 can be written as the pushout Λ2

1 = ∆2
2

∐
∂∆12

∆12, we obtain

that the mapping space O(n+ 1) is isomorphic to the fiber

O(n+ 1) := Fun(∆12,O⊗
act) ×

Fun(∂∆12,O⊗
act)

{(〈n+ 1〉, 〈1〉)}

∼= Fun(Λ2
1,O

⊗
act) ×

Fun(∆2
2,O

⊗
act)

{(i, 〈1〉)} .
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Similarly, writing Λ2
0 as ∆2

2

∐
∂∆02

∆02, we can identify O(n) as the fiber

O(n) ∼= Fun(Λ2
0,O

⊗
act) ×

Fun(∆2
2,O

⊗
act)

{(i, 〈1〉)} .

Now let ˜O(n+ 1) denote the fiber of the restriction

Fun(∆2,O⊗
act) −→ Fun(∆2

2,O
⊗
act)

at (i, 〈1〉). Since ∆2
2 →֒ ∆2 factors through both Λ2

0 and Λ2
2, we obtain a commu-

tative diagram

O(n+ 1) ˜O(n+ 1) O(n)

Fun(Λ2
1,O

⊗
act) Fun(∆2,O⊗

act) Fun(Λ2
0,O

⊗
act).

(i,id)
x y

∼

(i,id)

∼

(5.4)

Lemma 5.2.1. The above diagram yields equivalences of fibers

O(n+ 1)
h
×

O(n)
{σ} ≃ ˜O(n+ 1) ×

O(n)
{σ} ∼= Fun(∆2,O⊗

act) ×
Fun(Λ2

0,O
⊗
act)

{(i, σ)}.

Proof. In diagram (5.4), observe that the top row is obtained as the fiber of the
bottom row at the point (i, 〈1〉) of Fun(∆2

2,O
⊗
act). Therefore both squares in the

diagram are cartesian. In particular, since the bottom right morphism is a Kan

fibration, so is ˜O(n+ 1) → O(n). Similarly, since the bottom left morphism is a

trivial Kan fibration, so is ˜O(n+ 1) → O(n + 1). This gives the first homotopy
equivalence of the lemma. The second equivalence, which is an isomorphism of
simplicial sets, is obtained by taking the fiber of the right cartesian square at the
object σ ∈ O(n), whose image in Fun(Λ2

0,O
⊗
act) is (i, σ).

We now replace Ext(σ) with a more convenient model, that we shall denote
Ext�(σ), defined as a certain subcategory of the functor ∞-category Fun(∆1 ×
∆1,O⊗

act) of commutative squares of active maps in O⊗. The squares will be
indexed as follows:

00 01

10 11.

We will require that the left vertical map is atomic, the right vertical one is an
equivalence and the top one is precisely the fixed morphism σ. In order to define
Ext�(σ), the following notations will be convenient.

Notation 5.2.2. Let AtomO denote the non-full subcategory of Fun(∆1,O⊗
act)

whose objects are atomic morphisms (see definition 2.2.1). Let AtomO(n) be
the full subcategory of AtomO whose objects are maps with codomain 〈n〉.
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Notation 5.2.3. The marked simplicial set obtained from the square ∆1 ×∆1 by
further marking the edge ∆1 × {1} will be denoted �.

Definition 5.2.4 (Definition of Ext�(σ)). Define the simplicial set Ext�(σ) as
the iterated fiber product

Ext�(σ) = lim




AtomO Map♭(�, (O⊗
act)♮) {σ}

Fun(∆1 × {0},O⊗
act) Fun({0} ×∆1,O⊗

act)




where the two diagonal morphisms are the obvious restriction maps.
In other words, Ext�(σ) is the subcategory of Fun(∆1 ×∆1,O⊗

act) whose

• objects are commutative diagrams

〈n〉 〈1〉

〈n+ 1〉 〈1〉

σ

atom ≀

in which the left vertical map is atomic and the right vertical map is an
equivalence,

• morphisms are compatible with extensions, i.e. preserve the new color
〈n+ 1〉 \ Im(〈n〉).

It is easy to see that Ext�(σ) is an ∞-category.

Lemma 5.2.5. The space Ext(σ) is equivalent to Ext�(σ).

Proof. By inspection of definition 2.2.3, one easily verifies that all diagrams in-
volved in the definition contains only active maps. Therefore diagrams to Ext(σ)
factor through the subcategory Fun(∆1,O⊗

act)σ/ of Fun(∆1,O⊗)σ/. Now recall the
canonical equivalence of ∞-categories

γ : Fun(∆1,O⊗
act)σ/

∼
−→ Fun(∆1,O⊗

act)
σ/

from the slice to the alternative slice, the latter being defined as the fiber at σ of
the restriction map

Fun(∆1 ×∆1,O⊗
act) −→ Fun({0} ×∆1,O⊗

act).

The restriction of γ to Ext(σ) factors through the obvious inclusion Ext�(σ) →
Fun(∆1,O⊗

act)σ/. Moreover, by inspection of the objects of these two∞-categories,
one sees that this functor γ|Ext(σ) : Ext(σ)→ Ext�(σ) is essentially surjective. To
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prove the lemma, it therefore suffices to show fully faithfullness of γ|Ext(σ). Given
two extensions X,X ′ ∈ Ext(σ), consider the commutative diagram

MapExt(σ)(X,X
′) MapFun(∆1,O⊗

act)σ/
(X,X ′)

MapExt�(σ)(γ(X), γ(X ′)) MapFun(∆1,O⊗
act)σ/(γ(X), γ(X ′)).

γ|Ext(σ) γ≀

As γ is an equivalence of ∞-categories, the right vertical map is a homotopy
equivalence. Observe that, given two equivalent morphisms f0 ≃ f1 : X → X ′ in
Fun(∆1,O⊗

act)σ/, f0 is compatible with extensions if and only if f1 has this prop-
erty, and similarly for morphisms γ(X) → γ(X ′). Consequently, the horizontal
maps in the above diagram are both inclusions of the connected components
determined by the condition of preservation of the new color in the extensions.
Therefore the restriction γ|Ext(σ) is a homotopy equivalence, as desired.

To compare Ext�(σ) with O(n + 1)
h
×

O(n)
{σ}, we first give an alternative de-

scription of the former ∞-groupoid. By definition of AtomO(n), we have a com-
mutative diagram

AtomO(n) {σ}

Fun(Λ2
0,O

⊗
act) Fun({0} ×∆1,O⊗

act)

AtomO Fun(∆1 × {0},O⊗
act) Fun({0} × {0},O⊗

act)

y
j

y

(5.5)

in which both squares are cartesian, using the identification

Λ2
0 = ∆01 ∪∆02 ∼= ∆1 × {0} ∪ {0} ×∆1, (5.6)

and the map j is induced by the universal property of pullbacks.

Lemma 5.2.6. There is a canonical isomorphism

Ext�(σ) ∼= Map♭(�, (O⊗
act)

♮) ×
Fun(Λ2

0,O
⊗
act)

AtomO(n). (5.7)
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Proof. Consider the following commutative diagram, extending diagram (5.5):

Ext�(σ) Map♭(�,O⊗
act) ×

(O⊗
act){0}×∆1

{σ}

AtomO(n) (O⊗
act)∆1×{0} ×

O
⊗
act

{σ} {σ}

AtomO ×
(O⊗

act)∆1×{0}

Map♭(�,O⊗
act) Map♭(�,O⊗

act)

AtomO ×
O

⊗
act

(O⊗
act){0}×∆1

(O⊗
act)Λ2

0 (O⊗
act){0}×∆1

AtomO (O⊗
act)∆1×{0} (O⊗

act){0}×{0}.

y

y

y
y

y

y
y

In the above, certain squares are cartesian by construction, namely:

• all the squares whose arrows are either vertical or horizontal

• the two squares that contains Map♭(�,O⊗
act) and either {σ} or AtomO.

Using the usual transitivity rule for pullback squares, one deduce that any square
in the top left cube is cartesian, from which the desired isomorphism follows.

5.3 Proof of theorem 5.1.1

There are two differences between the homotopy fiber of O(n + 1)→ O(n) at σ,
modelled as fib(i,σ)(Fun(∆2,O⊗

act)→ Fun(Λ2
0,O

⊗
act), and Ext�(σ):

(1) objects of hofibσ(O(n + 1) → O(n)) are given by commutative triangles in
O

⊗
act, whereas objects of Ext�(σ) are commutative squares,

(2) in hofibσ(O(n+ 1)→ O(n)), the map 〈n〉 → 〈n+ 1〉 is the fixed morphism
i whereas in Ext�(σ), any atomic map is allowed.

As we will see, the first difference does not affect the homotopy type of the
spaces, but the second difference explains the origin of the quotient by the action
of O(1). To make this remark precise, we will introduce variants of Ext�(σ) that
differ according to the previous two parameters.

Consider the morphism r : ∆1 × ∆1 → ∆2 induced from the map of posets
[1]× [1]→ [2] given by

r(0, 0) = 0, r(0, 1) = 1, r(1, 0) = 1, r(1, 1) = 2.

It induces a morphism of marked simplicial sets � → (∆2)♭, which yields a
restriction map r∗ : Fun(∆2,O⊗

act) → Map♭(�,O⊗
act). Moreover, r extends the
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identification (5.6) to a commutative square

{0} ×∆1 ∪∆1 × {0} Λ2
0

∆1 ×∆1 ∆2.

∼=

r

Definition 5.3.1. Let Ext△(σ) and Ext�(σ, i) be the∞-categories fitting in the
following diagram of cartesian squares

O(n+ 1)
h
×

O(n)
{σ} Ext△(σ) Fun(∆2,O⊗

act)

Ext�(σ, i) Ext�(σ) Map♭(�,O⊗
act)

∗ AtomO(n) Fun(Λ2
0,O

⊗
act).

y
y

r∗

y y

i

σ

j

(5.8)

The fact that O(n + 1)
h
×

O(n)
{σ} and Ext�(σ) fit in the above diagram is a

reformulation of lemmas 5.2.1 and 5.2.6.

Lemma 5.3.2. In the top left square of diagram (5.8)

O(n+ 1)
h
×

O(n)
{σ} Ext△(σ)

Ext�(σ, i) Ext�(σ),

y (5.9)

the vertical maps are equivalences.

Proof. A simple computation shows that r is an equivalence of marked simplicial
sets � = (∆1 × ∆1,∆1 × {1}) → (∆2)♭. Therefore r∗ is an equivalence of ∞-
categories. Since Map♭(�,O⊗

act) and Fun(∆2,O⊗
act) are fibrant over Fun(Λ2

0,O
⊗
act),

taking pullback along the morphisms j and σ : ∗ → Fun(Λ2
0,O

⊗
act) gives the desired

equivalences.

Lemma 5.3.3. Let O⊗ be a monochromatic unital ∞-operad. Then the ∞-
category AtomO(n) is equivalent to the underlying ∞-category O of O⊗.

Corollary 5.3.4. Let O⊗ be as above and assume moreover that its underlying
∞-category O is an ∞-groupoid. Then the ∞-category AtomO(n) is equivalent to
the classifying space BO(1) of the group of automorphisms of 〈1〉 in O.
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Proof of lemma 5.3.3. First, fix an atomic morphism α : 〈n〉 → 〈n+ 1〉 in F∗ and
consider the subcategory Atomα

O
(n) of morphisms lying over α. By definition, we

have a cartesian square

Atomα
O
(n) AtomO(n)

{α} AtomF∗(n).

y

Observe that the ∞-category AtomF∗(n) is the nerve of a 1-category in which
any two objects j : 〈n〉 → S and j′ : 〈n〉 → S ′ are related by a unique morphism
S → S ′ (namely the unique bijection that restricts to j′ ◦ (j|im(j))−1 on the image
of j). As a consequence, this (∞-)category is terminal and we obtain a canonical
equivalence of ∞-categories Atomα

O
(n) ≃ AtomO(n).

Now we may decompose the atomic morphisms of Atomα
O
(n) according to their

arity using lemma 3.5.3. The result is an equivalence of ∞-categories

Atomα
O
(n) ≃

(
O〈1〉/

)n
× O〈0〉/

where the ∞-category O〈0〉/ is a notation for the comma category

(〈0〉 ∈ O
⊗) ↓ (O⊗ ⊃ O).

Since O is assumed to be an ∞-groupoid, so is its slice O〈1〉/; the latter has an
initial object, it is therefore contractible. We now turn to analysing the comma
category O〈0〉/. By definition, it fits in a commutative diagram of cartesian squares

O〈0〉/ (O⊗)〈0〉/ Fun(∆1,O⊗)

{〈0〉} × O {〈0〉} × O⊗ O⊗ × O⊗.

y y
(ev0,ev1)

Since the middle vertical map is a cocartesian fibration, so is the left vertical
map. The fiber of this morphism at at object X ∈ O is MapO⊗(〈0〉, X), which
is contractible by the assumption that O⊗ is unital. Therefore this cocartesian
fibration is a trivial fibration O〈0〉/

≃
→ O, which completes the proof.

Proof of Theorem 5.1.1. The homotopy cartesian square (5.1) is obtained as the
top left square in diagram (5.8), using the equivalences Ext△(σ) ≃ Ext�(σ) ≃
Ext(σ) of lemmas 5.3.2 and 5.2.5 and the equivalence Atomσ

O
(n) ≃ BO(1) of

corollary 5.3.4.

5.4 Applications

As explained in the introduction (section 1.3), an important motivation for study-
ing the brane action comes from string topology, as the E2-algebra structure on
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free loop spaces arises from span diagrams given the brane action for the ∞-
operad E2. More precisely, recall from the program described in section 1.3 that
our work was motivated by the desire to use the formalism of brane actions to
generalize string topology in the following directions.

• On the one hand, we may consider analogs of free loop spaces Map(Sn−1, X)
based on higher dimensional spheres (brane topology).

• On the other hand, with an eye towards conjecture 1.2.1, we would like
to enhance the En-structure of brane topology to take into account the
action of groups of homeomorphisms of disks. The ∞-operads governing
such structures are variants EGn of the little disks ∞-operad En, that are
given by semi-direct product of En with a group G endowed with a mor-
phism to the ∞-group Top(n) associated to the topological group of self-
homeomorphisms of Rn.

Remark 5.4.1. As noticed when discussing program 1.3 in the introduction, al-
though the application of the formalism of brane actions to brane topology (i.e.
the first of the above directions of generalization) is already possible using the
original results of [Toë13], the latter generalization requires to extend the formal-
ism of brane actions to coherent∞-operads whose space of unary operations may
not be trivial, a problem that has been adressed in the previous chapters with
theorem A.

The rest of this chapter is devoted to the study of a generalization of the
∞-operads EGn , a proof of their coherence and, as a consequence, a construction
of new operations operations on spaces of branes in a derived stack.

5.4.1 Coherence of the little B-framed disks ∞-operad

In this section, we define the∞-operad of B-framed little disks and prove that it is
coherent. This∞-operad depends on the datum of a Kan fibration B → BTop(n)
and recovers the variants EGn of the little disks∞-operad mentionned above when
B is the classifying space of a subgroup G of Top(n).

We recall the definition of ∞-operad E⊗
B introduced in [Lur17, Section 5.4.2],

following the presentation and the notations thereof.

Notation 5.4.2. Given two topological spaces X and Y , we let Emb(X, Y ) denote
the topological space of open embeddings X → Y , topologized as a subspace of
the compact-open topology on the set HomTop(X, Y ). For n ∈ N, we let Top(n)
denote the topological space of homeomorphisms of Rn, viewed as a subspace of
Emb(Rn,Rn).

Remark 5.4.3. The Kister–Mazur theorem implies that the inclusion Top(n) →
Emb(Rn,Rn) is a homotopy equivalence, for all n > 0 (see [Lur17, Theorem
5.4.1.5]).

Let us fix a natural number n.
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Definition 5.4.4 ([Lur17, Definition 5.4.2.1]). Let tE⊗
BTop(n) denote the topo-

logical category whose objects are the finite pointed sets 〈m〉 ∈ F∗ and where
mapping spaces are given by the formula

MaptE⊗
BTop(n)

(〈m〉, 〈k〉) =
∐

α∈HomF∗ (〈m〉,〈k〉)

m∏

i=1

Emb(Rn × α−1{i},Rn). (5.10)

Let BTop(n)⊗ denote its homotopy coherent nerve, i.e. the ∞-category
N
(
tE⊗

BTop(n)

)
. By [Lur17, Proposition 2.1.1.27], BTop(n)⊗ forms an ∞-operad.

We will denote by BTop(n) its underlying ∞-category, which by remark 5.4.3 is
a classifying space for the topological group Top(n).

Let us fix a Kan complex B together with a Kan fibration B → BTop(n).

Notation 5.4.5. Recall that given an ∞-category C, one can construct a cocarte-
sian ∞-operad C∐ whose spaces of multimorphisms are given by the formula
MulC∐(c1, . . . , cm; c) =

∏m
i=1 MapC(ci, c) (see [Lur17, Section 2.4.3]).

Definition 5.4.6 ([Lur17, Definition 5.4.2.10]). We let E⊗
B denote the∞-operad

E⊗
B = BTop(n)⊗ ×

BTop(n)∐
B∐ (5.11)

and refer to it as the ∞-operad of B-framed little disks.

Note that the underlying ∞-category of E⊗
B is canonically equivalent to the

Kan complex B. In particular, one may identify the objects of E⊗
B with those of

B.

Remark 5.4.7 (Examples). • For B a contractible Kan complex with a Kan
fibration to BTop(n), the associated ∞-operad E⊗

B reduces to the ordinary
∞-operad E⊗

n of little disks of dimension n.

• Consider a topological group together with a map to Top(n). The induced
morphism on classifying space can be represented up to equivalence by a
Kan fibration B := BG→ BTop(n). Then the∞-operad of B-framed little
disks E⊗

B is equivalent to a semi-direct E⊗
n ⋊G (in the sense of [SW03]). As a

particular case, for G = SO(n) we obtain the framed little disks ∞-operad
Efr
n .

• Let M be a topological manifold of dimension n. Following [Lur17, Defini-
tion 5.4.5.1.], let CM denote the topological category with two objects M
and Rn, whose mapping spaces are

MapCM
(Rn,Rn) = Emb(Rn,Rn) MapCM

(Rn,M) = Emb(Rn,M)

MapCM
(M,Rn) = ∅ MapCM

(M,M) = {idM}.

Define BM as the Kan complex BTop(n)×N(CM )N(CM)/M and let E⊗
M denote

the ∞-operad E⊗
BM

. It is a variant on the∞-operad E⊗
n in which colors are
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open embedding U : Rn →M of disks of dimension n into M and operations
of arity k are diagrams of embeddings

∐k
i=1 R

n Rn

M

∐
i
Ui

U

together with an isotopy making the triangle commute. Note that EM -
algebras can be identified as locally constant factorization algebras on M ,
by theorem [Lur17, Theorem 5.4.5.9.].

The ∞-operad of little disks operad En is coherent, for all n ∈ N by [Lur17,
Theorem 5.1.1.1]. We generalize this result to the B-framed situation.

Theorem 5.4.8. The ∞-operad of B-framed little disks E⊗
B is coherent.

The proof relies on theorem 5.1.1 together with the following computation.

Lemma 5.4.9. Let σ : (b1, . . . , bm) → b be an active morphism in E⊗
B, with

b1, . . . , bm, b in B and choose an additional color bm+1 in B. Then Toën’s model
for the space of extensions of σ in E⊗

B is given by

MulEB
(b1, . . . , bm+1; b)

h
×

MulEB
(b1,...,bm;b)

{σ} ≃





ΩbB ×
∨m Sn−1 if bm+1 ≃ b in B,

∅ otherwise.
(5.12)

Proof. By construction, the left hand side of equation (5.12) is equivalent to the
homotopy fiber at σ of the map

Emb(Rn × 〈m+ 1〉◦,Rn) ×
Emb(Rn,Rn)m+1

∏m+1
i=1 MapB(bi, b)

Emb(Rn × 〈m〉◦,Rn) ×
Emb(Rn,Rn)m

∏m
i=1 MapB(bi, b).

(5.13)

Commuting the fiber product with the homotopy fiber, we obtain the space
(

Emb(Rn × 〈m+ 1〉◦,Rn)
h
×

Emb(Rn×〈m〉◦,Rn)
{σ}

)
×

Emb(Rn,Rn)
MapB(bm+1, b) (5.14)

Since B is a Kan complex, the factor MapB(bm+1, b) is empty when bm+1 and b
are in different connected components, and is equivalent to the based loop space
ΩbB otherwise. On the other hand, for any finite set S, the obvious map from
the space Emb(Rn × S,Rn) to the product Emb(Rn,Rn)S × Conf(S,Rn) is an
equivalence (see [Lur17, Proof of Proposition 5.4.2.8.]). As a consequence, we
obtain an equivalence

Emb(Rn×〈m+1〉◦,Rn)
h
×

Emb(Rn×〈m〉◦,Rn)
{σ} ≃ Emb(Rn,Rn)×Conf(S,Rn). (5.15)

Substituting this equivalence in (5.15) and using that Conf(S,Rn) ≃
∨m Sn−1,

we obtain the result.
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Lemma 5.4.10. Let σ : (b1, . . . , bm) → b be an active morphism in E⊗
B, with

b1, . . . , bm, b in B. Then the space of extensions of σ in E⊗
B is equivalent to∨m Sn−1.

Proof. By theorem 5.1.1, any choice of a color bm+1 yields a homotopy cartesian
square

MulEB
(b1, . . . , bm+1; b)

h
×

MulEB
(b1,...,bm;b)

{σ} Ext(σ)

{bm+1} B,

y (5.16)

Upon taking base change of Ext(σ) → B along the inclusion B[b] → B of the
connected component of b and using proposition A.3.8, square (5.16) endows
the space of strict extensions (at the top left corner of equation (5.16)) with an
ΩbB-principal ∞-bundle structure over Ext(σ).

If bm+1 does not belong to the connected component of b in B, then the
corresponding fiber of Ext(σ)[b] over B[b] is empty. In particular, the structural
map Ext(σ)→ B factors through B[b]. Now choose a point bm+1 ∈ B[b]. Through
the identification given by lemma 5.4.9, the ΩbB-action on the space of strict
extensions is the regular action on the first factor of ΩbB ×

∨m Sn−1. Taking the
quotient by this action, we see that the space Ext(σ) is equivalent to

∨m Sn−1.

Proof of theorem 5.4.8. First, it is clear that the ∞-operad E⊗
B is unital. More-

over, its underlying ∞-category B is a Kan complex by assumption. It remains
to prove condition (c) of definition 2.2.6. By lemma 5.4.10, for a sequence of
composable active morphisms X σ

→ Y
τ
→ Z in E⊗

B, with X, Y and Z of arity
respectively m, k and 1, diagram (2.4) is equivalent in the homotopy category of
spaces to a commutative square of the form

k∐
Sn−1 ∨k Sn−1

k∐
i=1

∨
p(σ)−1{i}

Sn−1
m∨
Sn−1

(5.17)

which is easily seen to be homotopy cocartesian (as in the case of the little disks
∞-operad En). This concludes the proof.

5.4.2 Action of the little B-framed disks ∞-operad on

spaces of branes

As we just established, the ∞-operad E⊗
B is coherent (theorem 5.4.8); therefore,

it admits a brane action by theorem A. This yields the following result.
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Corollary 5.4.11. Using the same notations as above, there is a canonical
morphism of ∞-operads E⊗

B → Cospan(S)∐, sending a color b to the space
Ext(idb) ≃ Sn−1 and an operation σ : (b1, . . . , bm)→ b to a cospan diagram

Ext(idb)∐m Ext(σ) Ext(idb) (5.18)

in which the middle space Ext(σ) is equivalent to a wedge of m spheres Sn−1.

As explained in section 1.3, the previous result can be applied to multiple
geometric contexts. Let us recall the method to produce operations on spaces of
branes.

Let X be an ∞-topos. There is a canonical functor (−)cst : S→ X that sends
every space Z to the object Zcst obtained as the colimit of the constant diagram
with shape Z and value the terminal object ∗. One could call Zcst the locally
constant stack with value Z, or the Betti shape of Z in X. Through this functor,
we obtain from the EB-algebra structure of Corollary 5.4.11 a corresponding
algebra in the ∞-category Cospan(X).

Given an object X ∈ X, we may now apply the functor Map(−, X) : Xop →
X to the objects Ext(σ)cst to obtain an EB-algebra structure in Span(X). To
summarize, we have the following result.

Corollary 5.4.12. For any object X in X, the space Map((Sn−1)cst, X) of EB-
branes internal to X has a canonical EB-algebra structure in Span(X), with struc-
tural morphism sending an operation σ of arity m to the span

Map((Sn−1)cst, X)m Map(Ext(σ)cst, X) Map((Sn−1)cst, X).

(5.19)

Remark 5.4.13. The advantage of the above construction is its generality: one
can say that the EB-algebra structure on Map((Sn−1)cst, X) in Span(X) is mo-
tivic, in the sense that it exists before taking any sort of linear invariant (chains,
cohomology, quasi-coherent shaves, K-theory, etc.).

This is similar to the case of Gromov–Witten invariants [MR18], where the
authors use the brane action to construct Gromov–Witten invariants at a purely
geometric (or motivic) level and are then able to apply K-theory or ordinary
cohomology functors to recover the invariants in their more classical form.

In particular, specializing to the case B = BSO(n), the∞-operad E⊗
B recovers

that of framed little disks Efr
n , so that the above corollary gives the following

partial answer to conjecture 1.2.1.

Corollary 5.4.14. Let X be a topological space. Then the brane space
Map(Sn−1, X) carries an Efr

n-algebra structure in Span(S).

Inverting spans

In many applications, it is useful to "invert" the wrong-way morphisms appearing
in the spans to obtain an algebra structure in a more tractable ∞-category, such
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as that of chain complexes or of spectra. To make this construction more precise,
we rely on the universal property of the category of spans, as established in [Ste20]
(see also [GR17] for an earlier description of this universal property).

First, given an ∞-category C with pullbacks, we consider an (∞, 2)-
enhancement Span2(C) of the ∞-category Span(C) of spans in C (see [Hau18]
or [Ste20] for a precise construction).

Next, we define the Beck–Chevalley condition.

Definition 5.4.15 (Adjointable squares, [Ste20, Definition 3.4.1]). Let D be an
(∞, 2)-category. A commutative square

d′ d

e′ e

β′

α′

β

α

(5.20)

in D is called vertically right adjointable if β and β′ admit right adjoints βR and
β′R and moreover the canonical 2-morphism

α′β′R → βRα (5.21)

constructed using the unit idd → βRβ and the counit β′Rβ′ → ide′ , is an isomor-
phism.

The square is said to be horizontally right adjointable if its transpose is verti-
cally right adjointable. If it is both vertically and horizontally right adjointable,
we simply say that the square is right adjointable.

Definition 5.4.16 (Beck–Chevalley condition, [Ste20, Definition 3.4.5]). Let C be
an∞-category with pullbacks and D be an (∞, 2)-category. A functor F : C→ D

is said to satisfy the left Beck–Chevalley condition if for every cospan x→ s← y
in C, the induced commutative square in D

F (x×s y) F (y)

F (x) F (s)

is right adjointable.

Using these definitions, one can characterize the 2-functors out of (∞, 2)-
categories of spans.

Theorem 5.4.17 (2-categorical universal property of spans, [Ste20, Theorem
3.4.18]). Let C be an ∞-category with pullbacks and D be an (∞, 2)-category.
Precomposition with the canonical functor C → Span2(C) identifies the space of
2-functors Span2(C)→ D with the subspace of MapCat∞

(C,D) consisting of those
functors C→ D that satisfy the left Beck–Chevalley condition.
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Remark 5.4.18. Given a functor F : C → D satisfying the left Beck–Chevalley
condition, the associated 2-functor Span2(C)→ D sends a span x

f
← s

g
→ y to the

morphism fR ◦ g : F (x)→ F (y).

We briefly discuss two geometric contexts: the case of derived stacks X = dStk
and that of spaces X = S.

Algebro-geometric context. Let k be a field of characteristic 0 and dStk the
∞-category of derived étale stacks over k.

To invert the correspondences of derived stacks that arise from the brane
action, we need to restrict our attention to a particularly well-behaved class of
spaces, namely that of perfect stacks introduced by Ben-Zvi–Francis–Nadler in
[BZFN10].

Definition 5.4.19 (Perfect stacks, [BZFN10]). A derived stack X is said to be
perfect if its diagonal morphism is affine and if QCoh(X) is the ind-completion
of its full subcategory of perfect complexes. We let P denote the full subcategory
of dStk on perfect stacks.

Example 5.4.20. The class of perfect stacks contain many examples of interest.
For instance, every quotient Y/G of a quasi-projective derived scheme Y by a
linear action of an affine group G is perfect. Perfect stacks are moreover stable
under fiber products and if X ∈ P, so is Map((K)cst, X) for every finite simplicial
set K.

Consider the (∞, 2)-category dgCatL
k of (possibly large) k-linear presentable

dg-categories, with functors preserving small colimits as morphisms. Let
QCoh: dStk → dgCatL

k denote the functor that assigns to every derived stack
its derived ∞-category of quasi-coherent sheaves.

By [BZFN10, Proposition 3.10], the restriction of QCoh to P satisfies the left
Beck–Chevalley property and therefore extends to a 2-functor

QCoh: Span2(P)→ dgCatL
k ,

using Theorem 5.4.17. Moreover, we can upgrade this 2-functor QCoh to a sym-
metric monoidal one, using [Ste20, Corollary 1.2.2]. Together with Corollary
5.4.12, this shows the following result.

Corollary 5.4.21. Let X be a perfect stack. Then the ∞-category of quasi-
coherent sheaves on its space of branes Map((Sn−1)cst, X) carries a canonical
EB-algebra structure in dgCatL

k .

This results extends results of Toën [Toë13, Corollary 5.1] and of Ben-Zvi–
Francis–Nadler [BZFN10], which corresponds to the particular case of the En-
operad (that is EB for B ≃ ∗).
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Topological context. We may want to adapt the above construction to the
case of topological spaces, in order to recover the classical string topology opera-
tions, and more generally to prove conjecture 1.2.1 (this was essentially Program
1.3 from the introduction).

However, one immediately runs into the problem of defining functorial umkehr
(or wrong-way) maps at the chain level. In particular, this would require to handle
all the coherence data needed to produce a functor from a suitable subcategory
P of S to that of chain complexes (or suitable variants of such). The subcategory
P would have to contain the free loop spaces LX, which are infinite-dimensional
manifolds, and the sought functor to chain complexes would have to specialize
to the classical Thom–Pontryagin construction of umkehr maps upon taking ho-
mology.

To the knowledge of the author, the existence of such a construction is still
an open question.



Appendix A

Recollections

A.1 Marked simplicial sets

In this section, we collect various facts about marked simplicial sets that are
used in the proof of theorem B. These results are standard and well-known to
specialists, with perhaps the exception of proposition A.1.7, stating that anodyne
morphisms satisfy a weak form of the right simplification property, which seems
to have not appeared in the literature. This last result might be of independent
interest.

A.1.1 Some properties of marked simplicial sets

Definition A.1.1. A marked simplicial set is a pair (X,mX) where X is a simpli-
cial set and mX is a subset of X1 that contains all degenerate edges. A morphism
of marked simplicial sets (X,mX) → (Y,mY ) is a morphism of simplicial sets
f : X → Y such that f(mX) ⊆ mY .

The category of marked simplicial sets is denoted sSet+.

Notation A.1.2. Given a simplicial set X, one can associated three marked sim-
plicial sets:

• the minimal marking X♭, consisting only of degenerate edges,

• the cartesian marking X♮ in which an edge is marked if and only if it is an
equivalence,

• the maximal marking X♯, containing all edges.

Given an edge e in a marked simplicial set Y , we let Y [e] denote the marked
simplicial set obtained by further marking e. In other words, Y [e] is the initial
marked simplicial set whose underlying simplicial set is Y and such that both
canonical maps Y → Y [e] and e : ∆1,♯ → Y [e] are morphisms of marked simplicial
sets.

95
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Given a category C and a class S of morphisms in C, we say that S is weakly
saturated if it contains all isomorphisms and is closed under cobase change, trans-
finite composition, coproducts and retracts. The smallest weakly saturated class
containing S is denoted S and called the saturation of S.

We introduce several classes of morphisms in sSet and sSet+:

• the class Cell = {∂∆n ⊂ ∆n | n ∈ N},

• the class InnHorn = {Λn
k ⊂ ∆n | 0 < k < n, n > 2},

• the class Cell♭ = {Λn,♭
k ⊂ ∆n,♭ | 0 6 k < n, n > 1},

• the class InnHorn♭ = {Λn,♭
k ⊂ ∆n,♭ | 0 < k < n, n > 2},

• the class LHorn♯ = InnHorn♭ ∪ {Λn,♭
0 [0→ 1] ⊂ ∆n,♭[0→ 1] | n ∈ N∗},

• the class RHorn♯ = InnHorn♭∪{Λn,♭
n [n−1→ n] ⊂ ∆n,♭[n−1→ n] | n ∈ N∗}.

The saturations Cell and InnHorn are respectively the class of monomorphisms
and that of inner anodyne morphisms. We now introduce a notion of anodyne
morphisms for marked morphisms that is suitable for our computations of chapter
4.

Definition A.1.3 (Marked anodyne morphisms). The class Mark of marked
anodyne morphisms is defined as the saturation of the union of LHorn♯ and
RHorn♯ together with the map

Λ2,♯
1

∐

Λ2,♭
1

∆2,♭ −→ ∆2,♯

as well as the maps K♭ → K♯ for all Kan complexes K.

Remark A.1.4 (Difference with Lurie’s definition). Beware that the previous def-
inition differs from that [Lur09a, Definition 3.1.1.1] in that our definition is sym-
metric, whereas Lurie’s include RHorn♯ but not LHorn♯. The conceptual reason
for this discrepancy is the following: Lurie’s marked anodyne morphisms are
examples of trivial cofibration in the cartesian model structure on sSet+, while
our marked anodyne morphisms should be trivial cofibrations in an appropriate
model structure of bifibrations on sSet+. However, for the purpose of this work,
we shall not need the full power of such a model structure.

Definition A.1.5. Morphisms satisfying definition [Lur09a, Definition 3.1.1.1]
will be called marked right anodyne in this thesis. The obvious dual definition
gives the class of marked left anodyne morphisms.

Lemma A.1.6. Every marked anodyne morphism has the left lifting property
against all morphisms of the form X♮ → ∗ for X an ∞-category.
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Proof. By [Lur09a, Proposition 3.1.1.6], marked right anodyne morphisms have
the desired lifting property. By symmetry of the argument, so do marked left
anodyne morphisms. Since Mark is the saturation of the class given as the union
of these two types of anodyne morphisms, we deduce the result.

In chapter 4, we will use that the class of marked anodyne morphisms satisfy
the following weak form of right cancellation property.

Proposition A.1.7 (Right cancellation property for marked anodyne mor-
phisms). Let i : A → B and j : B → C be monomorphisms of marked simplicial
sets. Assume that i and j◦i are marked anodyne morphisms and that j is bijective
on 0-simplices. Then j has the left lifting property with respect to all morphisms
of the form X♮ → ∗ for X an ∞-category.

Proof. Our proof is merely an adaptation to the marked simplicial setting of the
argument of [Ste18, Theorem 1.5] which states that the class of inner anodyne
maps has the right cancellation property. We give details here for completeness.

Let X be an ∞-category. We will show that j has the left lifting property
against X♮ → ∗. Suppose we are given a map u : B → X of marked simplicial
sets. By lemma A.1.6, that j ◦ i is marked anodyne allows to pick a morphism
ϕ : C → X satisfying ϕ◦j ◦ i = u◦ i. This implies that u and ϕ◦j are in the same
fiber of the map i∗ : Map♯(B,X♮) −→ Map♯(A,X♮). By [Lur09a, Proposition
3.1.3.3 and the following remark] (or more precisely a generalization thereof to
arbitrary marked anodyne maps in our sense), the map i∗ is a trivial Kan fibration.
We may then take a homotopy between u and ϕ ◦ j over their common image
by i∗. This homotopy takes the form of a morphism h : ∆1,♯ × B → X♮ with the
following properties:

h|{0}×B = ϕ ◦ j h|{1}×B = u h ◦ (idA×i) = u ◦ i ◦ projA.

Consequently, h and ϕ induce a map w = (ϕ, h) : {0}×C ∪∆1,♯×B → X♮. The
problem therefore reduces to finding a lift d : ∆1,♯ × C → X♮ in the diagram

{0} × C ∪∆1,♯ ×B X♮

∆1,♯ × C

w

d

for then d|{1}×C will provide the desired lift of u along j. Using the skeleton
filtration on C, write C(n) = B ∪ skn(C). Note that we have the equality B =
C(0), since j is bijective on objects. Working inductively, it therefore suffices to
prove the existence of a lift in the following diagram:

({0} × C(n+ 1)) ∪ (∆1,♯ × C(n)) X♮

∆1,♯ × C(n+ 1),
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for every n ∈ N. Since every monomorphism of marked simplicial sets is obtained
by cell attachments and edge markings, the proof reduces to the case where the
inclusion C(n) → C(n + 1) is either ∂∆n+1,♭ → ∆n+1,♭ or ∆1,♭ → ∆1,♯. Using
[Lur09a, Corollary 3.1.1.7], one easily sees that (∆1,♯ × ∆1,♭) ∪ ({0} × ∆1,♯) →
∆1,♯ × ∆1,♯ is marked anodyne, so the result follows for the case of the latter
inclusion. For the former inclusion, one can adapt the argument of [Ste18, Lemma
2.4]: decompose the inclusion

({0} ×∆n+1,♭) ∪ (∆1,♯ × ∂∆n,♭) −→ ∆1,♯ ×∆n+1,♭

as a sequence of inner horn inclusions that successively add the different top-
dimensional simplices, composed with the inclusion of a left marked horn
Λn+1

0 [0→ 1] into ∆n+1[0→ 1].

A.1.2 Calculus of pushout-joins

Given maps i : A → B and j : K → L of simplicial sets, define the pushout-join
i� j as the map

i� j : A ∗ L
∐

A∗K

B ∗K
(i∗idL,idB ∗j)
−−−−−−−→ B ∗ L. (A.1)

If i and j are instead maps of marked simplicial sets, then i � j also defines a
map of marked simplicial sets.

Lemma A.1.8. Let S and T be two classes of morphisms, either both in sSet or
in sSet+. Then S � T ⊆ S � T .

Proof. For the case of sSet, this is [Rez22, Proposition 30.12]. The case of marked
simplicial sets is a straightforward adaption of the argument thereof.

Lemma A.1.9. We have the following inclusions of classes of morphisms in sSet

and sSet+:

RHorn � Cell ⊆ InnHorn and Cell � LHorn ⊆ InnHorn,

Cell♭ � RHorn♯ ⊆ RHorn♯ and LHorn♯ � Cell♭ ⊆ LHorn♯.

Proof. The results follow from lemma A.1.8 together with the following compu-
tation: for j, k, n ∈ N with 0 6 j 6 n, there are canonical isomorphisms

(Λn
j ⊂ ∆n) � (∂∆k ⊂ ∆k) ∼= (Λn+1+k

j ⊂ ∆n+1+k),

(∂∆k ⊂ ∆k) � (Λn
j ⊂ ∆n) ∼= (Λn+1+k

k+1+j ⊂ ∆n).

The following computation will be essential in chapter 4.

Lemma A.1.10. Let I and J be finite linear orders and J0 ⊂ J a suborder. Let
i and j denote respectively the inclusions ∅ ⊆ I and J0 ⊂ J . Then
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(1) the inclusion
idI ∗j : (∆I)♭ ∗ (∆J0)♯ → (∆I)♭ ∗ (∆J)♯

(2) and the inclusion

i� j : (∆J)♯ ∪
(∆J0 )♯

((∆I)♭ ∗ (∆J0)♯)→ (∆I)♭ ∗ (∆J)♯

are both marked anodyne.

Proof. For both assertions, it suffices to show the result for J = J0 ∪ {y}.

(1) We consider the inclusion idI ∗j. We proceed by induction on the cardinality
of I. Suppose first that I = ∅. Assuming that y is not an extremum
in J , let y− (respectively y+) denote the maximum (resp. minimum) of
the elements x ∈ J such that x < y (resp. x > y). Consider the spine
inclusion SpJ → ∆J , which is inner anodyne. Note that this map factors
through the simplicial set T = ∆J0 ∪∆y−yy+ as a inner anodyne inclusion
SpJ → T . As ∆J0 → ∆J also factors through T , it is enough to show
that (∆J

0 )♯ → T ♯ is marked anodyne: this follows from the two inclusions
(∆y−y+)♯ → (Λy−yy+

y+
)♯ → (∆y−yy+)♯ being marked anodyne. The case where

y is the maximum (resp. minimum) of J is analogous, replacing T by
∆J0 ∪∆y−y (resp. ∆J0 ∪∆yy+).

For I 6= ∅, assume the result for finite linear orders of cardinality less than
I. Let x be the minimum of I and let I0 = I \ {x}. It suffices to show that
the inclusion

(∆I0 ⊂ ∆I) � (∆J0 ⊂ ∆J) : (∆I0 ∗∆J) ∪
∆I0 ∗∆J0

(∆I ∗∆J0)→ (∆I ∗∆J)

is inner anodyne. This follows from lemma A.1.9, since ∆I0 ⊂ ∆I is right
anodyne and ∆I0 ⊂ ∆I is a monomorphism.

(2) We now turn to the inclusion i � j. If y > J0, then j is marked left
anodyne; using lemma A.1.9 we obtain that i� j is inner anodyne, hence a
marked equivalence. Otherwise, we can partition J0 as J−

0

∐
J+

0 such that
J−

0 < y < J+
0 and J+

0 is non-empty. Then j factors as the composite

∆J0−→∆J0
∐

∆
J+

0

(
∆y ∗∆J+

0

)
−→ ∆J

where the first map is induced by the inclusion e : ∆J+
0 → ∆y ∗ ∆J+

0 and
the second map is (∅ ⊆ ∆J−

0 ) � e. Since e is marked right anodyne, using
lemma A.1.9, we deduce that so is j and therefore also i� j, as desired.
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A.2 A note on cartesian fibrations and spaces

of lifts

In this section, we recall a useful characterization of cartesianity of a functor in
terms of contractibility of a certain space of lifts. Let p : X → S be an inner
fibration of ∞-categories.

Definition A.2.1 (p-cartesian edges). A morphism f : x→ y in X is said to be
cartesian if the canonical map

qf : X/f −→ X/y ×S/py
S/pf

is a trivial fibration.

Notation A.2.2. Given a morphism f : x→ y and an object z in X, base-changing
qf along z : ∗ → X yields a functor

qz : X/f ×X {z} −→ Dz,

where Dz denotes the∞-category
(
X/y ×S/py

S/pf
)
×X {z}. The fiber of qz at an

object u will be denoted L and refered to as the space of lifts of u along f , leaving
the dependance on (f, z, u) implicit in the notation. The situation is summarized
in the following commutative diagram of ∞-categories

L X/f ×X {z} X/f

∗ Dz X/y ×S/py
S/pf

∗ X.

qu

y
qz

y
qf

u

y

z

in which all squares are cartesian.

We will use the following equivalent description of cartesian edges, which is
essentially a rewording of Proposition 2.4.4.3 in [Lur09a] and its proof.

Lemma A.2.3. Let f : x→ y be a morphism in X. Then f is p-cartesian if and
only if for all z ∈ X, every fiber L of qz is contractible.

Proof. By Proposition 2.1.2.1 in [Lur09a], the morphism qf is a right fibration,
hence so are qu and qz. Now note that every fiber of qf is of the form L for some
choice of objects z and u. Since a right fibration is trivial if and only if each of
its fibers is contractible, we get the result.

Remark A.2.4. The proof also shows that L is a Kan complex, since qu is a
right fibration whose codomain is a Kan complex. This justifies the use of the
terminology space of lifts for L.

Definition A.2.5 (Cartesian fibrations). The functor p : X → S is a cartesian
fibration if for all y ∈ X, every morphism x → p(y) in S admits a lift x → y
along p which is p-cartesian.
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A.3 Principal ∞-bundles

In this section, we recall some definitions and basic properties of groupoid
objects, ∞-groups and principal bundles in higher category theory. We mostly
follow the exposition of [NSS15].

Let T be an ∞-topos.

Definition A.3.1 ([Lur09a, Definition 6.1.2.7]). A groupoid object in T is a
simplicial object G• : ∆op → T such that for every n ∈ N and every partition
[k] ∪ [k′] = [n] with [k] ∩ [k′] = {∗}, the induced diagram

Gn Gk

Gk′ G0

(A.2)

is a pullback in T. The full subcategory of Fun(∆op,T) on the groupoid objects
is denoted Grpd(T).

Definition A.3.2. For f : X → Y a morphism in T, one has a associated
groupoid object Č(X → Y ) in T called the Čech nerve of f given in degree
n by the (n+ 1)-fold fiber product

Č(X → Y )n = X ×Y X ×Y · · · ×Y X.

We say that f is an effective epimorphism if it is the colimiting cocone of its Čech
nerve, i.e. if we may write

f : X −→ Č(f).

Let Eff(T) denote the full subcategory of Fun(∆1,T) on the effective epimor-
phisms.

Proposition A.3.3 ([Lur09a, Corollary 6.2.3.5]). The Čech nerve construction
provides an equivalence of ∞-categories

Č : Eff(T) ≃ Grpd(T) (A.3)

whose inverse sends a groupoid G• to the colimiting cocone G0 → colimG•.

Definition A.3.4. An ∞-group in T is a groupoid G• in T such that G0 ≃ ∗.
The corresponding full subcategory of Grpd(T) is denoted Grp(T). We usually
write G for the space G1 and will often abuse notation by refering to G as the
∞-group, leaving the rest of the simplicial structure G• implicit.

We now recall the delooping equivalence.

Proposition A.3.5 ([Lur09a, Lemma 7.2.2.11]). The loop space functor Ω canon-
ically extends to a functor from the ∞-category T∗ of pointed objects in T to
Grp(T). Its restriction to connected pointed objects yields an equivalence of ∞-
categories

Ω: (T∗)>1 ≃ Grp(T) : B.
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The functor B inverse to Ω is called the delooping, or classifying space functor.
The effective epimorphism ∗ → BG associated to an∞-group G is the colimiting
cocone

. . . G×G G ∗ BG

induced by the simplicial object G : ∆op → T.

Definition A.3.6 ([NSS15, Definition 3.1]). Let G• ∈ Grp(T) be a group object
and X an object in T. A G-action on X is a groupoid object (X//G)• in T of
the form

. . . X ×G×G X ×G X
proj

such that the degreewise projection maps X × Gn → Gn yield a morphism of
groupoid objects (X//G)• → G•. The ∞-quotient of the action is the colimit
object X//G := colim(X//G) in T.
The ∞-category GAction(T) of G-actions in T is the full subcategory of
Grpd(T)/G• on G-actions.

Definition A.3.7 ([NSS15, Definition 3.4]). Let G• ∈ Grp(T) be a group object
and X an object in T. A G-principal ∞-bundle over X is a morphism Y → X in
T together with a G-action on Y , such that Y → X exhibits X as the quotient
Y//G.
The ∞-category GBun(X) of G-principal ∞-bundles over X is the homotopy
fiber at X of the quotient functor

GAction(T) ⊆ Grpd(T)/G• −→ Grpd(T) colim
−→ T.

The following result will be useful in chapter 5.

Proposition A.3.8 ( [NSS15, Proposition 3.8] ). If G is an ∞-group and X →
BG a morphism in T, then its homotopy fiber Y → X at the distinguished point
of BG carries a canonical structure of a G-principal ∞-bundle over X.

The G-principal ∞-bundle structure is obtained by considering the following
morphism of augmented simplicial objects

. . . Y ×G×G Y ×G Y X

. . . G×G G ∗ BG

proj

in which all rectangle are cartesian squares.
Moreover, all principal ∞-bundles are obtained through this construction, as

stated in the next result.



A.3 Principal ∞-bundles 103

Theorem A.3.9 (Classification of G-principal ∞-bundles, [NSS15, Theorem
3.17]). For all ∞-groups G ∈ Grp(T) and all objects X ∈ T, there is a natu-
ral equivalence of ∞-groupoids

GBun(X) ≃ MapT(X,BG)

given on objects by the construction (p : X → BG) 7→ (hofib(p)→ X) of proposi-
tion A.3.8.
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