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CONTEXTE

Contrairement à l'opinion un peu hâtive d'un Jules Andoyer 1 et même à celle plus récente et plus nuancée de Georges Glaeser 2 , pensant à tort qu'elle se résumait à des adaptations mécaniques du cas monovariable, l'interpolation polynomiale de fonctions à plusieurs variables constitue depuis la fin des années soixante-dix un véritable corpus autonome. Bien sûr la richesse des résultats obtenus pour les fonctions d'une seule variable reste un modèle sans pareil pour cette " nouvelle " théorie ( deux exceptions notables dues à Kronecker et Jacobi néanmoins datent du milieu du dix-neuf-ième siècle 3 mais les difficultés désormais bien comprises qu'elle pose, appellent aussi des approches spécifiques voire originales. Ce travail souhaiterait se placer sous cette double égide en s'articulant autour d'une notion, que l'on doit à Jean-Paul Calvi : le produit de Newton (PN en abrégé pour la suite de cette introduction) permettant d'amalgamer, selon un procédé original, deux projecteurs polynomiaux pour en construire un nouveau qui, lui, agira en dimension strictement supérieure à celles de ses constituants. Le premier chapitre ( article coécrit avec Jean-Paul Calvi et publié en 2019 dans l'international journal of mathematics) développe de façon plutôt exhaustive des propriétés algébriques de ce produit. Le second chapitre ( article toujours coécrit avec Jean-Paul Calvi et retenu pour publication par les Rendiconti del Circolo Matematico di Palermo)croise le concept de PN avec celui d'approximation polynomiale pour certaines familles de fonctions. Nous y obtenons des résultats originaux mais aussi de nouvelles preuves de points déjà connus. Dans le dernier chapitre ( note soumise cet été aux Comptes rendus de l'académie des sciences) on étudie en détail des questions combinatoires 4 concernant d'abord l'interpolation de Lagrange plane puis étendues à toute dimension ; on y souligne notamment une certaine épaisseur statistique des PN de structures lagrangiennes monovariables. Les notations utilisées quand elles sont standard ne seront pas rappelées dans cette introduction. Les références non explicitées à l'intérieur de chaque paragraphe renvoient aux bibliographies des chapitres (articles autonomes ) qui les abritent. Rentrons désormais dans les détails.

1. Page 160 dans le tome 4 du volume 1 de l'encyclopédie des sciences mathématiques, réédition Jacques Gabay .

2. " Enfin les tentatives concernant l'interpolation des fonctions de plusieurs variables apparaissent généralement en analyse numérique, comme une simple itération de l'interpolation à une variable avec des noeuds d'interpolation disposés en quadrillage. ", citation extraite (page 3 ) de la contribution de Glaeser à l'ouvrage collectif "'Proccedings of Liverpool Singularities Symposium II", Lecture Notes in Mathematics Volume 209.

3. cf leurs oeuvres complètes publiées par Chelsea : Tome 1 pages 133 et suivantes pour Kronecker et Tome 3 pages 285 à 294 pour Jacobi ; l' approche de Kronecker se veut plus générale et plus algébrique. [START_REF] Bagby | Multivariate simultaneous approximation[END_REF]. Abordées dans le premier chapitre.

ÉTUDE ALGÉBRIQUE DU PRODUIT DE NEWTON DE PROJECTEURS POLYNOMIAUX

Projecteurs polynomiaux

Il s'agit d'une notion très classique 5 dont nous rappelons brièvement quelques caractéristiques. Un projecteur polynomial de degré d sur un espace fonctionnel E contenant P d (K n ) est un projecteur continu sur E dont l'image est exactement P d (K n ). Ainsi, Π étant un tel objet, Π(p) = p pour tout p de P d (K n ) par ailleurs on attache à ce projecteur polynomial son espace de conditions, noté CND(Π), consistant en le sous-espace de E ′ constitué des fonctionnelles µ vérifiant µ(Π( f )) = µ( f ) pour tout f ∈ E ; cet espace vectoriel caractérise le projecteur 6 . Les opérateurs de Lagrange, d'Hermite, de Taylor, de Kergin et les projecteurs orthogonaux polynomiaux sont parmi les projecteurs polynomiaux les plus courants et il est aisé de préciser leurs espaces de conditions ; nous en présentons sommairement quelques uns sous forme de tableau :

Nature du projecteur

Base de l'espace des conditions Projecteur de Taylor en a ∈ K n d'ordre d

(D α [a], |α| ≤ d)
L 2 (µ)-Projecteur orthogonal sur P d (K n ), où µ est une mesure de Borel portée par

W ⊂ K n ( ν α : f → ⟨ f , e α ⟩ : α ∈ N d (n))
Interpolation de Lagrange dans P d (K n ) en les points de X = {x j , j = 0, . . . , N} ⊂ K n ([x j ], j = 0, . . . , N), où N = n+d d TABLE 1. Exemples d'espaces de conditions 2.2. Structure de Newton L'ajout, le retrait d'informations ou de données pour affiner ou alléger l'approximation qu'il a en vue font partie du quotidien du numéricien. Les formules de Lagrange (utilisant les fameux FLIP) auxquelles fait référence la note 6 ne se prêtent pas bien à ces adaptations, les différences finies de Newton apportent, on le sait, une réponse à cette problématique dans le cas monovariable. A partir de ce constat (Calvi [START_REF] Bloom | Kergin interpolants of holomorphic functions[END_REF] et Sauer, Xu [START_REF] Gaier | Lectures on complex approximation[END_REF] le faisaient déjà, au moins pour les projecteurs lagrangiens, à la terminologie près), on peut plutôt considérer, Π étant un projecteur polynomial de degré d sur E donné, une suite finie (Π 0 , ..., . . . , Π d = Π), où chaque Π k est un projecteur polynomial de degré k sur E , satisfaisant à :

Π k • Π k+1 = Π k , 0 ≤ k ≤ d -1 (2.1)
que nous qualifierons de structure de Newton ( SN en abrégé) pour Π et que nous noterons [Π], faute de mieux ( en étant conscient de l'ambiguïté de cette notation puisqu'elle fait abstraction des d premiers termes 7 de la suite (Π 0 , Π 1 , . . . , Π d )). On associe aussi à cette structure ses 5. Pas toujours explicitée. 6. On peut donc présenter ce projecteur de deux façons ; par exemple,pour le projecteur ( sur un espace approprié) de Lagrange monovariable Ł[A] où A = {a 0 , .., a d } est une partie de points deux à deux distincts de C, on dispose de la formule explicite (via les FLIP) et bien connue avec les polynômes de Lagrange mais aussi de la description de l'espace des conditions via les formes de Dirac [a 0 ], .., [a d ] qui engendrent cet espace.

7. Les termes de cette suite sont nommés facteurs de [Π].

sommants (de Newton) :

π 0 := Π 0 , et π i := Π i -Π i-1 , i = 1, . . . , d, (2.2) 
il est à noter que l'image de π i n'est rien d'autre que l'intersection de P i (K n ) et du noyau de Π i-1 pour i=1,. . ., d, avec la convention que Π -1 est l'endomorphisme nul 8 . En reprenant le contexte de la note 5, [L[A]] correspond à la suite (L[A 0 ], ....., L[A d ]), où A k = {a 0 , .., a k }, ce pour 0 ≤ k ≤ d ; l'image du sommant d'ordre k ( voir note 7) étant engendrée par le polynôme (Xa 0 ).....(Xa k ), il existe une forme linéaire continue ( sur un espace de Fréchet approprié) µ k telle que : π k (P) = µ k (P)(Xa 0 ).....(Xa k ). Il serait possible, on le voit bien, de définir par ce biais les différences divisées de Newton ; ce qui incite fortement à penser que cette notion de structure de Newton peut dépasser les objections mises en évidence en début de paragraphe, cette approche faisant apparaître tout naturellement le remède classique donné du cas monovariable. Plus généralement étant donnée une SN (Π 0 , Π 1 , . . . , Π d )) sur un espace fonctionnel approprié, celui-ci résulte des inclusions ( découlant immédiatement de la définition des SN) des espaces de condition : CND(Π k ) ⊂ CND(Π k+1 ), pour 0 ≤ k ≤ d -1.

Définition du produit de Newton

L'idée de cette notion part là aussi d'un état des lieux portant sur les limites ( peut-être la contrepartie de la simplicité de sa définition) du produit tensoriel de deux projecteurs, rappelons les : tout d'abord la rigidité de l'espace fonctionnel sur lequel il agit ( essentiellement un produit cartésien de tels espaces, cela peut ne pas suffire en pratique) puis (et pour les mêmes raisons) il renvoie en général un polynôme de degré trop important, enfin le résultat ne donne pas, en général, des projecteurs polynomiaux répertoriés ( même à partir de projecteurs naturels). Donnons nous pour s = 1, 2, [Π s ] = (Π s 0 , . . . , Π s d ) des SN de degré d sur des espaces fonctionnels ( classiques) de Fréchet E n s (X s ) auxquels nous associons des bases adaptées de fonctionnelles µ s = (µ s α s ) 9 . Nous montrons alors (cf le théorème 4.5 du premier chapitre et ses conséquences ) qu'il existe une (unique) structure de Newton [Π], de même degré mais sur E n (X) où n = n 1 + n 2 and X = X 1 × X 2 telle que pour tout k de {0, ..., d} on ait :

CND(Π k ) = Vect(µ 1 α 1 ⊗ µ 2 α 2 : |α 1 | + |α 2 | ≤ k) (2.3)
Par là même on voit que les deux premières 10 objections concernant le produit tensoriel de projecteurs sont levées. Nous nommerons cette SN produit de Newton des SN [Π s ], s = 1, 2 11 et nous la noterons :

[Π 1 ] ⊗ N [Π 2 ]
; et avec un abus déjà signalé on écrira aussi Π 1 ⊗ N Π 2 pour le dernier facteur ( celui de degré d donc) de cette nouvelle 12 SN.

Exemples de produit de Newton

A travers ces exemples, qui souligne nettement le caractère endogamique de ce concept, nous allons voir que le dernier défaut répertorié (plus haut) du produit tensoriel de projecteurs ne tient plus (à une nuance près 13 pour le produit de Newton de projecteurs usuels. On a immédiatement via les espaces de condition : 8. L'inclusion non triviale (i.e gauche droite) se prouve comme suit ; prenant p dans l'image considérée, on a l'existence de f de E tel que p = Π i ( f ) -Π i-1 ( f ) en composant par Π i , on obtient l'inclusion inverse. 9. i.e (µ s α s ) α s |≤d est une base de CND(Π s k ), ce pour tout k de {0, .., d}. 10. Pour la première, on travaille donc sur E (X 1 × X 2 ) au lieu de E (X 1 ) ⊗ E (X 2 ). 11. Que nous qualifierons par la suite de diviseurs de cette structure produit. 12. Il faut néanmoins noter que l'on trouve dans les travaux de Biermann (circa 1900) sur l'approximation des intégrales doubles une notion embryonnaire un peu similaire ; nous reviendrons sur ce point un peu plus loin. [START_REF] Bloom | Kergin interpolants of holomorphic functions[END_REF]. Le produit de Newton de deux SN de Kergin n'en est plus une -trop de Dirac dans son espace de conditionsnéanmoins cela donne naturellement naissance à un nouveau type de SN cf 6.6 du premier chapitre. Interpolation de Lagrange dans P d (x) en les points de X = {x j , j = 0, . . . , d} ⊂ R Interpolation de Lagrange dans P d (y) en les points de Y = {y j , j = 0, . . . , d} ⊂ R Interpolation de Lagrange dans P d (x, y) en les points de {(x i , y j ), i + j ≤ d} ⊂ R 2 TABLE 2. Exemples de quelques produits de Newton de projecteurs. Bien sûr un tel ensemble est unisolvant et par ailleurs les structures de Newton l'engendrant sont uniques (modulo l'espace fonctionnel cela va de soi) en se plaçant dans le même contexte dimensionnel. Un autre intérêt apporté par cette définition réside dans l'utilisation de la formule (théorème 4.5 (2) du chapitre 1) fondamentale exprimant simplement l'effet de

Π 1 ⊗ N Π 2 sur E (X 1 ) ⊗ E (X 2 ). Plus précisément 14 ( où on a posé Π = Π 1 ⊗ N Π 2 15 : Π( f 1 ⊗ f 2 ) = ∑ (i, j)∈N d (2) π 1 i ( f 1 ) ⊗ π 2 j ( f 2 ), f i ∈ E (X i ), (2.4) 
où les π s i correspondent aux sommants de Newton de Π s ; ce qui peut aussi se formuler de cette façon : Cela nous permet de généraliser le classique résultat de Nicolaides 16 ( et de l'obtenir naturellement contrairement à son habituelle présentation). Exposons sommairement l'idée directrice, à la lumière des formules précédentes, le cas bivariable ( dans le but de déterminer les FLIP du produit de Newton de structures lagrangiennes monovariables) en considérant 

Π( f 1 ⊗ f 2 ) = ∑ i+ j=d Π 1 i ( f 1 ) ⊗ Π 2 j ( f 2 ) -∑ i+ j=d-1 Π 1 i ( f 1 ) ⊗ Π 2 j ( f 2 ) (2.5)
Π 1 = L[A] = L[a 0 , ..., a d ] (resp. Π 2 = L[B] = L[b 0 , ..., b d ]) ainsi
Π 1 i ( f 1 ) = 0 dès que i < k (resp. Π 2 j ( f l ) = 0 dès que j < l) : F A⊗ N B k,l = l k ⊗ m l

18

. Examinons maintenant le cas correspondant à k + l = d -1, les mêmes ingrédients fournissent alors :

F A⊗ N B k,l = l k+1 ⊗ m l + l k ⊗ m l+1 -l k ⊗ m l = (l k ⊗ m l )F C k,l k,l 19 
, en utilisant à nouveau (2.5), il est facile de déterminer ce dernier FLIP :

x-a k a k+1 -a k -y-b l b l+1 -b l -1. Plus généralement on dispose de la même formule F A⊗ N B k,l = (l k ⊗ m l )F C k,l
k,l , là encore une utilisation de (2.5) conduit à une expression explicite ( mais plus lourde que précédemment car de degré dkl) de F C k,l k,l . Toutefois si on se place dans un cadre similaire ( mais plus général ) que Nicolaides ( dans le plan toujours) en supposant qu'il existe d droites D 1 , ...., D d ,d'équations respectives φ 1 = 0, ...,

φ d = 0 telles que : (a k , b l ) ∈ D s si k + l = s et (a k , b l ) /
∈ D s dès que k + l < s, nous avons 20 :

F A⊗ N B k,l = 1 λ k,l (l k ⊗ m l )( d ∏ s=k+l+1 φ s ), (2.6) 
où on a posé λ k,l = ∏ d s=k+l+1 φ s (a k , b l ). Cette formule s'étend mécaniquement en dimension n ≥ 3 en considérant des produits de Newton de n structures lagrangiennes monovariables, le rôle des droites étant joué cette fois par des hyperplans.

2.5. Propriétés du produit de Newton 2.5.1. Arithmétique des produits de Newton. Le contexte et la terminologie utilisés appellent des concepts et des résultats arithmétiques, on peut les résumer comme suit : Proposition 2.2. Tout projecteur polynomial sur un espace produit est le produit de Newton de projecteurs polynomiaux irréductibles et ce de façon unique ( cf th 5.1 du premier chapitre).

Dans le même ordre idée on peut s'interroger sur la nature des diviseurs d'un produit de Newton et nous obtenons ( Voir paragraphe 6.4 du chapitre 1) que les diviseurs d' un projecteur de type Lagrange-Hermite sont du même type. 21 Nous présentons dans la dernière section de cette introduction une application de ce résultat à la présentation d'une solution plus fluide d'un problème similaire à celui posé par Ciarlet et Raviart ( page 187 de leur article de l' Arch.Rational Mech Anal,Vol 46). [START_REF] Bloom | On the multivariate transfinite diameter[END_REF]. Qui donne le FLIP de l'ensemble unisolvant ( d'ordre 2.5.2. Résultats algébriques. Ceux-ci tiennent grosso modo en deux items :

d de R n ) {(k 1 , ..., k n ) ∈ N n , ∑ n i=1 k i ≤ d} ; il
(1) Déterminant de Vandermonde généralisé : La formule 5.10 du premier chapitre donne en effet le déterminant de Vandermonde d'un projecteur polynomial produit de Newton en fonction des déterminants de Vandermonde des diviseurs. A notre connaissance une telle formule ( estée consciencieusement pour n = d = 2) semble originale.

(2) Conservation des relations différentielles homogènes :

Les travaux de Calvi ( [START_REF] Bloom | A continuity property of multivariate Lagrange interpolation[END_REF]) et de Calvi et Filipsson ( [14]) caractérisent les projecteurs polynomiaux satisfaisant à une telle conservation. On pouvait se demander si le produit de Newton de deux projecteurs de ce type pouvait l'être encore : C'est effectivement le cas si ( et seulement si) les diviseurs sont trivialement centrés. 22 

APPLICATIONS À L'APPROXIMATION DES FONCTIONS

La problématique

Nous travaillons sur des espaces fonctionnels de Fréchet dont la topologie est plus fine que celle de la convergence uniforme sur tout compact. Par suite de Newton sur un tel espace E(X) nous entendons une suite de projecteurs polynomiaux sur cet espace (Π d ) d telle que, pour tout d, (Π 0 , ..., . . . , Π d ) soit une structure de Newton de degré d. Nous dirons que cette suite de Newton converge ( dans E(X)) si la suite ((Π d )( f )) d converge uniformément sur tout compact de X, ce pour tout f dans E(X). Le problème que l'on se pose dans ce chapitre peut se formuler ainsi : étant données deux suites de Newton convergentes (Π s d ) d sur des espaces E(X s ), où s = 1, 2, déterminer des conditions suffisantes ( concernant l'ensemble F des fonctions sur lesquelles agit le produit de Newton) pour que la suite de Newton (Π

1 ⊗ N Π 2 ) d converge sur F (idéalement F = E(X) ,où X = X 1 × X 2 ).
3.2. Un mot de la méthode employée 23 24 Elle repose d'abord sur une expression (obtenue à partir de propriétés des projecteurs et du fait que nous disposons d'un développement en série de polynômes d'un type adapté pour f ) de la différence Π d ( f )f qui peut se voir alors comme le reste d'ordre d d'une série de fonctions. Plus précisément et en supposant que l'on parte de 25 :

f (z 1 , z 2 ) = ∞ ∑ j=0 ∑ |α|+|β |= j c αβ ( f )p α,β (z 1 , z 2 ), (3.1) 
où p α,β (z 1 , z 2 ) = p 1 α (z 1 )p 2 β (z 2 ) et deg p 1 α = |α| et deg p 2 β = |β |
, il vient par application de Π d et de la compatibilité des topologies en jeu 26 : 

f -Π d ( f ) = ∞ ∑ j=d+1 ∑ |α|+|β |= j c αβ ( f ) ∑ (i 1 ,i 2 )∈B(d,α,β ) π 1 i 1 b(α, µ 1 , •) π 2 i 2 b(β , µ 2 , •) , (3.2)
B(d, α, β ) = {(i 1 , i 2 ) ∈ N 2 : d + 1 ≤ i 1 + i 2 ; i 1 ≤ |α|; i 2 ≤ |β |}. (3.3)
Ensuite le théorème de Banach-Steinhaus, appliquée aux sommants de Newton des SN diviseurs, nous fournit-via une inégalité triangulaire-une majoration de la norme de la convergence uniforme (sur un compact de X donné). Il reste enfin (et cette partie dépend des propriétés des éléments de F) à exploiter cette majoration pour qu'elle nous donne le résultat escompté. On pourrait observer que cette méthode se reconduit avec des hypothèses beaucoup moins restrictives sur les suites de Newton diviseurs (i.e que leurs convergences ne sont en fait nécessaire que sur un Fréchet, contenant les polynômes et inclus dans les espaces fonctionnels des diviseurs).

Les résultats

On a appliqué la stratégie précédente à trois types de fonctions.

(1) Les fonctions holomorphes sur un compact régulier.

(2) Des fonctions régulières sur un compact pour lequel les inégalités de Bernstein/Markov et de Jackson sont valables.

Les preuves des théorèmes fondamentaux (Th. , à partir de la convergence de suites de Newton sur des espaces de fonctions entières d'ordre et de type donnés, la convergence de la suite produit de Newton pour un espace similaire ; ceci nous permet d'obtenir un procédé d'approximation polynomial (un peu dans la même veine que [START_REF] Andersson | Complex Kergin interpolation[END_REF](page 222), plus général ici mais s'appliquant à un cadre plus restreint)des fonctions entières plurivariables et de croissance déterminée.Là encore rentrons davantage dans les détails : Il est bien connu que, contrairement à l'ordre d'une fonction entière, son type dépend de la norme utilisée. Pour mettre à profit le développement de Taylor d'une telle fonction afin d'utiliser la stratégie déployée plus haut, nous considérons des normes 27 (idée suggérée par la lecture de Ronkin [START_REF] Filipsson | Complex mean-value interpolation and approximation of holomorphic functions[END_REF])sur les espaces C m dont la boule unité reste invariante sous l'action naturelle du groupe G m , G désignant celui des rotations complexes fixant 0 ; ce choix restreint bien sûr la portée du résultat qui va suivre mais on notera que les normes usuelles possèdent toutes cette propriété. Comme plus haut, nous travaillons avec 

C n = C n 1 × C n 2 , n s ≥ 1et N s représente
E s = E n s ω (A s , N s ) ⊂ H (C n s ), s = 1, 2.
Nous obtenons par exemple pour ω ≤ 1 : Theorem 3.1. Soient N s = (Π s 0 , Π s 1 , . . . ) des suites de Newton convergentes dans E s , s = 1, 2 et a s > 0 pour s = 1, 2 et en définissant une norme N sur C n en posant :

N(z 1 , z 2 ) = a 1 N 1 (z 1 ) + a 2 N 2 (z 2 ), z s ∈ C n s , s = 1, 2.
(3.4) 

N 1 ⊗ N N 2 converge sur E n ω (A, N) dès que A < min A 1 a ω 1 , A 2 a ω 2 . (3.5)
Une application arithmétique envisageable (partiellement rédigée et hors thèse sous sa forme actuelle) pourrait être une autre démonstration du théorème de Baker qui généralise (au cas plusieurs variables) le classique résultat de Polya concernant la caractérisation des fonctions entières de type strictement inférieur à ln 2 envoyant N dans Z.

GÉOMÉTRIE ET COMBINATOIRE DES STRUCTURES DE LAGRANGE À PLUSIEURS VARIABLES

On revient ici sur des questions abordées en 3.5.2 du chapitre 1 en y donnant des preuves et une recontextualisation. Partant d'un ensemble unisolvant (plan pour commencer) A, on cherche à construire et à dénombrer (autant que faire ce peut) les structures lagrangiennes dont L[A] est le dernier facteur 29 . Pour le cas où A est de degré 2, le théorème 1 de ce chapitre donne -en fonction de la configuration géométrique des points de A-une réponse complète à ces questions et montre, par exemple, que le nombre minimal de SN associées à un ensemble unisolvant plan est 48 et le nombre maximal 60 ; si on suppose que A est, de plus, un ensemble de Biermann le nombre de SN associées à A qui sont aussi des produits de Newton est 36. On voit donc que celles-ci possèdent bien une certaine épaisseur statistique dans ce cadre là tout au moins. Le cas du degré 3 pourrait aussi se traiter (et nous l'avons fait mais cette digression ne figure pas dans ce chapitre mais se trouve exposée sans démonstration dans le théorème 3.11 du premier chapitre ) géométriquement et conduirait, faute de calcul exact, à une minoration (576 pour être précis) du nombre de SN associées en revanche nous proposons ici un algorithme (reposant sur la géométrie des cubiques unicursales) permettant de construire un ensemble unisolvant d'ordre 3 à partir d'un d'ordre 2. Il est à noter que cette technique pourrait s'adapter à des ordres plus généraux. Dans cette optique (et en ne nous contenant plus au plan) le théorème 2 de ce chapitre propose une minoration (certainement très perfectible 30 )du nombre de SN associées à un ensemble unisolvant arbitraire, explicitement (en dimension n et pour le degré d) nous obtenons (algébriquement) comme minorant :

(n + 1)n d-1 n! n-1 d-1 ∏ k=1 n + k k d-k
.

Ce qui montre, en particulier, que la minoration, donnée par le théorème 3.11 du premier chapitre, pour n = 2, d = 3 n'était pas optimale.

RÉSULTATS ANNEXES ET PERSPECTIVES

La première sous-section expose un travail achevé mais non publié et ne figurant pas dans notre thèse. Elle ancre le concept de SN dans une application concrète et typique d'analyse numérique. Les deux autres, encore en gestation, donnent deux applications (éventuelles) de la notion de produit de Newton. 5.1. Autour d'une structure de Newton plane de degré 5 (cf 2.5.1 )

On trouve dans l'article de Ciarlet et Raviart (cf. 2.5.1 pour la référence) un exemple de conditions d'interpolation de degré 5 dans le plan lié aux éléments finis. Les points d'interpolation sont les sommets a 1 , a 2 , a 3 d'un triangle et les milieux des côtés. Les conditions d'interpolation aux sommets sont celles de Taylor à l'ordre 2 (donc 6 conditions par sommet) et en chaque milieu une condition faisant intervenir la dérivée normale en ce point (i.e le produit scalaire du gradient avec le vecteur normal -au côté sur lequel se trouve le milieu-intérieur) donc en tout 21 = 5+2 2 conditions. Les conditions en les milieux, sûrement inhérentes aux éléments finis 31 , ne correspondent pas à notre contexte ; nous allons les modifier (penser qu'en les milieux des conditions de Lagrange suffiraient est illusoire comme le montrent des calculs élémentaires quoique pénibles). Pour cela on considère ω de sorte que (a 1 , a 2 , a 3 , ω) soit un parallélogramme et aux conditions maintenues sur a 1 , a 2 , a 3 , on ajoute en ω les conditions de Taylor d'ordre 1 32 . En résumé on dispose d'un espace vectoriel C 5 , engendré par 21 fonctionnelles de E = C ∞ (Ω), Ω ouvert de R 2 contenant le parallélogramme ou les sommets de celui-ci seulement. Ces conditions d'interpolation (au bon nombre de 21 = dim(P 5 (R 2 ))) suffisent elles à déterminer un et un seul polynôme de P 5 (R 2 ) ? Telle est en substance la question que se pose dans ce contexte le numéricien. En général il y répond de façon calculatoire (système linéaire carré d'ordre 21 !) en montrant que si p est un élément de P 5 (R 2 ) vérifiant φ (p) = 0, pour tout φ de C 5 alors p = 0. Avec la terminologie que nous avons adoptée, cela signifie plutôt que C 5 doit être l'espace des conditions d'un projecteur plan de type Lagrange-Hermite (LH projecteur en abrégé), de degré 5. Notre démarche consiste alors à vérifier que l'on a affaire à un produit de Newton de SN unidimensionnelles de degré 5 ; l'avantage de cette approche est double : aucun calcul et l'obtention d'une SN donc d'une suite croissante d'espaces de conditions (donc de conditions d'interpolation liées au parallélogramme) aboutissant à C 5 . Pour cela on commence par observer (comme on le ferait pour l'approche calculatoire) que la problématique est invariante par transformation affine pour se ramener au carré (a = (0, 0), b = (1, 0), c = (0, 1), d = (1, 1)) ensuite on sait que les diviseurs de cette éventuelle SN ne peuvent être que du type LH dont les noeuds seront 0 et 1 avec des poids à déterminer. On trouve alors aisément que C 5 est l'espace des conditions de H ⊗ N H, où la structure de Newton de degré 5 unidimensionnelle [H] est déterminée par la suite des espaces de conditions de ses facteurs :

Vect([0]),Vect([0], [1]),Vect([0], [1], [D(0)]),Vect([0], [1], [D(0)], [D(1)]) et Vect([0], [1], [D(0)], [D(1)], [D 2 (0)]),Vect([0], [1], [D(0)], [D(1)], [D 2 (0)], [D 2 (1)]).

Développements en série de Newton généralisés pour les fonctions entières. Applications arithmétiques

Les résultats (3.4) et (3.5) du paragraphe 3.3 généralisés au produit de Newton de n suites de Newton monovariables convergentes (comme on en trouve dans le classique "Calcul des différences finies" de Gelfond) permettent d'obtenir pour certains types de fonctions entières des développements en série de polynômes. De ceci il semble légitime d'espérer des applications arithmétiques (Voir fin du paragraphe 3.3) telles que Gelfond en donne pour les fonctions entières d'une variable. [START_REF] Isaacson | Analysis of numerical methods[END_REF]. Ce type d'élément fini semble être celui d'Argyris chez les spécialistes. 32. Ce qui correspond presque à un type d'élément fini répertorié.

Généralisation des séries de Lidstone

Nous avons défini un projecteur polynomial monovariable (de degré quelconque ) sur E = C ∞ (R, K), à partir d'un opérateur de composition (i.e qui commute avec tous les opérateurs de translation de E ) sur E arbitraire. En utilisant des résultats de convergence consignés, par exemple, dans les ouvrages classiques de Whittaker ou Boas sur les développements (pour une variable) en séries de polynômes et la stratégie présentée dans la section 3 de cette introduction, on peut là aussi envisager des généralisations possibles (comme celle des polynômes de Bernoulli) au cas plurivariable.

PARTIE 1.

We propose a new way of combining two polynomial projectors on spaces of functions of few variables to obtain a polynomial projector on a space of functions of many variables. We present various algebraic properties of our construction and study the main approximation properties of the new projectors.

Article co-écrit avec Jean-Paul Calvi, publié à l'International Journal of Mathematics.

THE NEWTON PRODUCT OF POLYNOMIAL PROJECTORS PART 1 : CONSTRUCTION AND ALGEBRAIC PROPERTIES

INTRODUCTION

We study the problem of constructing approximation polynomial projectors on spaces of functions of many variables out of projectors on spaces of functions of fewer variables. The standard way of going, say, from one variable to two variables goes through the use of a tensor product. Let us briefly recall such a construction by considering the simple case of (continuous) projectors L i , i = 1, 2, defined on the space of continuous functions on K = [a, b] ⊂ R with values in the space P d (x) of univariate polynomials of degree at most d. Given a bivariate function f (x, y) defined on K 2 , taking h = f (x, •), we may compute L 2 (h)(y) which is a polynomial of degree at most d in y with continuous coefficients c j (x) defined on K, L 2 ( f (x, •))(y) = ∑ d j=0 c j (x)y j , and we may apply L 1 to the coefficient functions c j . The tensor product L 1 ⊗ L 2 is then defined by

(L 1 ⊗ L 2 )( f )(x, y) = ∑ d j=0 L 1 (c j )(x)y j . If f (x, y) = h(x)g(y) we have (L 1 ⊗ L 2 )( f ) = L 1 (h)L 2 (g)
which explains the use of the term tensor product.

The above construction can be extended to form the tensor product of any two projectors (provided that the first projector is well defined on the coefficients functions furnished by the second one). Tensor products are certainly the main multivariate approximation tools currently used in practical multivariate polynomial approximation. Yet, the procedure suffers from several drawbacks. First, the resulting projectors usually can hardly be extended to spaces of functions defined on something else than a Cartesian product. Next, the approximation polynomials furnished by a tensor product of two projectors yielding approximation polynomials of degree d does not return a polynomial in P d (x, y), that is, of total degree d in the variable (x, y) but rather a polynomial on P d (x) ⊗ P d (y) ⊂ P 2d (x, y), that is, of degree at most d in each (set of) variables. More seriously, it is not possible to recognize some fundamental multivariate projectors, such as, for instance, the Taylor projectors, see below, as tensor products. The main purpose of this paper is to propose a new way of combining two polynomial projectors, to obtain what we call their Newton product projector, which may be regarded as a modification of the classical construction that uses further properties of the projectors, namely, a suitable gradation of the interpolation conditions defining the projectors, which we will call a Newton structure, see below. Such gradation in turn relies on the natural gradation of P d (x) by the subspaces P j (x), j = 0, . . . , d. In Table 3 we collect a few relations which will be proved in the paper and which illustrate the way some fundamental multivariate projectors can be seen as Newton products of lower dimensional projectors. 

(x) at X = {x j , j = 0, . . . , d} ⊂ R Lagrange interpolation in P d (y) at Y = {y j , j = 0, . . . , d} ⊂ R Lagrange interpolation in P d (x, y) at {(x i , y j ), i + j ≤ d} ⊂ R 2 TABLE 3.
Examples of Newton products of a few fundamental projectors.

Content

We first provide the required background on polynomial projectors and introduce the notion of Newton structure giving various examples. Next, we define the Newton product of two polynomial projectors endowed with a Newton structure and derive its main algebraic properties. This work uses little more than elementary linear algebra. We will prove in a second work some forms of permanence theorems which show how a Newton product inherits approximations properties from its factors.

It is very likely that the theory could be extended to other kind of projectors (that is, projectors on other spaces of polynomials or on other classical spaces of functions). The whole paper can be seen as a generalization of the intertwining product for multivariate Lagrange interpolation introduced in [START_REF] Calvi | Intertwining unisolvent arrays for multivariate Lagrange interpolation[END_REF]. Other ways of combining projectors have been considered. We may for instance mention the work of Gordon in [START_REF] Gordon | Blending-function methods of bivariate and multivariate interpolation and approximation[END_REF].

We briefly collect the main general notation used in the whole paper.

Notation

Polynomials. The letter K will denote either R or C, P d (K n ) is the space of polynomials of n variables in K and of (total) degree at most d. Very often, as is done in this introduction, we will write instead P d (K n ) = P d (x), x = (x 1 , . . . , x n ), the ground field being usually clear from the context. We will freely use standard multi-index notation. For instance |α| denotes the length of the n-index (α 1 , . . . , α n ) and

D α = ∂ |α| /(∂ x α 1 1 . . . ∂ x α n n
) the usual differential operator. We denote by N d (n) the set of multi-indices of length not greater than d. Its cardinality is N d (n) = n+d d and this is also the dimension of the K-vector space P d (K n ). For α ∈ N n , we set e α : x → x α so that (e α : α ∈ N d (n)) is the usual monomial basis for P d (K n ). Unless otherwise specified, this basis is ordered according to the graded lexicographic order grlex (≺, ⪯) for which α ≺ β if |α| < |β or |α| = |β | and the leftmost nonzero entry of αβ is negative. Thus, for instance, (0, 2) ≺ (1, 1) ≺ (2, 0). Spaces of functions. We shall (mainly) work with two classes of spaces of functions (containing the polynomials) which are of particular interest as far as we are concerned with polynomial approximation. Most of our constructions can be done in much more general spaces. The minimal assumptions will be indicated in the text.

(A) The Fréchet space C s (Ω), s ∈ N ∪ {∞} of (real valued) functions which are s-times continuously differentiable on the open subset Ω of R n and, for K compact,

C s (K) = ∩ C s (Ω)
where Ω runs over all open neighborhood of K.

(B) The Fréchet space H (Ω) of holomorphic functions on the Runge domain Ω in C n and H (K) the space of functions holomorphic on a neighborhood of K, K a polynomially convex compact set in C n . We refer to [START_REF] Range | Holomorphic functions and integral representations in several complex variables[END_REF]VI.1.2] for material on Runge domain and polynomially convex compact sets in C n . The reader not familiar with complex analysis may assume that both Ω and K are ordinary convex sets.

(C) The above space are endowed with their usual topology. For instance, H (Ω) is endowed with the topology of uniform convergence on all compact subsets of Ω, and H (K) is endowed with the inductive limit topology of the H (Ω) when Ω runs over all open neighborhood of K. In particular, if F is any locally convex topological vector space, a linear map from H (K) into F is continuous if and only if all its restrictions to the spaces H (Ω), K ⊂ Ω, are continuous.

(D) Since the algebraic foundation is identical for all spaces above (and many others), they will only marginally appear in this first part and we will generally use the generic letter E to denote any of these spaces. When mentioned, the field K and the integer n are always related to E . Thus, for example, when E = C ∞ (Ω) with Ω ⊂ R 2 , we have K = R and n = 2. It is sometimes desirable to make apparent the integer n and the subset X of K n used in the definition of E . In that case, we write E n (X).

(E) The algebraic dual of a vector space W is denoted by W ⋆ whereas the topological dual of E is denoted by E ′ . An element of E ′ is called a functional or E -functional . 

E containing P d (K n ) is a continuous linear map Π : f ∈ E -→ Π( f ) ∈ P d (K n )
which coincides with the identity on its range, that is, such that Π(p) = p for every p ∈ P d (K n ).

In particular, a polynomial projector Π is onto and

Π 2 = Π. Here Π 2 = Π • Π. Given a basis B = (p α : α ∈ N d (n)) for P d (K n ), there exist (unique) functional µ α in E ′ , α ∈ N d (n), such that Π( f ) = ∑ |α|≤d µ α ( f ) p α , f ∈ E . (7.1) From Π 2 ( f ) = Π( f ) we get µ α ( f ) = µ α (Π( f )) and from Π(p β ) = p β , µ α (p β ) = δ αβ , α, β ∈ N d (n), (7.2) 
where δ αβ is the usual Kronecker delta. More generally, we will use the following definition.

Definition 7.2. An interpolation condition for Π is a functional µ ∈ E ′ such that µ(Π( f )) = µ( f ) for any f ∈ E . The set of all interpolation conditions is a subspace of E ′ called the space of interpolation conditions of Π and is denoted by CND(Π).

Thus, we have

µ ∈ CND(Π) ⇐⇒ µ( f ) = µ(Π( f )), f ∈ E (7.3) ⇐⇒ µ • (I -Π) = 0 (on E ), (7.4) 
where I denotes the identity mapping on E . The remark above shows that each µ α in (7.1) is an element of CND(Π). Conversely, any µ ∈ CND(Π) is a linear combination of the µ α . Indeed, applying µ on both sides of (7.1), taking into account that µ(Π( f )) = µ( f ) we get µ = ∑ |α|≤d c α µ α with c α = µ(p α ). From (7.2), we further get that the µ α are linearly independent. We therefore have the following lemma.

Lemma 7.3. CND(Π) is a N d (n)-dimensional subspace of E ′ and CND(Π) = span {µ α : |α| ≤ d}.
If f ∈ E and q ∈ P d (K n ), we have q = Π( f ) if and only if µ(q) = µ( f ) for every µ ∈ CND(Π). A polynomial projector is therefore uniquely determined by its space of interpolation conditions.

Observe also that the restrictions of the µ α to P d (K n ) form the dual basis of the p α in

P ⋆ d (K n ). In particular, CND(Π) |P d (K n ) = P ⋆ d (K n ). Conversely, a N d (n)-dimensional subspace V of E ′
is the space of interpolation conditions of some projector Π if and only

V |P d (K n ) = P ⋆ d (K n ). (7.5) 
In fact, if (ν α : α ∈ N d (n)) is a basis of V , then the projector Π is defined by

Π( f ) = ∑ |α|≤d ν α ( f ) q α ,
where

(q α : α ∈ N d (n)) is the basis of P d (K n ) which is dual to (ν |P d (K n ) : α ∈ N d (n)).
The existence of such basis being implied by (7.5).

Here is another useful description of the space of interpolation conditions.

Lemma 7.4. We have

CND(Π) = E ′ • Π, where E ′ • Π = {µ • Π , : µ ∈ E ′ }.
Démonstration. Note that, because of the continuity of Π, the elements of

E ′ • Π are functio- nals. Let µ •Π ∈ E ′ •Π, for every f ∈ E , since Π 2 = Π, we have (µ •Π)(Π( f )) = (µ •Π 2 )( f ) = (µ • Π)( f ) which means that µ • Π ∈ CND(Π). The converse is obvious since µ = µ • Π for all µ ∈ CND(Π). □ 7.1.2.
Characterization of a space of interpolation conditions. The following lemma collects some useful (classical) criteria for deriving equality (7.5). We omit the proof which follows from basic principles of linear algebra.

Lemma 7.5. Let V a subspace of dimension N d (n) of E ′ and M = (µ α : α ∈ N d (n)) a basis of V .
The following assertions are equivalent.

(1) There exists a polynomial projector Π of degree d on E such that CND(Π) = V .

(2) The linear map Φ µ :

q ∈ P d (K n ) -→ (µ α (q) : α ∈ N d (n)) ∈ K N d (n) is an isomorphism.
(3) There exist polynomials p

β ∈ P d (K n ), β ∈ N d (n), such that µ α (p β ) = δ αβ , (α, β ) ∈ N d (n) × N d (n). (7.6) 
(4) For some (and hence for every) basis B = (b β :

β ∈ N d (n)) of P d (K n ) the N d (n) × N d (n) matrix vdm(M, B) = (µ α (b β )) is invertible ; that is VDM(M, B) ̸ = 0 where VDM(M, B) = det(vdm(M, B)) = det(µ α (b β )). (7.7) 
Of course, given, say M and B satisfying Condition (3) in the above lemma, the corresponding projector Π, which we will denote Π V or Π M , is defined by This terminology is justified by the fact that when µ α is a Dirac point evaluation functional, that is µ α ( f ) = f (a α ) for some a α ∈ K n , and p α = e α then VDM(µ , p) is but the ordinary Vandermondian from Lagrange interpolation theory, see 7.2.1 below.

Π( f ) = ∑ |α|≤d µ α ( f )p α
Note that if

M ′ = (µ ′ α : α ∈ N d (n)) = QM, that is, µ ′ α = ∑ |β |≤d Q αβ µ β ,
and

B ′ = (b ′ α : α ∈ N d (n)) = RB, that is, b ′ α = ∑ |β |≤d R αβ b β ,
where Q and R are invertible then

vdm(M ′ , B ′ ) = Q • vdm(M, B) • R T , (7.8) 
where R T denotes the transpose of R. ) is called a bi-orthogonal system for Π.

Thus, {M, B} is a bi-orthogonal system if and only if vdm(M, B) = I. Given M (resp. B), we can construct B ′ (resp M ′ ) such that {M, B ′ } (resp. {M ′ , B}) is a bi-orthogonal system. Note however that, in practice, the construction of such new basis is a hard computational problem as it requires the (exact) inversion of a large matrix. Lemma 7.8. Let Π be a projector of degree d on E . Let M be a basis of CND(Π) and B a basis of

P d (K n ). Let Q = vdm(M, B) -1 . If M ′ = QM and B ′ = Q T B then {M ′ , B} and {M, B ′ } are bi-orthogonal systems.
Démonstration. In view of (7.8)

, vdm(M ′ , B) = Q•vdm(M, B) = I and vdm(M, B ′ ) = vdm(M, B)• (Q T ) T = I. □ 7.1.4.
Image of a projector by an affine automorphism. Given an affine automorphism A of K n , we may define for any µ ∈ E ′ (X), an element

A ⋆ µ ∈ E ′ (A (X)) by (A ⋆ µ)( f ) = µ( f • A ), f ∈ E (A (X)).
Likewise, if Π is a polynomial projector of degree d on E (X) then A ⋆ Π is a polynomial projector of degree d on E (A (X)) where

(A ⋆ Π)( f ) = Π( f • A ) • A -1 , f ∈ E (A (X)), (7.9) 
and one immediately checks that

CND(A ⋆ Π) = A ⋆ CND(Π) = {A ⋆ µ : µ ∈ CND(Π)}. ( 7 

.10)

The projector A ⋆ Π is the image of Π by A . A space V satisfies any of the conditions in Lemma 7.5 if and only if A ⋆V satisfies a similar condition and

A ⋆ Π V = Π A ⋆V .
This observation may sometimes simplify the verification of such conditions. An example is given in subsection 7.2.2 below.

We now indicate a few examples that will serve to illustrate all the results in this paper.

7.2. Examples 7.2.1. Lagrange interpolation. Let A = {a α : α ∈ {N d (n)} ⊂ K n a set of N d (n) pairwise distinct points not lying on an algebraic hypersurface {p = 0} in K n with deg(p) ≤ d, or equi- valently such that VDM(A) = det(e α (a β )) ̸ = 0.
A is said to be unisolvent of degree d. For every function f defined on A there exists a unique polynomial

p ∈ P d (K n ) such that p = f on A.
This polynomial is the Lagrange interpolation polynomial of f at A. We will denote it by

L[A, f ]. The Lagrange interpolation formula is L[A, f ](x) = ∑ |α|≤d f (a α )ℓ α (x), ℓ α (x) = VDM(A : a α ← x)/VDM(A), (7.11) 
where VDM(A : a α ← x) means that we substitute x for a α in the determinant. The polynomials ℓ α are the fundamental Lagrange interpolation polynomials (FLIP) and ℓ = (

ℓ α : α ∈ N d (n)) is the Lagrange basis. The map L[A] : f ∈ E → L[A, f ] ∈ P d (K n ) is a projector for all spaces E = C s (Ω), C s (K), H (Ω), H (K) provided that A ⊂ Ω (or A ⊂ K).
This follows from the continuity of the Dirac functional [a α ] : f → f (a α ) in each of the previous spaces. In fact,

CND(L[A]) = span {[a α ] : α ∈ N d (n)} . (7.12)
Of course, VDM(A) corresponds to VDM(M, B) in (7.7) when M is formed of the Dirac functional [a α ] and B is the basis of monomials. Note that {M, ℓ} is a bi-orthogonal system. Relatively little is known about the approximation properties of multivariate Lagrange interpolation projectors. We refer the reader to [START_REF] Bloom | Polynomial interpolation and approximation in C d[END_REF] and the references therein.

7.2.2. Lagrange-Hermite interpolation. In Lagrange-Hermite interpolation, the interpolation space may contain derivatives of Dirac functionals. If

S = {(a i , S i ) : i = 1, . . . , k}, k ∑ i=1 ♯S i = n + d d ,
where

S i is a directed subset of N d (n), that is, (β ∈ S i and α k ≤ β k , k = 1, . . . , n) =⇒ α ∈ S i , (7.13) 
then the Lagrange-Hermite interpolation LH[S] projector is defined by

CND(LH[S]) = span {D α [a i ] : α ∈ S i , i = 1, . . . , k} , where D α [a i ] : f → D α f (a i ). (7.14)
The projector is well defined provided that the corresponding Vandermondian is not null. The continuity holds as in the Lagrange interpolation case except that, of course, when E = C s (Ω) or C s (K) we must assume s ≥ max{|α|, α ∈ S i , i = 1, . . . , k}.

When k = 1, we obtain a Taylor projector,

T d a : f ∈ E → T d a ( f , x) = d ∑ k=0 ∑ |α|=k k α D α f (a) (x -a) α k! ∈ P d (K n ). (7.15)
The condition that the sets S i are directed implies the often useful algebraic property that the kernel of LH[S] is an ideal, see [START_REF] Bloom | A continuity property of multivariate Lagrange interpolation[END_REF]. When this condition is dropped, one rather speaks of Birkhoff interpolation. Many examples can be found in [START_REF] Lorentz | Multivariate Birkhoff interpolation[END_REF].

In the univariate case, Lagrange-Hermite projectors are limits of Lagrange projectors in which certain points coalesce. In general this is no longer true in the higher dimensional case.

Orthogonal projection.

Let m be a positive (Borel) measure with compact support C in K n such that |p| 2 dm = 0 implies p = 0, which is equivalent to say that C is not included in an algebraic hypersurface of degree ≤ d. For f , g ∈ L 2 (dm), as usual, we denote by ⟨ f , g⟩ the Hermitian product f ḡdm and ∥ • ∥ m the corresponding quadratic norm. The orthogonal projection

P d,m of d ∈ E onto P d (K n ) is a polynomial projector. If B = (b α = b α (m, •) : α ∈ N n (d)) (7.16)
is the orthonormal basis of P d (K n ) obtained by the Gram-Schmidt process from the monomial basis, we have

P d,m ( f ) = ∑ |α|≤d ⟨ f , b α ⟩b α , f ∈ E . (7.17)
The assumption on the support C of m ensures the existence of B. The continuity of P m is immediate, provided that C ⊂ X for E = E (X). We have

CND(P d,m ) = span {µ α : f → ⟨ f , b α ⟩ : α ∈ N d (n)} = span {ν α : f → ⟨ f , e α ⟩ : α ∈ N d (n)} .
Observe that the usual Gramian determinant G(d, m) = det(⟨e α , e β ⟩) is a Vandermondian for P d,m in the sense of (7.7). Of course, if

M = (µ α : α ∈ N d (n) and P = (b α , : α ∈ N d (n)) then {M, P} is a bi-orthogonal system.
Reasonable assumptions on m (we will turn to that later) implies convergence of P d,m ( f ) to f for all f in E and most spaces E . These assumptions are particularly mild in the case of E = H (K). Basic (multivariate) results are established in [START_REF] Zériahi | Capacité, constante de čebyšev et polynômes orthogonaux associés à un compact de C n[END_REF] and [START_REF] Zériahi | Inegalités de Markov et développement en série de polynômes orthogonaux des fonctions C ∞ et A ∞[END_REF].

Kergin interpolation.

Let A = {a 0 , . . . , a d } a set of not necessarily pairwise distinct points in a convex subset C of K n . The Kergin interpolation projector K A is defined by the relation

K A ( f )(x) = d ∑ k=0 ∆ k D k f k ∑ i=0 t i a i (x -a 0 , x -a 1 , . . . , x -a k-1 )dm k (t), (7.18) 
where

D k f denotes the (total) Fréchet k-th derivative of f , ∆ k is the standard simplex, ∆ k = (t 0 , . . . ,t k ) ∈ [0, 1] k+1 : k ∑ j=0 t j = 1 , (7.19) 
and dm k is the Lebesgue measure on ∆ k . This projector was introduced by Paul Kergin at the end of the seventies [START_REF] Kergin | A natural interpolation of C K functions[END_REF]. Although it is not immediately apparent from (7.18), K A does not depend on the ordering of the points a i so that the notation K A is correct. We will sometimes write however 

K A = K[a 0 , . . . ,
K[a 0 , . . . , a d ]( f ) = LH[⟨ω, a 0 ⟩, . . . , ⟨ω, a d ⟩](h)(⟨ω, x⟩).
(7.20)

Following [START_REF] Cavaretta | Multivariate interpolation and the Radon transform[END_REF] we say that Kergin interpolation lifts Lagrange-Hermite interpolation. (A characterization of the univariate projectors that may be lifted in a similar way can be found in the same reference.)

We always have

K A ( f )(a i ) = f (a i ) and, more generally, if a i is repeated s times in A then D k K A ( f )(a i ) = D k f (a i ), k = 0, . . . , s -1.
In particular, if all the points coincide, we obtain a Taylor projector,

K[a, a, . . . , a] = T d a .
The map K A is continuous on all spaces E (X) provided that X is convex and A ⊂ X. In the real case, that is when E = C s (Ω) or C s (K), one must assume, in general, that s ≥ d. However, if the points A satisfies certain natural geometrical assumptions, the projector can be extended up to C n-1 (Ω) (where n is the dimension of the ambient space). This is shown in [START_REF] Micchelli | A constructive approach to Kergin interpolation in R k : multivariate B-splines and Lagrange interpolation[END_REF]. In the bivariate case, a simple explicit extension to C 1 (Ω) can be found in [START_REF] Bos | Kergin interpolants at the roots of unity approximate C 2 functions[END_REF]. In the complex case, the assumption of convexity can be replaced by the (weaker) assumption of C-convexity, see [START_REF] Andersson | Complex Kergin interpolation[END_REF], [START_REF] Andersson | Complex Kergin interpolation and the Fantappiè transform[END_REF], and [START_REF] Andersson | Complex convexity and analytic functionals[END_REF].

Observe that (when X is convex)

CND(K A ) = span f → ∆ k D α f k ∑ i=0 t i a i dm k (t) : |α| = k, k = 0, . . . , d ,
and the interpolation property mentioned above implies,

[a i ] ∈ CND(K A ), i = 0, . . . , d.
Results on approximation of functions in H (K) by Kergin interpolation polynomials can be found in [START_REF] Bloom | Kergin interpolants of holomorphic functions[END_REF] and [START_REF] Bloom | The distribution of extremal points for Kergin interpolation : real case[END_REF]. For Kergin interpolation at specific sets of points in the real case, we refer to [START_REF] Bos | Kergin interpolants at the roots of unity approximate C 2 functions[END_REF] and [START_REF] Phung | On the convergence of Kergin and Hakopian interpolants at Leja sequences for the disk[END_REF].

7.2.5. Hakopian interpolation and other D-centered Taylor projectors. Let X be a set of n + d points (d ≥ 1) in general position in a convex set Ω in K n . By general position, we mean that the points of any subset formed of n + 1 points of X are affinely independent (hence form an affine basis of K n ). One can show [START_REF] Hakopian | Multivariate divided differences and multivariate interpolation of Lagrange and Hermite type[END_REF] that the space

V = span f → cv(A) f dm : A ∈ X n ,
satisfies the condition of Lemma 7.5. Here X n denotes the class of all subsets of X of cardinality n, cv(A) is the convex hull of A and dm = dm A is the Lebesgue measure on cv(A). The corresponding projector, introduced in [START_REF] Hakopian | Multivariate divided differences and multivariate interpolation of Lagrange and Hermite type[END_REF], is denoted by H X and is called a Hakopian interpolation projector. Again, the continuity is immediate and the observation on the use of the C-convexity in the previous section is still valid.

In fact, Kergin and Hakopian interpolation projectors are extreme cases of certain mean value interpolation projectors, see [START_REF] Filipsson | Complex mean-value interpolation and approximation of holomorphic functions[END_REF]. A Hakopian projector can also be regarded as a form of derivative of Kergin projectors, see [START_REF] Calvi | The polynomial projectors that preserve homogeneous differential relations : a new characterization of Kergin interpolation[END_REF]. Still a more general class of projector is given by the D-centered Taylor projectors. They are defined by a space of interpolation conditions of the form

V = span { f → µ i (D α f ) : |α| = i, i = 0, . . . , d} , D α µ i = µ i • D α ∈ E ′ , (7.21) 
with the condition µ i (1) = 1, i = 0, . . . , d, which ensures that V satisfies the conditions of Lemma 7.5, see [START_REF] Calvi | Polynomial interpolation with prescribed analytic functionals[END_REF]. The corresponding projectors will be denoted by C(µ 0 , . . . , µ d ).

In the case where µ i is the Dirac functional [a i ] one obtains the classical Abel-Gontcharov projectors,

A(a 0 , . . . , a d ) = C([a 0 ], . . . , [a d ]). (7.22)
Taylor projectors again are example of Abel-Gontcharov projectors. D-centered projectors are exactly those which preserve homogeneous partial differential relations, see [START_REF] Calvi | The polynomial projectors that preserve homogeneous differential relations : a new characterization of Kergin interpolation[END_REF]. A projector Π is said to preserve homogeneous partial differential relations when, for every suitably defined function f and every homogeneous polynomial Q, the relation

Q(D)( f ) = 0 implies Q(D)(Π( f )) = 0 where Q(D) = ∑ |α|=s c α D α if Q = ∑ |α|=s c α e α .
Let us point out that many important operators in approximation theory are not polynomial projectors. For example, positive operators (Bernstein, Landau operators) or Hermite-Fejer operators are not projectors.

NEWTON STRUCTURES AND EXAMPLES

Introduction

Let us start from the classical Newton formula for univariate Lagrange interpolation which states

L[A, f ] = d ∑ i=0 f [a 0 , . . . , a i ](x -a 0 ) . . . (x -a i-1 ), A = {a 0 , . . . , a d }, (8.1) 
where f [a 0 , . . . , a i ] denotes the divided difference of f with respect to a 0 , . . . , a i . This fundamental formula can be found in almost any textbook on numerical analysis, see e.g. [31, chapter 6].

In particular, it follows that

L[A, f ] = L[A d-1 , f ] + f [a 0 , . . . , a d ](x -a 0 ) . . . (x -a d-1 ), A d-1 = {a 0 , . . . , a d-1 },
and

CND(L[A]) = CND(L[A d-1 ]) ⊕ span { f → f [a 0 , . . . , a d ]} .
From the numerical analysis point of view, the main advantage of the Newton formula is that adding one interpolation point just requires the computation of one new divided difference. More generally, setting A k = {a 0 , . . . , a k }, we have the following remarkable structural relations,

L[A d ] = L[A], and L[A k ] • L[A k+1 ] = L[A k ], k = 0, . . . d -1.
A similar structural decomposition for an arbitrary polynomial projector will be called a Newton structure. The precise definition is as follows.

General Newton structures

Definition 8.1. Let Π a polynomial projector of degree d on E . We say that a sequence of

d + 1 projectors Π k of degree k, k = 0, 1, . . . , d, is a Newton structure for Π if Π = Π d , and Π k • Π k+1 = Π k , 0 ≤ k ≤ d -1. (8.2)
We write [Π] = (Π 0 , Π 1 , . . . , Π d ) and we say that [Π] is a Newton-structured polynomial projector of degree d, or simply a N-polynomial projector. The projectors Π i are called the (Newton) factors of [Π].

Setting π 0 := Π 0 , and

π i := Π i -Π i-1 , i = 1, . . . , d,
we have

Π k = k ∑ i=0 π i , k = 0, . . . , d. (8.3) 
The maps π i are called the Newton summands of [Π] and, when k = d, the expression (8.3) is called the Newton formula for [Π]. Two Newton structures for Π differ when one at least of the factors are different.

Notice that every Π k inherits a Newton structure from

[Π], namely [Π k ] = (Π 0 , . . . , Π k ).
Unless otherwise specified a factor Π k of [Π] will be always endowed with this induced Newton structure.

Thus, for instance, in the case of univariate Lagrange interpolation as above, a natural Newton structure is given by

[L[A]] = (L[A 0 ], . . . , L[A d ]), A i = {a 0 , a 1 , . . . , a i }, (8.4) 
so that the Newton factors are themselves Lagrange interpolation projectors ; the Newton formula is the ordinary Newton formula (8.1) and the Newton summands π i are given by

π i ( f )(x) = f [a 0 , . . . , a i ](x -a 0 ) • • • (x -a i-1 ).
Here is another Newton structure for L[A] that differs from (8.4) only by one factor : Theorem 8.2. For k = 0, . . . , d, let Π k be a polynomial projector of degree k on E . Then

[L[A]] = (L[A 0 ], . . . , L[A i ], L[A i ∪ {a i+2 }], L[A i+2 ], . . . , L[A d ]). ( 8 
(Π 0 , Π 1 , . . . , Π d ) is a Newton structure for Π = Π d if and only if CND(Π k ) ⊂ CND(Π k+1 ), 0 ≤ k ≤ d -1.
Thus, to obtain a Newton structure for Π means to obtain a certain gradation of its space of interpolation conditions.

Démonstration. We first prove that the condition is necessary.

Let (Π 0 , Π 1 , . . . , Π d ) be a New- ton structure for Π = Π d and k ∈ {0, . . . , d -1}. We prove that if ϕ ∈ CND(Π k ) then ϕ ∈ CND(Π k+1 ). We have ϕ • Π k = φ • Π k • Π k+1 = ϕ • Π k+1 on E ,
where the first equality is by (8.2) which ensures

Π k = Π k • Π k+1 on E and the second equality because ϕ ∈ CND(Π k ) so that ϕ • Π k = ϕ on E (see also Lemma 7.4). Now the relation ϕ = ϕ • Π k+1 yields ϕ ∈ CND(Π k+1 ).
We now prove that the condition is sufficient. We assume that CND(Π k ) ⊂ CND(Π k+1 ) and prove that

Π k = Π k • Π k+1 . Observe that Π k • Π k+1 is a projector of degree k on E just as Π k is so that dim(CND(Π k • Π k+1 )) = dim(CND(Π k )). On the other hand for φ ∈ CND(Π k ) we have φ • Π k • Π k+1 = φ • Π k+1 = φ on E ,
where the first equality is because φ ∈ CND(Π k ) and the second one because CND(Π k ) ⊂ CND(Π k+1 ). This shows that CND(Π k ) ⊂ CND(Π k • Π k+1 ). Since they have same dimension, both spaces, hence both projectors, must coincide. □ Corollary 8.3. For k = 0, . . . , d, let Π k be a polynomial projector of degree k on E . Then (Π 0 , Π 1 , . . . , Π d ) is a Newton structure for Π = Π d if and only if there exists a sequence of spaces J k ⊂ E ′ such that

CND(Π k ) = J 0 ⊕ J 1 ⊕ • • • ⊕ J k , 0 ≤ k ≤ d. (8.6)
Démonstration. It is but a rewording of the previous proposition. Observe that the space

J k is a supplementary space of CND(Π k-1 ) in CND(Π k ) that is, CND(Π k ) = CND(Π k-1 ) ⊕ J k , 0 ≤ k ≤ d with the understanding that CND(Π -1 ) = {0}. □ 8.3. Special basis for CND(Π) Definition 8.4. We say that a basis M = (µ α : α ∈ N d (n)) of CND(Π) is adapted to the Newton structure [Π] = (Π 0 , Π 1 , . . . , Π d ) if J k = span {µ α : |α| = k} , k = 0, . . . , d,
where J k is as in Corollary 8.3.

If M is adapted to [Π] and

Π( f ) = ∑ |α|≤d µ α ( f ) p α ,
where the p α are the dual basis of the µ α , see (7.1), then, for some polynomials

p i α ∈ P i (K n ), |α| ≤ i, we have Π i ( f ) = ∑ |α|=i µ α ( f ) p i α . (8.7)
There is no simple relation between the polynomials p i α and p i+1 α while it would be convenient to have p i α = p i+1 α when |α| ≤ i. This can be easily achieved by choosing a suitable (adapted) basis for CND(Π).

Starting from a basis M = (µ α : α ∈ N d (n)) of CND(Π) adapted to [Π] we construct recursively another sequence N = (ν α : α ∈ N d (n)) as follows :

(1) ν 0 = µ 0 .

(2) For k ≥ 0, we choose ν α ∈ CND(Π k+1 ), |α| = k + 1, by requiring that ν α vanishes on the polynomials of degree at most k and

span ν α |P k+1 , |α| = k + 1 = P ⊥ k , where the orthogonal is taken in P ⋆ k+1 = CND(Π k+1 ) |P k+1 . A constructive way of defining ν α with |α| = k + 1 is to observe that, on P k , µ α is a linear combination of the µ β , |β | = k, that is for some coefficients c β , µ α (p) = ∑ |β |≤k c β µ β (p), p ∈ P k (K n ).

It suffices then to set

ν α = µ α -∑ |β |≤k c β µ β ,
which shows that the basis N is obtained from M by multiplication a (unit) lower triangular matrix.

Definition 8.5. A adapted basis

N = (ν α : α ∈ N d (n)) for [Π] is called a Newton functional basis for [Π] if ν α (p) = 0 when |α| > deg p. The dual basis n = (n α : α ∈ N d (n)) when |α| > deg p of the Newton functional basis N is a Newton polynomial basis.
Observe that when N is a Newton functional basis, the Vandermondian matrix vdm(N, B) (B denoting the standard monomial basis), see 7.1.3, is block lower triangular (the k-th block being of dimension

N k (n) -N k-1 (n)). Lemma 8.6. If N = (ν α : α ∈ N d (n)) is a Newton functional basis for [Π] = (Π 0 , Π 1 , . . . , Π d ) and n = (n α : α ∈ N d (n)) the corresponding Newton polynomial basis then Π k ( f ) = ∑ |α|≤k ν α ( f )n α , f ∈ E , k = 0, 1, . . . d.
Thus the Newton formula for Π is

Π( f ) = d ∑ i=0 ∑ |α|=i ν α ( f )n α .
Démonstration. We just need to prove that for all α,

deg n α = |α|. Let k = |α| since N k = (ν β : β ∈ N k (n)) forms a basis of CND(Π k ), there exists a unique polynomial n k α ∈ P k such that ν β (n k α ) = δ αβ for |β | ≤ k. On the other hand for |β | > k, since N is a Newton functional basis, ν β (n k α ) = 0. Hence n k α = n α and deg n α ≤ |α|.
On the other hand deg n α < |α| is impossible since, otherwise, we would have ν α (n α ) = 0. □

Computing Newton structures

It follows from Corollary 8.3 that every polynomial projector can be endowed with (plenty of) Newton structures. In fact, if a basis M = (µ α :

α ∈ N d (n)) of CND(Π) is such that VDM(M k , B k ) ̸ = 0, k = 0, . . . , d, (8.8) 
where

M k = (µ α : |α| ≤ k) and B k = (e α : |α| ≤ k), (8.9) 
then we may define J k as

J k := span {µ α : |α| = k} ,
to get a Newton structure for Π. When condition (8.8) is not satisfied, since vdm(M, B) is invertible, by elementary linear algebra, we can re-order the functional µ α to obtain, say M ′ , in order that every principal minor of order N k (n) of VDM(M ′ , B) be different from 0 for k = 0, . . . , d -1 (as is done in standard PLU matrix factorization). Algorithm 1 below is a Gauss-like algorithm that returns such a convenient re-ordering M ′ of a given basis M in the case we know a basis P of P d (K n ) such that {M, P} is a bi-orthogonal system. The typical example is given by Lagrange interpolation, see 7.2.1 for which M is given by ([a α ]), see (7.12) and P = ℓ is the Lagrange basis. Observe that the problem is trivial when the leading terms of each p α in P is e α .

The idea of the algorithm is as follows. Let θ be the greatest multi-index in N d (n). There must be an element ν in N d (n) such that the coefficient of e θ in p ν -denoted by coeff(p ν , e θ ) -is not zero, otherwise e θ would not belong to span {P} = P d (K n ). For α ̸ = ν, define

q β = p β - coeff(p β , e θ ) coeff(p ν , e θ ) p ν .
The monomial e θ no longer occurs in the q β , β ̸ = ν, which are linearly independent. Hence, span q β : β ̸ = ν = span e β : β ̸ = θ .

Since, moreover,

µ γ (q β ) = δ γβ , β , γ ≺ ν,
we deduce, see Lemma 7.3, that the restrictions of the µ β , β ̸ = ν, to the space span e β : β ̸ = θ are linearly independent. We continue in this way and, after N d-1 (n) steps, we get a subset of N d-1 (n) functionals µ α whose restrictions to P d-1 (K n ) are linearly independent.

Algorithm 1: Re-ordering algorithm Data: A bi-orthogonal system {M, P} for Π, the order is ⪯.

Result: A re-ordering M ′ of the elements of M that provides a Newton Structure for Π 1 Initialization :

S = N d (n), S ′ = (), Q = (p α : α ∈ N d (n)) = P; 2 while length(S ′ ) < n+d d do 3 θ = max S; 4
Choose ν ∈ S such that the coefficient of e θ in p ν does not vanish. ;

5 S = S \ (ν); 6 for α ∈ S do 7 p α = p α - coeff(p α , e θ ) coeff(p ν , e θ ) p ν 8 end 9 S ′ = (ν, S ′ ) 10 end 11 return M ′ = (µ α : α ∈ S ′ ) such that VDM(M ′ k , B k ) ̸ = 0 for all k, see (8.9) 
We are thus lead to the following definition.

Definition 8.7. Let Π be a polynomial projector of degree d on E and M = (µ α : α ∈ N d (n)) a basis of CND(Π). We say that M induces the Newton structure

[Π] = (Π 0 , . . . , Π d ) for Π if there is a permutation σ of N d (n) such that, for k = 1, . . . , d, M k σ = (µ σ (α) : |α| ≤ k) is a basis of CND(Π k ).
In general, see Theorem 8.8 below, a basis M induces many different Newton structures. It may happen, however, that it induces one and only one Newton structure. This is the case for instance when {M, B} is a bi-orthogonal system (B being the usual monomial basis), or more generally when vdm(M, B) is triangular. Since the only permutation σ satisfying the condition in Definition 8.7 is the identity. On the other hand, it must be noted that two different basis may induce a same Newton structure. For instance, using the notation in the introduction 8.1, the Newton structure

[L[A]] = (L[A 0 ], . . . , L[A d ]) is induced by the basis M 1 = ([a i ] : i = 0, . . . , d)
as well as by the basis M 2 = ( f → f [a 0 , . . . , a i ] : i = 0, . . . , d).

Theorem 8.8. Let Π be a polynomial projector of degree d ≥ 1 on E and let M = (µ α : α ∈ N d (n)) be a basis of CND(Π) such that µ α (1) ̸ = 0 for all α in N d (n). Then B induces at least

∏ d k=1 1 + n+k-1 k different Newton structures for Π.
For instance, the basis of Dirac functionals for Lagrange interpolation in (7.12) satisfies the assumption of the Theorem. In fact, in any case, if M 1 is a basis of CND(Π), that there exists µ α 0 ∈ M 1 such that µ α 0 (1) ̸ = 0 and a basis M 2 satisfying the assumption is readily obtained by substituting µ α + µ α 0 for µ α for any α for which µ α (1) = 0.

Démonstration. It follows immediately from repeated applications of the following lemma which is proved below. □ Lemma 8.9. We use the assumption of the above theorem.

If M ′ is a sub-family of M of length n+d-1 d-1
such that the restriction of the elements of M ′ to P d-1 (K n ) are linearly independent (and therefore form a basis of the dual

P ⋆ d-1 (K n )) then for all µ α ∈ M \ M ′ there exists µ β = µ β (α) ∈ M ′ such the restriction to P d-1 (K n ) of the elements of {µ α } ∪ M ′ \ {µ β } are linearly independent on P d-1 (K n ).
Hence, since there are

n + d d - n + d -1 d -1 = n + d -1 d
values available for α we have at least 1

+ n+d-1 d different candidates for Π d-1
, namely the projectors whose spaces of interpolation condition are given by span M ′ and span

{µ α } ∪ M ′ \ {µ β (α) } , µ α ∈ M \ M ′ .
All such projector are pairwise distinct since their interpolation space are pairwise distinct.

Proof of Lemma 8.9. Assume to the contrary that no β satisfies the required property. Using a tilde to denote restriction to P d-1 (K n ), for all µ β in M ′ , we have that μα is a linear combination of the μγ where γ runs over M ′ \ { μβ }. Thus, in particular, μα ∈ span {M ′ } and its coordinate on the basis elements μβ is null. Since this is true for all μβ in M ′ , μα must be zero but this is impossible for 1

∈ P d-1 (K n ) so that μα (1) = µ α (1) ̸ = 0. □
The profusion of Newton structures raises the question of finding the best Newton structures for a given problem. We will describe such problems more precisely later. It must be said, however, that quite often, especially in the case of D-centered projectors, see 7.2.5, there are relatively few natural Newton structures, that is, structures for which the factors are of the same type than the projector itself. 8.5. Examples 8.5.1. Lagrange-Hermite interpolation. Let {a 1 , a 2 , a 3 } be an affine basis of K 2 (i.e. the three points are not aligned) and let b be another point in K 2 such that b does not belong to any of the three lines (a i , a j ) so that the four points are in general position. The space

V = V 3 = span {M} , M = ([a i ], D 1 [a i ], D 2 [a i ] : i = 1, 2, 3, [b]), where D j [a i ] : f → ∂ f ∂ x j (a i ), defines a Lagrange-Hermite projector Π V 3 = Π 3 of degree 3 (see 7.2.
2) on any space of bivariate functions E where the functionals are well defined. To see this, since {a 1 , a 2 , a 3 } can be transformed into {(0, 0), (0, 1), (1, 0)} by an affine isomorphism, following the idea in 7.1.4, we may assume that a 1 = (0, 0), a 2 = (1, 0) and a 3 = (0, 1). In that case, a computation shows that

VDM(M, B) = b 1 b 2 (b 2 + b 1 -1) (
where B is the standard monomial basis), so that the assumption on the fourth point b ensures that VDM(M, B) ̸ = 0. To construct Π 2 , we may select six among the ten functionals in M that are linearly independent on P 2 (K 2 ). A use of a computer algebra software shows that among the 210 possibilities, there are 108 valid choices (without further assumptions on the points). Since the three points a i , i = 1, 2, 3, play a symmetric role, there are 18 significantly distinct choices. Ten distinct Newton structures are represented on the tree below. The third branch contains factors which are not themselves Lagrange-Hermite projectors but only Birkhoff projectors, see 7.2.2 for the terminology. A basis for the space of interpolation conditions is written under each factor.

Π 3 Π 2 [a 1 ], D 1 [a 1 ], D 2 [a 1 ], D 1 [a 2 ], D 2 [a 3 ], [b] Π 1 [a 1 ], D 1 [a 1 ], D 2 [a 3 ] Π 0 [a 1 ] Π 1 [a 1 ], D 1 [a 1 ], D 2 [a 1 ] Π 0 [a 1 ] Π 2 [a 1 ], D 1 [a 1 ], D 2 [a 1 ], [a 2 ], [a 3 ], [b] Π 1 [a 1 ], D 1 [a 1 ], D 2 [a 1 ] Π 0 [a 1 ] Π 1 [a 1 ], [a 2 ], [b] Π 0 [b] Π 0 [a 2 ] Π 0 [a 1 ] Π 2 [a 1 ], D 1 [a 1 ], D 2 [a 1 ], [a 2 ], D 1 [a 2 ], [a 3 ] Π 1 [a 1 ], D 1 [a 1 ], D 2 [a 1 ] Π 0 [a 1 ] Π 1 [a 1 ], [a 2 ], [a 3 ] Π 0 [a 1 ] Π 0 [a 2 ] Π 0 [a 1 ]
8.5.2. Lagrange interpolation. It is natural to look for Newton structure for which all factors are themselves Lagrange projectors and finding such structures comes to finding a block unisolvent ordering for the interpolation points. This notion was introduced in [START_REF] Sauer | On multivariate Lagrange interpolation[END_REF] and further exploited in [START_REF] Calvi | Intertwining unisolvent arrays for multivariate Lagrange interpolation[END_REF]. A lower bound for the number of such Newton structures is given by Theorem 8.8. We mention two more precise results in the case of low degree interpolation. The proofs, which are based on elementary geometrical arguments, will appear elsewhere. Thus, the k-th factor is the orthogonal projector of degree k (with respect to the same measure m) and the space J k is given by 

J k = span {µ α : f → ⟨ f , b α ⟩ : |α| = k} = span {ν α : f → ⟨ f , e α ⟩ : |α| = k}
[K A ] = K A σ 0 , K A σ 1 , . . . , K A σ d-1 , K A σ d , A σ k = {a σ (0) , a σ (1) , . . . , a σ (k-1)
, a σ (k) }, and the corresponding space J k is

J k = span f → ∆ k D α f k ∑ i=0 t i a σ (i) dm k (t) : |α| = k ;
In the particular case of a Taylor projector, we have the fundamental Newton structure 

T d a ] = (T 0 a , T 1 a , . . . , T d-1 a , T d a ). ( 8 
X 0 ⊂ X 1 ⊂ X 2 ⊂ X d-1 ⊂ X d = X
where the cardinality of X i is n + i induces a Newton structure for the Hakopian projector H X whose factors are themselves Hakopian projectors,

[H X ] = H X 0 , H X 1 , . . . , H X d-1 , H X d .
The corresponding space J k is given by

J k = span f → cv(A) f dm : A ∈ X k n \ X k-1 n .
More generally for a D-centered Taylor projector C(µ 0 , . . . , µ d ), we always have available the following Newton structure

[C(µ 0 , . . . , µ d )] = (C(µ 0 ), C(µ 0 , µ 1 ), . . . , C(µ 0 , . . . , µ d-1 ), C(µ 0 , . . . , µ d ))
for which

J k = span { f → µ k (D α f ) : |α| = k} .
In particular, for Abel-Gontcharov projectors,

[A(a 0 , . . . , a d )] = (A(a 0 ), A(a 0 , a 1 ), A(a 0 , a 1 , a 2 ), . . . , A(a 0 , . . . , a d-1 ), A(a 0 , . . . , a d )) .

DEFINITION OF THE NEWTON PRODUCT

We now turn to the construction of the Newton product of two N-polynomial projectors. In order to define its space of interpolation conditions, we need to recall some facts about the tensor products of functionals.

Products of functionals

Let, for s = 1, 2, X s ⊂ K n s and X = X 1 × X 2 . A function f ∈ E (X) is said to be the (ten- sor) product of f 1 ∈ E (X 1 ) and f 2 ∈ E (X 2 ) if, for every x = (x 1 , x 2 ) ∈ X, we have f (x) = f 1 (x 1 ) f 2 (x 2 ). We write f = f 1 ⊗ f 2 .
The linear span of all the functions f 1 ⊗ f 2 is the tensor product space E (X 1 ) ⊗ E (X 2 ). In the cases considered in this paper and recalled below,

E (X 1 ) ⊗ E (X 2 ) is dense in E (X 1 × X 2 )
. This is a classical result which, in each case, follows from the density of polynomials. For the convenience of the reader, we shall briefly sketch the construction of the tensor product of functional for the spaces considered in this paper.

9.1.1. E (X s ) = C (K s ), K s compact in R n s . An element of µ s ∈ E ′ is
but a (real) Borel measure on K s and the tensor product µ = µ 1 ⊗ µ 2 is (given by) the standard tensor product of the Borel measures on

K 1 × K 2 . 9.1.2. E (X s ) = H (Ω s ), Ω s Runge domain in C n s .
The product of two Runge domains is still a Runge domain so the uniqueness is warranted. If µ s ∈ H (Ω s ), for some compact subset K s of Ω s , we have for every f ∈ H (Ω s ), |µ s ( f )| ≤ C∥ f ∥ K s where ∥ f ∥ K s denotes the sup-norm on K s . Hence, by Hahn-Banach theorem, µ s extends to a functional μs on C (K s ) and we take µ = µ 1 ⊗ µ 2 to be the restriction to

H (Ω 1 × Ω 2 ) of μ1 ⊗ μ2 . A natural direct construction is of course possible. It is used in the next case. 9.1.3. E (X s ) = H (K s ), K s polynomially convex in C n s . The product K 1 × K 2 is
polynomially convex, hence by the Oka-Weil Theorem, see [44, Theorem 1.5 (iv) in chapter VI] , polynomials are dense in H (K 1 × K 2 ) which again guarantees the uniqueness of the product functional.

Now, if f ∈ H (K 1 × K 2 ) and µ 2 ∈ H ′ (K 2 ) then the function z 1 ∈ K 1 → µ 2 ( f (z 1 , •) is in H (K 1 )
so that we may apply µ 1 ∈ H ′ (K 1 ) to it and this gives the product functional :

(µ 1 ⊗ µ 2 )( f ) = µ 1 (z 1 → µ 2 ( f (z 1 , •))) , f ∈ H (K 1 × K 2 )). (9.1)
The resulting functional is clearly linear and verifies the required property on tensor product functions. It remains to check that it is continuous, that is, to show that its restriction to H (Ω) is continuous for every open neighborhood Ω of K. We may assume that Ω = Ω 1 × Ω 2 with K s ⊂ Ω s and that Ω s is a Runge domain. But, in that case,

(µ 1 ⊗ µ 2 ) | H (Ω) = µ 1 | H (Ω 1 ) ⊗ µ 2 | H (Ω 2 ) ,
and the right hand side is continuous by the previous case.

9.1.4. E (X s ) = C d (Ω s ), Ω s open in R n s .
The construction is essentially as in (9.1) except that µ 1 ⊗ µ 2 will be defined on the space C d,d (Ω 1 ⊗Ω 2 ), the space of functions d times continuously differentiable on each set of functions, that is such that D (α 1 ,α 2 ) f exists and is continuous on

Ω for |α s | ≤ d, s = 1, 2.
Uniqueness follows for the density of polynomials. For this, the idea is rather simple. We choose an exhausting family K n of compact subsets of Ω and, given a function

f ∈ C d,d (Ω 1 ⊗ Ω 2 )
, we approximate f on K n . We choose a function g of same smoothness on the whole of R n which coincides with f on a neighbourhood of K n , finally approximate g on a large euclidean ball or large multi-intervals by classical tools.

For a nice precise quantitative version of the density of polynomials in C d (Ω) (hence in C ∞ ) under mild geometric conditions on Ω, the reader may consult [START_REF] Bagby | Multivariate simultaneous approximation[END_REF].

We summarize the above as follows.

Theorem 9.1 (and Definition). Let, for s = 1, 2, X s ∈ K n s and µ s ∈ E ′ (X s ) where E (X s ) is one of the spaces considered in subsections 9.1.1-9.1.4. There exists a unique functional µ ∈ E ′ (X 1 × X 2 ), called the (tensor) product of µ 1 and µ 2 and denoted by µ 1 ⊗ µ 2 such that for every f s ∈ E (X s ) we have

µ( f 1 ⊗ f 2 ) = µ 1 ( f 1 ) • µ 2 ( f 2 ). (9.2) 
It is immediate that the map

(µ 1 , µ 2 ) ∈ E ′ (X 1 ) × E ′ (X 2 ) -→ µ 1 ⊗ µ 2 ∈ E ′ (X 1 × X 2 )
is bi-linear. This, together with the defining relation (9.2), imply the following property which we state as a lemma for further reference. Lemma 9.2. If M s is a linearly independent family of functionals on E s , s = 1, 2, then

M = M 1 ⊗ M 2 = {µ 1 ⊗ µ 2 : µ 1 ∈ M 1 , µ 2 ∈ M 2 }
linearly independent family of functionals on E . 9.2. Examples 9.2.1. Dirac functionals. In all of the above spaces, if a s ∈ X s ⊂ K n s , s = 1, 2, the tensor product of (derivatives) of Dirac functionals, see 7.2.1 and 7.2.2, is simply given by

D α [a 1 ] ⊗ D β [a 2 ] = D (α,β ) [(a 1 , a 2 )], (9.3) 
where (α, β ) is the (n 1 + n 2 )-index whose first n 1 entries are the entries of α end the last n 2 entries are the entries of n 2 and likewise for (a 1 , a 2 ). 9.2.2. Scalar product. Let m s , s = 1, 2, be a positive (Borel) measure with compact support C s in K n s such that |p| 2 dm s = 0 implies p = 0 as in 7.2.3. The functionals involved in the orthogonal projection P d,m i are defined for instance by ν s α ( f ) = C s f b α (m s , •)dm s , see subsection 7.2.3. We have

(ν 1 α 1 ⊗ ν 2 α 2 )( f ) = C 1 C 2 f (z 1 , z 2 )b α 1 (m 1 , z 1 )b α 2 (m 2 , z 2 )dm 1 (z 1 )dm 2 (z 2 ) (9.4) = C 1 ×C 2 f (z 1 , z 2 )b (α 1 ,α 2 ) (m 1 ⊗ m 2 , (z 1 , z 2 ))(dm 1 ⊗ dm 2 )(z 1 , z 2 ), (9.5) 
9.2.3. Mean value functionals. If E (X s ) is one the spaces above but with X s convex in K n s , s = 1, 2, then the product of the functionals

f → ∆ k s D α s f k s ∑ i=0 t i a s i dm k s (t) : |α s | = k j , s = 1, 2, f ∈ E (X s ); is given by f → ∆ k 1 ×∆ k 2 D (α 1 ,α 2 ) f k 1 ∑ i=0 t 1 i a 1 i , k 2 ∑ i=0 t 2 i a 2 i (dm k 1 ⊗ dm k 2 )(t 1 ,t 2 ) f ∈ E (X 1 ⊗ X 2 ).

Restricting a projector

Let X s ∈ K n s , s = 1, 2 and n = n 1 + n 2 . With the standard topologies considered above, the canonical inclusion ι : E (X 1 ) → E (X 1 × X 2 ) is continuous. Lemma 9.3. Let Π be a polynomial projector of degree d on E (X 1 × X 2 ) and write

1 = (1, 1, • • • , 1) ∈ K n 2 . Define Π |X 1 : E (X 1 ) → P d (K n 1 ) by Π |X 1 ( f )(x) = (Π • ι)( f )(x, 1), f ∈ E (X 1 ), x ∈ K n 1 . (9.6)
Then Π |X 1 is a polynomial projector of same degree on E (X 1 ).

Démonstration. The linearity and continuity of Π |X 1 follows from that of Π and ι and the term on the right hand side of (9.6) clearly defines a polynomial in P d (K n 1 ). So we just need to prove that for every p ∈ P d (K n 1 ) we have Π |X 1 (p) = p. In fact, for such a p, we have ι(p

) ∈ P d (K n ) so (Π • ι)(p) = Π(ι(p)) = ι(p) since Π is a projector and ι(p)(x, 1) = p(x). □ Definition 9.4. The projector Π |X 1 is called the restriction of Π to E (X 1 ) or, abusively, to X 1 .
The restriction of Π to E (X 2 ) is defined similarly.

If M = (µ α : α ∈ N d (n)) then CND(Π |X 1 ) = span {µ α • ι : α ∈ N d (n)} , (9.7) 
but the functionals µ α • ι, of course, are not linearly independent.

A Newton structure on Π = (Π 0 , . . . , Π d ) induces a Newton structure on Π |X 1 as follows :

Π |X 1 = (Π 0|X 1 , . . . , Π d |X 1 ).
Likewise, the Newton summands for the restricted projector are given by

π |X 1 i = Π i|X 1 -Π i-1 |X 1 . (9.8)

The key theorem

All the required material for defining the Newton product has now been introduced.

Theorem 9.5. Let, for s = 1, 2, [Π s ] = (Π s 0 , . . . , Π s d ) be a N-polynomial projector of degree d on E n s (X s ).

(1) There exists a unique polynomial projector Π of degree d on E n (X) where n = n 1 + n 2 and X = X 1 × X 2 such that

k 1 + k 2 ≤ d =⇒ CND(Π 1 k 1 ) ⊗ CND(Π 2 k 2 ) ⊂ CND(Π). ( 9.9) 
(2) Moreover, we have

Π( f 1 ⊗ f 2 ) = ∑ (i, j)∈N d (2)
π 1 i ( f 1 ) ⊗ π 2 j ( f 2 ), f i ∈ E (X i ), (9.10) 
where the π s i denote the Newton summands corresponding to Π s , see Definition 8.1. Here of course,

CND(Π 1 k 1 ) ⊗ CND(Π 2 k 2 ) = {µ ⊗ ν : µ ∈ CND(Π 1 k 1 ), ν ∈ CND(Π 2 k 2
). Definition 9.6. The above polynomial projector Π is called the Newton product of the N-

projectors [Π 1 ] and [Π 2 ]. We shall write Π = [Π 1 ] ⊗ N [Π 2 ]. The N-structured projector [Π 1 ] (respectively [Π 2 ]) is the left (respectively, right) divisor of Π.
The terminology is justified by the fact that the new projector Π heavily depends on the Newton structures of the divisors Π 1 and Π 2 . As far as we know, the first Newton product was proposed by Biermann in [START_REF] Biermann | Über näherungsweise kubaturen[END_REF] for which Π 1 and Π 2 are univariate Lagrange projectors so that we could perhaps speak of Newton-Biermann product. The Biermann product of Lagrange projectors in arbitrary dimensions was first considered in [START_REF] Calvi | Intertwining unisolvent arrays for multivariate Lagrange interpolation[END_REF]. This fundamental example is further studied below.

Note that we shall sometimes abusively write

Π = Π 1 ⊗ N Π 2 instead of the correct [Π 1 ] ⊗ N [Π 2 ].
This should not induce confusion when the Newton structures on the Π s are clear in the context. Formula (9.10) will play a fundamental role in the proof of the approximation properties of Newton products. In fact, if f ∈ E (X), in many important cases, we can provide a wellquantified approximation of f by a linear combination of tensor products, say f p = ∑ α∈A c α f 1,α ⊗ f 2,α where A finite. We will then have

f -Π( f ) ≈ f p -Π( f p ) = ∑ α∈A c α ( f 1,α ⊗ f 2,α -Π( f 1,α ⊗ f 2,α )) ,
and the terms in the sums may be handled using (9.10).

Let us clarify some notation. From now on, as already done in 9.2, every α ∈ N n will be written as α = (α 1 , α 2 ) with α 1 ∈ N n 1 formed of the n 1 first coordinates of α and α 2 ∈ N n 2 formed of the last n 2 coordinates, where n s is clear in the context. Likewise, x ∈ K n as x = (x 1 , x 2 ) with x s ∈ K n s .

Proof of Theorem 9.5. Let µ s = (µ s α s ) be a functional basis adapted to the N-structure of [Π s ], s = 1, 2, see Definition 8.4. We first prove that the space V defined by

V = span µ 1 α 1 ⊗ µ 2 α 2 : |α 1 | + |α 2 | ≤ d (9.11)
is the interpolation space of a polynomial projector Π = Π V . Next we show that this projector is the only one that satisfies (9.9).

To prove the claim on V , we use the criterion (3) in Lemma 7.5. Namely, we look for polynomials

q α ∈ P d (K n ), α = (α 1 , α 2 ) ∈ N d (n), such that µ 1 α 1 ⊗ µ 2 α 2 (q β ) = δ αβ , α, β ∈ N d (n). (9.12) 
For s = 1, 2, let us denote by (p s α s : α s ∈ N d (n s )) the dual basis of the µ s α s so that

µ s α s (p s β s ) = δ α s β s , α s , β s ∈ N d (n s )). (9.13) 
Next, using the Newton summands of [Π s ], we put

q α = ∑ k 1 +k 2 ≤d π 1 k 1 (p 1 α 1 ) ⊗ π 2 k 2 (p 2 α 2 ), α = (α 1 , α 2 ) ∈ N d (n). (9.14) 
We claim that these polynomials satisfy (9.12). First, since π s k s takes its values in P k s (K n s ) and k 1 + k 2 ≤ d the polynomials q α defined above belong to P d (K n ). Moreover,

µ 1 α 1 ⊗ µ 2 α 2 (q β ) = ∑ k 1 +k 2 ≤d µ 1 α 1 π 1 k 1 (p 1 β 1 ) µ 2 α 2 π 2 k 2 (p 2 β 2 ) , α, β ∈ N d (n). (9.15)
On the other hand, we have

δ αβ = δ α 1 β 1 δ α 2 β 2 = µ 1 α 1 (p 1 β 1 )µ 2 α 2 (p 2 β 2 ) (9.16) = µ 1 α 1 Π 1 (p 1 β 1 ) µ 2 α 2 Π 2 (p 2 β 2 ) (Π s is a projector) (9.17) = µ 1 α 1 d ∑ k 1 =0 π 1 k 1 (p 1 β 1 ) µ 2 α 2 d ∑ k 2 =0 π 2 k 2 (p 2 β 2 ) (Newton formulae (8.3) (9.18) = ∑ k 1 ,k 2 ≤d µ 1 α 1 π 1 k 1 (p 1 β 1 ) µ 2 α 2 π 2 k 2 (p 2 β 2 ) . (9.19) 
A comparison of (9.15) and (9.19) shows that that our claim will be proved if we show that

∑ k 1 ≤d, k 2 ≤d,k 1 +k 2 >d µ 1 α 1 π 1 k 1 (p 1 β 1 ) µ 2 α 2 π 2 k 2 (p 2 β 2 ) = 0. (9.20)
It turns out that every term in this sum is equal to 0. Indeed, since

k 1 + k 2 > d and |α| = |α 1 | + |α 2 | ≤ d we have either k 1 > |α 1 | or k 2 > |α 2 |. Let us assume k 1 > |α 1 |. It follows that µ 1 α 1 ∈ CND(Π 1 k 1 -1 ) (9.21)
and, in view of Theorem 8.2, we also have

µ 1 α 1 ∈ CND(Π 1 k 1 ). (9.22)
Hence, by definition of the Newton summands,

µ α 1 π 1 k 1 (p 1 β 1 ) = µ α 1 Π 1 k 1 (p 1 β 1 ) -µ α 1 Π 1 k 1 -1 (p 1 β 1 ) = µ α 1 p 1 β 1 -µ α 1 p 1 β 1 = 0
(by (9.21) and (9.22)), so that,

µ α 1 π 1 k 1 (p 1 β 1 ) µ 2 α 2 π 2 k 2 (p 2 β 2 ) = 0. (9.23)
This completes the proof that V is the space of interpolation conditions of a polynomial projector on E n (X).

We show that the polynomial projector Π such that CND(Π) = V -where V is as in (9.11)is the only one satisfying (9.9). That Π does satisfy the conditions comes at once from the fact that for

k 1 + k 2 ≤ d, CND(Π 1 k 1 ) ⊗ CND(Π 2 k 2 ) ⊂ V = CND(Π).
Conversely, the space interpolation conditions of every projector satisfying the conditions must contain µ 1 α 1 ⊗ µ 2 α 2 and must therefore be equal to V . This concludes the proof of the assertion. The proof of (9.10) uses computations very similar to those done above with the polynomial q α . To check that the right hand side in (9.10) is the image by

Π of f 1 ⊗ f 2 , it suffices to check that, for each α = (α 1 , α 2 ) with |α 1 | + |α 2 | ≤ d we have µ α 1 ⊗ µ α 2 ( f 1 ⊗ f 2 ) = µ α 1 ⊗ µ α 2 ∑ (i, j)∈N d (2) π 1,i ( f 1 ) ⊗ π 2, j ( f 2 ) , (9.24) 
that is,

µ α 1 ( f 1 )µ α 2 ( f 2 ) = ∑ (i, j)∈N d (2) µ α 1 (π 1 i ( f 1 ))µ α 2 (π 2 j ( f 2 )).
Multiplying the relations

µ α s ( f s ) = µ α s (Π s ( f s )) = d ∑ j=0 µ α s (π s j ( f s )), s = 1, 2,
we get

µ α 1 ( f 1 )µ α 2 ( f 2 ) = d ∑ i, j=0 µ α 1 (π 1 i ( f 1 ))µ α 2 (π 2 j ( f 2 )).
Hence, to prove (9.24), it suffices to check that

(0 ≤ i ≤ d, 0 ≤ j ≤ d, i + j > d) =⇒ µ α 1 (π 1 i ( f 1 ))µ α 2 (π 2 j ( f 2 )) = 0. Now since |α 1 | + |α 2 | ≤ d and i + j > d we have |α 1 | < i or |α 2 | < j.
Assume we are in the first case. Then

µ α 1 (π 1 i ( f 1 )) = µ α 1 (Π 1 i ( f 1 )) -µ α 1 (Π 1 i-1 ( f 1 )) = 0,
the last equality being justified as follows. Since the basis (µ 1 α ) is adapted to the Newton structure for Π 1 1 , we have

|α 1 | < i implies µ α 1 ∈ CND(Π i-1 ) ⊂ CND(Π i ) ; hence µ α 1 (Π 1 i ( f 1 )) = µ α 1 (Π 1 i-1 ( f 1 )) = µ α 1 ( f 1 ). □ 9.5. Consequences
We state as corollaries a few fundamental consequences of the key theorem and its proof. With the same notation as in the above proof :

Corollary 9.7. If µ s = (µ s α : α ∈ N d (n s )
) is a basis adapted to the N-structure of Π s then the functionals µ 1

α 1 ⊗ µ 2 α 2 , |α 1 | + |α 2 | ≤ d, form a basis of CND(Π 1 ⊗ N Π 2 ). In particular, CND(Π 1 ⊗ N Π 2 ) = span µ 1 α 1 ⊗ µ 2 α 2 : |α 1 | + |α 2 | ≤ d . (9.25)
Démonstration. This is shown is the previous proof.

□ Corollary 9.8. If CND(Π s ) = J s 0 ⊕ J s 1 ⊕ • • • ⊕ J s k , 0 ≤ k ≤ d, as in Corollary 8.3, then CND(Π) = i+ j≤d J 1 i ⊗ J 2 j .
In particular, if µ ∈ J 1 k then the space of all θ ∈ CND(Π 2 ) such that µ ⊗ θ ∈ CND(Π) is exactly

CND(Π 2 d-k ) (the dimension of which is N d-k (n 2 
)). Démonstration. Use that the basis in the previous corollary can be written as

µ 1 α 1 ⊗ µ 2 α 2 : |α 1 | + |α 2 | ≤ d = i+ j≤d µ 1 α 1 ⊗ µ 2 α 2 : |α 1 | = i , |α 2 | = j and span µ 1 α 1 ⊗ µ 2 α 2 : |α 1 | = i , |α 2 | = j = J 1 i ⊗ J 2 j . □
Note that, as was implicit in the proof of the key theorem, the above corollary is consistent with the combinatorial identity

n 1 + n 2 + d d = ∑ i+ j≤d n 1 + i -1 i n 2 + j -1 j .
which counts in two ways the dimension of the space CND(Π).

Corollary 9.9.

Π = [Π 1 ] ⊗ N [Π 2 ] inherits from [Π 1 ] and [Π 2 ] the following Newton structure [Π] = [Π 1 ] 0 ⊗ N [Π 2 ] 0 , [Π 1 ] 1 ⊗ N [Π 2 ] 1 , . . . , [Π 1 ] d ⊗ N [Π 2 ] d , (9.26) 
where the factors [Π s ] j are endowed with the N-structure inherited from [Π s ].

Démonstration. By Theorem 9.5, the projectors [Π 1 ] j ⊗ N [Π 2 ] j are well-defined. Furthermore, by the previous corollary (with the adapted basis in mind),

CND [Π 1 ] i ⊗ N [Π 2 ] i = span µ 1 α 1 ⊗ µ 2 α 2 , |α 1 | + |α 2 | ≤ i . (9.27)
The claim follows in view of Theorem 8.

□

We shall say that the above is the canonical N-structure for [Π]. Unless otherwise specified, a Newtonian product will be always endowed with its canonical N-structure. 

ν α = ν 1 α 1 ⊗ ν 2 α 2 , |α 1 | + |α 2 | ≤ d, form a Newton functional basis for Π = [Π 1 ] ⊗ N [Π 2 ]
when endowed with its canonical Nstructure. Moreover, the corresponding Newton polynomials n α are given by

n α = n 1 α 1 ⊗ n 2 α 2 , (9.28) 
where the n s α s are the Newton polynomials corresponding to ν s , s = 1, 2. Démonstration. Since Newton basis are adapted, the ν α form a basis of CND(Π). Moreover, letting e β = e β 1 ⊗ e β 2 denote the standard monomial then

ν α (e β ) = ν 1 α 1 (e β 1 ) × ν 2 α 2 (e β 2 ). If |β | < |α| then either |β 1 | < |α 1 | and ν 1 α 1 (e β 1 ) = 0 or |β 2 | < |α 2 | and ν 2 α 2 (e β 2 )
= 0 so that ν α (e β ) = 0 which shows that ν α vanish on P |α|-1 so that the ν α form a Newton basis for Π. The relation (9.28) is then immediate. □ Corollary 9.11. Let ι s denote the natural injection

E (X s ) → E (X 1 × X 2 ), s = 1, 2. For f ∈ E (X s ), Π(ι s ( f )) = Π s ( f ).
In other words Π s is the restriction of Π to X s , see subsection 9.3,

[Π 1 ] ⊗ N [Π 2 ] |X s = Π s .
Démonstration. To see the first point (with s = 1), apply for instance (9.10) with f 2 = 1 taking into account that π 2 j ( f 2 ) = 0 for j > 0 and π 2 0 ( f 2 ) = 1 so that the remaining terms give Π 1 ( f 1 ). □ Corollary 9.12.

If µ = µ 1 ⊗ µ 2 ∈ CND(Π), µ ̸ = 0, then µ s ∈ CND(Π s ), s = 1, 2. Moreover if µ 1 , say, vanishes on P δ (K n 1 ) , 0 ≤ δ < d, then µ 2 ∈ CND(Π 2 d-δ -1 )
Note that, by assumption, both µ 1 and µ 2 are non zero functionals. Since µ = µ • Π, µ does not vanish on the whole of P d .

Démonstration. Take and fix f 1 such that µ 1 ( f 1 ) ̸ = 0. Since µ ∈ CND(Π), for every f 2 ∈ E (X 2 ), we have

µ 1 ( f 1 )µ 2 ( f 2 ) = µ( f 1 ⊗ f 2 ) = µ(Π( f 1 ⊗ f 2 )) (9.29) = µ ∑ (i, j)∈N d (2)
π 1 i ( f 1 ) ⊗ π 2 j ( f 2 ) (by (9.10)) (9.30) = ∑ (i, j)∈N d (2) µ 1 (π 1 i ( f 1 )) ⊗ µ 1 (π 2 j ( f 2 )). (9.31) 
It follows that, for some coefficients c j depending on the µ 1 (π 1 i ( f 1 ))/µ 1 ( f 1 ), we have

µ 2 ( f 2 ) = d ∑ j=0 c j µ 2 (π 2 j ( f 2 ), f ∈ E (X 2 ). (9.32) 
Thus µ 2 is a linear combination of the functional µ 2 (π 2 j ) = µ 2 • Π 2 jµ 2 • Π 2 j-1 (omit the second term when j = 0). But, in view of Lemma 7.4, we have

µ 2 • Π 2 j ⊂ CND(Π 2 j ) ⊂ CND(Π 2 ) and, likewise, µ 2 • Π 2 j-1 ⊂ CND(Π 2 j-1 ) ⊂ CND(Π 2
) so that µ 2 (π 2 j ) belongs to CND(Π 2 ) as a difference of two elements of CND(Π 2 ) and µ 2 ∈ CND(Π 2 ) as a linear combination of elements of CND(Π 2 ).

When µ 1 vanishes on P δ (K n 1 ) then, in (9.30), we may assume i ≥ δ + 1 and since i + j ≤ d, we have j ≤ dδ -1 and the conclusion follows with the same reasoning. □

Note that having three N-polynomial projectors [Π s ], s = 1, 2, 3, we may construct both

([Π 1 ] ⊗ N [Π 2 ]) ⊗ N [Π 3 ] and [Π 1 ] ⊗ N ([Π 2 ]) ⊗ N [Π 3 ]).
It is readily seen, for instance by, using Corollary 9.7, that both projectors coincide so that we may simply denote it by

[Π 1 ] ⊗ N [Π 2 ] ⊗ N [Π 3 ].
More generally having k N-projectors of same degree [Π s ], s = 1, . . . , k defined on suitable spaces of functions, we may define

[Π 1 ] ⊗ N [Π 2 ] ⊗ N • • • ⊗ N [Π k ] = ⊗ N k s=1 [Π s ].

ALGEBRAIC PROPERTIES OF THE NEWTON PRODUCT 10.1. The uniqueness theorems

We now proceed to prove the fundamental property that two distinct pairs of N-polynomial projectors (on same spaces) provide two distinct Newton product.

Theorem 10.1 (Uniqueness). Let, for s = 1, 2, [Π s ] = (Π s 0 , . . . , Π s d ) (resp. [ Π s ] = ( Π s 0 , . . . , Π s d ) be a N-polynomial projector of degree d on E n s (X s ). If [Π 1 ] ⊗ N [Π 2 ] = [ Π 1 ] ⊗ N [ Π 2 ] then [Π 1 ] = [ Π 1 ] and [Π 2 ] = [ Π 2 ].
In other words, if a polynomial projector of degree d on E n (X) can be decomposed into a Newton product of two N-polynomial projectors of degree d respectively on E n 1 (X 1 ) and E n 2 (X 2 ) then such a decomposition is unique.

The fact that Π s = Π s follows immediately from Corollary 9.12. The conclusion here gives the stronger fact that the Newton structures of the projectors Π s and Π s coincide.

Démonstration. We prove that Π 2 j = Π 2 j for j = 0, . . . , d -1. (The case of the second projector being identical). Let Π = [Π 1 ] ⊗ N [Π 2 ] and let ν s = (ν s α s ) be a Newton functional basis for [Π s ], s = 1, 2. In particular, CND(Π s j ) = span {ν s α s : |α s | = j}. Now, by Corollary 9.7, for

|α 1 | + |α 2 | ≤ d, we have ν 1 α 1 ⊗ ν 2 α 2 ∈ CND(Π).
Moreover, by definition of a Newton functional basis, ν 1 α 1 vanishes on P j-1 where j = |α 1 |. Taking this into account, an application of Corollary 9.12 with

ν 1 α 1 ⊗ ν 2 α 2 ∈ CND(Π), Π = [ Π 1 ] ⊗ N [ Π 2 ], yields ν 2 α 2 ∈ CND( Π 2 d-j ). This shows that CND(Π 2 d-j ) ⊂ CND( Π 2 d-j
) and the equality follows since both spaces have same dimension. □ Definition 10.2. A polynomial projector Π of degree d on E (X), X ⊂ K n , is said to be reducible when there exist

X s ∈ K n s , s = 1, 2, X s ∈ K n s with 1 ≤ n s < n and n = n 1 + n 2 , and a N-polynomial projector [Π s ] of degree d on E (X s ) such that Π = [Π 1 ] ⊗ N [Π 2 ].
Otherwise, Π is said to be irreducible.

Theorem 10.3. Let X = X 1 × X 2 × X 3 ⊂ K n with X s ⊂ K n s and let Π a polynomial projector of degree d on E (X). Assume that

Π = [Π 1 ] X 1 ⊗ N [Π 2 ] X 2 ×X 3 = [Π 3 ] X 1 ×X 2 ⊗ N [Π 4 ] X 3 , (10.1) 
where, as indicated in the formula,

[Π 1 ] (resp., [Π 2 ], [Π 3 ], [Π 4 ] ) is a N-polynomial projector of degree d on E (X 1 ) (resp. on E (X 2 × X 3 ), on E (X 1 × X 2 )
, on E (X 3 ). Then Π 2 and Π 3 are reducible.

Démonstration. Let f s denote a function in E (X s ). We denote in the same fashion the natural corresponding function in E (X s × X s ′ ) or E (X). We prove that Π 3 is reducible. For all f s in E (X s ), we have using the restricted projector Π 2 |X 2 on the last two lines,

Π 3 ( f 1 f 2 ) = Π( f 1 f 2 ) (Corollary 9.11) (10.2) = ([Π 1 ] ⊗ N [Π 2 ])( f 1 f 2 ) (by (10.1) (10.3) = ∑ i+ j≤d π 1 i ( f 1 )π 2 j ( f 2 ) (by (9.10) (10.4) = ∑ i+ j≤d π 1 i ( f 1 )π 2 |X 2 ( f 2 ) (by (9.8)) (10.5) = [Π 1 ] ⊗ N [Π 2 [X 2 ]( f 1 f 2 )
(again by (9.10). (10.6) This shows that

Π 3 = [Π 1 ] ⊗ N [Π 2 [X 2 ]
so that Π 3 is reducible.

□

Corollary 10.4 (To the proof). With the same assumption as in the theorem.

Π 3 = [Π 1 ] ⊗ N [Π 2 [X 2 ] and Π 2 = [Π 3 |X 2 ] ⊗ N [Π 4
]. The uniqueness theorems show that every polynomial projector (on a product set) can be written in a unique way as the Newton products of irreducible polynomial projectors.

Although we will not elaborate on this point here, let us mention that a more natural, less restrictive, definition of reducibility would be to say that Π is reducible if there exists an affine automorphism A of K n such that A ⋆ Π, see subsection 7.1.4, is reducible in the sense of Definition 10.2. The same claim of uniqueness of decomposition still holds true.

A structural lemma

We give another lemma on the structure of a basis for the interpolation space of Newton product. It will be useful later when analysing the Newton products of Hermitian projectors.

Lemma 10.5. Let M (resp. V ) a linearly independent family in E (X 1 ) ′ (resp. E (X 2 ) ′ . Assume that M (resp. V ) is a basis of CND(Π 1 ) (resp. CND(Π 2 )). If there exists a basis of CND(Π)) all whose members belong to

{µ ⊗ ν : µ ∈ M, ν ∈ V }, then, for every k, 0 ≤ k ≤ d -1, the space CND(Π 1 k ) (resp. CND(Π 2 k
)) has a basis whose elements belong to M (resp. to V ).

Let M = (µ i : i ∈ ∆) et V = (ν j : j ∈ Γ),
which defines the set of indices ∆ and Γ. For t = (i, j) ∈ ∆ × Γ = T , we set θ t = µ i ⊗ ν j , and θ = (θ t : t ∈ T ). Lemma 10.6. Assume that S ⊂ T and that, for some non zero scalars α s , s ∈ S, we have

∑ s∈S α s θ s ∈ CND(Π)
then θ s ∈ CND(Π) for all s ∈ S.

Démonstration. Indeed, since there is a basis of CND(Π) formed by a sub-family θ ′ of θ , the functional ∑ s∈S α s θ s can be written as a linear combination of θ ′ , that is,

∑ s∈S α s θ s = ∑ σ ∈θ ′ α σ σ .
yet, in view of lemma 9.2, the elements of θ are linearly independent and the α s being not null, every θ s on the left hand side must be equal to some σ on the right hand side, hence to an element of θ ′ and therefore lies in CND(Π). □

Proof of Lemma 10.5. By contradiction. We will only prove the claim on CND(Π 1 k ). The other being obviously similar.

Let us introduce some notation. If µ = ∑ α i µ i ∈ CND(Π 1 ), is non zero, we define supp(µ) = {µ i : α i ̸ = 0}, call it the support of µ. The (positive) cardinality of this set is the length of µ, and will be denoted by l(µ).

So, we assume that there exists an integer k with 0 ≤ k ≤ d -1 for which CND(Π 1 k ) has no basis with members in M and we look for a contradiction.

Let L = M ∩ CND(Π 1 k ).
Our assumption says that CND(Π 1 k ) \ span {L} is not empty. Let us choose µ ∈ CND(Π 1 k ) \ span {L} with minimal length. Claim 10.6.1. We have To check the first point, observe that, otherwise, there would exist a non zero scalar λ and i ∈ ∆ such µ = λ µ i so that µ would belong both to CND(Π 1 k ) and to span {M} which contradicts µ / ∈ span {L}. The second point merely expresses the minimality of l(µ).

Claim 10.6.2. If µ i is in the support of µ then µ i ⊗ CND(Π 2 d-k ) is included in CND(Π). Indeed, since µ ∈ CND(Π 1 k ) and since, by definition of the Newton product,

CND(Π 1 k ) ⊗ CND(Π 2 d-k ) ⊂ CND(Π), for all ν in CND(Π 2 d-k ) we will have µ ⊗ ν ∈ CND(Π).
Then, writing µ as a linear combination of the functionals in its support and ν on the basis V , we arrive to a relation of the form

µ ⊗ ν = ( ∑ i∈I α i µ i ) ⊗ ( ∑ γ∈J β γ ν γ ) = ∑ i∈I ∑ γ∈J α i β γ µ i ⊗ ν γ ∈ CND(Π), α i β γ ̸ = 0,
where I is a set of indices whose cardinality is the length of µ and J is the subset of Γ made with the indices of the non zero coordinates of ν. An application of Lemma 10.6 ensures that each of the functionals µ i ⊗ ν γ in the above relation belong to CND(Π). And the same holds for the linear combination

∑ γ∈J β γ µ i ⊗ ν γ = µ i ⊗ ν, (10.7) 
so that µ i ⊗ ν is an element of CND(Π) as claimed.

We will now rapidly obtain the contradiction that we are looking for from (10.7). Fix µ i in the support of µ. Choose ν ∈ CND(Π 2 d-k ) such that ν vanishes on P d-k-1 . Since, by the previous claim, µ i ⊗ ν ∈ CND(Π), the second part of Corollary 9.12 yields that µ i ∈ CND(Π k ) which contradicts (2) in Claim 10.6.1. □

The Vandermondian of a Newton product

Although we will not use it in the sequel, we give a nice formula for the Vandermondian of a Newton product. The formula was known previously in the case of Lagrange interpolation [START_REF] Bloom | A continuity property of multivariate Lagrange interpolation[END_REF] and of orthogonal projection [START_REF] Bloom | On the multivariate transfinite diameter[END_REF]. Both have been applied to derive a proof of the product formula for the multivariate transfinite diameter, see [START_REF] Bloom | On the multivariate transfinite diameter[END_REF] and [START_REF] Calvi | A determinantal proof of the product formula for the multivariate transfinite diameter[END_REF].

Theorem 10.7. Let M s = (µ α s : |α s | ≤ d) a linearly independent family of functionals on E (X s ), X s ⊂ K n s , s = 1, 2. Let Π s a N-polynomial projector of degree d on E (X s ) such that

CND(Π s i ) = span {M s i } , M s i = {µ α s : |α s | ≤ i}, i = 0, 1, . . . , d, s = 1, 2. (10.8) Hence CND([Π 1 ] ⊗ N [Π 2 ] = span {M} , M = (µ α 1 ⊗ µ α 2 : |α 1 | + |α 2 | ≤ d), (10.9) 
where the ordering in M is, as usual, induced by grlex. We have

VDM(M, B) = d ∏ j=0 VDM(M 1 j , B 1 j ) ( n 2 +d-j-1 d-j ) VDM(M 2 j , B 2 j ) ( n 1 +d-j-1 d-j
) , (10.10)

where B (resp B 1 j , B 2 j ) is the monomial basis for P d (K n ) (resp. P j (K n 1 ), P j (K n 2 )), all being ordered with respect to the corresponding grlex order.

We will use the following property (see [20, p. 401]),

(α 1 , α 2 ) ⪯ (β 1 , β 2 ) in N n =⇒ α 1 ⪯ β 1 in N n 1 or α 2 ⪯ β 2 in N n 2 (10.11)
Démonstration. We first prove the formula when the matrices vdm(M s , B s ) are lower triangular (hence also the matrices vdm(M s k , B s k )). Their determinant is therefore merely the product of the diagonal terms,

VDM(M s k , B s k ) = ∏ |α s |≤k µ α s (e α s ).
(10.12)

We claim that vdm(M, B) is also lower triangular. Indeed, since e (β 1 ,β 2 ) = e β 1 ⊗ e β 2 ,

µ 1 α 1 ⊗ µ 2 α 2 e (β 1 ,β 2 ) = µ 1 α 1 e β 1 µ 2 α 2 e β 2 = 0 if α 1 ≺ β 1 or α 2 ≺ β 2 ,
Hence, in view of (10.11),

α 1 , α 2 ≺ β 1 , β 2 =⇒ µ 1 α 1 ⊗ µ 2 α 2 e (β 1 ,β 2 ) = 0, Its determinant is therefore given by VDM(M, B) = ∏ (α 1 ,α 2 )∈N d (n) µ 1 α 1 ⊗ µ 2 α 2 e (α 1 ,α 2 ) = ∏ (α 1 ,α 2 )∈Nd(n) µ 1 α 1 (e α 1 ) µ 2 α 2 (e α 2 ) , (10.13) 
and, by a straightforward calculation,

VDM(M, B) = d ∏ k=0 ∏ |α 1 |=k µ 1 α 1 (e α 1 ) N d-k (n 2 ) d ∏ k=0 ∏ |α 2 |=k µ 1 α 2 (e α 2 ) N d-k (n 1 )
.

Now, in view of (10.12),

∏ |α s |=k µ α s (e α s ) = VDM(M s k , B s k ) VDM(M s k-1 , B s k-1 ) , (10.15) 
where the denominator is 1 when k = 0. Inserting this in (10.14), we obtain

VDM(M, B) = d ∏ k=0 VDM(M 1 k , B 1 k ) VDM(M 1 k-1 , B 1 k-1 ) N d-k (n 2 ) VDM(M 2 k , B 2 k ) VDM(M 2 k-1 , B 2 k-1 ) N d-k (n 1 ) (10.16) 
= d ∏ k=0 VDM(M 1 k , B 1 k ) N d-k (n 2 )-N d-k-1 (n 2 ) VDM(M 2 k , B 2 k ) N d-k (n 1 )-N d-k-1 (n 1 ) .
(10.17) Formula (10.10) follows by observing that

N d-k (n s ) -N d-k-1 (n s ) = n s +d-s-1 d-k
. To extend the formula to the general case, we first observe that what has been done above with the monomials e α (resp. e α s ) in B (resp. in B s ) can be done with polynomials f α (resp. f α s ) in B (resp. in Bs ) when the following two conditions are satisfied :

(1) For all α = (α 1 , α 2 ), we have

f α = f α 1 ⊗ f α 2 , (2) Bs k = ( f α s : |α s | ≤ k) is a basis of P k (K n s ).
A way of obtaining such a new basis is to take a triangular modification of the monomial basis :

f α s = e α s + (a linear combination of e β s with β s ≺ α s ).
Thus, in that case, Formula (10.10) holds true with B in place of B provided that vdm(M s , Bs ) is lower triangular.

In the next step, we assume that the leading principal minors of vdm(M s , B s ) are nonzero. Thus, each of these matrices possesses a standard LU factorization, vdm(M s , B s ) = L s U s , where L s is lower triangular and U s is unit upper triangular. More generally,

vdm(M s k , B s k ) = L s k U s k , k = 0, . . . , d, (10.18) 
where L s k is the leading principal matrix of M s of order N k (n s ) and likewise for U s k . Equation (10.18) can be rewritten as

L s k = vdm(M s k , B s k ) • R sT k , R s = (U s ) -T , (10.19) 
where the exponent -T indicate the transpose of the inverse and the index k is used to indicate the leading block of order N k (n s ). In particular, R s is a unit lower triangular matrix. In view of (7.8), the above implies that

L s k = vdm(M s k , Bs k ), Bs = ( f α s : α s ∈ N d (n s )), (10.20) 
where

f α s = ∑ |β |≤d R s α s β e β = e α s + ∑ β ≺α s R s αβ e β ,
the latter equality because R s is unit lower triangular. Now, we may apply the previous formula (with B) to get

VDM(M, B) = d ∏ j=0 VDM(M 1 j , B1 j ) ( n 2 +d-j-1 d-j ) VDM(M 2 j , B2 j ) ( n 1 +d-j-1 d-j
) .

Yet, since for the same reason as above,

vdm(M s k , Bs k ) = vdm(M s k , B s k ) • R s k T
and det(R s k ) = 1, the B on the right hand side of (10.21) can be replaced by B. Since, as it is readily seen, the f α are also a unit triangular modification of the e α , the same holds for the left hand side so that (10.10) is established.

It just remains to get rid of the assumption on the leading principal minors. A way of doing that is as follows. Formula (10.10) can be regarded as an algebraic identity which we just proved to hold true on a non empty open subset of (C N d (n 1 ) ) ⋆ × (C N d (n 2 ) ) ⋆ so that it holds everywhere. □

EXAMPLES

The first three theorems below correspond to the three examples given in Table 3 in the introduction.

Taylor projectors

Theorem 11.1. The Newton product of the Taylor projector of degree d at a 1 ∈ K n 1 with the Taylor projector of degree d at a 2 ∈ K n 2 , both being endowed with their fundamental Newton structures, see 8.10, is the Taylor projector of degree d at a = (a 1 , a 

2 ) ∈ K n , n = n 1 + n 2 . Démonstration. Let Π = [T d a 1 ] ⊗ N [T d a 2 ]
(Π) = span D α 1 [a 1 ] ⊗ D α 2 [a 2 ] : |α 1 | + |α 2 | ≤ d . Since, see (9.3), D α 1 [a 1 ] ⊗ D α 2 [a 2 ] = D [α 1 ,α 2 ) [a 1 , a 2
] the above space is also that of T d a . □ Thus multivariate Taylor projectors can be regarded either as Newton products of univariate Taylor projectors or as liftings, see 7.2.4, of univariate Taylor projectors.

Orthogonal projection

Theorem 11.2. The product of two orthogonal projectors with respect to a measure m s endowed with their natural Newton structures is the orthogonal projector with respect to the tensor product m 1 ⊗ m 2 .

The natural Newton structure for an orthogonal projector is given in 8.5.3 :

[P d,m s ] = (P 0,m s , P 1,m s , . . . , P d-1,m s , P d,m s ), s = 1, 2. Démonstration. Let [Π s ] = [P d,m 1 ] and Π = [Π 1 ] ⊗ [Π 2 ].
Recall, see 8.5.3, that the spaces J s k corresponding to [Π s ] are given by

J s k = span {ν s α : f → ⟨ f , e α s ⟩ m s : |α| = k} , so that the basis O s = (µ α : |α s | ≤ d) is adapted to the N-structure [Π s ]. Hence, in view of Corollary 9.7 CND(Π) = span ν 1 α 1 ⊗ ν 2 α 2 : |α 1 | + |α 2 | ≤ d (11.1) 
Yet, see (9.5),

(ν 1 α 1 ⊗ ν 2 α 2 )( f ) = C 1 ×C 2 f (z 1 , z 2 )e (α 1 ,α 2 ) (z 1 , z 2 )(dm 1 ⊗ dm 2 )(z 1 , z 2 ),
which shows that the right hand side in (11.1) is the space of interpolation conditions for the orthogonal projection with respect to dm 1 ⊗ dm 2 . □

Lagrange interpolation

Theorem 11.3. Let A s = {a s 0 , . . . , a s d } a set of d + 1 pairwise distinct points in C and L[A s ] the Lagrange interpolation projector at the points of A s endowed with the Newton structure

[L[A s ]] = (L[A 0 s ], L[A 1 s ], . . . , L[A d s ]), A s k = {a s 0 , . . . , a s k }, s = 1, 2. Then [L[A 1 ]] ⊗ N [L[A 2 ]] is the Lagrange interpolation projector at the points {(a 1 i , a 2 j ) : 0 ≤ i + j ≤ d}. More generally, if [L[A s ]] = (L[A 0 s ], L[A 1 s ], . . . , L[A d s ]), A s k = {a s α s : |α s | ≤ k} ⊂ K n s , s = 1, 2
, is a Lagrange interpolation projector of degree d in K n s endowed with a N-structure all whose Newton factors are themselves Lagrange interpolation polynomials then

[L[A 1 ]] ⊗ N [L[A 2 ]] is the Lagrange interpolation projector of degree d on K n , n = n 1 +n 2 at the set of points {(a 1 α 1 , a 2 α 2 ) : |α 1 | + |α 2 | ≤ d}.
This is merely a reformulation of a result proved in [START_REF] Calvi | Intertwining unisolvent arrays for multivariate Lagrange interpolation[END_REF]. We refer to 8.4 and to 8.5.2 for estimations on the numbers of such structures.

In fact, it is easy to prove the following similar results on Lagrange-Hermite or Birkoff projectors, see 7.2.2 for the definition :

(1) The product of two Lagrange-Hermite N-projectors all whose Newton factors are Lagrange-Hermite projectors is still a Lagrange-Hermite projector.

(2) The product of two Birkhoff N-projectors all whose Newton factors are Birkoff projectors is still a Birkoff projector.

A converse to these results is proved below.

11.4. When is a Newton product Lagrangian ?

We will need the following well-known lemma on the linear independence of distinct Dirac functionals. We include a proof for the convenience of the reader.

Lemma 11.4. A family of pairwise distinct functionals {D α [a i ] : α ∈ ∆ i , i ∈ ∆} where ∆ and for each i ∈ ∆, ∆ i are finite, is linearly independent in all spaces of functions containing the polynomials.

Here, the elements in ∆ and in each ∆ i ∈ N n are pairwise distinct.

Démonstration. We write ∆ = {a 1 , . . . , a k }. Since a sub-family of a linearly independent family is still linearly independent, we may assume that ∆ i = N d (n) for all i. The case n = 1 is a mere consequence of univariate Lagrange-Hermite interpolation which says that the functionals are linearly independent on the space of polynomial of degree ≤ k(d + 1) -1. It easily implies the general case as follows. Suppose that we have a linear dependence relation of the form

k ∑ i=1 ∑ |α|≤d c α,i D α [a i ]p = 0, p ∈ P(K n ).
Applying it with p(z) = q(⟨ω, z⟩) where q is a univariate polynomial and ⟨ω, z⟩ = ∑ n j=1 ω i z i , we obtain

k ∑ i=1 d ∑ l=0 Q l,i (ω)q (l) (⟨ω, a i ⟩), q ∈ P(K), (11.2) 
where

Q l,i (ω) = ∑ [α|=l c α,i ω α . (11.3)
If the k scalars ⟨ω, a i ⟩, i = 1, . . . , k, are pairwise distinct, the univariate result gives that Q l,i (ω) = 0. Since the ⟨ω, a i ⟩ are pairwise distinct for a (dense) open set of ω each Q l,i is actually the zero polynomial hence its coefficients c α,i are zero and the functionals are therefore linearly independent. □

The following theorem shows that the only way to obtain a Lagrange interpolation projector by forming the Newton product of two projectors on lower dimensional spaces is to start from Lagrange projectors with Newton structures formed of Lagrange projectors.

Theorem 11.5. Let Π = [Π 1 ] ⊗ N [Π 2
] be a Newton product with [Π s ] a N-polynomial projector of degree d on E (X s ). If Π is a Lagrange interpolation projector then each [Π s ] and all their Newton factors are also Lagrange interpolation projectors.

Démonstration. Let Π = L[A] with A = {(a α 1 , a α 2 ) : |α 1 | + |α 2 | ≤ d} ∈ K n = K n 1 × K n 2 .
We denote by A s the projection of A on K n s so that A s = {a α s :

|α 1 | + |α 2 | ≤ d} ∈ K n s . In view of Corollary 9.11 Π |X s = Π s , hence, see (9.7), we have CND(Π s ) = span {[a α s ] : a α s ∈ A s } .
Since Dirac functional with distinct points are linearly independent, the above relation shows that the cardinality of A s is exactly N d (n s ) and Π s = L[A s ]. What remains to be proved is that all the Newton factors of Π s are also Lagrange interpolation projectors. To do that, we apply Lemma 10.5 with M (resp. S) given by the Dirac functionals at the points of A 1 (resp. A 2 )). Since A ⊂ A 1 × A 2 , the assumption on CND(Π) is satisfied and the lemma ensures that, for every k, 0 ≤ k ≤ d, there exists a subset A sk of A s such that

CND(Π s k ) = span {[a] : a ∈ A sk } ,
where, again since Dirac functional are linearly independent,

A s0 ⊂ A s1 ⊂ • • • ⊂ A sd = A s so that Π s k = L[A sk ]. □ Theorem 11.6. Let Π = [Π 1 ] ⊗ N [Π 2
] be a Newton product with [Π s ] a N-polynomial projector of degree d on E (X s ). If Π is a Lagrange-Hermite interpolation projector then each [Π s ] and all their Newton factors are also Lagrange-Hermite interpolation projectors.

The definition of Lagrange-Hermite interpolation is given in 7.2.2. Here we will assume that

Π = LH[S], S = {(a i , S i ) : i = 1, . . . , k}, S i ⊂ N d (n),
where, see (7.13), each S i is directed. Observe, see (9.3), that

a i = (a 1 i , a 2 i ) α = (α 1 , α 2 ) =⇒ D α [a i ] = D α 1 [a 1 i ] ⊗ D α 2 [a 2 i ],
which suggests to define

S s i = {D α s [a s i ] : α ∈ S i }, S s = {(a s i , S s i ) : i = 1, . . . , k}, s = 1, 2
, where it is readily seen that the S s i are themselves directed. Given a Lagrange-Hermite interpolation scheme S as above we set

M(S) = {D α [a i ] : α ∈ S i , i = 1, . . . , k}.
Thus, we have

M(S) ⊂ M(S 1 ) ⊗ M(S 2 ).
(11.4)

Démonstration. Reasoning with the restrictions of Π to X s as in the proof of the previous theorem, we immediately obtain that Π s = LH[S s ], s = 1, 2. The more difficult point is to prove that all the factors of Π s are also Lagrange-Hermite projectors. Since CND(Π) = span {M(S)} and CND(Π s ) = span {M(S s )}, equation (11.4) allows us to use Lemma 10.5 which ensures that for each k = 0, . . . , d, there exists a subset M k (S s ) of M(S s ) such that

CND(Π s k ) = span {M k (S s )} , k = 0, . . . , d, s = 1, 2 with M d (S s ) = M(S s ).
Observe that, since, in view of Lemma 11.4, the elements of M k (S s ) are linearly independent, the cardinality of M k (S s ) is exactly the dimension of CND(Π s k ), that is N k (n s ). We first claim that

M k (S s ) ⊂ M k+1 (S s ), k = 0, . . . , d -1. Indeed, if D α [a s i ] would belong in M k (S s ) but not in M k+1 (S s ), since M k (S s ) ⊂ CND(Π s k ) ⊂ CND(Π s k+1 ), the set {D α [a s i ]} ∪ M k+1 (S s
) would be a linearly independent family (Lemma 11.4) of cardinality N k+1 (n s ) + 1 in the space CND(Π s k+1 ) of dimension N k+1 (n s ).

Setting

N k (S s ) = M k (S s ) \ M k-1 (S s ),
with M -1 (S s ) = / 0, and the usual notation, we have

J s k = span {N k (S s )} , M k (S s ) = ∪ k j=0 N k (S s ), s = 1, 2.
Now, to prove that Π 1 k , say, is a Lagrange-Hermite interpolation projector, it remains to prove the directedness of the conditions in

M k (S 1 ), that is, if D α [a 1 i ] ∈ M k (S 1 )and β ≤ α we must check that D β [a 1 i ] ∈ M k (S 1 ). Note that since S 1 is directed, D β [a 1 i ] ∈ M(S 1
) and there exist τ

such that D β [a 1 i ] ∈ N τ (S 1 ). Assume that D α [a 1 i ] ∈ J 1
t with 1 ≤ t ≤ k (the case t = 0 being trivial). According to Corollary 9.8, we have

D α [a 1 i ] ⊗ span M 2 d-t = D α [a 1 i ] ⊗ CND(Π 2 d-t ) ⊂ CND(Π). Since β ≤ α =⇒ (β , ν) ≤ (α, ν)
, the above relation and the fact that S is directed yield that

D β [a 1 i ] ⊗ span M 2 d-t ⊂ CND(Π).
Thus, the space of all θ such that

D β [a 1 i ] ⊗ θ ∈ CND(Π) contains CND(Π 2 d-t ). In view of Corollary 9.8, since D β [a 1 i ] ∈ J 1 τ we must have CND(Π 2 d-t ) ⊂ CND(Π 2 d-τ ) hence τ ≤ t and D β [a 1 i ] ∈ M t (S 1 ) ⊂ M k (S 1
). This concludes the proof that Π 1 k is a Lagrange-Hermite projector. □

Newton product of Kergin projectors

The Newton product of Kergin interpolation projectors has nice properties. Let A s = {a s 0 , . . . , a s d } ⊂ Ω s ∈ K n s where Ω s is convex, s = 1, 2. We use the trivial Newton structure for K A s , namely,

[K A s ] = K A s 0 , K A s 1 , . . . , K A s d-1 , K A s d , A s k = {a s 0 , a s 1 , . . . , a s k-1 , a s k }, s = 1, 2.
Theorem 11.7. The projector

[K A 1 ] ⊗ N [K A 2 ] interpolates at the d+2 2 points (a 1 i , a 2 j ) with i + j ≤ d, that is [K A 2 ] ⊗ N [K A 2 ]( f )(a 1 i , a 2 j ) = f (a 1 i , a 2 j ), i + j ≤ d, f ∈ E (Ω 1 × Ω 2 ).
If a point a 1 i is repeated k times and a points a 2 j is repeated times s times then all partial derivatives D (α 1 ,α 2 ) at (a 1 , a 2 ) with

|α 1 | ≤ k and |α 2 | ≤ s are interpolated. Moreover, if f (x 1 , x 2 ) = h ⟨ω 1 , x 1 ⟩, ⟨ω 2 , x 2 ⟩ ,
where

ω s ∈ R n s , h is a bivariate function defined on ⟨ω 1 , Ω 1 ⟩ × ⟨ω 2 , Ω 2 ⟩, see below, then [K A 1 ] ⊗ N [K A 2 ]( f )(x 1 , x 2 ) = LH ⟨ω 1 , A 1 ⟩ ⊗ N LH ⟨ω 2 , A 2 ⟩ (h) ⟨ω 1 , x 1 ⟩, ⟨ω 2 , x 2 ⟩ . (11.5)
Here, ⟨•, •⟩ is the standard scalar product on R n s and of course ⟨ω 1 ,

Ω 1 ⟩ = {⟨ω 1 , x⟩ : x ∈ Ω 1 }.
Besides, the Newton structure for the Lagrange-Hermite projectors on the right hand side of (11.5) is implied by that of

[K A s ], that is, the i-th factor of [LH ⟨ω 1 , A 1 ⟩ ] is LH ⟨ω 1 , A s i ⟩
where ⟨ω 1 , A s i ⟩ = {⟨ω 1 , a s l ⟩ : 0 ≤ s ≤ i} in which repetition is allowed. Relation (11.5) shows that the Newton product is compatible, in a natural sense, with the lifting process mentioned in subsection 7.2.4.

Démonstration. The statements follows immediately from the definition of the Newton product. Let us just comment on 11.5 without giving details. In view of the continuity of both sides, it suffices to prove the relation when h is a tensor product (of two univariate functions). In that case, the relation follows from applying (9.10) once to the left hand side, once to the right hand side and connecting them with the use of the lifting property (7.20). □

Projectors preserving homogeneous differential relations

Taylor projectors are Newton products and, at the same time, preserve homogeneous differential relations, see 7.2.5. We prove below that is essentially the sole case for which it occurs. For the notation used here, we refer to 7.2.5.

Theorem 11.8. Let C(µ s 0 , . . . , µ s d ), s = 1, 2 be two D-centered projectors of degree d, that is, two projectors preserving homogeneous differential relations, both projectors are endowed with their canonical Newton structure, that is the i-th Newton factor of C(µ s 0 , . . . , µ s d ) is C(µ s 0 , . . . , µ s i ). We assume, without loss of generality, that the functionals µ s i are normalized so that µ s i (1) = 1, i = 0, . . . , d, s = 1, 2. Then the Newton product

C(µ 1 0 , . . . , µ 1 d ) ⊗ N C(µ 2 0 , . . . , µ 2 d ) (11.6)
is a D-centered projector if and only if

µ s 0 = µ s 1 = • • • = µ s d , s = 1, 2. (11.7)
In that case,

C(µ 1 , . . . , µ 1 ) ⊗ N C(µ 2 , . . . , µ 2 ) = C(µ 1 ⊗ µ 2 , . . . , µ 1 ⊗ µ 2 )
Démonstration. That condition (11.7) is sufficient is easily seen. We prove that it is necessary. Assume that the Newton product (11.6) is D-centered, that is equal to C(ν 0 , . . . ,

ν d ). Let 0 ≤ i ≤ k ≤ d.
In view of Corollary 9.7, taking into account the particular structure of the interpolation space of D-centered projectors indicated in (7.21), for

|α 1 | = i and |α 2 | = k -i the functional D α 1 µ 1 i ⊗ D α 2 µ 2
k-i lies in the interpolation space of C(ν 0 , . . . , ν d ). Hence, for some coefficient λ θ we have

D α 1 µ 1 i ⊗ D α 2 µ 2 k-i = d ∑ j=0 ∑ |θ |= j λ θ D θ ν j .
Applying successively this identity to the monomial e β , for |β | = 0, 1, . . . , d, following grlex, we obtain that all coefficients λ θ vanish except when θ = (α 1 , α 2 ) for which it is 1 (recall that the functionals are normalized). Thus,

D α 1 µ 1 i ⊗ D α 2 µ 2 k-i = D (α 1 ,α 2 )
ν k , which further implies (for instance using the density of polynomials) that µ 1 i ⊗ µ 2 k-i = ν k . Summing up, we have,

µ 1 i ⊗ µ 2 k-i = ν k , i = 0, . . . , k, k = 0, . . . , d.
Applying this relation to functions of the form f ⊗ 1 with k = d, we get that

µ 1 i ( f ) = ν d ( f ⊗ 1), i = 0, . . . , d, so that all µ 1 i coincide. The conclusion is now immediate. □ PARTIE 2.
We prove that the Newton product of efficient polynomial projectors is still efficient. Various polynomial approximation theorems are established involving Newton product projectors on spaces of holomorphic functions on a neighborhood of a regular compact set, on spaces of entire functions of given growth and on spaces of differentiable functions. Efficient explicit new projectors are presented.

Article co-écrit avec Jean-Paul Calvi, publié aux Rendiconti del Circolo Matematico di Palermo.

THE NEWTON PRODUCT OF POLYNOMIAL PROJECTORS. PART 2 :

APPROXIMATION PROPERTIES 

INTRODUCTION

In a recent paper [START_REF] Bertrand | The Newton product of polynomial projectors Part 1 : Construction and algebraic properties[END_REF] we introduced a new way of forming an approximation operator, precisely a polynomial projector, acting on spaces of functions defined on a (subset of a) space of dimension n out of two polynomials projectors on spaces of functions defined on a space of smaller dimension n s , s = 1, 2, n = n 1 + n 2 . Our process was called the Newton product of the (smaller dimensional) projectors. It is related but considerably different from the classical method based on the tensor product of operators. The construction of the Newton product relies on a suitable graduation, called a Newton structure, of the interpolation conditions that define the projector. For instance, in the simplest case of a (univariate) Lagrange polynomial projector L[a 0 , . . . , a d ] with respect to the d + 1 points a 0 , . . . , a d , the specification of a (useful) Newton structure is equivalent to the specification of an ordering of the interpolations points. In fact, such a specification is already required in the Newton formula (based on divided differences) for classical Lagrange interpolation and there lies the origin of our terminology. In general, see below, a Newton structure is obtained in a more general way but, as a first approximation, the reader may retain that as far as the projectors are determined by a set of points (for instance, Lagrange, Kergin, Hakopian projectors) a (natural) Newton structure is determined by an ordering of these points. For example, if we stay with the ordering of A = {a 0 , . . . , a d } and B = {b 0 , . . . , b d } induced by the indexes,

L[a 0 , . . . , a d ] ⊗ N L[b 0 , . . . , b d ], (12.1) 
(where ⊗ N indicates the Newton product) is the bivariate Lagrange interpolation projector at the points (a i , b j ), i + j ≤ d ; this is a set of interpolation points first considered a long time ago by Bierman [START_REF] Biermann | Über näherungsweise kubaturen[END_REF]. The main goal of the present work is to validate the previous one in answering in the affirmative the obvious question : if the partial projectors are efficient (in a certain sense) approximation operators, will it be the same for their Newton product ? Actually, we tried to write the present paper in order that it could work in the other direction : we relied as little as possible on the previous work in order that the reader interested by the results obtained in this one might decide to go back to [START_REF] Bertrand | The Newton product of polynomial projectors Part 1 : Construction and algebraic properties[END_REF] for a deeper understanding of the underlying algebraic machinery. The above question is answered positively for projectors on classical spaces of holomorphic functions on a neighborhood of a regular compact set (in the sense of pluripotential theory), on spaces of entire functions of given growth, on spaces of differentiable functions, the results in the latter case being however less precise. The proofs rest on an identical principle that is explained in the next section.

For the convenience of the reader and make the paper self contained, we will conclude this introduction with a definition of the Newton product as well as a few important examples.

The symbol ⊕ denotes a direct sum of vector spaces, ⊗ is used for the usual tensor product, while the symbol ⊗ N is reserved for the Newton product.

A polynomial projector Π of degree d on a space of (real or complex) functions E = E (X) defined on X ⊂ K n , K = R or K = C, is a continuous linear map on E with values in the Esubspace P d (K n ) of real or complex polynomials of total degree at most d, such that Π • Π = Π. We set

CND(Π) = ν ∈ E ′ : ν( f ) = ν(Π( f )), all f ∈ E
where E ′ is the space of continuous linear forms on E . We call CND(Π) the space of interpolation conditions for Π. For instance if Π is a Lagrange interpolation projector then CND(Π) is the space of functionals spanned by the Dirac functionals δ a : f → f (a) when a runs among the interpolation points. A list of the classical spaces E that that will be considered can be found in Table 4 below.

A Newton structure for Π is a direct sum of subspaces J i ⊂ CND(Π), that is,

CND(Π) = J 0 ⊕ J 1 ⊕ • • • ⊕ J d ,
such that, for j = 0, . . . , d, there exists a projector Π j of degree j with

CND(Π j ) = J 0 ⊕ J 1 ⊕ • • • ⊕ J j .
It is shown in [START_REF] Bertrand | The Newton product of polynomial projectors Part 1 : Construction and algebraic properties[END_REF] that all projectors possess Newton structures. In fact, to obtain a Newton structure is equivalent to find a basis (µ α : |α| ≤ d) where |α| denotes the length of α ∈ N n such that for j = 0, . . . , d, the sub-list (µ α : |α| ≤ j) is linearly independent on P j (C n ) and the link with the previous definition is given by CND(Π j ) = span {µ α : |α| ≤ j} or J j = span {µ α : |α| = j} , j = 0, . . . , d.

A polynomial projector together with a specific Newton structure is called a Newton-structured projector. It is important not to confuse a polynomial projector with the richer notion of Newton-structured polynomial projector. To distinguish a mere projector from a Newton structured projector, we use the notation

[Π] = (Π 0 , . . . , Π d )
to denote the latter. Now, given two Newton structured projectors [Π i ], i = 1, 2, on E (X i ) with respective Newton structure corresponding to the basis (µ i α : |α| ≤ d), it is shown in [START_REF] Bertrand | The Newton product of polynomial projectors Part 1 : Construction and algebraic properties[END_REF] that there exists a unique projector

Π on E (X 1 × X 2 ) such that CND(Π) = span µ 1 α ⊗ µ 2 β : |α| + |β | = 0, . . . , d .
This projector Π is called the Newton product of [Π 1 ] and [Π 2 ] and is denoted by

[Π 1 ] ⊗ N [Π 2 ].
For the sake of notational simplicity, we will sometimes (abusively) write

Π 1 ⊗ N Π 2 instead of [Π 1 ] ⊗ N [Π 2 ]
, especially when the Newton structure we use is clear in the context but, in any case, it must be remembered that the use of the symbol ⊗ N (for the Newton product) implies that Newton structures have been chosen. The main algebraic formula regarding the computation of a Newton product on a product function is recalled in Theorem 13.5 below.

We will now present several examples of classical or new projectors that are Newton products. In the table below, the Newton structures used appears through the basis µ i α indicated. We omit the mention of the natural spaces E involved. Some of these examples are considered in more details further in this work.

(1) If, for i = 1, 2, [Π i ] is the Taylor projector at a i ∈ K n i to the order d Newton structured by

µ i α ( f ) = D α f (a i ), then Π 1 ⊗ N Π 2 is the Taylor projector at (a, b) ∈ K n , n = n 1 + n 2 , to the order d with µ 1 α ⊗ µ 2 β ( f ) = D (α,β ) f (a), a = (a 1 , a 2 ). 
(

) Assume that, for i = 1, 2, [Π i ] is the L 2 (dm i )-orthogonal projection on P d (C n i ) New- ton structured by µ i α ( f ) = f b(α, dm i , •)dm i , 2 
where dm i is a (sufficiently dense) positive Borel measure supported on a compact set K i ⊂ C n i and b(α, dm i , •) denotes the usual orthonormal basis (with leading monomial z α ) in L 2 (dm i ) obtained by the Gram-Schmidt algorithm from the standard monomials basis ordered with the graded lexicographic order. Then

Π 1 ⊗ N Π 2 is the L 2 (dm 1 × dm 2 )-orthogonal projection on P d (C n ), n = n 1 + n 2 , with µ 1 α ⊗ µ 2 β ( f ) = f b (α, β ), dm 1 ⊗ dm 2 , • dm 1 ⊗ dm 2 .
(

) Assume that, for i = 1, 2, [Π i ] is the Lagrange interpolation projector L[A i ] in P d (C n 1 ) 3 
at the (unisolvent) set of interpolation points A i = {a i α : |α| ≤ d} structured by

µ i α ( f ) = f (a i α )
, where the interpolation points a i α are ordered in such a way that the sets A i j = {a i α : |α| ≤ j} are unisolvent for Lagrange interpolation in P j (C n i ), j = 0, . . . , d. Then

[Π 1 ] ⊗ NN [Π 2 ] is the Lagrange interpolation projector in P d (C n ), n = n 1 + n 2 , at the (unisolvent) set of interpolation points A = a 1 α , a 2 β : |α| + |β | ≤ d ⊂ C n .
We refer to [START_REF] Calvi | Intertwining unisolvent arrays for multivariate Lagrange interpolation[END_REF] for details.

(

) Assume that [Π 1 ] is is the Lagrange interpolation projector L[A 1 ] structured as above and [Π 2 ] is the Kergin interpolation projector K[A 2 ] in P d (C) with A 2 = {z 0 , . . . , z d } ⊂ 4 
C n 2 structured by, see [START_REF] Bertrand | The Newton product of polynomial projectors Part 1 : Construction and algebraic properties[END_REF] for details,

µ 2 α ( f ) = S |α| D α f z 0 + |α| ∑ i=1 t i (z i -z 0 ) dt,
where

S k = {(t 1 , . . . ,t k ) ∈ [0, 1] k : ∑ k i=1 t i ≤ 1}
denotes the ordinary simplex in R k (and dt the ordinary Lebesgue measure on it) then

[Π 1 ] ⊗ N [Π 2 ] = L[A 1 ] ⊗ N K[A 2 ]
is the projector the space of interpolation conditions is spanned by the functionals

f → S |β | D (0,β ) f a 1 α , z 0 + |β | ∑ i=1 t i (z i -z 0 ) dt, |α| + |β | ≤ d,
where D (0,β ) indicates derivation with respect to the last n 2 complex variables. As will be shown in the sequel, such a mixed Newton product seems to be particularly useful in the case n 1 = 1 and n 2 = 2.

STATING THE PROBLEM

Newton sequences

For each d ∈ N, we let Π d denote a polynomial projector of degree d on a space of (real or complex) functions E . The sequence N = (Π 0 , Π 2 , . . . ) will be called a Newton sequence on E if :

For all d ∈ N, CND(Π d ) ⊂ CND(Π d+1 ), (13.1) 
or, equivalently, (Π 0 , . . . , Π d ) defines a Newton structure for Π d . (

We shall denote the Newton-structured projector in (13.2) by [N ] d . Given such a Newton sequence N , we set π 0 = Π 0 and, for k ≥ 1,

π k = Π k -Π k-1 .
Then π k is the k-th Newton summand for [N ] d and this for any d ≥ k, so that

Π d = d ∑ k=0 π k , d ∈ N. (13.3) 
Likewise, there exists a sequence of spaces J i , i ∈ N, such that

CND(Π d ) = 0≤i≤d J i , d ∈ N, (13.4) 
Example 13.1. We use the projectors presented in the introduction.

(A) The sequence for which Π d is the Taylor projector at a point a to the order d, Π d = T d a , is a basic example of Newton sequence for which

J i = span{ f → D |α| f (a) : |α| = i}.
(B) Another fundamental example is furnished by the orthogonal projectors P d,dm with respect to a sufficiently dense measure dm where

J i = span{ f → ⟨ f , b(α, dm, •)⟩ : |α| = i}, see Example 2 in the introduction.
(C) A Newton sequence of Lagrange interpolation projectors will be obtained with

Π d = L[A d ] with the condition that A d ⊂ A d+1 for d ∈ N where A d is the (unisolvent) set of interpo- lation points for L[A d ], for which J i = span{ f → f (a) : a ∈ A i \ A i-1 }, i ≥ 1.
(D) Likewise a Newton sequence of Kergin interpolation projectors will be obtained with

Π d = K[A d ]
with the same condition that the set of interpolation points are nested, that is A d ⊂ A d+1 for d ∈ N. Typically, starting from a sequence a d of points, we will take A d = {a 0 , . . . , a d } so that Π d = K[a 0 , . . . , a d ], d ∈ N, see the introduction for a description of the spaces J i and [START_REF] Bertrand | The Newton product of polynomial projectors Part 1 : Construction and algebraic properties[END_REF] for further details. Definition 13.2. Let F be a (topological vector) space of functions containing E (hence also the polynomials) such that the injection f ∈ E → f ∈ F is continuous. Note that Π d is continuous as a linear map from E to F . We say that a Newton sequence N = (Π 0 , Π 1 , . . .

) on E is F -converging when, for all f ∈ E , Π d ( f ) converges to f in F as d → ∞.
When precision is needed we say that N is F -converging on E . When F = E we just say that N is converging on E . If convergence holds only for all functions in a subspace E of E , we say that N is F -converging on E ⊂ E . Table 4 collects the various spaces E , E and F that will be used in the sequel.

Space E or space E

Space F H (K), the space of holomorphic function on a neighborhood of (a regular polynomially convex compact set) K.

C (K) the space of continuous functions on K, then H (K).

H (C n ), the space of entire functions and E a subspace of entire functions of given growth.

H (C n ).
C m (K) the standard space of m times continuously differentiable functions on the interior of K (a fat compact set, see Section 16, whose all derivatives of order ≤ m extend continuously to K.

C (K).

TABLE 4. Function spaces, all endowed with their usual topology.

Classical results in approximation theory are naturally expressed in the above terminology. For instance, the Newton sequence the d-th element of which is the Taylor projector at the origin 0 to the order d is converging on the space H ({0}) formed of holomorphic functions on a neighborhood of the origin (endowed with its usual limit inductive topology). Classical univariate Lagrange interpolation theory is concerned with the search for conditions on a given sequence (a 0 , a 1 , a 2 , . . . ) ensuring that (Π 0 , Π 2 , . . . [START_REF] Walsh | Interpolation and approximation by rational functions in the complex domain[END_REF][START_REF] Smirnov | Functions of a complex variable : Constructive theory[END_REF][START_REF] Gaier | Lectures on complex approximation[END_REF], or E ⊂ E = F = H (C) is a space of entire functions of given growth, see [START_REF] Guelfond | Calcul des différences finies[END_REF].

) with Π d = L[a 0 , . . . , a d ] is F -converging on E where E is a classical space of smooth functions on an interval [a, b], and F = C ([a, b]), or F = H (K), see

The Newton product of Newton sequences

By using the Newton product of polynomial projectors, we can easily construct a natural Newton sequence on E (X 1 ×X 2 ) when we are given two Newton sequences

N 1 = (Π 1 0 , Π 1 1 , . . . ) on E (X 1 ) and N 2 = (Π 2 0 , Π 1 2 , . . . ) on E (X 2 ).
Here, by writing E (X s ) we emphasize that the functions in E are defined on X s . The connection between E (X s ) and E (X 1 ×X 2 ) will be obvious in all cases considered. For all d ∈ N, we compute the Newton product, see (13.2),

Π d := [N 1 ] d ⊗ N [N 2 ] d = (Π 1 0 , . . . , Π 1 d ) ⊗ N (Π 2 0 , . . . , Π 2 d ). (13.5) 
In fact if (J s i ), s = 1, 2 is the sequence of spaces associated to N s as in (13.4), according to [6, Corollary 4.8], we have

CND(Π d ) = i+ j≤d J 1 i ⊗ J 2 j (13.6)
which the reader may read as a characterization property of Π d .

The above construction provides a sequence of polynomials projectors and this sequence is actually a Newton sequence itself .

Lemma 13.3. The sequence (Π 0 , Π 1 , . . . ) where Π d is defined as in (13.5) is a Newton sequence on E (X 1 × X 2 ).

Démonstration. According to (13.1), we need to prove that CND(Π d ) ⊂ CND(Π d+1 ) for all d ∈ N. Since N s is a Newton sequence, there exists a sequence of spaces J s i , i ∈ N, see (13.4), such that

CND(Π s k ) = 0≤i≤k J s i , d ∈ N, s = 1, 2.
In view of (13.5) and using (13.6) for both equalities, we have

CND(Π d ) = i+ j≤d J 1 i ⊗ J 2 j ⊂ i+ j≤d+1 J 1 i ⊗ J 2 j = CND(Π d+1 ). □
We are now in position to fix the terminology that will be used in this paper.

Definition 13.4. The above Newton sequence will be denoted by N = N 1 ⊗ N N 2 and called the Newton product of N 1 by N 2 . In accordance with the terminology introduced for the Newton product, N 1 (resp. N 2 ) will be called the left (resp. right) divisor of N . Now, the obvious approximation problem is as follows.

Research problem 1. Suppose that N s is a F s -converging Newton sequence on E (X s ), s = 1, 2, is N 1 ⊗ N N 2 a F -converging sequence on E (X 1 × X 2 )
where F naturally depends on F s , s = 1, 2 ?

We will show that the answer is generally positive, thus showing that the Newton product leads to the construction of new effective approximation projectors. Various explicit examples will be given in the sequel.

Strategy of proof

We describe the simple general strategy that we follow in answering Problem 1 for different spaces. We felt it preferable to provide distinct proofs in the three main cases that we study rather than to search for a very general statement which would require assumptions whose verifications would require essentially the same amount of work.

Assume that we work with E (X 1 ), E (X 2 ) and E (X 1 × X 2 ) with X s ⊂ R n s or C n s . We use the notation introduced in the previous subsection, in particular Π d is defined as in (13.5).

Step 1. We find product polynomials

p α,β (z 1 , z 2 ) = p 1 α (z 1 )p 2 β (z 2 ) with deg p 1 α = |α| and deg p 2 β = |β |, (13.7) 
such that, for all f ∈ E (X 1 × X 2 ), we have

f = ∞ ∑ j=0 ∑ |α|+|β |= j c αβ ( f )p α,β (13.8) 
where the c α are functionals on E (X 1 × X 2 ) and convergence holds in E (X 1 × X 2 ) (hence also in F ).

Step 2. Since Π d is a projector of degree d, it coincides with the identity on the polynomials of degree ≤ d so that we have

Π d d ∑ j=0 ∑ |α|+|β |= j c αβ ( f )p α,β = d ∑ j=0 ∑ |α|+|β |= j c αβ ( f )p α,β
and, consequently, it follows from (13.8), together with the continuity of Π

d : E (X 1 ×X 2 ) → F , that f -Π d ( f ) = ∞ ∑ j=d+1 ∑ |α|+|β |= j c αβ ( f ) p α,β -Π d (p α,β ) (13.9) 
= ∞ ∑ j=d+1 ∑ |α|+|β |= j c αβ ( f )p α,β - ∞ ∑ |α|+|β |=d+1 c αβ ( f )Π d (p α,β ), (13.10) 
where convergence holds in F . Observe that, since the first series tends to 0 in F as d → ∞, we might restrict ourselves to show that

∑ ∞ j=d+1 ∑ |α|+|β |= j c αβ ( f )Π d (p α,β
) goes to 0 as d tends to ∞ in (13.10). It is however equally simple and somewhat more elegant to work with the right hand side of (13.9).

At this point, we need an algebraic formula established in [START_REF] Bertrand | The Newton product of polynomial projectors Part 1 : Construction and algebraic properties[END_REF] for the computation of a Newton product projector applied to a product function :

Theorem 13.5. Let, for i = 1, 2, [Π i ] = (Π i 0 , . . . , Π i d ) be a Newton structured polynomial projec- tor of degree d on E (X i ), X i ∈ K n i . If f i ∈ E (X i ) we denote by f 1 f 2 the product function defined by ( f 1 f 2 )(x 1 , x 2 ) = f 1 (x 1 ) f 2 (x 2 ) then we have Π( f 1 f 2 ) = ∑ (i, j)∈N d (2) π 1 i ( f 1 )π 2 j ( f 2 ), f i ∈ E (X i ), (13.11) 
where the π s i denote the Newton summands corresponding to Π s , see (13.3). Démonstration. See [6, Theorem 4.5 [START_REF] Andersson | Complex Kergin interpolation and the Fantappiè transform[END_REF]]. □

We may now state the key computational lemma.

Lemma 13.6. We use the notation above, see in particular (13.7). Assume that |α|+|β | ≥ d +1 and let

B(d, α, β ) = {(i 1 , i 2 ) ∈ N 2 : d + 1 ≤ i 1 + i 2 ; i 1 ≤ |α|; i 2 ≤ |β |}. (13.12) 
We have

p α,β -Π d (p α,β ) = ∑ (i 1 ,i 2 )∈B(d,α,β ) π 1 i 1 (p 1 α )π 2 i 2 (p 2 β ). Démonstration. Let d 1 = |α| and d 2 = |β |. Since Π d s is a projector of degree d s we have p α,β = p 1 α p 2 β = Π d 1 (p 1 α )Π d 2 (p 2 β ),
and, in view of (13.3),

p α,β = ∑ i 1 ≤d 1 π i 1 (p 1 α ) • ∑ i 2 ≤d 2 π i 2 (p 2 β ) = ∑ i 1 ≤d 1 ,i 2 ≤d 2 π i 1 (p 1 α )π i 2 (p 2 β ). (13.13) 
On the other hand, since p α,β is a product function, the product formula in Theorem 13.5 yields

Π d (p α,β ) = ∑ i 1 +i 2 ≤d π 1 i 1 (p 1 α )π 2 i 2 (p 2 β ). (13.14) 
The relation follows immediately on subtracting (13.14) from (13.13). □

Step 3. The properties of the factors N s enter into play when estimating p α,β -Π d (p α,β ) with the help of the formula given in the previous lemma. To estimate the terms in the sum, we invoke the assumption that the divisor sequences N s , s = 1, 2, are converging via the use of a uniform boundedness principle (Banach-Steinhaus theorem), [START_REF] Rudin | Functional analysis[END_REF]Chapter 2]. It is therefore essential to work on spaces where the principle holds.

SPACES OF HOLOMORPHIC FUNCTIONS ON A NEIGHBORHOOD OF A

REGULAR COMPACT SET 14.1. The space H (K)

The space H (K) formed of all functions holomorphic on a neighborhood of the compact set K is endowed with the usual inductive limit of the spaces H(Ω) or, equivalently, A(Ω) where Ω is an open (bounded) neighborhood of K and H(Ω) denotes the space of holomorphic functions on Ω with the topology of uniform convergence on compact subsets, while A(Ω) is the Banach space of the functions continuous on Ω and holomorphic on Ω with the usual sup-norm on Ω. Thus, for instance, a sequence f n converge to f in H (K) if and only if there exists an open bounded neighborhood Ω of K such that f and f n are in A(Ω) for all n and f n converges uniformly to f on Ω. A linear map from H (K) onto another topological vector space F is continuous if and only if all its restrictions to the spaces A(Ω), Ω ⊃ K are continuous.

Some tools from pluripotential theory

We recall some basic facts from pluripotential complex theory which are required in the sequel. A good general reference is the book by Klimek [START_REF] Klimek | Pluripotential theory[END_REF]. The survey by Levenberg [START_REF] Levenberg | Approximation in C[END_REF] also contains the required material (and much more) and is more approximation-theory oriented. The non-specialist reader may freely assume that the compact sets K we work with are convex in the ordinary geometrical sense. This would imply a limited loss of generality only, at least from a practical point of view.

Let K be a regular polynomially convex compact set in C n . Its continuous pluri-subharmonic Green-Siciak extremal function is denoted by V K . Recall that this function can be defined for instance as

V K (z) = max 0, sup 1 deg p ln |p(z)| : p ∈ P(C n ), ∥p∥ K ≤ 1 . For R > 1, we define the bounded open set K R = {z ∈ C n : V K (z) < ln R}.
A first use of these level sets appears in the Bernstein-Walsh-Siciak inequality [START_REF] Klimek | Pluripotential theory[END_REF] which states that

∥p∥ K R ≤ R deg p ∥p∥ K , p ∈ P d (C n ), R > 1. ( 14.1) 
The level sets K R are further related to the rate of polynomial approximation of a holomorphic function on K. Namely, if

dist( f , P d (C n )) = inf{∥ f -p∥ K : p ∈ P d (C n )},
then f is holomorphic (or extends to a holomorphic function) on K R if and only if lim sup

d→∞ dist f , P d (C n ) 1/d < 1/R.
In particular, setting lim sup

d→∞ dist f , P d (C n ) 1/d = 1 ρ( f ) , (14.2) 
a continuous function f on K extends to a function in H (K) if and only if ρ( f ) > 1 and, more precisely, for all R < ρ( f ), f extends to a function in A(K R ).

Bernstein-Markov measures

An asymptotically optimal approximation polynomial for functions in H (K), K as above, can be obtained as a Fourier expansion with respect to a suitable probability measure as follows. One says that a probability measure µ with compact support on K is a Bernstein-Markov measure if, for all ε > 0, there exists a constant C(ε) = C(ε, µ) such that for all polynomial p we have

∥p∥ K ≤ C(ε)(1 + ε) deg(p) ∥p∥ 2 , ∥p∥ 2 = K |p(z)| 2 dµ(z). (14.3) 
In other words, the L 2 -norm of polynomial behaves asymptotically essentially like the sup-norm on K. By a theorem of Nguyen and Zériahi [START_REF] Nguyen | Familles de polynômes presque partout bornées[END_REF], on a regular compact set K as above, such a measure always exists. See also [START_REF] Bloom | Capacity convergence results and applications to a Bernstein-Markov inequality[END_REF] for a general discussion on Bernstein-Markov measures.

Given such a measure, we denote by (b α ) the orthonormal sequence of polynomials obtained by the Gram-Schmidt process from the monomial sequence (z α ) ordered with respect to the graded lexicographic order. In particular, z α is the leading monomial in b α and deg b α = |α|. When it is necessary to clarify the measure we use, instead of b α (z), we use the notation b(α, µ, z) as in the introduction. The corresponding orthogonal projection is

P d,dm ( f ) = ∑ |α|≤d c α ( f )b α , c α ( f ) = ⟨ f , b α ⟩ = K f (z)b α (z)dm(z), f ∈ H (K). (14.4)
It is well known, see [START_REF] Zériahi | Capacité, constante de čebyšev et polynômes orthogonaux associés à un compact de C n[END_REF], that, dm being a Bernstein-Markov measure, lim sup 

d→∞ {∥ f -P d,dm ( f )∥ K } 1/d = lim sup d→∞ dist( f , P d (C n ))
(C n )) = ∥ f -t d ∥ K , we have ∥ f -t d ∥ K ≤ ∥ f -P d,dm ( f )∥ K ≤ C(1 + ε) d ∥ f -P d,dm ( f )∥ 2 (14.6) ≤ C(1 + ε) d ∥ f -t d ∥ 2 ≤ C(1 + ε) d ∥ f -t d ∥ K , (14.7) 
where we use that the orthogonal projection furnishes the best L 2 approximant of f on the second line. Now, (14.5) immediately follows. Likewise, since, by orthogonality,

c α ( f ) = ⟨ f , b α ⟩ = ⟨ f -P |α|-1,dm ( f ), b α ⟩,
by the Cauchy-Schwarz inequality, we have

|c α ( f )| ≤ ∥ f -P |α|-1,dm ( f )∥ 2 ≤ ∥ f -t |α|-1 ∥ 2 ≤ ∥ f -t |α|-1 ∥ 2 ≤ dist( f , P |α|-1 (C n )). (14.8)
Note that, in fact, we have the series expansion

f = ∞ ∑ j=0 ∑ |α|= j c α ( f )b α , f ∈ H (K), (14.9) 
where the convergence holds in H (K). For this and other applications to pluripotential theory, we refer to [START_REF] Zériahi | Capacité, constante de čebyšev et polynômes orthogonaux associés à un compact de C n[END_REF].

Observe finally that, when applied with p = b α , inequality (14.3) reads as We now collect a few facts that we will need later about the above notions in relation to Cartesian products of sets.

∥b α ∥ K ≤ C(ε)(1 + ε) |α| , |α| = 0,
(i) The Cartesian product

K 1 × K 2 ⊂ C n 1 × C n 2 of
two regular polynomially convex sets is still regular polynomially convex and, see [START_REF] Klimek | Pluripotential theory[END_REF],

V K 1 ×K 2 (z 1 , z 2 ) = max V K 1 (z 1 ),V K 2 (z 2 ) .
In particular,

(K 1 × K 2 ) R = K 1R × K 2R .
(ii) The product µ 1 × µ 2 of a Bernstein-Markov probability measure µ 1 on K 1 by a Bernstein-Markov probability measure µ 2 on K 2 is a Bernstein-Markov measure on K 1 × K 2 , see [START_REF] Bloom | On the multivariate transfinite diameter[END_REF]Lemma 2,p. 290]. Moreover, as is readily checked, the corresponding orthonormal polynomials satisfy the relation

b (α 1 , α 2 ), µ 1 × µ 2 , z = b(α 1 , µ 1 , z 1 ) × b(α 2 , µ 2 , z 2 ), z = (z 1 , z 2 ).
(14.11)

The convergence theorem

Roughly, we prove that the Newton product of projectors that approximate efficiently holomorphic functions on regular compact sets itself efficiently approximates holomorphic function on the Cartesian product of the compact sets. Theorem 14.1. Let K s be a regular polynomially convex set in C n s and N s = (Π s 0 , Π s 1 , . . . ) a Newton sequence on

H (K s ), s = 1, 2. If N s is converging on H (K s ) for s = 1, 2 then N 1 ⊗ N N 2 is converging on H (K 1 × K 2 ).
Lemma 14.2. With the assumptions of the theorem, for s = 1, 2 and for all R > 1, there exists a constant γ s (R) such that

∥Π s d ( f )∥ K ≤ γ s (R)∥ f ∥ K sR , f ∈ A(K sR ). Démonstration. Each projector Π s d is a continuous projector from H (K s ) onto P d (C n ).
Using the definition of the topology on H (K s ) and the fact that every norm is equivalent on P d (C n s ), Π d defines a continuous projector from the Banach space A(K R ) to the Banach space C (K) of continuous function on K. The fact that N s is converging yields that Π s d ( f ) converges to f uniformly on K for all f ∈ A(K R ) hence, for such f , the sequence (Π s d ( f )) is bounded in C (K). Now, the claim results from an application of the uniform boundedness principle (Banach-Steinhaus Theorem) on the Banach space A(K R ). □ Corollary 14.3. Likewise, using the Newton summands, π s d , see (13.3), for s = 1, 2 and for all R > 1, there exists a constant δ s (R) such that

∥π s d ( f )∥ K ≤ δ s (R)∥ f ∥ K sR , f ∈ A(K sR ).
Démonstration. Use the lemma and the fact that π s d = Π s d+1 -Π s d . □

Proof of Theorem 14.1. We take a Bernstein-Markov measure µ s on K s and consider its product µ = µ 1 × µ 2 which is Bernstein-Markov on K 1 ×K 2 , see Subsection 14.3. Following the strategy explained in Subsection 13.3, we start from from the expansion

f = ∞ ∑ j=0 ∑ |α|+|β |= j c αβ ( f )b α,β , c αβ ( f ) = K 1 ×K 2 f (z)b α,β (z)dµ 1 (z 1 )dµ 2 (z 2 ), (14.12) 
where f is any fixed element in H (K), z = (z 1 , z 2 ), z s ∈ K s , and, see (14.11),

b α,β (z 1 , z 2 ) = b(α, µ 1 , z 1 ) × b(β , µ 2 , z 2 ). (14.13) 
Recall that convergence in (14.12) holds in H (K). Next, a use of equation (13.9) and Lemma 13.6 gives

f -Π d ( f ) = ∞ ∑ j=d+1 ∑ |α|+|β |= j c αβ ( f ) ∑ (i 1 ,i 2 )∈B(d,α,β ) π 1 i 1 b(α, µ 1 , •) π 2 i 2 b(β , µ 2 , •) , (14.14) 
where B(d, α, β ) is defined in (13.12). We will use this expression to show that f -Π d ( f ) converges uniformly to 0 on K. Define as above, lim sup

d→∞ dist f , P d (C n ) 1/d = 1 ρ( f ) , so that since f ∈ H (K), ρ( f ) > 1. Choose 1 < R 1 < R 2 < ρ( f )
and ε > 0 to be fixed later. A use of Corollary 14.3 with R = R 1 gives

∥π 1 i b(α, µ 1 , •) π 2 j b(β , µ 2 , •) ∥ K ≤ ∥π 1 i b(α, µ 1 , •) ∥ K 1 ∥π 2 j b(β , µ 2 , •) ∥ K 2 ≤ δ 1 (R 1 )∥b(α, µ 1 , •)∥ K 1R 1 • δ 2 (R 1 )∥b(α, µ 1 , •)∥ K 2R 1 , (14.15) 
Now, applying inequality (14.1) to the right hand side together with the bound (14.10) for the orthonormal polynomials (with the current ε), we get the following estimate : (14.16) where we used |α| + |β | = j. Using, this estimate in (14.14) and setting

∥π 1 i b(α, µ 1 , •) π 2 j b(β , µ 2 , •) ∥ K ≤ δ 1 (R 1 )δ 2 (R 1 )R |α|+|β | 1 C(ε, µ 1 )C(ε, µ 2 )(1 + ε) |α|+|β | ≤ δ 1 (R 1 )δ 2 (R 1 )R j 1 C(ε, µ 1 )C(ε, µ 2 )(1 + ε) j ,
τ = δ 1 (R 1 )δ 2 (R 1 )C(ε, µ 1 )C(ε, µ 2 ), we obtain ∥ f -Π d ( f )∥ K ≤ τ ∞ ∑ j=d+1 (R 1 (1 + ε)) j ∑ |α|+|β |= j c αβ ( f )card(B(d, α, β )), (14.17) 
where card is used to denote the cardinality. Now, since R 2 < ρ( f ), in view of (14.8), there exists ξ = ξ (R 2 )

|c αβ ( f )| ≤ dist( f , P |α|+|β |-1 (C n )) ≤ ξ 1 R 2 |α|+|β | = ξ 1 R j 2 . ( 14.18) 
(Note that, here, ξ is needed only for notational convenience, to have a bound valid for all α and β , rather than for |α| + |β | large enough.) Hence, together with (14.17), we obtain Now take ε so that R 1 (1 + ε) < R 2 . This is possible since R 1 < R 2 and ε can be taken arbitrarily small. In view of (14.21), the right hand side of (14.19) is the remainder of a converging series and this shows that ∥ f -Π d ( f )∥ K → 0 as d tends to ∞. Thus, at this point, using the terminology introduced in definition 13.2, we proved that

∥ f -Π d ( f )∥ K ≤ τξ ∞ ∑ j=d+1 R 1 (1 + ε) R 2 j ∑ |α|+|β |= j card(B(d, α, β )). ( 14 
N 1 ⊗ N N 2 is C (K)-converging on H (K 1 × K 2 ).
Actually, since Π d ( f ) is a polynomial projector the uniform convergence on K implies the convergence on a compact neighborhood of K, hence in H (K). Such a reasoning is detailed in [14, Section 4, p. 17]. In fact, since R 1 (1 + ε) can be taken arbitrarily close to 1 and R 2 arbitrarily close to ρ( f ), our proof actually shows that lim sup

d→∞ ∥ f -Π d ( f )∥ 1/d K = 1 ρ( f ) , (14.22) 
so that Π d ( f ) provides an asymptotically optimal approximation. This fact also classically implies convergence in H (K). Here is a sketch of the proof. The series

L = Π 0 ( f ) + ∞ ∑ d=0 Π d+1 ( f ) -Π d ( f )
is normally converging on K R , for R < ρ( f ). Indeed, by Bernstein Walsh Siciak inequality, (14.1)

∥Π d+1 ( f ) -Π d ( f )∥ K R ≤ R d+1 ∥Π d+1 ( f ) -Π d ( f )∥ K ≤ R d+1 ∥ f -Π d ( f )∥ K + R d+1 ∥ f -Π d+1 ( f )∥ K ,
which in view (14.22) is the general term of a converging series. Now the limit L must equal f on K R since it coincides with f on K. □

Examples

Of course, most classical constructive polynomial approximation results in the complex domain can be used together with the above theorem to get efficient multivariate projectors. We just point out three very natural examples. The first one shows how a well-known result is recaptured with our theorem, the second and third ones provide new projectors which, it seems, deserve particular attention. All the Newton products we consider below are constructed using the Newton structure induced by the ordering of the interpolation points.

(A) For i = 1, . . . , n, we let K i denote a regular polynomially convex plane compact set, and a i d , d ∈ N, be a sequence of points on the boundary of K i such that the discrete measure

µ i d = 1 d + 1 d ∑ j=0 [a j d ]
converges weakly to the equilibrium measure on K i . Then, for every 

f ∈ H (K 1 × • • • × K n ), we have L[a 1 0 , . . . , a 1 d ] ⊗ N L[a 2 0 , . . . , a 2 d ] ⊗ N • • • ⊗ N L[a n 0 , . . . , a n d ]( f ) (14.23) converges to f in H (K 1 × • • • × K n ).
(i.e. z ∈ K, θ ∈ R =⇒ e iθ z ∈ K). If (a d ) is a sequence of points in K such that µ d = 1 d + 1 d ∑ j=0 [a j ]
converges weakly to a e iθ -invariant measure µ, that is, such that K f (z)dµ(z) = K f (e iθ z)dµ(z) for all f ∈ C (K) and θ ∈ R, then the sequence of Kergin projectors (K[a 0 , . . . , a d ]) is converging on H (K), see [START_REF] Bloom | Kergin interpolants of holomorphic functions[END_REF]Theorem 4.1]. Now, assume that, for s = 1, 2, K s is the product of two convex circular sets, K = K 1 × K 2 and that (a s d ) is a sequence of points in K s such that

µ s d = 1 d + 1 d ∑ j=0 [a s j ]
converges weakly to a e iθ -invariant measure µ s on K s . It is readily seen that the above result applies to the sequence 

(a d ) = (a 1 d , a 2 
, . . . , a 1 d ]) ⊗ N (K[a 2 0 , . . . , a 2 d ]) is converging on H (K).
It is interesting to compare these two converging sequences of Kergin-related projectors. The second has the advantage of interpolating at d+1 partial differential relations. For this notion we refer to [6, Section 6.7] and the references therein.

(C) The next example goes along the same lines but is still more interesting since, in that case, as far as we know, no explicit good interpolation projectors were known. We consider a cylinder, say D(0, 1) × [-1, 1] in R 3 . It was shown in [START_REF] Bloom | The distribution of extremal points for Kergin interpolation : real case[END_REF] that if (a d ) is a sequence of points in the disc D(0, 1) such that µ d = 1 d+1 ∑ d j=0 [a j ] weakly converges to the (normalized) dθ measure on the unit circle then the sequence of Kergin projectors (K[a 0 , . . . , a d ]) is converging on H (D(0, 1)) where D(0, 1) is regarded as a subset of The resulting projector interpolates at all points (a i , b j ) for i + j ≤ d. We represent these points on the figure below in the case, which is still more interesting as we will see in Section 16, where (a d ) is a Leja sequence for the unit circle and (b d ) is the corresponding ℜ-Leja sequence, that is, (b d ) is the sequence of the first coordinates of (a d ) in which repeated points are eliminated.

The elements of a Leja sequence for the unit disk can be recursively constructed as follows see [7, Theorem 5 and Corollary 2]

S 1 = (1, -1) (14.24) S 2 n+1 = S 2 n ∧ exp π 2 ( n -1)
S 2 n , n ≥ 1, (14.25) where ∧ denotes the usual concatenation operation on tuples. A precise description of ℜ-Leja sequence is available in [START_REF] Calvi | Lagrange interpolation at real projections of Leja sequences for the unit disk[END_REF]. 

SPACES OF ENTIRE FUNCTIONS

The effectiveness of a polynomial projector defined on the space of entire functions usually depends on the growth (order ω, type τ) of the approximated functions ; roughly, the farther the function is from the space of polynomials the stronger are the requirements on the projector. When the projectors are univariate Lagrangian projectors at a sequence of points (a d ) (of increasing modulus), the acceptable values for ω and τ depend on the velocity at which |a d | goes to infinity. For instance, a classical result of Polya states that all entire functions of exponential type < ln 2 can be approximated (in H (C)) by Lagrange interpolation at the points a d = d and the upper bound ln 2 is optimal. Precise statements will be recalled below. As indicated above, the book by Gelfond [START_REF] Guelfond | Calcul des différences finies[END_REF] contains many results on this subject.

Here, assuming that N s is H (C n s )-converging on a space E s of entire functions on C n s for s = 1, 2, we will look for a space of entire functions E on which

N 1 ⊗ N N 2 is H (C n )- converging, n = n 1 + n 2 .
We will begin by recalling the required material on the study of growth of entire functions of several variables.

Growth of entire functions

Let f ∈ H (C n ) and N a norm on C n . We set

M N ( f , r) = max N(z)≤r | f (z)|, r ≥ 0. Given ω > 0, the ω-type τ = τ( f , ω, N) of f ∈ H (C m ) is defined as τ = lim sup r→∞ ln M N ( f , r) r ω .
When τ is finite, it is the infimum of all s such that ln M N ( f , r) ≤ sr ω + O(1) as r → ∞. The type may be infinite (when no such τ exists) and it depends on the norm N we work with. For instance, for λ > 0,

τ( f , ω, λ N) = 1 λ ω τ( f , ω, N). (15.1) 
The interesting ω-type is computed when ω is the order of f , that is, the infimum of all s, if there exists, such that ln M N ( f , r) = O(w r ) as r → ∞, ω = lim sup r→∞ ln ln M N ( f , r) ln r .

In contrast to the ω-type, the order of an entire function does not depend on the norm N. A function of finite 1-type τ is said to be of exponential type τ.

In the sequel, we will assume we work with norms the ball of which are poly-circular, that is to say, N(z 1 , . . . ,

z n ) ≤ 1 =⇒ N(λ 1 z 1 , . . . , λ n z n ) ≤ 1 for |λ i | = 1, i = 1, . . . , n.
For sake of reference, we will call such a norm a PC-norm. The common l p norms satisfy this condition. The usefulness of this condition appears in the lemma below which will enable us to use the strategy described in Subsection 13.3 by using the standard power series expansion as the starting expansion (13.8). Namely the lemma shows how the growth of an entire function is reflected into the behavior of the coefficients of its power series expansion. At the end of this section, we briefly explain a way to circumvent the condition for the norm to be PC, at least in certain important cases.

Lemma 15.1. Let f (z) = ∑ α∈N n a α z α be an entire function and N a PC-norm on C n . We have

|a α | ≤ t -|α| M N ( f ,t) δ N (α) , t > 0, (15.2) 
where

δ N (α) = max{|z α | : N(z) ≤ 1}, α ∈ N n . (15.3)
Démonstration. The reasoning is taken from [START_REF] Ronkin | Introduction to the theory of entire functions of several variables[END_REF]. Let P k (z) = ∑ |α|=k a α z α and assume that, for a fixed k, C k = max{|P k (z) : N(z) = 1} is attained at z = u. Applying the Cauchy inequalities to the univariate function g

(w) = f (wu) = ∑ ∞ k=0 P k (u)w k , we get C k ≤ t -k max{|g(w)| : |w| = t} ≤ t -k M N ( f ,t), t > 0.
Now, the multivariate Cauchy inequalities applied to the polynomial P k give

|a α | ≤ r -α max{|P k (u 1 , . . . , u n )| : |u i | = r i , i = 1, . . . , n}, r = (r 1 , . . . , r n ), r i > 0.
We apply this inequality with

r ∈ L = {(|u 1 |, . . . , |u n |) : N(u 1 , . . . , u n ) ≤ 1} ⊂ {N(u) ≤ 1},
where the inclusion holds because N is a PC-norm, thus arriving to

|a α |r α ≤ C k , |α| = k, r ∈ L.
Inequality (15.2) is now obtained by passing to the supremum over r in L on the left hand term. □

It is convenient to introduce the following spaces of entire functions.

Definition 15.2. Let N be a PC-norm on H (C m ), ω ≥ 0 and A > 0. We denote by E m ω (A, N) the subspace of entire functions on C m for which there exists a constant M such that

M N ( f , r) ≤ M exp(Ar ω )), r ∈ R.
There is an obvious connection between these spaces and the classical notions of order and type recalled above. We state it as a remark for future reference.

Remark 1. Given ω > 0 and τ < ∞, the following statements are equivalent.

(

) f ∈ H (C m ) is ω-finite type < τ with respect to the norm N. (2) f ∈ ∪ A<τ E m ω (A, N). We define a norm on E m ω (A, N) by setting ∥ f ∥ ω A,N = sup r>0 M N ( f , r) exp(-Ar ω ). 1 
Observe that for all compact K in C m , there exists a constant

C(K) such that all f ∈ E m ω (A, N), ∥ f ∥ K ≤ C(K)∥ f ∥ ω A,N , (15.4) 
so that convergence with respect to the norm ∥ • ∥ w A,N implies uniform convergence on all compact subsets of C m . From this, we deduce the following lemma whose standard proof is only sketched.

Lemma 15.3. When endowed with the norm ∥ • ∥ w A,N , the space E m w (A, N) is a Banach space.

Démonstration. Let ( f n ) be a Cauchy sequence in E m w (A, N). In view of (15.4), it is also a Cauchy sequence in H (C m ) and therefore converges to an entire function f . To show that such f is in E m w (A, N), fix r > 0, the uniform convergence on the N-ball of radius r shows that there exists n 0 = n 0 (r) such that M N ( ff n 0 , r) ≤ 1 so that

M N ( f , r) exp(-Ar ω ) ≤ M N ( f n 0 , r) exp(-Ar ω ) + exp(-Ar ω ) ≤ ∥ f n 0 ∥ ω A,N + 1 ≤ C, the latter since the sequence ∥ f n ∥ ω
A,N , being itself Cauchy, is bounded. Passing to the supremum over r, we obtain that f ∈ E m w (A, N). A similar reasoning shows that the convergence of f n to f holds in E m w (A, N). □ Likewise, since, for any functional µ (continuous linear form) on H (C m ), there exist a compact K and a constant C(K) such that, for all f ∈ H (C m ), |µ( f )| ≤ C(K)∥| f || K , the restriction of such a functional to E m w (A, N) is continuous with its topology of Banach space. We therefore have :

Lemma 15.4. Let Π denote a polynomial projector on H (C m ). The restriction of Π to E m w (A, N) is continuous for its topology of Banach space.

We will need to know the ∥ • ∥ ω A,N -norm of the monomial e α : z → z α in C m . Lemma 15.5. We have

∥e α ∥ ω A,N = δ N (α) |α| eωA |α|/ω
, where δ N (α) = M N (e α , 1) is defined in (15.3).

Démonstration. By homogeneity of e α , we have

M N (e α ,t) exp(-At ω ) = M N (e α , 1)t |α| exp(-At ω ) = δ N (α)t |α| exp(-At ω ).
The claim follows by observing that the function t ∈ R + → t |α| exp(-At ω ) reaches its maximum at t = (|α|/(ωA)) 1/ω . □

The convergence theorems

As above, we work with C n = C n 1 × C n 2 , n s ≥ 1 and let N s denote a PC-norm on C n s . Moreover, given w > 0 and A s > 0 for s = 1, 2, we set

E s = E n s ω (A s , N s ) ⊂ H (C n s ), s = 1, 2.
For the sake of simplicity, we will also write

∥ • ∥ s = ∥ • ∥ ω A s ,N s , s = 1, 2. ( 15.5) 
We first treat the case 0 < ω ≤ 1, the case ω ≥ 1, which is similar, is studied below.

Theorem 15.6. We use the notation above and assume ω ≤ 1. Let N s = (Π s 0 , Π s 1 , . . . ) denote a Newton sequence on H (C n s ), s = 1, 2. Given a s > 0 for s = 1, 2, we define a norm N on C n by setting

N(z 1 , z 2 ) = a 1 N 1 (z 1 ) + a 2 N 2 (z 2 ), z s ∈ C n s , s = 1, 2.
(15.6)

If N s is converging on E s for s = 1, 2 then N 1 ⊗ N N 2 is converging on E n ω (A, N) provided that A < min A 1 a ω 1 , A 2 a ω 2 . ( 15.7) 
The result will be applied in the following form. Now, it is readily seen that the function

r 1 ∈ [0, 1/a 1 ] -→ r |α 1 | 1 1 -a 1 r 1 a 2 |α 2 |
reaches its maximum at

r 1 = 1 a 1 • |α 1 | |α| ,
from wich the lemma immediately follows. □

We turn to the proof of Theorem 15.6.

Démonstration. Using the notation (13.5), we need to show that for any

f ∈ E n ω (A, N), Π d ( f ) converges to f in H (C n ) as d → ∞, that is, Π d ( f ) converges to f uniformly on every compact subset of C n . We fix such a f and K = K 1 × K 2 a compact set in C n with K s ∈ C n s and prove that ∥ f -Π d ( f )∥ K → 0 as d → ∞.
Step 4 (Banach-Steinhaus). In view of Lemma 15.4, Π s d : E s → C (K s ) is a continuous linear map (for the Banach space topologies) and, from the assumption on N s , for all f s in E s , Π s d ( f s ) converges to f s |K s . Hence, by the Banach-Steinhaus Theorem, there exists a constant Γ s such that, see (15.5) for the notation,

∥Π s d ( f s )∥ K s ≤ Γ s ∥ f s ∥ s , d ∈ N, f s ∈ E s , s = 1, 2. (15.8)
Likewise, using the Newton summands

π s d = Π s d -Π s d-1 , just as in Corollary 14.3, ∥π s d ( f s )∥ K s ≤ C s ∥ f s ∥ s , d ∈ N, f s ∈ E s , s = 1, 2, (15.9) 
with C s = 2Γ s .

Step 5 (Using the strategy described in Subsection 13.3). Writing e s α : z s ∈ C n s → z α , we start from the power series expansion of f ,

f (z 1 , z 2 ) = ∞ ∑ j=0 ∑ |α 1 |+|α 2 |= j c (α 1 ,α 2 ) e α 1 (z 1 )e α 2 (z 2 ).
A use of (13.9) and Lemma 13.6 yields

f -Π d ( f ) = ∞ ∑ j=d+1 ∑ |α 1 |+|α 2 |= j c α 1 α 2    ∑ (i 1 ,i 2 )∈B(d,α 1 ,α 2 ) π 1 i 1 (e α 1 )π 2 i 2 (e α 2 )    .
We will denote by R α 1 ,α 2 the sum into brackets in the above equation. We will prove that the series

∞ ∑ j=0 ∑ |α 1 |+|α 2 |= j |c α 1 α 2 | ∥R α 1 ,α 2 ∥ K
is converging and ∥ f -Π d ( f )∥ K will therefore go to 0 as it is bounded by the remainder of a converging series.

Step 6 (Estimating ∥R α 1 ,α 2 ∥ K ). Using (15.9) in the above equation for R α 1 ,α 2 , we obtain

∥R α 1 ,α 2 ∥ K ≤ C 1 C 2 card B(d, α 1 , α 2 ) ∥e α 1 ∥ 1 ∥e α 2 ∥ 2 (15.10)
and, using the estimate (14.20) for card B(d, α 1 , α 2 ) ,

≤ C 1 C 2 (|α 1 | + 1)(|α 2 | + 1)∥e α 1 ∥ 1 ∥e α 2 ∥ 2 (15.11)
Now a use of Lemma 15.5 gives

∥R α 1 ,α 2 ∥ K ≤ C 1 C 2 (|α 1 | + 1)(|α 2 | + 1)δ N 1 (α 1 )δ N 2 (α 2 ) × |α 1 | eωA 1 |α 1 | ω |α 2 | eωA 2 |α 2 | ω
. (15.12)

Step 7 (Estimating |c α 1 α 2 |). Since N s is a PC-norm for s = 1, 2 so is the norm N and we may therefore apply estimate (15.2) in Lemma 15.1 to get

|c α 1 α 2 | ≤ t -|α| δ N (α) M N ( f ,t) ≤ M t -|α| δ N (α) e tA , α = (α 1 , α 2 ), t ≥ 0, (15.13) 
where we used f ∈ E ω (A, N). Since, as in the proof of Lemma 15.5, the function t → t -|α| e t ω A reaches its minimum for t = (|α|/(ωA)) 1/ω , we have

|c α 1 α 2 | ≤ M |α| eωA -|α|/ω • 1 δ N (α) .
Next, we use Lemma 15.9 to handle the term δ N (α) and, after some simple calculation, we arrive to

|c α 1 α 2 | ≤ M 1 eωA -|α|/ω • |α| |α|-1/ω • a 1 |α 1 | a 2 |α 2 | |α 1 | |α 1 | |α 2 | |α 2 | δ N 1 (α 1 )δ N 2 (α 2 ) . (15.14) 
Step 8 (Conclusion). Putting (15.12) and (15.14) together, setting C = MC 1 C 2 , we obtain

|c α 1 α 2 | ∥R α 1 ,α 2 ∥ K ≤ C(|α 1 | + 1)(|α 2 | + 1) • a ω 1 A A 1 |α 1 |/ω a ω 2 A A 2 |α 2 |/ω × |α 1 | |α 1 | |α 2 | |α 2 | |α| |α| 1 ω -1
.

The terms into brackets is obviously smaller than one (since |α s | ≤ |α|), hence we have

|c α 1 α 2 | ∥R α 1 ,α 2 ∥ K ≤ M(|α| + 1) 2 q |α 1 | 1 q |α 2 | 2 with q s = a 1/ω s A A s 1/ω < 1,
the latter by assumption (15.7). The convergence of the series of general term c α 1 α 2 R α 1 ,α 2 follows and according to the second step, this concludes the proof of the theorem.

□

We will now deal with the case ω ≥ 1.

Theorem 15.10. We use the notation above and assume ω ≥ 1. Let N s = (Π s 0 , Π s 1 , . . . ) denotes a Newton sequence on H (C n s ), s = 1, 2. Given a s > 0 for s = 1, 2, we define a norm N on C n by

N(z 1 , z 2 ) = a 1 N ω 1 (z 1 ) + a 2 N ω 2 (z 2 ) 1/ω , z s ∈ C n s , s = 1, 2. (15.15) If N s is converging on E s for s = 1, 2 then N 1 ⊗ N N 2 is converging on E n ω (A, N) provided that A < min A 1 a 1 , A 2 a 2 . ( 15.16) 
Thus the mains changes are the definition of the norm N and the assumptions on A in which ω disappear. It is worth noting that the definition of N and the conditions on A in both theorems are continuous with respect to ω around ω = 1. Note also that the condition ω ≥ 1 ensures that equation (15.15) defines a norm. It is obviously a PC-norm as soon as the N s are.

Corollaries 15.7 and 15.8 remain true with obvious changes. We will not state them.

The change in the definition on N requires a modification of Lemma 15.9.

Lemma 15.11. With the notation of Theorem 15.10, in particular with N as in (15.15), we have

δ N (α) = |α 1 | |α 1 |α 2 | |α 2 | |α| |α| a 1 |α 1 | a 2 |α 2 | 1/ω • δ N 1 (α 1 )δ N 2 (α 2 )
Démonstration. Working as in the proof of Lemma 15.9, we find 

δ N (α 1 , α 2 ) = δ N 1 (α 1 )δ N 2 (α 2 ) max r |α 1 |/ω 1 r |α 2 |ω 2 : a 1 r 1 + a 2 r 2 =
|c α 1 α 2 | ∥R α 1 ,α 2 ∥ K ≤ M(|α 1 | + 1)(|α 2 | + 1) • a 1 A A 1 |α 1 |/ω a 2 A A 2 |α 2 |/ω
, from which the conclusion is immediate. □ Remark 2 (About the Assumption on the norm N.).

(A) Any norm N s is dominated by the PC-norm N s defined by

N s (z) = max{N(λ 1 z 1 , . . . , λ n z n ), |λ i | = 1, i = 1, . . . , n},
and N s is the smallest norm satisfying the property. Since E n s ω (A s , N s ) ⊂ E n s ω (A, N s ), we may apply Theorem 15.6 to get a space depending on N (defined from the norms N s as in the above theorems) on which the Newton product converges. This space however is unlikely to be optimal, as follows from the next remark.

(B) In the case of entire functions of exponential type, another approach is available that enable to eliminate the assumption on the norm N to be PC. By representing such a function f (of exponential type τ < 1 with respect to N) by a Laplace transform of an analytic functional, see [START_REF] Hörmander | The analysis of linear partial differential operators. I. Classics in Mathematics[END_REF]Section 4.5], we can write f as

f (w) = {N ⋆ (z)≤τ} exp⟨z, w⟩dµ(z),
where µ is a complex measure supported on the ball {N ⋆ (z) ≤ τ} and N ⋆ is the dual norm of N (without assuming that N is PC). Recall that

N ⋆ (z) = max |⟨z, ξ ⟩|, N(ξ ) = 1 .

This yields a new way of computing

Π( f ), hence f -Π( f ), namely Π( f )(w) = {N ⋆ (z)≤τ} Π exp⟨z, •⟩ (w)dµ(z),
which is interesting since w → exp⟨z, w⟩ is the product exp⟨z 1 , w 1 ⟩× exp⟨z 2 , w 2 ⟩ so that we may use the available formula for the Newton projector of a product function (Theorem 13.5). Let us just point out how the formula for N naturally comes from the norms N s through duality. In fact, if N = τ 1 N 1 + τ 2 N 2 as in Corollary 15.7 then one readily checks that

N ⋆ (z 1 , z 2 ) = max (τ 1 N 1 ) ⋆ (z 1 ), (τ 2 N 2 ) ⋆ (z 2 ) = max N ⋆ 1 (z 1 ) τ 1 , N ⋆ 2 (z 2 ) τ 2 .
Hence if F is an entire function of exponential type < 1 with respect to N, for some measure µ we have

f (w) = {N ⋆ (z)≤1} exp⟨z, w⟩dµ(z 1 , z 2 ) = {N ⋆ 1 (z 1 )≤τ 1 }×{N ⋆ 2 (z 2 )≤τ 2 } exp⟨z 1 , w 1 ⟩ exp⟨z 2 , w 2 ⟩dµ(z 1 , z 2 ).
And the convergence of Π d ( f ) to f can be obtained as from the convergence of Π d for the product function w → exp⟨z 1 , w 1 ⟩ × exp⟨z 2 , w 2 ⟩ (the convergence being uniform in w s ). We omit the details.

Example

We illustrate the above convergence theorems in the case of the product of two Newton sequences of Kergin interpolation projectors as in Subsection 14.6 for which deep approximation results are available for entire functions. Let us first recall such a result. We use the notation introduced above. Give ω > 0, we set

c = c(ω) = 1/2 0 t ω-1 1 -t dt. (15.17) 
In particular,

c(1) = ln 2.
Given a sequence of points a s d in C n s , d ∈ N, such that the sequence of their norms N s (a s d ) is non decreasing, we define the counting function N s (r) as the number of interpolation points whose N s -norm is not bigger than r, that is

N s (r) = card{i ∈ N : N s (a s i ) ≤ r}.
The ω-density ∆ s , with respect to N s , of the sequence a s d is then defined as

∆ s = lim inf r→∞ N s (r)
r ω . It is known that, for all entire function of ω-type τ s such that τ s < c∆ s , the sequence of Kergin interpolation polynomials K[a s 0 , . . . , a s d ; f ] converges uniformly to f on every compact subset of C n s . This is a multivariate generalization of a Theorem of Gelfond [START_REF] Guelfond | Calcul des différences finies[END_REF]. It was first proved in the case of the standard euclidean norm by Bloom [START_REF] Bloom | Kergin interpolation of entire functions on C n[END_REF] and then extended to an arbitrary norm by Andersson and Passare [START_REF] Andersson | Complex Kergin interpolation[END_REF].

Here, a direct application of Corollary 15.8 yields the following.

Theorem 15.12. Let (a s d ), s = 1, 2 be two sequences of points as above. If their density are equal, i.e. ∆ 1 = ∆ 2 (= ∆), then, for all entire functions on C n = C n 1 × C n 2 of ω-type τ with respect to the norm N, see below, satisfying τ < ∆c, If κ is a θ -SBM compact satisfying a Markov inequality of exponent r, then there exists a constant C µ,κ = C(µ)M(κ), such that for all derivatives D α we have

∥D α p∥ κ ≤ C µ,κ (deg p) θ +r|α| ∥p∥ 2 , p ∈ P(R n ). (16.4) 
Finally, we say that κ is a Jackson compact set if for all function f in C m (κ), we have

dist( f , P d (R n )) ≤ M J d -m (16.5)
where the distance is with respect to the uniform norm on κ and M J depends only on f , m and κ. For this notion of Jackson sets we refer to [START_REF] Ple Śniak | Multivariate Jackson inequality[END_REF] and the references therein. In view of [START_REF] Bagby | Multivariate simultaneous approximation[END_REF]Theorem 2] if κ is quasi-convex (i.e. satisfies the Whitney property P), so that, by the Whitney extension Theorem [START_REF] Whitney | Functions differentiable on the boundaries of regions[END_REF][START_REF] Bierstone | Differentiable functions[END_REF], all f in C m (κ) extends to a function C m on a neighborhood of κ then for all degree d, there exists a polynomial t d (of near-best simultaneous approximation of f ) such that

∥D α ( f -t d )∥ κ ≤ M J /d m-|α| , d ∈ N, (16.6) 
where M J = M J (m, f ) ≥ M J depends only on f and m and κ. Such sets, in particular, convex bodies, are therefore Jackson sets. Given a θ -SBM measure µ on κ, we may construct the sequence of orthonormal polynomials b α and the corresponding orthogonal projection

P d,µ ( f ) = ∑ |α|≤d c α ( f )b α , c α ( f ) = ⟨ f , b α ⟩ = K f (x)b α (x)dµ(x),
as in Subsection 14.3. Lemma 16.2. Let K ⊂ R n be a θ -SBM compact set with measure µ as well as a Jackson and Markov compact set with exponent r. For all f ∈ C m (K), we have

f = ∞ ∑ d=0 ∑ |α|=d c α ( f )b α in C m (K), (16.7) 
whenever m > θ + rm + 1.

Démonstration. We denote by µ the θ -SBM measure on K. The reasoning is similar to that given in Subsection 14.3, see also [START_REF] Zériahi | Inegalités de Markov et développement en série de polynômes orthogonaux des fonctions C ∞ et A ∞[END_REF]. Let us write H d = ∑ |α|=d c α ( f )b α . We prove that ∑ ∞ d=0 D β H d uniformly converges on K for ∥α ≤ m. To explain the condition on m, let us just observe that, the assumptions on K enable us to use (16.4) so that

∥D β H d ∥ K ≤ C µ,K d θ +rm ∥H d ∥ 2 , (16.8) 
Now, let us just observe that here, calling t d-1 a best uniform approximation polynomial of f in P d-1 (R n ), see (16.6), we have

∥H d ∥ 2 = ∥P d,µ ( f ) -P d-1,µ ( f )∥ 2 (16.9) ≤ ∥ f -P d,µ ( f )∥ 2 + ∥ f -P d-1,µ ( f )∥ 2 (16.10) ≤ 2∥ f -P d-1,µ ( f )∥ 2 (P d,µ ( f ) is best in P d ) (16.11) ≤ 2∥ f -t d-1 ∥ 2 (P d-1,µ ( f ) is best in P d-1 ) (16.12) ≤ 2∥ f -t d-1 ∥ K ≤ 2M J (d -1) m ≤ M ′ d m
(K is Jackson and f ∈ C m (K)). (16.13) This bound together with inequality (16.8) now yields

∥D β H d ∥ K ≤ C µ,K M ′ d θ +rm-m ,
so that the series ∑ ∞ d=0 D β H d converges normally on K as soon as θ + rm -m < -1. This shows that, under the assumption on m, the right hand side of (16.7) converges in C m (K) to a certain function g. Since the convergence of the series to f plainly holds in L 2 , g coincides almost everywhere with f on K, hence everywhere by continuity. □

The convergence theorem

It is important to note the three levels of differentiability m, m and m that occur in the following statement. Theorem 16.3. For s = 1, 2, we let K s denote a compact set in R n s such that (1) K s is a θ s -SBM compact, (2) K s satisfies a Markov inequality of exponent r s . We assume further that K 1 × K 2 is a Jackson compact set in R n , n = n 1 + n 2 and κ s is a compact subset of K s . We set K = K 1 × K 2 and κ = κ 1 × κ 2 .

Let N s = (Π s 0 , Π s 1 , . . . ) denote a Newton sequence on C m (K s ), s = 1, 2. If N s is C (κ s )-converging on C m (K s ) for s = 1, 2, m ≥ m, then N 1 ⊗ N N 2 = (Π 0 , Π 1 , . . . ) is C (κ)-converging on C m (K) provided that m > 3/2 + (θ 1 + θ 2 ) + m(r 1 + r 2 ).

(16.14)

In the above statement, it is implicit that when Π s d , s = 1, 2, is a continuous projector on C m (K s ) then Π 1 d ⊗ N Π 2 d is a well defined continuous projector on C m (K). Such a result is established in [START_REF] Bertrand | The Newton product of polynomial projectors Part 1 : Construction and algebraic properties[END_REF] where the space considered are the usual Fréchet space C m (Ω s ) where Ω s is open in R n s . The proof in the present case is similar, we omit it. The reader may freely modify the hypothesis in the statement above assuming that all the projectors are defined on the space of functions differentiable on the whole space (with the same level of differentiability) and extend continuously to the spaces indicated, see the statement of Corollary 16.5 below. This is plainly the case in the examples presented in Subsection 16.3. Corollary 16.4. For s = 1, 2, we let K s denote a convex body in R n s . We set K = K 1 × K 2 and κ = κ 1 × κ 2 .

Let N s = (Π s 0 , Π s 1 , . . . ) denote a Newton sequence on C m (K s ), s = 1, 2. If N s is C (κ s )-converging on C m (K s ) for s = 1, 2, m ≥ m, then N 1 ⊗ N N 2 = (Π 0 , Π 1 , . . . ) is C (κ)-converging on C m (K) provided that m > 3n/2 + 4m + 3/2.

(16.15)

Démonstration. Convex bodies satisfies all the requirements with θ s = 3n s /2 and r s = 2. □

We will apply the result in the following form. Corollary 16.5. For s = 1, 2, we let κ s denote a convex body in R n s . We set κ = κ 1 × κ 2 .

Let N s = (Π s 0 , Π s 1 , . . . ) denote a Newton sequence on C m (R n ), s = 1, 2. We assume that all the projectors as well as those of N 1 ⊗ N N 2 = (Π 0 , Π 1 , . . . ) extend continuously to, respectively, C m (κ s ) and C m (κ).

If N s is C (κ s )-converging on the space of function m times continuous differentiable on a neighborhood of κ s for s = 1, 2, m ≥ m, then N 1 ⊗ N N 2 = (Π 0 , Π 1 , . . . ) is C (κ)-converging on the space of all m differentiable functions on a neighborhood of κ provided that m > 3n/2 + 4m + 3/2. (16.16) Démonstration. Apply the previous corollary with K s , running in a basis of neighborhood of κ (formed of convex bodies). □

Let us point out the limitation of the above theorem and its corollaries. The assumption on m clearly depends on the method of proof. It seems natural to expect that the theorem holds with m = m and, if this is not true, it would ne interesting to explain the reason why the Newton product procedure induces a loss.

Proof of Theorem 16.3. We use the strategy described in Subsection 13.3 starting from the Fourier expansion (16.7) on K 1 × K 2 with µ = µ 1 × µ 2 where µ s is a θ s -SBM on K s , so that µ is θ -SBM on K = K 1 × K 2 in view of Lemma 16.2. Besides K satisfies a Markow inequality of exponent max(r 1 , r 2 ). Hence, since the assumption on m implies m > 1 + (θ 1 + θ 2 ) + m max(r 1 , r 2 ), (16.17 As in the proof of Theorem 14.1, the assumption on the convergence together with the uniform boundedness principle on the Banach space C m (K s ) provide us with a positive constant C s such that (not confuse the projector Π s d with its Newton summand π s d ) :

∥π s d ( f s )∥ κ ≤ C s ∥ f s ∥ m,K s , f s ∈ C m (K s ), s = 1, 2. (16.19) 
Now, since the convergence in (16.18) holds in C m (K) on which Π d is continuous then we may permute Π d with the sum in the series expansion to obtain (see (14.14))

f -Π d ( f ) = ∞ ∑ j=d+1 ∑ |α|+|β |= j c αβ ( f ) ∑ (i 1 ,i 2 )∈B(d,α,β ) π 1 i 1 b(α, µ 1 , •) π 2 i 2 b(β , µ 2 , •) .
(16.20)

At this point, we could continue the proof as in that of Theorem 14.1. Yet the term in (14.21) which is innocuous in the case of holomorphic functions (because it is dominated by a geometric sequence) should be taken into account and would lead to a weaker estimate. To avoid this term, we will use a somewhat more tricky argument. Let us denote by H j the j-term in (16.20). Permuting the sums, we obtain

H j = j ∑ i 2 =0 j ∑ i 1 =d+1-i 2 ∑ (α,β )∈B(i 1 ,i 2 , j) c αβ ( f )π 1 i 1 b(α, µ 1 , •)π 2 i 2 b(β , µ 2 , •) , (16.21) 
where

B(i 1 , i 2 , j) = (α, β ) ∈ N n 1 × N n 2 : |α| ≥ i 1 , |β | ≥ i 2 , |α| + |β | = j .
Fix z 1 ∈ K 1 . Let us concentrate on the term between brackets in (16.21). Since π i 2 is linear, it can be seen as

π i 2 (h), h(•) = j ∑ i 1 =d+1-i 2 ∑ (α,β )∈B(i 1 ,i 2 ,d) c αβ ( f )π 1 i 1 (b(α, µ 1 , •))(z 1 )b(β , µ 2 , •).
Observe that h = h z 1 is a polynomial (in z 2 ) of degree ≤ j and, since the b(β , µ 2 , z 2 ) are orthonormal, we have 

∥h∥ 2 = j ∑ i 1 =d+1-i 2 ∑ (α,β )∈B(i 1 ,i 2 , j) c 2 αβ ( f ) × π 1 i 1 (b(α, µ 1 , •)(z
∥h z 1 ∥ 2 ≤ C 1 C µ 1 ,K 1 j θ 1 +mr 1 j ∑ i 1 =d+1-i 2 ∑ (α,β )∈B(i 1 ,i 2 , j) c 2 αβ ( f ) 1/2 .
Returning to H j in (16.25), we now have

∥H j ∥ κ ≤ C 2 C µ 2 ,K 2 C 1 C µ 1 ,K 1 j θ 1 +mr 1 +θ 2 +mr 2 j ∑ i 2 =0 j ∑ i 1 =d+1-i 2 ∑ (α,β )∈B(i 1 ,i 2 , j) c 2 αβ ( f ) 1/2 .
To deal with the right hand term, we use the concavity inequality for the square root which reads as

j ∑ i 2 =0 □ i 2 j + 1 ≤ 1 j + 1 j ∑ i 2 =0
□ i 2 which gives the first line of the following (where we shortens the notation for clarity) = j + 1∥P j,µ ( f ) -P j-1,µ ( f )∥ 2 (16.31) and, in view of (16.13) taking into account that K is Jackson and f ∈ C m (K),

≤ C ′ j + 1 j -m ≤ C ′′ j 1/2-m . (16.32)
So the final estimate for ∥H j ∥ κ is

∥H j ∥ κ ≤ C ′′ C 2 C µ 2 ,K 2 C 1 C µ 1 ,K 1 j 1/2+θ 1 +mr 1 +θ 2 +mr 2 -m .
Since, see (16.20), we have

∥ f -Π d ( f )∥ κ ≤ ∞ ∑ j=d+1 ∥H j ∥ κ ;
the uniform convergence follows as soon as 1/2 + θ 1 + mr 1 + θ 2 + mr 2 -m < -1 which is the assumption on m.

PARTIE 3.

Étant donné un ensemble de noeuds d'interpolation valide pour l'interpolation de Lagrange de degré d à n variables, on étudie le nombres de sous-ensemble qui forme un ensemble d'interpolation valide de degré d -1. Cela conduit à une estimation du nombre de structures de Newton, nombre qui fournit à son tour le nombre de tableaux unisolvants distincts que l'on peut obtenir par le procédé d'enlacement qui est rappelé dans le texte.

Article soumis.

SUR LA GÉOMÉTRIE DES ENSEMBLES DE NOEUDS POUR L'INTERPOLATION DE LAGRANGE EN PLUSIEURS VARIABLES

INTRODUCTION

On sait bien que la donnée de d + 1 points réels, deux à deux distincts, permet de définir un projecteur de Lagrange unidimensionnel de degré d et n'importe quel arrangement de ces d + 1 points conduira par exemple à une forme de Newton particulière comme aussi à un algorithme de Neville-Aitken particulier. Il en est tout autrement dans l'interpolation de Lagrange multidimensionnelle car, si X est un ensemble de cardinal N d (n) = dim P d (K n ), n > 1, qui est unisolvant (de degré d), voir ci-dessous, un sous-ensemble de X de cardinal N d-1 (n) ne sera pas nécessairement unisolvant de degré d -1. Le problème de combinatoire géométrique étudié dans cette note consiste essentiellement à estimer le nombre de sous-ensembles d'un tel X qui soient unisolvants de degré d -1. Le problème et sa motivation sont explicités ci-après. = N d-1 premières colonnes de ce déterminant forment une famille libre, ce qui met en évidence des entiers 1 ≤ i 1 < ..... < i N d-1 ≤ N d correspondant à N d-1 lignes indépendantes de sorte qu'en posant

X d-1 = A i 1 , ..., A i N d-1 ,
il vient V DM(X d-1 ) ̸ = 0. Ainsi X d-1 se trouve être une partie unisolvante de K n de cardinal N d-1 et, par la même occasion, on initie un processus qui conduit à une suite de parties unisolvantes dans K n , de degré k (i.e, pour 0 ≤ k ≤ d, X k admet k pour degré) : X 0 ⊂ • • • ⊂ X d-1 ⊂ X d ce qui nous conduit à la définition suivante. Definition 18.1. On appelle structure de Newton d'un ensemble unisolvant X d de degré d dans K n toute suite d'ensembles X i , unisolvant de degré i, i = 0, . . . , d -1, telle que

X 0 ⊂ X 1 ⊂ X 2 ⊂ • • • ⊂ X d-1 ⊂ X d .
Cette notion a été introduite par Sauer et Xu dans [START_REF] Sauer | On multivariate Lagrange interpolation[END_REF] (avec une autre terminologie) dans le but de développer une formule de Newton multidimensionnelle, puis elle a été utilisée par Calvi [START_REF] Calvi | Intertwining unisolvent arrays for multivariate Lagrange interpolation[END_REF] pour définir de nouveaux tableaux d'interpolation par un procédé d'enlacement, dont la généralisation, devenu le produit de Newton, est introduite dans [START_REF] Bertrand | The Newton product of polynomial projectors Part 1 : Construction and algebraic properties[END_REF] : si Notons que, puisque la condition de ne pas être unisolvant est algébrique, en dehors d'un ensemble algébrique de (K n ) N d (n) , n'importe quel choix de X i conviendra de sorte que le nombre de structures de Newton sera maximal, c'est-à-dire De plus X d ∩ (K n \Γ) comporte au moins n + 1 points (dont un est nécessairement A i k ). En effet, sinon X d serait inclus dans la réunion de Γ et d'un hyperplan passant par A i k ce qu'interdit son unisolvance (le polynôme ℓ i k × h où h est une équation de l'hyperplan serait un polynôme non nul de degré d qui s'annulerait sur X d ).

X 0 ⊂ X 1 ⊂ X 2 ⊂ • • • ⊂ X d-
Considérons alors M r , r = 1, . . . , n, n points distincts de A i k , dans X d et en dehors de Γ et posons X r k = X ′ k ∪ {M r }, r = 1, . . . , n. Nous affirmons que chacun de ces X r k est unisolvant de degré d -1. Pour le montrer, supposons P ∈ P d-1 (K n ) s'annule sur X r k . Si P ̸ = 0 alors P = 0 est une équation de Γ (en raison du degré et de l'annulation sur X ′ k de P) mais P(M r ) = 0 et ainsi M r appartiendrait à Γ ce qui n'est pas. Nous avons ainsi montré que la donnée d'un sous-ensemble unisolvant de degré d -1 implique, en faisant varier r et i k l'existence de N d-1 × n autres sous-ensemble unisolvant de degré d -1 pour obtenir un total au moins égal à nN d-1 (n) + 1. Nous avons établi le théorème suivant. 

PROBLÈMES

(1) Le Théorème 19.1 montre que le nombre de configurations possibles est soumis à des conditions arithmétiques. Il serait intéressant de connaître ces conditions dans d'autres cas et d'estimer le nombre de valeurs possibles en général pour le nombre total de structures de Newton.

(2) Il serait souhaitable d'estimer la précision de la minoration donnée au Théorème 20.1 et de caractériser les configurations possédant un nombre minimal ou quasi minimal de structures de Newton.

(3) Estimer le nombre de structures de Newton d'un ensemble unisolvant X d de degré d sous l'hypothèse supplémentaire que les points de X d sont situés sur une hypersurface algébrique de degré d + 1.

Premier projecteur Π 1 Second projecteur Π 2 2

 122 Produit de Newton Π 1 ⊗ N Π Projecteur de Taylor en a ∈ K n à l'ordre d Projecteur de Taylor en b ∈ K m à l'ordre d Projecteur de Taylor en (a, b) ∈ K n+m à l'ordre d L 2 (µ)-Projection orthogonale sur P d (K n ), où µ est une mesure de Borel portée par K ⊂ K n L 2 (ν)-Projection orthogonale sur P d (K m ),où µ est une mesure de Borel portée par W ⊂ K m L 2 (µ ⊗ ν)-Projection orthogonale sur P d (K n+m ) .

2. 4 . 1 .Definition 2 . 1 .

 4121 le produit de Newton de structures lagrangiennes est du même type comme le suggère le tableau précédent. Nous allons développer ce dernier point . Par structure( de Newton) lagrangienne de degré d, dans K m (ou plus simplement à m variables), on entend une structure de Newton [Π k ] dont tous les facteurs Π k , 0 ≤ k ≤ d sont des projecteurs de Lagrange, de degré k à m variables. On dispose alors d'une unique famille ( dite base adaptée) ([a α ]) |α|≤d de fonctionnelles (de Dirac) telle que ([a α ]) |α|≤k soit une base de chaque espace de condition CND(Π k ) pour tout k, 0 ≤ k ≤ d et d'une suite ( croissante pour l'inclusion) d'ensembles de noeuds d'interpolation {a α , |α| ≤ k} qui sont tous nécessairement des parties unisolvantes de K m , d'ordre ( ou de degré) k. Inversement à toute partie unisolvante d'ordre d de K m on associe un unique projecteur de Lagrange à m variables ( à savoir L[A] ) et au moins ( on a donné un minorant moins grossier dans ce travail, par des raisonnements d'algèbre linéaire assez directs sur les matrices de Vandermonde généralisées) une structure lagrangienne de même de degré et de même nombre de variables telle que le dernier facteur de celle-ci soit justement L[A]. L'importance de l'unisolvance dans ce domaine n'étant plus à souligner, on voit aisément un intérêt immédiat de 2.4.3 : obtenir de façon systématique des ensembles unisolvants à partir de deux autres mais de dimensions inférieures. De ces remarques, on peut tirer le concept suivant (qui étend un peu celui généralement proposé) : Une partie A de K n est dite de Biermann d'ordre d, s'il existe des entiers n 1 et n 2 non nuls et des structures lagrangiennes de degré d [Π i ] = L[A i ], i = 1, 2, définies sur des espaces fonctionnels E n i tels que : n = n 1 + n 2 et Π 1 ⊗ N Π 2 = L[A]. On se permettra aussi d'écrire A = A 1 ⊗ N A 2 .

  ne s'agit rien de moins, et c'est pour cela que notre point de vue est plus général, que l'ensemble des noeuds du produit de Newton de L[0, ...d] sur lui-même opéré n fois. 17. Il sera noté F A⊗ N B k,l . 18. Où on posé l k (resp. m l ) comme le FLIP associé au dernier noeud de L[a 0 , ...a k ] (resp. de L[b 0 , .., b l ]). 19. Où on a posé C k,l = {a k , ..., a k+s } ⊗ N {b l , ...., b l+s }, avec s = d -(k + l). 20. La détermination de F C k,l k,l étant géométriquement naturelle. 21. Ce résultat doit s'étendre mécaniquement à d'autres types de projecteurs polynomiaux.

  une norme PC sur C n s . Par ailleurs en notant, pour v > 0, B > 0 et m entier naturel non nul, par E m v (B, M), M étant une norme sur C m , l'ensemble des fonctions entières de C m , d'ordre inférieur ou égal à v et de type inférieur ou égal à B 28 que l'on munit de sa topologie classique (Cf lemme 4.4 du chapitre 2 ou Gruman-Lelong voire Martineau) et en se donnant w > 0 et A s > 0 pour s = 1, 2 ainsi que

7 .

 7 POLYNOMIAL PROJECTORS AND NEWTON STRUCTURES 7.1. The algebra of polynomial projectors 7.1.1. Polynomial projectors and space of interpolation conditions. Definition 7.1. A polynomial projector of degree d on a space

7. 1 . 3 .Definition 7 . 6 .

 1376 Vandermondians. Lemma 7.5 leads to two important definitions. The matrix vdm(M, B) is called the (generalized) Vandermonde matrix (and its determinant VDM(M, B) the vandermondian) attached to the pair of bases {M, B}.

Definition 7 . 7 .

 77 A pair {M, B} where M = (µ α : α ∈ N d (n)) and B = (p α : α ∈ N d (n)) satisfy (7.6

. 5 )

 5 More generally any permutation (ordering) of the points in A induces a particular Newton structure. Many other examples are given in subsection 8.5 below. Before studying such examples, we present an alternative characterization of a Newton structure.

Theorem 8 . 10 .

 810 If Π is a Lagrange projector of degree 2 in K 2 then the number of Newton structures for Π with Lagrange projectors as factors is of the form 3(20k) with k ∈ {0, 1, 2, 3, 4}. Theorem 8.11. If Π is a Lagrange projector of degree 3 in K 2 then the number of Newton structures for Π with Lagrange projectors as factors is not smaller than 48 × 12 = 576. 8.5.3. Orthogonal projection. We use the notation introduced in subsection 7.2.3. The natural Newton structure for P d,m is as follows [P d,m ] = (P 0,m , P 1,m , . . . , P d-1,m , P d,m ).

8. 5 . 4 .

 54 Kergin interpolation. If A = {a 0 , a 1 , . . . , a d }, any of the (d + 1)! permutations of the (indices of the) points induces a Newton structure for K A with Kergin projectors as factors, namely, if σ is such an index permutation

Corollary 9 . 10 .

 910 If ν s = (ν s α : α ∈ N d (n s )) is a Newton functional basis for [Π s ] (see Definition 8.5) then the functionals

( 1 )

 1 l(µ) ≥ 2.(2) No element in the support of µ belongs to L

  d ) so that : (a) The sequence of Kergin projectors (K[(a 1 0 , a 2 0 ), . . . , (a 1 d , a 2 d )]) is converging on H (K). (b) On the other hand, an application of Theorem 14.1 gives : Theorem 14.4. The sequence of projectors (K[a 1 0

C 2 .√ 1 -

 21 Likewise, if (b d ) is a sequence of points in the interval [-1, 1] whose corresponding µ d measure converges to the equilibrium measure dx/ x 2 then classical Lagrange interpolation theory tells that the sequence of Lagrange projectors (L[b 0 , . . . , b d ]) is converging on H ([-1, 1]) (where [-1, 1] is regarded as a subset of C). Hence, an application of Theorem 14.1 gives : Theorem 14.5. The sequence of projectors (K[a 0 , . . . , a d ]) ⊗ N (L[b 0 , . . . , b d ]) is converging on H (D(0, 1) × [-1, 1]).

d = 20 d = 100 TABLE 5 .

 1005 Interpolation points for a Newton product of Kergin interpolants at Leja points and Lagrange interpolants at ℜ-Leja points in the cylinder D(0, 1) × [-1, 1].

c

  αβ ( f )b α,β , in C m (K).(16.18) 

V

  18. NOTATIONS ET PROBLÉMATIQUELa dimension N d = N d (n) de l'espace P d (K n ) des polynômes à n variables de degré (total) inférieur ou égal à d, et à coefficients dansK = R ou C vaut d+n n = d+n d . C'est aussi le nombre de multi-indices α ∈ N n de longueur |α| ≤ d dont l'ensemble sera noté N n d . La notation X d = {A 1 , ..., A N d (n) } représentera une partie unisolvante de K n pour P d (K n ).Cela signifie que X d est un ensemble de noeuds valide pour l'interpolation par des polynômes de degré au plus d. Si (e α : x → x α ) α∈N n d est la base canonique de P d (K n ), l'unisolvance de X d signifie que la matrice de Vandermonde vdm(X d ) de X d :vdm(X) = e α (A i ) (i,α)∈[[1,N d ]]×N n d ,2020Mathematics Subject Classification. 41A05,41A63, 46A32. Key words and phrases. Lagrange interpolation.est une matrice inversible dont le déterminant (non nul) sera noté V DM(X d ). Dans ces conditions, pour toute fonction f définie sur X et à valeurs dans K, il existe un unique polynôme, noté L[X d ]( f ), et appelé polynôme d'interpolation de Lagrange de f pour X d , de degré au plus d tel que L[X d ]( f )(A i ) = f (A i ) pour i = 1, . . . , N d . Ce polynôme s'obtient par exemple sous la forme de Lagrange par l'expressionL[X d ]( f ) = N d ∑ i=1 f (A i )ℓ i , ℓ i (x) = ℓ i estle polynôme fondamental de Lagrange qui s'annule en tout point de X d excepté en A i où il prend la valeur 1. Dans la relation (18.1), la notation X d i ←x signifie qu'on substitue x à A i dans X d . Puisque V DM(X d ) est non nul, les n+d-1 d-1

1 ⊂

 1 X d est une structure de Newton deX d dans K n et Y 0 ⊂ Y 1 ⊂ Y 2 ⊂ • • • ⊂ Y d-1 ⊂ Y d est une structure de Newton de Y d dans K m alors, voir [20], l'ensemble Z = i+ j≤d (X i ×Y j ) ⊂ K n+mest unisolvant de degré d dans K n+m (avec des règles de calcul s'obtenant à partir de celles sur X d et Y d ). Il est par ailleurs montré dans [6] que des structures différentes sur X d et Y d conduisent à des ensembles Z distincts. Du nombre de structures de Newton sur X d et Y d découle donc directement le nombre d'ensembles Z distincts pouvant être obtenus à partir de X d et Y d . Le nombre (plutôt conséquent, nous allons le voir) de telles structures fournit ainsi au numéricien (suivant le problème qu'il étudie) une véritable richesse de possibilités d'interpolation.

  k (n) N d-k-1 (n)mais cette remarque n'aide guère dans la pratique car la plupart des choix naturels placeront les points sur des ensembles algébriques.

  g

FIGURE 19 . 2 .

 192 FIGURE 19.2. Exemple de configuration sur la cubique nodale y 3x 3yx = 0 avec quatre droites d'alignement.

Theorem 20. 1 . ( 1 )

 11 Pour d ≥ 3, de tout système unisolvant de degré d dans K n , on peut extraire au moins nN d-1 + 1 systèmes unisolvants de degré d -1.

( 2 )Remark 5 ..Remark 7 .

 257 Pour tout ensemble unisolvant de degré d ≥ 3 dans K n , on dispose d'au moins m d = (n + 1) En tenant compte du Théorème 19.1, dans le cas n = 2, on obtient au moins 48 ∏ d k=3 (d 2 + d + 1) structures de Newton. Remark 6. En négligeant l'unité dans (20.1), on a Dans le cas n = 2 et d = 3, on obtient ainsi une légère amélioration du [6, Théorème 3.11] puisque la minoration 576 donnée dans cette référence peut se remplacer par 624. Il en va de même de celle donnée (dans un cadre plus général) en [6, Section 3.8] dans notre contexte.
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	10.3. The Vandermondian of a Newton	
	product	44

  que f 1 comme étant le FLIP d'ordre k du premier projecteur ( resp. f 2 comme le FLIP d'ordre l du second projecteur), où k + l ≤ d. Pour obtenir le FLIP17 du produit de Newton de nos projecteurs lagrangiens en le noeud (a k , b l ), il nous suffit donc d'évaluer Π( f 1 ⊗ f 2 ) ;commençons par le cas k + l = d, ce qui donne ici en vertu de la formule (2.5) de cette introduction et du fait que

  22. Les références renvoient à la bibliographie du second chapitre. 23. On la doit à Jean-Paul Calvi ; elle est expliquée en détail dans le paragraphe 2.3 du chapitre 2. 24. Pour simplifier les notations ( celles du § précédent), le terme général de la suite produit de Newton se notera Π d et f désignera un élément de F. Par ailleurs X s est une partie de K n s et on notera z s la variable générique de cet espace pour s = 1, 2.

[START_REF] Filipsson | Complex mean-value interpolation and approximation of holomorphic functions[END_REF]

. fait avéré pour les cas qui nous occupent. 26. On rappelle que le symbole π d désigne dans nos propos un sommant de Newton d'une SN (Voir section 2 de cette introduction). où B(d, α, β ) se définit comme suit :

  Genocchi formula for divided differences ([31, chapter 6, Th. 2]. In fact, there is a deep relation between univariate Lagrange-Hermite interpolation and Kergin interpolation : if f is a multivariate ridge function , that is f (x) = h(⟨ω, x⟩) where h is a univariate function and ⟨ω, x⟩ = ∑ n i=1 ω i x i , the Kergin interpolation polynomials of f can be easily computed as Lagrange-Hermite interpolation polynomials of h, namely,

a d ]. The Kergin projector is a natural multivariate counterpart of univariate Lagrange-Hermite interpolation. In fact, in the univariate case, (7.18) reduces to the well-known Newton form for the Lagrange interpolation polynomial (see 8.1 below) via the Hermite-

  .10) 8.5.5. Hakopian interpolation and other D-centered Taylor projectors. Let X be a set of n + d points (d ≥ 1) in general position in a convex set Ω in K n as in 7.2.5. Any increasing chain

  and an adapted functional basis is M = (D α s [a s ] : |α s | ≤ d). Hence, in view of Corollary 9.7, we have CND

where the Newton structure on

T d a s is [T d a s ] = (T 0 a S , T 1 a s , . . . , T d-1 a s , T d a s ),
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  1/d .(14.5) This is easily shown as follows. Taking t d , a best (uniform) approximation of degree d of f on K, i.e. such that dist( f , P d

  .[START_REF] Calvi | Polynomial interpolation with prescribed analytic functionals[END_REF] It remains to observe that the right hand side sum over α and β grows polynomially in j. This is readily seen. Indeed,card(B(d, α, β )) ≤ (|α| + 1) × (|β | + 1) ≤ ( j + 1) 2 (since |α| + |β | = j).

				(14.20)
	Hence,			
	∑ |α|+|β |= j	card(B(d, α, β )) ≤ ( j + 1) 2 n + j j -1	= O( j n+2 ), n = n 1 + n 2 .	(14.21)

  This follows from classical univariate Lagrange interpolation theory, see the references given above, together with (iterated applications of) Theorem 14.1. This well-known result was first published (in another presentation) in[START_REF] Siciak | On some extremal functions and their applications in the theory of analytic functions of several complex variables[END_REF]. Siciak's proof used a multivariate version of the classical (complex) Hermite error formula for Lagrange-Hermite interpolation. Note that the projector on the left hand side of (14.23) is itself a multivariate Lagrange interpolation L[A d ] with the Bierman set of interpolation points, see also the introduction,A d = a 1 i 1 ,a 2 i 2 , . . . , a n i n : i 1 + . . . i n ≤ d . We refer to [6, Section 6.3, p. 37] for details and earlier references. (B) Let K be a convex circular compact set in C n

  1 , but this is only the ω-th root of the function in the proof of Lemma 15.11 so that the result immediately follows. □ Proof of Theorem 15.10. The proof is identical to that of Theorem 15.6 up to the conclusion of Step 4 in which we use the estimate of Lemma 15.11 instead of that of Lemma 15.9. The corresponding estimate in the conclusion even simplifies to become

  (h)∥ κ 2 ≤ C 2 ∥h∥ m,K 2 , by(16.19) (16.23)≤ C 2 C µ 2 ,K 2 j θ 2 +mr 2 ∥h z 1 ∥ 2 , by (16.4), since h ∈ P j (R n 2 ). |H j (z 2 , z 1 )| ≤ 2 C µ 2 ,K 2 j θ 2 +mr 2 ∥h z 1 ∥ 2 , all z 1 ∈ κ 1 . (16.25)Yet, with the same reasoning as above,π 1 i 1 b(α, µ 1 , •) κ 1 ≤ C 1 ∥b(α, µ 1 , •)∥ m,K 1 , by (16.19) (16.26) ≤ C 1 C µ 1 ,K 1 |α| θ 1 +mr 1 ∥b(α, µ 1 , •)∥ 2 , by(16.4) (16.27)≤ C 1 C µ 1 ,K 1 j θ 1 +mr1 , by normality. (16.28) Using this estimate in the bound for ∥h z 1 ∥ 2 in (16.24), we arrive at max z 1 ∈κ 1

	Now,		
	∥π 2 i 2 (16.24)
	At this point, we have		
		j	
	max z 2 ∈κ 2	∑ i 2 =0	
		1 )	2 .	(16.22)

C

On dira plus simplement SN associée à A

Comme le montre un calcul direct du nombre de SN associées qui sont aussi produit de Newton dans le cas plan et pour un ensemblede Biermann 

points, see[START_REF] Bertrand | The Newton product of polynomial projectors Part 1 : Construction and algebraic properties[END_REF] Section 6.6, p. 42], whereas the first one interpolates at only d + 1 points. However, there is a price to pay for this added value, the projectors obtained with the Newton product no longer preserve (all) homogeneous
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Corollary 15.7. Let 0 < ω ≤ 1 and τ s > 0, s = 1, 2. If N s is converging on the space of functions of ω-type < τ s with respect to N s in H (C n s ), for s = 1, 2 then N 1 ⊗ N N 2 is converging on the space of functions of ω-type < 1 with respect to

Démonstration. According to Remark 1, we need to show that for all 0 < A < 1, N 1 ⊗ N N 2 is converging on E n ω (A, N). Let ε = 1 -A and fix δ > 0 such that δ /τ s < ε and A s = τ sδ < τ s , s = 1, 2. Observe that E n s ω (A s , N s ) is included in the space of entire functions of ω-type < τ s so that N s is H (C n )-converging on E n s ω (A s , N s ) and the assumptions of Theorem 15.6 are satisfied. We now apply it with a s = τ 1/ω s , s = 1, 2 and it remains to check that Condition (15.7) is satisfied. This is clear since

The theorem therefore implies convergence on E n ω (A, N) as required. □ Corollary 15.8 (Case τ 1 = τ 2 ). Let 0 < ω ≤ 1 and τ > 0. If N s is converging on the space of functions of ω-type < τ with respect to N s in H (C n s ), for s = 1, 2 then N 1 ⊗ N N 2 is converging on the space of functions of ω-type < τ with respect to N = N 1 + N 2 .

Démonstration. Use the previous corollary taking (15.1) into account. □

Note that the result is optimal if the assumption is. That is to say if there exists a function f of ω-type = τ with respect to N 1 for which Π 1 d ( f ) does not converge to f in H (C n 1 ) then the same function regarded as a function on C n provides a function of ω-type = τ with respect to N for which convergence does not occur.

A careful examination of the proof of Theorem 15.6 below would show that a version of the theorem holds true when the spaces E s are not defined with identical ω but rather with ω s , s = 1, 2. With, say, ω 1 < ω 2 , Condition (15.7) would be then changed to

Such a condition is not satisfying since it does not ensure suitable convergence for all functions depending only on the group of variables z 2 , while this convergence follows immediately from the definition of the Newton product. It seems that, when ω 1 ̸ = ω 2 , a satisfactory statement cannot be obtained without the use of a notion of partial type. We will not discuss this approach in this paper.

Given

where N is as in (15.6).

Lemma 15.9. With the notation of the theorem,

Démonstration. In view of (15.3), we have

Setting u s = r s v s with N s (v s ) = 1, s = 1, 2, the above relation translates into

where c is defined in (15.17), then the sequence of polynomials

Of course, the case ∆ 1 ̸ = ∆ 2 is handled by Corollary 15.7.

SPACES OF SMOOTH FUNCTIONS

Adapting the tools

Roughly the same technique as in Section 14 can be used to derive results on spaces of differentiable functions. We will omit some details of the proofs where they are similar to those previously given. The results obtained are not optimal, this will be explained below. Although we will present the results in a more general setting, the reader may assume that, in what follows, all the compact sets considered are convex bodies (compact convex sets of non empty interior). Given a fat compact set κ (κ is the closure of its interior), we denote by C m (κ) the space of all functions which are m-times continuously differentiable on the interior of κ and whose all derivatives of order ≤ m extend continuously to κ. It is a Banach space when endowed with the norm

First, we need a stronger notion of Bernstein-Markov measure, see Subsection 14.3. Let µ be a probability measure on κ. If there exists θ > 0 such that, for some constant C µ , we have

where as usual ∥p∥ 2 2 = κ p 2 (x)dµ(x), we say that µ is a θ -strong Bernstein-Markov measure (SBM) on κ. When there exists such a measure on κ, we say that κ is a θ -SBM compact. Observe that the sub-exponential term (1 + ε) deg(p) in (14.3) is replaced in (16.2) by a polynomial term in the degree. The classical Nikolskii inequality states that dx (Lebesgue measure) is 1-SBM for [-1, 1], see [START_REF] Milovanovi Ć | Topics in polynomials : extremal problems, inequalities, zeros[END_REF]Theorem 3.1.4]. Zeriahi showed in [START_REF] Zériahi | Inegalités de Markov et développement en série de polynômes orthogonaux des fonctions C ∞ et A ∞[END_REF] that the Lebesgue measure is SBM for a large class of compact sets. From the bounds in [54, p. 686], we deduce that, when K is a convex body in R n , then θ can be taken as 3n/2. Such a θ is probably not optimal but we are not aware of more precise bounds. We omit the proof of the following lemma which is similar to that of [8, Lemma 2, p. 290], see also Subsection 14.3.

Recall now that a compact κ satisfies a Markov inequality of exponent r if, for some positive constant M κ , we have

We refer to [START_REF] Pawł Ucki | Markov's inequality and C ∞ functions on sets with polynomial cusps[END_REF] for a large class of compact sets satisfying a Markov inequality, see also the surveys [START_REF] Ple Śniak | Inégalité de Markov en plusieurs variables[END_REF][START_REF] Ple Śniak | Recent progress in multivariate Markov inequality[END_REF]. In the case of a convex body, the exponent r can be taken as 2 (in any dimension), see [START_REF] Wilhelmsen | A Markov inequality in several dimensions[END_REF].

It is readily seen that if κ s satisfies a Markov inequality of exponent r s , s = 1, 2, then κ 1 × κ 2 satisfies a Markov inequality of exponent r = max(r 1 , r 2 ). □ Remark 3. Although we consider only C (κ)-convergence (uniform convergence on K), the proof works with slight modification for C m -convergence (assuming of course that such a convergence holds for the partial sequences). In fact, in (16.20), we would have to estimate ∥D γ f -D γ Π d ( f )∥ κ for |γ| ≤ m and we would just just have to compute the D γ derivative of the products

•) with the help of the Leibniz formula. Clearly, this would only further increases the acceptable value for m. In particular, the reasoning would lead to :

Corollary 16.6 (To the proof of Theorem 16.3). With the same assumptions of Theorem 16.3 on the compact sets. (C) If we substitute the Kergin interpolants by another related projector known as Hakopian interpolants, in the above, see [START_REF] Phung | On the convergence of Kergin and Hakopian interpolants at Leja sequences for the disk[END_REF]Theorem 4.5], the level will be 28.

Examples

(D) It is obvious that, in these examples, the levels of differentiability we obtain are rough. In these cases, the available algebraic formulas are very rich and one should be able to derive ad hoc error formulas leading to better results. We hope that our result will be an incentive to further research in this direction. Concluons en formulant le problème géométrique équivalent au notre qui paraît intéressant en lui-même. Supposons que l'on dispose d'un ensemble X de N d (n) non situé sur une hypersurface algébrique de degré d. Donner une estimation de nombre de sous-ensembles de X de cardinal N d-1 (n) non situés sur une hypersurface algébrique de degré d -1.

LE CAS d = 2

On dispose de six points A 1 , ..., A 6 du plan, non situés sur une même courbe de degré 2 et donc de 6 3 = 20 sous-ensembles à trois éléments de X 2 qui, sous réserve d'unisolvance (ici, non alignés), donneront naissance à un projecteur de Lagrange de degré 1 et donc un ensemble X 1 valide. On distingue plusieurs cas suivant la configuration de nos six points.

Cas 1 : Aucune droite ne passe par trois points de X 2 Ce cas correspond à la figure 19.1 (a). on obtient alors 20 projecteurs de Lagrange de degré 1 ou 20 X 1 et par suite 60 = 3 × 20 structures de Newton pour X 2 puisque n'importe lequel des 3 points de X 1 peut servir de X 0 .

Cas 2 : Une seule droite D contient trois points de X 2 .

Ce cas correspond à la figure 19.1 (b). Cette droite D ne peut alors contenir un quatrième point, car alors, en notant D ′ la droite passant par les deux points restants, X 2 serait inclus dans D ∪ D ′ et ne serait pas unisolvant. On obtient 20 -1 = 19 ensembles X 2 possibles et 57 structures de Newton possibles.

Cas 3 : Outre D, une autre droite au moins, nommée ∆, contient trois points de X 2 Observons que D ∩ ∆ ∩ X 2 ne peut être vide (car alors X 2 ⊂ D ∪ ∆ avec trois points et trois dans l'autre) et ne peut contenir deux points puisque les droites sont supposées différentes. Supposons donc que A 1 soit l'unique point de cette intersection et prenons par exemple

∈ D ∪ ∆. S'il existe une autre droite contenant trois points de X 2 , elle doit passer par A 6 et ce peut être qu'une des quatre droites (A 2 A 4 ), (A 2 A 5 ), (A 3 A 4 ) ou (A 3 A 5 ).

(1) A 6 n'est sur aucune de ces droites (voir Figure 19.1 (c), où A ′ 6 = A 6 ), il y a donc 18 = 20 -2 choix possibles pour X 1 et 54 structures de Newton.

(2) A 6 est sur une seule de ces droites (voir Figure 19.1 (c) où A ′′ 6 = A 6 ) qui conduit 17 X 1 valides et 51 structures de Newton.

(3) A 6 est sur deux de ces droites (voir Figure 19.1 (c), où A ′′′ 6 = A 6 ), on dispose alors de 16 solutions. Nous avons établi le théorème suivant.

Theorem 19.1. Pour un ensemble plan unisolvant de degré 2, il existe 3(20k) structures de Newton avec k ∈ {0, 1, 2, 3, 4} et les cinq éventualités peuvent se produire. Remark 4. Il est naturel de rechercher des ensembles de points unisolvants de degré d sur des hypersurfaces algébriques de degré d + 1. Considérons la courbe ∆ d'équation x 3 = y 2 paramétrée (en dehors de l'origine) par C(t) = (1/t 2 , 1/t 3 ). Un calcul simple montre qu'une famille de trois points {A 1 = C(t 1 ), A 2 = C(t 2 ), A 3 = C(t 3 )} où les t i sont deux à deux distincts et non nuls est unisolvante de degré 1 si et seulement si t 1 + t 2 + t 3 ̸ = 0. De même, on vérifie sans difficulté que six points {A i = C(t i ), i = 1, . . . , 6} formeront un ensemble unisolvant de degré 2 si et seulement si ∑ 6 i=1 t i ̸ = 0. Quatre des cinq types de configurations possibles peuvent être obtenues avec des points situés sur ∆. Par exemple le cas (a) est obtenue en prenant des paramètres t i de même, le cas (b) est obtenu par exemple avec t 1 = -3, t 2 = 1 et t 3 = 1 qui conduit à l'alignement des trois premiers points, puis, par exemple t 4 = 3,t 5 = 4 et t 6 = 5 qui rend impossible tout autre alignement. La première occurrence du cas (c) s'obtient par exemple avec t 1 = -3, t 2 = 1 et t 3 = 1 et t 4 = -1,t 5 = -6 et t 6 = 6 pour laquelle les points A 1 , A 2 , A 3 puis A 1 , A 4 , A 5 sont alignés. La troisième occurrence s'obtient à partir de la précédente en modifiant la valeur de t 6 à -6. La quatrième occurrence ne peut être obtenue car, comme on le vérifie facilement, les conditions d'alignement t 1 + t 4 + t 5 = 0, t 1 + t 2 + t 3 = 0, t 3 + t 4 + t 6 = 0 et t 2 + t 5 + t 6 = 0 ne peuvent être satisfaites avec des paramètres deux à deux distincts. En revanche, une telle configuration, illustrée sur la Figure 19.2, peut être obtenue sur la cubique nodale y 3x 3yx = 0.

LE CAS GÉNÉRAL

On reprend, pour d ≥ 3 et un espace de dimension n ≥ 2 quelconque les notations générales et le contexte de la section précédente, en particulier X d désigne maintenant un ensemble unisolvant de degré d dans K n (donc de cardinal N d (n)). Pour simplifier les notations, on posera N = N d-1 (n). Supposons que X d-1 = {A i 1 , ..., A i N } soit unisolvant de degré d -1. On a vu qu'un tel X d-1 existe. La matrice de Vandermonde de X d-1 = {A i 1 , ..., A i N } étant inversible, si on en supprime la k-ième ligne, on obtient une matrice de rang N -1 ; par conséquent il passe une et une seule hypersurface algébrique Γ de degré ≤ d -1 par tous les points de

Résumé : Dans ce travail nous présentons une nouvelle manière d'associer ( que nous nommons produit de Newton) deux projecteurs polynomiaux sur des espaces de fonctions pour obtenir un autre projecteur polynomial sur un espace de fonctions de plus de variables qu'initialement. Tout d'abord nous développons quelques propriétés algébriques assez fines de cette construction. Par la suite nous montrons que la notion d'efficience est stable par produit de Newton. Divers théorèmes d'approximation polynomiale sont alors obtenus par ce biais pour des fonctions comme les fonctions holomorphes sur un voisinage d'un compact régulier, les fonctions entières de croissance donnée ou certaines fonctions différentiables. Des projecteurs polynomiaux efficients originaux sont ainsi explicités dans ces cadres là. Dans l'ultime partie nous nous donnons un ensemble de noeuds d'interpolation valide ( i.e unisolvant) pour l'interpolation de Lagrange de degré d à n variables et nous en étudions le nombre de sous-ensembles unisolvants de degré d -1. Cela conduit à une estimation du nombre de structures de Newton de notre ensemble et même à celui des produits de Newton que l'on peut obtenir.

Abstract :

We propose a new way ( called Newton product) of combining two polynomial projectors on spaces of functions of few variables to obtain a polynomial projector on a space of functions of many variables. We present various algebraic properties of our construction and study the main approximation properties of the new projectors. Hence we prove that the Newton product of efficient polynomial projectors is still efficient. Some polynomial approximation theorems are established involving Newton product on spaces of holomorphic functions on a neighborhood of a regular compact set, on spaces of entire functions of given growth and on spaces of differentiable functions. Efficient explicit new projectors are also presented. In the last chapter we give us an unisolvent set of degree d in n variables and study the number of unisolvent subsets of degree d -1. This leads to an estimate of the number of Newton structures and of Newton product structures for our set.