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Résumé
De nos jours, le problème de la population mondiale et de l’alimentation n’a pas été
complètement résolu. La production agricole intensive est inévitable, en particulier
dans le domaine de l’élevage. De plus en plus d’animaux doivent être confinés dans
un petit espace, et les fermiers doivent s’occuper d’un plus grand nombre d’animaux.
Dans ce context, le bien-être des animaux ne peut pas être bien assuré, ce qui peut
causer divers problèmes au niveau de l’environnement, de la qualité et de la sécurité
des aliments, et de la morale sociale. Le développement de l’élevage de précision rend
possible le bien-être des animaux. Dans l’élevage de vaches, l’insémination artificielle
peut offrir de nombreux avantages potentiels en termes de bien-être pour les vaches,
notamment la prévention de la propagation des maladies, la prévention des blessures
des taureaux pendant l’accouplement et la sélection du sexe pour éviter de réformer
les veaux mâles indésirables. Dans cette thèse, nous avons développé des outils intel-
ligents par vision artificielle pour répondre à deux défis principaux de l’insémination
artificielle : la détection incertaine des chaleurs et l’indisponibilité des vétérinaires.
Nous avons proposé les contributions suivantes :
1. Nous avons développé un système basé sur l’apprentissage profond pour la clas-
sification de l’état des chaleurs des vaches. Dans ce but, une approche originale
s’appuyant sur l’analyse de l’appareil génital de la vache à partir d’images endo-
scopiques a été adoptée. Le système développé permet aux vétérinaires et aux fermiers
de détecter les phases de chaleur chez les vaches pour une insémination optimale tout
en respectant le bien être de l’animal.
2. Pour remédier à l’indisponibilité des vétérinaires, nous avons développé également
un système d’aide à l’insémination artificielle, qui permet de prédire les coordonnées
d’une fenêtre pour la localisation du col de l’utérus. À cette fin, un modèle de dé-
tection basé sur un transformateur a été spécifiquement conçu pour localiser le col de
l’utérus. De plus, nous avons exploité ce modèle pour augmenter les performances de
notre modèle de classification de l’état des chaleurs.
Mots clés : bien-être animal, insémination artificielle, apprentissage profond, traite-
ment endoscopique d’images/vidéos, détection des chaleurs, détection du col de l’utérus.
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Abstract
Nowadays, the world population and food problem has not been properly resolved. In-
tensive agricultural production is inevitable, especially in livestock farming. More and
more animals have to be confined in a small spaces, and farmers have to take care of
more animals. In this context, the welfare of animals can not be ensured, which may
cause various problems in the environment, food quality and safety, and social morals.
The development of precision Livestock Farming makes animal welfare possible. In
cow farming, artificial insemination can provide many potential welfare benefits for
cows, including preventing the spread of disease, preventing bull injuries during mat-
ing, and sex selection to avoid culling unwanted bull calves. In this thesis, we have
developed intelligent tools by artificial vision to address two main challenges of artifi-
cial insemination: uncertain heat detection and the unavailability of veterinarians. We
have proposed the following contributions:
1. We developped a deep learning-based cow heat state classification system. To this
end, an original artificial vision-based approach relying on the analysis of the genital
tract of the cow from endoscopic images has been apdoted. The developed system
permits to veterinarians and farmers to detect heat phases in cows for an optimal in-
semination while respecting the well-being of the animal.
2. To remedy the unavailability of veterinarians, we also proposed an artificial in-
semination assistance system, which permits to predict a window coordinates for the
localization of the cervix. To this end, a transformer-based detection model has been
specifically designed to localize the cervix. Furthermore, we have exploited this model
to increase the performance of our heat state classification model.
Key words: animal welfare, artificial insemination, deep learning, endoscopic im-
age/video processing, heat detection, cervix detection.
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Chapter 1

Introduction

There is a growing awareness that the animal is entitled to be treated humanely, even
if the animal is for animal production [34]. Thus, more and more consumers demand
transparency about the origin of animal products [84]. Products with poor animal wel-
fare have a great potential to be boycotted [34]. However, the problem of feeding
the world has not been adequately addressed. In particular, the COVID-19 pandemic
has been raging around the world since 2019. To contain the epidemic, many countries
have imposed various stringent sanitary measures, including quarantines and telework-
ing, lockdowns, transportation closures, travel bans and border controls, restrictions on
import and export activities, and the closure of many industrial/agricultural activities.
Livestock and related industries have felt significant impacts [94].
To address this problem, intensification of livestock production is inevitable. How-
ever, intensive livestock farming means that a large number of animals are crammed
into a small space, as shown in Figure 1.1 1, which is detrimental to animal welfare
and has led to an environmental crisis and a food security crisis [144]. Therefore, the
development of a sustainable livestock system is imperative. A sustainable livestock
system is regarded to be environmentally friendly, economically viable for farmers,
socially acceptable, and especially beneficial for animal welfare. This requires farmers
to gather and analyze information about the farming environment and animal welfare
in time to intervene when necessary. Precision livestock farming (PLF) is the use of
advanced technologies based on artificial intelligence, IoT, Big Data, and robotics in
livestock that allows farmers to monitor and control the health and welfare of their an-
imals at any given time. Animal welfare is a complex issue. In the context of intensive
livestock, artificial insemination can provide potential welfare benefits in cow farming,

1By Magdalena Pistorius | EURACTIV France | translated by Daniel Eck
https://www.euractiv.com/section/agriculture-food/news/support-for-banning-

intensive-farming-grows-despite-cost-of-animal-welfare/

https://www.euractiv.com/section/agriculture-food/news/support-for-banning-intensive-farming-grows-despite-cost-of-animal-welfare/
https://www.euractiv.com/section/agriculture-food/news/support-for-banning-intensive-farming-grows-despite-cost-of-animal-welfare/
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FIGURE 1.1: An exemple of intensive chicken farm

such as reducing the risk of disease transmission and injury or enabling the selection
of specific beneficial traits [25], controlling the birth of male calves which are to be
euthanized due to being undesirable. Nevertheless, for more than 70 years, the insem-
ination procedure has been performed by blind rectal palpation, which is an invasive
method, that can have a negative effect on the animal organism, leading to a deteriora-
tion of the cow’s well-being [120, 119]. In addition, as an old biotechnology, artificial
insemination still faces several challenges, such as uncertain detection of oestrus (heat)
and lack of artificial insemination technicians [171, 18, 158]. In this context, this thesis
aims to develop a Deep Learning (DL) based computer vision analysis tools to address
these artificial insemination issues.
This thesis is part of a collaborative project between Junia-Lille and Gènes Diffusion
company (2019-2022) and has been funded by the FEDER European program, JUNIA
French Engineering school, and Gènes Diffusion French company.

1.1 Contributions

In this thesis, we have made two distinct contributions: the first one is related to the
problem of cow heat state classification from vaginal endoscopic video, which allows
farmers to inseminate a cow at the right time, and the second one is related to the
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problem of detecting and tracking the cervix of a cow using vaginal endoscopic video,
which allows farmers to deposit stored semen in the right place. In addition, detection
and tracking of the cervix can be used in the diagnosis of uterine inflammation in cows.
Cow heat state classification – The main condition for the success of artificial insem-
ination within cattle is the heat (or estrus) detection [52]. Traditional heat detection
methods are mainly based on behavior monitoring by using various devices, such as
sensor devices or cameras. They are considered as incertain, especially, in the case
of a ”silent heat” where cows do not show any sign [138, 267]. Furthermore, some
behavioral indicators exploited for detecting heat may be affected by a general change
in animal physiology [241]. To address the difficulty of heat detection in cows, we
proposed an original artificial vision-based approach for cow heat state classification
relying on the analysis of the genital tract of the cow from endoscopic images. It is
worth noting that our approach is complementary to the existing activity analysis meth-
ods. Indeed, these methods offer a global analysis of the herd to detect a set of cows
potentially in heat. Hence, our method can be applied to each identified cow to provide
a more precise analysis. In this work, we built a cow estrus analysis dataset consisting
of 31,360 tagged endoscopic images. These images were extracted from simulated in-
semination videos of 46 Holstein cows using the Eye Breed device. The estrus state of
each cow has been predetermined by experts. We also designed a CNN model named
"InceptionVGG8" for endoscopic image analysis, which has been deployed in Android
applications for practical use by farmers.
Cow cervix detection – To face the issue of the lack of artificial insemination tech-

nicians or experts, we proposed an artificial vision-based guidance system to assist
the farmers in the insemination operation. To this end, a transformer-based detec-
tion model has been designed for cow cervix detection from endoscopic images and
combined with our previous system (heat state classification) to accomplish the whole
process of image analysis namely, cervix localization and heat state classification as
shown in Figure 1.2.

1.2 Organization of thesis

The remaining of this manuscript is organized into 4 chapters summarized below:

• Chapter 2 presents the definition of animal welfare and points out the challenge
to be overcome for ensuring it. The chapter shows the importance of protecting
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FIGURE 1.2: Illustration of the final result displayed on the
screen.

animal welfare in terms of increasing production, ensuring food safety, enhanc-
ing economic benefits, and improving employee well-being and psychological
health. Moreover, the chapter reviews the state of the art of sensoring technol-
ogy and Deep Learning (DL) based PLF (Precision Livestock Farming) system
for improving the welfare of the animal. The chapter concludes by breifly ex-
plaining how artificial insemination may provide potential welfare advantages in
the context of intensive livestock.

• Chapter 3 begins with a detailed description of the benefits that artificial insem-
ination can provide in cow farming and points out that heat detection is one of
the main conditions and challenges for successful artificial insemination. It then
reviews the state of the art of heat detection methods. It presents then our in-
novative CNN-based approach for heat detection. The chapter describes all the
parameters used for model design, as well as the different steps and protocols to
create the dataset for model training. Finally, this chapter presents a series of ex-
periments to determine the best components of our model, show the advantages
of the proposed model compared to 19 methods from the state of the art, and
explain the different steps to deploy our model in an Android application via a
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smartphone for practical use.

• Chapter 4 proposes a new problem, cow cervix detection, to address the short-
age of artificial insemination technicians and to assist farmers in the insemination
operation. It points out that cervix detection is a problem of object detection from
images. The chapter reviews the state of the art in object detection algorithms
based on Deep Learning (DL) and points out that these existing architectures are
designed and trained to detect at least one target object in the image, which is not
suitable for our problem. To this end, we present a novel training data generation
protocol and a novel transformer-based model for cervix detection. Finally, the
chapter presents a set of experiments to detect the best components of our model,
showing the advantages of the proposed model compared to 6 methods from the
state of the art.

• Chapter 5 gives the conclusions and draws some recommendations for future
work.
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Chapter 2

Animal well-being

2.1 Introduction

In general, an animal is in well-being if it is healthy, comfortable, well-nourished, free
from pain, fear, distress, and able to express its innate behavior, as described by the
World Organization for Animal Health (OIE) 1. Ensuring the welfare of animals is our
moral obligation and one of the hallmarks of a civilized society. The progress of soci-
ety is reflected not only in the development of science and technology but also in the
attitude toward animals in society.
Nevertheless, the world population and food problem thus far has not been properly
solved. The Food and Agricultural Organization (FAO) of the United Nations stated
that the population can reach around 9.1 billion by 2050 [79], with 650 million people
will still be malnourished[53]. To meet the escalating global demand for food, animal
production is being intensified. In this context, ensuring animal welfare is worrisome
in livestock farming. Especially in commercial livestock farming that is profit-oriented,
animal welfare is often neglected. As in the undercover investigation by Spanish ani-
mal protection charity Equilia 2, the raw footage shows multiple decaying birds being
eaten by other birds. Unable to stand up straight or walk, there are many birds with
deformities and broken bones. Some birds are so broken, that they can not even reach
the drinking trough. It is frightening and disturbing. As a matter of fact, this is not an
accident nor an exception. Over the past few years, environmental crises such as the
exploitation and inhumane use of animals, biodiversity loss, climate change, and pol-
lution have become increasingly prominent. To this end, the united nations resolution

1https://www.oie.int/en/what-we-do/animal-health-and-welfare/animal-

welfare/
2https://www.onegreenplanet.org/animalsandnature/decomposing-deformed-and-

trampled-to-death-horrific-footage-shows-conditions-on-italian-chicken-farms/

https://www.oie.int/en/what-we-do/animal-health-and-welfare/animal-welfare/
https://www.oie.int/en/what-we-do/animal-health-and-welfare/animal-welfare/
https://www.onegreenplanet.org/animalsandnature/decomposing-deformed-and-trampled-to-death-horrific-footage-shows-conditions-on-italian-chicken-farms/
https://www.onegreenplanet.org/animalsandnature/decomposing-deformed-and-trampled-to-death-horrific-footage-shows-conditions-on-italian-chicken-farms/
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places animal welfare at the heart of sustainable development 3 at the 5th Session of
the United Nations Environment Assembly (UNEA-5.2). Indeed, animal welfare links
to animal health and food safety, and animal welfare is of increasing concern in the
whole world. Moreover, while ensuring animal welfare, we could get many important
benefits. In what follows we briefly discuss each of these benefits.
Improving animal productivity –In livestock, good animal productivity is the main
condition for farm profitability and sustainable farm development. It is also the key
to meeting the demand for food. Animal productivity refers to animal reproductivity,
such as egg and milk products. Good animal productivity means good animal repro-
ductivity. Good animal reproducibility depends on the good condition of the animal,
including physical and mental conditions. For this purpose, good feeding, good hous-
ing, and good health are necessary. In addition, the attitude of the stockpeople is very
important. It has also been proven that the decrease in milk production is also relevant
to the negative behavior and attitude of stockpeople [247]. In brief, animals need to
be in well-being. Indeed, the reproductive performance of animals is related to their
state of animal welfare[85]. Consequently, to ensure a high-quality food supply, ani-
mal welfare could not be neglected in any way.
Improving meat and product quality – The quality and security of meat and prod-
ucts have also been the subject of widespread concern in recent years. In order to
guarantee the quality and security of meat and products, animal health is the precondi-
tion. In livestock, animals are completely dependent on humans for basic needs such
as shelter, food, and water. As a result, animal health is dependent on animal welfare.
The study [83] reported that improved animal welfare has the potential to improve
meat and product quality. In addition to physiological welfare, it has also been demon-
strated that animal stress is also a key factor affecting meat quality and that controlling
animal stress can also improve meat quality [67, 257, 82]. The ’Welfare-friendly’ ani-
mal products are growing in popularity, such as free-range eggs, which have increased
in recent years [33, 205]. Several studies showed [142, 161, 174]that consumers are
willing to pay a higher price for animal products obtained using production processes
that enhance animal welfare. From this point of view, most consumers seem to support
that comprehensive protection of animal welfare is the best way to improve the quality
of meat products.
Avoiding economic loss – Reducing mortality and preventing disease are the need of

3https://www.worldanimalprotection.org.nz/news/united-nations-resolution-

places-animal-welfare-heart-sustainable-development

https://www.worldanimalprotection.org.nz/news/united-nations-resolution-places-animal-welfare-heart-sustainable-development
https://www.worldanimalprotection.org.nz/news/united-nations-resolution-places-animal-welfare-heart-sustainable-development
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ensuring animal welfare, which is also one of the main challenges for livestock, and the
way to avoid loss for the farmer. Throughout all stages of livestock farming, various
diseases are the main threats affecting the normal physiological activities of animals,
including feeding, lying, reproducibility, or even death. On a more serious note, certain
animals have to be culled due to the disease. Especially for some zoonotic diseases,
4 million domestic animals were culled for the purpose of disease control during the
2001 FMD epidemic [96], this is catastrophic for the livestock industry. Therefore,
providing sufficient feed, arranging a comfortable and clean environment, and timely
disease detection can ensure animal welfare while avoiding huge losses.
Human-Based Benefits: physical health and psychological wellbeing – As de-
scribed above, the prevention and treatment of some zoonotic diseases and the quality
of livestock products depend on the state of animal welfare. Ensuring animal welfare
not only brings economic benefits but also ensures human health to a certain extent.
In addition, the ensured animal welfare helps to establish a good relationship between
humans and animals, which could reduce excessive reactions in animals to avoid em-
ployee accidents during farm daily management. Moreover, high farmer occupational
well-being and a low level of stress are proved to have a direct positive association
with the animal welfare indicator [92]. Indeed, the link between the poor treatment of
animals and poor treatment of other people was also recognized.
In order to effectively ensure animal welfare, the World Organization for Animal
Health has proposed five freedoms principles4 (as shown in table 2.1), which are
widely recognized. These five freedom principles describe society’s expectations of
the conditions that animals should experience under human control.

Nevertheless, to meet the increasing demand for animal products, livestock man-
agement is intensive. In this context, the confined and crowded nature of livestock
housing makes it difficult for farmers to closely monitor animal health and welfare
[101]. Moreover, it costs money and labor to improve the welfare of farm animals
[126]. For the large farm, due to a large number of animals, it is inevitable to neglect
the animal welfare. Furthermore, hiring more employees means more expenses, which
is unacceptable for commercial farms. For small private farms, which are often located
in remote areas, due to the lack of animal welfare decision support systems and the un-
availability of veterinarians, animal welfare is hindered. To this end, more than more
livestock farms have used various electronic tools for managing livestock. It involves
automated monitoring of animals to improve their production/reproduction, health and

4https://www.legislation.gov.uk/ukpga/2006/45/contents

https://www.legislation.gov.uk/ukpga/2006/45/contents
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Freedom from hunger and thirst
by ready access to fresh water and a diet to
maintain full health and vigour

Freedom from discomfort
by providing an appropriate environment
including shelter, a comfortable resting area

Freedom from pain, injury or disease
by prevention or by rapid diagnosis
and treatment

Freedom to express normal behaviour
by providing sufficient space, proper facilities
and company of the animals’ own kind.

Freedom from fear and distress
by ensuring conditions and treatment
which avoid mental suffering

TABLE 2.1: The Farm Animal Welfare Council’s Five Freedoms
(FAWC).

welfare, and impact on the environment.

2.2 Animal welfare-based precision livestock farming

According to statistics from the International Labour Organization (ILO) 5, the num-
ber of people working in agriculture in the world has been declining every year, with
the regular agriculture labor force in the world declined by 180 million persons be-
tween 2003 and 2018. However, statistics from FAO stated that the world’s annual
meat production in 2018 was 93.49 million tons higher than in 2013. This means that
each farmer has to care for a growing number of animals, while there is an increase in
demand from a society that the right of animals to individual attention is respected. In
this context, the use of various electronic tools for managing livestock namely Preci-
sion Livestock Farming (PLF) is imperative, one of the aims of PLF is to improve
animal welfare. More precisely, the purpose of PLF is to detect deviations at an early
stage and improve animal health, welfare, and efficiency, expecting an improvement in
production sustainability [23].
As a reliable way of improving animal welfare, a range of precision livestock monitor-
ing and control technologies have been developed, such as automatic feeding systems
(AFS) (see in Figure 2.1 - (a)6), automatic manure scraper (AMS) (see in Figure 2.1 -

5https://www.ilo.org/global/lang--en/index.htm
6https://www.gea.com/en/articles/33-years-feeding-green/index.jsp

https://www.ilo.org/global/lang--en/index.htm
https://www.gea.com/en/articles/33-years-feeding-green/index.jsp
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(b)7), which have become basic equipment in modern livestock farm for animal feed-
ing and barn cleaning. Moreover, the application of sensing technology, expert system

(a) Automatic Feeding Systems (AFS) (b) Automatic Manure Scraper (AMS)

FIGURE 2.1: Illustration of two basic equipments in modern live-
stock farm

and computer vision technology have been woven into modern livestock farming, espe-
cially the deep learning based computer vision PLF system, that has been very popular
in recent years due to higher precision and faster speed. In this section, we will explore
and discuss the state of these technologies in modern livestock farming.

2.2.1 Sensing technologies in Precision Livestock Farming (PLF)

The main idea of such a system is to use various sensors to collect data and then use
specialized algorithms to process the raw sensor data to provide biologically relevant
information. At the same time, thanks to ZigBee, RFID, or WiFi networks, farmers can
obtain a variety of detailed and accurate target data information at any time, anywhere,
in any environment. Livestock farming has adopted the use of sensing technologies as
a way to monitor the farm environment and animal behavior. Some systems can also
analyze and diagnose diseases according to the received data. Table 2.2 summarizes
some commonly available sensors and their applications in animal welfare, current
available sensors fall into two categories: Non-attached and Attached.

7https://www.dairymaster.com/products/manure-scrapers/automatic-scraper-

system/

https://www.dairymaster.com/products/manure-scrapers/automatic-scraper-system/
https://www.dairymaster.com/products/manure-scrapers/automatic-scraper-system/
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Sensors Application Categories
Temperature and
humidity sensors

Monitoring of temperature
and humidity in the ban Non-attached

Gas sensor
Monitoring of harmful gases in
the barn especially ammonia Non-attached

Opto sensor Monitoring of lightness in the barn Non-attached
Microphones/
acoustic sensor Monitoring of sound in the barn Non-attached

GPS sensors Animal tracking and positioning Attached

Accelerometers
Measuring the movement
acceleration of animal

Non-attached/
Attached

Pedometer
Animal activity monitoring,
such as counting number of steps Attached

ECG,
Pulsoxymetry

Monitoring of heart rate
or respiratory rate Attached

Body temperature
sensors

Measuring body temperature
of animal Attached

Electrical conductivity
sensor

Measuring the electrical
conductivity of cow rumen Attached

Rumen PH-sensor
Measuring pH-value of
cow rumen Attached

Radio-frequency
identification (RFID) Individual identification Attached

TABLE 2.2: Current available sensors for animal monitoring.

2.2.1.1 Non-attached sensors

Most Non-attached sensors are used for environmental monitoring in livestock farm-
ing. The productivity and welfare of an animal in livestock farming are directly related
to the environmental conditions of livestock [270]. Based on the welfare of animals,
there are some special industry standards on the livestock and poultry field environment
to provide an appropriate environment for animals. In this sense, constant monitoring
of environmental parameters such as temperature, humidity, lightness, CO2, and all
kinds of harmful gases is crucial, if necessary, farmers can intervene more quickly
with management measures to ensure a suitable environment. To this end, various en-
vironmental sensors are developed for keeping track of the environment in livestock. In
poultry farming, sensor systems have been designed for temperature, lighting, carbon
dioxide and ammonia monitoring [229, 148, 222, 190]. In addition, acoustic analysis
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is an important way in which sensors can provide important information about animal
welfare. The analysis of sound information collected by microphones/ placed in barns
has been used to detect squeals and to monitor coughs in animals to identify respiratory
diseases [22].

2.2.1.2 Attached sensors

Attaching sensors to individual cows is considered the most reliable way to monitor
cows throughout a day [101]. Several attached sensors have been developed to monitor
behavioral and physiological parameters of animal in livestock farming, which make
the state of animal be known overtime. Current attached sensors are either external or
internal, most external sensors are easily attached to the animal by using ear tag, collar,
ankle straps, halter and belt as shown in Figure 2.2.

(a) Ear tag 8 (b) Collar 9 (c) Ankle straps 10

(d) Halte 11 (e) Belt [125]

FIGURE 2.2: Illustration of five common external attached sen-
sors

8https://support.cowmanager.com/s/article/Attach-sensor-to-the-ear?

language=en_US
9https://www.dairymaster.com/products/moomonitor/

10https://www.icerobotics.com/news/health-sensors-for-livestock/
11https://dilaag.boku.ac.at/innoplattform/en/2021/02/10/putting-sensor-

technology-to-the-acid-test/
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GPS sensors has been widely used for animal monitoring in livestock farming [229,
252, 157], which can be attached in the collar of animal. The main aim of the GPS-
based collar is to identify various behaviors of animals, such as feeding, walking, lying,
and standing. However, the GPS aims at providing the positional information, and the
effectiveness of behaviors classification is insufficient [101].
Compared with GPS sensors, accelerometers is more precise on activity tracking, al-
lowing to measure the movement acceleration of the X, Y, and Z-axis, namely triaxial
accelerometers. Accelerometers have been deployed in multi-position, including an-
imal bodies and around the environment. In the work of Wang et al [249], the data
collected by triaxial accelerometer-equipped ankle straps attached to the cow’s leg is
used to classify common cow behaviors including standing, lying down, normal walk-
ing, active walking, standing, and lying down. Accelerometers can be also deployed in
the collar to keep track of the action of the animal head, which refers to the feeding and
drinking behaviors of the animal [168]. For cattle, accelerometers can be also mounted
in the halter of cattle to identify the rumination behavior of cattle [195]. Moreover, ac-
celerometers can be used for measuring the vibration event. In the work of Bonde.A
et al[30], accelerometers based vibration sensors are installed under the barn floor
to evaluate overall animal activity. Similarly, accelerometers based vibration sensors
mounted on vehicles and belts around the chest of animals are used to evaluate or pre-
dict possible discomfort and stress reaction to animals during animal transport [74].
Pedometer is considered as a kind of cheap and simple sensor, which is usually de-
ployed in ankle straps to count the number of steps or to evaluate the walking intensity
[88, 253, 252]. The pedometer has been also used in the study of heat behavior [209,
160].
ECG, Pulsoxymetry are generally located in a belt attached around the chest of the
animal and are used for heart/respiratory rate monitoring [179]. With the wireless
technology, it allows farmers to constantly monitor the heart/respiratory rate of ani-
mals [226, 137].
In addition, measuring some physiological parameters requires internal sensors that
are deployed within the animal. Since internal sensors are unaffected by external con-
ditions, it is considered more reliable than external sensors [101]. Therefore, internal
sensors have various application for animal health monitoring in livestock farming,
such as electrical conductivity sensor [70], ruminal pH-value sensor[176, 38, 268]
for measuring the electrical conductivity and pH-value of cow rumen, respectively.
Moreover, body temperature sensor is also a surgically implantable sensor, which
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has been surgically implanted in pigs or cows [177] for body temperature measure-
ment. Radio-frequency identification (RFID) can be also implanted in the animal,
which enables the identification of animals [231].
For animal welfare testing, the use of a single sensor is clearly insuffisant. To this
end, based on the integration of available sensors, many efficient monitoring systems
have been developed for monitoring of animal behavior [88, 136, 195, 249], animal
health [254, 141, 137, 89] and detection of some common diseases in livestock, such
as lameness [133, 132, 90], mastitis [121, 107], fever [186, 185, 228].
Indeed, the deployment of sensing technology in animal husbandry brings hope and
vision to animal welfare, especially with wireless communication technology, farmers
can monitor the state of animals in real-time, which can reduce intensive labor in the
context of intensified production. However, currently available sensors are in most in-
stances battery-powered, and the lifetime of the sensor needs to be verified [63]. The
effectiveness external sensor may be affected by external conditions in combination
with continuous observation, [101]. For internal sensors, the reusability is a huge chal-
lenge [101], as an invasive sensor, it may make inconfort of animals which is contrary
to protecting animal welfare. Moreover, for the wireless system, the quality of wireless
communication is also a challenge on a remote farm.

2.2.2 Expert system in PLF

An expert system is a computer system emulating the decision-making ability of a
human expert 12, which aims to address the problem of availability of experts. As
shown in Figure 2.3, an expert system has two subsystems: the inference engine and
the knowledge base. The main work of the knowledge base system is to collect human
knowledge, express it systematically or modularize it so that the computer can make
inferences and solve problems. The inference engine uses algorithms or decision-
making strategies to infer various specialized knowledge in the knowledge base and
deduce the correct answer according to the user’s question. The common application
of expert system is disease diagnosis in human, such as breast cancer detection [130],
knee problems diagnosis [213], arthritis diseases diagnosis [62], as well as current pan-
demic COVID19 diagnosis [211].
Moreover, expert systems have been widely used in precision agriculture, such as crop

12https://en.wikipedia.org/wiki/Expert_system

https://en.wikipedia.org/wiki/Expert_system
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management, which mainly aims at the diagnosis of crop diseases [1, 10, 61]. Simi-
larly, the main application of expert systems in precision livestock farming is to adresse
various diseases of animals [206, 57, 182, 5, 232]. Suharjito et al [232] proposed
a mimic expert system using fuzzy Tsukamoto for determining the level of risk of
endometritis in cows based on six clinical symptoms: 1) Body temperatures (most
commonly rectal temperatures); 2) Frequency of breath; 3) Retensio Sekundinae (the
speed to expel fetal membranes after parturition; 4) Purulent; 5) Urinate; 6) Lochia
(the duration of vaginal discharge). These symptoms were measured by veterinarians
and processed by Linguistic Terms as an input variable for their system. The resulting
output is obtained by making the membership function of the range between 0 and
100. It contains three level of endometritis: mild symptoms [0-50]; severe symptoms
[30-70]; Acute [50-100]. By comparing the system diagnosis results with the expert
diagnosis results of 12 cows, the accuracy of the system’s prediction of the level of
cow metritis reached 100%.
Although the expert system does provide many significant advantages, including pro-
viding consistent solutions and reasonable explanations and overcoming human lim-
itations, it does have its drawbacks as well. 1) It cannot respond as creatively and
innovatively as human experts in unusual situations; 2) It has high development costs
and the recurring cost of subsequently upgrading the system to adapt to the new envi-
ronment; 3) Domain experts will not always be able to explain the logic and reasoning
required for their knowledge engineering process; 4) It may provide wrong solutions.

FIGURE 2.3: Schematic diagram of expert system structure
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2.2.3 Deep learning-based computer vision in PLF

Computer vision has achieved great success in recent years, mainly due to the advent of
a specific machine learning applications as deep learning. Compared with traditional
computer vision algorithms, deep learning-based computer vision has higher precision
and faster speed, which can perfectly meet the need for real-time monitoring of ani-
mals. The studies of animal monitoring have developed from computer vision to deep
learning. Image classification, object detection, and image segmentation are the three
most common tasks of the deep learning algorithms used for image analysis. In this
context, considering the various welfare issues of animals, many deep learning-based
computer vision systems have been developed for livestock for animal welfare mon-
itoring. Aiming at different welfare issues, deep learning-based computer vision has
been used for different livestock applications including animal identification, behavior
recognition, face recognition, etc. We will discuss these applications in this section.

2.2.3.1 Animal identification

Nowadays, animal identification is recognized as an important component related to
human health and food safety. Some studies have proposed the use of deep learning-
based models of classification or segmentation for animal identification [167, 93, 127,
269]. Since they did not consider individual animal identification as a multiclass prob-
lem, but rather as a binary classification problem (presence of an animal in the image).
This is insufficient to meet the need for individual animal tracking.
To accurately identify an individual animal, several identification methods have been
developed, which can be categorized into semi-permanent recognition methods and
permanent recognition methods. Collar ID is one semi-permanent recognition method.
In the work of [27], an object detection model namely Faster R-CNN [223] is used for
cow individual identification by recognizing the numbers on the collars on the cows’
necks. Semi-permanent recognition methods such as collar ID-based methods are con-
sidered unsuitable for long-term usage due to susceptibility to damage, duplication,
loss, and unreadability [140]. Contrariwise, permanent identification methods, includ-
ing ear tattoo-based identification technology, embedded with microchip-based mark-
ings have been proved to have higher accuracy [139]. Nevertheless, based on animal
welfare, this identification method has been banned in many countries due to its inva-
siveness to animals [131].
In addition to these artificial marking methods, animals also have biometrics such as
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nose patterns, and coat patterns, that are used for individual identification, which is
similar to human biometrics like faces and fingerprints. The deep learning-based clas-
sification of cattle nose pattern image [140, 20] and coat patterns image [280, 149]
has been used for individual cattle identification. To simplify the image collection, a
two-stage YOLOv3-ResNet50 object detection algorithm has been proposed by Sho-
jaeipour et al.[224], the proposed algorithm can precisely localize the muzzle of cattle.
Moreover, human facial recognition has been an active area of research for the past few
decades. Facial recognition applications have been used to improve surveillance sys-
tems, identify threats and create high-security access systems. In recent years, several
deep learning-based systems have been developed for animal facial recognition [93,
258, 106], with promising results. They proposed the use of animal faces as biometric
information for individual animal identification. In the work of Hhitelman et al [106],
they collected 5625 facial images from 81 Assaf breed sheep. The Faster R-CNN [223]
deep learning object detection algorithm was applied to localize the sheep’s face in an
image. The detected face was provided as input to a CNN model to predict the ID of
sheep with average identification accuracy of 97%.
Indeed, deep learning-based biometrics image analysis shows great performance in an-
imal identification. However, it is a challenge to identify individuals animal of the same
species with the same body size and single-color breeds, such as Holstein cows for the
methods based on nose pattern, and coat pattern image analysis. For facial recogni-
tion methods, the biggest challenge comes from the complex farm environment, such
as light intensity. Animals are living creatures and do not always face the camera at
an angle. Moreover, in the work of Hhitelman et al [106], the case of multiple sheep
appearing in the same image which is the common case of real-time animal tracking
in practice is not considered. For large commercial farms, the classification of the
faces of hundreds of animals would be a challenge. Therefore, more data and more
experiments are also required.

2.2.3.2 Behaivor recognition

Monitoring and assessing the behaviors of livestock is important as it can be used to
indicate their welfare state and well-being state [194, 23, 59]. For this purpose, a va-
riety of deep learning-based computer vision systems have been developed for animal
behavior monitoring, such as feeding and drinking behavior, aggressive behavior, and
some behaviors (lameness, mounting) related to disease and heat events.
Feeding and drinking behavior recognition – In the work of Betzen et al [27], based
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on individual cow identification as described above, they also proposed a computer vi-
sion system based on a deep convolutional neural network (CNN) model for individual
feed intake measurement in dairy cows by combining information from RGB and depth
images. Zhang et al. [271] proposed a deep learning-based algorithm for sow behavior
detection using a MobileNet classification network with depth separable convolutional
operations, which allow for detect drinking, urinating, and mounting behaviors in the
sow. Feeding and drinking behavior are the two most basic behavior of all animals.
Achour et al. [2] used the top of the cow head image as a region of interest (ROI) and
different classifiers based on convolutional neural network (CNN) models to identify
the feeding behavior of Holstein cows [2]. Tsai et al. [241] used imaging modules
installed above the drinking troughs to collect video streams, which are analyzed by a
CNN model to estimate the drinking time and frequency of dairy cows.
As the two most basic behaviors of all animals, some systems have been reported to
detect both feeding and drinking behaviors. Yang et al. [260] used a fully convolu-
tional network (FCN) to extract the roundness of the pig’s head and the overlap area
between the head and the feeding bunk as spatial features and used optical flow vectors
to define the intensity of the head motion as temporal features, combining spatial and
temporal features for feeding behavior detection. The recognition of drinking behavior
is the same as the recognition of feeding behavior, except that the distance from the
snout to the drinking nipple and head circularity for distinguishing head-up/head-down
is used as the extracted spatial features. In the work of Jiang et al. [122], they obtained
exciting results in goat eating, drinking, activity, and inactivity behavior detection by
using an object detection method namely YOLOv4 [6]. Moreover, the CNN-LSTM
(Long Short-term Memory) network is a classic combination for video processing, the
spatial features extracted from the CNN are used as inputs in the LSTM, which then
extracts spatial-temporal features. have been used for the detection of feeding and
drinking behavior in pigs [45, 42, 256].
Aggressive behavior recognition – In livestock farming, existing computer vision-
based studies on aggressive behavior recognition are based on pigs. Several computer
vision-based systems for aggressive behavior recognition in pigs have been proposed
[245, 43, 41], which were focused on spatial feature extraction of pigs in each frame.
To directly use spatial-temporal features for detecting the aggression behavior between
pigs, the CNN-LSTM network has been used in the work of Chen et al [44]. In feeding
and drinking behavior recognition, the spatial-temporal features and extracted by CNN
and LSTM. Finally, through the fully connected layer, the prediction function Softmax
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is used to determine whether the current episode is aggressive.
Lameness recognition – Lameness occurs when an animal has leg or foot pain that
affects how they move. Lameness is an animal health and welfare concern, as well as
a production issue. Pain due to lameness often limits growth because animals may be
reluctant to eat or drink 13. Several studies about computer vision-based systems for
lameness recognition in cattle have reported mainly cattle [117, 273, 9]. With the de-
velopment of deep learning technology, Wu et al.[255] used YOLOv3 [198] to detect
the leg targets of cows in each frame of video. Finally, they used a LSTM model to
classify lame and non-lame cows. Similarly, RFBNetSSD [155] was used in the work
of Kang et al. [129] to detect the locations of cow legs. Subsequently, they proposed
a classification algorithm based on the analysis of data for the supporting phase for
lameness recognition. Moreover, a study has reported the possibility of horses’ lame-
ness identifying by using convolutional network models for motion trajectory analysis
[251].
Mounting behavior recognition – Commonly, mounting is thought of as being sexu-
ally driven. Therefore, the mounting behavior recognition is frequently used for animal
heat detection in livestock farming [208, 138, 81, 21]. A single shot multibox detec-
tor (SSD) [156] and MobileNet [112] base optimised deep learning network namely
SBDA-DL [272] is proposed for real-time detection of three typical sow behaviors:
drinking, urination, and mounting. The detection speed of 7 frames per second and
the detection Average Precision (AP) of more than 90% meet the requirements of most
pig farm support staff for daily monitoring. In addition, Li et al. [147] proposed a pig
segmentation network using Mask R-CNN to extract multidimensional feature vectors
from the bounding box parameters and the mask file generated by instance segmenta-
tion. The feature vectors are extracted from the segmentation results and then classified
by a kernel extreme learning machine (KELM) [114, 115]. Based on the classification
results, it is determined whether the mounting behavior has occurred.
Behaviour posture recognition – Animal pose estimation is a key step in analyzing
animal behaviors and evaluating animal health, hence, study on deep learning for an-
imal pose estimation has also made great progress. The analysis of depth image is
used for identifying five postures (standing, sitting, sternal recumbency, ventral re-
cumbency, and lateral recumbency) in the work of Zheng et al.[275]. The depth image
is obtained by Kinect v2 sensor, the object detection model Faster R-CNN [223] is

13https://www.beefresearch.ca/research-topic.cfm/lameness-64

https://www.beefresearch.ca/research-topic.cfm/lameness-64
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used for depth image analysis to predict sow postures. As an excellent object detec-
tion, with Neural Architecture Search (NAS) base network [281], Faster R-CNN [223]
is also used by Riekert et al. [202] to analyze the images collected by a 2D-cameras
placed on top of the barn for identifying lying and standing postures of the sow. Based
on the idea of Faster R-CNN [223], Zhu et al. [278] proposed a multi-stage object
detection framework for recognizing five postures of lactating sows (standing, sitting,
sternal recumbency, ventral recumbency, and lateral recumbency) in scenes at a pig
farm. They used two CNNs to extract the RGB image features and depth image fea-
tures. Then, they used a Region Proposal Network (RPN) to generate the regions of
interest (ROIs) for the two types of image feature maps in RGB-D, and a feature fusion
layer is used to extract and merge the features of the RGB-D ROIs, which are the input
of a Fast R-CNN to obtain the recognition results. Nasirahmadi et al. [180] tested
three deep learning-based object detector including Faster R-CNN [223], SSD [156]
and region-based fully convolutional network (R-FCN) [49], combined with Incep-
tionV2 [235], Residual Network(ResNet)[98] and InceptionResNetV2 [234] to detect
the standing and lying (belly and side) postures of pigs under commercial farm condi-
tions. Finally, ResNet101-based R-FCN gets the best performance with mean average
precision (mAP) of more than 93%. Similarly, Faster R-CNN-based object detector for
sow pose estimation has been reported in the work of Zhang et al .[274]. In addition
to object detection technology, the used of deep cascaded convolutional models [150]
and panoptic segmentation [35] have been reported for animal pose estimation.
In fact, in addition to the above-mentioned behaviors, other animal behaviors are also
of interest and related deep learning-based monitoring systems have been developed,
such as tail-biting behavior [153], nursing behavior [261], playing behavior [40], hen
egg breeders behavior [248] and cow rumination behavior [14], etc. From the arti-
cle review, we can find that CNN-LSTM and various object detectors are frequently
used for animal behavior monitoring. Indeed, CNN-LSTM allows the identification of
animal behavior considering both temporal and spatial features, and advanced object
detectors can quickly predict animal behavior and localize animals, which is suitable
for real-time monitoring systems. Moreover, these proposed systems all report high
performance. However, most of them lack practical experience. Commercial farms
are known to have complex environments and a large number of animals. In such a
situation, the effectiveness of animal behavior monitoring and the system’s resistance
to interference face challenges. Especially for possible silent behaviors.
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2.2.3.3 Facial expression recognition

As described in section 2.2.3.1, animal facial recognition has been used for animal in-
dividual identification. In addition, these advances in facial recognition technology can
be extended to several other useful applications, such as helping us learn more about
the emotional and attentional states of animals. Pain is one of the most basic animal
emotions, correct recognition of pain in animals is essential to ensure animal welfare
and to provide successful and rapid treatment when needed [69, 51]. In the work of
Guesgen [86], the painful facial expressions of the lambs have been quantified and
coded, which demonstrates changes in lamb facial expressions associated with pain.
Moreover, Goldberg et al.[80] describe in detail how to identify signs of pain specific
to livestock (pig, cattle, and goat) based on their facial expressions.
As deep learning and computer vision-based methods show a great powerful perfor-
mance in the recognition and classification of images. Noor et al[181] proposed the
use of the CNN model for pain facial expression image classification in sheep. They
trained a CNN-based binary classifier for sheep pain recognition. As shown in Fig-
ure 2.4, the facial expression images are divided into two classes, i.e Normal (pain) or
Abnormal (no pain). VGG16 model [227] has been proved as the best classification
model for pain facial expression images classification in sheep with a testing accuracy
of 100%. Several studies have shown that pain causes changes in the position of the

FIGURE 2.4: Exemple of pain or no pain facial expression in
lambs[181]

animal’s eyes, ears, lips, and jaw profile, as well as the position of the nostrils and mid-
person [78, 169]. To more accurately recognize the horse’s painful expressions, Dalla
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Costa et al. [146] designed a three levels of pain (Not Present, Moderately Present,
and Obviously Present)assessment system based on three CNN models to recognize
the pain levels of ears, eyes, mouth, and nostrils, respectively. From the three trained
CNN models, a fine-tuning process was performed to train the ANN(Artificial neural
network)-based classifier that combines the individual recommendations and confi-
dence value of each model. The system was able to achieve an overall accuracy of
75.8%. If not consider the level of pain (only pain or no pain), the overall accuracy of
reached 88.3%.

2.3 Purpose and significance of this study

Animal welfare is a complex issue, which includes direct and indirect indicators. In
cow farming, artificial insemination is usually considered as a measure for the im-
provement of fertility, which is the key to farm profitability. In fact, in the context of
intensive livestock, artificial insemination may provide potential welfare advantages as
these practices reduce the risk of disease transmission and injury or enable the selec-
tion of specific beneficial traits [25].
Nevertheless, as an ancient biotechnology, artificial insemination still faces many chal-
lenges that hinder its development and promotion. Heat (or estrus) detection is the first
challenge and one of the main conditions for a successful insemination [52]. Current
heat detection methods are mainly based on the observation of the behavior of the cow
or bull, some of which are uncertain and inaccurate, and some of which are harmful to
cow welfare. In addition, for more than 70 years, the insemination procedure has been
performed by rectal palpation, which allows the operator to move his catheter through
the cervix and then deposit the semen in the uterine body. However, rectal palpation
is also an invasive method, that can have a negative effect on the animal organism,
resulting in deterioration in the well-being of cow [120, 119]. Meanwhile, an effective
examination by this method is not easy and requires theoretical and practical prepara-
tion. It requires the operator to put his arm into the cow’s vagina. If the cow is stressed
caused to improper operation, it can lead to dislocation and fracture of the operator’s
arm. Coupled with the decline in farm labor on dairy units, it is getting more difficult
to successfully artificially inseminate (AI) dairy cows to get them pregnant when re-
quired.
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In this context, the main objective of this study was to develop a deep learning com-
puter vision-based artificial insemination system for dairy cows to improve the insem-
ination success rate by improving the accuracy of estrus detection and locating the
cow’s cervix, while ensuring the welfare of the cow.
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Cow heat classification

3.1 Introduction

In cattle farming, the artificial insemination technique 1 is a biotechnology that clearly
contributes to the development of sustainable agriculture. Indeed, several studies have
shown the wide range of benefits brought by this technique [25, 110, 16, 215], espe-
cially with regard to genetic gain, advantageous economic cost, health security, and
potential welfare advantages for animals. In what follows, we briefly discuss each of
these advantages.
Welfare advantages for male – As mentioned in the section 2.3, people have rarely
noticed that artificial insemination can provide potential welfare advantages for cattle
on commercial farms. Natural mating can cause a range of injuries for bulls. Adult
bulls can weigh between 500 and 1000 kg, and hooves hitting the ground may cause
lameness at the end of mating. Furthermore, the struggle of the cow cause damage to
the bull’s penis. The study has reported that lameness and penile damage are estimated
to increase by a factor of 2.5 in cows after mating compared to before mating in Aus-
tralia [91]. In contrast, artificial insemination can well avoid these cases. Furthermore,
dairy cow farming aims at milk production. Therefore, male calves are generally un-
wanted [54]. Unfortunately, the welfare of bull calves is frequently overlooked given
they often leave the farm within a week or two after birth and are often of low-value
[108], their fate is to wait to be euthanized. Considering the welfare of bull calves, ar-
tificial insemination using pre-determined sexed semen allows dairy farmers to avoid
the surplus production of male calves and maximize female [108].

1An assisted animal reproduction method consisting of artificially introducing, by a trained breeder,
the semen of the bull into the reproductive tract of the cow [25].
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Health security for both animal and humain – The development of artificial insem-
ination in cattle farming is mainly due to health reasons [25, 110, 16, 215]. Indeed,
the spread of disease is better controlled when ensuring that selected bulls for the in-
semination process are safe from any venereal affection. Otherwise, many hereditary
diseases can shorten the life of newborn calves, such as Bovine Leukocyte Adhesion
Deficiency can cause immune disorders in the calf, and the calf will not survive past
eight months of age, which seriously damages their welfare. More seriously, some
zoonotic diseases are heritable, which can cause a huge number of newborn calves to
be culled. Obviously, the control of the semen donors must be highly rigorous since the
risk of a resisting pathogen to the artificial insemination process will lead to a larger
spread of the disease compared to a natural insemination. For instance, in [173] it has
been shown that twelve heifers have been contaminated by bovine virus diarrhoea virus
(BVDV) after an artificial insemination with semen from an infected bull. However,
considering the current standards followed by the semen production centers over the
world, the risk of spreading disease remains weak [237].
Genetic gain – Over the past fifty years, genetic improvement programs have highly
increased the productivity in most animal species [103]. In the case of cattle farm-
ing, these selection programs notably genomic selection aim to improve several points
[24]: i) the robustness of the cattle by targeting different skills such as fertility, dis-
ease resistance, and longevity, ii) the food efficiency while limiting discharges and iii)
the milk through its sanitary, nutritional and technological quality. The application of
artificial insemination using semen collected from these selection programs will help
to spread the genetic gain and progress. Therefore, the continuation of good offspring
also invariably improves the welfare of the cow.
Economic cost – Artificial insemination may bring to farmers a real financial benefit
[17, 215] notably with respect to the transport, animal inventory, and associated la-
bor costs. Ball and Peters [16] pointed out some brakes related to the possession of a
bull such as the required purchase investment and the long lead times before getting
back profits as well as maintenance costs at the end of career. Moreover, artificial in-
semination allows to avoid financial losses caused by possible infertility problems of
a bull. In this context, several studies have been carried out to evaluate the economic
impact of artificial insemination over natural mating [17, 159, 11, 215]. For instance,
Barrientos-Blanco et al. [17] developed a NPV model (Net Present Value) that in-
cludes different parameters such as dystocia and stillbirth costs, as well as improved
fertility of crossbred cattle. Indeed, the obtained results have shown that the NPV was



26 Chapter 3. Cow heat classification

clearly advantageous following a specific artificial insemination strategy. On the other
hand, long-distance transportation is also painful for cattle, and reducing long-distance
transportation is also a boon for cattle.
The main condition for the success of artificial insemination within cattle is the heat
(or estrus) detection [52]. Indeed, detecting cow heat permits the farmer to determine
the right time of insemination and lead to: i) increase the conception rate, ii) avoid
economic loss due to expenses related to extended calving and additional semen. A
cow in heat manifests a primary behavioral sign corresponding to firm footing and
allowing herd mate to mount it [73]. Obviously, this sign may be observed only if
the interactions within the herd are allowed. Furthermore, as previously mentioned,
mounting behaviors may cause damage to cows, and threat the welfare of cow. In
addition to primary sign, several secondary signs may be manifested by the cow such
as mucus discharge, swelling and reddening of the vulva, bellowing, restlessness and
trailing [184, 73]. Consequently, the required time for observing all these signs by the
farmer turns this task into a fastidious process specially within herds of a large size.
For this reason, several cow heat detection systems, have been recently proposed in
the literature to assist the farmer in this task [214, 138, 8, 87, 102, 195, 13, 39], They
are mainly based on the analysis of the cow behavior in order to detect eventual signs
of changes with respect to its physical activity. Nevertheless, analyzing only the cow
activity is not enough for efficiently detecting whether it is in heat. Indeed, the activity
of the cow may be affected by multiple factors such as feeding, type of housing, cow
density, feet and leg problems [184, 267]. Moreover, in case of a ”silent heat”, cows
do not show any sign [138, 267]. Nevertheless, the finding of the scientific commu-
nity remains unanimous about the fact that the human visual observation is an efficient
method to detect heat [138, 8]. As formulated by Kumar et al. [138], the visual ob-
servation is efficient notably: ”if it is done three times a day for at least 30 minutes

every time”. Moreover, it is recognized that combining heat detection aids tools with
the visual observation gives better detection results [138, 8].
In this sense, we propose a deep learning-based system for cattle heat automatic detec-
tion from vaginal video endoscope imagery. The system allows to analyze a sequence
of endoscope images acquired in real-time using an innovative insemination technol-
ogy named Eye Breed [55] 2. As illustrated in figure 3.1, the Eye Breed device, which
is equipped with an embedded camera and is connected to a smartphone, is introduced

2Eye Breed is the 1st TECHNOLOGICAL INNOVATION to INSEMINATE WITHOUT RECTAL
PALPATION. https://www.axce-repro.com/en/eye-breed-2/

https://www.axce-repro.com/en/eye-breed-2/
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into the genital tract of the cow allowing the operator (farmer) to monitor in real-time
a simulated insemination process. The recorded video is then automatically analyzed
by a CNN classifier at the frame level in order to detect whether the cow is in heat. The
contributions of this work are the following:

FIGURE 3.1: An overview of our cow heat detection system using
Eye Breed technology [55].

• An original artificial vision-based approach for cow heat state classification re-
lying on the analysis of the genital tract of the cow from endoscopic images. It is
worth noting that our approach is complementary to the existing activity analysis
methods. Indeed, these methods offer a global analysis of the herd to detect a set
of cows potentially in heat. Hence, our method can be applied on each identified
cow to provide a more precise analysis.

• A dataset for cow heat analysis composed of 31360 labeled endoscopic images.
The images have been extracted from videos of simulated insemination on 46
Holstein dairy cows using the Eye Breed device. The heat state of each cow has
been pre-identified by experts.

• A CNN model named “InceptionVGG8” tailored for endoscopic image analysis
with an efficiency demonstrated over two datasets namely our proposed cow heat
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dataset and Kvasir dataset for human digestive system analysis [193]. Indeed,
the conducted experimental studies on the two datasets show the high accuracy
of our model outperforming 19 methods from the state of the art.

• An optimized version of our CNN model for an Android deployment by exploit-
ing several techniques namely quantization, GPU acceleration and video down-
sampling. The conducted experiments on a smart-phone show that our Android
application renders a decision in a few seconds.

3.2 State of the art

3.2.1 Previous research on heat detection

As mentioned into the introduction, the human visual observation is an efficient method
to detect heat [138, 8]. However, the required time for observation and the relatively
high number of secondary signs to consider for the achievement of this task, turn it
out into a fastidious process specially within herds of a large size. Furthermore, in this
latter case the detection efficiency may be affected due to the repetition, by the farmer,
of the same actions at a large scale. For these reasons, several heat detection aid tech-
niques ranged from simple annotation techniques to more elaborate ones, have been
developed to assist the farmer in the heat detection process. In what follow, we present
the different techniques that have been proposed in the literature with a categorization
according to the type of the used technology. Apart from the first category of meth-
ods, the performance of the presented systems in what follow has been evaluated by
calculating standard metrics namely accuracy, sensitivity and positive predictive value.
Indeed, the accuracy reported in some recent systems exceeds 80%. However, it is not
possible to make an objective comparison between the systems based on the reported
performance since they have been evaluated by adopting different experimental pro-
tocols notably in term of size of herd, the number of cows in silent heat and the farm
characteristics. For these reasons, we choose to highlight their advantages/drawbacks
in term of usage ease and adaptation to particular contexts.
Annotation and recording – This type of methods is mainly based on the maintain
of a calendar by the farmer to register cows observed in heat and then to anticipate
their next heats by considering a cycle of 21 days [8]. Hence, the annotation result
endorsed by the visual observation allow the farmer to monitor the cycle of cows and



3.2. State of the art 29

detect possible cyclicity resumption defaults as well as heat expression issues. This
means that the maintain of the calendar is extremely important and must be regularly
updated in order to preserve the usefulness of the method. Such calendars are generally
provided by artificial insemination centers and are available under the form of special
charts. Information systems for farming management propose also this function [163,
60, 26, 183]. In this latter case, several data with respect to the cow characteristics (e.g.
sanitary state) and its environment (e.g. type of housing, footing surface and ambient
temperature) are required by the system in order to suggest a date at which the cow
will need a particular observation. Nevertheless, this type of methods does not provide
a detection tool but rather an advice tool to the farmer.
Mount detectors – These methods use a mechanical or an electronic device to iden-
tify which cow has been mounted. More precisely, the device is glued on the tail-head
of the cow and is triggered if she undergoes a pressure with a sufficient intensity and
duration. Indeed, the contact between two cows due to a mount allows to trigger the de-
tector which is glued on the mounted cow. The mechanical mount detectors correspond
generally to a flat patch with one adhesive side and on the other side a large transpar-
ent storage capsule occupying almost the whole surface of the patch. The large capsule
wraps a small one that contains a red fluid. Hence, the pressure due to the mount on
the cow leads to the spread of the red fluid, from the small capsule toward the larger
one, making it much more visible. The Kamar heat mount detector is one of the oldest
and most popular mechanical detectors [207]. However, several mechanical detectors
have been developed thereafter [203, 95, 31, 170] offering more options such as the
possibility of being used several times. The electronic detectors are based on the same
concept as in the mechanical detectors; however they use an electronic pressure sen-
sor for detecting the mount. In addition, these detectors are generally connected via a
wireless network to a central unit or a software that allow to keep the farmer informed
about the mount data in the herd and the associated cows identities [220, 259, 262].
The drawbacks of these detectors are the risk of dropout and/or the increase number of
false detections [109]. For instance, a mount may be detected due to a pressure from a
contact with a wall or a barrier. Moreover, these detectors are not efficient with cows
in silent heat.
Locomotor activity detectors – Activity increase within cows during heat period
[243] have promoted the development of locomotor activity monitoring systems. In
this context, several developed systems use a pedometer for monitoring the activity of
cows [160, 210, 204]. More precisely, the pedometer is generally placed on one of the
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cow legs and is exploited to count the number of steps made by the cow during multi-
ple time intervals. The data collected by the pedometer are transmitted via a wireless
network to a central processing unit where they are analyzed to eventually identify a
behavior changing in the cow activity. The data analysis stage is performed by algo-
rithms that generally calculate the ratio between the number of steps taken by the cow
for a short slot time (for instance the last 2 hours) and the standard deviation of the
average number of steps taken in a defined preceding period (for instance the last 10
days) [160, 210, 204]. If the ratio exceeds a given threshold which is defined empiri-
cally, the monitoring system identifies then an activity increase and consequently the
heat. In recent proposed monitoring systems [239, 195, 219], more sophisticated de-
tectors namely accelerometers have replaced the pedometers. More specifically, these
motion sensors are usually placed on the head or the neck of the cow and allow to ac-
quire data into the three dimensional space offering accurate information with regard
to the activity type of the cow (e.g. grazing, resting, walking, and standing). The use
of these sensors allowed to improve the heat accuracy detection of the monitoring sys-
tems, nevertheless the proposed systems still suffer from weakness to false detections
due to several factors related to the cow environment [239].
Odors analysis – It has been shown that during the heat period, the cow body emits
odors which are different from those emitted outside of this period [28]. The scientific
community have investigated this axis and proposed various methods to analyze the
volatile compounds emitted by the cow [165, 214, 124, 68, 175, 143]. More precisely,
in [175, 214, 143], the developed heat detection systems exploit electronic noses tech-
nology to analyze odors changes from perineal and perigenital samples collected using
special cotton bud swabs. In the system proposed recently by Manzoli et al. [165],
authors designed and made their own electronic nose with a particular attention to
its sensitivity and reversibility properties against humidity. They adopted a principal
component analysis (PCA) technique for the heat state detection. In [124, 68], authors
proposed to train sniffer dogs to distinguish between vaginal mucus samples of cows
in heat and in no-heat. In the case of Dorothea et al. [124], they developed a spe-
cific training protocol to train six dogs, each one during 50 hours. Nevertheless, the
authors highlighted in the perspectives the need of optimizing the training protocol as
well as the training hourly volume to improve the detection results. Overall, one of the
drawbacks of this category of methods is the need of a human operator intervention
to prepare samples which make the process laborious especially within herds of large
size.
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Video monitoring– Several video analysis based automatized monitoring systems for
heat detection have been developed [189, 105, 279, 240]. The proposed systems ex-
ploit video cameras installed in the farms to analyze the behavior of cows and identify
those expressing heat signs notably the riding. To reach this goal, the developed sys-
tems consist of a standard processing pipeline including the scene segmentation (ex-
traction of objects of interest namely cows), cows recognition and tracking, behavior
classification for heat detection. In [189], the behavior classification step is achieved
by classifying a set of feature points extracted automatically from the cow body parts.
The authors experimented multiple learning algorithms for the classification task and
reported that the Support Vector Machine algorithm with Radial Basis Function gave
the best results in term of heat detection. It is worth mentioning that this type of meth-
ods aims to mimic the human method for heat detection namely the visual observation.
Hence, the short videos of interest (i.e. the ones identified by the system as containing
heat signs) may be rapidly double checked and validated by the farmer which represent
a real asset for him in order to improve the accuracy of the heat detection. However,
the main drawback with these methods is that they are unable to detect cows in silent
heat. Additionally, they can hardly be exploited on grazing cows due to cameras de-
ployment issues.
The wealth of the presented state of the art on the heat detection within cattle clearly
shows the great significance of this task. Moreover, the continuous development of
new automatic systems show that this task is challenging and not solved yet due to
many factors related to the physiological state of the cows and the farms environment.
In our work, we present a new analysis way for detecting heat. More precisely, the
proposed systems in the literature are based either on the behavior changes analysis
or the odor changes analysis, while the system we propose is based on vaginal endo-
scope imagery deep analysis. One of the main advantages of our system is its all in
one device offering to the farmer both of heat detection and the artificial insemination
functions.

3.2.2 Image classification

In our work, we define the heat detection in cow as an image classification problem,
which is one of the most popular task of computer vision. The main goal of image
classification is identifying if a given object appears in an image. In our case, we aim
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at identifying heat features from cow vaginal endoscopic image to classify two cate-
gorie of heat state of cow, i.e heat or no heat.

3.2.2.1 Public datasets and benchmarks

In the context of deep learning based computer vision, the ImageNet Large Scale Vi-
sual Recognition Challenge (ILSVRC) evaluates algorithms for object detection and
image classification at large-scale. The goal of image classification in this challenge
is to train a model that use a dataset namely ImageNet [56], which has roughly 1.2
million images for training, 50,000 for validation, and 100,000 for testing, capable of
classifying images into 1,000 different classes. Since 2012, almost all the proposed
methods are validated on ImageNet [56] to demonstrate their performance. Moreover,
fine-tuning a model pre-trained on ImageNet has been considered as a common CNN
model training strategy.
In addition to these benchmark datasets, there are also a lot of special dataset. Dogs vs.
Cats dataset is a competition dataset of Kaggle 3, which is comprised of photos of dogs
and cats provided as a subset of photos from a much larger dataset of 3 million man-
ually annotated photos. For livestock, several datasets of cattle or cow [12, 72, 4] and
pig [4] have been built for animal recognition and animal behavior classification. Fur-
thermore, endoscopic image classification is also one of the main application of image
classification, which has been used to several diseases diagnosis of digestive system in
humain. Pogorelov et al [193] created a endoscopic image dataset for computer aided
gastrointestinal disease detection namely Kvasir, which has two versions. They have
4000 and 8000 images of 8 classes, respectively, which can be used for anatomical
landmarks recognition, pathological findings and polyps recognition.

3.2.2.2 Deep learning based endoscopic image classification

Endoscopy-aided techniques have been used in the health checks and surgical treat-
ments of the pet (dog, cat) [71] and livstock animal (cows, mares and sheep) [216,
162]. This technique is a noninvasive method for a pathological diagnosis of living
tissue. However, it can produce thousands images during one examination at least.
The reading of a large amount of endoscopic image data has exceeded the limit of hu-
man attention, which is easy to cause misdiagnosis and reduce the diagnostic accuracy.

3Kaggle DogVCat Competation: http://www.kaggle.com/c/dogs-vs-cats

http://www.kaggle.com/c/dogs-vs-cats
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Moreover, it requires a diagnosis from experienced expert or veterinarian.
In the context of the great success of deep learning in the field of computer vision, to
face this issue, some computer aided diagnosis (CAD) systems have been developed in
humain gastrointestinal ( GI) disease disgnosis. By using the Kvasir dataset presented
in section 3.2.2.1, several CNN models have been trained for anatomical landmarks
recognition, pathological findings and polyps recognition [192, 3, 164] . Furhermore,
corresponding models have also been developed for the disgnosis of gastric cancer
[104], recognition of celiac disease [276], hookworm [97], and small intestine motility
characterization [217]. Indeed, deep learning based endoscopic image analysis has be-
come widespread in humain disease diagnosis. Nevertheless, there is very little deep
learning based CAD systems for animal endoscopic image analysis. Therefore, this
work will be the frist deep learning based methodology for cow heat analysis from
endoscopic images.

3.3 Methodology

The use of deep learning techniques for image analysis has become widespread over
multiple domains including agriculture one [128]. Indeed, these techniques have shown
their efficiency in several tasks including image classification and segmentation while
providing higher performance in comparison with traditional techniques of image anal-
ysis. In this context and to tackle the problem of heat detection from an endoscopic
video, we propose a method based on a deep learning approach that permits to analyze
the video and to assign the appropriate class, i.e. “heat” or “no-heat”. Algorithm 1
summarizes the different steps of our method. First, the video is subdivided into a
sequence of individual frames (or images) according to a given image rate, each frame
is then standardized in term of resolution and normalization in order to feed a CNN
classifier, which permits to predict a class. The decision with respect to the final class
of the video is attributed based on a major voting which allows to identify the dominant
class over the sequence. A heat state prediction is also calculated as shown in steps 14
and 17 of our algorithm.
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Algorithm 1 InceptionVGG8-based cow heat state prediction
Input: Cow vagnial endoscopic video (V), FPS rate (R)
Output: Decision (D), Heat state Prediction (HSP)

1: LF ← (empty list o f f rames)
2: LF = SPLIT(V,R)
3: LF = STANDARDIZATION(LF)
4: for each f in LF do
5: Pheat , Pno−heat = INCEPTIONVGG8( f ) ▷ Model in Figure3.2
6: if Pheat > Pno−heat then
7: Totalheat +1
8: else
9: Totalno−heat +1

10: end if
11: end for
12: if Totalheat > Totalno−heat then
13: D = Heat
14: HSP = Totalheat

SIZE(LF )

15: else
16: D = No-Heat
17: HSP =

Totalno−heat
SIZE(LF )

18: end if

3.3.1 CNN backbone

To build the main core of our system namely the image classifier, we designed and
developed a variant of the VGG16 CNN model[227]. As illustrated in Figure 3.2
our variant named “InceptionVGG8” differs from the original architecture on 2 major
points:

• The convolution blocks 2×128, 3×256, 3×512 and 3×512 are replaced by a cus-
tomized inception module which is a variant of the block A of InceptionV4 ar-
chitecture [234].

• The two dense layers of 4096 dimensions are replaced by a global average pool-
ing and a dense layer of 2 dimensions.

The choice of a VGG16-like architecture is explained by its shallow design which of-
fers the advantage of reducing over-fitting on image datasets of limited quantity. The
inception module offers through its multiple channels the advantage of being able to
extract image features at different scales, which should reinforce the generalization
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FIGURE 3.2: Design of our CNN model: from VGG16[227] to
InceptionVGG8.

potential of the CNN model. The global average pooling and the dense layer of 2 di-
mensions allow to reduce the model complexity. The design of our inception module
is shown in figure 3.3. In comparison with the block A of InceptionV4 architecture, we
have: i) removed data downsampling step (average pooling) from the first channel to
avoid loss of possible relevant information, ii) extended the depth of channels 2, 3 and
4 by adding one convolution block with a kernel size of 3×3 in order to increase the
size of their receptive fields. Hence, these changes have permitted to design a 4-scale
feature extractor module namely 1×1, 3×3, 5×5 and 7×7 via channels 1, 2, 3 and 4,
respectively.
Each convolution layer of our architecture is represented by a stack of feature maps.

One feature map contains (N×N) units (or neurones), each one associated with a Relu

(Rectified linear unit) activation function calculated as follow:

x = max(x,0) (3.1)

where x is resulting from a convolution operation between the feature maps fk=1,m of
the previous layer and associated filters of weights (kernels):

x = ( ∑
fk=1,m

(
w,h

∑
i, j

wi j× xi j))+b (3.2)
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FIGURE 3.3: Proposed inception module for the InceptionVGG8
architecture. The x is the number of layers.

Here, the (w,h) correspond to kernel width and height, wi j the weight at position i, j of
the kernel, xi j the unit at position i, j of the considered feature map and b is the bias.
Each convolution layer of the architecture is followed by a batch normalization [116]
which corresponds to a normalization of the feature maps over a batch of images. The
normalization algorithm is illustrated in figure 3.4 for one unit x and may be general-
ized to a feature map by replacing x by f .
A max pooling function follows batch normalization step which permits to half the

size of each feature map while keeping its most significant features. To this end, a
square window of 2x2 units is shifted with a step of 2 over the feature map and output
each time the unit having the maximum value. The last max pooling is followed by
a Global Average Pooling (GAP) function which is calculated for each feature map
fk=1,512 as follow:

GAP( f ) =
1

7×7

7

∑
i, j

xi j (3.3)

After GAP function comes a dropout function (0.4 to cancel in the training stage the
contribution of 40% of the units picked randomly in order to reduce over-fitting [230]),
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FIGURE 3.4: Batch normalization algorithm over a batch of im-
ages. Image extracted from [116].

a fully connected layer (with identity function) and an output layer having both a size
of 2 neurones. Each neurone xi=1,2 of the output layer permits to calculate the corre-
sponding prediction probability pi=1,2 of the input image being in class ci=1,2 using a
so f tmax function defined as follow:

pi = so f tmax(xi,ci) =
exi

∑ j=1,2 ex j
(3.4)

3.3.2 Loss function

In the CNN training, the loss function is used to quantify the difference between the
expected outcome and the one predicted by the CNN model. Furthermore, gradients
derived from the loss function is used to update the weights of model. In our case, the
overall architecture has been trained to reduce the categorical cross entropy loss (Loss)
which is calculated for the output layer over a batch of images as follow:

Loss =−1
n ∑

n
( ∑

c=1,2
yclog(pc)) (3.5)

where n corresponds to the batch size, yc is a binary indicator whether the class c is the
correct one for the given image from the batch and pc is the probability predicted (see
equation 3.4) by the model on the same image.
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3.3.3 Optimization function

The CNN training aims to minimize the difference between the expected outcome and
the one predicted by the CNN model, which require an optimization function. In our
case, the weights are optimized using a Root Mean Square propagation technique (RM-
Sprop) [47]. We denote wi jt+1 a weight to update during the forward pass (from step t

to t +1 of a training epoch) between two neurones xi and x j of our architecture. Based
on RMSprop technique, the weight is updated as follow:

wi jt+1 = wi jt − ( η√
vt+ε
∗δ jt )

vt = βvt−1 +(1−β )δ 2
jt , β = 0.9,v0 = 0

η = 10−3, learning rate
ε = 10−8, calculation stability

(3.6)

where δ jt is the gradient error of the neurone x j back-propagated from the Loss of the
predicted class of the input image at step t.
To find the best optimization function which is suitable for our model, we consider also
other 5 common optimization functions ( SGD, Adadelta, Adam, Adamax, Nada)[47]
(see in section 3.4.2)

3.4 Experimental study

3.4.1 The generated endoscopic image dataset for cattle heat anal-
ysis

This dataset is provided and established by Gènes Diffusion 4, CECNA 5, and Elexinn
companies 6. Gènes Diffusion and CECNA are pioneering companies in the field of
genetics and animal reproduction, Elexinn is a start-up developing the gynecological
gun (Eye Breed), these companies have been a key partner in animal husbandry in
France.

4https://www.genesdiffusion.com/
5http://www.cecna.fr/
6http://www.cecna.fr/category/elexinn/

https://www.genesdiffusion.com/
http://www.cecna.fr/
http://www.cecna.fr/category/elexinn/
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3.4.1.1 Eye Breed technology for data acquisition

Eye Breed [55] is the first innovative technology that permits insemination without
rectal search, which is considered as a painful procedure . Indeed, it has been designed
and developed with special attention to the animal well-being, ease of use by the oper-
ator and data visualization/connection capabilities. Specifically, the device is equipped
with 1) an embedded camera to visualize the entrance of the uterine cervix and 2) an
insemination tube with atraumatic nozzle allowing to optimize the operator’s work and
the animal’s conditions. The device has been used to record videos of simulated in-
semination using the default parameters of the camera notably an image rate of 20 FPS
(frames per second) and an image resolution of 640×480 as shown in Figure 3.5.

FIGURE 3.5: Artificial insemination illustration using Eye Breed
technology[55].

3.4.1.2 Data preparation and preprocessing

To build the dataset, 46 videos, representing 46 Holstein dairy cows, have been col-
lected from several farms located in the north region of France between 2017 and 2018.
For each cow, the device has been introduced by a human operator to carry out the in-
semination operation without triggering it (i.e. without semen injection). It is worth
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mentioning that the time of this operation depends on both the human operator experi-
ence in the use of the Eye Breed device as well as the anatomy of the cow genital tract.
For these reasons, the length of the collected videos varies between 40 and 80 seconds.
The heat state of the considered cows has been identified by CECNA experts which al-
lowed to label each video into the appropriate class. The labeling step gave 36 videos
with “heat” label and 10 videos with “no-heat” label. Two videos from each class have
been selected randomly and excluded from the set for a final test of the global system.
The 4 videos represent 5600 images. The remaining 42 videos (34+8) have been used
to create the training and validation sets with balanced classes. In total, 21760 images,
artificially augmented to 239360 images, have been generated for the training set and
4000 images for the validation set. The pre-processing chain that allowed to generate
the image sets is described in what follow.
Video split – Each video is split into a set of images (or frames) with a rate of 20 im-
ages per second in accordance with the image rate of the embedded camera in the Eye
Breed device. Each set of images is then manually checked in order to remove noisy
images which are generally positioned at the beginning or at the end of the videos. As
illustrated in figure 3.6, these images correspond to the ones captured from outside of
the cow genital tract. This cleaning step, produced a total of 32000 and 12880 images
for heat and no-heat classes respectively. The produced set of images for both classes
has been then subdivided into two subsets: 10880 × 2 images picked randomly for
training and 2000 × 2 for validation. At this stage, we have a training set of 21760
images and a validation set of 4000 images with balanced classes for both sets.

FIGURE 3.6: Examples of noisy images.

Data standardization – In order to be in accordance with the standard image resolu-
tion required by the designed architecture, we have down-scaled the dataset images to
a square resolution of 224 x 224. We first applied a partial mirroring copy technique
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to move from 640×480 which is the original resolution of the images to a square reso-
lution of 640×640 (see Figure 3.7), then down-scaled the images based on a bi-linear
interpolation to reach the targeted resolutions namely 224×224. Indeed, this processing
methodology allows to avoid image distortion. All the images have been normalized
in the range [0,1].

FIGURE 3.7: Partial mirroring copy technique illustration.

Data augmentation– Previous works have shown that data augmentation is an ef-
fective technique to increase the learning capacity of deep architectures and limit the
over-fitting [225]. For this reason, we have artificially augmented our training set from
21760 to 239360 images by applying 10 simple label-preserving transformations. Ta-
ble 3.1 summarizes the different transformations together with their associated param-
eters . An example of each transformation is illustrated in Figure 3.8.

Type Range
Rotation [-30, +30]

Width shift 0.1
Height shift 0.1

Shear 0.2
Zoom [0.8, 1.1]

Horizontal_flip NA
Vertical_flip NA

Contrast enhancement 2.0
Brightness [0, 2.0]

Channel shift 10.0

TABLE 3.1: Summary of label-preserving transformations used
for data augmentation.
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FIGURE 3.8: Illustration of the ten label-preserving transforma-
tions from an original image.

3.4.2 Ablation study

In order to evaluate the effectiveness of our CNN model components and the data
augmentation, we have conducted an ablation study. First, we studied the influence of
6 common optimizers (Adadelta, Adam, Adamax, Nadam, RMSprop and SGD)[47]
on the performance of the model. To this end, we trained our architecture over 500
epochs on the 239360 training image set. Table 3.2 presents the obtained classification
accuracies on the validation set (4000 images). One can observe that the RMSprop
outperforms the other optimizers with an accuracy of 99.47%.

Adadelta Adam Adamax Nadam RMSprop SGD
96.72 96.21 98.82 95.51 99.47 95.03

TABLE 3.2: Classification accuracies in (%) of our CNN model
on the validation set (4000 images) using different optimizers.

We have then removed from our model the batch normalization (BN), the GAP and
the dropout functions and trained it using the best optimizer (RMSprop). Table 3.3
summarizes the obtained accuracies. The results show that removing the 3 functions
from our model caused a drop in its performance with notably an accuracy loss of
2.77%.

We have also analyzed the impact of changing the inception module. To this end, we
have replaced this module by the ones proposed in the inceptionV series (V1 [233],
V2[235], V3[235] and V4[234]) and trained our model accordingly. We emphasize
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No BN-GAP No BN-GAP-Dropout Original
97.9 96.7 99.47

TABLE 3.3: Classification accuracies in (%) of our CNN model
on the validation set (4000 images) by leaving out some compo-

nents.

that the V3 and V4 architectures include several inception modules. For this reason,
we tested them separately in our architecture and we kept the ones giving the best
performances. Table 3.4 summarizes the obtained accuracies on the validation set. The
table shows that our proposed module (original) gives the best classification accuracy.
Nevertheless, we may observe that our model still gives a high accuracy when using the
inception module of V4 architecture named block A in [234]. This result was expected
due to the design similarity between this block and our inception module.

InceptionV1 InceptionV2 InceptionV3 InceptionV4 Our Inception
89.74 94.5 89.88 98.89 99.47

TABLE 3.4: Classification accuracies in (%) of our CNN model
on the validation set (4000 images) by replacing its inception

module by the ones of InceptionV series architectures.

Finally, we have studied the impact of data augmentation on our model. To this end,
we have trained it following 4 scenarios of data augmentation:

• NDA for no data augmentation and using only the original 21760 images,

• TDA for texture data augmentation (contrast, brightness and channel shift) with
a total of 87040 images,

• SDA for spatial data augmentation (rotation, height shift, width shift, shear,
zoom, horizontal flip and vertical flip) with a total of 174080 images,

• TSDA for both texture and spatial data augmentations with a total of 239360
images.

The obtained accuracies on the validation set according to each scenario are summa-
rized in Table 3.5. The table shows that texture data augmentation scenario has per-
mitted to the trained model to correctly classify the validation set at 100%. Indeed,
this latter scenario improved the model accuracy by 8.5% in comparison with no data
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augmentation scenario.

NDA TDA SDA TSDA
91.5 100 97.4 99.47

TABLE 3.5: Classification accuracies in (%) of our CNN model
on the validation set (4000 images) following 4 scenarios of data

augmentation.

3.4.3 Performance comparative study

We have conducted on our dataset an extensive comparative study between the perfor-
mances of our CNN model and those of 19 methods from the state of the art. More pre-
cisely, we considered 14 existing CNN models: VGG16 [227], VGG19 [227], Incep-
tionV1 [233], InceptionV2 [235], InceptionV3 [235], InceptionV4 [234], IV1VGG14
[250] (a variant of VGG16 exploiting an InceptionV1 module), ResNet50 [98], Incep-
tionResNetV2 [234], Xception [48], MobileNetV3 [111], DenseNet201 [113], NAS-
NetMobile [191] and EfficientNetB7 [236]. The architectures have been adapted to
our problem by: i) setting the output layer to 2 classes, ii) applying a transfer learn-
ing strategy from the ImageNet dataset [56], except for IV1VGG14 [250]. Indeed, we
have implemented from scratch this latter architecture since it is not publicly avail-
able. We emphasize that each CNN model has been trained and validated by testing 6
common optimizers (Adam, SGD, RMSprop, Adadelta, Adamax and Nadam)[47]. In
addition to CNN models, we have compared our model with 5 image descriptor meth-
ods: i) two moment-based descriptors namely Fractional-order Jacobi-Fourier Mo-
ments (FJFM) [264] and Fast Quaternion Generic Polar Complex Exponential Trans-
form (FQGPCET) [263], ii) Riemannian covariance descriptor (RieCovDs) [46], iii)
two texture based descriptors namely Local Binary Pattern with Histogram Refine-
ment (LBPHR) and Local Derivative Pattern with Histogram Refinement (LDPHR)
[238]. Each descriptor has permitted to train 2 classifiers based on KNN (K Nearest
Neighbor) and SVM (Support Vector Machine) machine learning techniques. In total,
94 classifiers have been trained namely 84 CNN-based ones and 10 descriptor-based
ones for being compared with our model.
The performances of these classifiers have been evaluated based on standard metrics
namely recall, precision, specificity and accuracy. We define TP (True Positive) the
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number of heat image samples identified by the classifier as heat, TN (True Negative)
the number of no-heat image samples identified by the classifier as no-heat, FP (False
Positive) the number of no-heat image samples identified by the classifier as heat, FN
(False Negative) the number of heat image samples identified by the classifier as no-
heat. The metrics are calculated as follow:

• Recall (Sensitivity): the capacity of the classifier to identify heat images.

Recall =
T P

T P+FN
(3.7)

• Precision: the probability of an image to represent a heat state when it is identi-
fied by the classifier in heat.

Precision =
T P

T P+FP
(3.8)

• Specificity: the capacity of the classifier to identify no-heat images.

Speci f icity =
T N

FP+T N
(3.9)

• Accuracy: the ratio of correct predictions.

Accuracy =
T P+T N

T P+FP+FN +T N
(3.10)

Table 3.6 shows the performances of our model and those of the 19 methods obtained
on the validation set. We emphasize that we present for each of these methods the re-
sults of the best classifier. One can observe that our model outperforms all the methods
with an accuracy of 100% offering a gain between 3% and 47% in comparison with
the other methods. An unexpected result is the ranking of a moment descriptor-based
method namely FQGPCET-KNN [263] at the second position giving an accuracy of
96.72% and outperforming 14 CNN-methods.
Table 3.7 reports the results of the top 7 methods from Table 3.6 (methods that gave

an accuracy greater than 90%) in term of heat state prediction on the test set composed
of 4 videos as well as the classification accuracy over the corresponding 5600 images.
We remind that the heat state prediction of a video corresponds to the ratio between
the frames of the dominant class predicted by a method and the total number of frames
of the video. The table shows that except the FQGPCET-KNN[263] method which
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Category Method Recall Precision Specificity Accuracy

Descriptor

FJFM-SVM [264] 55.35 63.76 68.55 61.95
FQGPCET-KNN [263] 94.9 98.49 98.55 96.72

Riemaniancov-SVM [46] 80.15 75.47 73.95 77.05
LBPHR-KNN [238] 88.15 64.1 50.56 69.4
LDPHR-KNN [238] 83.75 58.73 41.15 62.45

CNN

InceptionV1 [233] 93.2 97.5 97.6 95.4
InceptionV2 [235] 95.75 96.47 96.5 96.13
InceptionV3 [235] 50.35 63.77 71.4 60.7
InceptionV4 [234] 62.25 53.62 43.95 53.1

InceptionResNetV2 [234] 93.95 94.27 94.3 94.12
Xception [48] 59.8 78.68 83.8 71.8

MobileNetV3 [111] 67.1 68.19 68.7 67.9
VGG16 [227] 83.3 94.43 94 91
VGG19 [227] 88.4 94.55 94.9 91.67
ResNet50 [98] 77.4 94.97 95.9 86.65

DenseNet201 [113] 58.9 61.32 62.85 60.88
NASNetMobile [191] 65 69.15 71 68
EfficientNetB7 [236] 49.55 52.52 55.2 52.38

IV1VGG14 [250] 100 50.59 29.12 58.92
Our model 100 100 100 100

TABLE 3.6: Comparison between the performances in (%) of our
CNN model and those of 19 methods from the state of the art

obtained on the validation set (4000 images).

miss-predicted video_4, the other methods have correctly predicted the heat state of
the 4 videos. Nevertheless, our method gives the highest performances on the 4 videos
with notably a classification accuracy of 99.5% over the 5600 corresponding images.
Indeed, it offers a gain between 5% and 23%.
It is worth mentioning that to the best of our knowledge there exist no public endo-

scopic image dataset for cow heat analysis. Nevertheless, to examine the efficiency of
our model on other datasets, we have trained and tested it on a public dataset of endo-
scopic images for human digestive system analysis [193]. Indeed, this dataset named
kvasir version 2 has been the subject of several works from the state of the art [164,
192, 3]. It is composed of 8000 images representing 8 classes and covering anatomical
landmarks, pathological findings or endoscopic procedures inside the gastrointestinal
tract. Table 3.8 summarizes the global performances obtained by our model on the
test set of this dataset and those reported in [164, 192, 3]. The obtained results show
that the methods proposed by Majid et al. [164] and by Pogorelov et al. [192] have
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Decision system
Heat class No-Heat class

Accuracy
video_1 video_2 video_3 video_4

FQGPCET-KNN [263] 86.75 78.45 95.1 47.62 76.35
VGG16 [227] 78.4 89.5 89.9 94.2 89.31
VGG19 [227] 81.72 83.1 91.51 93.33 88.27

InceptionV1 [233] 91.8 98.38 99.36 86.15 94.41
InceptionV2 [235] 91.55 100 94.39 90.26 94.42

InceptionResNetV2 [234] 80.62 98.45 96.16 92.51 93.58
Our model 97.8 100 100 99.3 99.5

TABLE 3.7: Results in (%) of heat state prediction on the test set composed of 4
videos* as well as the classification accuracy over the corresponding 5600 images.

* duration: video_1 (40s), video_2 (77.75s), video_3 (86s), video_4 (76.16s).

competitive performances. Nevertheless, our model outperforms them notably in term
of accuracy (97.8%).

Method Recall Precision Specificity Accuracy
[164] - 96.5 - 96.5
[192] 87.2 87.2 97.4 95.7
[3] 75.5 75.4 - -

Our model 92.1 92 98.9 97.8

TABLE 3.8: Comparison between the performances in (%) of our
CNN model and those of 3 methods from the state of the art ob-

tained on the Kvasir dataset [193].

3.4.4 Complexity comparative study

We have calculated the complexity of our model and those of the 14 CNN models in-
dicated in Table 3.6. More specifically, following the study conducted by Howard et
al. [111] on the complexity of their MobileNetV3 CNN model, we retained the same
complexity measures they have proposed namely the number of parameters to opti-
mize, the number of MAdds (MultiplyAdds) operations and the latency of the model.
Based on these measures, we have calculated the complexity of our model and com-
pared it with: i) our model variants reported in Tables 3.3 and 3.4 from the ablation
study section, ii) the 14 CNN models from the state of the art indicated in Table 3.6.
We remind that the architectures of the associated 11 CNN models have been adapted
to our problem, hence the calculated complexities are different from the ones reported
in the original articles. The comparison results in term of parameters and operations
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are shown in Figure 3.9(see Figure 3.9a for the model variants and Figure 3.9b for the
14 models) From Figure 3.9a, we may observe that the complexity level of the variants

(a) Our model vs. its variants reported in the ablation study

(b) Our model vs. 14 CNN models from the state of the art

FIGURE 3.9: Parameter complexities (left side) and operation
complexities (right side) in million of our CNN model and those

of 14 CNN models from the state of the art.

of our model notably Inceptions V1-V3 is slightly better than that of the default ver-
sion for both parameters and operations. Nevertheless, it is worth mentioning that this
difference shows a negligible impact on the improvement of the model latency which
is equal to 10.71 milliseconds. Figure 3.9b shows that in term of number of param-
eters to optimize, our model is ranked at the second position after the MobileNetV3
model. At this level, we observe that our model has a better complexity than the VGG,
the Inception and InceptionVGG architectures. In term of number of operations, our
model is ranked at the fifth position after MobileNetV3, InceptionV1, InceptionV2,
and ResNet50 models. Nevertheless, Table 3.9 shows that the latency of our model is
close to the one from InceptionV1 and InceptionV2 which are the only models among
the 4 mentioned previously that exceeded an accuracy of 90% on the test images (see
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Table 3.7). We precise that the latencies have been calculated on NVIDIA Tesla V100
GPU with 32 GB of memory and a batch size equal to 1.

InceptionV1 [233] InceptionV2 [235] Our model
7.69 8.68 10.71

TABLE 3.9: Latency in milliseconds of our model compared with
the top 2 CNN models in term of accuracy from Table 3.7.

3.4.5 Visual analysis of the decision of our model

In order to highlight on an image the regions of interest that drive our model to predict
a specific class, we have exploited the Grad-CAM (Gradient-weighted Class Activa-
tion Mapping) method [218]. To conduct our experiment, we applied the Grad-Cam
on the images of the 4 videos from the test set. Figure 3.10 shows an example of
the generated heat maps for three images extracted from each video. The images are
located at the beginning, middle and end of the videos. We precise that the classes
of the selected images have been correctly predicted by our model. The figure shows

FIGURE 3.10: Examples of original images correctly classified
by our model and their associated class activation maps. From
top to bottom, the images are located on the begin, middle and

end of the videos.

that our model focuses on the borders of the image for detecting the heat class and
approximately in the center for the no-heat class. A possible explanation of this way of
decision is the fact that for “Heat” class, the heat tends to be overspread over the image
surface including borders while for “No-heat” class, the heat is absent in the borders
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and in the center of the image.
Interestingly, Figure 3.11 shows an example of maps generated on misclassified im-
ages by the InceptionVGGNet from video_1 and video_4. One may observe that the
positioning of ROIs on these images by the classifier has been altered which explain
its wrong prediction. This is probably due to a noise, invisible to the human eye, that
affected the characterization of these images by the classifier.

FIGURE 3.11: Examples of original images misclassified by the
InceptionVGGNet classifier and their associated class activation
maps. From top to bottom, the images are located on the begin,

middle and end of each video.

3.4.6 Android deployment and optimization

The overall InceptionVGG8 based decision system has been deployed on an Android
HUAWEI MATE 30 PRO smart-phone with the following characteristics: Kirin 990
Hisilicon 8-core with 8 GB of RAM and a Mali-G76 GPU. A video demonstration
of our smart-phone application is available in the supplementary material. To shorten
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the decision time of our model, we have optimized it using a post-training quantiza-
tion technique [178] and we have exploited the TensorFlow Lite framework7 to support
smart-phone GPU acceleration. Moreover, as our model has shown a high efficiency in
term of image classification, we made the choice to downsample the videos to analyze
by lowering the image rate from 20 FPS to 1 FPS. Table3.10 summarizes the perfor-
mances and the running times obtained by the Android raw version and the optimized
one named QGAVD (Quantization + GPU Acceleration + Video Downsampling) on
the test videos. As shown in the table, the QGAVD version has permitted to drastically
improve the decision time of our system, decreasing from several minutes to just a few
seconds, while keeping a high level of performances.

Android CNN version
Heat class No-Heat class

video_1 video_2 video_3 video_4
HSP RT HSP RT HSP RT HSP RT

Raw 97.8 06:11 100 11:40 100 12:54 99.3 11:25
QGAVD 95.12 00:08 100 00:14 100 00:16 100 00:14

* duration: video_1 (40s), video_2 (77.75s), video_3 (86s), video_4 (76.16s).

TABLE 3.10: Results in (%) of heat state prediction (HSP) and
associated running time (RT) in mm:ss format obtained by the two
versions of our Android CNN model on the test set composed of

4 videos*.

3.4.7 Generalization of model

To test the generalization ability of our model, 55 videos (27 videos labeled as “heat”
and 28 videos labeled as “no-heat”) have been recently recorded on 2020 for cow heat
state prediction. The results show that our model correctly predicted 21videos of 27
videos labeled as “heat”, and our model correctly predicted 13 videos of 28 videos
labeled as “no-heat”, which is insuficant for pratical use. We noticed that the quality of
the 55 recently recorded videos is better than previous ones. Furthermore, the image
rate of cameras used to record the new videos is 100 FPS (frames per second) instead
of 20 FPS.
Therefore, It is necessary to retrain our model with these new data to enchance the ro-
bustness and generalization of our model. To this end, we fristly selected eight videos
from each class of the new data, half of the selected videos are incorrectly predicted
with previous our model. With the original four test videos, we have a total of 10

7https://www.tensorflow.org/

https://www.tensorflow.org/
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videos per class for a final test of the retained model. We then proposed four different
training strategies with different protocols of dataset creation
Training from scratch – Our model is trained from scratch with two different proto-
cols of dataset creation as following:

• SCS – Based on the previous dataset, we supplement 13432 (6716 × 2) new
images into training set and 1496 (748 × 2) images into into validation set from
splitting of new videos with balanced classes. In total, 35192 ((10880+6716 ) ×
2) images have been generated for training set, 5496 ((2000+748) × 2) images
have been generated for validation set.

• SCR – Eliminate 20 pre-selected videos for testing, we reintegrate the remaining
81 videos (42 original videos, 39 new videos; 53 videos labeled as “heat”, 28
videos labeled as “no-heat”) to split into images for dataset generation. In total,
35192 (17596 × 2) images have been generated for training set, 5496 (2748×
2) images have been generated for validation set. It should be pointed out that
the number of images labeled as heat is far larger than the number of images
labeled as no-heat. Therefore, compared with the first strategy, the training and
validation set of “no-heat” have been remained. To keep balanced classes, we
randomly chose the same number of image from the images which are generated
from the 53 videos labeled as “heat” for the training and validation set of “heat”
class.

Transfer learning from previous data – We only use the new images splitted from
the new videos for dataset generation with two transfer learning strategies. In total,
13432 (6716 × 2) images have been generated for training set, 1496 (748 × 2) images
have been generated for validation set. We use two transfer learning strategies as fol-
lowing:

• TLA – We used all the weights from the previous model as initial weights to
form our model, and the weights from all layers are trainable.

• TLC – The fine tuning strategy served to train a new pattern.Specifically, the
weights of the convolutional layers of the previous model are transferred as ini-
tial weights into the new model, and the convolutional layers of the new model
are frozen.We trained two last dense layers from scratch.



3.5. Conclusion 53

Table 3.11 summarized the training strategies. In each strategy, we trained our Incep-
tionVGG8 CNN model over 500 epochs with the best optimizer RMSprop of ablation
study. Table reports the result of our InceptionVGG8 CNN model with these 4 pro-

Strategy Training set Validation set Training configuration
SCS 35192 5496 Scratch
SCR 35192 5496 Scratch

TLA 13432 1496
Transfer learning
No frozen layer

TLC 13432 1496
Transfer learning

Convolutional layer frozen

TABLE 3.11: Summarization of the four training strategies, we
emphasize that the training and validation set of “heat” class of

strategy SCR are different from ones of strategy SCS.

posed training strategies in term of heat state prediction on the test set composed of 20
videos. One can observe that your model reaches the best accuracy of 95 % (19/20)
in term of the number of correct predicted video with the first strategy SCS. Espe-
cially, all the videos incorrectly predicted (⋆) by previous model have been correctly
predicted by retrained model. Moreover, with TLA strategy, even though our model
has been trained on the previous dataset, but after 500 epochs of training on the new
dataset only, it mispredicted the two previously correctly predicted videos (video_11†

and video_12†). For the TLS strategy, thanks to the fact that we froze the convolutional
layer, he did not make similar mistakes. However, compared to the SCS strategy, it is
still slightly inferior. Nevertheless, with all the four strategies, our model has a sig-
nificant improvement in view of the prediction of videos miscorrectly predicted by
previous model (⋆). This means that we need to continuously add new data to upgrade
the model, and to maintain the robustness and generalization ability of the model.

3.5 Conclusion

A deep learning based system has been proposed to address the heat detection prob-
lem within cattle. The system allows to analyze a vaginal endoscope video of a cow
at the level of frames and predicts its heat state in a few seconds. To train the sys-
tem, a dataset of endoscopic images has been generated and labeled by experts. To
limit the overfitting of the trained system, the dataset has been artificially augmented
by exploiting texture label preserving transformations. The conducted experiments on
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Videos SCS SCR TLA TLC
1† 95.4 97.5 100 97.2
2† 100 99.7 93.8 100
3⋆ 99.5 99.5 100 99.5
4⋆ 87.4 95.3 99.9 97
5⋆ 98.9 100 100 100
6 97.5 99 99.7 98.9
7 87 99.7 100 98.3
8 71.2 59.4 73.1 71.6
9⋆ 61 25.7 65.4 39.9

Heat
class

10 0.06 1.24 2.7 3.4
11† 100 81.5 0 86.1
12† 100 99.5 0 99.3
13 93.2 96 93.8 97
14 100 94 79.3 96.9

15 ⋆ 84.3 69 68.7 96.2
16 100 100 99.7 100
17 100 99.4 99.4 99.2

18 ⋆ 91.4 98.1 99.7 98.1
19⋆ 86.5 89.7 83.1 83.3

No-heat
class

20 ⋆ 96.7 97 97.7 99.6
† The videos from previous dataset, corresponding to
the video_1 to video_4 of Table 3.7.

⋆ The videos incorrectly predicted by previous model.

TABLE 3.12: Results in (%) of heat state pre-
diction on the test set composed of 20 videos

our dataset and a public dataset show the high performance of the system. Indeed, the
trained image classifier exceeded the 97% of accuracy for both datasets. In addition,
the feasibility of the system for real usage on Android smart-phone has been demon-
strated. A video clip is provided in the supplementary material.
In the short term, the system will be deployed in several farms in the north region of
France in coordination with Gènes Diffusion, CECNA and Elexinn companies. In the
next future, new research opportunities will be investigated related to the development
of systems for assistance to cow pathology diagnosis.
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Chapter 4

Cow cervix detection

4.1 Introduction

In cow farming, artificial insemination is a reproduction biotechnology which is widely
spread [25]. Nevertheless, to successfully accomplish cow insemination, its heat pe-
riod needs to be correctly detected, a stage that the farmer can possibly observe through
certain behaviors of the cow [73], without complete certainty [267]. The expert or the
veterinarian then intervenes to confirm the state of heat and locate the cervix to intro-
duce the spermatozoa. On that point, farmers face two challenges, the availability of
experts at the right time (cow heat) and the cost associated with their interventions,
particularly if the state of heat is already over [171].
In this context, we presented a new deep learning vision-based approach for cow heat
detection by using an innovative insemination technology namely Eye Breed [55] in
the previous chapter. The principle of this insemination technique is shown in Figure
4.1, the device enters the vagina to find the cervix and immobilizes it through aspira-
tion, then a catheter is passed through the cervix to deposit the semen in the uterus.
In this way, insemination can get rid of the need for rectal palpation to improve the
welfare status of the cow. However, cervix localization is not a simple task, especially
when some secretions are present. It requires mastering the insemination procedure.
Therefore, in addition to heat detection, precise cervix localization is the other main
condition for successful insemination. To this end, we propose a new approach for
cow heat detection, which allows to localize the cervix. As illustrated in Figure 4.2,
our approach permits identifying on the fly the cow’s heat state through two main
stages namely cervix detection and then heat classification. For this purpose, each
frame of the input video stream, collected by the endoscopic camera of the Eye breed
device, is analyzed by a Transformer based detection model to localize the cervix, in
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which case the frame is analyzed by the CNN based heat classification model. The
final result of the frame analysis (cervix box + heat state) is displayed on the screen.
Our proposed approach permits to significantly improve the two functionalities of our

(a) Device into the vagina (b) Immobilization of cervix by aspiration

(c) Deposit the semen in the uterine body

FIGURE 4.1: Illustration of insemination process by Eye Breed
[55]

previous system:

• It further facilitates the insemination operation performed by the farmer thanks
to the integration of the cervix detection model. Indeed, the model is able to
detect and localize on the fly and in an accurate way the cow cervix offering thus
to the farmer an assistance in the device guidance inside the cow genital tract.

• It increases the performance of our original heat state classification model by
excluding from its analysis noisy video frames. To this end, the model only
proceeds to the analysis of frames that are identified by the cervix detection
model as positive.

Additionally, we show through the experimental study conducted on our dataset that
the proposed Transformer architecture for object detection outperforms the state-of-
the-art ones [123, 37, 29, 198, 197, 277].
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4.2 State of the art

In this chapter, cervix detection is an object detection problem, which is another es-
sential research topic in computer vision covered by extensive literature. The task of
object detection is to find objects of interest in an image or video and simultaneously
detect their location and size. Different from the image classification task, object de-
tection not only needs to solve the classification problem but also solve the positioning
problem, which is a multi-task problem.

FIGURE 4.2: Flowchart of our cow heat analysis method

4.2.1 Public dataset and benchmarks

In object detection of computer vision, PASCAL VOC (Visual Object Classes) [64,
65], Microsoft COCO (Common Objects in Context) [152] are the two most popular
public datasets for object detection.
PASCAL VOC (Visual Object Classes) [64, 65] is a an challenges dataset, which
is one of the benchmarks of object detection technology. the competitions are held
from 2005 to 2012. Between 2005 and 2012, the Computer Vision Challenge was held
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every year. VOC dataset has two version VOC2007 [64] and VOC2012 [65], the latest
version VOC2012 [64] contains 11,530 images with 27,450 ROI-annotated objects in
20 classes,including:

• Person: person

• Animal: bird, cat, cow, dog, horse,sheep

• Vehicle: aeroplane, bicycle, boat,bus, car, motorbike, train

• Indoor: bottle, chair, dining table,potted plant, sofa, tv/monitor

For evaluation of object Detection results on the VOC dataset, the IoU (Intersection
over Union) between the prediction and ground-truth is calculated as:

IoU = IoU =
area of overlap
area of union

= (4.1)

A positive prediction is defined as a box detected with an IoU≥ 0.5 compared to the
ground-truth box. In the case of multiple detections of the same object, it counts the
one with the first ranking confidence score as a positive while the rest as negatives.
For the VOC2007 challenge, the 11-points interpolated average precision (AP)[212]
was calculated to evaluate both classification and detection. The interpolated AP sum-
marises the shape of the precision/recall curve, which is defined as the mean precision
at a set of eleven equally spaced recall levels [0, 0.1,..., 1]:

AP =− 1
11 ∑

r=[0,0.1,......,1]
pinterp(r) (4.2)

The precision at each recall level r is interpolated by taking the maximum measured
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precision for a method with the corresponding recall in excess of r:

pinterp(r) = max
r̃:r̃≥r

pinterp(r̃) (4.3)

Where pinterp(r̃) is the measured precision at recall r̃. For later Pascal VOC com-
petitions (VOC2010–2012), it calculated the area enclosed by the smoothed preci-
sion/recall curve and the recall axis. Moreover, for the 20 different classes of PASCAL
VOC, it computed an AP for each class and provided the average of these 20 AP results
called mAP (mean average precision).
Microsoft COCO (Common Objects in Context) [152] is a large-scale object de-
tection, segmentation, and captioning dataset created by Microsoft Corporation. Mi-
crosoft COCO is another benchmark of object detection technology for object detec-
tion tasks, having 121,408 images with 883,331 ROI-annotated objects in 80 classes.
The latest research papers tend to give results on the COCO dataset rather than PAS-
CAL VOC due to the larger amount of data and the higher challenge.
For the evaluation, a 101-point interpolated AP definition is used in the calculation.
Moreover, instead of using a fixed IoU threshold, MS COCO introduces multi-metrics
(summarized in Table 4.1) to characterize more completely the performance of an ob-
ject detector
In addition to the large public image datasets for object detection, there are also several

mAP@[.5,0.95] mAP averaged over ten IOUs: {0.5:0.05:0.95};
mAP@.5 mAP at IoU=.50 (PASCAL VOC metric)
mAP@.75 mAP at IoU=.75 (strict metric)
mAPS mAP for small objects: area <322
mAPM mAP for medium objects: 322 <area <962
mAPL mAP for large objects: area >962

TABLE 4.1: Summary of commonly used object detectors evalu-
ation metrics

datasets for specific issues, such as pedestrian detection (EuroCity [32]), face detec-
tion (WildestFaces [134], WiderFace [266], Fddb [118]), vehicle detection (Comp-
Cars[265], Stanford Cars Dataset [135]), and endoscopy artefact detection (EAD [7]).
Amongst them, EAD is one of the few publicly available endoscopic image data sets
for object detection, aiming to identify hindrances like saturations, motion blur, specu-
lar reflections, bubbles, imaging artefacts, contrast and instrument using revolutionary
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techniques in artificial intelligence as shown in Figure 4.3. The training dataset for
detection consists in total 2147 annotated frames of endoscopic video overall 7 artifact
classes.

FIGURE 4.3: Example annotated training detection boxes illus-
trating the 7 different artifact classes in the EAD2019 challenge

dataset. (Image from Sharib.A et al [7])

4.2.2 Deep learning-based object detection

Prior to the development of deep learning, the use of image feature descriptors to ex-
tract image features is the core strategy of most early object detection algorithms called
handcrafted features-based algorithms. Viola-Jones Detector [246], histogram of ori-
ented gradients (HOG) [50] and deformable part model (DPM)[66] are the three most
representative handcrafted features based object detection algorithms. In particular,
DPM Detector has won the championship of the VOC 2007-2009 Object Detection
Challenge. However, the handcrafted features-based algorithms are slow to progress
and have low performance. Compared with traditional methods, thanks to the advent
of convolutional neural networks, the accuracy of deep learning-based object detection
is getting higher and higher, and the detection speed is getting faster and faster. As
raised in the survey made by Liu et al. [154], object detection is mainly divided into
two-stage region-based frameworks and unified region-based frameworks.
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4.2.2.1 Two stage region-based frameworks

The two-stage detection algorithms are mainly divided into the following two stages:
1) Generate region proposals from images; 2) Generate final object bounding box from
region proposals.
R-CNN (Region-CNN) [76] is the first model to successfully apply deep learning to
object detection. As shown in Figure 4.4, it first extracts 2000 region proposals from

FIGURE 4.4: Region-CNN object detection system overview
(Image from Ross Girshick et al [76])

the image by using the selective search algorithm. The generated region proposals are
then resized to a fixed size image, and fed into a CNN model trained on the ImageNet
to extract features. Finally, the extracted features are sent to the SVM classifier to
confirm whether an object exists in the region proposals, and further predict which
class the detected object belongs. Compared with traditional detection algorithms, the
RCNN algorithm achieved significant results on the VOC2007 dataset, showing a qual-
itative leap in accuracy (rising average precision from 33.7% (DPM-V5) to 58.5%).
However, it needs to generate 2000 feature maps corresponding to 2000 region pro-
posals for an image, which requires a huge count of calculations, leading to a lower
detection speed (40-50s per frame). To reduce the redundant computation caused by
a large number of overlapping boxes, K. He et al. [99] proposed a network using
SPP (Spatial Pyramid Pooling) layer namely SPPNet. As shown in Figure 4.5, the
main idea of the SPP layer is to generate fixed-length outputs, which is the fusion of
multi-scale division of the input feature maps (divided into 1, 4, and 16 parts). The
fixed-length outputs are then fed into the fully-connected layers (or other classifiers).
In this way, an image only needs to be calculated once to generate the corresponding
feature map, which prevents the convolution feature map from being counted repeat-
edly. Furthermore, since the outputs of the SPP layer are fixed length, SPPNet removes
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FIGURE 4.5: Illustration of SPP (Spatial Pyramid Pooling) layer.
(Image from K. He et al. [99])

the fixed network size constraint. Compared with the RCNN algorithm, SPPNet accel-
erates the detection speed by more than 20 times without sacrificing detection accuracy
(VOC2007, mAP@.5=59.2%).
Fast R-CNN [75] solved some of the drawbacks of R-CNN. As can be seen from Fig-
ure 4.6, instead of feeding the region proposals to the CNN, the input image is fed into
the CNN to generate a convolutional feature map. The feature maps of each region
proposal can be identified from the convolutional feature map of the input image. The
feature maps of each region proposal are then warped into squares by using a RoI pool-
ing layer to be fed into a fully connected layer. Finally, two softmax layers are used
to predict the class of the proposed region and the offset values for the bounding box
from the RoI feature vector obtained by a RoI pooling layer, respectively. Fast R-CNN
improved the detection accuracy (mAP@.5) to 70.0% on the VOC2007 dataset, and
the speed of detection is reduced to 2 seconds per image. However, the generation of
region proposals also depends on the selective search algorithm.
To this end, Faster R-CNN [200] is the first end-to-end object detection model. The
basic difference between Faster R-CNN and the previous models is the use of a CNN
network namely RPN (Region Proposal Network) to generate the region proposals in
Faster R-CNN. As illustrated in Figure 4.7, the input image is fed into a convolutional
network to generate a feature map of the image. The generated feature map is fed into
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FIGURE 4.6: Fast R-CNN architecture. (Image from Ross Gir-
shick et al [75])

RPN to generate the region proposals. These region proposals and feature maps are
then fed into the ROI pooling layer for further procedure, which is similar to Fast R-
CNN. Faster R-CNN improved furtherly the detection accuracy (mAP) to 73.2% on the
VOC2007 dataset and 42.7%(mAP@.5) on the COCO dataset, and the speed of detec-
tion is reduced to 0.2 seconds per image. Faster R-CNN has higher accuracy, and faster
speed, and is very close to meet the need for real-time detection. Therefore, several
works are proposed for the improvement of Faster R-CNN. Lin et al [151] proposed a
top-down network architecture namely FPN (Feature Pyramid Networks) with lateral
connections for constructing high-level semantic information at all high-level layers
with different scales. The use of FPN technology in the Faster R-CNN network per-
mit to greatly improve the detection accuracy of the network (mAP@.5=59.1% on the
COCO dataset). Moreover, Cai et al [36] proposed a cascade network namely Cascade
R-CNN, the main idea of this proposition is the use of cascading several detection net-
works based on different IOU thresholds to address the difficulty of the training IOU
setting. Cascade R-CNN improved the detection accuracy (mAP@.5) to 62.1% on the
COCO dataset.

4.2.2.2 Unified region-based frameworks

As presented in 4.2.2.1, several two-stage-based algorithms have shown impressive
performance. Nevertheless, the detection speed is also insufficient for real-time detec-
tion. In contrast, the unified region (one-stage) based detection algorithm can directly
generate the class probability and position coordinate value of the object without the
region proposal generation stage. It makes this type of algorithm have a faster detec-
tion speed.
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FIGURE 4.7: Faster R-CNN architecture. (Image from Ren et al
[200])

YOLO [199] is the first CNN-based one-stage detector and its detection speed is very
fast. The idea of this algorithm is to divide the image into multiple grids, and then
predict the bounding box for each grid at the same time and give the corresponding
probability. Finally, NMS (Non-Max Suppression) is used to remove the overlapping
bounding box of the same object. It should be noted that only a single CNN net-
work (VGG16) has been used in all detection processes, enabling YOLO to reach a
detection speed of 21 FPS. Compared with the two-stage target detection algorithm,
although the detection speed of YOLO has been greatly improved, the accuracy is rel-
atively low (mAP@.5 =66.4% on the VOC2007 dataset), especially for some small
objects detection problems.
YOLOv2 [197] made many improvements in accuracy, speed, and the number of clas-
sifications. DarkNet19 is proposed as the CNN backbone for feature extraction, which
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is faster than the VGG16 used by YOLO. FC (Fully Connected) layers can cause es-
cape information loss, leading to imprecise localization. Therefore, the FC layers are
removed in YOLOv2. Moreover, the use of anchor boxes generated by k-means also
accelerates the model training. YOLOv2 uses the joint training skills of target clas-
sification and detection, combined with methods such as Word Tree, to expand the
detection types of YOLOv2 to thousands. YOLO v2 has achieved mAP@.5 of 76.8%
on the VOC2007 and mAP@.5 of 44% on the COCO dataset. The detection speed of
YOLOv2 has reached 67 FPS.
Since the FPN technology in Faster R-CNN made a great improvement in detection
precision, FPN has become one of the most important techniques for improving the
precision of major networks. To address the difficulty of multiscale object detection,
YOLOv3 [198] proposed a novel CNN backbone namely DarkNet53 (see in Figure
4.8), which borrows the idea of FPN and adopts three branches (feature maps of three
different scales/different receptive fields) to detect objects of different sizes. YOLO
v2 has achieved mAP@.5 of 57.9% on the COCO dataset. However, the detection
speed of YOLOv3 has droped to 20 FPS. Recently, YOLOv4 [6] and YOLOv5 [123]

FIGURE 4.8: YOLOv3 architecture. (Image from Mao et al
[166])

have used a variety of SOTA (State-of-the-art) tricks in the area of deep learning in
recent years, which significantly improved the detection performance of YOLO on ob-
jects. They achieved mAP@.5 of 65.7% and 72.7% on the COCO dataset, respectively.
Moreover, the detection speed of YOLOv5 can astonishingly reach 140 FPS.
In addition to the YOLO series, DETR (Detection Transformer) [37] proposed a new
idea for object detection, it applies transformers which have taken impressive progress
in natural language processing (NLP) tasks to the field of object detection, replacing
the manual design work of current models (such as non-maximum suppression and
anchor generation). DETR regards object detection as a set prediction problem and
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proposes a very concise object detection pipeline. As shown in Figure 4.9, a CNN
backbone is used to extract basic features, the extracted features are fed into the trans-
former module for relationship modeling, and the obtained output is matched with
ground truth by the bipartite graph matching algorithm. DETR achieved mAP@.5 of
64.7% on the COCO validation dataset and a detection speed of 10 FPS.
However, the training speed of DETR [37] is not comparative. It has a long training

FIGURE 4.9: DETR architecture. (Image from Carion.N et al
[37])

period that is 10-20 times slower than faster-RCNN. On the other hand, DETR [37]
has difficulty with small object detection. To this end, Zhu et al [277] improved the
DETR model by using scale-level embedding, multi-scales deformable Attention Mod-
ule. The improvement version of DETR is called Deformable-DETR, with a mAP@.5
of 65.2% on the COCO validation dataset and a detection speed of 19 FPS.
Nevertheless, in reason of the requirements of the existing datasets (VOC and COCO),
these architectures are designed and trained in such a way to detect at least one target
object in the image. Hence, their direct exploitation for cervix detection from endo-
scopic videos will lead to a high rate of false positives detection which is a major
issue in our case. Indeed, detecting a false cervix will increase the number of noisy
frames to be analyzed by the classifier and will mislead the farmer in the insemination
operation. To address this issue, our detection module has been designed to perform
exclusively the detection task and has been trained on a balanced image dataset that
includes positive and negative cervix examples.

4.3 Methodology

Our proposed methodology for cow heat analysis exploits two CNN architectures
namely Transformer-Darknet19 and InceptionVGG8 for cervix detection (stage 1) and



4.3. Methodology 67

heat classification (stage 2) respectively. In this section, we present the first architec-
ture (Transformer-Darknet) which is a variant of the original DETR architecture [37].
Figure 4.10 illustrates the design of our Transformer-Darknet19. More specifically,

FIGURE 4.10: Overview of our Transformer-Darknet19 architec-
ture for cervix detection.

image features are extracted using a CNN backbone corresponding to the Darknet19
[197] architecture. The features are then flattened and given to the encoder of the trans-
former in the form of a data sequence which is the expected form by transformers. To
avoid losing spatial positioning information of the image pixels, positional encoding
of the flattened features are joined to the input data sequence of the encoder. The en-
coder proceeds then to learn, through a self-attention mechanism [267], how to focus
on relevant object patterns from the input sequence. The encoder output is then ex-
ploited by the decoder to learn, through a self-attention mechanism, how it can affect
the prediction of the two positional embeddings that represent the existence and ab-
sence of a cervix object respectively. Finally, the decoded output is passed to an FFN
(Feed Forward network corresponding to a 3-layer perceptron of size 2048 each) for
box prediction.
It is worth mentioning that to adapt the original DETR architecture [37] to our problem.
In addition to using Darknet19 as the CNN backbone, we have: 1) used the Darknet
CNN backbone for image features extraction instead of ResNet, 2) limited the number
of encoders and decoders to one instance instead of six, 3) limited the number of posi-
tional embeddings, for encoding the cervix existence and absence to 2 instead of 100.
4) modified the loss function by replacing the L1 loss component by the smoothL1 loss
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in order to faster the convergence of the learning [75].

4.3.1 CNN backbone

We use Darknet19 [197] (see in Figure 4.11) as our network backbone, which is the
features extractor of YOLOv2 [197], including 19 convolutional layers and 5 max-
pooling layers. The design principles of the Darknet-19 and VGG16 [227] models
are consistent, mainly using 3×3 convolutional layers, and a 1×1 convolutional layer
between 3×3 convolutions to compress feature map channels to reduce model compu-
tation and parameters. The 2×2 max-pooling layer is then used to reduce the dimension
of the feature map by a factor of 2. The FC (fully connected) layer is removed from

FIGURE 4.11: Darknet19 architecture

DarkNet19, which greatly reduces the parameters of the network and accelerates the
speed of detection. Furthermore, a BN (Batch Normalization) layer is used after each
convolutional layer instead of dropout, which aims to the convergence speed of the
model is improved, and it can play a regularization effect and reduce the overfitting of
the model. The choice of Darknet19 backbone is explained by the fact that, contrary
to ResNet which is used in the original DETR [37] model, it has a reasonable depth
that helps to limit the overfitting during the training process of the whole architecture.
The backbone has been pre-trained on the ImageNet dataset by adding a global av-
erage pooling layer and a classifier Softmax with the input image of 448 × 448. To
extract image features, we considered the output of the 18th convolutional layer (1024
feature maps). Therefore, beginning with the input color image I ∈RH0×W0×3, a lower-
resolution activation map (feature map) f ∈ RH×W×C (H =H0

32 , W = W0
32 , C = 1024) is

generated by our CNN backbone (Darknet19).
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4.3.2 Transformer module

Since our model is a variant model of the DETR [37] model, we remain the general
form of the Transformer module, which consists of the encoder module and decoder
module. The difference with the transformer of DETR is that we proposed the use of
a lighter transformer module, considering the feasibility of the deployment in mobile.
We remind the general form of the Transformer module in this section.
Multi-head attention layers – In a Transformer based model, the multi-head attention
layer is the most important component that is used in both the encoder and the decoder
of the Transformer module. Multi-head Attention is a module for attention mecha-
nisms that runs through an attention mechanism several times in parallel. Algorithm 2
summarizes the different steps of the multi-head attention layer. Let us denote by {Q

Algorithm 2 Multi-head Attention Layer

Input: Q ∈ RL×E , K ∈ RS×E , V ∈ RS×E , N (Number of heads)
Output: attn_out put ∈ RL×E , attn_out put_weights ∈ RL×S

1: Initialization : WQ ∈ RE×E ,WK ∈ RE×E ,WV ∈ RE×E ← (Weight Matrix)
2: q = LINEAR(Q,WQ), k = LINEAR(K,WK), v = LINEAR(V,WV )
3: qi = SPLIT(q,N)
4: ki = SPLIT(k,N)
5: vi = SPLIT(v,N)
6: head_dim = E

N
7: for each qi,ki,vi in q,k,v do
8: attn_weightsi == SOFTMAX( qi ⊗ ki√

head_dim
)

9: attni = attn_weightsi ⊗ vi
10: end for
11: attn_out put = CONCAT(attni)

N
i=1

12: attn_out put_weights = SUM(attn_weightsi)
N
i=1

N

∈ RL×E , K ∈ RS×E , V ∈ RS×E} the input set of a multi-head attention layer, and the
multi-head attention has N heads. Where L is the target sequence length, S is the source
sequence length, and E is the embedding dimension and also the total dimension of the
model. In the first step, we initial three weight matrices WQ, WK , WV of shape(E, E),
which allows to get the three parameters of attention mechanism (q (query), k (key), v
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(value)) in the second step :

q = Q×WQ (4.4)

k = K×WK (4.5)

v =V ×WV (4.6)

Where q ∈ RL×E , k ∈ RS×E , v ∈ RS×E . In the third step, according to the number of
heads of multi-attention (N), we reshape the q, k, v into N parts: {qi ∈RL×N×head_dim}N

i=0,
{ki ∈ RS×N×head_dim}N

i=0, {vi ∈ RS×N×head_dim}N
i=0, where head_dim is the dimention

of each head (head_dim = E
N ).

The attention weights of each headi (attn_weightsi) is defined as:

attn_weightsi (q,k) = so f tmax(
qi ⊗ kT

i√
head_dim

) (4.7)

Where ⊗ is the multiply operation between the multi-dimensional tensors. Afterward,
the output of each headi (attni) can be calculated as:

attni = attn_weightsi⊗ vi (4.8)

Finally, the output of the multi-attention layer (attn_out put) is the concatenation of
attni of each headi and the weights of multi-attention layer output(attn_out put_weights)
is the mean of the attn_weightsi of each headi:

attn_out put =Concat(attn1,attn2, ...........attni)
N
i=1 (4.9)

attn_out put_weights =
1
N

N

∑
i=1

attn_weightsi (4.10)

Positional encoding – Two kinds of positional encoding are used in the Transformer
module:

• Spatial positional encodings (SPE): For the object detection problem, the posi-
tion of each pixel is very important. However, the structure of the transformer is
permutation-invariant. In other words, it is not sensitive to the position. More-
over, collapsing the input image feature map cause the 2D spatial structure dis-
appears. Therefore, spatial position encoding is also required to represent the
original complete 2D information.



4.3. Methodology 71

• Object queries (OQ): The anchor box is used to constrain the predicted object
range and add size priors to achieve the purpose of multi-scale learning. How-
ever, the anchor box is manually designed in the previous object detection, which
may lead to redundancy of bounding boxes, requiring NMS to remove duplicate
bounding boxes. To this end, the object queries are a learned anchor in the form
of embedding, the purpose is to make the network learn the anchor by itself
according to the dataset.

LN (Layer Normalization) – Normalization can ensure that the input of each layer
of the network maintains the same distribution. The LN (Layer Normalization) [15] is
used in the transfomer module. For a given input sequence X = {x1,x2, .....,xn}, each
sample xi has m elements. We calculate the mean E|xi| and variance Var|xi| of each
sample, and the LN (Layer Normalization) can be calculated as:

LNγ,β (xi) =
x−E|xi|√
Var|xi|+ ε

× γ +β (4.11)

Where: γ and β are learnable parameters.

E|xi|=
1
m

j=1

∑
m

xi, j (4.12)

Var|xi|=
1
m

j=1

∑
m
(xi, j−E|xi|) (4.13)

(4.14)

Transformer Encoder – To be fed into the encoder, the feature map f generated by
CNN backbone is reduced by a convolutions with dimension of 1×1 f from C = 1024
to a smaller dimension of E = 256 to create a new map f ′ ∈ RH×W×E . The gen-
erated low-level activation map is then collapsed into an one-dimensional sequence
X = f latten( f ′) (X ∈ RHW×E , E=256). As shown in the left of the Figure 4.12, the
encoder consists mainly of an eight-heads attention module and a feed-forward net-
work (FFN). The residual structure is used in both of them and a Layer Normalization
is used after each residual structure. We first duplicate the input sequence X to three
sequences {Q,K,V } (Q = K = V = X), SPE is added in Q and K (Q = Q+ SPE,
K = K +SPE) to supplement the spatial information. The sequences Q,K,V are then
fed into the eight-head attention module to generate attn_out put of shape (HW, 256),
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FIGURE 4.12: Architecture of transformer (Image from Carion.N
et al [37]

and an associated matrix of weight attn_out put_weightsenc of shape (HW, HW), which
can be used for self-attention visualization. Afterward, the original mapping is recast
into X + dropout(attn_out putenc) by a skip connection as the input to be sent to the
feed-forward network (FFN) to generate the output of encoder out putenc of shape (HW,
256).
Transformer Decoder – The decoder consists mainly of two eight-head attention
modules and a feed-forward network (FFN) (see in the right of the Figure 4.12). Sim-
ilar to the encoder, each multi-head attention module and feed-forward network use
the residual structure and the Layer Normalization. We first create n (n = 2) input
embeddings of dimension E = 256 which refer to the object queries (OQ) as a ma-
trix of shape (2,256). As in the encoder, we then duplicate the input embeddings
OQ to three sequences {Q,K,V } (Q = K = V = OQ). OQ is added in Q and K
(Q = Q+OQ, K = K +OQ) as the learnt positional encodings to feed into the first
eight-head attention module. We obtain the outputs of the first eight-head attention
module (attn_out putdec

1 ∈ R2×256). For the second eight-head attention module, V is
the output of the encoder, K is the addition of the output of the encoder and SPE, Q
is the addition of the outputs of the first eight-head attention (attn_out putdec

1 ), and the
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learnt positional encodings (OQ). Afterward, the output of the second eight-head at-
tention module (attn_out putdec

2 ∈ R2×HW ) is sent to the feed-forward network (FFN)
to generate the output of encoder out putdec of shape (2, 256). The associated weight
matrix (attn_out put_weightsdec

2 ∈R2×HW ) can be used for self-attention visualization
of each object query.
Prediction FFN (Feed-forward network) – FFNs are used multiple times in the trans-
former module, the FFN used in the encoder and the decoder consists of two linear
transformations with a ReLU activation in between.

FFN(x) = max(0,W1 +b1)W2×b2 (4.15)

In addition, the FFN for final prediction is a 3-layer perceptron with ReLU activation
function and the hidden dimension of 2048, which is different from the FFNs in en-
coder and decoder. This FFN predicts the bounding box of the object (normalized
center coordinates, height, and width of the box), and object class is predicted by the
linear layer with a softmax function. For each input image, a fixed-size set of n bound-
ing boxes are predicted, which refers to the number of object queries. In our case, one
image contains at most the cervix. Therefore, for the purpose of avoiding false-positive
boxes, we reduce the number of object queries from 100 (set in [37]) to 2.

4.3.3 Loss function

In our case, an image has at most one cervix as the target object, and our model gen-
erates a fixed-size set of n predictions (n ≡2, the number of object queries). For the
prediction of an image, we denote by x = {x1,∅} (padded with∅ for class balance)
the ground-truth set of object, and x̂ = {x̂1, x̂2} the set of 2 predictions. We find the
bipartite matching between the two sets by searching for a permutation of 2 elements
with the lowest cost:

σ̂ = argmin
2

∑
i
Lmatch(xi, x̂σ(i)) (4.16)

Where Lmatch(xi, x̂σ(i)) is the matching cost between ground truth xi and optimal match-
ing prediction x̂σ(i). The matching cost considers two parts of cost: class prediction
and the similarity of the predicted box and the box of ground truth. Each element of
both prediction set and ground truth set consists of the target class label (cervix or ∅) ci
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and a vector bi ∈ [0,1]4 represents the center coordinates and the height and width rel-
ative to the image size of the object bounding box . We can define the Lmatch(xi, x̂σ(i))

as:

Lmatch(xi, x̂σ(i)) =−1{ ci ̸=∅} p̂σ(i)(ci)+1{ ci ̸=∅}Lbbox(bi, b̂σ(i)) (4.17)

Where p̂σ(i)(ci) is the class propablity of the prediction at index σ(i). For the bound-
ing box loss, we take into account both IoU loss [201] LIoU and smoothL1 loss [75]
LsmoothL1 insteading of L1 loss:

Lbbox(bi, b̂σ(i)) = λIoULIoU(bi, b̂σ(i))+λsmoothL1LsmoothL1(bi, b̂σ(i)) (4.18)

Where λIoU ,λsmoothL1 ∈ R are hyperparameters. The choice of LsmoothL1 is explained
by the experiment of 4.4.2, and it is defined as following:

LsmoothL1(bi, b̂σ(i)) =

0.5(||bi, b̂σ(i)||1)2, if |||bi, b̂σ(i)||1|< 1

|||bi, b̂σ(i)||1|−0.5, otherwise
(4.19)

4.4 Experimental study

4.4.1 Data preparation

Our dataset consists of 12732 labeled endoscopic images which have been extracted
from 79 recorded videos of simulated insemination operations on several cows using
the Eye breed device. The device has been used to record videos of simulated insemi-
nation using the default parameters of the camera notably an image rate from 20 FPS to
102 FPS and an image resolution of 640×480. The labeling of each image corresponds
to i) its heat class (heat or no-heat) which is the video class assigned by the expert and
ii) the associated cervix bounding box which is set up to null if there is no cervix. The
set of images has been split into a training set of 10734 images and a validation set
of 1998 images. Both two sets are balanced in terms of positive and negative cervix
boxes. The pre-processing chain that allowed to generate the image sets is described
in what follow.
Video split and data partitioning –To avoid the images for training and validation
coming from the same video, the dataset split has been done in such a way that the
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frames of a given video are completely included either in the training set or in the val-
idation set. We have randomly split a set of videos into 69 videos for training and 10
for validation. All the video frames have been extracted using an FPS rate set to 5. To
evaluate the generalization level of our models, we exploited the 10 validation videos
to extract a larger set of labeled images namely 32552 and considered it as a test set.
For this purpose, the video frames have been extracted using the default FPS rate of
the concerned videos which is ranged between 20 and 102. Indeed, this parameter can
be finetuned by the operator during the recording.
Image labellization – According to the heat status of the video represented cow, all

FIGURE 4.13: Cervix localization mark

the videos have been labeled in two classes (i.e heat or no-heat) by CECNA experts.
Moreover, for each cervix positive image, its cervix bounding box is labeled by the
labeling tool called labellmg [242] which allows to manually label each image (see
in Figure 4.13) and get a corresponding XML tag file is formed, which contains the
four coordinates (xmin, ymin, xmax, ymax) of the target object in the image and the given
category (PASCAL VOC format).
Coordinate transformation – To meet the various requirement of input image reso-
lution and the format of bounding box coordinates, we transformed the bounding box
coordinates. For a given bounding box bbox(xmin, ymin, xmax, ymax) of an image with
resolution of h0×w0 , the model requires the image resolution of h×w. In addition to
resize of image, the bounding box coordinates should be transformed as bboxt(xt

min,
yt

min, xt
max, yt

max) :

• xt
min = xmin× w

w0
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• yt
min = ymin× h

h0

• xt
max = xmax× w

w0

• yt
max = ymax× h

h0

Moreover, some models require the bounding box coordinates with format (x,y,w1,h1),
which represents the center coordinates and the height and width relative to the im-
age size of the object bounding box. Therefore, we need to transfer bounding box
bbox(xt

min, yt
min, xt

max, yt
max) to format (x,y,w1,h1):

• x = xt
min+xt

max
2 × 1

w

• y = yt
min+yt

max
2 × 1

h

• w1 =
xt

max−xt
min

w

• h1 =
yt

max−yt
min

h

4.4.2 Ablation study

In order to validate the effectiveness of our Transformer-Darknet19 model design, we
have conducted an ablation study. In our ablation analysis, we explore how the other
protocol of dataset generation, configurations of the CNN backbone and the trans-
former module, and loss influence the final performance. To this end, we trained our
architecture over 500 epochs on the 10734 training image set for each case of the abla-
tion study. Moreover, we use a multiscale training strategy instead of using a fixed-size
input image. For every 10 batches, our network randomly chooses a new image dimen-
sion size from a set of scales: [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800].
Thus the smallest option is 480 × 480 and the largest is 800 × 800. To measure this
influence, we consider the ability of the models to distinguish between positive and
negative cervix frames we calculated their accuracy (ACC) on the 32552 images of the
test set as:

ACC =
T P+T N

T P+T N +FN +FP
(4.20)

Where the TPs, FPs, TN, and FNs are identified with respect to the ground truth boxes
based on the presence of cervix. They correspond for a given frame to what follows:
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• TP: The number of positive cervix image samples with at least one cervix box
detected by the detector.

• FP: The number of negative cervix image samples with at least one cervix box
detected by the detector.

• TN: The number of negative cervix image samples without cervix box detected
by the detector.

• FN: The number of positive cervix image samples without cervix box detected
by the detector. We precise that the experiments have been calculated on NVIDIA
Tesla V100 GPU with 32 GB of memory, and the resolution of the image used
for performance evaluation is 800 × 800.

Protocol of dataset generation – The detection task of the public large dataset as
COCO, VOC is to detect at least one target object in the image. In our case, the
ability of the models to distinguish between positive and negative cervix frames is an
important indicator for model performance evaluation. To this end, the half samples
of our dataset are negative cervix frames. To evaluate the effectiveness of this dataset
generation protocol, we have trained our model following 2 training set generation
protocols:

• CP for the dataset without negative cervix images and using only the positive
5367 images.

• CNP for the dataset with both positive and negative cervix images with a total of
10734 (5367×2) images.

Protocols CP CNP
Accuracy(%) 63.7 87.1

TABLE 4.2: Cervix detection accuracies in (%) of our model on
the test set (32552 images) following training set generation pro-

tocols

Table 4.2 summarized the obtained accuracies on the test set according to the 2 dataset
generation protocols. The results show that removing the negative samples from our
dataset caused a drop in its performance with notably an accuracy loss of 23.4%.
Importance of CNN backbone pre-training – To evaluate the importance of CNN
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backbone pre-training, we consider we have trained it following 3 scenarios of CNN
backbone pre-training:

• SCR for the training without CNN backbone pre-training.

• PR224 for the training with CNN backbone pre-training on ImageNet dataset
with the input image size of 224 × 224.

• OR for the training with CNN backbone pre-training on ImageNet dataset with
the input image size of 448 × 448, as described in 4.3.1.

Scenarios SCR PR224 OR
Accuracy(%) 80.6 85.2 87.1

TABLE 4.3: Cervix detection accuracies in (%) of our model on
the test set (32552 images) following different CNN backbone

pre-training scenarios

The obtained accuracies on the test set according to each scenario are summarized in
Table 4.3. One can observe that our original scenario allows to correctly distinguish
between positive and negative cervix frames on the test set at 87.1 %. Moreover, the
latter scenario (PR224) improved the model accuracy by 4.6 % in comparison with the
scratch scenario.
Different CNN backbones – In addition to Darknet19, we have also considered sev-
eral CNN models: VGG16 [227], ResNet50 [98], ResNet101 [98], and Darknet53
[198] as the CNN backbone. The CNN models have been adapted to our problem
by i) removing the fully connected layers and the global or average pooling (if exist);
ii) pre-training on the ImageNet dataset. For the table 4.4, we can observe that our

CNN
backbones

VGG16
[227]

ResNet50
[98]

ResNet101
[98]

Darknet53
[198]

Darknet19 (Ours)
[197]

Accuracy(%) 82.1 79.1 62.5 77.3 87.1

TABLE 4.4: Cervix detection accuracies in (%) of our model on
the test set (32552 images) using different CNN backbones

proposed module (original) gives the best cervix detection accuracy. Moreover, our
model can also give an accuracy superior 80% when using the VGG16 [227] as the
CNN backbone. This can be expected to the design similarity between this VGG16
[227] and Darknet19 [197], especially having a similar depth of the network. From
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FIGURE 4.14: Complexity comparative results of our model us-
ing different CNN backbones: parameter complexities (left side)

and FPS (right side)

Figure 4.14, we may also observe that our model using the recommended CNN back-
bone (Darknet19 [197]) has the fastest detection speed of 65 FPS, and is second only
to VGG16 [227] in terms of the number of parameters.
Number of encoder layers and decoder layers – To train a lighter model for mobile
deployment, we consider limiting the number of encoder layers and decoder layers
(NED) from 6 to 1. The table 4.5 summarizes the results of our model on the test set

NED NED_6 NED_3 NED_1
Accuracy(%) 79.8 86.4 87.1

TABLE 4.5: Cervix detection accuracies in (%) of our model on
the test set (32552 images) using different numbers of encoder-

decoder modules

(32552 images) using different numbers of encoder-decoder modules. It can be ob-
served that our model obtains the best accuracy while using one encoder module and
one decoder module.
From Figure 4.15, we may also observe that our model using one encoder module and

one decoder is significantly better than that of the other versions for both parameters
and FPS. Furthermore, it is worth mentioning that our model can also give a near-
best accuracy of 86.4% when using three encoder modules and three decoder modules.
However, it requires an additional 5.8M parameters.
Loss ablations – We also explore the fact that replacing the L1 loss with smoothL1

loss faster the convergence of the learning. For this purpose, we optimize our model
by using the L1 loss and smoothL1, respectively. We get the best accuracy of 87.1%
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FIGURE 4.15: Complexity comparative results of our model us-
ing numbers of encoder layers and decoder layers: parameter

complexities (left side) and FPS (right side)

in the 327th epoch when using the smoothL1 loss, et the best accuracy of 82.7% in the
492th epoch when using the L1 loss. Indeed, in addition to a faster convergence, we
improved further the accuracy by using the smoothL1 loss to optimize our model.

4.4.3 Performance comparative study

To evaluate the performance of our method we considered two scenarios: 1) we have
evaluated the performance of the cervix detection model (stage 1) and 2) we have
evaluated the performance of the global pipeline namely cervix detection and heat
classification (stage 1 + stage 2). The obtained performances in both scenarios have
been compared with those of the state of the art namely HOG detector [50], YOLO
series [197, 198, 29, 123], DETR-ResNet50/100 [37], Deformable-DETR-R50 [277]
and Inception-VGG8 [100]. To this end, each method has been trained, validated, and
tested on the sets presented in the section 4.4.1. To train the state-of-the-art methods
we used their respective source codes which are publicly available and set up their
parameters following the recommendations from the referenced articles.

4.4.3.1 Cervix detection performance

Positive vs. Negative frames – We firstly consider the ability of the models to distin-
guish between positive and negative cervix frames. In addition to their accuracy (ACC)
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used in the section 4.4.2, we also calculated their precision (PRE) and recall (REC) as:

PRE =
T P

T P+FP
(4.21)

REC =
T P

T P+FN
(4.22)

Table 4.6 summarizes the obtained results on the 32552 images of the test set. We

Methods Accuracy (%) Precision (%) Recall (%)
HOG [50] 10 16.7 20

YOLOv2 [197] 51.4 51.4 100
YOLOv3 [198] 62.5 67.7 95.8
YOLOv4 [29] 78.1 78.1 85.1

YOLOv5s [123] 83.8 78.9 93.5
DETR-R50 [37] 81 80.4 83.4

DETR-R101 [37] 51.8 58.2 23.3
Deformable-DETR-R50[277] 67.3 63.7 83.2

Our method 87.1 98.9 76.3

TABLE 4.6: Cervix detection models performance comparison
obtained on the test set (32552 images).

can observe that our detection model reached an accuracy of 87.1% which is the best
one compared to the other models. The table also shows that, contrary to the other
models, our model tends to favor the precision over the recall (98.9% vs. 76.3%).
This means that our model has a weak rate of FP which is more suited to the context
of our insemination application. Furthermore, it can be observed that the accuracy
of the ”sliding window” based image descriptor method HOG [50] is far from the
deep learning-based method. Indeed, the size of the ”sliding window” influences the
detection effect due to the multiscale objects. However, in real-time detection, the
camera is moving, which causes the size of the cervix in the image to change in real-
time. Therefore, it is difficult to determine an universal size for the ”sliding window”.
Cervix box localization – To measure the ability of the models to detect the cervix
and localize it, we calculated their average precision (AP) as:

AP =
T P

T P+FP+FN
(4.23)

Where the TPs, FPs and FNs are identified with respect to the ground-truth boxes based
on an IoU (Intersection over Union) metric. They correspond for a given frame to what
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follow:

• TP a box detected with an IoU≥ threshold compared to the ground-truth box.

• FP all additional boxes detected within the same frame.

• FN missed box (empty frame) or box detected with an IoU<threshold compared
to the ground-truth box.

Figure 4.16 shows the obtained results of the top 3 models on the 16773 positive frames
of the test set using several IoU thresholds [0.5, 0.95]. The curves in the figure permit-
ted to observe that our model reached a precision that is slightly less than the one ob-
tained by the YOLOv5s (75.6 vs. 79.5) for a small IOU threshold (0.5). Nevertheless,
our model and contrary to the others succeeded to keep the same level of performance
with relatively a high threshold (0.75) which clearly indicates that is has a better cervix
localization ability.

FIGURE 4.16: Performance comparison in term of cow cervix
localization obtained on the test set of positive frames (16773 im-

ages).
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4.4.3.2 Cervix detection and heat classification performance

We measured for each model the mean of average precision (mAP) which takes into
consideration the detection quality and classification as well. Indeed, it is not relevant
to evaluate separately the classification of the state of the art methods in reason of their
unified detection and classification strategy.

mAP =
APheat +APno−heat

2
(4.24)

APclass =
T Pclass

T Pclass +FPclass +FNclass
(4.25)

Where class = heat,no-heat. To this end, we used the 16773 positive frames of the
test set and split them according to their heat category. Each APclass has been calcu-
lated using several IoU thresholds [0.5,0.95] and has been averaged to obtain a global
performance for each class. Table 4.7 shows the obtained results by the best 3 mod-
els together with their complexities. We can observe that our method has reached the
highest percentage for both classes outperforming widely the state of the art ones. In
addition, it has a reasonable complexity making possible its deployment on a smart-
phone.
Figure 4.17 shows two examples of ground truth and results of the YOLOv5s [123],

Method APheat APno−heat mAP Params FPS
YOLOv5s [123] 59.6 56.2 57.9 7M 151
DETR-R50 [37] 44.5 40.6 42.5 36.7M 20

Our method 68.5 70.7 69.6 26.5M 46

TABLE 4.7: Performance comparison of the final decision on
cervix detection and heat classification obtained on the test set

of positive frames (16773 images).

DETR-R50 [37] and our model [123]. From the first line of Figure 4.17, we can ob-
serve that both YOLOv5s [123] and DETR-R50 [37] have detected a "false cervix". In
contrast, our model can well distinguish the difference between the absence and pres-
ence of cervix from an image. Furthermore, we can also find that the prediction of our
model is more precise than the others compared to the ground truth from the second
line of Figure 4.17 in term of both cervix detection and heat state classification. To
compare the performance of our new method with our previous one [100], we evalu-
ated both of them on the validation set of 10 videos and calculated their rates of correct
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FIGURE 4.17: Some ground truth examples and result examples
of the YOLOv5s [123], DETR-R50 [37] and our model.

prediction (heat or no-heat). We also exprimented two other conbinations : DETR-
R50 [37] + IVGG8 [100] and YOLOv5s [123] + IVGG8 [100]. Figure 4.18 shows the
obtained results on 5 videos from each class. We can observe that all methods are able
to correctly predict the heat state. However, our new method shows more confidence
in its decision since it gives the highest rates for all the videos.

4.4.4 Attention Visualization analysis

To better explain the choice of our architecture components, we visualize the Atten-
tion Heat Maps (AHM) of the last decoder layer of our trained Transformer-Darknet19
model with two object queries. For this purpose, we first consider extracting the atten-
tion output weights of the encoder (atten_out put_weightenc ∈ RHW×HW ) to visualize
the attention map using the reference points as described in [37]. Where H and W
are the dimension of feature map f ∈ RH×W×1024 generated by the CNN backbone
(Darknet19). Afterward, we reshape atten_out put_weightenc so that it has a more in-
terpretable representation of (H,W,H,W ). Figure 4.19 shows the attention maps of
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FIGURE 4.18: Results in (%) of heat state prediction on the vali-
dation set composed of 10 videos.

the last encoder layer of our trained model, focusing on one point sited at the cervix.
Indeed, the encoder seems to be able to focus on the target region.

Furthermore, we also consider extracting the attention output weights of decoder

FIGURE 4.19: Encoder self-attention for a reference point

(atten_out put_weightdec ∈ R2×HW ) to visualize the final attention map. Algorithm 3
summarizes the different steps of Attention Heat Maps (AHME) visualization. First,
an input image I ∈ RH0×W0×3 is fed into generate the associated feature map (H =H0

32 ,
W = W0

32 ). The flattened feature maps f⃗ are then fed into the transformer module to get
the attention output weights of decoder atten_out put_weightdec. Similarly, we reshape
atten_out put_weightdec so that it has a more interpretable representation of (2,H,W ),
and then split it into two matrices (m1,m2) of dimension (H,W ). The values of each
matrix are normalized between 0 to 255 for drawing the heat maps. Finally, the heat
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Algorithm 3 Attention Heat Maps of decoder (AHMD) visualization

Input: Cow vagnial endoscopic Image (I) ∈ RH0×W0×3

Output: Attention Heat Maps of decoder (AHMD)
1: f ∈ RH×W×1024 (H =H0

32 , W = W0
32 )= DARKNET19(I) ▷ Model in Figure 4.11

2: f⃗ = FLATTEN( f )
3: attn_out put_weightsdec = TRANSFORMER( f⃗ ) ▷ Model in Figure 4.12
4: attn_out put_weightsdec = RESHAPE(attn_out put_weightsdec)
5: M = {m1,m2}= SPLIT(attn_out put_weightsdec)
6: for each mi in M do
7: map = NORMALIZATION(m) [0,255]
8: Heat_map = COLORMAP(map)
9: Heat_map = RESIZE(Heat_map)

10: AHMi = 0.5×Heat_map+ I
11: end for
12: AHMD = {AHMi}2

i=1

maps are resized to f H0 × W0 and then overlaid with the original image.
Figure 4.20 shows the obtained decoder self-attention maps of two examples. We

(a) Image orgnial (b) Prediction (c) Object query1 (d) Object query2

FIGURE 4.20: Decoder self-attention for two object queries

can observe that the self-attention of each object query seems to be able to focus on
the cervix already, the predictions seem to be the result of taking into consideration
the object query1 and object query 2. Therefore, it can explain that our model no
longer needs additional object queries, and using two object queries is suitable for our
problem.
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4.5 Conclusion

A new deep learning-based approach for cow heat analysis from endoscopic images
has been proposed. The approach goes through two main stages namely cervix de-
tection and heat classification. The effectiveness of our approach has been demon-
strated on our dataset outperforming the state of the art methods. More specifically,
our transformer-based detection model reached an accuracy of 87.1% which permitted
to increase the confidence level of the final decision of our method for heat prediction
in comparison with our previous method [100]. We believe that this new method will
further assist the farmer in the insemination operation offering him a precision and fast
detection and analysis tool.



88

Chapter 5

Conclusion

5.1 Summary

Ensuring animal welfare can provide many benefits at the level of environmental pro-
tection, the quality and security of food, and also the moral society. This is a social
need, but also a challenge. Indeed, to face the increasing population, the intensifica-
tion of livestock farming is inevitable, which means that more and more animals are
confined in a small space, and a farmer has to take care of more and more animals. In
this context, animal welfare is being threatened.
Artificial insemination is considered as a biotechnology that can ensure the quality and
security of food, improve livestock production, and provide some potential animal wel-
fare, such as avoiding bull injuries and culling unwanted bull calves. However, the two
main challenges for artificial insemination are precise heat detection which is the main
condition for its sucess and the availability of veterinarians or experts to accomplish
this operation at the right time. To this end, we have proposed to develop a computer
vision-based intelligent system for artificial insemination assistance. The proposed
system permits to analyze endoscopic videos of the genital tract of the cow collected
by the Eye Breed device for cervix localization and heat state classification. This can
simplify and accelerate the insemination process which is a gospel for farmers. Simul-
taneously, this technology frees artificial insemination from reliance on blind rectal
palpation and on observations of behaviors such as mounting. Moreover, cervix lo-
calization has a huge potential to be used for pathology diagnosis such as cow uterine
inflammation.
For heat state classification, we proposed a CNN model namely InceptionVGG8. The
conducted experiments on two datasets namely our own dataset and a public dataset
(kvasir [193]) show the high accuracy of our CNN model (more than 97% for both
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datasets) outperforming 19 methods from the state of the art. Moreover, we propose
an optimized version of our model for an Android deployment by exploiting several
techniques namely quantization, GPU acceleration and video downsampling. The con-
ducted tests on a smartphone show that our heat detection system has a response time
of a few seconds.
To address the issue of unavailability of veterinarians, we also proposed an artifi-
cial insemination assistance system, which allows to predict the bounding box for
cervix localization. For this purpose, a Transformer based detection model namely
Transformer-Darknet19 has been specially designed to localize the cervix while con-
siderably reducing the rate of false positive detections. More precisely, the conducted
experiments show a high cervix detection accuracy (87.1%) of our Transformer-Darknet19
model outperforming 6 methods from the state of the art and a significant improvement
in heat state classification compared with our basic version.

5.2 Recommendations for further research

In the context of cow heat detection and its relevance for insemination [58], it has been
reported that the highest conception rates for artificial insemination occurred between
4 and 12 hours after the onset of heat as shown in table 5.1. Indeed, we can observe

Interval from onset of heat
to artificial insemination (hours) Number of inseminations Conception rate (%)

0 to 4 32 43.1
4 to 8 735 50.9

8 to 12 677 51.1
12 to 16 459 46.2
16 to 20 317 28.1
20 to 24 139 31.7
24 to 26 7 14.3

TABLE 5.1: Conception rates of dairy cows inseminated at dif-
ferent times after the onset of heat [58]

from the table 5.1 insemination at different times can lead to a huge difference in the
conception rate. Therefore, it would be interesting to construct a cow estrus stage clas-
sification dataset and train a related classifier that not only predicts whether a cow is in
heat, but also the heat stage. The classification of heat stages is a more refined classi-
fication, which requires a stronger ability of classification. This would be a challenge
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for the current model. In recent years, attention mechanisms [244] have achieved great
success in the field of computer vision, such as the transformer-based detection of the
cervix that we developed. Therefore, I recommend developing a CNN-Transformer-
based model for this task in the future.
Metritis and endometritis are common uterine diseases that impact up to 40% of lac-
tating cows early postpartum [221]. Metritis (inflammation of the uterus) is a bacterial
infection and refers to the early post-partum inflammation of the whole uterus, while
endometritis is limited to the lining of the uterus (endometrium). Both diseases are a
consequence of sustained infection of the uterus caused by pathogenic bacteria, such as
Arcanobacterium pyogenes [145]. This type of disease reduces milk production[196],
reproductive performance [187, 172], increases risk of culling during lactation [77]
and increases veterinary costs. This will bring a huge loss to farmers. The total costs
per case of metritis have been calculated to approximate to US$ 329–386 [188]. There-
fore, early identification of sick cows is crucial to ensure a healthy herd.
Cytological examination of the reproductive tract is considered as the standard diag-
nosis method. However, this method is laborious since it is performed in specialized
laboratories and requires experts for results interpretation. It has been shown in [19]
that metritis and endometritis involve changes in the color and shape of the genital
tract. Form this obsevation, it is reasonable to consider that computer vision based
detection techniques can be exploited to identify such pathologies. In this sense, I rec-
ommend as a direction of future research, the development of this type of techniques.
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