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Abstract and Contributions

This thesis is focused on modeling of the transport properties of helium-based cold plasma
in the interaction with nitrogen in the atmosphere. The main focus of this thesis is on
thorough description of molecular interactions. The obtained results are further passed into
molecular dynamics simulations and mesoscopic models of transport properties. The interac-
tions are obtained via ab initio approach, utilizing Multi-Configurational Self-Consistent Field
and Multi-Reference Configuration Interaction methods together with Numerov method for
solving Schrödinger equation when computing vibrational-rotational excitations. Molecular
dynamics is being performed in a hybrid quantum-classical approach, as nuclei are being
treated classically and electrons in a quantum manner. Furthermore, not only ab initio meth-
ods on-the-fly, but also Artificial Neural Networks are involved in the dynamics simulations
to reduce necessary runtime for the most expensive parts. Transport properties of the col-
lision complexes are modelled using Monte Carlo. In this thesis, a thorough analysis of the
molecular interactions for the ground and the first excited states of N+

2 and N+
2 /He is given,

with respect to different basis sets, orbital spaces and methods. The behavior is evaluated
not only for the values of potential energy, but also for different rotational-vibrational exci-
tations of N+

2 and the preliminary results are also provided for the higher excited states up
to 11th one and the 7th one in the case of N+

2 and N+
2 /He , respectively. Both reactive and

non-reactive cross-sections were obtained from molecular dynamics simulations and compared
subsequently with the pseudo-experimental data obtained from mobility measurements. In
this context, also the effect of the N+

2 horizontal alignment on the resulting cross-sections
was analyzed in detail. Finally, the mesoscopic modeling part was focused on obtaining N+

2
mobility, in He gas, the characteristic energies of both longitudinal and transversal diffusion
and the rate constant of N+

2 diffusion induced by collision with He. That said, while the
topic is not exhausted in any way, these theoretical findings are already useful for further
experimental research, helping with “tuning” cold plasma for specific applications.

Keywords

cold plasma; nitrogen; helium; MCSCF; MRCI; molecular dynamics; ab initio; Monte Carlo;
transport properties
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Chapter 1

Introduction

Plasma is one of the four fundamental states of matter consisting of atoms, ions, and free
electrons e–. The share of ions is characterized by ionization degree α given by

α = ni

ni + n0
, (1.1)

with ni and n0 being the number density of ions and neutral atoms, respectively. With a
growing amount of ions, the collision frequency grows accordingly, with Coulomb (electron-
ion) collisions νei becoming more frequent than electron-neutral νen ones if ni > n0. If
νei >> νen, we talk about fully ionized gas [1] and a weakly ionized gas if νei << νen. We
further refer to ionized gases where the temperature of electrons Te is equal to the temperature
of atoms and ions Tai as thermal plasma and to the case where Te > Tai as non-thermal plasma.
That said, while Te can be high, Tai can be around room temperature in non-thermal plasmas,
making it possible to be in contact with various objects (like human skin) without causing
any harm to them. Note also that a special case of the non-thermal plasma exists where ions’
temperature is much higher than the temperature of electrons, i.e. where Tai >> Te.

Rare-gas (RG) based cold plasmas seem to be one of the widely researched topics in nowa-
days plasma physics, molecular physics, and chemistry, mostly due to wide experimentally-
proven applications and extensive potential. The most prominent application areas seem to
be food processing [2, 3, 4], surface treatment [5, 6, 7] and plasma medicine [8, 9, 10, 11],
which is the closest one to our research motivations due to a long-term research involvement
of LAPLACE research centre1 in the field [12, 13]. While the experimental evidence is already
wide, the common problem of applications, most significantly seen in the biomedical field, is
a poor understanding of the underlying principles. Like in many cases, there is no detailed
explanation of the experimental results [13] with promising application potential. Such a lack

1www.laplace.univ-tlse.fr
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of a deeper understanding hinders our ability to adjust the used substances to fit our specific
needs [14].

The process of plasma generating is based on a cascade ionization occurring in the gas
called Townsend discharge [15] which leads to an avalanche breakdown, i.e. gives rise to
conductivity in a gas. The main ingredient of a plasma generator is a gas (so-called carrier
and/or buffer gas) flowing under the influence of an electric field, thus speeding up free
electrons which subsequently free other electrons, multiplying the number of free ones and
so creating ions from previously neutral atoms. This process is schematically illustrated
in Figure 1.1.

Figure 1.1: Townsend avalanche process
Yellow circles represent ionization events, grey circles an atom, and blue and red circles p+and e−,
respectively. Orange arrows then represent paths of newly liberated e−and blue arrows paths of the

original ionizing e−.

That said, experimental experience is already wide and cold plasmas are usually generated
using either dielectric barrier discharge or “pin-to-hole” devices [16], with plasma jet being the
most prominent example. Its simplified scheme can be seen in Figure 1.2, where the red line
highlights the area of the first collisions between He+ and the air. The in-depth description
of collisions in this area is also the main motivation behind this dissertation thesis. While
Ne, Ar, Kr and Xe are all being used as carrier-gas for plasma generating [17, 18, 19], He
was chosen in this thesis because of its simplicity, i.e. low number of electrons and low
mass. Both of these properties are numerically convenient, as they allowed us to work with
a computationally-easier problem than the other gases and to ignore occurring relativistic
effects, most prominently spin-orbit interaction. That said, He provided also one a priori
known numerical difficulty – the high ionization potential (IP) 24.6 eV.

15



Figure 1.2: Plasma jet generator

As a consequence, the collision-induced charge transfer,

He+ + N2 → N +
2 + He (1.2)

He+ + N2 → N+ + N + He (1.3)

He+ + N2 → [NHe]+ + N (1.4)

represent the very first step of the interaction of the helium plasma jet with the atmosphere,
He being the most widely used RG in biomedical applications and N2 being the most abun-
dant air molecule, and as seen in Equation (1.4), when the charge transfer occurs between
them, secondary ions N +

2 ,N+ (and theoretically also [NHe]+) are produced. We will focus on
modeling the interactions of these secondary ions, especially of N +

2 , with the carrier gas He.
While an extensive experimental work focused on reactions of RG atoms with N +

2 has
been done in this area [20, 21, 22, 23, 24, 25], theoretical results are not nearly as frequent
and neither their extent nor their accuracy are sufficient for practical usage [26, 27, 28, 29, 30,
31, 32, 33]. The final goal of our research efforts has been to perform efficient nonadiabatic
molecular dynamics simulations (MDSs) and their subsequent confirmation by comparison
with available experimental data. In this thesis, then, I aimed to a) obtain an in-depth
description of the electronic structure of the collision complexes given by Equation (1.4),
i.e. their potential energy surfaces (PESs) and gradients, b) represent PESs together with
gradients via machine learning (ML) based methods, most notably utilizing fundamental
invariant polynomials as the systems’ descriptors.

This thesis directly follows Van de Steen’s work [18, 34, 35, 36] focused on processes of
an avalanche ionization occurring inside plasma generators. It is focused predominantly on
the microscopic modeling phase, i.e. ab initio computations of electron interactions, thus
obtaining PESs together with their gradients and their representation via machine-learning
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approach, namely artificial neural networks (ANNs) combined with permutation invariant
polynomials (PIPs) as descriptors. As this approach combines the benefit of ab initio accuracy
with computational demands nearing these of empirical models.

The next section of this thesis introduces basic technical concepts followed by a description
of adopted numerical methods. In the third section, the computational details and settings
are listed together with descriptions of PES-representation approaches. The fourth section
further summarizes all the results achieved during the thesis together with their comparison
against state-of-the-art (SoA) computations. Eventually, the possible future application and
the following research outlook are outlined.
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Chapter 2

Theory

In this section, the basic terms are introduced considering all phases of the dissertation project
– computations of interactions, i.e. quantum chemistry, molecular dynamics simulations, and
mesoscopic modeling aiming to obtain relevant transport properties. The text is written in
a general, introductory manner, as the specific computational details are described in the
following section.

2.1 Quantum Chemistry

To introduce the relevant quantum chemistry terms, this section goes over an elaborate de-
scription of both time-dependent and time-independent variants of the Schrödinger equation,
followed by the description of the Born-Oppenheimer approximation, thus decreasing the di-
mension of the solved problems and the related distinction between the electronic and the
nuclear Schrödinger equation. Finally, the section ends with a brief description of a charge
density and several numerical methods to obtain its values.

2.1.1 Time-Independent Schrödinger Equation

Similarly to classical mechanics, it is necessary to be equipped with an equation describing
the behavior of a physical system in time and also in the field of Quantum mechanics (QM).
Considering a non-relativistic, conservative system we can describe its time-dependent evolu-
tion via Time-dependent Schrödinger equation (TDSE). The equation takes a vital position
in QM, as it is also one of its foundational postulates [37].

That said, the meaning of TDSE formulation is apparent, when the total energy of a
classical system is given by the equation

E = p⃗2

2m + V (r⃗), (2.1)
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with p⃗2 = p2
x +p2

y +p2
z denoting a scalar product of two momentum vectors p⃗ = (px, py, pz), m

denoting the total relativistic mass of the system and V (r⃗) being a general potential function
depending on a vector of coordinates r⃗, is considered first. Subsequently, a substitution

E → iℏ
∂

∂t
(2.2)

p⃗ → −iℏ∇ (2.3)

can be performed, thus obtaining an operator equation, holding its meaning when applied to
a wavefunction ψ(r⃗, t) depending on both spatial coordinates r⃗ and time t. Bearing that in
mind, inserting ψ(r⃗, t) in the equation finally provides

iℏ
∂

∂t
ψ(r⃗, t) =

(︄
− ℏ2

2m∆ + V (r⃗)
)︄
ψ (r⃗, t) , (2.4)

where ∆ stands for a scalar product of gradients ∇ = ( ∂
∂x ,

∂
∂y ,

∂
∂z ), i.e. for Laplace operator.

As can be seen, the bracket on the right-hand side of Equation (2.4) represents a linear
self-adjoint operator which is conventionally called the Hamilton operator (or briefly the
Hamiltonian ˆ︁H ), i.e.

ˆ︁H =
(︄

− ℏ2

2m∆ + V (r⃗)
)︄
. (2.5)

Given both Equation (2.4) and Equation (2.5) together with the fact, that it is a first-order
partial differential equation (PDE) in time, a need arises to have an initial condition to be
able to determine ψ(r⃗, t). Thus, the time-dependent evolution of a non-relativistic physical
system in QM is determined via initial value problem (IVP)

ˆ︁Hψ(r⃗, t) = iℏ
∂

∂t
ψ(r⃗, t), (2.6)

ψ(r⃗, t0) = ψ0, (2.7)

where (t0, ψ0) denotes the initial condition (IC).
Being equipped with TDSE, i.e. Equations (2.6) and (2.7) and assuming time-independentˆ︁H given by Equation (2.5), we can non-rigorously describe derivation of the equation relevant

for this thesis, i.e. Time-independent Schrödinger equation (TISE). Under the assumption, a
wavefunction can be represented in the form

ψ(r⃗, t) = ω(r⃗)φ(t), (2.8)
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thus we can perform separation of variables by substituting it into Equation (2.6) like

[︄
− ℏ2

2m∆ + V (r⃗)
]︄ (︂
ω (r⃗)φ (t)

)︂
= iℏ

∂ω(r⃗)φ(t)
∂t

(2.9)

− ℏ2

2m∆
(︂
ω (r⃗)φ (t)

)︂
+ V (r⃗)

(︂
ω (r⃗)φ (t)

)︂
= iℏ

∂ω(r⃗)φ(t)
∂t

(2.10)

− ℏ2

2mφ (t) ∆ω (r⃗) + V (r⃗)ω (r⃗)φ (t) = iℏω(r⃗)∂φ(t)
∂t

(2.11)

− ℏ2

2m∆ω (r⃗) + V (r⃗)ω (r⃗) = iℏ
φ(t)ω(r⃗)∂φ(t)

∂t
(2.12)[︄

− ℏ2

2m∆ + V (r⃗)
]︄
ω (r⃗) =

[︃
iℏ
φ(t)

∂φ(t)
∂t

]︃
ω(r⃗) (2.13)

ˆ︁Hω (r⃗) =
[︃
iℏ
φ(t)

∂φ(t)
∂t

]︃
ω(r⃗) (2.14)

ˆ︁Hω (r⃗)
ω(r⃗) = iℏ

φ(t)
∂φ(t)
∂t

, (2.15)

where, due to the fact, that both sides of Equation (2.15) hold for arbitrary coordinates
(r⃗, t) making them equal to the same energy constant E, i.e.

ˆ︁Hω (r⃗)
ω(r⃗) = iℏ

φ(t)
∂φ(t)
∂t

, (2.16)

providing a system of two equations,

ˆ︁Hω (r⃗) = Eω(r⃗) (2.17)
iℏ
φ(t)

∂φ(t)
∂t

= Eφ(t), (2.18)

where Equation (2.17) is TISE. Since the measurable energies of a system are corresponding
to the eigenvalues of ˆ︁H , i.e. its discrete spectrum, we can rewrite Equation (2.17) as

ˆ︁Hωn(r⃗) = Enωn(r⃗), n = 1, 2, 3, . . . (2.19)

with n denoting the index of an eigenstate of ˆ︁H .

Finally, it is necessary to pinpoint, that in the rest of this thesis only TISE will be of
importance, so that wavefunctions will be denoted as ψ(r⃗) albeit depending only on the
spatial coordinate vector(s) to conform with usual literature notation.
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That said, the TISE will be denoted as

ˆ︁Hψn(r⃗) = Enψn(r⃗), n = 1, 2, 3, . . . (2.20)

2.1.2 Born-Oppenheimer Approximation

A PES is a function describing the potential energy V of a system depending on a chosen
set of descriptors. Those are usually either Cartesian or, preferably, internal coordinates, i.e.
coordinates, which do not depend on a position in an underlying domain but describe the
system solely using relative positions of its particles by a specification of angles and distances
among them. PESs can be defined in many ways, either by physics-based analytical formulas,
regression models, or ANNs.

Very simple 1-dimensional example with r being an internuclear distance, De a bond
strength and re a bond length (i.e. an equilibrium distance), can be seen in Figure 2.1. For r <
re repulsive forces together with V grow steeply (dominantly due to the Pauli repulsion [38]),
while for r > re bond strength gradually weakens together with V (e.g. induction forces
or London dispersion interactions [39]). The position where no interaction between particles
occurs is called a dissociation, and it is described by

lim
r→∞

V (r) = 0. (2.21)

That said, we usually talk about a dissociation distance rd in a context, where V (rd) ≈ 0,
so that we can work with rd, respectively a dissociation in general, numerically.

Figure 2.1: 1-D PES for De = 0.2 and re = 0.15
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In this one-dimensional example of a two-particle system, the situation is straightforward -
it is obvious that the internuclear distance itself is enough to describe the system completely.
But, for systems with more particles ((non-linear in general) is the situation slightly more
complex. Every n-particle system can be completely described by 3n coordinates, e.g. the
Cartesian ones. In this context, we talk about 3n spatial degrees of freedom (DOFs). Now,
while there are always 3n spatial DOFs to specify the n-particle system, they can be described
in different ways. Considering three-dimensional space with an axis for every dimension, the
whole system can be moved along all of them - i.e. system translations form a set of 3 DOFs.
Furthermore, the system can be rotated around every axis, every time changing the position
of at least some of its particles, except for the case where all the molecules are positioned
along with one of the axes and the system rotates around it. Thus, system rotations form
another set of 3 DOFs in a non-linear case or 2 DOFs if the system is linear. That said, the
number of remaining DOFs for 3n − 6 and 3n − 5 DOFs for non-linear and linear systems,
respectively. These are called, in the case of bound systems, vibrational degrees of freedom as
they represent vibrations of particles around their equilibrium positions.

Figure 2.2: Internal coordinates for [N2/He]+ collision complex

As we work with a three-particle system and as such we need 3 DOFs in a general case,
we adopted an internuclear distance between N atoms rN, a distance between its center and
a He atom rHe and an angle between those two lines θ, as our internal coordinates as can be
seen in Figure 2.2. Thus, our PES is given as a function V (rN, rHe, θ), depending on these
three variables.
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In order to obtain adiabatic PESs, we must first solve TISE, while the formulas

ˆ︁H = ˆ︁Tn + ˆ︁Vnn + ˆ︁He (2.22)

ˆ︁Tn = −
M∑︂

A=1

1
2mA

∇2
A (2.23)

ˆ︁Vnn =
M∑︂

A=1

M∑︂
B=A+1

ZAZB

R⃗AB

(2.24)

ˆ︁He = ˆ︁Te + ˆ︁Vee + ˆ︁Ven (2.25)

ˆ︁Te = −1
2

N∑︂
i=1

∇2
i (2.26)

ˆ︁Vee =
N∑︂

i=1

N∑︂
j=i+1

1
r⃗ij

(2.27)

ˆ︁Ven = −
N∑︂

i=1

M∑︂
A=1

ZA

r⃗Ai
, (2.28)

describe its Hamiltonian operator for M -body system in atomic units, with N , r⃗ and R⃗AB

denoting the number of electrons, coordinates of i-th electron, and the distance between
nuclei A and B. Given, that the Equation (2.20) with Equation (2.22) is obviously complex
and subsequently difficult to solve numerically, we can use the fact, that nuclei move at
about 10−3 of the electron speed and make the solution for electronic energies Ee(R⃗) and
wavefunctions ψe(r⃗, R⃗) faster, as we can approximately consider nuclei being stationary. With
that assumption, we can omit the T̂n term. Furthermore, we can simplify Equation (2.22) by
omitting V̂ nn term, as it is a constant, obtaining eventually electronic Hamiltonian ˆ︁He.

This procedure is called Born-Oppenheimer approximation [40]. Utilizing this simplifica-
tion we can further work with the electronic TISE

ˆ︁Heψe(r⃗, R⃗) = Eeψe(r⃗, R⃗)., (2.29)

Considering the much faster movement of electrons compared to nuclei, it is a reasonable
simplification to assume, that nuclei are moving in a mean-energy field, i.e. in relation to an
average electronic coordinates, averaged over the electronic wavefunction ψe(r⃗, R⃗) [41]. This
provides a nuclear Hamiltonian ˆ︁Hn given by

ˆ︁Hn = ˆ︁Tn + ˆ︁Vnn +
⟨︄
ψe

⃓⃓⃓⃓
⃓⃓−1

2

N∑︂
i=1

∇2
i +

N∑︂
i=1

N∑︂
j=i+1

1
r⃗ij

−
N∑︂

i=1

M∑︂
A=1

ZA

r⃗Ai

⃓⃓⃓⃓
⃓⃓ψe

⟩︄
(2.30)

ˆ︁Hn = ˆ︁Tn + ˆ︁Vnn +
⟨︂ ˆ︁He

⟩︂
, (2.31)
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where ˜︁Etotal = ˆ︁Vnn +
⟨︂ ˆ︁He

⟩︂
, (2.32)

with ˜︁Etotal denoting an approximation to the total energy, constitutes PES, i.e. a potential
for nuclear motion under Born-Oppenheimer approximation (BOA). That said, nuclei under
BOA move on PES obtained by solving the electronic problem given by Equation (2.29).
Nuclear Schrödinger equation (SE)

ˆ︁Hnψn(R⃗) = ˜︁Etotalψn(R⃗) (2.33)

describes the vibration, rotation and translation of a molecule and ˜︁Etotal describes the sum
of vibrational, rotational, translational, and electronic energy. In correspondence with that,
BOA to the total energy wavefunction is

ψ(r⃗, R⃗) = ψe(r⃗, R⃗)ψn(R⃗). (2.34)

Furthermore, local minima and saddle points of PESs correspond to stable chemical species
and transition states, respectively. Thus, to fully utilize calculated PES, it is necessary to
obtain also its first and second derivatives (gradients).

As the energy of every physical system is quantized, we differentiate between the con-
figurations with the lowest one called ground state and the higher ones called excited states.
Different PESs then correspond directly to these electronic states.

And finally, as the system can transition between states, we will also assess the probability
of both radiative and non-radiative transitions as described in subsequent sections. The spin-
orbit coupling will be omitted, as both He and N are very light elements, where spin-orbit
interactions are not of much significance for theoretical spectroscopic computations, as can
be seen in [42].

2.1.3 Hartree-Fock Approximation and Beyond

The Hartree-Fock (HF) method is one of the simplest approximations accounting properly for
fermionic permutation symmetry [43]. The main idea behind the method lies in the variational
optimization of a single-determinant n-electron wave function. The trial wavefunction is then
defined via a Slater determinant (SD) as
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ψT (x1⃗, x2⃗, . . . , x⃗n) = 1√
n!

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓
χ1(x1⃗|θ1) χ2(x1⃗|θ2) · · · χn(x1⃗|θn)
χ1(x2⃗|θ1) χ2(x2⃗|θ2) · · · χn(x2⃗|θn)

...
... . . . ...

χ1(xn⃗|θ1) χ2(xn⃗|θ2) · · · χn(xn⃗|θn)

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓⃓⃓ (2.35)

= |χ1(x1⃗|θ1), χ2(x2⃗|θ2), . . . , χn(xn⃗|θn)⟩ , (2.36)

where χi, i = 1, . . . , n denotes a chosen one-particle wavefunction with (xi⃗|θi) being a set
of spatial and spin coordinates xi⃗ and θi, respectively.

The main idea behind HF method, is to utilize the variational principle

E0 ≤ ⟨ψT | ˆ︁H|ψT ⟩
⟨ψT |ψT ⟩

, (2.37)

which describes that the variational functional given by Equation (2.37) is always greater or
equal to ground state energy E0 depending on the parametrization of a trial wavefunction
ψT , i.e. that ground state energy (and ground state wavefunction ψ0) can be approximated
via minimization of the variational functional with respect to ψT parameters.

Considering the normalization condition
ˆ
ψ∗

TψT dx⃗ = 1, (2.38)

dx⃗ =
n∏︂

i=1
dxi⃗ (2.39)

and the fact, that spin-orbitals remain orthonormal, i.e.

⟨χi|χj⟩ = δij , (2.40)

HF method aims approximate ground state energy like

EHF ≤ min
χi⃗

⟨ψT | ˆ︁H|ψT ⟩ . (2.41)

Minimization of the variational functional with Born-Oppenheimer (BO) Hamiltonian
leads to the system of equations

ˆ︁f(xi⃗)χk(xi⃗) = εkχk(xi⃗), (2.42)

i, k denoting indices of an electron and a spin-orbital, respectively [41, 44]. Considering
εi coefficients, they approximate energies required for removal of one electron in spin-orbital
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χk from the molecule [41]. The one-electron Fock operator

ˆ︁f (xi⃗) = −1
2∇2

i −
M∑︂

A=1

ZA

riA
+ vHF (xi⃗) , (2.43)

with

vHF (x⃗i) =
∑︂

j

ˆ ⃓⃓
ϕj
(︁
r⃗′)︁⃓⃓2⃓⃓

r⃗ − r⃗′⃓⃓ ϕi(r⃗) dr⃗′ −
∑︂

j

δσi,σj

ˆ
ϕ∗

j

(︁
r⃗′)︁ϕi

(︁
r⃗′)︁⃓⃓

r⃗ − r⃗′⃓⃓ ϕj(r⃗) dr⃗′ (2.44)

representing the mean electronic potential of the i-th electron moving in the field of the
remaining electrons in the molecule with θi denoting an i-th molecular orbital.

The first term of Equation (2.44) denotes the electrostatic repulsion of electron clouds, and
is called Hartree term. The second “exchange” term denotes a sum over all pairs of orbitals
with the same spin projection, and corresponds to the antisymmetry of the total wave function
with respect to electron’s exchanges [45]. The term enforces Pauli exclusion principle [46, 47],
keeping the same-spin electrons apart, thus giving rise to, so-called, Fermi hole with a unit
positive charge around electrons [48].

As the whole potential influencing i-th electron depends on the average motion of all other
electrons, an iterative approach is adopted. The iterations are performed until self-consistency
is achieved – inspiring another name for the method, talking about self-consistent field.

The HF method makes several significant simplifications, namely a) relying on the as-
sumption, that every wavefunction can be sufficiently approximated utilizing only one SD,
b) omitting relativistic effects completely and c) adopting “mean-field approximation”, i.e.
not accounting many-particle interaction precisely, omitting Coulomb interaction and strictly
imposing HF inability to describe London dispersion [49].

That said, the HF solution in the limit of a complete basis set, i.e. the exact HF solution
corresponds to EHF . It follows straightforwardly, that, due to a variational property [50, 51]
given by Equation (2.37), EHF imposes an upper-bound to the exact ground-state energy E0.
Their difference

Ecorr = EHF − E (2.45)

is called correlation energy. It describes a difference between mean-field energy and an exact
solution and despite being an important quantity in quantum chemistry (QC), its definition
tends to be ambiguous over the available literature [52, 53, 54, 55] and not strictly limited to
HF [56].

Due to the above-mentioned deficiencies, it is crucial to involve many-body interactions
in the computation. Probably the simplest approach describing the many-body electronic
effects is configuration interaction (CI). The core idea is the diagonalization of n-electron
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Hamiltonian utilizing a basis of SDs or their linear combinations called configuration state
functions (CSFs). The number of determinants possible to be constructed from a set of 2k
one-electron spin-orbitals is

(︁2k
n

)︁
[41].

The complete many-electron basis set allows a full CI expansion

|ψ⟩ = c0 |ψ0⟩ +
∑︂

a

∑︂
r

cr
a |ψr

a⟩ +
∑︂
a<b

∑︂
r<s

crs
ab |ψrs

ab⟩ +
∑︂

a<b<c

∑︂
r<s<t

crst
abc |ψrst

abc⟩ + · · · , (2.46)

allowing to obtain energies of both the ground and excited states of the system, making
it an exact solution within a chosen basis set.

Determinants present in the expansion are the ground state |Ψ0⟩ (usually HF reference),
singly excited states |Ψr

a⟩, doubly excited determinants |Ψrs
ab⟩, triply excited determinants⃓⃓

Ψrst
abc

⟩︁
, etc., up to n-tuply excited determinants. The wavefunction |ψ⟩ is subsequently opti-

mized with respect to the coefficients c0, c
r
a, c

rs
ab, c

rst
abc, . . ., to minimize the total energy expec-

tation value.

Numerically, we can handle only a finite set of n-electron trial functions. Thus, we employ
truncated configuration interaction expansions (TCIEs) to limit the number of trial functions.
Truncated CI expansions provide an upper bound to exact solutions. For example, if single
and double excitations are included, we have a configuration interaction singles and doubles
(CISD) method. Disadvantages of truncated CI method are the lack of size-extensivity and
size-consistency. The size-extensivity problem means incorrect scaling of E with the number
of electrons [48, 57, 58]. The size-consistency problem, related to size-extensivity, denotes a
lack of separability when a total energy of the composite system E(A+B) with A and B fully
separated is not equal to the sum of the energies for both isolated systems, i.e. the methods
where E(A+B) ̸= E(A) +E(B) are not size-consistent [59]. There exist numerous corrective
approaches to mitigate or fully remove both of these undesirable effects [60, 61, 62, 63, 64, 65,
66, 57, 67, 68, 69].

The optimal CISD expansion recovers some fraction of electronic correlations missing
at the HF level and may therefore serve as a better approximation beyond HF. The CI
natural orbitals (NOs) [70, 67, 71, 72] diagonalizing the first-order density matrix allow one to
select only the most populated orbitals for subsequent calculations making their determinant
expansions shorter [73] for higher-level theories. Subsequently, NOs-based expansions lead to
faster convergence with respect to the corresponding canonical orbitals diagonalizing the Fock
operator [74, 75, 76, 77, 78].
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2.1.4 Multi-Configuration Calculations

One of the methods offering a compromise between accuracy and computational demands and
their scaling with a possibility of being size-consistent is multi-configurational self-consistent
field (MCSCF). It relies on the variational optimization of the expansion coefficients ci (in
CI-like fashion), simultaneously with the self-consistent field (SCF) improvement of orbitals
in determinants Ψi in the sum

⃓⃓⃓
ΨMC−SCF

⟩︂
=
∑︂

i

ci |Ψi⟩ .

The sum has a truncated CI expansion form.
The computational effort is reduced by partitioning electrons to orbitals of interest (usually

taken from previous HF, CISD, etc., calculations) into four groups according to their chemical
importance:

1. The doubly-occupied frozen orbitals which are kept intact during the calculation (typi-
cally the group is empty or only the core orbitals are included),

2. The so-called inactive orbitals that are doubly-occupied and SCF optimized (inactive
space), and

3. the orbitals allowed to be CI-like populated and SCF optimized simultaneously with a
space 2. This space of orbitals is usually called active space.

4. The external orbitals (virtual orbitals) serve as a basis for mixing with occupied orbitals
in variational SCF procedure.

The size-consistent behavior of the method is achieved by allowing the maximum order
of excitation to be equal to the number of electrons in the group or the number of empty
orbitals in the space 3 (priority lies with the larger number). Of relevance are all occupied
valence orbitals that play role in the studied process (e.g. bond breaking or excitation) and
all corresponding correlating unoccupied orbitals from the reference. This approach is known
as complete-active-space self-consistent field (CASSCF) [79]. It allows one to study (at a qual-
itative level) larger systems compared to the high-level methods of quantum chemistry, but
the combinatorial increase of the CPU time and memory requirements are still prohibitive.
In CASSCF, relatively small active spaces are available, while in practical MCSCF studies,
one must often restrict the active space and consider fewer electrons than should be considered
and even lower the maximum allowed excitation leading to MCSCF which is not guaranteed
to be size consistent. With a proper orbital selection based on chemical intuition, MCSCF
results may be qualitatively correct and useful for interpretations. Larger CI/complete ac-
tive space (CAS) spaces are now tractable by virtue of the density matrix renormalization
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approaches [80, 81, 82, 83]. That said, CASSCF approach is a mean-field method in a sense
a part of dynamical correlations could be missed. This can be partially compensated for via
subsequent perturbative treatment [84, 85] or Monte-Carlo approach [86, 87].

One of the most prominent approaches adopted also in this thesis is the MRCI method [88,
89, 90, 91, 92, 93]. MRCI operates by a) initially constructing a space of reference configura-
tions, b) exciting electrons out of these configurations, and c) solving TISE via minimization
of the energy in the resulting configuration space. In its uncontracted variant, uncontracted
MRCI (uc-MRCI), excitations are performed with respect to each individual reference con-
figuration. Subsequently, many contraction schemes have been developed to cope with the
increasing computational cost of uc-MRCI through a reduction of the number of relevant con-
figurations, from which the most popular one is internally-contracted MRCI (ic-MRCI) [94,
95].

The MRCI method is relatively simple and, in its uncontracted form, the working equa-
tions are equivalent to single-reference CI (SRCI) with the exception that a larger set of
configurations is considered. Thus, MRCI is very flexible, both in the choice of configura-
tion space and the construction of the molecular orbitals, and can be applied to a variety of
quantum systems. Due to the variational properties of MRCI, it follows, that wave function
properties, such as energy gradients, dipole moments, etc. can be computed easily, especially
when considering uc-MRCI. The main caveat of MRCI is its lack of size-extensivity whenever
the CI expansion is truncated at a specific excitation level [88, 57, 96]. Thus, the system
description deteriorates as the size of the molecule increases.

MRCI computations are generally performed by first constructing a space of reference
configurations and subsequently specifying a fixed number of allowed excitations out of this
reference space. The reference space is intended to cover non-dynamic electron correlation
whereas the excitations out of it represent dynamic correlation [97, 98]. In the context of MRCI
method, we recognize virtual, active, reference (doubly-occupied) and frozen core orbitals, as
can be seen in Figure 2.3, with active and reference being sometimes denoted together as
internal orbitals.

By default, the inner electron shells of the system, e.g., the 1s orbitals of the second row
elements are considered frozen core orbitals. Sometimes more orbitals are considered frozen to
decrease computational demands, a typical example being the “freezing” of all σ-electrons in a
π-system [99]. The reference orbitals are doubly occupied in all reference configurations with
excitation allowed when generating MRCI wave function. The active orbitals, on the other
hand, possess various occupation patterns already in the reference configurations. Lastly,
virtual orbitals are unoccupied in the reference configurations but are populated by one or
two electrons during the MRCI procedure. It is also possible to freeze the virtual orbitals and,
thus, effectively remove them from the computation. As a consequence, they do not affect
the result at all.
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Figure 2.3: Classification of molecular orbitals in MRCI

At the heart of the MRCI computation is the reference space constructed by exciting
electrons within the active orbital space. It is common to construct the reference space as
a complete active space, i.e., by allowing all possible occupations within the active orbital
space, on top of the CASSCF wave function. Alternatively, occupation restrictions can be
imposed to reduce the size of the reference space and ultimately the configuration space, thus
decreasing the computational cost. With the reference space set up, MRCI wave function is
defined by exciting electrons out of this space.

The frequently adopted type is uc-MRCI singles and doubles (uc-MRCISD) where exci-
tations are performed with respect to the individual reference configurations and up to two
excitations are allowed. This leads to various singly excited configurations, namely excitations
from reference to active orbitals, from active to virtual orbitals, and directly from the refer-
ence to virtual orbitals. The excitations from active to active orbitals only become relevant
with incomplete reference spaces. Secondly, considering doubly excited configurations, any
combination of the above-mentioned excitation types is possible.

Considering MRCI singles and doubles (MRCISD), a general wavefunction is of the form

|ψ⟩ =
nr∑︂

k=1
cr |ϕr

k⟩ +
∑︂

l

cs
l |ϕs

l ⟩ +
∑︂
m

cd
m |ϕd

m⟩ , (2.47)

with |ϕr
k⟩, |ϕs

l ⟩ and |ϕd
m⟩ denoting reference, singly- and doubly-excited configurations, re-

spectively. In contrast with SRCI where only excitations from occupied to virtual orbitals are
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Figure 2.4: Three (redundant) ways to obtain a singly-excited state from different reference
configurations

considered, a larger number of orbital spaces MRCI allows for problems with configuration
redundancy to arise as multiple excitations can lead to the same excited configuration as can
be seen in Figure 2.4.

Eventually, MRCI wavefunction given by Equation (2.47) is used in Equation (2.37) and
optimized with respect to its parameters. For clarity, a full basic MRCI workflow is described
by Figure 2.5.

2.1.5 Charge Density

From a measurement point of view, electrons do not possess a precise position due to Heisen-
berg’s uncertainty principle [100]. Thus, the charge is also not localized in discrete points, but
acts as a continuous distribution. If we consider the i-th molecular orbital (MO) wavefunction
ψMO,i in the form of linear combination of atomic orbitals (LCAO)

ψMO,i =
nb∑︂

j=1
cijϕj , (2.48)
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Figure 2.5: MRCI workflow

with atomic orbitals ϕj denoting a normalized j-th function of the chosen basis set(e.g. [101,
102, 103]) and nb denoting the number of basis set functions, the charge density can be
described as

ρi,q(r⃗i) = q |ψi(r⃗i)|2 (2.49)

= q
nb∑︂

j=1

nb∑︂
k=1

cijcikϕ
∗
j (r⃗i)ϕk(r⃗i), (2.50)

where q denotes charge of a particle – i.e. q = 1 considering atomic units. Thus, considering
the total charge density in atomic units

ρ(r⃗) =
N∑︂

i=1
|ψi(r⃗i)|2 , (2.51)
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with N denoting the number of MOs, the integral over the whole 3D (Cartesian) coordinate
space D can be obtained as ˆ

D
|ψ(r⃗)|2 d3r, (2.52)

with d3r representing an appropriate integration measure over the space D.
Considering the importance of knowledge of atomic charges in a molecule, numerous meth-

ods were invented to compute it utilizing the abovementioned knowledge of charge density.
The historically most prominent one is certainly Mulliken population analysis [104, 105], being
accompanied by other methods, compensating for some of its deficiencies, like like Löwdin’s
approach [106] or Natural population analysis [107]. Also, it is possible to obtain atomic
charges utilizing electron density, which is subsequently integrated over, in contrast to the
previous method based on assembling a density matrix. Representatives of this second group
are Hirshfeld’s method [108] or the approach based on the Atoms-in-Molecules approach [109,
110].

2.1.6 Interstate Transitions

Transition dipole moment µ⃗1,2 is an electric dipole moment corresponding to the transition
between two electronic states |ψ1⟩ and |ψ2⟩ given by

µ⃗1,2 = ⟨ψ2|µ⃗|ψ1⟩ =
ˆ
ψ∗

2µ⃗ψ1 dτ, (2.53)

with the dipole moment operator

µ⃗ =
n∑︂

i=0
qix⃗i, (2.54)

defined here for n particles, qi and x⃗i being the i-th particle charge and its position opera-
tor, respectively [111, 112, 113]. Also, dτ denotes integration over a whole adopted domain,
i.e. the same as dx dy dz in three-dimensional space. That said, according to Szabó and
Gustaffson [114], µ⃗i,j can be used to predict a probability of the spontaneous emission, i.e. a
non-stimulated (except for vacuum fluctuation) radiative transition from the state |ψi⟩ to the
state |ψ2⟩ in a specific time-step t like

Pi,j(t) =
4ω3

i,j(t)
3ℏc3 ∆t(Nph + 1)|µ⃗i,j(t)|2 (2.55)

ωi,j(t) = max(0, Vi(t) − Vj(t))
ℏ

, (2.56)

where Nph is a number of photons in the radiation field, and ωi,j , being the difference of
electronic energies divided by ℏ of the involved PESs, denotes the frequency of the emitted
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photon.
Such a case of spontaneous emission is illustrated in Figure 2.6, where an electronic sub-

system transitions to a lower state by radiating an amount of energy as a photon.

Figure 2.6: Spontaneous emission of photon

Figure 2.7: Non-radiative transition of electron

Using BOA the coupling between electrons and nuclei is neglected, i.e. electrons are as-
sumed to move infinitely fast and adapt to the electric field from the nuclei with no time
delay, as mentioned beforehand. In such a case, the transition frequency νt is much greater
than the rate of a change of a nuclei electric field vef . However, if vef = νf and an energy dif-
ference between PESs is not too large, electron-nuclei coupling is not negligible anymore and
a non-radiative transfer can occur as can be seen in Figure 2.7. This transition is called the
non-adiabatic transition and the mediating electron-nuclei interaction non-adiabatic coupling
(NAC) [115, 116, 117]. The non-radiative transition probability was described by Desouter-
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Lecomte and Lorquet [118] as

Pi,j = e−(p/4)ξ (2.57)

ξ = ∆E(q⃗)
ℏ| ∂

∂t q⃗||λi,j(q⃗)|
, (2.58)

where ∆E is the energy difference between two PESs and ∂
∂t q⃗ a time derivative of a nuclear

displacement vector parallel to the non-adiabatic coupling λi,j
⃗ given by

λi,j
⃗ = ⟨ϕi|

∂

∂q⃗
|ϕj⟩ . (2.59)

From Equation (2.57), it can be seen that the non-radiative transition probability increases
with decreasing energy difference between the two involved PESs.

2.1.7 Molecular Symmetry

Molecular symmetry plays an important role in determining molecule properties, e.g. in rec-
ognizing of allowed electronic transitions [119, 120, 121] or prediction of a non-zero dipole
moment [122, 123, 124] and/or higher multipoles. For these properties to be efficiently ex-
ploited, they are described formally utilizing group theory in a subfield called representation
theory [125, 126, 127, 128].

In this context, the relevant group is constructed upon a set of symmetry operators, i.e.
actions that leave an object looking the same after they have been carried out. The symmetry
operators considered here are the identity operator ˆ︁I, rotation operator ˆ︁Cα, improper rota-
tion operator ˆ︁Sα, the inversion operator ˆ︁i and reflection operator σβ, with α denoting, that
if the molecule is rotated by 360◦/α around an axis it preserves its symmetry, the improper
rotation meaning combination of subsequent rotation and reflection via a mirror plane per-
pendicular to the rotation axis and β being the mirror plane type, where planes intersecting
a rotation axis are denoted as σv, while the planes perpendicular to it σh. All the operators
corresponding to the point −→x = [x, y, z]T in 3-D space are described by matrices given by
Equations (2.60) to (2.64). Considering, that there is always at least one point left “un-
touched” by these operators, we call groups consisting solely of them symmetry point groups.
With that said, Hermann-Mauguin, Shubnikov, or Schoenflies notation is usually adopted to
denote the relevant point groups, the first one being preferred in crystallography, while the
third one behind the standard in spectroscopy-related fields [129, 130, 131]. Due to this thesis
being oriented at theoretical spectroscopy, solely Schoenflies notation is used from now on.
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ˆ︁I =

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 1

⎤⎥⎥⎦ (2.60)

ˆ︁i =

⎡⎢⎢⎣
−1 0 0
0 −1 0
0 0 −1

⎤⎥⎥⎦ (2.61)

ˆ︁Sα =

⎡⎢⎢⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 −1

⎤⎥⎥⎦ (2.62)

ˆ︁σxy =

⎡⎢⎢⎣
1 0 0
0 1 0
0 0 −1

⎤⎥⎥⎦ (2.63)

ˆ︁Cα =

⎡⎢⎢⎣
cos θ − sin θ 0
sin θ cos θ 0

0 0 1

⎤⎥⎥⎦ (2.64)

Considering the symmetry operators (matrices), their sets, denoting a specific behavior of
an observed object with respect to the relevant symmetry operations, are called a symmetry
representation. These can be further categorized as reducible and irreducible, the former being
linear combinations of the latter, which can be obtained from the reducible ones utilizing
known reduction rules [125]. Both types of representation can be illustrated via character
table, where instead of operators themselves only their characters are listed, as can be seen in
Table 2.1. The characters, in this context, represent traces of the matrix operators given as

Tr(A) =
∑︂

i

∑︂
i

A(i, i), (2.65)

with i denoting the (common) rank of the symmetry matrices as the symmetry matrices
are square. Furthermore, from Table 2.1 it can be seen, that the irreducible representations
A1, A2, B1 and B2 give rise to the reducible representation Γ as Γ = A1 +B2.

C2v E C2 σxz σyz

A1 1 1 1 1
A2 1 1 -1 -1
B1 1 -1 1 -1
B2 1 -1 -1 1
Γ 2 0 0 2

Table 2.1: Table of C2v point group with a reducible representation Γ.

2.2 Dynamics

MDSs is used to analyze the physical motion of nuclei involved in the inspected process. With
the advantage of only needing computational resources instead of laboratory equipment, it
allows for long periods of interactions and subsequent observations than would be practical
otherwise. MDSs were performed in this thesis on the ground-state PES of N+

2 /He adopting
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a hybrid approach, i.e., treating atomic nuclei in a classical manner and electrons quantum-
mechanically, according to the equations

ċα = − i

ℏ
Eαcα −

∑︂
β

σαβcβ, (2.66)

−→ṙ k =
−→p k

mk
, (2.67)

−→ṗ k = −→
F k, (2.68)

where

σαβ =
∑︂

k

−→
λ

(k)
αβ

−→ṙ k, (2.69)

−→
F k = −

∑︂
α

|cα|2 ∇kEα −
∑︂
α ̸=β

c∗
βcα (Eβ − Eα) −→

λ
(k)
αβ , (2.70)

−→
λ

(k)
αβ = ⟨ϕβ|∇kϕα⟩ , (2.71)

where the total electronic wave function of the collision complex given by ψ = ∑︁
i ciϕi is the

solution of the corresponding Schrödinger equation with ci being a probability amplitude, i.e.
|ci|2 denotes the probability of the system is in state |i⟩ and ϕi being the wave function of a
state |i⟩ with the sum running over all possible adiabatic electronic states. −→r k denotes the
vector of a k-th particle position, −→ṙ k then stands for the velocity of k-th particle, −→p k its
linear momentum, and mk its mass. Furthermore, Eα is a potential energy of a system in
state |α⟩ and −→

λ
(k)
αβ a vector of nonadiabatic coupling projected on atom k. These quantities

will serve as an input to subsequent dynamical calculations and obtaining them is the main
focus of this project as a whole.

The quasi-classical trajectory (QCT) approach [132, 133, 134] has been adopted to obtain
sets of trajectories to be further utilized in calculations of collision cross-sections. Every
trajectory is then evolved numerically until a termination criterion is met.

QCT pass vibrational energy into each mode in the initial step, thus improving the re-
sults of solely classical simulations, e.g. considering the calculations of photoelectron [135]
or infrared spectra [136]. Improvements include the better agreement of spectral linewidths
with experiments at lower temperatures and better agreement of vibrational frequencies with
anharmonic calculations.

The improvements at lower temperatures can be explained by the fact, that there is nuclear
motion due to zero-point motion. This fact is inherently involved in the quasi-classical initial
velocities, leading to finite peak widths even at low temperatures. That is in sharp contrast
with classical simulations, which yield zero peak widths in the low-temperature limit as the
thermal kinetic energy vanishes with decreasing temperature. At room temperature, the
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quantum vibrational energy for high-frequency modes tends to become much larger than the
classical kinetic energy. Thus, at QCT regions of PES higher in energy are usually sampled
as they are more anharmonic in contrast with the low-energy regions accessible to classical
simulations. These two effects lead to improvements in peak widths and a more realistic
sampling of the anharmonic parts of PES.

On the other hand, there are several limitations to the approach. The first one is connected
to the so-called “kinetic energy spilling” problem [137], i.e. a possibility of an artificial transfer
of kinetic energy among modes. This is allowed to happen due to the fact, that the initial
velocities are being chosen according to quantum energy levels, which are usually much higher
than the energy levels of corresponding classical systems. Moreover, the classical equations of
motion (EOMs) also allow for the transfer of non-integer multiples of the zero-point energy
among modes, thus leading to a change in selection rules for the transfer of kinetic energy.
The second problem is that QCT is based on classical Newtonian dynamics, which means
that the adopted probability distribution at low temperatures is not so reliable, i.e. can be
incorrect compared to the true quantum distribution [135].

In this way, the coordinates of the colliding particles and their momenta were obtained to
be used in subsequent cross-section evaluations. The numerical configuration of MDS as used
in this thesis is described in detail in the following section.

A cross-section is a quantity tightly bound to a probability of some observed phenomena
happening, typically in context with different types of physical interactions occurring, e.g.
interaction of an alpha particle with an atomic nucleus being quantified via Rutherford cross-
section [138, 139]. Simplistically said, a cross-section can be imagined as an effective geometric
area around some particle, allowing the investigated reaction to occur, if hit by another
interacting particle. Importantly, even if the cross-section has the same units as the area, it
does not generally correspond to the actual physical size of the target given by other forms
of measurement. This thesis is focused on cross-sections of two reactions dominant collisions
of N +

2 with He atoms – non-reactive scattering (NRS) and momentum-transfer (MT).
Specifying a cross-section as the differential limit of a function of some final-state variable,

e.g. particle angle, is called a differential cross section, illustrated by Figure 2.8.
Subsequently, integrating over all possible “scattering-angles” (or other relevant variables)

we obtain the total cross-section.
Considering the collision complex [N2/He]+, NRS, given by

N+
2 + He → N+

2 + He, (2.72)

and the collision-induced dissociation (CID) of the N+
2 ion, given by

N+
2 + He → N+ + N + He, (2.73)
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Figure 2.8: Differential cross section

are of interest in this work. The basic quantity used to quantitatively describe these collision
processes is then differential cross-section, dσ/dΩ.

However, the differential cross-section of the former process cannot be directly used since,
within the classical approach, the differential cross-section of the NRS process has a non-
integrable singularity at the zero deflection angle and, thus, the corresponding integral cross-
section diverges as NRS involves the elastic scattering channel which, at the classical limit,
possesses an infinite integral cross-section. Subsequently, the same holds for NRS channel
itself. To deal with this problem, approximate cross-sections calculated at the momentum-
transfer approximation level [140], momentum-transfer cross-sections (MTCSs), are used. Fol-
lowing our previous studies [141], two types of MTCSs have been considered,

σ
(MT1)
NRS =

ˆ
4π

[︃ dσ
dΩ

]︃
NRS

(1 − cos θ) dΩ, (2.74)

σ
(MT2)
NRS =

ˆ
4π

[︃ dσ
dΩ

]︃
NRS

(︃
1 − p′

p
cos θ

)︃
dΩ, (2.75)

with θ being the scattering angle, p and p′ the magnitudes of the linear momentum of the He
atom before and after the collision, respectively, and [dσ/dΩ]NRS the differential cross-section
of NRS. Hereafter, we will denote the two types of cross-sections as type 1 MTCS (MTCS1)
in the case of Equation (2.74) and type 2 MTCS (MTCS2) for Equation (2.75). The cosine
terms in integrals on the right-hand side of Equation (2.74) and Equation (2.75) suppresses the
divergence of the differential cross-section at θ → 0 and the resulting MTCSs are finite. The
adoption of the momentum-transfer approximation introduces only a negligible error [142].
That said, MTCS1 was originally introduced for elastic scattering while MTCS2 represents a
generalized version presumably better describing non-elastic processes with a transfer of en-
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ergy between translational and internal degrees of freedom. Both approaches were successfully
tested in a series of previous calculations on rare-gas-based collision complexes [143] [144].

For the CID process, a process with a non-zero energetic threshold, such problems do not
arise, thus a standard integral cross-section,

σ
(int)
CID =

ˆ
4π

[︃ dσ
dΩ

]︃
CID

dΩ, (2.76)

may be used even at the classical level.

2.3 Transport Properties

One of the main goals of the research the present thesis is part of was obtaining a detailed
theoretical framework spanning the route from intermolecular interactions, through dynamics
to mesoscopic modelings. With the necessary above-mentioned inputs, the mesoscopic mod-
els provide information about molecular transport properties, specifically dissociation rate
constants, longitude and transverse diffusion coefficients and ionic mobility.

Dissociation reaction
AxBx ⇒ xA+ yB (2.77)

gives rise to a dissociation rate constant defined as

KD = [A]x[B]y
[AxBy] , (2.78)

where [A], [B], [AxBy] denote equilibrium concentrations of reactants A, B and the complex
AxBy, respectively. KD then measures a tendency of a complex to reversibly dissociate into
smaller components, e.g. separate molecules [145].

Talking about diffusion, Fick’s first law

J = −Ddφ
dx
, (2.79)

where J , D, φ, and x denote the diffusion flux, diffusion coefficient, concentration, and posi-
tion, respectively, predicts, that the diffusion flux J always goes from regions of high concen-
tration to regions with low concentration – the effect directly proportional to the concentration
gradient [146]. That said, it is important to also address the character of diffusion with respect
to its “directions” – i.e. the direction of the mean flow and the direction perpendicular to
it with the former being denoted as longitudinal diffusion [147] and the latter as transverse
diffusion [148], which denomination is also used with their respective diffusion coefficients.

Finally, ionic mobility µ is described as an ability of a charged particle to move through
a medium under the influence of a force field, being pulled by the force, with electrical ion
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mobility being our concern in this thesis. Assuming, that the ion moves in a carrier gas,
while the motion is induced by a uniform electric field until it reaches a constant drift velocity
defined vd as

vd = µE, (2.80)

where E denotes the magnitude of the applied electric field.
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Chapter 3

Computational Approach

In this section, the computational details are described in a detailed manner, to explain the
choices made in the numerical realization of the results and also to allow their full repro-
duction, starting with properties of ab initio computations and going over ways to repre-
sent PESs, both via the analytical models and ANNs. The computational environment is
presented, describing the utilized computational cluster in whole detail, together with the
adopted parallelization approach.

3.1 Quantum Chemistry

Numerical properties of ab initio computations of molecular interactions are described here,
containing details for computations of N2, N+

2 , and N+
2 /He . The section begins with the

introduction of the most common quantum chemistry software packages, continuing with the
justification of our numerical settings for all the considered molecules.

3.1.1 Available Implementations

There exist many different implementations of quantum chemistry methods. They usually
offer not-only HF method, but also post-HF methods (CI. . . ), multi-configuration (MCSCF)
and multi-reference methods (MRCI), density functional theory [149, 150, 151, 152] or different
perturbation-theory-based methods [153, 154, 155].

The well-known examples of software available for free are Dalton [156], Dirac [157],
NWChem [158] or PSI [159]. On the other hand, the commercial software examples are,
e.g., Gaussian [160], Q-Chem [161], Turbomole [162] or MOLPRO [163, 164, 165] with the last
being used in this dissertation project.

MOLPRO is a comprehensive system of many ab initio solvers for electronic structure
calculations, originally developed by H. J. Werner and P. J. Knowles with many later con-
tributors. It consists of programs for “standard” computational chemistry problems, which
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are often parallelized in a hybrid manner, on distributed level (via MPI [166]), threading level
(via OpenMP [167]) to the vectorization of elementary numerical operations. While many
methods are implemented in MOLPRO, mainly MCSCF [168, 169, 170] and MRCI [171, 172,
173] were utilized in this thesis, with details of computations described later in this section.

3.1.2 N2 & N+
2 Specific Settings

Detailed research of the N+
2 electronic structure calculations and their convergence has been

performed since the ion represents, with respect to ab initio calculations, the most computa-
tionally difficult part of the N+

2 /He complex. For the electronic states of the N+
2 ion considered

in this work, X2Σ+
g and A2Πu, the same numerical settings and computational schemes have

been adopted with some steps performed to considerably improve the convergence of calcula-
tions. As the first step, a restricted Hartree-Fock (RHF) calculation is run for the N2 molecule.
Then, the state-specific calculations are performed for the N+

2 ion using a MCSCF method.
Finally, the preceding calculations are made more precise, using a MRCI method, as an input.

With N+
2 ion being a linear molecule, its symmetry is naturally described by the D∞h

point group. Considering that only Abelian groups are included in the MOLPRO package,
the D2h point group, the largest Abelian subgroup of D∞h, has been used for this ion. This
subgroup has eight irreducible representations, Ag, B3u, B2u, B1g, B1u, B2g, B3g, and Au,
which are used in this work to represent the symmetry of the N+

2 electronic states instead of
the commonly used MOs notation.

The calculations were performed utilizing different augmented correlation-consistent basis
sets of Dunning et al. [174] from triple through sextuple zeta cardinality, i.e. aug-cc-pVTZ
(AVTZ), aug-cc-pVQZ (AVQZ), aug-cc-pV5Z (AV5Z), and aug-cc-pV6Z (AV6Z).

The dependency of potential energy curves (PECs) on orbital spaces (OSs) has been in-
vestigated for the following cases: a) orbital space 1 (OS1) containing the minimal OS of
N+

2 (comprising MOs 1ag, 1b1u, 2ag, 2b1u, 1b3u, 1b2u, 3ag, 1b2g, 1b3g, and 3b1u)1 augmented,
with a b3u MO (as recommended in [175]), b) orbital space 2 (OS2) consisting of the minimal
OS augmented with two more MOs resulting from 3s atomic orbitals (AOs) of N2 atom (4ag

and 4b1u), c) orbital space 3 (OS3) containing the minimal OS augmented with the two MOs
resulting from 3s AOs (4ag and 4b1u) and with two more bonding MOs resulting from 3px,y

AOs (2b3u and 2b2u), and d) the most extensive orbital space 4 (OS4) with the minimal OS
augmented with all the MOs resulting from all the 3s and 3p AOs of N2 atom (4ag, 4b1u,
2b3u, 2b2u, 5ag, 2b2g, 2b3g, and 5b1u)2. The lowest MOs (1ag and 1b1u) have been treated
as “closed” in MCSCF calculations, i.e., always doubly occupied, and as “core” orbitals in
MRCI calculations, i.e., doubly occupied and with their electrons not involved in excitations,
as described in Section 2.1.4.

11σg, 1σu, 2σg, 2σu, 1πx, 1πy, 1σz, 1π∗
x, 1π∗

y , 1σ∗
z , and 2πx in the standard MO notation, respectively.

23σg, 3σu, 2πx, 2πy, 2σz, 2π∗
x, 2π∗

y , 2σ∗
z
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Internuclear distances were organized in a grid covering a range of r = 0.7−15 Å with a
step of δr = 0.01 Å at short and medium distances (up to r = 5 Å) and ∆r = 0.1 Å in the
long-distance region (up to r = 15 Å). The dissociation distance, i.e. the infinite separation of
the two nitrogen atoms, has been approximated via internuclear distances of r = 20, 50, 100 Å.

Importantly, the spin-orbit coupling is not considered in this thesis, as it is insignificant
compared to the accuracy achieved here for the N+

2 (e.g., the spin-orbit splitting is of the
order of 10 cm−1 to 100 cm−1 in N and N+ [176]) and is completely out of the game in He.

A smooth representation of calculated points has been created, for each discrete PEC,
for subsequent spectroscopic analysis. That said, the grids of the equilibrium distance in the
N+

2 ion, re, the ion binding energy, De, and its harmonic vibration frequency, ωe, have been
calculated while approximated via cubic spline in a small neighborhood of the presumed PEC
minimum. In each case, the point with the lowest energy and eight more points around it
have been used to get the PEC cubic representation via a least squares fit.

Further, fully anharmonic vibrational energies have been calculated using a broader ana-
lytic representation of discrete PECs as implemented in the LEVEL16 software package [177].
Note that the cubic splines have been applied to r2V (r) rather than to V (r) itself on the
repulsion wall to get a more stable numerical behavior. The three points corresponding to the
three largest distances considered (r = 20, 50, 100 Å) have been used to adjust the long-range
part of the potentials approximated as

VLR(r) = Vasymp −
1∑︂

n=0
cn/r

4+2n. (3.1)

This potential was also used for solving the rotational-vibrational Schrödinger equation
for N+

2 .

3.1.3 N+
2 /He Specific Settings

Similar calculations were also performed for the N+
2 /He complex. Considering the increased

computational demands, as compared to N+
2 , the calculations were less extensive. Also, as

already mentioned above, the methodologically most involved part of the N+
2 /He complex is

the inherently multi-configuration N+
2 ion, and no dramatic change is expected in the problem

complexity upon adding the helium atom until charge transfer between nitrogen and helium
becomes important and, subsequently, highly excited electronic states come into play. That
said, the ionization potential of the helium atom is by about 10 eV higher than that of N2,
and the charge transfer between N+

2 and He requires electronically highly excited N+
2 ions.

Thus, only a specific OS and a chosen basis set have been considered in the N+
2 /He case. The

particular choice was made with respect to prospective dynamical calculations as a trade-off
between computational demands and results’ accuracy.
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In correspondence with the N+
2 calculations, the three lowest electronic states of the N+

2 /He
complex were considered, which asymptotically correlate to the X2Σg state and (doubly de-
generate) A2Πu state of the isolated N+

2 ion. For the planar N+
2 /He complex, irreducible

representations of the Cs group have been used to classify the electronic states of N+
2 /He, A′

and A′′. The N+
2 /He ground state, possessing the A′ symmetry, asymptotically correlates to

the X2Σg state of N+
2 , the first excited state of the A′ symmetry and the lowest state of the

A′′ symmetry correspond to the doubly degenerate A2Πu state of N+
2 .

An OS containing eleven a′ MOs and two more a′′ MOs has been used in the case of
N+

2 /He calculations. It corresponds to OS2 introduced in the preceding subsection for the N+
2

ion with a 1s orbital added for He atom. With the prospective dynamical calculations, their
computational cost and desired accuracy in mind, aug-cc-pVQZ(spdf) (AVQZ′) basis set has
been used with only the spdf functions considered and the g functions omitted.

As N+
2 /He complex computations possess some inherent numerical difficulties, they were

performed in a sequence of steps intended to mitigate them, beginning with an RHF calcula-
tion of the (neutral) N2He complex with the minimal OS. Subsequently, either a state-specific
MCSCF calculation has been performed for the N+

2 /He in the case of the ground state calcula-
tion, or a three-state-averaged (2×A′+1×A′′) MCSCF calculation for the first point followed
by a series of two-state-averaged computations for the other points (in the case of the 2A′

calculations) or state-specific calculations (in the case of 1A′′ calculations) with the wave
function ansatz always taken from a preceding step. The adopted scheme of calculations
proved to be crucial for achieving an overall convergence in both the MCSCF method and its
MRCI refinement, where points were computed separately due to runtime demands, taking
the wave function ansatz from the MCSCF step. That said, if the 2×A′+1×A′′ step were to
be omitted, major convergence issues often emerge in MRCI level.

Talking about the angle between the N+
2 axis and the line connecting the He atom with

the center-of-mass of the N+
2 ion, a dense grid of its values were considered in order to reliably

capture the anisotropy of the N+
2 /He PES, θ ∈ [0◦, 90◦] with ∆θ = 15◦, and a broad range and

a grid of internal distances, i.e. the distances between the two N atoms, r, and the distance
between the He atom and the center-of-mass of the N+

2 ion, R, were used, r = 0.7−5 Å
and R = 0.7−5 Å with ∆r = 0.1 Å and ∆R = 0.1 Å, to get an extended and sufficiently
detailed representations of the N+

2 /He PESs. In addition, asymptotic values of r = 100 Å and
R = 100 Å were added to assess the dissociation energy. Continuous smooth representations
of selected 1D and 2D cuts through the three N+

2 /He PESs considered in this work were
obtained approximately using 1D and 2D cubic splines, respectively, as implemented in the
MATLAB software package [178].
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3.2 Representation of Potential Energy Surfaces

As already stated, the following molecular dynamics simulations will be using continuous and
accurate representations of a PES. They are useful so that it is not necessary to perform the
calculations “on the fly” – i.e. run ab initio methods every time new energy is necessary, for
the new geometry.

The disadvantage of utilizing interpolation techniques is that they are highly sensitive to
the density of the grid computed beforehand, so, in a realistic scenario, artificial oscillations
would appear on the resulting PES representation in the regions where the density of grid
nodes is too low. A situation like that sometimes occurs with the grid computed both by
aforementioned ab initio methods and a discrete-time Monte Carlo methods [179, 180], due
to possible convergence problems in the former case and a stochastic aspect of the latter
one. Thus, another two approaches can be adopted – the usage of analytical models and
machine-learning-based models.

3.2.1 Analytical Models

To achieve the desired smoothness, analytical functions based on physical approximations
were introduced and used both in a general manner [181] and in special cases of physical
systems like classical force fields [182]. One of the most well-known and simplest examples is
Lennard-Jones potential [183] given by

VLJ = 4ϵ
[︄(︃

σ

r

)︃12
−
(︃
σ

r

)︃6
]︄
, (3.2)

where r, ϵ and σ denote an internuclear distance between two particles, dispersion energy
and distance, where V = 0, respectively. As typical for the analytical models, they are
assembled empirically, i.e. with their terms having a specific physical meaning – in this case,
the first term, raised to the power of twelve, is a repulsive one, acting in a way of Pauli
repulsion. The second term, raised to the power of six, describes an attractive behavior in
long-distance interactions, acting as dispersion forces.

Such a model can be fitted in a straight-forward manner solving the problem

min−→
θ

n∑︂
i=1

(︂
Vi(

−→
θ ) − ˆ︁Vi(

−→
θ )
)︂2
, (3.3)

where −→
θ , i, n and ˆ︁V denote a vector of fittable parameters, the index of an element from

the data-set computed ab initio, the number of elements in the data-set and a value predicted
by the analytical model.
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The strength of analytical models lies in a very fast evaluation, which causes a minimal
overhead from the perspective of the whole simulation, and in their analytical derivatives
known a priori. On the other hand, their fixed forms impose severe limitations on their
ability to describe various PESs they were not explicitly created for.

One such example can be classical force fields and their difficulties with a description
of creating and breaking of bonds, leading to an invention of new reactive force fields po-
tentials [184]. Besides them, spline-fitting procedures can be successfully applied in some
cases [185], similarly to many-body expansion [186], Shepard interpolation [187], reproducing
kernel Hilbert space [188], and interpolating moving least squares [189].

3.2.2 Artificial Neural Networks

Another way to combine a sufficient smoothness of PES functions concerning density and ho-
mogeneity of the grid, its ability to describe various functional forms and beforehand-known
analytical derivatives, is the utilization of machine learning. At this field, many different
approaches are being investigated, e.g. Moment tensor potentials [190, 191, 192], Spectral
neighbor analysis [193, 194], Atomic cluster expansion [195, 196, 197], Support vector machine
regression [198, 199, 200] or Gaussian Process Regression [201, 202, 203], but the most promi-
nent one stays the usage of ANNs.

That said, there are multiple widely-utilized methods, on how to represent PESs via
ANNs. While there are convolutional ANNs, Hopfield ANNs, counterpropagation ANNs and
Kohonen maps also used in chemistry [204, 205, 206, 207, 208], PESs are usually represented
via “classical” feed-forward ANNs (FFANNs) as illustrated in Section 3.2.2. The output of
such a network is then given as

y(t) =
n∑︂

i=1
αi f(twi + bi), (3.4)

where t, y(t) and f(t) stand for the input, the output and the activation function, which
will be described in this section, too. Variables wn, αn and bn denote so-called weights and
biases, which represent “fittable” parameters of the ANN model. The picture also illustrates
one of the main advantages of machine-learning models – their ability to be enlarged sys-
tematically, i.e. to increase its flexibility without the need to provide additional knowledge
of the system’s physical properties, in contrast with the analytical, “empirical” models. The
enlargement can be done via a) addition of neurons in a hidden layer, i.e. increasing n, or b)
addition of one or more hidden layers, which is an approach widely known as deep learning.

Talking about activation functions, they determine, how the weighted sum of the inputs
is transformed into an output from a node in a hidden layer with a typical choice being the
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Figure 3.1: The scheme of a simple feed-forward ANN with one hidden layer.

functions of the sigmoidal family, like the logistic function

f(x) = c

1 + e−k(x−x0) , c, k, x0 ∈ R, (3.5)

or the hyperbolic tangent

f(x) = ex − e−x

ex + e−x
. (3.6)

Due to possible numerical problems like exploding and vanishing gradient [209, 210] there
are many possible functions to mitigate these effects, e.g. rectifier linear unit [211, 212, 213],
softmax functions [214], rankmax functions [215], Gaussian functions [216, 217] and many oth-
ers.

Having chosen an activation function, the “ANN training” is straightforward and in prin-
ciple very similar to Equation (3.3), as its main part is also optimization of the cost function
C
(︂−→w ,−→α ,

−→
b
⃓⃓⃓
x
)︂

with respect to both weights and biases, i.e.

min
−→w ,−→α ,

−→
b

C
(︂−→w ,−→α ,

−→
b
⃓⃓⃓
x
)︂
. (3.7)
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Now, the cost function can be, again, different with respect to the required numerical
properties, e.g. mean absolute percentage error [218, 219]

MAPE = 100
n

n∑︂
i=1

⃓⃓⃓⃓
⃓Ai − ˆ︂Ai

Ai

⃓⃓⃓⃓
⃓ [%] , (3.8)

its symmetrical version [220, 221]

SMAPE = 100
n

n∑︂
i=1

⃓⃓⃓
Ai − ˆ︂Ai

⃓⃓⃓
(︂
|Ai| +

⃓⃓⃓ˆ︂Ai

⃓⃓⃓)︂2 [%] , (3.9)

the sum of squared errors [222]

SSE =
n∑︂

i=1

(︂
Ai − ˆ︂Ai

)︂2
, (3.10)

or the root-mean-squared error [223]

RMSE =

⌜⃓⃓⎷∑︁n
i=1

(︂
Ai − ˆ︂Ai

)︂2

n
, (3.11)

where n is the number of elements in a training data-set, i.e. number of ab initio computed
energies for different geometries of the system.

All of the abovementioned functions exhibit strong tendencies to multimodality, i.e. to
possess many local optima making it rather difficult, or even impossible, to localize and
recognize the global one. That said, a model can be able to perform reasonably well, with
respect to its prediction capacity, even when equipped with parameters corresponding to a
local minimum close enough to the global one, which, unfortunately, does not remove the
optimization problem.

To deal with it, many approaches were developed, starting with different variants of
gradient-based methods [224, 225, 226], utilization of specific activation functions [227] or
training via gradient-free methods like evolution-based approaches [228, 229, 230] or swarm-
based methods [231, 232, 233, 234, 235].

The point of optimization in functions of such a general character is to take care of both
exploratory and exploitative aspects of the optimization approach [236, 237], i.e. to look at
its ability to investigate a numerical domain at a large scale [238, 239, 240, 241] and detect
promising global minima or local minima close-enough to them and of the ability to get
as close as possible to the localized minimum [242, 243, 244]. While simple gradient-based
methods, typically tend to get stuck at local minima close to the initial point of the numerical
optimization, swarm-based methods, for example, do struggle to get close to the minimum
itself, keeping “jumping” in its neighborhood very often. The usual approach is to either use
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a robust method efficient enough for our needs [245] or to chain several of these methods to
explore the numerical domain globally and to approximate the localized minima as close as
possible via any “local” approach [246].

Another possible caveat of ANNs training is its possible insufficient flexibility. Aside from
manual solutions, like creating oversized networks and simplifying afterward considering its
results, the more systematic way consists of the optimization of ANN’s hyperparameters –
the parameters, determining ANN’s architecture itself, e.g. number of its hidden layers and
their sizes. For that reason, many different hyperparameter approaches were developed [247,
248, 249, 250, 251], usually combined with cross-validation to prevent problems with ANN
overfitting [252, 253].

Overfitted, but also underfitted ANN is an obvious danger, depending not only on the
optimizer but on the quality of the training data set, too. The most prominent problem with
ab initio data is usually an occurrence of outliers, making it necessary to detect and remove
them [254, 255, 256, 257, 258] before the training itself.

The last important thing which needs to be considered before representing PES is the
choice of geometry descriptors, i.e. the convenient particles’ coordinates, which need to be
invariant with respect to the equivalent system’s geometries. Taking simple Cartesian coordi-
nates into account, they will differ after the system is just translated – albeit it is a physically
equivalent situation, considering an isolated system, from ML model’s point-of-view the de-
scriptors, i.e. inputs, are completely different, thus the resulting energy will be probably also
different. An obviously better choice would be internal coordinates, as illustrated in Figure 3.2
for a 3-body system with two internuclear distances and one angle. Looking at the figure, it
is obvious, that such description offers an invariance with respect to both translational and
rotational transformations. However, it is not sufficient for permuted systems, where their
atoms got exchanged. In such a case, the description of both internal distances and angles
differs, thus it is not self-sufficient for ML.

One of the most popular “self-sufficient” methods for assembling convenient geometry de-
scriptors is the Behler-Parrinello approach based on atomic-centered symmetry functions [259,
260], which describe an atomic neighborhood defined strictly by cutoff limit, thus limiting the
number of described interactions. This approach is very useful for large systems, where small
inaccuracies are not significant for an overall behavior and the number of particles involved
renders other approaches infeasible. However, due to the small number of particles in N+

2 /He
collision complex, this one, or other novel approaches [261, 262] was not in our interest.

The other approach, more suitable to smaller systems and very-well researched [263, 264,
265] is utilization of PIPs. The approach is, in our case, advantageous because of its simplicity,
thus it was adopted in this thesis.

The method utilizes the monomial symmetrization approach [266, 267, 268] starting with
the system described via all the internuclear distances rij , between i-th and j-th particle,
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Figure 3.2: An example of internal coordinates for 3-body system

rendering inner angles unnecessary for its purposes, as illustrated in Figure 3.3.

The first step is the transformation from the distances to reciprocal values

yij(rij) = 1
rij

(3.12)

or to Morse variables [266]

yij(rij) = 1 − e−rij/c, c ∈ R (3.13)

which are further expanded in multinomials. For example, in the case of a 3-body system,
the potential looks like

V =
M∑︂

m=0
Cabc

[︂
ya

12 y
b
13 y

c
23

]︂
(m = a+ b+ c), (3.14)

where C are real coefficients. In the next step, multinomials get replaced with monomials
like

V =
M∑︂

m=0
Dabc S

[︂
ya

12 y
b
13 y

c
23

]︂
, (3.15)

with S denoting a general operator, that symmetrizes monomials. For illustrative pur-
poses, the symmetrization approach is shown at Table 3.1, considering a model molecule A2B

with basis elements listed in Table 3.2. The potential V then looks like
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Atom labels
(A A B) Monomial Normal order

1 2 3 ya
12y

b
13y

c
23 ya

12y
b
13y

c
23

2 1 3 ya
12y

b
23y

c
13 ya

12y
c
13y

b
23

Symmetrized
term ya

12

(︂
yb

13y
c
23 + yc

13y
b
23

)︂
Table 3.1: An example of monomial symmetrization

m Basis elements
0 [0 0 0]
1 [1 0 0] [0 1 0] [0 0 1]
2 [1 1 0] [1 0 1] [0 1 1]

[2 0 0] [0 2 0] [0 0 2]

Table 3.2: Example basis for A2B molecule

Figure 3.3: 3-body system described via only internuclear distances

V (−→r ) = V0(−→r ) + V1(−→r ) + . . .+ VM (−→r ) (3.16)

Vm(−→r ) = Dabc y
a
12

(︂
yb

13y
c
23 + yc

13y
b
23

)︂
(3.17)

m = a+ b+ c (3.18)

m ∈ 0, 1, . . . ,M, (3.19)

with coefficientsD ∈ R to-be-fitted via least squares, in the same manner as given by Equa-
tion (3.7).

In this thesis, fully-connected FFANNs were used. The architecture consisted of four
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Theoretical
Peak [TFlops/s]

Storage
Capacity [TB]

Interconnect
Throughput [Gb/s]

Salomon 2011 2138 56
Barbora 849 339 100
Karolina 15700 1400 200

Table 3.3: Technical overview of utilized computational clusters.

layers including an input layer with three neurons representing coordinates of the N+
2 /He

collision complex, two hidden layers containing twenty and five neurons, respectively, and an
output layer providing the interaction energy of the complex. Standard logistic activation
functions given by Equation (3.5) were assigned to the neurons in hidden layers while the
linear activation function

f(x) = ax+ b, a, b ∈ R (3.20)

is used both in the input and the output neurons. The training data sets were created via
MDSs performed in the on-the-fly regime.

Separate ANNs were trained for each initial rotational-vibrational state of the N+
2 ion and

each collision energy, with training utilizing Kalman filter approach [269]. That way, a set
of [j, v, Ecoll] specific ANNs was obtained with j and v denoting rotational and vibrational
state, respectively. PIPs of reciprocal values of distances between atomic nuclei in the N+

2 /He
complex was used as the input to the ANNs.

The size of training sets was not equal for all the cases – the number of training points
depended on the collision energy Ecoll, the number decreasing with the increasing Ecoll. That
said, the numbers range from 105 to 4 × 106 of elements, order-wise.

3.3 Computational Resources

All the computations were realized utilizing the computational infrastructure of National Su-
percomputing Center IT4Innovations3. Namely, the utilized clusters were Salomon4, Barbora5

and Karolina6 with their specifications listed in Table 3.3. Also, some of the auxiliary results
were computed on Curie cluster, provided by LCPQ institute7.

3https://www.it4i.cz
4https://www.it4i.cz/en/infrastructure/salomon
5https://www.it4i.cz/en/infrastructure/barbora
6https://www.it4i.cz/en/infrastructure/karolina
7https://www.lcpq.ups-tlse.fr
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Chapter 4

Results

This section is an overview of the results achieved in the course of the dissertation project. It
starts with thoroughly described results of molecular interactions, followed by the molecular
dynamics and the computations of the transport properties.

The molecular interactions part comprises the all achieved results, as it was the main focus
of this project and the work mainly done by the author. The other two parts are present to
put all the results in context, while the presentation is briefer, as these results were mostly
achieved by other colleagues, and the author’s participation in the computations themselves
was marginal.

From now on it will be strictly specified, when the results were not achieved directly
by the author to prevent any possible confusion and diminishing of someone’s intellectual
involvement.

4.1 Electronic Structure

This part describes ab initio computations of molecular interactions in great detail. It starts
with standalone N+

2 cation as the major part of the whole collision complex N+
2 /He , after

the expected charge transfer

N2 + He+ → N+
2 + He, (4.1)

due to the significant difference in the ionization potentials of He and N2. Thus, elec-
tronically excited states of the resulting N+

2 ion will play a significant role due to the excess
energy released by the charge hop. Supposedly, N+

2 is determining a predominant part of
physical (and numerical) properties of the complex, which is fully investigated and described
afterward.
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That said, a thorough numerical analysis was performed (and published in [270]) with re-
spect to different orbital spaces and basis sets, not only to determine an optimal configuration
but also to obtain a sufficient MCSCF configuration for MDSs, as the computational demands
make on-the-fly MRCI usage infeasible.

To further reduce the computational costs and to simplify the computations, the core cor-
relation is not taken into account in our calculations, leading to an expected underestimation
of the dissociation energy of ∼ 0.05 eV and an overestimation of the bond length and harmonic
frequency of respectively 0.001 Å and ∼ 10 wavenumbers [271].

4.1.1 Dinitrogen Cation N +
2

Accurate calculation of correlation effects for N+
2 -ion is known to be a very difficult problem.

In general, the larger the basis set and the larger the active space for MRCI, the better the
results. But for N+

2 , as shown by Liu and colleagues [272], this is not a systematic situation.
This is also confirmed in this work as shown in Table 4.1 which shows the ground state
dissociation energy for different basis sets and active sites. In fact, at the MRCI level, the
separation energy for all active spaces increases on a fixed basis, while for a given basis set,
increasing the orbital spaces leads to a decrease in the binding energy. Compared to the last
experimental value of De = 8.71 eV, [273] AVQZ′/OS2 appears to be a reasonable choice,
moreover at a relatively low computational cost. In this case, the difference between MCSCF
and MRCI is only 3.7% with an absolute error of 0.321 eV. With this combination, re for
MCSCF and MRCI are 112.1 pm and 112.0 pm, respectively, and the corresponding ωe, 2193
and 2185 cm−1, compared to the experimental values re = 111.6 pm and ωe = 2207 cm−1 [274].

In general, the variations with basis sets and active spaces are smoother, and we only report
the differences between MCSCF and MRCI calculations. Figure 4.9 shows the evolution of
the difference between the spectroscopic constants MCSCF and MRCI. As can be seen, the
trend with different basis sets is almost the same, no matter what active space is considered.
Except for the smallest case, OS1, all active spaces with an increasing basis give better results.
Also AVQZ′/OS2 seems to be a good compromise with very little variation in the MCSCF
results compared to the reference AV6Z/OS4 MRCI.

The difference between MCSCF and MRCI potential energy for the ground state is shown
in Figure 4.8 for the full range of r. Even when increasing the fixed threshold or active
space (inset), quite bad behavior is seen due to the subtle interaction of static and dynamic
correlation, as well as an approximation of the consistency size. All previous comparisons show
that MCSCF and MRCI PEC show a similar shape around the minimum. This similarity in
PECs is also reflected in the differences in vibrational levels in Figure 4.9. The differences
are very small for the lowest five levels when using the OS2 space and the AVQZ basis set or
larger. This difference gradually increases with v but remains low until v = 15. The difference
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in larger v is related to the error in De already commented above. Although the absolute
errors seem large in some cases ( ∼500 cm−1 ), the overall difference between the MRCI and
MCSCF results remains less than 2 − 3% for vibrational of Gv levels.

In Table 4.2 we give the dissociation energy of the A 2Πu state for different basis sets and
sizes of the active space. The same trend for the baseline can be seen here. Increasing the
basis set deepens the potential well, while the effect on the active space is less systematic, for
example, the deviations of MCSCF vs MRCI are larger for OS3 than for OS2. After that,
AVQZ′/OS2 also seems to be a good compromise for this condition.

The global behavior for re, ωe and De shown in Figure 4.11 is generally the same as
obtained for basic state. The results are again in favor of the AVQZ′/OS2 combination,
which compares well to the best estimate with AV6Z/OS4.

In Figure 4.12 it is seen that the energy difference between MCSCF and MRCI decreases
globally with increasing basis sets and does not show the same behavior with r with a small
increase near r = 2.5 Å and around the minimum. As in the ground state, the green curve
corresponding to the calculation set AVQZ′/OS2 gives the overall best match between the
MCSCF and MRCI energies for all r.

Figure 4.13 shows the monotonic change in the difference of vibration levels MCSCF and
MRCI with v. Again, the best agreement with reference calculations (AV6Z/glsos4, MRCI)
is obtained for the combination AVQZ′/OS2. Based on a detailed examination of the various
basis sets and active sites for the ground state and the first excited state of the N+

2 ion,
AVQZ′/OS2 appears to be a good candidate for a balanced description of all fundamental
spectroscopic data at a reasonable computational cost. This is further illustrated by the
figures 4.14 and 4.15, where AVQZ′/OS2, AVQZ′/OS2 and AV6Z/OS4 potential curves for
the two lowest states are plotted. The global behavior is good and the curves are quite
similar, although the binding energy is slightly underestimated for the ground state (X 2Σ+

g )
and slightly overestimated for the excited state (A 2Πu) at the MCSCF AVQZ′/OS2 level. It
is noteworthy that for both states the results for MCSCF AVQZ′/OS2 almost match those for
MRCI AV6Z/OS4. Thus, this reasonable choice will be used to perform dynamic calculations
for the N+

2 /He complex using on-the-fly MCSCF or neural network-based potentials. In the
figures 4.8 and 4.12 we show the difference between the potential energies MCSCF and MRCI
for the ground state X 2Σ+

g and the lowest excited state A 2Πu , relative to the dissociation.
From these graphs it is clear that the spaces OS1 and OS2 (brown and blue curve) lead to larger
deviations than the active space OS3 with the same basis set AV6Z (red curve). Regardless of
the basis set, OS3 leads to close potential curves over a large range of interatomic distances,
with a maximum difference of ≲ 0.2 eV for the ground state and less than 0.3 eV for the
excited state. This is true for the mean set AVQZ′ at the expected reasonable computational
cost for the complex N+

2 /He . The similarity of the potential curves can also be seen in the
differences in the vibrational levels of the two states shown in figures 4.9 and 4.13 are signed
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off. In both cases, the differences are very small for the lowest five levels when using the OS3
space and the AVQZ basis set or larger. For the ground state, the difference grows slowly
with v but remains very low up to v = 15, indicating that usually the dissociation part of the
potential is affected by the missing dynamical electron correlation. The same trend applies to
the excited state, but slightly worse. Although the absolute errors seem large in some cases (
∼1000 cm−1 ), the overall difference between the MRCI and MCSCF results remains less than
2–3 % for levels vibrations Gv. The effect of increasing the active area on the spectroscopic
constants re, De and ωe is very small, as can be seen in Figures 4.10 and 4.11. At the MRCI
level, the ground state dissociation energy obtained with the AVQZ basis set and the OS3
active space, 8.75 eV (see Table 4.1), compares very well with the recent experimental value,
De = 8.71 eV [273], for example re = 111.6 pm and ωe = 2207 cm−1 spectroscopic constants
[274]. The same goes for the A 2Πu state. An important point here is the size of the basis set,
as evidenced by the significant differences between AVTZ and other extended basis sets.

With all that said, all the research efforts were focused on reactions described by Equa-
tions (2.72) and (2.73), while the uncommon processes

N+
2 + He → [NHe]+ +N (4.2)

N+
2 + He → NHe +N+ (4.3)

were omitted in the current phase of the project both due to the very large collision
energies necessary and due to an impractically low probability of happening. Similarly, the
charge-transfer channel

N+
2 + He → N2 + He+ (4.4)

was only briefly considered, as the reaction would also require very high collision energy,
but also the dinitrogen cation N+

2 in a highly excited state, notoriously hard to obtain via ab
initio methods. That said, the preliminary computations were performed both for N+

2 itself
and the whole N+

2 /He complex, as described in this section and Section 4.1.2, respectively.
The assumed relevant states are illustrated in Figure 4.1. Their computations exhibited,

as expected, a number of numerical problems, which have been dealt with only partially,
so far. The first attempt is visualized at Figure 4.2, demonstrating convergence problems
on the eleven lowest ag states, with 5 lowest ones being significantly better converged than
the rest, although every single one except the two lowest states is “contaminated” by one
or multiple avoided crossings, the phenomenon occurring more often with higher excitation
as the states do cross each other frequently. With rather “robust” numerical configuration,
adopting aug-cc-pV5Z basis set, OS2 and a subsequent usage of HF, MCSCF and MRCI,
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the computations obviously need more even more careful treatment. For that, it is vital to
compute possibly more states than necessary to interpret avoided crossings correctly, while
the highest states tend to be always the ones with the most severe convergence problems.
Eventually, the greatest improvement with respect to the convergence issues was adopting an
approach, where the wavefunction gets stored after every computed point in MCSCF method
and so the 1-D cuts of MCSCF grid are computed in a continuous manner, using the previous
point’s wavefunction as an initial point for the current one. In the subsequent step, MRCI
is run point-wise, as with the first computations, because of its significant runtime, but it is
also using the wavefunctions of the corresponding MCSCF points as an initial state for the
optimizer. This approach is described in Section 3.1.2.

To broaden our initial understanding of the doublet, higher excited states of N+
2 , there

were computed eleven states of Σ+
u , Σ−

u , Σ+
g , Σ−

g , Πg, and Πu irreducible representations and
the dissociation limits specified by separated atom term symbols, were also determined. These
results are illustrated in Figures A.1 to A.6 in Appendix A.

Finally, higher collision energies were also partially computed, mostly for testing the ANN-
based approach of PES representation, to evaluate its usefulness even for these models. The
preliminary results for the collision energy Ecoll = 25 eV seem very promising, with the abso-
lute residual (energies obtained via MCSCF - energies obtained via ANN) mean of 0.00018H
and maximum residual mean of 0.00525H. Both the sample-wise and cumulative residual
distribution can be seen in Figures 4.3 and 4.4. The ANN here consisted of 2 hidden layers
containing 20 and 5 neurons, respectively. All the hidden neurons were equipped with logistic
activation functions, described by Equation (3.5).

Figure 4.1: PECs of different doublet N+
2 states with a relevant excitation window visualized.
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Figure 4.2: PECs of different doublet N+
2 Ag states

4.1.2 Collision Complex [N2/He]+

Extending the N+
2 calculations presented in the previous subsection, we also performed similar

calculations for the N+
2 /He complex with the main goal of verifying the accuracy of the

MCSCF and MRCI methods in this, more complex, case. To save computational time, only
an approach similar to AVQZ′/OS2, which proves the quality of the N+

2 calculations in the
previous subsection, is used, so the detailed convergence analysis is not performed again for
N+

2 /He .
In Figure 4.16 we show MRCI and MCSCF PESs for selected slices of the potential energy

surface for different approximation angles. In any case, the MRCI curve at short He−N+
2

distances is less repulsive than the MCSCF curve because the dynamical correlation between
He and N+

2 electrons. In Table 4.4 we list the minimum of the potential ground state curve
for the MCSCF and MRCI calculations. For comparison with previous calculations, we also
report the He−N+

2 distance and the corresponding dissociation energy for a typical T-shaped
geometry and θ = 45◦. In all cases, the distance N+

2 is kept equal to its equilibrium value
(re = 2.11 a.u. ≈ 1.117 Å). We see that our results MRCI are very close to the previous
calculations [275, 30, 27]. As seen in Table 4.4, our calculation found a minimum for geometries
close to the 45° angle of attack, as was the case in Miller’s MCSCF-CI study et al. [26] but
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Figure 4.3: Distribution of residuals MCSCF - ANN for Ecoll = 25 eV .

differs from the calculation of Guillon and Stoecklin [27] who found the T-shaped form to
be the most stable structure. We can also note that for 90° the second one gets a shallower
potential. Unfortunately, these authors did not provide sufficient computational detail to
investigate the origin of this discrepancy. The well depths are so close together that this
sensitivity may result from different multireference treatments or different basis sets. For
both excited states of A′ and A′′ symmetry, we found a minimum at 90° as reference [30] with
very similar characteristics.

More than all previous studies, we have explored PES not only at the smallest but also at
a larger scale to gain insight into its global behavior and test its sensitivity to the most inter-
esting of ab initio methods previously considered for N+

2 . Some representative sections of the
PESs ground state of the N+

2 /He ion at a fixed angle corresponding to the N+
2 /He equilibrium

geometry (θe) are shown in figures 4.17 and 4.18 for MCSCF and MRCI, respectively. In both
images, the minimum area in the inset has been enlarged. Along the distance He−N+

2 (R) the
behavior is relatively flat, but at very high energies around 8000 meV we see the beginning of
the exit recombination channel HeN+ + N. The global shape is the same for the MCSCF and
MRCI potentials, although the HeN+ MRCI minimum valley appears to be slightly shifted
to smaller R distances. This agrees with our comment about Figure 4.16. For both excited
states, as shown in Figures 4.19 to 4.22, the global behavior is very similar between MCSCF
and MRCI again with a shallow minimum in R. The main difference is that for both excited
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Figure 4.4: Cumulative distribution of residuals MCSCF - ANN for Ecoll = 25 eV .

states MRCI leads to a slightly deeper well, to a slightly shorter R.
With all this in mind, we conclude that the MCSCF/AVQZ′/OS2 approach represents an

acceptable compromise between computational requirements and accuracy from the point of
view of subsequent dynamic calculations. To further support this choice, we carefully examine
the computational costs of the MCSCF and MRCI methods (used at the AVQZ′/OS2 level).
This analysis shows that for the version of MOLPRO used in this work and for the computers
where the calculations were performed (equipped with 2.6 GHz AMD 7H12 processors with
fully 128 CPU cores and 256 GB RAM per compute node), typically about 45 seconds are
needed to evaluate the interaction energy N+

2 /He and its gradients in the ion configuration
when MOLPRO runs in serial mode (i.e. without parallelization). From the perspective of
future dynamic computations, where typically thousands of trajectories are needed, each con-
taining (depending on the collision energy) hundreds to thousands of integration steps, a total
of tens of thousands of core clocks are required for integration. collision data (cross sections)
for certain collision energy, an acceptable requirement when using modern supercomputers.
When using the MRCI method, on the other hand, the situation is less favorable. At the
same level of accuracy (AVQZ′/OS2), a single-point calculation (performed in serial mode)
requires about 90–100 hours for low collision energies (Ecoll ≈ 0.01 eV) and this number de-
creases approximately to 5–10 hours in the region of high collision energy (Ecoll ≈ 50–100 eV).
The resulting requirements of dynamical calculations thus reach the level of several million
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to several tens of millions of core hours for collision energy. While such requirements are still
acceptable for today’s available supercomputers, the associated wall times of up to tens or
even hundreds of days are not.

Eventually, an interesting question that deserves a thorough consideration is the effect
electronic excitations have on the dynamics of N+

2 /He collisions. Calculations focused on this
problem are being presently prepared in our group. An approximately diabatic interaction
model including the lowest electronic states of the N+

2 /He ion (2 × A′ + A′′) proposed in [30]
and asymptotically correlating to the X 2Σ+

g and A 2Πu states of the N+
2 ions will be used and

build up on the results obtained within the present work.
The chosen preliminary results containing a demonstration of basis set and orbital space

effects on N+
2 /He PECs are visualized in Figures 4.5 to 4.7. The computations were performed

utilizing only MCSCF due to its speed and with the primary goal of obtaining knowledge
of the specific numerical behavior and the problems present. The points group is, again,
Cs and there are 7 states being computed together in the state-averaged regime, with 5 of
them belonging to A′ irreducible representation and the two remaining states to A′′. The
computations were performed with aug-cc-pVTZ, aug-cc-pVQZ, aug-cc-pV5Z, and aug-cc-
pV6Z basis sets together with both abovementioned orbital spaces, i.e. 11A′, 2A′′ and 12A′,
3A′′. Finally, the nitrogen distance was fixed as r = 1.12Å and the energy was computed as
dependent on R with the internal angle θ = 0◦, 45◦, 90◦. All the configurations computed so
far can be seen in Figures B.1 to B.24.

4.2 Molecular Dynamics

This part focuses on the description of the results achieved with MDSs using the knowledge
gained from this work, i.e. information on molecular interactions. This and the following
section will not describe the problems in depth, but only present the results, as the main goal
is to put the results of this work into the perspective of the wider project.

The author claims that the following results were done with his colleague S. Paláček (co-
author of [270, 276, 277]) who did the calculations.

Since, to the best of the author’s knowledge, no direct measurements have been reported
in the literature for NRS cross sections of N+

2 /He or CID cross sections, an indirect com-
parison of experiments can be made with pseudo-experimental MTCS1 values obtained from
measurements mobilities of N+

2 /He using the inverse method described in [275]. An overview
of the most extensive experimental data on mobility N+

2 /He [278, 279, 280] is given in Ap-
pendix Figure 4.23, corresponding to MTCS1s obtained from inverse method (IM) is shown
in the main panel of the figure. A summary of the data obtained for MTCSs, especially for
MTCS1, is given immediately in Figure 4.24, with the most important observations obtained
in Figure 4.24 following. First, very good agreement was found between theoretical data and
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Figure 4.5: Convergence of N+
2 /He PECs for the 1st state.
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Figure 4.6: Convergence of N+
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Figure 4.7: Convergence of N+
2 /He PECs for the 7th state.

IM calculations for Ecoll ≈ 0.05−1.0 eV. This is particularly evident when theoretical data are
compared with IM values obtained from recent experiments [280]. Second, for low collision
energies (here represented by Ecoll = 0.01 eV), a clear deviation between theory and IM is
seen. The theory underestimates the average IM by about 4–5 times, probably because the
MCSCF method underestimates the high polarization forces acting between the N+

2 ion and
the He atom for a long time it does not describe. distances with sufficient accuracy. And
these long distances are often significant at very low collision energies such as Ecoll = 0.01 eV
as described in Figure 4.25 where the MTCS1s contributions are described for j=0,v=0 and
selected collision energy.

Another important issue that is the difference between the data obtained with MTCS1s
(Equation (2.74)) and MTCS2s (Equation (2.75)) is analysed in Figure 4.26. The data shown
in this figure clearly show that both methods of MTCS calculations give similar results, the
deviations are (mostly) below 0.6 Å2, even for the largest N+

2 rotational-vibration excitation
and the highest collision energy, where inelastic processes can be expected to play a role.

Furthermore, not much can be said about the N+
2 /He CID cross-section, except that it

is very small at all collision energies and for all N+
2 rotational-vibrational excitations, as is

evident from what is seen from Figure 4.27. Interestingly, even at the highest N+
2 vibrational

excitation (j=0,v=10), the CID cross section is always below about 0.8 Å2 when there are
two lower excitations. is also considered here for the rotational-vibrational ground state of
the ion N+

2 .
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As discussed before, FFANNs were constructed specifically for each N+
2 initial rotational-

vibrational excitation and for each collision energy considered. In this way, highly accurate
representations of specific domains of the N+

2 /He potential energy surface which are relevant
at particular collision conditions have been obtained. As an illustration of achieved accuracy,
we provide a comparison between cross-sections obtained for N+

2 (j=0,v=0) from the on-the-
fly calculations and from alternative calculations using the optimized ANNs in Figure 4.28.
The agreement between the two calculations is excellent and the accuracy of the ANNs is thus
fully warranted. The quality of the developed ANNs is further guaranteed by insignificant
deviations between the training energies and the estimates returned by the ANNs. Typically,
the deviations are well below 1 meV for Ecoll ≲ 1 eV, up to 5 meV for Ecoll ≲ 50 eV and reach
only about 13 meV for the highest collision energy considered in this work (Ecoll = 100 eV).

And finally, the effect of angular momentum (J) alignment N+
2 on collisions N+

2 /He is de-
scribed for the particular case j=0,v=0 by Figure 4.29, where the cross sections are calculated
for parallel (PAR) and perpendicular (PER) aligned J are compared with data obtained for
unaligned J (NA). As can be seen from Figure 4.36, the MTCSs values obtained for PAR,
PER, and NA of J are relatively close to each other, which means that the alignment effect of
J from MTCS is generally small, considering the collision energy. The only exception is the
lowest collision energy, Ecoll = 0.01 eV, where the difference between PAR/NA and PER/NA
data is approximate ±5 Å2 is (but still less than 10 % of the NA value). For the CID cross-
sections, the differences appear to be more pronounced when the relative deviations are taken
into account, but the absolute magnitude of the differences is small. Importantly, the CID
cross-sections are small for both N+

2 both with aligned and non-aligned J .

4.3 Transport Properties

In this section, the transport properties of N+
2 in He and He+ in N2 are briefly described,

because this is the last development of the whole project at the moment.
These results were produced using the results of MDSs as input and the author of this work

did not participate directly, as the computations themselves were performed by colleagues from
the laboratory LAPLACE1.

First, considering the available results in the literature, selected mobility measurements
of N+

2 /He (K0N) [278, 281, 279, 280, 282] published in the last five decades are summarized
in Figure 4.30 . It is clear that the recent results [278, 281, 279, 280] are in good agreement
and their reliability can be considered established. However, [282]’s oldest measurement is
significantly different from the most recent and will therefore not be considered in the current
analysis.

1www.laplace.univ-tlse.fr
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A comparison of our transport property estimates calculated for the rotational-vibrational
ground state N+

2 (j=0,v=0) with pseudo-experimental IM benchmarks is illustrated in Fig-
ure 4.31. In the top panel of the figure, N+

2 /He mobility is considered the most important
finding that the agreement between our theoretical data and the IM data is very good. In
the bottom panel of Figure 4.31 our theoretical and pseudo-experimental IM estimates of the
longitudinal (DL) and transverse (DT) diffusion coefficients N+

2 of ions in helium are com-
pared. Note that, for simplicity, only IM values obtained from cross sections obtained from
the latest experimental mobility data [280] are given, since the two residues that the IM data
come from experiments [278, 279] almost matches the description. As with the N+

2 motion, a
perfect agreement was found between theoretical and pseudo-experimental IM data for weak
and moderate electric fields.

Next, for the most recent experimental data [280], we found [276], which resulted in IM
cross sections (MTCSs) in agreement very close to our theoretical estimates only in a limited
range of collision energies (varying between Ecoll ≈ 0.05 eV and Ecoll ≈ 2 eV). Outside this
region the agreement is worse, the differences between the theoretical and IM data are very
clear. On the other hand, an excellent agreement can be seen with the motion data in almost
the entire range of electric field reduction considered Figure 4.31, at least up to E/N ≈ 200–
250 Td.

The roots of this apparent difference can be revealed from Figure 4.32, where the collision
energy distributions at the N+

2 /He center of gravity are described for selected values of electric
field reduction. These distributions reach their maxima around Ecoll ≈ 0.04 eV for E/N =
10 Td and around Ecoll ≈ 1.9 eV for E/N = 100 Td. This means that the average collision
energy at which collisions occur in electric fields where perfect agreement is found between
theoretical and experimental mobility values falls within the region where a similar agreement
is found for cross sections.

In [276], we have found that the effect of initial rotational and (or) vibrational excita-
tions in the N+

2 ion (prior to its collision with a helium atom) is only marginal in the NRS
process (Equation (2.72)), even for quite high excitations (j=0,v=10). Somewhat better pro-
nounced changes upon considering rotationally and/or vibrationally excited N+

2 ions have
been observed for the CID (Equation (2.73)) cross-sections. Here, we analyze how the N+

2
rotational-vibrational excitations influence the transport properties of the ion and its CID rate.
A comprehensive picture is provided in Figure 4.33 where the same rotational and vibrational
excitations of the N+

2 ion are included as those considered in cross-section calculations [276].
To illustrate expected uncertainties of transport data due to the use of either type 1 or type

2 MTCSs (Equation (2.74) and Equation (2.75), respectively), differences in the N+
2 mobility

calculated using the two types of MTCS are depicted in Figure 4.34. This figure leads to a
similar conclusion as for the cross-sections [276], the differences are generally insignificant (up
to 1 %) for all N+

2 rotational and vibrational excitations and in the entire range of electric
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field reduction.
Finally, for the N+

2 mobility in He , the effect of J alignment can be seen in Figure 4.36
considering perpendicular (PES), parallel (PAR), and unaligned (NA) configurations. Here,
the values obtained for the PER J alignment are at most 8 %̇ above the NA values, and the
values resulting from the PAR alignment are almost the same (relative) deviations reduced
with respect to the NA value. Fairly significant PER/PAR/NA differences can be seen in
the DL/DT curves shown in the middle panel Figure 4.36. While a marginal difference (up
to 1 %) is obtained in the weak field region ( E/N ≈ 1–10 Td ), it gradually increases with
increasing electric field strength.
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Figure 4.8: Differences between MCSCF and MRCI calculations (MCSCF −MRCI) performed
for the X 2Σ+

g state of the N+
2 ion at the OS2 level: diamonds/blue AVTZ, down triangles/red

AVQZ, up triangles/violet AV5Z, and squares/brown AV6Z. Values obtained for the AVQZ′

basis set (empty pentagons/orange)and difference with MRCI/AV6Z (full pentagons/green)
are also shown for comparison. In the inset, the evolution of calculated differences with the
orbital space is shown as obtained for the largest basis set used in this work (AV6Z): pluses
OS1, squares OS2, circles OS3, and times OS4. All the energies are set to zero as r approaches
infinity.
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lowest vibrational levels of N+
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Table 4.1: Dissociation energies for the X 2Σ+
g state of the N+

2 ion as obtained from MCSCF
(DMCSCF

e ) and MRCI (DCI
e ) calculations and absolute (δDe ≡ DMCSCF

e − DCI
e ) and relative

(δrDe ≡ δDe/D
CI
e ) differences between them. The last line (denoted by “T-6”) in each sec-

tion contains the differences between the cheapest, MCSCF /AVTZ, and the most accurate,
MRCI/AV6Z, results. For OS2, the difference between MCSCF /AVQZ′ and MRCI/AV6Z is
also added (line “Q′-6”) for comparison. All the energies are given in eV.

basis DMCSCF
e DCI

e δDe δrDe

orbital space 1 (OS1)

AVTZ 9.153 8.656 0.497 +5.7 %
AVQZ 9.208 8.860 0.348 +3.9 %
AV5Z 9.213 8.920 0.293 +3.3 %
AV6Z 9.214 8.944 0.270 +3.0 %
T-6 0.209 +2.3 %

orbital space 2 (OS2)

AVTZ 8.976 8.608 0.368 +4.3 %
AVQZ′ 9.023 8.702 0.321 +3.7 %
AVQZ 9.033 8.817 0.216 +2.5 %
AV5Z 9.038 8.877 0.16 +1.8 %
AV6Z 9.039 8.901 0.137 +1.5 %
Q′-6 0.122 +1.2 %
T-6 0.075 +0.8 %

orbital space 3 (OS3)

AVTZ 9.169 8.599 0.570 +6.6 %
AVQZ 9.247 8.811 0.436 +5.0 %
AV5Z 9.254 8.872 0.382 +4.3 %
AV6Z 9.255 8.896 0.359 +4.0 %
T-6 0.273 +3.1 %

orbital space 4 (OS4)

AVTZ 8.960 8.543 0.418 +4.9 %
AVQZ 9.026 8.754 0.273 +3.1 %
AV5Z 9.031 8.815 0.217 +2.5 %
AV6Z 9.033 8.839 0.195 +2.2 %
T-6 0.121 +1.4 %
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Table 4.2: The same as in Table 4.1 but for the the A 2Πu electronic state of the N+
2 ion.

basis DMCSCF
e DCI

e δDe δrDe

orbital space 1 (OS1)

AVTZ 8.037 7.554 0.483 +6.4 %
AVQZ 8.085 7.747 0.337 +4.4 %
AV5Z 8.089 7.805 0.284 +3.6 %
AV6Z 8.090 7.829 0.261 +3.3 %
T-6 0.208 +2.6 %

orbital space 2 (OS2)

AVTZ 7.953 7.519 0.435 +5.8 %
AVQZ′ 7.996 7.601 0.395 +5.2 %
AVQZ 8.004 7.712 0.292 +3.8 %
AV5Z 8.008 7.77 0.238 +3.1 %
AV6Z 8.009 7.793 0.216 +2.8 %
Q′-6 0.203 +2.6 %
T-6 0.160 +2.0 %

orbital space 3 (OS3)

AVTZ 8.255 7.519 0.736 +9.8 %
AVQZ 8.316 7.715 0.601 +7.8 %
AV5Z 8.314 7.778 0.536 +6.9 %
AV6Z 8.315 7.802 0.513 +6.6 %
T-6 0.453 +5.8 %

orbital space 4 (OS4)

AVTZ 7.939 7.466 0.473 +6.3 %
AVQZ 8.000 7.661 0.340 +4.4 %
AV5Z 8.005 7.720 0.285 +3.7 %
AV6Z 8.006 7.744 0.262 +3.4 %
T-6 0.195 +2.5 %
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Table 4.3: Comparison of dissociation energy (∆De) and equilibrium distance between the
center-of-mass of the N+

2 ion and the He atom (Re) calculated for the electronic ground
state (1A′) of N+

2 /He and for selected Jacobi angles (θ) and using different levels of ab initio
calculations. The distance of atoms in N+

2 has been fixed in all calculations at r = 2.11 Bohr
(≈ 1.117 Å). If not specified otherwise, data obtained within the present work are presented.
The data reported for reference [283] have been extracted from figure 1 of that reference.
Distances and binding energies are given in Å and meV, respectively.

θ = 0◦ θ = 45◦ θ = 90◦

method Re ∆De Re ∆De Re ∆De

MCSCF 3.400 11.8 3.226 12.2 3.088 11.4
MRCI 3.227 19.3 3.034 20.1 2.879 19.2
MRCI [26] 3.280 16.5 3.090 17.3 2.799 16.7
MRCI [30]1 3.265 17.2 – – 2.910 17.2
MRCI [30]2 3.291 17.4 – – 2.948 15.8
MRCI [283] 3.262 18.6 3.069 19.3 2.899 18.3
MRCI [27] – – – – 3.217 10.5

1 diabatic potential, equation (13) of reference [30]
2 vibrationally adiabatic potential, equation (14) of reference [30]
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Table 4.4: Comparison of the N+
2 /He → N+

2 +He dissociation energy (∆De) and corresponding
equilibrium values of internal coordinates of the N+

2 /He ion obtained from different ab initio
calculations. If not specified otherwise, the values obtained within the present work using
the MCSCF/AVQZ′ method are presented. The values given for reference [30], ground state,
have been extracted from figure 2 of that reference and ∆De represents a lower estimate of
the true value, the values provided for the same reference for the two excited states have
been taken from reference [29]. The IM value of ∆De corresponds to the depth of an effective
N+

2 /He interaction potential derived from measured mobility of the N+
2 ion in helium [281]

in reference [275]. Angles, distances, and binding energies are given in degrees, Å, and meV,
respectively.

method θe Re re ∆De

ground state (1A′)

MCSCF 49 3.209 1.122 12.1
MRCI 52 2.999 1.120 20.3
MRCI [30] 51 3.064 1.1171 ≳ 17.9
MRCI [27] 90 3.217 1.1171 10.5
IM [275] 17.3

excited state (2A′)

MCSCF 90 2.724 1.180 21.7
MRCI 90 2.476 1.178 38.9
MRCI [30] 90 2.500 1.1171 36.9

excited state (1A′′)

MCSCF 90 3.144 1.179 11.2
MRCI 90 3.009 1.178 18.0
MRCI [30] 90 2.949 1.1171 17.0

1 fixed at re = 2.11 bohr
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Figure 4.10: Differences of the N+
2 binding energy, De, bond length, re, and harmonic vi-

brational frequency, ωe as obtained for the X 2Σ+
g state of the ion from MCSCF and MRCI

calculations (MCSCF −MRCI). Full dots correspond to calculations performed using the same
basis set for both MCSCF and MRCI, open dots in the OS2 panels represent, for compari-
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Figure 4.11: The same as in Figure 4.10, but for the A 2Πu state of the N+
2 ion.
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Figure 4.12: The same as in Figure 4.8, but for the A 2Πu state of the N+
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2 ion.
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Figure 4.15: The same as in Figure 4.14, but for the A 2Πu state of the N+
2 ion.
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Figure 4.17: Contour plot of the N+
2 /He ground state PES (1A′) as obtained for the MC-

SCF/AVQZ′ method around its global minimum. Energies are given in meV and the asymp-
tote corresponds to the N+

2 (equ) + He dissociated state (where “equ” indicates that the equi-
librium distance of nitrogen atoms is considered as obtained at the same level of theory for
the N+

2 (X 2Σ+
g ) ion). A magnified view of the PES minimum is shown in the inset.
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Figure 4.18: The same as in Figure 4.17, but calculated at the MRCI/AVQZ′ level.
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2 (equ) + He dissociated state.

78



-5

100

600

1100

1600

2100

2600
3100

3600

4100

4600

5100

2.0 2.5 3.0 3.5 4.0 4.5 5.0

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.8 3.0 3.2 3.4

1.170

1.180

1.190

-1
7

-1
6

-1
5

-13

-11

-9

-7

Figure 4.20: The same as in Figure 4.19, but calculated at the MRCI/AVQZ′ level.
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Figure 4.22: The same as in Figure 4.21, but calculated at the MRCI/AVQZ′ level.

Figure 4.23: Type 1 momentum-transfer cross-sections calculated from selected experimental
mobility data via the inverse-method (IM) approach: full line – IM cross-sections obtained
from mobility data given in [278] (as reported in [281]), dashed line – IM cross-sections based
on the mobilities of [279], and dash-dotted line – IM cross-sections based on [280]. In the
inset, related experimental mobilities are provided for comparison (circles [278], up triangles
[279], and down triangles [280]) together with their IM representations (using the same line
patterns as in the main panel.)
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Figure 4.24: Type 1 momentum-transfer cross-sections of N+
2 (j, v)+He → N+

2 +He collisions
as calculated for selected rotational-vibrational states of the N+

2 ion at the MCSCF/AVQZ′

level: full circles j=0,v=0, upper half-filled circles j=0,v=1, lower half-filled circles j=0,v=10,
and open circles j=36,v=0. Inverse-method values derived from selected experimental data
are also included as gray lines in the background (with the line patterns used as in Figure 4.23).
In the inset, differences from values obtained for j=0,v=0 are depicted.
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Figure 4.25: Contributions of particular impact-parameters to type 1 momentum-transfer
cross-sections, 2πb∆σ(MT1)

NRS (b), of N+
2 (j= 0, v= 0) + He → N+

2 + He collisions as calculated at
the MCSCF/AVQZ′ level for selected collision energies: full line Ecoll = 0.01 eV, dashed line
Ecoll = 0.05 eV, and dash-dotted line Ecoll = 0.15 eV.
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Figure 4.26: Deviations between type 2 and type 1 momentum-transfer cross-sections of the
NRS channel (Equation (2.72)) as calculated at the MCSCF/AVQZ(spdf) level for selected
rotational-vibrational states of the N+

2 ion. The symbols used are the same as in Figure 4.24,
the connecting lines are added to guide eyes.
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Figure 4.27: The same as in Figure 4.24, but for the collision-induced dissociation cross-
sections (Equation (2.73)).
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Figure 4.28: Comparison of type 1 momentum-transfer cross-sections and dissociation cross-
sections as obtained for N+

2 (j=0,v=0)/He collisions via the MCSCF/AVQZ(spdf) method (full
and open circles, respectively) and using artificial neural network (ANN) representations of
the N+

2 /He potential energy surface (pluses and crosses, respectively). In the inset, deviations
between the ANN and MCSCF/AVQZ(spdf) data are depicted.
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Figure 4.29: Comparison of type 1 momentum-transfer cross-sections (circles) and collision-
induced dissociation cross-sections (diamonds) as obtained for N+

2 (j=0,v=0)/He collisions
assuming angular momentum of N+

2 perpendicularly (PER) and/or parallelly (PAR) aligned
to the collision axis (open symbols), and non-aligned (full symbols). For comparison, inverse-
method cross-sections are also depicted as grey lines in the background. In the inset, deviations
of the PER/PAR cross-sections from the cross-sections calculated for non-aligned N+

2 are
depicted.
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Figure 4.30: Selected experimental data on the mobility of N+
2 in He: diamonds [282], circles

[278] (as reported in [281]), up triangles [279], and down triangles [280]. For comparison,
inverse-method representations of selected experimental data are also included: full line [278],
dashed line [279], and dash-dotted line [280].
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Figure 4.31: Reduced mobilities (upper panel) and longitudinal and transversal characteristic
diffusion energies (lower panel, circles and triangles, respectively) of the N+

2 ion in helium
gas as calculated for the rotational-vibrational ground state of the ion (j=0,v=0) at the
MCSCF/AVQZ(spdf) level of theory (full symbols). Inverse-method (IM) values derived from
selected experimental data are also included as gray lines in the background with the line
patterns used as in Fig. 4.30. For comparison, data resulting from an independent mobility
calculation reported in the literature [284] are also shown in the upper panel (pluses). In the
inset of the lower panel, a detailed view of the weak-field region is shown.
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Figure 4.32: Distributions of center-of-mass collision energies of N+
2 (j=0,v=0)/He as calcu-

lated for selected values of the reduced electric field using type 1 momentum-transfer cross-
sections. The distributions have been normalized so that they have the same heights in their
maxima.
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Figure 4.33: Reduced mobility (upper panel), longitudinal and transversal characteristic
diffusion energies (middle panel, circles and triangles, respectively), and CID rate constants
of N+

2 ions in helium gas as calculated for selected rotational-vibrational states of the ion at the
MCSCF/AVQZ(spdf) level: full symbols j=0,v=0, upper half-filled symbols j=0,v=1, lower
half-filled symbols j=0,v=10, and open symbols j=36,v=0. Inverse-method values derived
from the most recent mobility measurements [280] are also included as dash-dotted gray lines
for comparison. In the insets, deviations from the j=0,v=0 data are depicted to better see
the effect of rotational-vibrational excitations in the N+

2 ion. Note that different scales are
used on the horizontal axes in the two upper panels and the lower panel.
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Figure 4.34: Deviations of N+
2 /He mobilities calculated using type 2 momentum-transfer

cross-sections from the values obtained from type 1 cross-sections, both calculated for selected
rotational-vibrational states of the N+

2 ion at the MCSCF/AVQZ(spdf) level. The symbols
used are the same as in Fig. 4.33, the connecting lines are added to guide eyes.
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Figure 4.35: Comparison of N+
2 /He mobilities calculated using type 1 momentum-transfer

cross-sections (and dissociation cross-sections) as obtained from MCSCF/AVQZ(spdf) calcu-
lations (full circles) and using an artificial neural network (ANN) representation of the N+

2 /He
PES (pluses). In the inset, deviations between the ANN and MCSCF/AVQZ(spdf) data are
depicted.

1 10 100 1000
5

10

15

20

25

re
du

ce
d 

m
ob

ilit
y 

  [
cm

2 V-1
s-1

]

reduced electric field   [Td]

1 10 100 1000
-0.2

-0.1

0.0

0.1

0.2

89



Figure 4.36: Comparison of N+
2 /He mobilities (upper panel), longitudinal and transversal

characteristic diffusion energies (middle panel, circles, and triangles, respectively), and CID
rate constants of N+

2 ions in helium gas calculated for rotationally-vibrationally ground-state
N+

2 ion using cross-sections obtained at the ANN level and assuming the angular momentum
of the N+

2 ion aligned perpendicularly (open circles with vertical bars, PER) and/or parallel
(open circles with horizontal bars, PAR) to the collision axis, and non-aligned (full symbols).
For comparison, inverse-method mobilities derived from experimental data are also depicted
as grey lines in the background (with the same line patterns used as in Fig. 4.30). In the inset,
deviations of the aligned angular momentum cross-sections from non-aligned cross-sections are
depicted. Note that, like in Fig 4.33, different scales are used on the horizontal axes in the
two upper panels and the lower panel.
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Chapter 5

Summary and Outlooks

Ab initio computations of both the N+
2 ion and N+

2 /He collision complex have been per-
formed,with MCSCF data further utilized for as the input for dynamical calculations [276],
exhibiting a very good agreement with N+

2 /He mobility measurements. Furthermore, the
results were excellent, well reproducing available experimental results, even in the follow-up
phase, i.e. Monte Carlo mesoscopic modeling of N+

2 /He complex [277].

Thus, it seems, that the effects not taken into account in the adopted ab initio approach
based on the MCSCF method do not influence the N+

2 /He collision dynamics too much,
with the exception of low collision energies [276], approximately 0.01 eV. For them, on the
other hand, the missing dynamical electronic correlation in the MCSCF method is important
and maybe it will be a cause of significant differences between theoretical and experimental
estimates of N+

2 /He collision cross-sections [276]. While such low collision energies are not
typically recognized at standard experimental conditions (T = 300 K), they may prove to
be important, thus it is one of the continuing research interests. Without sufficiently-deep
investigation we assume so far, that a multi-reference perturbative method, like MRPT2 [285]
may be useful in on-the-fly simulations, thus aiming for direct comparison of its results with
ANN-represented MRCI PES.

With that said, the absence of dynamical electronic correlation is not the only issue,
connected to N+

2 /He complex, necessary to investigate in deeper detail. The question of the
exact effect of electronic excitations and non-adiabatic processes on collision dynamics is one
of them. In this direction, we aim to utilize an approximately diabatic interaction model
invented in [30], for the description of the behavior of the lowest N+

2 /He electronic states
2 ×A′ +A′′. Similarly, the relaxation of initial rotational-vibrational excitations of N+

2 cation
and its influence on dynamical simulations is also not very clear for now. With that in mind,
we aim to describe its effects in more detail in the following works, too, planning to research
their presence in N+

2 cation, as the first step.
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As a direct continuation of the current results, we also aim to utilize ANNs to represent MRCI
PESs, thus obtaining potential energy with higher precision. These will be created for not
only the ground and the first excited states, but even for higher excited states, together with
a description of the charge transfer N2 + He+ → N+

2 + He. In these efforts, the molecular
ions He+

2 and He+
3 will not be omitted, modelling the collision complexes [N2/He2]+ and

[N2/He3]+.
Finally, considering the practical problems (leakage, explosiveness. . . ) with applications

of He, it is vital to consider also heavier rare gases, most notably Ar, Kr and Xe. For these,
the interactions of molecular ions are more prominent and the for the heavier elements it will
be necessary to include relativistic effects in computations. Namely, we consider utilization
of scalar relativistic corrections [286] and computations of spin-orbital coupling [287].
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Appendix A

Excited states of N+
2
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Appendix B

Excited States of N+
2 /He
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Figure B.1: PEC of the seven lowest MCSCF states computed for θ = 0◦, with 11A′, 2A′′

orbital space and aug-cc-pVTZ basis set with r = 1.12 Å.
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Figure B.2: PEC of the seven lowest MCSCF states computed for θ = 0◦, with 11A′, 2A′′

orbital space and aug-cc-pVQZ basis set with r = 1.12 Å.
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Figure B.3: PEC of the seven lowest MCSCF states computed for θ = 0◦, with 11A′, 2A′′

orbital space and aug-cc-pV5Z basis set with r = 1.12 Å.
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Figure B.4: PEC of the seven lowest MCSCF states computed for θ = 0◦, with 11A′, 2A′′

orbital space and aug-cc-pV6Z basis set with r = 1.12 Å.
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Figure B.5: PEC of the seven lowest MCSCF states computed for θ = 0◦, with 12A′, 3A′′

orbital space and aug-cc-pVTZ basis set with r = 1.12 Å.
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Figure B.6: PEC of the seven lowest MCSCF states computed for θ = 0◦, with 12A′, 3A′′

orbital space and aug-cc-pVQZ basis set with r = 1.12 Å.
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Figure B.7: PEC of the seven lowest MCSCF states computed for θ = 0◦, with 12A′, 3A′′

orbital space and aug-cc-pV5Z basis set with r = 1.12 Å.
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Figure B.8: PEC of the seven lowest MCSCF states computed for θ = 0◦, with 12A′, 3A′′

orbital space and aug-cc-pV6Z basis set with r = 1.12 Å.
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Figure B.9: PEC of the seven lowest MCSCF states computed for θ = 45◦, with 11A′, 2A′′

orbital space and aug-cc-pVTZ basis set with r = 1.12 Å.
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Figure B.10: PEC of the seven lowest MCSCF states computed for θ = 45◦, with 11A′, 2A′′

orbital space and aug-cc-pVQZ basis set with r = 1.12 Å.
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Figure B.11: PEC of the seven lowest MCSCF states computed for θ = 45◦, with 11A′, 2A′′

orbital space and aug-cc-pV5Z basis set with r = 1.12 Å.
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Figure B.12: PEC of the seven lowest MCSCF states computed for θ = 45◦, with 11A′, 2A′′

orbital space and aug-cc-pV6Z basis set with r = 1.12 Å.

1.5 2.0 2.5 3.0 3.5
R [Å]

−111.6

−111.5

−111.4

−111.3

−111.2

−111.1

−111.0

E
[H
]

State 1
State 2
State 3
State 4
State 5
State 6
State 7

Figure B.13: PEC of the seven lowest MCSCF states computed for θ = 45◦, with 12A′, 3A′′

orbital space and aug-cc-pVTZ basis set with r = 1.12 Å.
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Figure B.14: PEC of the seven lowest MCSCF states computed for θ = 45◦, with 12A′, 3A′′

orbital space and aug-cc-pVQZ basis set with r = 1.12 Å.
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Figure B.15: PEC of the seven lowest MCSCF states computed for θ = 45◦, with 12A′, 3A′′

orbital space and aug-cc-pV5Z basis set with r = 1.12 Å.
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Figure B.16: PEC of the seven lowest MCSCF states computed for θ = 45◦, with 12A′, 3A′′

orbital space and aug-cc-pV6Z basis set with r = 1.12 Å.
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Figure B.17: PEC of the seven lowest MCSCF states computed for θ = 90◦, with 11A′, 2A′′

orbital space and aug-cc-pVTZ basis set with r = 1.12 Å.
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Figure B.18: PEC of the seven lowest MCSCF states computed for θ = 90◦, with 11A′, 2A′′

orbital space and aug-cc-pVQZ basis set with r = 1.12 Å.
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Figure B.19: PEC of the seven lowest MCSCF states computed for θ = 90◦, with 11A′, 2A′′

orbital space and aug-cc-pV5Z basis set with r = 1.12 Å.
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Figure B.20: PEC of the seven lowest MCSCF states computed for θ = 90◦, with 11A′, 2A′′

orbital space and aug-cc-pV6Z basis set with r = 1.12 Å.
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Figure B.21: PEC of the seven lowest MCSCF states computed for θ = 90◦, with 12A′, 3A′′

orbital space and aug-cc-pVTZ basis set with r = 1.12 Å.
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Figure B.22: PEC of the seven lowest MCSCF states computed for θ = 90◦, with 12A′, 3A′′

orbital space and aug-cc-pVQZ basis set with r = 1.12 Å.
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Figure B.23: PEC of the seven lowest MCSCF states computed for θ = 90◦, with 12A′, 3A′′

orbital space and aug-cc-pV5Z basis set with r = 1.12 Å.
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Figure B.24: PEC of the seven lowest MCSCF states computed for θ = 90◦, with 12A′, 3A′′

orbital space and aug-cc-pV6Z basis set with r = 1.12 Å.
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