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Abstract

The navigation of a mobile robot in human environments is referred to as Human-
Aware Navigation (HAN) or sometimes as Social (Robot) Navigation. We present
the evolution of HAN over the years and the challenges associated with it before we
proceed with the explanation of our approach. With a growing interest in the field,
new frameworks are required to address this problem better, and as a contribution,
we propose a proactive multi-context HAN planning system.

The proposed proactive planning framework for HAN is based on the Human-
Aware Timed Elastic Band (HATEB) approach. This framework adds a decision-
making loop at the trajectory planning level and switches between different planning
modes based on the assessed situation. Using this framework, we propose a ROS
based HAN Stack called Cooperative Human-Aware Navigation (CoHAN) planner.
CoHAN is designed to address multi-context robot navigation among static and
dynamic humans with updated costmaps and new human-robot social constraints.
These optimization constraints aim to make the robot’s motion legible and avoid
surprise appearances from behind. CoHAN offers four different path prediction
mechanisms for humans and three different planning modes, along with a new re-
covery mode. The qualitative analysis performed on simulated human-robot sce-
narios highlights the advantages of proactive and situation based planning. They
also show how the newly added social constraints improve the robot’s legibility.
Quantitative comparisons with other HAN planners show that CoHAN can solve
more intricate scenarios in an acceptable manner.

In the next part, CoHAN is extended further to proactively address sudden
human appearance from occluded regions on the map. We propose the concept of
‘invisible humans’ to estimate the locations of such human emergences. These esti-
mations are added to CoHAN via another optimization constraint, and a new mode
of planning to pass through doors and narrow passages cautiously is introduced.
The experiments in simulation and on the real robot demonstrate the benefits of
‘invisible humans’ in HAN and show that the robot maintains a greater distance
from occluded humans compared to other approaches.

The current metrics based on proxemic zone violations cannot do justice in
evaluating intricate scenarios. Therefore, we propose a set of metrics taking into
consideration the velocities and the visibility of the human, which may be pertinent
to various human-robot navigation contexts. This part of the thesis presents the
mathematical formulation of these metrics, followed by the evaluation of four dif-
ferent human-robot navigation contexts using them. These metrics, combined with
the velocity profiles and paths, clearly distinguish a HAN planner from a simple
navigation planner. We conclude this thesis with a discussion on the contribution
followed by the challenges and the future perspectives of HAN.





Résumé

La navigation d’un robot mobile dans un environnement humain est appelée
Human-Aware Navigation (HAN) ou parfois Social (Robot) Navigation. Nous
présentons l’évolution de la HAN au fil des ans et les défis qui lui sont associés
avant de procéder à l’explication de notre approche. Avec un intérêt croissant dans
le domaine, de nouveaux schéma sont nécessaires pour mieux aborder ce problème,
et comme contribution, nous proposons un système de planification proactive multi-
contexte pour HAN.

Le schéma de planification proactive proposé pour le HAN est basé sur
l’approche Human-Aware Timed Elastic Band (HATEB). Ce schéma ajoute une
boucle de décision au niveau de la planification de la trajectoire et passe d’un
mode de planification à l’autre en fonction de la situation évaluée. Sa cette base,
nous proposons une pile HAN basée sur ROS appelée planificateur Co-operative
Human-Aware Navigation (CoHAN). CoHAN est conçu pour aborder la naviga-
tion de robot multi-contexte parmi des humains statiques et en mouvement avec
des cartes de coûts mises à jour et de nouvelles contraintes sociales humain-robot.
Ces contraintes d’optimisation visent à rendre le mouvement du robot lisible et à
éviter les apparitions surprises par derrière. CoHAN propose quatre mécanismes
différents de prédiction de trajectoire pour les humains et trois modes de planifi-
cation différents, ainsi qu’un nouveau mode de récupération. L’analyse qualitative
effectuée sur des scénarios simulés humain-robot met en évidence les avantages de
la planification proactive et basée sur la situation. Elle montre également comment
les contraintes sociales nouvellement ajoutées améliorent la lisibilité du robot. Les
comparaisons quantitatives avec d’autres planificateurs HAN montrent que CoHAN
peut résoudre des scénarios plus complexes de manière acceptable.

Dans la partie suivante, CoHAN est étendu pour traiter de manière proactive
l’apparition soudaine d’humains dans des régions masquées de la carte. Nous pro-
posons le concept d’“humains invisibles” pour estimer l’emplacement de telles émer-
gences humaines. Ces estimations sont ajoutées à CoHAN via une autre contrainte
d’optimisation, et un nouveau mode de planification pour passer les portes et les
passages étroits avec précaution est introduit. Les expériences en simulation et sur
le robot réel démontrent les avantages des “humains invisibles” dans le HAN et
montrent que le robot maintient une plus grande distance avec les humains occultés
par rapport aux autres approches.

Les mesures basées sur les violations de zones proxémiques ne peuvent pas con-
venir à l’évaluation de scénarios complexes. Par conséquent, nous proposons un
ensemble de métriques prenant en compte les vitesses et la visibilité de l’humain,
qui peuvent être pertinentes dans différents contextes de navigation humain-robot.
Cette partie de la thèse présente une formulation mathématique de ces métriques,
suivie de l’évaluation de quatre différents contextes de navigation humain-robot en
les utilisant. Ces métriques, combinées aux profils de vitesse et aux trajectoires,
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distinguent clairement un planificateur HAN d’un simple planificateur de naviga-
tion. Nous concluons cette thèse par une discussion sur la contribution, suivie par
les défis et les perspectives futures du HAN.
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Introduction

Several methodologies were proposed by roboticists for mobile robot navigation,
and they are promising as long as humans are not considered. Treating humans
as dynamic obstacles can solve the robot navigation problem but do not offer an
acceptable and comfortable solution to the humans co-existing in the environment.
As humans are social beings and have certain notions and expectations about the
environment around them, they expect the robot to respect their personal space
and preferences while navigating. Consequently, a new field of navigation called
‘Human-Aware (Robot) Navigation’ (or Social Robot Navigation) has emerged, com-
bining studies on humans and robot navigation.

Human-aware navigation originated in the field of Human-Robot Interaction
(HRI) rather than robot navigation, and hence it shares some properties with HRI.
It was not an independent field of research until recent years and used to be a
part of the overall task that the robot needs to do in order to assist or coordi-
nate with a human or group of humans. As time progressed, robots have become
cheaper and are now being used in many indoor [Guldenring 2020], as well as out-
door [Ferrer 2013b] settings, solely to move from one place to another to deliver
things [Bogue 2016] or to accompany a person [Repiso 2017]. The advent of au-
tonomous vehicles [Rasouli 2019] further soared the interest in this field. This
thesis explores human-aware navigation and presents a cooperative framework for
robot navigation that is built on the joint-action principles of HRI [Curioni 2019].
We also present some new ideas to improve robot navigation and propose some new
metrics for evaluation.

Human-Aware Robot Navigation

Human-Aware Navigation (HAN) is a special case of robot navigation where path
planning or trajectory planning or both integrate humans into planning to generate
paths and/or trajectories for the robot such that it reduces the discomfort to the
humans while navigating. This could mean that the navigation motion executed by
the robot should be legible and acceptable to the humans sharing the environment
with the robot. The term discomfort could be ambiguous and could refer to different
things in different settings.

Situation assessment and proactive planning

When a robot navigates around humans, it is important for a HAN planning system
to analyse the situation and take proper action that mitigates any deadlocks or the
‘freezing robot problems’ [Trautman 2010]. This requires the HAN system to have
decision-making capabilities on top of legible motion generation. Once a situation
is identified, it may be possible that the current version (or parameters) of the
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navigation planning system cannot avoid the occurrence of a conflict. Therefore,
it is required for a HAN to have different modalities and switch between them
depending on the context.

Proactive planning could mean controlling and mitigating a situation at hand in-
stead of responding to it when it happens. This allows the robot to respond quickly
and minimizes the occurrence of the robot freezing problem. Moreover, this kind
of planning complements situation analysis and lessens the burden on the decision-
making system. Therefore, proactive planning offers a better framework to address
HAN compared to reactive planning schemes like Social Force [Ferrer 2013b]. This
thesis explores how proactive planning combined with situation analysis can ben-
efit HAN planning and then develop a HAN system capable of handling multiple
human-robot navigation contexts.

Thesis Contributions

This thesis has four main contributions, which are briefly explained below. The
first three contributions can be seen as three different versions of a HAN planning
system in chronological order, and the new version inherits almost all the proper-
ties of the previous version with some exceptions. All the versions of the proposed
system treat HAN as a cooperative activity that obeys the following four princi-
ples of joint-action in HRI: ‘sharing a common perspective’, ‘coordinating’,
‘predicting others’ contributions’ and ‘communicating’. The core idea of all
these contributions is to offer a better solution to HAN planning, respecting the
above principles and assuming humans as partners in navigation who can cooperate.
The final contribution is a set of new metrics for HAN that may be more relevant
to multiple human-robot navigation contexts than the ones based on proxemics.

Combining situation assessment with proactive planning in HAN

This is the first major contribution of this thesis that combines situation assessment
with proactive planning. The idea of proactive planning in our HAN system is to
actively plan for the robot and the other agents involved in the navigation, assuming
a possible goal for each agent while controlling only the robot. The advantage of
this kind of planning is that the planning system considers both the robot and the
humans while planning for the robot, which makes the robot act proactively in
many situations and avoid conflicts. In deadlock scenarios, this system elicits plans
for all the agents, which, if followed, will resolve the deadlock. However, some of
the deadlocks cannot be solved by this kind of proactive planning. So, we introduce
a simple situation assessment to detect such deadlocks and switch the planning
modality with a different set of parameters to resolve the deadlock.
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A HAN system to address multi-context navigation

After introducing the situation assessment and modality shifting into HAN, the
system has been extended to take care of the different types of visible humans in
the environment. Numerous changes were made to make the system scalable and
more pertinent to real-world applications. The most interesting thing about the
proposed system is that the parameters of the system are highly tunable. Depending
on the type of goal prediction (for humans) selected and the allowed thresholds of
various human-aware constraints, the robot’s behaviour could be adjusted to handle
different human-robot navigation contexts.

Proactively addressing unseen humans in HAN

The final version of the proposed system introduces a concept called ‘invisible hu-
mans’ to improve the human awareness of the robot. The intention behind this
work is to address the possible future appearances of humans from the occluded or
hidden regions of the environment in the navigation scene. Firstly, an algorithm
to detect the locations of ‘invisible humans’ in a 2D map is proposed. Then a new
human-aware constraint and a new mode of planning for such unseen humans are
proposed and added to our HAN system that makes the robot cautiously mitigate
such locations and avoid collisions proactively.

New metrics for HAN

The last contribution of this thesis is a set of metrics that can be applied to several
human-robot navigation contexts. Unlike the proxemics-based metrics, we believe
that the proposed metrics are better suited for understanding and evaluating HAN
systems in intricate scenarios. We present the mathematical formulation of these
metrics and show how they can be used to evaluate and differentiate HAN planners
from standard navigation planners.

Thesis Organisation
A major part of this thesis is based on the published work (core publications). The
chapters based on the published work are elaborated compared to papers, including
more details and discussions. The supportive publications include the work that is
complementary during the development of this thesis, and these are detailed in the
Appendix part.

This thesis has five chapters which can be grouped into three different parts.
The first group consists of Chapter 1, which presents different aspects of robot
navigation and the evolution of human-aware navigation. It also talks about the
challenges in HAN and how they are addressed in the literature before presenting
the mathematical background necessary to understand this thesis. The following
chapters are based on the core publications and form the second group. These
chapters are presented in chronological order of the development of the proposed
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HAN system. Hence, Chapter 2 talks about combining situation assessment in
HAN, followed by Chapter 3, in which a complete HAN system that can address
multiple human-robot navigation contexts is presented. Next, Chapter 4 introduces
the concept of ‘invisible humans’ to HAN and talks about proactive avoidance
of potential future collisions. Throughout these three chapters, the advantages
of proactive planning in combination with situation assessment are discussed in
different settings. The last group has only one chapter, Chapter 5, that proposes
and evaluates some new metrics for HAN.

The final remarks, lessons learnt, and future perspectives are discussed in the
Conclusions chapter. The supportive work presented in Appendix A shows how
an intelligent human agent is developed for the case of HAN. Further, different
methodologies employed to simulate human agents for testing our HAN system are
also presented. Throughout this thesis, whenever we refer to robot navigation, it
is always a mobile robot with either differential or omnidirectional drive navigating
on a 2D plane.

List of Publications

Published : Core Publications

• Singamaneni, Phani-Teja, and Alami Rachid. “HATEB-2: Reactive Plan-
ning and Decision making in Human-Robot Co-navigation.” 2020
29th IEEE International Conference on Robot and Human Interactive Com-
munication (RO-MAN). IEEE, 2020.*

• Singamaneni, Phani-Teja, Anthony Favier, and Rachid Alami. “Human-
Aware Navigation Planner for Diverse Human-Robot Interaction
Contexts.” 2021 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2021.

• Singamaneni, Phani-Teja, Anthony Favier, and Rachid Alami. “Invisible
Humans in Human-aware Robot Navigation.” Workshop on Social
Robot Navigation: Advances and Evaluation in 2022 IEEE International Con-
ference on Robotics and Automation (ICRA). IEEE, 2022.

• Singamaneni, Phani-Teja, Anthony Favier, and Rachid Alami. “Watch out!
There may be a Human Addressing Invisible Humans in Social Nav-
igation.” 2022 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2022.

Published : Supportive Publications

• Favier, Anthony, Phani-Teja Singamaneni, and Rachid Alami. “Simulating
Intelligent Human Agents for Intricate Social Robot Navigation.”

*Nominated for Best Paper award



List of Publications 5

2021 Workshop on Social Robot Navigation in Robotics: Science and Systems
(RSS). 2021.

• Favier, Anthony, Phani-Teja Singamaneni, and Rachid Alami. “An Intelli-
gent Human Avatar to Debug and Challenge Human-aware Robot
Navigation Systems.” 2022 17th ACM/IEEE International Conference on
Human-Robot Interaction (HRI). IEEE, 2022.

• Hauterville, Olivier, Camino Fernández, Phani-Teja Singamaneni, Anthony
Favier, Vicente Matellán, and Rachid Alami. “IMHuS: Intelligent Multi-
Human Simulator.” 2022 Workshop on Artificial Intelligence for Social
Robots Interacting with Humans in the Real World in IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS). IEEE, 2022.

• Hauterville, Olivier, Camino Fernández, Phani Teja Singamaneni, Anthony
Favier, Vicente Matellán, and Rachid Alami. “Interactive Social Agents
Simulation Tool for Designing Choreographies for Human-Robot-
Interaction Research.” 2022 Iberian Robotics conference, pp. 514-527.
Springer, Cham, 2023.

Published : Other Publications

• Singamaneni, Phani-Teja, Amandine Mayima, Guillaume Sarthou, Yoan Sal-
lami, Guilhem Buisan, Kathleen Belhassein, Jules Waldhart, and Aurélie
Clodic. “Guiding Task through Route Description in the MuMMER
Project.” Companion of the 2020 ACM/IEEE International Conference on
Human-Robot Interaction, pp. 643-643. IEEE, 2020.

• Truc, Jérôme, Phani-Teja Singamaneni, Daniel Sidobre, Serena Ivaldi, and
Rachid Alami. “KHAOS: a Kinematic Human Aware Optimization-
based System for Reactive Planning of Flying-Coworker.” 2022 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2022.

Submitted

• Mayima, Amandine, Guillaume Sarthou, Guilhem Buisan, Phani-Teja Singa-
maneni, Yoan Sallami, Kathleen Belhassein, Jules Waldhart, Aurélie Clodic,
and Rachid Alami “Direction-giving considered as a Human-Robot
Joint Action.” Submitted to User Modeling and User-Adapted Interaction
(UMUAI) Journal.





Chapter 1

Evolution of Human-Aware
Navigation
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Beginning with the topic of robot navigation, this chapter outlines the develop-
ment of human-aware (robot) navigation (HAN). We briefly talk about navigation
in the context of motion planning and explain the methodologies and tools for 2D
navigation. Then we present the evolution of HAN over the years using the existing
literature before presenting a small discussion on how HAN is closely associated with
HRI. Further, we also present the chronological developments and contributions of
our lab to this field. Next, we present the challenges faced by the researchers in
this field and discuss how they were addressed in the literature. Finally, we present
our approach to HAN along with the required mathematical background. In ad-
dition, we explain how the joint-action principles can be applied to the context of
human-aware navigation.
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1.1 Motion Planning and Navigation

We briefly introduce the motion planning problem and robot navigation in this
section. We present a detailed explanation of navigation in 2D and the different
components involved in it. Finally, we provide a brief overview of the ROS based
2D navigation stack for mobile robots.

1.1.1 The Motion Planning Problem

Motion planning has varied applications in several fields [Latombe 1999], but
robotics remains the core field of development. The intention behind any motion
planning problem in robotics (manipulation or navigation) is to plan a continuous
motion sequence for a robot to reach the final goal configuration from its initial
configuration in a given environment while avoiding collisions. Although motion
planning can refer to either path planning or trajectory planning, in this thesis, we
treat them as the two steps of the motion planning problem. The first step is path
planning which generates a collision-free path from start to goal. In the second
step, the generated path is used as a guide, and a feasible trajectory is planned to
trace this path partly or entirely. Generally, a path is a sequence of configurations,
whereas a trajectory is a sequence of configurations and time differences that satisfy
all the kinodynamic constraints.

1.1.1.1 Path Planning

Path planning in robotics deals with the generation of a continuous path from an
initial configuration of the robot to a final or goal configuration while avoiding
obstacles in the given environment. Hence it requires the description of the envi-
ronment (2D or 3D grids, maps, etc.) and a goal position as inputs for the path
planning.

Path

Start

Goal

Start

Goal

(a) (b)

Start

Goal

Figure 1.1: Motion Planning and Configuration Space
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The configuration space, C, for the path planning is the set of all possible con-
figurations, and it depends on the type and degrees of freedom of the robot. For
example, a mobile robot that can translate and rotate in 2D has a configuration
space, C ∈ SE(2) = R2×SO(2), where SE(2) is the special Euclidean group in 2D
and SO(2) is the special orthogonal group of 2D rotations. If the robot is a fixed
base manipulator with n degrees of freedom (or joints), then C is an n-dimensional
vector. The subset of all configurations in C that is collision-free comprise the free
space, Cfree. Hence, any path from start to goal should be within the Cfree as shown
in Fig. 1.1.

Path

Start

Goal

Start

Goal

(a) (b)

Start

Goal

Figure 1.2: Path Planning. (a) Grid-based search (b) Sampling-based algorithm

Various methodologies can be employed to find a path, and the most famous
ones are grid-based searches and sampling-based algorithms (Fig. 1.2). In grid-based
methods, the entire configuration space is divided into small grids, and searching
algorithms like A* [Hart 1968], D* [Stentz 1997] or Dijkstra are employed to search
the connectivity from start to goal. A sample path generated using this method
is shown in Fig. 1.2 (a) (blue region). However, these methods suffer from the
curse of dimensionality as the grid size becomes smaller and the configuration space
(or map) becomes larger. Sampling-based algorithms like RRT [LaValle 1998] or
PRM [Kavraki 1996], on the other hand, can handle high dimensional spaces better
as their run-time is not exponentially dependent on the size or dimension of the
configuration space, C. These methodologies grow a connectivity map or tree from
the starting position based on the points sampled in small regions. The sampled
points are connected and added to the tree only if the connecting line segment is
completely in Cfree. A path is found when the start and goal are connected by this
tree, as shown in Fig. 1.2 (b). The shortest connected path is shown in blue. These
methods are probabilistically complete and will find a solution or a better solution
as more time is spent searching but cannot verify if a solution exists or not. Other
frequently used techniques involve artificial potential fields [Vadakkepat 2000], cell
decomposition [Garrido 2006] (for e.g. Voronoi regions), interval-based search etc.
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1.1.1.2 Trajectory Planning

Trajectory planning is used to generate the reference inputs for the robot’s control
system to execute the desired motion. Therefore, a trajectory is usually param-
eterised by time and can include the velocities and accelerations, apart from the
configurations of the robot. The trajectory planning problem takes the path planned
from the previous step as input, along with the kinodynamic constraints like the
velocity, acceleration and kinematics of the robot to generate a continuous sequence
of configurations and their associated time intervals.

The planned trajectory can either be in the operating space (world frame) or
the joint space (local frame) of the robot. If the motion of the robot has to follow
certain geometric characteristics defined in the operating space (e.g. navigation),
the trajectory planning is done in the operating space. To generate the reference
control commands from this trajectory, kinematic inversion has to be performed,
mapping the trajectory in the world frame to the desired controller or joint frames.
As the degrees of freedom of a robot increase, this kinematic inversion for a densely
populated trajectory becomes computationally expensive. Hence, trajectory plan-
ning is largely done in the joint space. For this, a set of waypoints are sampled
from the planned path and mapped to the joint space using kinematic inversion.
Then, trajectories are planned, such that all these waypoints are connected while
satisfying the kinodynamic constraints. This can be done by interpolating between
the points using a polynomial function or spline satisfying the constraints. Planning
in joint spaces generally avoids the problems with redundant joints and singular-
ities. However, the issue with such trajectory planning is that the robot might
have some undesired configurations between these waypoints, and depending on
the granularity of sampling, the number of these configurations might increase or
decrease.

No matter in which space the trajectories are planned, they should be con-
tinuous not only in terms of configurations but also in terms of velocity and ac-
celeration to avoid jerks and vibrations of the robot while executing them. This
means that the trajectory has to obey these additional constraints along with the
kinodynamic constraints, and hence, it is often posed as an optimization problem.
The most significant optimality criteria used for this are the minimum time, en-
ergy or jerk [Gasparetto 2015]. One can employ any optimization technique like
minimax [Vathsal 1977], genetic algorithms [Tian 2004], multi-objective optimiza-
tion [Oleiwi 2014], unconstrained optimization [Rösmann 2013], or model predictive
control (MPC) [Ardakani 2015] to solve this problem, depending on the require-
ments. Re-planning times for trajectory are usually large as it involves solving a
complex optimization problem. Therefore, trajectory planning can either be global,
covering the entire path, or local, covering only a small part of the path. For
dynamic environments, local planning is employed so that the trajectory can be
dynamically re-planned in real-time. Global trajectory planning is employed when
the robot’s operating space is constant and does not change over time.
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1.1.1.3 Navigation and Manipulation

Although both navigation and manipulation are motion planning problems and
use similar algorithms, there are some basic differences. The navigation problem
specifically deals with moving the entire robot from one place to another, whereas
the manipulation problem deals with the motion of the end-effector and/or joints
from the initial configuration to the goal configuration, while the base of the robot is
assumed to be fixed. This thesis focuses only on the navigation problem, specifically
mobile robot navigation on the ground using a 2D description of the world.

1.1.2 Mobile Robot Navigation

Mobile robot navigation is a well-studied field as it lays the foundation for au-
tonomous vehicles and robots. Navigating in an unknown environment requires Si-
multaneous Localization and Mapping (SLAM) [Thrun 2007] along with some kind
of global positioning system (GPS) to guide the robot or vehicle to the goal. As
global path planning cannot be done in such environments, robot navigation is
largely handled by local motion planning and collision avoidance techniques. How-
ever, when it comes to the known environments with prior maps, the navigation
problem can be split into two discrete parts, namely, localization and motion plan-
ning. The localization part of the problem continuously locates and tracks the
position of the robot in either a static or dynamic environment [Thrun 2006].
Numerous methods can be employed for this like EKF localization using land-
marks, grid-based localization [Thrun 2006], Monte-Carlo or Adaptive Monte-
Carlo localization [Fox 2003] using particles filters [Fox 2001], vision-based local-
ization [Adorni 2001] etc. In this thesis, we do not address the entire navigation
problem and only focus on the motion planning part, which is usually referred to as
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Figure 1.3: 2D mobile robot Navigation from start (yellow) pose to goal (green)
pose. The path planning problem has to plan the path and the intermediate poses
(blue) that the robot needs to follow to reach the goal without colliding with the
obstacles. The obstacles are marked in black. The trajectory planning then has to
generate the control commands for the robot to follow this path.
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‘navigation planning’. As discussed in the previous section, given a goal configura-
tion, in the case of 2D, a goal pose (position and orientation), the motion planning
part (or navigation planning) has to solve the problem of the robot’s motion from
the start to the goal. Fig. 1.3 shows an example of such navigation planning avoid-
ing the static obstacles in the environment. The path planned from the start pose
to the goal pose of the robot in the free space, Cfree is shown in this figure. The tra-
jectory planner has to take this path as input and generate the control commands
for the robot’s base controller.

The maps for mobile robot navigation are usually represented as 2D occupancy-
grids [Thrun 2006] as they are easy to acquire. The fundamental concept behind
occupancy grids is to visualise the map as an evenly spaced grid of binary random
variables. The occupancy grid based maps are built by updating the occupancy
value of each grid using different kinds of range sensors like Sonars or LIDARs.
Cameras and other sensors are also used in fusion with the range sensors to improve
the accuracy of this estimation. However, all these methodologies assume that the
robot knows its position and path in the map, which is generally provided by SLAM
techniques. Unless a blueprint of the environment is available, maps are built using
SLAM and Occupancy Grid mapping algorithms [Thrun 2006] and are used for
path estimation.

In such occupancy grids, search-based path planning algorithms like modified A*
[Warren 1993] are much faster compared to sampling-based approaches like RRT-
connect [Kuffner 2000] or PRM [Kavraki 1996]. Hence, in 2D navigation, path
planning is done globally using grid-based search, which provides waypoints or a
reference path for trajectory planning. The trajectory planning can be either local
or global. Global trajectory planning will work in a setting where nothing moves
or changes, and the environment remains in the same state as it was represented
in a map. This is mostly true in the case of a manipulator, but for navigation,
the environments usually change, and more obstacles like tables, chairs, beds etc.,
are added to the basic (static) environmental map. Hence, trajectory planning also
requires obstacle information which is provided through the sensors. As the range
of these sensors is limited, they can only provide information about the obstacles
in a small region. Therefore, in a mobile robot navigation setting, the trajectory
planning is mostly local, and it is interlinked with obstacle avoidance which modifies
the trajectory of the robot to avoid collisions with obstacles found on its path.
Some of the commonly used obstacle avoidance methods are Dynamic Window
Approach (DWA) [Fox 1997], Elastic Bands [Quinlan 1993] and artificial potential
fields. Consequently, trajectory generation algorithms combined obstacle avoidance
methods with their optimization scheme to produce online trajectories in real-time.
However, these obstacle avoidance methods did not consider the velocity of the
obstacles [Cai 2020], and hence, in the case of an environment with a lot of dynamic
obstacles, the trajectory optimization had to be run at a high frequency which
increased the computational cost and made online re-planning infeasible.

Concurrently, collision avoidance strategies were developed for environments
with a lot of dynamic obstacles or humans (treated as obstacles). These algorithms
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generate instantaneous velocities or control commands for the robot’s base that
ensure collision-free motion with fewer computational resources. Therefore, many
works in literature employ collision avoidance techniques with global path planning
for robot navigation in highly dynamic environments and crowds, which are some-
times called ‘reactive navigation’ schemes. The trajectories were generated by accu-
mulating a sequence of control commands provided by the collision avoidance strate-
gies [Prassler 1999]. These methodologies include velocity-obstacle based meth-
ods like RVO [Van den Berg 2008], ORCA [Berg 2011] or CALU [Hennes 2012],
social force and reinforcement learning methods like CADRL [Chen 2017b], SA-
CADRL [Chen 2017a] or CRL [Ciou 2018]. This is still a very active research field
as it helps to simulate and understand crowds. Although the collision avoidance
methods can produce bounded velocities, the resultant trajectory is not guaran-
teed to be smooth in terms of acceleration and jerk. Consequently, researchers
reverted to online trajectory planning, for example, MPC and Timed Elastic Band
(TEB), as computational power has significantly improved over this time. The
main contribution of this thesis is an online trajectory planner based on timed elas-
tic bands [Rösmann 2013] while relying on grid-based path planning (Dijkstra or
A*) to generate the path.

1.1.3 2D Navigation Stack in ROS
Robot Operating System (ROS) [Quigley 2009] provides an environment to develop
different tools for robotic platforms. It has several built-in packages and software
bundles that make this development easier. Being an open-source platform, there
are several custom packages and large community support to discuss and resolve
issues. ROS readily supports motion planning and has official packages for nav-
igation as well as manipulation. As the navigation planning system presented in
this thesis is developed using the ROS Navigation Stack1, we briefly present its
features. The main package of this stack is move_base which provides the plugins
to include new planners.

Inputs: Apart from the 2D navigation goal (position and orientation), the
navigation stack takes as input the odometry information, the sensory data like
laser or point cloud to obtain the real-time obstacle information and the static
map data (as occupancy grid) for planning the path. It also requires the necessary
transformation to connect the ‘map’ and the ‘base_link’ of the robot, which usually
is published by the localisation module. The navigation stack by default uses the
amcl package in ROS for robot localization.

Architecture: The navigation stack has a ‘global planner ’ that takes care of
the path planning and a ‘local planner ’ that deals with the trajectory planning.
Both these planners are built as plugins and provide an easy way to use your own
custom planners besides the existing ones. As it is built over ROS, the parameters
and the planners can be updated easily using an ‘yaml’ configuration file.

Output: It outputs the command velocity for the robot’s base controller.
1http://wiki.ros.org/navigation

http://wiki.ros.org/navigation
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1.2 Human-Aware Navigation
Human-Aware Navigation (HAN) deals with the navigation planning of the robot
in human workspaces. Therefore, it has to take into account several factors while
planning. We believe that HAN needs to integrate human expectations, social
norms and situation analysis into its planning while taking care of other static and
dynamic obstacles. It should try to lessen the discomfort and make the robot’s
motion more legible to the humans in the environment.

In this section, we present various works related to HAN, distributed in four
parts. We then proceed with a description of the research and evolution of HAN
at our lab over the years and the proposed systems. Next, we briefly discuss how
HAN is seen and used as a part of HRI before presenting the challenges faced
by researchers in HAN. Finally, a short description of how these challenges are
addressed is provided.

1.2.1 State-of-Art over the years

We briefly present the works that are related to HAN in this section. This section
is divided into four parts to show for ease of explanation and also to show how the
number of works increased over time. We start with some early works and move on
to the most recent literature.

1.2.1.1 The initial works: Before 2000

Some of the early works in HAN were published before 2000. In the work by
Tadokoro et al. [Tadokoro 1995], a trajectory planning algorithm was presented
that takes human motion prediction into account and plans the robot’s motion.
As the interest in the sector of service robots grew, new design philosophies and
architectures were proposed like the ones by Kawamura et al. [Kawamura 1996]
and Wilkes et al. [Wilkes 1998]. During this period, one of the first robotic tour
guides, RHINO [Burgard 1999b], was deployed in the “Deutsches Museum Bonn”
for six days. According to the article by Burgard et al. [Burgard 1999a], it had a
success rate of over 99%. Later, a second generation of the robotic tour guide, MIN-
ERVA [Thrun 1999], was deployed in the “Smithsonian’s National Museum of Amer-
ican History” for two weeks and gave 620 hours of tours. Both these robots used sim-
ilar probabilistic architectures as mentioned in [Burgard 1999a] and [Thrun 2000].
However, MINERVA had an additional interactive component and communicated
its navigation intent through facial expressions and sounds [Schulte 1999]. The
work by [Imai 1999] presents a migration system with a computer generated agent
that shifts from PC to the Pioneer I robot, which guides the people in their labs.

Robotic wheelchairs also have to address HAN along with the comfort of the
person in the wheelchair. Yanco [Yanco 1998a] presented a list of the then-existing
projects for robotic wheelchairs and proposed a wheelchair for indoor naviga-
tion [Yanco 1998b]. In parallel, Prassler et al. [Prassler 1999] deployed their robotic
wheelchair, MAid [Prassler 1998], in a railway station during rush hour and through
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crowds to evaluate their navigation system. They used temporal maps with decay-
ing observations over the grid for path planning and velocity-obstacle based evasive
manoeuvres.

1.2.1.2 The early 2000’s: 2000-2006

The number of works in the field started to rise over these years with an increased
focus on robots for human-aid. Boy et al. [Boy 2002] proposed a collaborative
wheelchair with guided paths for aiding the manoeuvers. This was later realised
in work by Zeng et al. [Zeng 2006]. The wheelchair moves along the software-
generated path between the start and the goal defined by the user. The user can
modify this path online and also controls the speed. The path modification proposed
by these works is similar to the elastic band approach. The works by Gonzalez
et al. [Gonzalez 2006b] and Galindo et al. [Galindo 2006] also use the interactive
path selection approach in their wheelchair, SENA [Gonzalez 2006a]. This system
was tested mainly in indoor environments. The works presented in [Rao 2002]
and [Parikh 2003] show the autonomous navigation of a wheelchair in the presence
of obstacles, while [Morris 2003] uses a mobile robot with autonomous navigation
capabilities to assist visually impaired elderly people. All these robotic systems
have to navigate the human environment in addition to taking care of the comfort
of the passenger. The work by Prassler et al. [Prassler 2002] presented a wheelchair
accompanying a person side-by-side in a railway station. Here, the robot had to
coordinate its motion with the accompanying person while avoiding collisions with
the other humans in the environment.

Coming to the mobile robotic tour guides, researchers from ETH 2 designed
and deployed a mobile robot, RoboX [Arras 2003] in a robotics expo and pre-
sented the complete architecture and their experiences [Siegwart 2003, Jensen 2005].
Their system used a modified local path planning combining the DWA and elas-
tic band approaches [Philippsen 2003]. Another robotic tour guide is CiceR-
obot [Macaluso 2005] which used a cognitive architecture and was deployed in
the “Archaeological Museum of Agrigento”. Garcia et al. [Martinez-Garcia 2005]
studied the scenario in which several robots were guiding multiple people to
steer the crowd without explicit communication using the Social Force Model
(SFM) [Helbing 1995]. Most of the above works did not consider human motion
prediction in the planning. Bennewitz [Bennewitz 2004] presented an approach
for learning the motion patterns of humans [Bennewitz 2005] using Expectation-
Maximisation methodology and integrated it into robot planning to have adaptive
navigation strategies yielding a complete HAN system. Althaus et al. [Althaus 2004]
integrated the navigation into the interaction loop and presented a methodology
to approach a group of people and dynamically maintain its formation as the
group changes. It used a potential field based approach with several constraints
on the direction of the robot along with speed modulation around humans. A
probabilistic extension of velocity-obstacle based collision avoidance was proposed

2https://ethz.ch/en.html

https://ethz.ch/en.html
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by [Kluge 2004], which tried to account for the uncertainty associated with human
locomotion and the potential future behaviour of the agents. They modelled the
obstacles (or humans) as intelligent decision-making agents with the same level of
intelligence as the robot.

Some works studied the human-robot interaction in the context of navigation
and published the observations. Butler et al. [Butler 2001] conducted several ex-
periments with a mobile robot that is either approaching, avoiding or exploring
the room while a person stands still in the same room. The mobile robot’s speed,
paths and bodies were different in all of these experiments. They concluded that
slower approach velocities were preferred, and the larger distance was preferred for
the robot with a bigger body while avoiding. The room exploration study did not
yield any significant results. One of the early studies on communication through
gaze was done by Kanda et al. [Kanda 2001], where the robot tried to commu-
nicate its intent and interest through gaze and body rotations. The conclusion
was that the “gaze control (moving the camera in the direction of interest) made
the robot impressions more enjoyable and active”. The works by Pacchierotti et
al. [Pacchierotti 2005, Pacchierotti 2006] studied a robot passing a human in a cor-
ridor. They concluded that people preferred higher speeds while crossing and early
signalling of the direction the robot was going to take.

1.2.1.3 The late 2000’s: 2007-2012

An increase in the number of works on person following and approach was ob-
served during this period. In the context of the person following, Gockley et
al. [Gockley 2007] reported that a robot following the direction of the person
rather than the exact path was found to be more natural. The work by Hoeller
et al. [Hoeller 2007] used a potential field based approach with virtual targets and
motion prediction in the local planning that allowed the robot to evade the possi-
ble interferences by other humans while following the target person. In the works
presented in [Zender 2007] and [Granata 2012], people tracking was combined with
SLAM to determine where humans are in the environment and decide the action for
the robot or the location to meet. Further, these works introduced situation assess-
ment into the planning to shift between different robot behaviours like increased
distance from doors, going to the person, following the person etc. However, these
behaviours are on the top of the control layer and not inside it, as we present in
this thesis. Seifer et al. [Feil-Seifer 2011] presented a goal-oriented robot behaviour
when a human partner is involved. The modified trajectory planner presented in
this work allowed the robot to slow down or stop and wait to let the human partner
catch up with the robot.

Kessler et al. [Kessler 2011] and Satake et al. [Satake 2009] both presented the
planning methodologies to approach a human for the mobile robot. While the work
in [Kessler 2011] dealt with static humans using simple sampling-based planning,
[Satake 2009] presented a complex framework to approach moving humans in the
frontal direction and show the robot’s intention to interact, based on the detected
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state of the human. Similar work was presented by Hayashi et al. [Hayashi 2012] to
naturally encounter people walking in malls using gaze and a predefined ‘friendly
patrolling’ behaviour. In a contrasting setting, Hansen et al. [Hansen 2009] pro-
posed an approach to predict whether a human intends to interact with a robot
or not, based on motion pattern (trajectory) analysis of the human. Some stud-
ies regarding approach methodologies, like Shi et al. [Shi 2008] and Takayama et
al. [Takayama 2009] reported some results relating the distance of approach to the
speed and gaze, respectively. They concluded that slower speeds are preferred, and
it is better to avert the gaze while approaching very close, to avoid the conveyance of
threat. The works presented in [Lichtenthäler 2012b] and [Kruse 2012a] study the
legibility of robot’s motion in the crossing scenario. They concluded that velocity
modification is more legible than path modification in such scenarios.

As the interest grew in HAN, robotic wheelchairs were actively improving,
and several works were published during this period. The works presented in
[Demeester 2008, Taha 2008, Vanhooydonck 2010] studied the ideas of shared con-
trol and user intent recognition. Demeester et al. [Demeester 2008] presented a
user-adapted plan recognition and shared control of wheelchair using the Bayesian
approach and POMDPs by using explicit communication, whereas Vanhooydonck
et al. [Vanhooydonck 2010] used artificial neural networks to learn the user in-
tent implicitly. Taha et al. [Taha 2008] used POMDP based approach again, but
instead of aiming at a semi-autonomous control, the system predicts the user’s in-
tended goal in a given environment and takes the human there with minimal input
from the joystick. Intention detection could be of use in autonomous vehicles as
well. Fully autonomous HAN systems on wheelchairs were presented by Martinez et
al. [Rios-Martinez 2012b] and Tomari et al. [Tomari 2012] in shared human spaces,
considering the comfort of the other humans in the environment.

Guiding robots were still an active part of the HAN research, and some of
them include TOOMAS [Gross 2009], a shopping guide robot in large stores, Ur-
bano [Rodriguez-Losada 2008], a mobile robot guide deployed in several environ-
ments and a museum tour guide proposed by Han et al. [Han 2010]. These are just
a few of them, and the list is not exhaustive. Huang et al. [Huang 2010] proposed
a HAN system for the robots in the home based on proxemics. In a similar work
by Lam et al. [Lam 2010], they not only consider humans but also other robots
and propose a robot navigation system based on sensitive fields which are similar
to proxemics. The work by Svenstrup et al. [Svenstrup 2010] uses an RRT based
path planning combined with an MPC controller to navigate dynamic human en-
vironments. Henry et al. [Henry 2010] used Inverse Reinforcement Learning (IRL)
to learn motion planners for the robot to navigate the crowds like humans. How-
ever, their system was tested only in the simulation, and no real-world results were
reported. The work presented in [Müller 2008] proposes a strategy to navigate in
populated environments by tracking and following people who move towards the
robot’s goal.

One of the common problems that exist in crowd navigation is the Freezing
Robot Problem (FRP) [Trautman 2010]. Trautman et al. [Trautman 2010] ex-
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plicitly addressed the FRP problem by proposing an Interactive Gaussian Process
(IGP) based motion model for the navigating agents. To improve the human model,
Thompson et al. [Thompson 2009] used a mixture of annotated spaces and heuris-
tically determined waypoints to infer the navigation intent of humans and predict
their short-term navigation goals. Chung et al. [Chung 2010] proposed something
similar by exploring the spatial effects of the environment on the behaviour of pedes-
trians. They combined their trajectory prediction model with the proposed spatial
effects detection model and showed that a mobile robot navigates better by using
them. Garrell et. al [Garrell 2010] proposed a new cost function for optimizing co-
operative robot movements when a group of robots tries to guide a group of people.
This makes the robots adapt their trajectories to avoid humans getting away from
the group. It can be seen that more trajectory planning and complex optimization
schemes were used during this period compared to simple collision avoidance meth-
ods. This can be attributed to increased computational power and improved studies
in HRI and HAN. Kirby et al. [Kirby 2009] proposed an optimization scheme for
person-acceptable navigation (COMPANION) where social norms or conventions
were modelled as constraints on the robot’s navigation. The HAN system proposed
in this thesis uses a similar approach.

1.2.1.4 In the past decade

Over the last decade, the research on HAN has gradually increased, and the field
has expanded to include drones and autonomous vehicles. The literature is mainly
spread among different categories like HAN in crowded or densely populated areas,
indoor or structured environments, and service robots.

Crowd navigation is one of the challenging tasks for a HAN system, and
some of the early works addressed this using SFM [Ferrer 2013a, Ferrer 2017,
Patompak 2016] or learning approaches [Pérez-Higueras 2014, Vasquez 2014,
Triebel 2016, Luber 2012]. The guiding robots, FROG [IDM 2011] presented in
[Pérez-Higueras 2014] used IRL based controller while SPENCER, presented in
[Triebel 2016] used an RRT* based planning over an IRL based costmap. Vasquez et
al. [Vasquez 2014] have presented how features and selected IRL algorithms affected
the learnt behaviour of the robot. The work by Ferrer et al. [Ferrer 2013a] is one
of the first works to use SFM based mobile robot navigation in an outdoor setting.
It was later extended to address the problem of accompanying a person in outdoor
scenarios by Ferrer et al. [Ferrer 2017] and Repiso et al. [Repiso 2017]. Patom-
pak et al. [Patompak 2016] proposed new strategies for path planning in populated
environments based on an extended SFM and RRT. Truong et al. [Truong 2017a]
combined the extended SFM with HRVO [Snape 2011] to generate a proactive social
motion model that can navigate crowded environments taking care of human-human
as well as human-object interactions. As deep Reinforcement Learning (RL) gained
popularity in robotics and control, it was applied to learn human-aware crowd
navigation strategies in works by Chen et al. [Chen 2017a, Chen 2019, Chen 2020]
(SA-CADRL, SARL, RGL), Xie et al. [Xie 2021] and Liu et al. [Liu 2020]. These
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works not only use deep RL but also use neural network based architectures to
extract the features [Liu 2020] or learn salient relations [Chen 2020]. The work
by Wang and Steinfeld [Wang 2020] uses 3D convolutional networks to predict the
splitting and merging of people in groups. As mentioned previously, FRP is recur-
ring in a crowd navigation setting, and some works address this issue precisely while
proposing a robot navigation solution. Trautman et al. [Trautman 2015] extended
their previous work on IGP and proposed multi-goal IGP (mgIGP) to develop a
robot navigation algorithm that encourages cooperation between humans and the
robot while avoiding the FRP. The studies conducted in real environments inferred
that the proposed algorithm was comparable to the results of the teleoperation.
Sathyamoorthy et al. [Sathyamoorthy 2020] have proposed a geometric approach
to identify the freezing areas and combine it with a deep RL based collision avoid-
ance [Long 2018] to move the robot among humans without getting frozen. Wang
et al. [Wang 2022] use group-based motion predictions and a special form of MPC
to mitigate the FRP. Nishimura et al. [Nishimura 2020] tried to learn the balance
between safety and efficiency in crowd navigation. This approach is based on the
assumption that the robot in the crowd can be seen as an agent in sequential social
dilemmas (SSDs) [Leibo 2017] setting. The results in various simulated scenar-
ios showed satisfactory navigation of the robot without taking long deviations and
safely passing through the crowd. In a recent work by Dugas et al. [Dugas 2020],
multi-behaviour navigation planning was proposed for robots in a crowd using some
interactive actions. They have introduced three multi-modal behaviours called In-
tend (move to free space), Say (communicating the robot’s intention to pass through
verbally) and Nudge (communicating verbally and gesturing using a hand to pass
through). The Nudge action was specifically designed to unfreeze the robot in dense
crowds.

As indoor navigation is one of the core areas of focus in HAN, there were numer-
ous works in the previous decade which proposed several interesting methodologies
to address the problem. One of the simplest approaches was proposed by Lu et
al. [Lu 2013] in which they include a costmap layer around the detected human
based on the proxemic zones. Then the path is planned in the free areas of the
costmap and, hence, avoids humans. The works by Qian et al. [Qian 2013] and
Cunningham et al. [Cunningham 2015] proposed POMDP based decision-making
and modality shifting for robot navigation in constricted or crowded spaces. The
modality shifting is not at the level of trajectory planning as presented in this thesis.
One of the recent works by Buchegger et al. [Buchegger 2018] modified the robot’s
trajectory at the control level based on human predictions. This work is similar to
ours, but we include situation analysis and modality shifting as well at the control
level. Some works like [Mavrogiannis 2018, Vasconcelos 2015] presented methods
to produce legible robot navigation. The authors of [Mavrogiannis 2018] obtained
legible motion for the robot by minimizing ‘social momentum’, a concept they intro-
duce in their work. In [Vasconcelos 2015], the velocity of the robot is adjusted based
on the distance from the human, similar to the proposal in [Kruse 2012a]. Truong
et al. [Truong 2014] proposed the dynamic social zones based on proxemics and
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published a series of works [Truong 2017c, Truong 2016, Truong 2017d] addressing
various concerns in social navigation like approach, human-object interactions etc.
Similarly, Vega et al. also published a series of works [Vega 2017, Vega-Magro 2018]
that proposed HRI architectures for HAN with an adaptive spatial density func-
tion to address human needs based on the context. Very recent work from the
same group [Manso 2020a] proposed the use of graph neural networks for learn-
ing a similar spatial density function based on context. The work by Kollmitz
et al. [Kollmitz 2015] used time-dependent planning to address dynamic humans
in home-like environments. Araujo et al. [Araujo 2015] proposed a potential field
based approach for navigation in structured office-like environments. One of the
recent works by Bruckschen et al. [Bruckschen 2020] proposed an idea of long-term
goal prediction based on the possible goal locations for humans and designed a
navigation strategy for the robot to arrive at the goal before or at the same time
as the human for assisting. Human intention prediction was also used by some of
the works [Ratsamee 2013, Peddi 2020, Park 2016] to predict the willingness of a
human to interact with the robot or the navigation intent. Based on the detection,
the robot takes appropriate actions to avoid smoothly or approach the human for
interaction. Navigation in warehouses is a part of HAN, and the works presented
in [Fernandez Carmona 2019, Dondrup 2016, Kenk 2019, Guldenring 2020] specifi-
cally address this. The works presented in [Fernandez Carmona 2019, Kenk 2019]
used geometric approaches, whereas Guldenring et al. [Guldenring 2020] used deep
RL to solve the same problem. As deep learning and RL have become signif-
icantly improved over the years, there are many works that use these to ad-
dress HAN [Qiu 2022, Pérez-Higueras 2018b, Fahad 2020]. However, there are
still some works that use classical approaches like RRT [Majd 2021] or optimiza-
tion [Shin 2020, Banisetty 2018]. Depending on the requirements and the compu-
tational capacities of the system any of the above approaches can be chosen for
implementing HAN. Note that none of the methods is perfect and has some limi-
tations and drawbacks. The multi-context navigation, unlike the multi-behaviour
navigation that is addressed in this thesis, was also proposed in one of the recent
works based on multi-objective optimization and deep learning by Banisetty et
al. [Banisetty 2020]. Shin et al. [Shin 2020] used optimization to follow a person,
while Kollmitz et al. [Kollmitz 2020] used IRL to make the robot learn human pref-
erences while navigating in an environment. Finally, one of the new developments
in HAN is virtual reality (VR) based robotic control, and in this context, Becerra
et al. [Becerra 2020] proposed a navigation system for a remote robot that takes
into account the comfort of the human using the VR set.

The development of HAN in service robots continued, and Rioz et
al. [Rios-Martinez 2012a] proposed intention-aware navigation for a robotic
wheelchair using Risk-RRT [Rios-Martinez 2011] and face control [Escobedo 2012].
For the human motion prediction, they used the Growing Hidden Markov
Model [Govea 2010] trained with collected trajectories from real-world exper-
iments [Vasquez 2013]. Narayanan et al. [Narayanan 2016] proposed a semi-
autonomous approach for wheelchair navigation with user intention prediction and
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socially compliant planning. In the subsequent work, a transient goal driven ap-
proach [Narayanan 2018a] was proposed to make the robot socially compliant lo-
cally. Having such local goals improves the navigation behaviour of the robot among
pedestrians when compared to global optimal planning. In the work presented in
[Narayanan 2018b], this transient goal approach was extended such that these tran-
sient goals are communication aware. It is proposed for large environments to avoid
the loss of wireless communication signals while navigating among humans. A se-
ries of works published by Pasteau et al. [Pasteau 2016, Pasteau 2013, Pasteau 2014]
presented methods for corridor following and door passing using visual servoing for
wheelchairs. Morales et al. [Morales 2017] proposed a motion planning framework
for wheelchairs taking into consideration both passenger and pedestrian comforts.
They performed a study to decide motion parameters for comfort and preferred
location within a straight corridor (to one side) for passengers. A very recent work
by Paez et al. [Paez-Granados 2022] demonstrated a control strategy that enables a
mobile service robot to attain reactive control after a collision, allowing it to absorb
some of the impacts and keep travelling by driving slowly around the pedestrian.
They proposed it as an alternative solution to the general safe approach of freezing
a robot upon contact.

There were numerous studies in HAN during these years, and we will talk
about some of them here. The studies by Lichtenthäler et al. [Lichtenthäler 2012a,
Lichtenthäler 2013b] on legibility concluded that a robot using human-aware mo-
tion planning systems was more legible and the robot changing speed while mov-
ing towards the goal was more legible than changing path. Communication of
intent through signals was studied in three different works [May 2015, Hart 2020,
Palinko 2020], and each of them reported some very interesting results. The works
in [May 2015] and [Hart 2020] have a similar experimental setup and tested whether
an expression-based turn indication was better than a traffic signal like indication.
Both these studies conflict with each other as one suggested traffic indicators were
better, and the other suggested that facial expressions were better. These differ-
ences could be due to differences in the timelines of these studies or the design
of the signals. The take-home message from these studies would be some kind of
indication is better than none. The study by Palinko et al. [Palinko 2020] also sup-
ported that blinking signals show the robot’s intention. This study showed that
turning the whole robot in the direction of the turn was the best indicator, and
combining it with other signals improves it further. They have also concluded that
people need not follow the “right” or “left” lane rules while crossing the robot. Het-
herington et al. [Hetherington 2021] studied different kinds of signals for a robot
yielding to a human at a doorway. Almost all the signals were correctly interpreted,
with retreat (stopping and moving back) scoring the highest in measures of trust,
likeability, comprehension, comfort, and social compatibility. The work presented
in [Senft 2020] studied the scenario of a robot giving way to humans in a narrow
passage. The results showed that sliding to a side and rotating sideways was pre-
ferred by the people. Even though there was no extra space or clearance due to the
robot’s actions, it was more acceptable than the one without such social behaviour,
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indicating that HAN is not just about providing enough space for pedestrians.
Mavrogiannis et al. [Mavrogiannis 2019] tested different navigation algorithms on
the robot with real humans and reported that humans did not find any signifi-
cant difference between the strategies. Sorrentino et al. [Sorrentino 2021] tried to
model the personalities of the robot based on proxemics, and the study revealed
that humans could notice the differences in the personalities and their perceptions
were based on their prior experience with the robots. A recent work by Salvini et
al. [Salvini 2022] presented the risks of deploying mobile robots in crowded human
environments and suggested that psychological safety should also be considered by
HAN than just physical safety.

With the growing interest in HAN, autonomous vehicles and drones also entered
the field. Some of the works concerning HAN in drones and AVs are presented in
[Evens 2022, Luo 2018, Garza Elizondo 2016, Garrell 2019]. There are many more
works, and we will not go into details about these works as the main focus of this
thesis is on mobile robot navigation. The popularity has also led to the creation of
new datasets [Rudenko 2020, Karnan 2022, Manso 2020b, Othman 2020] and simu-
lators [Mizuchi 2017, Tsoi 2020, Holtz 2021, Biswas 2022] for learning and studying
HAN. The datasets are collected with robots navigating in real environments or
under controlled laboratory settings. The presented simulators provide navigation
behaviours based on realistic data or algorithmically generated behaviours. At the
end of this thesis, we briefly present our contributions to simulating rational humans
for HAN.

1.2.2 Human-Aware Navigation at LAAS

Human-aware navigation has been an active part of research at LAAS3 since the
very early stages. One of the first works by Alami et al. [Alami 2000] presented
an HRI architecture focussed on a human-friendly navigation task called Diligent.
Instead of looking at HAN as a motion planning problem, a supervisor module
supervises and controls the navigation task execution. It was based on the elas-
tic band based path planning using nearness diagram [Minguez 2000] for collision
avoidance. Later, in 2005, Sisbot et al. [Sisbot 2005] presented a human-aware path
planning system that takes into account different factors apart from the proxemics
like the visibility and hidden zones while planning the path. By introducing safety,
visibility, and hidden zone costs into a grid-based planner based on the human
states (position, orientation, standing or sitting), they solve for better and adap-
tive human-aware paths, mostly in the case of static humans. Some studies and
trials were conducted [Dautenhahn 2006] that provided a basis for the grid mod-
elling the preferred direction of approach while sitting. The proposed framework
was tested in several scenarios [Sisbot 2006, Sisbot 2007a] to show its effectiveness.
This framework was later extended to develop a path planner for complete motion
planning tasks, including human-aware manipulation [Sisbot 2007b]. Similar to the
case of navigation, human-aware manipulation takes safety, visibility and human

3https://www.laas.fr/public/

https://www.laas.fr/public/
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comfort into account while planning the path. A placement position is found based
on the spatial location of the human using perspective placement [Sisbot 2007b],
and then the HAN system plans a path to reach this position. Then the robot
moves and places itself there before finally planning the manipulation to hand over
the object. To determine the placement and the time to start the handover task, a
user study was conducted [Koay 2007] before developing the framework. The study
concluded that the preferred approach distance could change, but the manipulation
should start as the robot arrives near the placement position, not too early or af-
ter reaching the position, according to the majority of humans. They also studied
the approach direction, but it contradicted the results from [Dautenhahn 2006],
which could be due to the different levels of familiarity of humans with the robot
in the two studies. Later, this framework was combined with a trajectory plan-
ner [Sisbot 2010] and tested under several real-world scenarios, along with a user
study [Dehais 2011], which inferred that the proposed planner was preferred to the
standard motion planning frameworks.

In the subsequent years, attention shifted to HAN planning again based on
the experiences of the museum guide robot, Rackham [Clodic 2006]. Pandey et
al. [Pandey 2009a, Pandey 2009b] proposed a generic framework for incorporat-
ing various social norms at different stages of execution, like avoiding humans and
groups or guiding a person to a goal. The initial path is generated using a set of mile-
stones or waypoints that obey certain conventions, and these are modified whenever
required, during the execution of motion, depending on the state [Pandey 2010]. De-
cision trees and splines were used to generate the path from these milestones. They
also include intention-show into this framework by signalling early and selecting a
path that conveys the robot’s motion intention to the human. This is particularly
useful in the case of a robot taking a human to a goal. The goal-oriented naviga-
tion [Pandey 2009b] also modifies its path to bring back the human if he/she stops
moving. Following this, the HAN system proposed in [Sisbot 2005] was extended to
the case of moving humans using velocity-based predictions and talked about the
concept of cooperation in HAN [Kruse 2010b, Kruse 2010a]. In 2010, Mainprice et
al. [Mainprice 2010] proposed a new RRT based planner for combined navigation
and manipulation planning.

In recent years, the idea of humans as partners in HRI (and HAN) was studied
at LAAS. This was studied in detail in the context of handover tasks. Mainprice
et al. [Mainprice 2012a] included the mobility factor (whether the person can move
more or less) of humans while planning a path for object handovers. This kind
of combined planning, considering humans as partners, yielded very interesting
results [Gharbi 2013]. However, this considered only the static humans and was
implemented using a grid-based approach. Different kinds of approach mechanisms
were also studied in HAN, and the work by Ramirez et al. [Ramírez 2016] used
an IRL based methodology to learn the approach from the human demonstrations.
Subsequently, a multi-agent setting was exploited, consisting of several humans and
robots. Waldhart et al. [Waldhart 2015a] presented a planner that can find a se-
quence of handovers involving several agents to transfer an object from the initial
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agent to the desired agent. It was built on a graph, with each node representing
a possible object position and the agent holding the object, and the edges repre-
senting the various paths an object can travel between the nodes. These paths can
be of either navigation or manipulation (handover). LAAS has also contributed
to some of the studies in HAN. Specifically, the studies regarding the head mo-
tion [Gharbi 2015, Khambhaita 2016a] revealed that goal or path-oriented head
motion is preferable in navigation, as well as object handover. Moreover, while
navigating, the robot’s velocity modulation was found to be preferable, compared
to path modulation as studied in [Kruse 2014a, Kruse 2012a]. Coming back to
HAN planning alone, Khambhaita et al. [Khambhaita 2017c, Khambhaita 2017b]
proposed the idea of proactive planning by considering the human as a cooperative
agent and introduced the concept of Human-Aware Timed Elastic Band (HATEB)
for trajectory planning. This idea is the basis for this thesis. Unlike the previ-
ously proposed frameworks, HATEB does not concentrate much on path planning
and mainly deals with trajectory planning and control, combining all the ideas
discussed above. Qualitative comparison of HATEB with other planners showed
that it produced better trajectories [Khambhaita 2017a] than the other HAN plan-
ners. The proposed system also introduced the approach and head movements into
HAN. Apart from works on mobile robots, a recent work by Truc et al. [Truc 2022]
addressed the human-aware path planning problem in the case of a drone flying
in human environments. This thesis is built over the previous work, HATEB, and
proposes new ideas and architecture for HAN while improving on the previous ones.

1.2.3 Human-Aware Navigation as a part of HRI

HAN is not just a simple motion planning problem involving dynamic obstacles. It
is navigation involving interaction with humans, and hence, it is essentially a special
case of HRI. Interaction should be a part of HAN so that the robot can successfully
communicate its intention or reach its goal with minimal discomfort to humans. In
many HRI frameworks, HAN is treated as one of the many tasks the robot has to do
to complete an interaction. For example, Kaiser et al. [Kaiser 1997] present an intel-
ligent robot framework capable of acquiring knowledge and analysing the situation
based on simple inputs from the users. However, some of the instructions implicitly
involve navigation. Particularly, if the environment has humans in it, the navigation
should be human-aware and intelligent. At LAAS, one of the first human-friendly
navigation systems [Alami 2000] used HRI as the base and a modular system with
multiple tasks. Later this idea was refined in different projects [Foster 2016], par-
allelly working on a better HAN system. Some recent works like [Vega 2018] and
[Vega-Magro 2018] proposed cognitive architecture for social navigation involving
decision-making and communication capabilities. Many works in HAN present how
situation assessment and behaviour selection can generate acceptable and legible
motions for the robot. Therefore, we can say that HAN is similar to HRI, involving
decisions about the environment and the humans present in it. Hence, a robot navi-
gating among humans must incorporate the principles of HRI into its design. In this
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thesis, we see HAN as a cooperative activity involving humans and the robot, and
hence, we apply the joint-action principles in HRI [Curioni 2019] while developing
the framework.

1.2.4 General challenges in Human-Aware Navigation

Being a multifaceted problem, HAN planning faces several challenges, and a single
framework may not be able to provide a general solution to the problem. Some of
the many challenges faced by HAN are given below. This may not be the complete
list of challenges, but it comprises the majorly discussed issues in HAN.

• Human Modelling: The most basic requirement for any HAN system is to have
a model for a human navigating in the given environment. Treating humans as
dynamic obstacles is not sufficient as a human have certain expectations and
notions about other humans or agents in the environment. Therefore, a special
model is required for the human that is independent of place, culture, gender
etc., and built over some common ground.

• Hard to Generalise: The robot navigation must comply with the social norms
of the environment, and one of the major issues is that they change rapidly with
human density, geometric context (corridor, door, open area etc.), place (office,
warehouse, street etc.) and many other factors. Furthermore, each social norm
requires a different way of modelling, and sometimes they could conflict with each
other. Hence, it is important to determine which social norms are relevant to the
situation at hand. Lastly, people from different backgrounds react differently to
the robot, and it adds more complexity to the planning.

• Need for Decision-Making Capabilities: Without proper situation assess-
ment and handling, the robot could be contributing to the discomfort of humans
rather than reducing it. Unless a HAN is designed to handle only a specific
situation, it needs to evaluate the situation and take pertinent actions, which
requires decision-making capabilities. The situation analysis also needs to an-
ticipate possible actions and intentions of humans to avoid the occurrence of
undesired situations and erratic behaviour of the robot. This requires good pre-
dictive models for human motion and intention detection.

• Communication and Negotiation: The robot motion planned by a HAN
system should not only respect the social norms but also needs to be legible.
It requires the robot to show its navigation intention to the humans with or
without explicit communication through path or speed changes, gestures like
waiting, turning to a side etc., signals and sometimes through voice or video.
Explicit communication may also be needed to negotiate in intricate scenarios.
The difficulty here is to know ‘when’, ‘what’ and ‘how’ to communicate.

• No Standard Metrics: As humans are social beings with different states of
mind and backgrounds, it is difficult to come up with metrics that apply to every
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situation. Therefore, different researchers in HAN use different sets of metrics
for evaluation. Although there are some metrics that are widely used, they are
not universally accepted and may be misleading in some contexts.

1.2.5 Addressing the challenges

As HAN has been a topic of research for quite some time, researchers have ad-
dressed the challenges in different ways. Human modelling was the first thing to be
addressed. So, we start with it and then proceed to robot planning.

1.2.5.1 Human Modelling and Motion Prediction

Figure 1.4: Zones and Spaces in Human and Group Modelling.

For modelling humans, proxemics theory [Hall 1966, Mishra 1983] provides some
baselines that are common to most humans. Based on this, humans are designed
as special obstacles with different zones around them. The very first modelling
was done using concentric circles as shown in Fig. 1.4 (a) with four different
zones [Rios-Martinez 2015], namely, 1) the public zone (> 3.6m), 2) the social zone
(> 1.2m), 3) the personal zone (> 0.45m) and 4) the intimate zone (≤ 0.45m).
These measures are not very strict and vary with age, culture, background etc. The
robot can interact and enter the public and social zones while it is prohibited from
entering the personal and intimate zones. Later different shapes are proposed for
these zones [Rios-Martinez 2015] and the most commonly used one these days is
the Egg shape shown in Fig. 1.4 (b) that makes the robot maintain a larger dis-
tance towards frontal side compared to the sides or back. This is specifically true
in the case of moving humans, and some works [Kostavelis 2016] adapt the shape
based on the estimated human velocity. As SFM gained popularity in robotics,
human is assumed to have a repulsive potential field in the shape of an ellipse that
is monotonically decreasing with a peak at the centre. Fig. 1.4 (c) shows this
shape and the decaying potential field. The direction of this field is the direction
of motion of the human. As research progressed, different concepts like Informa-
tion Processing Space [Kitazawa 2010] and Object Affordance Spaces were intro-
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duced into the human model. For groups, the concepts of o-space, p-spaces, and
f-formations [Rios-Martinez 2015, Kendon 2010] were introduced, which allowed
the robot to avoid, join or leave a group of humans appropriately. An example of
o-space and p-space with vis-a-vis (or H) f-formation is shown in Fig. 1.4 (d).

It is necessary to predict the trajectory and motion of the human for the robot
to act or react appropriately. As human detection and tracking is not the main
focus of HAN, any off-the-shelf frameworks and systems can be used for this. After
getting the necessary information about the humans’ positions and velocities, a
motion model is required to process these and predict the possible future trajectory.
Thanks to the crowd navigation research, different methodologies like constant-
velocity (or linear), ORCA, SFM, Social-LSTM [Alahi 2016] etc., were developed,
and these are usually employed for the motion models. The trajectory prediction
is performed by forward simulating all the agents (humans and the robot) that are
currently involved in HAN planning using their motion models (can be the same or
different). Generally, the motion model has built-in collision avoidance strategies,
and hence, the predicted trajectories are collision-free. However, when simplistic
models are used (for example, linear), the trajectory prediction has to take care of
collision avoidance as well.

Human intention prediction is necessary to understand what humans might do
in the future and take corrective actions. The meaning of intention may not be very
clear as one can use it to refer to many things, like whether the human is going to
cross the sidewalk or not [Köhler 2012], which direction the human will move or turn
next [Peddi 2020], whether the human is willing to interact or not [Ratsamee 2013]
and many others. Although intention prediction will greatly benefit HAN, it is not
very easy to predict and generalise. The recent advancements in machine learning
and computer vision provided tools that can be used to predict intentions, and some
works [Peddi 2020, Ratsamee 2013] have already integrated it into HAN.

1.2.5.2 Robot Planning and Decision Making

In the early stages, HAN planning was done by adding the proxemic zones around
the humans and then planning a path that avoids intrusions into the personal and
intimate zones. This mostly involved grid search (like A*) or potential field based
path planning with simple controllers that tracked the path. In most of these set-
tings, the humans and the groups were static while the robot navigates around
them. With progress in dynamic obstacle avoidance, different strategies evolved
for HAN, like continuous re-planning of the path with updated proxemic zones
[Truong 2014] and temporal planning [Kollmitz 2015]. However, scalability is an
issue with such global planning strategies, which consider the entire 2D map and
all possible states to re-plan or update the path. On the other hand, as discussed
previously, trajectory planning was mostly local and used only a small portion of
the map and states. This offered a better alternative for doing temporal or reactive
planning in HAN, and consequently, a lot of work today focuses on complex trajec-
tory planning using simple path planning. As mentioned previously, the trajectory
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planning problem always involves some kind of optimization (minimization or max-
imization), and naturally, any kind of optimization technique could be employed
to solve this problem. The ‘human awareness’ is included in the robot’s motion
(or trajectory) through the constraints of optimization, and sometimes they are re-
ferred to as ‘social or human-aware constraints’. Some commonly used optimization
techniques in HAN include MPC [Rösmann 2021], Pareto-optimality [Forer 2018],
graph optimization [Rösmann 2013] etc. There are other ways as well in which this
problem was addressed, and some popular approaches are SFM, velocity-obstacle
based approaches (ORCA, RVO etc.), sampling-based approaches like DWA or RRT
and RL based methodologies like CADRL, SA-CADRL etc.

Trajectory planning in HAN should do more than simple collision avoidance
with humans and obstacles. Since it is highly dependent on the context, it should
best serve the task in the context rather than just avoiding discomfort. There-
fore, the system has to be tuned to make the robot’s motion legible and the in-
teractions possible. One way to make robot’s motion legible is through intention
show using velocity or path modulation [Kruse 2014b, Lichtenthäler 2013a], sig-
nals [May 2015] or visual projections [Shrestha 2018]. All these have to be done
while considering and following the social norms in the context. Some norms
like ‘passing on right (or left)’ could be employed using costmaps [Lu 2013], but
some complex norms like waiting or advancing at a doorway to avoid blocking or
giving way (moving to a side) for a human in a hurry require situation analysis
and decision-making [Zender 2007, Granata 2012, Feil-Seifer 2011, Hayashi 2012]
capabilities. Therefore, some of these works employ state machines that switch
between behaviours, such as navigating in a crowd [Dugas 2020], approaching a
human [Hayashi 2012], following a human [Zender 2007], standing in line etc., after
analysing the situation. Some other recent works use POMDP [Qian 2013] or deep
learning [Banisetty 2020] based approaches to include the decision-making capabil-
ities and modality switching into HAN.

In HRI, if the robot needs to communicate something or interact with a human,
it needs to estimate ‘where’ and ‘when’ it should approach or meet the human and
‘how’ it should plan its trajectory to be legible to all the humans in the environ-
ment (or context). Such things are usually addressed using Inverse Reinforcement
Learning [Ramírez 2016] or potential fields [Hansen 2009]. Unlike the in-place com-
munication that occurs in most HRI tasks, HAN planning has to communicate
(through voice or gestures) during navigation to negotiate or prevent the occur-
rence of the FRP. This is usually done by maintaining a knowledge base and a
model [Dugas 2020] that decides ‘what’ and ‘when’ to communicate. This again
emphasises the need for decision-making in HAN.

1.3 Background and Our Approach

In this section, we provide details on the mathematical modelling and the back-
ground that is necessary to understand our approach to HAN planning. We present
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the TEB formulation and its hypergraph modelling, followed by the formulation
of HATEB and the modelling of social constraints. Following this, the application
of the joint-action principles of HRI to HAN is presented. Finally, we discuss our
ideology while developing a HAN system and briefly describe the approach.

1.3.1 Timed Elastic Band for Trajectory Planning

Timed Elastic Band (TEB) for trajectory planning was proposed by Rösmann et
al. [Rösmann 2013] and is available as one of the local planners4 in ROS. This
approach uses hypergraph representation to build the timed elastic band and then
optimizes the graph to get the optimal command velocity. We briefly provide the
mathematical details of this framework here.

1.3.1.1 TEB Formulation

The robot’s trajectory in 2D navigation can be represented as a sequence of n poses,
pi = (xi, yi, θi) ∈ R2 × S1 and with a set of n− 1 time intervals, δti ∈ R+ between
two consecutive poses. Classically, in an elastic band [Quinlan 1993] approach,
only the poses were considered along with the kinematic model of the robot, and
therefore, the obtained trajectory may not satisfy the dynamic constraints of the
robot. On the other hand, TEB considers both poses and time intervals and hence,
the resultant trajectory is both kinematically and dynamically feasible. Let the
sequence of poses, {pi}, and the time intervals {δti} be represented by:

P = {pi}i=0...n n ∈ N
τ = {δti}i=0..n−1

Using these sequences, P and τ , TEB is defined as a tuple:

B := (P, τ) (1.1)

TEB is then optimized using a weighted multi-objective optimization to obtain
the optimal poses and time intervals in real-time:

f(B) =
∑
k

αkfk(B) (1.2)

B∗ = arg min
B

f(B) (1.3)

where f(B) is the objective function and B∗ denotes the optimized TEB. The
objective function f(B) is a weighted (by αk) sum of different components fk(B)
that represent different kinodynamic constraints. The constraints are formulated as
objectives in terms of a piecewise continuous, differential cost function that penalises
the violation of a constraint [Rösmann 2013].

4http://wiki.ros.org/teb_local_planner

http://wiki.ros.org/teb_local_planner
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1.3.1.2 Hypergraphs and TEB Hypergraph

A hypergraph is a generalised graph with hyperedges [Bretto 2013] that can connect
any number of vertices (or nodes), unlike a normal graph where an edge connects
only two vertices. Mathematically, if H is a hypergraph and V is the set of vertices,
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Figure 1.5: HyperGraph

and E is the set of hyperedges, then

H = (V,E) =⇒ E = {ei | ei ⊆ V }∀i ∈ I (1.4)

where I is a finite set of indices. An example of a hypergraph is presented in Fig.
1.5 (a) with six vertices and four edges. Hypergraphs can contain different kinds of
vertices and edges. In Fig. 1.5 (a) each edge is of a different kind (different colours),
and there are two different types of vertices (yellow and white).

Using hyperedges, any mathematical relationship between any of the vertices
can be defined, and this plays an important role in the HAN system proposed in
this thesis. Therefore hyperedges can naturally be employed to model the kinody-
namic constraints of the robot, and so TEB is modelled using a hypergraph. The
vertices of this hypergraph are the poses and the time differences, while the hyper-
edges represent different constraints or relations between these vertices. A small
part of this hypergraph is presented in Fig. 1.5 (b), containing five vertices (three
poses and two-time differences), and shows the velocity, acceleration and obstacle
edges. The obstacle is shown in blue with concentric circles. From this figure, it
can be seen that the constraints are mostly local, as they depend only on a few
consecutive configurations. It is also the case for the majority of the components
in the objective function, f(B), of TEB, and hence, the TEB hypergraph has a
sparse system matrix. Therefore, this hypergraph can be optimized online and in
real time. TEB is optimized using an open-source graph optimization framework,
g2o, which we present next.
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1.3.1.3 g2o Optimization

g2o (or General Graph Optimization) [Grisetti 2011] is an optimization framework
developed for solving graph-based nonlinear error functions. It offers solutions to
the problems with the following structure:

F(x) =
∑

k=〈i,j〉
ek(xi,xj , zij)TΩkek(xi,xj , zij) (1.5)

x∗ = arg min
x

F(x) (1.6)

where x represents the parameters to be optimized, xi, xj are the block parameters
and zij denotes the constraint between them. Ωk denotes the information matrix
between the constraints and ek(xi,xj , zij) is the error vector between the parame-
ters and the constraint. The optimized set of parameters is represented by x∗. Note
that, the part inside the summation in Eq. (1.5) becomes Ωke

2
k if the error is scalar.

In case of TEB [Rösmann 2013], the objective function, f(B) takes the above form
where B is the set of parameters to be optimized, x, αk = Ωk, ek =

√
fk and

xi = (pi, δti). g2o uses the Levenberg-Marquardt method to optimize the objective
function numerically and offers two Cholesky decomposition solvers, CHOLMOD
and CSparse, to solve it efficiently.

1.3.2 Human-Aware Timed Elastic Bands for Proactive Planning

In this section, we present the idea of Human-Aware Timed Elastic Band (HATEB),
proposed by Khambhaita and Alami [Khambhaita 2017c] that lays the basis for this
thesis. We briefly discuss how the objective function and hypergraph are modified
to include human-aware constraints in robot navigation.

1.3.2.1 HATEB Formulation and Hypergraph

The idea of HATEB is to add elastic bands to all the humans in the robot’s vicinity
in addition to the robot and jointly optimize the robot and the human trajectories
under kinodynamic and human-aware (or social) constraints. This gives rise to a
multivariate multi-objective optimization problem to solve, and the same weighted
sum approach proposed in TEB is used for HATEB as well. Therefore, if the robot’s
band is represented by Br and the human bands by {Bhk

}nk=0 when n(∈ N) humans
are present in the vicinity, the new objective function to solve is,

f(Br, Bh0 ...Bhn) =
∑
i

αifi(Br)︸ ︷︷ ︸
FR

+
∑
k


∑
j

αjfj(Bhk
)

︸ ︷︷ ︸
FH

+
∑
l

αlfl(Br, Bhk
)︸ ︷︷ ︸

FS

 (1.7)

B∗r , B
∗
h0 ...B

∗
hn

= arg min
Br,Bh0 ...Bhn

f(Br, Bh0 ...Bhn) (1.8)



32 Chapter 1. Evolution of human-aware navigation

where B∗r , {B∗hk
}nk=0 are optimized trajectories for the robot and the humans re-

spectively. The initial paths of humans for this optimization is obtained from the
human path prediction module of the system.

Figure 1.6: The updated hypergraph of HATEB [Khambhaita 2017c]. There are
3 bands, one for the robot and the other two for humans. The kinodynamic con-
straints are shown as horizontal edges (yellow, red), social constraints are shown as
vertical edges (blue), and the obstacle avoidance constraints are shown as diagonal
edges (purple).

In Eq. 1.7, FR and FH represent the objective functions for the robot and human
trajectories, whereas FS denotes the objective for human-robot social constraints.
All these constraints are represented as hyperedges of an updated hypergraph, and a
small part of this hypergraph is shown in Fig. 1.6. The social constraints between
human-robot and human-human are highlighted in blue, while the kinodynamic
constraints of the robot and humans are highlighted in red and yellow, respectively.
Finally, the obstacle constraints are shown in purple. Even though the system
matrix is still sparse, it is denser than before, and as we keep adding bands for
humans, the density grows, and the trajectories cannot be obtained in real-time.

1.3.2.2 Proactive Planning and Social Constraints

The joint optimization produces the robot trajectory that obeys the social norms
implemented in FS . Further, the combined human-robot trajectory planning makes
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the robot proactively estimate humans’ plans and quickly adapt its trajectory before
it is too late. We call this idea of adding double-sided (robot side, human side)
bands as ‘Dual Band’ throughout this thesis. This approach always elicits solutions
(provided they exist) for all agents, which can solve the navigation scenario at
hand if every agent follows its trajectory. Using the above architecture, three social
constraints are defined, 1) Human-Robot Safety, which takes care of human safety
and proxemics, 2) Time-to-Collision (TTC), which adds early intention show to
the robot’s trajectory and 3) Directional, that tries to establish a trade-off between
slowing down and changing the path. In HATEB, the objective function for safety
clearance from obstacles is also updated to make the robot move towards obstacles
rather than humans in confined scenarios. All these constraints are added to the
objective function as piecewise continuous and differential error functions, like in
TEB. We believe that this architecture is better suited to solve the HAN problem
than the reactive approaches, especially in intricate indoor scenarios.

1.3.3 Principles of Joint-Action in Human-Aware Navigation
As mentioned previously, HAN can be seen as a part of HRI and therefore, we
believe that it should possess some of the properties of HRI. Specifically, during the
development of this thesis, the principles of joint-action [Curioni 2019] in HRI were
applied to HAN. These principles include: sharing a common perspective, coordi-
nating, predicting others’ contributions and communicating. In terms of human-
aware robot navigation, these can be seen as:

• Share a common perspective: The robot should know the social norms and ex-
pectations of a human in a given environment. For example, moving on the
right, avoiding collisions with humans and other objects etc.

• Coordination: The robot and human should coordinate and cooperate with each
other to reach their navigation goals. For example, the robot should give way
for the human to pass in a door crossing scenario instead of blocking.

• Predict others’ contribution: The robot should predict humans’ motion (trajec-
tory) and/or intentions to know how much the human is willing to contribute
to the navigation task. For example, in a corridor, the robot facing a human
can either continue with or change its path depending on whether the human is
willing to change his/her path or not.

• Communication: The robot should be able to communicate to humans what
action it is going to take or sometimes take permission or inform humans before
taking an action. Communication in HAN can be split into two types, 1) Com-
municating navigation intention (for example, signals) and 2) Communication
through speech or video to negotiate in a complex scenario.

These principles impose more restrictions on the robot’s trajectory and require the
inclusion of decision-making capabilities into robot navigation planning. This makes
HAN a complicated problem to solve in the motion planning paradigm.
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1.3.4 Our Approach and Contribution

One of the noted limitations with Dual Band approach is that it assumes that hu-
mans are always cooperative agents and will not cause any deadlock situations. So
it always proposes solutions with the assumption that the human will be moving,
which might not be the case. When the human stops moving or behave uncon-
ventionally, the robot gets stuck without moving or oscillates without making any
progress towards the goal. Therefore, we introduce situation assessment over proac-
tive planning as shown in Fig. 1.7. This situation analysis is local and happens at
the trajectory planning level. After analysing a situation and determining if it’s a
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Figure 1.7: The situation assessment module is combined with proactive planning
inside the local planner. The system can use any existing global planner.

deadlock or any other uncomfortable setting, we have to find a way to mitigate it.
In this thesis, we do this by shifting between different navigation modalities. The
blue arrows in Fig. 1.7 represent how proactive planning, situation assessment and
mode shifting are interlinked with each other. The integration of situation analysis
into trajectory planning and the process of mode shifting are presented in detail in
the subsequent chapters.

The crux of this thesis is finding and mitigating the uncomfortable human-robot
interactions in HAN. Note that this includes the humans in view and the humans
the robot has not seen yet. The main contributions of this thesis in developing a
human-aware ROS navigation stack are shown in coloured boxes in Fig. 1.7. The
ones in blue colour are the new contributions, while the ones in green represent mod-
ifications over the previous work. The blue arrows stand for the new connections
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we have made in our proposed HAN. Proactive planning has been significantly im-
proved by proposing new human-robot social constraints for both visible and unseen
humans. The updated path prediction module with new goal prediction methodolo-
gies further improves proactive planning, and hence, better navigation behaviours
can be obtained. The new HAN costmap layers are proposed to specifically ad-
dress the global planning around static humans. Yet, these layers update based on
the states of humans (blue arrows) given by the local planner and play a role in
trajectory planning as well. While analysing a situation, the state of the human
(static, moving, stopped etc.) is necessary, and hence, situation assessment modules
maintain a list of states for the humans it has encountered during its navigation.
The choice of modality is based on the state of the human as well as the situation.
The idea of mitigating collisions with unseen humans is quite new in the case of
HAN and makes the robot ready to face any kind of situation when combined with
the multi-context HAN system proposed in this thesis. We believe that the idea of
mode shifting within local planning is significantly new and can be seen as a major
contribution as well.
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2.1 Introduction
Human-Aware Timed Elastic Band (HATEB) [Khambhaita 2017c] includes human
predictions by simultaneously planning for humans and the robot. This allows
HATEB to handle intricate situations like narrow corridor crossing and door cross-
ing, where human and robot cooperative motion is needed. With the increasing
complexity of environments and the need to navigate robots in such environments,
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decision-making has been introduced into planning [Qian 2013, Mehta 2016]. How-
ever, these frameworks might make the robot wait in confined spaces instead of
proactively planning, hence, resulting in larger execution times. Therefore, in this
chapter, we propose HATEB-2, a new modality based human-robot co-navigation
framework that uses decision-making to solve semi-crowded as well as intricate sce-
narios. This is achieved by shifting between different modalities and simultaneous
human-robot planning, similar to HATEB. This chapter discusses the following
three things in detail: 1) HATEB-2, a new human-robot co-navigation planner
comprising decision-making. 2) Improvements and modifications to HATEB. 3)
Analysis of human-robot co-navigation in a variety of situations.

Note that this chapter discusses only the first version of HATEB-2 and its im-
plementation. The subsequent chapters of this thesis discuss the evolution of this
planner over time. Throughout this chapter, humans are represented as green cylin-
ders with yellow arrows, where the direction of the arrows corresponds to the frontal
direction of humans.

The chapter is organised as follows. Section 2.2 presents the related work cor-
responding to this chapter. Section 2.3 briefly presents the proactive planning
in HATEB and the ‘entanglement problem’. Section 2.4 presents the architec-
ture of HATEB-2, describes the different modes of planning and finally explains
the modality-shifting process based on the situation assessment. Following this,
section 2.5 presents the modifications to HATEB and the new human-aware con-
straints. The results and the analyses of the proposed architecture in various sim-
ulated experiments are presented in section 2.6, and the tests in the real world are
presented in section 2.7. Section 2.8 finally concludes this chapter.

2.2 Related Work

Most state-of-art HAN planners use proxemics zones around humans in a grid-based
map representation of the robot’s working environment [Kruse 2013]. Nonetheless,
proxemics alone may not be sufficient to generate completely human-acceptable
motion for the robot. Sometimes planning approaches like SFM [Helbing 1995,
Ferrer 2013a] and velocity-obstacle models [Snape 2011, Berg 2011] are also used
for HAN. As these approaches are reactive, they do not necessarily produce leg-
ible robot motion. In the human-aware navigation planner proposed by Sisbot
et al. [Sisbot 2007c], other social criteria like visibility and hidden zones were
considered along with the proxemics. Another framework proposed by Kruse et
al. [Kruse 2012b] introduced the directional cost model, which attempts to solve
the spatial conflict by adjusting velocity instead of the path whenever possible.
The study conducted by Kruse et al. [Kruse 2014b] showed that humans prefer
the robot to follow this strategy, especially in path-crossing scenarios. This model
has also been shown to increase the legibility of the robot motions, and hence, in
HATEB-2, we introduced some new constraints that restrict the path change and
adjust the velocity based on the distance between the human and the robot.
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Employing social constraints alone may not be sufficient to develop a socially
acceptable navigation planner, and this raises the need for including human mo-
tion predictions into the framework [Kuderer 2012]. Many methods based on
the SFM predict homotopically distinct trajectories for humans and design plan-
ners that learn the navigation policies for the robot based on human demonstra-
tions [Kuderer 2012]. Although these methods involving independent human pre-
dictions work fine in large open spaces, they might require to re-learn the parameters
to handle situations such as passing through a long corridor or a door, where coordi-
nation is needed between humans and the robot. Hence planning for humans along
with the robot is required in such situations. The approach presented by Ferrer
et al. [Ferrer 2015] uses the SFM, both for predicting human paths and controlling
the robot’s motion. In this approach, human predictions based on the previously
planned paths were used. Other approaches [Bordallo 2015, Nagariya 2015] try to
predict the possible human goals based on some type of reasoning and generate
locally optimal motion for the robot. One of the recent approaches [Fisac 2018]
suggests the use of probabilistic human predictions to handle various uncertain-
ties and plan the robot’s motion on top of these probabilistic predictions. This
approach is particularly useful in systems with unreliable sensors. All these ap-
proaches are effective in densely crowded environments as a virtue of remaining
purely reactive but can lead to needless detours in intricate situations. Our pre-
vious work [Khambhaita 2017c] is specifically developed to handle such intricate
situations in semi-crowded environments. Such planning for humans along with
the robot is usually required in robot-human handover scenarios to know where to
perform a task and who performs a task [Mainprice 2012b, Waldhart 2015b].

The concept of modality shifting in human-aware navigation is discussed in
works by Mehta et al. [Mehta 2016] and Qian et al. [Qian 2013], where POMDP is
used for decision making. In both works, different modalities necessary for human-
aware navigation are proposed, assuming that the robot takes all the load of the
navigation process. Hence these methods may also suffer problems like purely re-
active planners in complex situations leading to unnecessary detours or long halts.
HATEB-2 includes HATEB as one of the modalities and hence can handle both
intricate as well as semi-crowded scenarios by switching between different modali-
ties when needed. In this chapter, however, we focus mainly on different intricate
situations involving cooperative motion between the human and the robot.

2.3 Proactive Planning in HATEB

As presented in Chapter 1, the formulation of HATEB allows us to plan for the
robot and the humans involved in the interaction simultaneously. As this approach
plans for all the agents, the robot’s trajectory can be proactively updated before
something happens. Hence, it can solve human-robot navigation scenarios in a
better way when compared to reactive-only schemes. However, some assumptions
made about humans during this formulation and the structure of its implementation
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can lead to deadlock situations, as shown in Fig. 2.1. We call it the ‘entanglement
problem’ throughout this thesis, and its details are presented below.

2.3.1 The Entanglement Problem

In HATEB, the robot’s trajectory is adapted based on the predicted humans’
(planned) trajectories. While planning, it considers a constant velocity for humans
and assumes that they are always in motion. Hence, if the human stops moving, the
system keeps anticipating the human movement in the immediate time step. One
more issue is that the path prediction system for humans is called only once at the
start of the planning, and it puts more burden on trajectory planning to handle the
discrepancies. The assumptions about the agents and this planning strategy result
in the ‘entanglement’ of trajectories when the human stops moving, and the robot
is stuck, waiting for the human to move. These situations can occur commonly in
corridors, and two such situations are shown in Fig. 2.1. The optimization scheme
neglects the other possible solutions as these trajectories have the minimum cost.
This leads to another case of the Freezing Robot Problem (FRP) even when there
is enough space to move. We address this issue in HATEB-2 by detecting such
situations and then taking mitigating actions.

Figure 2.1: Robot getting stuck due to entanglement of trajectories. The poses
in blue correspond to the human’s trajectory and the ones in red to the robot’s
trajectory. In the situations shown, there exists an alternate solution for the robot
to solve the problem. However, the assumption about the human having non-zero
velocity and the safety constraint makes the robot wait in the same entanglement,
speculating the motion of the human. The picture on the left is of open space,
whereas the one on the right is of a narrow corridor.
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2.4 HATEB-2: Situation Analysis and Mode Shifting
The proposed framework, HATEB-2, combines decision-making and planning into
a single framework and opens up new frontiers for HAN planning. This new frame-
work can encompass a large variety of problems by allowing the transition between
different modalities based on context. In this chapter, however, we study only the
human-robot co-navigation problem. HATEB-2 introduces decision-making on top
of planning, and this makes the planner adapt better to the situations at hand.
These situations might be very different from each other and need to be handled
differently. A single way of planning may not be sufficient in such situations, and
hence, we introduce three different modalities into planning. All these modalities
use Timed Elastic Band (TEB) [Rösmann 2013] as their base, and the transition
between them is handled by the decision-making loop.

2.4.1 Formulation and Implementation
HATEB-2 uses the same hypergraph structure and formulation used by HATEB
for proactive planning and introduces a situation assessment module over this. De-
pending on the planning modality chosen, the system uses HATEB with different
settings and human predictions. In fact, ‘Dual Band’ is used as one of the modal-
ities and encompasses a large part of human-robot co-navigation planning. The
other modalities may possess the same human-robot social constraints as HATEB
but differ significantly in their behaviour. We have also made a few modifications to
HATEB to remove its drawbacks and improve legibility before using it in HATEB-2,
which are presented in Section 2.5.

HATEB-2 is implemented in ROS and integrated as a local planner in the
‘move_base’ package1 of Navigation Stack. HATEB-2 follows the same software
architecture as HATEB and uses a global planner for human path prediction based
on an assumed or predicted human goal. This version of our HAN planner is
available on GitHub at https://github.com/sphanit/hateb_local_planner/
tree/hateb_new. However, this only deals with robot navigation, and we still
might have to depend on some other software package to move humans in simu-
lation while testing the system. For this, a separate human navigation package is
developed using ROS (see Appendix A) that allows a human agent (in simulation)
either to directly execute the trajectory planned by HATEB-2 or follow the con-
trol command sent via a Joystick. We now proceed to the explanation of different
modalities in HATEB-2 and the decision-making process involved.

2.4.2 Modes of Planning
HATEB-2 operates mainly in three modes of planning: 1) ‘Single Band’, 2) ‘Dual
Band’ and 3) ‘VelObs’. However, an intermediate mode is present before the oc-
currence of Dual Band → VelObs2 transition. The intermediate mode refers to

1http://wiki.ros.org/move_base
2→ represents one-sided transition

https://github.com/sphanit/hateb_local_planner/tree/hateb_new
https://github.com/sphanit/hateb_local_planner/tree/hateb_new
http://wiki.ros.org/move_base
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the trajectory planning in the close vicinity of the human (for human to robot dis-
tances ≤ 2.5m), where large velocity changes are restricted, and the elastic band is
made tighter. More details about these changes are presented in the next subsec-
tion. Different modes of this framework below are explained below.

2.4.2.1 Single Band Mode

In the mode of planning, the elastic band is added only to the robot to avoid ob-
stacles in the environment. This mode is computationally less expensive as it does
not deal with human estimates and trajectory predictions (or proactive planning).
This mode can be seen as purely reactive planning with social constraints on robot
navigation. In this work, this mode is used only when there are no humans in the
vicinity, or they are far from the robot. However, as robot planning still includes
human-robot social constraints, this mode could be extended to semi-crowded sit-
uations with some modifications.

2.4.2.2 Dual Band Mode

This mode is the same as standard HATEB, where multiple elastic bands are added
to humans and the robot, and the combined hypergraph is optimized to get the
trajectories for all the agents. However, a few modifications are made before using
it in HATEB-2, which are explained in the next subsection. This mode adapts
trajectory planning according to the motion of the humans and the predicted goals.
The main advantage of this mode is that it always proposes a possible solution from
the current scenario besides being proactive. The main drawback of this mode of
planning is the ‘entanglement problem’ discussed above. To overcome this drawback
and continue the robot navigation, the ‘VelObs’ mode is defined, and a switching
strategy is employed to allow this transition only under certain conditions.

2.4.2.3 VelObs Mode

This mode of planning also adds elastic bands to both humans and the robot, but
the path prediction and the trajectory planning for humans are performed only when
the humans are moving (have a non-zero velocity). This modality uses the linear
(or constant velocity) prediction for humans under a predefined time window of
prediction. Throughout this thesis, the duration of this prediction window is taken
as 5 s. Although this kind of human prediction makes the robot less proactive, it
allows for an active re-planning when the human stops moving to mitigate the FRP
in many situations. Hence, it can be used to resolve situations of entanglement,
once they are identified.

2.4.3 Mode Shifting based on Situation Assessment

Now we move on to the explanation of the decision-making process involved in
transitioning between the above modalities. Since HATEB-2 has three modes of
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Figure 2.2: Mode transition procedure. dist is the current distance between the
closest human and the robot, Distmin is the minimum value of dist to add a double
band and Distthreshold is the minimum cutoff dist to initiate transition between
Dual Band and VelObs. velh, velr are the velocities of the human and the robot.
tstuck is the amount of time the robot’s velocity is nearly zero, and tthreshold is the
time to wait before triggering the transition to VelObs mode. Note that, under
Distthreshold, the elastic band and velocity profile are changed irrespective of the
mode of planning. The transition loop resets after reaching the navigation goal.



44 Chapter 2. Proactive planning with situation analysis

planning, it has the following two mode transitions:

1. Single Band ↔ Dual Band3

2. Dual Band → VelObs.

The transition procedure and decision-making loop are presented in Fig. 2.2.
The decision concerning the transition from Single Band to Dual Band is de-
pendent on a cutoff distance, Distmin. Distmin is the distance between human and
robot, above which the influence of humans on the robot’s trajectory is negligible.
If the current distance of the robot from any human is less than Distmin, the plan-
ning shifts from Single Band to Dual Band and vice versa. Therefore it is a
double-sided transition, and it is indicated by ‘↔’. Distmin can be chosen based on
several factors and the present environment of the robot. During the development
of this thesis, we have taken a distance of 10 m for Distmin.

From Fig. 2.2, we can see that the second transition only occurs when humans
and the robot are under a specified distance, called the Distthreshold. Under this
Distthreshold, the robot’s maximum velocity is reduced, and the homotopy class
change is constrained to make the robot’s motion more legible for humans. The
weight of the proxemics constraint is also reduced under this distance to allow
the planner to find a solution in near proximity to humans. Distthreshold is taken
as 2.5m for the most part of this work. This mode of Dual Band with all these
changes is the intermediate mode we mentioned previously. Under this intermediary
mode, the transition from Dual Band to VelObs mode occurs when the following
situation is detected:

“The human under co-navigation with the robot stops proceeding towards the
predicted goal, and the robot either stops or oscillates near this human for more
than a specified amount of time without any progress towards the goal”.

The amount of time chosen is arbitrary and can be tuned depending on the
context. As it can be seen from the transition loop, the above condition is tested
using the human’s velocity (velh), the robot’s velocity (velr) and a time threshold
(tthreshold). For all the experiments presented in this thesis, the waiting time to
trigger this shift is taken as 2 s, i.e., tthreshold = 2 s. Therefore, the robot does not
stay frozen for long and quickly resolves the ‘entanglement problem’. The transition
from Dual Band to VelObs is one-sided, indicated by ‘→’ and does not happen
the other way around. As this transition occurs mostly at the human-robot crossing,
it is intuitive to assume that the human would be behind the robot and no longer
interferes with the robot’s trajectory after the transition. This assumption also
reduces the cost of computation as we no longer plan for stationary humans. The
mode transition loop resets once the robot reaches a navigation goal. If the goal
change occurs in between, the robot continues to stay in the same mode as before
the change, and the transitions may (Single or Dual) or may not (VelObs) occur.

An important point to emphasise here is that all the situation analysis and mode
shifting happens within the local trajectory planning during the robot’s navigation

3↔ represents two side transition
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to a specified goal. Therefore, HATEB-2 inherits all the advantages of proactive
trajectory planning while reducing its limitations. This method of planning is dif-
ferent from the ones proposed by [Qian 2013] or [Mehta 2016], where there is a
higher level of decision-making that chooses between different possible navigation
modes (or actions). Our system shifts between planning modes rather than navi-
gation modes. HATEB-2 also incorporates some changes and modifications to the
previous version of HATEB to improve legibility, and we present these in the next
section.

2.5 Improving the Legibility in HATEB-2
In addition to the situation assessment at the planning level, HATEB-2 proposes
some new human-robot social constraints for HAN and modifies some modules in
HATEB. All these proposals and modifications aim to increase the legibility of the
robot’s navigation and hence, can lead to an increase in acceptability. We present
the new human-aware constraints (or human-robot social constraints) before moving
on to the other modifications.

2.5.1 New Human-Aware Constraints

We propose two new human-aware constraints for HAN that increase the legibility
of the robot’s navigation. The first constraint is inspired by the work presented in
[Kruse 2014b]. This constraint restricts the rapid velocity changes in the human
vicinity as concluded by [Kruse 2014b]. The second one is an improved Time-to-
Collision (TTC) constraint that was introduced by HATEB.

2.5.1.1 Updated Robot Velocity Constraint

In the place of a constant velocity, we assigned a non-linear profile for the velocity
of the robot, which slows down the robot up to 75% in the close vicinity of the
human. This change reduces the rapid change in velocity around humans and leads
to lesser confusion. The velocity function used in this constraint is given as follows:

v(d) = min(1.0,max(10d−2, 0.25)) (2.1)

where d is the distance between the human and the robot and v is the velocity of
the robot. The above equation induces a rapid decrease in the maximum attainable
velocity of the robot from 1 m/s at d = 2 m to 0.25 m/s at d ≤ 1.4 m (personal zone
in proxemics).

2.5.1.2 TTCPlus Constraint

Time-to-collision, as per its name, calculates the time the robot takes to collide with
the human from the current position and velocity. The main advantage of including
TTC constraint is better trajectory planning with early intention-show by making
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Figure 2.3: Intention show of the robot with and without TTC. Inclusion of TTC
or TTCplus constraint results in an early intention show as can be seen from the
picture on left. Even though the difference seems small from the pictures, this
corresponds to more than half a meter in the real world. The robot’s trajectory is
shown in red, while the human’s trajectory is shown in blue.

the robot move quickly towards the intended direction of its motion. This can be
seen in Fig. 2.3. Although the difference seems small in the image, it is more than
half a meter in the real world. The original implementation in [Khambhaita 2017c]
computes the error at every time step and adds it to the optimization. This imple-
mentation results in many false negatives that affect the quality of the trajectory.
To decrease the number of false alarms while maintaining the advantages of the
constraint, we have to regulate the addition of the error to the optimization. The
regulation is implemented in HATEB-2 as follows:

error =

ttcerror if ta > td and tm < κtd

0, otherwise
(2.2)

where td is the threshold time, ta is the cumulative time with positive ttcerror and
tm is the cumulative time with zero ttcerror. ta is reset whenever tm ≥ κtd and
tm is reset when a positive error is observed. κ is a constant determining how
often the ttcerror is added to the optimization, and in this work, we take κ = 5
based on empirical analysis. This new implementation shown in Eq. (2.2), called
TTCplus, decreases the number of false negatives, avoiding unnecessary oscillations
and improving the quality of trajectory. Hence, TTCplus eliminates the drawbacks
of TTC while preserving its properties of early intention-show.

2.5.2 Modified Elastic Band

The default settings of the elastic band allow it to rapidly change the homotopy4

class. This change is good when the robot is at a large distance from humans. At
closer distances, it may lead to the loss of legibility, as the study in [Kruse 2014b]

4In mathematics, two paths are homotopic if their endpoints are fixed, and one path can be
continuously deformed into another within a specified region.
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Figure 2.4: Modified Elastic band. The blue trajectory is of the human, and the
red one is of the robot. Tightening of the elastic band results in very close pose
predictions in the trajectories and slower velocities. The picture on the left shows
the trajectories before the band tightening, and the one on the right shows the
latter.

says. Hence, we address this issue by restricting the changing of the homotopy
class under the threshold distance, DistThreshold. This restriction is implemented
by decreasing the time interval between consecutive poses, which tightens the elastic
band and decreases the possibility of homotopy class change, as shown in Fig. 2.4.
This figure shows the snapshots of the trajectories before and after the online band
tightness modification. The picture on the right side clearly shows a significant
increase in the trajectory resolution, and hence, results in smoother path transitions.

2.5.3 Better Human Predictions

The better the estimates of humans, the better the proactive planning can plan the
joint trajectories. Therefore, we have made the following improvements in HATEB-
2 to have better estimates and path predictions for humans.

2.5.3.1 Human Velocity Estimate

The nominal velocity of a human was assumed to be constant in the previous work.
However, this assumption leads to a trajectory plan that does not necessarily comply
with the current human trajectory. Although HATEB-2 being a proactive planner,
quickly re-plans and adapts, this wrong estimate can sometimes lead to unexpected
behaviours of the robot. Therefore, a moving average filter-based estimation of
velocity is added to the human prediction to avoid this and provide an adaptive
velocity estimate for optimization.

2.5.3.2 Human Goal Prediction

In HATEB, human goals were assumed to be behind the robot for path prediction.
However, this is not necessarily true in many cases, and the human destination
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might even change during the navigation. Therefore, we try to include better human
goal predictions into the system and address the changes in the human goal during
the planning process. If we know a set of possible destinations for humans in
an environment, we can predefine a set of goal positions for humans. Ferrer et
al. [Ferrer 2014] proposed a methodology to estimate the possible goal among these
predefined goals based on the history of motion of the human. HATEB-2 adopts
this goal estimation framework to improve human estimations. It quickly adapts to
the changes in the human goal and re-plans, as shown in Fig. 2.5, making it more
adaptable to real-world scenarios.

Figure 2.5: Human goal prediction in HATEB-2. On the left side, the initial pre-
dicted goal, and the calculated trajectory by HATEB-2 are shown. On the right,
the human decides to move in a different direction, and HATEB-2 predicts a new
possible goal and calculates the path. The robot’s trajectory is shown in red, while
the human’s trajectory is shown in blue.

2.6 Results in Simulation
Various experiments are conducted using PR25 robot and the simulated humans
in MORSE [Echeverria 2011] to demonstrate the capabilities of HATEB-2. Two
different environments are used to simulate different human-robot navigation sce-
narios. Both Qualitative and Quantitative analysis is performed, and the results are
presented. The first three experiments presented in this section show the Qualita-
tive analysis, highlighting the improvements in HATEB-2 and the roles of situation
assessment and proactive planning in HAN. In all three experiments, the human
agent is manually controlled using a Joystick.

2.6.1 Entanglement Resolution through Mode Shifting

One of the main drawbacks of HATEB is the entanglement issue presented previ-
ously. With the introduction of decision-making and mode transitioning in HATEB-
2, this entanglement problem is resolved, and the robot finally reaches the goal with-

5http://wiki.ros.org/Robots/PR2

http://wiki.ros.org/Robots/PR2
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out getting stuck. The various stages of this entanglement resolution are illustrated
in Fig. 2.6. When the human stops moving and block the robot, a new trajectory is
planned, and the transition from Dual Band mode to VelObs mode occurs (Fig.
2.6 (a, b)). Since the human’s velocity is zero, the VelObs mode does not plan
any trajectory for the human until he starts moving again. During this time, the
robot escapes from the entanglement and starts following its trajectory to the goal,
as seen in Fig. 2.6 (c) and (d).

Figure 2.6: HATEB-2 solving the entanglement. The various stages of entangle-
ment resolution are as shown: a) Detection of Entanglement: The entanglement is
detected based on the human velocity and the current distance between human and
robot. b) Re-planning: HATEB-2 tries to re-plan the trajectory before changing
the mode c) Mode Transition: Mode transition occurs as the human is still and no
longer moves. d) Execution of new plan: Finally, the robot executes the planned
trajectory reaching the expected goal. The robot’s trajectory is shown in red, while
the human’s trajectory is shown in blue.

2.6.2 Advantages of Proactive Planning

We present two experiments to show the advantages of proactive planning in HAN.
The second experiment tests proactive planning and situation analysis in a complex
setting. It shows how HATEB-2 solves the navigation problem in a more legible
way.

2.6.2.1 Single Band vs Double Band

The single band refers to the addition of an elastic band only to the robot along with
the human-aware constraints, whereas the double band (or dual band) includes the
addition of an elastic band to the human as well. We test the following hypothesis
to see if the double band has any advantage over the single band:

“The presence of an elastic band for human and co-planning allows the robot to
predict the human motion better and adapt its trajectory accordingly.”

To test the hypothesis, we controlled the human manually, tried to block the
robot’s trajectory, and observed the reactivity of the robot. We conducted two
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Figure 2.7: Double band and single band trajectories while passing through a narrow
passage. As the red trajectory corresponds to the robot, it can be observed from
the picture on the left that double band based planning makes the robot back off
proactively and provide a way for the human. Whereas single band based planning
shown on the right reacts slowly and moves sideways to clear the way for the human.

different experiments (in open space and narrow passage (Fig. 2.8)), and in both
experiments, the robot reacted slowly while using a single band. However, while
using the double band, the robot proactively backs off as the human moves towards
it. Therefore, we can say that our hypothesis is correct, and the inclusion of an
elastic band for humans is advantageous for HAN planning. These experiments can
be seen clearly in the video6. Snapshots of this experiment in case of the narrow
passage scenario are shown in Fig. 2.7

2.6.2.2 Pass through Narrow Opening

This experiment can be thought of as passing through a door where only a single
person can fit. Suppose two persons arrive at the narrow opening at the same time,
one of them has to back off and give way for the other to pass through. We tried to
simulate this scenario6 in the human-robot co-navigation, and we want the robot
to back off and give way to the human. To increase the complexity of this problem
further, human crosses the opening and stops close to this opening. Enough space
is present for the robot to pass through, but the trajectory might need re-planning.
This scenario is shown in Fig. 2.8.

We have tested all three planners (HATEB, HATEB-2 and Single Band) in this
scenario and snapshots of the trajectories at this crossing are shown in Fig. 2.7 for
both double band (HATEB, HATEB-2) and single band planning. Both HATEB
and HATEB-2 reacted, in the same way, to back off and provide a way for the
human, which is shown in the left picture of Fig. 2.7. Although they reacted
similarly at this instant, HATEB gets stuck in entanglement when the human stops
moving after crossing the opening. HATEB-2 breaks this entanglement and re-plans
to reach the given goal. Coming to the case of the single band, the human has to

6https://youtu.be/xEG4e-Y9z8g

https://youtu.be/xEG4e-Y9z8g
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Figure 2.8: Narrow passage passing scenario. In this scenario, the human and robot
arrive at the common passage at the same time, and one should back off to provide
a way for another. Otherwise, there exists no solution. This is one of the intricate
situations addressed in this work, and the picture on the left shows the simulation of
this scenario in MORSE. The right side picture shows the trajectories for the human
(blue) and the robot (red), generated using the proposed framework, HATEB-2. It
can be seen from the picture that the robot’s trajectory (red) is making the robot
move backwards and hence providing a way for the human.

stop in front of the robot and wait for the robot to back off and re-plan. The single
band also solves this case as it does not suffer from entanglement but with lesser
reactive speeds. Also, note that the robot backs off in a double band scenario,
whereas it tries to move aside in the single band case.

2.6.3 The Effect of New Human-Aware Constraints

TTC constraint in HATEB makes the robot very reactive and leads to unnecessary
oscillations, as mentioned previously. Fig. 2.9 shows the trajectory of the robot
in the same scenario using TTC and TTCplus constraints respectively. As we can
see from the trajectory on the left, the plan using TTC constraint makes the robot
back off further when it is already at a sufficient distance from the human. This
exaggerated reaction results in long execution times apart from the oscillations.
The trajectory planned using TTCplus in HATEB-2 is shown on the right, and it
can be clearly seen from Fig. 2.9 that this trajectory results in faster execution
as it removes the problem of oscillations. The change in the elastic band tightness
can be seen in the right part of Fig. 2.9. This change, coupled with the reduced
velocity in the close vicinity of the human, helps the human choose the path without
confusion. Clear differences in the trajectory followed, and the effect of all these
constraints can be seen in the video7.

2.6.4 Quantitative Comparison between HATEB and HATEB-2

To perform the Quantitative analysis, five different experiments were conducted,
and each experiment was repeated 10 times using HATEB and HATEB-2. The

7https://youtu.be/xEG4e-Y9z8g

https://youtu.be/xEG4e-Y9z8g
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Figure 2.9: The original TTC constraint-based trajectory shown on the left results
in unnecessary oscillations due to exaggerated constraint. However, TTCplus con-
straint regulates this exaggeration and results in a smooth trajectory as shown on
the right. Note that the trajectory on the left is making the robot move backwards
even when there is no necessity. The robot’s trajectory is shown in red, while the
human’s trajectory is shown in blue.

list of the experiments performed is given in Table 2.1. The experiment ‘Narrow
opening 1’ is the same scenario presented in Fig. 2.8, whereas ‘Narrow opening
2’ corresponds to a similar case with an opening that can be seen in Fig. 2.9.
‘L-crossing’ is the same experiment that is shown in Fig. 2.9 and finally ‘Narrow
corridor’ and ‘Wide space’ represent the scenarios presented in Fig. 2.1.

In all these experiments, the goal of the human was assumed to be behind the
robot, and the human executed the trajectory planned by the corresponding local
planner. A set of five metrics are used to analyse the results: 1) Initial plan length,
ipl, 2) Total time for completion, ct, 3) Traversed path length, tpl 4) Minimum dis-
tance from human, dmin and 5) Length deviation factor, α. The minimum distance
from the human metric, dmin, refers to the closest distance between the human and
the robot while executing a planned trajectory. The length deviation factor, α, is
defined as follows:

α = |tpl − ipl|
ipl

(2.3)

where | | denotes the absolute value. After determining ipl and tpl from the
experiments, α is calculated using Eq. (2.3).

All these metrics are calculated for each experiment, and the mean value over
10 experiments is presented in Table 2.1. The values highlighted in bold correspond
to the best values in the given experiment. The evaluation of the best values for the
metrics is done in the following manner. For ipl, the value closest to the tpl is taken
as the best value, as it suggests that the initial plan is very close to the traversed
path. In case of tpl and ct, smaller value represents the best value. The greater the
distance of the robot from the human, the more the safety factor for the human, and
hence, the larger distance is the best value. Finally, the lower value of α represents
the lesser deviation from the initial plan and hence shows better performance of
the planner. By observing the values of α from the table, it can be inferred that
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HATEB
Experiment ipl(m) tpl(m) ct(s) dmin(m) α

Narrow opening 1 5.26 5.94 13.63 0.72 0.13
Narrow opening 2 8.71 11.09 24.29 0.14 0.27

L-crossing 10.66 15.29 32.56 0.14 0.43
Narrow corridor 8.51 13.18 27.92 0.72 0.55

Wide space 8.51 9.54 19.81 0.72 0.12
HATEB-2

Narrow opening 1 5.36 6.34 17.63 0.54 0.19
Narrow opening 2 9.02 9.16 21.93 0.15 0.02

L-crossing 13.46 13.06 29.90 0.34 0.03
Narrow corridor 12.88 13.24 30.88 0.48 0.03

Wide space 9.86 9.68 22.25 0.83 0.02

Table 2.1: Mean values of the metrics over 10 repetitions. ipl: Initial path length,
tpl: Traversed path length, ct: Completion Time of the experiment, dmin: Minimum
distance between human and robot during the execution of the trajectory in the
given experiment. α: Length deviation factor.

HATEB-2 performs better than HATEB in all the cases, except ‘Narrow opening
1’. In all these scenarios, it can also be seen that ipl differs less from tpl, and
hence, we can say that HATEB-2 predicts a better plan than HATEB. The cause of
this result can be directly associated with the improvements in human prediction
and the new TTCplus constraint, thereby demonstrating the importance of human
prediction in HAN. As the maximum allowed velocity decreases below Distthreshold
in HATEB-2, an increase in ct is expected, and it is true in 3 out of the 5 cases.
In ‘Narrow opening 2’ and ‘L-crossing’ cases, HATEB-2 has lesser ct than HATEB
and this is because of the improved TTC constraint, TTCplus. Since HATEB uses
the original TTC, the robot suffers from unnecessary oscillations and results in a
longer path length, tpl as well as ct. It can be observed that HATEB-2 completely
outperforms HATEB in these two scenarios. Although HATEB has better tpl values
in the other three scenarios, the tpl values of HATEB-2 are very close to those of
HATEB. Finally, it can be said that the overall performance of HATEB-2 is better
than HATEB.

2.7 Real-World Tests

In this section, we present the experiments we have conducted using the proposed
framework. We have ported the framework to Pepper8 robot and used it for this
study. Since the main objective is to study the navigation framework, we used the
OptiTrack9 motion-capturing system to track humans. The localization of the robot

8https://www.ald.softbankrobotics.com/en/pepper
9http://www.optitrack.com/

https://www.ald.softbankrobotics.com/en/pepper
http://www.optitrack.com/
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in the map is done using the localization technique based on ArUco10 markers.

Figure 2.10: Human follows his path without disturbing the robot. (a) Initial
positions (b) Intermediate positions. (c) and (d) are the trajectories at (a) and (b)
respectively. In (d), the band tightening can be seen as the robot is close to the
human. Red: The robot’s trajectory is shown in red, while the human’s trajectory
is shown in blue.

Figure 2.11: Entanglement resolution in a real-world scenario. Here the human
goes out of his path and blocks the robot’s planned path (f). While trying to block
the path, he moves very close to the robot, as can be seen from (f). Therefore,
the robot backs off (g) before resolving the entanglement and finding an alternative
path (h). (a)-(d) represent different positions of the robot during the experiment,
and (e)-(h) show the planned trajectories at these positions. The robot’s trajectory
is shown in red, while the human’s trajectory is shown in blue.

We have conducted two experiments to check the capabilities and improvements
10https://chev.me/arucogen/

https://chev.me/arucogen/
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in HATEB-2. In the first experiment, shown in Fig. 2.10, the human moves along
his path without blocking the way for the robot. It can be seen from Fig. 2.10
that the robot continues to navigate on the same side and follow a path similar
to the initially planned path. We can also observe the band tightening in Fig.
2.10 (d) as the human is close to the robot. In the second experiment, the human
goes out of his path and blocks the robot’s planned path. Two kinds of scenarios
are possible depending on how the human acts in this setup. If the human goes
very close to the robot, the robot has to back up before resolving the entanglement
problem. In the other case, where the human is at a nominal distance from the
robot, only entanglement resolution happens. These two cases are presented in the
video. However, we have presented only the first scenario in this section as it brings
out more capabilities of the system. This is shown in Fig. 2.11. In Fig. 2.11 (f),
the human goes very close to the robot and hence the robot backs off (Fig. 2.11
(g)) before resolving the entanglement. Finally, the entanglement is resolved (Fig.
2.11 (h)) and the robot proceeds to its goal.

2.8 Conclusion
In this chapter, we have proposed a new framework combining proactive planning
and decision-making to handle human-robot co-navigation, called HATEB-2. This
framework includes three different modes of planning, namely, Single Band, Dual
Band and VelObs. Switching between these modes allows for solving many com-
plex human-robot cooperative navigation problems. We have presented details of
these different modes of planning and also talked about the modifications made in
HATEB before including it in HATEB-2. These modifications remove some of the
drawbacks of HATEB apart from the improvements. We have also presented the
improvements made in human prediction and estimation. We performed several
experiments in various intricate situations and then provided a detailed analysis
of the results. Results show that HATEB-2 have an overall better performance.
The framework was finally tested on a real robot platform, and the results were
presented.

It is evident that HATEB-2 can handle intricate human-robot navigation sce-
narios better when compared to HATEB. However, it still carries some of the lim-
itations of HATEB. One of the main drawbacks is the computational complexity
with a growing hypergraph as more humans are added to the planning. Even
though humans’ predictions were improved in HATEB-2, path planning still needs
improvements. In the next chapter, we discuss how these limitations were handled
to scale our planning system to tens of humans. One of the limitations of the TTC
constraint is that it works well when the robot and human are approximately on
the same line of travel or with very small parallel gaps. If the line of travel has a
large parallel gap, it is not very effective. The same limitations apply to TTCplus
as well. Therefore, we introduce new social constraints to address these limitations
and effectively handle parallel travel.
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3.1 Introduction
In the previous chapter, we introduced situation assessment into human-aware nav-
igation planning and showed how combining it with proactive planning can help
some intricate human-robot navigation scenarios in HRI. In this chapter, we extend
this planning scheme to address multi-context navigation in HAN. Depending on
the shape of the local environment (large area, small rooms, narrow corridors or
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passages) and the density and activity of the humans (individuals, crowds, domestic
or public space motion activity) in that environment, HAN has to address various
types of human-robot interaction contexts. These contexts can differ from situa-
tions where the current position of the human is enough to where a good estimate of
the goal is necessary or even where path negotiation has to take place. For instance,
if the robot is in the middle of a dense crowd, it should better be purely reactive and
compliant to the overall motion flows than in a corridor where less reactive and more
cooperative motion with path negotiation is preferable. Therefore, different naviga-
tion planners are developed for different types of environments with shared human
spaces like malls [Foster 2019], streets [Ferrer 2013b], warehouses [Carmona 2019],
offices [Truong 2014], labs, homes [Kollmitz 2015] etc. All these different planners
emerged as there is no single algorithm that can cover all environments and situa-
tions. In order to address these issues, we propose a highly tunable HAN system
with multiple modes of planning. It can be employed in a variety of human-robot
contexts, with a small number of pertinent parameters that can be adjusted to the
situation at hand. The main contributions of this chapter are threefold:

1. We propose a tunable HAN planner with different planning modes that can
handle very complex indoor scenarios as well as crowded scenarios called the
Cooperative Human-Aware Navigation (CoHAN) Planner.

2. We extend our planning framework, HATEB-2 [Singamaneni 2020], to effec-
tively handle large numbers of people and to offer more legible and acceptable
navigation.

3. We evaluate the proposed planner in several simulated human-robot scenar-
ios and present both qualitative and quantitative analysis. Further, we also
present the tests conducted on the real robot at our lab.

In the rest of the chapter, we simply use HATEB instead of HATEB-2 to refer
to our HAN system combined with situation assessment. The rest of the chapter is
organised as follows. Section 3.2 presents the related work. The proposed system’s
architecture is presented in section 3.3 along with explanations of various modules
and features. We also present in detail the updates in HATEB local planner and
design choices made to handle multiple humans. Section 3.4 presents the evaluation
of our planner in various simulated human contexts and comparisons with one
of the existing human-aware navigation planners. Following this, in section 3.5,
we talk about the tests conducted on the real robot in our lab. A discussion on
HAN planning with multiple modalities and its extension to multi-context HAN
is presented in section 3.6. This section also talks about the possible updates to
CoHAN. Finally, section 3.7 concludes the chapter and presents the limitations and
future direction.
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3.2 Related Work

There are a variety of HAN planners designed for different human-robot contexts. In
the context of a crowd or robot navigation in the street, Ferrer et al. [Ferrer 2013b]
presents a potential field based navigation using the social force model. The au-
thors of [Truong 2017b] extended this to human-object and human-group inter-
actions by proposing the proactive social motion model. The work by Repiso et
al. [Repiso 2017] shows the context of a robot accompanying a human. The au-
thors of [Chen 2017a] address this crowd navigation problem by using reinforce-
ment learning, and the works [Triebel 2016, Okal 2016] address the same with
inverse reinforcement learning. Coming to other contexts, the works presented
in [Sisbot 2007c, Truong 2014] and [Kollmitz 2015] show some interesting costmap
based approaches for planning paths in complex indoor scenarios that can occur
at homes or offices. In this work, we use a similar costmap based approach to
handle static humans. Fernandez Carmona et al. [Carmona 2019] compare the
performance of the existing navigation planners in a warehouse context and pro-
poses an architecture to include humans in planning. The work of Güldenring
et al. [Guldenring 2020] addresses the same context using reinforcement learning.
Some other works like [Pérez-Higueras 2014, Pérez-Higueras 2018a] use inverse rein-
forcement learning for confined and public space navigation contexts. Khambhaita
and Alami [Khambhaita 2017c] addressed the context of human-robot co-navigation
using an optimization based approach. Note that none of the above planners was
designed to handle multiple human contexts together. A multi-context human-
aware navigation planning is a very new field, and not many works exist. Lu et
al. [Lu 2014] proposed a layered costmap based approach for handling different nav-
igation contexts. A more recent work by Banisetty et al. [Banisetty 2020] shows
some promising results using a deep learning based context classification and multi-
objective optimization for navigation planner [Banisetty 2019]. However, these re-
sults are validated only in indoor scenarios, and the authors do not present any
results in a crowd, unlike the proposed system.

In order to handle the dynamic humans in our navigation planner and plan a
socially acceptable trajectory for the robot, a human motion prediction system is
required. One of the classic approaches of human motion prediction is based on
the social force model [Helbing 1995]. Ferrer et al. [Ferrer 2015] used this social
force model both to predict human motions and move the robot among the crowds.
Kollmitz et al. [Kollmitz 2015] used a simple linear prediction based on current
human velocity. Instead of predicting the trajectory, a possible human goal can
also be predicted using reasoning over a probable set of goals [Bordallo 2015]. Our
proposed navigation system uses one such goal prediction system [Ferrer 2014] as a
part of the human path prediction module. Apart from this, our system offers three
other human path prediction methods to handle different situations. In a recent
work by Fisac et al. [Fisac 2018], the authors suggest a probabilistic human model
with confidence to handle the uncertainties in a system.

One of the key elements of the proposed system is the context-based shift-



60 Chapter 3. HAN planner for multi-context navigation

ing between different planning modes. This kind of modality shifting is discussed
in the works of Qian et al. [Qian 2013] and Mehta et al. [Mehta 2016] based on
Partially Observable Markov Decision Process (POMDP). Unlike these, our sys-
tem uses situation assessment based modality shifting. In the previous chap-
ter [Singamaneni 2020], we introduced this modality shifting with three different
modes of planning. In the current chapter, we extend this to handle a large number
of humans and also introduce some elements, including a new planning mode. This
modified HATEB local planner is integrated into the proposed framework as the
local planner.

3.3 Co-operative Human-Aware Navigation Planner
In this section, we present the overall architecture of the proposed HAN planning
system and explain its features that allow us to deal with various kinds of human-
robot contexts. The idea behind this architecture is to allow legible human-robot
interactions and provide a scalable system that can easily be employed in various
human environments. This system considers and differentiates between different
types of visible humans in the environment to address the situations better. Further,
some new human-aware constraints are defined that add more legibility to the
robot’s navigation. We explain these things in detail, starting with the software
architecture.

3.3.1 Architecture

The proposed HAN system, CoHAN, is developed over the ROS [Quigley 2009]
Navigation Stack as previously, and its architecture is shown in Fig. 3.1. The red
blocks shown in Fig. 3.1 are the modifications we introduced into the standard ROS
Navigation Stack and can be considered as some of the major contributions of this
thesis. As shown in the figure, we introduce Human Safety and Human Visibility
costmap layers into both global and local costmaps. Human Safety layer takes care
of the proxemics, whereas the Human Visibility layer is added to avoid any surprise
appearances of the robot from behind the human [Sisbot 2007c]. The Human Safety
layer is modelled as a 2D Gaussian around the human, and the Human Visibility
layer as a 2D half Gaussian on the backside of the human. Both these layers have
a cutoff radius of 2 m beyond which the cost is zero. However, the radius can be
adjusted, and it is one of the tunable parameters of this system. These layers are
implemented using a costmap plugin that we developed called the human_layers,
which is a part of the CoHAN system. These layers are added and updated based
on the Human States determined by the situation assessment loop of the HATEB
local planner.

TheHuman Path Prediction module predicts the possible paths for the requested
humans using a selected prediction method. CoHAN provides some services for
path prediction and updates the planning strategy to reduce the occurrence of
‘entanglement’, which are explained in detail in section 3.3.3.
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Figure 3.1: Architecture of the proposed HAN planner, CoHAN.

The HATEB local planner module in CoHAN accesses different human-robot
scenarios and determines the Human States and the Planning State shown in the
figure. Both these states together decide the planning mode of the system and
also control the transition between different modes. Based on the Planning State,
the appropriate path prediction method is selected for humans. After accepting
a navigation goal, the system continuously accesses the human-robot scenario and
appropriately chooses a planning mode that decides the command velocity sent
to the robot’s base controller as previously. Therefore, the planning mode need
not be constant and can shift during the navigation depending on the context.
However, the modes of planning and the situation assessment loop for mode shifting
have been updated a little when compared to the previous version of HATEB. The
parameter Distmin from the previous chapter is analogous to the planning radius
in this version.

Further, our system is completely tunable, and the transition between different
modes can be tuned (or changed) by changing the mode transition parameters
[Singamaneni 2020] as per the requirement. This system is mainly designed to
address most of the intricate indoor navigation scenarios, but it can be employed in
semi-crowded scenarios with some proper tuning. We show an example of this in our
results section 3.4. CoHAN is publicly available on GitHub at https://github.

https://github.com/sphanit/CoHAN_Planner
https://github.com/sphanit/CoHAN_Planner
https://github.com/sphanit/CoHAN_Planner
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com/sphanit/CoHAN_Planner and comes with inbuilt stage-ros1 simulator to test
some human-robot navigation scenarios quickly.

3.3.2 Types of Visible Humans and Costmap Layers
In CoHAN, we deal with different types of humans while navigating the robot to the
goal. Fig. 3.2 shows all these types of humans along with the robot’s visibility and
the planning radius, R. While the robot is moving in the environment, the system
considers only the humans within this planning radius that are in the visible region.
Among these humans, it checks for the static and dynamic humans and updates the
Human States for all the humans. In CoHAN, four states are defined for humans
in the field of view of the robot, and they are presented below.

1. STATIC: This state defines the humans that do not have any velocity as
long as they are in the robot’s field of view.

2. MOVING: This state is attached to all the humans with non-zero velocity.

3. STOPPED: This state is for the humans who were moving previously but
now have zero velocity.

4. BLOCKED: This is a conflict state of the human, which indicates that the
human is either blocked by the robot or an entanglement is detected.

Figure 3.2: Different types of humans considered in our system. A sample trajectory
of the robot is shown among different humans.

These states are updated in a separate state machine, which is different from the
one that updates and analyses the situation in HATEB, except for the BLOCKED

1http://wiki.ros.org/stage_ros

https://github.com/sphanit/CoHAN_Planner
https://github.com/sphanit/CoHAN_Planner
https://github.com/sphanit/CoHAN_Planner
http://wiki.ros.org/stage_ros
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state. Since it is a conflict state, it is updated by HATEB local planner after
analysing the situation. The human_layers plugin checks the Human States of
all the observable humans and adds the corresponding costmap layers. For hu-
mans in STATIC state both Human Safety and Human Visibility layers are added
around the humans. For the humans in all other states, only Human Safety layer is
added, and that too with a reduced radius. This design choice is made based on the
fact that HATEB local planner module specifically handles the conflicts with mov-
ing humans, and it has the necessary human-aware constraints that approximately
imitate these costmap layers. The Human Safety with reduced radius in moving
humans ensures better global plans with an additional safety margin. In the case of
static humans, we try to reduce the computational complexity by using only global
planning and running HATEB in Single Band mode, i.e., no elastic band is added
to the static humans. Besides, static humans usually respond slowly compared to
moving humans, and therefore the robot should maintain a larger safety distance
as well as avoid surprise appearances from behind. Nevertheless, if a static hu-
man starts moving or in the presence of any other moving human, CoHAN quickly
switches to Dual Band mode.

Another design choice that is made to reduce the computational complexity
and scale the system for multiple humans is to restrict the addition of elastic bands
to the two nearest dynamic humans within the planning radius. In addition, the
proactive planning for these humans stops as soon as they go out of the field of view
of the robot or the planning radius. Even though it seems intuitive, this restriction
is at the planning level but not the perception level. If a motion capture system
is employed to track humans, the system might receive data about humans who
are not in the field of view, and the planning system should be aware of this. If a
camera-based perception system with a limited field of view is employed, this will
not be a problem, but our idea is to provide a planning system that is not affected
by the type of perception.

3.3.3 Human Path Prediction Mechanisms
The Human Path Prediction module deals with different kinds of human goal pre-
dictions and building global plans for the required humans. Our system currently
offers four types of human goal prediction and path planning methods.

1. PredictBehind: This method predicts that the human goal is behind the robot.
The position of the robot when the human enters the visible planning radius
is used for this. This goal is used to predict the path.

2. PredictGoal: This method predicts the most probable goal among the set of
goals provided to the system using the approach described in [Ferrer 2014].
The predicted goal is then used for path prediction.

3. PredictVelObs: This method builds a path by extrapolating the current human
velocity over a fixed duration and does not predict any goal. Currently, the
duration is set to 5 s. This is the default prediction service in VelObs mode.
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4. PredictExternal: This service accepts a goal from an external system and adds
a global path prediction based on the provided goal.

The PredictExternal goal service allows CoHAN to communicate with any goal
prediction system using ROS and extends its usability. All these services provide
global plans (or paths) for the humans that are used by the HATEB local planner
for planning the trajectories.

One of the major changes to the path prediction system in CoHAN is the path
re-planning mechanism. The HAN presented in the previous chapter calculates the
path of humans for proactive planning only once. Even though it is not the sole
reason for entanglement problem that we discussed, it is one of the major ones.
Hence, in this version of Human Path Prediction module, the human path is re-
planned every time the human deviates from the previous plan above a certain
threshold. The chosen threshold for this re-planning is 0.5 m, i.e., if the human
deviates more than 0.5 m from the closest point in the previous path, a new path
is planned. This ensures that human prediction is more consistent and reduces
the entanglement issues. Even with this improvisation, the entanglement problem
occurs from time to time, and HATEB local planner handles such occurrences and
ensures acceptable HAN planning. The second advantage of re-planning is that
it mitigates the homotopy class changes in proactive planning and eliminates the
need for the changes in the elastic band introduced in the previous chapter. So,
in CoHAN, we remove these changes to the elastic band and modify the situation
assessment loop.

3.3.4 An updated HATEB local planner

It is the core module of the proposed HAN planning system. HATEB local planner
in CoHAN is an extended version of the human-aware proactive planning system
with situation assessment presented in the last chapter [Singamaneni 2020]. This
module plans the robot’s trajectory and the possible human trajectories for the two
nearest humans in the visible planning radius based on the predicted human paths.
It continuously assesses the current human-robot context and sets the Planning
State and sometimes, the Human States. Depending on the value of these states,
it shifts between different planning modes. As mentioned previously, mode shifting
is needed in intricate human-robot contexts that cannot be solved using a single
planning mode. CoHAN offers three different planning modes and one recovery
mode that is selected based on the situation. Even though the first three modes of
planning are similar to the one from chapter 2, the situation assessment loop has
been modified significantly, as presented in Fig. 3.3. CoHAN also proposes two
new human-aware constraints, which steer the robot to behave in a human-friendly
manner. The details of these modifications and additions are presented below.
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3.3.4.1 Modes of Planning

HATEB local planner provides four different modes of planning at the control level
and intelligently shifts between them based on the situation. We briefly present
these modes here.

1. Single Band: This is the mode in which the planning system starts and has
an elastic band only for the robot. The system stays in this mode as long as
there are no humans within the visible planning radius. The default planning
radius or Distmin is 10 s as mentioned previously.

2. Dual Band: In this mode, elastic bands are added to the two nearest moving
humans in visible planning radius and trajectories are planned for humans
along with the robot.

3. VelObs: This mode uses all the human-aware criteria while planning but
adds bands to humans only if they have some velocity.

4. Backoff-recovery: The Backoff-recovery mode is activated when there is
no solution to the planning problem unless one of the agents completely clears
the way for the other.

The Dual Band mode allows the robot to proactively plan its trajectory and
adapt to the changing human plans. On top of providing human predictions, these
trajectories of humans also offer a possible solution for the human-robot navigation
context, which, if followed, will resolve any conflict that exists. VelObs mode is
especially useful in crowded human scenarios or when the robot cannot move due to
entanglement issues of the Dual Band mode. The new Backoff-recovery mode
added in CoHAN is useful in situations that commonly occur in a very narrow
corridor where only the person (or robot) can navigate at a time. If a human
and a robot face each other in a very narrow corridor or another situation where
one of them has to clear the way for the other, our system gives priority to the
human and makes the robot clear the way for the human. Next, we move on to
an explanation of the updated situation assessment loop and the implementation
of Backoff-recovery.

3.3.4.2 Updated Situation Assessment and Backoff Recovery

The updates and modifications in the situation assessment loop of HATEB are
shown in Fig. 3.3. In the figure, the updated or modified areas are zoomed using
ellipses or rounded rectangular boxes, respectively. The part of the loop inside
the ellipse shows small updates as compared to the previous version to make the
transition decision from Single Band toDual Bandmode. In addition toDistmin,
this transition also depends on the Human States, which is denoted by the set,
{Hstate}. Even when there are humans within the planning radius, the robot stays
in the Single Band mode as long as all the humans are static. If a moving human
appears or one of the static humans starts moving, the Human States are updated,
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Figure 3.3: Situation assessment loop in CoHAN. The shift to Dual Band happens
only if a moving human exists under Distmin and then an elastic band is added
to them. The modification to the elastic band is removed in CoHAN but the shift
to VelObs only happens when the velocity of the nearest human, velh_near = 0
and the human is under Distthreshold. The Backoff-recovery is activated and the
nearest human’s state is updated to BLOCKED when tstuck > tbackoff and it stays
in this mode until the human moves out of planning zone, h_near /∈ Pzone, where
tstuck is the time the robot’s velocity is nearly zero around the STOPPED human.
The robot comes out of this recovery mode after a timeout, tout or if a new goal,
gnew is provided and then resets the situation assessment loop before continuing its
navigation, starting in Single Band mode again. The green arrows show the new
connections, and the red ones show the previously existing ones.
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and the planning mode switches to Dual Band. In Dual Band mode, elastic
bands are added only to two of the nearest moving humans (Hstate 6= STATIC).

The updated path planning mechanism for humans eliminated the need for
elastic band change, but the shift toVelObsmode still happens under the threshold
human-robot distance, Distthreshold, when the nearest human stops moving, i.e.,
velHnearest = 0. As this is a major modification, this is shown inside a rounded
rectangular box. The rest of the situation analysis remains almost the same except
for the major changes introduced around the VelObs mode and the Backoff-
recovery. This is shown in another rounded rectangular box.

The Backoff-recovery is implemented by making the robot move back slowly
until it can go either left or right to clear the way. This is done by querying the
costmaps on all three sides (left, right and back) and setting a temporary goal at
a small distance in the possible direction. The robot keeps moving back in steps of
0.5 m until a possible goal is found either on the left or the right at a distance of 1 m
from the current position of the robot. Once the robot clears the way, it waits for
the corresponding (nearest) human to complete the navigation or move out of the
planning zone (visible region under planning radius), Pzone. If the system cannot
determine this, the robot can get stuck in the waiting loop. To avoid this, a timeout,
tout, is implemented, and after this specified timeout, the robot automatically starts
moving towards its previous goal in Single Band mode, resetting the situation
assessment loop. The default timeout is set to 2 min. CoHAN can also accept a
new goal in the waiting state discarding the existing goal. It then resets the loop and
switches to Single Band (or Dual Band) mode to proceed with the navigation
to the new goal. The Backoff-recovery mode is activated when the robot is in
VelObs mode in the close vicinity of the human (< (Distthreshold = 2.5 m)), and
it is stuck without progressing towards the goal for more than a specific amount
of time, tbackoff = 5 s. The value of 5 s is selected based on empirical analysis in
simulations, but it still needs tests in real-world settings to tune it better. This
mode also updates the state of the nearest human to BLOCKED. In Fig. 3.3,
new connections added to effectively handle the Backoff-recovery mode are shown
using green arrows. The arrows shown in red represent the previous connections
with existing blocks and are mostly unmodified.

3.3.4.3 New Social Constraints: Visibility and Relative Velocity

HATEB uses several human-aware constraints in its optimization scheme for proac-
tive and legible planning around humans in the environment. Several of these con-
straints are listed in our previous works [Khambhaita 2017c, Singamaneni 2020].
In this chapter, we propose two new constraints, called the Visibility and Relative
Velocity.

Visibility: It adds cost to the optimization when the robot is behind the human
and it plans to cross or go in front of the human. This constraint tries to avoid
the emergence of the robot suddenly from behind and makes the robot enter the
human’s field of view from a larger distance. It is implemented by adding a 2D
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half-Gaussian behind the human.

costvisibility = ηχ−(dx2+dy2) (3.1)

where χ and η determine the decay rate and amplitude, respectively, and dx and dy
are the distances between the human and the robot in the x and y axes. In order
to maintain a slow increase instead of sudden rises, we chose χ = 2 with η = 5.

Relative Velocity: This constraint adds cost to the optimization based on
the relative velocity between humans and the robot and their distance. The main
effect of this constraint is low robot velocity in the close vicinity [Kruse 2014b] of
the human if it cannot find a path to maintain a greater distance. If the robot
can find a path with a greater distance from a human, it chooses that path with
a normal velocity profile. Another effect of this constraint is early intention show
of the robot similar to TTC or TTCplus constraint given in [Khambhaita 2017c,
Singamaneni 2020]. The cost added is shown below.

costrel_vel = ((max(−−→Vrel ·
−−−→
PrPh), 0) + ‖−→Vr‖+ 1)
‖
−−−→
PrPh‖

(3.2)

where −→Pr,
−→
Vr are the position and velocity of the robot, −→Ph,

−→
Vh are the position

and velocity of the human and −−→Vrel = −→Vr −
−→
Vh. Since this constraint has similar

effects as TTC or TTCplus, we activate this constraint alone and deactivate TTC
and TTCplus constraints in all the experiments presented in this chapter. HATEB
takes all the activated human-robot constraints and other necessary kinodynamic
constraints and plans the trajectories of the robot and the humans. Since the
local planner runs a computationally expensive optimization in each control loop,
extending the planning beyond two humans does not yield real-time control of the
robot. Hence we restricted our human planning to the two nearest humans.

3.3.4.4 Visibility in Planning

One final extension to HATEB is the addition of the field of view of the robot
into the planning system. This means that while planning, CoHAN considers only
the humans present in the field of view of the robot within the planning radius.
This filtering is done in two steps. First, the humans outside the visibility cone are
omitted from the list of humans to consider during planning. Then, ray-tracing is
done from the robot’s position to the humans’ positions in the visibility region to
check if any obstacles are obstructing the visibility. If the ray emerging from the
robot successfully meets a human position without any overlap with obstacles in the
environment map, then that human is added to the list of humans considered for
planning. Since human tracking is provided by an external system, it is important
to restrict the system to consider the humans present in its field of view. This
is more natural and makes it easier to use our system with vision-based human
tracking. Moreover, it also saves computational resources as the robot does not
plan for humans which may not affect its navigation.
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3.4 Testing CoHAN under Different Conditions
To validate our system, we applied it to various kinds of human-robot contexts
that can occur in day-to-day life. These situations are generated in a simulated
environment based on MORSE [Echeverria 2011]. The humans in these simulations
are controlled in three different ways to test the robustness of the system: (1)
Joystick based control by a human operator, (2) Using an improved human motion
simulator we have developed in our lab, InHuS [Favier 2022] and (3) Using the
human trajectories generated by HATEB local planner (an ideal situation where
the human moves as expected by the robot). We present in detail some of these
intricate scenarios in this section, along with some quantitative results. Further, we
also present some details about the extension of our system to crowded scenarios
using PedSim ROS2. In all figures shown below, the trajectories of the robot and
humans (if shown) are shown as coloured dots. These are the poses planned by
HATEB local planner, and the colour visualizes the time. If the colour of the
predicted human pose dot is the same as the colour of the robot pose dot, they are
both estimated to be at those locations at the same time.

3.4.1 Door Crossing with Static and Moving Humans

Figure 3.4: Door crossing scenario in the simulated environment. The human moves
towards the door. The robot sees the human and waits on the side of the door (right)
until the human crosses.

Door crossing is a common situation in many human environments. If two
humans try to pass through the same door, one of them has to compromise and
clear the way for the other. We have placed the robot running our planning system
in the door crossing situation shown in Fig. 3.4. The goal of the robot is beside
the second human standing in the room, and the system uses PredictBehind human
path prediction. The left part of the figure shows the simulated scenario and the
corresponding trajectories planned for the human and the robot. The simulated
human crossing the door was controlled using a joystick and, hence does not move
as the planning system expects. The system quickly adapts to these changes and

2https://github.com/srl-freiburg/pedsim_ros

https://github.com/srl-freiburg/pedsim_ros
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Figure 3.5: Door crossing scenario in the simulated environment with the static
human in two different orientations. Top two pictures show the scenarios in simu-
lation and the planned trajectory of the robot. The bottom two figures show the
robot velocity and human-robot distance graphs over time.

makes the robot clear the way for the human by waiting on the side, as shown in
the right part of Fig. 3.4. The robot continues to its goal after the human crosses
the robot. The planning mode is Dual Band until the human crosses the robot,
and then it switches to Single Band.

As soon as the robot crosses the door, it faces one more human, but this human
is just standing in the same place and does not move. Since the human is static, our
system adds the human_layers to the costmaps and re-plans its path. The same
scenario is repeated with the second human placed in two different orientations and
as shown in Fig. 3.5. In both scenarios, there is enough space between the wall
and the human for the robot to reach its goal, maintaining a safe distance from the
human. In the top left scenario of the figure, the human can see the robot, and
so the planner makes the robot pass through this space. However, in the second
scenario, the human cannot see the robot. Therefore, our planner completely re-
plans the path as shown (top right) and makes the robot reach its goal by taking a
longer and more visible path. It is due to the added Human Visibility layer

Fig. 3.5 also shows the plots corresponding to robot velocity (on the left y-axis)
and the distance between the moving human and the robot (human-robot distance)
(on the right y-axis) with respect to the time (on the x-axis). Different colours in
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different portions of the plots correspond to different planning modes of the system,
as indicated in the plots. The solid line represents the robot’s velocity (Vel), while
the dashed line shows the human-robot distance (HRDist). The same conventions
are followed across this chapter. From both the graphs (Fig. 3.5 bottom left and
right), it can be observed that the Vel decreases as the HRdist decreases. It is a
combined effect of several human-aware constraints of our system. However, the
Relative Velocity constraint plays a major role here. Secondly, it can be seen in
the graph of the first scenario (bottom left) that the Vel decreases one more time
before the planner changes to VelObs mode. It is because the robot is trying to
navigate a narrow space between the human and the wall. This causes the planner
to slow down its velocity and check the state of the human. Since the human is
static, it shifts toVelObsmode that has little reduced weights for the human-aware
constraints and continues its navigation.

3.4.2 A Very Narrow Corridor Scene

This scenario occurs when a long corridor has to be traversed by two humans in
opposite directions, and the corridor is wide enough only for a single human. In
this case, one of them has to go back and wait for the other to cross. When one
of the agents in this scenario is a robot, it becomes a little more complicated as
the robot should back off giving priority to the human while taking legible actions.
Most of the existing planners either re-plan a long deviation to reach the goal or fail
in this complicated situation. A more natural way to handle this would be to clear
the way for the human and wait until the human crosses the robot to resume its
goal. The Backoff-recovery mode of our system does exactly this. To make the
actions more legible, the robot moves back slowly without showing its back until it
can go either left or right to clear the way.

The snapshots from the simulated version of this scenario are shown in Fig. 3.6.
Each picture also shows the planned trajectory of the robot in each setting with the
Planning State behind the robot. This scenario uses the PredictGoal human path
prediction, and the goal of the robot is on the other side of the corridor. Fig. 3.6 (a)
shows the initial situation when the two agents enter the narrow corridor. As the
robot can see the human is moving, CoHAN operates in Dual Band mode until
the human blocks its way completely. The human agent in this setting is controlled
by InHuS [Favier 2021a]. As soon as the robot finds itself blocked, it switches to
VelObs mode and checks for a possible solution. However, when it cannot find
the solution after repeated checks, it switches to Backoff-recovery mode after few
seconds (> 5 s) as shown in Fig. 3.6 (b). Fig. 3.6 (c) shows the robot waiting
for the human to cross the corridor before it can resume its goal. CoHAN finally
switches to Single Band mode and resumes the robot’s navigation to the goal as
in Fig. 3.6 (d).

The plots of the Vel and HRDist with respect to time for this scenario are shown
in Fig. 3.7. As the HRDist decreases after a certain threshold, Vel decreases, like
in the door crossing scenario (blue part). When the robot switches its mode from
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Figure 3.6: Narrow corridor scenario simulated in MORSE. (a) The initial planned
trajectory of the robot in Dual Band mode. (b) The robot’s way is blocked by the
human and the system shits to the Backoff-recovery mode. (c) The robot clears
the way for the human and waits on the side until the human crosses the robot. (d)
The robot continues to its goal in Single Band mode.

Dual Band to VelObs, the robot tries to move in different directions causing
the oscillations seen in the plot (red part). In the Backoff-recovery mode, it
maintains a constant velocity (green part) and halts, waiting for the human to
cross. The human agent of the human simulator starts moving towards the robot
as soon as it starts moving back. This explains a near-constant HRDist trend in
green. Once the human passes the robot, it resumes its navigation in SingleBand
mode (black part).
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Figure 3.7: Plots of velocity and human-robot distance over time in the Narrow
Corridor scenario.

3.4.3 Co-operative Navigation Scenarios

We have simulated three other scenarios in MORSE where cooperation is needed
for successful navigation. These three scenarios are called ‘Pillar Corridor’, ‘Wide
Corridor’ and ‘Open Space’. Fig. 3.8 shows the snapshots of these scenarios (top
part) and part of the trajectory planned by CoHAN. In all three scenarios, human
and robot goals are behind each other, and they start navigation at the same time.
In the Wide Corridor scenario, CoHAN uses PredictBehind path prediction for the
human, and hence the human’s goal is estimated to be at the back of the robot’s
initial position. The path generated using this goal is then used to plan the human
trajectory. In this case, we use this planned human trajectory to control the human,
and thus it represents the ideal scenario for the planner. This scenario and its
corresponding Vel and HRDist plots are shown in Fig. 3.8 (b). We can see from
these plots that the Vel decreases as the HRDist decreases, but it never goes to zero
as the human is behaving ideally. We can also see the shift from Dual Band to
Single Band mode as soon as the human crosses the robot. This is true for all
three cases.

In the other two scenarios, the human agent was controlled by InHuS, and the
system uses PredictGoal human path prediction. The Vel and HRDist plots for
these scenarios are shown in Fig. 3.8 (a) and (c). From the plots of the Pillar
Corridor in Fig. 3.8 (a), we can see that the robot’s velocity decreases rapidly and
momentarily goes to zero. This occurs as CoHAN plans proactively and makes the
robot wait behind the pillar to let the human cross. This scenario highlights the
priority given to humans over the robot in our planning system. The plots of the
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(a) Pillar Corridor
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(b) Wide Corridor
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(c) Open Space

Figure 3.8: (a) A corridor with pillars, wide enough for only one agent at the side
of the pillar. (b) A wide corridor where the two agents have enough space to cross
each other maintaining safe distances. (c) An open space scenario where the robot
has enough space to avoid and show its intention to the human well in advance. In
(a), (b) and (c), the plots of robot’s velocity and human-robot distance over time
are shown below the scenario.
Open Space scenario in Fig. 3.8 (c) show a jerky velocity profile in the Dual Band
mode and a smooth one in Single Band mode. However, the speed does not go
down significantly. As the robot has enough space to move away from the human
and continue its navigation at high speed, Relative Velocity constraint pushes the
robot to a larger distance from the human. Hence, the jerky Vel profile is due
to the directional changes in the velocity. Note that the HRDist, in this case, is
always more than 1.5 m, thanks to the Relative Velocity constraint. By looking at
the initial trajectory generated by CoHAN in Fig. 3.8 (c), it is clear that the robot
chooses to go to the left very early during its navigation, and we can argue that
this intention show makes the robot’s trajectory legible to the human.

3.4.4 Robot in a Crowd

For this experiment, we tuned the parameters of CoHAN and tested it in a simu-
lated crowd. For the simulation of crowds, we used the PedSim ROS simulator, and
CoHAN is run completely in the VelObs mode. Therefore, the human path pre-
diction by default is set to PredictVelObs, which is a linear prediction methodology,
as previously mentioned. Fig. 3.9 shows two snapshots from the tests. The robot
adds elastic bands to two of the nearest humans in the environment and successfully
navigates the crowd generated by the simulator (shown in video3). Further, it can

3https://youtu.be/DB_8HpjngJ4

https://youtu.be/DB_8HpjngJ4
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Figure 3.9: The robot running the CoHAN system in the PedSim ROS pedestrian
simulator. The robot’s planned trajectory and the predicted trajectories of the two
nearest humans in VelObs mode are shown.

be seen that the robot proactively clears the way for PedSim agents while navigat-
ing in the corridor, as shown in the snapshot to the right in Fig. 3.8. Even though
CoHAN was mainly designed for indoor navigation scenarios, this example shows
how it can be tuned and scaled to scenarios with a large number of humans. The
choice of proactively planning only for two of the nearest humans did not affect the
navigation performance as the system was able to quickly switch between different
humans.

3.4.5 Comparison with Another Human-Aware Planner

CoHAN
Experiment Path Length (m) Total Time (s) Min HRDist (m)
Open Space 9.23 16.01 1.29

Narrow Passage 9.73 17.80 0.71
Pillar Corridor 19.11 31.46 0.89
Narrow Corridor 23.54 48.38 0.66

TPF
Open Space 8.79 24.77 0.95

Narrow Passage 9.40 27.16 0.93
Pillar Corridor 18.45 52.94 0.76
Narrow Corridor - - -

Table 3.1: Mean values of the metrics over 10 repetitions in four different contexts.
TPF failed in the Narrow Corridor case.

In order to check the repeatability of our system and evaluate its performance
with respect to the existing human-aware navigation planners, we have selected four
different simulated scenarios and repeated the same experiment 10 times in each of
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the scenarios. The scenarios we considered here include Open Space, Narrow Pas-
sage (similar to the one in Chapter. 2), Pillar Corridor and Narrow Corridor. The
human in all these scenarios is controlled by InHuS. In all these scenarios, our sys-
tem produced consistent results over the repetitions with similar paths. Further, we
compared it with the human-aware navigation planner presented in [Kollmitz 2015]
that was designed for indoor home context. This system uses Timed Path Follower
(TPF) as its local planner, and its trajectory is highly dependant on the path pro-
duced by its global planner, Lattice Planner. Note that our comparison was limited
to only one planner as not many human-aware planners are available openly for
indoor contexts. This planner was also made to run repeatedly 10 times in the
above four scenarios. However, in the Narrow Corridor case, this planner failed
to complete the navigation, and the robot got stuck in front of the human as the
Lattice Planner could not find a path.

We used three different metrics to present the comparisons between these two
planners, the total length of the path taken, the total time to complete the sce-
nario and the minimum human-robot distance that the planner encountered while
executing each scenario. The average over the 10 runs is taken and presented in
Table 3.1. Note that the total time taken by the TPF is greater as its linear velocity
was limited by the planner, even though the same velocity and acceleration limits of
the robot were provided to both planners. In terms of the total path length, TPF
always followed a lesser distance compared to HATEB. This is because HATEB
took the larger deviations to either show intentions (in Open Space) or a clear path
for the human (Pillar Corridor and Narrow Passage). However, in the Narrow Pas-
sage case, TPF produced better behaviour by waiting for the human to cross while
HATEB blocked the way for a bit before clearing the way for the human4. This
can also be seen by comparing the minimum human-robot distance in this case.
Finally, in terms of the minimum human-robot distances, HATEB varies widely,
as it handles each case differently. If space is available, it takes a greater distance
than TPF, otherwise, it slows down the robot’s velocity and approaches a little
closer to the human. In TPF, this metric produces similar results in two of the
three scenarios. In the Pillar Corridor, this metric has a lesser value compared to
HATEB as the robot goes towards the wall to the opposite side of the pillar and
waits instead of going behind the pillar.

3.5 Real-world Experiments with CoHAN

We deployed CoHAN on a real robot platform, Pepper5 to conduct some real-world
experiments in our lab. For human detection and tracking, we used the OptiTrack6

motion capture system and published the positions and velocities of the tracked
humans at 10 Hz. The localization of the robot is done in the same manner as in

4https://youtu.be/DB_8HpjngJ4
5https://www.ald.softbankrobotics.com/en/pepper
6http://www.optitrack.com/

https://youtu.be/DB_8HpjngJ4
https://www.ald.softbankrobotics.com/en/pepper
http://www.optitrack.com/
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Figure 3.10: CoHAN running on Pepper in open space. The pictures show the
planned trajectory of the robot around the moving human.

Figure 3.11: Testing Backoff-recovery on the real robot. As the human blocks
the way, the robot cannot find any solution to move, and CoHAN makes the robot
back off and wait for the human to pass.

Chapter. 2 using Aruco markers. However, during these experiments, the odometry
of the robot shifted a lot, and even a small run drifted the robot far from its original
position. Even with this bad odometry, we were able to capture two good runs,
one in an open space and the other showing the Backoff-recovery in a narrow
corridor.

Fig. 3.10 shows the instances from the run in open space. The figure also shows
the trajectories of the robot at the bottom of each instance. In this scenario, as
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the robot starts moving towards the goal, the human approaches faster than the
robot anticipated. He comes close to the robot at the crossing point, but the robot
immediately backs off and clears the way for the human. It slows down for a
moment before re-planning its trajectory to the goal, as seen in the video7. The
wrong estimate could be due to bad odometry or network delays. The second run
shown in Fig. 3.11 shows instants from the test of Backoff-recovery mode in
CoHAN. The human stands in the corridor blocking the robot’s way. The planner
starts in Dual Band mode and finally switches to Backoff-recovery mode as
there is no solution. The robot slowly backs off and clears the way for the human
by moving to the left side of the corridor, as seen in Fig. 3.11. The human then
moves out of the corridor and clears the way for the robot.

3.6 Multi-context HAN and CoHAN

In this section, we present a discussion on HAN planning with multiple planning
modalities and how this coupled with the situation assessment, can address multiple
human-robot navigation contexts. We also present a brief discussion on how CoHAN
addresses some of these contexts and talk about the possible extensions for CoHAN.

3.6.1 Modality-based HAN Planning

Some of the early works in HAN with multiple modes of planning like [Qian 2013,
Mehta 2016] used POMDP based policies to choose different actions to avoid the
freezing robot problem or the frequent re-planning. They show how having multiple
policies benefits robot navigation and also increases the success rate. The increase in
success rate does not necessarily mean that the navigation is acceptable and legible
to the humans in the environment. We believe that if this multi-policy planning
could be coupled with social norms of the environment, the resultant system could
offer legible robot navigation among humans with high success rates. CoHAN is one
such approach where situation assessment and decision-making are coupled with a
complete HAN planning system and offers some interesting planning modalities.
Unlike the previous works, we do not use a POMDP based approach but rather
propose engineered ways to analyse situations and shift between modalities. A very
recent work similar to our approach is presented by Banisetty [Banisetty 2020]. It
uses a multi-objective optimization based local planner like ours and employs a deep
learning based situation assessment module. Compared to the previous works with
only multiple modes of planning, CoHAN and the HAN system by [Banisetty 2020]
use situation assessment not only to successfully navigate the robot but also to
add socially compliant behaviour to the navigation policies. These frameworks can
hence be used to solve multiple human-robot navigation contexts.

7https://youtu.be/DB_8HpjngJ4

https://youtu.be/DB_8HpjngJ4
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3.6.2 Multi-Context HAN Planning using Mode Shifting

Classical robot navigation can be generalized, and a planning scheme might work
for different contexts without any modifications. On the other hand, HAN requires
addressing different HRI contexts and hence, possibly requires different planning
strategies. If these strategies can be employed as planning modalities, the frame-
works can be used for solving multiple human-robot contexts. This approach is quite
new, and limited research exists in this field. The work by [Banisetty 2020] pre-
sented above uses multi-objective optimization and geometric reasoning to address
the multi-context navigation of a robot in human environments. It presents some
very interesting contexts and scenarios that were addressed by combining situation
assessment with HAN planning. Our approach, CoHAN, is a parallel work and
addresses multi-context navigation in a similar fashion but uses proactive planning
with an engineered situation assessment loop. Further, our system offers a variety of
parameter settings that can choose prediction mode, the human-aware constraints
to be used and tuning over these costs. Even the planning can be restricted to
only one of the three planning modes (except Backoff-recovery). Hence, it can be
further extended to many kinds of human-robot contexts by properly choosing the
parameters and with simple tuning. With the addition of the costmap layers around
the static humans, this framework can handle most of the scenarios presented in
[Banisetty 2020]. CoHAN already uses some geometric reasoning to better under-
stand the intricate HRI contexts with a human, and it can be easily extended to
address group interactions.

3.6.3 CoHAN in Multiple Human-Robot Navigation Contexts

Currently, CoHAN is developed to address intricate human-robot scenarios that
often occur in indoor environments like offices or labs. The added costmap layers
and updated human-aware constraints provide promising results in situations like
joining or leaving a group, over-taking a human from behind, various types of
human-robot crossing scenarios at doors or in corridors and general HAN in wide
spaces with few humans. With small modifications in the parameters, it can even
be extended to crowded scenarios, as shown in the section 3.4. Still, there are HRI
contexts CoHAN cannot address presently, like following or accompanying humans
[Repiso 2017], approaching humans [Khambhaita 2016b] or taking an elevator with
humans. We plan to extend CoHAN to address the scenarios mentioned above
and modularise the design of CoHAN so that customized human-robot navigation
contexts can be added easily. The approach modality is already studied with some
implementations in HATEB, and so the next step would be completely integrating
this modality into CoHAN. For the elevator scenario, a new custom modality needs
to be developed such that the robot is allowed to violate the human proxemics
but still acts in a human-friendly manner. Finally, the existing literature on the
person-following robot can help design another modality for CoHAN.
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3.7 Conclusion
In this chapter, we proposed a new HAN planner that can handle a variety of human-
robot contexts. It was able to handle both outdoor crowd scenarios and indoor
intricate scenarios, thanks to the different planning modes and tunable parameters.
These planning modes are at the control level and, hence, differ from higher level
modes as used in [Mehta 2016]. Consider theBackoff-recoverymode, for example,
instead of going into the corridor, the robot could have stopped (or back off) as soon
as it sees a person, or if the robot has progressed more than the human, the human
can go back and let the robot go. By employing a higher level planner over our
system, this case can be handled much more efficiently, but our focus is on providing
this feature at the control level. We introduced Human Safety and Human Visibility
layers into the system through costmaps to address the static human scenarios. For
handling the dynamic humans, we have used a variety of human-aware constraints
in HATEB along with visibility and planning radius. The proposed system also
provided different types of human path prediction methods. We have proposed two
new human-aware constraints in addition to the previous ones present in HATEB
to offer a more legible trajectory. Further, our system was evaluated in a variety of
simulated scenarios and presented both qualitative and quantitative results. Finally,
real-world tests on a robotic platform were presented.

One of the major limitations of our system could be computational complexity
as it performs optimization in each control loop. However, it does not affect the
real-time performance of the robot in Single Band and Backoff-recovery modes
(10Hz). In the other modes, it may lead to a little reduced control rate (8-9 Hz),
however still in real-time. One of the immediate future works is to develop a higher-
level planner on top of our system to handle the contexts more efficiently and to
include more contexts like following or accompanying a human. Currently, the
system is not designed for handling groups of people differently, and we plan to
include it in the future version of the system.

The situations presented in this chapter and the possible extensions discussed
above only deal with the humans that are currently visible and are within the
planning environment. Designing a HAN system for handling all the scenarios that
arise in such a setting is already complicated and requires further studies and new
planning methodologies. However, there is no work addressing the humans that
might emerge into the planning scene and can disturb the current motion of the
robot. A complete HAN system should proactively anticipate such possibilities
and be prepared instead of freezing in such scenarios. So, in the next chapter, we
introduce the concept of ‘invisible humans’ to HAN to handle such scenarios.
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4.1 Introduction
Most of the HAN frameworks [Möller 2021, Kruse 2013] address only the visible
humans and do not take into account the possible emergence of humans that are not
visible currently. We believe that such ‘invisible humans’ should be considered while
developing a human-aware navigation framework to avoid any erratic behaviours of
the robot planner when a human suddenly appears. Therefore in this chapter, we
try to address these invisible humans in HAN settings.

There is no work that addresses this problem in the field of HAN. However,
there are some existing works in classical robot navigation that address simi-
lar issues. Particularly, this work is inspired by the pioneering work of M. Kr-
ishna [Madhava Krishna 2006, Alami 2007, Madhava Krishna 2003] concerning the
ability of a mobile robot, based on the model of its perception functions, to assess
from where in the close environment of the robot a human can emerge and prepare
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to react to ensure no-collision by adapting its path and velocity. Some recent works
like [Chung 2009, Bouraine 2012] address the issues of robot navigation in occluded
or unknown regions with a limited field of view. The work presented in [Miura 2006]
talks about the adaptive speed control of the robot in unknown environments and
also talks about the occluded regions. The authors of [Lambert 2008] propose a
methodology to mitigate or avoid collisions while navigating. In our case, we are
trying to mitigate possible future collisions with a human.

As it is evident that the unknown or occluded region could cause issues with
classical navigation, the same applies to HAN. Hence, we propose the concept of
‘invisible humans’ to HAN planning in this chapter. As per our knowledge, there
is no other work that addresses this problem in a human-aware navigation context.
Firstly, we formulate the problem of invisible humans detection and propose an
algorithm to determine the locations from which humans that are not currently
visible can emerge suddenly. These invisible humans are then integrated into our
human-aware navigation framework, CoHAN [Singamaneni 2021], by introducing a
new human-aware constraint into our optimization scheme. The constraint modifies
the path and speed of the robot, taking into account the anticipation of potential
human appearances to avoid collisions and surprises. This kind of preventive plan-
ning is also a part of the proactive planning approach as it mitigates the occurrence
of potential problems. We further show how the detected invisible humans can be
exploited to identify some interesting places in a map, like doors or passages and
address these by adding new modalities to CoHAN. The implementation and code
can be found at https://github.com/sphanit/cohan_planner_multi/tree/

model.
The organisation of this chapter is as follows. Section 4.2 presents the formu-

lation and an algorithm to detect invisible humans. Section 4.3 shows how the
invisible humans are integrated into CoHAN and talks about the issues that arise.
It also presents a simple formulation to identify narrow passages. In section 4.4,
various experiments to evaluate the proposed approach are presented, followed by
the real-world experiments in section 4.5. A discussion on the limitations of this
work is presented in section 4.6. Finally, section 4.7 concludes this chapter.

4.2 Invisible Humans Detection

The invisible humans are detected using an emulated laser scan on a 2D map in ROS.
A custom laser scan is attached to the robot’s base, and it is continuously updated
as the robot moves on a given map. The entire system is implemented in ROS
[Quigley 2009] and requires the map that is published by the ROS Navigation Stack.
In order to avoid too many detections, we limit the invisible humans detection to
a radius of 5 m in front of the robot. The detection of invisible humans is a two-
step process involving corner detection and locating invisible humans. Each step is
explained in detail below.

https://github.com/sphanit/cohan_planner_multi/tree/model
https://github.com/sphanit/cohan_planner_multi/tree/model
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4.2.1 Corner Detection using Laser Contour

A custom laser scan sensor attached to the robot’s base scans the given 2D map to
get the visible contour of the map. The laser data consists of a list of values showing
the scan ranges in the field of vision of the sensor. The custom sensor data is used
in place of the real laser scan data to ensure uniformity across different robots and
sensors. An example laser contour built using this is shown in Fig. 4.1. Different
parts of these contour lines are shown in different colours for ease of explanation.
The red and the blue lines together constitute the regions on the real map where the
laser has hit a wall or an obstacle. The black lines represent the laser data that did
not hit anything and reached the end of their range (in our case, the range of the
laser is 7 m). Lastly, the yellow lines are interpolated rays joining large separations
between consecutive laser values and play a major role in our algorithm. The red
circle and the arrow represent the robot’s position and direction, while the green
circles represent the estimated invisible humans. Corner detection is relatively easy
once the laser contour is available. Firstly, all the pairs of consecutive laser range
values separated by more than 0.5 m are determined and stored in a set {V }. The
threshold of 0.5 m is chosen to filter out small gaps from where a human will not
emerge. After this, the values closest to the robot’s position in each of the above
pairs are identified to be corners of interest and stored in a set {c}. These are shown
as yellow circles in Fig. 4.1.

(a) Laser Contour (b) Detected invisible humans

Figure 4.1: (a) Laser contour built by the custom laser sensor. The red and blue
lines are the actual walls or obstacles in the front and back of the robot respectively.
The black lines are the laser range boundaries and the yellow lines are interpolated
lines between two gaps of laser data. The robot is shown as a red dot with an arrow.
The detected corners are shown in yellow, while the detected invisible humans are
shown in green. (b) The detected invisible humans on the map for the contour
shown. The red circles show the location and the blue arrow shows the assumed
direction, which is always oriented towards the robot.
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4.2.2 Estimation of Invisible Humans’ Locations

The estimation of possible locations for the invisible humans is not very straightfor-
ward. The laser contour forms a complex non-convex polygon, and we are searching
for circles whose centres are outside this polygon and do not intersect the contour.
We solve this problem using a combination of ray tracing and vector algebra. Con-
sider a non-convex polygon as shown in Fig. 4.2. The vertices are numbered in
the anti-clockwise direction. Consider a point P1 that lies between the vertices V1
and V2. If P1 is outside the polygon, it should lie to the right of the vector −−→V1V2.
Similarly, a point P2 lying outside the polygon between V2 and V3 lies to the right
of −−→V2V3 and so on. It holds true irrespective of the number of sides of the polygon.
We exploit this property to determine the positions of the invisible humans. Note
that a point lying outside the polygon will always be on the right side of the vectors,
but not every point on the right of the vectors lies outside the polygon. This is
because the methodology uses only a single side and does not consider the other
sides. To handle this, we use the fact that the polygon, in our case, is determined
by the laser contour, and any point outside this polygon is not visible to the laser.

Figure 4.2: Non-convex polygon and vector formulation to determine invisible hu-
mans. We try to find a point H that lies between two vertices V1 and V2 and lies
to the right of −−→V1V2. Note that the perpendicular distance of this point should be
greater than the assumed human radius.

In Fig. 4.1, the yellow lines correspond to the edges of interest in the polygon.
The numbering of the vertices is determined based on the indices of the laser scan
data, which (the rays) move from right to left in the anti-clockwise direction. In
order to determine a possible invisible human, we need to determine a point H
that is to the right of −−→V1V2 and whose perpendicular distance is greater than an
average human radius, hrad as shown in Fig. 4.2. Consider a point P that lies on
line segment V1V2 such that −−→PH is perpendicular to −−→V1V2. If we know the point P ,
then H can be determined using the following equations:

sign(−−→V1V2 ×
−−→
PH) = −1 (4.1)

−−→
V1V2 ·

−−→
PH = 0 (4.2)
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‖
−−→
PH‖ = hrad + ε (4.3)

where (×) is the cross product, (·) is the dot product and (‖‖) is the euclidean norm,
respectively. ε is the offset on the human radius to avoid unrealistic detections. In
this work, we chose ε to be hrad

2 . Let V1 = (x1, y1), V2 = (x2, y2) and P = (xp, yp),
then by solving the above equations, H = (xh, yh) is given by:

xh = xp + d(y2 − y1)√
(x2 − x1)2 + (y2 − y1)2

yh = yp −
d(x2 − x1)√

(x2 − x1)2 + (y2 − y1)2

(4.4)

where d = (hrad + ε). Similarly, the point on the left can be obtained by reversing
the sign in Eq. (4.1), which yields:

xh = xp −
d(y2 − y1)√

(x2 − x1)2 + (y2 − y1)2

yh = yp + d(x2 − x1)√
(x2 − x1)2 + (y2 − y1)2

(4.5)

From the Eq. (4.4), we can see that (xp, yp) is required to determine (xh, yh) and
it is still unknown as we cannot solve for four variables using only two equations
(Eq. (4.1)-(4.2)). As it is already known that P lies on the line segment joining
V1V2, it can be determined by performing a search on this line segment, starting
at one end and moving towards the other in small increments. The set of detected
corners, {c}, are taken as the starting points of this search. In each iteration, a
possible invisible human position is estimated using Eq. (4.4) and then projected
onto the map to see if there is any overlap with an obstacle or wall. As mentioned
before, we need another check to ensure that the point is outside the laser contour.
Suppose the vector joining the robot and the point H is −→r , and it subtends an
angle β with the positive x − axis of the base frame of the robot. As the custom
laser is also attached to the base frame of the robot, there should be laser scan
data corresponding to this angle β. Hence, when the H is outside, the following
condition is satisfied:

‖−→r ‖ > ρ(β) (4.6)
where β = atan2(xh − xrb, yh − yrb), (xrb, yrb) is the robot base frame’s position
and ρ(β) is the laser scan reading at angle β. To refine this search further, two
points, one on the left, Pl, and the other on the right, Pr, of the H are considered
with incremental distances until hrad + ε and checked for overlap using the map.

The entire procedure is shown in Algorithm 1 where ux and uy (line 6) are the
unit vectors along the direction of −−→V1V2 and α is a scalar determining (lines 32,
33) the step size or increment. The invisible humans detected using the above-
mentioned algorithm are shown in Fig. 4.1 (b). The red circles are the detected
location, while the blue arrows show the direction. We assume that the humans
are always coming towards the robot, and hence, the direction is always oriented
towards the robot. In the next section, we explain how this is integrated into the
human-aware planning framework for social robot navigation.
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Algorithm 1 Locate Invisible Humans
1: Determine the vertex pairs set {V } using laser contour
2: Determine the corners set {c} from {V }
3: for each c do
4: V1 = c = (x1, y1)
5: V2 = (x2, y2) . Corresponding pair from {V }
6: ux = (x2−x1)

‖
−−−→
V1V2‖

, uy = (y2−y1)
‖
−−−→
V1V2‖

7: Set P = (xp, yp) = (x1, y1)
8: while True do
9: Calculate Hinv using Eq. (4.4)
10: Calculate −→r and β
11: if ‖−→r ‖ < LaserData(β) then
12: xp = xp + αux
13: yp = yp + αuy
14: continue
15: end if
16: Check for overlap on the Map
17: if no overlap then
18: advance = False

19: for i = 1 to k do
20: d = i

k ∗ (hrad + ε)
21: Calculate Pr and Pl using Eqs. (4.4), (4.5)
22: Check Pr, Pl for the overlap on Map
23: if no overlap then
24: continue
25: else if overlap then
26: advance = True

27: break
28: end if
29: end for
30: end if
31: if advance == True then
32: xp = xp + αux
33: yp = yp + αuy
34: else if advance == False then
35: break
36: end if
37: end while
38: Add Hinv to the set of invisible humans, {Hinv}
39: end for
40: return {Hinv}
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4.3 Introducing Invisible Humans into CoHAN
In the previous version of CoHAN, we address different types of visible humans by
introducing new modalities and human-aware constraints [Singamaneni 2021]. In
this chapter, we extend it further to address the invisible humans. The invisible
humans are detected as explained above, and then they are published on a ROS
topic. CoHAN subscribes to this topic and adds a new constraint to its optimization
that is specifically designed for invisible humans. Note that we do not add any
elastic band and only add an ‘invisible human-aware’ constraint to make the robot
proactively plan its trajectory. Further, using these invisible human detections, we
propose a methodology to identify doors and narrow passages.

4.3.1 The ‘Invisible Humans Constraint’

The invisible humans constraint takes into account the human reaction time, walk-
ing speed, and deceleration. It aims to make the robot cautious about sudden
human emergence. The cost added by this constraint for the nth pose of the robot’s
trajectory is given as:

costinv_human = max

(
V − a∆tn

d
, 0
)

if ∆tn > 0.5s

= V

d
otherwise

(4.7)

where d is the distance between the invisible human and the robot, V is the
average human walking speed, 1.3 m/s [Teknomo 2002], a is the deceleration of the
human, and ∆tn is the time difference between the nth pose and the starting pose
of the planned trajectory of the robot. The value of the deceleration, a, can vary
and can be up to a maximum of 2.94 m/s2 (0.3 g) [Lakoba 2005]. In this work, we
take a reaction time of 0.5 s as discussed in [Lakoba 2005, Helbing 2000]. Hence the
constraint adds the maximum possible cost until 0.5 s. Then we assume that the
human will continuously decelerate to avoid collision with the robot over time and
eventually stops, which is reflected in the upper part of Eq. (4.7). The time (∆t)
and human detections are reset after every control cycle. The above cost makes the
optimization to produce a trajectory that makes the robot take larger turns around
the corners and other openings from where a human might emerge (if detected by
the presented algorithm). Hence, our HAN system proactively mitigates potential
collisions with unseen humans, and we believe that it is a more acceptable way than
reacting after seeing a human.

4.3.1.1 Issue with the Constraint

The main objective of the constraint is to push the robot away from the opening,
anticipating the emergence of invisible humans. However, when the robot needs to
pass through this opening and if the passage is narrow (door or narrow corridor),
the constraint pushes the robot away and makes it impossible to enter the passage.
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To mitigate this, we devise a simple formulation that detects such scenarios. Once a
narrow passage is detected, the invisible humans constraint is switched off, and the
maximum robot’s velocity is reduced until it passes through. The passage detection
process is explained in detail in section 4.3.2.

4.3.2 Passage Detection and a New CoHAN Planning Mode

The detection of narrow passages or doorways not only allows us to overcome the
issue of the invisible humans constraint but also to define a new modality of planning
that needs to be handled separately. In this work, we try to address three different
scenarios, as shown in Fig. 4.3. The first scenario, Fig. 4.3 (a), occurs in the case

Figure 4.3: Different types of passages that are detected using invisible humans. (a)
Doorways or openings and endings of the corridors (b) a narrow passage with an
opening on one side and a wall on the other side (c) a large pillar or obstacle where
the robot cannot see on either side. The green circles are the possible locations
of the invisible humans and the red triangle shows the robot pointed towards the
direction of its motion.

of a doorway or the openings and closings of a narrow passage. In such scenarios,
the invisible humans exert equal forces from two different directions, which align
the robot at the centre of the passage. If the opening is narrow, the resultant force
is strong and does not let the robot pass through until the invisible constraint turns
off. However, the threat of invisible humans still exists, so the robot should act
cautiously. Therefore, we make the robot move slowly with a lower velocity (≤
0.3 m s−1) until it passes through the passage. To detect this scenario, we use the
positions of the invisible humans and the robot to check whether an isosceles triangle
is formed with the three vertices. The robot lies on the vertex, which connects the
approximately equal sides, and humans at the base vertices. In order to limit false
detections, we set some numerical limits on the lengths of the equal sides and the
base. Assuming that a human has 0.3 m radius and the robot has 0.5 m, the length
of the base should be ≥ 1.6 m. When the clearance from obstacles or walls is taken
into account, it increases further. In this work, we set the limit on base length as
3 m. Similarly, for the equal sides, there should be a minimum length of 0.8 m, and
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we chose the limit to be 2 m. These values are chosen empirically based on the tests
in several situations. If the above conditions are satisfied, a passage is detected,
and CoHAN switches to a new modality called Pass Through, which sets the
conditions mentioned above. This mode can be activated at any time and in any
of the planning modes of CoHAN. Therefore, it can be seen as an asynchronous
planning mode that can be triggered at any time, unlike the previous planning
modes, and hence, it is independent of the situation assessment loop in CoHAN.
The situation shown in Fig. 4.3 (c) is almost the same as the doorway. It is
differentiated from the doorway case by reading the centre value of the laser scan
data. If the value in the data is less than the length of the perpendicular bisector of
the triangle’s base, it is identified as a pillar or a large obstacle. CoHAN identifies
this as a new case, but for now, we handle it the same we handle the doorway.

The situation shown in Fig. 4.3 (b) is different from the other two as the robot’s
passage is blocked on one side by an invisible human and an obstacle on the other.
As the robot may or may not align in this case, it must be handled differently. We
check the angle of the laser scan corresponding to the detected corner and read the
value of the data that is symmetrical to this angle along the direction of the robot.
If the difference between the distance of this laser scan data and the invisible human
from the robot’s position is ≥ 1 m, we identify it as a wall passage and set CoHAN
to Pass Through mode once again. The threshold of 1 m is chosen empirically
here.

4.4 Results

The proposed approach is tested in several settings after being completely integrated
with CoHAN. In this section, we show four interesting scenarios and present a
detailed analysis. In all these experiments, we assume hrad =0.3 m and set k =
10 and α = 0.2. We use ROS-melodic with Ubuntu 18.04, and all the scenarios
are simulated using MORSE [Echeverria 2011] simulator. The simulated human
agents used in the experiments are controlled using InHuS [Favier 2021a], a human
simulator developed in our lab.

4.4.1 The Effect of the Invisible Humans Constraint

We demonstrate the advantage of introducing proactive planning around the in-
visible humans with two different scenarios. A detailed analysis of these scenarios
with and without the proposed constraint is presented. Subsequently, a comparison
with some of the planners in move_base shows how the proposed approach can
improve human comfort.

4.4.1.1 Door Crossing Scenario

To show the effect of introducing the invisible humans constraint into CoHAN, we
present the robot with a door crossing scenario as shown in Fig. 4.4. We test the
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Figure 4.4: The robot passing through the door under the presence of invisible
humans. The coloured circles represent the poses of the robot and the different
colour corresponds to different time instance.

Figure 4.5: Paths and speed profiles of the robot passing the door without (a, c)
and with (b, d) the invisible humans constraint. The colour of the paths indicates
the time and progress of the robot, from blue to red (start to goal). In (a) the robot
crosses the door “full speed”. In (b) it decelerates before entering the door (black
star) and has the lowest speed at the entrance to the door (red star) around 4.2s
corresponding to the shortest distance to invisible humans.

scenario without and with the invisible humans constraint and the corresponding
paths of the robot are presented in Fig. 4.5 (a) and Fig. 4.5 (b) respectively. The
paths are coloured, and the colour moves from blue to red as the robot moves from
start to goal. It can be seen from these paths that the inclusion of the constraint
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made the robot more cautious as it takes a larger turn and aligns its path before
passing through the doorway.

The corresponding speed plots are shown in Fig. 4.5 (c) and (d). Comparing
the plot in Fig. 4.5 (d) with the speed profile in Fig. 4.5 (c), it can be seen that the
robot, after aligning itself with the entrance, starts decelerating slowly (black star)
as it moves towards the door. At the door, there is a sharp deceleration again, and
the robot passes this place (red star) at the lowest speed. This clearly reflects the
cautious behaviour of the robot.

4.4.1.2 Sudden Emergence of a Human

Figure 4.6: Sudden emergence scenario. The coloured paths with circles are the
planned trajectory of the robot. (a) Shows the anticipated invisible human in red
and the real human in green. The robot starts moving away from the corner. (b)
The robot has seen the human and adjusted its trajectory to provide more space for
the human. (c) The scenario without the invisible humans constraint. The robot
moves close to the wall and blocks the human momentarily before adapting its path.

The next scenario we discuss in this section shows a situation where a human
emerges suddenly from an occluded region. The snapshots of this scenario before
and after the emergence are shown in Fig. 4.6. The added invisible humans de-
tection predicts a possible position of the human as shown in Fig. 4.6 (a), which
approximately overlaps with the real human. The robot starts moving away from
the wall slowly because of this anticipation, and suddenly a real human appears
in front of it (Fig. 4.6 (b)). The robot quickly adapts its trajectory and moves
away from the human, slowing down a little before continuing to its goal. However,
without this detection, as shown in Fig. 4.6 (c), the robot moves close to the wall
and blocks the human’s way for a moment before changing its path. The paths
taken by the robot without and with the addition of invisible humans constraint to
CoHAN are shown in Fig. 4.7 (a) and Fig. 4.7 (c) respectively. It is clear from these
plots that the proposed constraint makes the robot move cautiously and lessens the
surprise to humans. Further, the path of the robot is smoother in Fig. 4.7 (c) when
compared to the path in Fig. 4.7 (a) as there are no sudden path changes.
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Figure 4.7: Path and speed profiles of the sudden emergence scenario without (a,
b) and with (c, d) the invisible humans constraint. The colour of the path indicates
the time and progress of the robot, from blue to green (start to goal).

The speed profile in Fig. 4.7 (b) shows a sudden drop in the velocity of the
robot. This occurs because CoHAN adapts its speed to prevent a possible collision
and shock to the human. Then, the robot slowly moves away and plans a new path
to the goal. The speed profile in Fig. 4.7 (d) is completely different compared to
the last one. The robot starts drifting away from the wall (both x and y velocities)
before seeing the human, and this shows the increase in the velocity. When the
human appears, it slows down and then changes its direction before continuing to
the goal with almost a constant speed. This is the sharp change (slowdown) we see
in Fig. 4.7 (d) between 5 and 10 seconds.

4.4.1.3 Comparison with Other Planners

To test the effectiveness of the proposed approach, we compare the sudden emer-
gence scenario using three different planners. The first one is Simple Move Base
(SMB), where humans are added using the laser scan. Then we use CoHAN with
and without the proposed constraint as the other two planners. As the proposed
work makes the robot cautious and tries to reduce the surprise to humans, we
check the minimum human-robot distance while navigating using these planners.
We have performed 5 runs of the same scenario with each planner, and the results
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are presented in Table 4.1. From Table 4.1, we can see that adding the invisible
humans constraint to CoHAN makes the robot maintain a larger distance from the
human around a corner. Keeping distance from humans avoids surprise to humans
and provides time for the robot planner to adapt slowly.

Planners Min. Human-Robot Distance (m)
SMB 0.58
CoHAN 0.92
CoHAN with constraint 1.25

Table 4.1: Results of sudden emergence scenario using 3 different planners.

4.4.2 Navigating in the Presence of Visible and Invisible Humans

Figure 4.8: Corridor scenarios used for testing CoHAN. (a) Corridor with many
openings where the robot continuously anticipates the emergence of humans. (b)
Corridor with pillars between passage that creates complex navigation scenarios. In
both these settings, the robot tries to find a balance between visible and invisible
humans. The green circle is the visible human interacting with the robot, while the
red circles are estimated invisible humans. The coloured path with circles is the
planned trajectory of the robot.
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The inclusion of the invisible humans into human-aware navigation planning should
not cause discomfort to the visible humans that are moving around the robot. To
show that CoHAN finds a balance between the invisible and visible humans, we
present two corridor scenarios, one with many doors (or openings) as shown in
Fig. 4.8 (a) and the other with pillars as shown in Fig. 4.8 (b). In both of these
scenarios, the robot faces complex situations where it has to find a balance between
the visible and the invisible humans.

In the case of the corridor with many openings, the robot anticipates that a
human might emerge anytime and tries to move away from the openings. However,
when it sees a human passing through the corridor, it tries to provide more space
to the human by moving to one side. At the same instance, it faces the forces
from the invisible humans and tries to find a balance between these and the visible
human. By observing the path and speed profile of this scenario from Fig. 4.9 (a)
and (c), we can see that the robot moves away as well as reduces its speed rapidly
to accommodate the visible human. Nonetheless, it does not move very close to the
door as it anticipates a human emergence.

In the corridor with pillars, the robot faces another complex situation where it
has to pass through a very narrow opening and has to let the human pass through
the same as shown in Fig. 4.8 (b). From the path and speed profiles of this scenario
from Fig. 4.9 (b) and (d), we can see that the robot slows down rapidly while moving
to a side and momentarily stops before moving forward again. Here, the robot
stops and lets the visible human pass before it can continue its navigation. Further,

Figure 4.9: Paths and speeds profiles of the robot in corridor scenarios. (a), (c)
correspond to the corridor with many openings. (b), (d) correspond to the pillar
corridor. The colour of the paths indicates the time and progress of the robot, from
blue (start) to red (goal).
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it detects the narrow passage scenario discussed in section 4.3.2 and changes to
Pass Through mode. We can, therefore, infer that CoHAN always tries to find a
fine balance between visible and invisible humans and can mitigate very complex
situations.

4.4.3 Testing the Accuracy and Robustness

(a) Maps used for testing (i) LAAS (ii)
Bremen (iii) Random Maze

(b) Failed detections

Figure 4.10: (a) Different maps used for testing the robustness and accuracy of
the approach. The map in (iii) shows an example of a randomly generated maze.
The other maps are standard ones. (b) Different types of failed detections. The
detection in the yellow circle is a false positive whereas that in the yellow square
is an overlap (possibly true). The passage detection is also wrong as the wall is
detected as a passage. The green cube with the black arrow shows the robot and
its direction. The red cylinders are the invisible humans.

For testing the proposed algorithm, we have designed randomised experiments. We
either generate a random map using the Maze Generator1 or randomise the position
of the robot in the known map. The maps used for these experiments are shown in
Fig. 4.10 (a). The LAAS and Bremen maps are collected from the models of real
spaces. Fig. 4.10 (a) (iii) shows a random map generated using the Maze Generator.
Fig. 4.10 (b) shows some failed detections using the proposed algorithm that are
taken care of while calculating the accuracy. The red circles with blue arrows are
the predicted invisible humans. The invisible human in the yellow circle is classified
as a false positive, as no human could be located inside the wall. The detection
in the yellow square is similar, but it is not completely inside the wall. We call
this case an ‘overlap’ and classify this also as a false positive. The door/passage
detected (cyan rectangle) in this picture is wrong, and we classify this as a false
positive while calculating accuracy for passage detection. The green square with
the black arrow is the robot in the figure.

1https://github.com/razimantv/mazegenerator

https://github.com/razimantv/mazegenerator
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4.4.3.1 Robustness and Accuracy

To test the robustness of the proposed algorithm, we perform several randomised
experiments in different settings. In the LAAS and Bremen maps, we randomise
the position of the robot and evaluate the detections manually. We did 50 such
evaluations for each of the above two maps. In the next set of experiments, we
generate a random map and place the robot in a random pose and then evaluate the
detections. In this case, we have done 100 evaluations using 100 randomly generated
maps. The calculated accuracy of our invisible humans detection algorithm based
on these 200 experiments is 76.85%. However, if we include the overlaps as true
detections, it increases by over 12% to 89.16%. These overlaps could be reduced by
improving the filtering. Table 4.2 shows the list of experiments and the accuracy
in each case.

Invisible Humans Detection
Experiment Accuracy (%) Accuracy with overlap (%)

LAAS 91.82 94.55
Bremen 65.28 81.94
Random 76.90 90.42
Overall 76.85 89.16

Table 4.2: Accuracy calculated based on 200 experiments in 3 different environ-
ments. By correcting the overlapping detections, the accuracy could be increased
by over 12%.

For calculating the accuracy of passage detection, we have performed similar
experiments and evaluated the detections in 200 experiments. Here, we classify the
detection simply as either true or false. There are also cases where there are no
detections. In such cases, no detection within limits is classified as false, and the
out-of-the-limits is classified as a miss. Table 4.3 shows the accuracy of passage
detection in different settings. The overall accuracy based on these experiments is
around 62.50%. Note that the percentage of misses is around 23.50%. They can be
eliminated by having higher or adaptive detection limits. The limits have to be set
based on the requirement.

Passage Detection
Experiment Accuracy (%) Misses due to limits (%)

LAAS 66.00 30.00
Bremen 54.00 36.00
Random 65.00 14.0
Overall 62.50 23.50

Table 4.3: Accuracy calculated based on 200 experiments in 3 different environ-
ments. Increasing the limits of detection could increase the accuracy by over 23%.
These limits could be decided based on the requirement.
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4.5 Real-World Tests

The CoHAN system is installed on the PR2 robot in our lab and then tested in the
doorway scenario discussed above. In these experiments, we do not use any human
tracking as these are tests for invisible humans. The localisation of the robot is
done using the amcl localization2 package in ROS. The system runs entirely on the
robot and only the goals were given from a remote computer.

Figure 4.11: Real world experiment setting (a) Human is inside the room and does
not move. (b) The human starts coming out of the door as the robot approaches
the door. In both scenarios, the robot tries to pass through the door.

We performed two kinds of experiments around the door, as shown in Fig. 4.11.
In the first situation, shown in Fig. 4.11 (a), the human remains stationary, whereas
in the second situation, shown in Fig. 4.11 (b), he comes out of the door as the robot
approaches the door. The first situation is tested, with and without the invisible
humans constraint, and the results are shown in Fig. 4.12. We can see from the
figure that the real-world results match the results of the simulation approximately
both in the paths and the speed profiles. The robot takes a larger turn and aligns
itself with the door before moving towards the entrance. The video3 clearly shows
the effect of the added constraint as well as the shift to the new modality Pass
Through. Note that in Fig. 4.12 (c), the robot halts momentarily. This may be
because of a sudden human appearance or moving very close to the wall.

The second situation is similar to the sudden emergence scenario, and the results
of this run are shown in Fig. 4.13. The human emerges out of the door as the robot
starts to move towards it. However, thanks to the invisible humans constraint,
the robot is not very close to the door and leaves enough space for the human to
pass through. In this scenario, the robot slows down twice, once when the human
emerges and then to align itself with the door.

2http://wiki.ros.org/amcl
3https://youtu.be/cbeFRkEdGgA

http://wiki.ros.org/amcl
https://youtu.be/cbeFRkEdGgA
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Figure 4.12: Paths and speed profiles without (a, c) and with (b, d) invisible humans
constraint. The addition of the constraints makes robot takes larger turn (b).

Figure 4.13: Path and speed profile in the sudden emergence scenario.

4.6 Discussion and Limitations

The introduction of invisible humans into human-aware navigation planning is rel-
atively new and requires further research. We present one possible approach to
address this issue. What is particularly interesting here is that our approach is
modelled as a situation assessment and prediction ability to integrate into a mobile
robot human-aware navigation. Having this, we can have a robot that can interact,
using several modalities, with humans present in its field of view while making pro-
visions to adapt to humans that are not yet seen. One difficulty we faced was the
integration of all these features without being “too conservative” and avoiding an-
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other case of the “freezing” robot. However, there are still some limitations to this
approach. Since the approach is based on a 2D map, we can have false detections in
the regions visible through the head of the robot but not through the base. There
may also be some false detections in complex maps. Both these can be mitigated
by augmenting the current approach with new sensor data and filtering further.

4.7 Conclusion
We have proposed an approach to estimate the locations of invisible humans on a
2D map. These invisible humans are then integrated into our human-aware navi-
gation planner via a new constraint. We have also shown how narrow passages can
be identified by exploiting the detected invisible humans. We have presented the
qualitative analysis of several simulated scenarios, followed by the results of accu-
racy and comparisons with some planners. Finally, we have shown the real-world
experiments and presented some discussion. In the future, we plan to refine this
approach further and address the different modalities identified in a better manner.
We also aim to build a complete human-aware navigation system that can address
very intricate human-robot interactions.
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Evaluation of Human-Aware
Navigation
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5.1 Introduction
Evaluating the efficiency and performance of a HAN planning system is one of the
open questions in the field. Although there are already a set of evaluation metrics,
we believe they may not do complete justice to evaluating a HAN system under
intricate scenarios such as the ones addressed in this thesis. The majority of the
works in HAN evaluate their systems based on the classical navigation metrics
combined with proxemics violation. However, proxemics may not be applicable
in all scenarios, and sometimes the robot has to intrude into the personal space.
Given the circumstances, the human might not feel uncomfortable or even allow it
to happen. For example, consider the case of a narrow corridor. Here, both agents
have to pass close to each other to reach their goals, and proxemics violations always
occur. Therefore, new evaluation metrics that are valid in such situations have



102 Chapter 5. Evaluation of HAN

to be defined. Some of the existing studies [Takayama 2009, Lichtenthäler 2012a,
Kruse 2014b] talk about how the velocity modulation is more legible and slower
speeds are preferred in close vicinity by humans. Therefore, we propose a few new
metrics for HAN based on distances, velocities and human visibility which can be
applied to a wide range of settings.

Before proposing new evaluation metrics, we present some of the most commonly
used evaluation metrics in section 5.2 and discuss some of their shortcomings. Then
we present the proposed metrics in section 5.3 along with their mathematical formu-
lation, if any. In section 5.4, we test the proposed metrics in different HAN settings
and show a detailed analysis. Finally, some conclusions about HAN evaluation
metrics are discussed in section 5.5.

5.2 Existing Evaluation methods
The existing evaluation methods [Gao 2021] and metrics of HAN can broadly be
divided into four categories: 1) Navigation metrics, 2) Naturalness metrics, 3) Dis-
comfort metrics and 4) Surveys and studies. We briefly describe each of these cat-
egories and present some of the commonly used metrics. Our main focus will be on
the discomfort metrics as they deal with the evaluation of human-robot interaction.

5.2.1 Navigation Metrics
All the metrics of navigation can be used to evaluate the navigation performance
of a HAN system. They can be used to test the robustness and stability of the
designed system and are seldom useful to evaluate the interaction with a human.
Some of these metrics are listed here:

• Path Length: Comparing the length of the path is one of the basic evaluations,
and classically, the shorter the path, the better the system. In HAN, however,
it may not be true.

• Path Efficiency: It is the ratio of the distance between two waypoints to the
traversed distance between these two waypoints. This measure shows how
well the controller is tracking the path.

• Time to reach goal: It is again one of the simplest metrics which computes
the time taken by the robot to reach the final goal. A shorter time is usually
preferred, but in HAN, it is not that straightforward.

• Success Rate: Success rate is used to quantify the navigation performance and
measures how many times the robot navigation was successful over several
trials. Irrespective of the type of system, this metric can be applied.

• Number of collisions: Similar to success rate, counting the number of collisions
applies to all navigation systems. Some works in HAN use a modification to
measure human safety, called collision index [Truong 2014] and the lower the
index, the better.
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5.2.2 Naturalness Metrics
The naturalness of the robot’s trajectory is measured using similarity and smooth-
ness metrics. Similarity metrics measure how similar the robot’s trajectory is when
it is compared to an expert human trajectory. The smoothness metrics, on the
other hand, measure how smooth the robot’s motion was during the navigation.
Some of these metrics are presented below:

• Path Deviation: There are different ways in which path deviation is measured.
These metrics measure how similar the robot’s motion is when compared to
an expert trajectory. Two of these ways are:

– Average Displacement Error (ADE): It is the average euclidean distance
between the predicted robot’s trajectory and the expert (or human) tra-
jectory [Pellegrini 2009]. Some works used a non-linear version of this
[Alahi 2016].

– Final Displacement Error (FDE): It is the distance between the final
goal of the predicted trajectory and the given ground-truth data at the
same time.

• Cumulative heading changes: The changes in the path and the amount
of unnecessary turning over the whole path are good metrics to measure
the smoothness of the robot’s motion. It is also called path irregular-
ity [Guzzi 2013].

• Acceleration and Velocity: The motion profiles of the robot can tell us a lot
about the smoothness of the trajectory and are some of the basic metrics to
use.

• Topological Complexity: Some works [Mavrogiannis 2018, Mavrogiannis 2019]
measure the entanglement in paths using topological complexity in-
dex [Dynnikov 2007] and use it as a measure of legibility.

The smoothness and topological complexity metrics can be used to measure
legibility in HAN systems. Legibility comes with expressiveness, and hence it is
necessary to define some metrics for measuring navigation intention expressiveness
apart from legibility.

5.2.3 Discomfort Metrics
HAN is essentially a human-robot interaction in the context of robot navigation,
and it is necessary to measure how well or how bad the interaction was. Discom-
fort metrics aim to measure this and tell how well a HAN system is performing.
Therefore, these metrics are naturally employed to compare different HAN systems.
Most of the existing metrics are distance based and largely rely on the proxemics
theory. The most commonly used metrics measure the intrusions into the spatial
zones around humans, and some of these are:
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• Personal Space Intrusions: The space surrounding a human is divided into
different concentric circles (or other shapes) [Rios-Martinez 2015] with vary-
ing radii defining the proxemics zones. The intrusions into personal and
intimate spaces are usually taken as a measure of discomfort, and many
works [Okal 2016, Pérez-Higueras 2018a] count the number of these intru-
sions to quantify a HAN system. Truong et al. [Truong 2017a] defined a
Social Individual Index (SII) based on proxemics (same as collision index in
[Truong 2014]), and a good HAN system will always have this value below
the given threshold.

• Interaction Space Intrusions: Similar to individual humans, a group of
humans also have various interactions zones like o-space, p-space and r-
space [Ferrer 2017, Rios-Martinez 2015], and their shape depends on the f-
formation [Kendon 2010] maintained by the members of the group. In such
settings, the intrusion into p-space and r-space are considered as violations
and HAN systems try to minimize these intrusions. Sometimes, the human-
object interactions are also considered [Truong 2017a] (use Social Group Index
(SGI)) while measuring these intrusions.

• Time spent in proxemics zones: A better alternative to the number of intru-
sions is to measure the time spent in the areas associated with the human’s
personal zone or the group’s interaction zone [Kostavelis 2017].

• Distance to a human: While the robot is navigating, there may be different
distances from different humans in the environment. In general, HAN sys-
tems use either minimum or maximum distance to the closest human and the
average distance over all the humans to quantify the system.

One of the very useful metrics combining the velocity and distance is called
Time-to-Collision (TTC) [Biswas 2022], and it represents how the robot’s motion
is relative to the human’s motion. The higher the value of TTC, the better the
navigation. Truong et al. [Truong 2017a] define something similar called the Rela-
tive Motion Index (RMI), and the higher its value, the lower the social acceptance.
After checking the formulation, one can notice that RMI is the inverse of TTC. One
of the metrics proposed in this chapter is based on TTC, and for this, we provide
a detailed description and mathematical formulation in the subsequent sections.

5.2.4 Surveys and Studies
Human interactions and their psychological impressions and states cannot be quan-
tified using just numbers. It requires some well-designed studies and questionnaires,
and experimental evaluations on a real system or through videos. HAN does the
same to evaluate the psychological safety (discomfort and stress) and the sociability
of the system under study. The perceived psychological safety is commonly mea-
sured using questionnaires [Butler 2001]. Some of the established questionnaires in
social robotics like Godspeed [Bartneck 2008] already include perceived safety and
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emotional states and the Robotic Social Attributes Scale (RoSAS) measures several
psychological factors based on the Godspeed questionnaire.

The social intelligence of a robot, sometimes called sociability, is not very easy
to quantify. A robot’s motion may be perfectly natural, satisfies all the comfort-
based metrics and can still be perceived as not completely social. In several in-
tricate scenarios, the robot might not reach the high-level expectations of a hu-
man and fail to convey its intention or behaviour to the human. Barchard et
al. [Barchard 2018] proposed Perceived Social Intelligence (PSI) scales to evaluate
around 20 aspects of the social intelligence of a robot. This was used in some
of the recent works [Banisetty 2021, Barchard 2020] to evaluate the HAN system.
Some works [Vega 2018] have employed customs questions apart from these scales
to study sociability.

5.3 Proposed Discomfort Metrics

We believe that social space violations by a robot can be permitted to some extent
as long as the robot’s intentions are conveyed clearly to the human. One of the
recent studies by Joosse et al. [Joosse 2021] proposed that people are more lenient
when a robot intrudes on their personal space than a human. Further, they showed
that these intrusions could be mitigated by conveying the robot’s intention to the
humans. These studies and observations lay the basis for our metrics based on
velocity. The second set of metrics is based on the human’s visibility and recognition
of the robot when it appears unexpectedly or when it is trying to approach a
human for an interaction. We introduce each of these metrics and provide their
mathematical formulation in this section.

5.3.1 Velocity based Metrics

Depending on the directions and the magnitudes of the velocities of humans and
the robot, we define two metrics (or costs) to evaluate HAN systems. Fig. 5.1
shows two such scenarios where the human and robot can approach each other, or
the robot can pass by the human. We define two costs to assess such situations
namely, 1) costdanger and 2) costpassby. The idea behind costdanger is to evaluate
how fast a robot moves directly towards the human causing discomfort and, in some
cases, fear. This is primarily associated with the danger of collision, hence the name
costdanger. If something or someone passes at a very high speed in close vicinity, it
could lead to confusion or discomfort. The second metric, costpassby, could be used
to evaluate how the HAN system handles such scenarios. We now proceed to the
details and the mathematical formulations of these costs.

5.3.1.1 Formulation

Suppose the circumscribed circle of the human has a radius of rh and that of the
robot has a radius of rr. The human and the robot collide when the distance
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(a) (b)

(a) (b)

Figure 5.1: Human-Robot situations where velocity based metrics are important.
(a) Cross: The human and the robot approach and cross each other at different
velocities. (b) Overtake or Follow: The robot is behind the human and is about to
overtake or follow the human. In both situations, the human can be either static
or moving but the robot is always moving.

between their centres is less than or equal to the sum of these radii, rh + rr = R.
If we assume the robot is a point and expand the radius of the human to R, the
same conditions apply. This setting is shown in Fig. 5.2 along with the velocities
of the human, −→Vh and the robot, −→Vr. The relative velocity of the robot with respect

Robot

Human

Figure 5.2: Mathematical Formulation of the costs. The figure shows the different
vectors and the possible costs depending on the situation. If −−→Vrel falls within the
zone indicated by the dotted lines then there is costdanger and if it falls outside this
zone then we have the costpassby. Human’s velocity is represented by −→Vh, the robot’s
velocity by −→Vr, and the position vector from the robot to the human by −→Prh. θ is
the angle between −−→Vrel and

−→
Prh. Note that only one of the −−→Vrel (blue or red one)

exists at a time, but not both.

to the human is given by −−→Vrel = −→Vr −
−→
Vh and depending on where it falls (see Fig.

5.2), we define two types of metrics or costs. If it falls within the collision zone,
represented by dotted lines, then there is a danger of collision, and hence, we define
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the costdanger in this setting. If it falls outside the collision zone, the danger of
collision no longer exists, but the robot may pass by the human, and so in this
setting, we define the costpassby. Let the vector from the robot’s position to the
human’s position be −→Prh and θ be the angle between −−→Vrel and

−→
Prh. While defining

these costs, we use the effective distance between the human and the robot, drheff

and the perpendicular component of −→Prh along −−→Vrel, d⊥.

5.3.1.2 Metrics

The first of the two metrics is the cost of danger when there is a possibility of
collision. This metric can be seen as a measure of the feeling of threat a robot can
cause while it moves directly towards the human. For this, we use first calculate
the TTC based on the above formulation,

TTC =
drheff

‖
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where ‘(‖‖)’ is the magnitude of the vector and ‘(·)’ is the dot product. Note that
TTC is only defined when the −−→Vrel falls within the collision zone. Outside this zone,
TTC =∞. When TTC > 0, the cost of danger is defined as follows,

costdanger = 1
TTC

= ‖
−−→
Vrel‖
drheff

(5.1)

When the −−→Vrel falls outside the collision zone, the costdanger = 0 and as |θ|
or drheff

decreases or ‖−−→Vrel‖ increases, costdanger increases. Any HAN system can
be defined to have a certain threshold for this cost beyond which some mitigating
actions have to be taken. The second metric that we propose is valid when −−→Vrel is
outside the collision zone. In such a setting, the robot may follow or pass by the
human, and we define the costpassby as,
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The costpassby increases as the robot approaches the human. Specifically, the cost
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increases as the perpendicular distance of the robot from the human decreases or
the relative velocity increases. It also increases as θ increases, indicating that the
robot is getting closer to the human. The main idea behind this metric is that a
robot passing very close to a human at a very high speed could cause discomfort to
the human.

5.3.2 Vision based Metrics
A human moving in an environment depends on different senses to identify and
negotiate the path or the moving direction. In such conditions, if something or
someone appears suddenly without any intimation, the human might be surprised,
and sometimes he/she might not even feel comfortable with such appearances. This
applies to static humans as well. We believe that in the case of static humans,
the robot has to maintain a larger distance behind the human [Avrunin 2014] to
avoid causing any discomfort or surprise. Moreover, when the robot is planning to
enter a human’s field of view (FoV), it should enter at a convenient distance and
angle to avoid any compensatory actions by the human. An illustration of such
conditions is provided in Fig. 5.3. The depiction on the left shows a robot trying to
enter the human’s FoV for interaction, and the one on the right shows the sudden
appearance of a robot in front of the human without having any knowledge about
the whereabouts of the human.

(a) (b)

(a) (b)

Figure 5.3: Human-Robot interaction scenarios where vision-based metrics are
needed apart from velocity based ones. (a) Approach: The robot is approach-
ing humans for an interaction. The robot needs to go from the back to the front
to initiate the interaction. (b) Appear: The robot and human suddenly face each
other without any prior knowledge about the other. The human can be static or
dynamic in both these settings.

Considering all these, we propose costvisibility, costsurprise and costreact to eval-
uate such situations. The first one, costvisibility, measures how visible the robot
is when it enters the FoV of a human below a certain threshold distance. The
idea is to evaluate how well the HAN system adapts to the visibility of the robot.
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costsurprise, on the other hand, measures how surprised or uncomfortable a human
is when a robot appears suddenly in a human’s FoV, whereas costreact measures
how safe the appearance is. These metrics are designed to evaluate how well a HAN
system handles sudden or occluded emergences of humans.

5.3.2.1 Formulation

In this formulation as well, we consider the robot as a point, and the circumscribed
radius of the human is taken as R = rh + rr. The vector from the human’s position
to the robot’s position is represented by −→Prh, and the unit vector in the direction
of orientation of the human is given by ûh. The angle between −→Prh and ûh is

Human
Robot

Figure 5.4: Mathematical formulation for vision-based metrics. θ is the angle be-
tween the unit vector of human’s direction, ûh and vector −→Phr. θFoV/2 is the half
angle of human’s field of view and dhreff

(=
∥∥∥−→Phr∥∥∥ − R) is the effective distance

between the human and the robot.

represented by θ and the half angle of human’s FoV by θFoV/2. The effective distance
between the human and the robot is given by dhreff

. When the robot comes into
the FoV of the human (green area in the figure), we define three costs using dhreff

,
θ and some studies based on human perception.

5.3.2.2 Metrics

We first define the visibility cost, costvisibility as follows,

costvisibility = dproxemics
dhreff

(
θ

θFoV/2

)
= α

 cos−1
(
ûh ·
−→
Phr

)
∥∥∥−→Phr∥∥∥ (∥∥∥−→Phr∥∥∥−R)

 (5.3)

where α = dproxemics

θF oV/2
and dproxemics is the defined proxemics-based distance that

does not intrude the personal space (> 0.45 m). The lesser the cost of visibility,
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the better the behaviour of the robot. This cost increases as θ increases indicating
that more human effort is needed to look at the robot (head motion). The cost
also increases as the distance, dhreff

, decreases to discourage close and sudden
appearances.

When a human sees something, it takes a few milliseconds before it is registered
by the brain. After the recognition, it takes more time to generate a response.
The average recognition time for a human is around trecognise = 150 millisec-
onds [Thorpe 1996, Rayner 2009] and the average time to react for visual stimuli
is between treact = 400− 600 milliseconds [Eckner 2012, Wolfe 2020]. If something
appears very close to a human before it can be recognised, it could result in a sur-
prise or shock. Even after recognition, if there is no time to respond, it could result
in a collision or may cause discomfort. Taking all of this into account, we propose
two costs to measure surprise and response based on the robot’s position when it
appears. They follow similar formulations with some differences. We first define a
linearly increasing function called the ‘seen ratio’ (SR) as given below,

SR =

 t
treact

, if 0 < t < treact

1, if t ≥ treact
(5.4)

SR starts at zero the moment the robot enters the human’s FoV, and as time, t,
passes, this ratio slowly increases until it reaches one. When the value of SR is one,
it means that the robot has been seen and identified by the human with enough
time to react if needed. Hence, we can say that the SR becomes one at around
t = treact = 600 milliseconds and continues to stay at one until the robot moves out
of FoV of the human. The costs are defined as follows,

costsurprise = max

(
dproxemics
dhreff

(1− γSR), 0
)

(5.5)

costreact = dproxemics
dhreff

(1− SR) (5.6)

where γ = treact
trecognise

. Both costsurprise and costreact are high if the effective
distance, dhreff

, is low when the robot enters the FoV of the human. costsurprise
lasts only for a short period, and if the robot comes very close to a human during
this period, the human can be marked as surprised with a corresponding cost. The
costreact measures how the robot’s appearance affects the human. If the costreact
is high, that means the HAN system has done a poor job in handling sudden
appearances, and it needs to be improved.

For all the costs (metrics) proposed, it is ideal to set a threshold below which
the behaviour is acceptable, and these can be obtained based on real-world demon-
strations and studies. However, such studies are yet to be performed, and therefore,
we can only have a relative analysis with respect to another planner. In the next
section, we do this comparative analysis using the standard ROS Navigation Stack
and CoHAN.



5.4. Analysis 111

5.4 Analysis

The proposed metrics are used to evaluate four human-robot interaction scenarios
given in figures 5.1 and 5.3 i.e., 1) Cross (Fig. 5.1 a): the human and robot cross
each other face-to-face, 2) Follow and Overtake (Fig. 5.1 b): the robot follows and
then overtakes a slow-moving human, 3) Approach (Fig. 5.3 a): the robot moves
from the back to the front of a static human for interaction and 4) Appear (Fig.
5.3 b): the human suddenly appears as the robot is taking an L-turn.

In all the experiments, dproxemics = 1.6 m, θFoV = 120◦ and rh = 0.3 m. The
interactions are simulated in the MORSE simulator, and the human agent is con-
trolled using InHuS [Favier 2021a]. The robot is controlled using two different
systems, CoHAN and Simple Move Base (SMB). SMB uses the standard ROS navi-
gation stack and adds humans as obstacles. It neither uses human motion prediction
nor social norms while navigating. Hence, we expect our metrics to differentiate
clearly between SMB and CoHAN. Each scenario was run 5 times using both the
planners and the mean values of the metrics are tabulated in Table 5.1. In this
section, we analyse each of the above four scenarios in detail using these metrics.

Cross
Planner costdanger costpassby costvisibility costsurprise costreact
CoHAN 0.18 1.71 0.0 0.0 0.0
SMB 1.19 9.5 0.0 0.0 0.0

Follow and Overtake
CoHAN 0.31 0.90 1.21 0.98 1.19
SMB 0.27 0.92 2.66 2.15 2.61

Approach
CoHAN 0.28 1.05 2.27 1.91 2.32
SMB 0.31 1.95 3.53 3.01 3.66

Appear
CoHAN 1.46 7.22 0.49 0.70 0.85
SMB 3.15 2.27 0.77 0.91 1.11

Table 5.1: Proposed discomfort metrics in four different scenarios. SMB and Co-
HAN were run 5 times in each of the scenarios, and the mean values are presented.

5.4.1 Scenario 1: Cross

In this scenario, the robot is already in the FoV of the human as it starts moving.
So, all the vision-based metrics will be zero, and only the velocity based metrics
are relevant here. Comparing the values of costdanger and costpassby from Table 5.1,
the costs corresponding to CoHAN are significantly lower than costs for SMB. As
CoHAN is a human-aware planner, it tries to provide more ways for the human by
moving away as shown in Fig. 5.5 (b) and thanks to the Relative Velocity constraint,
it even slows down as it passes by the human. These behaviours result in low
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costdanger and costpassby. On the other hand, SMB does not modulate its velocity
much and takes only a small deviation to avoid the collision, as shown in Fig. 5.5
(a). The slight decrease in human speed and the path change can be seen in Fig. 5.5
(a). Sometimes, the human took the full burden of avoiding the collision. These
behaviours may not be acceptable, and it is reflected by the high values in costdanger
and costpassby.
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(a) SMB: Cross
(b) CoHAN: Cross

Figure 5.5: Speeds and paths of the human and robot in the Cross scenario. The
triangle with the thick line is the human, and the other one is the robot. Both the
human and robot move from the blue end to the red end of the paths. (a) In the
case of SMB, the robot moves close to the human, and the human path is slightly
modified. As they cross each other, there is a slight decrease in the velocity of the
human. (b) The robot running CoHAN moves away showing the intention and also
keeping its distance from the human. So the human path is almost a straight line,
and the velocity remains constant.

5.4.2 Scenario 2: Follow and Overtake

As explained above, the robot starts following a slow-moving human and finally
overtakes him before reaching its goal (Fig. 5.6). In this situation, a HAN system
should have small values for all of the proposed metrics as the robot should pass
by the human without colliding and not surprise the human as it overtakes him.
From the values of the metrics in the table, it is evident that CoHAN performs
comparatively better than SMB. Specifically, costsurprise, costreact and costvisibility
are significantly high for SMB, indicating that the robot might have entered a
human’s FoV suddenly and at a closer distance which is not ideal. This is true as one
can see from Fig 5.6 (a) that the robot was very close as it overtook the human. The
robot using CoHAN modifies its trajectory to accommodate the Visibility constraint
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and enters the human’s FoV in a better manner, as seen in Fig. 5.6 (b). However,
we cannot claim that this is the best, as thresholds and benchmarks still need to
be set.

In this setting, the robot and the human have some perpendicular offset distance,
unlike in the previous case, and they move almost parallelly for the most part (see
Fig. 5.6). As a result, both SMB and CoHAN have similar costdanger and costpassby.
The costpassby is slightly lower for CoHAN because of the velocity modulation, and
costdanger is slightly higher because of the directional changes imposed by different
constraints. The robot with SMB moves in a straight line, and when it is very close
to the goal, it changes its path slightly.
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(a) SMB: Follow and Overtake (b) CoHAN: Follow and Overtake

Figure 5.6: Speeds and paths of the human and robot in the Follow and Overtake
scenario. The triangle with the thick line is the human, and the other one is the
robot. Both the human and robot move from the blue end to the red end of the
paths. (a) The human and the robot move parallelly until the very end without
much change in their velocity profiles. (b) The robot with CoHAN takes a larger
deviation as it plans to enter the FoV of the human. The velocity of the robot drops
slightly when it overtakes the human and then it increases slowly.

5.4.3 Scenario 3: Approach

This is a fairly simple setting with a static human. The robot has to approach
and face this static human for interaction. The robot starts somewhere behind the
human and has to slowly enter his FoV, reducing the surprise as much as possible.
As expected, CoHAN has comparatively lower values for all the metrics and in fact,
costdanger and costpassby are similar to the previous case (Table 5.1). Although the
vision-based metrics are significantly lower for CoHAN than SMB, their values are
doubled compared to the Follow and Overtake case. This could mean that CoHAN
has to improve its handling of static humans. The paths and the velocity profiles
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(a) SMB: Approach (b) CoHAN: Approach

Figure 5.7: Speeds and paths of the human and robot in the Approach scenario.
The triangle with the thick line is the human, and the other one is the robot. The
robot moves from the blue end to the red end of the paths, and the human is static
in the scenario. (a) The robot’s path does not deviate much except at the end. (b)
The robot’s path slightly deviates as soon as the robot sees the human, and when
the robot turns itself to align in the close vicinity of the human, CoHAN tries to
keep the robot’s velocity low.

of the robot are shown in Fig. 5.7, and we can see that CoHAN’s path has slightly
deviated, and the robot takes a larger turn. The speed profile in Fig. 5.7 (b) shows
that the robot moves with lower velocities while aligning itself in front of the human.

5.4.4 Scenario 4: Appear

When the robot navigates in an environment, there could be several places from
where a human can emerge, as discussed in Chapter 4. One such scenario is an
L-turning, where a robot can find itself facing a previously unseen human suddenly.
It is one of the most difficult cases to handle for a HAN system, as it has to prevent
harm and shock to the human on top of avoiding the robot from freezing. As
invisible humans are already a part of CoHAN, it is expected to perform better in
this case.

From Table 5.1, we can see that CoHAN reduces the surprise and has a lesser
reaction cost (costreact) as well, indicating slightly better performance compared
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to SMB. The costdanger also indicates the same in comparison with SMB, but the
numerical values are high compared to all the previous cases. As the robot was
modulating only its path to handle a sudden emergence, the high velocity explains
the higher value. With SMB, it is even higher as it does not even modulate its path.
The most important metric to discuss in this scenario is the costpassby. Looking at
the numerical values, it seems like CoHAN is performing very badly, and SMB has
a better performance. It means that the relative velocity between the human and
the robot is high in the case of CoHAN.
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(a) SMB: Appear (b) CoHAN: Appear

Figure 5.8: Speeds and paths of the human and robot in the Appear scenario. The
triangle with the thick line is the human, and the other one is the robot. Both the
human and robot move from the blue end to the red end of the paths. (a) The
speed of the human drastically changes and momentarily the human even halts as
the robot faces him (red circle on the path). (b) The robot moves away from the
corner and takes the turn with a larger radius so that the human does not have to
slow down much. The robot speeds up a little to move further away as it sees the
human and then slows down while it passes by him.

The speeds and paths of the human and the robot for SMB and CoHAN are
shown in Fig. 5.8. From the speed plots of SMB in Fig. 5.8 (a), we can see that
the human’s speed drastically falls between 5 and 10 seconds, and momentarily, it
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is even zero. At the same time, the robot’s speed seems to be dropping too. This
happens as the robot and human face each other, and the robot blocks the human’s
way (red circle on the path in Fig. 5.8 (a)) before changing its trajectory. This
results in a lower relative velocity, and hence, costpassby is small. However, this is
not acceptable behaviour and needs to be avoided. The speed plots of CoHAN in
Fig. 5.8 (b) also show the speed drops, but the human speed drops only slightly and
for a short duration. The speed of the robot, on the other hand, initially increased
to drift away from the human and then dropped because of the Relative Velocity
constraint as it passed by the human. Based on the path and speed profiles from
Fig. 5.8 (b), we can say that the human is disturbed less by CoHAN and may call
this behaviour somewhat acceptable. In an ideal situation, the human should not
be disturbed at all, and the human’s speed should be almost constant. We need
more studies to identify practical behaviours in such situations.

5.5 Discussion
Evaluation of HAN is not really straightforward, and researchers follow different
methodologies to do this. For numerical evaluation, several metrics were proposed
based on proxemic zone violations. As most of these discomfort metrics are based
only on distance, we believe that they might not do the complete justification in
evaluating a complex situation. Therefore, we have proposed a set of discomfort
metrics based on velocity and visibility along with the distance. These metrics were
applied to evaluate some commonly-occurring human-robot navigation scenarios
with the robot running different planners. The evaluations in these settings revealed
that the proposed metrics could differentiate a HAN planning system and a classical
navigation planner.

Although the idea behind the proposed metrics was to evaluate a HAN system,
they might not be sufficient to completely assess a situation. During our analysis,
we used the paths and the velocity profiles to provide a complete picture of what
was happening. Hence, the proposed metrics should be used together with existing
metrics to evaluate a situation better. Furthermore, user studies are required to
set thresholds and benchmark acceptable navigation behaviours. It should also be
noted that assessing a scenario using only one of the costs may be erroneous. The
proposed costs, when studied together, gives better judgement. Hence, one can
combine one or more of these costs to formulate a better metric. For example, the
costsurprise can be combined with costpassby or costdanger to check how admissible
or undesirable the robot’s behaviour is in a situation. The exact way to combine
these metrics could be tricky, but one can even come up with a single metric by
combing all the costs to evaluate HAN. As a part of future work, we plan to explore
how the proposed metrics can be combined to build better metrics. We also plan
to devise new metrics that are more generic.



Chapter 6

Conclusions

In this thesis, we have explored the problem of mobile robot navigation in human
environments, generally called human-aware navigation (HAN). We have presented
detailed literature on how the field evolved and some existing challenges. Numerous
solutions were proposed for HAN in motion planning literature by modelling humans
as special obstacles. However, we believe that HAN is essentially an interaction
between humans and robots. Therefore, it should satisfy the principles of HRI. In
this thesis, we have put together these ideas and proposed a HAN that assesses a
situation to take appropriate action. Although situation assessment and behaviour
shifting have already been explored in HAN, they were mostly used on top of motion
planning systems. Unlike the previous approaches, we have introduced situation
assessment at the level of trajectory planning to shift between different modes of
planning while the robot navigates to the goal. As this low-level mode shifting
was combined with proactive planning, the robot can deal with complex situations
in an efficient manner before it is too late. Proactive planning itself has some
very interesting features, like quick plan adaptations and early intention shows, but
there could be some very complicated situations where proactive planning may not
be sufficient. The situation assessment based modality shifting is useful in such
places.

We have presented three versions of our HAN system, starting with the idea
of introducing modality switching inside the local trajectory planner. There were
several improvements over the previous version of HATEB, and these improvements,
combined with the mode-switching scheme, are some of the major contributions
of this thesis. Qualitative and quantitative results have shown the advantages of
such an approach in various settings. We then moved on to propose a Human-
Aware Navigation Stack called CoHAN with many changes to scale the system
to multiple humans and to address different types of humans. CoHAN can be
seen as a complete navigation stack for HAN with different costmap layers, human
path prediction mechanisms, and several modes of planning that can solve most
of the intricate human-robot navigation scenarios. The early intention show and
the Backoff-recovery act as implicit communication mechanisms to tell the human
what the robot is going to do. In the future, we plan to integrate more explicit
communication through head orientation and probably voice. Various kinds of
human states combined with the situation assessment can address more complicated
scenarios, and to ease this, we plan to modularize the future version of CoHAN with
detailed documentation. CoHAN has been tested on simulated crowds and has
already shown some promising results. However, we believe that crowd navigation
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could be more complex, and we need more modalities and mechanisms to handle
crowds efficiently. We have already presented some ideas we plan to integrate into
the future version, and we expect to add more.

Apart from addressing multi-context navigation, we have also focused on one
key aspect throughout the development of our HAN system, legibility. We have
introduced some new human-aware constraints to make the robot’s motion more
legible to the human. To show the intention of the robot early, we have proposed
TTC, TTCplus and Relative Velocity constraints. The Relative Velocity constraint
also addresses the issue of directionality in the crossing or close-to-human navigation
scenarios. We have introduced the Visibility constraint to avoid any surprises or
shocks to a human when the robot overtakes the human. One more attempt to
improve legibility was done through ’invisible humans’. We have introduced this
concept into HAN to make sure that the robot is aware not only of the humans it is
seeing but also of the environment and the places humans might emerge. We believe
that this makes the system more complete and ready to face any kind of environment
without behaving erratically or freezing. The ‘invisible humans’ concept has also
made it possible to identify different places on the map through geometric reasoning
and introduce different modalities of planning depending on the situation. Further,
the algorithm was rigorously tested and showed satisfying performance in some very
complex maps. The final version of CoHAN integrated with the ‘invisible humans’
has been shown to perform better and move smoothly without having any freezing
robot problems.

One of the open challenges in HAN is its evaluation, and the currently existing
metrics do not do justice while the robot is navigating very dense crowds or con-
fined spaces. As most of them are based on proxemic zones that are variable from
place to place and the experiences of the person, it makes it more difficult to gen-
eralise the metrics to all cases of HAN. Therefore, we proposed some new metrics
of evaluation using velocities and visibility along with distance. The velocity-based
metrics, costdanger and costpassby, aim to measure the feeling of threat and dis-
comfort caused to the human depending on the direction and speed of the robot’s
heading. Since these metrics combine distance and velocity, they can explain intri-
cate settings better than proxemic zone violations. The first one of the vision-based
metrics,costvisibility, was designed to measure how well a robot can approach a hu-
man from behind. The other metrics, costsurprise and costreact, aim to measure the
surprise(or shock) and risk caused when a robot appears in front of a human sud-
denly. The comparison between a standard navigation planner and a HAN planner
showed how these metrics evaluate the ‘human awareness’ of the system.

Human-aware navigation is not a very simple problem to address, and it taught
us some valuable lessons. The developed systems are hard to validate in real-world
settings. The experiments could be tedious, not easily reproducible and can be
limited. Not every robot is the same. The structure of the robot matters to humans
in the environment. Their behaviour towards the robot changes as the shapes
and designs of the robot change. Humanoid structures are accepted better than
simple mobile bases, even with the same algorithm. One of the important aspects
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while developing a HAN system is to have a good simulator that can generate
realistic human behaviours. To this date, there is no perfect human simulator.
The HAN research community has been using crowd simulators or directly testing
with real humans. Crowd simulators are mostly reactive and are not realistic. On
the other hand, tests with real humans are tedious and require a lot of resources
and time. Although there is rapid growth in this aspect, the community is still
waiting for a reliable robot simulator that can simulate rational human agents. We
require more user studies to understand the intricacies of human-robot navigation.
This is the right moment to invest more time into these studies, as drones and
autonomous vehicles have also entered the field. The robotics community seems to
have realised this, and now, there are special sessions dedicated to human-aware
motion planning and human-aware navigation. The number of studies has already
increased, and many researchers in motion planning are coming together to address
this complicated yet interesting problem of robotics that can eventually lead to a
society where humans and robots coexist.

There are already many immediate future perspectives for HAN. As autonomous
vehicles have already hit the roads, it is time to make them behave socially by
making them aware of humans and their intentions. An autonomous vehicle not
only needs to be safe but also needs to obey certain rules and untold norms followed
in society. HAN studies this problem exactly. Drones have become very affordable,
and some companies are planning on using them for deliveries, while others are
planning to use them as helpers in construction. All these applications require
drones to navigate around humans and communicate with them. HAN in drones
needs to study these in more detail and come up with better navigation systems for
drones. Apart from guiding people in public places, some other applications of HAN
lie within warehouses where they need to work or deliver goods to different locations.
These environments are more structured, and solving HAN in such places is much
easier. HAN has been and will always be used in the sector of service robotics.
Be it a robotic companion, a robotic wheelchair or robots in hospitals delivering
medicines or equipment the HAN system faces dynamically changing environments
where safety is one of the main concerns. A multi-context tunable navigation system
could address most of these scenarios by choosing a set of parameters suitable for
the setting.





Appendix A

Simulating Human Agents for
Testing HAN

One of the challenges during the development of a HAN system is to test the system
before its final deployment and real-world runs. Robotic simulators are of great use
during this period as we can test the system under various conditions and in several
environments. Unlike the classical setting, testing HAN requires the simulation of
humans, which is still research under development. Until recently, the HAN commu-
nity used the crowd simulators like Pedsim or MengeROS [Aroor 2017] to simulate
humans in semi-crowded or crowded scenarios. However, the motion generated by
these simulators uses reactive schemes like SFM or ORCA, which are good for gen-
erating crowds but lack intelligence at the level of an individual human. Recent
simulators like SEAN [Tsoi 2020, Tsoi 2022] and SocNavBench [Biswas 2022] tried
to generate somewhat intelligent behaviours using new approaches and real-world
data. However, these human agents are either not reactive (as they replay real-
world trajectories without considering the robot) or use schemes similar to ORCA.
Although they have better human agents and environments for testing HAN, they
still lack intelligent agents that can be used to test intricate scenarios in spaces like
offices, labs or homes. Hence, we have used different ways to control the human(s)
while testing the HAN proposed in this thesis. These ways include manual control
using a joystick, a simple human controller that follows the generated trajectories,
and finally, an intelligent human with rational decision-making capabilities.

A.1 Planning and Control for Human Agents
In this section, we talk about the simple modes and planners employed to control
the human avatar in the robot simulator. A human is assumed to be a robot with
special requirements.

A.1.1 Manual Control
One of the simplest ways to control a human is to move the human manually using
a keyboard or joystick. This is efficient in testing some very complicated scenarios
involving intelligent decisions. Since a real human is already controlling the human
avatar in the simulator, all the decision-making process is handled by the human
operator. To integrate such a human avatar into our system, we used the joy1 ROS

1http://wiki.ros.org/joy

http://wiki.ros.org/joy
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package and then mapped the inputs of the joystick to the avatar’s velocity with a
cap at 2 m/s.

Manual control is good for testing some interesting and particular cases, but
it becomes tiresome to run several scenarios to benchmark or quantify the results.
Moreover, the simulation runs cannot be completely automated as the human op-
erator is always involved in the loop. So, the next solution was to plan and control
the human, like the robot. It is different from collision avoidance algorithms as the
human has a global path to trace and a separate local planner to move the human.

A.1.2 Planning based Control

To automate and replicate the tasks easily, we have developed a simple humans
navigation2 package using the global planner3 in ROS and a simple controller.
The developed system has two modes of operation:

1. Trajectory following: In this mode, the human follows the trajectory that is
provided externally through a ROS topic. We used this mode to test the ideal
situations where the human follows the trajectory planned by CoHAN.

2. Goal-based Control: This mode is more autonomous as we only provide a goal
via a ROS topic, and the system plans and moves the human to the goal.
The planning module updates the plan as the human moves, and the simple
controller traces the path. This mode was used to run multiple tests to check
how well the robot adapts to the human.

Both these modes can control more than one human simultaneously. The Trajectory
Following mode used the trajectories planned by CoHAN to move the humans. The
trajectory provided the desired velocities, which were sent directly to the human
controller. However, in the Goal-based Control mode, the velocities were calculated
based on the current position and planned paths of the humans. To accept multiple
goals and plan for all the humans together, a multi-goal planner was developed,
and it is used internally by the humans navigation package to get plans based
on the provided goals.

Even though this kind of system solves the issues of automation and is less tire-
some to the developer, the human agent is still not intelligent and simply follows
the given trajectory. Although the trajectory provided by CoHAN takes care of
many human-robot social constraints, this ideal behaviour may not be expected
from humans. In the second mode of control, the human agent might have bet-
ter behaviour, but the agent is still not intelligent and somewhat reactive, like in
collision avoidance schemes.

2https://github.com/sphanit/humans_nav
3http://wiki.ros.org/global_planner

https://github.com/sphanit/humans_nav
http://wiki.ros.org/global_planner
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A.2 InHuS

InHuS4 [Favier 2022] stands for IntelligentHuman Simulator, and it was developed
to specifically simulate a human agent that is rational and persistent about its goal,
unlike the reactive schemes.

Navigation

Figure A.1: InHuS Architecture. The system consists of the Boss and the InHuS
Human Controller macro components. The human operator interacts with the
system through the Boss which in turn interacts with the Human Controller and
the HAN Planner. Both the human and the robot controllers are connected to
the same simulator where they control different components but share the same
environment.

A.2.1 Architecture

The architecture of the proposed system is shown in Fig. A.1. InHuS is composed
of two major components namely, 1) Boss and 2) Human Controller. These com-
ponents are explained in detail below:

Boss: The Boss component is responsible for taking input from the user and
sending the appropriate instructions to the human and the robot planners.

4https://github.com/AnthonyFavier/InHuS_Social_Navigation

https://github.com/AnthonyFavier/InHuS_Social_Navigation
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Hence it is provided with a graphical user interface through which a user
can give individual goals to each agent, run or re-run predefined scenarios
or initiate an endless loop of the human and robot navigating continuously
from one goal to another. The endless loop can be used to identify the limits
of the HAN system under test. After taking the input from the user, this
component communicates the navigation goals to the Robot Manager and
Human Manager at the appropriate times. Once the goals are communicated
to these components, the Boss does not interfere with the execution unless
the human operator selects a new goal or scenario.

Human Controller: This is the main component of InHuS that controls
human motion and decides what to do in case of a conflict with the robot.
It has an internal ‘Human Behaviour Model’ that makes these decisions and
sets some attitudes to humans. The other major sub-component is the ‘Su-
pervisor ’, which supervises the execution of the goal and the progress, and
activates the respective components as needed. While the ‘Geometric Plan-
ner ’ provides the geometric path and trajectory to the goal, the ‘Low Level
Controller ’ sub-component sends the command velocity to the human avatar.
The ‘Task Planner ’ was used to define different kinds of navigation tasks like
go to goal, wait etc. Finally, the Log Manager of this component logs the data
and sends it to a GUI for visualisation of the calculated metrics.

A.2.2 Supervisor and Geometric Planner

The navigation goal of the human avatar is sent to the Supervisor, which in turn asks
the Task Planner for a plan to achieve this goal. The Supervisor then supervises
and coordinates the execution of all the actions in the plan while managing the
conflicts. The navigation plan generally consists of ‘moving’ and ‘waiting’ actions.
This kind of architecture allows us to define complex navigation goals with multiple
steps. The Supervisor queries the Human Behaviour Model from time to time to
detect any potential conflicts. It has the power to suspend the execution of a plan
in case of a conflict and resume it whenever necessary. This is especially useful to
execute other actions in case of conflict to show the navigation intention and goal
persistence of the human agent, unlike the reactive or simple planning approaches.

When the Supervisor has to execute a ‘moving’ action, it sends the navigation
goal to the Geometric Planner, which generates the path and then calculates the
velocity commands to make the human move towards the goal. Depending on
the type of trajectory planner selected, human motion can be different. In the
current version, the standard ROS Navigation Stack or CoHAN can be selected
as the Geometric Planner. The velocity command given by this component is not
directly sent to the human. The Low Level Controller receives this velocity and, if
necessary, modifies or perturbs this velocity before sending it to the human avatar.
This is used to emulate some reactions while navigation called ‘Attitudes’, which is
presented in the next subsection.
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A.2.3 Human Behaviour Model

The Human Behaviour Model is the most important component of the proposed
architecture. It controls the human avatar and is responsible for the behaviours
exhibited by the human agent. As mentioned previously, this component manages
the navigation conflicts, and in this version, only the blockage of the path by the
robot is handled. Whenever the Geometric Planner is called for the first time, the
shortest path to the goal without any moving agents is calculated and sent to the
‘Navigation Conflict Manager ’ of this component. If any blockage of this path by
the robot is detected by this component, it changes the human state, and then
the Supervisor suspends the goal. The human avatar then performs an ‘approach’
action where it moves towards the goal until it reaches a limiting distance from the
robot. After this, it stops and waits for the robot to clear the way. Note that any
collision avoidance or simple planning strategies will fail to show such behaviour
as they will completely change the path of the human agent instead of showing
persistence towards the goal.

This component can also set the goals for the human agent apart from the Boss.
The internal goal selection mechanism is responsible for different Attitudes of the
human avatar. Three kinds of attitudes are provided in InHuS:

1. Stop and Look: It emulates a curious behaviour, where the human avatar
navigating to the goal stops and looks at the robot shortly if the robot is in
close vicinity of the human avatar. After this action, the navigation to the
original goal is resumed.

2. Harass: This attitude emulates a behaviour where the human avatar contin-
uously disturbs the robot by blocking the robot’s path. The idea here is to
generate a child-like behaviour for the human avatar.

3. Random Goal: In this attitude, a new random goal is set to the human
avatar while it is already moving towards a goal, emulating something like a
change of mind.

To make the system more realistic, this module builds the perception of the human
avatar using the map of the environment and the location of the other agents. The
information about the other agents is taken directly from the simulator rather than
using simulated cameras or lasers. Therefore, the human avatar does not consider
the robot that it cannot see, even if it is below the threshold distance geometrically.

A.2.4 Logs and Metrics

The Log Manager logs the data of the human-robot navigation interactions and
sends it to GUI based data visualiser. This visualiser shows the different states of
the human, the paths of the human and the robot, and some metrics to evaluate
the robot’s navigation. The logged data can also be used to calculate new metrics
or methodologies for evaluation. A screenshot of this visualisation is shown in Fig.
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Figure A.2: The data visualisation in GUI. On the right, the paths taken by the
agents are shown, while on the left, the human states and the calculated metrics
are shown.

A.2. The paths shown on the right in Fig. A.2 are coloured over time. It means
that the same colour on the paths represents the same time instant, and using this,
one can interpret the behaviour of the agents better. On the left, the plot on the
top shows the human avatar’s distance to the goal and its estimated state over time.
If no conflict occurs, the human stays in a single state, and the distance to the goal
decreases linearly. The plots below the first one show some of the calculated metrics
and the agents’ velocities over time. One can calculate and add more metrics as
needed using the logged data.

A.2.5 Generating Different Behaviours

Figure A.3: Traversed paths generated by InHuS during the Pillar corridor scenario.
The top part is with cooperative settings and the bottom part with non-cooperative
settings along with the Stop and Look attitude.

Depending on the Geometric Planner and the Attitude, different navigation
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behaviours can be emulated for the human avatar. For example, using the stan-
dard ROS Navigation stack and Stop and Look attitude, we can simulate a non-
cooperative human who contributes nothing in a setting like a corridor. If CoHAN is
used, a cooperative yet curious human can be simulated. Moreover, CoHAN can be
tuned to set a degree of cooperative behaviour. The comparisons of different com-
binations and behaviours generated are presented in more detail in [Favier 2021b].
Fig. A.3 shows the paths of the robot and human in two situations, one where
the human is non-cooperative and curious and the other in which the human is
completely cooperative.





Appendix B

Effects of Social Constraints

Each of the proposed social constraints in this thesis has some particular effect on
the behaviour of the robot. Some of the predominant effects of these are briefly
presented here. Each case presents a scenario without and with the social constraint
activated. The figures of each scenario show the paths taken by the human and
the robot (starting at blue and moving towards red) and their velocities (robot’s
velocity in red and human’s velocity in blue) below. The velocity plot also includes
the distance between the human and the robot during the execution of the scenario.

B.1 TTCplus Constraint

B.1.1 Approach

(a) without TTCplus

(b) with TTCplus

Figure B.1: The robot approaches a human head-on. The addition of the TTCplus
constraint makes the robot deviate a little and slow down as it nears the human.
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In this scenario, the robot and human move towards each other and stop at a
very close distance from each other. From Fig. B.1 (a), it can be seen that the robot
and human move at their full speeds towards each. However, with the addition of
the TTCplus constraint, the robot has a decreasing velocity profile as the human-
robot distance decreases, showing the robot’s intention to stop (shown in Fig. B.1
(b)).

B.1.2 Open Space Crossing

(a) without

(b) with

Figure B.2: The human and the robot cross each other in an open space. The
addition of the TTCplus constraint makes the robot move aside quickly, showing
its intention to give way and the choice of its side to move.

This scenario simulates a robot crossing a human in an open area where there
is enough space to move away and not disturb the human. In Fig. B.2 (a), the
robot and human move directly towards each other and only avoid each other at
the last minute before the collision. This puts on an additional burden on the
human to deviate from his path to avoid a collision with the robot. A more human-
aware robot should avoid the occurrence of such path deviation, which is similar to
what is seen in Fig. B.2 (b). Therefore, the TTCplus constraint not only shows its
intention to move away early but also reduces the additional navigational burden
that might be imposed on the human.
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B.1.3 Corridor Crossing

(a) without

(b) with

Figure B.3: The human and the robot cross each other in a corridor. TTCplus
constraint not only makes the robot take a side early but also slows down the robot
as it crosses the human.

This scenario is similar to the previous one, but the space is narrower. As there
is not enough space to move away, the robot with the TTCplus constraint moves
to a side as well as slows down, as shown in Fig. B.3 (b). Without this constraint,
it behaves exactly like in the previous case (Fig. B.3 (a)).

B.2 Relative Velocity Constraint

B.2.1 Corridor Crossing

The corridor crossing scenario is the same as the one shown in the previous
section. In the case of the Relative Velocity constraint, the robot should try to
move away as quickly as possible and provide more space for the human even when
the line of travel is not the same. This can be clearly seen from the path and
the velocity profile of the robot in Fig. B.4. The robot starts to move to one side
very quickly and slows down as it crosses the human. If there was enough space,
the robot could have moved with a larger velocity while crossing. This constraint
addresses parallel travel better when compared to TTCplus.
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Figure B.4: The human and the robot cross each other in a corridor. Relative
Velocity constraint makes the robot clear the way quickly and move with a slower
speed robot as it crosses the human at a small parallel distance.

B.2.2 Open Space Crossing

Figure B.5: The human and the robot cross each other in an open space. The
addition of the Relative Velocity constraint makes the robot take a large deviation
by exploiting the available space while showing its intention to give way. It also
facilitates the robot to move at a larger velocity towards the goal.

In this setting, the robot has enough space to move away and then travel with a
larger velocity. Without the addition of the Relative Velocity constraint, the robot
and human avoid each other moments before the collision, similar to Fig. B.2 (a).
This constraint makes the robot move away very quickly and exploit the available
space to move at full speed towards its goal. It can be observed from the path
and the speed profile of the robot in Fig. B.5. This clearly shows how the Relative
Velocity constraint addresses the parallel travel better compared to the TTCplus
constraint (see Fig. B.2 (b)).

B.3 Visibility Constraint

To show the advantage of adding the visibility constraint, an overtaking scenario
is simulated. In this setting, the robot encounters a human moving very slowly and
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partially blocking its way. The robot has to over the human in order to move to
its goal faster. In the first case, shown in Fig. B.6 (a), without the addition of
Visibility constraint, the robot overtakes the human very closely and also disturbs
his navigation. With the addition of this constraint, however, the robot takes
a large deviation and tries to enter the human’s field of view as far as possible
without disturbing him. This can be observed from the plots in Fig. B.6 (b).

(a) without

(b) with

Figure B.6: The robot overtakes a human who is moving very slowly. The addition
of the Visibility constraint makes the robot enter the human’s field of view slowly
without surprising or disturbing the human.

B.4 Updated Invisible Humans Constraint
As shown in chapter 4, the current version of the ‘Invisible Humans’ constraint

already addresses a lot of scenarios to proactively accommodate sudden human
appearances. However, the defined formulation had some issues which needed to
be addressed using passage detection and mode shifting. After testing the robot
navigation in more complicated scenarios, we observed that the current formulation
could lead to some deadlocks even after the passage detection. One such deadlock
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situation is shown in Fig. B.7. Here, the robot faces opposing forces from the ob-
stacles and the invisible humans and freezes before it can even detect an opening.
Therefore, we update our formulation by taking inspiration from the Relative Ve-

Figure B.7: A situation where the current formulation of the Invisible Humans
constraint could fail. The opposing forces from the obstacles and the invisible
humans make the robot freeze without moving.

locity constraint. Instead of using the velocity of the visible humans, we use the
defined invisible humans’ velocity in the formulation and update the formulation as
follows:

costinv_human = max

(
V − a∆tn + ‖−→Vr‖+ 1

d
, 0
)

if ∆tn > 0.5s

= V

d
otherwise

(B.1)

In the latest version of CoHAN, the above formulation is used instead of the
previous one. The rigorous testing of the updated formulation is still pending,
but we already see some improvements over the previous one. An example of the
constrained door crossing is presented below.

B.4.1 Testing the Updated Constraint
The above formulation acts on the robot’s velocity during the possible freezing

scenarios and makes the robot move with lower velocities, and reduces the cost.
Since it is an updated formulation of the Invisible Humans constraint, it should still
hold the properties of the previous formulation. To show this, we have simulated
the door-crossing scenario again with a wall on the side that limits the space.

In Fig. B.8 (a), the robot moves without considering and accounting for the
invisible humans in the environment. Therefore, it moves at almost full speed
and takes the shortest path to reach the goal. With the formulation in chapter 4,
the robot froze between the wall and the entry to the door and did not move.
However, with the updated formulation, the robot moves away from the door as
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much as possible without colliding with the wall and also aligns itself to properly
pass through the door. Further, while crossing the door, the robot moves very
cautiously with a slower velocity, as seen in Fig. B.8 (b) between 140− 145s.

(a) Without Invisible Humans constraint

(b) with the updated Invisible Humans constraint

Figure B.8: Constrained door crossing scenario. The robot has to enter a door in a
narrow space and try to accommodate humans as much as possible. The updated
Invisible Humans constraint makes the robot move close to the wall before aligning
itself towards the door and carefully entering it.
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