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Abstract

The objective of the thesis is to develop a component-based model order reduction
procedure for a class of problems in nonlinear mechanics with internal variables. The
work is is motivated by applications to thermo-hydro-mechanical (THM) systems for
radioactive waste disposal (this project is funded by ANDRA, the national agency for
radioactive waste management). THM equations model the behaviour of temperature,
pore water pressure and solid displacement in the neighborhood of geological reposito-
ries, which contain radioactive waste and are responsible for a significant thermal flux
towards the Earth’s surface. From a mathematical point of view, the THM system
that we solve is a time-dependent and highly nonlinear coupled system; furthermore,
the solution to the problem depends on several parameters, which might be related to
the geometric configuration (e.g. the number of repositories, their distance or their
size) or the material properties of the medium. For example, changes in the position
and/or the number of the radioactive repositories might lead to significant changes in
the predicted quantities of interest; we would need therefore to solve the numerical
model more than once. This problem represents a multi-query problem and it requires
the application of component-based parametrized model order reduction (CB-pMOR).
First, we start from the high-fidelity finite element discretisation of the two-dimensional
THM problem, we develop a monolithic projection-based ROM and we study its per-
formance with respect to predictions. Then, we device a CB-pMOR formulation for
steady problems in nonlinear mechanics. Finally, we extend the CB formulation and
methodology to time-dependent nonlinear problems with internal variables, to tackle
the THM problem of interest.

Keywords: model order reduction, domain decomposition, nonlinear elasticity, cou-
pled problems.
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Resumé

Le travail de thèse a l’objectif de développer une procédure de réduction de l’ordre
des modèles basée sur les composants pour une classe de problèmes en mécanique non
linéaire avec variables internes. Le travail est motivé par des applications aux systèmes
thermo-hydro-mécaniques (THM) pour le stockage des déchets radioactifs (ce projet est
financé par l’ANDRA, l’agence nationale pour la gestion des déchets radioactifs). Les
équations THM modélisent le comportement de la température, de la pression de l’eau
interstitielle et du déplacement des solides dans le voisinage des dépôts géologiques, qui
contiennent des déchets radioactifs et sont responsables d’un flux thermique important
vers la surface de la Terre. D’un point de vue mathématique, le système THM que
nous résolvons est un système couplé dépendant du temps et hautement non linéaire;
en outre, la solution du problème dépend de plusieurs paramètres, qui peuvent être liés
à la configuration géométrique (par exemple, le nombre de dépôts, leur distance ou leur
taille) ou aux propriétés matérielles du milieu. Par exemple, des changements dans la
position et/ou le nombre de dépôts radioactifs pourraient conduire à des changements
significatifs dans les quantités prédites d’intérêt; nous aurions donc besoin de résoudre
le modèle numérique plus d’une fois. Ce problème représente un problème multi-query
et il nécessite l’application de la réduction de l’ordre des modèles paramétrés basée
sur les composants (CB-pMOR). Tout d’abord, nous partons de la discrétisation par
éléments finis haute-fidélité du problème THM bidimensionnel, nous développons un
modèle réduit monolithique basée sur la projection de Galerkin, et nous étudions ses
performances par rapport aux prédictions. Ensuite, nous proposons une formulation
CB-pMOR pour des problèmes stationnaires en élasticité non linéaire. Enfin, nous
étendons la formulation et la méthodologie CB aux problèmes non linéaires dépendant
du temps et avec des variables internes, afin de résoudre le problème THM qui nous
intéresse.

Mots clés: réduction de l’ordre des modèles, décomposition du domaine, élasticité non
linéaire, problèmes couplés.
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Resumé détaillé

L’application qui motive le présent travail est la disposition et le stockage des déchets
radioactifs de haute activité en milieu géologique. En France, de grandes quantités de
déchets radioactifs sont générées par 1200 générateurs1, qui comprennent des centrales
nucléaires, mais aussi des universités, des hôpitaux et des centres de recherche. Cela
représente une menace pour les générations actuelles et futures, car la santé humaine et
l’environnement peuvent être menacés par l’émission ou la dissémination de matières
radioactives.
L’Andra, — l’Agence nationale pour la gestion des déchets radioactifs2 crée en 1979 au
sein du Commissariat à l’énergie atomique (CEA)— a pour objectif de trouver, mettre
en uvre et garantir des solutions sûres pour la gestion des déchets radioactifs en France.
L’Andra a opté pour une solution à long terme: les conteneurs de stockage des déchets
doivent isoler les matières radioactives de l’environnement jusqu’à ce que leur radioac-
tivité ait baissé à un niveau acceptable; des conteneurs spécifiques doivent être adaptés
à chaque type de déchets.

Les déchets sont stockés dans des dépôts géologiques qui sont surveillés alors que la
radioactivité diminue dans le temps. La sûreté des dépôts se fonde sur trois éléments:
les packages, les structures du dépôt (appelés alveoli) et le site géologique. Les colis
contiennent les déchets radioactifs et sont placés à l’intérieur des alvéoles, qui sont
situées horizontalement à une grande profondeur dans le sol (à environ 300 à 500
mètres); le site géologique est constitué de la région où se trouvent les alvéoles; la
zone qui entoure les alvéoles constitue une barrière naturelle permanente qui empêche
la propagation des déchets radioactifs. La figure 1 est une représentation schématique
du stockage des déchets dans les dépôts. En raison de la température élevée des déchets

Figure 1: Installation en profondeur d’un stock de déchets radioactifs

radioactifs, un flux thermique est généré à l’intérieur des alvéoles: ce flux thermique
entraîne ensuite la réponse mécanique et hydraulique du milieu géologique pendant
plusieurs années. Ce phénomène nécessite une évaluation attentive des effets à long
terme sur les zones voisines. D’un point de vue mathématique, le comportement du
système est décrit par des systèmes d’équations aux dérivées partielles (EDP) couplés à
grande échelle et dépendants du temps, qui prennent en compte la réponse thermique,
hydraulique et mécanique du milieu géologique due à l’introduction du dépôt de déchets
radioactifs.

Comme il est impossible de trouver une solution exacte pour ce système d’équations,
des simulations numériques sont adoptées pour la conception et l’évaluation. La solu-
tion du problème dépend de plusieurs paramètres, qui peuvent être liés à la configu-
ration géométrique (par exemple, le nombre d’alvéoles, leur distance ou leur taille) ou
aux propriétés matérielles du milieu. Par exemple, des changements dans la position

1Source: "Les essentiels de l’Inventaire national, 2019 "
2Site web de l’Andra: https://www.andra.fr

https://inventaire.andra.fr/sites/default/files/documents/pdf/fr/inventaire_national-essentiels-2019.pdf
https://www.andra.fr
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et/ou le nombre d’alvéoles peuvent conduire à des changements significatifs dans les
quantités prédites d’intérêt telles que le déplacement de la surface terrestre environ-
nante. Pour prendre en compte correctement l’incertitude des valeurs des paramètres,
nous devons résoudre le modèle numérique pour de nombreux paramètres d’intérêt dif-
férents: ce problème est généralement appelé un problème de type many-query. De
plus, une solution numérique efficace à ce type de problème est encore plus difficile
dans un contexte real-time, dans lequel une solution pour des paramètres spécifiques
est nécessaire rapidement.

Le problème mathématique Thermo-Hydro-Mécanique (THM) peut être écrit sous
forme abstraite comme dans le système (1). Nous considérons la variable spatiale x
dans le domaine de Lipschitz Ω ⊂ Rd avec dimension d = 2, 3, et la variable tem-
porelle t dans le temps (0, Tf ] ⊂ R, où Tf est le temps final. Nous définissons en
outre le vecteur de paramètres µ dans la région compacte des paramètres P ⊂ RP .
Étant donné un paramètre µ ∈ P, nous introduisons les variables d’état (ou primaires)
Uµ : Ω × (0, Tf ] → RD, où nous désignons par D le nombre de variables primaires;
elles peuvent être considérées comme des variables qui représentent l’output d’un map
paramétré de solutions évaluées à un paramètre donné µ ∈ P. Nous introduisons en-
suite les variables internes (ou dépendantes) Wµ : Ω × (0, Tf ] → RDcl ; on denote Dcl

le nombre de variables internes dans les lois de comportement dans l’équation (1); les
variables internes peuvent être considérées comme des variables physiques secondaires
qui contribuent à bien caractériser la dynamique physique d’un problème d’EDP donné.
Nous introduisons le problème paramétré qui nous intéresse en forme abstraite: étant
donné µ ∈ P, trouver Uµ and Wµ telle que{

Gµ(Uµ, ∂tUµ,W µ) = 0, inΩ× (0, Tf ],

Ẇµ = Fµ(Uµ,W µ), inΩ× (0, Tf ],
(1)

avec des conditions initiales et limites appropriées. Gµ est un opérateur différentiel non
linéaire du second ordre dans l’espace et du premier ordre dans le temps qui est associé
aux équations d’équilibre, tandis que Fµ est un ensemble d’équations différentielles
ordinaires (ODE) qui est associé aux lois constitutives. Nous remarquons que le système
THM est hautement non-linéaire, dépendant du temps et de haute dimension; nous
remarquons également qu’il appartient à une large classe de problèmes d’EDP non-
linéaires non stationnaires qui sont d’un grand intérêt en mécanique des structures.

Nous considérons une approximation en dimension finie du problème (1): en fait,
nous prenons un sous-espace de dimension finie Xhf ⊂ X de dimension Nhf . Pour
résoudre le problème d’EDP discrétisé, nous utilisons la méthode des éléments finis
(FE). Nous utilisons un schéma de discrétisation temporelle d’Euler implicite, avec
Jmax = 100 pas de temps uniformes pour l’intervalle de temps (0, Tf ] ; le caractère
supérieur (·)+ fait référence à la nouvelle solution (au pas de temps actuel j, pour
j = 1, ..., Jmax), tandis que (·)− fait référence à la solution aux pas de temps précédents.
Nous considérons une discrétisation par éléments finis (FE) de p = 3 pour la composante
déplacement, et une discrétisation FE de p = 2 pour la pression et la température. Dans
la figure 2 des solutions en termes de pression et de température sont représentées pour
le paramètre µ = µ̄ = [1.088 · 103, 0.3, 21.33, 0.4558]T qui est le centroïde de P. La
configuration géométrique correspond à la figure (le numéro de dépôt est Qa = 2).
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Figure 2: Gaps temporels entre le temps final Tf et le temps initial 0
des solutions dimensionnelles en termes de pression et de température.

Les techniques de réduction de l’ordre du modèle paramétrique (pMOR) sont ap-
pliquées aux problèmes de la forme (1) pour construire un modèle de faible dimension
nécessitant des temps de simulation courts et un faible stockage de données, tout en gar-
dant sous contrôle l’erreur d’approximation entre la solution reduced-order et la solution
full-order (calculée à partir d’une discrétisation haute-fidélité de l’EDP paramétrée).
Les méthodes de base réduite (RB) représentent une instance particulière des modèles
d’ordre réduit: la solution RB est obtenue par une projection (figure 3) du problème
haute-fidélité sur un petit sous-espace. Cette dernière est réalisée par un petit nombre
de fonctions de base globales, construites pour le problème spécifique à traiter, plutôt
que par un nombre beaucoup plus important de fonctions de base.

Figure 3: Les snapshots sur la manifold paramétrique Mhf pour un cas
stationnaire avec un seul paramètre (P = 1). Adaptation de la figure

19.2 dans [Qua17].

Les méthodes RB sont utilisées dans cette thèse dans le but de calculer, de manière
peu coûteuse, une approximation à basse dimension de la solution de l’EDP.

L’élément essentiel d’une méthode RB est la procédure offline/online. La solution
du modèle d’ordre complet est nécessaire pour quelques instances des paramètres au
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cours d’une étape offline (également appelée training) exigeante en termes de calcul,
afin de construire un espace réduit de solutions de base et de construire le modèle
d’ordre réduit (ROM); le modèle d’ordre réduit permet une prédiction rapide du champ
de solution pour de nouvelles instances des paramètres au cours de l’étape online (ou
prediction).

Les choix les plus courants pour la construction de la base réduite sont les algo-
rithmes proper orthogonal decomposition (POD) et greedy. À la base de la stratégie de
découplage hors ligne/en ligne, il y a la possibilité d’exploiter une décomposition affine
des EDP paramétrées, (au moins de manière approximative). Nous disons que Gµ est
paramétriquement affine si elle peut être exprimée comme la somme des coefficients
dépendant des paramètres fois des formes indépendantes des paramètres, c’est-à-dire

Gµ(·, ·, ·) =
Q∑
q=1

Θµ,qGq(·, ·, ·) (2)

où les coefficients Θµ sont des fonctions à valeur réelle dépendant du paramètre qui
peuvent être facilement évaluées pour tout µ ∈ P, et Gq(·, ·, ·), pour q = 1, . . . , Q,
sont des formes indépendantes des paramètres. En règle générale, les premiers ter-
mes doivent être calculés pour tout paramètre donné µ ∈ P, mais les derniers termes
indépendants des paramètres seront calculés et stockés une fois pour toutes pendant
une étape hors ligne éventuellement coûteuse: cela rend le calcul en ligne beaucoup
plus léger pour tout paramètre de test. Nous remarquons que pour l’efficacité du cal-
cul, il est essentiel que Q ∈ N soit relativement petit. Malheureusement, la majorité
des problèmes mathématiques d’intérêt, comme dans le cas du système THM dans (1),
présentent une non-linéarité élevée et une dépendance paramétrique non affine, de sorte
que l’approximation des résidus non linéaires Gµ n’admet pas une décomposition hors
ligne/en ligne efficace (en particulier, indépendante de Nhf). Dans ce cas, nous devons
introduire un niveau supplémentaire de réduction, appelé hyper-réduction. Pour le
formes faibles Gµ(·, ·), l’évaluation des résidus nécessite une intégration sur le domaine
spatial Ω. L’objectif est d’éviter que la complexité de calcul de la ROM résultante ne
se mette à l’échelle de la dimension Nhf de la discrétisation haute-fidélité, ce qui est, en
général, prohibitif en termes de calcul. Nous aimerions obtenir un temps d’opération
qui s’échelonne avec O(N). Nous identifions deux catégories distinctes de méthodes
d’hyper-réduction. Une première catégorie commence par interpoler la forme résiduelle
dans Gµ(·, ·) en utilisant des fonctions empiriques, puis elle intègre les résidus interpolés;
la deuxième catégorie évalue directement les intégrales résiduelles dans Gµ(·, ·) en util-
isant des règles de quadrature empiriques. La première catégorie comprend la méthode
d’interpolation empirique (EIM), pour laquelle nous nous référons à [Bar+04]; la sec-
onde comprend l’approche d’hyper-réduction de [Ryc05] (voir également [Fri+18]), la
methode energy-conserving mesh sampling and weighting (ECSW) de [FCA15] et la
procédure de quadrature empirique (EQP) proposée dans [YP19a], [DY22].

Comme première étape du travail, nous avons développé et validé numériquement
une procédure de réduction de l’ordre du modèle basée sur la projection de Galerkin
pour le système THM introduit dans l’équation (1). Nous avons appliqué avec succès
le ROM au problème paramétrique THM dans un cas bidimensionnel. Nous avons
proposé un indicateur d’erreur moyenné dans le temps pour piloter le training Greedy
dans la phase offline, et une procédure de quadrature empirique pour réduire les coûts
en ligne. Les résultats démontrent la précision du ROM avec moins de 1% (pour une
dimension de l’espace réduit qui est plus de 30) sur un range de paramètres d’input
prédictifs, et un facteur d’accélération de l’ordre de 102 fourni par le ROM par rapport
aux simulations HF.
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Figure 4: Performance out-of-sample du problème paramétrique ROM
obtenu à l’aide de deux algorithmes de training (POD-Greedy et Strong

POD-Greedy).

Les techniques pMOR standard reposent sur des résolutions haute-fidélité (HF) au
stade de l’apprentissage, ce qui peut être inabordable pour les problèmes à très grande
échelle ou dans le cas où des maillages très fins sont nécessaires pour atteindre un bon
niveau de précision. En outre, les techniques pMOR standard reposent sur l’hypothèse
que le champ de solution est défini sur un domaine indépendant des paramètres ou sur
une famille de domaines difféomorphes. En fait, pour les systèmes comportant de nom-
breux paramètres géométriques, la prise en compte des changements dans la topologie
du domaine nécessite des changements majeurs dans le paradigme hors ligne/en ligne
de MOR.

Pour résoudre ces problèmes, plusieurs auteurs ont proposé des procédures pMOR
basées sur des composants (CB), qui combinent des techniques de décomposition de
domaine (DD) avec la réduction de l’ordre des modèles. Les procédures CB-pMOR
visent à construire des espaces réduits locaux (dans l’espace et/ou dans le temps) qui
ont un support sur une partie du domaine et à calculer une approximation globale par un
couplage approprié des espaces locaux. À partir de maintenant, nous faisons référence
aux méthodes pMOR standard dans un seul domaine comme l’approche monolithique
et nous la distinguons de l’approche CB-pMOR dans laquelle la décomposition du
domaine original en une partition de sous-domaines entre en jeu.

Dans la deuxième partie de la thèse, nous avons proposé une formulation CB-pMOR
pour a) des EDP non linéaires stationnaires, b) des problèmes non linéaires couplés
dépendants du temps. La formulation est basée sur l’overlapping de sous-domaines;
elle se base sur une optimisation sous contrainte qui pénalise les sauts de solutions aux
interfaces des sous-domaines. L’extension des techniques classiques de pMOR au cadre
DD est conduite par l’introduction de composants archétypes et instanciés.
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Figure 5: Composantes instantiées {Ωi}Ndd
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du paramètre géométrique Qa.

La décomposition de la solution en solutions bubble et ports et l’exploitation du
principe de static condensation constituent un point clé pour obtenir un problème de
minimisation non contraint de faible dimension.

Dans l’application de la procédure CB-pMOR à un problème d’élasticité non linéaire
bidimensionnel de type neo-Hook, nous obtenons un facteur d’accélération de l’ordre de
20 par rapport à un modèle FE monolithique standard, avec une erreur de prédiction
inférieure à 0.1%.
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Figure 6: hyper-réduction basée sur EIM et EQ. (a) Performance hors
échantillon de la ROM OS2 hyper-réduite pour plusieurs choix de modes
m, avec n = m. (b) Coût de calcul maximal sur l’ensemble de test. Les
résultats sont basés sur la tolérance EQ toleq = 10−10 pour les problèmes
locaux et les tolérances toleq,p = 10−4 et toleq,p = 10−6 pour la fonction

objectif (pour EQ+EQ).

Dans la troisième partie de la thèse, nous avons étendu notre formulation CB-pMOR
(pour les EDP non linéaires) pour traiter le THM d’intérêt. Nous avons également
exploré la performance des ROMs dans les cas out-of-sample. Nous avons doté les
ROMs locales de l’hyper-réduction. Le solutions haute-fidélité sont recréées avec une
erreur de prédiction de l’ordre de 0.3% ; quant à l’efficacité, notre méthode hyper-
réduite réalise un bon gain en coût de calcul (de l’ordre de 13− 22) par rapport à une
résolution monolithique pour les mêmes configurations de test out-of-sample. Nous
envisageons que une implémentation basée sur la parallélisation, et une procédure EQ
basée sur des points de quadrature au lieu d’éléments, peuvent apporter des facteurs
d’accélération encore plus élevés.
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1

Chapter 1

Introduction

1.1 Motivation
The application that motivates the present work is the disposal and storage of high-level
radioactive waste materials in geological media. In France, large amounts of radioactive
waste are generated by 1200 generators1, which include nuclear power plants, but also
universities, hospitals and research centers. This represents a concern for both present
and future generations since human health and the environment may be menaced by
emission or disseminaition of radioactive material.

Figure 1.1: Multi-barrier design for
a surface facility

Andra, — the French National Agency for Ra-
dioactive Waste Management2 created in 1979
within the French Atomic Energy Commision
(CEA)—has the objective of finding, implement-
ing and guaranteeing safe solutions to radioactive
waste management in France.
Andra has opted for a long-term solution: waste
disposal containers must isolate radioactive mate-
rials from the environment until their radioactivity
has decayed to an acceptable level; specific con-
tainers should be adapted to each particular type
of waste.

Waste is disposed in geological repositories that are monitored while radioactivity
decreases in time. Repository safety is based on three components: the packages, the
repository structures (dubbed alveoli) and the geological site. The packages contain
the radioactive waste and are placed inside the alveoli, which are located horizontally
deep underground (at approximately 300 to 500 meters); the geological site consists
in the region where the arrays of the alveoli are located; the area that surrounds the
alveoli provides a permanent natural barrier that prevents the spread of radioactive
waste. Figure 1.2 is a schematic representation of waste disposal in the repositories.

Figure 1.2: Multi-barrier disposal concept

1Source: "Les essentiels de l’Inventaire national, 2019 "
2Andra website: https://www.andra.fr

https://inventaire.andra.fr/sites/default/files/documents/pdf/fr/inventaire_national-essentiels-2019.pdf
https://www.andra.fr
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Due to the large temperature of the radioactive waste, a thermal flux is generated
inside the alveoli: the thermal flux then drives the mechanical and hydraulic response
of the geological medium over the course of several years. This phenomenon requires a
careful assessment of the long-term effects on neighboring areas. From a mathematical
viewpoint, the system behaviour is described by time-dependent large scale coupled
systems of partial differential equations (PDEs), which take into account the thermal,
hydraulic and mechanical response of the geological medium due to the introduction of
radioactive waste repository.

Since an exact solution for this system of equations is impossible to find, numer-
ical simulations are adopted for design and assessment. The solution to the problem
depends on several parameters, which might be related to the geometric configuration
(e.g. the number of alveoli, their distance or their size) or to the material proper-
ties of the medium. For example, changes in the position and/or in the number of
alveoli might lead to significant changes in the predicted quantities of interest such
as the displacement of the surrounding Earth surface. To properly take into account
uncertainty in the parameters values, we need to solve the numerical model for many
different parameters of interest: this problem is usually referred to as a many-query
problem. Furthermore, an efficient numerical solution to this type of problem is even
more challenging in a real-time context, in which a solution for specific parameters is
needed rapidly.

Standard computational methods often require prohibitively large computational
costs to achieve sufficiently accurate numerical solutions for real-time, many-query ap-
plications. This is mainly due to two reasons: the high number of degrees of freedom
(and of field variables) to achieve a satisfactory accuracy, and the strong coupling among
nonlinear equations. The purpose of this thesis is to overcome these computational ob-
stacles by the application of model order reduction (MOR) methods, which during the
last few decades, have proved to be successful in providing low-complexity high-fidelity
surrogate models that allow rapid and accurate simulations under parameter variation.

1.2 Methodology overview
The mathematical Thermo-Hydro-Mechanical (THM) problem can be written in ab-
stract form as in system (1.1). We consider the spatial variable x in the Lipschitz
domain Ω ⊂ Rd with dimension d = 2, 3, and the time variable t in the time internal
(0, Tf ] ⊂ R, where Tf is the final time. We further define the vector of parameters µ
in the compact parameter region P ⊂ RP . Given a parameter µ ∈ P, we introduce
the state (or primary) variables Uµ : Ω × (0, Tf ] → RD, where we denote as D the
number of primary variables; they can be thought of as variables that represent the
output of a parametrized solution map evaluated at a given parameter µ ∈ P. We
then introduce internal (or dependent) variables Wµ : Ω × (0, Tf ] → RDcl , where we
denote as Dcl the number of internal variables in the constitutive laws in equation (1.1);
internal variables can be thought of as secondary physical variables that contribute to
well characterise the physical dynamics of a given PDE problem. We introduce the
parameterised problem of interest: given µ ∈ P, find Uµ and Wµ such that{

Gµ(Uµ, ∂tUµ,W µ) = 0, inΩ× (0, Tf ],

Ẇµ = Fµ(Uµ,W µ), inΩ× (0, Tf ],
(1.1)

with suitable initial and boundary conditions.
Here, Gµ is a nonlinear second-order in space, first-order in time differential operator
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that is associated with the equilibrium equations, while Fµ is a set of ordinary dif-
ferential equations (ODEs) that is associated with the constitutive laws: we specify
the operators Gµ and Fµ for the problem of interest in chapter 3. We remark that
the THM system is highly nonlinear, time-dependent and high-dimensional; also, we
remark that it belongs to a large class of nonlinear unsteady PDE problems which is
of broad interest in structural mechanics.

We consider a finite dimensional approximation of problem (1.1): indeed, we take a
finite dimensional subspace Xhf ⊂ X of dimension Nhf . We refer to this approximation
as high-fidelity discretization; to solve the discretized PDE problem we employ the
finite-element (FE) method, which is the most popular discretization technique for
structural engineering design and analysis.

Parametric model order reduction (pMOR) techniques are applied to problems of
form (1.1) to construct a model of low dimension requiring short simulation times and
low data storage, but still keeping the approximation error between the reduced-order
solution and the so called full-order one (computed from a high-fidelity discretization
of the parametrized PDE) under control. Reduced basis (RB) methods represent a
particular instance of reduced order models: the RB solution is obtained through a
projection of the high-fidelity problem onto a small subspace. This latter is made by
a small number of global basis functions, constructed for the specific problem at hand,
rather than by a much larger number of basis functions. RB methods are used overall
this thesis with the aim of computing, in a cheap way, a low-dimensional approxima-
tion of the PDE solution. Many works are associated with projection-based model
order reduction: we cite, without any purpose of completeness, [HRS+16; QMN15]
and [RHP08].

The essential constituent of a RB method is the offline/online procedure. The so-
lution to the full-order model is needed for a few instances of the parameters during a
computationally demanding offline stage (also called training stage), in order to con-
struct a reduced space of basis solutions and to build the reduced order model (ROM);
the constructed ROM enables rapid predictions of the solution field for new instances
of the parameters during the online (or prediction) stage. Figure 1.3 schematically
illustrates the use of ROMs to run faster reduced-order simulations for new parameters
with respect to the use of full-order models.

Figure 1.3: Comparison between simulations time with a full-
dimensional model (at the top) and a reduced model (at the bottom).

The most common choices for the construction of the reduced basis are the proper
orthogonal decomposition (POD) and the greedy algorithms. POD is also popular in
multivariate statistical analysis, where it is called principal component analysis, or in
the theory of stochastic processes under the name of Karhunen-Loève decomposition,
see e.g., [LK10; GWZ14]; we refer also to [Aub91; BHL93] for the first applications
of POD in scientific computing, in particular in the simulation of turbulent flows, and
to [BBI09; Vol11] for more recent works. The Greedy method, which was originally
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introduced in [Pru+02; Ver+03], is based on the idea of constructing the reduced basis
space in an offline iterative procedure which requires at each step a maximization of the
current error over the parameter space. For the purpose of numerical computation, this
maximization is performed over a finite training set obtained through a discretization
of the parameter set. In chapter 2 we explain the construction of a RB approximation
by both POD and greedy methods. Also, in chapter 2 we explain all the features that
better characterize RB methods; as a starting point, the high-fidelity discretization of
the parametrized PDE, then the Galerkin projection and the derivation of a priori/a
posteriori error bounds for the error between the solution obtained by a full-order model
and a reduced-order model.

At the foundation of the offline/online decoupling strategy there is the possibility
to exploit an affine decomposition of parametrized PDEs, (at least in an approximate
way). We say that Gµ is parametrically affine if it can be expressed as the sum of
parameter-dependent coefficients times parameter-independent forms, i.e.

Gµ(·, ·, ·) =
Q∑
q=1

Θµ,qGq(·, ·, ·), (1.2)

where coefficients Θµ are parameter-dependent real-valued functions that can be read-
ily evaluated for any µ ∈ P, and Gq(·, ·, ·), for q = 1, . . . , Q, are parameter-independent
forms. As a general principle, former terms have to be computed for any given param-
eter µ ∈ P, but the latter parameter-independent terms will be computed and stored
once and for all during a possibly expensive offline stage: this makes online computa-
tion much lighter for any test parameter. We notice that for computational efficiency
it is critical that Q ∈ N is relatively small. The decomposition (1.2) is possible, for
example in the case of elliptic PDEs that are at most quadratically nonlinear in the
solution Uµ: the computational cost for the online stage depends on the dimension of
the reduced-basis space, which is typically small, and on Q, but it is independent of
the dimension Nhf of the underlying high-fidelity finite element approximation. Unfor-
tunately, the majority of mathematical problems of interest, as in the case of the THM
system in (1.1), feature a high nonlinearity and a nonaffine parametric dependence, so
that the approximation of nonlinear residuals Gµ does not admit an efficient (in partic-
ular, a Nhf -independent) offline/online decomposition. In this case we must introduce
a further level of reduction, called hyper-reduction. In chapter 2, we provide a detailed
description of two hyper-reduction techniques.

As just mentioned, standard pMOR techniques rely on high-fidelity (HF) solves at
the training stage, which might be unaffordable for very large-scale problems or in the
case where very fine meshes are needed to reach a good level of accuracy. Furthermore,
standard pMOR techniques rely on the assumption that the solution field is defined
over a parameter-independent domain or over a family of diffeomorphic domains. In
fact, for systems with many geometric parameters, dealing with changes in domain
topology requires major changes to the offline/online paradigm of MOR.

To provide a concrete example, let us consider a PDE problem as in form (1.1)
to be solved in a domain as the one in figure 1.4, in which the red boundaries model
the presence of radioactive waste repositories and are associated with a certain type of
boundary condition in problem (1.1).
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Ω

Γr,1 Γr,Qa

Figure 1.4: Domain Ω and boundaries Γr,1, . . . ,Γr,Qa that can vary in
number and position.

Despite its simplicity, if the position and/or the number of the repositories —
which we denote as Qa — change, the solution to problem (1.1) becomes prohibitive
for the standard ROMs introduced so far: if the number of repositories is sufficiently
large, we would indeed end-up with a very high-dimensional parametrization, which
would require several full-order solves. Furthermore, solutions for different numbers
of repositories are defined over different meshes and satisfy different sets of boundary
conditions: therefore, they cannot be considered into a single reduced space. Figure
1.5 shows two example of domains defined by two different geometric configurations.

Figure 1.5: Two computational domains defined by two different values
of geometric parameter Qa.

To address these issues, several authors have proposed component-based (CB)
pMOR procedures, which combine domain decomposition (DD) techniques with model
order reduction. CB-pMOR procedures aim to construct local (in space and/or in time)
reduced spaces that have support on a portion of the domain and compute a global
approximation by suitable coupling of the local spaces. From now on, we refer to the
standard pMOR methods in a single domain as the monolithic approach and we dis-
tinguish it from the CB-pMOR approach in which the decomposition of the original
domain into a partition of subdomains comes into play.

CB-pMOR strategies consist of two distinct building blocks: (i) a rapid and reli-
able DD strategy for online global predictions, and (ii) a localized training strategy
exclusively based on local solves for the construction of the local reduced bases. In
this work, in particular in chapters 5 and 6, we focus exclusively on the first area of
research (i). We refer to [BP22; ST22] and [HCC21, section 8.1.7] for recent works on
localized training for nonlinear elliptic PDEs. We propose in chapter 5 and chapter 6 a
general component-based pMOR procedure for steady and unsteady problems, respec-
tively. In this work, the domain decomposition is based on overlapping subdomains: as
we show in chapter 5, overlapping domain decomposition methods feature a simplified
imposition of the continuity conditions of solutions at the interface boundaries among
subdomains. Therefore, it is desirable in the case of non-linear problems requiring
demanding implementations.
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The adoption of a component-based reduction method requires a suitable adapta-
tion of the offline/online decomposition introduced so far, since the MOR methodology
has to be extended to a component-based framework. The key point of the CB-pMOR
approach we use in this work is the concept of archetype and instantiated domains.
Archetype components are reference components which are built for a certain user-
defined fixed value of geometric parameters. The instantiated components are the
actual components which are created for each parameter of interest; they are con-
nected through predefined interface boundaries (or faces) named ports to form a global
synthesized system. We could also think of the concept of archetype and instantiated
components by using an analogy with the principle of object-oriented programming:
archetype components would play the role of classes, user-defined data types that act
as the blueprint for individual objects (which represent the instantiated components).
Using this analogy, we could say that the components that form a global system are
instances (of archetype components, designed as classes) created with specifically de-
fined geometric data.
Considering the global system in figure 1.4, we identify two archetype components,
depicted in figure 1.6: the first component in 1.6(a) refers to a generic region close
to a repository, while component in 1.6(b) can be interpreted as a generic portion of
the interior of the domain or of the boundary without the repository boundary. Port
boundaries are depicted in purple for each archetype component and denoted as Γa

int

and Γa
ext.

Ωa
int

Γa
r

lQ

Γa
int

d+ δ

h = 2d

Γa,dir
int

(a) "internal" archetype compo-
nent

Ωa
extΓa

ext

dext = Qrefd− δ

hext = h− δ

(b) "external" archetype compo-
nent

Figure 1.6: Example of archetype components for the global system
in figure 1.4.

Given a library of archetype components and given a new system configuration (in
our case determined by the geometric parameter Qa), we can generate the full system by
creating instantiations of the archetype components. In figure 1.7 the global domain Ω
is decomposed into an overlapping partition {Ωi}Ndd

i=1 for a given value of the geometric
parameter Qa; next to the instantiated subdomains, the corresponding "internal" and
the "external" archetype components are depicted.
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Figure 1.7: Instantiated components {Ωi}Ndd
i=1 for a given value of ge-

ometric parameter Qa.

The offline/online MOR subdivision which was introduced in the case of monolithic
ROM would be substantially adapted as follows.

1. During the offline stage, a library of archetype components is defined and local
reduced-order bases (ROBs) and local ROMs are built; this stage requires HF
solves and may thus be relatively expensive, but it is carried out only once as a
library preprocessing step.

2. During the online stage, local components are instantiated to form the global
system and the global solution is estimated by coupling local ROMs. In this
stage, the user may instantiate any of the archetype components and assign to
each component instantiation the desired parameter values; this phase is supposed
to be much less expensive.

In chapter 5 we explain the development of the CB-pMOR procedure proposed in this
work: we describe the component-based formulation of a preliminary PDE problem
and we show how the identification of port edges in the instantiated components plays
a key role in enabling the decomposition of solutions and in guaranteeing the efficiency
of the whole CB-pMOR method.

1.3 Objectives of this work
The aim of this thesis work is the development of a CB-pMOR procedure for THM
systems. The application of a CB-pMOR approach to problems of the form (1.1)
requires a significant effort in terms of choice and adaptation of methods and in terms
of numerical implementation. To proceed while keeping the degree of difficulty under
control, this work is divided into three main phases in the following way.

I. First, a projection-based monolithic MOR technique is developed for problems of
the form (1.1) with particular emphasis on THM systems that are fully described
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in chapter 3. The approach is characterised by an offline/online splitting to reduce
the marginal cost (that is the cost in the limit of many queries), and it relies on
Galerkin projection to devise a reduced-order model (ROM), which is built by
an adaptive sampling to reduce offline training costs; furthermore, we rely on
hyper-reduction to speed up the assembly of the ROM during the online stage.

II. Second, we design a CB-pMOR formulation for parametrized nonlinear ellip-
tic PDEs based on overlapping subdomains. To validate the methodology, a
preliminary test case is used: all the numerical investigations are made for a
two-dimensional neo-Hookean nonlinear mechanics problem that shares the same
geometric configuration (depicted in figure 1.6) with the THM problem studied
in the first part of the work.

III. Third, the CB-pMOR methodology proposed in the second part is extended to
the THM system, which is fully described in chapter 3. This part of the work
requires the adaptation of the techniques presented in the second part to the case
of coupled, non-stationary problems with internal variables of the form (1.1).
Also in this part all the methods are validated by numerical investigations.

1.4 Contributions of the thesis
The contributions of the present thesis are summarized as follows:

• the development of a POD-Greedy technique for coupled problems with internal
variables, in the context of projection-based MOR. In particular, we develop a
time-average a posteriori error indicator, a greedy sampling (based on the pro-
posed indicator) and a hyper-reduction technique based on an element-wise em-
pirical quadrature procedure;

• the development of a new CB-pMOR formulation for parametrized PDEs based
on overlapping subdomains; this part is completed by the theoretical discussion
of the well-posedness of the CB mathematical formulation and the a priori error
analysis for linear coercive problems;

• the adaptation of the proposed CB formulation to unsteady coupled problems
with internal variables.

1.5 Structure of the thesis
In addition to the introductory and concluding chapters, this manuscript consists of
five main chapters organized as follows.

1. Chapter 2 provides an overview of the model order reduction framework that
is later employed and further developed in the remainder of the thesis for the
construction of ROMs. In particular, we introduce the POD, the greedy method
for stationary problems (and the POD-greedy); we also present the Galerkin
projection method used during the training and prediction stages, respectively. In
addition, we present hyper-reduction techniques to deal with nonlinear problems
and a rapid and reliable error indicator to be used in the training phase.

2. In chapter 3 we present in more details the THM problem: we describe the phys-
ical assumptions that are used to derive the model; we present the mathematical
formulation and its numerical finite-element discretization; we also show the so-
lution field for a fixed parametric configuration.
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3. The first contribution of this thesis is presented in chapter 4, where we develop a
projection-based monolithic MOR procedure for the THM system.

4. In chapter 5 the second contribution of the thesis is presented: a general CB-
pMOR procedure for steady PDEs based on overlapping subdomains.

5. In chapter 6 the component-based approach presented in chapter 5 is extended
to problems of the form (1.1). This represents the last contribution of this thesis.
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Chapter 2

Model order reduction methods

In this chapter we present in a self-contained way the main features of model order
reduction methods that are applied in this thesis; methodology sections in chapters 4,
5 and 6 show the careful adaptation of this general methodology to handle challenging
applications in different contexts: in chapter 4, to handle coupled problems with internal
variables, and in chapters 5 and 6 in a CB setting.

2.1 Galerkin ROMs for unsteady PDEs

2.1.1 Problem formulation

We introduced the physical domain Ω and the temporal interval (0, Tf ] at the beginning
of section 1.2. We denote as (X, ‖ ·‖) a suitable Hilbert space defined in Ω; we consider
H1

0 (Ω) ⊂ X ⊂ H1(Ω). By (w, v), we denote the inner product in X for all w, v ∈ X,
and by ‖w‖ =

√
(w,w) its induced norm for all w ∈ X. We denote by X′ the dual

space of X.
To present the pMOR methodology that is considered in this work, we focus on a
parabolic problem in variational form. We denote as X0 the test set such that X0 =
{v ∈ X : v|Γdir=0}, where Γdir denotes the portion of the boundary associated with
Dirichlet boundary conditions and gdir ∈ H1/2(Γdir); we denote the time derivative as
∂tuµ = ∂u

∂t ∈ L2(0, Tf ;X
−1
0 ).

We consider problems of the form: find uµ ∈ C0(0, Tf ;L
2(Ω)) ∩ L2(0, Tf ;X) s.t.

(∂tuµ, v)L2(Ω) +Gµ (uµ, v) = 0 ∀v ∈ X0, (2.1)

with suitable initial and boundary conditions: uµ(x, 0) = u0 for (x, µ) ∈ Ω × P, and
T0uµ = gdir. Here, T0 : X → H1/2(Γdir) is the trace operator such that T0v = v|Γdir

for all v ∈ X ∩ C0(Ω̄); to simplify the presentation, we consider a parameter and time
independent Dirichlet datum. We recall that the parameter µ belongs to a compact
parameter region P ⊂ RP , with P ≥ 1, as introduced in section 1.2. Here, G :
X × X0 × P → R is a linear or nonlinear parametrized variational form, which we
suppose to be time-invariant: the definition of Gµ for the THM system is specified in
the following chapter 3.

2.1.2 High-fidelity discretization

We introduce the time grid 0 = t(0) < t(1) < . . . < t(Jmax) = Tf such that t(j) = j∆t.
Given the domain Ω ∈ Rd, we define the triangulation {Dk}Ne

k=1, where Ne denotes the
total number of elements, the nodes {xhfj }Nhf

j=1 and the connectivity matrix T ∈ NNe,nlp

such that Tk,i ∈ {1, . . . , Nhf} is the index of the i-th node of the k-th element of the
mesh and nlp is the number of degrees of freedom in each element. The high-fidelity
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space Xhf is defined in the following way:

Xhf := span{ζiej i = 1, . . . , Nhf , j = 1, . . . , D}

where {ζi}N
hf

i=1 is the continuous Lagrangian FE basis. Given v ∈ Xhf , we denote by
v the corresponding FE vector. We remark that Xhf is a finite dimensional space, al-
though high-dimensional: the solution in Xhf obtained by a high-fidelity discretization
of (2.1) is assumed to be a sufficiently accurate approximation to uµ ∈ X solving (2.1).
We consider the simplest case in which the number D of state variables is equal to one;
in chapters 3 and 4 we extend the definitions to the case D > 1 which corresponds to
vector-valued state variables. The elemental restriction operator Ek : RN

hf → Rnlp is
defined as (

Eku
(j)
µ

)
i
= u(j)µ (xhfTk,i), i = 1, . . . , nlp, k = 1, . . . , Ne. (2.2a)

Furthermore, we introduce the quadrature points {xhf,qq,k }q,k ⊂ Ω, such that xhf,qq,k is the
q-th quadrature point of the k-th element of the mesh, with q = 1, . . . , nq, and the
operators Eqd

k : RN
hf → Rnq and Eqd,∇

k : RN
hf → Rnq,d such that(

Eqd
k u(j)

µ

)
q
= u(j)µ (xhf,qq,k ),

(
Eqd,∇
k u(j)

µ

)
q,i

=
∂

∂xi
u(j)µ (xhf,qq,k ), (2.2b)

where q = 1, . . . , nq, k = 1, . . . , Ne and i = 1, . . . , d.
We denote by {u(j)µ }Jmax

j=1 the high-fidelity solution trajectory for the parameter µ ∈
P; u(j)µ is an approximation of the true solution at time t(j) and for µ ∈ P. Notice
that script hf is neglected in the solution for a matter of simplicity in the notation. If
we resort to an implicit Euler time scheme, the high-fidelity discretization of problem
(2.1) can be written as follows: for j = 1, . . . Jmax find

(
u
(j)
µ −u

(j−1)
µ

∆t ,v

)
L2(Ω)

+Gµ

(
u
(j)
µ ,v

)
= 0 ∀v ∈ Xhf

0 ,

u
(j)
µ

(
Idir, t(j)

)
= gdir,

uµ(·, 0) = u0,

(2.3)

where gdir ∈ R|Idir| is the Dirichlet datum, Idir ⊂ {1, . . . , Nhf} are the indices associated
with Dirichlet boundary Γdir and Xhf

0 = {v ∈ Xhf : v(Idir) = 0}. Notice that the
discussion can be trivially extended to other time discretization schemes; nevertheless,
in this work, we exclusively consider the implicit Euler method for time discretization.
Once introduced the high-fidelity discretization of problem (2.1), we can define the
solution manifold as the set of high-fidelity solutions for all values of the parameter µ
in the parameter domain P:

M = {u(j)µ ∈ Xhf : µ ∈ P, j ∈ {1, . . . , Jmax}} ⊂ Xhf . (2.4)

We can possibly restrict the solution trajectories to the set of sampling times that we
denote as Is. The definition presented in (2.4) is an important concept since the ROMs
aim at finding reduced solutions that approximate the high-fidelity solution manifold
defined in (2.4). The high-fidelity solutions found for a suitably chosen finite sample
of parameters Ξtrain = {µ1, . . . , µntrain} and times in Is are called snapshots: they form
the set

Mtrain = {u(j)µ ∈ Xhf : µ ∈ Ξtrain, j ∈ Is ⊂ {1, . . . , Jmax}} (2.5)



2.1. Galerkin ROMs for unsteady PDEs 13

and they are used to generate an N -dimensional reduced basis. We remark that the
solution of the high-fidelity discretization (2.3) might be potentially very expensive
since a large number of degrees of freedom Nhf might be needed to achieve a sufficiently
accurate approximation of the continuous solution of (2.1). This ends up in a large
computational cost if the solution needs to be estimated for many parameter values.
The reduced basis method seeks to speed up computations in the limit of many queries
without sacrificing the accuracy with respect to the high-fidelity solution.

2.1.3 Reduced Basis method

As pointed out in the introduction section in chapter 1, the reduced basis (RB) method
is adopted in this work to accurately and efficiently generate an approximate solution
to a parametrized PDE as the one in (2.1). That reduced solution is typically obtained
in a subspace that approximates the solution manifold M. A low number N � Nhf

of problem-dependent basis functions {ζn}Nn=1 is generated from a suitable set of snap-
shots. The associated reduced basis space is given by ZN = span{ζ1, . . . , ζN} ⊂ Xhf .
For now, we consider the reduced basis space ZN as given; in section 2.2, we describe
different techniques commonly used for its costruction during the offline stage, and in
2.3 how to efficiently recover the reduced basis solution during the online stage. To
simplify notation, we now denote as uµ = {u(j)µ }Jmax

j=1 the trajectories associated with the
high-fidelity snapshots at all time steps for a given parameter µ ∈ P. The approximate
solution at computation times j = 1, . . . , Jmax is denoted by ûµ =

{
û
(j)
µ

}Jmax

j=1
⊂ ZN .

For each parameter µ ∈ P and each time index j = 1, . . . , Jmax, the ansatz of problem
(2.1) has the following form:

û(j)µ = ZNα
(j)
µ =

N∑
n=1

(
α(j)
µ

)
n
ζn. (2.6)

The summation is done over N � Nhf ; the real-valued time and parameter-dependent
coefficients

{
α
(j)
µ

}
j∈Is

are called reduced solutions, with α
(j)
µ : P → RN .

We notice that operator ZN : RN → ZN = span{ζn}Nn=1 is linear; indeed, in
this work, we restrict ourselves to linear approximation methods. In order to establish
whether the manifold M can be accurately approximated using a low-dimensional linear
space ZN , we need to introduce the notion of Kolmogorov n-width dn(M).

The Kolmogorov n-width measures the reconstruction performance of the optimal
n-dimensional linear space Zn ⊂ Xhf : it measures the best achievable accuracy in the
Xhf norm when all possible elements are approximated by elements in a n-dimensional
subspace Zn ⊂ Xhf ; it is defined in the following way:

dn(M) := inf
Zn⊂Xhf ,

dim(Zn)=n

sup
uµ∈M

inf
vn∈Zn

∥∥uµ − vn
∥∥. (2.7)

The faster the decay in the Kolmogorov n−width with n, the better is the approx-
imability of a solution manifold in a n-dimensional linear space. For a wide range of
parameterized elliptic and parabolic problems, the Kolmogorov n− width often decays
exponentially, allowing for (acceptably) low-dimensional and accurate linear approxi-
mations. In the numerical applications in this work we rely on linear compressibility
of the solution manifold. We observe that theoretical considerations on the behaviour
of the Kolmogorov n-width are limited to some types of parametrized solution map-
pings, in particular analytic or nonlinear olomorphic mappings (we refer to [QMN15]
and [CD16]).
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There is an alternative class of methods, called nonlinear approximation methods,
which rely on approximations that do not come from linear spaces but rather from
nonlinear manifolds (the application of these methods is beyond the scope of this thesis;
we cite [IL14], [LC20] and [Tad20]).

The offline/online decomposition presented in algorithm 1 aims at reducing the
marginal (in the sense of many queries) cost associated with the solution to (2.3).
Several issues should be addressed. First, we should discuss how to choose training

Algorithm 1 The RB method: offline/online decomposition
Offline stage:

1: compute uµ1 , . . . uµntrain
using a FE solver;

2: construct the reduced space ZN = span{ζn}Nn=1;
3: compute and store online structures;

Online stage: for a given µ̄ ∈ P

4: compute ûµ̄ by solving a suitable ROM;
5: estimate the error between uµ̄ and ûµ̄.

parameters in Ξtrain = {µ1, . . . , µntrain} ⊂ P, and build the reduced space ZN based
on the snapshots sets {uµ1 , . . . uµntrain

}. Second, we should discuss how to efficiently
compute the solution ûµ for a given µ ∈ P. Third, we should discuss how to rapidly
and accurately estimate the error. In the numerical simulations, we consider the error
metric L2(0, Tf ;X

hf), which we define as follows:

Eµ :=

∥∥ûµ − uµ
∥∥
J∥∥uµ∥∥J . (2.8)

where

‖v‖J =

√√√√Jmax∑
j=1

(t(j) − t(j−1))‖v(j)‖2, ∀v = {v(j)}Jmax
j=1 .

Note that ‖ · ‖J is an approximation of the norm L2(0, Tf ;X
hf). The just mentioned

three issues, which could be referred to as "reduced space construction", "reduced for-
mulation" and "a posteriori error estimation", are discussed in sections 2.2, 2.3 and 2.4,
respectively.

2.2 Construction of the reduced space
In this section we should address the issue of i) sampling the parametric space P in
order to select suitable training parameters; ii) constructing the reduced basis from
a given set of snapshots. A greedy approach explained in section 2.2.1 is often used
for point i), while among data compression techniques we use proper orthogonal de-
composition (POD) method, illustrated in section 2.2.2. The time-dependent nature
of problems (2.3) requires some adaptations of the methods that are used to tackle
both parameters selection and data compression. Indeed, application of POD to time-
parameter manifolds might end up in very high-dimensional data structures; moreover,
to obtain the snapshots for a fixed parameter µ, a complete time-trajectory needs to be
computed and suitable time instants need to be selected. A convenient approach con-
sists in suitably combining the greedy method with POD in the so-called POD-greedy
procedure; we provide details about the POD-greedy in section 2.2.3.
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2.2.1 Greedy algorithm

For time-dependent PDEs, the underlying idea of the greedy procedure is the selection
of a set of parameters {µ1, . . . , µN} and timesteps I⋆ so to compute corresponding
high-fidelity solutions

{
{u(j)µ1 }j∈I⋆ , . . . , {u(j)µN }j∈I⋆

}
that could adequately represent the

parametrically induced manifold M. The first version of the greedy algorithm is the
strong greedy: here, retained parameters selection is based on the best-fit (bf) error:

E
bf,(j)
µ,N =

∥∥u(j)µ −ΠZN
u(j)µ
∥∥, (2.9)

where the projection operator ΠZN
: Xhf → ZN is such that

ΠZN

(
u(j)µ
)
= arg min

v∈ZN

∥∥u(j)µ − v
∥∥ for each j = 1, . . . , Jmax.

For each iteration nc = 1, . . . , Ncount of a greedy algorithm, we should have to
compute parameter µ⋆ and time step j⋆ in order to construct a suitable reduced basis.
For a time-dependent problem, selection of parameter µ⋆ can be made by fixing a time
step j = Jmax, as done in [GP05]:

µ⋆ = arg max
µ∈Ξtrain

Ebf,(Jmax)
µ,nc

. (2.10)

On the contrary, selection of a new timestep is done over all computational times,
computing the best fit error for the currently selected parameter µ⋆:

j⋆ = arg max
j=1,...,Jmax

(
E

bf,(j)
µ⋆,nc

− E
bf,(j−1)
µ⋆,nc

)
. (2.11)

The strong greedy search iterations at (2.10) and (2.11) require the computation
of the best fit error Ebf

µ,nc
at iteration nc for each parameter in the training set Ξtrain:

therefore, the evaluation of the best-fit error requires (many) expensive evaluations of
the high-fidelity solutions, even in the case in which the parametric set Ξtrain has a low
cardinality |Ξtrain| = ntrain. A further simplification is adopted in the weak greedy: the
best-fit error defined in (2.9) is replaced by an inexpensive a posteriori error indicator
∆µ such that ∥∥uµ −ΠZnc

ûµ
∥∥
J
≤ ∆µ ∀µ ∈ P, (2.12)

where ûµ =
{
û
(j)
µ

}Jmax

j=1
and û

(j)
k = ΠZnc

u
(j)
k for each j = 1, . . . , Jmax.

We observe that, to be efficient, a greedy algorithm must be supported by an error
indicator that provides an estimate of the error induced by replacing the high-fidelity
space Xhf with the reduced basis space Znc , i.e. (2.12) holds. If the error indicator
∆µ can be evaluated efficiently, the computation of µ⋆ can be significantly accelerated
since no high-fidelity solution is required at this step and the evaluation of the error
indicator is embarassingly parallelizable. In section 2.4 we discuss the choice of the
error indicator.

We also note that the convergence results for the greedy approximation have been
established in [Bin+11] and [Buf+12]. In these works, the authors analyze the a priori
convergence of the greedy algorithm; in particular, they show that if the underlying
problem allows an exponentially small Kolmogorov n−width, then the greedy reduced
basis approximation converges exponentially fast to the high-fidelity approximation. In
[Haa13] the study on a priori convergence rates of [Bin+11] and [Buf+12] is extended
to time-dependent problems, which are typically approximated by the POD-Greedy
algorithm, as mentioned at the beginning of section 2.2.
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2.2.2 Proper Orthogonal Decomposition

We present here the POD procedure based on the method of snapshots ([Sir87]). The
POD technique takes the set of snapshots, which are computed by high-fidelity solves
for given parameters in a parametric training set Ξtrain, and it generates a set of un-
correlated variables called POD modes. The first modes retain most of the infor-
mation content (that we precise in the following) present in all the given snapshots.
Given the high-fidelity snapshots {uµ1 , . . . , uK}, we can define the snapshots matrix
S = [u1, . . . ,untrain ] ∈ RN

hf ,ntrain , where ntrain = JmaxK. We suppose that the number
of degrees of freedom associated with the high-fidelity discretization is much bigger than
the number of training parameters, thus Nhf � ntrain; this assumption characterizes
the method of snapshots. Given the snapshots database S, the reduced space is defined
as the subspace of rank N which minimizes, in the least squares sense, the difference
between the snapshots and their orthogonal projections onto this subspace:

min
ZN=span{ζ1,...,ζN}

E(ζ1, . . . ζN ) :=
1

ntrain

ntrain∑
k=1

‖uk − ûk‖2

subject to (ζi, ζj) = δi,j ∀i, j = 1, . . . , N

(2.13)

where û(j)k = ΠZN
u
(j)
k for j = 1, . . . , Jmax, k = 1, . . . ,K. The minimization problem in

(2.13) can be cast in matrix form as follows

min
ZN

E = ‖S− ZNZ
T
NXS‖2FX

subject toZTNXZN = 1N

(2.14)

where 1N denotes the N × N identity matrix and ‖A‖2FX
= Tr(ATXA) denotes

the Frobenius norm associated with the previously introduced inner product in X

and the induced norm matrix X s.t. (u, u) = uTXu. Since matrix X is symmet-
ric positive definite (SPD), the Cholesky decomposition can be employed to factor-
ize X = X1/2(X1/2)T . By considering the change of variables S̃ = (X1/2)TS and
Z̃N = (X1/2)TZN , the minimization problem in (2.14) can be written as

min
Z̃N

E = ‖S̃− Z̃N Z̃
T
N S̃‖2F

subject to Z̃TN Z̃N = 1N

(2.15)

where ‖A‖2F = Tr(ATA) is the Frobenius norm. The POD based on the method of
snapshots relies on a singular value decomposition (SVD) of S̃T S̃ ∈ Rntrain,ntrain and on
application of Schmidt-Eckart-Young-Mirsky theorem on S̃: having S̃ ∈ RN

hf ,ntrain , we
can identify orthogonal matrices U ∈ RN

hf ,Nhf and V ∈ Rntrain,ntrain and a diagonal ma-
trix with non-negative real numbers on the diagonal that we denote as Σ ∈ RN

hf ,ntrain .
Matrix Σ is uniquely determined by S̃ if the singular values (i.e. the numbers on the
diagonal of Σ) are listed in descending order. Now the metod of snapshots consideres
the SPD correlation matrix

S̃T S̃ = (UΣVT )T (UΣVT ) = VΣ2VT .
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where V and Σ are obtained from the SVD of S̃T S̃ ∈ Rntrain,ntrain , and U = S̃VΣ−1:
the basis functions can be thus constructed as

ZN = S̃

 V1,1 V1,N
...

...
Vntrain,1 Vntrain,N


 σ1 0

. . .
0 σN


−1

.

where N ≤ ntrain. E in (2.15) is also referred to as POD energy; it is also equivalent to
the sum of squares of the singular values that correspond to the neglected POD modes:

E =

ntrain∑
i=N+1

σ2i . (2.16)

Therefore we can select the maximum dimension N of the reduced basis ZN such that
the POD energy is below a user-defined threshold, that is

E ≤ ϵPOD, (2.17)

with ϵPOD ∈ (0, 1). By using definition (2.16) and by diving both left and right hand

side terms in (2.17) by the sum of all the squared singular values
ntrain∑
k=1

σ2k, we obtain

that the desidered N is the minimum dimension such that
ntrain∑
k=1

σ2k −
N∑
k=1

σ2k

ntrain∑
k=1

σ2k

≤ ϵPOD
ntrain∑
k=1

σ2k

= tolpod, (2.18)

that can be written in the following way:

I(N) :=

N∑
k=1

σ2k

ntrain∑
k=1

σ2k

≥ 1− tolpod. (2.19)

Here, I(N) is the Relative Information Content (RIC): it represents the energy retained
by the first N POD modes, while the energy associated with neglected ones is equal to
tolpod, which is desiderable to be small.

As stated in (2.13), the POD allows the construction of a reduced basis that is opti-
mal in a l2-sense over the parameter space. However, its main limitation lies in the large
computational cost: the construction of the reduced basis requires the computation of
a potentially large number ntrain of high-fidelity solutions to ensure a satisfactory accu-
racy. A proper choice of N is not known or predictable for a general problem: this lack
of information could result in a substantial computational overhead associated with
the fact that a large number of high-fidelity solves is required but the majority of the
resulting solutions do not contribute to the construction of the reduced basis. This fact
motivates the attempt to build the reduced basis by the use of an iterative approach.
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2.2.3 POD-Greedy algorithm

The POD-Greedy algorithm was introduced in [HO08] and analysed in [Haa13]: the
approach combines proper orthogonal decomposition (POD [BHL93; BBI09; Vol11])
to compress temporal trajectories with a greedy search driven by an error indicator to
explore the parameter domain. In this work, similarly to Ref. [Fic+18], we rely on
a time-averaged error indicator to drive the greedy search; furthermore, we test two
different compression strategies to update the POD basis at each greedy iteration.
The POD-greedy sampling procedure requires the set of training parameters Ξtrain,
an error tolerance tolloop, a POD tolerance tolpod and the maximum number of iter-
ations Ncount,max. At each iteration we search the currently worst-resolved parameter
µ⋆ ∈ Ξtrain using an error indicator ∆µ that is specified in section 2.4; following [HO08],
POD with respect to time is performed to compress the error trajectory and the POD
modes (retained based on tolerance tolpod) are added to the current basis Z. At each it-
eration we need to perform a data compression step. Indeed, greedy and POD methods
described in sections 2.2 explore the set of training parameters, Ξtrain whose cardinality
is denoted as ntrain.

The computation of the high-fidelity snapshots in a possibly high-dimensional pa-
rameteric set may end-up in storing big data structures and may therefore cause mem-
ory issues. Data compression techniques, explained in section 2.2.4, are used to solve
this issue. We summarize the data compression routine by the following expression[

Z ′, λ′] = data-compression (Z, λ, uµ⋆ , (·, ·), tolpod) ,

which takes as input the current ROB and the POD eigenvalues λ = [λ1, . . . , λN ]
T ,

and returns the updated ROB Z ′ and the updated eigenvalues λ′.

Algorithm 2 POD-Greedy
Require: Ξtrain = {µ(k)}ntrain

k=1 , tolloop, tolpod, Ncount,max.
1: Z = ∅, λ = ∅, µ⋆ = µ(1).
2: for ncount = 1, . . . , Ncount,max do
3: Compute HF snapshots uµ⋆ .
4: [Z λ] = data-compression(Z, λ, uµ⋆ , (·, ·), tolpod). ▷ section 2.2.4.
5: Construct the ROM with error indicator. ▷ section 2.3, 2.4
6: for j = k : ntrain do
7: Solve the ROM for µ = µ(k) and compute ∆µ.
8: end for
9: µ⋆ = argmaxµ∈Ξtrain ∆µ. ▷ Greedy search

10: if ∆µ⋆ < tolloop then, ▷ Termination condition
11: break,
12: end if.
13: end for

return ROB ZN and the ROM coefficients µ ∈ P 7→ {α̂µ(j)}Jmax
j=1 .

Notice that at line 9 selection of parameter µ⋆ relies on an error indicator for each
parameter in the training set and it does not require the computation of the best fit
error (2.9).
For a time dependent problem as (2.1), the greedy search should be made over selected
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time steps as well as over the parametric set Ξtrain. At line 4 information about high-
fidelity solutions in time is compressed so we do not have to explicitly compute selected
time steps as in a classical greedy method, as presented in (2.11).
We also observe that a considerable reduction in the computational cost of the reduced
basis construction is given by the fact that only ncount high-fidelity solutions are com-
puted in the POD-Greedy approach, in contrast to the ntrain solutions needed for the
classical POD basis generation (in almost all cases ntrain � Ncount,max ≥ nc).

2.2.4 Data compression methods

The POD method introduced in section 2.2.2 is widely used for the construction of
low-dimensional approximation spaces from the high-dimensional set of snapshots. For
large-scale applications and an increasing number of snapshots, however, the compu-
tation of the POD basis often becomes prohibitively expensive. Indeed, all snapshots
vectors have to be computed and stored before starting the POD computation. For
large problems, this might be impossible due to insufficient memory. This issue mo-
tivates the use on incremental versions of the POD. We consider two different data
compression strategies: a hierarchical POD (H-POD) and a hierarchical approximate
POD (HAPOD). Both techniques have been considered in several previous works: we
refer to Ref.[Haa17, section 3.5] for H-POD and to [HLR18] for HAPOD; HAPOD is
also related to incremental singular value decomposition in linear algebra [Bra03]. Here,
we review the two approaches for completeness. We introduce notation

[Z, λ] = POD
(
{uk}ntrain

k=1 , (·, ·), tolpod
)

to refer to the application of POD to the snapshot set {uk}ntrain
k=1 , with inner product

(·, ·), and tolerance tolpod (cf. (2.18)), with Z = [ζ1, . . . , ζN ], and Z′XZ = IN ; we also
have that λ = [λ1, . . . , λN ]

T = [σ21, . . . , σ
2
N ]

T , and λ1 ≥ λ2 . . . ≥ λN . Given Z and the
snapshots uµ⋆ , H-POD considers the update:

Z′ = [Z,Znew] , Znew = POD (ΠZ⊥uµ⋆ , (·, ·), tolpod) . (2.20a)

Note that the approach does not require to input the POD eigenvalues λ from the
previous iterations. We observe that the approach leads to a sequence of nested spaces
— that is, the updated ROB contains the ROB of the previous iteration — and it
returns an orthonormal basis of the reduced space. In our experience, the choice of the
tolerance tolpod is extremely challenging: since (2.18) depends on the relative energy
content of the snapshot set, the update (2.20a) with fixed tolerance tolpod might lead
to an excessively large (resp., small) number of modes when maxj ‖u(j)µ − ΠZN

u
(j)
µ ‖ is

small (resp., large). For this reason, we propose to choose the number of new modes
Nnew using the criterion:

Nnew := min

M : max
j∈Is

∥∥Π(Z⊕Znew
M )⊥u

(j)
µ⋆

∥∥∥∥u(j)
µ⋆

∥∥ ≤ tolpod, Znew
M = span{ζnewm }Mm=1

 .

(2.20b)
Note that this choice enforces that the in-sample relative projection error is below a
certain threshold for all snapshots computed during the greedy iterations.

HAPOD considers the update

[Z′,λ′] = POD
(
{u(j)

µ⋆ }j∈Is ∪ {
√
λnζn}Nn=1, (·, ·), tolpod

)
. (2.21)
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Note that in (2.21) we have to use
√
λn which correspond to the square roots of eivgen-

values of the correlation matrix C = STXS. Note that the approach (2.21) does not in
general lead to hierarchical (nested) spaces. As discussed in Ref. [HLR18, section 3.3],
which refers to (2.21) as to distributed HAPOD, it is possible to relate the performance
of the reduced space obtained using HAPOD to the performance of the POD space
associated with the snapshot set {u(j)

µn : n = 1, . . . , Ncount,max, j ∈ Is}: we refer to the
above-mentioned paper for a thorough discussion.

2.3 Reduced formulation

2.3.1 Galerkin projection

Given a parameter µ ∈ P, the estimation of ûµ is done by projection of the discretized
PDE (2.3) into a suitable reduced space. We denote by Rµ the residual associated with
(2.3), that is,

Rµ(u
(j)
µ , u(j−1)

µ , v) =

(
u
(j)
µ − u

(j−1)
µ

∆t
, v

)
L2(Ω)

+Gµ(u
(j)
µ , v).

Given the N -dimensional space ZN , the reduced basis approximation is sought as
follows: for any given µ ∈ P, we seek ûµ ∈ C0(0, Tf ;L

2(Ω)) ∩ L2(0, Tf ;ZN ) s.t.(
û
(j)
µ − û

(j−1)
µ

∆t
, v

)
L2(Ω)

+Gµ(û
(j)
µ , v) = 0 ∀v ∈ ZN , (2.22)

with
(
û
(0)
µ , v

)
L2(Ω)

= (u0, v)L2(Ω) ∀v ∈ ZN and with T0ûµ = gdir. Expression in

(2.22) correspond to the enforcement of the orthogonality between the residual and the
reduced subspace ZN . In algebraic form, for each time index j = 1, . . . , Jmax, we can
write the residual vector R̂hf

µ ∈ RN and Jacobian matrix Ĵhf
µ ∈ RN,N :(

R̂hf
µ (û(j)

µ )
)
n
= R

(
û(j)
µ , ζn

)
forn = 1, . . . , N (2.23)(

Ĵhf
µ (û(j)

µ )
)
n,n′

=
∂

∂α
(j)
n′

(
R̂hf
µ (û(j)

µ )
)
n

forn, n′ = 1, . . . , N, (2.24)

for each time index j = 1, . . . , Jmax, where span{ζ1, . . . , ζN} = ZN and {α(j)
µ }j∈Is are

defined in section 2.1.3. From the algebraic expressions of residual and Jacobian in
(2.23) and (2.24) it is possible to notice that the Galerkin projection stated in (2.22)
leads to a system of N equations, where N � Nhf .
We remark also that the assembling of the N × N system associated with the ROM
(2.22) requires the integration over the whole FE mesh and thus its computational cost
scales with the total number of elements Ne.
We also observe that, for the (solid mechanics) problems considered in this work, the
Galerkin projection preserves the numerical stability properties of the discrete system to
which it is applied, (and if the time integrator is energy conserving, it is guaranteed to be
unconditionally stable), as shown in [FCA15]. Therefore, no instability or deterioration
in accuracy are expected to appear over time. For certain types of hyperbolic systems
of equations, as in the compressible flows applications in [KA12], the numerical stability
of the ROM (based on the Galerkin method) is not guaranteed, as a consequence of the
fact that the Hamiltonian structure in the projection-based ROM is no more preserved.
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This topic is beyond the scope of the present thesis; we remind to [BR06], [HPR21],
[GWW17] and [BGH21] for a thorough discussion.

2.3.2 Hyper-reduction techniques

As mentioned in chapter 1, in the context of projection-based MOR, hyper-reduction
methods are employed to reduce the online assembling cost of variational forms that are
nonaffine in the parameters and nonlinear in the unknown variable. For weak forms
Gµ(·, ·), the evaluation of residuals requires the integration over the spatial domain
Ω. The aim is to prevent the computational complexity of the resulting ROM from
scaling with the dimension Nhf of the high-fidelity discretization, which is, in general,
computationally prohibitive. We would like to achieve an operation time that scales
with O(N). In general, when the solution cost of ROM for a test parameter µ ∈ P is
independent of the dimension of the FOM, we say that the ROM is online efficient.

We identify two distinct categories of hyper-reduction methods. A first category
first intepolates the residual form in Gµ(·, ·) using empirical functions, then it integrates
the interpolated residuals; the second category directly evaluates the residual integrals
in Gµ(·, ·) by using empirical quadrature rules. The first category includes Empirical
Interpolation Method (EIM), for which we refer to [Bar+04]; the second includes the
hyper-reduction approach in [Ryc05] (see also [Fri+18]), the energy-conserving mesh
sampling and weighting (ECSW) approach in [FCA15] and the empirical quadrature
procedure (EQP) proposed in [YP19a], [DY22].

Empirical interpolation method

The EIM method is employed to recover onlineNhf -independence even in the case where
the variational form Gµ(·, ·) does not admit an efficient offline/online decomposition.
To do that, we introduce the interpolation operator IQ : C(Ω) → WQ associated with
a Q-dimensional linear space WQ = span{ψq}Qq=1 ⊂ C(Ω):

IQ[v](xq) = v(xq) for q = 1, . . . , Q (2.25)

for all v ∈ C(Ω) and points {xq}Qq=1 ⊂ Ω̄. The objective of EIM is to determine an ap-
proximation space WQ and Q points {xq}Qq=1 such that IQ[uµ] accurately approximates
uµ for all uµ ∈ M. Algorithm 3 summarizes the EIM procedure: the algorithm takes
as input snapshots {uk}ntrain

k=1 of the manifold M and returns the functions {ψq}Qq=1, the
interpolation points {xq}Qq=1 and the matrix B ∈ RQ,Q such that Bq,q′ = ψq(x

′
q). We

have that for all v ∈ C(Ω)

IQ[v] =

Q∑
q=1

(α(v))q ψq, withα(v) = B−1

v(x1)...
v(xQ)

 .
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Algorithm 3 Empirical interpolation method
Inputs: {uk}ntrain

k=1 ⊂ Xhf

Outputs:{ψq}Qq=1, B ∈ RQ,Q, {xq}Qq=1

1: Build the POD space ζ1, . . . , ζQ based on the snapshots {u(j)
k } for k = 1, . . . , ntrain,

j = 1, . . . , Jmax

2: x1 := argmax
x∈Ω̄

|ζ1(x)|, ψ1 =
1

ζ1(x1)
ζ1, (B)1,1 = 1

3: for q = 2, . . . , Q do
4: rq = ζq − Iq−1ζq
5: xq := argmax

x∈Ω̄
|rq(x)|

6: Define ψq := 1
rq(xq)

rq and update (B)q,q′ = ψq(xq′)

7: end for

We observe that Algorithm 3 can be applied to the nonaffine terms of the PDE
(see [Gre+07], Lemmas 2.1 − 2.3) or to the discrete FE residual vector (cf. [CS10b],
[CS10a]). In algorithm 10 in chapter 5 we discuss the extension of EIM procedure
to vector-values fields emerging from PDEs to solve for a number D > 1 of unknown
variables.

Empirical quadrature method

In order to reduce assembly costs, we aim at preventing integration over the whole do-
main: we define the indices associated with the “sampled elements” Ieq ⊂ {1, . . . , Ne}.
In view of the introduction of EQ technique, we write the residual as the sum of local
(elementwise) contributions, for each time index j = 1, . . . , Jmax:

R
(
u
(j)
µ ,ψ

)
=

Ne∑
k=1

rhfk

(
Eku

(j)
µ , Ekψ

)
(2.26)

and we denote it with the acronym hf to indicate that a high-fidelity quadrature rule
has been employed. In algebraic form we have that (2.23) holds.

We define the EQ residual:

R
eq
µ

(
u
(j)
µ ,ψ

)
=
∑
k∈Ieq

ρeqk rhfµ,k

(
Eku

(j)
µ , Ekψ

)
(2.27)

where ρeq = [ρeq1 , ..., ρ
eq
Ne

]T is a sparse vector of positive weights such that ρeqk = 0 if
k /∈ Ieq. The algebraic form of the EQ residual is the following:(

R̂eq
µ (û(j)

µ )
)
n
= Req(û(j)

µ , ψn) forn = 1, . . . , N. (2.28)

The residuals R̂hf
µ (·) defined in (2.23) and R̂eq

µ (·) in (2.28) satisfy

R̂hf
µ (α) = G (α) ρhf , R̂eq

µ (α) = G (α) ρeq, (2.29)

where G ∈ RN,Ne can be explicitly derived using the same approach as in [TZ21] and
ρhf = [1, . . . , 1]T .

As in [YP19a], we reformulate the problem of finding the sparse weights ρeq ∈ RNe

as the problem of finding a vector ρeq such that:
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1. the number of nonzero entries in ρeq, which we denote by ‖ρeq‖0, is as small as
possible;

2. the entries of ρeq are non-negative;

3. (constant-function constraint) the constant function is integrated accurately:∣∣∣∣∣
Ne∑
k=1

ρeqk |Dk| − |Ω|

∣∣∣∣∣� 1; (2.30)

4. (manifold accuracy constraint) the empirical and high-fidelity quadrature residu-
als are close at operating conditions:∥∥∥(Jhf

µ

(
α

(j)
train

))−1 (
R̂hf
µ

(
α

(j)
train

)
− R̂eq

µ

(
α

(j)
train

))∥∥∥
2
� 1, (2.31)

for j ∈ Is and for suitable choices of {α(j)
train}j that have to be discussed.

We observe that a similar problem was already introduced in Refs. [FCA15; Far+14].
Compared to these works, we here add the constant-function constraint that is found
to improve the accuracy of the weights when the integrals are close to zero due to
the cancellation of the function to be integrated in different parts of the domain (cf.
[YP19a]).

Note that the constant accuracy constraint is also important to bound the ℓ1 norm
of the empirical weigths, we have indeed∣∣∣∣∣

Ne∑
k=1

ρeqk |Dk|

∣∣∣∣∣ ≤
∣∣∣∣∣
Ne∑
k=1

(ρeqk − ρhfk )|Dk|

∣∣∣∣∣+
Ne∑
k=1

ρhfk |Dk| =

∣∣∣∣∣
Ne∑
k=1

ρeqk |Dk| − |Ω|

∣∣∣∣∣+ |Ω|.

Exploiting (B.6), we can restate the previous requirements as a sparse representation
problem:

findρeq ∈ arg min
ρ∈RNe

‖ρ‖0 s.t.

{
ρ ≥ 0

‖Cρ− b‖∗ ≤ δ,
(2.32)

for a suitable choice of the matrix C, the vector b, the norm ‖ · ‖∗, and the tolerance
δ. Since the optimization problem (2.32) is NP-hard, several authors have proposed
computational methods to find approximate solutions to (2.32) in polynomial time. To
provide concrete references, [YP19a] considers a ℓ1 relaxation of (2.32) with ‖ · ‖⋆ = ‖ ·
‖ℓ∞ , and resorts to linear programming to find an approximate solution; here, following
Farhat et al. [FCA15], we approximate the solution to (2.32) by solving the inexact
non-negative least squares (NNLS) problem

min
ρ∈RNe

‖Cρ− b||2 s.t.ρ ≥ 0. (2.33)

A thorough comparison between the reduced quadrature approaches in [FCA15] and
[YP19a] is beyond the scope of this work we refer to [SH11] for a detailed analysis of the
performance of NNLS and a comparison with LP for a stochastic sparse representation
problem with Gaussian disturbances.

In this work, we rely on the Matlab function lsqnonneg that implements the Greedy
algorithm proposed in [LH74] and takes as input the matrix C, the vector b, and a
tolerance toleq:

ρeq = lsqnonneg(C,b, toleq).
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The same algorithm to find the sparse weights ρeq given the matrices C,b has been
first considered in [FCA15]: for large-scale problems, a parallelised extension of the
algorithm was introduced and successfully applied to hyper-reduction in [Cha+17].

We conclude this section on hyper-reduction by the following observation: as ex-
plained in [FCA15], the ECSW approach is able to preserve the numerical stability of
the time integrator chosen for the solution of the reduced order problem. In [HPR21],
the discrete EIM method is shown to result in a loss of the Hamiltonian structure of
parametric time-dependent Hamiltonian systems: as a consequence, long-time accuracy
and stability of the reduced-order solutions may be affected and suitable conditions on
the reduced basis matrix are required to ensure the preservation of the Hamiltonian
structure.

2.4 A posteriori error estimation
Due to the absence of sharp a priori estimates of the error between the ROM solution
and the high-fidelity solution, we need a rapid and reliable error indicator to i) assess
the accuracy of the ROM during the online stage (and thus it is called a posteriori
because it is computed after having computed the prediction), as shown at line 5 of
the offline/online decomposition algorithm 1; ii) use the indicator to guide parameters
selection in the training phase by an adaptive algorithm (cf. algorithm 2). In particular,
we exploit the connection between the solution error and the residual error and consider
a residual-based indicator that can be used in the POD-greedy procedure proposed at
line 9 to select training parameters. Given a parameter-dependent solution trajectory
uµ, we define the time-average residual:

Rhf
avg,µ (u, v) :=

Jmax∑
j=1

(t(j) − t(j−1)) Rhf
µ

(
u(j)
µ ,v

)
, ∀v ∈ Y, (2.34)

where Y = Xhf
0 . We give a first definition for the error indicator:

∆hf
µ (u) = sup

v∈Y\{0}

Rhf
avg,µ (u, v)

‖v‖
. (2.35)

Indicator (2.35) is expensive to evaluate since it relies on HF quadrature and it requires
the computation of the supremum over all elements of Xhf

0 : following [Tad19], we
consider the hyper-reduced error indicator

∆µ(û) = sup
v∈YM\{0}

R̂
eq,r
avg,µ (û, v)

‖v‖
, (2.36)

where YM is an M -dimensional empirical test space, while Req,r
avg,µ is defined by replacing

Rhf
µ in (2.35) with a suitable sparse weighted residual of the form (2.27), defined over

the elements Ieq,r ⊂ {1, . . . , Ne}. Notice that the empirical quadrature employed for
the error indicator (2.36) may be in general different from the quadrature rule used to
evaluate (2.27) in order to solve the ROM.

Given the ROM solution ûµ, the test space YM should guarantee that

sup
v∈Y\{0}

R̂hf
avg,µ (ûµ, v)

‖v‖
≈ sup

v∈YM\{0}

R̂hf
avg,µ (ûµ, v)

‖v‖
, ∀µ ∈ P, (2.37)
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which implies that YM should be an approximation of the space of Riesz elements
Mtest := {ψ̂µ : µ ∈ P} with(

ψ̂µ, v
)

= R̂hf
avg,µ (ûµ, v) , ∀ v ∈ Xhf

0 . (2.38)

On the other hand, the empirical quadrature rule should ensure that

R̂eq,r
avg,µ (ûµψm) ≈ R̂hf

avg,µ (ûµψm) , ∀µ ∈ P, m = 1, . . . ,M, (2.39)

where ψ1, . . . , ψM is an orthonormal basis of YM .
Several authors (e.g., [HO08]) have considered the time-discrete L2(0, Tf ;Y

′) resid-
ual indicator

∆hf,2
µ (u) =

√√√√Jmax∑
j=1

(t(j) − t(j−1))

(
sup

v∈Y\{0}

Rhf
µ (u(j), v)

‖v‖Y

)2

. (2.40)

We observe that we could apply the same ideas considered in section 2.3.2 to devise a
hyper-reduced counterpart of the residual indicator (2.40). However, we find that the
test space YM and the empirical quadrature rule should be accurate for all parameters
and for all time steps: as a result, the resulting test space YM might be significantly
higher dimensional and the quadrature rule might be significantly less sparse, for the
desired accuracy. For this reason, in chapter 4, we investigate the effectivity of a time-
averaged error indicator extended from (2.36) to take into account vector state variables
(D > 1) and problems with internal variables.
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Chapter 3

The Thermo-Hydro-Mechanical
problem

In this chapter we extensively describe the THM system that is considered in this work.
In section 3.2 we introduce relevant notation and definitions and in section 3.3 we intro-
duce the geometrical configuration; in section 3.4 we present the equilibrium equations
and the constitutive laws together with the initial conditions and the description of all
the parameters of interest. In section 3.5 we describe the numerical discretization and
finally in section 3.5.1 the problem parametrization.

3.1 Physical assumptions
Porous materials are characterized by an internal structure and closed and open pores,
filled with one or more fluids. The geomaterial can be represented by soil, rock or
concrete, and the fluid by water, water vapour and dry air. The solid and fluid phases
interact between the constituents of the porous medium. Porous media theory has
been of interest of research for a considerable time (see, e.g., [De 96]). The model we
consider in this work is an adaptation of the one discussed in [Gra09a] and [Gra09b].
The fundamental hypothesis is that the porous medium is fully-saturated-in-liquid: this
means that we do not have to take into account heat convection, but only heat con-
duction in the physical description of the model. Furthermore, the solid is deformable,
resulting in a coupling of fluid, solid and thermal fields. The second assumption is
that the solid undergoes small displacements. We remark that in this work the porous
medium is seen at a macroscopic scale and thus the constituents are assumed to be
chemically non-reacting: this means that temperatures of all the constituents at a
point in the medium are equal; although, temperature is not supposed to be uni-
form throughout the medium. We resort to a Lagrangian formulation of the solid.

Figure 3.1: geometric three-
dimensional sketch.

In this case, the computed stress and deformation
state are referred to the material configuration rather
than to the current position in space; information
about the straining and deformation of the mate-
rial are contained in the deformation gradient ten-
sor (which is presented in the mechanical equilibrium
laws in (3.4)). We resort to an Eulerian formulation
for the liquid: liquid-related variables are represented
by functions depending on space variable and time.
The resulting mathematical model is of the form in-
troduced in (1.1); the radioactive waste repositories
are located at the bottom of the domain, as shown in the drawing 1.2 and in figure
3.1, which is equipped with spatial axes. The numerical discretization of THM system
throughout the thesis refers to a two-dimensional domain: we employ a plane strain
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simplification. The repository’s length along the z axis is considered exceedingly large
with respect to the other two dimensions along x and y; applied forces act in the x-y
plane and do not vary along the z direction (this is a typical situation for tunnels as
well as bars that are compressed along one of their lengths).

3.2 Fundamental definitions
We consider the spatial variable x in the Lipschitz domain Ω ⊂ Rd with d = 2 and the
time variable t in the time interval (0, Tf), where Tf is the final time.
We first introduce the state variables and the internal variables. The state variables,
denoted as U = [uT, pw, T ]

T, represent solid displacement, water pressure and temper-
ature and are reported in Table 1; the internal variables W = [ρw, φ, hw, Q,M

T
w,mw]

T

represent dependent physical quantities and are illustrated in Table 2, together with
the corresponding SI units.

SI unit description

u m solid displacement
pw Pa water pressure
T K temperature

Table 3.1: primary variables

SI unit label

ρw kg ·m−3 water density
φ % Eulerian porosity
hw J ·Kg−1 mass enthalpy of water
Q Pa non-convected heat
Mw kg ·m−2 · s−1 mass flux
mw kg ·m−3 mass input

Table 3.2: dependent variables

We denote the Cauchy stress tensor by σ[Pa], and we define the volumetric deforma-
tion ϵV = tr(ϵ) where ϵ is the strain tensor: ϵ = ∇su = 1

2

(
∇u+∇uT

)
. We also provide

in Table 3.3 the characteristic parameters that we use for the non-dimensionalisation.

SI unit value

t̄ s 3.15 · 107
H̄ m 77.3
σ0 Pa 11.3 · 106
ρ0 kg ·m−3 2450
Tref K 297.5

∆T K 30

Table 3.3: characteristic constants

Due to the plane-strain assumption, we have that the components of the strain

tensor ϵ related to strain in direction z are equal to 0: we can write ϵ =
[
ϵxx ϵxy
ϵxy ϵyy

]
and

ϵxz = ϵyz = ϵzz = 0.
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3.3 Geometry configuration
A schematic representation of the domain is shown in Figure 3.2(a). The geological
repositories, modelled as boundary conditions, are depicted in red at the bottom of the
domain, in the case of two activated alveoli. In the vertical (y) direction, the domain is
split into three layers: a clay layer denoted as UA ("unité argilleuse"), a transition layer
UT ("unité de transition") and a silt-carbonate layer USC ("unité silto-carbonatée").
Layers UA, UT and USC are associated with different material properties, thus the
physical parameters in the THM system are expected to assume different values in the
domain in Figure 3.2(a): in table 3.4 their dimensional values are specified. The non-
dimensional widths of the layers UA, UT and USC are, respectively, 0.4127, 0.1979,
0.3894. In Figure 3.2(b) a finite element grid is shown and denoted as T1: the number
of degrees of freedom for the first state component (solid displacement) is Nu = 40430,
while for water pressure and temperature is Np = N t = 9045.

UA
UT
USC

x

y

ΓN

(a) (b)

Figure 3.2: geometric configuration: (a) the non-dimensional domain,
(b): the mesh T1. The size of each alveoulus is equal to lQ = 3.09 [m],
while the distance between consecutive alveoli is equal to l = 6.18 [m].

The grid is refined in the proximity of the alveoli to better capture the relevant
features of the solution.

3.4 Mathematical problem

3.4.1 Equilibrium equations

Local equilibrium of the thermo-dhynamics is assumed and macroscopic balance equa-
tions are considered to derive governing equations: the superscripts (·)m, (·)h,(·)t refer
to quantities associated with the mechanical, hydraulic and thermal behaviours, respec-
tively. Then, we present the constitutive laws that are considered, which link material
properties to displacement, pressure and temperature, and finally we present the bound-
ary conditions. To clarify the presentation, we report in Table 3.4 the parameters that
enter in the constitutive laws.

Mechanics We denote by Fm = − g
γ e2 (where γ = σ0

ρ0H̄
) the mechanical force with

g defined in Table 3.4 and we specify that n (resp. t) is the unitary outward normal
(resp. tangential) vector in the domain depicted in Figure 3.2(a). Linear elasticity is
assumed for the deformation process in porous media. The linear momentum balance
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equation can be written in terms of stress tensor as

σ = σ′ + σp1, (3.1)

where σ′ is the effective stress tensor of the porous medium and 1 is the identity tensor;
σp1 is the generalized stress. The decomposition in (3.1) is due to the fact that stresses
applied to a saturated porous medium are partly distributed to the solid skeleton and
partly to the pore fluid. The former stresses are responsible for skeletal (i.e. solid)
deformations: for this reason, they are called effective; the latter are associated with
the fluid flows, they are thus called generalized. The effective stress tensor is defined
as follows:

σ =2µ′ϵ+ λtr(ϵ)1− (2µ+ 3λ)αs∆T1

= 2µ′∇su+ (λ∇ · u − (2µ+ 3λ)αs∆T )1,
(3.2)

where αs is the thermal expansion coefficient of the solid and ∆T = T − Tref . Notice
that the stress σ it is linked to the primary and internal variables by the linear law
(3.2). Lamé constants µ′, λ satisfy

µ′ =
E

2(1 + ν)
,

λ =
Eν

(1 + ν)(1− 2ν)
,

and E and ν are introduced in Table 3.4. The generalized stress tensor is given by

σp = −bpw, (3.3)

known as Biot-Terzaghi relation; we notice from (3.3) that the solid is assumed to be
isotropic. We thus introduce the equilibrium of mechanical forces:

−∇ · σ = ρFm inΩ,

σ n = g
m,N

onΓN,

u · n = 0 on ∂Ω \ ΓN,

(σ n) · t = 0 on ∂Ω \ ΓN,

(3.4)

where ΓN is depicted in Figure 3.2(a). The Neumann datum g
m,N

is given by g
m,N

=

−e2. To solve equation (3.4) we shall also define the homogenized density ρ = ρ0 +
mw, where ρ0 is the initial homogenized density and mw is the input mass, which is
introduced below: this definition exploits the fact that the porous medium’s density is
composed by two phases, liquid and solid. Using plane-strain assumption, stress tensor

can be written as σ =

[
σ1,1 σ1,2
σ1,2 σ2,2

]
where each component is given by relation (3.2).

Hydraulics We state the mass conservation of water as follows{
∂tmw + ∇ ·Mw = 0 inΩ

Mw · n = 0 on ∂Ω
(3.5a)
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Water mass is coupled to solid displacement through the following constitutive law:

mw = ρw(1 + ϵV)φ− ρ0wφ
0.

Volumetric change of pore pressure due to change in the stress field is represented by
∂tmw in equation (3.5a). We assume the flow can be represented by Darcy law: thus
the muss flux Mw is given by

Mw = −γ (∇pw − ρwFm). (3.5b)

and
γ = ρw

κw σ0 t̄

ρ0µw,0 H̄2
exp

(
− 1808.5

Tref +∆T T

)
(3.5c)

where κw is the intrinsic permeability of the porous medium and µw = µw,0exp
(

1808.5
Tref+∆T T

)
is the dynamic viscosity.

Heat transfer Finally we consider the energy balance:{
hw∂tmw + ∂tQ + ∇ ·

(
hwMw + q

)
−Mw · Fm = Θ inΩ(

hwMw + q
)
· n = gt,N on ∂Ω

(3.6a)

where Q is the non-convective heat, q is the thermal flux and is given by the Fick law

q = −Λ∇T, (3.6b)

with Λ = diag(λ1, λ2). If we denote by Γr ⊂ ∂Ω the region associated with the alveoli,
gt,N is equal to

gt,N =
Ptnct̄

lQH̄2σ0
exp

(
− t/τ

)
1Γr = Cal exp

(
− t/τ

)
1Γr , (3.7)

where nc [%] is the density of the radioactive waste stock in each alveolus (equal to 45
anisters), Pt = 31.4 [W] is the unitary termic power at the initial time, lQ = 3.09 [m] is
the size of each alveolus, σ0, H̄, t̄ are introduced in Table 3.3 and τ = t̄

log(0.112) [s] is a
characteristic decay time.

3.4.2 Constitutive laws

We introduce the evolution equation for the water density

dρw
ρw

=
dpw
Kw

− 3αwdT

where αw = αw(T ) is the thermal expansion coefficient of water and it is reported in
table 3.4; Kw is the bulk modulus of water. We state the evolution equation for the
eulerian porosity

dφ

b − φ
= dϵV − 3αsdT +

dpw
Ks

,

where b and αs have been introduced and Ks is the bulk modulus of the solid, that is
Ks =

E
3(1−2ν) . We then introduce the evolution equation for enthalpy

dhw = Cp
w dT + (βph − 3αwT )

dpw
ρw

,



32 Chapter 3. The Thermo-Hydro-Mechanical problem

where Cp
w is the heat capacity at constant pressure. Finally, we introduce the evolution

equation for the non-convective heat

δQ =
(
βϵQ + 3αsK0 T

)
dϵV −

(
βpQ + 3αw,mT

)
dpw + C0

ϵ dT ,

where K0 is the drained bulk modulus (which is the bulk modulus that is measured at
constant pore fluid pressure). Notice that δQ is an inexact differential (i.e., it depends
on the path). We resume all the constitutive relations in the following system:

dρw
ρw

=
dpw
Kw

− 3αwdT ,

dφ

b − φ
= dϵV − 3αsdT +

dpw
Ks

,

dhw = Cp
w dT + (βph − 3αwT )

dpw
ρw

,

δQ =
(
βϵQ + 3αsK0 T

)
dϵV −

(
βpQ + 3αw,mT

)
dpw + C0

ϵ dT ,

mw = ρw(1 + ϵV)φ− ρ0wφ
0.

(3.8a)

(3.8b)

(3.8c)

(3.8d)

(3.8e)

Here, we have βph = 1− 3αwTref , βϵQ = 3αsK0Tref , βpQ = 3αw,mTref .
The parameters in (3.8a)-(3.8e) are defined in Table 3.4. We remind that layers UA,
UT, USC are depicted in Figure 3.2(a).

3.4.3 Initial conditions

To set the initial conditions, we consider the case of deactivated repositories: therefore,
we set thermal flux equal to zero and we set a constant temperature T0 = Tref in Ω,
where the reference temperature is defined in Table 3.3. We aim at finding the initial
values of the primary variables u and pw that correspond to the equilibium solutions of
a preliminary problem: here, the Neumann boundary condition for the energy equation
is zero, that is, gt,N = 0, and temperature is costant and equal to the reference value
Tref (in Table 3.3).
We then seek u0, pw,0 such that the initial solution vector U0 = [uT0 , pw,0, T0]

T satisfies
the equilibrium equations (3.4), (3.5a) and (3.6a) with thermal flux gt,N equal to 0 on
the domain boundary ∂Ω. Towards this end, we first observe that (3.8a) reduces to

dρw
ρw

=
dpw
Kw

(3.9)

that brings to pw = ρ−∞ exp
(

1
Kw

(pw − p−∞)
)

. If we assume that ρw = ρ−∞ = ρw,0,
we find pw = p−∞; furthermore, by substituting these assumptions into the hydraulic
equilibrium equation we find

pw,0(x, y) = pw,top + ρw,0g(1− y) (3.10)

where pw,top is a datum for water pressure that is defined at the top boundary of the
domain (0, 1)×{1}. Finally, we search for u0 as the solution to the equilibrium equation
of mechanical forces:∫

Ω
2µ′∇s u0 : ∇s v + λ(∇·u0)(∇·v)−bpw,0∇·v − ρ0Fm·v dx =

∫
ΓN

g
m,N

·v dx, (3.11)

for all v ∈ Xu, such that v · n|∂Ω\ΓN
= 0.
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SI unit description reference value formula

g m · s−2 gravity acceleration 9.81

E Pa Young’s modulus
11.4 · 109 UA
12.3 · 109 UT
20 · 109 USC

ν % Poisson’s ratio 0.3

µ′ Pa Lamé parameter, E
2(1+ν)

λ Pa Lamé parameter Eν
(1+ν)(1−2ν)

b % Biot coefficient 0.6

αs K−1 solid thermal expansion coefficient 1.28 · 10−5

α0 K−1 expansion coefficient 1.28 · 10−5

κw m2 intrinsic permeability of porous medium 10−21

µw MPa · s dynamic viscosity µw = µw,0 exp(
1808.5

T
)

µw,0 MPa · s dynamic viscosity coefficient 2.1 · 10−12

Ks Pa bulk modulus of the solid Ks = E
3(1−2ν)

Kw Pa bulk modulus of water 2 · 109
Cp

w J · kg−1 ·K−1 heat capacity at constant pressure 4180

K0 Pa drained bulk modulus K0 = (1− b)Ks

αw K−1 thermal expansion coefficient of water αw = 9.52 · 10−5 log(T − 273)− 2.19 · 10−4

αw,m dilation coefficient

Cs
σ J kg−1 ·K specific heat at constant stress

537 UA
603 UT
640 USC

ρ0 Kg ·m−3 porous medium initial density
2450 UA
2450 UT
2500 USC

ρ0w Kg ·m−3 initial water density 103

φ0 % initial Eulerian porosity
0.25 UA
0.21 UT
0.19 USC

h0w m2 · s−2 initial water enthalpy h0w =
p0w−patm

ρ0w

ρs Kg ·m−3 density ratio ρs =
ρ0−ρ0wφ0

1−φ0

C0
ϵ Pa ·K−1 specific heat at constant deformation C0

ϵ = (1− φ)ρsCs
σ + φρwC

p
w − 9TK0α2

s

Λ thermic conductivity tensor Λ = diag(λ1, λ2)

λ1 Wm−1K−1 thermic conductivity component
1.5 UA
1.5 UT
1.3 USC

λ2 Wm−1K−1 thermic conductivity component
1 UA
1 UT
1.3 USC

Θ Pa · s−1 volumetric heat sources

Table 3.4: parameters of the constitutive laws.

3.5 Numerical discretization
We resort to an implicit Euler time discretization scheme, with Jmax = 100 uniform
time steps for the non-dimensional time interval (0, tf ], with tf = 1; the superscript
(·)+ refers to the new solution (at the current time step j, for j = 1, ..., Jmax), while
(·)− refers to the solution at the previous time steps. We notice that we cannot use an
explicit time scheme since the solid mechanics equilibrium law (3.4) is steady: indeed,
a singular mass matrix would be associated with the coupled system (composed of the
equilibrium equations in section 3.4.1 and the constitutive laws in section 3.4.2). We
also observe that the adopted implicit scheme does not require limitations to the time
discretization step ∆t to ensure numerical stability.
State variables are defined in the nodes of the mesh, while the internal variables are
defined in the quadrature points. We denote by X and W suitable Hilbert spaces in
Ω for U and W . We denote by Xhf = Xhf,u × Xhf,p × Xhf,t the high-fidelity space
associated with the state variable U = [uT, pw, T ]

T and Whf a suitable high-fidelity
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space for the internal variables W . From now on we omit the superscript hf from the
high-fidelity spaces. We aim at finding U+ ∈ X and W+ ∈ W such that

∫
Ω
2µ′∇s u

+ : ∇s v +
(
λ∇ · u+ − (2µ′ + 3λ)αsT

+ − bp+w
)
∇ · v −

(
ρ0 +m+

w

)
Fm · v dx

=

∫
ΓN

g+
m,N

· v dx;∫
Ω

1

∆t
(m+

w −m−
w)ψ + γ+ (∇p+w − ρ+wFm) · ∇ψ dx = 0;∫

Ω

(
hw
∆t

(m+
w −m−

w) +
1

∆t
(Q+ −Q−) + γ+ (∇p+w − ρ+wFm) · Fm

)
ξ−(

−h−w(∇p+w − ρ+wFm) + q+
)
· ∇ξ

=

∫
Ω
Θ+ ξ dx −

∫
∂Ω

g+t,N ξ dx;

(3.12)
for all v ∈ Xu such that v · n|∂Ω\ΓN

= 0, ψ ∈ Xp, ξ ∈ Xt, where

ρ+w = ρ−w exp

(
p+w − p−w
Kw

− 3αw(T
+ − T−)

)
;

φ+ = b − (b− φ−) exp

(
−(ϵ+V − ϵ−V) + 3α0(T

+ − T−) − 1

Ks
(p+w − p−w)

)
;

h+w = h−w + Cp
w (T+ − T−) +

βph − 3αwT
+

ρ+w

(
p+w − p−w

)
;

Q+ = Q− +

(
βϵQ + 3αsK0

1

2
(T+ + T−)

) (
ϵ+V − ϵ−V

)
−
(
βpQ + 3α+

w,m

1

2
(T+ + T−)

) (
p+w − p−w

)
+C0,+

ϵ (T+ − T−);

m+
w = ρ+w(1 + ϵ+V)φ

+ − ρ0w φ
0.

(3.13)
We remark that integrals in system (3.12)-(3.13) depend on internal variables at the

current times t(j) and at the previous times t(j−1), for j = 1, ..., Jmax. We consider a p =
3 Finite Element (FE) discretization for the displacement component, and a p = 2 FE
discretization for both pressure and temperature. Indeed, as discussed in Ref. [Gra09b],
to prevent numerical instabilities, we firstly choose a continuous piecewise polynomial
of higher degree to approximate the displacement and a lower degree approximation
for pressure and temperature; this implementative choise is empirically proven not to
be strictly necessary, (in chapter 6 the same degree p = 2 is also used for all the state
variables and no instabilities appear in the solutions during the computational time
steps).
We equip the FE space X with the weighted inner product

(U,U ′) =
1

λu

2∑
d=1

(ud, u
′
d)H1(Ω) +

1

λp
(pw, p

′
w)H1(Ω) +

1

λt
(T, T ′)H1(Ω), (3.14)

where the coefficients λu, λp, λt are the largest eigenvalues of the Gramian matrices Cu,
Cp, Ct associated to displacement, pressure and temperature, respectively. Similarly
to [TZ21], the inner product (3.14) is motivated by the need for properly taking into
account the contributions of displacement, pressure and temperature, which are charac-
terised by different magnitudes. Notice that all the variables are non-dimensionalized.
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3.5.1 Parameterization

We consider a vector of four non-dimensional parameters: the Young’s modulus E and
the Poisson’s ratio ν in the region UA, the thermic factor τ and the constant Cal in (3.7).
For all parameters, we define the non-dimensional parameter domain P by considering
variations of ±15% with respect to the nominal values reported in Table 3.4 that are
non-dimensionalized; (we omit the the non-dimensionalizations of the state equations
and constitutive laws: non-dimensional state, internal variables and parameters can be
computed by using the characteristic constants in table 3.3).

3.6 Solution fields
In figure 3.3 the solutions to problem (3.12), (3.13) are depicted for µ = µ̄ = [1.088 ·
103, 0.3, 21.33, 0.4558]T that is the centroid of the parametric set P. The geometric
configuration corresponds to figure 3.2(b) (the number of repositories is Qa = 2). For
completeness of results, the time evolution of dimensional pressure and temperature
is evaluated at different points in mesh T1 (cf. figure 3.2(b)) that correspond to three
points at x = x̄ = 0.46 (which is the center of a repository) and y1 = 0.0, y2 = 0.2,
y3 = 1.0.

(a) geometry and selected slice
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Figure 3.4: Time evolution of (b): water pressure, (c): temperature
at three different points in a vertical slice (a).

Time evolution of water pressure and temperature is an interesting phenomenon
to be observed: as already described in chapter 1, the inclusion of radioactive storage
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Figure 3.3: Time gaps of dimensional solutions. (a): horizontal dis-
placement u(Jmax)

x − u
(0)
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pressure p(Jmax)
w − p

(0)
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(0)
xx ; (f): total vertical component

of stress σ(Jmax)
yy − σ

(0)
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at the bottom of the domain directly causes a thermal flow in the repository area
(compare figure 3.2(b) and equation (3.6a)), which leads to an increase in pressure and
temperature in time. The temperature is then expected to decrease until it returns to
the starting value over a very long period of time.

In figure 3.5 we depict the solutions slices at points s.t. 0 ≤ x ≤ 1, y = ȳ = 0.2 and
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at the final time step j = Jmax: these solutions are computed by solving the discretized
problem (3.12),(3.13) in mesh T1 with p = 3 FE polynomial order for displacement and
p = 2 order for pressure and temperature. In addition, solutions at the same spatial
points and at the same time step are also computed by using a coarser mesh, which we
denote T2 to distinguish it from T1. Mesh T2 is characterized by Nu = 2076 degrees of
freedom for displacement and Np = N t = 1488 for water pressure and temperature,
and it is associated with p = 2 FE discretization for displacement component and p = 1
discretization for both pressure and temperature.

(a) geometry and selected slice 0 ≤ x ≤ 1, y = ȳ = 0.2
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Figure 3.5: Dimensional solutions at final time at points depicted in
figure 3.5(a).
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State variables associated with different space discretizations are coincident. In the
following, we refer to mesh T1 for numerical investigations.

3.7 Conclusions
In this chapter we presented the THM coupled problem in a geothermal porous medium:
we introduced in section 3.4 the mathematical formulation as well as in section 3.5
its FE discretization; in section 3.6 FE solutions are computed for fixed parametric
configuration µ̄ ∈ P and the evolution of state variables (cf. table 3.1) and total
stress (cf. equation (3.1)) is depicted in space and time. In chapter 4, a monolithic
projection-based ROM is built for the THM problem: to do that, we apply (and extend
when required) the methods described for a general time-dependent parabolic PDE in
chapter 2.
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Chapter 4

A monolithic model reduction
method for the THM problem

In this chapter we develop a projection-based monolithic model order reduction tech-
nique for the THM system introduced in chapter 3. The proposed methodology is
an extension of the RB technique for parabolic problems introduced in chapter 2 to
problems with internal variables. The outline of this chapter is the following. First, in
section 4.1, we provide a survey on MOR works on nonlinear problems in mechanics; in
section 4.2 we introduce the numerical discretization of the THM system, introduced
in chapter 3 in a compact form. In section 4.3, we illustrate the application of MOR
techniques (cf. chapter 2) to a general class of nonlinear problems with internal vari-
ables; the proposed methodology can be applied to a broad class of structural mechanics
problems with internal variables. To simplify the presentation, we first discuss the so-
lution reproduction problem and then we extend the approach to the parametric case;
finally, in section 4.4 we show numerical results for a two-dimensional THM system to
illustrate and validate the proposed methodology.

4.1 Relation with previous works
Our methodology is characterised by an offline/online splitting to reduce the marginal
cost, and relies on Galerkin projection to devise a ROM for the solution coefficients.
We rely on hyper-reduction (cfr. section 2.3.2) to speed up the assembly of the ROM
during the online stage, and we rely on adaptive sampling to reduce the offline training
costs. In this chapter we adopt a POD-Greedy technique (cf. section 2.2) for THM
systems; we emphasize that our method can be applied to a broad class of coupled
problems with internal variables. In section 4.3.2 we extend the time-average a posteri-
ori error indicator introduced in section 2.4 to problems with internal variables and we
compare the latter with a more standard discrete L2(0, Tf ;X

′) dual residual in terms of
computational and memory costs and effectivity. This is crucial for the efficiency of the
adaptive method. Second, we apply a greedy sampling (based on the proposed error
indicator) to effectively explore the parameter domain. Third, we introduce in this
framework a hyper-reduction technique based on an element-wise empirical quadrature
procedure, which generalizes the technique introduced in section 2.3.2. The key feature
of EQ is to recast the problem of hyper-reduction as a sparse representation problem
and then resort to state-of-the-art techniques in machine learning and signal processing
to estimate the solution to the resulting optimisation problem and ultimately determine
a sparse quadrature rule. Here, we rely on the approach employed in [TZ21], which
combines the methods in [FCA15; Yan19] and relies on non-negative least-squares to
estimate the solution to the sparse representation problem. As discussed in section 4.3
in chapter 4, the presence of internal variables requires several changes to the EQ ap-
proach in [TZ21]. Our approach relies on a different treatment of primary and internal
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variables compared to the works in [Far+14; ZAF17], as explained in section 4.3.2. In
section 4.3 we clarify to what extent the management of internal variables requires a
careful adaptation of the MOR technique illustrated in [TZ21] and we briefly compare
our treatment of internal variables with [Far+14; ZAF17].

We emphasise that several other hyper-reduction techniques have been proposed
in the literature including the empirical interpolation method (EIM [Bar+04]) and its
discrete variant [CS10b], the approach in [Ryc09], and Gappy-POD [Car+13; Wil06].
We also refer to [Cas+20; HCF17] for further empirical (or reduced) quadrature proce-
dures for problems in nonlinear mechanics. A thorough comparison of state-of-the-art
hyper-reduction techniques is beyond the scope of this work.

The POD-Greedy algorithm was explained in section 2.2: the approach combines
POD to compress temporal trajectories with a greedy search driven by an error indica-
tor to explore the parameter domain. Similarly to [Fic+18], we rely on a time-averaged
error indicator as the one introduced in section 2.4 to drive the greedy search; further-
more, we test two different compression strategies to update the POD basis at each
greedy iteration.

We further observe that the development of online-efficient adaptive ROMs for
problems of the form (1.1) is extremely limited in the literature. Relevant examples
include the works in [Ryc09; MRC13; LF17], which, however, do not consider adaptive
sampling. As regards the application of MOR to THM systems, we recall the recent
contributions by Larion et al. [Lar+20] and [Lar+22]: note, however, that the two cited
works deal with a linearized THM model without internal variables. For completeness,
we also refer to [FG20] and [Nas+22] for reduced basis applications to (thermo)-hydro-
mechanical problems; we notice that in [FG20] a linear elasticity problem is used for
the numerical investigations. The work in [Nas+22] makes some fundamental physical
simplifications and the constitutive laws introduced in section 3.4.2 are not consid-
ered in the hydro-mechanical system; furthermore, no hyper-reduction techniques are
employed.

4.2 Formulation

4.2.1 Notation

The theoretical setting is introduced at the beginning of section 1.2. We recall that D
is the number of state variables in the generalized formulation (1.1). Given U ∈ X,
we denote by U ∈ RN

hf ,D the corresponding matrix of coefficients such that (U)j,ℓ =(
U(xhfj )

)
ℓ

for j = 1, . . . , Nhf and ℓ = 1, . . . , D; notation U(:, ℓ) refers to the ℓth column
of the matrix U. As in chapter 2, to simplify notation, we neglect hf index from
solution notation. Notice that in principle we should write U to indicate the finite
element vector corresponding to vector state variables U ∈ X, but, for a matter of
simplicity in the notation, we prefer writing it as U.

For the THM problem described in chapter 3, the state solution vector U contains
the displacement u, the water pressure pw and the temperature T ; we thus have that
D = 2 + d holds for the total number of state variables.

4.2.2 Finite element discretization

We denote by {U (j)
µ }Jmax

j=1 ⊂ Xhf the FE approximation of the state variables at all
times, that is, the ℓth column of U(j)

µ is the approximation of the ℓth state variable at
time t(j). On the other hand, we denote by W

(j)
µ ∈ Rnq,Ne,Dcl the tensor associated
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with the evaluation of the internal variables at time t(j) in the quadrature points:(
W(j)

µ

)
q,k,ℓ

=
(
W (j)

µ (xhf,qq,k )
)
ℓ
, q = 1, . . . , nq, k = 1, . . . , Ne, ℓ = 1, . . . , Dcl.

Given ℓ ∈ {1, . . . , D}, we extend the definition of Dirichlet nodes and boundary condi-
tions introduced for a generic PDE in equation (2.3) in the case D = 1: we denote by
Iℓdir ⊂ {1, . . . , Nhf} the indices associated with Dirichlet boundary conditions (if any)
of the ℓth state component, and we denote by g

(j)
dir,ℓ ∈ R|Iℓdir| the vector that contains

the value of the ℓth state component at each Dirichlet node at time t(j).
The FE discretisation of the THM system (3.13) can be written in a compact fashion

as follows: for j = 1, 2, . . ., find U
(j)
µ , W

(j)
µ such that

Rhf
µ

(
U(j)
µ , U(j−1)

µ , W(j)
µ , W(j−1)

µ , V
)
= 0, ∀V ∈ Xhf

0 ;

U
(j)
µ (Iℓdir, ℓ) = g

(j)
dir,ℓ, ℓ = 1, . . . , D;(

W(j)
µ

)
q,k,ℓ

= Fhf
µ,ℓ

((
Eqd,⋆
k U(j)

µ

)
q,·
,
(
Eqd,⋆
k U(j−1)

µ

)
q,·
,
(
W(j−1)

µ

)
q,k,·

)
,

q = 1, . . . , nq, k = 1, . . . , Ne, ℓ = 1, . . . , Dcl.

(4.1)

where Xhf
0 := {V ∈ Xhf : V(Iℓdir, ℓ) = 0, ℓ = 1, . . . , D} is the test space for all state

equations. Note that Rhf
µ and Fhf

µ are the discrete counterparts of the operators Gµ
and Fµ in (1.1), for µ ∈ P.

Note that the constitutive laws are stated in the quadrature points of the mesh and
the internal fields should be computed in the quadrature points of the mesh. Dirichlet
boundary conditions are imposed via a lifting; Neumann boundary conditions are intro-
duced in the weak formulation associated to the first equation in system (4.1) via the
Greens formula. We refer to equations (3.12), (3.13) for the particular form of problem
(4.1) associated to the THM system of interest.

Remark 1. As discussed in section 3.5, to avoid instabilities, it might be necessary to
use polynomials of degree κ for displacement and κ − 1 for pressure and temperature:
as a result, we should introduce separate restriction operators (introduced in (2.2)) and
separate FE spaces for the different components of the state {U (j)

µ }j; We choose to
not explicitly address this issue to simplify notation: we remark that the extension to
κ-(κ−1) discretisations is computationally tedious but methodologically straightforward.

The underlying problem in (4.1) is second-order in space and first-order in time.
At each time step, following [Gra09b], we solve (4.1) for U (j)

µ using a Newton’s method
with line search; the method requires the computation of the Jacobian associated with
Rhf and the solution to a coupled linear system of size Nhf ·D.

In view of the introduction of the MOR methodology, in particular the hyper-
reduction procedure, we write the residual Rhf as the sum of local contributions: ex-
tension of expression (2.26) for the THM system reads

Rhf
µ

(
U(j)
µ , U(j−1)

µ , W(j)
µ , W(j−1)

µ , V
)

=

Ne∑
k=1

rhfµ,k

(
EkU

(j)
µ , EkU

(j−1)
µ ,

(
W(j)

µ

)
·,k,·

,
(
W(j−1)

µ

)
·,k,·

, EkV

)
.

(4.2)

As explained in section 2.3.2, this decomposition provides the foundation of our hyper-
reduction procedure.
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4.3 Methodology
We propose a time-marching Galerkin ROM based on linear approximations: we refer
to section 2.1.3 for an introduction to the reduced basis method. More precisely, we
consider approximations of the form (2.6) where the reduced solution is denoted as Û

(j)

µ

for each time index j = 1, . . . , Jmax.
In presence of non-homogeneous Dirichlet conditions, it is convenient to consider affine
approximations of the form Û

(j)

µ = Hg(j) + Z α̂(j)
µ , where H is a suitable lifting op-

erator (see, e.g., [TZ21]) and Z ⊂ X0: since in this work we consider homogeneous
Dirichlet conditions, we do not address the treatment of non-homogeneous conditions.
We consider a single reduced basis Z for all state variables in {U (j)

µ }Jmax
j=1 ; the choice of

the inner product is discussed in section 3.5 (cf. Eq. (3.14)).
As explained in section 2.3 for a general unsteady PDE, the Galerkin ROM is ob-

tained by projecting (4.1) onto the reduced space Z: this leads to a nonlinear system
of N equations at each time step. To reduce assembly costs, it is important to avoid
integration over the whole integration domain. Towards this end, we define the in-
dices associated with the “sampled elements” Ieq ⊂ {1, . . . , Ne} and we define the EQ
residual:

Req
µ

(
U(j)
µ , U(j−1)

µ , W(j)
µ , W(j−1)

µ , V
)

=∑
k∈Ieq

ρeqk rhfµ,k

(
EkU

(j)
µ , EkU

(j−1)
µ ,

(
W(j)

µ

)
·,k,·

,
(
W(j−1)

µ

)
·,k,·

, EkV
(j)

) (4.3a)

where ρeq = [ρeq1 , ..., ρ
eq
Ne

]T is a sparse vector of positive weights such that ρeqk = 0 if

k /∈ Ieq. In conclusion, the Galerkin ROM reads as follows: for j = 1, 2, . . ., find (Û
(j)

µ ,

Ŵ
(j)

µ ) such that
Req
µ

(
Û(j)
µ , Û(j−1)

µ , Ŵ(j)
µ , Ŵ(j−1)

µ , V
)
= 0, ∀V ∈ Z;(

Ŵ(j)
µ

)
q,k,ℓ

= Fhf
µ,ℓ

((
Eqd,⋆
k Û(j)

µ

)
q,·
,
(
Eqd,⋆
k Û(j−1)

µ

)
q,·
,
(
Ŵ(j−1)

µ

)
q,k,·

)
,

q = 1, . . . , nq, k ∈ Ieq, ℓ = 1, . . . , Dcl.

(4.3b)

Note that the internal variables need to be computed only in the sampled elements.
Furthermore, computation of (4.3b) only requires the storage of the ROB in the sampled
elements, {Ekζn : n = 1, . . . , N, k ∈ Ieq}: provided that |Ieq| � Ne, this leads to
significant savings in terms of online assembly costs and also in terms of online memory
costs.

In the remainder of this section, the methodology introduced in chapter 2 is adopted
for the construction of the ROB Z (data compression), the empirical quadrature rule
ρeq (hyper-reduction) and also the error indicator. To simplify the presentation, in
section 4.3.1 we focus on the solution reproduction problem, while in section 4.3.2 we
discuss the extension to the parametric problem.

4.3.1 Solution reproduction problem

The solution reproduction problem refers to the task of reproducing the results ob-
tained for a fixed value of the parameter µ̄. It is of little practical interest; however,
it represents the first step towards the implementation of an effective ROM for the
parametric problem. Algorithm 4 summarises the procedure: during the offline stage,
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Algorithm 4 Solution reproduction problem: offline/online decomposition
Offline stage:

1: compute
{
U

(j)
µ̄

}
j∈Is

, Is ⊂ {1, . . . , Jmax};

2: construct the ROB Z;
3: construct the weights ρeq.

Online stage:
4: compute

{
α̂

(j)
µ̄

}Jmax

j=1
by solving the ROM (4.3).

we compute the HF solution to (4.1) for a given parameter and we store snapshots of
the state variables at select time steps Is ⊂ {1, . . . , Jmax}; then, we use this piece of
information to build a ROM for the state; then, during the online stage, we query the
ROM for the same value of the parameter considered in the offline stage. Note that
during the offline stage we store the state variables in a subset of the time steps and we
do not store internal variables: this choice is motivated by the fact that for practical
problems memory constraints might prevent the storage of all snapshots; in addition,
internal variables might not be computed explicitly by available HF codes.

Construction of the ROB Z at line 2 by POD is described in section 2.2.2; we
remark that the POD modes depend on the choice of the inner product in Xhf , that
is discussed in section 3.5 for the THM problem. As for the computation of empirical
quadrature weights at line 3, the algorithm to find the sparse weigths ρeq is described in
section 2.3.2; in the following we specify its use in the occurrence of internal variables.

Hyper-reduction

Following expressions (2.23) and (2.28), we specify the algebraic form of the algebraic
reduced residuals associated with the HF and empirical quadrature rules:

(
R̂hf
µ

(
α; β,W′))

n
:= Rhf

µ

(
Zα, Zβ, W⋆

µ, W, ζn
)
, n = 1, . . . , N,(

R̂eq
µ

(
α;β,W′))

n
:= Req

µ

(
Zα, Zβ, W⋆

µ, W
′, ζn

)
, n = 1, . . . , N,

where α,β ∈ RN , W′ ∈ Rnq,Ne,Dcl , and W⋆
µ = W⋆

µ (α,β;W
′) is obtained by substitut-

ing in (4.1)3. We further introduce the Jacobians Jhf
µ (·),Jeq

µ (·) such that(
Jhf
µ (α;β,W′)

)
n,n′

:=
∂

∂αn′

(
R̂hf
µ

(
α;β,W′))

n
,(

Jeq
µ (α;β,W′)

)
n,n′ :=

∂

∂αn′

(
R̂eq
µ

(
α;β,W′))

n
,

for n, n′ = 1, . . . , N . We observe that the computation of the Jacobian involves the
derivatives with respect to the constitutive laws in Fhf

µ .

Remark 2. The presence of internal variables complexifies the application of EQ pro-
cedures (cf. section 2.3.2). Indeed, the general problem formulation in Equation (4.1)
(and Equations (3.12)-(3.13) for the specific problem of interest) shows the dependence
of the residual on state and internal variables both at the current time and at the pre-
vious time step. Therefore, in order to compute the entries of C,b associated with
(2.31), we should prescribe the triplets

{(
α

(j)
train,α

(j−1)
train ,W

(j−1)
train

)}
j∈Is

: knowledge of
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the primary and internal variables at time j and j − 1 for j ∈ Is is thus necessary to
construct residuals at each time step.

A first option, which was considered in Ref. [Far+14], is to store state and internal
variables {U (j)

µ , U
(j−1)
µ ,W

(j−1)
µ } at all select time steps j ∈ Is. This choice might lead

to very large offline memory costs — which scale with
(
nqNeDcl + 2NhfD

)
|Is| — and

might require modifications to the HF solver, but it does not require the solution to the
ROM with HF quadrature.

An alternative approach, which is considered in this work, is to use HF data to
build the ROB for the state variables, solve the ROM (4.3) with HF quadrature to
obtain {α̂(j)

hf,µ,Ŵ
(j)
hf,µ}j, and then set α(j)

train = α̂
(j)
hf,µ and W

(j)
train = Ŵ

(j)
hf,µ. This choice

contributes to reduce offline memory costs and might also avoid modifications to the
HF solver; however, it increases offline computational costs. In the section dedicated
to numerical results, in particular in Table 4.1, we report computational costs of ROM
solves based on HF and empirical quadrature.

We emphasize that the other pieces of our approach — Galerkin projection, POD-
Greedy algorithm, time-averaged residual indicator — can cope with both strategies. The
decision should thus be based on the particular software architecture considered and on
the design constraints.

4.3.2 Parametric problem

In order to extend our methodology to parametric problems, we should address two
challenges. First, we should explore the parameter domain P in an efficient way;
second, we should devise a compression strategy to combine information from different
parameters.

We choose to adopt the adaptive strategy — the so called POD-Greedy method—
which is described in section 2.2.3 (cf. Algorithm 2). The POD-Greedy algorithm takes
as input a discretisation of P denoted as Ξtrain, a tolerance tolloop for the outer greedy
loop, a tolerance tolpod for the data compression step, and the maximum number of
greedy iterations Ncount,max — we here prescribe the termination condition based on
the error indicator; we refer to the pMOR literature for other termination conditions.

We observe that the high-fidelity snapshots computation at line 3 can be summa-
rized by the following building block:[

{U(j)
µ }j∈Is

]
= FE-solve(µ)

that represents the FE solver for the high-fidelity discretization in (4.1); it takes as input
the vector of parameters and returns the snapshot set associated with the sampling
times Is ⊂ {1, . . . , Jmax} (without saving internal variables, as pointed out in remark 2).
Line 4, corresponding to a data compression step, can be rewritten in the following way,
in the occurence of internal variables:[

Z ′, λ′] = data-compression
(
Z, λ, {U(j)

µ⋆ }j∈Is , (·, ·), tolpod
)
;

it takes as input the current ROB and the POD eigenvalues λ = [λ1, . . . , λN ]
T , and

returns the updated ROB Z ′ and the updated eigenvalues λ′. Finally, we observe that
construction of the ROM comprises both the construction of the Galerkin ROM and
of the error indicator. In the remainder of this section, we discuss each element of the
procedure.

We remark that the presence of internal variables requires further modifications
of the ROM also in the implementation of an adaptive strategy. Ref. [Far+14] is an
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example of a POD setting: the training parameters are choosen a priori and for these
selected configurations the primary and the internal variables are stored; then, a POD
is performed over the primary snapshots. In the present work, the chosen adaptive
strategy requires the computation of error indicators. In mode detail, the computation
of the dual residual requires either the knowledge of internal and primary variables at
each computational time step, or the solution of a ROM.

Time-averaged error indicator

Once having defined trajectories Uµ = {U (j)
µ }Jmax

j=1 and Wµ = {W (j)
µ }Jmax

j=1 , for a given
parameter µ ∈ P, time-averaged residual (2.34) can be extended as follows

Rhf
avg,µ (Uµ,Wµ, V ) :=

Jmax∑
j=1

(t(j)−t(j−1)) Rhf
µ

(
U (j)
µ , U (j−1)

µ ,W (j)
µ ,W (j−1)

µ , V
)
, ∀ V ∈ Xhf

0 .

(4.4)
Error indicator in (2.35)(based on high-fidelity quadrature) now depends on both state
and internal trajectories:

∆hf
µ (Uµ,Wµ) = sup

V ∈Xhf
0 \{0}

Rhf
avg,µ (Uµ,Wµ, V )

‖V ‖
. (4.5)

In an analogous form, error indicator (2.36) based hyper-reduction can be written as
follows:

∆µ (Uµ,Wµ) = sup
V ∈YM\{0}

R
eq,r
avg,µ (Uµ,Wµ, V )

‖V ‖
, (4.6)

where YM ⊂ Xhf
0 is an M -dimensional empirical test space, while R

eq,r
avg,µ is defined

by replacing Rhf
µ in (4.4) with a suitable sparse weighted residual of the form (4.3a),

defined over the elements Ieq,r ⊂ {1, . . . , Ne}. In our implementation, we compute
the error indicator during the time iterations — as opposed to after having computed
the whole solution trajectory. Algorithm 5 provides the complete online solution and
residual indicator computations. We find that computation of ∆µ requires to compute
the internal variables Ŵµ in the elements Ieq ∪ Ieq,r at each time iteration (cf. (4.3b)),
and it requires to store the trial ROB Z in {Dk : k ∈ Ieq ∪ Ieq,r} and the test basis
Y = [ψ

1
, . . . , ψ

M
] in {Dk : k ∈ Ieq,r}.

Algorithm 5 Online solution and residual computations

1: Initial state and internal variables; set R̂avg
µ = 0.

2: for j = 1, . . . , Jmax do
3: Compute α̂(j)

µ by solving (4.3b).

4: Compute
(
Ŵ

(j)
µ

)
·,k,·

for all k ∈ Ieq,r using (4.3b)2.

5: Assemble R̂
(j)
µ ∈ RM such that

(
R̂

(j)
µ

)
m

=

R
eq,r
µ

(
Û

(j)

µ , Û
(j−1)

µ , Ŵ
(j)

µ , Ŵ
(j−1)

µ , ψ
m

)
for m = 1, . . . ,M .

6: Update R̂avg
µ = R̂avg

µ + (t(j) − t(j−1))R̂
(j)
µ .

7: end for
return {α̂(j)

µ }j and ∆µ = ‖R̂avg
µ ‖2.
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ROM construction

In order to devise an actionable ROM, we should discuss (i) the choice of the EQ rule
ρeq, (ii) the choice of the test space Y and of the EQ rule ρeq,r in (4.6). In view of
the presentation of the computational procedure, we define the ROM solution with
HF quadrature (Ûhf

µ , Ŵ
hf
µ ); we denote by Cµ ∈ RK·N,Ne the EQ matrix associated with

the manifold accuracy constraints in (2.31) for µ ∈ P; we further define the vector
c = [|D1|, . . . , |DNe |]T associated with the constant function accuracy constraint. Given
the test reduced basis ψ1, . . . , ψM , we define Gr

µ ∈ RM,Ne such that(
Gr
µρhf

)
m

= Req,r
avg,µ

(
Ûhf
µ , Ŵ

hf
µ , ψm

)
, ∀ µ ∈ P, m = 1, . . . ,M. (4.7)

We further define the unassembled average residual Ravg,un
µ ∈ Rnlp,Ne,Deq : we observe

that Ravg,un
µ might be employed to build the FE residual and ultimately compute the

Riesz representers ψ̂µ in (2.38), and also, given Y, to compute Gr
µ.

We focus on the construction of the ROM at the nc-th iteration of the POD
Greedy algorithm. We define Ξ⋆ = {µ̃(j)}nrom

j=1 = {µ⋆,(i)}nc
i=1 ∪ {µ̃(j)}ntrain,eq

j=1 , where
µ⋆,(1), . . . , µ⋆,(nc) are the parameters sampled by the greedy algorithm and µ̃(1), . . . , µ̃(ntrain,eq)

are independent identically distributed samples from the uniform distribution over P.
Algorithm 6 summarises the computational procedure as implemented in our code: the
test space Y is built using POD as in Ref. [Tad19], while the EQ weights ρeq,r are
obtained using the non-negative least-squares method.

Algorithm 6 Construction of the ROM
1: for µ ∈ Ξ⋆ do
2: Solve the ROM with HF quadrature and compute Cµ and Ravg,un

µ .
3: end for

4: Assemble C =


Cµ̃(1)

...
Cµ̃(nrom)

cT

 ∈ RK·N ·nrom,Ne and set ρeq =

lsqnonneg(C,Cρhf , toleq).
5: Compute the Riesz representers {ψ̂

µ
}µ∈Ξ⋆ using (2.38).

6: Define the empirical test space Y = span{ψ
m
}Mm=1 as [{ψ

m
}Mm=1] =

POD
(
{ψ̂

µ
}µ∈Ξ⋆ , (·, ·), tolpod,res

)
.

7: Assemble G =


Gµ̃(1)

...
Gµ̃(nrom)

cT

 ∈ RM ·nrom,Ne and set ρeq,r =

lsqnonneg(G,Gρhf , toleq,r).
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4.4 Numerical results
We measure performance of the ROM using the following discrete L2(0, Tf ;X

hf) relative
error; (see also (2.8)).

Eµ :=

√√√√Jmax∑
j=1

(
t(j) − t(j−1)

)∥∥U (j)
µ − Û

(j)

µ

∥∥2
√√√√Jmax∑

j=1

(
t(j) − t(j−1)

)∥∥∥U (j)
µ

∥∥∥2
(4.8)

for any µ ∈ P. Similarly, we denote by Eu
µ, Ep

µ and Et
µ the discrete relative L2(0, Tf ;X

hf)
errors associated with the estimate of displacement, pressure and temperature, respec-
tively.
In all the numerical tests, for both the in-sample and out-of-sample predictions, we
consider a constant time increment ∆t = 0.01 and a total number of 100 computa-
tional times; the time increments for solutions storage and for solution computation
are equal, i.e. ∆ts = ∆t = 0.01.

4.4.1 Solution reproduction problem

We first present numerical results for a fixed configuration of parameters µ̄ ∈ P to
validate the ROM described in section 4.3. We consider µ̄ equal to the centroid of P.
Notice that the solution fields corresponding to the physical configuration associated
with parameter µ̄ are depicted in section 3.6. We perform data compression based on
the whole set of snapshots, i.e. |Is| = Jmax = 100.

Data compression: POD

In Figure 4.1 we compare performance of the global POD based on the weighted inner
product (·, ·) (introduced in formula (3.14)) with the performance of the component-
wise POD. More precisely, we define Z such that

[Z,λ] = POD
(
{U (j)

µ̄ }j∈Is , (·, ·), tolpod
)
, (4.9)

and we then extract reduced basis associated to the single state variables of interest,
that is, we extract the displacement, pressure and temperature components Zu, Zp,
Zt.

Then, we denote the "optimal" (in a discrete L2 sense) spaces

[Zu,opt,λu,opt] = POD
(
{u(j)µ̄ }j∈Is , (·, ·)H1 , tolpod

)
; (4.10)

[Zp,opt,λp,opt] = POD
(
{p(j)µ̄ }j∈Is , (·, ·)H1 , tolpod

)
; (4.11)

[ZT,opt,λT,opt] = POD
(
{T (j)

µ̄ }j∈Is , (·, ·)H1 , tolpod

)
, (4.12)

that are found through Deq − 1 PODs over displacement, pressure and temperature.
In Figure 4.1(a) we show the behaviour of the POD eigenvalues in (4.9); in Figure

4.1(b), (c), (d) we compare the relative projection errors associated with Zu and Zu,opt,
Zp, Zp,opt and Zt and Zt,opt. We observe that the projection errors are nearly the
same for all the three state variables: this observation suggests to consider a single
reduced space to approximate the solution field. For this reason, the predictive errors
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Figure 4.1: solution reproduction problem. (a): exponential decay
of POD eigenvalues. (b), (c), (d): projection errors computed through
(4.9) (in black) and (4.10)-(4.12)(in red) for increasing numbers of POD

modes.

are computed over the whole vector of solutions (rather than on the single solutions
components) by the weighted norm that is associated with the weighted inner product
in (3.14).

Hyper-reduction

In Figure 4.2(a) we show the performance of the Galerkin ROM with and without
hyper-reduction. We distinguish between the high-fidelity quadrature rule, abbreviated
as HFQ, and the empirical quadrature rule for several tolerances toleq. We also add as
a reference, the relative projection error. Figure 4.2(b) shows the percentage of selected
elements Q

Ne
× 100% for the same choices of the tolerance toleq. We observe that the

empirical quadrature procedure is able to significantly reduce the size of the mesh used
for online calculations without compromising accuracy. The plateau for N ≳ 14 is due
to the tolerance of the Newton iterative solver.

In Figure 4.3, we show the selected grid elements for two choices of the EQ tolerance
value toleq and for N = 12. We observe that the sampled elements are distributed over
the whole domain with a slight prevalence of elements in the proximity of the alveoli.

We report in Table 4.1 the computational costs associated to the solution of system
(3.12)-(3.13) through the high-fidelity solver and the ROM with high-fidelity quadra-
ture and empirical quadrature, for the solution reproduction problem. We consider a
reduced space of size N = 12; we also set toleq = 10−14. The values in Table 4.1 are
the computational speedup, that is, speedup = HFcost

ROMcost where HFcost is the computa-
tional time of solving the high-fidelity solver and ROMcost is the computational time
associated to the ROM (we specify in different rows if with HFQ or EQ). The speedup
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Figure 4.2: solution reproduction problem. (a): errors associated to
projection error (proj), Galerkin with high-fidelity quadrature (HFQ)
and Galerkin with empirical quadrature for several choices of toleq with
respect to the ROM dimension N . (b): percentage of selected elements

for several toleq.

(a) toleq = 10−8 (b) toleq = 10−14

Figure 4.3: solution reproduction problem. Reduced mesh for two
choices of the empirical quadrature tolerance.

associated to the ROM with high-fidelity quadrature is almost 2 and is more than 50
times lower than the speedup of the hyper-reduced ROM. For this model problem, the
cost associated with ROM with HFQ is comparable with the cost of the HF solver.
As discussed in Remark 2, the choice of solving a ROM with high-fidelity quadrature
significantly increases the offline computation costs.

4.4.2 Parametric problem

We present results for the parametric case. We denote by Ξtrain ⊂ P the training set
used to build the ROM and by Ξtest ⊂ P the test set used to assess performance. Both
sets consist of independent identically distributed samples of a uniform distribution in
P, with |Ξtrain| = ntrain = 50 and |Ξtest| = ntest = 10. We also set tolpod = 10−7 in
(2.18) and in (2.20b) for data compression, and we set tolpod,res = 10−5 in algorithm 6
for the construction of the empirical test space. We consider ntrain,eq additional EQ
parameters for the construction of the ROM and the computation of the error indicator,
as described in section 4.3.2; we set ntrain,eq = 5.
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speedup
HF 1
ROM with HFQ 1.87
ROM with EQ 104.60

Table 4.1: solution reproduction problem: relative computational costs
of the ROM with high-fidelity quadrature and empirical quadrature.

We set the same EQ tolerance for both the construction of the trial and test spaces:
toleq = toleq,r = 10−12. The corresponding selected elements are denoted as Q and Qr.
We set Is ⊂ {1, ..., Jmax} with |Is| = 20. EQ rules are depicted using the tolerance
toleq = 10−12 (cf . Algorithm 6).

Error estimation

In Figure 4.4 we compare the dual residual and several EQ errors for each parameter
µ in the training set Ξtrain and for different dimensions of the reduced space that is
progressively updated during the execution of the POD-Greedy algorithm. In partic-
ular, we show results in two cases: the hierarchical POD-Greedy (H-POD) and the
hierarchical approximate POD-Greedy (denoted as HA-POD). Figures 4.4a and 4.4b
show for both H-POD and HA-POD to what extent the residual-based error indicator
defined in (4.6) is correlated with the relative error (4.8). We observe that for values
of the indicators that are larger than 10−3, correlation is very high, while for smaller
values correlation is much weaker.
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(a) H-POD

10−6 10−5 10−4 10−3 10−2
10−6

10−5

10−4

10−3

10−2

10−1

100

∆µ

E
µ

(b) HA-POD

Figure 4.4: parametric problem: correlation between the time-average
residual indicator (4.6) and true relative errors (4.8).

To provide a a concrete reference, in Figure 4.5 we investigate the correlation be-
tween the relative error (4.8) and the time-discrete L2(0, Tf ;X

′
hf,0) residual indicator

defined in (2.40): we observe that the indicator in (2.40) is significantly more accurate,
particularly for small values of the error. As stated in section 4.3, the residual indica-
tor (2.40) is considerably more expensive in terms of both memory and computational
costs.
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Figure 4.5: parametric problem: correlation between residual indicator
(2.40) and true relative errors 4.8.

POD-Greedy sampling

In Figures 4.6 and 4.7 we show the POD-Greedy algorithm convergence history, for
both the hierarchical and approximate hierarchical PODs. At each iteration of the al-
gorithm, until convergence, the error indicator ∆µ is illustrated with respect to training
parameter indices Itrain = {1, ..., |Ξtrain|} . At each iteration the selected parameter µ⋆
is marked in red, while the previously selected parameters are marked in green. We
also report the dimension of the updated reduced space and the number of sampled
elements.

(a) Iteration it = 1; N = 15, Q = 74, Qr =
16

(b) Iteration it = 2; N = 26, Q = 123,
Qr = 18

(c) Iteration it = 3; N = 35, Q = 155,
Qr = 22

(d) Iteration it = 4; N = 43, Q = 169,
Qr = 18

Figure 4.6: parametric problem: POD-Greedy algorithm convergence
history in the H-POD case.
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(a) it = 1; N = 15,Q = 74,Qr = 16 (b) it = 2; N = 25,Q = 120, Qr = 19

(c) it = 3; N = 31,Q = 135, Qr = 21 (d) Iteration it = 4; N = 37,Q = 156, Qr =
19

Figure 4.7: parametric problem: POD-Greedy algorithm convergence
history in the HA-POD case.

Prediction tests

In Figure 4.8, we assess out-of-sample performance of the proposed method. More
precisely, we show the behaviour of the maximum relative error (4.8) over the test set
max
µ∈Ξtest

Eµ for both H-POD Greedy and HA-POD Greedy. To provide a relevant bench-
mark, we compare results with the H-POD Greedy and HA-POD Greedy algorithms
based on the exact errors (strong POD-Greedy). For this particular example, we ob-
serve that the proposed method is effective to generate accurate ROMs: in particular,
the Greedy procedures based on the time-averaged error indicator are comparable in
terms of performance with the corresponding strong POD-Greedy algorithms.

4.5 Conclusions
In this chapter we developed and numerically validated a Galerkin projection-based
model order reduction procedure for the THM system introduced in equation (1.1) and
fully described in chapter 3. We remark that this approach may be extended to other
problems of the form (1.1), to demonstrate its generality and its relevance for continuum
mechanics applications. We successfully applied the underlying ROM to the parametric
THM problem in a two-dimensional case. We proposed a time-averaged error indicator
to drive the offline Greedy sampling, and an empirical quadrature procedure to reduce
online costs.

The approach discussed in this chapter relies on the assumption that the compu-
tational domain is parameter-independent — monolithic MOR. Therefore, it cannot
handle parameter-induced topology changes: in particular, it cannot handle changes of
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Figure 4.8: parametric problem:out-of-sample performance of the
ROM parametric problem obtained using the POD-Greedy algorithm.

Comparison with strong POD Greedy.

the number Qa of repositories (cf. figure 3.2). In the remainder of this thesis, we de-
velop a component-based extension of the present method to deal with these important
scenarios.
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Chapter 5

A one-shot overlapping Schwarz
method for component-based
model reduction: application to
nonlinear elasticity

In this chapter we develop a CB-pMOR formulation for nonlinear PDEs: in particu-
lar, we consider a nonlinear elasticity problem. This chapter is organised as follows:
in section 5.1 we introduce the domain-decomposition formulation in a simplified case
and we describe the link between a classical overlapping DD method and the proposed
method; in section 5.2 we present the formulation for general nonlinear PDEs in ar-
bitrary geometries and we introduce the model problem; in section 5.3 we discuss the
construction of local approximation spaces, hyper-reduction of the local models and of
the objective function; in section 5.5 we investigate performance of our method for a
nonlinear elasticity problem.

5.1 One-shot overlapping Schwarz method

5.1.1 The foundations of the method

We first introduce the formulation in the simplified case of two instantiated components
Ω1,Ω2, depicted in figure 5.1. We consider a steady problem of the type

findu ∈ X : Gµ(uµ, v) = 0 ∀v ∈ Y, (5.1)

with (or without) Dirichlet boundary conditions on a portion of the domain Γdir ⊂ ∂Ω.
If X = H1, the test space Y is set equal to H1

Γdir,0
.

Γ2 Γ1

Ω1 Ω2 Ω

Figure 5.1: configuration considered for illustration in section 5.1 and
for the analysis of the linear coercive problem in section 5.4.

We start presenting the component-based formulation of a given PDE problem of the
form of (5.1) without any level of reduction. To simplify notation, we do not distinguish
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between archetype and instantiated components introduced in chapter 1, that is, we
only consider a given geometric configuration and local instantiated components to
form a global system Ω depicted in black in figure 5.1. In section 5.2, we present the
formulation in the general setting: there we distinguish between archetype components
(in which local ROBs and local ROMs are built) and instantiated components in which
we actually solve the PDE problem by coupling local ROMs.

We denote by Xi ⊂ H1(Ωi) a suitable Hilbert space in Ωi. We introduce the concept
of port spaces and bubble spaces for each instantiated component i = 1, 2. A port space
is the space of traces of a local solution on port (or interior boundaries), which are
introduced in chapter 1 and depicted in figure 1.7 for a given geometric configuration.
A bubble space is the space of functions of X that vanish at port boundaries. We depict
in Figure 5.2 a schematic sketch of the bubble and port nodes of a representative FE
mesh for the instantiated components considered in this simplified case.

X1,0

Γ1Γ2

Ω1 Ω2
Ω

(a) bubble and port in Ω1

X2,0

Γ1Γ2

Ω1 Ω2
Ω

(b) bubble and port in Ω2

Figure 5.2: Sketch of bubble and port nodes associated with (a):X1,0,
Γ1 and (b):X2,0, Γ2.

This solution decomposition is important, as we explain in section 5.3, since it
enables the dimensionality reduction of local problems and it enables effective par-
allelization of the online solver. The bubble space Xi,0 and the port space Ui are
respectively defined as follows: Xi,0 = {v ∈ Xi : v|Γi = 0} and Ui = {v|Γi : v ∈ Xi},
for i = 1, 2.

Then, we introduce the overlapping Schwarz (OS) iterations as
find u

(k)
1 ∈ X1 : G1(u

(k)
1 , v) = 0 ∀ v ∈ X1,0, u

(k)
1 |Γ1 = u

(k−1)
2 ;

find u
(k)
2 ∈ X2 : G2(u

(k)
2 , v) = 0 ∀ v ∈ X2,0, u

(k)
2 |Γ2 =

{
u
(k)
1

u
(k−1)
1 ,

(5.2)

for k = 1, 2, . . .. Here, u(k)i denotes the state estimate at the k-th iteration in the
i-th subdomain, while G1,G2 are the variational forms associated with the PDE of
interest in Ω1,Ω2. The first method that was developed by Schwarz is characterized
by the condition u

(k)
2 = u

(k)
1 on Γ2 in (5.2): with this choice, the algorithm is named

multiplicative Schwarz or also Gauss-Seidel Schwarz method, to point out the natural
connection of this method with the classical Gauss-Seidel iterative method for solving
linear systems. More than a century later, starting in the mid 1980’s, the potential
of Schwarz’s idea for parallelizing numerical solvers for boundary value problems was
recognized: the algorithm that implements statement (5.2) can be generalized to many
subdomains and involves the solution of subproblems of smaller sizes. However, to
make it a parallel algorithm that is easily extensible to many subdomains, the boundary
condition u(k)2 = u

(k−1)
1 has to be choosen in (5.3): this is the additive Schwarz method,

also referred to as Jacobi-Schwarz method.
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It can be proven that if the global problem (cf. (5.1)) is well-posed and the over-
lap region is non empty, the Schwarz method applied to problem of the form (5.1)
converges, at least for linear coercive problems. We refer to some books on the con-
vergence properties of the classical Schwarz method (both in the multiplicative and
additive variants): [QV99], [Smi97], [TW04]. When the convergence of the algorithm
is guaranteed, the convergence rate increases if the measure of the overlapping region
|Ω1∩Ω2| increases. The convergence of the OS iterations to a limit state (u⋆1, u

⋆
2) implies

that ‖u⋆1 − u⋆2‖L2(Γ1∪Γ2) = 0. We thus propose to consider the formulation

min
u1∈X1,u2∈X2

‖u1 − u2‖L2(Γ1∪Γ2) s.t. Gi(ui, vi) = 0 ∀ vi ∈ Xi,0, i = 1, 2. (5.3)

Formulation (5.3) is a constrained optimization statement that penalizes the jump at
the components’ interfaces Γ1 and Γ2, subject to the approximate (in a sense to be
defined) satisfaction of the PDE in each instantiated component Ω1 and Ω2.
We note that a penalization on the port boundaries, rather that on the whole overlap
region, is considered in the formulation (5.3): we conjecture and empirically verify in
the numerical tests that the penalization over the ports is sufficient to ensure stability.
In the remainder we further comment on the choice of the formulation in view of the
introduction of hyper-reduction techniques.

Clearly, the pair (u⋆1, u
⋆
2) is a solution to (5.3); in section 5.4, we show that the

solution to (5.3) is unique and depends continuously on the data for linear coercive
problems. Note that for linear problems the solution to (5.3) can be computed directly
without the need for an iterative scheme: we thus refer to our approach as the one-shot
(OS) overlapping Schwarz (OS) method and we use the abbreviation OS21

In order to recast (5.3) into an unconstrained problem, we denote by up1 , u
p
2 the port

solutions, that is the restrictions of u1 and u2 to the corresponding ports Γ1 and Γ2;
Port solutions can be extended over the whole local domains by means of extension

operators Ei : Ui → Xi.
For a differential equation that admits a unique solution, the knowledge of the so-

lution at the ports suffices to uniquely characterize the solution in Ω. Indeed, local,
distinct and well-defined boundary value problems would need to be solved: the diffi-
culty level of this task would only be related to the difficulty of solving the localized
problems. This consideration suggests the idea of representing bubble solutions as the
evaluation of a local map, which we call a port-to-bubble solution map, at the port
solution: the key idea is that each local port-to-bubble map Fi : Ui → Xi,0, for i = 1, 2,
is uniquely determined by the corresponding port solution. It follows that given a local
port solution w ∈ Ui, we can rewrite each local variational form as follows:

Gi(Fi(w) + Eiw, vi) = 0 ∀ vi ∈ Xi,0, (5.4)

Then, we obtain the unconstrained OS2 statement:

min
up1∈U1,u

p
2∈U2

f(up1 , u
p
2) := ‖F1(u

p
1) + E1u

p
1 − F2(u

p
2)− E2u

p
2‖

2
L2(Γ1∪Γ2)

. (5.5)

The present derivation can be viewed as a static condensation of bubble degrees of
freedom and is similar in scope to the approach in [HKP13]. Following taxonomy from
the optimization literature, we might view our approach as black-box — as opposed to
all-at-once [HK10, section 1.1].

1More rigorously, we should consider the acronym OSOS or (OS)2; however, we opted for OS2 to
simplify the notation.
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5.1.2 Relation with previous works

The literature on CB-pMOR and reduced-order model/full-order model (ROM-FOM)
coupling is extremely vast: CB-pMOR strategies have been presented in [KOH11;
HKP13; HCC21; IQR16; MC21; Peg+21] and also recently reviewed in [Buh+20];
ROM/FOM coupling strategies have been proposed for a broad range of applications
including compressible flows [CDV11; LA03; Luc+01; Rif+21] incompressible flows
[BCI13; Ber+18; WST09], and structural mechanics [CDM15; Ker+13; RR14] — these
methods do not distinguish between archetype and instantiated components and do not
necessarily involve the training of a library of local ROMs. Recently, several authors
have proposed to couple iterative Schwarz DD strategies with local non-intrusive ROMs
based on neural network approximations [Che+21a; Li+19].

The OS2 statement presented in (5.3) shares several features with the minimiza-
tion formulation first proposed in [DH79] in the domain decomposition literature, for
coercive linear elliptic PDEs. We recognise some similarities also with [Cas+22] and
[BTM22], which are focused on the coupling of projection-based MOR models and high-
fidelity models in non-overlapping and overlapping partitions. Rather than [Cas+22]
and [BTM22], the present work is characterized by the introduction of static condensa-
tion and the use of archetype components for the definition of configuration-independent
ROBs.
The OS2 statement presented in (5.3) is also tightly linked to the method proposed
in [DB15] for the coupling of local and nonlocal diffusion models (see also [BR09]): as
in [DB15], we interpret the OS2 statement as a control problem; while in [DB15] the
controls are the nonlocal volume constraint and the local boundary condition, in this
work the controls are the local solutions at ports. We also observe that the authors of
[DB15] do not exploit the nonlinear least-square structure of the problem and rely on a
quasi-Newton scheme to approximate the solution. We show that the choice of using the
port solutions as control variables enables the definition of configuration-independent
archetype components and is thus key for CB-pMOR.

Our approach is related to the Galerkin-free approach proposed in [BTI09] and
further developed in [Ber+18]. The authors consider a HF model in the region of
interest and rely on a low-dimensional expansion for the far-field; instead of project-
ing the equations in the far-field onto a low-dimensional test space, they simply rely
on the objective function to compute the far-field solution coefficients (Galerkin-free).
Exploiting notation introduced in the previous section, we can state the methods in
[BTI09; Ber+18] as:

min
u1∈X1,w2∈Z2

‖u1 − u2‖L2(Ω1∩Ω2) s.t. G1(u1, v1) = 0 ∀ v1 ∈ X1,0,

where X1 denotes the HF space in Ω1 and Z2 denotes the reduced-order space in Ω2.
The approach presented in this work is more general, more robust and also leads to
more efficient online calculations, at the price of a much more involved implementation.

Our approach is linked to the minimum residual formulation in [HCC21]: the au-
thors consider a minimization statement in which continuity of solution and fluxes is
enforced as a constraint in the formulation, while the global dual residual enters di-
rectly in the objective function. The imposition of continuity in the objective function
removes compatibility requirements at ports and allows the use of independent spaces in
each archetype component; in particular, the use of an overlapping partition allows us
to neither explicitly enforce continuity of the solution at ports nor to enforce continuity
of normal fluxes. For highly-nonlinear PDEs, we found that this feature remarkably
simplifies the implementation of our method and ultimately increases its flexibility.
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Finally, the OS2 approach can be interpreted as an alternative to the partition-of-
unity method (PUM, [BM97]) considered in [ST22]. Given local approximation spaces,
PUM relies on the introduction of a partition of unity to define a global approximation
space, and on Galerkin projection to devise the ROM for the deployed system. PUM
has strong theoretical guarantees both in terms of approximation and in terms of quasi-
optimality properties. Similarly to OS2, PUM requires efficient mesh interpolation to
achieve online efficiency. The major difference between OS2 and PUM is that PUM
relies on a global variational formulation based on a single model: on the other hand,
since in OS2 local models are independent of each other, OS2 can be used to couple
different models in different regions of the domain.

5.2 Formulation

5.2.1 Preliminary definitions

We use the superscript (·)a to indicate quantities and spaces defined for a given archetype
component; we further denote by ℓ a generic element of the library L of archetype
components. We define the archetype components {Ωa

ℓ}ℓ∈L ⊂ Rd; we denote by Γa,dir
ℓ

the open subset of ∂Ωa
ℓ where we impose Dirichlet boundary conditions, and we de-

note by Γa
ℓ the portion of ∂Ωa

ℓ that lies inside the computational domain (“port”).
For each archetype component ℓ ∈ L, we define the local discrete high-fidelity fi-
nite element space Xa

ℓ ⊂ [H1
0,Γa,dir

ℓ

(Ωa
ℓ )]

D where we recall that D denotes the num-
ber of state variables. Each archetype component is endowed with a bubble space
Xa
ℓ,0 = {v ∈ Xa

ℓ : v|Γa
ℓ
= 0}, and a port space Ua

ℓ = {v|Γa
ℓ
: v ∈ Xa

ℓ } ⊂ [H1/2(Γa
ℓ )]

D.
We endow Xa

ℓ with the inner product (·, ·)ℓ and the induced norm ‖ · ‖ℓ =
√
(·, ·)ℓ and

we define Na
ℓ = dim (Xa

ℓ ).
To define port solutions over the whole local (archetype) domains and enable the

solution decomposition into bubble and port contributions, we adopt the continuous
extension operator Eaℓ : U

a
ℓ → Xa

ℓ such that

(Eaℓw, v)ℓ = 0 ∀ v ∈ Xa
ℓ,0, Eaℓw

∣∣
Γa
ℓ
= w, ∀w ∈ Ua

ℓ ; (5.6)

in this way Eaℓu
p
ℓ ∈ Xa

ℓ . We consider the standard H1 inner product, that is (w, v)ℓ =∫
Ωa

ℓ
∇w · ∇v + w · v dx.
We define the vector of local parameters µℓ in the parameter region Pℓ, which

include geometric and material parameters that identify the physical model in any
instantiated component of type ℓ.

5.2.2 Problem formulation

We define the variational form Ga
ℓ : Xa

ℓ ×Xa
ℓ,0 ×Pℓ → R such that

Ga
ℓ (w, v;µℓ) =

Ne
ℓ∑

k=1

∫
Dℓ,k

ηa,eℓ (w, v;µℓ) dx +

∫
∂Dℓ,k

ηa,fℓ (w, v;µℓ) dx (5.7)

where N e
ℓ is the number of mesh elements, {Dℓ,k}

Ne
ℓ

k=1 denote the elements of the FE
mesh for the archetype component Ωa

ℓ and the element and facet forms ηa,eℓ and ηa,fℓ
encode the dependence on the problem of interest: we provide their definition for the
problem considered in the numerical examples in (5.11). Furthermore, for any ℓ ∈ L,
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we define the parametric mapping Φa
ℓ : Ωa

ℓ × Pℓ → Rd that describes the deformation
of the archetype component ℓ for the parameter value µℓ ∈ Pℓ.

A physical system with Ndd components is uniquely described by a function L :
{1, . . . , Ndd} → L that associates to each instantiated component i ∈ {1, . . . , Ndd} the
corresponding archetype component Li ∈ L, and the set of Ndd labels {Li}Ndd

i=1 ⊂ L,
and the set of parameters µ := (µ1, . . . , µNdd

) ∈ P :=
⊗Ndd

i=1 PLi . Given µ ∈ P, we
define

(i) the mappings {Φi}Ndd
i=1 such that Φi = Φa

Li(·;µi) for i = 1, . . . , Ndd;

(ii) the instantiated overlapping partition {Ωi = Φi(Ω
a
Li)}

Ndd
i=1 , the global open domain

Ω ⊂ Rd such that Ω =
⋃
iΩi, the ports Γi = Φi(Γ

a
Li) and the Dirichlet boundaries

Γdir
i = Φi(Γ

a,dir
Li ), for i = 1, . . . , Ndd;

(iii) the deployed FE full, bubble, and port spaces Xi = {v ◦ Φ−1
i : v ∈ Xa

Li}, Xi,0 =

{v ◦ Φ−1
i : v ∈ Xa

Li,0}, and Ui = {v|Γi : v ∈ Xi}, for i = 1, . . . , Ndd;

(iv) the extension operators Ei : Ui → Xi such that Eiw = EaLi (w ◦ Φi) ◦ Φ−1
i for

i = 1, . . . , Ndd;

(v) the deployed variational forms Gi : Xi ×Xi,0 → R such that

Gi(w, v) = Ga
Li(w ◦ Φi, v ◦ Φi;µi). (5.8)

Given i = 1, . . . , Ndd, we further define the set of neighboring elements Neighi = {j :
Ωj ∩ Ωi 6= ∅, j 6= i}, and the partition of Γi {Γi,j = Γi ∩ Ωj : j ∈ Neighi}. Note
that, exploiting the previous definitions, the condition x ∈ Γi,j ∩ Γj,i implies that
x ∈ ∂Ωi ∩ Ωi: since Ωi is an open open sets, ∂Ωi ∩ Ωi = ∅ and thus Γi,j ∩ Γj,i = ∅ for
any i, j = 1, . . . , Ndd.

Given the archetype mesh Ta
ℓ =

(
{xa,vℓ,j }

Nv
ℓ

j=1, Tℓ
)

, with nodes {xa,vℓ,j }
Nv

ℓ
j=1, connectivity

matrix Tℓ and elements {Dk,ℓ}
Ne

ℓ
k=1, we denote by u a generic element of Xℓ and we

denote by u ∈ RDN
v
ℓ the corresponding FE vector associated with the Lagrangian basis

of Ta
ℓ , for all ℓ ∈ L. Following [TZ21], we pursue a discretize-then-map treatment of

parameterized geometries: given the mesh Ta
Li , we state the local variational problems

in the deformed mesh Φi
(
Ta

Li

)
=
(
{Φi

(
xa,vj,Li

)
}
Nv

Li
j=1, TLi

)
. In section 5.3.2, we discuss

the hyper-reduced formulation of the local problems. Note that if (Ta
ℓ ,u) is associated

with the element u ∈ Xℓ, then (Φi(T
a
ℓ ),u) approximates u ◦ Φ−1.

We observe that the parametric mapping is supposed to be bijective in Ωa
ℓ and bi-

lipschitz. In this work, the deformation of archetype components (cf. figure 1.7) is
described by piecewise linear maps that retain the structured features of the archetype
components to the instantiated ones. A nonlinear mapping could be considered as well:
we observe that in that case i) a more computationally demanding mesh interpolation
would derive from unstructured instantiated grids; ii) in a discretize-then-map context,
the computation of variational operators in the instantiated meshes would not require
the computation of mapping derivatives.

5.2.3 Model problem

We illustrate the many elements of the formulation for the two-dimensional (plane
stress) nonlinear (neo-Hookean) elasticity problem considered in the numerical exper-
iments in section 5.5. The problem shares the same geometric configuration with the
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THM problem that we describe in chapter 3 and we solve in chapter 4 for a monolithic
configuration. We can consider the neo-Hookean study case as a preliminary model
problem for the study of CB-pMOR techniques; we extend the methodology to un-
steady coupled systems in chapter 6. Notice that in this chapter we consider a different
model from the elasticity law for the solid in the THM system (cf. the equilibrium of
mechanical forces in section 3.4.1). We remark that the numerical methods presented
in this chapter are as well applicable to different types of constituive laws, for example
to solid-mechanics models with time-dependency and plasticity.

We consider the constitutive law for the first Piola Kirchhoff stress tensor

P (u) = λ2
(
F (u)− F (u)−T

)
+ λ1 log (det(F (u))) F (u)

−T . (5.9a)

Here, F (u) = 1+∇u is the deformation gradient associated with the displacement u,
λ1, λ2 are the Lamé constants given by

λ1 =
Eν

1− ν2
, λ2 =

E

2(1 + ν)
, (5.9b)

where E is the Young’s modulus, and ν is the Poisson’s ratio. We consider the domain
Ω = (0, 1)2 depicted in Figure 5.3; we set ν = 0.3 and we consider E = Ek in ωk for
k = 1, 2, 3. We prescribe normal homogeneous Dirichlet conditions on the left and right
boundaries; homogeneous Dirichlet conditions on the bottom boundary Γbtm and the
Neumann conditions:

P (u)n
∣∣
Γtop

= g
top

:=

[
0
−4x1(1− x1)

]
, P (u)n

∣∣
Γr,q

= g
r
:= −s

[
0
1

]
, q = 1, . . . , Qa

(5.9c)
with s > 0.

ω1

Γtop

Γbtm

ω2

ω3 Ω

Γr,1 Γr,Qa

Figure 5.3: global system. Γtop and Γr,1, . . . ,Γr,Qa
are associated with

the stress conditions; the regions {Γr,q}q are of equal size ℓr > 0, and the
distance between consecutive regions is constant and equal to d > ℓr.
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The system of equations below summarizes the problem: we seek the solution u :
Ω → R2 to the system

−∇ · P (u) = 0 in Ω

u · n = 0 on {0, 1} × (0, 1)

P (u)n = g
r

on Γr

P (u)n = g
top

on Γtop

u = 0 on Γbtm = (0, 1)× {0} \ Γr

(5.10)

where Γr =
⋃Qa
q=1 Γr,q. Our goal is to estimate the solution to (5.10) for any choice of the

Young’s moduli (E1, E2, E3) associated with the regions ω1, ω2, ω3 in [25, 30]× [10, 20]2,
any value of s ∈ [0.4, 1] in (5.9c), and any Qa ∈ {2, . . . , 7}. Note that variations
of Qa induce topological changes that prevent the application of standard monolithic
techniques.

We introduce the library of components Ωa
int and Ωa

ext depicted in Figure 1.6; in Fig-
ure 5.4 we show examples of instantiated components and we identify the corresponding
ports. We denote by δ > 0 the size of the overlap. The mapping Φa

int associated with
the internal component is a simple horizontal shift, while the mapping Φa

ext associ-
ated with the external component consists in a piecewise-linear map in the horizontal
direction and the identity map in the vertical direction. The internal component is
uniquely described by the vector of parameters µint = [E1, s, xshift] where xshift denotes
the magnitude of the horizontal shift; the external component is described by the vec-
tor of parameters µext = [E1, E2, E3, dext] with dext = Qad − δ. We then introduce the
variational forms:

Ga
int(w, v;µint) =

∫
Ωa

int

ηa,eint(w, v;µint) dx +

∫
Γa
r

ηa,fint(w, v;µint) dx,

Ga
ext(w, v;µext) =

∫
Ωa

ext

ηa,eext(w, v;µext) dx +

∫
Γa
top

ηa,fext(w, v;µext) dx.
(5.11a)

Explicit expressions of ηa,eℓ and ηa,fℓ can be obtained by resorting to change-of-variable
formulas: given the mapping Φ, we denote by ∇Φ = ∇Φ−T∇ the corresponding
“mapped” gradient and we define ∇s,Φ = 1

2

(
∇Φ +∇T

Φ

)
and F

Φ
= 1 + ∇Φ. Then,

we have (we omit dependence on the parameter to shorten notation)

ηa,eint(w, v) = ηa,eext(w, v) = P (FΦ(w)) : ∇s,Φv det(∇Φ),

ηa,fint(w, v) = v ·
(
g
r
◦ Φ
)
‖∇Φt̂‖2, ηa,fext(w, v) = v ·

(
g
top

◦ Φ
)
‖∇Φt̂‖2,

(5.11b)

where t̂ denotes the tangent vector to the surface.
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Γr,i

Ωi

Γi,j

Γr,j

Ωj

Γj,i

(a) instantiated "internal"
components

ΩNdd

Ω1

Γr,1

Γ1,Ndd

ΓNdd,1

(b) instantiated "internal" and "external
components

Figure 5.4: geometrical configuration. Examples of deployed compo-
nents. (a): i, j = 1, . . . , Qa, (b): i = 1, j = Ndd = Qa + 1. The overlap

area is marked in yellow.

5.2.4 Hybridized statement

High-dimensional formulation

We generalize below the OS2 statement introduced in section 5.1. Given the set of
parameters µ = (µ1, . . . , µNdd

) ∈ P =
⊗Ndd

i=1 PLi , we propose the CB full-order model:
find uhf = (uhf1 , . . . , u

hf
Ndd

) ∈ X :=
⊗Ndd

i=1 Xi to minimize

min
u∈X

1

2

Ndd∑
i=1

∑
j∈Neighi

‖ui − uj‖2L2(Γi,j)
s.t. Gi(ui, vi) = 0 ∀ vi ∈ Xi,0, i = 1, . . . , Ndd.

(5.12)
Note that (5.12) reduces to (5.3) for the case of two overlapping components.

To derive the hybridized formulation, we define the port-to-bubble maps Fi : Ui →
Xi,0 such that, given w ∈ Ui,

Gi (Fi(w) + Eiw, v) = 0 ∀ v ∈ Xi,0. (5.13a)

Note that (5.13a) corresponds to the FE solution to a localized PDE problem with
datum w on Γi. Then, we rewrite (5.12) as the unconstrained least-square problem:
find uhf,p = (uhf,p1 , . . . , uhf,pNdd

) ∈ U :=
⊗Ndd

i=1 Ui to minimize

min
up∈U

1

2

Ndd∑
i=1

∑
j∈Neighi

‖upi − Eju
p
j − Fj(u

p
j )‖

2
L2(Γi,j)

. (5.13b)

Minimization problem (5.13b) reads as a nonlinear least-square problem; in the fol-
lowing we devise a low-dimensional reduced-order approximation of (5.13b) based on
Galerkin projection of the port-to-bubble maps.

Reduced-order formulation

For all ℓ ∈ L, we introduce the low-dimensional archetype bubble and port spaces
Z

a,b
ℓ ⊂ Xℓ,0, Za,p

ℓ ⊂ Uℓ and the extended port spaces W
a,p
ℓ = {Eℓζ : ζ ∈ Z

a,p
ℓ } ⊂ Xℓ;

we denote by n and m the dimensions of the bubble and port spaces, respectively; for
simplicity, we assume that the dimension of the spaces is the same for all archetype
components. We also define the archetype ROBs Za,b

ℓ : Rn → Z
a,b
ℓ and W a,b

ℓ : Rm →
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W
a,b
ℓ . Given the deployed system, we introduce the instantiated (or deployed) bubble

and port spaces Zb
i = {ζ ◦ Φ−1

i : ζ ∈ Z
a,b
Li } and W

p
i = {ζ ◦ Φ−1

i : ζ ∈ W
a,p
Li } with ROBs

Zb
i = [ζb

i,1
, . . . , ζb

i,n
] : Rn → Zb

i and W p
i = [ψp

i,1
, . . . , ψp

i,m
] : Rm → W

p
i , respectively.

Then, we define the ansatz:

ûi(α̂i, β̂i) = Zb
i α̂i +W p

i β̂i, i = 1, . . . , Ndd. (5.14)

We observe that ûbi = Zb
i α̂i should approximate the bubble field u|Ωi − Ei(u|Γi), while

ûpi =W p
i β̂i is an approximation of the (extended) port field Ei(u|Γi): we refer to ûbi , û

p
i

as to the bubble and port estimates of the solution field in the i-th component.
To obtain the low-dimensional formulation, we introduce the local residuals2 (cf.

(5.7), (5.8) and (5.11))

R̂hf
i : Rn × Rm → Rn s.t.

(
R̂hf
i (αi,βi)

)
j
= Gi

(
ûi(αi,βi) , ζ

b
i,j

)
, (5.15a)

for i = 1, . . . , Ndd, j = 1, . . . , n, and the approximate port-to-bubble maps F̂hfi : Rm →
Rn such that R̂hf

i

(
F̂hfi (βi) ,βi

)
= 0. Computation of the port-to-bubble maps {F̂hfi }i

is expensive due to the need to integrate over the whole computational mesh. We
thus replace the residuals {R̂hf

i }i with the empirical quadrature (EQ) approximations
{R̂eq

i }i and we define the hyper-reduced port-to-bubble maps F̂eqi : Rm → Rn such that

R̂eq
i

(
F̂eqi (βi) ,βi

)
= 0. (5.15b)

We discuss in section 5.3.2 the hyper-reduction strategy employed to construct the
approximate residuals R̂eq

i ; here, we observe that the gradient of the port-to-bubble
map can be obtained by differentiating (5.15b):

∇Feqi (βi) = −
(
∂αiR̂

eq
i

)−1
∂βi

R̂eq
i

∣∣∣
(αi,βi)= (F̂eqi (βi),βi)

(5.15c)

We remark that the existence and well-posedness of the port-to-bubble maps (5.15b) is
conditioned to the existence of solutions to the nonlinear systems of equations R̂hf

i = 0

and to the fact that ∂αiR̂
hf
i is non-singular at the optimum. It thus depends on the

particular problem of interest, and might also depend on the overlapping partition
considered and on the reduced-order approximation spaces.

We now focus on the objective function. We observe that

1

2

Ndd∑
i=1

∑
j∈Neighi

∫
Γi,j

‖ûi(x)− ûj(x)‖22 dx

=
1

2

Ndd∑
i=1

∫
Γi

 ∑
j∈Neighi:x∈Ωj

‖ûi(x)− ûj(x)‖22

 dx

=
1

2

Ndd∑
i=1

∫
Γa

Li

 ∑
j∈Neighi:Φi(x̂)∈Ωj

‖ûi(Φi(x̂))− ûj(Φi(x̂))‖22

 Jbnd
i (x̂) dx̂

where Jbnd
i = ‖det(∇Φi)∇Φ−T

i na
Li‖2 and na

ℓ is the outward normal to Γa
ℓ . Note that

in the last identity we used the Narson formula; furthermore, to shorten notation, we
omitted dependence of ûi, ûj on bubble and port coefficients (cf. (5.14)). We introduce

2The superscript hf encodes the fact that the local residuals are computed using the HF mesh.
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the HF quadrature rules {(xpℓ,q, ρ
p
ℓ,q)}

Np
ℓ

q=1 on the archetype ports Γa
ℓ for ℓ ∈ L; then, we

have

1

2

Ndd∑
i=1

∑
j∈Neighi

∫
Γi,j

‖ûi(αi,βi)− ûj(αj ,βj)‖22 dx ≈ 1

2

Ndd∑
i=1

ρpLi · η
p
i (α,β) (5.16a)

where α = [α1, . . . ,αNdd
] ∈ RN with N := nNdd, β = [β1, . . . ,βNdd

] ∈ RM , with
M = mNdd, and

ηpi (α,β) =


ηpi

(
Φi(x

p
ℓ,1);α,β

)
...
ηpi

(
Φi(x

p
ℓ,Np

ℓ
);α,β

)
 (5.16b)

with

ηpi (x;α,β) =

 ∑
j∈Neighi:x∈Ωj

‖ûi(x;αi,βi) − ûj(x;αj ,βj)‖22

 Jbnd
i (Φ−1

i (x)), (5.16c)

for i = 1, . . . , Ndd.
We notice that the reduced (and hyper-reduced) formulations of the objective func-

tion introduced in (5.16a) heavily rely on the formulation (5.3), which is based on a
penalization over the port boundaries. Such a formulation cannot be easily extended to
the case in which a penalization is done over the whole overlapping subdomain. This
consideration motivates the proposed formulation (5.3), together with the fact that
stability is also preserved by a minimization over ports.

Evaluation of (5.16) is expensive due to the need to integrate over the port bound-
aries

⋃Ndd
i=1

⋃
j∈Neighi

Γi,j : we should thus replace the HF quadrature vectors {ρpℓ }ℓ∈L
with sparse EQ vectors {ρp,eqℓ }ℓ∈L. In conclusion, we obtain the discrete OS2 formula-
tion: find β̂ = [β̂1, . . . , β̂Ndd

] ∈ RM such that

β̂ ∈ arg min
β∈RM

feq(β) = F
(
F̂eq(β), β, {ρp,eqℓ }ℓ∈L

)
(5.17a)

where F̂eq : RM → RN is the full port-to-bubble map such that F̂eq(β) =
[
F̂eq1 (β1), . . . , F̂

eq
Ndd

(βNdd
)
]T ,

and

F
(
α, β, {ρp,eqℓ }ℓ∈L

)
=

1

2

Ndd∑
i=1

ρp,eqLi · ηpi (α,β). (5.17b)

If we denote by Q the total number of quadrature points with repetitions times the
number of state variables D,

Q := D

Ndd∑
i=1

Np
Li∑

q=1

card
{
j : Φi(x

p
Li,q) ∈ Ωj

}
H(ρp,eqLi,q )

 , with H(x) =

{
1 if x > 0
0 otherwise

(5.17c)
we find that there exist P ∈ RQ×N and Q ∈ RQ×M such that

feq (β) =
1

2
‖req (β) ‖22, where req (β) = P F̂eq(β) +Qβ. (5.17d)
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5.2.5 Discussion

The remarks below provide a number of comments on the OS2 statement introduced
in the previous section.

Remark 3. Algebraic representation of the local ROBs. Exploiting the notation
introduced at the end of section 5.2.1, the archetype bubble ROB Za,b

ℓ : Rn → Z
a,b
ℓ

admits the algebraic representation Za,b
ℓ : α ∈ Rn 7→

(
Ta
ℓ ,Z

b
ℓα
)

for some Zb
ℓ ∈ RN

a
ℓ ×n,

while the deployed operators can be stated as Zb
i : α ∈ Rn 7→

(
Φi(T

a
Li),Z

b
Liα
)
, for i =

1, . . . , Ndd. Note that by virtue of the correspondence between archetype and deployed
spaces, we do not have to explicitly instantiate — and then store — the bubble ROBs
for each configuration. The same applies for the port bases.

Remark 4. Extension to non-homogeneous Dirichlet conditions. The OS2
formulation can readily deal with non-homogeneous Dirichlet boundary conditions. To-
wards this end, for i = 1, . . . , Ndd, given the Dirichlet datum gdir

i
: Γdir

i → RD, we
introduce the lift udiri such that udiri |Γdir

i
= gdir

i
, and the ansatz

ûi(α̂i, β̂i) = udiri + Zb
i α̂i +W p

i β̂i, i = 1, . . . , Ndd.

Here, ûbi = Zb
i α̂i should approximate the bubble field u|Ωi −Ei((u−udiri )|Γi)−udiri , while

ûpi =W p
i β̂i is an approximation of the (extended) port field Ei((u− udiri )|Γi). Then, we

can proceed as before to derive the reduced port-to-bubble maps and the low-dimensional
OS2 formulation. We refer to [GPS07] for a thorough discussion on the imposition of
Dirichlet boundary conditions in Galerkin ROMs.

Remark 5. Computation of the matrices P,Q. The matrices P,Q depend on
the configuration of interest but are independent of the port coefficients β: they can
thus be defined after having instantiated the system and before solving the optimization
problem. Since the port quadrature points {Φi(xpLi,q)}i,q are configuration-dependent, we
should resort to mesh interpolation to assemble the matrices P and Q. In this work, we
rely on structured meshes in the archetype components that enable logarithmic-in-Nv

ℓ

FE interpolations.

Remark 6. Hyper-reduction. As required in CB-pMOR, hyper-reduction should be
defined at the component level and is then translated to the deployed system using the
mappings {Φi}i. From an algorithmic standpoint, an archetype component ℓ ∈ L should
be interpreted as a complex data structure that comprises (i) bubble and port ROBs; (ii)
the approximate residual R̂eq

ℓ that enables effective computations of port-to-bubble maps;
(iii) the port quadrature rule ρp,eqℓ associated with the approximate objective function
(5.17a); and (iv) a (structured) mesh structure for which efficient (i.e., logarithmic-in-
Nv
ℓ ) interpolation procedures are available for the computation of the matrices P,Q.

5.2.6 Solution to the OS2 minimization problem

In view of the description of the numerical solution to (5.17), we observe that the Ja-
cobian of the global port-to-bubble map F̂eq : RM → RN is block-diagonal (cf. (5.15c)):

Ĵeq
F (β) = diag

[
Ĵeq

F1(β1), . . . , Ĵ
eq
FNdd

(βNdd
)
]
, Ĵeq

Fi (βi) := −
(
∂αiR̂

eq
i

)−1
∂βi

R̂eq
i

∣∣∣
(αi,βi)= (F̂eqi (βi),βi)

.

(5.18a)
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Then, we observe that

∇req = PĴeq
F +Q, ∇ feq =

(
PĴeq

F +Q
)T

req. (5.18b)

If Ndd � m (as in the cases considered e.g. in [HKP13; MC21]), the Jacobian Ĵeq
F is

highly sparse; note that explicit assembly of the local Jacobians requires to solve m
linear systems of size n, while matrix-vector multiplications Ĵeq

F v and vT Ĵeq
F require

Ndd n×m matrix-vector multiplications and Ndd linear solves of size m.
The nonlinear least-squares problem (5.17) can be solved using (i) steepest-descent

or quasi-Newton methods, or (ii) Gauss-Newton or Levenberg-Marquandt algorithms,
[NW06].

(i) Steepest-descent or quasi Newton methods only require the explicit calculation of
the objective function feq and its gradient ∇ feq, which can be computed without
explicitly forming Ĵeq

F . However, these methods do not exploit the underlying
least-square structure of the optimization problem and might thus exhibit slower
convergence and/or might be more prone to divergent behaviors.

(ii) The Gauss-Newton method (GNM) reads as

β̂
(k+1)

= β̂
(k)

−
(
∇req

(
β̂
(k)
))†

req
(
β̂
(k)
)

where (·)† denotes the Moore-Penrose pseudo-inverse. The Levenberg-Marquandt
algorithm (LMA) is a generalization of GNM that is typically more robust for
poor choices of the initial condition. Note that GNM/LMA are the methods of
choice for least-squares problems; however, they require the assembly of Ĵeq

F at
each iteration.
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Algorithm 7 Solution to (5.17) through the Gauss-Newton method.

Inputs: α(0) = [α
(0)
1 , . . . ,α

(0)
Ndd

], β(0) = [β
(0)
1 , . . . ,β

(0)
Ndd

] initial conditions (cf. Eq. (5.22)),
tol > 0, maxit.
Outputs: β̂ port coefficients, α̂ = F̂

eq
(β̂) bubble coefficients.

1: Compute the matrices P,Q in (5.17d).

2: Set β̂
(0)

= β(0) and α̂ = α(0).

3: for k = 1, . . . , maxit do
4: for i = 1, . . . , Ndd do
5: Compute αi s.t. R̂eq

i (αi,β
(k)
i ) = 0 using Newton’s method with initial

condition α̂i.
6: Compute Ĵeq

Fi (β
(k)
i ) (cf. (5.18)).

7: end for
8: Update α̂ = [α1, . . . ,αNdd

].

9: Compute req,(k) = Pα̂+Qβ̂
(k)

i and ∇req,(k) = PĴeq
F +Q.

10: Compute β̂
(k+1)

= β̂
(k)

−
(
∇req,(k)

)†
req,(k)

11: if ‖β̂
(k+1)

− β̂
(k)

‖2 < tol‖β̂
(k)

‖2 then, BREAK
12: end if
13: end for
14: Return β̂ = β̂

(k+1)
and α̂ = F̂eq(β̂).

In this work, we resort to GNM to solve (5.17). Algorithm 7 summarizes the overall
procedure as implemented in our code; we envision that our approach can cope with
LMA with only minor changes: we omit the details. Note that we update at each
iteration the estimates of the bubble coefficients: this is important to speed up the
solution to the local Newton problems. In addition, the algorithm requires to provide
an initial guess for port and bubble coefficients; we discuss the choice of the initial
condition in section 5.3 (cf. Eq. (5.22)).

As explained in [MNT04], for nonlinear least-squares problems of the form (5.17d),
Gauss-Newton’s method shows quadratic convergence if req

(
β̂
)
= 0 and a super-linear

convergence if ‖req
(
β̂
)
‖2 is small. In the numerical results, we also investigate perfor-

mance of a quasi-Newton method — the limited-memory BFGS method [NW06]. Note
that the implementation of the latter follows a similar procedure as in Algorithm 7
with only minor changes: we omit the details.

Remark 7. We remark that the internal loop at lines 4-7 in Algorithm 7 and the
construction of the matrices P,Q are embarrassingly parallelizable.

We consider, as reference, the multiplicative overlapping Schwarz method. Classical
OS iterations are introduced in section 5.1 for a generic PDE problem in a simple
geometric setting. More precisely, we implement the iterative procedure described in
Algorithm 8.
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Algorithm 8 Overlapping Schwarz method.

Inputs: α(0) = [α
(0)
1 , . . . ,α

(0)
Ndd

], β(0) = [β
(0)
1 , . . . ,β

(0)
Ndd

] initial conditions (cf. Eq. (5.22)),
tol > 0, maxit.
Outputs: β̂ port coefficients, α̂ = F̂

eq
(β̂) bubble coefficients.

1: Set β̂
(0)

= β(0) and α̂ = α(0).

2: for k = 1, . . . , maxit do
3: Initialize α̂(k) = α̂(k−1) and β̂

(k)
= β̂

(k−1)
.

4: for i = 1, . . . , Ndd do
5: Update β̂

(k)

i ∈ argminβ∈Rm

∑
j∈Neighi

‖W p
i β − Zb

j F̂eqj (β̂
(k)

j ) −

W p
j β̂

(k)

j ‖2L2(Γi,j)
.

6: Update α̂(k)
i = F̂eqi (β̂

(k)

i ).
7: end for
8: if ‖β̂

(k)
− β̂

(k−1)
‖2 < tol‖β̂

(k)
‖2 then, BREAK

9: end if
10: end for

We notice that since the discretization is not conforming across components, we
should define the i-th port mode using projection (cf. Line 5, Algorithm 8). Note that
at step i of the for loop at Lines 4− 7 we use the values of β̂i, . . . , β̂Ndd

at the previous
iteration and the values β̂1, . . . , β̂i−1 at the current iteration: the for loop is thus not
parallelizable in the multiplicative version of OS, while it is the case for the additive
version of OS (cf. section 5.1.1).
In section 5.5 we compare the performance of Gauss-Newton and Quasi-Newton to the
one shown by OS method with Dirichlet boundary conditions for a steady nonlinear
problem.

5.3 Methodology

5.3.1 Data compression

In this work, we resort to global solves to construct the archetype ROBs {(Za,b
ℓ ,W a,b

ℓ )}ℓ∈L,
Za,b
ℓ = [ζa,b

ℓ,1
, . . . , ζa,b

ℓ,n
], W a,p

ℓ = [ψa,p
ℓ,1
, . . . , ψa,p

ℓ,n
]. We generate ntrain global configurations

{µ(k)}ntrain
k=1 and we denote by {

(
Ω
(k)
i , L(k)i

)
}i,k the corresponding labeled partitions; we

estimate the global solutions {u(k)}ntrain
k=1 using a standard FE solver and we assemble

the datasets

Dℓ =
{
u(k)|

Ω
(k)
i

◦ Φ(k)
i : L(k)i = ℓ, k = 1, . . . , ntrain

}
⊂ Xa

ℓ , ℓ ∈ L; (5.19a)

we further define the bubble and port datasets

Db
ℓ :=

{
w − Eaℓ (w|Γa

ℓ
) : w ∈ Dℓ

}
, D

p
ℓ :=

{
Eaℓ (w|Γa

ℓ
) : w ∈ Dℓ

}
; (5.19b)

finally, we apply proper orthogonal decomposition (POD, [Vol11]) based on the method
of snapshots [Sir87] with inner product (·, ·)ℓ, to obtain the local approximation spaces.
Algorithm 9 summarizes the computational procedure.
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In view of the application of the empirical quadrature procedures described in
sections 5.3.2 and 5.3.3, for all ℓ ∈ L we further compute the projected coefficients
{αℓ,j}

ntrain,ℓ

j=1 , {βℓ,j}
ntrain,ℓ

j=1

(αℓ,j)i =
(
ubℓ,j , ζ

a,b
ℓ,i

)
ℓ
,
(
βℓ,j

)
q
=
(
upℓ,j , ψ

a,p
ℓ,q

)
ℓ
, ℓ ∈ L, (5.20)

for i = 1, . . . , n, q = 1, . . . ,m, j = 1, . . . , ntrain,ℓ, where ubℓ,j (resp., upℓ,j) denotes the
j-th bubble (resp., port) solution in the dataset Db

ℓ (resp., Dp
ℓ ).

Algorithm 9 Data compression based on global solves

Inputs: training parameters {µ(k)}ntrain

k=1 ; m,n ROB dimensions.

Outputs: {(Za,b
ℓ ,W a,b

ℓ )}ℓ∈L ROBs; {α(k)
ℓ }ntrain,ℓ

k=1 , {β(k)
ℓ }ntrain,ℓ

k=1 local optimal coefficients.

1: Initialize Db
ℓ = D

p
ℓ = ∅ for ℓ ∈ L.

2: for k = 1, . . . , ntrain do
3: Estimate the global solution uµ to (5.10) using a global FE method.
4: Update the datasets Db

ℓ and D
p
ℓ using (5.19b).

5: end for

6: Perform POD to obtain the ROBs Za,b
ℓ = [ζa,b

ℓ,1
, . . . , ζa,b

ℓ,n
] and W a,p

ℓ = [ψa,b
ℓ,1
, . . . , ψa,b

ℓ,n
]

7: Define the optimal coefficients {α(k)
ℓ }ntrain,ℓ

k=1 , {β(k)
ℓ }ntrain,ℓ

k=1 using (5.20).

We remark that the proposed approach — which was previously considered in
[Peg+21] — might be highly inefficient since it requires global solves that are often
unfeasible in the framework of CB-pMOR. We envision to further extend the local-
ized training approach in [ST22] to address this issue. For practical applications, we
envision that global solves should be performed using a standard FE solver and then
resorting to FE interpolation routines to extract the local solutions: this procedure
inevitably introduces an error at the scale of the FE mesh size between full-order and
reduced-order models. Even if this error might be negligible for applications, it hinders
the interpretations of the numerical investigations. To avoid this issue, in the numerical
experiments, we rely on the HF model (5.13) to generate the dataset of local solutions.

5.3.2 Hyper-reduction of port-to-bubble problems

We here rely on element-wise EQ, that is we replace the residuals (5.7) in (5.15a) with
the weighted residual associated with the variational form

G
a,eq
ℓ (w, v;µℓ) =

Ne
ℓ∑

k=1

ρeqℓ,k

(∫
Dℓ,k

ηa,eℓ (w, v;µℓ) dx +

∫
∂Dℓ,k

ηa,fℓ (w, v;µℓ) dx

)
, (5.21)

where ρeqℓ = [ρeqℓ,1, . . . , ρ
eq
ℓ,Ne

ℓ
]T is a sparse vector of non-negative weights. This hyper-

reduction approach, which has been considered in a number of previous works including
[IST22], is discussed for completeness in A. We anticipate that the algorithm takes as
input the projected coefficients (5.20) generated by Algorithm 9 and the associated
local parameters, {(α(j)

ℓ ,β
(j)
ℓ , µ

(j)
ℓ }ntrain,ℓ

j=1 .
We remark that, as discussed in [DY22], the use of elementwise- (as opposed to

pointwise-) reduced quadrature formulations leads to significantly less efficient ROMs,
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particularly for high-order FE discretizations. On the other hand, elementwise reduced
quadrature formulations are significantly easier to implement and can easily cope with
geometry deformations [TZ21]. We refer to [Far+21; Yan21] for a thorough introduction
to state-of-the-art hyper-reduction techniques.

5.3.3 Hyper-reduction of the objective function

Exploiting (5.17b), it is easy to verify that — we here stress dependence on the param-
eter value µ —

F
(
α, β, {ρp,eqℓ }ℓ∈L, µ

)
=

1

2

∑
ℓ∈L

∑
i:Li=ℓ

ηpi (α,β, µ)

·ρp,eqℓ =
1

2

∑
ℓ∈L

Ndd,ℓ∑
j=1

(
Gp
ℓ (α,β, µ)ρ

p,eq
ℓ

)
j
,

where Ndd,ℓ is the number of components of type ℓ and {Gp
ℓ }ℓ are suitable matrices;

to provide a concrete example, for the model problem of section 5.2.3, we have

Gp
int(α,β, µ) =


(ηp1(α,β, µ))

T

...(
ηpQa

(α,β, µ)
)T

 , Gp
ext(α,β, µ) =

(
ηpQa+1(α,β, µ)

)T
.

In order to speed up the evaluation of feq, it is necessary to build a sparse quadrature
rule {ρp,eqℓ }ℓ∈L. In the remainder of this section, we propose two different strategies to
address this task: the former relies on the solution to a suitable sparse representation
problem and is tightly linked to the EQ procedure employed for hyper-reduction of
the port-to-bubble maps; the latter relies on a variant of the empirical interpolation
method (EIM, [Bar+04]) for vector-valued functions.

Empirical quadrature

We denote by (α(k),β(k)) the projected bubble and port coefficients associated with
the k-th configuration µ(k) and Eq. (5.20); we further denote by (α

(k)
0 ,β

(k)
0 ) the bubble

and port coefficients associated with the sample means,

α
(k)
0 =


α

(k)
0,1
...

α
(k)
0,Ndd,(k)

 , β(k)
0 =


β
(k)
0,1
...

β
(k)
0,Ndd,(k)

 , k = 1, . . . , ntrain, (5.22a)

where α(k)
0,i = α

avg

L(k)i

and β(k)
0,i = β

avg

L(k)i

, with

αavg
ℓ :=

1

ntrain,ℓ

ntrain,ℓ∑
j=1

αℓ,j , βavg
ℓ :=

1

ntrain,ℓ

ntrain,ℓ∑
j=1

βℓ,j , ∀ ℓ ∈ L. (5.22b)

We anticipate that (5.22) is used in the numerical results to initialize the Gauss-
Newton’s algorithm.
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Given the random samples s(k) iid∼ Uniform(0, 1), we define the matrices

Cℓ =


Gp
ℓ (α̃

(1), β̃
(1)
, µ(1))

...
Gp
ℓ (α̃

(ntrain), β̃
(ntrain)

, µ(ntrain))

1T

 , ∀ ℓ ∈ L, (5.23a)

where 1 is the vector with entries all equal to one, and α̃(k) and β̃
(k)

are random convex
interpolations between the projected bubble and port coefficients (α(k),β(k)) and the
initial conditions for the GNM (α

(k)
0 ,β

(k)
0 ),

α̃(k) = (1− s(k))α(k) + s(k)α
(k)
0 , β̃

(k)
= (1− s(k))β(k) + s(k)β

(k)
0 , k = 1, . . . , ntrain.

(5.23b)
The first ntrain blocks of Cℓ are associated to the “manifold accuracy constraints”,
while the last row is associated to the “constant accuracy constraint” [YP19b]. Then,
we compute the empirical weights {ρp,eqℓ }ℓ∈L by approximately solving the non-negative
least-square problem

min
ρ∈RN

p
ℓ

‖Cℓ

(
ρ− ρpℓ

)
‖2, s.t. ρ ≥ 0 (5.23c)

up to a tolerance tolobjeq using the Matlab function lsqnonneg, which implements the
iterative procedure proposed in [LH74].

The choice of the port and bubble coefficients {(α̃(k), β̃
(k)

)}k for the “accuracy
constraints” in (5.23a) is justified by the fact that the objective function should be
accurate for all port and bubble coefficients considered during the GNM iterations; this
choice is found to empirically improve the conditioning of the non-negative least-square
problem and ultimately improve performance — compared to the choice α̃(k) = α(k),
β̃
(k)

= β(k). The constant function accuracy constraint, which was first proposed in
[YP19b] for hyper-reduction of monolithic ROMs, is important to bound the ℓ1 norm
of the empirical weights; we have indeed

‖ρp,eqℓ ‖1 ≤ |1 · (ρp,eqℓ − ρpℓ )| + ‖ρpℓ ‖1 ≤ ‖Cℓ

(
ρp,eqℓ − ρpℓ

)
‖2 + ‖ρpℓ ‖1, ∀ ℓ ∈ L. (5.24)

We also observe that, even if hyper-reduction is ultimately performed at the local level,
for each archetype component, the EQ procedure requires global solves to define the
matrices {Cℓ}ℓ.

Empirical interpolation method

The objective function F is designed to penalize the jump of the solution at the com-
ponents’ interface. Since the jumps are dictated by the behavior of the port modes
{ψa,p

ℓ,i }
m
i=1 on the ports Γℓ, we propose to replace the integral in (5.16) with the discrete

sum

1

2

Ndd∑
i=1

∑
j∈Neighi

∫
Γi,j

‖ûi(αi,βi)− ûj(αj ,βj)‖22 dx ≈ 1

2

∑
q∈Ip,eqℓ

(ηpi (α,β, µ))q , (5.25)



5.4. Analysis and interpretation for linear coercive problems 73

where Ip,eqℓ ⊂ {1, . . . , Np
ℓ } are chosen so that we can adequately recover any element

of Z
a,p
ℓ based on the information at the points {xpℓ,j}j∈Ip,eqℓ

. Note that the approxi-
mation (5.25) is an inconsistent approximation of the L2 integral (5.16); however, we
expect — and we verify numerically — that the minimization of the right-hand side of
(5.25) should control the jump at elements’ interfaces and ultimately ensure accurate
performance.

We here rely on a variant of EIM to select the quadrature indices Ip,eqℓ . EIM was
first proposed in [Bar+04] to identify accurate interpolation points for arbitrary sets
of scalar functions. In this work, we resort to the extension of EIM to vector-valued
fields considered in [Tad19]. We refer to the MOR literature for other variants of EIM
for vector-valued fields; in particular, we observe that the present algorithm returns
exactly m quadrature points: we refer to [Mad+15, Algorithm 2] and to [Che+21b] for
extensions of EIM that resort to over-collocation to improve performance.

Algorithm 10 reviews the computational procedure: note that, for each ℓ ∈ L, the
algorithm takes as input the port functions {ψa,p

ℓ,i }
m
i=1 and returns the indices Ip,eqℓ .

Given the set of indices Ip,eqℓ and the space Z
a,p
ℓ , we denote by Iℓ,m the approximation

least-square operator

Iℓ,m(v) := I
(
v; Ip,eqℓ ,Za,p

ℓ

)
= arg min

ψ∈Za,p
ℓ

∑
j∈Ip,eqℓ

‖v(xpℓ,j)−ψ(x
p
ℓ,j)‖

2
2, ∀ v ∈ C(Γℓ;R

D), ℓ ∈ L.

Note that for D > 1 Iℓ,m is not an interpolation operator.

Algorithm 10 Empirical Interpolation Method for vector-valued fields
Input: {ψa,p

ℓ,i
}mi=1, ℓ ∈ L

Output: Ip,eqℓ = {i⋆ℓ,1, . . . , i
⋆
ℓ,m}

Set i⋆ℓ,1 := arg max
j∈{1,...,Np

ℓ }
‖ψa,p

ℓ,1
(xpℓ,j)‖2, and define Iℓ,1 := I

(
·; {i⋆ℓ,1}, span{ψ

a,p
ℓ,1

}
)

for m′ = 2, . . . ,m do
Compute rm′ = ψa,p

ℓ,m′ − Iℓ,m′−1

(
ψa,p
ℓ,m′

)
Set i⋆ℓ,m′ := arg max

j∈{1,...,Np
ℓ }

‖rm′(x
p
ℓ,j)‖2

Update Iℓ,m′ := I
(
·; {i⋆ℓ,j}m

′
j=1, span{ψ

a,p
ℓ,j

}m′
j=1

)
.

end for

5.4 Analysis and interpretation for linear coercive prob-
lems

We analyze the OS2 statement for linear coercive problems. To simplify the presenta-
tion, we consider the case with two subdomains depicted in Figure 5.1. We denote by
(X, ‖ · ‖Ω) the global ambient space such that H1

0 (Ω) ⊂ X ⊂ H1(Ω); given the ports
Γ1,Γ2 (cf. Figure 5.1), we define the bubble and port spaces:

Xi,0 := {v ∈ Xi : v|Γi = 0} , Ui := {v|Γi : v ∈ Xi} , i = 1, 2.

We introduce the bilinear form a : X×X → R with continuity constant γ and coercivity
constant α > 0, and we introduce the linear functional f ∈ X′. Then, we introduce
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the model problem:

find u⋆ ∈ X : a(u⋆, v) = f(v) ∀ v ∈ X. (5.26)

In section 5.4.1, we derive the port formulation of the problem (5.26); in section 5.4.2,
we present two important results for the port problem; in section 5.4.3 we exploit the
results of the previous section to derive an a priori bound for the OS2 statement;
in section 5.4.4, we comment on an alternative variational interpretation of the OS2
statement; finally, in section 5.4.5, we derive explicit estimates for two representative
model problems.

Given v ∈ Xi,0, we denote by vext ∈ X the trivial extension of v to Ω that is zero
in Ω \ Ωi. We assume that a and f are associated to a differential (elliptic) problem;
in particular, we assume that

a(u, vext) = a
(
u
∣∣
Ωi
, v
)
, ∀ v ∈ Xi,0. (5.27)

Note that by construction we have f(vext) = f (v) for all v ∈ Xi,0.

5.4.1 Port formulation

We define the tensor-product space U = U1 × U2 endowed with the inner product
〈w, v〉 =

∑
i=1,2(wi, vi)H1/2(Γi)

and the induced norm |||·||| =
√
〈·, ·〉. We introduce the

local solution operators Ti : Ui → Xi and Gi : X
′ → Xi,0 such that:

(Tiλ)
∣∣
Γi

= λ, a(Tiλ, v) = 0 ∀ v ∈ Xi,0; (5.28)

(Gif)
∣∣
Γi

= 0, a(Gif, v) = f(v) ∀ v ∈ Xi,0. (5.29)

Since the elements of Xi,0 can be trivially extended to zero in Ω \ Ωi, we have that
the form a is continuous and coercive in Xi,0 with continuity and coercivity constants
bounded from above and below by γ and α, due to the fact that Xi,0 ⊂ X.

Therefore, Ti and Gi are well-defined linear bounded operators. By comparing the
previous definitions with (5.13a), we note that the affine operators Fi := Ti−Ei+Gif
correspond to the port-to-bubble maps that are exploited to derive the hybridized
formulation in section 5.2: we have u⋆|Ωi = Fiλ

⋆
i + Eiλ

⋆
i = Tiλ

⋆
i +Gif , where λ⋆i ∈ Ui

is equal to u⋆|Γi .
Given the trace operators χΓ1 : X2 → U1, χΓ2 : X1 → U2, we introduce the

operators T : U → U and G : X′ → U such that

Tλ =

[
χΓ1T2λ2
χΓ2T1λ1

]
, Gf =

[
χΓ1G2f
χΓ2G1f

]
, ∀λ ∈ U, f ∈ X′. (5.30a)

Finally, we introduce the port problem: find λ⋆ ∈ U such that

ap(λ
⋆, v) = fp(v) ∀ v ∈ U, where ap(λ, v) := 〈λ−Tλ, v〉, fp(v) := 〈Gf, v〉. (5.30b)

Remark 8. Connection with OS methods. We can rewrite standard additive and
multiplicative OS iterations, presented in (5.2) for the simplified problem in section 5.1,
using the operators introduced in (5.30). In more detail, multiplicative OS iterations
can be written as (see, e.g., [QV99, Chapter 1])[

Id 0
−χΓ2T1 Id

]
λ(k+1) =

[
0 χΓ1T2
0 0

]
λ(k) + Gf, k = 1, 2, . . . ,
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while additive OS iterations can be written as[
Id 0
0 Id

]
λ(k+1) =

[
0 χΓ1T2
χΓ2T1 0

]
λ(k) + Gf, k = 1, 2, . . . .

These identities imply that any fixed point of the OS iterations satisfies (5.30b). As
discussed in the introduction in section 5.1, this connection between OS and OS2 formu-
lations is valid for both linear and nonlinear problems; however, the analysis is strictly
restricted to the linear case.

5.4.2 Analysis of the port problem

Proposition 1 clarifies the relationship between the variational statement (5.26) and
the port problem (5.30); on the other hand, Proposition 2 is key for the analysis of the
OS2 ROM. Proofs are postponed to appendix B. The results rely on the introduction
of a partition-of-unity (PoU, [BM97]) {ϕi}2i=1 ⊂ Lip(Ω;R) associated with {Ωi}2i=1 such
that

2∑
i=1

ϕi(x) = 1,

{
0 ≤ ϕi(x) ≤ 1 ∀x ∈ Ω,

ϕi(x) = 0 ∀x /∈ Ωi,
i = 1, 2.

Proposition 1. Let u⋆ be the solution to (5.26). Then, λ⋆ = (u⋆|Γ1 , u
⋆|Γ2) solves

(5.30b). Conversely, if λ⋆ is a solution to (5.30b), then u⋆ =
∑2

i=1 (Tiλ
⋆
i +Gif)ϕi

solves (5.26).

Proposition 2. Let the operator T in (5.30a) be compact. Then, the form ap : U×U →
R defined in (5.30b) is inf-sup stable and continuous, that is

αp = inf
w∈U

sup
v∈U

ap(w, v)

|||w||||||v|||
> 0, γp = sup

w∈U
sup
v∈U

ap(w, v)

|||w||||||v|||
<∞. (5.31)

The proof of the compactness of the operator T depends on the underlying PDE.
For several problems, including the Laplace equation, the advection-diffusion-reaction
equation, the Stokes equations, and the Helmholtz equation, we can prove compactness
of the operator T using Caccioppoli’s inequalities: we refer to [Tad17, Appendix C] and
also [SP16] for further details. We further observe that Proposition 2 does not provide
an explicit relationship among the stability constant αp in Proposition 2, the PDE of
interest and the size of the overlap. We envision that the derivation of explicit bounds
for the stability constant αp in terms of the PDE of interest and the size of the overlap
will shed light on the underlying properties of the OS2 formulation and might also lead
to new algorithmic developments. We note that there is a vast body of works that
address the derivation of sharp estimates for the convergence of overlapping Schwarz
methods (see, e.g., [CHL91; CG17]): the derivation of analogous results for this setting
is beyond the scope of the present thesis.

As discussed in appendix B, proofs of Propositions 1 and 2 rely on the fact that, if
we introduce the spaces X1,2 = {v|Ω1∩Ω2 : v ∈ X} and X0

1,2 = {v ∈ X1,2 : v|Γ1∪Γ2 = 0},
the problem of finding u ∈ X1,2 such that

a(u, v) = 0 ∀ v ∈ X0
1,2, u|Γ1 = λ1, u|Γ2 = λ2,

admits a unique solution for any (λ1, λ2) ∈ U. This result is trivial for coercive prob-
lems, but it is significantly less trivial — and requires additional assumptions — for
inf-sup stable problems and is not addressed in this work. On the other hand, we
envision that the analysis for nonlinear PDEs requires more sophisticated tools and is
beyond the scope of this work.
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5.4.3 Analysis of the OS2 statement

We consider the following OS2 formulation for the linear problem (5.26):

find λ̂ = arg min
λ∈Zp

∣∣∣∣∣∣∣∣∣λ− T̂ λ− Ĝf
∣∣∣∣∣∣∣∣∣. (5.32)

Note that (5.32) corresponds to the OS2 statement (5.13) with the important difference
that we replace the L2 norm with the H1/2 norm |||·|||. In particular, in our work, the
space Zp in (5.32) is given by the tensor product of the local port spaces, Zp = Z

p
1×Z

p
2 ,

and T̂ , Ĝ are associated to the approximate local solution operators that are obtained
by Galerkin projection. We further introduce the OS2 formulation with perfect local
operators:

find λ̃ = arg min
λ∈Zp

|||λ− Tλ−Gf |||. (5.33)

We observe that (5.33) corresponds to the minimum residual formulation of the
port problem (5.30); we have indeed

|||λ− Tλ−Gf ||| = sup
v∈U

〈λ− Tλ−Gf, v〉
|||v|||

= sup
v∈U

ap(λ, v)− fp(v)

|||v|||
.

Recalling the result in [XZ03], we thus have∣∣∣∣∣∣∣∣∣λ⋆ − λ̃
∣∣∣∣∣∣∣∣∣ ≤ γp

αp
inf
λ∈Zp

|||λ⋆ − λ|||, (5.34)

which proves the quasi-optimality of the OS2 statement with perfect local operators
(5.33).

To estimate the error
∣∣∣∣∣∣∣∣∣λ̂− λ̃

∣∣∣∣∣∣∣∣∣, we resort to a perturbation analysis. We denote by
α̂p and γ̂p the stability and continuity constants associated with the problem (5.32):
it is possible to resort to a perturbation analysis to estimate these constants; since the
argument is completely standard, we omit the details. We define the quantities εT and
εG as follows:

εT := sup
ψ∈Zp

∣∣∣∣∣∣∣∣∣(T − T̂ )ψ
∣∣∣∣∣∣∣∣∣

|||ψ|||
, εG :=

∣∣∣∣∣∣∣∣∣(G− Ĝ)f
∣∣∣∣∣∣∣∣∣. (5.35)

Then, it is possible to show that

∣∣∣∣∣∣∣∣∣λ̃− λ̂
∣∣∣∣∣∣∣∣∣ ≤ 1

α2
p

M (γp + γ̂p)

∣∣∣∣∣∣∣∣∣Ĝf ∣∣∣∣∣∣∣∣∣
α̂p

εT +
√
M
(
γ̂pεG +

∣∣∣∣∣∣∣∣∣Ĝf ∣∣∣∣∣∣∣∣∣εT)
 . (5.36)

We postpone the proof of (5.36) to appendix B.
By combining (5.36) with (5.34), we obtain the following result. We observe that

(5.37) is the sum of two terms: the first term is associated with the approximation
properties of the port space, while the second term is directly linked to the accuracy of
the local solution operators.

Proposition 3. Let γp, αp be the continuity and stability constants of the form ap and
let γ̂p, α̂p be the continuity and stability constants of the form âp(λ, v) = 〈λ − T̂ λ , v〉.
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Given the M -dimensional space Zp ⊂ U, we have

∣∣∣∣∣∣∣∣∣λ⋆ − λ̂
∣∣∣∣∣∣∣∣∣ ≤ 1

αp

γp inf
λ∈Zp

|||λ⋆ − λ||| + 1

αp

M (γp + γ̂p)

∣∣∣∣∣∣∣∣∣Ĝf ∣∣∣∣∣∣∣∣∣
α̂p

εT +
√
M
(
γ̂pεG +

∣∣∣∣∣∣∣∣∣Ĝf ∣∣∣∣∣∣∣∣∣εT)
 .

(5.37)

5.4.4 Alternative variational interpretation of the OS2 statement

Following [Lio88], we might also consider the alternative variational framework of
the OS limit formulation (see also [QV99, Chapter 1.5.2]): find (ub1 , u

p
1 , u

b
2 , u

p
2) ∈⊗2

i=1Xi,0 ×Ui such that
a
(
ubi + Eiu

p
i , vi

)
= f(vi) ∀ vi ∈ Xi,0, i = 1, 2;(

up1 − χΓ1

(
ub2 + E2u

p
2

)
, ψ1

)
H1/2(Γ1)

+(
up2 − χΓ2

(
ub1 + E1u

p
1

)
, ψ2

)
H1/2(Γ2)

= 0 ∀ψ = (ψ1, ψ2) ∈ U;

(5.38)

where E1, E2 are the extension operators, ub1 , ub2 are the bubble solutions and up1 , u
p
2

are the port solutions. Given the reduced spaces Zb
i ⊂ Xi,0 and Z

p
i ⊂ Ui, and the

approximate port-to-bubble maps F̂i = T̂i + Ĝif − Ei, for i = 1, 2, the reduced-order
OS2 formulation can be stated as follows: find (ûb1 , û

p
1 , û

b
2 , û

p
2) ∈

⊗2
i=1Z

b
i × Z

p
i such

that 
a
(
ûbi + Eiû

p
i , vi

)
= f(vi) ∀ vi ∈ Zb

i , i = 1, 2;(
ûp1 − χΓ1

(
ûb2 + E2û

p
2

)
, ψ1

)
H1/2(Γ1)

+(
ûp2 − χΓ2

(
ûb1 + E1û

p
1

)
, ψ2

)
H1/2(Γ2)

= 0 ∀ψ = (ψ1, ψ2) ∈ Z̃p;

(5.39a)

where Z̃p ⊂ U is the M -dimensional space given by

Z̃p =
{(
ζp1 − χΓ1 T̂2(ζ

p
2 ), ζ

p
2 − χΓ2 T̂1(ζ

p
1 )
)

: ζpi ∈ Z
p
i , i = 1, 2

}
, (5.39b)

and T̂iζ satisfies T̂iζ = ub(ζ) + Eiζ with ubi (ζ) ∈ Zb
i and a(ubi (ζ) + Eiζ, v) = 0 for all

v ∈ Zb
i .

The proof of (5.39) is straightforward, and it is provided for completeness in B. Note
that the OS2 statement reads as a Petrov-Galerkin projection of (5.38) for a suitable
choice of the test space Z̃p. We envision that (5.39) could be exploited to devise an
alternative error analysis for the OS2 statement. We do not address this issue in the
present work.

5.4.5 Explicit convergence rates for two one-dimensional model prob-
lems

Given Ω = (−1, 1) and the partition Ω1 = (−1, δ), Ω2 = (−δ, 1), we study the conver-
gence of (multiplicative) OS and OS2 for the problems{

u′′ = 2 in Ω,
u(−1) = u(1) = 1;

(5.40a)
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and {
−u′′ + γu′ = 0 in Ω,
u(−1) = 0, u(1) = 1;

(5.40b)

in the limit |δ| � 1. For OS2, we resort to the gradient descent method with optimal
choice of the step size, and to the Gauss-Newton method (OS2-GN) — the choice of
the gradient descent method is intended to simplify calculations (compared to quasi-
Newton methods). The motivation of this analysis is twofold: first, we show that the use
of gradient-based methods as opposed to Gauss-Newton is increasingly sub-optimal as
δ → 0; second, we provide explicit estimates for the constants αP and γP of Proposition
2 for two representative model problems.
We denote by ûi the approximation of the solution in Ωi for i = 1, 2; we define β1 =
û1(δ) and β2 = û2(−δ). We can show that OS and OS2 iterations can be written as

β(k) = Pos
δ β

(k−1) + Fos
δ , β(k) = Pos2

δ β(k−1) + Fos2
δ ,

for k = 1, 2, . . . and suitable choices of
(
Pos
δ ,F

os
δ

)
and

(
Pos2
δ ,Fos2

δ

)
. On the other hand,

since the problems are linear, OS2-GN reduces to a direct method and can be stated
as

Aδβ = Fδ

for suitable choices of
(
Aδ,Fδ

)
.

In appendix B, we show that the spectral radii ρosδ and ρos2δ of the transition matrices
Pos
δ and Pos2

δ satisfy

ρosδ ∼ 1− 4δ, ρos2δ ∼ 1− 4δ2 for (5.40a);

ρosδ ∼ 1− 2
eγ + 1

eγ − 1
γδ, ρos2δ ∼ 1− eγ + 2

8(eγ − 1)
γ2δ2 for (5.40b);

(5.41a)

while the condition number of the linear system associated to OS2-GN satisfies

cond (Aδ) =
1

δ
, for (5.40a);

cond (Aδ) ∼
4(eγ − 1)

4(eγ + 2)γ
δ−1 for (5.40b);

(5.41b)

and the constants αp and γp defined in Proposition 2 satisfy

αp =
2δ

1 + δ
, γp =

2

1 + δ
, for (5.40a);

αp ∼ 4(eγ + 2)γδ

2(eγ − 1)
, γp ∼ 2, for (5.40b);

(5.41c)

As expected, OS, OS2 and OS2-GN become increasingly ill-conditioned as δ decreases
to zero; however, we observe that for small values of δ, OS exhibits significantly faster
convergence rates than OS2 based on the gradient-descent method: this observation
further strengthens the importance of exploiting the least-square structure of the OS2
statement.

5.5 Numerical results
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5.5.1 Assessment metrics and training parameters

We train the CB-ROM based on ntrain = 70 global parameters Ξtrain = {µ(k)}ntrain
k=1 such

that

(E
(k)
1 , E

(k)
2 , E

(k)
3 , s(k))

iid∼ Uniform
(
[25, 30]× [10, 20]2 × [0.4, 1]

)
, Q(k)

a
iid∼ Uniform ({2, . . . , 7}) ;

on the other hand, we assess performance based on ntest = 20 out-of-sample global
parameters Ξtest = {µ̃(j)}ntest

j=1 generated using the same distribution. In view of the
assessment, we also define the PoU {ϕi}Ndd

i=1 ⊂ Lip(Ω;R) associated with the partition
{Ωi}Ndd

i=1 such that

Ndd∑
i=1

ϕi(x) = 1,

{
0 ≤ ϕi(x) ≤ 1 ∀x ∈ Ω,

ϕi(x) = 0 ∀x /∈ Ωi,
i = 1, . . . , Ndd.

Given u ∈ X :=
⊗Ndd

i=1 Xi, we define the PoU operator

Ppu[u] :=
Ndd∑
i=1

ϕi ui ∈ H1(Ω). (5.42)

Note that we omit the dependence of {ϕi}i and also Ndd on the parameter to shorten
notation. Finally, we define the out-of-sample average prediction error

Eavg :=
1

ntest

∑
µ∈Ξtest

‖Ppu[uhfµ ]− Ppu[ûµ]‖H1(Ω)

‖Ppu[uhfµ ]‖H1(Ω)
. (5.43)

As mentioned in section 5.3, we here resort to the HF CB solver to generate HF data for
training and test, to simplify interpretation of the numerical results. In several figures,
we compare the prediction error (5.43) with the error associated with the mapped
H1(Ωa

Li) projection of uhfµ ◦ Φi, for i = 1, . . . , Ndd,

Esub
avg :=

1

ntest

∑
µ∈Ξtest

‖Ppu[uhfµ ]− Ppu[ûsubµ ]‖H1(Ω)

‖Ppu[uhfµ ]‖H1(Ω)
, (5.44)

(
ûsubµ

)
i
=

(
Π

Z
a,b
Li

∪Wa,p
Li
uhfµ ◦ Φi

)
◦ Φ−1

i , (5.45)

for i = 1, . . . , Ndd. Note that (5.44) is not optimal — that is, it is not the relative
H1(Ω) projection error associated with the instantiated spaces — but it can be shown
to be quasi-optimal exploiting [BM97, Theorem 1]. We omit the details.

We resort to a P2 FE discretization with N e
int = 1120 and N e

ext = 3960 elements,
and Np

int = 272 and Np
ext = 200 port quadrature points. We emphasize that the HF

component-based discretization is constructed to ensure that the local grids match
exactly for Qa = Qref ; however, we remark that internal and external meshes do not
lead to a global conforming discretization for any other value of Qa. All simulations
are performed in Matlab 2020b on a commodity laptop.

5.5.2 Reduced-order model with HF quadrature

We show the performance of the OS2 ROM without hyper-reduction. First, we show
the behavior of the percentage of retained energy of the POD eigenvalues {λi} of the
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Gramian matrix associated with the snapshot set. To facilitate visualization, we show

the average in-sample error En = 1 −

n∑
i=1

λi

ntrain∑
j=1

λj

for several values of n, for port and

bubble components, and for the two archetype components. We observe that the POD
eigenvalues decay extremely rapidly, for both components.
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Figure 5.5: behavior of the average squared in-sample error En for
several values of n, for port and bubble components, and for the two

archetype components.

In Figure 5.6, we compare the average error Eavg (5.43) associated with the OS2
ROM for several values of m, with n = m and n = 2m, with the average error Esub

avg

(5.44) obtained through projection. We observe that the OS2 ROM achieves near-
optimal performance for all choices of the port and bubble ROBs. We also observe that
doubling the number of port modes m by keeping the same number of bubble modes
n does not lead to relevant differences in terms of both projection and OS2 prediction
error. In the remainder of this section, we set m = n.
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Figure 5.6: out-of-sample performance of OS2 ROM without hyper-
reduction for several values of m, with n = m and n = 2m; comparison

with sub-optimal (“sub”) average error Esub
avg (5.44).

Figure 5.7 shows the behavior of the solution over a vertical slice of the domain for
a test configuration with Qa = 7; boundaries of the Qa internal subdomains associated
with repositories and the external subdomain are marked as black dots in 5.7(a); the
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vertical slice, drawn as a purple dashed line, corresponds to points (x, y) such that
x = x̄ = 0.43, 0 ≤ y ≤ 1. Points of the slice belong to either the instantiated component
Ω3 or Ω8 (or both). We apply the partition of unity operator (5.42) to generate globally-
defined solutions. We compute therefore approximate solutions Ppu[û

(n=2)
⋆ ] Ppu[û

(n=10)
⋆ ]

corresponding to two choices of the ROB size n = m = 2 and n = m = 10 and
for subscript ⋆ corresponding to x and y components; we also compare the reduced
solutions with the HF globally defined solutions Ppu[uhf⋆ ]. We observe that the choice
n = m = 2 enables qualitatively accurate approximations of the vertical displacement
(cf. 5.7(c)), but extremely inaccurate approximations of the horizontal displacement
(cf. Figure 5.7(b), while the choice n = m = 10 leads to accurate predictions for both
horizontal and vertical displacements.

(a) geometry configuration and slice

(b) horizontal displacement (c) vertical displacement

Figure 5.7: visualization of the horizontal and vertical displacement
components for a vertical slice.

5.5.3 Hyper-reduction of the port-to-bubble maps

Figure 5.8 investigates the performance of the EQ rule for different tolerances toleq
(cf. Appendix A): Figure 5.8(a) shows the behavior of the out-of-sample relative error
Eavg compared to the OS2 ROM with HF quadrature (dubbed HFQ); Figures 5.8(b)
and 5.8(c) show the percentage of sampled elements as a function of m, for the two
archetype components and for several tolerances. We observe that for toleq ≤ 10−10 the
hyper-reduced OS2 ROM is as accurate as the OS2 ROM with HF quadrature for all
values of m considered. We further observe that the percentage of sampled elements is
between three and five times larger in the internal component — since N e

ext ≈ 3.5N e
int,
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we have that the absolute number of sampled elements is nearly the same for the two
components.
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Figure 5.8: hyper-reduction of the port-to-bubble maps for several
tolerances toleq and port space sizes m, with n = m. (a) behavior
of the average out-of-sample prediction. (b)-(c) percentage of sampled

elements in Ωa
int and Ωa

ext.

5.5.4 Hyper-reduction of the objective function

In Figure 5.9, we show the behavior of the L∞ error

E∞
avg,eim(ℓ,m) :=

1

ntrain,ℓ

ntrain,ℓ∑
k=1

∥∥∥upℓ,k − Iℓ,m[u
p
k]
∥∥∥
∞

where {upℓ,k}
ntrain,ℓ

k=1 are the port fields associated with the ℓ-th component and employed
to generate the port basis (cf. Algorithm 9). We observe near-exponential convergence
of the L∞ error for both components; interestingly, the interpolation error for the
internal component is one order of magnitude larger than the error for the external
component.
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Figure 5.9: application of the EIM procedure for vector-valued fields
(cf. Algorithm 10). (a)-(b) behavior of the in-sample L∞ approximation

error E∞
avg,eim for the internal and the external component.

In Figure 5.10, we report the percentage of sampled quadrature points by the two
hyper-reduction procedures. By construction, EIM selects mp,eq = m points; on the
other hand, the number of points selected by the EQ procedure of section 5.3.3 weakly
depends on the size m of the port basis.
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Figure 5.10: hyper-reduction of the objective function for internal and
external archetype components, with respect to m, with n = m. (a)
percentage of sampled quadrature points based on EIM. (b)-(c) percent-
age of sampled quadrature points based on the EQ procedure, for two

tolerances toleq,p.

In Figure 5.11, we investigate the performance of the fully hyper-reduced ROM:
Figure 5.11(a) shows the behavior of the prediction error (5.43), while Figure 5.11(b)
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shows the behavior of the maximum wall-clock time over the test set. We observe that
the speed-up due to hyper-reduction of the objective function is of the order 1.5 for all
choices of m; on the other hand, performance of the two considered hyper-reduction
strategies is comparable for all tests.
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Figure 5.11: hyper-reduction of the objective function based on EIM
and EQ. (a) out-of-sample performance of the hyper-reduced OS2 ROM
for several choices of m, with n = m. (b) maximum computational cost
over the test set. Results are based on the EQ tolerance toleq = 10−10 for
the local problems and the tolerances toleq,p = 10−4 and toleq,p = 10−6

for the objective function (for EQ+EQ).

In Figure 5.12 we show the speed-up factor of the hyper-reduced OS2 solvers with
respect to a representative monolithic HF solver of comparable accuracy for different
numbers of subdomains. The monolithic P2 FE solver runs in approximately3 2.7806 [s]
for Ndd = 2 and in 9.9971 [s] for Ndd = 8; the CB HF solver (5.12) that is used to
generate training and test data is roughly a factor three slower than the corresponding
monolithic solver. We define the speed-up factor as:

speed-up(Ndd) :=
thf(Ndd)

tOS2(Ndd)

3Computational times are based on an average over 5 tests for each number of subdomains; the
computational grid has 17177 FE nodes for Ndd = 2 and it has 38637 nodes for Ndd = 8.
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where thf is the estimated execution time of the monolithic HF solver averaged over
5 tests and tOS2 is the execution time associated with the CB ROM, averaged over
the same 5 configurations, for Ndd ∈ {3, . . . , 8}. We perform hyper-reduction of the
port-to-bubble maps using the tolerance toleq = 10−10 and we consider the tolerances
toleq,p = 10−4 and toleq,p = 10−6 for the hyper-reduction of the objective function (for
the EQ+EQ case).
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Figure 5.12: Speed-up of the OS2 ROMs with respect to the HF mono-
lithic solver for several values of the number of subdomains. (a) perfor-
mance for m = 8; (b) performance for m = 16. EQ tolerance for the

port-to-bubble maps is set equal to toleq = 10−10.

We observe that the speed-up factors depicted in Figure 5.12 depend weakly on the
number of subdomains. The EIM method leads to slightly larger speed-ups than the
EQ method for m = n = 16 (cf. Figure 5.12(b)), while performance is comparable for
the case m = n = 8 (Figure 5.12(a)). We envision that more effective implementations
of Algorithm 7 — which rely on parallelization of the port-to-bubble loop at Lines
4-7 and on pointwise EQ hyper-reduction of the port-to-bubble maps, as opposed to
element-wise EQ — will lead to significantly larger speed-ups.
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5.5.5 Optimization strategy: comparison between Gauss-Newton, quasi-
Newton and overlapping Schwarz

We compare the performance of the Gauss-Newton method, the quasi-Newton method
and the multiplicative overlapping Schwarz method with Dirichlet interface conditions
presented in section 5.2.6. Numerical results are shown for various choices of the port
dimension m and we set n = m. For Gauss-Newton and Quasi-Newton methods, we
follow algorithm 7; as for OS method, we implement the iterative procedure described
in Algorithm 8. We set tol = 10−6 in Algorithm 7 (cf. Line 11) and we consider the
same termination criterion for the quasi-Newton solver and the OS solver. In this test,
we perform hyper-reduction at the local level (EQ tolerance 10−10), but we do not
hyper-reduce the objective function. Figure 5.13(a) shows the behavior of the objective
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Figure 5.13: comparison between OS2 with Gauss-Newton optimiza-
tion and with quasi-Newton optimization, and multiplicative overlapping
Schwarz methods. (a) average value of the objective function with re-
spect to m and for n = m. (b) maximum number of iterations to meet
the convergence criterion. (c) average wall-clock cost with respect to m

and for n = m.

function in (5.17) with respect to the ROB sizes over the test set, while Figure 5.13(b)
shows the number of iterations required to meet the termination criterion: we observe
that GNM requires many fewer iterations without any deterioration in accuracy. Fig-
ure 5.13(c) shows the wall-clock average cost for the three methods: even if GNM has a
slightly larger per-iteration cost, we empirically find that OS2 with GNM is significantly
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more rapid than the other two approaches. Furthermore, since the OS internal loop (cf.
Lines 4-7 Algorithm 8) is not parallelizable as opposed to the corresponding loop of the
OS2 solver (cf. Lines 4-7 Algorithm 7), we expect significantly larger computational
gains if we resort to parallel computing.

In Figure 5.14, we repeat the test of Figure 5.13 for the choice of the initial conditions
α(0) = 0 and β(0) = 0 in Algorithm 7 and Algorithm 8. We observe that OS and OS2
with GNM show similar performance with respect to all metrics. OS2 with QN exhibits
a high value of the average objective function for the choice m = n = 6, as shown in
figure 5.14(a); convergence is ensured by the satisfaction of criterion at line 11 in
algorithm 7; we expect more generally, a deterioration in performance and a possibly
compromised convergence.
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Figure 5.14: comparison between Gauss-Newton, quasi-Newton meth-
ods, and multiplicative overlapping Schwarz methods with zero initial
condition. (a) average value of the objective function with respect to m
and for n = m. (b) maximum number of iterations to meet the conver-
gence criterion. (c) average wall-clock cost with respect to m and for

n = m.
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5.5.6 Optimization strategy: convergence with respect to the overlap
size

We study the performance of the multiplicative OS method and the OS2 based on
Gauss-Newton with respect to the overlap size δ, as depicted in figure 5.15 for a repre-
sentative case in which Qa = 3.

δ

Γr,1

lQ

δ

Γr,2

lQ

Γr,3

lQ

Figure 5.15: Example of geometric overlapping instantiated configu-
ration for Qa = 3.

The training and test sets, as well as the parameters distributions, the out-of-sample
errors and the chosen finite element spaces are defined in section 5.5.1. We perform
hyper-reduction of the port-to-bubble maps based on an empirical quadrature tolerance
of toleq = 10−10 and we do not perform hyper-reduction on the objective function.
In figure 5.16 the tests of figure 5.13 are repeated for different values of the overlap
size δ = 2

3 lQ, δ = 1
2 lQ and δ = 1

6 lQ, where lQ is depicted in figure 1.6 and denotes
the repository width. The starting guess solutions for the Gauss-Newton methods are
choosen according to (5.22). As in the previous results, we choose equal reduced basis
sizes for the port and bubble components (n = m).
We can observe in figure 5.16(a) that OS2 (equipped with the GNM) and OS show
comparable average values of the objective function for increasing dimensions of the
reduced port and bubble spaces (m = n). Although, OS2 exhibits a significantly smaller
number of iterations to achieve convergence with respect to OS (the order of gain in
the number of iteration is about 6 for δ = 1

6). Furthermore, in the case of OS, both the
maximum number of iterations in figure 5.16(b) and the average computational costs
in figure 5.16(c) show a high dependence on the size of the overlap, unlike the case of
OS2.

5.6 Conclusions
In this chapter we developed and numerically validated the one-shot overlapping Schwarz
(OS2) approach to component-based MOR of steady nonlinear PDEs. The key features
of the approach are (i) a constrained optimization statement that penalizes the jump
at the components’ interfaces subject to the approximate satisfaction of the PDE in
each deployed (instantiated) component; (ii) the decomposition of the local solutions
into a port component and bubble components, to enable effective parallelization of the
online solver. Hyper-reduction of the local sub-problems and of the objective function
is performed to reduce online assembly costs. We illustrate the many elements of the
formulation through the application to a two-dimensional nonlinear mechanics (Neo-
Hookean) PDE model; for this problem, we are able to devise a CB-ROM that reduces
online costs by a factor 20 compared to a standard monolithic FE model with less than
0.1% prediction error, and without resorting to any parallelization of the online ROM
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Figure 5.16: Out-of-sample test: (a) average values of the objective
function, (b) maximum numbers of iterations, (c) average computational

cost of OS2 and OS for δ = 2
3 lQ, δ = 1

3 lQ and δ = 1
6 lQ.

solver. We also observe that for the particular model problem considered in this paper
the OS2 formulation provides acceptable results also for under-resolved ROBs.
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Chapter 6

Component-based model
reduction for the THM system

In this chapter we extend the CB-pMOR methodology for nonlinear PDEs that is
explained in the previous chapter 5. Indeed, in chapter 5 we present a new CB for-
mulation and we develop CB-pMOR methods that tackle steady nonlinear (or linear)
parametrized problems; in this chapter both formulation and methods are adapted to
face time-dependent nonlinear coupled problems, in particular the THM system of in-
terest (cf. 3). Due to the challenging nature of the parametrized problem to solve (cf.
(3.12)-(3.13)), some complexity arises in the formulation, in the methodology and in
the numerical implementation. In section 6.1 the formulation that is introduced for a
simpler case in section 5.2 is extended to take into account unsteady PDEs with internal
variables; section 6.2 clarifies how we revise and modify the CB-pMOR methods from
section 5.3 to target problems in form (3.12)-(3.13); finally, section 6.3 is dedicated to
numerical investigations.

6.1 Formulation
The notation introduced in section 5.2.1 is entirely adopted in this chapter. The CB
formulation, which is presented is section 5.2.2 for a general steady parametrized PDE,
needs to be generalized to take into account time dependence and the presence of in-
ternal variables.
We denote as W a suitable Hilbert space for internal variables W ; we denote (as in
chapters 3 and 4) the time grid associated with time interval [0, Tf ] as 0 = t(0) < . . . <
t(Jmax) = Tf . Given parameter µℓ ∈ P, for ℓ ∈ L, we define the time-dependent varia-
tional form G

a,(j)
ℓ : Xa

ℓ ×Xa
ℓ,0 ×Pℓ → R associated with the ℓth archetype component:

G
a,(j)
ℓ (U (j), V ;µℓ) =Ga

ℓ (U
(j), U (j−1),W (j),W (j−1), V ;µℓ)

=

Ne
ℓ∑

k=1

∫
Dℓ,k

ηa,eℓ (U (j), U (j−1),W (j),W (j−1), V ;µℓ) dx +∫
∂Dℓ,k

ηa,fℓ (U (j), U (j−1),W (j),W (j−1), V ;µℓ) dx

(6.1)

Notice the time-dependence both of the state (and internal) variables and of the vari-
ational form (6.1) itself.

The variational form (6.1) corresponds to an implicit time discretization of form Gµ
in (1.1) in the ℓth archetype component and it represents a generalized formulation for
the THM system of interest (3.12). For a matter of simplicity in the notation, we omit
the subscript µ on state solutions and internal variables and we omit the dependence
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of the variational forms on the parameters. As in (5.11), we can rewrite the local
variational forms in the two archetype components

G
a,(j)
int (U (j), V ) =

∫
Ωa

int

η
a,e,(j)
int (U (j), V ) dx+

∫
Γa

r

η
a,f,(j)
int (U (j), V ) dx,

G
a,(j)
ext (U (j), V ) =

∫
Ωa

ext

η
a,e,(j)
ext (U (j), V ) dx+

∫
Γa

top

η
a,f,(j)
ext (U (j), V ) dx.

Explicit expressions of ηa,e,(j)
int , ηa,f,(j)

int , ηa,e,(j)
ext , ηa,e,(j)

ext can be determined by writing
system (3.12) in the local archetype components; we omit the details.

We can denote as Ui the trajectory associated with solution
{
U

(j)
i

}Jmax

j=1
for each

instantiated component i = 1, . . . , Ndd (and given parameter µ ∈ P, which is omitted
from the notation).

The OS2 formulation (5.12) is generalized as follows. Given the set of parameters
µ = (µ1, . . . , µNdd

) ∈ P =
⊗Ndd

i=1 PLi , with labels {Li}i ⊂ L, find
−→
U =

{
U1, . . . ,UNdd

}
⊂

X =
⊗Ndd

i=1 Xi that solves, for each j = 1, . . . , Jmax,

min−→
U⊂X

1

2

Ndd∑
i=1

∑
f∈Neighi

∥∥U (j)
i − U

(j)
f

∥∥2
L2(Γif )

s.t.

G
(j)
i

(
U

(j)
i , V

)
= 0 ∀V ∈ Xi,0 for i = 1, . . . , Ndd.

(6.2)

We proceed as in section 5.2.4 to derive the hybridized form of problem (6.2). Port-
to-bubble maps for problems of type (6.1) are defined for each instantiated component
i = 1, . . . , Ndd as F(j)i : Ui → Xi,0 such that, given port state variables U (j)

p,i ∈ Ui

and internal variables W (j)
i ∈ Wi, each local variational forms assumes the following

expression
G

(j)
i

(
F(j)i

(
U

(j)
p,i

)
+ Ei

(
U

(j)
p,i
)
, V
)
= 0 ∀V ∈ Xi,0. (6.3)

for j = 1, . . . , Jmax. A local solution can indeed be written as

U
(j)
i = F(j)i

(
U

(j)
p,i

)
+ Ei

(
U

(j)
p,i

)
. (6.4)

for i = 1, . . . , Ndd. Equation (6.3) corresponds to a time discretization of a localized
PDE problem with U

(j)
p,i as a datum on the port boundary Γi at time t(j). For the

solution of the nonlinear problems (6.3) that arise at each time step, we use the Newton’s
method with line-search.

The unconstrained formulation related to the CB full-order model (6.2) is the fol-
lowing: find

−→
U p =

(
Up,1 . . . ,Up,Ndd

)
s.t. it solves, for each j = 1, . . . , Jmax,

min−→
Up⊂U

1

2

Ndd∑
i=1

∑
f∈Neighi

∥∥∥U (j)
p,i − Ef

(
U

(j)
p,f

)
− F(j)f

(
U

(j)
p,f

)∥∥∥2
L2(Γi,f )

(6.5)

To address the construction of ROM, we follow section 5.2.4 and for each archetype
component ℓ ∈ L we denote as Z

a,b
ℓ ⊂ Xℓ,0, Z

a,rp
ℓ ⊂ Uℓ, Z

a,p
ℓ = {Eℓζ : ζ ∈ Z

a,rp
ℓ }

the bubble, port and extended port reduced spaces, respectively. Given the deployed
system, we derive the instantiated bubble and port spaces Zb

i = {ζ ◦ Φ−1
i : ζ ∈ Z

a,b
Li }

and Z
p
i = {ζ ◦ Φ−1

i : ζ ∈ Z
a,p
Li } with ROBs Zb

i = [ζb
i,1
, . . . , ζb

i,n
] : Rn → Zb

i and
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Zp
i = [ψp

i,1
, . . . , ψp

i,m
] : Rm → Z

p
i . For each i = 1, . . . , Ndd, the we can write the ansatz:

Û
(j)
i (α̂i, β̂i) = Zb

i α̂i,+Z
p
i β̂i (6.6)

where we denote reduced bubble and port coefficients as α̂i : P × (0, Tf ] → Rn, β̂i :
P× (0, Tf ] → Rm. We recall that also in the reduced solutions parameter dependence is
omitted in the notation. We can write Û (j)

i,b = Zb
i α̂

(j)
i as an approximation of the bubble

field U (j)|Ωi − Ei(U (j)|Γi) and Û
(j)
i,p = Zp

i β̂
(j)
i as an approximation of the extended port

field Ei(U (j)|Γi). We refer to
{
Û

(j)
i,b

}Jmax

j=1
,
{
Û

(j)
i,p

}Jmax

j=1
as the bubble and port estimates

of the solution field in the i-th component and we denote as Ûb,i, Ûp,i their trajectories.
The algebraic form of the residual R̂hf,(j)

i : Rn × Rm → Rn is such that(
R̂

hf,(j)
i (αi,βi)

)
n̄
= G

(j)
i

(
Û

(j)
i (αi,βi), ζ

b
i,n̄

)
, (6.7)

for n̄ = 1, . . . , n.
The approximate port-to-bubble F̂hf,(j)i : Rm → Rn is such that

R̂
hf,(j)
i

(
F̂hf,(j)i (β

(j)
i ),β

(j)
i

)
= 0 (6.8)

where
∇Fhf,(j)i (βi) = −

(
∂αiR̂

hf,(j)
i

)−1
∂βi

R̂
hf,(j)
i

∣∣∣
(αi,βi)=

(
F̂hf,(j)i (βi),βi

).
The low-dimensional OS2 problem is stated as follows: find β̂hf

= [β̂
hf

1 , . . . , β̂
hf

Ndd
] ∈

RM :=mNdd such that

β̂
hf

= arg min
β∈RM

1

2

Ndd∑
i=1

∑
f∈Neighi

∥∥Zp
i β

(j)
i − Zp

fβ
(j)
f − Zb

f F̂hf,(j)
f

(
β
(j)
f

)∥∥2
L2(Γi,f )

. (6.9)

In section 6.2.4 we discuss the extension of the hyper-reduction techniques (cf. section
5.3.2) to problem (6.9). The port-to-bubble maps are F̂eq,(j)

i : Rm → Rn such that the
high-fidelity quadrature residuals (6.8) are replaced by the following approximation:

R̂
eq,(j)
i

(
F̂eq,(j)i

(
β
(j)
i

)
,β

(j)
i

)
= 0. (6.10)

In order to introduce the hyper-reduced version of problem (6.9), the objective function
in (6.9) is written as follows:

1

2

Ndd∑
i=1

∑
f∈Neighi

∫
Γi,f

‖Û
(j)

i (αi,βi)− Û
(j)

f (αf ,βf )‖22 dx ≈ 1

2

Ndd∑
i=1

ρpLi · η
p
i (6.11)

where (5.16b),(5.16c), (5.17b) hold. The discrete formulation (5.17a) is modified as
follows:

β̂ ∈ arg min
β∈RM

feq,(j)(β(j)) = F
(

F̂eq,(j)
(
β(j)

)
, β(j), {ρp,eqℓ }ℓ∈L

)
(6.12a)

where (5.17b) holds.
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6.2 Methodology

6.2.1 Data compression

As discussed in chapter 5, we aim at using a localized strategy to compute the high-
fidelity snapshots for the construction of local RBs. Its development is ongoing research;
we show here a data compression approach that relies on the OS2 method. High-fidelity
solutions to the CB full order model (6.5) need to be evaluated and stored for different
training parameters µ ∈ P and for all sampling times. Furthermore, they need to be
computed for all the subdomains associated with a given partition {Ωi}Ndd

i=1 . Here we
present a data compression phase that is based on local solves and that is specific for
time dependent problems with internal variables. We illustrate in algorithm 11 the
construction of (archetype-based) bubble and port ROBs, as well as the computation
of projected coefficients.

Algorithm 11 ROBs construction

Inputs: training parameters {µ(k)}ntrain
k=1 , m, n ROB dimensions.

Outputs: ROBs {
(
Za,b
ℓ , Za,p

ℓ

)
}ℓ∈L; local optimal coefficients

{
α

(k)
ℓ

}ntrain

i=1
,
{
β
(k)
ℓ

}ntrain

i=1
.

1: Initialize D̄b
ℓ,1 = ∅, D̄p

ℓ,1 = ∅.
2: for k = 1, . . . ntrain do

Snapshots computation:
3: Compute

{
U

(j)
1

}
j
, . . . ,

{
U

(j)
Ndd

}
j

for j ∈ Is by the OS2 method.
Bubble/port split:

4: Compute bubble databases Db
ℓ,k =

{
U

(j)
b,1 . . . , U

(j)
b,Ndd

}
where U

(j)
b,i = U

(j)
i −

Eaℓ (U
(j)
i |Γa

ℓ
), for j ∈ Is, ℓ = Li, i = 1, . . . , Ndd.

5: Compute port databases D
p
ℓ,k =

{
U

(j)
p,1 . . . , U

(j)
p,Ndd

}
where U (j)

p,i = Eaℓ
(
U

(j)
i |Γa

ℓ

)
for j ∈ Is, ℓ = Li, i = 1, . . . , Ndd.
HAPOD update

6: [Za,b
ℓ , λbℓ ] = POD

(
Db
ℓ,k ∪ D̄b

ℓ,k, (·, ·), n
)

.

7: [W a,p
ℓ , λpℓ,k] = POD

(
D

p
ℓ,k ∪ D̄

p
ℓ,k, (·, ·),m

)
.

8: Update D̄b
ℓ,k+1 =

{√
λbℓ,n̄ζ

a,b
ℓ,n̄

}nk

n̄=1
.

9: Update D̄
p
ℓ,k+1 =

{√
λpℓ,m̄ψ

a,p
ℓ,m̄

}mk

m̄=1
.

10: end for

We specify that at the first iteration (k = 1) the POD criterion for the construction
of ROBs at lines 6 and 7 is actually given by min{|Db

ℓ,1|, n}, min{|Dp
ℓ,1|,m}, respec-

tively, for bubble and port databases, where the cardinality of each database at each
iteration k is |Db

ℓ,k| = |Dp
ℓ,k| = |Is|(Ndd − 1) if ℓ = 1 and |Db

ℓ,k| = |Dp
ℓ,k| = |Is| if ℓ = 2.

At each iteration k > 1 the bubble and port databases are enriched with nk bubble
(or mk port) solutions that retain information from previous iterations, where nk is
s.t. Za,b

ℓ = [ζa,b
ℓ,1
, . . . , ζa,b

ℓ,nk
] is the bubble ROB computed at iteration k, and mk is s.t.

Za,p
ℓ = [ψa,p

ℓ,1
, . . . , ψa,p

ℓ,mk
] is the port ROB computed at iteration k.
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Notice that we save as output also the projected coefficients, for each archetype com-
ponent ℓ ∈ L: (

α
(j)

ℓ,j̄

)
n̄
=
(
U

(j)

b,̄j
, ζa,b
ℓ,n̄

)
ℓ

for n̄ = 1, . . . , n,(
β
(j)

ℓ,j̄

)
m̄

=
(
U

(j)

p,̄j
, ψa,p

ℓ,m̄

)
ℓ

for m̄ = 1, . . . ,m,

where projections are made over all the training databases for j̄ = 1, . . . , ntrain,ℓ.

6.2.2 Solution to OS2 minimization problem

The Gauss-Newton algorithm that is introduced in algorithm 7 is extended in the fol-
lowing way. As initial conditions, we need the evaluation of state and internal variables
at time 0 in the local instantiated domains. Indeed, in our implementation, the compu-
tation of high-fidelity residual R̂hf,(j)

i (U
(j)
i ) requires the knowledge of state variables at

previous time U (j−1) as well as internal variables at previous time W (j−1). In section
6.2.3 we provide details about the computation of suitable initial conditions; for now,
let us consider U0

i and W 0
i as given, for all i = 1, . . . , Ndd.

We observe that the internal for-loop block from line 4 to line 14 corresponds to the
same block as in algorithm 7; here, we extend the iterative procedure in algorithm 7
due to the need of i) updating internal variables (cf. line 16), ii) updating the initial
conditions (cf. line 19).
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Algorithm 12 Solution to (6.9) through the Gauss-Newton method.

Inputs: α(0) = [α
(0)
1 , . . . ,α

(0)
Ndd

], β(0) = [β
(0)
1 , . . . ,β

(0)
Ndd

] initial conditions (cf. Eq. (5.22)),
U(0), W(0), tol > 0, maxit, Jmax.

Outputs:
{
Û

(j)
1

}Jmax

j=1
, . . . ,

{
Û

(j)
Ndd

}Jmax

j=1
.

1: Compute the matrices P,Q in (5.17d).

2: Set β̂
(0)

= β(0) and α̂ = α(0).

3: for j = 1, . . . , Jmax do
4: for k = 1, . . . , maxit do
5: for i = 1, . . . , Ndd do
6: Compute αi s.t. R̂eq,(j)

i (αi,β
(k)
i ) = 0 using Newton’s method with initial

condition α̂i, β̂
(0)

i

7: Compute Ĵeq
Fi

(
β
(k)
i

)
(cf. (5.18)).

8: end for
9: Update α̂ = [α1, . . . ,αNdd

].

10: Compute req,(k),(j) = Pα̂+Qβ̂
(k)

i and ∇req,(k),(j) = PĴeq
F +Q.

11: Compute β̂
(k+1)

= β̂
(k)

−
(
∇req,(k),(j))† req,(k),(j).

12: if ‖β̂
(k+1)

− β̂
(k)

‖2 < tol‖β̂
(k)

‖2 then, BREAK
13: end if
14: end for
15: Save β̂ = β(k+1)

16: Update U
(j−1)
i and W

(j−1)
i for i = 1, . . . , Ndd to be used at line 6.

17: Update α̂ s.t. α̂i = F̂eq,(j)
i (β̂i) to be used at line 6.

18: Store Û
(j)
i = Zb

i α̂i + Zp
i β̂i.

19: Save β̂(0)
= β̂.

20: end for

21: Return
{
Û

(j)
1

}Jmax

j=1
, . . . ,

{
Û

(j)
Ndd

}Jmax

j=1
.

6.2.3 Initial conditions

We use the OS2 method (cf. algorithm 7) to compute the initial conditions both in the
HF case and in the ROM case. In particular, we recall problem (3.11), which is stated in
the global domain Ω to compute the initial displacement u0: we state (3.11) in the local
archetype components Ωa

int and Ωa
ext by using the proper deformation maps Φa

int and
Φa
ext that are introduced in section 5.2.3. We omit the dependence on the parameters

µint and µext to shorten notation and we use the following notations for mapped and
symmetric gradients as in chapter 5: given a map Φ, we define ∇Φ = ∇Φ−T∇ and
∇s,Φ = 1

2

(
∇Φ +∇T

Φ

)
.
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In the "internal" component (which corresponds to ℓ = 1) we should solve
∫
Ωa

int
ηa,eint(u, v)dx =

0 for all v ∈ Xa
ℓ,0 where, for Φ = Φa

int,

ηa,eint(u, v) =2µ′(∇s,Φv)(∇s,Φu) det(∇Φ)+

λ(∇Φ−T : ∇v)(∇Φ−T : ∇u) det(∇Φ)+

− bpw,0
(
∇ϕ−T : ∇v

)
det(∇Φ)− ρ0Fmv det(∇Φ).

In the "external" component (which corresponds to ℓ = 2) we should solve
∫
Ωa

ext
ηa,eext(u, v) dx+∫

Γa
top,ℓ

ηa,fext(u, v) dx = 0, for all v ∈ Xa
ℓ,0 s.t. v · n|∂Ω\Γa

N,ℓ
= 0. For Φ = Φa

ext, we have
that ηa,eext(u, v) = ηa,eint(u, v) and

ηa,fext = v · (g
m,N

◦ Φ)‖∇Φ t̂‖2.

We compute u0 using the Gauss-Newton method that is described in algorithm 7.
Since problem (3.11) is linear in u0 (and the same holds for the corresponding local
variational forms), the iterative procedure in algorithm 7 is expected to converge in
only 1 iteration (cf. [MNT04]).

6.2.4 Hyper-reduction

We rely on element-wise EQ and we follow the procedure that is explained in sec-
tion 5.3.2: we replace the high-fidelity discretization with the weighted residual associ-
ated with

G
a, eq,(j)
ℓ

(
U (j), V

)
=

Ne
ℓ∑

k=1

ρeqℓ,k

∫
Dℓ,k

η
a,e,(j)
ℓ (U (j), V ) dx +

∫
∂Dℓ,k

η
a,f,(j)
ℓ (U (j), V ) dx,

(6.13)
where ρeqℓ = [ρeqℓ,1, . . . , ρ

eq
ℓ,Ne

ℓ
]T is a sparse vector of non-negative weights. Unlike in

section 5.3.2, we cannot rely on local optimal coefficients and the associated local pa-
rameters {α(j)

ℓ,i ,β
(j)
ℓ,i , µℓ}

ntrain,ℓ
i=1 , j = 1, . . . , Jmax (which are computed from algorithm 11)

for the construction of EQ matrices (cf. appendix A). Indeed, as explained in remark 2,
residual (6.7) associated with equations (3.12)-(3.13) depends on state variables and
internal variables both at the current time and at the previous time: we should thus
prescribe

(
α
(j)
i , α

(j−1)
i , β

(j)
i , β

(j−1)
i ,W

(j−1)
i

)
to compute local residuals (6.8). We recall

that computation of W (j)
i requires the evaluation of the discretization of Fµ (which

corresponds to constitutive laws (3.13)).
We follow the underlying idea of section 4.3.1: we solve the (local) ROM(s) with high-
fidelity quadrature and generate {α̂(j)

i , β̂
(j)
i , Ŵ

(j)
i } for all j = 1, . . . , Jmax. The reason

is due to memory costs: in the CB setting, indeed, storage of state and internal vari-
ables would be of the order of (nqN e

intD
cl +Nhf

intD+ nqN
e
int(d− 1))|Is|(Ndd − 1) for all

the internal components and (nqN
e
extD

cl +Nhf
extD + nqN

e
ext(d− 1))|Is| for the external

component. The price to pay is an increase in the computational cost associated with
the offline phase.

Hyper-reduction of the objective function in (6.12a) follows the same procedure that
is explained in section 5.3.3; it suffices to adapt it to formulation (6.12a).
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6.2.5 Dealing with different scales

The formulation in (6.9) is an unconstrained minimization problem in which the ob-
jective function is written in terms of port solutions at port boundaries; the solutions
are of the form U

(j)
i = [u

(j)T

i , p
(j)
wi , T

(j)
i ]T for each component i = 1, . . . , Ndd at all time

steps j = 1, . . . , Jmax. These solutions correspond to considerably different scales. As
explained in chapter 3, we introduce scaling functions that non-dimensionalize the state
variables. In [PR22], this procedure is shown to have a positive impact on both POD
and Galerkin or least-squares ROMs. To give a concrete example on THM applications,
we recall figure 3.3 in which the time gaps of dimensional solutions are depicted for a
fixed parametric configuration. The accuracy of the POD basis and the resulting ROM
depends on the choice of the inner product space, in particular for vector-valued POD
(i.e. D > 1), which has to combine variables with different scales. Therefore, a proper
treatment of the solutions scales represents a significant aspect to account for, not only
in error computations (compare norm definitions in section 3.5), but also in computing
the algebraic form of the objective function (6.12a), both in the high-fidelity and ROM
cases. In the numerical section 6.3, a monolithic coarse-mesh solution is found for a
fixed parameter µ = µ̄ (which is the centroid of P) and the scaling factor of the objective
function in (6.12a) corresponds to the following gap: max

{
U

(Jmax)
i,s

}
−min

{
U

(Jmax)
i,s

}
for each s = 1, . . . , D and i = 1, . . . , Ndd (both in the HF and in the ROM solves).

6.3 Numerical results

6.3.1 Assessment metrics and training parameters

We adopt two geometric discretizations. A first one, which is characterized by N e
int =

1120 and N e
ext = 3960 is also adopted in the numerical investigations in chapter 5; a sec-

ond discretization is characterized by N e
int = 320 and N e

ext = 1184 elements. We notice
that with respect to the mesh in figure 3.2(b) in chapter 3 (which is dedicated to the
FE solution of THM system), the choice of structured meshes is motivated by the need
of using mesh interpolation operators: indeed, structured meshes require an accept-
ably low (log-in-time) computational cost for interpolation. Unlike chapter 3, in all the
following numerical results we consider FE polynomial degree p = 2 for displacement,
pressure and temperature, as in the numerical results shown in chapter 5. We aim at
extending the investigation to different FE discretizations also for the component-based
ROM.

We also need to take into account that in this chapter the THM system is solved
for different values of interest of Qa (cf. figure 5.3), while in chapter 4 a geometric
setting is fixed. The parameters that are associated with the thermal flux boundary
condition (3.7) are modified to take into account higher numbers of repositories Qa ≥ 2.
In particular, we train the CB-ROM based on ntrain = 10 global parameters in Ξtrain =
{µ(k)}ntrain

k=1 such that(
E

(k)
1 , µ

(k)
1 , C

(k)
al , τ

(k)
)

iid∼ Uniform
(
[928.1416, 1.0896 · 103]× [0.2760, 0.3240]

×[4.9066, 5.7600]× [0.4193, 0.4922]
)
,

(6.14)

and
Q(k)

a
iid∼ Uniform ({2, . . . , 7}) .

We recall that, as in the numerical investigations in chapter 4 , we refer to non-
dimensional values of parameters. Also, we recall that E(k)

1 and µ
(k)
1 are the values
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of Young’s modulus and Poisson’s ratio only on region UA in figure 3.2(a). Since also
geometric parameters (cf. Qa in figure 5.3) are supposed to change, we set a a variation
of the 8% of the parameters in the same training set (rather than the 15% as in the
tests for the monolithic ROM in chapter 4).
We report in the following table the relative L2(0, Tf ;H

1(Ω)) variation of the monolithic
high-fidelity solutions for varying parameters E1, µ1, Cal, τ as in (6.14) with respect to
the high-fidelity monolithic solution that is computed for the average value of µ in the
same range. We consider variations of one parameter at a time in (6.14). Also, we
consider a fixed geometric parameter Qa = 6.

L2(0, Tf ;H
1(Ω)) solution variation

E 0.002
µ 0.0015
Cal 0.0462
τ 0.0312

Figure 6.1: Two solutions (in terms of dimensional temperature [K])
(computed at the final time step j = Jmax = 20, with ∆t = 0.05) for

τ = 0.4193 (left) and τ = 0.4922 (right) in the parametric range.

The soley variation of the physical parameter τ in the parametric range (6.14)
results in a change in the order of 3% in the solution. To provide a simple example, we
depict in figure 6.1 the temperature solutions at the final time step j = Jmax = 20 and
at the minimum and maximum values of τ in the parametric range [0.4193, 0.4922]. We
conclude that the predictive investigation of this section is worthy of interest.

We assess performance based on ntest = 5 out-of-sample global parameters Ξtest =
{µ̃(k)}ntest

k=1 generated by the same distribution (6.14). The non-dimensional time interval
(0, tf ] is divided into Jmax = 20 uniform time steps of length ∆t = 0.05; the high-fidelity
solutions are stored in the training phase at sampling times in Is ⊆ {1, . . . , Jmax}. We
set |Is| = 20 and the same values for the computation and saving time-steps ∆ts =
∆t = 0.05. We define the out-of-sample prediction error:

EJ :=
1

ntest

∑
µ∈Ξtest

√∑Jmax
j=1 (t(j) − t(j−1))

∥∥Ppu[U (j)]− Ppu[Û
(j)

]
∥∥2
H1(Ω)√∑Jmax

j=1 (t(j) − t(j−1))
∥∥Ppu[U (j)]

∥∥2
H1(Ω)

,
(6.15)

where {Û
(j)

}j is found by solving a ROM, by OS2, with or without hyper-reduction.
The following errors are associated with solution projection: we present first the best-fit
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error

Ebf
J :=

1

ntest

∑
µ∈Ξtest

√∑Jmax
j=1 (t(j) − t(j−1))

∥∥Ppu[U (j)]− Û
(j)

bf

∥∥2
H1(Ω)√∑Jmax

j=1 (t(j) − t(j−1))
∥∥Ppu[U (j)]

∥∥2
H1(Ω)

, (6.16)

Û
(j)

bf = ΠZglo
Ppu[U (j)] (6.17)

where we define Zglo = span{Ppu[ζi ◦ Φ−1
i ] : ζ

i
∈ Z

a,b
Li ∪ Z

a,p
Li , i = 1, . . . Ndd} for

i = 1, . . . , Ndd.
We add

Esub
J :=

1

ntest

∑
µ∈Ξtest

√∑Jmax
j=1 (t(j) − t(j−1))

∥∥Ppu[U (j)]− Ppu[Û
(j)

sub]
∥∥2
H1(Ω)√∑Jmax

j=1 (t(j) − t(j−1))
∥∥Ppu[U (j)]

∥∥2
H1(Ω)

, (6.18)

(
Û

(j)

sub

)
i
=

(
Π

Z
a,b
Li

∪Za,p
Li

(
U

(j)
i ◦ Φi

))
◦ Φ−1

i , (6.19)

that is introduced in equation (5.44) for steady problems: we recall that, unlike Ebf
J ,

the error in (6.18) is not optimal.

6.3.2 High-fidelity solution

First of all, high-fidelity solutions are shown for a fixed parametric configuration given
by µ = µ̄ = [1.088 ·103, 0.3, 5.333, 0.4558]T corresponding to the centroid of the training
set and Qa = 5 corresponding to an (integer) average value for range {2, . . . , 7}. Local
solutions are computed by the OS2 method applied to THM system and a a reconstruc-
tion of the solution in the global domain is found by evaluation of partition of unity
operator (5.42) at the local solutions.
In figure 6.2 we depict the H1 relative error between the high-fidelity solutions com-
puted by OS2 method and the solution found by monolithic solver with P2 finite element
degree for displacement, pressure and temperature. The relative error for all timesteps
j = 1, . . . , Jmax can be written as follows

E
(j)
hf =

‖Ppu[
−→
U (j)]− U (j)‖H1(Ω)

‖U (j)‖H1(Ω)

.
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Figure 6.2: Error with respect to time index j = 1, . . . , Jmax for each
state variable.

The relative (averaged in time) error is around 7.49 · 10−4 by using the fine mesh
and around 3.30 · 10−3 by using the coarse mesh. All relative errors are under 10−5 for
all time indices j = 1, . . . , Jmax. We conjecture that the error in temperature is rapidly
decreasing in time due to the fact that the temperature evolution is more significant
in the first time steps, as depicted in figure 6.3(b), and the coupling might be weaker
than the one associated with the other solution components. We would like to better
investigate this aspect.
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(a) pressure evolution
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(b) temperature evolution

Figure 6.3: Dimensional temperature evolution in time, for j =
1, . . . , Jmax; we add also the initial conditions.
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(a) geometry and selected slice
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(b) horizontal displacement
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(d) water pressure

0 0.5 1

302.5

303

303.5

y

[K
]

T (Jmax)

Ppu[
−→
T (Jmax)]

(e) temperature

Figure 6.4: Dimensional solutions at points depicted in (a), s.t. x =
x̄ = 0.46, 0 ≤ y ≤ 1.

6.3.3 RB construction

We show the bubble and port POD eigenvalues associated with the two archetype
components; the decay of the normalized eigenvalues λ⋆ℓ,i/λ⋆ℓ,1, for ⋆ ∈ {b, p} is depicted
only above a threshold of 10−16. We notice that the POD eigenvalues associated with
the external component decay faster than the ones associated with the internal one: the
solutions in the external component are expected to be less affected by the variation
in parameters (cf. figure 3.2(a) and (6.14)) than the corresponding solutions in the
internal components.
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Figure 6.5: Eigenvalues decay for the two archetype components: (a):
ℓ = 1, (b): ℓ = 2.

6.3.4 Reduced order model with HF quadrature

The average in-sample error (cf. equations (2.13)) En = 1 − 1
ntrain∑
j=1

λj

n∑
i=1

λi is depicted

in figure 6.6 for several values of port modes n (and m = n) in the two archetype
components.
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Figure 6.6: behaviour of the averaged squared in-sample error En for
several values of n, for port and bubble components, and for the two

archetype components.

We remark that errors in figure 6.6 are squared and that they correspond to in-
sample projection errors of the maximum order of 10−5 for the maximum number of
modes m = n = 40.

We show the performance of the OS2 ROM without hyper-reduction. We investigate
the performance in out-of-sample cases. We show the error in (6.15) between the
solution found by OS2 ROM with high-fidelity quadrature and the high-fidelity solution
(which is computed by OS2 method with high-fidelity solve). Also the best-fit error
and the sub-optimal error (cf. (6.16) and (6.18)) are depicted with respect to increasing
values of bubble and port modes (m = n); we recall that all errors are averaged over
ntest = 5 tests. We set tol = 10−8 in algorithm 12 and we set a threshold for the
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objective function value equal to 10−10. We depict in figure 6.7(b) the (averaged in time)
value of the objective function (cf. line 10) which is computed once Gauss-Newton’s
convergence criterion at line 12 is satisfied; in figure 6.7(c) the Gauss-Newton’s average
computational cost is shown for increasing number of modes n (and m = n).
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Figure 6.7: (a): out-of-sample performance of OS2 ROM without
hyper-reduction for several values of m, with n = m; (b): average (in
time) objective function (6.12a) at optimality; (c): average cost on ntest

tests and on times {1, . . . , Jmax}.

We observe in figure 6.7(a) a saturation of the out-of-sample error for large values
of m and n, while in figure 6.7(b), for increasing values of bubble and port modes, we
observe a decrease of the average objective function computed in algorithm 12. We
conjecture that this different behavior might be related to the scaling of the objective
function and to the difference in magnitude of the four state variables (cf. (3.14) for
the choice of the norm). A thorough investigation of this aspect is currently ongoing.

In figure 6.8 the dimensional horizontal and vertical displacement, pressure and
temperature are depicted at the final time step Jmax: the plots demonstrate that the
OS2-ROM method (for a fixed reduced basis dimension n = 30 and m = n) provides
extreemely accurate results with respect to the high-fidelity solutions. In all the cases
the partition of unity operator is employed to compare solutions in the global domain
Ω.
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(a) P[u(Jmax)
x ] [m] (b) P[u(Jmax)

y ] [m]

(c) P[p(Jmax)
w ] [Pa] (d) P[T (Jmax)] [K]

Figure 6.8: Dimensional solutions at the final time Jmax in an out-of-
sample prediction test: on the left the high-fidelity solution, on the right
the OS2-ROM solution found without hyper-reduction with n = 30 and

m = n.

6.3.5 Hyper-reduction

In figure 6.9 we investigate the performance of the hyper-reduced ROM for the port-
to-bubble maps: in 6.9(a) the out-of-sample prediction errors are depicted for several
values of n, with m = n. We compare results obtained with empirical quadrature in
local port-to-bubble maps with results obtained with high-fidelity quadrature (dubbed
HFQ). Figure 6.9(b) shows the average computational time over the test set. The EQ
tolerance is toleq = 10−14 (it corresponds to a percentage of sampled elements equal
to 75.31% in the internal coarse mesh and 20.18% in the external coarse mesh for
n = m = 15).
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Figure 6.9: Performance of OS2-ROM with hyper-reduction on port-
to-bubble maps, based on EQ procedure with toleq = 10−14.

The OS2 method with EQ achieves a relative error around 10−3 for n ≥ 15 and
m = n; the corresponding average computational time is around a factor 1/2 of the cost
associated with the HF quadrature rule. We also compute the speed-up factor of the
hyper-reduced OS2 solver with respect to the monolithic P2 HF solve for µ ∈ Ξtest: we
find an average (over ntest tests) value in an interval of 13− 22 for n ∈ {15, 20, 25, 30}
and m = n.

6.4 Conclusions
In sections 6.3.4 and 6.3.5 we investigated the ROM accuracy in out-of-sample cases
with and without hyper-reduction. The OS2-ROM errors in figure 6.7(a) and in 6.9(a)
present an accuracy saturation for large values of n and m compared to the projection
errros (6.16). At the same time, the average value of the objective function at opti-
mality (which is shown in the HF quadrature case in figure 6.7(b)) demonstrates good
convergence properties of the OS2 procedure in algorithm 12. A thorough investigation
of this aspect is currently ongoing. Nevertheless, the high-fidelity solution is recreated
with a prediction error of the order of 0.3%.

We also aim to replicate the numerical results of the latter two sections 6.3.4 and
6.3.5 also in the case of finer grids.

As for the efficiency, the hyper-reduced OS2 method achieves a good gain in com-
putational cost (in the range of 13−22) with respect to a monolithic solve for the same
out-of-sample test configurations. We envision that a more effective implementation of
algorithm 12 — by parallelization of port-to-bubble maps at lines 5-8 and by a point-
wise EQ hyper-reduction of the port-to-bubble maps, as opposed to element-wise EQ—
will lead to significantly larger speed-ups.



107

Chapter 7

Conclusions and perspectives

In this thesis we focused in applying CB-pMOR methods for THM systems in radioac-
tive waste applications. In particular we were interested in

1. significantly reducing the computational cost associated with the numerical sim-
ulations of parametric problems governed by PDEs;

2. developing a new CB-pMOR methodology that could handle different geometric
parametrizations of the problem of interest;

3. adapting the proposed CB-pMOR methods to time-dependent coupled systems
with internal variables.

To achieve these goals, at the foundation of proposed the methodology there are the
ROMs, which typically consist of a training stage in which high-fidelity solution snap-
shots are collected to define a low-dimensional subspace, and a prediction stage, where
the trial subspace is then exploited to achieve fast simulations for new input parameters.

The first contribution of this thesis concerns the development of a Galerkin projection-
based model order reduction procedure for the THM system that is introduced in equa-
tion (1.1). The pMOR approach has been adapted to time-dependent nonlinear coupled
problems with internal variables. The constructed ROM has been enriched with a time-
averaged error indicator to drive the offline sampling and an EQ procedure to reduce
online costs. The performance of the resulting ROM has been evaluated on the both
reproductive and predictive tests. The results demonstrate that the accuracy of the
ROM is less than 1% (for a dimension of the reduced space that is more than 25) over a
range of predictive input parameters; also, the results show a significant speedup factor
delivered by the ROM with respect to HF simulations.

For future perspectives, we consider the following idea.

• Residual minimization. The accuracy of the method could be even further im-
proved by the residual minimization method instead of the Galerkin method.

In the second part of the thesis we proposed a CB-pMOR formulation for a) steady
nonlinear PDEs, b) time-dependent coupled nonlinear problems. The formulation is
based on overlapping subdomains; it relies on a constrained optimization that penalizes
solutions jumps at the subdomain interfaces. The extension of classical pMOR tech-
niques to the DD framework is driven by the introduction of archetype and instantiated
components. A key point to achieve a low-dimensional unconstrained minimization
problem is given by the solution decomposition into bubble and port solutions and the
exploitation of the underlying principle of static condensation.

In the application in chapter 5 we achieve a speedup factor of the order of 20
compared to a standard monolithic FE model, with less than 0.1% prediction error.
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In the third part of the thesis we extended our CB-pMOR formulation (for nonlinear
PDEs) to tackle the THM of interest. We also explored the ROM performance both in
in-sample and out-of-sample cases. We endowed the local ROMs with hyper-reduction
tools and we achieved a speedup factor in the range of 13 − 22 with respect to a
monolithic P2 FE solve. We found prediction errors of the order of 0.3% in the out-of-
sample cases.
Concerning the time-dependent THM problem in chapter 6, we remark the following
important perspective.

• ROM accuracy. As explained in section 6.3.4, we are interested in the improve-
ment of the accuracy of the Galerkin ROM method. First of all, we should better
understand the importance of scaling in the objective function, and in particular
further investigate the computation of the optimal scaling. Furthermore, we con-
jecture about drawing insights from the work in [Lin+22], which has the objective
of improving the accuracy of ROM in the case of a least-squares Petrov-Galerkin
method.

In addition, it would be interesting to explore some relevant perspectives to both the
second and third part of the thesis.

• Choice of the number of basis functions. In the local ROMs, we use the same
number of reduced basis functions in all the subdomains: we would better gener-
alize the implementation and equip different archetype components with different
dimensions of reduced bases. In this way, the local approach could also improve
the computational complexity of the ROMs, since less local basis functions may
be required to obtain accurate approximations.

• OS methods. We aim at better exploiting the connection between the proposed
OS2 method and the (multiplicative or additive) overlapping Schwarz method,
as described in section 5.1.1 for a steady PDE. Due to this fact, the extensively
developed analysis on OS could be extremely useful to derive a more complete
analysis (cf. section 5.4) of OS2. In particular, we are interested in the pos-
sibility of extending the connection between OS2 and OS for nonlinear and/or
time-dependent problems. Also, we aim at combining our approach with the
recently-developed OS method discussed in [MTP22].

• Localized training. We wish to devise localized training techniques to avoid the
solution to global HF problems at training stage; in this regard, we aim to extend
the approach in [ST22] to both steady PDEs and unsteady PDEs with internal
variables.

• Automatic partitioning. This work is based on an a priori partition of the global
domain, i.e. we exploit the knowledge of the parametric mapping Φ. The auto-
matic construction of a mapping for parametrized geometries could be efficiently
determined by a suitable error indicator. We refer to the model reduction litera-
ture (e.g. [Roz+19], [Las+14]) for a thorough discussion.

• Data-fitted methods. We aim to combine data-fitted and projection-based ROMs
in the OS2 framework: we envision that the successful combination of first-
principle and data-fitted models might offer new solutions for data assimilation
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(state estimation) applications, for a broad range of engineering tasks.

• Comparison with other methods. We may be interested in comparing the OS2
method with other algorithms for PDE-constrained optimization; we cite [HK10]
as a reference for different approaches for solving optimization problems with
PDE constraints.

• Non-overlapping decomposition. We wish to investigate the possibility of general-
izing our approach to non-overlapping decompositions: this requires to add in the
objective function a term that penalizes the jump of the normal stresses; a deep
investigation of the connection with discontinuous Galerkin methods should also
be considered. We refer to the works in [GPK99] and [GL00] for optimization-
based non-overlapping domain decomposition; in these works the control variables
(i.e. the unknowns in the optimization problem ) are the Neumann boundary con-
ditions at the interface boundaries.

• Multi-fidelity approximations. Thanks to the extreme flexibility of the OS2 state-
ment (the Ndd subproblems in (6.2) are all independent from each other), we en-
vision to test also multi-fidelity approximations. For example, a FOM/ROM cou-
pling could be adopted in the case of higher/lower variability of the parametrized
solutions in different regions of the global domain: considering the application of
this thesis, a high-fidelity model might be employed in the repository regions and
a ROM in the external region (cf. figure 1.7).

• Structure preservation. We conjecture that the application of the OS2 method
does not ensure structure preservation for Hamiltonian problems: indeed, as
described in section 5.4.4, the OS2 ROM statement is equivalent to a Petrov-
Galerkin formulation, which does not guarantee the conservation of the structure.
We refer to [FCA15] on the explaination of structure preservation in the case of
Galerkin projection and to a recent work in [HPR22] on an adaptive structure-
preserving MOR approach.
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Appendix A

Hyper-reduction of
port-to-bubble problems

We review the element-wise EQ hyper-reduction procedure that is employed in chapter 5
to speed up the solution to the port-to-bubble problems. The approach exploits the
methods first proposed in [FCA15; YP19a]: we refer to [TZ21] for further details. We
recall that, for any ℓ ∈ L, {xa,vℓ,j }

Nv
ℓ

j=1 are the nodes of the reference mesh of the ℓ-th
component, while Tℓ ∈ NNe

ℓ×nlp is the connectivity matrix, with nlp equal to the number
of elemental degrees of freedom. We denote by e1, . . . , eD the vectors of the canonical
basis in RD and we denote by φℓ,k,i the FE basis associated with the i-th degree of
freedom of the k-th element of the ℓ-th component.

Given u ∈ Xa
ℓ , we denote by uun ∈ Rnlp×Ne

ℓ×D the corresponding third-order tensor
such that

uuni,k,d =
(
u
(
xa,vℓ,Tℓ,k,i

))
d
, i = 1, . . . , nlp, k = 1, . . . , N e

ℓ , d = 1, . . . , D.

Similarly, given the ROB basis Za,b
ℓ : Rn → Z

a,b
ℓ , we denote by Za,b,un

ℓ ∈ Rnlp×Ne
ℓ×D×n

the corresponding fourth-order tensor. We further define the unassembled residual
associated with the field u and the parameter µℓ,

Ra,un
ℓ,i,k,d(u;µℓ) :=

∫
Dℓ,k

ηa,eℓ (u, φℓ,k,i ed;µℓ) dx +

∫
∂Dℓ,k

ηa,fℓ (u, φℓ,k,i ed;µℓ) dx,

for ℓ ∈ L, i = 1, . . . , nlp, k = 1, . . . , N e
ℓ , d = 1, . . . , D. Then, it is easy to verify that(

R̂⋆
ℓ (γℓ)

)
j
=
∑
i,k,d

ρ⋆ℓ,k Z
a,b,un
ℓ,i,k,d,j Ra,un

ℓ,i,k,d(γℓ) = (Ga
ℓ (γℓ)ρ

⋆
ℓ )j , j = 1, . . . , n, (A.1a)

where ⋆ ∈ {hf, eq}, γℓ = (αℓ,βℓ, µℓ) denotes the triplet of bubble coefficients, port
coefficients and parameter, Ga

ℓ : Rn × Rm ×Pℓ → Rn×N
e
ℓ is the matrix-valued function

that satisfies (Ga
ℓ (γℓ))j,k =

∑
i,d Z

a,b,un
ℓ,i,k,d,j Ra,un

ℓ,i,k,d(γℓ) for j = 1, . . . , n and k = 1, . . . , N e
ℓ .

The latter identity implies that

R̂hf
ℓ (γℓ) − R̂eq

ℓ (γℓ) = Ga
ℓ (γℓ)

(
ρhfℓ − ρeqℓ

)
(A.1b)

For any ℓ ∈ L, EQ procedures aim to find a vector ρeqℓ ∈ RN
e
ℓ such that (i) ρeqℓ is

as sparse as possible; (ii) the constant function is integrated accurately, that is

∣∣ Ne
ℓ∑

k=1

ρeqℓ,k |Dℓ,k| − |Ωa
ℓ |
∣∣� 1; (A.2)
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(iii) given the training set of triplets Σtrain,eq
ℓ := {γ(j)

ℓ }ntrain,ℓ

j=1 , the residual is adequately
calculated for all elements of the training set,∣∣Jb

ℓ (γℓ)
−1
(
R̂hf
ℓ (γℓ) − R̂eq

ℓ (γℓ)
) ∣∣� 1, where Jb

ℓ := ∂αR̂
hf
ℓ , ∀γℓ ∈ Σtrain,eq

ℓ .

(A.3)
As discussed in section 5.3.3 (cf. (5.24)), the constant accuracy constraint (A.2) is
designed to control the ℓ1 norm of the weights that is related to the stability of the
quadrature rule (see, e.g., [Huy09, section 2.3]); the constraints (A.3) are directly linked
to the approximation error between the ROM estimate with HF quadrature and the
hyper-reduced ROM estimate (cf. [YP19a, Proposition 3.2]).

We observe that the EQ problem can be recast as a sparse representation problem
of the form

min
ρ∈RNe

ℓ

‖ρ‖ℓ0 , s. t. ‖Ceq
ℓ

(
ρhfℓ − ρeqℓ

)
‖2 ≤ toleq, (A.4)

where ‖ρ‖ℓ0 is the ℓ0 norm that counts the number of non-zero entries in the vector ρ,
Ceq
ℓ is a suitable matrix that can be readily derived from (A.2) and (A.3), and toleq is

a suitable tolerance. Problem (A.4) is NP hard; however, several effective approximate
strategies have been proposed in the literature to determine parsimonious quadrature
rules for MOR applications, [FCA15; YP19a; Cha+17; MAB22]. In this work, we
resort to the non-negative least-square algorithm implemented in the Matlab routine
lsqnonneg, which takes as input the matrix Ceq

ℓ , the vector beq
ℓ := Ceq

ℓ ρ
hf
ℓ and the

tolerance toleq, and returns the sparse quadrature rule.
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Appendix B

Proofs

B.1 Proof of Proposition 1
Proof. Let u⋆ be the solution to (5.26). Then, we find

a(u⋆|Ωi , v)
(5.27)
= a(u⋆, vext) = f(vext) = f(v) ∀ v ∈ Xi,0;

therefore, u⋆|Ωi = Tiu
⋆|Γi +Gif . The latter implies that λ⋆ = (u⋆|Γ1 , u

⋆|Γ2) satisfies

λ⋆ − Eλ⋆ −Gf = (u⋆|Γ1 − u⋆|Γ1 , u⋆|Γ2 − u⋆|Γ2) = 0,

and thus that λ⋆ solves (5.30).
Let λ⋆ satisfy (5.30). We define u⋆i = Tiλ

⋆
i +Gif for i = 1, 2. If we define the space

X0
1,2 = {v|Ω1∩Ω2 : v ∈ X, v|Γ1∪Γ2 = 0}, we observe that u⋆1, u⋆2 satisfy

u⋆i |Γ1 = λ⋆1, u⋆i |Γ2 = λ⋆2, a(u⋆i , v) = f(v) ∀ v ∈ X0
1,2, i = 1, 2. (B.1)

Since a : X0
1,2 × X0

1,2 → R is coercive, the solution to (B.1) exists and is unique:
therefore, u⋆1 = u⋆2 in Ω1 ∩ Ω2. In particular, if we define u⋆ =

∑2
i=1 u

⋆
i , we have

u⋆|Ωi = u⋆i for i = 1, 2.
Given v ∈ X, we have vϕi ∈ Xi,0, since, by construction, suppϕi ⊂ Ωi. We thus

have

a(u⋆, v) =
∑
i=1

a(u⋆, ϕiv) =
∑
i=1

a(u⋆
∣∣
Ωi
, ϕiv) =

∑
i=1

a(u⋆i , ϕiv) =
∑
i=1

f(ϕiv) = f(v),

which is the desired result.

B.2 Proof of Proposition 2
Proof. Continuity of ap follows from the continuity of the trace operators, and the local
operators T1, T2. We omit the details. To prove inf-sup stability of the problem, we
resort to the Fredholm’s alternative: since T is compact, provided that ν = 1 is not an
eigenvalue of T , the equation λ− Tλ = f admits a unique solution for any f ∈ U and
there exists a constant C such that |||λ||| ≤ C|||f ||| (see, e.g., [Sal16, Theorem 6.6.8]). It
thus suffices to prove that Tλ = λ only holds for λ = 0.

Towards this end, we consider the problem:

find w ∈ X1,2 : a(w, v) = 0 ∀ v ∈ X0
1,2, w|Γ1 = γ1, w|Γ2 = γ2,

with X0
1,2 = {v|Ω1∩Ω2 : v ∈ X}, and X0

1,2 = {v|Ω1∩Ω2 : v ∈ X, v|Γ1∪Γ2 = 0}. Since
T1λ1 = λ1 on Γ1 by definition and T1λ1 = λ2 on Γ2 since Tλ = λ, we have that
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T1λ1|Ω1,2 = w; similarly, we find T2λ2|Ω1,2 = w. As observed in the proof of Propo-
sition 1, there exists a unique solution to the problem w ∈ X1,2: this implies that
T1λ1|Ω1,2 = T2λ2|Ω1,2 . Given the partition of unity ϕ1, ϕ2 associated with {Ωi}2i=1, we
define the field u =

∑2
i=1 ϕiTiλi ∈ X, which satisfies u|Ωi = Tiλi for i = 1, 2. We

observe that

a(u, v) =

2∑
i=1

a (u, ϕiv)
(5.27)
=

2∑
i=1

a (u|Ωi , ϕiv) =

2∑
i=1

a (Tiλi, ϕiv) = 0.

Since a is coercive, we must have u ≡ 0 and thus λ ≡ 0.

B.3 Proofs of the estimate (5.36)
Proof. We first introduce the orthonormal basis {ψi}Mi=1 of Zp; given λ ∈ Zp, we
denote by λ ∈ RM the corresponding vector of coefficients such that λ =

∑M
i=1(λ)iψi.

By straightforward calculations, we find that

Ã λ̃ = F̃, Â λ̂ = F̂, with


(
Ã
)
i,j

= 〈(Id− T )ψj , (Id− T )ψi〉,
(
F̃
)
i
= 〈(Id− T )ψi, Gf〉,(

Â
)
i,j

= 〈(Id− T̂ )ψj , (Id− T̂ )ψi〉,
(
F̂
)
i
= 〈(Id− T̂ )ψi, Ĝf〉.

(B.2)
By straightforward calculations, we obtain

λ̃− λ̂ = Ã−1
(
F̃− F̂−

(
Ã− Â

)
λ̂
)

and thus
‖λ̃− λ̂‖2 ≤ ‖Ã−1‖2︸ ︷︷ ︸

=:(I)

(
‖Ã− Â‖2︸ ︷︷ ︸

=:(II)

‖λ̂‖2︸ ︷︷ ︸
=:(III)

+ ‖F̃− F̂‖2︸ ︷︷ ︸
=:(IV)

)
. (B.3)

We estimate each term of (B.3) independently: combination of the estimates for
(I)-(IV) leads to (5.36).

(I) Recalling the definition of αp, we have |||ψ − Tψ||| ≥ αp|||ψ|||; therefore, we have

ψT Ãψ = |||ψ − Tψ|||2 ≥ α2
p|||ψ|||

2 = α2
p‖ψ‖22,

which implies (I).

(II) By summing and subtracting 〈(Id−T )ψj , (Id− T̂ )ψi〉 to
∣∣ (Ã)

i,j
−
(
Â
)
i,j

∣∣ and
recalling the definitions of γp, γ̂p and εT, we obtain∣∣ (Ã)

i,j
−
(
Â
)
i,j

∣∣ ≤ (γp + γ̂p) εT, ∀ i, j = 1, . . . ,M.

Estimate (II) then follows by exploiting the fact that for any M ×M matrix A,
we have ‖A‖2 ≤M maxi,j |Ai,j |.

(III) Estimate (III) follows directly from the properties of minimum residual formula-
tions of inf-sup stable problems. Indeed, since the bilinear form ap is continuous
and inf-sup stable, using the Nečas theorem (see, e.g., [Sal16, Thm 6.42]) we have
‖λ̂‖2 =

∣∣∣∣∣∣∣∣∣λ̂∣∣∣∣∣∣∣∣∣ ≤ 1
α̂p

∣∣∣∣∣∣∣∣∣Ĝf ∣∣∣∣∣∣∣∣∣ for all f ∈ X′.
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(IV) Proceeding as in (II), we find∣∣ (F̃)
i
−
(
F̂
)
i

∣∣ ≤ γ̂pεG + |||Gf |||εT, ∀ i = 1, . . . ,M,

and thus ‖F̃ − F̂‖2 ≤
√
M‖F̃ − F̂‖∞ ≤

√
M (γ̂pεG + |||Gf |||εT) .

B.4 Proof of (5.39)
Proof. For the two-subdomain problem, the OS2 statement (5.32) can be stated as:

min
(ψ1,ψ2)∈Zp

1×Z
p
2

‖û1(ψ1)− û2(ψ2)‖H1/2(Γ1∪Γ2)
(B.4)

where ûi(ψi) = ûbi (ψi) + Eiψi and ûbi (ψi) ∈ Zb
i satisfies a(ûbi (ψi) + Eiψi, v) = f(v)

for all v ∈ Zb
i and all ψi ∈ Z

p
i , for i = 1, 2. If we differentiate (B.4), we obtain the

optimality conditions(
ûp1 − χΓ1

(
ûb2 (û

p
2) + E2û

p
2

)
, ψ1 − χΓ1

(
ûb2(ψ2) + E2ψ2

))
H1/2(Γ1)

+
(
ûp2 − χΓ2

(
ûb1 (û

p
1) + E1û

p
1

)
, ψ2 − χΓ2

(
ûb1(ψ1) + E1ψ1

))
H1/2(Γ2)

= 0 ∀ψ = (ψ1, ψ2) ∈ Z
p
1 ×Z

p
2 ,

which can rewritten as in (5.39).

B.5 Proofs of the estimates in section 5.4.5
In the following, we use the Taylor expansions:

ex ∼ 1+x+x2,
1

1− x
∼ 1+x+x2, (1+x)1/2 ∼ 1+

1

2
x− 1

8
x2, (1+x)2 ∼ 1+2x,

(B.5)
which are valid for |x| � 1. We further employ the identiy:

max {|1− σλ1|, |1− σλ2|} =

{
1− σλ1 σ < 2

λ1+λ2
σλ2 − 1 σ ≥ 2

λ1+λ2

(B.6)

that is valid for any 0 ≤ λ1 ≤ λ2.

B.5.1 Problem (5.40a)

It is easy to verify that the local solutions û1, û2 satisfy

û1(x, β) = x2− δ2

1 + δ
(1+x)+

β

1 + δ
(1+x), û2(x, β) = x2− δ2

1 + δ
(1−x)+ β

1 + δ
(1+x).

(B.7)
By imposing β1 = û2(δ, β2) and β2 = û1(δ, β1) we obtain the system of equations:

Aδ β = Fδ, with Aδ =

[
1 −cδ
−cδ 1

]
, Fδ =

[
dδ
dδ

]
,
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and cδ =
1−δ
1+δ , dδ = 2δ3

1+δ . The matrix Aδ is symmetric with positive eigenvalues 1− cδ
and 1 + cδ; we thus have

cond (Aδ) =
1 + cδ
1− cδ

=
1

δ
, αp = 1− cδ =

2δ

1 + δ
, γp = 1 + cδ =

2

1 + δ
.

which are (5.41b) and (5.41c).
Multiplicative OS corresponds to the application of the Gauss-Seidel iterative method

to the linear system Aδ β = Fδ. We thus find

β(k) = Pos
δ β

(k−1) + Fos
δ , with Pos

δ =

[
0 cδ
0 c2δ

]
, Fos

δ =

[
dδ
dδ + cδdδ

]
.

We can then verify that the spectral radius of Pos
δ is equal to

ρosδ = c2δ ∼ 1− 4δ.

The OS2 method for (5.40a) reads as

min
β∈R2

1

2

∑
x∈{−δ,δ}

(û1(x, β1)− û2(x, β2))
2 =

1

2
‖Aδ β − Fδ‖22. (B.8)

If we apply the gradient descent method to (B.8), we obtain

β(k) =
(
1− σAT

δ Aδ

)
β(k−1) + σAT

δ Fδ.

By tedious calculations, we can verify that the eigenvalues of the transition matrix
1−σAT

δ Aδ are equal to 1−σ(cδ +1)2 and 1−σ(cδ − 1)2: recalling (B.6), we find that
the spectral radius of the transition matrix is minimized by σ = 1

c2δ+1
and is equal to

ρos2δ =
2cδ
c2δ + 1

∼ 1− 4δ2.

B.5.2 Problem (5.40b)

The local solutions û1, û2 satisfy

û1(x, β) = β
eγx − e−γ

eγδ − e−γ
, û2(x, β) =

eγx − e−γδ

eγ − e−γδ
+ β

eγ − eγx

eγ − e−γδ
. (B.9)

Exploiting the Taylor expansions in (B.5), we obtain

û1(−δ, β) ∼ β
(
1− 2cγδ + 2c2γδ

2
)
, û2(δ, β) ∼ 2dγδ − 2d2γδ

2 + β
(
1− 2dγδ + 2d2γδ

2
)

where cγ := γ
1−e−γ and dγ :=

cγ
eγ . We thus find the (approximate) system of equations

Aδ β = Fδ, with Aδ =

[
1

(
−1 + 2dγδ − 2d2γδ

2
)(

−1 + 2cγδ − 2c2γδ
2
)

1

]
, Fδ =

[
2dγδ − 2d2γδ

2

0

]
.

Therefore, the Gauss-Seidel transition matrix is approximately equal to

Pos
δ ∼

[
0 −1 + 2dγδ
0 − (1− 2dγδ) (1− 2cγδ)

]
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and thus
ρosδ ∼ 1− 2 (cγ + dγ) δ = 1− 2

eγ + 1

eγ − 1
γδ.

On the other hand, the eigenvalues of AT
δ Aδ are approximately equal to

λ1 ∼
(cγ + 2dγ)

2

4
δ2, λ2 ∼ 4 − (2cγ + 4dγ)δ,

and thus
αp =

√
λ1 ∼

4(eγ + 2)γδ

2(eγ − 1)
, γp =

√
λ2 ∼ 2.

Exploiting (B.6), we find that the approximately optimal choice of the step size σ
is equal to σ = 1

2

(
1 +

( cγ
2 + dγ

)
δ
)

and thus

ρos2δ ∼ 1− σλ1 ∼ 1− 1

8
(cγ + 2dγ)

2 δ2.

On the other hand, we obtain that the condition number of Aδ is given by

cond(Aδ) =

√
λmax(AT

δ Aδ)

λmin(AT
δ Aδ)

∼
√
4 − (2cγ + 4dγ)δ

(cγ+2dγ)
2 δ

∼ 4

(cγ + 2dγ)δ
=

4(eγ − 1)

4(eγ + 2)γδ
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