
HAL Id: tel-04007919
https://theses.hal.science/tel-04007919

Submitted on 28 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large Scale Adaptive 4D Trajectory Planning
Paveen Juntama

To cite this version:
Paveen Juntama. Large Scale Adaptive 4D Trajectory Planning. Mechanics [physics.med-ph]. Uni-
versité Paul Sabatier - Toulouse III, 2022. English. �NNT : 2022TOU30215�. �tel-04007919�

https://theses.hal.science/tel-04007919
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 23/11/2022 par :
Paveen JUNTAMA

Optimisation à grande échelle de trajectoires 4D d’avions adaptatives

JURY
Pierre Maréchal Professeur Président du jury
Jacco Hoekstra Professeur Rapporteur
Eri Itoh Professeur Rapporteure
Gabriella Gigante Chercheuse Examinatrice
Daniel Delahaye Professeur Directeur de thèse
Sameer Alam Professeur Co-directeur de thèse
Eric Féron Professeur Membre Invité

École doctorale et spécialité :
AA : Aéronautique Astronautique

Unité de Recherche :
Lab de Recherche de l’École Nationale d’Aviation Civile

Directeur(s) de Thèse :
Prof. Daniel DELAHAYE et Prof. Sameer ALAM

Rapporteurs :
Prof. Jacco HOEKSTRA et Prof. Eri ITOH

Large Scale Adaptive 4D Trajectory
Planning

by

Paveen JUNTAMA

A thesis presented for the degree of
Doctor of Philosophy

Supervisors:

Daniel DELAHAYE
Sameer ALAM

Toulouse III - Paul Sabatier University
Doctoral school of Aeronautics and Astronautics

ENAC-LAB

Résumé

La capacité de l’espace aérien est devenue une ressource critique pour le transport aérien. La
charge de travail du contrôle aérien est un facteur important qui limite la capacité des systèmes
de gestion du trafic aérien. La complexité de la structure du trafic peut conduire à la saturation
de l’espace aérien. Afin de répondre à cette problématique, il est nécessaire de développer des
d’outils d’aide à la décision pour réduire la congestion de l’espace aérien tout en améliorant la
conscience de la situation du contrôleur aérien.

Cette thèse présente une approche d’optimisation permettant d’aborder le problème de
planification stratégique des trajectoires d’avions. Le but de cette approche est de réduire
la congestion de l’espace aérien par modification des créneaux de décollage, des routes et des
niveaux des vols. La fonction objectif est développée à partir d’une métrique de congestion basée
sur des systèmes dynamiques linéaires. Les propriétés numériques des systèmes dynamiques
permettent de quantifier les diverses situations du trafic dans le contexte de la gestion du trafic
aérien. Le problème est également abordé en prenant en compte les incertitudes en proposant
un modèle de planification stratégique robuste.

Nous proposons deux méthodes de résolution basée sur des algorithmes de type métaheuris-
tique et hyper-heuristique basées sur l’apprentissage par renforcement pour résoudre ces prob-
lèmes à grande échelle. Les simulations sont conduites sur l’espace aérien français, impliquant
plus de 8,000 vols. Les méthodes de résolution proposées nous permettent de réduire efficace-
ment la congestion entre les trajectoires au niveau stratégique. La performance de l’hyper-
heuristique proposée surpasse celle de différents algorithmes en termes de congestion restante.

Enfin, une étude comparative entre les méthodes de déconfliction stratégique et de décon-
gestion stratégique est réalisée pour comparer la robustesse de leurs solutions face à des pertur-
bations des temps de départ. Nous proposons une méthode de simulation de Monte-Carlo pour
évaluer la robustesse des deux solutions. Les résultats de la simulation montrent que la méth-
ode de décongestion stratégique est plus robuste face aux perturbations des temps de départ en
comparaison de la méthode de déconfliction stratégique.

Mots clés : Planification stratégique, trajectoires 4D, gestion du trafic aérien, congestion
du trafic aérien, métaheuristique, hyper-heuristique, apprentissage par renforcement, simulation
de Monte-Carlo.

i

Abstract

Airspace capacity has become a critical resource for air transportation. The air traffic control
workload is a significant factor leading to capacity limits of the air traffic management systems.
Complexity in air traffic structure can lead to airspace saturation before reaching the capacity
threshold. This issue motivates the development of decision-making tools to reduce airspace
congestion while improving the air traffic controllers situation awareness.

This thesis presents an optimization approach to address the strategic decongestion plan-
ning problem in a trajectory-based operation environment. The congestion mitigation strategy
relies on departure time adjustment, traffic re-routing, and flight level allocation methods. The
objective function is developed from a congestion metric based on linear dynamical systems.
The numerical properties of dynamical systems can quantify various traffic situations in the
context of air traffic management. Further, the preceding problem is also extended by propos-
ing the robust strategic decongestion planning model, where time uncertainties are considered
to improve the robustness of the solution.

The resolution methods based on metaheuristic and reinforcement learning-based hyper-
heuristic approaches have been developed to solve the proposed large-scale problems. These
methods are implemented and validated with real traffic data in the French airspace, involving
more than 8,000 trajectories. The proposed resolution methods efficiently reduce the total
congestion between trajectories at the strategic level. Further, the performance of the proposed
hyper-heuristic outperforms different algorithms in terms of the remaining congestion.

Finally, a comparative study between the strategic deconfliction and the strategic deconges-
tion methods is carried out to compare the robustness of their solutions against departure time
perturbation. The Monte Carlo simulation method is proposed to evaluate the robustness of
the two solutions. The simulation results show that the strategic decongestion method is more
robust against departure time perturbation than the strategic deconfliction method.

Keywords: Strategic planning, 4D aircraft trajectory, air traffic management, air traffic
congestion, metaheuristic, hyper-heuristic, reinforcement learning, Monte Carlo simulation.

ii

Acknowledgment

I am grateful to several people who made this project possible by lending me their time, energy,
and expertise.

First, I would like to express my deepest appreciation to my supervisor, Daniel Delahaye.
His knowledge and expertise inspired me to pursue a career in research at ENAC. He always
gave me invaluable ideas, suggestions, and supports from the beginning until the end of this
thesis. I could not have undertaken this journey without Sameer Alam, my co-supervisor, who
gave me a warm welcome at ATMRI, Singapore. He taught me how to be a good researcher
contributing to the development of society. He also encouraged me to improve my research skills
every single day. I would also like to extend my sincere thanks to Supatcha Chaimatanan, my
tutor and friend, during the thesis. Again, I am thankful to the three of you for not leaving me
alone in research during the COVID19 crisis.

I am also grateful to all members of the labs at ENAC and ATMRI who made every day
of work easier with their support. I would like to acknowledge the assistance of the late Serge
Roux for his kind support with system administration. Special thanks to Laurent Lapasset for
providing computational resources for my research. I also wish to thank Hasan Haghighi, a
former invited researcher at ENAC, who helped me to improve my paper qualities during his
visit. Thanks to my friends and colleagues at ATMRI: Imen Dhief, Yash Guleria, Qing Cai,
Sim Kuan Goh, Grégoire Ky, Pham Duc-Thin, and Phu Tran. I also very much appreciate my
friends at ENAC: Julien Lavandier, Zhengyi Wang, Ying Huo, Geoffrey Scozzaro, Clara Buire,
Bastien Schnitzler, Remi Perrichon, Dinh-Thinh Hoang, Alexis Brun, Andreas Guitart, Pierre
Dieumegards, Shangrong Chen, Alexandre Duchevet and all doctoral students in OPTIM and
DEVI teams.

Finally, I would like to thank my family from my home country. Many thanks go to my
wife, Kwan, for accepting countless working hours in the evening and weekends for writing this
thesis. She supported me and stayed with me whenever I felt happy, sad, and disappointed.

iii

Contents

Acronymes xiv

1 Introduction 1

1.1 Current situation and future trends of air traffic demand 1

1.2 Overview of air traffic management . 3

1.3 Mitigation of airspace congestion : current techniques and limitations 6

1.4 Emerging technologies in air traffic management 7

1.4.1 System Wide Information Management 7

1.4.2 Trajectory Based Operations . 8

1.4.3 Free Route Airspace . 9

1.5 Objectives and contributions . 9

1.6 Thesis framework . 10

2 State of the art 11

2.1 Air traffic deconfliction and decongestion problems 11

2.1.1 Air traffic deconfliction methods . 11

2.1.2 Air traffic decongestion methods . 13

2.2 Air traffic complexity . 14

2.2.1 Flow-based approach . 16

2.2.2 Geometric-based approaches . 17

2.2.3 Dynamical system-based approach . 20

2.3 Optimization methods . 22

2.3.1 Deterministic methods . 23

2.3.2 Stochastic methods . 25

2.3.3 Practical issues of simulated annealing . 27

2.4 Machine learning methods . 30

iv

2.5 Reinforcement learning . 34

2.5.1 Q-Learning . 37

2.6 Hyper-heuristics . 38

2.6.1 Hyper-heuristics based on reinforcement learning 40

2.7 Conclusion . 41

3 Mathematical model 44

3.1 Input data and model assumptions . 44

3.2 Congestion mitigation methods . 46

3.2.1 Departure time adjustment . 46

3.2.2 Alternative route . 46

3.2.3 Flight level allocation . 48

3.3 Trajectory-based congestion model . 49

3.4 Optimization problem formulation . 53

3.4.1 Given data . 53

3.4.2 Decision variables . 54

3.4.3 Constraints . 54

3.4.4 Objective function . 56

3.5 Objective function computation method . 57

3.5.1 Grid-based trajectory processing . 57

3.5.2 Congestion computation method . 58

3.6 Extension with time uncertainty . 59

3.6.1 Uncertainty of aircraft arrival time . 60

3.6.2 Robust congestion model . 60

3.6.3 Congestion computation method . 62

3.7 Conclusion . 62

4 Metaheuristic approach for strategic 4D trajectory planning 64

4.1 Selective simulated annealing . 64

v

4.2 Case study: Daily traffic in the French airspace 67

4.3 Simulation results . 71

4.4 Conclusion . 78

5 Hyper-heuristic approach for strategic 4D trajectory planning 79

5.1 Hyper-heuristic based on Q-learning . 79

5.1.1 Heuristic selection . 81

5.1.2 Learning process . 82

5.1.3 Move acceptance . 83

5.1.4 Numerical examples . 84

5.2 Adaptation of HQL to the strategic traffic decongestion problem 87

5.2.1 Neighborhood generation . 87

5.2.2 Low-level heuristics . 87

5.2.3 Optimization process . 89

5.3 Simulation results . 91

5.4 Conclusion . 96

6 Robustness analysis of two strategic 4D trajectory plannings 98

6.1 Robustness evaluation based on a Monte Carlo simulation 98

6.2 Optimization formulation . 100

6.2.1 Input data and model assumptions . 100

6.2.2 Decision variables . 101

6.2.3 Constraints . 102

6.2.4 Objective functions . 102

6.3 Objective function computation . 105

6.4 Resolution method . 106

6.5 Benchmark description . 106

6.5.1 Case study: Traffic data in the French airspace 107

6.5.2 Perturbation model . 107

vi

6.6 Simulation results . 108

6.7 Conclusion . 113

7 Conclusion and perspectives 114

7.1 Contributions . 114

7.2 Perspectives . 116

A Eigenvalue estimation in linear dynamical systems 119

Bibliography 122

vii

List of Figures

1.1 Comparison of passenger traffic forecast from 2019-2040 in 2019 and 2021. 2

1.2 Traffic situation in the European airspace before and after the Russian invasion
of Ukraine. 2

1.3 Phases of flight and associated control services. 3

1.4 Example of a completed flight plan form. 5

2.1 Factors affecting controller workload [1]. 15

2.2 Three traffic situations with different orders of complexity. 15

2.3 Two different spatial distribution of five aircrafts across the sector. 17

2.4 Traffic situation at a given time: (a) measurement or observation vectors, (b)
vector fields derived by the linear dynamical model. 21

2.5 Eigenvalue locations for four different traffic situations. 21

2.6 Simulation-based evaluation. 29

2.7 Comeback operation. 30

2.8 Maximum-margin hyperplane and margins for an SVM trained with samples from
two classes. Samples on the margin are called the support vectors. 32

2.9 Diagram of the random forest algorithm. A new sample is dropped down each
tree (in red) and lands in a leaf or terminal node. 33

2.10 Example of an artificial neural network consisting of one input layer, three hidden
layers, and one output layer; each layer has a set of neurons. Each neuron is a
node connected to other neurons via links; each link has a weight, determining
the strength of one nodes influence on another. 34

2.11 Architecture of reinforcement learning. 35

2.12 Hyper-heuristic framework with a domain barrier between the low-level heuris-
tics and the hyper-heuristic. The barrier does not allow an exchange of specific
information between these two modules. 39

3.1 Initial horizontal profile. 45

3.2 Initial vertical profile. 45

3.3 Alternative horizontal profile with the virtual waypoints. 47

viii

3.4 Alternative trajectory along the cruise segment in the normalized coordinate
system. 47

3.5 Updated altitude profile due to the impact of the horizontal route deviation. . . 48

3.6 Six possible vertical profile extensions to take into account the extra distance of
the lateral route. 49

3.7 The original vertical profile with the requested flight level fi and two optional
vertical profiles with allocated flight levels fi + li · Ls and fi − li · Ls, respectively. 49

3.8 The traffic situation representing the reference aircraft (colored in green) and its
neighbors within a horizontal area of Dh ×Dh NM2 at a given time. 50

3.9 Possible situations for which neighboring aircraft (colored in white) can interact
with the reference aircraft (colored in blue), at a given time, within the altitude
range of Dv. 51

3.10 Continuous 2D boundaries representing possible locations of M = 2 waypoints
for each flight i. 56

3.11 4D (space-time) grid. 57

3.12 Representation of aircraft trajectories in the 4D grid (here in a 2D projection for
illustration). 58

3.13 Trajectory manipulation via PUT and REMOVE operations in the 4D grid. Trajec-
tory γ1 (in red) is extracted from the 4D grid by the REMOVE operation and the
modified trajectory (in green) is reinserted into the 4D grid by the PUT operation. 59

3.14 Neighborhood filtering operation for the traffic situation at a given time in the
4D grid: the green square plot is the reference plot along the reference trajectory
(the green line), and the blue triangle plots (lying on other trajectories) presented
in the red area with a side length of Dh = 3.Nh are declared as candidates for
the neighborhood filtering. 59

3.15 Representation of the reference and neighboring aircraft under uncertainties in
the lateral neighborhood airspace. 61

4.1 Vector of decisions with their performance values. 65

4.2 Neighborhood selection method of the selective simulated annealing. The deci-
sions whose performance values are beyond the threshold value (ρ · ymax) will be
individually chosen for the neighborhood generation. 65

4.3 Example of neighborhood generation for which the waypoint information of flight i

is modified. 66

4.4 Initial trajectories of a full day of traffic in the French airspace. 68

ix

4.5 Distribution of neighboring aircraft and corresponding congestion (accumulated
in each period of 10 min.) over hours of a day (24 hour time) when the congestion
model is based on a neighborhood search space of 15× 15 NM2. 70

4.6 Distribution of neighboring aircraft and corresponding congestion (accumulated
in each period of 10 min.) over hours of a day (24 hour time) when the congestion
model is based on a neighborhood search space of 25× 25 NM2. 70

4.7 Convergence plots of each strategy in configuration 1 (10 simulation runs) for the
strategic traffic decongestion problem. 73

4.8 Convergence plots of each strategy in configuration 2 (10 simulation runs) for the
strategic traffic decongestion problem. 75

4.9 Convergence plots of each strategy in configuration 3 (10 simulation runs) for the
strategic traffic decongestion problem. 76

4.10 Convergence plots of each strategy in configuration 4 (10 simulation runs) for the
strategic traffic decongestion problem. 77

5.1 Framework of Hyper-heuristic based on Q-learning with the high-level strategy
and the problem domain. BILS = Best improvement local search. 80

5.2 General initialization of the Q-table where columns represent the set of inten-
tification and diversification operators and rows represent the set of states with
respect to the Diversification-intensification (D-I) cycle. 82

5.3 Example of the learning process in the D-I cycle. The Q-learning agent computes
rewards from the difference of objective values and updates Q-values in the Q-table. 85

5.4 Example of Q-learning in the D-I cycle (cont.). 86

5.5 Example of assigning a new departure time shift to the decision di by applying
the heuristic operator hn. 87

5.6 Representation of intensification heuristic operators which allow the algorithm
to refine the search in the vicinity of the current decision. 88

5.7 Representation of diversification heuristic operators which allow the algorithm to
perform exploration in order to escape from the local minima. 89

5.8 Distribution of traffic congestion (accumulated in each period of 10 min.) over
hours of a day (24 hour time) after the optimization process. 93

5.9 The average traffic congestion at each iteration during the optimization process
for the HQL algorithm and other approaches. 94

5.10 The average number of modified departure times, routes, and flight levels after
running the optimization process for the HQL algorithm and other approaches. . 95

5.11 Number of modified flight plans considering time uncertainties of 1, 2, and 3 min. 97

x

6.1 Robustness evaluation against the departure time perturbation for a set of opti-
mal trajectories obtained from the proposed strategic planning method. 99

6.2 Alternative horizontal profiles (the dashed line) based on an original route (the
solid line) of flight i. 101

6.3 Interaction Φi,k around point Pi,k at time ti,k. 104

6.4 Distribution of the total interactions between trajectories over different hours. . . 108

6.5 Distribution of traffic congestion between trajectories over different hours. 108

6.6 Distribution of departure time perturbation (δi) for each flight. 109

6.7 Evolution of total interactions and accumulated time shift over the number of
iterations for the strategic deconfliction method. 110

6.8 Evolution of total interactions and accumulated time shift over the number of
iterations for the strategic decongestion method. 111

6.9 Average number of modified departure times, routes, and flight levels presented
in two optimal trajectory plans with different strategic planning methods. 112

6.10 Number of additional interactions after the departure time perturbation over the
number of perturbed flights. 112

6.11 Frequency distributions of the simulation experiments in terms of additional num-
ber of interactions when all flights are perturbed. The simulation results are
obtained from the Monte Carlo simulations based on the solutions of the decon-
fliction planning and the decongestion planning for the en-route traffic in the
French airspace. 113

xi

List of Tables

3.1 Rules for identifying neighboring aircraft in the vertical dimension. 51

4.1 Data analysis of initial trajectories represented by the overall congestion, total
traffic situations, the maximum, average, and standard deviation for the number
of neighboring aircraft with different neighborhood search spaces. 69

4.2 User-defined parameters corresponding to the problem formulation. 72

4.3 User-defined parameters corresponding to the resolution algorithm. 72

4.4 Numerical results for configuration 1: planning with the neighborhood search
space of 15× 15 NM2 (Dh = 3) and flight level shift interval of 2,000 ft (Ls = 2). 73

4.5 Numerical results for configuration 1: planning with the neighborhood search
space of 15× 15 NM2 (Dh = 3) and flight level shift interval of 1,000 ft (Ls = 1). 74

4.6 Numerical results for configuration 3: planning with the neighborhood search
space of 25× 25 NM2 (Dh = 5) and flight level shift interval of 2,000 ft (Ls = 2). 75

4.7 Numerical results for configuration 4: planning with the neighborhood search
space of 25× 25 NM2 (Dh = 5) and flight level shift interval of 1,000 ft (Ls = 1). 77

5.1 Q-Table and initialized Q-values for the strategic traffic decongestion problem. . 89

5.2 User-defined parameters corresponding to the resolution algorithm. 92

5.3 Activation of heuristic operators against different cases. 92

5.4 Numerical results for restructuring a full day of traffic in the French airspace (10
runs for average computation). 93

5.5 Performance comparison of the proposed algorithm with other approaches for
restructuring a full day of traffic in the French airspace. The best, mean, and
standard deviation of the ten simulation runs for each algorithm are reported.
The best values are highlighted in bold. 94

5.6 Numerical results for restructuring a full day of traffic considering time uncer-
tainties of 1, 2, and 3 min. 96

5.7 Average adjustments applied to initial flight plans with time uncertainties of 1,
2, and 3 min. 96

6.1 Total number of alternative 4D trajectories for each route option and flight level
shift. 107

xii

6.2 User-defined parameters corresponding to the problem formulation. 109

6.3 User-defined parameters corresponding to the resolution algorithm. 109

6.4 Numerical results obtained by the strategic deconfliction method. 110

6.5 Numerical results obtained by the strategic decongestion method. 111

xiii

Acronymes

4DCo-GC 4-dimension Contract-Guidance and Control

AIXM Aeronautical Information Exchange Model

ASM Airspace Management

ATCOs Air traffic control operators

ATS Air Traffic Service

ATFM Air Traffic Flow Management

ATFCM Air Traffic Flow and Capacity Management

ATM Air Traffic Management

BADA Base of Aircraft Data

BnB Branch and bound

CAR Complexity Assessment and Resolution

CATS Complete Air Traffic Simulator

CM Capacity Management

CFMU Central Flow Management Unit

COTTON Capacity Optimisation in Trajectory-based Operations

CPU Central Processing Unit

FIXM Flight Information Exchange Model

FRA Free Route Airspace

GMF Global Market Forecast

GPUs Graphics Processing Units

IATA International Air Transport Association

ICAO International Civil Aviation Organization

IFR Instrumental Flight Rules

IFATS Innovative future air transport system

IP Internet Protocol

IWXXM ICAO Weather Information Exchange Model

NAS United States National Airspace System

xiv

NextGen Next Generation Air Transport System

NM Network Manager

NMOC Network Manager Operations Centre

RL Reinforcement Learning

RVSM Reduced Vertical Separation Minima

SA Simulated Annealing

SESAR Single European Sky ATM Research

SWIM System Wide Information Management

TBO Trajectory Based Operations

TI Technological Infrastructure

TMA Terminal Maneuvering Area

VFR Visual Flight Rules

xv

Chapter 1

Introduction

Air transport is an important enabler in achieving economic growth and development in various
domains such as trading, tourism, business cooperation, etc. It provides vital connectivity
on a national, regional, and international scale. Despite the COVID-19’s unexpected halt on
the aviation industry, the air traffic is gradually recovering due to lifting restrictions after
worldwide vaccination. This situation shows that the demand for air travel will continue to
rise at a rapid rate in the long term. Therefore, there is a great deal of value in research to
enhance the operational efficiency of air traffic management while maintaining safety. One of
the main challenges is a strategic framework to reduce congestion in the airspace where the air
traffic demand exceeds actual capacity. Hence, this thesis focuses on new methodologies for
measuring airspace congestion, which is strongly related to air traffic controller workload, and
then resolving such congestion by determining an optimal solution so that the traffic becomes
more tractable for controllers to manage the situations.

This chapter provides background and problem context of air traffic management that helps
the reader have more information about the topic. This chapter is organized as follows: Sec-
tion 1.1 gives the current situation of air traffic concerning the COVID-19, the forecast of air
traffic demand after the crisis, and the impact of the Russian invasion of Ukraine on the Euro-
pean airspace. Then, the overview of air traffic management is described in Section 1.2. Next,
Section 1.3 outlines current traffic decongestion techniques and limitations. Later, the future
technologies on which our research relies are introduced in Section 1.4. Section 1.5 provides
objectives and contributions of this thesis. Finally, the thesis structure is given in Section 1.6.

1.1 Current situation and future trends of air traffic demand

The COVID-19 epidemic has dramatically affected air traffic demand since 2020. By April 2020,
the number of global flights had dropped by nearly 80%, with international flights being the
most affected. However, with the efforts of governments and international organizations such as
International Civil Aviation Organization (ICAO) and World Health Organization (WHO), the
air transport industry has gradually recovered, starting from the continental operations. Still,
the impact of COVID-19 lasts for the whole year of 2020, which leads to an average decline of
60% in world passenger traffic compared to the level of 2019. As air transport is not only a
victim of COVID-19 epidemic, but also plays an instrumental role in enforcing the spread of the
disease, the interaction between them makes the long-term impact of the epidemic unpredictable.
However, it is clear that even though the epidemic will affect the aviation industry for several
years, the predicted growth of air traffic will be realized with a delay. However, the recent
forecast in [2] expects the overall traveler number to reach 4.0 billion in 2024, exceeding pre-

1

2019 levels (103% of 2019 total). In addition, Airbus forcasts the passenger traffic by comparing
the archive forecast in 2019, as illustrated in Fig. 1.1. While having lost nearly two years of
growth over the COVID period, passenger traffic has demonstrated its resilience and is set to
reconnect to an annual growth of 3.9% per year, driven by expanding economies and commerce
around the globe including tourism.

Figure 1.1: Comparison of passenger traffic forecast from 2019-2040 in 2019 and 2021.
Source: ICAO, Airbus Global Market Forecast (GMF) 2021

(a) (b)

Figure 1.2: Traffic situation in the European airspace (a) before and (b) after the Russian invasion of
Ukraine.

Source: https://www.flightradar24.com (accessed February 25, 2022)

Moreover, some political events may have tremendous impacts on air traffic. Since February
2022, the airspace closure due to the Russian invasion of Ukraine has caused a wave of cancelled
and uneconomic rerouted flights [3]. Figure 1.2 displays the traffic in the European airspace
before and after the Russo-Ukranian war. Lithuania has lost nearly 200 overflights per day (-
46%) where more than half of this reduction is because flows to and from Russia, from Germany,
France and UK, have stopped. Poland, Latvia and many others have fewer overflights for the
same reason. Another consideration for Polish airspace is the requirement of increased military
use. This limits the civilian use of this airspace, causing more rerouting. There is also an
increased workload in the Polish airspace, as they are supporting civilian and military traffic.
Consequently, traffic rerouting causes congestion in the adjacent airspace. As capacity limits
are reached faster than usual, airspace congestion will expand rapidly, which will result in extra
pressure on the network, further delays and cancellations.

2

https://www.flightradar24.com

1.2 Overview of air traffic management

Air Traffic Management (ATM) is a set of procedures and resources undertaken to ensure the
safety and efficiency of air traffic by maintaining the aircraft separation and minimizing the
delay and congestion in the airspace. ATM includes three major components to air navigation:
Airspace Management (ASM), Air Traffic Service (ATS), and Air Traffic Flow Management
(ATFM).

The role of ASM is to achieve the most efficient use of airspace while guaranteeing the safety
and fluidity of traffic. ASM is carried out through the following functions: the design of airspace
structures (airport control zone, terminal area, and en-route sectors), the allocation of airspace
to its various users, the dynamic management of the airspace structures over time, and the
airspace allocation between the various categories of users based on the prescribed airspace use
plan.

ATS is a service provided by licensed air traffic control operators (ATCOs) (e.g., air traffic
controllers). The objectives of ATS are as follows: prevent collisions between aircraft in the
en-route airspace, prevent collisions between aircraft in the maneuvering area of an aerodrome
and obstructions in that area, expedite and maintain an orderly flow of air traffic, provide
advice and information useful for the safe and efficient conduct of flights, and coordinate with
appropriate organizations regarding aircraft in need of search and rescue aid and assist such
organizations as required.

The type of ATS depends on the category of the stages of flight and the category of airspace.

Aerodrome
control

Approach
control

Area control (ACC) Approach control Aerodrome
control

Takeoff Departure Enroute Descent Approach Landing

Figure 1.3: Phases of flight and associated control services.

The typical stages of a flight requiring different types of ATS are depicted in Fig. 1.3.
Aircraft flies from one airport through airspace to another airport. The main stages of a
flight are taxiing on the ground, take-off and landing, departure and arrival nearby the airport,
and en route cruising between airports. Aerodrome control provides services for all aircraft
and vehicle movements on the taxiway. Approach control (e.g., terminal control) mainly uses
surveillance technology such as radar to manage the flow of aircraft arriving and departing
from major airports. Control services are generally provided within a radius of 50 km around
major airports. Approach controllers manage the aircrafts movement to ensure separation

3

between aircraft within the terminal maneuvering area (TMA) and sequence aircraft on their
descent to an airport before landing. Finally, the area control (e.g., en-route control) operated
from the area control centers (ACC) provides services to aircraft in upper airspace, including
continental and oceanic routes. Area controllers are responsible for providing instructions or
useful information to pilots to ensure fluidity of traffic flows and safe separation between aircraft
in the immediate area.

There are two different rules to regulate all aspects of civil aircraft operations. In good
meteorological conditions, flying would be permitted under Visual Flight Rules (VFR), which
suggests a firm reliance on visual references in the terrain and other aircraft to maintain an
acceptable safety level. In contrast, poor visibility conditions require the use of Instrumental
Flight Rules (IFR), which requires the pilot to rely on the altitude and navigational information
provided by the aircraft’s instrument panel in order to fly safely.

Controlled airspace is the airspace to which civil aviation regulations apply. There are also
different classes subdivided in this airspace. A pilot must first gain a clearance from an air
traffic controller to enter controlled airspace. Therefore, air traffic controllers actively monitor
and manage separations between aircraft in this airspace. Within the controlled airspace of the
current flight information region (FIR), an aircraft will be requested to fly in one of the different
classes of airspace, in which different flight rules apply, and different minimum air traffic services
are provided. Otherwise, uncontrolled airspace is where air traffic controllers do not provide air
traffic services. In other words, a pilot can fly without any restrictions from the designated civil
aviation authority. Uncontrolled airspace may be located underneath or adjacent to controlled
airspace.

ATFM is an operational process that regulates traffic demand according to available airspace
capacity in such a way that delays can be minimized, and overloads of ATM subsystems are
avoided. The overall objective is to balance airspace capacity and the number of flights handled
to achieve safe and efficient management of traffic flows.

In Europe, the EUROCONTROL Network Manager Operations Centre (NMOC) evolved
from the Central Flow Management Unit (CFMU), which began tactical operations in 1995.
Nowadays, it plays a crucial role in managing, consolidating, and enhancing air traffic operations
in Europe. In NMOC, Air Traffic Flow and Capacity Management (ATFCM) is a related ATFM
function that optimizes capacity in the network. It makes sure that there are no excessive
traaffic loads on ATM centers or at the airports. Eurocontrol integrates air traffic forecasts
issued by airlines and capacity plans given by air traffic control centers and airports in order
to start plannings as early as possible. Several operational scenarios would be established to
predict specific events that might cause congestion. Flight plans are the basis of ATFM. Flight
movement into, out of, and around a region subject to ATFM can be analyzed and planned
to optimize traffic flow [4]. NMOC is responsible for flight planning in European airspace.
Initial flight plans of European IFR flights will be collected and then validated if they met the
constraint of demand and capacity balancing. Unless some initial flight plans are validated, the
NMOC will offer alternative routes or delays. As soon as approved flight plans are distributed
to the local ATM center in Europe, air traffic controllers will take responsibility for maintaining
safe separations in the airspace and at the airport.

A flight plan provides general and specified information to ATS units. An example of

4

Figure 1.4: Example of a completed flight plan form.
Source: http://www.flysouth.org/icaofp.thm (accessed May 13, 2022)

a completed ICAO flight plan is shown in Fig. 1.4. Details in each flight plan depend on
conditions, which correspond to the level of uncertainties. In this context, the flight plan
contains the following related information:

• Aircraft identification: represents an aircraft registration number or an ICAO agency
designator followed by the flight number.

• Aircraft trajectory: The aircraft trajectory is the path that an aircraft follows during
the flight operation. It is represented by a sequence of waypoints to be followed. Each
waypoint is designated by 3D coordinates in space (latitude, longitude and altitude).
A straight-line segment connecting two waypoints is called an airway. The airways are
designed to facilitate air traffic control and routing of traffic between heavily traveled
locations and do not reference natural terrain features.

• Altitude: represents the elevation of aircraft from a reference datum. It is expressed in
terms of feet for lower altitudes and in terms of Flight Levels (FLs) at higher altitudes.
FL is indicated by a pressure altitude with a standard air-pressure datum (typically,
1013.25 hPa) and FLs are spaced 1000 ft apart.

• Speed: Generally, there are four speeds a pilot is mainly concerned with, which are
Indicated Air Speed (IAS), True Air Speed (TAS), Ground Speed (GS) and Mach number.

– Indicated Air Speed is the speed displayed on the aircraft’s static airspeed indicator.
It is measured in knots;

5

http://www.flysouth.org/icaofp.thm

– True Air Speed represents the speed of an aircraft relative to the airmass in which it
is flying;

– Mach number is a quantity representing the ratio of the speed of an aircraft to the
speed of sound in the surrounding air;

– Ground Speed is the speed of an aircraft relative to the surface of the earth.

1.3 Mitigation of airspace congestion : current techniques and
limitations

Airspace capacity becomes a more critical resource for commercial air transportation. When
air traffic demand reaches or exceeds the available capacity, aircraft delays occur at airports
or in the airspace and lead to system-wide congestion and interruptions in air traffic services.
Airspace congestion occurs when traffic strongly interacts in a given area and period. In this
situation, air traffic controllers work in an uncertain environment where they must use their
mental capabilities to form a picture of future positions and potential conflicts between aircraft
trajectories. Several approaches have been proposed to balance traffic demand and airspace
capacity to protect airspace from congestion. The commonly used techniques can be divided
into two categories: 1) adapting the capacity to the demand and 2) adapting the demand to
the capacity.

To adapt the airspace capacity to the increased demand, there are some straightforward ap-
proaches to expand the system capacity: infrastructure improvements and airspace procedure
improvement. For instance, constructing new airports and runways can be a long-term solution
to increase the actual capacity. However, its consequences are highly associated with cost, envi-
ronmental impact and political feasibility [5]. Over past decades, modern surveillance systems,
such as SSR, ADS-B and Multilateration systems, can improve the accuracy of aircraft positions
reported to the ATM system. Such an advantage is then a significant factor in improving the
new procedures. One can reduce the separation standards from 20 NM to 5 NM horizontally
and from 2000 ft to 1000 ft vertically in En-route airspace. Hence, aircraft at the same altitude
can fly closer to each other. This situation may lead to an unacceptable increase in the control
workload of air traffic controllers. In order to decrease control workload, it is necessary to split
airspace volumes into smaller sectors. However, the sector should be sufficiently large to ensure
that controller can manage the traffic within suitable space and time duration.

As detailed in the preceding section, ATFM plays an essential role in adapting demand
to the capacity. Associated approaches can be classified with respect to different operational
timelines. ATFM is done in the following three phases:

• Strategic level begins several months before the flight takes off and ends a few hours
before. During this phase, the airlines organize the traffic macroscopically, such as the
issue of original-destination (O-D) pairs of airports to meet the estimated demand and
flight scheduling requirements, etc;

• Pre-tactical level begins a few hours before take-off and continues during the flight.
This level allows for managing the flow of aircraft to prevent traffic congestion. The pilot

6

or airline must file a flight plan to the air traffic control authorities. The controllers
can modify the flight plan according to the traffic or weather conditions. Pilots can also
request controllers for flight plan modifications;

• Tactical level takes place during the flight and includes all activities to ensure aircraft
separation. Air traffic has been structured from the strategic and pre-tactical level so that
each air traffic controller has a limited number of aircraft to manage simultaneously. The
controller can also make the final adjustments to their trajectories to resolve conflicts;

Recent decision-making tools associated with operational timelines are currently available
in ATFM activities to regulate traffic demand according to available airspace capacity. A
number of techniques proposed to each aircraft are used to manage the overall traffic flows,
such as holding flight departure times, proposing alternative routes, regulating aircraft speed,
and changing flight altitudes. However, today’s actual capacity is restricted by current ATM
procedures and technologies that may be unable to support air traffic controllers in managing
higher traffic demand. Moreover, the current airspace is also limited by using a fixed-route
network which may lead to the assignment of uneconomic flight paths. Therefore, ATM requires
a considerable enhancement to allow for more automation and more effective use of airspace in
order to satisfy the increasing demand for air traffic in saturated airspace.

1.4 Emerging technologies in air traffic management

The challenges in ATM come from the traffic growth, available infrastructure and the gap be-
tween actual procedures and new technologies. The research in ATM provides solutions by
introducing new concepts to cope with those challenges. Much attention has been paid to
improving ATM systems’ capacity, safety, efficiency, and performance in past decades. For
instance, many ATM research institutes in Europe participate to the Single European Sky
ATM Research (SESAR) program’s research activities. In the United States, most research
activities in air transportation systems are also linked with the Next Generation Air Transport
System (NextGen) project. This ongoing modernization project plans to use new technologies
and procedures to increase the safety, efficiency, capacity, access, flexibility, predictability, and
resilience of the United States National Airspace System (NAS) while reducing the environ-
mental impact of aviation. Both SESAR and NextGen published several concepts in order to
modernize the air transportation system with new procedures and technologies. Some of these
concepts are introduced below.

1.4.1 System Wide Information Management

System Wide Information Management (SWIM) consists of standards, infrastructure and gover-
nance, enabling the data management and sharing necessary for user collaboration and improved
constraint management via interoperable services. Flight, aeronautical, and weather informa-
tion exchanged digitally via SWIM was built to achieve shared collaborative planning among
ATM stakeholders. The following information exchange models provide a standard enabling
different systems to interpret the structure of exchanged data correctly:

7

• Aeronautical Information Exchange Model (AIXM) is the information exchange model
used in the aeronautical information domain;

• Flight Information Exchange Model (FIXM) is the information exchange model used in
the flight and flow information domain;

• ICAO Weather Information Exchange Model (IWXXM) is the information exchange model
used in the meteorological information domain.

To make SWIM possible in real-world applications, the SWIM’s technology infrastructure
allows the implementation of interfaces between systems, providing technical capabilities for the
secure, high-performance and reliable exchange of information. The technology infrastructure
is a collection of software and hardware that enables the provision of information services.
Applications consume information services via this infrastructure, which enables the exchange
of information over a corporate computer network. Implementing their infrastructure is the
responsibility of both the service provider and the service consumer.

1.4.2 Trajectory Based Operations

Trajectory Based Operations (TBO) is a concept that enables consistent performance-based 4D
trajectory management by sharing and maintaining trajectory information. TBO uses the flight
trajectory of every in-service aircraft in four dimensions (4D): latitude, longitude, altitude, and
time to know their 4D positions at any time. TBO enables the ATM system to modify the
planned and actual trajectory before or during flight with accurate information shared by all
stakeholders. As a result, it will enhance the planning and execution of flights, reducing potential
conflicts and resolving upcoming network congestion and demand/capacity imbalances.

Once a trajectory has been agreed upon in the pre-departure phase, the trajectory becomes
the reference trajectory which includes three-dimensional positions and times with constraints
and tolerances. The tolerances are on the basis of the time dimension. When the aircraft
gets into the execution phase, the ATM service provider monitors the execution of the flight
trajectory within the tolerances. During the pre-tactical phase, when there is a conflict or
something required for change due to weather or congestion at the destination airport, the
resolution is made via collaborative decision making. The trajectory update is selected and
agreed upon between the ATM service provider and the airspace user. The alternative trajectory
is communicated and then agreed upon with all ATM service providers along the flight path
to ensure that the information is fully shared and remains consistent between stakeholders in
relation to the handling of the flight.

Sharing and maintaining consistent flight information is important in a TBO environment.
Future technologies such as SWIM, modern infrastructure, and advanced avionic technology
will also provide such capabilities and allow each aircraft to follow an assigned 4D trajectory
with high precision. The TBO concept will enhance predictability to manage the traffic by
the controller. With this enhancement of air traffic predictability, several attempts exist to
develop automated decision-making tools in the TBO environment. For instance, Innovative
future air transport system (IFATS) project [6] and 4-dimension Contract-Guidance and Control
(4DCo-GC) project [7] introduce a concept of an air transportation system where aircraft can

8

fly based on a 4D contract. The ground control is in charge of 4D contract generation and
offering a conflict-free trajectory along the flight path based on 4D airspace. Thus, each aircraft
is in charge of the conformance monitoring with the assigned contract. These automated tasks
help controllers and pilots to keep the aircraft on the planned 4D trajectory.

1.4.3 Free Route Airspace

Free Route Airspace (FRA) is a specific airspace volume where airspace users can plan an
optimal route between entry and exit points. Based on actual airspace conditions, the flight
route can be created via intermediate waypoints without reference to the existing ATS route
network. However, flights are still regulated by air traffic control in this airspace. Therefore, the
free route operations improve flight performance in terms of fuel consumption and a significant
reduction of engine emission, resulting in less impact on the environment.

1.5 Objectives and contributions

In the context of research, several studies attempt to enhance the airspace capacity by solving
congestion in the airspace. The current measurement of airspace congestion is usually based on
the number of aircraft entering airspace in a given period of time or on a sector-based work-
load model. Traffic complexity, a major source of controller workload, has not contributed to
quantifying such congestion in several studies. However, some studies focused on developing
a new paradigm to quantify airspace congestion that are strongly related to the mental and
physical workload of the air traffic controllers and then regulating traffic demand to reduce
such congestion by automated support tools. For instance, SESAR has introduced Complexity
Assessment and Resolution (CAR) [8] to local ATFM units. CAR is a service that allows traffic
and airspace structure to be dynamically adjusted to optimize the efficiency of the ATM ser-
vices. The key of the success of CAR is the development of a traffic pattern-based complexity
metric that serves to predict future controller workload within several different time horizons.
Furthermore, the project Capacity Optimisation in Trajectory-based Operations (COTTON) [9]
enhances the use of trajectory-based complexity and workload assessment to support Capacity
Management (CM) enabled by TBO. Various metrics are investigated to assess airspace conges-
tion over a time horizon. However, none of the automated resolution tools have been proposed
in this project.

The main objective of this thesis is to propose a new methodology to address the strategic 4D
trajectory planning problem under a TBO environment. It consists of a new evaluation method
to quantify congestion between trajectories over a full-time horizon and a proper resolution
method to solve such congestion. In addition, the proposed model is able to be extended by
considering temporal uncertainty that aircraft may arrive early or late at a given position. The
study investigates the robustness of the proposed traffic decongestion planning by comparing
its solution with another produced by a competitive traffic planning. The proposed methods in
this thesis are tested and validated on a set of real flight plans on a particular day in the French
airspace.

To achieve these objectives, the following contributions are presented in this thesis:

9

1) An optimization formulation of the strategic planning problem whose primary objective
is to reduce congestion between trajectories by the mean of the following techniques to
restructure aircraft trajectories: departure time adjustment, route deviation, and flight
level allocation;

2) A trajectory-based congestion evaluation method is developed from an intrinsic metric
based on linear dynamical systems. Such a method can quantify congestion between
trajectories over a full-time horizon;

3) A selective simulated annealing is introduced to solve the proposed optimization problem;

4) A reinforcement learning-based hyper-heuristic approach is proposed to solve the extended
problem considering time uncertainties;

5) An improved selective simulated annealing algorithm is developed to determine final solu-
tions from a strategic traffic deconfliction method proposed in a previous work [10] and the
proposed strategic decongestion method. The robustness of each solution against depar-
ture time perturbation is statistically evaluated using a Monte Carlo simulation method.

This work represents an early step towards developing a new paradigm of the strategic
4D trajectory decongestion method that reduces congestion in the airspace where air traffic
controllers require less mental and physical effort to manage air traffic situations. The results
and discussions in this thesis will encourage network planners to use these tools to achieve
optimum use of their airspace.

1.6 Thesis framework

The document is structured as follows:

1) Chapter 2 reviews the literature on air traffic deconfliction and decongestion methods,
optimization methods, machine learning algorithms, and hyper-heuristics;

2) Chapter 3 presents the mathematical formulation of the proposed strategic 4D trajectory
planning;

3) Chapter 4 illustrates a novel simulated annealing algorithm to solve the proposed strategic
planning and the associated prelimiary results;

4) Chapter 5 presents a novel hyper-heuristic approach for solving the strategic planning
under time uncertainty and the related prelimiary results;

5) Chapter 6 presents a comparative study of robustness against the departure time perturba-
tion between a strategic traffic deconfliction method and the strategic traffic decongestion
method;

6) Chapter 7 gives a summary and perpective of the thesis.

Finally, Appendix A details the Least Mean Square Estimation method for linear dynamical
systems.

10

Chapter 2

State of the art

This chapter presents a literature review on five major themes addressed in this thesis: strate-
gic air traffic planning methods, airspace congestion metrics, optimization methods, machine
learning techniques, and hyper-heuristics. First, Section 2.1 reviews the air traffic deconfliction
and decongestion problems and methods. Next, Section 2.2 details related work of airspace
congestion metrics. Deterministic and stochastic optimization methods are introduced in Sec-
tion 2.3. Review of machine learning methods is described in Section 2.4 and reinforcement
learning algorithms are reviewed in Section 2.5. Finally, Section 2.6 outlines an introduction to
hyper-heuristic and its applications.

2.1 Air traffic deconfliction and decongestion problems

This section presents existing methods in the literature considering air traffic deconfliction and
decongestion problems. First, the strategies to detect and solve conflicts between aircraft are
presented. Then, we review the main methods to alleviate congestion in large-scale air traffic.

2.1.1 Air traffic deconfliction methods

Several studies focus on solving conflicts between aircraft trajectories instead of satisfying the
capacity constraint. A conflict occurs when two or more aircraft violate the lateral and vertical
separation rules, resulting in a loss of minimum separation. Horizontally, lateral separations are
5 NM for en-route airspace and 3 NM for TMA airspace. Vertically, a separation of 1,000 ft is
required.

A comprehensive review of conflict detection and resolution methods has been given by [11].
The authors classify the conflict detection methods in three categories with respect to how
to model the trajectory propagation: nominal, worst-case, and probabilistic. Nominal conflict
means no uncertainty is considered in order to estimate future aircraft positions. The worst-case
method assumes that the future aircraft positions will be presented everywhere in a propagation
range. This method is the most robust and conservative method but can lead to high false-alarm
rates and inefficient airspace use. Finally, probabilistic conflict detection is an improvement of
the worst-case by introducing a probability density function for the aircraft’s position inside the
propagation range.

When numerous aircraft are involved in a conflict situation, one of the following strategies
can be applied to conflict resolution: 1-against-N , pair-wise, and global strategies. First, the

11

1-against-N strategy considers a reference aircraft and solves conflicts with other aircraft in
the airspace. The other aircraft will be considered, and such a resolution is repeated until all
conflicts are solved. Second, the pair-wise strategy allows sequentially solving conflict between
a pair of aircraft at a time. This strategy is more effective than the first strategy. However, it
would fail to solve all conflicts in more complex situations. Finally, the global strategy attempts
to detect and solve all conflicts between aircraft for the whole problem at a time. This strategy
is useful for large-scale applications. However, it takes a more significant amount of computation
time than other strategies.

Over the past two decades, numerous studies addressing traffic deconfliction in a TBO
environment have been presented in the literature. One exact global optimization method is
proposed by Pallottino et al. [12], who formulate two mixed-integer programming models: the
first model focuses only on speed control; and the second model is based on the heading control
and assumes that all aircraft fly at the same speed. Cafieri et al. [13] also present a mixed-integer
nonlinear model for the conflict resolution problem. To avoid conflicts between two aircraft,
such aircraft are regulated with speed acceleration or deceleration in a time window. The
problem is solved using Branch and Bound techniques. Gariel et al. [14] propose an algorithm
to minimize the number of maneuvers to maintain the safety of the airspace in the event of
a degradation in the CNS system. An uncertainty model is formulated as an increase in the
required separation between aircraft. Changes in heading, speed, and flight level are allowed in
maneuvering. Durand et al. [15] propose two trajectory maneuvers: modifying the heading and
the flight level. En-route conflicts between trajectories are solved by a genetic algorithm (GA).
The work presented in [16] models each possibly conflicting situation between any two aircraft
and provide adjustments of flight level and departure times to separate aircraft. The constraint
programming is used to solve conflicts for a day of traffic in the French airspace. However, some
conflicts remain when such a method is investigated in the large scale context, and uncertainties
are not taken into account. Dougui et al. [17] suggested a Light Propagation Algorithm (LPA)
that produces natural path planning solutions in order to avoid conflicts between trajectories.
Potential conflicts are solved using a Branch and Bound (B&B) algorithm. However, it presents
unsolved conflicts in the large scale context. In [18], the deterministic conflict resolution models
using subliminal speed control are formulated as nonlinear optimization problems. The proposed
models aim to minimize the total conflict duration and number of conflicts. A duration of conflict
between two aircraft is expressed in terms of the angle between two aircraft in a conflict whose
trajectories intersect at a given point. A generic framework for the cooperation of a memetic
algorithm and a branch-and-cut method is presented in [19]. Altitude, speed and heading
changes are used to separate aircraft trajectories, and uncertainties in aircraft positions are
also considered. The problem is modeled with linear integer programming formulations. The
proposed framework has solved all en-route conflicts with a 100-aircraft instance.

Finally, conflict-free trajectories have been achieved in strategic trajectory planning at the
national scale in [20] and continental scale in [10, 21]. A combination of the hill climbing and
the simulated annealing algorithm was proposed to resolve all interactions between trajectories.
Interaction between trajectories occurs when two or more trajectories occupy the same space
at the same period of time [10]. Later, such previous works have been extended by considering
deterministic and probabilistic uncertainties, as presented in [22] and [23], respectively. To
ensure the interaction between trajectories can be solved, the aircraft are separated from each
others by changing the departure times, the horizontal routes, and the flight levels. With a

12

global deconfliction strategy, a four-dimensional hash table is used to manipulate 4D points
along with trajectories, whereby each data item is indexed by its 4D coordinates. Such a
method allows efficient conflict detection and resolution in a large scale context. However, the
aircraft speed vector is not used in these approaches.

2.1.2 Air traffic decongestion methods

Typically, congestion occurs when the number of aircraft is beyond the maximum number
of aircraft allowed to enter a specified portion of airspace or an airport in a given period of
time. This threshold considers several factors that may affect the workload of the controller
responsible for the airspace. Numerous research attempts to regulate air traffic demand to the
actual capacity.

Historically, traffic assignment methods have been developed to reduce congestion in air
traffic networks by spreading the traffic demand in time and in space. The ground holding
approach [24] has been first investigated in a single airport to regulate traffic demand as a
function of the capacity. Such an approach initiates delaying the departure times of aircraft
before takeoff instead of issuing airborne delays to limit the number of airborne aircraft that
may affect the controller workload. Later, this work was extended to the multi-airport ground
holding problem in [25]. This extension can be considered as the foundation for future studies
in ATFM. More studies of the ground holding approaches are presented in [26–30].

A basic ATFM model in [30] takes into account airport capacity for departure and arrival
and sector capacity. The origin-destination route relies on a sequence of sectors. An aircraft
will be assigned a set of sectors and its arrival time. The model is formulated as a binary integer
programming model for which the objective is to reduce the amounts of ground and air delays.
Lulli et al. [31] propose a deterministic optimization model to investigate the characteristics of
solutions to the European ATFM problem. The model is to assign both ground and airborne
delays to flights by considering airport and en-route sector constraints. Bertsimas et al. [32]
extend the ATFM model in [30] by adding routing decision capabilities. This decision is achieved
through a compact formulation based on a network model as a directed graph where nodes
represent a set of capacity constraints (e.g., airports and airspace sectors), and edges define
their sequence relations. The optimal solutions in [30, 32] are determined by the B&B method.
Dal Sasso et al.[33] develop a multi-objective binary programming model based on the directed
graph approach in [32] for the ATFM problem. In this work, the flight level change option is
used in addition to ground delay and rerouting. The simulated annealing algorithm provides
good computational performance in determining the solutions. As machine learning techniques
become more widely used over several years, previous works in [34, 35] use Q-learning in ATFM
applications to regulate the number of aircraft entering the sector in a period of time. In
summary, the preceding approaches aim to reduce congestion, for which the definition of capacity
relies on the number of aircraft within a period of time.

Several works have paid more attention to consideration of ATC workload to minimize
airspace congestion. Previous studies in [36, 37] attempt to reduce the airspace congestion
in terms of workload induced in a control sector. Such workload is a function of the conflict
workload, the coordination workload, and the monitoring workload. These studies present a
flow modeling of the traffic network and solve the route-time allocation problem using a genetic

13

algorithm. Further work on reducing this kind of congestion in a large-scale context can be
found in [38, 39]. The first attempt to reduce airspace congestion by taking into account traffic
complexity can be found in [40]. The approach is to build a temporary route to reduce congestion
in a responsible area. The authors use the convergence indicator [41] to quantify congestion
in the airspace. However, such an indicator is not able to take into account uncertainties
efficiently. Furthermore, little attention has been paid to traffic decongestion, for which the
airspace congestion is measured in terms of traffic complexity.

2.2 Air traffic complexity

The level of ATC workload is a significant factor leading to the capacity limits of the ATM
system [42]. A higher number of aircraft generally leads to a more significant increase in ATC
workload. The capacity limit occurs when controllers in charge of a control sector are unable to
accept additional aircraft to enter the sector. In this situation, the sector becomes saturated.

The airspace capacity is currently measured by the maximum number of aircraft operating
in the controlled airspace in a given period. This measurement does not rely on the properties
of the traffic situation regarding the difficulty and effort required for controllers to manage the
traffic. As a result, in some situations, controllers accept a number of aircraft above the ca-
pacity threshold with the same control workload. At other times, they refuse traffic even if the
number of aircraft is far below the maximum capacity. This evidence shows that the number
of aircraft is insufficient to effectively account for measuring the difficulty level associated with
a given traffic situation. However, several studies attempted to identify new factors affecting
control workload. The term ATC complexity was first introduced by Mogford et al. [1]. ATC
complexity is the sector and traffic characteristics that cumulatively create a complex set of
rules, requirements, and tasks for the air traffic controller when controlling aircraft in the sec-
tor. The authors summarized the relationship between ATC complexity and controller workload
as shown in Fig. 2.1. Significantly, cognitive strategies, which are one of the mediating factors,
are used by controllers to process air traffic information. For instance, controllers must mentally
extrapolate future positions and interactions between different aircraft. The difficulty level of
such a situation depends on traffic patterns and sector characteristics. According to these find-
ings, an early step in developing congestion metrics in which the traffic structure is considered
was found in [43].

It would be challenging to quantify the traffic situation encountered by air traffic controllers
in terms of the difficulty and mental effort required to manage the traffic. It is possible to find
complexity metrics fulfilling such a challenge. It must be important to clarify the following two
notions for use in the remaining chapter:

• Control workload: measurement of the difficulty for the traffic control system treating a
situation. This system may be a human operator or an automatic process. In the context
of operational control, this workload is associated with the cognitive process of traffic
situation management (conflict prediction and resolution, trajectory monitoring, etc.).

• Traffic complexity: intrinsic measurement of the complexity associated with a traffic
situation. This measurement is independent of the system in charge of the traffic, but it

14

Figure 2.1: Factors affecting controller workload [1].

solely depends on the traffic geometry linked with sensitivity, initial conditions, and the in-
terdependency of conflicts. Uncertainties with respect to positions and speeds increase the
difficulty of predicting future trajectories. In certain situations, this uncertainty regarding
future positions can increase exponentially, making the system highly complex in that it
is virtually impossible to extrapolate a future situation reliably. Consequently, although a
resolution process can detect and solve a future conflict, the resolution may generate new
conflicts in some situations. This interdependency between conflicts is linked to the level of
mixing between trajectories. Figure 2.2 shows three traffic situations ranked according to
increasing difficulty levels as a function of the level of predictability and interdependency
between trajectories.

Low sensitivity

No conflict

Easy situation

High sensitivity

Conflicts with no interaction
between solutions

Average situation

High sensitivity

Potential conflicts with

interaction between solutions

Difficult situation

Figure 2.2: Three traffic situations with different orders of complexity.

Research into air traffic complexity metrics has attracted considerable attention in recent
years. As the airspace complexity is related to traffic structure and airspace configuration,
various efforts are underway to measure the whole airspace complexity.

The controller workload is modeled based on traffic level in [44]. This approach defines the
workload as the proportion of control time over an hour. This workload model considers the
average duration of routine control tasks for an aircraft, the average time to resolve conflicts
per aircraft, the average rate of arrivals in a sector per hour, and the average rate of conflicts
in a sector per hour.

15

With the approach based on Queuing theory [45], a control sector is modeled as a system
receiving an input (aircraft) and providing a service, allowing the aircraft to safely cross the
sector. The sector may then be modeled as a centralized service, including one or more servers
and an aircraft queue. This approach allows us to determine a maximum acceptable arrival rate
for a sector by applying queuing theory.

The Dynamic Density (DD) suggested by Laudeman et al. from NASA [46] is one of the first
air complexity assessments considering the number of aircraft and traffic structures. Combining
traffic features produces a single positive real number reflecting the level of complexity. In the
studies of Sridhar et al. [47], the DD is also used to determine a predictive model up to a given
time horizon.

However, the preceding models present the following drawbacks: they cannot be generalized
to new sectors, and they are highly dependent on the human controllers to infer the model.
This motivation has driven the development of new approaches to complexity measures, such
as the fractal dimension [48], the input-output approach [49], and the intrinsic complexity [50].

The fractal dimension approach [48] is a scalar measure based on the geometrical complexity
of the traffic pattern observed over an infinite time horizon. This measure evaluates the number
of degrees of freedom used in the airspace. A higher fractal dimension indicates more degrees
of freedom.

The input-output approach in [49] assesses complexity based on the control effort required
to bring a new aircraft into the airspace safely. This approach highly depends on the automatic
solver used to recover a conflict-free situation. In order to calculate air traffic complexity, the
authors highlight aircraft heading change in response to an intrusive aircraft within a sector.

Delahaye et al. [51] propose congestion metrics for optimizing airspace sectorization and
traffic assignment. The metrics can be divided into the following three approaches:

• Flow-based approach

• Geometrical-based approach

• Dynamical system-based approach

2.2.1 Flow-based approach

This control workload model is based on a transportation network, in which nodes represent
beacons or airports and links represent airways. Traffic flows circulate along with these links
and cross over at nodes. The suggested model is thus a macroscopic model suitable for assessing
workload across large areas of airspace. Finally, this model is intended for use with en-route
traffic.

Based on observation of working controllers, the control workload is generally summarized
with the following quantitative criteria:

• conflict workload: the conflict resolution workload can be calculated from the crossing
of flows at nodes in the network;

16

• coordination workload: transfer of control between sectors;

• monitoring workload: monitoring of aircrafts in a control sector.

Therefore, the control workload in a sector is the sum of the conflict, coordination and
monitoring workloads. However, this control workload model is suitable for describing the air
traffic system at macroscopic level. The properties of aircraft trajectory are not taken into
account in this model.

2.2.2 Geometric-based approaches

By considering the positions and speed vectors of the aircraft represented in the geographic area,
these metrics aim to capture respectively the level of aggregation of aircraft, the convergences
in sectors and the difficulty in solving the induced conflicts.

Before outlining these metrics, the separation distance between aircraft should be normalized
to a specific standard because separation constraints are not equal in horizontal and vertical
dimensions. In these cases, the elliptical distance is given by:

da,h
ij = ∥pi − pj∥a,h =

√
(xi − xj)2 + (yi − yj)2

a2 + (zi − zj)2

h2

where pi and pj are the positions of aircraft i and j in a local tangent plane, a is the horizontal
separation distance and h is the vertical separation distance. Their values for en-route sectors
are a = 5 NM and h = 1, 000 ft.

Proximity Metric The proximity metric is used to characterize the spatial distribution of
aircraft in an area of airspace. As shown in Fig. 2.3, this metric can distinguish whether these
aircraft are distributed homogeneously or in the form of clusters.

Sector

Figure 2.3: Two different spatial distribution of five aircrafts across the sector.

Considering an aircraft at a given time, a spatial window is created centered on the aircraft.
The relative distance of neighboring aircraft j from the reference aircraft i is then calculated
with the following equation:

f(dij) = e−α.d2
ij

17

Then, the proximity metric associated with aircraft i is given by:

P (i) =
N∑

j=1
f(dij)

where N is the number of neighboring aircraft in the spatial window. Finally, the total proximity
in an area is calculated by summing each metric associated with each aircraft in that area.
Therefore, a better distribution of aircraft gives a lower proximity value.

The proximity indicator is able to identify areas where aircraft aggregate but is unable to dis-
tinguish some situations where speed vectors are different. This issue leads to the development
of a convergence indicator.

Convergences metric Unlike the proximity metric, the convergence indicator distinguishes
between converging and diverging aircraft using speed vectors of aircraft present in an area.
A higher value of the metric indicates a faster convergence situation and a denser cluster.
The convergence metric at a given time for each pair of aircraft i and j can be computed by
considering two moving positions of aircraft i and j and their speed vectors. The metric is
expressed as the level of variation of the relative distance between two aircraft:

rij = ∂

∂t
∥pij∥ = pij · vij

∥pij∥

where pij is the relative position vector, and vij is the relative speed vector.

In some applications, the proximity metric is combined with the convergence metric to
enhance the measurement of traffic complexity by considering traffic’s spatial density. Therefore,
the mathematical form of a convergence metric associated with an aircraft i is given by:

C(i) = λ
∑
j ̸=i

rij≤0

−rij .e− 1
2 (α.dij)2

where λ and α are weighting coefficients.

However, the calculation of both proximity and convergence metrics is based on the local
interaction between aircraft pairs. This approach may be unable to accurately quantify the
level of disorder in some traffic situations with multiple interactions between aircraft greatly
influence.

Grassmannian indicator The Grassmannian indicator is an alternative method to identify
the disorder in the whole traffic pattern within the considered area. The measurement is based
on the covariance matrix associated with a set of speed vectors. This metric takes into account
relative distances of aircraft located in a small zone. Otherwise, such relative distances will
be neglected since these values become less important when the zone considered is sufficiently
large.

The algorithm starts by determining a set of relative speed vectors from possible aircraft
pairs in the airspace. Let vij be the relative speed vector between the reference aircraft i and

18

a neighboring aircraft j. This relative speed can be computed using the following formula:

vij = vj − vi

Let Gij be the Grassmanian matrix or the covariance matrix associated with vij :

Gij = vij · vT
ij

Theoretically, the determinant of Gij represents the associated expansion rate. Then, the
Grassmannian matrix is decomposed into a singular matrix Sij from the following equation:

αijGij = LijSijUT
ij

where αij is a weighting coefficient associated with the relative distance between aircraft i and
j, and Sij is a diagonal matrix representing singular values.

The disparity factor of relative speeds, cij associated with the pair of aircraft i and j is the
product of the singular values greater than one:

cij =
∏

k,Skk>1
Skk

Therefore, the global factor is built by considering all pairs of aircraft:

C(i) =
∑

i

∑
j ̸=i

cij

According to the test results in [51], the indicator identifies areas where the speed vectors are
not well organized, such as random and convergence traffic. Moreover, the metric is null when
traffic is well organized in a parallel structure. However, it is unable to identify a rotational
orginization for which the aircraft collision is not possible.

König metric This metric quantifies the level of disorder in a field of speed vectors organized
in translation and rotation. The method determines the normalized standard deviation of
associated speed vectors and the angular momentum of all aircraft in a considered area.

Let V be a set of speed vectors. The disorder factor associated with speed vectors is therefore
given by:

Dv =
√
∥cov(V)∥

where cov(V) is the covariance matrix of aircraft’s speed vectors in the considered zone.

When a group of aircraft is organized in rotation, the preceding factor is unable to detect
such a structure. Hence, it is necessary to calculate the angular momentum of all aircraft in
the considered area. Firstly, the barycentre of all aircraft is:

g = 1
N

∑
i∈D

xi

where D is a set of aircraft present in the area considered, and N denotes the number of such
aircraft.

19

Then, the normalized angular momentum centered at the position of aircraft i is given by:

mi = 1∥∥dg
i

∥∥ (vi × dg
i

)
where dg

i represent the relative distance between aircraft i and the barycentre g.

Let M be a set of angular momentums. The disorder factor associated with the normalized
angular momentum is therefore given by:

Dm =
√
∥cov(M)∥

The metric associated with aircraft i represents each sum of Dv and Dm accumulated from
all points along its trajectory.

Although the preceding geometrical metrics can quantify the level of traffic organization in a
given traffic situation, the authors in [51] suggested that these metrics should work together to
capture various complexity features. However, such metrics would fail when dealing with a com-
plex traffic situation. In addition, such metrics are not able to take into account uncertainties.
To deal with these problems, metrics based on dynamical systems can quantify the disorder in a
complex traffic situation. The metrics can distinguish different air traffic situations: translation,
convergence, divergence, and rotation.

2.2.3 Dynamical system-based approach

This metric allows quantifying the level of disosrder and interaction in a set of trajectories at a
given time (e.g., a traffic situation). The evolution of this traffic situation is modeled by a linear
dynamic system. It detects the disorder or the organization of the trajectories in translation or
(and) rotation.

As presented in Fig. 2.4a, each observation along the trajectory of aircraft i at a given time
is represented by a position measurement:

xi =
[
xi yi zi

]⊤
and a speed measurement:

vi =
[
vxi vyi vzi

]⊤
To compute the local complexity associated with a given traffic situation, it is necessary to
model such a situation as a linear dynamical system, as presented in Fig. 2.4b. The following
equation of motion controls the linear dynamical system in a given situation:

ẋi = Axi + b

where ẋ is the estimated speed vector associated with each point in the state space, x is the
position vector, the coefficient matrix A is the linear approximation between x and ẋ, and b
represents the static behavior of the system.

20

x1, v1

x2, v2

x3, v3

(a)

x1, v1

x2, v2

x3, v3

(b)

Figure 2.4: Traffic situation at a given time: (a) measurement or observation vectors, (b) vector fields
derived by the linear dynamical model.

To determine an accurate dynamical system model best fitted to the set of observations N
in the state space, it is necessary to find the matrix A and vector b, which minimizes the error
between speed observations and estimated speed vectors. Such a minimization problem can be
formulated as follows:

A∗, b∗ = argmin
A,b

∑
n∈N

(
∥vn − (Axn + b)∥2

)
(2.1)

Parallel Convergence Divergence Rotation
y

xx1

x2

x3

v

v

v

y

xx0

x1

x2

v
v

v

y

x
x1

x2

x3

v

v

v

y

xx1

x2

x3

v v

v

Eigenvalues (×) of matrix A in the complex coordinate system
Imaginary

Real
1

1

-1

-1

λ1,λ2

Imaginary

Real
1

1

-1

-1

λ1,λ2

Imaginary

Real
1

1

-1

-1

λ1,λ2

Imaginary

Real
1

1

-1

-1

λ1

λ2

Figure 2.5: Eigenvalue locations for four different traffic situations.

Figure 2.5 shows the locations of the eigenvalues of matrix A for four artificial traffic organi-
zations: parallel, convergence, divergence, and rotation. With the first situation, the eigenvalues
are null because the aircraft are flying in a parallel flow: distances between aircraft remain un-
changed with time. In contrast with the second situation, the eigenvalues are real negative; the
system evolves in a contraction mode, and the four aircraft are converging: the norms of the
relative distances between aircraft decrease with time. The third situation represents an expan-

21

sion evolution where eigenvalues are real positive, and the aircraft are diverging: the relative
distances increase with time. Finally, the rotation situation is associated with full imaginary
and null real parts of eigenvalues because the aircraft stay at the same distance from each other
in a curl movement.

The approach based on linear dynamical systems can quantify the level of disorder in the
traffic pattern. Moreover, it can identify a variety of complex situations compared to an in-
dividual geometrical-based metric. Hence, it would be interesting to leverage the eigenvalue
information from the system to quantify trajectory-based congestion in the airspace. However,
the metric is needed to be developed to evaluate such congestion over a full-time horizon (not
a single traffic situation) for the large-scale traffic decongestion framework.

2.3 Optimization methods

Many complex problems are solved through mathematical optimization, which is an important
tool in decision-making process. The first step in performing an optimization process is to
formulate the problem properly. Through modeling process, an optimization problem is defined
by the following three parts:

1) Decision variables is a vector of decisions whose values can be assigned/changed to find
an optimal solution.

2) Objective function is a function of the decision variables. It gives a single number evaluat-
ing a solution, which the Optimizer tries to minimize or maximize, whichever you specify
in the formulation. For a linear program (LP), the objective is defined by a set of coef-
ficients or weights that apply to the decision variables. For a nonlinear program (NLP),
the objective can be any expression or variable that depends on the decision variables.

3) Constraints are bounds on functions of the decision variables. These bounds define the
set of possible solutions, called the search space. Each decision variable can have a lower
bound and/or an upper bound. If not specified, the lower and upper bounds are −∞ and
+∞.

Let x be the decision variables for determining an objective function f . An optimization
problem can be represented in the following standard form:

minimize
x

f(x)

subject to x ∈ S ⊃ X

where x ∈ S are the constraints on the decision variables, and S denotes the set of possible
values of the decision variables from all values in the state space X .

Considering mechanism used to search a solution in the state space, optimization algorithms
are usually classified into deterministic and stochastic methods.

22

2.3.1 Deterministic methods

These methods are characterized by a deterministic exploration of the state space. Under certain
conditions, they allow to locate the direction of the optimum with respect to each of the points
of this space and decrease the distance between the current point and the optimum. Several
deterministic optimization methods have been used to solve air traffic planning problems. Some
methods ensure convergence to the local optimum (i.e., Nelder-Mead), while others attempt to
converge to the global optimum (i.e., Branche and Bound, Homotopy optimization, etc.).

Nelder-Mead Algorithm The Nelder-Mead algorithm [52], originally published in 1965,
is one of zero-order or derivative free optimization algorithms. The Nelder-Mead method is
simplex-based. A simplex in the N-dimensional state space is defined as the convex hull of
N + 1 vertices. The method starts with a set of N + 1 points of a working simplex. The
method then transforms the working simplex by using reflection, expansion or contraction. The
transformation aims to decrease the objective value at vertices of the working simplex. At each
step, the algorithm tests one or more test points with their objective values. The operation is
terminated when the size of a working simplex becomes adequately small. The method does
not require any derivative information but the values of criteria at certain points in the state
space. It is robust to solve problems with non-derivable criteria or whose the function values
are uncertain or subject to noise.

Gradient Method This method is a first-order method [53] that take into account the first
derivative when performing the updates on the parameters. In the context of minimization,
the principle of these methods consists of moving in an iterative way in the opposite direction
to the gradient (or another descending direction) from the current point in function f . This
concept leads to the following expression:

xk+1 = xk − γk∇f(xk)

where γk is the step size. The optimization process can be slow if the step size is too small. On
the other hand, if the step size is chosen too large, the gradient descent can overshoot, fail to
converge, or even diverge.

The gradient-based method is commonly used in more complex algorithms. However, the
convergence is slow in time when the problem is much different from the linear model. It is
often used to improve the performances of other methods (stochastic methods) and to train
neural networks.

Second order Methods

Newton Method To solve the problem, the Newton method approximates the objective
function with a local quadratic model. The gradient and Newton methods are similar in that
both involve updating the next point iteratively to find the optimal value. However, the Newton

23

method updates the next point with the following expression:

xk+1 = xk −H−1
f (xk)∇f(xk)

where Hf (xk) = ∇2f(xk) is the hessian of the function f at point xk. Although this algorithm
uses the second derivative to accelerate convergence for several problems, global convergence is
not guaranteed. Moreover, the Hessian matrix may not be invertible at some points. Finding
the inverse of the Hessian matrix in high dimension to compute the Newton direction can be
an expensive operation.

Variable-metric methods Other methods also use a quadratic model but do not use
Hessian-based computation. Instead of computing the Hessian, these methods iteratively build
up an approximation of the inverse Hessian. This concept makes them less computationally
expensive compared to the Newton method. The most used algorithm is the BFGS (Broyden
Fletcher Goldfarb Shanno) [54–57], an optimization method for multi-dimensional nonlinear
unconstrained functions. Given an initial starting position, it prepares an approximation of the
Hessian. It then repeats the process of computing the search direction using the approximated
Hessian, computes an optimum step size using a Line Search, then updates the position, and
updates the approximation of the Hessian. Convergence is much faster than the gradient-based
algorithm. The well-known extension of BFGS is L-BFGS [58] which has a lower memory
resource requirement and is intended for functions with a large number of parameters.

Branch and Bound Method Branch and bound (BnB) method was firstly introduced by
A.H. Land and A.G. Doigien in 1960 [59] by solving linear problems with integers. The principle
starts with partitioning the feasible set into smaller subsets called branching strategy in order
to isolate the global optimum. A lower (or upper) bound of the criterion is attached to each
subset to guide the search without exhaustive exploration of the latter. The algorithm creates a
search tree whose each node represents a subset. This one is then evaluated by its lower bound.
If this lower bound is lower than the evaluation of a visited solution, the search from this node
is stopped. This tree continues the research with this algorithm dynamically until obtaining the
global optimum. BnB algorithm is an exact method for finding an optimal solution to a NP-hard
problem. It is a technique that can be applied to a wide class of combinatorial optimisation
problems. The performance depends on size of the problem and the quality of the bound.

Homotopy Optimization Method This method has been developed by Dunlavy et al. [60].
It is a homotopy method designed to find a minimizer for each data set of the homotopy
parameter instead of path-tracing. The principle is to deform a function f0 with local minimizer,
x0 which continuously shifts to the original objective function f(x). A continuous homotopy
function h of variables x in solution space and a homotopy varible λ is then constructed as
follows:

h(x, λ) =

f0(x), if λ = 0
f1(x), if λ = 1

where f1(x) = f(x). The method evolves from λ = 0 to λ = 1 with pre-defined step to evaluate
the best solution x∗. However, HOM is only guaranteed to find a local minimizer of f1(x).

24

HOM is powerful for some problems but it can be expensive in terms of computing load for
nonsymmetric problems. Moreover, the construction of the function f0(x) is not trivial.

2.3.2 Stochastic methods

Stochastic optimization methods seek to produce good-quality but not necessarily optimal so-
lutions in reasonable computation times. Therefore, these methods are applied to NP-complete
problems for which deterministic methods can not find better solutions within an acceptable
time. In addition, when the optimization model is formulated with a large set of decision vari-
ables, numerous constraints, and complex objective functions, the stochastic methods seem to
be more appropriate. Generally, their algorithms proceed by generating a set of points in the
state space. These points are progressively moved towards the optimal solution by evaluating
the successive values of the associated objective function over a number of iterations.

Tabu Search The basic concept of tabu search was firstly developed by Glover [61]. The tabu
search begins by searching for a local minima with restriction to avoid returning to solution
space which have been explored. In order to prevent visiting a previously visited solution, TS
uses a tabu list in which tabu moves or attributes of moves are listed. This list is updated for
every iteration so as not to go back on a solution previously visited. The size of the tabu list k

is a critical parameter whether:

1) k is too big, exploring the tabu list causes a waste of time when reviewing the elements
to determine whether or not the proposed solution is tabu.

2) k is too small, there is a risk of losing the memory effect and often return to previously
visited solutions.

In order to reduce the size of the tabu list, it is possible to store only the modification made
(movement direction) from the current solution instead of keeping the whole solution. A good
solution found in the tabu list could eventually lead to a better optimum. In order to achieve
the best result, an aspiration criterion is used. Its purpose is to release the taboo status of this
solution in this list. Finally, the stop criteria could be in the following cases:

1) if all solutions close to the current solution are tabu and unable to be recovered by the
aspiration criterion;

2) if the algorithm did not find a better solution until a maximum number of iterations;

3) finally, if it reaches a certain lower bound f∗.

The tabu method allows to memorize the recent searching history in order to discourage the
movements towards current attributes (variables) in the last evaluated points. However, there
are still some issues related to setting the tabou memory size. The convergence of the algorithm
is slow. In addition, this method is mono-mode and mono-objective.

25

Genetic algorithm Genetic algorithms (GAs) are a part of evolutionary computing, which
is a rapidly growing area of artificial intelligence. The algorithms have been developed by
John Holland [62] and his collaborators in the 1960s and 1970s, are a model of biological
evolution based on Charles Darwin’s theory of natural selection. A combination of selection,
recombination, and mutation is used to evolve a solution in the search space. The algorithm
starts with a set of solutions (represented by individuals) called population. Better solutions
from one population are taken and used to form a new population. This is often done through
the following steps:

• Definition of an encoding scheme;

• Definition of a fitness function;

• Generation of a random population of individuals;

• Evaluation of the fitness function of each chromosome in the population;

• Creation of a new population by performing selection, crossover and mutation;

• Replacement of the old population by the new one.

The last three steps are then repeated for a number of generations. At the end, the best
chromosome is decoded to obtain the solution to the given problem.

In addition, the population size is also important. If the population size is too small,
there will not be enough evolution, and there is a risk for the whole population to converge
prematurely. In a small population, if an individual with a fitness is larger than the fitness of the
other ones in the population appears too early, it may produce enough offspring to overwhelming
the whole population. The system will eventually reach to a local optimum instead of the global
optimum. On the other hand, too large population leads to highly evaluations of the objective
function, which will require extensive computation time.

Stochastic Branch and Bound The idea of this method is to branch the set of possible
solutions into disjoint subsets. Then, the stochastic lower and upper bounds of the objective
function are computed for each subset. They are used to delete unfeasible subsets and then
branch to the most promising subset until the stopping criterion is fulfilled. The method
progressively eliminates the areas with a low probability to contain the global optimum. Readers
may refer to [63] for more detailed about the Stochatic BnB method.

Simulated annealing The simulated annealing (SA) algorithm was proposed by Kirkpatrick
et al. [64] as inspired by the metallurgical annealing process. In this natural process, under
controlled conditions, a material is heated up and slowly cooled down to increase the size of the
crystals in the material and reduce their defects in order to improve the material’s strength and
durability.

In SA, a global temperature T is used to simulate the cooling process. The objective function
to be optimized is analogous to the energy of the physical process. A current solution may be

26

Algorithm 2.1 Simulated annealing algorithm
Require: Initialization: number of transitions for each temperature N , initial temperature T0

1: E0 = f(X0)
2: Xi ← X0
3: Ei ← E0
4: T ← T0
5: while stopping criteria not reached do
6: for k = 1 to N do
7: Xj = neighborhood_generation(Xi)
8: Ej = f(Xj)
9: y′

i = Jm(d′
i)

10: if Ei > Ej then
11: Xi ← Xj

12: else
13: Xi ← Xj with probability exp

(
yi − yj

T

)
14: T = decrease_temperature(T)
15: return Xi

replaced by a random neighborhood solution accepted with a probability e
∆E
T where ∆E is the

difference between corresponding objective values. The cooling process proceeds with a high
initial temperature T0 which can be determined from a heating process or defined by the user.
At a high temperature, the current solution changes in a broad region of the search space in
such a way that the algorithm is able to trap out of local minima. At each temperature step,
a number of iterations N are executed, and the probability of accepting a degrading solution
becomes smaller as T decreases. Hence, at the final stage of the annealing process, the process
will converge to a near-global or global optimum. The general algorithm of the SA is summarized
in Algorithm 2.1

2.3.3 Practical issues of simulated annealing

The SA represents significant user-defined parameters that enhance its performance to solve
the optimization problem. Therefore, more attention to the following configurable components
should have been paid when adapting the algorithm to a particular problem.

Initial temperature The initial temperature strongly depends on the problem considered.
A too large initial temperature cause some waste of computation time. However, if the initial
temperature is chosen too small, the exploration of the search space might be restricted and
the quality of the results decreases.

One way to determine the initial temperature T0 is to perform the heating process. The
process involves applying a decision change and its cost evaluation for each iteration. The
difference cost from changing decision is used to accept or reject a new decision with the following
Metropolis-based criterion:

Pr{accept Xj} =

1, if f(Xj) < f(Xi),

exp
(

f(Xj)− f(Xi)
T

)
, otherwise.

(2.2)

27

where T is the overall temperature. This temperature increases until T = T0 when the initial
acceptance rate goes beyond a threshold χ0.

Cooling schedule The cooling schedule has a significant influence on the convergence of the
algorithm. The decrease in temperature at iteration k can rely on one of the following classical
cooling laws:

• Geometric cooling: the evolution of the temperature Tk is given by the following function:

Tk+1 = α · Tk, 0 < α < 1

where α is the decay of the control parameter. This parameter describes how fast the
temperature decreases during the cooling process. A slow-decreasing temperature is more
likely to produce a better solution than a fast-decreasing temperature, but the convergence
toward the optimum may be slower.

• Linear Law:
Tk = T0 − β · k, β > 0

where β is a pre-defined constant value.

• Logarithmic law:
Tk = T0

log k

• Algorithmic-Geometric: this is a non-monotonic cooling schedule that combines the geo-
metric and linear law. The evolution of temperture is given by:

Tk+1 = Tkβ − η

where β and η denote the cooling parameters for the gemetric part and the linear part,
respectively.

Equilibrium state In the cooling process, the inner loop with a given number of iterations
simulates the achievement of thermal equilibrium at a given temperature step, representing the
stability of the associated statistical features if the simulated annealing visits the solutions.
However, a larger number of iterations leads to a longer computation time. Therefore, the
algorithm requires a balanced trade-off between reaching the equilibrium condition and the
computation feasibility of the process.

Termination criterion There are several ways to define the stopping criteria:

• upper number of iterations (number of temperature changes);

• upper execution time of the algorithm;

• when a solution achieves the desired objective;

28

• when there is no improvement of the objective value for a predefined number of iterations
or predefined execution time.

Simulation-based evaluation In several optimization problems, the objective functions are
usually required to be evaluated in a simulation environment. Fig. 2.6 illustrates the general
implementation of the optimization architecture with the simulation-based evaluation. First,
the optimization algorithm generates a set of decision variables X. Such variables are then
transferred to the simulation environment for evaluation through the simulation process. Finally,
the performance y computed by the simulation is used as a criterion to decide the next operation
of the optimization process. A more detailed explanation of this approach can be found in [65].

Simulation
Environment

Optimization

Data

yX

Figure 2.6: Simulation-based evaluation.

As the problem size is large, addressing this problem with population-based approaches
may be impossible since the simulation environment must be duplicated for each dividual of the
population. This step requires a massive amount of memory. Therefore, single-solution based
approaches in which a single simulation environment is used are more adapted for practical
implementation in this case.

The single solution-based method allows different solutions to use the same simulation en-
vironment to determine their performances (e.g., objective values). However, when a different
solution is generated (e.g., a new neighborhood solution), the previous solution may be reused
when the performance of the neighborhood solution is not better than the previous one. The
most straightforward way is to copy the current state variable Xi into the computer memory.
However, if the state space is large, such a copy at each iteration may reduce the algorithm’s
performance. To overcome this issue, the comeback operator is used in such a way that the
vector Xi can be modified without a full copy. Suppose that the initial solution Xi can be
represented by a set of individual decisions in which only one decision is changed to generate a
neighborhood solution Xj . For example, when the neighborhood solution Xj does not satisfy
the acceptance condition in the SA algorithm, the comeback operator is then applied to the
solution Xj . Only the modified decision is then turned back to the previous state so that the
neighborhood solution Xj can return to the previous solution Xi, as presented in Fig. 2.7.

An issue of using the comeback operator is how to maintain consistency between the so-
lution X and its associated performance y when a different solution is generated (e.g., a new
neighborhood solution) in a given iteration. A straightforward method to ensure such consis-
tency is to evaluate all decisions in the simulation environment at each iteration. However, this
method may induce exhaustive computation time. To overcome this issue, a differential evalu-

29

d1 d2 d3 di dN

y1 y2 y3 yi yN

Modification

Xi

d1 d2 d3 d ′
i dN

y1 y2 y3 y ′
i yN

Comeback

Xj

d1 d2 d3 di dN

y1 y2 y3 yi yN
Xi

Figure 2.7: Comeback operation.

ation approach may be applied in the simulation. Such an approach computes the difference of
corresponding objective values without evaluating all decisions in the simulation environment.
However, it is necessary to perform the following two steps in the simulation environment to
determine such an effect:

• Remove a decision: the element associated with the old decision will be removed from the
simulation environment, and the effect of removing this decision ∆y−

i is then determined
beforehand;

• Put a decision: Insert a new element associated with a new decision into the simulation
environment, and the effect of such an insertion ∆y+

i is computed.

Let y and y′ be the original and new objective values of the state variable X, respectively. The
new objective value due to the impact of changing the decision i can be determined using the
following equation:

y′ = y −∆y−
i + ∆y+

i (2.3)

where ∆y−
i denotes the effect of the objective value from removing the decision i, and ∆y+

i is
the effect of the objective value from the insertion of the modified decision i. Unfortunately,
the differential evaluation approach may be impossible for some problems for which the impact
on the objective function cannot be identified.

2.4 Machine learning methods

Machine learning aims at making computers modify or adapt their actions so that these actions
get more accurate, where accuracy is measured by how well the chosen actions reflect the current
ones. It merges ideas from neuroscience, biology, statistics, mathematics, and physics to make
the computer learn. Kaelbling et al. [66] classify machine learning algorithms using different

30

criteria. Machine learning algorithms can be classified into three groups: supervised learning,
unsupervised learning and reinforcement learning.

Supervised learning algorithms have the strongest environment dependency since they use
an external (and often stationary) reference that can describe a relationship between the inputs
and the outputs and directly instruct the learning system on which parameter to change and
how to modify it. This type of learning is also regarded as instructive learning since the
environment directly intervenes in the internal structure of the learning system [66]. Commonly
used neural network learning algorithms, such as back-propagation, or classification algorithms,
are examples of supervised learning algorithms.

Unlike supervised learning methods, unsupervised learning methods do not require any
external reference to advise the exact output. However, they apply some internal metrics to build
internal multi-dimensional mappings of the parameter space [67]. The learning system then
either generalizes or specializes in different sections of these maps to introduce new classification
rules or remove old ones as learning advances. The K-means clustering algorithm [68] and self-
organizing maps [67] are typical examples of unsupervised learning.

The reinforcement learning algorithms use the autonomous learning system model, similar
to unsupervised learning, meaning that there is no external reference available to instruct the
system. However, it keeps an interactive relationship with the environment and tries to get
some information in order to build up its knowledge base. Depending on the learner’s own
decision, the feedback is either utilized to profit from the existing knowledge or simply ignored
to find the new one. RL methods are capable of learning from zero prior knowledge, provided
that the number of learning examples is sufficiently large.

Before outlining the main point of reinforcement learning problem, the following machine
learning methods are presented: support vector machine (SVM), bagging decision tree (BDT),
and neural network classifier. These methods were chosen because the decision boundaries they
model differ significantly from each other.

Support vector machine Linear classifiers using Linear Discriminant Functions (LDF) are
a good starting point for classification due to their computational simplicity. Although the LDF
approach minimizes the error in classifying training samples or observations, a small training
error does not guarantee a good performance in classifying a general sample. Accordingly,
several descent procedures are used to reduce the classification error and then find the associated
hyperplane. A support vector machine (SVM) [69] builds one or more hyperplanes in a high- or
infinite-dimensional space to be used for classification, regression, or other tasks. Because of its
robust performance concerning limited, sparse and noisy data, SVM is frequently used in several
applications. The SVM algorithm can separate a given set of two-class training samples in binary
classification by constructing a multi-dimensional plane to improve the separation between two
clusters. To classify samples, we choose the hyperplane to maximize the distance from it to the
nearest data point on each side. If such a plane exists, it is known as the maximum-margin
hyperplane, and the linear classifier is known as a maximum-margin classifier. Figure 2.8 shows
an example of the maximum-margin hyperplane and margins for an SVM trained with samples
from two classes.

31

y

x

w ·
x +

b =
0

w ·
x +

b =
1

w ·
x +

b =
−1

2∥w∥

b∥w∥

w

Figure 2.8: Maximum-margin hyperplane and margins for an SVM trained with samples from two classes.
Samples on the margin are called the support vectors.

Bagging decision trees Decision tree learning [70] uses a decision tree as a predictive model
that associates input variables with target values. Each internal node corresponds to a condition
on an input variable; each edge from the node to children represents possible values of the input
variable associated with that node. Each leaf node has a value of the target variable associated
with it. This predicted value is classified by the values of the input variables associated with
the path from the tree’s root to the leaf. The decision tree algorithms usually operate top-down
by selecting a variable that best divides the set of items at each step. Alternative metrics
are available to measure the homogeneity of the target variable within the subsets, such as
information gain ratio, Gini index, and Chi-squared statistic. These metrics are applied to each
candidate subset, and the resulting values are computed to provide a qualitative measure of
the division. Ensemble methods combine several decision trees to produce better predictive
performance than a single decision tree. Bagging is an ensemble method to reduce the variance
of a decision tree. Its idea is to create several subsets of the training sample chosen randomly
with replacement. Then, each collection of subset data is used to train their decision trees. As
a result, the average prediction from different trees is more robust than a single decision tree.

The random forest (RF) [71] is an extension of bagging. Diagram of the RF algorithm is
illustrated in Fig. 2.9. RF is an ensemble model consisting of binary decision trees that predict
the mode of individual tree predictions in classification or the mean in regression. Every node
in a decision tree is a condition on a single feature, chosen to split the dataset into two so
that similar samples end up in the same set. RF is inspectable, invariant to scaling and other
feature transformations, robust to the inclusion of irrelevant features, and can estimate feature
importance via a mean decrease in impurity (MDI).

Neural network The hyperplane-based decision boundaries may not be efficient to classify a
large class of problems since their performances are limited for some complex problems involv-
ing non-linear boundaries. Artificial Neural Networks (ANN) provide a good general-purpose
modeling approach for modeling a large class of input/output relations. The ANNs are com-
prised of a node layers, containing an input layer, one or more hidden layers, and an output
layer. An example of ANN with three hidden layers is illustrated in Fig. 2.10. Each node, or

32

Training Data

Sample and feature bagging

. . .

Tree 1 Tree 2 Tree n

Mean in regression or majority vote in classification

Prediction

Figure 2.9: Diagram of the random forest algorithm. A new sample is dropped down each tree (in red)
and lands in a leaf or terminal node.

artificial neuron, connects to another and has an associated weight and threshold. If the output
of any individual node is above the specified threshold value, that node is activated, sending
data to the next layer of the network. Otherwise, no data is passed along to the next layer of the
network. They are robust to noise and missing data and allow generalization. Generalization
of a model is the ability to represent situations not covered during the development phase of
the model. A major advantage provided by the neural network structure is that its simplicity
in learning non-linear mappings between input/output relations.

Neural networks can be classified into different types adapted for different purposes. The
perceptron [72] is the oldest neural network. It has a single neuron and is the simplest form of a
neural network. Feedforward neural networks, or multi-layer perceptrons (MLPs) [73], comprise
an input layer, one or several hidden layers, and an output layer. While these neural networks
are also commonly referred to as MLPs, it is important to note that they are actually comprised
of sigmoid neurons, not perceptrons, as most real-world problems are non-linear. Data usually
is fed into these models to train them, and they are the foundation for computer vision, natural
language processing, and other applications. Convolutional neural networks (CNNs) are similar
to feedforward networks, but they are usually utilized for image recognition, pattern recognition,
and computer vision. These networks harness principles from linear algebra, particularly matrix
multiplication, to identify patterns within an image. Recurrent neural networks (RNNs) are
identified by their feedback loops. These learning algorithms are primarily leveraged when using
time-series data to predict future outcomes, such as stock market predictions or sales forecasting.

33

x1

x2

x3

xn

...

a(1)
1

a(1)
2

a(1)
3

a(1)
4

a(1)
m

...

a(2)
1

a(2)
2

a(2)
3

a(2)
4

a(2)
m

...

a(3)
1

a(3)
2

a(3)
3

a(3)
4

a(3)
m

...

y1

y2

yk

...

Input layer Hidden layers Output layer

Figure 2.10: Example of an artificial neural network consisting of one input layer, three hidden layers,
and one output layer; each layer has a set of neurons. Each neuron is a node connected to other neurons
via links; each link has a weight, determining the strength of one nodes influence on another.

In addition, backpropagation [74] is a widely used algorithm for training feedforward neural
networks. It allows us to compute the error associated with each neuron, allowing us to adjust
and fit the parameters of the models appropriately.

2.5 Reinforcement learning

The general RL problem is formalized as a discrete-time stochastic control process where an
agent interacts with its environment in the following manner: the agent starts in a given state
s0 ∈ S within the same environment by gathering an observation of the environment. At each
time step t, the agent has to take an action at ∈ A. As illustrated in Fig. 3, it follows three
consequences:

1) the agent obtains a reward, rt ∈ R;

2) the state transits to st+1;

3) the agent obtains the next observation.

This stochastic control was first proposed by Bellman [75] and later extended to learning by
Barto et al. [76]. Sutton et al. [77] provide a comprehensive introduction of RL principles.

The Markov Decision Process (MDP) is a mathematically ideal model of the RL problem
for which precise theoretical statements can be made [77]. An MDP can be represented by a
4-tuple (S,A,P, R, γ) where:

1) S is a finite set of state space,

2) A is a finite set of action space,

34

Agent

Environment

atst+1 rt

Figure 2.11: Architecture of reinforcement learning.

3) P : S × S ×A → [0, 1] is a state transition probability matrix,

4) R : S × S ×A → R is the reward function, where R is a set of possible rewards,

5) γ is a discount factor.

The system is fully observable in an MDP when an agent can determine the system’s state at
all times. At each time step t, the state transition probability p ∈ P that the system transits
to the next state s′ with an action a at a current state s is given by:

p(s′|s, a) = Pr{st+1 = s′ | st = s, at = a} (2.4)

However, the knowledge of all state transitions is most likely incomplete in real-life MDP sys-
tems.

The goal of an MDP is to find an optimal policy that achieves the maximum cumulative
reward over the long run. A policy π specifies the action π(s) that the agent will choose at the
state s. The RL agent uses the value functions to organize and structure the search for good
policies. The value function of a state s under a policy π is given by

vπ(s) = Eπ

[∞∑
k=0

γkrt+k | st = s

]
, s ∈ S (2.5)

where Eπ [·] denotes the expected value of a random variable given that the agent follows
policy π. The optimal policy π∗(s) of a state s can be determined when we have found the
optimal value function v∗(s) satisfying the Bellman optimality equation:

v∗(s) = max
π

Eπ [rt + γv∗(st+1) | st = s] , s ∈ S (2.6)

where the optimal value function can be defined as:

v∗(s) = max
π

vπ(s) (2.7)

Similarly, the value of taking action a in the state s under a policy π can be defined by the
following action-value function:

qπ(s, a) = E
[∞∑

k=0
γkrt+k | st = s, at = a

]
, s ∈ S, a ∈ A (2.8)

Similarly to the value function, the optimal policies also share the same optimal action-value

35

function, defined as
q∗(s, a) = max

π
qπ(s, a) (2.9)

The optimal action-value function from taking an action a in the state s can be expressed
recursively using Bellman’s equation:

q∗(s, a) = E
[
rt + γ max

a′
q∗(st+1, a′) | st = s, at = a

]
, s ∈ S, a ∈ A, a′ ∈ A+ (2.10)

The particularity of the action-value function as compared to the value function is that the
optimal policay can be determine directly from q∗(s, a):

π∗(s) = argmax
a∈A

q∗(s, a) (2.11)

Recent research has produced several algorithms for learning value and action-value func-
tions. Dynamic programming (DP) is one of the major methods used to solve MDP problems.
The policy iteration method is straightforward in applying DP to an MDP problem. A random
policy or any non-optimal policy is evaluated using the Bellmen equation to calculate the state
values. Then, based on such state values, a new policy is updated if it has a better performance.
The process repeatedly continues until either policy or state values converge and remain un-
changed. One issue of a policy iteration is that a policy evaluation must be performed in each
iteration. Therefore, it can be time-consuming computation requiring multiple loops through
the state set. To overcome this issue, the value iteration is an alternative method to truncate
the policy evaluation step while guaranteeing convergence toward the optimal policy. The al-
gorithm finds the maximum value function in an iterative process until reaching the optimal
value function, then derives the optimal policy from the optimal value function. However, the
DP-based methods require a full definition of the MDP environment to solve the problem.

When knowledge of the environment is not complete, the straightforward way is to use
Monte Carlo (MC) methods. The basic idea of MC methods is based on averaging sample
returns. If a state or state-action pair has been visited multiple times, the average value of the
returns of these visits is supposed to converge to the true value of the state or state-action pair.
Based on this assumption, MC methods only consider sample sequences of states, actions, and
rewards from actual or simulated interaction with an environment. During simulation, they
cannot update the value or state value function until the end of an episode.

Temporal Difference (TD) learning methods combine the advantages of both DP and MC
methods. TD methods can learn directly from raw experience without a model of the environ-
ment. Unlike the MC method, the learning agent gradually updates its state-value or action-
value function from experiences gathered in the environment. The TD learning approaches
fall into two main classes: on-policy and off-policy. On-policy methods attempt to evaluate
or improve the policy that is used to make decisions, whereas off-policy methods evaluate or
improve a policy different from that used to generate the data [77]. An example of on-policy
TD learning is SARSA, and the Q-learning method is the most commonly used off-policy TD
method.

36

2.5.1 Q-Learning

The Q-learning algorithm was introduced by Watkins et al. [78], where the convergence proofs
to optimal action-state values and optimal policy are given. Q-learning is an RL technique
that works by learning an action-value function that gives the expected utility of taking a given
action in a given state and following a fixed policy. One of the advantages of Q-learning is that
it can compare the expected return of the available actions without knowing a model of the
environment. The Q-learning agent uses a Q-table to store and update its Q-values in which a
distinct state-action pair identifies each value. At a given time step t of Q-learning, when the
action at is taken in the state st, the agent receives a reward rt, and moves to the next state
st+1 and the state-action value Q(st, at) based on Q-learning is updated as follows:

Q(st, at) := (1− α)Q(st, at) + α

(
rt + γ max

a∈A
Q(st+1, a)

)
(2.12)

where α ∈ [0, 1] denotes the learning rate, γ ∈ [0, 1] denotes the discount factor and r denotes the
immediate reward signal. The Q-table converges using iterative updates for each state-action
pair.

Although Q-learning converges regardless of the agents policy, the speed of convergence,
which may be an important issue in real-life problems, strongly relies on the exploration and
exploitation strategies. Exploration allows an agent to improve its current knowledge about
each action, leading to long-term benefits. On the other hand, the exploitation chooses the best
action based on the current action-value estimates. There are two common policies used for
action selection, for which the objective is to balance the trade-off between exploitation and
exploration:

• ϵ-greedy: an action is chosen uniformly at random with a small probability ϵ. The selection
is independent of the action-value estimates (e.g., Q-values). Otherwise, the selection
follows the greedy policy, whereby the action with the highest estimated reward is chosen.

• softmax: an action is selected according to a Boltzmann distribution. The probability of
selecting action a is given by:

p(st, a, T) =

(
−Qt(st, a)

T

)
∑

a′ exp
(
−Qt(st, a′)

T

) with lim
t→∞

= 0 (2.13)

where Q(s, a) is the action-value function (e.g. Q-value) of performing an action a in a
state s and T denotes the temperature decreasing at each time step.

However, it is not clear which of these policies produces the best overall results. The nature of
the task will affect how effectively each policy influences learning. With the use of policy, the
procedural form of the Q-learning algorithm can be given in Algorthm 2.2.

37

Algorithm 2.2 Q-learning algorithm
Require: Initialization: the Q-table Q(s, a)

1: repeat for each episode
2: repeat for each step of episode
3: Select an action a from st using policy derived from Q (e.g., ϵ-greedy)
4: Take action a, observe r, s′

5: Q(s, a)← Q(s, a) + α [r + γ maxa Q(s′, a)−Q(s, a)]
6: s← s′

7: until s is terminal
8: until end of the final episode

2.6 Hyper-heuristics

As mentioned in [79–81], the metaheuristic approaches play an important role in addressing
combinatorial optimization problems that exact algorithms cannot solve due to the complexity
of the problem. Metaheuristic algorithms have been widely used to approximate near-optimal
solutions for several real-world applications. Over the past decade, more attention has focused
on providing hybrid metaheuristic approaches that do not purely follow the paradigm of a single
traditional metaheuristic [82]. With these approaches, researchers can combine additional algo-
rithms in order to achieve better performance in solving their optimization problems. However,
developing a practical hybrid approach requires significant expertise from different areas to im-
plement and tune. Hence, a certain approach is not sufficiently generic to adapt to changing
search spaces, even for the different instances of the same problem.

Hyper-heuristic is one of the hybrid metaheuristic approaches that has recently received
considerable attention for addressing some of the preceding issues. The term was first used
in [83] to describe a protocol that combines several artificial intelligence methods in the context
of automated theorem proving. Later, the hyper-heuristic has been described as an approach of
using (meta)-heuristics to choose (meta)-heuristics to solve optimization problem [84]. Specifi-
cally, given a particular problem instance and a number of low-level heuristics, a hyper-heuristic
can select and apply a suitable low-level heuristic to produce a good solution at each decision
point [85]. Unlike traditional metaheuristics and other hybrid metaheuristics, which directly
operate on the solution space, the hyper-heuristic operates at a higher level of abstraction,
providing flexible integration and adaptive manipulation of low-level heuristics. A diagram of a
general hyper-heuristic framework is presented in Fig. 2.12. The barrier between the low-level
heuristics and the hyper-heuristic prevents the flow of domain knowledge specific to a particular
problem. As a result, the hyper-heuristic does not know anything about its environment. The
framework allows the hyper-heuristic to select and apply one of the existing low-level heuristics
to the current solution and then evaluate it by the evaluation function. The hyper-heuristic can
build knowledge of how well each low-level heuristic does against a given solution. It can then
decide which low-level heuristic should be allowed to update the solution. With this framework,
hyper-heuristic can evolve its heuristic selection and acceptance mechanism in searching for a
good-quality solution.

As proposed in [86], a general classification of hyperheuristics is based on the nature of the
heuristic search space and the source of feedback during learning. These considerations are
orthogonal in such a way that different heuristic search spaces can be combined with various
feedback sources, resulting in different machine learning techniques.

38

Hyper-heuristic

Domain Barrier

Set of low-level heuristics

Evaluation Function

Non-domain data flow

Non-domain data flow

h1 h2 . . . hn

Figure 2.12: Hyper-heuristic framework with a domain barrier between the low-level heuristics and
the hyper-heuristic. The barrier does not allow an exchange of specific information between these two
modules.

With respect to the heuristic search space, its properties fall into two categories:

• Heuristic generation: the methodologies for generating new heuristics from heuristic
methods;

• Heuristic selection: the methodologies choosing existing low-level heuristics.

Moreover, each approach can be further divided into construction and perturbation heuristic
methods. The construction heuristic method incrementally builds the solution. Such a pro-
cess continues until the complete solution is obtained. On the other hand, the perturbation
heuristic method starts with a complete solution by a random generation and then iteratively
improves the current solution. For many years, several metaheuristic approaches play an im-
portant role at high level to select and generate low-level heuristics. Several population-based
metaheuristics have been applied to solve combinatorial optimization problems such as genetic
programming [86], ant colony optimization [87, 88], tabu search [89], and particle swarm opti-
mization [90, 91].

Besides, most research on perturbation based hyper-heuristic uses a single-solution based
metaheuristic to maintain and iteratively improve a single current solution in a given decision
point. The perturbation-based hyper-heuristic in which a single-solution based metaheuristic
operates can be separated into two processes: (low-level) heuristic selection and move acceptance
strategy. The heuristic selection is accountable for selecting a low-level heuristic from the set of
low-level heuristics and applying it to the solution. The move acceptance strategy is to decide
the acceptance or rejection of the new solution. Both heuristic selection and move acceptance
methods have a crucial impact on the performance of the hyper-heuristic model. When designing
a robust hyper-heuristic model, choosing a suitable heuristic selection and a move acceptance
method for a particular problem is a non-trivial task. Dowsland et al. [92] combine a metropolis-
based acceptance strategy with a tabu-based heuristic selection, which selects low-level heuristics
according to learned ranks. A comprehensive simulated annealing hyper-heuristic framework
has been proposed by [93] to improve the generality of the algorithm. The metropolis-based
acceptance criterion helps to improve the acceptance decision of heuristic moves. The solution
changes are feedback information for better heuristic selections for successive iterations.

39

However, one of the motivations behind the hyper-heuristic is the aim to facilitate applica-
bility to different problem instances having different characteristics as well as different problem
domain. With this objective, machine learning techniques become crucial to increase the adapt-
ability of the hyper-heuristic framework against different knowledge domains. Concerning the
source of feedback information in the learning process, hyper-heuristic approaches can be clas-
sified into the following categories:

• Online learning: the algorithm directly learns during the search while solving the main
problem;

• Offline learning: the algorithm extracts information from a set of training instances to
be applied for solving new instances.

The use of offline learning in the hyper-heuristic can be found in some studies. The case-based
reasoning (CBR) system is applied to solve exam timetabling problems in [94]. The set of
problems and good solutions is stored and used to train such a system before solving unseen
problem instances. Offline learning with a selection hyper-heuristic has been proposed in [95]
to optimize water distribution networks. The algorithm generates an offline learning database
of low-level heuristic selections and their objective values. Using the Baum-Welch learning
algorithm [96], the effective heuristic subsequences are used to offline train the hidden Markov
model of the sequence-based selection hyper-heuristic. On the one hand, various online learning
hyper-heuristics have been applied to a wide range of problem domains. The previous work
in [97] presents a Monte Carlo tree search (MCTS) algorithm to generate a sequence of low-
level heuristics as a partial tree. Each low-level heuristic is selected on the basis of its empirical
rewards. The proposed algorithm rewards a good performing search operator by allowing its
re-selection in the next iteration. As reinforcement learning is one of the most commonly used
methods for online learning strategy, the related work will be detailed separately in the following
paragraph.

2.6.1 Hyper-heuristics based on reinforcement learning

A reinforcement learning system aims to learn which action to take in a given state by evaluating
state and action pairs through accumulated rewards. In the context of hyper-heuristics, low-
level heuristics can be rewarded or penalized according to their performances during the search.
For example, Narayek et al. [98] investigate reinforcement learning using different heuristic
selection strategies. Each low-level heuristic is selected via a probabilistic rule or by using
the maximal value. Based on the improvement of the objective value, the weights of the low-
level heuristics are updated using simple additive/subtractive reinforcement rules. In Burke
et al. [99], reinforcement learning was combined with a tabu search mechanism to solve the
personnel rostering and timetabling problems. A tabu list of low-level heuristics is maintained
in order to exclude some heuristics from the competition for a certain time during the search.
Learning is performed by constantly increasing/decreasing the ranks of low-level heuristics when
the objective function improves/worsens, respectively. A non-tabu heuristic with the highest
rank is chosen at each step. Pylyavskyy et al. [100] proposed a reinforcement learning-based
hyper-heuristic to find the best possible flight routes in order to minimize the traveling cost.
A score is assigned to each low-level heuristic. This score is increased or decreased based on

40

the improvement or deterioration of the solution, respectively. All rewards and penalties are
weighted by a factor based on the iteration number. All improved solutions are accepted, and
some deteriorating solutions can be accepted based on the consecutive number of iterations
without improvement. Meignan et al. [101] proposed a hyper-heuristic framework to solve
the vehicle routing problem. The low-level heuristics are implemented based on intensification
and diversification techniques. The roulette wheel selection determines an appropriate low-level
heuristic at each iteration. A number of diversification-intensification (D-I) cycles are performed
to improve the solution gradually. At the end of each D-I cycle, the proposed framework will
update the weights of well-performing low-level heuristics with an additive reinforcement rule.
Most of these studies perform a straightforward learning process without considering the long-
term reward value of taking a specific action in a specific state.

Up to now, several studies have confirmed the effectiveness of using Q-learning as a learning
algorithm to historically select an appropriate low-level heuristic at a given decision point. Q-
learning works by estimating the best state-action pair through the manipulation of memory
based on Q-table, and each value in such a table expresses the long-term reward value of selecting
a particular action at a particular state. In the context of the hyper-heuristic, Choong et al. [102]
automatically designed an Iterated Local Search based hyper-heuristic by using Q-learning to
select a proper pair of selection-move acceptance during each episode of the optimization process.
An action represents a low-level heuristic with a selection-move acceptance pair. The proposed
approach used six selection methods and five move acceptance methods, resulting in 30 actions.
The learning procedure operates by choosing actions based on their Q-values. An action that
maximizes the Q-value during an episode is chosen and invoked for a fraction of the total
optimization time. Mosadegh et al. [103] presented an approach based on simulated annealing
to solve the mixed-model sequencing problem (MMSP) with stochastic processing times. The
approach incorporates a Q-learning algorithm to select appropriate heuristics through its search
process. The selection mechanism is based on the ϵ-greedy method. Duflo et al. [104] proposed
a Q-learning-based hyper-heuristic to automate the design of UAV swarming behaviors in order
to optimize the coverage of a connected swarm, the so-called Coverage of a Connected-UAV
Swarm (CCUS). A CCSU heuristic corresponds to a move of each UAV to its next destination.
The UAVs move to their destinations to maximize their fitness functions while the Q-learning
aims to find the best possible definition for the fitness function.

2.7 Conclusion

This chapter first reviewed typical methods for air traffic planning problems. These methods
fall into two groups: traffic deconfliction methods and traffic decongestion methods. The traffic
deconfliction methods aim to resolve conflicts between trajectories instead of satisfying the ca-
pacity constraints. The traffic decongestion methods attempt to regulate air traffic demand in
accordance with available capacity while ensuring safety and optimal traffic flow. The methods
in the first category are widely investigated in a TBO environment, while the methods in the
second category have been less explored. Several traffic decongestion methods in which the
capacity relies on the number of aircraft have been explored in the literature. However, little
research has been conducted on methods for defining capacity based on other factors affect-
ing controller workload. Afterward, the studies of airspace congestion metrics that quantify the
level of traffic complexity affecting controller workload were presented. The flow-based approach

41

identifies characteristics of traffic flows circulating in a transportation network with beacons,
airports or airways. However, it is unsuitable for applications for which the congestion must be
measured at the trajectory level. The geometric-based approaches can be used to quantify the
level of trajectory-based congestion. Although they can identify different traffic situations, com-
bining two or more geometrical metrics to quantify congestion in more complex traffic situations
is necessary. The metric based on linear dynamical systems is an efficient metric to address the
preceding issues. With aircraft position and speed vectors, this metric leverages the properties
of the associated dynamical system to quantify the level of congestion in many complex traf-
fic situations. Next, the deterministic and stochastic optimization methods were introduced.
Some deterministic methods are applied to solve global optimization problems. However, as the
complexity of the problem increases, such methods become less effective when compared to the
stochastic optimization methods. In order to deal with the large-scale optimization problems
in which the simulation-based evaluation is commonly applied, the single solution-based meth-
ods are more appropriate than the population-based in terms of memory usage. According to
existing research in the literature, the simulated annealing algorithm is one of the commonly
used single solution-based methods applied to large-scale problems. This chapter also briefly
outlined machine learning techniques. The reinforcement learning algorithms are suitable to
address optimization problems when data a priori from the external environment is not es-
sential. Moreover, it is important to formulate such a problem as an MDP problem to solve
it using RL. However, several real-life problems rarely provide complete information to model
associated MDP systems. Q-learning is a model-free learning algorithm widely used to solve
the MDP problems in which knowledge in relation to state transitions is incomplete. Finally,
this chapter reviewed hyper-heuristic approaches to solving NP-hard optimization problems.

This thesis proposes a novel trajectory-based congestion evaluation method based on linear
dynamical systems to quantify the level of airspace congestion over a full-time horizon. We
develop an approximative simulated annealing algorithm to solve the strategic 4D trajectory
decongestion problem. The associated decision variables correspond to one or two of the fol-
lowing trajectory control options: departure time adjustment, rerouting, and flight level alloca-
tion. Considering temporal uncertainty and using three trajectory control options, the extended
model cause the solution space to become larger than the preceding problem. To overcome this
impact, we propose a new hyper-heuristic framework representing a new high-level strategy and
a set of low-level heuristics. The high-level strategy represents e-greedy selection as the heuristic
selection and a metropolis-based criterion as the move acceptance. The low-level heuristics are
developed based on intensification and diversification techniques. The state representation of
the environment relies on a diversification-intensification cycle. The learning process employs
a Q-learning agent such that the proposed hyper-heuristic approach can learn how to improve
the decision at a given time step. The learning behavior is controlled by a learning rate and a
discount factor. The learning rate controls how fast the Q-values are changed, and the discount
factor regulates how the agent cares about long-term cumulative rewards. Referring to the
literature reviewed in this chapter, this research is motivated to use the Q-learning algorithm
as it has shown significant success in keeping track of good-performing low-level heuristics in
particular states. Finally, the robustness against the departure time perturbation between the
proposed traffic decongestion method and the traffic deconfliction method is investigated in
this thesis. Further, an improved simulated annealing algorithm is proposed to determine the
solutions from these methods.

42

The next chapter will present a mathematical framework of the proposed strategic traffic
deconfliction problem in a TBO environment. In this framework, the congestion mitigation
methods, the trajectory-based congestion model, and the proposed optimization formulation
will be given in detail. Lastly, the extended congestion model and optimization formulation of
the robust strategic traffic deconfliction problem, where time uncertainties are considered, will
also be presented.

43

Chapter 3

Mathematical model

This chapter presents a mathematical framework to deal with the strategic traffic decongestion
planning problem in which the main objective is to alleviate congestion between trajectories
in the TBO environment. Section 3.1 first presents the input data and model assumptions of
this problem. Second, the methods to structure aircraft trajectories are detailed in Section 3.2.
Third, Section 3.3 presents the trajectory-based congestion model to compute congestion be-
tween trajectories. Then, in Section 3.4, the problem is formulated as a mathematical opti-
mization problem in which decision variables, constraints, and the objective function are given
in detail. Next, an efficient approach for computing trajectory-based congestion between tra-
jectories is provided in Section 3.5. Lastly, an extension to the strategic decongestion planning
problem by considering uncertainty in the time dimension is explained in Section 3.6.

3.1 Input data and model assumptions

This section presents input data and model assumptions to address the strategic traffic decon-
gestion problem in the TBO environment. The input data is based on a real set of initial flight
plans in which data attributes are similar to those regulated by NMOC. It represents a set of N

initial 4D trajectories obtained from a fast-time simulation which relies on the Base of Aircraft
Data (BADA) model. Assume that a set of flights (e.g. aircraft) F is given. Each initial 4D
trajectory of flight i is represented by a sequential set of 4D plots, Ki, discretized with a given
constant sampling time ts. The major attributes of each 4D plot at each sequence k ∈ Ki are
given as follows:

• the time stamp, ti,k,

• the 2D position vector, (xi,k, yi,k) in NM,

• the true airspeed vector, (vxi,k, vyi,k) in knots,

• the rate of climb/descent (vzi,k) in ft per minute.

The given 4D trajectory consists of three parts: the first Terminal Maneuvering Area (TMA)
part, where the aircraft flies from the departure airport to its initial climb, the en-route part
extending from the completion of its initial climb through its cruising altitude to its initial
approach, and the second TMA part, where the aircraft descends from its initial approach to
the arrival airport. The horizontal and vertical profiles of a given initial trajectory are illustrated
in Figs. 3.1 and 3.2, respectively.

44

y

x

TMA

en-route
TMA

Departure airport

Arrival airport

Figure 3.1: Initial horizontal profile.

dep
art

ure
clim

b
cruise descent

arrival

TMA en-route TMA

z

t

TOC TOD

Figure 3.2: Initial vertical profile.

Based on the preceding characteristics of input data, the following assumptions are used in
the proposed model:

• The airspace is considered as an Euclidean space. Latitudes and longitudes in the WGS-84
coordinate system are projected in a 2D space by a Lambert azimuth projection;

• The nominal trajectory refers to the direct route, the shortest possible path from the
origin to the destination airports;

• Each trajectory is performed with nearly constant airspeed and a constant flight level
during the cruising operation. These parameters are pre-determined so that the flight
performance is optimal;

• The airspace is considered as an Reduced Vertical Separation Minima (RVSM) airspace
where the en-route aircraft vertical seperation is 1,000 ft.

45

3.2 Congestion mitigation methods

To reduce congestion between trajectories, initial aircraft trajectories can be structured in both
spatial and time dimensions within the solution space. The proposed decongestion strategy in
this thesis relies on the following control actions:

• departure time adjustment;

• route deviation;

• flight level allocation.

Adjusting flight time at the departure airport is a simple method to reduce airspace conges-
tion in such a way that some traffic situations are less complex to manage. However, controlling
the departure time of aircraft before flying into a high-density area may require a large amount
of departure time shift, and it may generate new complex traffic situations at other times. To
overcome these issues, airborne congestion can also be reduced by using alternative horizontal
routes so that the aircraft can deviate from congested zones. However, in some situations, an
aircraft may be assigned to fly at a high-density flight level where route deviation may not be
a good choice. Flight level allocation is another option that allows the aircraft to fly at its
adjacent flight levels. Accordingly, this thesis proposes the following three models to structure
aircraft trajectories in the TBO environment.

3.2.1 Departure time adjustment

The departure time of each flight can be advanced or delayed with respect to its initial departure
time. Let τi ∈ Z be the departure time shift of flight i ∈ F . The positive time shift (τi > 0)
indicates a delay in time, while the negative time shift (τi < 0) indicates an advance in time.
Therefore, the rescheduled departure time of flight i is given by:

t′
i = ti + τi, (3.1)

where ti is the original departure time indicated in the initial flight plan corresponding to flight
i. However, a significant change in the departure time shift may affect the attractiveness of a
flight. Furthermore, from an operational perspective, a positive departure time shift is more
likely used than a negative one.

3.2.2 Alternative route

This thesis proposes a route generation method based on the work in [10]. The method focuses
on modifying the given aircraft’s initial trajectory within the cruise segment, where the flight
path is extended from a given TOC point to a given TOD point. An alternative route is created
by connecting the TOC point through successive virtual waypoints to the TOD point. To
control the cost of route extension, the initial cruise segment is used as the reference to define
the virtual waypoints.

46

y (NM)

x (NM)

y ′ x ′

TOC

TOD

Departure airport

Arrival airport

initial trajectory
alternative trajectory
virtual waypoint

Figure 3.3: Alternative horizontal profile with the virtual waypoints.

The route generation problem is generalized into a model in such a way that it fits all initial
trajectories in the same manner. To simplify such a model, the virtual waypoints are represented
in the x′y′ coordinate system, whose origin refers to the TOC point. As depicted in Fig. 3.3, it
consists of the longitudinal axis (x′) tangent to the initial cruise segment and the lateral axis
(y′) perpendicular to the longitudinal axis. In addition, the x′y′ coordinate system is scaled as
a function of the normalized cruise length. As illustrated in Fig. 3.4, a set of virtual waypoints
controlling the trajectory of flight i is given by:

wi = {wm
i : ∀m = 1, 2, . . . , M} (3.2)

where wm
i = (wm

ix′ , wm
iy′) is the normalized 2D coordinate of the mth virtual waypoint, and M

is the number of virtual waypoints (a user-defined parameter) allowed for the route generation.

y ′

x ′

0 1

w1
i w2

i

initial trajectory
alternative trajectory
virtual waypoint

Figure 3.4: Alternative trajectory along the cruise segment in the normalized coordinate system.

However, the route generation process requires a representation of waypoints in a global
coordinate system on which the simulation environment depends. Let wloc = (w′

x, w′
y) be

the virtual waypoint’s location in the x′y′ coordinate system, then the coordinate system is
translated by a given TOC point (tx, ty), followed by a counter-clockwise rotation by degree θ,
and followed by the scaling factor (ri, ri), where ri is the length of the initial cruise segment.
Then, the location of the virtual waypoint, wglob = (wx, wy), in the global coordinate system

47

can be determined by the following 2D transformation matrix:

Wglob =

wx

wy

0

 =

1 0 ∆x

0 1 ∆y

0 0 1

cos θ − sin θ 0

sin θ cos θ 0
0 0 1

ri 0 0

0 ri 0
0 0 1

wix′

wiy′

0

 (3.3)

We note that such an alternative trajectory is likely to yield an increase in flight duration
compared with the initial trajectory. To compensate for this increased flight duration, the
altitude profile will be updated to avoid a premature descent. Let Text be the increased flight
duration of a given flight. In the case of a regional flight, where flight phases are all performed
in the same (current) area, the altitude profile is updated by extending the cruise phase at the
top of descent for a duration of Text as illustrated in Fig. 3.5.

dep
art

ure
clim

b
cruise

descent
arrival

Text

descent
arrival

TMA
en route TMA

en-route TMA

initial trajectory alternative trajectory

z

t

TOC TOD

Figure 3.5: Updated altitude profile due to the impact of the horizontal route deviation.

However, for a flight whose origin or destination airports are outside of the current airspace,
the top of descent of such flight may not be in the considered airspace. Therefore, we update
the altitude profile by extending the flight at maximum altitude (in the current airspace) for
a duration Text. Thus, the vertical profile is updated according to six possible cases according
to whether the origin/destination airports are in the current airspace or not and whether the
initial trajectory has a cruise (constant-level) phase or not, as illustrated in Fig. 3.6.

3.2.3 Flight level allocation

The flight level allocation consists of assigning each aircraft a flight level for its cruising phase in
such a way that the difference between the allocated flight level and the initial flight level (e.g.
the requested flight level) is sufficiently small. Therefore, the model introduces the assignment
of flight level shift li ∈ Z to each flight i so that the allocated flight level is given by:

f ′
i = fi + li · Ls (3.4)

where fi is the initial flight level of each flight i ∈ F , and Ls denotes the flight level shift
interval. This interval is a user-defined parameter for all flights to indicate the minimum height
allowed between adjacent flight levels. Figure 3.7 illustrates a trajectory with two alternative

48

z

t

Text

z

t

Text

1st case 2nd case
z

t

Text

z

t

Text

3rd case 4th case
z

t

Text

z

t

Text

5th case 6th case

Figure 3.6: Six possible vertical profile extensions to take into account the extra distance of the lateral
route.

flight levels.

z

t

fi + li · Ls

fi
fi − li · Ls

Initial trajectory
Alternative trajectory

Figure 3.7: The original vertical profile with the requested flight level fi and two optional vertical profiles
with allocated flight levels fi + li · Ls and fi − li · Ls, respectively.

3.3 Trajectory-based congestion model

This section presents the proposed trajectory-based congestion model to compute congestion
between trajectories in the TBO environment. The model consists of two main functions:
neighborhood filtering and congestion computation.

Given that a set of trajectories is discretized in time into a 4D airspace, each trajectory γi

represents a set of observations in time series. Let Zi,k be the observation of trajectory γi, at

49

time ti,k, represented by the following matrix form:

Zi,k =
[
xi,k vi,k

]
(3.5)

where the first column is the position vector:

xi,k =
[
xi,k yi,k zi,k

]⊤
(3.6)

and the second column is the speed vector:

vi,k =
[
vxi,k vyi,k vzi,k

]⊤
(3.7)

These two vectors are the key components to perform the neighborhood filtering and the con-
gestion computation functions.

Neighborhood filtering The filtering process aims to search the aircraft close to the refer-
ence aircraft at a given time. Such aircraft will be taken into account in computing the local
congestion. The filter is divided into two sub-filters: the lateral filter and the vertical filter.

The lateral filter searches for neighboring aircraft in a horizontal area in relation to the
mental picture that the air traffic controller uses to manage the situation awareness. In opera-
tional terms, such an area should be larger than the standard lateral separation minima so that
the controller can have a safety margin to perform his/her mental tasks before making a final
decision. Therefore, the set of neighboring aircraft identified by the lateral filter is given by:

Si,k =
{
Zj,k′ : VS(i, k, j, k′) = 1, tj,k′ = ti,k, k′ ∈ Kj , j ̸= i

}
, (3.8)

where VS(i, k, j, k′) indicates if aircraft j is in the lateral neighborhood of aircraft i at time
ti,k. Figure 3.8 displays the traffic situation of aircraft i and its neighbors presented within the
lateral neighborhood airspace.

Zi ,k

Zj,k′

VS(i , k, j , k ′) = 1

Figure 3.8: The traffic situation representing the reference aircraft (colored in green) and its neighbors
within a horizontal area of Dh ×Dh NM2 at a given time.

The vertical filter identifies neighboring aircraft flying within the vertical separation from the
reference aircraft. From the operational point of view, the horizontal speed and climbing/descent
rate are the factors that strongly influence the level of traffic complexity in a given traffic

50

situation. Therefore, it is important to determine the set of neighboring aircraft by considering
such factors.

Two possible scenarios can occur with respect to the reference aircraft. The first scenario
is when the reference aircraft is climbing or descending. According to this scenario, all other
aircraft within the vertical separation are considered neighbors. In the second scenario, where
the reference aircraft is flying at cruising altitude, the vertical filter considers neighbors only air-
craft with the same flight level or aircraft climbing or descending; cruising aircraft with different
flight levels will be ignored as they do not interact with the reference aircraft. Accordingly, the
situations allowed for the neighboring aircraft are detailed in Table 3.1 and visually presented
in Fig. 3.9. Therefore, the set of aircraft identified by the vertical filter is given by:

Ai,k =
{
Zj,k′ : VA(i, k, j, k′) = 1, tj,k′ = ti,k, k′ ∈ Kj , j ̸= i

}
, (3.9)

where VA(i, k, j, k′) indicates that aircraft j is in the vertical neighborhood of aircraft i. The
different cases are summarized in Table 3.1.

Table 3.1: Rules for identifying neighboring aircraft in the vertical dimension.

Situation Description

A Aircraft is climbing to the reference aircraft altitude.
B Aircraft is descending to the reference aircraft altitude.
C Aircraft is about to climb from the reference aircraft altitude.
D Aircraft is about to descend from the reference aircraft altitude.
E Aircraft is at reference aircraft altitude.
F Aircraft is climbing and will fly from a lower to a higher altitude than the reference

aircraft.
G Aircraft is descending and will fly from a higher to a lower altitude than the reference

aircraft altitude.

0
Lateral distance (NM)

fi − 2Nv

fi − Nv

fi

fi + Nv

fi + 2Nv

Dv

VA(·) = 1

C

B

A

D E

G

F

Figure 3.9: Possible situations for which neighboring aircraft (colored in white) can interact with the
reference aircraft (colored in blue), at a given time, within the altitude range of Dv.

Congestion computation Congestion between trajectories can be determined by aggregat-
ing all local congestions along N trajectories. In this thesis, the term local congestion refers to
a condition when two or more aircraft form a traffic situation that increases control workload
to maintain the safety and efficiency of traffic in an area considered at a given time.

51

The proposed congestion model required a metric to quantify the local congestion from which
the total congestion in the airspace is accumulated. Therefore, this thesis adopts the congestion
metric based on linear dynamical systems [105] to evaluate the congestion in the airspace over
a full-time horizon. Unlike straightforwardly aircraft counting, the proposed congestion metric
uses aircraft positions and speed vectors to measure the complexity associated with a given
traffic situation. As a result, the metric can quantify the disorder in various traffic situations
in the context of ATM operations.

To compute the local congestion of trajectory γi at time ti,k, the possible set of observations
consisting of the reference aircraft and neighboring aircraft obtained from Eqs. (3.8) and (3.9)
is given by:

Ni,k = {Zi,k} ∪ (Si,k ∩ Ai,k) (3.10)

Let A∗
i,k and b∗

i,k are the properties of an accurate dynamical model best fitted to the set of
observations Ni,k. We can determine such properties by solving the following minimization
problem:

A∗
i,k, b∗

i,k = argmin
A,b

∑
n∈Ni,k

∥vn − (Axn + b)∥2 (3.11)

The calculation of the matrix A∗
i,k and vector b∗

i,k is detailed in Appendix A.

Extraction of the eigenvalues from Ai,k is required for determining the local congestion Ψi,k.
As detailed in Section 2.2.3, the eigenvalues are capable of identifying various traffic situations.
Accordingly, in the proposed congestion model, we leverage them to quantify the congestion
level of a given traffic situation.

The intensity of the convergence tendency in the traffic situation is the most critical factor
in defining the congestion metric. When the traffic is well organized, the metric becomes
null. When the resulting behaviour represents a divergent motion, such a motion would be
considered an organized pattern since, from the operational perspective, the situation does not
affect the controller’s workload. On the other hand, a non-null metric is generated for convergent
situations. Such a non-null metric indicates a risk of potential conflicts to which the air traffic
controller would pay more attention.

According to the preceding definition, the congestion metric based on linear dynamical
systems is therefore influenced by the negative real parts of eigenvalues. Let λ

(1)
i,k , λ

(2)
i,k , and λ

(3)
i,k

be the set of complex eigenvalues of A∗
i,k. The local congestion associated with trajectory γi at

time ti,k is expressed as follows:

Ψi,k =
p=3∑
p=1

Re(λ(p)
i,k)<0

∣∣∣Re(λ(p)
i,k)
∣∣∣ (3.12)

Furthermore, the congestion associated with the trajectory γi can be calculated as follows:

Ψi =
∑

k∈Ki

Ψi,k =
∑

k∈Ki

p=3∑
p=1

Re(λ(p)
i,k)<0

∣∣∣Re(λ(p)
i,k)
∣∣∣ (3.13)

52

where Ki denotes the set of observations (e.g., sample 4D points) along the trajectory γi.

3.4 Optimization problem formulation

This section demonstrates a trajectory-based optimization model to address the strategic traffic
decongestion problem. First, such a model’s input data and associated mathematical notations
are given. Next, the decision variables and corresponding constraints are presented. Finally,
the objective function is defined with respect to the proposed congestion model.

3.4.1 Given data

The problem instance is given by the following data:

• N : the number of discretized 4D trajectories;

• ts: the sampling time of 4D trajectories;

• tmin: the start time of the planning horizon;

• tmax: the end time of the planning horizon;

• fmin: the lowest flight level in the airspace;

• fmax: the highest flight level in the airspace;

The following notations are given for the problem formulation:

• F : the set of flights

• Nh: the standard lateral separation norm;

• Nv: the standard vertical separation norm;

• Dh: the side length of lateral neighborhood airspace for the lateral filter;

• Dv: the altitude range for the vertical filter;

• γi: the discretized trajectory of flight i;

• τ+
i : the maximum allowed delay departure time shift for flight i;

• τ−
i : the maximum allowed advance departure time shift for flight i;

• l+i : the maximum allowed positive flight level shift for flight i;

• l−i : the maximum allowed negative flight level shift for flight i;

• ri: the length of the initial cruise segment of flight i;

• ξi: the maximum allowed route length extension for flight i.

53

3.4.2 Decision variables

In order to reduce the congestion between trajectories, we considers several control options in
the congestion mitigation methods (see Section 3.2). For each flight i, the decision variables are
defined as follows:

• τi: the departure time shift, discretized into time slots, τi ∈ Ti

• wi: the set of waypoints, wi ∈ Wm
i

• li: the set of flight level shifts, li ∈ Li

where Ti is the set of possible time shifts, Wm
i is the set of possible waypoint locations, and Li

is the set of possible flight level shifts. These sets are individually allocated for each flight i,
and their definition will be detailed in Section 3.4.3.

To summarize, the decision vector for all flights is given by:

u = (τ , w, l), (3.14)

where τ is the depature time shift vector, w is the waypoint vector, and l is the flight level shift
vector.

3.4.3 Constraints

The constraints are defined as follows:

Maximum allowed departure time shift The departure time shift, τi for each flight i is
restricted to a maximum allowed advance departure time shift, τ−

i ∈ N and a maximum allowed
delay departure time shift, τ+

i ∈ N. For each flight i, the set of possible departure time shifts
can be expressed as follows:

Ti =
{

nTs : −τ−
i

Ts
≤ n ≤ τ+

i

Ts
, τ−

i , τ+
i ≥ Ts, n ∈ Z

}
, (3.15)

where Ts denotes the fixed duration of each time slot. It is the configurable parameter whose
smallest value must not be less than the sampling time (ts) given in the input data. However,
delaying departure time is more likely preferred in order to keep the attractiveness of airlines.
As a consequence, the set of possible departure time shifts is usually asymmetric such that
τ+

i ≥ τ−
i .

Maximum allowed flight level shift In this model, the flight level shift for each flight i is
limited by the maximum allowed positive and negative flight level shifts, denoted respectively
l+i ∈ N and l−i ∈ N. Therefore, the range of possible flight level shifts for each flight i is given
by:

Li =
{

n : −l−i ≤ n ≤ l+i , n ∈ Z
}

, (3.16)

54

However, allowed flight level shifts may not be available for some flights in situations where
aircraft fly at cruising altitudes that are higher or lower than the considered boundary.

Maximum route length extension As a result of the longer flight path, the alternative
horizontal route consumes more fuel and extends the flight time. Therefore, the extra distance
should be limited in order to be acceptable by the airlines. To create such a condition, for
each flight i, the model defines the maximum allowed route length extension coefficient (ξi) of
flight i as a constraint to generate its alternative horizontal trajectory. The new distance of the
alternative trajectory must satisfy the following condition:

ri(wi) ≤ (1 + ξi) · ri (3.17)

where ri(wi) is the new length of the alternative trajectory determined by the set of waypoints
wi.

Allowed waypoint location The placement of virtual waypoints is restricted for the follow-
ing reasons: preventing sharp turns, making the solution space scalable, and limiting the route
length extension. Therefore, the 2D location wm

i of each waypoint m for flight i must be strictly
located in the user-defined boundary:

Wm
i =Wm

ix′ ×Wm
iy′ , (3.18)

where Wm
ix′ and Wm

iy′ are the ranges of possible locations of each waypoint on the longitudinal
axis and the lateral axis, respectively. Thus, the longitudinal coordinate wm

ix′ of each waypoint
m lies in the following boundary:

Wm
ix′ =

{
x :
(

m

1 + M
− bi

)
≤ x ≤

(
m + 1
1 + M

+ bi

)
, m, M ∈ N+,

}
, (3.19)

where bi is a configurable parameter that defines the length of the boundary on the longitudinal
axis for each flight i.

To prevent sharp turns and separate the search space, overlapping between the boundaries
of adjacent waypoints must be avoided with the following condition:

0 ≤ bi <
1

2(M + 1)
, (3.20)

To control the route length extension, the model uses the normalized lateral component of
the virtual waypoint m for each flight i denoted by wm

iy′ . This component is restricted to lie in
the following boundary of the lateral axis:

Wm
iy′ = {y : −ai ≤ y ≤ ai, 0 ≤ ai ≤ 1} , (3.21)

where ai is a configurable parameter that defines the length of the boundary on the lateral axis
for each flight i.

The boundary Wm
i can be modeled as discrete or continuous. However, the continuous

55

model was compared with the discrete model in [10]. The experimental results show that
the metaheuristic optimization approach using the continuous boundary outperformed the one
using the discrete boundary in terms of time to reach the best solution. Accordingly, the set of
possible locations of each virtual waypoint in this work will rely on a continuous boundary that
could be represented by a rectangular area. Figure 3.10 illustrates an example of continuous
boundaries for M = 2 virtual points.

bi

ai

y ′

x ′

0 1

w1
i w2

i

W1
i W2

i

initial trajectory
alternative trajectory
virtual waypoint

Figure 3.10: Continuous 2D boundaries representing possible locations of M = 2 waypoints for each
flight i.

3.4.4 Objective function

The main objective of the proposed strategic decongestion planning problem is to reduce the
total congestion between trajectories in a TBO environment. For given values of the decision
variables u associated with all trajectories in the airspace, the total congestion is computed
by aggregating a sum of each congestion level associated with each trajectory. The general
expression of the total congestion is given by:

Ψ(u) =
∑
i∈F

Ψi (3.22)

Finally, by substituting Ψi in Eq. (3.13), the total congestion between trajectories based on the
proposed trajectory-based congestion model is then given by:

Ψ(u) =
∑
i∈F

Ψi =
∑
i∈F

∑
k∈Ki

p=3∑
p=1

Re(λ(p)
i,k)<0

∣∣∣Re(λ(p)
i,k)
∣∣∣ (3.23)

In this thesis, the proposed strategic 4D trajectory decongestion problem aims to mitigate
congestion between trajectories over a full-time horizon for the whole airspace. This problem

56

can be expressed in the following mathematical form:

min
u

Ψ(u)

subject to τi ∈ Ti, ∀i ∈ F
wm

i ∈ Wm
i , ∀m ∈M,∀i ∈ F

li ∈ Li, ∀i ∈ F

(3.24)

where Ψ(u) is defined by Eq. (3.23), and Ti, Wm
i , and Li are given by Eqs. (3.15), (3.18), and

(3.16), respectively.

3.5 Objective function computation method

This section first presents an efficient trajectory processing method in order to manipulate the
4D trajectories and identify the neighboring aircraft in the traffic situation at a given time.
Then, an approach to computing congestion between trajectories is also detailed.

3.5.1 Grid-based trajectory processing

The single solution-based optimization algorithm generates a neighborhood solution at each
iteration of the optimization process to find a better solution. Consequently, the algorithm has
to compute the objective function of such a neighborhood solution to compare its performance
with the one of the current solution. This work considers an alternative trajectory of a given
flight to be a neighborhood solution. At least, the congestion value of such a new trajectory
associated with this flight must be computed. To avoid a massive time-consuming from several
pair-wise comparisons, this thesis proposes a grid-based trajectory processing for which the data
structure is based on the hash table. As presented in [10, 22, 23], this trajectory processing
technique has been applied to large-scale conflict detection.

Figure 3.11: 4D (space-time) grid.

As shown in Fig. 3.11, a grid-based solution begins by discretizing the problem into a 4D
grid (3D space and time) whose space-based dimensions should be sufficiently large to cover
the considered airspace. The grid’s time-based dimension must also cover a given time horizon,
including the maximum allowed departure time shift associated with the earliest and latest
flights.

The 4D grid is subdivided into cells. The size of each cell in the spatial dimension is defined
by the minimum separation requirements, Nh and Nv. The cell size in the time domain relies

57

on the sampling time ts in the set of trajectories. All trajectories are stored in the 4D grid,
whereby each 4D plot (e.g., observation) is inserted into the corresponding cell. Each cell is
identified by a set of non-negative integers, (∆x, ∆y, ∆z, ∆t), which corresponds to a set of cell
indexes in x, y, z and t dimensions. For each 4D plot with index k along the trajectory i, its 3D
position (xi,k, yi,k, zi,k) and timestamp, ti,k allow for identifying the corresponding cell where it
is located. Figure 3.12 shows the 2D projection of the 4D grid with three discretized trajectories.

γ1

γ2

γ3

Nh

Nh

Figure 3.12: Representation of aircraft trajectories in the 4D grid (here in a 2D projection for illustration).

An important issue in the single solution-based optimization method is that the consistency
of trajectory data stored in the 4D grid should be maintained throughout the process. It must
ensure that only one trajectory associated with the flight is stored in the 4D grid. To deal with
such an issue, trajectory manipulation can be performed using PUT and REMOVE operations.
Figure 3.13 shows an example of modifying a trajectory in the 4D grid. After committing the
new decision variables associated with flight i, the REMOVE operation is first used to extract all
4D points associated with the current trajectory of flight i from the 4D grid. Then, the PUT
operation is called to insert in the airspace. The new trajectory corresponds to the new decision
variables associated with flight i.

This work uses the hash table to build an efficient 4D grid that optimizes the use of memory
required for trajectory manipulation and congestion computation. The hash table is a data
structure that maps keys to values or entries. It only stores the data element once the data is
created. As a consequence, empty cells in the array do not require memory. In this work, the
hash table enables the algorithm to insert, retrieve, and delete the 4D plot in the corresponding
cell with the time complexity of O(n) = 1.

3.5.2 Congestion computation method

Upon insertion of a new trajectory into the 4D grid, the local congestion computation at each
trajectory plot is activated. The first step is to search for the neighboring aircraft within the
vicinity of the reference plot and then validate such neighbors using the neighborhood filtering

58

γ1 γ′
1

REMOVE PUT

Figure 3.13: Trajectory manipulation via PUT and REMOVE operations in the 4D grid. Trajectory γ1 (in
red) is extracted from the 4D grid by the REMOVE operation and the modified trajectory (in green) is
reinserted into the 4D grid by the PUT operation.

method. Consider that the neighborhood filter is parametrized for checking the neighborhood
of the reference plot, Zi,k, for the trajectory i at time ti,k, within the lateral area of Dh ×Dh

in NM2 and a vertical range of Dv in ft, where Dh = 3.Nh and Dv = 3.Nv. The observations
(e.g., other aircraft) located within or adjacent to the cell where the reference plot is located,
in the x, y, and z dimensions, are then declared candidates for neighborhood filtering. Figure
3.14 presents the neighborhood filtering operation in the x and y dimensions. Next, such
candidates are validated to be the neighbors of plot Zi,k based on Eqs. (3.8) and (3.9). Finally,
the linear dynamical system can be adjusted with such neighbors, and the local congestion can
be computed using Eq. (3.12). The process is repeated until the final plot of the reference
trajectory is reached. The algorithm to compute the total congestion between N trajectories is
detailed in Algorithm 3.3.

γ1

γ2

γ3

Figure 3.14: Neighborhood filtering operation for the traffic situation at a given time in the 4D grid:
the green square plot is the reference plot along the reference trajectory (the green line), and the blue
triangle plots (lying on other trajectories) presented in the red area with a side length of Dh = 3.Nh are
declared as candidates for the neighborhood filtering.

3.6 Extension with time uncertainty

This section presents an extension of the preceding strategic 4D trajectory planning problem,
whereby the temporal uncertainty is taken into account. First, the uncertainty model relevant
to the aircraft’s arrival time is presented. Next, the development of the objective function

59

Algorithm 3.3 Congestion evaluation algorithm.
Require: Decision variables u, the maximum shift in x and y directions;

1: Initialize Ψ(u)← 0;
2: for i = 1 to N do
3: Initialize Ψi,k ← 0;
4: for k = 1 to Ki do
5: N ← ∅;
6: Compute the cell (∆x, ∆y, ∆z, ∆t) corresponding to Zi,k;
7: for δx = ∆x − 1 to ∆x + 1 do
8: for δy = ∆y − 1 to ∆y + 1 do
9: for δz = ∆z − 1 to ∆z + 1 do

10: C ← {Zj,k′ : Zj,k′ ∈ (δx, δy, δz, ∆t), j ̸= i};
11: for Zj,k′ ∈ C do
12: if VA(i, k, j, k′) = 1 then
13: N ← N ∪ {Zj,k′};
14: Ni,k ← N ∪ {Zi,k};
15: Compute A∗

i,k from Ni,k by using Eq. (3.11);
16: Compute Ψi,k from A∗

i,k by using Eq. (3.12);
17: Ψi ← Ψi + Ψi,k

18: Ψ← Ψ + Ψi

19: return Ψ

by considering this uncertainty is described. Finally, the congestion computation method is
detailed.

3.6.1 Uncertainty of aircraft arrival time

Considering uncertainties in future aircraft positions in the airspace is a feasible solution to
enhance the predictability in congestion evaluation between trajectories in such a way that
the optimization problem is developed to provide a robust trajectory plan to alleviate such
congestion in the airspace. Passenger delay at the departure airport, human intervention,
adverse weather conditions, and instability in the network can generate such uncertainties in a
TBO environment. The temporal uncertainty may cause some aircraft to arrive early or late at
a given position associated with their initial flight plans. Therefore, the maximum time error,
tϵ is applied to each aircraft, whereby the arrival time of each aircraft lies in the time interval.

3.6.2 Robust congestion model

When the temporal uncertainty is considered, the neighborhood search area defined by the
neighborhood filter is spanned in the time dimension. As depicted in Fig. 3.15, the neighborhood
filter will consider all possible locations of each aircraft. In this figure, five possible observations
per aircraft are considered neighbors in the lateral neighborhood airspace.

Therefore, the first set of possible neighboring aircraft determined by the robust lateral filter
is given by:

SU
i,k =

{
Zj,k′ : VS(i, k, j, k′) = 1, ti,k, tj,k′ ∈

[
ti,k −

tϵ

2
, ti,k + tϵ

2

]
, j ∈ F , k′ ∈ Kj

}
, (3.25)

60

Zi ,k

Figure 3.15: Representation of the reference and neighboring aircraft under uncertainties in the lateral
neighborhood airspace.

The second set of possible neighboring aircraft determined by the robust vertical filter is also
given by:

AU
i,k =

{
Zj,k′ : VA(i, k, j, k′) = 1, ti,k, tj,k′ ∈

[
ti,k −

tϵ

2
, ti,k + tϵ

2

]
, j ∈ F , k′ ∈ Kj

}
, (3.26)

Accordingly, the possible set of observations consisting of the reference aircraft and neighboring
aircraft obtained from Eqs. (3.25) and (3.26) is given by:

NU
i,k =

{
Zi,k : k ∈

[
k − tϵ

2.Ts
, k + tϵ

2.Ts

]}
∪ (SU

i,k ∩ AU
i,k), (3.27)

Let AU∗
i,k and bU∗

i,k are the properties of an accurate dynamical model best fitted to the set of
observations NU

i,k. We can determine such properties by solving the following minimization
problem:

AU∗
i,k , bU∗

i,k = argmin
A,b

∑
n∈N U

i,k

∥vn − (Axn + b)∥2 (3.28)

Let λ
U(1)
i,k , λ

U(2)
i,k , and λ

U(3)
i,k be the set of complex eigenvalues of AU∗

i,k . The robust local congestion
associated with trajectory γi at time ti,k is expressed as follows:

ΨU
i,k =

p=3∑
p=1

Re(λU(p)
i,k)<0

∣∣∣Re(λU(p)
i,k)

∣∣∣ (3.29)

The robust congestion associated with the trajectory i is, therefore, defined as:

ΨU
i =

∑
k∈Ki

ΨU
i,k (3.30)

where Ki denotes the set of observations (e.g., sample 4D points) along the trajectory γi.
Finally, for the set of trajectories controlled by the vector of decision variables u, the total
robust congestion between trajectories is expressed by:

ΨU (u) =
∑
i∈F

ΨU
i =

∑
i∈F

∑
k∈Ki

ΨU
i,k (3.31)

61

To summarize, the strategic planning problem under time uncertainties can be formulated
as a mixed-integer optimization problem:

min
u

ΨU (u)

subject to τi ∈ Ti, ∀i ∈ F
wm

i ∈ Wm
i , ∀m ∈M,∀i ∈ F

li ∈ Li, ∀i ∈ F

(3.32)

where ΨU (u) is defined by Eq. (3.31), and Ti, Wm
i , and Li are given by Eqs. (3.15), (3.18), and

(3.16), respectively.

3.6.3 Congestion computation method

In order to compute the local congestion by considering time uncertainties for aircraft i at time
ti,k, we adjust the neighborhood filter to search for the possible observations present in the
time interval

[
ti,k − tϵ

2 , ti,k + tϵ
2
]
. Therefore, the following observations are declared neighbors

to establish the associated traffic situation:

1) the possible observations of the reference aircraft corresponding to the time interval[
ti,k − tϵ

2 , ti,k + tϵ
2
]

and;

2) the possible observations along with neighboring trajectories validated by the robust neigh-
borhood filters (3.25) and (3.26) based on all reference observations in 1).

The algorithm used to compute the total congestion between N trajectories taking into account
time uncertainties is given in Algorithm 3.4.

3.7 Conclusion

This chapter proposed a mathematical framework to address the strategic traffic decongestion
problem in the TBO environment. First, the following congestion mitigation methods were
presented: departure time adjustment, route deviation, and flight level allocation. Second, this
chapter presents the trajectory-based congestion model that generalizes the neighborhood filter-
ing and congestion computation methods. Then, the problem was formulated as a mixed-integer
optimization problem in which the decision variables and corresponding constraints rely on the
proposed congestion mitigation methods. The proposed objective function is developed from
the congestion metric based on linear dynamical systems in which the eigenvalues quantify the
level of congestion. Next, an efficient congestion computation method was presented based on
the proposed congestion model. The proposed method presents a grid-based trajectory pro-
cessing method, an efficient identification of the neighboring aircraft in a given traffic situation,
and an overall procedure to quantify the congestion level between trajectories. Finally, the pro-
posed model was extended by taking into account time uncertainties. The extended problem
formulation and computation method were also given.

62

Algorithm 3.4 Robust congestion evaluation algorithm
Require: Decision variables u

1: Initialize ΨU (u)← 0
2: for i = 1 to N do
3: Initialize ΨU

i,k ← 0
4: for k = 1 to Ki do
5: N ← ∅
6: for n = k − tϵ

2.Ts
to k + tϵ

2.Ts
do

7: N ← N ∪ {Zi,n}
8: Compute the cell (∆x, ∆y, ∆z, ∆t) corresponding to Zi,n
9: for δx = ∆x − 1 to ∆x + 1 do

10: for δy = ∆y − 1 to ∆y + 1 do
11: for δz = ∆z − 1 to ∆z + 1 do
12: C ← {Zj,k′ : Zj,k′ ∈ (δx, δy, δz, ∆t), j ̸= i}
13: for each Zj,k′ ∈ C do
14: if VA(i, n, j, k′) = 1 then
15: N ← N ∪ {Zj,k′}
16: NU

i,k ← N ;
17: Compute AU∗

i,k from NU
i,k by using Eq. (3.28);

18: Compute ΨU
i,k from AU∗

i,k by using Eq. (3.29);
19: ΨU

i ← ΨU
i + ΨU

i,k

20: ΨU ← ΨU + ΨU
i

21: return ΨU

In summary, the proposed problem formulations are NP-hard in relation to the number of
flights. To deal with this difficulty, we will first consider, in Chapter 4, a metaheuristic approach
to solving the proposed strategic traffic decongestion planning problem. Multiple case studies
will also be presented in this chapter with different congestion mitigation methods. Then, a
hyper-heuristic approach will be conducted in Chapter 5, to solve the strategic decongestion
planning problem where time uncertainties are additionally considered.

63

Chapter 4

Metaheuristic approach for strategic
4D trajectory planning

This chapter presents a metaheuristic approach for solving the large-scale optimization problem
for which mathematical formulation was presented in Chapter 3. The simulated annealing-based
resolution method is applied to solve the strategic traffic decongestion problem. The resolution
method in this chapter aims to find an optimal trajectory plan to reduce congestion between
trajectories. The proposed method is validated with daily traffic in the French airspace.

This chapter is structured as follows. Section 4.1 presents an adaptation of the proposed
resolution algorithm to the problem. Description of case study and initial data analysis are
given in Section 4.2. Finally, the simulation results based on the case study with different
operational configurations are presented and discussed in Section 4.3.

4.1 Selective simulated annealing

The optimization framework for solving the strategic traffic decongestion planning relies on the
framework in which the simulation process evaluates the performance (e.g., the objective value)
of decision variables (see Fig. 2.6). When a new decision is made on a flight, it is necessary
to update the new trajectory in the simulation environment and then launch the simulation
to determine a new objective value. As described in Section 2.3.3, a single-solution-based op-
timization method is a suitable solution since it provides a single simulation environment to
evaluate the performance of neighborhood solutions throughout the optimization process. As
a result, sharing the same simulation environment allows for saving the computer memory for
large-scale problems. Therefore, we propose an approach based on simulated annealing, which
is a commonly used single-solution-based optimization method. Furthermore, the performance-
based information linked with the improvement of a decision simulated to a flight creates a
condition for improving the neighborhood selection mechanism of the simulated annealing algo-
rithm. This section illustrates a new neighborhood selection method and configurations adapted
to the strategic traffic decongestion problem.

Given that the state space X⃗ of the optimization problem can represent a set of individual
decisions D in which each decision di is associated with flight i. The performance of each deci-
sion di denoted by yi is the congestion value associated with the trajectory of flight i. Figure 4.1
displays an example of a vector of decisions, which is an input of the optimization process. At
each iteration of the optimization process, only one decision is allowed for modification so that
a neighborhood solution can be generated. Therefore, the overall objective value of a solution

64

d1 d2 d3 di dN

y1 y2 y3 yi yN

Figure 4.1: Vector of decisions with their performance values.

is given by:

y =
N∑

i=1
yi (4.1)

With the preceding vector of decisions, the selective simulated annealing algorithm proceeds
with the following operations.

Neighborhood function The neighborhood function generates a candidate decision by the
following two steps:

1) At each temperature transition of SA, the decisions with larger contributions relative to a
threshold value is more likely to be chosen for generating the neighborhood solutions. The
threshold value is set as a function of the highest congestion value at a given transition.
Hence, the decision is selected with the following criteria:

yi ≥ ρ · ymax (4.2)

where 0 < ρ < 1 is a selective factor that affects the number of decisions contributing to
the threshold value in a given transition. An example of the neighborhood selection is
shown in Fig. 4.2.

0 1 2 3 4 5 6 7 8 9 10 11
0

2

4

6

8

10

ρ · ymax

ymax

Decision number

Pe
rfo

rm
an

ce

Figure 4.2: Neighborhood selection method of the selective simulated annealing. The decisions whose
performance values are beyond the threshold value (ρ · ymax) will be individually chosen for the neigh-
borhood generation.

2) Once a decision has been selected at a given iteration, the next step consists in producing
a neighborhood solution using one of the three congestion mitigation methods: departure

65

time adjustment, route deviation, and flight level allocation. As illustrated in Fig. 4.3, each
decision di represents the decision variables corresponding to the congestion mitigation
methods. Only one decision variable is allowed to be modified at a given iteration.

τi wi li

d1 d2 d3 di dN

d1 d2 d3 d ′
i dN

τi w ′
i li

Figure 4.3: Example of neighborhood generation for which the waypoint information of flight i is modified.

Furthermore, each method will be chosen with its configurable probability. Let pr ≤ 1
and pl ≤ 1 be the configurable parameters that specify the probability of choosing the route
deviation method and the probability of shifting flight level, respectively, where pr + pl ≤ 1.
According to these parameters, the probability of changing departure time is 1 − pr − pl. A
new departure time shift τi is randomly chosen from the set of possible departure time shifts Ti.
In particular, a new cruise path can be generated by randomly choosing one virtual waypoint
(wm

ix′ , wm
iy′) from M virtual waypoints and then randomly changing its location. Lastly, a new

flight level shift li is randomly selected from the set of possible flight level shifts Li. The general
procedure of the neighborhood generation in the selective simulated annealing (SSA) is detailed
in Algorithm 4.5.

Algorithm 4.5 Neighborhood function
Require: flight i, probability of choosing the route deviation method pr, probability of choosing the

flight level allocation method pl

1: procedure change_decision(i)
2: Generate a random number, p := random(0, 1)
3: if Changing the horizontal route is not allowed for flight i then
4: pr ← 0
5: if Changing the flight level is not allowed for flight i then
6: pl ← 0
7: if p > pr + pl then
8: Choose randomly new departure time shift τi from Ti;
9: else

10: if p > pr then
11: Choose randomly virtual waypoint wm

i from wi;
12: Assign randomly new location (wm

ix′ , wm
iy′) from Wix′ ×Wiy′ ;

13: else
14: Choose randomly new flight level shift li;

Initial temperature In this work, we perform the heating process to determine the initial
temperature T0. The process consists of applying individual decision changes and individual
cost evaluations. Let yi be the original cost of the decision di, and y′

i denotes the new cost of
the decision di after modification. The difference cost between y′

i and yi is used to perform an

66

acceptance with the following Metropolis-based criterion:

Pr{accept d′
i} =

1, if y′

i ̸= yi,

exp
(

y′
i − yi

T

)
, otherwise.

(4.3)

where T is the overall temperature. This temperature increases until the initial acceptance
rate goes beyond a configurable threshold χ0. A high initial acceptance rate implies that most
solutions are likely to be accepted at the beginning, representing a highly explorative process.

Cooling schedule The cooling schedule has a significant influence on the convergence of the
algorithm. In our context, we rely on a standard geometrical cooling schedule for which the
evolution of the temperature Tk is given by the following function: Tk+1 := βsTk where α is the
decay of the control parameter. This parameter describes how fast the temperature decreases
during the cooling process. A slow-decreasing temperature is more likely to produce a better
solution than a fast-decreasing temperature, but it will require more computation time.

Equilibrium state The number of iterations NI at each temperature is constant in order to
ensure that an equilibrium state is reached at each temperature step. However, a larger number
of iterations leads to a longer computation time. In this work, the value of NI must represent
a trade-off between the equilibrium condition being reached and the computation feasibility of
the process.

Termination criterion In this work, the SSA algorithm stops and returns the final solution
when the final temperature Tf , reaches the value ϵs · T0 so that the probability of acceptance is
sufficiently small, where ϵs is the configurable coefficient between 0 and 1.

The adaptation of the SSA algorithm to the strategic planning problem is summarized in
Algorithm 4.6.

4.2 Case study: Daily traffic in the French airspace

This section first introduces the characteristics of air traffic data used for the experimental
studies. Then, the computational complexity is analyzed in terms of the number of points in the
state space. Next, a study of traffic congestion based on the trajectory-based congestion model
(as detailed in Section 3.3) is given. Finally, the experimental settings for testing and validating
the proposed methodologies in different operational configurations are also introduced.

Air traffic data in this chapter relies on the en-route traffic over a full day in the French
airspace based on traffic demand on August 18, 2008. The direct-route trajectories correspond-
ing to such a demand are initially generated by the Complete Air Traffic Simulator (CATS) [106]
with a fixed time step ts = 15 seconds. Furthermore, we applied a filter to the data set so that
only flights operated between the controlled flight levels FL100 and FL600 are considered. Fig-
ure 4.4 shows the set of 8,763 initial trajectories used for testing and validating the methodologies

67

Algorithm 4.6 Selective simulated annealing algorithm
Require: A set of decisions D = {di : di = (τi, wi, li), i ∈ F}, the initial temperature T0

1: procedure Selective_Simulated_Annealing(D, T0)
2: Initialize T ← T0
3: for i ∈ F do
4: Compute the cost yi = Ψi(di)
5: Find the highest cost ymax of all decisions
6: while T > ϵs · T0 and ymax > 0 do
7: for n← 1 to NI do
8: for i ∈ F do
9: yi = Ψi(di)

10: if yi ≥ ρ · ymax then
11: d′

i = Change_Decision(i)
12: y′

i = Ψi(d′
i)

13: if y′
i < yi then

14: di ← d′
i

15: else
16: di ← d′

i with probability exp
(

yi − yj

T

)
17: for i ∈ F do
18: Update the cost yi = Ψi(di)
19: Find the highest cost ymax from all decisions
20: T = βs · T
21: return D

proposed in this chapter.

Figure 4.4: Initial trajectories of a full day of traffic in the French airspace.

To give an idea of the computational complexity of the objective function evaluation for
this problem instance, with the sampling time-step value ts = 15 seconds, the trajectories
are discretized into between 1,843,750 and 2,545,824 sample 4D points, including alternative
horizontal and vertical profiles. With regard to the dimension of the search space, we note that
our optimization problem involves the following features:

1) 2MN = 53,016 (continuous) waypoint variables (w);

68

2) N
(τ− + τ+

ts

)
+ 1 = 2,120,641 (discrete) departure-time shifts variables (τ);

3) N(2 · lmax + 1) = 44,180 (discrete) flight-level shifts variables (l);

The experiment setup in this chapter is based on two operational factors: the size of neigh-
borhood search space in horizontal dimension (Dh) and the flight level shift interval (Ls).

For each aircraft, the neighborhood search space is significant to the air traffic controller
so that he/she can use it to manage his/her situation awareness in tactical situations. Its
size depends on how large the safety margin is needed for executing physical and mental tasks
before one or more minimum separations between aircraft have been violated. Therefore, it is
necessary to study the impact of different search space on air traffic congestion.

For instance, two congestion models with different neighborhood search spaces can be es-
tablished to investigate the influence of such models on traffic congestion. The first model with
the neighborhood search space of 15 × 15 NM2 is applied to compute the total congestion be-
tween trajectories for the given traffic data in the French airspace. By applying the first model,
Figure 4.5 represents the evolution of neighboring aircraft involved in traffic situations and the
associated congestion values over 24 hours. In this figure, traffic has the highest congested
value of 7.63 during 12:20 - 12:30, and the maximum number of neighboring aircraft during
14:00 - 14:10 (1,853). Next, a neighborhood search space of 25× 25 NM2 is used in the second
model. The number of neighboring aircraft and associated congestion between trajectories over
24 hours, resulting from the second model, are presented in Fig. 4.6. The maximum number
of neighbor aircraft, whose value is 3,781, happens from 9:00 to 9:10. The highest congestion,
which has a value of 40, appears at 13:00 - 13:10. As can be observed in these figures, the
congestion level is not correlated with the number of neighboring aircraft in several periods for
both models.

Neighborhood search space Congestion Traffic situations
Neighboring aircraft

in a given traffic situation
Max. Average Std.

15× 15 NM2 307.03 100 612 7 1.08 0.361
25× 25 NM2 660.07 188 919 8 1.12 0.406

Table 4.1: Data analysis of initial trajectories represented by the overall congestion, total traffic sit-
uations, the maximum, average, and standard deviation for the number of neighboring aircraft with
different neighborhood search spaces.

Furthermore, the overall congestion, the total number of traffic situations, and the max-
imum, average, and standard deviation of the number of neighboring aircraft with different
neighborhood search spaces are summarized in Table 4.1. This study shows that increasing the
size of the neighborhood search space may result in higher congestion levels since the traffic
situations in which a higher number of aircraft are involved may become more complex.

According to the semi-circular cruising system, the commercial IFR flight will cruise east-
bound at so-called “odd” flight levels, while the westbound flight will cruise at even-numbered
flight levels. As a result, when the flight plan is selected to modify its flight level, it must be
changed to a new one with a flight level shift interval of 2,000 ft (Ls = 2). In this chapter, we

69

0
500

1,000
1,500
2,000

1:0
0

2:0
0

3:0
0

4:0
0

5:0
0

6:0
0

7:0
0

8:0
0

9:0
0

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

0
2
4
6
8

N
o.

of
ne

ig
hb

or
in

g
ai

rc
ra

ft

Time of day (in hours)

Co
ng

es
tio

n
(Ψ

)

Figure 4.5: Distribution of neighboring aircraft and corresponding congestion (accumulated in each pe-
riod of 10 min.) over hours of a day (24 hour time) when the congestion model is based on a neighborhood
search space of 15× 15 NM2.

0

1,000
2,000
3,000
4,000

1:0
0

2:0
0

3:0
0

4:0
0

5:0
0

6:0
0

7:0
0

8:0
0

9:0
0

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

0
10
20
30
40

N
o.

of
ne

ig
hb

or
in

g
ai

rc
ra

ft

Time of day (in hours)

Co
ng

es
tio

n
(Ψ

)

Figure 4.6: Distribution of neighboring aircraft and corresponding congestion (accumulated in each pe-
riod of 10 min.) over hours of a day (24 hour time) when the congestion model is based on a neighborhood
search space of 25× 25 NM2.

70

will also consider a possible flight level change of 1,000 ft for investigation. Accordingly, the
assigned flight level can be changed with a smaller flight level shift interval.

Combining these two factors, the experimental settings fall into the following four different
configurations:

• Planning with the neighborhood search space of 15 × 15 NM2 (Dh = 3) and flight level
shift interval of 2,000 ft (Ls = 2).

• Planning with the neighborhood search space of 15 × 15 NM2 (Dh = 3) and flight level
shift interval of 1,000 ft (Ls = 1).

• Planning with the neighborhood search space of 25 × 25 NM2 (Dh = 5) and flight level
shift interval of 2,000 ft (Ls = 2).

• Planning with the neighborhood search space of 25 × 25 NM2 (Dh = 5) and flight level
shift interval of 1,000 ft (Ls = 1).

Furthermore, the multiple simulations with different decongestion strategies are also con-
ducted for each configuration. Such strategies are as follows:

• Strategy with the departure time adjustment method (T).

• Strategy with departure time adjustment and route deviation methods (TR).

• Strategy with departure time adjustment and flight level allocation methods (TF).

• Strategy with departure time adjustment, route deviation, and flight level allocation meth-
ods (TRF).

4.3 Simulation results

This section presents the numerical results based on the proposed optimization problem in
Eq. (3.24). The SA-based resolution approach is proposed to determine the optimal trajectory
plan to minimize the congestion between trajectories in the airspace. The proposed method
is tested and validated on the daily traffic in the French airspace, where the operational con-
figurations are different. In each configuration, the total congestion between trajectories and
significant characteristics of the optimal trajectory plan are compared with respect to different
decongestion strategies.

All experiments have been conducted with Java-based software development on the Ubuntu
system with Intel Xeon at 2.4 GHz with 16 GB of memory. Each experiment was executed for
10 runs with different random seed values.

Table 4.2 provides the parameter values corresponding to the problem. The parameters
of the resolution algorithm have been conducted by several empirical experiments and are
separately defined in Table 4.3.

71

Parameters Value

Sampling time step, ts 15 s
Duration of a time slot for departure time adjustment, Ts 15 s
Maximum allowed delay departure time shift, τ+

i 45 min
Maximum allowed advance departure time shift, τ−

i 15 min
Maximum number of waypoints, M 2
Maximum allowed negative flight level shift, l−

i 2
Maximum allowed positive flight level shift, l+

i 2
Maximum allowed route length extension coefficient, ξmax 0.15 (15%)

Table 4.2: User-defined parameters corresponding to the problem formulation.

Parameters Value

Number of iteration at each temperature, NI 8 000
Initial rate of solution acceptance, χ0 0.8
Geometric cooling rate, βs 0.99
Selective factor, ρ 0.8
Probability of choosing the route deviation method, pr 0.4
Probability of choosing the flight level allocation method, pl 0.2
Final temperature, Tf 10−4 · T0

Table 4.3: User-defined parameters corresponding to the resolution algorithm.

Test 1: Planning with the neighborhood search space of 15 × 15 NM2 (Dh = 3) and
the flight level shift interval of 2,000 ft (Ls = 2).

The optimal trajectory plans were obtained in the first configuration using the selective sim-
ulated annealing method to solve the strategic 4D decongestion problem. Four cases with
different decongestion strategies are tested. Table 4.4 shows the numerical results in each case
in terms of the characteristics of its optimal trajectory plan. The resolution process using the
strategies TR, TF, and TRF can achieve the zero-congestion trajectories (Ψ < 0.001). Whereas
the trajectory plan obtained from the strategy T can reduce total congestion between trajec-
tories by 85.30%. In addition, the strategy TRF, where all congestion mitigation methods are
used, gives the best computation time (32.41 min) among all strategies for this configuration.

The trajectory plan obtained from strategy TR yields the highest number of flights (23.20%)
across all strategies. However, the percentage of flights used in strategy T (9.67%) is small
compared with those in other strategies since the algorithm spent many iterations to minimize
the congestion associated with the same flights without improvement. This situation leads to
the fact that the value of the selective threshold closely remained unchanged at each iteration.
As a result, the new flights could not contribute to the neighborhood selection. Therefore, only
the departure time adjustment method is not efficient in improving the solution. In the matter
of the average time shift, strategy T gives the most extended departure time shifts with a time
shift of 21.66 min, but strategy TRF has the shortest departure time shifts with a time shift of
21.40 min.

According to the route deviation method, strategy TRF yields a higher route length exten-
sion but fewers flights than strategy TR. Regarding the flight level allocation method, strategy
TF gives a higher number of flights and a larger flight level shift than strategy TRF.

72

Configuration 1 Decongestion strategies
T TR TF TRF

Remaining congestion 14.70% 0.00% 0.00% 0.00%
Avg. flights with delayed/advanced departure times 9.67% 23.20% 21.71% 22.56%
Avg. flights with horizontal deviation — — 16.57% — — 15.63%
Avg. flights with reallocated flight levels — — — — 7.00% 5.30%
Avg. time shift (min) 21.66 21.64 21.49 21.40
Avg. route length extension — — 1.49% — — 2.14%
Avg. flight level shifts (1 shift = 2,000 ft) — — — — 1.54 1.53
Computation times (min) 57.00 45.67 59.96 32.41

Table 4.4: Numerical results for configuration 1: planning with the neighborhood search space of 15 ×
15 NM2 (Dh = 3) and flight level shift interval of 2,000 ft (Ls = 2).

0 1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

Number of iterations (millions)

Co
ng

es
tio

n
(Ψ

)

T
TR
TF

TRF

Figure 4.7: Convergence plots of each strategy in configuration 1 (10 simulation runs) for the strategic
traffic decongestion problem.

The optimization results with different cases are plotted in Fig. 4.7 for configuration 1.
All strategies starts well, but different behaviors appear after 250,000 iterations. Strategy
T spends the most iterations for this configuration, while strategy TRF outperforms others
throughout the optimization process and converges earlier, approximately around 3.5 million
iterations. Although both strategies TF and TR can meet the criteria in terms of the objective
value (Ψ = 0), the solution obtained from strategy TR converges with a shorter number of
iterations.

Test 2: Planning with the neighborhood search space of 15 × 15 NM2 (Dh = 3) and
the flight level shift interval of 1,000 ft (Ls = 1).

Like configuration 1, the neighborhood search is fixed with 15 × 15 NM2, but the minimum
interval between shifts is reduced to 1,000 ft. It should be pointed out that changing the
minimum interval between shifts will not affect the trajectory plans obtained from strategies
T and TR. Therefore, the simulation results according to these strategies in this configuration

73

can be referred to results in Table 4.4.

Besides, the new simulation results related to the strategies TF and TRF in configuration
2 are shown in Table 4.5. In this configuration, only strategies TR and TRF can solve all
congestions between trajectories. Again, strategy TRF shows the best optimization performance
with a computation time of 37.62 min.

Strategy TRF represents the highest number of flights for departure time adjustment and
route deviation methods. Strategy TF yields 5.50% of flights for flight level allocation, which
is more than strategy TRF. The flight level shift generated by strategy TF is higher than the
one generated by strategy TRF.

Configuration 2 Decongestion strategies
T TR TF TRF

Remaining congestion 1.56% 0.00%
Avg. flights with delayed/advanced departure times 19.01% 23.40%
Avg. flights with horizontal deviation — — 16.63%
Avg. flights with reallocated flight levels 5.50% 4.82%
Avg. time shift (min) 21.59 21.47
Avg. route length extension — — 1.47%
Avg. flight level shifts (1 shift = 1,000 ft) 1.594 1.588
Computation times (min)

see results in
Table 4.4

57.22 37.62

Table 4.5: Numerical results for configuration 1: planning with the neighborhood search space of 15 ×
15 NM2 (Dh = 3) and flight level shift interval of 1,000 ft (Ls = 1).

By analyzing simulation results across configurations 1 and 2, all congestions are solved using
strategies TR and TRF. In addition, strategy TF in configuration 1 is the planning scheme in
which the highest number of flights (7%) is used for flight level allocation.

In particular, strategies TF and TRF in configuration 2 require fewer flights to reallocate
their flight levels than the same strategies in configuration 1. Furthermore, strategies TF and
TRF in configuration 1 give shorter departure time shifts than in configuration 2. However,
strategy TRF in configuration 1 generated a longer route length extension than in configuration
2.

Figure 4.8 displays the optimization results with different strategies for configuration 2. Still,
strategy TRF achieved the best performance with the shortest number of iterations. However, it
took more iterations than the same strategy in configuration 1. Strategies TF and T completed
all iterations of the optimization process. However, strategy TF has a better achievement with
the objective value and convergence time.

Test 3: Planning with the neighborhood search space of 25 × 25 NM2 (Dh = 5) and
the flight level shift interval of 2,000 ft (Ls = 2).

In order to test the proposed methodologies with a more complex situation, the horizontal
search space is increased. Consequently, more neighboring aircraft are involved in a given
traffic situation than in configurations 1 and 2. The following characteristics of each trajectory
plan: remaining congestion, each number of flights used for each congestion mitigation method,

74

0 1 2 3 4 5 6 7 8
0

50

100

150

200

250

300

Number of iterations (millions)

Co
ng

es
tio

n
(Ψ

)
T

TR
TF

TRF

Figure 4.8: Convergence plots of each strategy in configuration 2 (10 simulation runs) for the strategic
traffic decongestion problem.

the average time shift, the average route length extension, the average flight level shift, and the
associated computation time for each strategy are reported in Table 4.6.

Configuration 3 Decongestion strategies
T TR TF TRF

Remaining congestion 37.94% 6.69% 27.89% 3.92%
Avg. flights with delayed/advanced departure times 5.72% 20.01% 8.15% 22.55%
Avg. flights with horizontal deviation — — 13.87% — — 15.42%
Avg. flights with reallocated flight levels — — — — 2.70% 5.80%
Avg. time shift (min) 21.80 21.76 21.24 21.56
Avg. route length extension — — 4.53% — — 2.60%
Avg. flight level shifts (1 shift = 2,000 ft) — — — — 1.51 1.53
Computation times (min) 125.60 117.56 119.19 115.71

Table 4.6: Numerical results for configuration 3: planning with the neighborhood search space of 25 ×
25 NM2 (Dh = 5) and flight level shift interval of 2,000 ft (Ls = 2).

Table 4.6 shows that the strategy TRF is the best strategy with a reduction of 96.08% in
traffic congestion, while strategy T has the highest congestion level, which is reduced by 62.06%.
According to the departure time allocation, strategies TR and TRF change 20.01% and 22.55%
of flights, respectively, while the percentages of flights changed with other strategies are small
as compared with the strategies TR and TRF. The average departure time shift induced by
strategy T is the largest (21.80 min). The smallest departure time shift is generated by strategy
TF (21.24 min).

Regarding the route deviation method, strategy TRF changes more flights than strategy TR.
The associated route length extension used by strategy TRF (2.60%) is shorter than strategy
TR (4.53%).

Concerning the flight level allocation method, the trajectory plan obtained from strategy
TRF represents 5.80% of flights, which is greater than the one obtained by strategy TF. It also

75

generates a larger flight level shift than strategy TF.

0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

Number of iterations (millions)

Co
ng

es
tio

n
(Ψ

)
T

TR
TF

TRF

Figure 4.9: Convergence plots of each strategy in configuration 3 (10 simulation runs) for the strategic
traffic decongestion problem.

The optimization results with different strategies in configuration 3 are illustrated in Fig. 4.9.
All strategies completed all iterations of the optimization process. It can also be seen that
strategy TRF has the best performance throughout the optimization process in terms of the
optimal solution and is followed by strategies TR, TF, and T, respectively.

Test 4: Planning with the neighborhood search space of 25 × 25 NM2 (Dh = 5) and
the flight level shift interval of 1,000 ft (Ls = 1).

This operational configuration allows assigning a new flight level to a given flight where the
interval between shifts is 1,000 ft However, such a procedure does not affect the strategy T and
TR. Hence, the simulation results linked with such strategies are similar to those in configura-
tion 3. Like in configuration 3, a given traffic situation is defined with a horizontal search space
of 25 × 25 NM2. Table 4.7 shows the numerical results that represent the following character-
istics of each trajectory plan: remaining congestion, number of flights used for each congestion
mitigation method, the average time shift, the average route length extension, the average flight
level shift, and the computation time.

The trajectory plan obtained from strategy TRF is the most effective strategy, with a con-
gestion reduction of 94.78%. It is then followed by strategies TR, TF, and T. Strategy TRF
ranks number one in using the largest number of flights for the departure time adjustment
and route deviation methods. According to the flight level allocation method, strategy TRF
generates an average flight level shift with a value of 1.62, which is higher than strategy TF.

Comparing results across configurations 3 and 4, strategies TF and TRF better alleviate
congestion between trajectories in configuration 3. However, these strategies changes more
flights for departure time allocation and route deviation than in configuration 4. According to
the flight level allocation method, the percentage of flights in configuration 4 as compared with

76

Configuration 4 Decongestion strategies
T TR TF TRF

Remaining congestion 30.63% 5.22%
Avg. flights with delayed/advanced departure times 7.62% 21.61%
Avg. flights with horizontal deviation — — 14.85%
Avg. flights with reallocated flight levels 2.31% 4.85%
Avg. time shift (min) 21.37 21.64
Avg. route length extension — — 2.55%
Avg. flight level shifts (1 shift = 1,000 ft) 1.54 1.62
Computation times (min)

see results in
Table 4.6

111.10 119.46

Table 4.7: Numerical results for configuration 4: planning with the neighborhood search space of 25 ×
25 NM2 (Dh = 5) and flight level shift interval of 1,000 ft (Ls = 1).

flights in configuration 3 decreases from 2.70% to 2.31%. The percentage of flights for strategy
TRF in configuration 3 also decreases from 5.80% to 4.85% in configuration 4. Dealing with
the route deviation, the number of flights in configuration 3 falls from 15.42% to 14.85% in
configuration 4. The average route length extension also decreases from 2.60% in configuration
3 to 2.55% in configuration 4.

0 1 2 3 4 5 6 7 8
0

100

200

300

400

500

600

700

Number of iterations (millions)

Co
ng

es
tio

n
(Ψ

)

T
TR
TF

TRF

Figure 4.10: Convergence plots of each strategy in configuration 4 (10 simulation runs) for the strategic
traffic decongestion problem.

Figure 4.10 plots the results of optimization methods with different decongestion strategies
for configuration 4. Strategy TRF outperforms others in terms of the objective value and is
followed by strategy TR. Strategies T and TF converge to their optimal solutions after 2 and 3
million iterations, respectively.

Comparing the configurations with the same strategies and neighborhood search spaces,
plannings with the semi-circular rule (Ls = 2) gives better remaining congestion levels and
convergence times than others with the non-semi-circular rule (Ls = 1).

77

4.4 Conclusion

This chapter first investigates the airspace congestion of the real traffic in the French airspace
over a full day using the congestion model based on linear dynamical systems. The study con-
firms the fact that traffic congestion does not rely only on the number of aircraft involved in
traffic situations. Next, the selective simulated annealing method was validated on the strate-
gic traffic decongestion problem with different operational configurations (the neighborhood
search space and the flight level shift interval). The resolution method was also tested and
validated in each configuration with different decongestion strategies. Usually, the proposed
resolution method can efficiently reduce congestion between trajectories in all tested problems.
Comparisons between decongestion strategies within/across operational configurations are also
given.

The findings show that the strategies, including the route deviation method, give better
optimal solutions as compared with other strategies. Furthermore, the strategies using all
congestion mitigation methods (TRF) are the best strategies that provide the best solutions in
terms of the overall congestion value and the convergence time across other strategies. With
more options in the state space, such strategies typically perform better.

The configuration with a larger neighborhood search space increases the difficulty of the
problem in order to minimize congestion between trajectories. Therefore, the network planner
should consider the size of the neighborhood search space in order to obtain the optimal tra-
jectory plan suitable for a particular configuration. Furthermore, the results of this work show
that the semi-circular rule, which regulates aircraft to change their flight level with a mini-
mum interval of 2,000 ft, helps the proposed resolution method organize air traffic and improve
congestion reduction.

The next chapter will present a more complex problem in which time uncertainties are
taken into account. A novel approach for solving such a problem will be detailed. Comparisons
between the new method and the method presented in this chapter will also be given.

78

Chapter 5

Hyper-heuristic approach for
strategic 4D trajectory planning

This chapter presents a novel resolution method to solve the proposed strategic traffic deconges-
tion problem. Since the quality of the solution depends on how to select a good neighborhood
operator at a particular decision point, we propose a hyper-heuristic framework based on rein-
forcement learning to solve the problem. The proposed framework applies a learning agent to
select a well-performing low-level heuristic (e.g., neighborhood operator) and adapts its strategy
by learning. The proposed method is tested and validated with real traffic over a full day in
the French airspace. Its performance is then compared with other algorithms. Furthermore,
the strategic decongestion planning problem is also extended by taking time uncertainties into
consideration. Finally, the proposed methodology is tested and validated in various cases with
different uncertainty periods.

This chapter first introduces the proposed hyper-heuristic framework in Section 5.1. Next,
Section 5.2 presents the adaptation of the proposed framework to the strategic traffic deconges-
tion problem. Finally, the simulation results are presented in Section 5.3.

5.1 Hyper-heuristic based on Q-learning

To solve a wide range of optimization problems, we propose an adaptive optimization framework
in which the learning agent and a single-solution-based optimization method can be combined.
The learning agent can receive an experience from accepting/rejecting a new solution and choose
a heuristic method aimed at improving the current solution at a given decision point. In
this thesis, we propose a hyper-heuristic approach based on Q-learning (HQL) to address this
problem.

HQL relies on a conceptual hyper-heuristic framework based on a single-point search in [107].
The proposed framework aims to improve the strategy to select a low-level heuristic to generate a
neighborhood solution at a decision point. It employs an online learning approach, whereby the
learning agent observes the improvement of a new solution and updates its knowledge through-
out the optimization process. In accordance with the generalization of the hyper-heuristic, this
framework is developed without applying specific knowledge. Therefore, the HQL framework
can be utilized to solve combinatorial optimization problems in other applications.

The proposed hyper-heuristic framework is shown in Fig 5.1. The figure represents two
levels of design abstraction: the hyper-heuristic and the problem domain. The domain barrier

79

prevents the hyper-heuristic from processing the specific information (e.g., decision variables,
problem constraints and parameters) from the problem domain.

Hyper-heuristic

Learning process
(Q-learning)

Heuristic selection
(ϵ-greedy)

Move acceptance
(Metropolis + BILS)

Domain barrier

Problem domain

Simulation-based evaluation

Low-level heuristics State space solution

New experienceNew Q-values

Heuristic no.

Available
heuristic operators New decision

Candidate decision

Figure 5.1: Framework of Hyper-heuristic based on Q-learning with the high-level strategy and the
problem domain. BILS = Best improvement local search.

The hyper-heuristic consists of the learning process, heuristic selection, and move accep-
tance. The learning process exploits the Q-learning agent to receive the quality gains from the
move acceptance and guide the heuristic selection to choose a well-performing heuristic oper-
ator. The heuristic selection employs the epsilon-greedy approach to balance exploration and
exploitation strategies in selecting the heuristic operator. The move acceptance component uti-
lizes the metropolis-based acceptance and the Best-Improvement Local Search (BILS) methods
for accepting a new solution. The choice for which acceptance method should be used depends
on the type of low-level heuristic applied to a current solution at a given decision point.

The problem domain represents the following two components that must be defined for a
particular problem (e.g., strategic traffic decongestion problem): the set of low-level heuristics
and the state space problem. The low-level heuristic (e.g., neighborhood operator, heuristic op-
erator) is a procedure (generation, selection, local search, mutation, etc.) allowing one to obtain
a neighborhood solution from an existing one or from the initial solution. Each heuristic either
plays a role in improving solutions or exploring the search space. The state space represents
the set of decision variables, problem constraints, configurable parameters, and other specific
information so that the low-level heuristic can generate a neighborhood solution. Such a new
solution is then put into a simulation environment to evaluate the objective function.

The major components of the HQL framework, as well as the low-level heuristics and the

80

optimization process adapted for the strategic traffic decongestion planning problem, will be
detailed in the following sections.

5.1.1 Heuristic selection

The Q-learning agent performs the ϵ-greedy approach to select the heuristic operator in a given
iteration step, whereby the Q-table is a reference table for the agent to select the best operator
(e.g., action) based on the Q-value. The Q-table is implemented as a matrix Q ∈ S ×H, where
S denotes the set of states and H denotes the set of heuristic operators, respectively. This
section presents the ϵ-greedy approach to selecting the heuristic operator and the construction
of the Q-table based on the sets of states and heuristic operators.

The implementation of the ϵ-greedy approach for each time step is illustrated in Algo-
rithm 5.7. At the beginning of the process, exploration is needed and at the end, more ex-
ploitation is required. The heuristic operator is randomly selected with a probability ϵ, and
the heuristic operator that has a maximum Q-value across all operators at the current state
is chosen from the Q-table with probability 1 − ϵ. At the beginning, the value of ϵ is set to
a maximum value ϵmax (user-defined) and reduces with time, and once the table converges, it
reaches a minimum value ϵmin (user-defined).

Algorithm 5.7 ϵ-greedy heuristic selection at time step t

Require: A lookup table Q, a current state st, a current probability of exploration ϵ, a maximum prob-
ability of exploration ϵmax, a minimum probability of exploration, ϵmin, and a decay of exploration
probability, ϵdecay

1: procedure SelectHeuristicOperator(st)
2: Generate a random number, p ∈ [0, 1];
3: if p < 1− ϵ then
4: h← argmax

h′∈H
Q(st, h′);

5: else
6: Randomly choose h′ that is available in state st;
7: if ϵ > ϵmin then
8: ϵ← ϵ · (1− ϵdecay);
9: return h

In the matter of Q-table, the problem must be formulated as an MDP environment where
possible states and actions (e.g., heuristic operators) are known. Therefore, we apply the
Diversification-Intensification (D-I) cycle [101] to the optimization process. To achieve the D-I
cycle, the first phase involves applying a diversification operator to a current solution. The
next phase is to perform the iterative improvement under the BILS approach. This approach
starts with a current solution and applies the intensification operator to such a solution. If a
better solution is found, it replaces the current solution. This approach continues until the best
solution in the D-I cycle cannot be improved. This situation indicates that a local optimum has
been reached.

In accordance with the preceding definition, letH = HI∪HD be the set of heuristic operators
of the optimization problem where HI = {h1, h2, . . . , hp} is a set of intensification operators,
and HD = {hp+1, hp+2, . . . , hp+q} is a set of diversification operators. For the intensification
operators, the possible states are then S = {s0, s1, . . . , sp+1} whereby two of them are the initial

81

and terminal states. The state s0 is the initial state of the D-I cycle in which the diversification
operator has been previously applied to the solution. Particularly, state sn can be reached after
the heuristic operator hn has been applied in the previous state, where n ∈ {1, 2, . . . p}. Lastly,
the terminal state sp+1 will be reached only if a locally optimal solution has been found (two
consecutive solutions have not been improved).

Therefore, we initialize the Q-table by assigning the initial Q-values to control the D-I cycle.
However, such an assignment must satisfy the following rules to prevent a deadlock situation
within the cycle:

1) a diversification operator is not allowed to be chosen during a phase of intensification;

2) the same intensification operator is not allowed to be chosen in the given two consecutive
states.

h1 . . . hp hp+1 . . . hp+q

s0 1 . . . 1 — . . . —

s1 0 1 . . . 1 — . . . —

1 0

...
...

. . .
...

...
. . .

...

0 1

sp 1 . . . 1 0 — . . . —

sp+1 1 . . . 1

Intensification phase

Diversification phase

States

Intentification
operators

Diversification
operators

Figure 5.2: General initialization of the Q-table where columns represent the set of intentification
and diversification operators and rows represent the set of states with respect to the Diversification-
intensification (D-I) cycle.

Figure 5.2 illustrates the initialization of the Q-table. It represents the matrix of Q-values where
columns represent the operators (e.g., actions), and rows represent the states. The values of 0
and 1 are assigned in the table at the initialization. The zero and null (—) values indicate the
situation for which no operators will be chosen in the corresponding state.

5.1.2 Learning process

The learning process in the HQL is performed throughout the optimization process to improve
the Q-learning agent’s search strategy. This section describes how the Q-learning agent receives

82

rewards to update the Q-values in the Q-table.

At each state where a new solution has been evaluated, the learning agent checks quality
gain g based on a difference between the new objective value and the previous one. Then, the
learning agent computes the immediate reward in order to update the associated Q-value. The
Q-value, at time step t, associated with a given state st and the chosen heuristic operator ht

will be updated with the following Q-learning function:

Q(st, ht) := (1− α)Q(st, ht) + α(rt + γ max
h∈H

Q(st+1, h)) (5.1)

where α ∈ [0, 1] denotes the learning rate, γ ∈ [0, 1] denotes the discount factor and rt is the
immediate reward signal whose value can be computed by the following reward function:

rt =

σ, if g > 0,
0, otherwise.

(5.2)

where σ is the immediate positive reward (user-defined), and the quality gain g denotes the
difference in objective values of the previous and new solutions. The positive gain indicates the
positive improvement of the new solution.

It should be pointed out that the reward function may be customized to a particular problem
in order to maximize the expected reward based on a specific condition (e.g., user preferences,
performance criteria).

5.1.3 Move acceptance

Move acceptance decides whether to accept or reject a new solution at each step during the
search. To efficiently solve large-scale problems, the proposed hyperheuristic combines two
acceptance methods: the metropolis-based criterion, which is used during the diversification
phase, and the local search procedure, which is used when the algorithm searches for a better
solution in the intensification phase.

The first move acceptance method is the metropolis-based criterion that prevents the search
process from getting trapped in the local optima during the diversification phase. A new solution
would be accepted if its objective value is better than the old one and can be accepted with the
acceptance probability, which depends on the controlled temperature decreasing over time and
the change in the objective function (see more details in Section 2.3.2 from Chapter 2).

The local search algorithm works by iteratively selecting an improved solution from the
current solution’s neighborhood until no improvement can be found. Another move acceptance
method in the proposed framework relies on the best improvement local search (BILS). This
method iteratively replaces the current solution with a better solution until the end of the
intensification phase.

83

5.1.4 Numerical examples

This section provides a numerical example to clarify the learning mechanism under the D-I cycle.
Suppose there are three intensification operators (h1, h2, h3) and two diversification operators
(h4, h5). These result in five states (corresponding to the number of intensification operators
plus initial and terminal states) to establish the D-I cycle.

Regarding the learning process, the Q-learning agent will learn the environment by updating
each Q-values with a learning rate (α) of 0.9 and a discount factor (γ) of 0.9. In this example, the
Q-learning agent computes the immediate reward using Eq. (5.2) where the positive immediate
reward (σ) is set to 1. In this case, the agent gets a positive immediate reward when the
objective value decreases (the minimization problem).

Initially, the Q-values of all state-operator pairs are initialized with the values of 1 and 0.
Figure 5.3a represents the initial state of the D-I cycle, the current objective value, and the
corresponding Q-table.

State s4 is first obtained to enter the D-I cycle. This state allows only a diversification
operator to be applied to the current solution. Assume that operator h5 is chosen for the
neighborhood generation. The new solution is put into the simulation environment to evaluate
its objective value. As illustrated in Fig. 5.3b, the metropolis-based method accepts the new
solution with a quality gain of 10. Using Eq. (5.2), this state’s reward is 1. The Q-learning
agent updates the new value of Q(s4, h5) in the Q-table as follows:

Q(s4, h5) := (1− 0.9)(1) + 0.9(1 + 0.8 ·max(1, 1)) = 1.72

In the next step, the process moves to state s0 to begin applying an intensification operator.
Assume that the operator h2 is chosen. As a result, the new objective value due to this operator
is increased. Therefore, the solution is rejected by the local search procedure with a quality
gain of -2. As presented in Fig. 5.3c, the solution is returned to the previous decision thanks
to the comeback operation. With a quality gain of -2, the reward obtained in this state is null.
The new value of Q(s0, h2) is therefore:

Q(s0, h2) := (1− 0.9)(1) + 0.9(0 + 0.8 ·max(1, 1, 1)) = 0.82

According to the previously chosen intensification operator (h2), the process enters the state
s2. Assume that the chosen operator in this state is h1, and the solution can be improved with
a quality gain of 2. Then, as presented in Fig. 5.3d, the positive reward is obtained, and the
Q-table is updated with the new value of Q(s2, h1) using Eq. (5.1).

As can be seen in Fig. 5.4, the process repeats by applying two intensification operators. As
a result, their new solutions cannot be improved. However, the Q-learning agent still computes
rewards from the associated quality gains and updates Q(s1, h3) and Q(s3, h1) in the Q-table,
respectively. However, the process finally reaches the terminal state of the D-I cycle since
intensification operators cannot improve the two consecutive solutions. After that, the process
will continue by applying a diversification operator to reenter the D-I cycle.

84

0 1 2 3 4 5
0

2

4

Number of iterations

O
bj

ec
tiv

e
va

lu
e

h1 h2 h3 h4 h5

s0 1 1 1 0 0
s1 0 1 1 0 0
s2 1 0 1 0 0
s3 1 1 0 0 0
s4 0 0 0 1 1

Q-table

(a)

0 1 2 3 4 5
0

2

4

⟨s4, h5, 10⟩

Number of iterations

O
bj

ec
tiv

e
va

lu
e

h1 h2 h3 h4 h5

s0 1 1 1 0 0
s1 0 1 1 0 0
s2 1 0 1 0 0
s3 1 1 0 0 0
s4 0 0 0 1 1.72

Q-table

(b)

0 1 2 3 4 5
0

2

4

⟨s4, h5, 10⟩ ⟨s0, h2,−2⟩

Number of iterations

O
bj

ec
tiv

e
va

lu
e

h1 h2 h3 h4 h5

s0 1 0.82 1 0 0
s1 0 1 1 0 0
s2 1 0 1 0 0
s3 1 1 0 0 0
s4 0 0 0 1 1.72

Q-table

(c)

0 1 2 3 4 5
0

2

4

⟨s4, h5, 10⟩ ⟨s0, h2,−2⟩ ⟨s2, h1, 1⟩

Number of iterations

O
bj

ec
tiv

e
va

lu
e

h1 h2 h3 h4 h5

s0 1 0.82 1 0 0
s1 0 1 1 0 0
s2 1.72 0 1 0 0
s3 1 1 0 0 0
s4 0 0 0 1 1.72

Q-table

(d)

Figure 5.3: Example of the learning process in the D-I cycle. The Q-learning agent computes rewards
from the difference of objective values and updates Q-values in the Q-table.

85

0 1 2 3 4 5
0

2

4

⟨s4, h5, 10⟩ ⟨s0, h2,−2⟩ ⟨s2, h1, 1⟩ ⟨s1, h3, 0⟩

Number of iterations

O
bj

ec
tiv

e
va

lu
e

h1 h2 h3 h4 h5

s0 1 0.82 1 0 0
s1 0 1 0.82 0 0
s2 1.72 0 1 0 0
s3 1 1 0 0 0
s4 0 0 0 1 1.72

Q-table

(a)

0 1 2 3 4 5
0

2

4

⟨s4, h5, 10⟩ ⟨s0, h2,−2⟩ ⟨s2, h1, 1⟩ ⟨s1, h3, 0⟩ ⟨s3, h1, 0⟩

Number of iterations

O
bj

ec
tiv

e
va

lu
e

h1 h2 h3 h4 h5

s0 1 0.82 1 0 0
s1 0 1 0.82 0 0
s2 1.72 0 1 0 0
s3 0.82 1 0 0 0
s4 0 0 0 1 1.72

Q-table

(b)

Figure 5.4: Example of Q-learning in the D-I cycle (cont.).

86

5.2 Adaptation of HQL to the strategic traffic decongestion
problem

5.2.1 Neighborhood generation

In this work, the state space X⃗ of the strategic traffic decongestion problem can be represented
by a vector of decisions D. Each decision di is associated with a set of decision variables for flight
i. The performance of each decision (yi) is expressed by the congestion value associated with
the trajectory of flight i. An example of such a vector and its performance values is illustrated
in Fig. 4.1 from Chapter 4.

Like the resolution method in Chapter 4, at each temperature transition of the optimization
process, the decisions with larger contributions relative to a threshold value are more likely
to be chosen for the neighborhood generation. Such a threshold value relies on the selective
factor (ρ), which is configurable and the highest congestion value at a given transition. A
function determining the threshold value has been defined in Section 4.1.

τi wi li

d1 d2 d3 di dN

hn

d1 d2 d3 d ′
i dN

τ ′i wi li

hn ∗ di

Figure 5.5: Example of assigning a new departure time shift to the decision di by applying the heuristic
operator hn.

In this work, we predefine a set of low-level heuristics (e.g., heuristic operators) so that the
hyper-heuristic can choose one of them to change the decision based on its heuristic method.
Figure 5.5 shows an example of decision change (di) using the heuristic operator.

5.2.2 Low-level heuristics

The specialization of HQL for a particular optimization problem requires the definition of in-
tensification and diversification operators. In this work, generation operators perform the di-
versification task. Some improvement heuristics are used for intensification. In this work, six
heuristic operators are proposed.

Intensification operators To solve the strategic traffic decongestion problem, we propose
three intensification operators: 5-shift, h-opposite, v-opposite. Such operators are used for the

87

local search procedure that performs a sequence of moves or a random change based on the
actual decision. Figure 5.6 represents some examples of neighboring solutions generated by the
proposed intensification operators.

1) 5-shift (h1) is the operator that consists of randomly advancing/delaying departure time
not more than 5 minutes from the current departure time shift.

2) h-opposite (h2) is the operator that generates the neighboring solution by reversing the
waypoints horizontally in the x′y′ coordinate. The waypoint located at (wix′ , wiy′) in the
normalized coordinate will be moved to (1− wix′ , wiy′) for the new solution.

3) v-opposite (h3) is the operator that generates the neighboring solution by creating sym-
metry in the x′y′ coordinate according to the central line connecting the two extreme
points. The waypoint located at (wix′ , wiy′) in the normalized coordinate will be moved
to (wix′ ,−wiy′) for the new solution.

τi − 5 τi τi + 5
t (min)

(a) h1: 5-shift
y ′

x ′

(b) h2: h-opposite

y ′

x ′

(c) h3: v-opposite

Figure 5.6: Representation of intensification heuristic operators which allow the algorithm to refine the
search in the vicinity of the current decision.

Diversification operators We proposed three diversification operators to solve the strategic
traffic decongestion problem. Such operators use the generation procedure that attempts to
explore the search space by building a new solution without using the information from the
current decision. Figure 5.7 shows some examples of neighboring solutions generated by the
proposed intensification operators.

1) new-shift (h4) is the generation operator that randomly advances or delays the departure
time within the maximum allowed departure time shift.

2) new-route (h5) is the generation operator that randomly adds/removes one or more way-
points under problem constraints.

3) new-level (h6): the generation operator that aims to randomly shift flight level within the
maximum flight level shift of a given flight.

In accordance with the heuristic operators proposed for the strategic traffic decongestion
problem, the Q-Table is then constructed, and the Q-values are initialized, as illustrated in
Table 5.1. Regarding the D-I cycle, the description of each state is given as follows:

88

τ−i 0 τ+
i

t (min)

(a) h4: new-shift
y ′

x ′

(b) h5: new-route

z

t

(c) h6: new-level

Figure 5.7: Representation of diversification heuristic operators which allow the algorithm to perform
exploration in order to escape from the local minima.

State
Intensification

operator
Diversification

operator
h1 h2 h3 h4 h5 h6

s0 1 1 1 — — — — — —
s1 0 1 1 — — — — — —
s2 1 0 1 — — — — — —
s3 1 1 0 — — — — — —
s4 — — — — — — 1 1 1

Table 5.1: Q-Table and initialized Q-values for the strategic traffic decongestion problem.

1) s0: a diversification operator has been previously applied.

2) s1: intensification operator h1 has been previously applied.

3) s2: intensification operator h2 has been previously applied.

4) s3: intensification operator h3 has been previously applied.

5) s4: two successive intensification operators have been previously applied without modify-
ing the current decision.

5.2.3 Optimization process

By using the metropolis-based criterion as a primary condition to accept the solution, the
temperature T is then used to control the optimization process. Therefore, it is necessary to
find an initial temperature to start the optimization process. Like the resolution method in
Chapter 4, we determine the initial temperature T0 from the heating process. The process can
be done by perturbing some decisions and transitioning from the current decision to a new one
based on the metropolis-based criterion. The initial temperature is set so that the acceptance
ratio equals the configurable value χ0. The heating procedure has been detailed in Section 4.2.

The algorithm determines the current state by performing ϵ-greedy selection. It then selects
a heuristic operator to be applied on the selected decision di. The algorithm selects a decision
whose cost value is greater than the threshold value, ΨT . The process then allows the move

89

Algorithm 5.8 Hyper-heuristic based on Q-learning
Require: A set of decisions D = {di : di = (τi, wi, li), i ∈ F}, a set of states S, a set of heuristic

operators H = {h1, h2, . . . , hp+q}, and the initial temperature T0
1: procedure HQL(D,H, T0)
2: Initialize T ← T0;
3: Initialize Q← S ×H;
4: for i ∈ F do
5: Compute the cost yi = Ψi(di);
6: Find the highest cost ymax of all decisions;
7: while T > ϵs · T0 and ymax > 0 do
8: for n← 1 to NI do
9: for i ∈ F do

10: yi = Ψi(di);
11: if yi ≥ ρ · ymax then
12: Choose a diversification operator : ht ← SelectHeuristicOperator(st);
13: Generate a new decision : d′

i ← ht ∗ di;
14: Accept the new decision d′

i with the metropolis-based criterion;
15: Calculate the reward rt from the quality gain g;
16: Update Q(st, ht);
17: while Intensification phase is not ended do
18: Choose an intensification operator : ht ← SelectHeuristicOperator(st);
19: Generate a new decision : d′

i ← ht ∗ di;
20: Accept the new decision d′

i with the BILS procedure;
21: Calculate the reward rt from the quality gain g;
22: Update Q(st, ht);
23: for i ∈ F do
24: Update the cost yi = Ψi(di)
25: Find the highest cost ymax from all decisions
26: T = βs · T
27: return D

90

acceptance to accept or reject the candidate decision based on the metropolis criterion. If the
iteration has reached the end of a D-I cycle, then the Q-learning agent determines rewards
from the experiences that have occurred in such a cycle. If some experiences can improve their
decisions, the Q-learning agent will update the Q-values associated with state-operator pairs in
the Q-table. The optimization process repeats until the final decreased temperature and then
returns the final solution.

Algorithm 5.8 presents the optimization process to solve the strategic traffic decongestion
problem. At each temperature transition, the algorithm chooses decisions whose cost value (e.g.,
congestion value), yi, is greater than the selective threshold. With each decision (associated
with each flight), the process enters the D-I cycle, whereby a diversification operator is first
chosen with the epsilon-greedy approach (see Algorithm 5.7) to generate a new decision (e.g., a
neighborhood solution). The process then allows the move acceptance to accept or reject such a
decision based on the metropolis criterion. The immediate reward is computed from the quality
gain. Next, the Q-learning agent updates the Q-table with a new Q-value corresponding to the
chosen heuristic operator at a given state. Then, the process reaches a phase of intensification,
where the intensification operators are chosen with the epsilon-greedy approach to improve
new decisions locally until two successive solutions cannot be improved. During this phase,
the Q-learning agent keeps calculating an immediate reward and updating the Q-table based
on the chosen operator at a particular state. The process repeats the same procedures with
other selective decisions until the end of the temperature transition. Finally, the algorithm will
proceed in the same manner until the terminal criteria (ymax = 0 or the final temperature is
reached) are met.

To summarize the overall process in this work, the optimization process relies on the pro-
posed HQL algorithm. The process selects a low-level heuristic, thanks to the Q-learning agent.
An aircraft trajectory is modified according to such a low-level heuristic, and its performance
(e.g., congestion level) is recalculated under the simulation environment. Following the accep-
tance or rejection of a neighborhood solution generated by the use of a heuristic operator, the
Q-learning agent checks the associated quality gain and computes the immediate reward. Then,
the agent updates the Q-table with a new Q-value. The Q-table guides the Q-learning agent to
select a better low-level heuristic in the next state. At the end of the process, it finalizes the
optimal aircraft trajectories.

5.3 Simulation results

This section presents the results of some computation experiments to evaluate the proposed
resolution algorithm. In this work, we assess the proposed methodology on real air traffic data
in the French airspace, similar to the data in Chapter 4. However, the experimental setting
is based on strategic planning with a neighborhood search space of 25 × 25 NM2(Dh = 3)
and a flight level shift interval of 2,000 ft (Ls = 2). First, the strategic planning problem
without considering time uncertainties is proposed to validate the resolution method. Next,
the numerical results are then compared with other resolution algorithms. Finally, further
studies of the proposed method are also conducted by solving an extended problem where time
uncertainties are taken into account. All experiments have been conducted with Java-based
software development on an Ubuntu system with Intel Xeon at 2.4 GHz with 16 GB of memory.

91

Each experiment was executed for 10 runs with different random seed values.

The parameter values corresponding to the strategic traffic decongestion problem are the
same as those given in Table 4.2. In addition, several empirical tests on hyperparameter tuning
of the HQL algorithm have given the parameter settings summarized in Table 5.2.

Parameters Value

Number of iteration at each temperature, NI 8 000
Initial rate of solution acceptance, χ0 0.8
Geometric cooling rate, βs 0.99
Selective factor, ρ 0.7
Maximum probability of ϵ-greedy exploration, ϵmax 0.9
Minimum probability of ϵ-greedy exploration, ϵmin 0.5
Decay of exploration probability, ϵdecay 0.1
Learning rate, α 0.25
Discount factor, γ 0.5
The immediate positive reward, σ 1.0

Table 5.2: User-defined parameters corresponding to the resolution algorithm.

Based on real traffic data, aircraft trajectories can be categorized into six possible cases,
as previously presented in Fig. 3.6. To produce optimal 4D trajectories, it is necessary to
apply suitable heuristic operators to each case. Some trajectories are only modified with time-
based heuristic operators whereas others can be modified with both time-based and space-based
heuristic operators. Table 5.3 illustrates the activation of heuristic operators against different
cases.

Case no.
Intensification

operator
Diversification

operator
h1 h2 h3 h4 h5 h6

1 × × × × × ×
2 × × × × × ×
3 × × × × × ×
4 × — — — — × — — — —
5 × × × × × ×
6 × — — — — × — — — —

Table 5.3: Activation of heuristic operators against different cases.

Initial trajectories represent an overall traffic congestion of Ψ = 660.07 (see Table 4.1 from
Chapter 4). After solving the problem, the simulation results are reported in Table 5.4. A total
of 29.46% of flight plans were used for modification. The solution can improve the overall traffic
congestion by 96.76%, compared to initial trajectories. The evolution of congestion over time
for the final trajectories is presented in Fig. 5.8. The highest congestion level occurred during
14:50 – 15:00.

92

Numerical result Value

Remaining congestion 3.24%
Avg. flights with delayed/advanced departure times 19.96%
Avg. flights with horizontal deviation 12.46%
Avg. flights with reallocated flight levels 8.31%
Avg. time shift (min) 21.43
Avg. route length extension 2.07%
Avg. flight level shifts 1.55
Computation times (min) 123.86

Table 5.4: Numerical results for restructuring a full day of traffic in the French airspace (10 runs for
average computation).

1:0
0

2:0
0

3:0
0

4:0
0

5:0
0

6:0
0

7:0
0

8:0
0

9:0
0

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

22
:00

23
:00

0

0.1

0.2

0.3

Time of day (in hours)

To
ta

lc
on

ge
st

io
n

(Ψ
)

Figure 5.8: Distribution of traffic congestion (accumulated in each period of 10 min.) over hours of a
day (24 hour time) after the optimization process.

Comparison with other resolution algorithms

We evaluate the performance of the proposed algorithm with the following two algorithms: Ran-
dom Search (RS) and SSA (as presented in Chapter 4), since the common thread behind these
baselines and the proposed algorithm is the use of randomness. In particular, RS is one of the
most straightforward search algorithms to implement, describe, understand, and help us ground
the empirical results in this context. The simulated annealing-based optimization algortihm is
a state-of-the-art algorithm commonly used to solve large-scale strategic 4D trajectory planning
problems, as presented in [10, 65, 108].

In addition, we validate the learning mechanism used in the HQL. This learning mechanism
aims at improving the heuristic selection strategy. This strategy relies on the Q-table that
enables the learning agent to select a well-performing heuristic operator to be applied to its
current solution. Therefore, two configurations of the HQL were tested. First, the learning
agent is activated in the proposed HQL. Then, the configuration of the second HQL instance
disables the use of the learning agent.

93

To establish such a comparison, the experiments were implemented using different resolution
algorithms and tested with a full day of traffic in the French airspace. Each algorithm performed
10 independent runs. The best, average, and standard deviation of the final congestion and the
number of modified flight plans obtained by the HQL method and other resolution algorithms
are compared in Table 5.5.

Algorithm
Remaining congestion

(%)
Number of modified

flight plans (%) Computation time
(min)Best Mean Std. Best Mean Std.

HQL (proposed) 2.16 3.24 1.50 23.07 29.21 2.41 123.86
SSA 1.48 3.92 1.23 20.48 23.51 2.07 115.71
HQL without learning 3.19 4.77 1.21 22.49 25.50 1.85 118.30
RS 4.11 10.04 6.89 11.83 20.46 5.39 114.57

Table 5.5: Performance comparison of the proposed algorithm with other approaches for restructuring a
full day of traffic in the French airspace. The best, mean, and standard deviation of the ten simulation
runs for each algorithm are reported. The best values are highlighted in bold.

The three approaches proposed in this thesis give much better congestion values than the
standard RS. The HQL outperforms other algorithms in terms of the average final congestion.
The optimization algorithms without the learning mechanism cannot achieve better average
final congestion as compared with SSA. However, the HQL without a learning agent determines
the most accurate trajectory plans with a standard deviation of 1.21%. The evolution of average
congestion values against the number of iterations for all algorithms is given in Fig. 5.9. The
HQL algorithm shows the best performance, followed by SSA, HQL without learning, and RS.
The HQL and SSA start with a similar trend. After 750,000 iterations, the HQL decreases faster
and has the best performance until the end of the optimization process. The HQL without
learning starts slower than RS and performs better after 2.75 million iterations. During the
same period, RS remains steady until the end.

0 1 2 3 4 5 6 7 8
0

200

400

600

Number of iterations (millions)

To
ta

lc
on

ge
st

io
n

(Ψ
)

HQL
SSA

HQL(no learning)
RS

Figure 5.9: The average traffic congestion at each iteration during the optimization process for the HQL
algorithm and other approaches.

As presented in Table 5.5, the number of modified flight plans is slightly higher when the D-I
cycle is used. With the collaboration between the diversification and intensification procedures,

94

the algorithms can solve the problem faster for an individual flight under a given selective crite-
rion at each temperature transition. Therefore, the algorithm equipped with the D-I procedure
will have more opportunities to solve more unmodified flights at a given temperature transi-
tion. However, an extra computational time was generated according to this procedure. In
addition, Figure 5.10 compares the number of modified flight plans in terms of different control
trajectory-based structuring methods. All algorithms follow the same trend that the departure
time adjustment is the most commonly used method to minimize congestion, succeeded by the
route deviation and flight level allocation methods. However, these control methods used in
SSA and RS are controlled by probabilities of modification that are configurable parameters of
the optimization problem. In the HQL method, each control option (e.g., heuristic operator)
is chosen based on its Q-value, which may be varied at different decision points. In contrast,
the HQL method without learning tends to choose each control option (e.g., heuristic operator)
with an equal probability of modification.

HQL SSA HQL (no learning) RS
0

5

10

15

20

25

30

N
um

be
ro

fm
od

ifi
ed

fli
gh

ts
(%

)

No. of modified departure times
No. of modified routes
No. of modified flight levels

Figure 5.10: The average number of modified departure times, routes, and flight levels after running the
optimization process for the HQL algorithm and other approaches.

Strategic traffic decongestion under time uncertainties

In this section, we use the proposed hyper-heuristic to solve the robust traffic decongestion
planning problem formulated by Eq. (3.32). The user-defined parameters of our mathematical
model and resolution algorithms are set as in the previous subsection. The simulation was
performed 10 times for each uncertainty horizon of 1, 2, and 3 min with the same traffic as
in the previous subsection. As can be seen in Table 5.6, we find a significant reduction of
congestion between trajectories for all three cases. The proposed approach can minimize traffic
congestion by 95.54%, 88.20%, and 84.79% for given time uncertainties of 1, 2, and 3 min,
respectively. The number of aircraft involved in the given traffic situation tends to be higher
when a more extended time uncertainty horizon is considered. This situation results in a higher

95

congestion level and a lower capability to restructure trajectories to reduce congestion between
trajectories. Further, the associated computation time increases much more as compared with
the number of iterations. It is due to the fact that more aircraft leads to a higher number of
equations that must be taken into account to solve a linear least-squares minimization problem,
leading to a decrease in the performance of the matrix computation.

Table 5.6: Numerical results for restructuring a full day of traffic considering time uncertainties of 1, 2,
and 3 min.

tϵ

(minutes)
initial

Ψ
final
Ψ

Remaining congestion
(%)

computation time
(minutes) no. of iterations

1 3609.43 161.13 4.46 338.72 7,349,772
2 2072.45 244.47 11.80 537.78 7,351,522
3 2297.58 349.55 15.21 550.61 7,352,144

Table 5.7: Average adjustments applied to initial flight plans with time uncertainties of 1, 2, and 3 min.

tϵ

(minutes)

Average
departure

time changes (min)

Average
route length

extension (%)

Average
flight level changes

1 21.37 2.07 1.537
2 21.56 2.03 1.540
3 21.53 2.09 1.536

The average changes made to the initial flight plan are shown in Table 5.7. The proposed
algorithm modifies 30.56%, 29.49%, and 26.65% of the initial flight plans for time uncertainties
of 1, 2, and 3 min, respectively. The number of modified flight plans for the three cases is
detailed in Fig. 5.11. Considering a longer uncertainty period, the number of modified flight
plans for each control option gradually decreases.

5.4 Conclusion

This chapter presents a hyper-heuristic approach based on Q-leaning named HQL. This hyper-
heuristic adapts the strategy to select a well-performing heuristic to generate a neighborhood
solution, at a given decision point, without specific knowledge of a particular problem. HQL
uses the Q-learning agent to update the selection strategy in the form of the Q-table. The Q-
table is formalized by the states relying on a D-I cycle applied to the optimization process and
the actions represented by the heuristic operators. The HQL framework applies two acceptance
methods: the metropolis-based acceptance method and the BILS methods. The first method is
used when the neighborhood solution is generated in the diversification phase, while the second
is used during the intensification phase.

HQL has been proposed to solve the proposed strategic planning problem. The low-level
heuristics of the problem have been modeled, whereby three diversification heuristic operators
and three intensification operators have been proposed. The D-I cycle is applied to the operation
process at each transition temperature. The Q-learning agent chooses one of the diversification

96

tϵ = 1 min tϵ = 2 min tϵ = 3 min
0

5

10

15

20

25

30

35

23.82% 23.25%
21.20%

11.69% 10.99%
9.72%

7.23% 7.01% 6.12%N
um

be
ro

fm
od

ifi
ed

fli
gh

ts
(%

)
No. of modified departure times
No. of modified routes
No. of modified flight levels

Figure 5.11: Number of modified flight plans considering time uncertainties of 1, 2, and 3 min.

operators during the diversification phase, and an intensification operator is chosen at each
iteration during the local search procedure.

Experimental studies on a full day of traffic in the French airspace suggest that our method-
ology can alleviate congestion between trajectories within a computation time compatible with
strategic planning. The significant reduction in the final congestion ensures that the traffic
situations presented in air traffic are easier to manage by the air traffic controller. Furthermore,
the proposed algorithm equipped with the learning mechanism is more efficient in comparison
with the random search and the selective simulated annealing in terms of traffic congestion.

Finally, time uncertainties have been taken into account. Instead of considering a single
observation as a fixed position and speed vector at a given time, the observation was modeled
as its multiple predicted position and speed vectors over a time range. A significant reduction
in traffic congestion shows that our congestion evaluation favors assessing the traffic structure
under time uncertainty. The computation time represented in this experiment is also reasonable
for trajectory planning at the strategic level.

The next chapter will present a comparative study to confirm the robustness of the strategic
decongestion method against the time perturbation using the Monte Carlo method.

97

Chapter 6

Robustness analysis of two strategic
4D trajectory plannings

Strategic 4D trajectory planning is a promising technology for next-generation air traffic man-
agement and systems. Some approaches attempt to satisfy the capacity constraint to reduce
traffic congestion, while others aim to reduce potential conflicts between trajectories. This
chapter investigates two approaches for organizing the real traffic in the French airspace at the
strategic level. The first approach minimizes interactions between trajectories, while the sec-
ond reduces traffic congestion so that the controller maintains the traffic without much effort.
The associated optimization problems are formulated and solved by an approximative approach
based on simulated annealing.

The main challenge of strategic planning is dealing with a high level of uncertainty, particu-
larly resulting from uncertain departure times and weather. The difficulty in synchronizing the
activities of different actors at departure airports and the existence of external constraints, e.g.,
weather conditions, usually produce some uncertainties in the time dimension in such a way
that the planned strategic 4D trajectories may not be exact. The departure time perturbation
was introduced to study the robustness of the two proposed methods. The evaluation of the
robustness is performed by Monte Carlo simulation. The findings in this work encourage the
appropriate use of proposed methods in the strategic 4D trajectory planning framework.

The first section of this chapter introduces the robustness evaluation method using a Monte
Carlo simulation technique. Then, the second section presents the mathematical formulations
of the proposed strategic planning problems. In the following (Section 6.3), the computation
of objective functions is described. Then, the resolution method is presented in Section 6.4.
Section 6.5 introduces the benchmark used in the experiments. Next, The simulation results
are compared in Section 6.6. Finally, the chapter is summarized in the last section.

6.1 Robustness evaluation based on a Monte Carlo simulation

To assess the robustness of solutions, sensitivity analysis is an approach that we use to determine
how various source or input values of an individual variable affect a mathematical models results.
With this approach, it is possible to better understand how the model output is sensitive to
unspecified parameters [109].

Sensitivity analysis methods can be broadly classified as either “local” or “global”. Local
sensitivity analysis (LSA) methods examine partial output derivatives with respect to each input
parameter. These methods are used to determine the sensitivity indices at a given point in the

98

sample space. Since first-order derivatives are used in these methods, they have straightforward
and small calculations. The simplest and most common SA method is one-at-a-time (OAT).
OAT approaches investigate the influence of a single parameter on system output at a time by
keeping other parameters unchanged. However, these methods only cover a subset of the state
space, especially when there are many parameters. Therefore, they do not address how the
parameters interact with the system output.

Global sensitivity analysis (GSA) methods consider all dimensions of the model, which are
obtained by simultaneously changing all parameter values [110]. Several GSA methods use
Monte Carlo (MC) simulations for sampling, which is a process of randomly drawing variables
from their distribution functions [111]. This method is used to study how a model responds to
randomly generated inputs. Based on our knowledge, the MC method is often useful in solving
problems in physics and mathematics, where analytical methods are difficult to use. These
methods use random numbers and probability theory to solve the problem.

In general, the Monte Carlo simulation consists of the following steps:

1) Randomly sample inputs from the distribution functions;

2) Run a simulation based on a system model for all input vectors;

3) Use a metric to evaluate an output response from such a model.

Several simulations are required for computing output distribution and statistics. This makes
it the most straightforward and robust method available in the scientific literature to deal with
uncertainty propagation in complex models.

Monte Carlo sampling for N flights

Trajectory plan
k

Interaction computation

Departure time perturbation
t ′′i = t ′i + δi ,

where δ ∼ N (µ,σ)

Interaction
computation Record ∆Φk

Repeat for 10,000 simulations

Φp +

Φ0

−

Figure 6.1: Robustness evaluation against the departure time perturbation for a set of optimal trajectories
obtained from the proposed strategic planning method.

In this work, we propose a Monte Carlo simulation method to evaluate the robustness of two
solutions obtained by different strategic planning methods. Figure 6.1 presents the proposed
architecture to evaluate the robustness against the departure time perturbation for a trajectory
plan (e.g., a set of optimal trajectories) obtained by each strategic planning method. A set
of trajectories in such a plan and corresponding total interactions are the main inputs of the
simulation process. The process begins by performing the random perturbation to the planned
departure times of N flights. Then, the new total interactions according to the perturbation are
computed. Next, the process records the number of additional interactions. Finally, we repeat
the simulation process 10,000 times to achieve the statistical analysis.

99

6.2 Optimization formulation

This section establishes the mathematical framework of two proposed strategic planning prob-
lems with different objective functions. First, given data and model assumptions regarding this
problem are introduced. Then, the set of decision variables and their constraints are given.
Finally, two objective functions are described at the end of the section.

6.2.1 Input data and model assumptions

In the trajectory-based approach, the input data is a set of discretized 4D trajectories obtained
from the air traffic simulation and prediction processes. The aircraft’s 3D positions and velocities
are computed at fixed time steps. The computation of such state vectors is based on BADA-
based aircraft performance modeling. The flight schedules and requested flight levels rely on
real traffic demand (flight plans proposed by airlines). For a given set of flights F , each flight i

has its initial trajectory γi and some alternative trajectories. Each alternative trajectory γ
(r,l)
i is

identified by the route option index ri and the flight level shift li. The problem instance is given
by the following data:

• N : the number of discretized 4D trajectories;

• ts: the sampling time of 4D trajectories;

• fmin: the lowest flight level considered in airspace simulation;

• fmax: the highest flight level considered in airspace simulation;

• tmin: the earliest time considered in airspace simulation;

• tmax: the latest time considered in airspace simulation.

The following notations are defined for the proposed problem:

• F : the set of flights

• Ki: set of sample points for flight i ∈ F

• Ri: set of alternative routes for flight i, i ∈ F

• Li: set of alternative flight level shifts for flight i ∈ F

• Nh: the standard lateral separation norm;

• Nv: the standard vertical separation norm;

• τ+
i : the maximum allowed delay departure time shift for flight i;

• τ−
i : the maximum allowed advance departure time shift for flight i;

• l+i : the maximum allowed positive flight level shift for flight i;

100

• l−i : the maximum allowed negative flight level shift for flight i;

The following assumptions are used in the proposed model:

• The airspace is considered as an Euclidean space. Latitudes and longitudes in the WGS-84
coordinate system are projected into a 2D space by a Lambert azimuth projection;

• The nominal trajectory refers to the non-direct route where the optimized performance of
the flight is considered;

• Each trajectory is performed with nearly constant airspeed and a constant flight level
during the cruising phase. These parameters are pre-determined so that the flight perfor-
mance is optimal;

• The airspace is considered as a RVSM airspace where the en-route aircraft vertical seper-
ation is 1,000 ft.

6.2.2 Decision variables

The three following decision variables are used to structure the aircraft trajectories: departure
time adjustment, route assignment, and flight level allocation.

Departure time adjustment The departure time of each flight can be rescheduled with a
positive (delay) or a negative (advance) time shift (τi). The rescheduled departure time of flight
i is similar to the expression in Eq. (3.1)

Alternative en-route trajectory The horizontal route of each flight can be changed with
one of the alternative routes predefined for each flight. These alternative routes are all generated
by a BADA-based fast time simulator. The construction of these routes relies on the deviation
from their original routes. Let ri ∈ N0 be the current route index of flight i. Figure 6.2 illustrates
possible alternative horizontal profiles of flight i given by the corresponding route indexes.

Departure airport

Arrival airport

ri = 0

ri = 2

ri = 1

Figure 6.2: Alternative horizontal profiles (the dashed line) based on an original route (the solid line) of
flight i.

101

Flight level allocation The final choice to structure the traffic is to assign the new flight
level with a flight level shift li ∈ Z. The vertical profile for each flight is similar to the proposed
model in Fig. 3.7 from Chapter 3. Hence, the new flight level is given by the same expression
in Eq. (3.4).

To simplify the proposed model, the decision vectors of departure time shifts, route options,
and flight level shifts are respectively defined as follows:

τ = {τi : τi ∈ Z,∀i ∈ F}
r = {ri : ri ∈ N0,∀i ∈ F}
l = {li : li ∈ Z,∀i ∈ F}

Therefore, the decision variables of our problem are represented with the following single
vector:

u := (τ , r, l)

6.2.3 Constraints

The preceding decision variables of flight i will be compliant with the following constraints:

Maximum allowed departure time shift The set of possible departure time shifts (Ti) is
controlled by a maximum allowed advance departure time shift (τ−

i) and a maximum allowed
delay departure time shift (τ+

i) as expressed in Eq. (3.15), where the fixed duration between time
shifts Ts allows the user to control the temporal resolution of the departure time adjustment.

Maximum allowed number of alternative routes The set of route options for each flight
i (Ri) is limited by the maximum allowed number of alternative routes (r+

i), which corresponds
to the highest route index associated with each flight i. The set of possible route indexes for
each flight i is given by:

Ri ∈
{

r : 0 ≤ r ≤ r+
i , r ∈ N0

}
(6.1)

Maximum allowed flight level shift The set of possible flight level shifts (Li) is controlled
by a maximum allowed positive flight level shift (l+i) and a maximum allowed negative flight
level shift (l−i), whereby the expression is similar to that in Eq. (3.16).

6.2.4 Objective functions

This section presents the two objective functions of different strategic planning methods. The
first objective is to minimize total interactions between trajectories while minimizing the total
departure time shift, deviation from nominal trajectories, and flight level shift. The details

102

of the trajectory-based interaction model are given in the following paragraph. The second
objective is to reduce total congestion between trajectories and minimize the total departure
time shift, deviation from nominal trajectories, and flight level shift. In this work, we use the
trajectory-based congestion model, as presented in Section 3.3 from Chapter 3, to evaluate total
congestion between trajectories. Finally, the two objective functions are summarized at the end
of this section.

Interaction between trajectories Regarding strategic planning in a TBO environment, the
interaction between trajectories indicates when two or more trajectories occupy the same space
at the same period of time. A more clarified definition of this concept is given in [10, 21–23].

Considering a given set of discretized 4D trajectories, where each trajectory γi represents a
time sequence of 4D points, each 4D point, Pi,k = (xi,k, yi,k, zi,k, ti,k) specifies that the aircraft
must arrive at a given position (xi,k, yi,k, zi,k) at time ti,k where k ∈ Ki.

For any pair of points Pi,k and Pj,l on trajectories γi and γj , a potential conflict of such
trajectories can occur when the required separation is violated as follows:

dh(Pi,k, Pj,l) < Nh (6.2)
dv(Pi,k, Pj,l) < Nv (6.3)

When preceding conditions are satisfied, the definition that the point Pi,k is in conflict with
the point Pj,l at the same time is given by:

C(Pi,k, Pj,l) :=

1, if Point Pi,k is in conflict with Point Pj,l

under conditions (6.2) and (6.3),
0, otherwise.

(6.4)

Considering time ti,k of trajectory γi, let Φi,k be the number of interactions at point Pi,k. It
is defined as the number of times that a new potential conflict (as defined in Eq. (6.4)) could
be detected involving Pi,k. Hence, Φi,k is given by:

Φi,k(ui) =
∑
j∈J
j ̸=i

∑
l∈Kj

C(Pi,k, Pj,l) (6.5)

where Kj is a set of points along with each trajectory j at time ti,k, and J denotes the set of
neighboring trajectories in the search space. Figure 6.3 gives an example of interaction in the
horizontal plane between three trajectories at point Pi,k.

The number of interactions associated with the trajectory γi, Φi is therefore defined as
follows:

Φi(ui) =
∑

k∈Ki

Φi,k(ui) (6.6)

Finally, the number of interactions between all trajectories for the full-time horizon is defined

103

dh < Nh

dh > NhPi ,k

Φi ,k = 1

Figure 6.3: Interaction Φi,k around point Pi,k at time ti,k.

as
Φ(u) =

∑
i∈F

Φi(ui) =
∑
i∈F

∑
k∈Ki

Φi,k(ui) (6.7)

In addition, a practical methodology to evaluate interaction between trajectory in a large-scale
context is presented in Section 6.3.

Therefore, we proposes two optimization problems to perform the comparative analysis of
different strategic 4D trajectory plannings. First, the objective of the strategic traffic decon-
fliction is to minimize interaction between trajectories while minimizing the total departure
time shift, the total deviation from the nominal routes and the total flight level shift. The
optimization problem can be formulated as follows:

min
u

J1(u) = Φ(u) + α1
∑
i∈F

τi + η1
∑
i∈F

li + β1
∑
i∈F

dA (γi(ri), γi(0))2

s.t. τi ∈ Ti, ∀i ∈ F
ri ∈ Ri, ∀i ∈ F
li ∈ Li, ∀i ∈ F

(6.8)

where Φ is defined by Eq. (6.7), and Ti, Ri, and Li are given by Eqs. (3.15), (6.1), and (3.16),
respectively.

Second, the strategic traffic decongestion problem in this paper aims to mitigate the conges-
tion in air traffic while minimizing the total departure time shift, the total deviation from the
nominal routes and the total flight level shift. This problem can be expressed in the following
mathematical form:

min
u

J2(u) = Ψ(u) + α2
∑
i∈F

τi + η2
∑
i∈F

li + β2
∑
i∈F

dA (γi(ri), γi(0))2

s.t. τi ∈ Ti, ∀i ∈ F
ri ∈ Ri, ∀i ∈ F
li ∈ Li, ∀i ∈ F

(6.9)

where Ψ is defined by Eq. (3.23) and dA(γi(ri), γi(0))2 denotes the area-based distance between
the nominal and alternative trajectories of flight i that results from the distance integration
over time and the evaluation of a mean error instead of the raw sum of squares [112]. The route

104

deviation from the nominal trajectory is characterized by the normalized area-based distance
as follows:

dA(γi(ri), γi(0))2 = 1
T

∫ T

0
∥si(ri, t)− si(0, t)∥2dt (6.10)

where T is a predefined time horizon, si(ri, t) and si(0, t) are the 2-D positions at time t along
the chosen trajectory (γi(ri)) and the nominal trajectory (γi(0)), respectively.

6.3 Objective function computation

Interaction detection The airspace is discretized into a 4D grid (3D space + time), as
shown in Fig. 3.11. The size of each cell in the spatial dimension is defined by the horizontal
and vertical separation requirements, Nh, Nv, and the time axis is scaled based on a sampling
time present in a set of trajectories. All trajectories are stored in such a 4D grid, whereby each
aircraft plot is inserted into each 4D cell represented by an array of the hash table. This table
allows the algorithm to retrieve or manipulate the associated plot from the 4D grid with the
average time complexity of O(n) = 1.

To compute the number of interactions around a reference plot Pi,k at time ti,k, we search for
candidate plots that belong to other aircraft in the same cell and adjacent cells corresponding to
the time ti,k. Then, we calculate the horizontal and vertical distances between the reference and
each candidate plot. Finally, when the candidate plot violates either one or both of minimum
separations, the interaction is computed using Eq. (6.4).

In some situations, an interaction may not be able to be detected when a violation of the
minimum separation requirements is only found during a period of time that is smaller than a
given sampling time. To avoid this issue, an interpolation technique can be used to construct
temporary plots with a sufficiently small step. More details of this technique are presented
in [10].

Congestion computation Similar to the interaction detection scheme, we use a 4D grid
to store, retrieve and manipulate 4D trajectories to assess the congestion between trajectories.
After insertion of 4D trajectories, one or more observations (represented by aircraft position
and speed vectors) can be found in a 4D cell.

Considering a traffic situation around the reference plot Zi,k at time ti,k, we search for the
observations within the search space similar to the interaction detection scheme. As described
in Section 3.5.2 from Chapter 3, the neighborhood filter is set for checking the neighboring
aircraft of the reference plot within a lateral area of 15×15 NM2 and a vertical range of 3,000 ft.
The observations found within or adjacent to the cell where the reference plot is located are
declared candidates for neighborhood filtering. The filtering validated such candidates based
on the conditions in Eqs. (3.8) and (3.9). Then, the local congestion can be computed using
Eq. (3.12). The algorithm used to compute the total congestion between all trajectories in the
airspace has been given in Algorithm 3.3 from Chapter 3.

105

6.4 Resolution method

To solve the strategic deconfliction and decongestion planning problems, we rely on the selective
simulated annealing algorithm proposed in Section 3.2 from Chapter 3. However, we propose
improving the algorithm for selecting the decision in order to generate the neighborhood solu-
tion.

The neighborhood function generates a candidate decision by the following two steps:

1) A decision with a higher cost value is more likely to be chosen for generating a candi-
date decision. Therefore, the algorithm chooses a decision with the following selective
probability function:

Ps(yi) = a + (1− a) ·
(

yi

ymax − yi

)b

(6.11)

where ymax is the highest cost value in a set of all decisions at a given transition. The
constants a and b are the user-defined parameters of the selective probability function
where 0 ≤ a ≤ 1 and b > 0.

2) Each decision represents the decision variables associated with aircraft i. One or more
decision variables are randomly modified inside boundaries defined by Eqs. (3.15), (6.1),
and (3.16).

The probability of choosing how trajectory γi is modified depends upon the ratio of the
initial temperature T0 and the current temperature T at a given transition of the optimization
process. Practically, when the current temperature is higher, the algorithm would randomly
modify the trajectory γi with a new route option ri or flight level li or both, whereas randomly
choosing a new departure time shift τi would be preferable when the temperature becomes
lower. The neighborhood function is summarized in Algorithm 6.9.

Algorithm 6.9 Neighborhood function
Require: trajectory i, initial temperature T0, current temperature T

1: procedure change_decision(T0, T)
2: Generate a random number, p := random(0, 1);
3: if p < T

T0
then

4: Choose randomly new ri and li from R and Li, respectively;
5: else
6: Choose randomly new τi from Ti;

6.5 Benchmark description

The characteristics of the data set are given at the beginning of this section. Then, the pertur-
bation model used in the Monte Carlo simulations is introduced.

106

6.5.1 Case study: Traffic data in the French airspace

The experiment’s air traffic data represents the en-route traffic in the French airspace. It consists
of 8,476 trajectories (constructed from a BADA-based traffic simulator) based on actual flight
plans in the French airspace.

Alternative routes and flight levels may not be fully proposed in some flights because the
alternative trajectories are dependent on aircraft performance data. Table 6.1 presents the total
number of alternative 4D trajectories available for optimization. This table shows that all flights
have two alternative routes for each flight level. However, some flight plans are more restrictive
in changing their flight levels when a larger flight level shift is requested. Further, about 12.27%
of all flight plans are not allowed to change their flight level.

Table 6.1: Total number of alternative 4D trajectories for each route option and flight level shift.

Route option
(ri)

Flight level shift (li)

−2 −1 0 +1 +2

0 83.32% 87.73% 100% 85.40% 80.83%
1 83.32% 87.73% 100% 85.40% 80.83%
2 83.32% 87.73% 100% 85.40% 80.83%

To give an idea regarding the computational complexity of two objective functions in this
problem instance, when using the sampling time-step value ts = 15 seconds, all 4D trajectories
are discretized into 21,371,854 sample 4D points, including alternative route and flight level
options. Concerning the dimension of the search space, we note that our optimization problem
involves the following features:

1)
∑N

i=1

(
|τ+

i |+ |τ
−
i |

ts
+ 1

)
= 144,092 (discrete) departure-time shifts variables (τ);

2)
∑N

i=1

(
r+

i + 1
)

= 25,428 route options (r);

3)
∑N

i=1

(
|l+i |+ |l

−
i |+ 1

)
= 37,065 (discrete) flight-level shifts variables (l).

According to traffic data, Figs 6.4 and 6.5 show the total interactions between trajectories
and traffic congestion between trajectories over different hours.

6.5.2 Perturbation model

In this work, we propose a perturbation model to investigate the robustness of the two strategic
planning methods. Perturbations of the solutions (e.g., optimal trajectory plans) obtained by
different strategic planning methods rely on such a model. The proposed model is based on a
non-zero mean normal distribution following the empirical rule where 99.7% of departure time
variations fall within three standard deviations of the mean (µ ± 3σ). Therefore, each flight’s
departure time is modified by:

δi ∼ N
(

µ, δmax − µ

3

)
107

0:0
0

1:0
0

2:0
0

3:0
0

4:0
0

5:0
0

6:0
0

7:0
0

8:0
0

9:0
0

10
:00

11
:00

12
:00

13
:00

0

1,000

2,000

3,000

4,000

Time of day (in hours)

To
ta

li
nt

er
ac

tio
ns

(Φ
)

Figure 6.4: Distribution of the total interactions between trajectories over different hours.

0:0
0

1:0
0

2:0
0

3:0
0

4:0
0

5:0
0

6:0
0

7:0
0

8:0
0

9:0
0

10
:00

11
:00

12
:00

13
:00

0

50

100

150

200

Time of day (in hours)

To
ta

lc
on

ge
st

io
n

(Ψ
)

Figure 6.5: Distribution of traffic congestion between trajectories over different hours.

where δmax is a maximum variation of the departure time. In our assumption, the departure
time is varied by the perturbation model, whose mean departure delay and standard deviation
are 5 minutes and 18.33 minutes, respectively. The distribution of departure time perturbation
is shown in Fig. 6.6. Almost all departure times vary between -50 and 60 minutes from their
planned departure times.

6.6 Simulation results

This section presents a performance comparison between the first and second methods. The
simulation results are divided into two parts. The first part compares the characteristics of
optimal trajectory plans obtained by the two strategic planning methods. Next, the second

108

−50 −40 −30 −20 −10 0 10 20 30 40 50 60
0

1

2

3

4

5

Perturbation of departure time shift (δi) in minutes

D
ist

rib
ut

io
n

(%
)

Figure 6.6: Distribution of departure time perturbation (δi) for each flight.

part presents the numerical results comparing the robustness of such planning methods. The
proposed resolution algorithm and Monte Carlo method are implemented in Java, and all ex-
periments are run on an Ubuntu system with Intel Xeon at 2.4 GHz with 32 GB of memory.

Table 6.2 provides the parameter values that define the problem. The parameters used
for our resolution algorithm have been conducted by several empirical experiments and are
separately defined in Table 6.3. Each strategic planning method was executed for ten runs with
different random seed values.

Table 6.2: User-defined parameters corresponding to the problem formulation.

Parameters Value

Sampling time step, ts 15 s
Maximum negative departure time shift, τ−

max 15 min
Maximum positive departure time shift, τ+

max 45 min
Maximum number of route options, Rmax 2
Maximum negative flight level shift, l−

max 2
Maximum positive flight level shift, l+

max 2
Objective function coefficients for
the strategic deconfliction problem, (α1, β1, η1) (0.02, 1, 0.25)
Objective function coefficients for
the strategic decongestion problem, (α2, β2, η2) 0.01 · (0.02, 1, 0.25)

Table 6.3: User-defined parameters corresponding to the resolution algorithm.

Parameters Value

Number of iterations at each temperature step, NI 1 000
Contants for the selective probability function, (a, b) (0.05, 3)
Initial acceptance rate, χ0 0.8
Geometric cooling rate, β 0.999
Final temperature, Tf 10−4 · T0

First, the strategic traffic deconfliction problem is solved by the SSA algorithm. The initial

109

and final interaction between trajectories, average departure time shift, average route deviation,
and average flight level shift are reported in Table 6.4. In Fig. 6.7, the results of the optimization
method are plotted for the strategic deconfliction problem. The resolution algorithm reaches
an interaction-free trajectory plan after 2 million iterations or within about 30 minutes from
a total computation time of 89.88 minutes. Before interaction-free solutions were found, the
total time shift slowly decreased in such a way that the algorithm had more opportunities to
achieve the first interaction-free solution. After the total interaction value converged, the total
departure time shift rapidly decreased and stalled after 9 million iterations.

Table 6.4: Numerical results obtained by the strategic deconfliction method.

Initial Φ Final Φ Solved
interactions

Avg.
time shift

(min)

Avg.
route deviation

Avg.
flight level shift

119354 0.0 100% 2.56 0.2867 1.24

Second, the SSA algorithm with the same configuration is used to solve the strategic traffic
decongestion problem. The initial and final congestion between trajectories, average delay
time, average route deviation, and average flight level shift are reported in Table 6.5. The
proposed method can reduce the total congestion between trajectories by 99.94%. The results
of the optimization method for the strategic decongestion problem are presented in Fig. 6.7.
The optimal congestion value converged after 4 million iterations, about 45 minutes of the total
computation time (85.8 minutes). For the same reason, the total time shift slowly decreased due
to the fact that the congestion value had not yet converged. However, after such convergence,
the total time shift rapidly decreased until the end of the optimization process.

0 1 2 3 4 5 6 7 8 9
0

10,000

20,000

30,000

40,000

50,000

5

10

15

Number of iterations (millions)

To
ta

li
nt

er
ac

tio
ns

(Φ
)

·104

To
ta

lt
im

e
sh

ift
(m

in
)

Total interactions

Total time shift

Figure 6.7: Evolution of total interactions and accumulated time shift over the number of iterations for
the strategic deconfliction method.

Figure 6.9 compares the number of modified flights with different control options between
the two strategic planning methods. The number of modified flights for each option obtained
by the strategic decongestion method is higher than the strategic deconfliction method. It

110

Table 6.5: Numerical results obtained by the strategic decongestion method.

Initial Ψ Final Ψ Solved
congestion

Avg.
time shift

(min)

Avg.
route deviation

Avg.
flight level shift

1918.2 1.18 99.94% 4.84 0.2871 1.46

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

1,000

1,200

5

10

15

Number of iterations (millions)

To
ta

lc
on

ge
st

io
n

(Ψ
)

·104

To
ta

lt
im

e
sh

ift
(m

in
)

Total congestion

Total time shift

Figure 6.8: Evolution of total interactions and accumulated time shift over the number of iterations for
the strategic decongestion method.

is considered that the proposed decongestion method requires more changes in the planning
to improve the traffic structure, where the method attempts to organize traffic into flows as
compared with another method. The strategic deconfliction method does not have to do more
than separate aircraft trajectories to avoid conflicts.

Finally, we use the Monte Carlo simulations to evaluate the robustness of the two strategic
planning methods with respect to the departure time perturbation. The optimal trajectory
plans obtained by the two strategic planning methods are used in this investigation. The
experiment consists of ten Monte Carlo simulations with different numbers of perturbed flights.
Each simulation runs 10,000 replications to achieve the statistical analysis.

Figure 6.10 shows how many additional interactions increased over the number of perturbed
flights resulting from 4D trajectory plans. All plans show similar profiles, with additional inter-
actions increased over the number of perturbed flights. The number of additional interactions
for the traffic based on the plan to reduce the congestion is less than that for the traffic based
on the plan to minimize interaction between trajectories. These results show that the strate-
gic decongestion method, which structures the traffic into flows, is much more robust to the
departure time uncertainty.

Figure 6.11 displays the comparison of frequency distributions regarding the additional num-
ber of interactions for the traffic based on the strategic deconfliction planning and the strategic
decongestion planning when all flights are perturbed. Therefore, the statistical indicators of

111

No. of modified departure times No. of modified routes No. of modified flight levels
0

20

40

60

80

100

80.71%

55.11% 54.97%

89.21%

62.33%
66.92%

N
um

be
ro

fm
od

ifi
ed

fli
gh

ts
(%

)
Strategic traffic deconfliction Strategic traffic decongestion

Figure 6.9: Average number of modified departure times, routes, and flight levels presented in two optimal
trajectory plans with different strategic planning methods.

10 20 30 40 50 60 70 80 90 100
0

10,000

20,000

30,000

40,000

50,000

60,000

Perturbed flights (%)

Ad
di

tio
na

li
nt

er
ac

tio
ns

(∆
Φ

n)

Strategic traffic deconfliction
Strategic traffic decongestion

Figure 6.10: Number of additional interactions after the departure time perturbation over the number
of perturbed flights.

mean and standard deviation can provide a reference in the performance comparison. Accord-
ing to the figure, no significant differences are not observable for the standard deviation, while
the strategic deconfliction planning outperforms the strategic decongestion planning with fewer
interactions generated.

112

10 k 15 k 20 k 25 k 30 k 35 k 40 k 45 k 50 k 55 k 60 k

0

50

100

Additional interactions

Fr
eq

ue
nc

y
Strategic traffic deconfliction Strategic traffic decongestion

Figure 6.11: Frequency distributions of the simulation experiments in terms of additional number of
interactions when all flights are perturbed. The simulation results are obtained from the Monte Carlo
simulations based on the solutions of the deconfliction planning and the decongestion planning for the
en-route traffic in the French airspace.

6.7 Conclusion

This chapter has presented two approaches to address a strategic 4D trajectory planning prob-
lem. The first approach minimizes interaction between trajectories, while the second approach
minimizes congestion between trajectories. Behind proposed optimization models, both meth-
ods also aim at reducing total departure time delay, route deviation, and flight level shift. The
selective simulated annealing algorithm is proposed to solve the strategic planning problem for
an instance of air traffic in the French airspace. The results show that the resolution algorithm
can solve all interactions between trajectories for the strategic deconfliction model. The same
algorithm gives the optimal trajectory plan with a 99.94% reduction of airspace congestion for
the strategic decongestion model.

This work also presents a comparative study regarding the robustness of the proposed meth-
ods against the departure time perturbation, whereby their solutions are evaluated through
Monte Carlo simulations. According to the results, the method to minimize traffic congestion is
more robust against the disturbances than the method to minimize interaction between trajec-
tories. This comparative study can support the network planner in using appropriate methods
in the strategic 4D trajectory planning framework to deal with a high level of uncertainty.

113

Chapter 7

Conclusion and perspectives

Research work in this thesis focuses on managing aircraft trajectories at the strategic level in
order to alleviate traffic congestion in the airspace. We have also developed a new paradigm to
assess traffic congestion, whereby traffic complexity between trajectories is taken into account.
The proposed approaches in this thesis have been investigated in a TBO environment. This
chapter concludes our research by summarizing the main contributions presented in this thesis,
followed by perspectives influenced by our study.

7.1 Contributions

In the operational context, most current traffic planning methods prevent congestion in the
airspace by disseminating the traffic demand in time and in space. However, in the research
context, the TBO concept plays an essential role in developing new approaches to enhance
airspace capacity. With the advantages of TBO, some studies attempt to minimize conflicts
between trajectories rather than satisfying capacity constraints while others tend to adapt traffic
demand to the actual capacity in such a way that the air traffic controller can handle more flights
in a given airspace.

The first contribution introduces an optimization problem of strategic traffic decongestion
planning in a TBO environment. An optimization formulation has been introduced to structure
aircraft trajectories in the large-scale context with the following trajectory-based structuring
methods: departure time allocation, traffic rerouting, and flight level allocation. The objective
is to reduce congestion between trajectories in the airspace. The trajectory-based congestion
model has been proposed to evaluate such congestion in the airspace over a full-time horizon.

The trajectory-based congestion model has been proposed to assess traffic congestion in the
TBO environment. A given air traffic situation is modeled with a linear dynamical system
where observations are represented by the positions and speed vectors of the reference aircraft
and neighboring aircraft located in the neighborhood airspace. The approach for measuring
such congestion relies on the properties of the eigenvalues associated with the matrix of the
underlying linear dynamical system. It is then possible to identify the traffic disorder in a given
traffic situation.

Moreover, we extended the preceding model by proposing a robust strategic decongestion
planning model where time uncertainties are taken into account to improve the robustness of
the solution. The robust congestion model has also been developed, whereby the observations
in a given traffic situation are represented by multiple predicted positions and speed vectors of
the reference aircraft and the neighboring aircraft over an uncertainty period.

114

The second contribution introduces the meta-heuristic approach for solving the proposed
optimization problem. Since the objective function and some constraints are not explicitly
expressed by the decision variables, an optimization architecture incorporating the simulation-
based evaluation has been proposed. A simulated annealing-based method has been applied to
solve such a problem due to the fact that the proposed optimization architecture achieves good
performance when using a single solution-based method. The proposed resolution method has
solved the proposed problem with different operational configurations in terms of neighborhood
airspace and flight level shift interval. In each configuration, we have compared the solutions
with different mitigation strategies. The resolution method performs better, for all operational
configurations, by applying more control options to aircraft trajectories. The operational con-
figuration with a larger neighborhood airspace around aircraft increases the complexity of the
problem to reduce the congestion between trajectories since a higher number of aircraft are
involved in a given traffic situation. This fact assists the network planner in considering the
size of the neighborhood space in order to obtain the optimal trajectory plan in a particular
environment. Further, the semi-circular rule, which regulates aircraft to change their flight level
with a minimum interval of 2,000 ft, helps the proposed resolution method in structuring air
traffic and enhancing congestion mitigation.

Following the proposition of the metaheuristic approach, a novel hyper-heuristic approach
based on Q-learning has been introduced as an alternative resolution algorithm. The proposed
hyper-heuristic uses a Q-learning agent to adapt the strategy to select a well-performing low-
level heuristic with the objective of improving the new solution in a given decision point. The
learning problem is formulated as an MDP problem in which states and actions correspond
to the diversification and intensification methods in the search process. The hyper-heuristic is
integrated into the optimization process in which the objective function is evaluated in a simu-
lation environment. It is worth mentioning that the self-adaptation mechanisms of the heuristic
search are explicitly identified and located at a level independent of the specific problem to
be addressed. The proposed resolution method has solved the proposed strategic deconges-
tion planning problem with a 96.76% reduction in air traffic congestion within an acceptable
computation time at the strategic level. In comparison with different algorithms, the proposed
algorithm is more efficient than the simulated annealing and the random search algorithm in
terms of the remaining congestion between trajectories.

The hyper-heuristic approach has also been proposed to solve the extended strategic decon-
gestion planning where time uncertainties are considered. Consequently, the congestion model
has been developed, whereby the observations in a given traffic situation are represented by
multiple predicted position and speed vectors over an uncertainty period. As evidenced by a
notable decrease in traffic congestion after the resolution, our proposed congestion model is suit-
able to quantify the congestion level under time uncertainties. By considering a longer period of
uncertainty, the computation time of the local congestion of a given traffic situation increases.
It is due to the fact that the neighborhood airspace is more extended in the time dimension so
that more neighboring aircraft are taken into account for computing the local congestion. As
a result, a higher number of equations to solve a least-squares minimization problem has to be
taken into account, which decreases the performance of the matrix computation, especially on
the Central Processing Unit (CPU).

The final contribution of this thesis focused on comparing the robustness of two strategic
planning methods against departure time perturbation. The first is the state-of-the-art strate-

115

gic traffic deconfliction method aimed at minimizing the total interaction between trajectories.
The second relies on the proposed strategic traffic decongestion method to reduce the total
congestion between trajectories. Apart from achieving their main objectives, both methods
also consider minimizing the total departure time shift, total route deviation, and total flight
level shift. To establish a comparative study, both methods applied the simulated annealing
algorithm to solve the problems. The neighborhood selection relies on the probabilistic se-
lection to allow more aircraft to participate in traffic structuring. As a result, the strategic
traffic deconfliction method has completely solved all interactions between trajectories, and the
strategic decongestion method has reduced traffic congestion by 99.94%. The suggested traffic
decongestion method takes more aircraft into account in enhancing the traffic structure with
the objective of maintaining the efficiency of traffic flows. In contrast to the traffic deconfliction
method, separating aircraft trajectories in the time and spatial dimensions is all that is required
for this method to prevent potential conflicts between aircraft. Finally, we applied the Monte
Carlo simulation technique to evaluate the robustness of the two solutions obtained by different
strategic planning methods. For each trajectory plan, the planned departure time of each flight
is randomly changed, and the total interaction between trajectories is recomputed. According
the simulation results, we compared the additional interactions from different solutions. The
traffic decongestion method is more robust against the departure time perturbation as com-
pared with the traffic deconfliction method. In order to deal with a high level of uncertainty,
this comparative study assists the network planner in applying an appropriate planning method
in the strategic 4D trajectory planning framework.

7.2 Perspectives

The above-mentioned parts in this thesis serve as a preliminary study that identifies the following
potential areas for further research.

Congestion computation

The congestion computation in this thesis relies on matrix-based computation in which the
performance is considerably reduced when the matrix size for solving a linear equation is large.
In the proposed framework, the same matrix-based computation on hundreds of 4D points per
flight can be enhanced by using data-parallel computation on Graphics Processing Units (GPUs)
instead of using CPU. The GPUs are not only designed to render graphics but can also be used
for general-purpose uses for massively parallel computation.

Uncertainty models

In this thesis, the temporal uncertainty was modeled with deterministic sets, whereby all pre-
dicted observations within an uncertain period are considered in computing the local congestion
with the same probability. However, some situations corresponding to such observations in the
uncertainty set may have a low probability of occurring. Therefore, the potential direction can
be accommodated to the probabilistic congestion model.

116

Learning mechanism in the hyperheuristic

The proposed hyper-heuristic framework is only the first step toward the implementation of an
adaptive searching mechanism to solve the large-scale optimization problem. Future recommen-
dations focus on the following areas: the effect of the hyperparameters of the HQL algorithm;
the development of reward functions that utilize feedback from the environment (e.g., optimiza-
tion process); expanding the learning mechanism to select a better low-level heuristic at a given
decision point.

The hyperparameters in the proposed learning mechanism are the learning rate, discount
factor, and epsilon-greedy parameters. Future research is recommended to focus on how such
parameters can be tuned to trade off the optimality and stability of the solution.

The proposed reward function is based on the values 0 and 1. A chosen heuristic operator
will not receive any reward since it cannot improve the current solution. Otherwise, a well-
performing operator receives a reward value of 1. Future research is encouraged to develop
a new reward function based on a regression model in which the reward value depends on a
variation of the objective values. In addition, other factors (number of iterations, types of
operators, etc.) linked with the optimization process can also be considered. An advantage of
this approach is that the designer can control the optimality by tuning the weights related to
various reward components.

Finally, the author recommends exploring the following two state-of-the-art algorithms for
the adaptive search process. First, the Monte Carlo tree search (MCTS) is a planning method
that can search through the tree in order to identify the best sequence of low-level heuristics to be
applied to the current state. The second approach is based on the multi-armed bandit approach.
The heuristic selection task and low-level heuristics can be interpreted as the player and the
arms of slot machines, respectively. A possible direction can focus on a comparative study, with
the proposed strategic traffic decongestion problem, between the proposed hyperheuristic and
these two approaches.

117

Publications

• Paveen Juntama, Supatcha Chaimatanan, Sameer Alam, Daniel Delahaye, “Hyper-
heuristic Approach Based on Reinforcement Learning for Air Traffic Complexity Mitiga-
tion”, Journal of Aerospace Information Systems, American Institute of Aeronautics
and Astronautics, 2022.

• Paveen Juntama, Sameer Alam, Daniel Delahaye, “A Study of Robustness Between
Two Strategic 4D Trajectory Plannings”, IWAC2022, 2022 International Workshop on
ATM/CNS, Oct 2022, Tokyo, Japan.

• Paveen Juntama, Supatcha Chaimatanan, Sameer Alam, Daniel Delahaye, “Air Traffic
Structuration based on Linear Dynamical Systems,” SID 2020, 10th SESAR Innovation
Days, Dec 2020, Virtual Event, France.

• Paveen Juntama, Supatcha Chaimatanan, Sameer Alam, Daniel Delahaye, “A Dis-
tributed Metaheuristic Approach for Complexity Reduction in Air Traffic for Strategic
4D Trajectory Optimization,” AIDA-AT 2020, 1st International Conference on Artificial
Intelligence and Data Analytics for Air Transportation (AIDA-AT), Feb 2020, Singapore.

118

Appendix A

Eigenvalue estimation in linear
dynamical systems

This appendix presents the estimation method for determining the evolution rule of the linear
dynamical systems. The evolution rule represents the behavior of observations on the short-
term horizon. This concept is applied to model the air traffic situation in Section 3.3. The air
traffic situation is then represented as a linear dynamical system in such a way that the traffic
situation becomes predictable according to the evolution rule of the system.

Given that there are N observations presented in a given traffic situation. Each observation
is represented by the position vector:

xn = (xn, yn)

and the speed vector:
vn = (vxn, vyn),

the weighted MMSE criterion between the linear dynamical system model and the observations
is given by:

E =
N∑

n=1
∥vn − (Axn + b)∥2, (A.1)

where the matrix A is the evolution rule of the system, and the vector b represents the static
behavior of the system.

To represent Eq. (A.1) in matrix form, the following matrices are introduced:

X =

x1 x2 x3 · · · xN

y1 y2 y3 · · · yN

1 1 1 · · · 1

 (A.2)

V =
[
vx1 vx2 vx3 · · · vxN

vy1 vy2 vy3 · · · vyN

]
(A.3)

C =
[
A | b

]
(A.4)

where

A =
[
a11 a12
a21 a22

]
, (A.5)

b =
[
b1
b2

]
, (A.6)

119

where X ∈ R3×N , V ∈ R2×N , and C ∈ R2×3. Therefore, the error criterion E can be expressed
as:

E = ∥V−CX∥2 (A.7)

= (V−CX)⊤ (V−CX) (A.8)

To determine the necessary condition for the estimator Ĉ that minimizes E, we calculate
the gradient of E, defined by:

∇CE = −2 (V−CX) X⊤ (A.9)

and then solve Ĉ such that ∇CE = 0. Therefore,

∇CE = 2(X⊤XC)− 2(X⊤V) = 0 (A.10)

Assuming that matrix X⊤X is invertible (also nonsingular), the solution of Eq. (A.10) is then
given by:

Ĉ = VX⊤(X⊤X)−1 (A.11)

However, a traffic situation in which two or more aircraft are in the same position leads to
the fact that the columns of matrix X are not linearly independent. As a result, the matrix
X⊤X becomes non-invertible. Although such a situation is not likely to happen in a real traffic
situation, the model designer should consider this issue and validate the input data before
solving the solution.

In real-life situations, the coefficient matrix of linear systems is not always square, and it is
impossible to determine its inverse. This case implies that we cannot directly find a solution
to a linear system. These situations can arise in two possible ways. One is when a linear
system is underdetermined when the number of variables (e.g., position and speed vectors) in
the system is greater than the number of equations (e.g., the number of observations). In
this case, the system may have an infinite number of solutions. The following case is the
overdetermined system. A system is termed overdetermined when it has a much higher number
of equations than the number of variables. In this case, the system may have many solutions or
no solutions. Therefore, we use the Moore-Penrose Pseudoinverse [113] to find or approximate
the best solution for such systems with no unique solutions.

According to Eq. (A.11), the problem of matrix inversion linked with the term X⊤X−1.
Instead of calculating this term, we use the properties of pseudo-inverse to find Ĉ as follows:

Ĉ = VX+ (A.12)

where X+ is the pseudo-inverse of X:

X+ = X⊤(XX⊤)−1 (A.13)

To find X+, the singular value decomposition (SVD) is a suitable method to avoid the
numerical problem [114]. The pseudo-inverse can be expressed from the SVD of matrix X as
follows:

X = PDQ⊤ (A.14)

120

where P ∈ R3×3 and Q ∈ RN×N are both orthogonal matrices but they are not unique.
D = diag(λ1, λ2, . . . , λp) ∈ R3×N is a rectangular diagonal matrix, where p = min(3, N) is a
rank of X, and λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. The λi are called the singular values of X. The form
of D is then:

D =

λ1 0 · · · 0 0 · · · 0

0 λ2 · · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...
0 0 · · · λp 0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0

 3 − r

N − r

(A.15)

Therefore, the pseudo-inverse of X, X+ ∈ RN×3 can be determined from the SVD as follows:

X+ = QD+P⊤ (A.16)

where Q ∈ RN×N , P⊤ ∈ R3×3, and D+ = diag(λ−1
1 , λ−1

2 , . . . , λ−1
p) ∈ RN×3 is formed from D

by taking the reciprocal of all the non-zero elements. The shape of D+ is then given by:

D+ =

1
λ1

0 · · · 0 0 · · · 0

0 1
λ2

· · · 0 0 · · · 0

...
...

. . .
...

...
. . .

...

0 0 · · · 1
λp

0 · · · 0

0 0 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 0 0 · · · 0

 N − r

3 − r

(A.17)

Then, matrix Ĉ is given by:
Ĉ = VQD+P⊤ (A.18)

Finally, matrix Â can be extracted from matrix Ĉ as expressed in Eq. (A.4).

121

Bibliography

[1] Mogford, R. H., Guttman, J. A., Morrow, S. L., and Kopardekar, P., “The complex-
ity construct in air traffic control: A review and synthesis of the literature,” Techni-
cal Note DOT/FAA/CT-TN95/22, Federal Aviation Administration, CTA Incorporated
Pleasantville, New Jersey 08232, Jul. 1995.

[2] “Air Passenger Numbers to Recover in 2024,” , 2022. https://www.iata.org/en/
pressroom/2022-releases/2022-03-01-01 (accessed April 1, 2022).

[3] Brennan, E., “How airspace closures triggered by the Russian war against Ukraine
are impacting European aviation,” , Mar. 2022. https://www.youtube.com/watch?v=
-peD2xS8uTU (accessed April 6, 2022).

[4] Manual on Collaborative Air Traffic Flow Management, International Civil Aviation Or-
ganization (ICAO), 3rd ed., 2018.

[5] Vossen, T. W. M., Hoffman, R., and Mukherjee, A., “Air Traffic Flow Management,”
Quantitative Problem Solving Methods in the Airline Industry, International Series in
Operations Research & Management Science, Springer, 2012, pp. 385–453.

[6] Toebben, H. H., Tallec, C. L., Joulia, A., Speidel, J., and Edinger, C., “Innovative Future
Air Transport System: Simulation of a Fully Automated Air Transport System,” Proceed-
ings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,
Vol. 225, No. 1, 2010, pp. 45–55.

[7] Joulia, A., and Tallec, C. L., “Aircraft 4D contract based operation: The 4DCo-GC
project,” 11th AIAA Aviation Technology, Integration, and Operations (ATIO) Confer-
ence, American Institute of Aeronautics and Astronautics, 2011.

[8] ENAIR, EUROCONTROL, and DFS, “STEP1 V3 Final Complexity Management
OSED,” Tech. Rep. P04.07.01-D68, Single European Sky ATM Research Joint Under-
taking (SESARJU), Brussels, Belgium, Sep. 2016.

[9] Puntero, E., “D5.3 Final Project Results Report,” Tech. Rep. D5.3, Single European Sky
ATM Research Joint Undertaking (SESARJU), Brussels, Belgium, Dec. 2019.

[10] Chaimatanan, S., Delahaye, D., and Mongeau, M., “A Hybrid Metaheuristic Optimization
Algorithm for Strategic Planning of 4D Aircraft Trajectories at the Continental Scale,”
IEEE Computational Intelligence Magazine, Vol. 9, No. 4, 2014, pp. 46–61.

[11] Kuchar, J., and Yang, L., “A review of conflict detection and resolution modeling meth-
ods,” IEEE Transactions on Intelligent Transportation Systems, Vol. 1, No. 4, 2000, pp.
179–189. URL https://doi.org/10.1109/6979.898217.

[12] Pallottino, L., Feron, E., and Bicchi, A., “Conflict resolution problems for air traffic
management systems solved with mixed integer programming,” IEEE Transactions on
Intelligent Transportation Systems, Vol. 3, No. 1, 2002, pp. 3–11.

122

https://www.iata.org/en/pressroom/2022-releases/2022-03-01-01
https://www.iata.org/en/pressroom/2022-releases/2022-03-01-01
https://www.youtube.com/watch?v=-peD2xS8uTU
https://www.youtube.com/watch?v=-peD2xS8uTU
https://doi.org/10.1109/6979.898217

[13] Cafieri, S., Brisset, P., and Durand, N., “A mixed-integer optimization model for Air
Traffic Deconfliction,” Proceedings of the Toulouse Global Optimization workshop, EN-
SEEIHT, Toulouse, France, 2010, pp. 27–30.

[14] Gariel, M., and Feron, E., “3D conflict avoidance under uncertainties,” IEEE/AIAA 28th
Digital Avionics Systems Conference, Inst. of Electrical and Electronics Engineers, 2009.
URL https://doi.org/10.1109/dasc.2009.5347480.

[15] Durand, N., Alliot, J.-M., and Noailles, J., “Automatic aircraft conflict resolution using
genetic algorithms,” Proceedings of the 1996 ACM symposium on Applied Computing,
ACM Press, Philadelphia, PA, 1996, pp. 289–298.

[16] Barnier, N., and Allignol, C., “Combining flight level allocation with ground holding
to optimize 4D-deconfliction,” 9th USA/Europe Air Traffic Management Research and
Development Seminar, 2011.

[17] Dougui, N., Delahaye, D., Puechmorel, S., and Mongeau, M., “A light-propagation model
for aircraft trajectory planning,” Journal of Global Optimization, Vol. 56, No. 3, 2012, pp.
873–895.

[18] Rey, D., Rapine, C., Fondacci, R., and Faouzi, N.-E. E., “Subliminal Speed Control in
Air Traffic Management: Optimization and Simulation,” Transportation Science, Vol. 50,
No. 1, 2016, pp. 240–262.

[19] Wang, R., Alligier, R., Allignol, C., Barnier, N., Durand, N., and Gondran, A., “Coop-
eration of combinatorial solvers for en-route conflict resolution,” Transportation Research
Part C: Emerging Technologies, Vol. 114, 2020, pp. 36–58.

[20] Chaimatanan, S., Delahaye, D., and Mongeau, M., “Strategic deconfliction of aircraft
trajectories,” 2nd International Conference on Interdisciplinary Science for Innovative
Air Traffic Management, Toulouse, France, 2013.

[21] Alam, S., Chaimatanan, S., Delahaye, D., and Feron, E., “Metaheuristic Approach for
Distributed Trajectory Planning for European Functional Airspace Blocks,” Journal of
Air Transportation, Vol. 26, No. 3, 2018, pp. 81–93.

[22] Islami, A., Chaimatanan, S., and Delahaye, D., “Large-Scale 4D Trajectory Planning,”
Lecture Notes in Electrical Engineering, Springer Japan, 2017, pp. 27–47.

[23] Chaimatanan, S., Delahaye, D., and Mongeau, M., “Hybrid metaheuristic for air traffic
management with uncertainty,” Recent developments of metaheuristics, Operations Re-
search/Computer Science Interfaces Series, Vol. 62, 2018, pp. 219–251.

[24] Odoni, A. R., “The Flow Management Problem in Air Traffic Control,” Flow Control of
Congested Networks, Springer Berlin Heidelberg, 1987, pp. 269–288.

[25] Vranas, P. B., Bertsimas, D. J., and Odoni, A. R., “The Multi-Airport Ground-Holding
Problem in Air Traffic Control,” Operations Research, Vol. 42, No. 2, 1994, pp. 249–261.

[26] Andreatta, G., and Romanin-Jacur, G., “Aircraft Flow Management under Congestion,”
Transportation Science, Vol. 21, No. 4, 1987, pp. 249–253.

123

https://doi.org/10.1109/dasc.2009.5347480

[27] Terrab, M., and Odoni, A. R., “Strategic Flow Management for Air Traffic Control,”
Operations Research, Vol. 41, No. 1, 1993, pp. 138–152.

[28] Andreatta, G., Odoni, A. R., and Richetta, O., “Models for the Ground Holding Problem,”
Large Scale Computation and Information Processing in Air Traffic Control, Springer
Berlin Heidelberg, 1993, pp. 125–168.

[29] Richetta, O., and Odoni, A. R., “Dynamic solution to the ground-holding problem in
air traffic control,” Transportation Research Part A: Policy and Practice, Vol. 28, No. 3,
1994, pp. 167–185.

[30] Bertsimas, D., and Patterson, S. S., “The Air Traffic Flow Management Problem with
Enroute Capacities,” Operations Research, Vol. 46, No. 3, 1998, pp. 406–422.

[31] Lulli, G., and Odoni, A., “The European Air Traffic Flow Management Problem,” Trans-
portation Science, Vol. 41, No. 4, 2007, pp. 431–443.

[32] Bertsimas, D., Lulli, G., and Odoni, A., “An Integer Optimization Approach to Large-
Scale Air Traffic Flow Management,” Operations Research, Vol. 59, No. 1, 2011, pp.
211–227.

[33] Sasso, V. D., Fomeni, F. D., Lulli, G., and Zografos, K. G., “Planning efficient 4D trajec-
tories in Air Traffic Flow Management.” European Journal of Operational Research, Vol.
276, No. 2, 2019, pp. 676–687.

[34] Agogino, A. K., and Tumer, K., “A multiagent approach to managing air traffic flow,”
Autonomous Agents and Multi-Agent Systems, Vol. 24, No. 1, 2010, pp. 1–25.

[35] Kravaris, T., Vouros, G. A., Spatharis, C., Blekas, K., Chalkiadakis, G., and Garcia,
J. M. C., “Learning Policies for Resolving Demand-Capacity Imbalances During Pre-
tactical Air Traffic Management,” Multiagent System Technologies, Springer International
Publishing, 2017, pp. 238–255.

[36] Delahaye, D., and Odoni, A. R., “Airspace congestion smoothing by stochastic opti-
mization,” Evolutionary Programming VI, Springer Berlin Heidelberg, Berlin, Heidelberg,
1997, pp. 163–176.

[37] Oussedik, S., and Delahaye, D., “Reduction of air traffic congestion by genetic algorithms,”
Lecture Notes in Computer Science, Vol. 1498, Springer Berlin Heidelberg, 1998, pp. 855–
864.

[38] Cai, K.-Q., Zhang, J., Xiao, M.-M., Tang, K., and Du, W.-B., “Simultaneous Optimization
of Airspace Congestion and Flight Delay in Air Traffic Network Flow Management,” IEEE
Transactions on Intelligent Transportation Systems, Vol. 18, No. 11, 2017, pp. 3072–3082.

[39] Xiao, M., Cai, K., and Abbass, H. A., “Hybridized encoding for evolutionary multi-
objective optimization of air traffic network flow: A case study on China,” Transportation
Research Part E: Logistics and Transportation Review, Vol. 115, 2018, pp. 35–55.

[40] Breil, R., Delahaye, D., Lapasset, L., and Feron, E., “Multi-agent systems to help man-
aging air traffic structure,” Journal of Aerospace Operations, Vol. 5, No. 1-2, 2018, pp.
119–148.

124

[41] Delahaye, D., and Puechmorel, S., “Air traffic complexity: towards intrinsic metrics,” 3rd
USA/Europe air traffic management R&D seminar, Napoli, Italy, 2000, pp. 20–31.

[42] Prandini, M., Putta, V., and Hu, J., “Air traffic complexity in future Air Traffic Manage-
ment systems,” Journal of Aerospace Operations, , No. 3, 2012, pp. 281–299.

[43] Histon, J. M., Hansman, R. J., Aigoin, G., Delahaye, D., and Puechmorel, S., “Introduc-
ing Structural Considerations into Complexity Metrics,” Air Traffic Control Quarterly,
Vol. 10, No. 2, 2002, pp. 115–130.

[44] Schmidt, D. K., “A queueing analysis on the air traffic controller’s workload,” IEEE
Transactions on Systems, Man and Cybernetics, Vol. SMC-8, No. 6, 1978, pp. 492–498.

[45] Maugis, L., and Gotteland, J., “Techniques de détermination de la capacité des secteurs
de contrôle de l’espace aérien: statistiques et simulations,” Tech. rep., Centre d’études de
la navigation aériene, 1997.

[46] Laudeman, I. V. S., “Dynamic Density: An Air Traffic Management Metric,” Tech. Rep.
NASA-TM-1998-112226, Apr. 1998.

[47] Sridhar, B., Sheth, K. S., and Grabbe, S., “Airspace Complexity and its Application in Air
Traffic Management,” 2nd USA/Europe Air Traffic Management R&D Seminar, Orlando,
FL, 1998, pp. 1–6.

[48] Mondoloni, S., and Liang, D., “Airspace Fractal Dimensions and Applications,” 4th
USA/Europe Air Traffic Management R&D Seminar, Federal Aviation Administration
and EUROCONTROL, Santa Fe, NM, 2001, pp. 191–197.

[49] Lee, K., Feron, E., and Pritchett, A., “Air traffic complexity: An input-output approach,”
2007 American Control Conference, Inst. of Electrical and Electronics Engineers, New
York, NY, 2007, pp. 474–479.

[50] Delahaye, D., Paimblanc, P., Puechmorel, S., Histon, J., and Hansman, R., “A new air
traffic complexity metric based on dynamical system modelization,” IEEE/AIAA 21st
Digital Avionics Systems Conference, Vol. 1, Inst. of Electrical and Electronics Engineers,
Irvine, CA, 2002, pp. 4A2–1–4A2–12.

[51] Delahaye, D., and Puechmorel, S., Modeling and optimization of air traffic, Computer
engineering series, ISTE Ltd and John Wiley & Sons, London, England, 2013.

[52] Nelder, J. A., and Mead, R., “A Simplex Method for Function Minimization,” The Com-
puter Journal, Vol. 7, No. 4, 1965, pp. 308–313.

[53] Bertsekas, D., 3rd ed., Athena Scientific, 2016.

[54] Broyden, C. G., “The Convergence of a Class of Double-rank Minimization Algorithms 1.
General Considerations,” IMA Journal of Applied Mathematics, Vol. 6, No. 1, 1970, pp.
76–90.

[55] Fletcher, R., “A new approach to variable metric algorithms,” The Computer Journal,
Vol. 13, No. 3, 1970, pp. 317–322.

125

[56] Goldfarb, D., “A family of variable-metric methods derived by variational means,” Math-
ematics of Computation, Vol. 24, No. 109, 1970, pp. 23–26.

[57] Shanno, D. F., “Conditioning of quasi-Newton methods for function minimization,” Math-
ematics of Computation, Vol. 24, No. 111, 1970, pp. 647–656.

[58] Liu, D. C., and Nocedal, J., “On the limited memory BFGS method for large scale
optimization,” Mathematical Programming, Vol. 45, No. 1-3, 1989, pp. 503–528.

[59] Land, A. H., and Doig, A. G., “An Automatic Method of Solving Discrete Programming
Problems,” Econometrica, Vol. 28, No. 3, 1960, pp. 497–520.

[60] Dunlavy, D. M., and O’Leary, D. P., “Homotopy optimization methods for global opti-
mization,” Tech. Rep. SAND2005-7495, Sandia National Laboratories, Dec. 2005.

[61] Glover, F., “Future paths for integer programming and links to artificial intelligence,”
Computers & Operations Research, Vol. 13, No. 5, 1986, pp. 533–549.

[62] Holland, J. H., Adaptation in Natural and Artificial Systems: An Introductory Analysis
with Applications to Biology, Control and Artificial Intelligence, MIT Press, Cambridge,
MA, USA, 1992.

[63] Norkin, V. I., Pflug, G. C., and Ruszczyński, A., “A branch and bound method for
stochastic global optimization,” Mathematical Programming, Vol. 83, No. 1-3, 1998, pp.
425–450.

[64] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P., “Optimization by Simulated Annealing,”
Science, Vol. 220, No. 4598, 1983, pp. 671–680.

[65] Delahaye, D., Chaimatanan, S., and Mongeau, M., “Simulated Annealing: From Basics to
Applications,” Handbook of Metaheuristics, Springer International Publishing, 2018, pp.
1–35.

[66] Kaelbling, L. P., Littman, M. L., and Moore, A. W., “Reinforcement Learning: A Survey,”
Journal of Artificial Intelligence Research, Vol. 4, 1996, pp. 237–285.

[67] Kohonen, T., Self-Organizing Maps, Springer Berlin Heidelberg, 2001.

[68] MacQueen, J., et al., “Some methods for classification and analysis of multivariate ob-
servations,” Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, Vol. 1, University of California Press, Oakland, CA, USA, 1967, pp. 281–297.

[69] Boser, B. E., Guyon, I. M., and Vapnik, V. N., “A Training Algorithm for Optimal
Margin Classifiers,” Proceedings of the Fifth Annual Workshop on Computational Learning
Theory, Association for Computing Machinery, New York, NY, USA, 1992, pp. 144–152.

[70] Quinlan, J., Machine Learning, Vol. 1, No. 1, 1986, pp. 81–106.

[71] Breiman, L., “Random Forests,” Machine Learning, Vol. 45, No. 1, 2001, pp. 5–32.

[72] Rosenblatt, F., “The perceptron: A probabilistic model for information storage and orga-
nization in the brain,” Psychological Review, Vol. 65, No. 6, 1958, pp. 386–408.

126

[73] Rosenblatt, F., Principles of neurodynamics: perceptrons and the theory of brain mecha-
nisms, Spartan Books, Washington, DC, 1961.

[74] Rumelhart, D. E., Hinton, G. E., and Williams, R. J., “Learning representations by back-
propagating errors,” Nature, Vol. 323, No. 6088, 1986, pp. 533–536.

[75] Bellman, R., “Dynamic Programming,” Science, Vol. 153, No. 3731, 1966, pp. 34–37.

[76] Barto, A. G., Sutton, R. S., and Anderson, C. W., “Neuronlike adaptive elements that
can solve difficult learning control problems,” IEEE Transactions on Systems, Man, and
Cybernetics, Vol. SMC-13, No. 5, 1983, pp. 834–846.

[77] Sutton, R. S., and Barto, A. G., Introduction to Reinforcement Learning, 2nd ed., MIT
Press, Cambridge, MA, USA, 1998.

[78] Watkins, C. J. C. H., and Dayan, P., “Q-learning,” Machine Learning, Vol. 8, No. 3-4,
1992, pp. 279–292.

[79] Glover, F. W., and Kochenberger, G. A. (eds.), Handbook of Metaheuristics, International
series in operations research & management science, Springer New York, New York, NY,
2003.

[80] Blum, C., and Roli, A., “Metaheuristics in combinatorial optimization,” ACM Computing
Surveys, Vol. 35, No. 3, 2003, pp. 268–308.

[81] Talbi, E.-G., Metaheuristics : from design to implementation, Wiley Series on Parallel
and Distributed Computing, Wiley-Blackwell, Hoboken, NJ, 2009.

[82] Blum, C., Puchinger, J., Raidl, G. R., and Roli, A., “Hybrid metaheuristics in combina-
torial optimization: A survey,” Application of Software Computing, Vol. 11, No. 6, 2011,
pp. 4135–4151.

[83] Denzinger, J., Fuchs, M., and Fuchs, M., “High Performance ATP Systems by Combining
Several AI Methods,” Proceedings of the 15th International Joint Conference on Artifical
Intelligence, IJCAI’97, Vol. 1, Morgan Kaufmann, San Francisco, CA, 1997, pp. 102–107.

[84] Burke, E., Kendall, G., Newall, J., Hart, E., Ross, P., and Schulenburg, S., “Hyper-
heuristics: An emerging direction in modern search technology,” Handbook of Metaheuris-
tics, Kluwer Academic Publishers, Boston, MA, 2003, pp. 457–474.

[85] Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Özcan, E., and Woodward, J. R.,
“A Classification of Hyper-Heuristic Approaches: Revisited,” Handbook of Metaheuristics,
Springer, 2019, pp. 453–477.

[86] Burke, E. K., Hyde, M. R., Kendall, G., Ochoa, G., Ozcan, E., and Woodward, J. R.,
“Exploring hyper-heuristic methodologies with genetic programming,” Intelligent Systems
Reference Library, Intelligent systems reference library, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2009, pp. 177–201.

[87] Burke, E., Kendall, G., Silva, D. L., O’Brien, R., and Soubeiga, E., “An ant algorithm
hyperheuristic for the project presentation scheduling problem,” 2005 IEEE Congress on
Evolutionary Computation, Vol. 3, Inst. of Electrical and Electronics Engineers, Edin-
burgh, Scotland, UK, 2005, pp. 2263–2270.

127

[88] Ferreira, A. S., Pozo, A., and Gonçalves, R. A., “An Ant Colony based Hyper-Heuristic
Approach for the Set Covering Problem,” Advances in Distributed Computing and Artifi-
cial Intelligence Journal, Vol. 4, No. 1, 2015, pp. 1–21.

[89] Burke, E., De Causmaecker, P., and Vanden Berghe, G., “A hybrid Tabu search algorithm
for the nurse rostering problem,” Simulated Evolution and Learning, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1999, pp. 187–194.

[90] Koulinas, G., Kotsikas, L., and Anagnostopoulos, K., “A particle swarm optimization
based hyper-heuristic algorithm for the classic resource constrained project scheduling
problem,” Journal of Information Sciences, Vol. 277, 2014, pp. 680–693.

[91] Castro, O. R., Jr, Fritsche, G. M., and Pozo, A., “Evaluating selection methods on hyper-
heuristic multi-objective particle swarm optimization,” Journal of Heuristics, Vol. 24,
No. 4, 2018, pp. 581–616.

[92] Dowsland, K. A., Soubeiga, E., and Burke, E., “A simulated annealing based hyper-
heuristic for determining shipper sizes for storage and transportation,” European Journal
of Operational Research, Vol. 179, No. 3, 2007, pp. 759–774.

[93] Bai, R., Blazewicz, J., Burke, E. K., Kendall, G., and McCollum, B., “A simulated
annealing hyper-heuristic methodology for flexible decision support,” 4OR, Vol. 10, No. 1,
2011, pp. 43–66.

[94] Burke, R., “A Case-Based Reasoning Approach to Collaborative Filtering,” Advances in
Case-Based Reasoning, Springer-Verlag, Berlin, Heidelberg, 2000, pp. 370–379.

[95] Yates, W. B., and Keedwell, E. C., “Offline Learning with a Selection Hyper-Heuristic:
An Application to Water Distribution Network Optimisation,” Evolutionary Computation,
Vol. 29, No. 2, 2021, pp. 187–210.

[96] Baum, L. E., Petrie, T., Soules, G., and Weiss, N., “A Maximization Technique Occurring
in the Statistical Analysis of Probabilistic Functions of Markov Chains,” The Annals of
Mathematical Statistics, Vol. 41, No. 1, 1970, pp. 164–171.

[97] Sabar, N. R., and Kendall, G., “Population based Monte Carlo tree search hyper-heuristic
for combinatorial optimization problems,” Journal of Information Sciences, Vol. 314,
2015, pp. 225–239.

[98] Nareyek, A., Choosing Search Heuristics by Non-Stationary Reinforcement Learning, Ap-
plied Optimization, Springer, Boston, MA, 2003, pp. 523–544.

[99] Burke, E. K., Kendall, G., and Soubeiga, E., “A Tabu-Search Hyperheuristic for
Timetabling and Rostering,” Journal of Heuristics, Vol. 9, 2003, pp. 451–470.

[100] Pylyavskyy, Y., Kheiri, A., and Ahmed, L., “A reinforcement learning hyper-heuristic for
the optimisation of flight connections,” 2020 IEEE Congress on Evolutionary Computa-
tion, Inst. of Electrical and Electronics Engineers, 2020.

[101] Meignan, D., Koukam, A., and Créput, J.-C., “Coalition-based metaheuristic: a self-
adaptive metaheuristic using reinforcement learning and mimetism,” Journal of Heuris-
tics, 2009.

128

[102] Choong, S. S., Wong, L.-P., and Lim, C. P., “Automatic design of hyper-heuristic based on
reinforcement learning,” Journal of Information Sciences, Vol. 436-437, 2018, pp. 89–107.

[103] Mosadegh, H., Fatemi Ghomi, S. M. T., and Süer, G. A., “Stochastic mixed-model as-
sembly line sequencing problem: Mathematical modeling and Q-learning based simulated
annealing hyper-heuristics,” European Journal of Operational Research Ranking, 2019.

[104] Duflo, G., Danoy, G., Talbi, E.-G., and Bouvry, P., “A Q-learning based hyper-heuristic
for generating efficient UAV swarming behaviours,” Intelligent Information and Database
Systems, Springer International Publishing, Cham, Switzerland, 2021, pp. 768–781.

[105] Delahaye, D., Adrian, G., Lavandier, J., Chaimatanan, S., and Soler, M., “Air Traffic
Complexity Map Based on Linear Dynamical Systems,” Aerospace, Vol. 9, No. 5, 2022.

[106] Alliot, J. M., Bosc, J. F., Durand, N., and Maugis, L., “CATS: A complete air traffic
simulator,” IEEE/AIAA 16st Digital Avionics Systems Conference, Inst. of Electrical
and Electronics Engineers, 2002.

[107] Özcan, E., Misir, M., Ochoa, G., and Burke, E. K., “A Reinforcement Learning: Great-
Deluge Hyper-Heuristic for Examination Timetabling,” International Journal of Applied
Metaheuristic Computing, Vol. 1, No. 1, 2010, pp. 39–59.

[108] Juntama, P., Chaimatanan, S., Alam, S., and Delahaye, D., “A Distributed Metaheuristic
Approach for Complexity Reduction in Air Traffic for Strategic 4D Trajectory Optimiza-
tion,” 2020 International Conference on Artificial Intelligence and Data Analytics for Air
Transportation (AIDA-AT), Inst. of Electrical and Electronics Engineers, 2020.

[109] Saltelli, A. A., Chan, K., and Scott, E. M., Sensitivity Analysis, Wiley Series in Probability
and Statistics, Wiley, Hoboken, NJ, 2008.

[110] Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana,
M., and Tarantola, S., Global Sensitivity Analysis. The Primer, Wiley, 2007.

[111] Rudnyk, J., Ellerbroek, J., and Hoekstra, J. M., “Trajectory Prediction Sensitivity Analy-
sis Using Monte Carlo Simulations Based on Inputs’ Distributions,” Journal of Air Trans-
portation, Vol. 27, No. 4, 2019, pp. 181–198.

[112] Delahaye, D., Puechmorel, S., Alam, S., and Feron, E., “Trajectory Mathematical Dis-
tance Applied to Airspace Major Flows Extraction,” Lecture Notes in Electrical Engineer-
ing, Springer Singapore, 2019, pp. 51–66.

[113] Penrose, R., “A generalized inverse for matrices,” Mathematical Proceedings of the Cam-
bridge Philosophical Society, Vol. 51, No. 3, 1955, pp. 406–413.

[114] Golub, G., and Kahan, W., “Calculating the Singular Values and Pseudo-Inverse of a Ma-
trix,” Journal of the Society for Industrial and Applied Mathematics Series B Numerical
Analysis, Vol. 2, No. 2, 1965, pp. 205–224.

129

