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RÉSUMÉ EN FRANÇAIS

Les fabricants doivent gérer leurs capacités de production et leur performance pour
satisfaire la demande des clients avec des produits de qualité. De plus, ils ont constamment
été mis au défi d’optimiser l’utilisation de leurs ressources et leur performance de produc-
tion dans un contexte de marché dynamique et volatil, et ce, de manière rentable. Pour
atteindre cet objectif commercial, un défi tactique à relever parmi d’autres, les fabricants
doivent minutieusement prendre des décisions de dimensionnement de lots de production
afin de déterminer la configuration et les quantités de production répondant aux deman-
des avec des produits de qualité, tout en minimisant les coûts globaux de production et
de gestion de stocks [Murthy and Ma, 1991].

La qualité des produits est un enjeu fondamental qui impacte directement les coûts
et la rentabilité de l’entreprise. Les planificateurs de production s’appuient généralement
sur le rendement de la production pour mesurer la quantité attendue des produits de
qualité résultant d’un lot de production. Ensuite, les décideurs définissent les décisions
de dimensionnement de lots de production en se basant sur les taux de rendement de
la production attendus. Le rendement de la production est estimé à partir des données
historiques et des spécifications de contrôle-qualité. La qualité de la production peut
être influencée par des facteurs exogènes (e.g., le changement climatique, le retard ou les
perturbations dans l’approvisionnement et l’évolution de la qualité des matières premières)
et endogènes (e.g., l’entretien des machines, la disponibilité et la capacité de la main-
d’œuvre, une défaillance dans le déroulement du processus de production, la température
et la variation d’humidité) [Grosfeld-Nir and Gerchak, 2004].

Les problèmes de dimensionnement de lots de production (lot-sizing problems - LSPs
- en anglais) déterminent sur un horizon de planification la configuration et les lots de
production qui minimisent les coûts globaux, satisfont la demande et maintiennent un
niveau de service satisfaisant par des produits de qualité. En raison de son importance
en pratique, les LSPs ont attiré un large spectre de secteurs d’activité, de celui de la
fabrication à celui de la recherche en optimisation mathématique. En effet, les systèmes
de distribution et de production sont installés dans un environnement complexe où les
départements de production, de qualité, de vente, d’achat, de logistique, de l’entreprise,
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Résumé en français

des services techniques, de comptabilité et de marketing sont constamment affectés par
des événements imprévisibles. Ainsi, les LSPs deviennent inadéquats pour répondre aux
besoins de l’industrie s’ils ne s’adaptent pas de manière suffisamment simple à l’évolution
de l’environnement.

Les systèmes de production et de distribution sont confrontés à diverses sources
d’incertitude (demande, délai d’exécution, rendement de la production, entre autres) qui
affectent les coûts et le niveau de service associés aux lots de production. Traditionnelle-
ment, ces systèmes atténuent ces incertitudes en modifiant les paramètres des systèmes de
planification, tels que le stock de sûreté, le délai de sûreté et la fréquence de replanification.
Les avancées technologiques de calcul et l’accès aux données massives ont conduit à la con-
ception de méthodes d’optimisation axées sur les données afin d’incorporer directement
les incertitudes dans le LSP, comme la programmation stochastique (SP) [Birge and Lou-
veaux, 2011], l’optimisation robuste (RO) [Ben-Tal et al., 2009] ou encore l’optimisation
robuste distributionnelle (DRO) [Wiesemann et al., 2014].

En raison de la complexité et du grand nombre de facteurs susceptibles d’affecter la
qualité de production, les estimations du rendement de la production sont souvent inex-
actes, les pertes durant le processus de production sont difficiles à prédire et leur impact
endommagent grandement le système [Inderfurth and Vogelgesang, 2013]. En ce qui con-
cerne les produits à cycle de vie court, de tels impacts peuvent s’avérer considérables, par
exemple la rétrogradation de certains articles pour répondre aux demandes dans l’industrie
électronique [e.g., Bitran and Gilbert, 1994] ou le large stock et la périssabilité dans les
industries biologiques et agricoles [e.g., Chick et al., 2008, Hyytiäinen et al., 2011, Eskan-
darzadeh et al., 2014]. L’incertitude du rendement de la production dans la production de
vaccins a un impact direct sur le bien-être social, car cela peut conduire à l’affaiblissement
de l’immunité collective aux nouvelles souches ou mutations virales [Cho, 2010]. Pour finir,
l’incertitude du rendement de la production peut aussi impacter les accords contractuels
dans les chaînes d’approvisionnement, dans lesquelles le faible rendement de la production
implique une indemnité d’assurance plus coûteuse, un investissement en capital réduit, ou
des difficultés à obtenir un crédit et des subventions [Anderson and Monjardino, 2019]. Ces
exemples illustrent l’importance de développer des approches d’optimisation qui couvrent
l’ensemble des incertitudes de manière systématique, efficace et efficiente.

A notre connaissance, Kazemi Zanjani et al. [2010] et Quezada et al. [2020] sont
les seuls travaux portant sur la programmation stochastique pour un LSP sous con-
traintes d’incertitudes du rendement de la production; et il n’existe à ce jour aucune
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étude portant sur l’optimisation robuste, robuste adaptative ou robuste distribution-
nelle pour du problème du dimensionnement de lots de production sous contraintes
d’incertitudes du rendement dans un contexte de planification de production. La carence
d’études sur l’application de ces méthodologies aux LSPs avec incertitude du rendement
est la motivation première de ce travail. Nous proposons différents modèles et stratégies
méthodologiques pour calculer des plans de production optimaux robustes à conservation
moindre. Nous fournissons également une analyse de risque pour aider les décideurs à
adapter leurs plans décisionnels à leurs objectifs stratégiques et opérationnels.

Les contributions de cette thèse sont organisées comme suit, le :

Chapitre 1 présente un état de l’art des problèmes de dimensionnement de lots de
production sous contraintes d’incertitudes. Il fournit les méthodologies de résolution les
plus courantes appliquées à ces problèmes, et il introduit également les études de problèmes
de dimensionnement de lots de production sous contraintes d’incertitudes du rendement
et de la rupture de stock.

Chapitre 2 étudie l’optimisation robuste appliquée au problème du dimensionnement
de lots de production pour un seul produit sous contraintes d’incertitudes du rendement et
la possibilité de délai dans la production. Nous introduisons le modèle linéaire en nombres
entiers mixtes robuste ainsi que la définition de la politique règle optimale pour le cas
particulier du problème de gestion de stocks sous contraintes d’incertitudes du rendement.
Nous fournissons également la structure de la solution optimale robuste, et développons
un programme dynamique à complexité polynomiale pour calculer un plan de production
robuste. Le résultat des calculs et des perspectives de gestion sont présentés.

Chapitre 3 étudie l’utilisation de l’optimisation robuste adaptative pour immuniser le
plan de production contre les incertitudes du rendement, et pour réagir en conséquence
lorsque des données sont actualisées. Nous proposons une règle robuste adaptative my-
ope pour le problème de gestion de stocks, et nous montrons que cette règle est opti-
male sous hypothèses modérées. Ensuite, nous formulons un modèle robuste adaptatif
qui exploite une approximation linéaire pour transformer les contraintes quadratiques en
un programme linéaire à nombres entiers mixtes. Pour obtenir une solution exacte via
ce modèle, nous proposons un algorithme de génération de colonnes et de contraintes.
Nous fournissons aussi une technique d’horizon mobile pour mesurer la performance des

11



Résumé en français

modèles proposés dans un contexte décisionnel dynamique. Des expériences numériques
approfondies sont fournies.

Chapitre 4 traite le problème du dimensionnement de lots de production à produits
et périodes multiples sous contraintes d’incertitudes du rendement et du délai de la pro-
duction par l’optimisation robuste distributionnelle. Nous fournissons une formulation ro-
buste distributionnelle qui peut être résolue par des solveurs commerciaux. Ensuite, nous
développons un modèle robuste en nombres entiers mixtes pour calculer des plans de pro-
duction robustes distributionnels suffisamment satisfaisants. Nous comparons les plans
robustes distributionnels avec les plans de production proposés par d’autres méthodolo-
gies d’optimisation afin de mesurer la performance des modèles robustes distributionnels
et ainsi, couvrir l’incertitude de rendement de la production et proposer des plans de
production plus proches des applications du monde réel.

Ces chapitres ont donné lieu aux quatre papiers scientifiques ci-dessous:
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1. Metzker, P., Thevenin, S., Adulyasak, Y., Dolgui, A. (2023). Robust optimization
for lot-sizing problems under yield uncertainty. Computers & Operations Research,
149, 106025.

2. Metzker, P., Thevenin, S., Adulyasak, Y., Dolgui, A. Adaptive robust optimization
for lot-sizing under yield uncertainty. European Journal of Operational Research (1st
revision), November 2022.

3. Metzker, P., Thevenin, S., Adulyasak, Y., Dolgui, A. Distributionally robust opti-
mization for the multi-period multi-item lot-sizing problems under yield uncertainty.
Target journal: Naval Research Logistics, November 2022.
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Nous détaillons les parties qui proviennent des papiers précédemment mentionnés dans
le préambule des chapitres correspondants. Ce travail a donné également lieu à deux actes
de conférence ci-dessous :

1. Metzker, P., Thevenin, S., Adulyasak, Y., Dolgui, A. Optimization for Lot-
Sizing Problems Under Uncertainty: A Data-Driven Perspective. In IFIP Interna-
tional Conference on Advances in Production Management Systems (pp. 703-709).
Springer, Cham, September 2021.

2. Metzker, P., Thevenin, S., Adulyasak, Y., Dolgui, A. The adaptive robust lot-sizing
problem with backorders under demand uncertainty. In 2021 IEEE 17th Interna-
tional Conference on Automation Science and Engineering (CASE) (pp. 997-1001).
IEEE, August 2021.

Cette thèse de doctorat est organisée comme suit : 1 passe en revue les études des
problèmes de lot-sizing non déterministes, et met en évidence le manque de connaissances
sur les approches pour traiter les problèmes de dimensionnement de lots de production
sous contraintes d’incertitudes de rendement. Le chapitre 2 présente une méthodologie
statique robuste pour définir un plan de production. Le chapitre 3 présente des approches
robustes adaptatives pour calculer un plan de production adaptatif. Le chapitre 4 fournit
des programmes robustes distributionnels pour concevoir un plan de production robuste
axé sur les données. Enfin, 5 conclut ce travail et propose des orientations pour les travaux
futurs.
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INTRODUCTION

Manufacturers must efficiently manage their production capacities and their perfor-
mances to satisfy customer demands with quality goods. They also have been constantly
challenged to optimize resource usage and production performance in a dynamic and
volatile market context in a cost effective manner. To achieve this business objective,
among other tactical problems, manufacturers must carefully make lot-sizing decisions to
determine the production setups and quantities that meet demands with quality goods,
while minimizing the overall production and inventory management costs [Murthy and
Ma, 1991].

Product quality is a fundamental issue which directly impacts costs and profitability of
the firm. Production planners usually rely on the production yield to measure the expected
quantity of quality goods resulting from a lot size. Then, the decision makers define the
lot-sizing decisions based on the estimated production yield rates. The production yield
is estimated based on historical data and quality control specifications. The quality of
the production can be influenced by exogenous factors (e.g., climate changes, supply
disruption or delay, and change in the quality of raw materials) and endogenous factors
(e.g., machinery maintenance, workforce ability and availability, failure in the production
process flow, temperature, and humidity variation) [Grosfeld-Nir and Gerchak, 2004].

The lot-sizing problem (LSP) determines the setups and lot sizes over a planning
horizon that minimize overall costs, meet the demands and maintains a satisfactory level
of service with quality goods [Wagner and Whitin, 1958]. Due to its practical importance,
the LSPs attracted a wide range of research from the manufacturing and mathematical
optimization communities. In fact, production and distribution systems are settled in a
complex environment where production, quality, sales, purchasing, logistics, corporate,
technical, accounting and marketing department are constantly affected by unexpected
events. Thus, LSPs become inadequate to meet the needs of the industry if they are not
simple enough to be adapted to changes in the environment [Dolgui and Prodhon, 2007].

Production and distribution systems face various sources of uncertainties (demand,
lead time, production yield, among others) that affect the costs and service level associated
with the lot-sizes. Traditionally, these systems dampen these uncertainties by changing

15



Chapter 0 – Introduction

parameters of the planning systems, such as the safety stock, safety lead-time, and re-
planning frequency. Advances in computing technologies and the massive availability of
data led to the design of data-driven optimizations to directly incorporate the uncertainties
within the LSP, such as stochastic programming (SP)[Birge and Louveaux, 2011], robust
optimization (RO) [Ben-Tal et al., 2009], and distributionally robust optimization (DRO)
[Wiesemann et al., 2014].

Due to the complexity and a large number of factors that can affect the quality of the
production, production yield estimations are often inaccurate, the losses in the produc-
tion process are difficult to predict and their impact are highly damaging to the system
[Inderfurth and Vogelgesang, 2013]. For short life cycle products, such impacts can be
significant, for example, downgrading some items to meet the customers demand in the
electronics industry [e.g., Bitran and Gilbert, 1994] or large inventory and perishability in
the biological and agricultural industries [e.g., Chick et al., 2008, Hyytiäinen et al., 2011,
Eskandarzadeh et al., 2014]. Yield uncertainty in vaccine production has a direct impact
on social welfare, as it can lead to weak immunity to new virus strain or mutation [Cho,
2010]. Finally, yield uncertainty can also impact the contractual arrangement in supply
chains, where low production yield implies a more expensive insurance payout, reduced
capital investment, or difficulties to get credit and subsidies [Anderson and Monjardino,
2019]. These examples illustrate the importance of developing optimization approaches
that hedge against uncertainties in a systematic, effective and efficient way.

To the best of our knowledge, Kazemi Zanjani et al. [2010] and Quezada et al. [2020] are
the only works on stochastic programming for an LSP under yield uncertainty; and there
is no existing study on robust, adaptive robust or distributionally robust optimization for
lot-sizing under yield uncertainty in a production planning context. The lack of studies on
the application of these methodologies to the LSPs with yield uncertainty has motivated
this work. We propose different models and methodological strategies to compute optimal
robust and less conservative production plans. We also provide a risk analysis to help
decision-makers to tailor their decision plans to their strategic and operational goals.

The contributions of this thesis are organized as follows:

Chapter 1 presents a state of the art on lot-sizing problems under uncertainties. It
provides the most common resolution methodologies applied to the problems, and it also
introduces the studies on the lot-sizing problems with backorder and uncertain production
yield.
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Chapter 2 studies the robust optimization methodology applied to the single-item lot-
sizing problem with backorders under yield uncertainty. We introduce the robust mixed-
integer linear model as well as the definition of the optimal robust policy for the spe-
cial case of the inventory management problem under yield uncertainty. We also provide
the structure of the optimal robust solution, and we develop a dynamic program with
polynomial complexity to compute a robust production plan. Computational results and
managerial insights are provided.

Chapter 3 investigates the use of adaptive robust optimization to immunize the produc-
tion plan against the yield uncertainty, and to react properly when updated information
unfolds. We propose a myopic adaptive robust policy for the inventory management prob-
lem, and we show that the policy is optimal under mild assumptions. Then, we formulate
an adaptive robust model that exploits a linear approximation to transform the quadratic
constraints into a mixed-integer linear program. To solve this model exactly, we propose
a column and constraint generation algorithm. We also provide a rolling horizon tech-
nique to measure the performance of the proposed models in a dynamic decision context.
Extensive numerical experiments are provided.

Chapter 4 addresses the multi-period multi-item lot-sizing problem with backorder
under yield uncertainty through the distributionally robust optimization. We provide a
distributionally robust formulation that can be solved by commercial solvers. Then, we de-
velop a mixed-integer robust model to compute sufficiently good distributionally robust
production plans. We compare the distributionally robust plans with production plans
proposed by other optimization methodologies to measure the performance of the distri-
butional robust models to hedge against the production yield uncertainty and propose a
production plan closer to real world applications.

The chapters produced four scientific articles, namely:

1. Metzker, P., Thevenin, S., Adulyasak, Y., Dolgui, A. (2023). Robust optimization
for lot-sizing problems under yield uncertainty. Computers & Operations Research,
149, 106025.

2. Metzker, P., Thevenin, S., Adulyasak, Y., Dolgui, A. Adaptive robust optimization
for lot-sizing under yield uncertainty. European Journal of Operational Research (1st
revision), November 2022.
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3. Metzker, P., Thevenin, S., Adulyasak, Y., Dolgui, A. Distributionally robust opti-
mization for the multi-period multi-item lot-sizing problems under yield uncertainty.
Target journal: Naval Research Logistics, November 2022.

4. Metzker, P., Thevenin, S., Adulyasak, Y., Dolgui, A. A state of the art on the LSPs
under uncertainty: trends on optimization methodologies and approaches. Working
draft, November 2022.

At the beginning of the corresponding chapters, we provide details on the parts that
were from the papers. This work has also yielded two following proceedings papers:

1. Metzker, P., Thevenin, S., Adulyasak, Y., Dolgui, A. Optimization for Lot-
Sizing Problems Under Uncertainty: A Data-Driven Perspective. In IFIP Interna-
tional Conference on Advances in Production Management Systems (pp. 703-709).
Springer, Cham, September 2021.

2. Metzker, P., Thevenin, S., Adulyasak, Y., Dolgui, A. The adaptive robust lot-sizing
problem with backorders under demand uncertainty. In 2021 IEEE 17th Interna-
tional Conference on Automation Science and Engineering (CASE) (pp. 997-1001).
IEEE, August 2021.

This dissertation is organized as follows. Chapter 1 reviews the studies on non-
deterministic lot-sizing problems, and it highlights the gap of knowledge on approaches to
handle lot-sizing problems with uncertain production yield. Chapter 2 presents a static ro-
bust methodology to define a production plan. Chapter 3 gives adaptive robust approaches
to compute an adaptive production plan. Chapter 4 provides distributionally robust pro-
grams to design a data-driven robust production plan. Finally, Chapter 5 concludes this
work and provides some direction for future work.
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Chapter 1

NON-DETERMINSITIC LOT-SIZING

PROBLEMS

This chapter is based on the following article:

Metzker, P., Thevenin, S., Adulyasak, Y., Dolgui, A. A state of the art on
the LSPs under uncertainty: trends on optimization methodologies and ap-
proaches. Working draft, November 2022.

The research interest in non-deterministic LSPs has grown over the last decades. To
the best of our knowledge, no paper presents the state-of-the-art on optimization method-
ologies to deal with LSPs under uncertainty, and we aim to fill this gap. In addition, we
discuss a framework for data-driven approach that link the data available in the decision
environment to the decision systems. This chapter provides the following contributions: 1)
it summarizes the state-of-the-art of the LSP under uncertain environment via stochastic
programming, robust optimization, and the distributionally robust optimization method-
ology; 2) it identifies the gap of knowledge of the considered methodologies to deal with
different uncertain parameters of the LSPs; and, finally, 3) it introduces the data-driven
interpretation of the optimization under uncertainties methodologies to deal with non-
deterministic LSPs.
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1.1 Introduction

Supply Chain Management is “the task of integrating organizational units along a
supply chain and coordinating material, information and financial flows in order to fulfill
(ultimate) customer demands with the aim of improving the competitiveness of a supply
chain as a whole” [Stadtler, 2005]. As a result, a production planning activity is designed
to make the best use of resources and satisfy the production requirements over a planning
horizon. It encompasses three process scheduling, which are: long-term, that focuses on
the main strategic decisions, medium-term, which defines the production planning (e. g.,
production quantity and scheduling) according to the needs and the strategy adopted,
and short-term dealing with day-to-day planning and decisions [Karimi et al., 2003].

Focuses on the medium-term scheduling, the Manufacturing Resource Planning (MRP)
supports decision makers to manage manufacturing processes and determines a replenish-
ment schedule over the production horizon. This system determines the quantity and the
availability of materials and components needed to meet a specific demand [Murthy and
Ma, 1991]. While MRP assists exclusively the production processes, a system focused on
supporting the material flow across a supply chain and related areas is required. Conse-
quently, Advanced Planning Systems (APS) have been developed to fulfill this request.
Based on the hierarchical planning, the APS incorporate models and solution algorithms
to define a production plan that considers the supply chain as a whole [Stadtler, 2005].
We are interested in the master planning to achieve the most efficient way to meet the
demands for both, MRP and APS, environments. Furthermore, we intend to adjust the
production planning over the production horizon to respect the environmental restrictions,
such as the available capacity, processing or lead time, demands, costs, etc.

The lot-sizing problem (LSP) emerges as an optimization problem that determines
the setups and production quantity to meet the demands over the planning horizon.
Introduced by Wagner and Whitin [1958], the LSP decisions can be incorporated into
production planning activities optimizing system performance and results [Barany et al.,
1984a]. Lot-sizing decisions face various sources of uncertainties (demand, lead time, pro-
duction yield, among others) that affect the costs and service level associated with the
lot sizes, and then influence the quality of the production plan. Traditionally, these un-
certainties are controlled by some additional parameters of the planning systems, such as
the safety stock, safety lead-time, and re-planning frequency [Dolgui and Prodhon, 2007].
However, these classical techniques are not sufficient to efficiently mitigate uncertainties.
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To overcome these limitations, some optimization methodologies can be applied to deal
with these non-deterministic problem more efficiently. Here, three common approaches
to support the production planning are stochastic programming (SP) [Birge and Lou-
veaux, 2011], robust optimization (RO) [Ben-Tal et al., 2009], and distributionally robust
optimization (DRO) [Wiesemann et al., 2014].

The ease of access to information in the era of big data motivates us to take into
account any data available to improve decision systems [Shang and You, 2019]. There is
an increasing amount of data generated from the shop floor that is available and that
can support decision-making processes to be more assertive. For lot-sizing decisions, the
available data can improve the quality of the production plan if exploited appropriately.
Advances in computing technologies and the massive availability of data led to the design
of optimization methods that directly incorporate the uncertainties in the models, and
achieve better solutions. In this context, the interest in data-driven optimization (DDO)
has grown during the last decade [Shang and You, 2019].

Stadtler and Kilger [2002] provide a review of the LSPs in the scope of the SCM
environment. A number of studies propose models and solution approaches for the deter-
ministic LSPs. We refer readers to [e.g., Wagner and Whitin, 1958, Barany et al., 1984a,
Pochet and Wolsey, 1988, Karimi et al., 2003, Brahimi et al., 2006, 2017] for further in-
formation on the LSPs. Some studies on the non-deterministic perspective of the SCM
were proposed in [e.g., Murthy and Ma, 1991, Dolgui and Prodhon, 2007]. Readers are
referred to Barany et al. [1984a], Pochet and Wolsey [2006] for further information about
the general single-item LSPs. The general multi-item version is presented in [e.g., Barany
et al., 1984b, Pochet and Wolsey, 1988, 2006, Absi and Kedad-Sidhoum, 2006]. A survey
on the capacitated LSPs is presented in Karimi et al. [2003]. A recent survey of single-item
dynamic lot-sizing problems is presented in Brahimi et al. [2006], and it was updated and
extended by the authors in Brahimi et al. [2017].

The interest in non-deterministic LSPs is growing as reported on the review covering
publications on these problems from 2000 to 2013 [Aloulou et al., 2014]. Brahimi et al.
[2006, 2017] indicate that most studies about optimization under uncertainty for LSPs
consider stochastic programs, robust models and dynamic programs. While there exist
state of the art on the different optimization under uncertainty approaches (we refer
interested readers to a review of the SP is presented in Birge [1997], an overview of the
RO is presented in Ben-Tal et al. [2009], and an introduction of the DRO is proposed in
Wiesemann et al. [2014]), and state of the art on lot-sizing under uncertainty (see Brahimi
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et al. [2006] and Brahimi et al. [2017]), to the best of our knowledge, there is no review
on the state of the art on the application of optimization under uncertainty approach to
the lot-sizing problem.

This work seeks to review a data-driven perspective of non-deterministic LSPs. Sup-
ported by the literature review proposed by Aloulou et al. [2014] and by our updated
survey of the published works from the past 60 years on non-deterministic LSPs, we
present a data-driven application of some of the most applied optimization under uncer-
tainty methods to deal with LSPs. We introduce a data-based perspective of the SP and
the RO methodologies to handle different uncertain parameters on LSPs. In addition, we
present the DRO methodology applied to LSPs, a new resolution trend for solving non-
deterministic problems that integrate the probabilistic aspect from SP and the robustness
from RO. Note that we are not attempting to give an exhaustive bibliography based on
a systematic review. Instead, we select the papers for their quality and their relevance,
considering the following key dimensions: journal quality, number of citations, innovation,
practical applications, reference.

The remainder of this chapter is organized as follows. Section 1.2 introduces the LSPs,
its major characteristics, and its interpretation under uncertain environments. Section 1.3
indicates the more common optimization approaches to deal with the non-deterministic
LSP. The three next sections survey three optimization methodologies to handle the LSPs
under uncertainty with a data-based perspective. Section 1.4 review the SP methodology.
Section 1.5 outlines the RO and its variations. Section 1.6 presents the joint perspective
of the stochastic programming and the robust optimization methodologies, also called
DRO. Section 1.7 provides a comparison between the three optimization methodologies
to handle LSPs. Finally, Section 1.9 highlights some remarks and discusses future research
directions, and it also summarizes the main findings of this work.
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1.2 The lot-sizing problems

The LSP aims to meet customers’ needs while minimizing the overall costs, and main-
taining the satisfactory level of service [Dolgui and Proth, 2010]. The uncapacitated single-
item LSP can be described in production management terminology as follows. Given the
need for one or more goods, one or several resources should be coordinated on the produc-
tion horizon to ensure the manufacture a sufficient quantity of goods that meets demand
and satisfies production strategies (e.g., quality of the produced items, lead-time, pro-
cessing time, resource availability, etc). Several authors have proposed studies on the
deterministic LSPs in the last decades. Strong formulations for deterministic uncapaci-
tated and capacitated versions of the LSPs were proposed by Barany et al. [1984a] and
Barany et al. [1984b], respectively. Exact methods to the deterministic LSPs were pro-
posed by Belvaux and Wolsey [2000, 2001] and Leung and Wu [2004]. Pochet and Wolsey
[2006] present a study on mixed-integer programming (MIP) for the LSPs, and Brahimi
et al. [2017] present an exhaustive state-of-the-art on the single item LSP with a focus on
the modeling and resolution methods. As decision-makers deal with the LSPs in various
production contexts, multiple extensions of the general LSP exist, such as capacitated
resource availability, single or multi-items, single or multi-levels, single or multi-echelons
or machinery, etc. In this section, we introduce the general LSP and its main features.
Next, we focus our study on LSPs under uncertainty and on a data-driven perspective of
some optimization methods to deal with non-deterministic LSPs.

1.2.1 Problem statement

The uncapacitated single-item LSP without backorder or lost sale determines the
production setups and lot sizes in the finite planning horizon T = {1, ..., |T |} that minimize
the overall costs and meet demands. For each period t ∈ T , we have setup cost st, unit
production cost vt, inventory holding cost ht and demands dt. We also have the following
decision variables: lot size Xt, inventory level It at the end of the period, and setup Yt.
Although the problem is assumed to have uncapacitated availability of resources, the
uncapacitated single-item LSP has a natural capacity given by the upper bound of the
production quantity.

The mathematical formulation of the general LSP is given as follows:

min
∑
t∈T

stYt + vtXt + htIt (1.1)
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s.t.

It =
t∑

j=1
(Xj − dj) ∀t ∈ T (1.2)

Xt ≤ MYt ∀t ∈ T (1.3)

Xt, It ≥ 0 ∀t ∈ T

Yt ∈ 0, 1 ∀t ∈ T

Without loss of generality, we assume that there is no stock at the beginning of the
production horizon (I0 = 0). The objective function (1.1) minimizes the total cost com-
posed of setup, unit production and inventory costs. The inventory balance constraints
(1.2) compute the inventory level in period t from the demand, the produced goods at
period t, and the stock kept in the previous period (It−1). Here, the production in the
current period t and the inventory from the previous period t − 1 are used to meet the
demand dt. Any remaining amount of goods after satisfying the demand, if any, is kept in
stock (It). The Constraints (1.3) are setup-forcing constraints that relate the production
quantities (Xt) to the setup decisions (Yt). These constraints set the setup variable Yt to
1 if any production occurs in period t, and the setup remains inactive otherwise (Yt = 0).
A natural upper bound on the production quantity is the total amount of demands to be
met over the entire production horizon, and is given by M = ∑

t∈T dt. Note that in the
capacitated version of the problem M is replaced by a given capacity C.

subsectionCharacteristics of lot-sizing models

Different features can be taken into account by an LSP leading to a wide range of lot-
sizing models. The main characteristics of an LSP are the planning horizon, the number
of products, the number of levels, capacity constraints, the structure of the demand, the
structure of the setups, the structure of the inventory shortages, and the stochastic nature
[Karimi et al., 2003].

Planning horizon

The planning horizon |T | may be finite or infinite, and it may be observed continuously
or at discrete time. In term of period terminology, the problem may be either big bucket
(allows to produce multiple items at the time) or small bucket (time period involves the
production of a single item).
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Demand

The demand is said static when it is a constant value over time (dt = d), and dynamic
otherwise.

Number of items

The LSP may consider a single-item or multi-item. In the multi-item case, a set of N

items is produced, and the lot size decision becomes Xit goods produced for item i ∈ N

in period t ∈ T .

Number of echelons

Production process may be single-echelon or multi-echelon. On the one hand, a single-
echelon system produces an end-item directly from raw materials or purchased materials
with no intermediate sub-assemblies. On the other hand, in a multi-echelon system, the
production process has multiple steps, and there is a parent-component relationship be-
tween the items. Having E the set of echelons, the lot size decision for a multi-level LSP
becomes Xint goods produced for item i ∈ N at echelon n ∈ E and period t ∈ T . Note
that a single-echelon LSP can have a single or multiple end-items, whereas a multi-echelon
problem is automatically a multi-item problem.

Capacity constraints

When there is no restriction or constraint on resources then the problem is said to
be uncapacitated, otherwise the problem is named capacitated. The capacity can be rep-
resented in Constraints (1.3) when M is replaced by the capacity C. Constraint capacity
can be defined in terms of material capacity (e.g.: number of goods that can be processed
at a time), or other measures for available resources, such as time (e.g.: available time to
produce goods).

Setup structure

Production changeover between different items often incurs setup time and setup cost.
In this context, there are two setup structure: a simple setup, where setup time and
cost in a period are independent of the sequence and the decisions made in previous
periods, and a complex setup when setup cost and time are dependent on the sequence or
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previous periods. The complex setup has three configurations: i) setup carry-over when
it is possible to continue the production run between two subsequent periods without
the need for additional setup, ii) family or major setup that is caused by similarities in
manufacturing process and design of a group of items, and finally iii) sequence-dependent
setup, setup cost and time would depend on the production sequence.

Inventory shortage

Inventory shortage is represented with the delay or the loss of a demand. When it is
possible to meet the demand for a period in the current period of the next period, then
we have a backordering, if the demand is accumulated to be met in future periods, we
have a backorder Bt. Considering a context where backorders are accepted, Constraints
(1.2) become It − Bt = It−1 − Bt−1 + Xt − dt. If the demand cannot be satisfied at all, we
have a lost sale LSt, and Constraints (1.2) become It = It−1 − LSt + Xt − dt. A mixed
situation occurs when backorder and lost sale are considered simultaneously [e.g., Absi
et al., 2011, Grubbström and Ding, 1993].

Nature of the problem

The problem is said to be deterministic when it is not subject to any uncertainty,
and non-deterministic when at least one parameter is uncertain. As an example, when
the demand is known in advance, we have a deterministic demand, otherwise we have an
uncertain demand whose value is unknown and can be estimated or predicted but subject
to estimation errors.

Complexity

While the complexity of the uncapacitated LSPs is polynomial (e.g., O(T 2) [Wagner
and Whitin, 1958] and O(T logT ) [Federgruen and Tzur, 1991]), the single item capacitated
LSPs are polynomial (e.g., O(T 4), O(T 3), O(T logT ), O(T ) [Bitran and Yanasse, 1982] and
O(T logT ) [Wagelmans et al., 1992]), and the general case is NP-Hard [Bitran and Yanasse,
1982].

LSPs with backordering

Several studies have been done on LSPs. For the sake of clarity, we present the method
for optimization under uncertainty on the simplest LSPs. That is, the single-item non-
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deterministic lot-sizing problems over a discrete and finite planning horizon with backo-
rdering and a simple setup environment. However, the models can easily be extended to
other cases such as the capacitated and/or multi-item versions.

The mixed-integer formulation of the LSP can be difficult to be solved. Although for
small and medium-sized instances either commercial solvers or some optimization ap-
proaches are able to compute an optimal solution, hard medium-sized and the large-sized
instances may be addressed by some approximations that can be solved with reasonable
computational effort. Pochet and Wolsey [1988] introduce an approximation of the LSP
to the network flow problem as the most efficient reformulation technique applied to the
LSPs, leading to a stronger model efficiently computed in polynomial time via shortest-
path formulation. A review on deterministic LSPs modeled for industrial applications is
presented by Jans and Degraeve [2008]. Other formulations of the problem and further
information on the LSPs is presented in Pochet and Wolsey [2006].

The modeling of LSPs depends on the context and decision environment. Therefore,
we limit ourselves to some illustrative examples that are more common in real world
applications.

min
∑
t∈T

stYt + vtXt + htIt + btBt (1.4)

s.t. :

It −Bt = It−1 −Bt−1 +Xt − dt t ∈ T (1.5)

Xt ≤ MYt t ∈ T (1.6)

Xt, It, Bt ≥ 0 t ∈ T

Yt ∈ {0, 1} t ∈ T

This paper focuses on the non-deterministic lot sizing problems. The more natural
strategy to better deal with uncertainties is to allow the problem to backorder any demand
that could not be satisfied. For this reason, in the next sections we consider the version
of the problem given by (1.4).

LSPs with lead time

The lead time refers to the time from the order to the delivery of the goods. Assuming
that Qt goods are ordered and lot size Xt of goods delivered in period t, and having the
lead time lt for goods ordered in period t, problem (1.4) should be modified to minimize
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costs while respecting the lead process constraint.

LSPs with processing time

The processing time composes the lead time as the time required to manufacture a
good. Assuming the processing time of pt to produce the lot size Xt of goods delivered
in period t, and that the capacity is given in terms of available time (ct), problem (1.4)
should be modified to consider the processing time as a resource constraint in Constraints
(1.6).

LSPs with setup time

The setup time also composes the lead time. It indicated the time required to setup the
machinery and release the production. Let stt be the setup time and pt be the processing
time of the lot size Xt in period t, such that available time is constrained and given by
CT . Problem (1.4) should be modified to consider the setup time to release a production
in Constraints (1.6).

LSPs with production yield

The production yield integrates the quality factors into the lot-sizing models by mea-
suring the expected quantity of non-defective items resulting from a lot size. Considering
the production yield rate ρ as the quantity of quality goods expected from a lot size Xt,
problem (1.4) may be modified to take into account the quality outputs on the optimiza-
tion in Constraints (1.5).

1.2.2 Lot-sizing problems under uncertainty

The optimal solution for problem (1.4) may be computed in polynomial time based
on the properties proposed in Wagner and Whitin [1958]. However, multiple parameters
of the lot-sizing problems are not known with certainty when the decisions are made, and
these uncertainties affect the costs and service level of a company. Uncertainties emerge
from different sources such as: partial information, inaccurate forecast, misinformation
and lack of expert insights. They can lead to the most common uncertain parameters,
which are: demand, production yield, lead time, processing time, setup time, capacity and
cost. We successively present below the main sources of uncertainties, and the classical
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approach to hedge against uncertainties, before to introduce non-deterministic lot-sizing
models.

Demand uncertainty

The case of demand uncertainty is the more natural uncertainty for LSPs, as the
demand can be highly volatile and influenced by multiple factors such as age, lifecycle,
economic context, reference groups, culture, festive season. As a result, most applications
of optimization under uncertainties to the LSP consider the case of demand uncertainty.
Some models addressing the simplest LSP with uncertain demand have achieved tractable
models and efficient algorithms to solve the small and medium-sized instances [Brahimi
et al., 2006]. For the large-sized instances, there are methodologies suited to the cho-
sen optimization approach to compute a solution with reasonable computational effort
[Brahimi et al., 2017, Brandimarte, 2006], but further work still required to develop new
strategies to solve the problem in reasonable computational time, even if an exponential
behaviour is expected.

Lead-time uncertainty

Machine breakdowns, quality or transportation issues can lead to an uncertain lead-
time. The solution to a multi-echelon LSP may become unfeasible if the lead-time deviates
from its planned value, because the production of an item requires the delivery of its
components. Some modification is then needed to represent the lead-time in a constraint-
wise way. The results obtained for the static formulations addressing the uncertain lead-
time are promising [Thorsen and Yao, 2017, Hnaien and Afsar, 2017], but no studies were
found handling the adaptive problem.

Production yield uncertainty

When the amount of quality goods from the lot size differs from the expected output,
we have an uncertain production yield rate. Although the production yield has not been
much investigated for non-deterministic LSPs, this parameter directly indicates the quality
of the lot size. The production yield rate can be easily handled within a static strategy.
However, within an adaptive strategy, the production yield uncertainty leads to the same
quadratic issue observed for the uncertain lead-time because the production yield is a
coefficient of the lot size. As a result, the static-dynamic and dynamic strategies are
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intractable in general [Ben-Tal et al., 2004]. Further work is required to handle the yield
uncertainty for LSPs models via tractable models, and to propose a production plan with
reasonable calculation time.

Capacity uncertainty

We face an uncertain capacity when the availability of resources is unknown or inaccu-
rate. Such an uncertainty makes the problem infeasible for the case of available resource
insufficient to meet the demand. Further investigation is required not only to modeling
LSPs under capacity uncertainty, but also to handle the static-dynamic and dynamic
decision strategies in a tractable and scalable way.

Processing time uncertainty

We have an uncertain processing time when machine speed, manpower, resource con-
sumption or availability unexpectedly vary. Although often ignored in the models, the
processing time approximates the model to realistic cases in which the production is not
immediate or follows different production stages. As the processing time directly impacts
the production of a lot size, this uncertainty should be handled similarly to the approaches
used to deal with the reformulated lead-time, the production yield and the setup time
uncertainties. No additional limitations to the challenges already cited for similar uncer-
tainties are found by the processing time uncertainty.

Setup time uncertainty

Setup time uncertainty occurs when the setup of the machinery varies unexpectedly
due to the non-standardization of the process, or when some other issues delay the start
of the production process. The setup duration also accounts for the first items in the lot
that are scrapped until the machines are correctly tuned, and this duration may vary
significantly. In addition, lot-sizing models often approximate the reality, and the setup
time is often modeled as a fixed value at the production planning level, even when they
depend on the production sequence at the scheduling level. In this setting, the actual
setup duration is unknown at the lot-sizing level, and it is observed after scheduling. This
uncertainty also directly impacts the production of the lot sizes, and it may be addressed
using approaches similar to those used with lead-time and production yield uncertainties.
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Cost uncertainty

Cost uncertainty occurs when the costs incurred from the production cannot be pre-
dicted accurately. The cost uncertainty is a column wise uncertainty as it is a coefficient of
the decision variables in the objective function. In addition, classical optimization meth-
ods are usually tractable for models whose uncertainty is expressed on the left size of the
constraints, and do not often are able to handle uncertainty on the objective function
[Ben-Tal et al., 2009]. Therefore, a reformulation should be done to represent the objec-
tive function under uncertainty by using additional variables. Moreover, since the costs
directly impact the definition of the lot sizes, some approach similar to those proposed to
handle uncertainties that directly modify the production plan should be considered.

Table 1.1 reports the references considered in this work to handle LSPs under at least
one uncertainty cited above via the SP, RO, ARO and DRO methodologies. The most
studied uncertainty is the demand, followed by the lead-time, the cost, the production
yield, the processing time and the setup time uncertainty. No study was found dealing
with capacity uncertainty via the considered optimizations.
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demand lead time yields cost processing time setup time
SP Alem et al. [2018], Augusto et al.

[2016], Bansal et al. [2018], Beraldi
and Ruszczyński [2002], Bollapra-
gada and Rao [2006], Bookbinder
and Tan [1988], Brandimarte [2006],
De Saint Germain et al. [2017], Guan
and Miller [2008], Guan [2011], Jiang
and Guan [2016, 2018], Kang and
Lee [2013], Martel et al. [1995], Mi-
noux [2018], Quezada et al. [2019],
Raa and Aghezzaf [2005], Rah-
mani et al. [2013], Sahebjamnia and
Torabi [2011], Tarim and Kingsman
[2004], Tempelmeier [2007, 2013],
Wong et al. [2009]

Huang and
KüçüKyavuz
[2008], Jiang
and Guan
[2011]

Zanjani et al.
[2007]

Bansal et al.
[2018], Şen et al.
[2014], Minoux
[2018], Zhou
and Guan [2010,
2013], Quezada
et al. [2019]

Augusto et al.
[2016]

Taş et al. [2019]

RO Agra et al. [2018], Aharon et al.
[2009], Alem et al. [2018], Ben-Tal
et al. [2004, 2005], Bertsimas and
Thiele [2006a,b], Bertsimas et al.
[2010], Bertsimas and Bidkhori
[2015], Bertsimas and de Ruiter
[2016], Bertsimas and Dunning
[2016], Bertsimas et al. [2018b],
Coniglio et al. [2018], Guo and Liu
[2018], Kaganova [2013], Klabjan
et al. [2013], Leung and Wu [2004],
Melamed et al. [2016], Santos et al.,
Shapiro [2011], Solyalı et al. [2015],
Thorsen and Yao [2017], van Pelt
and Fransoo [2015], Wagner [2017],
Zhu et al. [2012]

Hnaien and
Afsar [2017],
Thorsen and
Yao [2017]

Vayanos et al.
[2012]

DRO Analui and Pflug [2014], Bertsimas
et al. [2019], Coniglio et al. [2018],
Postek et al. [2018], Yang [2017],
Zhang et al. [2016]

Table 1.1 – References of optimization methods dealing the non-deterministic LSPs
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1.3 Optimization under uncertainties for the LSPs:
methods and concepts

To propose satisfactory decisions in an uncertain environment, the decision-makers
have to considerate and even anticipate these uncertainties. The optimization under un-
certainties seeks for an optimal solution when some parameters are unknown. For that,
different decision frameworks can support the decision according to the available infor-
mation and the computation approach or applied methodology.

1.3.1 Decision framework

Each optimization approach can model a specific control strategy to deal with the
uncertain parameter. Bookbinder and Tan [1988] differentiate these strategies in three
groups, that are: static, dynamic and static-dynamic strategy. The decisions are then
partitioned into two groups: static (here-and-now) and adjustable (wait-and-see) decisions.
The adaptive decisions are modified by the revealed values of the uncertain parameter.

Static strategy Within a static strategy (single-stage or two-stage frameworks), the
decision maker determines both setup of production and lot sizes a priori and no modifi-
cation is allowed (the decisions are frozen).

Dynamic strategy In a dynamic strategy (or multistage framework), the setup of
production, the lot size and the inventory control variables are updated at the beginning
of every period t of the production horizon.

Static-dynamic strategy The static-dynamic strategy (multistage framework) is a
hybrid strategy where the setup decisions are fixed a priori, while recourse actions can
update the lot sizes and the inventory levels when uncertainties are revealed.

Figure 1.1 indicates, for each approach, the model that deals with each of the three
control strategies. Even if the dynamic strategy is the most suitable to describe real appli-
cations taking into account the dynamic system and decision environment, the resulting
models are computationally hard to solve [Dyer and Stougie, 2006]. Few studies address
the dynamic strategy of LSP.

These decision frameworks can handle two groups of variables that are: here-and-now
and wait-and-see Ben-Tal et al. [2004]. Here-and-now variables are a set of variables whose
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Figure 1.1 – Overview of the optimization under uncertainty

the values are fixed before the uncertainty event. wait-and-see variables are the set of the
remaining variables that can adjust themselves according to the values taken by certain
parameters after some uncertain event is revealed. In this manner, even if the here-and-
now variables are fixed and no recourse action is permitted, an uncertain event could affect
their implications for the problem. Therefore, the wait-and-see variables are taken as a
recourse decision, such a way the decision is adjusted to compensate any effect that might
be revealed as a result of the uncertain event and could not be taken into consideration
for the here-and-now decisions.

From the decision framework, there are three main models defined by the recourse
action and the revelation of uncertainty [Gabrel et al., 2014]. A single-stage model fix
all decisions, as here-and-now variables, before the realization of any uncertainty and no
recourse action is allowed in all the planning horizon. In a two-stage model, the here-
an-now variables are first-stage decisions fixed before the realization of any uncertainty
and the second-stage decisions are the wait-and-see variables fixed after the realization
of the uncertainty. Finally, the multistage model, considers the first-stage decision as the
here-and-now variables fixed at the beginning of the time horizon of the decision problem
and the wait-and-see variables are the nth-stage variables associated to the nth period
following the realization of some uncertainty.

We focus on the static–static and the static-dynamic strategies such that the mod-
eling approaches are respectively a two-stage and a multistage problem. Among these
approaches and strategies, we are interested in the LSP consideration within the ro-
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bust optimization and the stochastic programming methodologies. Furthermore, we in-
tend to highlight the advantages that robust optimization perspective of the stochastic
programming brings to the robustness of the solution and the scalability, computation
time, tractability and flexibility of the problem in handling unforeseen events. Hence, the
next three sections introduce the considered optimization methods and present the LSP
within the mentioned frameworks.

1.3.2 Most common methods to deal with the non-deterministic
LSPs

The production planning considers and even anticipates uncertainties to propose satis-
factory decisions. Under an uncertain environment, some parameters should be considered
to preserve the feasibility of a solution. Dolgui and Prodhon [2007] briefly describes some
classical approaches to control or mitigate the effects of these uncertainties for the MRP
environment. They are:

safety stocks, aiming to ensure a given service level and ward off the random factors,
by reducing the risk of shortages and increasing the holding costs

safety lead-time, whose principle is similar to that applied to the safety stocks, but
acting from the perspective of time

lot-sizing rules, that combine the net requirements for more than one time period or
bucket aiming to reduce the overall costs or optimize the inventory control

freezing the production planning, that aims to compromise between the need of
information updating and the nervousness produced by too many changes of the available
data by freezing some time periods over the planning horizon and thus any modification
is forbidden during the frozen periods, even if a rescheduling occurs.

These alternatives, however, require separate computation to deal with the uncertainty
thought some strong, or even unrealistic, assumptions. To increase the feasibility of a
production plan over exogenous uncertainties (such as demand and supply delivery lead
time) and endogenous uncertainties (such as production yield) safety stocks are commonly
used [Dolgui and Prodhon, 2007]. Although the safety stock approach helps mitigate the
impact of uncertain yield, safety stock calculations rely on separate calculations and strong
assumptions. This results in sub-optimal solutions as shown in Thevenin et al. [2020]. The
authors indicate that the safety stock levels are computed either manually to meet a given
service level in the master production schedule, or based on strict assumptions (e.g., static
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demand, base stock policy, lot-for-lot policy, critical stock policy). Since the lot sizes and
the safety stocks are not defined simultaneously, this often results in sub-optimal decisions.

Safety stock can be integrated into the LSPs as a lower bound on the inventory level
[De Bodt et al., 1982]. Zhao et al. [2001] report different approaches to define the safety
stock level at the master production schedule with the following parameters: safety cov-
erage, service level and standard deviation of the forecast errors. The newsboy model,
as presented in Khouja [1999], helps determine safety stocks to balance inventory and
backorder cost, rather than to satisfy a given service level. To improve the quality of
non-deterministic decisions, and to hedge against the uncertainties that affect the LSPs,
models are usually formulated based on approximations or optimization methodologies
that make the original problems easier to solve. Therefore, reformulating the problems as
mixed-integer linear programs (MILP) or other mathematical formulations has emerged
as a promising approach.

A common approach to deal with the case where the setup costs can be omitted is
relied on a newsboy model [Khouja, 1999]. Focused on the static strategy, this approach
minimizes the expected costs of overestimating or underestimating the uncertain param-
eters via a single period problem. For the multi-period problems or the adaptive decision
framework, some heuristics should be integrated to the approximation. Some adversarial
approach can also be applied to improve the quality of the proposed solution. Although
the approximation of the LSP models to this model can lead to easier calculation, this
approach is based on strong assumptions, such as the single-period problem, that are not
consistent or frequent in real cases. In addition, to address dynamic decision context or to
improve the quality of the proposed plan, some heuristics may be integrated with these
classical techniques.

Newsboy models The decomposition of the LSPs by the periods of the production
horizon leads to an inventory management based on the Newsboy model [Khouja, 1999].
It considers each period of time independently, and it minimizes the expected value of the
overall costs π to meet the demands with respect to an optimal lot size. Here, we define a
production plan via the LSPs with uncertain demand δ by solving for each period t ∈ T

the Newsboy-based problem given in (1.7). Applying the Leibniz’s rule to this equation
we can show that E(π) is concave through the first and second derivatives. In addition,
we can demonstrate that the solution proposed by the Newsboy-based model is optimal
for a lot size X∗

t defined by the formula given in (1.8).
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minπ = vtXt + bt

∫ Xt

0
(δt −Xt)f(δ)dδ + ht

∫ ∞

Xt

(Xt − δt)f(δ)dδ (1.7)

F (X∗
t ) = bt − vt

ht + bt
(1.8)

Although it is not the objective of this work to list the studies on the newsboy-based
LSP models, we can cite some work addressing uncertainties on demand [e.g., Henig and
Gerchak, 1990, Gallego and Moon, 1993, Moon and Choi, 1995, Wang and Gerchak, 1996,
Grosfeld-Nir and Gerchak, 1996], lead-time [e.g., Grosfeld-Nir and Gerchak, 2004, Jian
et al., 2015, Zeng et al., 2015], production yield [e.g., Agnihothri et al., 2000, Yano, 1989,
Dada et al., 2007, Abdel-Malek et al., 2008], capacity [Wu et al., 2013] and, finally, costs
[e.g., Pantumsinchai and Knowles, 1991, Khouja, 1996, Lin and Kroll, 1997].

Optimization methodologies

The optimization under uncertainty methods overcome the limitations faced by the
classical techniques and approximations through approaches that are adaptable to var-
ious production environments. Based on mathematical models, the optimization under
uncertainties handles different parameters, uncertain or not, simultaneously. Aloulou
et al. [2014] present a literature review where a five-field notation is proposed to clas-
sify the LSP models. This notation, (T , n, m, unc, mod), indicates respectively the
number of periods T , number of products n, number of levels m, uncertain param-
eters unc = {dmd (= demand), yid (= production yield), lead (= lead time), proc
(= processing time), setup (= setup time), cost (= cost), capa (= capacity)} and mod-

eling approaches for the LSPs mod = {stochasticprogramming, fuzzy, gametheory, on−
linedecision, queuingtheory, intervalarithmetic, simulation}. We intend to extend this
classification to consider the capacity constraint cap_cst = {uncap, cap}, the inven-
tory shortage approach inv_ctrl = {backorder, lostSales} (if any), the decision strategy
frame = {st, st − dyn, dyn} and the optimization methodology opt = {SP, RO, DRO}
applied. For that, we focus on the publications from the 1990s to 2020s addressing the
non-deterministic LSPs via the stochastic programming, robust optimization or the dis-
tributionally robust optimization methodologies.

Stochastic programming The stochastic programming (SP) represents the uncertain
parameters with their probability distributions, and it seeks to make the decisions min-
imizing the expected costs within any of the decision strategies [Birge and Louveaux,
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2011]. Although this methodology is very efficient for small size instances and a limited
number of scenarios, its main downside is its poor scalability for the large instances and
large number of scenarios, notably within the dynamic contexts [Brandimarte, 2006].

Robust optimization The robust optimization (RO) is a common approach to mit-
igate uncertainties within the static framework [Ben-Tal et al., 2009]. The main idea is
to describe the uncertainty in a set and then optimize against the worst-case realization
within this set [Bertsimas et al., 2011]. However, this approach deals with static problems
and leads to a extremely conservative solutions [Ben-Tal et al., 2009]. The adjustable ro-
bust optimization (ARO) is a robust methodology to static-dynamic and dynamic strate-
gies [Ben-Tal et al., 2004]. The formulation considering the dependence of the recourse
decisions on the uncertain parameters can lead to difficult and even intractable models. To
overcome this difficulty, the methodology often relies on the definition of affine function to
represent the adjustable variables [Aharon et al., 2009]. Under these affine polices, the re-
course decisions become linearly dependent on the realization of the uncertain parameters
up to the current period of time [Ouorou, 2011]. As a result, the reformulated problem
can be modeled as convex optimization problems such as linear, quadratic, conic or semi-
definite optimization problem. Usually classical approaches to solve the robust model are
applied [Bertsimas and Bidkhori, 2015]. When these techniques are not efficient, some
adversarial approaches should be applied to compute a solution.

Distributionally robust optimization Distributionally robust optimization (DRO)
describes uncertainties by an ambiguity set, which is a set of probability distributions with
specific properties. The DRO methodology seeks to optimize the worst-case expected cost
with respect to the probability distributions of the uncertain parameter described on an
ambiguity set [Delage and Ye, 2010]. Therefore, DRO aims to protect against the worst-
case probability distribution in this set. As a result, DRO can avoid over-conservative
solutions by incorporating partial distributional information in a robust model.

The three optimization methodologies introduced above are promising to hedge against
uncertainties in LSP environment. We demonstrate how to apply each one of them for
the scenario-based modeling of non-deterministic LSPs within a data-based perspective.
Note that a scenario-based modeling indicates the uncertain parameters by scenarios that
represent the possible values that these parameters can assume. Here, the scenarios of
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the SP model are constructed by the probability distributions, while the scenarios for the
RO models are given by values included in the uncertainty set. For the DRO models, the
scenarios are represented by the ambiguity set, that is itself scenarios of possible scenarios.
Therefore, we are interested in the scenario-based model of the multi-period single-item
LSPs with backorder under uncertainties via the SP, RO and DRO methodologies within
all decision strategies. Assuming the classification presented in Section 1.3.2, we focus on
the LSPs classified by LSPs = (T, 1, unc, sce, backorder, frame, opt).
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1.4 Stochastic Programming for LSPs

SP is one of the most used optimization methods to deal with LSPs under uncertainty
[Brahimi et al., 2006]. SP represents the uncertain parameters with their probability dis-
tributions, and it seeks to make the decisions minimizing the expected costs. In general,
the expected value and the chance-constrained approaches are used to formulate SP mod-
els Tempelmeier [2013]. The most applied techniques to solve the SP models for LSPs are:
i) approximations to other known problems whose solution is easily computed; ii) direct
methods such as extreme or interior-points; iii) dualization; iv) decomposition approaches
as column splitting, column generation or progressive hedging algorithm; v) Lagrangian
approaches; and vi) sampling approaches Birge [1997].

Representing the uncertain parameters with their probability distributions via a
scenario-based formulation and expected value approach, the SP models handle uncer-
tainty through mathematical programming techniques whose main idea is to minimize
the expected cost from the decision problem according to its random variables Birge and
Louveaux [2011].

First, we give a brief presentation of the chance-constrained and the expected cost
approaches to handle LSPs via SP. Then, we concentrate on the expected cost modeling
approach for the single-item LSP under demand uncertainty, within the static-static and
static-dynamic decision strategies.

1.4.1 Chance-constrained approach

A chance-constrained LSP model requires to respect the validity of some constraints
with regard to a given probability [Charnes and Cooper, 1959]. Readers are referred to
Bookbinder and Tan [1988], Tarim and Kingsman [2004], Tempelmeier [2007] for further
references.

Assuming a probability P∇ and confidence level ϵ that the inventory balance con-
straints are respected for the LSP under demand uncertainty, the chance-constrained
model can be formulated as follows:

min E

[∑
t∈T

stYt + vtXt + htIt + btBt

]
(1.9)

s.t. :

P∇{It −Bt = It−1 −Bt−1 +Xt − dt} ≥ ϵ t ∈ T (1.10)
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Xt ≤ MYt t ∈ T (1.11)

Xt, It, Bt ≥ 0 t ∈ T

Yt ∈ {0, 1} t ∈ T

1.4.2 Expected cost approach

Considering the LSP under demand uncertainty via a scenario-based formulation, we
can represent the uncertain demand dω

t in a scenario ω ∈ Ω, such that Ω includes all
possible scenarios of realization of the demand according to the given distribution. Each
scenario ω ∈ Ω has a probability Prω | Prω > 0; ∑ω∈Ω Prω = 1 of realization of a demand
dω

t in the period t. Within static strategy, the setup and the lot sizes are fixed, and the
inventory and backorder levels can change according to the scenario ω.

The two-stage SP for an LSP with uncertain demand presented by Raa and Aghezzaf
[2005] is given as follows:

min
∑
ω∈Ω

∑
t∈T

Prω(stYt + vtXt + htI
ω
t + btB

ω
t ) (1.12)

s.t.

Iω
t −Bω

t = Iω
t−1 −Bω

t−1 +Xt − dω
t t ∈ T ; ω ∈ Ω (1.13)

Xt ≤ Mt · Yt t ∈ T

Xt ≥ 0 t ∈ T

Iω
t , B

ω
t ≥ 0 t ∈ T ; ω ∈ Ω

Yt ∈ 0, 1 t ∈ T

An immediate difficulty that arises when solving such a program is the computation
of the expected costs. While for continuous distributions, the exact computation involves
multiple integrals, for discrete distributions it involves a prohibitive number of individual
problems related to the realization of each possible realization of the uncertainty. As a
consequence, solving stochastic problems is often hard. Some techniques can be applied
to reduce the number of scenarios and to make the resolution computationally tractable.
Even if a sufficiently large quantity of scenarios is needed to estimate a good solution,
approaches as scenario sampling can adequately address these issues and propose good
stochastic lot size decisions.

The most known sampling method for a scenario-based modeling is the Monte Carlo
sampling [Shapiro, 2003]. Other methods such as Latin Hypercube sampling have also
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been used to solve large instances. The computation of a stochastic solution often relies
on methods as the Sample Average Approximation (SAA). Readers are referred to Shapiro
[2003], Engelund and Rackwitz [1993], Schuëller and Pradlwarter [2007] for further infor-
mation on the sampling techniques.

The use of the SP method for the other uncertain parameters presented in Section
1.2.2 is similar to the case of the demand. We consider the different scenarios of the
realization of the uncertain parameter, and we propose a production plan for each one
of these scenarios. Then we compute an expected cost taking into account every scenario
with regard to its probability of realization.

1.4.3 Multistage SP for LSP with backordering

To overcome the limitation of the static strategy of adapting the lot size according to
the realization of the uncertainty, an adaptive strategy is needed. Here, the definition of
the scenario structure differs from the two-stage to the multistage model. In the one hand,
the two-stage model assumes the scenario as a vector expressing possible realization of the
uncertain parameter according to its index in the original problem. On the other hand,
the multistage model considers the scenario as a tree structure, decomposing the scenarios
for each stage while preserving the knowledge about the revealed uncertainty in previous
stages. We will introduce the scenario tree generation in the scope of the multistage LSP
presented below.

Within the multistage static-dynamic strategy, the first-stage decisions are the setup
decisions (Yt), whereas the lot size (Xω

t ), inventory level (Iω
t ) and backorder level (Bω

t )
compose the tth-stage decisions updated according to the realization of the uncertain
parameter for scenario ω in period t. As the tth-stage decisions may depend only on the
uncertainty revealed up to the period t, non-anticipativity constraints must be introduced
to ensure that the lot sizes Xω

t have the same values over different scenarios that do not
differ up to the period t − 1.

A scenario tree is the most common representation of the scenarios [Dupačová et al.,
2000]. It expresses the scenarios as an oriented graph starting with a root (the only node
before the planning horizon) and branches into nodes at level t = 1 to t = |T |. Each node
represents a realization of the uncertainty for the scenario ω at the stage t. As a result,
the scenario tree represents the paths of possible realization of the uncertainties. Figure
1.2 presents an example of a 3-stage scenario tree where the nodes filled in gray represent
a possible realization of the uncertainty. We can notice that all scenarios going through
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some node have the same realization of the preceding stages.

Figure 1.2 – A 3-stage scenario tree

Let us consider a scenario tree N with t levels, such that for any node n in the level
T (n), a sub-set Ω(n) of scenarios cross this node. Assuming that Rn is the value of Xω′

t for
all ω′ ∈ Ω(n), the adaptive multistage SP for the LSP under uncertain demand is given
as follows:

min
∑
ω∈Ω

∑
t∈T

Prω(stYt + vtX
ω
t + htI

ω
t + πtB

ω
t ) (1.14)

s.t.

Iω
t −Bω

t = Iω
t−1 −Bω

t−1 +Xω
t − dω

t t ∈ T (1.15)

Xω
t ≤ MtYt t ∈ T ; ω ∈ Ω

Xω
T (n) = Rn n ∈ N ; ω ∈ Ω(n) (1.16)

Xω
t , I

ω
t , B

ω
t ≥ 0 t ∈ T ; ω ∈ Ω

Yt ∈ 0, 1 t ∈ T

Similar to the static model, the multistage model aims to minimize the expected cost
over all the considered scenarios. However, the inventory balance constraints (1.15) set
lot size, inventory and backorder levels according to the realization of the uncertain de-
mand, meeting the demand from each period t for each scenario ω. This model faces the
difficulty of dependence of the decisions in given stage t on the uncertainties revealed in
the previous stage. Even if the stages correspond to the steps in the decision process, for
the general LSPs we can assume that each step refers to several periods in the production
horizon. Although this assumption can reduce the size of the scenario tree, the model
remains computationally heavy, as the number of nodes in the scenario tree grows expo-
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nentially with the number of periods considered in the problem. To address the different
uncertain parameters cited in Section 1.2.2, we may consider a formulation similar to
those introduced for the static strategy, replacing Xt by Xω

t .
Addressing the dynamic strategy, binary recourse variables should be considered. In

other words, a well-structured multistage approach should be applied to the LSPs. Since
the number of binaries would be exponential in the number of time period, the resulting
deterministic models is itself hard to solve. While prohibitive computational efforts to
solve the deterministic LSPs can be overcome by heuristic techniques, good scenario gen-
eration strategies and sampling approaches are required to control scenario and scalability
issues. Brandimarte [2006] indicate the Latin Hypercube sampling combined with an op-
timized scenario generation as a promising method to address the multistage LSPs. Some
decomposition, simulation or heuristic approach is often used to optimize the problem and
compute a solution to large-size instances in reasonable time. A recent work proposed an
efficient decomposition method applying the dual dynamic programming [Quezada et al.,
2019]. De Saint Germain et al. [2017] propose a simulation method based on the SAA
to handle real-world instances, though this approach suffers scalability issues. Şen et al.
[2014] propose some heuristics to handle both static and dynamic strategies, and Kang
and Lee [2013] propose a heuristic dynamic programming to compute a solution.

1.4.4 Literature review of scenario-based stochastic LSPs

The majority of the studies of the non-deterministic LSPs were addressed with SP mod-
els. Table 1.2 lists studies published from 1995 to 2020 addressing single and multi-item
stochastic program LSP via a scenario-based modeling. It reports that the SP method-
ology reached a mature literature, since it has been relevant in the research community
for a longer time than the other methods. The studies focus primarily on the single-item
problem, even if some recent works investigate the multi-item problem. Besides that,
the uncapacitated version and the uncertain demand are much more analysed than the
capacitated version and other uncertain parameters.

The main issues faced by the stochastic LSPs, that are: i) the complexity of the
mixed-integer LSPs is hard and some strong formulations and heuristics are needed to
handle the non-deterministic problem, ii) the scenario generation issues and the difficulty
of sampling the uncertainties, and, finally, iii) the complexity of representing practical
applications with multistage models. Such difficulties raised with the adaptive models
justify the preference for the stochastic modeling within a static strategy [Brandimarte,
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Reference Period Item Echelon Capacity Uncertainty Decision framework Inventory shortage
Alem et al. [2018] multi multi multi capacitated demand st-st B
Augusto et al. [2016] multi multi single capacitated demand, processing time and perishability st-st LS
Bansal et al. [2018] multi single single capacitated demand and cost st-st B
Beraldi and Ruszczyński [2002] multi single single capacitated demand st-st
Bollapragada and Rao [2006] multi single single capacitated demand st-st B - SL
Bookbinder and Tan [1988] multi single single uncapacitated demand st SL
Brandimarte [2006] multi multi single capacitated demand st-st ; st-dyn B
Şen et al. [2014] multi multi single capacitated cost st-dyn
De Saint Germain et al. [2017] multi multi single capacitated demand st-st ; st-dyn B
Guan and Miller [2008] multi single single uncapacitated demand st-dyn
Guan [2011] multi single single (un)capacitated demand st-dyn B
Huang and KüçüKyavuz [2008] multi single s uncapacitated lead time st-dyn
Jiang and Guan [2011] multi single single uncapacitated lead time st-dyn
Jiang and Guan [2016] multi single single uncapacitated demand st-st
Jiang and Guan [2018] multi single single capacitated demand st-st
Kang and Lee [2013] multi multi multi capacitated demand st-dyn
Martel et al. [1995] multi multi single uncapacitated demand st-st B - SL
Minoux [2018] multi single single capacitated demand and cost st-dyn B
Quezada et al. [2019] multi multi multi uncapacitated demand st-dyn LS
Raa and Aghezzaf [2005] multi single single capacitated demand st-st ; st-dyn B
Rahmani et al. [2013] multi multi multi capacitated demand st-st B
Sahebjamnia and Torabi [2011] multi multi multi capacitated demand st-dyn B
Taş et al. [2019] multi multi single capacitated setup time st-st
Tarim and Kingsman [2004] multi single single uncapacitated demand st SL
Tempelmeier [2007] multi single single uncapacitated demand st-st B - SL
Tempelmeier [2013] multi single ; multi single ; multi (un)capacitated demand st-dyn
Wong et al. [2009] multi single single capacitated demand st-st B
Zanjani et al. [2007] multi multi multi capacitated yields st-st B
Zhou and Guan [2010] multi single single uncapacitated cost st-st ; st-dyn
Zhou and Guan [2013] multi single single uncapacitated cost st-st B

Table 1.2 – Some references from 1995 to 2019 that handle the LSP via SP

2006]. While decomposition methods efficiently handle the two-stage stochastic models
[Sen, 2005], further investigation is need to address the multistage model with reasonable
computational effort. The scalability issue is extended to any uncertain parameter or
coefficient associated to the model.
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1.5 Robust Optimization for LSPs

RO is a common approach to optimize under uncertainty [Ben-Tal and Nemirovski,
2000]. RO describes the uncertainty in a set, and to optimize against the worst-case
realization of the uncertainty within this set [Bertsimas et al., 2011]. For that reason,
the choice of the uncertainty set is crucial to achieve a good trade-off between system
performance and protection against uncertainty [Bertsimas and Brown, 2009]. The RO
decisions are determined before the realization of the uncertainties, and no recourse action
is possible after revealing the uncertain parameters [Sözüer and Thiele, 2016].

The robust LSP has gained interest from the research community over the last decades,
and different approaches exist to solve robust problems [Gabrel et al., 2014]. Robust prob-
lems are often handled through reformulation per constraint and dualization, or adver-
sarial approaches. Note that the adversarial approach [Yanıkoğlu et al., 2019] refers to
the type of approaches which does not rely on a tractable reformulation of the robust
counterpart but typically by iteratively solving a restricted robust model with a limited
set of uncertainty realizations to determine a possible robust solution, and then finding
a scenario realization which makes this solution candidate infeasible. If such a scenario
is found, this scenario realization is then added to the restricted robust model and the
process terminates when a possible robust solution is guaranteed to be feasible. The refor-
mulation per constraint and dualization leverages the optimality condition of the duality
theory. In fact, the constraint-wise formulation, where the uncertain parameters appear
only in the constraints, allows us to directly exploit the duality technique of Beck and
Ben-Tal [2009], for which the best dual in robust models is proved to be equal to the
worst primal. Thus, a robust counterpart model can be defined by reformulating all the
constraints subject to uncertainty by a worst case perspective of the uncertain parameter
under a predetermined uncertainty set.

Construction of the uncertainty set The uncertainty sets are often rooted in some
statistical considerations as presented by Gabrel et al. [2014]. A prescriptive methodol-
ogy for constructing uncertainty sets within the robust optimization framework for linear
problems with uncertain data is presented by Bertsimas and Brown [2009]. Most re-
searches have focused on uncertainty sets whose shape can be expressed as a well-known
formulation as linear programs, second-order cone programs due to their tractability and
their geometry favorable for some calculations over incomplete data or lack of forecast
expertise.
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The first uncertainty set was presented by Soyster [1973]. Also called box or interval
uncertainty set, this set contains all possible values that the uncertain parameters can
assume within a range limited by their maximum and minimum values. Even if this
first approach is easily computed, it leads to an extremely conservative solution [Ben-
Tal and Nemirovski, 2000]. To overcome this conservatism, Bertsimas and Sim [2004]
present a linear approach to control the size of the interval proposed by Soyster [1973]
with a budget Γ, constructing then a polyhedral uncertainty set. This set, also called a
budgeted uncertainty set, limits the deviation of the uncertain parameters from its mean
with a budget of uncertainty controlled by the decision maker. This reformulation allows
decision makers to determine the price of robustness of the model according to the decision
context needs and strategies.

Since these seminal works, various authors proposed uncertainty set, with the objec-
tive to design tractable models, where the conservatism is controllable. Some examples of
these uncertainty sets are: box uncertainty set Qiu et al. [2017], (closed, convex, pointed or
second-order) cone uncertainty set Ben-Tal et al. [2004], ellipsoid uncertainty set, polyhe-
dral uncertainty set Bertsimas and de Ruiter [2016]. For further details on the uncertainty
sets, the reader is referred to Bertsimas and Brown [2009], Thiele [2010], Gorissen et al.
[2012].

Figure 1.3 – Tractable reformulations for the uncertainty constraint aX + bX ≤ d for
most common uncertainty sets. Table taken from Yanıkoğlu et al. [2019]

Figure 1.3 introduces some uncertainty sets and their representation in the RC models.
For the static RO, these uncertainty sets often lead to tractable robust models.

1.5.1 Approaches to solve robust reformulations

The RO method reformulates the non-deterministic problems as a robust counterpart
(RC) model in which the uncertainty is taken into account under an uncertainty set. As

47



Chapter 1 – Non-determinsitic lot-sizing problems

a result, the reformulated model considers an infinite number of constraints representing
each possible of the uncertain parameter included on the uncertainty set. There are two
approaches to deal with the infinity constraints and to solve the RC models [Gorissen et al.,
2015]. First, a reformulation technique can be applied to turn the RC model tractable.
If this reformulation is complex or intractable, then an adversarial approach should be
developed. Usually, the reformulation techniques efficiently deal with the majority of the
robust models within a static strategy. However, the complexity of worst case perspective
of the adaptive robust models leads to very hard adjustable robust counterpart (ARC)
models. Therefore, an adversarial approach is more required to solve a robust model within
an adaptive strategy.

Reformulation per constraint and dualization Reformulation per constraint and
dualization approach reformulates into models with a finite numbers of constraints in
three steps: 1) reformulation of each constraint subject to the uncertainty as a worst-
case reformulation, 2) modeling of the dual of the worst-case reformulation, and finally ()
reformulation of the RC model by dropping all dualized reformulation into the initial RC
without the inner optimization term [Bertsimas et al., 2011]. In fact, the duality overcomes
the prohibitive quantifier of the uncertainty supported by the proof demonstrated by Beck
and Ben-Tal [2009] that indicates that “primal worst equals to dual best”. As a result, the
infinite number of constraints from the original robust problem is replaced by a dualized
model whose constraints are limited to a finite amount. Hence, the reformulated RC
model, if tractable, can be solved by a commercial solver.

Adversarial approach An adversarial approach addresses the cases when the refor-
mulated model cannot be solved. Therefore, the RC model may be solved via heuristic
algorithms or approximations to a tractable model. Different adversarial techniques or
methodologies can be applied to solve the complex robust models. The choice of the tech-
nique depends on the structure and the hardness of the non-deterministic problem. Among
the general existing adversarial approaches, we can cite the decomposition techniques (e.g.,
column generation) and the sampling techniques (e.g., sample average approximation).

Tractable robust models requires a convex optimization formulation which is are often
handled by dualization [Bertsimas and de Ruiter, 2016], reformulation of the robust coun-
terpart [e.g., See and Sim, 2010, Guillaume et al., 2017], Lagrangian duality [Rodrigues
et al., 2021], dynamic programs [e.g., Bienstock and Özbay, 2008, Agra et al., 2016] and
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decomposition algorithms [e.g., Bienstock and Özbay, 2008, Attila et al., 2021]. Although
these techniques often yield feasible formulations that are easy to solve, they can lead
to conservative solutions [Thiele, 2010]. Gorissen and Den Hertog [2013] discuss different
ways to alleviate the conservatism of the formulations. For further information on recent
advances in robust optimization, we refer the interested readers to Gabrel et al. [2014].

Bertsimas and Thiele [2004] proposed a first reformulation per constraint and dual-
ization to solve the robust LSP and its variations or simplifications (e.g., the inventory
management problem). The authors consider the inventory management problem under
a budgeted uncertainty set and uncertain demand, which results in a MILP formulation
that can be solved by a commercial solver. The authors suggest carrying out a simulation
to define a budget of uncertainty that best mitigates the uncertainties. The objective is
to find a suitable compromise between cost and robustness [Thiele, 2010]. In the same
dualization vein, Zhang [2011] propose a formulation for the uncapacitated LSP with un-
certain demand, where the inner maximization is reformulated as a longest path problem.
The authors take the dual of the longest path problem to obtain the final robust model
as an MILP, and this final model can also be solved by a commercial solver. Considering
an example of adversarial approach, Bienstock and Özbay [2008] propose some decompo-
sition techniques to iteratively constrain the space of the realization of the uncertainty.
The resulting approach provides plans that are sufficiently robust, and it scales well to
solve large instances.

Within the static strategy, the reformulation per constraint and dualization can be
applied for the RC LSP models under any uncertain parameter. However, for the adaptive
LSPs, since the uncertain parameters directly modify the adjustable decisions, the ARC
models usually become intractable and should be addressed via an adversarial approach.
We introduce in the next sections the robust methodology for the non-deterministic LSPs.

1.5.2 Static models

We recall the static LSP under demand uncertainty proposed by Thorsen and Yao
[2017], where the RC is solved via reformulation per constraint and dualization approach.
For that, we assume an uncertain demand d̃ included in budgeted uncertainty set U given
by U = {d̃ ∈ Rt : d̃i = d̄i + Zid̂i i ∈ T ; −1 ≤ Zi ≤ 1 i ∈ T ;∑t

i=1 |Zi| ≤ Γt}, where
Γt is the budget, d̄ as the demand average, d̂ the demand standard deviation, and Z the
disturbance of worst case realization of the demand from the mean.

The inventory and the backorder costs are piecewise cost functions that can be ex-
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ploited by their convexity. Thus, we can formulate a linearized RC reformulation of the
original problem as a mixed-integer problem [Bertsimas and Thiele, 2004]. Therefore, the
RC for the LSP under uncertain demand is given as follows:

min
∑
t∈T

stYt + vtXt +Ht (1.17)

s.t. :

Ht ≥ ht max
d̃∈U

[
t∑

τ=1
(Xτ − d̃τ )

]
t ∈ T (1.18)

Ht ≥ −bt max
d̃∈U

[
t∑

τ=1
(Xτ − d̃τ )

]
t ∈ T (1.19)

Xt ≤ MYt t ∈ T

Xt, Ht ≥ 0 t ∈ T

Yt ∈ {0, 1} t ∈ T

Within a static strategy, the use of the RO methodology for the other uncertain
parameters presented in Section 1.2.2 is similar to the case of the demand. We consider
the uncertain parameter within the uncertainty set, and we propose a production plan
that respects the worst-case realization of the uncertainty within the considered set. No
additional difficulty is expected to solve the different uncertainties.

Solyalı et al. [2015] propose some reformulations leading to better performances of
the robust methodology for LSPs. Within the static framework, a MIP model solved by
any commercial MIP solver is often applied to solve the LSP due to its tractability and
optimality as presented in Hnaien and Afsar [2017]. Qiu et al. [2017] propose a tractable
linear and second-order cone program to deal with the solution of the LSP under demand
uncertainty.

When we extend this optimization approach to the different uncertain parameters
defined in Section 1.2.2 we notice that all the uncertainty can be dealt in the similar way,
since they meet the assumptions of the RO. Focusing on real-world production planning
applications, Alem et al. [2018] have proposed the integration of lot sizing and scheduling
model to determine a production plan that satisfies uncertain demand and uses efficiently
the available resources and the system.
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1.5.3 Adaptive models

ARO extends RO methodology to make some variables adjustable to the realization
of the uncertainties. ARO supposes that uncertainty is revealed as time goes, and one
can adjust the values of some of the decision variables according to the current knowledge
of the uncertain parameters [Ben-Tal et al., 2004]. The coefficients associated with these
variables denote the recourse actions applied to the adaptive framework. A fixed recourse
indicates that the coefficients associated with the adaptive variables are not dependent
on the uncertain parameter. On the other hand, a non-fixed recourse denotes that the
coefficient of the adaptive decisions changes with the realization of the uncertainty.

The adjustable problem is by definition a complex problem whose formulation would
lead to intractable models [Yanıkoğlu et al., 2019]. To restrict the adaptive model to a
tractable formulation, the ARO community often relies on affine decision functions to
compute the value of the adaptive variables based on the values of uncertain param-
eters [Ben-Tal et al., 2004]. Under these affine policies, the adaptive decisions become
linearly dependent on the uncertain parameter [Ouorou, 2011]. For fixed recourse mod-
els, the adaptive robust counterpart (ARC) models can be efficiently solved via some
well-known optimization problems, such as linear, quadratic, conic or semi-definite op-
timization problem [Bertsimas and Bidkhori, 2015]. For the non-fixed recourse models,
the adaptive formulation where both coefficient and variable are modified by the uncer-
tain parameter yields to an indefinite quadratic representation of the uncertainty. The
tractability of these models via the reformulation per constraint approach is guaranteed
by a semi-definite representation of the constraints under an ellipsoidal uncertainty set
[Ben-Tal et al., 2009]. Otherwise, an adversarial approach should be envisaged. A survey
of the ARO methodology is presented by Yanıkoğlu et al. [2019]. We refer the reader to
Ben-Tal et al. [2009] for further information on the robust methodology.

Although most robust optimization model can be reformulated as tractable convex
models [e.g., Ben-Tal et al., 2004, Ben-Tal and Den Hertog, 2014, Delage and Iancu,
2015], the reformulation of adaptive models as convex problem (e.g., a linear, quadratic, or
semidefinite optimization problem) may not always be possible and it often requires high-
level mathematical theory [Yanıkoğlu et al., 2019]. Adaptive robust counterpart (ARC)
models can have a fixed or non-fixed recourse [Yanıkoğlu et al., 2019]. In ARC with fixed
recourse (e.g., the adaptive models with uncertain demand), the coefficients of the adap-
tive variables are not subject to uncertainties. In ARC with a non-fixed recourse, the
coefficients of some of the adaptive variables are uncertain parameters. The former case

51



Chapter 1 – Non-determinsitic lot-sizing problems

leads to a convex formulation that can be solved using efficient algorithms or commercial
solvers. However, the models with non-fixed recourse have constraints that are indefinite
quadratic in the uncertainty, which yield in intractable formulations [Yanıkoğlu et al.,
2019]. The ARC of the LSP under uncertain yield has non-fixed recourse since the uncer-
tain parameter (the yield) is a coefficient of the recourse action (the production quantity).
The gap of knowledge on the adjustable robust models with non-fixed recourse has moti-
vated us to further investigate the advantages of this approach on the adaptive LSP with
uncertain production yield.

For general adaptive robust formulations, Bertsimas et al. [2010] proved the optimality
of affine decision rules for adjustable robust models, Bertsimas and de Ruiter [2016] derive
some properties on the dualized formulations for adaptive linear problems, and Chuong
and Jeyakumar [2020] establish the strong duality between the affinelly adjustable robust
counterpart models and their dual semidefinite programs. A convex adaptive model can
be solved by the same approaches applied to robust models [Yanıkoğlu et al., 2019].
These resolution approaches include reformulation and dualization [e.g., See and Sim,
2010, Guillaume et al., 2017, Rodrigues et al., 2021] and adversarial approaches such
as decomposition or dynamic programs [e.g., Bienstock and Özbay, 2008, Agra et al.,
2016, Attila et al., 2021]. Since the tractability of robust models often relies on bounded
uncertainty sets, and so does the optimality of these models, in this work we consider only
the robust optimization literature applied to bounded uncertainty sets.

For the LSPs, the ARO methodology denotes a min-max formulation targeting to min-
imize the worst-case overall costs over the uncertainty set. We present the ARO method
for the LSPs based on reformulation per constraint and dualization approach with the
affinelly adjustable robust counterpart (AARC) model. As the production quantity Xt,
and so inventory/backorder cost Ht, have their values updated with the realization of
the uncertain parameter ζ, they are assumed adaptive decisions. The parameterization of
these adjustable variables by the affinelly linear decision rules (ADR) with regard to the
realization of the uncertainty for the periods up to t are given as follows:

Xt(ζ̃) = X0
t +

t−1∑
τ=1

Xτ
t ζ̃τ t ∈ T (1.20)

Ht(ζ̃) = H0
t +

t−1∑
τ=1

Hτ
t ζ̃τ t ∈ T (1.21)
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LSPs with fixed recourse

Most studies on the ARO methodology address fixed recourse models, the case for
the LSPs under demand or setup time uncertainty [e.g., Bertsimas and de Ruiter, 2016,
Melamed et al., 2016, Bertsimas et al., 2019]. To illustrate the LSPs with uncertain de-
mand under budgeted uncertainty set and model as a AARC model, we recall the model
proposed by Metzker et al. [2023b]. Let us assume that the demand is uncertain and
defined within the budgeted uncertainty set U introduced in 1.5.2. The LSP aims decide
the adaptive lot size quantities to minimize the overall costs over the planning horizon.
The AARC model is given as follows:

min
Y

∑
t∈T

[
stYt + max

d̃∈Ut

(
vtXt(d̃) +Ht(d̃)

)]
(1.22)

s.t. :

Ht(d̃) ≥ ht

t∑
τ=1

(Xτ (d̃) − d̃τ ) ∀t ∈ T ; d̃ ∈ Ut (1.23)

Ht(d̃) ≥ −bt

t∑
τ=1

(Xτ (d̃) − d̃τ ) ∀t ∈ T ; d̃ ∈ Ut (1.24)

Xt(d̃) ≤ MtYt ∀t ∈ T ; d̃ ∈ Ut

Xt(d̃), Ht(d̃) ≥ 0 ∀t ∈ T ; d̃ ∈ Ut

Yt ∈ {0, 1} ∀t ∈ T

where d̃ is the uncertain demand under the uncertainty set U , Xt(d̃) represents the
affine decision rule for the adaptive lot size, and Ht(d̃) is the affine decision rule for the
adaptive inventory/backorder costs.

Applying the reformulation per constraint and dualization approach, the authors ob-
tain the final AARC model that is tractable, as all constraints and the objective function
are linear with regard to the realization of the uncertain demand. Solving the AARC be-
fore period t = 1, we obtain the optimal vectors X0∗

t and Xτ∗
t (resp. H0∗

t and Hτ∗
t ) that are

components from the Ht(d̃) (resp. Ht(d̃)) functions. Then, as time goes, at the beginning
of each period t, the optimal production X∗

t and inventory/backorder H∗
t variables can be

computed with regard to the affine linear decision rules (1.20) and (1.21), and with the
revealed demand.

As well as demand, setup time uncertainty is not directly associated with any decision
variable. The ARO methodology applied to LSPs under these uncertain parameters in
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a static-dynamic or dynamic strategy remains tractable when affine decision rules are
defined. Few modifications may be done to the AARC model presented above to model
the uncertain setup time.

In a dynamic framework, an adaptive setup of production would require an adversarial
approach or other techniques to deal with the adaptive binary decision. One possibility
is to manage adaptive robust LSPs without setup, and compute the setup costs when a
production is held at a specific time.

LSPs with non-fixed recourse

For the non-fixed recourse models, as the LSPs under yield, lead-time, processing-time,
setup time or cost uncertainty, the coefficients of the adjustable variable are themselves
uncertain. It yields quadratic constraints in the uncertainty. As a result, the adaptive
model may be difficult to solve or even intractable [Ben-Tal et al., 2004]. Very few studies
exist on ARC problems with non-fixed recourse. Even the most recent literature pub-
lished about the adjustable robust methodology limits their analysis to the complexity
to handle those problems, and some mathematical consideration to applied mathematical
approaches that could overcome the quadratic difficulty via convex tractable approxima-
tions [e.g., Ben-Tal et al., 2004, Yanıkoğlu et al., 2019]. Ben-Tal et al. [2005] indicate that
the tractability of these problems, when possible, should be guaranteed via an ellipsoidal
uncertainty that approximates the problem via convex semi-defined programming. Other-
wise, an approximation or an adversarial approach may be applied to handle the adaptive
problems.

We demonstrate a non-fixed recourse model with the adaptive LSP with uncertain
production yield presented by Metzker et al. [2023b]. Assuming a budgeted uncertainty
set U based on the mean and the standard deviation of the production yield rate, the
authors parameterize the uncertain production yield by ρ̃ = ρ̄ + Zρ̂, and we estimate the
budgeted uncertainty set U by U = {Z ∈ RT : ∑t

τ=1 |Zτ | ≤ Γt t ∈ T}. Applying the
reformulation approach, the non-fixed AARC model with uncertain production yield is
given as follows:

min
Y

∑
t∈T

[
stYt + max

ρ∈Ut

(
vtXt(ρ) +Ht(ρ)

)]
(1.25)

s.t. :
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Ht(ρ) ≥ ht

t∑
τ=1

(ρτXτ (ρ) − dτ ) ∀t ∈ T ; ρ ∈ Ut (1.26)

Ht(ρ) ≥ −bt

t∑
τ=1

(ρτXτ (ρ) − dτ ) ∀t ∈ T ; ρ ∈ Ut (1.27)

Xt(ρ) ≤ MtYt ∀t ∈ T ; ρ ∈ Ut

Xt(ρ), Ht(ρ) ≥ 0 ∀t ∈ T ; ρ ∈ Ut

Yt ∈ {0, 1} ∀t ∈ T

The non-fixed recourse are represented in Constraints (1.26) and Constraints (1.27).
The uncertain production yield ρ̃ is the coefficient for the adaptive lot size X(ρ). This leads
to the quadratic constraints in the uncertainty, such that at each period t the disturbance
for this period multiples the disturbances for the periods up to t that composes the affine
rule of the adaptive lot size. Similar to the non-fixed model for the LSPs with uncertain
yield, the capacity, lead-time and processing time has non-fixed recourse. In addition,
the modeling should take into account the structure of the problems. For instance, the
lead time and processing time are integer parameters and, thus, cannot be dualized. As a
result, modeling such uncertainties can be very challenging.

1.5.4 Literature review of robust LSPs

Since the RO is a topic under development in the scientific community, the number of
researches is small and limited to specific research groups. This also justifies why stud-
ies focus on uncertain demand, as this is more natural to the uncertainties. Table 1.3
lists the references addressing single and multi-item LSP within a static and an adaptive
strategy. While the RO studies refer to the static strategy, the ARO studies relate to the
static-dynamic strategy. Any study for the dynamic framework was found, which helps to
proof the difficulty to address such problems. The dynamic robust models are non-convex
models. Since the setup decisions are integer and binary variables, we cannot describe
them through linear decision rules. In addition, the difficulty of defining the integer and
continuous adaptive decisions as decision rules valid within a bounded uncertainty set
prevents the use of dualization techniques. As a result, no direct reformulation is possi-
ble, and some adversarial approach may be developed to compute a dynamic solution.
In addition, there is a gap of knowledge of the robust perspective for multi-item LSPs
under uncertainties, and further studies for other uncertainties than demand in the LSPs
environment.
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Reference Period Item Echelon Capacity Uncertainty Decision framework Inventory shortage Optimization method
Agra et al. [2018] multi multi single capacitated demand st-st B RO
Aharon et al. [2009] multi multi multi uncapacitated demand st-dyn B ARO
Alem et al. [2018] multi multi multi capacitated demand st-st B RO
Ben-Tal et al. [2004] multi single single capacitated demand st-dyn x ARO
Ben-Tal et al. [2005] multi single multi capacitated demand st-dyn x ARO
Bertsimas and Thiele [2006a] multi multi multi (un)capacitated demand st-st B RO
Bertsimas and Thiele [2006b] multi single single uncapacitated demand st-st B RO
Bertsimas et al. [2010] multi single single capacitated demand st-dyn B ARO
Bertsimas and Bidkhori [2015] single multi single uncapacitated demand st-st B ARO
Bertsimas and de Ruiter [2016] single multi single capacitated demand st-st x ARO
Bertsimas and Dunning [2016] multi single single uncapacitated demand st-st ; st-dyn RO ; ARO
Bertsimas et al. [2018b] multi single single uncapacitated demand st-dyn B ARO
Coniglio et al. [2018] multi single single uncapacitated demand st-st B RO
Guo and Liu [2018] single multi single uncapacitated demand st-st x RO
Hnaien and Afsar [2017] multi single single capacitated lead time st-st x RO
Kaganova [2013] multi multi single capacitated demand st-st; st-dyn LS - B RO - ARO
Kang and Lee [2013] multi multi multi capacitated demand st-dyn x SP
Klabjan et al. [2013] multi single single uncapacitated demand st-st B RO
Leung and Wu [2004] multi multi multi capacitated demand st-st x RO
Mehdizadeh et al. [2018] multi multi multi capacitated demand and lead time st-st B ARO
Melamed et al. [2016] multi single single uncapacitated demand st-st x ARO
Minoux [2018] multi single single capacitated demand and cost st-dyn B ARO
Santos et al. multi single single capacitated demand st-st ; st-dyn B RO - ARO
Shapiro [2011] multi single single uncapacitated demand st-dyn ARO
Solyalı et al. [2015] multi single single uncapacitated demand st-st ; st-dyn B RO - ARO
Thorsen and Yao [2017] multi single single uncapacitated demand and lead time st-st B RO
van Pelt and Fransoo [2015] multi (single/multi) single capacitated demand st-st ; st-dyn B RO - ARO
Vayanos et al. [2012] multi single single capacitated demand and yields st-dyn B ARO
Wagner [2017] multi single single uncapacitated demand st-st ; st-dyn x RO
Zhu et al. [2012] multi single single capacitated demand st-dyn x ARO

Table 1.3 – References handling the LSP via RO and ARO
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1.6 Distributionally Robust Optimization for LSPs

DRO seeks to optimize against the worst-case expected cost over a set of probability
distributions described by an ambiguity set [Delage and Ye, 2010]. The ambiguity set con-
tains a family of probability distributions characterized by the properties of the unknown
distribution of the uncertain parameter [Delage and Ye, 2010].

Although the DRO community questions whether some studies from the 1950s pro-
pose concepts equivalent to those known today as DRO methodology, most advances
in the field began in the 2000s. Delage and Ye [2010] is among the first to tackle the
distributionally robust optimization problem by considering an ambiguity set based on
moment information. They propose a generic model for this case and a semi-infinite pro-
gramming approach to solve it. Wiesemann et al. [2014] provide an extensive review of
convex DRO methodology and introduce standardized forms for convex ambiguity sets.
The authors also present important conditions which ensure tractability of the final dis-
tributionally robust models. Esfahani and Kuhn [2018] present the Wasserstein ambiguity
set, an ambiguity set that is convex, ensures tractability of the model and leads to pow-
erful performance. Kuhn et al. [2019] extend this work to provide more theory about the
Wasserstein ambiguity set, and show the conceptual and computational benefits of this
approach. The authors also report the promising results when combining Wasserstein am-
biguity set with machine learning applications. Bertsimas et al. [2019] propose a tractable
adaptive DRO formulation based on second-order conic representable ambiguity sets. The
authors provide tools to reformulate the distributionally robust models as MILP that can
be easily solved by commercial solvers. In the same vein, Chen et al. [2020] introduce
the event-wise formulation for the ambiguity sets, and provide a new modeling pack-
age, RSOME, to help modelers to reformulate and solve distributionally robust models.
RSOME is an open-source Python library that makes it easier to formulate and to solve
distributionally robust problems, through pre-defined reformulation steps. RSOME also
allows us to directly call commercial solvers to compute a solution. An extensive review
on DRO, we refer readers to Rahimian and Mehrotra [2019].

In a general framework, the DRO assumes an ambiguity set known a priori and aims
to hedge against the worst-case probability distribution in the ambiguity set. Therefore,
DRO combines the expected cost computation from the SP with the conservatism of the
RO under a worst-case perspective. The different probability distributions are considered
over their worst case and the DRO model can be translated into an RO model based on

57



Chapter 1 – Non-determinsitic lot-sizing problems

distributional information. Hence, DRO avoids over-conservative solutions by incorporat-
ing partial stochastic information into the robust model. For more information on DRO,
readers are referred to Wiesemann et al. [2014], and the recent literature review given by
Rahimian and Mehrotra [2019].

The DRO aims to reformulate the objective function of a decision problem under worse
case perspective over the possible distributions of the uncertain parameter in the ambi-
guity set [Delage and Ye, 2010]. For the LSP, this optimization holds as a min-max-min
approach targeting to minimize the worst-case expected cost maximized over the ambi-
guity set. In terms of solution strategies for a DRO, MILP, approximations and heuris-
tic approaches are the most common methods used to solve the LSP under uncertainty
[Rahimian and Mehrotra, 2019].

Analui and Pflug [2014] propose a successive programming for finding the solution for a
reformulation of the LSP as a min max problem. A mixed-integer conic quadratic program
with mean-risk functions based on the shortest-path reformulation of the LSP is proposed
and solved by a branch-and-bound interval search method in Zhang et al. [2016]. A DRO
model for the LSP with random demand and no lead-time is presented in Zhang et al.
[2016]. Under the demand uncertainty described by an ambiguity set, robust solutions
were derived as mixed 0-1 conic quadratic programs (CQPs) by exploiting shortest path
reformulations of the LSP. A parametric optimization method was also proposed to solve
the mixed 0-1 CQPs, provided then an approximate solution for the original problem.
Jiang and Guan [2018] solve the LSP under demand uncertainty based on sample average
approximation solution algorithm (a data-driven approach is reviewed in Bertsimas et al.
[2018a]).

The rest of this section successively introduces the two-stage DRO model for the static-
static LSP, and the multistage DRO approaches for the static-dynamic decision strategy.
No studies on dynamic distributionally robust LSP models were found.

1.6.1 Static models

Focusing on the static strategy, Zhang et al. [2016] present a two-stage distribution-
ally robust LSP model with uncertain demand and no lead-time. We focus on the case
when backordering is allowed. The setup variables (Yt) are the first-stage decisions and
the production quantities (Xt), the inventory level (It) and the backorders (Bt). Con-
sidering a joint probability distribution function F of the uncertain demand, even if
F is unknown, it belongs to a known ambiguity set described with specific properties
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D =
{
F : (EF [d̃] − µ)T∑−1(EF [d̃] − µ) ≤ ϵ2

}
, where ∑ is a positive definite estimation

of the covariance matrix of the uncertainty an ϵ controls the size of the ambiguity set.
They describe the ambiguity set D as an ellipsoid centered at the estimated mean µ and
its shape is controlled by ∑, the covariance matrix.

The two-stage LSP formulation based on the DRO method is modeled as follows:

min
Y ∈{0,1}T ,XXX≥0

∑
t∈T

stYt + vtXt + sup
F∈D

EF
[
f
(
Y, X, d̃

)]
(1.28)

where f
(
Y, X, d̃

)
is the second-stage cost for the fixed setup, lots size and a given demand

realization.
Considering backorder variables to control the uncertainty, the second-stage cost func-

tion is given as follows:

f
(
Y, X, d̃

)
= min

∑
t∈T

htIt + btBt (1.29)

s.t.

It − Bt = It−1 − Bt−1 + Xt − d̃t t ∈ T

Xt ≤ M · Yt t ∈ T

Bt, It ≥ 0 t ∈ T

where bt is a penalty cost for backorders and M is a sufficiently large number to express
the unrestricted resource capacity.

Similar to SP and RO for the static framework, the DRO is tractable in general, if
the ambiguity set is tractable and the reformulation is convex. As this subject is under
development, the tractability is ensured under strong hypothesis. Further work is needed
to investigate the performance and limits of the method in the static decision framework.

Hanasusanto et al. [2015] propose a risk-averse distributionally robust multi-item
newsvendor problem with uncertain demand. The authors approximate the distribution-
ally robust model to a quadratic problem, and it yields a conservative but tractable
formulation. Huang et al. [2021] give a reformulation approach based on the conditional
value-at-risk (CVAR) for solving the multi-product assembly and the portfolio selection
problems with a cutting plane algorithm. Qiu et al. [2021] develop a reformulation by
Lagrange multipliers for solving the multi-product inventory problem with demand and
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supply uncertainties. The authors also propose decomposition methods to compute solu-
tions for the case of reliable and unreliable suppliers. Finally, Wang and Delage [2021]
reformulate the multi-item newsvendor problem with the help of event-wise affine decision
rules and propose a column generation algorithm to tackle scalability issues and compute
a good solution.

1.6.2 Adaptive models

Dealing with the static-dynamic framework, Bertsimas et al. [2019] propose a tractable
formulation of an adaptive DRO. The model minimizes the worst-case expected cost over
an ambiguity set. Similar to the two-stage model presented above, the tractability is
ensured by a second-order conic (SOC) representation of the ambiguity set and the affine
linear decision rule techniques to express the adjustable variables.

Assuming the demand is represented with an integrated moving average process of
order (0,0,1) expressed as d̃t(z̃) = z̃t+αz̃t−1+αz̃t−2+...+αz̃1+µ = d̃t−1(z̃)−(1−α)z̃t−1+z̃t

for t ∈ T where α ∈ [0, 1], the uncertain factor z̃t. We observe that when α = 0 then the
demands are uncorrelated, and the correlation increase with the growth of α.

The multistage DRO LSP is given as:

min sup
P∈F

EP
∑

t∈T (vtXt(z̃t−1) + Ht(z̃t)) (1.30)

s.t.

It+1(z̃t) = It(z̃t−1) + Xt(z̃t−1) − d̃t(z̃t) t ∈ T ; z̃ ∈ W

Ht(z̃t) ≥ htIt+1(z̃t) t ∈ T ; z̃ ∈ W

Ht(z̃t) ≥ −btIt+1(z̃t) t ∈ T ; z̃ ∈ W

0 ≤ Xt(z̃t−1) ≤ X̄t t ∈ T ; z̃ ∈ W

Xt ∈ Rt−1,1; It ∈ Rt,1; Ht ∈ Rt,1 t ∈ T

where X̄t is an upper bound for the ordered quantity. Let us consider FP CM , GP CM

and W̄P CM be respectively the ambiguity set, the lifted ambiguity set and the joint lifted
support set partial cross moment. We can observe that the variances of the factors leading
to the period t are incorporated.

Based on the SOC representation, the authors describe the SOC ambiguity set as a
tractable set supported by commercial solvers. By definition, a SOC is an ambiguity set of
probability distributions. A generalization to conic representation and its main classes is
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introduced by Wiesemann et al. [2014]. Bertsimas et al. [2019] approximate its ambiguity
set to the cross moment ambiguity set, a class of conic ambiguity set, such that the
semidefinite constraints functions EP[(z̃ − µ)(z̃ − µ)′] ≤ ∑ defining the representation are
approximated to some semi-infinity quadratic constraints EP[(f ′(z̃ − µ))2] ≤ f ′∑ f ∀f ∈
RD, being the uncertainty D-dimensional.

Hence, a partial cross moment ambiguity set FP CM is given by:

FP CM =



z̃ ∼ P
EP[z̃] = 0

P ∈ P0(RT ) EP[
( ∑t

r=s z̃r

)2
] ≤ ϕ2

st ∀s ≤ t; s, t ∈ T

EP[z̃ ∈ [z, z]] = 1

A lifted ambiguity set GP CM is defined to cover the primary uncertain variables z̃ and
theirs auxiliary uncertain variables as the lifted variables ũ is given as follows:

GP CM =



(z̃, ũ) ∼ P
EP[z̃] = 0

P ∈ P0(RT × R(T +1)T/2) EP[ũst] ≤ ϕ2
st ∀s ≤ t; s, t ∈ T

EP[(z̃, ũ)] ∈ W̄P CM = 1

where the lifted support set W̄P CM is assumed to be as follows:

W̄P CM =


(z, u) ∈ RT × R(T +1)T/2 ust ≥

(∑t
r=s zr

)2
∀s ≤ t; s, t ∈ T

z ∈ [z, z]

Recent studies for the dynamic framework have sought to improve the performance
of the method to deal with uncertain parameters ensuring the tractability and the trade-
off between quality of the solution and computational effort. No work has been done to
extend the DRO methodology to uncertainties others than the demand.

1.6.3 Literature review of distributional robust LSPs

DRO hedges against the conservatism of robust solutions by incorporating distribu-
tional information while remaining computationally tractable. The optimization commu-
nity has investigated this methodology as a promising and tractable method leading to
satisfactory solutions according to quality and calculation time. Although this section
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deals only with the standard case, where the ambiguity set is assumed to be known a
priori.

Table 1.4 lists some references addressing single and multi-item LSP via DRO. This
is the most recent concept in development, whose studies started in the mid-2000s and
have been intensified since 2010. Similarly to the RO, the few studies already published
are mostly focused on the uncertain demand. The studies of this methodology are con-
centrated in a restricted group of researchers. Besides that, its current stage requires
strong and restrictive initial hypothesis to guarantee the tractability. Many perspectives
of work are encouraged to mature the development of this method. We will address some
perspectives in section 1.8.

Reference Period Item Echelon Capacity Uncertainty Decision framework Inventory shortage
Analui and Pflug [2014] multi multi single capacitated demand st-dyn
Bertsimas et al. [2019] multi single single uncapacitated demand st-st ; st-dyn B
Coniglio et al. [2018] multi single single uncapacitated demand st-st B
Postek et al. [2018] multi single single uncapacitated demand st-st B
Yang [2017] multi single single uncapacitated demand st-dyn
Zhang et al. [2016] multi single single uncapacitated demand st-st LS - B

Table 1.4 – References handling the LSP via DRO
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1.7 Comparison of the optimization methodologies

The LSP has been studied for decades, but still has room for improvement and further
investigation. Bringing the problem closer to real applications, it is essential to consider
uncertainties and their implications in solving the problem. Dealing with uncertainties,
three optimization methods have stood out either for the quality of the solution, or for the
ease of computing. These methods are: SP, RO and recently the DRO, whose objective is
to combine the strengths of the SP with the RO and thus easily calculate an appropriate
solution for the decision context. In this section we analyse each approach in terms of
strengths, downsides, challenges and applications for handling the LSPs.

The choice between the methods depends on the decision makers’ preferences, the
instance structures (and size), available information, and the expected trade-off in terms
of solution quality and solving time. Based on the existing literature, we analyse the per-
formance of each approach in terms of tractability, conservatism and applicability. We
refer to Bertsimas et al. [2011] to define these performance criteria. The tractability con-
cerns the possibility of computing the solution with some known algorithm running in a
reasonable time. The tractability is directly associated with scalability that aims to guar-
antee reasonable computational effort for large size instances. Finally, the conservatism
concerns the immunity of the obtained solution to the uncertainties, and to which the
ability obtains a feasible solution even if the proposed model is applied to unforeseen
events is measured in terms of flexibility. These unforeseen events comprise cases of esti-
mation errors, disruptions in the decision context and any other scenarios that were not
anticipated.

1.7.1 Principle and maturity stage

SP is at a much more mature stage in the research community, as it has studies
that have been widely developed since the 1900s and its features are well-known and
understood. RO has been actively investigated since the 2000s, and its studies have been
enhanced by Beck and Ben-Tal [2009] study proving that the primal worst case equals dual
best. Hence, the tractability is achieved to handle the uncertain decision problems. The
static RO reached a theoretical stage that is considered mature or at least well understood
as presented in Ben-Tal et al. [2009]. However, even if the formulations were tractable, the
solutions were often too much conservative. Therefore, the advances in the static RO have
encouraged the research community to address dynamic environment with the ARO [Ben-
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Tal et al., 2004], and to consider some distributional information to soften conservatism
in the light of the DRO [e.g., Goh and Sim, 2010, Delage and Ye, 2010]. Hence, there
are more literature covering the LSP via SP, an increasing rate of studies addressing the
problem via RO and since the last decade few studies have investigated the LSP via the
DRO. This behaviour has expected as the RO theory still concentrated in a few groups
of research while the SP has been largely developed for either the optimization or the
mathematical research community. Hence, we can distinguish the same stage of maturity
from the methods, both in theory and to deal with the LSP.

1.7.2 Tractability and scalability

The LSP is naturally hard to solve due to its binary decisions on the setup of the
production periods. Computing an optimal solution under an SP framework requires full
knowledge of the probability distribution of uncertainty. Therefore, SP models often suffer
from scalability issues because an appropriate representation of the uncertainty distribu-
tion requires a large number of scenarios. Specially, multistage SP is restricted to short
planning horizon within a small number of scenarios, since the size of the model grows
exponentially with the time horizon and the scenario size [Birge, 1997]. The SP-based
models that deal with the LSP assume an exponential behaviour in the number of scenar-
ios and periods to be considered. Even if the static-static decision models can be addressed
by reasonable computational time methods, Brandimarte [2006] indicates that the static-
dynamic models cannot compute an optimal solution even for medium-sized instances.
Besides the hard complexity of the LSP, the multistage formulation is computationally
hard even impossible. As a result, the exponential behaviour implies scalability issues
that may be addressed via heuristic methods and approaches. As stated in Brandimarte
[2006] conclusions, while efficient methods address the static SP framework in reason-
able time, further investigation is needed to handle dynamic framework with reasonable
computational efforts.

On the contrary, the main advantage of the RO is being computationally tractable for
many cases [Chen et al., 2007]. The RO methodology relies on the duality (where primal
worst equals dual best) or adversarial approaches to handle the problem as a model
solvable in reasonable time even for the large size instances [Beck and Ben-Tal, 2009].
Solyalı et al. [2015] claim that most of the RO-based methods are polynomially solvable
even via the classical robust methodologies or by reformulating the problem via network
design reformulations. This implies that the method is tractable for general instances.
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Even if the resolution becomes computationally hard with the growth of the instances,
some reformulations manage to compute solutions for large instances and complex models
of the problem in a reasonable time.

Finally, the LSP via DRO remain tractable for some known and well-structured ambi-
guity sets and formulations of the model subject to strong hypothesis as the full knowledge
of the structure and geometry of the ambiguity set [Wiesemann et al., 2014]. Even if the
uncertainty is in the probability distribution that represent an uncertain parameter, for
the medium sized instances the computational effort is reasonable. The computation may
become heavier with the growth of the size and when dynamic context is taken into
account. Although the published results seem to be promising, further investigation is
needed to ensure the performance and the limits of the DRO especially for large-sized
and dynamic framework.

1.7.3 Conservatism

As presented in Section 1.5, the RO seeks a solution feasible for the worst case realiza-
tion of uncertainty. Such an approach leads to over conservative solutions [Bertsimas and
Sim, 2004] and, thus, to large costs [Thiele, 2010]. However, the uncertainty set may be
adjusted to control the degree of conservatism of the robust solution. Bertsimas et al. Al-
though SP does not suffer from conservatism as the solutions are computed with complete
information of a known probability distribution, SP is highly dependent on the quality
of the estimation of the distribution. Finally, the DRO stands between SP and RO. On
the one hand, DRO assumes partial distributional information of uncertainty and may be
not as conservative as RO. On the other hand, DRO stills ignoring some distributional
information, and then it cannot be reduced to SP. In fact, DRO maintains a sufficiently
high number of possible distributions that represent uncertainty, so that both the usual
scenarios and the worst-case scenario can be covered by the ambiguity set.

Dealing with the LSP, as RO disregard the distributional information about the uncer-
tainty and construct its uncertainty set based on some moment information (e.g. mean and
standard deviation), the robust solutions are often over-conservative. The conservatism is
due to the decomposition of the problem for each period in different constraints that allows
the realization of the worst-case of the uncertainty for each constraint. As a result, direct
reformulations explore the worst-scenario for each computational step and thus obtain
an overly-conservative. However, this conservatism can be controlled by some parameters
composing the uncertainty set, such as the budget value into the budget uncertainty set
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[Thorsen and Yao, 2017]. In such cases, the parameters controlling the uncertainty can be
modified to increase the freedom of realization of the uncertainty and so the size of the
uncertainty set, while feasibility stills guaranteed.

The SP-based models assume to fully know the probability distribution of the un-
certainty to compute a solution. As a result, the solution is totally dependent on the
realization of the uncertainty and there is no conservatism to be considered. Even if the
conservatism is not applied to this optimization modeling, we may consider the robustness
of the proposed solution in the light of the proper simulation of the scenarios describing
the uncertainty [Brandimarte, 2006]. While accurate representation of the uncertainty
leads to optimal solutions, if the distribution does not correctly capture the distributive
behaviour of uncertainty, a solution far from the nominal problem or even the infeasibility
can be obtained.

The DRO is less conservative than the RO, as partial distributional information is
taken into account, but it is still conservative with regard to the SP. In fact, the conser-
vatism of the method depends on the modeling proposed and on the quality and accuracy
of the available data used to compute a solution. An investigation of the DRO for the
LSP may be performed to measure the conservatism of the methodology to the problem,
but Shang and You [2018] present some computational evaluations of the conservatism
of the DRO in comparison to the ARO methodology. Even if the DRO takes longer com-
putational time than ARO models, they conclude that DRO overcomes the ARO for a
large magnitude of uncertainties. DRO often computes sub-optimal solutions based on
the affine decision rule approximations while ARO achieves a global optimum. Finally,
comparing the first and second decisions determined via both of the methods, they showed
a numerical example of scheduling that the solutions proposed by the DRO are suscepti-
ble to greater investments that can lead to greater profits. Hence, they demonstrate less
conservatism on the part of the DRO method compared to the ARO that optimizes over
the worst case scenario. As a matter of the fact, the distributional information taken into
account by the DRO, even that partial, achieves better performance of the optimization
under uncertainty to approximate the decision to a real case application.

1.7.4 Flexibility

The flexibility of the solution here is highly correlated with the conservatism of the
method. Assuming the flexibility as the capability of the solution to be suitable to the
realization of an unforeseen uncertainty, we are interested in the performance of the meth-
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ods to compute a valid solution even if the revealed uncertainty differs from the set of
possible realizations considered for the calculation.

As the RO methodology requires only the support of the uncertain parameter to
compute a solution, the method provides the decision makers more flexibility to deal with
such unforeseen events. On the contrary, the SP solutions are based on the realization of
the uncertainties and their probability distribution, and so are poorly capable to propose a
solution that suits to unforeseen or misrepresented events. Although the solution proposed
by the SP is often an accurate approximation of the true realization of uncertainty, in
case the scenarios do not represent well the behaviour of the uncertain parameter, SP
can yield poor decisions, the problem with multistage scenario based SP is that if the
realization of the unknown parameter is not part of the sampled scenario, the solution to
the multistage SP does not tell how to react. Thus, the decision maker must resolve from
scratch. Affine decision rules from RO do not suffer from this issue. At the intercession
of previous methods, the DRO incorporate a robust behaviour into the problem against
the unknown true distribution. Specifically, the DRO incorporate partial distributional
information to approximate the robust perspective to the nominal problem while the
formulation remains conservative to unforeseen events.

We illustrate the flexibility of a method to deal with the LSP as the ability of com-
putation of a feasible solution suitable for scenarios out of the sampled or considered
ones. As presented by Thorsen and Yao [2017], the RO computes a more stable solution
even if the true realization of the uncertainty is out of the considered distribution of the
uncertainty. As a result, the flexibility stands as the calculation of a feasible solution that
better suits for different possible realizations of the uncertainty with regard to the stan-
dard deviation and worst-case scenarios. When we consider the SP, once the solution is
based on the distribution of the uncertainty, if the realization is not approximated by the
representation, a poor solution can be obtained and the SP performance decreased.

The DRO present promising results in terms of the flexibility of the solution to be
feasible or near-optimal to the realization of the uncertainty out-of-sample possibilities
in the computation. As presented by Bertsimas et al. [2019], the out-of-sample solutions,
when the actual demand is far from the simulated one, are robust and mitigate the impact
of the wrong estimation.
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1.8 Discussion and future works

As the more mature theory, the SP handle the problem in a more realistic context
as its solutions are based on the probability distribution of the uncertain parameter.
Although for the static case the solution is easy to calculate, a complete knowledge of
the probability distribution is necessary. Thus, the biggest challenge is to tune out the
forecasting errors or hypotheses that mislead to solutions. Even if the dynamic framework
allows an effective adjustment of the decisions over time, its computation is based on a fully
known probability distribution of the uncertainty, what can be difficult even impossible.
In addition, the large size instances have an exponential behaviour in the number of
scenarios or possible realization of the uncertainty. The multistage LSP model can lead
to a prohibitive computational effort. Therefore, the main issue of the dynamic SP is the
scalability for the large instances and big number of scenarios for the uncertainty.

Even if the SP is the most developed concept, there are few references dealing with
the multi-item problem and little development for uncertainties in parameters other than
demand. The multistage framework may be developed not only for the dynamic-dynamic
case (which currently has few studies) but also to complete the studies in the static-
dynamic case under uncertainty in parameters such as capacity. Further work is envisaged
to deal with LSPs under uncertainty in several parameters simultaneously and also to
propose heuristics or approaches that turn tractable those formulations via SP for large
instances or that have exponential behaviour. Some alternative to mitigate non-optimal
solutions due to forecasting errors is needed to incorporate factors that smooth the result
in the face of poor representation of uncertainty. A promising technique is to validate the
probability distribution of the uncertainty with data-driven approaches based on available
data from the decision environment (e.g. historical data, market information). In addition,
the development of heuristic or adversarial approaches is required to address the scalability
issue and compute satisfactory solutions for large instances in a reasonable time.

RO is an interesting method not only in tractability but also in the feasibility of the
solution. Within the static-static framework, the RO allows the computation of a feasible
solution for the decision problem whose information about the uncertainty is partial or
missing. Not only the tractability is ensured but also the models via RO remain scalable
for any instance. Even if this method is highly tractable, it handles only the static decision
problems. Besides that, the construction of the uncertainty set can disregard any distri-
butional information about the uncertainty, and so the tractability is often guaranteed at
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the expense of the over-conservative solution. In a matter of fact, less conservative solu-
tions can be computed with regard to a non-linear uncertainty set, but this formulation
is often computationally hard (even intractable). The main challenges of the RO are then
the reduction of the conservatism and the transformation of the intractable uncertainty
sets into tractable ones. As the method is in a theoretical maturation stage, little varia-
tion of uncertain parameters has been addressed to handle the LSP. Hence, it is necessary
to handle different uncertain parameters individually or simultaneously to improve the
robust optimization theory.

The ARO is a more flexible version of the RO that handles static-dynamic and per-
haps the dynamic framework (whose studies are absent). ARO models alleviate the con-
servatism updating knowledge about the uncertainty in each stage. The formulations via
this method are usually intractable due to the infinite quantity of constraints added to the
model when the recourse is affected by the uncertainty. Currently, tractability can be guar-
anteed by affine linear functions. However, this approach is well structured to continuous
variables and only tractable for non-linear formulations addressed with ellipsoidal uncer-
tainty set. Therefore, the main challenge of the ARO methodology is the tractability to
handle non-linear modeling to describe the recourse and also the scalability and tractabil-
ity of the modeling of integer adjustable variables. Further work is demanded to propose
tractable formulations for adjustable integer variables, whether dynamic framework is ex-
pected. Besides that, tractable approximations to address the intractable formulations is
required and the investigation of other geometrical representations of the uncertainty set
can be promising perspectives of research. Hence, to handle the LSP, similarly to the RO,
tractable formulations dealing with different sources of uncertainty are envisaged as well
as the investigation of cases in which different sources of uncertainty occur simultaneously.
In addition, the uncertainty representation fine tuned to the decision context can boost
the quality of the solution.

Table 1.5 summarizes the advantages and downsides for each method within differ-
ent decision frameworks when addressing decision problems and in particular the LSP.
Most of the research is now focused on developing the robust theory in order to boost
the optimization systems with respect to the trade-off between cost, computation time,
achievements and requirements.

The joint perspective of the SP and the RO seems to be an interesting trade-off
between the intractability of SP for large size problems and the conservatism of the
solution obtained by the RO. The DRO modelling is sufficiently flexible to take advantage
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1.8. Discussion and future works

of the behaviour and best performance of each of its base methods according to the context
and the decision environment. This means that some distributional information about
the available data is introduced into the model through reformulations within robust
optimization theory that is tractable in general. Hence, the exponential behaviour of SP
is mitigated while the robust counterpart model remains tractable in the light of affine
policies and dualization. The downsides of this method are the strong and even restrictive
initial assumptions to compute a tractable solution. Besides that, the computational effort
can be hard and even intractable depending on the formulation. Therefore, the main
challenges of the DRO are: formulate a tractable model, model decision problems for a
wide range of ambiguity sets and fine tune the available distributional information into
the uncertainty representation.

Further work is needed to address the construction of different ambiguity sets to
handle distinct LSP uncertainties in a tractable way. Within the multistage framework,
further investigation is required to update the problem model with respect to the revealed
uncertainty. In general, further comprehension of this methodology is required to properly
investigate any decision problem via the DRO methodology. As a new methodology, its
behaviour and performance so far are guaranteed under many strong assumptions, then
an exploration of its capabilities and limitations is necessary not only via the methodology
itself but also applied to some decision problems such as the LSP.

We notice that further investigation is needed to address the dynamic-dynamic deci-
sion framework via the three presented methods. Even if it adds difficulty to the com-
puting of the solution, the dynamic-dynamic strategy is the framework the closest to the
real decision context and environment. It is expected that a solution via this framework
is more suitable for an optimal system performance. In addition, further investigation is
needed to incorporate the distributional information revealed over time into the optimiza-
tion models. A promising approach consists of updating and bounding the uncertainty
representation within the optimization methodology according to processing and analy-
sis data-driven techniques applied to the revealed data to boost the computation of a
solution. Hence, the data-driven optimization should be more explored to improve the
model efficiently and over time and complete work on the dynamic framework is envis-
aged to address the LSP in a more practical way via the three addressed optimization
methodology.

The data-driven optimization concerns a promising manipulation, processing and anal-
ysis techniques aiming to integrate knowledge about data into the optimization models.
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Chapter 1 – Non-determinsitic lot-sizing problems

Hence, a less conservative solution is aimed while the other features (specifically tractabil-
ity, flexibility and scalability of the model) should remain stable. The data-driven ap-
proaches can help excavating rich information from available data. By leveraging data
information, these approaches can effectively hedge against uncertainty since the conser-
vatism of solutions can be reduced and better solutions can be computed. In the light of
the data-driven approaches, the optimization methodology can learn the distribution of
through data processing and then formulate the uncertainty modeling. As a continuation
of this research direction, one may be interested in anticipating scenarios or even the
realization of the uncertainty through data-driven techniques.
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1.9 Contributions and Final remarks

To understand this manuscript contribution, we should understand the importance
of the industrial quality control activity. In fact, the production yield rate is one of the
key performance index that indicates the performance and efficiency of the production
system. A satisfactory production yield rate gives us a lot size with a sufficient quantity
of products with good quality, which is also called compliant products. This later results
in maintaining contracts with the same customers. Thus, it increases customer loyalty.
It also helps to reduce the liability risk, for which the vulnerability of the system to loss
performance, quality or profits is reduced since a good control and safe maintenance of the
production system is established. Finally, its improve the competitiveness of the company
in the market supported by positive customer reviews.

This manuscript provides the first studies on robust, robust adaptive and distribu-
tionally robust optimization methodologies to solve the LSP under yield uncertainty. The
contributions are the following: first this present chapter presented a state of the art whose
complexity is to gather studies and notations on the lot-sizing problems under uncertain-
ties and to give the recent trends on the methodologies to handle them in a data- driven
perspective. A second contribution, presented in Chapter 2, is the development of a first
robust lot-sizing problem under yield uncertainty. The complexity there is to understand
the impact of the production yield on the lot-size in order to obtain optimal robust plans.
The third contribution, given in Chapter 3 consists is the extension of the robust model to
the adaptive decision strategy. The complexity there is a problem quadratically uncertain
and some alternative approach should be developed to compute a sufficiently robust adap-
tive plan. Finally, Chapter 4 indicates how to directly integrate real data in the decision
process with the application of the distributionally robust optimization to deal with the
problem. The complexity there was to tackle with the uncertain production yield whose
distributions can be discrete and continuously estimated.
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Chapter 2

ROBUST LOT-SIZING PROBLEMS UNDER

YIELD UNCERTAINTY

This chapter is based on the following article:

Metzker, P., Thevenin, S., Adulyasak, Y., Dolgui, A. (2023). Robust optimiza-
tion for lot-sizing problems under yield uncertainty. Computers & Operations
Research, 149, 106025.

Production yield can be highly volatile and uncertain, especially in industries where
exogenous and environmental factors such as the climate or raw material quality can
impact the manufacturing process. To address this issue, this chapter proposes multi-
period, single-item lot-sizing problem with backorder under yield uncertainty and static
strategy via a robust optimization methodology. First, we formulate a robust model un-
der a budgeted uncertainty set, which is optimized under the worst case perspective to
ensure the feasibility of the proposed plan for any realization of the yield described by
the uncertainty set. Second, we analyze the structure of the optimal lot-sizing solution,
and we derive the optimal robust policy for the special case of the inventory management
problem under a box uncertainty. These results help us develop a dynamic program with
polynomial complexity for the lot-sizing problem with stationary yield rate. Finally, ex-
tensive computational experiments show the robustness and effectiveness of the proposed
model through an average and worst case analysis. The results demonstrate that the ro-
bust approach immunizes the system against uncertainty. In addition, a comparison of
the robust model with the nominal model, the deterministic model with safety stock, and
the stochastic model shows that the robust model balances the costs better by reducing
the backorders at the expense of more often producing a larger amount of goods.
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2.1 Introduction

Many industries constantly face exogenous factors that can affect the quality of their
products. In addition, the new products have become increasingly more complex with
shorter life cycles, and product customization breaks the regularity of the production
process and increases the number of failure sources [Duncan et al., 2021]. It becomes
particularly challenging to precisely estimate the production yields that are necessary
in the production process. In this context, accounting for yield uncertainty is crucial
because an underestimation of the production yield leads to excess inventory, whereas an
overestimation creates significant stock-outs [Yano and Lee, 1995, Khouja, 1999].

The production yield incorporates quality factors into the lot-sizing model by mea-
suring the expected quantity of non-defective items resulting from the release of a given
production lot. Traditionally, this production yield is estimated based on historical data
or machine specifications, but such estimations can be imprecise. In practice, the produc-
tion yield is subject to multiple sources of uncertainty, such as deviations from standard
operating procedures, environmental factors such as temperature and humidity, failures
in the machinery of the system, a lack of a quality control system, material imperfec-
tions, process dysfunction, workforce inefficiency [Grosfeld-Nir and Gerchak, 2004]. The
yield uncertainty concerns the inability to predict precisely the output quantities associ-
ated with a lot size. This uncertainty occurs in many industries, such as electronics [e.g.,
Akella et al., 1992, Schemeleva et al., 2018], pharmaceuticals [Cho, 2010], food [Kazaz,
2004], agriculture [e.g., Jones et al., 2001, Anderson and Monjardino, 2019, Roell et al.,
2020], steel and metallurgical industries [Lalpoor et al., 2011], as well as in remanufactur-
ing processes [Panagiotidou et al., 2013].

Lot size decisions are a crucial step in production planning when aiming to meet cus-
tomers’ needs and minimize the overall costs [Dolgui and Proth, 2010]. Although modelers
often rely on deterministic variants of lot-sizing problems (LSPs) based on the hypothesis
that all data is known or can be correctly predicted, in practice, many parameters are
uncertain [Jans and Degraeve, 2008]. The discrepancy between data estimation and their
actual values can have a critical impact on the quality of the lot-sizing decision. There is
a need to develop LSPs that take these uncertainties into account. In static strategy, the
production decisions are fixed for the entire horizon [Bookbinder and Tan, 1988]. There-
fore, this work provides the first in-depth investigation of the static strategy for robust
LSPs under yield uncertainty. Since the static solution is an upper bound of the adaptive
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solution, our contributions will serve as a basis for future works that address the adaptive
strategy.

A static strategy has a practical relevance to reduce system nervousness at minimal
computational effort [Blackburn et al., 1986]. Furthermore, Sereshti et al. [2021] indicates
that static lot-sizing plans do not experience nervousness, as the amount of assembly and
production remains the same despite the realization of uncertainty. The authors also report
that the static strategy combined with the receding horizon is a good approximation of
the robust adaptive strategy where some decisions are updated to react to the realization
of the uncertainty in the previous periods. Thus, the static solution can be executed in a
rolling horizon framework to tackle the dynamic strategy [Blackburn et al., 1986, Sereshti
et al., 2021].

The yield uncertainty may have different impacts depending on the situation, such
as an increase in the production costs, processing duration, or lead times, and it often
results in a waste of materials and available resources. The consequences of these losses
can be highly damaging to the system [Inderfurth and Vogelgesang, 2013]. Most studies on
LSPs with uncertain yield consider the single-item single-period problem [Yano and Lee,
1995, Khouja, 1999]. In this simple setting, the optimal lot size can be derived through
a mathematical analysis based on the newsboy inventory management model [Khouja,
1999]. This technique, however, cannot be applied in a more general context of multi-
period lot-sizing, and it can lead to poor solutions [Yano and Lee, 1995].

This chapter proposes a methodology based on robust optimization for the non-
stationary multi-period LSP under yield uncertainty, and we analyze it in terms of its
applicability, optimality, and efficiency. To the best of our knowledge, we are the first
to consider robust optimization for an LSP under yield uncertainty in a non-stationary
production context, where the production parameters such as costs, demands, and produc-
tion yield rates may change at each production period. The contribution of this chapter
is fourfold. First, we derive an optimal policy for the stationary case of the nominal and
maximum deviation values of the uncertain yield. This special case considers the box
uncertainty set without setup, much like the case for the demand uncertainty presented
by Bertsimas and Thiele [2006a]. Second, we propose a polynomial-time dynamic pro-
gramming algorithm for the special case of the lot-sizing problem with stationary yield
rate, non-stationary costs and demands, and box uncertainty set. Third, we propose a
robust optimization formulation for a non-stationary multi-period LSP under budgeted
uncertainty set and yield uncertainty. Finally, we perform an in-depth analysis of the re-
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sulting methods in terms of the quality of the solution, scalability, stability, robustness,
and flexibility. In particular, we compare the production plans resulting from the robust,
nominal, deterministic with safety stock in, and stochastic models. Although the robust
models guarantee the robustness and feasibility of the proposed plan, the stochastic pro-
grams seek the production plan with the best expected costs. In addition, the deterministic
problem with safety stock aims to reduce the risk of shortages. Thus, we intend to analyze
when each technique is best suited to deal with production yield uncertainty and to avoid
nervousness in the process.

The current chapter is organized as follows: Section 2.2 gives a review of previous work
on non-deterministic lot-sizing problems, with a focus on uncertain production yield. Sec-
tion 2.3 formally describes the considered problem and introduces the robust optimization
methodology, more specifically, the mixed-integer linear formulation for the non-stationary
case of the problem, the optimal robust properties and policies, and a dynamic program-
ming formulation for the problem with stationary yield and non-stationary costs and
demands. Section 2.4 presents the instances and simulation framework used in our exper-
iments, as well as the experimental results. Finally, Section 2.5 concludes this work and
provides some future research directions.

78



2.2. Literature Review

2.2 Literature Review

The production yield was first introduced by Bowman [1955], and it was initially
measured as the proportion of items that were accepted, and that reached a high enough
quality to be sent to costumers. We use the same notion to capture the proportion of
good quality items in a lot. Studies on robust LSPs under yield uncertainty are scarce.
Unlike the case of uncertain demand for which the quantity of quality goods obtained from
the production is known, yield uncertainty affects the quantity of quality items obtained
from a production lot. The dependence of the optimal amount of quality goods on the
realization of the production yield increases the complexity of the adaptive formulation for
the LSP [Ben-Tal et al., 2005]. Since the production yield multiplies the decision variable,
the adaptive robust model is intractable. Therefore, it is important to derive solutions
within a static decision strategy to understand the impact of the uncertain yield on the
lot-sizing decision in a context with low or no nervousness, and to solve it with tractable
models. We refer the reader to Yano and Lee [1995] for more on an LSP under yield
uncertainty.

To the best of our knowledge, Kazemi Zanjani et al. [2010] and Quezada et al. [2020]
are the only works on stochastic programming for an LSP under yield uncertainty; and
there is no existing study on robust optimization for lot-sizing under yield uncertainty in
a production planning context. While Kazemi Zanjani et al. [2010] address the uncertain
yield in terms of quality of raw materials, Quezada et al. [2020] formulate the production
yield of refurbished items in a remanufacturing context. These show that the stochastic
method is efficient within a static strategy because it minimizes the occurrence of the
backorder. However, the stochastic models require the use of a sufficiently large scenario
set to approximate properly the underlying distributions, and they may not scale well.
Considering the robust optimization approach, Vayanos et al. [2012] tackle the stationary
inventory management model with an uncertain production yield and fixed inventory and
backorder costs, but they ignore the setup decisions and production costs. The authors
propose a constraint sampling approximation to mitigate over conservative solutions. In a
similar approach, Chu et al. [2019] propose a robust model for the procurement perspective
of the stationary inventory management problem. They restrict the maximum value of the
production yield to its nominal value, and they show that the problem can be formulated
as a nominal problem with modified deterministic demand in terms of the accumulated
deviation of both the uncertain demand and uncertain yield. The authors analyze the
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impact of the budget by controlling the uncertainty and average and standard deviation of
the uncertain parameters on the average performance of the robust models. Even though
Chu et al. [2019] propose an insightful analysis of the inventory management problem
with uncertain yield, they perform their studies in a procurement perspective, for which
the production yield is set to its nominal value. Thus, Chu et al. [2019] do not allow
obtaining an amount of quality goods larger than the nominal ordered quantities to be
obtained. Hence, we note a lack of studies on the application of the robust optimization
methodology to the LSPs with yield uncertainty. In addition, contrary to our study, Chu
et al. [2019] do not compare the performance of the robust optimization approach with
the stochastic programming and deterministic models.

This work aims to fill the knowledge gap on the impact of the uncertain production
yield on a multi-period lot-sizing problem within a robust perspective for a non-stationary
case of production yield, costs and demands. Our work differs from the aforementioned
literature in several aspects. First, to the best of our knowledge, this is the first work
that formulates the non-stationary case of single-item and multi-period LSPs under yield
uncertainty via robust optimization. Second, we derive the optimal robust policies for
the single-period and multi-period LSPs with stationary nominal value and maximum
deviation of the yield rate, with non-stationary inventory/backorder/production costs
and demands, and with zero setup costs. Third, we propose a polynomial-time dynamic
programming algorithm based on optimal robust policies to solve the considered problem
for the special case where setup costs are considered. This helps us provide simple tools
to compute a sufficiently robust plan, better suited for small decision settings or when an
efficient commercial solver is not available. Fourth, we give an in-depth analysis of the
impact of robust optimization for production planning based on numerical experiments.
The results show that robust optimization is highly efficient and produces production
plans that are more robust to different yield scenarios when compared to other decision-
making methods (e.g., stochastic program, nominal problem, deterministic problem with
safety stock) in terms of quality of the solution, cost savings, and robustness to changes
or uncertainties in the system.
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2.3 Robust Optimization

This section introduces the considered model and the solution approaches. For the
sake of clarity, we present the nominal lot-sizing problem prior to introducing the robust
optimization models under an uncertainty set. The robust optimization methodology im-
munizes the problem from uncertainties by computing a solution that remains feasible for
any realization of the uncertainty within the uncertainty set [Bertsimas et al., 2011]. First,
we provide the robust optimization model for the LSP under yield uncertainty. Second,
we derive a closed-form solution for the single-period model with the box uncertainty
set. Next, we show how this closed-form solution can be extended to the multi-period
inventory management problem, where we provide an optimal policy for the inventory
management problem. Based on the optimal policy for the inventory management prob-
lem, we derive properties on the optimal solution of the lot-sizing problem. Finally, the
aforementioned properties allow us to develop dynamic programming algorithm to com-
pute optimal solutions for the LSP with uncertain yield, with non-stationary costs and
demands, and with stationary nominal value and maximum deviation of the production
yield.

2.3.1 Nominal problem

A single-item multi-period uncapacitated LSP with backorder and production yield
determines the quantity to produce in each period of the finite planning horizon T =
{1, ..., |T |}. The objective is to meet demands efficiently and with quality goods while
minimizing the overall costs. For each period t ∈ T , we are given the setup cost st, the
unit production cost vt, the inventory holding cost ht, the backorder cost bt, and the
demand dt. The model comprises the following decision variables: the lot size Xt to be
produced, the inventory level It and the backorder level Bt at the end of the period, and
the setup decision Yt, such that Yt = 1 if a setup occurs in t (Xt > 0) and Yt = 0 otherwise.
We define ρt as the strictly positive production yield in period t, such that 0 < ρt ≤ 1.

The formulation of the deterministic LSP with production yield is as follows:

min
∑
t∈T

stYt + vtXt + htIt + btBt (2.1)

s.t. :

It −Bt = It−1 −Bt−1 + ρtXt − dt ∀t ∈ T (2.2)
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Xt ≤ MtYt ∀t ∈ T (2.3)

Xt, It, Bt ≥ 0 ∀t ∈ T

Yt ∈ {0, 1} ∀t ∈ T

Without a loss of generality, we assume that there is no stock or backorder at the be-
ginning of the planning horizon. The objective function (2.1) minimizes the total cost
comprising the setup, unit production, inventory, and backorder costs. The inventory bal-
ance constraints (2.2) compute the level of backorder and inventory in period t from the
demand, the produced goods at period t, and the inventory and backorder levels in period
t − 1. The constraints (2.3) are setup-forcing constraints that relate the production quan-
tities (Xt) to the setup decisions (Yt), whereas Mt =

∑
t∈T

dt

minτ≤tρτ
. These constraints set the

setup variable Yt to 1 if any production occurs in period t, and the setup remains inactive
otherwise (Yt = 0). In addition, constraints (2.3) can represent the capacity constraint by
setting Mt = min{Ct,

∑
t∈T

dt

minτ≤tρτ
} , where Ct is the available capacity in period t.

2.3.2 Definition of the uncertainty set

The robust optimization considers that the uncertain parameter belongs to a bounded
and convex uncertainty set. However, the tractability of the robust counterpart model
depends on the tractability of the uncertainty set [Bertsimas and Brown, 2009]. Modelers
often rely on some statistical consideration of historical data or previous knowledge of
the studied system. The first robust optimization models used the box uncertainty set,
introduced by Soyster [1973], which describes the uncertainty within an interval of possible
values and which is bounded by its minimal and maximal acceptable realizations. To
alleviate the over-conservatism of this approach, Bertsimas and Sim [2004] propose the
box polyhedral uncertainty set, which is also known as the budgeted uncertainty set, where
the uncertain parameter takes values within a range of values whose size is controlled
by the decision-maker through a budget of uncertainty Γ. This budget of uncertainty
reduces the size of the uncertainty set and reflects the degree of risk aversion of the
decision-maker. The budget is a threshold for the number of uncertain parameters that
can take their worst value [Thiele, 2010]. This budget indicates a degree of acceptable
variance of the uncertainty from its nominal value, where the larger the budget, the more
averse to risk the decision-maker is. Note that the box uncertainty corresponds to the
budgeted uncertainty set with the largest Γ value.

In the present work, we consider the widely adopted budgeted uncertainty set that
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is given by Ut = {−1 ≤ Zt
τ ≤ 1 : ∑t

τ=1 |Zt
τ | ≤ Γt; t ∈ T ; τ ≤ t}. This set is based on

the nominal value and maximum deviation of the uncertain yield because these values
are largely used in statistical quality control to bound the quality in terms of the key
performance indicators [Godfrey, 1999]. These values are easily obtained from historical
data, and they reflect the basic characteristics of the uncertain parameter. We estimate
the uncertain production yield ρ̃ through a natural parameterization ρ̃(Z) = ρ̄ + Zρ̂, with
Z ∈ [−1, 1]. Here, the uncertain yield belongs to a range centered on its nominal value ρ̄

and spread by its maximum deviation ρ̂. The disturbance arising from the nominal value
is given by the term Z. Therefore, we replace the production yield ρt in constraints (2.2)
by the uncertain production yield ρ̃t.

2.3.3 A robust counterpart formulation for the LSP with uncer-
tain yield

In similar manner to Bertsimas and Thiele [2004], we rely on the reformulation per
constraint approach and robust formulation under a budgeted uncertainty set to determine
the production plan that minimizes the total costs for the LSP under yield uncertainty.
The robust model is similar to the nominal model, but the inventory balance constraints
are replaced by a pair of inequalities based on the convexity and the piecewise linearity
of the inventory and backorder cost functions. Because the backorder corresponds to a
negative stock level, these costs are complementary [Bertsimas and Thiele, 2004]. We can
then drop the inventory and backorder variables, so we directly compute the inventory
and backorder costs according to the difference between the number of quality goods and
demand. Thus, constraints (2.5) and (2.6) replace constraints (2.2), and Ht represents
either the inventory or backorder cost in period t, and constraints (2.5) (resp. (2.6))
compute the worst case inventory (resp. backorder) costs. In addition, the inventory and
backorder costs constraints are subject to yield uncertainty, and they are optimized under
the worst case realization of the uncertain parameter in the uncertainty set. Since the
reformulation per constraint and dualization approach is applied, Ht is independently
defined for each period t as the highest cost between the worst inventory cost and the
worst backorder cost under the uncertainty set Ut. While the adversarial approach usually
requires more computation time than the dualization method, it yields less conservative
lot-sizing solutions than the reformulation per constraints and dualization approach. In
the reformulation per constraint and dualization approach, the worst case is computed
independently in each period (the computation of the inventory/backorder costs in each
period may rely on different yield realizations), whereas the adversarial approach finds
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a unique worst case yield vector for all time periods. As a result, the total cost of the
robust model includes the setup cost, the production costs, and the maximum periodic
inventory and backorder costs for any production yield value in the uncertainty set Ut for
each period t. Therefore, we can model a robust counterpart for the LSP with uncertain
yield as follows:

min
∑
t∈T

(
stYt + vtXt +Ht

)
(2.4)

s.t. :

Ht ≥ max
ρ̃∈Ut

[
ht

t∑
τ=1

(ρ̃τXτ − dτ )
]

∀t ∈ T (2.5)

Ht ≥ max
ρ̃∈Ut

[
−bt

t∑
τ=1

(ρ̃τXτ − dτ )
]

∀t ∈ T (2.6)

Xt ≤ MtYt ∀t ∈ T

Xt, Ht ≥ 0 ∀t ∈ T

Yt ∈ {0, 1} ∀t ∈ T

where the upper bound on the production quantity Mt can be set based on the lowest
possible value of the production yield, that is, minτ≤t(ρ̄τ − ρ̂τ ) . Thus, for an LSP under
yield uncertainty, Mt is set to Mt =

∑
t∈T

dt

minτ≤t(ρ̄τ −ρ̂τ ) .

2.3.4 A robust mixed integer linear formulation for the LSP
with uncertain yield reformulation

Since our robust counterpart is a constraint-wise formulation, for which the uncertain
yield occurs on the right side of the inventory and backorder cost constraints, it can be
addressed via the reformulation per constraint and dualization approach. In addition, we
rely on the budgeted uncertainty set to alleviate the conservatism with a sufficiently good
budget of uncertainty. We only show the detailed steps of reformulation per constraint
for inventory inequalities (2.5), because the application for backorder inequalities is anal-
ogous. In fact, the inequalities differ only by the sign and the costs associated with the
inventory level. Thus, the inventory level is negative in case of a backorder, and positive
if the production exceeds the demand. As a result, within the worst case perspective of
the robust approach, the optimal plan corresponds to a decision leading to a higher cost
among these two groups of constraints.
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Constraints (2.5) are nonlinear because of the maximization function. Therefore, the
reformulation per constraint allows us to transform the non-linear constraints into linear
ones. To avoid the inclusion of all possible quantifiers of the uncertainty in the uncertainty
set and to linearize the constraints, the reformulation per constraint and dualization ap-
proach consists of three steps: [1] reformulation of the constraints subject to uncertainty
as a worst case reformulation; [2] dualization of the reformulation problem; and [3] drop-
ping the dualized reformulation into the initial formulation without the inner optimization
term [Ben-Tal and Nemirovski, 2000].

The first step is the worst case reformulation of Equation (2.5) that becomes:

Ht ≥ ht

[
t∑

τ=1
(ρ̄τXτ − dτ ) + max

ZZZ∈Ut

t∑
τ=1

ρ̂τXτZ
t
τ

]
∀t ∈ T (2.7)

For the inventory cost constraints, the worst case scenario occurs only when the deviation
is positive, that is, when Zt

τ ≥ 0 for t ∈ T ; τ ≤ t. Then, we perform the second step
to obtain a dual for the worst case reformulation. Assuming that λλλ and µµµ are the dual
variables, by following the dualization technique presented by Beck and Ben-Tal [2009],
we obtain the follow primal-dual problem:

max
∑t

τ=1 ρ̂τXτZ
t
τ min Γtλt +

∑t
τ=1 µ

t
τ∑t

τ=1 Z
t
τ ≤ Γt −−−−−→

dualized
λt + µt

τ ≥ ρ̂τXτ ∀τ ≤ t

0 ≤ Zt
τ ≤ 1 ∀τ ≤ t λt, µ

t
τ ≥ 0 ∀τ ≤ t

We can finally perform the third step, and replace the worst case reformulation with its
dual formulation. Therefore, constraints (2.7) are reformulated as follows:

Ht ≥ ht

[
t∑

τ=1
(ρ̄τXτ − dτ ) + min

λt+µt
τ ≥ρ̂τ Xτ

(
Γtλt +

t∑
τ=1

µt
τ

)]
∀t ∈ T

Similarly, the application of the reformulation per constraint and dualization in constraints
(2.6) leads to the following reformulation:

Ht ≥ −bt

[
t∑

τ=1
(ρ̄τXτ − dτ ) − min

λt+µt
τ ≥ρ̂τ Xτ

(
Γtλt +

t∑
τ=1

µt
τ

)]
∀t ∈ T

Note that for each period t, the computation of the worst case inventory cost in Equation
(2.5) maximizes ∑τ≤t ρ̂τ Zt

τ , while the computation of the worst case backorder cost in
Equation (2.6) seeks to minimize this quantity. The uncertainty set Ut is symmetric in Zt

τ
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for the inventory and backorder cost constraints. This symmetry is due to the convexity
and the piecewise linearity exploited in the inventory balance constraints. As a result,
the worst realization of Zt

τ ∈ [−1, 1]∀τ ≤ t for constraint (2.6) are the opposite of the
values obtained for constraint (2.5), and no feasible production yield in the uncertainty
set realizes both constraints at once. Thus, we can use the same dual variables (λt and
µt

τ ) for both cases, but they have a positive coefficient in constraints (2.9) and negative
in constraints (2.10).

From the duality theory, since the primal worst equals dual best holds [Beck and
Ben-Tal, 2009], it only takes at least one pair of feasible dual variables in the inner
minimization to ensure that the solution holds for the outer minimization. Therefore, we
can drop the minimization terms of the reformulated constraints. Hence, we obtain the
final reformulation of the robust counterpart under budgeted uncertainty set, which is
given as follows:

min
∑
t∈T

stYt + vtXt +Ht (2.8)

s.t. :

Ht ≥ ht

[
t∑

τ=1
(ρ̄τXτ − dτ + µt

τ ) + λtΓt

]
∀t ∈ T (2.9)

Ht ≥ −bt

[
t∑

τ=1
(ρ̄τXτ − dτ − µt

τ ) − λtΓt

]
∀t ∈ T (2.10)

λt + µt
τ ≥ ρ̂τXτ ∀t ∈ T ; τ ≤ t (2.11)

Xt ≤ MtYt ∀t ∈ T

Xt, Ht, λt ≥ 0 ∀t ∈ T

µt
τ ≥ 0 ∀t ∈ T ; τ ≤ t

Yt ∈ {0, 1} ∀t ∈ T

Our final robust reformulation shares some similarities with the model for the inventory
management problem with uncertain demand proposed by Bertsimas and Thiele [2004].
However, in the model for uncertain demand, the deviation affects the uncertain parameter
(demand) only. On the contrary, in our model, the deviation corresponds to the worst case
impact of the uncertain parameter on the resulting production quantity.
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2.3.5 Properties of an optimal robust policy for the inventory
management problem

This section derives a closed-form solution and the optimal robust policy for special
cases of the considered problem. The closed-form solution can be determined for the
inventory management problem under the following assumptions. First, we consider the
inventory management problem where the setup and the unit production cost are equal
to zero, while the inventory and backorder costs are non-stationary. Second, we consider a
stationary case of the nominal value and maximum deviation of the yield. Third, our policy
is derived from the inventory management problem under a box uncertainty set, where
the box uncertainty set is given by Ut = {−1 ≤ Zt

τ ≤ 1 : ∑t
τ=1 |Zτ

t | ≤ t, t ∈ T, ∀τ ≤ t}.
Fourth, we assume that the unit inventory cost ht is lower than the unit backorder cost
bt, and that demands are positive to obtain a positive production quantity Xt. The first
two assumptions are common in the inventory management literature, and they are also
often encountered in practice. Furthermore, although the worst case perspective from a
model under a box uncertainty set is a conservative approach to handle the robust LSP
with uncertain yield, it helps us derive the property of an optimal policy to compute a
fully immunized plan.

This section is organized as follows. First, we prove that the optimal policy for the
inventory management problem under yield uncertainty sets the production quantity such
that the worst case inventory cost equals the worst case backorder cost. Second, we derive
the optimal policy for the single period problem with uncertain yield. Third, we extend
the single period policy for the multi-period inventory management problem. Fourth,
we show that these policies remain valid for the LSP that accounts for unit production
costs under mild assumptions. Finally, we indicate the need to anticipate the impact of
uncertain yield on future costs in order to extend the policy to the budgeted-based model
and the problem with non-stationary yield information.

Based on Proposition 2.3.1 we obtain the property for an optimal solution for the
inventory management problem with uncertain yield, Proposition 2.3.2 gives the optimal
policy for the single-period problem.

Proposition 2.3.1. The optimal production quantity for the inventory management prob-
lem is at the point where the worst inventory cost is equal to the worst backorder cost.

Proof. See A.1
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Proposition 2.3.2. The optimal robust policy for the stationary case of a single-period
inventory management problem under box uncertainty set and yield uncertainty is as fol-
lows:

X = d

ρ̄ + ρ̂
(

h−b
h+b

)
Proof. See A.2

We extend our analysis to the multi-period inventory management problem under
box uncertainty set and yield uncertainty, with stationary nominal value and maximum
deviation of the yield, with non-stationary costs, and with no setup costs. It leads to
Proposition 2.3.3.

Proposition 2.3.3. The optimal robust policy for the multi-period inventory manage-
ment problem under box uncertainty set and yield uncertainty, with no setup costs, with
stationary nominal value and maximum deviation of the production yield, non-stationary
inventory, backorder and unit production costs is given as follows:

Xt =
ρ̄dt + ρ̂

[(
ht−1−bt−1
ht−1+bt−1

)
D̄t −

(
ht−bt

ht+bt

)
D̄t−1

]
(
ρ̄ + ρ̂

(
ht−bt

ht+bt

)) (
ρ̄ + ρ̂

(
ht−1−bt−1
ht−1+bt−1

))
if the following condition is respected: vt ≤ (ρ̄ − ρ̂)bt, ∀t ∈ T .

Proof. See A.3

Note that for the special case of the multi-period inventory management problem
under box uncertainty set and yield uncertainty, with stationary production, inventory
and backorder costs (i.e., vt = vt−1 = v , ht = ht−1 = h and bt = bt−1 = b) and without
setup cost, the optimal robust policy can be simplified as follows:

Xt = dt

ρ̄ + ρ̂
(

h−b
h+b

)
Note also that this formula is a direct extension from Proposition 2.3.2, if we replace dt

with d. In addition, if v = 0, then the condition v ≤ (ρ̄ − ρ̂)b is always valid.
Proposition 2.3.3 does not hold for the case with non-stationary nominal value and

maximum deviation of the production yield. The policy described in Proposition 2.3.3
is myopic in the sense that the computation of Xt does not consider parameter values
at period later than t (i.e., vτ , hτ , bτ , dτ , for τ > t). We explain with an example that
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a myopic policy cannot be optimal if the nominal value and maximum deviation of the
yield are not constant. Let us consider an extreme case for three periods, with h = 1,
b = 10, ρ̄ = (0.55, 1, 0.6), ρ̂ = (0.45, 0, 0.4), d = (15, 10, 25), s = v = 0. The robust
model returns an optimal value equal to 175 with a lot size X = (0, 50.0, 0), where the
production for the entire production horizon is done in the second period for which the
yield is maximum. A myopic policy cannot obtain the aforementioned optimal solution,
because this solution requires not performing the setup in period 1 to favor production
in period 2, where the deviation of the production yield from its nominal value is zero.
The policy should anticipate the occurrence of better production yields in later periods
for the definition of an optimal production quantity that respects the inventory balance
constraints. However, it is not trivial to impose such condition to obtain an analytical
solution.

While Proposition 2.3.2 can be adapted to take into account the budgeted uncertainty
set, the extension of Proposition 2.3.3 becomes more complicated. For the single period
problem, the budgeted set restricts only the range of the maximum deviation, which leads
to a worst case scenario that changes from |Z| = 1 to |Z| = min{Γ, 1}. If the optimal
policy for the budgeted uncertainty set in the single-period model can be obtained by
replacing ρ̂ by min{ρ̂; ρ̂Γ}, that is not the case for the Proposition 2.3.3. Returning to
the example from the previous paragraph, we set the nominal value to ρ̄ = 0.55 and
the maximum deviation to ρ̂ = 0.05. To transform the box-based formulation into a
budgeted-based formulation, we replace ρ̂t by ρ̂tΓt in the policy given in Proposition
2.3.3. Assuming Γt = 0.5t, our policy gives a lot size X = (28.33, 19.64, 51.16) which
leads to a budgeted-based optimal value equal to 12, while the robust model returns a
budgeted-based optimal value equal to 10 with a lot size X = (28.33, 19.24, 47.97). The
budget of uncertainty prevents setting all the values of Zt to 1 or −1. In each period,
the value of Zt changes such that it takes the highest value for the period with largest
production quantity. However, the disturbance values are period independent. As the
value of Zt changes depending on the decided production quantity, the anticipation of
the occurrence of better production yields in later periods is also needed to compute an
optimal lot. Similarly to the case of non-stationary nominal value and maximum deviation
of the yield rate, it is complex to define an analytical solution.

Our myopic policy gives an optimal solution for the case of stationary nominal value
and maximum deviation under a box uncertainty set. In Section 2.3.6 we provide a dy-
namic program based on the optimal policy to solve the stationary LSP under yield
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uncertainty with non-stationary demands and costs (including the setup and production
costs). As our myopic policy does not optimize within a global perspective of the planning
horizon, it does not anticipate the occurrence of better production yields for later periods,
and so it gives a sub-optimal solution for the case of non-stationary nominal value and
maximum deviation of the yield rate, and also for the budgeted-based robust solution.

2.3.6 Dynamic programming for the uncapacitated robust LSP
with uncertain yield and static costs

In this section, we propose a dynamic programming algorithm to address the lot-sizing
problem with non-stationary costs and demands, and with a stationary nominal value and
maximum deviation of the yield. The proposed dynamic programming algorithm extends
the method of Zangwill [1969] that computes a solution from a succession of regeneration
intervals. The approach of Zangwill [1969] is based on the property that between any
two periods with production there is a regeneration period where the inventory level is
0. This property is not true in the robust LSP under yield uncertainty, since we consider
backorders and uncertain yield. However, Proposition 2.3.4 below shows that between
two periods with production there is a point where the worst inventory cost is equal to
the worst backorder cost. We define such a period as a regeneration period. In addition,
the approach of Zangwill [1969] must be adjusted because our extension for the case of
uncertain yield allows the backorder at the end of the production horizon. This section
successively introduces the main concepts that support our reasoning, the property of an
optimal solution for the LSP with uncertain yield and the optimal policy in Section 2.3.6,
and finally the dynamic programming algorithm in Section 2.3.6.

Structure of the optimal solution to the LSP under yield uncertainty

Let us define the cumulative demand as D̄t = ∑t
τ=1 dτ and the cumulative production

quantity up to period t as X̄t = ∑t
τ=1 Xτ . The worst inventory cost (Ît(X̄t)) and the worst

backorder cost (B̂t(X̄t)) in period t can be written as follows:
We assume D̄t = ∑t

τ=1 dτ to be the cumulative demand, while X̄t = ∑t
τ=1 Xτ is the

cumulative production quantity in period t. Similarly to the proof from Proposition 2.3.1,
Ît(X̄t) and B̂t(X̄t) can be given as follows:

Ît(X̄t) = max
{
ht

[
X̄t(ρ̄+ ρ̂) − D̄t

]
; 0
}
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B̂t(X̄t) = max
{
bt

[
D̄t − X̄t(ρ̄− ρ̂)

]
; 0
}

Definition 2.3.1 (Regeneration period). A regeneration period is a period r where the
worst inventory cost (Îr(X̄r)) equals to the worst backorder cost (B̂r(X̄r)). Therefore, the
regeneration period r is such that: Îr(X̄r) = B̂t(X̄t).

Definition 2.3.2 (Regeneration interval). A regeneration interval [m, n] is a set of con-
secutive periods such that Îm(X̄m) = B̂m(X̄m), În(X̄n) = B̂n(X̄n) and Ît(X̄t) ̸= B̂t(X̄t) for
all t ∈ [m + 1, n − 1]. In addition, the production is strictly positive in the setup period 1

β in the interval [m, n], and it is 0 for all periods t, t ̸= β in the interval [m + 1, n − 1].

Proposition 2.3.4. The solution to the robust LSP under yield uncertainty with sta-
tionary nominal value and maximal deviation of the yield is a succession of regeneration
intervals. For each regeneration interval, there is a setup period, beta, that minimizes the
total cost over the interval.

Proof. Given two consecutive periods with production β and γ (with no production in
the interval [β + 1,γ − 1], the worst case inventory and backorder cost Hτ in the interval
[β, γ] depends only on the cumulative production X̄β in period β. Note that the costs after
period γ will depend on the production quantity of period γ. Therefore, the production
quantity in period β only impacts the costs in the interval [β, γ]. We redefine the worst
case inventory or backorder cost in period τ in terms of the cumulative production in t

by Hτ (X̄t) that is given as follows:

Hτ (X̄t) = max

 Îτ (X̄t)
B̂τ (X̄t)

 = max

h
[
X̄t(ρ̄+ ρ̂) − D̄τ

]
b
[
D̄τ − X̄t(ρ̄− ρ̂)

]
where D̄t is the cumulative demand up to period t.
Figure 2.1 illustrates the total cost G[β,γ](X̄β) over the interval [β, γ] as a function of

the cumulative production X̄β in period β. X̄β must be chosen to minimize the sum of the
inventory and backorder cost in the interval [β, γ]: G[β,γ](X̄β) = ∑

τ∈[β,γ] Hτ (X̄β). If the
production quantity is low in the period with production β (e.g., X̄ β = X̄α, where α is
the period with production before β), the function ∑γ

τ=β Hτ (X̄β) corresponds to the sum
of the backorder ∑γ

τ=β B̂τ (X̄β) in all periods, because the production is too low to cover
the demand in any period of the interval [β, γ], and the worst case cost corresponds to
backorder over the entire interval [β, γ]. If the quantity X̄β increases to meet the demand

1. A setup period can be a regeneration period for a regeneration interval of only one period.
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Figure 2.1 – Piecewise inventory and backorder cost functions

in period β, the worst case cost corresponds to inventory in period β and to backorder
afterwards ∑γ

τ=β Hτ (X̄β) = Îβ(X̄β) + ∑γ
τ=β+1 B̂τ (X̄β). In the last segment, where X̄β is

large enough to meet the demand until period γ, the worst case cost corresponds to∑γ
τ=β Îτ (X̄β). Note that backorder costs are decreasing with the production quantity,

whereas the inventory costs are increasing with X̄β. Therefore, G[β,γ] is a piecewise linear
and convex function, such that the minimum is at a breakpoint. Each breakpoint in the
function G[β,γ] corresponds to the case where the worst case backorder cost equals the
worst case inventory cost in a period. As Xβ is chosen to minimize G[β,γ], it is chosen
such that the worst case backorder cost equals the worst case inventory cost in a period
n ∈ [β, γ]. We call such a period a regeneration period, and a regeneration interval is a
set of period [m, n] where m and n are regeneration periods. As there is a regeneration
period between each successive period with setup, each regeneration interval contains one
period with setup. In the case the last regeneration period r occurs before the end of the
production horizon, that is r < T , then we cannot define a complete regeneration interval
and the minimum cost in the interval [r, T ] corresponds to G[r,T ] = ∑T

τ=r+1 Hτ (X̄r). In
this case, all demands are backordered from the last regeneration period until the end of
the production horizon.

Figure 2.2 – Representation of the regeneration period and regeneration interval concepts

Let m be the last regeneration period before starting production in the period β, such
that n is the next regeneration period after β and m ≤ β ≤ n. Figure 2.2 illustrates the
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regeneration interval concept. Here, Î (resp. B̂) indicates that the worst case cost at each
period corresponds to the inventory (resp. backorder) costs. As previously mentioned, the
production quantity in period β in the regeneration interval [m, n] is chosen such that, at
the regeneration periods m and n, the worst inventory cost is equal to the worst backorder
cost. In addition, the worst cost corresponds to inventory costs (resp. backorder cost) from
period β to n − 1 (resp. m + 1 to β − 1).

Proposition 2.3.4 indicates that the solution to LSP under yield uncertainty is a succes-
sion of regeneration periods, where each lot size covers the demand over the regeneration
interval in which the production quantity is defined. Proposition 2.3.5 gives the optimal
lot size to cover each regeneration interval.

Proposition 2.3.5. The amount to produce in the setup period β to cover the regeneration
interval [m, n] (with β ∈ [m, n] and m < n) is given by Xβ, and it is calculated as follows:

Xβ = X̄n − X̄m

Proof. The previous proposition (Proposition 2.3.4) show that the optimal quantity
to produce to fulfil demands over a regeneration interval [m; n] is hold in period β

where the cost is minimal. From Equation A.1, the cumulative production quantity X̄m

(resp. X̄n) at regeneration period m and n (respectively) is X̄m =
∑m

τ=1 dτ

ρ̄+ρ̂(hm−bm
hm+bm

)

(
resp.

X̄n =
∑n

τ=1 dτ

ρ̄+ρ̂(hn−bn
hn+bn

)

)
. Note that Equation A.1 applies here because the production in

period β to cover a regeneration interval [m; n] equals the difference between the cumu-
lative production quantity in n (the end of the interval) and the cumulative production
quantity in m (the beginning of the interval). Since there is no production in interval
[β + 1, n], the cumulative production X̄β in period β is equal to X̄n. In addition, there
is no production in interval [m + 1, β − 1] and the cumulative production in this interval
corresponds to X̄m. The production quantity in period β (with m < n) corresponds to
the difference between the cumulative production at the end of the regeneration interval
and the cumulative production at its beginning. Therefore, Xβ = X̄n − X̄m. Note that if
a setup period is a regeneration period, then the lot size in period β should cover only
the demand from period β. For this special case, the lot size is directly computed by the
policy Xβ = dβ

ρ̄+ρ̂

(
hβ−bβ
hβ+bβ

) given in Proposition 2.3.3.
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The dynamic program for the LSP with uncertain yield

Our dynamic program for the LSP under yield uncertainty iteratively defines successive
regeneration intervals from the first production period until the end of the production
horizon. For each interval, it defines the setup period that minimizes the costs over the
interval. The dynamic programming recursion requires low computational effort because
it works with the optimal cumulative policies that are easily computed, and it exploits
forward recursion to avoid recalculating decision values that have already been defined.

The function MCI(m, β, n) gives the minimal cost over the regeneration interval
[m, n] for a production setup in period β ∈ [m, n]. MCI(m, β, n) includes a setup
cost, the production cost associated with the optimal production quantity for the re-
generation interval [m, n] (computed according to Proposition 2.3.5) and the inven-
tory balance costs over the regeneration interval. From Proposition 2.3.4, we know that
the cumulative production in n covers all the demands up to n and that the cumu-
lative production in m covers all demands up to m. Thus, for the MCI(m, β, n)’s in-
ventory management cost calculation is given by ∑β−1

τ=m+1 Hτ (X̄m) in [m + 1, β − 1]
and by ∑n

τ=β Hτ (X̄n) in [β, n]. Thus, MCI(m, β, n) is then given by MCI(m, β, n) ={
sβ + vβXβ +∑β−1

τ=m+1 Hτ (X̄m) +∑n
τ=β Hτ (X̄n)

}
, where Xβ = X̄n − X̄m if m < n, and

Xβ = dβ

ρ̄+ρ̂

(
hβ−bβ
hβ+bβ

) otherwise. Contrary to the deterministic case, it is possible to obtain

a plan for which the backorder level at the end of the production horizon is not zero.
Thus, we denote by MCR(r, T ) the minimal cost from the last regeneration period r

to T , the end of the planning horizon, when only the backorder levels are considered.
MCR(r, T ) = ∑T

τ=r+1 Hτ (X̄r).
Finally, we define the dynamic program recursive function by F (t), which gives the

optimal cost from period 0 to t. The costs up to period t correspond to the cost of the
last regeneration period m plus the cost up to period t (that is in the interval [m, t]).
Therefore, F (t) can be computed recursively. Given the optimal cost F (m) up to period
m < t, the computation of F (t) enumerates all possible values for the last regeneration
period m and the period with setup β ∈ [m, t]. Thus, F (t) is given by

F (t) = min
m≤β≤t

{F (m) + MCI(m, β, t)} ∀ t ≤ T − 1

Since the last regeneration period can occur before period T , the end of the production
horizon, we should modify F (T ) to take into account the possibility of backordering all
unmet demands from the last regeneration period r until T . Therefore, the optimal cost
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at the period T is given by

F (T ) = min
{

min
m≤β≤t

{F (m) + MCI(m, β, T )} ; min
m≤T

{F (m) + MCR(m, T )}
}

Proposition 2.3.6. The dynamic program for solving the LSP under yield uncertainty
runs in O(T 3).

Proof. See Appendix A.4

Proposition 2.3.6 indicates that our dynamic program performs in O(T 3). The problem
becomes NP-Hard when extended to the capacitated context, and this can be verified with
a reduction from the deterministic single-period capacitated LSP [Florian and Klein, 1971,
Bitran and Yanasse, 1982].
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2.4 Results and discussions

This section presents the experimental study, and its objective is threefold: (1) to
demonstrate the robustness of the presented approaches in coping with a non-deterministic
LSP; (2) to report an in-depth investigation on the robust LSP with uncertain yield, its
performance, the quality of the solutions, and the computational efficiency, and (3) to
evaluate and compare the performance of the different optimization approaches in terms
of the average and worst case quality of the solution.

The experiments consider the following solution approaches: DETSS, the deterministic
model with safety stock, as presented in A.6; DET , the nominal model with ρt = ρ̄t, as
presented in Section 2.3.1; SP , the stochastic program, as presented in A.7; ROΓ, the
LSP under yield uncertainty, with uncertain yield and budget Γ, as presented in Section
2.3.3; and finally DP , the dynamic program for computing an optimal robust plan for
the stationary LSP under box uncertainty set and with uncertain yield, as presented in
Section 2.3.6.

Note that DET and SP are natural benchmarks to compare solution approaches that
cope with uncertainties. DETSS corresponds to the approach commonly used in practice,
where a safety stock is computed separately from the lot sizes. This section is organized
as follows: Section 2.4.1 presents the instance generation method. Section 2.4.2 introduces
the simulation framework used to compare the methods. Finally, Section 2.4.3 presents
an analysis of the developed models. We discuss the performance of the dynamic program
in Section 2.4.3, the investigation of the price of robustness in terms of the budget of
uncertainty in Section 2.4.3, and the performance and quality of the plans resulting from
different optimization approaches in Section 2.4.3. We also highlight the advantages of
using robust optimization to hedge against uncertainties in a highly uncertain context.

2.4.1 Instance generation

We generate each parameter of the instances using uniform distributions. We set the
value of the support of these uniform distributions in a similar manner to Brandimarte
[2006] to generate setup and inventory costs. As Brandimarte [2006] considers demand
uncertainty, we generate the demand similarly to Alem et al. [2018]). The production costs,
the inventory costs, the demands, the nominal values of the production yield rate, and the
maximum deviations of the production yield were randomly generated using an uniform
distribution within the following intervals: vt ∈ U(10, 20), ht ∈ U(1, 10), dt ∈ U(140, 480),
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ρ̄t ∈ U(0.5, 0.7), and ρ̂t ∈ U(0.1, 0.3), respectively. The setup costs are computed with the
time between order formula: st = ¯̄Dt·T BO2·ht

2 , where ¯̄Dt represents the average demand up
to period t. The capacity can be computed as Ct = Φ

∑
t∈T

dt

minτ≤t(ρ̄τ −ρ̂τ ) , where Φ is a factor to
control the tightness of the capacity. To adapt these instances for the LSP under yield
uncertainty, we generate the nominal and maximum deviation of the yield with uniform
distributions with means in the range (0.5; 0.7) and (0.1; 0.3), respectively.

For instance, Chu et al. [2019] consider the stationary case, where they set the mean
and standard deviation of the production yield to 0, 95 and 0, 05, respectively. As we aim
to study the impact of yield uncertainty in the lot-sizing model, we consider here the
non-stationary uncertain production quality, where the quantity of quality goods varies
significantly between periods. This setting relates to complex production systems in which
factors affecting production yield are difficult to measure or estimate precisely due to lack
of data. We consider instances with 4, 12, and 24 periods, a time between orders of 1, 2,
or 4, and a backorder cost that equals 2, 5, or 10 times the holding cost for each period
t. In addition, we consider a capacity factor Φ of 25%, 50%, and 75% for the capacitated
model, and we assume a capacity factor of 100% for the non-capacitated model. We
generate the instances with a full factorial design for these four parameters, which leads
to 108 instances. We set the inventory and backorder levels to zero at the beginning of the
horizon. Because the optimal policies are valid only for the uncapacitated models and the
special case with non-stationary costs and demands but with constant nominal value and
maximum deviation of the production yield, we generate 81 additional instances resulting
from the factorial design of the following parameters: 6, 12, 24, 30, 36, 48, 96, 192, 384
periods, time between orders of 1, 2 or 4, and backorder costs equaling 2ht, 5ht, or 10ht.
We increase the instance size compared to the other instances to measure in terms of
computational time the performance of the dynamic program for larger size problems.

2.4.2 Simulation

We analyze the quality of the production plans through a simulation with |Ω| = 5000
scenarios generated with Monte Carlo sampling, where each scenario represents a possible
realization of the production yield over the horizon. We simulate the yield with a uniform
distribution with support [ρ̄t − ρ̂t; ρ̄t + ρ̂t] in period t. We note EV PI, the expected
value of perfect information, the average cost of the perfect information solutions, where
EV PIω is the cost of the solution computed with the deterministic model for scenario ω.
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To evaluate each optimization method, we fix Xt and Yt obtained from the optimization
step in the deterministic model for each scenario ω.

2.4.3 Experimental results

This section presents an average cost analysis for the uncapacitated and capacitated
problems. The algorithms were implemented in Python 3.6, and the mathematical mod-
els are solved with CPLEX version 12.10. The experiments were run on Intel(R) Xeon
Broadwell 2683/2.1GHz processors with 125GB of RAM. All the models for all the in-
stances were solved until optimality. We compare the methods based on the objective
value provided by each optimization approach (e.g., the objective function given in (2.4)
for ROΓ), the average computational time (in seconds), the expected value (Exp. Cost)
of each solution approach evaluated in the simulation, along with the worst case cost in
the simulation, and the 95th and 99th percentile cost (p.c.). We also report the relative
difference between the expected value of perfect information EV PI and the simulated
expected value of each method given by GAPEV P I = 100 × Exp. Cost− EVPI

EVPI . In addition,
we define by GAPOP T = 100 × Exp. Cost−Obj. Value

Obj. Value the relative difference between the
objective value of a solution approach and its simulated expected cost. Finally, we report
the coefficient of variation CV , an index that indicates a high variability of the costs in
the simulation. Thus, CV is the ratio of the standard deviation to the mean, such that
the higher CV is, the more widely dispersed the values are from the mean.

Performance of the dynamic program

First, we analyze the performance of the dynamic program to solve the multi-period
LSP under box uncertainty set and yield uncertainty, with constant nominal value and
maximum deviation of the production yield, and with non-stationary costs and demands.
Table 2.1 reports the computational times (in seconds) for DP and RO on the 81 instances
generated for the special case. Each column corresponds to 9 instances with the same
planning horizon, and we indicate the average time to solve them.

Table 2.1 shows that the robust dynamic program is computationally less demanding
than the robust model for instances with at most 30 periods, while DP becomes more
computationally demanding than RO for a production horizon greater than 30 periods. In
fact, by taking the overall run time to solve instances with at most 30 periods, the dynamic
program takes approximately 0.12 seconds, whereas the robust model needs approximately
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Table 2.1 – Computation time of the dynamic programming approach and the reformu-
lated MILP for the uncapacitated problem

Planning horizon size

Approach 6 12 24 30 36 48 96 192 384

DP 0.002s 0.01s 0.15s 0.28s 0.54s 1.65s 22.05s 320.63s 5245.16s
RO 0.183s 0.21s 0.37s 0.35s 0.30s 0.48s 2.30s 26.41s 2182.94s

0.28 seconds to solve the same instances. However, when we consider the instances with
production horizon larger than 30 periods, DP requires around 10.35 minutes to determine
a solution for instances with a planning horizon up to 384 periods, while RO takes only
4.05 minutes on average to compute the same solution. These results show that the DP

approach is better suited for small instances or when an efficient commercial solver is
not available. However, for medium and large sized instances, the computational effort
required by DP becomes too expensive compared to the solution computed with the
MILP robust model. Moreover, RO can deal with more general LSPs, which makes its
performance more competitive with a problem-specific approach. Therefore, the MILP
model can be extended to include different practical constraints while it can still remain
efficient in terms of speed in computing an optimal solution.

Price of robustness

To analyze the impact of the budget Γ, we consider different budgets to represent
the decision-maker’s risk aversion. For each instance, the budget varies from low aversion
(Γ = 0.1T ) to extreme aversion Γ = T , going through a progression with the size of the
production planning. The budget represents the maximum number of uncertain param-
eters that can take the worst case value [Thiele, 2010]. Since Γ indicates the number of
periods where the production yield can take its worst case realization, it is convenient to
express Γ as a proportion of T . Table 2.2 indicates the impact of the budget of uncer-
tainty on the costs for all the considered instances. While the Obj Value column gives the
average of the objective function values computed in the optimization step, the remaining
columns report the average value for the features obtained in the simulation step.

As reported in Table 2.2, for both the uncapacitated and capacitated model, the best
solutions in terms of objective value and expected cost are obtained for a very tiny budget
(Γ equals 0.1T and 0.2T ), so the decision-maker should be willing to accept a high degree
of risk resulting from uncertainties. Considering the 95th percentile costs, the lowest costs
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Table 2.2 – Impact of the budget of uncertainty on the robust lot-sizing decision

Γ
Uncapacitated Capacitated

Exp.
Cost

95th p.c. 99th p.c. Worst
Cost

Obj
Value

CV Exp.
Cost

95th p.c. 99th p.c. Worst
Cost

Obj
Value

CV

0.1T 124,759 154,848 185,884 243,203 132,004 10.8% 132,974 163,341 195,299 246,471 143,413 10.9%
0.2T 137,315 154,685 165,599 195,557 169,567 7.2% 145,625 164,536 175,202 201,651 184,442 7.5%
0.3T 146,202 163,330 170,991 188,427 192,411 6.6% 156,249 174,874 182,625 200,529 210,890 6.7%
0.4T 155,134 174,025 181,590 191,107 218,111 7.0% 166,748 187,231 195,255 208,007 237,618 6.9%
0.5T 157,734 178,326 186,106 195,401 227,836 7.4% 169,338 190,815 199,027 210,768 247,834 7.1%
0.6T 159,507 181,895 190,214 197,804 236,085 7.9% 172,066 194,805 203,491 213,806 256,740 7.7%
0.7T 159,353 182,381 190,537 197,941 237,278 8.3% 171,205 194,614 203,547 213,448 258,356 7.9%
0.8T 158,777 182,053 190,164 197,690 237,573 8.4% 170,770 194,318 203,299 213,112 258,566 7.9%
0.9T 158,883 182,202 190,322 197,836 237,732 8.4% 170,782 194,377 203,370 213,232 258,805 8.0%
1.0T 158,883 182,202 190,322 197,836 237,732 8.4% 170,782 194,377 203,370 213,232 258,805 8.0%

for the uncapacitated (resp. capacitated) model are obtained for Γ between 0.1T and
0.3T , while the lowest 99th percentile costs are given by a budget equaling 0.2T and 0.3T

for both variants. In addition, the lowest worst case costs are obtained for Γ between
0.2T and 0.5T for both uncapacitated and capacitated model, and the lowest coefficient
of variation CV can be achieved for a budget that equals 0.3T , 0.4T (resp. 0.3T , 0.4T

or 0.5T ). However, for Γ lower than 0.1T , the robust objective value fails to cover the
95th percentile cost (and, consequently, the worst case cost). Therefore, with such a low
Γ value, the decision-maker has no guarantee that the plan will be sufficiently immunized
from uncertainties. On the other hand, although the solutions obtained for Γ greater
than 0.4T achieve a robustness level that covers the worst case scenarios, they are overly
conservative. In fact, for Γ between 0.5T and T , the objective value is much higher than
the worst case cost. Thus, even if for the largest value of Γ the solutions are robust, they
do not result in the best option in terms of the expected costs and stability. Therefore, the
budget of uncertainty in the interval from 0.2T to 0.4T offers better production plans, since
the decisions are sufficiently stable because of a low CV , the expected cost is relatively
low, and the robust objective value covers at least the 99th percentile costs (and even the
worst case costs for when Γ equals 0.3T or 0.4T ).

Comparison of the LSP with uncertain yield resolution approaches

We now compare the production plans resulting from RO, SP , DET and DETSS.
We consider RO with a budget that is equal to 0.2T , 0.3T , and 0.4T because we have
previously shown that these values result in better trade-offs in average costs, conservatism
and robustness. We also consider the extreme case of the robust approach with a more
conservative solution for Γ = T . All results reported in these sections are an average over
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all the considered instances. In addition, all values are computed during the simulation
step except for the optimal values and computational time which are obtained from the
optimization. Note that from the non-deterministic literature, nominal models ignore
the occurrence of uncertainties, and they tend to have higher costs compared to other
optimization approaches that take uncertainties into account. We also emphasize that
the safety stock is a classic complementary approach to control uncertainties in a non-
deterministic context, and such a safety stock can be incorporated into the deterministic
model. The safety stock calculation, which relies on different assumptions, can be done
separately as preprocessing step.

Table 2.3 shows the simulation results for the uncapacitated LSP. Here, the compu-
tation times required by DET (about 0.01s) and DETSS (about 0.03s) are extremely
low. Next, RO takes on average 0.38s to compute a solution, followed by SP , the most
demanding approach, which takes about 19.6s to propose a production plan. DET is
the less robust method because its GAPOP T and its CV are the highest among all the
methods tested, which indicates a costly solution highly impacted by yield disruptions.
DET is followed by DETSS, SP and RO solutions. Considering the quality of the solu-
tion in terms of GAPEV P I , SP proposes the best expected cost followed respectively by
the DETSS, DET and RO models. However, RO is less impacted by disruptions of the
production yield than SP , since the robust CV is about 7% on average, whereas SP gives
a production plan whose CV is 15% on average. In addition, although DETSS and DET

give better expected costs than RO, these models lead to large costs for more adverse
production yield values (since they have larger worst case, 99th and 95th percentile costs).
Moreover, DETSS and DET are much more impacted by yield uncertainty than RO.
While, on average, DETSS has a CV of around 19%, and DET has a CV of 25%.

Table 2.3 – Performance of the uncapacitated models in terms of the average cost and
worst case simulated costs

Model Exp. Cost 95th p.c. 99th p.c. Worst Cost Comp. Time CV GAPEVPI GAPOPT
EV PI 89,454 98,728 102,679 107,073 6%
DETSS 129,241 191,368 241,716 301,517 0.03 19% 36% 2%
DET 131,284 222,968 287,950 350,106 0.01 25% 27% 26%
SP 115,624 152,899 194,764 258,646 19.60 15% 20% -4%

ROΓ=0.2T 137,315 154,685 165,599 195,557 0.63 7% 44% -18%
ROΓ=0.3T 146,202 163,330 170,991 188,427 0.52 7% 53% -23%
ROΓ=0.4T 155,134 174,025 181,590 191,107 0.34 7% 60% -27%
ROΓ=T 158,883 182,202 190,322 197,836 0.04 8% 62% -32%

Since DET and DETSS do not offer good solutions in terms of robustness, we fo-
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cus on the comparison between RO and SP . Although SP provides lower expected costs
(115,624) than RO (149,384, on average), the robust model leads to a lower worst case cost
(about 193,232 on average over the different budgets) than the worst cost obtained with
the stochastic plan (258,646). In addition, the robust models have a coefficient of variation
of 7% on average, while SP has a CV equal to 15%. This value confirms that SP is more
impacted by disturbances on the production yield than the robust plans. Nevertheless,
we stress that the SP and RO methodologies have fundamentally different objectives.
Although the stochastic program seeks the minimum expected costs, the robust optimiza-
tion method aims the minimum objective value that covers the costs incurred even for
the worst realization of the uncertain yield. In the same vein, the relative difference be-
tween EV PI and ROΓ is greater than the GAPEV P I between EV PI and SP because the
robust models propose a production plan that remains cost effective, even for the worst
realization of the uncertain yield for a well-chosen budget of uncertainty, while SP may
be ineffective in case of adverse events. The robust strategy leads to more conservative
solutions than the production plan proposed by the stochastic program, for which the
strategy is defined regarding the probability of the realization of the uncertainty. While
SP is known to be prone to changes in the underlying uncertainty (e.g., if the distribution
changes), the RO remains stable and robust for different and unrelated uncertainty real-
izations. This can be verified in the column 99th percentile and worst case average costs,
for which robust models are much less impacted by the uncertain parameter, leading to
lower costs.

Table 2.4 – Performance of the capacitated models in terms of the average cost and worst
case simulated costs

Model Exp. Cost 95th p.c. 99th p.c. Worst Cost Comp. Time CV GAPEVPI GAPOPT
EV PI 99,655 112,824 118,132 124,212 8%
DETSS 136,003 188,261 232,546 289,263 0.03 17% 30% -4%
DET 137,722 222,418 281,401 346,124 0.01 24% 22% 23%
SP 124,029 162,394 204,674 263,150 15.64 16% 17% -4%

ROΓ=0.2T 145,625 164,536 175,202 201,651 0.31 7% 38% -20%
ROΓ=0.3T 156,249 174,874 182,625 200,529 0.37 7% 48% -25%
ROΓ=0.4T 166,748 187,231 195,255 208,007 0.24 7% 56% -28%
ROΓ=T 170,782 194,377 203,370 213,232 0.03 8% 59% -32%

Table 2.4 presents the results for the capacitated version of the LSP. Much like the un-
capacitated model, DET has the lowest computational time of 0.01s, followed by DETSS

(about 0.03s), RO (about 0.24s on average), and finally SP (around 15.64s). The capac-
itated DET is not robust enough in comparison with other approaches, since it has the

102



2.4. Results and discussions

highest CV and it gives the highest costs in terms of 95th and 99th percentile, and worst
case costs. In addition, although the capacitated DETSS model has a GAPOP T as good
as SP , its 95th and 99th percentile costs, as well as its worst case cost, are higher than
the respective SP costs. DET is also less robust since its CV is around 24%. Therefore,
DET and DETSS are not competitive in terms of performance to mitigate uncertainties
when compared to SP and RO models. While the lowest expected cost is given by SP ,
the lowest 99th percentile and worst case costs are given by the robust models. RO not
only gives the lowest costs, especially for Γ equals 0.3T or 0.4T , but also fully immunizes
the problem from uncertainties with a production plan whose objective value covers any
realization of the uncertain yield. The CV of RO models remains the same in comparison
with the uncapacitated version of the problem, and the values are still lower than the CV

for the SP solutions (that decreases to 24%). This indicates that the robust plans are
more stable than the stochastic ones for different realizations of the uncertain yield. In
addition, the relative difference between the optimization methods and EV PI becomes
lower, and the optimality gap for RO also decreases. The results show that the robust
approach is efficient when mitigating uncertainties because it offers a good, stable and
robust production plan. Although the expected costs from the robust models (159,851
on average) are higher than the respective SP costs (about 124,029), the robust 99th

percentile cost (on average 189,113) is lower than the stochastic one (about 204,674).
Similarly, the robust worst case cost (about 205,855 on average) is much lower than the
stochastic one (around 263,150). In addition, for a budget of uncertainty greater than or
equal to 0.3T , RO worst case cost is covered by the objective value. As a result, the SP

model is less efficient when uncertainty information is relatively limited or if we want to
limit a downside risk due to the realization of uncertainties.

The RO framework provides a systematic approach to determine a robust production
plan that mitigates uncertainties with a conservatism partially controlled by the budget
of uncertainty. Similarly to Hnaien and Afsar [2017], where the authors conclude that a
robust capacitated LSP is easier to solve than the uncapacitated version, we also observe
the same pattern. Our capacitated RO model is generally easier to solve, which is not
usually the case for the deterministic model where the capacitated model is more difficult
to solve (e.g., Brahimi et al. [2006]). Hnaien and Afsar [2017] indicate that the capaci-
tated model has a bound on the lot size lower than the natural bound, and as the linear
relaxation of the capacitated version may be less fractional, it may lead to faster calcu-
lations. However, there may be other explanations. There are some capacitated problems
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in the literature where the instances are designed to be the most challenging, and so time
consuming. As a result, the computational effort to solve the capacitated problem may
change depending on the instance configuration in size, structure (e.g., multi level), costs,
setup features (e.g., setup times, setup carryover, high setup costs), resource availability
(e.g., tight capacity), and resolution approach [Buschkühl et al., 2010]. On the other hand,
robust models search for solutions that are immunized from uncertainties, which leads to
a large number of feasible solutions. As a consequence, capacitated RO models have a
reduced amount of feasible solutions in the worst case perspective, since limited resources
lead to more restrictions defining the solution space [Zhanga et al., 2020]. Hence, the
robust models with capacity constraints potentially require less computing effort. This
has also been observed in other literature (e.g., Hnaien and Afsar [2017], Zhanga et al.
[2020]).

To analyze the cost components incurred in the simulated production system, Figure
2.3 indicates the setup frequency for the uncapacitated and capacitated models, Figure 2.4
reports the proportion of the average expected costs imputable to the setup, production,
inventory, and backorder costs for the uncapacitated and capacitated models. Finally,
Figure 2.5 reports the average lot size ∥X∥, inventory ∥I∥, and backorders ∥B∥ levels
accumulated over the entire production horizon, and the inventory and backorder levels
at the end of the production planning for the uncapacitated and capacitated models.

Figure 2.3 shows the setup frequency for different capacity levels. As expected, the
frequency of setup increases when the capacity decreases. For the uncapacitated models,
RO has the highest setup frequency (with setup frequency of 62% on average). It is
followed by SP with a setup frequency of 46%, DETSS with a setup frequency of 44%,
and finally DET with a setup frequency of 43%. The RO models adopt a strategy with
more frequent production setups to reduce the total costs and to avoid backorder costs
when the problem faces low-yield values. Figure 2.3 also reports that the robust production
plans for Γ from 0.2T to 0.4T not only mitigate uncertainties better, they also provide
a configuration setup that is still efficient even if resource availability is disrupted. As
shown, for the different capacity factors, the setup frequency for these robust models does
not suffer major disturbances.

Figure 2.4 gives an overview of the cost distributions for all considered approaches. RO

leads to fewer backorders (6% of the cost for RO when Γ = 0.3T versus 20% for SP ) at
the expense of higher setup, production and inventory costs. RO tends to exceed the costs
from DET , DETSS and SP for all components except the backorder costs. However, the
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Figure 2.3 – Characteristics of the solutions in terms of setup frequency

robust backorder costs are much lower than the respective DET , DETSS and SP costs,
which compensate for the highest setup, production and inventory costs. Therefore, the
robust plan offers more possibilities for the decision-maker to take advantage of the avail-
able resources, while also reducing the impact of the uncertain events on the production
plan. For instance, when the availability of the resources is more restricted, backordering
becomes more frequent. RO manages to control (and even reduce) the backorder cost
by increasing the lot size and the frequency of production, yet lot size and inventory
levels remain acceptable. As a result, the robust model favors a large production level
to meet demands, DETSS relies on large stock level, and DET and SP take the risk of
backordering goods.

Figure 2.5 shows that all approaches keep as many goods in stock over the entire
production planning as possible. Although this strategy reduces the backorder levels (with
little increase for the capacitated models), it requires larger lot sizes to keep enough quality
goods to meet demands. The production quantity becomes even higher for the DETSS

than for DET to ensure that the safety stock is respected. DET and SP have quite similar
production plans, with a more important difference in terms of the inventory level. For
the uncapacitated problem, RO produces an amount of goods relatively close to that
proposed by SP (6,411 units on average when considering all Γ values versus 6,033 units
produced on average with SP and 6,229 units produced with DET ), yet it leads to a low
backorder level (an average of 507 units backordered with the robust plan versus 1,021
units backordered units with SP and 1,450 units with DET ). Besides, the robust models
have a larger inventory level on average of 192 units (resp. 241 units), versus 53 units
(resp. 52 units) for SP and 115 units (resp. 111 units) for DET .

To conclude, the RO provides effective support for decision-makers. Contrary to
DETSS, DET and SP , RO provides an objective value that is larger than the expected
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(a) Uncapacitated problem

(b) Capacitated problem

Figure 2.4 – Characteristics of the solutions in terms of the cost distribution
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Figure 2.5 – Characteristics of the solutions in terms of production, inventory and back-
order levels

simulated costs, and this can reassure the decision-maker. In addition, unlike other ap-
proaches, the robust plan covers even the most pessimistic scenario. When we investigate
the stability and robustness of the proposed plans, the robust approaches provide the
production plan that copes better with uncertainties because it tends to offer greater
cost savings with a low impact of yield disturbance on the production plan. In addition,
contrarily to SP , DET and DETSS which adopt a strategy that places backorders more
often to reduce the inventory and production costs, RO relies on a sufficiently low stock
level that satisfies demands and which is supported by sparse production setups that min-
imize costs with sporadic production backorders. Therefore, the robust models mitigate
the impact of the realization of unknown and pessimistic scenarios on the production plan
better.
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2.5 Conclusion

In this chapter, we have introduced the robust formulation for lot-sizing under yield
uncertainty. We show that the multi-period problem under box uncertainty set, where
the average and standard deviation of the production yield are constant over the plan-
ning horizon while costs and demands are not, can be solved in polynomial time with a
dynamic programming approach. The chapter also proposes a mixed-integer linear pro-
gram for the non-stationary LSP with uncertain yield, and it provides insights into robust
production plans. Our results show that with a proper budget of uncertainty, the robust
model mitigates uncertainties with a balance between production quantities, setup costs,
and inventory management costs. In addition, the robust optimization method requires
less computational effort than stochastic programming, and its solutions are less conserva-
tive, yet more robust, compared to the classical approaches to dealing with uncertainties
on LSPs (represented here by the nominal problem and the deterministic problem with
safety stock). Other major advantages of robust optimization over the other proposed
approaches are that the robust approach requires little information about the uncertainty
factors and no strong assumption on the uncertain parameter characteristic. Further in-
vestigation is still needed to propose an adaptive framework to cope with uncertainties
within a static-dynamic, or even a dynamic, decision framework. The present work could
also be extended to deal with multi-echelon systems.
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Chapter 3

ADAPTIVE ROBUST LOT-SIZING

PROBLEMS UNDER YIELD UNCERTAINTY

This chapter is based on the following article:

Metzker, P., Thevenin, S., Adulyasak, Y., Dolgui, A. Adaptive robust opti-
mization for lot-sizing under yield uncertainty. European Journal of Opera-
tional Research (1st revision), August 2022.

In manufacturing environments, uncertain production yield directly impacts the qual-
ity and feasibility of the production planning decisions. This chapter investigates the use
of adaptive robust optimization to hedge against uncertain yield when determining a pro-
duction plan, and to react properly when updated information unfolds. We first derive a
myopic adaptive robust policy for the inventory management problem, a special case of
the lot-sizing problem where the setup and the production costs are omitted. We show
that the policy is optimal under mild assumptions. Second, we address a multi-period
single-item lot-sizing problem with backorder and uncertain yield via the adaptive robust
optimization. We formulate an adaptive robust model based on the budgeted uncertainty
set, where we exploit a linear approximation to transform the quadratic constraints into
a mixed-integer linear program. We also propose a column and constraint generation al-
gorithm to solve the adaptive model exactly. Finally, we demonstrate the performances of
the proposed approaches and the value of the adaptive robust solutions through extensive
numerical experiments.
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3.1 Introduction

Manufacturers must efficiently manage their production capacities and their perfor-
mances to comply with contractual agreements and to satisfy customer demands with
quality goods. To achieve this business objective, among other tactical problems, man-
ufacturers must make lot-sizing decisions carefully. These decisions determine the pro-
duction setups and quantities to meet the demands with quality goods, while minimizing
the overall production and inventory management costs [Murthy and Ma, 1991]. Product
quality is a fundamental issue which directly impacts costs and the profitability of the
firm. Production planners often rely on the production yield to measure the expected
quantity of quality goods resulting from a lot size.

Recent trends foster the agility of the manufacturing shop floor, and they include re-
configurable manufacturing systems [Koren and Shpitalni, 2010] and supply chains [Dolgui
et al., 2020]. The resulting shop floors can cope with an adaptive planning strategy, since
they can easily adjust process planning, workforce availability, raw material deliveries, and
the production schedule. Adaptive plans are then possible, and such plans can lead to bet-
ter performance by taking advantage of resource and process flexibility. The adjustable
robust optimization (ARO), also denoted as adaptive robust optimization, emerges as a
robust methodology applied to static-dynamic and dynamic strategies where decisions
can be updated over time [Ben-Tal et al., 2004]. Adaptive robust planning decisions also
enhance the system responsiveness the better to account for shop floor volatility [Mittal
and Jain, 2014].

The static robust lot-sizing problem (LSP) under uncertain yield has been studied by
Chu et al. [2019] and Metzker et al. [2023a]. Chu et al. [2019]’s work partially addresses
the LSP problem, since the authors investigate the inventory management problem with
demand and yield uncertainties under the budgeted uncertainty set for the case with
stationary costs and constant nominal value and maximum deviation of the uncertainties.
The authors study the performance of the model under different degrees of uncertainty
controlled by the budget of uncertainty. Metzker et al. [2023a] consider the robust LSP
with non-stationary costs, demands, and nominal value and maximum deviation of the
production yield. Furthermore, the authors provide extensive numerical experiments to
measure the performance of the robust optimization against other approaches, namely
stochastic programming, the nominal model and the deterministic model with safety stock.

Some flexibility and adaptability are necessary to make the decision process closer
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to real applications. They are crucial in reacting to variations in demand with changes
in consumption trends, changes in resources or workforce that may impact production
performance, and so on. In addition, the acquisition of new machines, or modifications
due to quality control requirements would impact production performance, for example
improvements to obtain a quality label. Therefore, being able to take these changes into
account and react directly to their realization would potentially improve the quality of
robust decisions.

To the best of our knowledge, no study considers adaptive lot-sizing decisions with
uncertain production yield, where the actual production yield unfolds at the end of each
period, and the next lot size computation reacts to this information. ARO often uses
decision rules to express the dependence of adaptive decisions to the uncertain parameters
[Ben-Tal et al., 2009]. In our case, the decision rules map the realization on the uncertain
yield to the adaptive lot size decisions.

Over recent decades, various approaches have been proposed to handle robust LSPs
[Metzker et al., 2023a]. Among the approaches to handling adaptive models, Zeng and
Zhao [2013] propose a decomposition technique, called a column & constraint generation
(C&CG) algorithm, that seeks an optimal solution by decomposing the problem into
smaller sub-problems that are easier to solve. This approach was applied to various other
problems, such as the facility location problem [Zeng and Zhao, 2013, An et al., 2014],
and power grid problems [e.g., An and Zeng, 2014, Jabr et al., 2014, Lee et al., 2013, Wei
et al., 2014, Zugno and Conejo, 2015], etc.

Contrary to uncertain demand, whose adaptive model has an uncertain parameter in-
directly impacting the adaptive variable (that is, we have a fixed recourse action to modify
the adaptive variables), the uncertain production yield becomes a non fixed coefficient of
the adaptive lot size decisions [Ben-Tal et al., 2004, Yanıkoğlu et al., 2019]. As a result, we
have a non-fixed recourse modifying the adaptive variables. More specifically, the adap-
tive robust model contains quadratically uncertain terms to define the quantity of quality
goods in the inventory balance constraints. As a consequence, the model is intractable
[Ben-Tal et al., 2005]. In this chapter, we deal with the adaptive robust model through
a linear approximation and propose a decomposition approach to determine an optimal
solution. In addition, we demonstrate the properties of a myopic optimal adaptive policy
for the inventory management problem. To the best of our knowledge, we are the first
to consider ARO for LSP under yield uncertainty, and our contribution is threefold: 1)
development of an ARO model to deal with uncertain production yield, 2) modeling a

111



Chapter 3 – Adaptive robust lot-sizing problems under yield uncertainty

linear approximation to handle the adaptive problem, and 3) design of a C&CG algorithm
to compute an optimal adaptive solution. We also present numerical tests to evaluate the
performance of the methods we have developed. Our results indicate that the adaptive
robust approach adequately mitigates uncertainty since it protects the production plan
better against the most adverse yield realization, and it provides better cost savings and
less conservative plans than the classical robust model. Our numerical results also show
that ignoring the quadratic term in the adaptive robust model leads to less conservative
solutions, while the production plans remain sufficiently robust. This chapter also pro-
vides risk analysis to help decision-makers to tailor their decision plans to their strategic
and operational goals.

This chapter is organized as follows. Section 3.2 reviews the literature on adaptive
robust lot-sizing with a focus on the production yield uncertainty. Section 3.3 formally
describes the problem being considered. Section 3.4 presents the adaptive robust model, an
approximation, a myopic policy, and the proposed C&CG algorithm. Section 3.5 reports
the experimental results, and finally Section 3.6 concludes this work, and provides future
research directions.

Notation: We use boldface (e.g., X) to denote vectors.
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3.2 Literature review

Although there exist lots of studies on the LSPs, this section only reviews the literature
on the LSPs under yield uncertainty focusing on the adaptive (static-dynamic) strategy,
and other studies on the optimization theory relevant to our work.

Solyalı et al. [2016] report the impact of the RO on the inventory management problem
under uncertain demand. The authors show that the adjustable robust models are solvable
in polynomial time, and they can yield better solutions than static models. A study of the
LSP under demand and lead-time uncertainty was presented in Mehdizadeh et al. [2018],
where the authors use a branch and bound to compute an optimal solution. Ben-Tal
et al. [2005] propose an ARC model for the LSP under demand uncertainty. The authors
model the adaptive variables (the production quantity) by affine functions of the uncertain
demand, and they assume the demand takes a value in bounded uncertainty sets. As a
result, their ARC is a MILP that can be easily solved. Melamed et al. [2016] extend the
previous study and measure the average performance of the adjustable solution. Zhu et al.
[2012] also consider the affine decision rules for the LSP under uncertain demand. They
propose an ARC using an ellipsoidal uncertainty set to reduce the conservatism with some
predefined risk preferences.

Postek and Hertog [2016] suggest an iterative splitting method to build the uncer-
tainty set for the LSP with uncertain demand. This approach seeks the most likely de-
mand scenarios to reduce the worst case costs. Following the same logic, Chuong et al.
[2021] through the sum of squares convex program, present an exact dual semi-definite
formulation to deal with the adaptive robust LSP under uncertain demand. Then, Wool-
nough et al. [2021] extend the affine decision rules to a quadratic form to improve the
performance of the ARO method. While few studies consider adaptive robust production
planning approaches, most of them address uncertain demand [e.g., Ben-Tal et al., 2005,
Melamed et al., 2016, Zhu et al., 2012], although, to the best of our knowledge, none of
them addresses the uncertain production yield.

Bowman [1955] present the production yield as a proportion of quality items in a lot.
A review on LSPs with uncertain yield is presented by Yano and Lee [1995]. Metzker et al.
[2023a] gives an updated review on robust LSPs with uncertain yield. Often, the stochastic
programming approach is used. The adaptive stochastic programs could be addressed
by a scenario-based formulation, where a tree structure scenario represents the possible
realizations of the unknown data [Brandimarte, 2006]. However, such a scenario-based
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formulation would be computationally cumbersome as the number of scenarios grows
exponentially with the number of periods. ARO can potentially be more scalable. Vayanos
et al. [2012] propose a resolution approach for ARO models based on the constraint
sampling technique and a finite linear combination of adaptive decision rules.

To the best of our knowledge, no investigation has been carried out on adaptive LSPs
with uncertain production yield, and we intend to address this issue and analyse the
impact of uncertain production yield on adaptive lot-sizing decisions. Therefore, in this
chapter we investigate the ARO methodology to handle LSPs under yield uncertainty. Our
research can be considered as an extension to the adaptive case of Metzker et al. [2023a],
where the authors investigate the static robust model based on the budgeted uncertainty
set.

Our work differs from the aforementioned literature in several aspects:

— First, this chapter is the first work that formulates the LSPs under yield uncer-
tainty via ARO. The resulting adaptive robust lot-sizing problem updates the lot
size, inventory and backorder levels once the production yields from previous pro-
duction periods are known. To introduce the recourse actions into the model, we
represent the dependence of adaptive decisions on uncertain parameters via affine
decision rules in function of the realization of the uncertain yield for periods prior
to the decision variable period. However, the consideration of these affine policies
in the LSP model leads to quadratic terms on the uncertain production yield, and
the model becomes intractable. To overcome this difficulty, we propose a linear ap-
proximation for the static-dynamic strategy that simplifies the quadratic term. As
a result, we can apply the reformulation per constraint and dualization approach
to solve this linear model.

— Second, we derive a closed-form myopic solution for the stationary case of the single
and multi-period inventory management problem, where we assume zero setup and
zero production costs, and the yield uncertainty is handled by a static-dynamic
strategy.

— Third, we develop a C&CG algorithm to solve optimally the adaptive lot-sizing
problems under yield uncertainty within a static-dynamic strategy.

— Finally, we provide an in-depth analysis of the quality and performance of the
developed adaptive robust models and a policy for production planning based on
numerical experiments. We also present some observations about the optimality of
our approaches within a dynamic strategy through a rolling horizon simulation.
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The results show that our adaptive robust approximation is efficient, and it protects
the system against uncertainties. We found that ARO leads to production plans that are
more robust, yet still adjustable to changes in the production system.
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3.3 Problem statement

3.3.1 Nominal problem

The single-level single-item LSP with backorder and production yield determines the
production setups and lot sizes which minimize the overall costs, and meet the demands
with quality goods in a finite horizon T = {1, ..., |T |}. For each period t, the following
parameters are given: setup cost st, unit production cost vt, unit inventory cost ht, unit
backorder cost bt, demand dt, and finally production yield ρt. ρt is assumed to be strictly
positive (0 < ρt ≤ 1), where ρt = 1 indicates a perfect production yield where the entire
lot size is made up of quality goods. The LSP aims to decide for each period t the quantity
to produce Xt, the inventory level It, the backorder level Bt at the end of the period, and
the setup decision Yt. The deterministic formulation of the LSP is as follows:

min
∑
t∈T

(stYt + vtXt + htIt + btBt) (3.1a)

s.t. :

It −Bt = It−1 −Bt−1 + ρtXt − dt ∀ t ∈ T (3.1b)

Xt ≤ MtYt ∀ t ∈ T (3.1c)

Xt, It, Bt ≥ 0 ∀ t ∈ T

Yt ∈ {0, 1} ∀ t ∈ T

Without loss of generality, we assume that the inventory and the backorder levels at
the beginning of the production planning horizon are zero. The objective function (3.1a)
minimizes overall costs over the entire production horizon. Constraints (3.1b) are the
inventory balance equations, where the production yield rate ρt allows us to compute the
quantity of the quality goods (ρtXt) obtained from the lot size Xt produced in the period
t. Therefore, the total amount of quality goods and the inventory from the previous period
(t − 1) fulfill the demand dt from the current period t plus all backordered demand from
the past, if any. If the amount of quality goods available is insufficient to meet the demand,
then the quantity of missing goods is supplied by the backorder level (Bt). After satisfying
both the demand and the backordered items, if any, the remaining amount of quality goods
is kept in stock (It). Constraints (3.1c) are setup-forcing constraints that indicate a setup
by Yt = 1 whenever a lot size (Xt) is produced. This chapter considers the uncapacitated
and capacitated problems. Here, Constraints (3.1c) can also represent capacity constraint
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when the upper bound of the production quantity given by Mt =
∑

τ∈T
dτ

minτ≤tρτ
is replaced by

the capacity Ct such that Mt = min
{

Ct,
∑

τ∈T
dτ

minτ≤tρτ

}
. This deterministic formulation does

not consider any uncertainty in the model, and the production yield rate is assumed to
be known. Thus, the model leads to suboptimal or even unrealistic plans in an uncertain
context. We describe below the adaptive robust optimization approach that accounts for
production yield uncertainty.

3.3.2 Analytical solution for the inventory management prob-
lem under static yield uncertainty

In this subsection, we analytically show that there is an optimal adaptive policy for
the special case of the inventory management problem with no production cost, static
uncertain yields (i.e., a constant nominal value and a maximum deviation), non-stationary
demand, and a box uncertainty set. This special case extends the inventory management
problem with the multiplicative random yield considered by Keren [2009] to the multi-
period problem, and it minimizes the worst-case cost rather than the expected cost. The
proposed policy also extends the results of Bertsimas and Thiele [2004], who consider the
robust inventory management problem under uncertain demand (with fixed recourse on
the adaptive variables), and also the case with uncertain production yield (and non-fixed
recourse on the adaptive variables).

Since the adaptive problem reacts to the realization of the uncertain parameter in
the previous period, an optimal policy must take into account the revealed information.
However, the production yield can only be calculated after the end of production in a
certain period. Thus, it becomes unfeasible to calculate the direct impact of the realization
of uncertainty on the cost of periods subsequent to the current one. Therefore, we seek
to find an optimal policy that disregards future costs. Proposition 3.3.1 describes the
optimal myopic policy that computes the optimal production in period t for the inventory
management problem by ignoring the future costs from period t + 1 to T . Proposition
3.3.2 indicates the optimality of the myopic policy under mild assumptions.

Proposition 3.3.1. For the stationary inventory management problem with no setup and
no unit production costs, with constant inventory unit cost, backorder unit cost, nominal
value (ρ̄) and maximum deviation (ρ̂) of the production yield, with non-stationary demand,
and under box uncertainty set, the optimal myopic adaptive robust policy is given by:
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Xt =
D̄t −

∑t−1
τ=1 ρ̃τXτ

ρ̄+ ρ̂
(

h−b
h+b

) (3.2)

Proof. The optimal adaptive robust policy provides the production quantity in period
t after observing the production yield ρτ for all τ ∈ {1, ..., t − 1}. Since the demand is
non-stationary, we represent the cumulative demand up to period t by D̄t. Considering
the box uncertainty set with static unit costs of inventory ad backorder (respectively
given by h and b), constant nominal value (ρ̄) and constant maximum deviation of the
production yield (ρ̂), ρτ takes any value in the interval [ρ̄− ρ̂; ρ̄+ ρ̂]. We assume δt−1 to be
the global production yield for the cumulative production up to period t − 1. The amount
of quality goods ∑t−1

r=1 ρ̃τXτ produced in periods prior to t (with ρ̃ ∈ [ρ̄− ρ̂, ρ̄+ ρ̂]) is equal
to δt−1

∑t−1
r=1Xτ = δt−1X̄t−1 for some δt−1 ∈ [ρ̄− ρ̂, ρ̄+ ρ̂], where X̄t−1 is the cumulative

production up to period t − 1.
Since Xt is defined only for period t, the production quantity from period t does not

impact the cost in the previous periods (up to t−1). We seek a myopic policy that ignores
the future costs of periods t + 1 to T . Thus, Xt is chosen specifically only to minimize the
cost up to period t. The production yield rate is computed only after having produced
something in a given production period. Therefore, one should be satisfied on measuring
the impact of the uncertainty on the total cost. As the backorder correspond to a negative
inventory, the backorder costs are complementary to the inventory costs. Thus, these costs
can be defined by a piecewise cost function. In a robust perspective, the impact should
cover the worst realization of the uncertainty, leading to the worst feasible cost. For the
inventory management problem, this cost is represented by Ht(Xt), that is, the highest
cost between the worst inventory cost and the worst backorder cost. Ht(Xt) is given as
follows:

Ht(Xt) = max
{
h
[
δt−1X̄t−1 + (ρ̄+ ρ̂)Xt − D̄t

]
b
[
D̄t − δt−1X̄t−1 − (ρ̄− ρ̂)Xt

]} . (3.3)

Ht(Xt) is a piecewise linear convex cost function that reaches its minimum when the
worst case inventory costs are equal to the worst case backorder costs [Metzker et al.,
2023a]. Therefore, we have:

h
[
δt−1X̄t−1 + (ρ̄+ ρ̂)Xt − D̄t

]
= b

[
D̄t − δt−1X̄t−1 − (ρ̄− ρ̂)Xt

]
.

With a little algebra to isolate our production quantity Xt, we obtain:
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Xt [h(ρ̄+ ρ̂) + b(ρ̄− ρ̂)] =
(
D̄t − δt−1X̄t−1

)
(b+ h),

which results in the myopic policy (3.2).

Proposition 3.3.1 is optimal for the case where the future costs after period t that
may be derived from the realization of the production yield in period t do not impact the
validity of the policy. Proposition 3.3.2 indicates the conditions under which the policy is
valid and optimal.

Proposition 3.3.2. For the special case of the stationary inventory management problem
under box uncertainty set, with no setup cost and no unit production costs, with constant
nominal value and maximum deviation of the uncertain production yield, and with non-
stationary demand, the myopic adaptive robust policy is optimal if:

(ρ̄− ρ̂)(ρ̄+ ρ̂)
K

≤ 2ρ̄, (3.4)

with K = ρ̄+ ρ̂(h−b
h+b) .

Proof. The myopic policy is optimal if the optimal production quantity in period t does
not depend on the future costs (from period t + 1 to T ). The proof is done recursively.
First, we show that under condition (3.4), the future costs from period T do not impact
the optimal cumulative production X̄T −1 (up to period T − 1). We conclude this proof by
recursively showing that future costs do not impact the optimality of the myopic policy
for the previous periods.

Since T is the last production period, the policy given in (3.2) yields the optimal
production quantity that should be produced in T . To demonstrate the validity and opti-
mality of the policy, first we derive the cost in period T as a function of X̄T −1 in function
(3.3) with the optimal production quantity XT given by (3.2). As the inventory and back-
order costs are complementary, we choose arbitrarily the inventory costs to demonstrate
our proof. Later, we show that accounting for these future costs to compute X̄T −1 has no
impact if condition (3.4) holds.

Following the myopic policy, the inventory cost for period T is given as follows:

HT = h

[
δT −1X̄T −1 + (ρ̄+ ρ̂) D̄T − δT −1X̄T −1

K
− D̄T

]
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HT = δT −1X̄T −1

(
1 − ρ̄+ ρ̂

K

)
h+ D̄T (ρ̄+ ρ̂−K)

K
h

The worst case value of δT −1 does not depend on the cumulative production X̄T −1, and
δT −1 can take either one of the following two values:

δT −1 = ρ̄+ ρ̂ | ρ̄+ ρ̂

K
≤ 1

δT −1 = ρ̄− ρ̂ | ρ̄+ ρ̂

K
≥ 1

Note that when computing X̄T −1, δT −2 is known, but δT −1 is still unknown. Never-
theless, the values above characterize the bound on the impact of X̄T −1 on the cost of
period T . Condition ρ̄+ρ̂

K
≤ 1 is valid only if h−b

h+b
≥ 1, which is impossible for a positive

b. Since the costs cannot be negative, the only realistic worst case scenario corresponds
to δ = ρ̄ − ρ̂. Replacing δT −1 by ρ̄ − ρ̂ in HT , and with a little algebra, we find that the
cumulative quantity X̄T −1 computed in period T − 1 impact the future cost FT in period
T as follows:

FT (X̄T −1) = h

[
(ρ̄− ρ̂) − (ρ̄− ρ̂)(ρ̄+ ρ̂)

K

]
X̄T −1 (3.5)

However, X̄T −1 must be chosen to minimize the total cost in T − 1, which is given by
the sum of the worst inventory or backorder cost and the future cost of X̄T −1 in period
T . The function representing this sum is given as follows:

HT −1(X̄T −1) + Ft(X̄T −1) = max
{
h
[
δT −2X̄T −2 + (ρ̄+ ρ̂)XT −1 − D̄T −1

]
+ Ft(X̄T −1)

b
[
D̄T −1 − δT −2X̄T −2 − (ρ̄− ρ̂)XT −1

]
+ Ft(X̄T −1)

}

This function (HT −1(X̄T −1) + FT (X̄T −1))is a piecewise linear convex function on the
cumulative production X̄T −1, and its minimum remains in X̄T −1unless FT (X̄T −1) changes
the sign of the slope. This direction changes if h

[
(ρ̄+ ρ̂) + (ρ̄− ρ̂) − (ρ̄−ρ̂)(ρ̄+ρ̂)

K

]
becomes

negative, that is, if condition (3.4) is not respected.
Finally, the policy relies on the observed cumulative production δT −1X̄T −1to compute

X̄T (see the proof of Proposition 3.3.1). The value of X̄T −2 has no impact on the costs in
period T , because X̄T −1can take any value larger than X̄T −2, and ρT −1 can take any value
in [ρ̄− ρ̂, ρ̄+ ρ̂] . The impact of X̄T −2 on the future costs concern only the costs in period
T − 1, and it is similar to (3.5). Thus, the optimal production X̄T −2 does not depend on
the future costs if condition (3.4) holds. Hence, the myopic policy is optimal in period
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T − 1 if we follow the myopic policy in period T . As the myopic policy is valid in the
last period T , we can demonstrate by recursion (from period T to period 1) that, under
assumption (3.4), the myopic adaptive robust policy is optimal.

3.3.3 The adaptive robust model for LSP under yield uncer-
tainty

This section introduces the adaptive multi-period lot-sizing problem with uncertain
production yield and non-stationary costs. The setups are fixed at the beginning of the
horizon, but the lot sizes, inventory and backorder levels are computed based on some
decision rules, and the adaptive decisions react to the production yield observed in pre-
vious periods. We use the convexity and piecewise linearity of the inventory and back-
order cost functions to translate the inventory balance constraints in terms of the in-
ventory/backorder costs, where the backorders represent a negative stock [Bertsimas and
Thiele, 2004]. The inventory balance constraints (3.1b) are then respectively replaced by
the pair of inequalities given by (3.6b) and (3.6c) below. Thus, we can directly compute
the worst inventory and backorder costs and give the highest worst cost using Ht(ρ).
Since the level of stocks or backorders cannot be precisely defined before the realization
of uncertain yield, from a robust perspective, we might be satisfied to know the impact
of realization of the uncertainty on costs. Therefore, considering the worst feasible cost
resulting from the inventory management activity (here represented by Ht(ρ)) should be
sufficient.

We model the problem as an adaptive robust LSP with uncertain production yield,
and we rely on the budgeted uncertainty set introduced in [Bertsimas and Sim, 2004]. This
set is based on the nominal value (ρ̄t) and the maximum deviation (ρ̂t) of the production
yield rate. The uncertain production yield ρ̃t is given by ρ̃t = ρ̄t + Ztρ̂t, where Zt is the
deviation of the production yield from its nominal value. As a result, the uncertain yield
belongs to a range centred on its ρ̄̄ρ̄ρ and spread by its maximum deviation ρ̂̂ρ̂ρ. To reduce
the conservatism of the uncertainty set, the vector of disturbance ZZZ is controlled by the
budget ΓΓΓ. More precisely, for each period t, Zt takes values in the budgeted uncertainty
set Ut = {Zt ∈ [0; 1]T : ∑t

τ=1 |Zτ
t | ≤ Γt}, where the budget indicates the decision maker’s

risk acceptance. The larger the budget, the more averse to risk the decision-maker is. Note
that if Γt is large enough (e.g., Γt = T ), the budgeted uncertainty set reduces to the box
uncertainty set.
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We consider some affine decision rules to parameterize the adaptive variables as a
function of the revealed production yield [Aharon et al., 2009]. We represent the adaptive
lot size and inventory/backorder costs in t by functions that depend on the production
yield observed in periods up to the last observation of the uncertain parameter (in period
t − 1), as follows:

Xt(ρ) = X0
t +

t−1∑
τ=1

Xτ
t ρτ Ht(ρ) = H0

t +
t−1∑
τ=1

Hτ
t ρτ

Considering the adaptive lot size and the adaptive inventory/backorder costs, we ob-
tain the following ARC LSP model under production yield uncertainty:

min
Y

∑
t∈T

[
stYt + max

ρ∈Ut

{
vtXt(ρ) +Ht(ρ)

}]
(3.6a)

s.t. :

max
ρ∈Ut

{
Ht(ρ)

}
≥ ht max

ρ∈Ut

{ t∑
τ=1

(ρτXτ (ρ) − dτ )
}

∀ t ∈ T (3.6b)

max
ρ∈Ut

{
Ht(ρ)

}
≥ −bt max

ρ∈Ut

{ t∑
τ=1

(ρτXτ (ρ) − dτ )
}

∀ t ∈ T (3.6c)

max
ρ∈Ut

{
Xt(ρ)

}
≤ MtYt ∀ t ∈ T

max
ρ∈Ut

{
Xt(ρ)

}
≥ 0 ∀ t ∈ T

max
ρ∈Ut

{
Ht(ρ)

}
≥ 0 ∀ t ∈ T

Yt ∈ {0, 1} ∀ t ∈ T

Replacing the uncertain yield and the adjustable variables according to their respective
decision rules, we can reformulate the ARC model as follows:

min
∑
t∈T

(
stYt + vtX

0
t +H0

t +
t−1∑
τ=1

ρ̄τ (vtX
τ
t +Hτ

t )
)

+ F (3.7a)

s.t. :

F ≥ max
Zt∈Ut

∑
t∈T

t−1∑
τ=1

ρ̂τ (vtX
τ
t +Hτ

t )Zτ
t

(3.7b)
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H0
t ≥ max

Zt∈Ut

{ t∑
τ=1

(
ht(ρ̄τX

0
τ − dτ ) + htρ̂τX

0
τZ

τ
t + ht

[ τ−1∑
r=1

(ρ̄τ ρ̄rX
r
τ + ρ̂τ ρ̄rX

r
τZ

τ
t +

ρ̄τ ρ̂rX
r
τZ

r
t + ρ̂τ ρ̂rZ

τ
t X

r
τZ

r
t )
])

−
t−1∑
τ=1

(ρ̄τH
τ
t + ρ̂τH

τ
t Z

τ
t )
} ∀ t ∈ T

(3.7c)

H0
t ≥ max

Zt∈Ut

{ t∑
τ=1

(
bt(dτ − ρ̄τX

0
τ ) − btρ̂τX

0
τZ

τ
t − bt

[ τ−1∑
r=1

(ρ̄τ ρ̄rX
r
τ + ρ̂τ ρ̄rX

r
τZ

τ
t +

ρ̄τ ρ̂rX
r
τZ

r
t + ρ̂τ ρ̂rZ

τ
t X

r
τZ

r
t )
])

−
t−1∑
τ=1

(ρ̄τH
τ
t + ρ̂τH

τ
t Z

τ
t )
} ∀ t ∈ T

(3.7d)

max
Zt∈Ut

{
X0

t +
t−1∑
τ=1

(
ρ̄τX

τ
t + ρ̂τX

τ
t Z

τ
t

)}
≤ MtYt ∀ t ∈ T

(3.7e)

min
Zt∈Ut

{
X0

t +
t−1∑
τ=1

(
ρ̄τX

τ
t + ρ̂τX

τ
t Z

τ
t

)}
≥ 0 ∀ t ∈ T

(3.7f)

min
Zt∈Ut

{
H0

t +
t−1∑
τ=1

(
ρ̄τH

τ
t + ρ̂τH

τ
t Z

τ
t

)}
≥ 0 ∀ t ∈ T

(3.7g)

F,X0
t , H

0
t ≥ 0 ∀ t ∈ T

Xτ
t , H

τ
t ∈ R ∀ t ∈ T ; τ < t

Yt ∈ {0, 1} ∀ t ∈ T

To apply the constraint-wise RO technique, the part of the objective function, given
by (3.6a), which contains uncertain parameters is replaced by an epigraph represented
by an arbitrary variable F . As a result, the objective function is given by (3.7b), and its
uncertain part is represented in Constraint (3.7b). Constraints (3.7c) and (3.7d) describe
the inventory and backorder cost inequalities, respectively. Constraints (3.7e) are the setup
forcing constraints. Finally, Constraints (3.7f) and (3.7g) ensure that the adaptive lot size
and inventory/backorder costs are non-negative.
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3.4 Solution approaches

In this section, first, we propose an adaptive linear robust approximation (AROΓ) for
the LSP under uncertain yield. Then, we suggest a C&CGΓ algorithm to compute an
optimal adaptive robust plan.

3.4.1 Adaptive robust approximation: ARO0
Γ

Our ARC model has a non-fixed recourse in Constraints (3.7c) and Constraints (3.7d)
because the uncertain production yield is a coefficient of the adaptive lot size decisions.
Since the reformulation of an adaptive robust LSP model with a non-fixed recourse is com-
plex, we propose a linear approximation (denoted by ARO0

Γ) that ignores the quadratic
term in Constraints (3.7c) and Constraints (3.7d). As the disturbance Zτ

t is lower than
1, the quadratic disturbance has an upper bound equal to 1 (e.g., Z1

3Z2
3 ≤ 1 × 1 ≤ 1).

Therefore, the quadratic term leads to a low variance in costs. As a result, Constraints
(3.7c) and Constraints (3.7d) are replaced by Constraints (3.8) and Constraints (3.9),
respectively. In the new constraints, the terms with quadratic uncertainty are neglected.

H0
t ≥ht

[
t∑

τ=1

(
ρ̄τX

0
τ − dτ +

τ−1∑
r=1

ρ̄τ ρ̄rX
r
τ

)]
+
[

t−1∑
τ=1

(
htρ̂τX

0
τ − ρ̂τH

τ
t +

τ−1∑
r=1

htρ̂τ ρ̄rX
r
τ

)
Zτ

t

]

+ ht

(
ρ̂tX

0
t +

t−1∑
τ=1

ρ̂tρ̄τX
τ
t

)
Zt

t + ht

[
t∑

τ=1

τ−1∑
r=1

ρ̄τ ρ̂rX
r
τZ

r
t

]
−

t−1∑
τ=1

ρ̄τH
τ
t

∀ t ∈ T

(3.8)

H0
t ≥ − bt

[
t∑

τ=1

(
ρ̄τX

0
τ − dτ +

τ−1∑
r=1

ρ̄τ ρ̄rX
r
τ

)]
−

[
t−1∑
τ=1

(
btρ̂τX

0
τ + ρ̂τH

τ
t +

τ−1∑
r=1

btρ̂τ ρ̄rX
r
τ

)
Zτ

t

]

− bt

(
ρ̂tX

0
t +

t−1∑
τ=1

ρ̂tρ̄τX
τ
t

)
Zt

t − bt

[
t∑

τ=1

τ−1∑
r=1

ρ̄τ ρ̂rX
r
τZ

r
t

]
−

t−1∑
τ=1

ρ̄τH
τ
t

∀ t ∈ T

(3.9)

The resulting AROΓ model is equivalent to a robust model in which we can apply the
reformulation per constraint and dualization approach. The details of the reformulation
are available in B.1. The final AROΓ approximation is given as follows:

min
∑
t∈T

[
stYt + vtX

0
t +H0

t + Γtγt +
t−1∑
τ=1

(ρ̄τ (vtX
τ
t +Hτ

t ) + ατ
t + δτ

t )
]

(3.10a)
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s.t. :

H0
t ≥ Γtλt −

t−1∑
τ=1

ρ̄τH
τ
t +

t∑
τ=1

[
ht(ρ̄τX

0
τ − dτ ) + µτ

t + ετ
t +

τ−1∑
r=1

htρ̄τ ρ̄rX
r
τ

]
∀ t ∈ T (3.10b)

H0
t ≥ Γtψt −

t−1∑
τ=1

ρ̄τH
τ
t +

t∑
τ=1

[
bt(dτ − ρ̄τX

0
τ ) +ϖτ

t + ξτ
t −

τ−1∑
r=1

btρ̄τ ρ̄rX
r
τ

]
∀ t ∈ T (3.10c)

X0
t + Γtηt +

t−1∑
τ=1

(
ρ̄τX

τ
t + βτ

t + θτ
t

)
≤ MtYt ∀ t ∈ T (3.10d)

X0
t − Γtϕt +

t−1∑
τ=1

(
ρ̄τX

τ
t − πτ

t − χτ
t

)
≥ 0 ∀ t ∈ T (3.10e)

H0
t − Γtϵt +

t−1∑
τ=1

(
ρ̄τH

τ
t − στ

t − κτ
t

)
≥ 0 ∀ t ∈ T (3.10f)

µt
t − εt

t + µ
′τ
t − ε

′τ
t = ht

(
ρ̂tX

0
t +

t−1∑
τ=1

ρ̂tρ̄τX
τ
t

)
∀ t ∈ T (3.10g)

λt − µ
′τ
t − ε

′τ
t ≥ 0 ∀ t ∈ T ; τ < t (3.10h)

ϖt
t − ξt

t +ϖ
′t
t − ξ

′t
t = −bt

(
ρ̂tX

0
t +

t−1∑
τ=1

ρ̂tρ̄τX
τ
t

)
∀ t ∈ T (3.10i)

ψt −ϖ
′t
t − ξ

′t
t ≥ 0 ∀ t ∈ T ; τ < t (3.10j)

ατ
t − δτ

t + α
′τ
t − δ

′τ
t = ρ̂τ (vtX

τ
t +Hτ

t ) ∀ t ∈ T ; τ < t (3.10k)

γt − α
′τ
t − δ

′τ
t ≥ 0 ∀ t ∈ T ; τ < t (3.10l)

βτ
t − θτ

t + β
′τ
t − θ

′τ
t = ρ̂τX

τ
t ∀ t ∈ T ; τ < t (3.10m)

ηt − β
′τ
t − θ

′τ
t ≥ 0 ∀ t ∈ T ; τ < t (3.10n)

− πτ
t + χτ

t − π
′τ
t + χ

′τ
t = ρ̂τX

τ
t ∀ t ∈ T ; τ < t (3.10o)

ϕt − π
′τ
t − χ

′τ
t ≥ 0 ∀ t ∈ T ; τ < t (3.10p)

− στ
t + κτ

t − σ
′τ
t + κ

′τ
t = ρ̂τH

τ
t ∀ t ∈ T ; τ < t (3.10q)

ϵt − σ
′τ
t − κ

′τ
t ≥ 0 ∀ t ∈ T ; τ < t (3.10r)

µτ
t − ετ

t + µ
′τ
t − ε

′τ
t = ρ̂τ

(
htX

0
τ −Hτ

t

)
+

τ−1∑
r=1

htρ̂τ ρ̄rX
r
τ +

t∑
r=τ+1

htρ̂τ ρ̄rX
τ
r ∀ t ∈ T ; τ < t (3.10s)

λt − µ
′τ
t − ε

′τ
t ≥ 0 ∀ t ∈ T ; τ < t (3.10t)

ϖτ
t − ξτ

t +ϖ
′τ
t − ξ

′τ
t = −ρ̂τ

(
btX

0
τ +Hτ

t

)
−

τ−1∑
r=1

btρ̂τ ρ̄rX
r
τ −

t∑
r=τ+1

btρ̂τ ρ̄rX
τ
r ∀ t ∈ T ; τ < t (3.10u)

ψt −ϖ
′τ
t − ξ

′τ
t ≥ 0 ∀ t ∈ T ; τ < t (3.10v)

X0
t , H

0
t , γt, λt, ψt, ηt, ϵt, ϕt ≥ 0 ∀ t ∈ T (3.10w)

ατ
t , α

′τ
t , β

τ
t , β

′τ
t , δ

τ
t , δ

′τ
t , κ

τ
t , κ

′τ
t , µ

τ
t , µ

′τ
t , χ

τ
t , χ

′τ
t ≥ 0 ∀ t ∈ T ; τ < t (3.10x)

ξτ
t , ξ

′τ
t , θ

τ
t , θ

′τ
t , ε

τ
t , ε

′τ
t , ϖ

τ
t , ϖ

′τ
t , σ

τ
t , σ

′τ
t ≥ 0 ∀ t ∈ T ; τ < t (3.10y)

Xτ
t , H

τ
t ∈ R ∀ t ∈ T ; τ < t (3.10z)
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Yt ∈ {0, 1} ∀ t ∈ T (3.10)

3.4.2 Adaptive robust linearization: ARO1
Γ

Since the reformulation ARO0
Γ neglects part of the inventory management costs, we

propose another linear approximation (denoted by ARO1
Γ) where the quadratic term is

replaced by its upper bound value. In fact, the disturbance Zτ
t is bounded in the interval

[−1, 1], the quadratic disturbance has an upper bound equal to 1 (e.g., |Z1
3 ||Z2

3 | ≤ 1×1 ≤
1). Therefore, the quadratic term leads to a low variance in costs. In fact, we have an
increase of at most one unit of cost on the inventory management costs when the quadratic
term is considered. As a result, Constraints (3.7c) and Constraints (3.7d) are replaced by
Constraints (3.8) and Constraints (3.9), respectively. In the new constraints, the terms
with quadratic uncertainty are replaced by their upper bound.

H0
t ≥ht

[
t∑

τ=1

(
ρ̄τX

0
τ − dτ +

τ−1∑
r=1

(ρ̄τ ρ̄r + ρ̂τ ρ̂r)Xr
τ

)]
+
[

t−1∑
τ=1

(
htρ̂τX

0
τ − ρ̂τH

τ
t +

τ−1∑
r=1

htρ̂τ ρ̄rX
r
τ

)
Zτ

t

]

+ ht

(
ρ̂tX

0
t +

t−1∑
τ=1

ρ̂tρ̄τX
τ
t

)
Zt

t + ht

[
t∑

τ=1

τ−1∑
r=1

ρ̄τ ρ̂rX
r
τZ

r
t

]
−

t−1∑
τ=1

ρ̄τH
τ
t

∀ t ∈ T

(3.11)

H0
t ≥ − bt

[
t∑

τ=1

(
ρ̄τX

0
τ − dτ +

τ−1∑
r=1

(ρ̄τ ρ̄r − ρ̂τ ρ̂r)Xr
τ

)]
−

[
t−1∑
τ=1

(
btρ̂τX

0
τ + ρ̂τH

τ
t +

τ−1∑
r=1

btρ̂τ ρ̄rX
r
τ

)
Zτ

t

]

− bt

(
ρ̂tX

0
t +

t−1∑
τ=1

ρ̂tρ̄τX
τ
t

)
Zt

t − bt

[
t∑

τ=1

τ−1∑
r=1

ρ̄τ ρ̂rX
r
τZ

r
t

]
−

t−1∑
τ=1

ρ̄τH
τ
t

∀ t ∈ T

(3.12)

As a result, the final AROΓ model given in 3.10 should becomes:

min
∑
t∈T

[
stYt + vtX

0
t +H0

t + Γtγt +
t−1∑
τ=1

(ρ̄τ (vtX
τ
t +Hτ

t ) + ατ
t + δτ

t )
]

(3.13a)

s.t. :

(3.10d), (3.10e), (3.10f), (3.10g), (3.10h), (3.10i), (3.10j), (3.10k), (3.10l), (3.10m), (3.10n), (3.10o),(3.13b)

(3.10p), (3.10q), (3.10r), (3.10s), (3.10t), (3.10u), (3.10v), (3.10w), (3.10x), (3.10y), (3.10z)(3.10)
(3.13c)
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H0
t ≥ Γtλt −

t−1∑
τ=1

ρ̄τH
τ
t +

t∑
τ=1

[
ht(ρ̄τX

0
τ − dτ ) + µτ

t + ετ
t +

τ−1∑
r=1

ht(ρ̄τ ρ̄r + ρ̂τ ρ̂r)Xr
τ

]
∀ t ∈ T

(3.13d)

H0
t ≥ Γtψt −

t−1∑
τ=1

ρ̄τH
τ
t +

t∑
τ=1

[
bt(dτ − ρ̄τX

0
τ ) +ϖτ

t + ξτ
t −

τ−1∑
r=1

bt(ρ̄τ ρ̄r − ρ̂τ ρ̂r)Xr
τ

]
∀ t ∈ T(3.13e)

3.4.3 A column-and-constraint generation algorithm

As presented in Section 3.4.1, AROΓ underestimates the cost since it neglects the
quadratic term in the inventory and backorder cost constraints. This section proposes a
new approach that relies on the C&CG framework introduced by Zeng and Zhao [2013] to
iteratively add a set of inventory and backorder cost constraints (with the quadratic term).
More precisely, the master problem (MP) is the AROΓ model presented in Section 3.4.1,
where Constraints (3.8) and Constraints (3.9) partially account for the uncertain produc-
tion yield, and Constraints (3.7c) and Constraints (3.7d) accounting for the quadratic
terms are added iteratively with the help of (3.14) and (3.15), respectively.

At each iteration, we add Constraints (3.7c) (resp. Constraints (3.7d)) associated with
the disturbances given by the vector Z that lead to the largest inventory costs (resp.
backorder costs). We denote as UUU INV (resp. UUUBACK) the partial set of the considered dis-
turbance. To find the worst case disturbances, we solve sub-problems SPINV

t and SPBACK
t

for each period t ∈ T , as follows:

SPINV
t : max

Zt∈UUUINV

t∑
τ=1

[ht(ρ̄τX
0
τ − dτ ) + htρ̂τX

0
τZ

τ
t + ht[

τ−1∑
r=1

(ρ̄τ ρ̄rX
r
τ + ρ̂τ ρ̄rX

r
τZ

τ
t +

ρ̄τ ρ̂rX
r
τZ

r
t + ρ̂τ ρ̂rZ

τ
t X

r
τZ

r
t )]] −H0

t −
t−1∑
τ=1

(ρ̄τH
τ
t + ρ̂τH

τ
t Z

τ
t )

(3.14)

SPBACK
t : max

Zt∈UUUBACK

t∑
τ=1

[bt(dτ − ρ̄τX
0
τ ) − btρ̂τX

0
τZ

τ
t − bt[

τ−1∑
r=1

(ρ̄τ ρ̄rX
r
τ + ρ̂τ ρ̄rX

r
τZ

τ
t +

ρ̄τ ρ̂rX
r
τZ

r
t + ρ̂τ ρ̂rZ

τ
t X

r
τZ

r
t )]] −H0

t −
t−1∑
τ=1

(ρ̄τH
τ
t + ρ̂τH

τ
t Z

τ
t )

(3.15)

The sub-problems seek the worst case disturbances of the uncertain production yield
for each period t under the uncertainty set Ut with respect to the feasible solution (S∗)
obtained from MP of the current iteration. Therefore, we fix the values of the X0

t and Xτ
t

variables in the sub-problems to their values in the current solution S∗. As a result, we
obtain the worst case disturbances ZINV

t (resp. ZBACK
t ) to include them in the set UUU INV
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(resp. UUUBACK) of the MP from the next iteration.

Algorithm 1 C&CGΓ for the adaptive robust LSP under yield uncertainty
1: procedure Calculation of an optimal adaptive robust solution
2: MP = AROΓ
3: LB = 0 ; UB = ∞ ; nbIter = 0 ; time = 0 : 00
4: UINV

t = { } ; UBACK
t = { } ; S∗ = ∅

5: while UB−LB
LB ≥ 10 −5 & time < 1h do

6: Solve MP to get the current solution S∗ and to update the LB
7: for t ∈ T do
8: Solve SPINV

t (resp. SPBACK
t ), by fixing X to its value defined in S∗ to get ZINV

t (resp.
ZBACK

t )
9: Add ZINV

t (resp. ZBACK
t ) to UUUINV

t (resp. UUUBACK
t ) and update the MP

10: end for
11: Solve MP, fixing Yt, X0

t , Xτ
t by the respective values defined in S∗ to update UB

12: nbIter+ = 1
13: end while
14: return S∗

15: end procedure

Algorithm 1 gives the steps of the C&CGΓ to solve the adaptive LSP with uncertain
production yield and a budgeted uncertainty set. Ideally, the algorithm stops when the
lower bound (LB) is equal to the upper bound (UB). As the sets UUU INV and UUUBACK

are built iteratively, MP underestimate the cost, and its solution yields a LB of the
optimal solution. However, the solution S∗ of MP is a feasible (but not necessarily optimal)
solution. For simplicity, UB is computed with MP using with the worst case disturbance
associated with S∗, and with the variables Yt, X0

t , Xτ
t set to their values in S∗.

At each iteration of algorithm 1, we solve MP to obtain LB and a feasible solution
S∗. Then, we find the worst-case yield associated with S∗ by solving (3.14) and (3.15),
where Yt, X0

t , Xτ
t , H0

t and Hτ
t correspond to their respective values in S∗. We extend MP

to account for the worst case disturbance values Z, where ZINV
t (resp. ZBACK

t ) belong
to U INV

t (resp. UBACK
t ) for each period t. Finally, we compute UB with the worst case

disturbances ZINV
t (resp. ZBACK

t ) associated with a feasible solution S∗ obtained in the
current iteration. We repeat this process until the relative difference between LB and UB
is insignificant (about 10−5), or the computation time exceeds the time limit of 1 hour.
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3.5 Numerical tests and discussions

The goals of the computational experiments are fourfold: i) to demonstrate the ro-
bustness of the adaptive robust models; ii) to present an in-depth investigation of the
computation of adaptive robust plans, their performance, the quality of their solutions,
and their computational efficiency; iii) to demonstrate that our AROΓ approximation
provides good adaptive plans, even neglecting some costs on the inventory balance con-
straints; iv) to highlight the quality of our adaptive robust plans (i.e., AROΓ and C&CGΓ)
to mitigate uncertainties in an adaptive context.

For this, we consider the following models with budgeted uncertainty set and budget
Γ in the experiments:

1. ROΓ, the static robust lot-sizing model presented in B.2
2. ARO0

Γ, our adaptive robust lot-sizing linear approximation, where the quadratic
term is omitted

3. ARO1
Γ, our adaptive robust lot-sizing linear approximations, where the quadratic

term is replaced by its upper bound, such that Zτ
t Zr

t = 1 (resp. Zτ
t Zr

t = −1) for the
inventory cost constraints (resp. backorder cost constraints )

4. AROΓ, our adaptive robust lot-sizing linear approximations which yields the lowest
costs in the simulation

5. C&CGΓ, the C&CG approach to computing an optimal adaptive lot-sizing solution,
for which the initial MP is given by AROΓ

6. ARO0, the optimal myopic adaptive robust policy for the adaptive robust inventory
management problem with box uncertainty set, where the future costs from periods
t + 1 to T are neglected

In the experimental results, we assume the robust model as a natural benchmark for
the adaptive robust plans because the static framework provides a feasible (but subopti-
mal) plan in the static-dynamic strategy [Metzker et al., 2023a, Tunc et al., 2013]. Section
3.5.1 presents the instances generation approach, and it introduces the simulation frame-
work used to evaluate the models and algorithms proposed in this chapter. Section 3.5.2
discusses the quality of the solutions, and it concludes with the performance and quality
of the proposed adaptive models. Finally, Section 3.5.2 evaluates adaptive solutions within
a dynamic strategy through rolling horizon simulation. We refer interested readers to B.5
where some conclusions about the optimal myopic adaptive robust policy introduced in
Section 3.3.2 is presented.
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3.5.1 Instance generation and simulation approach

The experiments are performed with randomly generated instances following the stan-
dard approach in the literature for LSP problems. The value of each parameter was
drawn from a uniform distribution, such that the production cost, the holding stock cost,
the demand, the nominal value, and the maximum deviation of the uncertain produc-
tion yield supports correspond to the following intervals: vt ∈ U(10, 30), ht ∈ U(1, 10),
dt ∈ U(140, 480), ρ̄t ∈ U(0.5, 0.7), and ρ̂t ∈ U(0.1, 0.3), respectively. The setup costs
(sss) are computed with the following formula based on the time between orders (TBO):
st = Dt·T BO2·ht

2 , where Dt represents the average demand up to period t. We set the in-
ventory and the backorder levels at the beginning of the horizon to zero, and we define
the capacity in terms of a tightness control factor Φ, such that the capacity is given by
Ct = ΦMt. We consider instances with 4, 12, and 24 periods, a time between orders of 1,
2, or 4, a backorder cost equaling 2, 5, or 10 times the holding cost for each period t, and
a Φ of 25 %, 50%, 75 % or 100%. The case where Φ = 1 (or 100% of M) corresponds to
the uncapacitated variant of the problem. In the uncapacitated case, the capacity allows
the production of enough quality goods to meet all the demands even if the production
yield is very low. Considering a full factorial design for these parameters leads to 108 in-
stances. As the optimal policy is valid only for the stationary and uncapacitated problem,
we generate 18 additional instances resulting from three replications of the full factorial
design of the following parameters: 4, 12, and 24 periods, and the backorder cost equals
5 or 10 times the holding cost for each period t.

To investigate the impact of the proposed models, we evaluate their performance
through a simulation with |Ω| = 1000 Monte Carlo generated scenarios, where each sce-
nario is a possible realization of the production yields over the planning horizon. The pro-
duction yields were simulated with a uniform distribution with support [ρ̄t − ρ̂t; ρ̄t + ρ̂t]
in period t. In the simulation, the adaptive production quantity for each scenario ω is
computed with the affine function presented in section 3.4.1, and the factors of the pro-
duction variables for each period t (X0

t and Xτ
t ) are obtained from the optimal solution

given by AROΓ and C&CGΓ, such that XXX t(ρω) = X0
t +∑t−1

τ=1 Xτ
t ρω

τ .

3.5.2 Experimental results

This section reports the performance and the quality of the adaptive production plans
created with the adaptive robust models.
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Performance of the AROΓ linear approximations

To analyse the quality of our linear approximations, we investigate their performance
with regard to the average and pessimistic perspective of their costs in a simulation. For
that, we consider the uncapacitated version of the problem. We recall that ARO0

Γ refers
to the linear approximation that omit the quadratic terms, whereas the ARO1

Γ model
replaces the quadratic terms by 1 such a way the inventory management costs are as
high as possible. Table 3.1 reports the results for ARO0

Γ, ARO1
Γ, and C&CGΓ over all the

instances. All models are solved to optimality, and we evaluate their costs depending on
ΓΓΓ, where the case with Γ = T is the most conservative solution that corresponds to the
box uncertainty set. The table gives the following outcomes from the simulation step: the
average expected cost (Exp. Cost column), the 99th percentile costs (99th p.c. column),
and the coefficient of variation (CV column). The coefficient of variation CV represents
the variability of the simulated costs as the ratio between the standard deviation and the
average costs of the production plans.

Table 3.1 – Result comparisons of the uncapacitated ARO0
Γ and ARO1

Γ models

ARO0
Γ ARO1

Γ C&CGΓ
Γ Exp. Cost 99thp.c. Time CV Exp. Cost 99thp.c. Time CV Exp. Cost 99thp.c. Time CV
0.1T 504616 580476 2.4 6.0% 550297 633024 0.9 11.10% 465344 552256 92 6.67%
0.2T 342222 388081 0.0 4.98% 369780 419332 1.7 9.79% 465723 520730 112 4.49%
0.3T 454873 494676 1.6 3.79% 498434 624473 1.9 7.64% 466358 513679 115 3.93%
0.4T 501938 537867 2.1 3.29% 544333 637526 4.2 6.43% 474310 511691 101 3.69%
0.5T 503743 541922 1.7 3.44% 510748 578632 3.8 5.22% 468084 503536 92 3.08%
0.6T 455330 489727 1.5 3.26% 466531 524356 3.3 4.66% 475156 509251 585 2.78%
0.7T 400891 435820 1.0 3.52% 369944 414344 1.6 4.45% 483046 512210 239 2.54%
0.8T 494220 529562 1.6 3.15% 506110 569825 2.9 4.96% 482165 523926 274 3.42%
0.9T 493520 527989 1.3 3.04% 465058 521511 2.5 4.61% 474514 511333 213 3.55%
T 454096 485666 1.2 3.02% 465040 521540 2.0 4.6% 481957 515872 311 3.31%

Table 3.1 indicates that ARO0
Γ gives the best simulated results. ARO0

Γ has the lowest
average costs, about 460545 over all budgets of uncertainty compared to the average
expected cost of 474627 for ARO1

Γ. Furthermore, ARO0
Γ has the lowest variation in costs

with a coefficient of variation of about 3.8%, while ARO1
Γ has a CV of about 6.2% for

all ΓΓΓ. However, both models converge to the same optimal adaptive solution with the
help of the decomposition method C&CGΓ, with average expected cost of 473665 over
all ΓΓΓ, and a coefficient of variation of 3.8%. As the two linear approximations lead to
equivalent optimal adaptive planes given by C&CGΓ, for the other results reported in
this work, AROΓ refers to ARO0

Γ linearization. We refer interested readers to B.3 where
the conclusions for the introduced capacitated model are presented.
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Average cost and solution quality

To validate the quality of the production plans obtained with the different models, we
examine first the impact of the risk acceptance level given by the budget of uncertainty ΓΓΓ
on the average costs obtained from each considered model. Then, we analyse the setup,
lot-size, inventory and backorder decisions resulting from the different models. As the
uncapacitated and capacitated models have similar performances, we analyse the quality
of the production plans based on the uncapacitated models. It is common knowledge that
the robust model within a static strategy gives an upper bound on the optimal adaptive
costs.

Figure 3.1 reports the impact of ΓΓΓ on the average 95th percentile, 99th percentile
and worst case costs from the simulation, in comparison to the objective values for all
the instances for ROΓ, AROΓ and C&CGΓ. Figure 3.1 confirms that ROΓ remains very
conservative, since it has the largest average costs. As the average costs computed with
ROΓ increase significantly with ΓΓΓ, while its average worst case costs decrease slightly,
ROΓ is the most conservative model. The second most conservative approach is C&CGΓ,
due to the marginal increase of its average costs from the simulation, even if its average
costs increase with ΓΓΓ. Since the quadratic terms in the inventory balance constraints
are linearized in AROΓ, and due to the negligible impact of these quadratic terms on
the overall costs, AROΓ has the smoothest impact on costs with the increase of ΓΓΓ and
the lowest simulated costs compared to the aforementioned models. This reinforces the
conclusion that AROΓ is less conservative, although it remains robust.

From Figure 3.1, AROΓ provides the plans which are better than the optimal adap-
tive robust plans obtained with C&CGΓ. The relative difference between the average
costs simulated with AROΓ and C&CGΓ is not high. The difference is higher within high-
risk decision contexts (scenarios with higher flexibility, that is, low ΓΓΓ), and it significantly
increases with the budget of uncertainty ΓΓΓ. Low values of ΓΓΓ reduce the possibility that sev-
eral yield realizations take their worst values, reducing the impact of the quadratic term.
In a more conservative decision context, risks must be avoided, and even if AROΓ does not
consider the quadratic terms in all their complexity, the definition of the uncertainty set
forces the solution calculated by the approximate model to protect itself against the worst
case realization of uncertainty. As a result, AROΓ becomes closer to the optimal adaptive
plan. Considering the fundamentals of ARO, it is counter intuitive to get an AROΓ=T

worst case cost lower than the cost obtained with the plan given by C&CGΓ=T . In fact,
our approximation has a real risk aversion which is lower than ΓΓΓ, because further risks
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(a) Average expected costs perspective (b) Average 95th percentile costs perspective

(c) Average 99th percentile costs perspective (d) Worst case costs perspective

Figure 3.1 – Model’s performance according to different budget ΓΓΓ

are also taken due to the ignored costs in the inventory and backorder cost constraints.
Since the theoretical worst-case scenario is unknown and our experiments are based on
a simulation of over 1000 scenarios, our results show that the relaxed costs have little
impact on the robustness of the production plans. As the simulated worst case scenario
does not necessarily represent the worst realization of the uncertainty in the uncertainty
set, AROΓ neglects very pessimistic contexts. Therefore, AROΓ still gives a satisfactory
trade-off between conservatism and robustness, as even for the worst case costs in our
experiments, it results in the lowest costs.

Figure 3.2 shows the impact of the budget of uncertainty ΓΓΓ on the setup frequency,
production quantity, inventory level, and backorder level for the considered models. The
figure shows that ROΓ produces less often, yet gives the highest quantity of goods. ROΓ

keeps the largest amount of stock, which results in lower backorder levels. On the other
hand, C&CGΓ is the approach that produces most frequently, and each time it produces a
median quantity at the time. C&CGΓ yields the smallest amount of stocks on hand and a
sufficiently low backorder level. AROΓ performs a median number of setups with smaller
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lot sizes, reducing (or even mitigating greater variation on) the stock and backorder levels.

Figure 3.2 also indicates that AROΓ and C&CGΓ maintain a high setup frequency
to update the lot sizes easily and to react to the realization of the production yield. The
frequency reduces with ΓΓΓ, since it can become cheaper to backorder goods than to produce
for extremely adverse production yield realizations. Similarly, to ensure that the static
plan remains robust even for the worst realization of the production yield, and since ROΓ

defines a production plan for the entire production horizon, the frequency of the setup
decreases with ΓΓΓ, which favors the occurrence of backorders.

Regarding the number of items produced, due to the high setup frequency in the AROΓ

plans, the lot sizes are relatively small, and their values are defined to react appropriately
to the uncertainties and avoid backorders. On the other hand, C&CGΓ produces larger
lots which decrease slightly with the increase of ΓΓΓ, avoiding unexpected costs due to
expensive production in adverse cases. Thus, the optimal adaptive plan reacts to the
uncertainties by maintaining a sufficiently large production and favoring the stocks with
limited backorder levels. For ROΓ, as the frequency of setup decreases with the increase
of ΓΓΓ, the lot sizes are the largest needed to guarantee the availability of quality goods to
meet demands even when the worst realization of the yield is observed.
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(a) Occurrence of setup of the production (b) Average quantity of produced goods

(c) Average inventory level over the
production horizon

(d) Average backorder level over the
production horizon

(e) Average inventory level at the end of the
production

(f) Average backorder level at the end of the
production

Figure 3.2 – Production plan structure according to different budgets of uncertainty ΓΓΓ

Regarding the inventory level, the AROΓ inventory level remains low for any ΓΓΓ, and
it ensures the strict and necessary availability of quality goods to meet demands and
to hedge against the realization of the worst production yield. As a result, AROΓ keeps
a very low quantity of quality goods in stock at the end of the production horizon (as
observed in Figure 3.2(e)). Similarly, C&CGΓ maintains a low inventory level. However, as
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C&CGΓ reduces the production setup frequency for the highest values of ΓΓΓ, its inventory
level tends to increase with ΓΓΓ. For ROΓ, as the setup is not frequent, there is a very
high inventory level which increases with ΓΓΓ, to ensure the availability of quality goods.
In addition, a larger quantity of quality goods is kept in stock at the last period, which
confirms its more conservative production plan.

Finally, for the backorder level, AROΓ adopts a strategy of reacting to uncertainties
with the adequate availability of quality goods, avoiding backorders as much as possible.
However, the suboptimal robustness leads to the highest backorder rate. Since a back-
order occurs when it is not profitable to produce at the last production period, Figure
3.2(f) shows that about half of backorders from AROΓ plans are performed on period T .
Similarly, 1/2 of the backorder level for C&CGΓ plans occurs in the last period. The re-
maining amount of backorders occur when the quality goods’ availability is not sufficient
to meet the demands over the production horizon. The increase of the backorder with ΓΓΓ
was expected, since the setup for the adaptive robust plans becomes less frequent with the
increase of ΓΓΓ, and so backorders become more important whenever the production and
the inventory are not sufficient to satisfy orders. The static strategy avoids backorders as
much as possible, which can be verified with ROΓ having the lowest backorder level, even
if it increases strongly with ΓΓΓ. The static strategy has the lowest backorder rate at period
T , since the cumulative lot sizes over the production horizon is very high.

C&CGΓ takes into account the quadratic terms that are linearized by the AROΓ

approximation. As a consequence, the C&CGΓ objective value represents the optimal
cost based on the worst case uncertainty under the budgeted uncertainty set. Due to the
approximation performed in AROΓ, a certain impact of the uncertain production yield is
not measured. For this reason, the adaptive approximation cannot guarantee an optimal
solution under the budgeted uncertainty set. Nevertheless, from Figure 3.2, the average
costs obtained from AROΓ are sufficiently close to the respective costs computed by the
C&CGΓ, and both approaches provide similar adaptive plans. AROΓ gives an average
95th percentile costs about 5.6% lower than C&CGΓ, and its 99th percentile costs are
5.7% lower than the respective C&CGΓ ones. However, the AROΓ objective value cannot
cover the worst case cost computed with the approximated adaptive plan (from which we
obtain a negative GAPARO), whereas C&CGΓ achieves this robustness level even for the
less conservative uncertainty set whose budget is greater than 0.3T .

The decision-makers must adjust the budget of uncertainty to the strategic goals of
the company (to hedge against extreme cases or get lower costs). While a frozen plan
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computed with the static ROΓ model provides an upper bound on the costs, it yields
an over-conservative strategy that hedges against the worst possible realization of the
production yields. This strategy should be adopted in rigid production environments
where changes cannot be easily performed and little or no update on the production yield
is available in each period. However, if the production system is flexible enough to modify
the production quantity in each period, a static-dynamic strategy should be envisaged.
When an exact comprehension of the impact of the uncertain production yield on the costs
is necessary, decision-makers should rely on the C&CGΓ. Nevertheless, when the average
performance of the production plan is enough for the decision, without requiring optimal
information on the worst case perspective of the realization of the production yield rate,
the AROΓ approximation proposes sufficiently robust solutions, with lower average costs
and in short computation times.

Solution quality in a rolling horizon simulation

This section compares the static and adaptive robust models in a rolling horizon
simulation. We consider the general instances with a box uncertainty set. A rolling horizon
technique allows us to handle LSPs under a dynamic strategy. We develop a rolling horizon
framework similar to Venkataraman [1996] and Meistering and Stadtler [2017], where the
models are solved in period t with the horizon [t; T ] to compute the lot sizes for the next
∥F∥ periods, where F is the frozen horizon. Since we intend to compare the static and
static-dynamic strategies, we freeze the setup computed in period 1 for frozen horizon and
we update lot-size and inventory/backorder decisions with the rolling horizon technique.
The models are solved every F periods, for which we fix the lot size for the corresponding
periods. Then we perform the production for the frozen horizon so that the lot size for
the period p + 1 can be updated as soon as the quality inspection for the period p ends.
Finally, after the production of the frozen horizon is complete, we repeat the process until
the whole production horizon is complete.

Table 3.2 reports the results for the rolling horizon simulation (RH) for F equals 4.
We add the subscript F = 4 to the method in the first column of Table 3.2 to denote the
considered frozen horizon. Table 3.2 also report the results for C&CGΓ=T with F = T (as
applied for the models in Section B.5). To better measure the performance of the robust
models, we also consider the deterministic model where the perfect information on the
production yield is known. This deterministic formulation is called the expected value of
the perfect information (EV PI), and it represents the lower bound on the costs incurred
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from the production system within a static-dynamic strategy.

Table 3.2 – Performance of the robust models through a rolling horizon simulation

Model Exp. Cost 95th p.c. 99th p.c. Worst Cost
EV PI 21,284 25,563 25,955 26,158
ROF =4

Γ=T 22,334 26,807 27,441 27,695
AROF =4

Γ=T 22,256 26,854 27,437 27,680
C&CGF =4

Γ=T 22,179 26,448 27,095 27,370
C&CGF =T

Γ=T 22,115 26,494 27,114 27,385

As reported in Table 3.2, C&CGF =4
Γ=T gives the best average expected cost with a rel-

ative difference from EV PI of approximately 4.2% on average, versus 4.6% for AROF =4
Γ=T

and 4.9% for ROF =4
Γ=T . C&CGF =4

Γ=T also provides the lowest costs within the rolling hori-
zon approach, since its average expected cost is about 0.4% (resp. 1.6%) lower than the
respective costs computed by AROF =4

Γ=T (resp. ROF =4
Γ=T ). In addition, the worst-case costs

of C&CGF =4
Γ=T are on average 1.1% (resp. 1.2%) lower than the same cost for AROF =4

Γ=T

(resp. ROF =4
Γ=T ). As a result, C&CGF =4

Γ=T better accounts for the adaptive decision, and it
is followed by AROF =4

Γ=T . ROF =4
Γ=T gives the largest costs since it does not intend to react

to the information revealed over time. Even if C&CGF =4
Γ=T average expected cost is about

0.3% higher than C&CGF =T
Γ=T average expected cost, C&CGF =4

Γ=T achieves a reduction of
0.2% on the 95th percentile costs and 0.1% on both the 99th percentile costs and average
worst case costs. In the rolling horizon framework, C&CGΓ yields better average results,
since the model is re-optimized after revealing the true value of the uncertain return for
each period.
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3.6 Conclusion

This chapter considers the adaptive robust single-item multi-period lot-sizing problem
with backorders and uncertain production yield. The adaptive robust model is difficult to
solve since it has a non-fixed recourse that relates the uncertain production yield to the
adaptive lot size decisions. To solve the problem, we propose a C&CG approach, as well
as an approximation of the model that can be solved with commercial solvers. In addition,
we derive a myopic policy for a special case (with no setup and no unit production costs,
with a stationary nominal value and a stationary maximum deviation of the production
yield, and under the box uncertainty set). We show that this policy is optimal under mild
assumptions. Our experiments show that the models presented offer a production plan
that is robust and easily changeable in an adaptive decision context, while the production
system remains protected against uncertain production yields. These results also indicate
that the approximation of the adaptive robust model yields less conservative solutions
than the optimal solution proposed by C&CG, while the approximation can be solved
in a few seconds (versus around 4 minutes taken from the exact approach to compute
a solution). Further studies should be carried on to extend the adaptive model to the
distributionally robust methodology. This is a promising methodology that relies on a
joint perspective of robust optimization and stochastic programming. In addition, an
extension of this model to the multi-item case is envisaged to bring the proposed model
closer to real-world applications. In this direction, chapter 4 introduces the distributionally
robust model for the multi-item lot-sizing problem under yield uncertainty, and it gives
some insights for solving DRO LSPs.
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Chapter 4

DISTRIBUTIONALLY ROBUST LOT-SIZING

PROBLEMS UNDER YIELD UNCERTAINTY

This chapter is based on the following article:

Metzker, P., Thevenin, S., Adulyasak, Y., Dolgui, A. Distributionally robust
optimization for the multi-period multi-item lot-sizing problems under yield
uncertainty. Target journal: Naval Research Logistics, November 2022.

Production yields in various industries can be highly uncertain which result in unpre-
dictable product availability. Estimating a good distribution can be difficult due to the
various factors that must be taken into account in a highly volatile context. Distribution-
ally robust optimization seeks to alleviate this difficulty with a robust solution optimized
against the worst expected probability distribution. Thus, we formulate a mixed-integer
distributionally robust multi-item lot-sizing model with uncertain production yield to
determine a data-driven and sufficiently robust production plan. As various factors can
influence changes in the production yield, we use a scenario-wise formulation that parti-
tions the available data as scenarios that define different patterns influencing the quality
of the goods. The experimental results show that distributionally robust production plans
have better cost cutting strategy compared with robust or stochastic program solutions. In
a case study, the distributionally robust model better tackles the uncertainty and increases
the performance of the production plans. The results also show that distributionally ro-
bust solutions are also less sensitive to errors in predictions.
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4.1 Introduction

Recent manufacturing environments are constantly challenged to optimize resource
usage and production performance to satisfy demands for quality products at minimal
cost in an extremely dynamic and volatile market context. The quality of the production
is often influenced by exogenous factors (e.g., climate changes, supply disruption or delay,
and change in the quality of raw materials) and endogenous factors (e.g., machinery
maintenance, workforce ability and availability, and failure in the production process
flow). Due to these reasons, the actual production yield rate can be highly unpredictable
and directly impacts the amount of quality goods obtained from a production.

The production yield measures the performance and efficiency of the production sys-
tem to meet specification with quality goods. It helps manufacturers to maintain the
system under control, reducing its vulnerability to errors, malfunctions, irregularities and
loss of profit. As a result, the company achieves its strategical and operational goals,
which favors its positioning and relevance in the market scenario.

The production yield is often estimated from the historical data and quality control
data associated with the production process. Due to the complexity and various uncon-
trollable factors that can affect the quality of the production, this estimation can be
inaccurate. Therefore, the losses in the production process are difficult to predict and
measure, and their impact are highly damaging to the system [Inderfurth and Vogelge-
sang, 2013]. Yield uncertainty in vaccine production has a direct impact on social welfare,
as it can lead to weak immunity to new virus strain or mutation [Cho, 2010]. In the olive
oil industry, yield uncertainty can increase overall costs as low production yields force pro-
ducers to buy olives from other farmers to meet demands and satisfy the signed contracts
[Kazaz, 2004]. Finally, yield uncertainty can also impact the contractual arrangement in
supply chains, where low production yield implies a more expensive insurance payout,
reduced capital investment or difficulties to get credit and subsidies [Anderson and Mon-
jardino, 2019]. These examples illustrate the importance of optimization approaches that
hedge against uncertainties in a systematic, effective and efficient way.

DRO optimizes under an ambiguity set that is a family of probability distributions
of the uncertain parameter characterized through partial stochastic information obtained
from estimation or historical data [Delage and Ye, 2010]. As DRO is a recent optimiza-
tion methodology, some challenges remain to be addressed, such restrictive assumptions to
compute a tractable solution, complex formulation, intractability of the proposed model
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[Wiesemann et al., 2014]. The formulation of a tractable model requires well-defined am-
biguity sets that accounts for the available distributional information using an effective
uncertainty representation. Chen et al. [2020] propose an event-wise formulation for the
ambiguity set. This formulation jointly considers the scenario-tree method from SP with
the bounded representation of uncertainties under an uncertainty set from RO. The event-
wise formulation generalizes the well-known ambiguity sets (e.g., generalized moment,
mean absolute, Wasserstein and clustering) with the help of an additional random vari-
able in the definition of the uncertain parameter [Chen et al., 2020].

This chapter proposes a distributionally robust model for multi-item lot-sizing prob-
lems under yield uncertainty. To the best of our knowledge, we are the first to consider
the DRO methodology for LSPs under yield uncertainty, and our contribution is fourfold.
First, we propose a distributionally robust formulation for the multi-item LSPs under
production yield uncertainty represented in a scenario-wise ambiguity set (a reduction of
the event-wise formulation presented by Chen et al. [2020]). Second, we reformulate the
distributionally robust model as a MILP that can be easily solved by commercial solvers.
Third, we compare the distributionally robust plans with production plans proposed by
stochastic and robust models within the same decision settings. Fourth, we present a case
study to highlight the advantages of using DRO to deal with production yield uncer-
tainty. Our experimental results show that distributionally robust plans propose better
cost-saving strategies that meet demands with quality products, avoiding stock outs as
much as possible. Our results also indicate that DRO models are less sensitive to changes
in the realization of the production yield, and distribution plans better integrate historical
data into the decision system to respond to production process challenges more effectively.

This work is organized as follows: Section 4.2 reviews the literature on distributionally
robust optimization with a focus on studies that address lot-sizing problems. Section 4.3
formally describes the considered problem, it introduces the scenario-wise distribution-
ally robust optimization methodology, and it provides the MILP reformulations for our
problem. Section 4.4 presents the experimental results on the quality of distributionally
robust plans. Finally, Section 4.5 concludes this work and provides some future research
directions.
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4.2 Literature review

As the literature on lot-sizing problems (LSPs) is rich, this section only considers
studies relevant to this work. This is the case of lot-sizing decisions subject to uncertain
production yield. More precisely, the setups and lot sizes decisions made by manufacturers
minimize the overall costs to meet the demands when the quantity of quality goods ob-
tained from a released production may be less than the quantity of items produced. First,
we present the stochastic and robust studies on LSPs under yield uncertainty. Then, we re-
view the distributionally robust optimization theory and its application to the multi-item
LSPs.

Although the DRO community questions whether some studies from the 1950s propose
concepts equivalent to those known today as DRO methodology, most advances in the
field began in the 2000s. Delage and Ye [2010] is among the first to tackle the distribu-
tionally robust optimization problem by considering an ambiguity set based on moment
information. They propose a generic model for this case and a semi-infinite programming
approach to solve it. Wiesemann et al. [2014] provide an extensive review of convex DRO
methodology and introduce standardized forms for convex ambiguity sets. The authors
also present important conditions which ensure tractability of the final distributionally
robust models. Esfahani and Kuhn [2018] present the Wasserstein ambiguity set, an ambi-
guity set that is convex and ensure tractability to formulation with powerful performance.
Kuhn et al. [2019] extend this work to provide more theory about the Wasserstein am-
biguity set, and show the conceptual and computational benefits of this approach. The
authors also report the promising results when combining Wasserstein ambiguity set with
machine learning applications. Bertsimas et al. [2019] propose a tractable adaptive DRO
formulation based on second-order conic representable ambiguity sets. The authors pro-
vide tools to reformulate the distributionally robust models as MILP that can be easily
solved by commercial solvers. In the same vein, Chen et al. [2020] introduce the event-wise
formulation for the ambiguity sets, and provide a new modeling package, RSOME, to help
modelers to reformulate and solve distributionally robust models. For an extensive review
on DRO, we refer readers to Rahimian and Mehrotra [2019].

Considering the application of the DRO methodology, Hanasusanto et al. [2015] pro-
pose a risk-averse distributionally robust multi-item newsvendor problem with uncertain
demand. The authors approximate the distributionally robust model to a quadratic prob-
lem, and it yields a conservative but tractable formulation. Huang et al. [2021] give a
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reformulation approach based on the conditional value-at-risk (CVAR) for solving the
multi-product assembly and the portfolio selection problems with a cutting plane algo-
rithm. Qiu et al. [2021] develop a reformulation by Lagrange multipliers for solving the
multi-product inventory problem with demand and supply uncertainties. The authors also
propose decomposition methods to compute solutions for the case of reliable and unreli-
able suppliers. Finally, Wang and Delage [2021] reformulate the multi-item newsvendor
problem with the help of event-wise affine decision rules and propose a column generation
algorithm to tackle scalability issues and compute a good solution.

This chapter investigates the distributionally robust multi-item LSPs under yield un-
certainty. Since the production yield measurements can be impacted by different factors
(e.g.: change in ambient temperature, change in raw material quality), an event-wise for-
mulation seems very appropriate to reduce the conservatism of production plans and to
better integrate the available data and the production context to the decision making
process. Our work differs from the aforementioned literature in several aspects. To the
best of our knowledge, this chapter is the first work that addresses the multi-item LSPs
under yield uncertainty. First, we adapt the design of the event-wise ambiguity set to
a scenario-wise formulation that represents different patterns that the yield uncertainty
can follow. Second, we present the reformulations under a MILP reformulation scheme
of Wang and Delage [2021] and RSOME [Chen et al., 2020] for the LSPs under yield
uncertainty. Finally, we compare the distributionally robust plans with production plans
proposed by the stochastic and robust models, and highlight the advantages of DRO
modeling through a case study. Our experimental results show that although the distri-
butionally robust models can suffer from scalability issues for large instances and large
ambiguity sets, distributionally robust models provide sufficiently robust production plans
that integrate a good cost cutting strategy and lower risk sensitivity to the realization of
the production yield.

Our work differs from the aforementioned literature in several aspects. To the best
of our knowledge, this study is the first to address the multi-item LSPs under yield un-
certainty. First, we adapt the design of the event-wise ambiguity set to a scenario-wise
formulation that represents different patterns that the yield uncertainty can follow. Sec-
ond, we present the reformulations under a MILP reformulation scheme of Wang and
Delage [2021] and [Chen et al., 2020]’s event-wise ambiguity set. Finally, we investigate
the modeling and the computational effort from MILP reformulations, and then we com-
pare the distributionally robust plans with production plans proposed by the stochastic
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and robust models. Our experimental results show that although the distributionally ro-
bust models suffer from scalability issues for large instances and large ambiguity sets,
distributionally robust models provide sufficiently robust production plans that integrate
a good cost cutting strategy and lower risk sensitivity to the realization of the production
yield.

Notation: We use boldface (e.g., X) to denote vectors. We also need the following
definitions: a) The support function of a convex set Q describing a variable zzz gives the
bounds for the set, and it is defined as δ∗(z|Q) = supξξξ∈Q ξξξ⊤zzz. b) The perspective of a
function often helps modelers to provide non-intuitive behaviours or to demonstrate some
properties associated to optimization problems. The perspective of a function g(x) : Rn ⇒
R is a function g(x, t) : Rn × R ⇒ R = tg(x

t
), ∀t > 0. c) The conjugate of a function

g(y) is a convex function g∗(y), even if g(x) is not convex. The conjugate is given by
g∗(y) = supx∈domdomdomg(x) y⊤x−g(x), where domdomdom, the domain of a function, gives all the inputs
for the function.
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4.3 The distributionally robust multi-item multi-
period lot-sizing problem under yield uncertainty

The multi-item multi-period lot-sizing problem (LSP) with backorder and uncertain
production yield seeks to minimize the overall costs and efficiently meet demands with
quality goods. LSP determines the production setups and lot sizes for a set of items I

over a finite planning horizon T , which leads to a production plan at minimal cost. For
each item i ∈ N = {1, ..., |N |} and each period t ∈ T = {1, ..., |T |}, we have the following
known parameters: setup cost sit, unit production cost vit, unit inventory cost hit, unit
backorder cost bit, and demand dit. We also have the uncertain production yield ρ̃it, which
we assume to be strictly positive (then 0 < ρ̃it ≤ 1). To meet demands and minimize
costs, LSP seeks the quantity to produce Xit and the setup decision Yit. These decisions
are made to minimize the worst-case expected inventory management cost with respect
to a set of probability distributions F . We denote by Hit(ρ̃̃ρ̃ρ) the inventory or backorder
cost for item i and period t depending on the uncertain yield ρ̃ρρ. We assume that the
decision-maker follows a static strategy, where the production plan is decided before to
observe the realization of the uncertain production yield, and the decision are frozen.
The distributionally robust multi-item lot-sizing problem (DRLSP) can be formulated as
follows:

min
(∑

i∈N

∑
t∈T

(sitYit + vitXit) + sup
P∈F

EP

[∑
i∈N

∑
t∈T

Hit(ρ̃it)
])

(4.1a)

s.t.

Hit(ρ̃̃ρ̃ρ) ≥ hit

[
t∑

τ=1
(ρ̃iτXiτ − diτ )

]
∀i ∈ N ; t ∈ T ; ρ̃̃ρ̃ρ ∈ P (4.1b)

Hit(ρ̃̃ρ̃ρ) ≥ −bit

[
it∑

τ=1
(ρ̃iτXiτ − diτ )

]
∀i ∈ N ; t ∈ T ; ρ̃̃ρ̃ρ ∈ P (4.1c)

Xit ≤ MitYit ∀i ∈ N ; t ∈ T (4.1d)

Xit, Hit ≥ 0 ∀i ∈ N ; t ∈ T (4.1e)

Yit ∈ {0, 1} ∀i ∈ N ; t ∈ T (4.1f)

where F is the ambiguity set, and P is a distribution that represents the uncertain
yield ρ̃̃ρ̃ρ. Without a loss of generality, we assume that there is no stock or backorder
at the beginning of the planning horizon. The objective function (4.1a) minimizes the
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total cost comprising the setup, unit production, and the worst-case expected inventory
and backorder costs. Since the level of stocks or backorders depends on the realization
of the uncertain yield, and due to the complementarity of these values, we should be
interested in how uncertainty affects total cost. Therefore, we consider the inventory
management activity in term of its impact on the overall cost, here represented by Ht(ρ).
Constraints (4.1b) compute the inventory cost for item i in period t with the help of the
cumulative amount of quality goods obtained for periods up to t. Similarly, Constraints
(4.1c) compute the backorder cost if the cumulative amount of quality goods is not enough
to meet all demands up to t. The Constraints (4.1d) are setup-forcing constraints that
relate the lot sizes (Xit) to the setup decisions (Yit), where Mit is an upper bound on the
production quantity. These constraints set the setup variable Yit to 1 if any production
for item i occurs in period t, and the setup remains inactive otherwise (Yit = 0). The
multi-item and multi-period model with no capacity could also be solved by solving the
uncapacitated single-item problem separately. To address the capacitated version of the
problem, Constraints (4.1d) should be modified to represent the resource availability by
setting Mit = min{Cit,Mit} , where Cit is the available capacity for item i in period t.

The supP∈F EP[.] represents the worst case expected cost over the ambiguity set F .
Problem (4.1) is not solvable by commercial solvers in the current form. Thus, we intend
to develop a MILP distributionally robust model for LSP under yield uncertainty. This
section provides our MILP reformulation. First, we define the scenario-wise ambiguity
set. Second, we define the scenario-wise affine decision rule that computes the inventory
management costs as a function of the realization of the random production yield. Finally,
we rely on Slater’s condition and Sion’s minimax theorem techniques to reformulate our
DRO model as a robust model [Chen et al., 2020, Wang and Delage, 2021].

4.3.1 Definition of the scenario-wise ambiguity set

The event-wise ambiguity set was first introduced by Chen et al. [2020], and it incor-
porates the scenario tree representation from the stochastic optimization with the affine
decision rules related to the robust optimization to represent the uncertainties in the am-
biguity set. For a formal definition of the event-wise ambiguity set and further information
on its application, we refer the interested readers to Chen et al. [2020].

As we work in a static strategy, where all decisions are fixed before the uncertainties
are realized, we assume that our event ambiguity set takes only one event with all possible
scenarios that can describe the uncertainty. In fact, considering a static strategy, only the
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inventory management costs are directly impacted by the realization of the production
yield. Therefore, we reduced the event-wise ambiguity set to a scenario-wise ambiguity
set that provides a pattern describing one possible behaviour of the uncertain yield per
scenario.

Let us assume an historical data H of the production yield, which contains
various measurement of production performance PP from the past (e.g., H =
{PP1, PP2, PP3, PP4, PP5, PP6, PP7, PP8}, where 8 production performance are avail-
able). From H, we can identify different scenarios s that influence the production yield
(e.g, s1 change in ambient temperature, s2 change in raw material quality, s3 change
in machine performance). Therefore, we can partition H in S exclusive scenarios that
contains at least one measurement (e.g., if we obtain s1 ∈ S|s1 = {PP1, PP6, PP7},
s2 ∈ S|s2 = {PP2, PP4, PP5}, s3 ∈ S|s3 = {PP3, PP8}, such that s1 ∪ s2 ∪ s3 = S ⊂ H).
Each scenario help us to estimate the true value of our random variable (here our produc-
tion yield ρ̃ρρ). More precisely, from H we obtain a set S = s1, .., sS of scenarios, where each
scenario s represents a conditional moment information that the uncertain production
yield follows.

A confidence set of a distribution gives the range of values compatible with the data
estimated with the distribution considered. Although each scenario individually can be
estimated by a probability distribution, the definition of the appropriate confidence set
can be complicated. To ensure the tractability and correctness of the confidence sets
in a richer and unified manner, Wiesemann et al. [2014] redefine the random variable
with the inclusion of an additional variable mmm. This additional variable associates the
outcomes from different probability distributions with their respective confidence sets
without imposition a condition on the confidence set [Chen et al., 2020]. Therefore, the
scenario-wise model remains valid for different settings and definitions of the ambiguity
set.

We redefine the random production yield as (ρ̃ρρ, m̃mm), where the primary random vari-
able ρ̃ρρ ∈ R(N×T ) gives the uncertain production yield, and the auxiliary random variable
m̃mm ∈ R(N×T )m ensure that the scenario-wise model remains valid for different probability
distributions without imposing additional or specific conditions on the confidence set.
The space R(N×T )m defines a sub-space from the space R(N×T ) of the appropriated size to
represent the auxiliary variable m.

For each scenario s, we define the convex sets Qs and Ws. Qs represents the expected
value from the estimation of the random variable, while the support set Ws indicates the
support of the random variable. Ws, given by Ws = {(ρρρ,mmm) ∈ R(N×T ) × R(N×T )m |ρρρ ≤ ρρρ ≤
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ρρρ,gggs(ρρρ) ≤ mmm}, is the epigraph of gggs and relates the random variable ρρρ to the auxiliary
variable mmm. Ws also gives the lower bound ρρρ (resp. upper bound ρρρ) of the production
yield. We can define the scenario-wise ambiguity set F as follows:

F =


P ∈ P0(R(N×T )+(N×T )m × S)

∣∣∣∣∣∣∣∣∣∣∣∣

(ρ̃ρρ, m̃mm, s̃) ∼ P, ppp ∈ P
EP

[
(ρ̃ρρ, m̃mm) | s̃ = s

]
∈ Qs ∀ s ∈ S

P
[(

(ρ̃ρρ, m̃mm) ∈ Ws | s̃ = s
)]

= 1 ∀ s ∈ S

P(s̃ = s) = ps ∀ s ∈ S


where P0(R(N×T )+(N×T )m × S) is the set of the S distributions the random yield for

item i ∈ N and period t ∈ T , P is one possible probability distribution for the random
production yield, and ps is the probability of scenario s, such that ppp > 0,

∑
s∈S ps = 1.

Before developing the MILP reformulation for our problem based on the scenario ambi-
guity set, we introduce the ambiguity sets we are interested in using. The mean absolute
ambiguity set is considered one of the most conservative within the DRO community,
as it only depends on the mean and absolute deviation of the uncertain parameter. On
the other hand, the Wasserstein ambiguity set allows the decision maker to control the
risk evaluation of the realization of the uncertainty (with respect to distribution uncer-
tainty) based on a distance θ from the empirical distribution. As a result, the Wassertein
ambiguity set limits the conservatism of the decision through a proper definition of θ.

Mean absolute ambiguity set

The mean absolute ambiguity set FM [Esfahani and Kuhn, 2018, Wang and Delage,
2021] defines the set of possible distributions based on the mean (ρ̄ρρs) and standard de-
viation (ρ̂ρρs) of production yield from the lot sizes of each item i in a given period t

and scenario s ∈ S. A distribution Ps ∈ PM can be represented by the support set
Ws = {(ρρρ,mmm) ∈ R(N×T ) × R(N×T )m | ρρρ ≤ ρρρ ≤ ρρρ, ||ρρρ − ρ̄ρρs|| ≤ mmm} ∀s ∈ S. In addition, the
expectation for the random variables are given by the set Qs = {(qqqρ, qqqm)|qqqρ = ρ̄ρρs;qqqm = ρ̂ρρs},
and ps = 1

S
. The mean absolute ambiguity set for the uncertain production yield is given

as follows:

FM =


P ∈ P0(R(N×T )+(N×T ) × S)

∣∣∣∣∣∣∣∣∣∣∣∣∣

((ρ̃ρρ, m̃mm), s̃) ∼ P
EP[ρ̃ρρ | s̃ = s] = ρ̄ρρs ∀ s ∈ S

EP[m̃mm | s̃ = s] = ρ̂ρρs ∀ s ∈ S

P
[
(ρ̃ρρ, m̃mm) ∈ Ws | s̃ = s

]
= 1 ∀ s ∈ S

P(s̃ = s) = 1
|S| ∀ s ∈ S


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Wasserstein ambiguity set

A Wasserstein ambiguity set contains a collection of probability distributions that
are at most θ distant from the available distributions representing past production yield
behaviours. As explained by Esfahani and Kuhn [2018] and Wang and Delage [2021],
the Wasserstein ambiguity set FW considers an empirical distribution P̆ estimated from
historical data, and FW contains all probability distribution P whose Wasserstein distance
with P̆ is lower than θ. θ represents the radius of the Wasserstein ball centered at the
empirical distribution.

The Wasserstein ambiguity set can be represented as a scenario-wise ambiguity set.
For each scenario s, Qs is given by Qs = {(qqqρ, qm)|qm = θ}, while Ws is given by Ws ={

(ρρρ, m) | ρρρ ∈ [ρρρ,ρρρ]; ||ρρρ−ρ̆ρρs||p ≤ m
}

. Note that p, in the Wasserstein support set, indicates
the p-norm. For the uncertain production yield, the Wasserstein ambiguity set is given as
follows:

FW =


P ∈ P0(RN×T+1 × S)

∣∣∣∣∣∣∣∣∣∣∣

((ρ̃ρρ, m̃), s̃) ∼ P
EP

[
m̃ | s̃ ∈ S

]
= θ

P
[
(ρ̃ρρ, m̃) ∈ Ws

]
= 1 ∀ s ∈ S

P(s̃ = s) = 1
S ∀ s ∈ S


4.3.2 Scenario-wise LSP under yield uncertainty reformulation

Under a given static production strategy, inventory and backorder quantities react
to the realization of the production yield. Therefore, Hit(ρ̃, m̃, s̃) represents the recourse
decision that gives the inventory management cost decision Hit to the realization of the
random variable (ρ̃, m̃) and the scenario s for each item i in each period t. We represent
Hit(ρ̃, m̃, s̃) linearly dependent to the uncertain yield through the following scenario-wise
decision rule:

Hit(ρρρ,mmm, s) = H0
its +

∑
l∈T

∑
k∈N

H
′

itklsρkl +
∑

j∈(N×T )|m|

H
′′

itjsmj

where H0
its is the cost component free from disturbances due to uncertainty, HHH

′
its is the cost

component that reacts to the realization of the random yield ρρρ, and HHH
′′
its is the cost com-

ponent subject to changes in the auxiliary variable mmm for item i in period t and for scenario
s. We also have HHH0 ∈ R(N×T ×S)

+ ; HHH
′ ∈ R(N×T ×(N×T )|ρ|×S); HHH

′′ ∈ R(N×T ×(N×T )|m|×S) .
When we model problem (4.1) based on the scenario-wise ambiguity set and the

scenario-wise decision rule, we obtain the following DRLSP problem under yield uncer-
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tainty reformulation:

min
{∑

i∈N

∑
t∈T

(
sitYit + vitXit

)
+ sup

P∈F
EP

[∑
i∈N

∑
t∈T

Hit(ρ̃ρρ, m̃̃m̃m, s̃̃s̃s)
]}

(4.2a)

s.t. (4.1d), (4.1f)

Hit(ρρρ,mmm,sss) ≥ hit

[
t∑

τ=1
(ρiτXiτ − diτ )

]
∀ (ρρρ,mmm) ∈ Ws; i ∈ N ; t ∈ T ; s ∈ S (4.2b)

Hit(ρρρ,mmm,sss) ≥ −bit

[
it∑

τ=1
(ρiτXiτ − diτ )

]
∀ (ρρρ,mmm) ∈ Ws; i ∈ N ; t ∈ T ; s ∈ S (4.2c)

Hit(ρρρ,mmm,sss) ≥ 0 ∀ (ρρρ,mmm) ∈ Ws; i ∈ N ; t ∈ T ; s ∈ S (4.2d)

Xit ≥ 0 ∀ i ∈ N ; t ∈ T (4.2e)

which can be rewritten as:

min
{∑

i∈N

∑
t∈T

(
sitYit + vitXit

)
+ sup

P∈F
EP

[∑
i∈N

∑
t∈T

(
H0

it +HHH
′

it(s̃)⊤ρρρ+HHH
′′

it(s̃)⊤mmm
)]}

(4.3a)

s.t. (4.1d), (4.1f), (4.2e)

H0
its +HHH

′

its

⊤
ρρρ+HHH

′′

its

⊤
mmm ≥ hit

[
t∑

τ=1
(ρiτXiτ − diτ )

]
∀ (ρρρ,mmm) ∈ Ws; i ∈ N ; t ∈ T ; s ∈ S (4.3b)

H0
its +HHH

′

its

⊤
ρρρ+HHH

′′

its

⊤
mmm ≥ −bit

[
it∑

τ=1
(ρiτXiτ − diτ )

]
∀ (ρρρ,mmm) ∈ Ws; i ∈ N ; t ∈ T ; s ∈ S (4.3c)

H0
its +HHH

′

its

⊤
ρρρ+HHH

′

its

⊤
mmm ≥ 0 ∀ (ρρρ,mmm) ∈ Ws; i ∈ N ; t ∈ T ; s ∈ S (4.3d)

Problem (4.3) can be solved by commercial solvers when implemented with the help of
RSOME. However, RSOME is an open source library under development and can be quite
challenging not only in terms of modeling but it also can be computationally exhausting.
Therefore, we reformulate problem (4.3) as a MILP model that can be easily solved by
any commercial solver and provides modelers more understanding of the impact of the
ambiguity set on the final model.

To obtain a MILP model for problem (4.3) one can follow the Chen et al. [2020] first
theorem to reformulate the worst expectation term as robust constraints. Then, Wang
and Delage [2021] first theorem should be applied to model all constraints subject to the
production yield uncertainty as a robust counterpart constraint.

From Chen et al. [2020] first theorem, if Slater’s condition holds for the worst-case
expectation problem, then the problem can be reformulated as a robust optimization
problem. For our model, if Slater’s condition is valid for supP∈F EP

[∑
i∈N

∑
t∈T Hit(ρ̃ρρ, m̃̃m̃m, s̃̃s̃s)

],
then the worst expectation for ∑i∈N

∑
t∈T Hit(ρ̃ρρ, m̃̃m̃m, s̃̃s̃s) can be formulated in a robust fash-
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ion as follows:

inf γ

γ ≥
∑
s∈S

(
psαs +µµµ

′

s

⊤
βββ

′

s +µµµ
′′

s

⊤
βββ

′′

s

)
∀s ∈ S

αs + ρρρ⊤βββ
′

s +mmm⊤βββ
′′

s ≥
∑
i∈N

∑
t∈T

(
H0

its +HHH
′

its

⊤
ρρρ+HHH

′′

its

⊤
mmm
)

∀ (ρρρ,mmm) ∈ Ws; s ∈ S

γ ∈ R,ααα ∈ RS ,βββ
′

s ∈ R(N×T ),βββ
′′

s ∈ R(N×T )m ∀s ∈ S

Let us assume that µµµ
′
s and µµµ

′′
s are the expected values of the random variables ρρρ and mmm

in the set Qs for a scenario s (µ′
s, µ

′′
s ∈ Qs). With the help of the law of total probability

we can redefine the worst expectation supP∈F EP
[∑

i∈N

∑
t∈T Hit(ρ̃ρρ, m̃̃m̃m, s̃̃s̃s)

]
= λ(ppp,µµµ) as follows:

λ(ppp,µµµ) = sup
P∈F

∑
s∈S

psEPs

[∑
i∈N

∑
t∈T

Hit(ρ̃ρρ, m̃̃m̃m, s)
]

s.t.

EPs
[ρ̃ρρ] = µµµ

′

s ∀ s ∈ S

EPs
[m̃mm] = µµµ

′′

s ∀ s ∈ S

P[(ρ̃ρρ, m̃̃m̃m) ∈ Ws] = 1 ∀ s ∈ S

The min-max theorem helps us to obtain the following dual from the supremum:

λ′(ppp,µµµ) = inf
∑
s∈S

(αs + psµµµ
′ ⊤
βββ

′
+ psµµµ

′′ ⊤
βββ

′′
)

s.t.

αs + psρρρ
⊤βββ

′
+ psmmm

⊤βββ
′′

≥ Hit(ρ̃ρρ, m̃̃m̃m, s̃̃s̃s) ∀ (ρρρ,mmm) ∈ Ws; s ∈ S

ααα ∈ RS ,βββ
′

s ∈ R(N×T ),βββ
′′

s ∈ R(N×T )m ∀s ∈ S

Since strong duality works, λ∗ = λ′∗. As pppµµµ is non convex, we can replace µs by µs

ps
to

obtain a convex representation of the infimum problem. We also replace αs by psαs (as
ps > 0, p ∈ P ∀s ∈ S). Then, we divide the λ′’s first constraint by ps which leads to the
following reformulation of the infimum:

λ′(ppp,µµµ) = inf(ppp⊤ααα+µµµ
′ ⊤
βββ

′
+µµµ

′′ ⊤
βββ

′′
)

s.t.

αs + ρρρ⊤βββ
′

s +mmm⊤βββ
′′

s ≥
∑
i∈N

∑
t∈T

Hit(ρ̃ρρ, m̃̃m̃m, s̃̃s̃s) ∀ (ρρρ,mmm) ∈ Ws; s ∈ S

ααα ∈ RS ,βββ
′

s ∈ R(N×T ),βββ
′′

s ∈ R(N×T )m ∀s ∈ S

Replacing λ by λ′ in problem (4.3) leads to the following robust reformulation of our
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DRLSP model:

min
Y,X

∑
i∈N

∑
t∈T

(
sitYit + vitXit

)
+ γ (4.4a)

s.t. (4.1d), (4.1f), (4.2e), (4.3b), (4.3c), (4.3d),

γ ≥
∑
s∈S

(
psαs +µµµ

′

s

⊤
βββ

′

s +µµµ
′′

s

⊤
βββ

′′

s

)
∀ps ∈ Ps; µs

ps
∈ Qs; s ∈ S (4.4b)

αs + ρρρ⊤βββ
′

s +mmm⊤βββ
′′

s ≥
∑
i∈N

∑
t∈T

(
H0

its +HHH
′

its

⊤
ρρρ+HHH

′′

its

⊤
mmm
)

∀ (ρρρ,mmm) ∈ Ws; s ∈ S (4.4c)

γ ∈ R,ααα ∈ RS ,βββ
′

s ∈ R(N×T ),βββ
′′

s ∈ R(N×T )m ∀s ∈ S (4.4d)

Problem (4.4) is not a MILP due to the dependence of the constraints with yield
uncertainty to the distributions supported by Ws. To reformulate these constraints as
linear robust counterpart constraints, we recall Wang and Delage [2021] first theorem.
The authors demonstrate how to reformulate the worst expectation dual constraints in
terms of the support functions of the ambiguity set. For that, they apply Sion’s minimax
theorem (see Sion [1958]) to reverse the order of a sup and inf problem with regard to
a bounded distribution P. Then, the authors indicate how to apply the strong duality
to derive robust counterpart reformulations from a constraints subject to uncertainty in
terms of the support set.

We derive the counterpart reformulation in terms of the support function of the am-
biguity set for (4.4b), as shown with the equalities (4.5). In the second line we isolate
the dual variables as individual problems, which highlights that only µµµ dual variables are
impacted by Q, while all dual variables are dependent on P. In the third line, we redefine
the supremum problem in terms of the support function. In the fourth line, we redefine
the support function as an infimum problem, and we gather the dual variables in the
same the supremum problem dependent on P. In the fifth line, Sion’s minimax theorem is
exploited to reverse the order of the supremum and infimum problems. Finally, last line
indicates the reformulation in term of a support function for P.

sup
{µµµs

ps
}∈Qs,s∈S,ppp∈P

ααα⊤ppp+ βββ⊤µµµ

= sup
ppp∈P

ααα⊤ppp+
∑
s∈S

ps sup
{µµµs

ps
}∈Qs

βββ⊤
s µµµs

ps

= sup
ppp∈P

ααα⊤ppp+
∑
s∈S

psδ
∗
(
βββs|Qs

)
(4.5)
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= sup
ppp∈P

(
ααα⊤ppp+ ppp inf

ν:ν≥δ∗(βββs|Qs)
ν
)

= inf
ν:ν≥δ∗(βββs|Qs)

sup
ppp∈P

ppp(ααα+ ν)

= inf
ν:ν≥δ∗(βββ|Q)

δ∗ (ααα+ ν|P)

The final reformulation from equation (4.4b) is, then, infν:ν≥δ∗(βββ|Q) δ
∗ (ααα+ ν|P). The final

linear reformulation is defined when we replace the general support function with the
specific linear support function of the ambiguity set considered.

For the remaining constraints subject to the uncertain production yield, we assume
that the Slater’s condition holds, as does the strong duality. Thus, we derive equivalent
robust counterpart formulations for these constraints. The reformulation of the constraints
subject to uncertainty as robust counterpart requires the definition of the constraints as
a convex optimization problem whose variables are the random variables, and whose
objective is to find the supremum of the variables over a support set [Wang and Delage,
2021]. Then, we apply the strong duality to redefine the obtained sup problem (defined
in terms of the support functions of the support set) in terms of its dual inf (which is
formulated in terms of the perspective of the conjugate of the epigraph g). First, we
demonstrate how to obtain the counterpart reformulation for Constraint (4.4c). Then, we
provide the reformulation for the remaining constraints in C.1.

If we rewrite the constraint to isolate the terms with the random variables on the right
side, we obtain the following reformulation:

αs −
∑
i∈N

∑
t∈T

H0
its ≥ (

∑
i∈N

∑
t∈T

HHH
′

its − βββ
′

s)
⊤
ρρρ+ (

∑
i∈N

∑
t∈T

HHH
′′

its − βββ
′′

s )
⊤
mmm ∀ (ρρρ,mmm) ∈ Ws; s ∈ S

Note that the right side term can be rewritten as a convex optimization problem based
on the support function of Ws. If we exploit Slater’s condition and the strong duality, since
the random variable ρρρ is bounded by ρρρ and ρρρ on Ws, we can assume ρρρ =

ρρρ+ρρρ

2 and vvv = gggs(ρρρ)+1.
Then, we define a new random variable given by ξξξj ∈ Ws : ξξξj = ρρρ ∀j ∈ (N × T )|m|for any
scenario s ∈ S. Finally, we obtain the following convex optimization problem:

sup
ρρρ,mmm,{ξξξj}j∈(N×T )|m| ∈R,ρρρ∈[ρρρ,ρρρ],gjs(ξj)≤mj ,(ξξξj)=ρ, ∀j∈(N×T )|m|

ρρρ⊤ccc1
s +mmm⊤ccc2

s

where ccc1
s =

∑
i∈N

∑
t∈T HHH

′

its − βββ
′

s and ccc2
s =

∑
i∈N

∑
t∈T HHH

′′

its − βββ
′′

s .
As the strong duality holds, we can then reformulate the of this sup problem in terms

of its inf dual problem through the Lagrangian duality as follows:
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supρρρ⊤ccc1
s +mmm⊤ccc2

s = inf ρρρ⊤
ηηη1

s − ρρρ⊤ηηη2
s +

∑
j∈(N×T )|m|

λ1
js(mj − gjs(ξξξj)) +www1

js
⊤(ξξξj − ρρρ)

ρρρ− ρρρ ≥ 0
∑

j∈(N×T )|m|
www1

js = ccc1
s − ηηη1

s + ηηη2
s

−(ρρρ− ρρρ) ≥ 0 ccc2
s + λλλ1

s = 0
mj − gjs(ξξξj) ≥ 0 ηηη1

s, ηηη
2
s,λλλ

1
s ≥ 0

ξξξj − ρρρ ≥ 0 www1
js ∈ R

ρρρ,mmm,ξξξj ∈ R

where ηηη1, ηηη2, λλλ1 and www1 are the dual variables, and equations indexed by j are defined
for all j ∈ (N × T )|m|.

Finally, we rewrite the convex optimization problem as linear robust constraints based
on the obtained dual problem and the epigraph in the support set Ws as given below.
From the assumption that Slater’s condition is valid, the strong duality holds. Thus, the
optimal dual variables from the infimum yield an optimal supremum solution. For that,
we apply the minimax theorem to inverse the order of the sup and inf problems on the
second line, we rewrite the dual objective function in terms of its conjugate function on
the third line, and we isolate the sup problem that is now only dependent on the www and
λλλ dual variables on the fourth line. Then, we replace the later conjugate function by its
perspective on the fifth line given below.

sup
ρρρ,mmm,{ξξξj }∈R;ρρρ∈[ρρρ,ρρρ];gjs(ξj )≤mj ;(ξξξj )=ρ

ρρρ
⊤

ccc
1
s + mmm

⊤
ccc

2
s

= sup
ρρρ,mmm,ξξξj ∈R

inf
ηηη1

s,ηηη2
s,λλλs≥0;wwwjs∈R

ρρρ
⊤

ccc
1
s + mmm

⊤
ccc

2
s + (ρρρ − ρρρ)⊤

ηηη
1
s − (ρρρ − ρρρ)⊤

ηηη
2
s +

∑
j∈(N×T )|m|

λ
1
js(mj − gjs(ξξξj )) + www

1
js

⊤(ξξξj − ρρρ)

= inf
ηηη1

s,ηηη2
s,λλλs≥0;{www1

js
}j∈(N×T )|m|

∈R
sup

ρρρ,mmm,ξξξj ∈R
ρρρ

⊤
ccc

1
s + mmm

⊤
ccc

2
s + (ρρρ − ρρρ)⊤

ηηη
1
s − (ρρρ − ρρρ)⊤

ηηη
2
s +

∑
j∈(N×T )|m|

λ
1
js(mj − gjs(ξξξj )) + www

1
js

⊤(ξξξj − ρρρ)

= inf
ηηη1

s,ηηη2
s,λλλs≥0;www1

js
∈R;
∑

j∈(N×T )|m|
www1

js
=ccc1

s−ηηη1
s+ηηη2

s;ccc2
s+λλλ1

s=0
ρρρ

⊤
ηηη

1
s − ρρρ

⊤
ηηη

2
s +

∑
j∈(N×T )|m|

sup
ξξξj

www
1
js

⊤(ξξξj ) − λ
1
jsgjs(ξξξj )

= inf
ηηη1

s,ηηη2
s,λλλs≥0;www1

js
∈R;
∑

j∈(N×T )|m|
www1

js
=ccc1

s−ηηη1
s+ηηη2

s;ccc2
s+λλλ1

s=0
ρρρ

⊤
ηηη

1
s − ρρρ

⊤
ηηη

2
s +

∑
j∈(N×T )|m|

λ
1
jsg

∗
js

(www1
js

λ1
js

)

where j ∈ (N × T )|m| whenever j index appears. As a result, we obtain the following
reformulation for the sup convex model:

sup
ρρρ,mmm,ξξξj∈R;ρρρ∈[ρρρ,ρρρ];gjs(ξj)≤mj ;(ξξξj)=ρ ∀j∈(N×T )|m|

ρρρ⊤ccc1
s +mmm⊤ccc2

s
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= inf
ηηη1

s,ηηη2
s,λλλ1

s≥0;www1
js

∈R ∀j∈(N×T )|m|;ccc2
s+λλλ1

s=0;
∑

j∈(N×T )|m|
www1

js
=ccc1

s−ηηη1
s+ηηη2

s

ρρρ
⊤
ηηη1

s − ρρρ⊤ηηη2
s +

∑
j∈(N×T )|m|

λ1
jsg

∗
js

(www1
js

λ1
js

)

where λ1
jsg

∗
js

(
www1

js

λ1
js

)
is the perspective function of the conjugate function of g∗

json (www1
js,

λ1
js) for all j ∈ (N × T )|m|. Note that the superscript 1 on the dual variables λλλ and www,

(resp. the subscripts 1 and 2 on the coefficients ccc and the dual variables ηηη) indicates the
terms associated to Constraints (4.4c), while the subscript 2 (resp. 3 and 4) is associated
to Constraints (4.3b), subscript 3 (resp. 5 and 6) to Constraints (4.3c), and subscript 4
(resp. 7 and 8) to Constraints (4.3d).

Repeating the aforementioned reformulation technique to obtain a linear robust coun-
terpart to all constraints subject to the uncertain production yield, we obtain the final
MILP robust reformulation of problem (4.4), which is given as follows:

min
∑
i∈N

∑
t∈T

(
sitYit + vitXit

)
+ γ (4.6a)

s.t.

γ ≥ δ
∗
(

ααα + 111ν|P
)

(4.6b)

ν ≥ δ
∗
(

βββ|Q
)

(4.6c)

αs −
∑
i∈N

∑
t∈T

H
0
its ≥

∑
i∈N

∑
t∈T

(ρitη
1
its − ρ

it
η

2
its) +

∑
j∈(N×T )|m|

λ
1
jsg

∗
js

(www1
js

λ1
js

)
∀s ∈ S

(4.6d)

λ
1
js = β

′′
js −

∑
i∈N

∑
t∈T

H
′′
itjs ∀j ∈ (N × T )|m|; s ∈ S

(4.6e)∑
j∈(N×T )|m|
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1
js =

∑
i∈N

∑
t∈T

(
∑
k∈N

∑
l∈T

HHH
′
itkls − β

′
its − η

1
its + η

2
its) ∀s ∈ S

(4.6f)

H
0
its + hit

t∑
τ=1

diτ ≥
∑
k∈N

∑
l∈T

(ρklη
3
itkls − ρ

kl
η

4
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∑
j∈(N×T )|m|

λ
2
itjsg

∗
js

(www2
itjs

λ2
itjs

)
∀i ∈ N ; t ∈ T ; s ∈ S

(4.6g)

λ
2
itjs = H

m
itjs ∀i ∈ N ; t ∈ T ; j ∈ (N × T )|m|; s ∈ S

(4.6h)∑
j∈(N×T )|m|

w
2
itjs = −H

′
itkls − η

3
itkls + η

4
itkls ∀i, k ∈ N ; k ̸= i; t, l ∈ T ; s ∈ S

(4.6i)∑
j∈(N×T )|m|

w
2
itjs = −H

′
itkls − η

3
itkls + η

4
itkls ∀i ∈ N ; t, l ∈ T ; l > t; s ∈ S

(4.6j)∑
j∈(N×T )|m|

w
2
itjs = hitXil − H

′
itkls − η

3
itkls + η

4
itkls ∀i ∈ N ; t, l ∈ T ; l ≤ t; s ∈ S

(4.6k)
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H
0
its + bit

t∑
τ=1

(ρiτ Xiτ − diτ ) ≥
∑
k∈N

∑
l∈T

(ρklη
5
itkls − ρ

kl
η

6
itkls) +

∑
j∈(N×T )|m|

λ
2
itjsg

∗
js

(www3
itjs

λ2
itjs

)
∀i ∈ N ; t ∈ T ; s ∈ S

(4.6l)

λ
3
itjs = H

m
itjs ∀i ∈ N ; t ∈ T ; j ∈ (N × T )|m|; s ∈ S

(4.6m)∑
j∈(N×T )|m|

w
3
itjs = −H

′
itkls − η

5
itkls + η

6
itkls ∀i, k ∈ N ; k ̸= i; t, l ∈ T ; s ∈ S

(4.6n)∑
j∈(N×T )|m|

w
3
itjs = −H

′
itkls − η

5
itkls + η

6
itkls ∀i ∈ N ; t, l ∈ T ; l > t; s ∈ S

(4.6o)∑
j∈(N×T )|m|

w
3
itjs = −bitXil − H

′
itkls − η

5
itkls + η

6
itkls ∀i ∈ N ; t, l ∈ T ; l ≤ t; s ∈ S

(4.6p)

H
0
its ≥

∑
k∈N

∑
l∈T

(ρklη
7
itkls − ρ
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η
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itkls) +

∑
j∈(N×T )|m|
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itjsg

∗
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(www4
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∀s ∈ S

(4.6q)

λ
4
itjs = H

m
itjs ∀i ∈ N ; t ∈ T ; j ∈ (N × T )|m|; s ∈ S

(4.6r)∑
j∈(N×T )|m|

www
4
itjs = −HHH

′
its − ηηη

7
its + ηηη

8
its ∀s ∈ S

(4.6s)

Xit ≤ MitYit ∀i ∈ N ; t ∈ T

(4.6t)

Xit, H
0
its, ηηη

1
s, ηηη

2
s, ηηη

3
its, ηηη

4
its, ηηη

5
its, ηηη

6
its, ηηη

7
its, ηηη

8
its, λ

1
js, λ

2
itjs ≥ 0 ∀i ∈ N ; t ∈ T ; j ∈ (N × T )m; s ∈ S

(4.6u)

HHH
′
its, HHH

′′
its, γ, www

1
js, www

2
itjs, www

3
itjs, www

4
itjs ∈ R ∀i ∈ N ; t ∈ T ; j ∈ (N × T )m; s ∈ S(4.6v)

ααα ∈ RS
, βββ

′
s ∈ RS×N×T ; βββ

′′
s ∈ RS×(N×T )

m

(4.6w)

Yit ∈ {0, 1} ∀i ∈ N ; t ∈ T(4.6x)

where: a] Constraints (4.4b) are reformulated as Constraints (4.6b)-(4.6c), b] Con-
straints (4.4c) are reformulated as Constraints (4.6d)-(4.6f), c] Constraints (4.3b) are
reformulated as Constraints (4.6g)-(4.6k), d] Constraints (4.3c) are reformulated as Con-
straints (4.6l)-(4.6p), e] Constraints (4.3d) are reformulated as Constraints (4.6q)-(4.6s).

Reformulation based on the moment based ambiguity set

Replacing the general scenario-wise ambiguity set F by the mean absolute ambiguity
set FM given in section 4.3.1 on problem (4.6) we obtain the mean absolute distributionally
robust formulation (MDRLSP). The support function for FM is given by δ∗

(
(zzzρ, zzzm)|Qk

)
=

ρ̄ρρ⊤
s zzzρ + ρ̂ρρ⊤

s zzzm. Therefore, MDRLSP is given as follows:
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min
∑
i∈N

∑
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Xit, ηηη
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4
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5
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6
its, ηηη

7
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8
its ≥ 0 ∀i ∈ N ; t ∈ T ; s ∈ S (4.7)

H
0
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′
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1
s, www

2
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3
its, www

4
its ∈ R, γ, βββ ∈ R(N×T )

, ααα ∈ RS ∀i ∈ N ; t ∈ T ; s ∈ S (4.7)

Yit ∈ {0, 1} ∀i ∈ N ; t ∈ T (4.7)

Reformulation for the Wasserstein ambiguity set

If the Wasserstein ambiguity set FW given in section 4.3.1 replaces the general scenario-
wise ambiguity set F on problem (4.6), we obtain the Wasserstein distributionally robust
formulation (WDRLSP). We assume that the support function for FW is given by

δ∗
(

(zzzρ, zm)|Qk

)
=
{
θzm, if zzzρ = 000
∞, otherwise
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As a result, the WDRLSP is given as follows:
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4.4 Results and discussion

The goals of the computational experiments are: (i) demonstrate the performance of
distributionally robust models for the LSPs with uncertain production yield compared to
robust or stochastic production plans; (ii) present an in-depth investigation into distribu-
tionally robust plans for LSPs with uncertain production yield in terms of cost distribution
and production planning quality, as well as computational efficiency. (iii) present a case
study that demonstrates the performance of the DRO in real cases

For this, we consider the following models in the experiments:

1. RO, the static robust model presented in C.2

2. SPN , the two stage stochastic model presented in C.3, whose uncertainty is drawn
from a normal distribution

3. SPU , the two stage stochastic model presented in C.3, whose uncertainty is drawn
from a uniform distribution

4. MDRO, our mean absolute distributionally robust model given in (4.7)

5. WDRO, our Wasserstein distributionally robust model given in (4.8)

4.4.1 Instance generation and simulation approach

In a similar manner to Metzker et al. [2023a], the experiments are performed with
instances randomly generated following the standard approach in the literature for LSP
problems. Each parameter was defined with an uniform distribution, such that the pro-
duction cost, the holding stock cost, the demand, the nominal value, and the maximum
deviation of the uncertain production yield supports correspond to the following intervals:
vit ∈ U(30, 50), hit ∈ U(1, 10), dit ∈ U(450, 780), ρ̄′

it ∈ U(0.7, 0.9), and ρ̂′
it ∈ U(0.01, 0.1),

respectively. The setup costs for each item i are computed with the time between order
formula: sit = D̄it·T BO2·ht

2 , where D̄it represents the average demand for item i in periods
up to t. We also set the inventory and the backorder levels at the beginning of the horizon
to zero.

For the optimization step, we have drawn 100 scenarios to represent historical data
from a uniform distribution with support [ρ̄′

it − ρ̂′
it; ρ̄′

it + ρ̂′
it] for each item i in period t.

For each scenario s ∈ S, we define a average production yield ρ̄s̄ρs̄ρs and and average standard
deviation of the production yield ρ̂ŝρŝρs. Then, we gather these values over all scenarios to
compute the average production yield ρ̄it, standard deviation of the production yield ρ̂it,
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and finally the upper and the lower bounds on the production yield given by ρit and ρ
it
,

respectively, for all item i ∈ N and all period t ∈ T that should be represented on the
ambiguity set, uncertainty set or probability distribution.

We assume that the ambiguity sets build up from the generated historical data, and so
does the uncertainty set and the parameters to define the distributions for the stochastic
models. We assume that a completely robust production plan can be computed with
the most conservative uncertainty set from the robust optimization, the box uncertainty
set. This set is equivalent to the budgeted uncertainty set proposed by Bertsimas and
Sim [2004] when the budget is set to Γt = t for each period t and the production yield
is mapped in terms of the nominal value and maximum deviation of the production
yield calculated from the average over all the scenarios. For the stochastic programs, we
consider two possible estimations for the probability distribution of the uncertain yield.
While SPU uses 100 scenarios drawn from a uniform distribution based on the maximum
and minimum values of the production yield from the historical data, SPN is drawn from
a normal distribution based on the average and standard deviation of the production yield
obtained from the historical data. The algorithms were implemented in Python 3.6, the
MILP and the RSOME models are solved with CPLEX version 12.10. The experiments
were run on Intel(R) Gold 6148/2.4GHz processors with 92G of RAM. All the models for
all the instances were solved until optimality.

First, we investigate the quality of the distributionally robust models compared to the
other optimization methods. We evaluate the models performance through a Monte Carlo
simulation with |Ω| = 1000 scenarios, where each scenario ω gives a possible production
yield rate ρω

it for each item i in each period t based on a uniform distribution with support
[ρ̄′

it − ρ̂′
it; ρ̄′

it + ρ̂′
it]. The expected value of perfect information EV PI gives a lower bound

on the costs, since EV PI is the cost from a deterministic formulation of the problem where
the true realization of the production yield is ρρρω. We evaluate each model by solving the
deterministic model for each scenario ω with the setups and lot size decisions fixed to the
values obtained from the optimization step. Next, we investigate the performance of the
same models in a case study presented in Section 4.4.3

4.4.2 Performance of the models

This section reports the performance and quality of production plans for LSP under
production yield uncertainty. Figure 4.1 and Figure 4.2 report the inventory management
levels of the production plans obtained for each method throughout the simulation. The
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characteristics of plans DRO compared to plans calculated with other optimization meth-
ods (namely SPN , SPU and RO). The graphs on the left of the figure represent the cases
where models are optimized based on historical data drawn from a uniform distribution
and production plans are also simulated following a uniform distribution. On the right
side we present the results of the simulation of the planes following a normal distribution.

Figure 4.1 – Stock level at the end of the production horizon

Figure 4.2 – Stockout at the end of the production horizon
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Figure 4.3 – Average expected cost of the production plans

Figure 4.4 – Average 95th percentile cost of the production plans

Figure 4.5 – Average 99th percentile cost of the production plans
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Figure 4.1 and Figure 4.2 show that, as MDRO is the most conservative DRO model,
it keeps the largest number of items in stock, which indicates a protection strategy against
uncertainties in production, avoiding stockouts. As a result, MDRO outperforms stochas-
tic programs that are much more susceptible to backorders due to a reduced amount of
items held in stock. Compared to RO, MDRO achieves better tradeoffs in the inventory
management activity. It uses all the knowledge on the available data to define an optimal
inventory level (much higher than that defined by RO) but which results in a very low
backlog level. As WDRO reduces the conservatism of the solution with θ, it leads to a
lower inventory level, which implies a small increase in stockouts. However, like MDRO,
it achieves a good tradeoff in inventory management, which leads to lower average costs
despite a higher occurrence of stockouts. WDRO outperforms the RO plans, with very
low inventory and backorder levels. In addition, few items are kept in stocks, or suffer from
stockouts, and the variability in the inventory and backorder levels is also reduced, even
if its backorder is higher than the one for the robust model in a case of misestimation.
Compared to the stochastic programs, WDRO is not only propose a lean production, but
it is also less impacted by misestimation and variabilities. However, the strategy adopted
by the DRO models achieves good cost savings as we present later (see Figure 4.3, Figure
4.4 and Figure 4.5).

It is expected that SP models take more risks of stock outs to reduce the inventory and
production costs, while RO plans produce a medium amount of goods and maintain a low
stock level that fully satisfy demands with occasional backorders [Metzker et al., 2023a].
Figure Figure 4.1 and Figure 4.2 show that when compared with the other optimization
methods, DRO models have larger lot sizes, which implies larger stock of goods and
backorder levels as sporadic and as low as possible. Note that the inventory and backorder
levels at the end of the production horizon confirms the production strategies of each
model. DRO models and RO models have the lowest backorder levels and the largest
stock of goods, even when the behaviour of the uncertain parameter is misestimated. In
fact, DRO models propose a strategy between robust and stochastic methods, which leads
to a medium stock level and makes the occurrence of backorders more frequent, yielding
a sufficiently robust and risk-sensitive production plan. In addition, DRO models are less
impacted by the misestimation of the uncertain parameter, since their results suffer lower
variation between the corrected estimation and the misestimation of the uncertain yield.

Figure 4.3, Figure 4.4 and Figure 4.5 report the impact of the realization of the pro-
duction yield on the expected costs, the 95th and 99th percentile costs, respectively, when
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the value of the production yield is correctly estimated (the charts in the left) and mis-
estimated (the charts in the right) on the simulation. The DRO models propose the best
costs, with the lowest average costs. Since MDRO is more conservative than WDRO,
WDRO present the best expected costs based on average scenarios (even for the case of
misestimation of the production yield), while MDRO yields the lowest costs in the more
pessimistic scenarios (here represented by the 95th and 99th percentile costs and also the
cases of misestimation of the uncertainty. Compared to the other methodologies, DRO

present the best production plans, with the lowest average costs and highest cost savings.
In addition, DRO presents the lowest variation on the costs based on the realization of
the production yield, based on the highest and lowest costs they yield on the simulation
and on the low variability presented in the right side of the figures.

Since DRO models use historical data-driven ambiguity sets, it provides a more robust
and cost-effective production plan. Contrarily to SP , DRO models are not sensitive to
the risk of misestimation of the probability, since they provide a plan that performs better
for contexts not considered within the stochastic program formulation. Therefore, DRO

solutions are still robust within a misestimated context, and they lead to lower costs
in both cases, when the uncertain yield is correctly estimated, and for the situation of
misestimation. Therefore, the experimental results indicate that DRO plans have a better
cost cutting strategy compared with robust or stochastic program solutions, while they
are more immunized from errors in predictions.

4.4.3 Case study

In this case study, we have the historical production yield rate data for 2 products in
four different scenarios, namely: machine down, machine with low battery, ambient tem-
perature and low temperature. From the available data, we obtain the average production
yield ρ̄its, the standard deviation of the production yield ρ̂its, and finally the upper and
lower output yield limits given by ρits and ρ

its
, respectively, for all elements i ∈ N , in

period t and scenario s. These data become the samples of our ambiguity set for DRO,
our uncertainty set for RO and the probability distribution for the SP models. Following
the simulation process presented in the Section 4.4.1, we compare the performance of the
models. To facilitate the analysis, we assume the same model for the representation of
uncertainty. In this case, we assume an optimization on a space close to a uniform dis-
tribution of the sample. Therefore, DRO is assumed to be the model MDRO and SP is
represented by SPU . Therefore, RO, SP and DRO are going to be compared when they
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are all optimized in a space bounded by the minimum and maximum measure of produc-
tion yields from the available data. We solve each model to optimality and simulate 1000
scenarios to analyse the performance of the obtained production plans.

Table 4.1 reports the characteristics of the simulated production plans. Column ∥X∥
gives the quantity of items produced, while Column ∥I∥ (resp. ∥B∥) gives the cumulative
stock (resp. backorder) over the production planning, Column ∥IT ∥ (resp. Column ∥BT ∥)
gives the amount of items kept on stock (resp. stockouts) at the end of the production
horizon, and, finally, Column ∥Y ∥ gives the frequency of setup over the entire production
hozizon. DRO produces more than RO and SP (with a difference of about 160 units),
reducing the stockout at the end of the production horizon in 25 units, with a maintenance
of larger level of stocks over the production horizon. Therefore, it is clear that DRO

adopts a strategy to maintain a sufficient amount of inventory to avoid cost overruns due
to stockouts and to be able to satisfy all demands regardless of dysfunctions in production
performance.

Table 4.1 – Characteristic of the production plans

Model ∥X∥ ∥I∥ ∥B∥ ∥IT ∥ ∥BT ∥ %∥Y ∥

EVPI 3,479 1,498 242 - 146 58.5%
DRO 3,649 1,847 164 145 163 62.0%
SP 3,489 1,538 196 25 188 62.0%
RO 3,486 1,538 196 23 189 62.0%

Table 4.2 reports the average costs from the simulation of the performance of the pro-
duction plans. Table 4.2 reports the overall costs, computational time, standard deviation
and coefficient variation for 20 instances with 2 items and 12 periods. We compare the
methods based on the average computational time (column Time, in seconds) from the
optimization, and the expected value (column Exp.Cost) of each solution approach eval-
uated in the simulation, along with the 75th, 95th and 99th percentile cost (p.c.), where
the 99th percentile cost gives the approximate behaviour of the models for an adverse
context. We also indicate the coefficient of variation CV of the costs, which gives the
percentage of variability of the costs in the simulation. Thus, CV gives the ratio of the
standard deviation to the mean, where a high CV indicates costs widely dispersed from
the average expected cost.

Table 4.2 shows that the DRO models outperform the stochastic programs and the
robust models for all criteria but the computational time. Although RO models are faster
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Table 4.2 – Performance of the models in a real application

Model Exp. Cost 95th p.c. 99th p.cc Time CV
EVPI 1,460,799 1,483,854 1,496,477 2.83%
DRO 1,495,142 1,527,551 1,546,791 0.08 3.00%
SP 1,496,609 1,546,409 1,577,002 0.02 3.47%
RO 1,496,421 1,545,033 1,575,301 0.01 3.46%

to be computed , DRO leads to greater cost savings (since the expected costs and even the
99th percentile costs with DRO are lower than the costs with RO) and higher robustness
(since its coefficient of variation is the lowest) in an average situation. In fact, the DRO

expected cost represents a cost saving of 1.2K compared to RO, and about 1.5K compared
to SP . DRO also has a reduction of 17.5K and 18.9K (resp. 28.5K and 30.2K) on the
95th percentile costs (resp. 99th percentile costs) compared to RO and SP , respectively. In
addition, DRO coefficient of variation is reduced by 13% and 14% when compared with
RO and SP , respectively. Regarding the computational time, Table 4.2 all the models are
easily computed. Therefore, scalability is not a strategical nor operational issue.
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4.5 Conclusion

In this chapter, we have introduced the distributionally robust formulation for multi-
item multi period lot-sizing under yield uncertainty. We show that with a scenario-wise
ambiguity set the problem can be easily solved with the help of a python library, and it
can also be reformulated as a MILP robust model. Our experimental results show that al-
though the distributionally robust models suffer from scalability issues for large instances
and large ambiguity sets, distributionally robust LSP models propose sufficiently robust
production plans that integrate a good cost cutting strategy and lower risk sensitive-
ness to the realization of the production yield. Other major advantages of the event-wise
distributionally robust optimization over the other considered approaches are that the
construction of the ambiguity set is data driven, free from strong assumptions about un-
certain parameter patterns. Further investigation is still needed to improve the quality of
the distributionally robust formulations, and to reduce their sensitivity to greater distur-
bance on the uncertain production yield for adverse scenarios. A decomposition approach
is also envisaged to improve the quality of the distributionally robust production plans
and obtain better bounds with less computational effort. In addition, an extension of this
distributionally robust model with a clustering-based ambiguity set is envisaged to bring
the proposed model closer to real-world applications.
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Chapter 5

CONCLUSION AND PERSPECTIVES

This thesis considers the robust and adaptive robust single-item multi-period lot-
sizing problems with backorders and uncertain production yield, and it intends to provide
a data-driven robust approach to handle the multi-item version of the problem via the
distributionally robust optimization. Since the adaptive robust model is difficult to solve
due to its non-fixed recourse that relates the uncertain production yield to the adaptive
lot size decisions, we propose an approximation and a column and constraint generation
approach to compute adaptive robust plans with commercial solvers. The growing interest
about data-driven techniques to define lot-sizing decisions has motivated us to study a dis-
tributionally robust model for the multi-item lot-sizing problem under yield uncertainty.
We show that with an event-wise ambiguity set the problem can be easily solved with the
help of a python library, and the it can also be reformulated as a MILP robust model.
Furthermore, we provide different methodological strategies to easily compute sufficiently
robust lot-sizing decisions, and thus help manufacturers to enhance the system to better
account for shop floor volatility.

To conclude this manuscript, in this section first we highlight the managerial con-
tributions, then we summarise the methodological contributions, and finally, we review
the conclusions from our numerical experiments in order to indicate some perspectives of
research.
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5.1 Managerial contributions

Figure 5.1 summarises the managerial insights gained from the work carried out. It is
evident that the conservatism of the solution can be reduced by controlling the decision
maker aversion to risk. It is also really recommended to integrate more up to date informa-
tion to the model in order to improve the quality of the production plan, and even make
the final model closer to real cases. In fact, the large amount of data that can nowadays
be collected from the shop floor allows inferring more accurate information on the LSP
parameters and their variability. It allows us to avoid the natural nervousness arising from
the decision making process based on distributive information and from misestimating of
the production context with the help of a robust perspective of the optimization process.

Figure 5.1 – Managerial insights from the contributions

Figure 5.1 also highlights some guidance to identify the best strategy and modeling to
handle different production contexts. For instance, when facing rigid production systems
where changes are not easily implementable, one should apply the RO methods. However,
when facing adaptive production systems for which new accurate information is available,
one could decide between the ARO and the C&CG approach. The first is more suitable
for cases where risks are acceptable and only a good average performance should be
guaranteed. If a complete and exact comprehension of the impact of the uncertainty
of the costs is needed, then the later and optimal adaptive robust approach should be
used. Finally, in a production context with various sources of uncertainty for which the
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estimation of the uncertain parameter can be complex or hard to perform, then it would be
better to use D R methods. Here, any information, accurate or not, new or historical, can
be integrated in the system to improve the quality of the obtained production plan, yet still
robust and mitigate nervousness. With respect to the reduction of the conservatism, we
learned how the manufacturer risk aversion could be integrated into the robust modeling
to respond to this strategic need.

The adaptive approximation should be adopted in adaptive production systems when
an average optimal performance in terms of quantities and costs is enough for reassuring
the decision maker about the quality and the robustness of the production plan. Since the
problem is relaxed and not handled in its entire complexity , a lower computational effort
is required to compute a solution. However, there is an increase of the risk sensitivity of
the model to changes in the production. On the other hand, the optimal solution obtained
by the decomposition approach is recommended for systems where an exact comprehen-
sion of the impact of the yield on the costs is needed. It allows us to compute optimal
adaptive robust plans for the problems in its real complexity (even if the complexity from
the quadratic uncertainty is indirectly handled). This leads to more conservative solutions,
where the risks taken by the decision maker are fully controlled, at the expense of higher
computational effort which compensates the robustness of an adaptive plan fully immu-
nized from adverse events. Hence, the adaptive strategy helps us to adapt the system to
react to the availability of new and accurate data, while a data-driven decision process
has made possible through the distributionally robust method.
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5.2 Methodological contributions

Figure 5.2 summarizes the methodological contributions proposed in this manuscript.
First, it was proposed a state of the art on stochastic LSPs and the recent trends to handle
with it. The Figure shows that, as analytical contribution, we proposed properties to
define robust and adaptive robust optimal lot size decisions, which can guide the decision
maker on its decision process. It was also derived an optimal robust policy and a myopic
adaptive robust policy that disregards the impact of the uncertain yield on future costs of
the system. In a technical-computational perspective, a dynamic program for the static
strategy, a decomposition method for the static-dynamic strategy and a rolling horizon
simulation of the dynamic strategy were also provided to easily compute optimal plans. In
a modeling perspective, the manuscript presents the first models on the lot-sizing literature
that addresses the production yield uncertainty in a robust perspective. It also provides
MILP formulations to easily compute robust, adaptive robust and distributionally robust
plans.

Figure 5.2 – Methodological insights from the contributions

176



5.3 Final discussion and perspectives

Our results show that with a proper budget of uncertainty, the robust model mitigates
uncertainties with a balance between production quantities, setup costs, and inventory
management costs. In addition, the robust optimization method requires less computa-
tional effort than stochastic programming, and its solutions are less conservative, yet more
robust, compared to the classical approaches to dealing with uncertainties on LSPs (repre-
sented here by the nominal problem and the deterministic problem with safety stock). The
adaptive approach offers a production plan that is both robust and easily changeable in an
adaptive decision context, while the production system remains immunized from uncer-
tain production yield. Finally, our experiments indicate that although the distributionally
robust models suffer from scalability issues for large instances and large ambiguity sets,
the distributionally robust production plans provide cost savings and lower risk sensitivity
to the realization of the production yield.

Figure 5.3 – Perspective of research

Figure 5.3 gives some of the research perspectives. The immediate extension of the
current work is to design a decomposition approach to solve large DR problems easily. It
is also intended to handle real cases with it to measure the quality of the method when
real errors or misestimating are taken into account. In addition, we can cite some perspec-
tives of research. The extension of the robust models for the multi-item and multi-echelon
variants would bring the formulation closer to real applications, as well as the integration
of different uncertainties in the same model, for example combining the uncertain demand
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and uncertain lead time with the production yield rate. It would also be interesting to
develop a tractable formulation do directly compute an A R production plan. For the
distributionally robust model, it is intended to develop a clustering based ambiguity set.
As a result, we could work with different features and measurements describing the un-
certainty in a same ambiguity set. And finally, case studies would be great tools to better
analyse the benefits and impact of robust decisions on the production process under yield
uncertainty.

Figure 5.3 also shows that further investigation is still needed to extend the robust
perspective on lot-sizing problems under yield uncertainty to the multi-item and multi-
echelon version of problems. Other extensions of the problem, such as the integration
of different uncertainties are also envisaged to better represent real case applications.
Additional studies are also needed to improve the quality of the distributionally robust
formulations and to reduce their risk sensitiveness to greater disturbance on the uncertain
production yield considering adverse scenarios. A decomposition approach is also envis-
aged to improve the quality of the distributionally robust production plans and obtain
better bounds with less computational effort. In addition, an extension of this distribu-
tionally robust model a clustering-based ambiguity set is envisaged to bring the proposed
model closer to real-world applications.
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A.1 Proof of Proposition 2.3.1
Proof. In the robust single-period inventory management problem under box uncertainty
set, the worst inventory (resp. backorder) cost corresponds to the largest (resp. lowest)
production yield, and this situation corresponds to Z = 1 (resp. Z = −1). For this special
case, we denote by Î(X) the worst inventory cost and by B̂(X) the worst backorder cost.
These costs depend only on the lot size X, and they are given as follows:

Î(X) = max {h [X(ρ̄+ ρ̂) − d] , 0} B̂(X) = max {b [d−X(ρ̄− ρ̂)] , 0}

The total cost TC = Î(X) + B̂(X) is piecewise linear convex in the lot size X, and it
reaches its minimum when Î(X) = B̂(X).
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A.2 Proof of Proposition 2.3.2

Proof. Since the optimal policy achieves its minimum cost when the worst inventory cost
is equal to the worst backorder cost, from Proposition 2.3.1, we can directly derive the
optimal policy as the production quantity X for which Î(X) = B̂(X). Thus, with a little
algebra, we can isolate X in the equality h [X(ρ̄ + ρ̂) − d] = b [d − X(ρ̄ − ρ̂)], that results
in our optimal robust policy X = d

ρ̄+ρ̂(h−b
h+b )

.
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A.3 Proof of Proposition 2.3.3

Proof. As in the proof for the single-period problem, we define the inventory and backorder
costs in terms of the production quantities X[t] and disturbance from the mean Z[t] up to
period t as follows:

It(X[t], Z[t]) = max
{
ht

t∑
τ=1

[
Xτ (ρ̄+ ρ̂Zt

τ ) − dτ

]
; 0
}

Bt(X[t], Z[t]) = max
{
bt

t∑
τ=1

[
dτ −Xτ (ρ̄+ ρ̂Zt

τ )
]

; 0
}

where X[t] (resp. Z[t]) is the vector of Xτ (resp. Zτ
q ) ∀τ ≤ t; q ≤ τ . We assume that

the values of Zt
τ are chosen independently for each period t. Therefore, the worst case

perspective in a period t sets Zt
τ to 1 (for inventory) or −1 (for backorder) for all τ ≤ t.

Let us define the cumulative demand as D̄t = ∑t
τ=1 dτ and the cumulative production

quantity up to period t as X̄t = ∑t
τ=1 Xτ . The worst inventory cost (Ît(X̄t)) and the

worst backorder cost (B̂t(X̄t)) in period t can be written as follows:

Ît(X̄t) = max
{
ht

[
X̄t(ρ̄+ ρ̂) − D̄t

]
; 0
}

B̂t(X̄t) = max
{
bt

[
D̄t − X̄t(ρ̄− ρ̂)

]
; 0
}

The total cost TCt for period t is given by TCt = vtXt + Ît(X̄t) + B̂t(X̄t). TCt is a
piecewise linear convex function in X̄t. From Proposition 2.3.1, TCt reaches its minimum
when Ît(X̄t) = B̂t(X̄t). When vt ≥ 0, the function defining the total cost at period
t only has an upward shift equivalent to the total production costs in period t where
Ît(X̄t) = B̂t(X̄t). The period where the minimum is reached does not change. Therefore,
the condition vt ≤ (ρ̄ − ρ̂)bt indicates that it is profitable to produce while the production
cost is lower than the backorder cost for the worst realization of the production yield, that
is, for the lowest production yield rate. Note that if vt > (ρ̄ − ρ̂)bt, the production cost
becomes larger than the backorder cost, and TCt is a strictly increasing function. Thus,
TCt reaches its minimum when Ît(X̄t) = B̂t(X̄t), if condition vt ≤ (ρ̄ − ρ̂)bt is respected.

Since the cumulative demand increases with t, we seek for the cumulative production
quantities that optimize the total cost for each period and lead to a minimization of the
sum maximum cost over the horizon up to t. With a little algebra, from the equality
Ît(X̄t) = B̂t(X̄t), we define the optimal robust cumulative policy for each period t as
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follows:
X̄t = D̄t

ρ̄+ ρ̂
(

ht−bt
ht+bt

) =
∑t

τ=1 dτ

ρ̄+ ρ̂
(

ht−bt
ht+bt

) (A.1)

Since the production in period t is equivalent to the difference between the cumulative
production up to t given by X̄t and the cumulative production up to period t − 1 given
by X̄t−1, with a little algebra we define the optimal robust policy for the multi-period
inventory management problem under box uncertainty set and yield uncertainty, and
with non-stationary inventory and backorder costs as follows:

Xt = X̄t −X̄t−1 = D̄t

ρ̄+ ρ̂
(

ht−bt
ht+bt

)− D̄t−1

ρ̄+ ρ̂
(

ht−1−bt−1
ht−1+bt−1

) =
ρ̄dt + ρ̂

[(
ht−1−bt−1
ht−1+bt−1

)
D̄t −

(
ht−bt
ht+bt

)
D̄t−1

]
(
ρ̄+ ρ̂

(
ht−bt
ht+bt

)) (
ρ̄+ ρ̂

(
ht−1−bt−1
ht−1+bt−1

))
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A.4 Proof of Proposition 2.3.6

Proof. Since our dynamic program relies on Proposition 2.3.4 and Proposition 2.3.5, it
addresses the uncapacitated LSPs under a box uncertainty set, with uncertain yield, with
non-stationary costs and demands, and with stationary nominal value and maximum de-
viation of the production yield. Clearly, the execution time is dominated by the search for
successive regeneration intervals and their respective setup periods for each t in function
F (t). The search for the best production setup β and regeneration interval [m, n] that
gives the minimal MCI(m, β, n) cost takes at most O(T 2). One should also consider the
function MCR(r, T ) that minimizes the costs from the last regeneration period to the end
of the planning horizon in O(T ) run time. However, O(T ) is dominated by O(T 2). Since
dominated complexities can be ignored, then we only consider O(T 2). With the forward
approach, we can access previously computed values in O(1). Thus, the recursive function
F (t) takes only O(1) to access the values for F (τ), τ < t. Running the dynamic program
calls T times the recursive function F (t). Consequently, the dynamic program takes at
most O(T 3) run time to propose a solution over the entire planning horizon.
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A.5 The newsboy-based LSP under yield uncertainty

Khouja [1999] present an excellent review on the single period newsboy problem. An
introduction to the problem under yield uncertainty is presented by Noori and Keller
[1986]. Some considerations about the lot sizing as a single-stage, single-item, multi-period
newsboy problem with deterministic demand random yields was proposed in Yano [1989].
The authors present the dynamic program for the newsboy-based formulation of the LSP
with uncertain yield. Inspired by the newsboy-based LSP formulation proposed by Yano
[1989], for each period t ∈ T , we can implement a newsboy-based problem (NB) to deal
with a lot-sizing problem with uncertain yield with a lot-for-lot policy that is given as
follows:

NB : min E(Zt) = vtQt + bt

∫ βt

0
(dt − ρtQt)f(ρ)dρ + ht

∫ 1

βt

(ρtXt − dt)f(ρ)dρ

where βt = dt

Qt
is the expected production yield rate, and Qt the production quantity in

period t.
The conditions for minimization optimality are Q∗

t ⇔ ∂E(Zt)
∂Qt

= 0; ∂2E(Zt)
∂Q2

t
≥ 0. We have

∂E(Zt)
∂Qt

= vt +htρ̄t +(bt +ht)E(β) as a first condition for optimality. Therefore, production
happens if and only if the first condition of optimality is met. Thus, we may produce
when:

∂E(Z∗
t )

∂Q∗
t

= vt + htρ̄tE

(
dt

dt

= 1
)

+ (bt + ht)E(β∗
t ) = 0 ∴ E(β∗

t ) = vt + htρ̄t

bt + ht

where β∗
t = dt

X∗
t
. The second condition for optimality is ∂2E(Zt)

∂Q2
t

= (bt+ht)d2
t

Q3
t

. The optimality
conditions say that given the expected production yield we may produce at least Qt = dt

otherwise, we may backorder the demands. Then, if any production is made, we have
∂2E(Zt)

∂Q2
t

≥ 0.
For the capacitated LSP, we check if the quantity to be produced respects the resource

availability. Any quantity not supported by available capacity must be backordered. We
repeat this process over the production planning horizon to compute the optimal newsboy-
based LSP solution.
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A.6 The deterministic LSP with safety stock
Inspired by the work of Absi and Kedad-Sidhoum [2009], we consider DETSS, the

deterministic LSP with production yield ρt and safety stock SSt, which is given as follows:

min
∑
t∈T

stYt + vtXt + htIt + btBt

s.t. :

It −Bt = It−1 −Bt−1 + ρtXt − dt ∀t ∈ T

Xt ≤ MtYt ∀t ∈ T

It ≥ SSt ∀t ∈ T

Xt, It, Bt ≥ 0 ∀t ∈ T

Yt ∈ {0, 1} ∀t ∈ T

We compute the safety stock with the newsboy-based solution, such that SSt = Qt−dt,
where Qt is the production quantity defined with NB. This leads to a situation where
backorders and inventory can occur in the same period, so that safety stock that is not
respected is penalized through backorder costs.
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A.7 The two-stage stochastic programming LSP with
uncertain production yield

SP handles uncertainty through a mathematical program whose objective is to mini-
mize the expected cost [Birge and Louveaux, 2011]. The uncertain parameter is described
by a probability distribution and some statistical indicators (e.g., mean and standard de-
viation) that are usually gathered by processing and analysis of data from historical data
and other available data about the decision system. The stochastic programs are a natural
benchmark to compare the production plans proposed by other methodologies and verify
their performance and quality.

To evaluate the performance of our robust model, we propose a scenario-based stochas-
tic program to represent the lot-sizing problem under yield uncertainty, based on the case
study presented by Kazemi Zanjani et al. [2010]. While the authors present a multi-stage
formulation which deals with a dynamic decision problem, our work addresses a static
decision strategy. A two stage approach corresponds to a static decision in which the plan
for the entire production horizon is defined before the realization of the uncertainty. Since
our work investigates the static version of the LSP with uncertain yield, a two stage model
is a more appropriate benchmark to measure the quality of the static robust model. We
consider a set Ω of possible yield scenarios, where each scenario ω has a probability pω of
realization. ρω

t is the realization of the uncertain yield for the period t of in scenario ω.
The two-stage stochastic program for the LSP with uncertain yield is given as follows:

min
∑
ω∈Ω

pω

∑
t∈T

stYt + vtXt + htI
ω
t + btB

ω
t

s.t. :

Iω
t −Bω

t = Iω
t−1 −Bω

t−1 + ρω
t Xt − dt ∀t ∈ T ; ω ∈ Ω

Xt ≤ Mt · Yt ∀t ∈ T

Xt ≥ 0 ∀t ∈ T

Iω
t , B

ω
t ≥ 0 ∀t ∈ T ; ω ∈ Ω

Yt ∈ {0, 1} ∀t ∈ T

Although SP is largely applied within optimization under uncertainties, this approach
often suffers from scalability issues, being computationally prohibitive, and requiring ad-
vanced techniques to generate possible scenarios. For this, as many scenarios as possible
are generated in order to reflect the uncertainty distribution, even though the number of
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scenarios may be limited to restrict the computational efforts. For our numerical exper-
iments, we used this stochastic problem with 500 scenarios, where the yield realizations
are randomly drawn from a uniform distribution with support [ρ̄t − ρ̂t; ρ̄t + ρ̂t] for each
period t.
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B.1 Adaptive robust reformulations per constraints
and dualization

In this section, we present the dualization proposed for each constraint subject to
uncertainty in period t. This dualization consists of the second step of the reformulation
per constraint and dualization approach applied to the adaptive lot-sizing problem under
yield uncertainty. a) Dual formulation for Constraints (3.7b)

max
∑t−1

τ=1 ρ̂τ (vtX
τ
t +Hτ

t )Zτ
t min Γtγt +

∑t−1
τ=1(ατ

t + δτ
t )∑t−1

τ=1 Rτ ≤ Γt γt − α
′τ
t − δ

′τ
t ≥ 0 ∀ τ < t

Zτ
t ≤ 1 ∀ τ < t −−−−−→

dualized
ατ

t − δτ
t + α

′τ
t − δ

′τ
t = ρ̂τ (vtX

τ
t +Hτ

t ) ∀ τ < t

−Zτ
t ≤ 1 ∀ τ < t γt ≥ 0 ∀ τ < t

−Rτ + Zτ
t ≤ 0 ∀ τ < t ατ

t , α
′τ
t , δ

τ
t , δ

′τ
t ≥ 0 ∀ τ < t

−Rτ − Zτ
t ≤ 0 ∀ τ < t

Rτ ≥ 0 ∀ τ < t

Zτ
t ∈ R ∀ τ < t

b) Dual formulation for Constraints (3.8)
Replacing the uncertain yield and the adjustable variables by their respective param-

eterizations, and developing a little algebra in Constraints (3.7c) leads to:

H0
t +

t−1∑
τ=1

Hτ
t ρτ ≥ ht

t∑
τ=1

[
ρτ (X0

τ +
τ−1∑
r=1

Xr
τρr) − dτ

]
∀ t ∈ T

H0
t +

t−1∑
τ=1

Hτ
t (ρ̄τ + ρ̂τZ

τ
t ) ≥ ht

t∑
τ=1

[
(ρ̄τ + ρ̂τZ

τ
t )[X0

τ +
τ−1∑
r=1

Xr
τ (ρ̄r + ρ̂rZ

r
t )] − dτ

]
∀ t ∈ T

H0
t +

t−1∑
τ=1

ρ̄τH
τ
t +

t−1∑
τ=1

ρ̂τH
τ
t Z

τ
t ≥ ht

[
t∑

τ=1

(
ρ̄τX

0
τ − dτ +

τ−1∑
r=1

ρ̄τ ρ̄rX
r
τ

)]
+ ht

[
t∑

τ=1

(
ρ̂τX

0
τ +

τ−1∑
r=1

ρ̂τ ρ̄rX
r
τ

)
Zτ

t

]

+ht

[
t∑

τ=1

τ−1∑
r=1

ρ̄τ ρ̂rX
r
τZ

r
t

]
+ ht

[
t∑

τ=1

τ−1∑
r=1

ρ̂τ ρ̂rZ
τ
t X

r
τZ

r
t

] ∀ t ∈ T

H0
t +

t−1∑
τ=1

ρ̄τH
τ
t ≥ ht

[
t∑

τ=1

(
ρ̄τX

0
τ − dτ +

τ−1∑
r=1

ρ̄τ ρ̄rX
r
τ

)]
+
[

t−1∑
τ=1

(
htρ̂τX

0
τ − ρ̂τH

τ
t +

τ−1∑
r=1

htρ̂τ ρ̄rX
r
τ

)
Zτ

t

]

+ht(ρ̂tX
0
t +

t−1∑
τ=1

ρ̂tρ̄τX
τ
t )Zt

t + ht

[
t∑

τ=1

τ−1∑
r=1

ρ̄τ ρ̂rX
r
τZ

r
t

]
+ ht

[
t∑

τ=1

τ−1∑
r=1

ρ̂τ ρ̂rZ
τ
t X

r
τZ

r
t

] ∀ t ∈ T

We concentrate our analysis on the case that ignores the quadratic term, thus we
consider the following reformulation of Constraints (3.8):
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H0
t +

t−1∑
τ=1

ρ̄τH
τ
t ≥ ht

[
t∑

τ=1

(
ρ̄τX

0
τ − dτ +

τ−1∑
r=1

ρ̄τ ρ̄rX
r
τ

)]
+
[

t−1∑
τ=1

(
htρ̂τX

0
τ − ρ̂τH

τ
t +

τ−1∑
r=1

htρ̂τ ρ̄rX
r
τ

)
Zτ

t

]

+ht(ρ̂tX
0
t +

t−1∑
τ=1

ρ̂tρ̄τX
τ
t )Zt

t + ht

[
t∑

τ=1

τ−1∑
r=1

ρ̄τ ρ̂rX
r
τZ

r
t

] ∀ t ∈ T

The dualization of the terms that take into account the disturbance Z in constraints
is given as follows:

max
∑t−1

τ=1

(
ρ̂τ

(
htX

0
τ −Hτ

t

)
+ ht(

∑τ−1
r=1 ρ̂τ ρ̄rX

r
τ +

∑t
r=τ+1 ρ̂τ ρ̄rX

τ
r )
)
Zτ

t + ht

(
ρ̂tX

0
t +

∑t−1
τ=1 ρ̂tρ̄τX

τ
t

)
Zt

t

∑t
τ=1 Rτ ≤ Γt

Zτ
t ≤ 1 ∀ τ ≤ t

−Zτ ≤ 1 ∀ τ ≤ t

−Rτ + Zτ
t ≤ 0 ∀ τ ≤ t

−Rτ − Zτ
t ≤ 0 ∀ τ ≤ t

Zτ
t ∈ R ∀ τ ≤ t

Rτ ≥ 0 ∀ τ ≤ t

dualized

min Γtλt +
∑t

τ=1(µτ
t + ετ

t )
µτ

t − ετ
t + µ

′τ
t − ε

′τ
t = ρ̂τ

(
htX

0
τ −Hτ

t

)
+ ht(

∑τ−1
r=1 ρ̂τ ρ̄rX

r
τ +

∑t
r=τ+1 ρ̂τ ρ̄rX

τ
r ) ∀ τ < t

λt − µ
′τ
t − ε

′τ
t ≥ 0 ∀ τ < t

µt
t − εt

t + µ
′t
t − ε

′t
t = ht

(
ρ̂tX

0
t +

∑t−1
τ=1 ρ̂tρ̄τX

τ
t

)
λt − µ

′t
t − ε

′t
t ≥ 0

λt ≥ 0
µτ

t , µ
′τ
t , ε

τ
t , ε

′τ
t ≥ 0 ∀ τ < t

c) Dual formulation for Constraints (3.9)

Similarly to the formulation presented for Constraints (3.8), we have
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max
∑t−1

τ=1

(
−ρ̂τ

(
btX

0
τ +Hτ

t

)
− bt(

∑τ−1
r=1 ρ̂τ ρ̄rX

r
τ +

∑t
r=τ+1 ρ̂τ ρ̄rX

τ
r )
)
Zτ

t − bt

(
ρ̂tX

0
t +

∑t−1
τ=1 ρ̂tρ̄τX

τ
t

)
Zt

t

∑t
τ=1 Rτ ≤ Γt

Zτ
t ≤ 1 ∀ τ ≤ t

−Zτ
t ≤ 1 ∀ τ ≤ t

−Rτ + Zτ
t ≤ 0 ∀ τ ≤ t

−Rτ − Zτ
t ≤ 0 ∀ τ ≤ t

Zτ
t ∈ R ∀ τ ≤ t

Rτ ≥ 0 ∀ τ ≤ t

dualized

min Γtψt +
∑t

τ=1(ϖτ
t + ξτ

t )
ϖτ

t − ξτ
t +ϖ

′τ
t − ξ

′τ
t = −ρ̂τ

(
btX

0
τ +Hτ

t

)
− bt(

∑τ−1
r=1 ρ̂τ ρ̄rX

r
τ +

∑t
r=τ+1 ρ̂τ ρ̄rX

τ
r ) ∀ τ < t

ψt −ϖ
′τ
t − ξ

′τ
t ≥ 0 ∀ τ < t

ϖt
t − ξt

t +ϖ
′t
t − ξ

′t
t = −bt

(
ρ̂tX

0
t +

∑t−1
τ=1 ρ̂tρ̄τX

τ
t

)
ψt −ϖ

′t
t − ξ

′t
t ≥ 0

ψt ≥ 0
ϖτ

t , ϖ
′τ
t , ξ

τ
t , ξ

′τ
t ≥ 0 ∀ τ < t

d) Dual formulation for Constraints (3.7e)

max
∑t−1

τ=1 ρ̂τX
τ
t Z

τ
t min Γtηt +

∑t−1
τ=1(βτ

t + θτ
t )∑t−1

τ=1 Rτ ≤ Γt ηt − β
′τ
t − θ

′τ
t ≥ 0 ∀ τ < t

Zτ
t ≤ 1 ∀ τ < t −−−−−→

dualized
βτ

t − θτ
t + β

′τ
t − θ

′τ
t = ρ̂τX

τ
t ∀ τ < t

−Zτ
t ≤ 1 ∀ τ < t ηt ≥ 0

−Rτ + Zτ
t ≤ 0 ∀ τ < t βτ

t , β
′τ
t , θ

τ
t , θ

′τ
t ≥ 0 ∀ τ < t

−Rτ − Zτ
t ≤ 0 ∀ τ < t

Rτ ≥ 0 ∀ τ < t

Zτ
t ∈ R ∀ τ < t

e) Dual formulation for Constraints (3.7f)
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min
∑t−1

τ=1 ρ̂τX
τ
t Z

τ
t max −Γtϕt −

∑t−1
τ=1(πτ

t + χτ
t )

−
∑t−1

τ=1 Rτ ≥ −Γt ϕt − π
′τ
t − χ

′τ
t ≥ 0 ∀ τ < t

−Zτ
t ≥ −1 ∀ τ < t −−−−−→

dualized
−πτ

t + χτ
t − π

′τ
t + χ

′τ
t = ρ̂τX

τ
t ∀ τ < t

Zτ
t ≥ −1 ∀ τ < t ϕt ≥ 0

Rτ − Zτ
t ≥ 0 ∀ τ < t πτ

t , π
′τ
t , χ

τ
t , χ

′τ
t ≥ 0 ∀ τ < t

Rτ + Zτ
t ≥ 0 ∀ τ < t

Rτ ≥ 0 ∀ τ < t

Zτ
t ∈ R ∀ τ < t

f) Dual formulation for Constraints (3.7g)

min
∑t−1

τ=1 ρ̂τH
τ
t Z

τ
t max −Γtϵt −

∑t−1
τ=1(στ

t + κτ
t )

−
∑t−1

τ=1 Rτ ≥ −Γt ϵt − σ
′τ
t − κ

′τ
t ≥ 0 ∀ τ < t

−Zτ
t ≥ −1 ∀ τ < t −−−−−→

dualized
−στ

t + κτ
t − σ

′τ
t + κ

′τ
t = ρ̂τH

τ
t ∀ τ < t

Zτ
t ≥ −1 ∀ τ < t ϵt ≥ 0

Rτ − Zτ
t ≥ 0 ∀ τ < t στ

t , σ
′τ
t , κ

τ
t , κ

′τ
t ≥ 0 ∀ τ < t

Rτ + Zτ
t ≥ 0 ∀ τ < t

Rτ ≥ 0 ∀ τ < t

Zτ
t ∈ R ∀ τ < t
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B.2 The robust LSPs with yield uncertainty model
We remind readers of the robust LSP with uncertain production yield proposed by

Metzker et al. [2023a], that is given as follows:

min
∑
t∈T

stYt + vtXt +Ht (B.1)

s.t. :

Ht ≥ ht max
ρ̃∈Ut

[
t∑

τ=1
(ρ̃τXτ − dτ )

]
∀ ∈ T (B.2)

Ht ≥ −bt max
ρ̃∈Ut

[
t∑

τ=1
(ρ̃τXτ − dτ )

]
∀ t ∈ T (B.3)

Xt ≤ MtYt ∀ t ∈ T

Xt, Ht ≥ 0 ∀ t ∈ T

Yt ∈ {0, 1} ∀ t ∈ T

where ρ̃t is the uncertain yield in the budgeted uncertainty set Ut. For each period t,
the budgeted uncertainty set is given by Ut = {−1 ≤ Zt ≤ 1 : ∑t

τ=1 |Zt
τ | ≤ Γt}.
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B.3 Performance of the AROΓ linear approximations

In this section, we investigate their performance of the linear approximations for the
capacitated version of the problem. We recall that ARO0

Γ refers to the linear approximation
that omit the quadratic terms, whereas the ARO1

Γ model replaces the quadratic terms by
1 such a way the inventory management costs are as high as possible.

Table B.1 – Result comparisons of the capacitated ARO0
Γ and ARO1

Γ models

ARO0
Γ ARO1

Γ C&CGΓ
Γ Exp. Cost 99thp.c. Time CV Exp. Cost 99thp.c. Time CV Exp. Cost 99thp.c. Time CV
0.1T 596404 676540 2.5 5.63% 650394 737784 0.9 10.42% 605300 683398 53 5.55%
0.2T 608438 678528 2.0 4.63% 657433 733167 1.7 9.10% 627972 707360 61 5.15%
0.3T 608750 665814 2.0 4.11% 638314 764943 1.9 6.98% 592309 656176 82 4.47%
0.4T 554899 609310 1.5 4.32% 622313 702454 2.2 5.38% 629111 691160 122 4.16%
0.5T 507478 559888 1.3 4.58% 597079 680908 2.2 5.53% 608804 668834 180 4.33%
0.6T 608388 660711 1.4 4.12% 617024 695733 2.1 5.2% 629265 683915 184 4.01%
0.7T 608362 661090 1.2 4.15% 615577 693255 2.0 5.18% 639830 698554 263 4.29%
0.8T 618258 672314 1.0 4.26% 615051 690595 1.9 5.15% 631537 690523 141 4.34%
0.9T 608481 661027 1.0 4.15% 618232 692787 1.7 5.11% 644250 703460 120 4.4%
T 611931 663306 0.9 4.16% 619104 693349 1.5 5.12% 637219 696036 161 4.62%

Table B.1 indicates that ARO0
Γ gives the best simulated results. ARO0

Γ has the lowest
average costs, about 593139 over all budgets of uncertainty compared to the average
expected cost of 625052 for ARO1

Γ. Furthermore, ARO0
Γ has the lowest variation in costs

with a coefficient of variation of about 4.4%, while ARO1
Γ has a CV of about 6.45% for all

ΓΓΓ. However, both models converge to the same optimal adaptive solution with the help of
the decomposition method C&CGΓ, with average expected cost of 624560 over all ΓΓΓ and
a CV of about 4.5%.
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B.4 Average cost and solution quality of the pro-
posed models

This section indicates the quality of the production plans based on the uncapacitated
and capacitated models. To investigate the performance of the adaptive models, we anal-
yse the average and worst case performance of the models in their uncapacitated and
capacitated versions. The results in Table B.2 (for the capacitated models) and Table
B.3 (for the capacitated models) provide insights for decision-makers on the approach
to deal with the uncertain production yield within a static-dynamic strategy. Table B.2
and Table B.3 report the results for ROΓ, AROΓ, and C&CGΓ over all the instances. All
models are solved to optimality, and we evaluate their costs depending on ΓΓΓ, where the
case with Γ = T is the most conservative solution that corresponds to the box uncertainty
set. These tables give the following outcomes from the simulation step: the 95th percentile
costs (95th p.c. column), the 99th percentile costs (99th p.c. column), and the coefficient
of variation (CV column).

From the optimization step, Table B.2 reports the computational time (Time col-
umn), in seconds, for each model for each ΓΓΓ, and the average number of iterations per-
formed by C&CGΓ to obtain an optimal solution (Iter column). These tables also show
the relative suboptimality between an optimization method and the optimal adaptive
model. We assume GAPARO (resp. GAPRO) as the relative suboptimality between C&CGΓ

and AROΓ (resp. ROΓ). The relative suboptimality indicates the difference between the
objective function value Obj(C&CGΓ) computed by C&CGΓ, and the objective function
value Obj(AROΓ) (resp. Obj(ROΓ)) computed by AROΓ (resp. ROΓ), and it is given by
GAPARO = 100 × Obj(AROΓ) − Obj(C&CGΓ)

Obj(C&CGΓ)

(
resp. GAPRO = 100 × Obj(ROΓ) − Obj(C&CGΓ)

Obj (C&CGΓ)

)
. Note

that this relative suboptimality compare the objective value computed by the linear ap-
proximation with regard to the objective value computed by the decomposition method
for the setup and lot size decision fixed as the values obtained from the approximation.
Therefore, we compute the actual cost difference from the linear approximation and an
adaptive solution that considers the robust adaptive model in its full complexity (with
more real quadratic terms).

Table B.2 reports the experimental results of the uncapacitated models. AROΓ and
C&CGΓ outperform ROΓ in terms of average costs in the simulation since the 95th per-
centile costs of AROΓ (resp. C&CGΓ) are about 16.2% (resp. 13.9%) lower than the 95th

percentile costs obtained with ROΓ. In addition, the 99th percentile costs of AROΓ (resp.
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C&CGΓ) are 19.3% (resp. 16.7%) lower than the one computed with the static solution.
Not only do the adaptive solutions give better production plans in terms of cost savings,
but they also provide more stable production plans, since their coefficients of variation
are the lowest. The CV of AROΓ and C&CGΓ are 49.6% lower than the CV obtained
from the static solutions.

Table B.2 – Result of the uncapacitated RO, ARO and C&CG models
ROΓ AROΓ C&CGΓ

Γ 95th p.c. 99th p.c. Time CV GAPRO 95th p.c. 99th p.c. Time CV GAPARO 95th p.c. 99th p.c. Time CV Iter
0.1T 578602 671295 0.05 10.47% 3.4% 551283 580476 2.43 6.0% -0.56% 516302 552256 92 6.67% 8
0.2T 552325 630267 0.06 8.05% 4.75% 373057 388081 0.03 4.98% -2.57% 500963 520730 112 4.49% 7
0.3T 561483 587864 0.07 6.1% 8.85% 483144 494676 1.60 3.79% 1.07% 494352 513679 115 3.93% 8
0.4T 571708 601045 0.08 6.59% 7.9% 530701 537867 2.09 3.29% 2.4% 501564 511691 101 3.69% 7
0.5T 581408 608250 0.06 6.54% 11.18% 533864 541922 1.69 3.44% -5.06% 493438 503536 92 3.08% 7
0.6T 589393 611821 0.05 6.73% 11.02% 481766 489727 1.49 3.26% -15.47% 499023 509251 585 2.78% 23
0.7T 599702 621196 0.05 6.49% 11.27% 428062 435820 1.03 3.52% 3.64% 504789 512210 239 2.54% 14
0.8T 602630 624073 0.04 7.63% 10.2% 520735 529562 1.63 3.15% -2.95% 512857 523926 274 3.42% 16
0.9T 603192 628096 0.03 7.83% 11.81% 519642 527989 1.28 3.04% -2.4% 502548 511333 213 3.55% 15
T 603268 628155 0.02 7.84% 10.09% 477693 485666 1.17 3.02% -1.17% 508807 515872 311 3.31% 20

Regarding the relative suboptimality, Table B.2 shows that AROΓ has the lowest
objective value since it underestimates the optimal adaptive robust costs. As the static
models are overly-conservative, and not adapted to the adaptive strategy (with a solution
that is optimal only for a static context), the GAPRO results from the optimal adaptive
solution are very high (about 9%). AROΓ underestimates the inventory management
costs due to linearization that mitigates complexity of the quadratic uncertainty, which is
demonstrated by the negative GAPARO on the GAPARO Column. As a result, its objective
value is lower than the optimal adaptive cost.

The adaptive plans take more time to be computed than the static plans, where AROΓ

(resp. C&CGΓ) takes about 1.5 second (resp. 3.5 minutes) more than ROΓ to compute
a solution. However, the adaptive plans are still robust and less conservative in terms of
relative suboptimality, more stable in terms of the coefficient of variation and less costly
with regard to the average costs. As a result, the adaptive plans propose a sufficiently
robust solution that hedges against uncertainties better, and that yields greater cost
savings.

C&CGΓ leads to more stable simulated costs since its CV of is on average 7.8% lower
than the CV of AROΓ, yet AROΓ is robust to a sufficiently large number of realizations
of the yield. Since the quadratic term in C&CGΓ represents the impact of the yield
uncertainty on the adaptive part of the production quantity, C&CGΓ accounts better
for the extreme cases where the disturbance of the yield is large for several periods. The
average computation time of approximately 1 second required by AROΓ is much less than

217



the time needed to calculate the optimal adaptive solution by C&CGΓ (around 4 minutes
on average). The greater computational effort required by C&CGΓ is explained by the
average amount of 15 iterations to find an optimal solution, while our approximation
obtains satisfactory results much faster by solving a MILP model. Therefore, our results
show that ignoring the quadratic term in AROΓ leads to less conservative solutions, while
they remain sufficiently robust. Furthermore, AROΓ is easier to solve since it only requires
solving a MILP, while C&CGΓ requires a lot of iterations and computational effort to
compute the sub-problems and the upper and lower bounds on the costs.

Table B.3 – Result of the capacitated RO, ARO and C&CG models
ROΓ AROΓ C&CGΓ

Γ 95th p.c. 99th p.c. Time CV GAPRO 95th p.c. 99th p.c. Time CV GAPARO 95th p.c. 99th p.c. Time CV Iter
0.1T 732895 828207 0.04 9.51% 34.61% 649975 676540 2.45 5.63% 0.78% 657246 683398 53 5.55% 6
0.2T 712162 782660 0.04 7.24% 37.19% 653014 678528 2.04 4.63% -4.68% 677701 707360 61 5.15% 7
0.3T 726915 771313 0.05 6.55% 40.87% 647254 665814 2.03 4.11% -2.3% 634023 656176 82 4.47% 8
0.4T 733529 763458 0.06 6.08% 40.54% 593370 609310 1.46 4.32% -3.2% 670847 691160 122 4.16% 10
0.5T 739163 766138 0.06 5.8% 44.06% 544922 559888 1.30 4.58% -11.48% 650971 668834 180 4.33% 14
0.6T 746244 770341 0.05 5.58% 43.66% 646152 660711 1.41 4.12% -1.47% 668822 683915 184 4.01% 13
0.7T 753257 776072 0.04 5.74% 42.45% 646323 661090 1.22 4.15% -1.64% 682712 698554 263 4.29% 15
0.8T 751346 774898 0.03 6.23% 41.02% 657486 672314 0.98 4.26% 0.72% 674699 690523 141 4.34% 12
0.9T 750097 773725 0.02 6.24% 43.0% 646404 661027 1.02 4.15% -2.47% 687532 703460 120 4.4% 12
T 750544 774042 0.02 6.24% 40.86% 649474 663306 0.91 4.16% -3.3% 681110 696036 161 4.62% 14

Table B.3 reports the experimental results for the capacitated models. As in the un-
capacitated case, the adaptive approximation and the optimal adaptive robust plans out-
perform the static model. However, the average costs increase when compared to the
uncapacitated case. The limited capacity leads to more frequent backorder of the de-
mands yielding higher costs. As a result, the production plans become highly dependent
on the realization of the uncertain yield. Nevertheless, AROΓ provides less conservative
robust adaptive plans. When compared to C&CGΓ (resp. ROΓ) plan, AROΓ reduces the
average 95th percentile costs by approximately 5.6% (resp. 9.6%), and it also drops the
average 99th percentile costs by 5.7% (resp. 11.6%). Furthermore, the adaptive models
propose sufficiently robust solutions.

The relative suboptimality between the optimal static and optimal adaptive models
(GAPRO) is about 41.8%. The difference between the optimal value from the adaptive
approximation and the optimal adaptive value (GAPARO) is around -2.9%. Therefore,
C&CGΓ gives the optimal objective value within the adaptive strategy in its full com-
plexity of quadratic terms. Since AROΓ underestimates the costs, it leads to suboptimal
but sufficiently good solutions.

Table B.3 also shows that AROΓ provides a reasonably stable production plan as its
coefficient of variation is slightly higher (resp. 9.4% lower) than the CV obtained with the
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C&CGΓ (resp. ROΓ) solution. AROΓ proposes good adaptive plans yet robust. Thus, even
if the system has limited availability of production resources, the adaptive approximation
achieves a good trade-off on the robustness of the production plan to mitigate uncertainties
and a less conservative cost-saving strategy.
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B.5 Remarks on the optimality of the myopic adap-
tive robust policy

This section compares the robust models with the adaptive myopic robust policy pre-
sented in Section 3.3.2 in a rolling horizon simulation. A rolling horizon technique allows
us to handle LSPs under a dynamic strategy. We develop a rolling horizon framework
similar to Venkataraman [1996] and Meistering and Stadtler [2017], where the models are
solved in period t with the horizon [t; T ] to compute the lot sizes for the next ∥F∥ periods,
where F represents the frozen horizon. We freeze the setup computed in period 1 for the
frozen horizon, and we update lot size and inventory/backorder decisions with the rolling
horizon technique. The models are solved every |F | periods, for which we fix the lot size
for the corresponding periods. Then we perform the production for the frozen horizon, so
that the lot size for the period p + 1 can be updated as soon as the quality inspection
for the period p ends. Finally, after the production of the frozen horizon is complete, we
repeat the process until the whole production horizon is complete.

Table B.4 – Performance of the models for the special case presented in Section 3.3.2

Model Exp. Cost 95th p.c. 99th p.c. Worst Cost
ROΓ=T 798 2,028 2,204 2,249
AROΓ=T 798 2,028 2,204 2,249
C&CGΓ=T 798 2,028 2,204 2,249
Policy 798 2,028 2,204 2,249

We consider the optimal myopic policy (Policy) and ROΓ=T , AROΓ=T and C&CGΓ=T

for the special case of the problem with zero setup and unit production costs, with constant
nominal value and the maximum deviation of the uncertain production yield, and with a
box uncertainty set. Table B.4 reports the results for the rolling horizon simulation with
F = 1. Since the optimal robust model generated with the help of C&CG reduces to the
adaptive approximation, and both adaptive models are equivalent to the robust model
when F = 1, the results confirm that our policy is valid.
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Appendix C

DISTRIBUTIONALLY ROBUST LOT-SIZING

PROBLEMS UNDER YIELD UNCERTAINTY
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C.1 Counterpart reformulation for DRLSP con-
straints

In this section, we present the reformulation of the remaining constraints subject to
uncertainties from problem (4.4) in a robust fashion. For that, we assume that Slater’s
condition and the strong duality hold on each constraint, which help us to define the
constraint in a robust counterpart form.

C.1.1 Reformulation for Constraints (4.3b)

If Slater’s condition holds on Constraints (4.3b), then Constraints (4.3b) is equivalent
to

H0
its + hitdiτ ≥ sup

ρρρ,mmm,{ξξξj}j∈(N×T )|m| ,ρρρ∈[ρρρ,ρρρ],gjs(ξj)≤mj ,(ξξξj)=ρ, ∀j∈(N×T )|m|

ρρρ⊤ccc3
its +mmm⊤ccc4

its

∀ (ρρρ,mmm) ∈ Ws; i, k ∈ N ; t, l ∈ T ; j ∈ (N × T )|m|; s ∈ S, where ccc3
its is given in (C.1) and

c4
itjs = −H ′′

itjs .

c3
itkls =

{
hitXil −H

′

itils, if i = k, l ≤ t

−H ′

itils, otherwise
(C.1)

If we reformulate the supremum in terms of the dual infimum for a scenario s ∈ S, we
obtain:

sup
ρρρ,mmm,{ξξξj}j∈(N×T )|m| ,ρρρ∈[ρρρ,ρρρ],gjs(ξj)≤mj ,(ξξξj)=ρ, ∀j∈(N×T )|m|

ρρρ⊤ccc3
its +mmm⊤ccc4

its

= inf
ηηη3

its
,ηηη4

its
,λλλ2

its
≥0,{www2

js
}j∈(N×T )|m| ,ccc4

its
+λλλ2

its
=0,
∑

j∈(N×T )|m|
www2

js
=ccc3

its
−ηηη3

its
+ηηη4

its

ρρρ
⊤
ηηη3

its − ρρρ⊤ηηη4
its +

∑
j∈(N×T )|m|

λ2
jsg

∗
js

(www2
js

λ2
js

)

where ξξξj = ρρρ , mmm = gggs(ρρρ) + 1 , and λ2
jsg

∗
js

(
www2

js

λ2
js

)
is the perspective function of the

conjugate function of g∗
js on (www2

js, λ2
js) for j ∈ (N × T )|m|. As a consequence we can replace

Constraints (4.3b) by Constraints (4.6g)-(4.6k) in our final reformulation.

C.1.2 Reformulation for Constraints (4.3c)

If Slater’s condition holds on Constraints (4.3c), then Constraints (4.3c) is equivalent
to

H0
its − bitdiτ ≥ sup

ρρρ,mmm,{ξξξj}j∈(N×T )|m| ,ρρρ∈[ρρρ,ρρρ],gjs(ξj)≤mj ,(ξξξj)=ρ, ∀j∈(N×T )|m|

ρρρ⊤ccc5
its +mmm⊤ccc6

its
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∀ (ρρρ,mmm) ∈ Ws; i, k ∈ N ; t, l ∈ T ; j ∈ (N × T )|m|; s ∈ S, where ccc5
its is given in (C.2) and

c6
itjs = −H ′′

itjs .

c5
itkls =

{
−bitXil −H

′

itils, if i = k, l ≤ t

−H ′

itils, otherwise
(C.2)

If we reformulate the supremum in terms of the dual infimum for a scenario s ∈ S, we
obtain:

sup
ρρρ,mmm,{ξξξj}j∈(N×T )|m| ,ρρρ∈[ρρρ,ρρρ],gjs(ξj)≤mj ,(ξξξj)=ρ, ∀j∈(N×T )|m|

ρρρ⊤ccc5
its +mmm⊤ccc6

its

= inf
ηηη5

its
,ηηη6

its
,λλλ3

its
≥0,{www3

js
}j∈(N×T )|m| ,ccc6

its
+λλλ3

its
=0,
∑

j∈(N×T )|m|
www3

js
=ccc5

its
−ηηη5

its
+ηηη6

its

ρρρ
⊤
ηηη5

its − ρρρ⊤ηηη6
its +

∑
j∈(N×T )|m|

λ3
jsg

∗
js

(www3
js

λ3
js

)

where ξξξj = ρρρ , mmm = gggs(ρρρ) + 1 , and λ3
jsg

∗
js

(
www3

js

λ3
js

)
is the perspective function of the

conjugate function of g∗
js on (www3

js, λ3
js) for j ∈ (N×T )|m|. As a consequence we can reformulate

Constraints (4.3c) as Constraints (4.6l)-(4.6p) in our final reformulation.

C.1.3 Reformulation for Constraints (4.3d)
If Slater’s condition holds on Constraints (4.3d), then Constraints (4.3d) is equivalent

to
H0

its ≥ sup
ρρρ,mmm,{ξξξj}j∈(N×T )|m| ,ρρρ∈[ρρρ,ρρρ],gjs(ξj)≤mj ,(ξξξj)=ρ, ∀j∈(N×T )|m|

ρρρ⊤ccc7
its +mmm⊤ccc8

its

∀ (ρρρ,mmm) ∈ Ws; i, k ∈ N ; t, l ∈ T ; j ∈ (N × T )|m|; s ∈ S, where ccc7
itkls = H

′

itkls and c8
itjs =

−H ′′

itjs .
If we reformulate the supremum in terms of the dual infimum for a scenario s ∈ S, we

obtain:

sup
ρρρ,mmm,{ξξξj}j∈(N×T )|m| ,ρρρ∈[ρρρ,ρρρ],gjs(ξj)≤mj ,(ξξξj)=ρ, ∀j∈(N×T )|m|

ρρρ⊤ccc7
its +mmm⊤ccc8

its

= inf
ηηη7

its
,ηηη8

its
,λλλ4

its
≥0,{www4

js
}j∈(N×T )|m| ,ccc8

its
+λλλ4

its
=0,
∑

j∈(N×T )|m|
www4

js
=ccc7

its
−ηηη7

its
+ηηη8

its

ρρρ
⊤
ηηη7

its − ρρρ⊤ηηη8
its +

∑
j∈(N×T )|m|

λ4
jsg

∗
js

(www4
js

λ4
js

)

where ξξξj = ρρρ , mmm = gggs(ρρρ) + 1 , and λ4
jsg

∗
js

(
www4

js

λ4
js

)
is the perspective function of the

conjugate function of g∗
js on (www4

js, λ4
js) for j ∈ (N×T )|m|. As a consequence we can reformulate

Constraints (4.3d) as Constraints (4.6q)-(4.6s) in our final reformulation.
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C.2 The robust LSPs with yield uncertainty model
Based on the robust single item LSP with uncertain production yield proposed by

Metzker et al. [2023a], the multi-item lot-sizing problem under yield uncertainty is given
as follows:

min
∑
i∈N

∑
t∈T

sitYt + vitXit +Hit

s.t. :

Hit ≥ hit max
ρ̃∈Uit

[
t∑

τ=1
(ρ̃iτXiτ − diτ )

]
∀t ∈ T ; i ∈ N

Ht ≥ −bit max
ĩρ∈Uit

[
t∑

τ=1
(ĩρτXiτ − diτ )

]
∀t ∈ T ; i ∈ N

Xit ≤ MitYit ∀t ∈ T ; i ∈ N

Xit, Hit ≥ 0 ∀t ∈ T ; i ∈ N

Yit ∈ {0, 1} ∀t ∈ T ; i ∈ N

where ρ̃̃ρ̃ρ mapped by a affine rule that bounds its realization to a range centered on its
nominal value ρ̄̄ρ̄ρ and spread by its maximum deviation ρ̂̂ρ̂ρ. The uncertain production yield
is represented into the budgeted uncertainty set Uit where a budget Γ controls the size of
the uncertainty set according to the decision maker’s sensitivity to risk. Thus, for each
item i in each period t, the uncertain production yield ρ̃it belongs to Uit that is given by
Uit = {−1−1−1 ≤ ZZZt

i ≤ 111 : ∑t
τ=1 |Ztiτ | ≤ Γt}.
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C.3 The stochastic programming LSP with yield un-
certainty model

Similar to the model proposed in the appendix from Metzker et al. [2023a], we propose
a scenario-based stochastic program to represent the multi-item lot-sizing problem under
yield uncertainty. To represent the static strategy, we rely on the two-stage formulation,
where only the inventory and backorder levels react to the different scenarios.

We consider a set Ω of possible yield scenarios, where each scenario ω has a probability
pω of realization. ρω

it is the realization of the uncertain yield for item i in period t and
scenario ω. The two-stage stochastic program for the LSP with uncertain yield is given
as follows:

min
∑
ω∈Ω

pω

∑
t∈T

∑
i∈N

sitYit + vitXit + hitI
ω
it + bitB

ω
it

s.t. :

Iω
it −Bω

it = Iω
it−1 −Bω

it−1 + ρω
itXit − dit ∀t ∈ T ; i ∈ N ; s ∈ Ω

Xit ≤ MitYit ∀t ∈ T ; i ∈ N

Xit, I
ω
t , B

ω
t ≥ 0 ∀t ∈ T ; i ∈ N ; s ∈ Ω

Yit ∈ {0, 1} ∀t ∈ T ; i ∈ N

To better represent the realization of the uncertain yield, we need to generate as many
scenarios as possible. However, to avoid the drawbacks from scalability issues, such as
prohibitive computational time, we generate the scenarios with a Monte Carlo approach.
Thus, the yield rate is randomly drawn from a uniform distribution with support [ρ̄it −
ρ̂it; ρ̄it + ρ̂it] over 200 scenarios.
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Titre : L’optimisation robuste pour des problèmes de lotissement dans un contexte de rendement
incertain
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Résumé :
Les fabricants doivent gérer leurs capacités

de production et leur performance pour satis-
faire la demande des clients avec des produits
de qualité. De plus, ils sont constamment mis au
défi d’optimiser l’utilisation de leurs ressources et
leur performance de production dans un contexte
de marché dynamique et volatil, et ce, de ma-
nière rentable. Pour atteindre cet objectif com-
mercial, un défi tactique à relever parmi d’autres,
les fabricants doivent minutieusement prendre
des décisions de dimensionnement de lots de
production afin de déterminer la configuration et
les quantités de production répondant aux de-
mandes avec des produits de qualité, tout en mi-
nimisant les coûts globaux de production et de
gestion de stocks. Nous proposons différents mo-

dèles et stratégies méthodologiques pour calcu-
ler des plans de production optimaux robustes à
conservation moindre. Nous fournissons égale-
ment une analyse de risque pour aider les déci-
deurs à adapter leurs plans décisionnels à leurs
objectifs stratégiques et opérationnels. Les résul-
tats expérimentaux montrent que les plans de
production robustes ont une meilleure stratégie
de réduction des coûts par rapport aux autres
approches de résolution. Les expériences nu-
mériques montrent la robustesse et l’efficacité
du modèle robuste à travers une analyse des
cas moyens et les plus défavorables. Les expé-
riences démontrent également les performances
et la valeur des solutions adaptatives robustes et
la faible sensibilité aux erreurs de prédiction des
modèles distributionnellement robustes.

Title: Robust optimization for lot-sizing problems under production yield uncertainty

Keywords: lot-sizing problems, robust optimization, adaptive robust optimization, distributionally ro-
bust optimization, combinatorial optimization

Abstract:
Manufacturers must efficiently manage their

production capacities and their performances to
satisfy customer demands with quality goods.
They also have been constantly challenged to
optimize resource usage and production perfor-
mance in a dynamic and volatile market con-
text in a cost effective manner. To achieve this
business objective, we consider lot-sizing prob-
lems under yield uncertainty via a robust, adap-
tive robust and distributionally robust optimization
methodologies to determine the production se-
tups and quantities that meet demands with qual-
ity goods, while minimizing the overall production
and inventory management costs. We propose

different models and methodological strategies
to compute optimal robust and less conservative
production plans. We also provide a risk analy-
sis to help decision-makers to tailor their decision
plans to their strategic and operational goals. The
experimental results show that robust-wise pro-
duction plans have a better cost cutting strategy
compared with other resolution approaches. The
computational experiments show the robustness
and effectiveness of the robust model through
an average and worst case analysis. The exper-
iments also demonstrate the performances and
the value of the adaptive robust solutions and the
low sensitiveness to errors in predictions of the
distributionally robust models.
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