
HAL Id: tel-04008562
https://theses.hal.science/tel-04008562v2

Submitted on 28 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Robustness verification of neural networks using
polynomial optimization

Tong Chen

To cite this version:
Tong Chen. Robustness verification of neural networks using polynomial optimization. Opti-
mization and Control [math.OC]. Université Paul Sabatier - Toulouse III, 2022. English. �NNT :
2022TOU30190�. �tel-04008562v2�

https://theses.hal.science/tel-04008562v2
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 02/12/2022 par :
Tong CHEN

Robustness Verification of Neural Networks using Polynomial
Optimization

JURY
Alexandre d’ASPREMONT Directeur de Recherche Président du jury
Yohann de CASTRO Professeur d’Université Rapporteur
Victor MAGRON Chargé de Recherche Co-directeur de thèse
Edouard PAUWELS Maître de Conférences Directeur de thèse
David STEURER Associate Professor Examinateur
Lihong ZHI Professeur d’Université Rapporteure

École doctorale et spécialité :
MITT : Domaine Mathématiques : Mathématiques appliquées

Unité de Recherche :
Laboratoire d’Analyse et d’Architecture des Systèmes (LAAS)

Directeur(s) de Thèse :
Edouard PAUWELS et Victor MAGRON

Rapporteurs :
Yohann de CASTRO et Lihong ZHI

知之为知之，

不知为不知，

是知也。

——《论语·为政》

To my parents, and to my Whisy.

Acknowledgments

How time flies. It has been three years since I started my doctorate. I can never
imagine how small and unhelpful I am towards the passage of time. This thesis
is the set of works that I accomplished during this unforgettable period, and is
specially dedicated to my supervisors, my parents and my wife, in memory with my
lost student time.

First of all, I would like to thank all my supervisors: Edouard Pauwels, Victor
Magron and Jean-Bernard Lasserre. You are the guiders who introduce me to the
world of polynomial optimization and robustness verification. Verifying the robust-
ness of neural networks is a difficult and important problem in machine learning
community, and few researchers apply polynomial optimization techniques to it. I
am happy that, thanks to our efforts, we succeeded in proposing new approaches,
although there are still many limitations. You are not only my supervisors, but also
my friends.

I would like also to express my gratitude to all my jury members: Alexandre
d’Aspremont, Yohann de Castro, David Steurer and Lihong Zhi. Thank you all for
reading my thesis and providing valuable comments. I am looking forward to future
collaborations with you.

I would like to thank my parents for supporting me to continue my studies in
France. As I grow, you never interfere with my ideas and always encourage me to
do what I want to do. Without my parents, I am nothing.

I would like to thank my colleagues at LAAS, which allow me to interact with
others and work in a comfortable environment. Ngoc Hoang Anh Mai, I believe that
you will make great achievements in your postdoc career! Jie Wang, I always aim to
become an excellent researcher like you! Srecko Durasinovic, I hope that everything
goes fine with you in Singapore and I am looking forward to speaking Chinese with
you in the near future! Corbinian Schlosser, best wishes for your defense next year!
Also thanks to all the ping-pong players: Alexey, Florent, Nicola, Manon...

I would like to thank my previous teachers who have greatly influenced my life.
Christophe Giraud, I really appreciate your cleverness and kindness. Bin Li, you not
only taught me abstract algebra, but also the quality of a good teacher. Xiaofang
Zhou, you are my first and favorite teacher in university. Tingting Liu, Lijun Duan,
you are the best Chinese and English teacher in my high school! Kenan Liu, your
way of teaching Chinese is really like a loving mother. Youshao Pu, you are the
first one who show me the beauty of math and made me fall into love with it.

I would like to thank all my friends appearing in my life, from past to now, from
China to France. Hao Hu, you gave me a lot of support in my daily life, all the best
with your PhD defense! Martin Mugnier, I really enjoy the time together with you
at Orsay! Alexandre Werthe, you are the first person who help me with my courses
and my life at Besançon, I will always remember you. Junchao Chen, our time at
Besançon and Paris is definitely a wonderful memory. Zhuo Liu, Mingyang Ren,

iv

Lirong Gan, Kanghong Jing, we all won’t forget the days at Wuhan University.
Jianwei An, it’s your hardworking and persistence that brings us to the first prize
of Chinese modeling competition. Hengtao Bao, thank you for your generous help
as a senior student. Junjie Wan, Yudong Wu, Shuai Yang, Haocheng Liu, Leiying
Peng, our friendship will last forever. Yi Chen, my best friend, looking forward to
seeing you in my wedding!

Finally, I would like to express my appreciation to my wife, Whisy. It’s been
10 years since we’ve known each other and 1 year since we’ve got married. There
are plenty of memory between us in Guiyang, Wuhan, Chongqing, Paris, Barcelona,
Toulouse, Salamanca, Madrid, Berlin, Hamburg, Granada... Thank you so much for
your encouragement and love. In the period when I am depressed for my research,
or in the difficult time because of language problems, you accompany me and face
these obstacles with me together. Those gratitude and love can never be expressed
with limited words. My parents gave me the birth and you gave me rebirth.

Tong CHEN
Toulouse, 2 December 2022

Abstract

Nowadays, Neural Networks (NNs) are widely and successfully used for many large-
scale and complex machine learning tasks, such as image classification, voice recog-
nition recommender system, and have attracted the attention of many community
researchers. However, even though neural networks are powerful, they are gener-
ally neither robust nor reliable. This means that, for some input examples, neural
network classifiers can produce unstable predictions of their labels, i.e. classifiers
are sensitive to small input changes, which is problematic in some crucial areas
such as auto-driving or aerospace. Therefore, the robustness of neural networks
has become a critical issue in the machine learning community in recent years. Ro-
bustness for NNs has two main facets: robust training and robust verification. In
this thesis, we mainly focus on verifying the robustness of pre-trained NNs. Based
on semi-definite programming, we first develop a sublevel hierarchy for polynomial
optimization problems and then apply it to robustness verification of NNs. Our
approaches show empirical improvements over other related methods.

Keywords: robustness verification, Lipschitz constant, neural network, poly-
nomial optimization, semidefinite programming, moment-sum of squares hierarchy,
correlative sparsity.

Résumé

De nos jours, les Réseaux de Neurones (RN) sont largement et avec succès util-
isés pour de nombreuses tâches d’apprentissage automatique à grande échelle et
complexes, telles que la classification d’images, le système de recommandation
de reconnaissance vocale, et ont attiré l’attention de nombreux chercheurs de la
communauté. Cependant, même si les réseaux de neurones sont puissants, ils ne
sont généralement ni robustes ni fiables. Cela signifie que, pour certains exemples
d’entrées, les classificateurs de réseaux de neurones peuvent produire des prédic-
tions instables de leurs étiquettes, c’est-à-dire que les classificateurs sont sensibles
aux petits changements d’entrée, ce qui est problématique dans certains domaines
cruciaux comme la conduite automobile ou l’aérospatiale. Par conséquent, la ro-
bustesse des réseaux de neurones est devenue un problème critique dans la com-
munauté de l’apprentissage automatique ces dernières années. La robustesse a
principalement deux facettes : une formation robuste des RN et une vérification
robuste des RN. Dans cette thèse, nous nous concentrons principalement sur la
vérification de la robustesse des RN pré-formés. Sur la base de la programma-
tion semi-définie, nous développons d’abord une hiérarchie de sous-niveaux pour
les problèmes d’optimisation polynomiale, puis nous l’appliquons à la vérification
de robustesse des RN. Nos approches montrent des améliorations empiriques par
rapport à d’autres méthodes connexes.

Mots-clés : vérification de robustesse, constante de Lipschitz, réseau de neu-
rones, optimisation polynomiale, programmation semi-définie, hiérarchie moment-
somme de carrés, parcimonie corrélative.

Contents

Acknowledgments iii

Abstract (English/Français) v

List of Figures xiii

List of Tables xv

List of Notations xvii

List of Acronyms xix

Introduction (English/Français) xxi

1 Deep Learning and Neural Networks 1
1.1 Structure of Neural Networks . 2

1.1.1 Deep neural network (DNN) 2
1.1.2 Deep equilibrium model (DEQ) 3
1.1.3 Convolutional neural network (CNN) 4
1.1.4 Recurrent neural network (RNN) 5
1.1.5 Autoencoder (AE) . 5

1.2 Activation Function in Neural Networks 6
1.2.1 Sigmoid function . 6
1.2.2 Tanh function . 6
1.2.3 ReLU function . 7
1.2.4 Leaky ReLU function . 7
1.2.5 ELU function . 7

1.3 Adversarial Examples . 8
1.3.1 Adversarial training . 9
1.3.2 Robustness verification . 9

2 Existing Approaches to Robustness Verification 11
2.1 Characteristics of Verification Methods 11

2.1.1 Output-reality relation . 11
2.1.2 Feature of the approaches . 12
2.1.3 Scalability of the approaches 12

2.2 Deterministic Exact Approaches (type A) 14
2.2.1 Satisfiability modulo theories (SMT) problem 14
2.2.2 Mixed integer linear programming (MILP) 15
2.2.3 Layer-by-layer refinement . 16
2.2.4 Reduction to a two-player turn-based game 16

x CONTENTS

2.3 Deterministic Approximation Approaches (type B) 17
2.3.1 Abstract interpretation . 17
2.3.2 Convex optimization based methods 19
2.3.3 Linear approximation of ReLU networks 20
2.3.4 Interval analysis . 21

2.4 Statistical Approximation Approaches (type C) 22
2.4.1 Lipschitz constant estimation by extreme value theory 22
2.4.2 Robustness estimation . 22

2.5 Characteristic analysis of each verification method 23

3 Convex Relaxations and Moment-SOS Hierarchy 25
3.1 Convex Optimization Problems . 26

3.1.1 Linear programming (LP) . 26
3.1.2 Quadratic programming (QP) 26
3.1.3 Semidefinite programming (SDP) 26

3.2 Polynomial Optimization and Lasserre’s Hierarchy 27
3.2.1 Polynomial optimization problem (POP) 27
3.2.2 Moment and sum of squares 28
3.2.3 Dense moment relaxation . 30
3.2.4 Sparse moment relaxation . 32

4 Sublevel Hierarchy 35
4.1 Framework of Sublevel Hierarchy . 37

4.1.1 Sublevel hierarchy of SOS cones 37
4.1.2 Sublevel hierarchy of moment-SOS relaxations 38
4.1.3 Relation with other relaxations 41

4.2 Determination of the Subsets of Cliques 43
4.3 Application to Optimization Problems 45

4.3.1 Maximum cut (Max-Cut) problem 46
4.3.2 Maximum clique (Max-Cliq) problem 48
4.3.3 Mixed integer quadratically constrained programming (MIQCP) 49
4.3.4 Quadratically constrained quadratic problem (QCQP) 51

5 Robustness Verification and Related Problems 55
5.1 Semialgebraicity of ReLU, ∂ReLU, and Lp-norms 55

5.1.1 ReLU function . 55
5.1.2 ∂ReLU function . 56
5.1.3 Lp norm . 57

5.2 Lipschitz Constant Estimation . 58
5.2.1 Problem setting . 58
5.2.2 Algorithms . 67
5.2.3 Experiments . 72

5.3 Abstract Domain Propagation . 76
5.3.1 Problem setting . 76

CONTENTS xi

5.3.2 Algorithms . 78
5.3.3 Experiments . 83

5.4 Robustness Verification . 84
5.4.1 Problem setting . 85
5.4.2 Algorithms . 87
5.4.3 Experiments . 88

Conclusions and Future Works 93

Bibliography 95

List of Figures

1.1 Fully-connected deep neural network. 3
1.2 Fully-connected deep equilibrium model. 3
1.3 A typical CNN architecture. 4
1.4 A compressed (left) and unfolded (right) basic RNN. 5
1.5 Schema of a basic AE. 6
1.6 Familiar activation functions. 7
1.7 An adversarial example [Goodfellow et al. 2015]. 8

5.1 ReLU function (left) and its semialgebraicity (right). 56
5.2 Subdifferential of ReLU function (left) and its semialgebraicity (right). 57
5.3 Lipschitz constant upper bounds and solving time for (80, 80) networks. 73
5.4 Global Lipschitz constant for 2-hidden layer networks. 75
5.5 Ellipsoid propagation of (20, 2) and (20, 20, 2) networks. 83
5.6 Visualization of the overapproximation ellipsoids and output region. 92
5.7 An adversarial example of the first MNIST test example. 92

List of Tables

2.1 Relation between the output and reality. 12
2.2 Characteristic analysis of various approaches. 24

4.1 Summary of the performance of sublevel relaxations applied to prob-
lem (4.3) with l, q = 0, 1, . . . , 10. 41

4.2 Comparison of different heuristics for Max-Cut instances g_20 and
w01_100. 45

4.3 Summary of the basic information and graph structure of Max-Cut
instances. 47

4.4 Results obtained by sublevel relaxations for Max-Cut problems. . . . 48
4.5 Results obtained by sublevel relaxations for Max-Cliq problems. . . . 49
4.6 Summary of the basic information and sparse structure of MIQCP

instances. 51
4.7 Summary of the basic information and constraint structure of MIQCP

instances from QPLIB library. 52
4.8 Results obtained by sublevel relaxations for MIQCP problems. . . . 53
4.9 Summary of the basic information and constraint structure of QCQP

instances from QPLIB library. 53
4.10 Results obtained by sublevel relaxations for QCQP problems. 54

5.1 Summary of Lipschitz constant estimation problem for DNNs and
MONs. 67

5.2 Upper bounds of Lipschitz constant and solving time on SDP-NN. . 75
5.3 Upper bounds of Lipschitz constant and solving time for L2, L∞ norm. 76
5.4 Ellipsoid propagation of (20, 2) and (20, 20, 2) networks. 84
5.5 Summary of verification problem for DNNs and MONs. 87
5.6 Ratios of verified examples for (80, 80) network. 89
5.7 Ratios of verified test inputs for SDP-NN by Sub-2. 90
5.8 Ratio of verified test inputs and running time. 91

List of Notations

• Rn: the n-dimensional real vector space;

• Zn: the set of n-tuples of integers;

• x ∈ R: a real number;

• x ∈ Rn: an n-dimensional real vector;

• x ◦ y: element-wise product of vectors x,y ∈ Rn;

• [n]: the set {1, 2, . . . , n};

• x(i): the i-th coordinate of vector x for i ∈ [n];

• x(I): the subvector of x consisting of the coordinates indexed by I ⊆ [n];

• xi:j : the concatenation of vectors xi,xi+1, . . . ,xj for i < j;

• A ∈ Rm×n: a real matrix of size m× n;

• A(i,:): the i-th row vector of matrix A;

• Sn: the cone of real symmetric matrices;

• Sn+: the cone of real positive semidefinite matrices;

• R[x]: the vector space of real polynomials in variable x;

• Rd[x]: the vector space of real polynomials in variable x with degree ≤ d;

• P [x]: the cone of nonnegative real polynomials in variable x;

• Pd[x]: the cone of nonnegative real polynomials in variable x with degree
≤ d;

• Σ[x]: the cone of sum of squares of polynomials in variable x;

• Σd[x]: the cone of sum of squares of polynomials in variable x with degree
≤ 2d;

• vd(x): the monomial basis of variable x of degree ≤ d;

• P(K): the space of Borel probability measure with support contained in K;

• Ly: Riesz linear functional;

• Md(y): d-th order (dense) moment matrix;

• Md(gy): d-th order (dense) localizing matrix of polynomial g;

xviii LIST OF NOTATIONS

• Md(y, I): d-th order (sparse) moment matrix with respect to subset I;

• Md(gy, I): d-th order (sparse) localizing matrix of polynomial g with respect
to subset I.

List of Acronyms

NN Neural Network. .v

ANN Artificial Neural Network . xxi

AI Artificial Intelligence. .xxi

NP-hard Non-deterministic Polynomial-time hard . xxi

QCQP Quadratically Constrained Quadratic Program . xxii

SDP Semidefinite Programming . xxii

POP Polynomial Optimization Problem . xxiii

moment-SOS moment-Sums of Squares . xxiii

DNN Deep Neural Network. .xxiii

MON Monotone Operator Equilibrium Network . xxiii

ReLU Rectified Linear Unit . xxiii

LP Linear Programming . xxiii

DEQ Deep Equilibrium Model . 3

CNN Convolutional Neural Network . 4

RNN Recurrent Neural Network . 5

AE Autoencoder . 5

VAE Variational Autoencoder . 5

SAT Boolean Satisfiability Problem . 10

MILP Mixed Integer Linear Programming . 10

CD Collision Detection . 13

ACAS Airborne Collision Avoidance System . 13

MNIST Modified National Institute of Standards and Technology 13

CIFAR-10 Canadian Institute For Advanced Research. .13

SMT Satisfiability Modulo Theories . 14

BaB Branch and Bound . 15

xx LIST OF ACRONYMS

QP Quadratic Programming . 25

SOS Sum of Squares . 29

WSOS Weighted Sum of Squares . 29

RIP Running Intersection Property . 32

CSP Correlative Sparsity Pattern . 36

TSP Term Sparsity Pattern . 36

OfM Out of Memory . 73

Introduction

Many human activities and inventions are influenced or inspired by other biological
behaviors. For example, birds inspired us to fly and invent airplanes, fish inspired
the invention of the submarine, burdock plants inspired Velcro, etc. Artificial Neural
Network (ANN) is also a great creativity inspired by the architecture of the human
brain, which is composed of a large number of highly interconnected neurons work-
ing together to solve a specific problem. Nowadays, ANNs play a very important
role in deep learning, the most exciting and powerful branch of machine learning.
The power and scalability of ANNs make them widely and successfully used for
many large-scale, difficult and complicated machine learning tasks, such as image
classification, speech recognition, recommender system and training of Artificial In-
telligence (AI) to beat humans in many games like Go or StarCraft. When we talk
about a neural network, we often refer to network parameters. An ANN is actually
an application, or a function, which is nonlinear with respect to its parameters.
Usually the parameters are estimated or learned from a set of training samples, and
the learning process is indeed to minimize an objective function which is nonconvex
and nonlinear, leading to local minimizers and a Non-deterministic Polynomial-time
hard (NP-hard) complexity. The basis for the successful application of ANNs is
due to the universal approximation theorem by [Cybenko 1989, Hornik et al. 1989].
Moreover, [Lecun 1988] has proposed an efficient algorithm, called backpropaga-
tion, to calculate the gradient of an ANNs, which allows us to easily obtain a local
minimizer of the optimization problem and is probably the supervised learning al-
gorithm most widely used.

Every coin has two sides, and the artificial neural network is no exception. Al-
though ANNs have been very successful in many areas, there are also many draw-
backs and open issues. For example, ANNs are highly hardware dependent. In
order to satisfy the requirements of accuracy and instantaneousness, deep learning
algorithms and models must be executed on good hardware platforms. No matter
for training or verifying neural networks, the computing power of the platform is
the main obstacle that limits the application of ANNs. Moreover, as neural net-
works are often used as black box algorithms, two major challenges for ANNs are
to provide proper interpretabilities and to ensure high reliability for the designed
models. An interpretable ANN helps people fully understand the internal structure
of the network and explain the relationships between input features and output
labels, which is crucial in certain fields such as healthcare and finance. Also, it
is very important to know if a classifier is reliable or not, in other words if it is
robust with respect to inputs. This induces the problem of verifying the robust-
ness of a given classifier, i.e. if we disturb the inputs a little, the output should
not be different. In fact, [Molnar 2019] has already discovered many adversarial
examples (instances with small intentional feature perturbations that cause a ma-
chine learning model to make a false prediction) in neural networks. Historically,

xxii LIST OF ACRONYMS

when the contradictory example occurs, [Lu et al. 2017] tried to come up with de-
fenses based on test input transformations, but the defense was broken in just five
days by [Athalye et al. 2018]. Therefore, there is a need for a systematic method
to deal with this problem. The main objective of this manuscript is to address
these problems of robustness verification in neural networks using polynomial op-
timization techniques. [Raghunathan et al. 2018b] translated this kind of problem
into a nonconvex Quadratically Constrained Quadratic Program (QCQP) and used
Semidefinite Programming (SDP) relaxation (an SDP with a larger feasible domain
that is easier to solve) to obtain an upper bound on the optimal value of the orig-
inal QCQP. In Section 5.4, we will see that the verification problem is indeed to
identify whether the optimal value of an optimization problem is negative or not,
so that if we obtain a negative upper bound of the optimal value, we could still
verify robustness. What we propose in this manuscript is also a method based on
SDP, with finer approximations and guaranteed convergence. We also propose two
other approaches, Lipschtz constant estimation and ellipsoidal propagation, both of
which can be applied to verify the robustness of neural networks.

The outline of the manuscript is as follows:

• Chapter 1: Deep learning and neural networks. This chapter gives an in-
troduction on the background of deep learning: in which situation deep
learning algorithms (especially neural networks) attract the attention of re-
searchers, what are the significant advantages of deep learning compared to
traditional machine learning algorithms, why robustness is an important issue
for neural networks. Main references include [Lecun 1988] for backpropaga-
tion, [Hornik 1991] for universal approximation theorem, , [Bai et al. 2019]
for deep equilibrium model, [Winston & Kolter 2020] for monotone operator
equilibrium network, [Kolter & Madry 2018] for adversarial example.

• Chapter 2: Existing approaches to robustness verification. In a nutshell,
robustness verification can be formalized as a highly nonlinear composite
constraint satisfaction problem. We give an overview of existing approaches
to verify the robustness of neural networks, which can be classified into three
types of approaches: exact deterministic approximation, deterministic ap-
proximation and statistical approximation. The approaches and algorithms
proposed in this manuscript can be classified either in exact deterministic
approach (when we consider the convergent hierarchy) or in approximate
deterministic approach (when we stick to a fixed order relaxation). Main ref-
erences include [Huang et al. 2020, Li et al. 2020] for surveys on robustness
verification of neural networks, [Katz et al. 2017] for Reluplex, [Ehlers 2017]
for Planet, [Lomuscio & Maganti 2017] for NSVerify, [Tjeng et al. 2019] for
MIPVerify, [Gehr et al. 2018] for AI2, [Weng et al. 2018c] for FastLin/FastLip,
[Boopathy et al. 2019] for CNN-cert, [Raghunathan et al. 2018b] for SDP-
cert, [Zhang et al. 2018] for CROWN, [Wang et al. 2021d] for β-CROWN.

• Chapter 3: Convex relaxations and moment-SOS hierarchy. This chapter

xxiii

focuses on the theoretical preliminaries of the convex relaxation techniques
that interest us when we want to obtain approximations of non-convex op-
timization problems. We also introduce the Lasserre hierarchy, a systematic
approach to relax a Polynomial Optimization Problem (POP) to a sequence
of SDPs, whose associated sequence of optimal values converges to the exact
solution. Main references include [Lasserre 2001] for dense moment relax-
ation, [Lasserre 2006, Waki et al. 2006] for sparse moment relaxation.

• Chapter 4: Sublevel hierarchy. This chapter is the methodological contri-
bution in terms of polynomial optimization. We develop a hierarchy based
on SDP, called sublevel hierarchy, for general POPs, in order to obtain finer
bounds between the standard Lasserre relaxations of order d and (d+1). The
advantage of the sublevel hierarchy is that we can handle dense or nearly
dense POPs where the standard hierarchy may not be manageable due to
memory issues. We provide many benchmarks in polynomial optimization
where the sublevel hierarchy shows improvements over the standard Lasserre
hierarchy. The materials of this chapter are referred to [Chen et al. 2022].

• Chapter 5: Robustness verification and related problems. This chapter is the
application of the sublevel moment-Sums of Squares (moment-SOS) hierarchy
for two types of neural networks: Deep Neural Network (DNN) and Monotone
Operator Equilibrium Network (MON). We first show how to represent the
Rectified Linear Unit (ReLU) function and its subdifferential exactly with
polynomial systems, which gives a semi-algebraic representation of the input-
output relationship of ReLU networks. Then, we present several applications
to network verification and obtain SDP models for the following problems:
Lipschitz constant estimation, ellipsoidal propagation and robustness verifi-
cation. We use these models to verify the robustness of DNNs and MONs
w.r.t. norm L2 and L∞. Related works include [Raghunathan et al. 2018b]
for robustness verification of DNNs by Shor’s relaxation, [Latorre et al. 2020]
for estimating Lipschitz constant of DNNs by Linear Programming (LP) re-
laxation, [Dathathri et al. 2020] for robustness verification by fast first-order
SDP algorithm, [Chen et al. 2020, Chen et al. 2021] for robustness verifica-
tion of DNNs and MONs by sublevel relaxation.

The list of our contributions is as follows:

• [Chen et al. 2022], dedicated to the sublevel relaxation framework for poly-
nomial optimization problems, which is presented in Chapter 4;

• [Chen et al. 2020], dedicated to the application of sublevel relaxations for
robustness verification of DNNs, which is presented in Chapter 5;

• [Chen et al. 2021], dedicated to the application of sublevel relaxations for
robustness verification of MONs, which is presented in Chapter 5.

Introduction

De nombreuses activités et inventions humaines sont influencées ou inspirées par
d’autres comportements biologiques. Par exemple, les oiseaux nous ont inspiré le
vol et l’invention des avions, les poissons ont inspiré l’invention du sous-marin,
les bardanes ont inspiré le Velcro, etc. Le Réseau de Neurone Artificiel (RNA)
est également une grande créativité inspirée par l’architecture du cerveau humain,
qui est composé d’un grand nombre de neurones hautement interconnectés tra-
vaillant ensemble pour résoudre un problème spécifique. De nos jours, les RNAs
jouent un rôle très important dans l’apprentissage profond, la branche la plus
passionnante et la plus puissante de l’apprentissage machine. La puissance et
l’extensibilité des RNAs font qu’ils sont largement utilisés avec succès pour de nom-
breuses tâches d’apprentissage machine à grande échelle, difficiles et compliquées,
comme la classification d’images, la reconnaissance vocale, les systèmes de recom-
mandation et l’entraînement des Intelligence Artificielle (IA) pour battre les hu-
mains dans de nombreux jeux comme le Go ou StarCraft. Lorsque nous parlons
d’un réseau neurone, nous faisons souvent référence aux paramètres du réseau. Un
RNA est en fait une application, ou une fonction, qui est non linéaire par rap-
port à ses paramètres. Habituellement, les paramètres sont estimés ou appris à
partir d’un ensemble d’échantillons d’apprentissage, et le processus d’apprentissage
consiste en fait à minimiser une fonction objective non convexe et non linéaire, ce
qui conduit à des minimiseurs locaux et à une complexité NP-hard. La base de
l’application réussie de RNA est due au théorème d’approximation universelle de
[Cybenko 1989, Hornik et al. 1989]. De plus, [Lecun 1988] a proposé un algorithme
efficace, appelé rétropropagation, pour calculer le gradient d’un RNA, qui nous per-
met d’obtenir facilement un minimiseur local du problème d’optimisation et qui est
probablement l’algorithme d’apprentissage supervisé le plus largement utilisé.

Toute pièce de monnaie a deux côtés, et le réseau neuronal artificiel ne fait
pas exception. Bien que les RNA aient connu un grand succès dans de nombreux
domaines, il existe également de nombreux inconvénients et problèmes non réso-
lus. Par exemple, les RNA sont très dépendants du matériel informatique. Afin de
satisfaire aux exigences de précision et d’instantanéité, les algorithmes et modèles
d’apprentissage profond doivent être exécutés sur de bonnes plateformes matérielles.
Que ce soit pour l’entraînement ou la vérification des réseaux de neurones, la puis-
sance de calcul de la plateforme est le principal obstacle qui limite l’application des
RNA. De plus, les réseaux neurones étant souvent utilisés comme des algorithmes de
type boîte noire, deux défis majeurs pour le RNA sont de fournir des interprétabil-
ités appropriées et d’assurer une fiabilité élevée pour les modèles conçus. Un RNA
interprétable aide les gens à comprendre pleinement la structure interne du réseau
et à expliquer les relations entre les caractéristiques d’entrée et les étiquettes de
sortie, ce qui est crucial dans certains domaines tels que la santé et la finance. En
outre, il est très important de savoir si un classificateur est fiable ou non, en d’autres

xxvi LIST OF ACRONYMS

termes s’il est robuste par rapport aux entrées. Ceci induit le problème de la véri-
fication de la robustesse d’un classifieur donné, c’est-à-dire que si on perturbe un
peu les entrées, la sortie ne devrait pas être différente. En fait, [Molnar 2019] a déjà
découvert de nombreux exemples contradictoires (instances avec de petites pertur-
bations intentionnelles des caractéristiques qui amènent un modèle d’apprentissage
machine à faire une fausse prédiction) dans les réseaux neurones. Historiquement,
lorsque l’exemple contradictoire se produit, [Lu et al. 2017] a essayé de trouver des
défenses basées sur des transformations d’entrée de test, mais la défense a été brisée
en seulement cinq jours par [Athalye et al. 2018]. Par conséquent, il est nécessaire
de trouver une méthode systématique pour traiter ce problème. L’objectif prin-
cipal de cette thèse est d’aborder ces problèmes de vérification de la robustesse
dans les réseaux neurones en utilisant des techniques d’optimisation polynomiale.
[Raghunathan et al. 2018b] a traduit ce type de problème en un QCQP non convexe
et a utilisé la relaxation basée sur la programmation semi-définie (un programme
avec un domaine réalisable plus grand et plus facile à résoudre) pour obtenir une
borne supérieure sur la valeur optimale du QCQP original. Dans la section 5.4, nous
verrons que le problème de vérification est en fait d’identifier si la valeur optimale
d’un problème d’optimisation est négative ou non, de sorte que si nous obtenons
une borne supérieure négative de la valeur optimale, nous pouvons toujours vérifier
la robustesse. Ce que nous proposons dans cette thèse est également une méth-
ode basée sur la programmation semi-définie, avec des approximations plus fines
et une convergence garantie. Nous proposons également deux autres approches,
l’estimation de la constante de Lipschtz et la propagation ellipsoïdale, qui peuvent
toutes deux être appliquées pour vérifier la robustesse des réseaux neurones.

Le plan de la thèse se présente comme suit :

• Chapitre 1 : L’apprentissage profond et les réseaux de neurones. Ce chapitre
donne une introduction sur le contexte de l’apprentissage profond : dans
quelle situation les algorithmes d’apprentissage profond (en particulier les
réseaux de neurones) attirent l’attention des chercheurs, quels sont les avan-
tages significatifs de l’apprentissage profond par rapport aux algorithmes tra-
ditionnels d’apprentissage machine, pourquoi la robustesse est une question
importante pour les réseaux de neurones. Les principales références compren-
nent : [Lecun 1988] pour la rétropropagation, [Hornik 1991] pour le théorème
d’approximation universelle, , [Bai et al. 2019] pour le modèle d’équilibre pro-
fond, [Winston & Kolter 2020] pour le réseau d’équilibre à opérateur mono-
tone, [Kolter & Madry 2018] pour l’exemple contradictoire.

• Chapitre 2 : Les approches existantes de la vérification de la robustesse.
En un mot, la vérification de la robustesse peut être formalisée comme un
problème composite de satisfaction de contraintes hautement non linéaire.
Nous donnons un aperçu des approches existantes pour vérifier la robustesse
des réseaux neuronaux, qui peuvent être classées en trois types d’approches :
l’approximation déterministe exacte, l’approximation déterministe et l’approximation
statistique. Les approches et algorithmes proposés dans cette thèse peuvent

xxvii

être classés soit dans l’approche déterministe exacte (lorsque nous considérons
la hiérarchie convergente), soit dans l’approche déterministe approximative
(lorsque nous nous en tenons à une relaxation d’ordre fixe). Les principales
références comprennent : [Huang et al. 2020, Li et al. 2020] pour les enquêtes
sur la vérification de la robustesse des réseaux neuronaux, [Katz et al. 2017]
pour Reluplex, [Ehlers 2017] pour Planet, [Lomuscio & Maganti 2017] pour
NSVerify, [Tjeng et al. 2019] pour MIPVerify, [Gehr et al. 2018] pour AI2,
[Weng et al. 2018c] pour FastLin/FastLip, [Boopathy et al. 2019] pour CNN-
cert, [Raghunathan et al. 2018b] pour SDP-cert, [Zhang et al. 2018] pour CROWN,
[Wang et al. 2021d] pour β-CROWN.

• Chapitre 3 : Les relaxations convexes et la hiérarchie moment-SOS. Ce
chapitre se concentre sur les préliminaires théoriques des techniques de re-
laxation convexe qui nous intéressent lorsque nous voulons obtenir des ap-
proximations de problèmes d’optimisation non convexes. Nous introduisons
également la hiérarchie de Lasserre, une approche systématique pour relaxer
un problème d’optimisation polynomiale en une séquence de la programma-
tion semi-définie, dont la séquence associée de valeurs optimales converge vers
la solution exacte. Les principales références incluent : [Lasserre 2001] pour
la relaxation des moments sans parsimonie, [Lasserre 2006, Waki et al. 2006]
pour la relaxation des moments avec parsimonie.

• Chapitre 4 : La hiérarchie des sous-niveaux. Ce chapitre constitue la contri-
bution méthodologique en termes d’optimisation polynomiale. Nous dévelop-
pons une hiérarchie basée sur la programmation semi-définie, appelée hiérar-
chie de sous-niveaux, pour les problèmes d’optimisation polynomiale générales,
afin d’obtenir des bornes plus fines entre les relaxations de Lasserre standard
d’ordre d et (d+ 1). L’avantage de la hiérarchie de sous-niveaux est que nous
pouvons traiter des problèmes d’optimisation polynomiale denses ou presque
denses où la hiérarchie standard peut ne pas être gérable en raison de prob-
lèmes de mémoire. Nous fournissons de nombreux exemples en optimisation
polynomiale où la hiérarchie à sous-niveaux montre des améliorations par
rapport à la hiérarchie de Lasserre standard. Les matériaux de ce chapitre
sont référencés dans [Chen et al. 2022].

• Chapitre 5 : La vérification de la robustesse et les problèmes connexes. Ce
chapitre porte sur l’application de la hiérarchie des sous-niveaux pour deux
types de réseaux neurones : le réseau neurone profond et le réseau d’équilibre
à opérateur monotone. Nous montrons d’abord comment représenter la
fonction ReLU et son sous-différentiel exactement avec des systèmes poly-
nomiaux, ce qui donne une représentation semi-algébrique de la relation
entrée-sortie des réseaux ReLU. Ensuite, nous présentons plusieurs appli-
cations à la vérification de réseaux et obtenons des modèles semi-définie
pour les problèmes suivants : l’estimation de la constante de Lipschtz, la
propagation ellipsoïdale et la vérification de la robustesse. Nous utilisons

xxviii LIST OF ACRONYMS

ces modèles pour vérifier la robustesse de réseau neurone profond et réseau
d’équilibre à opérateur monotone par rapport à la norme L2 et L∞. Les
travaux connexes comprennent : [Raghunathan et al. 2018b] pour la vérifi-
cation de la robustesse de réseau neurone profond par la relaxation de Shor,
[Latorre et al. 2020] pour l’estimation de la constante de Lipschitz de réseau
neurone profond par la relaxation linéaire, [Dathathri et al. 2020] pour la
vérification de la robustesse par l’algorithme semi-défini rapide du premier or-
dre, [Chen et al. 2020, Chen et al. 2021] pour la vérification de la robustesse
de réseau neurone profond et réseau d’équilibre à opérateur monotone par la
relaxation de sous-niveau.

La liste de nos contributions est la suivante :

• [Chen et al. 2022], consacré au cadre de relaxation de sous-niveau pour les
problèmes d’optimisation polynomiale, qui est présenté au chapitre 4;

• [Chen et al. 2020], consacré à l’application des relaxations de sous-niveaux
pour la vérification de la robustesse de réseau neurone profond, qui est présenté
dans le chapitre 5;

• [Chen et al. 2021], consacré à l’application des relaxations de sous-niveaux
pour la vérification de la robustesse de réseau d’équilibre à opérateur mono-
tone, qui est présenté dans le chapitre 5.

Chapter 1

Deep Learning and Neural
Networks

Machine learning is an application of AI that enables systems to learn and improve
from experience without being explicitly programmed. Machine learning focuses
on developing computer programs that can access data and use it to learn for
themselves. It recognizes patterns in the data and make predictions once new data
arrives. In general, the learning process of these algorithms can either be supervised
or unsupervised, depending on the data being used to feed the algorithms.

Deep learning algorithms can be regarded both as a sophisticated and math-
ematically complex evolution of machine learning algorithms. The field has been
getting lots of attention recently and for good reason: recent developments have
led to results that were not thought to be possible before. Deep learning describes
algorithms that analyze data with a logic structure similar to how a human would
draw conclusions. Note that this can happen both through supervised and unsu-
pervised learning. To achieve this, deep learning applications use layered structures
of algorithms, i.e., NNs. The design of such NNs is inspired by the biological neural
network of the human brain, leading to a process of learning which is far more
capable than that of standard machine learning models. Moreover, [Lecun 1988]
proposed an efficient way to compute the gradient of a neural network, called back-
propagation, which allows to obtain a local minimizer of the quadratic criterion
easily.

Theoretically, [Hornik 1991] showed that any bounded and regular function
f : Rn → R can be approximated at any given precision by a neural network
with one hidden layer containing a finite number of neurons, having the same ac-
tivation function, and one linear output neuron. This result was earlier proved by
[Cybenko 1989] in the particular case of the sigmoid activation function. Precisely,
Hornik’s theorem can be stated as follows.

Theorem 1.1. (Universal Approximation Theorem) Let σ be a bounded, continuous
and non-decreasing (activation) function. Let K be a compact set in Rn and C(K)
the set of continuous functions on K. Let f ∈ C(K). Then for all ε > 0, there
exists N ∈ N+, ai, bi ∈ R, ci ∈ Rn, such that, if we define

ϕ(x) =
N∑
i=1

aiσ(cTi x + bi),

2 CHAPTER 1. DEEP LEARNING AND NEURAL NETWORKS

then we have
∀x ∈ K, |ϕ(x)− f(x)| ≤ ε.

This theorem is interesting from a theoretical point of view. From a practical
point of view, this is not really useful since the number of neurons in the hidden
layer can be very large. The strength of deep learning lies in the deep (number of
hidden layers) of the networks.

Today, deep learning is used in many fields. In automated driving, for example,
deep learning is used to detect objects, such as “STOP” signs or pedestrians. The
military uses deep learning to identify objects from satellites, e.g. to discover safe
or unsafe zones for its troops. Of course, the consumer electronics industry is also
full of deep learning. Home assistance devices like Amazon Alexa, for example, rely
on deep learning algorithms to respond to your voice and learn your preferences.

1.1 Structure of Neural Networks

The structure of a neural network is also referred to its architecture or topology. It
consists of the number of layers and number of neurons. It also consists of the way
of interconnection between neurons of adjacent layers. The choice of the structures
determines the results we are going to obtain. It is the most critical part of the
implementation of a neural network.

1.1.1 Deep neural network (DNN)

Deep Neural Network (DNN) is also known as deep feed-forward neural network.
It is an artificial neural network in which the neurons do not form a cycle. A
DNN consists of an input layer, several hidden layers and one output layer, where
the input layer takes inputs, and the output layer generates outputs. The hidden
layers have no connection with the outer world, that’s why they are called hidden
layers. Every neuron in one layer is connected with each node in the next layer.
Therefore, all the nodes are fully-connected. Something else to notice is that there
is no visible or invisible connection between the nodes in the same layer. There are
no back-loops in DNNs. Hence, to minimize the error in prediction, we usually use
the backpropagation algorithm to update the weight values.

Consider a fully-connected multi-layer neural network for classification. Suppose
we have L hidden layers in the neural network, where there are p0 neurons in the
input layer and pi neurons in each hidden layer for i = 1, . . . , L. For each hidden
layer, we associate a triple of parameters (Ai,bi, σi), where Ai ∈ Rpi×pi−1 is called
the weight matrix, bi ∈ Rpi is called the bias. We denote by xi ∈ Rpi the neurons
at layer i. The neurons at layer i is activated by the neurons at layer i − 1, i.e.
xi = σ(Aixi−1 + bi) where σ : Rpi → Rpi is called the activation function. Suppose
we have K labels, we denote by F : Rp0 → RK the deep neural network. The output
of network F is an affine combination of the last hidden neurons, i.e., F (x0) = CxL
with C ∈ RK×pL . The prediction yx0 of input x0 is the index of output F (x0) with

1.1. STRUCTURE OF NEURAL NETWORKS 3

the largest value, i.e. yx0 = arg maxi=1,...,K F (x0)i. Figure 1.1 is an illustration of
a DNN of 3 hidden layers.

1

2

3

4

Hidden
layer 1

Hidden
layer 2

Hidden
layer 3

Input
layer

Output
layer

Figure 1.1: Fully-connected deep neural network.

1.1.2 Deep equilibrium model (DEQ)

Deep equilibrium model (Deep Equilibrium Model (DEQ)) is a new variant of deep
neural network proposed by [Bai et al. 2019]. The difference between a DEQ and
a DNN is that there is only one single hidden layer where the hidden neurons are
evaluated by a fixed-point equation. Consider a fully-connected deep equilibrium
model for classification. Let p0 be the number of neurons in the input layer and
p1 the number of neurons in the hidden layer. Denote by x0 and x1 the neurons
at input layer and hidden layer respectively. Then the hidden neurons is computed
by x1 = σ(Ax1 + Bx0 + b) where σ : Rp1 → Rp1 is the activation function and
A ∈ Rp1×p1 ,B ∈ Rp1×p0 ,b ∈ Rp1 are its parameters. The output of network F is an
affine combination of the last hidden neurons, i.e., F (x0) = Cx1 with C ∈ RK×p1 .
The prediction yx0 of input x0 is the index of output F (x0) with the largest value,
i.e. yx0 = arg maxi=1,...,K F (x0)i. Figure 1.1 is an illustration of a DEQ.

1

2

Hidden
layer

Input
layer

Output
layer

Figure 1.2: Fully-connected deep equilibrium model.

If we add two additional assumptions to a DEQ:

4 CHAPTER 1. DEEP LEARNING AND NEURAL NETWORKS

Assumption 1. (a) Matrix Ip1−A is strongly monotone, i.e., Ip1−(A+AT)/2 �
mIp1 for some m > 0, m is called the monotonicity factor. If A is symmetric, this
condition reduces to Ip1 −A � mIp1;

(b) The activation function σ can be represented as proximal operator of some
function f , i.e., σ = prox1

f . For α > 0, the proximal operator proxαf is defined as

proxαf (x) := arg min
z

1
2‖x− z‖22 + αf(z). (1.1)

Remark. ReLU activation function (which will be defined in Section 1.2.3), is equal
to the proximal operator of the indicator of the positive orthant f(x) = 1x≥0.
Other familiar activation functions, such as leaky ReLU, tanh, sigmoid, also can be
represented by proximal operators [Bibi et al. 2019].

A DEQ satisfying Assumption 1 is called a Monotone Operator Equilibrium
Network (MON) [Winston & Kolter 2020]. The iteration algorithms for the fixed-
point equation given by a MON is guaranteed to be convergent. Throughout this
thesis, we will always consider MONs instead of DEQs.

1.1.3 Convolutional neural network (CNN)

A Convolutional Neural Network (CNN) uses a variation of the multilayer percep-
trons. A CNN contains one or more than one convolutional layers. These layers
can either be completely interconnected or pooled. Before passing the result to the
next layer, the convolutional layer uses a convolutional operation on the input. Due
to this convolutional operation, the network can be much deeper but with much
fewer parameters. Due to this ability, convolutional neural networks show very ef-
fective results in image and video recognition, signal processing, natural language
processing, and recommender systems. Convolutional neural networks also show
great success in semantic parsing and paraphrase detection. CNNs are also being
used in image analysis and recognition in agriculture where weather features are
extracted from satellites like LSAT to predict the growth and yield of a piece of
land. Figure 1.3 shows how a typical CNN looks like.

Figure 1.3: A typical CNN architecture.

1.1. STRUCTURE OF NEURAL NETWORKS 5

1.1.4 Recurrent neural network (RNN)

Recurrent Neural Network (RNN) is another variation of deep neural networks. In
an RNN, each neuron in hidden layers receives an input with a specific delay in time.
We use this type of neural network where we need to access previous information
in current iterations. For example, when we are trying to predict the next word
in a sentence, we need to know the previously used words first. RNNs can process
inputs and share any lengths and weights across time. The model size does not
increase with the size of the input, and the computations in this model take into
account the historical information. However, the problem with RNNs is the slow
computational speed. Moreover, it cannot consider any future input for the current
state and it cannot remember information from a long time ago either.

Figure 1.4 gives an illustration of a basic RNN structure. The green circles at
the bottom are the input states xt; the blue boxes in the middle are the hidden
states ht; the red circles on the top are the output states ot; U,V,W are the
weights of the network.

Figure 1.4: A compressed (left) and unfolded (right) basic RNN.

1.1.5 Autoencoder (AE)

An Autoencoder (AE) is an unsupervised machine learning algorithm. In an AE,
the number of hidden neurons is smaller than the input neurons. The number of
input neurons in an AE equals to the number of output neurons. For autoencoder,
we train it to display the output, which is as close as the original input. This
forces AEs to find common patterns and regenerate the data. We use autoencoders
for smaller representation of the input. We can reconstruct the original data from
compressed data. The algorithm is relatively simple as AE requires output to be the
same as the input. A Variational Autoencoder (VAE) uses a probabilistic approach
for describing observations. It shows the probability distribution for each attribute
in a feature set. Figure 1.5 is the basic structure of an AE, where X is the input
neurons, X′ is the output neurons, and h is the hidden neurons.

6 CHAPTER 1. DEEP LEARNING AND NEURAL NETWORKS

Figure 1.5: Schema of a basic AE.

1.2 Activation Function in Neural Networks

In neural networks, the activation function defines the output of neurons given an
input or set of inputs. Only nonlinear activation functions allow neural networks
to compute nontrivial problems using only a small number of neurons and hidden
layers.

1.2.1 Sigmoid function

Sigmoid function is defined as

f(x) = 1
1 + e−x

, ∀x ∈ R.

This function maps any real number to the open interval (0, 1). It is smooth and
monotonically increasing, as shown in Figure 1.6a.

1.2.2 Tanh function

Tanh stands for hyperbolic tangent and is defined as

f(x) = ex − e−x

ex + e−x
, ∀x ∈ R.

This function is very similar to sigmoid function. It maps any real number to the
open interval (−1, 1), and is also smooth and monotonically increasing, as shown
in Figure 1.6b.

1.2. ACTIVATION FUNCTION IN NEURAL NETWORKS 7

1.2.3 ReLU function

ReLU stands for rectified linear unit and is defined as

f(x) = max{0, x}, ∀x ∈ R.

Although it gives an impression of a linear function, ReLU is nonlinear and allows
for backpropagation while simultaneously making it computationally efficient. The
main catch here is that the ReLU function does not activate all the neurons at
the same time. The neurons will only be deactivated if the output of the linear
transformation is less than 0. See Figure 1.6c.

1.2.4 Leaky ReLU function

Leaky ReLU function is defined as

f(x) = max{αx, x}, ∀x ∈ R, with α ∈ (0, 1).

It is an improved version of ReLU function as it has a small positive slope in the
negative area. By making this minor modification for negative input values, the
gradient of the left side of the graph comes out to be a non-zero value. Therefore,
we would no longer encounter dead neurons in that region (which is the main reason
of gradient vanishing). See Figure 1.6d.

1.2.5 ELU function

ELU stands for exponential linear unit and is defined as

f(x) =

x, x ≥ 0
α(ex − 1), x < 0

, with α ∈ [0, 1].

It is also a variant of ReLU function that modifies the slope of the negative part of
the function. ELU uses a log curve to define the negative values unlike the leaky
ReLU function with a straight line. See Figure 1.6e.

−4 −2 0 2 40

0.2

0.4

0.6

0.8

1

x

y

(a) Sigmoid

−2 −1 0 1 2
−1

−0.5

0

0.5

1

x

(b) tanh

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

(c) ReLU

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

(d) Leaky ReLU

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

(e) ELU

Figure 1.6: Familiar activation functions.

8 CHAPTER 1. DEEP LEARNING AND NEURAL NETWORKS

1.3 Adversarial Examples

Although artificial neural network is powerful in many areas, the classifiers have
been shown in some cases to fail in the presence of small adversarial perturbations of
inputs by [Kolter & Madry 2018]. A typical example is displayed in Figure 1.7. The
original picture is a panda, we add a tiny perturbation to it and get a new picture
which is visually exactly the same (a panda). However, the classifier we trained says
that the new picture is a gibbon with high confidence. Such adversarial examples
make machine learning models vulnerable to small perturbations. For instance, a
self-driving car crashes into another car because it ignores a stop sign. Someone
had placed a picture over the sign, which looks like a stop sign with a little dirt
for humans, but was designed to look like a parking prohibition sign for the sign
recognition software of the car.

Figure 1.7: An adversarial example [Goodfellow et al. 2015].

As we can see, the unsafe or erroneous phenomenon acting on neural networks
are essentially caused by the inconsistency of the decision boundaries from deep
learning models (that are learned from training datasets) and human oracles. This
inevitably raises significant concerns on whether deep learning models can be safely
applied in safety-critical domains. This generates difficulties for theoretical analysis
and a posteriori performance evaluation, and is problematic for applications where
robustness issues are crucial, for example inverse problems (IP) in scientific com-
puting. Indeed such IPs are notoriously ill-posed and is stressed in the March 2021
issue of SIAM News by [Antun et al. 2021], “Yet DL has an Achilles’ heel. Current
implementations can be highly unstable, meaning that a certain small perturbation
to the input of a trained neural network can cause substantial change in its output.
This phenomenon is both a nuisance and a major concern for the safety and ro-
bustness of DL-based systems in critical applications-like healthcare-where reliable
computations are essential”. Indeed, the Instability Theorem by [Antun et al. 2021]
predicts unavoidable lower bound on Lipschitz contants, which may explain the lack
of stability of some DNNs and over-performing on training sets.

1.3. ADVERSARIAL EXAMPLES 9

1.3.1 Adversarial training

Numerous defenses have been proposed to deal with the threat of adversarial exam-
ples, in particular for those with small perturbations. While many of the existing
approaches are heuristic in nature, that is, they do not provide guarantees that
tell us when, or if, the model’s predictions cannot be manipulated. In some safety
critical applications, this may not be good enough. Therefore, researchers try to
consider training neural networks that are robust with respect to certain attacks.
We briefly introduce two approaches to train robust networks either by controlling
the margins along the boundary or estimating the Lipschitz constant.

Constructing globally robust networks: The key idea behind globally robust
networks is that we want to construct the network in such a way that a margin
will automatically be imposed on the boundary. The output of a neural network
classifier is typically what is called a logit vector, containing one dimension (i.e.,
one logit value) per possible output class. The network makes predictions by se-
lecting the class corresponding to the highest logit value. When we cross a decision
boundary, one logit value will surpass the previous highest logit value. Thus, the
decision boundary corresponds to the points where there is a tie for the highest logit
output. To create a margin along the boundary, we essentially want to thicken the
boundary. We can do this by declaring a tie whenever the two highest logits are too
close together, i.e., we will consider the decision a draw unless one logit surpasses
the rest by at least some δ.

Approximating the Lipschitz Constant: The Lipschitz constant of a function
tells us how much the output of the function can change as its input is changed.
Intuitively, we can think of it as the maximum slope, or rate of change of the func-
tion. Thus, if the Lipschitz constant of a function is L, then the most the function’s
output can change by, if its input changes by a range of ε, is εL. The Lipschitz
constant tells us how much each logit can move when the input is perturbed within
a radius of ε, while calculating the exact Lipschitz constant of a neural network is
a fundamentally hard problem computationally. Fortunately, we can obtain an up-
per bound on the Lipschitz constant fairly easily and efficiently by breaking down
the computation to consider one layer at a time. This is a naive layer-by-layer
multiplication approach to approximate the Lipschitz constant of neural networks.
Estimating Lipschitz constant of networks is also a concern of our contribution and
we will discuss it more in the following sections.

1.3.2 Robustness verification

Since the discovery of adversarial examples, it becomes critical that we exam-
ine not only whether the systems do not simply work “most of the time”, but
which are truly robust and reliable. Although many notions of robustness and
reliability exist, one particular topic in this area that has raised a great deal

10 CHAPTER 1. DEEP LEARNING AND NEURAL NETWORKS

of interest in recent years is that of adversarial robustness: can we train classi-
fiers that are certifiably robust to all attacks within a fixed attack model? There
are many approaches to verify robustness of neural networks, including the works
by [Boopathy et al. 2019, Singh et al. 2019, Singh et al. 2018, Weng et al. 2018b,
Weng et al. 2018a, Weng et al. 2018c, Zhang et al. 2018], for many of which we con-
struct convex relaxations in order to obtain an upper bound on the worst-case loss
(which is the maximum of an optimization problem) over all valid attacks, this
upper bound serves as a certificate of robustness.

In general, the robustness problem of a neural network can be formulated as
follows: denote the network by F , suppose the input constraint is imposed by a
set X ⊆ Ω where Ω is the input space, and the corresponding output constraint is
imposed by a set Y ⊆ O where O is the output space, then solving the verification
problem requires showing that the following assertion holds:

x ∈ X =⇒ y = F (x) ∈ Y.

In particular, if the neural network is a classifier, then the output constraint Y is
reduced to a point (label) ȳ. The verification problem is then reduced to show that

x ∈ X =⇒ y = F (x) = ȳ

In other words, it requires to show that the predictions of all the inputs in X are
the same.

Generically, a robustness verification problem can be formulated as a Boolean
Satisfiability Problem (SAT), which is NP-hard, and no magic method can perfectly
solve it with high precision and small computation time. Moreover, we cannot solve
the verification problem efficiently for all types of networks. That is to say, in certain
cases, we have to design specific algorithms to solve our problems, which might not
be applicable in other cases. In the next section, we will categorize the verification
approaches into several types, according to the type of guarantees they provide. The
trade-off between those approaches is that, if we aim to solve exactly the verification
problem (for example, using SAT or Mixed Integer Linear Programming (MILP)
solvers), we need to suffer high computational burden; and if we relax the problem
to easier ones, we gain lower complexity but we loose the result precision. All those
approaches make sense because in some applications we need precision while in
other applications we only want high computation speed.

Chapter 2

Existing Approaches to
Robustness Verification

In this chapter, we review verification techniques for neural networks. Generally
speaking, existing approaches on robustness verification of networks largely fall
into the following categories: deterministic exact approach (type A), deterministic
approximation approach (type B), and statistical approximation approach (type C).
Note that the separation between them may not be strict. The classification of these
verification techniques is mainly based on the type of guarantees they provide, they
can be formally defined as follows:

Definition 2.1. (1) A deterministic exact approach states exactly whether a prop-
erty holds, e.g., an input example is robust or not robust. Here “exact” means
sound and complete (see Section 2.1.1);

(2) A deterministic approximation approach provides either lower / upper bounds
or over-approximations to the outputs, and thus can serve as a necessary / suffi-
cient condition for a property to hold, e.g., the upper bound of Lipschitz constants
of neural networks. A deterministic approximation approach is either sound or
complete;

(3) A statistical approximation approach quantifies the probability that a prop-
erty holds, hence is usually neither sound nor complete.

2.1 Characteristics of Verification Methods

When we talk about robustness verification approaches, they certify the lower/upper
bound of neural networks performance against any adversarial example under cer-
tain constraints, e.g., l∞-bounded attack. Different approaches have different fea-
tures and characteristics. We first give the definition of soundness and completeness,
which qualitatively determines an approach. Then we briefly discuss about the main
features related to the properties of verification methods.

2.1.1 Output-reality relation

If an approach give an output “verified” or “not verified” for some inputs, it is not
necessarily guaranteed that the input examples are indeed verified or not verified
to be robust. We clarify the relation between the output of the approaches and the
ground truth as follows:

12CHAPTER 2. EXISTING APPROACHES TO ROBUSTNESS VERIFICATION

Definition 2.2. (1) When a verification approach outputs “verified” for a given
input x0, if it is guaranteed (resp. not guaranteed) that any adversarial example x
around x0 doesn’t exist, then we say this approach is sound (resp. unsound);

(2) When a verification approach outputs “not verified” for a given input x0, if
it is guaranteed (resp. not guaranteed) that an adversarial example x around x0
exists, then we say this approach is complete (resp. incomplete).

As shown in Table 2.1, a sound verification approach is able to tell us how
many test examples are guaranteed to be robust. On the other hand, a complete
verification approach is able to tell us how many test examples are guaranteed not
to be robust. The remaining examples can be neither verified nor unverified.

Table 2.1: Relation between the output and reality.

output reality

sound verified verified
unsound verified unknown
complete not verified not verified
incomplete unknown verified

2.1.2 Feature of the approaches

When we talk about robustness verification, we need to specify the norm we con-
sider, the activation functions we used in the neural networks, and the layer struc-
ture of the networks. No approaches can be applied to all cases, i.e., they can only
be restricted to certain norms or activation functions.

Norm: The norm serves to specify the distance between the input example and
the adversarial attack. Principally, the norms we consider are l1, l2 and l∞ norm
and some approaches may be constrained to be used for certain norms.

Activation functions: Some verification approaches are only designed for semi-
algebraic or piece-wise linear activation functions, such as ReLU or leaky-ReLU,
while some can be used for broader set of functions.

Structure of NNs: Some approaches are only designed for single-layer NNs,
some are only designed for DNNs. The main interest of the current research is that
whether we can adapt our approaches to larger and more complicated NNs such as
DEQs, CNNs, or RNNs.

2.1.3 Scalability of the approaches

According to the methodology and solver we use, different approaches can be applied
to networks with different sizes, including the number of neurons in each layer and

2.1. CHARACTERISTICS OF VERIFICATION METHODS 13

the total number of layers (depth) of the network. Database determines the size of
the outputs, which also influences the scalability of the approaches.

Network: There are some familiar neural networks that researchers often use as
benchmarks to compare the performance of different methods:

• ResNet, short for Residual Network, a specific type of neural network intro-
duced by [He et al. 2016];

• AlexNet, a CNN architecture primarily designed by [Krizhevsky et al. 2012];

• LeNet, a CNN architecture proposed by [Lecun et al. 1998];

• MobileNet [Howard et al. 2017], a simple but efficient and not very compu-
tationally intensive CNN structure for mobile vision applications;

• GoogleNet, a 22-layer CNN architecture which is a variant of the Inception
Network [Szegedy et al. 2015];

• DenseNet1 [Huang et al. 2017a], a network architecture where each layer is
directly connected to every other layer in a feed-forward fashion;

• VGGNet proposed by [Simonyan & Zisserman 2014], where “VGG” stands
for Visual Geometry Group, a standard deep CNN architecture with multiple
layers.

Dataset: The datasets we consider in this chapter mainly includes the follows:

• The Collision Detection (CD) dataset [Ehlers 2017], which attempts to pre-
dict whether two vehicles with parameterized trajectories are going to collide;

• The Airborne Collision Avoidance System (ACAS) dataset [Katz et al. 2017],
which is a neural network based advisory system recommending horizontal
manoeuvres for an aircraft in order to avoid collisions, based on sensor mea-
surements;

• TheModified National Institute of Standards and Technology (MNIST) dataset
of handwritten digits [Lecun 1988], which is the most commonly used bench-
marks for comparing different machine learning approaches;

• The Canadian Institute For Advanced Research (CIFAR-10) 2 dataset, which
is a collection of images that are commonly used to train machine learning
and computer vision algorithms. It is one of the most widely used datasets
for machine learning research;

1https://github.com/liuzhuang13/DenseNet
2https://www.cs.toronto.edu/~kriz/cifar.html

https://github.com/liuzhuang13/DenseNet
https://www.cs.toronto.edu/~kriz/cifar.html

14CHAPTER 2. EXISTING APPROACHES TO ROBUSTNESS VERIFICATION

• The ImageNet3 project, which is a large visual database designed for use in
visual object recognition software research. More than 14 million images have
been hand-annotated by the project to indicate what objects are pictured and
in at least one million of the images, bounding boxes are also provided.

In Table 2.2, we show the largest size of neural networks the approaches is ap-
plied to, to illustrate the scalability of the approaches. Many approaches presented
in this chapter are referred to related surveys [Huang et al. 2020, Li et al. 2020,
Urban & Miné 2021, Liu et al. 2021, Meng et al. 2022]. We also refer to the book
by [Albarghouthi 2021] for a broad view of robustness verification for constraint-
based, abstraction-based and optimization-based approaches.

2.2 Deterministic Exact Approaches (type A)

Deterministic guarantees are achieved by transforming a verification problem into
a set of constraints (with or without optimization objectives) so that they can be
solved with a constraint solver. The name “deterministic” comes from the fact that
solvers often return a deterministic answer to a query, i.e., either satisfactory or
unsatisfactory. This is based on the current success of various constraint solvers
such as SAT solvers, Satisfiability Modulo Theories (SMT) solvers, LP solvers, and
MILP solvers.

2.2.1 Satisfiability modulo theories (SMT) problem

The Boolean satisfiability problem (SAT) determines if, given a Boolean formula,
there exists an assignment to the Boolean variables such that the formula is satisfi-
able. Based on SAT, the satisfiability modulo theories (SMT) problem determines
the satisfiability of logical formulas with respect to combinations of background
theories expressed in classical first-order logic with equality. SMT solvers often
have good performance on problems that can be represented as a Boolean combi-
nation of constraints over other variable types. Typically, an SMT solver combines
a SAT solver with specialised decision procedures for other theories. The theories
we consider in the context of neural networks include the theory of real numbers
and the theory of integers. For both SAT and SMT problems, there are sophisti-
cated and open-source solvers that can automatically answer the queries about the
satisfiability of the formulas.

Two SMT solvers Reluplex [Katz et al. 2017] and Planet [Ehlers 2017] were put
forward to verify neural networks on properties expressible with SMT constraints.
In the verification of networks, they adapt linear arithmetic over real numbers, in
which an atom (i.e., the most basic expression) is of the form

∑n
i=1 aixi ≤ b, where

ai and b are real numbers. In both Reluplex and Planet, they use the architecture
of the Davis-Putnam-Logemann-Loveland (DPLL) algorithm in splitting cases and
ruling out conflict clauses, while they differ slightly in dealing with the intersection.

3https://www.image-net.org/index.php

https://www.image-net.org/index.php

2.2. DETERMINISTIC EXACT APPROACHES (TYPE A) 15

For Reluplex, the approach performs tree search in the function space. It extends
the simplex algorithm, a standard algorithm for solving LP instances, to support
ReLU networks. Through the classical pivot operation, it first looks for a solution
for the linear constraints, and then applies the rules for ReLU to satisfy the ReLU
relation for every node. Conversely, Planet integrates with a SAT solver for tree
search in the function space. The objective of the search is to find an activation
pattern of ReLU networks that maps an input in X to an output not in Y. It
combines optimization-based filtering and pruning in the search process, and uses
linear approximation to overapproximate the neural networks, and manages the
condition of ReLU and max-pooling nodes with a logic formula.

[Bunel et al. 2018] uses Branch and Bound (BaB) to compute the output bounds
of a network. It has a modularized design that can serve as a unified framework
that can support other methods such as Reluplex and Planet.

[Narodytska 2018, Narodytska et al. 2018] propose to verify properties of a class
of neural networks (i.e., binarised neural networks) in which both weights and acti-
vations are binary, by reduction to the well-known Boolean satisfiability. Using this
Boolean encoding, they leverage the power of modern SAT solvers, along with a pro-
posed counterexample-guided search procedure, to verify various properties of these
networks. A particular focus is on the robustness to adversarial perturbations. The
experimental results demonstrate that this approach scales to medium-size DNNs
used in image classification tasks.

2.2.2 Mixed integer linear programming (MILP)

Linear programming (LP) is a technique for optimizing a linear objective function,
subject to linear equality and inequality constraints. All the variables in an LP
are real, if some of the variables are integers, the problem becomes a mixed integer
linear programming (MILP) problem. It is noted that, while LP can be solved in
polynomial time, MILP is NP-hard.

NSVerify by [Lomuscio & Maganti 2017, Akintunde et al. 2018] encodes the net-
work as a set of mixed integer linear constraints. It solves a feasibility problem
without an objective function, and tries to find a counterexample for the verifica-
tion problem. However, it is not efficient to simply use MILP to verify networks,
or to compute the output range. [Cheng et al. 2017] developed a number of MILP
encoding heuristics to speed up the solving process, and moreover, parallelization of
MILP-solvers is used, resulting in an almost linear speed-up in the number (up to a
certain limit) of computing cores in experiments. MIPVerify by [Tjeng et al. 2019]
also encodes the network as a set of mixed integer linear constraints. There are
two differences between MIPVerify and NSVerify. Firstly, MIPVerify determines
the bounds on the nodes to tighten the constraints. Secondly, MIPVerify solves an
adversarial problem that tries to estimate the maximum allowable disturbance on
the input side.

Sherlock by [Dutta et al. 2018] alternately conducts a local and global search to
efficiently calculate the output range. In a local search phase, Sherlock uses gradient

16CHAPTER 2. EXISTING APPROACHES TO ROBUSTNESS VERIFICATION

descent method to find a local maximum (or minimum). While in a global search
phase, it encodes the problem with MILP to check whether the local maximum
(or minimum) is the global output range. Additionally, the branch and bound
algorithm presented by [Bunel et al. 2018] claims that both SAT/SMT-based and
MILP-based approaches can be regarded as its special cases.

2.2.3 Layer-by-layer refinement

[Huang et al. 2017b] develops an automated verification framework for feed-forward
multi-layer neural networks based on SMT solver. The key features of this frame-
work are that it guarantees a misclassification being found if it exists, and that it
propagates the analysis layer-by-layer, i.e., from the input layer to, in particular,
the hidden layers, and to the output layer. It supports any activation function.

In this work, local robustness is defined as the invariance of a classifier’s out-
come to perturbations within a small neighborhood of an original input. To be
more specific, its verification algorithm uses single-/multi-path search to exhaus-
tively explore a finite region of the vector spaces associated with the input layer
or the hidden layers, and a layer-by-layer refinement is implemented using the Z3
solver [de Moura & Bjørner 2008] to ensure that the local robustness of a deeper
layer implies the robustness of a shallower layer. The methodology is implemented
in the software tool called DLV (Deep Learning Verification)4, and evaluated on
image benchmarks such as MNIST, CIFAR-10, and ImageNet. Though the com-
plexity is high, it scales to work with state-of-the-art networks such as VGGNet
[Simonyan & Zisserman 2014].

2.2.4 Reduction to a two-player turn-based game

In DeepGame by [Wu et al. 2020], two variants of pointwise robustness are studied:

• the maximum safe radius (MSR) problem, which computes the minimum
distance to an adversarial example for a given input sample;

• the feature robustness (FR) problem, which aims to quantify the robustness
of individual features to adversarial perturbations.

It demonstrates that, under the assumption of Lipschitz continuity, both prob-
lems can be approximated using finite optimization by discretizing the input space,
and the approximation has provable guarantees, i.e., the error is bounded. It subse-
quently reduces the resulting optimization problems to the solution of a two-player
turn-based game, where Player I selects features and Player II perturbs the image
within the feature. While Player II aims to minimize the distance to an adversarial
example, Player I can be cooperative or competitive depending on the optimiza-
tion objective. An anytime approach is employed to solve the games, in the sense
of approximating the value of a game by monotonically improving its upper and

4https://github.com/verideep/dlv

https://github.com/verideep/dlv

2.3. DETERMINISTIC APPROXIMATION APPROACHES (TYPE B) 17

lower bounds. The Monte-Carlo tree search algorithm is applied to compute upper
bounds for both games, and the Admissible A∗ and Alpha-Beta Pruning algorithms
are, respectively, used to compute lower bounds for the MSR and FR games.

2.2.4.1 Global optimization based approaches

[Ruan et al. 2018] shows that most known layers of DNNs are Lipschitz contin-
uous, and presents a verification approach based on global optimization. For a
single dimension, an algorithm is presented to always compute the lower bounds
(by utilizing the Lipschitz constant) and eventually converge to the optimal value.
Based on this single-dimensional algorithm, the algorithm for multiple dimensions
is to exhaustively search for the best combinations. The algorithm is able to work
with state-of-the-art DNNs, but is restricted by the number of dimensions to be
perturbed.

[Ruan et al. 2019] focuses on the Hamming distance, and study the problem
of quantifying the global robustness of a trained DNNs, where global robustness
is defined as the expectation of the maximum safe radius over a testing dataset.
They propose an approach to iteratively generate lower and upper bounds on the
network’s robustness. The approach is anytime, i.e., it returns intermediate esti-
mations that are gradually, but strictly, improved as the computation proceeds. It
is also tensor-based, i.e., the computation is conducted over a set of inputs simul-
taneously, instead of one by one, to enable efficient GPU computation. Finally, it
has provable guarantees, i.e., the estimations converge to their optimal values.

2.3 Deterministic Approximation Approaches (type B)

The approaches surveyed in this subsection consider the computation of a lower
(or by duality, an upper) bound, and are able to claim the sufficiency of achieving
properties. Although these approaches can only have a bounded estimation to
the value of some variable, they are able to work with larger models, e.g., up to
10000 hidden neurons. Another advantage is their potential to avoid floating point
issues in existing constraint solver implementations. Actually, most state-of-the-art
constraint solvers implementing floating-point arithmetic only give approximate
solutions, which may not be the actual optimal solution or may even lie outside the
feasible space, see [Neumaier & Shcherbina 2004]. Indeed, it may happen that a
solver wrongly claims the satisfiability or unsatisfiability of a property. For example,
[Dutta et al. 2018] reports several false positive results in Reluplex, and mentions
that this may come from an unsound floating point implementation.

2.3.1 Abstract interpretation

Abstract interpretation is a theory of sound approximation of the semantics of
computer programs [Cousot & Cousot 1977]. It has been used in static analysis
to verify properties of a program without actually being run. The basic idea of

18CHAPTER 2. EXISTING APPROACHES TO ROBUSTNESS VERIFICATION

abstract interpretation is to use abstract domains (represented as boxes, zonotopes,
polyhedra, and ellipsoids, etc.) to overapproximate the computation of a set of
inputs. Its application has been explored in a few approaches [Gehr et al. 2018,
Mirman et al. 2018, Li et al. 2019].

In abstract interpretation, it is important to choose a suitable abstract domain
because it determines the efficiency and precision of the abstract interpretation.
In practice, a certain type of special shapes is used as the abstraction elements.
Formally, an abstract domain consists of shapes expressible as a set of logical con-
straints. The most popular abstract domains for the Euclidean space abstraction
include boxes, zonotopes, polyhedra, and ellipsoids, which are defined as follows:

• Box: a box B contains logical constraints of form a ≤ xi ≤ b. For each
variable xi, B contains at most one constraint with xi;

• Zonotope: a zonotope Z consists of constraints of form zi = ai +
∑m
j=1 bijεj ,

where ai, bij are real constants and εj ∈ [lj , uj]. The conjunction of these
constraints expresses a center-symmetric polyhedron in the Euclidean space;

• Polyhedron: a polyhedron P has constraints in the form of linear inequalities,
i.e.,

∑n
i=1 aixi ≤ b, and it gives a closed convex polyhedron in the Euclidean

space;

• Ellipsoid: an ellipsoid E has constraints of form ‖Qx+b‖2 ≤ 1 parametrized
by Q ∈ Sn and b ∈ Rn, where Sn is the set of positive semidefinite matrices
of size n× n.

Example. The unit box with 0 ≤ xi ≤ 1 is naturally a zonotope (zi = xi ∈ [0, 1])
and a polyhedron (xi ≤ 1,−xi ≤ 0). The unit ball with ‖x‖2 ≤ 1 is an Ellipsoid.

The approaches based on abstract interpretation often perform layer-by-layer
reachability analysis to compute the reachable set of the output region. For exam-
ple, [Xiang et al. 2018b] computes the exact reachable set for networks with only
ReLU activations. The key insight is that if the input set to a ReLU function is a
union of polytopes, then the output reachable set is also a union of polytopes. As
there is no overapproximation, this method is sound and complete. However, since
the number of polytopes grows exponentially with each layer, this method does not
scale.

MaxSens by [Xiang et al. 2018a] partitions the input domain into small grid
cells, and loosely approximates the reachable set for each grid cell considering the
maximum sensitivity of the network at each grid cell. Sensitivity of a function is
equivalent to the Lipschitz constant of the function. The union of those reachable
sets is the output reachable set. The finer the partition, the tighter the output
reachable set. MaxSens works for any activation function and its running time
scales well with the number of layers but poorly with the input dimension.

AI2 and ERAN (updated version of AI2) by [Gehr et al. 2018] uses representa-
tions that overapproximate the reachable set. It trades precision of the reachable

2.3. DETERMINISTIC APPROXIMATION APPROACHES (TYPE B) 19

set for scalability of the algorithm. It works for any piecewise linear activation
functions, such as ReLU and leaky ReLU. Due to its approximation, the number
of geometric objects to be traced during layer-by-layer analysis is greatly reduced.
Although AI2 is not complete, it scales well.

2.3.2 Convex optimization based methods

Convex optimization is to minimize convex functions over convex sets. Most neu-
ral network functions are not convex (even if they are convex, they can be very
complicated), and hence an approximation is needed for the related computation.
[Wong & Kolter 2018] proposes a method called ConvDual to learn deep ReLU-
based classifiers that are provably robust against norm-bounded adversarial pertur-
bations on the training data. The approach works with interval property, but not
with reachability property. It may flag some non-adversarial examples as adver-
sarial examples. The basic idea of ConvDual is to consider a convex outer overap-
proximation of the set of activations which is reachable through a norm-bounded
perturbation, and then develop a robust optimization procedure that minimizes the
worst case loss over this outer region via a linear program. Crucially, it is shown
that the dual problem to this linear program can be represented itself as a deep net-
work similar to the backpropagation network, leading to very efficient optimization
approaches that produce guaranteed bounds on the robust loss. The approach is
illustrated on a number of tasks with robust adversarial guarantees. For example,
for MNIST dataset, they produce a convolutional classifier that provably has less
than 5.8% test error for any adversarial attack with bounded l∞ norm less than
ε = 0.1.

[Dvijotham et al. 2018] takes a different formulation of the dual problem, i.e.,
applying Lagrangian relaxation on the optimization, to solve a Lagrangian relax-
ation of the optimization problem to obtain bounds on the output. This is to avoid
working with constrained nonconvex optimization problem. The dual problem is
formulated as an unconstrained convex optimization problem, which can be com-
puted efficiently. This approach is anytime and works for any activation function.,
i.e., it can be stopped at any time and a valid bound on the maximum violation
can be obtained. The authors develop specialized verification algorithms with prov-
able tightness guarantees under special assumptions and demonstrate the practical
significance of the general verification approach on a variety of verification tasks.

[Raghunathan et al. 2018a] uses a semidefinite relaxation to compute Lipschitz
constants of neural networks. Firstly, the authors propose a method based on
semidefinite relaxation that outputs a certificate that no attack can force the error
to exceed a certain value for a given network and test input. Secondly, as this
certificate is differentiable, they jointly optimize it with the network parameters,
providing an adaptive regularizer that encourages robustness against all attacks.
On MNIST dataset, this approach produces a network and a certificate that no
attack that perturbs each pixel by at most ε = 0.1 can cause more than 35% test
error. It works for any activation function that is differentiable almost everywhere

20CHAPTER 2. EXISTING APPROACHES TO ROBUSTNESS VERIFICATION

but only for neural networks with only one hidden layer.
[Brown et al. 2022] develop an exact, convex formulation of verification as a

completely positive program (CPP), which are linear optimization problems over
the cone of completely positive matrices. This gives a clean separation between the
two competing desiderata of accuracy and tractability in relaxed verification. The
authors also provide analysis explaining how properties of the CPP formulation
evolve when the complete positivity constraint is relaxed. They find that many of
the favorable properties of the CPP formulation are retained in SDP relaxations,
showing that it is a convenient starting point for constructing tight SDP-based
verifiers.

2.3.3 Linear approximation of ReLU networks

FastLin/FastLip by [Weng et al. 2018a] analyses the ReLU networks on both inter-
val property and Lipschitzian property. For interval property, they consider linear
approximation over those ReLU neurons that are uncertain on their status of being
activated or deactivated. For Lipschitzian property, they use the gradient compu-
tation for the approximations. FastLin computes a certified lower bound on the
allowable input disturbance for ReLU networks using a layer-by-layer approach and
binary search in the input domain. Based on FastLin, FastLip computes the bounds
on the activation functions, and further estimates the local Lipchitz constant of the
network. In general, FastLin is more scalable than FastLip, while FastLip provides
better solutions for l1 norm.

CROWN [Zhang et al. 2018] is a general framework to certify robustness of
neural networks with general activation functions for given input data points. It
generalizes the interval property computation algorithm in FastLin/FastLip by al-
lowing the linear expressions for the upper and lower bounds to be different and
enabling to work with other activation functions such as sigmoid and tanh. The
Lipschitzian property computation is improved by [Zhang et al. 2019]. The authors
propose a recursive algorithm, called RecurJac, to compute both upper and lower
bounds for each element in the Jacobian matrix of a neural network with respect to
network inputs, and the network can contain a wide range of activation functions,
not limited to ReLU.

CROWN-IBP [Zhang et al. 2020] is a certified adversarial training method com-
bining the fast interval bound propagation (IBP) bounds in a forward bounding
pass and a tight linear relaxation based bound, CROWN, in a backward bounding
pass. CROWN-IBP is computationally efficient and consistently outperforms IBP
baselines on training verifiably robust neural networks.

α-CROWN [Xu et al. 2021] uses the backward mode linear relaxation based
perturbation analysis (LiRPA) to replace LP during the BaB process, which can
be efficiently implemented on the typical machine learning accelerators such as
GPUs and TPUs. However, unlike LP, LiRPA when applied naively can produce
much weaker bounds and even cannot check certain conflicts of subdomains during
splitting, making the entire procedure incomplete after BaB.

2.3. DETERMINISTIC APPROXIMATION APPROACHES (TYPE B) 21

β-CROWN [Wang et al. 2021d] is an improved approach based on CROWN,
that can fully encode neuron splits via optimizable parameters β constructed from
either primal or dual space, and can be used for both complete and incomplete
verification depending on whether we execute early stop. Applied to complete
robustness verification benchmarks, β-CROWN with BaB is up to three orders
of magnitude faster than LP-based BaB methods, and is notably faster than all
existing approaches while producing lower timeout rates. By terminating BaB
early, their method can also be used for efficient incomplete verification. Compared
to the typically tightest but very costly SDP-based incomplete verifiers, they obtain
higher verified accuracy with three orders of magnitudes less verification time.

CNN-cert [Boopathy et al. 2019] generalizes FastLin/FastLip and CROWN to
general convolutional neural networks. It can handle various architectures including
convolutional layers, max-pooling layers, batch normalization layer, residual blocks,
as well as general activation functions. The efficiency of the approach is shown by
exploiting the special structure of convolutional layers. CNN-cert achieves up to 17
and 11 times of speed-up compared to the state-of-the-art verification algorithms
(e.g. FastLin, CROWN) and 366 times of speed-up compared to the dual-LP ap-
proach, and in the meantime, it obtains similar or even better verification bounds.

2.3.4 Interval analysis

The interval arithmetic by [Wang et al. 2018a] is leveraged to compute rigorous
bounds on the outputs of a DNN, i.e., interval property. The key idea is that,
given the ranges of operands, an overestimated range of the output can be com-
puted by using only the lower and upper bounds of the operands. Starting from the
first hidden layer, this computation can be conducted to the output layer. Beyond
this explicit computation, symbolic interval analysis along with several other opti-
mizations are also developed to minimize overestimations of output bounds. These
methods are implemented in ReluVal [Wang et al. 2018b], a system for formally
checking security properties of ReLU-based DNNs. ReluVal uses symbolic interval
analysis along with search to minimize overapproximations of the output sets. Dur-
ing the search process, ReluVal iteratively bisects its input range. This process is
called iterative interval refinement, which is also used in BaB by [Bunel et al. 2018].
[Wang et al. 2018a] improves ReluVal by two major modifications. Firstly, it intro-
duces symbolic linear relaxation which is tighter than symbolic interval analysis in
computing the reachable sets. Secondly, it introduces direct constraint refinement
to perform the search more efficiently. An advantage of this approach, comparing
to constraint solving based approaches, is that it can be easily parallelizable. In
general, interval analysis is close to the interval-based abstract interpretation (see
Section 2.3.1).

[Peck et al. 2017] takes steps towards a formal characterization of adversarial
perturbations by deriving lower bounds on the magnitudes of perturbations nec-
essary to change the classification of neural networks. The proposed bounds can
be computed efficiently, requiring time at most linear in the number of parameters

22CHAPTER 2. EXISTING APPROACHES TO ROBUSTNESS VERIFICATION

and hyperparameters of the model for any given sample. This makes this approach
suitable for use in model selection, when one wishes to find out which of several
proposed classifiers is most robust to adversarial perturbations. The approach may
also be used as a basis for developing techniques to increase the robustness of clas-
sifiers, since it enjoys the theoretical guarantee that no adversarial perturbation
could possibly be any smaller than the quantities provided by the bounds. The au-
thors experimentally verify the bounds on the MNIST and CIFAR-10 datasets and
find no violations. Additionally, the experimental results suggest that very small
adversarial perturbations may occur with non-zero probability on natural samples.

2.4 Statistical Approximation Approaches (type C)

This subsection reviews a few approaches aiming to achieve statistical guarantees
on their results, by claiming that the satisfiability of a property, or a value is a
lower bound of another value, with certain probability.

2.4.1 Lipschitz constant estimation by extreme value theory

[Weng et al. 2018c] proposes an Extreme Value Theory (EVT) based robustness
score for large-scale deep neural networks, called CLEVER (Cross-Lipschitz Ex-
treme Value for Network Robustness). It estimates the Lipschitz constant, i.e., it
works with Lipschitzian property. And it estimates the robustness lower bound by
sampling the norm of gradients and fitting a limit distribution using EVT. Com-
pared with the existing robustness evaluation approaches, their metric is attack-
independent and applicable to any neural network classifiers. CLEVER has strong
theoretical guarantees and is computationally feasible for large neural networks.
However, as argued by [Goodfellow 2018], their evaluation approach can only find
statistical approximation of the lower bound, i.e., their approach has a sound-
ness problem. [Weng et al. 2018b] proposes two extensions on CLEVER robustness
score. Firstly, the authors provide a new formal robustness guarantee for classifier
functions that are twice differentiable. They apply EVT on the new formal robust-
ness guarantee and the estimated robustness is called second-order CLEVER score.
Secondly, they discuss how to handle gradient masking, a common defensive tech-
nique, using CLEVER with Backward Pass Differentiable Approximation (BPDA).
With BPDA applied, CLEVER can evaluate the intrinsic robustness of neural net-
works of a broader class - networks with non-differentiable input transformations.
They demonstrate the effectiveness of CLEVER with BPDA in experiments on a
121-layer Densenet [Huang et al. 2017a] model trained on the ImageNet dataset.

2.4.2 Robustness estimation

[Bastani et al. 2016] proposes an Iterative Linear Programming (ILP), to encode
the network as a set of linear constraints by linearizing the network at a refer-
ence point. The optimization problem in ILP is an adversarial problem that tries

2.5. CHARACTERISTIC ANALYSIS OF EACH VERIFICATION METHOD 23

to estimate the maximum allowable disturbance on the input side. It iteratively
solves the optimization. This method is not complete as it only considers one lin-
ear segment of the network. The authors propose two statistics of robustness to
measure the frequency and the severity of adversarial examples respectively. Both
statistics are based on a parameter ε, which is the maximum radius within which
no adversarial examples exist. The computation of these statistics is based on the
local linearity assumption which holds when ε is small enough. The authors show
how these metrics can be used to evaluate the robustness of deep neural networks
with experiments on the MNIST and CIFAR-10 datasets. Their algorithm gener-
ates more informative estimates of robustness metrics compared to estimates based
on existing algorithms. Except for the application of the ReLU activation function
which is piece-wise linear, this assumption can be satisfied by the existence of the
Lipschitz constant as shown by [Ruan et al. 2018].

2.5 Characteristic analysis of each verification method

As introduced in Section 2.1, we summarize in this section the features and char-
acteristics of each method we showed in the previous section.

24CHAPTER 2. EXISTING APPROACHES TO ROBUSTNESS VERIFICATION

Table
2.2:

C
haracteristic

analysis
ofvarious

approaches.

M
ethod

&
N
am

e
T
ype

C
om

pleteness
Soundness

A
ctivations

N
orm

Scalability
D
ataset

N
etw

ork

[K
atz

et
al.2017],R

eluplex

A

3
3

R
eLU

L
∞

6
×

300
A
C
A
S

D
N
N

[E
hlers

2017],P
lanet

3
3

R
eLU

L
∞

1341
C
D
,M

N
IST

C
N
N

[B
unelet

al.2018],B
aB

3
3

R
eLU

L
∞

4
×

25
C
D
,A

C
A
S

D
N
N

[N
arodytska

2018]
3

3
sign

L
∞

4
×

100
M
N
IST

B
inary

[Lom
uscio

&
M
aganti2017],N

SV
erify

3
3

R
eLU

L
∞

(4608
,128)

M
N
IST

C
N
N

[T
jeng

et
al.2019],M

IP
V
erify

3
3

R
eLU

L
∞

3
×

20,R
esN

et
M
N
IST

,C
IFA

R
-10

D
N
N
,C

N
N

[A
kintunde

et
al.2018]

3
3

R
eLU

L
∞

29
×

81
Tw

inStream
D
N
N

[C
heng

et
al.2017]

3
3

R
eLU

L
∞

4
×

50
M
N
IST

D
N
N

[D
utta

et
al.2018],Sherlock

3
3

R
eLU

L
1
,L
∞

(200
,100

,50)
M
N
IST

D
N
N

[H
uang

et
al.2017b]

3
3

R
eLU

L
1
,L

2
6e5,1e6,V

G
G
N
et

C
IFA

R
-10,Im

ageN
et

C
N
N

[W
u

et
al.2020]

3
3

R
eLU

L
1
,L

2
256

,(3
,3
,128)

M
N
IST

,C
IFA

R
-10

D
N
N
,C

N
N

[R
uan

et
al.2018]

3
3

R
eLU

L
∞

19
×

256
A
C
A
S,M

N
IST

C
N
N

[R
uan

et
al.2019]

3
3

R
eLU

L
0

A
lexN

et,V
G
G
N
et,R

esN
et

M
N
IST

,Im
ageN

et
D
N
N

[X
iang

et
al.2018a]

B

7
3

m
onotonic

L
∞

2
×

5
×

2
robotic

D
N
N

[G
ehr

et
al.2018],A

I2,E
R
A
N

7
3

R
eLU

L
∞

9
×

200,LeN
et

M
N
IST

,C
IFA

R
-10

D
N
N
,C

N
N

[W
ong

&
K
olter

2018]
7

3
R
eLU

L
∞

4
×

100,C
onvN

et
M
N
IST

D
N
N
,C

N
N

[D
vijotham

et
al.2018]

7
3

L-differentiable
L

2
1-layer

M
N
IST

,C
IFA

R
-10

D
N
N

[R
aghunathan

et
al.2018b],SD

P
-cert

7
3

R
eLU

L
∞

500
,(200

,100
,50)

M
N
IST

D
N
N

[W
eng

et
al.2018a],FastLin/FastLip

7
3

R
eLU

L
1
,L

2
,L
∞

6
×

2048
M
N
IST

,C
IFA

R
-10

D
N
N

[Zhang
et

al.2018],C
R
O
W

N
7

3
R
eLU

L
1
,L

2
,L
∞

6
×

2048
M
N
IST

,C
IFA

R
-10

D
N
N

[Zhang
et

al.2019],R
ecurJac

7
3

R
eLU

,sigm
oid

L
2
,L
∞

10
×

2048
M
N
IST

,C
IFA

R
-10

D
N
N

[Zhang
et

al.2020],C
R
O
W

N
-IB

P
7

3
R
eLU

L
∞

10
×

128
M
N
IST

,C
IFA

R
-10

C
N
N

[X
u

et
al.2021],

α-C
R
O
W

N
7

3
R
eLU

L
∞

R
esN

et
M
N
IST

,C
IFA

R
-10

D
N
N
,C

N
N

[W
ang

et
al.2021d],

β-C
R
O
W

N
7

3
R
eLU

L
∞

6244
C
IFA

R
-10

C
N
N

[B
oopathy

et
al.2019],C

N
N
-cert

7
3

R
eLU

L
1
,L

2
,L
∞

LeN
et,R

esN
et

C
IFA

R
-10,Im

ageN
et

D
N
N
,C

N
N

[W
ang

et
al.2018a]

7
3

R
eLU

L
1
,L

2
,L
∞

2
×

512,4804
A
C
A
S,M

N
IST

D
N
N
,C

N
N

[W
ang

et
al.2018b],R

eluV
al

7
7

R
eLU

L
∞

2
×

512
A
C
A
S,M

N
IST

D
N
N

[P
eck

et
al.2017]

3
7

R
eLU

L
2

LeN
et

M
N
IST

,C
IFA

R
-10

D
N
N
,C

N
N

[W
eng

et
al.2018c],C

LE
V
E
R

C
7

7
R
eLU

L
2
,L
∞

A
lexN

et,R
esN

et,M
obileN

et
C
IFA

R
-10,Im

ageN
et

D
N
N
,C

N
N

[W
eng

et
al.2018b]

7
7

tanh
L

2
D
enseN

et
C
IFA

R
-10,Im

ageN
et

C
N
N

[B
astaniet

al.2016]
7

7
R
eLU

L
∞

LeN
et,N

iN
M
N
IST

,C
IFA

R
-10

D
N
N
,C

N
N

Chapter 3

Convex Relaxations and
Moment-SOS Hierarchy

Contents
1.1 Structure of Neural Networks 2

1.1.1 Deep neural network (DNN) 2

1.1.2 Deep equilibrium model (DEQ) 3

1.1.3 Convolutional neural network (CNN) 4

1.1.4 Recurrent neural network (RNN) 5

1.1.5 Autoencoder (AE) . 5

1.2 Activation Function in Neural Networks 6

1.2.1 Sigmoid function . 6

1.2.2 Tanh function . 6

1.2.3 ReLU function . 7

1.2.4 Leaky ReLU function . 7

1.2.5 ELU function . 7

1.3 Adversarial Examples . 8

1.3.1 Adversarial training . 9

1.3.2 Robustness verification . 9

For ReLU networks, many machine learning problems can be formulated as
polynomial optimization problems (POP). The advantage of POPs is that, instead
of finding local optimizers, there are many approaches to find global optimizers
of POPs. However, those POPs are usually nonlinear and non-convex, which are
NP-hard to solve. Fortunately, one is able to relax POPs to convex optimization
problems such as Linear Programming (LP), Quadratic Programming (QP) and
Semidefinite Programming (SDP). For those convex optimization problems, there
are already various efficient solvers to calculate accurate optimal values. In this
chapter, we first introduce the general primal-dual forms of those convex optimiza-
tion problems. Then we discuss about the theoretical preliminaries of Lasserre’s
moment-SOS hierarchy, a systematic approach about convex relaxation of POPs.

26CHAPTER 3. CONVEX RELAXATIONS AND MOMENT-SOS HIERARCHY

3.1 Convex Optimization Problems

For convex problem, any of its local optimizer is a global optimizer, and there are
already many polynomial-time algorithm to solve them efficiently.

3.1.1 Linear programming (LP)

Linear programming is a mathematical modeling technique in which a linear func-
tion is maximized or minimized when subjected to various linear constraints. This
technique has been useful for guiding quantitative decisions in business planning,
in industrial engineering, and in the social and physical sciences. An LP has a
standard form

max
x∈Rn

cTx (LP)

s.t. Ax ≤ b, x ≥ 0,

where A ∈ Rm×n,b ∈ Rm, c ∈ Rn are known parameters.

3.1.2 Quadratic programming (QP)

Quadratic programming is the problem of optimizing a quadratic objective function
and is one of the simplests form of non-linear programming. The objective function
can contain bilinear or up to second order polynomial terms, and the constraints
are linear and can be both equalities and inequalities. QP is widely used in image
and signal processing, to optimize financial portfolios, to perform the least-squares
method of regression, to control scheduling in chemical plants, and in sequential
quadratic programming. A QP can be written in the standard form

max
x∈Rn

1
2xTQx + cTx (QP)

s.t. Ax ≤ a, Bx = b, x ≥ 0,

where A ∈ Rp×n,a ∈ Rp,B ∈ Rq×n,b ∈ Rq,Q ∈ Rn×n, c ∈ Rn are known parame-
ters.

3.1.3 Semidefinite programming (SDP)

In semidefinite programming we minimize a linear function subject to the constraint
that an affine combination of symmetric matrices is positive semidefinite. Such a
constraint is nonlinear and nonsmooth, but convex, so positive definite programs
are convex optimization problems. Semidefinite programming unifies several stan-
dard problems (eg, linear and quadratic programming) and finds many applications
in engineering. Although semidefinite programs are much more general than lin-
ear programs, they are just as easy to solve. Most interior-point methods for linear
programming have been generalized to semidefinite programs. As in linear program-

3.2. POLYNOMIAL OPTIMIZATION AND LASSERRE’S HIERARCHY 27

ming, these methods have polynomial worst-case complexity, and perform very well
in practice. An SDP has a standard (primal) form

min
X∈Sn

〈C,X〉 (SDP-primal)

s.t. 〈Ai,X〉 = bi, i = [1,m]; X � 0,

where Sn denotes the the space of all real symmetric n × n matrices, and 〈·, ·〉
denotes the Frobenius scalar product in Sn. Sometimes we also use the the dual
semidefinite program

max
y∈Rm

bTy (SDP-dual)

s.t.
m∑
i=1

yiAi ≤ C.

3.2 Polynomial Optimization and Lasserre’s Hierarchy

In this section we introduce the standard form of polynomial optimization problems
and Lasserre’s hierarchy which can be used to relax any POP to a series of SDPs,
and has already many successful applications in and outside optimization.

3.2.1 Polynomial optimization problem (POP)

Let R[x] be the vector space of real-valued polynomials in variable x. A general
polynomial optimization problem in n variables takes the standard form

f∗1 = min
x∈Rn

f(x) (POP)

s.t. gi(x) ≥ 0, i ∈ [p],

where f, gi ∈ R[x]. This is a special case of nonlinear optimization problem where
ojective function and all constraints are polynomials. If there is an equality con-
straint g(x) = 0, we can replace g = 0 by inequality constraints g ≥ 0 and −g ≥ 0
and retrieve the standard form (POP).

Definition 3.1. A subset K of Rn is called a semialgebraic set if K is defined by
a finite sequence of polynomial equalities and inequalities. A function f : Rn → R
is called a semialgebraic function if its graph is a semialgebraic set, i.e., the set
{(x, f(x)) : x ∈ Rn} ⊆ Rn+1 is a semialgebraic set.

With the notations in (POP), we define a semialgebraic set K := {x : gi(x) ≥
0, i ∈ [p]}. The standard form (POP) can be written equivalently as

f∗2 = min
µ∈P(K)

∫
f(x)dµ, (MEAS)

28CHAPTER 3. CONVEX RELAXATIONS AND MOMENT-SOS HIERARCHY

where P(K) is the space of Borel probability measures with support contained in
the semialgebraic set K. Indeed, let f∗1 and f∗2 be the optimal solution of (POP)
and (MEAS) respectively. Since f(x) ≥ f∗1 for all x ∈ K, we have

f∗2 = min
µ∈P(K)

∫
f(x)dµ ≥ min

µ∈P(K)

∫
f∗1dµ = f∗1 . (3.1)

Conversely, suppose that x∗ is the optimizer of (POP), i.e., f(x∗) = f∗1 . Let δx∗ be
the Dirac measure at point x∗, then we have

f∗2 = min
µ∈P(K)

∫
f(x)dµ ≤

∫
f(x)dδx∗ = f(x∗) = f∗1 . (3.2)

Hence f∗1 = f∗2 and problem (POP) is equivalent to (MEAS). Denote by f(x) =∑
α fαxα, where xα = xα1

1 xα2
2 . . . xαn

n for α = [α1, α2, . . . , αn]T . Then
∫
f(x)dµ =∑

α fαyα, where yα =
∫

xαdµ. By replacing the decision variables in (POP) by
probability measure µ in place of x, we transform the polynomial f(x) into a linear
combination of the moments of x.

3.2.2 Moment and sum of squares

From the previous section we see that the polynomial optimization problem (POP)
is equivalent to a problem whose objective is linear to the moments

∫
xαdµ. In fact,

it has been shown that the theory of moments is strongly related to the represen-
tation of nonnegative polynomials.

Definition 3.2. For polynomial f ∈ R[x], the Riesz linear functional is the linear
application Ly : f 7→

∑
α fαyα, where y = {yα}α is the moment variables.

Let vd(x) := [1, x1, x2, . . . , xn, x
2
1, x1x2, . . . , x1xn, x2x3, . . . , x

2
n, . . . , x

d
1, . . . , x

d
n]T

be the real-valued monomial basis of degree d.

Definition 3.3. The d-th order moment matrix, denoted by Md(y), is defined as
Md(y) = Ly(vd(x)vd(x)T). For a polynomial f ∈ R[x], the d-th order localizing
matrix of f , denoted by Md(fy), is defined as Md(fy) = Ly(fvd(x)vd(x)T) =
Ly(fMd(y)).

Example. Consider x = [x1, x2]T and polynomial g(x) = 1 − x2
1 − x2

2. Then Riesz
linear functional of g is Ly(g) = y00−y20−y02, the first order moment matrix reads

M1(y) =

y00 y10 y01
y10 y20 y11
y01 y11 y02

 ,
and the first order localizing matrix of g reads

M1(gy) =

y00 − y20 − y02 y10 − y30 − y12 y01 − y21 − y03
y10 − y30 − y12 y20 − y40 − y22 y11 − y31 − y13
y01 − y21 − y03 y11 − y31 − y13 y02 − y22 − y04

 .

3.2. POLYNOMIAL OPTIMIZATION AND LASSERRE’S HIERARCHY 29

As mentioned before, the moment and localizing matrices are related (and in
fact, in duality with) nonnegativity of polynomials. Precisely, the moment matrix
is the primal of sum of squares, and the localizing matrix is the primal of weighted
sum of squares.

Definition 3.4. A polynomial f ∈ R[x] is a Sum of Squares (SOS) if f can be
written as f =

∑r
i=1 u

2
i with ui ∈ R[x]. For f, gi ∈ R[x], f is a Weighted Sum of

Squares (WSOS) with respect to gi if f can be written as f = u2
0 +

∑r
i=1 giu

2
i with

ui ∈ R[x].

It is convenient for discussing to define some cones of nonnegative polynomials:

Definition 3.5. (1) The SOS cone, denoted by Σ[x], is the set of sum of squares
in R[x]; the SOS cone of order d, denoted by Σd[x], is the set of sum of squares in
R[x] with degree at most 2d.

(2) The nonnegative cone, denoted by P[x], is the set of nonnegative polynomials
in R[x]; the nonnegative cone of order d, denoted by Pd[x], is the set of nonnegative
polynomials in R[x] with degree at most d.

Remark. It is obvious that any SOS polynomial is nonnegative. Unfortunately, the
converse is false: not all nonnegative polynomials are SOSs. One famous example
is Motzkin polynomial:

p(x, y) = x4y2 + x2y4 − 3x2y2 + 1. (3.3)

The nonnegativity of Motzkin polynomial is due to arithmetic / geometric mean
inequality, and the proof of why it is not an SOS is referred to [Motzkin 1967, page
205-224]. Hence we have a chain of inclusions

R+ = Σ0[x] (Σ1[x] (Σ2[x] (Σ[x] (P[x]. (3.4)

Looking back to polynomial optimization problem (POP), it is equivalent to

f∗ = max
λ,x∈K

λ (3.5)

s.t. f(x)− λ ≥ 0.

In other words, we are searching for feasible polynomials f(x)−λ in the nonnegative
cone P[K]. Recall that the semialgebraic set K is defined by polynomials gi, i.e.,
K = {x : gi(x) ≥ 0}. Instead of dealing with the nonnegative cone P[x], it is much
less complicated to investigate in the SOS cone Σ[x]. In fact, it has been shown
that the strictly positive elements in P[x] are exactly WSOS under a technical
Archimedean assumption.

Assumption 2. For the compact semialgebraic set K, there exists a real-valued

30CHAPTER 3. CONVEX RELAXATIONS AND MOMENT-SOS HIERARCHY

polynomial u(x) : Rn → R such that the set {x ∈ Rn : u(x) ≥ 0} is compact and

u(x) = σ0(x) +
p∑
i=1

gi(x)σi(x), ∀x ∈ Rn, (3.6)

where the polynomials σ0, σi ∈ Σ[x] for i ∈ [p].

Remark. Assumption 2 can be easily satisfied by choosing properly the polynomial
u(x) ∈ R[x]. For example:

(i) if there is some gi in (POP) such that the set {x ∈ Rn : gi(x) ≥ 0} is
compact;

(ii) if all the polynomials gi are linear;
(iii) if there are binary inequalities x2

j ≥ xj and xj ≥ x2
j for all j ∈ [n].

In practice, we usually include a quadratic redundant constraint g(x) := M2 −
‖x‖22 ≥ 0 in the definition of K since K is compact and we can always find a large
enough M such that ‖x‖2 ≤M for all x ∈ K.

Theorem 3.1. Assume that Assumption 2 holds. Then the strictly positive polyno-
mials defined in K is represented by WSOS w.r.t. polynomials gi, i.e., for f ∈ P[x],
if f(x) > 0 for any x ∈ K, then f = σ0 +

∑p
i=1 giσi for some σ0, σi ∈ Σ[x].

It is usually hard to determine polynomials σ0 and σi, since we do not know in
advance the degrees of these polynomials. Therefore, it is practical to approximate
σ0 and σi by increasing successively their degrees. With this idea in mind, we are
able to derive a series of relaxations of problem (3.5):

ξd = max
λ

λ (DenseSOS-d)

s.t. f − λ = σ0 +
p∑
i=1

giσi,

where σ0 ∈ Σd[x], σi ∈ Σd−ωi
[x], ωi = ddeg(gi)/2e for i ∈ [p]. It is obvious that ξd

is a monotone increasing sequence upper bounded by f∗, i.e., ξd ≤ f∗, and we will
see in the next section that ξd is in fact the dual optimal value of the d-th order
moment relaxation.

3.2.3 Dense moment relaxation

In the Lasserre’s hierarchy for optimization one approximates the global optimum
of (POP) by solving a series of SDPs of increasing size. Each SDP is a semidefinite
relaxation of (POP) in the form:

ρd = min
y

Ly(f) (DenseMom-d)

s.t.

Ly(1) = 1, Md(y) � 0,
Md−ωi

(giy) � 0, i ∈ [p],

3.2. POLYNOMIAL OPTIMIZATION AND LASSERRE’S HIERARCHY 31

where ωi = ddeg(gi)/2e.
The semidefinite program (DenseMom-d) is the d-th order dense moment relax-

ation of problem (POP). As a result, when the semialgebraic set K is compact, one
obtains a monotone sequence of lower bounds (ρd)d∈N+ with the property ρd ↑ f∗
as d→∞ under Archimedean condition.

If we consider the dual of problem (DenseMom-d), we retrieve the formulation
(DenseSOS-d). By weak duality, we have ρd ≤ ξd. And generically, we have strong
duality, i.e., ρd = ξd, as the following theorem states.

Theorem 3.2. [Lasserre 2001] Let Assumption 2 holds. As d → ∞, we have
ρd ↑ f∗. If K has a nonempty interior, then we have strong duality ρd = ξd.

Example. Consider x = [x1, x2]T and polynomials f(x) = x1x2, g(x) = 1− x2
1 − x2

2.
We minimize f(x) over R2 under constraint g(x) ≥ 0. That is:

f∗ = min
x∈R2

x1x2 (3.7)

s.t. 1− x2
1 − x2

2 ≥ 0.

For d = 1, we have degree 2 moment variables y = [y00, y01, y10, y20, y11, y02]T
and Ly(f) = y11, ω = ddeg(g)/2e = 1. Then the moment and localizing matrices
are of form

M1(y) =

y00 y10 y01
y10 y20 y11
y01 y11 y02

 , M0(gy) = Ly(g) = 1− y20 − y02.

The first order (d = 1) moment relaxation of (3.7) reads:

ρ∗ = min
y∈R6

y11 (3.8)

s.t. y00 = 1, M1(y) � 0, 1− y20 − y02 ≥ 0

with optimal value ρ∗ = −1/2 = f∗. It turns out that (3.8) is exactly Shor’s
relaxation applied to (3.7). In fact, for POPs whose polynomials are all of degree
at most 2, the first-order moment relaxation is equivalent to Shor’s relaxation.

The dual of the moment problem (3.8) can be formulated as the following SOS
problem

ξ∗ = max
λ

λ (3.9)

s.t. x1x2 − λ = σ0 + σ1(1− x2
1 − x2

2), where σ0 ∈ Σ1[x], σ1 ≥ 0,

with optimal value ξ∗ = −1/2 = ρ∗ and σ0 = (x1 + x2)2/2, σ1 = 1/2.

32CHAPTER 3. CONVEX RELAXATIONS AND MOMENT-SOS HIERARCHY

3.2.4 Sparse moment relaxation

The relaxation (DenseMom-d) is called dense moment relaxation since we do not ex-
ploit any possible sparsity pattern in (POP). Therefore, if one solves (DenseMom-d)
with interior point methods (as all current SDP solvers do), the dense relaxation is
strongly limited to POPs of modest size. Indeed the d-th order dense moment re-
laxation (DenseMom-d) involves

(n+2d
2d
)

= O(n2d) moment variables and a moment
matrix Md(y) of size

(n+d
d

)
= O(nd) at fixed d. Fortunately, large-scale POPs often

exhibit some structured sparsity patterns which can be exploited to yield a sparse
version of (DenseMom-d). As a result, wider applications of Lasserre’s hierarchy
have been possible.

Assume that the set of variables in (POP) can be divided into several subsets
indexed by Ik, for k ∈ [m], i.e., [n] =

⋃m
k=1 Ik, and suppose that the following

assumptions hold:

Assumption 3. (a) The function f is a sum of polynomials, each involving vari-
ables of only one subset, i.e., f(x) =

∑m
k=1 fk(xIk

);
(b) Each constraint also involves variables of only one subset, i.e., gi ∈ R[xIk

]
for some k ∈ [m]. Define index sets {Jk}mk=1 by the subsets of [p] satisfying Jk :=
{i ∈ [p] : gi ∈ R[xIk

]} ⊆ [p] and [p] =
⊔m
k=1 Jk, where

⊔
denotes the disjoint union;

(c) The subsets Ik satisfy the Running Intersection Property (RIP): for every
k ∈ [m− 1], Ik+1 ∩

⋃k
j=1 Ij ⊆ Is, for some s ≤ k.

(d) Add redundant constraints Mk − ‖xIk
‖22 ≥ 0 where Mk are constants deter-

mined beforehand.

By analogy with the dense case, let x = [x1, x2, . . . , xn]T and I ⊆ [n]. We denote
by xI = [xi]i∈I , vd(xI) the real-valued monomial basis for variable xI of degree d,
and R[xI] the vector space of polynomials in variable xI .

Definition 3.6. The d-th order sparse moment matrix with respect to subset I,
denoted by Md(y, I), is defined as Md(y, Ik) = Ly(vd(xI)vd(xI)T). For a polyno-
mial f ∈ R[xI], the d-th order sparse localizing matrix of f , denoted by Md(fy, I),
is defined as Md(fy, I) = Ly(fvd(xI)vd(xI)T) = Ly(fMd(y, I)).

By exploiting sparsity patterns, (POP) can be rewritten as:

min
x∈Rn

f(x) (SparsePOP)

s.t. gi(xIk
) ≥ 0, i ∈ Jk, k ∈ [m],

and its associated sparse Lasserre’s hierarchy reads:

ρd = min
y

Ly(f) (SparseMom-d)

s.t.

Ly(1) = 1, Md(y, Ik) � 0,
Md−ωi

(giy, Ik) � 0, i ∈ Jk, k ∈ [m],

3.2. POLYNOMIAL OPTIMIZATION AND LASSERRE’S HIERARCHY 33

where d, ωi, y, Ly are defined as in (DenseMom-d). The matrix Md(y, Ik) (resp.
Md−ωi

(gi y, Ik)) is a submatrix of the moment matrix Md(y) (resp. localizing
matrix Md−ωi

(giy)) with respect to subset Ik, and hence of much smaller size(τk+d
τk

)
= O(τdk) if τk := |Ik| � n. The dual of the moment problem (SparseMom-d)

can be formulated as

ξd = max
λ

λ (SparseSOS-d)

s.t. f − λ =
m∑
k=1

(
σ0,k +

∑
i∈Jk

σi,kgi

)
,

where σ0,k ∈ Σd[xIk
], σi,k ∈ Σd−ωi

[xIk
], ωi = ddeg(gi)/2e for i ∈ Jk, k ∈ [m].

By analogy, we have similar convergent guarantee for sparse moment relaxations:

Theorem 3.3. [Lasserre 2006] Let Assumption 3 holds. As d → ∞, we have
ρd ↑ f∗. If K has a nonempty interior, then we have strong duality ρd = ξd.

Example. Let x = [x1, x2]T , consider the following POP:

min
x∈R2

f(x) = x1x2 + x2x3 (3.10)

s.t.

g1(x) = 1− x2
1 − x2

2 ≥ 0,
g2(x) = 1− x2

2 − x2
3 ≥ 0.

Define the subsets I1 = {1, 2}, I2 = {2, 3}. It is easy to check that Assumption
3 hold. For d = 1, we have y = [y000, y100, y010, y001, y200, y110, y101, y020, y011, y002]T
and Ly(f) = y110 + y011, ω1 = ddeg(g1)/2e = 1, ω2 = ddeg(g2)/2e = 1. Then the
first-order dense and sparse moment matrices read:

M1(y) =

y000 y100 y010 y001
y100 y200 y110 y101
y010 y110 y020 y011
y001 y101 y011 y002

 ,

M1(y, I1) =

y000 y100 y010
y100 y200 y110
y010 y110 y020

 , M1(y, I2) =

y000 y010 y001
y010 y020 y011
y001 y011 y002

 .
As we see, the sparse moment matrices M1(y, I1) and M1(y, I2) are submatrices
of the dense moment matrix M1(y), obtained by restricting to rows and columns
concerned with subsets I1 and I2 respectively. The localizing matrices read:

M0(g1y) = y000 − y200 − y020,

M0(g2y) = y000 − y020 − y002.

34CHAPTER 3. CONVEX RELAXATIONS AND MOMENT-SOS HIERARCHY

The first order (d = 1) sparse moment relaxation of problem (3.10) reads:

ρ∗ = min
y∈R6

y110 + y011 (3.11)

s.t.

y00 = 1,
M1(y, I1) � 0, y000 − y200 − y020 ≥ 0,
M1(y, I2) � 0, y000 − y020 − y002 ≥ 0.

If the maximum size τ of the subsets Ik is such that τ � n, then solving sparse
problems (SparseMom-d) rather than dense one (DenseMom-d) results in drastic
computational savings. In fact, even with not so large n, the second relaxation with
d = 2 is out of reach for currently available SDP solvers. Similarly to the dense
case, ρd ≤ f∗ for all d and moreover, if the subsets Ik satisfy RIP, then we still
obtain the convergence ρd ↑ f∗ as d→∞.

Chapter 4

Sublevel Hierarchy

Contents
2.1 Characteristics of Verification Methods 11

2.1.1 Output-reality relation . 11
2.1.2 Feature of the approaches . 12
2.1.3 Scalability of the approaches 12

2.2 Deterministic Exact Approaches (type A) 14
2.2.1 Satisfiability modulo theories (SMT) problem 14
2.2.2 Mixed integer linear programming (MILP) 15
2.2.3 Layer-by-layer refinement . 16
2.2.4 Reduction to a two-player turn-based game 16

2.3 Deterministic Approximation Approaches (type B) 17
2.3.1 Abstract interpretation . 17
2.3.2 Convex optimization based methods 19
2.3.3 Linear approximation of ReLU networks 20
2.3.4 Interval analysis . 21

2.4 Statistical Approximation Approaches (type C) 22
2.4.1 Lipschitz constant estimation by extreme value theory 22
2.4.2 Robustness estimation . 22

2.5 Characteristic analysis of each verification method 23

Recall that the standard Lasserre’s relaxation is a typical approach based on
SDP to approximate the optimal value of polynomial optimization problem (POP),
by solving a sequence of SDPs that provide a series of lower bounds and converges to
the optimal value of the original problem. Other related frameworks of relaxations,
including DSOS [Majumdar et al. 2014] based on LP, SDSOS [Majumdar et al. 2014]
based on SOCP, and the hybrid BSOS [Lasserre et al. 2017] combining the features
of LP and SDP hierarchies, also provide lower bounds converging to the optimal
value of a POP. Generally speaking, when comparing LP and SDP solvers, the for-
mer can handle problems of much larger size. On the other hand, the bounds from
LP relaxations are significantly weaker than those obtained by SDP relaxations,
in particular for combinatorial problems [Laurent 2003]. Based on the standard
Lasserre’s hierarchy, several further works have explored various types of sparsity

36 CHAPTER 4. SUBLEVEL HIERARCHY

patterns inside POPs to compute lower bounds more efficiently and handle larger-
scale POPs. The first such extension can be traced back to [Waki et al. 2006]
and [Lasserre 2006] where the authors consider the so-called Correlative Sparsity
Pattern (CSP) with associated CSP graph whose nodes consist of the POP’s vari-
ables. Two nodes in the CSP graph are connected via an edge if the two cor-
responding variables appear in the same constraint or in same monomial of the
objective. The standard sparse Lasserre’s hierarchy splits the full moment and lo-
calizing matrices into several smaller submatrices, according to subsets of nodes
(maximal cliques) in a chordal extension of the CSP graph associated with the
POP. When the size of the largest clique (a crucial parameter of the sparsity
pattern) is reasonable the resulting SDP relaxations become tractable. There are
many successful applications of the resulting sparse moment-SOS hierarchy, in-
cluding certified roundoff error bounds [Magron et al. 2017, Magron 2018], optimal
power flow [Josz & Molzahn 2018], volume computation of sparse semialgebraic
sets [Tacchi et al. 2021], approximating regions of attractions of sparse polyno-
mial systems [Schlosser & Korda 2020, Tacchi et al. 2020], noncommutative POPs
[Klep et al. 2021], sparse positive definite functions [Mai et al. 2020]. Similarly, the
sparse BSOS hierarchy [Weisser et al. 2018] is a sparse version of BSOS for large
scale polynomial optimization.

Besides correlative sparsity, [Wang et al. 2021c, Wang et al. 2021b] exploit the
so-called term sparsity (TSSOS) or combine correlative sparsity and term spar-
sity (CS-TSSOS) [Wang et al. 2022] to handle large scale polynomial optimization
problems. The TSSOS framework relies on a Term Sparsity Pattern (TSP) graph
whose nodes consist of monomials of some monomial basis. Two nodes in a TSP
graph are connected via an edge when the product of the corresponding mono-
mials appears in the supports of polynomials involved in the POP or is a mono-
mial of even degree. Extensions have been provided to compute more efficiently
approximations of joint spectral radii [Wang et al. 2021a] and minimal traces or
eigenvalue of noncommutative polynomials [Wang & Magron 2021]. More vari-
ants of the sparse moment-SOS hierarchy have been built for quantum bounds
on Bell inequalities [Pál & Vértesi 2009], condensed-matter ground-state problems
[Barthel & Hübener 2012], quantummany-body problems [Haim et al. 2020], where
one selects a certain subset of words (noncommutative monomials) to decrease the
number of SDP variables.

Recently, [Campos et al. 2022] proposed a partial and augmented partial relax-
ation tailored to the Max-Cut problem. It strengthens Shor relaxation by adding
some (and not all) constraints from the second-order Lasserre’s hierarchy. The same
idea was already used in the multi-order SDP relaxation of [Josz & Molzahn 2018]
for solving large-scale Optimal Power Flow (OPF) problems. The authors set a
threshold for the maximal cliques and include the second-order relaxation con-
straints for the cliques with size under the threshold and the first-order relaxation
constraints for the cliques with size over the threshold.

4.1. FRAMEWORK OF SUBLEVEL HIERARCHY 37

4.1 Framework of Sublevel Hierarchy

Following the previous works concerned with extensions and/or variants of the
moment-SOS hierarchy so as to handle large-scale POPs out of reach by the stan-
dard hierarchy, we provide a principled way to obtain intermediate alternative
SDP relaxations between the d-th and (d + 1)-th order SDP relaxations of the
moment-SOS hierarchy for general POPs. Compared with existing sparse variants
of the latter, we propose several possible SDP relaxations to improve lower bounds
for general POPs.

Recall that for (POP), the d-th order dense Lasserre’s relaxation relates to the
Putinar’s certificate f − t = σ0 +

∑p
i=1 σigi where σ0 is an SOS in R[x] of degree at

most 2d and σi are SOS in R[x] of degree at most 2(d− ωi) with ωi = ddeg(gi)/2e.
In this section, we are going to choose some subsets of the variable x to decrease
the number of terms involved in the SOS multipliers σ0 and σi, and define the
intermediate sublevel hierarchies between the d-th and (d+ 1)-th order relaxations.

Note that for dense Lasserre’s relaxations, one approximates the cone of positive
polynomials P[x] from the inside with the following hierarchy of SOS cones:

R+ = Σ0[x] ⊆ Σ1[x] ⊆ . . . ⊆ Σ[x] ⊆ P[x],

with
⋃+∞
d=0 Σd[x] = Σ[x]. Similarly, in the sparse relaxations, one relies on the

following hierarchy of SOS cones: for each subset I,

R+ = Σ0[xI] ⊆ Σ1[xI] ⊆ . . . ⊆ Σ[xI] ⊆ P[xI],

with
⋃+∞
d=0 Σd[xI] = Σ[xI] and I is a subset of the index set [n].

4.1.1 Sublevel hierarchy of SOS cones

The sublevel hierarchy provides refined SOS cones between Σd[x] and Σd+1[x], we
first give the formal definition of the sublevel cones for both dense and sparse case.

Definition 4.1. (Sublevel cones, dense case) Let n be the number of variables in
(POP). For d ≥ 1 and 0 ≤ l ≤ n, the l-th level SOS cone associated to Σd[x],
denoted by Σl

d[x], is an SOS cone lying between Σd[x] and Σd+1[x], and is defined
as

Σd[x] ⊆ Σl
d[x] := Σd[x] + Σ̃l

d+1[x] ⊆ Σd+1[x],

where Σ̃l
d+1[x] :=

{ ∑
|I|=l

σI(xI) : I ⊆ {1, . . . , n}, σI(xI) ∈ Σd+1[xI]
}
⊆ Σd+1[x].

The SOS polynomials in Σ̃l
d+1[x] are the elements in Σd+1[x] which can be

decomposed into several components where each component is an SOS polynomial
in l variables. Let us use the convention Σ0

d[x] := Σd[x]. Then, for the dense case,
we rely on the sublevel hierarchy of inner approximations of the cone of positive
polynomials:

Σd[x] = Σ0
d[x] ⊆ Σ1

d[x] ⊆ . . . ⊆ Σn
d [x] = Σd+1[x].

38 CHAPTER 4. SUBLEVEL HIERARCHY

Similarly, we can define the sparse sublevel cones:

Definition 4.2. (Sublevel cones, sparse case) Suppose that {Ik}mk=1 are the cliques
of the sparse problem (SparsePOP). For k ∈ [m] and l ≤ τk := |Ik|, we define the
l-th level SOS cone of Σd[xIk

], denoted by Σl
d[xIk

], as

Σd[xIk
] ⊆ Σl

d[xIk
] := Σd[xIk

] + Σ̃l
d+1[xIk

] ⊆ Σd+1[xIk
],

where Σ̃l
d+1[xIk

] :=
{ ∑
|I|=l

σI(xI) : I ⊆ Ik, σI(xI) ∈ Σd+1[xI]
}
⊆ Σd+1[xIk

].

The SOS polynomials in Σ̃[xIk
]ld+1 are the elements in Σ[xIk

]d+1 which can be
decomposed into several components where each component is an SOS polynomial
in l variables indexed by Ik. Then, for the sparse case, we rely on the sublevel
hierarchy of inner approximations of the cone of positive polynomials: for k ∈ [m],

Σd[xIk
] = Σ0

d[xIk
] ⊆ Σ1

d[xIk
] ⊆ . . . ⊆ Στk

d [xIk
] = Σd+1[xIk

].

Remark. Lasserre’s hierarchy relies on a hierarchy of SOS cones, while the sublevel
hierarchy relies on a hierarchy of sublevel cones. Take the sparse case for illustration,
solving the (d + 1)-th order relaxation of the standard sparse Lasserre’s hierarchy
boils down to finding SOS multipliers in the cones Σ[xIk

]d+1 and Σ[xIk
]d−ωi+1 for

each clique Ik. Solving the (d+ 1)-th order sublevel hierarchy boils down to finding
SOS multipliers in the intermediate cones Σ[xIk

]lkd and Σ[xIk
]lkd−ωi

for some 0 ≤ lk ≤
τk. These cones approximate the standard cones Σ[xIk

]d+1, Σ[xIk
]d−ωi+1 as lk gets

larger since Σ[xIk
]τk
d = Σ[xIk

]d+1 and Σ[xIk
]τk
d−ωi

= Σ[xIk
]d−ωi+1. We will see in the

next definition that this is the so-called sublevel relaxation, and we call the vector
l = [lk] the vector of levels of the relaxation. Each lk determines the size of the
subsets in the clique Ik and is called a level.

4.1.2 Sublevel hierarchy of moment-SOS relaxations

Based on the sublevel cones, we are able to derive the corresponding moment-SOS
relaxations for both dense and sparse cases.

Definition 4.3. (Sublevel relaxations, dense case) Let n be the number of variables
in (POP). For each constraint gi ≥ 0 in (POP), we define a level 0 ≤ li ≤ n and
a depth 0 ≤ qi ≤ n. Denote by l = [li]pi=1 the vector of levels and q = [qi]pi=1 the
vector of depths. Then, the (l,q)-sublevel relaxation of the d-th order dense SOS
problem (DenseMom-d) reads

sup
t∈R

{
t : f − t = θ0 +

p∑
i=1

(
θ̃i + (σi + σ̃i)gi

)}
, (SubSOS-[d, l,q])

where θ0 (resp. σi) are SOS polynomials in Σd[x] (resp. Σd−ωi
[x]), and θ̃i (resp.

σ̃i) are SOS polynomials in Σ̃li
d+1[x] (resp. Σ̃li

d−ωi+1[x]) with ωi = ddeg(gi)/2e).

4.1. FRAMEWORK OF SUBLEVEL HIERARCHY 39

Moreover, each σ̃i is a sum of qi SOS polynomials where each sum term involves
variables in a certain subset Γi,j ⊆ {1, 2, . . . , n} with |Γi,j | = li, i.e., σ̃i =

∑qi
j=1 σ̃i,j

where σ̃i,j ∈ Σd−ωi+1[xΓi,j]. Each θ̃i is also a sum of qi SOS polynomials where the
sum terms share the same variable sets Γi,j as σ̃i,j , i.e., θ̃i =

∑qi
j=1 θ̃i,j where θ̃i,j ∈

Σd+1[xΓi,j]. The equation (SubSOS-[d, l,q]) can be compressed as an analogical
form of the standard dense Lasserre’s relaxation:

sup
t∈R

{
t : f − t =

p∑
i=1

(θ̃i + σ̃igi)
}
,

where θ̃i (resp. σ̃i) are SOS polynomials in Σl
d+1[x] (resp. Σl

d−ωi+1[x]).

Definition 4.4. (Sublevel relaxations, sparse case) Suppose that {Ik}mk=1 are the
cliques of the sparse problem (SparsePOP) with τk = |Ik|. For each k ∈ [m], define
Jk := {i ∈ [p] : gi ∈ R[xIk

]} ⊆ [p] such that [p] =
⊔m
k=1 Jk. For i ∈ Jk and k ∈ [m],

define a level 0 ≤ li,k ≤ τk and a depth 0 ≤ qi,k ≤ τk. Denote by l = [li,k]i∈Jk,k∈[m]
the vector of sublevels and q = [qi,k]i∈Jk,k∈[m] the vector of depths. Then, the (l,q)-
sublevel relaxation of the d-th order sparse SOS problem (SparseMom-d) reads

sup
t∈R

{
t : f − t =

m∑
k=1

(
θ0,k +

∑
i∈Jk

(
θ̃i,k + (σi,k + σ̃i,k)gi

))}
, (SubSpSOS-[d, l,q])

where θ0,k (resp. σi,k) are SOS polynomials in Σd[xIk
] (resp. Σd−ωi

[xIk
]), and

θ̃0,k (resp. σ̃i,k) are SOS polynomials in Σ̃li,k

d+1[xIk
] (resp. Σ̃li,k

d−ωi+1[xIk
]) with ωi =

ddeg(gi)/2e. Moreover, each σ̃i,k with i ∈ Ik is a sum of qi,k SOS polynomials where
each sum term involves variables in a certain subset Γi,k,j ⊆ Ik with |Γi,k,j | = li,k,
i.e., σ̃i,k =

∑qi,k

j=1 σ̃i,k,j where σ̃i,k,j ∈ Σd−ωi+1[xΓi,k,j
]. Each θ̃i,k is also a sum of qi,k

SOS polynomials where the sum terms share the same variable sets Γi,k,j as σ̃i,k,j ,
i.e., θ̃i,k =

∑qi,k

j=1 θ̃i,k,j where θ̃i,k,j ∈ Σd+1[xΓi,k,j
]. The equation (SubSpSOS-[d, l,q])

can also be compressed as an analogical form of the standard sparse Lasserre’s
relaxation:

sup
t∈R

{
t : f − t =

m∑
k=1

∑
i∈Jk

(
θ̃i,k + σ̃i,kgi

)}
,

where θ̃i,k (resp. σ̃i,k) are SOS polynomials in Σl
d+1[xIk

] (resp. Σl
d−ωi+1[xIk

]).

Remark. (i). If one of the sublevel li (resp. li,k) in the dense (resp. sparse) sublevel
relaxation is such that li = n (resp. li,k = τk), then the depth qi (resp. qi,k) should
automatically be 1.

(ii). The heuristics to determine the subsets (Γi,j for the dense case and Γi,k,j
for the sparse case) in the sublevel relaxation will be discussed in the next section.

(iii). The size of the SDP Gram matrix associated to an SOS polynomial in
Σl
d[x] (resp. Σl

d[xIk
]) is max{

(n+d
d

)
,
(l+d+1
d+1

)
} (resp. max{

(|Ik|+d
d

)
,
(l+d+1
d+1

)
}). If the

lower bound obtained by solving the SOS problem over Σd+1[x] (resp. Σd+1[xIk
])

40 CHAPTER 4. SUBLEVEL HIERARCHY

is not satisfactory enough, then we may try to find more accurate solutions in one
of the cones of Σl

d[x] (resp. Σl
d[xIk

]).
(iv). In case of ambiguity, we call the sublevel relaxation of a d-th order SOS

problem the (d+ 1)-th order sublevel relaxation, i.e., the (d+ 1)-th order sublevel
relaxation is an intermediate between the d-th order and (d+ 1)-th order Lasserre’s
relaxation.

Example. Take the polynomials f, gk and the cliques Ik as in Example 3.10. Define
l = [2, 2] and q = [1, 1]. We select subsets w.r.t. g1 and g2 respectively as Γ1,1 =
{1, 2}, Γ2,1 = {5, 6}. Then, the second-order dense (l,q)-sublevel relaxation reads

max
t∈R

t (4.1)

s.t. f(x)− t = θ0(x) + θ̃1(xΓ1,1) + σ̃1(xΓ1,1)g1(x)
+ θ̃2(xΓ2,1) + σ̃2(xΓ2,1)g2(x),

where θ0 is a degree-2 SOS polynomial in variable x, θ̃k are degree-4 SOS polyno-
mials in variable xΓk,1 , σ̃k are degree-2 SOS polynomials in variable xΓk,1 . In other
words, θ0 ∈ Σ1[x], θ̃k ∈ Σ2[xΓk,1] ⊆ Σ̃2

2[x], σ̃k ∈ Σ1[xΓk,1] ⊆ Σ̃2
1[x].

Similarly, define Γ1,1,1 = {1, 2} ⊆ I1 and Γ2,2,1 = {5, 6} ⊆ I2, then the second-
order sparse (l,q)-sublevel relaxation reads

max
t∈R

t (4.2)

s.t. f(x)− t = θ0,1(xI1) + θ̃1(xΓ1,1,1) + σ̃1(xΓ1,1,1)g1(x)
+ θ0,2(xI2) + θ̃2(xΓ2,2,1) + σ̃2(xΓ2,2,1)g2(x),

where θ0,k are degree-2 SOS polynomials in variable xIk
, θ̃k are degree-4 SOS poly-

nomials in variable xΓk,k,1 , σ̃k are degree-2 SOS polynomials in variable xΓk,k,1 . In
other words, θ0,k ∈ Σ1[xIk

], θ̃k ∈ Σ2[xΓk,k,1] ⊆ Σ̃2
2[xIk

], σ̃k ∈ Σ1[xΓk,k,1] ⊆ Σ̃2
1[xIk

].

Remark. In Definition 4.3 and 4.4, each sublevel relaxation is formulated as a (pri-
mal) SOS problem. Similar with the standard Lasserre’s relaxation [Lasserre 2006],
we can also write the (dual) moment problem, in which the moment matrices cor-
respond to SOS polynomial θ0, θ̃i for the dense case or θ0,k, θ̃i,k for the sparse case,
and the localizing matrices correspond to SOS polynomial σi, σ̃i for the dense case
or σi,k, σ̃i,k for the sparse case. Since the (d+1)-th order sublevel relaxation is built
based on the d-th order Lasserre’s relaxation, i.e., the moment matrices correspond-
ing to θ0 or θ0,k are the same as in the standard Lasserre’s relaxation. Then if each
moment matrix is of rank 1, one is able to verify that the sublevel relaxation reaches
the exact optimal value of the original problem and we can follow the extraction
procedures of [Henrion & Lasserre 2005] and [Lasserre 2006, Section 3.3] to obtain
exact optimal solutions from the moment matrices for the dense and sparse cases,
respectively.

In the next example, we show explicitly how the sublevel relaxation performs
between order-1 and order-2 Lasserre’s relaxation when the order-2 relaxation is

4.1. FRAMEWORK OF SUBLEVEL HIERARCHY 41

exact.

Example. This example is taken from [Floudas & Pardalos 1990, Problem 2.9],
which is a maximum clique problem (see (Max-Cliq)):

max
x

f(x) =
9∑
i=1

xixi+1 +
8∑
i=1

xixi+2 + x1x9 + x1x10 + x2x10 + x1x5 + x4x7 (4.3)

s.t.
10∑
i=1

xi = 1, 0 ≤ xi ≤ 1, i ∈ [10].

The global solution is f(x∗) = 0.375 with maximizer x∗ = [0, 0, 0, 1
4 ,

1
4 ,

1
4 ,

1
4 , 0, 0, 0]T

which is certified by GloptiPoly [Henrion et al. 2009] for second-order dense Lasserre’s
relaxation.

We now consider the dense second-order sublevel relaxation compared with
Shor’s relaxation, where we use the ordered heuristic H2 described in Section 4.2
to select the q subsets of size l. Notice that if l = 0 or q = 0, the sublevel relaxation
reduces to Shor’s relaxation, and if l = 10, the sublevel relaxation is exactly the
dense Lasserre’s relaxation. Table 4.1 shows how the upper bounds computed by
the sublevel relaxations successively converge to the optimal solution of problem
(4.3), when we increase the level l and depth q. The upper bounds in bold font in-
dicate that we have reached the exact optimal value and we can extract the (unique)
global solution via the dense order-1 moment matrix M1(y).

Table 4.1: Summary of the performance of sublevel relaxations applied to problem
(4.3) with l, q = 0, 1, . . . , 10.

l
q 0 1 2 3 4 5 6 7 8 9 10

0 2.226 - - - - - - - - - -
1 - 1.982 1.892 1.813 1.578 1.455 1.280 1.167 1.167 1.167 1.167
2 - 1.772 1.729 1.500 1.400 1.263 1.166 1.166 1.166 1.166 1.166
3 - 1.714 1.500 1.400 1.250 1.039 0.746 0.657 0.616 0.587 0.456
4 - 1.500 1.400 1.250 1.000 0.637 0.483 0.446 0.428 0.406 0.392
5 - 1.400 1.250 1.000 0.577 0.438 0.418 0.411 0.389 0.377 0.377
6 - 1.250 1.000 0.565 0.376 0.375 0.375 0.375 0.375 0.375 0.375
7 - 1.000 0.563 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375
8 - 0.563 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375
9 - 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375 0.375
10 - 0.375 - - - - - - - - -

4.1.3 Relation with other relaxations

The standard Lasserre’s hierarchy and many of its variants are contained in the
framework of sublevel hierarchy:

Example. (Dense Lasserre’s Relaxation [Lasserre 2001]) For (POP), the dense ver-
sion of the d-th order Lasserre’s relaxation is the dense d-th order sublevel relaxation
with l = [n, n, . . . , n] and q = 1p, where 1p denotes the p-dimensional vector with
all ones.

42 CHAPTER 4. SUBLEVEL HIERARCHY

Example. (Sparse Lasserre’s Relaxation [Lasserre 2006]) For (SparsePOP), the sparse
version of the (d−1)-th order Lasserre’s relaxation is the sparse d-th order sublevel
relaxation with l = [[τs]s∈J1 ; . . . ; [τs]s∈Jm] and q = 1|J1|+...+|Jm|.
Example. (Multi-Order/Partial Relaxation) The multi-order relaxation (which is
used to solve the Optimal Power Flow problem in [Josz & Molzahn 2018]), also
named as partial relaxation (which is specifically encoded to solve the Max-Cut
problem in [Campos et al. 2022]), is a variant of the second-order sparse Lasserre’s
relaxation. We first preset a value r, then compute the maximal cliques in the
chordal extension of the CSP graph of the POP. For those cliques of size larger
than r, we consider the first-order moment matrices; for those of size smaller or
equal than r, we consider the second-order moment matrices. Denote by S the set
of indices such that τk > r for k ∈ S, and T the set of indices such that τk ≤ r

for k ∈ T . Then the multi-order/partial relaxation is the second-order sublevel
relaxation with

l = [[0]s∈J1∩S , [τs]s∈J1∪T ; . . . ; [0]s∈Jm∩S , [τs]s∈Jm∪T],

and
q = [[0]s∈J1∩S , [1]s∈J1∪T ; . . . ; [0]s∈Jm∩S , [1]s∈Jm∪T].

Example. (Augmented Partial Relaxation) This relaxation is the strengthened ver-
sion of the partial relaxation in [Campos et al. 2022] to solve Max-Cut problems.
It is exactly the second-order sublevel relaxation restricted to Max-Cut problem.
Example. (Heuristic Relaxation) The heuristic relaxation in [Chen et al. 2020] for
computing the upper bound of the Lipschitz constant of ReLU networks, is a vari-
ant of the second-order dense Lasserre’s relaxation. The intuition is that some
constraints in the POP are sparse, so let us denote by S the set of their indices,
while their corresponding cliques are large, thus one cannot solve the second-order
relaxation of the standard sparse Lasserre’s hierarchy. We then consider the dense
first-order relaxation (Shor’s relaxation), and choose subsets of moderate sizes (size
2 in [Chen et al. 2020]) that contain the variable sets of these sparse constraints. For
other constraints with larger variable sets, let us denote by T the set of their indices
and let us consider the first-order moment matrices. Then the heuristic relaxation is
the second-order sublevel relaxation with l = [[0]i∈T , [2]i∈S] and q = [[0]i∈T , [1]i∈S].
Remark. [Nie & Demmel 2009] proposed a moment-SOS relaxation for unconstrained
POPs whose objective function can be written as a sum of polynomials involving
only small number of variables. Precisely, let the objective function be a polyno-
mial of form f(x) =

∑r
i=1 fi(x∆i

), where x ∈ Rn and ∆i ⊆ {1, . . . , n} for all i.
Note that the subsets ∆i do not necessarily satisfy the RIP condition. We define
subsets {Ik}mk=1 ⊆ {1, . . . , n}m satisfying the RIP condition such that for each i,
∆i ⊆ Ik for some k. Then the (d + 1)-th order sublevel relaxation involves the
sparse d-th order moment matrices Md(y, Ik) and sparse (d+ 1)-th order moment
matrices Md+1(y,∆i), which guarantees that the (d + 1)-th order sublevel relax-
ation performs no worse than the d-th order Lasserre’s relaxation. In contrast, the

4.2. DETERMINATION OF THE SUBSETS OF CLIQUES 43

(d+ 1)-th order relaxation in [Nie & Demmel 2009] only involves moment matrices
Md+1(y,∆i) and hence is likely to give looser bounds than the d-th order Lasserre’s
relaxation. On the other hand, in the case that the size of subsets Ik is much larger
than ∆i, the relaxation in [Nie & Demmel 2009] is faster to solve than the sublevel
relaxation.

Summarizing the above discussion, we have the following proposition:

Proposition 4.1. (1) For dense case, if l = [n, n, . . . , n], then the d-th order
sublevel relaxation is exactly the dense (d+ 1)-th order Lasserre’s relaxation.

(2) For sparse case, if l = [[τs]s∈J1 ; . . . ; [τs]s∈Jm], then the d-th order sublevel
relaxation is exactly the sparse (d+ 1)-th order Lasserre’s relaxation.

4.2 Determination of the Subsets of Cliques

There are different ways to determine the subsets Γi,j (or Γi,k,j) of the sublevel
relaxation described in Definition 4.3 and 4.4. Generically, we are not aware of
any algorithm that would guarantee that the selected subsets are optimal at a
given level of relaxation. In this section, we propose several heuristics to select the
subsets. Suppose that {Ik}1≤k≤m is the sequence of maximal cliques in the chordal
extension of the CSP graph of the sparse problem (SparsePOP) and that the level
of relaxation is l ≤ |Ik| =: τk. We need to select the “best” candidate among the(τk
l

)
many subsets of size l. However, in practice, the number

(τk
l

)
might be very

large since
(τk
l

)
≈ τ lk when l is fixed.

In order to make this selection procedure tractable, we reduce the number
of sample subsets to τk. Precisely, suppose Ik := {i1, i2, . . . , iτk

}, define Ik,j :=
{ij , ij+1, . . . , ij+l} for j = 1, 2, . . . , τk and 1 ≤ l ≤ τk. By convention, ij = ik if
j ≡ k mod τk. Denote by p the depth of the relaxation. Then we use the following
heuristics to choose p subsets among the candidates Ik,j . Without loss of generality,
we assume that l < τk (otherwise one has l ≥ τk, then we only need to select one
subset I = Ik).

• H1 (Random Heuristic): For each i and clique Ik, we randomly select p
subsets Γi,k,j ⊆ Ik for j = 1, . . . , p, such that |Γi,k,j | = l for all j;

• H2 (Ordered Heuristic): For each i and clique Ik, we select one after another
Γi,k,j = Ik,j ⊆ Ik for j = 1, . . . , p. For p = τk, we also call this heuristic the
cyclic heuristic.

The heurisics H1 and H2 do not depend on the problem, thus they might
not fully explore the specific structure hidden in the POPs. We can also try the
heuristic that selects the subsets according to the value of the moments in the
first-order moment relaxation (Shor’s relaxation).

• H3 (Moment Heuristic): First of all, we solve the first-order sparse relax-
ation. For each i and clique Ik, suppose Mk is the first-order moment matrix

44 CHAPTER 4. SUBLEVEL HIERARCHY

indexed by 1 and the monomials in xIk
. Denote by Mk(Ik,j) the subma-

trix whose rows and columns are indexed by 1 and xIk,j
for j = 1, 2, . . . , τk.

We reorder the subsets Ik,j w.r.t. the infinity norm (the largest row sum of
absolute value) of the submatrices Mk(Ik,j), i.e.,

‖Mk(Ik,1)‖∞ ≥ ‖Mk(Ik,2)‖∞ ≥ . . . ≥ ‖Mk(Ik,τk
)‖∞ .

Then we pick the first p subsets Γi,k,1 = Ik,1,Γi,k,2 = Ik,2, . . . ,Γi,k,p = Ik,p
after reordering.

In particular, for Max-Cut problem, [Campos et al. 2022] proposed the following
heuristics that take the weights in the graph or the maximal cliques in the chordal
graph into account. We briefly introduce the idea of these heuristics, readers can
refer to [Campos et al. 2022] for details. For heuristic H4 to H6, denote by L the
Laplacian matrix of the graph.

• H4 (Laplacian Heuristic): For each clique Ik, denote by L(Ik,j) the submatrix
of the moment matrix Mk whose rows and columns are indexed by 1 and xIk,j

for j = 1, 2, . . . , τk. We reorder the subsets {Ik,j} w.r.t. the infinity norm of
the submatrices {L(Ik,j)}, i.e.,

‖L(Ik,1)‖∞ ≥ ‖L(Ik,2)‖∞ ≥ . . . ≥ ‖L(Ik,τk
)‖∞.

Then we pick the first p subsets Γi,k,1 = Ik,1,Γi,k,2 = Ik,2, . . . ,Γi,k,p = Ik,p
after reordering. The spirit of H4 and H5 is to select the subsets involving
large value of moments or weights, and we assume a priori that larger value
of moments/weights have larger impacts on the subsets;

• H5 (Max-Repeated Heuristic): We select subsets contained in many maximal
cliques;

• H6 (Min-Repeated Heuristic): We select subsets contained in few maximal
cliques;

• H4-5: We combine heuristic H4 and H5 to select the subsets that are not
repeated in other maximal cliques and contain variables with large weights.

In the spirit of the heuristic H4-5, we can also combine H5 with the moment
heuristic H3:

• H3-5: We combine H3 and H5 to select the subsets that are not repeated
in other maximal cliques and contain variables with large moments.

There is no general guarantee that one of the heuristics always performs better
than the others. In Table 4.2, we show the upper bounds obtained by the above
heuristics for two Max-Cut instances g_20 and w01_100 (the detail of the numerical
settings and the results is referred to Section 4.3.1), for level 4, 6, and depth 1, 2,

4.3. APPLICATION TO OPTIMIZATION PROBLEMS 45

Table 4.2: Comparison of different heuristics for Max-Cut instances g_20 and
w01_100.

Heuristics lv=4, p=1 lv=4, p=2 lv=6, p=1 lv=6, p=2 Countg20 w01 g20 w01 g20 w01 g20 w01

H1 548.4 725.6 539.0 720.0 526.6 709.5 522.0 700.4 4
H2 546.4 728.0 539.9 721.1 526.9 705.7 523.1 701.7 2
H3 550.6 728.8 541.8 723.2 528.5 713.9 524.2 705.6 0
H4 549.7 723.4 542.0 718.6 526.9 710.5 523.6 701.5 2
H5 553.5 731.0 543.1 725.8 529.3 715.6 525.2 708.4 0
H6 553.3 731.2 543.2 726.6 529.3 717.2 525.2 710.3 0
H3-5 550.5 729.5 541.8 726.6 528.5 713.8 524.2 704.8 0
H4-5 549.8 726.6 542.0 719.3 526.9 710.4 523.6 700.4 1

respectively. For each heuristic, we count the number of times that the heuristic
performs the best. We see that, suprisingly, the random heuristic H1 performs the
best among other heuristics. The ordered heuristic H2 and Laplacian heuristic H4
also performs well. For the sake of simplicity, we will only consider the ordered
heuristic H2 and its variants for the forthcoming examples.

4.3 Application to Optimization Problems

This section is about the numerical experiments of sublevel hierarchy in optimiza-
tion. We apply the sublevel relaxation to different type of POPs in optimization, as
discussed in the previous section. Most of the instances are taken from the Biq-Mac
library [Rendl et al. 2007] and the QPLIB library [Furini et al. 2019]. We calculate
the ratio of improvements (RI) of each sublevel relaxation, compared with Shor’s
relaxation. We also compute the relative gap (RG) between the sublevel relaxation
and the optimal solution. The calculations of RI and RG are given by

RI = Shor− sublevel
Shor− solution × 100%, RG = sublevel− solution

|solution| × 100%. (4.4)

For each instance, we only show the ratio of improvements and relative gap
corresponding to the results of the last sublevel relaxation, and use the bold font if
we have improvements larger than 40%. The larger the ratio of improvements or
the smaller the relative gap, the better the bounds. If the optimal solution is not
known so far, it is replaced by the (best-known) valid upper bounds (UB) or lower
bounds (LB). We implement all the programs on Julia, and use Mosek as back-
end to solve SDP relaxations. The running time (with second as unit) displayed
in all tables refers to the time spent by Mosek1 to solve the SDP relaxation. All
experiments are performed with an Intel 8-Core i7-8665U CPU @ 1.90GHz Ubuntu
18.04.5 LTS, 32GB RAM.

1https://www.mosek.com/

https://www.mosek.com/

46 CHAPTER 4. SUBLEVEL HIERARCHY

4.3.1 Maximum cut (Max-Cut) problem

Given an undirected graph G(V,E) where V is a set of vertices and E is a set of
edges, a cut is a partition of the vertices into two disjoint subsets. The Max-Cut
problem consists of finding a cut in a graph such that the number of edges between
the two subsets is as large as possible. It can be formulated as follows:

max
x

xTLx (Max-Cut)

s.t. x ∈ {−1, 1}n,

where L is the Laplace matrix of the given graph of n vertices, i.e., L := Diag(W ·
1n)−W where W is the weight matrix of the graph. The constraints x ∈ {−1, 1}n
are equivalent to (xi)2 = 1 for all i. Suppose that {Ik}mk=1 are the maximum cliques
in the chordal extension of the given graph. For i = 1, 2, . . . , n, denote by k(i) (one
of) the index such that i ∈ Ik(i). Suppose that Ik(i) = {i1, . . . , iτk(i)} for some ij = i

with 1 ≤ j ≤ τk(i). Given a depth q and a level l, we select q subsets of size l by
order as: for t ∈ [q] and i ∈ [n]

Ii,t = {ij , ij+t, . . . , ij+t+l−2}, (4.5)

with the convention that ij1 = ij2 if j1 ≡ j2 mod τk(i). If we consider the dense
sublevel hierarchy, then we directly select the subsets by order as Ii,t = {i, i +
t, . . . , i+ t+ l − 2} for t ∈ [q].

The following classes of problems and their solutions are from the Biq-Mac
library. For each class of problem, we choose the first instance, i.e., i = 0, and drop
the suffix “.i” in Table 4.4:

• g05_n.i, unweighted graphs with edge probability 0.5, n = 60, 80, 100;

• pm1s_n.i, pm1d_n.i, weighted graph with edge weights chosen uniformly
from {−1, 0, 1} and density 10% and 99% respectively, n = 80, 100;

• wd_n.i, pwd_n.i, graph with integer edge weights chosen from [−10, 10] and
[0, 10] respectively, density d = 0.1, 0.5, 0.9, n = 100.

The instances g_n and the corresponding upper bounds are from the CS-TSSOS
paper [Wang et al. 2022]. The instances Gn are from the G-set library by Y.Y. Ye2,
and their best-known solutions are taken from [Kochenberger et al. 2013].

In Table 4.3, we give a summary of basic information and the graph structure
of each instance: nVar denotes the number of variables, Density denotes the per-
centage of non-zero elements in the adjacency matrix, nCliques denotes the number
of cliques in the chordal extension, MaxClique denotes the maximum size of the
cliques, MinClique denotes the minimum size of the cliques.

In Table 4.4, we display the upper bounds and running times corresponding to
the sublevel relaxations of depth 1, and level 0, 4, 6, 8, respectively. Notice that the

2http://web.stanford.edu/~yyye/yyye/Gset/

http://web.stanford.edu/~yyye/yyye/Gset/

4.3. APPLICATION TO OPTIMIZATION PROBLEMS 47

Table 4.3: Summary of the basic information and graph structure of Max-Cut
instances.

nVar Density nCliques MaxClique MinClique
g05_60 60 50% 11 50 19
g05_80 80 50% 12 69 28
g05_100 100 50% 13 88 37
pm1d_80 80 99% 2 79 76
pm1d_100 100 99% 2 99 95
pm1s_80 80 10% 44 37 4
pm1s_100 100 10% 47 54 4
pw01_100 100 10% 47 54 4
pw05_100 100 50% 12 89 40
pw09_100 100 90% 4 97 83
w01_100 100 10% 47 54 4
w05_100 100 50% 12 89 40
w09_100 100 90% 4 97 83
g_20 505 1.6% 369 15 1
g_40 1005 0.68% 756 15 1
g_60 1505 0.43% 756 15 1
g_80 2005 0.30% 1556 15 1
g_100 2505 0.23% 1930 16 1
g_120 3005 0.19% 2383 15 1
g_140 3505 0.16% 2762 15 1
g_160 4005 0.13% 3131 15 1
g_180 4505 0.12% 3429 15 1
g_200 5005 0.11% 3886 15 1
G11 800 0.25% 598 24 5
G12 800 0.25% 598 48 5
G13 800 0.25% 598 90 5
G32 2000 0.1% 1498 76 5
G33 2000 0.1% 1498 99 5
G34 2000 0.1% 1498 141 5

authors in [Campos et al. 2022] use the partial relaxation to compute upper bounds
for instances g_20 to g_200. The sublevel relaxation we consider here is actually
what they call the augmented partial relaxation, which is a strengthened relaxation
based on partial relaxation. From the ratio of improvement, we see that the more
sparse structure the graph has, the better the sublevel relaxation performs. Notice
that if we obtain better upper/lower bounds than the current best-known bounds,
the ratio of improvements will be larger than 100% and the relative gap will become
nagative. Particularly, our method provides better bounds for all the instances g_n
in the CS-TSSOS paper [Wang et al. 2022], and computes upper bounds very close
to the best-known solution for the instances Gn in G-set.

In addition to Table 4.4, if the number of variables is of moderate size, the
dense sublevel relaxation might performs faster than the sparse one. For example,
the instance g05_100 has 13 maximal cliques with maximum size 88 and minimum
size 37. The sparse sublevel relaxation consists of 13 first-order moment matrices of
size from 37 to 88. However, the dense version only consists of 1 first-order moment
matrix of size 100. In fact, the dense sublevel relaxation gives an upper bound
of 1463.5 at level 0 in 10 seconds, yielding the same bound as the sparse case at
level 0 but with much less computing time, and 1458.1 at level 8 in 178.1 seconds,
providing better bounds than the sparse case at level 6, with less computing time.

48 CHAPTER 4. SUBLEVEL HIERARCHY

Table 4.4: Results obtained by sublevel relaxations for Max-Cut problems.

Sol./UB nVar Density Sublevel relaxation, l = 0/4/6/8, q = 1 (level 0 = Shor)
upper bounds (RI, RG) solving time (s)

g05_60 536 60 50% 550.1 548.1 546.0 544.6 (39.0%, 1.6%) 4.5 10.6 17.6 65.7
g05_80 929 80 50% 950.9 949.0 946.6 944.6 (28.8%, 1.7%) 33.8 56.2 61.8 137.4
g05_100 1430 100 50% 1463.5 1462.0 1459.2 1456.8 (20.0%, 1.9%) 138.7 303.7 328.7 460.3
pm1d_80 227 80 99% 270.0 265.9 262.0 258.8 (26.0%, 14.0%) 15.0 29.4 39.2 128.1
pm1d_100 340 100 99% 405.4 402.2 397.9 393.7 (19.0%, 15.8%) 47.6 69.4 110.2 225.1
pm1s_80 79 80 10% 90.3 86.7 83.6 82.8 (66.4%, 4.8%) 1.4 4.9 13.4 37.7
pm1s_100 127 100 10% 143.2 141.4 137.6 135.3 (48.8%, 6.5%) 11.1 24.3 28.6 180.3
pw01_100 2019 100 10% 2125.4 2107.8 2088.1 2075.0 (47.4%, 2.8%) 13.0 20.5 29.7 285.8
pw05_100 8190 100 50% 8427.7 8416.6 8403.6 8388.1 (16.7%, 2.4%) 136.8 223.0 272.9 400.3
pw09_100 13585 100 90% 13806.0 13797.1 13781.1 13766.5 (17.9%, 1.3%) 141.6 218.4 268.7 442.4
w01_100 651 100 10% 740.9 728.3 710.3 696.2 (49.7%, 6.9%) 10.5 22.4 35.0 224.7
w05_100 1646 100 50% 1918.0 1902.6 1885.5 1869.7 (17.8%, 13.6%) 138.1 265.8 272.2 403.2
w09_100 2121 100 90% 2500.3 2478.2 2447.3 2422.8 (20.4%, 14.2%) 124.3 255.0 280.8 451.7
g_20 537.4 505 1.6% 570.8 547.1 526.7 513.4 (171.9%, -4.5%) 0.7 15.1 46.1 102.2
g_40 992.2 1005 0.68% 1032.6 982.4 950.8 927.6 (260.0%, -6.5%) 1.2 18.6 47.9 102.5
g_60 1387.2 1505 0.43% 1439.9 1368.4 1317.8 1281.9 (300.4%, -7.6%) 2.8 26.0 74.7 431.1
g_80 1838.1 2005 0.3% 1899.2 1803.8 1744.9 1698.8 (328.0%, -7.6%) 6.0 23.8 76.0 290.7
g_100 2328.3 2505 0.23% 2398.7 2282.9 2205.1 2149.3 (354.3%, -7.7%) 3.4 30.1 117.4 428.6
g_120 2655.4 3005 0.19% 2731.7 2588.5 2507.3 2439.8 (382.6%, -8.1%) 3.8 33.3 113.2 434.5
g_140 3027.2 3505 0.16% 3115.8 2947.9 2856.5 2782.6 (376.1%, -8.1%) 3.8 46.3 138.4 522.1
g_160 3589.0 4005 0.13% 3670.7 3487.1 3380.7 3310.9 (440.4%, -7.7%) 8.2 56.5 198.2 506.6
g_180 3953.1 4505 0.12% 4054.7 3855.9 3736.9 3653.5 (394.9%, -7.6%) 8.8 51.5 277.0 693.4
g_200 4472.3 5005 0.11% 4584.6 4353.3 4228.1 4132.2 (402.8%, -7.6%) 5.4 52.7 203.2 839.2
G11 564 800 0.25% 629.2 581.3 564.6 564.6 (99.1%, 0.1%) 4.0 15.8 32.6 36.5
G12 556 800 0.25% 623.9 572.5 559.6 559.6 (94.7%, 0.6%) 17.8 57.8 54.3 51.9
G13 580 800 0.25% 647.1 594.2 585.1 584.1 (93.9%, 0.7%) 159.2 241.7 340.2 321.6
G32 1398 2000 0.1% 1567.6 1433.4 1415.9 1415.9 (89.4%, 1.3%) 622.0 736.3 630.8 628.0
G33 1376 2000 0.1% 1544.3 1415.3 1392.7 1387.4 (93.2%, 0.8%) 1956.6 2115.8 1221.5 1486.8
G34 1372 2000 0.1% 1546.7 1407.9 1388.2 1388.2 (90.7%, 1.2%) 3613.5 6580.9 6327.9 6147.4

4.3.2 Maximum clique (Max-Cliq) problem

Given an undirected graph G(V,E) where V is a set of vertices and E is a set of
edges, a clique is defined to be a set of vertices that is completely interconnected.
The Max-Cliq problem consists of determining a clique of maximum cardinality. It
can be stated as a nonconvex quadratic programming problem over the unit simplex
[Pardalos & Phillips 1990] and its general formulation is:

max
x

xTAx (Max-Cliq)

s.t.
n∑
i=1

xi = 1, x ∈ [0, 1]n,

where A is the adjacency matrix of the given graph of n vertices. The constraints
x ∈ [0, 1]n are equivalent to xi(xi − 1) ≤ 0 for i = 1, 2, . . . , n. The Max-Cliq
problem is dense since we have a constraint

∑n
i=1 xi = 1 involving all the vari-

ables. Therefore, we apply the dense sublevel hierarchy. To handle the constraint∑n
i=1 xi = 1, we select the q subsets of size l by order as It = {t, t+ 1, . . . , t+ l− 1}

for t = 1, 2, . . . , q. For the constraints xi(xi− 1) ≤ 0, we select the subsets by order
as Ii,t = {i, i+ t, . . . , i+ t+ l − 2} for t ∈ [q].

4.3. APPLICATION TO OPTIMIZATION PROBLEMS 49

We take the same graphs as the ones considered in the Max-Cut instances.
Some instances share the same adjacency matrix with different weights, in which
case we delete these repeated graphs. LB denotes the lower bound of a given
instance, computed by 106 random samples. Contrast with the strategy used for
the Max-Cut instances, we use sublevel relaxations with level 2 and depth 0, 20,
40, 60, respectively. From Table 4.5 we see that the sublevel relaxation yields large
improvement compared to Shor’s relaxation. The Max-Cliq problem remains hard
to solve as emphasized by the large relative gap, ranging from 662.5% to 3660%.

Table 4.5: Results obtained by sublevel relaxations for Max-Cliq problems.

LB nVar Density Sublevel relaxation, l = 2, q = 0/20/40/60 (depth 0 = Shor)
upper bounds (RI, RG) solving time (s)

g05_60 0.8 60 50% 29.9 19.3 8.3 6.1 (81.8%, 662.5%) 0.6 1.8 3.6 2.4
g05_80 0.9 80 50% 39.9 29.1 20.1 8.9 (79.5%, 888.9%) 2.8 7.4 7.5 8.3
g05_100 0.8 100 50% 50.0 39.1 28.9 18.4 (64.2%, 2200.0%) 6.5 30.9 19.1 33.0
pm1d_80 1.0 80 99% 78.2 57.5 37.6 17.9 (78.1%, 1690.0%) 2.3 5.4 7.6 4.4
pm1d_100 1.0 100 99% 98.0 77.2 57.5 37.6 (62.3%, 3660%) 5.6 12.5 22.8 17.3
pm1s_80 0.7 80 10% 8.9 6.2 4.6 4.6 (52.1%, 557.1%) 2.6 6.1 6.4 9.0
pw01_100 0.6 100 10% 10.6 8.2 5.9 5.4 (51.8%, 800.0%) 7.5 30.7 20.0 29.6
pw05_100 0.8 100 50% 49.8 39.7 28.9 18.9 (63.0%, 2262.5%) 7.6 21.9 24.0 26.5
pw09_100 1.0 100 90% 89.2 70.2 51.9 34.0 (62.5%, 3300%) 8.5 15.0 33.2 28.9

4.3.3 Mixed integer quadratically constrained programming (MIQCP)

The MIQCP problem is of the following form:

min
x

xTQ0x + bT0 x (MIQCP)

s.t.

xTQix + bTi x ≤ ci, i ∈ [p],
Ax = b, l ≤ x ≤ u, xI ∈ Z,

where each Qi is a symmetric matrix of size n × n, A is a matrix of size n × n,
b,bi, l,u are n-dimensional vectors, and each ci is a real number. The constraints
xTQix + bTi x ≤ ci are called quadratic constraints, the constraints Ax = b are
called linear constraints. The constraints l ≤ x ≤ u and xI ∈ Z bound the
variables and restrict some of them to be integers. In our benchmarks, we only
consider the case where x ∈ {0, 1}n, which is also equivalent to xi(xi − 1) = 0 for
i = 1, 2, . . . , n. If we only have bound constraints, then we use the same ordered
heuristic as for the Max-Cut problem to select the subsets. If in addition we also
have quadratic constraints or linear constraints, then the problem is dense and
therefore we consider the dense sublevel hierarchy. For quadratic constraints, we
don’t apply the sublevel relaxation to them, i.e., l = q = 0. However, if Qi equals
the identity matrix, then we use the same heuristic as the linear constraints: we
select the subsets by order as It = {t, t+ 1, . . . , t+ l − 1} for t ∈ [q].

The following classes of problems and their solutions are from the Biq-Mac
library, where there are neither quadratic constraints xTQix + bTi x ≤ ci nor linear
constraints Ax = b. We only have integer bound constraints x ∈ {0, 1}n.

50 CHAPTER 4. SUBLEVEL HIERARCHY

• bqpn-i, with 10% density. All the coefficients have uniformly chosen integer
values in [−100, 100], n = 50, 100, 250, 500;

• gkaia, with dimensions in [30, 100] and densities in [0.0625, 0.5]. The diag-
onal coefficients lie in [−100, 100] and the off-diagonal coefficients belong to
[−100, 100];

• gkaib, with dimensions in [20, 125] and density 1. The diagonal coefficients
lie in [−63, 0] and the off-diagonal coefficients belong to [0, 100];

• gkaic, dimensions in [40, 100] and densities in [0.1, 0.8]. Diagonal coefficients
in [−100, 100], off-diagonal coefficients in [−50, 50];

• gkaid, with dimension 100 and densities in [0.1, 1]. The diagonal coefficients
lie in [−75, 75] and the off-diagonal coefficients belong to [−50, 50].

We also select some instances and their solutions from the QPLIB library with
ID 0032, 0067, 0633, 2512, 3762, 5935 and 5944, in which we have additional linear
constraints Ax = b. For the instance 0032, there are 50 continuous variables and 50
integer variables. For the two instances 5935 and 5944, we maximize the objective,
the others are minimization problems.

Similarly to the Max-Cut instances, Table 4.6 summarizes the basic information
and clique structure of each instance. Table 4.7 is a summary of basic information
and the number of quadratic, linear, bound constraints of the instances from the
QPLIB library.

In Table 4.8, we show the lower bounds and running time obtained by solving
the sublevel relaxations with depth 1 and level 0, 4, 6, 8, respectively. We see that
when the problem has a good sparsity structure or is of low dimension, the sublevel
relaxation performs very well and provides the exact solution, in particular for the
two instances gka2a and gka7a. For dense problems, we are not able to find the
exact solution, but still have improvements between 20% and 40% compared to
Shor’s relaxation. Notice that for the instances gka1b to gka10b, even though we
have an improvement ratio ranging from 24.0% to 77.9%, the relative gap is very
high, varying from 38.2% to 947.2%. This means that these problems themselves
are very hard to solve, so that the gap between the results of Shor’s relaxation and
the exact optimal solution is very large. Even though the sublevel relaxation yields
substantial improvement compared to Shor’s relaxation, it’s still far away from the
true optimum.

4.3. APPLICATION TO OPTIMIZATION PROBLEMS 51

Table 4.6: Summary of the basic information and sparse structure of MIQCP in-
stances.

nVar Density nCliques MaxClique MinClique nQuad nLin nBound
bqp50-1 50 10% 36 15 3 0 0 50
bqp100-1 100 10% 52 49 4 0 0 100
gka1a 50 10% 36 15 1 0 0 50
gka2a 60 10% 41 20 3 0 0 60
gka3a 70 10% 44 27 3 0 0 70
gka4a 80 10% 48 33 4 0 0 80
gka5a 50 20% 25 26 4 0 0 50
gka6a 30 40% 11 20 7 0 0 30
gka7a 30 50% 10 21 10 0 0 30
gka8a 100 62.5% 64 37 2 0 0 100
gka1b 20 100% 2 19 19 0 0 20
gka2b 30 100% 2 29 29 0 0 30
gka3b 40 100% 2 39 38 0 0 40
gka4b 50 100% 2 49 47 0 0 50
gka5b 60 100% 2 59 56 0 0 60
gka6b 70 100% 2 69 67 0 0 70
gka7b 80 100% 2 79 77 0 0 80
gka8b 90 100% 2 89 87 0 0 90
gka9b 100 100% 2 99 97 0 0 100
gka10b 125 100% 2 124 124 0 0 125
gka1c 40 80% 4 37 25 0 0 40
gka2c 50 60% 6 45 26 0 0 50
gka3c 60 40% 14 47 17 0 0 60
gka4c 70 30% 22 49 12 0 0 70
gka5c 80 20% 27 54 11 0 0 80
gka6c 90 10% 46 45 4 0 0 90
gka7c 100 10% 51 50 3 0 0 100
gka1d 100 10% 50 51 4 0 0 100
gka2d 100 20% 30 71 11 0 0 100
gka3d 100 30% 23 78 18 0 0 100
gka4d 100 40% 15 86 31 0 0 100
gka5d 100 50% 13 88 36 0 0 100
gka6d 100 60% 10 91 47 0 0 100
gka7d 100 70% 7 94 57 0 0 100
gka8d 100 80% 6 95 68 0 0 100
gka9d 100 90% 5 96 79 0 0 100
gka10d 100 100% 2 99 95 0 0 100

4.3.4 Quadratically constrained quadratic problem (QCQP)

A QCQP can be cast as follows:

min
x

xTQ0x + bT0 x (QCQP)

s.t.

xTQix + bTi x ≤ ci, i ∈ [p],
Ax = b, l ≤ x ≤ u,

where each Qi is a symmetric matrix of size n × n, A is a matrix of size n × n,
b,bi, l,u are n-dimensional vectors, and each ci is a real number. This is very
similar to the MIQCP except that we drop out the integer constraints. Therefore,
we use the same strategy to select the subsets in the sublevel relaxation.

We take the MIQCP instances from the Biq-Mac library whose size are larger

52 CHAPTER 4. SUBLEVEL HIERARCHY

Table 4.7: Summary of the basic information and constraint structure of MIQCP
instances from QPLIB library.

nVar Density nQuad nLin nBound
qplib0032 100 89% 0 52 100
qplib0067 80 89% 0 1 80
qplib0633 75 99% 0 1 75
qplib2512 100 28% 0 20 100
qplib3762 90 28% 0 480 90
qplib5935 100 28% 0 1237 100
qplib5944 100 28% 0 2475 100

or equal than 50. We add one dense quadratic constraint ||x||22 = 1, and relax the
integer bound constraints x ∈ {0, 1}n to linear bound constraints x ∈ [0, 1]n. UB
denotes the upper bound obtained by selecting the minimum value over 106 random
evaluations.

We also select some instances and their solutions from the QPLIB library with
ID 1535, 1661, 1675, 1703 and 1773. These instances have more than one quadratic
constraint and involve linear constraints.

Table 4.9 is a summary of basic information as well as the number of quadratic,
linear, and bound constraints of the instances from the QPLIB library.

In Table 4.10, we show the lower bounds and running time obtained by the
sublevel relaxation with depth 1 for the instances from the QPLIB library, 10 for
the instances adapted from the Biq-Mac library, and level 0, 4, 6, 8, respectively.
We see that the sublevel relaxation yields a uniform improvement compared to
Shor’s relaxation. However, for the QCQP problems adapted from the MIQCP
instances, it is very hard to find the exact optimal solution as the relative gap
varies from 60.5% to 77.0%. This is in deep contrast with the instances from the
QPLIB library which are relatively easier to solve as the relative gap varies from
9.4% to 13.8%.

4.3. APPLICATION TO OPTIMIZATION PROBLEMS 53

Table 4.8: Results obtained by sublevel relaxations for MIQCP problems.

Sol. nVar Density Sublevel relaxation, l = 0/4/6/8, q = 1 (level 0 = Shor)
lower/upper bounds (RI, RG) solving time (s)

bqp50-1 -2098 50 10% -2345.5 -2136.3 -2116.3 -2105.4 (97.0%, 0.4%) 0.1 0.5 1.3 3.4
bqp100-1 -7970 100 10% -8721.1 -8358.2 -8215.1 -8101.8 (82.5%, 1.7%) 8.8 16.7 21.8 87.9
gka1a -3414 50 10% -3623.3 -3453.2 -3432.6 -3428.5 (93.1%, 0.4%) 0.1 0.6 0.9 1.8
gka2a -6063 60 10% -6204.3 -6076.3 -6063.0 -6063.0 (100%, 0%) 0.3 1.0 4.6 8.5
gka3a -6037 70 10% -6546.2 -6291.5 -6182.6 -6106.3 (86.4%, 1.1%) 0.7 1.6 6.1 31.0
gka4a -8598 80 10% -8935.1 -8767.3 -8713.7 -8676.0 (76.9%, 0.9%) 2.1 3.4 10.1 30.0
gka5a -5737 50 20% -5979.9 -5789.9 -5760.3 -5750.0 (94.6%, 0.2%) 0.7 1.4 6.2 31.0
gka6a -3980 30 40% -4190.2 -4008.9 -3986.0 -3982.5 (98.8%, 0.1%) 0.2 0.6 3.9 23.6
gka7a -4541 30 50% -4696.6 -4566.8 -4541.1 -4541.1 (100%, 0%) 0.3 0.8 4.9 23.1
gka8a -11109 100 62.5% -11283.8 -11148.0 -11124.8 -11114.0 (97.1%, 0.05%) 2.3 2.7 7.5 19.5
gka1b -133 20 100% -362.9 -295.1 -253.6 -183.8 (77.9%, 38.2%) 0.1 0.5 2.4 25.0
gka2b -121 30 100% -505.7 -425.3 -325.4 -282.5 (58.0%, 133.5%) 0.2 0.7 4.0 29.9
gka3b -118 40 100% -718.0 -535.6 -483.4 -437.7 (46.7%, 270.9%) 0.7 1.4 6.5 45.9
gka4b -129 50 100% -809.8 -670.9 -614.2 -571.5 (35.0%, 343.0%) 1.9 3.3 14.3 65.2
gka5b -150 60 100% -1034.8 -820.9 -736.8 -705.5 (37.2%, 370.3%) 3.2 8.4 15.5 76.1
gka6b -146 70 100% -1279.0 -972.2 -894.8 -833.5 (39.3%, 470.9%) 9.1 11.6 26.6 86.5
gka7b -160 80 100% -1362.5 -1138.1 -1031.0 -982.6 (31.6%, 514.1%) 26.1 31.2 50.8 136.1
gka8b -145 90 100% -1479.1 -1269.8 -1190.2 -1120.9 (26.8%, 673.0%) 40.5 60.1 102.3 187.0
gka9b -137 100 100% -1663.6 -1385.4 -1298.9 -1212.6 (29.5%, 785.1%) 65.9 92.3 111.2 256.3
gka10b -154 125 100% -2073.1 -1782.1 -1707.1 -1612.7 (24.0%, 947.2%) 285.8 413.3 452.2 700.9
gka1c -5058 40 80% -5161.1 -5102.9 -5077.9 -5073.7 (84.8%, 0.3%) 0.8 1.6 5.3 41.9
gka2c -6213 50 60% -6392.6 -6291.3 -6263.1 -6246.2 (81.5%, 0.5%) 1.9 2.8 7.8 50.3
gka3c -6665 60 40% -6849.9 -6730.7 -6703.1 -6688.1 (87.5%, 0.3%) 6.1 9.3 15.9 62.1
gka4c -7398 70 30% -7647.1 -7527.7 -7494.9 -7462.8 (74.0%, 0.9%) 13.1 18.4 24.6 88.1
gka5c -7362 80 20% -7684.5 -7543.7 -7474.6 -7412.8 (84.2%, 0.7%) 15.1 27.7 40.3 112.8
gka6c -5824 90 10% -6065.8 -5932.2 -5869.7 -5847.4 (90.3%, 0.4%) 10.0 11.0 19.0 57.4
gka7c -7225 100 10% -7422.7 -7297.8 -7264.3 -7248.7 (88.0%, 0.3%) 12.4 13.9 22.1 55.6
gka1d -6333 100 10% -6592.7 -6475.3 -6403.1 -6369.6 (85.9%, 0.6%) 11.4 13.4 29.1 71.3
gka2d -6579 100 20% -7234.2 -6980.5 -6897.9 -6811.6 (64.5%, 3.5%) 42.3 70.8 70.6 193.7
gka3d -9261 100 30% -9963.0 -9686.2 -9591.7 -9523.6 (62.6%, 2.8%) 164.8 200.4 262.7 330.0
gka4d -10727 100 40% -11592.5 -11303.3 -11175.4 -11096.5 (57.3%, 3.4%) 302.2 259.1 191.8 387.7
gka5d -11626 100 50% -12632.1 -12381.6 -12274.7 -12185.0 (44.4%, 4.8%) 324.3 256.3 294.3 380.2
gka6d -14207 100 60% -15235.3 -14938.2 -14834.9 -14720.2 (50.1%, 3.6%) 236.6 239.7 221.9 437.9
gka7d -14476 100 70% -15672.0 -15413.2 -15267.6 -15173.6 (41.7%, 4.8%) 138.8 225.9 150.0 314.6
gka8d -16352 100 80% -17353.3 -17011.5 -16887.6 -16794.3 (55.8%, 2.7%) 271.5 277.9 291.6 408.6
gka9d -15656 100 90% -17010.9 -16652.0 -16513.3 -16409.6 (44.4%, 4.8%) 390.5 419.8 367.0 513.5
gka10d -19102 100 100% -20421.4 -20121.7 -19974.1 -19863.8 (44.3%, 4.0%) 77.8 83.4 130.2 244.8

qplib0032 10.1 100 99% -19751 -16491 -15962 -15440 (21.8%, 152971.3%) 18.1 19.4 37.0 94.7
qplib0067 -110942 80 89% -116480 -112923 -112615 -112478 (72.3%, 1.4%) 6.2 11.1 21.9 158.3
qplib0633 79.6 75 99% 70.9 74.0 75.1 75.7 (55.2%, 4.9%) 2.9 10.1 27.1 140.0
qplib2512 135028 100 77% -441284 -125060 27898 82909 (91.0%, 38.6%) 18.6 19.9 53.4 278.6
qplib3762 -296 90 28% -345.6 -330.8 -319.9 -309.5 (72.8%, 4.6%) 6.3 18.1 50.7 183.4
qplib5935 4758 100 99% 67494 40148 36842 28812 (61.7%, 505.5%) 12.8 39.4 259.0 1745.3
qplib5944 1829 100 99% 66934 27437 23142 19784 (72.4%, 981.7%) 15.6 182.1 2304.3 13204.6

Table 4.9: Summary of the basic information and constraint structure of QCQP
instances from QPLIB library.

nVar Density nQuad nLin nBound
qplib1535 60 94% 60 6 60
qplib1661 60 95% 1 12 60
qplib1675 60 49% 1 12 60
qplib1703 60 98% 30 6 60
qplib1773 60 95% 1 6 60

54 CHAPTER 4. SUBLEVEL HIERARCHY

Table 4.10: Results obtained by sublevel relaxations for QCQP problems.

Sol./UB nVar Density Sublevel relaxation, l = 0, 4, 6, 8, q = 1, 10 (level 0 = Shor)
lower bounds (RI, RG) solving time (s)

bqp50-1 -99 50 10% -215.7 -195.4 -180.6 -172.5 (37.0%, 74.2%) 0.8 2.4 12.3 88.5
bqp100-1 -67.2 100 10% -323.1 -304.7 -296.1 -290.0 (12.9%, 331.5%) 21.4 22.7 56.9 249.6
gka1a -109.5 50 10% -241.8 -224.1 -219.8 -213.8 (21.2%, 95.3%) 0.8 1.9 10.0 65.6
gka2a -140.7 60 10% -275.3 -260.9 -258.7 -251.6 (17.6%, 78.8%) 1.7 3.8 16.8 126.9
gka3a -143.2 70 10% -300.0 -284.6 -278.8 -275.0 (15.9%, 92.0%) 3.6 9.1 23.1 121.1
gka4a -126.2 80 10% -311.0 -288.3 -282.9 -280.0 (16.8%, 121.9%) 6.8 7.9 25.4 160.0
gka5a -180.2 50 20% -351.8 -319.3 -306.4 -299.1 (30.7%, 66.0%) 0.7 2.8 15.1 75.6
gka8a -122.5 100 62.5% -320.1 -306.8 -302.1 -299.5 (10.4%, 144.5%) 21.3 23.5 72.5 232.0
gka4b -63 50 100% -381.4 -326.2 -302.4 -280.8 (31.6%, 345.7%) 0.7 1.8 17.4 79.2
gka5b -63 60 100% -446.8 -377.2 -348.9 -327.4 (31.1%, 419.7%) 1.1 4.2 19.5 117.2
gka6b -63 70 100% -496.6 -409.9 -385.9 -366.8 (29.9%, 482.2%) 3.2 5.3 17.4 118.1
gka7b -63 80 100% -518.3 -447.1 -421.6 -404.3 (25.0%, 541.7%) 5.9 9.5 21.6 170.3
gka8b -63 90 100% -534.5 -472.7 -449.0 -430.1 (22.1%, 582.7%) 10.9 16.0 36.0 148.9
gka9b -63 100 100% -573.0 -501.3 -477.0 -455.8 (23.0%, 623.5%) 19.7 36.6 42.5 191.4
gka10b -63 125 100% -639.4 -569.7 -553.7 -533.6 (18.4%, 747.0%) 80.1 82.1 110.9 410.1
gka2c -159.1 50 60% -290.0 -269.3 -261.6 -255.4 (26.4%, 60.5%) 0.8 2.5 11.2 80.8
gka3c -126.3 60 40% -271.2 -240.2 -235.4 -231.3 (27.5%, 83.1%) 1.7 4.4 16.0 103.1
gka4c -123.0 70 30% -292.7 -263.7 -254.4 -247.9 (26.4%, 101.5%) 3.0 6.5 19.7 155.6
gka5c -114.0 80 20% -239.1 -225.9 -223.2 -220.4 (14.9%, 93.3%) 10.6 9.6 32.3 166.5
gka6c -100 90 10% -198.8 -190.8 -186.7 -182.4 (16.6%, 82.4%) 12.3 15.9 33.1 216.5
gka7c -100 100 10% -225.8 -213.7 -210.5 -208.5 (13.8%, 108.5%) 21.4 28.2 63.4 323.1
gka1d -75 100 10% -197.9 -182.5 -177.0 -174.5 (19.0%, 132.7%) 19.3 25.9 64.8 243.9
gka2d -87.2 100 20% -259.6 -242.2 -233.8 -229.5 (17.5%, 163.2%) 23.5 28.2 61.1 254.3
gka3d -88.1 100 30% -304.0 -281.6 -274.1 -267.5 (16.9%, 203.6%) 26.2 28.9 49.2 278.4
gka4d -105.5 100 40% -375.2 -340.1 -326.0 -317.5 (21.4%, 201.0%) 21.6 21.9 53.2 270.7
gka5d -131.9 100 50% -383.6 -351.5 -341.5 -332.3 (20.4%, 152.0%) 20.4 22.7 41.3 257.1
gka6d -137.7 100 60% -443.1 -400.0 -391.0 -378.9 (21.0%, 175.2%) 23.8 23.3 48.6 254.2
gka7d -156.3 100 70% -453.9 -421.4 -406.6 -397.4 (19.0%, 154.3%) 21.4 22.5 71.7 217.8
gka8d -147.6 100 80% -488.0 -441.1 -423.3 -414.2 (21.7%, 180.6%) 21.7 25.0 47.0 232.8
gka9d -179.6 100 90% -539.7 -487.7 -469.2 -456.8 (23.0%, 154.3%) 20.6 21.5 45.1 222.2
gka10d -187.0 100 100% -552.4 -505.7 -491.8 -478.4 (20.3%, 155.8%) 23.2 24.6 56.9 196.5

qplib1535 -11.6 60 94% -13.9 -13.5 -13.3 -13.2 (30.4%, 13.8%) 1.4 4.3 13.7 99.2
qplib1661 -16.0 60 95% -18.4 -18.1 -17.8 -17.5 (37.5%, 9.4%) 1.4 3.0 14.7 96.4
qplib1675 -75.7 60 49% -93.1 -87.0 -85.2 -83.8 (53.4%, 10.7%) 1.0 4.2 19.2 147.8
qplib1703 -132.8 60 98% -152.8 -147.0 -145.2 -143.5 (46.5%, 8.06%) 1.2 4.2 20.8 109.3
qplib1773 -14.6 60 95% -17.3 -16.8 -16.6 -16.4 (33.3%, 12.3%) 1.1 4.0 -14.0 89.3

Chapter 5

Robustness Verification and
Related Problems

Contents
3.1 Convex Optimization Problems 26

3.1.1 Linear programming (LP) . 26
3.1.2 Quadratic programming (QP) 26
3.1.3 Semidefinite programming (SDP) 26

3.2 Polynomial Optimization and Lasserre’s Hierarchy 27
3.2.1 Polynomial optimization problem (POP) 27
3.2.2 Moment and sum of squares 28
3.2.3 Dense moment relaxation . 30
3.2.4 Sparse moment relaxation . 32

As described in Section 1.3.2, to verify the robustness of a neural network F is
indeed to verify whether a property holds, e.g. F (x) ∈ Y for all x ∈ X . In this
chapter, we formulate this problem into polynomial optimization problems, and ap-
ply sublevel relaxation described in Chapter 4 to obtain valid upper bounds of the
original problem. We also propose two related problems: Lipschitz constant estima-
tion and ellipsoid propagation, both of which can be applied to certify robustness
of neural networks.

5.1 Semialgebraicity of ReLU, ∂ReLU, and Lp-norms

The key reason why neural networks with ReLU activation function can be tackled
using polynomial optimization techniques is semialgebraicity of the ReLU function,
i.e., it can be expressed with a system of polynomial (in)equalities.

5.1.1 ReLU function

Recall that ReLU(x) = max{0, x}. For x, y ∈ R, we have

y = ReLU(x)⇐⇒ y(y − x) = 0, y ≥ x, y ≥ 0. (5.1)

56CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

By Definition 3.1, the graph of ReLU function is a semialgebraic set, as shown in
Figure 5.1. For x,y ∈ Rn, we denote by ReLU(x) the coordinate-wise evaluation
of ReLU function.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

y

(a) y = max{x, 0}.

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

x

(b) y(y − x) = 0, y ≥ x, y ≥ 0.

Figure 5.1: ReLU function (left) and its semialgebraicity (right).

Remark. There are other semialgebraic formulations of ReLU function, for example:

y = max{x, 0} ⇐⇒ y(y − x) = 0, y ≥ αx with α ∈ (0, 1)
⇐⇒ y = (x+ z)/2, x2 = z2, z ≥ 0.

All these formulations are equivalent in mathematics. However, it shows different
numerical behavior when using different formulation in the optimization solvers.
The one we chose in this thesis has the best empirical performance.

5.1.2 ∂ReLU function

Similar with ReLU function, the subdifferential of ReLU function is also a semial-
gebraic function. We first give the formal definition of subdifferential.

Definition 5.1. Let Ω ∈ Rn and f : Ω → R be a convex function. The subdiffer-
ential of f at x ∈ Ω, denoted by ∂f(x), is defined as the nonempty set

∂f(x) := {z ∈ Rn : f(y) ≥ f(x) + zT (y− x)}, (5.2)

the vector z satisfying (5.2) is called subgradient of f at x.

Remark. If f is differentiable at x, then ∂f(x) = {∇f(x)}.

Applying Definition 5.1 to ReLU function, we obtain

∂ReLU(x) =

{0}, x < 0;
[0, 1], x = 0;
{1}, x > 0.

5.1. SEMIALGEBRAICITY OF RELU, ∂RELU, AND LP -NORMS 57

Therefore, for x, y ∈ R, we have

y ∈ ∂ReLU(x)⇐⇒ y(y − 1) ≤ 0, xy ≥ 0, x(y − 1) ≥ 0. (5.3)

By Definition 3.1, the graph of ∂ReLU is also a semiaglebraic set, as shown in
Figure 5.2. If x,y ∈ Rn, we denote by ∂ReLU(x) the coordinate-wise evaluation of
∂ReLU.

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

x

y

(a) y ∈ ∂ReLU(x).

−1 −0.5 0 0.5 1
−0.5

0

0.5

1

1.5

x

(b) y(y − 1) ≤ 0, xy ≥ 0, x(y − 1) ≥ 0.

Figure 5.2: Subdifferential of ReLU function (left) and its semialgebraicity (right).

5.1.3 Lp norm

Recall that for p ∈ Z+ ∪ {∞},x ∈ Rn, the Lp norm of x is defined as

‖x‖p =

(n∑
i=1
|xi|p

) 1
p

, if p <∞;

max
i∈[n]
|xi|, if p =∞.

Hence the ball constraint ‖x‖p ≤ 1 is equivalent to polynomial inequalities

‖x‖p ≤ 1⇐⇒

n∑
i=1

xpi ≤ 1, if p = 2k for some k ∈ Z+;
n∑
i=1

ypi ≤ 1, y2
i = x2

i , yi ≥ 0, if p = 2k + 1 for some k ∈ Z+;

x2
i ≤ 1, ∀i ∈ [n], if p =∞.

By Definition 3.1, the unit ball {x : ‖x‖p ≤ 1} is a semialgebraic set for any Lp
norm with p ∈ Z+∪{∞}. Similarly, the ball at center x̄ ∈ Rn with radius ε, defined
by {x : ‖x− x̄‖p ≤ ε} is a semialgebraic set for any Lp norm with p ∈ Z+ ∪ {∞}.

58CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

5.2 Lipschitz Constant Estimation

Recall that an application f : X → Rm, defined on a convex open set X ⊆ Rn, is L-
Lipschitz with respect to norm ‖·‖ if for all x,y ∈ X , we have ‖f(x)−f(y)‖ ≤ L‖x−
y‖. In particular, if f is a function from X to R, then ‖f(x)−f(y)‖ = |f(x)−f(y)|.
The Lipschitz constant of f with respect to norm ‖ · ‖, denoted by Lf,‖·‖, is the
infimum of all those valid Ls:

Lf,‖·‖ := inf{L : ∀x,y ∈ X , ‖f(x)− f(y)‖ ≤ L‖x− y‖} . (5.4)

For deep neural networks, Lipschitz constants play an important role in many appli-
cations related to robustness certification which has emerged as an active topic. Re-
lated works include [Raghunathan et al. 2018b, Fazlyab et al. 2020] based on Shor’s
relaxation, [Dathathri et al. 2020] based on a first-order SDP solver encoded in
JAX1 (a Python library designed for high-performance machine learning research),
[Xue et al. 2022] based on SDP exploring chordal sparsity, [Dvijotham et al. 2018,
Wong & Kolter 2018] based on LP relaxation, [Tjeng et al. 2019] based on MILP,
[Combettes & Pesquet 2020] based on compositions of nonexpansive averaged oper-
ators and affine operators, and [Boopathy et al. 2019, Zhang et al. 2018, Weng et al. 2018c,
Weng et al. 2018a] based on outer polytope approximation.

We follow a different route and compute upper bounds on the Lipschitz constant
of neural networks. Upper bounds on Lipschitz constants of deep networks can be
obtained by a product of the layer-wise Lipschitz constants, see [Huster et al. 2018].
This is however extremely loose and has many limitations. An improved upper
bound via a finer product is proposed by [Virmaux & Scaman 2018]. Depart from
these approaches, [Latorre et al. 2020] propose a nonconvex QCQP formulation to
estimate the Lipschitz constant of neural networks, for which Shor’s relaxation al-
lows to obtain a valid upper bound. Alternatively, using the LP hierarchy, they
obtain tighter upper bounds compared to Shor’s relaxation. [Fazlyab et al. 2019b]
also propose an SDP-based method to provide upper bounds of the Lipschitz con-
stant. However this method is restricted to L2 norm whereas most robustness
certification problems in deep learning are rather concerned with the L∞-norm.

5.2.1 Problem setting

Generally speaking, if an application f : X → Rm is smooth. Then the Lipschitz
constant of f w.r.t norm ‖ · ‖ is equal to the supremum of the operator norm |||·|||
of the Jacobian of f . In particular, if f is a function from X to R, it reduces to the
dual norm ‖ · ‖∗ of the gradient of f .

Theorem 5.1. Let X ⊆ Rn be a convex open set and f : X → Rm is a smooth
application defined on X . Denote by Lf,‖·‖ its Lipschitz constant w.r.t. norm ‖ · ‖,

1https://github.com/google/jax

https://github.com/google/jax

5.2. LIPSCHITZ CONSTANT ESTIMATION 59

then

Lf,‖·‖ = sup
x∈X
|||Jf (x)|||, (5.5)

where Jf (x) is the Jacobian matrix of f evaluated at x, and |||·||| is the operator
norm w.r.t norm ‖ · ‖ defined by |||A||| := inf{λ ≥ 0 : ‖Ax‖ ≤ λ‖x‖,∀x ∈ Rn} for
all A ∈ Rm×n. In particular, if f is a function defined on X , then

Lf,‖·‖ = sup
x∈X
‖∇f(x)‖∗, (5.6)

where ∇f(x) is the gradient of f evaluated at x, and ‖ · ‖∗ is the dual norm of ‖ · ‖
defined by ‖x‖∗ := sup‖t‖≤1 |〈t,x〉| for all x ∈ Rn.

Proof : We only prove (5.5) for the case when f is a vector-valued application. By
the convexity and smoothness of f , using Leibniz integral rule, for all x,y ∈ Rn,

‖f(y)− f(x)‖ =
∥∥∥∥ ∫ 1

0
Jf (x + t(y− x))(y− x)dt

∥∥∥∥
≤
∫ 1

0
|||Jf (x + t(y− x))||| · ‖y− x‖dt

≤
∫ 1

0
sup
x∈X
|||Jf (x)||| · ‖y− x‖dt

= sup
x∈X
|||Jf (x)||| · ‖y− x‖, (5.7)

which proves that Lf,‖·‖ ≤ supx∈X |||Jf (x)|||.
In order to prove Lf,‖·‖ ≥ supx∈X |||Jf (x)|||, one only needs to prove that Lf,‖·‖ ≥

supx∈X |||Jf (x)|||−ε for any ε > 0. For a fixed ε, let zε ∈ Rn be the vector such that
|||Jf (zε)||| ≥ supx∈X |||Jf (x)||| − ε. Since X is open, there exists a sequence {vi}∞i=1
in Rn such that zε + vi ∈ X for all i and limi→∞ ‖vi‖ = 0. By Taylor formula,

f(zε + vi)− f(zε) = Jf (zε) · vi + o(‖vi‖) · vi.

Hence ‖f(zε + vi) − f(zε)‖ =
∥∥Jf (zε) · vi + o(‖vi‖) · vi

∥∥. By the definition of
Lipschitz constant,

Lf,‖·‖ ≥
∥∥∥∥f(zε + vi)− f(zε)

‖vi‖

∥∥∥∥ =
∥∥∥∥Jf (zε) · vi
‖vi‖

+ o(1) · vi
∥∥∥∥ ≥ |||Jf (zε)||| − o(‖vi‖).

(5.8)

Let i→∞, by equation (5.8) and the fact that limi→∞ o(‖vi‖) = 0, we have

Lf,‖·‖ ≥ |||Jf (zε)||| ≥ sup
x∈X
|||Jf (x)||| − ε,

for all ε > 0, which conclude the proof. �
Theorem 5.1 gives us an explicit formulation of calculating the Lipschitz con-

60CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

stant of smooth functions defined on convex open sets. Unfortunately, for ReLU
neural network F : Ω→ RK where Ω ⊆ Rp0 is a convex set (e.g. the unit ball), it is
not smooth due to the non-smoothness of the ReLU function. Therefore, we cannot
directly apply Theorem 5.1 to neural networks with ReLU activation function. On
the other hand, we can still use the same methodology to compute the generalized
Jacobian or generalized gradient and prove that they are valid upper bounds of the
Lipschitz constant.

For DNNs: We first consider fully-connected deep neural networks with ReLU
activation function. Suppose we have a pre-trained network F with parameters
W = (A1,b1; . . . ; AL,bL; C), where Ai ∈ Rpi×pi−1 ,bi ∈ Rpi ,C ∈ RK×pL , L is
the number of hidden layers, p0 is the number of neurons in the input layer, pi is
the number of neurons in the hidden layer, and K is the number of labels. We
say that a network F has size (p0, p1, . . . , pL) if F has L hidden layers, p0 neurons
in the input layer and pi neurons in the corresponding hidden layers. Denote by
Fk(x) := (F (x))k for k ∈ [K] and x ∈ Ω. For an input x0 ∈ Rp0 , the targeted score
of label k is Fk(x0) = C(k,:)xL =: cTk xL, where xi = ReLU(Aixi−1 +bi), for i ∈ [L].
By applying the chain rule on the non-smooth function Fk, we obtain a set valued
map for Fk at point x0 as

GFk
(x0) =

{(L∏
i=1

AT
i Diag(zi)

)
ck : zi ∈ ∂ReLU(Aixi−1 + bi)

}
, (5.9)

where Diag(zi) is the diagonal matrix whose diagonal entries are composed of vector
zi, and ∂ReLU is the subdifferential of ReLU function as defined in Definition 5.2.

Symbolically, the set valued map GFk
looks like the subdifferential of function

Fk since we apply the chain rule on Fk. However, in general, the chain rule can-
not be applied to composition of non-smooth functions, see [Kakade & Lee 2018,
Bolte & Pauwels 2021]. Hence the formulation of GFk

may lead to incorrect sub-
gradients and bounds on the Lipschitz constant of the networks. Nevertheless, we
are going to prove that, in the spirit of Theorem 5.1, the map GFk

can be used to
compute a valid upper bound of the Lipschitz constant of function Fk.

Lemma 5.2. Suppose F : Ω → RK is a fully-connected deep neural network ac-
tivated by ReLU function, Fk(x) := (F (x))k for k ∈ [K] and x ∈ Ω. Let LFk,‖·‖
be the Lipschitz constant of Fk w.r.t. norm ‖ · ‖. Then the optimal value of the
following optimization problem

L̃Fk,‖·‖ := sup
x0∈Ω, v∈GFk

(x0)
‖v‖∗

= sup
x0∈Ω

{∥∥∥∥(L∏
i=1

AT
i Diag(zi)

)
ck
∥∥∥∥
∗

: zi ∈ ∂ReLU(Aixi−1 + bi)
}
, (5.10)

is a valid upper bound of LFk,‖·‖, i.e., LFk,‖·‖ ≤ L̃Fk,‖·‖.

5.2. LIPSCHITZ CONSTANT ESTIMATION 61

Proof : Adopting the terminology from [Bolte & Pauwels 2021], ∂ReLU is conser-
vative. The formulation GFk

(x0) = (
∏L
i=1 AT

i Diag(zi))ck is an application of the
chain rule of differentiation, where along each chain the conservative set-valued field
∂ReLU is used in place of derivative of ReLU function. By [Bolte & Pauwels 2021,
Lemma 2], chain rule preserves conservativity, hence GFk

is a conservative mapping
for function Fk. By conservativity and convexity of Ω, we have for all x,y ∈ Rp0 ,
integrating along the segment,

|Fk(y)− Fk(x)| =
∣∣∣∣∣
∫ 1

0
max

v∈GFk
(x+t(y−x))

〈y− x,v〉 dt
∣∣∣∣∣

≤
∫ 1

0
max

v∈GFk
(x+t(y−x))

‖y− x‖‖v‖∗dt

≤
∫ 1

0
‖y− x‖L̃Fk,‖·‖dt

= L̃Fk,‖·‖‖y− x‖,

which conclude the proof. �

Remark. Lemma 5.2 may admit a simpler proof. Indeed the Clarke subdifferential
[Clarke 1983] is the convex hull of limits of sequences of gradients. For Lipschitz
constant, we want the maximum norm element, which necessarily happens at a
corner of the convex hull, therefore for our purposes it suffices to consider sequences.
Since the ReLU network is almost everywhere differentiable, we can consider a
shrinking sequence of balls around any point, and we will have gradients which
are arbitrarily close to any corner of the gradients at our given point. Therefore,
the norms of the sequence will converge to the norm of the corner, and thus it
suffices to optimize over differentiable points, which means what we choose at the
nondifferentiability does not matter.

The above argument is essentially valid because ReLU function only contains
univariate nondifferentiability which is very specific. However the argument is im-
plicitly based on the idea that the composition of almost everywhere differentiable
functions complies with calculus rules, which is not correct in general due to lack of
injectivity. For more general networks, what we choose at the nondifferentiability
does matter. Indeed, consider the following functions

F : x 7→
(
x

x

)
, G :

(
y1
y2

)
7→ max {y1, y2} .

The composition G ◦ F is the identity on R and both F and G are differentiable
almost everywhere. Consider the mappings

JF : x 7→
(

1
1

)
, JG :

(
y1
y2

)
7→

(0, 0)T , if y1 = y2;
(1, 0)T , if y1 > y2;
(0, 1)T , if y1 < y2.

62CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

It is easy to see that JF is the Jacobian of F and JG is the gradient of G almost
everywhere. Now the product JG(F (x))T · JF (x) = 0 for all x ∈ R. Hence com-
puting the product of these gradient gives value 0, meaning that the function is
constant, which is not the truth. The reason for the failure here is that JG, despite
being gradient almost everywhere, is not conservative for G. For this reason, the
product does not provide any information of Lipschitz constant and the choice at
nondifferentiability point does matter for G.

When Ω = Rn, LFk,‖·‖ is called the global Lipschitz constant of F w.r.t. norm
‖ · ‖. In many cases we are also interested in the local Lipschitz constant of a neural
network constrained in a small neighborhood of a fixed input x̄. In this situation,
the input space Ω is often the ball around x̄ ∈ Rp0 with radius ε: Ω = {x ∈
Rp0 : ‖x − x̄‖ ≤ ε} = B(x̄, ε, ‖ · ‖), and we denote by LFk,ε,‖·‖ the local Lipschitz
constant. Obviously, the global Lipschitz constant is always an upper bound of the
local Lipschitz constant, i.e., LFk,ε,‖·‖ ≤ LFk,‖·‖.

By Lemma 5.2 and semialgebraicity of ReLU, ∂ReLU described in 5.1, 5.3, the
Lipschitz constant estimation problem for deep neural network F w.r.t. norm ‖ · ‖,
is formulated as follows: for k ∈ [K],

max
xi∈Rpi , zi∈Rpi , t∈Rp0

tT
(L∏
i=1

AT
i Diag(zi)

)
ck (LipDNN-k)

s.t.

zi ◦ (zi − 1) ≤ 0, zi ◦ (Aixi−1 + bi) ≥ 0,
(zi − 1) ◦ (Aixi−1 + bi) ≥ 0, i ∈ [L],
xi−1 ◦ (xi−1 −Ai−1xi−2 − bi−1) = 0,
xi−1 −Ai−1xi−2 − bi−1 ≥ 0, xi−1 ≥ 0, 2 ≤ i ≤ L,
t2 ≤ 1, ‖x0 − x̄‖ ≤ ε.

[Latorre et al. 2020] only use the constraint 0 ≤ zi ≤ 1 on the variables zi, only
capturing the Lipschitz character of the considered activation function. We could
use the same constraints, which allows us to use activation functions that do not
have semialgebraic representations such as ELU function. However, such a relax-
ation is much coarser than the one we propose. Indeed, (LipDNN-k) treats an exact
formulation of the subdifferential of ReLU function by exploiting its semialgebraic
character.

For MONs: Now we consider a different type of neural network, fully-connected
MON, as introduced in Section 1.1.2. The only difference between a MON and a
DNN is that we only have one hidden layer in MON, and the evaluation of the
neurons in the hidden layer is realized by a fixed point equation. Similar with the
case of DNNs, we assume the MON is a classifier activated by ReLU function. Let
W = (A,B,b; C) be the parameters of F , where A ∈ Rp1×p1 ,B ∈ Rp1×p0 , b ∈
Rp1 ,C ∈ RK×p1 , p0 is the number of neurons in the input layer, p1 is the number
of neurons in the hidden layer, K is the number of labels. We say that network F

5.2. LIPSCHITZ CONSTANT ESTIMATION 63

has size (p0, p1) if F has p0 neurons in the input layer and p1 neurons in the hidden
layer. We are going to bound the Lipschitz constant of F with respect to input
perturbation. Let LF,‖·‖ (resp, LF,ε,‖·‖) be the global (resp. local) Lipschitz constant
of F , and let s be any subgradient of the implicit variable, i.e., s ∈ ∂ReLU(Ax1 +
Bx0 + b). By the semialgebraicity of ∂ReLU described in (5.3), we can write
equivalently a system of polynomial inequalities for variable s:

s(s− 1) ≤ 0, s(Ax1 + Bx0 + b) ≥ 0, (s− 1)(Ax1 + Bx0 + b) ≥ 0. (5.11)

Similar with the case of DNNs, we are able to calculate the upper bound of the
Lipschitz constant of F by solving an optimization problem, as the following lemma
states:

Lemma 5.3. Suppose F : Ω → RK is a fully-connected MON activated by ReLU
function. Let LF,ε,‖·‖ be the local Lipschitz constant of F w.r.t. norm ‖ · ‖. Then
the optimal value of the following problem

L̃F,ε,‖·‖ := max
t,x0∈Rp0 , s,x1,h,r∈Rp1 , v,w∈RK

tTBTh (LipMON)

s.t.

‖t‖ ≤ 1, wTv ≤ 1, ‖w‖ ≤ 1, ‖x0 − x̄‖ ≤ ε,
r−ATh = CTv, h = Diag(s) · r,
s ◦ (s− 1) ≤ 0, s ◦ (Ax1 + Bx0 + b) ≥ 0,
(s− 1) ◦ (Ax1 + Bx0 + b) ≥ 0,
x1 ◦ (x1 −Ax1 −Bx0 − b) = 0,
x1 −Ax1 −Bx0 − b ≥ 0, x1 ≥ 0,

is a valid upper bound of LF,ε,‖·‖, i.e., LF,ε,‖·‖ ≤ L̃F,ε,‖·‖.

In order to prove Lemma 5.3, we need some preliminaries.

Definition 5.2. (Clarke’s generalized Jacobian [Clarke 1983]) Let f : Rn →
Rm be a locally Lipschitz vector-valued application, denote by Ωf any zero measure
set such that f is differentiable outside Ωf . For x /∈ Ωf , denote by Jf (x) the
Jacobian matrix of f evaluated at x. For any x ∈ Rn, the generalized Jacobian, or
Clarke Jacobian, of f evaluated at x, denoted by J Cf (x), is defined as the convex
hull of all m × n matrices obtained as the limit of a sequence of the form Jf (xi)
with xi → x and xi /∈ Ωf . Symbolically, one has

J Cf (x) := conv{limJf (xi) : xi → x, i→∞, xi /∈ Ωf}. (5.12)

Definition 5.3. For a matrix A ∈ Rm×n, the operator norm of A induced by norm
‖ · ‖, denoted by |||·|||, is defined by

|||A||| := inf{λ ≥ 0 : ‖Ax‖ ≤ λ‖x‖,∀x ∈ Rn}. (5.13)

64CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

Lemma 5.4. Let F : Ω→ RK be a fully-connected MON. The local Lipschitz con-
stant of F is upper bounded by the supremum of the operator norm of its generalized
Jacobian, i.e., define

L̄F,ε,‖·‖ := sup
t,x0∈Rp0 , v,w∈RK , J∈JC

x1 (x̄)
tTJTCTv (5.14)

s.t. ‖t‖ ≤ 1, wTv ≤ 1, ‖w‖ ≤ 1, ‖x0 − x̄‖ ≤ ε,

then LF,ε,‖·‖ ≤ L̄F,ε,‖·‖.

Proof. (of Lemma 5.4) Since x1(x0) = ReLU(Ax1(x0) + Bx0 + b) by definition of
MON, x1(x0) is Lipschitz according to [Pabbaraju et al. 2021, Theorem 1]. Further-
more, x1(x0) is semialgebraic by the semialgebraicity of ReLU function described in
(5.1). Therefore, the Clarke Jacobian of x1 is conservative. Indeed by [Clarke 1983,
Proposition 2.6.2], the Clarke Jacobian is included in the product of subgradients
of its coordinates which is a conservative field by [Bolte & Pauwels 2021, Lemma
3, Theorems 2 and 3]. Since F (x0) = Cx1, the mapping CJ Cx1 : x0 ⇒ CJ, where
J ∈ J Cx1 , is conservative for F by [Bolte & Pauwels 2021, Lemma 5]. So it satisfies
an integration formula along segments. Let u1,u2 ∈ Ω, and let γ : [0, 1] → Rp0

be a parametrization of the segment defined by γ(t) = u1 + t(u2 − u1) (which is
absolutely continuous). For almost all t ∈ [0, 1], we have

d
dtF (γ(t)) = CJγ′(t) = CJ(u2 − u1), (5.15)

for all J ∈ J Cx1(γ(t)).
Let M := sup{|||CJ||| : J ∈ J Cx1(x0),x0 ∈ B(x̄, ε, ‖ · ‖)} be the supremum of the

operator norm |||CJ||| for all J ∈ J Cx1(x0) and all x0 ∈ B(x̄, ε, ‖ · ‖). We prove that
M <∞. Indeed, x1(x0) is Lipschitz, hence there exists N > 0 such that |||J||| < N

for all J ∈ J Cx1(x0) and all x0 ∈ B(x̄, ε, ‖ · ‖). The value M is thus upper bounded
by |||C|||N . Therefore, for almost all t ∈ [0, 1], ‖ d

dtF (γ(t))‖ ≤ M‖u2 − u1‖, and by
integration,

‖F (u2)− F (u1)‖ =
∥∥∥∥ ∫ 1

0

d
dtF (γ(t))dt

∥∥∥∥ ≤ ∫ 1

0

∥∥∥∥ ddtF (γ(t))
∥∥∥∥dt ≤M‖u2 − u1‖,

which proves that LF,ε,‖·‖ ≤ M . We show that M = L̄F,ε,‖·‖. Fix x0 ∈ Rp0 and
J ∈ J Cx1(x0). By the definition of operator norm,

|||CJ||| =
∣∣∣∣∣∣∣∣∣(CJ)T

∣∣∣∣∣∣∣∣∣∗ = sup
v∈RK

{‖JTCTv‖∗ : ‖v‖∗ ≤ 1}

= sup
t∈Rp0 , v∈RK

{tTJTCTv : ‖t‖ ≤ 1, ‖v‖∗ ≤ 1}

= sup
t∈Rp0 , v,w∈RK

{tTJTCTv : ‖t‖ ≤ 1, wTv ≤ 1, ‖w‖ ≤ 1}, (5.16)

where ‖·‖∗ denotes the dual norm of ‖·‖ defined by ‖v‖∗ := supw∈RK{wTv : ‖w‖ ≤

5.2. LIPSCHITZ CONSTANT ESTIMATION 65

1} for all v ∈ RK , and the first equality is due to the fact that the operator norm
of matrix CJ induced by norm ‖ · ‖ is equal to the operator norm of its transpose
(CJ)T induced by the dual norm ‖ · ‖∗. Indeed, by definition of operator norm and
dual norm, we have

|||CJ||| = sup
x0∈Rp0

{‖CJx0‖ : ‖x0‖ ≤ 1}

= sup
x0∈Rp0 , x1∈Rp1

{xT1 CJx0 : ‖x0‖ ≤ 1, ‖x1‖∗ ≤ 1}

= sup
x0∈Rp0 , x1∈Rp1

{xT0 (CJ)Tx1 : ‖x0‖ ≤ 1, ‖x1‖∗ ≤ 1}

= sup
x1∈Rp1

{‖(CJ)Tx1‖∗ : ‖x1‖∗ ≤ 1} =
∣∣∣∣∣∣∣∣∣(CJ)T

∣∣∣∣∣∣∣∣∣∗. (5.17)

The quantity L̄F,ε,‖·‖ is just the maximization of Equation (5.16) for all x0 ∈ Rp0

and all J ∈ J Cx1(x0) and therefore equals M , which concludes that LF,ε,‖·‖ ≤ M =
L̄F,ε,‖·‖.

Now we have enough materials to prove Lemma 5.3.

Proof. (of Lemma 5.3) The function x1 is semialgebraic, and therefore, there exists
a closed zero measure set Ωx1 such that x1 is continuously differentiable on the
complement of Ωx1 . For any x0 6∈ Ωx1 , since x1 is C1 at x0, we have J Cx1(x0) =
{Jx1(x0)} by definition of the Clarke Jacobian. Fix x0 6∈ Ωx1 arbitrarily. According
to [Clarke 1983, page 75, Corollary of Theorem 2.6.6], we have

J Cx1(x0) ⊆ conv{J CReLU(Ax1(x0) + Bx0 + b) · J CAx1(x0)+Bx0+b(x0)}

= conv{J CReLU(Ax1(x0) + Bx0 + b) · (A · Jx1(x0) + B)}
= J CReLU(Ax1(x0) + Bx0 + b) · (A · Jx1(x0) + B), (5.18)

where the first inclusion is from the cited Corollary, the first equality is because x1
is C1 at x0 so that the chain rule applies, and the last one is due to the convexity
of the Clarke Jacobian.

Fix any x0 ∈ Rp0 , then by Definition 5.2, we have

J Cx1(x̄) = conv{limJx1(ui) : ui → x0, i→ +∞, ui /∈ Ωx1}. (5.19)

Let {ui}i∈N be a sequence not in Ωx1 and converging to x̄. For each ui /∈ Ωx1 , we
have by (5.18) that Jx1(ui) ∈ J CReLU(Ax1(ui)+Bui+b)·(A·Jx1(ui)+B), i.e., there
exists Hi ∈ J CReLU(Ax1(ui) + Bui + b) such that Jx1(ui) = Hi(A · Jx1(ui) + B).
By [Clarke 1983, proposition 2.6.2 (b)], J CReLU has closed graph. Therefore, by
continuity of x1, up to a subsequence, Hi → H ∈ J CReLU(Ax1(x0) + Bx0 + b) for
i→ +∞, which means

J Cx1(x0) ⊆ {J : H ∈ J CReLU(Ax1(x0) + Bx0 + b), J = H(AJ + B)}, (5.20)

66CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

for all x0 ∈ Rp0 . Let H ∈ J CReLU(Ax1(x0)+Bx0 +b), since we have coordinate-wise
application of ReLU, we obtain H = Diag(s) with s ∈ ∂ReLU(Ax1(x0)+Bx0 +b).
By equation (5.20), the right-hand side of equation (5.14) is upper bounded by

max
t,x0∈Rp0 , s,x1∈Rp1 , v,w∈RK , J∈Rp1×p0

tTJTCTv (LipMON-a)

s.t.

‖t‖ ≤ 1, wTv ≤ 1, ‖w‖ ≤ 1, ‖x0 − x̄‖ ≤ ε,
J = Diag(s) · (A · J + B),
s ◦ (s− 1) ≤ 0, s ◦ (Ax1 + Bx0 + b) ≥ 0,
(s− 1) ◦ (Ax1 + Bx0 + b) ≥ 0,
x1 ◦ (x1 −Ax1 −Bx0 − b) = 0,
x1 −Ax1 −Bx0 − b ≥ 0, x1 ≥ 0.

Note that in problem (LipMON-a), we have a matrix variable J of size p1 × p0,
i.e., containing p1 × p0 many variables, which is too large for any SDP solvers. To
make the optimization tractable, we use the vector-matrix product trick proposed
by [Winston & Kolter 2020] to reduce the size of the unknown variables. From
equation J = Diag(s) · (A · J + B), we have J = (Ip1 −Diag(s) ·A)−1 ·Diag(s) ·B.
This inversion makes sense because of the strong monotonicity of Ip1 −A and the
fact that all entries of s lie in [0, 1], see [Winston & Kolter 2020, Proposition 1].
Hence

vTCJ = vTC · (Ip1 −Diag(s) ·A)−1 ·Diag(s) ·B = rT ·Diag(s) ·B , (5.21)

where rT = vTC ·(Ip1−Diag(s) ·A)−1, which means r−AT ·Diag(s) ·r = CTv. Set
h = Diag(s) ·r and transpose both sides of equation (5.21), we have JTCTv = BTh
with r−AT ·h = CTv. We can then rewrite the objective function of (LipMON-a)
as tTBTh, leading to the following equivalent problem

max
t,x0∈Rp0 , s,x1,h,r∈Rp1 , v,w∈RK

tTATh (LipMON-b)

s.t.

‖t‖ ≤ 1, wTv ≤ 1, ‖w‖ ≤ 1, ‖x0 − x̄‖ ≤ ε,
r−ATh = CTv, h = Diag(s) · r,
s ◦ (s− 1) ≤ 0, s ◦ (Ax1 + Bx0 + b) ≥ 0,
(s− 1) ◦ (Ax1 + Bx0 + b) ≥ 0,
x1 ◦ (x1 −Ax1 −Bx0 − b) = 0,
x1 −Ax1 −Bx0 − b ≥ 0, x1 ≥ 0.

We have shown that (LipMON-b) is the right hand side of Equation (LipMON)
in Lemma 5.3 and is an upper bound of the right hand side of Equation (5.14) in
Lemma 5.4, i.e., L̄F,ε,‖·‖ ≤ L̃F,ε,‖·‖.

Remark. In order to avoid some possible numerical issues, we add some redundant

5.2. LIPSCHITZ CONSTANT ESTIMATION 67

constraints to problem (LipMON), we use the slope restriction condition of ReLU
function as proposed by [Hu et al. 2020]: for i 6= j,

(x(j)
1 − x

(i)
1)(A(j,:)x1 + B(j,:)x0 + b(j) −A(i,:)x1 −B(i,:)x0 − b(i))− (x(j)

1 − x
(i)
1)2 ≥ 0.
(5.22)

There are
(p1

2
)

= O(p2
1) many constraints in (5.22), which will be very large if p1

increases. In practice, we choose those constraints with a fixed index i ∈ [p1] so
that we reduce the number of redundant constraints to p1 − 1.

Summarize the discussion above, we show the total number of variables and
constraints for the Lipschitz constant estimation problem of DNNs and MONs in
Table 5.1.

Table 5.1: Summary of Lipschitz constant estimation problem for DNNs and MONs.

Network Norm # of variables # of constraints

DNN L2 2p0 + 2
∑L−1

i=1 pi + pL
1 + p0 + 3

∑L

i=1 pi + 3
∑L

i=2 pi

L∞ 2p0 + 3
∑L

i=1 pi + 3
∑L

i=2 pi

MON L2 2p0 + 4p1 + 2K 4 + 8p1
L∞ 1 + 2p0 + 8p1 +K

5.2.2 Algorithms

Designing a general algorithm for all kind of neural networks is difficult. Here we
consider specifically three types of neural networks: fully-connected DNNs with
1 and 2 hidden layers (denoted by FcDNN1 and FcDNN2), and fully-connected
MONs (denoted by FcMON). We are going to discuss about the convex relaxation
method for each type of network respectively. In the following discussion, we write
x(i) the i-th entry of vector x ∈ Rn, and A(i,:) the i-th row vector of matrix A ∈
Rn×n.

For FcDNN1: Suppose the network F has only one hidden layer. In this case,
the Lipschitz constant estimation problem (LipDNN-k) reduces as

max
t,x0∈Rp0 , z1∈Rp1

tTAT
1 Diag(z1)ck (5.23)

s.t.

z1 ◦ (z1 − 1) ≤ 0, z1 ◦ (A1x0 + b1) ≥ 0, (z1 − 1) ◦ (A1x0 + b1) ≥ 0,
t2 ≤ 1, ‖x0 − x̄‖ ≤ ε.

In order to produce more sparsity patterns, we introduce a new decision variable
u1 = A1x0 + b1 and replace it in problem (5.23). Then we obtain an equivalent

68CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

form of (5.23):

max
t,x0∈Rp0 , z1,u1∈Rp1

tTAT
1 Diag(z1)ck (LipFcDNN1-k)

s.t.

u1 −A1x0 − b1 = 0,
z1 ◦ (z1 − 1) ≤ 0, z1 ◦ u1 ≥ 0, (z1 − 1) ◦ u1 ≥ 0;
t2 ≤ 1, ‖x0 − x̄‖ ≤ ε.

By semialgebraicity of Lp norm, problem (LipFcDNN1-k) is a POP for p ∈
N+∪{∞}. In particular, for L2 and L∞ norm, it is a nonconvex QCQP. Therefore,
we can apply Lasserre’s relaxation and sublevel relaxation to compute upper bounds
of the optimal value of (LipFcDNN1-k). We first apply Shor’s relaxation (a.k.a.
first-order Lasserre’s relaxation) without exploiting sparsity, then design a sublevel
relaxation which is benefited from the sparsity of (LipFcDNN1-k) and enhance
Shor’s relaxations. Shor’s relaxation applied to (LipFcDNN1-k) is the following
SDP:

inf
y

Ly(tTAT
1 Diag(z1)ck) (SHOR-LipFcDNN1-k)

s.t.

Ly(1) = 1, M1(y) � 0,
Ly(u(i)

1 −A(i,:)
1 x0 + b

(i)
1) = 0, i ∈ [p1],

Ly(z(i)
1 (z(i)

1 − 1)) ≤ 0, Ly(z(i)
1 u

(i)
1) ≥ 0, Ly((z(i)

1 − 1)u(i)
1) ≥ 0, i ∈ [p1],

Ly(1− (t(i))2) ≥ 0, i ∈ [p0],
Ly(ε2 − (x0 − x̄)T (x0 − x̄)) ≥ 0, (for L2 norm)
Ly(ε2 − (x(i)

0 − x̄(i))2) ≥ 0, i ∈ [p0]. (for L∞ norm)

Based on Shor’s relaxation, we are going to enhance the relaxation by adding
second-order moment matrices and first-order localizing matrices, which results in
a sublevel relaxation. Define subsets I(i) = {t(i), x(i)

0 } for i ∈ [p0] w.r.t. variables
t,x0, and J (j) = {z(j)

1 , u
(j)
1 } for j ∈ [p1] w.r.t. variables z1,u1. Let Γdense be the

index set of dense constraints u(i)
1 −A(i,:)

1 x0 + b
(i)
1 (and ε2 − (x0 − x̄)T (x0 − x̄) for

L∞ norm), let Γsparse be the index set of the remaining sparse constraints. The
idea is to endow the dense constraints with 0-th order localizing matrices (i.e., Riesz
linear functionals), and the sparse constraints with first-order localizing matrices
w.r.t. subsets I(i) and J (j). Using the terminology described in Definition 4.3, let
l = {0|Γdense|,2|Γsparse|} and q = 1|Γdense|+|Γsparse|. For subsets Ii and Jj , define the

5.2. LIPSCHITZ CONSTANT ESTIMATION 69

second-order (l,q)-sublevel relaxation as follows:

inf
y

Ly(tTAT
1 Diag(u1)ck) (Sub2-LipFcDNN1-k)

s.t.

Ly(1) = 1, M1(y) � 0,
M2(y, I(i)) � 0, i ∈ [p0], M2(y, J (j)) � 0, j ∈ [p1],
Ly(u(i)

1 −A(i,:)
1 x0 + b

(i)
1) = 0, i ∈ [p1],

M1(z(i)
1 (z(i)

1 − 1), J (j)) ≤ 0, M1(z(i)
1 u

(i)
1 , J (j)) ≥ 0,

M1((z(i)
1 − 1)u(i)

1 , J (j)) ≥ 0, j ∈ [p1],
M1(1− (t(i))2, I(i)) ≥ 0, i ∈ [p0],
Ly(ε2 − (x0 − x̄)T (x0 − x̄)) ≥ 0, (for L2 norm)
M1(ε2 − (x(i)

0 − x̄(i))2, I(i)) ≥ 0, i ∈ [p0]. (for L∞ norm)

For FcDNN2: Suppose the network F has two hidden layers. Now problem
(LipDNN-k) reads:

max
t∈Rp0 , xi∈Rpi , zi∈Rpi

tTAT
1 Diag(z1)AT

2 Diag(z2)ck (5.24)

s.t.

z1 ◦ (z1 − 1) ≤ 0, z1 ◦ (A1x0 + b1) ≥ 0, (z1 − 1) ◦ (A1x0 + b1) ≥ 0,
z2 ◦ (z2 − 1) ≤ 0, z2 ◦ (A2x1 + b2) ≥ 0, (z2 − 1) ◦ (A2x1 + b2) ≥ 0,
x1 ◦ (x1 −A1x0 − b1) = 0, x1 −A1x0 − b1 ≥ 0, x1 ≥ 0,
t2 ≤ 1, ‖x0 − x̄‖ ≤ ε.

Similarly, let ui = Aixi−1 + bi for i = 1, 2. We obtain the Lipschitz constant
estimation problem for DNNs with two hidden layers:

max
t∈Rp0 , xi∈Rpi , zi∈Rpi

tTAT
1 Diag(z1)AT

2 Diag(z2)ck (LipFcDNN2-k)

s.t.

u1 −A1x0 + b1 = 0, u2 −A2x1 + b2 = 0,
z1 ◦ (z1 − 1) ≤ 0, z1 ◦ u1 ≥ 0, (z1 − 1) ◦ u1 ≥ 0,
z2 ◦ (z2 − 1) ≤ 0, z2 ◦ u2 ≥ 0, (z2 − 1) ◦ u2 ≥ 0,
x1 ◦ (x1 − u1) = 0, x1 − u1 ≥ 0, x1 ≥ 0,
t2 ≤ 1, ‖x0 − x̄‖ ≤ ε.

Different from the case of one hidden layer, problem (LipFcDNN2-k) is no longer
a nonconvex QCQP, since the objective in (LipFcDNN2-k) is a degree-3 polynomial
in variable t, z1, z2. Hence Shor’s relaxation is not effective any more. The smallest
order of Lasserre’s relaxation that can be applied to (LipFcDNN2-k) is 2, which
means we need to encode second-order moment matrices. When the number of
neurons in F is large (eg. p1 = p2 = 100), it is untractable for any current SDP
solvers. Fortunately, we may reduce the size of moment matrices by choosing only
some submatrices of the full second-order moment matrices. Precisely, instead of

70CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

considering the dense moment matrix M2(y), we are going to select those subma-
trices of M2(y) that involve variables t(i), u(j)

1 , u
(k)
2 appearing in the objective of

(LipFcDNN2-k). Define, for i ∈ [p0], j ∈ [p1], k ∈ [p2],

Msub
2 (y, {t(i), u(j)

1 , u
(k)
2 }) = Ly

(
1 t(i) u

(j)
1 u

(k)
2

t(i) (t(i))2 t(i)u
(j)
1 u

(k)
2

u
(j)
1 u

(k)
2 t(i)u

(j)
1 u

(k)
2 (u(j)

1 u
(k)
2)2

). (5.25)

If the full moment matrix M2(y) is positive semidefinite, then the submatrices
Msub

2 (y, {t(i), u(j)
1 , u

(k)
2 }) are also positive semidefinite for all i ∈ [p0], j ∈ [p1], k ∈

[p2]. Thus, the constraints Msub
2 (y, {t(i), u(j)

1 , u
(k)
2 }) � 0 are necessary conditions

for M2(y) being positive semidefinite. Replacing the full moment matrix M2(y)
by its submatrices Msub

2 (y, {t(i), u(j)
1 , u

(k)
2 }) and applying Riesz functional to all

the constraints, we obtain a relaxation between Shor’s relaxation and second-order
Lasserre’s relaxation:

sup
y

Ly(tTAT
1 Diag(z1)AT

2 Diag(z2)c) (Sub1-LipFcDNN2-k)

s.t.

Ly(1) = 1, M1(y) � 0,
Msub

2 (y, {t(i), u(j)
1 , u

(k)
2 }) � 0, i ∈ [p0], j ∈ [p1], k ∈ [p2],

Ly(u1 −A1x0 − b1) = 0, Ly(u2 −A2x1 − b2) = 0,
Ly(z1 ◦ (z1 − 1)) = 0, Ly(z1 ◦ u1) ≥ 0, Ly((z1 − 1) ◦ u1) ≥ 0,
Ly(z2 ◦ (z2 − 1)) = 0, Ly(z2 ◦ u2) ≥ 0, Ly((z2 − 1) ◦ u2) ≥ 0,
Ly(x1 ◦ (x1 − u1)) = 0, Ly(x1 − u1) ≥ 0, Ly(x1) ≥ 0,
Ly(1− t2) ≥ 0,
Ly(ε2 − (x0 − x̄)T (x0 − x̄)) ≥ 0, (for L2 norm)
Ly(ε2 − (x(i)

0 − x̄(i))2, I(i)) ≥ 0, i ∈ [p0]. (for L∞ norm)

Moreover, we can strengthen relaxation (Sub1-LipFcDNN2-k) by adding sublevel
structures. Let Γdense be the index set of dense constraints u1 −A1x0 + b1 = 0,
u2 −A2x1 + b2 = 0, and ‖x0 − x̄‖ ≤ ε for L2 norm. Let Γsparse be the index set
of the remaining sparse constraints. Define subsets I(i) = {t(i), x(i)

0 } for i ∈ [p0];
J

(j)
1 = {x(j)

1 , u
(j)
1 }, J

(j)
2 = {z(j)

1 , u
(j)
1 } for j ∈ [p1]; K(k) = {z(k)

2 , u
(k)
2 } for k ∈ [p2].

Set level l = {0|Γdense|,2|Γsparse|} and depth q = 1|Γdense|+|Γsparse|. Replacing the full
moment matrix M2(y) by its submatrices Msub

2 (y, {t(i), u(j)
1 , u

(k)
2 }), and applying

second-order (l,q)-sublevel relaxation w.r.t. subsets I(i), J
(j)
1 , J

(j)
2 ,K(k) to problem

5.2. LIPSCHITZ CONSTANT ESTIMATION 71

(LipFcDNN2-k), we obtain an enhanced relaxation (Sub1-LipFcDNN2-k):

sup
y

Ly(tTAT
1 Diag(z1)AT

2 Diag(z2)ck) (Sub2-LipFcDNN2-k)

s.t.

Ly(1) = 1, M1(y) � 0,
Msub

2 (y, {t(i), u(j)
1 , u

(k)
2 }) � 0, i ∈ [p0], j ∈ [p1], k ∈ [p2],

M2(y, I(i)
1) � 0, M2(y, J (j)

1) � 0, M2(y, J (j)
2) � 0, M2(y,K(k)) � 0,

Ly(u1 −A1x0 − b1) = 0, Ly(u2 −A2x1 − b2) = 0,
M1(z(j)

1 (z(j)
1 − 1)y, J (j)

2) = 0, M1(z(j)
1 u

(j)
1 y, J (j)

2) � 0,
M1((z(j)

1 − 1)u(j)
1 y, J (j)

2) � 0, j ∈ [p1],
M1(z(j)

2 (z(j)
2 − 1)y,K(k)) = 0, M1(z(j)

2 u
(j)
2 y,K(k)) � 0,

M1((z(j)
2 − 1)u(j)

2 y,K(k)) � 0, k ∈ [p2],
M1(x(j)

1 (x(j)
1 − u

(j)
1)y, J (j)

1) = 0, M1((x(j)
1 − u

(j)
1)y, J (j)

1) � 0,
M1(x(j)

1 y, J (j)
1) � 0, j ∈ [p1],

M1((1− (t(i))2)y, I(i)) � 0, i ∈ [p0],
Ly(ε2 − (x0 − x̄)T (x0 − x̄)) ≥ 0, (for L2 norm)
M1(ε2 − (x(i)

0 − x̄(i))2, I(i)) ≥ 0, i ∈ [p0]. (for L∞ norm)

In this way, we add p0p1p2 moment matrices Msub
2 (y, {t(i), u(j)

1 , u
(k)
2 }) of size 3, and

p0p1p2+p1p2 moment variables Ly(t(i)u(j)
1 u

(k)
2), Ly((u(j)

1)2(u(k)
2)2). A variant of this

technique is to enlarge the size of the moment matrices but in the meantime reduce
the number of moment matrices. For instance, consider the following submatrices
of the second-order moment matrix M2(y): for k ∈ [p2],

Msub
2 (y, {t,u1, u

(k)
2 }) = Ly

(
1 tT uT1 u

(k)
2

t ttT tuT1 u
(k)
2

u1u
(k)
2 u1tTu(k)

2 u1uT1 (u(k)
2)2

). (5.26)

We still have all the moments of the cubic terms t(i)u(j)
1 u

(k)
2 from those subma-

trices Msub
2 (y, {t,u1, u

(k)
2 }). However, in this case, we only add p2 moment matrices

of size 1 + p0 + p1, and p0p1p2 + p2
1p2 new variables Ly(u1tTu(k)

2), Ly(u1uT1 (u(k)
2)2).

For FcMON: Suppose F is a fully-connected MON. For L2 and L∞ norm,
the Lipschitz constant estimation problem (LipMON) is a nonconvex QCQP, we

72CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

directly apply Shor’s relaxation to it and obtain:

max
y

Ly(tTBTh) (SHOR-LipFcMON)

s.t.

Ly(1) = 1, M1(y) � 0,
Ly(1−wTv) ≥ 0,
Ly(1− tT t) ≥ 0, Ly(1−wTw) ≥ 0, (for L2 norm)
Ly(1− (t(i))2) ≥ 0, i ∈ [p0], Ly(1− (w(k))2) ≥ 0, k ∈ [K], (for L2 norm)
Ly(r−ATh−CTv) = 0, Ly(h−Diag(s) · r) = 0,
Ly(s ◦ (s− 1)) ≤ 0, Ly(s ◦ (Ax1 + Bx0 + b)) ≥ 0,
Ly((s− 1) ◦ (Ax1 + Bx0 + b)) ≥ 0,
Ly(x1 ◦ (x1 −Ax1 −Bx0 − b)) = 0,
Ly(x1 −Ax1 −Bx0 − b) ≥ 0, Ly(x1) ≥ 0,
Ly(ε2 − (x0 − x̄)T (x0 − x̄)) ≥ 0, (for L2 norm)
Ly(ε2 − (x(i)

0 − x̄(i))2, I(i)) ≥ 0, i ∈ [p0]. (for L∞ norm)

5.2.3 Experiments

In this section, we provide numerical results for the global and local Lipschitz con-
stants of random FcDNN1 and FcDNN2 with various sparsities. We also consider
a real pre-trained FcDNN1 and FcMON. For DNNs we focus on L∞ norm, and
for MONs we consider both L2 and L∞ norms. Let us first take an overview of the
methods with which we compare our results.
• SHOR: Shor’s relaxation applied to FcDNN1 by (SHOR-LipFcDNN1-k)
and FcMON by (SHOR-LipFcMON);

• Sub-1: first-order sublevel relaxation applied to FcDNN2 by (Sub1-LipFcDNN2-k);

• Sub-2: second-order sublevel relaxation applied to FcDNN1 by (Sub2-LipFcDNN1-k)
and FcDNN2 by (Sub2-LipFcDNN2-k);

• LipOpt-d: LP-based relaxation by [Latorre et al. 2020] with degree d;

• LBS: lower bound obtained by sampling 50000 random points.
The reason why we list LBS here is because LBS provides valid lower bounds on
the Lipschitz constant. Therefore all methods should provide results greater than
LBS, a basic necessary condition of consistency.

As discussed before, if we want to estimate the global Lipschitz constant of a
neural network F : Ω → RK , we need the input space Ω to be the whole space.
In consideration of numerical issues, we set Ω to be the ball of radius 10 around
the origin. For local Lipschitz constant, we set by default the radius of input ball
as ε = 0.1. In both cases, we compute the Lipschitz constant with respect to the
first label (k = 1). We use the (Python) code provided by [Latorre et al. 2020]2 to

2https://openreview.net/forum?id=rJe4_xSFDB.

https://openreview.net/forum?id=rJe4_xSFDB

5.2. LIPSCHITZ CONSTANT ESTIMATION 73

execute the experiments for LipOpt-d with Gurobi solver. For Sub-2 and SHOR,
we use the YALMIP toolbox (MATLAB) [Löfberg 2004] with MOSEK as a backend
to calculate the Lipschitz constants for random networks. For trained network, we
implement our algorithm on Julia [Bezanson et al. 2017] with MOSEK optimizer
to accelerate the computation. All experiments are run on a personal laptop with
a 4-core i5-6300HQ 2.3GHz CPU and 8GB of RAM.

Remark. The crossover option3 in Gurobi solver is activated by default, and it is
used to transform the interior solution produced by barrier into a basic solution. We
deactivate this option in our experiments since this computation is unnecessary and
takes a lot of time. Throughout this paper, running time is referred to the solving
time taken by the LP/SDP solver (Gurobi/Mosek) and Out of Memory (OfM)
means running out of memory during building up the LP/SDP model.

Random FcDNN1: We first compare the upper bounds for (80, 80) networks,
whose weights A1 ∈ R80×80 and biases b1 ∈ R80 are randomly generated. We define
a certain sparsity structure of those DNNs as proposed by [Latorre et al. 2020]. For
illustration purpose, consider a neural network F with one single hidden layer, and
4 nodes in each layer. The network F is said to have sparsity 2 if its weight matrix
A ∈ R4×4 is symmetric with diagonal blocks of size at most 2× 2:

∗ ∗ 0 0
∗ ∗ ∗ 0
0 ∗ ∗ ∗
0 0 ∗ ∗

 . (5.27)

Larger sparsity values refer to symmetric matrices with band structure of a
given size. We use the codes provided by [Latorre et al. 2020] to generate networks
with various sparsities. For each fixed sparsity, we generate 10 different random
networks, and apply all the methods to them repeatedly. Then we compute the
average upper bound and average running time of those 10 experiments.

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

Global Local

20 40 60 80 20 40 60 80

1

2

3

4

Sparsity

Li
ps

ch
itz

 C
on

st
an

t Algorithm

●

●

●

●

●

Sub−2

SHOR

LipOpt−3

LipOpt−4

LBS

(a) Upper bounds

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

Global Local

20 40 60 80 20 40 60 80

1

10

100

1000

Sparsity

R
un

ni
ng

 T
im

e Algorithm

●

●

●

●

Sub−2

SHOR

LipOpt−3

LipOpt−4

(b) Computation time

Figure 5.3: Lipschitz constant upper bounds and solving time for (80, 80) networks.

We generate random networks of size (80, 80) with sparsity 10, 20, 30, 40, 50,
60, 70, 80. In the meantime, and calculate median and quartiles over 10 random

3https://www.gurobi.com/documentation/9.0/refman/crossover.html

https://www.gurobi.com/documentation/9.0/refman/crossover.html

74CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

networks draws. Figure 5.3 displays a comparison of average upper bounds of global
and local Lipschitz constants, and average solving time with respect to L∞ norm
obtained by SHOR, Sub-2, LipOpt-3 and LipOpt-4. For global bounds, we see
from Figure 5.3a that when the sparsity of the network is small (10, 20, etc.), the
LP-based method LipOpt-3 is slightly better than the SDP-based method Sub-
2. As the sparsity increases, Sub-2 provides tighter bounds. Figure 5.3b shows
that LipOpt-3 is more efficient than Sub-2 only for sparsity 10. LipOpt-4 shows
great potential on the results. However, it is not applicable when the sparsity
increases, due to the high computational burden. When the networks are dense
or nearly dense, our method not only takes much less time, but also gives tighter
upper bounds. For global Lipschitz constant estimation, SHOR and Sub-2 give
nearly the same upper bounds. However, in the local case, Sub-2 provides strictly
tighter bounds than SHOR. In both global and local cases, SHOR has smaller
computational time than Sub-2.

Random FcDNN2: We generate 2-hidden layer random networks with 10, 20,
30, 40 neurons in the input layer and first hidden layer, we fix the number of neurons
in the second hidden layer to 10. For size (10, 10, 10), we consider sparsity 4, 8, 12,
16, 20; for size (20, 20, 10), we consider sparsity 4, 8, 12, 16, 20, 24, 28, 32, 36, 40; for
size (30, 30, 10), we consider sparsity 10, 20, 30, 40, 50, 60; for size (40, 40, 10), we
consider sparsity 10, 20, 30, 40, 50, 60, 70, 80. In the meantime, we display median
and quartiles over 10 random networks draws. Figure 5.4 displays the average upper
bounds of global Lipschitz constants and running time of different algorithms for
2-hidden layer random networks of different sizes and sparsities. We see from Figure
5.4a that the SDP-based method Sub-2 performs worse than the LP-based method
LipOpt-3 for networks of size (10, 10, 10). However, as the size and the sparsity
of the network increase, the gap between Sub-2 and LipOpt-3 becomes smaller
(and Sub-2 performs even better). For networks of size (20, 20, 10), (30, 30, 10) and
(40, 40, 10), with sparsity greater than 10, Sub-2 provides strictly tighter bounds
than LipOpt-3, with the price of higher computational time.

Trained FcDNN1 for MNIST: We use the same MNIST classifier SDP-NN
described in [Raghunathan et al. 2018a]4. The network is of size (784, 500) for 10-
classification, we calculate the upper bounds with respect to label 2 (k = 3). In
Table 5.2, we see that the LipOpt-3 algorithm runs out of memory when applied
to the real network SDP-NN to compute the global Lipschitz bound. In contrast,
SHOR and Sub-2 still work and moreover, Sub-2 provides tighter upper bounds
than SHOR in both global and local cases. As a trade-off, the running time of
Sub-2 is around 5 times longer than that of SHOR.

4https://worksheets.codalab.org/worksheets/0xa21e794020bb474d8804ec7bc0543f52/

https://worksheets.codalab.org/worksheets/0xa21e794020bb474d8804ec7bc0543f52/

5.2. LIPSCHITZ CONSTANT ESTIMATION 75

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

(30,30,10) Global (40,40,10) Global

(10,10,10) Global (20,20,10) Global

20 40 60 20 40 60 80

5 10 15 20 10 20 30 40
0.0

0.5

1.0

1.5

2.0

0

1

2

3

4

0.25

0.50

0.75

1.00

1.25

0

1

2

3

Sparsity

Li
ps

ch
itz

 c
on

st
an

t Algorithm

●

●

●

●

●

Sub−2

Sub−1

LipOpt−3

LipOpt−4

LBS

(a)

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ● ●●

●

●

(30,30,10) Global (40,40,10) Global

(10,10,10) Global (20,20,10) Global

20 40 60 20 40 60 80

5 10 15 20 10 20 30 40

0.1

1.0

10.0

100.0

1

10

100

1000

0.03

0.10

0.30

1.00

3.00

1

10

100

1000

Sparsity

R
un

ni
ng

 T
im

e Algorithm

●

●

●

●

Sub−2

Sub−1

LipOpt−3

LipOpt−4

(b)

Figure 5.4: Global Lipschitz constant for 2-hidden layer networks.

Table 5.2: Upper bounds of Lipschitz constant and solving time on SDP-NN.

Global Local

Sub-2 SHOR LipOpt-3 LBS Sub-2 SHOR LipOpt-3 LBS

Bound 14.56 17.85 OfM 9.69 12.70 16.07 OfM 8.20
Time 12246 2869 OfM - 20596 4217 OfM -

Trained FcMON for MNIST: The MON we use consists of a fully-connected
hidden layer with 87 neurons and we set its monotonicity factor m to be 20. The
training is based on the normalized MNIST database and all training hyperparam-
eters are set to be the same as in [Winston & Kolter 2020, Table D1]5. We use
the same normalization setting on each test example with mean µ = 0.1307 and
standard deviation σ = 0.3081, which means that each input is an image of size
28× 28 with entries varying from −0.42 to 2.82. For every perturbation ε, we also
take the normalization into account, i.e., we use the normalized perturbation ε/σ
for each input. We compare the upper bounds of Lipschitz constants computed by
(SHOR-LipFcMON) with the ones proposed by [Pabbaraju et al. 2021]. Notice that
the upper bounds in [Pabbaraju et al. 2021] is dedicated to estimate the Lipschitz
constant of function x1(x0), not F (x0). Denote by Pab2

x1 the upper bound of the
Lipschitz constant of x1 w.r.t. the L2 norm, which is given by Pab2

x1 = |||B|||2/m ac-
cording to [Pabbaraju et al. 2021], where B is the parameter of the network and m
is the monotonicity factor. We can then compute the upper bound w.r.t. L∞ norm
by Pab∞x1 = √p0 ·Pab2

x1 , where p0 is the input dimension. The upper bound of Lip-
schitz constant of F is computed via the upper bound of x1: PabqF = |||C|||q ·Pab

q
x1

for q = 2,∞. Denote similarly by SHORq
F the upper bounds of Lipschitz constants

of F provided by (SHOR-LipFcMON) w.r.t. Lq norm, we are able to compare the

5The training code (in Python) is available at https://github.com/locuslab/monotone_op_
net.

https://github.com/locuslab/monotone_op_net
https://github.com/locuslab/monotone_op_net

76CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

tightness of upper bounds given by the two methods.

Table 5.3: Upper bounds of Lipschitz constant and solving time for L2, L∞ norm.

q = 2 q =∞
bound time (s) bound time (s)

Pabq
F 4.80 - 824.14 -

SHORq
F 4.67 1756.58 108.84 1898.65

From Table 5.3, we see that Shor’s relaxation provides consistently tighter upper
bounds than the ones in [Pabbaraju et al. 2021]. Especially for L∞ norm, the upper
bound computed by equation |||C|||∞ ·Pab

∞
x1 is rather crude compared to the bound

obtained directly by (SHOR-LipFcMON). As a trade-off, we can obtain results
immediately by PabqF , while suffering half an hour by Shor’s relaxation.

5.3 Abstract Domain Propagation

The approach we are concerned here is about abstract interpretation, which enables
one to prove program properties on a set of inputs without actually running the
program. Formally, given a function f : Rm → Rn, a set of inputs X ⊆ Rm, and a
property C ⊆ Rn, the goal is to determine whether the property holds, i.e., whether
f(x) ∈ C for all x ∈ X . Usually the set X can be very large or infinite, so that
we cannot enumerate all points in X to verify whether f(x) ∈ C. Instead, abstract
interpretation overapproximates sets defined by abstract domains and verifies the
properties on the resulting abstract domains. Since abstract interpretation employs
overapproximation, it is sound, but is not complete, i.e., may fail to prove the
properties when they hold.

In this section, we focus on overapproximating the output region of a neural net-
work F by an abstract domain under ReLU functions. The most popular abstract
domains are: box, zonotope, polyhedra and ellipsoid. Different abstract domains
have their advantages but also their drawbacks. For example, to encode boxes is
significantly faster to encode polyhedra, while polyhedra are much more precise
than boxes. It is easy to describe ellipsoid and compute its volume, despite that
one needs to calculate the determinant of a symmetric matrix. Related works in-
cludes robustness verification by abstract interpretation [Gehr et al. 2018], safety
verification and robustness analysis of neural networks by SDP and quadratic con-
straints [Fazlyab et al. 2020], reachability analysis of closed-loop dynamic systems
with neural network controllers by SDP [Hu et al. 2020], and reachability analysis
combining ellipsoids and zonotopes by [Kousik et al. 2022].

5.3.1 Problem setting

Consider neural network F : Ω → RK with Ω ∈ Rp0 , activated by ReLU func-
tion. We assume that the input region Ω is one of the following abstract domains:

5.3. ABSTRACT DOMAIN PROPAGATION 77

box, zonotope, polyhedron adn ellipsoid. Note that all these abstract domains are
semialgebraic:

• Box: a box Bn ⊆ Rn has form {x ∈ Rn : ai ≤ xi ≤ bi} with ai ≤ bi for all
i ∈ [n];

• Zonotope: a zonotope Z ⊆ Rn has form {z ∈ Rn : z = Ax+b,x ∈ Bm} where
A ∈ Rn×m,b ∈ Rn. In other words, a zonotope is an affine transformation
of a box;

• Polyhedron: a polyhedron P ⊆ Rn has form {x ∈ Rn : Ax ≤ b};

• Ellipsoid: an ellipsoid E ⊆ Rn has form

E = {x ∈ Rn : ‖Qx + q‖2 ≤ 1}, (5.28)

where Q ∈ Rn×n and q ∈ Rn. Or equivalently,

E = {x ∈ Rn : −xTQx + qTx + c ≥ 0}, (5.29)

where Q ∈ Sn+,q ∈ Rn, c ∈ R, and Sn+ is the cone of positive semidefinite

matrices of size n× n, with an additional constraint
(

Q q/2
qT /2 1− c

)
� 0.

Denote by F (Ω) ⊆ RK the image of Ω under network F . The goal of this section
is to find a proper abstract domain that overapproximate the set F (Ω). Let D be
an abstract domain such that F (Ω) ⊆ D, we want that the volume of D is as small
as possible, which is indeed to solve an optimization problem:

min
D
{Vol(D) : F (Ω) ⊆ D}. (5.30)

Throughout the following discussion, we are going to focus on the case where
Ω is an Lp ball (p = 2,∞) and D is an ellipsoid. Precisely, suppose the input
region Ω = B(x̄, ε, ‖ · ‖p) is an Lp ball for a given input x̄ ∈ Rp0 and perturbation
ε > 0, and D ⊆ RK is an ellipsoid either parameterized by Q ∈ RK×K ,q ∈ RK
and equation (5.28), or by Q ∈ SK+ ,q ∈ RK , c ∈ R and equation (5.29). We first
consider the characterization of (5.28). Then if F (Ω) ⊆ D, for all x0 ∈ Rp0 , we
have −F (x0)TQF (x0) + qTF (x0) + c ≥ 0. Moreover, the volume of ellipsoid D is
inversely proportional to the determinant of matrix Q. In other words, to minimize
Vol(D) is equivalent to maximize det(Q). Therefore, in this case, the ellipsoid
propagation problem (5.30) can be formulated as

max
Q∈SK , q∈RK , c∈R

det(Q) (Ellip)

s.t.

−F (x0)TQF (x0) + qTF (x0) + c ≥ 0, ∀x0 ∈ B(x̄, ε, ‖ · ‖p), Q q/2

qT /2 1− c

 � 0.

78CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

For DNNs: Suppose F : Ω→ RK is a fully-connected DNN with ReLU activation
function, and let W = (A1,b1; . . . ; AL,bL; C) be its parameters. Then for input
x0 ∈ Rp0 , F (x0) = CxL where xi = ReLU(Aixi−1 + bi). Let Odnn ⊆ RpL be the
output region of xL for input x0 ∈ B(x̄, ε, ‖ · ‖p), i.e.,

Odnn := {xL ∈ RpL : xi = ReLU(Aixi−1 + bi), i ∈ [L], x0 ∈ B(x̄, ε, ‖ · ‖p)}.

Then the ellipsoid propagation problem (Ellip) for DNNs reads

max
Q∈SK , q∈RK , c∈R

det(Q) (EllipDNN)

s.t.

−xTLCTQCxL + qTCxL + c ≥ 0, ∀xL ∈ Odnn, Q q/2

qT /2 1− c

 � 0.

For MONs: Let F : Ω → RK be a fully-connected MON activated by ReLU
function, and let W = (A,B,b; C) be the parameters of F . For x0 ∈ Rp0 , we have
F (x0) = Cx1 where x1 = ReLU(Ax1 + Bx0 + b). Let Omon ⊆ Rp1 be the output
region of x1 for input x0 ∈ B(x̄, ε, ‖ · ‖p), i.e.,

Omon := {x1 ∈ Rp1 : x1 = ReLU(Ax1 + Bx0 + b), x0 ∈ B(x̄, ε, ‖ · ‖p)}.

Then the ellipsoid propagation problem (Ellip) for MONs is formulated as

max
Q∈SK , q∈RK , c∈R

det(Q) (EllipMON)

s.t.

−xT1 CTQCx1 + qTCx1 + c ≥ 0, ∀x1 ∈ Omon, Q q/2

qT /2 1− c

 � 0.

5.3.2 Algorithms

By semialgebraicity of ReLU function described in (5.1), the output region Odnn
and Omon are both semialgebraic. Precisely, for DNNs,

Odnn ={xL ∈ RpL : xi ◦ (xi −Aixi−1 − bi) = 0,
xi −Aixi−1 − bi ≥ 0,xi ≥ 0, i ∈ [L], ‖x0 − x̄‖p ≤ ε}, (5.31)

and for MONs,

Omon ={x1 ∈ Rp1 : x1 ◦ (x1 −Ax1 −Bx0 − b) = 0,
x1 −Ax1 −Bx0 − b ≥ 0, x1 ≥ 0, ‖x0 − x̄‖p ≤ ε}. (5.32)

Note that in problems (EllipDNN) and (EllipMON), we have nonnegative (el-
lipsoidal) constraints with variables lying in semialgebraic sets Odnn and Omon.

5.3. ABSTRACT DOMAIN PROPAGATION 79

Applying the similar idea presented in Section 3.2.2, one can replace the nonneg-
ative constraints by WSOSs, which results in relaxations of the original problems.
Precisely, recall that the SOS cone Σ[x] is contained in the nonnegative cone P[x].
The constraint g(xL) := −xTLCTQCxL + qTCxL + c ≥ 0 indicates that g ∈ P[xL].
By enforcing g to be a WSOS w.r.t. semialgebraic sets Odnn and Omon, we have
g ∈ Σ[xL] ⊆ P[xL]. The Lasserre’s hierarchy, sublevel hierarchy can be then applied
to polynomial g. We discuss in details the modeling and reformulation for DNNs
and MONs respectively.

For DNNs Suppose the network F is a fully-connected DNN. Denote by x0:L the
union of variables xi for 0 ≤ i ≤ L, and x(j:k)

i the union of variables x(j)
i , x

(j+1)
i , . . . , x

(k)
i

for j ≤ k. Replace the nonnegative constraint −xTLCTQCxL + qTCxL + c ≥ 0 in
problem (EllipDNN) by WSOS w.r.t. semialgebraic set Odnn, we obtain the follow-
ing d-th order SOS problem: for d ≥ 1,

max
Q∈SK , q∈RK , c∈R

det(Q) (SOSd-EllipDNN)

s.t.

−xTLCTQCxL + qTCxL + c = σ(0)(x0:L)

+
L∑
i=1

pi∑
j=1

(
τi,j(x0:L) · x(j)

i (x(j)
i −A(j,:)

i xi−1 − b(j)i)

+σ(1)
i,j (x0:L) · (x(j)

i −A(j,:)
i xi−1 − b(j)i) + σ

(2)
i,j (x0:L) · x(j)

i

)
+σ(3)(x0:L) · (ε2 − (x0 − x̄)T (x0 − x̄)) (L2 norm)

+
p0∑
j=1

σ
(3)
i (x0:L) · (ε2 − (x(j)

0 − x̄
(j))2) (L∞ norm),

∀xi ∈ Rpi , 0 ≤ i ≤ L, Q q/2
qT /2 1− c

 � 0.

where τi,j ∈ R2d−2[x0:L], σ(0) ∈ Σd[x0:L], σ(1)
i,j , σ

(2)
i,j , σ

(3), σ
(3)
i ∈ Σd−1[x0:L] for j ∈

[pi], i ∈ [L]. The SOS problem (SOSd-EllipDNN) is dense and thus is not of much
interest. Now we are going to explore sparsity patterns and design sublevel struc-
tures to employ sublevel hierarchy to (SOSd-EllipDNN).

Construct subsets Ii,j,k according to the cyclic heuristic H2 as follows: fix a
level l ≥ 0, for j ∈ [pi], k ∈ [pi−1 − l + 1], and i ∈ [L], define

Ii,j,k := {x(k:k+l−1)
i−1 ;x(j)

i }. (5.33)

For each i and j, the pi − l+ 1 many subsets Ii,j,k form a finite (cyclic) covering of
the variables {xi−1;x(j)

i }, whose corresponding SOS polynomials serve as weights
of the sublevel relaxation for each constraint. Note that |Ii,j,k| = l+ 1 for all i, j, k.

80CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

Let l = (l + 1) · 1N and q = [qi]Li=0, where

N =

1 + 3

L∑
i=1

pi, for L2 norm;

p0 + 3
L∑
i=1

pi, for L∞ norm,

and

q0 =

p0 − l + 1, for L2 norm;
(p0 − l + 1) · 1p1 , for L∞ norm,

qi = (pi−1 − l + 1) · 1pi , i ∈ [L].

With the subsets defined in (5.33), the d-th order (l,q)-sublevel relaxation w.r.t.
subsets Ii,j,k applied to problem (EllipDNN) reads: for d ≥ 1,

max
Q∈SK , q∈RK , c∈R

det(Q) (Subd-EllipDNN)

s.t.

−xTLCTQCxL + qTCxL + c = σ(0)(x0:L)

+
L∑
i=1

pi∑
j=1

pi−l+1∑
k=1

(
σ

(0)
i,j,k(x

(k:k+l−1)
i−1 ;x(j)

i)+

+τi,j,k(x
(k:k+l−1)
i−1 ;x(j)

i) · x(j)
i (x(j)

i −A(j,:)
i xi−1 − b(j)i)

+σ(1)
i,j,k(x

(k:k+l−1)
i−1 ;x(j)

i) · (x(j)
i −A(j,:)

i xi−1 − b(j)i)

+σ(2)
i,j,k(x

(k:k+l−1)
i−1 ;x(j)

i) · x(j)
i

)
+
p0−l+1∑
k=1

σ
(3)
k (x(k:k+l−1)

0 ;x(1)
1) · (ε2 − (x0 − x̄)T (x0 − x̄)) (L2 norm)

+
p0∑
j=1

p0−l+1∑
k=1

σ
(3)
i,k (x(k:k+l−1)

0 ;x(1)
1) · (ε2 − (x(j)

0 − x̄
(j))2) (L∞ norm),

∀xi ∈ Rpi , 0 ≤ i ≤ L, Q q/2
qT /2 1− c

 � 0.

where τi,j,k ∈ R2d−2[x(k:k+l−1)
i−1 ;x(j)

i], σ(0) ∈ Σd−1[x0:L], σ(0)
i,j,k ∈ Σd[x

(k:k+l−1)
i−1 ;x(j)

i],
σ

(1)
i,j,k, σ

(2)
i,j,k, σ

(3)
k , σ

(3)
i,k ∈ Σd−1[x(k:k+l−1)

i−1 ;x(j)
i] for j ∈ [pi], k ∈ [pi − l + 1], i ∈ [L].

For MONs: Suppose now the network F is a fully-connected MON. We use
formulation (5.29) instead of (5.28) to characterize an ellipsoid. Similar with the
case for DNNs in the SOS problem (SOSd-EllipDNN), we consider the first-order
SOS relaxation applied to problem (EllipMON), which results in the following SOS

5.3. ABSTRACT DOMAIN PROPAGATION 81

problem:

max
Q∈SK , q∈RK

det(Q) (SOS1-EllipMON)

s.t.

1− ‖QCx1 + q‖22 = σ(0)(x0:1)

+
p1∑
j=1

(
τj · x(j)

1 (x(j)
1 −A(j,:)x1 −B(j,:)x0 − b(j))

+σ(1)
j · (x

(j)
1 −A(j,:)x1 −B(j,:)x0 − b(j)) + σ

(2)
j · x

(j)
1

)
+σ(3) · (ε2 − (x0 − x̄)T (x0 − x̄)) (L2 norm)

+
p0∑
j=1

σ
(3)
j · (ε

2 − (x(j)
0 − x̄

(j))2) (L∞ norm),

∀xi ∈ Rpi , 0 ≤ i ≤ L.

where τj ∈ R, σ(0) ∈ Σ1[x0:1], σ(1)
j , σ

(2)
j , σ

(3)
j , σ(3) ∈ R+.

Problem (SOS1-EllipMON) provides an ellipsoid feasible for (EllipMON), i.e., an
ellipsoid which contains F (Ω). In practice, the determinant is replaced by a log-det
objective because there exist efficient solver dedicated to optimize such objectives
on SDP constraints. In this thesis, we only consider L2, L∞ norm, and first-order
relaxation (d = 1). In this case, problem (EllipMON) is in fact equivalent to a
problem with log-det objective and SDP constraints. Indeed, the SOS constraint in
problem (SOS1-EllipMON) can be written as

σ(0)(x0:1) =−
(
‖QCx1 + q‖22 − 1 (=: f1(x0:1))

+
p1∑
j=1

τj · x(j)
1 (x(j)

1 −A(j,:)x1 −B(j,:)x0 − b(j)) (=: f2(x0:1))

+
p1∑
j=1

σ
(1)
j · (x

(j)
1 −A(j,:)x1 −B(j,:)x0 − b(j)) (=: f3(x0:1))

+
p1∑
j=1

σ
(2)
j · x

(j)
1 (=: f4(x0:1))

+ σ(3) · (ε2 − (x0 − x̄)T (x0 − x̄)) (L2 norm) (=: f5(x0:1))

+
p0∑
j=1

σ
(3)
j · (ε

2 − (x(j)
0 − x̄

(j))2) (L∞ norm) (=: f5(x0:1))
)

= −
5∑
i=1

fi(x0:1) =: −f(x0:1).

Denote by Mi the Gram matrix of polynomial fi(x0:1) for i ∈ [5] and M the
Gram matrix of polynomial f(x0:1), with basis [xT0 ,xT1 , 1]. Then we have explicitly

82CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

M =
∑5
i=1 Mi, where Mi has the following forms

M1 =

0p0×p0 0p0×p1 0p0×1
0p1×p0 CTQ2C CTQq
01×p0 qTQC qTq − 1

 ,

M2 =

 0p0×p0 −1
2BT ·Diag(τ1, . . . , τp1) 0p0×1

−1
2 Diag(τ1, . . . , τp1) ·B Diag(τ1, . . . , τp1) · (Ip1 −A) −1

2 Diag(τ1, . . . , τp1) · b
01×p0 −1

2bT ·Diag(τ1, . . . , τp1) 0

 ,

M3 =

 0p0×p0 0p0×p1 −1
2BT · σ(1)

0p1×p0 0p1×p1
1
2(Ip1 −AT) · σ(1)

−1
2(σ(1))T ·B 1

2(σ(1))T · (Ip1 −A) −(σ(1))T · b

 ,

M4 =

0p0×p0 0p0×p1 0p0×1
0p1×p0 0p1×p1

1
2σ

(2)

01×p0
1
2(σ(2))T 0

 ,

M5 =

σ(3)

−Ip0 0p0×p1 x0

0p1×p0 0p1×p1 0p1×1

xT0 01×p1 ε2 − xT0 x0

 , for L2-norm;

−Diag(σ(3)

1 , . . . , σ
(3)
p0) 0p0×p1 Diag(σ(3)

1 , . . . , σ
(3)
p0) · x0

0p1×p0 0p1×p1 0p1×1

xT0 ·Diag(σ(3)
1 , . . . , σ

(3)
p0) 01×p1 (σ(3))T (ε2 − x2

0)

 , for L∞-norm.

Since σ0(x0:1) is an SOS polynomial of degree at most 2, its Gram matrix must
be positive semidefinite, i.e., −M � 0. The above discussion indicates the following
lemma:

Lemma 1. Let F : Ω→ RK be a fully-connected MON activated by ReLU function.
For p = 2 or p = ∞, problem (SOS1-EllipMON) is equivalent to an optimization
problem with SDP constraints:

max
Q∈SK , q∈RK , σ

(1)
j ,σ

(2)
j ,σ

(3)
j ,σ(3)∈R+, τj∈R

{det(Q) : −M � 0}, (SDP-EllipMON)

where M ∈ S(p0+p1+1)×(p0+p1+1) is a symmetric matrix parametrized by decision
variables (Q,q), coefficients (τj , σ(1)

j , σ
(2)
j , σ

(3)
j , σ(3)), and parameters of the network

(A,B,b; C).

Proof : We have already shown that M =
∑5
i=1 Mi and −M � 0. The only

problem comes from the fact that matrix M1 contains quadratic terms Q2. In fact,
according to [Fazlyab et al. 2019a, Lemma 5], the constraint −M � 0 is equivalent
to an SDP constraint using Schur complements, which concludes the proof. �

Remark. If we add redundant constraints (5.22), the corresponding Gram matrix

5.3. ABSTRACT DOMAIN PROPAGATION 83

of the SOS combination of these constraints with basis [xT0 ,xT1 , 1] has form

M6 =

 B A b
0p1×p0 Ip1 0p1×1
01×p0 01×p1 1

T 0p0×p0 T 0p0×1

T −2T 0p1×1
01×p0 01×p1 0

 B A b

0p1×p0 Ip1 0p1×1
01×p0 01×p1 1

 ,
where T =

∑p1−1
i=1

∑p1
j=i+1 λij(ei − ej)(ei − ej)T with λij ≥ 0 for all i < j, and

{ei}p1
i=1 ⊆ Rp1 is the canonical basis of Rp1 . In this case, Lemma 1 is still valid with

M =
∑6
i=1 Mi.

5.3.3 Experiments

In this section, we only show the numerical results of sublevel relaxation applied
to FcDNN1 and FcDNN2, obtained by (Subd-EllipDNN) for d = 2. The ellipsoid
propagation for MONs will be discussed in Section 5.4.3 together with Lipschitz
constant estimation problem and robustness verification problem. Let F : Ω→ RK
be a fully-connected DNN of size (p0, p1, . . . , pL). For illustration purpose, we set
K = 2 so that we are able to draw the graph of the overapproximation ellipsoid
on the plane. Based on the discussion in Section 5.3.2, we consider the following
approaches for ellipsoid propagation of F :

• Dense-d: d-th order SOS relaxation by (SOSd-EllipDNN) for d = 1, 2;

• Sub-2: second-order sublevel relaxation by (Subd-EllipDNN) for d = 2.

All the networks are generated randomly. We implement the codes in Julia
with CVX [Grant & Boyd 2014] package, and use Mosek as a backend to solve the
targeted optimization problems (with log-det objective and SDP constraints). All
experiments are run on a personal laptop with a 4-core i5-6300HQ 2.3GHz CPU
and 8GB of RAM.

(a) (20, 2) network (b) (20, 20, 2) network

Figure 5.5: Ellipsoid propagation of (20, 2) and (20, 20, 2) networks.

In Figure 5.5, the blue point cloud is the output region of the input region (unit
ball in Rp0) under neural network F . The red curve is the overapproximation el-
lipsoid given by different algorithms. We see that, for network of size (20, 2), the

84CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

second-order sublevel relaxation of level 1, namely Sub-2, already provides overap-
proximation as good as the dense second-order relaxation Dense-2. However, for
both networks, the dense first-order relaxation Dense-1 is far away precise enough
compared to the second-order relaxations. Moreover, Table 5.4 shows that Sub-2
not only provides precise approximations, but also suffers much less computational
burden compared to Dense-2. For network of size (20, 20, 2), the second order
dense relaxation Dense-2 is out of memory while the sublevel relaxations provide
valid results, which is better than the results given by Dense-1, in modest time.

Table 5.4: Ellipsoid propagation of (20, 2) and (20, 20, 2) networks.

(20, 2) network (20, 20, 2) network

Dense-1 Dense-2 Sub-2 Dense-1 Dense-2 Sub-2
level 1 level 2 level 1 level 2 level 3

Objective 0.48 0.62 0.60 0.61 0.07 OfM 0.18 0.20 0.21
Time 0.06 216.39 5.96 8.15 0.37 OfM 103.93 151.53 204.59

5.4 Robustness Verification

Even with high test accuracy, DNNs are very sensitive to tiny input perturba-
tions, see e.g. [Szegedy et al. 2014, Goodfellow et al. 2015], hence become cru-
cial for evaluating the safety of a neural network. Robustness to input pertur-
bation has been investigated in many different works with various techniques,
including SDP relaxation by [Raghunathan et al. 2018b], fast first-order SDP al-
gorithm by [Dathathri et al. 2020], abstract interpretation by [Gehr et al. 2018],
multi-neuron convex relaxations by [Müller et al. 2022], GPU-based method by
[Müller et al. 2021a] which can scale to large networks with one million neurons
and 34 layers, scalable quantitative verification framework by [Baluta et al. 2021],
SMT solver by [Katz et al. 2017], analytical certification with Fast-lin, Fast-lip by
[Weng et al. 2018a], CROWN by [Zhang et al. 2018] and their extension to con-
volutional neural networks with CNN-Cert by [Boopathy et al. 2019]. All these
methods are restricted to DNNs or CNNs and do not directly apply to MONs.

There are less works related to the application of robustness verification to
MONs. The robustness verifier proposed by [Müller et al. 2021b] is a zonotope-
based scalable and precise method, which can be regarded as an extension of AI2
[Gehr et al. 2018] to MONs. [Wei & Kolter 2022] proposed an interval bound prop-
agation (IBP) method to certify robustness of MONs. The IBP algorithm for a typ-
ical MON is usually unstable, i.e., the related fixed point equation is not guaranteed
to have a solution. By modifying and adding additional constraints to the layers
of a MON, the authors propose a special type of MONs, called IBP-MON, with
a guaranteed unique fixed point with provable interval bounds on the fixed point
value. Based on IBP, [Li et al. 2022] also proposed a robust training method for
DEQs, called CerDEQ, which can achieve state-of-the-art performance compared
with models using regular convolution and linear layers on l∞ tasks with ε = 8/255.

5.4. ROBUSTNESS VERIFICATION 85

5.4.1 Problem setting

We are now going to formally describe the certification problem in terms of mathe-
matical language. Consider a neural network F for classification with ReLU activa-
tion function. Then F is an application from the input space Ω ⊆ Rp0 to the output
space RK , where p0 is the dimension of input and K is the number of labels. For
a given input x̄ ∈ Rp0 , we want to study the robustness of network F with respect
to input x̄. Denote by ȳ the prediction of x̄, i.e., ȳ = arg maxi F (x)i. Let ‖ · ‖ be a
norm on Rp0 and B(x̄, ε, ‖·‖) the ball centered at x̄ with radius ε > 0 for norm ‖·‖,
i.e., B(x̄, ε, ‖ · ‖) := {x ∈ Rp0 : ‖x− x̄‖ ≤ ε}. For a different input x ∈ B(x̄, ε, ‖ · ‖),
if the prediction of x varies from that of x̄, then the network F is not robust at x̄
w.r.t. perturbation ε. And it is natural to define the robustness of a network:

Definition 5.4. The network F is ε-robust at point x̄ w.r.t. norm ‖ · ‖, if for any
x ∈ B(x̄, ε, ‖ · ‖), the prediction of x is the same as that of x̄.

Let y be the prediction of x ∈ B(x̄, ε, ‖ · ‖). By Definition 5.4, if network F is ε-
robust, then y = ȳ, i.e., for any label k different from ȳ, Fk(x) ≤ Fȳ(x). Therefore,
in order to verify the robustness of network F , it is equivalent to check if inequality
Fk(x) ≤ Fȳ(x) holds for any input x ∈ B(x̄, ε, ‖ · ‖) and label k 6= ȳ, which leads to
the following definition:

Definition 5.5. For network F , given input x̄ ∈ Rp0 and its prediction ȳ. The
robustness verification problem of network F at input x̄ ∈ Rp0 for perturbation ε,
w.r.t. norm ‖·‖ can be formulated as the following optimization problem: for k 6= ȳ,

δk = max
x∈B(x̄,ε,‖·‖)

Fk(x)− Fȳ(x). (Cert-k)

Remark. If δk < 0 for all k 6= ȳ, then F is ε-robust at x̄ w.r.t. norm ‖ · ‖.

For DNNs: Suppose we have a pre-trained fully-connected deep ReLU neural
network F for K-classifications with parameters W = (A1,b1; . . . ; AL,bL; C) as
described in Section 1.1.1. Denote by x0 the variables in the input layer and xi
the variables in each hidden layer for i = 1, . . . , L. The value of xi is computed by
equation xi = ReLU(Aixi−1 + bi). By Definition 5.5, the robustness verification
problem of deep neural network F is written as: for k 6= ȳ,

max
xi∈Rpi

Fk(x0)− Fȳ(x0) (5.34)

s.t.

xi = ReLU(Aixi−1 + bi), i ∈ [L], (ReLU constraint)
‖x0 − x̄‖ ≤ ε. (Bound constraint)

The output of x0 is an affine combination of xL, i.e., F (x0) = CxL. Denote
by C(k,:) the k-th row vector of matrix C and let ck,ȳ := (C(k,:) − C(ȳ,:))T , then
the objective of (5.34) is simply cTk,ȳxL. Moreover, by the semialgebraicity of ReLU

86CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

function (5.1), the ReLU constraint in (5.34) can be formulated as

xi ◦ (xi −Aixi−1 − bi) = 0, xi −Aixi−1 − bi ≥ 0, xi ≥ 0, (5.35)

where ◦ denotes the element-wise product, and all the (in)equalities are element-
wise. The robustness verification problem for DNNs (5.34) can be then rewritten
as: for k 6= ȳ,

max
xi∈Rpi

cTk,ȳxL (CertDNN-k)

s.t.

xi ◦ (xi −Aixi−1 − bi) = 0, xi −Aixi−1 − bi ≥ 0, xi ≥ 0, i ∈ [L],
‖x0 − x̄‖ ≤ ε.

For MONs: Now let F be a fully-connected MON activated by ReLU function
with parameters W = (A,B,b; C) as described in Section 1.1.2. Similar with
the case of DNN, except that the variables x1 in the hidden layer is evaluated by
fixed-point equation x1 = ReLU(Ax1 + Bx0 + b). By definition 5.5, the robustness
verification problem for MONs is written as: for k 6= ȳ,

max
xi∈Rpi

Fk(x0)− Fȳ(x0) (5.36)

s.t.

x1 = ReLU(Ax1 + Bx0 + b), (ReLU constraint)
‖x0 − x̄‖ ≤ ε. (Bound constraint)

Using the semialgebraicity of ReLU function, the ReLU constraint in (5.36) is
equivalent to

x1 ◦ (x1 −Ax1 −Bx0 − b) = 0, x1 −Ax1 −Bx0 − b ≥ 0, x1 ≥ 0. (5.37)

Keep the notation ck,ȳ, then problem (5.36) is rewritten as: for k 6= ȳ,

max
xi∈Rpi

cTk,ȳx1 (CertMON-k)

s.t.

x1 ◦ (x1 −Ax1 −Bx0 − b) = 0, x1 −Ax1 −Bx0 − b ≥ 0, x1 ≥ 0,
‖x0 − x̄‖ ≤ ε.

The number of variables in problem (CertDNN-k) depends on the input layer
and each hidden layer. Different from DNNs, we only have one hidden layer in
MON. Therefore, the number of variables in problem (CertMON-k) only depends
on the number of input neurons p0 and hidden neurons p1. Summarizing the dis-
cussion above, we show the total number of variables and constraints of robustness
verification problem for each case in Table 5.5. Note that for L2 norm, the bound
constraint is equivalent to one dense polynomial constraint; while for L∞ norm, we
have p0 sparse constraints.

5.4. ROBUSTNESS VERIFICATION 87

Table 5.5: Summary of verification problem for DNNs and MONs.

Network Norm # of variables # of constraints

DNNs L2 ∑L

i=0 pi
1 + 3

∑L

i=1 pi

L∞ p0 + 3
∑L

i=1 pi

MONs L2 p0 + p1
1 + 3p1

L∞ p0 + 3p1

5.4.2 Algorithms

In Section 5.2 and 5.3, we discuss about the Lipschitz constant estimation prob-
lem and ellipsoid propagation problem for both fully-connected DNNs and MONs
with ReLU activation function. In fact, Lipschitz constants and overapproximation
ellipsoids can also be used to verify robustness of neural networks.

Proposition 5.5. For neural network F : Ω→ RK , where Ω = B(x̄, ε, ‖ · ‖) ⊆ Rp0

and x̄ ∈ Ω is a fixed point. Let ȳ be the prediction of x̄ by network F . For k 6= ȳ:

• Let δcertk be the optimal value of problem (Cert-k);

• Let LF,ε,‖·‖ be the local Lipschitz constant of F . Define δlip := ε ·LF,ε,‖·‖ and
τ := Fȳ(x̄)−maxk 6=ȳ Fk(x̄);

• Let E = {x ∈ RK : ‖Qx + b‖2 ≤ 1}, where Q ∈ RK×K and b ∈ RK , be the
overapproximation ellipsoid given by (Ellip). Define

δellipk := max
x∈RK

{x(i) − x(ȳ) : ‖Qx + b‖2 ≤ 1}. (5.38)

If one of the following assertions holds:
(1) δcertk < 0 for all k 6= ȳ;
(2) 2δlip < τ ;
(3) δellipk < 0 for all k 6= ȳ.

Then the network F is ε-robust at x̄ w.r.t. norm ‖ · ‖.

Proof : (1) is trivial by Definition 5.5.
(2) For a given input x̄ ∈ Rp0 and any x0 ∈ B(x̄, ε, ‖ · ‖), we have

‖F (x0)− F (x̄)‖ ≤ LF,ε,‖·‖ · ‖x0 − x̄‖ ≤ εLF,ε,‖·‖ ≤ εLF,‖·‖ , (5.39)
‖F (x0)− F (x̄)‖ ≤ |||C||| · Lx1,ε,‖·‖ · ‖x0 − x̄‖ ≤ ε|||C||| · Lx1,ε,‖·‖ . (5.40)

By equations (5.39), (5.40), and using the fact that ‖x‖∞ ≤ ‖x‖ for all x ∈ RK , we
have

‖F (x0)− F (x̄)‖∞ ≤ ‖F (x0)− F (x̄)‖ ≤ LF,ε,‖·‖ · ‖x0 − x̄‖ ≤ δlip. (5.41)

88CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

Hence, for k 6= ȳ, by definition of δcertk ,

δcertk = max
x0∈Ω
{Fk(x0)− Fȳ(x0)}

= max
x0∈Ω
{Fk(x0)− Fk(x̄) + Fk(x̄)− Fȳ(x̄) + Fȳ(x̄)− Fȳ(x0)}

≤ max
x0∈Ω
{|Fk(x0)− Fk(x̄)|+ max

k 6=ȳ
{Fk(x̄)} − Fȳ(x̄) + |Fȳ(x̄)− Fȳ(x0)|}

≤ max
x0∈Ω
{‖F (x0)− F (x̄)‖∞ − τ + ‖F (x0)− F (x̄)‖∞}

≤ 2δlip − τ < 0, (5.42)

where the last inequality is due to (5.41). By Proposition 5.5 (1), F is ε-robust.
(3) The overapproximation ellipsoid E contains F (Ω), i.e., F (x0) ∈ E for all

x0 ∈ Rp0 . If δellipk < 0 for all k 6= ȳ, then Fk(x0) − Fȳ(x) < 0 for all k 6= ȳ and
x0 ∈ Rp0 . Thus δcertk < 0 for all k 6= ȳ and F is ε-robust. �

For DNNs, we consider the Lipschitz constant estimation problem (LipDNN-k)
and apply Proposition 5.5 (2) to certify robustness. For MONs, we consider all
the three problems (robustness verification problem, Lipschitz constant estimation
problem, ellipsoid propagation problem) and apply Proposition 5.5 (1) (2) (3) to
certify robustness. The authors in [Pabbaraju et al. 2021] use inequality (5.40) with
L2 norm to certify robustness of MONs, as they provide an upper bound of Lx1,ε,‖·‖2 .
In contrast, our formulation (LipMON) provides upper bounds on Lipschitz con-
stants of F or x1 for arbitrary Lq norms. We directly focus on estimating the value
of LF,ε,‖·‖q

instead of Lx1,ε,‖·‖q
. In fact the quantity |||C|||q ·Lx1,ε,‖·‖q

can be regarded
as an upper bound of LF,ε,‖·‖q

, the local Lipschitz constant of F . Therefore, we are
able to certify more examples using SHORq

F than PabqF , see Table 5.8.

Remark. Shor’s relaxation of Lipschitz constant estimation problems for DNN has
already been extensively investigated in [Fazlyab et al. 2019b, Chen et al. 2020]. If
one want to certify robustness for several input test examples, one may choose the
input region Ω to be a big ball containing all such examples with an additional
margin of ε. Choosing a big ball for all input points requires to solve only one
optimization problem, while choosing one ball for each input point (say among N)
requires to solve N optimization problems, which is much more costly. In this case,
it is more favorable to apply the certification problem (CertMON-k) directly.

5.4.3 Experiments

In this section, we use the same notation of algorithms and neural networks de-
scribed in Section 5.2.2 and 5.3.2. We verify the robustness of DNNs by estimating
their Lipschitz constants, and apply all the three approaches to MONs to compare
the effectiveness of each method. All experiments are performed on a personal lap-
top with an Intel 8-Core i7-8665U CPU @ 1.90GHz Ubuntu 18.04.5 LTS, 32GB
RAM.

5.4. ROBUSTNESS VERIFICATION 89

Trained FcDNN1 for 2 labels: We generate 20000 random points in dimension
80, where half of them are concentrated around the sphere with radius 1 (labeled
as 1) and the rest are concentrated around the sphere with radius 2 (labeled as 2).
We train a ReLU network of size (80, 80) for this binary classification task, and use
sigmoid layer as the output layer. Therefore, the input is labeled as 1 (resp. 2) if
the output is negative (resp. positive). For an input x̄ ∈ R80 and a perturbation
ε > 0, we compute an upper bound of the local Lipschitz constant LF,ε,‖·‖∞ w.r.t.
L∞ norm. Denote by ȳ the output of x̄, by Proposition 5.5, if the output ȳ is
negative (resp. positive) and ȳ + εLF,ε,‖·‖∞ < 0 (resp. ȳ − εLF,ε,‖·‖∞ > 0), then
F is ε-robust at x̄ w.r.t. L∞ norm. With this criteria, if we have n inputs to
verify, we need to execute n experiments. However, for large networks based on
MNIST dataset, this is impractical, even if we verify the inputs directly without
using Lipschitz constants (see [Raghunathan et al. 2018a]). Therefore, we compute
the Lipschitz constant with respect to x̄ = 0 and ε = 3, denoted by L, as an upper
bound of the local Lipschitz constants. Then we generate 106 random points in
the box B = {x ∈ R80 : ‖x‖∞ ≤ 2.9}. For any ε ≤ 0.1 and x̄ ∈ B, we have
LF,ε,‖·‖∞ ≤ L, then F is ε-robust at x̄ if ȳ(ȳ − sign(ȳ)εL) > 0. Instead of running
106 times the algorithm, we are able to verify robustness of large number of inputs
by only doing one experiment. Table 5.6 shows the ratio of verified inputs in the box
B by Sub-2 and LipOpt-3. We see that Sub-2 can always verify more examples
than LipOpt-3.

Table 5.6: Ratios of verified examples for (80, 80) network.

ε 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Sub-2 87.51% 75.02% 62.46% 49.89% 37.22% 24.36% 8.15% 2.75% 0.76% 0.12%

LipOpt-3 69.03% 37.84% 4.78% 0.15% 0% 0% 0% 0% 0% 0%

Trained FcDNN1 for MNIST: The SDP-NN network is a well-trained network
of size (784, 500) to classify the handwritten digit images from 0 to 9. Denote the
parameters of this network by A1 ∈ R500×784,b1 ∈ R500,C ∈ R10×500. Denote by
ȳ the prediction of input x̄ ∈ R784. Let ε > 0, if for all k 6= ȳ and x0 ∈ R784 such
that ‖x0 − x̄‖∞ ≤ ε, Fk(x0) − Fȳ(x0) < 0, then F is ε-robust at x̄ by Proposition
5.5 (1). Alternatively, denote by Lfk,ȳ ,ε,‖·‖∞ the local Lipschitz constant of function
fk,ȳ(x0) := Fk(x0) − Fȳ(x0) with respect to L∞ norm in the ball {x ∈ R784 :
‖x− x̄‖∞ ≤ ε}. If for all k 6= ȳ, fk,ȳ(x̄) + εLfk,ȳ ,ε,‖·‖∞ < 0. Then F is ε-robust at x̄
by Proposition 5.5 (2). Since the 28×28 MNIST images are flattened and normalized
into vectors taking value in [0, 1], we compute the local Lipschitz constant by Sub-2
with respect to x̄ = 0 and ε = 2. Define matrix L := [Lfi,j ,ε,‖·‖∞]i,j for i 6= j, the

90CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

complete matrix L (without diagonal entries) is as follows:

L =

∗ 7.94 7.89 8.28 8.64 8.10 7.66 8.04 7.46 8.14
7.94 ∗ 7.74 7.36 7.68 8.81 8.06 7.55 7.36 8.66
7.89 7.74 ∗ 7.63 8.81 10.23 8.18 8.13 7.74 9.08
8.28 7.36 7.63 ∗ 8.52 7.74 9.47 8.01 7.37 7.96
8.64 7.68 8.81 8.52 ∗ 9.44 7.98 8.65 8.49 7.47
8.10 8.81 10.23 7.74 9.44 ∗ 8.26 9.26 8.17 8.55
7.66 8.06 8.18 9.47 7.98 8.26 ∗ 10.18 8.00 9.83
8.04 7.55 8.13 8.01 8.65 9.26 10.18 ∗ 8.28 7.65
7.46 7.36 7.74 7.37 8.49 8.17 8.00 8.28 ∗ 7.87
8.14 8.66 9.08 7.96 7.47 8.55 9.83 7.65 7.87 ∗

. (5.43)

Note that if we replace the vector ck in (LipDNN-k) by −ck, the problem is equiv-
alent to the original one. Therefore, the matrix L is symmetric, and we only need
to compute the upper triangle of L.

We take different values of ε from 0.01 to 0.1, and compute the ratio of certified
examples among the 10000 MNIST test data by the Lipschitz constants we obtain,
as shown in Table 5.7. Note that for ε = 0.1, we improve a little bit by 67%
compared to Grad-cert (65%) proposed by [Raghunathan et al. 2018a], as we use
an exact formulation of the subdifferential of ReLU function.

Table 5.7: Ratios of verified test inputs for SDP-NN by Sub-2.

ε 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

Ratios 98.80% 97.24% 95.16% 92.84% 90.18% 87.10% 83.01% 78.34% 73.54% 67.63%

Trained FcMON for MNIST: The MON we use is the same as in Section
5.2.3. Consider ε = 0.1 for L2 norm and ε = 0.1, 0.05, 0.01 for L∞ norm. For
each verification approach described in Proposition 5.5, we compute the ratio of
certified test examples among the first 100 test inputs and the average computation
time (with unit second) for one example of each method. The ratio in parentheses
of the column “Lipschitz Model” are computed by the Lipschitz constant given in
[Pabbaraju et al. 2021] (see Section 5.2.2 for details). Exact binomial 95% confi-
dence intervals are given in bracket. Following [Pabbaraju et al. 2021], we also com-
pute the projected gradient descent (PGD) attack accuracy using Foolbox library
[Rauber et al. 2020], which indicates the ratio of non-successful attacks among our
100 inputs. Note that the ratio of verified examples should always be less or equal
than the ratio of non-successful attacks. The gaps between them shows how many
test inputs there are for which we are neither able to verify robustness nor find
adversarial attacks.

From Table 5.8, we see that the MON we consider is robust to all the 100
test examples for L2 norm and ε = 0.1 (the only example that we can not verify
is because the label itself is wrong). However, it is not robust for L∞ norm at
the same level of perturbation (all our three verification approaches cannot certify
any examples), and the PGD algorithm finds adversarial examples for 85% of the
inputs. The network becomes robust again for the L∞ norm when we reduce the

5.4. ROBUSTNESS VERIFICATION 91

perturbation ε to 0.01. Overall, we see that verification approach is the one with
best performance as it provides the highest ratio, ellipsoid approach is the second
best model compared to verification approach, and Lipschitz approach provides the
lowest ratio. As a trade-off, for each test example, verification approach requires
to consider at most 9 optimization problems, each one being solved in around 150
seconds. While ellipsoid approach requires to consider only one problem, which is
solved in around 500 seconds. We only need to calculate one (global) Lipschitz
constant, which takes around 1500 seconds, so that we are able to certify any
number of inputs. Each approach we propose provide better or equal certification
accuracy compared to [Pabbaraju et al. 2021], and significant improvements for L∞
perturbations.

Table 5.8: Ratio of verified test inputs and running time.

Norm ε
Verification approach Lipschitz approach Ellipsoid approach PGD Attack(1350s / example) (1500s in total) (500s / example)

L2 0.1 99% [>94] 91% (91%) [>83] 99%[>94] 99%[>94]

L∞

0.1 0% [<4] 0% (0%) [<4] 0%[<4] 15% [8, 24]
0.05 24% [16, 34] 0% (0%) [<4] 0% [<4] 82% [73, 89]
0.01 99% [>94] 24% [16, 34] (0%) [<4] 92% [>84] 99% [>94]

Remark. The ellipsoid approach for robustness verification has a geometric expla-
nation: for k 6= ȳ, denote by Pk the projection map from output space RK to its
2-dimensional subspace Rȳ × Rk, i.e., Pk(x) = [x(ȳ), x(k)]T for all x ∈ RK . Let Li
be the line in subspace Rȳ × Rk defined by {[x(ȳ), x(k)]T ∈ Rȳ × Rk : x(ȳ) = x(k)}.
Then the network F is ε-robust at x̄ if the projection Pk(E) lies strictly below the
line Lk for all k 6= ȳ.

Take the first MNIST test example (which is classified as 7) for illustration. For
ε = 0.1, this input is certified to be robust for L2 norm but not for L∞ norm. We
show the landscape of the projections onto R7 × R3, i.e., the x-axis indicates label
7 and the y-axis indicates label 3. In Figure 5.6, the red points are projections of
points in the image F (Ω), the black circles are projections of some (successful and
unsuccessful) adversarial examples found by the PGD algorithm. Notice that the
adversarial examples also lie in the image F (Ω). The blue curve is the boundary
of the projection of the overapproximation ellipsoid (which is an ellipse), and the
blue dashed line plays the role of a certification threshold. Figure 5.6a shows the
landscape for L2 norm, we see that the ellipse lies strictly below the threshold line,
which means that for all points x ∈ E , we have x3 < x7. Hence for all x ∈ F (Ω), we
also have x3 < x7. On the other hand, for L∞ norm, we see from Figure 5.6b that
the threshold line crosses the ellipse, which means that we are not able to verify
robustness of this example using ellipsoid approach. Indeed, we can find adversarial
examples with the PGD algorithm, as shown in Figure 5.6b by the black circles that
lie above the threshold line.

Figure 5.7 is the visualization of one of the attack examples. The picture on the
left is the original digit which is corrected classified as 7. The picture on the right

92CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS

is the attack example found by PGD algorithm, which looks also the digit 7 but is
incorrectly classified as 3.

(a) Verified example for L2 norm. (b) Unverified example for L∞ norm.

Figure 5.6: Visualization of the overapproximation ellipsoids and output region.

(a) Original example, classified as 7. (b) Adversarial example, classified as 3.

Figure 5.7: An adversarial example of the first MNIST test example.

Conclusions and Future Works

In this thesis, we first develop a general sublevel moment-SOS hierarchy as an al-
ternative to the standard Lasserre hierarchy. We show that the sublevel hierarchy
is not only useful for optimization problems, but also provides new methodologies
to verify neural networks. Even though the ReLU function and its subdifferen-
tial are semialgebraic, as shown in (5.1) and (5.3), optimization problems derived
from neural networks are generally not sparse. Therefore, polynomial optimization
approaches exploiting parsimony (such as Lasserre relaxation exploiting correlative
sparsity, TSSOS exploiting term sparsity) do not work. The sublevel hierarchy gives
possible intermediate relaxations for dense or nearly-dense POPs.

We also present three general models for verifying the robustness of neural
networks: Lipschitz constant estimation, ellipsoidal propagation, and robustness
verification. All three models can be applied to verify robustness by Proposition
5.5. There is a trade-off between accuracy and efficiency among these approaches.
For robustness verification, this is an exact model describing the problem. However,
we need to run N experiments if we want to verify N inputs. On the contrary,
we only need to calculate a single Lipschitz constant to verify all inputs located
in the corresponding input region. The Lipschitz constant is also important for
robust training, and ellipsoidal propagation can be generalized to abstract domain
propagation, which is widely used in dynamical systems.

Our approaches are based on the semialgebraic representation of the ReLU func-
tion, which limits our approach to the case of ReLU neural networks. Moreover,
the efficiency of our approaches depends on the power of the SDP solvers. There-
fore, our methods cannot be applied to large networks such as ResNet, LeNet, etc.
Even though sublevel relaxation shows promising improvements for small networks.
When the number of neurons increases, even Shor’s relaxation cannot apply. Mod-
els and algorithms for large-scale and convolutional neural networks are interesting
future topics of this thesis. Moreover, if one develops a highly efficient first-order
SDP solver in place of interior point algorithms, our SDP-based approaches may
be applicable to larger and more complicated cases. The design of first-order SDP
algorithms is also a valuable future topic.

All in all, robustness verification is indeed a difficult problem both theoretically
and practically. The approaches proposed in this thesis give only one direction
to deal with them. There are many unresolved difficulties and future topics to
overcome and investigate.

Bibliography

[Akintunde et al. 2018] Michael Akintunde, Alessio Lomuscio, Lalit Maganti and
Edoardo Pirovano. Reachability Analysis for Neural Agent-Environment
Systems. In Michael Thielscher, Francesca Toni and Frank Wolter, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the
Sixteenth International Conference, KR 2018, Tempe, Arizona, 30 October
- 2 November 2018, pages 184–193. AAAI Press, 2018. (Cited on pages 15
and 24.)

[Albarghouthi 2021] Aws Albarghouthi. Introduction to Neural Network Verifica-
tion. Foundations and Trends R© in Programming Languages, vol. 7, no. 1–2,
pages 1–157, 2021. (Cited on page 14.)

[Antun et al. 2021] Vegard Antun, Nina M. Gottschling, Anders C. Hansen and
Ben Adcock. Deep Learning in Scientific Computing: Understanding the
Instability Mystery. SIAM NEWS MARCH 2021, 2021. (Cited on page 8.)

[Athalye et al. 2018] Anish Athalye, Logan Engstrom, Andrew Ilyas and Kevin
Kwok. Synthesizing Robust Adversarial Examples. In International confer-
ence on machine learning, pages 284–293. PMLR, 2018. (Cited on pages xxii
and xxvi.)

[Bai et al. 2019] Shaojie Bai, Zico Kolter and Vladlen Koltun. Deep Equilibrium
Models. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d’ Alché-Buc,
E. Fox and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 32. Curran Associates, Inc., 2019. (Cited on pages xxii,
xxvi and 3.)

[Baluta et al. 2021] T. Baluta, Z. Chua, K. S. Meel and P. Saxena. Scalable Quan-
titative Verification for Deep Neural Networks. In 2021 IEEE/ACM 43rd
International Conference on Software Engineering: Companion Proceed-
ings (ICSE-Companion), pages 248–249, Los Alamitos, CA, USA, may 2021.
IEEE Computer Society. (Cited on page 84.)

[Barthel & Hübener 2012] Thomas Barthel and Robert Hübener. Solving
Condensed-Matter Ground-State Problems by Semidefinite Relaxations.
Physical Review Letters, vol. 108, no. 20, May 2012. (Cited on page 36.)

[Bastani et al. 2016] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos, Dim-
itrios Vytiniotis, Aditya Nori and Antonio Criminisi. Measuring Neural Net
Robustness with Constraints. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon
and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems, volume 29. Curran Associates, Inc., 2016. (Cited on pages 22 and 24.)

96 BIBLIOGRAPHY

[Bezanson et al. 2017] Jeff Bezanson, Alan Edelman, Stefan Karpinski and Viral B
Shah. Julia: A Fresh Approach to Numerical Computing. SIAM review,
vol. 59, no. 1, pages 65–98, 2017. (Cited on page 73.)

[Bibi et al. 2019] Adel Bibi, Bernard Ghanem, Vladlen Koltun and Rene Ranftl.
Deep Layers as Stochastic Solvers. In International Conference on Learning
Representations, 2019. (Cited on page 4.)

[Bolte & Pauwels 2021] Jérôme Bolte and Edouard Pauwels. Conservative Set Val-
ued Fields, Automatic Differentiation, Stochastic Gradient Methods and
Deep Learning. Mathematical Programming, vol. 188, no. 1, pages 19–51,
2021. (Cited on pages 60, 61 and 64.)

[Boopathy et al. 2019] Akhilan Boopathy, Tsui-Wei Weng, Pin-Yu Chen, Sijia Liu
and Luca Daniel. CNN-Cert: An Efficient Framework for Certifying Robust-
ness of Convolutional Neural Networks. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 33, pages 3240–3247, 2019. (Cited
on pages xxii, xxvii, 10, 21, 24, 58 and 84.)

[Brown et al. 2022] Robin Brown, Edward Schmerling, Navid Azizan and Marco
Pavone. A Unified View of SDP-based Neural Network Verification through
Completely Positive Programming, 2022. (Cited on page 20.)

[Bunel et al. 2018] Rudy R Bunel, Ilker Turkaslan, Philip Torr, Pushmeet Kohli
and Pawan K Mudigonda. A Unified View of Piecewise Linear Neural Net-
work Verification. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman,
N. Cesa-Bianchi and R. Garnett, editors, Advances in Neural Information
Processing Systems, volume 31. Curran Associates, Inc., 2018. (Cited on
pages 15, 16, 21 and 24.)

[Campos et al. 2022] Juan S. Campos, Ruth Misener and Panos Parpas. Partial
Lasserre Relaxation for Sparse Max-Cut. Optimization and Engineering,
Aug 2022. (Cited on pages 36, 42, 44 and 47.)

[Chen et al. 2020] Tong Chen, Jean-Bernard Lasserre, Victor Magron and Edouard
Pauwels. Semialgebraic Optimization for Lipschitz Constants of ReLU Net-
works. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan and H. Lin,
editors, Advances in Neural Information Processing Systems, volume 33,
pages 19189–19200. Curran Associates, Inc., 2020. (Cited on pages xxiii,
xxviii, 42 and 88.)

[Chen et al. 2021] Tong Chen, Jean-Bernard Lasserre, Victor Magron and Edouard
Pauwels. Semialgebraic Representation of Monotone Deep Equilibrium Mod-
els and Applications to Certification. In M. Ranzato, A. Beygelzimer,
Y. Dauphin, P.S. Liang and J. Wortman Vaughan, editors, Advances in Neu-
ral Information Processing Systems, volume 34, pages 27146–27159. Curran
Associates, Inc., 2021. (Cited on pages xxiii and xxviii.)

BIBLIOGRAPHY 97

[Chen et al. 2022] Tong Chen, Jean-Bernard Lasserre, Victor Magron and Edouard
Pauwels. A Sublevel Moment-SOS Hierarchy for Polynomial Optimization.
Computational Optimization and Applications, vol. 81, no. 1, pages 31–66,
2022. (Cited on pages xxiii, xxvii and xxviii.)

[Cheng et al. 2017] Chih-Hong Cheng, Georg Nührenberg and Harald Ruess. Max-
imum Resilience of Artificial Neural Networks. CoRR, vol. abs/1705.01040,
2017. (Cited on pages 15 and 24.)

[Clarke 1983] F. H. Clarke. Optimization and Nonsmooth Analysis. Wiley New
York, 1983. (Cited on pages 61, 63, 64 and 65.)

[Combettes & Pesquet 2020] Patrick L. Combettes and Jean-Christophe Pesquet.
Lipschitz Certificates for Layered Network Structures Driven by Averaged
Activation Operators. SIAM Journal on Mathematics of Data Science, vol. 2,
no. 2, pages 529–557, 2020. (Cited on page 58.)

[Cousot & Cousot 1977] Patrick Cousot and Radhia Cousot. Abstract Interpre-
tation: A Unified Lattice Model for Static Analysis of Programs by Con-
struction or Approximation of Fixpoints. In Proceedings of the 4th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Languages,
POPL ’77, page 238–252, New York, NY, USA, 1977. Association for Com-
puting Machinery. (Cited on page 17.)

[Cybenko 1989] G. Cybenko. Approximation by Superpositions of a Sigmoidal
Function. Mathematics of Control, Signals and Systems, vol. 2, no. 4, pages
303–314, Dec 1989. (Cited on pages xxi, xxv and 1.)

[Dathathri et al. 2020] Sumanth Dathathri, Krishnamurthy Dvijotham, Alexey
Kurakin, Aditi Raghunathan, Jonathan Uesato, Rudy R Bunel, Shreya
Shankar, Jacob Steinhardt, Ian Goodfellow, Percy S Liang and Pushmeet
Kohli. Enabling Certification of Verification-Agnostic Networks via Memory-
Efficient Semidefinite Programming. In H. Larochelle, M. Ranzato, R. Had-
sell, M. F. Balcan and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 5318–5331. Curran Associates, Inc.,
2020. (Cited on pages xxiii, xxviii, 58 and 84.)

[de Moura & Bjørner 2008] Leonardo de Moura and Nikolaj Bjørner. Z3: An Ef-
ficient SMT Solver. In C. R. Ramakrishnan and Jakob Rehof, editors,
Tools and Algorithms for the Construction and Analysis of Systems, pages
337–340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. (Cited on
page 16.)

[Dutta et al. 2018] Souradeep Dutta, Susmit Jha, Sriram Sankaranarayanan and
Ashish Tiwari. Output Range Analysis for Deep Feedforward Neural Net-
works. In Aaron Dutle, César Muñoz and Anthony Narkawicz, editors,

98 BIBLIOGRAPHY

NASA Formal Methods, pages 121–138, Cham, 2018. Springer International
Publishing. (Cited on pages 15, 17 and 24.)

[Dvijotham et al. 2018] Krishnamurthy Dvijotham, Robert Stanforth, Sven Gowal,
Timothy A Mann and Pushmeet Kohli. A Dual Approach to Scalable Ver-
ification of Deep Networks. In UAI, volume 1, page 3, 2018. (Cited on
pages 19, 24 and 58.)

[Ehlers 2017] Rüdiger Ehlers. Formal Verification of Piece-Wise Linear Feed-
Forward Neural Networks. In ATVA, 2017. (Cited on pages xxii, xxvii,
13, 14 and 24.)

[Fazlyab et al. 2019a] Mahyar Fazlyab, Manfred Morari and George J. Pappas.
Probabilistic Verification and Reachability Analysis of Neural Networks via
Semidefinite Programming. In 2019 IEEE 58th Conference on Decision and
Control (CDC), pages 2726–2731, 2019. (Cited on page 82.)

[Fazlyab et al. 2019b] Mahyar Fazlyab, Alexander Robey, Hamed Hassani, Man-
fred Morari and George Pappas. Efficient and Accurate Estimation of Lip-
schitz Constants for Deep Neural Networks. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’ Alché-Buc, E. Fox and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 32. Curran Associates,
Inc., 2019. (Cited on pages 58 and 88.)

[Fazlyab et al. 2020] Mahyar Fazlyab, Manfred Morari and George J. Pap-
pas. Safety Verification and Robustness Analysis of Neural Networks via
Quadratic Constraints and Semidefinite Programming. IEEE Transactions
on Automatic Control, 2020. (Cited on pages 58 and 76.)

[Floudas & Pardalos 1990] Christodoulos A. Floudas and Panos M. Pardalos. A
collection of test problems for constrained global optimization algorithms,
volume 455. Springer Science & Business Media, 1990. (Cited on page 41.)

[Furini et al. 2019] Fabio Furini, Emiliano Traversi, Pietro Belotti, Antonio Fran-
gioni, Ambros Gleixner, Nick Gould, Leo Liberti, Andrea Lodi, Ruth Mis-
ener, Hans Mittelmannet al. QPLIB: a Library of Quadratic Programming
Instances. Mathematical Programming Computation, vol. 11, no. 2, pages
237–265, 2019. (Cited on page 45.)

[Gehr et al. 2018] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar
Tsankov, Swarat Chaudhuri and Martin Vechev. AI2: Safety and Robustness
Certification of Neural Networks with Abstract Interpretation. In 2018 IEEE
Symposium on Security and Privacy (SP), pages 3–18, 2018. (Cited on
pages xxii, xxvii, 18, 24, 76 and 84.)

[Goodfellow et al. 2015] Ian Goodfellow, Jonathon Shlens and Christian Szegedy.
Explaining and Harnessing Adversarial Examples. In International Confer-
ence on Learning Representations, 2015. (Cited on pages xiii, 8 and 84.)

BIBLIOGRAPHY 99

[Goodfellow 2018] Ian J. Goodfellow. Gradient Masking Causes CLEVER to Over-
estimate Adversarial Perturbation Size. CoRR, vol. abs/1804.07870, 2018.
(Cited on page 22.)

[Grant & Boyd 2014] Michael Grant and Stephen Boyd. CVX: Matlab Software for
Disciplined Convex Programming, version 2.1, 2014. (Cited on page 83.)

[Haim et al. 2020] Arbel Haim, Richard Kueng and Gil Refael. Variational-
Correlations Approach to Quantum Many-body Problems. arXiv preprint
arXiv:2001.06510, 2020. (Cited on page 36.)

[He et al. 2016] Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun. Deep
Residual Learning for Image Recognition. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages 770–778, 2016.
(Cited on page 13.)

[Henrion & Lasserre 2005] Didier Henrion and Jean-Bernard Lasserre. Detecting
Global Optimality and Extracting Solutions in GloptiPoly. In Positive poly-
nomials in control, pages 293–310. Springer, 2005. (Cited on page 40.)

[Henrion et al. 2009] Didier Henrion, Jean-Bernard Lasserre and Johan Löfberg.
GloptiPoly 3: Moments, Optimization and Semidefinite Programming. Op-
timization Methods & Software, vol. 24, no. 4-5, pages 761–779, 2009. (Cited
on page 41.)

[Hornik et al. 1989] Kurt Hornik, Maxwell Stinchcombe and Halbert White. Multi-
layer Feedforward Networks are Universal Approximators. Neural Networks,
vol. 2, no. 5, pages 359–366, 1989. (Cited on pages xxi and xxv.)

[Hornik 1991] Kurt Hornik. Approximation Capabilities of Multilayer Feedforward
Networks. Neural Networks, vol. 4, no. 2, pages 251–257, 1991. (Cited on
pages xxii, xxvi and 1.)

[Howard et al. 2017] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco Andreetto and Hartwig
Adam. MobileNets: Efficient Convolutional Neural Networks for Mobile Vi-
sion Applications. CoRR, vol. abs/1704.04861, 2017. (Cited on page 13.)

[Hu et al. 2020] Haimin Hu, Mahyar Fazlyab, Manfred Morari and George J Pap-
pas. Reach-SDP: Reachability Analysis of Closed-Loop Systems with Neural
Network Controllers via Semidefinite Programming. In 2020 59th IEEE
Conference on Decision and Control (CDC), pages 5929–5934. IEEE, 2020.
(Cited on pages 67 and 76.)

[Huang et al. 2017a] Gao Huang, Zhuang Liu, Laurens Van Der Maaten and Kil-
ian Q. Weinberger. Densely Connected Convolutional Networks. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 2261–2269, 2017. (Cited on pages 13 and 22.)

100 BIBLIOGRAPHY

[Huang et al. 2017b] Xiaowei Huang, Marta Kwiatkowska, Sen Wang and Min Wu.
Safety Verification of Deep Neural Networks. In International conference on
computer aided verification, pages 3–29. Springer, 2017. (Cited on pages 16
and 24.)

[Huang et al. 2020] Xiaowei Huang, Daniel Kroening, Wenjie Ruan, James Sharp,
Youcheng Sun, Emese Thamo, Min Wu and Xinping Yi. A Survey of Safety
and Trustworthiness of Deep Neural Networks: Verification, testing, adver-
sarial attack and defence, and interpretability. Computer Science Review,
vol. 37, page 100270, 2020. (Cited on pages xxii, xxvii and 14.)

[Huster et al. 2018] Todd Huster, Cho-Yu Jason Chiang and Ritu Chadha. Limita-
tions of the Lipschitz Constant as a Defense Against Adversarial Examples.
In Joint European Conference on Machine Learning and Knowledge Discov-
ery in Databases, pages 16–29. Springer, 2018. (Cited on page 58.)

[Josz & Molzahn 2018] Cédric Josz and Daniel K. Molzahn. Lasserre Hierarchy for
Large Scale Polynomial Optimization in Real and Complex Variables. SIAM
Journal on Optimization, vol. 28, no. 2, pages 1017–1048, 2018. (Cited on
pages 36 and 42.)

[Kakade & Lee 2018] Sham M Kakade and Jason D Lee. Provably Correct Au-
tomatic Subdifferentiation for Qualified Programs. In Advances in neural
information processing systems, pages 7125–7135, 2018. (Cited on page 60.)

[Katz et al. 2017] Guy Katz, Clark Barrett, David L Dill, Kyle Julian and Mykel J
Kochenderfer. Reluplex: An Efficient SMT Solver for Verifying Deep Neural
Networks. In International conference on computer aided verification, pages
97–117. Springer, 2017. (Cited on pages xxii, xxvii, 13, 14, 24 and 84.)

[Klep et al. 2021] Igor Klep, Victor Magron and Janez Povh. Sparse Noncommu-
tative Polynomial Optimization. Mathematical Programming, Jan 2021.
(Cited on page 36.)

[Kochenberger et al. 2013] Gary A Kochenberger, Jin-Kao Hao, Zhipeng Lü, Haibo
Wang and Fred Glover. Solving Large Scale Max-Cut Problems via Tabu
Search. Journal of Heuristics, vol. 19, no. 4, pages 565–571, 2013. (Cited on
page 46.)

[Kolter & Madry 2018] Zico Kolter and Aleksander Madry. Adversarial Robustness
- Theory and Practice. https://adversarial-ml-tutorial.org/, 2018.
(Cited on pages xxii, xxvi and 8.)

[Kousik et al. 2022] Shreyas Kousik, Adam Dai and Grace X. Gao. Ellipsotopes:
Uniting Ellipsoids and Zonotopes for Reachability Analysis and Fault Detec-
tion. IEEE Transactions on Automatic Control, pages 1–13, 2022. (Cited
on page 76.)

https://adversarial-ml-tutorial.org/

BIBLIOGRAPHY 101

[Krizhevsky et al. 2012] Alex Krizhevsky, Ilya Sutskever and Geoffrey E Hinton.
ImageNet Classification with Deep Convolutional Neural Networks. In
F. Pereira, C.J. Burges, L. Bottou and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems, volume 25. Curran Associates,
Inc., 2012. (Cited on page 13.)

[Lasserre et al. 2017] Jean-Bernard Lasserre, Kim-Chuan Toh and Shouguang
Yang. A Bounded Degree SOS hierarchy for Polynomial Optimization.
EURO Journal on Computational Optimization, vol. 5, no. 1-2, pages 87–
117, 2017. (Cited on page 35.)

[Lasserre 2001] Jean-Bernard Lasserre. Global Optimization with Polynomials and
the Problem of Moments. SIAM Journal on optimization, vol. 11, no. 3,
pages 796–817, 2001. (Cited on pages xxiii, xxvii, 31 and 41.)

[Lasserre 2006] Jean-Bernard Lasserre. Convergent SDP-Relaxations in Polynomial
Optimization with Sparsity. SIAM Journal on Optimization, vol. 17, no. 3,
pages 822–843, 2006. (Cited on pages xxiii, xxvii, 33, 36, 40 and 42.)

[Latorre et al. 2020] Fabian Latorre, Paul Rolland and Volkan Cevher. Lipschitz
Constant Estimation of Neural Networks via Sparse Polynomial Optimiza-
tion. In International Conference on Learning Representations, 2020. (Cited
on pages xxiii, xxviii, 58, 62, 72 and 73.)

[Laurent 2003] Monique Laurent. A Comparison of the Sherali-Adams, Lovász-
Schrijver, and Lasserre relaxations for 0-1 Programming. Mathematics of
Operations Research, vol. 28, no. 3, pages 470–496, 2003. (Cited on page 35.)

[Lecun et al. 1998] Y. Lecun, L. Bottou, Y. Bengio and P. Haffner. Gradient-Based
Learning Applied to Document Recognition. Proceedings of the IEEE, vol. 86,
no. 11, pages 2278–2324, 1998. (Cited on page 13.)

[Lecun 1988] Yann Lecun. A Theoretical Framework for Back-Propagation. In
D. Touretzky, G. Hinton and T. Sejnowski, editors, Proceedings of the 1988
Connectionist Models Summer School, CMU, Pittsburg, PA, pages 21–28.
Morgan Kaufmann, 1988. (Cited on pages xxi, xxii, xxv, xxvi, 1 and 13.)

[Li et al. 2019] Jianlin Li, Jiangchao Liu, Pengfei Yang, Liqian Chen, Xiaowei
Huang and Lijun Zhang. Analyzing Deep Neural Networks with Symbolic
Propagation: Towards Higher Precision and Faster Verification. In Static
Analysis, page 296–319, Berlin, Heidelberg, 2019. Springer-Verlag. (Cited
on page 18.)

[Li et al. 2020] Linyi Li, Xiangyu Qi, Tao Xie and Bo Li. Sok: Certified Robustness
for Deep Neural Networks. arXiv preprint arXiv:2009.04131, 2020. (Cited
on pages xxii, xxvii and 14.)

102 BIBLIOGRAPHY

[Li et al. 2022] Mingjie Li, Yisen Wang and Zhouchen Lin. CerDEQ: Certifiable
Deep Equilibrium Model. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
Csaba Szepesvari, Gang Niu and Sivan Sabato, editors, Proceedings of the
39th International Conference on Machine Learning, volume 162 of Proceed-
ings of Machine Learning Research, pages 12998–13013. PMLR, 17–23 Jul
2022. (Cited on page 84.)

[Liu et al. 2021] Changliu Liu, Tomer Arnon, Christopher Lazarus, Christopher
Strong, Clark Barrett, Mykel J Kochenderferet al. Algorithms for Verifying
Deep Neural Networks. Foundations and Trends R© in Optimization, vol. 4,
no. 3-4, pages 244–404, 2021. (Cited on page 14.)

[Löfberg 2004] Johan Löfberg. YALMIP: A Toolbox for Modeling and Optimization
in MATLAB. In Proceedings of the CACSD Conference, volume 3. Taipei,
Taiwan, 2004. (Cited on page 73.)

[Lomuscio & Maganti 2017] Alessio Lomuscio and Lalit Maganti. An Approach to
Reachability Analysis for Feed-Forward ReLU Neural Networks. 2017. (Cited
on pages xxii, xxvii, 15 and 24.)

[Lu et al. 2017] Jiajun Lu, Hussein Sibai, Evan Fabry and David Forsyth. No Need
to Worry about Adversarial Examples in Object Detection in Autonomous
Vehicles. arXiv preprint arXiv:1707.03501, 2017. (Cited on pages xxii
and xxvi.)

[Magron et al. 2017] Victor Magron, George Constantinides and Alastair Donald-
son. Certified Roundoff Error Bounds using Semidefinite Programming.
ACM Transactions on Mathematical Software (TOMS), vol. 43, no. 4, pages
1–31, 2017. (Cited on page 36.)

[Magron 2018] Victor Magron. Interval Enclosures of Upper Bounds of Roundoff
Errors using Semidefinite Programming. ACM Transactions on Mathemat-
ical Software (TOMS), vol. 44, no. 4, pages 1–18, 2018. (Cited on page 36.)

[Mai et al. 2020] Ngoc Hoang Anh Mai, Victor Magron and Jean-Bernard
Lasserre. A Sparse Version of Reznick’s Positivstellensatz. arXiv preprint
arXiv:2002.05101, 2020. (Cited on page 36.)

[Majumdar et al. 2014] A. Majumdar, A. A. Ahmadi and R. Tedrake. Control and
Verification of High-Dimensional Systems with DSOS and SDSOS Program-
ming. In Proceedings of the 53rd IEEE Conference on Decision and Control,
pages 394–401. IEEE, 2014. (Cited on page 35.)

[Meng et al. 2022] Mark Huasong Meng, Guangdong Bai, Sin Gee Teo, Zhe Hou,
Yan Xiao, Yun Lin and Jin Song Dong. Adversarial Robustness of Deep Neu-
ral Networks: A Survey from a Formal Verification Perspective. IEEE Trans-
actions on Dependable and Secure Computing, 2022. (Cited on page 14.)

BIBLIOGRAPHY 103

[Mirman et al. 2018] Matthew Mirman, Timon Gehr and Martin Vechev. Differ-
entiable Abstract Interpretation for Provably Robust Neural Networks. In
Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th Interna-
tional Conference on Machine Learning, volume 80 of Proceedings of Ma-
chine Learning Research, pages 3578–3586. PMLR, 10–15 Jul 2018. (Cited
on page 18.)

[Molnar 2019] Christoph Molnar. Interpretable Machine Learning. https:
//christophm.github.io/interpretable-ml-book/, 2019. (Cited on
pages xxi and xxvi.)

[Motzkin 1967] Theodore Samuel Motzkin. The Arithmetic-Geometric Inequality.
Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965),
pages 205–224, 1967. (Cited on page 29.)

[Müller et al. 2021a] Christoph Müller, François Serre, Gagandeep Singh, Markus
Püschel and Martin Vechev. Scaling Polyhedral Neural Network Verification
on GPUs. In A. Smola, A. Dimakis and I. Stoica, editors, Proceedings of
4th MLSys Conference, volume 3, pages 733–746, 2021. (Cited on page 84.)

[Müller et al. 2021b] Mark Niklas Müller, Robin Staab, Marc Fischer and Mar-
tin T. Vechev. Effective Certification of Monotone Deep Equilibrium Models.
CoRR, vol. abs/2110.08260, 2021. (Cited on page 84.)

[Müller et al. 2022] Mark Niklas Müller, Gleb Makarchuk, Gagandeep Singh,
Markus Püschel and Martin Vechev. PRIMA: General and Precise Neu-
ral Network Certification via Scalable Convex Hull Approximations. Proc.
ACM Program. Lang., vol. 6, no. POPL, jan 2022. (Cited on page 84.)

[Narodytska et al. 2018] Nina Narodytska, Shiva Kasiviswanathan, Leonid
Ryzhyk, Mooly Sagiv and Toby Walsh. Verifying Properties of Binarized
Deep Neural Networks. In Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence and Thirtieth Innovative Applications of
Artificial Intelligence Conference and Eighth AAAI Symposium on Edu-
cational Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18.
AAAI Press, 2018. (Cited on page 15.)

[Narodytska 2018] Nina Narodytska. Formal Analysis of Deep Binarized Neural
Networks. In Proceedings of the Twenty-Seventh International Joint Con-
ference on Artificial Intelligence, IJCAI-18, pages 5692–5696. International
Joint Conferences on Artificial Intelligence Organization, 7 2018. (Cited on
pages 15 and 24.)

[Neumaier & Shcherbina 2004] Arnold Neumaier and Oleg Shcherbina. Safe
Bounds in Linear and Mixed-Integer Linear Programming. Mathematical
Programming, vol. 99, no. 2, pages 283–296, Mar 2004. (Cited on page 17.)

https://christophm.github.io/interpretable-ml-book/
https://christophm.github.io/interpretable-ml-book/

104 BIBLIOGRAPHY

[Nie & Demmel 2009] Jiawang Nie and James Demmel. Sparse SOS Relaxations
for Minimizing Functions that are Summations of Small Polynomials. SIAM
Journal on Optimization, vol. 19, no. 4, pages 1534–1558, 2009. (Cited on
pages 42 and 43.)

[Pabbaraju et al. 2021] Chirag Pabbaraju, Ezra Winston and Zico Kolter. Estimat-
ing Lipschitz Constants of Monotone Deep Equilibrium Models. In Interna-
tional Conference on Learning Representations, 2021. (Cited on pages 64,
75, 76, 88, 90 and 91.)

[Pardalos & Phillips 1990] Panos M. Pardalos and A. T. Phillips. A Global Opti-
mization Approach for Solving the Maximum Clique Problem. International
Journal of Computer Mathematics, vol. 33, no. 3-4, pages 209–216, 1990.
(Cited on page 48.)

[Peck et al. 2017] Jonathan Peck, Joris Roels, Bart Goossens and Yvan Saeys.
Lower Bounds on the Robustness to Adversarial Perturbations. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 30. Curran Associates, Inc., 2017. (Cited on pages 21 and 24.)

[Pál & Vértesi 2009] Károly F. Pál and Tamás Vértesi. Quantum Bounds on Bell
Inequalities. Physical Review A, vol. 79, no. 2, Feb 2009. (Cited on page 36.)

[Raghunathan et al. 2018a] Aditi Raghunathan, Jacob Steinhardt and Percy Liang.
Certified Defenses against Adversarial Examples. In International Confer-
ence on Learning Representations, 2018. (Cited on pages 19, 74, 89 and 90.)

[Raghunathan et al. 2018b] Aditi Raghunathan, Jacob Steinhardt and Percy S
Liang. Semidefinite Relaxations for Certifying Robustness to Adversarial
Examples. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-
Bianchi and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 31. Curran Associates, Inc., 2018. (Cited on pages xxii,
xxiii, xxvi, xxvii, xxviii, 24, 58 and 84.)

[Rauber et al. 2020] Jonas Rauber, Roland Zimmermann, Matthias Bethge and
Wieland Brendel. Foolbox Native: Fast Adversarial Attacks to Benchmark
the Robustness of Machine Learning Models in PyTorch, TensorFlow, and
JAX. Journal of Open Source Software, vol. 5, no. 53, page 2607, 2020.
(Cited on page 90.)

[Rendl et al. 2007] Franz Rendl, Giovanni Rinaldi and Angelika Wiegele. A Branch
and Bound Algorithm for Max-Cut Based on Combining Semidefinite and
Polyhedral Relaxations. In International Conference on Integer Programming
and Combinatorial Optimization, pages 295–309. Springer, 2007. (Cited on
page 45.)

BIBLIOGRAPHY 105

[Ruan et al. 2018] Wenjie Ruan, Xiaowei Huang and Marta Kwiatkowska. Reach-
ability Analysis of Deep Neural Networks with Provable Guarantees. In
Proceedings of the 27th International Joint Conference on Artificial Intelli-
gence, IJCAI’18, page 2651–2659. AAAI Press, 2018. (Cited on pages 17,
23 and 24.)

[Ruan et al. 2019] Wenjie Ruan, Min Wu, Youcheng Sun, Xiaowei Huang, Daniel
Kroening and Marta Kwiatkowska. Global Robustness Evaluation of Deep
Neural Networks with Provable Guarantees for the Hamming Distance. In
Proceedings of the Twenty-Eighth International Joint Conference on Artifi-
cial Intelligence, IJCAI-19, pages 5944–5952. International Joint Conferences
on Artificial Intelligence Organization, 7 2019. (Cited on pages 17 and 24.)

[Schlosser & Korda 2020] Corbinian Schlosser and Milan Korda. Sparse Moment-
Sum-of-Squares Relaxations for Nonlinear Dynamical Systems with Guar-
anteed Convergence. arXiv preprint arXiv:2012.05572, 2020. (Cited on
page 36.)

[Simonyan & Zisserman 2014] Karen Simonyan and Andrew Zisserman. Two-
Stream Convolutional Networks for Action Recognition in Videos. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence and K.Q. Weinberger,
editors, Advances in Neural Information Processing Systems, volume 27.
Curran Associates, Inc., 2014. (Cited on pages 13 and 16.)

[Singh et al. 2018] Gagandeep Singh, Timon Gehr, Matthew Mirman, Markus
Püschel and Martin Vechev. Fast and Effective Robustness Certification.
In Advances in Neural Information Processing Systems, pages 10802–10813,
2018. (Cited on page 10.)

[Singh et al. 2019] Gagandeep Singh, Timon Gehr, Markus Püschel and Martin
Vechev. An Abstract Domain for Certifying Neural Networks. Proceedings
of the ACM on Programming Languages, vol. 3, no. POPL, page 41, 2019.
(Cited on page 10.)

[Szegedy et al. 2014] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan
Bruna, Dumitru Erhan, Ian Goodfellow and Rob Fergus. Intriguing Prop-
erties of Neural Networks. In International Conference on Learning Repre-
sentations, 2014. (Cited on page 84.)

[Szegedy et al. 2015] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,
Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke and
Andrew Rabinovich. Going Deeper with Convolutions. In 2015 IEEE Con-
ference on Computer Vision and Pattern Recognition (CVPR), pages 1–9,
2015. (Cited on page 13.)

[Tacchi et al. 2020] Matteo Tacchi, Carmen Cardozo, Didier Henrion and Jean-
Bernard Lasserre. Approximating Regions of Attraction of a Sparse Polyno-

106 BIBLIOGRAPHY

mial Differential System. IFAC-PapersOnLine, vol. 53, no. 2, pages 3266–
3271, 2020. 21th IFAC World Congress. (Cited on page 36.)

[Tacchi et al. 2021] Matteo Tacchi, Tillmann Weisser, Jean-Bernard Lasserre and
Didier Henrion. Exploiting Sparsity for Semi-Algebraic Set Volume Compu-
tation. Foundations of Computational Mathematics, Mar 2021. (Cited on
page 36.)

[Tjeng et al. 2019] Vincent Tjeng, Kai Y. Xiao and Russ Tedrake. Evaluating Ro-
bustness of Neural Networks with Mixed Integer Programming. In Interna-
tional Conference on Learning Representations, 2019. (Cited on pages xxii,
xxvii, 15, 24 and 58.)

[Urban & Miné 2021] Caterina Urban and Antoine Miné. A Review of Formal
Methods applied to Machine Learning, 2021. (Cited on page 14.)

[Virmaux & Scaman 2018] Aladin Virmaux and Kevin Scaman. Lipschitz Regular-
ity of Deep Neural Networks: Analysis and Efficient Estimation. In Advances
in Neural Information Processing Systems, pages 3835–3844, 2018. (Cited
on page 58.)

[Waki et al. 2006] Hayato Waki, Sunyoung Kim, Masakazu Kojima and Masakazu
Muramatsu. Sums of Squares and Semidefinite Program Relaxations for
Polynomial Optimization Problems with Structured Sparsity. SIAM Journal
on Optimization, vol. 17, no. 1, pages 218–242, 2006. (Cited on pages xxiii,
xxvii and 36.)

[Wang & Magron 2021] Jie Wang and Victor Magron. Exploiting Term Sparsity
in Noncommutative Polynomial Optimization. Computational Optimiza-
tion and Applications, vol. 80, no. 2, pages 483–521, Nov 2021. (Cited on
page 36.)

[Wang et al. 2018a] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang and
Suman Jana. Efficient Formal Safety Analysis of Neural Networks. In
S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi and
R. Garnett, editors, Advances in Neural Information Processing Systems,
volume 31. Curran Associates, Inc., 2018. (Cited on pages 21 and 24.)

[Wang et al. 2018b] Shiqi Wang, Kexin Pei, Justin Whitehouse, Junfeng Yang and
Suman Jana. Formal Security Analysis of Neural Networks using Symbolic
Intervals. In 27th USENIX Security Symposium (USENIX Security 18),
pages 1599–1614, 2018. (Cited on pages 21 and 24.)

[Wang et al. 2021a] Jie Wang, Martina Maggio and Victor Magron. SparseJSR: A
Fast Algorithm to Compute Joint Spectral Radius via Sparse SOS Decom-
positions. In 2021 American Control Conference (ACC), pages 2254–2259,
2021. (Cited on page 36.)

BIBLIOGRAPHY 107

[Wang et al. 2021b] Jie Wang, Victor Magron and Jean-Bernard Lasserre. Chordal-
TSSOS: a Moment-SOS Hierarchy that Exploits Term Sparsity with Chordal
Extension. SIAM Journal on Optimization, vol. 31, no. 1, pages 114–141,
2021. (Cited on page 36.)

[Wang et al. 2021c] Jie Wang, Victor Magron and Jean-Bernard Lasserre. TSSOS:
A Moment-SOS Hierarchy that Exploits Term Sparsity. SIAM Journal on
Optimization, vol. 31, no. 1, pages 30–58, 2021. (Cited on page 36.)

[Wang et al. 2021d] Shiqi Wang, Huan Zhang, Kaidi Xu, Xue Lin, Suman Jana,
Cho-Jui Hsieh and Zico Kolter. Beta-CROWN: Efficient Bound Propagation
with Per-neuron Split Constraints for Neural Network Robustness Verifica-
tion. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang and J. Wort-
man Vaughan, editors, Advances in Neural Information Processing Systems,
volume 34, pages 29909–29921. Curran Associates, Inc., 2021. (Cited on
pages xxii, xxvii, 21 and 24.)

[Wang et al. 2022] Jie Wang, Victor Magron, Jean-Bernard Lasserre and Ngoc
Hoang Anh Mai. CS-TSSOS: Correlative and Term Sparsity for Large-
Scale Polynomial Optimization. ACM Trans. Math. Softw., oct 2022. Just
Accepted. (Cited on pages 36, 46 and 47.)

[Wei & Kolter 2022] Colin Wei and Zico Kolter. Certified Robustness for Deep
Equilibrium Models via Interval Bound Propagation. In International Con-
ference on Learning Representations, 2022. (Cited on page 84.)

[Weisser et al. 2018] Tillmann Weisser, Jean-Bernard Lasserre and Kim-Chuan
Toh. Sparse-BSOS: a Bounded Degree SOS Hierarchy for Large Scale Poly-
nomial Optimization with Sparsity. Mathematical Programming Computa-
tion, vol. 10, no. 1, pages 1–32, 2018. (Cited on page 36.)

[Weng et al. 2018a] Lily Weng, Huan Zhang, Hongge Chen, Zhao Song, Cho-Jui
Hsieh, Luca Daniel, Duane Boning and Inderjit Dhillon. Towards Fast
Computation of Certified Robustness for ReLU Networks. In Jennifer Dy
and Andreas Krause, editors, Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 5276–5285. PMLR, 10–15 Jul 2018. (Cited on pages 10, 20,
24, 58 and 84.)

[Weng et al. 2018b] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Aurelie Lozano,
Cho-Jui Hsieh and Luca Daniel. On Extensions of CLEVER: A Neural
Network Robustness Evaluation Algorithm. In 2018 IEEE Global Conference
on Signal and Information Processing (GlobalSIP), pages 1159–1163. IEEE,
2018. (Cited on pages 10, 22 and 24.)

[Weng et al. 2018c] Tsui-Wei Weng, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, Dong
Su, Yupeng Gao, Cho-Jui Hsieh and Luca Daniel. Evaluating the Robustness

108 BIBLIOGRAPHY

of Neural Networks: An Extreme Value Theory Approach. In International
Conference on Learning Representations, 2018. (Cited on pages xxii, xxvii,
10, 22, 24 and 58.)

[Winston & Kolter 2020] Ezra Winston and Zico Kolter. Monotone Operator Equi-
librium Networks. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan
and H. Lin, editors, Advances in Neural Information Processing Systems,
volume 33, pages 10718–10728. Curran Associates, Inc., 2020. (Cited on
pages xxii, xxvi, 4, 66 and 75.)

[Wong & Kolter 2018] Eric Wong and Zico Kolter. Provable Defenses Against Ad-
versarial Examples via the Convex Outer Adversarial Polytope. In Inter-
national Conference on Machine Learning, pages 5286–5295. PMLR, 2018.
(Cited on pages 19, 24 and 58.)

[Wu et al. 2020] Min Wu, Matthew Wicker, Wenjie Ruan, Xiaowei Huang and
Marta Kwiatkowska. A Game-Based Approximate Verification of Deep Neu-
ral Networks with Provable Guarantees. Theor. Comput. Sci., vol. 807, pages
298–329, 2020. (Cited on pages 16 and 24.)

[Xiang et al. 2018a] Weiming Xiang, Hoang-Dung Tran and Taylor T. Johnson.
Output Reachable Set Estimation and Verification for Multilayer Neural
Networks. IEEE Transactions on Neural Networks and Learning Systems,
vol. 29, no. 11, pages 5777–5783, 2018. (Cited on pages 18 and 24.)

[Xiang et al. 2018b] Weiming Xiang, Hoang-Dung Tran, Joel A. Rosenfeld and
Taylor T. Johnson. Reachable Set Estimation and Safety Verification for
Piecewise Linear Systems with Neural Network Controllers. In 2018 Annual
American Control Conference (ACC), pages 1574–1579, 2018. (Cited on
page 18.)

[Xu et al. 2021] Kaidi Xu, Huan Zhang, Shiqi Wang, Yihan Wang, Suman Jana,
Xue Lin and Cho-Jui Hsieh. Fast and Complete: Enabling Complete Neural
Network Verification with Rapid and Massively Parallel Incomplete Verifiers.
In International Conference on Learning Representations, 2021. (Cited on
pages 20 and 24.)

[Xue et al. 2022] Anton Xue, Lars Lindemann, Alexander Robey, Hamed Hassani,
George J. Pappas and Rajeev Alur. Chordal Sparsity for Lipschitz Constant
Estimation of Deep Neural Networks, 2022. (Cited on page 58.)

[Zhang et al. 2018] Huan Zhang, Tsui-Wei Weng, Pin-Yu Chen, Cho-Jui Hsieh and
Luca Daniel. Efficient Neural Network Robustness Certification with Gen-
eral Activation Functions. In Advances in Neural Information Processing
Systems (NuerIPS), dec 2018. (Cited on pages xxii, xxvii, 10, 20, 24, 58
and 84.)

BIBLIOGRAPHY 109

[Zhang et al. 2019] Huan Zhang, Pengchuan Zhang and Cho-Jui Hsieh. RecurJac:
An Efficient Recursive Algorithm for Bounding Jacobian Matrix of Neural
Networks and Its Applications. Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, no. 01, pages 5757–5764, Jul. 2019. (Cited on
pages 20 and 24.)

[Zhang et al. 2020] Huan Zhang, Hongge Chen, Chaowei Xiao, Sven Gowal, Robert
Stanforth, Bo Li, Duane Boning and Cho-Jui Hsieh. Towards Stable and
Efficient Training of Verifiably Robust Neural Networks. In International
Conference on Learning Representations, 2020. (Cited on pages 20 and 24.)

BIBLIOGRAPHY 111

