Lirong Gan

Kanghong Jing

student. Junjie Yudong Wan

Shuai Wu

Haocheng Yang

Leiying Liu

Peng

Tong Chen

Keywords: robustness verification, Lipschitz constant, neural network, polynomial optimization, semidefinite programming, moment-sum of squares hierarchy, correlative sparsity vérification de robustesse, constante de Lipschitz, réseau de neurones, optimisation polynomiale, programmation semi-définie, hiérarchie momentsomme de carrés, parcimonie corrélative

Jianwei An, it's your hardworking and persistence that brings us to the first prize of Chinese modeling competition. Hengtao Bao,

How time flies. It has been three years since I started my doctorate. I can never imagine how small and unhelpful I am towards the passage of time. This thesis is the set of works that I accomplished during this unforgettable period, and is specially dedicated to my supervisors, my parents and my wife, in memory with my lost student time.

First of all, I would like to thank all my supervisors: Edouard Pauwels, Victor Magron and Jean-Bernard Lasserre. You are the guiders who introduce me to the world of polynomial optimization and robustness verification. Verifying the robustness of neural networks is a difficult and important problem in machine learning community, and few researchers apply polynomial optimization techniques to it. I am happy that, thanks to our efforts, we succeeded in proposing new approaches, although there are still many limitations. You are not only my supervisors, but also my friends.

I would like also to express my gratitude to all my jury members: Alexandre d'Aspremont, Yohann de Castro, David Steurer and Lihong Zhi. Thank you all for reading my thesis and providing valuable comments. I am looking forward to future collaborations with you.

I would like to thank my parents for supporting me to continue my studies in France. As I grow, you never interfere with my ideas and always encourage me to do what I want to do. Without my parents, I am nothing.

I would like to thank my colleagues at LAAS, which allow me to interact with others and work in a comfortable environment. Ngoc Hoang Anh Mai, I believe that you will make great achievements in your postdoc career! Jie Wang, I always aim to become an excellent researcher like you! Srecko Durasinovic, I hope that everything goes fine with you in Singapore and I am looking forward to speaking Chinese with you in the near future! Corbinian Schlosser, best wishes for your defense next year! Also thanks to all the ping-pong players: Alexey, Florent, Nicola, Manon... I would like to thank my previous teachers who have greatly influenced my life. Christophe Giraud, I really appreciate your cleverness and kindness. Bin Li, you not only taught me abstract algebra, but also the quality of a good teacher. Xiaofang Zhou, you are my first and favorite teacher in university. Tingting Liu, Lijun Duan, you are the best Chinese and English teacher in my high school! Kenan Liu, your way of teaching Chinese is really like a loving mother. Youshao Pu, you are the first one who show me the beauty of math and made me fall into love with it.

I would like to thank all my friends appearing in my life, from past to now, from China to France. Hao Hu, you gave me a lot of support in my daily life, all the best with your PhD defense! Martin Mugnier, I really enjoy the time together with you at Orsay! Alexandre Werthe, you are the first person who help me with my courses and my life at Besançon, I will always remember you. Junchao Chen, our time at Besançon and Paris is definitely a wonderful memory. Zhuo Liu, Mingyang Ren,

List of Notations

• R n : the n-dimensional real vector space;

• Z n : the set of n-tuples of integers;

• x ∈ R: a real number;

• x ∈ R n : an n-dimensional real vector;

• x • y: element-wise product of vectors x, y ∈ R n ;

• [n]: the set {1, 2, . . . , n};

• x (i) : the i-th coordinate of vector x for i ∈ [n];

• x (I) : the subvector of x consisting of the coordinates indexed by I ⊆ [n];

• x i:j : the concatenation of vectors x i , x i+1 , . . . , x j for i < j;

• A ∈ R m×n : a real matrix of size m × n;

• A (i,:) : the i-th row vector of matrix A;

• S n : the cone of real symmetric matrices;

• S n + : the cone of real positive semidefinite matrices;

• R[x]: the vector space of real polynomials in variable x;

• R d [x]: the vector space of real polynomials in variable x with degree ≤ d;

• P [x]: the cone of nonnegative real polynomials in variable x;

• P d [x]: the cone of nonnegative real polynomials in variable x with degree ≤ d;

• Σ[x]: the cone of sum of squares of polynomials in variable x;

• Σ d [x]: the cone of sum of squares of polynomials in variable x with degree ≤ 2d;

• v d (x): the monomial basis of variable x of degree ≤ d;

• P(K): the space of Borel probability measure with support contained in K;

• L y : Riesz linear functional;

• M d (y): d-th order (dense) moment matrix;

• M d (gy): d-th order (dense) localizing matrix of polynomial g;

Introduction

Many human activities and inventions are influenced or inspired by other biological behaviors. For example, birds inspired us to fly and invent airplanes, fish inspired the invention of the submarine, burdock plants inspired Velcro, etc. Artificial Neural Network (ANN) is also a great creativity inspired by the architecture of the human brain, which is composed of a large number of highly interconnected neurons working together to solve a specific problem. Nowadays, ANNs play a very important role in deep learning, the most exciting and powerful branch of machine learning.

The power and scalability of ANNs make them widely and successfully used for many large-scale, difficult and complicated machine learning tasks, such as image classification, speech recognition, recommender system and training of Artificial Intelligence (AI) to beat humans in many games like Go or StarCraft. When we talk about a neural network, we often refer to network parameters. An ANN is actually an application, or a function, which is nonlinear with respect to its parameters. Usually the parameters are estimated or learned from a set of training samples, and the learning process is indeed to minimize an objective function which is nonconvex and nonlinear, leading to local minimizers and a Non-deterministic Polynomial-time hard (NP-hard) complexity. The basis for the successful application of ANNs is due to the universal approximation theorem by [Cybenko 1989, Hornik et al. 1989]. Moreover, [START_REF] Lecun | [END_REF]] has proposed an efficient algorithm, called backpropagation, to calculate the gradient of an ANNs, which allows us to easily obtain a local minimizer of the optimization problem and is probably the supervised learning algorithm most widely used.

Every coin has two sides, and the artificial neural network is no exception. Although ANNs have been very successful in many areas, there are also many drawbacks and open issues. For example, ANNs are highly hardware dependent. In order to satisfy the requirements of accuracy and instantaneousness, deep learning algorithms and models must be executed on good hardware platforms. No matter for training or verifying neural networks, the computing power of the platform is the main obstacle that limits the application of ANNs. Moreover, as neural networks are often used as black box algorithms, two major challenges for ANNs are to provide proper interpretabilities and to ensure high reliability for the designed models. An interpretable ANN helps people fully understand the internal structure of the network and explain the relationships between input features and output labels, which is crucial in certain fields such as healthcare and finance. Also, it is very important to know if a classifier is reliable or not, in other words if it is robust with respect to inputs. This induces the problem of verifying the robustness of a given classifier, i.e. if we disturb the inputs a little, the output should not be different. In fact, [START_REF] Molnar | Interpretable Machine Learning[END_REF]] has already discovered many adversarial examples (instances with small intentional feature perturbations that cause a machine learning model to make a false prediction) in neural networks. Historically, when the contradictory example occurs, [START_REF] Lu | [END_REF] tried to come up with defenses based on test input transformations, but the defense was broken in just five days by [Athalye et al. 2018]. Therefore, there is a need for a systematic method to deal with this problem. The main objective of this manuscript is to address these problems of robustness verification in neural networks using polynomial optimization techniques. [Raghunathan et al. 2018b] translated this kind of problem into a nonconvex Quadratically Constrained Quadratic Program (QCQP) and used Semidefinite Programming (SDP) relaxation (an SDP with a larger feasible domain that is easier to solve) to obtain an upper bound on the optimal value of the original QCQP. In Section 5.4, we will see that the verification problem is indeed to identify whether the optimal value of an optimization problem is negative or not, so that if we obtain a negative upper bound of the optimal value, we could still verify robustness. What we propose in this manuscript is also a method based on SDP, with finer approximations and guaranteed convergence. We also propose two other approaches, Lipschtz constant estimation and ellipsoidal propagation, both of which can be applied to verify the robustness of neural networks.

The outline of the manuscript is as follows:

• Chapter 1: Deep learning and neural networks. This chapter gives an introduction on the background of deep learning: in which situation deep learning algorithms (especially neural networks) attract the attention of researchers, what are the significant advantages of deep learning compared to traditional machine learning algorithms, why robustness is an important issue for neural networks. Main references include [START_REF] Lecun | [END_REF]] for backpropagation, [Hornik 1991] for universal approximation theorem, , [START_REF] Bai | [END_REF] for deep equilibrium model, [START_REF] Winston | [END_REF] for monotone operator equilibrium network, [Kolter & Madry 2018] for adversarial example.

• Chapter 2: Existing approaches to robustness verification. In a nutshell, robustness verification can be formalized as a highly nonlinear composite constraint satisfaction problem. We give an overview of existing approaches to verify the robustness of neural networks, which can be classified into three types of approaches: exact deterministic approximation, deterministic approximation and statistical approximation. The approaches and algorithms proposed in this manuscript can be classified either in exact deterministic approach (when we consider the convergent hierarchy) or in approximate deterministic approach (when we stick to a fixed order relaxation). Main references include [START_REF] Huang | [END_REF], Li et al. 2020] for surveys on robustness verification of neural networks, [START_REF] Katz | [END_REF] for Reluplex, [Ehlers 2017] for Planet, [START_REF] Lomuscio | [END_REF] for NSVerify, [Tjeng et al. 2019] for MIPVerify, [Gehr et al. 2018] for AI2, [Weng et al. 2018c] for FastLin/FastLip, [Boopathy et al. 2019] for CNN-cert, [Raghunathan et al. 2018b] for SDPcert, [START_REF] Zhang | [END_REF] for CROWN, [Wang et al. 2021d] for β-CROWN.

• Chapter 3: Convex relaxations and moment-SOS hierarchy. This chapter xxiii focuses on the theoretical preliminaries of the convex relaxation techniques that interest us when we want to obtain approximations of non-convex optimization problems. We also introduce the Lasserre hierarchy, a systematic approach to relax a Polynomial Optimization Problem (POP) to a sequence of SDPs, whose associated sequence of optimal values converges to the exact solution. Main references include [Lasserre 2001] for dense moment relaxation, [Lasserre 2006, Waki et al. 2006] for sparse moment relaxation.

• Chapter 4: Sublevel hierarchy. This chapter is the methodological contribution in terms of polynomial optimization. We develop a hierarchy based on SDP, called sublevel hierarchy, for general POPs, in order to obtain finer bounds between the standard Lasserre relaxations of order d and (d+1). The advantage of the sublevel hierarchy is that we can handle dense or nearly dense POPs where the standard hierarchy may not be manageable due to memory issues. We provide many benchmarks in polynomial optimization where the sublevel hierarchy shows improvements over the standard Lasserre hierarchy. The materials of this chapter are referred to [START_REF][END_REF]].

• Chapter 5: Robustness verification and related problems. This chapter is the application of the sublevel moment-Sums of Squares (moment-SOS) hierarchy for two types of neural networks: Deep Neural Network (DNN) and Monotone Operator Equilibrium Network (MON). We first show how to represent the Rectified Linear Unit (ReLU) function and its subdifferential exactly with polynomial systems, which gives a semi-algebraic representation of the inputoutput relationship of ReLU networks. Then, we present several applications to network verification and obtain SDP models for the following problems: Lipschitz constant estimation, ellipsoidal propagation and robustness verification. We use these models to verify the robustness of DNNs and MONs w.r.t. norm L 2 and L ∞ . Related works include [Raghunathan et al. 2018b] for robustness verification of DNNs by Shor's relaxation, [Latorre et al. 2020] for estimating Lipschitz constant of DNNs by Linear Programming (LP) relaxation, [Dathathri et al. 2020] for robustness verification by fast first-order SDP algorithm, [Chen et al. 2020[START_REF][END_REF] for robustness verification of DNNs and MONs by sublevel relaxation.

The list of our contributions is as follows: [Cybenko 1989, Hornik et al. 1989]. De plus, [START_REF] Lecun | [END_REF]] a proposé un algorithme efficace, appelé rétropropagation, pour calculer le gradient d'un RNA, qui nous permet d'obtenir facilement un minimiseur local du problème d'optimisation et qui est probablement l'algorithme d'apprentissage supervisé le plus largement utilisé. Toute pièce de monnaie a deux côtés, et le réseau neuronal artificiel ne fait pas exception. Bien que les RNA aient connu un grand succès dans de nombreux domaines, il existe également de nombreux inconvénients et problèmes non résolus. Par exemple, les RNA sont très dépendants du matériel informatique. Afin de satisfaire aux exigences de précision et d'instantanéité, les algorithmes et modèles d'apprentissage profond doivent être exécutés sur de bonnes plateformes matérielles. Que ce soit pour l'entraînement ou la vérification des réseaux de neurones, la puissance de calcul de la plateforme est le principal obstacle qui limite l'application des RNA. De plus, les réseaux neurones étant souvent utilisés comme des algorithmes de type boîte noire, deux défis majeurs pour le RNA sont de fournir des interprétabilités appropriées et d'assurer une fiabilité élevée pour les modèles conçus. Un RNA interprétable aide les gens à comprendre pleinement la structure interne du réseau et à expliquer les relations entre les caractéristiques d'entrée et les étiquettes de sortie, ce qui est crucial dans certains domaines tels que la santé et la finance. En outre, il est très important de savoir si un classificateur est fiable ou non, en d'autres termes s'il est robuste par rapport aux entrées. Ceci induit le problème de la vérification de la robustesse d'un classifieur donné, c'est-à-dire que si on perturbe un peu les entrées, la sortie ne devrait pas être différente. En fait, [START_REF] Molnar | Interpretable Machine Learning[END_REF]] a déjà découvert de nombreux exemples contradictoires (instances avec de petites perturbations intentionnelles des caractéristiques qui amènent un modèle d'apprentissage machine à faire une fausse prédiction) dans les réseaux neurones. Historiquement, lorsque l'exemple contradictoire se produit, [START_REF] Lu | [END_REF]] a essayé de trouver des défenses basées sur des transformations d'entrée de test, mais la défense a été brisée en seulement cinq jours par [Athalye et al. 2018]. Par conséquent, il est nécessaire de trouver une méthode systématique pour traiter ce problème. L'objectif principal de cette thèse est d'aborder ces problèmes de vérification de la robustesse dans les réseaux neurones en utilisant des techniques d'optimisation polynomiale. [Raghunathan et al. 2018b] a traduit ce type de problème en un QCQP non convexe et a utilisé la relaxation basée sur la programmation semi-définie (un programme avec un domaine réalisable plus grand et plus facile à résoudre) pour obtenir une borne supérieure sur la valeur optimale du QCQP original. Dans la section 5.4, nous verrons que le problème de vérification est en fait d'identifier si la valeur optimale d'un problème d'optimisation est négative ou non, de sorte que si nous obtenons une borne supérieure négative de la valeur optimale, nous pouvons toujours vérifier la robustesse. Ce que nous proposons dans cette thèse est également une méthode basée sur la programmation semi-définie, avec des approximations plus fines et une convergence garantie. Nous proposons également deux autres approches, l'estimation de la constante de Lipschtz et la propagation ellipsoïdale, qui peuvent toutes deux être appliquées pour vérifier la robustesse des réseaux neurones.

Le plan de la thèse se présente comme suit :

• Chapitre 1 : L'apprentissage profond et les réseaux de neurones. Ce chapitre donne une introduction sur le contexte de l'apprentissage profond : dans quelle situation les algorithmes d'apprentissage profond (en particulier les réseaux de neurones) attirent l'attention des chercheurs, quels sont les avantages significatifs de l'apprentissage profond par rapport aux algorithmes traditionnels d'apprentissage machine, pourquoi la robustesse est une question importante pour les réseaux de neurones. Les principales références comprennent : [START_REF] Lecun | [END_REF]] pour la rétropropagation, [Hornik 1991] pour le théorème d'approximation universelle, , [START_REF] Bai | [END_REF]] pour le modèle d'équilibre profond, [START_REF] Winston | [END_REF]] pour le réseau d'équilibre à opérateur monotone, [Kolter & Madry 2018] pour l'exemple contradictoire.

• Chapitre 2 : Les approches existantes de la vérification de la robustesse.

En un mot, la vérification de la robustesse peut être formalisée comme un problème composite de satisfaction de contraintes hautement non linéaire. Nous donnons un aperçu des approches existantes pour vérifier la robustesse des réseaux neuronaux, qui peuvent être classées en trois types d'approches : l'approximation déterministe exacte, l'approximation déterministe et l'approximation statistique. Les approches et algorithmes proposés dans cette thèse peuvent xxvii être classés soit dans l'approche déterministe exacte (lorsque nous considérons la hiérarchie convergente), soit dans l'approche déterministe approximative (lorsque nous nous en tenons à une relaxation d'ordre fixe). Les principales références comprennent : [START_REF] Huang | [END_REF], Li et al. 2020] pour les enquêtes sur la vérification de la robustesse des réseaux neuronaux, [START_REF] Katz | [END_REF] pour Reluplex, [Ehlers 2017] pour Planet, [START_REF] Lomuscio | [END_REF] pour NSVerify, [Tjeng et al. 2019] pour MIPVerify, [Gehr et al. 2018] pour AI2, [Weng et al. 2018c] pour FastLin/FastLip, [Boopathy et al. 2019] pour CNNcert, [Raghunathan et al. 2018b] pour SDP-cert, [START_REF] Zhang | [END_REF]] pour CROWN, [Wang et al. 2021d] pour β-CROWN.

• Chapitre 3 : Les relaxations convexes et la hiérarchie moment-SOS. Ce chapitre se concentre sur les préliminaires théoriques des techniques de relaxation convexe qui nous intéressent lorsque nous voulons obtenir des approximations de problèmes d'optimisation non convexes. Nous introduisons également la hiérarchie de Lasserre, une approche systématique pour relaxer un problème d'optimisation polynomiale en une séquence de la programmation semi-définie, dont la séquence associée de valeurs optimales converge vers la solution exacte. Les principales références incluent : [Lasserre 2001] pour la relaxation des moments sans parsimonie, [Lasserre 2006, Waki et al. 2006] pour la relaxation des moments avec parsimonie. [Raghunathan et al. 2018b] pour la vérification de la robustesse de réseau neurone profond par la relaxation de Shor, [Latorre et al. 2020] pour l'estimation de la constante de Lipschitz de réseau neurone profond par la relaxation linéaire, [Dathathri et al. 2020] pour la vérification de la robustesse par l'algorithme semi-défini rapide du premier ordre, [Chen et al. 2020[START_REF][END_REF]] pour la vérification de la robustesse de réseau neurone profond et réseau d'équilibre à opérateur monotone par la relaxation de sous-niveau.

La liste de nos contributions est la suivante :

• [START_REF][END_REF], consacré au cadre de relaxation de sous-niveau pour les problèmes d'optimisation polynomiale, qui est présenté au chapitre 4;

• [Chen et al. 2020], consacré à l'application des relaxations de sous-niveaux pour la vérification de la robustesse de réseau neurone profond, qui est présenté dans le chapitre 5;

• [START_REF][END_REF], consacré à l'application des relaxations de sous-niveaux pour la vérification de la robustesse de réseau d'équilibre à opérateur monotone, qui est présenté dans le chapitre 5.

Chapter 1

Deep Learning and Neural Networks

Machine learning is an application of AI that enables systems to learn and improve from experience without being explicitly programmed. Machine learning focuses on developing computer programs that can access data and use it to learn for themselves. It recognizes patterns in the data and make predictions once new data arrives. In general, the learning process of these algorithms can either be supervised or unsupervised, depending on the data being used to feed the algorithms.

Deep learning algorithms can be regarded both as a sophisticated and mathematically complex evolution of machine learning algorithms. The field has been getting lots of attention recently and for good reason: recent developments have led to results that were not thought to be possible before. Deep learning describes algorithms that analyze data with a logic structure similar to how a human would draw conclusions. Note that this can happen both through supervised and unsupervised learning. To achieve this, deep learning applications use layered structures of algorithms, i.e., NNs. The design of such NNs is inspired by the biological neural network of the human brain, leading to a process of learning which is far more capable than that of standard machine learning models. Moreover, [START_REF] Lecun | [END_REF]] proposed an efficient way to compute the gradient of a neural network, called backpropagation, which allows to obtain a local minimizer of the quadratic criterion easily.

Theoretically, [Hornik 1991] showed that any bounded and regular function f : R n → R can be approximated at any given precision by a neural network with one hidden layer containing a finite number of neurons, having the same activation function, and one linear output neuron. This result was earlier proved by [Cybenko 1989] in the particular case of the sigmoid activation function. Precisely, Hornik's theorem can be stated as follows.

Theorem 1.1. (Universal Approximation Theorem) Let σ be a bounded, continuous and non-decreasing (activation) function. Let K be a compact set in R n and C(K) the set of continuous functions on K. Let f ∈ C(K). Then for all ε > 0, there exists

N ∈ N + , a i , b i ∈ R, c i ∈ R n , such that, if we define ϕ(x) = N i=1 a i σ(c T i x + b i), then we have ∀x ∈ K, |ϕ(x) -f (x)| ≤ ε.
This theorem is interesting from a theoretical point of view. From a practical point of view, this is not really useful since the number of neurons in the hidden layer can be very large. The strength of deep learning lies in the deep (number of hidden layers) of the networks.

Today, deep learning is used in many fields. In automated driving, for example, deep learning is used to detect objects, such as "STOP" signs or pedestrians. The military uses deep learning to identify objects from satellites, e.g. to discover safe or unsafe zones for its troops. Of course, the consumer electronics industry is also full of deep learning. Home assistance devices like Amazon Alexa, for example, rely on deep learning algorithms to respond to your voice and learn your preferences.

Structure of Neural Networks

The structure of a neural network is also referred to its architecture or topology. It consists of the number of layers and number of neurons. It also consists of the way of interconnection between neurons of adjacent layers. The choice of the structures determines the results we are going to obtain. It is the most critical part of the implementation of a neural network.

Deep neural network (DNN)

Deep Neural Network (DNN) is also known as deep feed-forward neural network. It is an artificial neural network in which the neurons do not form a cycle. A DNN consists of an input layer, several hidden layers and one output layer, where the input layer takes inputs, and the output layer generates outputs. The hidden layers have no connection with the outer world, that's why they are called hidden layers. Every neuron in one layer is connected with each node in the next layer. Therefore, all the nodes are fully-connected. Something else to notice is that there is no visible or invisible connection between the nodes in the same layer. There are no back-loops in DNNs. Hence, to minimize the error in prediction, we usually use the backpropagation algorithm to update the weight values.

Consider a fully-connected multi-layer neural network for classification. Suppose we have L hidden layers in the neural network, where there are p 0 neurons in the input layer and p i neurons in each hidden layer for i = 1, . . . , L. For each hidden layer, we associate a triple of parameters (A i , b i , σ i), where A i ∈ R p i ×p i-1 is called the weight matrix, b i ∈ R p i is called the bias. We denote by x i ∈ R p i the neurons at layer i. The neurons at layer i is activated by the neurons at layer i -1, i.e. x i = σ(A i x i-1 + b i) where σ : R p i → R p i is called the activation function. Suppose we have K labels, we denote by F : R p 0 → R K the deep neural network. The output of network F is an affine combination of the last hidden neurons, i.e., F (x 0) = Cx L with C ∈ R K×p L . The prediction y x 0 of input x 0 is the index of output F (x 0) with the largest value, i.e. y x 0 = arg max i=1,...,K F (x 0) i . Figure 1.1 is an illustration of a DNN of 3 hidden layers.

Deep equilibrium model (DEQ)

Deep equilibrium model (Deep Equilibrium Model (DEQ)) is a new variant of deep neural network proposed by [START_REF] Bai | [END_REF]. The difference between a DEQ and a DNN is that there is only one single hidden layer where the hidden neurons are evaluated by a fixed-point equation. Consider a fully-connected deep equilibrium model for classification. Let p 0 be the number of neurons in the input layer and p 1 the number of neurons in the hidden layer. Denote by x 0 and x 1 the neurons at input layer and hidden layer respectively. Then the hidden neurons is computed by x 1 = σ(Ax 1 + Bx 0 + b) where σ : R p 1 → R p 1 is the activation function and

A ∈ R p 1 ×p 1 , B ∈ R p 1 ×p 0 , b ∈ R p 1 are its parameters.
The output of network F is an affine combination of the last hidden neurons, i.e., F (x 0) = Cx 1 with C ∈ R K×p 1 . The prediction y x 0 of input x 0 is the index of output F (x 0) with the largest value, i.e. y x 0 = arg max i=1,...,K F (x 0) i . Figure 1.1 is an illustration of a DEQ. (b) The activation function σ can be represented as proximal operator of some function f , i.e., σ = prox 1 f . For α > 0, the proximal operator prox α f is defined as

prox α f (x) := arg min z 1 2 x -z 2 2 + αf (z). (1.1)
Remark. ReLU activation function (which will be defined in Section 1.2.3), is equal to the proximal operator of the indicator of the positive orthant f (x) = 1 x≥0 . Other familiar activation functions, such as leaky ReLU, tanh, sigmoid, also can be represented by proximal operators [Bibi et al. 2019].

A DEQ satisfying Assumption 1 is called a Monotone Operator Equilibrium Network (MON) [START_REF] Winston | [END_REF]. The iteration algorithms for the fixedpoint equation given by a MON is guaranteed to be convergent. Throughout this thesis, we will always consider MONs instead of DEQs.

Convolutional neural network (CNN)

A Convolutional Neural Network (CNN) uses a variation of the multilayer perceptrons. A CNN contains one or more than one convolutional layers. These layers can either be completely interconnected or pooled. Before passing the result to the next layer, the convolutional layer uses a convolutional operation on the input. Due to this convolutional operation, the network can be much deeper but with much fewer parameters. Due to this ability, convolutional neural networks show very effective results in image and video recognition, signal processing, natural language processing, and recommender systems. Convolutional neural networks also show great success in semantic parsing and paraphrase detection. CNNs are also being used in image analysis and recognition in agriculture where weather features are extracted from satellites like LSAT to predict the growth and yield of a piece of land. Figure 1.3 shows how a typical CNN looks like.

Recurrent neural network (RNN)

Recurrent Neural Network (RNN) is another variation of deep neural networks. In an RNN, each neuron in hidden layers receives an input with a specific delay in time. We use this type of neural network where we need to access previous information in current iterations. For example, when we are trying to predict the next word in a sentence, we need to know the previously used words first. RNNs can process inputs and share any lengths and weights across time. The model size does not increase with the size of the input, and the computations in this model take into account the historical information. However, the problem with RNNs is the slow computational speed. Moreover, it cannot consider any future input for the current state and it cannot remember information from a long time ago either.

Autoencoder (AE)

An Autoencoder (AE) is an unsupervised machine learning algorithm. In an AE, the number of hidden neurons is smaller than the input neurons. The number of input neurons in an AE equals to the number of output neurons. For autoencoder, we train it to display the output, which is as close as the original input. This forces AEs to find common patterns and regenerate the data. We use autoencoders for smaller representation of the input. We can reconstruct the original data from compressed data. The algorithm is relatively simple as AE requires output to be the same as the input. A Variational Autoencoder (VAE) uses a probabilistic approach for describing observations. It shows the probability distribution for each attribute in a feature set. Figure 1.5 is the basic structure of an AE, where X is the input neurons, X is the output neurons, and h is the hidden neurons.

Activation Function in Neural Networks

In neural networks, the activation function defines the output of neurons given an input or set of inputs. Only nonlinear activation functions allow neural networks to compute nontrivial problems using only a small number of neurons and hidden layers.

Sigmoid function

Sigmoid function is defined as

f (x) = 1 1 + e -x , ∀x ∈ R.
This function maps any real number to the open interval (0, 1). It is smooth and monotonically increasing, as shown in Figure 1.6a.

Tanh function

Tanh stands for hyperbolic tangent and is defined as

f (x) = e x -e -x e x + e -x , ∀x ∈ R.
This function is very similar to sigmoid function. It maps any real number to the open interval (-1, 1), and is also smooth and monotonically increasing, as shown in Figure 1.6b.

ACTIVATION FUNCTION IN NEURAL NETWORKS

ReLU function

ReLU stands for rectified linear unit and is defined as

f (x) = max{0, x}, ∀x ∈ R.
Although it gives an impression of a linear function, ReLU is nonlinear and allows for backpropagation while simultaneously making it computationally efficient. The main catch here is that the ReLU function does not activate all the neurons at the same time. The neurons will only be deactivated if the output of the linear transformation is less than 0. See Figure 1.6c.

Leaky ReLU function

Leaky ReLU function is defined as

f (x) = max{αx, x}, ∀x ∈ R, with α ∈ (0, 1).
It is an improved version of ReLU function as it has a small positive slope in the negative area. By making this minor modification for negative input values, the gradient of the left side of the graph comes out to be a non-zero value. Therefore, we would no longer encounter dead neurons in that region (which is the main reason of gradient vanishing). See Figure 1.6d.

ELU function

ELU stands for exponential linear unit and is defined as

f (x) =    x, x ≥ 0 α(e x -1), x < 0 , with α ∈ [0, 1].
It is also a variant of ReLU function that modifies the slope of the negative part of the function. ELU uses a log curve to define the negative values unlike the leaky ReLU function with a straight line. See Figure 1.6e.

-4 -2

0 2 4 0 0.2 0.4 0.6 0.8 1 x y (a) Sigmoid -2 -1 0 1 2 -1 -0.5 0 0.5 1 x (b) tanh -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 x (c) ReLU -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 x (d) Leaky ReLU -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 x (e) ELU

Adversarial Examples

Although artificial neural network is powerful in many areas, the classifiers have been shown in some cases to fail in the presence of small adversarial perturbations of inputs by [Kolter & Madry 2018]. A typical example is displayed in Figure 1.7. The original picture is a panda, we add a tiny perturbation to it and get a new picture which is visually exactly the same (a panda). However, the classifier we trained says that the new picture is a gibbon with high confidence. Such adversarial examples make machine learning models vulnerable to small perturbations. For instance, a self-driving car crashes into another car because it ignores a stop sign. Someone had placed a picture over the sign, which looks like a stop sign with a little dirt for humans, but was designed to look like a parking prohibition sign for the sign recognition software of the car. As we can see, the unsafe or erroneous phenomenon acting on neural networks are essentially caused by the inconsistency of the decision boundaries from deep learning models (that are learned from training datasets) and human oracles. This inevitably raises significant concerns on whether deep learning models can be safely applied in safety-critical domains. This generates difficulties for theoretical analysis and a posteriori performance evaluation, and is problematic for applications where robustness issues are crucial, for example inverse problems (IP) in scientific computing. Indeed such IPs are notoriously ill-posed and is stressed in the March 2021 issue of SIAM News by [Antun et al. 2021], "Yet DL has an Achilles' heel. Current implementations can be highly unstable, meaning that a certain small perturbation to the input of a trained neural network can cause substantial change in its output. This phenomenon is both a nuisance and a major concern for the safety and robustness of DL-based systems in critical applications-like healthcare-where reliable computations are essential". Indeed, the Instability Theorem by [Antun et al. 2021] predicts unavoidable lower bound on Lipschitz contants, which may explain the lack of stability of some DNNs and over-performing on training sets.

Adversarial training

Numerous defenses have been proposed to deal with the threat of adversarial examples, in particular for those with small perturbations. While many of the existing approaches are heuristic in nature, that is, they do not provide guarantees that tell us when, or if, the model's predictions cannot be manipulated. In some safety critical applications, this may not be good enough. Therefore, researchers try to consider training neural networks that are robust with respect to certain attacks. We briefly introduce two approaches to train robust networks either by controlling the margins along the boundary or estimating the Lipschitz constant.

Constructing globally robust networks:

The key idea behind globally robust networks is that we want to construct the network in such a way that a margin will automatically be imposed on the boundary. The output of a neural network classifier is typically what is called a logit vector, containing one dimension (i.e., one logit value) per possible output class. The network makes predictions by selecting the class corresponding to the highest logit value. When we cross a decision boundary, one logit value will surpass the previous highest logit value. Thus, the decision boundary corresponds to the points where there is a tie for the highest logit output. To create a margin along the boundary, we essentially want to thicken the boundary. We can do this by declaring a tie whenever the two highest logits are too close together, i.e., we will consider the decision a draw unless one logit surpasses the rest by at least some δ.

Approximating the Lipschitz Constant:

The Lipschitz constant of a function tells us how much the output of the function can change as its input is changed. Intuitively, we can think of it as the maximum slope, or rate of change of the function. Thus, if the Lipschitz constant of a function is L, then the most the function's output can change by, if its input changes by a range of ε, is εL. The Lipschitz constant tells us how much each logit can move when the input is perturbed within a radius of ε, while calculating the exact Lipschitz constant of a neural network is a fundamentally hard problem computationally. Fortunately, we can obtain an upper bound on the Lipschitz constant fairly easily and efficiently by breaking down the computation to consider one layer at a time. This is a naive layer-by-layer multiplication approach to approximate the Lipschitz constant of neural networks. Estimating Lipschitz constant of networks is also a concern of our contribution and we will discuss it more in the following sections.

Robustness verification

Since the discovery of adversarial examples, it becomes critical that we examine not only whether the systems do not simply work "most of the time", but which are truly robust and reliable. Although many notions of robustness and reliability exist, one particular topic in this area that has raised a great deal of interest in recent years is that of adversarial robustness: can we train classifiers that are certifiably robust to all attacks within a fixed attack model? There are many approaches to verify robustness of neural networks, including the works by [Boopathy et al. 2019, Singh et al. 2019, Singh et al. 2018, Weng et al. 2018b, Weng et al. 2018a, Weng et al. 2018c, Zhang et al. 2018], for many of which we construct convex relaxations in order to obtain an upper bound on the worst-case loss (which is the maximum of an optimization problem) over all valid attacks, this upper bound serves as a certificate of robustness.

In general, the robustness problem of a neural network can be formulated as follows: denote the network by F , suppose the input constraint is imposed by a set X ⊆ Ω where Ω is the input space, and the corresponding output constraint is imposed by a set Y ⊆ O where O is the output space, then solving the verification problem requires showing that the following assertion holds:

x ∈ X =⇒ y = F (x) ∈ Y.
In particular, if the neural network is a classifier, then the output constraint Y is reduced to a point (label) ȳ. The verification problem is then reduced to show that

x ∈ X =⇒ y = F (x) = ȳ
In other words, it requires to show that the predictions of all the inputs in X are the same. Generically, a robustness verification problem can be formulated as a Boolean Satisfiability Problem (SAT), which is NP-hard, and no magic method can perfectly solve it with high precision and small computation time. Moreover, we cannot solve the verification problem efficiently for all types of networks. That is to say, in certain cases, we have to design specific algorithms to solve our problems, which might not be applicable in other cases. In the next section, we will categorize the verification approaches into several types, according to the type of guarantees they provide. The trade-off between those approaches is that, if we aim to solve exactly the verification problem (for example, using SAT or Mixed Integer Linear Programming (MILP) solvers), we need to suffer high computational burden; and if we relax the problem to easier ones, we gain lower complexity but we loose the result precision. All those approaches make sense because in some applications we need precision while in other applications we only want high computation speed.

Chapter 2

Existing Approaches to Robustness Verification

In this chapter, we review verification techniques for neural networks. Generally speaking, existing approaches on robustness verification of networks largely fall into the following categories: deterministic exact approach (type A), deterministic approximation approach (type B), and statistical approximation approach (type C). Note that the separation between them may not be strict. The classification of these verification techniques is mainly based on the type of guarantees they provide, they can be formally defined as follows:

Definition 2.1. (1) A deterministic exact approach states exactly whether a property holds, e.g., an input example is robust or not robust. Here "exact" means sound and complete (see Section 2.1.1);

(2) A deterministic approximation approach provides either lower / upper bounds or over-approximations to the outputs, and thus can serve as a necessary / sufficient condition for a property to hold, e.g., the upper bound of Lipschitz constants of neural networks. A deterministic approximation approach is either sound or complete;

(3) A statistical approximation approach quantifies the probability that a property holds, hence is usually neither sound nor complete.

Characteristics of Verification Methods

When we talk about robustness verification approaches, they certify the lower/upper bound of neural networks performance against any adversarial example under certain constraints, e.g., l ∞ -bounded attack. Different approaches have different features and characteristics. We first give the definition of soundness and completeness, which qualitatively determines an approach. Then we briefly discuss about the main features related to the properties of verification methods.

Output-reality relation

If an approach give an output "verified" or "not verified" for some inputs, it is not necessarily guaranteed that the input examples are indeed verified or not verified to be robust. We clarify the relation between the output of the approaches and the ground truth as follows:

12CHAPTER 2. EXISTING APPROACHES TO ROBUSTNESS VERIFICATION Definition 2.2. (1) When a verification approach outputs "verified" for a given input x 0 , if it is guaranteed (resp. not guaranteed) that any adversarial example x around x 0 doesn't exist, then we say this approach is sound (resp. unsound);

(2) When a verification approach outputs "not verified" for a given input x 0 , if it is guaranteed (resp. not guaranteed) that an adversarial example x around x 0 exists, then we say this approach is complete (resp. incomplete).

As shown in

Feature of the approaches

When we talk about robustness verification, we need to specify the norm we consider, the activation functions we used in the neural networks, and the layer structure of the networks. No approaches can be applied to all cases, i.e., they can only be restricted to certain norms or activation functions.

Norm:

The norm serves to specify the distance between the input example and the adversarial attack. Principally, the norms we consider are l 1 , l 2 and l ∞ norm and some approaches may be constrained to be used for certain norms.

Activation functions: Some verification approaches are only designed for semialgebraic or piece-wise linear activation functions, such as ReLU or leaky-ReLU, while some can be used for broader set of functions.

Structure of NNs: Some approaches are only designed for single-layer NNs, some are only designed for DNNs. The main interest of the current research is that whether we can adapt our approaches to larger and more complicated NNs such as DEQs, CNNs, or RNNs.

Scalability of the approaches

According to the methodology and solver we use, different approaches can be applied to networks with different sizes, including the number of neurons in each layer and the total number of layers (depth) of the network. Database determines the size of the outputs, which also influences the scalability of the approaches.

Network: There are some familiar neural networks that researchers often use as benchmarks to compare the performance of different methods:

• ResNet, short for Residual Network, a specific type of neural network introduced by [START_REF] He | [END_REF]];

• AlexNet, a CNN architecture primarily designed by [Krizhevsky et al. 2012];

• LeNet, a CNN architecture proposed by [Lecun et al. 1998];

• MobileNet [Howard et al. 2017], a simple but efficient and not very computationally intensive CNN structure for mobile vision applications;

• GoogleNet, a 22-layer CNN architecture which is a variant of the Inception Network [START_REF] Szegedy | [END_REF]];

• DenseNet1 [Huang et al. 2017a], a network architecture where each layer is directly connected to every other layer in a feed-forward fashion;

• VGGNet proposed by [START_REF] Simonyan | [END_REF], where "VGG" stands for Visual Geometry Group, a standard deep CNN architecture with multiple layers.

Dataset:

The datasets we consider in this chapter mainly includes the follows:

• The Collision Detection (CD) dataset [Ehlers 2017], which attempts to predict whether two vehicles with parameterized trajectories are going to collide;

• The Airborne Collision Avoidance System (ACAS) dataset [START_REF] Katz | [END_REF], which is a neural network based advisory system recommending horizontal manoeuvres for an aircraft in order to avoid collisions, based on sensor measurements;

• The Modified National Institute of Standards and Technology (MNIST) dataset of handwritten digits [START_REF] Lecun | [END_REF]], which is the most commonly used benchmarks for comparing different machine learning approaches;

• The Canadian Institute For Advanced Research (CIFAR-10)2 dataset, which is a collection of images that are commonly used to train machine learning and computer vision algorithms. It is one of the most widely used datasets for machine learning research;

• The ImageNet3 project, which is a large visual database designed for use in visual object recognition software research. More than 14 million images have been hand-annotated by the project to indicate what objects are pictured and in at least one million of the images, bounding boxes are also provided.

In Table 2.2, we show the largest size of neural networks the approaches is applied to, to illustrate the scalability of the approaches. Many approaches presented in this chapter are referred to related surveys [START_REF] Huang | [END_REF], Li et al. 2020[START_REF] Urban | A Review of Formal Methods applied to Machine Learning[END_REF], Liu et al. 2021, Meng et al. 2022]. We also refer to the book by [START_REF] Albarghouthi | Introduction to Neural Network Verification[END_REF]] for a broad view of robustness verification for constraintbased, abstraction-based and optimization-based approaches.

Deterministic Exact Approaches (type A)

Deterministic guarantees are achieved by transforming a verification problem into a set of constraints (with or without optimization objectives) so that they can be solved with a constraint solver. The name "deterministic" comes from the fact that solvers often return a deterministic answer to a query, i.e., either satisfactory or unsatisfactory. This is based on the current success of various constraint solvers such as SAT solvers, Satisfiability Modulo Theories (SMT) solvers, LP solvers, and MILP solvers.

Satisfiability modulo theories (SMT) problem

The Boolean satisfiability problem (SAT) determines if, given a Boolean formula, there exists an assignment to the Boolean variables such that the formula is satisfiable. Based on SAT, the satisfiability modulo theories (SMT) problem determines the satisfiability of logical formulas with respect to combinations of background theories expressed in classical first-order logic with equality. SMT solvers often have good performance on problems that can be represented as a Boolean combination of constraints over other variable types. Typically, an SMT solver combines a SAT solver with specialised decision procedures for other theories. The theories we consider in the context of neural networks include the theory of real numbers and the theory of integers. For both SAT and SMT problems, there are sophisticated and open-source solvers that can automatically answer the queries about the satisfiability of the formulas.

Two SMT solvers Reluplex [START_REF] Katz | [END_REF] and Planet [Ehlers 2017] were put forward to verify neural networks on properties expressible with SMT constraints. In the verification of networks, they adapt linear arithmetic over real numbers, in which an atom (i.e., the most basic expression) is of the form n i=1 a i x i ≤ b, where a i and b are real numbers. In both Reluplex and Planet, they use the architecture of the Davis-Putnam-Logemann-Loveland (DPLL) algorithm in splitting cases and ruling out conflict clauses, while they differ slightly in dealing with the intersection.

For Reluplex, the approach performs tree search in the function space. It extends the simplex algorithm, a standard algorithm for solving LP instances, to support ReLU networks. Through the classical pivot operation, it first looks for a solution for the linear constraints, and then applies the rules for ReLU to satisfy the ReLU relation for every node. Conversely, Planet integrates with a SAT solver for tree search in the function space. The objective of the search is to find an activation pattern of ReLU networks that maps an input in X to an output not in Y. It combines optimization-based filtering and pruning in the search process, and uses linear approximation to overapproximate the neural networks, and manages the condition of ReLU and max-pooling nodes with a logic formula.

[[START_REF] Bunel | [END_REF] uses Branch and Bound (BaB) to compute the output bounds of a network. It has a modularized design that can serve as a unified framework that can support other methods such as Reluplex and Planet. [Narodytska 2018, Narodytska et al. 2018] propose to verify properties of a class of neural networks (i.e., binarised neural networks) in which both weights and activations are binary, by reduction to the well-known Boolean satisfiability. Using this Boolean encoding, they leverage the power of modern SAT solvers, along with a proposed counterexample-guided search procedure, to verify various properties of these networks. A particular focus is on the robustness to adversarial perturbations. The experimental results demonstrate that this approach scales to medium-size DNNs used in image classification tasks.

Mixed integer linear programming (MILP)

Linear programming (LP) is a technique for optimizing a linear objective function, subject to linear equality and inequality constraints. All the variables in an LP are real, if some of the variables are integers, the problem becomes a mixed integer linear programming (MILP) problem. It is noted that, while LP can be solved in polynomial time, MILP is NP-hard.

NSVerify by [START_REF] Lomuscio | [END_REF], Akintunde et al. 2018] encodes the network as a set of mixed integer linear constraints. It solves a feasibility problem without an objective function, and tries to find a counterexample for the verification problem. However, it is not efficient to simply use MILP to verify networks, or to compute the output range. [START_REF] Cheng | Maximum Resilience of Artificial Neural Networks[END_REF]] developed a number of MILP encoding heuristics to speed up the solving process, and moreover, parallelization of MILP-solvers is used, resulting in an almost linear speed-up in the number (up to a certain limit) of computing cores in experiments. MIPVerify by [Tjeng et al. 2019] also encodes the network as a set of mixed integer linear constraints. There are two differences between MIPVerify and NSVerify. Firstly, MIPVerify determines the bounds on the nodes to tighten the constraints. Secondly, MIPVerify solves an adversarial problem that tries to estimate the maximum allowable disturbance on the input side.

Sherlock by [START_REF] Dutta | [END_REF] alternately conducts a local and global search to efficiently calculate the output range. In a local search phase, Sherlock uses gradient descent method to find a local maximum (or minimum). While in a global search phase, it encodes the problem with MILP to check whether the local maximum (or minimum) is the global output range. Additionally, the branch and bound algorithm presented by [START_REF] Bunel | [END_REF] claims that both SAT/SMT-based and MILP-based approaches can be regarded as its special cases. [Huang et al. 2017b] develops an automated verification framework for feed-forward multi-layer neural networks based on SMT solver. The key features of this framework are that it guarantees a misclassification being found if it exists, and that it propagates the analysis layer-by-layer, i.e., from the input layer to, in particular, the hidden layers, and to the output layer. It supports any activation function.

Layer-by-layer refinement

In this work, local robustness is defined as the invariance of a classifier's outcome to perturbations within a small neighborhood of an original input. To be more specific, its verification algorithm uses single-/multi-path search to exhaustively explore a finite region of the vector spaces associated with the input layer or the hidden layers, and a layer-by-layer refinement is implemented using the Z3 solver [de Moura & Bjørner 2008] to ensure that the local robustness of a deeper layer implies the robustness of a shallower layer. The methodology is implemented in the software tool called DLV (Deep Learning Verification)4 , and evaluated on image benchmarks such as MNIST, CIFAR-10, and ImageNet. Though the complexity is high, it scales to work with state-of-the-art networks such as VGGNet [START_REF] Simonyan | [END_REF].

Reduction to a two-player turn-based game

In DeepGame by [START_REF] Wu | [END_REF], two variants of pointwise robustness are studied:

• the maximum safe radius (MSR) problem, which computes the minimum distance to an adversarial example for a given input sample;

• the feature robustness (FR) problem, which aims to quantify the robustness of individual features to adversarial perturbations.

It demonstrates that, under the assumption of Lipschitz continuity, both problems can be approximated using finite optimization by discretizing the input space, and the approximation has provable guarantees, i.e., the error is bounded. It subsequently reduces the resulting optimization problems to the solution of a two-player turn-based game, where Player I selects features and Player II perturbs the image within the feature. While Player II aims to minimize the distance to an adversarial example, Player I can be cooperative or competitive depending on the optimization objective. An anytime approach is employed to solve the games, in the sense of approximating the value of a game by monotonically improving its upper and lower bounds. The Monte-Carlo tree search algorithm is applied to compute upper bounds for both games, and the Admissible A * and Alpha-Beta Pruning algorithms are, respectively, used to compute lower bounds for the MSR and FR games. [START_REF] Ruan | [END_REF] shows that most known layers of DNNs are Lipschitz continuous, and presents a verification approach based on global optimization. For a single dimension, an algorithm is presented to always compute the lower bounds (by utilizing the Lipschitz constant) and eventually converge to the optimal value. Based on this single-dimensional algorithm, the algorithm for multiple dimensions is to exhaustively search for the best combinations. The algorithm is able to work with state-of-the-art DNNs, but is restricted by the number of dimensions to be perturbed.

Global optimization based approaches

[[START_REF] Ruan | [END_REF] focuses on the Hamming distance, and study the problem of quantifying the global robustness of a trained DNNs, where global robustness is defined as the expectation of the maximum safe radius over a testing dataset. They propose an approach to iteratively generate lower and upper bounds on the network's robustness. The approach is anytime, i.e., it returns intermediate estimations that are gradually, but strictly, improved as the computation proceeds. It is also tensor-based, i.e., the computation is conducted over a set of inputs simultaneously, instead of one by one, to enable efficient GPU computation. Finally, it has provable guarantees, i.e., the estimations converge to their optimal values.

Deterministic Approximation Approaches (type B)

The approaches surveyed in this subsection consider the computation of a lower (or by duality, an upper) bound, and are able to claim the sufficiency of achieving properties. Although these approaches can only have a bounded estimation to the value of some variable, they are able to work with larger models, e.g., up to 10000 hidden neurons. Another advantage is their potential to avoid floating point issues in existing constraint solver implementations. Actually, most state-of-the-art constraint solvers implementing floating-point arithmetic only give approximate solutions, which may not be the actual optimal solution or may even lie outside the feasible space, see [START_REF] Neumaier | [END_REF]]. Indeed, it may happen that a solver wrongly claims the satisfiability or unsatisfiability of a property. For example, [START_REF] Dutta | [END_REF]] reports several false positive results in Reluplex, and mentions that this may come from an unsound floating point implementation.

Abstract interpretation

Abstract interpretation is a theory of sound approximation of the semantics of computer programs [Cousot & Cousot 1977]. It has been used in static analysis to verify properties of a program without actually being run. The basic idea of abstract interpretation is to use abstract domains (represented as boxes, zonotopes, polyhedra, and ellipsoids, etc.) to overapproximate the computation of a set of inputs. Its application has been explored in a few approaches [Gehr et al. 2018, Mirman et al. 2018, Li et al. 2019].

In abstract interpretation, it is important to choose a suitable abstract domain because it determines the efficiency and precision of the abstract interpretation. In practice, a certain type of special shapes is used as the abstraction elements. Formally, an abstract domain consists of shapes expressible as a set of logical constraints. The most popular abstract domains for the Euclidean space abstraction include boxes, zonotopes, polyhedra, and ellipsoids, which are defined as follows:

• Box: a box B contains logical constraints of form a ≤ x i ≤ b. For each variable x i , B contains at most one constraint with x i ;

• Zonotope: a zonotope Z consists of constraints of form

z i = a i + m j=1 b ij ε j , where a i , b ij are real constants and ε j ∈ [l j , u j].
The conjunction of these constraints expresses a center-symmetric polyhedron in the Euclidean space;

• Polyhedron: a polyhedron P has constraints in the form of linear inequalities, i.e., n i=1 a i x i ≤ b, and it gives a closed convex polyhedron in the Euclidean space;

• Ellipsoid: an ellipsoid E has constraints of form Qx + b 2 ≤ 1 parametrized by Q ∈ S n and b ∈ R n , where S n is the set of positive semidefinite matrices of size n × n.

Example. The unit box with 0 ≤ x i ≤ 1 is naturally a zonotope (z i = x i ∈ [0, 1]) and a polyhedron (x i ≤ 1, -x i ≤ 0). The unit ball with x 2 ≤ 1 is an Ellipsoid.

The approaches based on abstract interpretation often perform layer-by-layer reachability analysis to compute the reachable set of the output region. For example, [Xiang et al. 2018b] computes the exact reachable set for networks with only ReLU activations. The key insight is that if the input set to a ReLU function is a union of polytopes, then the output reachable set is also a union of polytopes. As there is no overapproximation, this method is sound and complete. However, since the number of polytopes grows exponentially with each layer, this method does not scale.

MaxSens by [Xiang et al. 2018a] partitions the input domain into small grid cells, and loosely approximates the reachable set for each grid cell considering the maximum sensitivity of the network at each grid cell. Sensitivity of a function is equivalent to the Lipschitz constant of the function. The union of those reachable sets is the output reachable set. The finer the partition, the tighter the output reachable set. MaxSens works for any activation function and its running time scales well with the number of layers but poorly with the input dimension.

AI2 and ERAN (updated version of AI2) by [Gehr et al. 2018] uses representations that overapproximate the reachable set. It trades precision of the reachable set for scalability of the algorithm. It works for any piecewise linear activation functions, such as ReLU and leaky ReLU. Due to its approximation, the number of geometric objects to be traced during layer-by-layer analysis is greatly reduced. Although AI2 is not complete, it scales well.

Convex optimization based methods

Convex optimization is to minimize convex functions over convex sets. Most neural network functions are not convex (even if they are convex, they can be very complicated), and hence an approximation is needed for the related computation. [START_REF] Wong | [END_REF] proposes a method called ConvDual to learn deep ReLUbased classifiers that are provably robust against norm-bounded adversarial perturbations on the training data. The approach works with interval property, but not with reachability property. It may flag some non-adversarial examples as adversarial examples. The basic idea of ConvDual is to consider a convex outer overapproximation of the set of activations which is reachable through a norm-bounded perturbation, and then develop a robust optimization procedure that minimizes the worst case loss over this outer region via a linear program. Crucially, it is shown that the dual problem to this linear program can be represented itself as a deep network similar to the backpropagation network, leading to very efficient optimization approaches that produce guaranteed bounds on the robust loss. The approach is illustrated on a number of tasks with robust adversarial guarantees. For example, for MNIST dataset, they produce a convolutional classifier that provably has less than 5.8% test error for any adversarial attack with bounded l ∞ norm less than ε = 0.1. [START_REF] Dvijotham | [END_REF]] takes a different formulation of the dual problem, i.e., applying Lagrangian relaxation on the optimization, to solve a Lagrangian relaxation of the optimization problem to obtain bounds on the output. This is to avoid working with constrained nonconvex optimization problem. The dual problem is formulated as an unconstrained convex optimization problem, which can be computed efficiently. This approach is anytime and works for any activation function., i.e., it can be stopped at any time and a valid bound on the maximum violation can be obtained. The authors develop specialized verification algorithms with provable tightness guarantees under special assumptions and demonstrate the practical significance of the general verification approach on a variety of verification tasks.

[Raghunathan et al. 2018a] uses a semidefinite relaxation to compute Lipschitz constants of neural networks. Firstly, the authors propose a method based on semidefinite relaxation that outputs a certificate that no attack can force the error to exceed a certain value for a given network and test input. Secondly, as this certificate is differentiable, they jointly optimize it with the network parameters, providing an adaptive regularizer that encourages robustness against all attacks. On MNIST dataset, this approach produces a network and a certificate that no attack that perturbs each pixel by at most ε = 0.1 can cause more than 35% test error. It works for any activation function that is differentiable almost everywhere 20CHAPTER 2. EXISTING APPROACHES TO ROBUSTNESS VERIFICATION but only for neural networks with only one hidden layer. [START_REF] Brown | [END_REF]] develop an exact, convex formulation of verification as a completely positive program (CPP), which are linear optimization problems over the cone of completely positive matrices. This gives a clean separation between the two competing desiderata of accuracy and tractability in relaxed verification. The authors also provide analysis explaining how properties of the CPP formulation evolve when the complete positivity constraint is relaxed. They find that many of the favorable properties of the CPP formulation are retained in SDP relaxations, showing that it is a convenient starting point for constructing tight SDP-based verifiers.

Linear approximation of ReLU networks

FastLin/FastLip by [Weng et al. 2018a] analyses the ReLU networks on both interval property and Lipschitzian property. For interval property, they consider linear approximation over those ReLU neurons that are uncertain on their status of being activated or deactivated. For Lipschitzian property, they use the gradient computation for the approximations. FastLin computes a certified lower bound on the allowable input disturbance for ReLU networks using a layer-by-layer approach and binary search in the input domain. Based on FastLin, FastLip computes the bounds on the activation functions, and further estimates the local Lipchitz constant of the network. In general, FastLin is more scalable than FastLip, while FastLip provides better solutions for l 1 norm.

CROWN [START_REF] Zhang | [END_REF]] is a general framework to certify robustness of neural networks with general activation functions for given input data points. It generalizes the interval property computation algorithm in FastLin/FastLip by allowing the linear expressions for the upper and lower bounds to be different and enabling to work with other activation functions such as sigmoid and tanh. The Lipschitzian property computation is improved by [START_REF] Zhang | [END_REF]. The authors propose a recursive algorithm, called RecurJac, to compute both upper and lower bounds for each element in the Jacobian matrix of a neural network with respect to network inputs, and the network can contain a wide range of activation functions, not limited to ReLU.

CROWN-IBP [START_REF] Zhang | [END_REF]] is a certified adversarial training method combining the fast interval bound propagation (IBP) bounds in a forward bounding pass and a tight linear relaxation based bound, CROWN, in a backward bounding pass. CROWN-IBP is computationally efficient and consistently outperforms IBP baselines on training verifiably robust neural networks.

α-CROWN [START_REF] Xu | [END_REF]] uses the backward mode linear relaxation based perturbation analysis (LiRPA) to replace LP during the BaB process, which can be efficiently implemented on the typical machine learning accelerators such as GPUs and TPUs. However, unlike LP, LiRPA when applied naively can produce much weaker bounds and even cannot check certain conflicts of subdomains during splitting, making the entire procedure incomplete after BaB. β-CROWN [Wang et al. 2021d] is an improved approach based on CROWN, that can fully encode neuron splits via optimizable parameters β constructed from either primal or dual space, and can be used for both complete and incomplete verification depending on whether we execute early stop. Applied to complete robustness verification benchmarks, β-CROWN with BaB is up to three orders of magnitude faster than LP-based BaB methods, and is notably faster than all existing approaches while producing lower timeout rates. By terminating BaB early, their method can also be used for efficient incomplete verification. Compared to the typically tightest but very costly SDP-based incomplete verifiers, they obtain higher verified accuracy with three orders of magnitudes less verification time.

CNN-cert [Boopathy et al. 2019] generalizes FastLin/FastLip and CROWN to general convolutional neural networks. It can handle various architectures including convolutional layers, max-pooling layers, batch normalization layer, residual blocks, as well as general activation functions. The efficiency of the approach is shown by exploiting the special structure of convolutional layers. CNN-cert achieves up to 17 and 11 times of speed-up compared to the state-of-the-art verification algorithms (e.g. FastLin, CROWN) and 366 times of speed-up compared to the dual-LP approach, and in the meantime, it obtains similar or even better verification bounds.

Interval analysis

The interval arithmetic by [Wang et al. 2018a] is leveraged to compute rigorous bounds on the outputs of a DNN, i.e., interval property. The key idea is that, given the ranges of operands, an overestimated range of the output can be computed by using only the lower and upper bounds of the operands. Starting from the first hidden layer, this computation can be conducted to the output layer. Beyond this explicit computation, symbolic interval analysis along with several other optimizations are also developed to minimize overestimations of output bounds. These methods are implemented in ReluVal [Wang et al. 2018b], a system for formally checking security properties of ReLU-based DNNs. ReluVal uses symbolic interval analysis along with search to minimize overapproximations of the output sets. During the search process, ReluVal iteratively bisects its input range. This process is called iterative interval refinement, which is also used in BaB by [START_REF] Bunel | [END_REF]]. [Wang et al. 2018a] improves ReluVal by two major modifications. Firstly, it introduces symbolic linear relaxation which is tighter than symbolic interval analysis in computing the reachable sets. Secondly, it introduces direct constraint refinement to perform the search more efficiently. An advantage of this approach, comparing to constraint solving based approaches, is that it can be easily parallelizable. In general, interval analysis is close to the interval-based abstract interpretation (see Section 2.3.1).

[Peck et al. 2017] takes steps towards a formal characterization of adversarial perturbations by deriving lower bounds on the magnitudes of perturbations necessary to change the classification of neural networks. The proposed bounds can be computed efficiently, requiring time at most linear in the number of parameters and hyperparameters of the model for any given sample. This makes this approach suitable for use in model selection, when one wishes to find out which of several proposed classifiers is most robust to adversarial perturbations. The approach may also be used as a basis for developing techniques to increase the robustness of classifiers, since it enjoys the theoretical guarantee that no adversarial perturbation could possibly be any smaller than the quantities provided by the bounds. The authors experimentally verify the bounds on the MNIST and CIFAR-10 datasets and find no violations. Additionally, the experimental results suggest that very small adversarial perturbations may occur with non-zero probability on natural samples.

Statistical Approximation Approaches (type C)

This subsection reviews a few approaches aiming to achieve statistical guarantees on their results, by claiming that the satisfiability of a property, or a value is a lower bound of another value, with certain probability. [Weng et al. 2018c] proposes an Extreme Value Theory (EVT) based robustness score for large-scale deep neural networks, called CLEVER (Cross-Lipschitz Extreme Value for Network Robustness). It estimates the Lipschitz constant, i.e., it works with Lipschitzian property. And it estimates the robustness lower bound by sampling the norm of gradients and fitting a limit distribution using EVT. Compared with the existing robustness evaluation approaches, their metric is attackindependent and applicable to any neural network classifiers. CLEVER has strong theoretical guarantees and is computationally feasible for large neural networks. However, as argued by [Goodfellow 2018], their evaluation approach can only find statistical approximation of the lower bound, i.e., their approach has a soundness problem. [Weng et al. 2018b] proposes two extensions on CLEVER robustness score. Firstly, the authors provide a new formal robustness guarantee for classifier functions that are twice differentiable. They apply EVT on the new formal robustness guarantee and the estimated robustness is called second-order CLEVER score. Secondly, they discuss how to handle gradient masking, a common defensive technique, using CLEVER with Backward Pass Differentiable Approximation (BPDA). With BPDA applied, CLEVER can evaluate the intrinsic robustness of neural networks of a broader class -networks with non-differentiable input transformations. They demonstrate the effectiveness of CLEVER with BPDA in experiments on a 121-layer Densenet [Huang et al. 2017a] model trained on the ImageNet dataset. [Bastani et al. 2016] proposes an Iterative Linear Programming (ILP), to encode the network as a set of linear constraints by linearizing the network at a reference point. The optimization problem in ILP is an adversarial problem that tries to estimate the maximum allowable disturbance on the input side. It iteratively solves the optimization. This method is not complete as it only considers one linear segment of the network. The authors propose two statistics of robustness to measure the frequency and the severity of adversarial examples respectively. Both statistics are based on a parameter ε, which is the maximum radius within which no adversarial examples exist. The computation of these statistics is based on the local linearity assumption which holds when ε is small enough. The authors show how these metrics can be used to evaluate the robustness of deep neural networks with experiments on the MNIST and CIFAR-10 datasets. Their algorithm generates more informative estimates of robustness metrics compared to estimates based on existing algorithms. Except for the application of the ReLU activation function which is piece-wise linear, this assumption can be satisfied by the existence of the Lipschitz constant as shown by [START_REF] Ruan | [END_REF]].

Lipschitz constant estimation by extreme value theory

Robustness estimation

Characteristic analysis of each verification method

As introduced in Section 2.1, we summarize in this section the features and characteristics of each method we showed in the previous section. For ReLU networks, many machine learning problems can be formulated as polynomial optimization problems (POP). The advantage of POPs is that, instead of finding local optimizers, there are many approaches to find global optimizers of POPs. However, those POPs are usually nonlinear and non-convex, which are NP-hard to solve. Fortunately, one is able to relax POPs to convex optimization problems such as Linear Programming (LP), Quadratic Programming (QP) and Semidefinite Programming (SDP). For those convex optimization problems, there are already various efficient solvers to calculate accurate optimal values. In this chapter, we first introduce the general primal-dual forms of those convex optimization problems. Then we discuss about the theoretical preliminaries of Lasserre's moment-SOS hierarchy, a systematic approach about convex relaxation of POPs.

Convex Optimization Problems

For convex problem, any of its local optimizer is a global optimizer, and there are already many polynomial-time algorithm to solve them efficiently.

Linear programming (LP)

Linear programming is a mathematical modeling technique in which a linear function is maximized or minimized when subjected to various linear constraints. This technique has been useful for guiding quantitative decisions in business planning, in industrial engineering, and in the social and physical sciences. An LP has a standard form

max x∈R n c T x (LP) s.t. Ax ≤ b, x ≥ 0,
where

A ∈ R m×n , b ∈ R m , c ∈ R n are known parameters.

Quadratic programming (QP)

Quadratic programming is the problem of optimizing a quadratic objective function and is one of the simplests form of non-linear programming. The objective function can contain bilinear or up to second order polynomial terms, and the constraints are linear and can be both equalities and inequalities. QP is widely used in image and signal processing, to optimize financial portfolios, to perform the least-squares method of regression, to control scheduling in chemical plants, and in sequential quadratic programming. A QP can be written in the standard form max

x∈R n 1 2 x T Qx + c T x (QP) s.t. Ax ≤ a, Bx = b, x ≥ 0, where A ∈ R p×n , a ∈ R p , B ∈ R q×n , b ∈ R q , Q ∈ R n×n , c ∈ R n are known parame- ters.

Semidefinite programming (SDP)

In semidefinite programming we minimize a linear function subject to the constraint that an affine combination of symmetric matrices is positive semidefinite. Such a constraint is nonlinear and nonsmooth, but convex, so positive definite programs are convex optimization problems. Semidefinite programming unifies several standard problems (eg, linear and quadratic programming) and finds many applications in engineering. Although semidefinite programs are much more general than linear programs, they are just as easy to solve. Most interior-point methods for linear programming have been generalized to semidefinite programs. As in linear program-ming, these methods have polynomial worst-case complexity, and perform very well in practice. An SDP has a standard (primal) form min

X∈S n C, X (SDP-primal) s.t. A i , X = b i , i = [1, m]; X 0,
where S n denotes the the space of all real symmetric n × n matrices, and

y i A i ≤ C.

Polynomial Optimization and Lasserre's Hierarchy

In this section we introduce the standard form of polynomial optimization problems and Lasserre's hierarchy which can be used to relax any POP to a series of SDPs, and has already many successful applications in and outside optimization.

Polynomial optimization problem (POP)

Let R[x] be the vector space of real-valued polynomials in variable x. A general polynomial optimization problem in n variables takes the standard form

f * 1 = min x∈R n f (x) (POP) s.t. g i (x) ≥ 0, i ∈ [p],
where f,

g i ∈ R[x]
. This is a special case of nonlinear optimization problem where ojective function and all constraints are polynomials. If there is an equality constraint g(x) = 0, we can replace g = 0 by inequality constraints g ≥ 0 and -g ≥ 0 and retrieve the standard form (POP).

Definition 3.1. A subset K of R n is called a semialgebraic set if K is defined by a finite sequence of polynomial equalities and inequalities. A function f : R n → R is called a semialgebraic function if its graph is a semialgebraic set, i.e., the set {(x, f (x)) : x ∈ R n } ⊆ R n+1 is a semialgebraic set.
With the notations in (POP), we define a semialgebraic set K := {x : g i (x) ≥ 0, i ∈ [p]}. The standard form (POP) can be written equivalently as

f * 2 = min µ∈P(K) f (x)dµ, (MEAS)
where P(K) is the space of Borel probability measures with support contained in the semialgebraic set K. Indeed, let f * 1 and f * 2 be the optimal solution of (POP) and (MEAS) respectively. Since f (x) ≥ f * 1 for all x ∈ K, we have

f * 2 = min µ∈P(K) f (x)dµ ≥ min µ∈P(K) f * 1 dµ = f * 1 . (3.1)
Conversely, suppose that x * is the optimizer of (POP), i.e., f (x *) = f * 1 . Let δ x * be the Dirac measure at point x * , then we have

f * 2 = min µ∈P(K) f (x)dµ ≤ f (x)dδ x * = f (x *) = f * 1 . (3.2) Hence f * 1 = f * 2 and problem (POP) is equivalent to (MEAS). Denote by f (x) = α f α x α , where x α = x α 1 1 x α 2 2 . . . x αn n for α = [α 1 , α 2 , . . . , α n] T . Then f (x)dµ = α f α y α ,
where y α = x α dµ. By replacing the decision variables in (POP) by probability measure µ in place of x, we transform the polynomial f (x) into a linear combination of the moments of x.

Moment and sum of squares

From the previous section we see that the polynomial optimization problem (POP) is equivalent to a problem whose objective is linear to the moments x α dµ. In fact, it has been shown that the theory of moments is strongly related to the representation of nonnegative polynomials. Definition 3.2. For polynomial f ∈ R[x], the Riesz linear functional is the linear application L y : f → α f α y α , where y = {y α } α is the moment variables.

Let v d (x) := [1, x 1 , x 2 , . . . , x n , x 2 1 , x 1 x 2 , . . . , x 1 x n , x 2 x 3 , . . . , x 2 n , . . . , x d 1 , . . . , x d n]
T be the real-valued monomial basis of degree d.

Definition 3.3. The d-th order moment matrix, denoted by M d (y), is defined as

M d (y) = L y (v d (x)v d (x) T). For a polynomial f ∈ R[x], the d-th order localizing matrix of f , denoted by M d (f y), is defined as M d (f y) = L y (f v d (x)v d (x) T) = L y (f M d (y)). Example. Consider x = [x 1 , x 2] T and polynomial g(x) = 1 -x 2 1 -x 2 2 .
Then Riesz linear functional of g is L y (g) = y 00 -y 20 -y 02 , the first order moment matrix reads As mentioned before, the moment and localizing matrices are related (and in fact, in duality with) nonnegativity of polynomials. Precisely, the moment matrix is the primal of sum of squares, and the localizing matrix is the primal of weighted sum of squares.

Definition 3.4. A polynomial f ∈ R[x] is a Sum of Squares (SOS) if f can be written as f = r i=1 u 2 i with u i ∈ R[x]. For f, g i ∈ R[x], f is a Weighted Sum of Squares (WSOS) with respect to g i if f can be written as f = u 2 0 + r i=1 g i u 2 i with u i ∈ R[x].
It is convenient for discussing to define some cones of nonnegative polynomials: (2) The nonnegative cone, denoted by P[x], is the set of nonnegative polynomials in R[x]; the nonnegative cone of order d, denoted by

P d [x], is the set of nonnegative polynomials in R[x] with degree at most d.
Remark. It is obvious that any SOS polynomial is nonnegative. Unfortunately, the converse is false: not all nonnegative polynomials are SOSs. One famous example is Motzkin polynomial: p(x, y) = x 4 y 2 + x 2 y 4 -3x 2 y 2 + 1.

(3.

3)

The nonnegativity of Motzkin polynomial is due to arithmetic / geometric mean inequality, and the proof of why it is not an SOS is referred to [Motzkin 1967, page 205-224]. Hence we have a chain of inclusions

R + = Σ 0 [x] Σ 1 [x] Σ 2 [x] Σ[x] P[x]. (3.4)
Looking back to polynomial optimization problem (POP), it is equivalent to

f * = max λ,x∈K λ (3.5) s.t. f (x) -λ ≥ 0.
In other words, we are searching for feasible polynomials f (x)-λ in the nonnegative cone P[K]. Recall that the semialgebraic set K is defined by polynomials g i , i.e., K = {x :

g i (x) ≥ 0}.
u(x) = σ 0 (x) + p i=1 g i (x)σ i (x), ∀x ∈ R n , (3.6)
where the polynomials

σ 0 , σ i ∈ Σ[x] for i ∈ [p].
Remark. Assumption 2 can be easily satisfied by choosing properly the polynomial

u(x) ∈ R[x]. For example: (i) if there is some g i in (POP) such that the set {x ∈ R n : g i (x) ≥ 0} is compact;
(ii) if all the polynomials g i are linear;

(iii) if there are binary inequalities x 2 j ≥ x j and x j ≥ x 2 j for all j ∈ [n]. In practice, we usually include a quadratic redundant constraint g(x) := M 2x 2 2 ≥ 0 in the definition of K since K is compact and we can always find a large enough M such that x 2 ≤ M for all x ∈ K. Theorem 3.1. Assume that Assumption 2 holds. Then the strictly positive polynomials defined in K is represented by WSOS w.r.t. polynomials g i , i.e., for

f ∈ P[x], if f (x) > 0 for any x ∈ K, then f = σ 0 + p i=1 g i σ i for some σ 0 , σ i ∈ Σ[x].
It is usually hard to determine polynomials σ 0 and σ i , since we do not know in advance the degrees of these polynomials. Therefore, it is practical to approximate σ 0 and σ i by increasing successively their degrees. With this idea in mind, we are able to derive a series of relaxations of problem (3.5):

ξ d = max λ λ (DenseSOS-d) s.t. f -λ = σ 0 + p i=1 g i σ i , where σ 0 ∈ Σ d [x], σ i ∈ Σ d-ω i [x], ω i = deg(g i)/2 for i ∈ [p].
It is obvious that ξ d is a monotone increasing sequence upper bounded by f * , i.e., ξ d ≤ f * , and we will see in the next section that ξ d is in fact the dual optimal value of the d-th order moment relaxation.

Dense moment relaxation

In the Lasserre's hierarchy for optimization one approximates the global optimum of (POP) by solving a series of SDPs of increasing size. Each SDP is a semidefinite relaxation of (POP) in the form:

ρ d = min y L y (f) (DenseMom-d) s.t.    L y (1) = 1, M d (y) 0, M d-ω i (g i y) 0, i ∈ [p],
where Example. The first order (d = 1) moment relaxation of (3.7) reads:

ω i = deg(g i)/
Consider x = [x 1 , x 2] T and polynomials f (x) = x 1 x 2 , g(x) = 1 -x 2 1 -x 2 2 . We minimize f (x) over R 2 under constraint g(x) ≥ 0. That is: f * = min x∈R 2 x 1 x 2 (3.7) s.t. 1 -x 2 1 -x 2 2 ≥ 0.
ρ * = min y∈R 6 y 11 (3.8) s.t. y 00 = 1, M 1 (y) 0, 1 -y 20 -y 02 ≥ 0
with optimal value ρ * = -1/2 = f * . It turns out that (3.8) is exactly Shor's relaxation applied to (3.7). In fact, for POPs whose polynomials are all of degree at most 2, the first-order moment relaxation is equivalent to Shor's relaxation.

The dual of the moment problem (3.8) can be formulated as the following SOS problem

ξ * = max λ λ (3.9) s.t. x 1 x 2 -λ = σ 0 + σ 1 (1 -x 2 1 -x 2 2), where σ 0 ∈ Σ 1 [x], σ 1 ≥ 0,
with optimal value ξ * = -1/2 = ρ * and σ 0 = (x 1 + x 2) 2 /2, σ 1 = 1/2.

Sparse moment relaxation

The relaxation (DenseMom-d) is called dense moment relaxation since we do not exploit any possible sparsity pattern in (POP). Therefore, if one solves (DenseMom-d) with interior point methods (as all current SDP solvers do), the dense relaxation is strongly limited to POPs of modest size. Indeed the d-th order dense moment relaxation (DenseMom-d) involves n+2d

g i ∈ R[x I k] for some k ∈ [m]. Define index sets {J k } m k=1 by the subsets of [p] satisfying J k := {i ∈ [p] : g i ∈ R[x I k]} ⊆ [p] and [p] = m k=1 J k ,
M d (y, I k) = L y (v d (x I)v d (x I) T). For a polyno- mial f ∈ R[x I], the d-th order sparse localizing matrix of f , denoted by M d (f y, I), is defined as M d (f y, I) = L y (f v d (x I)v d (x I) T) = L y (f M d (y, I)).
By exploiting sparsity patterns, (POP) can be rewritten as:

min x∈R n f (x) (SparsePOP) s.t. g i (x I k) ≥ 0, i ∈ J k , k ∈ [m],
and its associated sparse Lasserre's hierarchy reads:

ρ d = min y L y (f) (SparseMom-d) s.t.    L y (1) = 1, M d (y, I k) 0, M d-ω i (g i y, I k) 0, i ∈ J k , k ∈ [m],
where d, ω i , y, L y are defined as in (DenseMom-d). The matrix M d (y, I k) (resp. M d-ω i (g i y, I k)) is a submatrix of the moment matrix M d (y) (resp. localizing matrix M d-ω i (g i y)) with respect to subset I k , and hence of much smaller size

τ k +d τ k = O(τ d k) if τ k := |I k | n.
The dual of the moment problem (SparseMom-d) can be formulated as

ξ d = max λ λ (SparseSOS-d) s.t. f -λ = m k=1 σ 0,k + i∈J k σ i,k g i , where σ 0,k ∈ Σ d [x I k], σ i,k ∈ Σ d-ω i [x I k], ω i = deg(g i)/2 for i ∈ J k , k ∈ [m].
By analogy, we have similar convergent guarantee for sparse moment relaxations:

Theorem 3.3. [Lasserre 2006] Let Assumption 3 holds. As d → ∞, we have ρ d ↑ f * . If K has a nonempty interior, then we have strong duality

ρ d = ξ d . Example. Let x = [x 1 , x 2] T , consider the following POP: min x∈R 2 f (x) = x 1 x 2 + x 2 x 3 (3.10) s.t.    g 1 (x) = 1 -x 2 1 -x 2 2 ≥ 0, g 2 (x) = 1 -x 2 2 -x 2 3 ≥ 0.
Define the subsets I 1 = {1, 2}, I 2 = {2, 3}. It is easy to check that Assumption 3 hold. For d = 1, we have y = [y 000 , y 100 , y 010 , y 001 , y 200 , y 110 , y 101 , y 020 , y 011 , y 002] T and L y (f) = y 110 + y 011 , ω 1 = deg(g 1)/2 = 1, ω 2 = deg(g 2)/2 = 1. Then the first-order dense and sparse moment matrices read: As we see, the sparse moment matrices M 1 (y, I 1) and M 1 (y, I 2) are submatrices of the dense moment matrix M 1 (y), obtained by restricting to rows and columns concerned with subsets I 1 and I 2 respectively. The localizing matrices read: M 0 (g 1 y) = y 000 -y 200 -y 020 , M 0 (g 2 y) = y 000 -y 020 -y 002 .

M 1 (y) =     

34CHAPTER 3. CONVEX RELAXATIONS AND MOMENT-SOS HIERARCHY

The first order (d = 1) sparse moment relaxation of problem (3.10) reads:

ρ * = min y∈R 6 y 110 + y 011 (3.11) s.t.        y 00 = 1,
M 1 (y, I 1) 0, y 000 -y 200 -y 020 ≥ 0, M 1 (y, I 2) 0, y 000 -y 020 -y 002 ≥ 0.

If the maximum size τ of the subsets I k is such that τ n, then solving sparse problems (SparseMom-d) rather than dense one (DenseMom-d) results in drastic computational savings. In fact, even with not so large n, the second relaxation with d = 2 is out of reach for currently available SDP solvers. Similarly to the dense case, ρ d ≤ f * for all d and moreover, if the subsets I k satisfy RIP, then we still obtain the convergence Recall that the standard Lasserre's relaxation is a typical approach based on SDP to approximate the optimal value of polynomial optimization problem (POP), by solving a sequence of SDPs that provide a series of lower bounds and converges to the optimal value of the original problem. Other related frameworks of relaxations, including DSOS [START_REF] Majumdar | [END_REF] based on LP, SDSOS [START_REF] Majumdar | [END_REF] based on SOCP, and the hybrid BSOS [START_REF] Lasserre | [END_REF] combining the features of LP and SDP hierarchies, also provide lower bounds converging to the optimal value of a POP. Generally speaking, when comparing LP and SDP solvers, the former can handle problems of much larger size. On the other hand, the bounds from LP relaxations are significantly weaker than those obtained by SDP relaxations, in particular for combinatorial problems [Laurent 2003]. Based on the standard Lasserre's hierarchy, several further works have explored various types of sparsity patterns inside POPs to compute lower bounds more efficiently and handle largerscale POPs. The first such extension can be traced back to [START_REF] Waki | [END_REF]] and [Lasserre 2006] where the authors consider the so-called Correlative Sparsity Pattern (CSP) with associated CSP graph whose nodes consist of the POP's variables. Two nodes in the CSP graph are connected via an edge if the two corresponding variables appear in the same constraint or in same monomial of the objective. The standard sparse Lasserre's hierarchy splits the full moment and localizing matrices into several smaller submatrices, according to subsets of nodes (maximal cliques) in a chordal extension of the CSP graph associated with the POP. When the size of the largest clique (a crucial parameter of the sparsity pattern) is reasonable the resulting SDP relaxations become tractable. There are many successful applications of the resulting sparse moment-SOS hierarchy, including certified roundoff error bounds [START_REF] Magron | [END_REF], Magron 2018], optimal power flow [START_REF] Josz | [END_REF], volume computation of sparse semialgebraic sets [START_REF] Tacchi | [END_REF], approximating regions of attractions of sparse polynomial systems [START_REF] Schlosser | Sparse Moment-Sum-of-Squares Relaxations for Nonlinear Dynamical Systems with Guaranteed Convergence[END_REF], Tacchi et al. 2020], noncommutative POPs [START_REF] Klep | [END_REF], sparse positive definite functions [Mai et al. 2020]. Similarly, the sparse BSOS hierarchy [START_REF] Weisser | [END_REF]] is a sparse version of BSOS for large scale polynomial optimization.

ρ d ↑ f * as d → ∞.
Besides correlative sparsity, [Wang et al. 2021c, Wang et al. 2021b] exploit the so-called term sparsity (TSSOS) or combine correlative sparsity and term sparsity (CS-TSSOS) [START_REF] Wang | [END_REF] to handle large scale polynomial optimization problems. The TSSOS framework relies on a Term Sparsity Pattern (TSP) graph whose nodes consist of monomials of some monomial basis. Two nodes in a TSP graph are connected via an edge when the product of the corresponding monomials appears in the supports of polynomials involved in the POP or is a monomial of even degree. Extensions have been provided to compute more efficiently approximations of joint spectral radii [Wang et al. 2021a] and minimal traces or eigenvalue of noncommutative polynomials [Wang & Magron 2021]. More variants of the sparse moment-SOS hierarchy have been built for quantum bounds on Bell inequalities [Pál & Vértesi 2009], condensed-matter ground-state problems [START_REF] Barthel | [END_REF], quantum many-body problems [START_REF] Haim | [END_REF], where one selects a certain subset of words (noncommutative monomials) to decrease the number of SDP variables.

Recently, [START_REF] Campos | [END_REF] proposed a partial and augmented partial relaxation tailored to the Max-Cut problem. It strengthens Shor relaxation by adding some (and not all) constraints from the second-order Lasserre's hierarchy. The same idea was already used in the multi-order SDP relaxation of [START_REF] Josz | [END_REF] for solving large-scale Optimal Power Flow (OPF) problems. The authors set a threshold for the maximal cliques and include the second-order relaxation constraints for the cliques with size under the threshold and the first-order relaxation constraints for the cliques with size over the threshold.

Framework of Sublevel Hierarchy

Following the previous works concerned with extensions and/or variants of the moment-SOS hierarchy so as to handle large-scale POPs out of reach by the standard hierarchy, we provide a principled way to obtain intermediate alternative SDP relaxations between the d-th and (d + 1)-th order SDP relaxations of the moment-SOS hierarchy for general POPs. Compared with existing sparse variants of the latter, we propose several possible SDP relaxations to improve lower bounds for general POPs.

Recall that for (POP), the d-th order dense Lasserre's relaxation relates to the Putinar's certificate f -t = σ 0 + p i=1 σ i g i where σ 0 is an SOS in R[x] of degree at most 2d and

σ i are SOS in R[x] of degree at most 2(d -ω i) with ω i = deg(g i)/2 .
In this section, we are going to choose some subsets of the variable x to decrease the number of terms involved in the SOS multipliers σ 0 and σ i , and define the intermediate sublevel hierarchies between the d-th and (d + 1)-th order relaxations.

Note that for dense Lasserre's relaxations, one approximates the cone of positive polynomials P[x] from the inside with the following hierarchy of SOS cones:

R + = Σ 0 [x] ⊆ Σ 1 [x] ⊆ . . . ⊆ Σ[x] ⊆ P[x], with +∞ d=0 Σ d [x] = Σ[x].
Similarly, in the sparse relaxations, one relies on the following hierarchy of SOS cones: for each subset I,

R + = Σ 0 [x I] ⊆ Σ 1 [x I] ⊆ . . . ⊆ Σ[x I] ⊆ P[x I], with +∞ d=0 Σ d [x I] = Σ[x I]
and I is a subset of the index set [n].

Sublevel hierarchy of SOS cones

The sublevel hierarchy provides refined SOS cones between Σ d [x] and Σ d+1 [x], we first give the formal definition of the sublevel cones for both dense and sparse case.

Definition 4.1. (Sublevel cones, dense case) Let n be the number of variables in (POP). For d ≥ 1 and 0 ≤ l ≤ n, the l-th level SOS cone associated to Σ

d [x], denoted by Σ l d [x], is an SOS cone lying between Σ d [x] and Σ d+1 [x]
, and is defined as

Σ d [x] ⊆ Σ l d [x] := Σ d [x] + Σl d+1 [x] ⊆ Σ d+1 [x],
where Σl

d+1 [x] := |I|=l σ I (x I) : I ⊆ {1, . . . , n}, σ I (x I) ∈ Σ d+1 [x I] ⊆ Σ d+1 [x].
The SOS polynomials in Σl d+1 [x] are the elements in Σ d+1 [x] which can be decomposed into several components where each component is an SOS polynomial in l variables. Let us use the convention Σ

0 d [x] := Σ d [x].
Then, for the dense case, we rely on the sublevel hierarchy of inner approximations of the cone of positive polynomials:

Σ d [x] = Σ 0 d [x] ⊆ Σ 1 d [x] ⊆ . . . ⊆ Σ n d [x] = Σ d+1 [x].
Similarly, we can define the sparse sublevel cones:

Definition 4.2. (Sublevel cones, sparse case) Suppose that {I k } m k=1 are the cliques of the sparse problem (SparsePOP). For k ∈ [m] and l ≤ τ

k := |I k |, we define the l-th level SOS cone of Σ d [x I k], denoted by Σ l d [x I k], as Σ d [x I k] ⊆ Σ l d [x I k] := Σ d [x I k] + Σl d+1 [x I k] ⊆ Σ d+1 [x I k],
where Σl

d+1 [x I k] := |I|=l σ I (x I) : I ⊆ I k , σ I (x I) ∈ Σ d+1 [x I] ⊆ Σ d+1 [x I k].
The SOS polynomials in Σ[x I k] l d+1 are the elements in Σ[x I k] d+1 which can be decomposed into several components where each component is an SOS polynomial in l variables indexed by I k . Then, for the sparse case, we rely on the sublevel hierarchy of inner approximations of the cone of positive polynomials:

for k ∈ [m], Σ d [x I k] = Σ 0 d [x I k] ⊆ Σ 1 d [x I k] ⊆ . . . ⊆ Σ τ k d [x I k] = Σ d+1 [x I k].
Remark. Lasserre's hierarchy relies on a hierarchy of SOS cones, while the sublevel hierarchy relies on a hierarchy of sublevel cones. Take the sparse case for illustration, solving the (d + 1)-th order relaxation of the standard sparse Lasserre's hierarchy boils down to finding SOS multipliers in the cones Σ

[x I k] d+1 and Σ[x I k] d-ω i +1
for each clique I k . Solving the (d + 1)-th order sublevel hierarchy boils down to finding SOS multipliers in the intermediate cones Σ

[x I k] l k d and Σ[x I k] l k d-ω i for some 0 ≤ l k ≤ τ k . These cones approximate the standard cones Σ[x I k] d+1 , Σ[x I k] d-ω i +1 as l k gets larger since Σ[x I k] τ k d = Σ[x I k] d+1 and Σ[x I k] τ k d-ω i = Σ[x I k] d-ω i +1
. We will see in the next definition that this is the so-called sublevel relaxation, and we call the vector l = [l k] the vector of levels of the relaxation. Each l k determines the size of the subsets in the clique I k and is called a level.

Sublevel hierarchy of moment-SOS relaxations

Based on the sublevel cones, we are able to derive the corresponding moment-SOS relaxations for both dense and sparse cases.

Definition 4.3. (Sublevel relaxations, dense case) Let n be the number of variables in (POP). For each constraint g i ≥ 0 in (POP), we define a level 0 ≤ l i ≤ n and a depth 0 ≤ q i ≤ n. Denote by l = [l i] p i=1 the vector of levels and q = [q i] p i=1 the vector of depths. Then, the (l, q)-sublevel relaxation of the d-th order dense SOS problem (DenseMom-d) reads

sup t∈R t : f -t = θ 0 + p i=1 θi + (σ i + σi)g i , (SubSOS-[d, l, q])
where θ 0 (resp.

σ i) are SOS polynomials in Σ d [x] (resp. Σ d-ω i [x]
), and θi (resp. σi) are SOS polynomials in Σl

i d+1 [x] (resp. Σl i d-ω i +1 [x]) with ω i = deg(g i)/2).
Moreover, each σi is a sum of q i SOS polynomials where each sum term involves variables in a certain subset Γ i,j ⊆ {1, 2, . . . , n} with |Γ i,j | = l i , i.e., σi = q i j=1 σi,j where σi,j ∈ Σ d-ω i +1 [x Γ i,j]. Each θi is also a sum of q i SOS polynomials where the sum terms share the same variable sets Γ i,j as σi,j , i.e., θi = q i j=1 θi,j where θi,j ∈ Σ d+1 [x Γ i,j]. The equation (SubSOS-[d, l, q]) can be compressed as an analogical form of the standard dense Lasserre's relaxation:

sup t∈R t : f -t = p i=1 (θi + σi g i) ,
where θi (resp. σi) are SOS polynomials in Σ

l d+1 [x] (resp. Σ l d-ω i +1 [x]).
Definition 4.4. (Sublevel relaxations, sparse case) Suppose that {I k } m k=1 are the cliques of the sparse problem (SparsePOP) with

τ k = |I k |. For each k ∈ [m], define J k := {i ∈ [p] : g i ∈ R[x I k]} ⊆ [p] such that [p] = m k=1 J k . For i ∈ J k and k ∈ [m], define a level 0 ≤ l i,k ≤ τ k and a depth 0 ≤ q i,k ≤ τ k . Denote by l = [l i,k] i∈J k ,k∈[m]
the vector of sublevels and q = [q i,k] i∈J k ,k∈[m] the vector of depths. Then, the (l, q)sublevel relaxation of the d-th order sparse SOS problem (SparseMom-d) reads

sup t∈R t : f -t = m k=1 θ 0,k + i∈J k θi,k + (σ i,k + σi,k)g i , (SubSpSOS-[d, l, q])
where θ 0,k (resp.

σ i,k) are SOS polynomials in Σ d [x I k] (resp. Σ d-ω i [x I k]), and θ0,k (resp. σi,k) are SOS polynomials in Σl i,k d+1 [x I k] (resp. Σl i,k d-ω i +1 [x I k])
with ω i = deg(g i)/2 . Moreover, each σi,k with i ∈ I k is a sum of q i,k SOS polynomials where each sum term involves variables in a certain subset Γ i,k,j ⊆ I k with |Γ i,k,j | = l i,k , i.e., σi,k = q i,k j=1 σi,k,j where σi,k,j ∈ Σ d-ω i +1 [x Γ i,k,j]. Each θi,k is also a sum of q i,k SOS polynomials where the sum terms share the same variable sets Γ i,k,j as σi,k,j , i.e., θi,k = q i,k j=1 θi,k,j where θi,k,j ∈ Σ d+1 [x Γ i,k,j]. The equation (SubSpSOS-[d, l, q]) can also be compressed as an analogical form of the standard sparse Lasserre's relaxation:

sup t∈R t : f -t = m k=1 i∈J k θi,k + σi,k g i , where θi,k (resp. σi,k) are SOS polynomials in Σ l d+1 [x I k] (resp. Σ l d-ω i +1 [x I k]).
Remark. (i). If one of the sublevel l i (resp. l i,k) in the dense (resp. sparse) sublevel relaxation is such that l i = n (resp. l i,k = τ k), then the depth q i (resp. q i,k) should automatically be 1.

(ii). The heuristics to determine the subsets (Γ i,j for the dense case and Γ i,k,j for the sparse case) in the sublevel relaxation will be discussed in the next section.

(iii). The size of the SDP Gram matrix associated to an SOS polynomial in Σ

l d [x] (resp. Σ l d [x I k]) is max{ n+d d , l+d+1 d+1 } (resp. max{ |I k |+d d , l+d+1 d+1 }).
If the lower bound obtained by solving the SOS problem over Σ d+1 [x]

(resp. Σ d+1 [x I k])
is not satisfactory enough, then we may try to find more accurate solutions in one of the cones of Σ

l d [x] (resp. Σ l d [x I k]
). (iv). In case of ambiguity, we call the sublevel relaxation of a d-th order SOS problem the (d + 1)-th order sublevel relaxation, i.e., the (d + 1)-th order sublevel relaxation is an intermediate between the d-th order and (d + 1)-th order Lasserre's relaxation.

Example. Take the polynomials f, g k and the cliques I k as in Example 3.10. Define l = [2, 2] and q = [1, 1]. We select subsets w.r.t. g 1 and g 2 respectively as Γ 1,1 = {1, 2}, Γ 2,1 = {5, 6}. Then, the second-order dense (l, q)-sublevel relaxation reads max t∈R t (4.1)

s.t. f (x) -t = θ 0 (x) + θ1 (x Γ 1,1) + σ1 (x Γ 1,1)g 1 (x) + θ2 (x Γ 2,1) + σ2 (x Γ 2,1)g 2 (x),
where θ 0 is a degree-2 SOS polynomial in variable x, θk are degree-4 SOS polynomials in variable x Γ k,1 , σk are degree-2 SOS polynomials in variable x Γ k,1 . In other words,

θ 0 ∈ Σ 1 [x], θk ∈ Σ 2 [x Γ k,1] ⊆ Σ2 2 [x], σk ∈ Σ 1 [x Γ k,1] ⊆ Σ2 1 [x]. Similarly, define Γ 1,1,1 = {1, 2} ⊆ I 1 and Γ 2,2,1 = {5, 6} ⊆ I 2 , then the second- order sparse (l, q)-sublevel relaxation reads max t∈R t (4.2) s.t. f (x) -t = θ 0,1 (x I 1) + θ1 (x Γ 1,1,1) + σ1 (x Γ 1,1,1)g 1 (x) + θ 0,2 (x I 2) + θ2 (x Γ 2,2,1) + σ2 (x Γ 2,2,1)g 2 (x),
where θ 0,k are degree-2 SOS polynomials in variable x I k , θk are degree-4 SOS polynomials in variable x Γ k,k,1 , σk are degree-2 SOS polynomials in variable x Γ k,k,1 . In other words,

θ 0,k ∈ Σ 1 [x I k], θk ∈ Σ 2 [x Γ k,k,1] ⊆ Σ2 2 [x I k], σk ∈ Σ 1 [x Γ k,k,1] ⊆ Σ2 1 [x I k].
Remark. In Definition 4.3 and 4.4, each sublevel relaxation is formulated as a (primal) SOS problem. Similar with the standard Lasserre's relaxation [Lasserre 2006], we can also write the (dual) moment problem, in which the moment matrices correspond to SOS polynomial θ 0 , θi for the dense case or θ 0,k , θi,k for the sparse case, and the localizing matrices correspond to SOS polynomial σ i , σi for the dense case or σ i,k , σi,k for the sparse case. Since the (d + 1)-th order sublevel relaxation is built based on the d-th order Lasserre's relaxation, i.e., the moment matrices corresponding to θ 0 or θ 0,k are the same as in the standard Lasserre's relaxation. Then if each moment matrix is of rank 1, one is able to verify that the sublevel relaxation reaches the exact optimal value of the original problem and we can follow the extraction procedures of [START_REF] Henrion | [END_REF]] and [Lasserre 2006, Section 3.3] to obtain exact optimal solutions from the moment matrices for the dense and sparse cases, respectively.

In the next example, we show explicitly how the sublevel relaxation performs between order-1 and order-2 Lasserre's relaxation when the order-2 relaxation is exact.

Example. This example is taken from [Floudas & Pardalos 1990, Problem 2.9], which is a maximum clique problem (see (Max-Cliq)):

max x f (x) = 9 i=1 x i x i+1 + 8 i=1 x i x i+2 + x 1 x 9 + x 1 x 10 + x 2 x 10 + x 1 x 5 + x 4 x 7 (4.3) s.t. 10 i=1 x i = 1, 0 ≤ x i ≤ 1, i ∈ [10].
The global solution is f (x *) = 0.375 with maximizer x * = [0, 0, 0, 1 4 , 1 4 , 1 4 , 1 4 , 0, 0, 0] T which is certified by GloptiPoly [START_REF] Henrion | [END_REF] for second-order dense Lasserre's relaxation.

We now consider the dense second-order sublevel relaxation compared with Shor's relaxation, where we use the ordered heuristic H2 described in Section 4.2 to select the q subsets of size l. Notice that if l = 0 or q = 0, the sublevel relaxation reduces to Shor's relaxation, and if l = 10, the sublevel relaxation is exactly the dense Lasserre's relaxation. Table 4.1 shows how the upper bounds computed by the sublevel relaxations successively converge to the optimal solution of problem (4.3), when we increase the level l and depth q. The upper bounds in bold font indicate that we have reached the exact optimal value and we can extract the (unique) global solution via the dense order-1 moment matrix M 1 (y). Table 4.1: Summary of the performance of sublevel relaxations applied to problem (4.3) with l, q = 0, 1, . . . , 10.

Relation with other relaxations

The standard Lasserre's hierarchy and many of its variants are contained in the framework of sublevel hierarchy:

Example. (Dense Lasserre's Relaxation [Lasserre 2001]) For (POP), the dense version of the d-th order Lasserre's relaxation is the dense d-th order sublevel relaxation with l = [n, n, . . . , n] and q = 1 p , where 1 p denotes the p-dimensional vector with all ones.

Example. (Sparse Lasserre's Relaxation [Lasserre 2006]) For (SparsePOP), the sparse version of the (d -1)-th order Lasserre's relaxation is the sparse d-th order sublevel relaxation with l = [[τ s] s∈J 1 ; . . . ; [τ s] s∈Jm] and q = 1 |J 1 |+...+|Jm| .

Example. (Multi-Order/Partial Relaxation) The multi-order relaxation (which is used to solve the Optimal Power Flow problem in [START_REF] Josz | [END_REF]), also named as partial relaxation (which is specifically encoded to solve the Max-Cut problem in [START_REF] Campos | [END_REF]), is a variant of the second-order sparse Lasserre's relaxation. We first preset a value r, then compute the maximal cliques in the chordal extension of the CSP graph of the POP. For those cliques of size larger than r, we consider the first-order moment matrices; for those of size smaller or equal than r, we consider the second-order moment matrices. Denote by S the set of indices such that τ k > r for k ∈ S, and T the set of indices such that τ k ≤ r for k ∈ T . Then the multi-order/partial relaxation is the second-order sublevel relaxation with

l = [[0] s∈J 1 ∩S , [τ s] s∈J 1 ∪T ; . . . ; [0] s∈Jm∩S , [τ s] s∈Jm∪T],
and

q = [[0] s∈J 1 ∩S , [1] s∈J 1 ∪T ; . . . ; [0] s∈Jm∩S , [1] s∈Jm∪T].

Example. (Augmented Partial Relaxation)

This relaxation is the strengthened version of the partial relaxation in [START_REF] Campos | [END_REF] to solve Max-Cut problems.

It is exactly the second-order sublevel relaxation restricted to Max-Cut problem.

Example. (Heuristic Relaxation)

The heuristic relaxation in [Chen et al. 2020] for computing the upper bound of the Lipschitz constant of ReLU networks, is a variant of the second-order dense Lasserre's relaxation. The intuition is that some constraints in the POP are sparse, so let us denote by S the set of their indices, while their corresponding cliques are large, thus one cannot solve the second-order relaxation of the standard sparse Lasserre's hierarchy. We then consider the dense first-order relaxation (Shor's relaxation), and choose subsets of moderate sizes (size 2 in [Chen et al. 2020]) that contain the variable sets of these sparse constraints. For other constraints with larger variable sets, let us denote by T the set of their indices and let us consider the first-order moment matrices. Then the heuristic relaxation is the second-order sublevel relaxation with l

= [[0] i∈T , [2] i∈S] and q = [[0] i∈T , [1] i∈S].
Remark. [Nie & Demmel 2009] proposed a moment-SOS relaxation for unconstrained POPs whose objective function can be written as a sum of polynomials involving only small number of variables. Precisely, let the objective function be a polynomial of form f (x) = r i=1 f i (x ∆ i), where x ∈ R n and ∆ i ⊆ {1, . . . , n} for all i. Note that the subsets ∆ i do not necessarily satisfy the RIP condition. We define subsets {I k } m k=1 ⊆ {1, . . . , n} m satisfying the RIP condition such that for each i, ∆ i ⊆ I k for some k. Then the (d + 1)-th order sublevel relaxation involves the sparse d-th order moment matrices M d (y, I k) and sparse (d + 1)-th order moment matrices M d+1 (y, ∆ i), which guarantees that the (d + 1)-th order sublevel relaxation performs no worse than the d-th order Lasserre's relaxation. In contrast, the (d + 1)-th order relaxation in [Nie & Demmel 2009] only involves moment matrices M d+1 (y, ∆ i) and hence is likely to give looser bounds than the d-th order Lasserre's relaxation. On the other hand, in the case that the size of subsets I k is much larger than ∆ i , the relaxation in [Nie & Demmel 2009] is faster to solve than the sublevel relaxation.

Summarizing the above discussion, we have the following proposition: Proposition 4.1. (1) For dense case, if l = [n, n, . . . , n], then the d-th order sublevel relaxation is exactly the dense (d + 1)-th order Lasserre's relaxation.

(2) For sparse case, if l = [[τ s] s∈J 1 ; . . . ; [τ s] s∈Jm], then the d-th order sublevel relaxation is exactly the sparse (d + 1)-th order Lasserre's relaxation.

Determination of the Subsets of Cliques

There are different ways to determine the subsets Γ i,j (or Γ i,k,j) of the sublevel relaxation described in Definition 4.3 and 4.4. Generically, we are not aware of any algorithm that would guarantee that the selected subsets are optimal at a given level of relaxation. In this section, we propose several heuristics to select the subsets. Suppose that {I k } 1≤k≤m is the sequence of maximal cliques in the chordal extension of the CSP graph of the sparse problem (SparsePOP) and that the level of relaxation is l ≤ |I k | =: τ k . We need to select the "best" candidate among the τ k l many subsets of size l. However, in practice, the number τ k l might be very large since τ k l ≈ τ l k when l is fixed. In order to make this selection procedure tractable, we reduce the number of sample subsets to τ k . Precisely, suppose I k := {i 1 , i 2 , . . . , i τ k }, define I k,j := {i j , i j+1 , . . . , i j+l } for j = 1, 2, . . . , τ k and 1 ≤ l ≤ τ k . By convention, i j = i k if j ≡ k mod τ k . Denote by p the depth of the relaxation. Then we use the following heuristics to choose p subsets among the candidates I k,j . Without loss of generality, we assume that l < τ k (otherwise one has l ≥ τ k , then we only need to select one subset I = I k).

• H1 (Random Heuristic): For each i and clique I k , we randomly select p subsets Γ i,k,j ⊆ I k for j = 1, . . . , p, such that |Γ i,k,j | = l for all j;

• H2 (Ordered Heuristic): For each i and clique I k , we select one after another Γ i,k,j = I k,j ⊆ I k for j = 1, . . . , p. For p = τ k , we also call this heuristic the cyclic heuristic.

The heurisics H1 and H2 do not depend on the problem, thus they might not fully explore the specific structure hidden in the POPs. We can also try the heuristic that selects the subsets according to the value of the moments in the first-order moment relaxation (Shor's relaxation).

• H3 (Moment Heuristic): First of all, we solve the first-order sparse relaxation. For each i and clique I k , suppose M k is the first-order moment matrix indexed by 1 and the monomials in x I k . Denote by M k (I k,j) the submatrix whose rows and columns are indexed by 1 and x I k,j for j = 1, 2, . . . , τ k . We reorder the subsets I k,j w.r.t. the infinity norm (the largest row sum of absolute value) of the submatrices M k (I k,j), i.e.,

M k (I k,1) ∞ ≥ M k (I k,2) ∞ ≥ . . . ≥ M k (I k,τ k) ∞ .
Then we pick the first p subsets Γ

i,k,1 = I k,1 , Γ i,k,2 = I k,2 , . . . , Γ i,k,p = I k,p after reordering.
In particular, for Max-Cut problem, [START_REF] Campos | [END_REF] proposed the following heuristics that take the weights in the graph or the maximal cliques in the chordal graph into account. We briefly introduce the idea of these heuristics, readers can refer to [START_REF] Campos | [END_REF] for details. For heuristic H4 to H6, denote by L the Laplacian matrix of the graph.

• H4 (Laplacian Heuristic): For each clique I k , denote by L(I k,j) the submatrix of the moment matrix M k whose rows and columns are indexed by 1 and x I k,j for j = 1, 2, . . . , τ k . We reorder the subsets {I k,j } w.r.t. the infinity norm of the submatrices {L(I k,j)}, i.e.,

L(I k,1) ∞ ≥ L(I k,2) ∞ ≥ . . . ≥ L(I k,τ k) ∞ .
Then we pick the first p subsets Γ i,k,1 = I k,1 , Γ i,k,2 = I k,2 , . . . , Γ i,k,p = I k,p after reordering. The spirit of H4 and H5 is to select the subsets involving large value of moments or weights, and we assume a priori that larger value of moments/weights have larger impacts on the subsets;

• H5 (Max-Repeated Heuristic): We select subsets contained in many maximal cliques;

• H6 (Min-Repeated Heuristic): We select subsets contained in few maximal cliques;

• H4-5: We combine heuristic H4 and H5 to select the subsets that are not repeated in other maximal cliques and contain variables with large weights.

In the spirit of the heuristic H4-5, we can also combine H5 with the moment heuristic H3:

• H3-5: We combine H3 and H5 to select the subsets that are not repeated in other maximal cliques and contain variables with large moments.

There is no general guarantee that one of the heuristics always performs better than the others. In Table 4.2, we show the upper bounds obtained by the above heuristics for two Max-Cut instances g_20 and w01_100 (the detail of the numerical settings and the results is referred to Section 4.3.1), for level 4, 6, and depth 1, 2, respectively. For each heuristic, we count the number of times that the heuristic performs the best. We see that, suprisingly, the random heuristic H1 performs the best among other heuristics. The ordered heuristic H2 and Laplacian heuristic H4 also performs well. For the sake of simplicity, we will only consider the ordered heuristic H2 and its variants for the forthcoming examples.

Application to Optimization Problems

This section is about the numerical experiments of sublevel hierarchy in optimization. We apply the sublevel relaxation to different type of POPs in optimization, as discussed in the previous section. Most of the instances are taken from the Biq-Mac library [Rendl et al. 2007] and the QPLIB library [START_REF] Furini | [END_REF]. We calculate the ratio of improvements (RI) of each sublevel relaxation, compared with Shor's relaxation. We also compute the relative gap (RG) between the sublevel relaxation and the optimal solution. The calculations of RI and RG are given by RI = Shorsublevel Shorsolution × 100%, RG = sublevelsolution |solution| × 100%. (4.4)

For each instance, we only show the ratio of improvements and relative gap corresponding to the results of the last sublevel relaxation, and use the bold font if we have improvements larger than 40%. The larger the ratio of improvements or the smaller the relative gap, the better the bounds. If the optimal solution is not known so far, it is replaced by the (best-known) valid upper bounds (UB) or lower bounds (LB). We implement all the programs on Julia, and use Mosek as backend to solve SDP relaxations. The running time (with second as unit) displayed in all tables refers to the time spent by Mosek1 to solve the SDP relaxation. All experiments are performed with an Intel 8-Core i7-8665U CPU @ 1.90GHz Ubuntu 18.04.5 LTS, 32GB RAM.

Maximum cut (Max-Cut) problem

Given an undirected graph G(V, E) where V is a set of vertices and E is a set of edges, a cut is a partition of the vertices into two disjoint subsets. The Max-Cut problem consists of finding a cut in a graph such that the number of edges between the two subsets is as large as possible. It can be formulated as follows:

max x x T Lx (Max-Cut) s.t. x ∈ {-1, 1} n ,
where L is the Laplace matrix of the given graph of n vertices, i.e., L := Diag(W • 1 n) -W where W is the weight matrix of the graph. The constraints x ∈ {-1, 1} n are equivalent to (x i)2 = 1 for all i. Suppose that {I k } m k=1 are the maximum cliques in the chordal extension of the given graph. For i = 1, 2, . . . , n, denote by k(i) (one of) the index such that i ∈ I k(i) . Suppose that I k(i) = {i 1 , . . . , i τ k(i) } for some i j = i with 1 ≤ j ≤ τ k(i) . Given a depth q and a level l, we select q subsets of size l by order as: for t ∈ [q] and i ∈ [n]

I i,t = {i j , i j+t , . . . , i j+t+l-2 }, (4.5)
with the convention that i j 1 = i j 2 if j 1 ≡ j 2 mod τ k(i) . If we consider the dense sublevel hierarchy, then we directly select the subsets by order as

I i,t = {i, i + t, . . . , i + t + l -2} for t ∈ [q].
The following classes of problems and their solutions are from the Biq-Mac library. For each class of problem, we choose the first instance, i.e., i = 0, and drop the suffix ".i" in Table 4.4:

• g05_n.i, unweighted graphs with edge probability 0.5, n = 60, 80, 100;

• pm1s_n.i, pm1d_n.i, weighted graph with edge weights chosen uniformly from {-1, 0, 1} and density 10% and 99% respectively, n = 80, 100;

• wd_n.i, pwd_n.i, graph with integer edge weights chosen from [-10, 10] and [0, 10] respectively, density d = 0.1, 0.5, 0.9, n = 100.

The instances g_n and the corresponding upper bounds are from the CS-TSSOS paper [START_REF] Wang | [END_REF]. The instances Gn are from the G-set library by Y.Y. Ye 2 , and their best-known solutions are taken from [Kochenberger et al. 2013].

In Table 4.3, we give a summary of basic information and the graph structure of each instance: nVar denotes the number of variables, Density denotes the percentage of non-zero elements in the adjacency matrix, nCliques denotes the number of cliques in the chordal extension, MaxClique denotes the maximum size of the cliques, MinClique denotes the minimum size of the cliques.

In Table 4.4, we display the upper bounds and running times corresponding to the sublevel relaxations of depth 1, and level 0, 4, 6, 8, respectively. Notice that the authors in [START_REF] Campos | [END_REF]] use the partial relaxation to compute upper bounds for instances g_20 to g_200. The sublevel relaxation we consider here is actually what they call the augmented partial relaxation, which is a strengthened relaxation based on partial relaxation. From the ratio of improvement, we see that the more sparse structure the graph has, the better the sublevel relaxation performs. Notice that if we obtain better upper/lower bounds than the current best-known bounds, the ratio of improvements will be larger than 100% and the relative gap will become nagative. Particularly, our method provides better bounds for all the instances g_n in the CS-TSSOS paper [START_REF] Wang | [END_REF], and computes upper bounds very close to the best-known solution for the instances Gn in G-set.

In addition to Table 4.4, if the number of variables is of moderate size, the dense sublevel relaxation might performs faster than the sparse one. For example, the instance g05_100 has 13 maximal cliques with maximum size 88 and minimum size 37. The sparse sublevel relaxation consists of 13 first-order moment matrices of size from 37 to 88. However, the dense version only consists of 1 first-order moment matrix of size 100. In fact, the dense sublevel relaxation gives an upper bound of 1463.5 at level 0 in 10 seconds, yielding the same bound as the sparse case at level 0 but with much less computing time, and 1458.1 at level 8 in 178.1 seconds, providing better bounds than the sparse case at level 6, with less computing time.

Maximum clique (Max-Cliq) problem

Given an undirected graph G(V, E) where V is a set of vertices and E is a set of edges, a clique is defined to be a set of vertices that is completely interconnected. The Max-Cliq problem consists of determining a clique of maximum cardinality. It can be stated as a nonconvex quadratic programming problem over the unit simplex [Pardalos & Phillips 1990] and its general formulation is:

max x x T Ax (Max-Cliq) s.t. n i=1 x i = 1, x ∈ [0, 1] n ,
where A is the adjacency matrix of the given graph of n vertices. The constraints x ∈ [0, 1] n are equivalent to x i (x i -1) ≤ 0 for i = 1, 2, . . . , n. The Max-Cliq problem is dense since we have a constraint n i=1 x i = 1 involving all the variables. Therefore, we apply the dense sublevel hierarchy. To handle the constraint n i=1 x i = 1, we select the q subsets of size l by order as I t = {t, t + 1, . . . , t + l -1} for t = 1, 2, . . . , q. For the constraints x i (x i -1) ≤ 0, we select the subsets by order as

I i,t = {i, i + t, . . . , i + t + l -2} for t ∈ [q].
We take the same graphs as the ones considered in the Max-Cut instances. Some instances share the same adjacency matrix with different weights, in which case we delete these repeated graphs. LB denotes the lower bound of a given instance, computed by 10 6 random samples. Contrast with the strategy used for the Max-Cut instances, we use sublevel relaxations with level 2 and depth 0, 20, 40, 60, respectively. From Table 4.5 we see that the sublevel relaxation yields large improvement compared to Shor's relaxation. The Max-Cliq problem remains hard to solve as emphasized by the large relative gap, ranging from 662.5% to 3660%.

Mixed integer quadratically constrained programming (MIQCP)

The MIQCP problem is of the following form:

min x x T Q 0 x + b T 0 x (MIQCP) s.t.    x T Q i x + b T i x ≤ c i , i ∈ [p], Ax = b, l ≤ x ≤ u, x I ∈ Z,
where each Q i is a symmetric matrix of size n × n, A is a matrix of size n × n, b, b i , l, u are n-dimensional vectors, and each c i is a real number. The constraints x T Q i x + b T i x ≤ c i are called quadratic constraints, the constraints Ax = b are called linear constraints. The constraints l ≤ x ≤ u and x I ∈ Z bound the variables and restrict some of them to be integers. In our benchmarks, we only consider the case where x ∈ {0, 1} n , which is also equivalent to x i (x i -1) = 0 for i = 1, 2, . . . , n. If we only have bound constraints, then we use the same ordered heuristic as for the Max-Cut problem to select the subsets. If in addition we also have quadratic constraints or linear constraints, then the problem is dense and therefore we consider the dense sublevel hierarchy. For quadratic constraints, we don't apply the sublevel relaxation to them, i.e., l = q = 0. However, if Q i equals the identity matrix, then we use the same heuristic as the linear constraints: we select the subsets by order as

I t = {t, t + 1, . . . , t + l -1} for t ∈ [q].
The following classes of problems and their solutions are from the Biq-Mac library, where there are neither quadratic constraints x T Q i x + b T i x ≤ c i nor linear constraints Ax = b. We only have integer bound constraints x ∈ {0, 1} n .

• bqpn-i, with 10% density. All the coefficients have uniformly chosen integer values in [-100, 100], n = 50, 100, 250, 500;

• gkaia, with dimensions in [30,100] and densities in [0.0625, 0.5]. The diagonal coefficients lie in [-100, 100] and the off-diagonal coefficients belong to [-100, 100];

• gkaib, with dimensions in [20,125] and density 1. The diagonal coefficients lie in [-63, 0] and the off-diagonal coefficients belong to [0, 100];

• gkaic, dimensions in [40,100] and densities in [0.1, 0.8]. Diagonal coefficients in [-100, 100], off-diagonal coefficients in [-50, 50];

• gkaid, with dimension 100 and densities in [0.1, 1]. The diagonal coefficients lie in [-75, 75] and the off-diagonal coefficients belong to [-50, 50].

We also select some instances and their solutions from the QPLIB library with ID 0032, 0067, 0633, 2512, 3762, 5935 and 5944, in which we have additional linear constraints Ax = b. For the instance 0032, there are 50 continuous variables and 50 integer variables. For the two instances 5935 and 5944, we maximize the objective, the others are minimization problems.

Similarly to the Max-Cut instances, Table 4.6 summarizes the basic information and clique structure of each instance. Table 4.7 is a summary of basic information and the number of quadratic, linear, bound constraints of the instances from the QPLIB library.

In Table 4.8, we show the lower bounds and running time obtained by solving the sublevel relaxations with depth 1 and level 0, 4, 6, 8, respectively. We see that when the problem has a good sparsity structure or is of low dimension, the sublevel relaxation performs very well and provides the exact solution, in particular for the two instances gka2a and gka7a. For dense problems, we are not able to find the exact solution, but still have improvements between 20% and 40% compared to Shor's relaxation. Notice that for the instances gka1b to gka10b, even though we have an improvement ratio ranging from 24.0% to 77.9%, the relative gap is very high, varying from 38.2% to 947.2%. This means that these problems themselves are very hard to solve, so that the gap between the results of Shor's relaxation and the exact optimal solution is very large. Even though the sublevel relaxation yields substantial improvement compared to Shor's relaxation, it's still far away from the true optimum.

Quadratically constrained quadratic problem (QCQP)

A QCQP can be cast as follows:

min x x T Q 0 x + b T 0 x (QCQP) s.t.    x T Q i x + b T i x ≤ c i , i ∈ [p], Ax = b, l ≤ x ≤ u,
where each Q i is a symmetric matrix of size n × n, A is a matrix of size n × n, b, b i , l, u are n-dimensional vectors, and each c i is a real number. This is very similar to the MIQCP except that we drop out the integer constraints. Therefore, we use the same strategy to select the subsets in the sublevel relaxation.

We take the MIQCP instances from the Biq-Mac library whose size are larger or equal than 50. We add one dense quadratic constraint ||x|| 2 2 = 1, and relax the integer bound constraints x ∈ {0, 1} n to linear bound constraints x ∈ [0, 1] n . UB denotes the upper bound obtained by selecting the minimum value over 10 6 random evaluations.

We also select some instances and their solutions from the QPLIB library with ID 1535, 1661, 1675, 1703 and 1773. These instances have more than one quadratic constraint and involve linear constraints.

Table 4.9 is a summary of basic information as well as the number of quadratic, linear, and bound constraints of the instances from the QPLIB library.

In Table 4.10, we show the lower bounds and running time obtained by the sublevel relaxation with depth 1 for the instances from the QPLIB library, 10 for the instances adapted from the Biq-Mac library, and level 0, 4, 6, 8, respectively. We see that the sublevel relaxation yields a uniform improvement compared to Shor's relaxation. However, for the QCQP problems adapted from the MIQCP instances, it is very hard to find the exact optimal solution as the relative gap varies from 60.5% to 77.0%. This is in deep contrast with the instances from the QPLIB library which are relatively easier to solve as the relative gap varies from 9.4% to 13.8%. As described in Section 1.3.2, to verify the robustness of a neural network F is indeed to verify whether a property holds, e.g. F (x) ∈ Y for all x ∈ X . In this chapter, we formulate this problem into polynomial optimization problems, and apply sublevel relaxation described in Chapter 4 to obtain valid upper bounds of the original problem. We also propose two related problems: Lipschitz constant estimation and ellipsoid propagation, both of which can be applied to certify robustness of neural networks.

Semialgebraicity of ReLU, ∂ReLU, and L p -norms

The key reason why neural networks with ReLU activation function can be tackled using polynomial optimization techniques is semialgebraicity of the ReLU function, i.e., it can be expressed with a system of polynomial (in)equalities.

ReLU function

Recall that ReLU(x) = max{0, x}. For x, y ∈ R, we have y = ReLU(x) ⇐⇒ y(y -x) = 0, y ≥ x, y ≥ 0.

(5.1) By Definition 3.1, the graph of ReLU function is a semialgebraic set, as shown in Figure 5.1. For x, y ∈ R n , we denote by ReLU(x) the coordinate-wise evaluation of ReLU function.

-1 -0.5 Remark. There are other semialgebraic formulations of ReLU function, for example:

0 0.5 1 -1 -0.5 0 0.5 1 x y (a) y = max{x, 0}. -1 -0.5 0 0.5 1 -1 -0.5 0 0.5 1 x (b) y(y -x) = 0, y ≥ x, y ≥ 0.
y = max{x, 0} ⇐⇒ y(y -x) = 0, y ≥ αx with α ∈ (0, 1) ⇐⇒ y = (x + z)/2, x 2 = z 2 , z ≥ 0.
All these formulations are equivalent in mathematics. However, it shows different numerical behavior when using different formulation in the optimization solvers. The one we chose in this thesis has the best empirical performance.

∂ReLU function

Similar with ReLU function, the subdifferential of ReLU function is also a semialgebraic function. We first give the formal definition of subdifferential. Definition 5.1. Let Ω ∈ R n and f : Ω → R be a convex function. The subdifferential of f at x ∈ Ω, denoted by ∂f (x), is defined as the nonempty set

∂f (x) := {z ∈ R n : f (y) ≥ f (x) + z T (y -x)}, (5.2) the vector z satisfying (5.2) is called subgradient of f at x. Remark. If f is differentiable at x, then ∂f (x) = {∇f (x)}.
Applying Definition 5.1 to ReLU function, we obtain

∂ReLU(x) =        {0}, x < 0; [0, 1], x = 0; {1}, x > 0.
Therefore, for x, y ∈ R, we have y ∈ ∂ReLU(x) ⇐⇒ y(y -1) ≤ 0, xy ≥ 0, x(y -1) ≥ 0.

(5.3) By Definition 3.1, the graph of ∂ReLU is also a semiaglebraic set, as shown in Figure 5.2. If x, y ∈ R n , we denote by ∂ReLU(x) the coordinate-wise evaluation of ∂ReLU.

-1 -0.5 0 0.5 1 -0.5

0 0.5 1 1.5 x y (a) y ∈ ∂ReLU(x). -1 -0.5 0 0.5 1 -0.5 0 0.5 1 1.5 x (b) y(y -1) ≤ 0, xy ≥ 0, x(y -1) ≥ 0.

L p norm

Recall that for p ∈ Z + ∪ {∞}, x ∈ R n , the L p norm of x is defined as

x p =          n i=1 |x i | p 1 p , if p < ∞; max i∈[n] |x i |, if p = ∞.
Hence the ball constraint x p ≤ 1 is equivalent to polynomial inequalities

x p ≤ 1 ⇐⇒                  n i=1 x p i ≤ 1, if p = 2k for some k ∈ Z + ; n i=1 y p i ≤ 1, y 2 i = x 2 i , y i ≥ 0, if p = 2k + 1 for some k ∈ Z + ; x 2 i ≤ 1, ∀i ∈ [n], if p = ∞.
By Definition 3.1, the unit ball {x : x p ≤ 1} is a semialgebraic set for any L p norm with p ∈ Z + ∪ {∞}. Similarly, the ball at center x ∈ R n with radius ε, defined by {x : xx p ≤ ε} is a semialgebraic set for any L p norm with p ∈ Z + ∪ {∞}.

Lipschitz Constant Estimation

Recall that an application f :

X → R m , defined on a convex open set X ⊆ R n , is L- Lipschitz with respect to norm • if for all x, y ∈ X , we have f (x)-f (y) ≤ L x- y . In particular, if f is a function from X to R, then f (x)-f (y) = |f (x)-f (y)|.
The Lipschitz constant of f with respect to norm • , denoted by L f, • , is the infimum of all those valid Ls:

L f, • := inf{L : ∀x, y ∈ X , f (x) -f (y) ≤ L x -y } .
(5.4)

For deep neural networks, Lipschitz constants play an important role in many applications related to robustness certification which has emerged as an active topic. Related works include [Raghunathan et al. 2018b, Fazlyab et al. 2020] based on Shor's relaxation, [Dathathri et al. 2020] based on a first-order SDP solver encoded in JAX1 (a Python library designed for high-performance machine learning research), [START_REF] Xue | [END_REF] based on SDP exploring chordal sparsity, [START_REF] Dvijotham | [END_REF][START_REF] Wong | [END_REF]] based on LP relaxation, [Tjeng et al. 2019] based on MILP, [START_REF] Combettes | Lipschitz Certificates for Layered Network Structures Driven by Averaged Activation Operators[END_REF] based on compositions of nonexpansive averaged operators and affine operators, and [Boopathy et al. 2019, Zhang et al. 2018, Weng et al. 2018c, Weng et al. 2018a] based on outer polytope approximation. We follow a different route and compute upper bounds on the Lipschitz constant of neural networks. Upper bounds on Lipschitz constants of deep networks can be obtained by a product of the layer-wise Lipschitz constants, see [Huster et al. 2018]. This is however extremely loose and has many limitations. An improved upper bound via a finer product is proposed by [START_REF] Virmaux | [END_REF]. Depart from these approaches, [Latorre et al. 2020] propose a nonconvex QCQP formulation to estimate the Lipschitz constant of neural networks, for which Shor's relaxation allows to obtain a valid upper bound. Alternatively, using the LP hierarchy, they obtain tighter upper bounds compared to Shor's relaxation. [Fazlyab et al. 2019b] also propose an SDP-based method to provide upper bounds of the Lipschitz constant. However this method is restricted to L 2 norm whereas most robustness certification problems in deep learning are rather concerned with the L ∞ -norm.

Problem setting

Generally speaking, if an application f : X → R m is smooth. Then the Lipschitz constant of f w.r.t norm • is equal to the supremum of the operator norm |||•||| of the Jacobian of f . In particular, if f is a function from X to R, it reduces to the dual norm • * of the gradient of f .

Theorem 5.1. Let X ⊆ R n be a convex open set and f : X → R m is a smooth application defined on X . Denote by L f, • its Lipschitz constant w.r.t. norm • , then L f, • = sup x∈X |||J f (x)|||,
(5.5)

where J f (x) is the Jacobian matrix of f evaluated at x, and |||•||| is the operator norm w.r.t norm • defined by |||A||| := inf{λ ≥ 0 :

Ax ≤ λ x , ∀x ∈ R n } for all A ∈ R m×n . In particular, if f is a function defined on X , then L f, • = sup x∈X ∇f (x) * , (5.6)
where ∇f (x) is the gradient of f evaluated at x, and

• * is the dual norm of • defined by x * := sup t ≤1 | t, x | for all x ∈ R n .
Proof : We only prove (5.5) for the case when f is a vector-valued application. By the convexity and smoothness of f , using Leibniz integral rule, for all x, y ∈ R n ,

f (y) -f (x) = 1 0 J f (x + t(y -x))(y -x)dt ≤ 1 0 |||J f (x + t(y -x))||| • y -x dt ≤ 1 0 sup x∈X |||J f (x)||| • y -x dt = sup x∈X |||J f (x)||| • y -x , (5.7) which proves that L f, • ≤ sup x∈X |||J f (x)|||. In order to prove L f, • ≥ sup x∈X |||J f (x)|||, one only needs to prove that L f, • ≥ sup x∈X |||J f (x)||| -ε for any ε > 0. For a fixed ε, let z ε ∈ R n be the vector such that |||J f (z ε)||| ≥ sup x∈X |||J f (x)||| -ε. Since X is open, there exists a sequence {v i } ∞ i=1 in R n such that z ε + v i ∈ X
for all i and lim i→∞ v i = 0. By Taylor formula,

f (z ε + v i) -f (z ε) = J f (z ε) • v i + o(v i) • v i . Hence f (z ε + v i) -f (z ε) = J f (z ε) • v i + o(v i) • v i . By the definition of Lipschitz constant, L f, • ≥ f (z ε + v i) -f (z ε) v i = J f (z ε) • v i v i + o(1) • v i ≥ |||J f (z ε)||| -o(v i).
(5.8)

Let i → ∞, by equation (5.8) and the fact that lim i→∞ o(v i) = 0, we have

L f, • ≥ |||J f (z ε)||| ≥ sup x∈X |||J f (x)||| -ε,
for all ε > 0, which conclude the proof. Theorem 5.1 gives us an explicit formulation of calculating the Lipschitz con-stant of smooth functions defined on convex open sets. Unfortunately, for ReLU neural network F : Ω → R K where Ω ⊆ R p 0 is a convex set (e.g. the unit ball), it is not smooth due to the non-smoothness of the ReLU function. Therefore, we cannot directly apply Theorem 5.1 to neural networks with ReLU activation function. On the other hand, we can still use the same methodology to compute the generalized Jacobian or generalized gradient and prove that they are valid upper bounds of the Lipschitz constant.

For DNNs: We first consider fully-connected deep neural networks with ReLU activation function. Suppose we have a pre-trained network F with parameters

W = (A 1 , b 1 ; . . . ; A L , b L ; C), where A i ∈ R p i ×p i-1 , b i ∈ R p i , C ∈ R K×p L , L is
the number of hidden layers, p 0 is the number of neurons in the input layer, p i is the number of neurons in the hidden layer, and K is the number of labels. We say that a network F has size (p 0 , p 1 , . . . , p L) if F has L hidden layers, p 0 neurons in the input layer and p i neurons in the corresponding hidden layers. Denote by

F k (x) := (F (x)) k for k ∈ [K] and x ∈ Ω. For an input x 0 ∈ R p 0 , the targeted score of label k is F k (x 0) = C (k,:) x L =: c T k x L , where x i = ReLU(A i x i-1 + b i), for i ∈ [L]
. By applying the chain rule on the non-smooth function F k , we obtain a set valued map for F k at point x 0 as

G F k (x 0) = L i=1 A T i Diag(z i) c k : z i ∈ ∂ReLU(A i x i-1 + b i) , (5.9)
where Diag(z i) is the diagonal matrix whose diagonal entries are composed of vector z i , and ∂ReLU is the subdifferential of ReLU function as defined in Definition 5.2. Symbolically, the set valued map G F k looks like the subdifferential of function F k since we apply the chain rule on F k . However, in general, the chain rule cannot be applied to composition of non-smooth functions, see [Kakade & Lee 2018[START_REF] Bolte | [END_REF]. Hence the formulation of G F k may lead to incorrect subgradients and bounds on the Lipschitz constant of the networks. Nevertheless, we are going to prove that, in the spirit of Theorem 5.1, the map G F k can be used to compute a valid upper bound of the Lipschitz constant of function

F k . Lemma 5.2. Suppose F : Ω → R K is a fully-connected deep neural network ac- tivated by ReLU function, F k (x) := (F (x)) k for k ∈ [K] and x ∈ Ω. Let L F k , • be the Lipschitz constant of F k w.r.t. norm • .
Then the optimal value of the following optimization problem

LF k , • := sup x 0 ∈Ω, v∈G F k (x 0) v * = sup x 0 ∈Ω L i=1 A T i Diag(z i) c k * : z i ∈ ∂ReLU(A i x i-1 + b i) , (5.10) is a valid upper bound of L F k , • , i.e., L F k , • ≤ LF k , • .
Proof : Adopting the terminology from [START_REF] Bolte | [END_REF], ∂ReLU is conservative. The formulation G F k (x 0) = (L i=1 A T i Diag(z i))c k is an application of the chain rule of differentiation, where along each chain the conservative set-valued field ∂ReLU is used in place of derivative of ReLU function. By [Bolte & Pauwels 2021, Lemma 2], chain rule preserves conservativity, hence G F k is a conservative mapping for function F k . By conservativity and convexity of Ω, we have for all x, y ∈ R p 0 , integrating along the segment,

|F k (y) -F k (x)| = 1 0 max v∈G F k (x+t(y-x)) y -x, v dt ≤ 1 0 max v∈G F k (x+t(y-x)) y -x v * dt ≤ 1 0 y -x LF k , • dt = LF k , • y -x ,
which conclude the proof.

Remark. Lemma 5.2 may admit a simpler proof. Indeed the Clarke subdifferential [Clarke 1983] is the convex hull of limits of sequences of gradients. For Lipschitz constant, we want the maximum norm element, which necessarily happens at a corner of the convex hull, therefore for our purposes it suffices to consider sequences. Since the ReLU network is almost everywhere differentiable, we can consider a shrinking sequence of balls around any point, and we will have gradients which are arbitrarily close to any corner of the gradients at our given point. Therefore, the norms of the sequence will converge to the norm of the corner, and thus it suffices to optimize over differentiable points, which means what we choose at the nondifferentiability does not matter.

The above argument is essentially valid because ReLU function only contains univariate nondifferentiability which is very specific. However the argument is implicitly based on the idea that the composition of almost everywhere differentiable functions complies with calculus rules, which is not correct in general due to lack of injectivity. For more general networks, what we choose at the nondifferentiability does matter. Indeed, consider the following functions

F : x → x x , G : y 1 y 2 → max {y 1 , y 2 } .
The composition G • F is the identity on R and both F and G are differentiable almost everywhere. Consider the mappings

J F : x → 1 1 , J G : y 1 y 2 →        (0, 0) T , if y 1 = y 2 ;
(1, 0) T , if y 1 > y 2 ;

(0, 1) T , if y 1 < y 2 .

It is easy to see that J F is the Jacobian of F and J G is the gradient of G almost everywhere. Now the product J G (F (x)) T • J F (x) = 0 for all x ∈ R. Hence computing the product of these gradient gives value 0, meaning that the function is constant, which is not the truth. The reason for the failure here is that J G , despite being gradient almost everywhere, is not conservative for G. For this reason, the product does not provide any information of Lipschitz constant and the choice at nondifferentiability point does matter for G.

When

Ω = R n , L F k , • is called the global Lipschitz constant of F w.r.t. norm • .
In many cases we are also interested in the local Lipschitz constant of a neural network constrained in a small neighborhood of a fixed input x. In this situation, the input space Ω is often the ball around x ∈ R p 0 with radius ε:

Ω = {x ∈ R p 0 : x -x ≤ ε} = B(x, ε, •),
k ∈ [K], max x i ∈R p i , z i ∈R p i , t∈R p 0 t T L i=1 A T i Diag(z i) c k (LipDNN-k) s.t.                    z i • (z i -1) ≤ 0, z i • (A i x i-1 + b i) ≥ 0, (z i -1) • (A i x i-1 + b i) ≥ 0, i ∈ [L], x i-1 • (x i-1 -A i-1 x i-2 -b i-1) = 0, x i-1 -A i-1 x i-2 -b i-1 ≥ 0, x i-1 ≥ 0, 2 ≤ i ≤ L, t 2 ≤ 1, x 0 -x ≤ ε.
[Latorre et al. 2020] only use the constraint 0 ≤ z i ≤ 1 on the variables z i , only capturing the Lipschitz character of the considered activation function. We could use the same constraints, which allows us to use activation functions that do not have semialgebraic representations such as ELU function. However, such a relaxation is much coarser than the one we propose. Indeed, (LipDNN-k) treats an exact formulation of the subdifferential of ReLU function by exploiting its semialgebraic character.

For MONs: Now we consider a different type of neural network, fully-connected MON, as introduced in Section 1.1.2. The only difference between a MON and a DNN is that we only have one hidden layer in MON, and the evaluation of the neurons in the hidden layer is realized by a fixed point equation. Similar with the case of DNNs, we assume the MON is a classifier activated by ReLU function. Let W = (A, B, b; C) be the parameters of F , where

A ∈ R p 1 ×p 1 , B ∈ R p 1 ×p 0 , b ∈ R p 1 , C ∈ R K×p 1 ,
p 0 is the number of neurons in the input layer, p 1 is the number of neurons in the hidden layer, K is the number of labels. We say that network F has size (p 0 , p 1) if F has p 0 neurons in the input layer and p 1 neurons in the hidden layer. We are going to bound the Lipschitz constant of F with respect to input perturbation. Let L F, • (resp, L F,ε, •) be the global (resp. local) Lipschitz constant of F , and let s be any subgradient of the implicit variable, i.e., s ∈ ∂ReLU(Ax 1 + Bx 0 + b). By the semialgebraicity of ∂ReLU described in (5.3), we can write equivalently a system of polynomial inequalities for variable s:

s(s -1) ≤ 0, s(Ax 1 + Bx 0 + b) ≥ 0, (s -1)(Ax 1 + Bx 0 + b) ≥ 0.
(5.11)

Similar with the case of DNNs, we are able to calculate the upper bound of the Lipschitz constant of F by solving an optimization problem, as the following lemma states:

Lemma 5.3. Suppose F : Ω → R K is
:= max t,x 0 ∈R p 0 , s,x 1 ,h,r∈R p 1 , v,w∈R K t T B T h (LipMON) s.t.                          t ≤ 1, w T v ≤ 1, w ≤ 1, x 0 -x ≤ ε, r -A T h = C T v, h = Diag(s) • r, s • (s -1) ≤ 0, s • (Ax 1 + Bx 0 + b) ≥ 0, (s -1) • (Ax 1 + Bx 0 + b) ≥ 0, x 1 • (x 1 -Ax 1 -Bx 0 -b) = 0, x 1 -Ax 1 -Bx 0 -b ≥ 0, x 1 ≥ 0, is a valid upper bound of L F,ε, • , i.e., L F,ε, • ≤ LF,ε, • .
In order to prove Lemma 5.3, we need some preliminaries.

Definition 5.2. (Clarke's generalized Jacobian [Clarke 1983]) Let f : R n → R m be a locally Lipschitz vector-valued application, denote by Ω f any zero measure set such that f is differentiable outside Ω f . For x / ∈ Ω f , denote by J f (x) the Jacobian matrix of f evaluated at x. For any x ∈ R n , the generalized Jacobian, or Clarke Jacobian, of f evaluated at x, denoted by J C f (x), is defined as the convex hull of all m × n matrices obtained as the limit of a sequence of the form J f (x i) with x i → x and x i / ∈ Ω f . Symbolically, one has

J C f (x) := conv{lim J f (x i) : x i → x, i → ∞, x i / ∈ Ω f }.
(5.12) Definition 5.3. For a matrix A ∈ R m×n , the operator norm of A induced by norm • , denoted by |||•|||, is defined by

|||A||| := inf{λ ≥ 0 : Ax ≤ λ x , ∀x ∈ R n }.
(5.13) Lemma 5.4. Let F : Ω → R K be a fully-connected MON. The local Lipschitz constant of F is upper bounded by the supremum of the operator norm of its generalized Jacobian, i.e., define

LF,ε, • := sup t,x 0 ∈R p 0 , v,w∈R K , J∈J C x 1 (x) t T J T C T v (5.14) s.t. t ≤ 1, w T v ≤ 1, w ≤ 1, x 0 -x ≤ ε, then L F,ε, • ≤ LF,ε, • .
Proof. (of Lemma 5.4) Since x 1 (x 0) = ReLU(Ax 1 (x 0) + Bx 0 + b) by definition of MON, x 1 (x 0) is Lipschitz according to [Pabbaraju et al. 2021, Theorem 1]. Furthermore, x 1 (x 0) is semialgebraic by the semialgebraicity of ReLU function described in (5.1). Therefore, the Clarke Jacobian of x 1 is conservative. Indeed by [Clarke 1983, Proposition 2.6.2], the Clarke Jacobian is included in the product of subgradients of its coordinates which is a conservative field by [START_REF] Bolte | [END_REF], Lemma 3, Theorems 2 and 3]. Since F (x 0) = Cx 1 , the mapping CJ C x 1 : x 0 ⇒ CJ, where J ∈ J C

x 1 , is conservative for F by [Bolte & Pauwels 2021, Lemma 5]. So it satisfies an integration formula along segments. Let u 1 , u 2 ∈ Ω, and let γ : [0, 1] → R p 0 be a parametrization of the segment defined by γ(t) = u 1 + t(u 2 -u 1) (which is absolutely continuous). For almost all t ∈ [0, 1], we have

d dt F (γ(t)) = CJγ (t) = CJ(u 2 -u 1), (5.15)
for all J ∈ J C x 1 (γ(t)). Let M := sup{|||CJ||| : J ∈ J C

x 1 (x 0), x 0 ∈ B(x, ε, •)} be the supremum of the operator norm |||CJ||| for all J ∈ J C

x 1 (x 0) and all x 0 ∈ B(x, ε, •). We prove that M < ∞. Indeed, x 1 (x 0) is Lipschitz, hence there exists N > 0 such that |||J||| < N for all J ∈ J C

x 1 (x 0) and all x 0 ∈ B(x, ε, •). The value M is thus upper bounded by |||C|||N . Therefore, for almost all t ∈ [0, 1], d dt F (γ(t)) ≤ M u 2 -u 1 , and by integration,

F (u 2) -F (u 1) = 1 0 d dt F (γ(t))dt ≤ 1 0 d dt F (γ(t)) dt ≤ M u 2 -u 1 , which proves that L F,ε, • ≤ M . We show that M = LF,ε, • . Fix x 0 ∈ R p 0 and J ∈ J C x 1 (x 0)
. By the definition of operator norm, (5.16) where • * denotes the dual norm of • defined by v * := sup w∈R K {w T v : w ≤ 1} for all v ∈ R K , and the first equality is due to the fact that the operator norm of matrix CJ induced by norm • is equal to the operator norm of its transpose (CJ) T induced by the dual norm • * . Indeed, by definition of operator norm and dual norm, we have

|||CJ||| = (CJ) T * = sup v∈R K { J T C T v * : v * ≤ 1} = sup t∈R p 0 , v∈R K {t T J T C T v : t ≤ 1, v * ≤ 1} = sup t∈R p 0 , v,w∈R K {t T J T C T v : t ≤ 1, w T v ≤ 1, w ≤ 1},
|||CJ||| = sup x 0 ∈R p 0 { CJx 0 : x 0 ≤ 1} = sup x 0 ∈R p 0 , x 1 ∈R p 1 {x T 1 CJx 0 : x 0 ≤ 1, x 1 * ≤ 1} = sup x 0 ∈R p 0 , x 1 ∈R p 1 {x T 0 (CJ) T x 1 : x 0 ≤ 1, x 1 * ≤ 1} = sup x 1 ∈R p 1 { (CJ) T x 1 * : x 1 * ≤ 1} = (CJ) T * .
(5.17)

The quantity LF,ε, • is just the maximization of Equation (5.16) for all x 0 ∈ R p 0 and all J ∈ J C x 1 (x 0) and therefore equals M , which concludes that L F,ε, • ≤ M = LF,ε, • . Now we have enough materials to prove Lemma 5.3.

Proof. (of Lemma 5.3) The function x 1 is semialgebraic, and therefore, there exists a closed zero measure set Ω x 1 such that x 1 is continuously differentiable on the complement of Ω x 1 . For any x 0 ∈ Ω x 1 , since x 1 is C 1 at x 0 , we have J C

x 1 (x 0) = {J x 1 (x 0)} by definition of the Clarke Jacobian. Fix x 0 ∈ Ω x 1 arbitrarily. According to [Clarke 1983, page 75, Corollary of Theorem 2.6.6], we have (5.18) where the first inclusion is from the cited Corollary, the first equality is because x 1 is C 1 at x 0 so that the chain rule applies, and the last one is due to the convexity of the Clarke Jacobian. Fix any x 0 ∈ R p 0 , then by Definition 5.2, we have

J C x 1 (x 0) ⊆ conv{J C ReLU (Ax 1 (x 0) + Bx 0 + b) • J C Ax 1 (x 0)+Bx 0 +b (x 0)} = conv{J C ReLU (Ax 1 (x 0) + Bx 0 + b) • (A • J x 1 (x 0) + B)} = J C ReLU (Ax 1 (x 0) + Bx 0 + b) • (A • J x 1 (x 0) + B),
J C x 1 (x) = conv{lim J x 1 (u i) : u i → x 0 , i → +∞, u i / ∈ Ω x 1 }. (5.19)
Let {u i } i∈N be a sequence not in Ω x 1 and converging to x. For each u i / ∈ Ω x 1 , we have by (5.18) that J

x 1 (u i) ∈ J C ReLU (Ax 1 (u i)+Bu i +b)•(A•J x 1 (u i)+B), i.e., there exists H i ∈ J C ReLU (Ax 1 (u i) + Bu i + b) such that J x 1 (u i) = H i (A • J x 1 (u i) + B)
. By [Clarke 1983, proposition 2.6.2 (b)], J C ReLU has closed graph. Therefore, by continuity of x 1 , up to a subsequence,

H i → H ∈ J C ReLU (Ax 1 (x 0) + Bx 0 + b) for i → +∞, which means J C x 1 (x 0) ⊆ {J : H ∈ J C ReLU (Ax 1 (x 0) + Bx 0 + b), J = H(AJ + B)},
(5.20) 66CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS for all x 0 ∈ R p 0 . Let H ∈ J C ReLU (Ax 1 (x 0)+Bx 0 +b), since we have coordinate-wise application of ReLU, we obtain H = Diag(s) with s ∈ ∂ReLU(Ax 1 (x 0) + Bx 0 + b). By equation (5.20), the right-hand side of equation (5.14) is upper bounded by max t,x 0 ∈R p 0 , s,x 1 ∈R p 1 , v,w∈R K , J∈R p 1 ×p 0

t T J T C T v (LipMON-a) s.t.                          t ≤ 1, w T v ≤ 1, w ≤ 1, x 0 -x ≤ ε, J = Diag(s) • (A • J + B), s • (s -1) ≤ 0, s • (Ax 1 + Bx 0 + b) ≥ 0, (s -1) • (Ax 1 + Bx 0 + b) ≥ 0, x 1 • (x 1 -Ax 1 -Bx 0 -b) = 0, x 1 -Ax 1 -Bx 0 -b ≥ 0, x 1 ≥ 0.
Note that in problem (LipMON-a), we have a matrix variable J of size p 1 × p 0 , i.e., containing p 1 × p 0 many variables, which is too large for any SDP solvers. To make the optimization tractable, we use the vector-matrix product trick proposed by [START_REF] Winston | [END_REF] to reduce the size of the unknown variables. From equation J = Diag(s)

• (A • J + B), we have J = (I p 1 -Diag(s) • A) -1 • Diag(s) • B.
This inversion makes sense because of the strong monotonicity of I p 1 -A and the fact that all entries of s lie in [0, 1], see [Winston & Kolter 2020, Proposition 1]. Hence Remark. In order to avoid some possible numerical issues, we add some redundant constraints to problem (LipMON), we use the slope restriction condition of ReLU function as proposed by [Hu et al. 2020]: for i = j, (x

v T CJ = v T C • (I p 1 -Diag(s) • A) -1 • Diag(s) • B = r T • Diag(s) • B , (5
t,x 0 ∈R p 0 , s,x 1 ,h,r∈R p 1 , v,w∈R K t T A T h (LipMON-b) s.t.                          t ≤ 1, w T v ≤ 1, w ≤ 1, x 0 -x ≤ ε, r -A T h = C T v, h = Diag(s) • r, s • (s -1) ≤ 0, s • (Ax 1 + Bx 0 + b) ≥ 0, (s -1) • (Ax 1 + Bx 0 + b) ≥ 0, x 1 • (x 1 -Ax 1 -Bx 0 -b) = 0, x 1 -Ax 1 -Bx 0 -b ≥ 0, x 1 ≥ 0.
(j) 1 -x (i)
1)(A (j,:) x 1 + B (j,:) x 0 + b (j) -A (i,:) x 1 -B (i,:)

x 0 -b (i)) -(x (j) 1 -x (i)
1) 2 ≥ 0.

(5.22)

There are p 1 2 = O(p 2 1) many constraints in (5.22), which will be very large if p 1 increases. In practice, we choose those constraints with a fixed index i ∈ [p 1] so that we reduce the number of redundant constraints to p 1 -1. Summarize the discussion above, we show the total number of variables and constraints for the Lipschitz constant estimation problem of DNNs and MONs in Table 5.1.

L 2 2p 0 + 2 L-1 i=1 p i + p L 1 + p 0 + 3 L i=1 p i + 3 L i=2 p i L∞ 2p 0 + 3 L i=1 p i + 3 L i=2 p i MON L 2 2p 0 + 4p 1 + 2K 4 + 8p 1 L∞ 1 + 2p 0 + 8p 1 + K

Algorithms

Designing a general algorithm for all kind of neural networks is difficult. Here we consider specifically three types of neural networks: fully-connected DNNs with 1 and 2 hidden layers (denoted by FcDNN 1 and FcDNN 2), and fully-connected MONs (denoted by FcMON). We are going to discuss about the convex relaxation method for each type of network respectively. In the following discussion, we write x (i) the i-th entry of vector x ∈ R n , and A (i,:) the i-th row vector of matrix A ∈ R n×n .

For FcDNN 1 : Suppose the network F has only one hidden layer. In this case, the Lipschitz constant estimation problem (LipDNN-k) reduces as

max t,x 0 ∈R p 0 , z 1 ∈R p 1 t T A T 1 Diag(z 1)c k (5.23) s.t.    z 1 • (z 1 -1) ≤ 0, z 1 • (A 1 x 0 + b 1) ≥ 0, (z 1 -1) • (A 1 x 0 + b 1) ≥ 0, t 2 ≤ 1, x 0 -x ≤ ε.
In order to produce more sparsity patterns, we introduce a new decision variable u 1 = A 1 x 0 + b 1 and replace it in problem (5.23). Then we obtain an equivalent execute the experiments for LipOpt-d with Gurobi solver. For Sub-2 and SHOR, we use the YALMIP toolbox (MATLAB) [Löfberg 2004] with MOSEK as a backend to calculate the Lipschitz constants for random networks. For trained network, we implement our algorithm on Julia [Bezanson et al. 2017] with MOSEK optimizer to accelerate the computation. All experiments are run on a personal laptop with a 4-core i5-6300HQ 2.3GHz CPU and 8GB of RAM.

Remark. The crossover option 3 in Gurobi solver is activated by default, and it is used to transform the interior solution produced by barrier into a basic solution. We deactivate this option in our experiments since this computation is unnecessary and takes a lot of time. Throughout this paper, running time is referred to the solving time taken by the LP/SDP solver (Gurobi/Mosek) and Out of Memory (OfM) means running out of memory during building up the LP/SDP model.

Random FcDNN 1 : We first compare the upper bounds for (80, 80) networks, whose weights A 1 ∈ R 80×80 and biases b 1 ∈ R 80 are randomly generated. We define a certain sparsity structure of those DNNs as proposed by [Latorre et al. 2020]. For illustration purpose, consider a neural network F with one single hidden layer, and 4 nodes in each layer. The network F is said to have sparsity 2 if its weight matrix A ∈ R 4×4 is symmetric with diagonal blocks of size at most 2 × 2:

     * * 0 0 * * * 0 0 * * * 0 0 * *     
.

(5.27)

Larger sparsity values refer to symmetric matrices with band structure of a given size. We use the codes provided by [Latorre et al. 2020] to generate networks with various sparsities. For each fixed sparsity, we generate 10 different random networks, and apply all the methods to them repeatedly. Then we compute the average upper bound and average running time of those 10 experiments. q Global Local 20 40 60 80 20 40 60 80

1 2 3 4 Sparsity Lipschitz Constant Algorithm q q q q q Sub-2 SHOR LipOpt-3
LipOpt-4 LBS (a) Upper bounds q Global Local We generate random networks of size (80, 80) with sparsity 10, 20, 30, 40, 50, 60, 70, 80. In the meantime, and calculate median and quartiles over 10 random 3 https://www.gurobi.com/documentation/9.0/refman/crossover.html 74CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS networks draws. Figure 5.3 displays a comparison of average upper bounds of global and local Lipschitz constants, and average solving time with respect to L ∞ norm obtained by SHOR, Sub-2, LipOpt-3 and LipOpt-4. For global bounds, we see from Figure 5.3a that when the sparsity of the network is small (10, 20, etc.), the LP-based method LipOpt-3 is slightly better than the SDP-based method Sub-2. As the sparsity increases, Sub-2 provides tighter bounds. Figure 5.3b shows that LipOpt-3 is more efficient than Sub-2 only for sparsity 10. LipOpt-4 shows great potential on the results. However, it is not applicable when the sparsity increases, due to the high computational burden. When the networks are dense or nearly dense, our method not only takes much less time, but also gives tighter upper bounds. For global Lipschitz constant estimation, SHOR and Sub-2 give nearly the same upper bounds. However, in the local case, Sub-2 provides strictly tighter bounds than SHOR. In both global and local cases, SHOR has smaller computational time than Sub-2. Random FcDNN 2 : We generate 2-hidden layer random networks with 10, 20, 30, 40 neurons in the input layer and first hidden layer, we fix the number of neurons in the second hidden layer to 10. For size (10, 10, 10), we consider sparsity 4, 8, 12, 16, 20; for size (20, 20, 10), we consider sparsity 4, 8, 12, 16, 20, 24, 28, 32, 36, 40; for size (30, 30, 10), we consider sparsity 10, 20, 30, 40, 50, 60; for size (40, 40, 10), we consider sparsity 10, 20, 30, 40, 50, 60, 70, 80. In the meantime, we display median and quartiles over 10 random networks draws. Figure 5.4 displays the average upper bounds of global Lipschitz constants and running time of different algorithms for 2-hidden layer random networks of different sizes and sparsities. We see from Figure 5.4a that the SDP-based method Sub-2 performs worse than the LP-based method LipOpt-3 for networks of size (10, 10, 10). However, as the size and the sparsity of the network increase, the gap between Sub-2 and LipOpt-3 becomes smaller (and Sub-2 performs even better). For networks of size (20, 20, 10), (30, 30, 10) and (40, 40, 10), with sparsity greater than 10, Sub-2 provides strictly tighter bounds than LipOpt-3, with the price of higher computational time.

Trained FcDNN 1 for MNIST: We use the same MNIST classifier SDP-NN described in [Raghunathan et al. 2018a] 4 . The network is of size (784, 500) for 10classification, we calculate the upper bounds with respect to label 2 (k = 3). In Table 5.2, we see that the LipOpt-3 algorithm runs out of memory when applied to the real network SDP-NN to compute the global Lipschitz bound. In contrast, SHOR and Sub-2 still work and moreover, Sub-2 provides tighter upper bounds than SHOR in both global and local cases. As a trade-off, the running time of Sub-2 is around 5 times longer than that of SHOR. q (30,30,10) Global Sub-2

Sub-1

LipOpt-3

LipOpt-4 LBS (a) q (30,30,10) Global

Trained FcMON for MNIST:

The MON we use consists of a fully-connected hidden layer with 87 neurons and we set its monotonicity factor m to be 20. The training is based on the normalized MNIST database and all training hyperparameters are set to be the same as in [Winston & Kolter 2020, Table D1]5 . We use the same normalization setting on each test example with mean µ = 0.1307 and standard deviation σ = 0.3081, which means that each input is an image of size 28 × 28 with entries varying from -0.42 to 2.82. For every perturbation ε, we also take the normalization into account, i.e., we use the normalized perturbation ε/σ for each input. We compare the upper bounds of Lipschitz constants computed by (SHOR-LipFcMON) with the ones proposed by [Pabbaraju et al. 2021]. Notice that the upper bounds in [Pabbaraju et al. 2021] is dedicated to estimate the Lipschitz constant of function x 1 (x 0), not F (x 0). Denote by Pab 2 x 1 the upper bound of the Lipschitz constant of x 1 w.r.t. the L 2 norm, which is given by Pab 2

x 1 = |||B||| 2 /m according to [Pabbaraju et al. 2021], where B is the parameter of the network and m is the monotonicity factor. We can then compute the upper bound w

.r.t. L ∞ norm by Pab ∞ x 1 = √ p 0 •Pab 2 x 1
, where p 0 is the input dimension. The upper bound of Lipschitz constant of F is computed via the upper bound of x 1 : Pab q F = |||C||| q • Pab q

x 1 for q = 2, ∞. Denote similarly by SHOR q F the upper bounds of Lipschitz constants of F provided by (SHOR-LipFcMON) w.r.t. L q norm, we are able to compare the box, zonotope, polyhedron adn ellipsoid. Note that all these abstract domains are semialgebraic:

• Box: a box B n ⊆ R n has form {x ∈ R n : a i ≤ x i ≤ b i } with a i ≤ b i for all i ∈ [n]; • Zonotope: a zonotope Z ⊆ R n has form {z ∈ R n : z = Ax+b, x ∈ B m } where A ∈ R n×m , b ∈ R n .
In other words, a zonotope is an affine transformation of a box;

• Polyhedron: a polyhedron P ⊆ R n has form {x ∈ R n : Ax ≤ b};

• Ellipsoid: an ellipsoid E ⊆ R n has form (5.28) where Q ∈ R n×n and q ∈ R n . Or equivalently, (5.29) where Q ∈ S n + , q ∈ R n , c ∈ R, and S n + is the cone of positive semidefinite matrices of size n × n, with an additional constraint Q q/2 q T /2 1 -c 0.

E = {x ∈ R n : Qx + q 2 ≤ 1},
E = {x ∈ R n : -x T Qx + q T x + c ≥ 0},
Denote by F (Ω) ⊆ R K the image of Ω under network F . The goal of this section is to find a proper abstract domain that overapproximate the set F (Ω). Let D be an abstract domain such that F (Ω) ⊆ D, we want that the volume of D is as small as possible, which is indeed to solve an optimization problem: min D {Vol(D) : F (Ω) ⊆ D}.

(5.30)

Throughout the following discussion, we are going to focus on the case where Ω is an L p ball (p = 2, ∞) and D is an ellipsoid. Precisely, suppose the input region Ω = B(x, ε, • p) is an L p ball for a given input x ∈ R p 0 and perturbation ε > 0, and D ⊆ R K is an ellipsoid either parameterized by Q ∈ R K×K , q ∈ R K and equation (5.28), or by Q ∈ S K + , q ∈ R K , c ∈ R and equation (5.29). We first consider the characterization of (5.28). Then if F (Ω) ⊆ D, for all x 0 ∈ R p 0 , we have -F (x 0) T QF (x 0) + q T F (x 0) + c ≥ 0. Moreover, the volume of ellipsoid D is inversely proportional to the determinant of matrix Q. In other words, to minimize Vol(D) is equivalent to maximize det(Q). Therefore, in this case, the ellipsoid propagation problem (5.30) can be formulated as max

Q∈S K , q∈R K , c∈R det(Q) (Ellip) s.t.          -F (x 0) T QF (x 0) + q T F (x 0) + c ≥ 0, ∀x 0 ∈ B(x, ε, • p),   Q q/2 q T /2 1 -c   0.
0 ∈ R p 0 , F (x 0) = Cx L where x i = ReLU(A i x i-1 + b i). Let O dnn ⊆ R p L be the output region of x L for input x 0 ∈ B(x, ε, • p), i.e., O dnn := {x L ∈ R p L : x i = ReLU(A i x i-1 + b i), i ∈ [L], x 0 ∈ B(x, ε, • p)}.
Then the ellipsoid propagation problem (Ellip) for DNNs reads max

Q∈S K , q∈R K , c∈R det(Q) (EllipDNN) s.t.          -x T L C T QCx L + q T Cx L + c ≥ 0, ∀x L ∈ O dnn ,   Q q/2 q T /2 1 -c   0.
For MONs: Let F : Ω → R K be a fully-connected MON activated by ReLU function, and let W = (A, B, b; C) be the parameters of F . For x 0 ∈ R p 0 , we have

F (x 0) = Cx 1 where x 1 = ReLU(Ax 1 + Bx 0 + b). Let O mon ⊆ R p 1 be the output region of x 1 for input x 0 ∈ B(x, ε, • p), i.e., O mon := {x 1 ∈ R p 1 : x 1 = ReLU(Ax 1 + Bx 0 + b), x 0 ∈ B(x, ε, • p)}.
Then the ellipsoid propagation problem (Ellip) for MONs is formulated as max

Q∈S K , q∈R K , c∈R det(Q) (EllipMON) s.t.          -x T 1 C T QCx 1 + q T Cx 1 + c ≥ 0, ∀x 1 ∈ O mon ,   Q q/2 q T /2 1 -c   0.

Algorithms

By semialgebraicity of ReLU function described in (5.1), the output region O dnn and O mon are both semialgebraic. Precisely, for DNNs,

O dnn ={x L ∈ R p L : x i • (x i -A i x i-1 -b i) = 0, x i -A i x i-1 -b i ≥ 0, x i ≥ 0, i ∈ [L], x 0 -x p ≤ ε}, (5.31)
and for MONs,

O mon ={x 1 ∈ R p 1 : x 1 • (x 1 -Ax 1 -Bx 0 -b) = 0, x 1 -Ax 1 -Bx 0 -b ≥ 0, x 1 ≥ 0, x 0 -x p ≤ ε}.
(5.32)

Note that in problems (EllipDNN) and (EllipMON), we have nonnegative (ellipsoidal) constraints with variables lying in semialgebraic sets O dnn and O mon .

Applying the similar idea presented in Section 3.2.2, one can replace the nonnegative constraints by WSOSs, which results in relaxations of the original problems. Precisely, recall that the SOS cone Σ[x] is contained in the nonnegative cone P

[x]. The constraint g(x L) := -x T L C T QCx L + q T Cx L + c ≥ 0 indicates that g ∈ P[x L]
. By enforcing g to be a WSOS w.r.t. semialgebraic sets O dnn and O mon , we have g ∈ Σ[x L] ⊆ P[x L]. The Lasserre's hierarchy, sublevel hierarchy can be then applied to polynomial g. We discuss in details the modeling and reformulation for DNNs and MONs respectively.

For DNNs Suppose the network F is a fully-connected DNN. Denote by x 0:L the union of variables x i for 0 ≤ i ≤ L, and x

(j:k) i the union of variables x (j) i , x (j+1) i , . . . , x (k) i for j ≤ k. Replace the nonnegative constraint -x T L C T QCx L + q T Cx L + c ≥ 0 in problem (EllipDNN) by WSOS w.r.t. semialgebraic set O dnn , we obtain the follow- ing d-th order SOS problem: for d ≥ 1, max Q∈S K , q∈R K , c∈R det(Q) (SOS d -EllipDNN) s.t.      -x T L C T QCx L + q T Cx L + c = σ (0) (x 0:L) + L i=1 p i j=1 τ i,j (x 0:L) • x (j) i (x (j) i -A (j,:) i x i-1 -b (j) i) +σ (1) i,j (x 0:L) • (x (j) i -A (j,:) i x i-1 -b (j) i) + σ (2) i,j (x 0:L) • x (j) i +σ (3) (x 0:L) • (ε 2 -(x 0 -x) T (x 0 -x)) (L 2 norm) + p 0 j=1 σ (3) i (x 0:L) • (ε 2 -(x (j) 0 -x(j)) 2) (L ∞ norm), ∀x i ∈ R p i , 0 ≤ i ≤ L,   Q q/2 q T /2 1 -c   0.
where

τ i,j ∈ R 2d-2 [x 0:L], σ (0) ∈ Σ d [x 0:L], σ (1) i,j , σ (2) i,j , σ (3) , σ (3) i ∈ Σ d-1 [x 0:L] for j ∈ [p i], i ∈ [L].
The SOS problem (SOS d -EllipDNN) is dense and thus is not of much interest. Now we are going to explore sparsity patterns and design sublevel structures to employ sublevel hierarchy to (SOS d -EllipDNN).

Construct subsets I i,j,k according to the cyclic heuristic H2 as follows: fix a level l ≥ 0, for j ∈

[p i], k ∈ [p i-1 -l + 1], and i ∈ [L], define I i,j,k := {x (k:k+l-1) i-1 ; x (j) i }.
(5.33)

For each i and j, the p i -l + 1 many subsets I i,j,k form a finite (cyclic) covering of the variables {x i-1 ; x (j) i }, whose corresponding SOS polynomials serve as weights of the sublevel relaxation for each constraint. Note that |I i,j,k | = l + 1 for all i, j, k.

of the SOS combination of these constraints with basis [x T 0 , x T 1 , 1] has form

M 6 =    B A b 0 p 1 ×p 0 I p 1 0 p 1 ×1 0 1×p 0 0 1×p 1 1    T    0 p 0 ×p 0 T 0 p 0 ×1 T -2T 0 p 1 ×1 0 1×p 0 0 1×p 1 0       B A b 0 p 1 ×p 0 I p 1 0 p 1 ×1 0 1×p 0 0 1×p 1 1    ,
where T = p 1 -1 i=1 p 1 j=i+1 λ ij (e i -e j)(e i -e j) T with λ ij ≥ 0 for all i < j, and {e i } p 1 i=1 ⊆ R p 1 is the canonical basis of R p 1 . In this case, Lemma 1 is still valid with M = 6 i=1 M i .

Experiments

In this section, we only show the numerical results of sublevel relaxation applied to FcDNN 1 and FcDNN 2 , obtained by (Sub d -EllipDNN) for d = 2. The ellipsoid propagation for MONs will be discussed in Section 5.4.3 together with Lipschitz constant estimation problem and robustness verification problem. Let F : Ω → R K be a fully-connected DNN of size (p 0 , p 1 , . . . , p L). For illustration purpose, we set K = 2 so that we are able to draw the graph of the overapproximation ellipsoid on the plane. Based on the discussion in Section 5.3.2, we consider the following approaches for ellipsoid propagation of F :

• Dense-d: d-th order SOS relaxation by (SOS d -EllipDNN) for d = 1, 2;

• Sub-2: second-order sublevel relaxation by (Sub d -EllipDNN) for d = 2.

All the networks are generated randomly. We implement the codes in Julia with CVX [Grant & Boyd 2014] package, and use Mosek as a backend to solve the targeted optimization problems (with log-det objective and SDP constraints). All experiments are run on a personal laptop with a 4-core i5-6300HQ 2.3GHz CPU and 8GB of RAM. In Figure 5.5, the blue point cloud is the output region of the input region (unit ball in R p 0) under neural network F . The red curve is the overapproximation ellipsoid given by different algorithms. We see that, for network of size (20, 2), the second-order sublevel relaxation of level 1, namely Sub-2, already provides overapproximation as good as the dense second-order relaxation Dense-2. However, for both networks, the dense first-order relaxation Dense-1 is far away precise enough compared to the second-order relaxations. Moreover, Table 5.4 shows that Sub-2 not only provides precise approximations, but also suffers much less computational burden compared to Dense-2. For network of size (20, 20, 2), the second order dense relaxation Dense-2 is out of memory while the sublevel relaxations provide valid results, which is better than the results given by Dense-1, in modest time.

Robustness Verification

Even with high test accuracy, DNNs are very sensitive to tiny input perturbations, see e.g. [START_REF] Szegedy | [END_REF], Goodfellow et al. 2015], hence become crucial for evaluating the safety of a neural network. Robustness to input perturbation has been investigated in many different works with various techniques, including SDP relaxation by [Raghunathan et al. 2018b], fast first-order SDP algorithm by [Dathathri et al. 2020], abstract interpretation by [Gehr et al. 2018], multi-neuron convex relaxations by [Müller et al. 2022], GPU-based method by [Müller et al. 2021a] which can scale to large networks with one million neurons and 34 layers, scalable quantitative verification framework by [START_REF] Baluta | [END_REF], SMT solver by [START_REF] Katz | [END_REF], analytical certification with Fast-lin, Fast-lip by [Weng et al. 2018a], CROWN by [START_REF] Zhang | [END_REF] and their extension to convolutional neural networks with CNN-Cert by [Boopathy et al. 2019]. All these methods are restricted to DNNs or CNNs and do not directly apply to MONs.

There are less works related to the application of robustness verification to MONs. The robustness verifier proposed by [Müller et al. 2021b] is a zonotopebased scalable and precise method, which can be regarded as an extension of AI2 [Gehr et al. 2018] to MONs. [Wei & Kolter 2022] proposed an interval bound propagation (IBP) method to certify robustness of MONs. The IBP algorithm for a typical MON is usually unstable, i.e., the related fixed point equation is not guaranteed to have a solution. By modifying and adding additional constraints to the layers of a MON, the authors propose a special type of MONs, called IBP-MON, with a guaranteed unique fixed point with provable interval bounds on the fixed point value. Based on IBP, [START_REF] Li | [END_REF]] also proposed a robust training method for DEQs, called CerDEQ, which can achieve state-of-the-art performance compared with models using regular convolution and linear layers on l ∞ tasks with ε = 8/255.

Problem setting

We are now going to formally describe the certification problem in terms of mathematical language. Consider a neural network F for classification with ReLU activation function. Then F is an application from the input space Ω ⊆ R p 0 to the output space R K , where p 0 is the dimension of input and K is the number of labels. For a given input x ∈ R p 0 , we want to study the robustness of network F with respect to input x. Denote by ȳ the prediction of x, i.e., ȳ = arg max i F (x) i . Let • be a norm on R p 0 and B(x, ε, •) the ball centered at x with radius ε > 0 for norm • , i.e., B(x, ε, •) := {x ∈ R p 0 : xx ≤ ε}. For a different input x ∈ B(x, ε, •), if the prediction of x varies from that of x, then the network F is not robust at x w.r.t. perturbation ε. And it is natural to define the robustness of a network: Definition 5.4. The network F is ε-robust at point x w.r.t. norm • , if for any x ∈ B(x, ε, •), the prediction of x is the same as that of x.

Let y be the prediction of x ∈ B(x, ε, •). By Definition 5.4, if network F is εrobust, then y = ȳ, i.e., for any label k different from ȳ, F k (x) ≤ F ȳ(x). Therefore, in order to verify the robustness of network F , it is equivalent to check if inequality F k (x) ≤ F ȳ(x) holds for any input x ∈ B(x, ε, •) and label k = ȳ, which leads to the following definition: The output of x 0 is an affine combination of x L , i.e., F (x 0) = Cx L . Denote by C (k,:) the k-th row vector of matrix C and let c k,ȳ := (C (k,:) -C (ȳ,:)) T , then the objective of (5.34) is simply c T k,ȳ x L . Moreover, by the semialgebraicity of ReLU function (5.1), the ReLU constraint in (5.34) can be formulated as (5.35) where • denotes the element-wise product, and all the (in)equalities are elementwise. The robustness verification problem for DNNs (5.34) can be then rewritten as: for k = ȳ, max

x i • (x i -A i x i-1 -b i) = 0, x i -A i x i-1 -b i ≥ 0, x i ≥ 0,
x i ∈R p i c T k,ȳ x L (CertDNN-k) s.t.    x i • (x i -A i x i-1 -b i) = 0, x i -A i x i-1 -b i ≥ 0, x i ≥ 0, i ∈ [L],
x 0 -x ≤ ε. Using the semialgebraicity of ReLU function, the ReLU constraint in (5.36) is equivalent to

x 1 • (x 1 -Ax 1 -Bx 0 -b) = 0, x 1 -Ax 1 -Bx 0 -b ≥ 0, x 1 ≥ 0.
(5.37)

Keep the notation c k,ȳ , then problem (5.36) is rewritten as: for k = ȳ, max

x i ∈R p i c T k,ȳ x 1 (CertMON-k) s.t.    x 1 • (x 1 -Ax 1 -Bx 0 -b) = 0, x 1 -Ax 1 -Bx 0 -b ≥ 0, x 1 ≥ 0, x 0 -x ≤ ε.
The number of variables in problem (CertDNN-k) depends on the input layer and each hidden layer. Different from DNNs, we only have one hidden layer in MON. Therefore, the number of variables in problem (CertMON-k) only depends on the number of input neurons p 0 and hidden neurons p 1 . Summarizing the discussion above, we show the total number of variables and constraints of robustness verification problem for each case in Table 5.5. Note that for L 2 norm, the bound constraint is equivalent to one dense polynomial constraint; while for L ∞ norm, we have p 0 sparse constraints.

Algorithms

In Section 5.2 and 5.3, we discuss about the Lipschitz constant estimation problem and ellipsoid propagation problem for both fully-connected DNNs and MONs with ReLU activation function. In fact, Lipschitz constants and overapproximation ellipsoids can also be used to verify robustness of neural networks. (2) For a given input x ∈ R p 0 and any x 0 ∈ B(x, ε, •), we have

F (x 0) -F (x) ≤ L F,ε, • • x 0 -x ≤ εL F,ε, • ≤ εL F, • ,
(5.39)

F (x 0) -F (x) ≤ |||C||| • L x 1 ,ε, • • x 0 -x ≤ ε|||C||| • L x 1 ,ε, • .
(5.40)

By equations (5.39), (5.40), and using the fact that x ∞ ≤ x for all x ∈ R K , we have (5.42) where the last inequality is due to (5.41). By Proposition 5.5 (1), F is ε-robust.

F (x 0) -F (x) ∞ ≤ F (x 0) -F (x) ≤ L F,ε, • • x 0 -x ≤ δ lip . (5
x 0 ∈Ω { F (x 0) -F (x) ∞ -τ + F (x 0) -F (x) ∞ } ≤ 2δ lip -τ < 0,
(3) The overapproximation ellipsoid E contains F (Ω), i.e., F (x 0) ∈ E for all x 0 ∈ R p 0 . If δ ellip k < 0 for all k = ȳ, then F k (x 0) -F ȳ(x) < 0 for all k = ȳ and x 0 ∈ R p 0 . Thus δ cert k < 0 for all k = ȳ and F is ε-robust.

For DNNs, we consider the Lipschitz constant estimation problem (LipDNN-k) and apply Proposition 5.5 (2) to certify robustness. For MONs, we consider all the three problems (robustness verification problem, Lipschitz constant estimation problem, ellipsoid propagation problem) and apply Proposition 5.5 (1) (2) (3) to certify robustness. The authors in [Pabbaraju et al. 2021] use inequality (5.40) with L 2 norm to certify robustness of MONs, as they provide an upper bound of L x 1 ,ε, • 2 . In contrast, our formulation (LipMON) provides upper bounds on Lipschitz constants of F or x 1 for arbitrary L q norms. We directly focus on estimating the value of L F,ε, • q instead of L x 1 ,ε, • q . In fact the quantity |||C||| q •L x 1 ,ε, • q can be regarded as an upper bound of L F,ε, • q , the local Lipschitz constant of F . Therefore, we are able to certify more examples using SHOR q F than Pab q F , see Table 5.8.

Remark. Shor's relaxation of Lipschitz constant estimation problems for DNN has already been extensively investigated in [Fazlyab et al. 2019b, Chen et al. 2020]. If one want to certify robustness for several input test examples, one may choose the input region Ω to be a big ball containing all such examples with an additional margin of ε. Choosing a big ball for all input points requires to solve only one optimization problem, while choosing one ball for each input point (say among N) requires to solve N optimization problems, which is much more costly. In this case, it is more favorable to apply the certification problem (CertMON-k) directly.

Experiments

In this section, we use the same notation of algorithms and neural networks described in Section 5.2.2 and 5.3.2. We verify the robustness of DNNs by estimating their Lipschitz constants, and apply all the three approaches to MONs to compare the effectiveness of each method. All experiments are performed on a personal laptop with an Intel 8-Core i7-8665U CPU @ 1.90GHz Ubuntu 18.04.5 LTS, 32GB RAM.

Trained FcDNN 1 for 2 labels: We generate 20000 random points in dimension 80, where half of them are concentrated around the sphere with radius 1 (labeled as 1) and the rest are concentrated around the sphere with radius 2 (labeled as 2).

We train a ReLU network of size (80, 80) for this binary classification task, and use sigmoid layer as the output layer. Therefore, the input is labeled as 1 (resp. 2) if the output is negative (resp. positive). For an input x ∈ R 80 and a perturbation ε > 0, we compute an upper bound of the local Lipschitz constant L F,ε, • ∞ w.r.t. L ∞ norm. Denote by ȳ the output of x, by Proposition 5.5, if the output ȳ is negative (resp. positive) and ȳ + εL F,ε, • ∞ < 0 (resp. ȳ -εL F,ε, • ∞ > 0), then F is ε-robust at x w.r.t. L ∞ norm. With this criteria, if we have n inputs to verify, we need to execute n experiments. However, for large networks based on MNIST dataset, this is impractical, even if we verify the inputs directly without using Lipschitz constants (see [Raghunathan et al. 2018a]). Therefore, we compute the Lipschitz constant with respect to x = 0 and ε = 3, denoted by L, as an upper bound of the local Lipschitz constants. Then we generate 10 6 random points in the box B = {x ∈ R 80 : x ∞ ≤ 2.9}. For any ε ≤ 0.1 and x ∈ B, we have L F,ε, • ∞ ≤ L, then F is ε-robust at x if ȳ(ȳsign(ȳ)εL) > 0. Instead of running 10 6 times the algorithm, we are able to verify robustness of large number of inputs by only doing one experiment. Table 5.6 shows the ratio of verified inputs in the box B by Sub-2 and LipOpt-3. We see that Sub-2 can always verify more examples than LipOpt-3. Trained FcDNN 1 for MNIST: The SDP-NN network is a well-trained network of size (784, 500) to classify the handwritten digit images from 0 to 9. Denote the parameters of this network by A 1 ∈ R 500×784 , b 1 ∈ R 500 , C ∈ R 10×500 . Denote by ȳ the prediction of input x ∈ R 784 . Let ε > 0, if for all k = ȳ and x 0 ∈ R 784 such that x 0 -x ∞ ≤ ε, F k (x 0) -F ȳ(x 0) < 0, then F is ε-robust at x by Proposition 5.5 (1). Alternatively, denote by L f k,ȳ ,ε, • ∞ the local Lipschitz constant of function f k,ȳ (x 0) := F k (x 0) -F ȳ(x 0) with respect to L ∞ norm in the ball {x ∈ R 784 :

xx ∞ ≤ ε}. If for all k = ȳ, f k,ȳ (x) + εL f k,ȳ ,ε, • ∞ < 0. Then F is ε-robust at x by Proposition 5.5 (2). Since the 28×28 MNIST images are flattened and normalized into vectors taking value in [0, 1], we compute the local Lipschitz constant by Sub-2 with respect to x = 0 and ε = 2. Define matrix L := [L f i,j ,ε, • ∞] i,j for i = j, the 90CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS complete matrix L (without diagonal entries) is as follows: .

L =           
(5.43)

Note that if we replace the vector c k in (LipDNN-k) by -c k , the problem is equivalent to the original one. Therefore, the matrix L is symmetric, and we only need to compute the upper triangle of L.

We take different values of ε from 0.01 to 0.1, and compute the ratio of certified examples among the 10000 MNIST test data by the Lipschitz constants we obtain, as shown in Table 5.7. Note that for ε = 0.1, we improve a little bit by 67% compared to Grad-cert (65%) proposed by [Raghunathan et al. 2018a], as we use an exact formulation of the subdifferential of ReLU function. Trained FcMON for MNIST: The MON we use is the same as in Section 5.2.3. Consider ε = 0.1 for L 2 norm and ε = 0.1, 0.05, 0.01 for L ∞ norm. For each verification approach described in Proposition 5.5, we compute the ratio of certified test examples among the first 100 test inputs and the average computation time (with unit second) for one example of each method. The ratio in parentheses of the column "Lipschitz Model" are computed by the Lipschitz constant given in [Pabbaraju et al. 2021] (see Section 5.2.2 for details). Exact binomial 95% confidence intervals are given in bracket. Following [Pabbaraju et al. 2021], we also compute the projected gradient descent (PGD) attack accuracy using Foolbox library [START_REF] Rauber | [END_REF], which indicates the ratio of non-successful attacks among our 100 inputs. Note that the ratio of verified examples should always be less or equal than the ratio of non-successful attacks. The gaps between them shows how many test inputs there are for which we are neither able to verify robustness nor find adversarial attacks. From Table 5.8, we see that the MON we consider is robust to all the 100 test examples for L 2 norm and ε = 0.1 (the only example that we can not verify is because the label itself is wrong). However, it is not robust for L ∞ norm at the same level of perturbation (all our three verification approaches cannot certify any examples), and the PGD algorithm finds adversarial examples for 85% of the inputs. The network becomes robust again for the L ∞ norm when we reduce the perturbation ε to 0.01. Overall, we see that verification approach is the one with best performance as it provides the highest ratio, ellipsoid approach is the second best model compared to verification approach, and Lipschitz approach provides the lowest ratio. As a trade-off, for each test example, verification approach requires to consider at most 9 optimization problems, each one being solved in around 150 seconds. While ellipsoid approach requires to consider only one problem, which is solved in around 500 seconds. We only need to calculate one (global) Lipschitz constant, which takes around 1500 seconds, so that we are able to certify any number of inputs. Each approach we propose provide better or equal certification accuracy compared to [Pabbaraju et al. 2021], and significant improvements for L ∞ perturbations. Remark. The ellipsoid approach for robustness verification has a geometric explanation: for k = ȳ, denote by P k the projection map from output space R K to its 2-dimensional subspace R ȳ × R k , i.e., P k (x) = [x (ȳ) , x (k)] T for all x ∈ R K . Let L i be the line in subspace R ȳ × R k defined by {[x (ȳ) , x (k)] T ∈ R ȳ × R k : x (ȳ) = x (k) }.

Then the network F is ε-robust at x if the projection P k (E) lies strictly below the line L k for all k = ȳ. Take the first MNIST test example (which is classified as 7) for illustration. For ε = 0.1, this input is certified to be robust for L 2 norm but not for L ∞ norm. We show the landscape of the projections onto R 7 × R 3 , i.e., the x-axis indicates label 7 and the y-axis indicates label 3. In Figure 5.6, the red points are projections of points in the image F (Ω), the black circles are projections of some (successful and unsuccessful) adversarial examples found by the PGD algorithm. Notice that the adversarial examples also lie in the image F (Ω). The blue curve is the boundary of the projection of the overapproximation ellipsoid (which is an ellipse), and the blue dashed line plays the role of a certification threshold. Figure 5.6a shows the landscape for L 2 norm, we see that the ellipse lies strictly below the threshold line, which means that for all points x ∈ E, we have x 3 < x 7 . Hence for all x ∈ F (Ω), we also have x 3 < x 7 . On the other hand, for L ∞ norm, we see from Figure 5.6b that the threshold line crosses the ellipse, which means that we are not able to verify robustness of this example using ellipsoid approach. Indeed, we can find adversarial examples with the PGD algorithm, as shown in Figure 5.6b by the black circles that lie above the threshold line.

Figure 5.7 is the visualization of one of the attack examples. The picture on the left is the original digit which is corrected classified as 7. The picture on the right is the attack example found by PGD algorithm, which looks also the digit 7 but is incorrectly classified as 3.

 Figure 1.1: Fully-connected deep neural network.

 Figure 1.2: Fully-connected deep equilibrium model.

Figure 1

 1 Figure 1.3: A typical CNN architecture.

Figure 1 .

 1 Figure 1.4 gives an illustration of a basic RNN structure. The green circles at the bottom are the input states x t ; the blue boxes in the middle are the hidden states h t ; the red circles on the top are the output states o t ; U, V, W are the weights of the network.

Figure 1

 1 Figure 1.4: A compressed (left) and unfolded (right) basic RNN.

Figure 1

 1 Figure 1.5: Schema of a basic AE.

Figure 1

 1 Figure 1.6: Familiar activation functions.

Figure 1 . 7 :

 17 Figure 1.7: An adversarial example [Goodfellow et al. 2015].

 et al. 2019], CNN-cert ReLU L 1 , L 2 , L∞ LeNet, ResNet CIFAR-10, ImageNet DNN, CNN [Wang et al. 2018a] ReLU L 1 , L 2 , L∞ 2 et al. 2018c], CLEVER C ReLU L 2 , L∞ AlexNet, ResNet, MobileNet CIFAR-10, ImageNet DNN, CNN[Weng et al. 2018b]

y

 00 y 10 y 01 y 10 y 20 y 11 y 01 y 11 y 02    , and the first order localizing matrix of g reads M 1 (gy) =    y 00 -y 20 -y 02 y 10 -y 30 -y 12 y 01 -y 21 -y 03 y 10 -y 30 -y 12 y 20 -y 40 -y 22 y 11 -y 31 -y 13 y 01 -y 21 -y 03 y 11 -y 31 -y 13 y 02 -y 22 -y 04    .

 Definition 3.5. (1) The SOS cone, denoted by Σ[x], is the set of sum of squares in R[x]; the SOS cone of order d, denoted by Σ d [x], is the set of sum of squares in R[x] with degree at most 2d.

 2 . The semidefinite program (DenseMom-d) is the d-th order dense moment relaxation of problem (POP). As a result, when the semialgebraic set K is compact, one obtains a monotone sequence of lower bounds (ρ d) d∈N + with the property ρ d ↑ f * as d → ∞ under Archimedean condition. If we consider the dual of problem (DenseMom-d), we retrieve the formulation (DenseSOS-d). By weak duality, we have ρ d ≤ ξ d . And generically, we have strong duality, i.e., ρ d = ξ d , as the following theorem states. Theorem 3.2. [Lasserre 2001] Let Assumption 2 holds. As d → ∞, we have ρ d ↑ f * . If K has a nonempty interior, then we have strong duality ρ d = ξ d .

For d = 1 ,

 1 we have degree 2 moment variables y = [y 00 , y 01 , y 10 , y 20 , y 11 , y 02] T and L y (f) = y 11 , ω = deg(g)/2 = 1. Then the moment and localizing matrices are of form M 1 (y) =    y 00 y 10 y 01 y 10 y 20 y 11 y 01 y 11 y 02    , M 0 (gy) = L y (g) = 1 -y 20 -y 02 .

2d=

 O(n 2d) moment variables and a moment matrix M d (y) of size n+d d = O(n d) at fixed d. Fortunately, large-scale POPs often exhibit some structured sparsity patterns which can be exploited to yield a sparse version of (DenseMom-d). As a result, wider applications of Lasserre's hierarchy have been possible. Assume that the set of variables in (POP) can be divided into several subsets indexed by I k , for k ∈ [m], i.e., [n] = m k=1 I k , and suppose that the following assumptions hold: Assumption 3. (a) The function f is a sum of polynomials, each involving variables of only one subset, i.e., f (x) = m k=1 f k (x I k); (b) Each constraint also involves variables of only one subset, i.e.,

 where denotes the disjoint union; (c) The subsets I k satisfy the Running Intersection Property (RIP): for every k ∈ [m -1], I k+1 ∩ k j=1 I j ⊆ I s , for some s ≤ k. (d) Add redundant constraints M k -x I k 2 2 ≥ 0 where M k are constants determined beforehand. By analogy with the dense case, let x = [x 1 , x 2 , . . . , x n] T and I ⊆ [n]. We denote by x I = [x i] i∈I , v d (x I) the real-valued monomial basis for variable x I of degree d, and R[x I] the vector space of polynomials in variable x I . Definition 3.6. The d-th order sparse moment matrix with respect to subset I, denoted by M d (y, I), is defined as

y

 000 y 100 y 010 y 001 y 100 y 200 y 110 y 101 y 010 y 110 y 020 y 011 y 001 y 101 y 011 y 002

Figure 5

 5 Figure 5.1: ReLU function (left) and its semialgebraicity (right).

Figure 5 . 2 :

 52 Figure 5.2: Subdifferential of ReLU function (left) and its semialgebraicity (right).

 .21) where r T = v T C • (I p 1 -Diag(s) • A) -1 , which means r -A T • Diag(s) • r = C T v. Set h = Diag(s) • r and transpose both sides of equation (5.21), we have J T C T v = B T h with r -A T • h = C T v. We can then rewrite the objective function of (LipMON-a) as t T B T h, leading to the following equivalent problem max

 We have shown that (LipMON-b) is the right hand side of Equation (LipMON) in Lemma 5.3 and is an upper bound of the right hand side of Equation (5.14) in Lemma 5.4, i.e., LF,ε, • ≤ LF,ε, • .

 Figure 5.3: Lipschitz constant upper bounds and solving time for (80, 80) networks.

 Figure 5.4: Global Lipschitz constant for 2-hidden layer networks.

78CHAPTER 5 .

 5 ROBUSTNESS VERIFICATION AND RELATED PROBLEMSFor DNNs: Suppose F : Ω → R K is a fully-connected DNN with ReLU activation function, and let W = (A 1 , b 1 ; . . . ; A L , b L ; C) be its parameters. Then for input x

 Figure 5.5: Ellipsoid propagation of (20, 2) and (20, 20, 2) networks.

Definition 5. 5 .

 5 For network F , given input x ∈ R p 0 and its prediction ȳ. The robustness verification problem of network F at input x ∈ R p 0 for perturbation ε, w.r.t. norm • can be formulated as the following optimization problem: for k = ȳ,δ k = max x∈B(x,ε, •) F k (x) -F ȳ(x). (Cert-k) Remark. If δ k < 0 for all k = ȳ, then F is ε-robust at x w.r.t. norm • .For DNNs: Suppose we have a pre-trained fully-connected deep ReLU neural network F for K-classifications with parameters W = (A 1 , b 1 ; . . . ; A L , b L ; C) as described in Section 1.1.1. Denote by x 0 the variables in the input layer and x i the variables in each hidden layer for i = 1, . . . , L. The value of x i is computed by equationx i = ReLU(A i x i-1 + b i). By Definition 5.5, the robustness verification problem of deep neural network F is written as: for k = ȳ, maxx i ∈R p i F k (x 0) -F ȳ(ReLU(A i x i-1 + b i), i ∈ [L], (ReLU constraint) x 0 -x ≤ ε. (Bound constraint)

For MONs :

 : Now let F be a fully-connected MON activated by ReLU function with parameters W = (A, B, b; C) as described in Section 1.1.2. Similar with the case of DNN, except that the variables x 1 in the hidden layer is evaluated by fixed-point equation x 1 = ReLU(Ax 1 + Bx 0 + b). By definition 5.5, the robustness verification problem for MONs is written as: for k = ȳ, maxx i ∈R p i F k (x 0) -F ȳ(ReLU(Ax 1 + Bx 0 + b), (ReLU constraint) x 0 -x ≤ ε.(Bound constraint)

Proposition 5. 5 .

 5 For neural network F : Ω → R K , where Ω = B(x, ε, •) ⊆ R p 0 and x ∈ Ω is a fixed point. Let ȳ be the prediction of x by network F . For k = ȳ:• Let δ cert k be the optimal value of problem (Cert-k); • Let L F,ε, • be the local Lipschitz constant of F . Define δ lip := ε • L F,ε, • and τ := F ȳ(x) -max k =ȳ F k (x); • Let E = {x ∈ R K : Qx + b 2 ≤ 1}, where Q ∈ R K×K and b ∈ R K , be the overapproximation ellipsoid given by (Ellip).) -x(ȳ) : Qx + b 2 ≤ 1}.(5.38)If one of the following assertions holds:(1)δ cert k < 0 for all k = ȳ; (2) 2δ lip < τ ; (3) δ ellip k < 0 for all k = ȳ.Then the network F is ε-robust at x w.r.t. norm • .Proof : (1) is trivial by Definition 5.5.

 .41) 88CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS Hence, for k = ȳ, by definition of δ cert k ,{F k (x 0) -F k (x) + F k (x) -F ȳ(x) + F ȳ(x) -F ȳ(x 0)} ≤ max x 0 ∈Ω {|F k (x 0) -F k (x)| + max k =ȳ {F k (x)} -F ȳ(x) + |F ȳ(x) -F ȳ(x 0)|} ≤ max

 (a) Verified example for L 2 norm. (b) Unverified example for L ∞ norm.

Figure 5

 5 Figure 5.6: Visualization of the overapproximation ellipsoids and output region.

 (a) Original example, classified as 7. (b) Adversarial example, classified as 3.

Figure 5 . 7 :

 57 Figure 5.7: An adversarial example of the first MNIST test example.

Introduction

 De nombreuses activités et inventions humaines sont influencées ou inspirées par d'autres comportements biologiques. Par exemple, les oiseaux nous ont inspiré le vol et l'invention des avions, les poissons ont inspiré l'invention du sous-marin, les bardanes ont inspiré le Velcro, etc. Le Réseau de Neurone Artificiel (RNA) est également une grande créativité inspirée par l'architecture du cerveau humain, qui est composé d'un grand nombre de neurones hautement interconnectés travaillant ensemble pour résoudre un problème spécifique. De nos jours, les RNAs jouent un rôle très important dans l'apprentissage profond, la branche la plus passionnante et la plus puissante de l'apprentissage machine. La puissance et l'extensibilité des RNAs font qu'ils sont largement utilisés avec succès pour de nombreuses tâches d'apprentissage machine à grande échelle, difficiles et compliquées, comme la classification d'images, la reconnaissance vocale, les systèmes de recom-

mandation et l'entraînement des Intelligence Artificielle (IA) pour battre les humains dans de nombreux jeux comme le Go ou StarCraft. Lorsque nous parlons d'un réseau neurone, nous faisons souvent référence aux paramètres du réseau. Un RNA est en fait une application, ou une fonction, qui est non linéaire par rapport à ses paramètres. Habituellement, les paramètres sont estimés ou appris à partir d'un ensemble d'échantillons d'apprentissage, et le processus d'apprentissage consiste en fait à minimiser une fonction objective non convexe et non linéaire, ce qui conduit à des minimiseurs locaux et à une complexité NP-hard. La base de l'application réussie de RNA est due au théorème d'approximation universelle de

 Table 2.1, a sound verification approach is able to tell us how many test examples are guaranteed to be robust. On the other hand, a complete verification approach is able to tell us how many test examples are guaranteed not to be robust. The remaining examples can be neither verified nor unverified.

	Table 2.1: Relation between the output and reality.
		output	reality
	sound	verified	verified
	unsound	verified	unknown
	complete	not verified not verified
	incomplete	unknown	verified

Table 2 .

 2 2: Characteristic analysis of various approaches.

Chapter 3 Convex Relaxations and Moment-SOS Hierarchy Contents 1.1 Structure of Neural Networks

. 2 1.1.1 Deep neural network (DNN) 2 1.1.2 Deep equilibrium model (DEQ) 3 1.1.3 Convolutional neural network (CNN) 4 1.1.4 Recurrent neural network (RNN) 5 1.1.5 Autoencoder (AE) . 5 1.2 Activation Function in Neural Networks 6 1.2.1 Sigmoid function . 6 1.2.2 Tanh function . 6 1.2.3 ReLU function . 7 1.2.4 Leaky ReLU function . 7 1.2.5 ELU function . 7 1.3 Adversarial Examples . 8 1.3.1 Adversarial training . 9 1.3.2 Robustness verification . 9

 •, • denotes the Frobenius scalar product in S n . Sometimes we also use the the dual

	semidefinite program	
	max y∈R m b T y	(SDP-dual)
	s.t.	

m i=1

 Instead of dealing with the nonnegative cone P[x], it is much less complicated to investigate in the SOS cone Σ[x]. In fact, it has been shown that the strictly positive elements in P[x] are exactly WSOS under a technical Archimedean assumption.

Assumption 2. For the compact semialgebraic set K, there exists a real-valued 30CHAPTER 3. CONVEX RELAXATIONS AND MOMENT-SOS HIERARCHY polynomial u(x) : R n → R such that the set {x ∈ R n : u(x) ≥ 0} is compact and

Chapter 4 Sublevel Hierarchy Contents 2.1 Characteristics of Verification Methods 11 2

 .1.1 Output-reality relation . 11 2.1.2 Feature of the approaches . 12 2.1.3 Scalability of the approaches 12

2.2 Deterministic Exact Approaches

(type A) 14 2.2.1 Satisfiability modulo theories (SMT) problem 14 2.2.2 Mixed integer linear programming (MILP) 15 2.2.3 Layer-by-layer refinement . 16 2.2.4 Reduction to a two-player turn-based game 16 2.3 Deterministic Approximation Approaches (type B) 17 2.3.1 Abstract interpretation . 17 2.3.2 Convex optimization based methods 19 2.3.3 Linear approximation of ReLU networks 20 2.3.4 Interval analysis . 21 2.4 Statistical Approximation Approaches (type C) 22 2.4.1 Lipschitz constant estimation by extreme value theory 22 2.4.2 Robustness estimation .

22 2.5 Characteristic analysis of each verification method 23

Table 4 .

 4 2: Comparison of different heuristics for Max-Cut instances g_20 and w01_100.

	Heuristics	lv=4, p=1 g20 w01	lv=4, p=2 g20 w01	lv=6, p=1 g20 w01	lv=6, p=2 g20 w01	Count
	H1	548.4	725.6	539.0	720.0	526.6	709.5	522.0 700.4	4
	H2	546.4	728.0	539.9	721.1	526.9	705.7	523.1	701.7	2
	H3	550.6	728.8	541.8	723.2	528.5	713.9	524.2	705.6	0
	H4	549.7	723.4	542.0	718.6	526.9	710.5	523.6	701.5	2
	H5	553.5	731.0	543.1	725.8	529.3	715.6	525.2	708.4	0
	H6	553.3	731.2	543.2	726.6	529.3	717.2	525.2	710.3	0
	H3-5	550.5	729.5	541.8	726.6	528.5	713.8	524.2	704.8	0
	H4-5	549.8	726.6	542.0	719.3	526.9	710.4	523.6	700.4	1

Table 4 .

 4 3: Summary of the basic information and graph structure of Max-Cut instances.

		nVar	Density	nCliques	MaxClique	MinClique
	g05_60	60	50%	11	50	19
	g05_80	80	50%	12	69	28
	g05_100	100	50%	13	88	37
	pm1d_80	80	99%	2	79	76
	pm1d_100	100	99%	2	99	95
	pm1s_80	80	10%	44	37	4
	pm1s_100	100	10%	47	54	4
	pw01_100	100	10%	47	54	4
	pw05_100	100	50%	12	89	40
	pw09_100	100	90%	4	97	83
	w01_100	100	10%	47	54	4
	w05_100	100	50%	12	89	40
	w09_100	100	90%	4	97	83
	g_20	505	1.6%	369	15	1
	g_40	1005	0.68%	756	15	1
	g_60	1505	0.43%	756	15	1
	g_80	2005	0.30%	1556	15	1
	g_100	2505	0.23%	1930	16	1
	g_120	3005	0.19%	2383	15	1
	g_140	3505	0.16%	2762	15	1
	g_160	4005	0.13%	3131	15	1
	g_180	4505	0.12%	3429	15	1
	g_200	5005	0.11%	3886	15	1
	G11	800	0.25%	598	24	5
	G12	800	0.25%	598	48	5
	G13	800	0.25%	598	90	5
	G32	2000	0.1%	1498	76	5
	G33	2000	0.1%	1498	99	5
	G34	2000	0.1%	1498	141	5

Table 4 .

 4 4: Results obtained by sublevel relaxations for Max-Cut problems.

		Sol./UB	nVar	Density			Sublevel relaxation, l = 0/4/6/8, q = 1 (level 0 = Shor) upper bounds (RI, RG) solving time (s)	
	g05_60	536	60	50%	550.1	548.1	546.0	544.6	(39.0%, 1.6%)	4.5	10.6	17.6	65.7
	g05_80	929	80	50%	950.9	949.0	946.6	944.6	(28.8%, 1.7%)	33.8	56.2	61.8	137.4
	g05_100	1430	100	50%	1463.5	1462.0	1459.2	1456.8	(20.0%, 1.9%)	138.7	303.7	328.7	460.3
	pm1d_80	227	80	99%	270.0	265.9	262.0	258.8	(26.0%, 14.0%)	15.0	29.4	39.2	128.1
	pm1d_100	340	100	99%	405.4	402.2	397.9	393.7	(19.0%, 15.8%)	47.6	69.4	110.2	225.1
	pm1s_80	79	80	10%	90.3	86.7	83.6	82.8	(66.4%, 4.8%)	1.4	4.9	13.4	37.7
	pm1s_100	127	100	10%	143.2	141.4	137.6	135.3	(48.8%, 6.5%)	11.1	24.3	28.6	180.3
	pw01_100	2019	100	10%	2125.4	2107.8	2088.1	2075.0	(47.4%, 2.8%)	13.0	20.5	29.7	285.8
	pw05_100	8190	100	50%	8427.7	8416.6	8403.6	8388.1	(16.7%, 2.4%)	136.8	223.0	272.9	400.3
	pw09_100	13585	100	90%	13806.0 13797.1 13781.1 13766.5	(17.9%, 1.3%)	141.6	218.4	268.7	442.4
	w01_100	651	100	10%	740.9	728.3	710.3	696.2	(49.7%, 6.9%)	10.5	22.4	35.0	224.7
	w05_100	1646	100	50%	1918.0	1902.6	1885.5	1869.7	(17.8%, 13.6%)	138.1	265.8	272.2	403.2
	w09_100	2121	100	90%	2500.3	2478.2	2447.3	2422.8	(20.4%, 14.2%)	124.3	255.0	280.8	451.7
	g_20	537.4	505	1.6%	570.8	547.1	526.7	513.4	(171.9%, -4.5%)	0.7	15.1	46.1	102.2
	g_40	992.2	1005	0.68%	1032.6	982.4	950.8	927.6	(260.0%, -6.5%)	1.2	18.6	47.9	102.5
	g_60	1387.2	1505	0.43%	1439.9	1368.4	1317.8	1281.9	(300.4%, -7.6%)	2.8	26.0	74.7	431.1
	g_80	1838.1	2005	0.3%	1899.2	1803.8	1744.9	1698.8	(328.0%, -7.6%)	6.0	23.8	76.0	290.7
	g_100	2328.3	2505	0.23%	2398.7	2282.9	2205.1	2149.3	(354.3%, -7.7%)	3.4	30.1	117.4	428.6
	g_120	2655.4	3005	0.19%	2731.7	2588.5	2507.3	2439.8	(382.6%, -8.1%)	3.8	33.3	113.2	434.5
	g_140	3027.2	3505	0.16%	3115.8	2947.9	2856.5	2782.6	(376.1%, -8.1%)	3.8	46.3	138.4	522.1
	g_160	3589.0	4005	0.13%	3670.7	3487.1	3380.7	3310.9	(440.4%, -7.7%)	8.2	56.5	198.2	506.6
	g_180	3953.1	4505	0.12%	4054.7	3855.9	3736.9	3653.5	(394.9%, -7.6%)	8.8	51.5	277.0	693.4
	g_200	4472.3	5005	0.11%	4584.6	4353.3	4228.1	4132.2	(402.8%, -7.6%)	5.4	52.7	203.2	839.2
	G11	564	800	0.25%	629.2	581.3	564.6	564.6	(99.1%, 0.1%)	4.0	15.8	32.6	36.5
	G12	556	800	0.25%	623.9	572.5	559.6	559.6	(94.7%, 0.6%)	17.8	57.8	54.3	51.9
	G13	580	800	0.25%	647.1	594.2	585.1	584.1	(93.9%, 0.7%)	159.2	241.7	340.2	321.6
	G32	1398	2000	0.1%	1567.6	1433.4	1415.9	1415.9	(89.4%, 1.3%)	622.0	736.3	630.8	628.0
	G33	1376	2000	0.1%	1544.3	1415.3	1392.7	1387.4	(93.2%, 0.8%)	1956.6 2115.8 1221.5 1486.8
	G34	1372	2000	0.1%	1546.7	1407.9	1388.2	1388.2	(90.7%, 1.2%)	3613.5 6580.9 6327.9 6147.4

Table 4 .

 4 5: Results obtained by sublevel relaxations for Max-Cliq problems.

		LB	nVar	Density		Sublevel relaxation, l = 2, q = 0/20/40/60 (depth 0 = Shor) upper bounds (RI, RG) solving time (s)	
	g05_60	0.8	60	50%	29.9 19.3	8.3	6.1	(81.8%, 662.5%)	0.6	1.8	3.6	2.4
	g05_80	0.9	80	50%	39.9 29.1 20.1	8.9	(79.5%, 888.9%)	2.8	7.4	7.5	8.3
	g05_100	0.8	100	50%	50.0 39.1 28.9 18.4 (64.2%, 2200.0%)	6.5 30.9 19.1 33.0
	pm1d_80	1.0	80	99%	78.2 57.5 37.6 17.9 (78.1%, 1690.0%)	2.3	5.4	7.6	4.4
	pm1d_100	1.0	100	99%	98.0 77.2 57.5 37.6	(62.3%, 3660%)	5.6 12.5 22.8 17.3
	pm1s_80	0.7	80	10%	8.9	6.2	4.6	4.6	(52.1%, 557.1%)	2.6	6.1	6.4	9.0
	pw01_100	0.6	100	10%	10.6	8.2	5.9	5.4	(51.8%, 800.0%)	7.5 30.7 20.0 29.6
	pw05_100	0.8	100	50%	49.8 39.7 28.9 18.9 (63.0%, 2262.5%)	7.6 21.9 24.0 26.5
	pw09_100	1.0	100	90%	89.2 70.2 51.9 34.0	(62.5%, 3300%)	8.5 15.0 33.2 28.9

Table 4 .

 4 6: Summary of the basic information and sparse structure of MIQCP instances.

		nVar	Density	nCliques	MaxClique	MinClique	nQuad	nLin	nBound
	bqp50-1	50	10%	36	15	3	0		50
	bqp100-1	100	10%	52	49	4	0		100
	gka1a	50	10%	36	15	1	0		50
	gka2a	60	10%	41	20	3	0		60
	gka3a	70	10%	44	27	3	0		70
	gka4a	80	10%	48	33	4	0		80
	gka5a	50	20%	25	26	4	0		50
	gka6a	30	40%	11	20	7	0		30
	gka7a	30	50%	10	21	10	0		30
	gka8a	100	62.5%	64	37	2	0		100
	gka1b	20	100%	2	19	19	0		20
	gka2b	30	100%	2	29	29	0		30
	gka3b	40	100%	2	39	38	0		40
	gka4b	50	100%	2	49	47	0		50
	gka5b	60	100%	2	59	56	0		60
	gka6b	70	100%	2	69	67	0		70
	gka7b	80	100%	2	79	77	0		80
	gka8b	90	100%	2	89	87	0		90
	gka9b	100	100%	2	99	97	0		100
	gka10b	125	100%	2	124	124	0		125
	gka1c	40	80%	4	37	25	0		40
	gka2c	50	60%	6	45	26	0		50
	gka3c	60	40%	14	47	17	0		60
	gka4c	70	30%	22	49	12	0		70
	gka5c	80	20%	27	54	11	0		80
	gka6c	90	10%	46	45	4	0		90
	gka7c	100	10%	51	50	3	0		100
	gka1d	100	10%	50	51	4	0		100
	gka2d	100	20%	30	71	11	0		100
	gka3d	100	30%	23	78	18	0		100
	gka4d	100	40%	15	86	31	0		100
	gka5d	100	50%	13	88	36	0		100
	gka6d	100	60%	10	91	47	0		100
	gka7d	100	70%	7	94	57	0		100
	gka8d	100	80%	6	95	68	0		100
	gka9d	100	90%	5	96	79	0		100
	gka10d	100	100%	2	99	95	0		100

Table 4 .

 4 7: Summary of the basic information and constraint structure of MIQCP instances from QPLIB library.

		nVar	Density	nQuad	nLin	nBound
	qplib0032	100	89%	0	52	100
	qplib0067	80	89%	0	1	80
	qplib0633	75	99%	0	1	75
	qplib2512	100	28%	0	20	100
	qplib3762	90	28%	0	480	90
	qplib5935	100	28%	0	1237	100
	qplib5944	100	28%	0	2475	100

Table 4 .

 4 8: Results obtained by sublevel relaxations for MIQCP problems. Table4.9: Summary of the basic information and constraint structure of QCQP instances from QPLIB library. Table4.10: Results obtained by sublevel relaxations for QCQP problems.

		Sol.	nVar	Density		Sublevel relaxation, l = 0/4/6/8, q = 1 (level 0 = Shor) lower/upper bounds (RI, RG) solving time (s)	
	bqp50-1	-2098		10%	-2345.5	-2136.3	-2116.3	-2105.4	(97.0%, 0.4%)	0.1	0.5	1.3	3.4
	bqp100-1	-7970	100	10%	-8721.1	-8358.2	-8215.1	-8101.8	(82.5%, 1.7%)	8.8	16.7	21.8	87.9
	gka1a	-3414		10%	-3623.3	-3453.2	-3432.6	-3428.5	(93.1%, 0.4%)	0.1	0.6	0.9	1.8
	gka2a	-6063		10%	-6204.3	-6076.3	-6063.0	-6063.0	(100%, 0%)	0.3	1.0	4.6	8.5
	gka3a	-6037		10%	-6546.2	-6291.5	-6182.6	-6106.3	(86.4%, 1.1%)	0.7	1.6	6.1	31.0
	gka4a	-8598		10%	-8935.1	-8767.3	-8713.7	-8676.0	(76.9%, 0.9%)	2.1	3.4	10.1	30.0
	gka5a	-5737		20%	-5979.9	-5789.9	-5760.3	-5750.0	(94.6%, 0.2%)	0.7	1.4	6.2	31.0
	gka6a	-3980		40%	-4190.2	-4008.9	-3986.0	-3982.5	(98.8%, 0.1%)	0.2	0.6	3.9	23.6
	gka7a	-4541		50%	-4696.6	-4566.8	-4541.1	-4541.1	(100%, 0%)	0.3	0.8	4.9	23.1
	gka8a	-11109	100	62.5%	-11283.8 -11148.0 -11124.8	-11114.0	(97.1%, 0.05%)	2.3	2.7	7.5	19.5
	gka1b	-133		100%	-362.9	-295.1	-253.6	-183.8	(77.9%, 38.2%)	0.1	0.5	2.4	25.0
	gka2b	-121		100%	-505.7	-425.3	-325.4	-282.5	(58.0%, 133.5%)	0.2	0.7	4.0	29.9
	gka3b	-118		100%	-718.0	-535.6	-483.4	-437.7	(46.7%, 270.9%)	0.7	1.4	6.5	45.9
	gka4b	-129		100%	-809.8	-670.9	-614.2	-571.5	(35.0%, 343.0%)	1.9	3.3	14.3	65.2
	gka5b	-150		100%	-1034.8	-820.9	-736.8	-705.5	(37.2%, 370.3%)	3.2	8.4	15.5	76.1
	gka6b	-146		100%	-1279.0	-972.2	-894.8	-833.5	(39.3%, 470.9%)	9.1	11.6	26.6	86.5
	gka7b	-160		100%	-1362.5	-1138.1	-1031.0	-982.6	(31.6%, 514.1%)	26.1	31.2	50.8	136.1
	gka8b	-145		100%	-1479.1	-1269.8	-1190.2	-1120.9	(26.8%, 673.0%)	40.5	60.1	102.3	187.0
	gka9b	-137	100	100%	-1663.6	-1385.4	-1298.9	-1212.6	(29.5%, 785.1%)	65.9	92.3	111.2	256.3
	gka10b	-154	125	100%	-2073.1	-1782.1	-1707.1	-1612.7	(24.0%, 947.2%)	285.8 413.3	452.2	700.9
	gka1c	-5058		80%	-5161.1	-5102.9	-5077.9	-5073.7	(84.8%, 0.3%)	0.8	1.6	5.3	41.9
	gka2c	-6213		60%	-6392.6	-6291.3	-6263.1	-6246.2	(81.5%, 0.5%)	1.9	2.8	7.8	50.3
	gka3c	-6665		40%	-6849.9	-6730.7	-6703.1	-6688.1	(87.5%, 0.3%)	6.1	9.3	15.9	62.1
	gka4c	-7398		30%	-7647.1	-7527.7	-7494.9	-7462.8	(74.0%, 0.9%)	13.1	18.4	24.6	88.1
	gka5c	-7362		20%	-7684.5	-7543.7	-7474.6	-7412.8	(84.2%, 0.7%)	15.1	27.7	40.3	112.8
	gka6c	-5824		10%	-6065.8	-5932.2	-5869.7	-5847.4	(90.3%, 0.4%)	10.0	11.0	19.0	57.4
	gka7c	-7225	100	10%	-7422.7	-7297.8	-7264.3	-7248.7	(88.0%, 0.3%)	12.4	13.9	22.1	55.6
	gka1d	-6333	100	10%	-6592.7	-6475.3	-6403.1	-6369.6	(85.9%, 0.6%)	11.4	13.4	29.1	71.3
	gka2d	-6579	100	20%	-7234.2	-6980.5	-6897.9	-6811.6	(64.5%, 3.5%)	42.3	70.8	70.6	193.7
	gka3d	-9261	100	30%	-9963.0	-9686.2	-9591.7	-9523.6	(62.6%, 2.8%)	164.8 200.4	262.7	330.0
	gka4d	-10727	100	40%	-11592.5 -11303.3 -11175.4	-11096.5	(57.3%, 3.4%)	302.2 259.1	191.8	387.7
	gka5d	-11626	100	50%	-12632.1 -12381.6 -12274.7	-12185.0	(44.4%, 4.8%)	324.3 256.3	294.3	380.2
	gka6d	-14207	100	60%	-15235.3 -14938.2 -14834.9	-14720.2	(50.1%, 3.6%)	236.6 239.7	221.9	437.9
	gka7d	-14476	100	70%	-15672.0 -15413.2 -15267.6	-15173.6	(41.7%, 4.8%)	138.8 225.9	150.0	314.6
	gka8d	-16352	100	80%	-17353.3 -17011.5 -16887.6	-16794.3	(55.8%, 2.7%)	271.5 277.9	291.6	408.6
	gka9d	-15656	100	90%	-17010.9 -16652.0 -16513.3	-16409.6	(44.4%, 4.8%)	390.5 419.8	367.0	513.5
	gka10d	-19102	100	100%	-20421.4 -20121.7 -19974.1	-19863.8	(44.3%, 4.0%)	77.8	83.4	130.2	244.8
	qplib0032	10.1	100	99%	-19751	-16491	-15962	-15440	(21.8%, 152971.3%)	18.1	19.4	37.0	94.7
	qplib0067	-110942		89%	-116480	-112923	-112615	-112478	(72.3%, 1.4%)	6.2	11.1	21.9	158.3
	qplib0633	79.6		99%	70.9	74.0	75.1	75.7	(55.2%, 4.9%)	2.9	10.1	27.1	140.0
	qplib2512	135028	100	77%	-441284	-125060	27898	82909	(91.0%, 38.6%)	18.6	19.9	53.4	278.6
	qplib3762	-296		28%	-345.6	-330.8	-319.9	-309.5	(72.8%, 4.6%)	6.3	18.1	50.7	183.4
	qplib5935	4758	100	99%	67494	40148	36842	28812	(61.7%, 505.5%)	12.8	39.4	259.0	1745.3
	qplib5944	1829	100	99%	66934	27437	23142	19784	(72.4%, 981.7%)	15.6	182.1 2304.3 13204.6

Contents 3.1 Convex Optimization Problems 26 3.1.1 Linear programming (LP) . 26 3.1.2 Quadratic programming (QP) 26 3.1.3 Semidefinite programming (SDP) 26 3.2 Polynomial Optimization and Lasserre's Hierarchy 27 3.2.1 Polynomial optimization problem (POP) 27 3.2.2 Moment and sum of squares 28 3.2.3 Dense moment relaxation . 30 3.2.4 Sparse moment relaxation . 32

 and we denote by L F k ,ε, • the local Lipschitz constant. Obviously, the global Lipschitz constant is always an upper bound of the local Lipschitz constant, i.e., L F k ,ε, • ≤ L F k , • . By Lemma 5.2 and semialgebraicity of ReLU, ∂ReLU described in 5.1, 5.3, the Lipschitz constant estimation problem for deep neural network F w.r.t. norm • , is formulated as follows: for

 a fully-connected MON activated by ReLU function. Let L F,ε, • be the local Lipschitz constant of F w.r.t. norm • . Then the optimal value of the following problem LF,ε, •

Table 5 .

 5 1: Summary of Lipschitz constant estimation problem for DNNs and MONs.

	Network Norm	# of variables	# of constraints
	DNN		

Table 5 .

 5 2: Upper bounds of Lipschitz constant and solving time on SDP-NN.

			Global			Local	
		Sub-2 SHOR	LipOpt-3 LBS	Sub-2 SHOR	LipOpt-3 LBS
	Bound	14.56	17.85	OfM	9.69	12.70	16.07	OfM	8.20
	Time	12246	2869	OfM	-	20596	4217	OfM	-

Table 5 .

 5 4: Ellipsoid propagation of (20, 2) and (20, 20, 2) networks.

			(20, 2) network			(20, 20, 2) network	
		Dense-1 Dense-2	Sub-2 level 1 level 2	Dense-1 Dense-2	level 1	Sub-2 level 2	level 3
	Objective	0.48	0.62	0.60	0.61	0.07	OfM	0.18	0.20	0.21
	Time	0.06	216.39	5.96	8.15	0.37	OfM	103.93 151.53 204.59

Table 5 .

 5 5: Summary of verification problem for DNNs and MONs.

	Network Norm # of variables # of constraints
	DNNs	L 2 L∞	L i=0 p i	1 + 3 p 0 + 3	L i=1 p i L i=1 p i
	MONs	L 2 L∞	p 0 + p 1	1 + 3p 1 p 0 + 3p 1

Table 5 .

 5 6: Ratios of verified examples for (80, 80) network.

	ε	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1
	Sub-2	87.51% 75.02% 62.46% 49.89% 37.22% 24.36% 8.15% 2.75% 0.76% 0.12%
	LipOpt-3 69.03% 37.84%	4.78%	0.15%	0%	0%	0%	0%	0%	0%

Table 5 .

 5 7: Ratios of verified test inputs for SDP-NN by Sub-2. Ratios 98.80% 97.24% 95.16% 92.84% 90.18% 87.10% 83.01% 78.34% 73.54% 67.63%

	ε	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	0.1

Table 5 .

 5 8: Ratio of verified test inputs and running time.

	Norm	ε	Verification approach (1350s / example)	Lipschitz approach (1500s in total)	Ellipsoid approach PGD Attack (500s / example)
	L 2	0.1	99% [>94]	91% (91%) [>83]	99%[>94]	99%[>94]
		0.1	0% [<4]	0% (0%) [<4]	0%[<4]	15% [8, 24]
	L∞	0.05	24% [16, 34]	0% (0%) [<4]	0% [<4]	82% [73, 89]
		0.01	99% [>94]	24% [16, 34] (0%) [<4]	92% [>84]	99% [>94]

https://github.com/liuzhuang13/DenseNet

https://www.cs.toronto.edu/~kriz/cifar.html

https://www.image-net.org/index.php

https://github.com/verideep/dlv

https://www.mosek.com/

http://web.stanford.edu/~yyye/yyye/Gset/

https://github.com/google/jax

https://openreview.net/forum?id=rJe4_xSFDB.

https://worksheets.codalab.org/worksheets/0xa21e794020bb474d8804ec7bc0543f52/

The training code (in Python) is available at https://github.com/locuslab/monotone_op_ net.

Acknowledgments

form of (5.23):

By semialgebraicity of L p norm, problem (LipFcDNN 1 -k) is a POP for p ∈ N + ∪ {∞}. In particular, for L 2 and L ∞ norm, it is a nonconvex QCQP. Therefore, we can apply Lasserre's relaxation and sublevel relaxation to compute upper bounds of the optimal value of (LipFcDNN 1 -k). We first apply Shor's relaxation (a.k.a. first-order Lasserre's relaxation) without exploiting sparsity, then design a sublevel relaxation which is benefited from the sparsity of (LipFcDNN 1 -k) and enhance Shor's relaxations. Shor's relaxation applied to (LipFcDNN 1 -k) is the following SDP:

L y (1) = 1, M 1 (y) 0, L y (u

1 -A (i,:)

Based on Shor's relaxation, we are going to enhance the relaxation by adding second-order moment matrices and first-order localizing matrices, which results in a sublevel relaxation. Define subsets I (i) = {t (i) , x (i) 0 } for i ∈ [p 0] w.r.t. variables t, x 0 , and J (j) = {z (j) 1 , u (j) 1 } for j ∈ [p 1] w.r.t. variables z 1 , u 1 . Let Γ dense be the index set of dense constraints u

1 (and ε 2 -(x 0 -x) T (x 0 -x) for L ∞ norm), let Γ sparse be the index set of the remaining sparse constraints. The idea is to endow the dense constraints with 0-th order localizing matrices (i.e., Riesz linear functionals), and the sparse constraints with first-order localizing matrices w.r.t. subsets I (i) and J (j) . Using the terminology described in Definition 4.3, let l = {0 |Γ dense | , 2 |Γsparse| } and q = 1 |Γ dense |+|Γsparse| . For subsets I i and J j , define the second-order (l, q)-sublevel relaxation as follows:

For FcDNN 2 : Suppose the network F has two hidden layers. Now problem (LipDNN-k) reads:

Similarly, let u i = A i x i-1 + b i for i = 1, 2. We obtain the Lipschitz constant estimation problem for DNNs with two hidden layers:

Different from the case of one hidden layer, problem (LipFcDNN 2 -k) is no longer a nonconvex QCQP, since the objective in (LipFcDNN 2 -k) is a degree-3 polynomial in variable t, z 1 , z 2 . Hence Shor's relaxation is not effective any more. The smallest order of Lasserre's relaxation that can be applied to (LipFcDNN 2 -k) is 2, which means we need to encode second-order moment matrices. When the number of neurons in F is large (eg. p 1 = p 2 = 100), it is untractable for any current SDP solvers. Fortunately, we may reduce the size of moment matrices by choosing only some submatrices of the full second-order moment matrices. Precisely, instead of considering the dense moment matrix M 2 (y), we are going to select those submatrices of M 2 (y) that involve variables t (i) , u

M sub 2 (y, {t (i) , u

If the full moment matrix M 2 (y) is positive semidefinite, then the submatrices M sub 2 (y, {t (i) , u

2 }) 0 are necessary conditions for M 2 (y) being positive semidefinite. Replacing the full moment matrix M 2 (y) by its submatrices M sub 2 (y, {t (i) , u

2 }) and applying Riesz functional to all the constraints, we obtain a relaxation between Shor's relaxation and second-order Lasserre's relaxation:

Moreover, we can strengthen relaxation (Sub 1 -LipFcDNN 2 -k) by adding sublevel structures. Let Γ dense be the index set of dense constraints u

and x 0 -x ≤ ε for L 2 norm. Let Γ sparse be the index set of the remaining sparse constraints. Define subsets

2 }), and applying second-order (l, q)-sublevel relaxation w.r.t. subsets

In this way, we add p 0 p 1 p 2 moment matrices M sub 2 (y, {t (i) , u

2 }) of size 3, and

2) 2). A variant of this technique is to enlarge the size of the moment matrices but in the meantime reduce the number of moment matrices. For instance, consider the following submatrices of the second-order moment matrix M 2 (y):

(5.26)

We still have all the moments of the cubic terms t (i) u

However, in this case, we only add p 2 moment matrices of size 1 + p 0 + p 1 , and

For FcMON: Suppose F is a fully-connected MON. For L 2 and L ∞ norm, the Lipschitz constant estimation problem (LipMON) is a nonconvex QCQP, we directly apply Shor's relaxation to it and obtain:

Experiments

In this section, we provide numerical results for the global and local Lipschitz constants of random FcDNN 1 and FcDNN 2 with various sparsities. We also consider a real pre-trained FcDNN 1 and FcMON. For DNNs we focus on L ∞ norm, and for MONs we consider both L 2 and L ∞ norms. Let us first take an overview of the methods with which we compare our results.

• SHOR: Shor's relaxation applied to FcDNN 1 by (SHOR-LipFcDNN 1 -k) and FcMON by (SHOR-LipFcMON);

• Sub-1: first-order sublevel relaxation applied to FcDNN 2 by (Sub 1 -LipFcDNN 2 -k);

• Sub-2: second-order sublevel relaxation applied to FcDNN 1 by (Sub 2 -LipFcDNN 1 -k) and FcDNN 2 by (Sub 2 -LipFcDNN 2 -k);

• LipOpt-d: LP-based relaxation by [Latorre et al. 2020] with degree d;

• LBS: lower bound obtained by sampling 50000 random points.

The reason why we list LBS here is because LBS provides valid lower bounds on the Lipschitz constant. Therefore all methods should provide results greater than LBS, a basic necessary condition of consistency.

As discussed before, if we want to estimate the global Lipschitz constant of a neural network F : Ω → R K , we need the input space Ω to be the whole space. In consideration of numerical issues, we set Ω to be the ball of radius 10 around the origin. For local Lipschitz constant, we set by default the radius of input ball as ε = 0.1. In both cases, we compute the Lipschitz constant with respect to the first label (k = 1). We use the (Python) code provided by [Latorre et al. 2020] 2 to tightness of upper bounds given by the two methods. From Table 5.3, we see that Shor's relaxation provides consistently tighter upper bounds than the ones in [Pabbaraju et al. 2021]. Especially for L ∞ norm, the upper bound computed by equation |||C||| ∞ • Pab ∞

x 1 is rather crude compared to the bound obtained directly by (SHOR-LipFcMON). As a trade-off, we can obtain results immediately by Pab q F , while suffering half an hour by Shor's relaxation.

Abstract Domain Propagation

The approach we are concerned here is about abstract interpretation, which enables one to prove program properties on a set of inputs without actually running the program. Formally, given a function f : R m → R n , a set of inputs X ⊆ R m , and a property C ⊆ R n , the goal is to determine whether the property holds, i.e., whether f (x) ∈ C for all x ∈ X . Usually the set X can be very large or infinite, so that we cannot enumerate all points in X to verify whether f (x) ∈ C. Instead, abstract interpretation overapproximates sets defined by abstract domains and verifies the properties on the resulting abstract domains. Since abstract interpretation employs overapproximation, it is sound, but is not complete, i.e., may fail to prove the properties when they hold.

In this section, we focus on overapproximating the output region of a neural network F by an abstract domain under ReLU functions. The most popular abstract domains are: box, zonotope, polyhedra and ellipsoid. Different abstract domains have their advantages but also their drawbacks. For example, to encode boxes is significantly faster to encode polyhedra, while polyhedra are much more precise than boxes. It is easy to describe ellipsoid and compute its volume, despite that one needs to calculate the determinant of a symmetric matrix. Related works includes robustness verification by abstract interpretation [Gehr et al. 2018], safety verification and robustness analysis of neural networks by SDP and quadratic constraints [START_REF] Fazlyab | [END_REF], reachability analysis of closed-loop dynamic systems with neural network controllers by SDP [Hu et al. 2020], and reachability analysis combining ellipsoids and zonotopes by [START_REF] Kousik | [END_REF].

Problem setting

Consider neural network F : Ω → R K with Ω ∈ R p 0 , activated by ReLU function. We assume that the input region Ω is one of the following abstract domains: Let l = (l + 1) • 1 N and q = [q i] L i=0 , where

and

With the subsets defined in (5.33), the d-th order (l, q)-sublevel relaxation w.r.t. subsets I i,j,k applied to problem (EllipDNN) reads:

where

For MONs: Suppose now the network F is a fully-connected MON. We use formulation (5.29) instead of (5.28) to characterize an ellipsoid. Similar with the case for DNNs in the SOS problem (SOS d -EllipDNN), we consider the first-order SOS relaxation applied to problem (EllipMON), which results in the following SOS problem:

1 -A (j,:) x 1 -B (j,:) x 0 -b (j)) +σ

(1)

where

Problem (SOS 1 -EllipMON) provides an ellipsoid feasible for (EllipMON), i.e., an ellipsoid which contains F (Ω). In practice, the determinant is replaced by a log-det objective because there exist efficient solver dedicated to optimize such objectives on SDP constraints. In this thesis, we only consider L 2 , L ∞ norm, and first-order relaxation (d = 1). In this case, problem (EllipMON) is in fact equivalent to a problem with log-det objective and SDP constraints. Indeed, the SOS constraint in problem (SOS 1 -EllipMON) can be written as σ (0) (x 0:1) = -QCx 1 + q 2 2 -1 (=: f 1 (x 0:1))

1 -A (j,:) x 1 -B (j,:) x 0 -b (j)) (=: f 2 (x 0:1))

1 -A (j,:) x 1 -B (j,:) x 0 -b (j)) (=: f 3 (x 0:1))

Denote by M i the Gram matrix of polynomial f i (x 0:1) for i ∈ [5] and M the Gram matrix of polynomial f (x 0:1), with basis [x T 0 , x T 1 , 1]. Then we have explicitly 82CHAPTER 5. ROBUSTNESS VERIFICATION AND RELATED PROBLEMS M = 5 i=1 M i , where M i has the following forms

Since σ 0 (x 0:1) is an SOS polynomial of degree at most 2, its Gram matrix must be positive semidefinite, i.e., -M 0. The above discussion indicates the following lemma:

Lemma 1. Let F : Ω → R K be a fully-connected MON activated by ReLU function. For p = 2 or p = ∞, problem (SOS 1 -EllipMON) is equivalent to an optimization problem with SDP constraints:

where M ∈ S (p 0 +p 1 +1)×(p 0 +p 1 +1) is a symmetric matrix parametrized by decision variables (Q, q), coefficients (τ j , σ

(1) j , σ

(2) j , σ

(3) j , σ (3)), and parameters of the network (A,B,b;C).

Proof :

We have already shown that M = 5 i=1 M i and -M 0. The only problem comes from the fact that matrix M 1 contains quadratic terms Q 2 . In fact, according to [Fazlyab et al. 2019a, Lemma 5], the constraint -M 0 is equivalent to an SDP constraint using Schur complements, which concludes the proof.

Remark. If we add redundant constraints (5.22), the corresponding Gram matrix

Conclusions and Future Works

In this thesis, we first develop a general sublevel moment-SOS hierarchy as an alternative to the standard Lasserre hierarchy. We show that the sublevel hierarchy is not only useful for optimization problems, but also provides new methodologies to verify neural networks. Even though the ReLU function and its subdifferential are semialgebraic, as shown in (5.1) and (5.3), optimization problems derived from neural networks are generally not sparse. Therefore, polynomial optimization approaches exploiting parsimony (such as Lasserre relaxation exploiting correlative sparsity, TSSOS exploiting term sparsity) do not work. The sublevel hierarchy gives possible intermediate relaxations for dense or nearly-dense POPs.

We also present three general models for verifying the robustness of neural networks: Lipschitz constant estimation, ellipsoidal propagation, and robustness verification. All three models can be applied to verify robustness by Proposition 5.5. There is a trade-off between accuracy and efficiency among these approaches. For robustness verification, this is an exact model describing the problem. However, we need to run N experiments if we want to verify N inputs. On the contrary, we only need to calculate a single Lipschitz constant to verify all inputs located in the corresponding input region. The Lipschitz constant is also important for robust training, and ellipsoidal propagation can be generalized to abstract domain propagation, which is widely used in dynamical systems.

Our approaches are based on the semialgebraic representation of the ReLU function, which limits our approach to the case of ReLU neural networks. Moreover, the efficiency of our approaches depends on the power of the SDP solvers. Therefore, our methods cannot be applied to large networks such as ResNet, LeNet, etc. Even though sublevel relaxation shows promising improvements for small networks. When the number of neurons increases, even Shor's relaxation cannot apply. Models and algorithms for large-scale and convolutional neural networks are interesting future topics of this thesis. Moreover, if one develops a highly efficient first-order SDP solver in place of interior point algorithms, our SDP-based approaches may be applicable to larger and more complicated cases. The design of first-order SDP algorithms is also a valuable future topic.

All in all, robustness verification is indeed a difficult problem both theoretically and practically. The approaches proposed in this thesis give only one direction to deal with them. There are many unresolved difficulties and future topics to overcome and investigate.