
HAL Id: tel-04008608
https://theses.hal.science/tel-04008608

Submitted on 28 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Limitation of the Complexity of Some Invariants of
Subshifts by Dynamical and Structural Constraints

Solene Esnay

To cite this version:
Solene Esnay. Limitation of the Complexity of Some Invariants of Subshifts by Dynamical and Struc-
tural Constraints. General Mathematics [math.GM]. Université Paul Sabatier - Toulouse III, 2022.
English. �NNT : 2022TOU30187�. �tel-04008608�

https://theses.hal.science/tel-04008608
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 21/10/2022 par :
Solène June ESNAY

Limitation de la complexité de certains invariants des sous-décalages par
contraintes dynamiques et structurelles

Limitation of the complexity of some invariants of subshifts by dynamical
and structural constraints

JURY
Valérie BERTHÉ Directrice de Recherche, Université Paris Cité Rapportrice
Emmanuel JEANDEL Professeur, Université de Lorraine Rapporteur
Ronnie PAVLOV Professeur, University of Denver Rapporteur
Arnaud CHÉRITAT Directeur de Recherche, Université Toulouse III Examinateur
Vincent DELECROIX Chargé de Recherche, Université de Bordeaux Examinateur
Guillaume THEYSSIER Chargé de Recherche, Aix-Marseille Université Examinateur
Nathalie AUBRUN Chargée de Recherche, Université Paris-Saclay Co-directrice
Mathieu SABLIK Professeur, Université Toulouse III Directeur de thèse

École doctorale et spécialité :
MITT : Domaine Mathématiques : Mathématiques fondamentales

Unité de recherche :
Institut de Mathématiques de Toulouse (UMR 5219)

Thèse dirigée par :
Mathieu SABLIK et Nathalie AUBRUN

Rapportrice et rapporteurs :
Valérie BERTHÉ , Emmanuel JEANDEL et Ronnie PAVLOV

Remerciements /
Acknowledgments

Trois ans.
C’est une durée qui parâıt tout à fait invraisemblable, trois ans sur un sujet, trois ans à vivre

une thèse ; et puis cela fait partie du quotidien, bon gré, mal gré ; et puis ça finit, alors qu’on n’y
croit plus, par se terminer.

Toute personne achevant sa thèse vous le dira : écrire des remerciements est la partie la plus
difficile, intime et délicate du manuscrit. J’ai réfléchi aux miens tout au long de ces trois années
– j’aurais aimé en faire quelque chose de poétique, de mémorable, de frappant – mais sans doute
qu’avec ces attentes je ne les aurais jamais écrits. Personne ne nous apprend vraiment à remercier
les gens à la juste valeur de ce qu’iels ont apporté à notre vie, après tout. Qu’à cela ne tienne : je
vais faire de mon mieux. Cela voudra dire de nombreux paragraphes commençant par “merci à”,
faute d’une grande variété de tournures de phrases disponibles pour exprimer ma gratitude, mais
que voulez-vous ? C’est ainsi.

Oh, and some sentences in these acknowledgments will be in English, too, so that English readers
may not drown in French gibberish. Part of my brain has been wired in English in the past few
years, anyway.

Mes premiers remerciements vont, sans surprise, à Mathieu et Nathalie, sans qui ce manuscrit
n’aurait tout simplement jamais existé. Merci à vous deux d’avoir tenu bon avec moi, d’avoir fait de
votre mieux pour vous adapter aux soubresauts de cette odyssée. Merci Mathieu de m’avoir poussée
(et parfois débloquée) sur tant d’idées et de sujets qui ont rendu ma thèse plus riche, même si arriver
au bout de toutes ces pistes de travail a parfois été compliqué – j’aurais aimé que ce soit moins
douloureux. Merci Nathalie d’avoir fait attention à moi en dépit de la distance, d’avoir essayé de me
comprendre et de me laisser le temps dont j’avais besoin, de m’avoir plusieurs fois redonné espoir
lorsque rien ne semblait avancer. Merci aussi pour m’avoir lancée sur le vaste sujet des pavages
sur les groupes il y a près de cinq ans, qui demeure je crois ce qui me fascine le plus de tout ce
manuscrit.

Je rajoute à ce qui précède un merci tout particulier à Benjamin pour son attention et sa présence
certes ponctuelle mais bienveillante - j’espère que nous aurons l’occasion de poursuivre nos travaux
ensemble.

Merci aux membres de mon jury, qui ont permis que cette soutenance se fasse ; merci pour votre
intérêt envers ce que j’ai pu produire sur ces trois années. Specific thanks to Emmanuel, Ronnie
and Valérie who have read this entire manuscript and provided a lot of helpful feedback – several

iv

definitions and theorems are now correct thanks to them.
Merci à Vincent Delecroix pour ces quelques jours à Bordeaux dont je garde un excellent souvenir ;

merci à Guillaume Theyssier et Pierre Guillon pour plusieurs de mes passages enthousiastes à
Marseille ; merci à Martin Delacourt pour cette joyeuse discussion au CIRM. Plus généralement,
merci aux personnes de mon domaine pour leur intérêt et leur gentillesse : je me sens chanceuse
d’appartenir à cette communauté.

Thank you to my co-authors: Mathieu and Nathalie again of course, but also Ilkka, Alonso and
Etienne. Ilkka, thank you for your multitude of ideas and your deep kindness in explaining them,
and in giving us time to understand them. I hope – funnily enough – that we will be able to meet in
real life one of these days. Alonso, thank you for having been in the same cellular automata hellboat
as me for quite a while, and for the discussions that helped in keeping us sane in a world gone awry.
I wish you more stable times to come.

Etienne, merci d’être un ami avec qui je puisse à la fois co-écrire et tant rire. Faire des maths
avec toi est une vraie joie, un ping-pong d’idées infiniment satisfaisant, et j’ai hâte de m’y remettre.
Tu as transformé bon nombre de conférences et séminaires en fou rires ; merci aussi pour ça. Merci
enfin, évidemment, pour l’odeur du café noir et le rapport d’autopsie.

Un grand merci également à mon autre adelphe de thèse, Stella, pour nos quelques conférences
ensemble : merci pour le calme loin des gens et les longues discussions de niche sur canapé (et autres
activités peu neurotypiques) – c’est aussi quelque chose que j’espère retrouver à l’occasion.

Mes remerciements s’étendent à moult autres gens qui ont peuplé et participé à ensoleiller mes
conférences. Je veux autant que possible éviter les listes de noms par la suite, mais merci tout de
même à Hubert pour être ce visage familier et sympathique qui est là à chaque fois ; thank you
Jana for being someone I’m always so happy to see again ; merci à Guilhem pour sa confiance et sa
gentillesse immense ; merci à Amélia pour le sentiment de sororité ; merci à plein d’autres que je
recroise ponctuellement. Un merci spécifique à Antonin pour avoir été cette présence queer dans
une conférence de fin du monde.

J’aimerais aussi remercier les doctorant·e·s de l’IMT pour avoir participé à créer un environnement
où il fait bon vivre (ou du moins, autant que faire se peut quand tout le monde est en thèse).
Je n’ai été sur Toulouse que par petits morceaux, mais retrouver ce milieu-là m’a souvent fait
du bien. Merci à vous, que je vous aie rencontré·e·s dès mon stage de pré-thèse, ou durant les
pique-niques printaniers de ma troisième année. Merci notamment à Michelle et Laetitia pour
quelques interactions chouettes en dépit des divisions entre bâtiments.

Merci évidemment aux gens du 104 et alentours, qui ont beaucoup peuplé mon quotidien
toulousain de jeux, de discussions, et de projets d’impro avortés ; que ce soit celleux parti·e·s depuis
un moment comme JM, Dom et Léo (membre honoraire pour son excellent travail sur l’équation de
Monge-Ampère sur les variétés kähleriennes), ou plus prochainement sur le départ. William, bravo
d’avoir tenu ces trois années aussi – beaucoup de courage pour la dernière ligne droite. Maxence,
merci pour ta gentillesse et tout particulièrement pour cette nuit à m’héberger. Florian, je manque
de mots pour décrire tout l’enthousiasme de nos discussions (vidéoludiques à 90%, disons-le) de
ces trois années – et puis merci pour Smash, le rakugo et les pizzas, sans compter l’hébergement
régulier de cette dernière année. Elena, tu mérites d’être mentionnée ici aussi évidemment ; mais tu
retrouveras ton nom plus bas.

Avant de passer aux personnes qui ne sont pas rattachées à ma sphère professionnelle, je me
permets un petit intermède. Ce sont mes remerciements, j’ai le droit.

v

Je voudrais essentiellement y dire ceci :
J’ai survécu.
J’aurais mis ces trois mots en accroche de mes remerciements, si j’avais osé. Je m’étais promis

de les mettre quoi qu’il en soit. Ce n’est pas courant, mais voilà : merci aux professionnel·le·s qui
m’ont suivie et aidée durant ces années dont j’aurais pu, à plusieurs reprises, ne pas voir le bout.

Et,
je voulais me remercier, aussi.
D’avoir tenu bon face à tous ces instants accumulés.
Il est étrange de regarder en arrière, de penser à septembre 2019, et de réaliser comme je ne

suis plus tout à fait la même personne qu’en débutant cette thèse. Certain·e·s me feront remarquer
que c’est assez évident, puisque je n’étais out qu’à une poignée de gens à ce moment-là ; mais tout
ceci va au-delà. Je ressens tellement d’émotions et j’aime tant de gens aujourd’hui ! Il me parâıt
invraisemblable d’avoir vécu si longtemps sans tout ça.

J’ai beaucoup souffert, aussi. Vivre est devenu plus intense, plus réel ; et par voie de fait plus
dangereux. J’en ressors heureuse, pourtant : avec la sensation d’achever quelque chose, mais surtout
d’avoir une meilleure connaissance de moi-même, de m’accepter et m’apprécier davantage, et d’être
un peu plus proche de qui j’ai envie d’être.

Antoine, Florette, il me semble cohérent de commencer cette partie des remerciements avec vous.
Merci, de tout coeur, de m’avoir soutenue et défendue pendant un bon nombre d’années (bigre,
on est tout de même sur du plus de quinze et de dix ans, ça n’a proprement aucun sens). Merci
de votre soutien durant ces trois ans écoulés, aussi, même sous forme de memes et de discussions
essentiellement à distance.

Les STMN, je réalise que vous entrez aussi dans la catégorie plus de dix ans ! C’est fascinant.
Merci à vous d’être toujours aussi formidables et drôles ; merci à celleux d’entre vous qui ont pu
m’héberger sur Toulouse au cours de ma thèse ; merci pour toutes les joies de nos retrouvailles qui
ensoleillent mes vacances, et d’encourager mes travaux de carreleuse sur gaufres.

Merci à toute la famille Bonnefous pour les années de gentillesse et de jeux, et l’accueil récent –
et tout particulièrement à Laure pour les discussions à cette occasion.

Le présent paragraphe est dédié d’abord à tous les gens avec qui j’ai pu discuter via de longs
mails ou messages de nouvelles au cours de ces années : merci beaucoup. Plus que tout, je me dois
d’y mentionner quelques connaissances et ami·e·s de longue date qui survivent à de grands échanges
de pavés malgré les longs silences radios au milieu : Gemna, Margot et Hugo. Gemna, j’espère
pouvoir te revoir dans quelques mois ou dans cinq ans – c’est en tous cas toujours une joie immense,
et je t’envoie énormément d’affection. Margot, j’ai hâte de partager ton enthousiasme pour des jeux
que je ne parviens pas encore à faire tourner ; je t’en écrirai un jour des nouvelles dignes de ce nom.
Hugo, on en reparle dans un prochain paragraphe, héhé.

Mes remerciements suivants vont à Gaspard, Quentin et Géraldine pour les séjours parisiens
enthousiastes et les perles de copies. Merci aussi aux deux derniers (et à Alistair, dans une certaine
mesure) pour les hébergements, les repas et les longues discussions – j’en suis très touchée.

Le paragraphe qui s’annonce concerne l’ENS et les personnes qui y sont adjacentes, et je vais
être honnête : vous êtes beaucoup trop nombreuxses que j’hésite à mentionner, et je ne m’en sortirai
pas si je commence, alors je ferai sans pour la majeure partie. Merci donc à toutes les personnes
avec qui j’ai pu passer des bons moments au fil de ces trois ans : toi qui cherches explicitement ton
nom ici, tu es sans doute concerné·e. Merci notamment énormément aux membres de la Geekorale,

vi

des Improfesseurs et de la BDthêk, et à celleux qui continuent à les faire tourner maintenant. Merci
à celleux avec qui j’ai pu renouer des liens distendus, et à celleux que je n’ai pas arrêté de croiser
ponctuellement en répétant qu’il faudrait qu’on se voie davantage. Merci à toutes ces personnes que
je suis si enthousiaste de retrouver dans des castings. Merci aux gens des dernières InterLudes qui
m’ont vue briller.

Merci à KT et Léo pour de sombres histoires de voitures mal garées. Merci à Emmy pour le
coming in. Merci à Julie pour les lettres, même si j’ai failli à ma tâche ces derniers temps. Merci à
Bastien et Youssef : malgré le covid, je suis vraiment heureuse d’être dans cette timeline avec vous.
Merci à Dana pour la chaussette et le confort, et à Elodie pour les câlins et les cookies. Merci à
Florian d’être un perpétuel générateur de joie.

Dobby, je ne savais pas trop où te mettre, alors tu es là. Merci d’être cool et drôle, et pour
Chamaël.

Aux Improbilisé·e·s, que ce soient ceux présents depuis les vengeurs du sud ou les plus récemment
arrivés (bébé ou non), merci d’avoir rendu les confinements plus supportables et d’être un point fixe
de mes étés (mais pas merci pour les poules). Certain·e·s me sont plus proches que d’autres, mais
vous êtes toustes des personnes vraiment intéressantes, et j’aime beaucoup discuter et jouer avec
vous : j’espère que l’occasion se présentera encore longtemps.

Finally, thank you to all the people who cared and that I left unread one way or another – most
notably, though not only, Sandy, Cristina and LolV. To those who tried to get news that way, I’m
sorry Discord is such a difficult medium for me. I think of you still.

S’il me reste des personnes à remercier plus spécifiquement pour les années écoulées, merci
d’abord à celles dont la présence se dessine particulièrement ces mois-ci tandis que ma thèse s’achève.

Aaren, merci d’être une boule de gentillesse et de peluches, et de toutes nos discussions qui
ont pu précéder cette colocation. Nattes, merci d’avoir prouvé qu’on pouvait greffer des pinces à
n’importe quoi, et d’avoir très pertinemment suggéré d’écrire cette thèse en format Excel. Je suis
contente de cette année qui s’annonce avec vous.

Par ailleurs, de façon inattendue mais profondément heureuse, merci à Lisa pour la douceur et
les violettes.

Pour ces trois ans, merci d’abord à Lëıla et Clément, pour avoir formé un endroit safe où j’ai pu
déployer mes ailes. Vous m’avez apporté beaucoup de recul et d’outils, et une partie de ma sensation
d’avoir progressé vient de votre aide. Merci, merci, merci.

Elena – on commence à attaquer les remerciements difficiles à écrire, dis-donc, je peine à trouver
mes mots. Merci d’avoir été une formidable coloc par intérim ; merci pour les manifs ; merci
d’avoir été si longtemps mon ancre à l’IMT ; merci pour les discussions cartoonesques ; merci de me
supporter.

Hugo, je t’avais annoncé un paragraphe dédié, le voici. Je pourrais te remercier pour les robots,
pour Bill, pour la R&D émotionnelle jusqu’à pas d’heure, pour les mails et les appels à chapitres, et
pour mille autres choses encore comme autant de témoins d’une connivence qui me sidère à chaque
fois, mais (prétérition subtile) je me contenterai de te dire merci pour cette relation pleine d’humour
et de complicité. Tu es la personne la plus mentionnée de tous ces remerciements, et en un sens ça
ne me parâıt pas absurde.

Iris, Aëto, je n’ai pas les mots pour tout ce que vous avez apporté à ce printemps. Le sentiment
de communauté que vous m’avez fait ressentir m’a tant aidée ; merci de faire partie de ma vie depuis.
Plus spécifiquement, merci à Iris de m’être fait me rendre compte que je suis un mochi (je ne sais

vii

plus pourquoi j’ai écrit que je devais te remercier pour ça, d’autant plus que c’est quelque chose que
je savais déjà, mais voilà). And Aëto, I– I. Thank you so much for being my companion.

Before ending these lengthy thanks with the two people who purely and simply made these three
years, allow me to insert a few words – I lied: a lot of words – about some people (and things)
who may never read these acknowledgments yet participated, unbeknownst to them, in shaping my
mental landscape and myself during the last years. So thank you, a bit haphazardly, to foxes, to
blue things, to my HRT, to Pride month, to all those queer people who do covers of other queer
people on their bedroom floor, to Little Light and inkskinned for their heart-wrenching poetry, to
one blue koala, to Mira and BK, to our dear friend Jonathan and Dracula Daily, and to Jorts the
cat for the sunbeams to come. Thank you to Supergiant Games for being the studio closest to my
heart. Thank you to ZUN for all of Gensokyo, and for having provided most of my background
music of the past three years. Thank you to Neil Gaiman for being such a genuinely good person,
to Alice Oseman for the giddy enthusiasm, to Loika for Aucis and Shir, to Ari for the softness of her
worlds and characters, to Molly and Nate for having been 2020’s most precious couple, and to the
latter for helping me feeling so seen – and for giving power to the word stay. Thank you to Rebecca
Sugar for all the songs and the tears.

At last, thank you to Marceline Abadeer, Sulla Pinsky, Sorawo Kamikoshi, Maribel Hearn, and
to all the worst girls since Eve.

Pour finir, merci du fond du coeur à Lauren et Lison. Vous savez ce que je vous dois.
Lauren, tu as rendu ces trois ans supportables au quotidien et les as remplis de bons moments :

je n’aurais pas tenu sans toi.
Lison – que dire ? – merci pour tout le reste. Merci d’être là.
Je vous aime.

A toutes les personnes qui se découvrent fille, mathématicienne, ou les deux.

A mes adelphes qui se battent pour être.

Abstract

Etant donnés un ensemble fini de symboles et une liste de règles spécifiant lesquels d’entre eux
peuvent apparâıtre côte à côte, on peut construire un ensemble – possiblement vide – de lignes infinies
de symboles dans les deux directions, obéissant à ces règles, appelées configurations. Un ensemble
de configurations est appelé un sous-décalage unidimensionnel, et il s’agit de l’objet mathématique
au cœur de la dynamique symbolique. La notion de sous-décalage peut être généralisée en indexant
les symboles par Z2 – ce qui revient à paver le plan infini discret – ou par n’importe quel groupe de
type fini. De nombreuses questions peuvent être posées sur les sous-décalages, notamment s’il existe
un algorithme capable de déterminer lesquels d’entre eux sont vides à partir de leurs règles ; et pour
un sous-décalage non vide, s’il contient beaucoup de configurations, ou certaines particulièrement
complexes. Ces questions correspondent à des invariants de conjugaison : le Problème du Domino,
l’entropie, l’apériodicité, la complexité arithmétique du langage.

Cette thèse, subdivisée en trois parties essentiellement indépendantes, étudie comment tous ces
invariants sont affectés sous différentes conditions, et comment certaines contraintes sur les sous-
décalages peuvent causer des changements dans leur comportement. Dans la première partie, nous
nous intéressons aux attracteurs topologiques des automates cellulaires, qui sont des sous-décalages,
et montrons quelle complexité maximale ils peuvent atteindre dans la hiérarchie arithmétique. Dans
la deuxième partie, nous fixons des restrictions horizontales sur les sous-décalages bidimensionnels,
et souhaitons savoir si le Problème du Domino reste indécidable et quelles sont les entropies possibles
pour leurs sous-systèmes de type fini. Dans la troisième partie, nous étendons la définition de
sous-décalage aux groupes de type fini, et présentons trois méthodes de constructions distinctes sur
les groupes de Baumslag-Solitar, montrant que leur notion d’apériodicité est plus fine que celle qui
existe en deux dimensions.

Given a finite set of symbols and a list of rules specifying which of them can appear next to each
other, one can build a – possibly empty – set of infinite lines of symbols in two directions obeying
these rules, named configurations. A set of configurations is called a one-dimensional subshift, and
it is the mathematical object at the core of symbolic dynamics. The notion of subshift can be
generalized by indexing the symbols by Z2 – that is, tiling the infinite discrete plane – or by any
finitely generated group. A number of questions can be asked about subshifts, notably if there exists
an algorithm able to tell which of them are empty given their rules; and for a nonempty subshift,
if it contains a lot of configurations, or particularly complex ones. All of these questions give
rise to conjugacy invariants: the Domino Problem, the entropy, the aperiodicity, the arithmetical
complexity of the language.

This thesis, divided into three mostly independent parts, studies how all these invariants are
affected by different settings, and how some constraints on subshifts can cause changes in their
behavior. In the first part, we focus on topological attractors of cellular automata, which are
subshifts, and find their maximal complexity in the arithmetical hierarchy. In the second part, we fix
horizontal restrictions on two-dimensional subshifts, and try to know whether the Domino Problem
stays undecidable and the possible entropies for their subsystems of finite type. In the third part, we
extend the definition of subshift on finitely generated groups and present three distinct construction
techniques on Baumslag-Solitar groups that show how their notion of aperiodicity is sharper than
the one in two dimensions.

Introduction

A Beginner’s Guide to Dominoes
Consider a box of dominoes, in which there are infinitely many copies of each domino. Suppose you
want to create an infinite straight line of dominoes, respecting their usual adjacency rules. There are
a lot of such lines – infinitely many, actually. Now, suppose you are given a box with two additional
difficulties. First, dominoes have an orientation now, marked one way or another, that you have
to respect; so dominoes 4 | 2 and 2 | 4 are considered entirely separate types. Second, your box
misses some types of dominoes – not copies, but entire types, for instance dominoes labeled 4 | 2 are
nowhere to be found. A lot of fascinating questions arise from this simple thought experiment:

1. Does a given box allow even a single infinite line of dominoes that respects the adjacency rules,
or are you stuck, as you fail to extend any pattern you come up with in one direction or the
other?

2. Can you find a systematic method so that whatever box is given to you, a glance at the
available types of dominoes is enough for you to tell if a valid line exists?

3. Can you always build periodic lines? That is, if a valid line exists for a given box, can another,
“simpler” line be built which simply repeats a pattern over and over?

4. Somewhat conversely, can you build lines that are, in some sense, very complicated to describe?

5. “How many” different lines of dominoes are available for a given box? Of course, this “number”
will most likely be infinitely many, but can we somewhat quantify that infinity – by looking at
how many segments of finite size n exist for a growing n?

These questions, as it turns out, are already mathematical. To get a better grasp of them, and
bring some answers, consider a small step in formalization, that changes little in appearance: merely
replace each type of domino by a specific symbol, and the adjacency rules of the dominoes by a literal
list of “which symbol can be put next to which one”. Congratulations: you have built a subshift1,
the set of all the biinfinite2 lines that are written with your symbols and obey your adjacency rules –
these lines are formally called configurations. Now, name A your set of symbols – also called the
alphabet – and F the list of patterns you forbid, and finally, XF the resulting subshift. With this,

1More precisely, it is a nearest-neighbor Subshift of Finite Type (SFT), because it uses a finite list of patterns you
forbid, and restricts only adjacent symbols. As seen in the next paragraph, the general framework can use longer
successions of symbols, and an infinite list of forbidden patterns.

2Infinite in both directions.

xi

xii

you just formalized the space of all the potential lines a given box of dominoes can build, and have
started your dive into symbolic dynamics.

If you consider your construction with care, you may realize that the use of symbols allows for
more combinations than domino boxes did – though both end up being equivalent. First, you can
build an apparently wider variety of subshifts: consider the symbols 0 and 1, and 11 as the only
forbidden adjacency; no replacement of 0 by some domino and 1 by some other can replicate all
the available configurations in this. Indeed, 01, 10 and 00 are all available adjacencies, but 11 is
not, which is not a behavior grasped by a mere one-to-one domino replacement: you need to change
your alphabet to three dominoes (0|0, 0|1 and 1|0) to obtain the same subshift. Second, why restrict
yourself to adjacent symbols in your rules for building configurations? You can look further and
forbid two symbols at a given distance! As it is, F can also forbid the pattern where you ban the
apparition of three 1’s in a row, for instance. Here is a slightly more complex example, before
moving forward: the subshift with alphabet {0, 1} and F = {10n1 | n ∈ N0}. Any distance between
two 1’s is forbidden, and so the only configurations of XF are the one with only 0’s, and all the
ones with a lonely 1 at a given position among 0’s everywhere else.

Now that the formalism has been introduced, all the previous questions can be asked using it,
and answers given.

1. For given A and F , is XF empty? This question, that requires a case-by-case answer per se,
is the motivation for the next, systematic one.

2. Is there an algorithm able to tell you for any XF if it is empty, when taking A and F as
inputs? This is the Domino Problem, a question for which the answer here is Yes (Theorem 5).
Its history is detailed in Part II of this thesis, along with its formal definition (Definition 4.8).

3. If XF is nonempty, does it always contain a periodic configuration? Once again, the answer
here is Yes . Generalizations of it are the focus of the Part III of the present thesis, using a
wider formalism (Definition 7.6).

4. The complexity of the available configurations of a given XF requires extended answers,
captured by two distinct notions. The first is pattern complexity, which counts how many
patterns of a given size exist. It is a rich concept, mostly unused here; see for instance [MH38,
Cas00,CN10,KM19] for reference. The second is arithmetical complexity (Section 1.3), which
tells to which extent it is impossible for an algorithm to describe anything – notably the patterns
in a subshift. The answer in general simply depends on the patterns you forbid ex nihilo; in
Part I of the present thesis, we study to which extent we can build complicated subshifts as
attractors of a well-known kind of dynamical system, cellular automata (Definition 1.1).

5. Though naively-described earlier, the exact concept of how the pattern complexity of a subshift
XF grows for bigger and bigger patterns is precisely captured by the entropy (Section 4.2.2),
a real number embodying how many choices are available when building configurations of XF .
In the present setting, all entropies are somewhat “nice” numbers (Theorem 7); a short history
of the notion is given in the introduction of Part II.

Is that it? Not at all! We can strive for wider contexts, and ask ourselves if our questions
still make sense in these settings, and if their answers change. For example, what if we used
two-dimensional dominoes – simply put, squares with four colored sides, also known as Wang
tiles – and tried to fill the infinite plane with them, just as before? Well, we would have invented

xiii

two-dimensional subshifts. With a little leap of imagination, and a bit more formalism (as the human
brain is notoriously bad with dimensions four and higher3), we can actually define d-dimensional
subshifts for any d ∈ N. Subshifts can even be built on groups (as detailed in Part III, of which it is
the focus)!

This is, overall, the motto of the present thesis: if we add constraints on subshifts, how are the
answers to the previous questions modified? In what follows, using various approaches, we provide
some progress on this overarching question.

Elements of Context
Though we keep most of the context specific to each of the following parts in its dedicated introduction,
we cannot talk about symbolic dynamics without any mention of Morse and Hedlund’s seminal papers
and correspondence in the 1940s that gave birth to this branch of mathematics (see notably [MH38],
and [CN06] for a detailed historical summary). The main idea behind their articles – to encode
trajectories of dynamical systems on surfaces as a sequence of symbols that represents their orbit –
gave rise to subshift spaces in one dimension, and to various types of mixing and structural properties
on them such as topological transitivity, topological mixing and ergodicity. These have spawned
numerous articles, and an entire field of study.

Similarly, this introduction cannot go on without crediting Wang, who catalyzed the study of
two-dimensional subshifts through Wang tiles [Wan61] – originally meant for logical formulas –
and raised fundamental questions on the Domino Problem and aperiodicity in dimension 2. Those
were answered by his student Berger [Ber66], but led to various other constructions, notably by
Robinson [Rob71] and Kari [Kar96], which remain the main available tools for any question related
to the Domino Problem today.

The difference in behavior between one-dimensional and two-dimensional subshifts has been
widely documented: the Domino Problem is decidable in one dimension but not in two [Rob71,Kar07];
there are subshifts of finite type (SFT, subshift with a finite set F of forbidden patterns) with no
periodic configuration in dimension 2; entropies in one dimension are computable, but not all of
them are in two dimensions [HM10]. Some interesting properties also appear in higher dimensions –
see for instance the differentiation between weak and strong aperiodicity starting with dimension 3,
mentioned in Section 7.2.

All these elements spark the same broad question: why exactly do complex behaviors – aperiod-
icity, undecidability, high pattern or arithmetical complexity – appear in some circumstances and
not in others? Where is the boundary, and how can we explain these obvious qualitative differences
in several invariants depending on the setting? Of course, a broad answer would be that the richer
the dynamical system, the richer its possibilities. That is true; but can we tie this more precisely to
actual elements of a system – the dynamical properties, the underlying structure?

To what extent does a given constraint put on a subshift restrict its complexity?

Structure of this Thesis
This thesis is divided into three parts, each of them dedicated to a different approach in answering
our central question. Each of the parts begins with a detailed introduction to the subject, along

3Except if your name is Alicia Boole Stott.

xiv

with a chapter of defining its central notions (Chapters 1, 4 and 7). The object(s) of study of each
part is broadly given by the following table.

Property

Constraint
Generic limit set

of cellular
automaton (Z)

Projective
restriction (Z2)

Underlying
group

Domino Problem Always decidable Section 5.1.2 and
Section 6.2.2

Not studied but
evoked

in Section 7.2.2

Aperiodic SFT Does not exist Section 6.2.1 Chapter 8

Realizable entropies (not studied) Section 5.2 and
Section 6.3 (not studied)

Arithmetical complexity Chapter 2 and
Chapter 3 (not studied) (not studied)

Part I is dedicated to building arithmetically complex one-dimensional subshifts, as attractors
of (one-dimensional) cellular automata. Various notions of attractors coexist in the literature of
dynamical systems [Mil85]; some of them are understood well enough so that they have induced
entire classifications [CIPY89,Hur90a,Hur90b,Hur92], others are still under investigation. Here we
study the generic limit set, a topological attractor that is always a subshift in the context of cellular
automata, and we try to grasp how complex it can be. As local transformations are repeatedly
applied to configurations, which ones of these remain, or are approached asymptotically? What
patterns do the transformations end up forbidding? Can we build arbitrarily complicated subshifts
as attractors? What if we add dynamical constraints on the cellular automaton?

By adapting constructions previously applied to other kinds of attractors, we obtain a fair
amount of new results on arithmetical complexity, some of the most important being the following:

Theorem (Theorem 3). There exists a cellular automaton f such that its generic limit set ω̃(f)
has a Σ0

1-complete language, and f |
ω̃(f) = id|

ω̃(f).

Theorem (Corollary 3.16). There exists a cellular automaton f such that ω̃(f) has a Π0
2-complete

language, with f |
ω̃(f) = σ|

ω̃(f) the left shift map, and ω̃(f) containing no topological subattractor.

Theorem (Corollary 3.21). A one-dimensional minimal subshift is the generic limit set of a cellular
automaton if and only if it is chain mixing and has a ∆0

2 language.

Part II develops mostly new approaches to understanding the gap in behavior between one-
dimensional and two-dimensional subshifts. Its main idea is to consider a one-dimensional subshift
and to look at all the ways it can be extended to two dimensions; said otherwise, it studies all
two-dimensional subshifts whose horizontal constraints obey some pre-set rules. This idea is notably
explored in [JKM07] by studying the one-dimensional subshift obtained from a base two-dimensional
subshift when projecting horizontally: it is shown that the projected subshift has entropy higher than
the original. Furthermore, an article by Desai [Des06] partly characterizes the accessible entropies
for a two-dimensional subshift when restrictions are added, which has indirect ties with our question.

xv

Through Chapter 5 we investigate the matter in details, and determine more precisely the accessible
entropies, along with how the Domino Problem is impacted when restricting ourselves to specific
one-dimensional constraints – an adapted Domino Problem called DPh.

Another direction we explore in Chapter 6 is how two one-dimensional subshifts can be assembled
– one as horizontal rules, one as vertical rules – to form a complex resulting two-dimensional subshift.
This notion has been introduced in [LMP13] under the name axial product, though with a focus on
a specific kind of entropy. Here we use it to precise, in some sense, the frontier between 1D and 2D:
we uncover how building complexity, in the forms of an undecidable Domino Problem (called DPI)
and noncomputable entropies, can be deeply shaped by “mere” one-dimensional constraints.

Our most relevant results of that part are the following:
Theorem (Theorem 9). Let H be a one-dimensional SFT. Then DPh(H) is decidable if and only
if H contains only eventually periodic configurations.
Theorem (Theorem 11). Let H be a one-dimensional SFT. The accessible entropies for two-
dimensional SFTs obeying H as horizontal rules are exactly the set [0, h(H)] ∩Π0

1, where Π0
1 is the

set of right-recursively enumerable real numbers.
Theorem (Theorem 13). Let H be a nearest-neighbor one-dimensional SFT.

DPI(H) is decidable ⇔ G̃(H) verifies condition D

with condition D defined in Definition 6.1.
Theorem (weak version of Proposition 6.12). There exists a one-dimensional nearest-neighbor SFT
H̃ with DPI(H̃) decidable, and another one-dimensional SFT Ṽ obtainable algorithmically from the
first one, so that the entropy of the combined subshifts into a two-dimensional SFT XH̃,Ṽ is not
computable.

Part III contributes to a growing trend: building subshifts on groups, and seeing how unexpected
their behavior can be. This started with adaptations of two-dimensional tilings to the discrete
hyperbolic plane [Kar94,GS10,Mar08] then to Baumslag-Solitar groups, whose structure is close to
the hyperbolic plane [AK13], before spreading to finitely generated groups in general [CP15,Jea15,
CGS17, Coh17, ABJ18, ABM19, BMP22]. While similar topics have been studied from the point
of view of ergodic theory, and the aperiodicity we investigate ties into free actions on Cantor sets
and Bernoulli shifts, subshift theory differentiates two kinds of aperiodicity (weak and strong), and
brings the Domino Problem into consideration. These notions allow us to classify groups when
building subshifts on their structure. Though the aperiodicity and the undecidability of the Domino
Problem may seem tied at first glance – both arise in two dimensions, and none in one – there are
groups where they are not, or at least not as much as expected [Pia08].

The third part of the present thesis contributes to charting which kinds of aperiodicities are
obtainable on Baumslag-Solitar (BS) groups, refining the earliest construction on the subject and
paving the way for other recent returns to these formative groups [AK21,ABHT22]. Using various
approaches, we obtain the three following results:
Theorem (Theorem 17). For every n ≥ 2, the Baumslag-Solitar group BS(1, n) admits a strongly
aperiodic SFT.
Theorem (Theorem 18). For every n ≥ 2, the Baumslag-Solitar group BS(1, n) admits a weakly-
but-not-strongly aperiodic SFT.
Theorem (Theorem 20). For every n ≥ 2, BS(n, n) admits a strongly aperiodic SFT.

xvi

Contents

I Subshifts as Generic Limit Sets of Cellular Automata 1

1 Cellular Automata and One-Dimensional Subshifts 5
1.1 Cellular automata and attractors . 5

1.1.1 Cellular automata . 5
1.1.2 Notions of topology . 7
1.1.3 Various notions of attractors . 8

1.2 One-dimensional subshifts . 12
1.2.1 Main notions . 12
1.2.2 Ties with cellular automata . 14
1.2.3 One-dimensional subshifts seen through graphs 14

1.3 Notions of arithmetical complexity . 17
1.3.1 Turing Machines and decidability . 17
1.3.2 Complexity . 19

2 Language Hardness and Complexity Bounds 21
2.1 Brief state of the art . 21
2.2 New complexity bounds . 24

2.2.1 For inclusion-minimal automata . 24
2.2.2 For automata with equicontinuity points . 25

2.3 Results on shift-minimality . 26

3 Realization of Subshifts 29
3.1 Generic construction . 29
3.2 Realization of complexity for equicontinuity points 31
3.3 Realization of a large class of Π0

2 subshifts . 33
3.3.1 Statement and overview of the proof . 33
3.3.2 Necessary lemmas . 35
3.3.3 Walls, counters and conveyor belts . 39
3.3.4 Computation of periodic points . 41
3.3.5 Comparing periodic points . 42
3.3.6 Merging segments . 44
3.3.7 Proof of correctness . 46
3.3.8 Bound optimality . 49

3.4 Corollaries . 50

xvii

xviii CONTENTS

II Subshifts with Projective Restrictions 53

4 Two-Dimensional Subshifts and the Domino Problem 59
4.1 Symbolic Dynamics . 59
4.2 Two major tools for studying subshifts . 62

4.2.1 Domino Problem . 62
4.2.2 Entropy . 62

4.3 Horizontal constraints . 64
4.3.1 New definitions . 65
4.3.2 Two new restricted Domino Problems . 66

4.4 Root of a subshift . 66

5 Subsystems for Initial Horizontal Restrictions 69
5.1 Domino problem under horizontal constraints . 69

5.1.1 Theorem of simulation under horizontal constraints 69
5.1.2 The Domino Problem under horizontal constraints 71

5.2 Characterization of the entropies under horizontal constraints 71
5.2.1 Kolmogorov complexity and number of tiles 72
5.2.2 Technical lemmas on entropy . 72
5.2.3 Main result . 76
5.2.4 Some consequences . 79

6 Interplay Between Horizontal and Vertical Conditions 81
6.1 Theorem of simulation under interplay . 81

6.1.1 Core idea . 82
6.1.2 The condition D . 82
6.1.3 Generic construction . 84
6.1.4 Summary of the generic construction for one strongly connected component . 89
6.1.5 Case 1 . 92
6.1.6 Case 2 . 96
6.1.7 Case 3 . 98
6.1.8 Additional cases . 101
6.1.9 Proof for several strongly connected components 103

6.2 Properties of two-dimensional subshifts under interplay 104
6.2.1 Periodicity . 104
6.2.2 The Domino Problem with interplay . 105

6.3 Impact of the interplay on the entropy . 107
6.3.1 Horizontal constraints without condition D 107
6.3.2 Condition D, computable entropy . 107
6.3.3 Condition D, uncomputable entropy . 109

III Subshifts on Finitely Generated Groups 113

7 Subshifts on Groups and Aperiodicity 119
7.1 Subshifts on groups . 119
7.2 Aperiodicity . 121

CONTENTS xix

7.2.1 Definitions . 121
7.2.2 Known results and ties with the Domino Problem 121

7.3 On group presentations . 122
7.3.1 Group presentations and Cayley graphs . 122
7.3.2 Visualizing configurations . 124

7.4 Baumslag-Solitar groups . 125
7.4.1 Definition . 125
7.4.2 Understanding their usual Cayley Graphs . 125
7.4.3 Tiles on BS Groups . 126

7.5 Substitutions . 128

8 Subshifts on Baumslag-Solitar Groups 131
8.1 On a construction by Aubrun and Kari . 132

8.1.1 Aubrun and Kari’s construction . 132
8.1.2 Definitions . 132
8.1.3 A multiplying tileset . 134
8.1.4 A weakly aperiodic SFT on BS(m,n) . 140
8.1.5 A deeper understanding of the configurations 142
8.1.6 A strongly aperiodic SFT on BS(1, n) . 145

8.2 A weakly but not strongly aperiodic SFT on BS(1, n) 146
8.2.1 The substitutions σi . 147
8.2.2 Encoding substitutions in BS(1, n) . 148

8.3 A strongly aperiodic SFT on BS(n, n) . 151

Bibliography 153

Personal Bibliography 161

xx CONTENTS

Part I

Subshifts as Generic Limit Sets of
Cellular Automata

1

3

Consider a finite set of symbols A, and all of the biinfinite – infinite in both directions – words
that can be written with them: these are called configurations, and are elements of the set AZ.
A simple manner of defining maps on AZ is through local rules that transform each symbol of a
configuration into another symbol, depending on the state of its neighbors up to some fixed distance.
Transforming all symbols at the same time by following these rules maps any configuration of AZ on
another one, resulting in a map f from AZ to itself. Endowed with a topology, (AZ, f) becomes a
well-known kind of discrete dynamical system: a cellular automaton.

Mostly known in popular culture through Conway’s Game of Life, which is a specific two-
dimensional cellular automaton, cellular automata (CA) were introduced in the 1940s by Ulam and
Von Neumann. A widely studied class of dynamical systems, they are both simply describable and
behaviorally rich. One-dimensional cellular automata, the core of this thesis’ first part, have deep ties
with combinatorics on words and subshift theory, that are close topics from discrete mathematics,
but also with theoretical computing models, including Turing Machines – and these ties will be of
use in the upcoming part.

The notion of “attractor” emerged from the wider field of dynamical systems in the 60s, as an
attempt to capture and describe some asymptotic properties of a given system. As its early history
is summarized by Milnor in a paper from 1985 [Mil85], he points out how various notions of attractor
have been coexisting in the literature. The most-studied of these notions is the omega-limit set,
made of all configurations that appear infinitely often or are approached with any accuracy in the
system as a whole. Milnor defines the likely limit set and the generic limit set as the smallest closed
sets that attract most configurations – considered individually, this time – up to a subset of starting
points that is negligible, either in the measure-theoretical or topological sense.

Though these notions will be detailed in Chapter 1 of the present thesis, let us give an intuition
of them to the reader. We focus on one of the simplest cellular automata as our dynamical system
here: the automaton with alphabet {0, 1}, and a local rule that turns any cell to 1 at time k + 1 if
at least one of its adjacent cells is 1 at time k, and leaves it as is in any other case. Consequently,
the following local patch in any biinfinite word would evolve as follows under the global rule f :

. . . 100011 . . . f−→ . . . 110111 . . . f−→ . . . 111111

Put simply, the 1’s “spread” to adjacent cells; but not all notions of attractor will capture this
behavior the same way.

In the omega-limit set, configurations . . . 111 . . . and . . . 000 . . . are included, but so are all
configurations of the form . . . 0011 . . . or . . . 1100 . . . with a divide between all 0’s on one side and
all 1’s on the other. The first two appear in it with little surprise, as they are stable configurations
through the iterations of f . For the remaining ones, notice that any starting configuration with only
finitely many 1’s to the left will locally look like some . . . 0011 . . . at some point – and so, at the
scale of the system, better and better approximations of these configurations are visited when f
is iterated. As a consequence, the aforementioned configurations . . . 0011 . . . and . . . 1100 . . . are
considered attractive, even though none of them is approached by any single starting point.

The generic limit set and the likely limit set retain any configuration x so that there exists a
nonnegligible set of starting configurations with each starting configuration approaching x individually
(along with the closure of this set of x’s). Therefore, configurations of the form . . . 0011 . . . and
. . . 1100 . . . are not included. Furthermore, the generic limit set also bans configurations approached
by a topologically negligible (“meager”) set of points: as such, . . . 000 . . . , as the only configuration
approaching itself, is not in the generic limit set. In the end, the latter solely consists of the full-1’s
configuration . . . 111

4

The likely limit set is similar, but depends on a probability measure µ to establish which sets of
points are negligible. As such, one could use the measure that gives weight only to . . . 000 . . . to
conclude that the corresponding likely limit set is merely {. . . 000 . . . }. However a Bernoulli measure,
in this particular example, would yield the same attractor as the generic limit set.

A fourth, measure-based attractor, called the µ-limit set [KM00], consists of all configurations
that contain only the words that keep a positive probability of appearing overall as time increases.
As such, words that appear at any step but with increasing rarity will not be kept in that attractor.

Omega-limit sets have been intensively studied on cellular automata: a classification of all
automata based on their omega-limit set was established in 1989 by Culik, Pachl and Yu [CIPY89].
Numerous additional articles precising the attainable complexity of the omega-limit set of a CA have
been written since then [Kar92,Kar94,Maa95,BGK11]. Similarly, various notions of attractors have
been studied with considerations for ergodic theory: Hurley originally proposed a classification of all
CA based on a very weak notion of attractor [Hur90a,Hur90b,Hur92], which was later generalized
by Kůrka [Kůr97]. The µ-limit set is a relatively recent example of that measure-theoretic focus,
and various results on its complexity have been obtained during the past decade [BDS10,DPST11,
BDP+15,DMS18].

These results on µ-limit sets have opened new perspectives on generic limit sets, by adapting the
tools from proofs on the former to constructions of the latter. The first part of the present thesis
falls within this exact scope. Several results have been obtained recently [Tör20,Del21,Tör21] that
begin to quantify “how complex” a generic limit set can be, depending on the initial constraints on
the cellular automaton. These results mirror similar ones obtained on omega-limit sets and µ-limit
sets (as highlighted in Section 2.1 and particularly Table 2.1). All of them use the same vocabulary,
called the arithmetical hierarchy (see Section 1.3.2), that embodies how difficult it is to compute a
given set based on the alternation of quantifiers used to describe it.

A notable element in studying generic limit sets is how they can all be described given a list
of forbidden patterns that appear in none of their configurations [DG19] – for instance, in our
aforementioned example, we could describe the generic limit set simply by forbidding the one-letter
word 0. That property is general, though some generic limit sets may need an extremely complex
list of forbidden patterns instead. As mentioned in the introduction, these sets defined by a list of
forbidden patterns are subshifts.

The Chapter 1 of this present thesis is dedicated to any reader who would not know all the
necessary notions about cellular automata, subshifts and arithmetical complexity. In the other two
chapters of the present part, we prove new bounds on the complexity of the language of generic
limit sets under some structural constraints. Most of the related proofs are twofold: first, find a
suitable logical formula to describe the set, with as few quantifiers as possible (this is the focus
of Chapter 2); second, prove that some well-built cellular automaton really has a generic limit set
with the exepected description, so that the logical formula describing it cannot be simplified further
in the case studied (this is the focus of Chapter 3).

We show that the language of a generic limit set on which the function f merely translates the
configurations – acting as a shift on them – is Π0

2. We also prove that the generic limit set’s language
is Σ0

1 if the cellular automaton has equicontinuity points. Finally, we show that both bounds are
tight. As an aside, from our most technical construction of Section 3.3, we also obtain several results
about which subshifts can be realized as generic limit sets (see Section 2.3 and Section 3.4), that we
think are interesting in their own right.

Chapter 1

Cellular Automata and
One-Dimensional Subshifts

This chapter is a formal summary of everything needed to understand Chapter 2 and Chapter 3.
The reader may skip parts or jump from one section to another as they see fit. The chapter is
broadly divided as follows:

• Section 1.1 introduces all that is related to the notion of cellular automata (Section 1.1.1),
central to the present part. After a few definitions on topology such as the one of meager
set (Section 1.1.2), it describes several notions of attractors applied to cellular automata
(Section 1.1.3), like the omega-limit set, and lays the mathematical groundwork evoked in the
introduction of Part I that leads to the definition of the generic limit set.

• Section 1.2 introduces one-dimensional subshifts (Section 1.2.1), ties this back to cellular
automata (Section 1.2.2), then shows how to see subshifts as graphs (Section 1.2.3). These
notions, with immediate application in Chapter 3, are also extremely useful in Part II;

• Section 1.3 introduces two main elements of theoretical computer science: Turing Machines
(Section 1.3.1), and as consequences the notions of decidability and arithmetical complexity
(Section 1.3.2). Notions on Turing Machines are particularly used throughout this whole thesis.

1.1 Cellular automata and attractors
In all that follows, we name alphabet any finite set A of symbols.

1.1.1 Cellular automata
This subsection defines the one central discrete dynamical system of Part I: the cellular automaton.

Definition 1.1. A (one-dimensional) cellular automaton (CA) is a triple (A, F, r) where A is an
alphabet and F : A2r+1 → A is a local rule of radius r ∈ N. It defines a global rule f : AZ → AZ

by f(x)(i) = F (x(i − r), x(i − r + 1), . . . , x(i + r)) for all x ∈ AZ and i ∈ Z. Most of the time, a
cellular automaton will be denoted using (A, f) or simply f if the alphabet is clear.

5

6 CHAPTER 1. CELLULAR AUTOMATA AND ONE-DIMENSIONAL SUBSHIFTS

This definition means that f simultaneously modifies each cell x(i) of any “biinfinite word”
x ∈ AZ written with alphabet A, based only on its neighbors at distance at most r.
Example 1. Let f be the map so that for any x ∈ {0, 1}Z, for any i ∈ Z, we have f(x)(i) = 0 if and
only if both x(i− 1) and x(i+ 1) are 0, and f(x)(i) = 1 in any other case.

That application defines a cellular automaton on {0, 1}Z, with the following local rule F , where
the symbol 1 “spreads” to adjacent cells:

F : {0, 1}3 → {0, 1}{
F (000) = 0
F (w) = 1 for any w ∈ {0, 1}3 \ {000}.

As we have mentioned words improperly until now, it is of help to clarify what we mean by that
in a general setting.

Definition 1.2. A∗ := ∪n∈N0An is the set of all (finite) words that can be written with the alphabet
A. They are written u = u0 . . . un−1 with ui ∈ A for all i ∈ {0, . . . , n − 1}, where |u| := n is the
length of u. When there is no confusion with a real number, ε represents the empty word, the only
word with no symbol and of length 0.

We also define A≤n :=
⋃
k≤nAk the set of words of length at most n.

For 0 ≤ i ≤ j and u ∈ A∗, we define the subword u[i,j] := uiui+1 . . . uj−1uj . We write v @ u if
v is a subword of u.

In all that follows, we use the notation xi to refer to x(i) ∈ A, for x ∈ AZ and i ∈ Z. Any such
x is called a configuration.

Remark 1. A configuration x ∈ AZ may also be referred to as a biinfinite word. However, in general
the term “word” will only be used for finite words unless explicitly mentioned otherwise.

In all that follows, we endow A with the discrete topology, and AZ with the prodiscrete
topology tπ – that is, the countable product of this discrete topology on each copy of A. As such,
AZ is compact.

Definition 1.3. Let u ∈ A∗. The cylinder [u]i is the subset {x ∈ AZ | x[i,i+|u|−1] = u} of AZ.
We usually denote [u] := [u]0.
If W ⊂ An is a set of words of some common length n ∈ N, then we denote [W]i :=

⋃
w∈W [w]i

and [W] := [W]0.

Property 1.4. Cylinders form a basis of clopen1 sets for the prodiscrete topology on the space AZ.
This topology is also induced by the metric

d(x, y) := inf
n∈N0
{2−n | x[−n,n] = y[−n,n]}.

A cellular automaton endowed with the profinite topology tπ forms a dynamical system (AZ, tπ, f):
a space on which one studies the iterations of the function f and the behavior of the configurations.
See Definition 7.1 for a general definition of dynamical systems, outside of the scope of this specific
part.

1Sets that are both closed and open.

1.1. CELLULAR AUTOMATA AND ATTRACTORS 7

1.1.2 Notions of topology
The following subsection holds in general for Hausdorff compact2 topological spaces. However, it
will be restrained here to X = AZ for all intended purposes.

Definition 1.5. A subset Y ⊂ X is meager (or of first category) if it is the union of countably
many sets, with all of these sets having a closure with empty interior.

It is comeager (or residual) if its complement is meager; that is, if it is the intersection of
countably many sets, so that all of these sets have a dense interior.

If U ⊂ X is open and Y ∩U is comeager in the relative topology on U , we say Y is comeager in U .

Example 2. On AZ, we notably have the following:

• of course, the empty set is meager and AZ is comeager;

• since the closure of any singleton is itself and singletons in AZ are not isolated points, singletons
have empty interior, hence they are meager sets;

• consequently, any countable subset of AZ is meager, as it is the union of countably many
singletons;

• for any u ∈ A∗ \ {ε}, [u] is neither meager not comeager.

Remark 2. Being meager represents being negligible in a topological sense. It is the topological
equivalent of being of measure 0 in a measure space. Nevertheless, these two notions, even when
they coexist in a topological measure space, are distinct. Consider for instance {0, 1}Z endowed
with the topology tπ that is the product of the discrete topology on each copy of {0, 1}. In it, any
singleton is meager; however, if we use the trivial probabilistic measure µ0 that gives weight 1 to
the sole configuration . . . 000 . . . , we have a clear difference between meagerness and negligibility!

By the Baire Category Theorem applied to AZ, as comeager sets are a countable intersection of
dense sets, we have the following:

Property 1.6. All comeager sets are dense in AZ.

Definition 1.7. We say Y has the Baire property if there is an open set U ⊂ X such that Y∆U is
meager.

Remind that Y∆U is the symmetric difference (Y \ U) ∪ (U \ Y).

Remark 3. Notice that any open set has the Baire property. Subsets of AZ with the Baire property
form a σ-algebra, hence notably any Borel set in AZ has the Baire property.

Property 1.8. If Y has the Baire property, then it is nonmeager if and only if it is comeager in
some nonempty open set U ⊂ X.

See for instance [Kec95, Section 8] for an overview of Baire-related notions.

2Hausdorff compact is equivalent to the French use of “compact” alone. The present author campaigns for these
spaces to be called “French compact”, to add to the general list of prefixes to the term compact.

8 CHAPTER 1. CELLULAR AUTOMATA AND ONE-DIMENSIONAL SUBSHIFTS

1.1.3 Various notions of attractors
This subsection, just as the previous one, mostly holds within the general framework of dynamical
systems (X, t, f) on Hausdorff compact spaces. However, for all purposes we will here restrict
ourselves to cellular automata of the form (AZ, tπ, f) and consider X = AZ in what follows.

The notion of attractor of a dynamical system has sparked decades of debates about finding
a common formal definition [Mil85]. Though it appears that several of them coexist, as detailed
later in the present subsection, the first one a mathematician can reasonably come up with is the
following:

Definition 1.9. The omega limit of x ∈ X is the collection of all accumulation points in X of the
orbit of x, defined by

ω(x) :=
⋂
N∈N

⋃
n≥N

{fn(x)}.

Though the previous formula can be slightly off-putting at first, it represents a set that stems
from intuition. Of course, the first notion of “attractor” in the orbit of a point x that comes to mind
is the set of all the points that appear infinitely often in said orbit – that is, for any rank N , we
can find a higher rank n ≥ N so that fn(x) is the desired point again. This is represented by the
following formula: ⋂

N∈N

⋃
n≥N

{fn(x)}.

However, using only that formula would cast aside all of the points that are not necessarily reached
within the orbit of x, but still approached with any accuracy, which are very relevant when trying
to define attractors. This is why the closure is necessary to define the omega limit ω(x).

Example 3. Reusing the cellular automaton “1 spreads over 0” from Example 1, consider any one
configuration x of the form . . . 0011 . . . : the formula without the closure yields an empty set, whereas
the formula with it includes . . . 111

The set ω(x) is closed; and in AZ (where being compact and sequentially compact are one and
the same) it is nonempty.

Now, the first envisioned ideas of an attractor for any subspace of X are given by the following
definitions, notably used in [DG19]:

Definition 1.10. Let Y ⊆ X be a subspace of X.
The omega-limit set of Y is

Ω(Y) :=
⋂
N∈N

⋃
n≥N

{fn(Y)}.

The asymptotic set of Y is
ω(Y) :=

⋃
x∈Y

ω(x).

Remark 4. The asymptotic set, in other articles, was also called ultimate set or approachable set.
See notably [GR10] for a very detailed study of the omega-limit and asymptotic set of cellular
automata.

1.1. CELLULAR AUTOMATA AND ATTRACTORS 9

Conceptually, ω(Y) is focused on the individual behavior of configurations from Y . It captures
exactly the points that are approached infinitely often by the orbit – that is, the ω(y) – of any
one point y ∈ Y . It is purposefully not closed; indeed, ω(Y) also contains the accumulation points
of these adherence configurations, which are not related to the individual behavior of any one
configuration, see Example 5.

On the contrary, Ω(Y) is focused on the global behavior of the starting set Y . It is closed, and
that is on purpose: it aims to capture the points that are approached with any accuracy even when
“jumping” from the orbit of some y to the orbit of some y′. In some sense, these resulting points
are all the ones that attract Y as a whole under the iteration of f – when not differentiating what
comes from which orbit. Here, it makes sense to consider even the configurations of the closure of
ω(Y), even if they are not in the adherence of any one orbit, as they are meaningful when the focus
is on Y and not on its individual elements.

Property 1.11. We have ω(Y) ⊂ Ω(Y).

Proof.

ω(Y) =
⋃
x∈Y

⋂
N∈N

⋃
n≥N

{fn(y)}

⊂
⋃
x∈Y

⋂
N∈N

⋃
n≥N

{fn(y)}

⊂
⋂
N∈N

⋃
x∈Y

⋃
n≥N

{fn(y)}

⊂
⋂
N∈N

⋃
x∈Y

⋃
n≥N

{fn(y)}

=
⋂
N∈N

⋃
x∈Y

⋃
n≥N

{fn(y)}

= Ω(Y)

The reverse inclusion may not hold, even when considering the closure of ω(Y) – see Example 4.
Example 4. Consider, once again, the same cellular automaton introduced in Example 1.

For any point x that is not . . . 000 . . . , we have ω(x) = {. . . 111 . . . }. We consequently deduce
that ω(X) = {. . . 000 . . . , . . . 111 . . . }. However, Ω(X) is made of all the configurations that appear
infinitely often in the system as a whole, which disqualifies any configuration with a finite isolated
block of 1’s, that does not appear anymore after some iteration. It can be shown that all other
configurations are in it, and so it contains all . . . 0011 . . . and . . . 1100 . . . configurations in addition
to the ones of ω(X).
Example 5. The following example of cellular automaton is presented in [GR10, Ex. 1]: consider
A = {←,→, L,R,W, k} with the following meanings and behavior:

• ← and → represent a particle going to the left or the right;

• L and R are symbols left in the wake of a particle respectively going to the right or the left;

10 CHAPTER 1. CELLULAR AUTOMATA AND ONE-DIMENSIONAL SUBSHIFTS

• W is a wall symbol, unmovable, on which particles “bounce back”;

• k is a killer state: it appears whenever two particles collide and spreads in both directions,
filling everything with k; they are only stopped in this spread by walls W.

The resulting cellular automaton is made of “segments” (possibly infinite on one or, in specific cases,
on both sides) of cells, each of them delimited by two wall symbols W. For each segment, either it
was containing only one particle at the start (and no killer state k) and becomes periodic after some
point in time, with one particle surrounded by L states on its left and R states on its right; or it
ends up full of cells with k.

Notably, considering a set Y made of a sequence of configurations so that each of them has a
central segment WL . . . L→ R . . . RW where → is at position 0 and the two W’s are at positions
−` and `, with growing `, we have the configuration . . . LL→ RR . . . in ω(Y), with infinitely many
L’s on the left and infinitely many R’s on the right. Yet it is in no ω(x) for any x ∈ Y , and so ω(Y)
is not closed.

We want to build a notion that has the best of both worlds: something finer than an omega-limit
set, but closed because that is a nice property. As such, it will necessarily be a compromise between
the asymptotic set (configurations-focused) and the omega-limit set (set-focused); as we see in
Property 1.15, it will end up being some ω(Y) for a very well-chosen Y . That careful choice stems
from wanting to ignore any negligible set of starting configurations. For instance, in Example 4, the
configuration . . . 111 . . . is in Ω(X) and ω(X) but only attracts itself, as f acts as the identity on it.
In trying to consider an attractor that represents the long-term behavior of a system overall, we
want to not take into account such singularities.

To do so, we rely on the notion of meagerness, as in Definition 1.5, that allows to formalize a
topological negligibility. In order to have a counterpart to the notion of “attractor that attracts a
given set Y ” on which both the asymptotic and the omega-limit sets are based in their own way
(focused on its local or its global behavior), we change our point of view and define the set of “all
points that a given closed set A attracts”.

Definition 1.12. Given a closed set A ⊂ X, we define the basin (or sometimes realm) of attraction
D(A) of A as

D(A) := {x ∈ X | ω(x) ⊂ A}.

We say that A is a (topological) attractor if D(A) is nonmeager, and a (topological) generic
attractor if D(A) is comeager.

Any basin of attraction D(A) has the Baire property [DG19, proof of Prop. 3.12], defined in
Definition 1.7. Philosophically speaking, this means that any attractor A is somewhat generic up to
some “rescaling process” – the restriction to a well-chosen closed, stable subset in which D(A) is
comeager.

In what follows, we consequently focus on generic attractors only. They describe the long-term
behavior of most points’ orbits of a dynamical system X, with possible eviction of “singular” points
– since the basin of attraction only has to be comeager, and not necessarily be the whole space.
However, among the various generic attractors that may exist in a dynamical system, how can we
single out one of them such that:

• it does not contain any point that attracts only a meager portion of the whole space;

1.1. CELLULAR AUTOMATA AND ATTRACTORS 11

• it still contains ω(x) for any meaningful x?

We define the following:

Definition 1.13. Let ω̃(f) be the intersection of all generic attractors of a cellular automaton. It
is called the generic limit set (GLS).

It is mostly easy to understand that ω̃(f) always verifies the following properties:

Property 1.14. • ω̃(f) is a closed set;

• the basin of ω̃(f) is comeager;

• ω̃(f) is a generic attractor, and the smallest of them inclusion-wise;

• ω̃(f) is nonempty.

Proof. Property 1 is because any intersection of closed sets is closed; property 3 results from
properties 1 and 2; property 4 holds because of property 2 and the fact that the empty set has no
comeager basin.

Property 2, the only nontrivial statement, is due to the fact that D(ω̃(f)) is the intersection D
of the basins of all generic attractors. Indeed,

x ∈ D(ω̃(f))⇔ ω(x) ⊂ ω̃(f)
⇔ ∀A generic attractor, ω(x) ⊂ A
⇔ ∀A generic attractor, x ∈ D(A)
⇔ x ∈ D.

It remains to show that this intersection is countable. Here, X = AZ is a compact space that can be
given a metric (see for instance Example 12). Any compact metric space has a countable basis – that
is, countably many closed sets Ci (for i in some I) so that any other closed set can be written as a
countable intersection of some of them. As such, any basin of a generic attractor, being comeager
and so a closed set, can be written as a countable intersection of Ci’s. Consequently, D can be
written as a countable (subset of I) intersection of Ci’s. Therefore D = D(ω̃(f)) is comeager.

This notion of generic limit set corresponds to what we needed, because by definition its basin
of attraction is the smallest it can be while still being comeager. Besides, consider ω(D(ω̃(f))) =
∪
x∈D(ω̃(f))ω(x): it is a subset S of ω̃(f) by definition of D(ω̃(f)). When taking the closure, we

consequently obtain an attractor S that is included in ω̃(f). Moreover, D(S) ⊃ {x ∈ X | ω(x) ⊂
S} ⊃ D(ω̃(f)) so D(S) is comeager. Since ω̃(f) is the smallest generic attractor whose basin is
comeager, we have that

Property 1.15. ω(D(ω̃(f))) = ω̃(f).

Therefore, ω̃(f) does attract most of the space the way we wanted.
Example 6. We reuse Example 1, the CA with “spreading 1” and alphabet {0, 1}. Considering that
for any subset Y ⊂ {0, 1}Z \ {. . . 000 . . . } is so that ω(Y) = {. . . 111 . . . }, and using that the GLS is
nonempty and Property 1.15, we have ω̃(f) = {. . . 111 . . . }.

12 CHAPTER 1. CELLULAR AUTOMATA AND ONE-DIMENSIONAL SUBSHIFTS

Example 7. Consider the cellular automaton on the alphabet {0, 1} with global rule f(x)i =
max(xi+1, xi+2). It is slightly different from the previous example: it is of the form “spreading 1”,
but there is also some shift to the left operated by f . As a consequence, the generic limit set is
different from the one of the previous example. It is clear that no word of the form 10n1 appears in
the generic limit set, as they all disappear from any starting configuration after dn/2e iterations of
f . However, any starting configuration with 02n+k as a subword contributes to the appearance of 0k
at iteration n. This goes to show that, considering configurations containing 02n+k as a subword
don’t form a meager set for any n and any k, that any word of the form 0k does appear in some
configuration of the generic limit set. Similarly, 1k10k2 (and 0k21k1) can still be found in a nonmeager
set of configurations after any number of iterations. From this, we conclude that ω̃(f) is made of
. . . 111 . . . , . . . 000 . . . , and all configurations of the form . . . 0011 . . . and . . . 1100

Overall, a combinatorial characterization of the words that appear in configurations of the generic
limit sets for cellular automata has been obtained by Törmä in [Tör20] and will be of great use in
this entire part.
Lemma 1.16 (Lemma 2 in [Tör20]). Let f be a CA on AZ. A word s ∈ A∗ occurs in ω̃(f) if and
only if there exists a word v ∈ A∗ and i ∈ Z such that for all u,w ∈ A∗ there exist infinitely many
t ∈ N with f t([uvw]i−|u|) ∩ [s] 6= ∅.

We say that v enables s for f .

1.2 One-dimensional subshifts
1.2.1 Main notions
Let σ denote the (left) shift map σ : AZ → AZ. It is an homeomorphism of AZ defined by
σ(x)i = xi−1, so that σ(x) is simply x shifted one coordinate to the left.
Example 8. In the picture that follows, we illustrate an alphabet A, a local, origin-based window on
a specific configuration from AZ (with the vertical bar representing the origin), and the effect of the
shift map σ.

A = { , , , , }

... ...

x =
σ

... ... = σ(x)

(AZ, tπ, σ) is a dynamical system called the full shift for the alphabet A.
Definition 1.17. A subshift X is a σ-invariant closed subset of AZ.

In the general theory of dynamical systems, a subshift is simply a subsystem of the full shift.
Property 1.18. Any subshift X can be described by a set F ⊂ A∗ of words called forbidden
patterns, meaning the following holds:

X = AZ \

(⋃
u∈F

⋃
i∈Z

[u]i

)
.

It is often denoted XF instead of merely X.

1.2. ONE-DIMENSIONAL SUBSHIFTS 13

Remark 5. In simple terms, XF is the set of all configurations that do not contain any word from F .
Several sets of forbidden patterns can define the same subshift: for instance, in the following example,
forbidding an additional would be of no consequence on the allowed configurations, as it is
already implied by an existing forbidden pattern.

A = { , , , , } F = { , , }

... ... ×

... ... X

Definition 1.19. A morphism f : X → Y between two subshifts is a continuous function with
f ◦ σ = σ ◦ f .

If f is surjective, it is called a factor map and Y is said to be a factor of X. If f is bijective, the
two systems are said to be conjugate – this can be denoted X ∼= Y .

As it often is in mathematics, two conjugated subshifts are often considered to be more or less
“the same” object. Conjugacy invariants are properties so that if X has property P and is conjugated
to Y , then Y has property P.

Definition 1.20. If a subshift X ⊂ AZ is so that X ∼= XF with F that is finite, then X is called a
subshift of finite type, or SFT for short.

If a subshift is a factor of an SFT, then it is called a sofic subshift.
If a subshift X ⊂ AZ is so that X ∼= XF with F that can be enumerated by a Turing Machine,

then X is called an effective subshift.

See Definition 1.36 for the definition of a Turing Machine. The following property is an easy
consequence of the definitions:

Property 1.21. All the notions from the previous definition are conjugacy invariants.

Property 1.22. We have the following successive implications, for a subshift X:

X is of finite type ⇒ X is sofic ⇒ X is effective.

Example 9. Let {0, 1} be the alphabet A for all the examples that follow.
X{11} is an example of SFT, where the only restriction is that two 1’s must not follow each other.
An example of sofic subshift is X{10n1|n∈N0}, traditionally denoted as X≤1, which contains all

configurations that contain at most one 1. It cannot be written using a finite number of forbidden
patterns, as it must forbid any distance between two 1’s. However, it is sofic, because it is a factor
of the SFT X{→←,←→,1→,←1,11} that is a subshift on {←, 1,→}, where 1 is projected on 1, and ←
and → are projected on 0.

An effective subshift that is not sofic would be X{10n1|n∈Halt}, where Halt is, when enumerating
all Turing Machines, the set of all of them that halt on the empty input. A short proof of this
subshift not being sofic is that its language is Σ0

1 (see Section 1.3.2) while sofic subshifts have a
regular, hence computable language.

Note that some subshifts may not even be effective, such as X{10n1|n/∈Halt}. Indeed, if it were to
be conjugated to another subshift XF with F that can be enumerated by a Turing Machine, then it
would mean the language of X is Σ0

1 (see Section 1.3.2 again), which is not the case.

14 CHAPTER 1. CELLULAR AUTOMATA AND ONE-DIMENSIONAL SUBSHIFTS

1.2.2 Ties with cellular automata
As we have introduced our two main tools for the present part, subshifts and cellular automata, we
present two unrelated results providing ties between these two classes of dynamical systems.

Theorem 1 (Curtis-Hedlund-Lyndon, 1969). For a given alphabet A, (A, f) is a cellular automaton
if and only if f is an endomorphism of the full shift (AZ, tπ, σ).

Proposition 1.23 (Prop. 4.11 from [DG19]). Let f be a CA. Then the generic limit set ω̃(f) is a
nonempty f -invariant subshift.

Proof. Since it is a subset of the full shift AZ, it is enough to prove that ω̃(f) is closed under the
topology and the action of the left shift σ, and that it is f -invariant. Its nonemptiness and the fact
that is is closed under the topology are already known from Property 1.14.

We prove that ω̃(f) is closed under the action of the shift σ. Consider y ∈ ω̃(f): y belongs to
some ω(x) where x ∈ D(ω̃(f)). Then, noticing that f and σ commute due to Definition 1.1, and
that σ is bijective and continuous, we have σ(y) ∈ σ(ω(x)) = ω(σ(x)). Now it is straightforward to
see that σ(x) ∈ D(ω̃(f)), and so σ(y) ∈ ω̃(f). Similarly, σ−1(y) ∈ ω̃(f), and so σ(ω̃(f)) = ω̃(f).

Now, y ∈ ω̃(f) if and only if it belongs to some ω(x) for a given x ∈ D(ω̃(f)). But y belongs to
ω(x) if and only if f(y) does, due to the definition of ω(x); and so y ∈ ω̃(f) if and only if f(y) ∈ ω̃(f).
As such, ω̃(f) is f -invariant.

1.2.3 One-dimensional subshifts seen through graphs
In this subsection, we associate graphs to one-dimensional subshifts: with this, several tools and
some understanding from graph theory can be applied to subshifts.

First, we need a few notions and notations to manipulate forbidden patterns of a given size.

Definition 1.24. Let X ⊂ AZ be a subshift.
The language L(X) := {v ∈ A∗ | ∃x ∈ X, v @ x} of a subshift X is the (countable) set of all

subwords of configurations in X.
We also denote Ln(X) := L(X) ∩ An the set of subwords of length n in configurations of X.

Definition 1.25. Let XF ⊂ AZ be an SFT.
If F ⊂ A≤n but F 6⊂ A≤n−1, then we say that XF has window size n.
A SFT of window size 2 is said to be nearest-neighbor.

Notice that a SFT of window size 1 is conjugate to a full shift on a smaller alphabet.
The following definitions are powerful properties of some subshifts, that have been extensively

studied – see for instance [Kůr03] for the general theory of dynamical systems. They are, as a whole,
called mixing properties, and in subshifts represent more or less strong ways to mix together patterns
into a full configuration. More mixing properties exist in two dimensions and more [BPS10,BMP18].
Here, in one dimension, we focus on the following two:

Definition 1.26. Let X be a subshift.
We say X is transitive if for all u, v ∈ L(X), there exists w ∈ L(X) so that uwv ∈ L(X).
We say X is mixing if for all u, v ∈ L(X), for any n ∈ N0 large enough possibly depending on u

and v, there exists w ∈ Ln(X) so that uwv ∈ L(X).
If X is a mixing SFT, then there exists a uniform n ∈ N0, called its mixing distance, that works

for all u, v.

1.2. ONE-DIMENSIONAL SUBSHIFTS 15

The last part of the definition holds because of the bounded size of forbidden patterns in SFTs –
it can be seen easily when considered from a graph-related point of view, see Property 1.31.

The above definition gives rise to the obvious property

Property 1.27. X is mixing ⇒ X is transitive.

Example 10. The subshift X{00} ⊂ {0, 1}Z is mixing: two valid words can be glued together by
adding any nonzero number of 1’s. Consequently, its mixing distance is 1.

The subshift X{00,11} ⊂ {0, 1}Z is made of exactly two configurations, the alternations of 0 and
1 with either 0 or 1 at the origin. It is transitive, because any valid word can be glued to any other –
all of them are alternations of 0 and 1, after all – but it is not mixing, as only specific distances
work for the gluing process.

The subshift X≤1 already mentioned in example Example 9 is not transitive since two 1’s, that
are valid words in an of themselves, cannot be glued together.

Now, to dive into elements of graph theory, as mentioned at the beginning of this subsection or
in [LM95, Chapter 2], we define:

Definition 1.28. Let X ⊂ AZ be a one-dimensional SFT.
The Rauzy graph of order M of X is the directed graph GM (X) = (V, ~E) with:

• V = LM (X);

• (u1 . . . uM , u2 . . . uM+1) ∈ ~E for u1, . . . , uM+1 ∈ A if and only if u1 . . . uM+1 ∈ LM+1(X)

• no other couple of vertices belongs to ~E.

Considering its vertices correspond to elements of the language of X, that can by definition
be extended to full configurations, no Rauzy graph contains any stranded vertex – a vertex with
in-degree or out-degree 0.

In all that follows, if a Rauzy graph is mentioned without any precision or denoted as G̃(X) for
a SFT X, it is implied that it is its Rauzy graph GM−1(X) of order M − 1, with M the size of its
largest forbidden pattern.

Furthermore, the following results allow to focus even more precisely on nearest-neighbor SFTs
and their Rauzy graphs. More precisely, they imply that most proofs can focus on combinatorics
over graphs with no stranded vertex to describe somewhat naturally all one-dimensional SFTs up to
conjugacy. Proofs can be found in [LM95, Chapter 2] for instance.

Property 1.29. If X is nearest-neighbor, then up to a renaming of the symbols, G̃(X) = (V, ~E) is
the unique graph with no stranded vertex so that X can be described with:

• V = A;

• for any a, b ∈ A, ab ∈ F if and only if (a, b) /∈ ~E.

Property 1.30. Any SFT is conjugated to a nearest-neighbor SFT.

The previous two properties are of great use, because they mean that most proofs can focus on
combinatorics over graphs with no stranded vertex to describe exactly all one-dimensional SFTs up
to conjugacy.

16 CHAPTER 1. CELLULAR AUTOMATA AND ONE-DIMENSIONAL SUBSHIFTS

Any directed graph is composed of one or several strongly connected components (SCC for
short)3. If a graph has several SCCs, it can also contain transient vertices: vertices with no path
from themselves to themselves, that form a path from one SCC to another.
Example 11. The subshifts X = X{10,21,20,11,30,31,32,33} ⊂ {0, 1, 2, 3}Z and Y = Y{10,21,20,11} ⊂
{0, 1, 2}Z are the same SFT.

1

2

0

3

They have the same Rauzy graph of order 1 represented above in black, made of two SCCs {0}
and {2}, and one transient vertex 1. Notice how adding the vertex and edges in red could still fit
with a description of the adjacency rules of X, but are not part of its Rauzy graph – the word 23 is
locally authorized but not in L(X).

Now, we introduce an easy way to see the transitivity or mixing property of an SFT, the proof
of which is omitted as it stems naturally from the definition of the Rauzy graph of fitting order:

Property 1.31. Let X be a SFT.

X is transitive ⇔ G̃(X) is made of exactly one SCC.

X is mixing ⇔ G̃(X) is made of one SCC and is an aperiodic graph.

where an aperiodic graph is a graph so that the GCD of its cycles’ length is 1.

The following property can be proved using the basic definitions or the above graph-theoretical
equivalents.

Property 1.32. Being transitive and being mixing are conjugacy invariants.

The use of graph theory does not hold as well for subshifts in general. However, the notion of
Rauzy graph still makes sense, and allows us to introduce approximations of subshifts.

Definition 1.33. The SFT approximation of width n of X is the SFT Sn(X) defined by the
forbidden patterns An \ Ln(X). It corresponds to the Rauzy graph Gn(X).

Note that X = ∩nSn(X).

Notice that any SFT approximation Sn(X) of a SFT X yield that exact SFT as long as n is big
enough (that is, bigger than the SFT’s window size).

Definition 1.34. Let X be a subshift.
We say that X is chain transitive (resp. chain mixing) if every Sn(X) is transitive (resp. mixing).

3The difference with the usual notion of connected components is that for SCCs, one has to follow the directed
edges.

1.3. NOTIONS OF ARITHMETICAL COMPLEXITY 17

See [Aki93, pp. 66 and 175] for definitions in the context of general dynamical systems, equivalent
to these ones in the special case of subshifts. Chain transitivity, notably applied to subshifts, is also
mentioned in the classic reference [Kůr03, Def. 2.5 and Prop. 3.62].

Of course, we have the following results:

Property 1.35. Let X be a subshift.

X is transitive (resp. mixing) ⇒ X is chain transitive (resp. chain mixing).

If X is a SFT, then the reverse implication also holds.

1.3 Notions of arithmetical complexity

1.3.1 Turing Machines and decidability
From a certain point of view, the simplest theoretical way of representing a computer is to use a
tape containing data, that can be rewritten according to certain rules, and depending on the current
content of the tape and some inner state. This notion is the one of Turing Machines (occasionally
abbreviated TM), and it is formalized below.

Definition 1.36. A Turing Machine is a 5-tuple (Q,A, qi, qf , δ), where

• Q is a finite set of states with initial state qi and final state qf ;

• A is a finite alphabet containing some “blank” symbol $;

• δ is a transition rule from A×Q to A×Q× {←,→}.

The machine is represented by a read/write head positioned somewhere on an infinite discrete
tape, that reads letters written with A on the tape and overwrites them according to the transition
rule δ and its current state q ∈ Q. It then moves to the left (←) or the right (→).

It starts in state qi with its head at some position 0, and is given an input in A∗ (completed
with blank symbols $ to fill the infinite tape) or AZ (effectively enumerable input4.).

If the machine ends up in qf , it halts and outputs the content of its tape. Else, it does not halt
and never outputs anything. See Fig. 1.1.
Remark 6. • Other ways to represent Turing Machines (using several tapes or several halting

states, for instance) exist. All of them are equivalent.

• It is commonly accepted that Turing Machines have the computational power of computers
(Church-Turing thesis).

• A Turing Machine M, having a finite number of states, finite alphabet, and consequently a
finitely describable transition rule, can be encoded as a finite word written as 〈M〉. Then, this
“code” can be used as input by another Turing Machine.

4Some infinite configurations are not accepted by Turing Machines, for instance because they would contradict
Theorem 2; the ones that are are called the effectively enumerable inputs.

18 CHAPTER 1. CELLULAR AUTOMATA AND ONE-DIMENSIONAL SUBSHIFTS

... $ i0 i1 i2 $...

q0

t = 1

δ(i0, q0) = (a0, q1,→)

... $ a0 i1 i2 $...

q1

t = 0

Figure 1.1: A representation of a Turing Machine, performing the transition δ(q0, i0) = (q1, a0,→).
Time goes upward.

Note that a Turing Machine’s transition rules can be encoded in the local rules of a cellular
automaton, if the latter stores at all times on a cell the position of the head and the current state
of the TM. However, this requires the correct formatting of the cellular automaton into finite
segments, each dedicated to the computation of a given copy of the machine. Only by forcing these
delimitations – at least in most starting configurations, which is fine since the generic limit set can
neglect a meager set of them – can we ensure that no two heads of machines risk colliding, and
that each one of them has its own clean, finite starting tape. An important consequence is that a
cellular automaton is able to run space-bound copies of any Turing Machine: this will be of use in
Section 3.1.

Definition 1.37. A subset S of N is said to be computable if there exists a Turing Machine that,
taking any number as input, halts in any case and answers Y es if and only if the number belongs to
S, and No if and only if it does not.

A computable subset of N is also said to be Σ0
0 or Π0

0.

The definition of computability is extended to any subset of any countable set using a reasonable,
agreed upon bijection with N. In most of this PhD, we reason on sets of words A∗ for some alphabet
A; the bijection is the numbering of the words, lexicographically for a given length, then with
increasing length.

Definition 1.38. A decision problem for property P on inputs from S ⊂ A∗ is the set {w ∈ S |
w has property P} ⊂ A∗

In general, it is defined as a question about property P on a set of finitely-encodable inputs that
expects a Y es/No answer for each of them.

A decision problem is said to be decidable if it is a computable set. Said otherwise, there exists a
Turing Machine U such that for any input w of the decision problem, U accepts w if the answer to
w having property P is Y es, and rejects w if the answer to w is No – thus halting in any case.

Else, the decision problem is said to be undecidable.

A widely known theorem is the following:

1.3. NOTIONS OF ARITHMETICAL COMPLEXITY 19

Definition 1.39. The Halting Problem is the decision problem taking as input a Turing Machine
M encoded as a word 〈M〉, and an input w for that machine, and answering Y es if M halts on w,
No if it does not.

Theorem 2 (Undecidability of the Halting Problem). The Halting Problem is undecidable.

Numerous proofs of this fact can be found in the literature5.
Remark 7. The undecidability of the Halting Problem is fundamental among decision problems.
Indeed, most proofs of undecidability can be reduced (see Definition 1.42) to the one of the Halting
Problem.

1.3.2 Complexity
Definition 1.40. A first-order logical formula with one free variable on N is said to be computable
if and only if the subset on which it holds true is itself computable.

Definition 1.41. Let ϕ be a first-order logical formula on N with one free variable k. We define
the following recursively:

• if ϕ is computable, then ϕ is said to be Σ0
0 and Π0

0;

• if ϕ is logically equivalent to some ∃k1 . . . ∃kmψ where ψ is a Π0
n logical formula with free

variables k1, . . . , km and k, then ϕ is Σ0
n+1;

• similarly, if ϕ is logically equivalent to some ∀k1 . . . ∀kmψ where ψ is a Σ0
n logical formula with

free variables k1, . . . , km and k, then ϕ is Π0
n+1

We also define ∆0
n = Π0

n ∩ Σ0
n as the set of all computable formulas.

This is called the arithmetical hierarchy.

Though the previous definition holds on logical formulas, it can also be defined on sets directly,
by the use of successive caps and cups: for instance, a Σ0

1 set is the union, over a computable set, of
countably many computable sets. Indeed, “ϕ holds on ∪k1Uk1” means “∃k1, ϕ holds on Uk1” and so
this fits with the definition through quantifiers on logical formulas.

As mentioned previously, all these definitions can be extended to any countable set using a
decent bijection with N.

Definition 1.42. Given two Σ0
n (resp. Π0

n) sets A and B, we say that B can be (many-one) reduced
to A if there exists a Turing Machine that, when given a black box procedure able to tell whether
any given element belongs to A, can compute B using the black box procedure only once at the end
of its process.

Fundamentally, B can be reduced to A if the cost of algorithmically describing B is at most the
cost of describing A – that is, A is “harder” than B. The presence of a black box procedure in the
definition is of use because the actual difficulty of computing A is ignored, only the relative difficulty
of computing B from A is studied.

5As an example, a short poetic proof by G. K. Pullum can be found at the following ad-
dress: http://www.lel.ed.ac.uk/ gpullum/loopsnoop.html.

http://www.lel.ed.ac.uk/~gpullum/loopsnoop.html

20 CHAPTER 1. CELLULAR AUTOMATA AND ONE-DIMENSIONAL SUBSHIFTS

Remark 8. Notice how the black box procedure (called an oracle) is restrained to only one use at
the very end of the algorithm/Turing Machine’s process. If that restriction is ignored, we obtain the
broader definition of Turing reduction: for instance Halt, the set of all Turing Machines halting on
the empty set, is Turing-reducible but not (many-one) reducible to its complement. Indeed, if the
output of the black box procedure can be altered afterwards, its Y es and No outputs (answering
whether an input belongs to a set of not) can be swapped; and so any set is Turing-reducible
to its complement. However, a many-one reduction of Halt to its complement would allow said
complement to be Σ0

1, just as Halt is; and so Halt would be ∆0
1, which is decidable, contradicting

Theorem 2.
As before, the same definition holds for logical formulas.

Property 1.43. Suppose B can be reduced to A.
If B is undecidable, then so is A.
If A is decidable, then so is B.

Definition 1.44. A set A is Σn-hard if any Σn set can be reduced to A; it is Σn-complete if it is
Σn and Σn-hard.

The same definitions hold for Πn and ∆n.

In all that follows, we say that a subshift is of a given arithmetical complexity if its language is.

Chapter 2

Language Hardness and
Complexity Bounds

This chapter, based on the first half of [ENT22], is dedicated to complexity and structural results
about generic limit sets of cellular automata.

Section 2.1 goes through a brief history about what is known on arithmetical complexity of generic
limit sets, and makes some parallels with known complexities for omega-limit sets (Definition 1.10)
and µ-limit sets (Definition 2.1).

Section 2.2 details two new bounds on the complexity of generic limit sets: they are Π0
2 if

the cellular automaton is inclusion-minimal (Section 2.2.1), and Σ0
1 if the cellular automaton has

equicontinuity points (Section 2.2.2).
Finally, Section 2.3 proves additional results related to generic limit sets and shift-minimality.

2.1 Brief state of the art
To give some perspective on the following newfound results about generic limit sets, we introduce
an additional notion of attractor, related to measure-theory, on which various results have been
obtained [BDS10].
Definition 2.1. Let µ be a measure on AZ and f a CA. The µ-limit set Λµ(f) of f is the subshift
whose forbidden patterns are exactly the words u ∈ A∗ such that

lim
n→∞

µ(f−n([u])) = 0.

Remark 9. There exists a measure-theoretic equivalent of the generic limit set, called the likely limit
set [Mil85] – the closed set with the smallest possible basin of attraction of measure 1. The µ-limit
set, however, works differently: it is made of all words whose frequency of appearance (among
µ-weighted configurations) does not vanish as time goes to infinity.

Consequently, a word can appear with increased rarity without ever disappearing entirely from
the configurations’ orbits, and not be in the µ-limit set; this is not the case for the generic limit set.

In Table 2.1, inspired by the table in [BDP+15, Section 7], we recapitulate the state of the art
so far regarding several properties of the three commonly-considered CA attractors: the omega-limit
set, the µ-limit set where µ is the uniform Bernoulli measure, and the generic limit set.

21

22 CHAPTER 2. LANGUAGE HARDNESS AND COMPLEXITY BOUNDS

Among the properties studied, one is about equicontinuity points. To introduce this briefly, an
equicontinuity point x is an element of AZ so that configurations close to x have orbits that stay
close to x’s. A proper definition is given in Definition 2.8.

Table 2.1: Comparison of computability properties of different limit sets. The measure µ is the fully
supported Bernoulli probability measure.

Problem or
property Omega-limit set µ-limit set Generic limit set

Being a
singleton

Σ0
1-complete
[Kar92]

Π0
3-complete

[BDP+15, Th. 5.7]
Σ0

2-complete
[Tör21, Th. 8]

Any non-trivial
property

Σ0
1-hard

[Kar94]
Π0

3-hard
[BDP+15, Th. 5.2]

undecidable
[Del21, Th. 4.1]

Worst-case
language

Π0
1-complete

[Hur87, Th. 4]
Σ0

3-complete
[BDP+15, Th. 4.4]

Σ0
3-complete

[Tör20, Th. 1]

Worst-case
language when f

acts as a shift
map on the

attractor

computable
(is a SFT)

[Taa07, Th. 1]

Σ0
3-complete

[BDP+15, Th. 4.4]

Π0
2-complete:

Corollary 3.15,
Proposition 2.7

and Corollary 3.16

Worst-case
language when f

has
equicontinuity

points

Π0
1-complete

[Hur87, Th. 4]

Σ0
1-complete:

[BDP+15, Th. 4.2],
[BDP+15, Prop. 4.1]

and Remark 10

Σ0
1-complete:

Proposition 2.11,
Lemma 3.3

and Theorem 3

The Π0
1-completeness results on omega-limit sets – that is, the fact that the bound is tight –

come from [Hur87, Theorem 4] and its proof. Hurd constructs a CA that simulates copies of a
Turing Machine on disjoint tapes and has a Π0

1-complete omega-limit language. Moreover, the tapes
cannot be extended or destroyed, and no information can pass from one tape to another, so a short
tape bordered by two other tapes forms a blocking word. Hence, due to a common result stated
here in Proposition 2.10, the CA built that way admits equicontinuity points.

The Σ0
3-completeness results on µ-limit sets – that is, once again, the tightness of the corresponding

bounds – follow from [BDP+15, Theorem 4.4]. Its authors construct a CA that has a Σ0
3-complete

µ-limit set Furthermore, f acts on it as the identity (a trivial shift map).
Several bounds in complexity for generic limit sets were already known from [Tör20]; we mention

the following, to give some perspective on the next results:

Proposition 2.2 (Th. 1 from [Tör20]). The language of the generic limit set of any CA is Σ0
3, and

there exists a CA with a Σ0
3-complete GLS, making that complexity bound tight.

The aforementioned proposition notably gives a general bound of complexity on the language of

2.1. BRIEF STATE OF THE ART 23

any generic limit set, no matter its properties or the ones of its underlying cellular automaton.
Two additional recent results also provide insight on the complexity of GLS-related properties in

general:

Proposition 2.3 (Th. 4.1 from [Del21]). Any nontrivial property of the GLS of a CA is undecidable.

Proposition 2.4 (Th. 8 from [Tör20]). The decision problem of whether a GLS is a singleton,
given as input the alphabet and local rule of its underlying CA, is Σ0

2, and the bound is tight.

These results can be compared to similar ones listed in [BDS10, Section 7] for omega-limit sets
(based on works by Hurd and Kari) and µ-limit sets. Notably, the worst-case language for µ-limit
sets is similarly Σ0

3-complete, but the decision problem of being a singleton is easier in the GLS case.
Moreover, in the case with equicontinuity points, the sets themselves are equal, due to the following
remark.

Remark 10. As indirectly stated both in [BDP+15, Prop. 4.1] and [DG19, Prop. 6.3], and even in a
more restricted case as far as [KM00, Prop. 4], for any σ-ergodic measure µ with full support, for
any CA with equicontinuity points, the µ-limit set and the generic limit set are equal. This is due
to the fact that in that case, all words in the languages of both attractors come from configurations
with infinitely many blocking words in both directions (a set that is comeager and of measure 1).

Notably, this is the case if µ is the usual Bernoulli probability measure on AZ. As a consequence,
the Σ0

1-complete attractor on which f acts as the identity in Theorem 3 is both the GLS and the
µ-limit set – and the bound from [BDP+15, Th. 4.2] is reached.

In Section 3.2, we build – as mentioned in the previous remark – a cellular automaton to reach
the upper complexity bound given by Proposition 2.11, for the worst case language of generic limit
sets where f has equicontinuity points. However, we not only build it with that property, but with
the more precise f |

ω̃(f) = id|
ω̃(f), which implies the existence of equicontinuity points. Consequently,

we prove that the Σ0
1-complete bound can be reached even with a more restrictive property.

Somewhat conversely, the upper complexity bound for generic limit sets where f |
ω̃(f) is a

shift map is subtly obtained in Section 2.2.1. It is implied from a bound on a more general
property, inclusion-minimality (Definition 2.5) which is broader than the previous assumption (see
Corollary 3.15). That is to say, the complexities of even more GLSs share that Π0

2 upper bound.
That being said, the focus in the present subsection is still on the restriction “f |

ω̃(f) is a shift map”,
as it is a more studied property for its effects on omega-limit sets’ and µ-limit sets’ arithmetical
complexity.

We end this section by mentioning how, in spite of recent works, Table 2.1 and its surrounding
topic still have room for conjectures. For instance, the bound for µ-limit sets with a CA with
equicontinuity points has yet to be reached. Most notably, a more detailed Rice-like theorem –
determining the minimal complexity for nontrivial properties – on generic limit sets of cellular
automata has yet to be obtained. Recent articles [Tör21, Del21] expect a behavior similar to
the omega-limit and µ-limit sets, where the lowest complexity is reached with the problem of
deciding whether a given attractor is a singleton. They believe it can be obtained through a careful
construction adapted from [HdMS18], of which [Del21] has been the first meaningful step.

Conjecture 1. Every nontrivial property of the generic limit set of a cellular automaton is Σ0
2-hard.

24 CHAPTER 2. LANGUAGE HARDNESS AND COMPLEXITY BOUNDS

2.2 New complexity bounds

2.2.1 For inclusion-minimal automata

In this subsection, we define a specific attractor-related property, on which we then give a complexity
bound.

Definition 2.5. An attractor A is inclusion-minimal if D(B) is meager for every closed set B (A,
or in other words, A does not properly contain another attractor.

To the current state of the art, we add Proposition 2.7, that requires a technical lemma before
diving into its proof.

Lemma 2.6. Let f be a CA on AZ with generic limit set ω̃(f). The following conditions are
equivalent:

1. ω̃(f) is inclusion-minimal.

2. For all s ∈ L(ω̃(f)), v ∈ A∗ and i ∈ Z, there are infinitely many t ∈ N with f t([v]i) ∩ [s] 6= ∅.

Note that if s /∈ L(ω̃(f)), then the v and i described in Item 2 cannot exist due to Lemma 1.16.
The lemma characterizes the situation in which all choices of v and i are valid whenever one is. An
equivalent formulation of Item 2 is that

⋃
t≥T f

−t([s]) is dense in AZ for all s ∈ L(ω̃(f)) and T ∈ N.

Proof. Suppose that Item 2 holds. For each word s ∈ L(ω̃(f)) and n ∈ N, the set
⋃
t≥T f

−t([s]n) =
σ−n(

⋃
t≥T f

−t([s])) is open, and dense by assumption. As a consequence, the intersection B(s, n) =⋂
T∈N

⋃
t≥T f

−t([s]n) is comeager. Then B =
⋂
s∈L(ω̃(f))

⋂
n∈NB(s, n) = {x ∈ AZ | ω̃(f) ⊂ ω(x)}

is comeager as well, since any language is countable as a subset of A∗. Consider any closed set
K ⊂ AZ. If there exists x ∈ D(K) ∩B, then ω̃(f) ⊂ ω(x) ⊂ K, so K is not a proper subset of ω̃(f).
Otherwise D(K) ⊂ AZ \B is meager. This means ω̃(f) is inclusion-minimal.

Suppose then that Item 2 does not hold: there exist s ∈ L(ω̃(f)), v ∈ A∗, i ∈ Z and T ∈ N such
that f t([v]i) does not intersect [s] for any t ≥ T . Let K = ω̃(f) \ [s], a closed proper subset of ω̃(f).
Then the basin D(K) contains D(ω̃(f)) ∩ [v]i, which is nonmeager as the intersection of a comeager
set and an open set. Hence ω̃(f) is not inclusion-minimal.

Now, for the actual proposition, based on the quantifiers used earlier:

Proposition 2.7. Let f be a CA. If ω̃(f) is inclusion-minimal, then its language is Π0
2.

Proof. Due to Item 2 of Lemma 2.6 and the small paragraph that follows, L(ω̃(f)) is described by
all s so that

∀v ∈ A∗,∀i ∈ Z,∀T ∈ N,∃t > T, f t([v]i) ∩ [s] 6= ∅.

Since f is computable, given all the parameters as input, checking whether f t([v]i) ∩ [s] is empty
can be done with a Turing Machine. The full logical formula is therefore Π0

2, and so is L(ω̃(f)).

2.2. NEW COMPLEXITY BOUNDS 25

2.2.2 For automata with equicontinuity points
The title of this subsection asks for a definition of the notion of equicontinuity points.

Definition 2.8. Let X be a compact metric space with metric d. Let (X, τ, f) be a dynamical
system.

A point x ∈ X is an equicontinuity point if

∀ε > 0,∃δ > 0,∀y ∈ X, d(x, y) < δ ⇒ ∀n ∈ N, d(fn(x), fn(y)) < ε.

(X, τ, f) is equicontinuous if all of its points are equicontinuity points.

Remark 11. Philosophically, an equicontinuity point x is so that any point in the dynamical system
that starts close to x stays close to the trajectory (fn(x))n∈N as f is iterated.
Example 12. Consider X = {0, 1}Z endowed with the prodiscrete topology (as used in Section 1.1.1).
Add to it the following fitting distance:

d(x, y) := inf
n∈N0
{2−n | x([−n, n]) = y([−n, n])}.

Let us use the cellular automaton f described in Example 1: the “spreading 1”.
Then . . . 111 . . . is a fixpoint of the cellular automaton. It is also the sole element of the generic

limit set ω̃(f), and in that regard an obvious attractor of any configuration except . . . 000 As
such, it is even more – an equicontinuity point. Considering its properties, it actually satisfies a
strong version of the previous implication:

∀ε > 0,∀y ∈ X, d(. . . 111 . . . , y) < ε⇒ d(. . . 111 . . . , f(y)) < ε.

Example 13. The automaton from Example 7 that spreads 1’s while shifting them to the left, however,
has no equicontinuity point. Said briefly, it is because the distance d as in Example 12, being
measured with respect to coordinate 0, does not fare well with the left shift operated by the function.
Only the configurations . . . 000 . . . and . . . 111 . . . could be likely candidate for equicontinuity points,
and it is easy to verify that they are not.

Definition 2.9. A word b ∈ A2k+1 is a blocking word for the CA f of radius r ≤ k if there exists a
sequence of words vn ∈ Ar such that for any x ∈ [b]−k, we have fn(x) ∈ [vn] for all n ∈ N.

Remark 12. Since f is of radius r ≤ k, a blocking word in a configuration completely disconnects
coordinates to the right and left of the succession of vn’s for the action of the automaton.
Remark 13. Note that b can be a blocking word without any vn being one. For instance, a
configuration containing v1 with some specific surroundings that are not the ones obtained from
f(b) will not necessarily contain v2 at the same position on the next step.

The next result is used in [Kůr97] and stated under its current form in [BT00, Prop. 2.1]:

Proposition 2.10. A one-dimensional CA admits an equicontinuity point if and only if it admits
a blocking word.

Example 14. Based on the same cellular automaton as in Example 1, which was already said to
have an equicontinuity point in Example 12, we can see that 111 is a blocking word for it.

26 CHAPTER 2. LANGUAGE HARDNESS AND COMPLEXITY BOUNDS

The following result generalizes [Tör20, Prop. 2], where f was required to be equicontinuous
when restricted to ω̃(f).

Proposition 2.11. Let f be a CA with equicontinuity points. The language of its generic limit
set ω̃(f) is Σ0

1.

Proof. A one-dimensional CA with equicontinuity points has at least one blocking word, by Proposi-
tion 2.10 [BT00]. Let b ∈ A2k+1 be a blocking word for f , and let vn ∈ Ar for n ∈ N be the associated
sequence of words, which is eventually periodic by the pigeonhole principle1: there are N ≥ 0 and
p > 0 with vn+p = vn for all n ≥ N . Let i ∈ N and consider a configuration x ∈ [b]−i−k ∩ [b]i−k –
that is, which contains two carefully-spaced blocking words. We have fn(x) ∈ [vn]−i ∩ [vn]i for all
n ∈ N, since each blocking word determines entirely the sequence that follows. As r is the radius of
f , no information can “flow over” the vn-words: since these are completely determined and larger
than the radius r, no content on a cell on their left can influence anything on a cell on their right,
and vice versa. Notably, the word fn+1(x)[−i+r,i−1] ∈ A2i−r+1, which is surrounded by two vn+1
in fn+1(x), is completely determined by fn(x)[−i,i+r−1] for all n. Since the sequence (vn)n∈N is
eventually p-periodic from index N onward, the sequence αi(x) := (fn(x)[−i,i+r−1])n∈N is q-periodic
from index N + p|A|2i−r+1 onward for some q ≤ p|A|2i−r+1, and it only depends on x[−i−k,i+k−1].

Let s ∈ A∗ be arbitrary. We claim that s ∈ L(ω̃(f)) if and only if there exist i ≥ max(|s|, r) and
N + p|A|2i−r+1 ≤ t ≤ N + 2p|A|2i−r+1 such that f−t([s]) ∩ [b]−i−k ∩ [b]i−k 6= ∅. As this condition
is Σ0

1, the result follows.
Suppose first that the latter condition holds for some i and t, and let x ∈ f−t([s])∩ [b]−i ∩ [b]i be

arbitrary. Denote v = x[−i−k,i+k], which begins and ends with b. We claim that v enables s in the
sense of Lemma 1.16. For this, pick any u,w ∈ A∗, and let y ∈ [uvw]−i−k−|u| be arbitrary. Since
y ∈ [b]−i ∩ [b]i, the sequence αi(y) = αi(x) is periodic from index N + p|A|2i−r+1 onward. Hence
fn(y)[0,|s|−1] = fn(x)[0,|s|−1] = s holds for infinitely many n, and v enables s.

Conversely, suppose that the latter condition does not hold: for all i ≥ max(|s|, r) and N +
p|A|2i−r+1 ≤ t ≤ N + 2p|A|2i−r+1 we have f−t([s])∩ [b]−i ∩ [b]i = ∅. We show that no word v ∈ A∗
enables s. Pick any j ∈ Z and let i ∈ N be so large that there exists x ∈ [b]−i−k ∩ [v]j ∩ [b]i−k. By
assumption f t(x)[0,|s|−1] 6= s for all N + p|A|2i−r+1 ≤ t ≤ N + 2p|A|2i−r+1. The sequence αi(x)
is q-periodic with q ≤ p|A|2i−r+1 from index N + p|A|2i−r+1, so f t(x)[0,|s|−1] 6= s holds for all
t ≥ N + p|A|2i−r+1. Hence v does not enable s.

2.3 Results on shift-minimality
This section is dedicated to several additional results related to shift-minimality: notably, we
study what this property tells us about generic limit sets, both in terms of arithmetical complexity
(Corollary 2.16) and general structure (Proposition 2.15, and less directly Proposition 2.17 and
Corollary 2.18).

Definition 2.12. Let X be a subshift. If X does not contain a nonempty proper subshift, we say
that X is shift-minimal.

Remark 14. The most common terminology when studying subshifts is minimal; here, we keep a
“shift-” prefix to ensure that no confusion arises with inclusion-minimality – a distinct, attractor-
related notion described in Definition 2.5.

1Also known as “le principe pigeon-trou” in French.

2.3. RESULTS ON SHIFT-MINIMALITY 27

Before stating new results, here are a few propositions based on transitivity and chain transitivity
that are of use here (and in Section 3.4).

Proposition 2.13. Let X be a subshift. If X is shift-minimal, then it is transitive.

Proof. Suppose the subshift X ⊂ AZ is not transitive: there exist two words u, v ∈ L(X), so that
no configuration in X contains both u and v as subwords. Consequently, for any big enough n ∈ N,
we have nested word sequences (un) and (vn) so that |un| = |vn| = n and no configuration of X
contains both; we can find them simply by extending u and v to bigger subwords – of the same
length – of valid configurations. By compactness, we can extract configurations u and v of X that
are not in each other’s orbit closure, and so X is not shift-minimal.

Proposition 2.14 (Prop. 6 from [Tör20]). If a subshift is chain transitive and has a finite factor
that does not consist of fixed points, then it is not the generic limit set of any CA.

As a preamble to the following new results, it is vital to clearly understand the difference between
shift-minimality (not properly containing a subshift, Definition 2.12) and inclusion-minimality (not
properly containing an attractor of the CA, Definition 2.5): the former is a subshift-related property,
while the latter is an attractor-related property.

In all generality, an attractor can be inclusion-minimal without even being a subshift, and
thus without being shift-minimal. Even when both notions are defined, an attractor that is also a
subshift can be inclusion-minimal without being shift-minimal, if it contains a subshift that is no
attractor (for instance if said subshift attracts a meager portion of the space). Conversely, it can be
shift-minimal without being inclusion-minimal, if it contains a specific sub-attractor that is not a
subshift.

That being said, Proposition 2.15 shows that shift-minimality implies inclusion-minimality in a
generic limit set. Conversely, Proposition 2.17 shows that any subshift contained in the generic limit
set is necessarily not a topological attractor – meaning its basin of attraction is meager.

Proposition 2.15. Let f be a CA on AZ. If ω̃(f) is shift-minimal, then it is inclusion-minimal.

Proof. Suppose on the contrary that X = ω̃(f) is not inclusion-minimal. Then it properly contains
a closed set K ⊂ X with a basin of attraction B = D(K) ⊂ AZ that is not meager, and B is not
comeager either (because ω̃(f) is the generic limit set). Since K is closed, there exists v ∈ L(X)
with K ∩ [v] = ∅. As B has the Baire property, it is comeager in some nonempty open set, which
we can choose to be a cylinder set [w]j ⊂ AZ where w is not the empty word. Our goal is to show
that v occurs periodically in every configuration of X, use these occurrences to construct a factor
map onto a finite dynamical system, and obtain a contradiction with Proposition 2.14.

Denote p = |w| > 0. For each n ≥ 0, the basin of Kn =
⋂n
i=−n σ

ip(K), which equals⋂n
i=−n σ

ip(B), is comeager in the cylinder set [w2n+1]j−np. In particular, each Kn is nonempty,
hence their intersection K ′ =

⋂
i∈Z σ

ip(K) ⊂ X is nonempty as well. Since K is disjoint from [v],
we have K ′ ⊂

⋂
i∈Z(AZ \ [v]ip). For P ⊂ Z, define X(P) = X ∩

⋂
i∈P (AZ \ [v]i). We saw that

X(P) 6= ∅ for some infinite subgroup P = pZ ⊂ Z. If we had p = 1, X(P) would be closed and
stable by σ, hence a subshift contained in X. By shift-minimality of X, this means X(P) = X,
which contradicts the nonemptiness of [v] ∩X. Thus p ≥ 2.

Let q ≥ 2 be minimal such that X(qZ) 6= ∅: there are configurations of X with no subword v
starting on indices in qZ. For x ∈ X, let C(x) = {qZ + i | x ∈ X(qZ + i)} be the set of cosets on
which x does not contain occurrences of v. Then C(σ(x)) = C(x) + 1 = {qZ+ i+ 1 | qZ+ i ∈ C(x)}

28 CHAPTER 2. LANGUAGE HARDNESS AND COMPLEXITY BOUNDS

for all x. The number |C(x)| is the same for all x ∈ X: the set X ′ of those configurations x for
which |C(x)| is maximal forms a subshift of X, and by shift-minimality of X we have X ′ = X.
Denote m = |C(x)|.

The sets C(x), C(σ(x)), . . . , C(σq−1(x)) are distinct for all x ∈ X: if C(x) + a = C(σa(x)) =
C(σb(x)) = C(x) + b for some 0 ≤ a < b < q, then C(x) + (b − a) = C(x), meaning that
σ−a(x) ∈ X((b− a)Z), contradicting the minimality of q. Also, there exists r ≥ 0 such that C(x)
only depends on x[−r,r]: otherwise for all r ≥ 0 there would exist x(r) ∈ X ∩

⋂
i∈I X(q[−r, r] + i)

with I ⊂ [0, q − 1] of cardinality at least m + 1, and a limit point x of (x(r))r≥0 would satisfy
C(x) ≥ m + 1, a contradiction. All in all, we have shown that C : (X,σ) → (2{0,...,q−1},+1) is a
morphism of dynamical systems whose image is finite and contains no fixed points. Since X is
shift-minimal, it is transitive (see Proposition 2.13) and notably chain transitive; this contradicts
Proposition 2.14.

Together with Proposition 2.15, Proposition 2.7 implies that a shift-minimal generic limit set
has a Π0

2 language. In [Tör20, Prop. 1] it was proved to be Σ0
2, hence it must be ∆0

2.

Corollary 2.16. Let f be a CA. If ω̃(f) is shift-minimal, then its language is ∆0
2.

Now, we show that even though the generic limit set of a CA might properly contain closed sets
with nonmeager basins, these sets cannot be subshifts. In fact, we can characterize the generic limit
set as the smallest subshift with a nonmeager basin.

Proposition 2.17. Let f be a CA on AZ and X ⊂ AZ a subshift. If D(X) is nonmeager, then
ω̃(f) ⊂ X (and D(X) is consequently comeager).

Proof. Suppose for a contradiction that ω̃(f)\X 6= ∅. Then there exists a word s ∈ L(ω̃(f))\L(X).
Let v ∈ A∗ and i ∈ Z be given by Lemma 1.16 applied to s. Similarly to the proof of Lemma 2.6,
the set B(s) =

⋂
T∈N

⋃
t≥T f

−t([s]) is comeager in [v]i.
As X is closed, its basin D(X) has the Baire property, and since D(X) is by assumption

nonmeager, it is comeager in some nonempty open set U ⊂ AZ. Moreover, since the shift map σ is a
homeomorphism and commutes with f , for any x ∈ D(X), σ(x) is so that ω(σ(x)) = σ(ω(x)) ⊂ X.
As such, D(X) is stable by σ. We can assume that V = [v]i ∩ U 6= ∅ – at worst, rename as U some
σk(U), k ∈ Z in which D(X) is also comeager. Hence D(X) ∩B(s) is comeager in V , in particular
nonempty. Any configuration x in this set satisfies ω(x) ⊂ X and ω(x)∩ [s] 6= ∅, so X intersects [s].
This contradicts s /∈ L(X).

From the previous two propositions, we deduce the following:

Corollary 2.18. Let f be a CA on AZ. If ω̃(f) contains a topological subattractor, then it contains
a nonempty proper subshift, that necessarily has a meager basin of attraction.

Proof. If ω̃(f) contains a topological subattractor, then it is not inclusion-minimal. Hence by
Proposition 2.15, it is not shift-minimal, and therefore it contains a nonempty proper subshift X.
But by Proposition 2.17 D(X) must be meager, else it wouldn’t be proper.

Chapter 3

Realization of Subshifts

This chapter, based on the second half of [ENT22], realizes the bounds mentioned in Section 2.2. It
does so through three sections of increasing sophistication.

First, Section 3.1 presents a broad method for building complex generic limit sets. The basic idea
is simple: it aims to implement a Turing Machine in the cellular automaton that would approach
a set with the desired arithmetical complexity. However, we need a symbol that would indicate
where the head starts, and restricting the starting configurations to the ones containing exactly one
such symbol is in total contradiction with the “generic” aspect of the generic limit set, where most
configurations must converge toward such a complex attractor. Therefore, the biinfinite tape of the
cellular automaton is divided into finite segments, that are portions between two initializing seeds I.
Each of these seeds cleans the segment to its left then implements a Turing Machine where it stands,
with the segment to its left as a (space-limited) tape. This is what we call the generic construction.

Second, Section 3.2 proves that the bound of Proposition 2.11 is tight, by constructing, based on
the generic construction, a generic limit set of complexity Σ0

1 that has an equicontinuity point. Basi-
cally, each segment is filled with an appropriate Turing Machine that repeats the same “complicated
enough” patterns, and keeps to itself.

Third, Section 3.3 realizes two large classes of Π0
2 subshifts generic limit sets: the ones containing

a Π0
1 subshift, and the ones of complexity ∆0

2. That result requires its fair share of subsections to
be proven, as it uses a refined merging process between segments from the generic construction.
Nonetheless, it proves that the bound from Proposition 2.7 is tight. Though it leaves open whether
any Π0

2 subshift can be realized as a GLS, it has its interesting lot of corollaries, as detailed in
Section 3.4.

3.1 Generic construction
In this section we present a construction of a CA f which serves as a base for the CA built in
Section 3.2 and Section 3.3, where within each proof modifications are introduced. This type of
construction first appeared in [DPST11]; our presentation is based on [BDP+15]. An even more
complex version was presented in [HdMS18].

The main idea is the following: the alphabet A of f is the cartesian product of several auxiliary
alphabets regarded as layers. The biinfinite tape, using these layers, is divided into individual finite
computation zones called segments where the computations occur after the deletion of most of the

29

30 CHAPTER 3. REALIZATION OF SUBSHIFTS

initial data. The computations depend on the application at hand: we simulate Turing Machines in
Section 3.2 and store patterns from subshifts in Section 3.3. Depending on the construction, some
segments may be merged with other segments as time passes.

The aforementioned layers of A are:

• Main Layer Amain. It is the layer that contains the alphabet of the subshift we want to obtain
as GLS – the one on which what we want to simulate is displayed, hence the main one. Three
special additional symbols are also included in it: walls symbols W, initialization symbols I,
and blank symbols $. An initialization I-symbol is turned into a W-symbol at the first step of
the automaton, and two successive W-symbols delimit areas of computation called segments.
As time goes by, desired patterns are written on this layer as needed.

• Computation Layer Acomp. It encodes, in each segment as delimited on the Main Layer, a
Turing Machine M which carries over the desired computations, and possibly other tasks.
The simulated M writes the results of its computation on the Main Layer (the details vary
depending on the application).

• Cleaning Layer Aclean. Using several types of signals, this layer erases any relic from the initial
configuration.

In each alphabet we have a blank symbol which replaces data that is said to be ‘erased’ – for
instance, in the Main Layer this role is played by $. We denote by πmain, πcomp, and πclean the
projections on the Main, Computation, and Cleaning Layers, respectively. We also formally define
the following:

Definition 3.1. Let x ∈ AZ be a configuration and consider the forward orbit (fn(x))n≥0. A
segment in the initial configuration x is a sequence of successive cells s(i, j) = xixi+1 . . . xj−1xj
such that πmain(xi) = πmain(xj) = I and πmain(xk) 6= I for all i < k < j. For n ≥ 1, a segment in
y = fn(x) is a sequence yiyi+1 . . . yj−1yj such that yi = yj =W and s(i, j) is a segment of x.

In order for all segments to start and perform their computation without disruption, it is
necessary to clean the data on all layers in the initial configuration, with the exception of I-symbols
in Amain – which initiate the cleaning and the segments’ internal processes, and are immediately
turned into W-symbols at the first step of the CA. Observe that walls may also be present in the
initial configuration, i.e., some W-symbols are not created by an I-symbol. These walls need to be
deleted.

The deletion process is carried out by two signals si and so (inner and outer) generated by every
initialization symbol I in both directions, on the Cleaning Layer Aclean. They are erased once they
meet their counterpart coming from another I-symbol, and they delete any wall and data they
encounter. These signals are defined similarly to [BDP+15, Section 3], which ensures that correct
moving speed for these kinds of signals exist. The rules they obey are the following: the outer signal
so travels faster than si; so deletes everything it encounters on each layer that is not another so;
when two so signals collide, they send auxiliary signals (thin gray signals in Fig. 3.1) that bounce
back on the inner signals si behind them and return to the collision point. If the bouncing signals
do not meet again at the same time step, as pictured in Fig. 3.1b, the side from which the latter one
came has a greater gap between its two signals so and si, meaning this pair has not been generated
at time 1 – this holds since signals so and si can not be both present in the same cell, and since
their gap grows with each time step. The pair with the greater gap is deleted by implementing a
simple priority rule of so over si. The pair (so, si) with the smaller gap is preserved by the use of

3.2. REALIZATION OF COMPLEXITY FOR EQUICONTINUITY POINTS 31

some auxiliary signal (thin black signal in Fig. 3.1b) generated by the first-arrived bouncing signal:
that auxiliary signal weakens the antagonistic so signal that could have disrupted the si signal from
the pair. If the bouncing signals do meet again at the same time step, as pictured in Fig. 3.1a, they
are both deleted. Auxiliary signals (thin black signals in Fig. 3.1a) delete both so’s, and both si’s
cancel each other when meeting. As a result, since this situation notably happens when signals
coming from two I symbols meet midway, the entire segment between the walls these I generate has
been cleaned from any possible disruption, and the Turing Machine initialized on the Computation
Layer can run without a hitch.

Consequently, our construction – inspired by [BDP+15] protects walls originating from I-states,
and deletes any other wall. Note that the signals so and si need to move slower than speed 1 (one
cell at each time step) for the process with bouncing signals to go smoothly: speeds 1/4 and 1/5
work according to [BDP+15]. This requires several states for the signals, to indicate each “movement”
of length 1/4 or 1/5.

I IW
so

so

si si

(a) Pairs of signals so and si from two adjacent I’s
meet. The so’s erase everything else of the original
configuration in the segment (here, a starting W
and a lonely auxiliary signal).

I

so

so

si

si

(b) “Wild” signals from the original configuration
cannot disrupt a pair of so and si coming from an
I. The slope of some auxiliary signals is slightly
exaggerated for the phenomenon of them bouncing
back not at the same time to be more visible.

Figure 3.1: Space-time diagram of the deleting process.

At time step 1, as it is turned into a W-symbol and launches signals si and so, each I-symbol
also starts an internal computation process on Acomp in its associated segment. These internal
computation processes vary for each construction, but in any case they have a clean canvas to
perform any computation needed, as the outer signals so will replace the contents of each correctly
initialized segment with blank symbols.

3.2 Realization of complexity for equicontinuity points
In this section, we build a CA f which realizes the bound in Proposition 2.11, that is, f has
equicontinuity points and the language of ω̃(f) is Σ0

1-complete. Moreover, we show that such an f
can be built so that it acts as the identity on its generic limit set.

In the following result, note that [Ln(ω̃(f))] is the set of configurations x ∈ AZ with x[0,n−1] ∈
L(ω̃(f)).

32 CHAPTER 3. REALIZATION OF SUBSHIFTS

Lemma 3.2 (Lemma 3 of [Tör20]). Let f be a CA on AZ, let n ∈ N and let [v]i ⊂ AZ be a
cylinder set. Then there exists a cylinder set [w]j ⊂ [v]i and T ∈ N such that for all t ≥ T we have
f t([w]j) ⊂ [Ln(ω̃(f))].

We say that w is ω̃(f)-forcing.

Lemma 3.3. Let f be a CA so that f |
ω̃(f) = id|

ω̃(f). Then f has an equicontinuity point on AZ.

Proof. Choose a ω̃(f)-forcing word w ∈ A∗ with f t([w]j) ⊂ [L3r(ω̃(f))] for all t ≥ T . Then every
x ∈ [w]j−r satisfies f t+1(x)[0,r−1] = f t(x)[0,r−1] for all t ≥ T . Thus we can extend w into a blocking
word and thus f has an equicontinuity point on AZ.

Theorem 3. There exists a CA f such that ω̃(f) is a Σ0
1-complete set and f |

ω̃(f) = id|
ω̃(f).

Proof. We describe a CA f with the desired properties. Consider the construction from Section 3.1,
modified as follows.

• The Main Layer’s alphabet is {0, 1, $, I,W}, where $ is the blank symbol.

• The only way to erase a wall is with an outer signal so. In particular, walls created by an I
always remain, so that segments formed between two of them stay forever.

• In addition to the signals so and si, each I initializes a simulated computation of a Turing
Machine M on the segment to its left.

• The Cleaning Layer and its deleting process, described in Section 3.1, remain untouched.

• As the cleaning and deleting processes take place, all the information in any segment is replaced
by $-symbols.

As for the behavior of the machineM, consider an enumeration of all Turing Machines (Mn)n∈N
with a one-way infinite tape, and consider a computable bijection p : N → N × N – for instance,
the inverse of the Cantor pairing function, but we modify it so that we avoid any case where
`− (|bin(n)|+ 1) < 0 with (n,m) = p(`), where bin(n) is the binary representation of n.

In each segment, M starts by determining the length ` of its segment (by sending a specific
signal and waiting for its return, for instance) and computes (n,m) = p(`). Then M simulates m
steps of computation of the machineMn on the empty input. IfMn halts during these m simulated
steps, then M prints bin(n) ∈ {0, 1}∗ on the left end of the segment, leaving one blank cell between
it and the left wall, and fills the rest of the segment with blank symbols. If Mn does not halt in
at most m steps of computation, M fills the segment with blank symbols. In both cases, once the
described computations are done, M is deleted. In this manner, every segment is eventually of the
form W$bin(n)$kW or W$`W , with k = `− (|bin(n)|+ 1) (notice that p is designed so that k ≥ 0).
The segment remains unchanged from that point on.

We first claim that ω̃(f) ⊂ ({W, 0, 1, $} × {$} × {$})Z. Once proved, this implies f |
ω̃(f) = id|

ω̃(f),
since f acts as the identity on the above full shift. Let s ∈ L(ω̃(f)) be enabled by some cylinder set
[v]i as per Lemma 1.16. We may assume, by extending v if necessary, that i ≤ 0 and |v| ≥ |i|+ |s|.
Choose u = w = I. Then for any configuration x ∈ [uvw]i−1, the Cleaning Layer ensures that the
word πmain(f t(x)[i−1,i+|v|+1]) ∈ WA|v|W consists of correctly initialized segments for all large enough
t ≥ 1. The instances of the machineM simulated on the Computation Layer will eventually fill each
segment with symbols from {0, 1, $} and disappear. Thus f t([uvw]i−1) ⊂ [W{W, 0, 1, $}|v|W]i−1

3.3. REALIZATION OF A LARGE CLASS OF Π0
2 SUBSHIFTS 33

for all large enough t, and infinitely many of them contain [s] due to v enabling s, and thus
s ∈ {W, 0, 1, $}∗.

Let n ∈ N. We claim that sn ∈ L(ω̃(f)), with πmain(sn) = $bin(n)$ if and only ifMn eventually
halts. First, if Mn never halts, then no correctly initialized segment will contain the word sn. By
the analysis in the previous paragraph and the construction above, sn /∈ L(ω̃(f)). Suppose now
that Mn halts in some m steps. Since p is a bijection from N to N × N, there exists ` such that
(n,m) = p(`). We show that sn is enabled by any cylinder C such that πmain(C) = [I$`I]−1. For
all x ∈ C and t ≥ 1, the word πmain(f t(x)[−1,`]) ∈ WA`W is a correctly initialized segment; and the
instance of M it contains simulates m steps of Mn on that segment. When Mn halts, M writes
$bin(n)$`−(|bin(n)|+1) on the segment and disappears. Hence πmain(f t(x)) ∈ [$bin(n)$] for all large
enough t.

Since the set of Turing Machines that eventually halt on the empty input is known to be
Σ1

0-complete, we have built the expected CA.

Corollary 3.4. There exists a CA f such that ω̃(f) is a Σ0
1-complete set and f has an equicontinuity

point.

3.3 Realization of a large class of Π0
2 subshifts

3.3.1 Statement and overview of the proof
In this section, we realize two large classes of Π0

2 subshifts as generic limit sets of cellular automata.
More specifically, we prove the following result:

Theorem 4. Let X ⊂ AZ be a chain mixing subshift satisfying one of the following conditions:

1. either X is Π0
2 and contains a nonempty Π0

1 subshift;

2. or X is ∆0
2.

Then there exists an alphabet B ⊃ A and a CA f : BZ → BZ with ω̃(f) = X and f |X = σ|X .

The two cases of the theorem are proven mostly simultaneously; we point out the (relatively
minor) differences in the construction and proofs whenever they diverge. We call them the Π0

1 ⊂ Π0
2

case and the ∆0
2 case.

Though in a more complex fashion than Section 3.2, what we prove here is also based on the
generic construction of Section 3.1: several layers are used to build the cellular automaton, notably
a Cleaning Layer to erase unwanted data from the starting configuration, a Computation Layer to
obtain better and better approximations of configurations from the Π0

2 (resp. ∆0
2) subshift we want

to realize, and the Main Layer that bears these resulting words. Just as it is broadly described in
Section 3.1, most initial configurations here contain on their Main Layer an infinite number (on
both directions) of cells with a symbol I that initialize a segment. Each of these segments cleans
its initial cells, then runs a Turing Machine that prints words form the language of SFTs that are
approximations of the desired Π0

2 (resp. ∆0
2) subshift.

The first two lemmas that follow, Lemma 3.5 and Lemma 3.6, show that we can approximate the
language of a Π0

2 (resp. ∆0
2) subshift X using a carefully chosen sequence of mixing SFTs (Xm)m∈N,

and words (wm)m∈N from their language that somehow contain any subword needed to describe the
language of X asymptotically. The idea is that the Turing Machine in each segment will compute

34 CHAPTER 3. REALIZATION OF SUBSHIFTS

the best approximation Xm of X it can given the space it has, then print a word u whose periodic
repetition is in Xm, and that contains the subword wm – such a periodic configuration exists due
to Lemma 3.7, and its least period n is ensured to be bigger as m grows. Once it has obtained
such a u, the Turing Machine keeps printing it periodically, and simultaneously starts capturing –
using somewhat “porous” walls – what it receives from the segment to its right, which after some
time also periodically prints a word u′ containing some wm′ . The synchronicity of these processes is
ensured by a sub-layer of the Computation Layer, the Clock Layer, that runs a ternary counter; and
by Lemma 3.10.

Looking at truncates of the word u′ and using Lemma 3.8, the receiving Turing Machine can
compute after a somewhat short time whether the least period of u′ is smaller than the one of u. If
that is the case, due to their dependence with the size of the segment and the index of the SFT
approximations, it deduces that the segments to its right is smaller – and therefore has computed
a less precise approximation of X than its own – and in that case keeps repeating that probing
process without doing anything more. However, if the Turing Machine receives a word u′ with a
bigger period than its own u, that means the present segment has to merge with the one to its right,
as the latter computed a better approximation of X. To do so, as described in Section 3.3.6, it
erases its right wall and lets itself be overwritten by the segment on its right. That process happens
for any segment eventually, and goes well, see Lemma 3.11, Lemma 3.12 and Lemma 3.13.

The remaining challenge is, first, to implement this rewriting, and second, to do so in such a
way that it does not produce additional words in the generic limit set. Therefore, we need to glue
together the words u and u′ with care. The control we have over the mixing distances of Xm and
Xm′ ensures that said process can be done within a relatively short time span – a property we need
since all words we manipulate keep shifting to the left, and we consequently don’t want them to drift
away before the end of that computation. Notice how the chain mixing hypothesis is of use here,
since it is at the origin of Xm and Xm′ being mixing, and therefore allows this capacity of gluing
words in the first place. Besides, contrary to a mere property of transitivity, it allows that gluing to
be done with any distance big enough between the two words. As a side note here, the chain mixing
property turns out to be in fact necessary in the present construction, by Proposition 3.18.

The remaining problem is to glue u and u′ together while not adding words to the generic limit
set, since the latter must have the language of X. In the ∆0

2 case, the approximations Xm are SFT
approximations Sk(X), and thus are nested – each approximation is finer than the previous one,
and L(X) = limn L(Xm). Therefore, gluing u and u′ using a word from the least fine approximation
is enough for the whole glued pattern to belong to some Xm, and asymptotically with bigger and
bigger segments merging we get a finer and finer approximation of X, that is the only subshift whose
language remains in the generic limit set.

However, in the Π0
1 ⊂ Π0

2 case, the Xm’s are not nested into each other, and may have words
they do not have in common, since the language of X is only the limsup of theirs. Therefore, gluing
them is not as immediate as in the previous case! To circumvent that, we build additional subshifts
of each Xm, the Ym’s, that are nested approximations of Y – this is why we need the inclusion of a
Π0

1 subshift Y in X to begin with. When the merging happens, as described in Section 3.3.6, we
check one additional property of u′: that it belongs to L(Ym). Then, the gluing process glues u and
u′ as words of some Y`, using a word from that same SFT; and so with bigger and bigger segments
the gluing words are closer and closer approximations of words of Y ⊂ X, resulting in a generic
limit set that, as a whole, does describe the language of X.

3.3. REALIZATION OF A LARGE CLASS OF Π0
2 SUBSHIFTS 35

3.3.2 Necessary lemmas
We begin with two technical lemmas that provide well-behaved SFT approximations of the subshifts
that appear in the statement of Theorem 4.

Lemma 3.5. Let X ⊂ AZ be a nonempty chain mixing Π0
2 subshift, and Y ⊂ X a nonempty Π0

1
subshift. Then there exists a sequence (Xm, Ym, wm)m∈N, where each Xm ⊂ AZ is a mixing SFT,
Ym ⊂ Xm is a nonempty SFT, and wm ∈ L(Xm), such that the following conditions hold.

1. Y =
⋂
m∈N Ym and Ym+1 ⊂ Ym for all m ∈ N.

2. L(X) =
⋂
M∈N

⋃
m≥M L(Xm) =

⋂
M∈N

⋃
m≥M{wm}.

3. For each m, the window size and mixing distance of Xm, the window size of Ym, and the
length |wm| are all o(logm).

4. The function m 7→ (Xm, Ym, wm) is computable in O(2m) space.

Proof. Since X is Π0
2, there exists a computable predicate ϕX such that L(X) = {w ∈ A∗ |

∀k ∃` ϕX(w, k, `)}. Since Y is Π0
1, there exists a computable predicate ϕY such that L(Y) = {w ∈

A∗ | ∀k ϕY (w, k)}. We first describe an algorithm that produces a sequence of SFTs satisfying the
first two items. Then we modify it to satisfy the remaining items as well.

The algorithm keeps track of three finite sets of words M,Q,F ⊂ A∗, which we call the memory,
the queue, and the forbidden set. All three sets are initially empty. The memory and queue are
used to construct the Xm and wm, while the forbidden set is used for Ym. For each w ∈ M , the
algorithm also stores numbers kw, `w ∈ N0, and for each w ∈ Q it stores a number k′w ∈ N0.

The algorithm proceeds in rounds, starting from i = 0. Round i consists of the following steps:

1. Add a new word u ∈ A∗ \ M to M ; they are added in increasing order of length, and
lexicographically for a given length. Set ku = k′u = `u = 0.

2. For each w ∈M , check whether ϕX(w, kw, `w) holds. If it does, we say that w fires, and we
increment kw and set `w = 0. If w is not an element of Q, we also add it to Q and set k′w = kw.
If ϕX(w, kw, `w) does not hold, we increment `w.

3. For each w ∈ Q, do the following. Let Y ′ be the SFT defined by forbidding all words in the
forbidden set F . Denote p = max(k′w, |w|) and Fp = {v ∈ A≤p | kv ≤ p}. If the SFT defined
by forbidding Fp contains a mixing sub-SFT X ′ with w ∈ L(X ′) and Y ′ ⊂ X ′, then remove w
from Q and output the triple (X ′, Y ′, w).

4. For each w ∈
⋃
j≤iAj , if there exists k ≤ i such that ϕY (w, k) does not hold, then add w to

F .

The algorithm executes these rounds in an infinite loop. It outputs a sequence of triples, which we
denote by (Xm, Ym, wm)m∈N.

We explain why the existence of X ′ on Step 3 is algorithmically decidable. Let Z ⊂ AZ be the
SFT defined by forbidding Fp. It has a finite number of maximal transitive subshifts, called its
transitive components, which are likewise SFTs [LM95, Section 4.4]. The transitive components that
happen to be mixing are the maximal mixing subshifts of Z. Hence, if X ′ exists, we can choose
it among these finitely many components. The components and their relevant properties are all
computable from Fp (see Sections 3.4, 4.4 and 4.5 of [LM95]).

36 CHAPTER 3. REALIZATION OF SUBSHIFTS

By construction, each Xm produced by the algorithm is a mixing SFT with wm ∈ L(Xm) and
Ym ⊂ Xm. Since the algorithm never removes words from F , the sequence (Ym)m∈N is decreasing.
Step 4 of each round guarantees that every w ∈ A∗ \ L(Y) is eventually added to F , so Item 1 of
the statement holds.

Consider then a word w ∈ L(X). Due to the definition of ϕX , it fires an infinite number of times
during the execution of the algorithm. Whenever w fires and is not in the queue, it is added there
and the number k′w is fixed for all rounds until w leaves the queue. Consider then p = max(|w|, k′w)
and the set Fp; observe that while w is in the queue, p is fixed and Fp can only reduce in size. We
prove that w does leave the queue after some round.

Because X is chain mixing, the SFT approximation Sp(X) is mixing, and its language contains
w since p ≥ |w|. If w did not leave the queue before that due to some output (Xm, Ym, wm) with
wm = w, each word u in L≤p(X) will eventually leave Fp (because its ku grows to infinity with the
rounds), and each word in A≤p \ L(Y) will eventually enter F (by definition of Step 4). Once this
happens, we have Y ′ ⊂ Sp(X). Thus we can choose Sp(X) as X ′ if a suitable mixing SFT was not
found earlier, and the algorithm outputs (X ′, Y ′, w) as (Xm, Ym, wm) for some m. Therefore w is
removed from the queue after some round.

Furthermore, any such w is added again at a later round when it eventually fires anew, since
w ∈ L(X). Thus w ∈

⋂
M∈N

⋃
m≥M{wm}. In particular the algorithm produces an infinite sequence

of triples.
Now, take a word w /∈ L(X), which fires only a finite number of times. Denote n = |w|. After

some number of rounds, each word u ∈ A≤n \ L(X) has fired for the last time and the values ku
and k′u have settled into constants. These words may leave the queue once more, but produce a
finite number of outputs (to which w may belong) by doing so.

Let Kn = max{ku | u ∈ A≤n \ L(X)}. After a bigger number of rounds, whenever a new word
v ∈ A∗ fires and enters the queue, we have either |v| > Kn or k′v > Kn. Indeed, after some point,
we have that kv > Kn holds for all v ∈ L≤Kn(X). This means that w will never leave the set Fp for
p = max(|v|, k′v), and thus does not occur in the mixing SFT X ′ if one is produced for such a v.

Hence w belongs to a finite number of L(Xm), so we conclude that w /∈
⋂
M∈N

⋃
m≥M L(Xm).

We have shown that Item 2 is satisfied, considering its remaining inclusions are obvious.
Next, we modify the algorithm so that it produces a modified sequence (Xs(m), Ys(m), ws(m))m∈N,

with s : N→ N a nondecreasing computable function with s(m) ≤ s(m+ 1) ≤ s(m) + 1 for all m.
As its definition shows, in spite of the possibly misleading notation, (s(m))m∈N is not an extracted
subsequence of the mere (m)m∈N: it is that usual nondecreasing sequence of integers except some
terms may be repeated. Any modified sequence of the form (Xs(m), Ys(m), ws(m))m∈N with s obeying
the above condition still satisfies the first two items of the lemma. Since the mixing distance and
window size of Xm, the window size of Ym, the length |wm| and the space used by the unmodified
algorithm are all computable from m, we can choose s to grow slow enough so that the remaining
conditions, Item 3 and Item 4, hold as well.

Lemma 3.6. Let X ⊂ AZ be a nonempty chain mixing ∆0
2 subshift. Then there exists a sequence

(Xm, wm)m∈N, where each Xm ⊂ AZ is a mixing SFT and wm ∈ L(Xm), such that the following
conditions hold.

1. L(X) = limm∈N L(Xm) =
⋂
M∈N

⋃
m≥M{wm}.

2. For each m, the window size and mixing distance of Xm and the length |wm| are all o(logm).

3. The function m 7→ (Xm, wm) is computable in O(2m) space.

3.3. REALIZATION OF A LARGE CLASS OF Π0
2 SUBSHIFTS 37

Proof. Since X is ∆0
2, there are two computable predicates ϕ+

X and ϕ−X such that L(X) = {w ∈
A∗ | ∀k ∃` ϕ+

X(w, k, `)} = {w ∈ A∗ | ∃k ∀` ¬ϕ−X(w, k, `)}. Consider the logical formula ϕX(w, n)
defined as follows.

1. Starting from k = 0, check for increasing ` ≥ 0 whether ϕ+
X(w, k, `) holds, and whenever it

does, increment k and reset ` to 0. Do this until n pairs (k, `) have been checked, and let k+
be the final value of k.

2. Do the same for ϕ−X in place of ϕ+
X , and let k− be the final value of k.

3. Define ϕX(w, n) as the truth value of k+ > k−.

Then for any w ∈ L(X), ϕX(w, n) holds for all large enough n, while for w ∈ A∗ \ L(X), ¬ϕX(w, n)
holds for all large enough n.

We describe an algorithm that is very similar to that of Lemma 3.5. It stores a finite memory
M ⊂ A∗, which is initially empty. It proceeds in rounds, with round i consisting of the following
steps.

1. Add a new word w ∈ A∗ into M , in increasing order of length.

2. Let Q = {w ∈ M | ϕX(w, i)}, F = M \Q and n = max{|w| | w ∈ M}. For each w ∈ Q, do
the following. If there exists |w| ≤ p ≤ n such that the SFT Xp defined by forbidding the
words F ∩A≤p is mixing and satisfies Lj(Xp) = Q∩Aj for each j ≤ p and w ∈ L(Xp), choose
the largest such p and output (Xp, w).

We claim that the sequence (Xm, wm)m∈N produced by the algorithm satisfies Item 1; the others
follow as in Lemma 3.5. Given k ≥ 0, let i0 ≥ |A|k be so large that for all v ∈ A≤k and i ≥ i0,
ϕX(v, i) holds if and only if v ∈ L(X). Such an i0 exists since ϕX(v, i) converges to the correct
value for each v ∈ A≤k separately and A≤k is a finite set. Then the SFT forbidding F ∩ A≤k is
precisely the SFT approximation Sk(X), which is mixing by assumption.

Suppose i ≥ i0 and consider an output (Xp, w) produced on step 2 of the algorithm on round i.
We have n = max{|w| | w ∈ M} ≥ k. If |w| ≤ k, then w ∈ Q implies w ∈ L(X), and in this case
p ≥ k, since |w| ≤ p ≤ n, p is chosen as large as possible, and k is a valid choice. If |w| > k, then we
have p ≥ k by definition. In either case, for each j ≤ k we have Lj(Xp) = Q ∩ Aj by definition of
Xp; which is equal to Lj(Sk(X)) = Lj(X) since i ≥ i0. Thus we have shown Lj(Xp) = Lj(X) for
all 0 ≤ j ≤ k and all pairs (Xp, w) produced after round i0. This implies L(X) = limm∈N L(Xm).

Consider then k ≥ 0 and a word w ∈ Lk(X). If i ≥ i0, then on step 2 of round i of the algorithm,
w ∈ Q and p = |w| is a valid choice for w. Hence w = wm for infinitely many m’s. On the other
hand, for each w ∈ Ak \ L(X) we have w /∈ Q for all i ≥ i0. Hence w = wm for only finitely many
m’s. This proves L(X) =

⋂
M∈N

⋃
m≥M{wm}.

For the next lemmas, we recall some terminology from combinatorics on words. A set C ⊂ A∗ is
a code, if c1 · · · cm = c′1 · · · c′n with ci, c

′
i ∈ C implies m = n and ci = c′i for all 0 ≤ i < m. A word

w ∈ A∗ is primitive if w = zn with z ∈ A∗ implies n = 1. A word or configuration x ∈ A∗ ∪ AZ is
periodic with period p ≥ 1, if xi = xi+p holds whenever both values are defined. The conjugates of
w ∈ An are the words w[i,n−1]w[0,i−1] for 0 ≤ i < n, and w is a Lyndon word if it is primitive and
lexicographically minimal among its conjugates. Finally, w is unbordered if no prefix of w is a suffix
of w.

38 CHAPTER 3. REALIZATION OF SUBSHIFTS

Lemma 3.7. Let X ⊆ AZ be an infinite mixing SFT with window size and mixing distance k, and
let W ⊂ L(X) be finite. Denote N = k(|W | − 1) +

∑
w∈W |w|. For any n > 2N + 8k, there exists a

periodic configuration x ∈ X with least period n such that w @ x for all w ∈W .

Proof. We first prove that for each m ≥ 3k, there exists an unbordered word v ∈ L(X) with
m ≤ |v| < m + 3k. Consider the width-k Rauzy graph G of X with edge labels in A. Pick any
vertex p ∈ G and consider the set C ⊂ L(X) of first returns from p to itself, which is a code. Since k
is a mixing distance for X, there exists c ∈ C with |c| ≤ k. Since X is infinite, there exists another
first return c′ ∈ C, which is either shorter than c, or satisfies c′i 6= ci for some 0 ≤ i < k. In the first
case we set d = c′, and in the latter we extend the prefix c′0 · · · c′i into a first return d ∈ C with
|d| < 2k. As C is a code, c and d are not powers of the same word. Then c`d` ∈ L(X) is primitive
for all ` ≥ 2 [Lot97, Theorem 9.2.4], so one of its conjugates v ∈ L(X) is a Lyndon word, hence
unbordered by [Lot97, Proposition 5.1.2]. The claim on |v| holds for ` = dm/|cd|e.

Denote W = {w1, . . . , w|W |}. Since k is a mixing distance for X, there exist gluing words
u1, . . . , u|W |−1 ∈ Lk(X) with u = w1u1w2u2 · · ·u|W |−1w|W | ∈ LN (X). Let n > 2N + 8k. Let
v ∈ L(X) be an unbordered word with n−N − 4k < |v| ≤ n−N − 2k. As k is also a window size
for X, there exist gluing words a ∈ Lk(X), b ∈ Ln−|uav|(X) with x = ∞(uavb)∞ ∈ X. Each w ∈W
occurs in this configuration, since they occur in u. The least period of x is |uavb| = n, since v is
unbordered and |v| > n/2.

The construction of the unbordered word v in the above proof is essentially [BP09, Lemma 2].
We repeat it here, since we need finer control on the lengths of the words.

Lemma 3.8. Let n ≥ 1, and suppose that every word of length 2n occurring in x ∈ AZ is q-periodic
for some 1 ≤ q ≤ n (which might depend on the word). Then x is q-periodic for some 1 ≤ q ≤ n.

Proof. Let i ∈ Z and k ≥ 2n − 1. We prove by induction on k that u = x[i,i+k] is q-periodic for
some 1 ≤ q ≤ n. The claim follows when we let k grow and choose i = −bk/2c.

The case k = 2n− 1 is true by assumption, so suppose k ≥ 2n. Denote u = vwa, where v ∈ A+,
w ∈ A2n−1 and a ∈ A. Then vw is p-periodic and wa is q-periodic for some p, q ≤ n. Recall the
periodicity theorem of Fine and Wilf [FW65]: if a word has periods p and q, and length at least
p + q − GCD(p, q), then it also has GCD(p, q) as a period. The word w satisfies the conditions
because p, q ≤ n and gcd(p, q) ≥ 1, so w is GCD(p, q)-periodic.

The only element of proof left is that if vw is p-periodic, wa is q-periodic and w is GCD(p, q)-
periodic, then vw and wa are GCD(p, q)-periodic. First, we have a = w|w|−q; and since w|w|−q =
w|w|−GCD(p,q) by GCD(p, q)-periodicity, we have that wa is GCD(p, q)-periodic.

For vw, notice that for any 0 < i ≤ p and j ∈ N0 so that the following makes sense, we have
v|v|−i−jp = wp−i = wp−i−GCD(p,q) = v|v|−i−jp−GCD(p,q); and so v is GCD(p, q)-periodic. Moreover,
v|v|−i = wp−i = wGCD(p,q)−i by GCD(p, q)-periodicity of w; this completes the proof that vw is
GCD(p, q)-periodic.

As a consequence, u itself is GCD(p, q)-periodic, which is what we claimed.

Lemma 3.9. Fix a finite alphabet A. Given the Rauzy graph of a mixing SFT X ⊂ AZ with window
size and mixing distance m, and two words u,w ∈ Lm(X), the time complexity of computing a gluing
word v ∈ Am such that uvw ∈ L(X) is at most exp(O(m)).

Proof. The nodes of the Rauzy graph G of X are words of length m, so its size is at most |A|m.
Computing v amounts to finding a length-2m path from u to v in G. We perform a breadth-first

3.3. REALIZATION OF A LARGE CLASS OF Π0
2 SUBSHIFTS 39

search, computing for each i = 0, 1, . . . ,m the set of vertices Ci ⊂ G that are reachable from u in
exactly i steps, and the set Di of vertices from which w is reachable in exactly i steps. Since the
in- and outdegree of each vertex of G is at most |A|, we have |Ci|, |Di| ≤ |A|i, and Ci and Di can
be computed in time Poly(|A|m · |A|i) = |A|O(m). We can choose any word in Cm ∩Dm as v, and
finding one takes another |A|O(m) steps.

3.3.3 Walls, counters and conveyor belts
The high-level structure of the CA f is the same for both cases of Theorem 4. We define the alphabet
B of the CA f as a set larger than A, which is the alphabet of the subshift we want to realize. The
alphabet B consists of three layers as listed in the construction of Section 3.1 (using the letter B in
place of A): the Main Layer Bmain, the Computation Layer Bcomp, and the Cleaning Layer Bclean.
To define it, let M be a Turing Machine with state set Q, initial state q0 ∈ Q, tape alphabet Γ, and
blank tape symbol γ0 ∈ Γ. We will describe the behavior of M later on; for now, we only need to
name its components in order to define the alphabet of f .

The Main Layer has alphabet Bmain = {I, $,W$} ∪ {Wa | a ∈ A} ∪ A. By default, symbols of
the subset A1 := A ∪ {$} are continually shifted to the left. The “decorated” wall symbols Wa for
a ∈ A1 behave exactly like the W-symbols of Section 3.1, and the decorations allow us to shift the
symbols of A1 through the walls. This allows a segment to receive data from another segment on
its right in order to determine whether they should merge. We identify with A the states b ∈ B
such that πmain(b) ∈ A and whose other layers are blank. They will be the only states visible in the
generic limit set, allowing for the realization of the desired subshift X ⊂ AZ.

The Computational Layer of f consists of four sub-layers, called the Right Conveyor Belt Layer,
Comparison Layer, Turing Machine Layer, and Clock Layer. It also contains a blank symbol, which
we denote by #. The layers are denoted Bcomp = Bbelt×Bcmpr×BTM×Bclock∪{#}. The projection
maps from the components of Bcomp are undefined on #. The sub-layers are defined as follows.

• The Right Conveyor Belt Layer Bbelt = A1 contains symbols from A and blank symbols. By
default, it is continually shifted to the right. Together with the Main Layer, it forms “conveyor
belts” on which circular words over A1 are cyclically shifted.

• The Comparison Layer Bcmpr = A1 also contains symbols from A and blanks. By default, it is
continually shifted to the left.

• The Turing Machine Layer BTM = Q ∪ Γ is used to simulate the machine M.

• We use the Clock Layer Bclock = {0, 1, 2, 3} to implement a ternary counter that times certain
actions of M.

We define the CA f over the course of the next few sections. We begin by stating “default
behaviors” of some of the layers, which may be overridden in special circumstances that we explicitly
describe as such. Let x ∈ BZ be arbitrary, and denote y = f(x).

1. If πmain(x1) = a ∈ A1, or πmain(x1) ∈ WA1 and πbelt(x0) = a ∈ A1, or πcomp(x0) = # and
πmain(x1) = a ∈ A1, then πmain(y0) = a. This means the A-part of the Main Layer is generally
shifted to the left. If the right neighbor of a cell is a wall, the data is instead copied from the
Conveyor Belt Layer of the cell itself, onto the Main Layer of the same cell. Finally, if the cell
has blank Computation Layer but its right neighbor does not, then the data is copied from
the Conveyor Belt layer of that neighbor.

40 CHAPTER 3. REALIZATION OF SUBSHIFTS

2. If πbelt(x−1) = a ∈ A1, or πcomp(x−1) = # and πmain(x0) = a ∈ A1, then πbelt(y0) = a. This
means the Conveyor Belt Layer is generally shifted to the right, and if the left neighbor of a
cell has blank Computation Layer, the data is instead copied from the Main Layer of the cell
itself, onto the Conveyor Belt Layer of the same cell.

3. Suppose πcmpr(x0) is defined. If πcmpr(x1) = a ∈ A1, or πmain(x1) =Wa, then πcmpr(y0) = a.
This means the Comparison Layer is generally shifted to the left, and if the right neighbor of
a cell is a wall, its decoration is copied instead.

4. Suppose πmain(x0) ∈ {I} ∪ WA1 . If πmain(x1) = a ∈ A1, then πmain(y0) = Wa. Otherwise
πmain(y0) = W$. This means all walls copy their decorations from the Main Layer of their
right neighbor.

5. If πclock(x−1) is defined and not equal to 3, then πclock(y0) = c′, and otherwise πclock(y0) = c′+1,
where 3′ = 0 and c′ = c for c ∈ {0, 1, 2}.

Items 1 and 2 imply that if x contains a length-n contiguous run of cells whose Computational
Layer is not blank, and which is bordered by a wall on the right and any symbol b ∈ B with
πcomp(b) = # on the left, then the Main and Conveyor Belt Layers of these cells hold a circular
word w ∈ A2n

1 that f continually rotates. We call such a run of cells a conveyor belt; each properly
formatted segment will contain one. From the last part of Item 1, the symbols of w are also copied
on the Main Layer of the left bordering cell, which will thus receive a periodic sequence of symbols
www · · · .

Items 3 and 4 imply that if a run of A1-cells on the Comparison Layer is bordered on the left by
a wall, then that wall will capture the A1-symbols that are shifted toward it, and pass them to the
Comparison Layers of the cells on its left. This flow of information is depicted in Figure 3.2.

The idea of item 5 is that the Clock Layers of a finite run of cells encode a ternary counter that
a single application of f increments. The least significant digit is the leftmost one, and the state 3
denotes a 0 that holds a carry. Carries propagate to the right. The relevant property of the counter
is the following.

Lemma 3.10. Let x ∈ BZ be a configuration, and let i ≤ k ∈ Z and T ≥ 0 be such that for all
t ≤ T , πclock(f t(xj)) ∈ {0, 1, 2, 3} for each i ≤ j ≤ k, but πclock(f t(xi−1)) is undefined. Then the
sequence (πclock(f t(x))k)Tt=0 is eventually periodic with transient part of length at most k − i + 1
and eventual period of length 3k−i+1, and the state 3 occurs exactly once every 3k−i+1 steps in the
periodic tail.

Proof. The proof is done by induction on k− i. For k = i, the sequence has eventually periodic part
1, 2, 3, 1, 2, 3, . . . which is reached after at most 1 = k − i+ 1 step (on which the state might be 0).
For k > i, we know the sequence of digits at position k − 1 has eventual period of length 3k−i and
transient part of length at most k − i, and the state 3 occurs at position k − 1 exactly once in each
period. The step after it does, the state at position k is incremented by one, and if its new value is
3, on the next step it resets to 0. On other time steps it retains its value. The claim follows.

The idea of the construction is to write periodic configurations of (SFT approximations of) X
onto the conveyor belts, which in turn feed them to A1-regions. All belts will eventually disappear
from a generic configuration, leaving only the A1-regions whose contents approximate X in the
generic limit set of f . The Comparison Layer captures this data through permeable walls, and the

3.3. REALIZATION OF A LARGE CLASS OF Π0
2 SUBSHIFTS 41

Turing Machine Layer analyzes it in order to control the merge process of segments by comparing
the contents of two adjacent segments.

The Cleaning Layer Bclean behaves exactly as in Section 3.1, dividing the initial configuration
into non-overlapping segments. In particular, it retains the property that the outer signals so erase
all non-so symbols they encounter, so that every segment initialized by I-symbols is eventually fully
formatted. When an I-symbol becomes a (decorated) wall on the first time step, it also produces a
simulated head of the machine M in state q0 on the Turing Machine Layer of its left neighbor. In
the following sections we describe how the machine performs computation and modifies the data on
its segment.

3.3.4 Computation of periodic points
Under f , each formatted segment S goes through four different stages, in the following order:
computation stage, waiting stage, probe stage, and merge stage. During the computation stage,
the machine M computes and stores a periodic point of one of the SFTs given by Lemma 3.5 or
Lemma 3.6. Once it is stored and continuously generated on the conveyor belt, the waiting stage
begins. It lasts until the neighboring segment S′ on the right of S has finished its computation stage.
In the probe stage, the machine reads and analyzes the periodic point stored by S′ to determine
whether S should merge with it. Finally, in the merge stage the wall between the segments is erased
and the periodic point of S is glued to the one of S′.

The four stages are mostly controlled by the simulated Turing Machine M, which we now
describe. It differs from a standard Turing Machine in several respects: we allow its head to move
0, 1 or 2 tape cells in one computation step, and to freely modify the contents of all cells in the
vicinity of the simulated read-write head. Even though the simulated head is always on a cell that
has a non-blank Computational Layer, it can modify the states of nearby cells that do not, in order
to extend its computational tape (but it will never create new heads).

Recall that a simulated machine M is initialized on the right end of every properly initialized
segment. We only describe the behavior of M in this context, as only the contents of properly
initialized segments will be visible in the generic limit set of f – the rest is erased in finite time
by so and si signals described in Section 3.1, here through the Cleaning Layer. Let thus S be a
properly formatted segment in the f -trajectory of a configuration.

First, the head of M travels to the left end of the segment S, extending the Computational
Layer. Then it measures the length ` of S, computes the largest power of two 2m < `/2, and erases
the Computational Layer of the ` − 2m leftmost cells of S. These cells will remain in A1-states
from this point on, and the remaining 2m cells of S will have non-blank Computational Layers until
the segment merges with another one on its right. In particular, the machine M is now limited
to 2m = Θ(`) tape cells. We call m the rank of the segment S. See Fig. 3.2 for a diagram of the
structure of formatted segments.

Next, the machine M computes a word u ∈ A2m+1 and stores it on the conveyor belt of the
segment S. The definition of u is the first place where the two cases of the construction differ. In the
Π0

1 ⊂ Π0
2 case, M computes the triple (Xm, Ym, wm) given by Lemma 3.5, which is doable in space

2m if ` is large enough. Here Xm is a mixing SFT, Ym ⊂ Xm a nonempty SFT and wm ∈ L(Xm) a
word of length o(logm). The mixing distance and window size of Xm, and the window size of Ym,
are likewise o(logm). Denote by nm the maximum of these numbers. In the ∆0

2 case, M instead
computes the pair (Xm, wm) given by Lemma 3.6, and we denote by nm = o(logm) the maximum
of the mixing distance and window size of Xm. In both cases we may assume that the sequence

42 CHAPTER 3. REALIZATION OF SUBSHIFTS

Wa WaA1 A1

A1

A1

A1 A1

A1

A1

A1

Q ∪ Γ
{0, 1, 2, 3}

Q ∪ Γ
{0, 1, 2, 3}

Conv. Belt Layer
Comparison Layer

TM Layer
Clock Layer

`− 2m 2m

Figure 3.2: The anatomy of segments. Arrows indicate flow of information.

(nm)m∈N is nondecreasing and nm →∞ as m→∞.
By Lemma 3.7, if ` is large enough, there exists a word u ∈ A2m+1 such that the periodic

configuration ∞u∞ is in Xm, has least period 2m+1, contains an occurrence of wm, and in the
Π0

1 ⊂ Π0
2 case, contains an occurrence of some word vm ∈ L(Ym) of length nm. Indeed, we apply

Lemma 3.7 to either W = {wm} or W = {wm, vm}, with vm having negligible length compared to
wm.

In the case where ` is not large enough for all of the above, we use u = a2m+1 for an arbitrary
a ∈ A instead.

The machine M computes such a u and writes it onto the conveyor belt. This concludes the
computation stage of S.

Under the CA f , the word u is continually fed to the A1-cells on the left half of the segment S.
From this point on, these cells will always hold A-states, that are A1 \ $-states.

3.3.5 Comparing periodic points

When the machineM has finished writing the word u ∈ A2m+1 onto the conveyor belt of its segment
S, it initiates the waiting stage by traveling to the right end of S. It waits there until the wall on
its right stores an A-state indicating that the segment S′ directly to the right of S has finished its
computation stage and stored some word u′ ∈ A∗ on its belt. Once this happens, the segment S
enters the probe stage.

During the probe stage, the machine M will repeatedly capture a word occurring in the periodic
point x′ = ∞(u′)∞. Note that on each time step, the Comparison Layer of S now contains a
length-2m subword of x′, which is continually shifted to the left and renewed through the wall
between the two segments. The machineM waits on the rightmost cell of S until the Clock Layer of
that cell contains a 3. We call this a clock signal, and by Lemma 3.10, it happens exactly once every
32m time steps. Then the machine repeatedly stores four adjacent symbols from the Comparison
Layer onto a single cell of its computation tape, waits for three steps, and takes one step to the
left. Once it reaches the left end of the conveyor belt of S, its computation tape contains a word
v ∈ A2m+2 occurring in x′ (that is, v is four times longer than the length of the computation tape).
This process is illustrated in Fig. 3.3.

The machine M then checks whether the word v is q-periodic for some q ≤ 2m+1. If v is not
q-periodic for any q ≤ 2m+1, we say M has detected a merge candidate. The idea is that we want to
merge S with the segment S′ only if S′ has strictly higher rank, and detecting a merge candidate is
evidence of this, since – with the exception of “false positives” mentioned later – having a larger

3.3. REALIZATION OF A LARGE CLASS OF Π0
2 SUBSHIFTS 43

h

a0 Wa1 a2 a3 a4 a5 a6 a7 a8

h
a0a1
a2a3

a0 a1 Wa2 a3 a4 a5 a6 a7 a8 a9

h
a0a1
a2a3

a0 a1 a2 a3 a4 a5 Wa6 a7 a8 a9 a10 a11

h
a0a1
a2a3

a4a5
a6a7

a0 a1 a2 a3 a4 a5 a6 Wa7 a8 a9 a10 a11 a12

Figure 3.3: Capturing a word from the Comparison Layer. Time increases upward, possibly several
steps at a time. Irrelevant layers and symbols are not shown. The letter h represents the head of
the Turing Machine.

period for the word in S′ means its conveyor belt itself was larger. Detecting one merge candidate is
not enough: once M has performed this analysis, it erases v from its tape and starts over, waiting
on the right end of the segment S for another clock signal. If ` is large enough, the capture, analysis
and erasure of v takes less than 32m computation steps, and by handling short segments separately
(using specific local rules with big enough radius), we may assume this is the case for all `. Thus M
can start capturing a new word every time the clock signal occurs. The capturing process repeats
until M has detected m merge candidates in total (not necessarily consecutively), after which S
enters the merge stage. The reason for this is that if S′ is produced by two short segments (of
rank at most m) merging, right after this merge its Main Layer consists of two long words that
can be repeated periodically, separated by a short period breaker word (see the merge process in
Section 3.3.6). The machine M will detect at most m− 1 such “false positive” merge candidates in
the worst case, see Lemma 3.13.

Lemma 3.11. Suppose the segment S′ to the right of S has rank m′ > m. Eventually either S
enters the merge stage or S′ merges with another segment on its right.

Proof. Let u′ ∈ L2m′+1(Xm′) be the word stored on the conveyor belt of S′. By construction, the
least period of the periodic point x′ = ∞(u′)∞ ∈ Xm′ is 2m′+1. The symbols of x are shifted to
the left on the Main Layer of S′, then through the wall separating S and S′ onto the Comparison
Layer of S. At each large enough time step t, if the segment S′ has not yet merged with another
segment on its right, the rightmost symbol of the Comparison Layer of S equals x′i+t for some
initial offset i. The clock signal of S arrives at time steps t = j + n32m for n ∈ N and some initial
offset j, at which point the machine M simulated in S starts capturing a word of length 2m+2,
which thus equals v(n) := x′[i+j+n32m ,i+j+n32m+2m+2−1]. Since GCD(32m , 2m′+1) = 1, we have

44 CHAPTER 3. REALIZATION OF SUBSHIFTS

{v(n) | n ∈ N} = {x′[n,n+2m+2−1] | n ∈ Z}. If all of these subwords are periodic with period at most
2m+1, then so is x′ by Lemma 3.8, contradicting its construction. Hence at least one of the v(n) is
not periodic with a small period. When M captures this word, it detects a merge candidate, and
when it has done so m times, S enters the merge stage.

3.3.6 Merging segments
We now describe the merge stage of the segment S. Here the two cases differ more substantially.
Recall that nm = o(logm) is a window size for Xm and Ym, and a mixing distance for Xm.

In the ∆0
2 case, M captures a word u ∈ Anm from the Main Layer of S onto its computation

tape, then rewrites the nm symbols to the right of u on the Comparison Layer with $-symbols, and
finally captures another word w ∈ Anm from the Comparison Layer that occurs after the rewritten
symbols. This process is controlled by some auxiliary markings M placed at the beginning of the
merge stage; we omit the exact implementation details. See Fig. 3.4 for an illustration. We use the
$-symbols to mark the cells between u and w so that M can find them later; recall that the Main
and Comparison Layers are continually shifted to the left by f .

In the Π0
1 ⊂ Π0

2 case, M waits for a clock signal before capturing the words u and w. Then it
checks whether w ∈ L(Ym), which takes exp(O(nm)) = mo(m) computation steps. If this is not the
case, then M erases the words u and w from its tape, waits for another clock signal, and repeats
the capturing process.

Next (immediately after capturing u and w in the ∆0
2 case, and as soon as w ∈ L(Ym) in the

Π0
1 ⊂ Π0

2 case), M computes a merge gluing word v ∈ Anm as follows. In the Π0
1 ⊂ Π0

2 case, we
simply require that uvw ∈ L(Xm). Such a word exists since u ∈ L(Xm) and w ∈ L(Ym) ⊂ L(Xm),
and nm is a mixing distance for Xm. By Lemma 3.9, M can compute v in exp(O(nm)) = mo(m)

steps. In the ∆0
2 case, M computes the largest integer 0 ≤ d ≤ nm such that the length-d prefix

w[0,d−1] occurs in the SFT approximation Xd,m := Sd(Xm). Note that each Xd,m is also mixing
with mixing distance nm. Then it finds a v such that uvw[0,d−1] ∈ L(Xd,m), again in mo(m) steps.

The rest of the merge process is identical for the two cases. The machine modifies the conveyor
belt of S by replacing the $-symbols on the Comparison Layer with the symbols of v, one by one.
As the $-symbols are now within distance mo(m) from the right end of S and traveling left with
constant speed, the ith symbol takes exp(O(i)) ·mo(m) steps to replace, for a total of exp(mo(m))
steps. For large enough m we have exp(mo(m))� 2m, so there is enough time for M to perform
these operations before the $-symbols reach the left end of the conveyor belt of S (recall that M
can move at speed 2 to catch up with the symbols moving at speed 1). Segments that are too short
– that is, the resulting m is too small – are of bounded length. As such, they are handled separately
through a dedicated automaton rule that merely erases them from the beginning. Consequently, we
may assume that the previous merge process applies to all segments – that all of them are large
enough. After this, the Main Layer of the conveyor belt contains a word of the form auvb, and the
Comparison Layer contains cww′, such that |auv| = |c|. We may arrange the copying process so
that the simulated head of M ends up on top of the leftmost symbol of v.

Next, M travels left at speed 1 together with the Main and Comparison Layers. When it hits
the left end of the conveyor belt, it turns back to the right and erases the Computation Layer of the
segment S; it also rewrites the Main Layer with the contents of the Comparison Layer. Consequently,
auvww′ ends up printed on the Main Layer, and the Computation Layer shrinks by “retracting” to
the right of its segment. This process is illustrated in Fig. 3.5. When M reaches the right end of S,
it erases itself and replaces the wall Wa with its decoration a as well. In this way, the segment S

3.3. REALIZATION OF A LARGE CLASS OF Π0
2 SUBSHIFTS 45

u0

u1u2u3

W

h

•• •

u0 u1 u2 u3 W w0 w1

h
u0u1u2u3• •

u1 u2 u3 W

$ $ $ $ w0 w1 w2 w3

h
u0u1u2u3•

W

$ $ $ w0 w1 w2 w3

h
u0u1u2u3w0w1w2w3

Figure 3.4: Capturing words at the beginning of the merge stage, illustrated with nm = 4. Time
increases upward several steps at a time. Irrelevant symbols and layers are not shown. The letter
h represents the head of the Turing Machine. The dots are the auxiliary markings M has placed
beforehand.

46 CHAPTER 3. REALIZATION OF SUBSHIFTS

merges with its neighbor S′ into one longer segment whose conveyor belt is identical to that of S′.
This concludes the definition of f .

3.3.7 Proof of correctness
With f defined as above, we claim that its generic limit set is exactly X. Theorem 4 directly follows,
since f |AZ = σ|AZ . Before that, we prove a few more lemmas about the behavior of segments
under f .

Lemma 3.12. Let S and S′ be segments such that S′ is the right neighbor of S with higher rank
than S, and suppose S has entered the merge stage. Then eventually either S merges with S′, or S′
initiates its own merge process.

Note that, a priori, S′ might not have another segment on its right when it initiates the merge
process.

Proof. In the ∆0
2 case this is clear: once S enters the merge stage, it will capture u and w, compute

the number d and the associated merge glue word v, and merge the segments.
Consider then the Π0

1 ⊂ Π0
2 case. Let m < m′ be the ranks of S and S′, and let u ∈ L2m+1(Xm)

and u′ ∈ L2m′+1(Xm′) be the words stored on their conveyor belts. By construction, u′ has a
length-nm′ subword w = wm′ ∈ L(Ym′) ⊂ L(Ym). As in the proof of Lemma 3.11, the simulated
machineM in S repeatedly captures all of the subwords {x′[n,n+nm−1] | n ∈ Z} of length nm in some
order. Since nm′ ≥ nm, at least one of these words is a subword of w. Thus it occurs in Ym and
causes M to initiate the merge process, erasing the conveyor belt of S and the wall between S and
S′, and rewriting its Main Layer as described above, unless S′ initiates its own merge process.

Lemma 3.13. Suppose a rank-m segment S has entered the merge stage. Then directly on its right
there is another properly formatted segment of rank strictly above m.

Proof. The proof is identical for the two cases from Lemma 3.12. It is enough to prove the result in
the case where S has just entered the merge stage, since then we know that the rank of the segment
directly to the right of S can only increase with time.

We proceed by induction on the time step t ∈ N on which S enters the merge stage. When S
enters the merge stage, the simulated machine M in it has detected m merge candidates, which are
captured words in A2m+2 that are not q-periodic for any q ≤ 2m+1. Since S is a segment produced
by the walls-and-counters construction, these words must originate from the conveyor belts of other
segments. Thus, on some time step t′ < t, there was another segment directly to the right of S. By
the induction hypothesis, before time t that segment could only merge with properly formatted
segments of higher rank. Since the number of time steps it takes to format a segment grows with its
length, this implies that at time t there is also a segment S′ – possibly not properly formatted –
directly to the right of S. Let m′ be its rank.

A merge candidate captured by S cannot be a subword of any periodic point stored in a conveyor
belt of length at most 2m+1. Thus, either it originates from a subword of a periodic point stored
on a longer conveyor belt, or at least one of its symbols originates from a merge glue word. If
the former condition holds for even one of the merge candidates, then the rank of the segment S′′
directly to the right of S at some time step t′ < t was strictly above m. Since either S′ = S′′ or S′
is produced by S′′ merging with some segments to its right, which have even higher ranks by the
induction hypothesis, we have m′ > m.

3.3. REALIZATION OF A LARGE CLASS OF Π0
2 SUBSHIFTS 47

u0 u1 u2 u3

u1 u0

v0 v1 v2 v3 w0 w1 w2 w3

h

u0 u1 u2 u3

u2 u1 u0

v0 v1 v2 v3 w0 w1 w2 w3

h

u0 u1 u2 u3

u3 u2 u1 u0

v0 v1 v2 v3 w0 w1 w2 w3

h

u0 u1 u2 u3

u3 u2 u1 u0

v0 v1

v2 v3 w0 w1 w2 w3

h

u0 u1 u2 u3

u3 u2 u1 u0

v0 v1 v2 v3

w0 w1 w2 w3

h

u0 u1 u2 u3

u3 u2 u1 u0

v0 v1 v2 v3 w0 w1

w2 w3

h

Figure 3.5: Erasing the Computation Layer, illustrated with nm = 4. Time increases upward.
Irrelevant states and layers are not shown. The letter h represents the head of the Turing Machine.

48 CHAPTER 3. REALIZATION OF SUBSHIFTS

Suppose then that all m merge candidates contain symbols that originate from merge glue words.
If any of these merge glue words is the result of a merge where one of the segments had rank
above m, then m′ > m for the same reason as above. Suppose then that all of them result from
merges between segments with rank at most m. Then the merge glue words have length at most
nm = o(logm). Since M starts the capture process only at clock signals, which occur every 32m

time steps, and nm < 2m+2 � 32m , two merge candidates cannot contain symbols originating from
the same merge glue word – at least as long as m is big enough, and we can as always suppose
that small rank cases are handled separately. Since a merge glue word appears uniquely with the
merging of two segments, the segment S′ is the result of at least m+ 1 segments eventually merging
into one. Since the lowest possible rank is 1, by the induction hypothesis we have m′ > m.

Lemma 3.14. For each k ∈ N there exists mk ∈ N such that the following holds. Let x ∈ BZ be a
configuration, t ≥ 0, and [i, j] ⊂ Z an interval such that S = f t(x)[i,j] is a segment of rank m ≥ mk

that has just entered the merge stage. Then for all t′ ≥ t we have f t′(x)[j+1,j+k] ∈ L(X).

Proof. Recall that nm = o(logm) is a window size for Xm (and Ym in the case where it exists),
and a mixing distance for Xm. There exists mk ≥ 0 such that log2mk > k, nmk ≥ k and for all
` ≥ mk, the SFT X` produced by Lemma 3.5 satisfies Lk(X`) ⊂ Lk(X), and the one produced by
Lemma 3.6 satisfies Lk(X`) = Lk(X).

Fix k ≥ 0. We prove by induction on t′ that mk has the required properties. Choose m ≥ mk,
x, t and [i, j] as in the claim. Lemma 3.13 implies that in f t(x), there is a segment S′ of rank
m′ > m directly to the right of S. Since log2mk > k, this segment’s A-part contains the interval
[j + 1, j + k]. Applying the same lemma repeatedly (whenever the segment containing cell j + 1
merges with another one), we see that for all t′′ ≥ t, there is a segment of rank at least m′ > mk in
f t
′′(x) whose A-part contains [j + 1, j + k].

Now, the word r = f t
′(x)[j+1,j+k] either originates from the conveyor belt of a segment of some

rank `, or at least one of its symbols originates from a merge gluing word v ∈ An` , computed as
part of uvw ∈ A3n` during the merging of two segments of some ranks ` < `′ (see Section 3.3.6).
The same holds for each of the m merge candidates captured by S before time t. By Lemma 3.13,
the last merge candidate originates from a segment of rank at least m, so we have ` ≥ m ≥ mk.

There are a few cases to consider.

• The word r originates from a conveyor belt. Then we have r ∈ Lk(X`) ⊂ Lk(X) by our choice
of mk.

• Some symbol of r originates from a merge gluing word and we are in the Π0
1 ⊂ Π0

2 case. Then
uvw ∈ L(Y`), hence r ∈ Lk(Y`) ⊂ Lk(X`) ⊂ Lk(X) by our choice of mk.

• Some symbol of r originates from a merge gluing word and we are in the ∆0
2 case. Then

uvw[0,d−1] ∈ L(Sd(X`)) for the largest 0 ≤ d ≤ n` with w[0,d−1] ∈ L(X`). The word w[0,k−1]
was captured by the segment of rank ` before time step t′. By the induction hypothesis applied
to that segment and our choice of mk, we have n` ≥ nmk ≥ k and w[0,k−1] ∈ Lk(X) = Lk(X`).
It follows that d ≥ k since d is the largest possible integer so that w[0,d−1] ∈ L(X`) holds, and
then r ∈ Lk(Sd(X`)) = Lk(X`) = Lk(X).

In all cases we have r ∈ L(X).

Proof of Theorem 4. We claim that the CA f constructed in this section satisfies ω̃(f) = X. The
theorem follows from this, since f |AZ = σ|AZ by construction, and X ⊂ AZ.

3.3. REALIZATION OF A LARGE CLASS OF Π0
2 SUBSHIFTS 49

Take any word s ∈ L(X). It occurs infinitely many times as wm in the sequence of triples
(Xm, Ym, wm) given by Lemma 3.5, or in the sequence of pairs (Xm, wm) given by Lemma 3.6. Thus,
in both cases of the theorem there are infinitely many different numbers ` such that a segment of
length ` produced by the walls-and-counters part of f stores on its conveyor belt a periodic point
that contains an occurrence of s.

We claim that the empty word enables s in the sense of Lemma 1.16. Take any cylinder set
[v]i ⊂ BZ, where we may assume |v| ≥ 2|s| and −|v| < i ≤ 0. Choose a large integer k ∈ N and
consider the configuration x = ∞$I.vI$kI$∞ ∈ [v]i, where the dot denotes coordinate i. If k is
large enough, the Cleaning Layer guarantees that fk(x)[i−1,i+|v|] is a sequence of segments separated
by walls, and Lemma 3.11 and Lemma 3.12 guarantee that the length-k segment on their right –
the one that starts as I$kI – will eventually merge with them all. This means that for large enough
t, the word f t(x)[i−1,i+|v|+k+1] is a single segment, and f t(x)[0,|s|−1] ∈ A∗ lies in its A-part. Due to
the previous paragraph, we can find infinitely many k’s – and consequently infinitely many x’s in
[v]i – so that the conveyor belt of the length-k segment contains an occurrence of s. This shows
that the empty word enables s, hence s ∈ L(ω̃(f)).

Conversely, let s ∈ L(ω̃(f)) be arbitrary. By Lemma 1.16, some cylinder set [v]i ⊂ BZ enables
it. We may again assume that |v| ≥ 2|s| and −|s| < i ≤ 0. Let m = m|s| be given by Lemma 3.14
for k = |s|, denote ` = 2m+1 + 1 and consider the words u = nI`I and w = I$4(`+|v|)I$n for
some large n ∈ N. Since v enables s, we have that for infinitely many t ∈ N, the cylinder set
C = [uvw]i−n−`−2 intersects f−t([s]).

For all x ∈ C, the word x[i−`−2,i+4(`+|v|)+1] is a sequence of segments, the leftmost of which has
rank m and the rightmost of which has the highest rank. Lemma 3.11 and Lemma 3.12 guarantee
that as long as n is large enough (so that the left- and rightmost segments have no time to merge
with any other segments), all these segments will eventually merge into one. Suppose this happens
at time t. Let t′ < t be the time step at which a rank-m segment whose right wall is at coordinate
i enters the merge stage. By our choice of m = m|s|, we then have f t′′(x)[i+1,i+k] ∈ Lk(X) for all
t′′ ≥ t′ and x ∈ C. There exist t′′′ ≥ t+ i+ 1 and x ∈ C with f t′′′(x)[0,k−1] = s due to v enabling s.
Then that word s has been shifted to the left during the i+ 1 previous time steps, and combining
this with f t

′′′−i−1(x)[i+1,i+k] ∈ Lk(X), we obtain that f t′′′−i−1(x)[i+1,i+k] = s ∈ Lk(X). Therefore
s ∈ L(X), which concludes the proof.

3.3.8 Bound optimality
Say that a CA f : AZ → AZ is eventually oblique on an f -invariant subshift X ⊂ AZ if there exists
n ∈ N such that for any x ∈ X, fn(x)0 depends only on coordinates of x in (−∞,−1] or [1,∞).
The proof of [Tör20, Proposition 4] shows that if f is eventually oblique on ω̃(f), then it satisfies
Item 2 of Lemma 2.6. Hence we have the following.

Corollary 3.15. If a CA f : AZ → AZ is eventually oblique on ω̃(f), then ω̃(f) is inclusion-minimal.
In particular, this holds if the restriction of f to ω̃(f) is a (nonzero) power of the shift map.

Notably, any generic limit set built with Theorem 4 is necessarily inclusion-minimal.

Remark 15. It is unclear whether Theorem 4 realizes all inclusion-minimal generic limit sets there
are. Indeed, Proposition 2.7 gives a Π0

2 upper bound on inclusion-minimal generic limit sets whereas
we specifically realize the Π0

2 ⊃ Π0
1 and ∆0

2 cases only.
In spite of the previous remark, we can deduce that the complexity bound of Proposition 2.7 is

optimal. Indeed, there exist chain mixing subshifts with Π0
2-complete languages: for example, take

50 CHAPTER 3. REALIZATION OF SUBSHIFTS

any Π0
2-complete language L ⊂ {0, 1}∗, and define the subshift X ⊂ {0, 1, 2}Z by forbidding 2w2 for

each w ∈ {0, 1}∗ \ L. A given word w ∈ {0, 1, 2}∗ occurs in X if and only if it does not contain any
of these forbidden words, as we can then extend it into the infinite configuration · · · 000w000 · · · ∈ X.
Thus L(X) is Π0

2-complete. This extendibility by 0-symbols also shows that X is chain mixing and
contains a nonempty Π0

1 subshift: the singleton {0Z}. As such, X can be built through Theorem 4,
proving that the the complexity bound of Proposition 2.7 is optimal.

Corollary 3.16. There exists a CA f with f |
ω̃(f) = σ and ω̃(f) an inclusion-minimal GLS, such

that L(ω̃(f)) is a Π0
2-complete set.

3.4 Corollaries
We can use Theorem 4 to characterize generic limit sets among several classes of subshifts. As it
builds specific cellular automata that act as the shift map on their generic limit set, we show that
the chain mixing assumption is unavoidable in that context: see Proposition 3.18 and Corollary 3.19.
These results are straightforwardly deduced from the technical Lemma 3.17 [Aki93, p. 175] and
Proposition 2.14 [Tör20, Prop. 6].

Lemma 3.17 (Page 175 of [Aki93]). If (X,T) is a chain transitive topological dynamical system
that is not chain mixing, then there is a factor map π : (X,T)→ (F, S) onto a finite set F with at
least two elements on which S : F → F is a cyclic permutation.

Proposition 3.18. Let f : AZ → AZ be a CA such that f |
ω̃(f) = σ|

ω̃(f). Then ω̃(f) is a chain
mixing subshift.

Proof. By [Tör20, Prop. 5], f |
ω̃(f) = σ|

ω̃(f) implies that ω̃(f) is chain transitive. If it is not chain
mixing, we obtain a contradiction from Lemma 3.17 and Proposition 2.14.

This has the following corollary as consequence:

Corollary 3.19. Let X ⊂ AZ be a one-dimensional chain transitive subshift that is either Π0
2 and

contains a nonempty Π0
1 subshift, or is ∆0

2. Then X is a generic limit set of some CA if and only if
it is chain mixing.

Proof. If X is chain mixing, then Theorem 4 implies that it can be realized as a generic limit set.
Otherwise, Lemma 3.17 and Proposition 2.14 show that X is not a generic limit set.

For one-dimensional SFTs (which all have computable languages), chain transitivity coincides
with transitivity, and chain mixing with mixing. This gives a simple characterization of generic limit
sets among transitive SFTs.

Corollary 3.20. A one-dimensional transitive SFT is the generic limit set of a CA if and only if
it is mixing.

Additionally, we can completely characterize the generic limit sets among shift-minimal subshifts.

Corollary 3.21. A one-dimensional shift-minimal subshift is the generic limit set of a CA if and
only if it is chain mixing and ∆0

2.

3.4. COROLLARIES 51

Proof. Any one-dimensional shift-minimal chain mixing ∆0
2 subshift can be realized as a generic

limit set, due to Theorem 4.
Conversely, by Corollary 2.16, a shift-minimal generic limit set must be ∆0

2; and it is a subshift
by Proposition 1.23. All shift-minimal subshifts are in particular transitive due to Proposition 2.13,
and so they are chain transitive. The result now follows from Corollary 3.19.

52 CHAPTER 3. REALIZATION OF SUBSHIFTS

Part II

Subshifts with Projective
Restrictions

53

55

The first part of this thesis introduced the notion of subshifts in one dimension: they are sets of
biinfinite words written with a finite alphabet, with the restriction of not containing any forbidden
finite word from a (possibly infinite) given list. Endowed with the shift map that translates a
configuration to the left, one-dimensional subshifts form an important, well-known class of discrete
dynamical systems. Subshifts can also be defined in two dimensions: the configurations are described
by symbols filling the discrete plane instead of a mere line, and they must not contain a list
of forbidden two-dimensional patterns. Here, the shift action translates the configurations by
two-dimensional integer vectors.

Over the years, several notions have been defined to try and characterize how complex it was to
build subshifts in one or two dimensions. Periodicity [Ber66,Rob71,CI96,JR15,GS21] and pattern
complexity [MH38, Cas00, CN10, KM21] are some instances. Here, we focus on two of the most
well-known of these: entropy and the Domino Problem.

First, entropy, as its name inspired from physics and information theory suggests, is a quantity
that (very broadly speaking) measures “how chaotic” a subshift can be. That is to say: when we try
and build configurations from a given subshift, do we have many possibilities in the symbols we
place on the line/plane? If we fix a finite pattern, does it determine an entire, infinite configuration,
or do we have room for choices? In short, what leeway do we have to complete it into a valid element
of the subshift? This is measured by looking at bigger and bigger window sizes (of the discrete line
or the discrete plane), and listing how many valid patterns exist with such a size. The asymptotical
behavior of this quantity has at most an exponential growth; we can measure how fast that growth
is, and record the related exponent: the resulting positive real number is the entropy.

Second, the Domino Problem is about how easy it is to characterize the nonempty subshifts
that can be built in one/two dimensions. Given an alphabet and a list of forbidden patterns, is it
straightforward to determine whether at least one configuration will be valid with these? Of course,
as humans cannot grasp high numbers of symbols or adjacency rules, what the Domino Problem
really asks is whether it is possible to implement an algorithm that could tell apart the empty and
the nonempty subshifts, provided only with their alphabet and the list of their forbidden patterns.
There is, of course, always a way of getting an answer if the given subshift is empty: by testing
any pattern of any size and shape, a computer will find a shape that cannot be filled whatever the
choice of symbols. Such a semi-algorithm always ends up returning that an empty subshift is indeed
empty, but will never tell a thing for nonempty subshifts, as it will run indefinitely. The question of
the existence of a semi-algorithm listing the nonempty subshifts is consequently relevant.

As it turns out, both the entropy and the Domino Problem behave very differently depending on
the setting: one dimension (over Z) or two dimensions (over Z2). In dimension one entropies can
only be the logarithm of Perron numbers, a specific, computable set of nonnegative real numbers.
Meanwhile, in two-dimensional subshifts they require a higher computational power than usual
Turing Machines: a famous result by Hochman and Meyerovitch [HM10] states that the possible
values of the entropy for SFTs of dimension d ≥ 2 are exactly the non-negative right-recursively
enumerable (Π0

1-computable, see Section 1.3.2) real numbers. On subshifts over Z, the Domino
Problem is known to be decidable, by equivalence with a problem of finding biinfinite paths on graphs.
On those over Z2, Wang [Wan61] conjectured in the 60s that the Domino Problem was decidable too,
and produced an algorithm of decision relying on the hypothetical fact that all subshifts of finite type
(SFTs, subshifts with a finite number of forbidden patterns) contained some periodic configuration.
However, his claim was disproved by Berger [Ber66] first, then through various methods by many
others in the decades that followed [Rob71,Moz89,Kar96,Kar07,JR15], additionally proving that no
other algorithm could work: the Domino Problem over Z2 is undecidable.

56

How can this difference in complexity be explained? An approach that is part of the motivation for
Part III of the present thesis is to generalize subshifts to an even wider class of structures – discrete,
countable groups – and to look for similar phenomena on them with the hope of getting a bigger
picture on entropy [Bar19] or the Domino Problem [Jea15,CGS17,Coh17,ABJ18,ABM19]. In the same
vein, generalizations have additionally been done on fractal (self-similar) structures to understand the
Domino Problem better [BS16,Bar20]. Several papers from the past decade also explore how adding
dynamical constraints to subshifts on Z2, such as the block gluing property [PS15,GdM19,GS21],
minimality [GS18], or a restriction in the number of patterns of a given size [KM21] can have
consequences on the entropy or the decidability of the Domino Problem, in some sense lowering the
complexity of the available subshifts. This can be interpreted as a reduction of the computational
power of the model as a whole under the added restriction.

The present part of this thesis focuses on a new approach to explore the frontier between
decidability and undecidability that lies between the subshifts on Z and Z2. It is based on a simple
observation: one-dimensional SFTs are easy to understand partly because they can be represented
as directed graphs (see Section 1.2.3) while no such simple mathematical object can grasp forbidden
patterns in dimension 2. Consequently, we can try and break down two-dimensional restrictions into
one-dimensional ones. Of course, this is no miracle: most two-dimensional restrictions cannot be
simply written off as a combination of horizontal and vertical one-dimensional forbidden patterns.
However, this still yields a starting thought: if we start by fixing (well-understood, one-dimensional)
horizontal restrictions in a two-dimensional subshift, and add two-dimensional forbidden patterns to
that list, what are the available subshifts? This procedure, in some sense, echoes the longer-lasting
idea of putting restrictions on projective subactions on Z, that is: if we collapse two-dimensional
subshifts into one-dimensional ones by looking only at the biinfinite horizontal words that appear,
what is obtainable? The process of trying to realize specific subactions with an added dimension,
called simulation, has a recent but rich history [Hoc16,DRS12,AS13].

Chapter 4 is dedicated to providing all the necessary formal notions evoked in this introduction.
Then, in Chapter 5 and Chapter 6 we turn the point of view from simulation theorems around:
instead of aiming to build a specific two-dimensional subshift to realize a precise projective subaction,
we fix horizontal constraints beforehand and look at the diversity of available two-dimensional SFTs
respecting these constraints – and possibly additional, two-dimensional ones. In few words, we
study the accessible subsystems of a given two-dimensional SFT X (defined only by horizontal
constraints): the only properties we known about them are that their entropy is bound by h(X)
(indirectly through [JKM07]) and a more general result by A. Desai [Des06] – recently extended
to SFTs over countable amenable groups [BMP22] – proving that the set of accessible entropies is
actually dense in the interval [0, h(X)].

Here, we focus on the following sets, where the notation XF refers to a two-dimensional SFT
with F as its list of forbidden patterns. Given a subshift of finite type H on one-dimension – with a
finite list of forbidden patterns, that can be considered in two dimensions and written H as such –
we study:

• the set DPh(H) = {< F >| F is finite and XH∪F 6= ∅} where < F > is the encoding of the
finite set F of forbidden patterns;

• the set {h(XH∪F) | F finite set of forbidden patterns}, that we know is dense in the interval
[0, h(H)] by [Des06].

In Chapter 5, as published in a joint article with M. Sablik [ES22], we reach a full characterization:

57

• the set DPh(H) is decidable if and only if H contains only eventually periodic configurations
(Theorem 9);

• for any SFT H, {h(XH∪F) | F set of forbidden patterns} is exactly the set of Π0
1-computable

numbers in [0, h(H)] (Theorem 11).

These results are strong: the first one means that apart from trivial horizontal restrictions, all
of them lead to an undecidable Domino Problem under horizontal constraints H. The second
one proves that any real number that could be the entropy for a subsystem with H as horizontal
constraints – as they have to be Π0

1-computable numbers and with an entropy smaller than H’s – is
indeed realized by some subsystem. A consequence of it, obtained by taking H as the full shift AZ

(no forbidden pattern) for some alphabet A, is that the set of possible entropies of two-dimensional
SFTs on A is exactly the Π0

1-computable numbers of [0, log(A)]. The result by M. Hochman and T.
Meyerovitch [HM10] does not answer this precise question because their construction can use an
arbitrarily large number of letters.

In Chapter 6, we consider again two-dimensional subshifts parametrized by pre-fixed horizontal
constraints, but we force the additional local rules to be vertical – contrary to Chapter 5 where
they could have arbitrary shape. This specific question is interesting notably because a classical
result among simulation theorems is that every effective one-dimensional subshift can be realized as
the projective subaction on Z of a two-dimensional subshift of finite type [AS13]; however, in these
constructions, the dynamic on the other direction – that is, the one-dimensional configurations we
witness vertically – is trivial. Therefore, here we ask which one-dimensional, vertical subshifts can
be compatible with a given horizontal dynamic, in the form of what [LMP13] calls an axial product.
Moreover, considering such notion of compatibility between horizontal and vertical constraints is in
line with the main thought behind the present part: breaking down two-dimensional constraints into
easier to study, one-dimensional ones. We stated earlier that this process of separating horizontal
and vertical restrictions would not work on all two-dimensional constraints; but it is interested to
study the ones where it does work.

As such, in Chapter 6, given two one dimensional subshifts of finite type H and V we ask if
there exist a two dimensional configuration where all horizontal lines are in H and vertical lines in
V . Its results are from a joint conference article with N. Aubrun and M. Sablik [AES20], extended
in [ES22].

The possibility of adding only vertical patterns is more complicated than the wider range of
arbitrary additional forbidden patterns, because we need to understand how to transfer information –
to build complicated configurations – with few interplay between the two directions. As a consequence,
in Chapter 6, we restrict ourselves to horizontal constraints between nearest-neighbor symbols. We
prove that if the corresponding SFT H satisfies a certain set of conditions, it is possible to simulate
any two-dimensional SFT in some sense (Theorem 12).

With this result, we have a characterization of the nearest-neighbor one-dimensional SFTs which
have undecidable Domino Problem with interplay DPI (Theorem 13). For the entropy, we obtain
a partial characterization; yet surprisingly we find horizontal subshifts H that can only have a
decidable Domino Problem when vertical constraints are added, but that can realize two-dimensional
SFTs with “strictly” Π0

1-computable numbers as entropies (that is, numbers that are Π0
1-computable

but not merely computable).

58

Chapter 4

Two-Dimensional Subshifts and
the Domino Problem

4.1 Symbolic Dynamics

This section heavily uses notions from Section 1.2.1 and assumes they are known. It is recommended
to read the latter before the present one.

In what follows we define objects similar to their one-dimensional counterparts (on Z), except
they are now two-dimensional (using Z2).

Remark 16. All the notions that follow can also be defined for any Zd, d > 0 mutatis mutandis
(mainly replacing any 2 with a d instead). However, they will only be of use on Z and Z2 in the
present part, hence this broader d-dimensional version will not be detailed here.

See Chapter 7 for an even more general setting on any finitely generated group.

As before, we consider an alphabet A.

Definition 4.1. Let A be an alphabet. Endow AZ2 with the prodiscrete topology tπ.
For any ~v ∈ Z2 define the shift map σ~v : AZ2 → AZ2 such that σ~v(x)~k = x−~v+~k. It defines a

natural Z2 action σ on AZ2 .
(AZ2

, tπ, σ) is called the two-dimensional full shift over A, and is a compact space.
Any x ∈ AZ2 , called a configuration, can be seen as a function from Z2 to A and we write

x~k := x(~k).

Example 15. In the picture that follows, we illustrate an alphabet A, a local window of a specific
configuration from AZ2 , and the effect of the shift map σ applied with vector (2, 1).

A = { , }

59

60 CHAPTER 4. TWO-DIMENSIONAL SUBSHIFTS AND THE DOMINO PROBLEM

σ(2,1)

Definition 4.2. A two-dimensional subshift X is a σ-invariant closed subset of AZ2 .

Just as in Definition 1.17, in the general framework of dynamical systems, a subshift is just a
subsystem of a full shift.

Since two dimensions do not allow the use of words as in Section 1.2.1, we define a broader
notion:

Definition 4.3. A pattern p is a finite configuration p ∈ APp where Pp ⊂ Z2 is finite.
We say that a pattern p ∈ APp appears in a configuration x ∈ AZ2 – or that x contains p – if

there exists ~v ∈ Zd such that for every ~̀ ∈ Pp, σ~v(x)~̀ = p~̀. We denote it p @ x.

This implies a property analogous to Property 1.18:

Property 4.4. Any two-dimensional subshift X can be described by a set F of patterns called the
set of forbidden patterns. This means that the following holds:

X = {x ∈ AZ2
| ∀p ∈ F , p 6@ x}.

Just as in the one-dimensional case, it is often denoted XF instead of merely X.

Remark 17. Once again, several sets of forbidden patterns can define the same subshift.
The conjugacy invariant notions of being a SFT, a sofic or an effective subshift are exactly the

same, with the same implications, as in Property 1.22.

Definition 4.5. For a two-dimensional subshift X, the set of all patterns of size n1 × n2 (format
“width × height”) that appear in configurations of X is denoted by LX(n1, n2), and its cardinality
by NX(n1, n2).

For a one-dimensional subshift H, we write LH = ∪nLH(n).

The following definition is the 2D version of Definition 1.25.

Definition 4.6. A two-dimensional SFT is said to be nearest-neighbor if it has a list of forbidden
patterns so that for any such forbidden pattern p, Pp = {(0, 0), (0, 1)} or Pp = {(0, 0), (1, 0)}.

The most well-known nearest-neighbor two-dimensional SFTs are the Wang shifts, defined by a
finite number of square tiles (called Wang tiles) with colored edges that must be placed with matching
colors. Formally, these tiles are quadruplets of symbols (te, tw, tn, ts). A Wang shift is described by

4.1. SYMBOLIC DYNAMICS 61

a finite Wang tile set, an alphabet made of such quadruplets; and local rules x(i, j)e = x(i+ 1, j)w
and x(i, j)n = x(i, j + 1)s for all integers i, j ∈ Z.

A Wang tile looks like the following picture, where the quadruplet (te, tw, tn, ts) is most of the
time replaced by colors. We will often re-use colors between the North-South axis and the East-West
axis symbols with no consequence, as Wang tiles cannot be rotated.

tw te
tn

ts

Example 16. An example of Wang tile set and a tiling – a configuration of the associated Wang
shift – is given below.

A = { }

Remark 18. Not all nearest-neighbor shifts are Wang shifts in a transparent way where you could
keep the same alphabet. Consider for instance the subshift with alphabet A = {0, 1} and as only
rules no vertical constraints, and the following horizontal restrictions: the only symbols allowed to
follow each other are 00, 01 and 10. The symbols 0 and 1 cannot be replaced Wang tiles, because if
they were, using the quadruplet notation from above, we would have:

• 00 being authorized means 0w = 0e;

• 01 being authorized means 0e = 1w;

• 10 being authorized means 1e = 0w.

Then 1e = 1w and so 11 should be authorized, and this is not the case.

In spite of the previous remark, we have the following property, as a step further from Prop-
erty 1.30, that also holds in two dimensions:

Property 4.7. Any two-dimensional SFT is conjugated to a Wang shift.

Remark 19. Notably, a two-dimensional SFT is empty if and only if the corresponding Wang shift is
– that fact will allow us to focus on Wang shifts only if need be.

62 CHAPTER 4. TWO-DIMENSIONAL SUBSHIFTS AND THE DOMINO PROBLEM

4.2 Two major tools for studying subshifts

4.2.1 Domino Problem
The present subsection defines a fundamental question – a decision problem, see Definition 1.38 in
symbolic dynamics: is there an algorithm that, taking as input any finite list of forbidden patterns,
can tell if the associated SFT is empty?

Definition 4.8. For d = 1 and d = 2, define DP (Zd), the Domino Problem in dimension d, as the
decision problem on the set of all finite lists of forbidden patterns in AZd , asking for such a list F ,
and answering Y es if the corresponding XF is nonempty, and No otherwise.

Remark 20. Said otherwise, DP (Zd) asks if {〈F〉 | XF is a nonempty SFT} is decidable, where 〈F〉
is an encoding of the set of forbidden patterns F suitable for a Turing Machine.

This decision problem has been intensively studied since Wang’s pioneering works [Wan61], and
two major results are well-known in symbolic dynamics:

Theorem 5. DP (Z) is decidable.

Proof. The proof is based on Section 1.2.3: one can reduce the study of any SFT to its Rauzy graph.
Notice how two conjugated subshifts are both SFTs if and only if one is; how both are nonempty if
and only if one is; and how a configuration in a nearest-neighbor SFT is equivalent to a biinfinite
path in its Rauzy graph. Although these are trivial statements on their own, they mean trying to
answer the question of the present decision problem is purely equivalent to a study of graphs and
biinfinite paths.

With what was written, a configuration in the original SFT is thus equivalent to finding a
biinfinite path of vertices in the Rauzy graph. In finite oriented graphs, that is equivalent to finding
a cycle. With this reasoning, we reduce DP (Z) to the problem of finding a cycle in a finite graph,
which is easily algorithmically decidable.

Theorem 6. (see for instance [Ber66, Rob71, Moz89, Kar07]) DP (Z2) is undecidable.

Remark 21. In some sense, the above result encapsulates how two dimensions allow for more
“complicated” SFTs: basically, any one-dimensional SFT can be somewhat easily understood from
its list of fordbidden patterns; while two-dimensional SFTs have enough room to recreate the
computations of any Turing Machine – the reduction of DP (Z2) to the Halting Problem being a key
element in most proofs [Ber66,Rob71,Moz89] of its undecidability.

4.2.2 Entropy
One of the most important notions in symbolic dynamics is the entropy, which measures “how
many” configurations exist in a subshift. Of course, this is somewhat philosophical: in most cases, a
subshift contains an infinite number of configurations. The question is then how this infinity can
be quantified. The main idea behind that is to study larger and larger pattern sizes (with growing
n-length words or growing n× n squares) and count how many valid patterns exist for a given size.
The asymptotic behavior of that quantity when n goes to infinity represents, in some sense, the
number of configurations of the subshift.

4.2. TWO MAJOR TOOLS FOR STUDYING SUBSHIFTS 63

Now, the full shift on alphabet A has |A|nd valid patterns for a window of appropriate size
(n× n× · · · × n, with d the dimension and the number of n’s). That is,

NAZd (n, . . . , n) = 2n
d log2(|A|).

That factor of the exponential growth that multiplies nd is what we are interested in (up to possibly
choosing a different logarithm), because it is what quantifies the growth rate. Of course, subshifts
X in general with alphabet A will have a wider range of behaviors than the full shift, but since the
asymptotic behavior of their number of patterns NX(n, . . . , n) is bounded from above by the full
shift’s, we can also study that growth rate factor.

This reasoning is enough to naturally introduce the following crucial quantity:

Definition 4.9. Let X be a d-dimensional subshift. The (topological) entropy of X is

h(X) = lim
n→∞

log2(NX(n, . . . , n))
nd

= inf
n

log2(NX(n, . . . , n))
nd

.

The entropy is an inf that is also a limit due to Fekete’s Lemma (see for instance [LM95, Lemma
4.1.7] for a version of it).

Proposition 4.10. (see [LM95, Cor. 4.1.9, Cor. 4.1.10]) If X and Y are conjugate, then
h(X) = h(Y).

If Y is a factor of X, then h(X) ≥ h(Y).

Remark 22. Some subshifts will obviously have a sub-exponential growth in the number of patterns
for n-sized windows (consider for instance a subshift with only a periodic configuration and its
translates), which will lead to their entropy being 0. Though finer invariants than the entropy can
be defined with more precise estimations of the growth rate, it is already an important quantity to
quantify which subshifts allow for numerous configurations (high entropy) and which are very “rigid”
in the patterns they allow (null entropy).

Example 17. • Following the reasoning above, h(AZd) = log2(|A|).

• The one-dimensional subshift on alphabet A = {0, 1} defined as X11 is of entropy h(X11) =
log2(1+

√
(5)

2) [LM95, Ex. 4.1.6].

• The Robinson subshift [Rob71] illustrated in the introduction of Part III and often used as
the baseline of proofs for the undecidability of the Domino Problem over Z2, has zero entropy.
An easy argument behind this is how any n× n square of tiles is entirely determined by the
tiles on its 4(n− 1) perimeter.

• The Kari-Culik subshift [CI96,Kar07], another subshift used to prove the undecidability of
the Domino Problem over Z2, is of nonzero entropy [DGG14].

• The dimer subshift given by the alphabet
{ , , , }

where dashed borders must meet dashed borders, has entropy

h = 1
4

∫ 1

0

∫ 1

0
log (4 + 2 cos(2πx) + 2 cos(2πy)) dxdy

64 CHAPTER 4. TWO-DIMENSIONAL SUBSHIFTS AND THE DOMINO PROBLEM

due to the computation being similar to the one of perfect matchings of dimers, on which one
can use a theorem by Kasteleyn notably detailed in [Ken02]. This example serves as a proof
that subshifts even simple in appearance and description can have a highly nontrivial entropy.

There is actually quite a difference between the real numbers accessible as entropies for one-
dimensional SFTs and for two-dimensional SFTs. The following theorem dated from 1984 [Lin89]
and notably stated in the comprehensive [LM95] describes the entire range of entropies in one
dimension.

Theorem 7 (Th. 4.3.3 of [LM95]). The set of all entropies accessible to one-dimensional SFTs is
exactly the following set of real numbers:{

p

q
log(λ)|p ∈ N0, q ∈ N, λ is a Perron number

}
where a Perron number is any algebraic real number λ so that λ > 1 and for any other root α of
their minimal polynomial, λ > |α|.

Definition 4.11. A real number is computable if there exists a Turing Machine that can compute
an approximation of it with any precision, when given said precision as input.

A real number is Π0
1-computable – sometimes called right-recursively enumerable or r.r.e. – if

there exists a decreasing computable sequence of rationals which converges toward that number.

Said convergence is from “the right” in the line of real numbers, hence the name of right-
recursively enumerable. The other name is due to the ties this notion has with Π0

1 countable sets
from Section 1.3.2.
Remark 23. Any computable real number is Π0

1, but there are Π0
1 numbers that are not computable.

A classic instance of this can be obtained with an enumeration (Mn)n∈N of all Turing Machines
(see Definition 1.36): consider the real number r = 0. . . . where the digit in position n is 0 if the
Turing Machine Mn halts on the empty input, and 1 otherwise. As more and more precise lists of
halting Turing Machines can be obtained algorithmically, we can obtain upper approximations of
that real number, that converge toward it. But any ability to give a lower converging sequence, and
thus an approximation with any precision of r, is fruitless due to Theorem 2. Consequently, r is Π0

1
but not computable.

Another classic instance is the one of Chaitin omega numbers: for a given universal Turing
Machine, its Chaitin number represents the probability that said Turing Machine will halt on a
randomly generated input.

The characterization of the entropies in dimension 2 is due to Hochman and Meyerovitch [HM10]:

Theorem 8 (Th. 1.1 of [HM10]). The set of all entropies accessible to two-dimensional SFTs is
exactly the nonnegative Π0

1 real numbers.

4.3 Horizontal constraints
Considering how wide the gap is between the behaviors on Z and Z2, both in terms of Domino
Problem and entropy, we want to understand how this difference arises. This study, done in
Chapter 5, is based on fixing a “horizontal” one-dimensional subshift and completing it to make it
two-dimensional some way or another. This gives rise to the following subsections dedicated to new
concepts.

4.3. HORIZONTAL CONSTRAINTS 65

4.3.1 New definitions
Adding a dimension to a one-dimensional SFT H, the local rules allow to define a two-dimensional
SFT where each line is a configuration of H chosen independently – hence the use of the letter H
for the subshift that ultimately encodes the horizontal rules. We want to study the consequence of
adding extra rules to that subshift: the most natural way of doing so is to add forbidden patterns –
which can be two-dimensional. This is formalized in the next definition.

Definition 4.12. Let H ⊂ AZ be a one-dimensional SFT and F be a finite set of two-dimensional
forbidden patterns. The two-dimensional SFT

XH,F := {x ∈ AZ2
| ∀j ∈ Z, (xk,j)k∈Z ∈ H and x ∈ XF}

is called the subshift XF with added horizontal constraints from H.

Remark 24. The projection of the horizontal configurations that appear in XH,F (or, similarly, XH,V

defined below) does not necessarily recover all of H. Indeed, some of the configurations in H will not
necessarily appear in XH,F , because they may not be legally extended into a valid two-dimensional
configuration.

Another point of view is to search if two one-dimensional subshifts can be combined into a
two-dimensional subshift where the first one appears horizontally and the second one vertically.

Definition 4.13. Let H,V ⊂ AZ be two one-dimensional SFTs. The two-dimensional subshift

XH,V := {x ∈ AZ2
| ∀i, j ∈ Z, (xk,j)k∈Z ∈ H and (xi,`)`∈Z ∈ V }

is called the combined subshift of H and V , and uses H as horizontal rules and V as vertical
rules.

Example 18. Choose A = {0, 1}, H nearest-neighbor and forbidding 00 and 11, and V forcing to
alternate a 1 and two 0s: the resulting XH,V is empty, although neither H nor V are. In some
sense, said H and V are incompatible. See below an illustration with 0 in white and 1 in black. The
restrictions necessary lead to the faulty creation of an invalid column.

F(H) = { , }

F(V) = { , , }

Remark 25. The choice of notation XH,F can be slightly confusing at first, considering H is a
one-dimensional SFT but F is a set of forbidden patterns. However, the most proper notation
would first require to define FH the forbidden words in H, then F ′H the extension of these into

66 CHAPTER 4. TWO-DIMENSIONAL SUBSHIFTS AND THE DOMINO PROBLEM

two-dimensional patterns (with no vertical restriction), and to denote XF ′
H
∪F the resulting subshift.

Similarly, XH,V would be more properly denoted as XF ′
H
∪F ′′

V
, where F ′′V is the extension of the

forbidden words in FV into two-dimensional patterns, but this time considered vertically, then
extended horizontally with no restriction. Consequently, we decided to keep the notations simple
and settle on what is used here.

4.3.2 Two new restricted Domino Problems
In Section 4.2.1, we saw that DP (Z) was decidable, but DP (Z2) was undecidable. In Chapter 5, and
particularly in Section 5.1.2, we study an intermediary sort of Domino Problem, where horizontal
constraints H are fixed beforehand and we look whether the emptiness of all the two-dimensional
subsystems XH,F is decidable.

Definition 4.14. Let H ⊂ AZ be an SFT. The Domino Problem under horizontal constraints H
denoted as DPh(H) asks the decidability of the following set:

DPh(H) = {〈F〉 | XH,F is a nonempty SFT}.

Remark 26. This Domino Problem is defined for a given H, and its decidability depends on such a
H chosen beforehand.

The purpose of the previous definition is to determine the frontier between decidability (DP (Z))
and undecidability (DP (Z2)). Indeed, one can easily see that DP (Z) = DPh(X{00,11}) where X
is the full shift {0, 1}Z; more generally it holds with any one-dimensional SFT – on an alphabet
of cardinality at least two – made only of one periodic sequence and its translates. Similarly,
DP (Z2) = DPh(X) or any one-dimensional full shift on an alphabet with cardinality at least two.
Overall, “rigid” one-dimensional SFTs, with few configurations, seem to yield a decidable Domino
Problem under horizontal constraints; conversely one-dimensional SFTs with a lot of freedom in
their patterns seemingly make it undecidable. A complete result is obtained with Theorem 9.

In Chapter 6, and particularly in Section 6.2.2, we try to understand a close but distinct problem:
when two one-dimensional SFTs are compatible to build a two-dimensional SFT. This question is
notably reflected by the following adapted version of the Domino Problem:

Definition 4.15. Let H ⊂ AZ be an SFT. The Domino Problem with Interplay depending on H
denoted as DPI(H) asks the decidability of the following set:

DPI(H) := {< V >| V ⊂ AZ is an SFT and XH,V 6= ∅}.

Remark 27. Just as for DPh(H), this problem is always defined for a given H (see Remark 32).

4.4 Root of a subshift
Given an SFT X, we want to know if it can simulate in some sense any two-dimensional subshift
by adding local rules – as it is the question asked by DPh and DPI , and the topic of interest of
Chapter 5 and Chapter 6. This may seem surprising, as one may ask how adding constraints to an
SFT can lead to it somehow behaving like any other SFT. As it turns out, the simulation cannot be
a conjugacy, because the entropy is preserved by conjugacy (see Proposition 4.10), or even a factor
of the original subshift X.

4.4. ROOT OF A SUBSHIFT 67

Actually, there is as a “compensation” a change in scale in the simulation to obtain our result.
Indeed, a more flexible way to reproduce a two-dimensional subshift Y ’s behavior is by looking
at wider patches of configurations in X, called macro-tiles: depending on what these macro-tiles
contain, they encode a number corresponding to an element of the alphabet of Y . As such, adding
restrictions to X may allow these macro-tiles to be next to each other if and only if they respect the
constraints of Y .

This idea of looking at macro-tiles is behind the notion of root of a subshift, as illustrated in
Fig. 4.1:

Definition 4.16. The subshift X ⊂ AZ2 is a (m,n)th root of the subshift Y ⊂ BZ2 if there exist
a clopen Z ⊂ X with σ(m,0)(Z) = Z and σ(0,n)(Z) = Z, and an homeomorphism ϕ : Z → Y such
that:

• ϕ(σ(k1m,k2n)(x)) = σ(k1,k2)(ϕ(x)) for all x ∈ Z;

• X =
⊔

0≤i<m,0≤j<n σ
(i,j)(Z).

y0,0 code y1,0 code y2,0 code y3,0 code y4,0 code y5,0 code y6,0 code y7,0 code y8,0 code y9,0 code y10,0 code y11,0 code

y0,1 code y1,1 code y2,1 code y3,1 code y4,1 code y5,1 code y6,1 code y7,1 code y8,1 code y9,1 code y10,1 code y11,1 code

y0,2 code y1,2 code y2,2 code y3,2 code y4,2 code y5,2 code y6,2 code y7,2 code y8,2 code y9,2 code y10,2 code y11,2 code

y0,3 code y1,3 code y2,3 code y3,3 code y4,3 code y5,3 code y6,3 code y7,3 code y8,3 code y9,3 code y10,3 code y11,3 code

y0,4 code y1,4 code y2,4 code y3,4 code y4,4 code y5,4 code y6,4 code y7,4 code y8,4 code y9,4 code y10,4 code y11,4 code

y0,5 code y1,5 code y2,5 code y3,5 code y4,5 code y5,5 code y6,5 code y7,5 code y8,5 code y9,5 code y10,5 code y11,5 code

y0,6 code y1,6 code y2,6 code y3,6 code y4,6 code y5,6 code y6,6 code y7,6 code y8,6 code y9,6 code y10,6 code y11,6 code

y0,7 code y1,7 code y2,7 code y3,7 code y4,7 code y5,7 code y6,7 code y7,7 code y8,7 code y9,7 code y10,7 code y11,7 code

y0,8 code y1,8 code y2,8 code y3,8 code y4,8 code y5,8 code y6,8 code y7,8 code y8,8 code y9,8 code y10,8 code y11,8 code

y0,9 code y1,9 code y2,9 code y3,9 code y4,9 code y5,9 code y6,9 code y7,9 code y8,9 code y9,9 code y10,9 code y11,9 code

y0,10 code y1,10 code y2,10 code y3,10 code y4,10 code y5,10 code y6,10 code y7,10 code y8,10 code y9,10 code y10,10 code y11,10 code

y0,11 code y1,11 code y2,11 code y3,11 code y4,11 code y5,11 code y6,11 code y7,11 code y8,11 code y9,11 code y10,11 code y11,11 code

ϕ

y0,0 y1,0 y2,0 y3,0 y4,0 y5,0 y6,0

y0,1 y1,1 y2,1 y3,1 y4,1 y5,1 y6,1

y0,2 y1,2 y2,2 y3,2 y4,2 y5,2 y6,2

y0,3 y1,3 y2,3 y3,3 y4,3 y5,3 y6,3

y0,4 y1,4 y2,4 y3,4 y4,4 y5,4 y6,4

y0,5 y1,5 y2,5 y3,5 y4,5 y5,5 y6,5

y0,6 y1,6 y2,6 y3,6 y4,6 y5,6 y6,6

Figure 4.1: Illustration of the homeomorphism ϕ : Z → Y for a (3, 2) root, here on a configuration
z ∈ Z (left) that encodes a configuration y ∈ Y (right) using 3× 2 cells in X. The configurations in
X are dashed-square shifts of the configurations in Z.

68 CHAPTER 4. TWO-DIMENSIONAL SUBSHIFTS AND THE DOMINO PROBLEM

Chapter 5

Subsystems for Initial Horizontal
Restrictions

A subsystem of a given dynamical system is merely a stable system included in the original one –
that is, a topologically closed and action closed subspace of the original space. So is a subshift XF
subsystem of a given full shift; and so are all “sub-subshifts” XF∪F ′ of XF , obtained when adding
forbidden patterns: they’re subshifts that can be studied by themselves, or embedded into a bigger
system.

In this chapter, we study the latter point of view: what are the accessible subsystems of a given
subshift? What can we say about them in terms of Domino Problem (the focus of Section 5.1)
and of accessible entropies (the focus of Section 5.2)? We restrain our study to horizontal starting
constraints, as mentioned in the introduction of the present part, where we reach a complete answer
for both questions.

5.1 Domino problem under horizontal constraints
5.1.1 Theorem of simulation under horizontal constraints
Proposition 5.1. Let H ⊂ AZ be a one-dimensional SFT which is not made solely of eventually
periodic configurations. For any two-dimensional SFT Y ⊂ BZ2 , there exists a set of forbidden
patterns F such that XH,F is a (m,n)th root of Y for some m,n ∈ Z.

Proof. Let Y ⊂ BZ2 be a two-dimensional SFT. Up to renaming the symbols, suppose the alphabet B
is made of letters T1, . . . , Tn.

Suppose H ⊂ AZ is not solely made of eventually periodic configurations. Recall how H can
be illustrated by a Rauzy graph, as detailed in Definition 1.28. Consider its Rauzy graph G̃(H).
We prove that there exists some vertex s of G̃(H) so that there are at least two simple paths from
s to itself (that is, paths that do not go through any vertex twice). The opposite would mean
that each vertex has at most one simple path from itself to itself; notice how a vertex either has
at least one simple such path, or no path at all, since from a non-simple path one can extract a
simple one. Moreover, if some vertex additionally had a non-simple path from itself to itself that
was not the iteration of its one simple path, notice how a vertex v repeated twice in that non-simple

69

70 CHAPTER 5. SUBSYSTEMS FOR INITIAL HORIZONTAL RESTRICTIONS

path would then have two distinct simple paths from itself to itself, which contradicts our current
hypothesis. Therefore for any vertex with at least one simple path from itself from itself, there is no
additional path that is not the iteration of its simple path. This causes G̃(H) to be so that H has
only eventually periodic configurations, which is forbidden.

Therefore, there exists some vertex s of G̃(H) so that there are at least two simple paths from s
to itself. Name those paths γ1 and γ2.

Define, for any k in {1, . . . , n},

Uk := `(γ2γ1ϕkγ1γ2)

where ϕk is a succession of n γ1’s, except the kth one, replaced by γ2; and where `(γ) designates
the succession of labels of edges in a path γ, consequently being an element of A∗ (the set of finite
words made of elements of A).

All of these words Uk have the same length, call it N , and we can juxtapose them as desired by
construction of the Rauzy graph. Moreover, juxtaposing two of these words creates two consecutive
γ2’s, allowing a clear segmentation of a word written with the Uk’s into these basic units.

Now, consider the two-dimensional extension of H into XH,F with F so that:

• we forbid anything horizontally that is not a succession of Uk’s (possibly with different k’s);

• we forbid any `(γ2γ2) to be above something that is not another `(γ2γ2) (this forces the Uk’s
to be vertically aligned);

• we forbid any pattern p of size aN × b made of Uk’s that would be so that, if we consider the
pattern q with Tl at position (i, j), i ∈ {0, . . . , a− 1}, j ∈ {0, . . . , b− 1} if piN,j belongs to Ul,
we end up with a pattern q that is forbidden in Y .

This is a finite number of additional forbidden patterns, since Y is itself a SFT.
It is clear, considering the clopen Z of the configurations in XH,F that have a Uk starting at

(0, 0) exactly, and the homeomorphism ϕ : Z → Y that sends a Uk on a Tk, that XH,F is a (N, 1)th
root of Y . See Fig. 5.1 for an illustration of the construction.

U1 U4 U4 U5 U1 U4 U5 U2 U4 U1 U4 U5

U1 U4 U5 U4 U1 U1 U5 U1 U3 U1 U5 U1

U2 U2 U4 U2 U4 U5 U5 U3 U1 U1 U2 U2

U3 U4 U3 U5 U3 U4 U3 U3 U2 U1 U2 U4

U1 U4 U5 U5 U2 U5 U4 U1 U1 U2 U4 U4

U3 U4 U3 U4 U5 U2 U4 U5 U2 U4 U4 U2

U2 U3 U1 U4 U1 U5 U2 U5 U4 U4 U1 U4

ϕ

T1 T4 T4 T5 T1 T4 T5 T2 T4 T1 T4 T5

T1 T4 T5 T4 T1 T1 T5 T1 T3 T1 T5 T1

T2 T2 T4 T2 T4 T5 T5 T3 T1 T1 T2 T2

T3 T4 T3 T5 T3 T4 T3 T3 T2 T1 T2 T4

T1 T4 T5 T5 T2 T5 T4 T1 T1 T2 T4 T4

T3 T4 T3 T4 T5 T2 T4 T5 T2 T4 T4 T2

T2 T3 T1 T4 T1 T5 T2 T5 T4 T4 T1 T4

Figure 5.1: Illustration of the (N, 1) root built in the proof of Proposition 5.1, here with N = 4,
through a homeomorphism ϕ : Z → Y , here on a configuration z ∈ Z (left) that encodes a
configuration y ∈ Y (right) using N × 1 cells in X. The configurations in X are dashed-square shifts
of the configurations in Z.

5.2. CHARACTERIZATION OF THE ENTROPIES UNDER HORIZONTAL CONSTRAINTS71

5.1.2 The Domino Problem under horizontal constraints
Theorem 9. DPh(H) is decidable if and only if H contains only eventually periodic configurations.

Remark 28. Since it is a SFT, it is equivalent to ask for H to have zero entropy. Indeed, as briefly
seen in the proof of Proposition 5.1, containing only eventually periodic configurations is equivalent
to restraining the number of simple paths in the Rauzy graph of H. The presence or absence
of several simple paths from a vertex v to itself is ultimately – because it means that patterns
of configurations in H can be, or not, replaced by other patterns of the same length – what is
responsible for the exponential growth in the number of configurations in H, and so for a nonzero
entropy. Through a similar line of reasoning, it is also equivalent to H containing countably many
configurations.

Proof. If H ⊂ AZ has a configuration that is not eventually periodic, then for any two-dimensional
SFT Y we can apply Proposition 5.1 and build a two-dimensional SFT XH,F so that it is a root of
Y . Using the definition of a root of a SFT, it is clear that the emptiness of XH,F is equivalent to
the emptiness of Y . Consequently, we can reduce DPh(H) to DP (Z2), and DPh(H) is undecidable.

If H ⊂ AZ only has eventually periodic configurations, by compacity there is a configuration
in a XH,F if and only if there is one where each line is periodic; and so we can reason on actually
periodic configurations of H only. Suppose these configurations’ smallest common period (which
exists as H is a SFT) is some integer p > 0. Now, take as input a finite set of forbidden patterns F ,
all of them as a rectangle of size pL×M,L,M ∈ N up to extending them.

If there is no rectangle of size pL×M(|A|pLM + 1) respecting the local rules of XH,F , then that
SFT is empty. If there is at least one such rectangle, list all of these possible candidates. Consider
R a candidate: either it can be horizontally juxtaposed with itself without containing a pattern of
F , and we keep it; or it cannot, and we delete it. If all candidates are deleted, then XH,F is empty,
because H forces a p-periodic repetition horizontally in any configuration, which happens to be
incompatible with all candidate rectangles.

If at least one candidate R remains, then by the pigeonhole principle it contains at least twice
the same rectangle R′ of size pL×M . To simplify the writing, we assume that the rectangle that
repeats is the one with coordinates [1, pL]× [1,M] inside R where [1, pL] and [1,M] are intervals of
integers, and that it can be found again with coordinates [1, pL]× [k, k +M − 1]. Else, we simply
truncate a part of R so that this becomes true.

Define P := R|[1,pL]×[1,k+M−1]. Since F has forbidden patterns of size pL ×M , and since R
respects our local rules and begins and ends with R′, P can be vertically juxtaposed with itself
(overlapping on R′). Moreover, P can be horizontally glued with itself. The result tiles Z2 periodically
while respecting the constraints of H and of F , since any pL×M rectangle found in it is already
present in the horizontal juxtaposition of P , which is valid by p-periodicity. Therefore, XH,F is
nonempty.

With this, we have an algorithm to decide the emptiness of XH,F for any input F .

5.2 Characterization of the entropies under horizontal con-
straints

The purpose of this section is to characterize the entropies accessible to two-dimensional SFTs, as
in [HM10], but under projective constraints. Formally, given H a one-dimensional SFT, we want to

72 CHAPTER 5. SUBSYSTEMS FOR INITIAL HORIZONTAL RESTRICTIONS

characterize the set
{h(XH,F) | F finite set of forbidden patterns} .

It is a set of positive reals by definition of the entropy; it is more precisely a subset of [0, h(H)],
as hinted at by [JKM07, Lemma 4.3 and Th. 4.1]. Indeed, by definition the highest available entropy
in the set above is the one of XH,∅ – all of the other SFTs considered have a set of forbidden
patterns of which this one’s is a subset. The entropy of that two-dimensional SFT, as shown by a
straightforward computation1, is also the one of the one-dimensional SFT H.

A result by Desai [Des06], when applied to the subsystems of XH,∅, states the following:

Proposition 5.2 (Th. 3.3 from [Des06]). {h(XH,F) | F finite set of forbidden patterns} is dense
in [0, h(H)].

Moreover, the computability obstruction of [HM10] reminded in Theorem 8 implies that that the
previous set is a subset of the Π0

1-computable real numbers (also named right-recursively enumerable
or r.r.e. numbers). Therefore, it is natural to ask if all Π0

1-computable numbers of [0, h(H)] can be
obtained. We have the following positive result proved in Section 5.2.3.

Theorem 11. Let H ⊂ AZ be a SFT. We have

{h(XH,F) | F finite set of forbiden patterns} = [0, h(H)] ∩Π0
1

where Π0
1 is the set of right-recursively enumerable real numbers.

5.2.1 Kolmogorov complexity and number of tiles
Given r a Π0

1-computable real, denote K(r) its Kolmogorov complexity. It is the minimal number of
states needed for a Turing Machine to enumerate a list of rationals which approach r from above.
Consider the algorithm from [HM10, Alg. 7.3], defined for a given r.r.e. real h, that takes as input a
sequence (xN)N∈Z ∈ {0, 1}Z, and makes its frequency of 1’s – on specific indices – approach r from
above. The associated Turing Machine is built from the one that approaches h from above so that
its number of states is of the form cK(h), c > 0 not depending on h. The authors in [HM10] turn
that Turing Machine into a Wang tile set. Since the size of that tile set depends linearly on the
number of states of the Turing Machine, we obtain the following:

Theorem 10 (From [HM10], Alg. 7.3). There exists C > 0 such that for any h ∈ Π0
1, there exists a

two-dimensional SFT X such that h(X) = h, describable by a set of at most CK(h) Wang tiles.

5.2.2 Technical lemmas on entropy
Lemma 5.3. For all α, β ∈ N, one has:

lim
n→+∞

log2(NX(αn, βn))
αβn2 = h(X).

Proof. We have the inequality
NX(αn, βn) ≤ (NX(n, n))αβ

1Notice how the definition of entropy is used for a two-dimensional SFT on one hand, and for a one-dimensional
one on the other hand, though the resulting real number is the same.

5.2. CHARACTERIZATION OF THE ENTROPIES UNDER HORIZONTAL CONSTRAINTS73

due to the fact that globally admissible patterns – patterns that belong to a valid configuration – of
size αn× βn are themselves made of a number αβ of globally admissible patterns of size n× n.

We also have:
(NX(αβn, αβn)) ≤ NX(αn, βn)αβ

with the same reasoning.
Finally, we have

lim
n

log2(NX(αβn, αβn))
α2β2n2 = h(X)

because (log2(NX(αβn,αβn))
α2β2n2) is a subsequence of the converging sequence (log2(NX(n,n))

n2).

Then applying limn
log2(.)
αβn2 to

(NX(αβn, αβn))
1
αβ ≤ NX(αn, βn) ≤ (NX(n, n))αβ

we obtain what we want.

Proposition 5.4. Let X be a two-dimensional subshift which is a (m,n)th root of the subshift Y .
Then

h(Y) = mnh(X)

Proof. Call Z ⊂ X the clopen homeomorphic to Y . In what follows, we write L(k1,k2)
C (a, b) the

set of [k1, k1 + a− 1]× [k2, k2 + b− 1] patterns that appear in configurations of a clopen C; and
N

(k1,k2)
C (a, b) its cardinal. Note that L(0,0)

X (a, b) = LX(a, b) since X is shift-invariant; and same for
Y .

Consider ϕ : Z → Y the homeomorphism such that ϕ(σ(k1m,k2n)(x)) = σ(k1,k2)ϕ(x) for all x ∈ Z
and (k1, k2) ∈ Z2. By the same proof as the Curtis-Hedlund-Lyndon theorem, there exist r ∈ N0
and a local map ϕ applied on patterns of support [−r, r]2 such that for any x ∈ Z, ϕ(x)(k1,k2) =
ϕ(x(k1m,k2n)+[−r,r]2) – that is, ϕ can be considered as the application of a local map uniformly on
patterns of configurations of Z. Thus |L(0,0)

Y (k, k)| ≤ |L(−r,−r)
Z (mk+2r, nk+2r)|. Furthermore, since

a pattern of support [−r,mk+ r− 1]× [−r, nk+ r− 1] can be decomposed into a pattern of support
[0,mk− 1]× [0, nk− 1] and its border, we deduce that |L(0,0)

Y (k, k)| ≤ |AZ |2rk(m+n)|L(0,0)
Z (mk, nk)|.

In the same way, there exist r′ ∈ N0 and a local map ϕ−1 applied on patterns of support
[−r′, r′]2 such that ϕ−1(y)(k1m,k2n)+[0,m−1]×[0,n−1] = ϕ−1(y(k1,k2)+[−r′,r′]2). Thus |L(0,0)

Z (mk, nk)| ≤
|L(−r′,−r′)
Y (k + 2r′, k + 2r′)|
We have the same bounds for any σ(i,j)(Z) with i, j ∈ Z. Moreover, since we have that

X =
⊔

0≤i<m,0≤j<n σ
(i,j)(Z), we obtain NX(mk, nk) =

∑
0≤i<m,0≤j<nN

(0,0)
σ(i,j)(Z)(mk, nk). We

deduce the following inequalities
mn

|AZ |2rk(m+n)NY (k, k) ≤ NX(mk, nk) ≤ mnNY (k + 2r′, k + 2r′)

We apply log2(.)
k2 to these inequalities and by using Lemma 5.3, we get:

h(Y) = mnh(X).

74 CHAPTER 5. SUBSYSTEMS FOR INITIAL HORIZONTAL RESTRICTIONS

Lemma 5.5. Let H be a transitive one-dimensional SFT of positive entropy and h < h(H).
There exist words u,w1, w2 ∈ LH and α ∈ N such that:

• α > M the biggest size of forbidden patterns of H;

• |u| = |w1| = |w2| = α;

• u,w1 and w2 are cycles from a vertex of the Rauzy graph of H to the same vertex;

• uww1 ∈ LH for all w ∈ {w1, w2}∗;

• u appears as a subword of any word in u{w1, w2}∗w1 at the very beginning only;

• h(Hu) > h where Hu is the SFT included in H where the word u does not appear.

Moreover, the Rauzy graph of Hu is still transitive.

Proof. According to [Lin89, Th.3], for any integer n that is big enough, any n-long word u is so
that, if we denote Hu the SFT where u is added to the forbidden patterns of H, we get

h(H) ≥ h(Hu) > h

because h(Hu) is below yet sufficiently close to h(H) for n big enough. As a consequence, the last
property we have to find is verified as soon as we choose α big enough for the three words we want.

Now, consider the Rauzy graph of H, call it G̃(H). Fix some vertex s of G̃(H). Since its entropy
is positive and it is transitive, for any vertex s of G̃(H) there are at least two simple paths from s to
itself (notably, that do not pass through s at any other moment). Name those paths γ1 and γ2.

Define

u := `(γ2γ1γ2γ1γ1γ1γ2γ1
kγ2)

w1 := `(γ2γ1γ1γ2γ1γ1γ2γ1
kγ2)

w2 := `(γ2γ1γ1γ1γ2γ1γ2γ1
kγ2)

where `(γ) designates the succession of labels of edges in γ, consequently being an element of A∗.
Choose k > 0 big enough so that u satisfies what we desire on h(Hu). These three words have
the same length and we can juxtapose them as desired by construction of the Rauzy graph of H.
Moreover, juxtaposing any of those words creates two consecutive γ2, allowing a clear segmentation
of a word written with u, w1 and w2 into these basic units. Notably, u appears as a subword of any
word in u{w1, w2}∗w1 at the very beginning only.

Moreover, Hu is still transitive. Indeed, let v1 and v2 be two elements of LHu ; we can suppose
they are bigger than u up to an extension of v1 to its left and v2 to its right.

v1 can be seen as a path in G̃(H) and extended to v1w so that the corresponding path in G̃(H)
reaches s, by transitivity of that graph, with the shortest possible w. It is possible that v1w /∈ LHu ,
meaning it contains u as a subword. But then u cannot be a subword of w, since the path in G̃(H)
corresponding to u is a succession of cycles from s to s; and u cannot be a subword of v1, since
v1 ∈ L(Hu). Therefore u begins in v1 and ends in w. Since w corresponds by definition to the
shortest path to s possible in G̃(H), it means most of u is in v1 and only a fraction of the last `(γ2)
is in w. Then change w for a new w′ as short as possible that breaks the completion of u: this is

5.2. CHARACTERIZATION OF THE ENTROPIES UNDER HORIZONTAL CONSTRAINTS75

doable because v1 ∈ LHu , so it is extendable to the right. Then add the shortest possible w′′ that
goes to s in G̃(H): u is too large to appear elsewhere in v1w

′w′′. Rename w′w′′ as w.
In all cases, we found v1w ∈ LHu that reaches s when considered in G̃(H). Do the same so that

some xv2 ∈ LHu starts from s when considered in G̃(H).
Now, v1wxv2 ∈ LH since v1 and v2 are large enough so that the wx part of this word has no

effect on its extension to a biinfinite word in Hu. Furthermore, v1wxv2 does not contain u, since
the latter must start from s and end at s, and this word has been built so that no u follows when s
appears. Since v1 and v2 are also large enough to be extended respectively to the left and to the
right without a u, we can conclude that v1wxv2 ∈ LHu . Hence G̃(Hu) is transitive.

The following lemma is colloquially called the Coin Problem or Frobenius Coin Problem. We
produce a simple, self-contained proof here. For a more straightforward argument, one can use
Schur’s theorem from combinatorics that ensures the existence of a rank N as in the lemma.

Lemma 5.6 (Frobenius Coin Problem). Let c1, . . . , cl be positive integers. Let m = GCD(c1, . . . , cl).
There is a rank N ∈ N such that for all n ≥ N , nm can be expressed as some

∑l
i=1 kici with

ki ∈ N.

Proof. Using Bézout’s identity, we can write m =
∑l
i=1 zici for integers zi ∈ Z.

Let c =
∑l
i=1 ci. m divides c. Any multiple nm of m can be written as nm = qc+ rm where

q, r are integers with 0 ≤ r < c
m . Notably, nm =

∑l
i=1(q + rzi)ci using the previous equalities with

m and c.
If n ≥ 2 c2

m2 maxi |zi|, then nm ≥ c2

m maxi |zi| + c2

m maxi |zi|. Since qc + c2

m maxi |zi| > qc +
rcmaxi |zi| ≥ qc+ rm = nm, we deduce that q > c

m maxi |zi| > rmaxi |zi|.
Therefore, if n ≥ 2 c2

m2 maxi |zi|, then for all i, q + rzi > 0. As a consequence, nm =
∑l
i=1 kici

with ki = q + rzi > 0.

Lemma 5.7. Let H be a transitive one-dimensional SFT of positive entropy. Let u and w1 be the
words defined as in Lemma 5.5, with α = |u| = |w1|.

Let
ÑH(n) = Card({v | |v| = n, u 6@ w1vu[0,α−2] and w1vu ∈ LH}).

Then
log2(ÑH(nα))

nα
−−−−→
n→∞

h(Hu).

Proof. Let s be the vertex of the Rauzy graph of H that begins and ends the paths corresponding
to u and w1. We will similarly name s its label, a word in AH∗.

Let m be the GCD of the lengths of all cycles ci from s to s that do not pass through s at any
other moment, in the Rauzy graph of H. From Lemma 5.6, we deduce that there is some N ∈ N
such that for any n ≥ N , there is a path of length nm from s to s in the Rauzy graph of H, as a
concatenation of all cycles ci with a positive number of times ki for each of them. Since any order of
concatenation works, one can notably build a cycle from s to s of length nm that does not contain
u (by concatenating all occurrences of path γ2, as defined in the proof of Lemma 5.5 in a row).

Let d be the diameter of the Rauzy graph of Hu. Let n ≥ N + 2d+|u|
α . Let v ∈ LHu so that

|v| = nα− 2d−Nα (notably |v| ≥ |u|). Since the graph G̃(Hu) is transitive, there are two words
v′ and v′′ of size smaller than d so that v′vv′′ ∈ LHu , with the path corresponding to v′ beginning

76 CHAPTER 5. SUBSYSTEMS FOR INITIAL HORIZONTAL RESTRICTIONS

with some vertex s∗ when seen as a path in G̃(Hu), and the path corresponding to v′′ ending with
some vertex ∗s – where s∗ is the label of a vertex that has s as a prefix, and ∗s the label of a vertex
that has s as a suffix. This word can also be seen as a path in the Rauzy graph of H; there, that
path is a cycle from s to s; hence |v′vv′′| = km for some k ∈ N since m divides the length of all
cycles from s to s in G̃(H).

A notable consequence of this, using the length of v and the fact that m divides α (since w1
corresponds to a cycle from s to s in H) is that 2d− |v′| − |v′′| > 0 is a multiple of m.

Let v′′′ be a word of length 2d+Nα− |v′| − |v′′| that is a cycle from s to s in H. This is doable
by doing a correct concatenation of cycles from s to s to build v′′′, because 2d+Nα− |v′| − |v′′| is
a multiple of m which is greater than Nα, hence it is greater than Nm, so we can apply Lemma 5.6.
We can also ask that v′vv′′v′′′ ∈ LHu : since the path corresponding to v in G̃(H) does not contain
s as a vertex except at its extremities, and up to a reduction of the length of v′′ so that it is the
same, the only risk is that v′′′ itself would contain u. However, there are several cycles from s to s
in G̃(H) (since the corresponding SFT has positive entropy). Even if v′′′ were to use the two that
we label γ1 and γ2 in the proof of Lemma 5.5 to build u, we could merely order them with all γ1
paths first, then all γ2 paths – since we only care about the length of the resulting word – to build
v′′′. Thus, we forbid any appearance of u in it.

It remains to prove that w1v
′vv′′v′′′u[0,α−2] ∈ LHu . Consider that word as a path in G̃(H): as u

starts and ends at vertex s, the only subwords/subpaths of w1v
′vv′′v′′′u[0,α−2] we have to be wary

of are of length α and between vertices s and s. Considering v corresponds to a path that does
not cross the vertex s aside from its extremities, no word u can begin or end in v. Up to taking a
shorter v′ (resp. v′′), we can also make its corresponding path start (resp. end) with a vertex s∗
(resp. ∗s) in G̃Hu , without crossing any other vertex of the sort. Since v′vv′′v′′′ ∈ LHu , the only
remaining risk is of a subword u that would start in v′′′ and end in u[0,α−2]. As mentioned before, if
we construct v′′′ correctly, that risk can be avoided too.

We have |v′vv′′v′′′| = nα, w1v
′vv′′v′′′u[0,α−2] ∈ LHu and w1v

′vv′′v′′′u ∈ LH .
We deduce that

ÑH(nα) ≥ NHu(nα− 2d−Nα).

Since we also have NHu(nα) ≥ ÑH(nα), taking the logarithm and dividing by nα, we obtain

log2(ÑH(nα))
nα

−→
n→∞

h(Hu).

5.2.3 Main result
Theorem 11. Let H ⊂ AZ be a SFT. We have

{h(XH,F) | F finite set of forbiden patterns} = [0, h(H)] ∩Π0
1

where Π0
1 is the set of right-recursively enumerable real numbers.

Proof. Let h ≤ h(H), h ∈ Π0
1. We assume that h(H) > h > 0; if not, a trivial two-dimensional SFT

satisfies the Theorem. It is possible to assume that H is transitive: indeed, in one-dimensional SFTs
the entropy is due to only one connected component of the Rauzy graph (see [LM95]). Furthermore,

5.2. CHARACTERIZATION OF THE ENTROPIES UNDER HORIZONTAL CONSTRAINTS77

since we assumed h(H) > 0, that connected component is not a simple cycle, which are of entropy 0.
Hence we can additionally assume that the Rauzy graph of H is not a simple cycle.

Since H is a transitive SFT with positive entropy, thanks to Lemma 5.5 there exists a word
u ∈ LH of size α = |u| larger than the order of H and two different words w1, w2 ∈ L(H) such that
for |w1| = |w2| = α such that uww1 ∈ LH for all w ∈ {w1, w2}∗. Moreover h(Hu) > h where Hu is
the subshift included in H where the word u does not appear.

Denote
ÑH(n) = Card({v | |v| = n, u 6@ w1vu[0,α−2] and w1vu ∈ LH}).

According to Lemma 5.7, one has

log2(ÑH(nα))
nα

−−−−→
n→∞

h(Hu).

Consider an integer t ≥ 2 such that h(Hu) > (1 + 1
t)h. Moreover, we ask for t to be big enough

so that for any n ≥ t,
log2(ÑH(nα))

nα
> (1 + 1

t
)h

which is possible since the left term converges to h(Hu).
Now consider K the sum of the Kolmogorov complexities of the following different elements: h,

t, α, the algorithms that compute the addition, the multiplication, the logarithm, the algorithm
that on input n returns ÑH(n) and the algorithm that on input (a, b, c) trio of integers returns the
first integer r such that a

b+r−1 > c ≥ a
b+r .

Let R = dlog2(3CK)e and consider q = Rt. One has

log2(ÑH(qα))
(R+ q)α = q

q +R

log2(ÑH(qα))
qα

>
t

t+ 1(1 + 1
t
)h = h.

Therefore, there exists r > R such that

log2(ÑH(qα))
(q + r − 1)α > h ≥ log2(ÑH(qα))

(q + r)α

due to the fact that it is a sequence decreasing to 0 as r increases.

Consider h′ = (q + r)α
(
h− log2(ÑH(qα))

(q+r)α

)
> 0. The Kolmogorov complexity of h′ is less than

3K, because K contains the complexity of doing each of the operations used in h′ except computing
q, and computing q requires to compute R which requires to compute K which has Kolmogorov
complexity at most K. Assembling all of this, we obtain a complexity of at most 3K.

Consequently, using Theorem 10, there exists a constant C > 0 and a Wang tile set TW with at
most 3CK tiles such that the associated SFT W has entropy h(W) = h′.

Now, consider the two-dimensional subshift X ⊂ AZ2 with the following local rules:

• every line satisfies the conditions of H, thus π ~e1(X) ⊂ H;

• if the word u appears horizontally starting at position (i, j), it also appears at positions (i, j+1)
and (i, j − 1);

78 CHAPTER 5. SUBSYSTEMS FOR INITIAL HORIZONTAL RESTRICTIONS

• the word u appears with the horizontal period (q + r)α and it cannot appear elsewhere on a
given line;

• the word u is followed by a word of {w1, w2}R.wr−R−1
1 ;

• the tiles coded in binary by the words of {w1, w2}R after u satisfy horizontal and vertical
constraints imposed by the Wang tile set TW .

The window of size qα that remains between two words u and is not filled by the previous
constraints has the only restriction of respecting the horizontal conditions ofH and of not containing u.
There are horizontal lines that respect all of the horizontal conditions in X, because:

• u{w1, w2}∗w∗1 ⊂ LH by the use of Lemma 5.5;

• ÑH(qα) 6= 0 by the use of Lemma 5.7;

• forcing u to appear nowhere else than with a (q+ r)α period is possible because of Lemma 5.5:
u appears as a subword of any word in u{w1, w2}∗w1 at the very beginning only, and it appears
nowhere else due to the very definition of ÑH(qα).

The only vertical restriction that is added between these horizontal lines is only the alignment of
the u’s between two lines where this word appears; so there are configurations in X overall. See
Fig. 5.2.

Let n = (q + r)α. One has

ÑH(qα)k(k−1)NW (k − 1, k) ≤ NX(kn, k)

because in any kn × k window in X there are at least (k − 1) × k complete horizontal segments
starting with a word u, that encode a k − 1× k pattern of W binary with {w1, w2}R, and each of
them also contains qα additional characters that link w1 and u and that do not contain u.

One also has
NX(kn, k) ≤ ÑH(qα)k(k+1)NW (k + 1, k)

because similarly, in any kn× k window in X there are less than (k + 1)× k complete horizontal
segments starting with a word u. We obtain the following inequality:

(k − 1) log2(ÑH(qα))
kn

+log2(NW (k − 1, k))
nk2 ≤ log2(NX(kn, k))

nk2 ≤ (k + 1) log2(ÑH(qα))
kn

+log2(NW (k + 1, k))
nk2

Thus, taking the limit when k →∞, one obtains

h(X) = log2(ÑH(qα))
(q + r)α + h(W)

(q + r)α = h.

5.2. CHARACTERIZATION OF THE ENTROPIES UNDER HORIZONTAL CONSTRAINTS79

noise ∈ Hu u w1 w2 w2 w1 noise ∈ Hu u
noise ∈ Hu u w2 w2 w2 w1 noise ∈ Hu u
noise ∈ Hu u w1 w1 w1 w1 noise ∈ Hu u
noise ∈ Hu u w1 w2 w2 w1 noise ∈ Hu u
noise ∈ Hu u w2 w1 w1 w1 noise ∈ Hu u
noise ∈ Hu u w1 w1 w1 w1 noise ∈ Hu u
noise ∈ Hu u w1 w2 w2 w1 noise ∈ Hu u
noise ∈ Hu u w2 w1 w2 w1 noise ∈ Hu u
noise ∈ Hu u w1 w2 w1 w1 noise ∈ Hu u
noise ∈ Hu u w2 w2 w1 w1 noise ∈ Hu u
noise ∈ Hu u w2 w2 w1 w1 noise ∈ Hu u
noise ∈ Hu u w2 w1 w2 w1 noise ∈ Hu u
noise ∈ Hu u w2 w1 w2 w1 noise ∈ Hu u

Figure 5.2: Illustration (not to scale) of the proof, representing a two-dimensional subshift X with
projective subaction in H and any given entropy h ∈ [0, h(H)] ∩Π0

1. Most of h is given by the noise
zone in purple, which are words chosen from {v | |v| = n, u 6@ v and w1vu ∈ LH}, with a big entropy
“diluted” in the larger-scale construction. The rest of it is due to the simulation of a carefully-chosen
Wang shift in the highlighted zone.

5.2.4 Some consequences
A direct consequence of Theorem 11 – up to extending the construction to higher dimensions, which
is straightforward – is the characterization of all the entropies in any dimension d > 2.

Corollary 5.8. Let A be a finite alphabet. For any number h ∈ Π0
1 such that 0 ≤ h ≤ log2(|A|),

there exists a SFT on AZd of entropy h.

Though the above result looks like the main theorem from [HM10], it is actually more precise.
Hochman and Meyerovitch’s construction realizes these entropies with what is seemingly an arbitrarily
big alphabet; here we show that any fixed alphabet size allows any entropy it can (with a log2(|A|)
bound, the alphabet’s size naturally limiting the attainable entropies due to Proposition 4.10).

For what follows, we introduce the notion of projective subaction of a two-dimensional subshift
X ⊂ AZ2 : the set of all one-dimensional configurations that appear as patterns of two-dimensional
configurations of X, following a given integer vector ~v. It is denoted as π~v(X). Most notably,
π ~e1(X) = {y ∈ AZ | ∃x ∈ X,∃k ∈ Z,∀i ∈ Z, xi,k = yi} is the horizontal projective subaction of X.
It is a one-dimensional subshift.

Given a one-dimensional effective subshift H, that is a subshift with a list of forbidden patterns
enumerable by a Turing Machine, it is known that there exists a two-dimensional sofic subshift
which has H as projective subaction [AS13]. However, in the theorem of simulation of [AS13], but
that sofic subshift has zero entropy. A natural question is if it is possible to force a specific entropy
h with h ≤ h(H) – to aim for any Π0

1-computable number of [0, h(H)]. The next corollary is a
partial result for effective subshifts containing a SFT.
Remark 29. This question is related to the conjecture that a one-dimensional subshift H is sofic if
and only if the two-dimensional subshift H∗ = {x ∈ AZ2 : for all i ∈ Z, xZ×{i} ∈ H} is sofic. We
remark that the entropy of H∗ is h(H), obtained with completely independent rows; thus allowing
entropy in the realization is a way of giving some independence between rows.

Corollary 5.9. Let H ⊂ AZ be an effective subshift with H ′ ⊂ H a SFT. Let 0 ≤ h ≤ h(H ′), h ∈ Π0
1.

Then there exists a two-dimensional sofic subshift X such that h(X) = h and π ~e1(X) = H.

80 CHAPTER 5. SUBSYSTEMS FOR INITIAL HORIZONTAL RESTRICTIONS

Proof. Let h ≤ h(H ′), h ∈ Π0
1.

Let X ′ be the two-dimensional SFT obtained from H ′ using Theorem 11, which is so that
h(X ′) = h and π ~e1(X ′) ⊂ H ′.

Let YH be the SFT with H as horizontal rules and no added vertical rule.
Let Z be a SFT over {0, 0′, 1}Z2 so that two horizontally successive elements must be the same,

so that only 0 and 1 can be above 0, only 0′ can be above 1, and only 0′ can be above 0′. The
configurations of Z are made of at most a single line of 1s with 0′s above and 0s below.

We define Y = Z × YH × Y ′ which is a SFT by product, and finally X which is the projection
π(Y) with

π(y)i,j =
{

(y2)i,j if (y1)i,j = 1
(y3)i,j if (y1)i,j 6= 1

where y1, y2 and y3 are the projections of a configuration y ∈ Y on the three SFTs of the product.
In the end, a configuration in X has at most one line that can be any configuration of H; and

all its other lines are from X ′, ensuring h(X) = h(X ′) = h. Furthermore, since π ~e1(X ′) ⊂ H ′ ⊂ H,
we obtain π ~e1(X) = H.

Chapter 6

Interplay Between Horizontal and
Vertical Conditions

A different way of looking at one-dimensional constraints in a two-dimensional setting, as mentioned
in Section 4.3, is to try to understand if a pair of constraints are compatible. Some are chosen as
horizontal conditions and the others as vertical conditions: can the resulting combined subshift
XH,V be anything we want?

6.1 Theorem of simulation under interplay

Apart from what is done in Chapter 5, another way of looking at one-dimensional constraints in a
two-dimensional setting is to try to understand if a pair of constraints are compatible. Some are
chosen beforehand as horizontal conditions H: now, can we find vertical conditions V so that the
resulting combined subshift XH,V exhibits the same possible behavior as any subshift we want?

For a few nearest-neighbor horizontal constraints, it is not that hard to realize that, whichever
vertical constraints we match them with, the combined subshift will necessarily contain periodic
configurations, and therefore not every SFT on Z2 will be imitable in behavior. These constraints are
said to respect condition D, see Section 6.1.2, which is the union of three smaller easy-to-understand
conditions.

For any other kind of horizontal constraint, we prove in a disjunctive fashion that we can simulate,
in some sense, any two-dimensional subshift Y . However, since the entropy of XH,V is bounded
by h(H), the simulation cannot be a conjugacy; the correct notion is the one of root of a subshift,
defined in Section 4.4.

This section is devoted to proving the following, for a condition D to be defined in Section 6.1.2.

Theorem 12. Let H ⊂ AZ be a one-dimensional nearest-neighbor SFT whose Rauzy graph does
not satisfy condition D. For any two-dimensional SFT Y ⊂ BZ2 , there exists a one-dimensional
SFT VY ⊂ AZ such that XH,VY is a (m,n)th root of Y for some m,n ∈ N2. Furthermore, m, n and
VY can be computed algorithmically.

81

82 CHAPTER 6. INTERPLAY BETWEEN HORIZONTAL AND VERTICAL CONDITIONS

6.1.1 Core idea
We have a one-dimensional nearest-neighbor SFT H ⊂ AZ (”horizontal”) that does not verify
condition D, and we fix a Wang shift W with a set of N tiles τ = {τ1, ..., τN}.

The idea is to introduce a well-chosen one-dimensional SFT V ⊂ AZ (”vertical”) depending on
W so that XH,V encodes the full shift on N elements. Then, we refine V by adding conditions on
forbidden patterns, thus encoding exactly the configurations in W . Such a construction is done with
the use of two main parts, that we will obtain by some carefully chosen forbidden patterns in V .

First, there are parts of synchronization, also called sync parts, that give some rigidity to our
tilings. They precise where the actual coding parts can be, which letters of the alphabet can be
used and where in these coding parts, and they ensure that you cannot glue patches together in an
unexpected way. They are the frame of our construction. Second comes the filling: the coding parts.
A given coding part simply codes a number between 1 and N , possibly several times.

In Fig. 6.1a (our first rough attempt to encode a full shift on an alphabet of size N), we suppose
that our sync parts properly maintain this global structure. We notice that it offers an interesting
opportunity to transmit information vertically. Since our coding parts are exactly aligned, once we
have encoded the full shift over an alphabet of size N , it will suffice to add vertical conditions to
our V to precise whether a coding part can be above another one.

However, horizontally Fig. 6.1a overlooks two problems:

• Since we must respect the horizontal conditions given by H, we cannot put any coding part
next to any other one if we do not put some kind of buffer between the two;

• Even with this, we have no control on the horizontal transfer of information. The idea is to
transmit this horizontal information vertically, since we can add vertical constraints.

We can fix the first problem by setting a buffer (see Fig. 6.1b) between two coding parts, a portion
of column that contains no coding and which can be next to any coding part. Of course, we must
ensure that this buffer cannot be anywhere in a configuration but obediently remains between two
coding parts. The sync parts will be designed to handle this.

However, this does not solve our need for horizontal transmission of information. Hence a
new idea: altering our coding parts so that they transmit information diagonally. We put several
consecutive lines of them, shifted little by little, as illustrated in Fig. 6.1c. That way, we can encode
horizontal forbidden patterns vertically, because we can see vertically which coding part is on the
right of the one we are considering. For instance, by looking vertically we can know that the encoding
of T1,1 is next to T2,1 and above T1,0, and thus restrict the content of these codings.

In what follows, we will build Fig. 6.1c in details, although some technicalities will be needed
to preserve the integrity of our sync parts and to ensure that the coding of a tile of W is well
transmitted. This construction will indeed encode the full shift over τ , the tile set of W . Then, it
can easily be refined by adding vertical rules so that the local rules of W are ensured. Consequently,
our newly built XH,V will properly simulate all configurations of W , allowing us to perform the rest
of the proof of Theorem 12.

6.1.2 The condition D
We recall the notion of strongly connected component, abridged as SCC, mentioned below Prop-
erty 1.30, as a connected component of a directed graph.

6.1. THEOREM OF SIMULATION UNDER INTERPLAY 83

sync

T0,0

sync

T1,0

sync

T2,0

sync

T3,0

sync

T4,0

sync

T0,1

sync

T1,1

sync

T2,1

sync

T3,1

sync

T4,1

sync

T0,2

sync

T1,2

sync

T2,2

sync

T3,2

sync

T4,2

(a) Basic depiction of sync parts
and coding parts that represent
tiles of W (not to scale; actually
unrealizable).

sync

T0,0

sync

T1,0

sync

T2,0

sync

T3,0

sync

T4,0

sync

T0,1

sync

T1,1

sync

T2,1

sync

T3,1

sync

T4,1

sync

T0,2

sync

T1,2

sync

T2,2

sync

T3,2

sync

T4,2

(b) Same construction adding
”buffers” between codings of tiles
to be realizable.

sync

T0,0

T0,0

T0,0

T0,0

sync

T1,0

T1,0

T1,0

T1,0

sync

T2,0

T2,0

T2,0

T2,0

sync

T3,0

T3,0

T3,0

T3,0

sync

T4,0

T4,0

T4,0

T4,0

sync

T0,1

T0,1

T0,1

T0,1

sync

T1,1

T1,1

T1,1

T1,1

sync

T2,1

T2,1

T2,1

T2,1

sync

T3,1

T3,1

T3,1

T3,1

sync

T4,1

T4,1

T4,1

T4,1

sync

T0,2

T0,2

T0,2

T0,2

sync

T1,2

T1,2

T1,2

T1,2

sync

T2,2

T2,2

T2,2

T2,2

sync

T3,2

T3,2

T3,2

T3,2

sync

T4,2

T4,2

T4,2

T4,2

(c) Improved construction: we
encode vertically the horizontal
restrictions between tiles of W .
A tile of W (here T2,1) is repre-
sented in bold.

Figure 6.1: Steps of the core idea to reach the generic construction. Not to scale: the sync part will
be much bigger than the code part.

Definition 6.1. We say that an oriented graph G = (V, ~E) verifies condition D (for ”Decidable”)
if all its SCCs have a type in common among the following list. A SCC S can be of none, one or
several of these types:

• for all vertices v ∈ S, we have (v, v) ∈ ~E: we say that S is of reflexive type;

• for all vertices v 6= w ∈ S such that (v, w) ∈ ~E, we have (w, v) ∈ ~E: we say that S is of
symmetric type;

• there exists p ∈ N so that S =
⊔p−1
i=0 Vi with, for any v ∈ Vi, we have [(v, w) ∈ ~E ⇔ w ∈ Vi+1]

with i+ 1 meant modulo p: we say that S is of state-split cycle type.

Remark 30. The term state-split is used in reference to a notion introduced in [LM95]: a state-split
cycle is a cycle where some vertices have been split.

Note that S = {v} a single vertex with a loop is also of symmetric type. Similarly, a single
vertex is of state-split cycle type with a partition with one unique class V0.
Example 19. Consider the following Rauzy graphs:

G̃(H1) G̃(H2) G̃(H3)
where edges between dotted sets of vertices in the third graph represent that all vertices from

the first set have edges leading to all vertices of the second set.
These three graphs respect condition D, being respectively of reflexive, symmetric and state-split

cycle type.

84 CHAPTER 6. INTERPLAY BETWEEN HORIZONTAL AND VERTICAL CONDITIONS

6.1.3 Generic construction
In this section, we describe a set of properties on a directed graph, forming a condition called condition
C that has stronger requirements than condition D. Condition C allows a generic construction of
the proof of Theorem 12 for the associated one-dimensional, nearest-neighbor SFT.

In all that follows, we denote elements of cycles with an index that is written modulo the length
of the corresponding cycle. We need the following defintions before describing condition C.

Definition 6.2. Let C1 and C2 be two distinct cycles in an oriented graph G, with elements denoted
respectively c1i and c2j . Let M := LCM(|C1|, |C2|). Let C be any cycle in that graph, with elements
denoted ci.

We say that the cycles C1 and C2 contain a good pair if there is a pair (i, j) and an integer
1 < l < M−1 such that c1i 6= c2j , c

1
i+1 6= c2j+1, . . . , c

1
i+l 6= c2j+l and c1i+(l+1) = c2j+(l+1), . . . , c

1
i+(M−1) =

c2j+(M−1). All pairs (i+ p, j + p), p ∈ {0, . . . ,M − 1} are said to be in the orbit of a good pair.
We say that a cycle C contains a uniform shortcut if there exists a k ∈ {0, 2, 3..., |C| − 1} (any

value except 1) such that for any ci ∈ C, (ci, ci+k) ∈ ~E.
We say that there is a cross-bridge between C1 and C2 if there are i ∈ {0, ..., |C1| − 1} and

j ∈ {0, ..., |C2| − 1} with c1i 6= c2j and c1i+1 6= c2j+1 such that (c1i , c2j+1) ∈ ~E and (c2j , c1i+1) ∈ ~E.
Finally, an attractive vertex for a set of vertices S is any vertex v so that for all s ∈ S, (s, v) ∈ ~E.

A repulsive vertex for S is defined similarly, with (v, s) ∈ ~E instead.

These definitions are illustrated in Fig. 6.2.

Definition 6.3. Let H ⊂ AZ be a one-dimensional nearest-neighbor SFT. We say that H verifies
condition C if G̃(H) = (V, ~E) contains two cycles C1 and C2, of elements denoted respectively c1i
and c2j , with the following properties:

(i) |C1| ≥ 3;

(ii) C1 and C2 contain a good pair;

(iii) There is no uniform shortcut neither in C1 nor in C2;

(iv) There is no cross-bridge between C1 and C2;

(v) C1 contains no vertex that is both attractive and repulsive vertex in C1 ∪ C2 (seen as a set).

Some vertices can be repeated; that is, these cycles can go several times through the same vertex
as long as they verify the aforementioned properties.

Proposition 6.4. If G̃(H) verifies condition C, and W is a Wang shift, then there exists an SFT
VW ⊂ AZ that can be algorithmically derived from W , such that XH,VW is a root of W .

The rest of the subsection is devoted to proving this result.
Let H with G̃(H) verifying condition C. We focus on encoding as a root, in the correct XH,V , a

full shift on an alphabet τ of cardinality N . Then, the possibility to add vertical rules will allow us
to encode any Wang shift W using this alphabet, that is, to simulate the configurations of W as a
root of XH,V .

6.1. THEOREM OF SIMULATION UNDER INTERPLAY 85

i

j

C1

(a) C1 and C2 (in
red) have a good
pair (i, j).

C1

(b) C1 and C2 (in
red) have no good
pair.

(c) A cycle with
uniform shortcuts
of distance 3 (in
green).

C2C1

(d) A cross-bridge (in
green) between cycles
C1 and C2.

t

p

(e) An attractive ver-
tex t and a repulsive
vertex p.

Figure 6.2: Cases of compliance or not with elements of Condition C.

For the rest of the construction, we name M := LCM(|C1|, |C2|) and K := 2|C1| + |C2| + 3.
We suppose that N ≥ 2. Indeed, the case of encoding a monotile Wang shift is easy: consider only
the cycle C1 in G̃(H), that may have extra edges from one element to another, but no uniform
shortcut. Build V the vertical SFT from the graph G̃(H)′ obtained by removing any of those extra
edges, keeping only a simple cycle – the same as C1. Then XH,V contains only the translate of one
configuration, that cycles through the elements of C1 in the correct order, both horizontally and
vertically. This is a root of a monotile Wang shift.

We refer to Fig. 6.3a in the description that follows. We use the term slice as a truncation of a
column: it is a part of width 1 and of finite height. We use the following more specific denominations
for the various scales of our construction:

• A macro-slice is a slice of height KMN . Any column of XH,V will merely be made of a
succession of some specific macro-slices called ordered macro-slices (see below).

• A meso-slice is a slice of height MN ; meso-slices are assembled into macro-slices.

• A micro-slice is a slice of height N . This subdivision is used inside specific meso-slices called
code meso-slices (see below).

Although any scale of slice could denote any truncation of column of the right size, we focus on
specific slices that are meaningful because of what they contain, so that we can assemble them
precisely. They are:

• An (i, j) k-coding micro-slice is a micro-slice composed of N − 1 symbols c1i and one symbol
c2j at position k. It encodes the kth tile of alphabet τ , unless c1i = c2j : in that case, it is called
a buffer and encodes nothing. We can write “(i, j) coding micro-slice” when we do not want
to specify which tile is encoded.

• An (i0, j0) (k, l)-code meso-slice is a meso-slice made of M vertically successive coding micro-
slices. The one on top is an (i0, j0) k-coding micro-slice. We add the following restrictions:

– an (i, j) k-coding micro-slice must be vertically followed by a (i + 1, j + 1) k-coding
micro-slice, unless c1i 6= c2j but c1i+1 = c2j+1, that is if the new micro-slice is a buffer but
the previous one is not;

86 CHAPTER 6. INTERPLAY BETWEEN HORIZONTAL AND VERTICAL CONDITIONS

– if c1i = c2j but c1i+1 6= c2j+1, then the buffer must be followed by a (i+ 1, j + 1) l-coding
micro-slice.

We can write “(i0, j0) code meso-slice” when we do not want to specify which tiles are encoded.

• An i-border meso-slice is made of M
|C1|N times the vertical repetition of all the elements of the

cycle C1, starting with c1i .

• A c1i meso-slice is made of MN times the vertical repetition of element c1i , denoted (c1i)MN in
Fig. 6.3a. The same definition holds for a c2j meso-slice.

• The succession of a c1i meso-slice, then a c1i+1 meso-slice, ..., then a c1i−1 meso-slice is called a
i C1-slice. It is of height MN |C1|. Similarly, we define a j C2-slice (of height MN |C2|).

• Finally, a (i, j)-ordered (k, l)-coding macro-slice is the succession of a i-border meso-slice, a i
C1-slice, a second i C1-slice, a j C2-slice, a i-border meso-slice, and finally a (i, j) (k, l)-code
meso-slice. We can write “(i, j)-ordered macro-slice” when we do not want to specify which
tiles are encoded.

Remark 31. The (i0, j0) (k, l)-code meso-slice is well-defined because since C1 and C2 contain a
good pair, a code meso-slice is a vertical succession of coding micro-slide and of buffers, with either
only one vertical succession of coding micro-slice of one vertical succession of buffers (possibly both).
Therefore, there can be at most one change, from k to l, in the tiles encoded; k is then called the
main-coded tile, and l the side-coded tile.

Note that if c1i0 6= c2j0
but c1i0−1 = c2j0−1, then the meso-slice contains no side-coded tile – its last

coding micro-slice is the last buffer – so l is actually irrelevant. Conversely, if c1i0 = c2j0
, then the

meso-slice contains no main-coded tile, so k is actually irrelevant.
Now, the patterns we authorize in V are the (i0 + p, j0 + p)-ordered macro-slices with a good

pair (i0, j0) and p ∈ {0, . . . ,M − 1}, and all patterns that allow the vertical juxtaposition of two
(i, j)-ordered macro-slices, using the same i and j, but possibly different code meso-slices. We prove
below that this is enough for our resulting XH,V to simulate a full shift on τ .

We say that two legally adjacent columns are aligned if they are subdivided into ordered macro-
slices exactly on the same lines. We say that two adjacent and aligned columns are synchronized if
any (i, j)-ordered macro-slice of the first one is followed by a (i+ 1, j + 1)-ordered macro-slice in the
second one.

Proposition 6.5. In this construction, two legally adjacent columns are aligned up to a vertical
translation of size at most 2|C1| − 1 of one of the columns.

Proof. If two columns, call them K1 and K2, can be legally juxtaposed such that they are not aligned
even when vertically shifted by 2|C1| − 1 elements, it means that one of the border meso-slices of K1
has at least 2|C1| vertically consecutive elements that are horizontally followed by something that is
not a border meso-slice in K2 (see Fig. 6.3b). Since 2|C1| < MN which is the length of a meso-slice,
at least |C1| successive elements among the ones of the border meso-slice in K1 are horizontally
followed by elements that are part of the same meso-slice in K2. If this is a code meso-slice, simply
consider the other border meso-slice of K1 (the first you can find, above or below, before repeating
the pattern cyclically): that one must be in contact with a c1i or c2j meso-slice instead. Either way,
we obtain that a border meso-slice has at least |C1| successive elements that are horizontally followed

6.1. THEOREM OF SIMULATION UNDER INTERPLAY 87

c1i

c1i+1

. . .

c1i−1

c1i

c1i+1

. . .

c1i−1

. . .

. . .

c1i−1

(i, j)-ordered
macro-slice

border

(c1i)MN

(c1i+1)MN

. . .

(c1i−1)MN

(c1i)MN

(c1i+1)MN

. . .

(c1i−1)MN

(c2j)MN

(c2j+1)MN

. . .

(c2j−1)MN

border

code

i C1-slice

j C2-slice

meso-slices

τk
i
j

τk
i+ 1
j + 1

. . .

τk
i− 4
j − 4

τ`
i− 1
j − 1

(i+ 1, j + 1)
k-coding

micro-slice

c1i+1

c1i+1

. . .

c1i+1

c2j+1

c1i+1

c1i+1

. . .

c1i+1

k

(a) Columns allowed, for (i, j) in the orbit of a good pair.
Here c1

i−3 = c2
j−3 and c1

i−2 = c2
j−2, forming buffers in the

code meso-tile, represented as hatched squares.

border

(c1i)MN

(c1i+1)MN

...

(c1i−1)MN

(c1i)MN

(c1i+1)MN

...

(c1i−1)MN

(c2j)MN

(c2j+1)MN

...

(c2j−1)MN

border

code

border

(c1i)MN

(c1i+1)MN

...

(c1i−1)MN

(c1i)MN

(c1i+1)MN

...

(c1i−1)MN

(c2j)MN

(c2j+1)MN

...

(c2j−1)MN

border

code

border

(c1i)MN

(c1i+1)MN

...

(c1i−1)MN

(c1i)MN

(c1i+1)MN

...

(c1i−1)MN

(c2j)MN

(c2j+1)MN

...

(c2j−1)MN

border

code

border

(c1i)MN

(c1i+1)MN

...

(c1i−1)MN

(c1i)MN

(c1i+1)MN

...

(c1i−1)MN

(c2j)MN

(c2j+1)MN

...

(c2j−1)MN

border

code

(b) Faulty alignment of adjacent
columns.

Figure 6.3: The generic construction.

88 CHAPTER 6. INTERPLAY BETWEEN HORIZONTAL AND VERTICAL CONDITIONS

by some t meso-slice made of a single element t. Hence if we suppose that juxtaposing K1 and K2
this way is legal, it means that in H all the elements of C1 lead to t, i.e t is an attractive vertex.
Either this is forbidden, or the ”reverse” reasoning where we focus on the borders of K2 proves that
there is also an element p used in a Ci, i ∈ {1, 2} slice of K1 that leads to every element of C1; that
is, C1 has a repulsive vertex in C1 ∪ C2. Condition C forbids any graph that had both, hence we
reach a contradiction. We obtain the proposition we announced.

Proposition 6.6. In this construction, two legally adjacent columns are always aligned and syn-
chronized.

Proof. Proposition 6.5 states that two adjacent columns K1 and K2 are always, in some sense,
approximately aligned up to a vertical translation of size at most 2|C1| − 1. If the two columns
are slightly shifted still, then any meso-slice of the C1 slices of K1 (such a meso-slice consists only
of the repetition of some c1i) is horizontally followed by two different meso-slices in K2. Being
different, at least one of them is not c1i+1 but some c1i+k, k ∈ {2, ..., |C1|}. This is true with the same
k for all values of i, notably because an ordered macro-slice contains two successive C1 slices, so
all meso-slices representing c1i are repeated twice – there is no problem with the meso-slices at the
extremities. We obtain something that contradicts our assumption that C1 has no uniform shortcut.
Hence there is no vertical shift at all between two consecutive columns. Thus our construction
ensures that two adjacent columns are always aligned.

It is easy to see that a meso-slice made only of c1i in column K1 is horizontally followed, because the
columns are aligned, by a meso-slice made only of c1i+k in column K2, for some k ∈ {0, . . . , |C1| − 1}.
This k is once again independent of the i because inside a macro-slice, meso-slices respect the order
of cycle C1. But because C1 has no uniform shortcut, we must have k = 1. The reasoning is the
same for the C2 slice, and we use the fact that C2 has no shortcut either. Hence our columns are
synchronized.

With these properties, we have ensured that our structure is rigid: our ordered macro-slices are
aligned and synchronized. The last fact to check is the transmission of information, represented by
the following proposition:

Proposition 6.7. In this construction, an (i, j)-ordered (k, l)-coding macro-slice is horizontally
followed by an (i+ 1, j + 1)-ordered (k, l)-coding macro-slice, except in two situations:

• if c1i = c2j , we can have a (k, l)-coding macro-slice followed by a (k′, l)-coding macro-slice;

• if c1i 6= c2j but c1i−1 = c2j−1, we can have a (k, l)-coding macro-slice followed by a (k, l′)-coding
macro-slice.

Proof. The exceptions are due to an earlier remark: if c1i = c2j , then the code meso-slice contains no
main-coded tile, so its value of k is actually irrelevant. Similarly, if c1i 6= c2j but c1i−1 = c2j−1, the
code meso-slice contains no side-coded tile, so its value of l is irrelevant.

For the rest of the proof, it is already clear from Proposition 6.6 that an (i, j)-ordered macro-slice
is horizontally followed by an (i+ 1, j + 1)-ordered macro-slice; the only part left to study is the
coding part.

Now, consider two horizontally adjacent coding micro-slices. By synchronicity, one is an (i, j)
micro-slice, and the other an (i+1, j+1) micro-slice. Since G̃(H) verifies condition C, and particularly
has no cross-bridge, we cannot have both an edge (c1i , c2j+1) ∈ ~E and an edge (c2j , c1i+1) ∈ ~E, except

6.1. THEOREM OF SIMULATION UNDER INTERPLAY 89

b

a c

a

a

c

b

b

c

c

c

c

c

a

a

c

b

b

c

c

c

a

c

a

b

c

b

c

c

c

a

a

c

b

b

c

c

c

c

c

a

a

c

b

b

c

c

c

a

c

a

b

c

b

c

c

c

a

a

c

b

b

c

c

c

c

c

a

a

c

b

b

c

c

c

a

c

a

b

c

b

c

c

c

a

c

a

b

c

b

c

c

c

Figure 6.4: A Rauzy graph and several associated code meso-slices for |τ | = 3. Here are horizontally
successively encoded τ3, τ1, τ2 and τ2, the number being indicated by the location of the line of c’s.
One can check that τ1 can be located left to τ2 in the encoding, by using vertical constraints only,
as depicted by the bold rectangle with rounded corners.

if one of the two micro-slices is a buffer. Therefore, either one of them is a buffer, or they both are
p-coding for the same p.

This is enough to prove the proposition.

In the end, we proved that if we were able to find two cycles C1 and C2 complying with condition
C, they would be enough to build the construction we desire: the root of a full shift on N elements.
Indeed, take Z the clopen made of all the configurations with, at position (0, 0), the bottom of an
(i, j)-ordered macro-slice with c1i−1 = c2j−1 but c1i 6= c2j . Suppose that macro-slice is (k, l)-coding
(with an irrelevant l). Map it, along with the M−1 that follow horizontally (hence, map a M×KMN
rectangle) on y(0,0) = τk. By mapping the whole configuration similarly, Z is homeomorphic to Y
with the required properties: XH,VY is therefore a (M,KMN)th root of τZ2 .

Then, to encode only the configurations that are valid in W a Wang shift, we forbid the following
additional vertical patterns:

• the code meso-slices that would contain both τk as its main-coded tile and τl as its side-coded
tile, if τk cannot be horizontally followed by τl in W ;

• and the vertical succession of two ordered macro-slices that would contain code meso-slices
with two main-coded tiles that cannot be vertically successive in W .

With this, we proved Proposition 6.4: the set of vertical conditions obtained, that define a one-
dimensional SFT VW , is such that XH,VW is a (M,KMN)th root of W .

6.1.4 Summary of the generic construction for one strongly connected
component

We suppose that H ⊂ AZ is a one-dimensional nearest-neighbor SFT such that its Rauzy graph
G̃(H) = (V, ~E) does not verify condition D and is made of only one SCC.

90 CHAPTER 6. INTERPLAY BETWEEN HORIZONTAL AND VERTICAL CONDITIONS

In all that follows, we say that a vertex u has a loop if (u, u) ∈ ~E – it is loopless otherwise. We
name unidirectional any edge (u, v) of ~E so that there is no edge (v, u) in ~E – it is bidirectional if
both are in ~E. Note that G̃(H), since it does not verify condition D, contains at least one loopless
vertex, and one unidirectional edge.

The notion of cycle is intended as an ordered tuple of vertices representing the order of traversal.
Except when explicitly mentioned otherwise, all paths and cycles manipulated in the following
subsections are assumed to be simple, that is, they do not self-intersect by going through the same
vertex twice (except for a path from a vertex to itself, that is, a cycle). For ease of reading, the
fact that we manipulate simple paths and cycles until further notice is occasionally reminded to the
reader throughout the following subsection.

The reasoning that follows is based on defining two cycles C1 and C2, and trying to fit condition C
from Definition 6.3 as much as possible. We name C1’s vertices c1i and C2’s vertices c2j , with
i ∈ {0, . . . , |C1| − 1} and j ∈ {0, . . . , |C2| − 1}.

The idea of the proof of Theorem 12 is to classify the possible graphs into various cases. In each
case, one has a standard procedure to find convenient C1 and C2 inside any graph to perform the
generic construction from Section 6.1.3. For some specific cases, we will not meet condition C even
though H does not verify condition D. However we prove even when one or two items of condition
C fail that the propositions from Section 6.1.3 that are Proposition 6.5 and Proposition 6.6 still
hold nonetheless, and the consequent reasoning too.

The division into cases is presented in a disjunctive fashion, and broadly reproduced in Table 6.1.

Table 6.1: Table of the main cases, each of them illustrated with an example (the C1 on which we
perform the generic construction is the main cycle indicated; the C2 is in red).

Loops No loop

Bidirectional edges No bidirectional edge

v
w

C1
v

w

u

C1
v

a

u

C1
v

w

u

C1
v

w

C1

C1 C1 C1

Case 1.1 Case 1.2 Case 1.3 Case 2.1 Case 2.2 Case 3.1 Case 3.2 Case 3.3

Is there a loop on a vertex?

• If YES, this is Case 1 (Section 6.1.5); is there a unidirectional edge between one vertex with a
loop and one loopless vertex?

– If YES: this is Case 1.1.
∗ either all items of condition C hold for the cycles we focus on, and we perform the

generic construction;

6.1. THEOREM OF SIMULATION UNDER INTERPLAY 91

∗ or there exist both attractive and repulsive vertices for the cycle C1 defined – but
Proposition 6.5 still holds because one vertex has in-degree exactly 1.

– If NO: are all unidirectional edges between two loopless vertices?
∗ If YES: this is Case 1.2.
· first option, in trying to find convenient cycles, we are able to reduce to a subgraph

similar to the ones of Case 2.2, and apply that;
· second option, we find convenient cycles on which all items of condition C hold,

and we perform the generic construction;
· third option, we reduce to a length 3 case as in Section 6.1.8.

∗ If NO: this is Case 1.3 ; all unidirectional edges are between two vertices with loops.
· first option, all items of condition C hold for the cycles we focus on, and we

perform the generic construction;
· second option, cross-bridges exist between C1 and C2. We prove that in this

specific case, only one kind of cross-bridge can happen that actually endangers
the generic construction. Either it does not, and we still perform the generic
construction; or it does, but then C1 is of length 3, which is solved in Section 6.1.8.
· last option, an attractive and a repulsive vertex both exist for C1; then we prove
C1 has at most five vertices, a specific case which is solved in Section 6.1.8.

• If NO, is there at least one bidirectional edge?

– If YES, this is Case 2 (Section 6.1.6); can we find a simple cycle of length at least 3
containing at least one bidirectional edge?
∗ If YES: this is Case 2.1. In this case we easily find cycles that verify condition C

and we perform the generic construction.
∗ if NO: this is Case 2.2. We can find cycles so that all items of condition C hold for

them, and we perform the generic construction.
– If NO, this is Case 3 (Section 6.1.7); considering the smallest cycle C one can find, is

there a path between two different vertices of C?
∗ If YES, can one find such a path so that it does not intersect C elsewhere and is of a

length different from the distance between the vertices it links when measured in C?
· If YES: this is Case 3.1. Either all items of condition C hold for the cycles we

focus on – up to swapping which one is used as C1 and which one is used as C2

(possible because both have at least three vertices) – and we perform the generic
construction; or there are uniform shortcuts; then we carefully choose new cycles
to focus on and prove that we can perform the generic construction on these new
cycles, some way or other.
· If NO: this is Case 3.2. Then condition C holds for the cycles we focus on – up

to swapping which one is used as C1 and which one is used as C2 here too – and
we perform the generic construction.

∗ If NO, this is Case 3.3. Then once again, for the cycles we focus on, we show that
they verify condition C and we can perform the generic construction.

92 CHAPTER 6. INTERPLAY BETWEEN HORIZONTAL AND VERTICAL CONDITIONS

6.1.5 Case 1
We suppose that G̃(H) contains a loop.

Case 1.1: we can find a unidirectional edge so that the first vertex is loopless and the second
has a loop (or the opposite, for which the construction is similar and omitted).

v
w

C1

Take the shortest possible cycle containing such an edge, which exists since G̃(H) is strongly
connected. Call v the loopless vertex and w the vertex with a loop. Naming that cycle C1 with
c10 = w, and setting C2 = {w}, we have to check that they fulfill the conditions of Section 6.1.3.

(v, w) is unidirectional and v is loopless. Note that no edge can go from w to any vertex that
is not w or c11, else we could find a shorter cycle with the same characteristics. Similarly, v has
in-degree 1. Hence:

• |C1| ≥ 3 since (w, v) /∈ ~E;

• C1 and C2 contain a good pair, that is (c11, w).

• C2 has no uniform shortcut because it is made of one single vertex. C1 has no uniform shortcut
because of what precedes about w and because v is loopless;

• If there was a cross-bridge between C1 and C2, it would mean there are two edges (c1i , w) and
(w, c1i+1) ∈ ~E with c1i 6= w 6= c1i+1, which is also impossible because of what precedes about w;

• Here, there can actually be attractive and repulsive vertices for C1, which endangers Propo-
sition 6.5. However, in this specific case, the only vertex that has an edge going to v is the
previous one in the cycle C1, call it u := c1−2. As such, in any column, the v meso-slice must
be next to the u meso-slice of the previous column since no other block of u of size MN can
be found in said previous column. Hence two consecutive columns are always aligned and we
can make the generic construction work with no restriction on attractive and repulsive vertices.
As such, Proposition 6.5 still holds, albeit for reasons different from the ones in Section 6.1.3:
we fully exploit the fact that v is of in-degree 1.

Case 1.2: all unidirectional edges are between two loopless vertices.

v

w

u

C1

Since G̃(H) is in Case 1 and Subcase 1.2, it contains loops and its unidirectional edges are
necessarily between two loopless vertices. Hence it contains bidirectional edges. Moreover, it cannot
contain only bidirectional edges, else it would verify condition D. Hence G̃(H) contains both
unidirectional and bidirectional edges.

6.1. THEOREM OF SIMULATION UNDER INTERPLAY 93

We name u, v, w three successive vertices in the graph so that (u, v), (v, w) and (w, v) ∈ ~E, and
(v, u) /∈ ~E (so u and v, additionally, have no loop). Two situations are possible: either there is a
path from w to u that does not go through v, and we obtain by taking the shortest of these a cycle
containing both a unidirectional and a bidirectional edge; or there is not. In that second case, we
consider a path from v to u:

• either it contains no bidirectional edge, and we focus on the subgraph made of one cycle with
unidirectional edges and the bidirectional edge (v, w): this is treated just as Case 2.2 from
Section 6.1.6 (with the extra of w having a loop, but this does not change the reasoning).

• or the path from v to u contains a bidirectional edge; then concatenated to (u, v) it forms a
cycle with both a unidirectional and a bidirectional edge.

Iteratively reducing the cycle obtained to the shortest one possible, we either end up in a situation
that can be reduced to Case 2.2, or to a cycle similar to the figure above: with a unidirectional edge,
followed by a bidirectional edge, and containing no shorter cycle that would fit.

Naming that cycle C1 with c10 = v, and defining C2 as the cycle containing only v and w, we
have to check that they fulfill the conditions of the generic construction. Note that w cannot lead to
any vertex except c12, v, and possibly w; else we could find a cycle shorter than C1 that has the
same properties. Note, also, that v 6= c12, else we would reduce to Case 2.2. Hence:

• |C1| ≥ 3;

• C1 and C2 have a good pair: (c12, v) is one.

• C2 has no uniform shortcut because it is made of only two vertices and v has no loop. C1

has no uniform shortcut of length 0 because u and v are loopless, and no uniform shortcut of
length −1 because (v, u) /∈ ~E. With what precedes about w, there is no uniform shortcut at
all;

• If there was a cross-bridge, we could have two cases:

– First is (c1i , v) and (w, c1i+1) ∈ ~E with c1i 6= w and c1i+1 6= v. Since v has no loop, we
deduce c1i 6= v, hence c1i+1 6= w. Also consider that c1i+1 = c12 would imply c1i = w,
which is impossible. Therefore, with what we said on w, that kind of cross-bridge cannot
happen.

– Second is (c1i , w) and (v, c1i+1) ∈ ~E with c1i 6= v and c1i+1 6= w. Since v has no loop and
(v, u) /∈ ~E, we also deduce v 6= c1i+1 and u 6= c1i+1. Then we can define a shorter cycle
that is C1′ = (v, c1i+1, c

1
i+2, ..., u). Since (v, u) /∈ ~E, C1′ has length at least 3, contains

at least one unidirectional edge, and is strictly shorter than C1. Since C1 is a minimal
cycle having these properties and containing a bidirectional edge, C1′ must contain no
bidirectional edge. Then C1′ is a cycle of unidirectional edges, such that a length two
cycle (made of v and w) shares one vertex in common with it. This is an iterative
reduction that should have already been performed to build C1 and C2, therefore it
cannot happen here.

• If there is an attractive vertex for C1 located in C2, then it is in particular in C1 since
C2 ⊂ C1. Since they have no loop, u and v can’t be attractive or repulsive. If any other
vertex than w or the following vertex, call it x, was attractive, then it would allow for a direct

94 CHAPTER 6. INTERPLAY BETWEEN HORIZONTAL AND VERTICAL CONDITIONS

edge from w to that vertex, and so a fitting cycle strictly shorter than C1 would exist, which
is impossible. But if w (resp. x) was attractive, in particular (u,w) ∈ ~E (resp. (u, x) ∈ ~E).
Since w (resp. x) would have a loop because it also attracts itself, in this Case 1.2 we couldn’t
have a unidirectional edge (u,w) (resp. (u, x)): necessarily (w, u) ∈ ~E (resp. (x, u) ∈ ~E). The
only possibility not to cause a contradiction with the minimality of C1 is that C1 is already of
length 3 (resp. 4).
The length 3 case is treated in Section 6.1.8. The length 4 case with (u, v, w, x) and x attractive
is actually impossible, because (u, v, x) reduces to a length 3 case with the correct properties,
but C1 was supposed to be minimal.

With all this, we have reduced all situations faced in Case 1.2 to one of the following:

• a specific case of Section 6.1.8;

• or a reasoning similar to case 2.2 from Section 6.1.6;

• or an impossibility;

• or something that actually follows condition C (Definition 6.3).

Case 1.3: all unidirectional edges are between two vertices with loops.

v

a

u

C1

Since G̃(H) does not verify condition D, we can find a cycle with at least one loopless vertex
and one unidirectional edge, that, in this specific case, may go through the same vertices twice since
it is defined, strictly speaking, as the concatenation of one path from the unidirectional edge to the
loopless vertex, and one path back, the two of them being able to intersect.

Exceptionally we will manipulate here a non-simple, self-intersecting cycle: define C1 as the
smallest cycle with the concatenation of the two aforementioned paths. Call u and v the two
successive vertices of the unidirectional edge, that is (u, v) ∈ ~E but (v, u) /∈ ~E. Note that u and
v have a loop since we are in Case 1.3. Moreover, call a the loopless vertex that was also used to
build C1. Finally, set a = c10, u = c1i0 , v = c1i0+1.

Setting C2 = {v}, we have to check that they fulfill the conditions of the generic construction:

• |C1| ≥ 3;

• (c1i0+2, v) is a good pair since C1 passes through v only once in the cycle by construction.

• C2 is made of only one vertex, hence it has no uniform shortcut. C1 has no uniform shortcut
of length 0 since a has no loop. It has no uniform shortcut of length −1 because (v, u) /∈ ~E.
We study a hypothetical shortcut that would allow (a, c1j) ∈ ~E: notice that (c1j , a) ∈ ~E since a
has no loop. j ∈ {2, ..., |C1| − 2} hence one can use either (a, c1j) or (c1j , a) to build a cycle
shorter than C1 containing a, u and v, which would therefore be a cycle that would have all
the required properties. This is impossible by minimality of C1.

6.1. THEOREM OF SIMULATION UNDER INTERPLAY 95

• There can be cross-bridges between C1 and C2. However, a subtle line of reasoning explained
below shows that here, keeping the indices used previously, we only have to avoid the cross-
bridges [(c1i , v) and (v, c1i+1) ∈ ~E with c1i 6= v 6= c1i+1] with i = i0 − 1 and i = i0 + 2 in order
not to disturb how the generic construction from Section 6.1.3 works.
The case i = i0 − 1 is impossible because (v, c1i0) = (v, u) /∈ ~E. If (v, c1i0+3) ∈ ~E then we can
use it to find a cycle shorter than C1 that contains everything we want – unless c1i0+2 = a.
If c1i0+2 = a then we redefine C2 = {u} with which all that we have proved can be adapted:
we only have to avoid the cross-bridges [(c1i , v) and (v, c1i+1) ∈ ~E with c1i 6= v 6= c1i+1] with
i = i0− 2 and i = i0 + 1. Once again, this is impossible except if we also have c1i0−1 = a. Then
C1 is made of only three elements and this case is solved in Section 6.1.8.

• As we will see, there is only one possibility for C1 to have both an attractive and a repulsive
vertex. Since C2 ⊂ C1, it is enough to consider attractive and repulsive vertices for C1

that are located in C1. Let t be an attractor located in C1 for all elements of C1. Notably,
(a, t) ∈ ~E. Since a has no loop, this Case 1.3 causes (t, a) ∈ ~E. Similarly, for p a repulsive
vertex, we have not only (p, a) ∈ ~E, but also (a, p) ∈ ~E. Hence the shortest cycle that meets
all our requirements is (a, p, u, v, t), so the only possibility for C1 to have both that does not
contradict its minimality is to be this precise cycle (with some of the vertices being possibly
equal). This is a case we treat in Section 6.1.8.

Cross-bridges remark for Case 1.3: We prove why we only need to avoid two cross-bridges.
The basics of Case 1.3 are: (u, v) ∈ ~E, (v, u) /∈ ~E, a loopless, C1 is a possibly self-intersecting cycle
made of the concatenation of a path from a to u and one from v to a, all unidirectional edges are
from or to a vertex with a loop, C2 = {v}.

Any diagonal region that contains the coding of a tile, delimited by buffers and possibly border
slices above or below, does encode exactly one tile, see Fig. 6.5. Indeed, each of its vertical slices
contains at least one of the elements among {c1i0 , c

1
i0+2} (since the buffer is given by c1i0+1), and

these are always part of a micro-slice that encodes something. By construction, the whole slice
encodes the same tile number, vertically.

Moreover, two adjacent slices also contain the same encoding, using the fact that there is no
cross-bridge for i = i0 − 1 or i = i0 + 2. Indeed, suppose we have a c1i0 coding micro-slice in the
rightmost slice. To its left, in the second rightmost slice, is a c1i0−1 coding micro-slice that encodes
the same thing, since there is no cross-bridge for i = i0 − 1. Since we force two vertically adjacent
coding micro-slices to encode the same tile if none of them is a buffer, the coding micro-slice using
c1i0 , that is below the one using c1i0−1, encodes the same tile as the latter. But to the left of the c1i0
coding micro-tile is a c1i0−1 coding micro-tile that encodes the same tile. Below this one is, once
again, a c1i0 coding micro-tile that encodes the same tile by construction... The same reasoning
works when starting from a c1i0+2 coding micro-slice in the leftmost slice: it encodes the same thing
as the c1i0+3 coding micro-slice to its right since there is no cross-bridge for i = i0 + 2, etc.

Overall, in this case 1.3 one of the following happens:

• the C1 and C2 we chose fulfill condition C;

• or C1 has both an attractive and a repulsive vertex, and so is of length 5 – this is treated in
Section 6.1.8;

96 CHAPTER 6. INTERPLAY BETWEEN HORIZONTAL AND VERTICAL CONDITIONS

a

a

c

b

b

c

c

c

c

c

a

a

c

b

b

c

c

c

a

c

a

b

c

b

c

c

c

a

a

c

b

b

c

c

c

c

c

a

a

c

b

b

c

c

c

a

c

a

b

c

b

c

c

c

a

a

c

b

b

c

c

c

c

c

a

a

c

b

b

c

c

c

a

c

a

b

c

b

c

c

c

a

c

a

b

c

b

c

c

c

Figure 6.5: A coding region reused from Fig. 6.4, delimited by buffers, with an example of transmission
that is ensured between the different slices of it.

• or the only condition missing is that there are cross-bridges. Here, if C1 has 4 or more elements,
we prove that we can reproduce what matters of the generic construction in spite of this in this
specific case, notably due to the line of reasoning above and because one specific cross-bridge
is still impossible;

• or C1 is of length 3, and this is solved in Section 6.1.8.

Consequently, we solved case 1.3.

6.1.6 Case 2
Here, we assume that G̃(H) contains no loop but at least one bidirectional edge.

Case 2.1: we can find one simple cycle of length at least 3, with at least one bidirectional edge.

v

w

u

C1

Focus on a cycle that contains both a bidirectional and a unidirectional edge – we can find one,
else G̃(H) would be of symmetric type. Just as in Case 1.2 from Section 6.1.5, reduce it iteratively

6.1. THEOREM OF SIMULATION UNDER INTERPLAY 97

so that it ends up either in a graph – as small as possible – similar to the one of Case 2.2 and is
therefore treated similarly; or as the smallest cycle with both a bidirectional and a unidirectional
edge forming a graph that does not contain a subgraph from Case 2.2.

Name C1 this cycle; name u, v and w some successive vertices in C1 such that (u, v), (v, w) and
(w, v) ∈ ~E but (v, u) /∈ ~E; and define C2 as the cycle made of only v and w. Also, define c10 = v = c20.

As in Case 1.2, notice that all edges from w must lead either to c12 or to v = c10, else we could
find a shorter cycle C1. There remains to check that C1 and C2 have the properties we want:

• |C1| ≥ 3;

• C1 and C2 have a good pair, that is (c12, v);

• C2 has no uniform shortcut since it is of length 2 with no loop. If C1 had a uniform shortcut,
it could not be of size 0 (because all vertices are loopless) or of size −1 (because (v, u) /∈ ~E).
Any other size of shortcut is impossible due to the aforementioned property of w.

• If there was a cross-bridge, we reach a contradiction in the exact same fashion as what is done
in the case of a cross-bridge in Case 1.2.

• There cannot be any attractive or repulsive vertex for C1 located in C1 since no vertex has a
loop in the present case. None can be located in C2 either since C2 ⊂ C1.

Case 2.2: any simple cycle of length at least 3 contains no bidirectional edge.

v

w

C1

Since there are bidirectional edges in G̃(H) (hypothesis of Case 2), which is strongly connected, we
can find at least one (simple) cycle of length ≥ 3 that has one vertex in common with a bidirectional
edge. Choose a minimal cycle among these ones, call it C1; name v the vertex it has in common
with the bidirectional edge, and w the other vertex. We define C2 as the cycle containing only v
and w. Call c10 = v = c20.

• |C1| ≥ 3;

• (c11, w) is a good pair for C1 and C2;

• C2 has no uniform shortcut since it is of length 2 with no loop. If C1 had uniform shortcuts,
they could not be of length 0 because none of its vertices has a loop; they could not be of
length −1 because none of its edges is bidirectional; and they could not be of any other length
else the shortcut starting from v would allow us to define a strictly shorter cycle with the
same property, contradicting the minimality of C1.

• If there was a cross-bridge, we could have two cases:

98 CHAPTER 6. INTERPLAY BETWEEN HORIZONTAL AND VERTICAL CONDITIONS

– First is (c1i , v) and (w, c1i+1) ∈ ~E, with c1i 6= w and v 6= c1i+1. Then we could use the edge
(w, c1i+1) for the following cycle: {w, c1i+1, c

1
i+2, ..., v}. It would be of length at least 3

since c1i+1 6= v, no vertex would repeat, and it would contain one bidirectional edge. This
is impossible by assumption of Case 2.2.

– Second is (c1i , w) and (v, c1i+1) ∈ ~E, with c1i 6= v and w 6= c1i+1. Then we could use the
edge (v, c1i+1) to define a cycle strictly shorter than C1, with the same properties, of
length at least 3 (c1i+1 cannot precede v, else we would have a bidirectional edge). This is
impossible by minimality of C1.

• There is no attractive or repulsive vertex for C1 located in C1 since none has a loop. But
it seems that there can be an attractive and/or repulsive vertex for C1 located in C2, that
is, w. Nevertheless, if w was both attractive and repulsive, using part of C1 we could build
a (simple) cycle of length at least 3 including v and w, hence a bidirectional edge. This is
forbidden in this Case 2.2.

6.1.7 Case 3
In this subsection, we assume G̃(H) contains no loop and no bidirectional edge.

Case 3.1: considering the smallest cycle C in G̃(H) one can find, there exists a path γ between
two different vertices of C that does not intercept C elsewhere, and γ is of a length different from
the length between these vertices inside C.

C1

Define C1 a cycle with said property for a path γ between two of its vertices so that C1 is a
cycle of minimal length. If there are several cycles of minimal length, choose one so that we can find
a path γ as short as possible. Now, we name the vertices: γ is a path between c10 and c1k, that is
not of length k. Define C2 as the concatenation of γ and (c1k, c1k+1, ..., c

1
0), with c20 := c10 and c2l = c1k

with l = |γ| > k.

• |C1| ≥ 3 since there is no bidirectional edge;

• (c11, c21) is a good pair;

• In both C1 and C2, we have no uniform shortcut of length 0 or −1 since there are no loops
and no bidirectional edges. C1 cannot have any other length of uniform shortcut, or even any
edge between two of its vertices, else we could find a strictly smaller cycle with a path of a
different length between two of its vertices.
Suppose C2 has a uniform shortcut of length j. The point if it happens is to build a new cycle,
C3, so that C1 and C3 work for the generic construction in Section 6.1.3. If we have an uniform
shortcut, then c20 = c10 cannot lead to an element that C2 shares with C1 by minimality of
the latter, hence the edge of its shortcut must lead to some c2j , with 1 < j < l the uniform
length of the shortcuts. Necessarily, (c10 = c20, c

2
j , c

2
j+1, ..., c

2
l = c1k) being a path between two

6.1. THEOREM OF SIMULATION UNDER INTERPLAY 99

elements of C1 that is strictly shorter than γ, we have l − j + 1 = k in order not to reach a
contradiction. Hence j = l − k + 1. Then C ′ := (c20, c2l−k+1, c

2
l−k+2, ..., c

2
l = c1k, c

1
k+1, ..., c

1
−1) is

a cycle of length |C1|.

First, we study the case k 6= 1. Then (c20, c21, c22, ..., c2l−k+1) is a path of length l − k + 1 < l,
linking two elements of C ′ (these elements are c20 and c2l−k+1, which are consecutive in C ′).
Since C ′ is of length |C1| and we found a path of length smaller than l joining two of its
vertices, this fact contradicts the minimality of C1, so we cannot actually have k 6= 1.

Necessarily k = 1. Then j = l, and the edge between c20 and c2l = c1k = c11 is already part of C1

– it is (c10, c11). We have l > k so l 6= 1; if l = 2 then j = 2 so c22 = c11 would have an edge going
to c24 = c13, an element of C1 necessarily (possibly c10). This is impossible by minimality of C1.
We deduce that l > 2.

We set C3 := (c20, c21, c22, c13, c14, ..., c1|C1|−1) using the edge (c22, c2l+2) since j = l, which is the
edge (c22, c13) since c2l = c11. There is a specific case if c13 = c10 = c20, where both C1 and C3 end
up being triangles, but the reasoning below still holds.

Instead of using C1 and C2, we check that choosing C1 and C3 – with the latter in lieu of C2

in Section 6.1.3 – for our generic construction works well:

– |C1| ≥ 3, this does not change;

– (c11, c21) is still a good pair for C1 and C3;

– C1 being still defined the same way, it does not contain any uniform shortcut or even
any edge between two of its vertices. If C3 contains uniform shortcuts, the one starting
at c10 = c20 must lead to c22 since it must be of size different from 1 and it must not lead
to an element in common with C1, because the latter is minimal. But if (c20, c22) ∈ ~E,
then we could find a path strictly shorter than γ between c10 and c11, that would not be of
length 1 (because c22 6= c2l). This contradicts the minimality of C1.

– Since no edge between two non-consecutive elements of C1 is possible, the unique cross-
bridge between C1 and C3 would be some (c1i , c22) and (c21, c1i+1) ∈ ~E. But it would also
be a cross-bridge between C1 and C2, and this is in all cases impossible, see below.

– There is no attractive or repulsive vertex for C1 in C1 since no element of C1 has a loop.
Suppose there are both an attractive and a repulsive vertex for C1 located in C3 \ C1,
call them t3 and p3. They must be distinct (because the graph has no bidirectional edge)
and not be in C1; hence C3 contains at least 2 exclusive vertices.
Then the idea is to use C1 as “the C2” of the generic construction, and C3 as “the C1”
of the generic construction: |C3| ≥ 3, and all of our other properties hold when using
C3 as “the C1” in checking condition C, except possibly the attractive and repulsive
conditions. Hence the only facts that we have to verify to exchange their roles is that
there is no attractive or repulsive vertex for C3 located either in C3 or in C1. There is
none in C3 because no vertex of C3 has a loop. If there was both an attractive and a
repulsive vertices for C3 in C1, call them t1 and p1, then notably t1 would lead to t3

and vice versa... But no bidirectional edge exists here. So, up to exchanging what is C1

and what is C3, we cannot have both an attractive and a repulsive vertex for C1. This
reasoning will be applied again and be called the trick of exchanging the roles.

100 CHAPTER 6. INTERPLAY BETWEEN HORIZONTAL AND VERTICAL CONDITIONS

Therefore in the worst case, if there are uniform shortcuts in C2, we can build the generic
construction from Section 6.1.3 with the present C1 (as C1 in the generic construction) and
C3 (as C2 in the generic construction).

• Suppose we have a cross-bridge, that is, (c1i , c2j+1) and (c2j , c1i+1) ∈ ~E. Since C1 is minimal, c2j
and c2j+1 are not elements of C1, so j + 1 < l. Then (c10 = c20, c

2
1, ..., c

2
j , c

1
i+1) is a path between

two elements of C1 that is necessarily strictly shorter than γ since j + 1 < l (with c2l = c1k).
This is possible only if the obtained path is of length i+ 1, the same length as the one between
c10 and c1i+1 in C1. It would mean that j = i, but then (c1i , c2j+1, c

2
j+2, ..., c

2
l = c1k) would also be

a path γ′ shorter than γ, and the only possibility is then that k− i+ 1 = l− j+ 1 (the distance
between c1i and c1k is the length of γ′), from which we deduce k = l, which is impossible.

• Once again, for attractive and repulsive vertices we use the trick of exchanging the roles of C1

and C2 – this holds here notably because |C2| ≥ 3.

Case 3.2: considering the smallest simple cycle C in G̃(H), any path γ we can find between
two different vertices of C that does not intercept C elsewhere is of the same length as the length
between these vertices inside C; and we can find at least one such path γ.

C1

Define C1 := C. We use the following algorithm: we start with V0 := {c10} and (Vi)i∈[1,|C1|]

empty. Then we recursively append to Vi+1 all vertices w in G̃(H) so that there is a v ∈ Vi with
(v, w) ∈ ~E, where the index is considered modulo |C1| so that V|C1| = V0. The algorithm halts when
it tries to append vertices to a Vi that are all already in it, which happens because G̃(H) is made of
a finite number of vertices. The fact that no path exterior to C1 is of a different length than the
corresponding path C1, plus the absence of any loop or bidirectional edge, makes all the Vi disjoint.
Finally, the strong connectivity we assumed ensures that H =

⊔|C1|−1
i=0 Vi.

We use the fact that H does not verify condition D, specifically is not of state-split cycle
type. Since by construction, for any v ∈ Vi, we have (v, w) ∈ ~E ⇒ w ∈ Vi+1, the only possibility
is that there exist v ∈ Vi0 and w′ ∈ Vi0+1 so that (v, w′) /∈ ~E. However, we also have some
v′ ∈ Vi0+1, (v, v′) ∈ ~E and w ∈ Vi0 , (w,w′) ∈ ~E. Obviously, the four vertices are different. Now,
take a (simple) path γ1 from v′ to v that is as short as possible. Take a different (simple) path γ2
from w′ to w that still has as much of its trajectory in common with γ1 as possible. We redefine C1

as the concatenation of γ1 and (v, v′) and C2 as the concatenation of γ2 and (w,w′).
It is rather easy to see that the properties we need for our generic construction are verified:

• |C1| ≥ 3, since there is no bidirectional edge;

• The unique common part between C1 and C2 is the biggest sequence of vertices γ1 and γ2
have in common, so starting from the first pair on which they disagree we obtain a good pair;

• There is no uniform shortcut between C1 and C2 if γ1 was chosen minimal and γ2 as close to
γ1 as possible;

6.1. THEOREM OF SIMULATION UNDER INTERPLAY 101

• There is no cross-bridge for the same reason;

• For attractive and repulsive vertices, we use the trick of exchanging the roles of C1 and C2

described in Case 3.1.

Case 3.3: considering the smallest simple cycle C in G̃(H), we can find no path between two
different vertices of this cycle.

C1

Since G̃(H) does not verify condition D, it cannot be a simple cycle, hence a path exists from
one vertex of C to itself that does not intersect C elsewhere. Define C1 := C and this vertex as
c10. Then, considering the smallest path γ from c10 to itself outside of C1, we define C2 := γ, with
c20 := c10.

It remains to check that these C1 and C2 verify the properties we need.

• |C1| ≥ 3;

• C1 and C2 have exactly one vertex in common, c10 = c20, and so (c11, c21) is a good pair;

• There is no uniform shortcut of length 0 or −1 neither in C1 nor in C2, since there are no loop
and no bidirectional edge. There is no uniform shortcut of any other length; else consider the
edge starting at c10, be it in C1 or in C2: it would allow us to build a shorter C1 or a shorter
C2, contradicting the fact that the two of them have been chosen to be minimal.

• There is no cross-bridge between C1 and C2 because it would allow us to build path outside
of C1 between two distinct elements of C1, which is impossible in this case;

• There is no attractive or repulsive vertex for C1 in C1, because no element of C1 has a loop.
There is no attractive or repulsive vertex for C1 in C2 else we could build a path outside of
C1 between two distinct elements of C1, which is impossible in this case.

6.1.8 Additional cases
Most three-vertex cases

For most three-vertex graphs, we can apply the generic construction from Section 6.1.3 without any
problem. However, some of them require to be slightly more cautious, because some properties from
condition C (Definition 6.3) are missing. Among the four of them up to a change of labels, the first
three are the following:

b

a c

b

a c

b

a c

102 CHAPTER 6. INTERPLAY BETWEEN HORIZONTAL AND VERTICAL CONDITIONS

Here, there are both an attractive and a repulsive vertex. Still, similarly to case 1.1 from
Section 6.1.5, a has in-degree 1 since only c leads to a, and so Proposition 6.5 holds, since a forces
the alignment of columns.

Besides, we have to be careful about the cross-bridge property. In the first example, we choose
C2 = (b) (there is no cross-bridge then because (b, a) /∈ ~E). In the second and in the third, we
choose C2 = (a, c) (a has no loop hence there is no problem of cross-bridge or of uniform shortcut
in C2). All the other properties from Condition C are verified.

One specific three-vertex case

Among three-vertex graphs remains the following one:

b

a c

Here we have three problems:

• We could have cross-bridges, so to avoid them we choose C2 = (a, b) to perform the proofs
that follow (we have no problem of uniform shortcut in C2 since a has no loop);

• We have attractive and repulsive vertices;

• And here, contrary to Case 1.1, we cannot rely on an element of the alphabet that must be
followed or preceded by a specific other one to solve that problem.

The reasoning is slightly subtler than in the previous subsubsection then. Try to perform the
proof of propositions Proposition 6.5 and Proposition 6.6 by taking two successive columns K1 and
K2. In any macro-slice of K1, there is some a meso-slice (made of NM symbols a) that is vertically
preceded by a c meso-slice. The a meso-slice must not be next to any symbol a in column K2. But
then if there is any c in the part of K2 horizontally adjacent to this a meso-slice, the aforementioned
c meso-slice of K1 is horizontally followed by at least one b (be it from a regular meso-slice, a border,
or a code); but this cannot be. Hence an a meso-slice in K1 can only be horizontally followed by
symbols b. So two columns are always aligned even if we have attractive and repulsive vertices.

The rest of the generic construction works normally.

Specificity of Case 1.3

We focus on specific subcases where C2 = (c) and C1 = (a, p, b, c, t) where all vertices must not
necessarily be different, with t attractive, p repulsive, (c, b) /∈ ~E, loops on b and c, and a loopless.
Additionally, the initial and terminal vertices of any unidirectional edge must have a loop. Five
cases can happen; here we treat only the fourth one, and all the others except the last one are done
similarly: said fifth case is treated among length-3 cases.

• All elements are distinct;

6.1. THEOREM OF SIMULATION UNDER INTERPLAY 103

• p = t and all others distinct;

• c = t and all others distinct;

• b = p and all others distinct;

• b = p and c = t: this is one of the three-vertex graphs we have seen before.

Note that in all those cases, stemming from the analysis performed in case 1.3 in Section 6.1.5,
most of condition C (Definition 6.3) seems to hold except for the presence of both attractive and
repulsive vertices, that endangers Proposition 6.5. The only fact that we have to check is that we
can circumvent this obstacle in a way similar to what is done with the length-3 cases.

If b = p, we obtain the following graph:

a

p

c
t

We added the red edge so that we cannot reduce the graph to a strictly smaller cycle (with three
vertices) on which we already proved the generic construction worked. If there was an edge between
a and c, it would be bidirectional (since a has no loop). But since the edges between c and t or
c and p cannot be both bidirectional, we could reduce the present cycle to a strictly smaller one
containing a unidirectional edge, a loop and a loopless vertex. So there is no edge between a and c.
Since p = b there is none from p to c. The only optional edge available is (t, c) (in green).

Try to perform the proof of Proposition 6.5 and take two horizontally successive columns K1
and K2. In any macro-slice of K1, there is a c meso-slice slice that is above a t meso-slice, itself
above a a meso-slice.

The a meso-slice in K1 cannot be horizontally followed by a border or a code meso-slice in K2
because they contain c. The c meso-slice in K1 must not be followed horizontally by any symbol
p or a in column K2 – so most of it (at least NM/2) is in contact neither with a border nor with
a code meso-slice, but with a meso-slice made of only one symbol. If that symbol is c, then the
aforementioned a meso-slice is in contact with a meso-slice made of a symbol a. This is impossible.
Hence the c meso-slice of K1 is mostly followed by a t meso-slice of K2, and from this we recover
Proposition 6.5.

The three other cases are treated similarly, exploring with what each C1 meso-slice can be in
contact to ensure that Proposition 6.5 is valid even without all of condition C. Checking the rest of
the properties follows case 1.3.

6.1.9 Proof for several strongly connected components
Suppose that the Rauzy graph of H of order 1 is made of several SCCs and does not verify condition D.
Either one of them belongs to none of the types listed in Definition 6.1, and we can simply reduce H
to that SCC and perform the previous construction with it; or each of them belongs to at least one

104 CHAPTER 6. INTERPLAY BETWEEN HORIZONTAL AND VERTICAL CONDITIONS

of the three types listed in Definition 6.1. In that second case, we study H ×H ×H instead, and
prove that this one’s Rauzy graph of order 1 has a SCC made of triplets of distinct elements of
AH that is none of the three types that constitute condition D. We can then apply Theorem 12
to H ×H ×H, and for any two-dimensional SFT Y we can find V ′ ⊆ (AH ×AH ×AH)Z so that
XH×H×H,V ′ is a root of Y . Now, “spread” each cell of XH×H×H,V ′ into three adjacent vertical
cells containing the three coordinates of the product alphabet, and consider the subshift X on AHZ

obtained by taking the topological and orbit closure from this. It is by construction a (1, 3)-root of
XH×H×H,V ′ – note that it is important for the three coordinates to be distinguishable, and it is the
case as they have no symbol in common. Consequently, X is a root of Y too. Furthermore, X is
some XH,VY where VY is a SFT that can be computed from V ′ by “spreading” the three coordinates
of the cells of the latter into three vertically adjacent cells of the former. Constraints on V ′ are then
passed onto V naturally, notably because the symbols used for the different coordinates in V ′ are
disjoint.

Thus we computed algorithmically some VY so that the SFT X = XH,VY is a root of Y .
Now, the only point left in this reasoning is to show the existence of the desired SCC in H×H×H.
Since H does not verify condition D, it has a non-reflexive SCC S1, a non-symmetric SCC S2

and a non-state-split SCC S3. Suppose the three of them are distinct. Then:

• Since S1 is non-reflexive, no SCC of S1 × S2 × S3 is reflexive. Indeed, since S1 is strongly
connected, all vertices of S1 are represented in any SCC C of that graph product, meaning
that for any s1 ∈ S1 there is at least one vertex of the form (s1, ∗, ∗) in C. But if C had loop
on all its vertices, then in particular S1 would be reflexive.

• Similarly, since S2 is non-symmetric, no SCC of S1 × S2 × S3 is symmetric.

• Finally, since S3 is non-state-split, no SCC of S1 × S2 × S3 is a state-split cycle. Indeed,
suppose S is such a state-split SCC of the direct product. It can be written as a collection of
classes (Vi)i∈I of elements from S1 × S2 × S3 that we can project onto S3, getting new classes
(Wi)i∈I , with some elements of S3 that possibly appear in several of these. Let c be any vertex
in S3 that appears at least twice with the least difference of indices between two classes where
it appears; say c ∈Wi and c ∈Wi+k. Since S is state-split, all elements in Wi+1 are exactly
the elements of S3 to which c leads. But it is the same for Wi+k+1. Hence Wi+1 = Wi+k+1.
From this we deduce that Wi = Wi+k for any i, using the fact that indices are modulo |I|.
Since k is the smallest possible distance between classes having a common element, classes
from (Wi)i∈{0,...,k−1} are all disjoint; and they obviously contain all vertices from S3. Now
simply consider these classes W0 to Wk−1: you get the proof that S3 is state-split.

If two of the SCCs S1, S2 and S3 are the same, perform the whole reasoning with H ×H instead
of H ×H ×H.

6.2 Properties of two-dimensional subshifts under interplay
6.2.1 Periodicity
For x ∈ X with X a two-dimensional subshift, we say that x is periodic (of period ~v) if there exists
~v ∈ Z2 \ {(0, 0)} such that ∀(i, j) ∈ Z2, x(i,j) = x(i,j)+~v. In a more general setting of SFTs on groups,
this is called weak periodicity – see Definition 7.6.

6.2. PROPERTIES OF TWO-DIMENSIONAL SUBSHIFTS UNDER INTERPLAY 105

Corollary 6.8. Let H be a one-dimensional nearest-neighbor SFT.

XH,V is empty or contains a periodic configuration for all one-dimensional SFTs V
⇔ G̃(H) verifies condition D.

Proof. If G̃(H) verifies condition D, then, as is detailed in the proof of Theorem 13, whatever may
be the chosen V , we can find a patch P that respects the local rules of XH,V and tiles the plane
periodically. Hence XH,V admits a periodic configuration.

If G̃(H) does not verify condition D, then, using Theorem 12, we know that for any two-
dimensional SFT Y with no periodic configuration, there exists some one-dimensional SFT VY such
that XH,VY is a (m,n)th root of Y .

We consider Y a two-dimensional SFT with no periodic configuration (see [Rob71] for instance).
Then, naming VY the corresponding one-dimensional SFT from Theorem 12, we know that there
exists ψ : Y ↪→ XH,V continuous with t0≤i<m,0≤j<nσ

(i,j)(ψ(Y)) = XH,V for some integers m and
n. Note that we use ψ the inverse map of ϕ in the definition of a (m,n)th root, the reasoning being
easier with it.

If XH,V contained a σ-periodic configuration, then t0≤i<m,0≤j<nσ
(i,j)(ψ(Y)) would, and so

ψ(Y) would too (since configurations in t0≤i<m,0≤j<nσ
(i,j)(ψ(Y)) are merely translates of the ones

in ψ(Y)).
Call ψ(y) such a periodic configuration, with y ∈ Y . There exists some ~v = (a, b) ∈ Z2 such that

σ~v(ψ(y)) = ψ(y). But consequently, σmn~v(ψ(y)) = ψ(y). Then σ(anm,bmn)(ψ(y)) = ψ(y). Using
Theorem 12 again, we obtain that ψ(σ(an,bm)(y)) = ψ(y). ψ being bijective, we finally get:

σ(an,bm)(y) = y.

We found a periodic configuration in Y . This being impossible, we conclude that XH,V contains no
periodic configuration.

6.2.2 The Domino Problem with interplay
From Section 6.1, we deduce:

Theorem 13. Let H be a nearest-neighbor one-dimensional SFT.

DPI(H) is decidable ⇔ G̃(H) verifies condition D.

Proof. The following proof is similar to the one of Theorem 9.
Proof of ⇐: assume G̃(H) verifies condition D. Then its SCCs share a common type, be it

reflexive, symmetric, or state-split cycle. For each of these three cases, we produce an algorithm
that takes as input a one-dimensional SFT V ⊂ AZ, and that returns YES if XH,V is nonempty, and
NO otherwise.

Let M be the maximal size of forbidden patterns in FV (since V is an SFT, such an integer
exists).

• If G̃(H) has state-split cycle type SCCs: let L be the LCM of the number of Vis (whose
disjoint union forms a component) in each of the strongly connected components. If there is
no rectangle of size L×M(|A|LM + 1) respecting local rules of XH,V and containing no letter
that corresponds to a transient vertex in G̃(H), then answer NO. Indeed, any configuration in

106 CHAPTER 6. INTERPLAY BETWEEN HORIZONTAL AND VERTICAL CONDITIONS

XH,V contains valid rectangles as large as we want that do not contain such transient letters.
If there is such a rectangle R, then by the pigeonhole principle it contains at least twice the
same rectangle R′ of size L×M . To simplify the writing, we assume that the rectangle that
repeats is the one of coordinates [1, L]× [1,M] inside R where [1, L] and [1,M] are intervals
of integers, and that it can be found again with coordinates [1, L]× [k, k +M − 1]. Else, we
simply truncate a part of R so that it becomes true.

Define P := R|[1,L]×[1,k+M−1]. Since V has forbidden patterns of size at most M , and since R
respects our local rules, P can be vertically juxtaposed with itself (overlapping on R′).

P can also be horizontally juxtaposed with itself (without overlap). Indeed, one line of P uses
only elements of one SCC of H (since elements of two different SCCs cannot be juxtaposed
horizontally, and we banned transient letters). Since L is a multiple of the length of all cycle
classes, the first element in a given line can follow the last element in the same line. Hence all
lines of P can be juxtaposed with themselves.

As a conclusion, P is a valid patch that can tile Z2 periodically. Therefore, XH,V is nonempty;
return YES.

• If G̃(H) has symmetric type SCCs the construction is similar, but this time build a rectangle
R of size 2×M(|A|2M + 1). Either we cannot find one and return NO; or we can find one and
from it extract a patch that tiles the plane periodically and return YES.

• Finally, if G̃(H) has reflexive type SCCs, the construction is even simpler than before. Build a
rectangle R of size 1×M(|A|M + 1); the rest of the reasoning is identical.

Proof of ⇒ is due to Theorem 12, and is done by contraposition. If G̃(H) does not verify condition
D, then for any Wang shift W we can algorithmically build some one-dimensional SFT VW such
that XH,VW is a root of W , see Theorem 12. If we were able to solve DPI(H), then there would
exist a Turing Machine M able to tell us if XH,V is empty for any one-dimensional SFT V . But as
a consequence we could build a Turing Machine N taking as input any Wang shift W , and building
the corresponding VW following Section 6.1. Then, by running M, N would be able to tell us if
XH,VW is empty or not. Since XH,VW is empty if and only if W is, it could consequently answer if
W is empty or not; but determining the emptiness or nonemptiness of every Wang shift is equivalent
to DP (Z2) being decidable, which is false. Hence, since DP (Z2) is undecidable, DPI(H) is too.

Remark 32. A pair of conjugate SFTs H1 and H2 may yield different results, with DPI(H1) decidable
but DPI(H2) undecidable. Consider for instance the following Rauzy graphs and applications on
finite words (extensible to biinfinite words):

a b β

α γ

ϕ :


aa 7→ γ

ab 7→ β

ba 7→ α

bb 7→ β

ψ :


α 7→ a

β 7→ b

γ 7→ a

These graphs describe conjugate SFTs through these applications. However, the first graph has
decidable DPI(H) and the second has not, by use of Theorem 13.

6.3. IMPACT OF THE INTERPLAY ON THE ENTROPY 107

6.3 Impact of the interplay on the entropy
6.3.1 Horizontal constraints without condition D
From the construction in Section 6.1 we deduce the following:

Proposition 6.9. Let H be a one-dimensional nearest-neighbor SFT that does not satisfy condition
D. Then there exists a one-dimensional SFT V such that h(XH,V) is not computable.

Proof. Let W be a Wang shift with a non-computable entropy. By using Theorem 12 and Proposi-
tion 5.4, there exists a one-dimensional SFT V such that

h(W) = KM2Nh(XH,V)

where N is the number of elements in the alphabet of W , and K and M are defined as in Section 6.1.3
and depend only of H – all of them being integers, and consequently computable. Therefore, h(XH,V)
is not computable.

Remark 33. For a given H, the V -dependent entropies in general are still not characterized and it
seems difficult since in the construction of the root, the entropy decreases if the number of Wang
tiles increases. In fact the previous proof allows to expect that in the case where the condition D is
not satisfied, there exists a constant CH such that for every Π0

1-computable number h smaller than
CH there exists a vertical one-dimensional subshift V that allows h(XH,V) = h. However, we do not
obtain this result exactly since if the Kolmogorov complexity of h is important, then the cardinality
of the alphabet of the Wang subshift that has h as entropy, named N in the previous proof, is also
important.

Nevertheless, in the case where there are cycles in the Rauzy graph which defines H that do not
appear in the coding of the Wang subshift used in Theorem 12, we can encode h in a given part of
XH,V , diluted by the necessarily large macro-slices, but then add a noisy zone where these cycles
can be used to increase the entropy, as it is done in the proof of Theorem 11.

6.3.2 Condition D, computable entropy
A one-dimensional SFT H that verifies condition D can yield computable entropies. Indeed, one
has the immediate result that allows only a small range of available entropies:

Proposition 6.10. The entropies h(XAZ,V) accessible for V ⊂ AZ SFT are all the entropies
accessible for one-dimensional SFTs with alphabet A. These are included in the values log2(λ) ≤
log2(|A|), where λ is a Perron number. Notably, they all are computable.

Proof. We use the fact that NXAZ,V
(n, n) = NV (n)n since any two columns of height n can be

juxtaposed horizontally here. We conclude using [LM95] that states that the available entropies for
one-dimensional SFTs are the log2(λ) where λ is a Perron number.

Remark 34. An open question remains: what exactly are these accessible log2(λ) obtained for a
fixed size of alphabet? Corollary 5.8 – and [HM10] – gives an answer for dimension 2, but this exact
question is, to our knowledge, not answered in dimension 1.

A similar result holds for a larger class of graphs, one of the possibilities for respecting condition
D:

108 CHAPTER 6. INTERPLAY BETWEEN HORIZONTAL AND VERTICAL CONDITIONS

Proposition 6.11. Let H ⊂ AZ be a nearest-neighbor SFT whose Rauzy graph is so that each of
its SCCs is a state-split cycle. Then for all V ⊂ AZ SFT, h(XH,V) is computable.

Proof. Consider that G̃(H) =
⊔p−1
i=0 Ui is a state-split cycle of length p > 0 – the proof for a graph

made of several state-split cycles is similar and briefly mentioned at the end. We prove that for any
V ⊆ AZ, h(XH,V) is computable. Let V be such an SFT.

Let ϕ : AZ → {0, . . . , p− 1}Z be the factor that maps any symbol in the component Ui, on i. We
also call ϕ its restricted version to A∗.

For n ∈ N, j ∈ {0, . . . , p− 1} and u ∈ {0, . . . , p− 1}n, let uj = u+ (j, . . . , j) with the addition
made modulo p. We also define Su = {w ∈ LV (n) | ϕ(w) = u} and Nu = |Su|.

We have the following, for integers m and n:

NXH,V (pm, n) =
∑

u∈{0,...,p−1}n

(
Πp−1
j=0Nuj

)m
.

Indeed, a rectangle of size pm× n in XH,V is given by a vertical word u in {0, . . . , p− 1}n that
fixes for the whole rectangle where elements of each Ui will be. Then column j can be made of any
succession of n symbols that respects uj – that are in the correct Ui’s.

Therefore, we have:

h(XH,V) = lim
n→+∞

log2
(
NXH,V (pn, n)

)
pn2

= lim
n→+∞

log2

(∑
u∈{0,...,p−1}n

(
Πp−1
j=0Nuj

)n)
pn2

= lim
n→+∞

log2

(max
v∈{0,...,p−1}n

Πp−1
j=0Nvj

)n∑
u∈{0,...,p−1}n

(
Πp−1
j=0Nuj

)n
(

max
v∈{0,...,p−1}n

Πp−1
j=0Nvj

)n


pn2

= lim
n→+∞

log2

((
max

v∈{0,...,p−1}n
Πp−1
j=0Nvj

)n)
pn2 + lim

n→+∞

log2

∑u∈{0,...,p−1}n

(
Πp−1
j=0Nuj

)n
(

max
v∈{0,...,p−1}n

Πp−1
j=0Nvj

)n


pn2

= lim
n→+∞

log2

(
max

v∈{0,...,p−1}n
Πp−1
j=0Nvj

)
pn

since in the penultimate line the second term can be bounded by 0 from below (at least one
u ∈ {0, . . . , p− 1}n in the index of the sum reaches the maximum of the denominator, so the sum is
at least 1), and by log2(pn)

pn2 from above, which tends to 0.
With the previous computation, it is also clear that for all n ∈ N,

log2
(
NXH,V (pn, n)

)
pn2 ≥

log2

(
max

v∈{0,...,p−1}n
Πp−1
j=0Nvj

)
pn

6.3. IMPACT OF THE INTERPLAY ON THE ENTROPY 109

hence

h(XH,V) ≥ lim
n→+∞

log2

(
max

v∈{0,...,p−1}n
Πp−1
j=0Nvj

)
pn

From this we can deduce that the sequence
log2

(
max

v∈{0,...,p−1}n
Πp−1
j=0Nvj

)
pn

actually converges to

h(XH,V) from below. There is a Turing Machine, constructed algorithmically with V , that computes
any term of it. Indeed, for any v ∈ {0, . . . , p− 1}n, Nv can be computed because it depends on a
one-dimensional SFT. Then the max on a finite set and all the other operations are also doable. As
a consequence, h(XH,V) is left-recursively enumerable (i.e. a Σ0

1 real number). Being, by Theorem 8
from [HM10], right-recursively enumerable, it is computable.

The proof is similar if G̃(H) is made of, say, k > 1 state-split cycles Cj numbered from 1 to
k: consider p the LCM of their periods; ϕ projects words of An on ({1, . . . , k} × {0, . . . , p− 1})n
that indicates for each letter to which Cj it belongs, then to which U ji of that Cj . Once again, one
vertical word of length n is enough to reconstruct, for any m ∈ N, a pm× n rectangle except for the
precise choice of an element in each U ji . The rest of the computation is similar.

6.3.3 Condition D, uncomputable entropy
Other horizontal constraints that verify condition D, such as some of reflexive type, allow for a
greater range of accessible entropies. In what follows, we show that we can transform most graphs
with one SCC that originally do not verify condition D into graphs that do – by adding a loop to
each and every vertex – yet ensure that the resulting graph is robust enough so that the generic
construction in Section 6.1.3 can still be mostly performed. Notably, we keep the capacity to
obtain, up to a multiplicative factor, any right-recursively enumerable entropy by choosing adequate
interplaying vertical constraints.

Proposition 6.12. Let H ⊂ AZ be a nearest-neighbor SFT whose Rauzy graph is made of only one
strongly connected component and does not respect condition D. We also require the graph to have
no vertex at distance one of all others.

Let H̃ ⊂ AZ be the nearest-neighbor SFT obtained when adding a loop to every vertex of the
Rauzy graph of H. Then H̃ verifies condition D, but there exists a subshift of finite type Ṽ , which
can be obtained algorithmically with H as input, such that h(XH̃,Ṽ) is not computable.

Proof. Without loss of generality, one can consider that the starting SFT H has a Rauzy graph
with a loop on every vertex except one. Indeed, such a graph can be obtained algorithmically from
any one with less loops, and both yield the same H̃ used to actually perform the construction.

Now, for a given input H that verifies condition C (Definition 6.3), modify the corresponding
construction of V performed in Section 6.1.3 with the following additions:

• adding two extra symbols c1i at the bottom of any (i, j)-coding micro-slice;

• and forcing an (i+ 1, j + 1) macro-slice below any (i, j) macro-slice, instead of having each
column based on the repetition of a single pair (i, j).

110 CHAPTER 6. INTERPLAY BETWEEN HORIZONTAL AND VERTICAL CONDITIONS

One can check that these two modifications are so that Proposition 6.5 and Proposition 6.6 still
hold true. For the remainder of this proof, we now consider Section 6.1.3 to be performed with these
modifications.

Consider, for the rest of the proof, a Wang shift W with uncomputable entropy. By the same
reasoning as the proof of Proposition 6.9, h(XH,VW) is also uncomputable (as it is equal to h(W)
divided by some H-dependent integers). Now, the only thing left to prove is that XH,VW and XH̃,VW
contain mostly the same configurations, and consequently have the same entropy.

An in-depth analysis of XH̃,VW
comes from checking what fails in performing Proposition 6.5

and Proposition 6.6 with G̃(H̃) as if it verified condition C, with the exact same cycles as done with
G̃(H). There is only one added edge in G̃(H̃) that may create new configurations in the resulting
two-dimensional SFT. The only element at risk in the reasoning is the presence of a 0-length uniform
shortcut; notably, everything holds regarding attractive/repulsive vertices due to the hypotheses on
G̃(H) here.

What that added 0-length uniform shortcut can cause in XH̃,VW
is to allow an (i, j) macro-slice

to be followed by these types of macro-slices:

1. an (i+ 1, j + 1) macro-slice;

2. another (i, j) macro-slice;

3. an (i+ 1, j + 1) macro-slice but the second slice is exactly one cell down;

4. another (i, j) macro-slice but the second slice is exactly one cell up;

5. an (i+ 1, j) macro-slice;

6. an (i, j + 1) macro-slice;

7. an (i+ 1, j) macro-slice but the second slice is exactly one cell down;

8. an (i, j + 1) macro-slice but the second slice is exactly one cell up.

Case 1 is the one that normally happens. Case 2 will be acceptable because it does not bring entropy,
as seen below. Cases 5, 6, 7 and 8 collapse on other cases because G̃(H) has a C2 made of a unique
element in its generic construction, causing the j index to be irrelevant – and as we perform the
construction with G̃(H̃) as is, it holds too. Cases 3 and 4 are the only problematic ones; they are
actually solved thanks to the additions we did to VW in the present proof. Indeed, one-cell shifts
between two columns (cases 3 and 4 in the enumeration above) are now forbidden, else the new
C1 elements at the bottom of each coding micro-slice would be in contact with another element of
C1 at distance 2 (due to the new way macro-slices succede to each other vertically), resulting in a
uniform shortcut of length 2 in the Rauzy graph of H̃, which is forbidden.

The only part left is to prove that h(XH̃,VW
) = h(XH,VW) in spite of case 2.

Since the only difference between XH̃,VW
and XH,VW is the possibility to repeat a column several

times in a row, we have
NXH̃,VW

(n, n) ≥ NXH,VW (n, n)

6.3. IMPACT OF THE INTERPLAY ON THE ENTROPY 111

but also

NXH̃,VW
(n, n) =

n∑
k=1

∑
i`|i1+···+ik=n

NXH,VW (i`, n)

≤
n∑
k=1

(
n+ k − 1

n

)
NXH,VW (n, n)

=
(

2n
n+ 1

)
NXH,VW (n, n)

by counting, for n columns, how many different types of them there are – and then each i` counts
for a given type how many times it is juxtaposed with itself. The sequence log2(

(2n
n+1
)
) has growth

rate O(2n log2(2n)), and therefore applying limn
log2(.)
n2 to these bounds shows that the entropy is

the same.

112 CHAPTER 6. INTERPLAY BETWEEN HORIZONTAL AND VERTICAL CONDITIONS

Part III

Subshifts on Finitely Generated
Groups

113

115

In the previous parts, subshifts have been considered in one (Z) and two (Z2) dimensions.
These two subfields of symbolic dynamics, one born from the discrete encoding of trajectories in
continuous dynamical systems [MH38] in articles by Morse and Hedlund in the 40s (see [CN06] for
a comprehensive historiography), the other present in the earliest forms of tilings introduced as
computational models by Wang in the 60s [Wan61], have attracted vivid interest in the decades that
followed. Indeed, the various differences of behavior between one-dimensional and two-dimensional
subshifts (range of available entropies, decidability of the Domino Problem) are still under scrutiny
in the present day (see Part II of this PhD).

Nevertheless, as mentioned in Section 4.1, several results on Z2 can be extended in a straight-
forward manner to any Zd, d > 0 to obtain d-dimensional subshifts. Several results on Zd, d > 0
are the same as on Z2 (entropy [HM10], Domino Problem [ABJ18]). However, some of them differ:
consider for instance the notion of periodicity partly mentioned in Section 6.2.1 for two-dimensional
subshifts.

It has been known for a long time that if a set of dominoes tiles Z, it is always possible to do it
in a periodic fashion. Wang suspected that it was the same for Wang tiles on Z2. However, a few
years later, one of his students, Berger, proved otherwise by providing a set of Wang tiles that tiled
the plane but only aperiodically [Ber66]. Numerous aperiodic sets of Wang tiles have been provided
by many since then (see for example [Rob71, Kar96, CI96, JR15]). The most well-known may be
the Robinson tile set, which contains square of arbitrarily large size that break any possibility for
periodicity. Its alphabet is the following, including the symmetries and rotations of the given tiles
(omitted for simplification):

An example of pattern from a configuration is as follows – notice the nested blue squares of increasing
size that are made to appear.

116

Still, an important property of SFTs on Z2 is the following: if there exists a configuration with
one direction of periodicity, then there exists another configuration with two directions of periodicity.
Intermediate cases arise on Zd, d > 0: on Z3, for instance, there are SFTs that contain a configuration
with one direction of periodicity, but no configuration with two directions of periodicity or more.
To be convinced of this fact, simply consider the subshift made of adding a third dimension to
the Robinson subshift, with no additional restriction. A configuration made of the same Robinson
tiling repeated at any height will be periodic in the added direction. However, no configuration will
have any “planar” periodicity, by two-dimensional aperiodicity of the Robinson subshift. These
properties lead to the introduction of two distinct mathematical definitions of aperiodicity of a given
subshift, to separate these behaviors. The first is weak aperiodicity, as witnessed in the previous
example: not a configuration in the subshift is made of a single repeated finite patch, or equivalently
no configuration has finite orbit (that is, a finite number of translates) – but some may have one
direction of periodicity. The second is strong aperiodicity: no configuration has any direction of
periodicity at all, or equivalently all of them have empty stabilizer (that is, no translation whatsoever
leaves any configuration invariant).

Now, a natural question stemming from this first generalization to Zd is: can we generalize
further to other underlying structures, and study how the entropy, Domino Problem and aperiodicity
are affected? Tile sets, the simplest subshifts there are, have so far been made of d-dimensional cubes,
based on the d directions of the canonical base of Zd. Basically, this means coloring an underlying
infinite graph where all vertices look locally similar, using a complicated “color” for each vertex,
that is actually made of 2d colors. Other graphs possess such a structure with local similarity on all
vertices, though. Some of them, called Cayley graphs, describe the essential algebraic structures
that are groups.

Trying to extend what has been developed for Zd to any finitely generated group (see Defini-
tion 7.11) works surprisingly well: after all, the usual discrete space we consider when representing
Zd is nothing more than the most commonly considered Cayley graph of said Zd, seen as a group.
Consequently, the same can be done on any finitely generated group using symbols decorating
vertices of graphs. That being said, be careful: these considerations of graph colorings are a visual
help that still depends on the generators chosen for the group. The important fact is that even the
more fundamental mathematical structures behind subshifts on groups work well by themselves:
after all, the theory of dynamical systems was originally made for group actions in general, as seen
in Definition 7.1. As such, building a full shift on any AG is straightforward; and so definitions of
G-subshifts and G-SFTs for any group G result naturally from this, even outside of any visualization
through graph colorings.

Z-subshifts are well-known (see for instance [LM95, HM10]), and even Zd-subshifts have had
interesting developments over the past two decades. Subshifts on any finitely generated group
have been attracting more and more attention in symbolic dynamics [Jea15,CGS17,Coh17,ABJ18,
ABM19,BMP22], though they have also been thoroughly studied as Bernoulli shifts from a measure-
theoretic point of view (see for instance the Ornstein isomorphism theorem, that dates back to 1970).
A notable interest for subshifts on groups springs from the apparent links between the Domino
Problem [CP15,ABJ18] and the weak and strong notions of aperiodicity: several conjectures have
been made to that end, see Section 7.2.2, that make for a yet incomplete classification of groups
depending on their behavior. Specifying that classification for a small but meaningful class of groups
is the main goal of the current part of this thesis.

Baumslag-Solitar groups of parameters m and n, commonly denoted by BS(m,n), are a specific
class of groups that initially gathered interest in symbolic dynamics because of their simple description

117

and rich properties. It is known that their Domino Problem is undecidable [AK13, AK21]; and
Aubrun and Kari built a weakly aperiodic SFT in order to prove it. Only the BS(2, 3) case is
detailed in their original paper; and an explicit period is provided for a given configuration, which
shows that the resulting SFT, although weakly aperiodic, is not strongly aperiodic.

In this part of the present thesis, we investigate this result further: after a few definitions (Chap-
ter 7); we thoroughly reintroduce Aubrun and Kari’s construction in the general case, and provide a
precise proof of its weak aperiodicity by encoding piecewise linear maps (Section 8.1). Then, we
show that the resulting SFT is weakly but not strongly aperiodic on any BS(m,n) (Section 8.1.4)
(as sketched in [AK13]); except on BS(1, n) where, with some extra work, we prove that it is actually
strongly aperiodic (Section 8.1.6). In Section 8.2, using a different technique based on substitutions
on words, we exhibit a weakly but not strongly aperiodic SFT on BS(1, n). Finally, by using
tools from group theory and a theorem by Jeandel [Jea15], we build a strongly aperiodic SFT on
any BS(n, n) in Section 8.3. These new results are summarized in the following table (in bold):

Group Strongly aperiodic SFT Weakly-not-strongly aperiodic SFT

Z2 ∼= BS(1, 1) Yes (Berger [Ber66]) No (Folklore)

BS(1, n) Yes, adapted from Aubrun-Kari (Section 8.1.6) Yes, using substitutions (Section 8.2)

BS(n, n) Yes, using a theorem by Jeandel (Section 8.3) Yes (Section 8.1.4, Aubrun-Kari [AK13])

BS(m,n) Yes (recent result from [ABHT22]) Yes (Section 8.1.4, Aubrun-Kari [AK13])

The end result of the last part of this PhD is that any residually finite Baumslag-Solitar group
BS(m,n) with |m| ≥ 2 or |n| ≥ 2 has a strongly aperiodic SFT and a weakly but not strongly
aperiodic SFT.

118

Chapter 7

Subshifts on Groups and
Aperiodicity

This chapter provides the necessary notions to understand Chapter 8. The reader may skip parts or
jump from one section to another as they see fit. The chapter is broadly divided as follows:

• Section 7.1 defines subshifts on any finitely generated group G, in a fashion similar to Section 4.1;

• Section 7.2 is a section dedicated to a conjugacy invariant that takes the center stage in the
entirety of Chapter 8: aperiodicity. It also precises some context on its ties with the Domino
Problem on groups;

• Section 7.3.1 introduces the basics on presentations of groups and Cayley graphs, which are
used to visualize specific subshifts on groups in Section 7.3.2;

• Section 7.4 refines the previous notions for the one class of groups studied in this entire part,
the Baumslag-Solitar groups. It does so mathematically (Section 7.4.1) then it builds the
foundation for specific subshifts on these groups that are visualizable through their Cayley
graphs (Section 7.4.2 and Section 7.4.3) called Cycle shifts;

• Section 7.5 ends the chapter by introducing a tool from combinatorics on words: substitutions.
It is of use in a construction of subshifts in Section 8.2.

Throughout this chapter and the next one, we assume basic knowledge about groups as a
mathematical structure. To simplify notations, we will not use any symbol to note the law of a
given group (except in some special cases such as Z); we will merely write concatenated elements.
The identity element will be noted e.

7.1 Subshifts on groups
In the present part, we focus on subshifts where the group action can be any finitely generated
group (see Definition 7.11), not just Z (as in Section 1.2) or Z2 (as in Section 4.1).

119

120 CHAPTER 7. SUBSHIFTS ON GROUPS AND APERIODICITY

Definition 7.1. Let X be a topological space with τ its topology. Let G be a group and let · denote
a group action Gy X (that is, a morphism G→ Aut(X)).

Then (X, τ, ·) forms a dynamical system.

Remark 35. This definition is a generalization of what is done in Chapter 1 with iterations of a
function f : X → X. In the present part, that iteration can be seen as the straightforward action
Z y X with k · x = fk(x) for any k ∈ Z, x ∈ X. We may also speak of dynamical systems with the
action of the monoid N, that is, if f is not bijective and the dynamical system nonreversible.

If the topology and the group action are clear, we may denote such a dynamical system as
merely X on the group G. This allows for a clear generalization of the notions of full shift and
subshift on any finitely generated group:

Definition 7.2. Let A be a finite alphabet. Let G be a finitely generated group. Let x ∈ AG and
g, h ∈ G: G naturally acts on the left on AG by

(g · x)h = xg−1h.

The set AG, when endowed with the prodiscrete topology tπ and this action, forms a compact
dynamical system (AG, tπ, ·) called the full shift on G. We call x ∈ AG a configuration.

Remark 36. Writing the action as (g · x)h = xg−1h is extremely important in nonabelian groups. It
also matters in the way patterns are preserved when shifting visual representation of configurations
seen through (right) Cayley graphs, as seen in Section 7.3.2.

Definition 7.3. A pattern p is an element of some APp where Pp ⊂ G is finite. We say that a
pattern p ∈ APp appears in a configuration x ∈ AG – or that x contains p – if there exists g ∈ G
such that for every h ∈ Pp, (g · x)h = ph, and we write p @ x.

The subshift associated to a set of patterns F , called set of forbidden patterns, is defined by

XF = {x ∈ AG | ∀p ∈ F , p 6@ x}

that is, XF is the set of all configurations that do not contain any pattern from F .

As always, a subshift can equivalently be defined as a closed subset of some AG under both the
topology and the G-action, making it – dynamics-wise – a subsystem of that full shift. It is named,
in all generality, a subshift on G with alphabet A.

The above definitions are the equivalent on any group of Definition 4.1, Definition 4.3 and
Property 4.4.
Remark 37. As in Section 1.2 and Section 4.1, note that there can be several sets of forbidden
patterns defining the same subshift X.

Definition 7.4. A morphism h : X → Y between two subshifts X and Y on G, with actions ·X
and ·Y respectively, is a continuous function so that:

∀g ∈ G,∀x ∈ X,h(g ·X x) = g ·Y h(x).

The terms factor, factor map and conjugates mean the same as in Definition 1.19.

The definitions of SFT, sofic and effective subshifts on finitely generated groups are the same as
in Definition 1.20. The same implications as in Property 1.22 hold; the reverse implications may
hold too, depending on the chosen group.

7.2. APERIODICITY 121

7.2 Aperiodicity

7.2.1 Definitions
Definition 7.5. Let X be a subshift on a group G and x ∈ X be a configuration. The orbit of x is
the set OrbG(x) = {g · x | g ∈ G} ⊂ X and its stabilizer is StabG(x) = {g ∈ G | g · x = x} ⊂ G.

Definition 7.6. We say that x is a strongly periodic configuration if |OrbG(x)| < +∞, and that x
is a weakly periodic configuration if StabG(x) 6= {e}.

Simply speaking, a weakly periodic configuration has at least one translate by the group action
that is actually the original configuration; a strongly periodic configuration only has a finite number
of distinct translates by the group action. Of course, in infinite groups, any strongly periodic
configuration is in particular weakly periodic, justifying the terminology.

Definition 7.7. If no configuration in X is strongly periodic and the subshift is nonempty, then the
subshift is said to be weakly aperiodic. If no configuration in X is weakly periodic and the subshift
is nonempty, then the subshift is said to be strongly aperiodic.

Note how being weakly and strongly aperiodic are properties preserved by conjugacy.
Remark 38. In the literature, it is commonly considered that an empty subshift is weakly/strongly
aperiodic. We prevent it here to make statements more compact and avoid any problem of “zerology”
of the sort.

Note how, in this thesis, we will always speak about a periodic configuration and an aperiodic
subshift, to avoid any confusion.

7.2.2 Known results and ties with the Domino Problem
This subsection is, strictly speaking, superfluous for what follows; but it gives some context on the
relevance of what is achieved in Chapter 8.

In few words, as briefly mentioned in the introduction to this part, it is possible to extend
the Domino Problem to finitely generated groups [ABJ18] and to study its decidability on them.
Interestingly enough, the decidability or undecidability can be “inherited” between groups linked
by some relations such as commensurability [CP15] (having conjugated subgroups of finite index).
Even more striking, there seems to be a correlation overall between the existence of some aperiodic
SFT and the undecidability of the Domino Problem on a group, with only few groups (the virtually
free groups, see [Pia08,ABJ18]) known so far for breaking that pattern.

See Table 7.1 for a summary of what is known on the subject. As mentioned in the introduction
to this part, subshifts on Z3 and beyond allow the construction of a weakly but not strongly aperiodic
SFT; along with a strongly aperiodic SFT by a product of Robinson tiles. In the table, H designates
the discrete Heisenberg group, for which similar constructions can be performed with some additional
care [SSU20]. The number of ends of a group, denoted e(G), is an invariant counting the number
of connected components of the Cayley graph of G (see Definition 7.12) as bigger and bigger balls
centered on the identity are pruned from it. For an infinite group, it is known to belong to the
set {1, 2,∞}. Results on groups with two ends [Coh17] and the free groups [Pia08, ABJ18] (see
Definition 7.8) seem to corroborate still-standing conjectures [CP15,BS18] that they are the only
ones in their respective cell of Table 7.1.

122 CHAPTER 7. SUBSHIFTS ON GROUPS AND APERIODICITY

Conjecture 2 (see [CP15]). An infinite f.g. group has no weakly aperiodic SFT if and only if it is
virtually Z.

Conjecture 3 (see [BS18]). An infinite f.g. group has decidable Domino Problem if and only if it
if virtually free.

Baumslag-Solitar groups have been thought for a while to be candidates as groups with unde-
cidable Domino Problem, the existence of a weakly aperiodic SFT, but the absence of a strongly
aperiodic SFT. What we develop in Chapter 8 as published in [EM22], strengthened by a recent
article [ABHT22], shows that they are not those desired candidates.
Remark 39. Recent informal discussions on the subject with N. Pytheas Fogg has brought to light
that Z2 ∗ Z is such a group, containing Z2 (undecidable DP) and with more than one end (no
strongly aperiodic SFT) that still retains a weakly aperiodic SFT with a mere adaptation of the
Robinson tileset.

DP

Aperiodicity ∃ strongly
aperiodic SFT
∃ strict. weakly
aperiodic SFT

∃ strongly
aperiodic SFT
@ strict. weakly
aperiodic SFT

@ strongly
aperiodic SFT
∃ weakly

aperiodic SFT

@ weakly
aperiodic

SFT

Decidable ? ? Virtually free
groups (non-Z)

Virtually Z
(also known
as e(G) = 2)

Undecidable Zd, d ≥ 3
BS(m, n)

H
Z2 Z2 ∗ Z ?

e(G) must be 1 e(G) must be 1

Table 7.1: A few groups for which both the aperiodicity and the Domino Problem are known. The
use of “strict. weakly aperiodic SFT” is a wording used to shorten “weakly but not strongly aperiodic
SFT”. The results on ends of groups are due to [Coh17].

7.3 On group presentations
7.3.1 Group presentations and Cayley graphs
Here, we remind the reader about many things on presentations and Cayley graphs of groups – one
can also find such introduction in [Pia08, Chapter 1.1] for instance.

The concept of words written with symbols is a somewhat informal manner of defining a free
group, but we provide it that way not to spend too many pages on its formal definition. A reader
can find a proper introduction to the subject in the first few pages of [LS01].

Definition 7.8. Let S be a set. The free group over S, denoted by FS , is the group such that
its elements are precisely all the finite words which can be written using characters from S and
characters denoted as their inverses – inverses which form a set denoted as S−1. The law used is the
natural concatenation. The elements of S are called the generators of the group.

7.3. ON GROUP PRESENTATIONS 123

All elements written this way are considered different unless their equality comes from group
axioms (i.e. for any letter l, we can delete all occurrences of ll−1 in a word). Said otherwise,

FS ∼=
(
S ∪ S−1)∗ /{ll−1 | l ∈ S ∪ S−1}

The free group of rank n, where n ∈ N, is the unique free group (up to isomorphism) with n
generators {s1, ..., sn}. It is denoted by Fn.

Remark 40. More generally two free groups using generating sets of the same cardinality are always
isomorphic.
Example 20. • In F2, let us call the generators a and b. Then e (the empty word), ab, ba, ab2a3,

b42 are all different elements. However, ba−3a2ab−1 is e.

• F1 is Z. Indeed, if a designates the only generator, the words one can write are precisely
{ak | k ∈ Z} with a0 = e.

Definition 7.9. Let S be a set and consider FS with these generators.
Let R ⊆ FS and R be the smallest normal subgroup of FS containing R.
We say that a group G has presentation 〈S | R〉 if G is isomorphic to FS/R. Once again, the

elements of S are called the generators; the elements of R are called the relators.

Proposition 7.10. Every group G has at least one presentation.

Proof. If we simply consider FG, then we have an obvious surjective morphism ϕ : FG → G. Its
kernel K being normal in FG, we obtain an isomorphism G ∼= FG/K. Hence G = 〈FG | K〉, although
this presentation may be somewhat “ugly”.

Although the previous definition may sound a bit technical at first sight, it is actually quite
natural. Indeed, R only precises the most basic relations that give the identity element in the group
(from which any other relation can be deduced using the group structure).
Example 21. • 〈a | ∅〉 ∼= F1 = Z with a corresponding to its usual generator 1;

• 〈a, b | aba−1b−1〉 ∼= Z2 with a and b corresponding to its usual generators (0, 1) and (1, 0).
With a slight abuse of notations, we may rewrite the presentation as 〈a, b | ab = ba〉 for
simplicity;

• 〈a, b, c | aba−1b−1, abc−1〉 ∼= Z2 with the additional generator c corresponding to (1, 1);

• 〈a, b | ∅〉 ∼= F2 the free group with two generators;

• 〈a | an〉 ∼= Z/nZ;

• 〈r, s | rn, s2, (rs)2〉 ∼= Dn the dihedral group of order 2n, with r rotation and s symmetry.
Remark 41. Of course, a group can have many different presentations, not using the same sets of
generators and relators. In what follows, we look for some particularly simple presentations.

Definition 7.11. A group G is said to be finitely generated (abbreviated f.g.) if it has a presentation
G = 〈S | R〉 with S finite.

124 CHAPTER 7. SUBSHIFTS ON GROUPS AND APERIODICITY

Definition 7.12. Given a presentation 〈S | R〉 of a group G, its (right) Cayley graph is the directed
graph ΓG = (G, ~EΓ) whose vertices are the elements of G and the directed edges are of the form
(g, gs) with g ∈ G and s ∈ S a generator of G.

The relators are not explicitly present in the aforementioned definition, but they implicitly
correspond to the elementary cycles of the Cayley graph. Often in practice the graph is considered
undirected, or alternatively is built using S ∪ S−1.

Example 22. • 〈a | ∅〉 has for Cayley graph a chain of vertices with in-degree and out-degree 1,
all edges labeled with a, forming the usual “biinfinite line” representation of Z;

• Similarly, 〈a, b | aba−1b−1〉 can be the usual grid representation of Z2 with base ((0, 1), (1, 0));
〈a, b, c | aba−1b−1, abc−1〉 is the usual Z2 grid with the addition of (1, 1) to the base vectors;

• 〈a, b | ∅〉 is the tree with uniform in-degree 2 and out-degree 2.

7.3.2 Visualizing configurations

An easy way of building a subshift on a f.g. group G is to consider colorings of one of its Cayley
graphs: the alphabet is the set of colors used, and the forbidden patterns are based on adjacency
as seen in the Cayley graph. Of course, subshifts on G fundamentally exist without any graphic
representation; but those allow for one, given the correct group presentation for G.

Rather notably, one can extend the notion of Wang shift to any finitely generated G with
a given presentation 〈S | R〉, with |S| = n. Characters of the alphabet are |S ∪ S−1|-tuples
(ts1 , ts1−1 , . . . , tsn , tsn−1) – most of the time 2n-tuples, except if there is some generator s with
s = s−1. These coordinates precise a color for each “direction” in the Cayley graph, on a given
vertex. Forbidden patterns are any nonmatching colors in said Cayley graph.

Example 23. In the picture that follows, we illustrate an alphabet A made of quadruplets that are
Wang tiles adapted to F2. Then, we represent a local window of a specific configuration from a
subshift of AF2 that obeys straightforward adjacency rules for the tiles.

A = { }

7.4. BAUMSLAG-SOLITAR GROUPS 125

7.4 Baumslag-Solitar groups

7.4.1 Definition

The groups we are interested in this entire part are the Baumslag-Solitar groups (abbreviated BS).
They are notably defined, using two nonzero integers m,n as parameters, by the presentation

BS(m,n) = 〈a, b | bamb−1 = an〉.

Remark that BS(1, 1) = Z2, and that BS(m,n) ∼= BS(n,m) ∼= BS(−m,−n).
The Baumslag-Solitar groups are widely studied, as they are a large class of finitely generated

groups – and simple, two-generator one-relator groups – used for numerous counterexamples in
group theory. We will not make a extensive list of their properties; nevertheless, we mention one
that will only be used here to characterize nicely all the Baumslag-Solitar groups on which we build
subshifts in Chapter 8.

Definition 7.13. A group G is said to be residually finite if for any g ∈ G that is not the identity,
there is a normal subgroup N C G of finite index such that g /∈ N .

Proposition 7.14 (Meskin [Mes72]). BS(m,n) is residually finite ⇔ |m| = 1 or |n| = 1 or
|m| = |n|.

7.4.2 Understanding their usual Cayley Graphs

Now, to build subshifts on Baumslag-Solitar groups, we visualize these through their Cayley graph
given by the presentation above, and perform a construction that is close but not exactly the one of
Wang shifts. This has been done previously in [AK13,AK21] by Aubrun and Kari who, adapting a
technique by Kari [Kar96], proved the following:

Proposition 7.15. For all m,n > 0, BS(m,n) admits a weakly aperiodic SFT and has undecidable
DP.

That result is reused and detailed in Section 8.1 of Chapter 8. It is based on Kari’s construction
on the discrete hyperbolic plane, itself a variant of his construction on Z2 [Kar96]. The parallel
between the discrete hyperbolic plane and the Baumslag-Solitar groups is apparent when considering
their Cayley graphs as given by the above presentation.

Cycles in these Cayley graphs, and the local form of said graphs, look like the following – here
for BS(2, 3).

g.b g.ba g.ba2

g g.a g.a2 g.a3

126 CHAPTER 7. SUBSHIFTS ON GROUPS AND APERIODICITY

As can be seen, that Cayley graph is made of lines of successions of a generators (named levels
in Chapter 8, see Definition 8.4), and each of these lines has n lines branching out “above” (in the b
direction) and m lines branching out “below” (in the b−1 direction), connected by rows of cycles.
When choosing a succession of lines in the b and b−1 directions, one obtains a “sheet” of the Cayley
graph, with an appearance that is similar to the following:

Here, this graph corresponds to both a “sheet” of BS(1, 2) and the hyperbolic discrete plane.
Though the correspondence (and thus, the construction) is slightly less straightforward for any
BS(m,n), the similarity is quite clear – it is what gave rise to the article by Aubrun and Kari [AK13]
in the first place.

7.4.3 Tiles on BS Groups

A particular class of SFTs is obtained by considering specific colorings of the aforementioned Cayley
graphs of Baumslag-Solitar groups, with presentation 〈a, b | bamb−1 = an〉.

A Cycle shift on a Baumslag-Solitar group BS(m,n) is a particular SFT where the alphabet is a
set of tiles τ , which are tuples of colors of the form s = (ts1, . . . , tsm, ls, rs, bs1, . . . , bsn).

7.4. BAUMSLAG-SOLITAR GROUPS 127

To make notations easier, we denote:

s(top1) = ts1
...

s(topm) = tsm

s(left) = ls

s(right) = rs

s(bottom1) = bs1
...

s(bottomn) = bsn

•

• • • •

• • • •. . .

. . .

t1 tm

b1 b2 bn

l r

Figure 7.1: A tile of BS(m,n)

On the Cayley graph, a tile is considered anchored on a vertex g as the decoration of the cycle
of which g is the top left vertex – see Fig. 7.2. We chose the name Cycle shift accordingly – to our
knowledge, no standard name exists for these subshifts.

A tiling is then a configuration T ∈ τBS(m,n) over the group using the alphabet τ . We say that
a tiling is valid if the colors of neighboring tiles match – that is, for any g ∈ BS(m,n) and Tg the
associated tile at position g, we must have:

Tg(right) = Tgam(left)
Tg(topk) = Tgak−lb(bottoml)

for any k ∈ {1, . . . ,m} and l ∈ {1, . . . , n}.
See Fig. 7.2 for an illustration of these rules.

Remark 42. The set of all valid tilings for a tileset τ , also refered as the Cycle shift, forms an SFT
Xτ , since the tileset gives a finite number of local constraints based on a finite alphabet. In general,
it is not necessarily simpler to consider these tilesets – tied to a particular presentation and Cayley
graph – instead of a purely mathematical description of the subshift X ⊆ ABS(m,n); however, as
mentioned in Section 7.4.2, in [AK13] the construction heavily uses the visual representation of tiles
with numbers on the top and bottom that encode a multiplication by a real number, and Chapter 8
will do the same.

128 CHAPTER 7. SUBSHIFTS ON GROUPS AND APERIODICITY

•

• • •

• ••

• • •

• •

g ga2

Tg(right) Tga2(left)
•

• • •

• ••

• •

• •

•

•

• •

• •

•

•

• •

ga−1b

gb

ga−1
g

Tga−1b(bottom2)

Tgb(bottom1)

Tg(top1)

Tga−1 (top2)

Figure 7.2: The neighbor rules for BS(2, 2).

7.5 Substitutions
This section, though less immediately related to subshifts on Baumslag-Solitar groups, is of use in
Section 8.2. To explain its use, we need the following definition first.

Definition 7.16. Let A∗ be the set of (finite) words over A. A substitution is a map s : A → A∗.
We say it is uniform of size n ∈ N if for every a ∈ A, |s(a)| = n.

The substitution s can be extended to A∗ by applying it to each letter of the word and
concatenating the resulting words. We can also extend s to AN0 (resp. AN) by doing the same,
concatenating infinitely many words, the first letter of the first word being at position 0 (resp. 1).
Finally, s can be extended to pointed biinfinite words, that are words on AZ where a point precedes
coordinate 0, as illustrated in Fig. 7.3.

x−3 x−2 x−1 x0 x1 x2.

y−3n · · · y−2n−1 y−2n · · · y−n−1 y−n · · · y−1 y0 · · · yn−1 yn · · · y2n−1 y2n · · · y3n−1.

Figure 7.3: How a substitution is applied to a biinfinite word: y = s(x) with s a uniform substitution
of size n. Notably, s(x−1) = y−n . . . y−1. When writing the word x, a point is added between x−1
and x0, which precises the behavior of the substitution.

The motivation for introducing the mathematical object that are substitutions is simple: the
discrete hyperbolic plane can be seen as the orbit graph of the substitution s0 : 0→ 00 on the trivial
alphabet. That substitution duplicates the only existing letter, and its action can consequently
be naturally represented as a planar graph with cycles as in BS(1, 2) – where any edge above is
labeled 0, and any of the two edges below is also labeled 0. Forgetting these labels, we simply
obtain the discrete hyperbolic graph. Consequently, any sheet of any BS(1, n) is just the orbit

7.5. SUBSTITUTIONS 129

graph of sn : 0→ 0n. As such, the intuition behind Section 8.2 is that we can try and encode other
substitutions of uniform size n in those graphs, possibly obtaining configurations of a subshift that
would be weakly aperiodic.

To achieve such a result, we also need some other tools on substitutions.

Definition 7.17. A fixpoint of a substitution s is a (possibly biinfinite) word u such that s(u) = u.

Definition 7.18. For a ∈ A and u ∈ A∗ with s(a) = au, we define the positive infinite iteration of
s on a: −→

sω(a) = a u s(u) s2(u) · · · ∈ AN0 .

In the same way, this time for b ∈ A and v ∈ A∗ with s(b) = vb, we define the negative infinite
iteration of s on b: ←−ωs(b) = · · · s2(v) s(v) v b ∈ AZ− .

Notice that, in the previous definition, s(−→sω(a)) = −→sω(a) and s(←−ωs(b)) =←−ωs(b). This leads to the
easy creation of pointed biinfinite words that are fixpoints of s: ←−ωs(b).−→sω(a) is one. See Lemma 8.23
that makes use of this.

Definition 7.19. For a word u (possibly biinfinite), we define its factor complexity

Pu(n) = |{w ∈ An | w @ u}|

where w @ u indicates that w is a subword of u.

Proposition 7.20 (see [CN10]). The factor complexity of a biinfinite word is bounded if and only
if that word is periodic, that is, if it is made of the same finite word concatenated infinitely many
times.

130 CHAPTER 7. SUBSHIFTS ON GROUPS AND APERIODICITY

Chapter 8

Subshifts on Baumslag-Solitar
Groups

The present chapter is divided into three independent sections, all of them based on sections
from [EM22]:

• Section 8.1 reintroduces a construction from [AK13,AK21], itself based on a construction from
[Kar96,CI96]. Its aim and vocabulary are given in Section 8.1.1, Section 8.1.2 to Section 8.1.3
for self-inclusion, before the same conclusion as in [AK13] is reached in Section 8.1.4: in general,
that construction yields a weakly aperiodic SFT on BS(m,n) groups. However, a more careful
study reveals that the same construction is actually strongly aperiodic on BS(1, n) groups, a
result reached in Section 8.1.6.

• Section 8.2 is a brand new approach, based on substitutions as introduced in Section 7.5. It
is loosely inspired by [ABM19] and other orbit graphs methods, but directly uses a fitting
substitution to tile the Cayley graph of BS(1, n), yielding a weakly but not strongly SFT on
it.

• Finally, results from [Jea15] and [CP15] assembled together in Section 8.3, along with the
algebraic conjugacy BS(n, n) ∼= (Z × Fn) o Z/nZ (re-proved in Proposition 8.29 for self-
inclusion), allow for the straightforward proof of the existence of a strongly aperiodic SFT on
BS(n, n).

Considering Proposition 7.14; gathering results from Theorem 17, Theorem 18 and Theorem 20;
and considering that BS(−m,−n) ∼= BS(−m,n) ∼= BS(m,−n) ∼= BS(m,n) ∼= BS(n,m), this
section as a whole allows to reach the following result:

Theorem 14. Residually finite Baumslag-Solitar groups BS(m,n) with |m| ≥ 2 or |n| ≥ 2 admit
both strongly and weakly-not-strongly aperiodic SFTs.

An interesting complement to the previous theorem is the recent [ABHT22, Th. 5.9], that shows
that all Baumslag-Solitar groups BS(m,n) with m 6= n and m,n > 1 admit a strongly aperiodic
SFT. The article uses the base technique of Section 8.2, and – roughly speaking – adds a “flow” on
the Cayley graph that breaks the possible period from Proposition 8.13 and allows to reach strong
aperiodicity.

131

132 CHAPTER 8. SUBSHIFTS ON BAUMSLAG-SOLITAR GROUPS

8.1 On a construction by Aubrun and Kari
In [AK13], Aubrun and Kari provide a weakly aperiodic tileset on Baumslag-Solitar groups, with a
proof adapted from [Kar96,CI96]. Their proof focuses on the specific case of BS(2, 3), for which
they also present a period for one specific configuration, implying that the corresponding tileset is
not strongly aperiodic.

A more general version of the construction can be found in [AK21]. We repeat most of it here
for the sake of completeness, since we study that construction in more details to obtain additional
results: we will show that it yields a weakly but not strongly aperiodic SFT on any BS(m,n) with
|m| 6= 1 and |n| 6= 1, and a strongly aperiodic SFT on any BS(1, n).

8.1.1 Aubrun and Kari’s construction
Aubrun and Kari’s construction works by encoding orbits of piecewise affine maps applied to real
numbers. We will only apply their construction for piecewise linear maps, and begin this section
with the necessary definitions.

8.1.2 Definitions
Definition 8.1 (Representation by a sequence). Let i ∈ Z. We say that a binary biinfinite sequence
(xk)k∈Z ∈ {i, i+ 1}Z represents a real number x ∈ [i, i+ 1] if there exists an increasing sequence of
intervals I1 ⊂ I2 ⊂ · · · ⊆ Z of size at least 1, 2, . . . such that:

lim
k→+∞

∑
j∈Ik xj

|Ik|
= x.

Note that if (xk)k∈Z is a representation of x, all the shifted sequences (xl+k)k∈Z for every l ∈ Z
are also representations of x. Note that a sequence (xk)k∈Z can a priori represent several distinct
real numbers since different choices of interval sequences may make it converge to different points.
A sequence always represents at least one real number by compactness of [i, i+ 1].

Then, we define a generalization of piecewise linear maps: multiplicative systems. The main
difference with piecewise linear maps is that points may have several images as definition intervals
of different pieces might overlap.

Definition 8.2 (Multiplicative system). A multiplicative system is a finite set of non-zero linear
maps

S = {f1 : I1 → I ′1, . . . , fk : Ik → I ′k}

with Ii and I ′i closed intervals of R. Its inverse is defined to be

S−1 = {f−1
1 : I ′1 → I1, . . . , f

−1
k : I ′k → Ik}.

The image of x ∈
⋃
i Ii is the set

S(x) = {y ∈
⋃
j

I ′j | ∃i, fi(x) = y}.

8.1. ON A CONSTRUCTION BY AUBRUN AND KARI 133

The k-th iteration of S on x ∈
⋃
i Ii is then:

{y ∈ R | ∃i1, . . . , ik, fik ◦ · · · ◦ fi1(x) = y} if k > 0
x if k = 0
{y ∈ R | ∃i−1, . . . , i−k, f

−1
i−k
◦ · · · ◦ f−1

i−1
(x) = y} if k < 0

.

Note that if none of the intervals overlap, S can be represented as a piecewise linear function
and the definition of inverse and iteration coincide with the usual ones.

Definition 8.3 (Immortal and periodic points). Let S = {f1 : I1 → I ′1, . . . , fk : I1 → I ′k} be a
multiplicative system. The real number x ∈ R is immortal if for all k ∈ Z,

Sk(x) ∩
⋃
i

Ii 6= ∅.

A periodic point for this system is a point x ∈ R such that there exists k ∈ N∗ such that

x ∈ Sk(x).

Definition 8.4 (Level). The level of g ∈ BS(m,n) is the set Lg = {gak | k ∈ Z}.

When considering a tiling of BS(m,n), given a line of tiles located between levels Lg and Lgb−1 ,
we talk about the upper side of the line to refer to level Lg, and the lower side of the line to refer to
level Lgb−1 .

Definition 8.5 (Height). The height of g ∈ BS(m,n) is, for any way of writing it as a word in
{a, b, a−1, b−1}∗, its number of b’s minus its number of b−1’s; it is denoted as ||g||b.

Since the only basic relation in BS(m,n) uses one b and one b−1, all writings of g as a word give
the same height. Furthermore, it is actually the height of all elements in its level.

Definition 8.6 (Multiplying tileset). A set of tiles τ multiplies by q ∈ Q if we have the following
equality for any tile (t1, . . . , tm, l, r, b1, . . . , bn) ∈ τ (see Fig. 7.1 for the notation):

q
t1 + · · ·+ tm

m
+ l = b1 + · · ·+ bn

n
+ r. (8.1)

Let τ be a tileset multiplying by q ∈ Q. If we consider a line of N tiles of τ next to each other
without tiling errors (as defined in Section 7.4.3), as left and right colors match, we can average
Eq. (8.1):

qt+ l

N
= b+ r

N
. (8.2)

where t is the average of the top labels of the line and b the average of the bottom ones. Therefore,
if an infinite line has its upper side representing x ∈ R and its lower side representing y ∈ R, taking
the limit of Eq. (8.2) on a well chosen sequence of intervals gives:

qx = y.

Hence the name of multiplying tileset for τ .

134 CHAPTER 8. SUBSHIFTS ON BAUMSLAG-SOLITAR GROUPS

8.1.3 A multiplying tileset
Let us define, in a fashion similar to [AK13], a couple of useful functions to build a multiplying
tileset. Let αm,n : {a, b, a−1, b−1}∗ → R (or just α when m and n are clear) be defined by the
recursion: 

α(ε) = 0 where ε is the empty word
α(wb) = α(wb−1) = α(w)
α(wa) = α(w) +

(
n
m

)||w||b
α(wa−1) = α(w)−

(
n
m

)||w||b .
The map α can be extended to elements of BS(m,n), due to the fact that α(ubamb−1v) = α(uanv)
for any pair of words u and v in {a, b, a−1, b−1}∗: α(g) is then α(w) for any word representing g in
the group.
Now, we define Φ : BS(m,n)→ R2 as follows:

Φ(g) = (α(g), ||g||b) .

The function Φ can be seen as a projection of every element of BS(m,n) on the Euclidean plane R2.
Finally, let λ : BS(m,n)→ R be defined as

λ(g) = 1
m

(m
n

)||g||b
α(g).

Let q ∈ Q and I an interval, let

tj(g, x) := b(mλ(g) + j)xc − b(mλ(g) + (j − 1))xc for j = 1 . . .m
bj(g, x) := b(nλ(g) + j) qxc − b(nλ(g) + (j − 1)) qxc for j = 1 . . . n

l(g, x) := 1
m
qbmλ(g)xc − 1

n
bnλ(g)qxc

r(g, x) := 1
m
qb(mλ(g) +m)xc − 1

n
b(nλ(g) + n) qxc

Then, we define the tileset τq,I as:

τq,I = {(t1(g, x), . . . , tm(g, x), l(g, x), r(g, x), b1(g, x), . . . , bm(g, x)) | g ∈ BS(m,n), x ∈ I}.

One can show that Eq. (8.1) holds for these tiles.

Proposition 8.7 (Prop. 6 from [AK21]). Let k ∈ Z, for any I ⊆ [k, k + 1], τq,I is a tileset that
multiplies by q.

Let us define a balanced representation of x, which is the biinfinite sequence defined for any
z ∈ R by

Bj(x, z) = b(z + j)xc − b(z + j − 1)xc .

Note that Bj(x, z) depends on j and z, but can only take two values: bxc or bxc+ 1.

8.1. ON A CONSTRUCTION BY AUBRUN AND KARI 135

•

• • • •

• • • •. . .

. . .

t1(g, x) tm(g, x)

b1(g, x) b2(g, x) bn(g, x)

l(g, x) r(g, x)

Figure 8.1: One tile from the tileset τq,I .

Remark 43. If x is irrational and the sequence is made of 0’s and 1’s, it is called a Sturmian
sequence. A binary configuration obtained from a Sturmian sequence is a Sturmian word – they
are aperiodic configurations from {0, 1}Z that are well known for their numerous definitions (and
resulting properties). Indeed, they can be defined from Beatty sequences as mentioned below; from
straight lines of irrational slope in the plane; from their factor complexity (Definition 7.19) of
P (n) = n+ 1; from the coding of irrational rotations in S1; and more.

On a related topic, a sequence (bjxc)j∈N by itself (possibly with some offset r ∈ [0, 1), resulting
in bjx+ rc) is known as a Beatty sequence.

Proposition 8.8. Let q ∈ Q, k ∈ Z and I ⊆ [k, k + 1]. The upper side of any tile in τq,I is of the
form

Bj(x,mλ(g)), Bj+1(x,mλ(g)), . . . , Bj+m(x,mλ(g));

for x ∈ I, j ∈ Z, g ∈ BS(m,n). In particular, its labels are in {k, k + 1}. The lower side is of the
form

Bj(qx,mλ(gb−1)), Bj+1(qx,mλ(gb−1)), . . . , Bj+n(qx,mλ(gb−1)).

Proof. Rewriting the top labels using balanced representation yields

Bj(x,mλ(g)), Bj+1(x,mλ(g)), . . . , Bj+m(x,mλ(g)).

Since each Bj(x,mλ(g)) is either bxc or bxc+ 1, and x ∈ [k, k+ 1) (or x = k+ 1, see next sentence),
one obtains labels in {k, k + 1}. The case x = k + 1 has to be treated specifically, by noticing that
B.(k + 1, .) = k + 1 whatever the other values may be. Hence all labels are in {k, k + 1}. For the
bottom side, note that λ(gb−1) = n

mλ(g), which gives labels

Bj(qx,mλ(gb−1)), Bj+1(qx,mλ(gb−1)), . . . , Bj+n(qx,mλ(gb−1)).

For our purpose we need to have a finite tileset, because subshifts use a finite alphabet.

Proposition 8.9. Let k ∈ Z, for any I ⊆ [k, k + 1] the tileset τq,I is finite.

Proof. Proposition 8.8 gives us that there are finitely many top and bottom labels. It remains to
prove that there are also finitely many left and right labels.

136 CHAPTER 8. SUBSHIFTS ON BAUMSLAG-SOLITAR GROUPS

First of all, one can check that λ(gam) = λ(g) + 1, and so l(gam, x) = r(g, x). Consequently, we
simply have to prove that l lies in a finite set. Let q = q1

q2
with q1, q2 ∈ Z∗, and write

l(g, x) = nqbmλ(g)xc −mbnλ(g)qxc
mn

= nq1bmλ(g)xc −mq2bnλ(g)qxc
mnq2

.

Since its numerator is an integer bounded by −nq1 =: k1 from below and mq2 =: k2 from above
using usual inequalities on the floor function, we have that for any g ∈ BS(m,n), x ∈ I, mnq2l(g, x)
is an integer comprised between −nq1 and mq2 (with these values ordered depending on whether
q1 and q2 are positive or negative). Consequently, for any g ∈ BS(m,n), x ∈ I, l(g, x) is in a finite
set.

Thanks to this and the multiplying property of τq,I , we can now use it as a tile set to encode
multiplicative systems, in such a way that nonempty tilings correspond to immortal points of the
system.

Theorem 15. Let S = {f1, . . . , fN} be a multiplicative system with

fi :Ii → R
x 7→ qix,

qi ∈ Q and Ii interval with rational bounds included in some [ai, ai + 1], ai ∈ Z. We can explicitly
and algorithmically build an SFT YS on any BS(m,n) with the following properties:

1. any top of a line of tiles in a configuration y ∈ YS represents at least one real number x ∈
⋃
i Ii.

2. if the top of a line of tiles represents a real number x ∈
⋃
i Ii, then the bottom of that line

represents a real number in S(x);

3. YS 6= ∅ if and only if S has an immortal point;

A simplified representation of an element in YS is given by Fig. 8.2.

Proof. We build a tileset τ performing the computation by the linear functions fi : [ai, ai+1]→ R; i.e.
the linear maps with bigger intervals than the ones defining S. In order to encode the multiplication
correctly, one cannot simply take the union of all τi := τqi,[ai,ai+1], because tiles coming from
different fi could be mixed on a single line. In order to ”synchronize” the computations on every
line, we create a product alphabet with the left and right colors of the tiles, and the number of
the current function being used. This ensures that one line can have tiles from only one of the
τqi,[ai,ai+1]. Formally,

τ =
{

(t1, . . . , tm, (l, i), (r, i), b1, . . . , bn) | (t1, . . . , tm, l, r, b1, . . . , bn) ∈ τqi,[ai,ai+1]
}
.

The tiling constraints ensure that the left (l1, i) and right (r2, i) of two adjacent tiles are the same,
hence they come from the same set τqi,[ai,ai+1]. This way, we can interpret any line of a tiling by τ
as being “of color” i for some i ∈ {1, . . . , N}.

8.1. ON A CONSTRUCTION BY AUBRUN AND KARI 137

x = fij (xj)

x1

x2

x3

fi4(x)
fi5(x)

fi5

fi4

fi1fi2

fi3

Figure 8.2: Representation of a fragment of a configuration y ∈ YS on BS(2, 3). Each xj is a real
number represented by the line next to it in the figure; that line is a biinfinite sequence of digits in
some two-element set {aij , aij + 1}. Each fij is a multiplicative map in S; some of them are possibly
the same.

Next, we restrict the intervals of real numbers that can be represented in each line of the SFT.
Let us write Ii = [ai + di1

ei1
, ai + 1− di2

ei2
], for each i. YS will be Xτ with the following additional local

constraints: on each line of color i, we force the upper side labels to respect

• every ei1 consecutive labels must contain at least di1 labels ai + 1; (8.3)
• every ei2 consecutive labels must contain at least di2 labels ai. (8.4)

Recall that the top labels of any line of color i only has labels ai and ai + 1 by definition of τi. From
this, we can also deduce

• every ei1 consecutive labels must contain at most ei1 − di1 labels ai;
• every ei2 consecutive labels must contain at most ei2 − di2 labels ai + 1.

Since these constraints are on ei1 or ei2 consecutive labels, and any other constraint from the τi’s is
on neighboring tiles, YS is an SFT.

First, assume that YS is nonempty and contains some configuration y. Then, the sequence at the
top of each level Lbk , k ∈ Z represents at least one real number xk, since it is a sequence made of at
most two integers. Thanks to the multiplying property of each τi (Proposition 8.7), and the fact
that the local rules of every line impose that any real number represented belongs to an interval Ii,
(xk)k∈Z is an infinite orbit of S. Indeed, consider a real number x represented by the upper side
of a line of color i. We prove that x ∈ Ii = [a + d1

e1
, a + 1 − d2

e2
] (we drop the i in this paragraph

to make notations lighter). Let us write (Jl)l∈N the intervals from Definition 8.1 (denoted as (Ii)
there) on which we compute the mean for the represented real, and let rl denote the proportion of
a’s over (a+ 1)’s in the line representing x restricted to Jl. Thanks to the two conditions Eq. (8.3)
and Eq. (8.4) (and the two we deduced), we have, for all l in N,

d2

e2 − d2
≤ rl ≤

e1 − d1

d1
. (8.5)

138 CHAPTER 8. SUBSHIFTS ON BAUMSLAG-SOLITAR GROUPS

Moreover, since x is the limit of the means computed on each Jl, one can show that

x = lim
l→∞

a+ 1
1 + rl

.

Using the left inequality of Eq. (8.5) gives that

1
1 + rl

≤ e2 − d2

e2
= 1− d2

e2
.

So
x ≤ a+ 1− d2

e2
.

Similarly, the right inequality of Eq. (8.5) gives

x ≥ a+ d1

e1
,

and so x ∈ Ii. This notably ensures Item 1 and, by the use of the τi’s, Item 2.

Now, assume that S has an immortal point x. Then there exists a sequence (ik)k∈Z ∈ {1, . . . , N}Z
such that if we define

xk =


x if k = 0
fik−1(xk−1) = qik−1xk−1 if k > 0
f−1
ik

(xk+1) = 1
qik
xk+1 if k < 0

,

then for all k ∈ Z, xk ∈
⋃
i Ii. For every g ∈ BS(m,n), we place at g a tile from the tileset τik with

k = −||g||b, with colors:

tj : tj(g, xk) = b(mλ(g) + j)xkc − b(mλ(g) + (j − 1))xkc for j = 1 . . .m
bj : bj(g, xk) = b(nλ(g) + j) qikxkc − b(nλ(g) + (j − 1)) qikxkc for j = 1 . . . n

l : l(g, xk) =
(

1
m
qikbmλ(g)xkc −

1
n
bnλ(g)qikxkc, ik

)
r : r(g, xk) =

(
1
m
qikb(mλ(g) +m)xkc −

1
n
b(nλ(g) + n) qikxkc, ik

)
These tiles are obviously from the tileset τ . Recall that we have

λ(gam) = λ(g) + 1, (8.6)

λ(gb) = m

n
λ(g).

And therefore,

l(gam, xk) =
(

1
m
qbmλ(gam)xkc −

1
n
bnλ(gam)qxkc, ik

)
=
(

1
m
qikbm(λ(g) + 1)xkc −

1
n
bn(λ(g) + 1)qikxkc, ik

)
= r(g, xk),

8.1. ON A CONSTRUCTION BY AUBRUN AND KARI 139

and for any j ∈ {1, . . . ,m}, p ∈ {1, . . . , n},

bp(gaj−pb, x−||gaj−pb||b)

=
⌊(
nλ(gaj−pb) + p

)
qi−||gaj−pb||b

x−||gaj−pb||b

⌋
−
⌊(
nλ(gaj−pb) + (p− 1)

)
qi−||gaj−pb||b

x−||gaj−pb||b

⌋
=
⌊(
n
m

n
λ(gaj−p) + p

)
qi−||g||b−1x−||g||b−1

⌋
−
⌊(
n
m

n
λ(gaj−p) + (p− 1)

)
qi−||g||b−1x−||g||b−1

⌋
=
⌊(

m(λ(g) + j − p
m

) + p

)
qi−||g||b−1x−||g||b−1

⌋
−
⌊(

m(λ(g) + j − p
m

) + (p− 1)
)
qi−||g||b−1x−||g||b−1

⌋
=
⌊
(mλ(g) + j) qi−||g||b−1x−||g||b−1

⌋
−
⌊
(mλ(g) + (j − 1)) qi−||g||b−1x−||g||b−1

⌋
=
⌊
(mλ(g) + j)x−||g||b

⌋
−
⌊
(mλ(g) + (j − 1))x−||g||b

⌋
= tj(g, x−||g||b)

It remains to show that the labels at the top of every line follow the conditions (8.3) and (8.4).
Fix some g ∈ BS(m,n) and consider the level Lg. Fix k = −||g||b, denote x := xk, i := ik and drop
the i in the other variables to simplify notations. For j ∈ Z, we write wj for the label at position j
of the considered level, with t1(g, xk) being position 1. Remark that

wj = b(mλ(g) + j)xc − b(mλ(g) + (j − 1))xc

holds for all j ∈ Z thanks to Eq. (8.6). Assume that x ≥ a+ d1
e1

. Let us write Nj0 the number of
labels a that appear in the word u = wj0+1wj0+2 · · ·wj0+e1 . If we sum all the labels of u, we have
on the one hand

j0+e1∑
j=j0+1

wj = Nj0a+ (e1 −Nj0)(a+ 1) = e1(a+ 1)−Nj0 .

And on the other hand,
j0+e1∑
j=j0+1

wj = b(mλ(g) + j0 + e1)xc − b(mλ(g) + j0)xc.

Therefore,

e1(a+ 1)−Nj0 > (mλ(g) + j0 + e1)x− 1− (mλ(g) + j0)x = e1x− 1 ≥ e1a+ d1 − 1,

which can be rearranged to
Nj0 ≤ e1 − d1,

which implies (8.3). In the same way, if we assume x ≤ a+ 1− d2
e2

, we can show Nj0 ≥ d2, which is
exactly (8.4). This shows Item 3.

Remark 44. Instead of considering a multiplicative system with rational bounds for the intervals,
one can dilate them and encode a dilated system with integer bounds, which is equivalent to the
original. For instance, instead of using a linear function f on [a+ d1

e1
, a+ 1− d2

e2
], one can consider

that function f multiplied by e1e2, on [ae1e2 + d1e2, ae1e2 + e1e2 − d2e1] which has integer bounds.
However, although this would yield a shorter proof, the results would only hold through some sort
of conjugation, and we wanted to effectively build a tileset for any multiplicative system.

Note that we only build a multiplying tileset here. Aubrun and Kari provided the details of the
encoding of any finite set of affine maps into a tileset of BS(m,n) in [AK21].

140 CHAPTER 8. SUBSHIFTS ON BAUMSLAG-SOLITAR GROUPS

8.1.4 A weakly aperiodic SFT on BS(m,n)
The SFT YS previously defined on a given BS(m,n) is also linked to the periodicity of S.

Theorem 16. If S has no periodic point, then YS is a weakly aperiodic SFT.

Proof. We prove the contrapositive.
Assume that YS has a strongly periodic configuration y, i.e. |OrbBS(m,n)(y)| = i with i ∈ N. In

particular, each set {gakg−1 · y | k ∈ Z} is finite of cardinality lesser than i, and therefore for every
g ∈ BS(m,n), there exists kg ≤ i such that gakgg−1 · y = y. If we define p = i!, we obtain that for
all g ∈ BS(m,n), gapg−1 · y = y.

Let g ∈ BS(m,n). Let h ∈ Lg, i.e. there exists some k ∈ Z so that h = gak. Then

yh = (gapg−1 · y)h
= yga−pg−1h

= ygak−p

= yha−p

which means that the level Lg is p-periodic.
Therefore any level is p-periodic, and consequently represents a unique rational number c

p . Since
the alphabet of YS is finite, there are only finitely many different such rationals. Consequently,
there exist two levels Lgbl and L with l > 0 that represent the same rational number x. By the
multiplicative property of YS ,

x ∈ Sl(x),

which means that x is a periodic point for S.

The consequence of this theorem is that, to obtain a weakly aperiodic SFT on BS(m,n), we
only need to explicitly build a multiplicative system with an immortal point but no periodic points.
For the rest of this section, notably inspired by [CI96], let

f1 : [13 , 1]→ [23 , 2]

x 7→ 2x

f2 : [1, 2]→ [13 ,
2
3]

x 7→ 1
3x

and
S0 = {f1, f2}.

It is easy to see that this system has immortal points (in fact, all points of [1
3 , 2] are immortal).

Proposition 8.10. S0 has immortal points.

Additionally, since 2 and 3 are relatively prime:

8.1. ON A CONSTRUCTION BY AUBRUN AND KARI 141

Proposition 8.11. S0 has no periodic points.

Corollary 8.12. YS0 is nonempty and weakly aperiodic.

However, this construction does not avoid weakly periodic configurations when m and n are not
1, as already remarked by Aubrun and Kari.

Proposition 8.13. For any m,n > 1, YS0 on BS(m,n) contains a weakly periodic tiling, with
period p = bab−1aba−1b−1a−1.

To prove it, we need the following lemma:

Lemma 8.14. Let p = bab−1aba−1b−1a−1. For any g ∈ BS(m,n), α(pg) = α(g).

Proof. Since ||p||b = 0, using the definition of α it is easy to show that α(pg) = α(p) + α(g) by
recurrence on the length of g. Then, α(p) = n

m + 1− n
m − 1 = 0.

Proof of Proposition 8.13. We happen to have built a periodic configuration already: the one from
the proof of Theorem 15.

Indeed, let x be any real number in [1
3 , 2], since they are all immortal for S0. Then there exists a

sequence (ik)k∈Z ∈ {1, 2}Z such that if we define

xk =


x if k = 0
fik−1(xk−1) = qik−1xk−1 if k > 0
f−1
ik

(xk+1) = 1
qik
xk+1 if k < 0

,

then for all k ∈ Z, xk ∈ [1
3 , 2]. For every g ∈ BS(m,n), we place at g a tile from the tileset τik with

k = −||g||b, with colors:

tj : tj(g, xk) = b(mλ(g) + j)xkc − b(mλ(g) + (j − 1))xkc for j = 1 . . .m
bj : bj(g, xk) = b(nλ(g) + j) qikxkc − b(nλ(g) + (j − 1)) qikxkc for j = 1 . . . n

l : l(g, xk) =
(

1
m
qikbmλ(g)xkc −

1
n
bnλ(g)qikxkc, ik

)
r : r(g, xk) =

(
1
m
qikb(mλ(g) +m)xkc −

1
n
b(nλ(g) + n) qikxkc, ik

)
We already checked that the resulting tiling y was in YS0 , see the proof of Theorem 15. It

remains to show that the tiles at g and at pg are the same for all g ∈ BS(m,n), to conclude that
p−1 · y = y, or equivalently that p is a period of y. This is actually surprisingly easily, considering
that for any g ∈ BS(m,n), ||pg||b = ||g||b so they use the same integer k and the same real number
xk; and λ(g) = λ(pg), see Lemma 8.14. The tiles have the same labels as a consequence of this.

The y consequently defined is p-periodic. The only thing left to show is that p is a nontrivial
element of BS(m,n) as long as m,n > 1. Since it is freely reduced and does not contain bamb−1 or
b−1anb as subwords, and since BS(m,n) is a HNN extension Z∗α with α : mZ→ nZ, we can apply
Britton’s Lemma: p cannot be the neutral element.

Therefore YS0 contains a configuration with a nontrivial period, and consequently is not strongly
aperiodic.

See Fig. 8.3 for an illustration of a local portion of a configuration in YS0 .

142 CHAPTER 8. SUBSHIFTS ON BAUMSLAG-SOLITAR GROUPS

5
12

5
4

5
4

5
4

5
6

5
6

×2

× 1
3

1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0

0 1 1 1 1 1 0 1 1 1 1 1 0 1 1

1 0 0 1 1 0 1 0 0 1 0 0

1 1 1 2 1 1 1 2

1 1 2 1 1 1

1 1 1 2 1 1

Figure 8.3: Tentative representation of a portion of a configuration in YS0 on BS(2, 3). Notice how,
contrary to the general case from Fig. 8.2, all lines of same height represented here are applied the
same multiplicative function.

8.1.5 A deeper understanding of the configurations
We first present additional results on this tileset YS0 of BS(m,n). Most of the ideas present in this
section were already present in [DGG14] in the context of tilings of the plane.

For a given line Lg, we define the sequence ug := (ygai)i∈Z to be the sequence of digits on the
line Lg (its origin depending on g).

Let f be the following bijective continuous map:

f : [1
3 , 2]/

1
3 ∼ 2

→[1
3 , 2] /

1
3 ∼ 2

f(x) =


f1(x) = 2x if x ∈ (1

3 , 1)
f2(x) = 1

3x if x ∈ (1, 2)
2 if x = 1
2
3 if x = 2

f is strongly related to S0 because for any x ∈ [1
3 , 2], for any k ∈ Z,

S0
k(x)

/
1
3 ∼ 2

= fk(x). (8.7)

due to the fact that for our particular S0,S0
k(x) ⊆ [1

3 , 2].
An easy consequence is the following:

Lemma 8.15. Let y ∈ YS0 . Let g ∈ BS(m,n). Let x ∈ [1
3 , 2] be a real number represented by ug;

then ugb−1 represents f(x) (which means either 1
3 or 2 if f(x) = 2).

Proof. ug represents at least one such x because of Item 1 of Theorem 15. The rest is due to Item 2
of Theorem 15 and Eq. (8.7).

8.1. ON A CONSTRUCTION BY AUBRUN AND KARI 143

It turns out that with our choice of multiplicative system S0, any line can represent only one
real number. We need several lemmas to prove this; all inspired by [DGG14].

Lemma 8.16. Let ϕ be defined as follows:

ϕ : [1
3 , 2]/

1
3 ∼ 2

→[0, 1]
/

0 ∼ 1

ϕ(x) = log(x) + log(3)
log(2) + log(3) mod 1

ϕ is a well-defined mapping that conjugates the dynamical systems ([
1
3 , 2]/

1
3 ∼ 2

, t, f) and ([0, 1]
/

0 ∼ 1
, t′, ϕ◦

f ◦ ϕ−1), where t and t′ are the usual topologies on the considered sets.

Proof. Since the action considered on [0, 1]
/

0 ∼ 1
is ϕ ◦ f ◦ ϕ−1, one only needs to check that ϕ is

bijective and continuous to conclude that it yields a conjugation.
ϕ is clearly continuous everywhere except on 2; there, one can check that the left and right limits

both lead to ϕ(2) = 0 which is correctly defined.
ϕ−1 is defined by Φ(y) = 6y

3 except with collapsed images for 0 and 1.

Lemma 8.17. The map r := ϕ◦f ◦ϕ−1 can be considered a rotation of irrational angle log(2)
log(2)+log(3)

when identifying [0, 1]
/

0 ∼ 1
and S1.

Proof. For every α ∈ ϕ((1
3 , 1)),

ϕ ◦ f ◦ ϕ−1(α) = ϕ(2ϕ−1(α))

= log(2) + log(ϕ−1(α)) + log(3)
log(2) + log(3) mod 1

= α+ log(2)
log(2) + log(3) mod 1.

Similarly, for every α ∈ ϕ((1, 2)), one has

ϕ ◦ f ◦ ϕ−1(α) = ϕ(1
3ϕ
−1(α))

= log(ϕ−1(α))
log(2) + log(3) mod 1

= α+ log(2)
log(2) + log(3) mod 1.

Finally, ϕ ◦ f ◦ ϕ−1(0) = ϕ(f(2)) = ϕ(2
3) = log(2)

log(2)+log(3) .

We now have the tools to prove the following key lemma:

Lemma 8.18. (Uniqueness of representation) For any y ∈ YS0 , for any g ∈ BS(m,n), the sequence
ug = (ygai)i∈Z represents a unique real number.

144 CHAPTER 8. SUBSHIFTS ON BAUMSLAG-SOLITAR GROUPS

Proof. Assume that ug represents two distinct real numbers x and z ∈ [1
3 , 2]. They cannot be 1

3 and
2 because ug uses only digits in {0, 1} or in {1, 2}. Therefore they also are distinct real numbers in
[1
3 , 2]/

1
3 ∼ 2

.

For any k ∈ Z, notice that fk(x) = ϕ−1 ◦ rk ◦ ϕ(x) and same for z, from Lemma 8.16. We will
study the behavior of ϕ(x) and ϕ(z) under iterations of r.

The angle log(2)
log(2)+log(3) , of which r is a rotation by Lemma 8.17, is irrational. As a consequence,

the sets {rk ◦ ϕ(x) | k ∈ N} and {rk ◦ ϕ(z) | k ∈ N} are both dense in S1.
We introduce darc(e2iπθ, e2iπψ) = m(ψ − θ) ∈ [0, 1) for θ, ψ ∈ R, where m(ψ − θ) is the only

real number in [0, 1) congruent to ψ − θ mod 1. We call darc the oriented arc distance (measured
counterclockwise) between two elements of S1. It is not a distance per se since it is not symmetric
and has no triangular inequality, but its basic properties will suffice here. Since r is a rotation,
it is easy to check that it preserves darc. Hence we have that ∀k ∈ N, darc(rk ◦ ϕ(x), rk ◦ ϕ(z)) is
constant equal to some c ∈ [0, 1[. Up to considering darc(rk ◦ ϕ(z), rk ◦ ϕ(x)) instead, and doing the
following reasoning by swapping x and z, we can assume that c ≤ 1

2 .
Let us split S1 between A = ϕ((1

3 , 1)), B = ϕ([1, 2)), and {ϕ(2)} = {ϕ(1
3)} = {0}. We want to

show that there is some l ∈ N for which rl ◦ ϕ(x) ∈ B and rl ◦ ϕ(z) ∈ A.
By density of {rk ◦ ϕ(x) | k ∈ Z}, there exists some k0 ∈ N such that darc(rk0 ◦ ϕ(x), 0) < c and

rk0 ◦ ϕ(x) ∈ B. We cannot have rk0 ◦ ϕ(z) = 0 without contradicting the previous inequality, hence
it is either in A or in B. But if it was in B, then the arc from rk0 ◦ϕ(x) to rk0 ◦ϕ(z) would contain
all of A. This is not possible because |A|darc > 1

2 ≥ c.
Hence there exists l = k0 ∈ N such that rl ◦ ϕ(x) ∈ B and rl ◦ ϕ(z) ∈ A.

A

B

ϕ(x)

c

ϕ(z)

rϕ(x)

c

rϕ(z) rlϕ(x)

c

rlϕ(z)

Figure 8.4: Preservation of the oriented arc distance darc by r and intersection of the arc(
rl ◦ ϕ(x), rl ◦ ϕ(z)

)
and the boundary between A and B.

Since rl = ϕ◦f l◦ϕ−1, and considering the definitions of A and B, f l(z) ∈ (1
3 , 1) and f l(x) ∈ [1, 2).

This would cause f l(z) to be represented by a sequence of 0’s and 1’s (with an infinite number of
0’s) and f l(x) by a sequence of 1’s and 2’s. However, the SFT YS0 is built such that a line contains
only elements in {0, 1} or {1, 2}, but not both (see proof of Theorem 15): this is a contradiction.

Therefore, x and z must be equal, hence the uniqueness of the real number represented by a
given sequence.

8.1. ON A CONSTRUCTION BY AUBRUN AND KARI 145

Using previous results, we are now able to prove for BS(m,n) that the real number represented
by the sequence ug only depends on ||g||b, its “depth” in the Cayley graph.

Lemma 8.19. Let y ∈ YS0 , and e the identity of BS(m,n). Let x be the unique real number
represented by the sequence ue. Then for every g ∈ BS(m,n), ug represents f−||g||b(x) (with a
choice between 1

3 and 2, possibly different for different g’s, if the resulting value is 2).

Proof. We prove the result by reasoning on words w ∈ {a, b, a−1, b−1}∗, by induction on their length.
Note that we have no need of proving that different w’s representing the same g yield the same
result, since this is guaranteed by Lemma 8.18.

The result is true for g = e.
Suppose the result is true for words of length n ∈ N0. Let w be a word of length n. Then:

• uwa and uwa−1 represent the same real number as uw since they are the same sequence up to
an index shift;

• uwb−1 represents f(f−||w||b(x)) due to Lemma 8.15 and the induction hypothesis, which is
f−||wb

−1||b(x);

• suppose uwb represents y; then uw represents f(y) due to Lemma 8.15. Then we have, by
induction, y = f−||w||b−1(x) = f−||wb||b(x).

Remark 45. The previous proof heavily relies on the fact that f is a bijection on [1
3 , 2]/

1
3 ∼ 2

, and

that we do not have to differentiate between 1
3 and 2 there.

8.1.6 A strongly aperiodic SFT on BS(1, n)
If m or n is equal to 1, then the previous weak period of Proposition 8.13 does not work anymore –
it is a trivial element. In fact, we prove in this section that for BS(1, n), YS0 is strongly aperiodic.

One key property of BS(1, n) is that there is a simple quasi-normal form for all its elements.

Lemma 8.20. (Quasi-normal form in BS(1, n)) For every g ∈ BS(1, n), there are integers
k,m ∈ N0 and l ∈ Z such that g = b−kalbm.

Proof. From the definition of BS(1, n), we have that ba = anb (1), ba−1 = a−nb (2), ab−1 = b−1an (3)
and a−1b−1 = b−1a−n (4). Consequently, taking an element of BS(1, n) as a word w written with a
and b, we can:

• Move each positive power of b to the right of the word using (1) and (2) repeatedly;

• Move each negative power of b to the left of the word using (3) and (4) repeatedly;

so that we finally get a form for the word w which is: b−kalbm with k,m ∈ N0 and l ∈ Z.

Remark 46. A general normal form – the same, with k imposed to be minimal – can be obtained
from Britton’s Lemma. The form obtained here is not unique (a = b−1anb for instance), but we use
it because it admits a simple self-contained proof, and it is enough for what follows: the sum m− k
is constant for all writings of a given group element, hence we name it “quasi-normal”.

146 CHAPTER 8. SUBSHIFTS ON BAUMSLAG-SOLITAR GROUPS

Proof. Indeed, suppose we have b−kalbm = b−k
′
al
′
bm
′ . Then

b−kal = b−k
′
al
′
b−(m−m′)

= b−k
′−(m−m′)al

′nm−m
′

Hence we get al′nm−m
′
−l = b−k+k′+m−m′ . Since it is clear that ai = bj if and only if i = j = 0 in

BS(1, n), we obtain m− k − (m′ − k′) = 0 which is what we wanted.

This quasi-normal form is the only thing that was missing to prove the following.

Theorem 17. For every n ≥ 2, the Baumslag-Solitar group BS(1, n) admits a strongly aperiodic
SFT.

Proof. Let y ∈ YS0 , and g ∈ StabBS(1,n)(y). Using Lemma 8.20, we can write g = b−kalbm with
k,m ∈ N0, l ∈ Z.

Let x be the real number represented by ue. By Lemma 8.19, ug represents fk−m(x). Since
g ∈ StabBS(1,n)(y), ug = ue and so fk−m(x) = x by the uniqueness of the representation from
Lemma 8.18. The aperiodicity of f then implies that k = m.

Let us assume l 6= 0. Then g = b−kalbk and gn = b−k(an)lbk. We can reduce gn to b−k+1albk−1

using the relation an = bab−1. More generally, we notice that for any positive integer i, iterating
the process i times, we obtain that gni = b−k+ialbk−i ∈ StabBS(1,n)(y).

Since for all i, gni ∈ StabBS(1,n)(y), we can obtain a contradiction with an argument similar to
Prop 6. of [AK13]. We have bjalb−j ∈ StabBS(1,n)(y) for any j ≥ −k. This means that ubj = ubjal
hence ubj is a l-periodic sequence. We have a finite number of said sequences, since they can only
use digits among {0, 1, 2}. Consequently, there are j1 6= j2 such that the two levels Lbj1 and Lbj2

read the same sequence (up to index translation). These two levels represent respectively f j1(x) and
f j2(x) due to Lemma 8.19, and since the two sequences on these levels are the same, f j1(x) = f j2(x).
This equality contradicts the fact that f has no periodic point, since we had j1 6= j2.

As a consequence, any non-trivial g ∈ BS(1, n) cannot be in StabBS(1,n)(x), and we finally get
that StabBS(1,n)(x) = {e}: YS0 is strongly aperiodic.

Following Theorem 17, a question remains: is the strong aperiodicity of Aubrun and Kari’s SFT
a property of the group BS(1, n) itself, or does it only arise on carefully chosen SFTs, as YS0? Is
this because BS(1, n) behaves like Z2 and all its weakly aperiodic SFTs are also strongly aperiodic,
or does Aubrun and Kari’s construction happen to be “too much aperiodic”? It turns out that the
latter is the correct answer, as we build in the following section an SFT on BS(1, n) that is weakly
but not strongly aperiodic.

8.2 A weakly but not strongly aperiodic SFT on BS(1, n)
Our weakly but not strongly aperiodic SFT will work by encoding specific substitutions into BS(1, n).
Indeed, the Cayley graph of BS(1, n) is very similar to orbit graphs of uniform substitutions (see for
example [CGS17,ABM19] for a definition of orbit graphs and another example of a Cayley graph
similar to an orbit graph). In this section, we find a set of substitutions that are easy to encode in
BS(1, n) (Section 8.2.1), and show how to do it (Section 8.2.2).

8.2. A WEAKLY BUT NOT STRONGLY APERIODIC SFT ON BS(1, N) 147

8.2.1 The substitutions σi

Let A = {0, 1}. For r ∈ {0, . . . , n− 1}, let σr : A → An be the following substitution:

σr :
{

0 7→ 0n−r−110r

1 7→ 0n
.

We may also write σ := σ0 and call the other ones the shifts of σ. Be careful, in what follows σ
designates a substitution and not the shift map, whose notation is changed to ρ!
Note that, for c ∈ {0, 1} and i ∈ {0, . . . , n − 1}, σr(c)i = 1 if and only if c = 0 and i = n − r − 1
(starting to count from 0 the indices of the word σr(c)).
All σr(0) are cyclic permutations of the same finite word. Denote ρ the shift action on a biinfinite
word u, i.e. ρj(u)i = ui+j , as a way to write the action of Z on {0, 1}Z.

Lemma 8.21. For any biinfinite word u ∈ AZ, any i, r ∈ {0, . . . , n− 1} and j ∈ Z,

(σr ◦ ρj(u))i = σr(uj)i = (σr(u))nj+i.

Proof. For i ∈ {0, . . . , n− 1}, σr(ρj(u))i depends on the letter of ρj(u) at position 0 only, that is uj
(See Fig. 8.5), hence σr(ρj(u))i = σr(ρj(u)0)i = σr(uj)i.

Similarly, the letter (σr(u))nj+i does not depend on the totality of u but only on uj : it is the
ith letter of σr(uj).

uj−2 uj−1 uj uj+1 uj+2.

σr(uj−2) σr(uj−1) σr(uj) σr(uj+1) σr(uj+2).

(σr ◦ ρj(u))i = σr(uj)i

ρj(u)

σr ◦ ρj(u)

Figure 8.5: Illustration of Lemma 8.21.

Lemma 8.22. For any r ∈ {0, . . . , n− 1},

σr = ρr ◦ σ.

Proof. Let u ∈ AZ. Let i, r ∈ {0, . . . , n− 1} and j ∈ Z.

σ(u)nj+i =
{

0 if i 6= n− 1
σr(u)nj+i−r if i = n− 1

Considering that if i 6= n − 1, σr(u)nj+i−r = 0, we conclude that we always have σ(u)nj+i =
σr(u)nj+i−r, and so σr = ρr ◦ σ.

Lemma 8.23. For n ≥ 3, σ1 has a unique fixpoint. For n = 2, σ1 has no fixpoint but σ1
2 has

exactly two fixpoints.

148 CHAPTER 8. SUBSHIFTS ON BAUMSLAG-SOLITAR GROUPS

Proof. Proposition 4 from [SW02] characterizes biinfinite fixpoints of substitutions. In the present
case of σ1, [SW02] states that w = σ1(w) if and only if w = y.x with x = −−→σ1

ω(c) and y =←−−ωσ1(c′)
with σ1(c) = cv and σ1(c′) = uc′, u, v ∈ {0, 1}∗, c, c′ ∈ {0, 1}. Notice that σ1(0) = 0n−210 and
σ1(1) = 0n, for n ≥ 3, so the only choice for c and c′ is c = c′ = 0. Then σ1 has a fixpoint that is
←−−ωσ1(0).−−→σ1

ω(0) and which is unique.
For n = 2 the same reasoning concludes that σ1 has no fixpoint. However, since σ1

2(0) = 0010
and σ1

2(1) = 1010, the same reasoning also yields that σ1
2 has exactly two fixpoints that are

←−−−−
ω(σ1

2)(0).
−−−−→
(σ1

2)ω(0) and
←−−−−
ω(σ1

2)(0).
−−−−→
(σ1

2)ω(1).

Lemma 8.24. For every k ∈ N and every i1, . . . , ik ∈ {0, . . . , n−1}, the fixpoints of s = σik ◦· · ·◦σi1
are aperiodic.

Proof. To prove the aperiodicity of a fixpoint w of s (in the case where such a fixpoint exists), we
follow a proof from [Pan86], simplified for our specific case.

First, let us show that the two subwords 00 and 01 can be found in w.

• For 00, let us define s′ = σik−1 ◦ · · · ◦ σi1 . Then, by definition, w = σik(s′(w)) (by convention
s′(w) = w if k = 1). We are going to prove that s′(w) always contains a 1. As a consequence,
w = σik(s′(w)) contains 00 because σik(1) = 0n. Suppose s′(w) = . . . 000 If k = 1, it
means that w = . . . 000 . . . , but then s(w) 6= w so this is impossible. If k = 2, then s′ = σi1
so the only way to have s′(w) = . . . 000 . . . is to have w = . . . 111 . . . , but again s(w) 6= w. If
k ≥ 3, let us define t = σik−3 ◦ · · · ◦ σi1 . With this notation, w = σik ◦ σik−1 ◦ σik−2(t(w)). The
assumption s′(w) = . . . 000 . . . causes σik−2(t(w)) = . . . 111 However, this is impossible
since . . . 111 . . . has no antecedent by σik−2. Therefore s′(w) must contain a 1 and we can
find 00 in w.

• For 01, the only way for w not to contain 01 is to be of the form w = . . . 000 . . . , w = . . . 111 . . .
or w = . . . 1100 But it is clear that s(. . . 000 . . .) 6= . . . 000 . . ., s(. . . 111 . . .) 6= . . . 111 . . .
and s(. . . 1100 . . .) 6= . . . 1100 . . . hence none of them can be fixpoints.

Hence s(00) and s(01) can also be found in w since s(w) = w. From this, we build by induction
infinitely many words with two possible right extensions. We have s(00) 6= s(01); consider the
largest prefix on which they agree, call it u2, with |u2| > 1. Then both u20 and u21 can be found in
w. Hence s(u20) and s(u21) can also be found in w. We have s(u20) 6= s(u21); consider the largest
prefix on which they agree, call it u3, with |u3| > |u2|. Then both u30 and u31 can be found in w.
Hence s(u30) and s(u31) can also be found in w.

By induction, we can build subwords of w as large as we want that have two choices for their last
letter. Hence the factor complexity of w is unbounded, and so w is aperiodic (see Section 7.5).

8.2.2 Encoding substitutions in BS(1, n)
We now show how to encode such substitutions in SFTs of the group BS(1, n) given by a tileset.
We define the tileset τσ on BS(1, n), n ∈ N, n ≥ 2, to be the set of tiles shown on Fig. 8.6 for all
c ∈ {0, 1} and i ∈ {0, . . . , n− 1}. Remark that a tile is uniquely defined by the couple (c, i).

This tileset will be the weakly but not strongly aperiodic tileset we are looking for. Lemmas
8.23 and 8.24 study the words that can appear on levels Lg of the tiling, by looking at the fixpoints
of σ1. They prove that no biinfinite word can be both a fixpoint for the σi’s and periodic. This

8.2. A WEAKLY BUT NOT STRONGLY APERIODIC SFT ON BS(1, N) 149

•

• •

• • • •. . .

c

σi(c)

i i

Figure 8.6: Tiles of τσ: left and right colors are identical and equal to i, top color is c and bottom
colors are equal to σi(c)0, . . . , σi(c)n−1.

.

...

1 0 1

0 0 0 1 0 0

0 1 0 1 0 1 0 0 0 1 0 1

0 0 0 1 0

1 0 1

Figure 8.7: Portion of a configuration in Xτσ on BS(1, 2). Notice how σ0 is applied to any line in
black to “go down”, whereas lines in gray use σ1. Several of the branches of the Cayley graph are
not illustrated to keep the figure readable.

consequently forbids one direction of periodicity for any configuration we will encode with our tileset,
and naturally leads to the following proposition:

Proposition 8.25. No configuration of Xτσ can be ak-periodic for any k ∈ N.

Proof. Suppose that there is a configuration x of Xτσ such that for any g ∈ BS(1, n), xak·g = xg
(ak-periodicity). Call w := (xaj)j∈Z the biinfinite word based on level Le. w is k-periodic by
ak-periodicity of the configuration x. But w is also nk-periodic. Hence (xbaj)j∈Z is k-periodic.
Indeed, by construction, when applying the correct substitution σi to xbaj and xbaj+k , one obtains
the words xanj . . . xanj+n−1 and xanj+nk . . . xanj+nk+n−1 which are one and the same by nk-periodicity
of w. Since there is only one preimage for a word by σi, xbaj = xbaj+k . By the same argument,
one can show that for any integer l > 0, (xblaj)j∈Z must be k-periodic. However, these biinfinite
sequences only use digits among {0, 1, 2} so there is a finite number of such sequences. In particular,
two of these sequences are the same. Since one is obtained from the other by applying the correct
succession of σi’s, we get a periodic sequence that is a fixpoint of some s = σiN ◦ · · · ◦ σi1 for some
i1, . . . , iN ∈ {0, . . . , n− 1}. This contradicts Lemma 8.24.

150 CHAPTER 8. SUBSHIFTS ON BAUMSLAG-SOLITAR GROUPS

Lemma 8.26. There exists a weakly periodic configuration in Xτσ for n ≥ 3.

Proof. We define w the unique fixpoint of σ1 obtained thanks to Lemma 8.23.
Let f(k) = b knc be the function that maps k to the quotient in the Euclidean division of k

by n and r(k) its remainder. We also define F (k) = f(k + 1) and R(k) = r(k + 1). This means
that nF (k) + R(k) = k + 1, F (ln) = l + b 1

nc = l, but also F (k + n) = bk+1+n
n c = F (k) + 1, and

consequently Fm(k + nm) = Fm(k) + 1.

Xτσ is nonempty

We define a configuration x describing which tile (cg, ig) (a tile being uniquely defined by such a
couple) is assigned to g, i.e. xg = (cg, ig), using the quasi-normal form g = b−kalbm. Then, we check
that x does verify the adjacency rules. Define x ∈ τσBS(1,n) by{

xb−kal := (wl, 1)
xb−kalbm := (wFm(l), R ◦ Fm−1(l)) for m > 0.

Remember that Lemma 8.20 states that any g ∈ BS(1, n) can be written b−k1al1bm1 . Suppose
it has a second form b−k2al2bm2 with k2 > k1 up to exchanging the notations (were they equal,
it is easy to prove the two forms would be the same). Then bk1−k2al2bm2−m1 = al1 , that is,
bk1−k2al2−l1n

k2−k1
bm2−m1 = e. This means that k2 − k1 = m2 −m1 > 0 and l2 = l1n

k2−k1 . With
that, we prove our x is well-defined. k2 > k1 causes m2 > 0 in order to have k2− k1 = m2−m1 > 0.
Consequently,

xb−k2al2bm2 = (wFm2 (l2), R ◦ Fm2−1(l2))
= (wFm1+k2−k1 (l1nk2−k1), R ◦ Fm1+k2−k1−1(l1nk2−k1))
= (wFm1 (l1), R ◦ Fm1−1(l1))
= xb−k1al1bm1

with a variation on the second to last line if m1 = 0: we have R ◦ F k2−k1−1(l1nk2−k1) = R(l1n) = 1.
Now, we prove that x ∈ Xτσ . Let g = b−kalbm.

• If m > 0, we have

xga(left) = xb−kal+nmbm(left)
= R ◦ Fm−1(l + nm)
= R(Fm−1(l) + n)
= R ◦ Fm−1(l)
= xg(right).

• If m = 0, we have

xga(left) = xb−kal+1(left)
= 1
= xg(right).

8.3. A STRONGLY APERIODIC SFT ON BS(N,N) 151

Let j ∈ {0, . . . , n− 1}. We have

xga−jb(bottomj+1) = xb−kal−jnmbm+1(bottomj+1) (g = b−kalbm)
= σR◦Fm(l−jnm)(wFm+1(l−jnm))j (by definition of x)
= σR◦Fm(l−jnm)(w)nFm+1(l−jnm)+j (Lemma 8.21)
= σ(w)nFm+1(l−jnm)+j+R◦Fm(l−jnm) (Lemma 8.22)
= σ(w)Fm(l−jnm)+j+1 (by definition of F and R)
= σ1(w)Fm(l−jnm)+j (Lemma 8.22)
= wFm(l−jnm)+j (since w is a fixpoint of σ1)
= wFm(l) (Fm(l − jnm) = Fm(l)− j)
= xg(top)

Consequently, x describes a valid configuration of Xτσ : all adjacency conditions are verified.

x is b-periodic

With the definition of x, it is easy to check that for any g ∈ BS(1, n), xbg = xg. Hence it is a weakly
periodic configuration.

We can now obtain our last main theorem of this section:

Theorem 18. For any n ∈ N, n ≥ 2, the tileset τσ forms a weakly aperiodic but not strongly
aperiodic SFT on BS(1, n).

Proof. First, in the n ≥ 3 case, there is a weakly periodic configuration in Xτσ , see Lemma 8.26.
Hence it is not a strongly aperiodic SFT.

In the n = 2 case, we define u and v the two fixpoints of σ1
2 (Lemma 8.23 again) and remark

that v = σ1(u) and u = σ1(v). We define a configuration x ∈ τσBS(1,n) by:

xb−kal :=
{

(ul, 1) if k +m ≡ 0 mod 2
(vl, 1) if k +m ≡ 1 mod 2

xb−kalbm :=
{

(uFm(l), R ◦ Fm−1(l)) for m > 0 if k +m ≡ 0 mod 2
(vFm(l), R ◦ Fm−1(l)) for m > 0 if k +m ≡ 1 mod 2

and we use the same notations as in the proof of Lemma 8.26. The reasoning is also the same, except
instead of using w an alternation appears between u and v in all the equations. As a consequence,
the configuration is b2-periodic instead of b. Once again, Xτσ is consequently not strongly aperiodic.

Now, using Proposition 8.25, and since all powers of a are of infinite order in BS(1, n), we
get that for any valid configuration x of τσ, |OrbBS(1,n)(x)| = +∞, for any n ≥ 2. Hence no
configuration of τσ is strongly periodic, and so the SFT is weakly aperiodic.

8.3 A strongly aperiodic SFT on BS(n, n)
This section is a mere assembly of known results, that we nonetheless think are worth gathering
in the context of this part of the present thesis. Indeed, they lead to Theorem 20 – a somewhat

152 CHAPTER 8. SUBSHIFTS ON BAUMSLAG-SOLITAR GROUPS

straightforward result that may be considered folklore by specialists, but whose underlying reasoning
has not been properly written down elsewhere1.

We begin by using a theorem from [Jea15] seen as an extension of the construction presented
in [Kar07]. The idea behind that theorem is that G× Z admits a strongly aperiodic SFT as soon as
G can encode piecewise affine functions. This is reflected by the PA′ condition described in [Jea15]
and restated below.

Definition 8.27. Let k ∈ N. Let F = {fi : Pi → P ′i | i ∈ {0, . . . , k}} be a finite set of piecewise
affine rational homeomorphisms, where each Pi and P ′i is a finite union of bounded rational polytopes
of Rn. Let D =

⋂k
i=1 Pi ∩

⋂k
i=1 P

′
i be the common domain of all functions of F and their inverses.

Let SF be the closure of the set {fi, fi−1 | i ∈ {1, . . . , k}} under composition. We define GF ,
the group {f |D | f ∈ SF}.

A finitely generated group G is PA′-recognizable if there exists a finite set F of piecewise affine
rational homeomorphisms such that:

(A) G ∼= GF ;
(B) ∀t ∈ D,∀g ∈ F , [∀f ∈ F , g(f(t)) = f(t)]⇒ g = Id.

Theorem 19 ([Jea15], Th. 7). If G is an infinite finitely generated PA′-recognizable group, then
Z×G admits a strongly aperiodic SFT.

We need two additional propositions to obtain the desired result on BS(n, n):

Proposition 8.28 ([CP15], Prop. 9 & 10). If G is a finitely generated group and H is a finitely
generated subgroup of G of finite index, then we have the following:

H admits a weakly aperiodic SFT ⇔ G admits a weakly aperiodic SFT
H admits a strongly aperiodic SFT ⇔ G admits a strongly aperiodic SFT.

The following proposition is known, but we include a self-contained proof.

Proposition 8.29. BS(n, n) admits Z × Fn as a subgroup of finite index, where Fn is the free
group of order n.

Proof. Let H be the subgroup of BS(n, n) generated by {an} ∪ {aiba−i | i ∈ {0, . . . , n− 1}}. First,
H is normal in BS(n, n). We prove that aHa−1 ⊆ H by verifying it on its generators: the only
verification needed is aan−1ba−(n−1)a−1 = anba−n = bana−n = b. Similarly, a−1Ha ⊆ H; and
finally, bHb−1 ⊆ H (same for b−1) since b ∈ H. Second, H is isomorphic to Z × Fn through the
following isomorphism (denoting g0, . . . , gn−1 the generators of Fn and ε its identity):

ϕ : Z× Fn−→H
(1, ε) 7−→an

(0, gi) 7−→aiba−i

It is a morphism by construction, which is correctly defined since the only basic relation of Z× Fn,
that is (1, ε) · (0, gi) = (0, gi) · (1, ε), is preserved in H: anaiba−i = aianba−i = aibana−i = aiba−ian.

1That being said, the present result is strictly included in a result of strong aperiocity on Generalized Baumslag-
Solitar groups, in an article [ABHT22] by Aubrun, Bitar and Huriot-Tattegrain, recent at the time of writing.

8.3. A STRONGLY APERIODIC SFT ON BS(N,N) 153

Said morphism is surjective, because H is generated by an and {aiba−i | i ∈ {0, . . . , n− 1}}. Finally,
it is also injective: let g = (k,w) ∈ Z×Fn, with w = (gi1)e1 . . . (giN)eN where the el are in {−1,+1}.

ϕ(g) = e⇔ ankai1be1a−i1ai2 . . . a−iN−1aiN beNa−iN = e

This form is a canonical form in H: any word in H can be uniquely written as such. Indeed, any
word in H is a succession of generators of it, aikbeka−ik and an. But an commutes with all the other
generators due to the relation of BS(n, n), so such a form is always attainable. To prove it is unique,
it is enough to prove it for e: suppose we have some ankai1be1a−i1ai2 . . . a−iN−1aiN beNa−iN = e.
First, realize that no relation in BS(n, n) allows to reduce the total power of a in a word, causing
k = 0 necessarily. Then, consider the resulting word ai1be1ai2−i1 . . . aiN−iN−1beNa−iN in BS(n, n):
it cannot be reduced in BS(n, n) since all powers of a between two b’s are of absolute value smaller
than n.

As a consequence, the previous equality is true only when k = 0 and w = ε. Hence the injectivity
of the map.

Moreover, any element of BS(n, n) can be written in a form that much resembles the one
mentioned above:

apankai1be1a−i1 . . . aiN beNa−iN

with p ∈ {0, . . . , n− 1}. To do so, first move all an’s in the rightmost power of a in the word, to
the leftmost part of the word. Ensure that −iN , the remaining power, is in {−n + 1, . . . ,−1, 0}.
Then force aiN to appear on the left of the b itself to the left of a−iN , and call −iN−1 the remaining
power of a (it is in {−(n− 1), . . . ,−1, 0} up to moving another an to the leftmost part of the word)
before another b to the left. Repeat this operation until there is no b to the left of the power of a
you consider, and split this final aK into apankai1 .

As a consequence, BS(n, n)/H = {e, a, . . . , an−1} ∼= Z/nZ. Hence H is of finite index in
BS(n, n).

Theorem 20. For every n ≥ 2, BS(n, n) admits a strongly aperiodic SFT.

Proof. First, finitely generated subgroups of compact groups of matrices on rationals are PA′-
recognizable (see [Jea15], Proposition 5.12). F2, the free group of order 2, is isomorphic2 to a
subgroup of SO3(Q), hence it is PA′-recognizable. It is also known (see [CSC10, Corollary D.5.3])
that Fn is a subgroup of F2; so it is isomorphic to a subgroup of SO3(Q) and PA′-recognizable
too. Therefore by Theorem 19 Z× Fn admits a strongly aperiodic SFT. Using Proposition 8.28 and
Proposition 8.29, we obtain that BS(n, n) admits a strongly aperiodic SFT.

2The proof will not be given here for concision; it is a key element in the proof of the Banach-Tarski paradox. The

generators most often considered are

 3/5 4/5 0

−4/5 3/5 0

0 0 1

 and

1 0 0

0 3/5 4/5

0 −4/5 3/5

.

154 CHAPTER 8. SUBSHIFTS ON BAUMSLAG-SOLITAR GROUPS

Bibliography

[ABHT22] Nathalie Aubrun, Nicolás Bitar, and Sacha Huriot-Tattegrain. Strongly aperiodic sfts on
generalized baumslag-solitar groups. In arXiv preprint arXiv:2204.11492, 2022.

[ABJ18] Nathalie Aubrun, Sebastián Barbieri, and Emmanuel Jeandel. About the domino
problem for subshifts on groups. In Sequences, Groups, and Number Theory, pages
331–389. Springer International Publishing, 2018.

[ABM19] Nathalie Aubrun, Sebastián Barbieri, and Etienne Moutot. The domino problem is
undecidable on surface groups. In 44th International Symposium on Mathematical
Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany.,
pages 46:1–46:14, 2019.

[AK13] Nathalie Aubrun and Jarkko Kari. Tiling Problems on Baumslag-Solitar groups. In
MCU’13, pages 35–46, 2013.

[AK21] Nathalie Aubrun and Jarkko Kari. Addendum to “tiling problem on baumslag-solitar
groups”. In arXiv preprint arXiv:1506.06492, 2021.

[Aki93] Ethan Akin. The general topology of dynamical systems, volume 1 of Graduate Studies
in Mathematics. American Mathematical Society, Providence, RI, 1993.

[AS13] Nathalie Aubrun and Mathieu Sablik. Simulation of effective subshifts by two-dimensional
subshifts of finite type. In Acta applicandae mathematicae, volume 126, pages 35–63.
Springer, 2013.

[Bar19] Sebastián Barbieri. On the entropies of subshifts of finite type on countable amenable
groups. In arXiv preprint arXiv:1905.10015, 2019.

[Bar20] Laurent Bartholdi. Monadic second-order logic and the domino problem on self-similar
graphs. In arXiv preprint arXiv:2011.02735, 2020.

[BDP+15] Laurent Boyer, Martin Delacourt, Victor Poupet, Mathieu Sablik, and Guillaume
Theyssier. µ-limit sets of cellular automata from a computational complexity per-
spective. In Journal of Computer and System Sciences, volume 81, pages 1623–1647.
Elsevier, 2015.

[BDS10] Laurent Boyer, Martin Delacourt, and Mathieu Sablik. Construction of µ-limit sets.
In Jarkko Kari, editor, Second Symposium on Cellular Automata ”Journées Automates
Cellulaires”, JAC 2010, Turku, Finland, December 15-17, 2010. Proceedings, pages 76–87.
Turku Center for Computer Science, 2010.

155

156 BIBLIOGRAPHY

[Ber66] Robert Berger. Undecidability of the Domino Problem, volume 66 of Memoirs AMS.
American Mathematical Society, 1966.

[BGK11] Alexis Ballier, Pierre Guillon, and Jarkko Kari. Limit sets of stable and unstable cellular
automata. In Fundamenta Informaticae, volume 110, pages 45–57. IOS Press, 2011.

[BMP18] Raimundo Briceño, Kevin McGoff, and Ronnie Pavlov. Factoring onto Zd subshifts
with the finite extension property. In Proceedings of the American Mathematical Society,
volume 146, pages 5129–5140, 2018.

[BMP22] Robert Bland, Kevin McGoff, and Ronnie Pavlov. Subsystem entropies of shifts of finite
type and sofic shifts on countable amenable groups. In arXiv preprint arXiv:2201.01991,
2022.

[BP09] Marie-Pierre Béal and Dominique Perrin. Completing codes in a sofic shift. In Theoretical
Computer Science, volume 410, pages 4423–4431, 2009.

[BPS10] Mike Boyle, Ronnie Pavlov, and Michael Schraudner. Multidimensional sofic shifts
without separation and their factors. In Transactions of the American Mathematical
Society, volume 362, pages 4617–4653, 2010.

[BS16] Sebastián Barbieri and Mathieu Sablik. The domino problem for self-similar structures.
In Arnold Beckmann, Laurent Bienvenu, and Nataša Jonoska, editors, Pursuit of the
Universal, pages 205–214, Cham, 2016. Springer International Publishing.

[BS18] Alexis Ballier and Maya Stein. The domino problem on groups of polynomial growth. In
Groups, Geometry, and Dynamics, volume 12, pages 93–105, 2018.

[BT00] François Blanchard and Pierre Tisseur. Some properties of cellular automata with equicon-
tinuity points. In Annales de l’Institut Henri Poincaré (B) Probabilités et Statistiques,
volume 36, pages 569–582. Institute Henri Poincaré, 2000.

[Cas00] Julien Cassaigne. Subword complexity and periodicity in two or more dimensions. In
Developments In Language Theory: Foundations, Applications, and Perspectives, pages
14–21. World Scientific, 2000.

[CGS17] David Bruce Cohen and Chaim Goodman-Strauss. Strongly aperiodic subshifts on surface
groups. In Groups, Geometry, and Dynamics, volume 11, pages 1041–1059, 2017.

[CI96] Karel Culik II. An aperiodic set of 13 wang tiles. In Discrete Mathematics, volume 160,
pages 245–251. Elsevier, 1996.

[CIPY89] Karel Culik II, Jan Pachl, and Sheng Yu. On the limit sets of cellular automata. In
SIAM Journal on Computing, volume 18, pages 831–842. SIAM, 1989.

[CN06] Ethan Coven and Zbigniew Nitecki. On the genesis of symbolic dynamics as we know it.
In Colloquium Mathematicum, volume 110, 12 2006.

[CN10] J. Cassaigne and F. Nicolas. Factor complexity. In Valérie Berthé and Michel Rigo,
editors, Combinatorics, Automata and number Theory, Encyclopedia of Mathematics
and its Applications, page 163–247. Cambridge University Press, 2010.

BIBLIOGRAPHY 157

[Coh17] David Bruce Cohen. The large scale geometry of strongly aperiodic subshifts of finite
type. In Advances in Mathematics, volume 308, pages 599–626. Elsevier, 2017.

[CP15] David Carroll and Andrew Penland. Periodic points on shifts of finite type and commen-
surability invariants of groups. In arXiv preprint arXiv:1502.03195, 2015.

[CSC10] Tullio Ceccherini-Silberstein and Michel Coornaert. Cellular automata. In Cellular
Automata and Groups, pages 1–36. Springer, 2010.

[Del21] Martin Delacourt. Rice’s theorem for generic limit sets of cellular automata. In Alonso
Castillo-Ramirez, Pierre Guillon, and Kévin Perrot, editors, 27th IFIP WG 1.5 Interna-
tional Workshop on Cellular Automata and Discrete Complex Systems (AUTOMATA
2021), volume 90 of Open Access Series in Informatics (OASIcs), pages 6:1–6:12, Dagstuhl,
Germany, 2021. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

[Des06] Angela Desai. Subsystem entropy for Zd sofic shifts. In Indagationes Mathematicae,
volume 17, pages 353–359. Elsevier, 2006.

[DG19] Saliha Djenaoui and Pierre Guillon. The generic limit set of cellular automata. In Journal
of Cellular Automata, volume 14, pages 435–477, 2019.

[DGG14] Bruno Durand, Guilhem Gamard, and Anaël Grandjean. Aperiodic tilings and entropy. In
International Conference on Developments in Language Theory, pages 166–177. Springer,
2014.

[DMS18] Benjamin Hellouin De Menibus and Mathieu Sablik. Characterization of sets of limit
measures of a cellular automaton iterated on a random configuration. In Ergodic Theory
and Dynamical Systems, volume 38, pages 601–650. Cambridge University Press, 2018.

[DPST11] Martin Delacourt, Victor Poupet, Mathieu Sablik, and Guillaume Theyssier. Directional
dynamics along arbitrary curves in cellular automata. In Theoretical Computer Science,
volume 412, pages 3800–3821. Elsevier, 2011.

[DRS12] Bruno Durand, Andrei Romashchenko, and Alexander Shen. Fixed-point tile sets and
their applications. In Journal of Computer and System Sciences, volume 78, pages
731–764. Elsevier, 2012.

[FW65] N. J. Fine and H. S. Wilf. Uniqueness theorems for periodic functions. In Proceedings of
the American Mathematical Society, volume 16, pages 109–114, 1965.

[GdM19] Silvère Gangloff and Benjamin Hellouin de Menibus. Effect of quantified irreducibility on
the computability of subshift entropy. In Discrete and Continuous Dynamical Systems,
volume 39, pages 1975–2000. American Institute of Mathematical Sciences (AIMS),
Springfield, MO, 2019.

[GR10] Pierre Guillon and Gaétan Richard. Asymptotic behavior of dynamical systems and
cellular automata. In arXiv preprint arXiv:1004.4743, 2010.

[GS10] Chaim Goodman-Strauss. A hierarchical strongly aperiodic set of tiles in the hyperbolic
plane. In Theoretical Computer Science, volume 411, pages 1085–1093. Elsevier, 2010.

158 BIBLIOGRAPHY

[GS18] Silvère Gangloff and Mathieu Sablik. Simulation of minimal effective dynamical systems
on the cantor sets by minimal tridimensional subshifts of finite type. In arXiv preprint
arXiv:1806.07799, 2018.

[GS21] Silvère Gangloff and Mathieu Sablik. Quantified block gluing for multidimensional
subshifts of finite type: aperiodicity and entropy. In Journal d’Analyse Mathématique,
volume 144, pages 21–118. Springer, 2021.

[HdMS18] Benjamin Hellouin de Menibus and Mathieu Sablik. Characterization of sets of limit
measures of a cellular automaton iterated on a random configuration. In Ergodic Theory
and Dynamical Systems, volume 38, pages 601–650, 2018.

[HM10] Michael Hochman and Tom Meyerovitch. A characterization of the entropies of multidi-
mensional shifts of finite type. In Annals of Mathematics, volume 171, pages 2011–2038.
JSTOR, 2010.

[Hoc16] Michael Hochman. Multidimensional shifts of finite type and sofic shifts. In Valérie Berthé
and Michel Rigo, editors, Combinatorics, Words and Symbolic Dynamics, Encyclopedia
of Mathematics and its Applications, page 296–358. Cambridge University Press, 2016.

[Hur87] Lyman P. Hurd. Formal language characterizations of cellular automaton limit sets. In
Complex Systems, volume 1, pages 69–80, 1987.

[Hur90a] Mike Hurley. Attractors in cellular automata. In Ergodic Theory and Dynamical Systems,
volume 10, pages 131–140. Cambridge University Press, 1990.

[Hur90b] Mike Hurley. Ergodic aspects of cellular automata. In Ergodic Theory and Dynamical
Systems, volume 10, pages 671–685. Cambridge University Press, 1990.

[Hur92] Mike Hurley. Attractors in restricted cellular automata. In Proceedings of the American
Mathematical Society, volume 115, pages 563–571. American Mathematical Society, 1992.

[Jea15] Emmanuel Jeandel. Aperiodic Subshifts of Finite Type on Groups. In arXiv preprint
arXiv:1501.06831, 2015.

[JKM07] Aimee Johnson, Steve Kass, and Kathleen Madden. Projectional entropy in higher
dimensional shifts of finite type. In Complex Systems, volume 17, pages 243–257, 2007.

[JR15] Emmanuel Jeandel and Michael Rao. An aperiodic set of 11 wang tiles. In arXiv preprint
arXiv:1506.06492, 2015.

[Kar92] Jarkko Kari. The nilpotency problem of one-dimensional cellular automata. In SIAM
Journal on Computing, volume 21, pages 571–586. SIAM, 1992.

[Kar94] Jarkko Kari. Rice’s theorem for the limit sets of cellular automata. In Theoretical
Computer Science, volume 127, pages 229 – 254, 1994.

[Kar96] Jarkko Kari. A small aperiodic set of wang tiles. In Discrete Mathematics, volume 160,
pages 259–264, 1996.

[Kar07] Jarkko Kari. The tiling problem revisited. In International Conference on Machines,
Computations, and Universality, pages 72–79. Springer, 2007.

BIBLIOGRAPHY 159

[Kec95] Alexander S. Kechris. Classical descriptive set theory, volume 156 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 1995.

[Ken02] R. Kenyon. An Introduction to the Dimer Model. In arXiv preprint math/0310326,
pages 271–274, 2002.

[KM00] Petr Kůrka and Alejandro Maass. Limit sets of cellular automata associated to probability
measures. In Journal of Statistical Physics, volume 100, pages 1031–1047, 2000.

[KM19] Jarkko Kari and Etienne Moutot. Nivat’s conjecture and pattern complexity in algebraic
subshifts. In Theor. Comput. Sci., volume 777, pages 379–386, 2019.

[KM21] Jarkko Kari and Etienne Moutot. Decidability and periodicity of low complexity tilings.
In Theory of Computing Systems, pages 1–24. Springer, 2021.

[Kůr97] Petr Kůrka. Languages, equicontinuity and attractors in cellular automata. In Ergodic
Theory and Dynamical Systems, volume 17, pages 417–433. Cambridge University Press,
1997.

[Kůr03] Petr Kůrka. Topological and symbolic dynamics. Société mathématique de France Paris,
2003.

[Lin89] Douglas Lind. Perturbations of shifts of finite type. In SIAM journal on discrete
mathematics, volume 2, pages 350–365. SIAM, 1989.

[LM95] Douglas Lind and Brian Marcus. An Introduction to Symbolic Dynamics and Coding.
Cambridge University Press, New York, NY, USA, 1995.

[LMP13] Erez Louidor, Brian Marcus, and Ronnie Pavlov. Independence entropy of Zd-shift spaces.
In Acta Applicandae Mathematicae, volume 126, pages 297–317. Springer, 2013.

[Lot97] M. Lothaire. Combinatorics on words. Cambridge Mathematical Library. Cambridge
University Press, Cambridge, 1997.

[LS01] Roger C. Lyndon and Paul E. Schupp. Combinatorial group theory. Classics in mathe-
matics. Springer, 2001.

[Maa95] Alejandro Maass. On the sofic limit sets of cellular automata. In Ergodic Theory and
Dynamical Systems, volume 15, pages 663–684. Cambridge University Press, 1995.

[Mar08] Maurice Margenstern. The domino problem of the hyperbolic plane is undecidable. In
Theoretical Computer Science, volume 407, pages 29–84. Elsevier, 2008.

[Mes72] Stephen Meskin. Nonresidually finite one-relator groups. In Transactions of the American
Mathematical Society, volume 164, pages 105–114, 1972.

[MH38] Marston Morse and Gustav A Hedlund. Symbolic dynamics. In American Journal of
Mathematics, volume 60, pages 815–866. JSTOR, 1938.

[Mil85] John Milnor. On the concept of attractor. In Communications in Mathematical Physics,
volume 99, pages 177–195, 06 1985.

160 BIBLIOGRAPHY

[Moz89] Shahar Mozes. Tilings, substitution systems and dynamical systems generated by them.
In Journal d’analyse mathématique, volume 53, pages 139–186. Springer, 1989.

[Pan86] Jean-Jacques Pansiot. Decidability of periodicity for infinite words. In RAIRO-Theoretical
Informatics and Applications, volume 20, pages 43–46. EDP Sciences, 1986.

[Pia08] Steven T. Piantadosi. Symbolic dynamics on free groups. In Discrete and Continuous
Dynamical Systems - A, volume 20, pages 725–738, 2008.

[PS15] Ronnie Pavlov and Michael Schraudner. Entropies realizable by block gluing Zd shifts of
finite type. In Journal d’Analyse Mathématique, volume 126, pages 113–174. Springer,
2015.

[Rob71] Raphael M Robinson. Undecidability and nonperiodicity for tilings of the plane. In
Inventiones mathematicae, volume 12, pages 177–209. Springer-Verlag, 1971.

[SSU20] Ayse A. Sahin, Michael Schraudner, and Ilie Ugarcovici. A strongly aperiodic shift of
finite type on the discrete heisenberg group using robinson tilings. In arXiv preprint
arXiv:2009.07751, 2020.

[SW02] Jeffrey Shallit and Ming-wei Wang. On two-sided infinite fixed points of morphisms. In
Theoretical Computer Science, volume 270, pages 659–675. Elsevier, 2002.

[Taa07] Siamak Taati. Cellular automata reversible over limit set. In Journal of Cellular
Automata, volume 2, pages 167–177, 2007.

[Tör20] Ilkka Törmä. Complexity of generic limit sets of cellular automata. In Hector Zenil,
editor, Cellular Automata and Discrete Complex Systems (AUTOMATA 2020), volume
12286 of Lecture Notes in Computer Science, pages 126–138. Springer International
Publishing, 2020.

[Tör21] Ilkka Törmä. Generically nilpotent cellular automata. In Anni Hakanen, Vesa Halava,
Pyry Herva, Jarkko Kari, Tero Laihonen, Ion Petre, and Aleksi Saarela, editors, Proceed-
ings of the Sixth Russian-Finnish Symposium on Discrete Mathematics (RuFiDiM 2021),
volume 31 of TUCS Lecture Notes, pages 142–156. Turku Centre for Computer Science,
2021.

[Wan61] Hao Wang. Proving theorems by pattern recognition—ii. In Bell system technical journal,
volume 40, pages 1–41. Wiley Online Library, 1961.

Personal Bibliography

[AES20] Nathalie Aubrun, J. Esnay, and Mathieu Sablik. Domino Problem Under Horizontal
Constraints. In Christophe Paul and Markus Bläser, editors, 37th International Sympo-
sium on Theoretical Aspects of Computer Science (STACS 2020), volume 154 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 26:1–26:15, Dagstuhl, Germany,
2020. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[EM22] Solène J. Esnay and Etienne Moutot. Aperiodic SFTs on Baumslag-Solitar groups. In
Theoretical Computer Science, volume 917, pages 31–50, 2022.

[ENT22] Solène J. Esnay, Alonso Núñez, and Ilkka Törmä. Arithmetical complexity of the language
of generic limit sets of cellular automata. In arXiv preprint arXiv:2204.06215, 2022.

[ES22] Solène J. Esnay and Mathieu Sablik. Parametrization by horizontal constraints in the study
of algorithmic properties of Z2-subshift of finite type. In arXiv preprint arXiv:2203.00434,
2022.

161

