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Abstract 

In the challenges of energy transition and reducing consumption, buildings play a key 

role, as they consume a significant part of worldwide energy consumption. Considering 

electrical energy alone about 50% is consumed in residential or tertiary buildings. This figure 

indicates the great potential for energy savings in buildings. The residential sector accounts 

for 37% of consumption, while electricity consumption in tertiary buildings accounts for 32% 

of the total. This superior consumption in residential buildings has led to an explosion of 

studies on the energy consumption of these buildings, so that the tertiary sector still has much 

to be explored. 

The first step in reducing energy consumption is to conduct an energy audit, which is a 

detailed evaluation of the energy performance of the systems in a facility. It makes easier 

identifying and quantifying the energy savings potentials. Thus, this thesis studies methods to 

enhance energy audits in buildings, especially those from the tertiary sector. These studies 

involve the comprehensive analysis of data from the GreEn-Er building at Grenoble-INP, a 

smart-building exhaustively monitored offering an extremely rich and promising field for 

experimentation and extrapolation.  

The research in energy consumption of tertiary buildings presents yet a deficit when 

compared to the residential sector. This can be associated to the lack of public available 

datasets of commercial buildings, when compared to the residential sector. Hence, to address 

this issue when decrease this gap, this thesis presents the GreEn-ER dataset, containing 

aggregated and disaggregated electricity consumption data from the building. 

Nevertheless, real data bring real problems and the data extracted from the GreEn-ER 

dataset is no exception. Hence, this thesis also addresses data quality metrics, especially in 

terms of accuracy and completeness. Additionally, a method for identifying outliers was 

developed during the course of the thesis.  

Furthermore, in the context of energy audits, NILM method can be useful for 

enhancing the analysis performed. Hence, the present works also addresses the application of 

NILM algorithms to loads typically present in tertiary buildings, since most of the techniques 

developed to date have been developed regarding residential buildings. Finally, an 

enhancement to an energy audit, by quantifying the compressed air leakage using an energy 

disaggregation method is presented. 
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Résumé 

Depuis qu’ils consomment une part importante de la consommation énergétique 

mondiale, les bâtiments jouent un rôle central dans le défis de la transition énergétique et de la 

réduction de la consommation. Si l'on considère l'énergie électrique seule, environ 50% est 

consommée dans les bâtiments résidentiels ou tertiaires. Ce chiffre indique l'important 

potentiel d'économies d'énergie dans les bâtiments. Le secteur résidentiel représente 37% de 

la consommation, tandis que la consommation d'électricité dans les bâtiments tertiaires 

représente 32% du total. Cette consommation supérieure dans les bâtiments résidentiels a 

entraîné une explosion des études sur la consommation énergétique de ces bâtiments, de sorte 

que le secteur tertiaire a encore beaucoup à explorer. 

Un premier pas pour réduire la consommation d'énergie c’est la réalisation d’une audit 

énergétique, qui est une évaluation détaillée de la performance énergétique des systèmes d'une 

installation. Il permet d'identifier et de quantifier plus facilement les potentiels d'économies 

d'énergie. Ainsi, cette thèse étudie les méthodes permettant d'améliorer les audits énergétiques 

dans les bâtiments, notamment ceux du secteur tertiaire. Ces études impliquent l'analyse 

complète des données du bâtiment GreEn-Er à Grenoble-INP, un smart-building massivement 

surveillé offrant un champ d'expérimentation et d'extrapolation extrêmement riche et 

prometteur.  

La recherche sur la consommation énergétique des bâtiments tertiaires présente encore 

un déficit par rapport au secteur résidentiel. Cela peut être associé au manque d'ensembles de 

données publiques disponibles sur les bâtiments commerciaux, par rapport au secteur 

résidentiel. C'est pourquoi, afin d'aborder ce problème et de combler cette lacune, cette thèse 

présente le jeu de données GreEn-ER, qui contient des données agrégées et désagrégées sur la 

consommation d'électricité des bâtiments. 

Cependant, les données réelles emportent des problèmes réels et les données extraites 

du jeu de données GreEn-ER ne font pas exception. Par conséquent, cette thèse aborde 

également les métriques de qualité des données, notamment en termes de précision et de 

complétude. De plus, une méthode d'identification des outliers a été développée au cours de 

cette thèse.  

En outre, dans le contexte des audits énergétiques, la méthode NILM peut être utile 

pour améliorer l'analyse effectuée. Ainsi, les présents travaux abordent également 

l'application des algorithmes NILM aux charges typiquement présentes dans les bâtiments 

tertiaires, puisque la plupart des techniques développées à ce jour l'ont été pour les bâtiments 

résidentiels. Enfin, une amélioration d'un audit énergétique, en quantifiant les fuites d'air 

comprimé à l'aide d'une méthode de désagrégation énergétique est présentée. 
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Introduction 

Buildings, either residential or tertiary, have a key role in the energy transition, as they 

represent an important share of both global energy consumption and greenhouse gas 

emissions. Regarding that, energy audits are powerful tools that help the identification and the 

quantification of potential savings in these environments. Thus, the development of methods, 

models and tools to enhance energy audits in tertiary buildings is one of the objectives of this 

thesis. Such objectives involve the comprehensive analysis of data from the GreEn-Er 

building at Grenoble-INP, offering an extremely rich and promising field for experimentation 

and extrapolation. The building is massively monitored with over 1500 sensors, of which over 

300 are electricity meters. 

However, because of the limited time that the auditors have to collect data from on-

site measurements or the lack of historical data, it can be said that standard energy audits take 

a snapshot of the current conditions of a facility. In this manner, some operating modes, 

which can hide saving potentials, may not be addressed by the audit. In the context of energy 

audits, Non-Intrusive Load Monitoring (NILM) methods can be useful for enhancing the 

analysis performed, retrieving the load curve of unmonitored operation modes. However, 

large part of the studies applying NILM techniques in buildings regards to the residential 

sector. Hence, another objective of this thesis is to evaluate the application of energy 

disaggregation techniques in tertiary environments, and their role in the enhancement of 

energy audits in this type of building. 

As mentioned in the previous paragraph, studies regarding the electricity consumption 

in the residential sector are numerous, much as a result of the wide availability of open-format 

building consumption data for this sector. In contrast, datasets for tertiary buildings are rare. 

Therefore, making GreEn-ER datasets openly available to promote the advancement of 

research in non-residential environments is also one of the goals of this thesis. 

In addition, real consumption data usually intrinsically brings data quality problems, 

either due to acquisition or storage failures. There are several data quality problems that can 

be found in a dataset such as the GreEn-ER one. Among them are lack of completeness and 

the presence of outliers. The testing and development of methodologies to improve data 

quality, detecting and possibly correcting outliers in the energy consumption data is also one 

of the objectives of this thesis. 

The present thesis is divided into eight chapters. Every chapter presents its own 

reference list. The first presents the scientific context in which the work is inserted, 
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highlighting the roles of the buildings in the energy transition in Europe, specially the tertiary 

sector. 

The second chapter is dedicated to address the need of real consumption datasets to the 

advancement of the research and how the availability of residential datasets made possible the 

expansion of studies in this sector, leaving a lack of studies regarding tertiary buildings. Also, 

it presents the electricity consumption dataset of the GreEn-ER building, set up to help the 

progress of the research in the tertiary environment. 

The third chapter discusses data quality problems and their impact in the research, 

presenting the dimensions associated to these problems. It also quantifies the data quality of 

the assembled dataset of the GreEn-ER building and presents a brief study case regarding the 

difference between using data with quality problems and pre-treated data. 

The fourth chapter presents a new technique to detect outliers. As local outliers are 

difficult to detect using classic statistical methods, a hybrid one, combining prediction and a 

statistical method was developed. This chapter, firstly presents statistical methods for outlier 

detection and the Random Forest algorithm as a regression technique. Then, the combination 

between the predictions and the statistical methods are applied in a dataset with artificial 

outliers inserted. Finally the technique is tested also in real data. 

The fifth chapter is dedicated to the energy disaggregation. How the disaggregation 

can be used to improve energy efficiency and sobriety, exposes the different state of art 

methods and presents the NILMTK and how its development and availability made possible 

the progress of the energy disaggregation in the residential sector. 

The application of different disaggregation techniques to GreEn-ER building loads is 

presented in the sixth chapter. The NILMTK is used as framework to perform the energy 

disaggregation. However, to use this framework, the integration of the GreEn-ER dataset to 

the NILMTK is necessary. How this integration was made and the results obtained are 

presented in this chapter. 

The seventh chapter addresses the possibility of using energy disaggregation to 

enhance energy audits in a tertiary building. This is discussed by using the study case of the 

quantification of compressed air leakage in the GreEn-ER as an example. Finally, the eighth 

chapter presents the final conclusions and some perspectives of future work.  

Jupyter Notebooks to back up every chapter are available in the open repository found 

in https://gricad-gitlab.univ-grenoble-alpes.fr/martgust/Worksheets_These  

https://gricad-gitlab.univ-grenoble-alpes.fr/martgust/Worksheets_These
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1 Scientific Context – Electricity Consumption in Buildings 
 

This first chapter is dedicated to contextualize the thesis. It presents an overview of the 

energy consumption and its pros and cons over the years. In addition, buildings are 

responsible for an important share of the global energy consumption. Buildings, either 

residential or tertiary, account for almost half of the electricity consumption worldwide. 

Considering other types of energy, the GHG (Greenhouse Effect Gases) emissions due to 

buildings’ activities correspond to 17.2% of the total emissions all over the world. These 

figures bring attention to the energy consumption in buildings, especially the ones of the 

tertiary sector, a field whose scientific research potential has not yet been fully exploited. 

Hence, this chapter also exposes an overview of the electricity consumption in buildings, with 

emphasis on the case of France. 
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1.1 Overview of the Worldwide Energy Consumption and GHG emissions 

The greatest challenge of our time is to combat anthropogenic climate change. The 

Industrial Revolution, at the end of the 18th century, allowed a great technological advance, 

having a significant impact on people's quality of life. Life expectancy at birth grew 

significantly, especially considering the Second Industrial Revolution, with the advent of 

electricity, from the second half of the nineteenth century and the beginning of the twentieth 

century, as shown in Figure 1. 

 
Figure 1 – Evolution of the worldwide life expectancy at birth. [1] 

However, this increase in people's quality of life did not come at zero cost. The 

technological advance was achieved thanks to the burning of fossil fuels, such as coal 

initially. The burning of fossil fuels, intensified in the 20th century, is largely responsible for 

the greenhouse effect gas (GHG) emissions, along with agriculture, land use and forestry. As 

an example, energy related emissions corresponded to 73% of the total GHG emissions in 

2016, as can be seen in Figure 2. 
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Figure 2 – Global GHG emissions by sector. [2] 

The Greenhouse effect is the main responsible for the climate change. Some estimates 

indicate that, in 2017, human-induced warming reached approximately 1ºC, regarding pre-

industrial levels (1850s to 1900s) [3]. Some projections indicate that the global warming of 

2ºC by 2100 would be catastrophic, as the sea level would rise about 25cm [4]. Because of 

that, some efforts were made by the scientific community and governments, materialized in 

the 2015 Paris agreement, in order to limit the global warming in 1.5ºC by 2100, what would 

reduce the sea level rise to 19cm. As an example of how fast the global temperature is 

increasing, in the decade 2006–2015, warming reached 0.87°C relative to 1850–1900, 

predominantly due to human activity increasing the amount of greenhouse gases in the 

atmosphere. Given that global temperature is currently rising by 0.2°C per decade, human-

induced warming reached 1°C above pre-industrial levels around 2017 and, if this pace of 

warming continues, would reach 1.5°C around 2040. 

Since energy consumption is one of the main causes of GHG emissions, which in turn 

is a major contributor to climate change, it is clear that an energy transition from the use of 

fossil fuels to renewable energy sources is necessary. However, some of the most widespread 

renewable sources used today, such as solar and wind power, are intermittent, making it 

difficult to control the stability of the power grid. Another key point to the reduction of GHG 
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emissions, and thus in the energy transition, is the energy management through the concepts 

of energy flexibility, energy efficiency and energy sobriety.  

There are several kinds of energy used nowadays, such as electricity and heat for 

example. However, the best energy is that which we do not consume. That is the concept of 

energy sobriety, do not consume the energy when it is not needed. On the other hand, energy 

efficiency is providing the same service while consuming less energy. Finally, energy 

flexibility is linked to the system’s ability to time shift its energy consumption according to 

the production from renewable sources in order to privilege these sources.   

The Directive 2012/27/EU [5] of the European Council pointed to the need to increase 

energy efficiency in the European Union (EU) in order to achieve the target of saving 20% of 

primary energy consumption in the region compared to projections for 2020. The Council 

indicated as the main strategy the exploitation of the considerable potential for reducing 

energy consumption in buildings, transport and production processes. As the targets set by the 

2012 directive were not on the verge of being achieved in the EU as a whole, the European 

Council decided to postpone the reduction targets to the year 2030 through the Directive 

2018/2002 [6], but increasing from 20% in 2020 to 32.5% in 2030. 

In this context, France is one of the countries where the target is furthest from being 

reached. For example, in 2019, primary energy consumption was still 7% above the target for 

that year. In Germany, for example, consumption was only 2.2% above the target, while in 

Italy and in the United Kingdom the consumption target for the year 2019 had been reached 

[7]. The primary energy consumption and the target value for 2019 in Germany, France, The 

United Kingdom and Italy can be seen in Figure 3. 
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Figure 3 – Annual primary energy consumption in 2019 in selected countries of the EU. 

In the challenges of energy transition and reducing consumption, buildings play a key 

role, as recognized by the European Council itself. Worldwide, the energy consumed in 

buildings represents a significant part of global energy consumption. Considering electrical 

energy alone, according to the International Energy Agency (IEA) [8], in 2019 about 50% 

were consumed in residential or tertiary buildings, slightly above the industrial consumption 

(42%). From 1990 until 2005, the share of industrial consumption decreased from 47% to 

41%, with stabilized values to nowadays. In residential buildings, the share reached the peak 

between the years 1995 and 2000, with 28% before stabilizing in 27% until this day. In 1990, 

the share of the tertiary sector in the worldwide electricity consumption was about 20%. This 

portion slightly increase in the following years, reaching about 24% between 2000 and 2010 

before dropping to 21% in 2019. The evolution of the worldwide electricity consumption 

shares by sector from 1990 to 2019 in Figure 4a, while Figure 4b details the year of 2019.  
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a) Evolution of the distribution by sector b) 2019 distribution by sector 

Figure 4 – Distribution of worldwide electricity consumption by sector. 

Following developed countries tendency, the share of electricity consumption in 

buildings in France, whether residential or tertiary, is even higher. While the industrial sector 

saw a drop of its share, from 37% to 27% in 30 years span (from 1990 to 2019) the residential 

and tertiary sectors increased their importance. The share of electricity consumption of the 

residential sector increased 5% during the same period. Similar growth happened in the 

tertiary sector. The evolution of the electricity consumption in France, by sector, can be seen 

in Figure 5a [8].  

The residential and tertiary sectors combined are responsible for nearly 70% of the 

country's total electricity consumption. As can be visualized in Figure 5b, the residential 

sector is responsible for 37% of consumption, while tertiary buildings represent for 32% of 

the total French electricity consumption [8].  

 

 

 

a) Evolution of the distribution by sector b) 2019 distribution by sector 
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Figure 5 – Distribution of electricity consumption by sector in France. 

The great share of both residential and tertiary sectors shows the importance of these 

sectors in electricity consumption in France and indicates the great potential for energy 

savings in buildings. The next section details the typical electricity consumption in both 

sectors. 

 

1.2 Electricity Consumption in Buildings 

The electricity consumption in the residential and the tertiary buildings are very 

different. In terms of the global consumption, while the tertiary buildings concentrate its 

consumption during the day of the weekdays, energy consumption in residential buildings 

tends to be concentrated at evenings and on weekends. In addition, the nature of the loads is 

very different regarding these two environments. Furthermore, even among the tertiary 

buildings, the nature of the loads differs according to their activity, as the loads in a hospital, a 

university, an office building, a retail store or in a restaurant are very different. Because of 

that, the next sections explore the distribution by end use of the electricity consumption in the 

residential and in the tertiary sector. 

 

1.2.1 Residential Buildings 

As mentioned in the previous section, the residential sector represented, in 2019, 37% 

of the electricity consumption in France. This means that residential buildings are the major 

electricity consumers in the country. Because of that, studies regarding the energy 

consumption in this type of building are numerous.   

Despite having similar general appliances, each household is different. Different sizes, 

heated area, number of inhabitants, people's habits, type and number of appliances and their 

efficiency significantly influence the energy consumption of a household. Because of that, the 

residential consumption is modelled considering eight major usages [9]:  

• Heating,  

• Domestic hot water (DHW),  

• Ventilation and air conditioning,  

• White goods (refrigerator, washer etc.),  

• Audiovisual and informatics (TVs, personal computers etc.),  

• Cooking,  
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• Lighting, 

• Other usages.  

Figure 6 shows the distribution of consumption by use in the French residential sector 

in 2019 [9]. 

 

 

Figure 6 – Distribution of consumption by use in the French residential sector in 2019. 

According to the Bilan RTE 2021 [9], as a result of the electrification of the building 

stock, heating consumption grew strongly until the early 2010s, with an average annual 

growth rate of 3.2% per year between 2005 and 2012. However, the introduction of the 2012 

thermal regulation, which favored gas installations in new construction, and the improvement 

of the energy performance of buildings resulted in a strong slowdown in the growth of electric 

heating consumption, with an average change of around 0.8% per year between 2012 and 

2019. The new environmental regulation, the RE2020 [11], which was initially presented in 

2020 and then modified in 2021, takes more into account environmental constraints, 

particularly on CO2 emissions. These thresholds are almost equivalent to a ban on fossil fuel 

heating sources in new construction, and could thus contribute to increase the market share of 

electric heating solutions in the future. In France, electric heating represents 28% of 

residential electrical consumption in 2019 and tends to rise in the following years. Another 

important consumption is due to ventilation and air conditioning, as it accounted for 4% of the 
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French residential sector's consumption in 2019. If we take only the air conditioning, it alone 

represents 2.4% of total consumption in 2019. This share also tends to rise as the years are 

becoming hotter due to the climate change. 

Similar analysis can be done for the water heating. This consumption grew 

significantly in the early 2000s, by around 2% per year between 2005 and 2012, due to the 

electrification of the stock, before undergoing a phase of strong slowdown (an average of 

0.2% per year between 2012 and 2019), under the effect of the 2012 thermal regulations in a 

similar way to the evolution observed for heating. However, the introduction of CO2 emission 

thresholds by the RE2020 [11] limits the use of gas solutions for the water heating, 

prioritizing the use of electricity in this task. Thus, the market share of electricity for the 

production of domestic hot water in new construction should evolve in a similar way to that of 

the market share for heating, as the solutions are often coupled. In 2019, domestic hot water 

(DHW) production represented 14% of the French residential sector's electricity consumption. 

White goods, which include refrigeration and washing appliances, whose consumption 

represents 15% of residential consumption in 2019 in French metropolitan territory, are 

gradually being replaced by less energy-intensive appliances. This dynamic is being driven by 

the implementation of ambitious European Union directives on eco-design and energy 

labelling, which are helping to reduce consumption despite rising demographic trends. 

The digital revolution led in the 2000s to the massive arrival in homes of computer 

and internet equipment. Arriving in 2019, all computer and audio-visual uses represented 

were responsible for 12% of the consumption of the French residential sector. While the 

number of electrical equipment in this item has risen sharply in recent years, they are 

undergoing a major transformation with a rationalization of uses and a change in lifestyles. 

Older fixed devices are gradually being replaced by less energy-intensive mobile devices, for 

example fixed computers are being replaced by laptops and even digital tablets. Indeed, in 

2019, smartphones were preferred by 51% of French people and tablets by 12% for internet 

access, while only 31% of French people preferred the computer. Therefore, even if the 

number of this kind of equipment tends to rise, the rise in the consumption does not follow 

this trend at the same rate. 

In France, cooking use accounted for 8% of residential electricity consumption in 

2019 as it is steadily gaining market share at the expense of gas cooking. The advent of 

induction cooking, which combines the safety of electricity with cooking comfort similar to 

that of gas, is driving the electrification of this use. Electric hobs accounted for nearly 80% of 

cooktop sales in 2019. This electrification, combined with an increase in other cooking 
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equipment such as microwave ovens, is being offset by significant progress in energy 

efficiency, particularly for ovens, which are subject to European directives on eco-design and 

energy labelling, and for electric hobs, as induction hobs consume less energy than glass-

ceramic hobs, which themselves consume less energy than cast iron hobs. 

Recent European directives have banned, since late 2018, the sale of high energy 

consuming lamps, including incandescent and halogen lamps with the exception of certain 

specific models that have no alternative to date. The arrival on the market of LED (Light-

emitting diode) bulbs at competitive prices since the mid-2010s causes a drastic reduction in 

electricity consumption in lighting, they even accounted for three quarters of lamps sold for 

residential in 2017. As presented in Figure 6, in 2019, the lightning consumption represented 

5% of residential consumption in France. 

 

1.2.2 Tertiary Buildings 

The tertiary sector covers a wide range of activities that can be classified as mainly 

commercial (trade, transport, financial activities, services to businesses, services to 

individuals, lodging and catering, real estate, information and communication) and non-

commercial (public administration, education, human health, social activities etc.). This sector 

represented nearly 32% of the electricity demand in metropolitan France. [8] 

The electricity consumption of the tertiary sector can be divided in two main 

partitions. The first one, the in-building branch comprehends all loads located inside 

buildings, which represents 81% of the whole consumption [9]. The other one, called off-

building branch, comprehends activities in which consumption is mainly linked to an 

industrial process, like telecommunications, waste treatment and consumptions that are 

located literary outside a building, like the public lightning and accounts for the other 19% of 

the electricity consumption of the tertiary sector [9].  

As previously mentioned, the tertiary sector is a very heterogeneous one, including 

activities such as health, commerce, cultural venues or offices. In order to describe the 

consumption of the building sector, activities with a similar consumption profile are grouped 

together in eight branches of activity [9], enumerated as follows: 

• Cafés, hotels, restaurants (Catering) 

• Community housing 

• Health care 

• Education 
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• Sports, culture, leisure, various community facilities 

• Offices and administration 

• Commerce 

• Transportation 

The electricity consumption inside buildings, in France during 2019, by activity can be 

seen in Figure 7 [9]. 

 

Figure 7 – Distribution of consumption by activity of tertiary buildings in France in 2019. 

As seen in the previous figure, commerce and offices represent, more than 60% of the 

in-building electricity consumption in the tertiary sector. While restaurants, hospitals and 

educational buildings represent 12%, 9% and 5% of the consumption of tertiary buildings. 

For each of the eight branches of activity of the in-building sector, the consumption of 

seven usages is modeled [9]: heating, air conditioning, domestic hot water, cooking, lighting, 

cooling and specific electricity. The distribution of the electricity consumption by type of 

appliance in tertiary buildings in France in 2019 is illustrated in Figure 8. 
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Figure 8 – Distribution of consumption by appliance type of tertiary buildings in France in 2019. 

Similarly to residential buildings, the heating loads go through an electrification 

process. In 2019, the market share of electric heating in newly constructed buildings was 

estimated at 53%. Also, a significant part of the surface areas built are offices and commerce, 

which make extensive use of electric heat pumps, that can also be used for air conditioning 

taking advantage of their reversibility. In the same year, electric heating represented 16% of 

the electricity consumption in tertiary buildings, being the fourth major consumer inside this 

kind of construction [9]. 

The production of domestic hot water (DHW) represented, in 2019, 6% of the 

consumption of the tertiary buildings. This electrical consumption has increased by 14% since 

2005, with an inflection of this growth since 2012, similar to what happened in the residential 

sector. This inflection is mainly due to efficiency gains related to the systems, to the 

installation of thermodynamic water heaters instead of Joule water heaters [9]. 

Air conditioning consumption has sharply risen. Since 2005, it has increased by more 

than 60% in proportion to the increase in air-conditioned surfaces. However, this growth has 

slowed since 2012. While, between 2005 and 2012, the average annual growth rate was 5%, it 

has dropped to 1.5% between 2012 and 2019. While the Education and Community Housing 

branches are not cooled, at 5-10%, nearly half of the surfaces in the Offices, Administrations 
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and Cafés, Hotels, Restaurants branches are air-conditioned. Because of this, the ventilation 

and air conditioning already represent 18% of the electricity consumption of the tertiary 

buildings, in France. 

Electricity consumption for cooking purposes is currently 4% of the whole 

consumption tertiary buildings. This consumption mainly covers cooking equipment used in 

restaurants, whether in company restaurants, collective catering or commercial restaurants. 

Cooking is also characterized by an electrification of the use, as a consequence of an 

evolution of the practices which tend to be favorable to electricity. Approximately 70% of the 

newly built surfaces are equipped with electric cooking systems. Installed in similar 

environments, the cooling loads represent around 9% of the electricity consumption of this 

sector [9].  

Indoor lighting represents a significant potential for energy efficiency in the tertiary 

sector. The widespread use of LED technology has recently been encouraged by the sale of 

lamps that are compatible with fluorescent systems that previously required a heavy 

replacement operation. In 2016, less than 10% of offices were equipped with LED systems in 

France [9]. At the same time, policies to eliminate the oldest technologies are forcing players 

to turn to the most efficient technologies. The widespread use of LED lamps is expected in the 

long term, even in developing countries. Meanwhile, in 2019, the indoor lightning 

consumption represented 18% of the whole tertiary sector consumption in France [9]. 

Other specific electric uses include all uses of electricity not already described above. 

These include office equipment, like personal computers, printers, data centers, medical 

equipment, elevators and escalators. There are also some household appliances, such as 

vacuum cleaners, coffee machines, cold drink dispensers, etc. As in the residential sector, the 

spread of technical progress is expected to continue under the effect of European ecodesign 

regulations that impose increasingly stringent standards for energy efficiency. The 

consumption of this equipment is estimated at 28% of the whole electricity consumption of 

the French tertiary buildings. 
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1.3 Conclusions 

This first chapter was dedicated to contextualize the thesis. It has presented the 

important share of the energy consumption in buildings. For instance, the residential and 

tertiary sectors combined are responsible for nearly 70% of total electricity consumption in 

France, being the residential sector is responsible for 37% of consumption, while tertiary 

buildings represent for 32% of the total French electricity consumption. These figures bring 

attention to the energy consumption in buildings, especially the ones of the tertiary sector, a 

field whose scientific research potential has not yet been fully exploited.  
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2 Energy Consumption Datasets of Buildings – Objectives, State 

of Art and The Green-ER Case 

Chapter 2 exposes the importance of available datasets to the advance of the research 

in buildings’ energy consumption field and presents some examples of available datasets to 

date. It can be seen that most of them concerns the residential sector, uncovering a lack of 

datasets regarding the tertiary segment. To address this issue, a dataset containing aggregated 

and disaggregated energy consumption data of the GreEn-ER building were gathered and 

made available in open access. Hence, the present chapter also details this dataset, its 

metadata and presents some insight about the building’s consumption, such as its electricity 

consumption sectorial distribution and some energy sobriety opportunities identified by this 

analysis. 
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2.1 The Importance of Datasets Towards the Research Advance 

The increased use of intermittent renewable energy sources, such as solar and wind, 

makes the use of machine learning (ML) methods combined with demand side management 

more and more frequent. This leads to the use of artificial intelligence techniques to predict 

the consumption, the generation from renewable sources and to calculate the optimal cost, for 

instance. These techniques use a massive amount of data to perform their task. 

Regarding machine learning approaches, there are two main axes: supervised learning 

and unsupervised learning. The key difference between them is that one uses labeled data to 

help predict outcomes, while the other does not. The supervised learning approach requires 

well-identified data for training the algorithms. Algorithms that fall in this approach use input 

data to construct a model and compare its outcomes to labeled output data. This comparison 

allows the algorithm to correct the model overtime. This step is called training phase. With 

the fitted model, fresh input data are inserted into the model, outputting a prediction. They are 

used mainly for classification and regression problems. While classification problems try to 

separate data into specific categories, regression ones seek to find the relationship between a 

dependent variable and one, or several, independent variables. Unsupervised approaches, on 

the other hand, are often used to cluster unlabeled data based on their similarities or 

differences. 

Further in this work, ML techniques are employed to try to perform predictions of 

electricity consumption of a tertiary building and to disaggregate, by applying Non-Intrusive 

Load Monitoring (NILM) [1] techniques, the main consumption down to target appliances. 

These tasks are often addressed using supervised techniques. The development of different 

algorithms goes through the use of labeled datasets, not only to test their results, but also to 

train the algorithms. Hence, the need of real datasets of electricity consumption increases 

continuously.  

The progress of research related to the use of machine learning in the energy 

consumption field directly depends on the availability of datasets, either for training or 

performance testing. Even though datasets containing synthetic data have had their 

importance, datasets containing real data of electricity consumption provide, especially in the 

buildings field, further advances, despite increasing the difficulty in developing and applying 

algorithms. 

Therefore, the use of real data of electricity consumption measurements for 

researchers to advance in the field of machine-learning in buildings is needed. There are 

several datasets publicly available, with both aggregated and disaggregated consumption. 
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Some of them are mentioned in the following tables. 

Among the datasets mentioned earlier, most are dedicated to the residential sector, as 

it is shown in Table 1. Because of the different nature of the loads, highlighted in the previous 

chapter, it is obvious that there is a need to create datasets dedicated to buildings of the 

tertiary sector, since the equipment and the consumption profile are very different. Because it 

is massively monitored, GreEn-ER, a tertiary sector building, is a good example where the 

consumption data can be used to create exploitable datasets. Following sections explore the 

importance of the availability of data in open-access as well the GreEn-ER dataset that was 

made available within this work. 

2.2 Data Valorization – Towards Open-Science 

Currently, we live in the Data Age. Daily, more than five billion people interact with 

data, which will be six billion by 2025. Consumers will have one data interaction every 18 

seconds, much because of the billions IoT (Internet of Things) devices connected all over the 

world, by when they are expected to create over 90ZB of data [24]. Thus, data are in the core 

of the scientific production.  

The ease with which data sharing is carried out nowadays helps popularize scientific 

knowledge, allowing researchers from many places to develop theories from data originally 

obtained from other parts of the world. In addition, sharing scientific knowledge makes 

research more efficient, more visible, and less redundant. The unrestricted dissemination of 

research publication and data can be called open-science. It takes advantage of the digital 

transformation to promote open access to publications, once restricted under paid licenses, 

and to research data. Open-science initiatives also changes the way society sees the research, 

making it more transparent, strengthening its integrity. Furthermore, the facilitated 

accessibility may accelerate the response to current issues.  

In line with that, the National Plan for the Open-science (“Plan national pour la 

science ouverte” in French) of the French government strongly encourages the open-science 

in France. This plan is divided into three main axes. 
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Table 1 – Examples of existing datasets of energy consumption in buildings. 

Dataset Description Country Sector Reference 

REDD 

Total power and sub-meter data from six 

households. They were the first datasets with the 

main purpose of studying NILM methods and it is 

the most used for testing disaggregation algorithms. 

USA Residential [2] 

BLUED 

Contains measurements of voltage and current with 

12 kHz sampling of one household during one week. 

There are no sub-meter measurements but there is 

information about the switching on and off of each 

equipment that can be used in algorithms. 

USA Residential [3] 

Household 

Electricity 

Survey 

Contains equipment measurements of 251 

households. There are also total power data from 14 

of these households. 

United 

Kingdom 
Residential [4] 

Tracebase 

It is available energy consumption data of 

equipment used in residential and tertiary buildings 

that were measured with a commercial sensor. 

Germany 
Residential 

and tertiary 
[5] 

AMPds 
Total power and sub-metering data of a household 

for two years. 
Canada Residential [6] 

iAWE 
Contains 73 days of household and sub-meter power 

measurements in Nova Delhi. 
India Residential [7] 

BERDS 

Contains power measurements (active, reactive and 

apparent) of a university campus, of several 

equipment, such as lighting, hydraulic pumps and air 

conditioning system. 

USA Tertiary [8] 

ACS-F1 

Contains electricity consumption data of 100 typical 

appliances found in a household, such as cell 

phones, computers, refrigerators and TVs. 

Switzerlan

d 
Residential [9] 

UK-DALE 
Contains measurements of total power and some 

equipment of five households. 

United 

Kingdom 
Residential [10] 

ECO 

Provides aggregate consumption data with one 

second sampling. There are also consumption data 

for a few selected appliances and occupancy 

information. 

Switzerlan

d 
Residential [11] 

GREEND 
Contains measured equipment from nine households 

in Austria and Italy, with 1-second sampling. 

Austria 

and Italy 
Residential [12] 

SustData 

Contain several measurements of electrical power 

(active, reactive and apparent) of 50 households 

with a sampling time of one minute. 

Portugal Residential [13] 

COMBED 
There is data from 200 meters installed in a 

university campus in India. 
India Tertiary [14] 

PLAID 

Contains voltage and current measurements of 11 

different appliances in 55 homes with 30 kHz 

sampling. 

USA Residential [15] 

DRED 

A dataset with measurements of energy 

consumption of devices and information about 

occupancy and climate of a household. 

Netherlan

ds 
Residential [16] 

Dataport 

There are total and equipment consumption data for 

722 households in the United States with one minute 

sampling. 

USA Residential [17] 

COOLL 
There are voltage and current measurements of 42 

different equipment with 100 kHz sampling. 
France Residential [18] 

WHITED 

Contains measurements of 110 different equipment 

from the first five seconds of operation when it is 

turned on. These measurements were made with 44 

kHz sampling. 

World 

wide 

Residential 

and small 

industry 

[19] 

REFIT 
Data of total consumption of submeters of 20 

households. 

United 

Kingdom 
Residential [20] 
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• Generalize open access to publications.  

o Make open access publication mandatory for articles and books 

resulting from publicly funded research 

• Be part of a sustainable, European and international dynamic.  

o Transform scientific practices to integrate open science into everyday 

life, so that they become a reflex and contribute to the structuring of the 

international open science landscape through the dissemination of best 

practices. 

• Structure and opening up research data.  

o Make the open dissemination of research data from publicly funded 

programs mandatory. 

 

2.2.1 Research Data Publication  

Published data alone are not fully exploitable since researchers not so familiar with the 

dataset need to understand the data well in order to be able to leverage it in their research. 

Therefore, good practice indicates that published research data should be accompanied by 

associated metadata, some documentation, such as a data paper, and software code (in cases 

where raw data have been pretreated). These practices facilitate the reuse of data by different 

researchers 

Because of the great amount of data produced, dataset publication usually is done 

through repositories that can guarantee that the datasets are well documented. Datasets should 

also be capable of being referenced in a unique and persistent manner. In that matter, 

repositories often deliver unique D.O.I (Digital Object Identifier) to the published datasets 

[26]. The Grenoble Alpes University (Université Grenoble Alpes) has its own repository, 

called Perscido, to host data from research performed within the university. Another example 

of repository is Mendeley Data, which is managed by Elsevier and is linked to a journal 

dedicated to data articles. As a supplementary work of this thesis, a dataset was published into 

two open-data repositories and will be detailed in following sections. 

 

2.2.2 Data Article 

A data paper is a way to well document a dataset. It can be seen as a metadata 

document that describes a dataset and it is published in the form of a peer-reviewed article. It 

comes as a complement to a dataset. This type of paper has as main objectives to make data 
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accessible, interpretable and reusable, rather than presenting and testing new theories, or 

hypotheses, or new analyses. It is important to remark that publishing a data article does not 

prevent the publication of traditional research articles using the data described in the data 

paper. Several journals are dedicated to publish data articles, often directly related to 

repositories. During this thesis, a data paper [21] regarding the dataset published was made 

available in an open science repository.  

 

2.3 The GreEn-ER Dataset 

The GreEn-ER building [22] is located in the Polygone Scientifique, at the Presqu’île 

of Grenoble, France. It gathers the Grenoble-INP engineering school Ense3, the G2Elab 

laboratory and training and research platforms. A photo of the building is shown in Figure 9, 

while Figure 10 presents a map indicating its location. The building has more than 22,000 m2 

of floor space, which is divided over 6 floors and the roof. There are about 1,500 students and 

hundreds of professors, researchers and staff using it. Because it is a large building, its power 

consumption is also significant. On a typical day, the active power can be more than 300 kW. 

There are more than 1,500 meters, including more than 300 electricity consumption ones. The 

electric meters measure not only the consumption of the various switchboards, regarding the 

aggregated consumption of different zones in the building, but also some individual loads, 

such as the lighting and the power outlets of certain switchboards, the air handling units 

(AHUs), chillers, pumps, etc. The other meters concern internal and external conditions, 

thermic energy data, etc. The measured data are used to control the internal conditions, 

regarding the comfort of the occupants and to monitor the consumption.  
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Figure 9 – The GreEn-ER building [22]. 

 
Figure 10 – Map indicating the location of the building (21 Avenue des Martyrs, 38000, Grenoble, France). 

 

2.3.1 Electric Scheme 

The grid delivers the electricity to the building at three-phase 20 kV. Two 2 MVA 

transformers (TR1 and TR2) step down the voltage to 400 V. Each transformer leads the 

energy to a main switchboard, called TGBT (Tableau General de Basse Tension), French 

acronym to General Low Voltage Switchboard. Each one of these boards has its own meter to 

measure its consumption. A switch that is normally open interconnects these boards. In that 

way, the two TGBTs are normally independent. Thus, all the building’s loads are connected to 

these two main switchboards, either directly or by some sub boards. Each one of the branches 

of the scheme has also its own energy meter. Figure 11 illustrates the electric scheme of the 

building. 
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Figure 11 – Electric scheme of the GreEn-ER building. 

In Figure 11, the branches that have TD in their names are, in fact, other boards that 

distributes the electricity to different zones. The third character in these branches’ names, 1 or 

2, stands for the TGBT to which the board is connected. The G2E stands for G2ELab and 

represents the boards that distributes electricity to that area. At the same time, EE3 stands for 

Ense³, and those boards distribute electricity to the classrooms and other facilities of the 

Engineering School Ense³. COM stands for the common areas and PRE represents the boards 

that distribute the electrical energy to PREDIS charges, a training and research platform for 

smart grids. The name's seventh character of each board is linked to the floor where it is 

located (R stands for Ground Floor (Rez-de-Chaussée in French)). The loads in the TD 

switchboards are generally divided in three or four loads, which represents lightning (ECL), 

outlets (PC), water heater (ECS) or dedicated outlets (FM). These loads also have their own 

energy meters.  

Within the building, there is a platform, called “PREDIS-MHI”, conceived to be a 

nearly zero-energy building (Nzeb). It is a 600 m² platform energetically independent from 

the rest of the building. This platform, represented in the early drawing by the branch with the 

acronym “TD2-DEM-40”, is even more monitored that the rest of the building. In this sector, 

the lightning and the outlets of each room is measured independently.  

 

2.3.2 Meters and Building Management System (BMS) 

The electricity consumption of the building is measured by Socomec meters models 

E13, E23, E33, E43, E63, I30, I35 and I60, according to their specifications. Each meter has 
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Modbus communication via RS485 with a PLC installed in the switchboard to which the 

measured load is connected. The PLCs, in turn, send the measurements to the storage and to 

the BMS. 

The BMS is based on the StruxureWare environment, developed by Schneider Electric 

industry. It gathers the data coming from the PLCs, and stores the measured data into a SQL 

server, where the data are logged.  It also enables the control of some parameters, such as the 

internal temperature of several rooms, the air pressure and flow of the air handling units, etc. 

A software to manage the energy consumption, called AREE Building, developed by 

Inneasoft, organizes the meters hierarchy and the trends and can show several performance 

indicators. It also enables the access to the logged data and can friendly export the data into 

text files. The data available in this dataset are extracted from the SQL server with the help of 

AREE Building software. The BMS can be accessed by dedicated personal computers inside 

the building’s premises or by an on-line client. Figure 12 and Figure 13 presents screenshots 

from the BMS software as examples. 

 

 
Figure 12 – Electric scheme of the GreEn-ER building as presented by the BMS. 
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Figure 13 – On-line client of the BMS showing the parameters of the room 4-A-017, located at the fourth floor. 

 

2.3.3 Dataset Structure 

The dataset [23] was separated in four main contents: Global consumption, TGBT1, 

TGBT2 and PREDIS-MHI. In the Dataset main folder, there is a folder named “Data”. Inside 

this folder, two subfolders represent each year of data available, which are 2017 and 2018. 

Each subfolder contains three other sub-folders, and each one corresponds to a content cited 

earlier. Each subfolder inside "Data" also contains the CSV files with the electricity 

consumption data of the whole building, “585.csv” and ‘771.csv” that represents each one of 

the TGBTs. These folders also contain a file named "Temp.csv" with the temperature data. 

The temperature data are in Celsius degree ºC, with one hour sampling, semicolon as 

separator and comma as decimal marker. The structure of folders and files is illustrated in the 

following figures. 

 

 
Figure 14 – Structure of the main folder of the dataset. 

 

 

Figure 15 – Structure of a folder of a specific year of the dataset. 

Inside the subfolders, there are files that contain the electricity consumption data. The 

data are stored in CSV (comma separated values), with semicolon as separator. Each file 

contains the timestamp, with 10 minutes sampling and the cumulative electricity 
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consumption, in kWh. As the meters are cumulative and the resolution is 1 kWh, therefore the 

consumption sample will only increase after 1 kWh consumption of the respective load. There 

is one CSV file for each meter, and they are all named according to their respective meter 

number. These numbers, among other metadata can be retrieved in tables and drawings 

available in Jupyter Notebooks. Jupyter Notebook is a file format combining text, graphics 

and code in Python. Four notebooks are also available in the main folder, exploring all the 

data within the dataset.  

Due to the complexity of the system and the amount of data available, four different 

Jupyter Notebook files were prepared. One of them explores the total consumption of the 

building, another one explores the TGBT1 and another one explores the TGBT2. Finally, 

another notebook explores the data from the PREDIS-MHI platform, a part that is energy 

isolated from the rest of the building. It is a living lab, gathering classrooms, offices and 

experimental platforms. This portion of the building also has a dedicated HVAC system, 

photovoltaic panels and electric vehicles stations. Figure 16 presents an overview of the 

PREDIS-MHI. The following table shows the amount of files that each notebook explores. 

 

 
Figure 16 – Overview of the PREDIS-MHI [22]. 

Table 2 – Number of files accessed by each notebook. 

Notebook Number of files 

GreEn-ER Global consumption 4 

TGBT1 113 

TGBT2 120 

PREDIS-MHI 91 

 

Each notebook describes the area explored by it, with plans of the building, diagrams 

to illustrate its electrical system and tables that define to which load each meter is connected. 
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By choosing the year and the meter to explore by the user, the notebook calculates the average 

power and consumption of the chosen year. It also shows interactive load curves and monthly 

consumption in graphic form. The following figures illustrate, as examples, some images 

included in the notebook describing the TGBT1. 

 

 
Figure 17 – Electric scheme of the TGBT1 present in it respective notebook. 

 

 
Figure 18 – Electric scheme of the switchboards connected to TGBT1 present in it respective notebook. 
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Figure 19 – Example of the floor plan of the 2nd floor of the GreEn-ER building with zones and their respective 

switchboards. 

A couple of CSV files with the system design are also available. They are named 

"TGBT1_n.csv", "TGBT2_n.csv" and "PREDIS-MHI_n.csv”. In these files, each column 

stands for a switchboard. The head contains the names of the boards and the value in the first 

row represents the respective meter number. The values in the following rows represent the 

number of the sub-meters that are located downstream of the meter described in the first row. 

So, for example, in the file “TGBT1_n.csv” there is a column that the head is “TD1-G2E-51”. 

The value in the first row is “776”, which represents the number of the meter of this 

switchboard. The values located in the following rows, “517”, “518” and “519” represent the 

meters of the loads located downstream of the “TD1-G2E-51” switchboard. 

 

2.4 GreEn-ER Electricity Consumption 

The first step into the analysis of the energy consumption in a facility is to well 

understand its global consumption. In this way, it is possible to be aware of the order of 

magnitude of the consumption and visualize, for instance, seasonal patterns. 

Figure 20 presents the monthly consumption of the GreEn-ER building during 2017. 

This year was chosen to be the main period of analysis because of its data quality, which will 

be addressed in Chapter 3 and 4.  
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Figure 20 – Monthly electricity consumption of the GreEn-ER building in 2017. 

The previous figure allows understanding the macro behavior of the consumption. It is 

possible to observe that the minimal consumption happens in April and August, periods with 

scholar vacations. In addition, the maximal consumption was in June, during the summer, 

when the cooling loads are more requested. In January, the consumption was also higher than 

other months, but this is due data quality problems that will be addressed in further chapters. 

Another way to understand the electricity consumption is by the analysis of the load 

curve, which is presented in Figure 21, sampled at 1-minute time step.  

 
Figure 21 – Load curve of the GreEn-ER building in 2017. 
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It is possible to visualize, based on the previous figure, that there is a raise in the 

power consumption during the summer. Periods of scholar vacations, especially in August are 

also distinguishable. Furthermore, it is also possible to visualize some data quality problems, 

translated in the figure by the presence of outliers in the beginning of the series, in January. 

Those outliers may increase the monthly consumption, presented in Figure 20, and need to be 

treated carefully to more precise analysis. Additionally, it is possible to see that there is a 

weekly pattern, with the consumption dropping during weekends. Figure 22, presents a zoom 

in of Figure 21, in which it is possible to visualize the weekly and daily patterns. At the same 

time, Table 3 shows the average power according to the building’s occupancy, considering 

night time, weekends, holidays and vacations. 

 
Figure 22 – Zoom in on the load curve of the GreEn-ER building in 2017. 

Table 3 – Average power according to building’s occupancy. 

Period Average power [kW] 

Whole year 204.11 

Occupancy 287.46 

Non-occupancy 158.89 

 

The previously presented figure show the typical behavior of a tertiary sector building, 

with consumption concentrated during the daytime period on weekdays. However, it is also 

possible to visualize that the consumption when the building is unoccupied, at night and on 

weekends, corresponds to about 55% of the demand on the occupied periods. The high energy 

consumption during periods of non-occupancy evokes the need to take a closer look to the 

consumption exclusively during these periods, in order to provide a more detailed analysis of 



 
 

 

52 

the building's base load and thus facilitate the identification of potential opportunities to 

promote energy sobriety. 

One way to understand how a facility, whether industrial or even a tertiary building, 

consumes energy is through a sectorial segregation of the consumption. In this way it is 

possible to identify the major consumers, from which the greatest savings potentials are 

usually extracted. In facilities where there was a massive deployment of remote meters, like in 

the GreEn-ER building, performing the consumption disaggregation is easier and it is strongly 

recommended to be done by all energy managers. However, this is not the rule for most 

facilities, in which consumption segregation is not trivial, and is not easily available.  

Thus, the sectorial distribution of consumption was divided into three analyses. In the 

first, the disaggregation considering the whole period of operation is presented. The second 

analysis consists of the distribution of consumption taking into account only the periods of 

occupancy. Finally, the third analysis shows the sectorial distribution of consumption 

considering only the periods of non-occupancy of the building. 

 

2.4.1 Electricity Consumption Sectorial Distribution Considering the Whole Year 

As mentioned in section 2.3.1, the building’s electric distribution is done by two main 

switchboards, called TGBT1 and TGBT2. Hence, the first step towards a sectorial distribution 

is to determine the consumption of each switchboards. According to Figure 23, TGBT1 is 

responsible for nearly 60% of the global consumption, while the remaining 40% is provided 

by TGBT2. The average power through the whole year is presented in Table 4. 
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Figure 23 – Electricity distribution between TGBT1 and TGBT2. 

Table 4 – Average power of TGBT1 and TGBT2. 

Load Average power [kW] Share [%] 

TGBT1 124.19 60.8 

TGBT2 79.92 39.2 

GreEn-ER 204.11 100 

 

As it can be seen in Figure 11 and Figure 17, the main loads connected to TGBT1 are 

the switchboards that provide electricity to the G2Elab and to the Ense³ areas, the heat pumps 

(AUX_PAC and AEC_PAC) and the Air Handling Units (AHUs). Additionally, the major 

consumer connected to this board is the datacenter (ARM_NR). Figure 24 presents the 

contribution of each of these loads into the electricity consumption of TGBT1. The 

subsequent figures, on the other hand show the load curve of these loads, while their average 

power is presented in Table 5. 
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Figure 24 – Electricity distribution among main loads of TGBT1. 

  
a) Datacenter (AMR_NR) b) ARM_NR 

Figure 25 – Zoom in on the load curve of the Datacenter and heat pumps system. 

 
 

a) Ense³ b) G2Elab 

Figure 26 – Zoom in on the load curve of the Ense³ and G2Elab areas. 



 
 

 

 
55 

 

Figure 27 – Zoom in on the load curve of the AHUs. 

Table 5 – Average power according of TGBT1 main loads. 

Load Average power [kW] 

AHUs 31.58 

ARM_NR 40.03 

Ense³ 10.30 

G2Elab 10.17 

AEC_PAC 9.10 

AUX_PAC 18.85 

TGBT1 120.04 

 

By comparing Table 4 and Table 5, it can be seen that the values of average power 

corresponding to the TGBT1 do not match. This can be caused by some minor loads that are 

not monitored by the Building Management System, or by some error in the measurement 

system. Nevertheless, it corresponds to less than 4% of error and is judged acceptable.  

Regarding TGBT2, Figure 28 presents the electricity consumption distribution among 

the main loads, in particular common areas, restaurant (Crous), cooling system (TD-GF), 

Predis area, air compressors and a special zone, that is more heavily monitored, called Predis-

MHI. The subsequent figures, on the other hand, show the load curve zoomed in of these 

loads as examples, with their average power presented in Table 6. 
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Figure 28 – Electricity distribution among main loads of TGBT2. 

 
 

c) TD-GF d) Crous 

Figure 29 – Zoom in on the load curve of the TD-GF and Crous. 

  
c) Predis d) Common areas 

Figure 30 – Zoom in on the load curve of the Predis and common areas. 
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a) Predis-MHI b) Elevators and others 

Figure 31 – Zoom in on the load curve of the Predis-MHI and other loads. 

 

Figure 32 – Zoom in on the load curve of the air compressors. 

Table 6 – Average power of TGBT2 main loads. 

Load Average power [kW] 

TD-GF 13.30 

Crous 17.47 

Predis 7.57 

Common Areas 15.08 

Predis-MHI 1.84 

Others 5.69 

Elevators 0.72 

Air Compressors 18.21 

TGBT2 79.88 
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Similarly to what happened to TGBT1, the values of average power of Table 4 and 

Table 6 for the TGBT2, do not match. However, the difference corresponds to less than 0.1% 

and is probably due to some error in the measurement system. 

 

2.4.2 Electricity Consumption Sectorial Distribution according to occupancy periods 

As mentioned earlier, the building’s base load (consumption independent of the 

occupancy), corresponds to about 55% of the demand on the occupied periods. This share of 

the base load brings the need to also disaggregate the consumption by occupancy period. This 

may lead to the identification of energy sobriety opportunities, by pinpointing loads that do 

not follow the building’s consumption pattern, without reducing their consumption during 

non-occupancy periods, for instance. Following tables present the average power of the main 

loads connected to both TGBT1 and TGBT2, according to occupancy periods. These tables 

may help identifying loads that do not reduce their consumption during non-occupancy 

periods. 

Table 7 – Average power of TGBT1 according to occupancy periods. 

Load 

Average power [kW] 

Total period 
Occupancy 

period 

Non-occupancy 

period 

AHUs 31.58 59.48 16.44 

ARM_NR 40.03 40.66 39.69 

Ense³ 10.30 16.66 6.85 

G2Elab 10.17 15.34 7.37 

AEC_PAC 9.10 9.64 8.79 

AUX_PAC 18.85 19.12 18.70 

TGBT1 120.04 160.90 97.84 

 

Table 8 – Average power of TGBT2 according to occupancy periods. 

Load 

Average power [kW] 

Total period 
Occupancy 

period 

Non-occupancy 

period 

TD-GF 13.30 18.37 10.54 

Crous 17.47 31.32 9.95 

Predis 7.57 11.17 5.62 

Common Areas 15.08 20.47 12.15 

Predis-MHI 1.84 2.97 1.22 

Others 5.69 7.62 4.63 

Elevators 0.72 1.15 0.49 

Air Compressors 18.21 18.10 18.27 

TGBT2 79.88 111,17 62.87 

 

From the previous tables, it is possible to identify some loads in which the reduction of 

average power, and consequently of electricity consumption, does not occur in periods of non-

occupancy. This different pattern may happen because of misoperation of the load, or 
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misconception of the systems, or because their functioning does not depend on the building 

occupancy status. The later may explain the pattern of the datacenter load (ARM-NR) that 

needs to continue its operation regardless the building occupancy. On the other hand, the fact 

that the compressed air system, and the heat pumps and ventilation (PAC and CVC) do not 

reduce their consumption during non-occupancy periods may represent misoperation of the 

loads or even misconception of the systems, unveiling energy efficiency and sobriety 

opportunities.   

 

2.4.3 Energy Sobriety Opportunities 

As highlighted in previous sections, the analysis of the base load of the building may 

ease the way to the identification of energy sobriety opportunities. Major loads that do not 

follow the occupancy pattern may be operating in a non-optimized way, encouraging further 

analysis into the electricity consumption of these loads. One example of such loads is the 

compressed air system. As it can be seen in Figure 32, the energy consumption of the air 

compressors does not reduce during non-occupancy periods, such as weekdays nighttime 

periods or during weekends. The occurrence of this reduction during these periods, when the 

building occupancy is lower, could be expected for the compressed air system, since there 

would be fewer workstations using compressed air. This fact leads to closer investigation of 

this load. This section exposes in detail the electricity consumption of this load. First of all, 

the annual electricity consumption of the compressed air system was acquired in order to 

compare the year of 2017 to others. Figure 33 shows the annual electricity consumption of the 

compressed air system from 2017 to 2020.  
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Figure 33 – Annual electricity consumption of the air compressors from 2017 to 2020. 

The data exposed in the previous figure show that there was a reduction in the 

electricity consumption of this system in the later years. To understand if this reduction was 

due to compressed air demand decrease or if an energy efficiency measure was taken, it is 

necessary to break down the annual consumption into the monthly analysis, which can be seen 

in Figure 34. It is also important to highlight, that 2020 was an atypical year due to the 

COVID-19 lockdown ordered by French national authorities from mid-March to mid-May 

which could affect the consumption of the system. 

 

 

Figure 34 – Monthly electricity consumption of the air compressors from 2017 to 2020. 
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As is can be observed from Figure 34, some energy sobriety measures were taken 

during vacation periods, mostly in August (a period of non-occupancy), from 2018 onward, 

when the consumption was notably smaller than the other months. Also, it can be seen, in 

2020, especially during April, that the system was apparently shutdown during the COVID-19 

lockdown. This fact indicates that it is possible to reduce the compressed air system demand, 

and thus the electricity consumption, during non-occupancy periods without undermine the 

consumers. Hence, the next step is to visualize if this reduction already happened from 2018 

onward. This can be analyzed by breaking down the monthly consumption into a weekday 

analysis that can be seen in Figure 35.  

 

 

Figure 35 – Average electricity consumption of each weekday of the air compressors from 2017 to 2020. 

As it can be observed in Figure 35, there is no difference between weekdays and 

weekends regarding the consumption of the compressed air system. In 2017, the consumption 

in the Saturdays was similar to the Wednesday one, while the Sunday consumption was nearly 

the same as at the Fridays. During 2018 and 2019, the consumption was nearly the same for 

all the days of the week, while during 2020, the higher consumption happened during 

Sundays, while the lower one was on Fridays, although it is important to remember the 

atypical situation of 2020 due to COVID-19 restraints. To illustrate what happened during the 

vacation period in 2018, Figure 36 shows the load curve of the compressed air system during 

August of 2018. 

As it can be seen in Figure 36, during the vacation period of 2018, from August 1st to 

August 22nd, the compressed air system was almost shutdown. Its average power during this 
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period was 0.45 kW. These values indicate that it is possible to almost shutdown the 

compressed air system during non-occupancy periods of the building without undermine the 

consumers. 

To estimate the savings obtained by shutting down the compressed air system during 

non-occupancy periods, it is enough to consider that the average power of the system during 

non-occupancy periods is equal to 0.45 kW, which was the average value during the summer 

vacation in 2018. Considering the nighttime of weekdays, weekends, holidays and vacations, 

the occupancy period lasts 3081 hours per year, while during the 5679 remaining hours, the 

building is not occupied. Table 9 presents the annual electricity consumption of the 

compressed air system if the average power of the air compressors was the same as the power 

during the vacation time of 2018. At the same time, Table 10 shows the savings that would 

have been achieved for 2017, 2018 and 2019 in the same situation. 

 
Figure 36 – Compressed air system load curve during vacation time in 2018. 

Table 9 – Annual compressed air system electricity consumption considering the shutdown of the system during 

non-occupancy periods. 

 
Occupancy 

period 

Non-occupancy 

period 
Total period 

Average power [kW] 18.10 0.45 6.66 

Hours 3081 5679 8760 

Annual electricity 

consumption [MWh] 
55.77 2.56 58.32 

Table 10 – Annual compressed air system electricity consumption considering the shutdown of the system during 

non-occupancy periods. 

Year 

Annual electricity consumption [MWh] Savings 

Before system 

modification 

After system 

modification 
[MWh] [%] 

2017 159.52 58.32 101.20 63% 

2018 132.49 58.32 74.17 56% 

2019 138.63 58.32 80.31 58% 
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The data presented in the previous tables show that it could be possible to achieve 

nearly 60% of savings in the compressed air system if the compressors’ demand during all 

periods of non-occupancy was equal to the one during the summer vacations of 2018. Even if 

the savings in this chapter are overestimated, the analysis itself lead to further investigations, 

in which more savings opportunities may be found. 

 

2.5 Conclusions 

Data-driven approaches combined with machine learning techniques are more and 

more frequent in the energy sector. Because of that, the importance of the availability of 

datasets containing real measurement data of energy consumption is in constant increase. 

Nevertheless, most of datasets available nowadays concern residential environments, which 

have specific loads and functioning patterns, when compared to the tertiary sector. The 

availability of those datasets moved forward the research in the residential sector in some 

areas such as the Non-intrusive load monitoring, leaving the tertiary sector behind. Thus, one 

objective of this thesis was to make a dataset available in open-data, described in this chapter, 

containing the electricity consumption of the GreEn-ER building, both aggregated and 

disaggregated in several levels. Because of the completeness of the data, which will be 

addressed in the next chapter, the data available in the dataset concerns mostly 2017. 

By using the data accessible from the GreEn-ER dataset it was possible to analyze the 

buildings consumption in more detail. For instance, the base load of the building 

(consumption during non-occupancy periods, such as at night and on weekends) corresponds 

to about 55% of the demand on the occupied periods. This high share brings attention to this 

specific period and potential energy sobriety opportunities. One way to try to identify some 

potential savings is to disaggregate the electricity consumption and identify the major 

consumers of the building. Some of them are the compressed air system, the AHUs, the 

restaurant (Crous) and the Datacenter (ARM_NR).  

Among these loads, there are a few that do not change their functioning mode during 

non-occupancy periods as it was expected. That is the case of the air compressors. During 

periods when fewer people are inside the building, the consumption of compressed air, and 

hence the electricity consumption of the air compressors, is expected to decrease. However, 

that is not what happens during 2017. Furthermore, during 2018 and 2019, the system was 

almost shutdown during the summer vacations. This fact may indicate that it is possible to 

decrease the compressed air consumption during non-occupancy periods without undermine 
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the workstations that use this resource. A previous analysis suggests that savings of nearly 

60% are achievable in the compressed air system by decreasing its consumption, during non-

occupancy periods.  
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3 Data Quality in Energy Domain – The GreEn-ER Case 

Unreliable data are as harmful as not having data at all. The increase of the use data-

driven approaches raises a concern about the quality of the data used. Therefore, this chapter 

presents a brief overview about data quality, in which data quality problems and dimensions 

are discussed, especially in the energy domain. In addition, this chapter also presents an 

assessment on the data quality of the GreEn-ER dataset, especially in terms of accuracy and 

completeness. Besides that, an example of the issues that poor data quality can cause in 

supervised machine learning techniques is presented. 
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3.1  Overview of Data Quality Problems 

Currently, in practically all domains, decisions are made based on data. From policies 

making to daily-bases decisions, such as which route to take to commute or city zoning plan, 

people rely on data. However, making decisions relying on unreliable data can be more 

catastrophic than blind decisions. Because of that, it is important to be able to evaluate the 

quality of the data used to make a decision.  

Data quality (DQ) assessments can be differentiated in objective and subjective [1]. 

An objective DQ evaluation rely on database integrity rules, which can be used by software 

systems to measure the quality of datasets. In contrast, a subjective data quality assessment is 

based on user feedbacks and reflect the needs and experiences of stakeholders. There are 

typically conducted through surveys or interviews to evaluate the quality of data products 

from the consumers’ perspective [2]. 

Data quality problems can take many forms, and each type of problem demands a 

different solution for its mitigation [3]. Because of these many forms that DQ problems may 

assume, it is necessary to well classify them in order to know how to tackle these problems. 

The categories into which data quality problems have been classified are called Data Quality 

dimensions [4] [5] [6]. Table 11 presents the definition of 17 DQ dimensions defined in Ge’s 

work [7]. 

Table 11 – Data quality dimensions. [7] 

DQ Dimension Description 

Accessibility Accessible, obtainable, retrievable, available. 

Security Secure, protected, authorized access. 

Relevancy Useful, relevant, applicable, helpful. 

Value-added Beneficial, valuable, add value to operations. 

Accuracy Correct, accurate, free of error, precise. 

Completeness 
Sufficient, complete, comprehensive, include all necessary values, 

detailed. 

Timeliness Current, up to date, delivered on time, timely. 

Consistency Consistent meaning, consistent structure, presented in the same format. 

Interpretability Interpretable, without inappropriate language and symbol, readable. 

Objectivity Impartial, unbiased, objective, based on facts. 

Representation Concise, compact. 

Reliability Reliable, dependable. 

Believability Believable, trustworthy, credible. 

Reputation From good sources, of good reputation, well referenced. 

Ease of Manipulation Easy to manipulate, easy to aggregate, easy to combine. 

Ease of Understanding Easy to understand, easy to comprehend, easy to identify the key point. 

Appropriate Amount Not too much, not overload, not too little. 

 

However, DQ problems are usually field-specific, i.e. in each domain there are DQ 
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dimensions that are more critical, because of the type of data generated. Considering the 

specificity of the energy domain, seven data quality dimensions, listed as follows, become 

more important [8] [9]. 

• Accessibility 

• Accuracy  

• Completeness 

• Consistency 

• Timeliness  

• Interpretability  

• Believability  

 

The accessibility dimension deals with how easy data are retrieved. In the context of 

an open-science environment, the accessibility increases its importance. The accuracy 

dimension quantifies if the measured data are correct. For instance, outlier data can be 

classified into the accuracy dimension. Completeness deals mostly with missing data. Missing 

samples can be often due to device malfunctioning, or even communication problems between 

the meters and the data storage application.  

At the same time, data consistency is also important in the energy domain. It is usual 

to get data from different devices, which need to output data in a compatible format to allow 

analyses using the measured data. In addition, in the energy domain, several analyses often 

deal with time series data. Hence, issues with the timestamp records may complicate these 

analyses. The dimension that assesses if the data are correctly sampled is the timeliness.  

Moreover, because of its impact to economic benefits in the case of energy efficiency 

analyses, trustful data are vital, making believability another important dimension in the 

energy domain. Likewise, interpretability is another important dimension. Measurement data 

often present corrupted data that prevents the use of these data.  

 

3.2 Data Quality Assessment of the GreEn-ER Dataset 

It is unusual that a dataset does not present data quality problems in some instance, 

and the GreEn-ER dataset is no exception. Some examples were already exposed in Chapter 

2, in the form of the presence of outliers, which configures an accuracy dimension problem. 

Another problem that arises from the GreEn-ER dataset is the lack of completeness, which 

sometimes is also the cause of the presence of outliers. The problem of incomplete data tends 



 
 

 

70 

to arise when the communication between the meters and the data storage system is temporary 

lost. To address these eventual problems, the measuring and storing data system were 

designed to evaluate the energy consumption rather than the load curve. That way, in a 

determined period, the final energy consumption tends to be accurate, because the energy 

meter is capable to integrate the measured value and send the accumulated value once the 

communication is restored. Sometimes it represents a high peak of consumption in a short 

time step. This behavior is not critical when dealing only with the energy consumption, but it 

becomes problematic when there is an interest in reconstructing the power pattern of the 

loads.  

As an example, Figure 37 presents 15 days’ worth of data from the TGBT1, showing 

both energy consumption and power (retrieved from energy). It can be seen in this figure two 

of the main data quality problems present in the GreEn-ER dataset, lack of completeness and 

poor accuracy, represented by the peaks. 

 
Figure 37 – Zoom in of the TGBT1 load curve highlighting some data quality problems. 
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3.2.1 Accuracy 

Figure 37 have presented two main data quality problems. One of them corresponds to 

data accuracy, expressed through the presence of outliers. Nevertheless, accuracy problems 

can appear in more than one form. In an energy dataset, with several layers of aggregated and 

disaggregated data, it is important to check if the sum of the consumption measured by all 

downstream meters is compatible with consumption measured by the upstream meter. 

Table 12 presents some examples of this comparison. In this table, real meter represents the 

upstream meter while virtual meter represents the sum of all downstream meters in the layer 

immediately below. 

Table 12 – Example of comparison between real and virtual meters of GreEn-ER. 

Switchboard 
Annual energy consumption [MWh] 

Error [%] 
Real Meter Virtual Meter Error 

TGBT1 1087.93 1053.74 34.20 3.14 

TGBT2 700.10 699.66 0.44 0.06 

TD-GF 116.48 115.58 0.90 0.77 

TD1-G2E-52 31.63 29.61 2.03 6.40 

TD1-EE3-10 17.08 16.69 0.39 2.31 

ARM_NR 350.64 345.15 5.48 1.56 

TD2_COM_S 46.16 45.68 0.48 1.04 

TD2_PRE_40 33.52 32.70 0.83 2.46 

TD2_DEM_40 16.05 14.83 1.23 7.64 

 

The data presented in the previous table support the choice of logging measurements 

of consumed energy rather than electrical power. The energy meters installed in the building 

have the ability of integrate the consumed energy value. Therefore, even during an eventual 

communication failure, the value of consumed energy would be correct when the 

communication is restored. 

Nevertheless, the power, expressed in the form of load curves allows further analyses. 

It is easier to detect consumption patterns, outliers and even lack of completeness by 

analyzing load curves rather than cumulative energy graphics. In addition, non-intrusive load 

monitoring techniques, used in further chapters of this work, rely on load curves to 

disaggregate the overall consumption down to the appliance level. Therefore, it is also 

important to assess the accuracy of the GreEn-ER data in terms of power. Because of the 

1kWh resolution of the energy meters, small loads are not the most suited for these analyses.  

Hence, the data from the TGBT2, and the first layer of meters immediately 

downstream to them were taken as an example. The idea is to assess the accuracy of a virtual 

meter, formed by the sum of the loads of the first layer, downstream the TGBT2. This virtual 

meter is then compared with the real meter corresponding to the TGBT2 one, which is 
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assumed to be the ground truth. Figure 38 shows the comparison between the real and virtual 

meters of the TGBT2, using 1 hour as sampling interval, while Table 13 exposes the average 

power over one year. 

 
Figure 38 – Real and virtual meters of TGBT2 in terms of power. 

Table 13 – Comparison between real and virtual meters considering the average power over one year. 

Switchboard 
Average power [kW] 

Error [%] 
Real Meter Virtual Meter Error 

TGBT2 79.92 79.87 0.05 0.06 

 

Although the values presented in Table 13 show that the error of the average power 

over one year between the real and the virtual meters of the TGBT2 is practically irrelevant, 

less than 0.1%, the load curves presented in Figure 38 show that the samples values do not 

match, especially before July.  

One way to measure the accuracy of the virtual meter is to count the number of 

samples whose percentage error, calculated by the following equation, from the real meter is 

greater than a certain tolerance. 

 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐸𝑟𝑟𝑜𝑟 [%] =
|𝑅𝑒𝑎𝑙 − 𝑉𝑖𝑟𝑡𝑢𝑎𝑙|

𝑅𝑒𝑎𝑙
∗ 100 Equation 1 

 

It can be inferred that this accuracy measure is highly dependent on the sampling 

interval, since the energy consumed at the end of the series is quite similar. Because of that, 

the accuracy was calculated considering seven sampling intervals: 10 minutes, 15 minutes, 30 



 
 

 

 
73 

minutes, 1 hour, 6 hours, 12 hours and 1 day. The tolerance varies from 10% up to 100%. The 

results are presented in Table 13 and illustrated in Figure 39. 

Table 14 – TGBT2's virtual meter accuracy as a function of the sampling interval and the tolerance allowed. 

Tolerance [%] 

Accuracy [%] 

Sampling interval 

10 

minutes 
20 minutes 30 minutes 1 hour 6 hours 12 hours 1 day 

10 30.12 34.76 44.58 49.28 56.25 63.57 70.30 

20 52.63 56.75 62.97 64.29 68.67 76.67 81.74 

30 66.51 69.33 73.45 74.71 80.55 84.99 90.46 

40 75.92 78.40 82.46 83.16 86.83 91.54 95.64 

50 83.53 86.20 90.54 91.25 93.52 94.68 97.55 

60 87.78 90.67 94.90 95.99 96.11 95.63 98.64 

70 91.58 93.89 96.99 96.72 96.52 96.73 98.64 

80 94.23 95.86 97.54 96.98 96.72 97.27 99.18 

90 95.66 96.72 97.68 97.21 96.93 97.54 99.46 

100 96.48 97.16 97.80 97.38 97.27 98.36 99.46 

 

 
Figure 39 – TGBT2's virtual meter accuracy as a function of the sampling interval and the tolerance allowed 

The results presented in the previous table and figure show that, in the case of the 

GreEn-ER dataset, the smaller sampling interval is not always the best choice, especially 

when DQ issues are present. Bigger sampling intervals, using the mean as resampling 

function, smooth the curves, decreasing the peaks that are clearly DQ issues and increasing 

the reliability of the data.  
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3.2.2 Completeness 

Another data quality problem present in the GreEn-ER dataset is the lack of 

completeness. This problem is usually expressed by missing samples generating gaps in a 

time series, but it can appear in more than one way. 

In the GreEn-ER data set, lack of completeness is expressed in two different ways. 

One is the presence of null samples. The presence of such samples forms a gap in the time 

series. This problem was identified in a chiller load, the Groupe Froid 1, responsible for the 

cooling of the building in summer. This meter is located in the second layer downstream the 

TGBT2 one. Figure 40 presents the location of the meters related to this load, while Figure 41 

presents its load curve highlighting the completeness problem. 

 

 
Figure 40 – Location of the Groupe Froid 1 meter. 

 
Figure 41 – Load curve of the Groupe Froid 1 highlighting a gap in the data. 

Groupe Froid (Chiller) 1

Gap in the data
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The total completeness of the GreEn-ER dataset can be defined as the percentage of 

missing samples contained within the dataset. Hence, considering 10 minutes sampling 

interval and 2017 as base year, all missing samples were counted. The results are presented in 

the following table. 

Table 15 – Completeness due missing samples. 

Switchboard 
Number 

of meters 

Total number of 

samples 

Missing 

Samples 

Completeness 

[%] 

TGBT1 114 6 043 595 61 388 98.98 

TGBT2 122 6 464 019 235 303 96.36 

PREDIS-MHI 91 4 782 323 0 100.00 

Total 327 17 289 937 296 691 98.28 

 

The results presented in Table 15 show that almost 300 000 samples are missing in the 

GreEn-ER dataset, which represents 1.72% of all data. Numerically, it may not represent a big 

loss of data; however, when there are several consecutive missing samples, there is a big loss 

of information, as shown in Figure 41. In addition, among the missing samples there are 

meters without any data. Hence, an application to monitor data quality, indicating to a 

supervisor when there is a faulty device, would be an enhancement to the Building 

Management System, reducing loss of information and maintenance costs. 

Nevertheless, in the case of the GreEn-ER dataset, the completeness problem is 

expressed in one more way. As mentioned before, when the communication between the 

meters and the data storage system is temporary lost, the energy meter is able to integrate the 

measured value of consumed energy and send the accumulated value once the communication 

is restored. In such cases, the storage system keeps recording the last value received in the 

subsequent samples. This leads to the steps, in terms of energy, and peaks, in terms of power, 

seen in Figure 37. However, this problem is harder to quantify. Because of the 1kWh 

resolution of the energy meters, it is not trivial to discern the zero consumption due to the 

communication issue or zeros due to the meters latency, especially in the case of small loads, 

in which the accumulated consumption logged after the communication issue is not that 

different from the normal consumption. 

Hence, an algorithm to identify these peaks, also known as outliers, even the local 

ones, for the main loads of the GreEn-ER building was developed and is detailed in the next 

chapter. 
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3.3 Poor Data Quality Influence in Machine Learning 

It is not a secret that machine-learning techniques, especially the supervised ones, rely 

on data to their training. Hence, it is only logical that poor data quality would decrease the 

performance of such methods. Therefore, this section presents a comparison of two electricity 

consumption forecasts. The first one using data containing DQ problems and the second one 

relying on healthy data for training the algorithm. 

3.3.1 Random Forest as Regression Method for Forecasting 

Several regression methods can be used to forecast electricity consumption. The 

models that result from the application of these methods can be used in numerous ways, as in 

demand-side management [10] or as a step in non-intrusive load monitoring evaluations. 

These models, when generated from healthy data can also be used to solve some data quality 

problems, such as in the reconstruction of profiles when there is a lack of data, or even in the 

identification of outliers and anomalies [11]. 

In this chapter, the random forest method [12] was applied as a regression/forecasting 

method. It is an ensemble machine-learning method for classification and regression, among 

other tasks. For classification problems, the output is the mode of all classes resulting from 

the individual trees. Meanwhile, for regression tasks, the result is the mean prediction of the 

outcomes from each tree in the forest [13]. In other words, this method creates several 

independent decision trees (a decision support tool that represents a set of choices in the 

graphical form of a tree) during the training phase, in a random way forming a forest. Every 

decision tree created is used in the result. Random decision forests correct for decision trees’ 

habit of overfitting to their training set [14]. Figure 42 illustrates a schema of a decision tree, 

while Figure 43 shows the representation of the Random Forest algorithm. 

 

Figure 42 – Schema of the decision tree algorithm. 
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Figure 43 – Schema of the random forest algorithm. [15] 

 

After the application of a forecast method, an assessment of its performance is needed. 

There are several metrics used to measure the global performance of a regression method. In 

this chapter, the mean absolute error (MAE) [16] and the mean absolute percentage error 

(MAPE) [17] were used. These metrics can be calculated using the following equations, 

respectively. 

𝑀𝐴𝐸 =
1

𝑁
∑ |𝐴𝑐𝑡𝑢𝑎𝑙𝑡

𝑁

𝑡=1

− 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡| Equation 2 

𝑀𝐴𝑃𝐸 =
1

𝑁
∑

|𝐴𝑐𝑡𝑢𝑎𝑙𝑡 − 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑡|

𝐴𝑐𝑡𝑢𝑎𝑙𝑡
100

𝑁

𝑡=1

 Equation 3 

 

3.3.2 Example of the Impact of Poor Data Quality in Machine-learning Approaches 

In order to show the potential impact of poor DQ in machine learning approaches, this 

section presents two examples of electricity consumption forecast. Firstly a forecast was 

performed using as training set data containing DQ problems. The second example, presents 

the same forecast using healthy data as training set. 

A model for the GreEn-ER energy consumption was defined using random forest 

method, with 500 estimators. The data were resampled to 1 hour time interval, smoothening 

the series. For training of the algorithm, the following data features were used: 

• External temperature; 

• Average temperature of the day; 
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• Time of the day; 

• Day of the year (with information of holidays and vacations). 

The training data set was defined as the global consumption of the building from 2017, 

using the constructed model to forecast the 2018 consumption until October. The results are 

presented in the following figures. 

  

a) Load curve of GreEn-ER 
b) Zoom in on the load curve highlighting a 

period with DQ problems 

Figure 44 – Global load curve of GreEn-ER in 2017 used as training data.  

  
a) Results of the forecast b) Zoom in on the results of the forecast 

Figure 45 – Forecast results for 2018 using data with DQ problems as training data set. 

The results presented in the previous figures show the poor prediction made by the 

random forest when using data with DQ problems as training set. On the other hand, when the 

training set does not contain, or contains less impacting, DQ problems, the forecast improves. 

This can be seen in Figure 46. 

 

Period

with DQ 

problems

Bad prediction due DQ 

problems in the

training data
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c) Results of the forecast d) Zoom in on the results of the forecast 

Figure 46 – Forecast results for 2018 using healthy data as training set. 

 

Of course, the examples presented in this section are exaggerated. It is unlikely that 

anyone would perform a forecast with severe DQ problems in the training set, however, these 

examples illustrate how harmful poor data quality can be to machine-learning approaches.   

 

3.4 Conclusions 

This chapter have presented an overview on data quality issues and it influence on 

data-driven approaches, especially in the energy domain. By performing a consumption 

forecast for the GreEn-ER building, the present chapter exposed how harmful to a machine-

learning technique could be a regardless selection of training dataset containing data quality 

issues. 

Besides that, an assessment of the data quality of the GreEn-ER dataset was presented 

in terms of completeness and accuracy of a subdataset. Despite being relatively accurate in 

terms of energy consumption over the year of study (2017), the power retrieved from the 

energy consumption present inaccuracy. For instance, considering the exemplified subdataset, 

only 50% of the samples were under the 10% tolerance error when the sampling interval is 1 

hour.  

In addition, the dataset was also evaluated in terms of completeness. Missing data 

corresponded to 1.73%. However, this analysis is not complete, due the more than one way 

that this DQ issue is expressed in this dataset. To help to complete this task, an algorithm to 

identify the outliers following periods of communication issues was developed for the major 

GreEn-ER loads. This method is detailed in the next chapter.   

Improved forecast
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4 Outlier Detection in Buildings’ Power Consumption Data 

Using Forecast Error 
 

Chapter 3 discussed the issues that poor data quality, especially the presence of 

outliers, can create into data-driven approaches such as energy efficiency and energy sobriety 

analysis, or even machine-learning applications. To work around these issues, Chapter 4 

presents an algorithm that combines machine learning techniques and classic statistical 

methods to detect outliers present within the GreEn-ER dataset. Considering both cases 

tested, this combination has presented the best F-score, but it was not perfect. Hence, a 

human-in-the-loop approach is still needed, with the forecast error outlier detection method 

pointing out potential outliers and a human agent validating them. Thus, the effort would be 

less costly with the application of the method presented in this chapter. Later, this technique 

was employed to assess the completeness of the TGBT1 load. 
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4.1 Forecast Error Method Overview 

As stated in previous chapters, the use of machine-learning techniques is increasing in 

the energy sector. Moreover, the previous chapter highlighted problems that poor data quality 

may cause into data-driven applications, such as energy efficiency and energy sobriety 

analysis, or even machine-learning applications. For example, the anomaly detection using 

machine-learning techniques can help to identify unusual energy consumption of assets [2–4] 

and detect equipment faults [5]. The importance of detecting outliers, either if they indicate 

unusual energy consumption or problems in the metering system encouraged the focus on this 

data quality dimension on the GreEn-ER data.  

Several methods for the detection of outliers have been used in recent times. Classic 

statistical methods, such as the three-sigma rule [6] and the boxplot method [7], have been 

highly used. However, these techniques assume a symmetrical data distribution and the 

performance of these techniques is highly dependent on this feature, which is commonly 

unknown for power consumption data. 

To work around the issue of unknown data distribution, researchers have used 

regression-based methods to tackle this problem. The first step, called the training phase, 

comprises the definition of a regression model that fits the data. After the construction of the 

model, every data sample is compared with the model instances in the test phase [8]. A data 

point is labeled as an outlier if a remarkable deviation occurs between the actual value and its 

expected value produced by the regression model [9]. Several techniques were used to detect 

outliers using regression methods. For example, in [10] the author used linear regression to 

detect outliers and in [11] an auto regressive moving average (ARMA) was used as the 

regression technique. 

Therefore, this chapter aims at the development and application of a hybrid method, 

combining regression techniques and classical statistic outlier methods focusing on detecting 

outliers of a dataset that contains measurements of electrical energy consumption of a tertiary 

building. The random forest [12] method as a regression technique to construct a model was 

used in this chapter. Afterwards, all measured samples were compared with the model 

instances, resulting in an error. The statistical outlier detection methods were then 

implemented to search high error values in order to classify them as potential outliers. This 

combination is called the forecast error method. 

The construction of a predictive model of energy consumption in a building can be of 

great importance for energy managers. Through these models, it is possible to plan from the 

short term optimization of energy consumption costs to the allocation of assets in case of 
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preventive maintenance with low impact on the building’s normal activity. In addition, the 

implementation of an algorithm that can detect anomalies integrated into a building 

management system can facilitate the identification of potential energy consumption 

reduction or even the need to perform corrective maintenance on an asset that may present a 

defect in real time. 

The following section exposes the statistical outlier detection methods employed in 

this chapter. Afterwards, the regression (forecast) method employed and the error metrics that 

can be used to assess the performance of this method are briefly introduced. The combination 

of these techniques is applied in two datasets. In the first one, called “adapted data”, twelve 

outliers were manually introduced in healthy synthetic electricity consumption data, adapted 

from the GreEn-ER data. The second one consists in “real data” measurements of the 

electricity consumption, with outliers generated by problems inherent to buildings’ metering 

systems. The results show that the combination of a regression technique and the adjusted 

boxplot method [13] presents the better performance compared with the other methods when 

searching outliers in the tested datasets. 

 

4.2  Statistical Methods for Outlier Detection 

An outlier is an observation that deviates so much from other observations that it rises 

suspicions that it was generated by a different mechanism [14]. This type of sample can 

indicate malfunctioning of the metering system or even in a load itself. In addition, if this data 

quality problem is too persistent it can affect the accuracy of eventual machine-learning 

algorithms using this dataset. Therefore, its identification and correction are important steps in 

the data pre-processing. 

Standard outlier detection consists of two main components. The first one is 

calculating an outlier score for every data instance. The outlier score can be the value itself or 

even the difference between the value and its prediction [15], considering that the prediction 

model was generated based on healthy data. Other formulations, such as the local outlier 

factor [16], calculate this score by comparing the value to its k-nearest neighbors in a feature 

space. The second component is thresholding the outlier scores by the application of some 

statistical methods. This step decides how highest scoring points are labelled as outliers. 

In this chapter, several statistical methods for thresholding were applied: the three 

sigma rule [6], the median absolute deviation [17], the original boxplot [7], the skewed 

boxplot [18] and finally the adjusted boxplot [13]. Each of these methods is detailed in the 
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following sections. 

4.2.1 Three-Sigma Rule 

The three-sigma rule is a simple and heuristic method for outlier detection [6]. In a 

normal distribution, the probability of a sample to be within the range between μ ± 3σ, where 

μ is the mean and σ is the standard deviation (STD), is 99.7%, as shown in Figure 47. 

Therefore, the upper and lower bounds that defines if a value is an outlier or not, can 

be calculated by applying the following equations in which UPB represents the upper bound 

and LWB the lower bound. Samples that are higher than the upper bound, or lower than the 

lower bound, are potential outliers. 

𝑈𝑃𝐵 =  𝜇 + 3 ∗ 𝜎 Equation 4 

𝐿𝑊𝐵 =  𝜇 − 3 ∗ 𝜎 Equation 5 

Since the three-sigma rule is based on the mean value and the standard deviation, this 

method is sensitive to the presence of extreme outliers. 

 

Figure 47 –  Percentages in normal distribution between standard deviations. Based on Straker [19]. 
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4.2.2 Mean Absolute Deviation (MAD) 

Because of its sensitivity to the presence of outliers, the mean value is not the most 

suitable measure of central tendency to be used in the outlier detection. The median value, 

another measure of central tendency, is more adapted to this task due to its insensitivity to the 

existence of outliers in the dataset. The median is defined as the value associated with the 

mean rank after sorting the data ascendingly. 

The median absolute deviation [20] is then defined as the median of the absolute 

deviation from the median, and can be described as follows: 

𝑀𝐴𝐷 =  𝑏 ∗ 𝑚𝑒𝑑(|𝑥𝑖 − 𝑚𝑒𝑑(𝑋)|) Equation 6 

In this equation, b is a constant, suggested as 1.4826, 𝑥𝑖 represents each sample and 𝑋 

is the vector that contains all samples. The upper (𝑈𝑃𝐵𝑀) and lower (𝐿𝑊𝐵𝑀) bounds can be 

calculated by the application of the following equations: 

𝑈𝑃𝐵𝑀 =  𝑚𝑒𝑑(𝑋) + 3 ∗ 𝑀𝐴𝐷 Equation 7 

𝐿𝑊𝐵𝑀 =  𝑚𝑒𝑑(𝑋) − 3 ∗ 𝑀𝐴𝐷 Equation 8 

4.2.3 Boxplot 

The modern boxplot, described in more detail by Tukey [7], is a graphical method for 

detecting potential outliers through a box and whiskers plot with restrictions on the data used 

[21]. In order to provide a robust measurement of the data series, the boxplot uses some 

characteristic values of the series, such as the median and the values of the first (25%) and the 

third (75%) quartiles. Using these quartile values, the interquartile interval is calculated 

applying Equation 9, in which 𝐼𝑄𝑅 represents the interquartile range and 𝑄3 and 𝑄1 represent 

the values of the first and third quartiles, respectively. 

𝐼𝑄𝑅 =  𝑄3 − 𝑄1 Equation 9 

Based on the values of the quartiles (𝑄3 and 𝑄1) and the interquartile range (𝐼𝑄𝑅) it is 

then possible to determine the upper (𝑈𝑃𝐵𝐵) and lower (𝐿𝑊𝐵𝐵) bounds for the boxplot 

method by applying Equation 10 and Equation 11. Values located beyond these limits are 

considered potential outliers. In his work, Tukey [7] proposed that 𝐾 = 1.5 indicates potential 

mild outliers and 𝐾 = 3 classifies the sample as a potential extreme outlier. 

𝑈𝑃𝐵𝐵 =  𝑄3 + 𝐾 ∗ 𝐼𝑄𝑅 Equation 10 

𝐿𝑊𝐵𝐵 =  𝑄1 − 𝐾 ∗ 𝐼𝑄𝑅 Equation 11 
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When the data distribution follows a normal characteristic, this method includes 

99.3% of the data within its limits [21] when 𝐾 = 1.5, as can be observed in Figure 48. 

Since the Boxplot method uses the positional values of the samples in the series, and 

not their values directly, this method is less sensitive to the presence of extreme outliers. 

 

Figure 48 – Example of a box-and-whisker plot for a normal distribution. Based on Olano et al. [22]. 

4.2.4 Skewed Boxplot 

The boxplot method, described in the previous section, is better suited for the 

detection of outliers in a dataset whose distribution is symmetric. When the distribution is 

skewed, some samples that exceed the upper and lower bounds defined by that method may 

be misclassified as outliers [23]. For this reason, a correction is necessary in the calculation 

method of the upper and lower bounds. 

There are some ways to adjust the boundaries considering asymmetrical data. In 1990, 

Kimber [18] proposed a method to consider the skewness of distribution in the search for 

outliers. The following equations define the upper (𝑈𝑃𝐵𝑆) and lower (𝐿𝑊𝐵𝑆) bounds used in 

this method. In these equations, 𝑆𝐼𝑄𝑅𝑈 is the upper interquartile range, 𝑆𝐼𝑄𝑅𝐿 is the lower 

interquartile range and 𝑄2 represents the median of the evaluated series (or the second 

quartile). 

24.65%24.65%

0.6745-0.6745

2.698-2.698 50%
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𝑆𝐼𝑄𝑅𝑈 =  𝑄3 − 𝑄2 Equation 12 

𝑈𝑃𝐵𝑆 =  𝑄3 + 3 ∗ 𝑆𝐼𝑄𝑅𝑈 Equation 13 

𝑆𝐼𝑄𝑅𝐿 =  𝑄2 − 𝑄1 Equation 14 

𝐿𝑊𝐵𝑆 =  𝑄1 − 3 ∗ 𝑆𝐼𝑄𝑅𝐿 Equation 15 

4.2.5 Adjusted Boxplot 

Another method to consider the skewness of a data distribution and to adjust the 

boundaries is the adjusted boxplot, proposed by Hubert and Vandervieren [13]. In this 

method, the medcouple (𝑀𝐶), proposed by Brys et al. [23], is used as a magnitude to measure 

the asymmetry of the evaluated series. This quantity is defined by the following equations. 

𝑀𝐶 =  𝑚𝑒𝑑 (ℎ(𝑥𝑖, 𝑥𝑗)) Equation 16 

ℎ(𝑥𝑖, 𝑥𝑗) =  
(𝑥𝑗 − 𝑚𝑒𝑑(𝑋)) − (𝑚𝑒𝑑(𝑋) − 𝑥𝑖)

𝑥𝑗 − 𝑥𝑖
 Equation 17 

𝑥𝑖 ≤ 𝑚𝑒𝑑(𝑋) ≤ 𝑥𝑗  Equation 18 

In these equations, 𝑥𝑖 represents the samples of the series smaller than, or equal to, the 

median and 𝑥𝑗 the samples larger than, or equal to, the median. Thus, to adjust the boxplot 

method according to the asymmetry of the evaluated series, the medcouple is incorporated in 

the calculation of the upper and lower bounds. For left-skewed data, with negative 

medcouple, the limits are calculated as shown in the following equations. 

𝑈𝑃𝐵𝐴 =  𝑄3 + 1.5 ∗ 𝑒4𝑀𝐶 ∗ 𝐼𝑄𝑅 Equation 19 

𝐿𝑊𝐵𝐴 =  𝑄1 − 1.5 ∗ 𝑒−3𝑀𝐶 ∗ 𝐼𝑄𝑅 Equation 20 

In which 𝑈𝑃𝐵𝐴 and 𝐿𝑊𝐵𝐴 represent the upper and the lower bounds, respectively. 

For right-skewed data with positive medcouple, the following equations are used. 

𝑈𝑃𝐵𝐴 =  𝑄3 + 1.5 ∗ 𝑒3𝑀𝐶 ∗ 𝐼𝑄𝑅 Equation 21 

𝐿𝑊𝐵𝐴 =  𝑄1 − 1.5 ∗ 𝑒−4𝑀𝐶 ∗ 𝐼𝑄𝑅 Equation 22 

4.2.6 Error Metrics for Classification 

Labeling samples as outliers or normal samples is a classification problem. Various 

are the metrics to assess the performance of the algorithms used to tackle this kind of 

problem. In the present chapter, the concepts of precision, recall [24] and the F-score (or F1) 

[25] are applied. These metrics are defined by the following equations. 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 Equation 23 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 Equation 24 

𝐹1 = 2 ∗ (
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
) Equation 25 

In which 𝑇𝑃 is the number of true positives classifications (actual outliers detected), 

𝐹𝑃 the number of false positives classifications (normal samples misclassified as outliers), 

and 𝐹𝑁 is the number of false negatives (undetected outliers). 

In the context of the outlier identification task, precision indicates the proportion of 

actual outliers identified among all potential outliers flagged by the search method. On the 

other hand, recall is related to the number of outliers not flagged by the algorithm. The F-

score uses the harmonic mean between both to evaluate the global accuracy of the method. 

 

4.3 Results and Analysis 

As mentioned in the previous section, the outlier scores can be calculated by several 

approaches. In this chapter, the value itself and the difference between the actual value and its 

prediction were tested. To forecast, the random forest, presented in the previous chapter was 

used as regression method. 

This section presents the results obtained by applying the forecast error method in the 

search for outliers in power consumption data of a tertiary building. Firstly, the regression 

methods results are shown, quantifying their performance through error metrics. Afterward, 

using these regressions, the forecast error method was applied. For comparison, the classic 

statistic methods for outlier detection were also applied so that the results from both 

techniques are presented. The code used to perform these tasks was developed in python 

language in a Jupyter Notebook, available in an online open repository [31]. 

The data used in this chapter were adapted from the dataset available for downloading 

at the open science platform Mendeley Data [32], and presented in Chapter 2. The data were 

then resampled as the hourly consumption, resulting in 8760 samples. 

Two different data series were used to test the forecast error method. Firstly, some 

known outliers were inserted in synthetic healthy data, without outliers or any other data 

quality problem in order to establish a benchmark. This series was called adapted data. In a 

second stage, the technique was employed in a data series without any pre-treatment 

regarding data quality. Because of the presence of outliers in the beginning of the series, the 
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data was reversed, in order to use “past” data as training. This second dataset was called real 

data. 

 

4.3.1 Adapted Data 

The synthetic data, free of data quality problems, are illustrated in Figure 49. This 

dataset was created to simulate the behavior of the GreEn-ER building, and it was based on its 

own electricity consumption. 

 

Figure 49 – Synthetic GreEn-ER global power consumption. 

From the data exposed in the previous figure, it is possible to notice different 

consumption patterns for different periods. It can be seen that the periods of higher 

consumption match with those of higher occupation, during daytime on the weekdays. 

Outside these periods, during nighttime on the weekdays, weekends, holidays and vacations, 

the consumption reduces drastically. In addition, it is possible to notice a relation with the 

temperature since the highest consumption occurs during summer. 

In order to test the outlier detection techniques, twelve outliers, both upper and lower, 

were manually introduced in the series presented in Figure 49, resulting in the dataset 

presented graphically in Figure 50. The information of these samples is shown in Table 16, 

and some of these outliers are highlighted in Figure 50 too. This information is then used as 

ground truth and compared with the results obtained to assess the classification of each 

sample in true positive, false positive and false negative. 
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Table 16 – Outliers inserted in the data series. 

Outlier Index Timestamp 
Day of the 

Week 

Holiday or 

Vacation 
Value [kWh] 

Type of 

Outlier 

1 22/10/2017 09:00 Sunday No 390 Upper 

2 24/10/2017 10:00 Tuesday No 430 Upper 

3 26/10/2017 22:00 Thursday No 87 Lower 

4 29/10/2017 10:00 Sunday No 95 Lower 

5 04/11/2017 22:00 Saturday No 405 Upper 

6 07/11/2017 23:00 Tuesday No 400 Upper 

7 10/11/2017 13:00 Friday No 93 Lower 

8 12/11/2017 03:00 Sunday No 120 Lower 

9 26/12/2017 16:00 Tuesday Yes 110 Lower 

10 28/12/2017 14:00 Thursday Yes 350 Upper 

11 29/12/2017 05:00 Friday Yes 105 Lower 

12 30/12/2017 21:00 Saturday Yes 375 Upper 

 

Figure 50 – Synthetic GreEn-ER global power consumption with inserted outliers. 

4.3.1.1 Regression Methods Results 

In order to find a model for the GreEn-ER energy consumption, the random forest 

method was applied using the data exposed in the previous section as the regression 

technique. For training the algorithm, the same features already used in the previous chapter 

(external temperature, average temperature of the day, time of the day and day of the year 

(with information of holidays and vacations)) were employed.  
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The training dataset was defined as 80% of the data, from the beginning of the year 

until mid-October. All the outliers inserted in this dataset are concentrated beyond this period. 

These data quality problems make it difficult to assess the performance of the regressor only 

in test time interval because of their effect in the statistical variables (mean, median, standard 

deviation) used also to detect these abnormal samples. Because of that, the regressor 

performance was evaluated in two conditions. The first one considers the whole year, 

including the weeks with data quality problems and the training phase. The second one 

considers the period of the year complementary to the training phase. Figure 51 details, as an 

example, the results obtained with the application of the random forest method, using five 

hundred estimators as parameter. At the same time, Table 17 quantifies the performance of 

these regressions with the two conditions cited above. 

  
a) Whole period b) Complementary Period 

Figure 51 – Regression results using the random forest algorithm on adapted data. 

Table 17 – Performance of the regression methods on the adapted data. 

Error Metric 
Period 

Complete Complementary Period 

MAE 1.98 8.36 

MAPE 1% 4.27% 

 

Observing Figure 51b, the predictor presents satisfactory results. Although it 

underestimated the power on the weekends, the predictor was able to detect the daily and 

weekly patterns and even during the holidays, resulting, on average, in less than a 5% error. 

Regarding the regression, the most important features are the hour of the day, 

reproducing the daily pattern of the consumption, and the day of the week, reproducing the 

weekly shape of the load curve. The holiday feature also plays an important role in the 

performance of the regressor. The other features would be more important if more than a 

year’s worth of data were available. For instance, the external temperature would improve the 
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regression inserting the season component, such as the difference between the days from 

summer and winter. However, with one year’s worth of data, and the choice of taking 80% of 

the series as training, this component is not important. These features were maintained in the 

model with the objective to improve the model in a future real time application, when more 

than a year would be available. Figure 52 shows the feature importance of the regression 

made for the adapted data. 

 

Figure 52 – Data features’ importance in the random forest regression for the adapted data series. 

4.3.1.2 Outlier Detection 

In order to detect the outliers inserted in the data series, two strategies were applied. 

Primarily, a global search employing the statistical methods on the power consumption data 

was performed. Afterward, they were used to search outliers via the forecast error. Twelve 

outliers were manually inserted, six of them were upper outliers and the other six, lower, as 

shown in the previous section. 

In the global search strategy, the search for outliers was performed only once. In this 

way, all information available is used, and the outliers are assumed to have any, or low, 

influence on the average value, the standard deviation, or even on the quartile values. 

Therefore, the global search was performed using the three-sigma rule, the boxplot, the 

skewed boxplot and the adjusted boxplot methods. The results are shown in Table 18. In this 

table, the column Potential Outliers Detected indicates the number of samples flagged out as 

outliers by each method. In the True Positives column, there are the number of actual outliers 
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detected, while in the False Negatives column, the number of undetected outliers is presented. 

Furthermore, in the False Positives column, the number of normal samples misclassified as 

outliers are shown. Therefore, the sum of the true positives and the false negatives should be 

equal to the number of outliers present in the dataset, in this case, twelve. The sum of the true 

positives and false positives is equal to the potential outliers detected and the sum of both 

false positives and negatives gives the total of samples misclassified by each method. 

Table 18 – Number of outliers found in the global search by each method on adapted data. 

Method 
Potential Outliers 

Detected 

True 

Positives 

False 

Negatives 

False 

Positives 

Total 

Misclassifications 
Precision Recall F-Score 

3 Sigma 11 3 9 8 17 0,273 0,25 0,261 

MAD 808 6 6 802 808 0,007 0,5 0,015 

Boxplot 0 0 12 0 12 0 0 0 

Skewed Boxplot 1 1 11 0 11 1 0,083 0,154 

Adjusted Boxplot 82 6 6 76 82 0,073 0,5 0,128 

 

The results indicate that the MAD and the adjusted boxplot were the most successful 

methods in detecting outliers, having found half of them; however, they still misclassified 

several other samples, reducing their precision. Thus, even detecting some outliers, their poor 

recall, with several false positive samples classified as outliers, show that these methods alone 

are not the best suitable to detect outliers, especially local ones, such as those inserted in this 

dataset. 

As the classical statistical methods failed to detect several outliers in the study dataset, 

the forecast error method, which compares the results of previous regression models with 

measurements was employed. The statistical methods for outlier detection are then applied on 

the resulting error. Table 19 shows the number of outliers detected by each method 

considering the deviation between the actual values and the predictions. 

Table 19 – Number of outliers found by the Forecast Error method applied to the  

random forest forecasts on the adapted data. 

Method 
Potential Outliers 

Detected 

True 

Positives 

False 

Negatives 

False 

Positives 

Total 

Misclassifications 
Precision Recall F-Score 

3 Sigma 23 11 1 12 13 0.478 0.917 0.628 

MAD 2136 12 0 2124 2124 0.005 1 0.011 

Boxplot 1214 12 0 1202 1202 0.01 1 0.02 

Skewed boxplot 1301 12 0 1289 1289 0.009 1 0.018 

Adjusted boxplot 20 11 1 9 10 0.55 0.917 0.688 

 

The results presented in Table 19 indicate that all the methods were able to detect most 

of the outliers inserted in the dataset, using the forecast error. However, the poor precision of 
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the MAD, the boxplot, and the skewed boxplot misclassifying several samples indicates that 

they are not well suitable for this task in this dataset. The other two, three-sigma rule and 

adjusted boxplot, perform better and similarly, with a small advantage for the adjusted 

boxplot.  

4.3.2 Real Data 

The forecast error method was also tested in a dataset, available for downloading at 

the open science platform Mendeley Data [32], with no pre-treatment regarding data quality. 

This dataset was extracted directly from the GreEn-ER Building Management System and 

contains several problems of data quality, inherent to this type of monitoring. Figure 53 

illustrates the power consumption data of the GreEn-ER building in which it is possible to 

visualize, for example, some outliers, values that extrapolate the scale of the graph, at the end 

of the year. In that period, both upper and lower outliers can be seen. A human agent looked 

through all samples and classified them into normal samples and upper (values higher than the 

normal instances) and lower (values lower than the normal instances) outliers, establishing the 

ground truth to which the results are compared to determine the true positives, false positives, 

and false negatives. Table 20 shows the type and the number of outliers found by the human 

agent. 

 

Figure 53 – Real GreEn-ER global power consumption with inserted outliers. 

Table 20 – Number of outliers on real data found manually. 

Upper Outliers Lower Outliers Total Outliers 

8 204 212 
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4.3.2.1 Regression Methods Results 

The procedure shown in the previous section was applied to the real data series. The 

random forest method was employed as the regression technique, with unmodified parameters 

and the results obtained are presented in Figure 54. The performance of the regression is 

quantified in Table 21. 

Table 21 – Performance of the regression methods on the Real Data. 

Error Metric 
Period 

Complete Complementary Period 1 

MAE 12.08 19.63 

MAPE 6.82% 8.95% 
1 Excluding last week. 

  

a) Regression results and actual data during the whole year 
b) Regression results and actual data during the period 

complementary to the training phase. 

Figure 54 – Regression results using the random forest algorithm on real data 

Considering the complementary period, in Figure 54b, it can be seen that the predictor 

was able to reconstruct the daily and weekly patterns of the building consumption. The results 

are satisfactory, with less than 8% error on average, excluding the last week which contains 

numerous severe data quality problems. These anomalies are the ones that need to be pointed 

out, so the imperfection of the predictor is expected. 

Regarding the importance of the features of the regression, similar results to the 

adapted data were obtained. Figure 55 shows the importance of each feature in the regression 

of the real data series. 
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Figure 55 – Data features importance in the random forest regression of the real data series. 

4.3.2.2 Outlier Detection 

As previously shown in Table 20, the outliers present in the series were manually 

classified to establish a benchmark for comparing the performance of the outlier detection 

algorithms. Two hundred and twelve outliers were found, eight of which are upper outliers 

and the other two hundred and four, lower. 

The global search was performed using the three-sigma rule, the boxplot, the skewed 

boxplot and the adjusted boxplot methods. The results are shown in Table 22. 

Table 22 – Outliers found in the global search by each method on real data. 

Method 
Potential Outliers 

Detected 

True 

Positives 

False 

Negatives 

False 

Positives 

Total 

Misclassifications 
Precision Recall F-Score 

3 Sigma 6 6 206 0 206 1 0.028 0.055 

MAD 931 11 201 920 1121 0.012 0.052 0.019 

Boxplot 6 6 206 0 206 1 0.028 0.055 

Skewed boxplot 152 151 61 1 62 0.993 0.712 0.830 

Adjusted boxplot 271 172 40 99 139 0.635 0.811 0.712 

 

The presented results indicate that none of the tested methods were able to detect all 

the outliers. Furthermore, although the adjusted boxplot has initially pointed out more outliers 

than actually exist, it failed to detect forty outliers, and misclassified ninety-nine normal 

samples as abnormal data instances. Therefore, the results corroborate that those classical 

statistical methods applied to the value itself are not suitable to detect outliers, especially for 

local ones, such as the lower outliers present in this dataset. As shown in the previous section, 
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the forecast error method was also employed in the real data. 

Although they found all outliers of the dataset, the results presented in Table 23 

corroborate the fact that the MAD, the boxplot, and the skewed boxplot are not the most 

adapted methods to detect outliers using the forecast error in this dataset, as they misclassified 

several samples as outliers. Furthermore, the three-sigma rule failed to detect most of the 

outliers, flagging only the obvious upper outliers. Finally, the adjusted boxplot performed 

better, but still misclassified some samples. This method was able to detect 192 out of 212 

outliers and misclassified another 13 samples as outliers, resulting in 33 misclassifications. 

This better performance of the adjusted boxplot can be seen by observing the F-score. While 

the MAD, the boxplot, and the skewed boxplot all have 1 recall, meaning that they found all 

the outliers (zero false negatives), their misclassification is costly as shown in their poor 

precision. This affects the F-score, decreasing its value. On the other hand, the adjusted 

boxplot has presented the best compromise between the precision and the recall, resulting in 

both metrics to be higher than 0.90. 

Table 23 – Number of outliers found by the forecast error method applied to the random forest forecasts on the 

real data. 

Method 
Potential Outliers 

Detected 

True 

Positives 

False 

Negatives 

False 

Positives 

Total 

Misclassifications 
Precision Recall F-Score 

3 Sigma 6 6 206 0 206 1 0,028 0,055 

MAD 1458 212 0 1246 1246 0,145 1 0,254 

Boxplot 860 212 0 648 648 0,247 1 0,396 

Skewed boxplot 1056 212 0 844 844 0,201 1 0,334 

Adjusted boxplot 205 192 20 13 33 0,937 0,906 0,921 

 

4.4 Assessing Completeness of GreEn-ER loads 

Chapter 3 has presented analyses of data quality regarding the GreEn-ER dataset, 

especially in terms of accuracy and completeness. However, the completeness analysis was 

incomplete. In normal operation periods, energy meters send the consumed energy value 

frequently, depending on the sampling interval. Nevertheless, it is not unusual for failures in 

communication between the meters and the data storage system to occur. In such cases, 

energy meters store the cumulative energy consumption, while the BMS keeps recording the 

last value received. Once the communication is restored, the meter sends the value 

corresponding to the energy consumption relative to the failure period. That is the cause of 

discontinuities in the energy consumption graph, shown in the Figure 37. In terms of power, 

this data quality issue is usually expressed by a sequence of zero power followed by a peak 
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value, which can also be seen in Figure 37. 

However, it is not trivial to distinguish true zero consumption from the zeros caused 

by this issue, especially in the case of small loads or during a small duration of the issue, in 

which the outliers can be confused as normal values. 

Hence, the algorithm presented in this chapter was employed to assess the 

completeness of the GreEn-ER dataset. To this, the TGBT1 load was selected as subdataset. 

Figure 56 presents the TGBT1’s load curve. 

 

 

Figure 56 – TGBT1 load curve. 

The algorithm has detected 219 potential outliers, comprehending both upper and 

lower outliers. The outlier values are then sorted into higher and lower than the power average 

value. To assess the completeness in this case, it is necessary to count how big the sequence 

of zeros immediately before the potential upper outlier is. In the case of the TGBT1, 201 

samples equal to zero were found immediately before the upper outliers, indicating that that is 

the number of samples missing due communication issues between the meter and the data 

storage system. This analysis was performed considering 1 hour as sampling interval, which 

means that the completeness due these issues is 97.71%. The lack of completeness is this case 

represents more than 1 week worth of information lost due to the issues mentioned in this 

section. 
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4.5 Conclusions 

This chapter aimed to employ a hybrid method, called forecast error, to detect outliers 

in the power consumption of a tertiary building. This method combines regression methods 

with statistical outlier detection techniques. The random forest algorithm was used as the 

regression method and the three-sigma rule, the median absolute deviation, the boxplot, the 

skewed boxplot, and the adjusted boxplot were chosen as outlier detection techniques. In a 

global search, using only the statistical methods to the data instances themselves, none of 

them has presented the expected performance. On the other hand, when the adjusted boxplot 

was applied to the forecast error (difference between the actual measurement and the forecast) 

better performance was obtained. Considering both datasets tested, this combination has 

presented the best F-score (higher than 0.90 in the real data dataset), but it was not perfect. 

Hence, a human-in-the-loop approach [34] is still needed, with the forecast error outlier 

detection method pointing out potential outliers and a human agent validating them. Thus, the 

effort would be less costly with the application of the method presented in this chapter. This 

technique has also proven useful in the completeness assessment of the GreEn-ER data. 

In addition, this approach relies on high quality predictions, which may be improved. 

One way to improve the forecasts is using more features in the training phase. In the case of 

datasets with similar pattern to the one presented in this thesis, it is common to also use the 

consumption from one week earlier. However, in the present dataset, with several subsequent 

samples with data quality problems, the use of the past consumption could degrade the model. 

On the other hand, in a real-time application, this feature could be of great help in the 

definition of a good predictor and would significantly improve the outlier and anomaly 

detection. 
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5 Non-Intrusive Load Monitoring – State of Art 
 

Chapter 5 presents non-intrusive load monitoring (NILM) techniques from the 

incipient work of Hart to some others widespread algorithms, such as the Factorial Hidden 

Markov Model (FHMM) and three others based on Artificial Neural Networks (ANN). These 

methods will be later used to disaggregate some loads from the GreEn-ER building. This 

chapter also presents the NILMTK, an open source framework dedicated to promote 

reproducibility in the NILM field by enabling the performance comparison of several 

algorithms applied to some of the most popular datasets. 
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5.1 Direct and Indirect Feedbacks Towards Energy Consumption Savings 

Energy consumption in buildings is often directly related to inhabitants’ behavior. 

However, it is not easy to the average person to quantify the impact of his behavior on the 

energy consumption. Hence, people need to rely on feedbacks to understand their 

consumption and adjust their behavior to achieve energy and financial savings. There are 

several types of feedback that are sent to people regarding their energy consumption, while 

the Standard Billing the most common of them. Studies have shown that the savings amount 

achievement is directly related to the type of feedback received by consumers [1] [2]. The 

feedbacks can be classified into indirect and direct feedbacks [3]. Indirect feedbacks are 

information provided after the occurrence of consumption, while the direct ones are provided 

in real-time (or nearly real-time) [4]. 

Some examples of indirect feedbacks are: 

• Standard Billing: The most usual one. Bill received periodically, usually 

monthly, which displays only the consumption, the charges and the amount 

due. 

• Enhanced Billing: Besides the information provided in the standard one, this 

approach delivers more detailed data, such as historical monthly consumption, 

for instance. 

• Estimated Feedback: Uses statistical techniques based on the customer’s 

household type, appliance information and billing data to disaggregate the 

electricity consumption. It estimates the consumption of major appliances, 

delivering “per appliance” information. 

• Daily or Weekly Feedback: Information available more frequently than the 

standard and enhanced bills, this type of feedback helps identifying 

overconsumption and efficiency opportunities earlier, increasing potential 

savings. 

On the other hand, examples of direct feedbacks are: 

• Real-Time feedback: Built-in displays in homes providing aggregated real-time 

energy consumption and cost. 

• Real-Time Plus Feedback: Built-in displays showing disaggregated energy 

consumption and cost in real-time on the appliance level. 
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Some studies [1] performed in the residential sector estimated the energy saving 

potential, illustrated in Figure 57, of each of these types of feedback, when compared to the 

standard billing one. It can be seen in this figure that the more frequent the feedback, the 

higher the energy saving potential. This is particularly true when considering direct 

feedbacks, provided in real-time, which is one reason why the large-scale installation of smart 

meters in buildings is encouraged by several governments. 

However, normally these meters only measure the overall consumption of the 

household, not exploring the full potential of the direct feedbacks. This kind of feedback 

associated to more detailed ones, such as the “Real-Time Plus” that provides data to the 

appliance level, allows for the largest savings. 

 

 

Figure 57 – Energy saving potential of different types of feedback, figure reproduced from [1]. 

 

The final section of Chapter 2 showed the prospection of energy sobriety opportunities 

by analyzing the historical data from individual appliance consumption. This is possible, in 

the context of the GreEn-ER building, thanks to the historical data available and the massive 

monitoring down to the appliance level. Nevertheless, this level of detail is no the standard 

found in most buildings.  

The individual appliance consumption can be obtained through comprehensive 

monitoring, when most loads are measured separately, or through machine learning methods 
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that use energy disaggregation techniques. The latter type of monitoring is known as NILM 

(Non-intrusive Load Monitoring). The initial NILM approach was proposed by Hart in the 

early 1990s in his work entitled “Nonintrusive appliance load monitoring” [5], regarding 

especially the residential sector. It can be summarized as inferring individual appliances’ 

energy consumption from the global load curve, obtained at a single measurement point. 

With the popularization of smart-meters and the possibility of having a more precise 

assessment of the electricity consumption of a specific consumer (household, building, etc.), 

even remotely, the NILM has caught the attention of researchers worldwide. Several datasets 

were released with the aim to benchmark the algorithms developed to the energy 

disaggregation task. Some examples were already listed in Chapter 2. Furthermore, most of 

the public datasets released concern the residential sector, which has allowed for the 

development of algorithms that are more adapted to the residential environment than to the 

tertiary sector.  

The advance of NILM research in the residential sector relies on four main 

assumptions. Firstly, at such environment, because of the limited number of appliances, it is 

rare that two or more appliances change their functioning state simultaneously given an 

appropriate sampling rate. Because of that feature, many algorithms were based on event 

(switch of state, for instance) detection [6] [7]. In addition, the power of many residential 

loads is constant while remaining at the same state. This transforms the load curve into step-

wise shape, making it easier to identify the loads upon detection of an event [8]. Furthermore, 

residential loads often follow a daily and weekly pattern, with respect to the household’s 

occupants. This periodic behavior has been used to improve the accuracy of the algorithms. 

Nevertheless, as each household has its own individual schedule, the algorithms need to learn 

the schedule of all households separately, toughening the transfer learning from one 

household to another. At last, in addition to temporal features, some loads present strong 

correlations regarding their usages, which can also be features that are used to help identifying 

loads from each detected event [9]. One example of these strong correlations is the usage of 

personal computers and screen monitors that are usually used together.  

Several NILM approaches are based on supervised machine learning techniques, 

which used well label data for training the algorithms. Hence the importance of the datasets 

presented in Chapter 2. 



 
 

 

 
109 

Therefore, the next section exposes in further details two of the most widespread 

methods based on event detection: the Combinatorial Optimization, initially proposed by 

Hart, and the Factorial Hidden Markov Model. Afterwards, three methods based on Artificial 

Neural Networks are briefly presented. These techniques will be used in the next chapter to 

disaggregate target loads from the GreEn-ER building’s global consumption.  

 

5.2 NILM Methods Based On the Activation of Finite States 

Assuming that the appliances present in a household respect the assumptions stated 

earlier (only one appliance at a time change its state and the power on every state is constant), 

it is sufficient to determine when every appliance works in each state to estimate the 

consumption profile of the loads from the main load curve. This section addresses two of the 

most used methods that are based on the activation of finite states: the Combinatorial 

Optimization, initially proposed by Hart and the Factorial Hidden Markov Model. 

5.2.1  Combinatorial Optimization 

In his incipient work [5], Hart  proposed a method, known nowadays as Combinatorial 

Optimization, which consists in finding the combination of the consumption of all appliances 

at a given time t that minimizes the difference between this combination and the overall 

ground truth consumption. This method was idealized considering that the appliances operate 

with finite states, with constant consumption in each one of them.  

Originally, Hart considered just appliances with two states, on and off. Therefore, 

considering 𝑛 appliances, a vector 𝑎(𝑡) can be defined at each time t as follows: 

 

𝑎𝑖(𝑡) = {
1, 𝑖𝑓 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑖 𝑖𝑠 𝑜𝑛 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

0, 𝑖𝑓 𝑎𝑝𝑝𝑙𝑖𝑎𝑛𝑐𝑒 𝑖 𝑖𝑠 𝑜𝑓𝑓 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
 (1) 

 

in which 𝑖 represents the indexes of the appliances, going from 1 to 𝑛. 

Therefore, the overall power consumption at a given time t can be modeled as: 

𝑃(𝑡) = ∑ 𝑎𝑖(𝑡)𝑃𝑖 + 𝑒(𝑡)

𝑛

𝑖=1

 (2) 
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In which 𝑃𝑖 is the power of the appliance 𝑖 in on state and 𝑒(𝑡) is a term to model 

unaccounted appliances and noise in the measure. If the power consumption of every 

appliance is known, the disaggregation can be defined as an optimization problem. In this 

problem a state vector 𝐴∗, that contains the state of each appliance at every timestamp can be 

estimated by: 

𝐴∗ = 𝑚𝑖𝑛 |𝑃(𝑡) − ∑ 𝑎𝑖(𝑡)𝑃𝑖

𝑛

𝑖=1

| (3) 

 

This approach was the first method proposed to disaggregate appliances’ individual 

consumption from the global load. However, the popularization of more complex loads (like 

modern electronic devices) reduced the performance of this technique.  

 

5.2.2 Factorial Hidden Markov Model (FHMM) 

Another popular algorithm to tackle the disaggregation problem is the Factorial 

Hidden Markov model. It is based in its core on Markov chains, which are stochastic 

processes with discrete or continuous state space that presents the Markovian property. This 

property states that in regular and discrete time intervals, this stochastic process evolves from 

one condition to another depending only on its last condition, independently of the others.  

The Hidden Markov model comes as an extension of the Markov chain. This model 

includes the case in which the observation is a probability function of the state, i.e., the 

resulting model is a double-layer stochastic process, in which one stochastic process is 

underlying and unobservable (hidden) that can only be observed by the other stochastic 

process that produces the sequences of observations. Due to its flexibility and to the simplicity 

and efficiency of its parameter estimation algorithm, the hidden Markov model (HMM) has 

emerged as one of the basic statistical tools for modeling discrete time series, finding 

widespread application in the areas of speech recognition [11] and molecular computational 

analyses [12].  

The disaggregation problem tackled by the FHMM in this work is to infer: 

• 

𝑄(1)={𝑞1
(1)

,𝑞2
(1)

,⋯,𝑞𝑇
(1)

}

𝑄(2)={𝑞1
(2)

,𝑞2
(2)

,⋯,𝑞𝑇
(2)

}

⋮

𝑄(𝑀)={𝑞1
(𝑀)

,𝑞2
(𝑀)

,⋯,𝑞𝑇
(𝑀)

}

 as the power load of each of the M appliances, 

• Such that 𝑦𝑡 = ∑ 𝑞𝑡
𝑀
𝑖=1 , 
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• Given 𝑌 = {𝑦1, 𝑦2, ⋯ , 𝑦𝑇} as the aggregated power for T time periods [22] as 

the sequence of observations. 

A HMM is essentially a mixture model, encoding information about the history of a 

time series in the value of a single multinomial variable—the hidden state—which can take on 

one of K discrete values. Figure 58 presents an illustration of the HMM. The system is 

characterized by this internal discrete state variable, which evolves as a Markov chain 

between time points. Formally, an HMM can be defined by: 

• The finite set of hidden states 𝑆 = {𝑆1, 𝑆2, ⋯ , 𝑆𝐾}, 

• The matrix representing the probability of transitioning from one state to 

another 𝐴 = {𝑎𝑖𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑁}, being 𝑎𝑖𝑗 = 𝑃(𝑞𝑡+1 = 𝑆𝑗|𝑞𝑡 = 𝑆𝑖) with 𝑎𝑖𝑗 ≥

0 and ∑ 𝑎𝑖𝑗
𝑀
𝑗=1 = 1, 

• The initial state probability distribution 𝜋 = {𝜋𝑖}, being 𝜋𝑖 = 𝑃(𝑞1 = 𝑆𝑖) 

 

 

Figure 58 – Illustration of the Hidden Markov Model. Based on Bonfigli and Squartini. [21] 

 

In a standard HMM, the system is characterized by an internal discrete state variable, 

which evolves as a Markov chain between time points. An extension of the HMM is the 

Factorial Hidden Markov Model (FHMM) [13]. The FHMM extends the HMM by 

representing the hidden state in a factored form. This way, the information from the past is 

propagated in a distributed manner through a set of parallel Markov chains. The parallel 

chains can be viewed as latent features, which evolve over time according to Markov 

dynamics. 

The FHMM applied to solve the NILM problem [6] has been proven to have a good 

effect in the disaggregation of residential load with low sampling rate such as 1/60Hz. It does 

not directly output the observations of each hidden Markov chain, but outputs the sum of the 
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observations of them. For the NILM problem, the total active power or reactive power is the 

observation sequence, and the state and power consumption of each appliance are unknown. 

Therefore, each equipment can be described as a HMM, and the working state of an 

equipment is a Markov chain. The total power is the sum of the power of all appliances, so it 

can be described as a FHMM composed of multiple HMMs, and the observation sequence of 

FHMM is the power consumption. The concept of FHMM to address the NILM problem is 

illustrated in the Figure 59. 

 

Figure 59 – Illustration of the Factorial Hidden Markov Model. Based on Bonfigli and Squartini. [21] 

 

5.3 NILM Methods Based on Artificial Neural Networks 

The limitations of the methods presented in the previous sections led the researchers to 

seek alternatives to tackle the energy disaggregation problem. Allied to this, the advance in 

computational power allowed the use of more advanced techniques to tackle the issue. One 

example of that is the development of algorithms based on artificial neural networks (ANN), 

used with success in other machine learning fields, such as image and language processing, 

led researchers to start looking for ways to adapt these techniques also to solve NILM 

problems. This section presents a brief introduction to artificial neural networks and to the 

most popular layers that can be used to form an artificial neural network, such as fully 
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connected, convolutional and recurrent neural networks. Afterwards, some NILM algorithms 

developed based on ANNs are equally presented. 

 

5.3.1 Brief Introduction to Artificial Neural Networks  

An ANN is a directed graph where the nodes are artificial neurons and the edges allow 

information from one neuron to another one (or the same neuron in a future time step). An 

artificial neuron is a model representation that simulates the functioning of a biological 

neuron in a simplified way. In simple terms, an artificial neuron computes the weighted sum 

of several inputs, applies an activation function, and passes the result on. These inputs can 

also be the output from another artificial neurons present in a network. The diagram in Figure 

60 illustrates an artificial neuron. In this diagram 𝑥𝑛 represents the inputs, or the data feeding 

the neuron. Among several inputs, some will stimulate the receiving neuron more and some 

less. This behavior is simulated by the weights 𝑤𝑘𝑛, which are multiplied by the inputs. An 

additive junction, with a bias, then sums the weighted inputs. Afterwards, the outcome passes 

by an activation function, which will define the neuron output. The learning of an ANN 

happens through the modification of the weights. [14] 

 

 

Figure 60 – Representation of an Artificial Neuron. Based on [14] 

 

In an ANN, neurons are typically arranged into layers. An ANN has at least two of 

them: an input and an output layer. Any layer in between is called a hidden layer. These 

neural networks can be also classified in shallow and deep networks. In the shallow one, 

usually only one hidden layer is present. In opposition, a deep neural network has several 

hidden layers, often of various types. Fully connected, convolutional, recurrent, among others, 

are examples of the types of layers that can be present in an ANN.  
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The flow of information from the input layers, through the hidden layers to the output 

layer is called forward pass. After computing a forward pass through the network, resulting in 

an output for a given input, the results are compared with the targets. The weights are then 

modified in the direction to reduce the error between the network output and the targets. This 

step is called backward pass, and it corresponds to the learning phase. Several metrics can be 

used to quantify the error between the output and the target, such as the Mean Absolute Error 

(MAE), the Mean Squared Error (MSE) etc. 

 

5.3.1.1 Feed Forward Fully Connected  

A Feed forward fully connected network consists of a series of fully connected, or 

dense, layers. In a dense layer each neuron receives input from all neurons of its previous 

layer and is found to be the most commonly used layer in the models. Its graphical 

representation can be seen in Figure 61. 

 

Figure 61 – Representation of a Fully Connected Feed-Forward Artificial Neural Network with three hidden 

layers. 

5.3.1.2 Convolutional layer 

Image recognition is a classic classification problem, and Convolutional Neural 

Networks have a history of high accuracy for this problem. The biological inspiration for this 

architecture comes from an experiment performed in 1962 by Hubel and Wiesel [15]. In this 

experiment, they showed that some neurons are activated together when exposed to some 

lines or curves, thus producing visual recognition. A Convolutional Network tries to simulate 

https://machinelearningknowledge.ai/glossary/artificial-neuron/
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that by filtering lines, curves, and edges. Each added layer transforms this filtering into a 

more complex image. The first successful application of a CNN was developed by LeCun in 

1998 [16], using seven layers between convolutions and fully connected for online 

handwriting recognition. 

When it comes to image recognition/classification, the inputs are usually two-

dimensional (or three if it is a colorful image) matrices with height and width with values for 

each pixel. The convolutions work like filters that see small squares and "slide" across the 

image capturing the most striking features. The filter, also known as a kernel, is formed by 

randomly initialized weights, updating them with each new input during the backpropagation 

process. Figure 62 shows an illustration of a 2-D convolutional layer. 

 

Figure 62 –. Representation of a Convolutional Artificial Neural Layer for image processing [23]. 

 

Recently some studies demonstrated that 1-D CNNs (1-Dimension Convolutional 

Neural Networks) are also effective tools for time sequence modelling as it can be treated as a 

spatial dimension just like the height or width of a two-dimensional image. A schematic 

illustration can be seen in the Figure 63. 
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Figure 63 – The conceptual structure of a convolutional neural network used for the purpose of time-series 

analysis. [27] 

 

It would be possible to learn sequence fragments within a window size series using a 

convolution window in each convolutional layer to process time series. This process should 

enable the identification of some subsequences anywhere in the entire time series, so that the 

local trend change features of the multivariate time series over time can be captured. After the 

1D convolution operation, a max pooling operation should be used for subsampling, which 

outputs the maximum value of subsequences extracted from the input time series. In this way, 

the length of one- dimensional input time series is reduced. 

 

5.3.1.3 Recurrent Neural Network 

Feed forward neural networks map from a single input vector to a single output vector. 

When the network is shown a second input vector, it has no memory of the previous input. 

Regarding that, the recurrent neural network (RNN) was proposed. A RNN is a type of 

artificial neural network suited to sequential data or time series data. RNNs support 

processing of sequential data by the addition of a cycle such that the output from a neuron in a 

layer l at a given time step t is fed via weighted connections to every neuron in layer l 

(including neuron itself) at time step 𝑡 +  1. In other words, the neurons take as their input 

not just the current input example they see, but also what they have perceived previously in 

time. In that manner, they take information from prior inputs to influence the current input 

and output. This loop allows the network to step through sequential input data whilst 

persisting the state of nodes in the hidden layer between steps consisting in a sort of working 

memory. While traditional deep neural networks assume that inputs and outputs are 

independent from each other, the output of recurrent neural networks depend on the prior 

elements within the sequence. Another distinguishing characteristic of recurrent networks is 

that they share parameters across each layer of the network. While feedforward networks have 
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different weights across each node, recurrent neural networks share the same weight 

parameter within each layer of the network. 

An additional enhancement to RNNs is to use bidirectional layers. In a bidirectional 

RNN, there are effectively two parallel RNNs, one reads the input sequence forwards and the 

other reads the input sequence backwards. The output from the forwards and backwards 

halves of the network are combined by either concatenating them or doing an element-wise 

sum. Figure 64 illustrates an example of a RNN layer. 

 

 

Figure 64 –. Representation of a Recurrent Artificial Neural Layer. [26] 

 

In practice, RNNs may suffer from the ‘vanishing gradient’ problem [17] where 

gradient information disappears or explodes as it is propagated back through time, which may 

limit a RNN’s memory. 

 

5.3.1.3.1 Long Short-Term Memory Network (LSTM) 

Long Short-Term Memory Network or LSTM [17], is a variation of a recurrent neural 

network (RNN) that is quite effective in predicting the long sequences of data over a period of 

time. Besides the loop of memory present in the RNNs, it also includes a special unit known 

as a memory cell to withhold the past information for a longer time for making an effective 

prediction. 

Instead of having a single neural network layer as in a standard RNN, in the LSTM 

there are four, interacting in a very special way. The key to LSTMs is the cell state. The cell 

state is like a conveyor belt. It runs straight down the entire chain, with only some minor 

linear interactions. It’s very easy for information to just flow along it unchanged. The LSTM 
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does have the ability to remove or add information to the cell state, carefully regulated by 

structures called gates. Gates are a way to optionally let information through. They are 

composed out of a sigmoid neural net layer and a pointwise multiplication operation. The 

sigmoid layer outputs numbers between zero and one, describing how much of each 

component should be let through. The first step in our LSTM is to decide what information 

we’re going to throw away from the cell state. This decision is made by a sigmoid layer called 

the “forget gate”, represented by 𝑓𝑡 in the diagram. The next step is to decide what new 

information will be stored in the cell state. This has two parts. First, a sigmoid layer called the 

“input gate” decides which values will be updated, represented by 𝑖𝑡. Next, a hyperbolic 

tangent layer creates a vector of new candidate values, 𝐶̃𝑡 that could be added to the state. In 

the next step, these two will be combined to create an update to the cell state.  

The output will then be a combination between the input (𝑥𝑡), the output of the 

previous time step (ℎ𝑡−1), and the updated cell state (𝐶𝑡). Figure 65 shows a representation of 

a LSTM cell. 

 

Figure 65 – Representation of a LSTM cell. [24]. 

 

5.3.1.3.2 Gate Recurrent Unit 

A variation on the LSTM is the Gated Recurrent Unit (GRU), introduced by Cho, et al. 

[18]. It combines the forget and input gates into a single “update gate.” It also merges the cell 

state and hidden state. A GRU has basically two gates, a reset gate r, and an update gate z, as 

it is shown in Figure 66. Intuitively, the reset gate determines how to combine the new input 

with the previous memory, and the update gate defines how much of the previous memory is 
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stored. If the reset gate is set to be always one and update gate to be always zero the plain 

RNN model is retrieved. The basic idea of using a gating mechanism to learn long-term 

dependencies is the same as in a LSTM. 

 

Figure 66 – Representation of a Gate Recurrent Unit cell. [25] 

 

5.3.2 NILM algorithms with ANN 

In the recent past, most energy disaggregation problems were solved using algorithms 

based on Hidden Markov Models (HMM), more precisely using their Factorial variation 

(FHMM), since these models are well suited to sequential data. 

However, the popularization of ANN and its success in other machine learning fields 

such as image and language processing with respect to what had been in use caused 

researchers to start looking for ways to adapt these techniques also to solve NILM problems. 

Several algorithms were developed combining different types of layers like RNN with LSTM 

cells, with GRU cells, or even using convolutional layers. The next sections will detail some 

of these algorithms. 

 

5.3.2.1 LSTM 

An adapted RNN using LSTM layers to perform the energy disaggregation in a 

residential environment was proposed by Kelly [10]. The architecture of this neural network 

is shown Figure 67. 
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Figure 67 –. Artificial Neural Network based on LSTM layers for energy disaggregation. [10] 

 

At each time step, the network sees a single sample of aggregate power data and 

outputs a single sample of power data for the target appliance. The addition of a convolution 

layer slightly increase performance (the conv. layer convolves over the time axis). Networks 

that use LSTM neurons suffer from high computational cost. Each LSTM cell performs 

several mathematical operations before they produce their output. This makes them 

computationally demanding for both training and inference. Moreover, they have an internal 

memory cell which raises the memory demands of the model. 

 

5.3.2.2 WindowGRU 

The limitations of the LSTM network inspired a new design that performs the same 

whilst being less demanding. The first step was to replace LSTM neurons with GRU. Gated 

Recurrent Units have a simpler architecture with no internal memory. This makes them more 

computationally efficient while training and less memory demanding for disaggregation. 

Odysseas Krystalakos et al [19] proposed the architecture, shown in Figure 68, to apply in 

NILM problems. 

 

Figure 68 – Artificial Neural Network based on GRU layers for energy disaggregation. [19] 
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5.3.2.3 Sequence-to-point 

The neural networks learn a nonlinear regression between a sequence of the mains 

readings and a sequence of appliance readings with the same time stamps. It can be seen as a 

sequence-to-sequence approach. These architectures define ANNs that map sliding windows 

of the input to the corresponding windows of the output target appliance. 

Instead of training a network to predict a window of appliance readings, the sequence-

to-point [20] method proposes to train a neural network to only predict the midpoint element 

of a sliding window. The idea is that the input of the network is a sliding window from the 

aggregated data, and the output is the midpoint element of the corresponding window of the 

target appliance. This method assumes that the midpoint element is represented as a non-

linear regression of the mains window. The proposed architecture is shown in the Figure 69. 

 

Figure 69 – Sequence-to-point Artificial Neural Network for energy disaggregation. [20] 

 

5.4 The NILM Toolkit – NILMTK 

The previous sections detailed some of the most popular algorithms used to 

disaggregate the overall household consumption into individual appliances. From event based 

algorithms, such as the Combinatorial Optimization and the FHMM, to ANNs approaches, 

such as the Sequence-to-point. However, the performance comparison between most of the 

techniques developed is not trivial, since they were developed and tested from different 

datasets, or different sub datasets from the same dataset, and the evaluation metrics to assess 

their performance often were not the same.  

Because of these issues, the research in the NILM field often lacked of reproducibility. 

In order to address this concern, Batra et al [28] [29] developed the NILMTK, a framework 
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designed to enable comparative analysis of different methods using several datasets. In its 

first version, only the Combinatorial Optimization and the FHMM were implemented. In later 

versions [30] [31], methods based on ANNs, such as the RNN by Kelly, the Sequence-to-

point and the Window GRU, presented in the previous chapter, were also implemented within 

the framework. Some variations of the FHMM were equally made available among additional 

variations of other algorithms.  

Different datasets usually have their own structure, meaning that the input data format 

used on the algorithms developed based on them are also different. To address this issue, 

NILMTK authors proposed a standard data format based on the REDD dataset format,cited in 

Chapter 2. Parsers dedicated to some of the most popular datasets were implemented to 

standardize the input data format. Parsers to REDD, UK-DALE, iAWE, COMBED and 

Dataport datasets, among others, were developed and implemented within the NILMTK.  

Then, the parsers convert the data, usually in the CSV format to the Hierarchical Data 

Format version 5 (HDF5). HDF5, an open source file format, is able to deal with large, 

complex and heterogeneous data. Additionally, the HDF5 format supports metadata 

embedding, making it self-descriptive. 

The metadata is written in YAML format files, which is a format often used for 

configuration files. It is through the YAML files that the data is described. These files contain 

information of the appliances type, the electric schema and the measured quantities: power, 

energy, voltage, current, etc. There are several YAML files containing metadata. For instance, 

the NILMTK package for python comes along with another package called nilm_metadata. In 

the later, appliance types are described in YAML files and separated in dedicated files to 

commercial loads, cooking loads and heating loads, for example. 

For instance, there are at least three main “YAML” files containing metadata allowing 

the parsers to convert the original dataset to a more friendly format to the NILMTK. One file 

is the “dataset.yaml” that describes the dataset, with its name and location among other 

information. At the same time, “meter_devices.yaml” contains the information about the 

meters. Another file is the “building1.yaml”. It is in this file that the loads are described. It 

contains the information about the electric schema and the type of every load. In the case 

where there is more than one building, there are other YAML files containing the metadata of 

each building. These YAML files are exclusive of each dataset. There are, also, other YAML 

files, containing more general data, such as appliance types.  
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5.4.1 The integration of the GreEn-ER dataset to the NILM-TK 

As originally the GreEn-ER dataset was not conceived to integrate the NILMTK, it 

was necessary to adapt the dataset to the structure compatible with the NILMTK. Initially, 

only the data corresponding to the first layer of the TGBT2 was adapted to the NILMTK 

environment.  

Every branch in the first layer connected to the TGBT2 was added to the file 

“commercial.yaml” as an appliance type. They were all described into the “building1.yaml” 

of the respective parser. Figure 70 presents, as an example, the structure of two YAML files 

containing metadata of the GreEn-ER dataset for the integration to the NILMTK. Once the 

data and the metadata are prepared, the parsers convert these files into a HDF5file, and the 

NILMTK is ready to be used. The usage of the NILMTK applied to the GreEn-ER data is the 

object of the next chapter. 

 

 
 

a) Commercial.yaml describing every 

branch of the TGBT2 as na appliance type 

b) Building1.yaml describing the electric 

schema and the loads 
Figure 70 – YAML files containing GreEn-ER dataset metadata for the integration to the NILMTK.  
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5.5 Conclusions 

This chapter presented some of the most popular algorithms developed over the years 

by several researches in the energy disaggregation domain. Different approaches have been 

used, such as event detection based algorithms (Combinatorial Optimization and FHMM) and 

artificial neural networks (LSTM, windowGRU and Sequence-to-point), which were exposed 

in more details.  

Additionally, this chapter addressed the NILMTK, a framework dedicated to the 

reproducibility of the experiments in the NILM field. It put together several algorithms and 

datasets under a standard data format in order to enable direct comparison between algorithms 

applied to different datasets. Hence, several dataset converters are available within the 

framework in order to format all the input data into a friendly format to the framework. 

Therefore, to use the GreEn-ER dataset along with the NILMTK, the development of a parser 

dedicated to this dataset was needed. Metadata was written into YAML files and a converter 

based on the one available for the REDD dataset was developed. The next chapter addresses 

the application of the NILMTK to the GreEn-ER dataset.  
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6 Disaggregation methods applied to a tertiary building 

environment – The GreEn-ER case 

 

This chapter starts by discussing the differences between the residential and tertiary 

environments with respect to the loads present in each field, the challenges met in the 

disaggregation task in tertiary buildings and some insights to turn around these issues. This 

chapter presents the results obtained by the application of the NILM techniques presented in 

the previous chapter to the GreEn-ER dataset. For this, the NILMTK, a framework developed 

to compare different algorithms and different datasets, was used. Since there are more than 

300 meters it is practically impossible to disaggregate all loads into appliance level. Because 

of that, a subset containing three major consumers from the TGBT2 was chosen as target 

appliances. The air compressors, the chillers and the restaurant were selected as target loads 

while the remaining were aggregated into a “Fantôme” or “Ghost” load. The results show that 

the two techniques based on ANNs presented the best results overall, however at a great 

computational cost. For simple loads, such as the air compressor handled in this chapter, the 

results were satisfactory.  
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6.1 Energy Disaggregation in the Tertiary Sector 

Even though the benefits of employing NILM techniques in tertiary and industrial 

facilities have been acknowledged since the field’s inception, most of the algorithms 

developed were concentrated on residential buildings [3]. They were developed based on 

residential datasets, being naturally more adapted to tackle the appliances found in residential 

environments.    

Nevertheless, these approaches based on event detection are not well suited to the 

commercial environment. Reports by the Electric Power Research Institute (ERPI) from the 

USA [1][2] and the California Energy Commission’s Public Interest Energy Research (PIER) 

[4] program state that these algorithms lacked performance when dealing with multistate and 

variable-power devices (which can be seen as one extreme form of a multi-state device and 

violates the assumption of constant power draw of the loads), loads that are largely present in 

tertiary buildings. Also, commercial buildings have many more appliances than a single 

household, which means that states’ switch are more frequent, making it much more likely to 

exist more than one appliance changing its state simultaneously. Another typical situation in 

this type of facility is the presence of several similar loads (such as several personal 

computers, a typical situation found in office buildings, for instance), which also impairs 

performance of this type of approach. 

In addition, when using high-frequency features to tackle the energy disaggregation, 

additional harmonic content, which can be introduced by power factor correction devices, 

micro generation (micro-turbines and photovoltaic panels) and battery storage technologies 

(electric vehicles included), may also complicate the identification of individual appliances. 

Another limitation that can be cited is the building power consumption compared with 

the power consumption of individual appliances. Small step changes are nearly impossible to 

identify and segregate from the global consumption. It can be hard to tell if these changes are 

caused by switching on a desktop computer or if it is due to larger loads changing their 

demand. These small loads, in which can be included chargers, laptop computers, among 

other electronic loads, are responsible for significant portion of tertiary building’s electricity 

consumption [5]. Furthermore, the presence of a mix of single-phase and three-phase loads 

may also harm algorithms’ performance, depending on the features used. 

It is important to note that several approaches use measurements with relatively high 

sampling rate, often one second or even sub-second intervals. However, popularizing these 
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approaches is not trivial, since most facilities have measured data with sampling rate lower 

than this, such as one, ten and 30 minutes, or even one hour. Because of this, the interest of 

developing and testing energy disaggregation for low sampled data is even bigger. 

Some studies have tried to tackle the energy disaggregation outside the residential 

environment with low sampled data. The first attempt was applying the same algorithms 

developed to residential buildings to loads inside the tertiary sector. Batra et al [6] applied the 

Combinatorial Optimization to disaggregate the consumption of Air Handling Units (AHUs) 

from the global consumption, and later from an intermediate transformer that is responsible 

for delivering electricity to the floor where they are located. Their results showed that this 

algorithm failed to disaggregate the continuously varying demand of the AHUs from the 

global consumption. However, when the disaggregation is performed at the intermediate 

transformer level, the results are improved.  

Furthermore, Bandeira de Melo Martins developed, in his master’s thesis [7], a deep 

learning algorithm based on convolutional ANNs to disaggregate eight appliances of a factory 

in Brazil. He successfully disaggregated loads that the FHMM did not perform well, including 

some exhaust fans, which present a variable-continuous load profile. Nevertheless, his dataset 

contained a lot of features, such as voltage, current, active power, reactive power, apparent 

power and active energy consumption, at one second sampling interval. Eight loads were 

chosen, among which are pelletizers and exhaust fans, because of their share of consumption 

and importance to the facility. While the FHMM, which is used to compare the results 

obtained by his method, was able to disaggregate the pelletizers, it failed with the exhaust 

fans. 

In another approach, Ling et al [8] developed a method based on Random Forest 

algorithm to disaggregate four main loads (lightning, elevators, HVAC and plug-in loads). 

Despite the promising results, the ground truth used to assess the method were estimated from 

building occupancy schedule (for lightning, elevators and plug-in loads) and from the cooling 

and heating loads, simulated by a software and rated performance of appliances (chillers and 

water pumps). This fact makes these loads have similar profiles, with predictable daily and 

weekly variations, which is highly unlikely, especially for the elevators. 

Summarizing, those three studies were capable to disaggregate the loads from the 

global consumption under specific circumstances, leading to some insights for the advance of 

the field. For instance, the Batra study indicated that to tackle the problem of the number of 
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charges, some level of sub metering could be interesting, leading to a kind of hybrid solution 

or semi-intrusive load monitoring. In addition, Bandeira de Melo Martins’ thesis showed that 

the choice of target loads is crucial similarly to the results obtained by Ling’s approach. In 

large commercial or industrial buildings, the biggest consumers are more likely to hide the 

greatest energy saving potential, indicating that these loads are fit candidates to be the target 

loads in a NILM approach. 

   

6.2 Energy Disaggregation Applied to GreEn-ER loads 

The previous chapter has presented some of the most popular algorithms used to 

disaggregate a main consumption into individual appliances. These algorithms were 

developed regarding residential buildings and their typical behavior. Nevertheless, the load 

behavior of tertiary buildings is different from residential ones, because of the operating 

profile (continuously variable or multi-state loads), the number of appliances (many 

simultaneous state changes) and because of the presence of small loads (compared to the 

overall consumption). Because of that, it is unsure that the algorithms exposed in Chapter 5 

present satisfactory results when applied to tertiary buildings.  

Since there are more than 300 hundred metering points inside the GreEn-ER building, 

it is virtually impossible to disaggregate the global consumption to the appliance level. 

Several issues play against the successful appliance disaggregation from the global power. 

The presence of small loads compared to the overall consumption, such as the lightning or the 

outlets of an individual switchboard, make the disaggregation task more difficult. In addition, 

there is the issue of poor data quality. Although previous chapters addressed the issue of the 

data quality, in particular the identification of outliers, it is impractical to pre-treat all measure 

points, since the algorithm presented in Chapter 4 relies on consumption prediction. Because 

of the energy meters resolution, 1kWh, the load curve obtained from these meters, in the case 

of small loads, is not accurate, harming the predictors performance and, hence, the pre-

treatment algorithm presented in Chapter 4. 

Because of this, a subset of the GreEn-ER dataset was selected to test the NILM 

techniques embedded into the NILMTK in a tertiary environment. Three  first layer of meters 

connected to the TGBT2 was selected. Eventual outliers from this sub dataset were eliminated 

using the algorithm presented in Chapter 4.  
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In order to identify the best approach to perform the energy disaggregation in an 

environment like the GreEn-ER building, the algorithms presented in the previous chapter 

were applied with the help of the NILMTK. Methods based on finite states, such as the 

Combinatorial Optimization and the FHMM, presented in the previous chapter, were 

compared with some techniques using ANNs, such as the one using the LSTM architecture, 

the sequence-to-point and the Window GRU. The subdataset used contained one year worth 

of data, from which nine months were used as training phase and three as test phase. The 

results were assessed using the Mean Absolute Error (𝑀𝐴𝐸), and the Percentage Error (𝑃𝐸) 

between the average values, regarding all the test periods.  

In Chapter 5, it was acknowledged that current disaggregation techniques may struggle 

when addressing tertiary buildings’ typical loads. The high amount of loads and continuously 

variable appliances can be cited as reasons to the poor performance of these NILM 

algorithms. Nevertheless, some concessions can be made in order to enhance the 

disaggregation performed by these algorithms in the context of a tertiary building. 

One way to improve the results of energy disaggregation algorithms when applied to a 

tertiary environment is to choose target appliances. By choosing target appliances, the number 

of loads to be disaggregated decreases and smaller loads combined (those whose power is 

small compared to overall consumption) become more significant. In addition, considering 

energy efficiency measures, it is more likely to find potential savings when dealing with 

major consumers. Therefore, it would be more important to well disaggregate only the major 

consumers than disaggregate a high amount of loads with average performance. 

Hence, this simulation focused in the three biggest consumers linked to the TGBT2. 

They correspond to the air compressors, the chillers (TD2-GF) and an area called Crous, 

where the restaurant and the dining hall are located. The rest of consumption linked to this 

transformer was aggregated and called “fantôme”. A diagram of the TGBT2 (switchboard 

linked to the Transformer 2) highlighting the target loads is shown in Figure 71. At the 

illustration it can be seen the target loads and the others that form the aggregated load 

“Fantôme”. The consumption profiles of the target loads are also presented in the following 

figures. 
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Figure 71 – Electric schema of the TGBT2 with the target loads highlighted.  

  
TGBT2 Air compressors 

Figure 72 – Load curve of the Air Compressors switchboard and the CROUS switchboard.  

  
TD-GF CROUS  

Figure 73 – Load curve of the TD-GF switchboard and the CROUS switchboard. 
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Figure 74 – Load curve of the aggregated load “Fantome”. 

 

Table 24 - Average Power of the target loads. 

Load Average Power [kW] 

Air Compressor 21.79 

CROUS 17.06 

TD-GF 12.98 

Fantôme 31.21 

TGBT2 83.04 

 

Two air compressors form the compressed air system, one being usually in stand-by 

while the other is operating. One of them is a fixed-speed rotary screw compressor, which 

operates usually modulating between two states, while the other one has variable speed, 

presenting a more continuous curve. During the first half of the year, the fixed-speed one was 

operating, while the variable speed was in stand-by. This operating mode has been changed 

along the year, with the variable speed in operation and the other one in stand-by. In order to 

be fair with the disaggregation algorithms, and not train the algorithm based on one air 

compressor and test in another completely different, synthetic data based on the fixed-speed 

compressor replaced the variable-speed data. The global consumption of the TGBT2 was also 

corrected.  

The following sections present the results obtained by performing the disaggregation 

on these loads applying the cited algorithms. 
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6.2.1 Combinatorial Optimization 

The NILMTK was used to apply the combinatorial optimization algorithm to 

disaggregate the consumption of the target loads from the TGBT2 load curve. The results are 

presented in the following figures, and in Table 25. In those figures, CO stands for 

combinatorial optimization while GT stands for ground truth, or the actual value. 

  

Figure 75 – Disaggregation results of the air compressor using combinatorial optimization.  

  
Figure 76 – Disaggregation results of the CROUS using combinatorial optimization.  

 
 

Figure 77 – Disaggregation results of the TD-GF using combinatorial optimization.  

  
Figure 78 – Disaggregation results of the “fantôme” load using combinatorial optimization.  
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Table 25 – Combinatorial optimization disaggregation results. 

Load 
Average power [kW] 

MAE [kW] Percentage error 
Ground Truth Disaggregated 

Air Compressor 21,80 13,23 10.54 39,31% 

CROUS 19,32 19,63 17.12 1,60% 

TD-GF 3,44 17,97 17,45 422,38% 

Fantôme 33,18 27,44 16,87 17,30% 

 

6.2.2 FHMM 

The Factorial Hidden Markov Model was also applied to disaggregate the 

consumption of the target loads. The results are presented in the next figures as well in 

Table 26.  

 
 

Figure 79 – Disaggregation results of the Air Compressor using FHMM. 

  
Figure 80 – Disaggregation results of the CROUS using FHMM. 

 
 



 
 

 

138 

Figure 81 – Disaggregation results of the TD-GF using FHMM. 

  
Figure 82 – Disaggregation results of the “Fantôme” load using FHMM.  

Table 26 – FHMM disaggregation results. 

Load 
Average power [kW] 

MAE [kW] Percentage error 
Ground Truth Disaggregated 

Air Compressor 21,80 18.76 5.88 13,94% 

CROUS 19,32 16.99 8.42 12,06% 

TD-GF 3,44 14.23 12.59 313,66% 

Fantôme 33,18 28.55 11.67 13,95% 

 

The results presented in the section show an improvement when compared to the 

previous algorithm. It has presented lower MAE for all loads. It has also presented lower 

percentage error between the average power values for the air compressor. In addition, this 

technique estimated better the power associated to the states of the Air Compressor than the 

Combinatorial Optimization. Considering the CROUS load, the percentage error was slightly 

higher when compared to the previous approach, compensated by the lower MAE.  

6.2.3 LSTM 

The Kelly architecture using the LSTM layers presented in the item 5.3.2.1 was 

applied to the data. A batch size of 1024 and 50 epochs were used as parameters to configure 

the training phase. The results obtained are presented in the next figures and in the following 

table. 
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Figure 83 – Disaggregation results of the Air Compressor using LSTM architecture.  

  
Figure 84 – Disaggregation results of the CROUS using LSTM architecture.  

  
Figure 85 – Disaggregation results of the TD-GF using LSTM architecture.  

  
Figure 86 – Disaggregation results of the “Fantôme” load using LSTM architecture.  

 

Table 27 – LSTM-based network disaggregation results. 

Load 
Average power [kW] 

MAE [kW] Percentage error 
Ground Truth Disaggregated 
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Air Compressor 21,80 21,75 3,40 0,23% 

CROUS 19,32 17,64 12,33 8,70% 

TD-GF 3,44 15,45 12,72 349,13% 

Fantôme 33,18 30,71 11,40 7,44% 

 

Despite presenting good results predicting the energy consumption, translated in the 

average value and low percentage error, it can be observed in the figures that this algorithm 

was not able to well reproduce the load curve, underestimating the peaks and overestimating 

the valleys. However, it can be seen that this algorithm was able to reproduce the seasonal 

pattern of the data, except for the TD-GF load. 

 

6.2.4 Window GRU 

The configurations of batch size and the number of epochs for the training phase were 

maintained as 1024 and 50, respectively, for the Window GRU algorithm, as the same used in 

the LSTM architecture. The results obtained are exposed in the next figures and in Table 28. 

  
Figure 87 – Disaggregation results of the Air Compressor using GRU architecture.  

  
Figure 88 – Disaggregation results of the CROUS using GRU architecture.  
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Figure 89 – Disaggregation results of the TD-GF using GRU architecture.  

  
Figure 90 – Disaggregation results of the “Fantome” load using GRU architecture.  

 

Table 28 – Window GRU network disaggregation results. 

Load 
Average power [kW] 

MAE [kW] Percentage error 
Ground Truth Disaggregated 

Air Compressor 21,80 22,13 2,21 1,51% 

CROUS 19,32 15,94 5,46 17,49% 

TD-GF 3,44 10,17 7,75 195,64% 

Fantôme 33,18 28,84 7,43 13,08% 

 

Despite presenting higher percentage error when compared to the LSTM approach, it 

can be said that the Window GRU algorithm improved the results. It can be confirmed by 

visualization of the previous figures along the lower MAE exposed in the previous table.   

 

6.2.5 Sequence-to-point 

For the sequence-to-point approach, detailed in the item 5.3.2.3, a batch size of 1024 

and 50 epochs were used as parameters to configure the training phase. The results obtained 

are illustrated in the next figures and in the following table. 
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Figure 91 – Disaggregation results of the Air Compressor using Sequence-to-point.  

  
Figure 92 – Disaggregation results of the CROUS using Sequence-to-point.  

  
Figure 93 – Disaggregation results of the TD-GF using Sequence-to-point.  
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Figure 94 – Disaggregation results of the “Fantôme” load using Sequence-to-point.  

 

Table 29 – Sequence to point disaggregation results. 

Load 
Average power [kW] 

MAE [kW] Percentage error 
Ground Truth Disaggregated 

Air Compressor 21,80 21,47 1,95 1,51% 

CROUS 19,32 17,09 6,17 11,54% 

TD-GF 3,44 11,02 9,04 220,35% 

Fantôme 33,18 29,45 7,04 11,24% 

 

The results issued from the Sequence-to-point application to the dataset 

presented in this chapter were slightly improved compared to the Window GRU 

approach. The percentage error was lower for the CROUS and Fantome loads and the 

same for the Air Compressor. Considering the MAE, the Sequence-to-point presented 

lower values for the Air Compressor and the Fantome load, while the CROUS was 

slightly higher, endorsing the similar performance between this approach and the 

previous one. 

 

6.3 Conclusions 

This chapter aimed at applying the NILM methods described in the previous chapter to 

the GreEn-ER dataset. The results obtained show that the energy disaggregation in the tertiary 

sector is not trivial. The number of loads, their pattern and their share relative to the overall 

consumption decrease the performance of energy disaggregation algorithms. In addition, 

neural network estimates are computationally demanding, making the application of neural 

network-based algorithms virtually impossible for embedded systems or even standard 

computers when dealing with high number of loads. 
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Because of that, the choice of target loads is of utmost importance. It reduces the 

number of loads, disregarding less important loads, reduces the computation time and 

improves the performance of the techniques. 

The comparison between the disaggregation methods used indicate that techniques 

based on artificial neural networks were better suited to the case study loads. This is explained 

by the nature of many loads present in buildings outside the residential environment. These 

are loads of higher power, with pattern not always with well-defined states. Even so, one can 

highlight that among the techniques based on finite states, the FHMM has an advantage when 

compared to the Combinatorial Optimization. Furthermore, it can be said that the FHMM can 

deliver satisfactory results considering simple pattern loads, such as the air compressors, in a 

much faster time than the ANN-based algorithms. This indicates that, besides the best ANN 

based algorithm, the Sequence-to-point, the FHMM could also be used in a tertiary building 

as disaggregation technique under certain circumstances.  
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7 Energy Audits Using Energy Disaggregation – The GreEn-ER 

Compressed Air System Case 
 

An energy audit is an important tool towards the prospection of energy savings 

potentials. This analysis usually uses on-site data measured by the auditors. However, the 

time available for these measurements is limited and may not include some modes of 

operation of certain appliances. One example of that is the quantification of compressed air 

leaks, which can be done by estimating the flow rate during a no compressed air consumption 

period. Nevertheless, these periods often do not coincide with auditors’ schedule, issue that 

could be addressed by using historical data. However, historical data from energy 

management systems usually are only available for global consumption, and rarely for 

individual appliances. In this context, a NILM approach would be helpful to enhance energy 

audits carrying analysis of modes of operation not included in the on-site measurements. 

Hence, Chapter 7 discusses the possibility of using NILM techniques to enhance 

energy audits by estimating the leakage in the GreEn-ER compressed air system using energy 

disaggregation. The results obtained show that it is possible to use energy disaggregation to 

estimate compressed air leaks in the context of an energy audit.  
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7.1 Disaggregation and Energy Audits Overview  

A first step towards the reduction of energy consumption is the realization of an 

energy audit. This audit is a detailed inventory of the energy performance of the systems in a 

residential, tertiary or even industrial environment. An audit makes it possible to become 

aware of the quality of the energy installations and the daily behaviors and must provide 

personalized and quantified advice to consume energy in a more rational way. The European 

Directive 2012/27/EU, effective in France since 2013, already mandates all sectors of 

companies to perform an energy audit, every four years. [1] 

A successful energy audit seeks first to identify the major energy consumers, where 

the biggest energy savings potentials lies. In this context, compressed air systems play a key 

role in many tertiary buildings. These systems usually are among the major energy consumers 

in a facility. Because of that, even small relative potential savings in compressed air systems 

may represent a big reduction in the consumption. In this circumstance, this chapter aims at 

enhancing energy audits in a tertiary building environment by using NILM (Non-Intrusive 

Load Monitoring) techniques [2] to estimate the compressed air leakage.  

The evaluation of this possibility is done by evaluating the estimation of compressed 

air leakage in an adapted dataset from the GreEn-ER building. The first section details how an 

energy audit usually unfolds. Afterwards, a method to estimate the flow rate from the electric 

power of a rotary-screw fixed speed air compressor, as one installed in GreEn-ER facilities is 

presented.  

Subsequently three case studies are exposed. The first one uses synthetic data to 

evaluate the possibility of using a NILM technique, with just one week of training period, to 

estimate the power, and thus the flow rate of a rotary-screw fixed speed air compressor, in a 

period in which the equipment presents a different behavior. With the promising results 

obtained from this analysis real data from an air compressor installed in the GreEn-ER 

building was used as replacement of the synthetic data. Using the original data, sampled every 

10 minutes the power associated to both load and unload states were not correct, probably 

because the air compressor changes its states with higher rate than 10 minutes sampling. This 

fact makes flow rate estimation inaccurate, and also the NILM approximation. To work 

around this problem the data was upsampled to 1 minute sampling interval, maintaining the 

same consumed energy but using the correct power associated to each state. The results in this 

case, was also promising. 
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7.2 Energy Audits Overview 

Energy audits are one way to obtain accurate and objective assessments of how to 

achieve savings. An energy audit is a process by which a building is inspected and analyzed 

by an experienced technician to determine how energy is used in it, with the goal of 

identifying opportunities for reducing the amount needed to operate the building while 

maintaining comfort levels [3]. 

There are several types of energy audits, and the level of complexity and detail of the 

analysis performed classify them. The first and less complex type of energy audit is the 

Benchmarking Audit. It performs a detailed preliminary analysis of the energy consumption 

and its cost, relying on utility bills, determining benchmark indices, like the ratio between the 

energy consumption and the surface area in a determined period of time, usually a year [3].  

The second type is the walk-through audit. It consists in a quick tour in the facility to 

visually inspect the target systems. This may include the analysis of energy consumption 

patterns and provide comparisons to average benchmarks for similar facilities. When the 

inspection of the target systems show promising savings potentials, this audit can lead to a 

more complex audit later [3]. 

The standard audit, seeks to quantify energy consumption and losses by performing a 

detailed analysis of the performances of several energy systems. This analysis usually 

includes on-site measurements, historical data collection and testing to determine the 

efficiency in the energy analyzed systems. Specific energy engineering calculations are 

applied to determine efficiencies and calculate energy and financial savings based on 

improvements and changes to each system. As the name suggests and because of its cost-

benefit, it is the most common type of energy audit performed. However, when historical data 

is not available, and the audit relies on on-site measurements, a photo of the operating 

conditions and the extrapolation for other operating points of the systems may be laborious to 

obtain [3].  

To address this problem, there is a more complex type of energy audit. It relies on 

computer simulations to predict the consumption that was not contemplated in the on-site 

measurements phase. The goal is to build a base for more consistent comparison with the 

actual energy consumption of the analyzed facility. This baseline is then used to compare with 

the performances achieved with improvements and changes tested in the simulation 
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environment. Because of the time involved in collecting data and setting up an accurate 

simulation model, this is the most expensive level of energy audit [3]. 

As the Standard Energy Audit is the most common type, the work developed in this 

thesis have been based on it. This procedure can be divided in three phases. The first phase 

concerns the collection of all necessary data for the efficiency analysis of the evaluated 

systems. Visual inspections, technical data from catalogs, historical data from the supervisory 

system, when available, and field measurements are examples of the collected data. This 

fieldwork consists of taking measurements of various quantities (electrical, thermal, luminous, 

physical etc.) necessary to determine the efficiency of the evaluated systems. These 

measurements should be made following standard technical procedures for each type of 

system evaluated, using reliable meters adapted to each type of installation and system. 

One way to perform this data collection is by incorporating the team into the 

environment to be evaluated. In this manner the team can experience the daily operation of 

the facility. However, besides the fact that the auditors' time to perform this task is limited, 

usually a few days or weeks, the ideal is that their activities have as little impact as possible 

on the normal operation of the systems being evaluated. Because of this, some operating 

modes of certain equipment may not be measured during the auditors' data collection period. 

The second phase consists in analyzing the collected data and determining the 

consumption and efficiency of the evaluated systems. To perform this task, the data collected 

in the preceding phase is applied in procedures specific to each system. In this stage, possible 

opportunities to promote energy sobriety can also be identified. 

The last phase consists in proposing improvements for the reduction of energy 

consumption, or even the replacement of specific equipment by a more efficient or cheaper 

one. Replacement by more efficient equipment, changes in operating procedures or the 

installation of new components that promote more rational energy are among the most 

common solutions. All this information is then made available to the customer in the form of 

a report so that he can appreciate the alternatives presented and choose whether or not to 

make these improvements. Figure 95 illustrates the flowchart process of a standard energy 

audit. 
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Figure 95 – Flowchart process of a standard energy audit. 
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Usually, large energy consuming systems are the main targets of an energy audit, 

because even a small absolute reduction in the consumption of these systems can represent 

large absolute savings. In buildings, lighting systems, HVAC (Heating Ventilation and Air 

Conditioning) and the envelope are usually emphasized. In industrial environments, besides 

those mentioned for buildings, analyses in water pumping systems, motors, boilers and 

compressed air systems are common. 

 

7.3 Case Studies – Estimating Compressed Air Leakage  

Compressed air systems usually are among the major energy consumers in a facility in 

which these systems are present, whether in a building or in an industrial environment. The 

use of a variable speed air compressor instead of a fixed-speed one, and the quantification and 

repair of leaks are among the most common solutions to improve the efficiency and achieve 

savings in a compressed air system. 

Leaks are a significant cause of wasted energy in a compressed-air system and can 

develop in many parts of a compressed air system. The most common problem areas are 

couplings, like hoses, tubes, fittings pipe joints, quick disconnects, filters, regulators, 

condensate traps, valves, flanges and other point-of-use devices [4]. Because of the similar 

physical characteristics with other gases, the compressed air leakage quantification and 

detection can be dealt in an analogous way as other gases. Several methods have been 

developed to detect and quantify fluid leaks in pipelines. They can be classified into 

biological, hardware and software techniques [5].  

The biological ones rely on empirical methods using sensorial perceptions, such as the 

hearing, smell, sight of specially trained staff. The hardware techniques use numerous 

equipment to enhance the sensorial perception of the staff. In the case of compressed air 

systems, the most used are ultrasound  devices [6] [7] and infrared cameras [8]. Although it is 

considered as the industry standard and best practice, the ultrasonic leak detection is limited to 

the application in short distances [9] and requires highly trained operators. Moreover, due to 

the compressed air expansion process in the location of the leak, a temperature gradient is 

created, making it possible to observe it from infrared images. However, these techniques also 

require the measurement of the openings through which the compressed air escapes from the 

pipeline to quantify the leaks and thus the potential savings from their repair. The 

measurement of those openings may be impractical for the auditors. Software-based methods 
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use flow, pressure, temperature and other data to estimate the leaks. These methods are 

usually based on the analysis, performed by an automatic algorithm, of both pressure and flow 

rate data, when available [5] [10].  

An alternative to quantify the compressed air leakage is to estimate the air 

compressors flow rate during a no compressed air consumption period, such as a weekend or 

a holiday [11]. During these periods, all the compressed air end use equipment should be 

turned off. In this scenario all the compressed air is directed to feed only the leaks. This 

estimation may be done by measuring the input power of the air compressor and correlating it 

to its flow rate. However, this technique implies that the auditors must be on site during a no 

compressed air consumption period for the monitoring of the air compressors. In an industrial 

environment, for instance, a no compressed air consumption period is rare, and it may not 

coincide with the energy audit planning. An alternative to go around this problem would be 

collecting logged data from the compressed air system. However, it is unlikely that the input 

power of the air compressors, or even the flow rate, is monitored individually. Although it is 

improbable to have the air compressors monitored individually, logged data from the global 

consumption is often available.  

As the correlation between the input power and the flow rate of an air compressor is an 

intrinsic characteristic of the equipment, it remains the same regardless the system’s operation 

mode. Thus, if one could extract the air compressors input power from the global 

consumption, the leakage estimation could be performed even without the presence of the 

auditors on site during a no compressed air consumption period. This would enhance the 

quality of the analysis performed during the energy audit with a smaller cost when the other 

options for this analysis are impractical. 

The load curve extraction of an equipment from the global consumption can be done 

using NILM (Non-Intrusive Load Monitoring) techniques [2] under certain circumstances. 

Thus, this work aims at investigating the possibility of using NILM methods to estimate the 

compressed air leakage in a tertiary building environment and to calculate the potential 

savings with the leaks repair in the context of an energy audit. 

NILM techniques were already used to detect leaks in compressed air systems. In his 

master thesis [12], Piber used a stationary device to measure the global consumption of a 

warship. With embedded NILM algorithms, this device was also capable to extract the 

consumption of some loads, such as vacuum-assisted sewage collection system, a low-
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pressure compressed air system. Analyzing the operating schedule, he was able to detect the 

presence of leaks in the compressed air system. However, he did not mention the sampling 

rate neither the training period used to train the NILM algorithms. In addition, as a stationary 

device was installed, a permanent change in the facility were done. Therefore, it is important 

to highlight that the proposed technique is non-intrusive and does not imply any permanent 

changes in the system, such as installing flow meters in the pipeline, or stationary power 

meters. In addition, the NILM technique to enhance energy audits was already discussed by 

Berges et al. [13], but it was limited to the application in a residential environment. 

Summarizing, the idea is to use input power measurements that could be retrieved 

using portable power analyzers, for instance, to train the algorithm and logged data from the 

global consumption to extract the air compressors power consumption. This estimation, if 

performed in a period with no compressed air consumption (weekends, vacations, 

holidays…), represents the leakage present in the grid. If the amount of the leakage is known, 

the estimation of the savings achieved with the repair of some, or the totality, of the leaks is 

feasible. Thus, with input power data, during both normal operation and no compressed air 

consumption periods, and the data sheets of the equipment it is possible to estimate the 

potential saving by repairing the leaks present in the compressed air system. The procedure to 

estimate the potential savings with the repair of the compressed air leakage is illustrated in 

Figure 96. 
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Figure 96 – Potential savings estimation with the repair of compressed air leakage. 

 

7.3.1 Estimating Compressed Air Flow From Input Power Measurements 

Tables (fixed-speed) and curves (variable-speed) provided by the air compressors 

manufacturers make the correlation between the input power and the compressed air flow rate 

possible. When this information is not available, it is possible to measure the flow rate by 

measuring the air velocity at various points on the intake pipe cross-section and integrate 

these measurements in the pipe cross-section area, with an anemometer, for example. For the 

variable-speed compressor, numerous measurements should be done in several operating 
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points, in order to determine a correlation curve between power and flow rate. The flow rate 

estimation by correlating the input power of the air compressors and their flow, enables also 

the determination of load curve of compressed air in a facility, in the absence of a flow meter.  

Fixed-speed air compressors operate at full capacity, delivering rated flow, until the 

pressure set point is reached. At this point, the compressor unloads, operating at minimum 

power, to maintain internal pressure, while producing no air to the network. Because of this 

behavior, this type of compressor is also called modulating compressor. Usually, it varies 

between two states, the load and the no load one. These two states typically have very 

distinguishable input power associated, in a way that it is not difficult to identify them.   

Therefore, to estimate the flow of a fixed-speed air compressor it is enough to well 

identify its load state and correlate it with the compressor's flow rate capacity, measured or 

obtained by manufacturer tables. For the no load state, zero flow is assigned. An example of a 

performance table of a rotary-screw fixed speed air compressor operating at rated pressure 

provided by the manufacturer is presented in Table 30, while an example of the association 

between the power and the flow rate is illustrated in Figure 97.  

Table 30 – Manufacturer performance table of a Fixed-speed air compressor [14]. 

Model GS30B10 

Manufacturer BelAir 

Rated Capacity at Full Load Operating Pressure [m³/h] 294 

Full Load Operating Pressure [bar] 8 

Drive Motor Nominal Rating [hp] 40 

Total Package Input Power at Zero Flow [kW] 6 

Total Package Input Power at Rated Capacity and Full Load Operating Pressure [kW] 33.8 

  

Figure 97 – Example of association between power and flow rate of a rotary-screw fixed speed air compressor. 
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Another way to estimate the flow rate from the power measurements is by the use of 

the empiric Equation 26, in which 𝑃𝑎𝑣𝑔 represents the average power, 𝑃𝑙𝑜𝑎𝑑 and 𝑃𝑢𝑛𝑙𝑜𝑎𝑑 are 

the power associated to both load and unload states, respectively. 𝑄𝑎𝑣𝑔 stands for the average 

flow rate, while 𝑄𝑟𝑎𝑡𝑒𝑑 is rated flow rate of the air compressor at the load state. This equation 

allows to calculate the average flow rate of a rotary-screw fixed speed air compressor. 

 

 𝑄𝑎𝑣𝑔 =
(𝑃𝑎𝑣𝑔 − 𝑃𝑢𝑛𝑙𝑜𝑎𝑑)𝑄𝑟𝑎𝑡𝑒𝑑

(𝑃𝑙𝑜𝑎𝑑 − 𝑃𝑢𝑛𝑙𝑜𝑎𝑑)
 Equation 26 

7.3.2 Estimating Compressed Air Leakage Using NILM Techniques 

In order to perform an estimation of compressed air leakage in a facility using NILM 

techniques, consumption data from a rotary-screw fixed-speed air compressor were extracted 

from the GreEn-ER dataset [16]. The computational code was developed in Jupyter 

Notebooks, an environment in python that combines code, text and images. It is also available 

in open source [17]. The original data, especially the global consumption, contain some data 

quality problems, such as the presence of outliers. These anomalous values were identified 

using the forecast error method, presented in Chapter 4 [18] and corrected.  

Two approaches were evaluated. In the first one, a synthetic dataset of a fixed-speed 

air compressor was created based on a real one. It was inserted into the GreEn-ER dataset, in 

substitution of the real air compressor that exists in the building. Afterwards, real data of the 

air compressor from the GreEn-ER building were used, extracted from the building’s 

management system.  

 

7.3.2.1 Applying NILM Algorithms to Quantify Compressed air Leaks Using Synthetic 

Data 

In the context of an energy audit, it is unusual that the auditors are on site to measure 

the air compressor consumption during no compressed air consumption periods. Additionally, 

measuring and logging the power of individual appliances is not the standard in most 

facilities, either industrial or even tertiary buildings. However, it is more common for global 

consumption to be measured and logged by an energy management. Therefore, one alternative 

is to use NILM algorithms to estimate the power of such appliances from the global 

consumption, during these periods that the auditors are not on site.  
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It is important to remember that the functioning of a fixed-speed screw air compressor, 

the most common used in most facilities around the world, is slightly different during normal 

operation periods and no compressed air consumption periods. These air compressors usually 

operate in two well defined states, called load and unload. During the load state, the 

compressor operates at its rated capacity delivering maximum air flow rate, at rated power. 

On the other hand, during the unload state, the air compressor delivers zero air flow rate, 

keeping a residual consumption. To adjust the air production to the air consumption, the air 

compressor modulates between these two states, controlled by the grid’s air pressure. Hence, 

during normal operation periods, a well-sized air compressor tends to operate most of the time 

at the load state, while during periods of reduced, or zero, compressed air consumption, the 

unload state would be more present, creating two different operation modes.  

As stated before, to estimate the compressed air leakage, it is sufficient to well 

estimate the operation the air compressor during a no compressed air consumption period. 

However, during the on-site measuring campaign by the auditors, only the normal operation 

mode would be available for data collection and training an eventual NILM algorithm. Thus, 

in order to assess the possibility of using NILM techniques to estimate the air compressor 

functioning during a no compressed air consumption period having only data from the normal 

operation mode for training, a well-behaved synthetic dataset was created. It was based on the 

specifications of a real air compressor, the GA18+-100 from Atlas Copco, which 

specifications are shown in Table 31. This dataset was separated into two different periods, 

one regarding normal operation and the other regarding a period with be no compressed air 

consumption. The data created were then inserted into the GreEn-ER dataset in substitution to 

the actual air compressor present in the building.  

It was created one year worth of synthetic air compressor data, with one hour sampling 

interval. Firstly, a normal period was created. The time step chosen was divided in ten equal 

steps and the duration of a load period was taken randomly between five and ten steps. At the 

end of the series, simulating a period of no-production of one week, the duration of a load 

period was also taken randomly, but this time with duration between zero and five steps. 

White noise was also inserted in the data. The following figure shows the generated data, and 

a zoom in detailing a normal operation period and a no-production one. At the same time 

Table 32 presents the average power in each period.  
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Table 31 – Manufacturer performance table of a Fixed-speed air compressor. [19] 

Model GA18+-100 

Manufacturer Atlas Copco 

Rated Capacity at Full Load Operating Pressure [m³/h] 224.3 

Full Load Operating Pressure [bar] 7 

Drive Motor Nominal Rating [hp] 25 

Total Package Input Power at Zero Flow [kW] 5.4 

Total Package Input Power at Rated Capacity and Full Load Operating Pressure [kW] 23.5 
 

  
Figure 98 – Power data for the Air Compressor. 

 

Table 32 – Average air compressor power and flow rate during the different operation periods 

Evaluated Period Average Power [kW] 

Complete 18.41 

Normal Operation 18.63 

No-production 9.71 

 

7.3.2.1.1 Leakage Estimation from Measurements – Synthetic Data Study Case 

In order to assess the performance of NILM techniques in the task of quantifying 

compressed air leakage, it is first necessary to establish the ground truth. Hence, using the 

procedure presented in the section 7.3.1 the flow rate load curve was then estimated based on 

the air compressed power for the whole available data. Figure 99 presents a seven days rolling 

average of the estimative of the compressed air flow rate and the air compressor power. It is 

possible to visualize normal operation and no-production period, at the end of the series. 

Table 33 exposes the average power and estimate flow rate and the standard deviation for 

three periods: the complete dataset, the normal operation period and the no-production period. 

 

No Production 
Period

Normal Operation Period
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Figure 99 – Seven days rolling average of air compressor power and flow rate. 

 
Table 33 – Average air compressor power and flow rate during the different operation periods 

Evaluated Period 
Average 

Power [kW] 

Average Flow 

Rate [m³/h] 

Complete 18.41 162.99 

Normal Operation 18.63 165.77 

No-production 9.71 54.03 

 

According to the data presented in the table above, the average flow rate during the 

no-consumption period, which denotes the total leakage in the grid represents circa 32.6% of 

the average flow rate during a normal operation period. This is a typical value, compatible 

with compressed air leaks found in several environments. The flow rate estimations obtained 

by the application of Equation 26 resulted in differences smaller than 1% when compared to 

the results shown in Table 33.  

 

7.3.2.1.2 NILM Estimation of Compressed Air Leakage – Synthetic Data Study Case 

The leakage estimation presented in the previous section was done thanks to the 

availability of power consumption data in a no-production period. However, that is not the 

typical case in the context of an energy audit. Usually, the auditors have only a few days or 

weeks of data that was measured by themselves. Therefore, the use of NILM techniques to 

estimate the power consumption of an air compressor during a no-production period, and thus 

the compressed air leakage, from the global consumption shows potential in this framework.  

To address this task, the Factorial Hidden Markov Model (FHMM) NILM algorithm, 

presented in Chapter 4, was applied with the help of the NILMTK. Hidden Markov models 
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can be used in the NILM context as both supervised (using labeled data to train the algorithm) 

and unsupervised learning approaches, based on the requirements [15]. In the present work, 

the supervised approach is employed. Thus, in this approach FHMM takes some period to 

train the model, in order to identify power values associated to each state of operation of the 

target appliances.  

Four major consumers of the GreEn-ER building were selected in order to create a sub 

dataset regarding these loads, the global consumption and the created air compressor. This sub 

dataset was used in the NILM task. Another load, called “fantôme” was created, 

corresponding to the difference between the global consumption and the sum of the other five 

loads. The loads selected are named as follows: 

• Crous – The Crous, acronym for “Centre Régional des Œuvres Universitaires 

et Scolaires”  load belongs to the University Restaurant, where some typical 

loads are connected, as dishwashers and dryers, furnaces, heaters etc.; 

• ASI – The ASI load represents loads connected to the datacenter, as computers, 

uninterruptible power supply etc.;  

• TD-GF – The TD-GF represents chillers that are responsible for the 

acclimatization during the summer; 

• AHU – The load called AHU represents a set of 16 Air Handling Units present 

in the building; 

• Fantome – This load is inserted as a noise, it corresponds to the difference 

between the main load and the sum of the other loads. 

In order to simulate the context of an energy audit one typical week was selected as 

training period. Figure 100 illustrates the data, while Table 34 exposes its average value.  

  

a) Global consumption load curve b) Crous and AHU load curve 
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c) TD-GF, ASI and Fantome load curve d) Air Compressor load curve 

Figure 100 – Power data during the training period. 

 

Table 34 – Average power of the loads during the training period. 

Load Average Power [kW] 

Main 140.34 

Air Compressor 19.06 

Crous 20.94 

AHU 28.33 

TD-GF 1.28 

ASI 38.26 

Fantome 35.01 

 

The idea behind the usage of NILM techniques to estimate the compressed air leakage 

is to retrieve the air compressor power from the global consumption during a no compressed 

air consumption period. Regarding the dataset presented in this work, the global consumption 

load curve, during this period, is shown in the Figure 101. 
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Figure 101 – Global consumption load curve in a no-production period. 

 

With the help of the NILMTK the FHMM algorithm is then applied, which results are 

illustrated in the Figure 102. In this figure, GT means Ground Truth, or the consumption of 

the created air compressor, and FHMM stands for the results from the FHMM NILM 

algorithm. 

 

Figure 102 – Power data during the training period. 
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It can be seen in the figure above that the FHMM algorithm was able to retrieve most 

of the air compressor consumption in this example. In order to quantify the estimation of the 

compressed air flow rate in this period, the association between flow rate and power showed 

in the section 7.3.1 was applied. Then, the average compressed air flow was compared to the 

flow estimated to the actual compressed air power. These results are exposed in Table 35. 

 

Table 35 – Average air compressor power and flow rate during a no-production period.  

 
Average 

Power [kW] 

Average Flow 

Rate [m³/h] 

Ground Truth 9.71 54.03 

FHMM 9.16 52.18 

 

The results presented in Table 35 suggests that, it is possible to estimate the 

compressed air leakage using NILM techniques in the context of energy audits, considering 

the dataset investigated. With only one typical week used as training the algorithm was able to 

estimate the compressed air flow with an error lower than 4%. 

Thus, the estimative presented in the last table could be used as a result of an energy 

audit in the compressed air system. These results allow the auditors to estimate the energy and 

financial savings with the repair of the leaks and, with the estimative of the costs of the 

repairs, calculate the payback time. Then, the client would have the necessary information to 

evaluate if the investment is worth or not.  

 

7.3.2.1.3 Energy Savings With Leaks Repair – Synthetic Data Study Case 

The leakage estimation performed in the previous sections allows calculating potential 

energy savings with its repair. As an example, this section estimates the potential savings if all 

of these leaks were repaired considering both estimations, the one presented in section 0 using 

the data considered the Ground Truth, and the other presented in the previous section 

performed using the results of the energy disaggregation. With the repair of all leaks, the new 

average flow rate can be predicted as the subtraction of the average leaks from the average 

flow rate of the normal operation period. Table 36 presents the prediction of the average flow 

rate after the repair of the leaks, considering the ground truth and the estimation from the 

NILM technique. 
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Table 36 – Average air compressor flow rate after the repair of the leaks. 

Evaluated Period 
Flow Rate [m³/h] 

Ground Truth FHMM 

Normal Operation 165.77 

Leaks 54.03 52.18 

After repair 111.74 113.59 

 

A way to calculate average power from the average flow is by writing the Equation 26 

in terms of the 𝑃𝑎𝑣𝑔, showed in Equation 27. By obtaining the average power, it is possible to 

extrapolate to yearly energy consumption, and finally, the savings per year with the repair of 

the leaks. The average power predictions are presented in Table 37. 

𝑃𝑎𝑣𝑔 =
𝑄𝑎𝑣𝑔

𝑄𝑟𝑎𝑡𝑒𝑑

(𝑃𝑙𝑜𝑎𝑑 − 𝑃𝑢𝑛𝑙𝑜𝑎𝑑) + 𝑃𝑢𝑛𝑙𝑜𝑎𝑑 Equation 27 

 

Table 37 – Average air compressor power after the repair of the leaks. 

Evaluated 

Period 

Average Power [kW] 

Ground Truth FHMM 

Normal Operation 18.63 18.63 

Leaks 9.71 9.16 

After repair 14.32 14.47 

 

Considering the operation schedule and the average power exposed in Table 37, it is 

possible to estimate the annual consumption and thus, the savings with the repair of the leaks. 

For the annual consumption estimation, it was considered that the no compressed air 

consumption period lasts one week, while the rest of the year the building remains in normal 

operation. During the no compressed air consumption period the air compressor would 

operate at the power associated to the unload state (5.4 kW), while during the rest of the year, 

the average power can be retrieved from Table 37. This information allows the extrapolation 

of the average power to annual electricity consumption and, thus, to the potential savings in 

the compressed air system. Table 38 exposes the results. 

 

Table 38 – Annual electricity savings with the repair of the leaks. 

 
Before the 

leaks repair 

After the leaks repair 

 
Ground 

Truth 
FHMM 

Average 

Power 

Normal operation 18.63 14.32 14.47 

No compressed air 9.71 5.4 5.4 
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consumption 

Annual Consumption [kWh] 161271.6 123956,0 125226,4 

Annual Savings [kWh] - 37315.6 36045.2 

Annual Savings [%] - 23.1 22.4 

 

The savings predicted from the leakage estimation using the measurements represents 

around 23.1% of the annual consumption, while the one estimated using NILM techniques 

represents 22.4%, which is less than 1% of error. These results indicate that it is possible to 

use of NILM techniques to estimate compressed air leaks in the context of an energy audit 

and may enhance the savings estimations when some data are not directly available. 

 

7.3.2.2 Applying NILM Algorithms to Quantify Compressed air Leaks Using GreEn-ER 

Data with 10 minutes sampling interval 

The results presented in the previous section, using synthetic created data of an air 

compressor, indicates that is possible to estimate the compressed air leakage in a grid with a 

rotary-screw air compressor using NILM techniques even with short period of training, like 

one week for example. With this background, the same procedure from the section 7.3.1 was 

employed, this time, using real air compressor data, issued from the GreEn-ER’s BMS. In 

order to simulate the context of an energy audit, two weeks’ worth of data were used in this 

work. The first one corresponds to a period of normal operation and will be used as training 

period. The other week, during a period with no use of compressed air, is used to estimate the 

leaks, called also test period. The data are sampled with 10-minutes sampling interval. The 

following sections present the estimation of the compressed air leaks using measurements 

data and NILM technique FHMM. 

7.3.2.2.1 Leakage Estimation from Measurements – GreEn-ER Data With 10 Minutes Sampling 

Interval Study Case 

The scheme of the compressed air production in the building is illustrated in 

Figure 103. In this figure, it is possible to observe, that there are two air compressors, of 

which one normally operates while the other is kept as system backup. Its specifications data 

were presented in Table 30. The power associated to the load state was identified as 18kW, 

while the unload state was associated with 12kW, as it can be seen in Figure 104. 

Additionally, Figure 105 presents the power of the air compressor in both training and test 

periods.  
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Figure 103 – Compressed air production scheme. 

 

 

Figure 104 – Power data for the air compressor identifying the power associated to both load and 

unload states. 
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a) Training period b) Test period 

Figure 105 – Power data for the Air Compressor. 

 

The number of samples in which each of the operating states of the air compressor 

were identified are presented in Table 39. In addition, using the procedure presented in 

section 7.3.1 the flow rate load curve was then estimated. The same table exposes the average 

power and estimated flow rate for the normal operation and no-production periods. 

Table 39 – Average air compressor power and flow rate during the different operation periods 

Evaluated 

Period 

Number of samples Average value 

Load Unload Power [kW] Flow Rate [m³/h] 

Training Period 846 163 17.03 246.70 

Test Period 140 869 12.83 40.79 

According to the data presented in the previous table, the average flow rate during the 

no-production period, which denotes the total leakage in the grid, represents around 16.5 % of 

the average flow rate during a normal operation period.  

 

7.3.2.2.2 NILM Estimation of Compressed Air Leakage – GreEn-ER Data with 10 Minutes 

Sampling Interval Study Case 

In order to use NILM techniques to estimate the compressed air leakage in this case 

study, the same procedure used in the section 7.3.2.1.2 was then applied to this dataset. The 

following figures illustrate the load curves of the loads cited in section 7.3.2.1.2 and the 

global consumption, during the period used for the training and the period used to estimate the 

leaks. The following table presents the average power of these loads during both periods. The 

air compressor load curves were already shown in the previous section.  
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a) Training period b) Test period 

Figure 106 – Power data for the global consumption. 

  
a) Training period b) Test period 

 

Figure 107 – Power data for the Crous and AHU loads. 

  
a) Training period b) Test period 

Figure 108 – Power data for the TD-GF, ASI and Fantome loads. 
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Table 40 – Average power of the loads. 

Load 
Average Power [kW] 

Training Period Test Period 

Main 143.67 139.98 

Crous 20.99 21.07 

AHU 27.00 32.77 

TD-GF 5.32 0.48 

ASI 38.11 38.06 

Fantome 35.18 34.78 

 

With the help of the NILMTK, the FHMM algorithm is then applied, which results are 

illustrated in Figure 109, GT means Ground Truth, or the actual consumption, and FHMM are 

the results from the FHMM NILM algorithm. 

  

a) Air compressor disaggregation results b) Zoom in on the air compressor disaggregation results 

Figure 109 – Disaggregation results. 

 

It can be seen in the figure above that the FHMM algorithm was not able to retrieve 

most of the air compressor consumption pattern in this example. This can also be seen by the 

average power and flow rate estimation, calculated by applying the procedure described in the 

section 7.3.1. These results are exposed in Table 41. 

Table 41 – Average air compressor power and flow rate during a no-production period.  

 
Average 

Power [kW] 

Average Flow 

Rate [m³/h]  

Estimation From Measurements 12.81 40.79 

NILM Estimation 17.29 259.00 

 

The results presented in Table 41 indicates that the NILM could not be really suitable 

to estimate the compressed air leaks in the context of an energy audit with this type of data. 
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However, the fact that the power data originally comes from cumulative energy measurements 

means that there can be an attenuation of power peaks, modifying the values of the powers 

associated with the states of certain equipment. To turn around this issue, power 

measurements were performed to the air compressor to well identify the power associated to 

both states. Figure 110 presents the data. In the same figure, it is highlighted the actual power 

associated with both load and unload states. One and a half day worth of data was measured 

with 5 minutes sampling interval.  

 

 

Figure 110 – Direct power measurement of the air compressor. 

 

The fact that the two states (18 kW and 6 kW) identified in this dataset differ from the 

values associated to the air compressor due the 10 minutes sampling interval used, affect not 

only the flow rate estimation as also the performance of the FHMM. The 10 minutes interval 

attenuates the difference between the load and unload states. In this way, the importance of 

the value of the compressor load state, for example, in relation to the overall consumption is 

reduced. In cases like that, the disaggregation algorithms may also lose performance. Thus, 

the upsampling of the data, recovering information lost during the storage process in 10 

minutes sampling interval could improve the results. 

 

36 kW

6 kW
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7.3.2.3 Applying NILM Algorithms to Quantify Compressed air Leaks Using GreEn-ER 

Data with 1 Minute Sampling Interval 

As stated in the previous section, the data originally available concern the energy 

consumed, and are converted a posteriori into power. Therefore, the 10-minute sampling 

approach may hide some important features to the disaggregation task. Thus, seeking better 

estimations the data were upsampled into 1-minute sampling interval. The following sections 

exposes the compressed air leakage estimation, from measurements data and using the NILM 

algorithm FHMM, and the savings estimation with the repair of the leaks.   

7.3.2.3.1 Leakage Estimation from Measurements – GreEn-ER Data With 1 Minute Sampling 

Interval Study Case 

In the previous section, the original load curve of the air compressor installed in the 

GreEn-ER building was exposed, in Figure 105. In that figure, the state with associated power 

of 18 kW was considered the load one while the unload state was associated with the 12 kW 

value. Usually, the power difference between these two states are more prominent than 6 kW. 

Actually, from direct power measurements, presented in Figure 110, the power associated 

with both load and unload states are 36 kW and 6 kW, respectively, which differs a little from 

the value presented in Table 30, probably taking in account also the dryer power. This can be 

explained by the 10-minutes sampling interval used to store the data, indicating that the air 

compressor changes its operating states at a greater rate than the sampling used. When 

measuring the energy consumed in the sampling interval, an average value is retrieved that 

reduces the difference between the powers associated to the two states. This fact may affect 

the flow rate estimation since it relies on how long the air compressor remains in the load and 

unload states, overestimating the flow rate during the periods in which the air compressor 

remains in the 18 kW state, and underestimating the flow rate during the 12 kW condition. 

Because of that, the upsampling to 1-minute sampling rate was performed. 

In order to upsample the air compressor data keeping the original average power value 

it is necessary to determine how much time the compressor operates in each state. This is 

possible to estimate by performing a weighted average that can be translated to the linear 

system presented in the following equations. 

 

𝑃𝑙𝑜𝑎𝑑
10 =

(𝑃𝑙𝑜𝑎𝑑 ∗ 𝑇𝑙𝑜𝑎𝑑
𝑙 ) + (𝑃𝑢𝑛𝑙𝑜𝑎𝑑 ∗ 𝑇𝑢𝑛𝑙𝑜𝑎𝑑

𝑙 )

10
 Equation 28 
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𝑃𝑢𝑛𝑙𝑜𝑎𝑑
10

=
(𝑃𝑙𝑜𝑎𝑑 ∗ 𝑇𝑢𝑛𝑙𝑜𝑎𝑑

𝑢 ) + (𝑃𝑢𝑛𝑙𝑜𝑎𝑑 ∗ 𝑇𝑢𝑛𝑙𝑜𝑎𝑑
𝑢 )

10
 

Equation 29 

10 = 𝑇𝑙𝑜𝑎𝑑 + 𝑇𝑢𝑛𝑙𝑜𝑎𝑑 Equation 30 

In which, 

𝑃𝑙𝑜𝑎𝑑
10  and 𝑃𝑢𝑛𝑙𝑜𝑎𝑑

10  are the powers associated to both load and unload states in the 10 

minutes sampling interval, equal to 18kW and 12kW, respectively, 

𝑃𝑙𝑜𝑎𝑑 and 𝑃𝑢𝑛𝑙𝑜𝑎𝑑 are the powers associated to both load and unload states in the 1 

minute sampling interval, equal to 36kW and 6kW, respectively,, 

𝑇𝑙𝑜𝑎𝑑 and 𝑇𝑢𝑛𝑙𝑜𝑎𝑑 are the time that the compressor remains in load state during the 1 

minute interval,  

For each 10 minutes period that the compressor presents 18 kW of average power, it 

has operated 4 minutes in load condition (36 kW) and 6 minutes in unload condition (6 kW). 

For each 10 minutes period in which the air compressor power was 12 kW, the asset has 

operated 2 minutes in load conditions and 8 minutes in unload state. The load and unload 

operating conditions during the 10 minutes period were distributed in a random way. 

Figure 111 shows the air compressor power during the training and test periods, as well the 

two-hour moving average for better visualization. At the same time, Figure 112 presents a 

zoom in of those figures.  

  
a) Training Period b) Test Period 

Figure 111 – Power data for the Air Compressor. 
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a) Training Period b) Test Period 

Figure 112 – Zoom in in the power data for the Air Compressor. 

 

The upsampling of the data modifies the number of state changes in the operation of 

the air compressor. Consequently, the flow rate estimation drastically changes. With the 10-

minutes sampling interval, the majority of the time during the training phase was in the load 

state. However, with the upsampling to 1-minute interval, one sample that was in load state in 

the 10 minutes sampling, belongs now only 40% of the time in this condition. So it is 

expected that the flow rate estimation decreases. This is confirmed by the values presented in 

Table 42. This table shows the number of samples in which each of the operating states of the 

air compressor were identified. In addition, using the procedure presented in section 7.3.1 the 

flow rate load curve was then estimated. The same table exposes the average power and 

estimated flow rate for the normal operation and no-production periods for both sampling 

intervals.  

Table 42 – Average air compressor power and flow rate during the different operation periods 

Sampling 

interval 

Evaluated 

Period 

Number of samples Average value 

Load Unload Power [kW] Flow Rate [m³/h] 

10 minutes 

Training 

Period 
846 163 17.03 246.51 

Test Period 140 869 12.83 40.79 

1 minute 

Training 

Period 
3706 6375 17.03 108.08 

Test Period 2296 7785 12.83 66.96 

 

Considering the air compressor specifications presented in Table 30, the flow rate 

estimation presented in Table 42 for 1 minute sampling interval matches better to the air 

compressor characteristics when compared to the estimation for 10 minutes sampling interval. 

Seeing average power values, the air compressor operates at 52% of its rated capacity. In view 
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of the 10 minutes sampling interval, the flow rate estimation represented around 84% of the 

rated capacity, which is inconsistent with the power consumption, since this percentage 

should be lower than the 52% of the power, because of the zero flow rate delivered during the 

unload state. On the other hand, the flow rate estimation considering the 1 minute sampling 

interval represents 36.8% of the air compressor rated capacity, which is more consistent 

considering the energy consumption and the operation of this type of air compressor. 

Assuming that the 1 minute sampling estimation is more accurate, the compressed air 

leakage represents 62.0% of the average flow rate during a normal operation period. 

However, 62% represents a high value of leakage, even in poor maintained environments and 

may suggest other problems, such as irrational usage of compressed air, non-optimal control 

and usage etc. Nevertheless, even if this estimation represents more than the leaks, it would 

suggest a more detailed investigation. 

 

7.3.2.3.2 NILM Estimation of Compressed Air Leakage – 1 Minute Sampling Interval Study Case 

In order to use NILM techniques to estimate the compressed air leakage in this case 

study, the same procedure used in the section 7.3.2.1.2 was then applied to this modified 

dataset. Since the sampling interval of the dataset originally 10 minutes, all these loads were 

upsampled to 1 minute sampling interval using forward fill, in order to match the sampling 

interval of the air compressor. The following figures illustrate the load curves of the loads 

cited in section 7.3.2.1.2 and the global consumption, during the period used for the training 

and the period used to estimate the leaks. The following table presents the average power of 

these loads during both periods. The air compressor load curves were already shown in 

section 7.3.2.3.1.  

  
  

c) Training period d) Test period 
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Figure 113 – Power data for the global consumption. 

  
  

c) Training period d) Test period 

Figure 114 – Power data for the Crous and AHU loads. 

  
c) Training period d) Test period 

Figure 115 – Power data for the TD-GF, ASI and Fantome loads. 

 
Table 43 – Average power of the loads. 

Load 
Average Power [kW] 

Training Period Test Period 

Main 143.67 139.98 

Crous 20.99 21.07 

AHU 27.00 32.77 

TD-GF 5.32 0.48 

ASI 38.11 38.06 

Fantome 35.18 34.78 

 

With the help of the NILMTK, the FHMM algorithm is then applied, which results are 

illustrated in Figure 116, GT means Ground Truth, or the actual consumption, and FHMM are 

the results from the FHMM NILM algorithm. 
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Figure 116 – Zoom in on disaggregation results. 

 

It can be seen in the figure above that the FHMM algorithm was able to retrieve most 

of the air compressor consumption in this example. In order to quantify the estimation of the 

compressed air flow rate in this period, the association between flow rate and power showed 

in section 7.3.1 was applied. These results are exposed in Table 44. Then, the average 

compressed air flow was compared to the flow estimated of the actual compressed air power. 

These results are presented in Table 45. 

 

Table 44 – Average air compressor power and flow rate during the different operation periods 

Sampling 

interval 

Evaluated 

Period 

Number of samples Average value 

Load Unload Power [kW] Flow Rate [m³/h] 

1 minute 
Training Period 3706 6375 17.03 108.08 

Test Period 2293 7787 12.82 66.88 

 

Table 45 – Comparison between leakage estimation from measurements and from NILM.  

 
Average 

Power [kW] 

Average Flow 

Rate [m³/h]  

Estimation From Measurements 12.83 66.96 

NILM Estimation 12.82 66.88 
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The results presented in Table 46 suggests that, it is possible to estimate the 

compressed air leakage using NILM techniques in the context of energy audits, considering 

the dataset investigated. With only one typical week used as training, the algorithm was able 

to estimate the compressed air flow with an error lower than 1% in this case. 

Thus, the estimation presented in the last table could be used as a result of an energy 

audit in the compressed air system. These results allow the auditors to estimate the energy and 

financial savings with the repair of the leaks and, with the estimative of the costs of the 

repairs, calculate the payback time. Then, the client would have the necessary information to 

evaluate if the investment is worth or not.  

7.3.2.3.3 Energy Savings With Leaks Repair – 1 Minute Sampling Interval Study Case 

The leakage estimation performed in the previous section allows for the calculation of 

potential energy savings with its repair. Estimation of potential energy savings with leaks 

elimination is, therefore, presented in this section. 

Although the complete elimination of compressed air leaks is theoretically feasible, it 

is nearly impossible to achieve in real environments. Because of that, potential savings were 

calculated considering incremental percentages repair of leaks, from 10% to 100%.  

The determination of the compressed air flow rate after the leaks elimination allows 

the estimation of how long the air compressor would remain in both load and unload state 

and, hence, the average power of the air compressor. Table 46 and Table 47 present the 

average flow rate and power after the leaks repair in both periods, normal operation and no 

compressed air consumption. 

Table 46 – Average air compressor power after the leaks repair during the normal operation period. 

Leaks  

repaired [%] 

Leaks  

repaired [m³/h] 

Flow Rate  

[m³/h] 

Number of samples Average  

Power [kW] Load Unload 

10 6.696 101.38 3476 6605 16.35 

20 13.392 94.69 3247 6834 15.66 

30 20.088 87.99 3017 7064 14.98 

40 26.784 81.30 2788 7293 14.30 

50 33.480 74.60 2558 7523 13.61 

60 40.176 67.90 2328 7753 12.93 

70 46.872 61.21 2099 7982 12.25 

80 53.568 54.51 1869 8212 11.56 

90 60.264 47.82 1640 8441 10.88 

100 66.960 41.12 1410 8671 10.20 
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Table 47 – Average air compressor power after the leaks repair during the no compressed air consumption period. 

Leaks  

repaired [%] 

Leaks  

repaired [m³/h] 

Flow Rate  

[m³/h] 

Number of samples Average  

Power [kW] Load Unload 

10 6.696 60.26 2066 8015 12.15 

20 13.392 53.57 1837 8244 11.47 

30 20.088 46.87 1607 8474 10.78 

40 26.784 40.18 1378 8703 10.10 

50 33.480 33.48 1148 8933 9.42 

60 40.176 26.78 918 9163 8.73 

70 46.872 20.09 689 9392 8.05 

80 53.568 13.39 459 9622 7.37 

90 60.264 6.70 230 9851 6.68 

100 66.960 0.00 0 10081 6.00 
 

Considering the operation schedule, excluding vacations, holidays and weekends, the 

building operates 235 days per year in normal conditions. The remaining 130 days could be 

considered periods of no compressed air consumption. This information allows for the 

calculation of the average power, through a weighted mean calculation, and annual 

consumption by extrapolating these values to the whole year. The annual average power and 

energy consumption before the leaks repair are 15.53 kW and 136.1 MWh, respectively. 

Table 48 exposes the annual savings estimation with the compressed air leakage repair while 

Figure 116 illustrates the data. 

Table 48 – Annual savings with the repair of compressed air leaks. 

Leaks  

repaired [%] 

Average Power [kW] 
Annual 

consumption 

[kWh] 

 

Annual savings 

[kWh] Normal 

operation 

No compressed 

air 

consumption 

Whole year  

10 16.35 12.15 14.85 130.1  5985.4 

20 15.66 11.47 14.17 124.1  11970.8 

30 14.98 10.78 13.48 118.1  17956.2 

40 14.30 10.10 12.80 112.1  23941.6 

50 13.61 9.42 12.12 106.2  29927.0 

60 12.93 8.73 11.43 100.2  35912.4 

70 12.25 8.05 10.75 94.2  41897.8 

80 11.56 7.37 10.07 88.2  47883.2 

90 10.88 6.68 9.38 82.2  53868.6 

100 10.20 6.00 8.70 76.2  59854.0 
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Figure 117 – Annual savings with the repair of compressed air leaks. 

 

As an example, considering the ideal elimination of all leaks, savings of 59830.8 kWh 

represent around 44% in the compressed air system and 4.75% of the current annual global 

consumption. Nevertheless, it is important to remember that, although it is possible, the 

estimated leakage represents a high percentage compared to the total flow in the system, 

which may indicate other problems as irrational usage of compressed air, non-optimal control, 

and usage etc. However, even if this estimation represents more than the leaks, it leads itself 

to a more detailed investigation. 

 

7.4 Conclusions 

This chapter aimed to employ a NILM techniques to enhance energy audits by 

quantifying the leakage in a compressed air system of a tertiary building in a context similar 

to a real energy audit. One way to estimate the quantity of leakage in a compressed air system 

is from the association between the flow rate generated by the compressors and the power 

developed by them during non-production periods. During these periods, compressed air 

consumption should be zero, and all the air generated by the compressors is addressed to 

attend to the leaks. The quantification of compressed air leakage in a grid is a common 

analysis during an energy audit that usually yields good results in an energy audit. Even if an 
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energy audit can make use of both historical data collected from energy management systems 

and from measurements taken on site by the auditors, the period available for the 

measurements is limited to usually a few days or weeks, so it is possible that these 

measurements do not cover a non-production period, and therefore, making the estimation of 

the leakage in the grid tougher. In addition, it is unusual for some equipment, such as air 

compressors, to be monitored individually, while the measurement and storage of load curve 

data of global consumption is more common. 

In a first step, in order to evaluate the possibility of using NILM techniques to quantify 

compressed air leaks in the context of an energy audit, an evaluation with synthetic data, 

created from a real compressor with the expected behavior in normal operation periods and 

with no compressed air consumption, was performed. The FHMM was elected to be used in 

this work because of its good performance when dealing with simple and moderate complex 

loads. However, the FHMM is not most suitable algorithm to tackle the NILM task in the 

presence of more complex loads, such as multi state appliances, or continuously variable 

loads [15]. This data has one hour sampling interval. The results obtained showed that it 

would be possible to use NILM algorithms to estimate the amount of leakage even with a 

short, like one week, training period. The difference between the leakage estimation 

calculated from the measured data and the results of applying the FHMM as NILM technique 

was less than 4%. Considering the calculations of annual energy savings from repairing the 

leaks, the difference in the estimation was even smaller, less than 1%.  

With the promising results obtained from the synthetic data, the next step was to make 

the same evaluation but replacing the synthetic data with the actual data from an air 

compressor installed on the GreEn-ER. However, using original data from the dataset, with 10 

minutes sampling interval, the flow rate was poorly estimated, making the leakage estimation 

also seem incorrect. With a deeper analysis of the data, it was identified that the power 

associated to the load and unload states are not correct. The fact that the power data originally 

comes from cumulative energy measurements means that there can be an attenuation of power 

peaks, modifying the values of the powers associated with the states of certain equipment, if 

the air compressor changes its states at a higher rate than the sampling interval, which seems 

to happen in this case. This problem may affect not only the flow rate estimation, as it relies 

on how long the equipment remains in load condition, but also the performance of the FHMM 

algorithm. The 10 minutes interval attenuates the difference between the load and unload 

states of the air compressor. In this way, the importance of the value of the compressor load 
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state, for example, in relation to the overall consumption is reduced. In cases like that, the 

disaggregation algorithms may also lose performance. Thus, the upsampling of the data, 

recovering information lost during the storage process in 10 minutes sampling interval could 

improve the results. 

Furthermore, the upsampling to 1 minute sampling interval was chosen. It was made 

in a manner to maintain the same average power with the correct instant power associated to 

each state. The results obtained from the flow rate estimation seemed more accurate. With 1 

minute sampling interval, the average power represents around 52% of the rated power while 

the flow rate estimation represents 36.8% of its rated value. At the same time, the same 

average power represents around 84% of rated flow rate with the 10 minutes sampling data, 

which is inconsistent. Assuming that the 1 minute sampling estimation is more accurate, the 

compressed air leakage represents 62.0% of the of the average flow rate during a normal 

operation period.. However, the high percentage of leaks estimated, around 62%, may suggest 

another problems on the system besides the leakage, irrational usage of compressed air or 

non-optimal control and operation of the assets. Anyway, considering that the estimation 

performed actually represents the leaks, the savings with the repair of all these leaks could 

reach about 44% in the compressed air system and 4.75% of the current yearly global 

consumption. 

Considering the previous paragraphs it can be stated that it was possible to estimate 

the leaks using NILM techniques, in this case the FHMM, with some constraints, such as the 

importance of the difference between the power associated to both load and unload states with 

respect to the global consumption.  

Although several studies were developed using the FHMM as NILM technique, it can 

be observed that this algorithm has good performance only for simple and moderate complex 

patterns, such as a fixed-speed air compressor. However, when more complex devices are on 

the mix of appliances, such as multi-state ones, continuously variable loads or even appliances 

with similar power in a state, the performance of the FHMM decays, and another algorithm 

may present better results. 
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8 General Conclusions and Directions for Future Works 
 

This chapter presents the general conclusion of this thesis, its major contributions and 

perspectives for related future works. 
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8.1  General Conclusions 

Buildings play a key role in the challenges of the energy transition. Worldwide, the 

energy consumed in buildings represents a significant part of the energy consumption. 

Considering electrical energy alone, in 2019 about 50% were consumed in residential or 

tertiary buildings, slightly above the industrial consumption share (42%). Thus, the 

importance of studies concerning energy efficiency and sobriety in buildings increased, 

leading to several research concerning these environments.  

Data-driven approaches combined with machine learning techniques are more and 

more frequent in the energy sector, with the use of Artificial Intelligence (AI) and machine-

learning methods. Because of that, the importance of the availability of datasets containing 

real measurement data of energy consumption is in constant increase. However, most of 

publicly available datasets concern residential buildings, and their typical loads. The 

availability of those datasets moved forward the research in the residential sector in some 

areas such as the non-intrusive load monitoring, leaving the tertiary sector behind. Hence, an 

open dataset, described in Chapter 2, containing the electricity consumption of the GreEn-ER 

building, containing both aggregated and disaggregated consumption in several levels was 

made available. It is hoped that this dataset will enable the advancement of research related to 

energy consumption in tertiary buildings as much as the availability of several residential 

dataset did for this sector. 

Nevertheless, real data come along with real problems, translated into data quality 

issues. The increase of the use data-driven approaches raises a concern about the quality of 

the data used, as it is expected that poor data quality harm the performance of machine-

learning algorithms, especially the supervised ones. Hence, Chapter 3 made an overview 

about data quality problems and assessed the data quality of a subdataset of the GreEn-ER 

building in terms of accuracy and completeness. Moreover, that chapter showed how harmful 

data quality problems could be in machine-learning techniques performance. This is made 

through an example of the GreEn-ER energy consumption prediction using both healthy data 

and data with quality issues as training dataset. 

In the light of what was discussed in Chapter 3, Chapter 4 presented an algorithm, 

called Forecast Error, that combines machine learning techniques and classic statistical 

methods to detect outliers present within the GreEn-ER dataset. This method combined the 

random forest algorithm to predict the consumption using healthy data for training. A statistic 
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method, called Adjusted Boxplot is then applied to every sample of the error between the 

actual value and the prediction. This combination allowed the detection of most of the outliers 

present in both datasets tested, with an F-Score higher than 0.92, while the best statistic 

method alone reached 0.83. The Forecast Error method and the results obtained with its 

application to the GreEn-ER dataset were object of a journal publication. 

The identification of potential energy efficiency measures rely on analyses of energy 

consumption data. These analyses are facilitated when consumption data to the appliance 

level are available. However, the availability of this type of data is not the standard for most 

of the facilities. To turn around this issue, research have focused on the development of non-

intrusive load monitoring methods. This type of monitoring aims to extract individual energy 

consumption from the global aggregated one. Therefore, Chapter 5 presents some of the most 

popular energy disaggregation algorithms, based both on the activation of finite states and 

artificial neural networks. It also presented the NILMTK, a framework developed by Batra et 

al designed to enable comparative analysis of different methods using several datasets, aiming 

to enhance the reproducibility of research in this field.  

The algorithms presented in Chapter 5 were developed mostly based on residential 

datasets. However, the energy consumption in tertiary environments is typically different 

from the pattern found in residential buildings. Commercial buildings have many more 

appliances than a single household, which means that states’ switch is more frequent, making 

it much more likely to exist more than one appliance changing its state simultaneously. In 

addition, tertiary buildings often have loads that, individually are small, but may represent an 

important share when combined with eventual similar loads. Laptop computers and chargers, 

among other electronic loads, are responsible for significant portion of tertiary building’s 

electricity consumption, but when individually compared to the global consumption do not 

represent an important share. Small step changes are nearly impossible to identify and 

segregate from the global consumption. It can be hard to tell if these changes are caused by 

switching on a desktop computer or if it is due to larger continuously variable loads changing 

their demand. Because of that, it is unsure that these algorithms present satisfactory results 

when applied to tertiary buildings. Therefore, Chapter 6 presented some insights about the 

energy disaggregation in tertiary buildings and how to overcome the limitations of NILM 

techniques in larger facilities, such as commercial buildings. The discussion indicated that it is 

crucial to elect target loads, decreasing the number of appliances and disregarding less 
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important loads, reducing the computation time and improving the performance of the 

techniques. 

The same chapter applied the algorithms presented in Chapter 5 to a subset of the 

GreEn-ER dataset. Three major consumers, the compressed air system, the chillers and the 

restaurant, from the TGBT2 were chosen as target loads. The results indicated that, even with 

the reduction of the number of loads, the disaggregation in a commercial building is not 

trivial. Algorithms using artificial neural networks presented good results, but at a high 

computational cost, what can be a limitation especially in embedded or portable solutions. On 

the other hand, the FHMM was less precise, but with average performance, indicating that it 

could be used to target loads with simple patterns, such as fixed-speed rotary screw air 

compressors. 

The path towards the reduction of energy consumption passes through the realization 

of energy audits. These analyses usually use on-site measured data by the auditors. However, 

the time available for these measurements is limited and may not include some modes of 

operation of certain appliances. One example of that is the quantification of compressed air 

leaks, which can be done by estimating the flow rate during a no compressed air consumption 

period. Nevertheless, these periods often do not coincide with auditors’ schedule, issue that 

could be addressed by using historical data. However, historical data from energy 

management systems usually are only available for global consumption, and rarely for 

individual appliances. In this context, a NILM approach would be helpful to enhance energy 

audits carrying analysis of modes of operation not included in the on-site measurements.  

Hence, Chapter 7 comes as a liaison between energy disaggregation techniques and 

energy audits by estimating the compressed air leakage using a subdataset of the GreEn-ER 

dataset, using only one week of data as training set, against several months used by earlier 

applications. Three approaches were tested. Firstly, to assess the possibility of using NILM 

techniques to enhance energy audits, synthetic well-behaved data of a fixed-speed rotary 

screw air compressor were created from catalog data. Because of the nature of the load, the 

FHMM algorithm was elected to disaggregate the air compressor consumption from the 

global load. The results obtained confirmed the possibility. 

With the positive results obtained from the synthetic data, it was time to test the 

hypothesis with real data from the GreEn-ER dataset. Hence, a subdataset containing data 
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from major consumers from both TGBT1 and TGBT2 was assembled. Using raw data, with 

10 minutes sampling interval, the estimates obtained were not satisfactory.  

Why does not the same approach work with real data? Taking a closer look at the data, 

the power values assumed to be associated with the load and unload states were not correct. 

Because of the nature of the data, originally cumulative energy, converted into power a 

posteriori, every sample represents the average power during the sampling interval. In the 

case when the air compressor alternates between both states at a faster rate than the sampling 

interval, which is common considering 10 minutes interval, the difference between the power 

associated to both states is attenuated. In this way, the importance of the value of the 

compressor load state, for example, in relation to the overall consumption is reduced. Thus, 

seeking better estimations the data were upsampled into 1-minute sampling interval. 

Considering the upsampled data, similar results to those obtained using synthetic data were 

achieved, indicating that the possibility of using NILM to enhance energy audits is real.  

The fact that the FHMM presented good results indicates that there is no magical way 

to disaggregate typical loads from tertiary buildings and the choice of the algorithm used must 

be based on the target load consumption pattern. 

 

8.2 Major Contributions 

This thesis focused on the energy consumption of a tertiary building, called GreEn-ER 

and ways to reduce its consumption. To this, a dataset containing both aggregated and 

disaggregated data was made available, hoping that it can lead the advancement of research in 

data-driven approaches regarding this type of building. 

However, the real data often come with data quality issues and the GreEn-ER dataset 

was no exception. In the light of these issues, a method to detect outliers, even the local ones, 

combining energy consumption prediction and a statistic technique, called adjusted boxplot, 

was developed. This method was object of a journal publication available in open-access. 

The GreEn-ER building is a smart building, with more than 300 electricity meters, 

which allow for detailed consumption analyses. However, this is not the standard of the vast 

majority of tertiary buildings. Because of that, non-intrusive load monitoring shows potential 

to provide the information needed to identify prospective energy efficiency measures. 

However, most of the research on this field concerns residential buildings, which present 
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different consumption patterns. Considering this, this thesis presented some insights about the 

application of NILM techniques to data issued from a tertiary building. It was showed that 

there is not a “universal” algorithm suited for the tertiary building environment, but different 

algorithms, depending on the goal, can address each type of load.   

Additionally, this thesis showed that it is possible to enhance energy audits by using 

energy disaggregation to quantify the compressed air leakage in the GreEn-ER building. The 

analyses presented in Chapter 7 were also object of a journal publication. 

 

8.3 Future Directions 

During the work performed in this thesis, some insights about future works arose: 

• This work tried to address the lack of available datasets of energy consumption 

of tertiary buildings by publicizing the GreEn-ER dataset. Although the 

GreEn-ER building can be classified into the “education” category, it can be 

considered a quite complete building, containing a restaurant, HVAC systems, 

several office loads, among others. However, the tertiary sector is very diverse, 

with different types of activities, which lead to different energy consumption 

patterns, like in the case of hospitals, for instance. Hence, the gap is not yet 

filled when compared to the residential sector. The continuous publication of 

dataset regarding energy consumption in tertiary buildings, or even in 

industrial facilities, is of great importance for the advancement of the research 

on the application of machine-learning and artificial intelligence techniques on 

these environments. 

• This work showed that the data quality of the measures performed in the 

GreEn-ER building could be highly improved. A real-time application to 

monitor the data quality would enhance the maintenance of the system 

reducing costs and information loss. 

o One example is the outlier detection algorithm presented in this thesis 

that looks for anomalies within historical data. One step further would 

be implementing such algorithm in an real time application, once a 

good prediction model is defined using healthy data.  

• During this work, a subset of the GreEn-ER dataset was integrated to the 

NILMTK. One step further into the advancement of NILM research in 
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environments outside the residential sector would be integration of all the 

GreEn-ER dataset to the framework, opening possibilities to test new or old 

algorithms in several types of loads. 

• The quantification of compressed air leakage using NILM techniques when 

more than one compressor is needed to fulfill the leaks, or a variable-speed 

compressor is operating is yet to be addressed.  

• The functioning of a fixed-speed rotary screw air compressor is, usually, 

independent from the environment where it is installed. Therefore, the 

possibility of NILM algorithms to profit of a pre-existent library of power 

signatures of such appliances in order to disaggregate the air compressor 

consumption even without measurements on-site can be a promising research 

direction.  

 

8.4 Publications 

The work performed on the present thesis allowed the publication of a dataset, the co-

authorship in a conference article, along two journal papers. These works are listed as 

follows: 

• Dataset:  

Martin Nascimento, G. F.; Delinchant, B.; Wurtz, F.; Kuo-Peng, P.; Jhoe 

Batistela, N.; Laranjeira, T. GreEn-ER - Electricity Consumption Data of a 

Tertiary Building. Mendeley Data, V1, 2020 

http://dx.doi.org/10.17632/h8mmnthn5w.1 

• Conference Article:  

Cesário Pereira Pinto, J. O., Martin Nascimento, G. F., Wurtz, F., Delinchant, 

B., Moreto, M., Kuo-Peng, P.; Jhoe Batistela, N.. Architecture Multi-Agents 

pour Surveiller la Qualité des Données de Consommation d'Énergie. IBPSA 

France 2020, 2020, Reims, France. ⟨hal-03345308⟩ 

• Journal Articles:  

Martin Nascimento, G.F.; Wurtz, F.; Kuo-Peng, P.; Delinchant, B.; Jhoe 

Batistela, N. Outlier Detection in Buildings’ Power Consumption Data Using 

Forecast Error. Energies 2021, 14, 8325. https://doi.org/10.3390/en14248325 
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Résumé de la thèse 

Introduction 

Les bâtiments, qu'ils soient résidentiels ou tertiaires, jouent un rôle clé dans la transition 

énergétique car ils représentent une partie importante de la consommation énergétique 

mondiale et des émissions de gaz à effet de serre. Par conséquent, la réalisation d’audits 

énergétiques par une équipe spécialisée dans de tels environnements peut permettre de réaliser 

d'importantes économies d'énergie. Ces audits sont des outils puissants qui permettent 

d'identifier et de quantifier le potentiel d'économies dans ces environnements. 

Cependant, en raison du temps limité dont dispose l'équipe pour collecter les données des 

mesures sur site, ou du manque de données historiques, on peut dire que les audits 

énergétiques prennent un instantané des conditions d'une installation à ce moment précis. 

Ainsi, certains modes de fonctionnement, qui peuvent cacher des potentiels d'économies, 

peuvent ne pas être abordés par les analyses. Par conséquent, l'utilisation de méthodes NILM 

(Non Intrusive Load Monitoring) peut être utile pour améliorer les analyses effectuées, en 

récupérant la courbe de charge des modes de fonctionnement non monitorés, augmentant 

potentiellement les économies d'énergie identifiées. Ainsi, cette thèse cherche à établir un lien 

entre les analyses effectuées dans le cadre d’une audit énergétique et l'utilisation des 

méthodes NILM comme moyen d'améliorer ces analyses. 

Toutefois, lorsqu'on énumère les études déjà réalisées sur la consommation d'énergie dans les 

bâtiments, on constate que la plupart se sont concentrées dans le secteur résidentiel. Cela peut 

s'expliquer par plusieurs facteurs, de la présence de charges plus simples et moins nombreuses 

dans les bâtiments résidentiels à la disponibilité de plusieurs jeux de données contenant des 

données sur la consommation d'énergie de ce type de bâtiment. En revanche, il n'y a pas 

beaucoup de jeux de données qui concernent les bâtiments tertiaires. De plus, les charges 

typiques des bâtiments tertiaires sont plus complexes et nombreuses par rapport au secteur 

résidentiel. Alors, cette thèse vise également à augmenter la disponibilité des données de 

consommation d'énergie en publiant des jeux de données contenant les données du bâtiment 

GreEn-ER, situé à Grenoble, en France.  

Pourtant, les données de consommation réelles entraînent, intrinsèquement, des problèmes de 

qualité, en raison à des défaillances d'acquisition ou de stockage. Par conséquent, cette thèse 

propose également d'analyser et de quantifier certains des problèmes de qualité des données 

présents dans les jeux de données GreEn-ER. 

 

Objectifs 

Cette thèse a pour objectif de : 

• Augmenter la disponibilité, sous une forme ouverte, des données de consommation 

d'énergie des bâtiments tertiaires. Pour ce faire, les jeux de données contenant les 

données de plus de 300 compteurs électriques du bâtiment GreEn ER est publié. 

• Développer des méthodes, des modèles et des outils pour quantifier et analyser les 

problèmes de qualité des données de consommation d'énergie. 

• Développer des méthodes, modèles et outils pour améliorer les audits énergétiques des 

bâtiments tertiaires. 

•  

Méthodologie 

Les analyses effectuées pour la préparation de cette thèse passent par l'analyse approfondie 

des données du bâtiment GreEn-ER, un bâtiment massivement surveillé contenant plus de 

1500 capteurs, dont plus de 300 sont des compteurs électriques. 

Ainsi, la première étape consiste à collecter, organiser et publier les données de 

consommation d'énergie électrique de ce bâtiment. 
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Dans un deuxième temps, il s'agit de quantifier et d'analyser la qualité des données collectées 

et de développer un algorithme pour détecter les éventuelles outliers présentes dans les jeux 

des données. 

Le test des algorithmes de désagrégation énergétique existants, développés pour les 

environnements résidentiels, dans le contexte des bâtiments tertiaires constitue la quatrième 

étape de l'élaboration de cette thèse.  

Pour finir, une relation entre la désagrégation énergétique et les diagnostics énergétiques est 

présentée, en quantifiant les fuites d'air comprimé existantes dans GreEn-ER. 

 

Résultats et Analyse 

Le grand défi actuel est de lutter contre le changement climatique causé par les activités 

humaines, notamment celles liées à la consommation d'énergie, ce qui conduit à d'importantes 

discussions sur la transition énergétique. Dans ce contexte, les bâtiments jouent un rôle 

central, car, dans leur ensemble, ils comptent parmi les plus gros consommateurs d'énergie de 

la planète. Dans ce contexte, les bâtiments jouent un rôle central, car, dans leur ensemble, ils 

comptent parmi les plus gros consommateurs d'énergie de la planète. En ne considérant que 

l'énergie électrique, en 2019, environ 50% a été consommée dans les bâtiments résidentiels ou 

tertiaires, légèrement au-dessus de la consommation industrielle (42%). La forte 

consommation d'énergie indique également un grand potentiel d'économies dans ces 

environnements. Pour ces raisons, cette thèse se concentre sur l'étude des réductions 

potentielles de la consommation d'énergie dans les bâtiments, en particulier les bâtiments 

tertiaires, car les études existantes centrées sur les environnements résidentiels sont 

nombreuses. 

Il y a plusieurs raisons pour lesquelles l'environnement résidentiel est plus étudié. Les charges 

typiques des bâtiments résidentiels sont plus simples et moins nombreuses, par rapport à 

celles des bâtiments tertiaires. En outre, la disponibilité des données de consommation 

concernant les environnements résidentiels est beaucoup plus grande. Donc, afin de remplir le 

vide dans la disponibilité des données des bâtiments tertiaires, un jeu de données a été 

rassemblé et organisé de manière à être exploré par la communauté scientifique. Ce jeu de 

données contient les données de consommation des compteurs d'électricité GreEn-ER. Il y a 

plus de 300 points de mesure qui correspondent à la fois aux mesures générales du tableau de 

distribution, dites agrégées, et aux charges spécifiques, dites désagrégées. Les données sont 

disponibles dans des fichiers au format CSV, et les métadonnées sont organisées en dessins et 

tableaux accessibles par des Notebooks qui combinent ces informations avec le langage de 

programmation Python. 

Néanmoins, lors de l'analyse des données de consommation du bâtiment, il a été vérifié 

l'existence de plusieurs incohérences dans les données, traduites sous la forme de problèmes 

de qualité. Parmi les problèmes constatés, on souligne l’incomplétude des données, avec des 

échantillons manquants, et des problèmes de précision, qui se manifestent par la présence de 

valeurs aberrantes et d'incohérences lors de la comparaison de la somme des compteurs en 

aval par rapport au compteur en amont. Ces problèmes, lorsqu'ils sont très prononcés, peuvent 

entraîner des difficultés lors de l'utilisation de techniques d'intelligence artificielle pour 

effectuer certaines analyses. Par conséquent, la détection et la correction éventuelle de ces 

problèmes est une nouvelle voie de recherche qui s'ouvre en fonction des données utilisées. 

L'un des problèmes le plus fréquent est la présence d’outliers, c'est-à-dire d'échantillons très 

différents des autres ou de ce qui est attendu. Il existe plusieurs techniques pour détecter ce 

type d’échantillon. Parmi les plus utilisées, on trouve deux méthodes statistiques simples qui 

utilisent des variables telles que la moyenne, l'écart-type ou même la médiane et l'écart 

interquartile, les plus populaires étant 3-Sigma et Boxplot. Il existe également des variantes de 

ces techniques pour tenir compte d'éventuelles asymétries dans la distribution des données, 
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comme le Skewed Boxplot ou le Adjusted Boxplot. Ces méthodes utilisent des indices, dont 

le plus simple est la valeur de l'échantillon elle-même. Toutefois, ces méthodes n'ont pas 

donné de bons résultats lorsqu'elles ont été appliquées directement aux données de 

consommation de GreEn-ER. Une nouvelle stratégie a donc été élaborée, en utilisant un autre 

indice. Puisqu'un outlier peut être considérée comme un échantillon qui s'écarte beaucoup 

d'une valeur attendue, un indice possible à utiliser est l'erreur de prédiction, ou la différence 

entre la valeur de l'échantillon et la valeur prédite. Pour cela, il est nécessaire que la prédiction 

effectuée soit fiable. Dans le cas de GreEn-ER, la prédiction de la consommation a été 

effectuée en utilisant comme méthode de prédiction le Random Forest, en choisissant 

manuellement des périodes avec des données saines comme jeu de données pour 

l'entraînement de l'algorithme. Pour évaluer les performances des techniques appliquées, le F-

score a été utilisé, une métrique qui utilise le nombre de faux positifs, de faux négatifs et de 

vrais positifs. Parmi les techniques testées pour la détection des valeurs aberrantes, celle qui a 

obtenu le meilleur résultat, présentant le F-score le plus élevé, a été l'utilisation du Adjusted 

Boxplot appliqué à l'erreur de prévision, ce qui a été appelée méthode de l'erreur de prévision. 

 

Indice Méthodes 
Outliers potentiels 

détectés 

Vrais 

positifs 

Faux 

négatifs 

Faux 

positifs 

Mauvaises 

classifications 
F-Score 

Valeur de 

l’échantillon 

3 Sigma 6 6 206 0 206 0,055 

Boxplot 6 6 206 0 206 0,055 

Adjusted boxplot 271 172 40 99 139 0,712 

Erreur de 

prédiction 

3 Sigma 6 6 206 0 206 0,055 

Boxplot 860 212 0 648 648 0,396 

Adjusted boxplot 205 192 20 13 33 0,921 

 

La consommation d'énergie dans les bâtiments est directement liée au comportement des 

habitants. Cependant, ce n'est pas facile pour quelqu'un qui n'est pas un expert de quantifier 

l'impact de son comportement sur la consommation d'énergie. Pour cette raison, plus le niveau 

de détail des informations sur la consommation est élevé, plus les chances d'identifier les 

économies d'énergie potentielles sont grandes. Ainsi, les informations sur la consommation en 

temps réel et avec les détails des équipements individuellement sont celles qui offrent le plus 

grand potentiel d'économies. La façon la plus directe d'obtenir ces informations est d'installer 

des compteurs individuels pour chaque appareil. Cependant, cette alternative est souvent peu 

pratique, notamment dans les bâtiments tertiaires, avec de nombreuses charges, ou dans les 

bâtiments anciens. Ainsi, une façon de contourner cette limitation est l'utilisation de méthodes 

de désagrégation d’énergie, qui utilisent des techniques d'intelligence artificielle pour 

récupérer la consommation individuelle des équipements à partir de la consommation globale 

du foyer. Il existe plusieurs méthodes développées à cet effet, parmi lesquelles on peut citer le 

Combinatorial Optimization, le Factorial Hidden Markov Model (FHMM), ou encore des 

méthodes basées sur des réseaux de neurones artificiels, comme le Sequence-to-point. 

Cependant, ces méthodes ont été développées sur la base de jeux des données provenant du 

secteur résidentiel, de sorte que le succès de leur application dans des environnements 

tertiaires ou même industriels est incertain. 

Ainsi, certains de ces algorithmes ont été testés sur le jeu de données GreEn ER, également 

issu de ce travail. En raison du grand nombre de charges présentes dans le bâtiment, plus de 

300 comme déjà mentionné, la réduction du problème, avec le choix des charges cibles n'est 

pas seulement recommandée, mais primordiale pour le succès de l'application des méthodes 

choisies. Parmi les algorithmes testés, celui qui a obtenu les meilleures performances globales 
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c’est le Sequence-to-point. Cependant, pour des charges simples, comme un compresseur 

d’air tout-ou-rien, par exemple, le FHMM a présenté des résultats satisfaisants. 

Un premier pas vers la réduction de la consommation d'énergie consiste à effectuer un audit 

énergétique, qui consiste en une série d'analyses visant à quantifier la consommation et les 

pertes d'énergie grâce à une étude détaillée des performances des différents systèmes. Ces 

analyses comprennent des mesures sur site et la collecte de données historiques. Ensuite, des 

calculs spécifiques à chaque système sont effectués afin de déterminer ses performances et 

d'identifier les économies potentielles d'énergie et financières. 

Une façon de procéder à la collecte de données consiste à intégrer l'équipe dans 

l'environnement à évaluer, ce qui lui permet de vivre le fonctionnement quotidien de 

l'établissement. Cependant, le temps dont disposent les auditeurs pour effectuer cette tâche est 

limité, généralement quelques jours ou semaines. Pour cette raison, certains modes de 

fonctionnement de certains équipements peuvent ne pas être mesurés pendant la période de 

collecte de données des auditeurs. En plus, il est rare de disposer de données historiques et de 

mesures individuelles des appareils alors que la consommation globale est généralement 

historisée. Ainsi, une façon de contourner ce problème est d'appliquer des méthodes de 

désagrégation énergétique pour récupérer les données de consommation des équipements 

cibles pendant les périodes où l'équipe qui effectue l’audit n'est pas sur place. Cependant, le 

succès de cette application est incertain, car les données pour l'entraînement des algorithmes 

sont limitées aux données mesurées par l'équipe, alors que certains mois sont utilisés dans la 

littérature à cette fin. 

Pour tester la possibilité d'utiliser des méthodes de désagrégation énergétique afin d'améliorer 

les analyses effectuées dans le cadre d'un audit énergétique, on a cherché à quantifier les 

fuites d'air comprimé de GreEN-ER. Comme la principale charge cible à désagréger était un 

compresseur d'air à vis à vitesse fixe, dont le profil de fonctionnement est relativement 

simple, le FHMM a été choisi comme méthode de désagrégation. À cette fin, une semaine 

typique de fonctionnement du système a été choisie comme période d'entraînement pour les 

algorithmes. Une période pendant laquelle il n'y a pas eu de consommation d'air comprimé, 

pendant laquelle le profil de fonctionnement était différent de la période d’entraînement, a été 

utilisée pour la quantification des fuites. Les résultats obtenus sont présentés dans le tableau 

suivant. 

 

 
Puissance 

moyenne [kW] 

Débit d’air 

moyen [m³/h]  

Mesures 12,83 66,96 

Désagrégation (NILM) 12,82 66,88 

 

Les résultats obtenus suggèrent qu'il est effectivement possible d'estimer les fuites d'air 

comprimé en utilisant des techniques de désagrégation d’énergie dans le cadre d'un audit 

énergétique, compte tenu des données utilisées. Avec une seule semaine typique utilisée 

comme entraînement, l'algorithme a été capable d’estimer le débit d'air comprimé avec une 

erreur inférieure à 1%, dans ce cas. Ainsi, cette estimation pourrait être utilisée comme 

résultat d'un audit énergétique du système d'air comprimé, permettant d'estimer les économies 

énergétiques et financières avec la réparation des fuites et, avec le coût des réparations, de 

calculer le temps de retour de l'investissement. Ainsi, le client dispose des informations 

nécessaires pour effectuer, ou non, les travaux nécessaires. 

 

Conclusions 

L'utilisation de l'intelligence artificielle est de plus en plus fréquente dans le secteur de 

l'énergie. C'est pourquoi il est de plus en plus important de disposer de jeux de données 
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contenant des données réelles issues de mesures, afin de pouvoir développer et tester des 

algorithmes. Cependant, la plupart des jeux de données disponibles en libre accès concernent 

les bâtiments résidentiels, compte tenu de leurs charges typiques. Pour cette raison, cette thèse 

a cherché à réduire cette lacune avec la publication des jeux de données GreEn-ER, un 

bâtiment tertiaire avec plus de 300 compteurs électriques. On s'attend à ce que cet ensemble 

de données permette l'avancement de la recherche liée à la consommation d'énergie dans les 

bâtiments tertiaires, comme la disponibilité de plusieurs ensembles de données résidentielles 

faites pour ce secteur. 

En revanche, les données réelles s'accompagnent de problèmes réels, qui se traduisent par des 

problèmes de qualité des données. Le recours accru aux approches fondées sur les données 

soulève des inquiétudes quant à la qualité des données utilisées, car on s'attend à ce qu'une 

mauvaise qualité des données nuise aux performances des algorithmes d'apprentissage 

automatique. Ainsi, cette thèse a présenté un algorithme, appelé Forecast Error, qui combine 

des techniques d'apprentissage automatique et des méthodes statistiques classiques pour 

détecter les outliers présentes dans les jeux des données GreEn-ER. Cette méthode utilise 

l'algorithme Random Forest pour prédire la consommation en utilisant des données saines 

pour l’entrainement. Une méthode statistique, appelée Adjusted Boxplot, est ensuite appliquée 

à chaque échantillon de l'erreur entre la valeur réelle et la prédiction. Cette combinaison a 

permis de détecter la plupart des valeurs aberrantes présentes dans les deux jeux de données 

testés, avec un F-Score plus élevé. 

L'identification des potentiels d'efficacité énergétique dépend des analyses des données de 

consommation d'énergie. Ces analyses sont facilitées lorsque les données de consommation 

des appareils individuels sont disponibles. Cependant, la disponibilité de ces données n'est pas 

habituelle pour la plupart des installations. Pour contourner ce problème, des recherches ont 

été menées en vue de développer des méthodes non intrusives de monitoring des charges 

visant à extraire la consommation d'énergie individuelle de la consommation globale. Ainsi, 

cette thèse a testé plusieurs algorithmes déjà existants dans la littérature, développés en 

considérant un environnement résidentiel, dans un bâtiment tertiaire, obtenant des résultats 

mixtes. En raison de la grande quantité de charges existantes, condition typique d'un grand 

bâtiment tertiaire, la réduction du problème, avec le choix des charges cibles, est de la plus 

haute importance pour le succès de l'application des algorithmes NILM. 

Enfin, cette thèse a également cherché à établir un lien entre les techniques NILM et les 

diagnostics énergétiques en estimant les fuites d'air comprimé sur la base d'un sous-jeu du jeu 

de données GreEn-ER. Les résultats obtenus ont montré qu'il est possible d'améliorer les 

analyses effectuées dans le cadre d'un diagnostic énergétique en utilisant des méthodes 

d'intelligence artificielle pour récupérer les courbes de charge des équipements à partir de la 

courbe de consommation globale d'une unité. 

 

Mots-clés: Bâtiments tertiaires, sobriété énergétique, efficacité énergétique, désagrégation 

énergétique, qualité des données, détection des outliers. 

 


