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Abstract

The maximal growth of automorphic periods and oscillatory
integrals for maximal �at submanifolds

This dissertation contributes to the analytic theory of automorphic periods and auto-
morphic L-functions.
In the �rst part we prove an extreme value result for geodesic periods of Hecke-Maass

forms on compact arithmetic hyperbolic surfaces, as the Laplacian eigenvalue grows. The
proof uses the celebrated ampli�cation method of Iwaniec and Sarnak. We also obtain
a theorem on extreme values of Rankin-Selberg L-functions and draw the connection to
conjectures on the maximal size of L-functions.
In the second part we prove a spectral aspect extreme value result for maximal �at

periods of Hecke-Maass forms, on compact locally symmetric spaces associated to forms
of PGL3. We discuss its signi�cance in the wider context of extreme behavior of auto-
morphic periods. We also prove a mean square asymptotic for maximal �at periods on
more general compact locally symmetric spaces.
Our main technical contributions are the following. The �rst is the analysis of orbital

integrals needed to prove asymptotics for a relative trace formula, together with new
results on the global geometry of maximal �at submanifolds of symmetric spaces. The
second is an exploration of the limits of the ampli�cation method for toric periods on
forms of PGLn.

Keywords: automorphic forms, trace formula, harmonic analysis
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Résumé

La croissance maximale des périodes automorphes et
intégrales oscillatoires pour les sous-variétés plates

maximales

Cette thèse contribue à la théorie analytique des formes automorphes et des fonctions
L automorphes.
Dans une première partie nous démontrons un résultat sur les valeurs extrêmes des pé-

riodes géodésiques des formes de Hecke-Maass sur les surfaces hyperboliques compactes,
quand la valeur propre du Laplacien grandit. La preuve utilise la méthode d'ampli�ca-
tion d'Iwaniec et Sarnak. Nous obtenons aussi un résultat sur les valeurs extrêmes des
fonctions L de Rankin-Selberg et nous faisons le lien avec les conjectures sur les valeurs
extrêmes des fonctions L.
Dans une deuxième partie nous démontrons un résultat sur les valeurs extrêmes des

périodes plates maximales des formes de Hecke-Maass, sur les espaces symétriques com-
pacts associés aux formes de PGL3. Nous discutons de son importance dans le contexte
plus large du comportement extrémal des périodes automorphes. Nous obtenons aussi
une asymptotique pour des moyennes quadratiques des périodes plates maximales sur
des espaces symétriques compacts plus généraux.
Nos principales contributions techniques sont les suivantes. La première est l'analyse

des intégrales orbitales utilisée pour obtenir des asymptotiques pour une formule de traces
relative, ainsi que des nouveaux résultats sur la géométrie globale des sous-variétés plates
maximales des espaces symétriques. La deuxième est une exploration des limites de la
méthode d'ampli�cation pour les périodes toriques sur les formes de PGLn.

Mots clés : formes automorphes, formule des traces, analyse harmonique
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Introduction

0.1 The maximal growth of L-functions

A key role in the theory of automorphic forms is played by the automorphic L-functions,
which are the subject of major open problems. When π is a unitary automorphic rep-
resentation of GLn over Q with contragredient π̃, we normalize the Godement-Jacquet
L-function L(π, s) to have functional equation relating L(π, s) to L(π̃, 1 − s), and we
denote by C(π) the analytic conductor of Iwaniec and Sarnak [38], a measure of the
complexity of the representation. We may consider families of representations by allow-
ing certain parameters to vary, and we also speak of aspects. A classical example is the
family of unrami�ed unitary Hecke characters, leading to vertical shifts of the Riemann
zeta function: L(|·|it∞, s) = ζ(s + it) (the t-aspect for ζ), in which case the analytic
conductor is of size 1 + |t|.
Many problems in analytic number theory are related to understanding the size of

the central value L(π, 12) as C(π) → ∞ in families. For every reasonable family we
can formulate the Lindelöf hypothesis that L(π, 12)≪ϵ C(π)

ϵ, the subconvexity problem
which asks for a δ > 0 such that L(π, 12)≪ C(π)1/4−δ, as well as the following question,
which serves as a motivation for the �rst part of this thesis.

When F is a reasonable family of L-functions (not necessarily known to be
automorphic) for GLn, how fast does

max
L∈F

C(L)≤x

|L(12)| (0.1)

grow as x→∞?

Here, we denote C(L) for the analytic conductor of an L-function with known func-
tional equation, as in [16]. In [25], the authors use random models for L-functions to
motivate the conjecture that the true growth of (0.1) is

max
L∈F

C(L)≤x

|L(12)| = exp
(
(CF + o(1))

√
log x · log log x

)
(0.2)

for some explicit constant CF that depends on the family. Proofs conditional on GRH
[52, 56] or using the resonance method of Soundararajan or Hilberdink [35, 68] typically
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yield lower bounds of quality

max
L∈F

C(L)≤x

|L(12)| ≫ exp

(
C

√
log x

log log x

)
(0.3)

for some C > 0. Recent progress as well as lower bounds with additional restrictions on
the argument of L(12) can be found in [8], [9], [17].
The following theorem about extreme central values of Rankin-Selberg L-functions is

a �rst example of a spectral aspect family, giving further evidence towards the general
conjecture (0.2).

Theorem 1. Let N > 1 be a square-free integer and let F be a real quadratic number
�eld of square-free discriminant coprime to N . Assume that N has an even number of
prime divisors and that they are all inert in F . Let (fj)j≥1 be an orthonormal basis of
the space of newforms of level Γ0(N) with eigenvalues λj > 0. There exists C > 0 such
that

max
|
√
λj−

√
λ|≤C

L(1/2, fj)L(1/2, fj × ωF ) ≥ exp

(√
log λ

log log λ
(1 + o(1))

)
, (0.4)

as λ→∞, where ωF is the quadratic Dirichlet character associated to the �eld extension
F/Q by class �eld theory, and the implicit constant depends on N and F .

We can for example take N = 6 and F = Q(
√
5) in Theorem 1. The theorem is proved

via a similar statement about geodesic periods on compact arithmetic quotients of the
hyperbolic plane H, which is Theorem 2 below, and uses an explicit version of a formula
of Waldspurger [75, 59] and a characterization of the image of the Jacquet-Langlands
correspondence.

Theorem 2. Let R be an Eichler order of square-free level in an inde�nite quaternion
division algebra over Q. Let Γ ⊂ PSL2(R) be the corresponding co-compact arithmetic
lattice. Let (ϕj) be an orthonormal basis of L2(Γ\H) consisting of Laplace�Hecke eigen-
functions with Laplacian eigenvalues λj ≥ 0. Let ℓ ⊂ Γ\H be a closed geodesic and denote
by Pℓ(ϕj) the period of ϕj along ℓ. Then there exists C > 0 such that

max
|
√
λj−

√
λ|≤C

λ
1/4
j |Pℓ(ϕj)| ≥ exp

(
1

2

√
log λ

log log λ

(
1 +O

(
log log log λ

log log λ

)))
(0.5)

as λ→∞, where the implicit constant depends on R and ℓ.

We refer the reader to �1.1 for the notations and de�nitions used in Theorems 1 and
2.
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Remark 0.6. Note the normalizing factor λ1/4j in the left-hand side in (0.5). Its presence
can be justi�ed in two ways. One way is using a mean square asymptotic for geodesic
periods, and the other is through Waldspurger's formula. We use the notations from the
theorem. In [80] it is shown that∑

λj≤λ
|Pℓ(ϕj)|2 = Cℓλ

1/2 +O(1) (λ→∞) , (0.7)

for some constant Cℓ > 0. This implies that |Pℓ(ϕj)| ≪ 1 (the implicit constant de-
pending on ℓ), and we refer to this as the convexity bound. By the Weyl law, the above

sum consists of ≍ λ terms, so that Pℓ(ϕj)
2 ≍ λ−1/2 `on average'. This explains why λ1/4j

should be the correct normalizing factor in (0.5).
Through a formula of Waldspurger, the Lindelöf hypothesis for certain L-functions

leads to the conjecture that λ1/4j |Pℓ(ϕj)| ≪ϵ λ
ϵ
j [61]. The best known unconditional

improvement of the convexity bound is λ1/4j |P(ϕj)| ≪ϵ λ
1/4−1/24+ϵ
j [47]. A geodesic

period is `large' when the normalized period λ1/4j |Pℓ(ϕj)| is substantially larger than 1.
Thus Theorem 2 can be viewed as producing abnormally large values of the geodesic
periods.

Theorem 2 uses the ampli�cation method introduced in the seminal article of Iwaniec
and Sarnak [37], and crucially relies on the presence of the Hecke operators, and the fact
that many Hecke returns �x a given set (a closed geodesic). The ampli�cation method
bears much similarity to the resonance method of Soundararajan in the context of L-
functions, and in fact, we will follow the proposal in [50] and refer to it as the (spectral)
resonance method. It may be summarized as follows: Construct a �resonator� R(f) ≥ 0
with the property that a quotient of the form∑

j R(fj)|Pℓ(fj)|2∑
j R(fj)

(0.8)

is large. If this quotient is bigger than a real number M > 0, it must be that at least
one |Pℓ(fj)|2 is bigger than M . When R(f) is de�ned as a Hecke eigenvalue of f , a sum
of the shape of the numerator naturally appears in the relative trace formula, and a sum
of the shape of the denominator naturally appears in the trace formula.
The resonance method gives a way to quantify the phenomenon that eigenfunctions

have strong concentration properties at sets that are �xed by many symmetries, a phe-
nomenon that is also observed for zonal spherical harmonics and Gaussian beams on
round spheres.
The proof of Theorem 2 adapts two main pre-existing ingredients. The �rst is bounds

for archimedean orbital integrals in a relative trace formula, proved by Marshall [47],
and the second is the resonator sequence of Mili¢evi¢ [50]. The theorem is an analogue
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of a theorem of Mili¢evi¢ [50], replacing CM-points by closed geodesics. The motivation
in [37] and [50] is to study the growth of the sup-norms ∥ϕj∥∞, and the results show in
particular that those norms are unbounded as the eigenvalue grows. With the notations
as in Theorem 2, let z ∈ Γ\H be a CM-point. It is shown in [37] that the sequence of
point evaluations |ϕj(z)| is unbounded: there exists a subsequence of (ϕj) on which

|ϕj(z)| ≫z

√
log log λj . (0.9)

In [50], the method was optimized and this was strengthened to the existence of a sub-
sequence on which

|ϕj(z)| ≫z exp

(
C

√
log λj

log log λj

)
(0.10)

for all C < 1 (and in fact, with the constant C replaced by 1 plus an error term, as in
Theorem 2).

0.2 Heuristics and randomness

In this section, we put the lower bound from Theorem 2 in a di�erent perspective,
together with the lower bounds (0.9) and (0.10) on sup norms.
The fact that on arithmetic hyperbolic surfaces the sequence ∥ϕj∥∞ is unbounded can

be explained through random models for L-functions, as remarked above, but can also
be explained by random behavior of Laplacian eigenfunctions. We explore how much
growth can be explained by randomness of eigenfunctions, and we discuss some recent
developments and related ideas.
Unless otherwise stated, letX be a compact Riemannian surface with negative sectional

curvature. (Some of the results and conjectures stated will apply to arbitrary curvature
or arbitrary dimension, but generality is not our objective.) Let (ϕj) be an orthonormal
basis of L2(X) consisting of Laplacian eigenfunctions with eigenvalues λk. (If X is
a noncompact �nite-volume quotient of H, we take it to be an orthonormal basis of
the space of Maass cusp forms.) Because X is compact and of negative curvature,
its geodesic �ow is ergodic, and the random wave conjecture of Berry [5] predicts that
Laplacian eigenfunctions of large eigenvalue should show Gaussian random behavior.
Berry's conjecture has been tested numerically in [3, 4] for certain compact hyperbolic
surfaces of genus 2, and in [32] for the modular surface PSL2(Z)\H (which, although
non-compact, still has ergodic geodesic �ow). In this last article, the authors propose the
following mathematical interpretation of Berry's conjecture: equipX with the normalized
Riemannian probability measure Vol(X)−1dVol. Then the sequence of eigenfunctions
(ϕj), considered as random variables on X, converges in law to the normal distribution
with mean 0 and variance Vol(X)−1. The random wave conjecture has been the subject of
recent work [1] where it has been interpreted in terms of Benjamini�Schramm convergence
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of manifolds. In [1, Theorem 4] it is also shown that this version of the conjecture implies
the quantum unique ergodicity conjecture (QUE) of Rudnick and Sarnak [62], which
states that the probability measures ϕ2jdVol converge weakly to the uniform measure
Vol(X)−1dVol.
Even though Berry's conjecture remains widely open in any interpretation, it is natural

to wonder about the �ner statistical properties of Laplacian eigenfunctions. For example,
when the random wave conjecture is regarded as an analogue of the central limit theorem,
one could ask what the analogue of the law of the iterated logarithm should be. That
is, what can be said about the growth of the sup norm ∥ϕj∥∞ as j → ∞? In order
to obtain predictions for this type of question, it is common to study random wave
models, probability measures on a space of functions. Following [81, �6], we may model
an eigenfunction ϕ of large eigenvalue λ by the random quasimode

1

(
∑

j c
2
j )

1/2

∑
j

cjϕj

where the cj are i.i.d. standard Gaussians and the sums run over the set {j :
√
λj ∈

[
√
λ,
√
λ+1]}. We thus expects the sup norm ∥ϕ∥∞ to generically have the same behavior

as the sup norm of random Fourier series studied in [39, �6], [63, Chapter IV]. That is,
that ∥ϕj∥∞ ≍

√
log λj for a subsequence of (ϕj) [32, 65]. This is compatible with the

sup norm conjecture of Iwaniec-Sarnak [37] and with (0.9). As for (0.10), note that the
right-hand side is eventually smaller than any power of λj , and eventually larger than
any power of log λj . Such large sup norms, while not in contradiction with the sup norm
conjecture nor the random wave conjecture, should be considered exceptional and are
presumably speci�c to the case of arithmetic manifolds. Considering these results, it is
somewhat surprising that despite the presence of Hecke operators, numerical evidence
indicates that the random wave conjecture does hold for arithmetic hyperbolic surfaces.
We can think of at least two ways to generalize questions about random behavior of

the ϕj . On the one hand, one can �x a `thin' set S, such as a �nite set or a geodesic
segment, equipped with its induced Riemannian metric and volume element µS , and
ask about the value distribution of the restrictions ϕj |S . It is clear that any result
must be very sensitive to the nature of the set S. We illustrate this with an example.
Quantum (unique) ergodic restriction, Q(U)ER, is the question of whether a density one
subsequence (resp. the full sequence) of the restrictions ϕ2j |S equidistribute. It was �rst
studied in [72]. When X is the modular surface, the sequence (ϕj) of Maass cusp forms
can be chosen to consist of odd and even cusp forms. The odd ones vanish on the split
geodesic S = [i, i∞), and one expects QUER to hold for the restrictions to S of the even
Maass forms, but where the limiting measure is 2µS instead of µS [78]. We mention also
[79], where the analogue of QER for Eisenstein series is found to have a negative answer
on certain divergent geodesics on the modular surface, and an analogous negative answer
is conjectured for Maass cusp forms. In the other direction, QER does hold for generic
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geodesics on a compact hyperbolic surface [21, 73].
The other point of view consists of randomizing the thin set. Given an eigenfunction

and a geodesic segment L, we may form the line integral

PL(ϕj) :=

∫
L
ϕj .

If we �x a real number l > 0, the set of geodesic segments of length l is parametrized
by the unit tangent bundle S1X. Every eigenfunction ϕj gives rise to a smooth function
ϕ̃j on S1X, by integrating over the segment corresponding to a point of S1X. It is
known that the sequence ∥ϕ̃j∥∞ is bounded as λj →∞ (by a constant depending on X
and l) [14]. In particular, when ℓ is a closed geodesic, we recover the convexity bound
|Pℓ(ϕj)| ≪ 1, which is sharp when X is the round 2-sphere. Theorem 2 can be viewed
as producing large values of the functions ϕ̃j for suitable l.
We remark that, in order to obtain heuristics for large values of ϕ̃j , to apply random

wave models as in �0.2 would be nonsensical, because Berry's conjecture is fundamentally
a statement about the value distribution of eigenfunctions, and does not take into account
the relative position of points. That is, the random wave models are not designed to
be integrated over sets of measure zero. Instead, it would be interesting to develop a
conjecture analogous to Berry's for the value distribution of ϕ̃j as λj → ∞. A related
type of result is the central limit theorem for geodesic �ows [60, 67]: for a �xed smooth
function ϕ ∈ C∞(X), one determines the limiting distribution of the (normalized) line
integral of ϕ along a random geodesic segment of growing length.

0.3 Periods beyond GL2

Let G be a semisimple algebraic Q-group and H a closed algebraic subgroup that we
assume to be anisotropic, meaning that the adelic points H(AQ) have compact image [H]
in the automorphic quotient [G] = G(Q)\G(AQ). For any automorphic form f on [G]
one may consider the period PH(f) by integrating along a suitable translate of [H]. We
may consider families of forms as before, and our focus is on the spectral aspect family
of Hecke-Maass forms: Fix a maximal compact subgroup of G(R) and a level structure,
and let F be the family of spherical cusp forms on the locally symmetric space resulting
from these choices.
The second part of this thesis aims to advance our understanding of the following

question.

When λ(f) denotes the Laplacian eigenvalue of f ∈ F , how fast does

max
f∈F
λ(f)≤x

|PH(f)| (0.11)

grow, if at all, as x→∞?
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To state the question correctly one needs normalizing factors in front of the periods
(as in Theorem 2). Further, λ(f) is not always the correct measure of complexity for
the H-period. This leads to di�cult questions, which we discuss below. We will be
interested in sub-polynomial growth rates, whose signi�cance is best understood in the
context of extreme values of L-functions. In fact, question (0.11) is in many ways similar
to question (0.1), and this similarity will be our basis for revealing possible arithmetic
information about periods.
The similarity between the problems is already visible in the resonance method in

[68], where for each family of L-functions under consideration the spectral ingredient is
a trace formula: The Fourier inversion formula in the case of ζ, and the Petersson trace
formula in the case of L-functions of modular forms. In the proofs of (0.9), (0.10) and
Theorem 2, this is replaced by the Selberg trace formula and a relative trace formula, as
we explained around (0.8).
Now, while question (0.11) is in some aspects similar to question (0.1), there are

important di�erences. The �rst is in the problem statement itself: Where for L-functions
the correct measure of complexity is the analytic conductor, the situation is much more
delicate for periods. The Laplacian eigenvalue λ(f) is a naive choice, and the correct
replacement is most likely an integral involving an approximate spectral projector around
f , which determines the size of mean square asymptotics for periods over O(1) spectral
windows (as in Theorem 4). For su�ciently generic spectral parameters, that integral
should be of size λ(f)(n−r−d)/2, with n the dimension of the symmetric space, r its rank,
and d the dimension of the projection to the symmetric space of the H-orbit underlying
the period. But asymptotically evaluating this integral in terms of the spectral parameter
of f , even for generic parameters, is a di�cult problem.
The second di�erence is the following. Whereas in the case of L-functions one would

expect the resonance method to always produce a nontrivial result of quality (0.3) (pro-
vided that we know enough about the family under consideration), this not the case for
periods. In fact, the spectral resonance method is sometimes fruitless, and sometimes
produces extreme values of periods with power growth. Moreover, a larger variety of
techniques exist to prove lower bounds for periods. We give a brief historical account of
these facts.
The �rst example of a di�erent technique is given in [62], which is about discrete

periods on certain hyperbolic 3-manifolds. The authors use what is known as a distinction
method. It employs a vanishing property that says that only a sparse subsequence of
Hecke-Maass forms, lying in the image of a theta lift, have nonzero H-period. They are
�distinguished� by H. This is then contrasted with a mean square asymptotic, which
gives the full average of the periods (and which does not see the arithmetic underlying
the distinction). If the periods are supported on a sparse subsequence and the average
does not know about this, it follows that that the periods must attain large values on the
distinguished subsequence. In fact, the sequence is polynomially sparse, and the authors
obtain periods with power growth. Note that while the arithmetic properties used are
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crucial, the Hecke operators do not play a direct role.
The article [51] characterizes the hyperbolic 3-manifolds to which the proof extends, as

being those of Maclachlan-Reid type. Moreover, it gives the �rst example of the second
phenomenon mentioned above: power growth obtained from the resonance method. Fur-
ther power growth results that use the distinction method include the following settings:
discrete periods on hyperbolic n-manifolds with n ≥ 5 [18], and discrete unitary periods
for GLn (which includes the case of hyperbolic 2 and 3-manifolds) [43].
A vast generalization of power growth results in the other direction, using the resonance

method, is the article [13]. In certain situations, one can obtain exceptional sequences
of eigenfunctions with periods of power growth using both methods, and show that they
are related. We refer to [13, 51] for a discussion of the relation between the two methods.
We do note the following: All Q-groups in these examples are such that G(R) is not
split.

0.4 Sub-polynomial growth

The second part of this thesis is concerned with applications of the resonance method
to periods of Hecke-Maass forms in the spectral aspect, in situations that have so far
remained gray zones. By �gray zone�, we mean the following. A �rst condition is that no
explicit connection to central L-values is known or conjectured. Indeed, when conjecture
(0.2) does not apply, without heuristics that come from applications of random matrix
theory to L-functions, it becomes an interesting question whether there are su�ciently
strong arithmetic reasons for the existence of unusually large periods, and if so, what the
maximal growth should be. A second condition is that no power growth is expected, or
at least that established distinction techniques or resonance techniques do not produce
power growth. In the gray zone it is not clear what period growth, if present at all, should
be attributed to: heuristics motivated by random behavior of Laplacian eigenfunctions
in negative curvature (Berry's random wave conjecture), random behavior of more exotic
underlying artihmetic objects, or neither of these?
In fact, our hope when exploring the gray zone is to reveal arithmetic information:

If in some new situation we obtain lower bounds of quality (0.3), this would be a very
strong hint that there is an as of yet unknown relation with central L-values. If we obtain
periods with power growth, this might indicate the existence of a functorial lift (although
it could be attributed to other factors as well; see [13]). If we obtain growth rates smaller
than (0.3) or nothing at all, this still leaves the possibility of a relation with L-values
further to the right of 1

2 , or at worst in the half-plane of convergence.
An example of such an unexplored situation is that of toric periods on locally symmetric

spaces of non-compact type associated to a semisimple group G. Unless G is isogenous
to a product of forms of PGL2, these fall in the gray zone. When the locally symmetric
spaceX is viewed as a disjoint union of classical locally symmetric spaces, then the period
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along a maximal R-split torus corresponds to the integral along a �at submanifold of X,
which has the property that the intersection with each component is either maximal �at
or empty; see �3.5.4.
To state the main theorems we introduce some minimal notation for spectral parame-

ters. WhenG is a connected semisimple Lie group with �nite center, make a choice of Iwa-
sawa decomposition G = NAK. Let a = Lie(A) and de�ne the generic set (a∗)gen ⊂ a∗

as the set of elements that are regular and that do not lie in a proper subspace spanned
by roots. A locally symmetric space X is assumed to be compatible with the choice of K.
When G is a semisimple group over Q, we may de�ne the above notation with respect
to G(R)0, and we again assume an associated adelic locally symmetric space X to be
compatible with K. The spectral parameters of Hecke-Maass forms on X can then be
viewed as elements of (aC)∗. For any additional notation and terminology used in the
theorems below, we refer to �2.1, �3.1 and �3.5.
We can now state the following theorem.

Theorem 3. Let G be an anisotropic Q-form of PGL3 with G(R) noncompact. Let X
be an associated adelic locally symmetric space and (fj) ∈ L2(X) an orthonormal basis
of Hecke-Maass forms with spectral parameters νj ∈ (aC)

∗. Let H ⊂ G be a maximal
torus with the same R-rank r as G, and denote by PH(fj) the H-period of fj. Let
Da∗ ⊂ (a∗)gen be compact. There exist C > 0 and δ > 0 such that uniformly for ν ∈ Da∗

and t ∈ R we have

max
∥νj−tν∥≤C

(1 + t)r |PH(fj)|2 ≫ (log log(2 + t))δ+o(1) .

Moreover, when E is the splitting �eld of H, we may take δ = 6/[E : Q].

In �3.5.2 we give the list of groups to which Theorem 3 can be applied. There we also
show that the associated Lie group G(R) is either PGL3(R) or the quasi-split projective
unitary group PU(2, 1), and in these cases the R-rank equals 2 or 1 respectively.
At �rst sight, the double logarithmic rate in Theorem 3 may seem disappointing when

compared with results of this type for (forms of) PGL2 (�0.1), or with results that give
polynomial growth of periods (�0.3). But in fact, we have a strong reason to believe
that in this case the double logarithmic growth is best possible, up to the exponent δ,
and this is simultaneously the answer to the question raised earlier: What must the
nontrivial growth in Theorem 3 be attributed to? We believe the reason for this growth
is arithmetic, for the following reason. There is an exceptional theta-correspondence
between PGL3 and the exceptional group G2, which is related to the maximal toric
periods in the theorem. In fact, the period PH(fj) should be, up to other arithmetic
factors that are equally mysterious, related to a product of L-values

L(πfj , 1)L(π̃fj , 1) ,
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where πfj denotes the representation generated by fj and π̃fj denotes its contragredient.
This period relation, while not proven, explains a great deal about the lower bound in
Theorem 3. First, it leads us to believe that the lower bound can, perhaps, not simply be
attributed to random behaviour of Laplacian eigenfunctions on Riemannian manifolds of
nonpositive curvature. But in fact, much more can be said. The period formula explains
why the growth rate we obtain should be polynomial in log logC(L(πfj , s)), the double
log of the analytic conductor! Indeed, the double logarithm reminds us of the following
result of Levinson [45]: There exists a constant C > 0 such that for arbitrarily large
t ∈ R, one has

|ζ(1 + it)| ≥ eγ log log t− C .
This is certainly not the best known result, but the main term in the right-hand side is
conjectured to be optimal [29]. We refer to [2] for the state of the art on the extreme
values of ζ(1 + it), and results with lower order terms. The results and conjectures for
ζ(1 + it) are exemplary for the more general situation. In fact, there is the following
conditional statement [6]: When π is a unitary cuspidal tempered automorphic repre-
sentation for GLn whose Godement-Jacquet L-function L(π, s) satis�es the generalized
Riemann hypothesis, then

(log logC(π))−n ≪ |L(π, 1)| ≪ (log logC(π))n ,

where the implicit constants depend on n only and we denote C(π) for the analytic
conductor of L(π, s). Moreover, if π is not tempered, one still has similar bounds but
with bigger exponents.
Coming back to the interpretation of Theorem 3, we conclude the following. First,

ignoring for the sake of the argument the other factors in the period formula mentioned
above, it is to be expected that the maximal toric periods exhibit oscillations that are
polynomial in log log λj . Indeed, this is (at least conjecturally) the largest permitted
oscillation of the L-value L(πfj , 1)L(π̃fj , 1), and based on what we know about ζ(1 + it)
we would expect this maximal oscillation to be almost realized. Second, if forced to make
a conjecture about the maximal growth of the periods in Theorem 3, it would be that
the exponent of log log(2+t) in the right-hand side can be replaced by 12+o(1). (Taking
into account the fact the periods appear with a square in the left-hand side.)
About the exponent in the right-hand side, we remark the following: The splitting

�eld E of H is Galois, and the Galois group embeds naturally as a subgroup of GL2(Z)
[12, �1.7]. It is well known that �nite subgroups of GL2(Z) have cardinality at most 12;
this is most easily seen by observing that the eigenvalues of a matrix of �nite order must
be roots of unity. Thus [E : Q] ≤ 12, meaning that δ = 1

2 is admissible. In the best
case, the Galois group is of cardinality 3 and we obtain the exponent 2; still far from the
(naive) conjecture that it can be replaced by 12.
The main arithmetic ingredient that goes into the proof of Theorem 3 is the optimiza-

tion problem of �nding the best possible resonator sequence. This is what explains the
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restriction to forms of PGL3. The optimization problem takes as input asymptotics for
local p-adic integrals arising in the geometric main term in a relative trace formula, and
requires us to construct a suitable Hecke operator. For (forms of) PGLn with n ≥ 3,
only for n = 3 have we found a suitable winning construction that, when plugged into the
optimization problem, yields nonconstant growth. We strongly believe that for n ≥ 4 no
such construction exists, and that the resonance method cannot produce any growth of
toric periods for n ≥ 4. If indeed true, we believe that, roughly speaking, this should be
attributed to the heuristic that tori inside PGL3 are still relatively large, while they are
too small inside PGLn, n ≥ 4. We refer to �3.7.3 and Remark 3.112 for these negative
statements.

0.5 A mean square asymptotic

The main analytic ingredient in the proof of Theorem 3 is a (ampli�ed) mean square
asymptotic for maximal �at periods. We require averages over spectral windows of
bounded size, and even a non-ampli�ed version requires a considerable amount of work.
For this ingredient there is no reason to restrict to the Lie groups associated to groups in
Theorem 3, and we prove a more general result, formulated classically in terms of periods
along maximal �at submanifolds.

Theorem 4. Let G be a noncompact connected semisimple Lie group with �nite center
and rank r, and let X be an associated compact Riemannian locally symmetric space.
Assume that at least one of the following holds:

� G has rank 1;

� G = SLp(R) or SU(k, p − k) with p prime and 0 < k < p, and X arises from a
Q-form of SLp.

Let (fj) ∈ L2(X) be an orthonormal basis of Maass forms. Let F ⊂ X be a compact
maximal �at submanifold and denote by PF (fj) the period of fj along F . Let Da∗ ⊂
(a∗)gen be compact. There exists C > 0 such that uniformly for ν ∈ Da∗ and t ∈ R we
have ∑

∥νj−tν∥≤C

|PF (fj)|2 ≍ β(tν) · (1 + t)−r ,

where β denotes the Plancherel density.

The restriction to certain locally symmetric spaces in Theorem 4 comes from our
bounds for orbital integrals in the relative trace formula. These are de�ned in terms of
a parameter g ∈ G, and behave di�erently when g centralizes a proper portion of the
group underlying the period. That is, when g lies in the standard Levi subgroup of a
semistandard parabolic other than G or the minimal one (see (2.1.4)). We have not been
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able to deal with the integrals for such g, which is why we restrict to settings where they
do not appear in the relative trace formula.
Theorem 4 tells us that we may view the factor (1 + t)r in the left-hand side in

Theorem 3 as a normalizing factor that makes the squared periods of size 1 on average.
It is consistent with the mean square asymptotic of Zelditch [80] over eigenvalue intervals,
but there is no obvious implication between the two results. The relation to Zelditch's
result is analogous to the relation of the spectral parameter Weyl law [19] to the classical
Weyl law for compact Riemannian manifolds.
The stationary phase analysis in the proof of Theorem 4 draws inspiration from the

proof of bounds for spherical functions in [20] and generalizes work of Marshall [47] for
PGL2 that we use in Chapter 1. Where for PGL2 one relies on classical facts about the
geometry of geodesics in the Poincaré upper half-plane model, the analogues of those
facts were not available in the generality needed here and had to be established as well;
see �0.6.
The quanti�cation over ν and t in Theorem 3 and Theorem 4 may be visualized as

follows. Fix a closed cone in the interior of (a∗)gen. Then tν tends to ∞ inside the cone,
and the maximum is taken over a ball of bounded radius around tν. Figure 0.1 gives a
picture when g = sl3(R), and the simple roots are denoted by α and β. When g = sl3(R),
the condition on tempered spectral parameters to not lie in a proper subspace spanned
by roots, is equivalent to not being self-dual, and it also appears in [7].

α

β α+ β

α⊥

β⊥

(a∗)+

B(tν, C)

30◦

30◦

Figure 0.1: A cone in (a∗)gen when G = SL3(R), with balls B(tν, C) as in Theorem 4.

0.6 The geometry of maximal �at submanifolds

Let G be a connected semisimple Lie group with �nite center. In the proof of Theorem 3
and Theorem 4, we are interested in spectral asymptotics in a relative trace formula for

24



maximal �at submanifolds of an associated locally symmetric space. Let G = NAK
be a choice of Iwasawa decomposition. De�ne a = Lie(A), and recall Harish-Chandra's
formula for the spherical function of parameter iλ ∈ ia∗:

φiλ(g) =

∫
K
e(ρ+iλ)(H(kg))dk , (0.12)

where H : G→ a is the Iwasawa projection and ρ ∈ a∗ the half-sum of positive roots. In
the analysis of the relative trace formula we require asymptotics for the integral∫

A
φiλ(a)b(a)da

(with a smooth cuto� b(a)) , as well as twisted versions thereof, as λ grows in a∗. The
problems are relative analogues of the problem of bounding spherical functions considered
in [20].
In view of (0.12), one is naturally led to study the behavior of the Iwasawa a-projection

along sets of the form kA. More speci�cally, we are interested in the critical points of

λ(H(ka))

as a function of a ∈ A. The maximal �at submanifolds of the symmetric space G/K are
the images of the sets gA. When G = PSL2(R), then G/K is the hyperbolic plane, the
maximal �ats are the geodesics, and the motivating problem of bounding orbital integrals
is solved in [47]. It takes as input classical facts about the geometry of geodesics in the
hyperbolic plane. For general semisimple G we require analogous results for maximal �at
submanifolds, which to our knowledge are not established. We state the results in the
next few paragraphs.
Consider the hyperbolic plane H = {x+iy ∈ C : y > 0} with its hyperbolic metric. The

group PSL2(R) acts on H by orientation-preserving isometries. We make the standard
choice of Iwasawa decomposition: Let N be the subgroup of unipotent upper triangular
matrices, A the subgroup of diagonal matrices and K = PSO2(R). Then PSL2(R) ∼=
N×A×K, the di�eomorphism being given by multiplication. The upper half-plane model
naturally lends itself to describe the Iwasawa projections geometrically. The element

g =

(
1 x
0 1

)(√
y 0
0 1/

√
y

)
∈ NA

sends i to x+ iy. That is, the real part of gi can be identi�ed with the N -projection of
g, and the imaginary part with the A-projection.
By a (maximal) geodesic in H we mean the 1-dimensional submanifold de�ned by

it, although we will sometimes informally speak of geodesics with an orientation. The
geodesics in H are the semicircles with centers on the horizontal axis, together with the

25



vertical lines. The action of PSL2(R) on i induces a di�eomorphism between A and the
vertical geodesic through i. Every geodesic is of the form gAi with g ∈ PSL2(R).
Observe that the real part of every geodesic is a bounded set. We generalize this

observation to semisimple Lie groups G, as follows.

Theorem 5. Let G be a connected semisimple Lie group. For all g ∈ G, the N -projection
of gA is a relatively compact set.

Theorem 5 is proved in �2.2 by diving into the mechanics of the Gram�Schmidt pro-
cess, and showing that the orthogonalization part can be done with uniformly bounded
operations. In fact, we will prove a stronger version with some uniformity, which is
Theorem 2.17. The uniform version requires to partition the set of all maximal �ats,
which is naturally identi�ed with G/NG(A), into a Zariski open `generic' set and several
lower-dimensional `exceptional' sets. This partition generalizes the distinction between
semicircles and vertical geodesics in the upper half plane H, in which case the semicir-
cles form the generic set. The partition is not dependent on any choice of model for
the symmetric space G/K, but inherent to the choice of Iwasawa decomposition of G.
Some of the lower-dimensional sets come from semistandard Levi subgroups, and it is no
surprise that they are exceptional. But in general there are other exceptional sets, and
the partition remains quite mysterious.
The second group of results concerns the Iwasawa A-projection. In the case of G =

PSL2(R), de�ne the height of a point in H to be its imaginary part. The heights of the
points of a geodesic gAi form a bounded-from-above set precisely when the geodesic is a
semicircle. In that case, the height is maximized at a unique critical point, which is the
midpoint of the semicircle, and the height tends to 0 at in�nity on the geodesic. Such a
critical point exists if and only if gAi is not vertical, meaning that g /∈ N ·NG(A).
For a general connected semisimple Lie group G, we prove the following.

Theorem 6. Let λ ∈ a∗ be an element that is positive with respect to the choice of
Iwasawa decomposition, regular, and which does not lie in a proper subspace spanned by
roots.

(i) For all g ∈ G the �height function�

hλ,g : A→ R
a 7→ λ(H(ga))

has at most one critical point. If it exists, it is non-degenerate and maximizes hλ,g.

(ii) The set of g ∈ G for which a given a ∈ A is a critical point of hλ,g, is a non-empty
smooth submanifold of codimension dim(A). The set of g ∈ G for which hλ,g has a
critical point, is open.
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We prove Theorem 6 in �2.3. The proof is quite technical and occupies the larger part
of this section. Regarding the second part, note that it is by no means obvious that hλ,g
has a critical point for even a single g, because the domain A is noncompact. The way in
which we prove existence is by varying g ∈ K, and realizing the elements g with a given
critical point as the minima of a certain smooth function on the compact group K. It is
likely that the set of g ∈ G for which hλ,g has a critical point is in fact dense and that
this can be proved using a very di�erent argument, which is related to Theorem 5; see
Remark 2.54.

Remark 0.13. The critical points in Theorem 6 can be thought of as giving the mid-
points of the �at gA ⊂ S. It is in general too much to hope that H(ga) has a critical
point as a function of a. That is, the critical points can depend on λ ∈ a∗. (See Exam-
ple 2.29.) We will not use the term �midpoint�, all the more because we have found no
way to generalize the observation that for PSL2(R), the critical point corresponds to the
center of the semicircle gAi ⊂ H.

Remark 0.14. In Theorem 6, many things break down when λ is singular, lies in a
proper subspace spanned by roots or is nonpositive: the nondegeneracy, uniqueness,
and existence of critical points. Regarding non-degeneracy, see Remark 2.46. For non-
uniqueness and non-existence, see �2.3.2.

Finally, we turn our attention to the Iwasawa K-projection. The Lie group PSL2(R)
is naturally identi�ed with the unit tangent bundle T 1(H) via its action on the vertical
vector at the base point, (i, (0, 1)). The Iwasawa K-projection of an element g corre-
sponds to a choice of direction at the point gi. The elements of the Weyl group NK(A)
correspond to the vertical directions, up and down. As we approach in�nity along a
geodesic, the tangent line to the geodesic tends to a vertical one.
We generalize this observation as follows.

Theorem 7. Let G be a connected semisimple Lie group. Let g ∈ G and H ∈ a. Then
the K-projection of getH tends to NK(A)ZK(H) as t→ +∞.

Theorem 7 is proved by projecting the K-projection of the geodesic �ow down to the
Lie algebra in a speci�c way and realizing it as the �ow of a vector �eld. The resulting
dynamical system is quite mysterious, but the asymptotic behavior of individual orbits
can be well understood. It might seem that Theorem 7 is a statement about individual
geodesics rather than maximal �ats, but it is possible to formulate statements with
uniformity in the variables g and H; see Remark 2.68.
In the end the results on the N - and K-projections were not needed for the stationary

phase analysis in �3. But they complete the picture nicely, might be useful elsewhere,
and they barely fail to provide alternative proofs of parts of Theorem 6; see Remark 2.54.
A number of things remain mysterious, in particular the apparent relation between the
partition in Theorem 2.17 on the N -projection, and the dynamical system used in the
proof of Theorem 7; see Remark 2.68.
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1 Geodesic periods on hyperbolic

surfaces

This chapter contains the proofs of Theorem 1 and Theorem 2. It can be read inde-
pendently from the other sections. The reader may �nd that the proofs here are quite
detailed. This is intentional: Our hope is that it can serve as a helpful tool to read the
arguments in the later sections, where we have left out some of the details for the bene�t
of a cleaner exposition.
The proof of Theorem 2 follows the recipe given by (0.8) and goes by a comparison of

trace formulas. In �1.2 we derive both formulas. Here, a novelty is the estimation of the
contribution of hyperbolic classes in the Selberg trace formula, which is an unavoidable
issue given the nature of the problem; see Remark 1.14. In the relative trace formula,
we identify a main term and determine its size. This involves an arithmetic computa-
tion (�1.3.1) and an analytic computation (�1.4). Bounding the error terms leads to
a Diophantine problem (�1.3.2) and the analytic problem of bounding orbital integrals
(�1.5). In �1.6.1, we combine the work and consider an arbitrary ampli�er, obtaining an
asymptotic estimate for short spectral sums. In �1.6.2 we optimize the ampli�er, proving
Theorem 2. In �1.6.3 we explain how to adapt the method to prove Theorem 1.

1.1 Notation

1.1.1 Lie groups

Let G = PSL2(R) and de�ne the subgroups K = PSO2(R), A = {( ∗ 0
0 ∗ )} and N =

{( 1 ∗
0 1 )}. Fix parametrizations a : R→ A, k : R/2πZ→ K de�ned by

a(t) =

(
et/2 0

0 e−t/2

)
, k(θ) =

(
cos(θ/2) sin(θ/2)
− sin(θ/2) cos(θ/2)

)
.

The action of G on the hyperbolic plane H induces a map G → H : g 7→ gi and a
di�eomorphism N×A ∼= H. Denote by dg the (bi-invariant) Haar measure on G ∼= H×K
that is the product of the hyperbolic measure with the Haar measure dk of mass 1 on K.
Fix any Riemannian metric on G, and denote the Riemannian distance on G by d = dG.
We will often use the fact that any two Riemannian distances are locally equivalent,

or more generally the following fact: when M is a smooth connected manifold, N ⊂
M a connected submanifold, each equipped with a Riemannian metric, then for every
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compact subset L ⊂ N and x, y ∈ L we have dN (x, y) ≍L dM (x, y). In particular, taking
M = N = G and pulling back the metric on G on the left or the right by g ∈ G,
we have for every compact L ⊂ G and x, y ∈ L that d(gx, gy) ≍g,L d(xg, yg) ≍g,L
d(x, y). Taking N = SL2(R) equipped with any Riemannian metric and M = M2(R)
with the Euclidean metric with respect to the standard basis, we �nd that for L ⊂ SL2(R)
compact and for matrices x, y ∈ L, dSL2(R)(x, y) ≍L ∥x− y∥2. We also have dG(x, y) ≍L
min(dSL2(R)(x, y), dSL2(R)(x,−y)).

1.1.2 Arithmetic quotients

Let B be a quaternion division algebra over Q that is split at∞. That is, there exists an
isomorphism of R-algebras ρ : B ⊗Q R ∼→M2(R). We view B as a subset of B ⊗Q R via
the natural embedding. Denote the projection GL+

2 (R)→ PSL2(R) = G by g 7→ g, and
de�ne ρ(g) = ρ(g) for an element g ∈ (B ⊗Q R)+ of positive reduced (quaternion) norm.
We will not always distinguish between η ∈ B+ and its image ρ(η) ∈ G. Let R ⊂ B be a
Z-order. For n ∈ N>0, denote by R(n) ⊂ B+ the set of elements of reduced norm equal
to n, de�ne R1 = R(1) and de�ne Γ = ρ(R1) ⊂ G. It is well known that Γ is a lattice in
G, and that the quotient Γ\H is compact (see for example [74, IV: Théorème 1.1.]). We
call Γ an arithmetic lattice. We �x any norm ∥·∥ on M2(R) ∼= B ⊗Q R.

1.1.3 Closed geodesics

By a geodesic in H we will mean a maximal geodesic, which we identify with the set of its
points, disregarding the parametrization. The image of A in H is the geodesic joining 0
with∞. Because G acts transitively on the unit tangent bundle of H, it acts transitively
on geodesics. If L is the geodesic that is the image of gA in H, its set-wise stabilizer is
the normalizer NG(gAg

−1), in which gAg−1 has index equal to 2.
If Γ ⊂ G is a discrete subgroup, a geodesic L = gAi ⊂ H projects to a smooth curve

in the Riemannian orbifold Γ\H. It has a periodic image ℓ ⊂ Γ\H precisely when there
exists γ ∈ (Γ∩gAg−1)−{1} that stabilizes L. We then call ℓ a closed geodesic and denote
ΓL = StabΓ(L) ∩ gAg−1. It is a lattice in gAg−1 and we have [StabΓ(L) : ΓL] ∈ {1, 2}.
When this index equals 1, ℓ is called a reciprocal geodesic; see [66]. When ℓ is a closed
geodesic and ϕ ∈ C∞(Γ\H), de�ne the period of ϕ along ℓ as the line integral

Pℓ(ϕ) :=

∫
ΓL\L

ϕ . (1.1)

When Γ is an arithmetic lattice as in �1.1.2, the closed geodesics can be characterized
as follows. When F ⊂ B is a real quadratic number �eld, the R-algebra F⊗QR ⊂ B⊗QR
is isomorphic to R×R, hence its image under ρ is conjugate in M2(R) to the algebra of
diagonal matrices. Thus the group ρ̄((F ⊗Q R)1) of matrices of determinant ±1 equals
gAg−1 for a unique g ∈ G/NG(A). One has that gA projects to a closed geodesic in Γ\H
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and every closed geodesic is obtained exactly once in this way: we obtain a bijection
F 7→ LF between real quadratic number �elds inside B and geodesics in H that become
closed in Γ\H. (In particular, whether a geodesic becomes closed in Γ\H depends only
on B and ρ.) It induces a bijection between real quadratic F ⊂ B modulo conjugation
by R1, and closed geodesics ℓ ⊂ Γ\H.
When F is such a real quadratic �eld, we write RF = R ∩ F . It is an order in F

and one has that ΓLF
= ρ̄(R1

F ), whereas StabΓ(LF ) equals the normalizer ρ(NR1(F )).
More generally, one has StabB+(LF ) = NB+(F ). Let ω ∈ B× be a Skolem-Noether
element with respect to F . That is, conjugation by ω leaves F invariant and induces the
non-trivial automorphism of F . Then NB+(F ) = F+ ⊔ (ωF )+.

Remark 1.2. Closed geodesics are naturally grouped in packets indexed by a class
group, and the above bijection gives the geodesic corresponding to the identity of the
group. When R is an Eichler order of square-free level, packets can be described without
use of the adelic language as follows: let F ⊂ B be a real quadratic �eld, and I an
invertible fractional RF -ideal. The right R-ideal IR is principal and generated by an
element a ∈ B+. To I we associate the R1-conjugacy class of the �eld a−1Fa (i.e., a
closed geodesic). The map obtained in this way factors through the narrow class group
of RF to an injective map.

Remark 1.3. When a closed geodesic is viewed as a subset of Γ\H, it may seem natural
to de�ne Pℓ(ϕj) instead as an integral over StabΓ(L)\L, resulting in a period that is
half as large when L is a reciprocal geodesic. However, the de�nition (1.1) is closer to
the notion of an adelic period, and appears naturally in a period formula, which we now
state.

Remark 1.4. Geodesic periods are related to central values of certain Rankin�Selberg
L-functions as follows: [59, Theorem 5.4.1] let N ≥ 1 be a square-free integer and let
F be a real quadratic �eld of square-free discriminant dF coprime to N . Assume that
the number of primes dividing N that are inert in F is even. Let B be a quaternion
algebra over Q that is rami�ed exactly at the primes dividing N that are inert in F . Fix
an embedding ι : F ↪→ B. Let R ⊂ B be an Eichler order of level N/∆B containing
the full ring of integers ι(OF ). (The freedom in the choice of the Eichler order R is
explained in [59, Remark 5.3.3].) Let Γ ⊂ PSL2(R) be the corresponding lattice. Let h+F
be the narrow class number of F . To F corresponds a packet ΛdF consisting of h+F closed
geodesics in Γ\H. Let χ0 be the trivial character of the narrow class group of F and πχ0

the associated automorphic representation of GL2(AQ) given by automorphic induction.
Let f be a Maass newform of level Γ0(N). Let πf be the automorphic representation of
GL2(AQ) it generates. Let πJLf be the corresponding representation of B×(AQ) given by

the Jacquet-Langlands correspondence and take a newvector in πJLf , which corresponds
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to an L2-normalized Hecke-Laplace eigenfunction ϕ on Γ\H. Then

Λ(1/2, πf × πχ0)

Λ(1, πf ,Ad)
= 2d

−1/2
F

∏
p|∆B

p+ 1

p− 1
·

∣∣∣∣∣∣
∑
ℓ∈ΛdF

Pℓ(ϕ)

∣∣∣∣∣∣
2

, (1.5)

where the Λ's in the left-hand side are completed Rankin�Selberg L-functions. (When f
is odd, both sides are 0.)
Note that: (1) the assumption that there is an even number of prime divisors of N

that are inert in F implies that the ϵ-factor in the functional equation for Λ(s, πf × πχ0)
is 1, so that there is no forced vanishing of the central value; (2) if there is at least one
such prime divisor, B is a division algebra; (3) if all prime divisors of N are inert in F ,
R is a maximal order. In Corollary 1 we impose all three conditions.

1.1.4 Hecke operators

Assume from now on that R is an Eichler order of square-free level. Let ∆R be its
discriminant and Γ = ρ(R1). For n ∈ N>0, the quotients R(1)\R(n) are �nite and we
de�ne the Hecke operators Tn, which act on L2(Γ\H), by

(Tnf)(z) =
∑

η∈R(1)\R(n)

f(ηz) . (1.6)

The Tn are self-adjoint operators and commute with the Laplacian ∆ on smooth func-
tions. Because R is an Eichler order of square-free level, when (mn,∆R) = 1 we have
the relations

TmTn = TnTm =
∑
d|m,n

d · Tmn/d2 (1.7)

(see [23, �III.7]). Note that the Hecke operator Tn is often normalized by multiplying
the sum in (1.6) by a factor 1/

√
n, which we don't do here.

1.1.5 Convolution operators

In order to extract short spectral sums from the spectral side of the trace formula, we
will make use of convolution operators that are approximate spectral projectors, and
whose Harish-Chandra transform satis�es certain positivity properties. Their existence
is guaranteed by Proposition 1.8.
For s ∈ C, de�ne the spherical function φs ∈ C∞(K\G/K) by

φs(g) =

∫
K
e(1/2+s)H(kg)dk ,

where H : G→ R is de�ned on A as the inverse of the map a : R→ A from �1.1.1, and
extended using the Iwasawa decomposition to G = NAK by de�ning H(nak) := H(a).
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This way, H(g) is the unique real number for which g ∈ Na(H(g))K. For a ∈ A we have
that

φs(a) = P− 1
2
+s(cosh(H(a))),

where P stands for the Legendre function (see also (1.33)).
For a function k ∈ C∞

0 (K\G/K), de�ne the Harish-Chandra transform k̂ : C→ C by

k̂(s) =

∫
G
k(g)φs(g)dg .

It is an entire function of order (at most) 1 and of �nite type, whose type remains
bounded when the support of k remains bounded. When k1, k2 ∈ C∞

0 (K\G/K), de�ne
the convolution

(k1 ∗ k2)(g) =
∫
G
k1(gh)k2(h

−1)dh .

Proposition 1.8. There exists a family (kν)ν≥0 of bi-K-invariant smooth functions on
G satisfying:

1. there exists R > 0 such that kν is supported in the ball B(1, R) for all ν;

2. k̂ν(s) ∈ R≥0 when s ∈ R ∪ iR;

3. k̂ν(ir) ≥ 1 for |r − ν| ≤ 1;

4. k̂ν(ir)≪N (1 + |ν − r|)−N uniformly for ν ≥ 0 and r ∈ R≥0 ∪ [−i/2, i/2];

5. kν(1) ≍ ν for ν su�ciently large.

Proof. Take any real-valued k ∈ C∞
0 (K\G/K). The Harish-Chandra transform k̂(s) is

clearly real when s ∈ R, and in view of the functional equation φ−s = φs, also when
s ∈ iR. If we choose k nonnegative and not identically zero, we have k̂(s) > 0 for s ∈ R;
in particular for s = 0. Let k(1) = k ∗ k. Then k̂(1)(s) = k̂(s)2 ≥ 0 for s ∈ R ∪ iR. There
exists δ > 0 such that k̂(1)(s) > k̂(1)(0)/2 for |s| ≤ δ. Let k̂(2)(s) = 2k̂(1)(δs)/k̂(1)(0).

Then k̂(2)(s) ≥ 1 for |s| ≤ 1. Let k(2) be its inverse Harish-Chandra transform. De�ne

k̂ν(s) = k̂(2)(iν + s) + k̂(2)(iν − s) .

Then k̂ν is entire, even, of exponential type (at most) the exponential type of k̂(2), so
it is the Harish-Chandra transform of a kν ∈ C∞

0 (K\G/K) whose support is bounded
independently of ν. Conditions (1) and (2) are now satis�ed. When |r− ν| ≤ 1, we have

k̂ν(ir) = k̂(2)(iν + ir) + k̂(2)(iν − ir)
≥ 0 + 1 ,
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which implies condition (3). Being the Fourier transform of the Abel transform of k(2),

k̂(2) is of rapid decay on vertical strips of C. Thus when Re(r) ≥ 0 and Im(r) remains
bounded,

k̂ν(ir)≪N (1 + |ν + r|)−N + (1 + |ν − r|)−N

≪N (1 + |ν − r|)−N ,

which is (4). For (5), using the inverse Harish-Chandra transform we have

kν(g) =

∫ ∞

0
k̂ν(ir)φir(g)β(r)dr , (1.9)

where β(r) = 1
2π tanh(πr) · r is the Plancherel density. When g = e, φir(g) = 1 so that

kν(1) ≥
∫ ν+1

ν
k̂ν(ir)β(r)dr ≫ ν

on the one hand, and

kν(1)≪
∫ 2ν

0
k̂ν(ir)νdr +

∫ ∞

2ν

r

(r − ν)3dr

≪ ν · ∥k̂ν∥L1(iR) + ν−1 ≪ ν

on the other.

Throughout, we �x a family (kν) as in Proposition 1.8.

1.1.6 Eigenfunctions

Let (ϕj)j≥0 be an orthonormal basis of L2(Γ\H) consisting of simultaneous eigenfunctions
for ∆ and the Hecke operators Tn for (n,∆R) = 1, ordered by increasing Laplacian
eigenvalue λj ≥ 0:

(∆ + λj)ϕj = 0 .

Because ∆ and the Tn are self-adjoint, we can and will assume that each ϕj is real-valued.
Write the nth Hecke eigenvalue of ϕj as T̂n(ϕj). For each j, write λj = 1

4 + ν2j , where
νj ∈ R≥0∪[0, i/2] is called the spectral parameter of ϕj , to be thought of as the frequency
of the wavefunction ϕj . The automorphic kernel Kν(x, y) =

∑
γ∈Γ kν(x

−1γy) acts as an

integral operator on L2(Γ\H), and the Kν-eigenvalue of ϕj is k̂ν(iνj).
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1.2 Two trace formulas

As in �1.1, let Γ ⊂ G be the lattice coming from an Eichler order R of square-free
level in a quaternion division algebra B, F ⊂ B a real quadratic �eld, L = LF ⊂ H
the corresponding geodesic and ℓ the corresponding closed geodesic. Denote P(ϕj) =
Pℓ(ϕj). Let g0Ag

−1
0 = AL be the identity component of StabG(L).

We start from the spectral expansion of the automorphization of kν :∑
j

k̂ν(iνj)ϕj(x)ϕj(y) =
∑
γ∈Γ

kν(x
−1γy) ,

where the convergence is uniform for x and y in compact sets. Let n ≥ 1 be an integer
coprime to the discriminant ∆R, and apply Tn to the x-variable to obtain∑

j

k̂ν(iνj)T̂n(ϕj)ϕj(x)ϕj(y) =
∑

η∈R(n)/±1

kν(x
−1ηy) . (1.10)

Setting x = y and integrating over Γ\H we obtain the ampli�ed standard trace formula:∑
j

k̂ν(iνj)T̂n(ϕj) =

∫
Γ\H

∑
η∈R(n)/±1

kν(x
−1ηx)dx . (1.11)

On the other hand, to make periods appear, we may integrate (1.10) over ℓ × ℓ to get
the ampli�ed relative trace formula:∑

j

k̂ν(iνj)T̂n(ϕj)P(ϕj)
2 =

∫
ℓ×ℓ

∑
η∈R(n)/±1

kν(x
−1ηy)dxdy . (1.12)

We now identify a main term and an error term in both trace formulas.

1.2.1 Standard trace formula

Rewrite (1.11) as∑
j

k̂ν(iνj)T̂n(ϕj) = |(R(n) ∩Q)/± 1| ·Vol(Γ\H) · kν(1)

+
∑

η∈(R(n)−Q)/±1

∫
F
kν(x

−1ηx)dx ,
(1.13)

where F ⊂ H is a fundamental domain for the action of Γ. We want to bound the sum
in the right-hand side. We follow [37, �2]. The argument changes slightly because our
convolution operator kν is a di�erent one: (1) the support of kν does not decrease with
ν, which means that the contribution of hyperbolic elements cannot be ignored. (2) kν
is not necessarily nonnegative, so we cannot bound the contribution of a single η by the
contribution of its conjugacy class.
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Remark 1.14. The reason why we (have to) make this choice of convolution operator
kν , is the following. Our ultimate goal is to prove an inequality of the form∑

j

k̂ν(iνj)wjP(ϕj)
2 ≥ Cν ·

∑
j

k̂ν(iνj)wj (1.15)

for suitable nonnegative weights wj , which will imply (if the right-hand side is nonzero)
that at least one eigenfunction ϕj0 satis�es the bound P(ϕj0)

2 ≥ Cν . Here, we expect Cν
to be just slightly larger than ν−1. In particular, it decreases with ν (in contrast to the
situation in [37, 50]). We want to bound Cν from below by ν−1

j0
. If νj0 is small compared

to ν (less than ν0.99, say), then this is not possible. To ensure that νj0 ≫ ν, we want to
truncate the sum in the left-hand side of (1.15) and keep only the terms with νj0 ≍ ν.
This is why we have chosen kν with the property that it has rapid decay away from ν.
As a bonus, we obtain an eigenfunction whose spectral parameter νj0 lies in an interval
of bounded length around ν. As a minus, we lose nonnegativity of kν , which means that
orbital integrals in the relative trace formula can be negative, and have to be bounded.

For the contributing hyperbolic classes, we will need additional arithmetic information,
given by the following lemma.

Lemma 1.16. Let n ≥ 1 and η ∈ R(n). Suppose that there exists γ ∈ R1, x ∈ F and
ν ≥ 0 with x−1γ−1ηγx ∈ supp kν . Let K = Q(η) ⊂ B be the quadratic sub�eld generated
by η, and let O = R ∩K, which is an order in K. Then there exists a constant C > 0,
independent of n and η, such that |Tr ρ̄(η)| ≤ C and the discriminant DO of O satis�es
|DO| ≤ Cn ||Tr ρ̄(η)| − 2|.

Proof. Because K ∩ R ∼= γKγ−1 ∩ R, these orders have the same discriminant, and
because Tr(γ−1ηγ) = Tr(η) we may assume γ = 1. Then ρ(η) belongs to the bounded
set F (

⋃
ν supp kν)F

−1. Thus 1√
n
ρ(η) belongs to a bounded set independent of n and

ν. By the remarks in �1.1.1 there exists C ′ > 0 with ∥ 1√
n
η∥ ≤ C ′, where ∥·∥ is the norm

on B ⊗Q R we �xed in �1.1.2. Let α ∈ O be such that α2 = DO. Then O ⊂ 1
2Z+ 1

2αZ.
Write η = a+ bα with a, b ∈ 1

2Z. Then

|Tr(η)| = ∥2a∥ = ∥η + η̄∥ ≤ 2C ′√n

so that |Tr(ρ̄(η))| ≤ 2C ′. Because η /∈ Q we have b ̸= 0, so |b| ≥ 1/2. From n = N(η) =
a2 −DOb

2 we have

|DO| =
|a2 − n|
b2

≤ 4|a2 − n| = n(|Tr ρ̄(η)|+ 2) ||Tr ρ̄(η)| − 2|

and we can take C = 2C ′ + 2.

Let s denote the characteristic function of the squares, so that |(R(n)∩Q)/±1| = s(n).
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Proposition 1.17. There exists an absolute constant C > 0 such that∑
j

k̂ν(iνj)T̂n(ϕj) = s(n)Vol(Γ\H) · kν(1) +O
(
n3/2eC logn/ log log(n+1)

)
,

uniformly in n ≥ 1, ν ≥ 0.

Proof. We may rewrite the sum in the right-hand side of (1.13) as

1

2

∑
C

∑
η∈C

∫
F
kν(x

−1ηx)dx , (1.18)

where the sum runs over all R1-conjugacy classes C ⊂ R(n)−Q. Fix C and take η ∈ C.
We break into cases based on whether ρ(η) is parabolic, hyperbolic or elliptic. Because
B is a division algebra, ρ(η) is not parabolic.
When ρ(η) is hyperbolic, call P > 1 the square of its largest eigenvalue. Because

η generates a real quadratic quadratic sub�eld K ⊂ B, the centralizer ZΓ(ρ(η)) is an
in�nite cyclic group. Let η0 ∈ K ∩ R1 be totally positive and such that ρ(η0) generates
this centralizer, and let P0 > 1 the square of the largest eigenvalue of ρ(η0). By the
computation in [36, �10.5] and our choice of kν ,∑

η∈C

∫
F
kν(x

−1ηx)dx =
logP0

P 1/2 − P−1/2

∫
R
k̂ν(ir)e

ir logP (2π)−1dr

≪ logP0

P 1/2 − 1
.

We have

(P 1/2 − 1)2 ≥ (P 1/2 − 1)2

P 1/2
= P 1/2 + P−1/2 − 2 = |Tr(ρ(η))| − 2 .

In order to bound P0, let σ : K → R be an embedding and observe that P 1/2
0 +P

−1/2
0 =

TrB/Q(η0) = σ(η0)+σ(η0)
−1. Thus P0 ∈ {σ(η0)2, σ(η0)−2}, so that logP0 = 2 |log σ(η0)|.

When RO is the regulator of the order O = R ∩K, we have |log σ(η0)| ∈ {RO, 2RO} ac-
cording to whether the fundamental unit of O has norm ±1. From the proof of Dirichlet's
unit theorem, one has that RO is bounded up to a constant by a power of the discrimi-
nantDO. Using the class number formula this can be improved toD1/2

O logDO log logDO.
(For non-maximal orders, this was done in [64].) We may now assume that the sum over
η ∈ C is nonzero, in which case DO ≪ n(|Tr ρ̄(η)| − 2)≪ n by Lemma 1.16. Combining
this with the bound for P 1/2 − 1, we obtain that for C hyperbolic,∑

η∈C

∫
F
kν(x

−1ηx)dx≪ n1/2(|Tr(ρ̄(η))| − 2)1/2 log2 n

(|Tr(ρ̄(η))| − 2)1/2
= n1/2 log2 n . (1.19)
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When ρ(η) is elliptic, let 0 < θ ≤ π/2 be such that ±eiθ is an eigenvalue. The centralizer
ZΓ(ρ(η)) is a �nite cyclic group. By the computation in [36, �10.6],∑

η∈C

∫
F
kν(x

−1ηx)dx =
|ZΓ(ρ(η))|−1

sin θ

∫
R
k̂ν(ir)

cosh((π − 2θ)r)

cosh(πr)

π

2
dr

≪ 1

sin θ
.

Because ρ̄(η) is elliptic, |Tr(η)|2< 4n, so |Tr(η)|2 ≤ 4n − 1 as the left-hand side is an
integer. We have

2− |Tr(ρ̄(η))| ≥ 2−
√
4− 1

n
=

1

n
(
2 +

√
4− 1

n

) ≥ 1

4n

so that
2 sin2 θ = 2− 2 cos2 θ ≥ 2− 2 cos θ = 2− |Tr(ρ̄(η))| ≥ (4n)−1 .

We obtain that, for C elliptic,∑
η∈C

∫
F
kν(x

−1ηx)dx≪ n1/2 . (1.20)

We now count the number of contributing conjugacy classes. For the term in (1.18) cor-
responding to η to be nonzero, there must exist x in the compact set F with x−1ρ(η)x ∈
supp kν . We may thus restrict the sum (1.18) to C that contain an element η with
∥η∥ ≤ C ′√n. The number of such conjugacy classes is bounded by the cardinality of the
set

M = {η ∈ R(n) : ∥η∥ ≤ C ′√n} .
This is a counting problem that has arisen many times in the context of sup norms of
Maass cusp forms. Letting (η0, η1, η2, η3) be a �xed Z-basis of R and using that ∥·∥ is
equivalent to the sup norm with respect to this basis, we see that |M | ≪ (

√
n)4. A

more careful treatment gives |M | ≪ n exp(C log n/ log log(n + 1)) for some C > 0; see
for example [50, �5] or Remark 1.31 below. Multiplying this bound for |M | by the larger
one of the bounds (1.19) and (1.20), the claim follows.

1.2.2 Relative trace formula

Proposition 1.21. There exists a nonnegative b ∈ C∞
0 (R) depending only on Γ and L,

such that for every n ∈ N>0,∑
j

k̂ν(iνj)T̂n(ϕj)P(ϕj)
2 = |NR(n)(F )/R

1
F | ·Vol(ΓL\L) ·

∫
R
kν(a(t))dt

+
∑

η∈(R(n)−NR(n)(F ))/±1

I(ν, g−1
0 ηg0) ,
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where for g ∈ G we de�ne

I(ν, g) =

∫
R×R

b(s)b(t)kν(a(−s)ga(t))dsdt . (1.22)

Proof. We start from the relative trace formula (1.12). We have that L has unit length

parametrization by g0a(t)i where a(t) = exp
(
t/2 0
0 −t/2

)
. Let FL ⊂ L be a �xed funda-

mental domain for the action of ΓL. Write∑
η∈R(n)/±1

∫
FL×FL

kν(x
−1ηy)dxdy =

∑
η∈NR(n)(F )/±1

∫
FL×FL

kν(x
−1ηy)dxdy

+
∑

η∈(R(n)−NR(n)(F ))/±1

∫
FL×FL

kν(x
−1ηy)dxdy .

The �rst term equals, by unfolding the sum in the second variable and then making the
change of variables y ← η−1y,∑

η∈NR(n)(F )/R1
F

∫
FL×L

kν(x
−1ηy)dxdy

=
∑

η∈NR(n)(F )/R1
F

∫
FL×L

kν(x
−1y)dxdy

= |NR(n)(F )/R
1
F |
∫
[0,Vol(FL)]×R

kν(a(−s+ t))dsdt

= |NR(n)(F )/R
1
F | ·Vol(ΓL\L) ·

∫
R
kν(a(t))dt

For the second term, we unfold the sum as follows:∑
δ∈ΓL\ρ(R(n)−NR(n)(F ))/ΓL

∑
γ∈ΓLδΓL

∫
FL×FL

kν(x
−1γy)dxdy

=
∑

δ∈ΓL\ρ(R(n)−NR(n)(F ))/ΓL

∫
L×L

kν(x
−1δy)dxdy

Here, we used that for δ as above, the integral over L × L converges absolutely thanks
to the compact support of kν , and that the map ΓL × ΓL → G : (γ1, γ2) 7→ γ1δγ2 is
injective. Indeed, the contrary would imply that ΓL ∩ δΓLδ−1 ̸= {1}, so in particular
AL ∩ δALδ−1 ̸= {1}. This would imply AL = δALδ

−1 so that δ ∈ NG(AL). If δ = ρ(η)
with η ∈ R(n), this means that η ∈ NR+(F ), a contradiction.
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Now we introduce a smooth cuto� function in each of the integrals. Let b0 ∈ C∞
0 (L)

be such that
∑

γ∈ΓL
b0(γz) = 1 for all z ∈ L. Then the sum equals

∑
δ∈ΓL\ρ(R(n)−NR(n)(F ))/ΓL

∫
L×L

∑
γ1,γ2∈ΓL

b0(γ1x)b0(γ2y)kν(x
−1δy)dxdy

∑
δ∈ΓL\ρ(R(n)−NR(n)(F ))/ΓL

∫
L×L

∑
γ1,γ2∈ΓL

b0(x)b0(y)kν(x
−1γ−1

1 δγ2y)dxdy

=
∑

γ∈(R(n)−NR(n)(F ))/±1

∫
L×L

b0(x)b0(y)kν(x
−1γy)dxdy ,

where we made the change of variables (x, y) ← (γ1x, γ2y) and merged the sum over
δ with the sum over γ1, γ2. We obtain the statement of the proposition, with b(t) :=
b0(g0a(t)).

For the integral appearing in the main term in Proposition 1.21, we shall prove the
following in �1.4.

Proposition 1.23. We have ∫
R
kν(a(t))dt ≍ 1

for ν su�ciently large.

For the integrals appearing in the remaining terms in Proposition 1.21, we have the
following.

Proposition 1.24. De�ne I(ν, g) by (1.22).

1. There exists C ′ > 0 independent of ν ≥ 0 such that I(ν, g) = 0 unless d(g, 1) ≤ C ′.

2. For g ∈ G, we have

|I(ν, g)| ≪ (1 + ν · d(g,NG(A)))
−1/2

uniformly in g and ν ≥ 0.

The constant C ′ in (1) and the implicit constant in (2) may depend on ℓ.

Proof. We prove the �rst assertion and postpone the proof of the second assertion until
�1.5. By construction, kν is supported on points at bounded distance from e. If I(ν, g)
is nonzero, there exist t, s ∈ supp b with kν(a(−t)ga(s)) ̸= 0. Then g belongs to the set
a(supp b)(supp kν)a(− supp b), which is bounded uniformly in ν.
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1.3 Counting Hecke returns

1.3.1 Counting stabilizers

Let F ⊂ B as before be the real quadratic number �eld corresponding to the geodesic
L. We want to understand the factor |NR(n)(F )/R

1
F |, which appears in the main term

in the relative trace formula. Denote by fRF
the conductor of the order RF , by PRF

the
set of principal ideals of the maximal order OF that are generated by an element of RF ,
and by PRF

(n) the set of such ideals of norm n.

Lemma 1.25. When n ≥ 1 is coprime to fRF
, we have

|NR(n)(F )/R
1
F | ≥ |PRF

(n)|
Proof. We may bound the left-hand side from below by |RF (n)/R1

F |. We show that
for (n, fRF

) = 1, this cardinality equals |PRF
(n)|. An element η ∈ RF (n) determines

a principal ideal ηRF ⊂ RF , which determines a principal ideal ηOF ∈ PRF
(n). The

composition of the two maps obtained in this way, is by de�nition surjective onto PRF
(n).

The �rst map has �bers which are full orbits under multiplication by R1
F . The second is

injective, provided that n is coprime to the conductor fRF
.

1.3.2 Bounding approximate stabilizers

In order to control the sum appearing in the error term in Proposition 1.21, we will need
an upper bound for the number of elements η ∈ R(n) that are close to stabilizing L
without actually stabilizing it, that is, for the cardinality of the sets

M(n, δ) =
{
η ∈ R(n) : d(ρ̄(η), 1) ≤ C ′, 0 < d(ρ̄(η), NG(AL)) ≤ δ

}
,

where C ′ > 0 is an arbitrary constant, which we �x throughout this section. This
counting problem is similar to, but slightly di�erent from the ones considered in [37, 47]
in the context of upper bounds for sup norms and for integrals along geodesic segments,
respectively: in the de�nition ofM(n, δ), we are excluding the η ∈ R(n) that stabilize L,
so that the upper bound for |M(n, δ)| we obtain is smaller than what a direct invocation of
[47, Lemma 3.3] would imply. This is necessary, because including those η in the de�nition
of M(n, δ) would force any upper bound to be at least as large as |NR(n)(F )/R

1
F |, while

we want the latter quantity to dominate the error term. Our method for bounding
|M(n, δ)| however, uses many ideas that originate in [37].

Lemma 1.26. There exists an absolute constant C > 0 such that when D ∈ Z>0 is a
non-square, 0 < δ ≤ B and n ≥ 1,

#
{
(u, v) ∈ Z2 : 0 <

∣∣u2 −Dv2 − n∣∣ ≤ δn, |u|, |v| ≤ Bn}
≪ δneC logn/ log log(n+1)

where the implicit constant depends on D and B.
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Proof. We want to estimate

#{(u, v) ∈ Z2 : 0 < |u2 −Dv2 − n| ≤ δn, |u|, |v| ≤ Bn}
=

∑
0<|m−n|≤δn

#{u, v : u2 −Dv2 = m, |u|, |v| ≤ Bn}

Let K = Q(
√
D). Fix m as in the sum. Any pair (u, v) as above determines an element

z = u+v
√
D ∈ K of norm m, and if |·|1, |·|2 denote the two Archimedian absolute values

of K, we have |z|1, |z|2 ≤ Bn(1 +
√
D)). We obtain the upper bound

#{(u, v) ∈ Z2 : u2 −Dv2 = m, |u|, |v| ≤ Bn}
≤ #{z ∈ OK : N(z) = m, |z|1, |z|2 ≤ Bn(1 +

√
D)} .

The latter set maps to the set of integral ideals in OK with norm m. There are at
most τ(m) such ideals. We may bound the divisor function τ(m) by its maximal order
exp(C logm/ log log(m+ 1))≪δ exp(C log n/ log log(n+ 1)) for some C > 0. The �bers
of said map are orbits under multiplication by units of norm 1. Let ε be the fundamental
unit of K. The bound on |z|1 and |z|2 implies that the �bers of that map are of size at
most

≪ log(Bn(1 +
√
D))

log|ε| ≪ 1 + log n

We obtain the upper bound∑
0<|m−n|≤δn

#{u, v : u2 −Dv2 = m, |u|, |v| ≤ Bn}

≪ δn · exp(C log n/ log log(n+ 1)) · (1 + log n) ,

as desired. Here we used that the number of terms in the sum is ≪ δn, and not just
≪ δn+ 1, since we omit the term for m = n.

Lemma 1.27. There exists an absolute constant C > 0 such that

#M(n, δ)≪ δneC logn/ log log(n+1) .

The implicit constant may depend on ℓ.

Proof. Let D > 0 be the discriminant of F and take α ∈ F with α2 = D. For t, u ∈ R
we have NM2(R)/R(t+ uρ(α)) = t2 −Du2, so that

AL = ρ̄((F ⊗Q R)1) =
{
t+ uρ(α) : t2 −Du2 = 1

}
(1.28)
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Let ω ∈ B× be the Skolem-Noether element from �1.1.3. Multiplying ω, if necessary, by
an element of negative norm in F and by a suitable integer, we may assume that ω ∈ R+.
Let E := NB/Q(ω) = −ω2 ∈ Z>0. Let S ⊂ B be the order Z+Zα+Zω+Zαω. Let f ∈
N>0 be such that f ·R ⊂ S. Now let η ∈M(n, δ). We can write η = x0+x1α+x2ω+x3αω
with x0, x1, x2, x3 ∈ 1

fZ, and we have NB/Q(η) = x20 − Dx21 + Ex22 − DEx23 = n. All
implied constants throughout the proof will be allowed to depend on D, E and f .
Suppose �rst that d(ρ̄(η), AL) ≤ δ. Let C ′ be the constant from the beginning of the

section, with respect to whichM(n, δ) is de�ned. BecauseM(n, δ) =M(n,C ′) for δ ≥ C ′,
it is no restriction to assume δ ≤ C ′. By the remarks in �1.1.1, from d(ρ̄(η), AL) ≤ δ and
d(ρ̄(η), 1) ≤ C ′ it follows that there exists a ∈ SL2(R) with a ∈ AL and ∥ 1√

n
ρ(η)−a∥ ≪ δ.

Here, the norm is any �xed norm onM2(R). Writing a = t+uρ(α) as in (1.28), it follows
that in B ⊗Q R,

1√
n
(η ⊗ 1) = 1⊗ t+ α⊗ u+O(δ)

and comparing coordinates in the basis (1, α, ω, αω), we obtain

x0√
n
= t+O(δ)

x1√
n
= u+O(δ)

x2√
n
= O(δ)

x3√
n
= O(δ) .

(1.29)

The assumption d(ρ̄(η), 1) ≤ C ′ implies that x0, x1, x2, x3 ≪
√
n, so that

1 = t2 −Du2 = x20
n
−Dx

2
1

n
+O(δ) .

That is, |x20 − Dx21 − n| ≪ δn. Because d(ρ̄(η), NG(A)) > 0, we have η /∈ F , so that
(x2, x3) ̸= (0, 0), so that x20 −Dx21 = n−E(x22 −Dx23) ̸= n. We obtain that the integers
(fx0, fx1) satisfy

0 < |(fx0)2 −D(fx1)
2 − f2n| ≪ δn

and |fx0|, |fx1| ≪ n. By Lemma 1.26 and the assumption that δ ≤ C ′, the number of
possible values for (x0, x1) is at most ≪ δneC logn/ log log(n+1) for some C > 0. If we �x
x0 and x1, then x2 and x3 satisfy

|(fx2)2 −D(fx3)
2| = f2/E · |n−NB/Q(x0 + x1α)| ≪ n (1.30)

and |fx2|, |fx3| ≪ n. By counting ideals in Q(
√
D) in the same way as in the proof of

Lemma 1.26, we see that the number of (x2, x3) satisfying the equality in (1.30) can be
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bounded by ≪ exp(C log n/ log log(n+ 1)). This proves that the number of η ∈M(n, δ)
with d(ρ̄(η), AL) ≤ δ is at most ≪ δne2C logn/ log log(n+1).
Suppose now that η ∈M(n, δ) is such that d(ρ(η), NG(AL)−AL) ≤ δ. We have ρ(ω) ∈

NG(AL)−AL, so we obtain that d(ρ(ωη), AL)≪ δ, d(ρ̄(ωη), 1)≪ 1 and ωη ∈ R(n ·E).
By the �rst case (with a di�erent constant C ′ in the de�nition ofM(nE, δ)), the number
of such η is bounded by ≪ δnEeC log(nE)/ log log(nE+1) for some C > 0.
Adding the contributions from the two types of η, the claim follows.

Remark 1.31. 1. It is clear from the proofs of Lemmas 1.26 and 1.27 that when
M ′(n, δ) is de�ned as the set obtained by removing in the de�nition of M(n, δ) the
condition that 0 < d(ρ̄(η), NG(A)), then we obtain the upper bound

#M ′(n, δ)≪ (δn+ 1)eC logn/ log log(n+1)

for some C > 0. In particular,

#
{
η ∈ R(n) : d(ρ̄(η), 1) ≤ C ′} =M ′(n,C ′)≪ neC logn/ log log(n+1) .

2. Note that, as opposed to [47, Lemma 3.3], our bound for M(n, δ) is not uniform
in the geodesic L, which explains why we are able to get a factor δ instead of only√
δ. But this improvement will not play a major role when we use this bound in

the proof of Lemma 1.47 below. In fact, the larger part of our estimate of the error
term in Proposition 1.21 will come from the η with d(ρ̄(η), NG(AL)) ≍ 1, for which
the higher power of δ in Lemma 1.27 gives no improvement.

1.4 Stationary phase

We now prove Proposition 1.23. By expanding kν in terms of spherical functions, this
will reduce to �nding an asymptotic estimate for an integral of the form

L (r) =

∫
R
c(t)φir(a(t))dt , (1.32)

where c : R→ [0, 1] is some smooth and compactly supported function satisfying c(0) > 0.
We have [36, (1.43)]

φir(a(t)) =

∫
S1

(cosh t+ x1 sinh t)
ir− 1

2dµ(x) , (1.33)

where S1 = {(x1, x2) ∈ R2 : x21 + x22 = 1} and the integral is with respect to the Haar
measure. Hence

L (r) =

∫
R

∫
S1

c(t)(cosh t+ x1 sinh t)
ir− 1

2dµ(x)dt .
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By the stationary phase theorem, the asymptotic behavior of this oscillating integral is
prescribed by the local properties of the integrand at the critical points of the phase
function

ϕ : S1 × R→ R
(x, t) 7→ log(cosh t+ x1 sinh t) ,

which we now analyze.

Lemma 1.34. The critical points of ϕ are ((0,±1), 0), and they are nondegenerate. The
Hessian in the (x1, t)-coordinates at those points is of shape

H =

(
0 1
1 ∗

)
,

which has signature (p, q) = (1, 1).

Proof. At the points where x2 = 0 we have ∂ϕ/∂t = sinh t+x1 cosh t
cosh t+x1 sinh t

̸= 0, because |cosh t| >
|sinh t|. Hence they cannot be critical points. In the open set where x2 ̸= 0, we have
∂ϕ/∂x1 = sinh t

cosh t+x1 sinh t
. This is zero only when t = 0. We have ∂ϕ/∂t = sinh t+x1 cosh t

cosh t+x1 sinh t
,

which does not vanish when t = 0, unless x1 = 0. Thus the only critical points are
((0,±1), 0).
We have ϕ(x, 0) = 0, so that at the points where t = 0 one has ∂2ϕ/∂x21 = 0. At those

points we have ∂ϕ/∂t = x1, so that ∂2ϕ/∂t∂x1 = 1. This proves that the Hessian at the
critical points of ϕ is of shape H.

Proposition 1.35. De�ne L (r) by (1.32). There exists C > 0 such that

L (r) = Cr−1 +O(r−2)

as r →∞. The constant C and the implicit constant are allowed to depend on the cuto�
function c.

Proof. We use the stationary phase theorem [69, �VIII.2] on the Riemannian manifold
S1 ×R with the phase function ϕ. Let H, p and q be as in Lemma 1.34, which gives the
nature of the critical points of ϕ. Adding the contributions of the two critical points, the
stationary phase theorem implies that L (r) = Cr−1 +O(r−2), with

C = 2 · c(0) · 2π · |det(H)|−1/2 · eiπ(p−q)/4 = 4πc(0) .

Proof of Proposition 1.23. Let c : R → [0, 1] be smooth, compactly supported and such
that c(t) = 1 when a(t) ∈ ⋃ν≥0 supp kν . De�ne L (r) as in (1.32) with respect to this
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choice of c. By (1.9) and Fubini,∫
R
kν(a(t))dt =

∫
R
kν(a(t))c(t)dt

=

∫
R

∫ ∞

0
k̂ν(ir)φir(a(t))β(r)c(t)drdt

=

∫ ∞

0
k̂ν(ir)β(r)L (r)dr

because the compact support of c and the rapid decay of k̂ν make the double integral
absolutely convergent. Note that L (r) is a real number for every r ∈ R. By Proposi-
tion 1.35, there exist r0, C > 0 such that β(r)L (r) ∈ [C/2, 2C] for r ≥ r0. Write∫ ∞

0
k̂ν(ir)β(r)L (r)dr

=

∫ r0

0
k̂ν(ir)β(r)L (r)dr +

∫ ∞

r0

k̂ν(ir)β(r)L (r)dr .

For ν > r0, the �rst term is bounded by r0(ν − r0)−1 · supr∈[0,r0] β(r)|L (r)|, and thus
o(1) as ν →∞. Because β(r)L (r) ∈ [C/2, 2C] for r ≥ r0, for the second term we have∫ ∞

r0

k̂ν(ir)β(r)L (r)dr ≍
∫ ∞

r0

k̂ν(ir)dr ,

by using that k̂ν(ir) is nonnegative and not identically zero. The latter integral is
bounded from above by

≪
∫ ∞

r0

(1 + |ν − r|)−2dr ≤
∫ ∞

−∞
(1 + |r|)−2dr ≪ 1 ,

and when ν > r0 it is bounded from below by∫ ν+1

ν
k̂ν(ir)dr ≥ 1 .

Hence
∫
R kν(a(t))dt ≍

∫∞
r0
k̂ν(ir)dr ≍ 1.

1.5 Orbital integrals

We now prove the second part of Proposition 1.24. This is the same as the `t = 0'
case of [47, Proposition 3.5], with the minor di�erence that the cuto� function b in the
de�nition of I(ν, g) can have arbitrary support. We do include the proof here, because
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in [47, �7] the argument is only sketched for brevity, and the fact that the upper bound
there involves the distance to A instead of NG(A), appears to be a minor omission.
Throughout, �x a positive constant C ′ > 0, which we will later take to be the constant

from Proposition 1.24. The implicit constants in the estimates are allowed to depend on
C ′.
Expanding kν in terms of spherical functions (see (1.9)), we have for ν ≥ 0 and g ∈ G,

I(ν, g) =

∫ ∞

0
J(r, g)k̂ν(ir)β(r)dr

where

J(r, g) =

∫
K

∫
R×R

b(s)b(t)e(1/2+ir)H(ka(−s)ga(t))dsdt dk

and H is as in �1.1.5. We will use the stationary phase method to prove an upper bound
for J(r, g). Proposition 1.24 will then follow by integrating this bound against k̂ν(ir)β(r).
For each g ∈ G, we have a map αg : K → K de�ned by requiring that

kg ∈ NAαg(k) .

It is smooth in (g, k) because the Iwasawa decomposition G
∼→ N × A ×K is smooth,

and we have αgh = αh ◦ αg. For k ∈ K and y, z ∈ G we have that (see for example [47,
Lemma 6.2])

H(ky−1z) = H(αy−1(k)z)−H(αy−1(k)y) .

This allows us to separate variables inside the exponential in the de�nition of J(r, g):

J(r, g) =

∫
K

∫
R×R

b(s)b(t)e(1/2+ir)H(ka(−s)ga(t))dsdt dk

=
1

2π

∫ 2π

0

∫
R×R

b(s)b(t)e(1/2+ir)H(k(σ)a(−s)ga(t))dsdt dσ

=
1

2π

∫ 2π

0

∫
R×R

b′(s, θ)b(s)b(t)e(1/2+ir)(H(k(θ)ga(t))−H(k(θ)a(s)))dsdt dθ ,

by substituting k(θ) = αa(−s)(k(σ)). Here, b
′ is a nonzero smooth function on R×R/2πZ,

coming from the change of variables. This oscillating integral has phase function

ϕ(s, t, θ, g) := H(k(θ)ga(t))−H(k(θ)a(s)) . (1.36)

De�ne c(s, t, θ, g) = (2π)−1b′(s, θ)b(s)b(t) exp(ϕ(s, t, θ, g)/2) so that

J(r, g) =

∫ 2π

0

∫
R×R

c(s, t, θ, g)eirϕ(s,t,θ,g)dsdt dθ .
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1.5.1 Critical points of ϕ

We analyze the critical points of ϕ for �xed θ and g. Let P = R/2πZ × G and let
S ⊂ P be the closed subset consisting of `singular' parameters (θ, g) for which one of the
geodesics k(θ)Ai and k(θ)gAi is vertical. For every g, there are at most four values of θ
for which (θ, g) ∈ S.
Proposition 1.37. When (θ, g) ∈ S is �xed, ϕ has no critical points. When (θ, g) ∈
P − S, ϕ has a unique critical point with Hessian given in (s, t)-coordinates by(

1
2 0
0 −1

2

)
.

Proof. When g and θ are �xed, we have that (s, t) is a critical point of ϕ if and only if

∂H(k(θ)a(s))

∂s
=
∂H(k(θ)ga(t))

∂t
= 0 .

That is, when the geodesics k(θ)Ai and k(θ)gAi in H are not vertical, i.e., are half-circles,
and their midpoints are k(θ)a(s)i resp. k(θ)ga(t)i. (Recall that H(g) = log(Im(gi)).) It
is clear from the geometric interpretation that ϕ has no critical points when (θ, g) ∈ S,
and has exactly one critical point when (θ, g) ∈ P − S. Moreover, this critical point is
then nondegenerate, because the above geodesics (which are half-circles) have nonzero
(Euclidean) curvature at their midpoints. Finally, the shape of the Hessian is computed
in the proof of [47, Lemma 7.10].

When (θ, g) ∈ P−S, let (ξ1(θ), ξ2(θ, g)) be the unique critical point of ϕ. The following
lemma says that this point diverges to ∞ as (θ, g) approaches S.
Lemma 1.38. Let R > 0. Suppose g ∈ G with d(g, 1) ≤ C ′ and θ ∈ R/2πZ are such
that |ξ1(θ)|, |ξ2(θ, g)| ≤ R. Then there exists δ = δ(R,C ′) > 0 such that d((θ, g),S) > δ.
In particular, the set

P0 = {(θ, g) ∈ P − S : (ξ1(θ), ξ2(θ, g), θ, g) ∈ supp c, d(g, 1) ≤ C ′}

is at positive distance from S, and is compact.

Proof. For the sake of contradiction, suppose that d((θ, g),S) could be arbitrarily small.
Then there exists a sequence (θn, gn) for which the point

(θn, gn, ξ1(θn, gn), ξ2(θn, gn))

converges in R/2πZ × G × R2, with a limit in S × R2. Call (θ, g, x, y) its limit. By
continuity of ∂H(k(θ)a(s))/∂s and ∂H(k(θ)ga(t))/∂t, we would have

∂H(k(θ)a(s))

∂s

∣∣∣∣
s=x

=
∂H(k(θ)ga(t))

∂t

∣∣∣∣
t=y

= 0 ,

48



contradicting that one of the geodesics k(θ)Ai, k(θ)gAi is vertical. It follows that indeed
d(P0,S) > 0. Because P0 is bounded in P and closed in P − S, it is compact.

For (θ, g) ∈ P − S, de�ne
ψ(θ, g) = ϕ(ξ1(θ), ξ2(θ, g), θ, g) . (1.39)

De�ne also

c1(θ, g) =

{
πc(ξ1(θ), ξ2(θ, g), θ, g) : (θ, g) ∈ P − S ,
0 : (θ, g) ∈ S .

Lemma 1.38 implies that c1 is smooth on P. Let P0 be as in Lemma 1.38.

Lemma 1.40. We have

J(r, g) = r−1

∫ 2π

0
c1(θ, g)e

irψ(θ,g)dθ +O(r−2) (1.41)

as r →∞, where the implicit constant remains bounded as long as d(g, 1) ≤ C ′.

Proof. For �xed θ, g we apply the method of stationary phase in the variables s and t:
suppose (θ, g) ∈ P − S. Then ϕ has a unique critical point with Hessian determinant
−1/4. Stationary phase [69, �VIII.2] implies∫

R×R
c(s, t, θ, g)eirϕ(s,t,θ,g)dsdt = r−1eirψ(θ,g)c1(θ, g) +O(r−2) , (1.42)

uniformly for (θ, g) in compact subsets of P −S. Suppose (θ, g) ∈ P −P0, so that ϕ has
no critical point in the support of c. The absence of critical points implies∫

R×R
c(s, t, θ, g)eirϕ(s,t,θ,g)dsdt≪N r−N ,

uniformly for (θ, g) in compact subsets of P − P0. Because c1(θ, g) = 0 in this case, we
see that (1.42) still holds (after assigning any value to ψ(θ, g) when (θ, g) ∈ S). We may
now take compact subsets of P−S and of P−P0 such that the union of the two contains
R/2πZ × {g ∈ G : d(g, 1) ≤ C ′}. Integrating (1.42) with respect to θ then yields the
desired estimate.

1.5.2 Critical points of ψ

In view of the expression (1.41) for J(r, g), we analyze the critical points of ψ, for �xed g.
When (θ, g) /∈ S, we have [47, Proposition 7.2, Lemma 7.3] that θ is a critical point of ψ
if and only if the geodesics k(θ)Ai and k(θ)gAi, which by assumption are half-circles, are
concentric. A critical point θ is degenerate if and only if these geodesics coincide, that
is, if and only if g ∈ NG(A), in which case every θ for which (θ, g) /∈ S is a degenerate
critical point.
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Remark 1.43. For g /∈ NG(A), the locations of the critical points of ψ(−, g) can be
described geometrically: as stated above, θ is a critical point if and only if the half-
circles k(θ)Ai and k(θ)gAi are concentric, that is, if and only if they admit a common
perpendicular vertical geodesic. In particular, the geodesics k(θ)Ai and k(θ)gAi must
not intersect in H∪P1(R), that is, the geodesic gAi must have both endpoints in R>0 or
in R<0. This condition on g is also su�cient for the existence of a critical point: under
this assumption on g, there are exactly two critical points, which can be described as
follows. Because Ai and gAi do not intersect in H∪P1(R), these geodesics lie at positive
distance from each other, and this distance is realized in H by a pair of points on Ai
and gAi. Let j be the geodesic carrying the geodesic segment joining those points. As a
consequence of Gauss's lemma, j is then perpendicular to both geodesics. Because the
sum of the angles of a hyperbolic quadrilateral is less than 360◦, there can be no other
geodesic that is perpendicular to both. Thus the critical points are the two values of θ
for which k(θ)j is vertical.

To bound J(r, g), we distinguish two cases, depending on whether g is close to NG(A)
or at positive distance from it. For g away from NG(A), the absence of nondegenerate
critical points of ψ implies the bound below.

Lemma 1.44. When d(g,NG(A)) ≥ δ > 0 and d(g, 1) ≤ C ′, we have∫ 2π

0
c1(θ, g)e

irψ(θ,g)dθ ≪δ (1 + r · d(g,NG(A)))
−1/2

uniformly in g and r ≥ 0.

Proof. Because ψ has no degenerate critical points when g /∈ NG(A), we have

max(|∂ψ/∂θ|, |∂2ψ/∂θ2|)≫ 1

uniformly for g in compact subsets of G − NG(A) and for θ ∈ supp c1(−, g). The Van
der Corput lemma [69, �VIII.1, Proposition 2, Corollary] implies that∫ 2π

0
c1(θ, g)e

irψ(θ,g)dθ ≪ r−1/2

as r →∞, uniformly for g in compact subsets of G−NG(A).

We may now restrict our attention to g that are close to NG(A). By (1.36) and (1.39),

ψ(θ, g) := H(k(θ)ga(ξ2(θ, g)))−H(k(θ)a(ξ1(θ))) .

From the characterization of k(θ)ga(ξ2(θ, g))i as being the midpoint of the geodesic
k(θ)gAi, we see that ψ is right NG(A)-invariant in g. Thus in order to estimate the
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right-hand side of (1.41), we will �rst assume that g lies in a small neighborhood of the
identity, and then translate the estimate to a small neighborhood of NG(A).
By explicating the order of vanishing of ∂2ψ(θ, g)/∂θ2 as d(g,A) → 0, an application

of the Van der Corput lemma shows the following bound.

Lemma 1.45. [47, Corollary 7.6] There is an open neighborhood U of 1 ∈ G such that
for all g ∈ U and b ∈ C∞

0 (R/2πZ− {θ : (θ, g) ∈ S}) we have∫ 2π

0
b(θ)eirψ(θ,g)dθ ≪ (1 + r · d(g,A))−1/2 ,

where the implicit constant remains bounded when supp(b) stays at positive distance from
the set {θ : (θ, g) ∈ S} and the derivatives of b up to a certain order remain bounded.

Corollary 1.46. There exists an open neighborhood V of NG(A) in G such that when
g ∈ V and d(g, 1) ≤ C ′,∫ 2π

0
c1(θ, g)e

irψ(θ,g)dθ ≪ (1 + r · d(g,NG(A)))
−1/2

uniformly in g and r ≥ 0.

Proof. Let U be the neighborhood from Lemma 1.45. Take g0 ∈ NG(A). When g ∈ Ug0,
then Lemma 1.45 applied to gg−1

0 and b(θ) = c1(θ, g) shows that∫ 2π

0
c1(θ, g)e

irψ(θ,g) =

∫ 2π

0
c1(θ, g)e

irψ(θ,gg−1
0 )dθ

≪g0 (1 + r · d(gg−1
0 , A))−1/2

≪g0 (1 + r · d(g,NG(A)))
−1/2

uniformly in g ∈ Ug0. We may now take a �xed subset N0 ⊂ NG(A) such that the Ug0
for g0 ∈ N0 form a locally �nite cover of NG(A), and let V =

⋃
g0∈N0

Ug0.

Proof of Proposition 1.24. Now take C ′ be the constant from the �rst part of Propo-
sition 1.24. We may restrict to the g ∈ G with d(g, 1) ≤ C ′. The estimates from
Lemma 1.44 and Corollary 1.46 may be plugged into Lemma 1.40 to obtain

|J(r, g)| ≪ r−1(1 + r · d(g,NG(A)))
−1/2

as r → ∞, uniformly when d(g, 1) ≤ C ′. On the one hand we have, by estimating
|J(r, g)|β(r)≪ 1, that

I(ν, g) =

∫ ∞

0
J(r, g)k̂ν(ir)β(r)dr ≪ ∥k̂ν∥L1(iR) ≪ 1 .
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On the other hand, when g /∈ NG(A),

I(ν, g)≪
∫ ν/2

0
k̂ν(ir)dr +

∫ ∞

ν/2
(r · d(g,NG(A)))

−1/2k̂ν(ir)dr

≪N ν−N + d(g,NG(A))
−1/2ν−1/2

∫ ∞

ν/2
k̂ν(ir)dr

≪ d(g,NG(A))
−1/2ν−1/2 ,

where we have used that 1 ≪ d(g, 1)−1/2 ≤ d(g,NG(A))
−1/2. Combining the two esti-

mates, the claim follows.

1.6 Proof of Theorem 2

1.6.1 Ampli�cation

Let (an)n≥1 be a sequence of nonnegative real numbers, supported on a �nite set of
integers n ≥ 1 that are coprime to the discriminant ∆R. Let T = (

∑
anTn)

2, and denote
by T̂ (ϕj) ≥ 0 the T -eigenvalue of ϕj . De�ne for ν ≥ 0,

Q(ν, a) :=
∑
j

k̂ν(iνj)T̂ (ϕj) ,

QL(ν, a) :=
∑
j

k̂ν(iνj)T̂ (ϕj)P(ϕj)
2 .

Our aim is to obtain good asymptotic estimates for these spectral sums.

Lemma 1.47. De�ne the orbital integral I(ν, g) by (1.22). There exists an absolute
constant C > 0, such that for n ≥ 1 and ν ≥ 0 we have∑

η∈R(n)−NR+ (F )

|I(ν, g−1
0 ηg0)| ≪ (1 + ν)−1/2neC logn/ log log(n+1) .

The implicit constant is allowed to depend on ℓ.

Proof. By Lemma 1.24, there exists C ′ > 0 independent of ν and n such that only the
terms with d(g−1

0 ηg0, 1) ≤ C ′ have a nonzero contribution. Cover the interval [0, C ′]
with the intervals I0 = [0, (1 + ν)−1], Ik = [ek−1(1 + ν)−1, ek(1 + ν)−1] for 1 ≤ k ≤
log(C ′(1 + ν)) + 1. De�ne M(n, δ) as in �1.3.2, with respect to this value of C ′. When
d(g−1

0 ηg0, NG(A)) ∈ I0, we apply the bounds

I(ν, g−1
0 ηg0)≪ 1 ,

#M(n, (1 + ν)−1)≪ (1 + ν)−1neC logn/ log log(n+1)
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from Proposition 1.24 and Lemma 1.27, which imply that the contribution of all η with
d(g−1

0 ηg0, NG(A)) ∈ I0 is bounded by ≪ (1 + ν)−1neC logn/ log log(n+1) for some C > 0.
When d(g−1

0 ηg0, NG(A)) ∈ Ik, we apply the bounds

I(ν, g−1
0 ηg0)≪ e−k/2 ,

#M(n, ek(1 + ν)−1)≪ ek(1 + ν)−1neC logn/ log log(n+1) .

Summing over k, the contribution of the η with d(g−1
0 ηg0, NG(A)) /∈ I0 is bounded by

≪ (1 + ν)−1/2neC logn/ log log(n+1).

Proposition 1.48. There exists an absolute constant C > 0 such that for (an) as above
and for all ν ≥ 0,

Q(ν, a) = B(a)Vol(Γ\H)kν(1) +O(R(a)) ,

QL(ν, a) = BL(a)Vol(ΓL\L)
∫
R
kν(a(t))dt+O((1 + ν)−1/2RL(a)) ,

where

B(a) :=
∑
m,n

aman
∑
d|m,n

d · s(mn/d2) ,

R(a) :=
∑
m,n

aman
∑
d|m,n

d ·
(mn
d2

)3/2
· eC log(mn/d2)/ log log(1+mn/d2) ,

BL(a) :=
∑
m,n

aman
∑
d|m,n

d · |NR(mn/d2)(F )/R
1
F | ,

RL(a) :=
∑
m,n

aman
∑
d|m,n

d · mn
d2
· eC log(mn/d2)/ log log(1+mn/d2) .

The implicit constants are uniform in (an) and ν, but not in ℓ.

Proof. The �rst asymptotic formula follows from the recurrence relation (1.7) and Propo-
sition 1.17. The second statement follows similarly from Proposition 1.21 and the esti-
mate from Lemma 1.47.

In order to bound the tails of the spectral sums Q(ν, a) and QL(ν, a), we shall need
the following lemma.

Lemma 1.49. Let (an) be as above. Then for ν ≥ 0,∑
|νj−ν|≤1

T̂ (ϕj)≪ (ν + 1) ·B(a) +R(a) ,

∑
|νj−ν|≤1

T̂ (ϕj)P(ϕj)
2 ≪ BL(a) + (ν + 1)−1/2RL(a) ,

uniformly in (an) and ν, but not in ℓ.
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Proof. For the �rst estimate, we start from Proposition 1.48 and plug in the bound
kν(1) ≍ ν, to obtain ∑

j

k̂ν(iνj)T̂ (ϕj) ≤ C0 · (ν ·B(a) +R(a)) ,

for some C0 > 0 and for ν ≥ ν(0), where ν(0) > 0 depends on the choice of the family
(kν) given by Proposition 1.8. Here, we used that B(a), R(a) ≥ 0. The terms in the
left-hand side are nonnegative. Because k̂ν(iνj) ≥ 1 when |νj − ν| ≤ 1, the claim follows
for ν ≥ ν(0) by discarding the terms with |νj − ν| > 1.
To treat the case where ν ≤ ν(0), one may either use Proposition 1.48 and observe

that our speci�c construction of the family (kν) satis�es kν(1)≪ 1 for ν ≪ 1, or use the
following argument: for every ν ≤ ν(0), we may �nd integers n1, n2 ∈ [0, ν(0)] such that
the set B(ν, 1)∩{νj : j ≥ 0} is contained in B(n1, 1)∪B(n2, 1). Proposition 1.48 applied
to kn1 and kn2 gives∑

|νj−ν|≤1

T̂ (ϕj) ≤
∑
j

k̂n1(νj)T̂ (ϕj) +
∑
j

k̂n2(νj)T̂ (ϕj)

≪ max
n∈[0,ν(0)]∩Z

kn(1) ·B(a) +R(a) ,

as desired. The second estimate in the statement is proven similarly, by using the bound∫
R kν(a(t))≪ 1 from Proposition 1.23.

Proposition 1.50. For (an) as above, C ≥ 1 and ν > C,∑
|νj−ν|≤C

k̂ν(iνj)T̂ (ϕj)−B(a)Vol(Γ\H)kν(1)

≪ C−1νB(a) +R(a) ,∑
|νj−ν|≤C

k̂ν(iνj)T̂ (ϕj)P(ϕj)
2 −BL(a)Vol(ΓL\L)

∫
R
kν(a(t))dt

≪ C−1BL(a) + ν−1/2RL(a) ,

where the implicit constants are uniform in (an), C and ν, but not in ℓ.

Proof. This will follow by combining Lemma 1.49 with the rapid decay of k̂ν . By Propo-
sition 1.48, for the �rst estimate it su�ces to prove that∑

|νj−ν|>C

k̂ν(iνj)T̂ (ϕj)≪ C−1νB(a) +R(a) .

When ν > C, the condition |νj − ν| > C is equivalent to |Re(νj)− ν| > C. Indeed, when
νj ∈ R this is trivial, and when νj ∈ [−i/2, i/2], both conditions are satis�ed. Consider
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�rst the sum over the set {j : Re(νj) < ν − C}. We break it up into sums where Re(νj)
belongs to an interval of length 1: for n ≥ 0, we have∑

ν−C−(n+1)≤Re(νj)<ν−C−n

k̂ν(iνj)T̂ (ϕj)≪
1

(C + n)2

∑
|νj−(ν−C−n− 1

2
)|≤1

T̂ (ϕj)

≪ νB(a) +R(a)

(C + n)2
,

where we use the rapid decay of k̂ν and Lemma 1.49. Summing over integers n ∈
[0, ν − C], we �nd that the sum over Re(νj) < ν − C is bounded up to a constant by
C−1(νB(a)+R(a)). The sum over Re(νj) > ν+C is similarly bounded up to a constant
by

∞∑
n=0

(ν + C + n)B(a) +R(a)

(C + n)3
≤

∞∑
n=0

ν(C + n)B(a) +R(a)

(C + n)3

≪ C−1(νB(a) +R(a)) .

Combining the two estimates, the �rst statement follows. For the second statement, it
su�ces to prove that∑

|νj−ν|>C

k̂ν(iνj)T̂ (ϕj)P(ϕj)
2 ≪ C−1BL(a) + ν−1/2RL(a) .

Using the rapid decay of k̂ν and Lemma 1.49, we �nd that the sum over the j with
Re(νj) > ν + C is bounded up to a constant by

∞∑
n=0

BL(a) + ν−1/2RL(a)

(C + n)2
≪ C−1(BL(a) + ν−1/2RL(a)) .

The sum over the j with Re(νj) < ν − C is bounded up to a constant by

∑
n≤ν−C

BL(a) + (|ν − C − n|+ 1)−1/2RL(a)

(C + n)2

≪ C−1BL(a) +RL(a)

 ∑
C+n≤

√
ν

ν−1/2

(C + n)2
+

∑
√
ν≤C+n

1

(C + n)2


≪ C−1BL(a) + ν−1/2RL(a) .

The second statement follows.
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1.6.2 Optimal resonators

Let F ⊂ B as before be the �eld corresponding to the geodesic L, and let fRF
be the

conductor of RF . We seek to apply Proposition 1.50 to a sequence (an) for which the
quotient BL(a)/B(a) is large, and for which the sums R(a) and RL(a) are small compared
to B(a) resp. BL(a). A similar optimization problem has been considered in [50] in the
context of lower bounds for point evaluations of Maass cusp forms. Recycling some of
the results there, we obtain the following in our situation.

Proposition 1.51 (Optimal resonators). Let M > 3 be a real number. There exists a
sequence (an) of nonnegative real numbers supported on integers n ≤M coprime to ∆R,
such that the following hold:

1. we have the lower bound

BL(a)

B(a)
≥ exp

(
2
√
2

√
logM

log logM

(
1 +O

(
log log logM

log logM

)))
; (1.52)

2. there exists a constant C ′′ > 0 independent of M such that

R(a)≪M3eC
′′ logM/ log logM , (1.53)

RL(a)≪M2eC
′′ logM/ log logM ; (1.54)

3. B(a) ≥ 1.

The implicit constants are allowed to depend on ℓ.

Proof. We �rst reduce to the precise situation in [50]. When (an) is as in �1.6.1, de�ne
the sum BRF

(a) by replacing the set NR(mn/d2)(F )/R
1
F by the set PRF

(mn/d2) in the
de�nition of BL(a). When (an) is supported on integers coprime to fRF

, Lemma 1.25
implies BL(a) ≥ BRF

(a), so that BL(a)/B(a) ≥ BRF
(a)/B(a). The latter quantity is

the one considered in [50].
When M is su�ciently large, we construct a sequence (an) as follows: let L =√
2 logM log logM , and de�ne a multiplicative function f by prescribing its values on

prime powers by

f(pn) :=

{
L

p log p if ωF (p) = 1, p ∤ ∆RfRF
, n = 1, L2 < p ≤ exp(log2 L) ,

0 otherwise.

De�ne an = f(n) when n ≤M and an = 0 otherwise. The proof of [50, Lemma 5] gives
that BRF

(a)/B(a) is as large as the right-hand side in (1.52). (And it is shown that
this sequence is optimal, in the sense that for every sequence (an) supported on integers
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coprime to ∆RfRF
, the ratio BRF

(a)/B(a) is at most as large as the right-hand side in
(1.52).)
We have B(a) ≥ a21 = 1. It remains to prove the bounds (1.53) and (1.54). Because

(an) is supported on integers n ≤M ,

R(a)≪M3eC log(M2)/ log log(M2)
∑
m,n

aman
∑
d|m,n

1

d2

≪M3e2C logM/ log logM

(∑
n

an

)2

.

Using Chebyshev's estimates, we have

∑
n

an ≤
∏
p

(1 + f(p)) ≤ exp

(∑
p

f(p)

)

≤ exp

L · ∑
L2<p

1

p log p


≪ exp (L/ logL)

≪ exp
(√

logM
)

which proves (1.53). Similarly, the estimate

RL(a)≪M2e2C logM/ log logM
∑
m,n

aman
∑
d≤M

1

d

gives us (1.54).

With this resonator sequence we are ready to prove Theorem 2.

Proof of Theorem 2. Let ν > 0 be large. Let C ′′ be the constant from Proposition 1.51,
choose any A > C ′′/8 and let M = ν1/4e−A log ν/ log log ν . Let (an) be the corresponding
sequence given by Proposition 1.51. We check that R(a) and RL(a) are small compared
to B(a) and BL(a). From (1.53) we have R(a) ≪ϵ ν

3/4+ϵ, so that R(a) = o(νB(a)).
From (1.54) we have

RL(a)≪ ν1/2e−2A log ν/ log log νeC
′′ logM/ log logM

≪ ν1/2e(−2A+C′′/4)(log ν/ log log ν)(1+o(1))

≪ ν1/2 ,
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so that ν−1/2RL(a) = o(BL(a)). By Proposition 1.8 and Proposition 1.23, there exists
C ≥ 1 such that

C−1ν ≤ 1

2
Vol(Γ\H)kν(1) ,

C−1 ≤ 1

2
Vol(ΓL\L)

∫
R
kν(a(t))dt ,

for ν su�ciently large. Proposition 1.50 applied to the sequence (an) and such C gives∑
|νj−ν|≤C

k̂ν(iνj)T̂ (ϕj) ≍ B(a)ν ,

∑
|νj−ν|≤C

k̂ν(iνj)T̂ (ϕj)P(ϕj)
2 ≍ BL(a) .

In particular, there must exist at least one νj ∈ [ν − C, ν + C] with the property that
P(ϕj)

2 ≫ BL(a)/(νB(a)). That is,

(ν1/2P(ϕj))
2 ≫ BL(a)

B(a)

≫ exp

(
2
√
2

√
logM

log logM

(
1 +O

(
log log logM

log logM

)))
.

We have logM = 1
4 log ν · (1+O(log log ν/ log ν)), log logM = log log ν · (1+O(1/ log ν))

and log log logM ≪ log log log ν. Using this, we obtain for this particular j,

(ν1/2P(ϕj))
2 ≫ exp

(
√
2

√
log ν

log log ν

(
1 +O

(
log log log ν

log log ν

)))
.

Taking square roots and writing ν =
√
λ− 1

4 , the theorem follows.

1.6.3 Extreme values of L-functions

We now explain how to deduce Theorem 1 from (the proof of) Theorem 2. There is one
additional issue: in general, the right-hand side of the period formula (1.5) involves a
sum of periods, rather than a single one.

Proof of Theorem 1. We use the notations from the statement. Let B, R, Γ, ΛdF be as
in Remark 1.4, and associate to fj the Laplace�Hecke eigenfunction ϕj on Γ\H. By our
assumptions on N and dF , B is a quaternion division algebra and R a maximal order.
Let ϕ0 be the constant function Vol(Γ\H)−1/2. Then (ϕj)j≥0 is an orthonormal basis of
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L2(Γ\H) as in �1.1.6. In (1.5), take f = fj . The product of the Gamma factors in the

left-hand side of (1.5) is of size λ−1/2
j by Stirling's formula, and we have the lower bound

L(1, πj ,Ad)≫ 1/ log(1 + λj) [28]. We have the factorization

L(s, πj × πχ0) = L(s, πj)L(s, πj × ωF ) .

Thus it su�ces to give a lower bound for the right-hand side of (1.5), of the same quality
as in Theorem 2.
For every pair (ℓ, ℓ′) of closed geodesics in ΛdF , choose lifts L,L′ and fundamental

domains FL,FL′ and integrate the ampli�ed pre-trace formula (1.10) over FL×FL′ to
obtain ∑

j

k̂ν(iνj)T̂n(ϕj)Pℓ(ϕj)Pℓ′(ϕj) =
∑

η∈R(n)/±1

∫
FL×FL′

kν(x
−1ηy)dxdy .

Say L = g0Ai and L′ = g′0Ai, and call the sum in the right-hand side S(g0, g′0). Let F, F
′

be the sub�elds of B associated to L,L′. In S(g0, g′0), we isolate a main term, which is
the sum over η with ηL′ = L, i.e. ηF ′η−1 = F . An unfolding argument as in the proof
of Proposition 1.21 shows that the main term equals

#(NF,F ′(n)/R1
F ′)Vol(ΓL\L)

∫
R
kν(a(t))dt ,

where NF,F ′ = {η ∈ R+ : ηF ′η−1 = F}. In the error term, we may again introduce
nonnegative smooth cuto� functions and write it as∑

η∈(R(n)−NF,F ′ )/±1

IF,F ′(ν, g−1
0 ηg′0) ,

where IF,F ′(ν, g0) is de�ned similarly to (1.22), in terms of the chosen cuto� functions.
This error term may be bounded as in Lemma 1.47. Here, the Diophantine problem
consists of counting η ∈ R(n) that are at distance ≪ √

n from 0 and are close to
NF,F ′ . Multiplication on the right by a �xed element η0 ∈ NF ′,F gives an injection
NF,F ′(n)→ NR(nNB/Q(η0))(F ), reducing to the counting problem in �1.3.2. The analogue
of Proposition 1.24 remains true; the only thing that changes in its proof is the amplitude
function in the oscillating integral, to which the proof is insensitive.
Summing over all pairs (ℓ, ℓ′) and taking an ampli�er (an) as in �1.6.1, Proposition 1.50

becomes

∑
|νj−ν|≤C

k̂ν(iνj)T̂ (ϕj)

 ∑
ℓ∈ΛdF

Pℓ(ϕj)

2

= Vol(ΓL\L)BdF (a)
∫
R
kν(a(t)) +O(C−1BdF (a) +RdF (a))

(1.55)
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where L is a lift of an arbitrary ℓ ∈ ΛdF (the volume is independent of the choice),
BdF (a) and RdF (a) are de�ned similarly to BL(a) and RL(a) (see Proposition 1.48), and
in particular we have BdF (a) ≥ BL(a). We conclude by choosing the ampli�er as in
Proposition 1.51, taking C > 0 large enough and comparing (1.55) to the standard trace
formula.

Note that we have placed ourselves in a situation where the order R is maximal, in
order to avoid having to worry about oldforms. When R is Eichler of arbitrary level
N , it might be possible to extract the contribution of newforms, by writing down the
trace formulas for Eichler orders Rd of levels d | N and using Möbius-inversion. But
the arithmetic of the cardinalities #(NF,F ′(n)/R1

d) (which appear in the main term in
(1.55)) as d varies, is intricate in general.
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2 The geometry of maximal �at

submanifolds

This chapter contains the proofs of the statements in �0.6, as well as re�nements thereof
and auxiliary results that will be used in �3. This section is divided into three parts; the
results about theN -, A- andK-projections are bundled in �2.2, �2.3 and �2.4 respectively.

2.1 Preliminaries on Lie groups

The notation and lemmas concerning Lie groups in this chapter will be used again in �3.

2.1.1 Lie groups and Lie algebras

Let G be a reductive Lie group in the sense of Harish-Chandra [30]; see also [41, Chapter
VII]. Most of the time G will be connected semisimple with �nite center and we will
then simply say G is semisimple. Let K ⊂ G be a maximal compact subgroup and θ an
involution of G whose �xed point set is K. It induces an involution θ of the Lie algebra
g, whose +1 and −1 eigenspaces we denote by k and p respectively. We denote the
exponential of X ∈ g by exp(X). De�ne the semisimple part gss = [g, g]. We extend the
Killing form on gss to a nondegenerate symmetric bilinear form ⟨·, ·⟩ on g that is positive
de�nite on k and negative de�nite on p, and with respect to which the center z(g) is
orthogonal to gss. De�ne ⟨·, ·⟩θ = ⟨·,−θ(·)⟩, a positive de�nite symmetric bilinear form.
All statements on g involving norms, orthogonality and adjoints will be with respect to
⟨·, ·⟩θ. Let a ⊂ p be a maximal abelian subalgebra and A = exp(a). The choices of a
are all conjugate under K. De�ne P = exp(p). The multiplication map P × K → G
is a di�eomorphism, known as the Cartan decomposition. In particular, K meets all
components of G.

2.1.2 Symmetric spaces and maximal �ats

References for the following facts about symmetric spaces are [22, 33].
Assume here that G is semisimple. Then θ is a Cartan involution. The quotient

S = G/K carries a left-G-invariant Riemannian metric induced by the Killing form on
p. It is a symmetric space of non-compact type, and every such space arises in this way.
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The maximal �at submanifolds of S are of the form gAK with g ∈ G. Such g is
uniquely determined by the submanifold up to multiplication on the right by NG(A).
When dim(A) = 1, the maximal �ats are precisely the geodesics. The rank of G is
de�ned to be dim(A).
Let p ∈ P . The tangent space TpKS is identi�ed with p, using left multiplication by

p−1. Take X ∈ p with norm 1. The geodesic through pK ∈ S with tangent vector X
has equation t 7→ petXK. A geodesic is called regular when a nonzero tangent vector at
any (and hence every) point is a regular element of g. It is called singular otherwise. A
geodesic is regular if and only if it lies in a unique maximal �at.

2.1.3 Iwasawa decomposition

Let Σ be the set of restricted roots of a in g. By convention, 0 /∈ Σ. We denote by gα
the root space of a root α ∈ Σ, by m(α) = dim(gα) its multiplicity and by Hα ∈ a the
element corresponding to α under the isomorphism a ∼= a∗ given by ⟨·, ·⟩. Fix a set of
positive roots Σ+ with basis Π. Let n ⊕ a ⊕ k and N × A × K be the corresponding
Iwasawa decompositions of g and G. De�ne M = ZK(A) and M ′ = NK(A) and denote
by m the Lie algebra of M .
Denote the Lie algebra Iwasawa projections by En, Ea and Ek. We have the orthogonal

restricted root space decomposition

g = a⊕m⊕
⊕
α∈Σ

gα . (2.1)

Denote the projection onto gα by Rα.
Denote the Iwasawa projections from G onto N , A and K by n, a and κ. De�ne the

height H(g) = log(a(g)) ∈ a, the logarithm being the Lie logarithm on A.
All choices of the data (K,A,N) are conjugate by an element of G. When G = GLn(R)

or SLn(R) we make all the standard choices: K = On(R) respectively SOn(R), A is the
connected component of the diagonal subgroup and N is the upper triangular unipotent
subgroup.

2.1.4 Centralizers

Denote by L the set of centralizers in G of subgroups of A. They are the standard Levi
subgroups of semistandard parabolic subgroups of G. We will denote such a centralizer
typically by L. It is again reductive and inherits all the data as in the beginning of
�2.1.1 and �2.1.3 from G in the natural way. We allow G to be reductive because we will
occasionally need to apply results to Levis L ∈ L. When L ∈ L with Lie algebra l, de�ne
aL = lss ∩ a and aL = z(l) ∩ a. Then a = aL ⊕ aL orthogonally. The set L contains A
and G, and when G is semisimple we have aA = aG = 0 and aA = aG = a.
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De�ne the positive Weyl chamber a+ = {H ∈ a : ∀α ∈ Σ+ : α(H) > 0} and the regular
set

areg = a−
⋃
L̸=M

aL = a−
⋃
α∈Σ

ker(α) .

We have that H ∈ areg if and only if its centralizer equals the centralizer of a. De�ne
also the generic set

agen = areg −
⋃

L∈L−{G}

aL .

Combined superscripts correspond to intersections: agen,+ = agen ∩ a+.
We also de�ne (a∗)reg, (a∗)gen and (a∗)+ to be the corresponding subsets under the

isomorphism a ∼= a∗ de�ned by the inner product ⟨·, ·⟩. When H ∈ a corresponds to
λ ∈ a∗ under this isomorphism, then H ∈ areg if and only if λ is not orthogonal to any
roots, and H ∈ agen if and only if λ is in addition not contained in a proper subspace
spanned by roots.
We will frequently use the following lemmas, so we take care to properly reference

them.

Lemma 2.2. Let g ∈ G and H ∈ a. If Adg(H) ∈ a, then g ∈M ′ZG(H).

Proof. This is stated in [30, �5, Lemma 1]. When g ∈ K, the statement gives precisely
the degree of uniqueness in the KAK decomposition of G, and a proof can be found in
[41, Lemma 7.38]. The general case can be reduced to g ∈ K as follows. Write g = kp in
the Cartan decomposition. Then Adp(H) ∈ Adk−1(a) ⊂ p, and [10, �V.24.C, Proposition
1] implies that p ∈ ZG(H). Then Adk(H) ∈ a, and the conclusion follows from the g ∈ K
case.

Lemma 2.3. Let g ∈ G and H ∈ a. If Adg(H) ∈ m⊕ a, then g ∈M ′ZG(H).

Proof. If we can show that Adg(H) ∈ a, the claim follows from Lemma 2.2.
Consider the adjoint embedding ad : g → sl(g). Equip g with any orthonormal basis

compatible with the restricted root space decomposition (2.1). In such a basis, ad sends
elements of a to diagonal matrices and elements of k to antisymmetric matrices.
Write Adg(H) = X + H ′ with X ∈ m and H ′ ∈ a. In the chosen basis, adH′ is

diagonal with real eigenvalues, and the antisymmetric matrix adX is diagonalizable with
purely imaginary eigenvalues. Because [H,X] = 0, the elements adH′ and adX are
simultaneously diagonalizable, so that the eigenvalues of adH′ +adX are those of adH′

plus those of adX , in a suitable ordering. If these eigenvalues are real, it must be that
X = 0.
This proves that Adg(H) ∈ a, and the lemma follows.

Lemma 2.4. We have ZG(A) =MA and NG(A) =M ′A.

Proof. The �rst statement follows from [41, Proposition 7.25]; the second statement
follows by combining it with Lemma 2.2.
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2.1.5 Derivatives

WhenG is any Lie group with Lie algebra g and b is an element of the universal enveloping
algebra U(g), we denote by Lb the corresponding left invariant di�erential operator on
C∞(G) . When X ∈ g ⊂ U(g), by de�nition

(LXf)(g) =
d

dt

∣∣∣∣
t=0

f(getX) .

When f : M → N is a di�erentiable map between di�erentiable manifolds, denote its
di�erential at m ∈ M by (Df)m. Using left translation we identify all tangent spaces
TgG with g. When g ∈ G, denote by Lg and Rg the left and right multiplication by g on
G. With our convention on tangent spaces, we then have for all g, h ∈ G that

(DLg)h = id ,

(DRg)h = Adg−1 . (2.5)

When X,Y ∈ g we have

LX Adg(Y ) = Adg([X,Y ]) , (2.6)

LX Adg−1(Y ) = −[X,Adg−1(Y )] . (2.7)

Assume now that G is reductive as in the beginning of �2.1.1.

Lemma 2.8. The di�erentials of n, a and κ at g ∈ G are as follows:

(Dn)g = Ada(g) ◦En ◦Adκ(g) ,
(Da)g = Ea ◦Adκ(g) ,
(Dκ)g = Adκ(g)−1 ◦Ek ◦Adκ(g) .

Proof. Write g = nak and take X ∈ g. For the N -projection, write

n(geX) = n · n(akeX)
= n · n(akeXk−1)

= n · (a · n(eAdk(X)) · a−1) .

In the last step, we have used that n(ah) = an(h)a−1 for a ∈ A and h ∈ G. Therefore

(Dn)g = (DLn)e ◦ (D(Ada|N ))e ◦ (Dn)e ◦Adk .

The �rst statement now follows from the fact that (Dn)e = En. The other statements
are proved similarly. For the A-projection we write

a(geX) = a · a(keX) = a · a(eAdk(X))
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and use that (Da)e = Ea. For the K-projection we write

κ(geX) = κ(keX) = κ(eAdk(X)) · k

and use that (Dκ)e = Ek.

The di�erential of the A-projection is also computed in [46, Lemma 6.1]. Even though
the proof there is for G = SL3(R), the argument works in general. Compare also [20,
Corollary 5.2], but note that the Iwasawa decomposition used there is KAN instead of
NAK.

Lemma 2.9. For X,Y ∈ g and g ∈ G we have

(LXLY a)(g) = Ea([Ek(Adκ(g)(X)),Adκ(g)(Y )])

= Ea([Ek(Adκ(g)(X)), En(Adκ(g)(Y ))])

= Ea([Adκ(g)(X), En(Adκ(g)(Y ))])

=
∑
α∈Σ+

⟨θR−α(Adκ(g)(X)), (Rα − θR−α)(Adκ(g)(Y ))⟩θ ·Hα .

Proof. Similar to the proof of [20, Lemma 6.1]. Alternatively, by Lemma 2.8 we �nd

LY a(g) = Ea(Adκ(g)(Y )) .

Using the chain rule, (2.6) and Lemma 2.8 to compute (Dκ)g we have

LXLY a(g) = Ea(Adκ(g)([(Dκ)g(X), Y ]))

= Ea([Ek(Adκ(g)(X)),Adκ(g)(Y )]) .

This is the �rst equality. The other equalities follow as in [20, Lemma 6.1].

2.2 The N-projection and the Gram�Schmidt process

Unless otherwise speci�ed, G is a semisimple Lie group as in �2.1.1. In this section we
prove Theorem 5 and the stronger Theorem 2.17.
Recall that the Iwasawa decomposition for SLn(R) is nothing but the Gram�Schmidt

process: Take g ∈ SLn(R). There is a unique n ∈ N such that the rows of n−1g are
orthogonal for the Euclidean inner product on Rn. There is a unique a ∈ A such that
the rows of k := a−1n−1g have norm 1. The Iwasawa decomposition of g is then nak.
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2.2.1 Intro: SL2(R)

We �rst prove Theorem 5 when G = SL2(R). This is quite trivial but already gives a
good idea of what is happening.

Proof of Theorem 5 when G = SL2(R). Write g = ( vw ), and view v, w ∈ R2 as row vec-
tors. Let y > 0. Multiplication on the right by a = diag(y, y−1) ∈ A corresponds to
letting the matrix a act on v and w. The projection n(ga) is the matrix ( 1 x0 1 ) where

x =
⟨va, wa⟩
⟨wa,wa⟩ .

It is the unique matrix n ∈ N for which the rows of n−1ga are orthogonal. We must
show that x is bounded. In the generic case where both coordinates of w in the standard
basis are nonzero, the denominator ⟨wa,wa⟩ is ≍ max(y2, y−2), because a acts by y in
one coordinate and by y−1 in the other. The numerator is always ≪ max(y2, y−2), for
the same reason. Therefore in this generic case, x is bounded and the claim follows.
When a coordinate of w vanishes, the corresponding term in the denominator ⟨wa,wa⟩
is nonzero, but the same is then true in the numerator. So the same bounds hold, with
max(y2, y−2) replaced by y2 or y−2, depending on which coordinate of w vanishes. The
conclusion follows.

2.2.2 SLn(R), exterior powers

For SLn(R) the same phenomenon occurs, where if a term in a denominator of a certain
fraction vanishes, then so does the corresponding term in the numerator. The denomina-
tors will here be norms of orthogonal projections onto the orthocomplement of previous
vectors, and they are most conveniently expressed using norms on exterior powers.
When (V, b) is a bilinear space of �nite dimension over a �eld, b can be identi�ed with

a linear map V → V ∗. It induces a linear map
∧k V → ∧k V ∗ ∼= (

∧k V )∗ for all k ≥ 0,
where the identi�cation

∧k V ∗ ∼= (
∧k V )∗ comes from the natural pairing between

∧k V
and

∧k V ∗. We get a natural bilinear form
∧k b on

∧k V . Assume now that the �eld is R,
and that b is symmetric positive de�nite. Then so is

∧k b. We denote all induced bilinear
forms by ⟨·, ·⟩ for convenience. If (ei) is an orthonormal basis of V , then an induced basis
of
∧k V consisting of elements of the form ej1 ∧ · · · ∧ ejk is also orthonormal. As a

consequence, if v, w1, . . . , wk ∈ V with the wi linearly independent, W = span(wi) and
prW⊥ denotes the orthogonal projection onto W⊥, then

∥prW⊥(v)∥ =

∥∥∥v ∧ (∧k
i=1wi

)∥∥∥∥∥∥∧k
i=1wi

∥∥∥ , (2.10)

where the norms are those induced on V ,
∧k+1 V and

∧k V . This identity may be
visualized as follows: The numerator in the right-hand side is the (k + 1)-volume of the

66



parallelepiped spanned by the vectors v and wi, the denominator is the k-volume of the
face spanned by the wi, and left-hand side is the height of the parallelepiped with respect
to this face.
More generally, for v1, v2 ∈ V we have

⟨prW⊥(v1), prW⊥(v2)⟩ =

〈
v1 ∧

(∧k
i=1wi

)
, v2 ∧

(∧k
i=1wi

)〉
∥∥∥∧k

i=1wi

∥∥∥2 . (2.11)

We also have the ith coe�cient of prW (v) in the basis (wi) is given by〈
w1 ∧ · · · ∧ ŵi ∧ v ∧ · · · ∧ wk,

∧k
i=1wi

〉
∥∥∥∧k

i=1wi

∥∥∥2 , (2.12)

where the hat denotes omission.

Proof of Theorem 5 when G = SLn(R). Write g as a column of row vectors:

g = (v1, . . . , vn)
T ,

with the vi ∈ Rn, and view a ∈ A as acting on Rn diagonally. De�ne the subspaces
Vi = span(vi, . . . , vn), so that Vn+1 = {0}. De�ne wai to be the ith row of n(ga)−1ga.
Equip Rn with the Euclidean inner product. The �rst step in the Gram�Schmidt process
applied to ga is the recurrence relation

wan = vna ,

wai−1 = pr(Via)⊥(vi−1a)

= vi−1a−
n∑
j=i

⟨vi−1a,w
a
j ⟩

⟨waj , waj ⟩
waj (i = n, . . . , 2) .

In the above sum, the coe�cient in the term with index j is the (i − 1, j)th entry of
n(ga). We must show that those coe�cients are bounded independently of a. For such
a coe�cient, with i ≤ j, we have

⟨vi−1a,w
a
j ⟩

⟨waj , waj ⟩
=

〈
pr(Vj+1a)⊥(vi−1a), pr(Vj+1a)⊥(vja)

〉
∥∥∥pr(Vj+1a)⊥(vja)

∥∥∥2
=

〈
vi−1a ∧

(∧n
k=j+1 vka

)
,
∧n
k=j vka

〉
∥∥∥∧n

k=j vka
∥∥∥2 ,
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where we have used (2.11). The action of A on
∧n−j+1Rn is still diagonal in an induced

basis. Fix such a basis and write a = diag(a1, . . . , aK) in that basis. If c1, . . . , cK denote

the coordinates of vi−1 ∧
(∧n

k=j+1 vk

)
and d1, . . . , dK those of

∧n
k=j vk, then by the

triangle inequality ∣∣∣∣∣⟨vi−1a,w
a
j ⟩

⟨waj , waj ⟩

∣∣∣∣∣ =
∣∣∣∣∣
∑K

k=1 a
2
kckdk∑K

k=1 a
2
kd

2
k

∣∣∣∣∣
≤ max

dk ̸=0

∣∣∣∣ckdkd2k

∣∣∣∣ .
(2.13)

This bound does not depend on a, so that the entries of n(ga) are bounded.

2.2.3 Semisimple groups

Now let G be a semisimple Lie group. There is no real reason to assume that G has
�nite center, and Theorem 5 is insensitive to central extensions in any case, but we do
so because our setup in �2.1.1 is under this assumption. Let ρ : G → GL(V ) be any
�nite-dimensional representation with discrete kernel, such as the adjoint representation
Ad : G→ GL(g), or the standard representation Std if G is already linear. The fact that
ρ can be arbitrary is not essential, but it leads to questions about uniformity.

Remark 2.14. Necessarily ρ(G) ⊂ SL(V ), because g = [g, g] consists of commutators.
Note that ρ(G) is automatically closed, by [41, Proposition 7.9] or alternatively by prop-
erties of Malcev closure [55, �1.4.2, Theorem 3].

Lemma 2.15. In a suitable basis of V , the groups ρ(N), ρ(A) and ρ(K) are contained
in the standard Iwasawa components of GL(V ).

Proof. As in the proof of [41, Proposition 7.9], there is a basis of V such that ρ(K) ⊂
SOn(R) and ρ(P ) consists of symmetric matrices. Because A ⊂ P is commutative, by
acting on the basis by a suitable element of SOn(R) we may assume that ρ(A) is diagonal.
Then the basis consists of restricted weight vectors. Sorting them by non-increasing
weight ensures that ρ(N) is upper triangular unipotent.

Equip V with an Iwasawa-compatible basis given by Lemma 2.15 and denote the
corresponding Iwasawa decomposition of SL(V ) by N ′A′K ′. Denote the N ′-projection
on SL(V ) by n′.

Proof of Theorem 5. By the case G = SLn(R) proved in �2.2.2, we know that the projec-
tion n′(ρ(gA)) ⊂ n′(ρ(g)A′) is relatively compact in N ′. It is contained in the closed set
ρ(N), and therefore relatively compact in ρ(N). Because ρ has central kernel contained
in K, it induces an isomorphism N → ρ(N). Therefore n(gA) ∼= n′(ρ(gA)) is relatively
compact in N .
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2.2.4 Uniformity

ForG = SL2(R) it is apparent from the proof in �2.2.1 that uniformity holds in Theorem 5
when the entries of g are bounded and both entries on the second row of g ∈ G are
bounded away from 0. We generalize this and partition any semisimple group G into
subsets for which uniformity holds on compact subsets. We brie�y describe one such
partition here and state a result about a more optimal partition in �2.2.5.
We use the notation from �2.2.3. Let d = dim(V ) and let ⟨·, ·⟩ be the Euclidean inner

product for the chosen basis of V . For λ ∈ a∗ denote by Vλ the restricted weight space.
To prove Theorem 5, instead of reducing to the case of SLn(R) as in �2.2.3, one can also
directly use the argument in �2.2.2, but restricted to elements g ∈ ρ(G), and this leads to
a statement with uniformity. For every tuple S = (S1, . . . ,Sd) (S for support) of sets of
integral weights of g, we may consider the subset ΩS of G that consists of the elements g
with the following property: For every j ∈ {1, . . . , d}, the wedge product of every last j
rows of ρ(g), as an element of

∧j V , has a nonzero component precisely along the weight
spaces (

∧j V )λ with λ ∈ Sj . It is then apparent that the upper bound analogous to
(2.13) is uniform for g in compact subsets of ΩS , because the coe�cients dk (which are
now norms of weight space projections) are either zero or bounded away from zero.

2.2.5 Canonical partitions

The sets ΩS in �2.2.4 depend on the choice of basis of weight vectors of V . Moreover,
they may form a partition of G that is unnecessarily �ne for the uniformity statement
to be true; this can happen when the weight spaces of V are not 1-dimensional. It is
desirable to construct a basis-independent partition, which is what we do now, and which
we expect to be the coarsest possible.
We continue to use the notation from �2.2.3 and consider the right action of GL(V )

on V by transposition: vg := gT v. That is, in the chosen basis of V , the rows of
g ∈ GL(V ) are the images of the basis elements under the right action of g. (This
awkward de�nition is an artifact of our decision to write Iwasawa decompositions as
NAK rather than KAN .) Note that for g ∈ G we have ρ(g)T = ρ(θ(g))−1, because
ρ(A) consists of diagonal matrices and ρ(K) ⊂ SOn(R). That is, while the right action
of GL(V ) by transposition depends on the choice of basis, the restriction to G depends
only on the choice of Iwasawa decomposition of G (and in fact, only on A and K).
We will prove Theorem 2.17 below in a way similar to the argument sketched in �2.2.4,

but using a block-by-block rather than a row-by-row orthogonalization process, where
we transform a matrix so that a block of rows (corresponding to a weight space) is
orthogonal to previous blocks of rows. That the Iwasawa decomposition corresponds to
such a process, is the content of the following lemma.
For integral weights λ, µ of g, we write µ < λ if λ− µ is nonzero and is a nonnegative

integer linear combination of positive roots.
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Lemma 2.16. Let g ∈ G and n′ = n′(ρ(g)). Then for distinct weights λ, µ of V we have
Vλn

′−1ρ(g) ⊥ Vµn′−1ρ(g) and Vλ(n′−1 − 1) ⊥ Vλ.

Proof. We have that n′−1ρ(g) ∈ A′K ′. The �rst statement follows from the facts that
VλA

′ = Vλ, that Vλ ⊥ Vµ and that K ′ preserves orthogonality. For the second statement,
we have for X ∈ Lie(N ′) that XTVλ ∈

⊕
µ<λ Vµ, and exponentiating gives that Vλ(N ′−

1) ∈⊕µ<λ Vµ.

Let Λ be the sets of weights of a in V , denote by mλ the multiplicity of λ ∈ Λ, and
de�ne sλ =

∑
µ<λmµ. For any tuple S = (Sλ)λ∈Λ of sets of integral weights of g, consider

the subset ΩS of G that consists of the elements g with the following property: For every
λ ∈ Λ, the line

∧sλ
⊕

µ<λ Vµρ(g) ⊂
∧sλ V has nonzero orthogonal projection on the

weight-α spaces (
∧sλ V )α for α ∈ Sλ, and zero projection when α /∈ Sλ.

Theorem 2.17. Let S be any tuple as above, and D ⊂ ΩS compact. Then n(DA) is
relatively compact.

Before proving Theorem 2.17, we state some basic properties of the sets ΩS .

Proposition 2.18. The sets of the form ΩS (or those that are non-empty) partition G.
They are stable on the left by NAM .

Proof. That the ΩS partition G is clear from their de�nition. Acting on the left by
ρ(NAM) on g ∈ SL(V ) does not change the lines

∧sλ
⊕

µ<λ Vµg, so that the individual
conditions de�ning ΩS are left-invariant under NAM .

For λ ∈ Λ, de�ne S0λ to be the set of weights α of g such that the line

sλ∧⊕
µ<λ

Vµρ(g) ⊂
sλ∧
V

has nonzero projection onto the weight-α subspace for at least one g ∈ G. De�ne S0 =
(S0λ)λ∈Λ. Then ΩS0 contains �most� elements of G.

Proposition 2.19. The set ΩS0 is open and dense in G.

Proof. The image ρ(G) is the identity component of the real points of a real algebraic
closed subgroup of SL(V ) [55, �3.3.3]. The set ρ(ΩS0) is de�ned by the non-vanishing of
�nitely many rational functions (corresponding to projections onto weight spaces) and
therefore Zariski open in ρ(G). (There are no vanishing conditions when S = S0, or
rather, they are satis�ed on all of ρ(G).) It follows that ΩS0 is open and dense in G.
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Example 2.20. Take G = SL2(R) and ρ = Std the standard representation. Then
ΩS0 = G − NAM ′, because the only de�ning condition is that both entries on the
bottom row are nonzero. The only other non-empty sets of the form ΩS are NAM and
NAM ·

(
0 1
−1 0

)
. The geodesics in G/K corresponding to elements of ΩS0 are semicircles.

The other ΩS give rise to the vertical geodesics, with both orientations. One can check
using an explicit computation that ρ = Ad gives the same partition of SL2(R).

Example 2.21. Take G = SL3(R) and ρ = Std. The sets ΩS are determined by their K-
projection, in view of Lemma 2.18. The sets κ(ΩS) come in all possible dimensions: The
0-dimensional ones, which are the six right cosets of M in M ′. The 1-dimensional ones:
the three rightM ′-translates of G∩(O(2)×O(1))−M ′ and the three rightM ′-translates
of G ∩ (O(1) × O(2)) −M ′. The 2-dimensional ones: the three right M ′-translates of
the product (G ∩ (O(2) × O(1)) − M ′)(G ∩ (O(1) × O(2)) − M ′) and the three right
M ′-translates of that product with the two factors interchanged. And �nally, the dense
open set κ(ΩS0).

Remark 2.22. For any G, the set κ(ΩS0) is disjoint from the sets LM ′ with L ∈ L
a standard Levi subgroup of a semistandard parabolic; this follows already from the
constraint corresponding to the minimal weights λ. But in general it is smaller than just
the complement of the sets of the form K ∩ LM ′, as illustrated in Example 2.21.
It remains unclear to us whether the partition of G into the ΩS depends on the choice of

representation ρ, and if not, whether the partition is the coarsest possible (up to splitting
into connected components) for uniformity to hold. It would also be desirable to have a
concrete description of the partition in general, as we do have when G = SL3(R).

Proof of Theorem 2.17. Let g ∈ G and a ∈ A. We view n′(ρ(ga))−1 as a block matrix:
For weights λ ≥ µ of V , de�ne

Tλ,µ : Vλ → Vµ

v 7→ prVµ
(
v · n′(ρ(ga))−1

)
and de�ne Tλ =

∑
µ<λ Tλ,µ : Vλ →

⊕
µ<λ Vµ. We must show that each Tλ is a bounded

operator, uniformly in a ∈ A and g in compact subsets of each ΩS . By the �rst statement
in Lemma 2.16 and the fact that the right action of N does not increase weights, the
map Tλ satis�es

((1 + Tλ)Vλ)ρ(ga) ⊥
⊕
µ<λ

Vµρ(ga) .

That is, (Tλv)ρ(ga) = −pr⊕
µ<λ Vµρ(ga)

(vρ(ga)). (These two identities express the block-

by-block orthogonalization process.) To show that Tλ is bounded, we may �x any basis
(bi)1≤i≤sλ of

⊕
µ<λ Vµ and we must show that for every v ∈ Vλ the coordinates of the

orthogonal projection of vρ(ga) onto
⊕

µ<λ Vµρ(ga) in the basis (biρ(ga)) are bounded.
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By (2.12), the ith coordinate is equal to

⟨(b1 ∧ · · · ∧ b̂i ∧ v ∧ · · · ∧ bsλ)ρ(ga), (b1 ∧ · · · ∧ bsλ)ρ(ga)⟩
∥(b1 ∧ · · · ∧ bsλ)ρ(ga)∥2

,

where the hat denotes omission. We may bound this using an inequality similar to (2.13).
Concretely, call dµ the projection of (b1 ∧ · · · ∧ bsλ)ρ(g) onto the weight-µ subspace of∧sλ V , and cµ that of (b1 ∧ · · · ∧ b̂i ∧ v ∧ · · · ∧ bsλ)ρ(g). Then the fraction above equals∑

µ µ(a)
2⟨cµ, dµ⟩∑

µ µ(a)
2∥dµ∥2

,

where we de�ne the weights on A using the exponential map. By the triangle inequality,
this is at most

max
dµ ̸=0

|⟨cµ, dµ⟩|
∥dµ∥2

,

which gives a uniform upper bound for g in compact subsets of each ΩS , because the dµ
are then either zero or are bounded away from zero.

2.3 The A-projection and extreme points

In this section we prove Theorem 6. Unless otherwise stated, G is a semisimple Lie group
as in �2.1.1. For H0 ∈ a and g ∈ G de�ne

hH0,g : A→ R
a 7→ ⟨H0, H(ga)⟩ .

When H0 corresponds to λ ∈ a∗ under the isomorphism given by the Killing form, this
is precisely the function hλ,g in Theorem 6. Recall from �2.1.4 that λ is regular if and
only if H0 is, λ lies in the positive chamber of a∗ if and only if H0 ∈ a+, and λ does not
lie in a proper subspace spanned by roots if and only if H0 /∈ ⋃L∈L−{G} a

L. Thus the
condition on λ in Theorem 6 is equivalent to H0 ∈ agen,+.
The �rst part of Theorem 6, concerning uniqueness and nondegeneracy, is proved

in �2.3.3; see Proposition 2.48. The second part of Theorem 6, concerning existence,
is proved in �2.3.4 (although the hard work is done in �2.3.2); see Corollary 2.52 and
Proposition 2.53.

2.3.1 Critical points and level sets

Using Lemma 2.8 we �nd that the di�erential of hH0,g at a ∈ A is

(DhH0,g)a : a→ R
H 7→ ⟨H0,Adκ(ga)(H)⟩ . (2.23)
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When G is any reductive group with all associated data as in �2.1.1, and H0 ∈ a, de�ne
the set C(G,H0) as follows:

C(G,H0) = {k ∈ K : Adk−1(H0) ⊥ a} . (2.24)

We allow G to be reductive because we will occasionally need to work with the sets
C(L,H0) for L ∈ L.
Now let G again be semisimple. The following two lemmas are clear from (2.23) and

(2.24).

Lemma 2.25. Let H0 ∈ a and g ∈ G. Then a ∈ A is a critical point of hH0,g if and
only if κ(ga) ∈ C(G,H0). □

Lemma 2.26. The set of k ∈ K for which 1 is a critical point of hH0,k equals C(G,H0).
More generally, the set of k ∈ K for which a ∈ A is a critical point of hH0,k equals
κ(C(G,H0)a

−1). □

In view of Lemma 2.26, we refer to the sets κ(C(G,H0)a
−1) as level sets. This will be

fully justi�ed after we show uniqueness of critical points in Proposition 2.48.
By decomposing g in the Iwasawa decomposition we see that

hH0,g(a) = ⟨H0, H(g)⟩+ hH0,κ(g)(a) . (2.27)

The �rst term in the right hand side being a mere constant, we see that the critical points
of hH0,g coincide with those of hH0,κ(g). It therefore su�ces to understand the critical
points of hH0,k for k ∈ K.

Example 2.28. When G = PSL2(R) it is clear from the geometric picture in the intro-
duction that a critical point of hH0,g is a point a ∈ A such that the tangent line to gAi
at gai is horizontal. This is the content of the above Lemma 2.25 in this case. The set
C(G,H0) consists of the two elements

c± =

(
cos(π/4) ± sin(π/4)
∓ sin(π/4) cos(π/4)

)
corresponding to the two horizontal directions. See Figure 2.1 for a picture.

Example 2.29. Let G = SL3(R). Take elements H0, H
′
0 ∈ a that are not proportional,

and take k ∈ K. We claim that a ∈ A can never be a critical point of both hH0,k

and hH′
0,k

. Indeed, replacing k by κ(ka) we may assume that a = 1, and that k ∈
C(G,H0) ∩ C(G,H ′

0). That is, the symmetric matrices Adk−1(H0) and Adk−1(H ′
0) have

zeroes on the diagonal. Because a is 2-dimensional the same is then true for any H ′′
0 ∈ a.

Take now H ′′
0 = H2

0 . The matrix Adk−1(H ′′
0 ) = Adk−1(H0)Adk−1(H0)

T has zeroes on
the diagonal on the one hand, but its trace is the sum of squares of the entries of H0 on
the other hand. This is a contradiction.
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0

i

k1A · i

k2A · i

A · i

Figure 2.1: Geodesics corresponding to an element k1 ∈ C(G,H0), and to an element k2
that does not lie in C(G,H0).

2.3.2 Existence of critical points

We want to show that there exists k ∈ K with the property that hH0,k has a critical
point. Equivalently, in view of Lemma 2.26, that the set C(G,H0) is nonempty. Before
proving that this is indeed the case for generic H0 ∈ a, we need a negative result.
When k ∈ K centralizes a nonzero subspace V ⊂ a, then a 7→ H(ka) grows linearly

in the directions of V . In particular, for hH0,k to have a critical point, H0 must be
orthogonal to V . Those critical points behave badly, and this is the reason to impose
that H0 /∈

⋃
L∈L−{G} a

L in Theorem 6. We make this more precise in Lemma 2.31.

Lemma 2.30. When L ∈ L and m ∈M ′, we have κ(mL) ⊂ mL.

Proof. It follows from [41, Proposition 7.25, Proposition 7.31] that when L′ ⊂ G is a
semistandard Levi subgroup, one has κ(L′) ⊂ L′. We may apply this to L′ = mLm−1.

Proposition 2.31. When H0 /∈ ⋃L∈L−{G} a
L and k ∈ ⋃L∈L−{G}M

′L, the function
hH0,k has no critical point.

Proof. Assume a ∈ A is a critical point of hH0,k, and let m ∈ M ′ and L ∈ L − {G}
be such that k ∈ mL. By Lemma 2.30 we also have κ(ka) ∈ mL. From (2.23), letting
H vary in aL, we see that H0 ⊥ Adm(aL) = aAdm(L). That is, H0 ∈ aAdm(L), which
contradicts our assumption.

An equivalent formulation of Proposition 2.31 is the following.

Lemma 2.32. When H0 /∈
⋃
L∈L−{G} a

L, the set C(G,H0) does not meet
⋃
L∈L−{G}M

′L.

Proof. The elements k ∈ C(G,H0) have the property that hH0,k has a critical point,
namely 1.
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When G is reductive, the set C(G,H0) is trivially empty when H0 has a component
along Z(g). That is, when H0 /∈ gss. In particular, when L is a semistandard Levi
subgroup of G, the set C(L,H0) is empty if H0 /∈ (a ∩ lss) = aL. To study the sets
C(G,H0) with G reductive and H0 ∈ a ∩ gss, consider the map

fG,H0 : K → a ∩ gss

k 7→ Ea(Adk−1(H0)) .
(2.33)

By de�nition, C(G,H0) = f−1
G,H0

(0). By (2.7), the di�erential of fG,H0 at k ∈ K is given
by

(DfG,H0)k : k→ a ∩ gss

X 7→ −Ea([X,Adk−1(H0)]) .
(2.34)

For G semisimple, we want to prove that the sets C(G,H0) are generically nonempty. To
this end, de�ne

gG,H0 : K → R≥0

k 7→ ∥fG,H0(k)∥2 .

We have C(G,H0) = g−1
G,H0

(0). Because gG,H0 is a continuous function on a compact set,
it reaches a minimum. Our aim is to show that the minima of gG,H0 satisfy gG,H0(k) = 0,
it it will follow that C(G,H0) is nonempty.
Using Leibniz's rule and (2.34), the di�erential of gG,H0 at k ∈ K is given by

(DgG,H0)k(X) = 2⟨(DfG,H0)k(X), fG,H0(k)⟩
= −2⟨[X,Adk−1(H0)], fG,H0(k)⟩ . (2.35)

Lemma 2.36. Let G be reductive and H0 ∈ areg ∩ gss. Then fG,H0 is a submersion at
points k /∈ ⋃L∈L−{G}M

′L.

Proof. Suppose (DfG,H0)k is not surjective for some k ∈ K. Then there exists a nonzero
H ∈ a ∩ gss such that ⟨[X,Adk−1(H0)], H⟩ = 0 for all X ∈ k. Using associativity of the
Killing form, this is equivalent to

[Adk−1(H0), H] ⊥ k .

But [Adk−1(H0), H] ∈ [p, p] ⊂ k, so that [Adk−1(H0), H] = 0. That is, Adk(H) ∈ Zp(H0).
Because H0 is regular, this implies Adk(H) ∈ a (see [41, Lemma 6.50]), and Lemma 2.2
then implies that k ∈ M ′L with L = ZG(H). Because H /∈ Z(g), this is a proper
semistandard Levi subgroup. This proves the statement.

Corollary 2.37. Let G be reductive and H0 ∈ agen ∩ gss. Then fG,H0 is a submersion
at the points of C(G,H0).
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Proof. The set C(G,H0) does not meet any of the setsM ′L by Lemma 2.32, and therefore
fG,H0 is a submersion at points of C(G,H0), by Lemma 2.36.

Lemma 2.38. Let H0 ∈ areg. De�ne DH0 = {k ∈ K : k ∈ ZG(fG,H0(k))}. The following
hold:

(i) The function gG,H0 is right invariant under M ′.

(ii) The set of critical points of gG,H0 is DH0M
′.

(iii) Let k ∈ DH0 and de�ne L = ZG(fG,H0(k)). Write H0 = HL +HL with HL ∈ aL
and HL ∈ aL. Then fG,H0(k) = HL and k ∈ C(L,HL).

Proof. (i) We show that fG,H0(km) = Adm−1(fG,H0(k)) for m ∈ M ′. Because the
adjoint action ofM ′ on a is isometric, it will then follow that gG,H0 is right invariant
under M ′.

BecauseM ′ normalizes a, it normalizes the orthogonal complement a⊥, so that the
adjoint action of M ′ commutes with Ea. This implies

fG,H0(km) = Ea(Adm−1k−1(H0))

= Adm−1(Ea(Adk−1(H0)))

= Adm−1(fG,H0(k)) .

(ii) Let k be a critical point of g. Using (2.35) we have for all X ∈ k,

0 = (DgG,H0)k(X) = −2⟨Ea([X,Adk−1(H0)]), fG,H0(k)⟩ .

That is,

⟨k, [Adk−1(H0), fG,H0(k)]⟩ = 0 .

But [Adk−1(H0), fG,H0(k)] ∈ [p, p] = k, so that this must be zero. Because H0 ∈
areg, this implies that fG,H0(k) ∈ Adk−1(a). By Lemma 2.2 it follows that k ∈
M ′ZG(fG,H0(k)). Replacing k by an appropriate right translate under M ′, this
becomes k ∈ ZG(fG,H0(k)). That is, k ∈ DH0 .

(iii) Take k ∈ DH0 . By de�nition of L we have fG,H0(k) ∈ aL. Writing H0 = HL +HL

and using that k ∈ L, we have fG,H0(k) = Ea(Adk−1(H0)) = HL+Ea(Adk−1(HL)).
If we prove that Ea(Adk−1(HL)) = 0, the two statements follow. On the one hand
fG,H0(k) ∈ aL implies Ea(Adk−1(HL)) = fG,H0(k)−HL ∈ aL. On the other hand,
HL ⊥ aL and k ∈ L implies Adk−1(HL) ⊥ aL, and hence Ea(Adk−1(HL)) ⊥ aL. It
follows that Ea(Adk−1(HL)) ∈ aL ∩ aL = {0}.
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Lemma 2.39. Let H0 ∈ areg, DH0 be as in Lemma 2.38 and k ∈ DH0 a critical point
of gG,H0 . De�ne L, HL and HL as in the same lemma. Then the Hessian of gG,H0 at k
satis�es

1

2
(Hessk gG,H0)(X,X) = −∥[X,HL]∥2 − ⟨[X,Adk−1(HL)], [X,HL]⟩

+
∥∥Ea([X,Adk−1(HL)])

∥∥2 (2.40)

for all X ∈ k.

Proof. Starting from (2.35) and using Leibniz's rule and (2.7), we have that the Hessian
of g at the critical point k takes the form

Hessk g : k× k→ R
(X,Y ) 7→ 2 ⟨Ea([Y, [X,Adk−1(H0)]]), fG,H0(k)⟩

+2 ⟨Ea([Y,Adk−1(H0)]), Ea([X,Adk−1(H0)])⟩ .

As fG,H0(k) ∈ a, we may drop the projection Ea in the �rst term. Replacing fG,H0(k)
by HL and using associativity of the Killing form we obtain

− 2 ⟨[X,Adk−1(H0)], [Y,HL]⟩
+ 2 ⟨Ea([Y,Adk−1(H0)]), Ea([X,Adk−1(H0)])⟩ .

The associated quadratic form on k sends

X 7→ −2 ⟨[X,Adk−1(H0)], [X,HL]⟩+ 2 ∥Ea([X,Adk−1(H0)])∥2 .

Writing H0 = HL +HL and recalling that k ∈ L centralizes HL, this becomes

− 2 ∥[X,HL]∥2 − 2⟨[X,Adk−1(HL)], [X,HL]⟩
+ 2

∥∥Ea([X,HL +Adk−1(HL)])
∥∥2 .

Because HL ∈ a, associativity of the Killing form implies Ea([X,HL]) = 0, so that the
third term simpli�es and we obtain (2.40).

Lemma 2.41. Let H0 ∈ agen and k ∈ K be a critical point of gG,H0 with positive
semide�nite Hessian. Then gG,H0(k) = 0.

Proof. The proof is by contradiction. Assuming that fG,H0(k) ̸= 0, we will construct a
direction in which the Hessian of gG,H0 is negative de�nite at k.
Let DH0 be as in Lemma 2.38. By Lemma 2.38 and right invariance of g under M ′,

we may assume that k ∈ DH0 . Let L = ZG(fG,H0(k)) and let HL and HL be as in
Lemma 2.38, so that fG,H0(k) = HL and k ∈ C(L,HL). Suppose that HL ̸= 0. We will
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construct X ∈ k for which the third term in (2.40) is zero, and for which the other terms
are nonpositive and not both zero.
Suppose �rst that HL /∈ areg. Then there exists a nonzero element X ∈ k with

[X,Adk−1(HL)] = 0. Indeed, if α ∈ Σ is such that α(HL) = 0, take a nonzero X ′ ∈
(gα + g−α) ∩ k. Then [X ′, HL] = 0, and we can take X = Adk−1(X ′).
With this choice of X, the second and third terms in (2.40) vanish. We have [X,HL] =

[X,Adk−1(H0)] ̸= 0 by regularity of H0, so that

(Hessk gG,H0)(X,X) = −2 · ∥[X,HL]∥2 < 0 .

This is a contradiction.
Suppose now that HL ∈ areg. We �rst show that there exists X ∈ k for which the

second term in (2.40) is strictly negative. After that, we will modify X in such a way
that the second term stays the same and such that the third becomes zero.
The second term in (2.40) equals

−⟨[Adk(X), HL], [Adk(X), HL]⟩ .

Write Adk(X) in the restricted root space decomposition (2.1) as

Adk(X) =
∑
α∈Σ

Xα .

Then the above equals
−
∑
α∈Σ

α(HL)α(HL)∥Xα∥2θ . (2.42)

Because HL ̸= 0 by assumption, there exists β ∈ Σ such that β(HL) ̸= 0. Because
HL ∈ areg, we have β(HL)β(HL) ̸= 0. Using [41, Corollary 2.24] we have

0 = ⟨HL, HL⟩ =
∑
α∈Σ

α(HL)α(HL) ,

so that there is at least one strictly positive term in this sum. Let α ∈ Σ be such that
α(HL)α(HL) > 0. Take now a nonzeroX ∈ k∩(gα+g−α), then (2.42) is strictly negative.
That is, the second term in (2.40) is strictly negative.
Observe that when Y ∈ k ∩ l, adding Y to X does not change the �rst two terms of

(2.40), because [Y,HL] = 0. Thus in order to make the third term in (2.40) zero and
obtain a contradiction, it su�ces to �nd Y ∈ k ∩ l with

Ea([Y,Adk−1(HL)]) = Ea([X,Adk−1(HL)]) ,

and it will follow that

(Hessk gG,H0)(X − Y,X − Y ) = −2 ∥[X,HL]∥2 − 2⟨[X,Adk−1(HL)], [X,HL]⟩ < 0 .
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Let L′ ⊂ L be the smallest semistandard Levi subgroup with the property that k ∈ L′M ′,
say k = ℓ′m. From k ∈ C(L,HL) it follows that Adk−1(HL) ⊥ a, and therefore HL ∈ aL

′
.

We also have that [k,Adk−1(HL)] ⊥ Adk−1(a) ⊃ Ad−1
m (aL′), so that Ea([k,Adk−1(HL)]) ⊂

Ad−1
m (aL

′
). Hence it su�ces to show that the map

k ∩ l→ Ad−1
m (aL

′
)

Y 7→ Ea([Y,Adk−1(HL)])
(2.43)

is surjective. Its restriction to k ∩ l′ is precisely −Ad−1
m ◦(DfL′,HL)ℓ′ (compare (2.34)).

We seek to apply Lemma 2.36 to L′.
By assumption we have HL ∈ areg, so that HL ∈ (aL

′
)reg. By minimality of L′, we

have ℓ′ /∈ ⋃L′′⊊L′ M ′L′′. Therefore Lemma 2.36 shows that (DfL′,HL)ℓ′ is surjective, so
that the map (2.43) is surjective and the conclusion follows.

Corollary 2.44. When H0 ∈ agen we have C(G,H0) ̸= ∅.

Proof. The continuous function gG,H0 : K → R≥0 attains a minimum, which must be 0
by Lemma 2.41.

2.3.3 Uniqueness of critical points

Lemma 2.45. Let H0 ∈ a+ and k ∈ K −⋃L∈L−{G}M
′L. Then the quadratic form on

a de�ned by
H 7→ ⟨H0, [Adk(H), En(Adk(H))]⟩

is negative de�nite. In particular, it is nondegenerate.

Proof. Take a nonzero H ∈ a, and write the element Adk(H) ∈ p in the restricted root
space decomposition (2.1) as

∑
α∈Σ∪{0}Xα. Then θX−α = −Xα. By Lemma 2.9, the

quadratic form evaluated at H equals∑
α∈Σ+

⟨−Xα, 2Xα⟩θ⟨Hα, H0⟩ = −2
∑
α∈Σ+

∥Xα∥2θ · α(H0) ,

which is nonpositive because H0 lies in the positive Weyl chamber. Therefore the
quadratic form is negative semide�nite. The fact that k /∈ ⋃

L∈L−{G}M
′L implies

Adk(H) /∈ a (Lemma 2.2). So at least one Xα is nonzero, and the statement follows.

Remark 2.46. When H0 lies in a mixed Weyl chamber, the quadratic form on a in
Lemma 2.45 can sometimes be degenerate. This happens already for G = SL3(R), even
for completely generic values of H0, and there appears to be no structure in the bad pairs
(H0, k).

Proposition 2.47. Let H0 ∈ a+ and k ∈ K − ⋃L∈L−{G}M
′L. Then the Hessian of

hH0,k is everywhere negative de�nite.
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Proof. Take a ∈ A and de�ne k1 = κ(ka). From Lemma 2.30 it follows that k1 /∈⋃
L∈L−{G}M

′L. Using Lemma 2.9 we have for H ∈ a that

(Hessa hH0,k)(H) = ⟨H0, [Adk1(H), En(Adk1(H))]⟩
= ⟨[H0,Adk1(H)], En(Adk1(H))⟩ .

By Lemma 2.45, this quadratic form is negative de�nite.

Proposition 2.48. When H0 ∈ agen,+ and k ∈ K, the function hH0,k has at most one
critical point, which if it exists, is nondegenerate and maximizes hH0,k.

Proof. Assume that hH0,k has a critical point. By Proposition 2.31, the existence of a
critical point implies that k /∈ ⋃L∈L−{G}M

′L. The Hessian of hH0,k is then everywhere
nondegenerate by Proposition 2.47. In particular, its critical points are nondegenerate.
Moreover, Proposition 2.47 implies that the Hessian of hH0,k is everywhere negative
de�nite, so that there can be no other critical point and any critical point maximizes
hH0,k.

2.3.4 Structure of the level sets

We have all the necessary information to describe the set C(G,H0).

Proposition 2.49. When H0 ∈ agen, the set C(G,H0) is a smooth manifold of dimension
dimK − dimA that varies smoothly with H0.

Proof. By Corollary 2.44, this set is nonempty, and by Lemma 2.37, fG,H0 is a submersion
at the points of C(G,H0). Thus C(G,H0) is a smooth manifold of dimension dimK −
dimA, and from the local normal form for submersions [44, Theorem 4.12] it follows that
it admits local parametrizations that depend smoothly on H0.

Lemma 2.50. When H0 ∈ a, the set C(G,H0) is invariant on both sides by M .

Proof. This is clear from the de�nition (2.24), using AdG-invariance of the Killing form.

Remark 2.51. Many arguments simplify when C(G,H0) is but a �nite union of cosets
of M in K, e�ectively reducing arguments to the case of G = SL2(R). However, the set
C(G,H0) is usually much bigger; see Proposition 2.57.

Corollary 2.52. When H0 ∈ agen and a ∈ A, the set of g ∈ G for which a is a critical
point of hH0,g is a smooth submanifold of codimension dim(A). It is stable on the left by
NAM and on the right by M .
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Proof. From (2.27) we saw that hH0,g and hH0,κ(g) have the same critical points. There-
fore by Lemma 2.26 the set in question is equal to NA · κ(C(G,H0)a

−1), which has
codimension dim(A) in G = NAK by Proposition 2.49. It is stable on the left by NA. It
is stable on the left by M because M normalizes NA, which implies that κ(·) commutes
with left multiplication by M , and C(G,H0) is stable on the left by M by Lemma 2.50.
Similarly, invariance on the right follows from Lemma 2.50, using that κ(·) commutes
with right multiplication by K.

When H0 ∈ a, de�ne RH0 ⊂ G to be the set of elements g for which the function hH0,g

has a critical point.

Proposition 2.53. When H0 ∈ agen,+, the set RH0 ⊂ G is open and stable on the left
by NAM .

Proof. Take g0 ∈ RH0 . By Proposition 2.48, the critical point of hH0,g0 is nondegenerate,
call it ξ. We may reformulate this by saying that the map

A→ a∗

a 7→ (DhH0,g0)a

has invertible di�erential at the level set above 0, which is the singleton {ξ}. By the
implicit function theorem applied to this smooth map with parameter g ∈ G, it follows
that it has a zero for all g in a neighborhood of g0, which is to say that RH0 is open in
G. The stability under NAM follows from Corollary 2.52.

Remark 2.54. Let ρ : G → SL(V ) be any representation with �nite kernel, and let
ΩS0 ⊂ G be the set de�ned in �2.2.5. It is open and dense by Proposition 2.19. It is
reasonable to expect that for g ∈ ΩS0 and λ ∈ (a∗)+ we have λ(H(ga))→ −∞ as a→∞
in A. This would then imply that when H0 ∈ a+ the function hH0,g has a critical point
for all g ∈ ΩS0 , in particular, for all g in an open dense subset of G that does not depend
on H0. In fact, when H0 ∈ agen,+ it is reasonable to expect that RH0 = ΩS0 .
The statement about the limit and the corollary that RH0 ⊃ ΩS0 are certainly true

when G = SLn(R) and ρ = Std. Then the entries of H(ga) can be expressed in terms
of quotients of sums of subdeterminants (using (2.10)), and when g ∈ ΩS0 those entries
are bounded from above and below by constants times the entries of a, but arranged in
decreasing order. The general case would require a more careful analysis of the weights
of the exterior powers of V . This would in particular give an alternative proof of Corol-
lary 2.44, whose only proof we have now is very technical and little intuitive.

2.3.5 Some dimension bounds

Lemma 2.55. Let g be a complex simple Lie algebra of rank r, h a Cartan subalgebra
with roots Σ and a choice of simple roots Π. Let α ∈ Π. Then there exist at least r roots
β ∈ Σ with the property that β ≥ α.
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Proof. We will show by induction the following statement: for every 1 ≤ m ≤ r, there
exists a set of simple roots S with |S| = m whose span contains m linearly independent
roots β ≥ α. For m = 1 we take S = {α}. Assume we have found S of cardinality
m < r. Because g is simple, Σ is irreducible, so there exists a simple root γ ∈ Π − S
which is not orthogonal to all roots in S. Thus there exists a positive root β ∈ span(S)
with β ≥ α which is not orthogonal to γ. Because ⟨β, γ⟩θ ≤ 0 by [41, Lemma 2.51], we
must have ⟨β, γ⟩θ < 0. By [41, Proposition 2.48] this implies that β + γ is a root. We
may now take S′ = S ∪ {γ}, whose span contains m linearly independent roots ≥ α in
span(S) together with the root β + γ ≥ α. This completes the induction.

Lemma 2.56. Let g be a real simple Lie algebra with Cartan decomposition k⊕p, maximal
abelian subalgebra a ⊂ p with restricted roots Σ ⊂ a∗ and choice of positive roots Σ+.
The following are equivalent:

1. g is compact or isomorphic to sl2(R).

2.
∑

α∈Σ+ m(α) = dim(a).

Proof. Write r = dim(a). Note that Σ spans a∗ so that we always have∑
α∈Σ+

m(α) ≥ #Σ+ ≥ r .

It is clear that equality holds if g is compact or isomorphic to sl2(R).
Now let g be any simple Lie algebra. We will show that equality only holds for the

examples stated. There are two cases, coming from the classi�cation of simple real Lie
algebras.
Suppose �rst that the complexi�cation gC is not simple. By [41, Theorem 6.94] g is the

restriction of scalars of a simple complex Lie algebra. Let h ⊃ a be a Cartan subalgebra.
It follows as in [41, �VI.11, p.425] that all roots of h have nonzero restriction to a (and
all restrictions are di�erent) and all restricted roots have multiplicity 2. It follows that∑

α∈Σ+

m(α) = 2#Σ+ ≥ 2r ≥ r + 1 ,

because r ≥ 1, meaning that equality does not hold in this case.
Suppose now that the complexi�cation gC is simple. Let Π be a system of simple

restricted roots of a. Let θ be a Cartan involution corresponding to k ⊕ p and h ⊂ g a
θ-stable Cartan subalgebra containing a. We may choose an ordering on h∗C such that
the restrictions of positive roots of hC to a are either zero or positive. As in [41, �VI.12,
Problem 7], all simple α ∈ Π are restrictions of simple roots of hC. Let α1, . . . , αr be
simple lifts to hC of the simple restricted roots of a. If g is noncompact, then r ≥ 1.
Because gC is simple, by Lemma 2.55 there are at least dimC(hC)− 1 positive roots β of
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hC with β > α1. The restrictions of all these roots are positive. Though the restrictions
may coincide, they give the following lower bound for multiplicities:∑

α∈Σ+

m(α) ≥ r + dimC(hC)− 1 .

if this is equal to r, then dimC(hC) = 1. That is, gC ∼= sl2(C). Because we are assuming
g is noncompact, it must be the unique noncompact form of sl2(C), which is sl2(R).

Proposition 2.57. Let G be a semisimple Lie group. The following are equivalent:

1. dim(K)− dim(A) = dim(M).

2. All simple factors of g are either compact or sl2(R).

Note that we always have dim(K) ≥ dim(M) + dim(A).

Proof. The di�erence dim(K)− dim(M) is equal to
∑

α∈Σ+ m(α). If this is an equality,
then we must have the same equality for all simple factors of g. By Lemma 2.56, this is
equivalent to saying that all simple factors of g are either compact or sl2(R).

2.3.6 Proofs speci�c to SL3(R)

Some of the lemmas that go into the proof of Proposition 2.49 admit more direct and
computational proofs whenG = SL3(R). We include one of those here, because it features
a rather curious inequality.

Direct proof of Corollary 2.44 when G = SL(3,R). We use the standard choice of Iwa-
sawa decomposition. WriteH0 = diag(a, b, c). Proving that the set C(G,H0) is nonempty
is equivalent to showing that there exists a symmetric matrix X = Adk−1(H0) with ze-

roes on the diagonal, which is isospectral with H0. Write X =
( 0 x y
x 0 z
y z 0

)
. Then H0 and X

have the same characteristic polynomial when{
x2 + y2 + z2 = −(ab+ bc+ ca) = 1

2(a
2 + b2 + c2)

2xyz = abc .
(2.58)

Because the �rst equation does not see the signs of x, y, z, squaring the second does not
a�ect solvability. We may now view (2.58) as prescribing the arithmetic and geometric
mean of x2, y2, z2, namely 1

6(a
2+ b2+ c2) respectively (14a

2b2c2)1/3. It is well known that
a necessary and su�cient condition for this to have a solution in nonnegative numbers
x2, y2, z2, is that the arithmetic mean is at least the geometric mean, meaning that

1

6
(a2 + b2 + c2) ≥

(
1

4
a2b2c2

)1/3

.
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That this condition is satis�ed is Lemma 2.59 below, and it does not require the hypoth-
esis that H0 ∈ agen.

Lemma 2.59 (AM� 3
√
2GM). Let a, b, c ∈ R with a+ b+ c = 0. Then(

a2 + b2 + c2

3

)3

≥ 2 · a2b2c2 .

The proof of Lemma 2.59 is an amusing exercise. Equality holds if and only if (a, b, c)
is proportional to (1, 1,−2) or a permutation thereof. With the notations as in Corol-
lary 2.44, this corresponds to the case where H0 lies in aL for some semistandard Levi
subgroup L ∈ L − {G}.

2.4 The K-projection and the geodesic �ow

In this section we prove Theorem 7. For the possibility of uniformity, see Remark 2.68.
For H ∈ a and k ∈ K, de�ne a map

pH,k : R→ p

t 7→ Adκ(ketH)(H) .
(2.60)

Using (2.6) and Lemma 2.8 to di�erentiate κ, we �nd that

p′H,k(t) = [Ek(pH,k(t)), pH,k(t)] .

Therefore pH,k(t) is a solution to the homogeneous quadratic di�erential equation in p
given by

X ′ = [EkX,X] (2.61)

with initial value Adk(H). Its �ow

p : R× p→ p

(t,X) 7→ pt(X) .
(2.62)

is given explicitly by pt(X) = pH,k(t) when X = Adk(H), and is in particular de�ned
for all t ∈ R. We will prove Theorem 7 by gathering enough information about the
dynamical system (2.62).

Example 2.63. Let G = PSL2(R) and identify p with R2 via an isometry that sends a
to the horizontal axis R×{0}. It is clear from (2.61) that the points of a are stationary,
and it is clear from (2.60) that the norm of X ∈ p is invariant under the �ow. It is then
not hard to see that the phase portrait of the dynamical system (2.62) is as follows: the
points of a+ are unstable equilibra, the points of a− are stable equilibria, and apart from
the equilibrium at 0 every other orbit is heteroclinic and describes a Euclidean half circle
with endpoints on the horizontal axis, starting at a+ and ending at a−.
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It is clear from (2.61) that all elements of a are equilibria. The key in the proof of
Theorem 7 is the existence of functions that are monotonic along orbits. For a root
α ∈ Σ, let Hα ∈ a be as in �2.1.3. The set {Hα : α ∈ Π} is a basis of a. When α ∈ Π
and H ∈ a, de�ne cα(H) to be the αth coordinate of H in this basis. More generally,
de�ne cα(X) = cα(Ea(X)) for X ∈ g.

Lemma 2.64. Let X ∈ p− a. Then cα([EkX,X]) ≤ 0 for all α ∈ Π, and at least one is
strictly negative. That is, Ea[EkX,X] is nonzero and lies in the closure of the negative
Weyl chamber.

Proof. Write X =
∑

α∈Σ∪{0}Xα in the restricted root space decomposition (2.1). Using
that X−α = −θ(Xα) and EkX =

∑
α∈Σ+(X−α −Xα), we �nd that

Ea[EkX,X] =
∑
α∈Σ+

[X−α −Xα, X−α +Xα]

= −2
∑
α∈Σ+

[Xα, X−α]

= −2
∑
α∈Σ+

⟨Xα, X−α⟩ ·Hα

= −2
∑
α∈Σ+

∥Xα∥2θ ·Hα

= −2
∑
α∈Π

∑
β≥α
∥Xβ∥2θ ·Hα

where in the third equality we have used [41, �II, Lemma 2.18]. Therefore the coe�cients
of Ea[EkX,X] in the basis {Hα : α ∈ Π} are nonnegative, and because X /∈ a at least
one is nonzero. (This is essentially the same proof as that of Lemma 2.45.)

Lemma 2.65. Let X ∈ p− a and t > 0. Then cα(pt(X)) ≤ cα(X) for all α ∈ Π, and at
least one inequality is strict.

Proof. By Lemma 2.64, every cα(pt(X)) is monotonically decreasing, and near every
t ∈ R at least one is strictly decreasing.

Lemma 2.66. The only non-wandering points for the dynamical system (2.62) are those
of a.

Proof. Let X ∈ p− a. By Lemma 2.65 there exists α ∈ Π for which cα(p1(X)) < cα(X).
By continuity of the �ow, there exists a neighborhood U of X such that cα(p1(U)) <
cα(U). Because cα is decreasing along orbits, we have pt(U)∩U = ∅ for all t ≥ 1. Thus
X is wandering.

Lemma 2.67. Let X ∈ p. There exists H ∈ a such that limt→∞ pt(X) = H.
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Proof. Write X = Adk(H) with k ∈ K and H ∈ a. Consider its ω-limit ω(X). By
Lemma 2.66 we have ω(X) ⊂ a. In view of the explicit expression for pt(X), we have
ω(X) ⊂ AdK(H) by continuity. Thus ω(X) ⊂ a ∩ AdK(H). By Lemma 2.2, this
intersection is equal to the Weyl group orbit of H. In particular, it is discrete. Because
ω(X) is connected, it must consist of a single point of a.

Proof of Theorem 7. The K-projection of getH does not depend on the triangular part
of g, so we may assume that g ∈ K. Conjugating H by k ∈ K gives a di�eomorphism

K/ZK(H)→ AdK(H) .

Take k ∈ G. When t → +∞, the image of κ(ketH) under this map tends to an element
Adm(H) ∈ AdM ′(H) by Lemma 2.67. Therefore κ(ketH) tends to the point mZK(H) in
the quotient K/ZK(H). Equivalently, κ(ketH) tends to the set mZK(H) in K.

Remark 2.68. In general the convergence in Lemma 2.67 is not uniform. Already for
G = SL3(R) there are heteroclinic orbits that have nearby orbits with totally di�erent
limit points, even some that emanate from equilibria in the positive Weyl chamber.
Some of these orbits, that come in one-dimensional families, can be seen to lie in Levi
subalgebras (Lie algebras of L ∈ L). But not all of them do and certainly not those that
come in two-dimensional families. In fact, it seems likely that these badly behaved orbits
correspond exactly to the partition of K into the sets κ(ΩS) de�ned in �2.2.5; compare
Example 2.21.
Further evidence for this is the following observation. Let ρ : G → SL(V ) be any

representation with �nite kernel, and let ΩS0 be the set de�ned in �2.2.5. As explained in
Remark 2.54 we expect that for g ∈ ΩS0 and λ ∈ (a∗)+ we have λ(H(ga))→ −∞ as a→
∞ in A, and we sketched a proof of this when G = SLn(R) and ρ = Std. Moreover, when
λ ∈ Σ+ is merely a positive root, it is still reasonable to expect that λ(H(ga)) → −∞
as a→∞ in A uniformly along regular directions; this is also apparent for G = SLn(R).
Now writing ga = n′a′k′, we have for H ∈ a that Adk′(H) = Ada′−1n′−1g(H). When
g ∈ ΩS0 stays in a compact set, then so does n′, by Theorem 2.17, and if λ(a′)→ −∞ for
all positive roots λ, then the positive root space components of Ada′−1n′−1g(H) tend to
zero. On the other hand this equals Adk′(H), which lives in a bounded subset of p, so that
the negative root space components approach zero as well, meaning that Adk′(H) → a
and therefore k′ → M ′ZK(H). Taking H ∈ a regular, we would obtain that k′ → M ′,
uniformly for g in compact subsets of ΩS0 and a→∞ inside regular cones of A.
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3 Toric periods on semisimple groups

This chapter contains the proofs of Theorem 3 and Theorem 4. Section �3.2 contains
the skeleton of the proof of Theorem 4. It relies on asymptotics and bounds for orbital
integrals, which are proved using stationary phase analysis in �3.3 and �3.4. The analysis
relies heavily on results from �2.3. The remainder of the chapter is concerned with The-
orem 3. The proof is given in �3.6. The main arithmetic input, which is the construction
of a suitable Hecke operator, is contained in �3.7.

3.1 Preliminaries on symmetric spaces

We will use the notation from �2.1 for Lie groups and symmetric spaces. So let G be
reductive as in �2.1.1, and we will assume throughout that the identity component G0 is
semisimple. (Recall that a semisimple Lie group for us is by de�nition connected. That
is, we follow [41].) The Lie group G will always be connected in �3.2 and in the analytic
sections following it. It will be again allowed to be disconnected from �3.5 onwards.
We equip G with any Riemannian metric and the associated distance function d(·, ·).

We will care only about distances up to constant factors, so we do not need to impose
any invariance properties of d(·, ·).

3.1.1 Measures and convolution

We �x any Haar measure dg on G and let dk be the Haar measure on K for which
Vol(K) = 1. We �x the Haar measure on A that coincides with the measure induced from
the left-invariant Riemannian metric on the symmetric space G/K on the submanifold
A ⊂ G/K. If H is a subgroup between A and MA, this then de�nes a unique Haar
measure on H.
The universal enveloping algebra U(g) acts on C∞(G) as in �2.1.5. The convolution

algebra C∞
c (K\G/K) acts on C∞(G/K) by right translation, and it is commutative [34,

Theorem IV.3.1].

3.1.2 Maass forms

Let G be semisimple and Γ ⊂ G a co-compact and torsion-free lattice. The quotient
X = Γ\G/K is a compact locally symmetric space, and C∞(Γ\G) carries an action
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of U(g). The algebra Z(U(g)) is commutative, and we may �nd an orthonormal basis
(fj)j≥0 of L2(X) consisting of simultaneous eigenfunctions for Z(U(g)), the Maass forms.
For ν ∈ (a∗)C, the complexi�ed dual of a, let φν : G → C be the spherical func-

tion of parameter ν [34, Chapter IV]. It is given explicitly by Harish-Chandra's integral
representation as

φν(g) =

∫
K
exp ((ρ+ iν)(H(kg))) dk , (3.1)

where H : G → a is the Iwasawa projection and ρ ∈ a∗ the half-sum of positive roots
(�2.1.1) [34, Theorem IV.4.3]. We say fj has spectral parameter νj ∈ (a∗)C if it has the
same Z(U(g))-eigenvalues as φνj ; such νj is uniquely determined up to the action of the
Weyl group.
The fj 's are eigenfunctions for the algebra C∞

c (K\G/K). For any compactly supported
smooth kernel k ∈ C∞

c (K\G/K), de�ne the Harish-Chandra transform

k̂ : (a∗)C → C

ν 7→
∫
G
k(g)φ−ν(g)dg .

(3.2)

Then k ∗ fj = k̂(νj)fj (the convolution being on G). We recover k from k̂ by

k(g) =
1

|W |

∫
a∗
φν(g)k̂(ν)β(ν)dν (3.3)

where β(ν) is the Plancherel density [34, �IV.7], provided that the Haar measure on G
in (3.2) is appropriately normalized (see [34, Exercise IV.C.4]).

3.1.3 Periods

When F ⊂ X is a compact maximal �at submanifold, we may lift it to a maximal �at
submanifold of the symmetric space G/K. The lift is the image of a subset of G of the
form gA. Such g is uniquely determined by the choice of the lift, up to multiplication on
the right by NG(A). Because F is compact, Γ intersects gAg−1 in a lattice. We de�ne
the period of fj along F to be the integral

PF (fj) =

∫
(Γ∩gAg−1)\gA

fj . (3.4)

Remark 3.5. The de�nition (3.4) does not depend on the choice of g or even on the
choice of Iwasawa A-component A. But do note that the inclusion gA ⊂ G induces
a closed embedding of NΓ(gAg

−1)\gA in Γ\G/K with image F , and not (always) of
the quotient of gA by Γ ∩ gAg−1. That is, one may also consider the integral

∫
F fj

with respect to the induced metric on the submanifold F ⊂ G/K. By our choice of
Haar measure on A, the latter integral equals PF (fj) divided by the �nite number
|NΓ(gAg

−1)/(Γ ∩ gAg−1)|.
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3.2 Mean square asymptotics for maximal �at periods

This section contains the skeleton of the proof of Theorem 4. We set up a relative pre-
trace formula in �3.2.1 and prove the theorem in �3.2.3, using the analytic results from
the later sections �3.3 and �3.4. For most of this section, G can be any semisimple Lie
group and X any associated compact locally symmetric space. Only in �3.2.3 will we use
that G and X as in Theorem 4.

3.2.1 Classical setup

Let k ∈ C∞
c (K\G/K) be a compactly supported smooth kernel. The automorphic kernel

kaut(x, y) =
∑
γ∈Γ

k(x−1γy)

acts on L2(Γ\G), and its image lies in the space of right K-invariant functions. If this
operator is positive on K-invariants (which will always be the case for us), then it has
spectral expansion ∑

γ∈Γ
k(x−1γy) =

∑
j

k̂(νj)fj(x)fj(y) , (3.6)

and both sums are uniformly convergent on X×X. When Γ is torsion free and preserves
orientations of the Riemannian manifold G/K, this is essentially a theorem of Mercer
[49, p. 445] (see also [76, Satz VI.4.2.]). For the general case, see for example [70].
As in �3.1.3, let g ∈ G be such that gA projects to F in the quotient Γ\G/K. De�ne

H = gAg−1 and ΓH = Γ ∩H.

Lemma 3.7 (Partitions of unity). There exists a nonnegative b ∈ C∞
c (A) satisfying∑

γ∈ΓH
b(g−1γga) = 1 for all a ∈ A.

Proof. We may �nd b0 ∈ C∞
c (R) with the property that

∑
n∈Z b0(x + n) = 1 for all

x ∈ R. Because log(ΓH) is a lattice of full rank in log(H) = Lie(H), out of b0 we may
construct b ∈ C∞

c (A) as in the statement.

The group NG(H)/H is compact, which implies that the discrete subgroup NΓ(H)/ΓH
of NG(H)/H is �nite.

Lemma 3.8. There exists a nonngative b ∈ C∞
c (A) with the property that for all k ∈

C∞
c (K\G/K) we have∑

j

k̂(νj)|PF (fj)|2 = Vol(ΓH\H) · |NΓ(H)/ΓH |
∫
A
k(a)da

+
∑

γ∈Γ−NΓ(H)

∫
A×A

b(a1)b(a2)k(a
−1
1 g−1γga2)da1da2 .
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Proof. This follows from fairly standard manipulations. Take b to be a cuto� function
given by Lemma 3.7. Integrating (3.6) over (ΓH\H)2 and using (3.4) gives

∑
j

k̂(νj)|PF (fj)|2 =
∫
(ΓH\H)2

∑
γ∈Γ

k(x−1γy)dxdy

=

∫
((g−1ΓHg)\A)2

∑
γ∈Γ

k(a−1
1 g−1γga2)da1da2 .

We split the γ-sum into sums over the disjoint subsets NΓ(H) and Γ−NΓ(H). Because
these sets are stable on both sides under ΓH we may distribute the integral over the two
terms. Concretely, the integral is the sum of the �diagonal term�∫

((g−1ΓHg)\A)2

∑
γ∈NΓ(H)

k(a−1
1 g−1γga2)da1da2 (3.9)

and an �o�-diagonal term� where the sum goes over Γ−NΓ(H). For (3.9), unfolding in
a2 gives

=

∫
((g−1ΓHg)\A)×A

∑
γ∈NΓ(H)/ΓH

k(a−1
1 g−1γga2)da1da2 .

The γ-sum is now �nite. We may change the order of summation and make for �xed γ
and a1 the change of variables in the a2-integral that makes the argument of k equal to
a2, keeping in mind that g−1NG(H)g = NG(A) ⊂ NK(A)A and that k is bi-K-invariant.
This then gives the main term in the statement.
For the o�-diagonal term, inserting the partitions of unity from Lemma 3.7, making a

change of variables in the γ-sum and unfolding gives that the integral equals

=

∫
(g−1ΓHg\A)2

∑
γ1,γ2∈ΓH

b(g−1γ1ga1)b(g
−1γ2ga2)

·
∑

γ∈Γ−NΓ(H)

k(a−1
1 g−1γ−1

1 γγ2ga2)da1da2

=

∫
A×A

b(a1)b(a2)
∑

γ∈Γ−NΓ(H)

k(a−1
1 g−1γga2)da1da2 .

Note that this A× A× Γ-integral is indeed absolutely convergent, even compactly sup-
ported thanks to the compact support of b and k. Applying Fubini gives us the sum in
the statement.
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3.2.2 Test functions

To prove Theorem 4 we make a choice of k ∈ C∞
c (K\G/K) to �lter out O(1) sums on

the spectral side of the pre-trace formula (3.6). For all spectral parameters νj we either
have ν ∈ a∗ or Re(ν) is singular and ∥Im(ν)∥ ≤ ∥ρ∥ (see [34, �IV.8, Theorem 8.2] for the
bound on ∥Im(ν)∥ and [40, Theorem 16.6] for the statement about singularity).

Lemma 3.10. Let R > 0. We may �nd for every ν ∈ a∗ a kν ∈ C∞
c (K\G/K) with the

following properties:

1. k̂ν(µ) ≥ 0 for µ ∈ a∗;

2. k̂ν(µ) ≥ 1 for µ ∈ a∗ with ∥µ− ν∥ ≤ R;

3. k̂ν(µ)≪N (1 + ∥ν − µ∥)−N uniformly in ν and µ ∈ (aC)
∗ with ∥Im(µ)∥ ≤ R;

4. kν has support bounded independently of ν;

5. If G is simple modulo its center, kν(g)≪ β(ν)(1 + ∥ν∥d(g,K))−1/2 uniformly in ν
and g.

Proof. Such kν can be constructed using the Paley-Wiener theorem of Gangolli [26,
Theorem 3.5]; see for example [48, �2.2] for a construction, and [13, �4.1] for a proof of
the last condition.

We will apply Lemma 3.10 with any �xed R > ∥ρ∥ in order to get decay on the
spectrum of L2(X).

Remark 3.11. The last condition in Lemma 3.10 is only used in the proof of Theorem 3.
Speci�cally, in Proposition 3.88.

3.2.3 Diagonal and o�-diagonal estimates

Assume now that G and the locally symmetric space are as in Theorem 4. The theorem
will be proven by estimating the di�erent terms that appear in the right-hand side in
Lemma 3.8. Using the inversion formula (3.3) it will su�ce to bound the analogous terms
with the test function k replaced by the spherical function. The results in question are
proven in �3.3 and �3.4.

Lemma 3.12. When γ ∈ Γ is such that g−1
∞ γg∞ /∈M ′A, then g−1

∞ γg∞ /∈ ⋃L∈L−{G}M
′L.

Proof. When G has rank 1 there is nothing to prove because L = {MA,G}. Assume now
that G = SLp(R) with p prime, and that Γ comes from a Q-form G of the algebraic group
SLp. By the discussion in �3.5.4, the maximal �at submanifold comes from a maximal
torus H ⊂ G. If g−1

∞ γg∞ /∈M ′A but it lies in some M ′L, then the subvariety of H that
is sent to H by the conjugacy action of γ is a proper subtorus de�ned over Q. This is
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not possible because p is prime, in fact, the algebraic group G has no nontrivial proper
closed connected subgroups other than its maximal tori [27, Proposition 4.1, Corollary
4.2].

Remark 3.13. In general, even when a locally symmetric spaceX = Γ\G/K is compact,
it can happen that g−1Γg intersects the groups L ∈ L−{G,MA} (see �2.1.4) nontrivially.
When for example G = PGL4(R) and Γ is an arithmetic lattice coming from a degree
4 division algebra D over Q, then F corresponds to a quartic totally real �eld F ⊂ D.
Because F is quartic, it has a quadratic sub�eld E. It gives rise to a 1-dimensional
subgroup H ′ ⊂ H and the centralizer ZD(E) gives rise to a hyperbolic plane H ⊂ G/K
and an in�nite discrete subgroup of Γ ∩ ZG(H ′) that acts co-compactly on H.

Lemma 3.14. Let Da∗ ⊂ (a∗)gen be compact and let kν for ν ∈ a∗ be as in Lemma 3.10.
Uniformly for ν ∈ Da∗ and t ≥ 1 we have∑

j

k̂tν(νj) |PF (fj)|2 ≍ β(tν) · (1 + t)−r .

Proof. With the analytic results from �3.3 and �3.4, this follows from standard properties
of the Plancherel density and our assumptions on kν . We apply Lemma 3.8 to k = ktν .
Let b0 ∈ C∞

c (K\G/K) with the property that b0(g) = 1 when g ∈ ⋃ν∈a∗ supp(kν); this
exists by Lemma 3.10. Using (3.3) and Fubini the �rst term in the right-hand side of
Lemma 3.8 can be written as

Vol(F ) · |NΓ(H)/ΓH |
∫
a∗
k̂tν(µ)β(µ)

∫
A
b0(a)φµ(a)dadµ .

The contribution of µ ∈ a∗ with ∥µ− tν∥ ≥
√
t (say) can be bounded trivially using the

rapid decay of k̂tν (Lemma 3.10), the polynomial growth of β(µ) [34, �IV.7, Proposition
7.2] and the bound φµ(g)≪ 1 which follows for example from the fact that φµ is positive
de�nite [34, Exercise IV.B.9]. For the remaining µ ∈ a∗ we have µ ∈ (a∗)gen when t is
su�ciently large, and we may apply the asymptotic from Proposition 3.15 to the inner
integral. Note that for such µ we have β(µ) ≍ β(tν) by the almost-polynomial behavior
of β [19, Lemma 3.11]. Finally, using the positivity of k̂tν and the lower bound from
Lemma 3.10 we get that the double integral is ≍ β(tν)(1 + t)−r.
The other terms in Lemma 3.8 are �nite in number by the support condition on ktν .

By our assumptions on G and X, Lemma 3.12 says that g−1γg /∈ ⋃L∈L−{G}M
′L for

such terms. Using Proposition 3.28 and entirely similar arguments as for the diagonal
term, one shows that they are ≪ β(tν)(1 + t)−r−δ for some δ > 0.

Proof of Theorem 4. We wish to replace the weight k̂tν in Lemma 3.14 by a sharp cut-
o�. This can be done by applying the lemma to various tν ∈ a∗ just like we did in
Proposition 1.50; see for example [13, Lemma 4.5].
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3.3 Archimedean model integrals

The main result of this section is the following proposition, whose proof is in �3.3.4. The
notations for Lie groups and Lie algebras are as in �2.1.1.

Proposition 3.15. Let G be a semisimple Lie group and b ∈ C∞
c (A) with b(1) > 0. Let

Da∗ ⊂ (a∗)gen be a compact set. Then∫
A
φitν(a)b(a)da ≍ (1 + t)−r ,

uniformly for t ∈ R and ν ∈ Da∗ .

3.3.1 Setup

We �x b ∈ C∞
c (A) with b(1) > 0 and we will not indicate the dependence on b in

our notations. Take ν ∈ a∗ and let H0 ∈ a be the corresponding element under the
isomorphism given by the Killing form. De�ne

I(H0) =

∫
A
φiν(a)b(a)da .

Inserting Harish-Chandra's formula for the spherical function (3.1) yields the oscilla-
tory integral

I(H0) =

∫
A

∫
K
exp (iϕH0(a, k)) b

′(a, k)dkda , (3.16)

with phase function
ϕH0(a, k) = ⟨H0, H(ka)⟩ (3.17)

and with an amplitude function b′ ∈ C∞
c (A×K) satisfying b′(1, k) = b(1) > 0. We will

determine the critical points of ϕH0 and obtain Proposition 3.15 as an application of the
stationary phase method.

3.3.2 Structure of the critical set

By Lemma 2.8 we have for H ∈ a that

(DϕH0(·, k))a(H) = ⟨H0,Adκ(ka)(H)⟩ . (3.18)

Recall from (2.24) the set

C(G,H0) = {k ∈ K : Adk−1(H0) ⊥ a} .

Lemma 3.19. When H0 ∈ agen, the set of critical points of ϕH0 is {1} × C(G,H0).
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Proof. Assume (a, k) is a critical point of ϕH0 . By [20, Proposition 5.4], criticality in k
is equivalent to

k ∈ ZK(H0)M
′ZK(a) =M ′ZK(a) ,

where we have used that H0 ∈ areg, so that ZK(H0) = M . By (3.18) and the de�nition
(2.24), criticality in a is equivalent to κ(ka) ∈ C(G,H0). Because k ∈M ′ZK(a) we have
κ(ka) = k, so that k ∈ C(G,H0). It remains to show that a = 1. If not, we would have
k ∈ M ′L with L = ZG(a) ∈ L a Levi subgroup di�erent from G. This contradicts the
fact that C(G,H0) ∩M ′L = ∅ (Lemma 2.32).

Remark 3.20. When more generally H0 ∈ areg, by being more careful in the proof of
Lemma 3.19 one shows that the critical set of ϕH0 is⋃

L∈L
AdM ′(AL)× C(L,H0) ,

where the sets C(L,H0) are de�ned analogously by

C(L,H0) = {k ∈ K ∩ L : Adk−1(H0) ⊥ a} ,

and only the sets C(L,H0) with H0 ∈ aL are nonempty.

Recall from (2.33) the map (now dropping the dependence on G in the notation)

fH0 : K → a

k 7→ Ea(Adk−1(H0)) ,

which has the properties that C(G,H0) = f−1
H0

(0) and

(DϕH0(·, k))a(H) = ⟨fH0(κ(ka)), H⟩ . (3.21)

Remark 3.22. The set C(G,H0) has the geometric interpretation that it consists of the
k ∈ K for which the maximal �at kA ⊂ G/K is orthogonal to H0 at the base point k · 1.
The geometric picture will come more fully into its own right in �3.4.

The main properties of C(G,H0) are established in �2.

Lemma 3.23. When H0 ∈ agen, the function fH0 is a submersion at the points of
C(G,H0). The set C(G,H0) is a non-empty smooth submanifold of K of codimension
dim(A) that varies smoothly with H0 ∈ agen.

Proof. That fH0 is a submersion at C(G,H0) is Corollary 2.37. This second sentence is
Proposition 2.49.
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3.3.3 Stationary phase

Recall the map fH0 : K → a de�ned in (2.33).

Lemma 3.24. For k ∈ C(G,H0) we have

Tk(C(G,H0)) = ker((DfH0)k) = {X ∈ k : Adk(X) ⊥ [H0,Adk(a)]} .
Proof. The �rst statement holds because the de�ning map fH0 for C(G,H0) is a submer-
sion on C(G,H0) (Lemma 3.23). Indeed, it is a general fact that when a submanifold is
the level set of a submersion, then its tangent spaces are the kernels of the di�erential of
the de�ning map [44, Proposition 5.38]. The di�erential may be computed using (2.7):

(DfH0)k(X) = −Ea([X,Ad
−1
k (H0)]) .

Therefore X ∈ ker((DfH0)k) if and only if [X,Ad−1
k (H0)] ⊥ a. Using associativity and

Adk-invariance of the Killing form, this is equivalent to Adk(X) ⊥ [H0,Adk(a)].

The �rst equality in Lemma 3.24 will be used in the following lemma. The second will
be used in the proof of Lemma 3.66.
When M ⊂ N are Riemannian manifolds and m ∈ M , a symmetric bilinear form on

TmN is called transversely nondegenerate toM if its radical is contained in TmM . Recall
the phase function ϕH0 de�ned by (3.17).

Lemma 3.25. When H0 ∈ agen, the Hessian of ϕH0 is transversely nondegenerate to
the critical set of ϕH0. Moreover, its signature on the critical set equals (n0, n+, n−) =
(dim(K)− r, r, r), where r = dim(A).

Proof. The Hessian of ϕH0 at a critical point (a, k) is given simply by

(X,Y ) 7→ LXLY ϕH0(a, k) .

By Lemma 3.19 the critical set of ϕH0 is {1}× C(G,H0). Let (1, k) be a critical point of
ϕH0 . Let L : a⊕ k→ a⊕ k be the unique and self-adjoint linear map such that

(Hess(1,k) ϕH0)(X,Y ) = ⟨LX, Y ⟩θ
for all X,Y ∈ a⊕ k. We must show that kerL ⊂ {0} ⊕ TkC(G,H0). Write

L =

(
Laa Lak

L∗
ak Lkk

)
relative to the natural decomposition of a⊕ k. Because ϕH0(1, k) = 0 for all k ∈ K, it is
clear that Lkk = 0. To compute Lak : k → a, let X ∈ k and H ∈ a. From (3.21) we have
LHϕH0(1, k) = ⟨fH0(k), H⟩. Therefore

Hess(1,k) ϕH0(X,H) = LXHϕH0(a, k)

= LX⟨fH0(k), H⟩
= ⟨(DfH0)k(X), H⟩ ,
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so that Lak = (DfH0)k. From Lemma 3.23 it follows that Lak is surjective, so that the
adjoint L∗

ak is injective. This implies

kerL = {0} ⊕ kerLak = {0} ⊕ ker((DfH0)k) = {0} ⊕ TkC(G,H0) ,

where the last equality is Lemma 3.24. This proves the �rst part of the statement.
We can compute the signature at a critical point (1, k) as follows. Let V be a comple-

ment of TkC(G,H0) in k. Relative to the decomposition a⊕ V ⊕ TkC(G,H0), the map L
has the form

L =

Laa LaV 0
L∗
aV 0 0
0 0 0


with LaV invertible, because ker(Lak) = TkC(G,H0). A self-adjoint map of this form has
signature (n0, n+, n−) = (dim(C(G,H0)), r, r). Indeed, to show this we must show that
a real symmetric 2r × 2r block matrix of the form

M =

(
A B
BT 0

)
with B invertible, has signature (r, r). Doing as if the blocks were numbers, de�ne

Λ± =
1

2
(A±

√
A2 + 4BBT ) ,

where the square root is the symmetric positive de�nite one. Because �square roots are
monotone on symmetric positive de�nite matrices�, Λ+ is positive de�nite and Λ− is
negative de�nite. Now one can either write down explicit matrices to show that M is
congruent to diag(Λ+,Λ−), or observe that if (v

±
i ) are bases of eigenvectors for Λ±, then

the vectors (Λ+v
+
i , B

T v+i ) and (Λ−v
−
i , B

T v−i ) form a basis of eigenvectors for M , with
the same eigenvalues as those of Λ±.

We are ready to prove Proposition 3.15. We use the stationary phase theorem with
critical manifolds of positive dimension, which we now recall.

Theorem 3.26. [15, Théorème 4.1] Let M be a smooth Riemannian manifold, b ∈
C∞
c (M) and ϕ ∈ C∞(X) real-valued. Assume that the set of critical points of ϕ intersects

the support of b in a smooth closed submanifold W ⊂ M of codimension d, and that the
Hessian of ϕ is transversely nondegenerate to W . Denote for w ∈ W by Hessw,⊥ ϕ
the restriction of the Hessian to the orthogonal complement of TwW . Assume that ϕ
is constant on W and that Hess⊥ ϕ has constant signature (n+, n−) on W . Then as
t→ +∞, ∫

M
eitϕ(x)b(x)dx =

(
2π

t

)d/2
eitf(W )+πi(n+−n−)/4·∫

W

b(w)

|det(Hessw,⊥ ϕ)|1/2
dw +O(t−d/2−1) ,
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where the integral over W is with respect to the induced metric.

3.3.4 Proof of Proposition 3.15

Proof of Proposition 3.15. Take ν0 ∈ (a∗)gen and let H0 ∈ agen correspond to it via the
identi�cation a ∼= a∗ given by the Killing form. Via the reduction in the beginning of
�3.3 we must bound the oscillatory integrals I(tH0) given by (3.16):

I(tH0) =

∫
A

∫
K
exp (itϕH0(a, k)) b

′(a, k)dkda .

By Lemma 3.25 the Hessian of ϕH0 has signature (n+, n−) = (r, r) transversely to its
critical set, which has codimension 2 dim(A) = 2r by Lemma 3.19 and Lemma 3.23, and
ϕH0 takes the value 0 there because H(K) = 0. The stationary phase theorem implies

I(tH0) = t−r · (2π)reπi(n+−n−)/4

∫
C(G,H0)

b′(1, k)√
| det(Hk)|

dk +O(t−r−1)

as t→ +∞, whereHk = Hess(1,k),⊥ ϕH0 is the Hessian of ϕH0 restricted to the orthogonal
complement of the tangent space T(1,k)({1} × C(G,H0)), the determinant is taken in an
orthonormal basis and the integral is with respect to the induced metric. Moreover, this
bound is uniform for H0 in compact subsets of agen because of the smooth dependence
in Lemma 3.23. We have b′(1, k) > 0 (see the beginning of �3.3), so that the constant in
the main term is strictly positive.

Remark 3.27. A possible way to remove the condition ν ∈ agen in Proposition 3.15 (or
at least to replace agen by areg) would be to use the more precise statement about the
critical set in Remark 3.20 and to resolve the singularities of fH0 and lift the integration
in (3.16) to a blowup of a×A×K (the a-factor corresponding to H0).

3.4 Bounds for orbital integrals

In this section we prove the following proposition. The notations for Lie groups and Lie
algebras are as in �2.1.1.

Proposition 3.28. Let G be semisimple and b ∈ C∞
c (A × A). Let Da∗ ⊂ (a∗)gen be

compact and DG ⊂ G be compact. Then there exist δ > 0 and N > 0 such that∫
A×A

φitν(a
−1
1 ga2)b(a1, a2)da1da2

≪ (1 + t)−r ·

1 + t · d

g, ⋃
L∈L−{G}

M ′L

N


−δ

,

uniformly for t ∈ R, ν ∈ Da∗ and g ∈ DG.
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Remark 3.29. The uniformity in g in the above result is not needed in the proof of
Theorem 4, because only �nitely many γ ∈ Γ contribute to the sum in Lemma 3.8. We
will need this dependence in the proof of Theorem 3.

3.4.1 Setup and phase functions

We �x b ∈ C∞
c (A×A) and we will not incorporate it in the notations. Take ν ∈ a∗ and

let H0 ∈ a be the corresponding element under the isomorphism given by the Killing
form. For g ∈ G de�ne

J(H0, g) =

∫
A×A

φiν(a
−1
1 ga2)b(a1, a2)da1da2 . (3.30)

By invariance of φiν under the action of the Weyl group on ν, we have for e ∈M ′ that

J(H0, g) = J(Ade(H0), g) . (3.31)

It is therefore no restriction to assume that H0 lies in a Weyl chamber of our choice.
Inserting Harish-Chandra's formula for the spherical function (3.1) yields the oscilla-

tory integral

J(H0, g) =

∫
A×A

∫
K
exp

(
iϕ̃H0,g(a1, a2, k)

)
bg(a1, a2, k)dkda1da2 ,

with phase function
ϕ̃H0,g(a1, a2, k) = ⟨H0, H(ka−1

1 ga2)⟩ (3.32)

and with amplitude bg ∈ C∞
c (A × A ×K) depending smoothly on g and with support

bounded independently of g, which incorporates the real exponential factor in (3.1). Fol-
lowing [47], we now bring this in a form that makes the A-derivatives more manageable.
For h ∈ G de�ne the map

Θh : K → K

k 7→ κ(kh) .
(3.33)

By smoothness of the Iwasawa decomposition it is a smooth map, with smooth inverse
Θh−1 , and therefore a di�eomorphism. For k ∈ K and y, z ∈ G we have that (see [47,
Lemma 6.2])

H(ky−1z) = H(Θy−1(k)z)−H(Θy−1(k)y) .

Applying this with y = a1 and z = ga2 and making the change of variables k ← Θa1(k)
gives

J(H0, g) =

∫
K

∫
A×A

exp(iϕH0,g(a1, a2, k))b
′
g(a1, a2, k)da1da2dk (3.34)
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with phase function

ϕH0,g(a1, a2, k) := ϕ̃H0,g(a1, a2,Θa1(k))

= ⟨H0, H(kga2)⟩ − ⟨H0, H(ka1)⟩
(3.35)

and some amplitude b′g ∈ C∞
c (A×A×K) depending smoothly on g.

Remark 3.36. The expression (3.32) will be useful when computing derivatives of ϕH0,g

with respect to k, and (3.35) will be useful when computing derivatives with respect to
a1 and a2.

The expression (3.35) separates the variables a1 and a2. Our strategy, inspired by
[47], is to �rst apply the stationary phase theorem in the variables a1 and a2, leaving us
with an oscillatory integral over K, and then to apply the van der Corput lemma to this
integral.

3.4.2 Extremal points on maximal �ats

In view of equation (3.35), we are naturally led to study the critical points of the `height'
functions

hH0,g : A→ R
a 7→ ⟨H0, H(ga)⟩

with g ∈ G, which allow us to write

ϕH0,g(a1, a2, k) = hH0,kg(a2)− hH0,k(a1) . (3.37)

The critical points of hH0,g are studied in �2. Many of the results concerning them require
that H0 ∈ agen,+, so that this assumption is propagated throughout most of the analysis
in this section. We summarize the results as follows. Recall the set C(G,H0) ⊂ K de�ned
in (2.24).

Lemma 3.38. Let H0 ∈ agen,+. Then hH0,g has at most one critical point. A critical
point a ∈ A is characterized by the condition that κ(ga) ∈ C(G,H0). The Hessian at a
critical point is negative de�nite and (as a quadratic form) given by

a→ R
H 7→ ⟨[H0,Adc(H)], En(Adc(H))⟩ ,

where c = κ(ga).

Proof. The uniqueness and the fact that the Hessian is negative de�nite are contained in
Theorem 6. The characterization is Lemma 2.25. The Hessian is computed in Proposi-
tion 2.47 when g ∈ K, but it does not depend on the triangular part of g by (2.27).
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We require some additional facts about the dependence of the critical point of hH0,g on
the parameters H0 and g. Take H0 ∈ agen,+. De�ne RH0 ⊂ G to be the set of elements
g for which the function hH0,g has a critical point. De�ne also

R =
⋃

H0∈agen,+
{H0} ×RH0 . (3.39)

When g ∈ RH0 , by Lemma 3.38 there is a unique critical point of hH0,g. De�ne the
function

ξH0 : RH0 → A (3.40)

that sends g to the critical point of hH0,g, and de�ne

ξ : R → A

(H0, g) 7→ ξH0(g) .

De�ne also the C-projection
cH0 : RH0 → C(G,H0)

g 7→ κ(gξH0(g))

which is guaranteed to take values in C(G,H0) by Lemma 3.38.

Lemma 3.41. The set R ⊂ a × G is open, and ξH0(g) and cH0(g) are real analytic in
(H0, g) ∈ R.
Proof. Take (H0, g) ∈ R. By Lemma 3.38 the critical points of hH0,g are nondegenerate,
which we may reformulate by saying that the map

A→ a∗

a 7→ (DhH0,g)a

has invertible di�erential at the level set above 0, which is the singleton {ξH0(g)}. By
the implicit function theorem applied to this real analytic map with parameter (H0, g) ∈
agen,+ × G, it follows that R is open in agen,+ × G, and that ξH0(g) is real analytic in
(H0, g). Consequently, cH0(g) is also real analytic in (H0, g).

The following coordinate system for RH0 ∩K will be useful when dealing with expres-
sions involving the ξH0 .

Lemma 3.42. Let H0 ∈ agen,+. The map

C(G,H0)×A→ RH0 ∩K
(c, a) 7→ κ(ca−1)

is a real analytic isomorphism whose inverse is

k 7→ (cH0(k), ξH0(k)) .
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Proof. The two maps are real analytic by Lemma 3.41, and the fact that they are mutual
inverses follows from the de�nitions of ξH0(k) and cH0(k).

Example 3.43. When G = PSL(2,R) with the standard choice of Iwasawa decomposi-
tion, Lemma 3.42 can be visualized as follows. Identify G with the unit tangent bundle
of H and K-projections with unit tangent vectors. We have RH0 ∩K = K −M ′, which
has two connected components, corresponding to the directions pointing east or west.
(The north and south directions are excluded as they come from M ′.) Accordingly, the
set C(G,H0) has two points:

c± =

(
cos(π/4) ± sin(π/4)
∓ sin(π/4) cos(π/4)

)
.

When a runs through A, the direction of c+a runs through all directions pointing east,
and the direction of c−a runs trough all directions pointing west.

3.4.3 Reduction to an integral over K

We seek to apply the stationary phase theorem to evaluate the inner integral in (3.34).
The main result of this subsection is Proposition 3.47. Given the results of �3.4.2, for
which most of the work was done in �2, the proof is parallel to that of Lemma 1.40 when
G = PSL2(R). Some care must be taken to obtain uniformity in H0.
De�ne the �parameter space�

P = agen,+ ×G×K

and let R′ ⊂ P be the set of parameters (H0, g, k) for which the function ϕH0,g(·, ·, k)
has a critical point. Denote by R′

H0,g
⊂ K the �ber of R′ above (H0, g).

Lemma 3.44. The set R′ is open in P. When (H0, g, k) ∈ R′, the function ϕH0,g(·, ·, k)
has a unique critical point (a1, a2) given by (ξH0(k), ξH0(kg)).

Proof. Recall from (3.37) that

ϕH0,g(a1, a2, k) = hH0,kg(a2)− hH0,k(a1) ,

so that (a1, a2) is a critical point of ϕH0,g(·, ·, k) if and only if a1 is a critical point of
hH0,k and a2 is a critical point of hH0,kg. Lemma 3.38 gives the uniqueness, and the last
part is the de�nition of ξH0 (see (3.40)). We show that R′ is open. Let R be as in (3.39);
it is open in a × G by Lemma 3.41, and it su�ces to note that R′ is the preimage of
R×R under the continuous map

P → (a×G)× (a×G)
(H0, g, k) 7→ ((H0, k), (H0, kg)) .
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De�ne a function on K by

ψH0,g(k) =

{
ϕH0,g(ξH0(k), ξH0(kg), k) when k ∈ R′

H0,g
,

0 otherwise.
(3.45)

When (H0, g, k) ∈ R′, denote by dH0,g(k) the Hessian determinant of the function
ϕH0,g(·, ·, k) (for �xed k) at its unique critical point. Let b′g be as in (3.34) and de�ne

b′′H0,g(k) =

b
′
g(ξH0(k), ξH0(kg), k)

(2π)r√
|dH0,g

(k)|
when k ∈ R′

H0,g
,

0 otherwise,

and call b′′ : P → C the corresponding function of (H0, g, k).

Lemma 3.46. The function b′′ is smooth and supp(b′′) ⊂ R′.

Proof. Roughly speaking, this is because ξH0(g) diverges as (H0, g) approaches the
boundary of R, and the argument is just like in Lemma 1.38. We must only show that
every point of P−R′ has a neighborhood on which b′′ is zero. Suppose not, then there ex-
ists a sequence (H0,n, gn, kn) ∈ R′ on which b′′ is nonzero and which converges to a point
(H0, g, k) of P −R′. Because b′′(H0,n, gn, kn) ̸= 0 and b′g has support bounded indepen-
dently of g (even independent of g altogether) the sequences ξH0,n(kn) and ξH0,n(kngn)
are bounded. We may then extract a subsequence on which ξH0,n(kn) and ξH0,n(kngn)
converge, say to ξ1, ξ2 ∈ A. By continuity we then have

(DhH0,k)ξ1 = lim
n→∞

(DhH0,n,kn)ξH0,n
(kn) = 0 ,

and similarly for ξ2, so that (H0, g, k) ∈ R′. This is a contradiction.

Proposition 3.47. Let Da ⊂ agen,+ be compact and DG ⊂ G be compact. De�ne
J(H0, g) by (3.30). Then

J(tH0, g) = t−r
∫
K
eitψH0,g

(k)b′′H0,g(k)dk +O(t−r−1)

as t→ +∞, uniformly for H0 ∈ Da and g ∈ DG.

Proof. We prove a uniform asymptotic for the double A-integral in (3.34), which we then
integrate over K. Let P0 = supp(b′′)∩ (Da×DG×K). It is closed in P and contained in
R′ by Lemma 3.46. We distinguish two cases depending on where (H0, g, k) lies. When
(H0, g, k) ∈ R′, the phase function ϕH0,g(·, ·, k) has a unique and nondegenerate critical
point (ξH0(k), ξH0(kg)), where the Hessian has signature (r, r) by (3.37) and Lemma 3.38.
The stationary phase theorem [69, �VIII.2] implies that∫

A×A
eitϕH0,g

(a1,a2,k)b′H0,g(a1, a2, k)da1da2 = t−reitψH0,g
(k)b′′H0,g(k)

+O(t−r−1)

(3.48)
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as t→ +∞, uniformly for (H0, g, k) in compact subsets of R′. When (H0, g, k) ∈ P−P0,
the phase function ϕH0,g(·, ·, k) has no critical points in the support of b′H0,g

, and the Van
der Corput lemma [69, �VIII.2] implies that∫

A×A
eitϕH0,g

(a1,a2,k)b′H0,g(a1, a2, k)da1da2 ≪N t−N

as t → +∞, uniformly for (H0, g, k) in compact subsets of P − P0. Because b′′ is
by de�nition zero on P − P0, the estimate (3.48) also holds in this case, uniformly in
compact subsets of P − P0. Because P − P0 and R′ are open in P (Lemma 3.44) and
they cover P, we may �nd compact subsets of R′ and P −P0 that cover the compact set
P∩(Da×DG×K). Therefore (3.48) holds uniformly for all (H0, g, k) ∈ P∩(Da×DG×K).
The statement follows then by integrating (3.48) over K.

3.4.4 Critical points of ψH0,g

This subsection is concerned with the critical points of ψH0,g (de�ned in (3.45)) when
g lies in the dense open set G − ⋃L∈L−{G}M

′L. The main result is Proposition 3.49,
which will imply Proposition 3.28.

Proposition 3.49. Let H0 ∈ agen,+ and g ∈ G−⋃L∈L−{G}M
′L. Then ψH0,g is nowhere

locally constant in R′
H0,g

.

The proof of Proposition 3.49 is at the end of this subsection.

Remark 3.50. The proof di�ers from the proof in [47] for PSL2(R). Namely, we do not
prove that the Hessian of ψH0,g is nondegenerate at critical points. In fact, to obtain a
useful expression for the Hessian of ψH0,g in order to generalize to proof for PSL2(R), we
must know something about the derivatives of the ξH0 (see (3.40)), which are determined
implicitly by their image under an injective linear map a → k involving the Hessian of
hH0,g. When dim(a) = dim(k) = 1, all of this can be made relatively explicit, but in
general it seems very hard to say anything about the DξH0 . As a replacement for this
computation, we will use the change of variables from Lemma 3.42, through which one of
the occurrences of ξH0 simpli�es greatly. The second step in the proof is to eliminate the
other occurrence of ξH0(g) ∈ A, by using the fact that its adjoint action on a is trivial;
see Lemma 3.62.

We �rst deduce Proposition 3.28 using very general principles.

Proof of Proposition 3.28 assuming Proposition 3.49. By (3.31) it is no restriction to as-
sume that H0 ∈ a+. Proposition 3.47 then reduces the statement to showing that for
some N > 0 and δ > 0,

∫
K
eitψH0,g

(k)b′′H0,g(k)dk ≪

1 + t · d

g, ⋃
L∈L−{G}

M ′L

N


−δ

, (3.51)
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with uniformity in H0. When g lies at positive distance from
⋃
L∈L−{G}M

′L, this follows
directly from the Van der Corput lemma [69, �VIII.2, Proposition 5], because by Propo-
sition 3.49 there is no k ∈ supp(b′′H0,g

) at which ψH0,g is somewhere constant, meaning
that some higher k-derivative is bounded away from zero around every k ∈ supp(b′′H0,g

).
To get control over the dependence on g, consider for every n ≥ 1 the real analytic

map

Dn : R′ → (k∗)⊗n

(H0, g, k) 7→ ((D(n)ψH0,g)k

where we denote D(n) for the higher derivatives. Call Z ⊂ R′ the joint zero locus of the
Dn.
Proposition 3.49 says that

Z ⊂ a×

 ⋃
L∈L−{G}

M ′L

×K .

Locally around a �xed (H0, g, k) we may embed R′ as a real submanifold of a complex
manifold Ω on which ψH0,g(k) is complex analytic in all three variables. The maps Dn

are derivatives of ψH0,g(k) and therefore also extend analytically to Ω. By [77, �3.9
Theorem 9 C], their joint zero locus is locally the zero locus of only �nitely many Dn,
say of D1, . . . , DJ , on a neighborhood U ⊂ R′ of (H0, g, k). Consider now the Taylor
polynomial map

TJ : U → (k∗)⊗1 ⊕ · · · ⊕ (k∗)⊗J

obtained by pairing D1, . . . , DJ , and equip the right-hand side with a �xed norm. By
Lojasiewicz's inequality, for every compact subset V ⊂ U there exists N > 0 such that
for (H ′

0, g
′, k′) ∈ V we have

∥∥TJ(H ′
0, g

′, k′)
∥∥≫ d ((H0, g, k), Z)

N ≫ d

g, ⋃
L∈L−{G}

M ′L

N

.

Because such a bound holds locally in R′, it holds on compact subsets of R′ but with
possibly bigger values of J and N . This gives a lower bound for a k-derivative order
at most J for ψH0,h. To apply this, take D ⊂ R′ to be any compact neighborhood of
supp(b′′)∩ (Da×DG×K). This is possible by Lemma 3.46 and because R′ is open in P.
The bound (3.51) then follows from the Van der Corput lemma [69, �VIII.2, Proposition
5], with the corresponding value of N and with δ = 1/J .

The following lemma is an immediate application of the chain rule.
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Lemma 3.52. Let H0 ∈ agen,+ and g ∈ G. When k ∈ R′
H0,g

, we have that k is a critical
point of ψH0,g if and only if (ξH0(k), ξH0(kg), k) is a critical point of ϕH0,g. □

For g ∈ G, de�ne Θg : K → K by (3.33).

Lemma 3.53. Let H0 ∈ areg and g ∈ G. A point (a1, a2, k) is a critical point of ϕH0,g if
and only if

κ(ka1) ∈ C(G,H0) , (3.54)

κ(kga2) ∈ C(G,H0) , (3.55)

n(Θa1(k)a
−1
1 ga2) = 1 . (3.56)

Proof. Let (a1, a2, k) be a critical point of ϕH0,g. By (3.37) and Lemma 3.38, criticality
in a1 and a2 is equivalent to (3.54) and (3.55). In view of (3.35), k is a critical point
of ϕH0,g(a1, a2, ·) if and only if Θa1(k) is a critical point of ϕ̃H0,g(a1, a2, ·). Using the
expression (3.32), by [20, Lemma 5.3] this in turn is equivalent to

Θa1(k)a
−1
1 ga2 ∈ ZN (H0)AK = AK ,

where we have used that H0 ∈ areg. This is (3.56).

Remark 3.57. The condition (3.56) can also be written as n(ka1) = n(kga2). Indeed,
writing ka1 = n′a′k′, condition (3.56) says that

k′a−1
1 ga2 = a′−1n′−1kga2 ∈ AK .

We may write this as kga2 ∈ n′AK, which is what we claimed. This is analogous to the
criticality condition in �1.5.2, where it can be interpreted geometrically as saying that
two geodesics in the upper half plane are concentric.

At this point it is helpful to make the change of variables given by the di�eomorphism
in Proposition 3.42. De�ne therefore

ψ̃H0,g : C(G,H0)×A→ R
(c, a) 7→ ψH0,g(κ(ca

−1)) .
(3.58)

For H0 ∈ a and g ∈ G, de�ne an open subset of C(G,H0)×A by

R′′
H0,g = {(c, a) ∈ C(G,H0)×A : (H0, g, κ(ca

−1)) ∈ R′} .

Thanks to this change of variables, ψ̃H0,g has a more manageable expression. Using
that ξH0(κ(ca

−1)) = a and using the de�nitions (3.58), (3.45), (3.35), (3.32) we have for
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(c, a) ∈ R′′
H0,g

that

ψ̃H0,g(c, a) = ψH0,g(κ(ca
−1))

= ϕH0,g(a, ξH0(κ(ca
−1)g), κ(ca−1))

= ϕ̃H0,g(a, ξH0(κ(ca
−1)g), c)

= ⟨H0, H(ca−1gξH0(κ(ca
−1)g))⟩

= ⟨H0, H(ca−1gξH0(ca
−1g))⟩ .

In the last equality we have used that ξH0 is invariant under left multiplication by NA.
For (c, a) ∈ R′′

H0,g
de�ne

γH0,g(c, a) = ca−1gξH0(ca
−1g) , (3.59)

so that ψ̃H0,g(c, a) = ⟨H0, H(γH0,g(c, a))⟩. By Lemma 3.38 and the de�nition of ξH0

(3.40) we have for all (c, a) ∈ R′′
H0,g

that

κ(γH0,g(c, a)) ∈ C(G,H0) . (3.60)

Lemma 3.61. Let H0 ∈ agen,+ and g ∈ G. Then (c, a) ∈ R′′
H0,g

is a critical point of

ψ̃H0,g if and only if
n(γH0,g(c, a)) = 1 .

Proof. A point (c, a) ∈ R′′
H0,g

is a critical point of ψ̃H0,g if and only if κ(ca−1) is a critical
point of ψH0,g. Using Lemma 3.52 and Lemma 3.53, this is seen to be equivalent to
n(γH0,g(c, a)) = 1.

Lemma 3.62. If ψ̃H0,g is critical at (c, a) ∈ R′′
H0,g

, then

⟨H0,Adca−1g(a)⟩ = 0 .

Proof. By equation (3.60) and Lemma 3.61 we have that γH0,g(c, a) ∈ AC(G,H0), so
that

ca−1g ∈ AC(G,H0)A .

For k ∈ C(G,H0) we have by de�nition that ⟨H0,Adk(a)⟩ = 0 (see (2.24)). By AdG-
invariance of the Killing form, this gives

⟨H0,Adca−1g(a)⟩ = 0 ,

as claimed.

Remark 3.63. 1. In Lemma 3.62 we write ⟨H0, ·⟩ and notH0 ⊥ ·, because Adca−1g(a)
is not in p in general.
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2. Lemma 3.62 gets rid of the (complicated) function ξH0,g by considering the adjoint
action on a. This makes di�erentiating much easier, at the cost of a (possible) loss
of information about γH0,g(c, a).

Lemma 3.64. If ψ̃H0,g is constant around a point (c, a) ∈ R′′
H0,g

, then

[H0,Adc(TcC(G,H0))] ⊥ Ep(AdcAg(a)) ,

where Ep =
1
2(id−θ) denotes the orthogonal projection onto p.

Proof. By the locally constant hypothesis implies, the conclusion of Lemma 3.62 is true
for all nearby c and nearby a. In fact, by analytic continuation it is valid for all a′ ∈ A.
Di�erentiating it with respect to c gives

⟨H0, [Adc(TcC(G,H0)),Adca′g(a)]⟩ = 0 ,

for all a′ ∈ A. Now we use associativity of the Killing form:

⟨[H0,Adc(TcC(G,H0))],Adca′g(a)⟩ = 0 .

And �nally, we use that the left member lies in [p, k] = p.

Lemma 3.65. For H0 ∈ agen we have that

m+Adc(m) ⊂ Adc(TcC(G,H0)) .

Proof. This is easily seen from Lemma 3.24. Associativity of the Killing form gives that
m ⊥ [H0, g], which implies that m ⊂ Adc(TcC(G,H0)). Associativity also gives that
Adc(m) ⊥ [Adc(a), g], which implies Adc(m) ⊂ Adc(TcC(G,H0)).

De�ne k⊥m = k∩⊕α gα and p⊥a = p∩⊕α gα. They are the �root space parts� of k and
p respectively. De�ne Ek⊥m and Ep⊥a to be the orthogonal projections onto these spaces.
The following is nothing but a useful reformulation of Lemma 3.24.

Lemma 3.66. Let H0 ∈ agen and c ∈ C(G,H0). The orthogonal complement of the
subspace [H0,Adc(TcC(G,H0))] in p equals a⊕Adc(a).

Proof. Call V the orthogonal complement of [H0,Adc(TcC(G,H0))] in p. Certainly a ⊂
V , because a ⊥ [a, k]. By Lemma 3.24, the space

Adc(TcC(G,H0)) ⊂ k

is the orthogonal complement of [H0,Adc(a)]. It follows that Adc(a) ⊂ V . Therefore

a⊕Adc(a) ⊂ V .
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That this is an equality, follows from dimension considerations. Consider the projection
Ek⊥m(Adc(TcC(G,H0))) to k⊥m. Because Adc(TcC(G,H0)) has codimension dim(a) in k
by Lemma 2.49, and because Adc(TcC(G,H0)) ⊃ m by Lemma 3.65, this projection has
codimension dim(a) in k⊥m. Now the action of [H0, ·] on k⊥m gives a bijection with p⊥a

because H0 is regular. Therefore [H0,Adc(TcC(G,H0))] has codimension dim(a) in p⊥a,
and the orthogonal complement in this space must be Ep⊥a(Adc(a)), which has the correct
dimension because Adc(a) intersects trivially with a by Lemma 2.32 and Lemma 2.2.

The idea of the argument is the following. Lemma 3.66 gives the precise orthogonal
complement of [H0,Adc(TcC(G,H0))] in p, and Lemma 3.64 also gives elements in p
orthogonal to it, under the assumption that ψ̃H0,g is constant around a point (c, a) ∈
R′′
H0,g

. As soon as the latter lemma gives one new element, we have a contradiction. We
may also formulate this in the following way.

Lemma 3.67. If ψ̃H0,g is constant around a point (c, a) ∈ R′′
H0,g

, then

Ep(AdcAg(a)) ⊂ a⊕Adc(a) .

Proof. Immediate from Lemma 3.64 and Lemma 3.66.

Lemma 3.68. If ψ̃H0,g is constant around a point (c, a) ∈ R′′
H0,g

, then

Ep⊥a(AdAg(a)) ⊂ Ep⊥a(Adc−1(a)) .

Proof. We use Lemma 3.67 and apply Adc−1 , which gives that

Ep(AdAg(a)) ⊂ Adc−1(a)⊕ a .

Here we have used that AdK commutes with Ep. Projecting further to p⊥a we may
discard the factor a in the right-hand side, and the claim follows.

If we can show that the left-hand side in Lemma 3.68 is of dimension dim(a), then
the inclusion becomes an equality; in particular, an inclusion in the other direction. The
following lemmas show that it is indeed of that dimension, provided that g is generic.

Lemma 3.69. Let X = (Xα) ∈
⊕

α∈Σ gα. The span of AdA(X) is
⊕

α∈ΣRXα.

Proof. Clearly AdA(X) ⊂⊕α∈ΣRXα.
We must show that the vectors va = (α(a))α∈Σ ∈ RΣ with a ∈ A span the entire space

RΣ. This is equivalent to the statement that the roots of A are linearly independent,
and it is a general fact that the characters of an abelian group are linearly independent.
More precisely, suppose they don't span everything, then they lie on a hyperplane and
there exist cα ∈ R, not all zero such that

∀a ∈ A :
∑
α∈Σ

cαα(a) = 0 .

This is saying that the α : A→ R× are linearly dependent.
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Lemma 3.70. If g /∈ ⋃L∈L−{G}M
′L, then

dim(span(Ep⊥a(AdAg(a)))) ≥ dim(a) .

Proof. Let V be the span of AdAg(a). By Lemma 3.69, it is of the form V0 ⊕
⊕

α∈Σ Vα
with V0 ⊂ a + m and Vα ⊂ gα. Let S = {α : Vα ̸= 0}. We claim that S spans a∗.
Suppose not, then there exists a nonzero H ∈ ⋂α∈S ker(α), meaning that [H,V ] = 0.
Then [H,Adg(a)] = 0, or equivalently, [Adg−1(H), a] = 0. Thus Adg−1(H) ∈ m ⊕ a. By
Lemma 2.3 this implies that g ∈ ZG(H)M ′, contradicting our hypothesis on g. Therefore
S spans a∗.
In particular, there are at least dim(a) positive roots α ∈ Σ+ with Vα ̸= 0, and in

particular with Ep⊥a(Vα) ̸= 0. Because the projections Ep⊥a(gα) for di�erent α ∈ Σ+ are
orthogonal, the projection Ep⊥a(V ) has dimension at least dim(a).

Lemma 3.71. Suppose ψ̃H0,g is constant around a point (c, a) ∈ R′′
H0,g

, and suppose
g /∈ ⋃L∈L−{G}M

′L. Then

span(Ep⊥a(AdAg(a))) = Ep⊥a(Adc−1(a)) .

Proof. Lemma 3.68 says that the left-hand side is contained in the right-hand side. The
left-hand side is of dimension at least dim(a) by Lemma 3.70, and the right-hand side
is of dimension dim(a) because Adc(a) intersects trivially with a by Lemma 2.32 and
Lemma 2.2. Therefore, equality must hold.

Proof of Proposition 3.49. Assume ψH0,g is constant around some point k ∈ R′
H0,g

. Then

ψ̃H0,g (de�ned in (3.58)) is constant around some point (c, a) ∈ R′′
H0,g

.
Because Adc−1(H0) ⊥ a (by de�nition of C(G,H0)), Lemma 3.71 gives that

Adc−1(H0) ∈ span(Ep⊥a(AdAg(a))) .

On the other hand, by the hypothesis of being locally constant and by analytic continu-
ation in a, Lemma 3.62 says that

⟨Adc−1(H0),AdAg(a)⟩ = 0 ,

so that
Adc−1(H0) ⊥ span(Ep⊥a(AdAg(a))) .

Therefore Adc−1(H0) = 0, which is a contradiction.

Remark 3.72. When g ∈M ′L with L ∈ L chosen to be minimal, an argument analogous
to that used to prove Lemma 3.70 shows that

dim(span(Ep⊥a(AdAg(a)))) ≥ dim(aL) .
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Moreover, the span in the left-hand side is a direct sum of subspaces of the spaces
p∩ (gα+g−α). If ψ̃H0,g is constant around a point (c, a) ∈ R′′

H0,g
, this gives a very strong

restriction on the space Ep⊥a(Adc−1(a)) (which contains this span), but we have not been
able to obtain a contradiction from this, even when exploiting the fact that the inclusion
is true for all nearby c′ ∈ C(G,H0).

3.5 Preliminaries on algebraic groups

3.5.1 Algebraic groups

LetG/Q be a linear connected anisotropic algebraic group which is almost simple over R.
Let H ⊂ G be a maximal torus. The base �elds of groups are indicated by subscripts if
they are not clear from the context. We use the same subscript notation for base change
and when E/F is a �nite �eld extension we denote ResE/F for Weil restriction.
Fix a closed embedding ρ : G → SLd for some d > 0. Equipping SLd with the

standard schematic structure and taking the schematic closures of ρ(G) and ρ(H) we
obtain integral models that we continue to denote by G and H.

Remark 3.73. Eventually G and H will be as in Theorem 3. That is, G an anisotropic
form of PGL3 and H maximal split over R. But we allow some generality in order to be
able to make remarks about other groups, and because for most results there is no reason
to be restrictive. The condition that G is almost simple over R will only be used to apply
a Weyl law-type result from [13] (see Proposition 3.88) but is of course automatic for
forms of PGL3,Q.

3.5.2 Forms of PGL3

By a form of a group G over a �eld E we shall mean a form of the base change to the
algebraic closure, GE . The following proposition gives a concrete list of all groups G
that are allowed in Theorem 3. Proposition 3.75 below says what the corresponding Lie
groups are.

Proposition 3.74. The Q-forms G of PGL3, and the anisotropic ones among them,
are given by the following constructions.

1. (Inner forms) Let D/Q be a central simple algebra of degree 3 and de�ne G =
GL1,D/Gm. Then G is anisotropic if and only if D is a division algebra.

2. (Outer forms) Let F/Q be a quadratic �eld, (V, q) a 3-dimensional nondegenerate
Hermitian space over F and de�ne G = PU(V ). Then G is anisotropic if and
only if (V, q) is.
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3. (Outer forms) Let F/Q be a quadratic �eld, D/F be a central division algebra of
degree 3 over F with an anti-involution τ ∈ EndQ(D) that acts nontrivially on
F , (V, q) a 1-dimensional Hermitian space over D with q ̸= 0, and de�ne G =
PU(V ). Concretely, there is a nonzero d ∈ D �xed by τ such that G(Q) = {g ∈
D× : gdτ(g) = d}/F 1, where F 1 ⊂ F× denotes the norm 1 subgroup. Then G is
anisotropic.

Proof. That this list is exhaustive can be proven as in [53, �18.4], or can be deduced from
[53, Theorem 18.4.1] by using that PGLn,Q and SLn,Q have the same automorphism
groups. The statements about anisotropy can be seen as follows:

1. By Wedderburn's theorem, D is either a division algebra or isomorphic to M3(Q).
When D is a matrix algebra, clearly G is split. Conversely, let D be a division
algebra, T ⊂ G be a maximal torus and χ a character of T. We may lift T to a
maximal torus T′ ⊂ GL1,D [12, Proposition 10.6]. It is well known that such tori
are obtained from the multiplicative groups of étale subalgebras of D. Because D
is division, T′ = ResF/QGm,F for a �eld extension F/Q, and it follows that χ is a
power of the norm character. Because χ is trivial on Gm,Q, it is trivial altogether.
Therefore T is anisotropic.

2. If q represents 0, then V contains a hyperbolic plane H, and we �nd a rank 1 split
torus in U(V ), necessarily noncentral, that acts diagonally on H in an isotropic
basis and acts trivially on H⊥. Conversely, if T ⊂ G is a split torus then we may
lift it to a torus of U(V ) by [12, Proposition 10.6], which contains a nontrivial split
subtorus T′ by [10, �II.8.14]. A vector v ∈ V in a weight space with respect to T′

for a nonzero weight then satis�es q(v) = 0. (Such a vector exists because the split
torus T′ ⊂ ResF/QGL(V ) ⊂ GL6 is diagonalizable.)

3. This can be proven as in the second case: A split torus in G would give rise to a
nonzero vector v ∈ V ∼= D satisfying vdτ(v) = 0. Because D is a division algebra,
this is impossible.

Proposition 3.75. Let G be as in Proposition 3.74. With the same numbering, its group
of real points is as follows:

1. In the �rst case, G(R) ∼= PGL3(R).

2. In the second case: If F is real quadratic we have G(R) ∼= PGL3(R). If F is
imaginary quadratic we have G(R) ∼= PU(3) or PU(2, 1) depending on the signature
of (V, q) over R.

3. In the third case, G(R) ∼= PGL3(R) when F is real quadratic and G(R) ∼= PU(3)
or PU(2, 1) otherwise.
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Proof. 1. By a classical theorem of Frobenius there is no degree 3 division algebra
over R, so that D ⊗Q R ∼= M3(R) by Wedderburn's theorem. Therefore G(R) ∼=
PGL3(R).

2. When F is real quadratic we have F ⊗Q R ∼= R × R, and the induced automor-
phism permutes the two factors. Using this isomorphism we have GL(V )R ∼=
GL3(R)×GL3(R). The hermitian matrix de�ning q takes the form (A,AT ) under
this isomorphism, and A ∈ GL3(R) can be assumed diagonal. Now U(V )(R) ∼=
{(B,C) ∈ GL3(R)2 : BACT = CATBT = A}. It is clear that for every B ∈
GL3(R) there is a unique element (B,C) ∈ U(V )(R), and this gives an isomor-
phism U(V )(R) ∼= GL3(R). The conclusion follows.

When F is imaginary we have F⊗QR ∼= C and it follows thatU(V )(R) is a classical
unitary group, necessarily of signature (3, 0) or (2, 1).

3. This can be shown using similar arguments as in the �rst and second case. When F
is real quadratic, using the isomorphism F⊗QR ∼= R×R we haveD⊗QR ∼=M3(R)2.
Call σ the anti-involution of M3(R)2 that swaps the two factors and transposes
them. Then τ ◦ σ is an automorphism of M3(R)2. (In fact, it preserves the center
R×R, therefore preserves both factors and is inner by Skolem-Noether.) Applying
an automorphism of M3(R)3 we may assume that σ = τ . A similar argument as in
the second case now gives an isomorphism U(V )(R) ∼= GL3(R).
When F is imaginary we have F ⊗Q R ∼= C and D ⊗Q R ∼= M3(C). By Skolem-
Noether, we may assume that the automorphism induced by τ is conjugate trans-
pose, subsequently that d is diagonal, and it follows that U(V )(R) is a classical
unitary group.

We could state a result similar to Proposition 3.75 with R replaced by any Qp: We
would still distinguish cases based on whether p is split or inert in F , together with the
rami�ed case. The main di�erence is that there exist degree 3 division algebras over Qp

[57, �17.10] (and exactly two of them), which would be re�ected in the classi�cation.
However, the only result that we will require is the following.

Lemma 3.76. Let G be a Q-form of PGL3 and suppose p is a prime such that GQp is
split. Then GQp

∼= PGL3,Qp .

Proof. Both GQp and PGL3,Qp are split forms of PGL3,Qp
. Because a reductive group

has only one split form over any �eld [12, Théorème 2.13], they are isomorphic.

3.5.3 Locally symmetric spaces

Because G is connected, the Lie group G = G(R) is as in �2.1.1, and the identity
component G0 is semisimple. (Recall that we require a semisimple group by de�nition to
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be connected.) Let K∞ ⊂ G be a maximal compact subgroup. To G we associate data
as in �2.1 with respect to the maximal compact K∞: The Cartan involution is denoted
by θ, the Iwasawa decomposition by NAK∞ and the restricted root system by (a∗,Σ).
(In �3.5.7 we shall use di�erent notation for the roots of a maximal split torus over an
algebraic closure, but that will be only relevant to de�ne Hecke algebras.) We let d(·, ·)
be a distance function as in �3.1.

Remark 3.77. Contrary to [13] we do not, and cannot, assume that the involution θ is
de�ned overQ. Indeed, whenG arises from a degree 3 division algebra overQ (see �3.5.2),
such θ would have to come from an anti-involution of the division algebra, and that does
not exist [42, Corollary 2.8]. This remark will only play a role in Proposition 3.88.

Denote by AQ the ring of adeles over Q and by Af the �nite adeles. When S is any set
of places of Q, de�ne AS to be the restricted product

∏
v∈S AQ. Equip the groups G(Qp),

G(AQ), G(AS) with their natural topologies, and similarly for H. Let ρ : G→ SLd and
the integral models be as in �3.5.1. Choose compact subgroups Kp ⊂ G(Qp) for all
primes p with the following properties:

� ρ(Kp) ⊂ SLd(Zp);

� the compact subgroup

Kf :=
∏
p

Kp

is open in G(Af );

� the center Z(G)(Q) intersects Kf trivially;

The �rst two conditions can be satis�ed for example by taking Kp = G(Zp), and the
third can be obtained by replacing any single Kp by a smaller subgroup. De�ne K =
K∞ ×Kf ⊂ G(AQ), and for any set S of places of Q de�ne KS =

∏
v∈SKv. De�ne the

automorphic spaces

[G] = G(Q)\G(AQ) and [H] = H(Q)\H(AQ) ⊂ [G]

and the locally symmetric space
X = [G]/K .

It is a �nite disjoint union of locally symmetric spaces as in �3.1.2 [58, Theorem 5.1] and
is compact because G is anisotropic [11]. Explicitly, let (gi)i∈I ⊂ G(Af ) be a system of
representatives for the double quotient [G]/(G×Kf ) and de�ne Γi = G(Q) ∩ giKfg

−1
i .

Then
[G] =

⊔
i∈I

Γi\(G× giKf ) (3.78)
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and X is the disjoint union of the compact locally symmetric spaces

Xi = Γi\G/K∞ . (3.79)

(Here we view G(Q) inside G(Af ) when taking the intersection with giKfg
−1
i , inside

G(AQ) in (3.78) and inside G in (3.79). Notice that the lattices Γi do not depend on the
choice of representatives gi.

3.5.4 Compact torus orbits

We explain now how to relate tori to maximal �at submanifolds of X. Let A as in �3.5.3
be the group given by the choice of Iwasawa decomposition.
Assume H ⊂ G has maximal split rank over R. Then there exists g∞ ∈ G such that

H(R) contains g∞Ag−1
∞ , so that H(R) ⊂ ZG(g∞Ag

−1
∞ ) = g∞MAg−1

∞ . To H we then
associate the compact maximal �at submanifold F ⊂ X that is the image of H(AQ)g∞.
Relative to the decomposition (3.79), it is the disjoint union of some (but not necessarily
all) of the maximal �ats g∞A ⊂ Xi. More precisely, F intersects Xi nontrivially if and
only if H(Af ) intersects giKf nontrivially. Note that F does not depend on the choice
of g∞, because g∞ is determined up to multiplication on the right by NG(A) = M ′A.
Likewise, the de�nition does not depend on the choice of A, which can be seen by using
that two choices of A are conjugate by an element of K∞.
Conversely, one can show that every compact maximal �at in Xi is obtained in this

way. Assume F ⊂ Xi is a compact maximal �at submanifold. As in �2.1.2 there exists
g∞ ∈ G such that F is the image of g∞A in Xi. The lattice Γi intersects g∞Ag−1

∞ in a
lattice, and de�ne T to be the Zariski closure of Γi ∩ g∞Ag−1

∞ . Then T is a torus that is
maximal split over R, and we may take H ⊂ G to be any maximal torus containing T.

Remark 3.80. The correspondence between tori and maximal �ats that we outlined
above, is slightly awkward because X can have di�erent components and because H
(in our notation) is always a maximal torus, not a maximal R-split torus. When X is
connected, one does obtain a clean bijection between compact maximal �ats F ⊂ X and
maximal R-split tori T ⊂ G. Compare also [24, �2].

3.5.5 Integration

For every prime p we choose the Haar measures dµG,p and dµH,p on G(Qp) and H(Qp)
respectively, for which Kp and Kp ∩H(Qp) have volume 1. We choose Haar measures on
Lie groups as in �3.1.1. The abelian Lie group H(R) factors as a conjugate of A times
a compact group, and we equip it with the measure that is the product of the measure
coming from A with the volume 1 measure on the compact group. We form the product
measures dµG =

∏
v dµG,v on G(AQ) and likewise the product measure dµH on H(AQ).

When S is any set of places of Q, we similarly de�ne measures µG,S and µH,S on G(AS)
and H(AS) respectively.
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3.5.6 Hecke algebras

A smooth function on G(Qp) is de�ned to be a locally constant one. When S is a set of
places of Q, a compactly supported Schwartz-Bruhat function on G(AS) is a �nite linear
combination of functions of the form ∏

v∈S
fv ,

where fv ∈ C∞
c (G(Qv)) and fp = 1Kp for almost all primes p ∈ S. We denote by

C∞
c (G(AS)) the set of such (complex-valued) functions. If f ∈ C∞

c (G(AS)), we de�ne
an operator π(f) on L2([G]) by the rule

(π(f)ϕ)(x) =

∫
G(AS)

ϕ(xg)f(g)dµG,S(g) .

If we de�ne f∗(g) = f(g−1), then π(f) and π(f∗) are adjoints. For every set S of places
of Q, de�ne the algebra HS of compactly supported smooth bi-KS invariant functions
on G(AS), with convolution given by

(f1 ∗ f2)(g) =
∫
G(AS)

f(gh−1)f2(h)dµG,S(h) .

The algebras HS act on L2(X) by the same rule as above. When p is a prime, the element
1Kp ∈ Hp is the identity.
By [71, �3.9], there exists an integer D > 0 with the property that for p ∤ D, Kp is the

compact subgroup associated with a hyperspecial point of the building of GQp . By [71,
�3.3.3] this implies that the Hecke algebra Hp is commutative when p ∤ D.
De�ne Hf to be the algebra HS when S consists of all �nite places that do not divide

D, and H = H∞⊗Hf . It is commutative by the above fact for �nite places, and by [34,
Theorem IV.3.1] for the in�nite place.

3.5.7 Truncated Hecke algebras

We will use the notion of truncated Hecke algebras that is also used in [13], which makes
it more convenient to formulate bounds for orbital integrals. While we will mostly be
interested in primes at which all data is split, we do provide the general de�nition. Let
T be any maximal split torus of GQ, X

∗(T) and X∗(T) be the groups of characters
and cocharacters of T. Let ∆ the set of roots of T in GQ, ∆

+ be a choice of positive
roots and W the Weyl group with respect to T. Let ρ ∈ X∗(T) ⊗Z Q be the half-sum
of positive roots and denote the natural paring X∗(T) ×X∗(T) → Z by ⟨·, ·⟩. De�ne a
norm on X∗(T) by

∥µ∥ = max
w∈W
⟨wµ, ρ⟩ ∈ 1

2
Z .
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Now let p ∤ D be a prime. As noted above there is a maximal split torus A ⊂ GQp such
that Kp corresponds to a hyperspecial point of the apartment of A, and by the Cartan
decomposition [71, �3.3.3] the double cosets Kp\G(Qp)/Kp are represented uniquely by
the elements µ(p) when µ ∈ X∗(A) runs through the cocharacters in the closure of the
positive chamber. Conjugating A to T over Qp yields a norm ∥·∥ on X∗(A) induced
from the one on X∗(T), which does not depend on the choice of A [13, �2.6]. For κ ≥ 0
we de�ne now the �truncated algebra� (which is not an algebra)

H≤κ
p = spanC{1Kpµ(p)Kp

: µ ∈ X∗(A), ∥µ∥ ≤ κ} .
When S is a set of primes not dividing D, we de�ne H≤κ

S to be the restricted tensor
product

⊗
p∈SH≤κ

p ⊂ HS .
Finally, we will use yet another notion of truncated Hecke algebra to accomodate the

Hecke operators that we will use to prove Theorem 3. When S is a set of primes not
dividing D, κ ≥ 0 and M ≥ 1, de�ne the truncated algebra

H≤κ
S,M =

⊕
n≤M

squarefree

⊗
p∈S
p|n

H≤κ
p .

3.5.8 Hecke-Maass forms

The group G acts on [G] by translation on the right, and this induces an action of the
universal enveloping algebra U(g) on C∞([G]), which using the decomposition (3.78) we
may view as given by left-invariant di�erential operators on G (�2.1.5). By a Hecke-
Maass form on X we mean a smooth function on X that is a joint eigenfunction for the
center Z(U(g)) and for the Hecke algebra Hf from �3.5.6.
Let (fj)j≥0 be an orthonormal basis of L2(X) consisting of (complex-valued) Hecke-

Maass forms. It may be obtained by decomposing L2(X) into eigenspaces for the Laplace-
Beltrami operator, and �nding in every eigenspace a basis of eigenfunctions for the com-
mutative algebras Z(U(g)) and Hf . When k ∈ H, H∞ or Hf , denote by k̂(fj) the
eigenvalue of fj under k, and de�ne the spectral parameter νj as in �3.1.2.
Let g∞ ∈ G be as in �3.5.4 with the property that H(R) contains g∞Ag−1

∞ . De�ne the
H-period of fj by

PH(fj) =

∫
[H]

fj(hg∞)dµH(h) , (3.81)

where the automorphic quotient [H] is as in �3.5.3. As in �3.5.4, this de�nition does not
depend on the choice of A or g∞.

3.6 Extreme values of toric periods

In this section we prove Theorem 3. We set up a relative pre-trace formula in �3.6.1
and prove the theorem in �3.6.3. Our notations for locally symmetric spaces, operator
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algebras and Hecke-Maass forms are as in �3.5.

3.6.1 Adelic setup

Let G/Q be semisimple anisotropic as in �3.5.1, and let H ⊂ G be a maximal torus of
maximal split rank over R.
The pre-trace formula for G states that for any k ∈ H (with archimedean component

satisfying a positivity condition as in �3.2.1) one has∑
j

k̂(fj)fj(x)fj(y) =
∑

γ∈G(Q)

k(x−1γy) ,

uniformly for x, y ∈ [G]. As in �3.5.4 let g∞ ∈ G(R) be such that H(R) ⊃ g∞Ag
−1
∞ ,

de�ne the H-periods PH as in (3.81) and de�ne KH,f = Kf ∩H(Af ).
We will require the following analogue of Lemma 3.7.

Lemma 3.82 (Partitions of unity). There exists a nonnegative Schwartz-Bruhat function
b ∈ C∞

c (H(AQ)/KH,f ) such that
∑

γ∈H(Q) b(γh) = 1 for all h ∈ H(AQ).

Proof. The quotient H(AQ)/(H(Q)H(R)KH,f ) is �nite by [58, Theorem 5.1]. Take coset
representatives h1, . . . , hN ∈ H(Af ) and de�ne bf ∈ C∞

c (H(Af )) by

bf =

N∑
j=1

1hjKH,f
.

The group H(R) factors uniquely as V × T with V a Euclidean space and T compact
(possibly disconnected). The discrete subgroup ΓH := H(Q)∩KH,f is a lattice in H(R)
and therefore ΓV := ΓH ∩ V has �nite index in ΓH. We may construct bV ∈ C∞

c (V ) as
in Lemma 3.7 relative to the lattice ΓV ⊂ V and de�ne bT (h) = [ΓH : ΓV ]

−1 for h ∈ T .
De�ne b∞ ∈ C∞

c (H(R)) by

b∞(h) = bV (hV ) · bT (hT ) ,

where we denote h = (hV , hT ) ∈ V × T ∼= H(R). De�ne now b ∈ C∞
c (H(AQ)) by

b = b∞bf .

That this b satis�es the requirements can be checked by writing∑
γ∈H(Q)

b(γh) =
∑

γ∈H(Q)/(H(Q)∩KH,f )

∑
µ∈H(Q)∩KH,f

b(γµh) .

Remark 3.83. Lemma 3.82 is a special case of a much more general statement about
continuous functions on locally compact homogeneous spaces; see [54, �III.4].
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The Weyl group NG(H)/H is �nite [10, �IV.11.19] and therefore so is its group of
rational points.

Lemma 3.84. Let k ∈ C∞
c (K\G(AQ)/K) be a Schwartz-Bruhat function. There exists

b ∈ C∞
c (H(AQ)) such that∑
j

k̂(fj)|PH(fj)|2

= Vol([H])
∑

γ∈NG(H)(Q)/H(Q)

∫
H(AQ)

k(g−1
∞ γhg∞)dµH(h)

+
∑

γ∈G(Q)−NG(H)(Q)

∫
H(AQ)2

b(h1)b(h2)k(g
−1
∞ h−1

1 γh2g∞)dµH(h1)dµH(h2) .

Proof. Using Lemma 3.82, this is entirely analogous to the proof of Lemma 3.8 by an
unfolding argument and introduction of cuto� functions.

Remark 3.85. The integrals in the diagonal term in Lemma 3.84 can depend on (the
�nite part of) γ, because it is not always true that NG(H)(Q) ⊂ H(Q) ·Kf . When G is
PGL2 or an inner form, this inclusion is related to the notion of �reciprocal geodesics�
in [66].

3.6.2 Comparison of trace formulas

We now specialize to the groups G in Theorem 3, although G can still be as general as
in Theorem 4 in this subsection. We will prove Theorem 3 by comparing asymptotics for
an ampli�ed trace formula and an ampli�ed relative trace formula.
Let ρ : G → SLd be as in �3.5.1, and when p is prime de�ne ∥g∥p for g ∈ G(Qp) as

the maximal absolute value of the entries of ρ(g). When g ∈ G(Q) we have for almost
all primes p that ρ(g) ∈ SLd(Zp) and consequently ∥g∥p = 1. We may therefore de�ne
∥g∥f =

∏
p∥g∥p.

Lemma 3.86. There exists A > 0 such that when γ ∈ G(Q) is such that g−1
∞ γg∞ /∈⋃

L∈L−{G}M
′L, then

d

g−1
∞ γg∞,

⋃
L∈L−{G}

M ′L

≫ ∥γ∥−Af .

Proof. This can be shown as in [13, Lemma 5.1] as a consequence of the product formula
for global �elds. The di�erence is that we must deal with varieties that are not de�ned
over our base �eld Q.

118



It su�ces to prove a bound as in the statement for every individual Levi L ∈ L−{G}.
Fix such L.
Let E ⊂ R be a number �eld such that the extension of scalars HE has the same split

rank as HR. Let T ⊂ HE be the maximal split subtorus, de�ned over E. Because all
roots of HR are de�ned over E, we may �nd an element h ∈ T(E) whose centralizer
in G has real points g∞Lg−1

∞ . Consider now the subvariety V of G de�ned over E by
the equation Adg(h) ∈ H. Replacing h by a �nite power if necessary, we may assume
that h ∈ T(R)0 = g∞Ag

−1
∞ . Lemma 2.2 then says that V(R) = g∞M

′Lg−1
∞ . Thus by

assumption, γ /∈ V(E).
Consider now the embedding ρ : G → SLd ⊂ Ad2

Q , and let p1, . . . , pk be polynomials
de�ned over E whose joint zero locus is ρ(V). Expanding their coe�cients in a basis for
E/Q, we may �nd polynomials q1, . . . , qt de�ned over Q whose rational joint zero locus
is ρ(V(E) ∩G(Q)). There exists A > 0 such that for all qi and all γ ∈ G(Q) we have a
bound of the form ∏

p

|pi(ρ(γ))|p ≪ ∥γ∥Af .

Indeed, A > 0 can be chosen to be maxi deg(qi), simply because a polynomial of degree
s can only increase denominators as much as raising them to the power s.
Now assume γ ∈ G(Q) does not lie in V(E). Then there exists qi such that qi(ρ(γ)) ̸=

0. By the product formula for Q×, this means that∏
v

|qi(ρ(γ))|v = 1 ,

where the product now runs over all absolute values of Q. Using our bound for the
product over the �nite primes, this gives

|qi(ρ(γ))|∞ ≫ ∥γ∥−Af .

By smoothness of the action of G(R) on h, the left-hand side is bounded from above by
a constant times d(γ,V(R)). This shows that

d(γ, g∞M
′Lg−1

∞ )≫ ∥γ∥−Af ,

and the lemma follows.

When S is a �nite set of primes, de�ne qS =
∏
p∈S p. Let the integer D be as in �3.5.6.

Proposition 3.87. Let Da∗ ⊂ (a∗)gen be compact. let κ ≥ 0. There exist A,B, δ > 0
such that the following holds. Let S a �nite set of primes not dividing D and kf ∈ H≤κ

S .
Let ν ∈ Da∗, t ≥ 0 and ktν ∈ H∞ as in Lemma 3.10. De�ne k = ktν ⊗ kf . Then∑

j

k̂(fj)|PH(fj)|2 = Vol([H]) ·
∑

γ∈NG(H)(Q)/H(Q)

∫
H(AQ)

k(g−1
∞ γhg∞)dµH(h)

+O
(
β(tν)(1 + t)−r(1 + q−AS t)−δqBS ∥kf∥∞

)
,
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uniformly in ν and t. If M ≥ 1 and kf ∈ H≤κ
S,M then the same result holds with qS

replaced by M .

Proof. We start from Lemma 3.84 and must bound the o�-diagonal terms. The �xed
function b is a �nite sum of factorizable Schwartz-Bruhat functions, so up to introducing
a �nite sum, we may replace the factors b(h1) and b(h2) by factorizable Schwartz-Bruhat
functions b1(h1) and b2(h2). (In fact, we only require that they factorize as an in�nite
times a �nite part, and this is already the case for b as constructed in Lemma 3.82.) For
�xed γ, the double integral now factorizes as the integral∫

H(R)2
b1(h1)b2(h2)ktν(g

−1
∞ h−1

1 γh2g∞)dµH,R(h1)dµH,R(h2)

times an integral involving b1, b2 and kf over a �xed compact subset of H(Af ). The
latter can be bounded trivially by

≪ ∥kf∥∞ ·Vol(supp(b1)) ·Vol(supp(b2)) ·Vol(supp(kf )) .

The �rst two volumes are bounded, and the third can be bounded by a power of qS , as
in [13, Lemma 4.4].
The archimedean integral equals∫

A×A
b1(g∞a1g

−1
∞ )b2(g∞a2g

−1
∞ )ktν(a1g

−1
∞ γg∞a2)da1da2 ,

where we have written H(R) as a product of g∞Ag−1
∞ and a compact torus, where the

compact torus necessarily lies in g∞Mg−1
∞ (see �3.5.4) and we may omit it from the

integration by our choice of measure on H(R) (see �3.5.5). By our choice of G and X,
we have that

g−1
∞ γg∞ /∈

⋃
L∈L−{G}

M ′L

for γ ∈ G(Q) as above. Using the inversion formula (3.3), the rapid decay of k̂tν and
Proposition 3.28, this means that the archimedean integral above is bounded by

≪ β(tν)(1 + t)−r

1 + d

g−1
∞ γg∞,

⋃
L∈L−{G}

M ′L

−N

· t


−δ

for certain δ,N > 0. By Lemma 3.86 we may bound the distance from below by ∥γ∥−Af
for some A > 0, and as in [13, Lemma 4.4] the latter is again bounded from below by
q−A

′

S for some A′ > 0. It remains to show that the number of γ that contribute to the
sum is at most polynomial in qS . Indeed, for such γ we have that the rational element
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ρ(γ) ∈ SLd(Q) is bounded in the archimedean sense by the support conditions on b1 and
b2, and its denominators are at most of size qA

′
S by the same argument we just used. This

proves the desired bound for the o�-diagonal terms.
When kf ∈ H≤κ

S,M , it is a sum of at mostM elements kf,n ∈ H≤κ
Sn

, with Sn a set of primes
with qSn ≤M . Moreover, we may assume that the kf,n have disjoint supports. The result
then follows by summing the di�erent bounds for each of the kf,n, and replacing B by
B + 1.

We will require the following estimates for the trace formula.

Proposition 3.88. There are constants η,A,B > 0 and an integer multiple D′ of D
such that the following holds. Let κ ≥ 0 and S a �nite set of primes not dividing D′,
and kf ∈ H≤κ

S . Let Da∗ ⊂ a∗ − {0} be compact, ν ∈ Da∗ , t ≥ 1 and ktν ∈ H∞ as in
Lemma 3.10. De�ne k = ktν ⊗ kf . Then∑

j

k̂(fj) = Vol(X) · k(1) +O
(
β(tν)(1 + t)−ηqAκ+BS ∥kf∥∞

)
,

uniformly in ν and t. If M ≥ 1 and kf ∈ H≤κ
S,M then the same result holds with qS

replaced by M .

Proof. The �rst statement follows from [13, Theorem 3.1]. Note that our Cartan involu-
tion is not assumed to be de�ned over Q (see Remark 3.77). This is compensated for by
our assumption thatG is almost simple over R, which we can use to replace the argument
in [13, Lemma 6.3] needed to show that the centralizer of G0 in G(Q) is reduced to the
center.
The statement about kf ∈ H≤κ

S,M is shown as for Proposition 3.87.

Remark 3.89. The estimate [13, Theorem 3.1] is stronger than what is needed here,
because we do not need uniformity with respect to a variable compact subgroup K (the
level aspect) nor do we need asymptotics for spectral parameters that can be singular.
But it is the only directly quotable Weyl law-type result that we have found, that covers
anisotropic groups and adelic test functions. Note also that the exponents A and B are
ine�ective, but they will not play any role.

We will apply Propositions 3.87 and 3.88 always with the following positivity assump-
tion on kf :

k̂f (fj) ≥ 0 for all fj , kf (1) ≥ 1 and kf (g) ≥ 0 for g ∈ G(Af ). (3.90)

The following Proposition combines the two trace formulae and reduces Theorem 3 to
�nding a suitable test function kf .
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Proposition 3.91. Let Da∗ ⊂ (a∗)gen be compact. Let κ ≥ 0. There exist δ, C > 0 and
an integer multiple D′ of D such that the following holds. Let ν ∈ Da∗, S be a �nite set
of primes not dividing D′, t,M ≥ 1 and kf ∈ H≤k

S,M satisfying (3.90). If M ≤ (1 + t)δ

and ∥kf∥∞ ≤ (1 + t)δ, then∑
∥νj−tν∥≤C k̂f (fj)|PH(fj)|2∑

∥νj−tν∥≤C k̂f (fj)
≫ (1 + t)−r ·

∫
H(Af )

kf

kf (1)
,

uniformly in ν, t, S,M, kf .

Proof. We �rst bound the main term in Proposition 3.87 from below. The integrals
factorize. The archimedean component can be bounded from below by β(tν)(1 + t)−r.
Indeed, using the inversion formula (3.3) it reduces to a similar integral involving the
spherical function, which is seen to be independent of γ by making a change of variables,
and we conclude using Proposition 3.15. For the �nite component we may use the
positivity of kf and bound the integral trivially from below by kf (1)Vol(H(Af )∩Kf ) ≥ 1.
Given this lower bound for the main term and given the quality of the error term in
Proposition 3.87, a truncation argument as in Proposition 1.50 or [13, Lemma 4.5] shows
the asymptotic formula∑

∥νj−tν∥≤C

k̂f (fj) |PH(fj)|2

≍ Vol([H])
∑

γ∈NG(H)(Q)/H(Q)

∫
H(AQ)

k(g−1
∞ γhg∞)dµH(h) ,

provided that C is large enough and that M and ∥kf∥∞ are bounded by a su�ciently
small power of t so that the error terms are controlled. Similarly, the inversion formula
(3.3) gives that ktν(1) ≍ β(tν) and a truncation argument applied to Proposition 3.88
gives that ∑

∥νj−tν∥≤C

k̂f (fj) ≍ Vol(X)k(1) ,

provided that C is large enough and that M and ∥kf∥∞ are bounded by a su�ciently
small power of t.
The statement now follows by taking the quotient of those two asymptotics, using

again the archimedean asymptotics, and in the case of the relative trace formula, using
positivity of kf to discard the terms corresponding to γ that are not the identity.

3.6.3 Ampli�cation

The construction of ampli�ers is our only reason to restrict to groups G as in Theorem 3.
The theorem follows by applying Proposition 3.91 with kf as given by the following
proposition, and with M a su�ciently small power of t.
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Proposition 3.92. Let G be a Q-form of PGL3 and let δ be as stated in Theorem 3.
Let M ≥ 2 and S be the set of primes less than M that do not divide D′. There exists
kf ∈ H≤4

S,M satisfying (3.90), such that ∥kf∥∞ ≤MA for some A > 0 and∫
H(Af )

kf

kf (1)
≫ (log logM)δ+o(1) .

We prove Proposition 3.92 in �3.7. We will also prove a result that states that the
lower bound in Proposition 3.92 is optimal in a certain sense, although the exact result
is not as strong as the optimality statement in [50], and we do not formally exclude the
existence of ampli�ers of similar quality for, say, forms of PGLn. See Remark 3.112.

3.7 Construction of ampli�ers

In this section we prove the existence of the ampli�er in Proposition 3.92 (in �3.7.2) .
We also prove an optimality result in Proposition 3.111 (in �3.7.3).

3.7.1 Preliminary computations

We begin with some preliminary computations of integrals on p-adic groups. It is con-
venient to re-introduce some notation in order to make the key computations more
self-contained. Let n ≥ 2, let p be a prime number and denote Gp = PGLn(Qp),
Kp = PGLn(Zp) and de�ne Hp ⊂ Gp to be the diagonal torus. Most of the time we will
specialize to n = 3, but we allow some generality to be able to make remarks about other
n, and because certain statements will be proven for arbitrary n. We �x Haar measures
on Gp and Hp such that the compact open subgroups Kp and Hp ∩Kp have volume 1.
De�ne Hp = C∞

c (Kp\Gp/Kp), a commutative algebra with convolution de�ned by

(k1 ∗ k2)(g) =
∫
Gp

k1(h)k2(h
−1g)dh .

The adjoint of k ∈ Hp is de�ned by k∗(g) = k(g−1). This de�nes an algebra involution
on Hp.
The question we seek to answer is the following: When kp ∈ Hp is a function of the

form k′p ∗ (k′p)∗ with k′p ∈ Hp, how big can
∫
Hp
kp be relative to kp(1)?

Such k′p is a �nite linear combination of the basic double coset kernels, which are
de�ned as follows. Let a = (a1, . . . , an) ∈ Zn and denote µa(p) = diag(pa1 , . . . , pan).
One may view µa as a cocharacter of Hp. De�ne the function

τ(a, p) = 1Kpµa(p)Kp
.

We have τ(a, p)∗ = τ(−a, p), and τ(0, p) is the identity of C∞
c (Kp\Gp/Kp). The function

τ(a, p) depends only on the entries of a up to permutation and up to translation by a
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common element in Z. We may therefore always reduce to the case where a1 ≥ a2 ≥
. . . ≥ an = 0. The degree deg(µa(p)) is de�ned as the cardinality #(Kpµa(p)Kp/Kp).
With our choice of Haar measures we have

deg(µa(p)) = ∥τ(a, p)∥22 = (τ(a, p) ∗ τ(−a, p))(1) . (3.93)

We will need bounds for integrals of convolutions of these basic kernels. Speci�cally,
the quantity we will be interested in is the o�-diagonal contribution to the integral∫
Hp
τ(a1, p) ∗ τ(a2, p), when a1,a2 ∈ Zn. That is, we are interested in the integral over

Hp − (Hp ∩Kp), or what is the same, the integral over Hp minus (τ(a1, p) ∗ τ(a2, p))(1).
The following is an example computation of o�-diagonal contributions when n = 2,

which to an extent can be seen geometrically in the Bruhat-Tits tree.

Example 3.94. Let n = 2 and de�ne a = (1, 0) and b = (0, 0). Then deg(µa(p)) = p+1,
τ(a, p) is self-adjoint and(∫

Hp

τ(a, p) ∗ τ(a, p)
)
− deg(µa(p)) = (p+ 3)− (p+ 1) = 2 ,∫

Hp

τ(a, p) ∗ τ(b, p) = 2 .

That deg(µa(p)) = p + 1, the cardinality of a radius 1 ball in the Bruhat-Tits tree, is
a classical counting problem of double cosets. That τ(a, p) is self-adjoint holds because
a and −a are Z-translates. We look at the second integral �rst. It equals 2 because
it is the intersection of a radius 1 ball in the Bruhat-Tits tree with an apartment con-
taining the center of the ball. We can also show this more explicitly as follows. We
must count how many left cosets of Kp are contained in Kp diag(p, 1)Kp and intersect
Hp. We may lift this problem to GL2(Qp) and ask how many diagonal matrices lie in
GL2(Zp) diag(p, 1)GL2(Zp). Multiplication on the left or the right by GL2(Zp) does not
change the invariant factors of a matrix, so that such a diagonal matrix must have in-
variant factors (p, 1). It is clear that this gives exactly two matrices, and the statement
follows.
The �rst integral can be computed using a similar argument, after using the Hecke

relation τ(a, p) ∗ τ(a, p) = τ(2a, p) + (p+ 1)τ(0, p).

Lemma 3.95. When a,b ∈ Zn are decreasing tuples with an = bn = 0, we have (τ(a, p)∗
τ(−b, p))(1) = δa,b deg(µa(p)).

Proof. When a = b this is (3.93). When a ̸= b the double cosets represented by µa(p)
and µb(p) are distinct, either by the Cartan decomposition [71, �3.3.3] or by an argument
using invariant factors. They are therefore disjoint, so that

(τ(a, p) ∗ τ(−b, p))(1) = ⟨τ(a, p), τ(b, p)⟩L2(Gp) = 0 .
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To do explicit computations, we translate integrations into counting problems involving
lattices in Qn

p , which are the natural generalization of points in the Bruhat-Tits tree. By
a lattice in Qn

p we mean a �nitely generated Zp-submodule of rank n. Denote by R the set
of lattices in Qn

p , and by R the set of homothety classes of lattices. The group GLn(Qp)

acts on R and the group Gp acts on R. Denote L0 = Znp and L0 its homothety class;
they are our base points. The stabilizers of L0 and L0 in GLn(Qp) and Gp are GLn(Zp)
and Kp, respectively. Acting on the base point yields bijections GLn(Qp)/GLn(Zp) ∼= R
and Gp/Kp

∼= R.

Lemma 3.96. Let a = (a1, . . . , an) ∈ Zn with a1 ≥ a2 ≥ . . . ≥ an = 0. There is a
natural bijection between the following sets:

� The lattices L ⊂ L0 for which L0/L has invariant factors pa1 , . . . , pan;

� The left coset space Kpµa(p)Kp/Kp,

which is given as follows: To a lattice L one associates the homothety class L ∈ R, which
is identi�ed with a left coset of Kp through the bijection Gp/Kp

∼= R.

Proof. That the map is well-de�ned (meaning, that it lands in Kpµa(p)Kp/Kp) is the
following fact: When M is a free module over a PID with a submodule N , then there
exists a basis (ei) of M that is adapted to N , meaning that N has a basis consisting of
scalar multiples of the ei. This fact shows that every lattice L ⊂ L0 such that L0/L has
invariant factors as given, is of the form kp diag(a1, . . . , an)L0 with kp ∈ GLn(Zp). That
the map is surjective is trivial, because the lattice kp diag(a1, . . . , an)L0 is sent to the
corresponding left coset in Kpµa(p)Kp/Kp.

Denote by (e1, . . . , en) the standard basis of L0. We call L ∈ R an adapted lattice if
it has a basis of the form (b1e1, . . . , bnen) with the bi ∈ Q×

p .

Lemma 3.97. Let a = (a1, . . . , an) ∈ Zn with a1 ≥ a2 ≥ . . . ≥ an = 0. The bijection
from Lemma 3.96 restricts to a bijection between the following sets:

� The set of adapted lattices L ⊂ L0 for which L0/L has invariant factors pa1 , . . . , pan.

� (Hp ∩Kpµa(p)Kp)/(Hp ∩Kp).

Proof. This can be proven as for Lemma 3.96.

Lemma 3.98. Let a,b ∈ Nn be decreasing tuples with an = bn = 0. Then
∫
Hp
τ(a, p) ∗

τ(−b, p) counts the pairs of lattices (L1, L) with the following properties:

� L1 is adapted and L ⊂ L0 ∩ L1.

� The invariant factors of L0/L are given by a and those of L1/L by b.
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Proof. We have∫
Hp

τ(a, p) ∗ τ(−b, p) =
∫
Hp/(Hp∩Kp)

∫
Gp/Kp

τ(a, p)(g)τ(−b, p)(g−1h)dgdh .

By our convention on Haar measures, the right hand side is a sum over cosets h(Hp∩Kp)
and gKp. Take such cosets for which the integrand is nonzero (and thus equal to 1).
Then gL0 is represented by a unique lattice L ⊂ L0 for which L/L0 has invariant factors
given by a, and this L does not depend on the representative g. There is a unique lift
h1 ∈ GLn(Qp) such that h−1

1 L ⊂ L0 has invariant factors given by b, and this again does
not depend on the representative h. De�ne then L1 = h1L0. The pair (L1, L) satis�es
the conditions of the statement. Conversely, to such a pair we can associated unique
cosets h(Hp ∩Kp) and gKp on which the integrand is nonzero.

3.7.2 Lower bounds

We prove Proposition 3.92. Our construction of an ampli�er kf is inspired by the con-
struction in [50], which was used in Chapter 1. When translated into the adelic language,
the ampli�er from [50] takes the form kf = ω ∗ ω∗, with

ω =
∑
n≤M

squarefree

∏
p|n

cpωp, (3.99)

for ωp elementary Hecke operators, which in the notation from �3.7.1 equal τ((1, 0), p),
and with cp > 0 parameters to be optimized. The equalities in Example 3.94, which are
about τ((1, 0), p), appear in [50], not explicitly but through global versions thereof that
are formulated in terms of divisor functions, in the proof of [50, Lemma 5].
One can think of the Hecke operator ω in (3.99) as being the formal expansion of the

product
∏
(1 + cpωp), truncated to only include terms corresponding to sets of primes

with product less than M .
Our aim is to optimize the choice of ωp and of cp for forms of PGL3. We continue to

use the notation from �3.7.1 but will soon after switch to a global setup. The following
lemma is the key in the construction of an ampli�er.

Lemma 3.100. Let n = 3 and a = (1, 0, 0) or (1, 1, 0). Then deg(µa(p)) = p2 + p + 1,
and we have ∫

Hp

τ(a, p) ∗ τ(a, p) = 3(p+ 2) ,(∫
Hp

τ(a, p) ∗ τ(−a, p)
)
− deg(µa(p)) = 6 ,∫

Hp

τ(a, p) = 3 .
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Proof. Using that adjugation is an algebra involution and that Hp is unimodular, it
su�ces to prove each identity for either a = (1, 0, 0) or (1, 1, 0), because τ(a, p) and
τ(−a, p) are adjoints. When L1, L2 ∈ R are lattices, de�ne their generalized index by

[L1 : L2] =
[L1 : L1 ∩ L2]

[L2 : L1 ∩ L2]
.

It satis�es the usual transitivity relation.
For the degree, choose a = (1, 0, 0). We must count lattices L ⊂ L0 of index p. Such

L contain pL0 and are determined by their quotient modulo pL0. We must then count
index p subgroups in (Z/pZ)3, or equivalently lines in F3

p, of which there are p2 + p+ 1.
For the �rst integral, choose a = (1, 1, 0). We must count pairs of lattices (L1, L)

satsifying the conditions in Lemma 3.98, with b = (1, 0, 0). Thus L ⊂ L0 is a lattice
with L0/L ∼= (Z/pZ)2 and [L1 : L] = p. Because L1 is adapted, contains L ⊃ pZp and
[L0 : L1] = [L0 : L][L : L1] = p, it is clear that the only possibilities for L1 are the
following:

� p−1Zp ⊕ pZp ⊕ pZp and

� Zp ⊕ Zp ⊕ pZp,
up to permutations of the factors. (This list would have been longer if we had switched
a and b; what helps us here is that b has small entries.) It su�ces to count pairs (L1, L)
where L1 is one of these two lattices, and multiply the result by 3. In the �rst case, the
condition L ⊂ L0 ∩ L1 forces L ⊂ Zp ⊕ pZp ⊕ pZp, and by considering indices we must
have equality. This L is indeed a solution. In the second case, note that L is determined
by its quotient modulo pL0, and that L/pL0 ⊂ L1/pL0

∼= (Z/pZ)2 has index p. There
are p + 1 such subgroups, and the corresponding L satisfy the conditions. This proves
the �rst statement.
For the second integral, take instead a = (1, 0, 0) and apply Lemma 3.98. Using as

before the observation that L ⊃ pZp and using that [L0 : L1] = 1, the possibilities for L1

are now:

� L0,

� p−1Zp ⊕ Zp ⊕ pZp and

� p−2Zp ⊕ pZp ⊕ pZp,
up to permutation of the factors. When L1 = L0 we obtain deg(µa(p)) pairs (L0, L). In
the second case we use that L ⊂ L0 ∩ L1 and observe that equality must occur, giving
one solution L. In the third case the condition L ⊂ L0 ∩ L1 forces L ⊂ Zp ⊕ pZp ⊕ pZp,
and this is impossible. The second statement follows, taking into account permutations.
The computation of the last integral also follows from Lemma 3.98, with b = 0. We

must count the adapted lattices of index p in L0, and there are 3 of them.

127



We now return to the notation from the previous subsections, and let G be a form of
PGL3. Let E be the minimal splitting �eld of H and choose an isomorphism σ : GE →
PGL3,E that sends H to the diagonal torus. De�ne Pgood to be the set of primes with
the following properties:

1. p ∤ D′, with D′ as in Proposition 3.91;

2. p splits in E; equivalently, E embeds in Qp;

3. σ(Kp) = PGL3(Zp).

The condition that p splits in E is equivalent to saying that H is split over Qp. In
particular we have for p ∈ Pgood that GQp is split, and therefore isomorphic to PGL3,Qp ,
by Lemma 3.76. This is also apparent from the fact that we may extend σ from E to
Qp.

Lemma 3.101. We have ∑
p∈Pgood

p≤x

log p =
x

[E : Q]
+ o(x) ,

where E is as above.

Proof. The �rst condition de�ning Pgood does not in�uence the asymptotic, and modulo
the second, neither does the third. Meaning, the statement is that the set of primes that
split in E has natural density 1/[E : Q]. Because the splitting �eld E is Galois, this
follows from Chebotarev's density theorem with natural density [31, Theorem 4].

Proof of Proposition 3.92. Let M ≥ 2. Fix a real number c > 0, which we will optimize
later. Let c1 > 0 be a real number that we will later assume to be su�ciently small. Let
M1 = c1 logM . When p is a prime, de�ne

ap =

{
c
p when p ∈ Pgood and p ≤M1 ,

0 otherwise.

For p ∈ Pgood we may de�ne the elementary Hecke operators τ(a, p) ∈ Hp as in �3.7.1,
through the isomorphism σ with PGL3(Qp), where Hp = C∞

c (Kp\G(Qp)/Kp). De�ne
a = (1, 0, 0) and for p ∈ Pgood de�ne

ωp = apτ(a, p) + apτ(a, p)
∗ ∈ H≤2

p .

De�ne
ω =

∑
n≤M

squarefree

∏
p|n

ωp ∈ H≤2
Pgood,M

, (3.102)
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and �nally

kf = ω ∗ ω∗ =
∑

n,m≤M
squarefree

∏
p|n
q|m

ωp ∗ ω∗
q =

∑
n≤M

squarefree

∏
p|n

(ωp + ω∗
p + ωp ∗ ω∗

p) , (3.103)

where the second equality holds by grouping pairs (n,m) with the same least common
multiple. (In fact ω∗

p = ωp.) Clearly kf ∈ H≤4
S,M .

It is clear that kf satis�es (3.90). Indeed, it is a self-convolution and therefore has
nonnegative eigenvalues. It takes nonnegative values because the ap are nonnegative,
and kf (1) ≥ 1 thanks to the term for n = m = 1.

We have that ∥kf∥∞ ≪MA for some A > 0. This can be seen either by expanding the
convolution ωpω∗

p in terms of elementary Hecke operators, or using the same arguments
as used in [13, Lemma 4.4].

It remains to show the lower bound in Proposition 3.92. Because ωp(1) = ω∗
p(1) = 0,

we have

kf (1) =
∑
n≤M

squarefree

∏
p|n

∥ωp∥22 .

To prove the lower bound, we begin by trivially estimating

kf (1) ≤
∏
p≤M1

(
1 + ∥ωp∥22

)
(3.104)

by completing the sum over n to all square-free integers. To compute
∫
H(Af )

kf we

integrate (3.103) and use the computations from Lemma 3.100, which give

∫
H(Af )

kf =
∑
n≤M

squarefree

∏
p|n

(
12ap + (6p+ 24)a2p + ∥ωp∥22

)
,

where we use that ∥ωp∥22 = 2a2p deg(µp). The term ∥ωp∥22 corresponds to the diagonal
contribution, and we will want the other terms to be large relative to this. Let α > 0.
We complete the sum over n to a full product, which introduces an error term that we
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estimate using Rankin's trick by introducing a factor (n/M)α in the resulting error terms.

∫
H(Af )

kf =
∏
p≤M1

(1 + 12ap + (6p+ 24)a2p + ∥ωp∥2)

+O

M−α
∑
n>M

squarefree

∏
p|n

pα(12ap + (6p+ 24)a2p + ∥ωp∥22)


=
∏
p≤M1

(1 + 12ap + (6p+ 24)a2p + ∥ωp∥22)

+O

M−α
∏
p≤M1

(
1 + pα

(
12ap + (6p+ 24)a2p + ∥ωp∥22

)) (3.105)

Applying the inequality 1+x
1+y ≤ 1 + (x− y) ≤ exp(x− y) (for x ≥ y ≥ 0), the ratio of the

error term to the main term in (3.105) is at most

M−α exp

∑
p≤M1

(pα − 1)(12ap + (6p+ 24)a2p + ∥ωp∥22)

 . (3.106)

We want this to be strictly less than 1. By the mean value theorem, pα − 1 ≤ αpα log p.
Using the bound ap ≪ 1/p, we can thus bound (3.106) by

exp

−α logM +O

∑
p≤M1

αpα log p

 .

Now choose α = 1/ logM1, so that by Chebyshev's estimates this is at most

exp (−α(logM +O(M1))) .

By choosing c1 su�ciently small,M1 = c1 logM is small enough for the above expression
to be at most 1/2 (say).

It remains to �nd a lower bound for the ratio of the main term in (3.105) to the
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right-hand side of (3.104). Using the bound 1 + x ≥ exp(x+O(x2)), we have∫
H(Af )

kf

kf (1)
≫

∏
p≤M1

1 + 12ap + (6p+ 24)a2p + ∥ωp∥22
1 + ∥ωp∥22

≫ exp

∑
p≤M1

(
12ap + (6p+ 24)a2p

1 + ∥ωp∥22
+O(1/p2)

)

≫ exp

 ∑
p≤M1
p∈Pgood

(
12c+ 6c2

1 + 2c2
· 1
p
+O(1/p2)

)
≫ exp

(
1

[E : Q]
· 12c+ 6c2

1 + 2c2
(log logM1)(1 + o(1))

)
.

In the last step we have used Lemma 3.101 together with Abel's summation formula to
deduce a Mertens type result from the PNT-type result. The rational function in c that
appears is maximal for c = 1, where it takes the value 6. If we recall thatM1 = c1 logM ,
this is the lower bound stated in Proposition 3.92.

3.7.3 Upper bounds

We prove that the construction in �3.7.2 is in a sense optimal, by giving an upper bound
for the quotient ∫

H(Af )
kf

kf (1)

modulo certain restrictions on kf . The main result is Proposition 3.111. When p ∈ Pgood
is a prime, we may identify GQp with PGL3,Qp using the isomorphism σ. To simplify
the notation, we will not keep track of the set Pgood here, and state the global bounds
instead for the group PGL3, for which we de�ne truncated Hecke algebras in the same
way as in �3.5.7. In fact, we will give statements that are valid more generally for PGLn
with n ≥ 3. In either case, H denotes the diagonal torus.
We will �rst prove the following key bound. While it is valid for all n ≥ 3, it is likely

not the strongest possible result, see Remark 3.112. We use the local notation from
�3.7.1.

Proposition 3.107. Let n ≥ 3 and let a,b ∈ Nn be decreasing tuples with an = bn = 0.
Then(∫

Hp

τ(a, p) ∗ τ(−b, p)
)
− δa,b deg(µa(p))≪

1

p
deg(µa(p))

1/2 deg(µb(p))
1/2 ,

where the implicit constant is allowed to depend on a and b but not on p.
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The proof of Proposition 3.107 uses various arguments, one of which is the following
trivial bound.

Lemma 3.108. The conclusion of Proposition 3.107 holds when deg(µb(p)) ≥ p2 ·
deg(µa(p)).

Proof. We may bound the integral using Lemma 3.98, by counting pairs (L1, L) as in
the statement of the lemma. First, because a and b may be assumed �xed, the number
of possibilities for L1 is bounded. To be precise, the inclusions L1 ⊃ L ⊃ pa1L0 and
pb1L1 ⊂ L ⊂ L0 imply that there are at most (a1 + b1 + 1)n possibilities for L1. Second,
the number of possibilities for L is trivially bounded by deg(µa(p)). Therefore the left-
hand side in Proposition 3.107 (even without the subtraction) is bounded up to a constant
by

deg(µa(p)) ≤
1

p
deg(µa(p))

1/2 deg(µb(p))
1/2 .

To prove Proposition 3.107, it su�ces to prove an upper bound of the form(∫
Hp

τ(a, p) ∗ τ(−b, p)
)
− δa,b deg(µa(p))≪

1

p2
·max (deg(µa(p)), deg(µb(p))) .

Indeed, by symmetry and by Lemma 3.108 we must only consider the situation where

deg(µa(p)) ≤ deg(µb(p)) ≤ p2 deg(µa(p)) ,

in which case the above bound is at least as strong as what is needed.
The other type of argument we will use is the following. Let G be any (abstract) group

and f : X → Y a G-equivariant map between �nite transitive G-sets. Then the preimages
f−1(y) have the same cardinality. In particular, when S ⊂ X, a bound of the form
|f(S)| ≤ δ|Y | implies |S| ≤ δ|X|. We will apply this principle with G = GLn(Z/paZ), X
a set of subgroups of (Z/paZ)n, and f reduction mod p.

Lemma 3.109. Let a ∈ Nn be a decreasing tuple with an = 0. Let 1 ≤ m ≤ n and
consider the subgroups L ⊂ (Z/pa1Z)n with the following properties:

� The quotient (Z/pa1Z)n/L has invariant factors given by a.

� L ⊂ (pZ/pa1Z)m ⊕ (Z/pa1Z)n−m.

Let d = #{i : ai = 0}. Then the number of such subgroups is bounded up to a constant
by p−md deg(µa(p)), where the constant does not depend on a nor p.

Proof. The group G = GLn(Z/pa1Z) acts transitively on the subgroups L whose quotient
has invariant factors given by a. There are precisely deg(µa(p)) of those. The reduction
mod p of all such L is a subspace of Fnp of dimension d. The group G acts transitively
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on subspaces of given dimension in a way compatible with reduction mod p. There are
≍ pd(n−d) such subspaces. On the other hand, the subgroups L as in the statement have
reduction mod p lying in a �xed (n−m)-dimensional subspace. When n−m < d there
is nothing to prove. When n−m ≥ d, the number of such subspaces is ≍ pd(n−m−d). We
conclude that the number of subgroups we want to count, is bounded up to a constant
by

pd(n−m−d)

pd(n−d)
deg(µa(p)) = p−md deg(µa(p)) .

Finally, we will use the perfect pairing on (Z/paZ)n, which provides a notion of duality.
Speci�cally, denote by ⟨·, ·⟩ the component-wise pairing in the standard basis. When
L ⊂ (Z/paZ)n, de�ne L∗ = {x : ⟨x, L⟩ = 0}. Then (L∗)∗ = L, duality reverses inclusions
and if (Z/paZ)n/L has invariant factors (pai) then (Z/paZ)n/L has invariant factors
(pa−ai). For an explicit example, the dual of

⊕
pa−aiZ/paZ is

⊕
paiZ/paZ.

We have the following dual version of Lemma 3.109.

Lemma 3.110. Let a ∈ Nn be a decreasing tuple with an = 0. Let 1 ≤ m ≤ n and
consider the subgroups L ⊂ (Z/pa1Z)n with the following properties:

� The quotient (Z/pa1Z)n/L has invariant factors given by a.

� L ⊃ (pa1−1Z/pa1Z)m ⊕ {0}n−m.

Let d = #{i : ai = a1}. Then the number of such subgroups is bounded up to a constant
by p−md deg(µa(p)), where the constant does not depend on a nor p.

Proof. For L as in the statement, we have that L∗ satis�es the conditions in Lemma 3.109.
The only observation we have to make is that the tuple a∗ := (a1 − an, . . . , a1 − a2, a1 −
a1) satis�es deg(µa∗(p)) = deg(µa(p)); this is just the statement that deg(µ−a(p)) =
deg(µa(p)).

With these three ingredients we are ready to prove the key bound.

Proof of Proposition 3.107. By symmetry we may assume that deg(µa(p)) ≤ deg(µb(p)).
To bound the integral we use Lemma 3.98. We must bound the number of pairs (L1, L)
with L1 adapted and di�erent from L0, and L ⊂ L0 ∩ L1 for which L0/L has invariant
factors given by a and those of L1/L are given by b. Write L1 =

⊕
ptiZp with the ti ∈ Z.

As in the proof of Lemma 3.108 there are only �nitely many possibilities for L1, so we
may assume L1 is �xed.
Suppose there exists ti > 0. Then up to permutation of factors, L lies in pZp

⊕
Zn−1
p ,

so that the subgroup L/pa1L0 ⊂ L0/p
a1L0

∼= (Z/pa1Z)n satis�es the conditions of
Lemma 3.109 with d,m ≥ 1. Therefore there are at most (up to a multiplicative constant)
p−1 deg(µa(p)) possibilities for L in this case, and this bound is good enough because
deg(µa(p)) ≤ deg(µb(p)).
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We may now assume that all ti ≤ 0, so that L0 ⊂ L1. If two distinct ti < 0, then we
may apply Lemma 3.109 again, this time to L/pb1L1 ⊂ L1/p

b1L1 and with m ≥ 2, d ≥ 1.
We �nd that there are at most p−2 deg(µb(p)) possibilities for L in this case, and this
bound is good enough as remarked below Lemma 3.108.
We may now assume that a single ti < 0 and all others are 0. If b1 ≤ a1, then

L contains pa1+tiei and in particular pa1−1ei. We may then apply Lemma 3.110 to
L/pa1L0 ⊂ L0/p

a1L0, with m, d ≥ 1 and conclude that there are at most p−1 deg(µa(p))
possibilities for L. If b1 > a1, then L0 contains all the elements pb1−1ej with j ̸= i.
Because n ≥ 3, there are at least two of these. We may now apply Lemma 3.110 to
L/pb1L1 ⊂ L1/p

b1L1 with m ≥ 2 and d ≥ 1, and conclude that there are at most (up to
a constant) p−2 deg(µb(p)) possibilities for L in this case. Again, this is su�cient by the
comment below Lemma 3.108.

Let P denote the set of all primes.

Proposition 3.111. Let n ≥ 3, κ > 0 and M ≥ 3. For every nonzero ω ∈ H≤κ
P,M the

convolution operator kf = ω ∗ ω∗ satis�es∫
H(Af )

kf

kf (1)
≪ (log logM)C ,

for a constant C that is allowed to depend on n and κ.

Proof. We may �nd a �nite family of squarefree integers (ni)i∈I ∈ [0,M ] and for every
prime p | ni a scalar multiple of elementary Hecke operator ωi,p ∈ H≤κ

p , such that
ω =

∑
i∈I
∏
p|ni

ωi,p. Moreover, we may assume that the
∏
p|ni

ωi,p have disjoint supports.
If Xκ denotes the set of cocharacters of HQ of norm at most κ, then |Xκ| is bounded.
If ω(m) denotes the number of prime divisors of m, then every m ≤ M occurs at most
|Xκ|ω(m) times as an integer ni in the family.
Let C be the largest implicit constant in Proposition 3.107 when a and b run trough

the tuples with µa, µb ∈ Xκ.
When p ∤ ni, de�ne ωi,p = 1Kp . We then have

kf =
∑
i,j∈I

∏
p|ni

q|nj

ωi,p ∗ ω∗
j,q =

∑
i,j∈I

∏
p|ninj

ωi,p ∗ ω∗
j,p .

The disjointness of the supports of the
∏
p|ni

ωi,p implies

kf (1) =
∑
i∈I

∏
p|ni

∥ωi,p∥22 .
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Using Proposition 3.107 we have∫
H(Af )

kf =
∑
i,j∈I

∏
p|ninj

∫
Hp

(ωi,p ∗ ω∗
j,p)

≤
∑
i,j∈I

∏
p|ninj

Cp−1∥ωi,p∥2∥ωj,p∥2

=
∑
i,j∈I

lcm(ni, nj)
−1Cω(lcm(ninj))

∏
p|ninj

∥ωi,p∥2∥ωj,p∥2

≤
∑
d≤M

d

Cω(d)

∑
d|ni

Cω(ni)

ni

∏
p|ni

∥ωi,p∥2

2

,

where in the last equality we have written lcm(ninj) = ninj/d with d = gcd(ni, nj), and
then extended the sum to run over all d | ni, nj . By Cauchy�Schwarz, this is bounded by

∑
d≤M

d

Cω(d)

∑
d|ni

C2ω(ni)

n2i

∑
d|ni

∏
p|ni

∥ωi,p∥22

 .

It follows that ∫
H(Af )

kf

kf (1)
≤ sup

n≤M
□-free

∑
d,ni
d|n,ni

d

Cω(d)
C2ω(ni)

n2i
.

Because every m occurs at most |Xκ|ω(m) times in the family (ni)i∈I , this is at most

≪κ,ϵ sup
n≤M
□-free

∑
d|n,m
m □-free

d

Cω(d)
(C2|Xκ|)ω(m)

m2

= sup
n≤M
□-free

∑
d|n

(C|Xκ|)ω(d)
d

∑
m □-free

(C2|Xκ|)ω(m)

m2

≪ sup
n≤M
□-free

∑
d|n

(C|Xκ|)ω(d)
d

,

because the sum over m is convergent. The latter expression is largest when n has the
smallest possible prime factors. So take n =

∏
p≤x p for some x > 1. Then n ≤ M
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implies x≪ logM by Chebyshev's estimate, and we have

∑
d|n

(C|Xκ|)ω(d)
d

=
∏
p≤x

(
1 +

C|Xκ|
p

)
≪ (log x)C|Xκ|

≪ (log logM)C|Xκ| ,

where we have used the Mertens' theorem in the �rst estimate.

Remark 3.112. It is likely that a stronger version of Proposition 3.107 is still true.
Namely, when n ≥ 4 we expect that a a similar bound holds with the power of p in
the right-hand side replaced by p−3/2. Moreover, when n = 3 we expect that this can
also be shown, except in the situation of Lemma 3.100. We have partial proofs of these
statements, which use mostly the same arguments as in the proof of Proposition 3.107,
and contains lots of casework. However a few cases remain, where we notably require
bounds for speci�c Hall polynomials. We hope to settle this stronger version in the near
future.
The stronger version would imply that the upper bound in Proposition 3.111 can be

replaced by 1 (no growth at all) for n ≥ 4. Indeed, the exponent 3/2 is then prop-
agated throughout the proof until the very last lines, where we may then use that∏
p≤X

(
1 + p−3/2

)
is bounded.

Remark 3.113. When n = 3, Proposition 3.107 is not as strong as we would like in
di�erent ways. It would be desirable to remove or make explicit the dependence on κ
and to make the power of log logM match with the exponent in Proposition 3.92. Such
bounds should follow from the stronger version of Proposition 3.107 that we expect to
hold.
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