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Abstract 

This thesis focuses on the “simultaneous acquisition of geometry and reflectance”. 

RGB-D cameras are used in a variety of applications, including 3D scanning, robot 

navigation and manipulation, and so on. These cameras provide a color (RGB) image 

and a depth map simultaneously. The depth map indicates the distance between 

objects and the camera per pixel. These RGB-D cameras are available in a variety of 

prices; with the low-cost models intended for general public use. However, these low-

cost RGB-D cameras suffer from measurement errors in certain areas / under certain 

conditions. Therefore, the result depth map contains missing values (holes), incorrect 

depth measurements, and noise. These issues are most common in areas where 

objects are transparent, specular, too close or too far away, or too thin.  

In this work, we propose an approach for correcting and completing the depth of 

close-range specular objects. Our approach consists of several steps: First, we create 

a 3D scene generator that generates a random scene with a table in the center and 

several objects on it. Each scene is generated by varying different components such 

as the number of objects, their textures, lighting conditions, and so on. We then use 

this generator to create a great number of synthetic images for training the neural 

network. Second, we train neural networks on our synthetic dataset to help identify 

incorrect regions of the depth map. We then remove these areas in several steps. 

Eventually, we complete the depth using an optimization method. We test our 

proposed pipeline on real-world data and demonstrate that it achieves excellent 

results. 

Obtaining an object's material properties (reflectance) from a single image is a 

challenging and ill-posed task. Previous works employed multiple neural networks and 

imposed numerous constraints on the input data to obtain these properties. Their 

imposed constraints include restricting object shapes, not considering any shadows in 

the images, and so on. Our objective is to define a simple method for estimating an 

object's reflection properties from a single image that is applicable in everyday use 

cases, yields acceptable results, and is not overly complicated in design. We propose 

an approach simplified by an adaptation of the method we proposed previously; we 

create a new scene generator to generate synthetic datasets and train neural networks 

to infer reflectance directly.  
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Résumé 

Cette thèse porte sur « l'acquisition simultanée de la géométrie et de la réflectance 

».  

Les caméras RGB-D sont utilisées dans une variété d'applications, y compris la 

numérisation 3D, la navigation et la manipulation de robots, etc. Ces caméras 

fournissent simultanément une image couleur (RVB) et une carte de profondeur. La 

carte de profondeur indique la distance entre les objets et la caméra par pixel. Ces 

caméras RGB-D sont disponibles dans une variété de prix ; avec en particulier des 

modèles low-cost destinés à un usage grand public. Cependant, ces caméras 

présentent des défauts de mesure dans certaines zones / sous certaines conditions. 

Par conséquent, la carte de profondeur obtenue présente des valeurs manquantes 

(trous), des mesures de profondeur incorrectes et du bruit. Ces problèmes sont plus 

fréquents dans les zones où les objets sont transparents, spéculaires, trop proches ou 

trop éloignés, ou trop fins. 

Dans ce travail, nous proposons une approche pour corriger et compléter la carte 

de profondeur d’objets spéculaires proches. Notre approche se compose de 

différentes parties: Tout d'abord, nous créons un générateur de scène 3D qui génère 

une scène avec une table au centre et plusieurs objets dessus. Chaque scène est 

générée en faisant varier différents composants tels que le nombre d'objets, leurs 

textures, les conditions d'éclairage, etc. Nous utilisons ensuite ce générateur pour 

créer un grand nombre d'images synthétiques pour entraîner le réseau de neurones. 

Deuxièmement, nous entraînons des réseaux de neurones sur notre ensemble de 

données synthétiques pour aider à identifier les régions incorrectes de la carte de 

profondeur. Nous supprimons ensuite ces zones en plusieurs étapes. Finalement, 

nous complétons la profondeur en utilisant une méthode d'optimisation. Nous testons 

notre pipeline proposé sur des données du monde réel et démontrons qu'il obtient 

d'excellents résultats. 

Obtenir la réflectance d'un objet réel à partir d'une seule image est une tâche 

difficile. Les travaux antérieurs utilisaient plusieurs réseaux de neurones et imposaient 

de nombreuses contraintes sur les données d'entrée pour obtenir ces propriétés. Leurs 

contraintes imposées incluent la restriction des formes d'objets, la non-prise en compte 

des ombres dans l'image, etc. Notre objectif est de définir une méthode simple pour 

estimer les propriétés de réflexion d'un objet à partir d'une seule image qui soit 

applicable dans les cas d'utilisation quotidienne, donne des résultats acceptables et 

ne soit pas trop compliquée dans la conception. Nous proposons une première 

approche simplifiée par une adaptation de la méthode que nous avons proposée 
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précédemment : création d'un nouveau générateur de scènes pour générer des 

ensembles de données synthétiques et entraîner des réseaux de neurones. 

 

 



 

 

 

Chapter I. Introduction 

I.1. Motivation 

Color images captured by standard 2D digital cameras have been used in many 

research fields over the last few decades, with great success in computer vision tasks 

such as image classification, object detection and tracking, semantic segmentation, 

etc. However, 2D color images lack geometric information and are highly dependent 

on the illumination conditions of the scene. As a result, solving more complex computer 

vision tasks that emerge over time with only 2D flat images is challenging. 

 

 

Figure 1: The RGB-D cameras provide a color (RGB) image alongside a depth map. The 

depth map indicates per pixel how far away objects are from the camera. This data is 

captured by Intel Realsense D435 camera. The depth map is colorized for better 

visualization. 

In recent years, researchers began to focus on a new type of sensor called RGB-D 

cameras, since these cameras provide additional information about the scene. The 

RGB-D cameras provide a color (RGB) image alongside a depth map. The depth map 
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indicates per pixel how far away objects are from the camera. An example of data 

captured by an RGB-D camera is illustrated in Figure 1. By using color image and the 

depth information of a scene together, many new applications and solutions in various 

fields are introduced. Some of these applications are as following: 

• Agriculture: Utilizing agricultural robots is one way to address the shortage of 

skilled manual laborers and to lower farming costs. These robots use RGB-D 

cameras to detect and locate crops and fruits and provide useful information 

about them [FGW20]. They are also capable of harvesting. 

• Health: RGB-D cameras can be used in hospitals for a variety of applications. 

For example, these cameras have been used in operating rooms at Sunnybrook 

hospital in Canada. Surgeons can then browse and navigate through CT scan 

images without touching the computer during operations. As a result, they will 

not need to rescrub [URL10]. Another example is the use of RGB-D cameras in 

neonatal care departments to assist clinical staff in better supervising and 

documenting tasks while reducing overload [SGHG21]. 

• Cultural heritage preservation: Cultural heritage may lose their original shape 

and color due to passage of time or repeated reparation. It is critical to create a 

digital model of them for future reference. The digitalization process can be 

accomplished with RGB-D cameras [GSB18]. Moreover, the digital models can 

be used for creating online virtual museums. 

• Robotic assistance: RGB-D cameras can assist robot grasping and 

manipulation tasks such as dishwashing, sorting and cleaning objects, and so 

on [SMPN20]. 

• 3D Printing tasks: In recent years, many affordable 3D printers have become 

available for general public use. However, few people are expert in 3D 

modelling. RGB-D cameras can be used to scan objects and then re-print them 

in different sizes using 3D printers. 

 

While these cameras provide useful information, they differ in terms of price and 

acquisition quality. High-quality RGB-D cameras are typically very expensive and not 

available for general public use. For example, Matterport Pro 3 is a high-quality sensor 

that captures accurate and detailed 3D data, but costs over 5000 euros [URL8]. 

The first low-cost RGB-D camera was introduced by Microsoft in 2010. The 

company introduced Kinect v1 for gaming purposes with the Xbox console. The sensor 

can track human body and hand motion without the use of any controller (Figure 2). 

Later, many more low-cost cameras were introduced such as Microsoft Kinect v2, Intel 
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Realsense D435 [IR22], etc. Furthermore, many manufacturers have recently begun 

to incorporate RGB-D cameras into a variety of products, including laptops and 

smartphones. 

Even though low-cost RGB-D cameras are more accessible to the general public, 

they have some limitations; The result depth map contains missing values (holes) or 

incorrect measurements and noise because these cameras are unable to accurately 

measure how far away certain areas are. These issues typically occur in areas where 

the objects are transparent or specular, too near or too far away, or too thin. There has 

been a lot of research on how to complete the depth map of these affordable cameras 

in indoor and outdoor scenes, but not so much on close-range objects. In this work we 

propose an algorithm to correct and complete the depth of close-range specular 

objects. We enhance the depth map’s quality by benefiting from the corresponding 2D 

color image and the advances in the data driven approaches. 

 

 

 

Figure 2: Microsoft introduced Kinect sensors for gaming purposes with the Xbox 

console. The sensor can track human body and hand motion without the use of any 

controller. (Image from [URL9]) 

 

Another area of research is the estimation of material properties from real-world 

objects. 3D artists generally try to achieve realistic rendering by using material 

properties that are similar to those of real-world objects. There are numerous analytic 

reflection models based on physics for modeling these properties. However, these 

models have multiple parameters, and it is time-consuming to try to guess them by 

only observing the real-world objects and choosing different values in 3D modelling 
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software. Another way to estimate the material properties is using gonioreflectometer. 

This device produces very accurate results, but it is very expensive, and the process 

requires a lot of time. In this work we discuss a new approach of acquiring material 

properties of an object from a color image while taking advantage of deep learning 

advancements. As a result, RGB-D cameras would be able to simultaneously retrieve 

an object's material properties while capturing its depth. Since our proposed approach 

only relies on the color image, it is also possible to apply it to the mobile phones 

equipped with simple RGB cameras.  

I.2. Contribution and Outline 

This work is arranged as follows: 

Chapter I. Introduction: 

In chapter one, we provide an overview of this work. As we outline the context, we 

then describe the problem that exists, the purpose of the thesis, and its application to 

real-life situations. 

 

Chapter II. Fundamental and Previous work: 

In chapter two, we present the fundamentals and past work related to our research. 

we begin by discussing the technologies used in RGB-D cameras to measure depth. 

Then, we present the fundamentals of deep learning as well as the past work in two 

different computer vision tasks: Image classification and semantic segmentation. We 

investigate previous network architecture designs and discuss the overall comparison 

of them. Following that, we discuss the state-of-the-art in three additional tasks related 

to our research: 3D scene understanding from single image, depth map completion 

and reflectance estimation. The study of these previous works allows us to focus on 

the best approaches for our research. 

 

Chapter III. Depth Completion for Close-Range Specular Objects: 

In chapter three, we present an approach to correct and complete the depth map of 

close-range specular objects using neural networks and optimization algorithm. We 

explain thoroughly in different sections, the various parts of the approach such as 

dataset generation, network architecture and training, incorrect depth removal and the 

final depth completion. We then discuss the results of this approach on the depth map 

of the Intel Realsense D435 camera, as well as its limitations and future work. We 

presented this approach as a full article in WSCG 2022. 
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Chapter IV. Reflectance Estimation: 

In chapter four, we discuss our approach to estimate the material properties of an 

object form color image using neural network. We perform various experiments on the 

real and synthetic data to evaluate the method. 

 

Chapter V. Conclusion: 

In this chapter, we provide a summary of our work followed by a general conclusion. 

Furthermore, we describe the limitations of our approach and suggest future research 

directions. 





 

 

 

Chapter II. Fundamental and Previous work 

In this chapter we discuss the fundamental and previous studies related to our work. 

In the first section, we explain what depth cameras are and then discuss their various 

types. In the second section, we discuss the fundamentals and the state of the art in 

deep neural network architecture design. In the third section, we talk about the recent 

approaches of estimating underlying properties of a single color image. Eventually at 

the last section, we go over the most recent methods for completing the depth map of 

indoor scenes.  

 

II.1. RGB-D Cameras 

The commodity RGB-D cameras capture two types of data simultaneously: an RGB 

image which is the typical color image and a depth map. A depth map is a pixel-map 

that provides the distance from the camera to the objects in the scene at each pixel. 

These two data are usually captured through separate lenses that are located apart 

from each other.  

There are two types of RGB-D cameras: passive sensors and active sensors. 

Passive sensors require external illumination, whereas active sensors have projectors 

that project light onto the scene. All technologies used by RGB-D cameras are 

illustrated in Figure 3. 
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Figure 3: Stereovision, Structured Light, and Time of Flight are common technologies 

used in RGB-D cameras for depth sensing. 

Passive sensors use stereo vision technology which is based on binocular human 

vision. They use two (or more) lenses to capture images of a scene from different 

viewpoints, and then use the triangulation method to calculate the depth. These 

sensors perform well under natural illumination and direct sunlight. However, they 

struggle in low-light conditions, texture-less scenes, or occlusion situations, in which 

one object is visible through one lens but not the other. Also, their depth sensing 

technique is computationally expensive since the corresponding points need to be 

founded in different images (from different viewpoints) of a scene. One example of this 

type of sensor is TaraXL camera from e-con Systems™ [URL7]. It is shown in Figure 

4. 

Active sensors are categorized into two groups: Structured light and Time of flight 

(ToF). 

• Structured light sensors contain an infrared projector and a camera. The IR 

projector emits a pattern onto the scene which deforms according to the 

geometric shape of the objects present in the scene. The camera determines 

the depth by observing the pattern deformations. One of the popular cameras 

in this category is Microsoft Kinect V1 which is illustrated in Figure 5. The 

advantage of these types of cameras compared to passive sensors is that they 

project a pattern into the environment, which enables them to perform well in 

texture-less scenes. They do, however, have some drawbacks; For instance, 

they are only suitable for indoor use because they perform poorly under direct 

sunlight. Moreover, they struggle to work correctly on shiny or dark objects. 
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Figure 4: TaraXL camera from e-con Systems™ [URL7] uses passive stereo technique 

to capture the depth. It uses two lenses to capture images of a scene from different 

viewpoints, and then uses the triangulation method to calculate the depth. 

 

• Time of Flight sensors contain a transmitter and a receiver. In this type of sensor, 

the depth is measured by the amount of time it takes for a signal to travel from 

the transmitter to the scene, be reflected, and then be received back by the 

receiver. Microsoft Kinect V2 sensor is in this category (Figure 5). Time-of-Flight 

sensors can operate in one of two ways: direct (pulsed ToF) or indirect 

(modulated ToF). The pulsed ToF sensor emits pulses of light and measures 

the time they return, whereas modulated ToF sensor emits a continuous 

modulated light and measures the phase shift of the returned signal. These 

types of sensors have similar disadvantages as structured light sensors, that is, 

they perform poorly in the presence of strong sunlight and on shiny or dark 

surfaces.  
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Figure 5: Illustration of two common RGB-D cameras: Microsoft Kinect v1 and Microsoft 

Kinect v2. Microsoft Kinect v1 uses structured light technology and has an infrared 

projector. Microsoft Kinect v2 uses Time-of-flight technology and contains an emitter and 

a receiver for depth sensing. Figure from [PBN16]. 

 

In recent years, newer cameras have combined active and passive technologies to 

achieve improved performance. Intel, for example, introduced D435 and D415 sensors 

as part of the D400 series [IR22], which employ IR active stereoscopy technology. 

These two sensors use stereo vision along with an infrared projector, which improves 

the camera performance by projecting a pattern onto the scene. As a result, they can 

capture depth in texture-less and dark scenes. The D435 and D415 sensors are 

illustrated in Figure 6.  

 

 

Figure 6 : Intel Realsense D415 (left) and D435 (right). They both use stereo vision with 

an infrared projector. Figure from [URL2] 
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Nevertheless, the quality of depth map captured by low-cost RGB-D cameras also 

depend on the material properties of the objects present in the scene. In chapter 3, we 

first study the limitations of Intel Realsense D435 camera in details before proposing 

an approach to correct the measured depth using deep learning. 

 

II.2. Deep Learning 

The field of computer vision has become increasingly important over the last few 

decades. In computer vision, researchers try to create systems that process and 

comprehend images. One approach is using data-driven methods which are inspired 

by the human visual system. The idea is that even people comprehend better the 

images they see by relating them to previous experiences. As a result, in these data-

driven approaches, the computer learns from a large amount of data and interpret the 

new data using its prior knowledge. In this section, we discuss the recent data-driven 

approaches for two different tasks in computer vision: image classification and 

semantic segmentation. Figure 7 illustrates these two tasks. In image classification, 

the computer attempts to understand the image as a whole while in segmentation, the 

computer understands the image in pixel level and divides each image to different 

segments.  

 

 

Figure 7 : In classification, the computer understand the image and assigns it to a class 

(label). In segmentation, the computer understands the image in pixel level and divides 

each image to different segments. 
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II.2.1. Image Classification 

In image classification, the algorithm tries to understand an image globally and 

assign it to a known category (class). In this task, the number of categories is fixed. 

Image classification is one of the fundamental components of computer vision and is 

used in more complex tasks like object detection (where the algorithm tries to find the 

exact location of an object in an image), semantic segmentation (where the algorithm 

attempts to assign a label to each pixel) and image captioning (where the algorithm 

tries to describe an image with a sentence), etc.  

One way of performing image classification, is using convolutional neural networks. 

These networks consist of several components:  

• Convolutional layers: Convolutional layers are specifically designed to process 

images because they preserve the spatial relations of the pixels. Each 

convolutional layer takes a four-dimensional tensor as input (a batch of 

images/feature maps), convolves it with various weight matrices (also known as 

filters/kernels), and outputs a four-dimensional tensor (a batch of feature maps).  

 

Figure 8: Each convolutional layer takes a four-dimensional tensor as input (a batch of 

images/feature maps), convolves it with weight matrices (also known as filters), and 

outputs a four-dimensional tensor (a batch of feature maps). 

 

In general, each filter has the same depth as the depth of the input tensor (also 

known as channel). When it comes to color images, the input tensor has a depth of 

three, which is R, G, and B channels. The depth of the output tensor is equal to the 

number of filters in that layer. These convolutional layers can be stacked on top of one 
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another in the networks with activation functions in between them (different types of 

activation functions are introduced in a later section). 

During the convolution operation the filters are slid across the entire spatial positions 

of the input tensor, and the dot product of the filters and that section of the input tensor 

is computed. Figure 9 shows an example of the operation. For simplicity, here the input 

is a single feature map with a depth of one and width and height of 5x5. The filter has 

the depth of one and the width and height of 3x3. The output feature map is illustrated 

in blue. The filter slides over the input feature map and performs dot product to produce 

the output. “Stride” describes how many pixels the filter moves each time, which is one 

in this example. The parameters of each filter are learned throughout the training. If 

the spatial dimension of a squared input is n and the spatial dimension of a squared 

filter is k, and the stride is one, the spatial dimension of the output is calculated as: 

𝑜𝑢𝑡𝑝𝑢𝑡𝑑𝑖𝑚 = 𝑛 − 𝑘 + 1 

 

 

Figure 9: During the convolution operation, the filter slid across the entire spatial 

positions of the input tensor, and the dot product of the filter and that section of the input 

tensor is computed. In this example (b-d), the filter moves by one pixel at each step 

(stride = 1). 
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However, as seen in Figure 8, the spatial dimension of the feature map is decreased 

with each convolutional step (even with stride of one). Therefore, it would be 

challenging to construct deep CNNs. The solution is to extend each input feature map 

by adding extra pixels on the outer dimensions of it. In neural network terminology, this 

is referred to as "padding”. Figure 10 shows an example of padding = 1. It is possible 

to choose the new added pixel values in various ways; for instance, they can be zero 

(as in this example – also known as zero-padding), or they can be the same value as 

the closest pixel at the border. If we refer to the padding as p, the spatial dimension of 

the output with stride of one can now be calculated as: 

𝑜𝑢𝑡𝑝𝑢𝑡𝑑𝑖𝑚 = 𝑛 + 2𝑝 − 𝑘 + 1 

 

Or more generally with the stride s: 

𝑜𝑢𝑡𝑝𝑢𝑡𝑑𝑖𝑚 = [(𝑛 + 2𝑝 − 𝑘)/𝑠] + 1 

 

 

Figure 10: Padding is used in CNNs to control the amount of spatial information lost 

during convolutions. In this example we used padding of one with pixel values of zero 

(zero-padding - illustrated in pink). 

 

• Pooling layers: These layers are similar to the convolutional layers, but their 

main objective is to reduce the spatial dimensions of the input (down sampling). 

For each pooling layer, a filter size and a stride are defined (no padding). 
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However, rather than performing the dot product, a fixed function is used on the 

input to summarize the values. Therefore, pooling layers do not contain any 

learnable parameters. Here are two of the most commonly used fixed functions 

for pooling:    

1. Max pooling 

2. Average pooling 

Figure 11 illustrates an example of non-overlapping max pooling. 

 

 

Figure 11: Here is an example of Max pooling which performs max function on 2x2 

regions of the input. The main goal of a pooling layer is to downsample the input. 

 

• Activation functions: Activation functions are one of the most critical 

components of the neural networks. They are used to add non-linearity to the 

network. There are numerous types of activation functions available, some of 

which are demonstrated in Figure 12. 
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Figure 12: Activation functions add non-linearity to the neural network. Some of the most 

common activation functions are illustrated in this figure. 

 

• Fully-connected layers: The fully connected layers consist of three types of 

layers: input layer, hidden layers and the output layer. The size of the input and 

output layers is fixed. Figure 13 illustrates a fully connected network with input 

and output size of three and two hidden layers. Each layer consists of many 

nodes that are connected to the nodes of the next and previous layers. Each 

connection has a weight that is learned through the training process. At each 

node, every input value is multiplied by the corresponding weight, and then all 

values are summed together. Next, a bias value is added to the sum, and the 

result goes through an activation function. Here are the equations for each 

node: 

𝑧 = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝑏 

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑔(𝑧) 

 

Where n is the number of inputs, x is the input value, w is the corresponding weight, 

b is the bias, and g is the activation function. 
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Figure 13: The fully connected layers comprised of three types of layers: input layer, 

hidden layer(s) and the output layer. Each layer consists of many nodes that are 

connected to the nodes of the next and previous layers. 

• Normalization layers: The most common used normalization in CNNs is “batch 

normalization”. These layers are generally used after convolutional/fully-

connected layers and before the activation functions. Their main objective is to 

speed up the training of the network. For more information about batch 

normalization please refer to the original paper [IS15]. 

Nevertheless, it is challenging to figure out how to choose and combine these 

components to achieve the best results. In the following section, we discuss the 

previous work on designing convolutional neural network architecture for image 

classification. 

 

II.2.1.1. Convolutional Neural Network Architecture for Image 

Classification 

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [RDSK15] was a 

competition that took place yearly between the years of 2010 until 2017. The contest 

was about creating the best model to perform image classification and object detection 

on ImageNet dataset [DDSLLF09]. This contest  led to significant amount of research 

and advancements in the design of convolutional neural network architecture. Neural 

networks were used for the first time in 2012, and prior to that, the winners did not use 

any deep learning approach. In 2012, Krizhevsky et al. [KSH12] won the classification 
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and localisation competition by proposing a deep convolutional network model named 

AlexNet. AlexNet has 8 layers in total: 5 convolutional layers combined with max-

pooling layers, and 3 fully-connected layers at the end of the network. The network 

uses ReLU activation function. Figure 14 shows the overall schema of the AlexNet. 

Due to the GPUs' low memory capacity during that time, the entire architecture was 

distributed and trained across two GPUs.  

When designing AlexNet, all kernel sizes were hyperparameters and the entire 

network architecture was designed through trial and error. Thus, it was not easy to 

extend the network. Over time, researchers tried to find some general rules to design 

the networks that would reduce the experiments and hyper-parameter tuning process.  

In 2014, Simonyan and Zisserman designed VGG architecture [SZ14]. This 

architecture follows specific design rules:  

• The convolutional layers have the kernel size of 3x3 and the stride and padding 

of 1 pixel. 

• All the pooling operations are performed by max-pooling and have the size of 

2x2 with the stride of 2 pixels. 

• The number of channels doubles after each max-pooling layer. 

• Following the convolution layers, there are fully-connected layers with the same 

configurations as AlexNet.  

• The network uses ReLU activation function. 

As a result of these design rules, researchers would be able to lengthen the 

networks without spending too much time on experimenting the size and type of CNN 

components. The VGG architecture has two most used variations: VGG-16 and VGG-

19, where the number 16 and 19 indicates the total number of layers. Overall schema 

of VGG-16 and VGG-19 is illustrated in Figure 14. 

Until then, the tendency was to build larger networks in order to get better 

performance; this means building a deeper network with more units at each level. 

However, larger networks require a larger training dataset and more computational 

resources to learn effectively. Szegedy et al. [SLJS14] aimed to build a network that 

performs well without being computationally complex; Therefore, they proposed 

GoogLeNet. GoogleNet is a 22-layer network with the following features: the network 

starts with a module that quickly downsamples the input image to avoid expensive 

convolutions on large spatial feature maps. Afterward, the entire network is 

represented by repeating a local structure known as the "inception module."  
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Figure 14: Overall schema of AlexNet, VGG-16 and VGG-19. AlexNet has 8 layers in 

total: 5 convolutional layers (with various kernel sizes) combined with max-pooling 

layers, and 3 fully-connected layers (FC) at the end of the network. In VGG architecture 

design, all convolutional layers have the same kernel size of 3x3, with max-pooling of 

2x2, and the number of channels doubles after each layer of max-pooling.The FC layers 

of VGG are the same as AlexNet. (Figure from Stanford lectures [URL1]) 

 

The inception module uses parallel computation to perform convolutions with 

kernels of various sizes (1x1, 3x3, and 5x5) and a max pooling simultaneously. 

However, before performing the 3x3 and 5x5 convolutions, it performs a 1x1 

convolution to compress the input. In the end, the network consists of an average 

pooling layer followed by one fully-connected layer that maps the features to the 1000 

classes of ImageNet. Using average pooling rather than the numerous fully-connected 

layers allowed for the reduction of a large number of parameters. The entire network 

is illustrated in Figure 15. 
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Figure 15: Entire GoogLeNet architecture (Figure from [SLJS14]); The inception module 

is repeated throughout the network. This module uses parallel computation to perform 

convolutions with kernels of various sizes (1x1, 3x3, and 5x5) and a max pooling 

simultaneously. However, before performing the 3x3 and 5x5 convolutions, it performs a 

1x1 convolution to compress the input. 
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In 2015, He et al. [HZRS16] experimented with larger networks and noticed that as 

the networks get deeper, they perform worse than the shallower ones because they 

are harder to train and optimize. However, they stated that if the layers from a shallow 

network were copied to the layers of a deeper network and the remaining layers of the 

deeper network only performed identity mapping, the deeper network should be able 

to perform at least as well as the shallower one. Thus, they introduced residual blocks 

and created the Resnet architecture. The residual blocks add the input to the output of 

each block as illustrated in Figure 16. 

 

Resnet architecture contains convolutions with kernel sizes that are mostly 3x3, 

which is inspired by the VGG architecture [SZ14], and instead of having many fully-

connected layers at the end, it has average pooling with one fully-connected layer, 

similar to GoogLeNet [SLJS14]. The residual blocks are repeated throughout the 

network as illustrated in Figure 17. The residual block and a slightly different version 

called “Bottleneck” block enabled He et al. to design networks of various sizes, deeper 

than previously built, such as Resnet-18, ResNet-34, ResNet-50, ResNet-101, and 

ResNet-152. ResNet-152 is 8 times deeper than VGG-19 but has less computational 

complexity. The ResNet architecture design was a huge success in neural network 

architecture history, winning numerous competitions that year. 

Figure 16 : Residual Block adds the input to the 

output (Figure from [HZRS16]) 
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Figure 17 : Illustration of ResNet-34 vs VGG-19, both designed for classification on 

ImageNet dataset (Figure from [HZRS16]). Resnet architecture contains convolutions 

with mostly 3x3 kernel sizes, which is inspired by the VGG architecture. The residual 

blocks are repeated throughout the network. 
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Szegedy et al [SVISW16] proposed some modifications to GoogLeNet to reduce the 

computational cost and they proposed Inception-v2 and Inception-v3. The 

modifications include some adjustments to the convolutional filter sizes (e.g., replacing 

5x5 kernels with two 3x3 kernels, or using asymmetric kernels like nx1), introducing a 

new regularization method called “label smoothing”, etc. 

 

Figure 18: Entire inception-v4 (left), Inception-ResNet-v1 and Inception-ResNet-v2 (right) 

model architectures. The Inception-ResNet-v1 and Inception-ResNet-v2 models have the 

same architecture but their underlying modules differ. For more information on underlying 

modules (Inception(resnet)-A, Inception(resnet)-B, Inception(resnet)-C and Reductions) 

please refer to the original paper. (Figure from [SIVA16]) 
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Later Szegedy et al [SIVA16] proposed three model architectures to further improve 

the inception models accuracy: Inception-v4, Inception-ResNet-v1 and Inception-

ResNet-v2. Compared to Inception-v3, Inception-v4 has a larger number of inception 

modules, but the architecture is simpler and more uniform. Considering the great 

success of ResNet architectures [HZRS16], Szegedy et al also attempted to combine 

the residual connections with the inception architecture and create the Inception-

ResNet model. The overall model architectures are illustrated in Figure 18. Their 

experiments demonstrate that the inception-v4 and Inception-ResNet-v2 models 

perform similarly, but better than inception-v3 and Inception-ResNet-v1. Also, the 

Inception-ResNet models converge slightly faster than pure inception models. 

Since then, many new architectures have emerged on a frequent basis, most of 

which are inspired by previous works. Bianco et al. [BCCN18] provided a throughout 

analysis and comparison of more than 40 neural networks in terms of model and 

computational complexity, accuracy, memory consumption, etc. They conducted the 

experiments on two different platforms: a workstation that used an NVIDIA Titan X 

Pascal GPU and an NVIDIA Jetson TX1 embedded system. They measured the 

accuracy on the ImageNet dataset for classification task. Figure 19 illustrates a 

comparison between the neural networks in terms of computational complexity, 

accuracy, and model complexity. The x axis shows the computational complexity 

(floating point operations of a forward pass), and the y axis shows the accuracy. The 

size of the circle represents the complexity of the model which is the number of 

learnable parameters in total. 

As we can see, AlexNet has low amount of computational complexity, low accuracy, 

and moderate number of learnable parameters. GoogLeNet has less parameters, but 

the accuracy is still poor compared to most of the architectures. The VGG_BN are the 

VGG architectures that are trained using the batch normalization technique. 
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Figure 19 : Comparison of more than 40 neural networks [BCCN18]; The x axis shows 

the computational complexity (floating point operations of a forward pass) and the y axis 

shows the accuracy. The size of the circle represents the complexity of the model which 

is the number of learnable parameters in total.  The result is measured on both 

workstation and the embedded board. 

 

Despite the fact that all VGG architectures have very large number of learnable 

parameters, they are not very accurate which makes them inefficient. On the other 

hand, ResNet and Inception architectures have smaller number of parameters but 

have high accuracy results. 
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II.2.2. Semantic Segmentation 

Semantic segmentation is another important task in computer vision that is widely 

used in different domains such as diagnosing disease in medical images, autonomous 

driving, separating foreground from background in photographs, etc. 

In contrast to image classification, which assigns a label to the entire image, 

semantic segmentation takes an image as input and assigns a label to each pixel. In 

image classification, the network starts with convolutional layers which are then 

followed by fully connected layers (e.g VGG [SZ14]) or average pooling (e.g  

GoogLeNet [SLJS14]). However, in these cases, the size of the input image to the 

network would be fixed because of the fully connected layers. The first convolutional 

layers of image classification architectures can be referred to as "encoders" because 

they encode the input image by decreasing its spatial size and increasing its 

dimensions.  

 

Figure 20: Overall workflow of FCN [LSD15] encoder-decoder. 

 

 

Figure 21: Segmentation results of FCN [LSD15]. It is important to note that adding 

features from lower layers to the up sampling layers adds more details to the final 

segmentation result. 
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In 2015 Long et al. [LSD15] proposed fully convolutional network (FCN) for semantic 

segmentation. Their network contains only convolutional layers, so there is no 

restriction on the size of the input image, and the network can receive any arbitrary 

sized input. The network consists of an encoder (also known as backbone) and a 

decoder. The encoder first down samples the input to generate a feature map and later 

the decoder up samples it to the original size using deconvolution. An overview of 

FCN's workflow can be seen in Figure 20. First, the input image is down sampled, then 

it up sampled in 3 different stages: in (a) the network directly up samples the feature 

map to the original size, in (b) and (c) the network up samples the feature map in steps 

and adds the features in the down sampling layer to it, to get finer details. The results 

from these steps are illustrated in Figure 21. It is important to note that adding 

information from lower layers to the up sampling layers adds more details to the final 

segmentation result. 

 

 

Figure 22: U-Net architecture proposed by Ronneberger et al. [RFB15]. The down 

sampling and up sampling layers are symmetric. The corresponding layers of down 

sampling and up sampling are connected using skip-connections. 
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Ronneberger et al. [RFB15] modified the FCN architecture and proposed the U-Net 

architecture, which they then used in biomedical segmentation. U-Net is an encoder-

decoder network that has a u-shape architecture; the down sampling and up sampling 

layers are symmetric. The entire architecture is illustrated in Figure 22. The 

corresponding layers in down sampling and up sampling are connected using skip-

connections. U-Net architecture produced accurate segmentation results while 

requiring less training data. 

Chen et al [CPKMY17] discussed different problems relating to the segmentation 

tasks in their study and proposed a new approach called DeepLabV2. They proposed 

three new concepts in their design, which are as follows: 

• They proposed using a different type of convolution known as atrous 

convolutions to increase the field of view without increasing the number of 

parameters or computational cost. When compared to standard convolutions, 

the atrous convolution produces a higher resolution feature map. This technique 

has been widely used in signal processing tasks [HKMT90]. 

 

 

Figure 23: The ASPP module (atrous spatial pyramid pooling), uses parallel computing of 

different atrous convolutions and concatenate the result at the end. (Image from 

[CPSA17]) 
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• Since each image may contain objects of the same class but in different sizes, 

they proposed a module called ASPP (atrous spatial pyramid pooling) for 

improving the segmentation result. This module uses parallel computing of 

different atrous convolutions (similar to the idea of inception module previously 

discussed [SLJS14]) 

• As previously discussed, the output of a fully convolutional network for the 

segmentation tasks may not capture the details. One way to improve is using 

skip-connections as Long et al. proposed in FCN [LSD15] (Figure 21). Chen at 

al proposed an alternative approach using a fully connected CRF (Conditional 

Random Field) [KK11]. 

 

 

Figure 24 illustrates the overall pipeline of the DeeplabV2 [CPKMY17]. Their pipeline 

manly consists of a deep CNN (DCNN) that perform the segmentation task and a CRF 

that refines the result. (a) First the network takes an image as input and performs 

convolutions using the atrous convolutions. At the end of the convolutions there is the 

ASPP module that produces the output. (b) Next, the result is upsampled using bilinear 

interpolation to reach the resolution of the input image and eventually (c) it goes through 

a fully connected CRF for refinement. 

 

Their full pipeline is illustrated in Figure 24. Their pipeline manly consists of a deep 

CNN (DCNN) that perform the segmentation task and a CRF that refines the result. 

First the network, which is based on a VGG-16 [SZ14] or ResNet-101 [HZRS16], takes 

an image as input and performs convolutions using the atrous convolutions. At the end 
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of the convolutions there is the ASPP module that produces the output. Next the result 

is upsampled using bilinear interpolation to reach the resolution of the input image and 

eventually it goes through a fully connected CRF for refinement.  

Later, Chen et al proposed DeepLabV3 [CPSA17]. In their approach, they modified 

the DeeplabV2 concept by removing the Fully Connected CRF and only performing 

the segmentation using CNN and the ASPP module. They also modified the ASPP by 

adding batch normalization and global average pooling.  

 

II.3. Estimating Underlying Properties of an Image  

The challenge of producing realistic images in computer graphics has been well 

studied throughout history. This process requires a rendering equation to be solved to 

obtain each pixel’s color in the image plane of the camera. With technological 

advancements in recent years, new tasks such as augmented reality have emerged 

that require inverting this process and determining the underlying components of 

images, such as material, light, geometry, etc. This section covers the fundamentals 

as well as recent approaches to estimating material properties and geometry (surface 

normal) from a single image. 

 

II.3.1. Reflectance Estimation  

As part of this research, we aim to estimate the material properties of a given object. 

In the following section, we will first review the fundamentals of modeling appearance 

properties (materials), and then we will discuss the state-of-the-art of finding the 

underlying components of an image, particularly the material properties. 

 

II.3.1.1. Preliminaries 

The reflection property of a material is described using bidirectional reflectance 

distribution function (BRDF) [NRH77]. The BRDF is a four-dimensional function that 

depends on the direction of the incoming light and the viewpoint. It can be measured 

in a variety of ways: One approach is to completely sample it using a device called a 

gonioreflectometer. Figure 25 shows a gonioreflectometer created by Murray-Coleman 

et al [MS90]. This device consists of a light source and a reflectance detector. The 

material is placed on the sample area and the BRDF is then measured by repositioning 

the material, as well as the light source and reflectance detector, in every possible way 
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(4 degree of freedom). This method produces large tables of data, which can then be 

approximated using functions. 

 

 

Figure 25 : The BRDF can be measured directly using a gonioreflectometer [MS90]. 

 

Another approach of estimating BRDF is approximating it using analytical models. 

There are several models available, including Lambertian, Phong, Ward, Cook-

torrance, etc. Some of these models are only suitable for a certain type of materials. 

The Lambertian BRDF is the simplest model and describes an ideal diffuse 

reflectance. In this model the BRDF is independent of the viewing angle, and the 

surface reflects the light evenly in all directions. However, there aren’t many objects in 

real world that adhere to this model; Under focused light, even the rough surfaces 

exhibit some specular reflections. 

The Phong model [P75] is a simple widely used model for simulating specular 

reflections. This model extends the Lambertian model by two more components. Thus, 

the BRDF is calculated by the sum of ambient, ideal diffuse (Lambertian) and specular 

components. But then again, since this model is empirical and not physically-based, it 

is possible that it reflects more light than it receives (No energy conservation). 

Therefore, the result may be unrealistic. 

There are also physically-based models that describe the BRDF based on the 

microfacet theory [TS67]. They assume that every surface is composed of set of small 

mirrors (facets) and the roughness of a surface can be specified by altering the 

distribution of the orientation of these facets. 
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II.3.1.2. Related work 

The problem of determining the underlying properties of an image can be 

approached using two different ways: intrinsic image decomposition and inverse 

rendering.  

Inverse rendering: The objective of inverse rendering is to represent a scene from 

an image in such a way that it can be rendered again from a new viewpoint. This is a 

hard task since we need to estimate lighting information, the shape of the objects 

(geometry) and their appearance (material properties) given only one image. In recent 

years, this problem is tackled using two approaches of neural rendering [TFT20] and 

differentiable renders [ZJL20]. Although neural rendering methods generate high-

quality and realistic results when re-rendering from a novel viewpoint or relighting a 

scene under new lighting parameters, their model representation is implicit, and thus 

the manipulation of the scene parameters is somewhat constrained. Differentiable 

renders are another active research topic that appears to be very promising, but it still 

requires extensive research due to its difficulty. 

Intrinsic image decomposition: This approach considers that each image is 

composed of two image layers: one that exhibits the effects formed by scene 

illumination (such as shadows) and one that exhibits material reflectance (color and 

texture). Therefore, to obtain the underlying properties of an image, it is sufficient to 

divide each image into these two layers; that is, each pixel is formed of the 

multiplication of two RGB values. The majority of approaches in this category assumes 

a Lambertian material. In the past, this task was accomplished by finding local features 

in the images such as edges and its primary application was to edit images [BKPB17] 

(removing shadows, re-coloring the objects, etc). Nowadays, deep learning is used 

since it can learn more than just the local features and incorporates the global 

semantics of each image [GRCL22]. 

In the next section, we will review the studies that concentrate solely on acquiring 

reflectance properties of an object from a single image particularly when using a deep 

learning approach:  

Georgoulis et al. [GRR18] proposed a two-step learning-based approach to estimate 

the BRDF and the illumination from a single color image. They estimated a reflectance 

map [HS79] from a given color image and the corresponding binary mask. In the first 

step, then divided it into the BRDF and the illumination in the second step. Encoder-

decoder architecture is used for both two steps. The output illumination is represented 

as an HRI spherical illumination map, and the BRDF is represented using the Phong 

model. Georgoulis et al. also proposed different approaches for each of the two steps; 

for example, they proposed a direct and an indirect approach for the first step of 



 

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 51 

License CC BY-NC-ND 4.0 

reflectance map estimation. The direct approach consists of directly estimating the 

reflectance map using neural networks and the indirect one consists of first estimating 

the object’s normal map using neural networks, then reconstructing a sparse 

reflectance map from the normals and eventually interpolate sparce reflectance using 

another network architecture. The complete approach is illustrated in Figure 26.  

 

 

Figure 26 : Georgoulis et al. [GRR18] proposed a two-step learning-based approach to 

estimate the BRDF and the illumination from a single color image 

 

Georgoulis et al made few assumptions in their approach including that there are no 

shadows in the image, and the object is chosen from a known class (such as cars) and 

has a single material. Also, they performed the image segmentations manually. 

Later, Meka et al. [MMZ18] proposed an approach using deep learning that 

estimates the BRDF of a material based on Blinn-Phong reflection model. Their 

proposed system consists of five sub-networks and is motivated by the process of 

physical image formation. First, the SegmentationNet takes a color image as input and 

estimates a binary mask. Next the binary masked is applied to the image and the 

masked image is fed into SpecularNet, which estimates a specular shading image. 

This specular shading image represents the normalized specular reflections of the 

object. It is then fed into the MirrorNet, which estimates an image demonstrating the 

high-frequency illumination arriving at the surface of the object. In other words, this 

network removes the surface roughness. All three networks mentioned previously have 

an encoder-decoder architecture (U-Net). Eventually, the two networks AlbedoNet and 

ExponentNet estimate the material parameters using the results of the previous 

networks. Figure 27 illustrates their pipeline. The AlbedoNet is defined as a regression 

problem, whereas the ExponentNet is defined as a classification problem. 

Meka et al. also generated a synthetic dataset for training all the networks. Their 

images were rendered with an object in the center in an indoor setting. 

The proposed system is real-time and performs well on general shapes. However, 

Meka et al. made a few assumptions in their work, such as the object not casting a 

shadow on itself (no self-shadowing) and not emitting light. 
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Figure 27 : Meka et al. [MMZ18] proposed a pipeline consisting of five sub-networks that 

is motivated by the process of physical image formation. 

 

II.3.2. Surface Normal Estimation 

Research and technology have advanced significantly in recent years, resulting in 

the rise of new applications that demand 3D geometric understanding. A few examples 

of these applications include robot navigation, robot manipulation, augmented reality, 

etc. The 3D geometric information can be represented in numerous ways including 

pixel-maps (depth map, normal map), point-cloud, mesh, implicit surfaces. 

One of the common types of geometric information is normal map which is a pixel-

map that describes the 3D surface orientation at each pixel. The X, Y and Z of the 

normal vector are usually stored in R, G and B of color image. In this section we go 

over the state-of-the-art in normal map estimation from a single image. 

Wang et al. [WFG15] proposed a pipeline to estimate the normal map from a single 

image on two scales: global and local. On the global scale, they trained a network to 

take a color image as input and estimate a global normal map and a room layout (under 

the Manhattan world assumption) as output; on the local scale, they trained a network 

that uses sliding window on the color image and feeds the local patches as input to the 

network. The network estimates local normals and local edges as outputs. The local 

edges are classified as concave, convex, or occlusion. Although both the normal 

estimation and room layout estimation are on continuous spaces and are regression 

problems, Wang et al. reformulated them as classification problems. Specifically in 

normal estimation, they used the triangular coding method proposed by Ladicky et al 

[LZP14] to reduce regression as classification. Eventually, they trained a fusion 

network to integrate the previous results and generate a more accurate normal 

estimation.  
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Eigen et Fergus [EF15] designed a single multiscale convolutional network to 

regress depth map, normal map, and semantic labels. Their model architecture is 

composed of three scales; the first scale takes the color image as input and predicts a 

global estimation as output; the later scales then refine the output to generate a high-

quality result.  

Zhang et al [ZS17] provided a synthetic dataset of various interior environments and 

analyzed the influence of different types of rendering on neural network training. They 

used a modified U-Net [RFB15] structure with VGG-16 encoder for normal estimation 

and achieved the state-of-the-art results. 

 

II.4. Depth Completion 

Low-cost RGB-D cameras are often incapable of accurately measuring the depth of 

objects near their boundaries or the surfaces that are transparent, shiny, thin, too close, 

or too far away from the camera. These poor measurements may appear as incorrect 

or missing values (holes) in the depth map.  

The fast marching method (FMM) was first proposed by Telea [T04] to inpaint color 

images. Later Liu et al [LGL12] extended the FMM for depth inpainting. In their method, 

they choose the inpainting order based on color similarity and distance to the hole 

boundary. Therefore, the pixels on the hole boundaries surrounded by neighbors with 

similar colors are inpainted first. The value for the missing depth is calculated by using 

a weighted average of the neighbour depth pixels. Eventually, they used an edge-

preserving filter on the completed depth to reduce the noise. However, since the 

incorrect regions were not removed prior to depth propagation, the result depth map 

may contain incorrect values. Huang et al [HHC14] proposed a method to locate and 

remove the unreliable depth values before depth completion. They found all the edges 

on the color image using Canny edge detection, then enlarged them to obtain the 

unreliable regions in the depth map. They then checked the reliability of each pixel in 

the unreliable region by comparing its depth to its neighbors. After removing the 

incorrect depth pixels, they used the fast marching method [LGL12] to find the order of 

inpainting and completed the depth using a joint bilateral filter. 

In recent years, the latest advances in artificial intelligence and deep learning have 

led to a wide range of data-driven approaches. Zhang et Funkhouser [ZF18] proposed 

a method using convolutional neural networks and optimization to complete the 

missing depth in large indoor scenes. Through their work, they explained that depth 

completion has some specific challenges. These challenges are described below: 



 

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 54 

License CC BY-NC-ND 4.0 

1. Training data: The RGB-D images captured by low-cost cameras lack ground-

truth data, where the holes are filled. Many depth estimation methods only train on the 

observed depths and can in the best case, reproduce them. These methods can’t fill 

the holes because these areas have different properties. Therefore, Zhang et 

Funkhouser used Matterport3D [CDF17] dataset to create a large-scale training set of 

105,432 RGB-D images. They used multi-view reconstruction and rendering to fill the 

missing values of the depth map and obtain ground-truth data. They prepared this data 

from 72 real-world scenes. Their reconstructions reduce missing pixels by 64.6 percent 

and also reduce the noise in ground-truth depth by averaging between the depth of 

different viewpoints. 

2. The Method: Zhang et Funkhouser conducted experiments to determine the best 

type of input and output of the neural network for depth completion, as well as some 

experiments on the ground-truth data and loss calculation, which we discuss in detail 

below.  

• The best type of output: They first tested whether it is better to predict completed 

depth, depth derivatives [CS, S16], or local differential properties of depth 

(normal map and boundary map). According to their experiments, predicting the 

normal map and boundary map is much easier and more accurate. Therefore, 

they trained convolutional neural network to generate boundary map and normal 

map from a single color image.  

• The best type of input: They tested various types of input to determine which 

produced the best results in a normal estimation task; a single color image, a 

depth map, or a color image with the corresponding depth (RGB-D). Their tests 

demonstrate that using only color image produces better results.  

• The ground-truth data: They experimented which ground-truth data is better for 

estimating normal map; using normals of the rendered depth map or computing 

the loss only on the normals of available pixels in raw depth map. Their 

experiments show that using rendered depth improves the normal estimation 

result. This is because the rendered depth contains more information (depth of 

the holes) and less noise than the raw depth. Furthermore, while using rendered 

depth as ground-truth, they tested whether training only on pixels inside holes 

or training on all pixels yielded better results. This question arises because the 

pixels in holes have different color characteristics than other pixels (for example, 

they are too far away or occur due to specular reflections), so training only on 

them may produce better result, but this also reduces the amount of training 

data. After testing, they came to a conclusion that training on all pixels produces 

better results.  
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Next, they used an optimization approach with the following objective function to 

complete the depth: 

 

𝐸 =  𝜆𝐷𝐸𝐷 + 𝜆𝑆𝐸𝑆 + 𝜆𝑁𝐸𝑁𝐵  

𝐸𝐷 =  ∑ ∥ 𝐷(𝑝) −  𝐷0(𝑝) ∥2

𝑝∈𝑇

 

𝐸𝑁 =  ∑ ∥< 𝑣(𝑝, 𝑞), 𝑁(𝑝) >∥2

𝑝,𝑞∈𝑁

 

𝐸𝑆 =  ∑ ∥ 𝐷(𝑝) −  𝐷(𝑞) ∥2

𝑝,𝑞∈𝑁

 

 

where 𝐸𝐷 is the distance between the estimated depth and the raw depth at pixel p. 

𝐸𝑁 uses the dot product to assess the consistency between the estimated depth and 

the predicted surface normal. 𝐸𝑆 encourages neighbour pixels to share similar depth 

values. B has a value between [0,1] and down-weights the 𝐸𝑁 based on the predicted 

probability a pixel is on the boundary.  

 

 

Figure 28: Proposed pipeline of Zhang et Funkhouser [ZF18]; They estimate normal map 

and boundary map from a color image and use them to complete a depth map using a 

global optimization method. 

 

Sajjan et al [SMPN20] modified the previous method and proposed the “ClearGrasp” 

algorithm to correct the depth of transparent objects for robotic manipulation. 

Transparent objects exhibit both specular reflection and refraction and low-cost RGB-

D cameras often confuse their depth with the depth of the surfaces behind them. Sajjan 

et al trained neural network to estimate normal map, boundary map and a mask of 
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transparent objects from a single color image. They used the mask to locate the 

transparent objects and remove their depth completely. The boundary estimation 

network estimates three classes (labels) for each pixel: non-boundary pixel, contact 

pixel (where the objects are in contact with other surfaces/objects) and discontinuity 

pixel (where depth gets discontinued; meaning that the depth of the object and its 

surroundings are different). To train the network, they created a large synthetic dataset 

of 50,000 RGB-D images. They prepared the data using Synthesis AI’s platform and 

rendering with Blender Cycles. They used 5 types of objects for training and 4 types 

for testing. They used physics to produce a random scene by releasing objects onto a 

surface or a box. To test the network, in addition of the synthetic test set, they prepared 

286 real-world RGB-D dataset. 

At last, they used the optimization approach proposed by Zhang et Funkhouser 

[ZF18] to complete the depth. They used the same values for 𝜆  as Zhang et 

Funkhouser in their experiments. 

They demonstrate the effectiveness of their pipeline on a robotic arm using a state-

of-the-art grasping algorithm to grasp transparent objects and show that it significantly 

improves the results. However, their method still requires further improvement; they 

need to improve the pipeline to reduce the error under varying illumination conditions 

as well as where there are sharp shadows and caustics. In addition, the cluttered 

environments make their boundary estimation more prone to error. 

 



 

 

 

Chapter III. Depth Completion for Close-Range 
Specular Objects 

III.1. Introduction and Overview 

The common low-cost RGB-D cameras suffer from some limitations in depth 

sensing. We used Intel RealSense D435 to observe some of these limitations. This 

RGB-D camera is low-cost and lightweight, and it employs active stereo technology. 

The following are our observations based on the captured data: 

1. The depth map contains missing depth values, mainly near object boundaries 

and inside specular objects. Figure 29 illustrates a few examples of this problem. 

In this figure, the first column shows the color image while the second column 

shows the colorized depth map. As we can see, the depth values at the object’s 

boundary are usually missing (shown as black areas in the colorized depth map). 

The missing area in the third row is significant due to the object's specular 

reflection. 

2. There are pixels with incorrect depth values inside the specular or transparent 

objects. Figure 30, shows an example of this issue. The first row shows the color 

image and the raw colorized depth map while the second row shows two normal 

maps; one estimated from the color image and the other calculated from the 

depth map. Here, the normal map estimated from the color image serves as the 

ground-truth. We can observe that the depth of the bottom part of the box is 

completely incorrect, as its normals have the orientation of the table.  
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Figure 29: The Intel RealSense D435's depth map contains missing values, which mainly 

occur near object boundaries and inside specular objects. Here, the first column shows 

the color image while the second column shows the colorized depth map. The missing 

depth is shown in black on the depth map. 

 

3. There are some incorrect depth values near the object's boundaries, which 

indicates that the camera confuses the object's depth with the background near 

borders. This problem also occurs between two nearby objects. 

4. The depth contains a lot of noise, which is particularly visible on the curvature 

of specular objects. 

 

 



 

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 59 

License CC BY-NC-ND 4.0 

 

Figure 30 : The first row shows the color image and the raw colorized depth map while 

the second row shows two normal maps; one estimated from the color image and the 

other calculated from the depth map. The normal map estimated from color image is 

used as ground-truth. We can observe that the depth of the bottom part of the box is 

completely incorrect since its normal map has the orientation of the table. 

 

 

 

Figure 31 : The camera confuses the depth between the object and the background near 

the borders (Left). The depth also contains noise which can be seen on the noisy 

curvature of a mug (Right). 

 

In this work, we present an approach to correct and complete the depth map of 

close-range specular objects. Our approach consists of several parts:  
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Figure 32 : Overall illustration of the proposed pipeline. First the networks estimate the 

boundary and normal map from a single color image. Next the incorrect depth is located 

and removed using the output from the networks. Eventually, the depth is filled out using 

a global optimization approach. 

 

We first create a random-scene generator to generate synthetic images for training 

neural networks. In the next step, we train a boundary estimation and a normal map 

estimation network on our training data, then use their outputs to locate and remove 

invalid areas of the depth map. These invalid pixels are detected and removed in three 

steps; first the object’s boundaries are removed. Second the regions where there is a 

significant difference between the normal map estimated from color image and the one 

estimated from depth map are removed. Third, a morphological transformation is used 

to eliminate the remaining noise. At last, we complete the depth using an optimization 

approach. The proposed pipeline is illustrated in Figure 32. 

 

III.2. Dataset Generation 

We used Blender to generate our own dataset to train neural networks for normal 

estimation and boundary detection. We started by creating a plane with a random 

texture to use as the underlying surface for placing objects on. The texture of the plane 

is chosen at random from a set of 82 textures [URL3]. Following that, we placed a 

camera in a random location around the plane, with the constraint that it always 

focuses on the plane.  

Next, we set up the environmental lighting by randomly choosing an HDRI file (High 

Dynamic Range Imaging) from a collection of 120 indoor environments [URL4]. We 

then rotated the HDRI at random to add more randomness to the rendered results. 
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Following that, we carefully selected a set of 9 Blender primitive shapes that varied 

in their geometric properties, such as whether they had a smooth surface or sharp 

edges or holes or not. The selected shapes are illustrated in Figure 33. Then we 

randomly selected a number of objects from the set and resized them to a random 

size. Afterward, we applied a random texture to each object from a collection of 47 

textures (including the Blender’s checker pattern or a simple color) [URL3]. We also 

randomly selected a roughness value to give the objects a rough or specular 

appearance. 

Next, similar to the approach of Sajjan et al [SMPN20], we applied the Blender 

physics system to the objects, and dropped them on the plane. This would create a 

random scene, as the objects collide with the plane and one another before coming to 

rest in a random location. 

 

 

Figure 33 : we carefully select a set of 9 Blender primitive shapes with varying geometric 

properties to generate a random scene. 

 

We used GPU to generate three types of data for each scene: a rendered color 

image, a corresponding normal map and a boundary map. To produce high-quality 

rendering images, we used Blender Cycles, which uses a physically-based path-tracer. 

We set the rendering resolution to 256x256 pixels. 
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The normal map was saved in OpenEXR format, while the color image and 

boundary map were both saved in PNG formats. 

 

 

Figure 34: Dataset generated by our scene generator to be used for training the normal 

estimation network 

 

When generating the normal map data, there is a case where the HDRI is visible 

through the camera view. In order to prevent the normals of those locations from 

remaining empty, we create a bounding-sphere around the plane and the objects. This 

does not pose a problem while training the normal estimation network since the 

background information is irrelevant in our scenario. Next, we change the orientation 

of the normals from world-space to camera-space and normalize them between -1 and 

1 values. 
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We use this scene generator program to generate a large amount of data for the 

following steps. Figure 34 and Figure 35 illustrate the dataset used for training normal 

estimation and boundary detection networks.  

 

 

Figure 35: Dataset generated by our scene generator to be used for training the 

boundary detection network 

 

 

III.3. Network Architecture and Training 

We used an encoder-decoder architecture for both normal estimation and boundary 

detection tasks. However, the choice of which encoder-decoder architecture to use 

was not evident. Therefore, we compared different models to choose the best one for 

our data.  
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III.3.1. Normal Estimation 

We performed a comparison between U-Net [RFB15] and DeepLabV3 [CPSA17] 

encoder-decoder architectures to find the best model for our data. The DeeplabV3 is 

trained with the Resnet101 [HZRS16] backbone while the U-Net is trained with various 

backbones of Resnet101, Inception-V4 [SIVA16] and VGG-16 [SZ14]. All the 

backbones (encoders) that we used were pre-trained on ImageNet dataset 

[DDSLLF09] [P19].  

We modified the output layer of the models to produce a three-channel output. 

Therefore, each output channel represents one of the three components of the normal 

vector x, y and z. We then normalized the three-channel output to the L2-norm. 

We used the data that we generated using our scene generator to train the networks. 

We performed few pre-processing on the input data. First, we augmented them using 

Gaussian blur. Second, since all the encoders were pre-trained on ImageNet, we 

normalized the input data the same way of pre-training for faster convergence. The 

normalization is performed this way for each channel c of the data: 

 

output[c] = (data[c] - mean[c]) / standard deviation [c] 

 

where the mean tensor is [0.485, 0.456, 0.406] and standard deviation tensor is 

[0.229, 0.224, 0.225]. These values were computed over millions of images of 

ImageNet dataset. This is especially good practice if the training datasets contain 

“common” natural images similar to ImageNet (such as indoor and outdoor scenes, 

animals, people, etc). For other types of “un-common” images (such as images taken 

under unusual lighting or medical or satellite images) it is better to calculate the mean 

and standard deviation directly from the training dataset. 

We calculated the loss function based on the element-wise dot product of the output 

and the synthetic ground-truth data. We also shuffled the training data at each epoch 

during training to prevent the network from learning the order of the data. 

We used the Adam optimizer with learning rate of 0.0001 but reduced it by the factor 

of 0.1 when there were no improvements after more than two epochs. 

We trained the networks on 10,000 synthetic data that we generated and evaluated 

each network based on the common metrics used in normal estimation. Table 1 shows 

the results.  
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Table 1: This table shows the comparison between the networks on the validation set 

based on the common metrics used in normal estimation evaluations.  

Model Backbone Mean Median 11.25° 22.5° 30° 

DeeplabV3 ResNet101 16 6.4 69.4 87.4 92.0 

U-Net ResNet101 16.21 9.2 60.1 87.5 93.4 

U-Net Inception-v4 15.61 8.0 67.1 89.1 93.2 

U-Net VGG-16 16.49 8.3 62.9 86.5 92.5 

 

We also tested the networks on some real-world data during the training. The results 

from DeeplabV3 were always blurrier than those of U-Net. However, changing the 

encoders (backbone) of U-Net architecture had little effect on the output. Figure 36 

shows an example.  

 

Figure 36: We tested the networks on some real-world data during the training. The 

results from DeeplabV3 were always blurrier than those of U-Net. However, changing the 

encoders (backbone) of U-Net architecture had little effect on the output. 
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Table 2 : Evaluation metrics of our normal estimation model for the synthetic test set 

 Mean Median 11.25 22.5 30 

Our model 24.2 18.3 38.7 54.3 99.8 

 

 

 

Figure 37: The results of the network on some new shapes with new textures. The left 

column shows the color image, the middle one shows the ground truth normal map and 

the right one shows the result from our network. 

 

We decided to use the U-Net architecture with Inception-v4 encoder as our model. 

After choosing the model, we reduced the learning rate and re-trained it on additional 

5000 synthetic images of very close-range objects. We also used the previously 

described data pre-processing (augmenting the data using the gaussian blur and 
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normalizing them). The reason for training in this way was that in the first step, the 

network mostly learns the shape and the angle of the table relative to the camera 

viewpoint as well as an approximate shape of the objects on the table. In the second 

step, it will learn the shape of the objects more precisely and refine its predictions. By 

using a low learning rate in this step, we prevent the network from forgetting the 

previous step. We evaluated the performance of the network on 100 previously unseen 

synthetic images generated by our scene generator.  

Table 2 shows the results of the evaluation of the final version of our model on the 

unseen test set. In addition, Figure 37 shows the network's results on some synthetic 

data containing new shapes and new textures [URL6]. 

 

III.3.2. Boundary Detection 

We chose U-Net architecture with Inception-v4 encoder as our boundary detection 

network similar to the normal estimation task. In the training data that we generated, 

each pixel on the boundary has a value of zero, while all other pixels have a value of 

one. Therefore, we changed the output layer of the model to generate one-channel 

output to perform a per-pixel binary classification. We applied the sigmoid activation 

function to the output layer which assigns each pixel a value between zero and one. 

This per-pixel value p can be interpreted as the confidence that the pixel belongs to the 

first class, while 1-p can show the confidence of that pixel belonging to the second 

class. We calculated the loss by using the binary cross-entropy function. As the number 

of pixels who belong to the non-boundary class is much higher than the ones belong 

to boundary class, we used a loss weight that is ten times higher for boundary pixels 

than for non-boundary pixels. This is suggested by Yang et al. [YPCLY16]. We used 

5000 images to train the network which we augmented with gaussian blur and changes 

to their contrast, brightness, saturation, and hue. 

 

III.4. Incorrect Depth Pixel Removal 

Before completing the depth, it is critical to remove the incorrect depth to prevent it 

from propagating. We perform this in three steps:  

1. As stated in the introduction to this section, the RGB-D cameras usually confuse 

the depth near the boundary of the objects; the confusion can occur between 

the adjacent objects or between a foreground object and the background. Thus, 

we start this section by removing the depth of the boundaries. For this task, we 

use the boundary map estimated by the neural network described in the 
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previous section. Since the boundary map is a grey scale image, we first convert 

it to binary; which means that it would only contains black or white values. This 

can be achieved simply by using the mean of the pixels intensities as the 

threshold, but we preferred to use the Otsu’s method which determines the 

threshold of the greyscale image automatically. This method is a well-known 

image processing technique that divides the pixels into two classes using the 

image’s histogram. After creating our binary mask, we apply it to the depth map 

to remove the boundary depth.   

2. Next, we compare the normals of the depth map to the normals estimated from 

color image using the dot product. We perform this step to remove the incorrect 

areas on the depth map that appear due to the specular reflections. We remove 

the depth where the difference between the angle of corresponding normals is 

more than 30 degrees. We choose this value experimentally because the error 

of normal map estimation network is almost always less than 30 degrees 

relative to the ground truth value. Additionally, we don’t want to remove the 

depth excessively, and if an application demands for a depth map with higher 

quality and precision, the depth of the areas with small amounts of normal 

differences can get rectified after depth completion using filtering. 

3. Finally, we use morphological transformation to remove any remaining small 

noise from the previous two steps. Firs we create a binary mask from the depth 

map, with a value of zero where there is a hole and a value of one where the 

depth is present. Then we use morphological opening with circular structure 

kernel of the size 5x5 on the mask to remove the noise. Then we apply the mask 

to the depth map. 

  

III.5. Global Optimization 

In this step, we complete the depth using the optimization algorithm proposed by 

Zhang et Funkhouser [ZF18]. Chapter 2, section 4 provides a thorough explanation of 

the optimization algorithm. The approach takes the normal map and boundary map 

estimated from color image as input and uses them as a guide in the depth completion 

process.  
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III.6. Results and Discussion 

We tested the proposed approach on real-world data. The acquisition process is as 

follows: 

We set up a test environment in an indoor scene consisting various objects on a 

table. Some of the objects are similar to the synthetic primitive shapes we used to train 

the network, while others have new shapes that the networks have never seen before. 

The scene is set up under natural lightning. 

To capture the depth and the color image, we used an Intel real-sense RGB-D 

camera. We set the depth and color stream resolutions to 424x240 pixels. In order to 

give the auto exposure time to adjust, we started streaming with the camera but 

skipped the first 20 frames. Then, using the Intel RealSense SDK [URL5], we aligned 

the color frame and the depth frame since they were obtained using different lenses. 

To reduce the noise in the depth map, we used a temporal filtering, which is a post-

processing filter available in the SDK. The temporal filter modifies the depth values 

based on the previous frames. It can add depth values where the depth is missing or 

find the incorrect depth and change its value based on the history values that it keeps. 

This filter is only suitable for use in static scenes. 

We then pass the color images through the normal estimation and boundary 

detection network. The output of each network is illustrated in Figure 38. The first 

column shows the input image, the second shows the output of boundary detection 

network, and the third shows the normal map estimated by normal estimation network.  
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Figure 38 : The first column shows the input image, the second shows the output of 

boundary detection network, and the third shows the normal map estimated by normal 

estimation network. 

  

We then continue through the pipeline and perform the incorrect depth removal and 

the depth completion steps. We perform all the training and the testing steps on a 

desktop computer equipped with an Intel Core(TM) i9 2.80GHz CPU with 16 GB RAM 

and NVIDIA GeForce RTX 2080 GPU. The entire process of our proposed approach 

takes about 2 seconds for given data with a size of 424x240; this includes 0.3 seconds 

for normal and boundary estimation from color image and incorrect depth removal from 

the depth map, as well as 1.8 seconds for the optimization-based depth completion 

step.  
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We compared the result from our proposed method to the results from the work of 

Zhang et Funkhouser [ZF18]. We downloaded the code they provided from their 

GitHub page and used it without modifying it. In the depth completion step, we used 

the same values as Zhang et Funkhouser [ZF18] which are: 𝜆𝐷 = 1000, 𝜆𝑁 = 1 and 

𝜆𝑆 = 0.001. Figure 39 illustrates the comparison; the first column shows the color 

image, the second shows the raw depth map captured by the Intel-realsense camera, 

the third shows the results of the work of Zhang et Funkhouser and the last column 

shows the result of our proposed approach. As we can see, our proposed approach 

significantly improves the depth map quality of close-range objects. Take note of how 

the object boundaries have become sharper and the depth of the boxes in the rows 

three and four have become more consistent and accurate. 

 

 

Figure 39: The first column shows the color image, the second shows the raw depth map 

captured by the Intel-Realsense camera, the third shows the results of the work of Zhang 

et Funkhouser [ZF18] and the last column shows the result of our proposed approach. In 

the first and second rows, the depth further than one meter is clipped to improve the 

visualization of the colorized depth map. 



 

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 72 

License CC BY-NC-ND 4.0 

 

Nevertheless, there is a disadvantage to our approach that may occur, but is very 

uncommon; it occurs when the depth of a region is incorrect, but their normals are 

correctly oriented. As a result, our approach won’t be able to correctly locate the 

incorrect region of the depth map since it depends on the normals. Figure 40 shows 

an illustration of this problem; since the incorrect region could not be correctly located, 

the inaccurate depth values are propagated during the depth completion step. 

 

 

 

Figure 40 : illustration of a rare drawback in our approach; (a) color image (b) raw depth 

map (c) normal map estimated from the color image. (d) normal map of the depth map 

(e) the completed depth map. The highlighted area shown in the depth map (b) is where 

the depth values are incorrect but the orientation of their normals are correct. As a result, 

our approach won’t be able to correctly locate this incorrect region and remove it. 

 

III.7. Conclusion 

In this chapter, we proposed an approach to correct and complete the depth map of 

close-range specular objects. We made two contributions: first we developed a scene 

generator to generate large-scale synthetic datasets for training neural networks. In 

this way we would have pixel-perfect data for training networks. Second, we proposed 

a method to locate the incorrect areas in the depth map and remove them. We then 

completed the depth with the method proposed by Zhang et Funkhouser [ZF18]. 

Eventually, we tested our approach on the real-world data captured by the Intel-real 
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sense camera and compared our results to those of Zhang et Funkhouser. Our 

experiments show that our method greatly enhances the depth maps to use for close-

range tasks. However, there are cases that may rarely occur and would prevent our 

approach from working effectively. These issues will be addressed in future works. 





 

 

 

Chapter IV. Reflectance Estimation 

IV.1. Introduction and Overview 

Reflectance estimation is an important task in computer vision that is used in many 

domains including virtual reality and augmented reality.  

In chapter 2 we recalled the fundamentals of reflectance acquisition, as well as the 

most recent methods that, like us, have tried to tackle the problem with neural 

networks. However, it is clear that the field of reflectance acquisition is extremely broad 

and we suggest the reader refer to the state-of-the-art [GGGDG16].  

The problem of reflectance acquisition is particularly difficult due to the complexity 

of the materials. Thus, while a BRDF aims at representing the reflectance 

characteristics of homogeneous materials, a Spatially Varying BRDF (SVBRDF) can 

also be considered as a spatial collection of BRDFs distributed on the surface. There 

are very recent methods of acquiring SVBRDF as we try to consider on our side on 

neural networks, such as [DADDB19]. These types of methods, as we can see, impose 

many constraints in exchange for accurately solving this complex problem. These 

constrictions apply to: 

• the lighting conditions 

• the shape of the samples (often flat samples) 

• the need for multiple images 
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We will not study these methods further faced with these constraints; instead, we 

decide to adopt the opposite reasoning and set the fewest constraints possible in the 

context of our cameras. As a result, we accept: 

• variable and unknown lighting conditions (power, position) 

• the arbitrary shape of objects 

• a single input image (taken with a low-cost camera) 

In this scope, there are a few methods that try to estimate the material properties of 

an object from a single image [MMZ18][GRR18]. However, their approaches consist of 

training multiple networks and still imposing numerous constraints on the object and 

the scene. Our objective is to define an easy way to estimate this data without 

overcomplicating the approach design, producing an acceptable result, and without 

imposing too many constraints on the input data. Therefore, this method can be used 

in everyday use cases.  

 

 

Figure 41: The first row shows changes in the metallic parameter, while the second 

shows the changes in roughness parameter in Blender. Overall, increasing the metallic 

parameter adds a mirror-like reflection to the object, while increasing the roughness 

removes specular reflections. 

 

IV.2. Dataset Generation 

We created a new scene generator in Blender for reflectance estimation task. First, 

we randomly selected an object from one of the nine Blender primitives illustrated in 

Figure 33 and placed it on a plane. We then chose a random HDRI [URL4] to light the 

environment and a random texture [URL3] to apply to the table. We placed the camera 

in the scene at a random location while it focuses on the object. We then chose a 

random color for the object. 
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Figure 42: Some examples from our scene generator. For each scene, we generate a 

color image, a binary mask and a text file containing the object’s Metallic, roughness and 

RGB values. 

 

Blender used a BRDF model which consists of many parameters. We only changed 

the metallic and roughness parameters of each object and kept all other parameters 

at their initial value. Figure 41 illustrates how an object will look when these two 

parameters are altered. The first row shows changes in the metallic parameter, while 

the second shows the changes in roughness parameter. These parameters can get an 

arbitrary floating-point value in the range of zero and one. Overall, increasing the 

metallic parameter adds a mirror-like reflection to the object, while increasing the 

roughness removes specular reflections. 

Eventually, we saved the color, metallic, and roughness values of the object in a 

text file and rendered each scene using Blender’s Cycles. We then generated a binary 
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mask for the object. Figure 42 shows some examples generated by our scene 

generator. 

 

IV.3. Experiments 

Since estimating material properties is a difficult problem, we considered using 

neural networks, which have demonstrated good performance on a variety of 

challenging tasks. We first started the experiment by training only one network, since 

it was not clear for us whether using only one network would be enough or whether we 

should take an indirect approach and use multiple models similar to the state-of-the-

art. We defined the problem as a regression and used an inception-v4 [SIVA16] model. 

We changed the output layer to estimate five values of metallic, roughness and R, G, 

B. We added a sigmoid layer at the end to produce the values between 0 and 1. 

We weren't sure which type of input to use when training the network, so we trained 

it twice, once with only the masked image (binary masked applied to the color image, 

thus 3 channel input) and once with both the masked image and the color image (6 

channel input). We used Mean squared error as loss function (MSE). Following is the 

definition of the MSE: 

𝑀𝑆𝐸 =
1

𝑁
∑(𝑌𝑖 − �̌�𝑖)

2

𝑁

𝑖=1

 

  

Where  𝑌𝑖 are the outputs from the network,  �̌�𝑖 are the ground-truth values and N is 

the number of samples (batches). However, this formula is only valid for a network with 

a single output node. Since we had five output nodes in our case, we also had to 

calculate the average of loss over the output nodes: 

 

𝑀𝑆𝐸 =
1

𝑂 ∗ 𝑁
∑  

𝑁

𝑖=1
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Where in our case o is 5. We trained both networks on 10,000 synthetic training 

data and validated them on 100 synthetic images. We shuffled the training data at each 

epoch during training to prevent the network from learning the order of the data. Since 

our model was pretrained on ImageNet dataset, we normalized the input data using 

the method previously discussed in the section 3.3.1 for faster convergence. We also 
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used an Adam optimizer and trained the networks with the batch size of 8. Both 

networks converge around the 6th epoch with the MSE of 0.0237. 

 

 

Figure 43: Results of the networks on synthetic test data. Although the results from both 

networks look similar, the result from the model trained with 6 channels input looks closer 

to the ground-truth, especially in the first and second rows. 

 

We compared the results of both networks on synthetic data. Figure 43 shows this 

comparison. Although the results from both networks are similar, the result from the 

model trained with 6 channels input looks closer to the ground-truth, especially in the 

first and second rows.  
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Figure 44: Results of our networks on real-world data. We used the output values of 

each network as the material values of an arbitrary primitive shape in Blender and 

rendered it using Cycles engine. 

 

 We also compared the results from the networks on real-world arbitrary objects. To 

create the real-world data, we placed a single object in a scene and took a photo of it 

with a mobile phone, and then manually created the corresponding segmentation 

mask. Figure 44 shows the results. We used the output values of each network as the 

material values of an arbitrary primitive shape in Blender and rendered it using Cycles 

engine. The color values of the objects appear to be close enough, but it was difficult 

to interpret the combination of metallic and roughness values. 
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As a result, we conducted another experiment; this time we removed the metallic 

parameter as it is mostly suitable for mirrors. We then added a point light at a random 

location near the camera to light up the object. This is because sometimes a specular 

object’s shininess was not visible through the camera since the direction of the 

incoming light in HDRI lighting environments was random. 

 

 

Figure 45: Results from our networks. For easier interpretation of the results, we 

removed the metallic parameter. However, there were not a drastic change in the output, 

meaning that roughness parameter alone could be enough for most items.  
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We generated 10,000 synthetic training data and 100 validation data again. We 

retrained both networks on the newly generated data. The network with 3 channel input 

converges around 5th epoch with MSE of 0.0207 and the network with 6 channel input 

converges around 6th epoch with MSE of 0.0176.  

IV.4. Preliminary Conclusion 

In this chapter, we have proposed a preliminary study concerning the estimation of 

the material properties of an object of arbitrary shape, from a single image and under 

uncontrolled lighting conditions. The proposed method is simple and gives results that 

we consider acceptable given our initial objectives, but it is only a first attempt and 

needs to be further developed. 

In the first experiment, the results seem to be correct, but the consideration of the 

ambient lighting remains a problem and makes the analysis of the results delicate. 

Also, the metallic and roughness values in the first experiment remain difficult to 

interpret and the removal of the metallic parameter in the second experiment did not 

bring any radical changes to the network results. Therefore, we will change the BRDF 

model to reduce the number of parameters to be determined. In general, one way to 

improve the performance of the network on real-world data could be to add more 

complex-looking objects in the synthetic training data. 

 

 

 

 

 

.



 

 

 

Chapter V. Conclusion 

This thesis is about “Simultaneous acquisition of geometry and reflectance” using 

RGB-D cameras. In this work, we discussed this subject in two different sections: 

geometry acquisition and reflectance acquisition. Our main objective was to get both 

the geometry and material of an object using low-cost RGB-D cameras. These 

cameras are more accessible to the general public, but as previously discussed, the 

depth map obtained from them may contain holes or incorrect measurements. This is 

primarily an issue with active sensors and occurs on specular or transparent objects. 

For our study of geometry acquisition, we first examined Intel Real Sense D435 

camera and carefully observed its limitations in depth sensing. We then proposed a 

method based on deep learning to correct and complete the depth of close-range 

specular objects. Our method consists of four main parts: 

• Dataset generation: We created a scene generator that generates synthetic 

dataset to train the networks with pixel-perfect ground-truth data. Each data 

consists of a color image with a corresponding normal map and a boundary 

map. 

• Network training: We trained convolutional neural networks to estimate normal 

map and a boundary map from a single color image. We compared different 

network architectures to find the best one for our data. We used the output from 

these networks for the next two parts. 

• Incorrect depth pixel removal: We located and removed the incorrect regions 

in the depth map in three steps: first, we removed the object boundaries using 

the boundary map generated by our network, second, we compared the normal 



 

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 84 

License CC BY-NC-ND 4.0 

map estimated from the network and the normal map calculated from the depth 

map and removed the areas where these two differ significantly. At last, we 

removed all the remaining noise by using a morphological transformation.    

• Depth completion: we completed the depth map by using an optimization 

approach and with the guidance of the outputs from normal estimation and 

boundary detection networks. 

Following that, we demonstrate that our pipeline effectively improves the quality of 

the acquired depth map. 

For the study of material acquisition, we investigated a straightforward method to 

estimate the material properties of an object from a single color image. Our proposed 

method consists of two steps: 

• Dataset generation: We modified the scene generator that we previously 

created in geometry acquisition section and created a new synthetic dataset. 

Each data consists of a color image, a binary mask and a text file containing 

the object’s Metallic, roughness and RGB values. 

• Network training: We trained a neural network model on our synthetic data to 

directly estimate the material properties. 

The network generates decent result, but more experiments are required to improve 

its performance. 

 

V.1. Future work 

Regarding geometry acquisition, in chapter 3 discussion section, we explained an 

uncommon drawback that occurs when locating and removing the incorrect depth. This 

drawback can get investigated in future research. In addition, another interesting 

subject would be to investigate the impact of noise differentials of synthetic data 

compared to real-world data in our pipeline. 

Regarding material estimation, the experiments that we presented are still in their 

early stages. There are many ways in which the results can be improved. One way is 

to thoroughly examine the synthetic dataset to ensure it has enough diversity regarding 

its object shapes and shadow positions to cover all real-life situations.  

Additionally, since we are using RGB-D cameras, we have both the color image and 

the corresponding depth map in a single acquisition. Thus, we can use them both for 

improving the material estimation. As stated previously, the depth map obtained by 

active RGB-D sensors usually suffers from noise, missing values, and incorrect 
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measurements on specular and transparent objects. Analyzing the depth map 

thoroughly for types of noise and missing values can provide valuable information 

about the material properties and the light direction. Furthermore, the shape of the 

object has an important role in the color image formation process, adding this 

information can help improve the results as well. 
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Simultaneous Acquisition of Geometry and Reflectance 

Cette thèse porte sur « l'acquisition simultanée de la géométrie et de la réflectance ».  
Les caméras RGB-D sont utilisées dans une variété d'applications, y compris la numérisation 
3D, la navigation et la manipulation de robots, etc. Ces caméras fournissent simultanément 
une image couleur (RVB) et une carte de profondeur. La carte de profondeur indique la 
distance entre les objets et la caméra par pixel. Ces caméras RGB-D sont disponibles dans 
une variété de prix ; avec en particulier des modèles low-costs destinés à un usage grand 
public. Cependant, ces caméras présentent des défauts de mesure dans certaines zones / 
sous certaines conditions. Par conséquent, la carte de profondeur obtenue présente des 
valeurs manquantes (trous), des mesures de profondeur incorrectes et du bruit. Ces 
problèmes sont plus fréquents dans les zones où les objets sont transparents, spéculaires, 
trop proches ou trop éloignés, ou trop fins. 
Dans ce travail, nous proposons une approche pour corriger et compléter la carte de 
profondeur d’objets spéculaires proches. Notre approche se compose de différentes parties : 
d'abord, nous créons un générateur de scènes 3D aléatoires qui génère des images 
synthétiques pour l'entraînement du réseau de neurones. Deuxièmement, nous entraînons 
des réseaux de neurones à l'aide de nos images synthétiques pour aider à identifier les régions 
incorrectes dans la carte de profondeur. Finalement, nous complétons la profondeur en 
utilisant une méthode d'optimisation. Nous testons notre pipeline proposé sur des données du 
monde réel et démontrons qu'il obtient d'excellents résultats. 
Obtenir la réflectance d'un objet réel à partir d'une seule image est une tâche difficile. Nous 
proposons une première approche simplifiée par une adaptation de la méthode que nous 
avons proposée précédemment : création d'un nouveau générateur de scènes pour générer 
des ensembles de données synthétiques et entraîner des réseaux de neurones. L'objectif est 
d'obtenir une première approximation utilisable par un graphiste. 

Mots-clés : Complétion de la profondeur, Images RGB-D, Images synthétiques 

Simultaneous Acquisition of Geometry and Reflectance 

This thesis focuses on the “simultaneous acquisition of geometry and reflectance”. 
RGB-D cameras are used in a variety of applications, including 3D scanning, robot navigation 
and manipulation, and so on. These cameras provide a color (RGB) image and a depth map 
simultaneously. The depth map indicates the distance between objects and the camera per 
pixel. These RGB-D cameras are available in a variety of prices; with the low-cost models 
intended for general public use. However, these low-cost cameras suffer from measurement 
errors in certain areas / under certain conditions. Therefore, the result depth map contains 
missing values (holes), incorrect depth measurements, and noise. These issues are most 
common in areas where objects are transparent, specular, too close or too far away, or too 
thin. In this work, we propose an approach for correcting and completing the depth of close-
range specular objects. Our approach consists of several steps: First, we create a random 3D 
scene generator that generates synthetic images for training neural network. Second, we train 
neural networks using our dataset to help identifying incorrect regions in the depth map. 
Eventually, we complete the depth using an optimization method. We test our proposed 
pipeline on real-world data and demonstrate that it achieves excellent results. 
Obtaining an object's material properties (reflectance) from a single image is a challenging and 
ill-posed task. We propose an early approach simplified by an adaptation of the method we 
proposed previously: creation of a new scene generator to generate synthetic datasets and 
train neural networks. The objective is to obtain a first approximation usable by a graphic 
designer. 

Keywords: Depth completion, RGB-D images, Synthetic dataset 
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