
HAL Id: tel-04009337
https://theses.hal.science/tel-04009337

Submitted on 1 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simultaneous acquisition of geometry and reflectance
Shahrzad Pourmand

To cite this version:
Shahrzad Pourmand. Simultaneous acquisition of geometry and reflectance. Graphics [cs.GR]. Uni-
versité de Limoges, 2023. English. �NNT : 2023LIMO0006�. �tel-04009337�

https://theses.hal.science/tel-04009337
https://hal.archives-ouvertes.fr

University of Limoges

ED 653 : SCIENCES ET INGENIERIE

XLIM Research Institute – UMR CNRS 7252

A thesis submitted to the University of Limoges
in partial fulfillment of the requirements of the degree of

Doctor of Philosophy
Image Synthesis and Analysis

Presented and defensed by

Shahrzad Pourmand

On February 3, 2023

Thesis supervisors:

Mr. Stéphane Mérillou and Mr. Nicolas Mérillou

JURY:

President of jury
Mr. Jean-Jacques Bourdin Professor, University of Paris 8

Reporters
Mr. Jean-Pierre Jessel Professor, University of Toulouse-III Paul-Sabatier
Mr. Guillaume Gilet Professor, University of Sherbrooke

Examiners
Mr. Maxime Maria Professor, University of Limoges

Simultaneous Acquisition of Geometry and Reflectance

Ph.D. Thesis

http://www.unilim.fr

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 2

License CC BY-NC-ND 4.0

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 3

License CC BY-NC-ND 4.0

Dedicated to my family

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 4

License CC BY-NC-ND 4.0

I am so clever that sometimes I don’t understand a single word of what I am saying.

Oscar Wilde

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 5

License CC BY-NC-ND 4.0

Acknowledgements

First of all, I would like to express my deepest gratitude to my Ph.D. supervisors,

Mr. Stephane Mérillou and Mr. Nicolas Mérillou, for their guidance and support. I am

very thankful for their help and mentoring throughout my Ph.D. studies. In addition, I

would like to thank the jury members for taking the time to read and evaluate my work.

I would also like to thank the members of the International Welcome Office of the

University of Limoges (Bureau d'Accueil International) for their assistance related to

my stay.

Moreover, I would like to thank my uncle and aunt, Vahid and Mitra Meghdadi, as

well as my cousins, for their continuous support and encouragement during my stay in

Limoges. I would also like to thank my friends and colleagues at the University of

Limoges, for making me feel welcome and for providing me with enjoyable moments.

Lastly, I would like to thank my family for their support and love. Their belief in me

has kept me motivated throughout this work.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 6

License CC BY-NC-ND 4.0

Rights

This creation is available under a Creative Commons contract:

« Attribution-Non Commercial - No Derivatives 4.0 International »

online at https://creativecommons.org/licenses/by-nc-nd/4.0/

http://creativecommons.org/licenses/by-nc-nd/3.0/fr/

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 7

License CC BY-NC-ND 4.0

Table of Contents

Acknowledgements .. 5

Rights ... 6

Table of Contents ... 7

List of Figures ... 9

List of Tables .. 15

Abstract .. 16

Résumé .. 17

Chapter I. Introduction .. 19

I.1. Motivation ...19

I.2. Contribution and Outline ...22

Chapter II. Fundamental and Previous work... 25

II.1. RGB-D Cameras ...25

II.2. Deep Learning ...29

II.2.1. Image Classification ..30

II.2.2. Semantic Segmentation ..44

II.3. Estimating Underlying Properties of an Image ..48

II.3.1. Reflectance Estimation ...48

II.3.2. Surface Normal Estimation ...52

II.4. Depth Completion ..53

Chapter III. Depth Completion for Close-Range Specular Objects 57

III.1. Introduction and Overview ..57

III.2. Dataset Generation ..60

III.3. Network Architecture and Training ...63

III.3.1. Normal Estimation ..64

III.3.2. Boundary Detection ..67

III.4. Incorrect Depth Pixel Removal ...67

III.5. Global Optimization ..68

III.6. Results and Discussion ..69

III.7. Conclusion..72

Chapter IV. Reflectance Estimation .. 75

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 8

License CC BY-NC-ND 4.0

IV.1. Introduction and Overview ...75

IV.2. Dataset Generation ..76

IV.3. Experiments ...78

IV.4. Preliminary Conclusion ..82

Chapter V. Conclusion .. 83

V.1. Future work ...84

Bibliography .. 86

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 9

License CC BY-NC-ND 4.0

List of Figures

Figure 1: The RGB-D cameras provide a color (RGB) image alongside a depth map.

The depth map indicates per pixel how far away objects are from the camera. This

data is captured by Intel Realsense D435 camera. The depth map is colorized for

better visualization. ... 19

Figure 2: Microsoft introduced Kinect sensors for gaming purposes with the Xbox

console. The sensor can track human body and hand motion without the use of any

controller. (Image from [URL9]) .. 21

Figure 3: Stereovision, Structured Light, and Time of Flight are common technologies

used in RGB-D cameras for depth sensing. ... 26

Figure 4: TaraXL camera from e-con Systems™ [URL7] uses passive stereo

technique to capture the depth. It uses two lenses to capture images of a scene from

different viewpoints, and then uses the triangulation method to calculate the depth. 27

Figure 5: Illustration of two common RGB-D cameras: Microsoft Kinect v1 and

Microsoft Kinect v2. Microsoft Kinect v1 uses structured light technology and has an

infrared projector. Microsoft Kinect v2 uses Time-of-flight technology and contains an

emitter and a receiver for depth sensing. Figure from [PBN16]. 28

Figure 6 : Intel Realsense D415 (left) and D435 (right). They both use stereo vision

with an infrared projector. Figure from [URL2] .. 28

Figure 7 : In classification, the computer understand the image and assigns it to a

class (label). In segmentation, the computer understands the image in pixel level and

divides each image to different segments. ... 29

Figure 8: Each convolutional layer takes a four-dimensional tensor as input (a batch

of images/feature maps), convolves it with weight matrices (also known as filters),

and outputs a four-dimensional tensor (a batch of feature maps). 30

Figure 9: During the convolution operation, the filter slid across the entire spatial

positions of the input tensor, and the dot product of the filter and that section of the

input tensor is computed. In this example (b-d), the filter moves by one pixel at each

step (stride = 1)... 31

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 10

License CC BY-NC-ND 4.0

Figure 10: Padding is used in CNNs to control the amount of spatial information lost

during convolutions. In this example we used padding of one with pixel values of zero

(zero-padding - illustrated in pink). ... 32

Figure 11: Here is an example of Max pooling which performs max function on 2x2

regions of the input. The main goal of a pooling layer is to downsample the input. .. 33

Figure 12: Activation functions add non-linearity to the neural network. Some of the

most common activation functions are illustrated in this figure. 34

Figure 13: The fully connected layers comprised of three types of layers: input layer,

hidden layer(s) and the output layer. Each layer consists of many nodes that are

connected to the nodes of the next and previous layers. .. 35

Figure 14: Overall schema of AlexNet, VGG-16 and VGG-19. AlexNet has 8 layers in

total: 5 convolutional layers (with various kernel sizes) combined with max-pooling

layers, and 3 fully-connected layers (FC) at the end of the network. In VGG

architecture design, all convolutional layers have the same kernel size of 3x3, with

max-pooling of 2x2, and the number of channels doubles after each layer of max-

pooling.The FC layers of VGG are the same as AlexNet. (Figure from Stanford

lectures [URL1]) .. 37

Figure 15: Entire GoogLeNet architecture (Figure from [SLJS14]); The inception

module is repeated throughout the network. This module uses parallel computation to

perform convolutions with kernels of various sizes (1x1, 3x3, and 5x5) and a max

pooling simultaneously. However, before performing the 3x3 and 5x5 convolutions, it

performs a 1x1 convolution to compress the input. .. 38

Figure 16 : Residual Block adds the input to the output (Figure from [HZRS16]) 39

Figure 17 : Illustration of ResNet-34 vs VGG-19, both designed for classification on

ImageNet dataset (Figure from [HZRS16]). Resnet architecture contains convolutions

with mostly 3x3 kernel sizes, which is inspired by the VGG architecture. The residual

blocks are repeated throughout the network... 40

Figure 18: Entire inception-v4 (left), Inception-ResNet-v1 and Inception-ResNet-v2

(right) model architectures. The Inception-ResNet-v1 and Inception-ResNet-v2

models have the same architecture but their underlying modules differ. For more

information on underlying modules (Inception(resnet)-A, Inception(resnet)-B,

file:///C:/Users/Shahr/Desktop/phd/____________last%20send/mythesis.docx%23_Toc127180997

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 11

License CC BY-NC-ND 4.0

Inception(resnet)-C and Reductions) please refer to the original paper. (Figure from

[SIVA16]) .. 41

Figure 19 : Comparison of more than 40 neural networks [BCCN18]; The x axis

shows the computational complexity (floating point operations of a forward pass) and

the y axis shows the accuracy. The size of the circle represents the complexity of the

model which is the number of learnable parameters in total. The result is measured

on both workstation and the embedded board. ... 43

Figure 20: Overall workflow of FCN [LSD15] encoder-decoder. 44

Figure 21: Segmentation results of FCN [LSD15]. It is important to note that adding

features from lower layers to the up sampling layers adds more details to the final

segmentation result. ... 44

Figure 22: U-Net architecture proposed by Ronneberger et al. [RFB15]. The down

sampling and up sampling layers are symmetric. The corresponding layers of down

sampling and up sampling are connected using skip-connections. 45

Figure 23: The ASPP module (atrous spatial pyramid pooling), uses parallel

computing of different atrous convolutions and concatenate the result at the end.

(Image from [CPSA17]) .. 46

Figure 24 illustrates the overall pipeline of the DeeplabV2 [CPKMY17]. Their pipeline

manly consists of a deep CNN (DCNN) that perform the segmentation task and a

CRF that refines the result. (a) First the network takes an image as input and

performs convolutions using the atrous convolutions. At the end of the convolutions

there is the ASPP module that produces the output. (b) Next, the result is upsampled

using bilinear interpolation to reach the resolution of the input image and eventually

(c) it goes through a fully connected CRF for refinement. .. 47

Figure 25 : The BRDF can be measured directly using a gonioreflectometer [MS90].

 ... 49

Figure 26 : Georgoulis et al. [GRR18] proposed a two-step learning-based approach

to estimate the BRDF and the illumination from a single color image 51

Figure 27 : Meka et al. [MMZ18] proposed a pipeline consisting of five sub-networks

that is motivated by the process of physical image formation. 52

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 12

License CC BY-NC-ND 4.0

Figure 28: Proposed pipeline of Zhang et Funkhouser [ZF18]; They estimate normal

map and boundary map from a color image and use them to complete a depth map

using a global optimization method. ... 55

Figure 29: The Intel RealSense D435's depth map contains missing values, which

mainly occur near object boundaries and inside specular objects. Here, the first

column shows the color image while the second column shows the colorized depth

map. The missing depth is shown in black on the depth map................................... 58

Figure 30 : The first row shows the color image and the raw colorized depth map

while the second row shows two normal maps; one estimated from the color image

and the other calculated from the depth map. The normal map estimated from color

image is used as ground-truth. We can observe that the depth of the bottom part of

the box is completely incorrect since its normal map has the orientation of the table.

 ... 59

Figure 31 : The camera confuses the depth between the object and the background

near the borders (Left). The depth also contains noise which can be seen on the

noisy curvature of a mug (Right). .. 59

Figure 32 : Overall illustration of the proposed pipeline. First the networks estimate

the boundary and normal map from a single color image. Next the incorrect depth is

located and removed using the output from the networks. Eventually, the depth is

filled out using a global optimization approach. .. 60

Figure 33 : we carefully select a set of 9 Blender primitive shapes with varying

geometric properties to generate a random scene. .. 61

Figure 34: Dataset generated by our scene generator to be used for training the

normal estimation network .. 62

Figure 35: Dataset generated by our scene generator to be used for training the

boundary detection network.. 63

Figure 36: We tested the networks on some real-world data during the training. The

results from DeeplabV3 were always blurrier than those of U-Net. However, changing

the encoders (backbone) of U-Net architecture had little effect on the output. 65

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 13

License CC BY-NC-ND 4.0

Figure 37: The results of the network on some new shapes with new textures. The

left column shows the color image, the middle one shows the ground truth normal

map and the right one shows the result from our network. 66

Figure 38 : The first column shows the input image, the second shows the output of

boundary detection network, and the third shows the normal map estimated by

normal estimation network. ... 70

Figure 39: The first column shows the color image, the second shows the raw depth

map captured by the Intel-Realsense camera, the third shows the results of the work

of Zhang et Funkhouser [ZF18] and the last column shows the result of our proposed

approach. In the first and second rows, the depth further than one meter is clipped to

improve the visualization of the colorized depth map. .. 71

Figure 40 : illustration of a rare drawback in our approach; (a) color image (b) raw

depth map (c) normal map estimated from the color image. (d) normal map of the

depth map (e) the completed depth map. The highlighted area shown in the depth

map (b) is where the depth values are incorrect but the orientation of their normals

are correct. As a result, our approach won’t be able to correctly locate this incorrect

region and remove it. .. 72

Figure 41: The first row shows changes in the metallic parameter, while the second

shows the changes in roughness parameter in Blender. Overall, increasing the

metallic parameter adds a mirror-like reflection to the object, while increasing the

roughness removes specular reflections. ... 76

Figure 42: Some examples from our scene generator. For each scene, we generate

a color image, a binary mask and a text file containing the object’s Metallic,

roughness and RGB values. ... 77

Figure 43: Results of the networks on synthetic test data. Although the results from

both networks look similar, the result from the model trained with 6 channels input

looks closer to the ground-truth, especially in the first and second rows. 79

Figure 44: Results of our networks on real-world data. We used the output values of

each network as the material values of an arbitrary primitive shape in Blender and

rendered it using Cycles engine. .. 80

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 14

License CC BY-NC-ND 4.0

Figure 45: Results from our networks. For easier interpretation of the results, we

removed the metallic parameter. However, there were not a drastic change in the

output, meaning that roughness parameter alone could be enough for most items. 81

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 15

License CC BY-NC-ND 4.0

List of Tables

Table 1: This table shows the comparison between the networks on the validation set

based on the common metrics used in normal estimation evaluations. 65

Table 2 : Evaluation metrics of our normal estimation model for the synthetic test set

 ... 66

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 16

License CC BY-NC-ND 4.0

Abstract

This thesis focuses on the “simultaneous acquisition of geometry and reflectance”.

RGB-D cameras are used in a variety of applications, including 3D scanning, robot

navigation and manipulation, and so on. These cameras provide a color (RGB) image

and a depth map simultaneously. The depth map indicates the distance between

objects and the camera per pixel. These RGB-D cameras are available in a variety of

prices; with the low-cost models intended for general public use. However, these low-

cost RGB-D cameras suffer from measurement errors in certain areas / under certain

conditions. Therefore, the result depth map contains missing values (holes), incorrect

depth measurements, and noise. These issues are most common in areas where

objects are transparent, specular, too close or too far away, or too thin.

In this work, we propose an approach for correcting and completing the depth of

close-range specular objects. Our approach consists of several steps: First, we create

a 3D scene generator that generates a random scene with a table in the center and

several objects on it. Each scene is generated by varying different components such

as the number of objects, their textures, lighting conditions, and so on. We then use

this generator to create a great number of synthetic images for training the neural

network. Second, we train neural networks on our synthetic dataset to help identify

incorrect regions of the depth map. We then remove these areas in several steps.

Eventually, we complete the depth using an optimization method. We test our

proposed pipeline on real-world data and demonstrate that it achieves excellent

results.

Obtaining an object's material properties (reflectance) from a single image is a

challenging and ill-posed task. Previous works employed multiple neural networks and

imposed numerous constraints on the input data to obtain these properties. Their

imposed constraints include restricting object shapes, not considering any shadows in

the images, and so on. Our objective is to define a simple method for estimating an

object's reflection properties from a single image that is applicable in everyday use

cases, yields acceptable results, and is not overly complicated in design. We propose

an approach simplified by an adaptation of the method we proposed previously; we

create a new scene generator to generate synthetic datasets and train neural networks

to infer reflectance directly.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 17

License CC BY-NC-ND 4.0

Résumé

Cette thèse porte sur « l'acquisition simultanée de la géométrie et de la réflectance

».

Les caméras RGB-D sont utilisées dans une variété d'applications, y compris la

numérisation 3D, la navigation et la manipulation de robots, etc. Ces caméras

fournissent simultanément une image couleur (RVB) et une carte de profondeur. La

carte de profondeur indique la distance entre les objets et la caméra par pixel. Ces

caméras RGB-D sont disponibles dans une variété de prix ; avec en particulier des

modèles low-cost destinés à un usage grand public. Cependant, ces caméras

présentent des défauts de mesure dans certaines zones / sous certaines conditions.

Par conséquent, la carte de profondeur obtenue présente des valeurs manquantes

(trous), des mesures de profondeur incorrectes et du bruit. Ces problèmes sont plus

fréquents dans les zones où les objets sont transparents, spéculaires, trop proches ou

trop éloignés, ou trop fins.

Dans ce travail, nous proposons une approche pour corriger et compléter la carte

de profondeur d’objets spéculaires proches. Notre approche se compose de

différentes parties: Tout d'abord, nous créons un générateur de scène 3D qui génère

une scène avec une table au centre et plusieurs objets dessus. Chaque scène est

générée en faisant varier différents composants tels que le nombre d'objets, leurs

textures, les conditions d'éclairage, etc. Nous utilisons ensuite ce générateur pour

créer un grand nombre d'images synthétiques pour entraîner le réseau de neurones.

Deuxièmement, nous entraînons des réseaux de neurones sur notre ensemble de

données synthétiques pour aider à identifier les régions incorrectes de la carte de

profondeur. Nous supprimons ensuite ces zones en plusieurs étapes. Finalement,

nous complétons la profondeur en utilisant une méthode d'optimisation. Nous testons

notre pipeline proposé sur des données du monde réel et démontrons qu'il obtient

d'excellents résultats.

Obtenir la réflectance d'un objet réel à partir d'une seule image est une tâche

difficile. Les travaux antérieurs utilisaient plusieurs réseaux de neurones et imposaient

de nombreuses contraintes sur les données d'entrée pour obtenir ces propriétés. Leurs

contraintes imposées incluent la restriction des formes d'objets, la non-prise en compte

des ombres dans l'image, etc. Notre objectif est de définir une méthode simple pour

estimer les propriétés de réflexion d'un objet à partir d'une seule image qui soit

applicable dans les cas d'utilisation quotidienne, donne des résultats acceptables et

ne soit pas trop compliquée dans la conception. Nous proposons une première

approche simplifiée par une adaptation de la méthode que nous avons proposée

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 18

License CC BY-NC-ND 4.0

précédemment : création d'un nouveau générateur de scènes pour générer des

ensembles de données synthétiques et entraîner des réseaux de neurones.

Chapter I. Introduction

I.1. Motivation

Color images captured by standard 2D digital cameras have been used in many

research fields over the last few decades, with great success in computer vision tasks

such as image classification, object detection and tracking, semantic segmentation,

etc. However, 2D color images lack geometric information and are highly dependent

on the illumination conditions of the scene. As a result, solving more complex computer

vision tasks that emerge over time with only 2D flat images is challenging.

Figure 1: The RGB-D cameras provide a color (RGB) image alongside a depth map. The

depth map indicates per pixel how far away objects are from the camera. This data is

captured by Intel Realsense D435 camera. The depth map is colorized for better

visualization.

In recent years, researchers began to focus on a new type of sensor called RGB-D

cameras, since these cameras provide additional information about the scene. The

RGB-D cameras provide a color (RGB) image alongside a depth map. The depth map

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 20

License CC BY-NC-ND 4.0

indicates per pixel how far away objects are from the camera. An example of data

captured by an RGB-D camera is illustrated in Figure 1. By using color image and the

depth information of a scene together, many new applications and solutions in various

fields are introduced. Some of these applications are as following:

• Agriculture: Utilizing agricultural robots is one way to address the shortage of

skilled manual laborers and to lower farming costs. These robots use RGB-D

cameras to detect and locate crops and fruits and provide useful information

about them [FGW20]. They are also capable of harvesting.

• Health: RGB-D cameras can be used in hospitals for a variety of applications.

For example, these cameras have been used in operating rooms at Sunnybrook

hospital in Canada. Surgeons can then browse and navigate through CT scan

images without touching the computer during operations. As a result, they will

not need to rescrub [URL10]. Another example is the use of RGB-D cameras in

neonatal care departments to assist clinical staff in better supervising and

documenting tasks while reducing overload [SGHG21].

• Cultural heritage preservation: Cultural heritage may lose their original shape

and color due to passage of time or repeated reparation. It is critical to create a

digital model of them for future reference. The digitalization process can be

accomplished with RGB-D cameras [GSB18]. Moreover, the digital models can

be used for creating online virtual museums.

• Robotic assistance: RGB-D cameras can assist robot grasping and

manipulation tasks such as dishwashing, sorting and cleaning objects, and so

on [SMPN20].

• 3D Printing tasks: In recent years, many affordable 3D printers have become

available for general public use. However, few people are expert in 3D

modelling. RGB-D cameras can be used to scan objects and then re-print them

in different sizes using 3D printers.

While these cameras provide useful information, they differ in terms of price and

acquisition quality. High-quality RGB-D cameras are typically very expensive and not

available for general public use. For example, Matterport Pro 3 is a high-quality sensor

that captures accurate and detailed 3D data, but costs over 5000 euros [URL8].

The first low-cost RGB-D camera was introduced by Microsoft in 2010. The

company introduced Kinect v1 for gaming purposes with the Xbox console. The sensor

can track human body and hand motion without the use of any controller (Figure 2).

Later, many more low-cost cameras were introduced such as Microsoft Kinect v2, Intel

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 21

License CC BY-NC-ND 4.0

Realsense D435 [IR22], etc. Furthermore, many manufacturers have recently begun

to incorporate RGB-D cameras into a variety of products, including laptops and

smartphones.

Even though low-cost RGB-D cameras are more accessible to the general public,

they have some limitations; The result depth map contains missing values (holes) or

incorrect measurements and noise because these cameras are unable to accurately

measure how far away certain areas are. These issues typically occur in areas where

the objects are transparent or specular, too near or too far away, or too thin. There has

been a lot of research on how to complete the depth map of these affordable cameras

in indoor and outdoor scenes, but not so much on close-range objects. In this work we

propose an algorithm to correct and complete the depth of close-range specular

objects. We enhance the depth map’s quality by benefiting from the corresponding 2D

color image and the advances in the data driven approaches.

Figure 2: Microsoft introduced Kinect sensors for gaming purposes with the Xbox

console. The sensor can track human body and hand motion without the use of any

controller. (Image from [URL9])

Another area of research is the estimation of material properties from real-world

objects. 3D artists generally try to achieve realistic rendering by using material

properties that are similar to those of real-world objects. There are numerous analytic

reflection models based on physics for modeling these properties. However, these

models have multiple parameters, and it is time-consuming to try to guess them by

only observing the real-world objects and choosing different values in 3D modelling

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 22

License CC BY-NC-ND 4.0

software. Another way to estimate the material properties is using gonioreflectometer.

This device produces very accurate results, but it is very expensive, and the process

requires a lot of time. In this work we discuss a new approach of acquiring material

properties of an object from a color image while taking advantage of deep learning

advancements. As a result, RGB-D cameras would be able to simultaneously retrieve

an object's material properties while capturing its depth. Since our proposed approach

only relies on the color image, it is also possible to apply it to the mobile phones

equipped with simple RGB cameras.

I.2. Contribution and Outline

This work is arranged as follows:

Chapter I. Introduction:

In chapter one, we provide an overview of this work. As we outline the context, we

then describe the problem that exists, the purpose of the thesis, and its application to

real-life situations.

Chapter II. Fundamental and Previous work:

In chapter two, we present the fundamentals and past work related to our research.

we begin by discussing the technologies used in RGB-D cameras to measure depth.

Then, we present the fundamentals of deep learning as well as the past work in two

different computer vision tasks: Image classification and semantic segmentation. We

investigate previous network architecture designs and discuss the overall comparison

of them. Following that, we discuss the state-of-the-art in three additional tasks related

to our research: 3D scene understanding from single image, depth map completion

and reflectance estimation. The study of these previous works allows us to focus on

the best approaches for our research.

Chapter III. Depth Completion for Close-Range Specular Objects:

In chapter three, we present an approach to correct and complete the depth map of

close-range specular objects using neural networks and optimization algorithm. We

explain thoroughly in different sections, the various parts of the approach such as

dataset generation, network architecture and training, incorrect depth removal and the

final depth completion. We then discuss the results of this approach on the depth map

of the Intel Realsense D435 camera, as well as its limitations and future work. We

presented this approach as a full article in WSCG 2022.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 23

License CC BY-NC-ND 4.0

Chapter IV. Reflectance Estimation:

In chapter four, we discuss our approach to estimate the material properties of an

object form color image using neural network. We perform various experiments on the

real and synthetic data to evaluate the method.

Chapter V. Conclusion:

In this chapter, we provide a summary of our work followed by a general conclusion.

Furthermore, we describe the limitations of our approach and suggest future research

directions.

Chapter II. Fundamental and Previous work

In this chapter we discuss the fundamental and previous studies related to our work.

In the first section, we explain what depth cameras are and then discuss their various

types. In the second section, we discuss the fundamentals and the state of the art in

deep neural network architecture design. In the third section, we talk about the recent

approaches of estimating underlying properties of a single color image. Eventually at

the last section, we go over the most recent methods for completing the depth map of

indoor scenes.

II.1. RGB-D Cameras

The commodity RGB-D cameras capture two types of data simultaneously: an RGB

image which is the typical color image and a depth map. A depth map is a pixel-map

that provides the distance from the camera to the objects in the scene at each pixel.

These two data are usually captured through separate lenses that are located apart

from each other.

There are two types of RGB-D cameras: passive sensors and active sensors.

Passive sensors require external illumination, whereas active sensors have projectors

that project light onto the scene. All technologies used by RGB-D cameras are

illustrated in Figure 3.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 26

License CC BY-NC-ND 4.0

Figure 3: Stereovision, Structured Light, and Time of Flight are common technologies

used in RGB-D cameras for depth sensing.

Passive sensors use stereo vision technology which is based on binocular human

vision. They use two (or more) lenses to capture images of a scene from different

viewpoints, and then use the triangulation method to calculate the depth. These

sensors perform well under natural illumination and direct sunlight. However, they

struggle in low-light conditions, texture-less scenes, or occlusion situations, in which

one object is visible through one lens but not the other. Also, their depth sensing

technique is computationally expensive since the corresponding points need to be

founded in different images (from different viewpoints) of a scene. One example of this

type of sensor is TaraXL camera from e-con Systems™ [URL7]. It is shown in Figure

4.

Active sensors are categorized into two groups: Structured light and Time of flight

(ToF).

• Structured light sensors contain an infrared projector and a camera. The IR

projector emits a pattern onto the scene which deforms according to the

geometric shape of the objects present in the scene. The camera determines

the depth by observing the pattern deformations. One of the popular cameras

in this category is Microsoft Kinect V1 which is illustrated in Figure 5. The

advantage of these types of cameras compared to passive sensors is that they

project a pattern into the environment, which enables them to perform well in

texture-less scenes. They do, however, have some drawbacks; For instance,

they are only suitable for indoor use because they perform poorly under direct

sunlight. Moreover, they struggle to work correctly on shiny or dark objects.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 27

License CC BY-NC-ND 4.0

Figure 4: TaraXL camera from e-con Systems™ [URL7] uses passive stereo technique

to capture the depth. It uses two lenses to capture images of a scene from different

viewpoints, and then uses the triangulation method to calculate the depth.

• Time of Flight sensors contain a transmitter and a receiver. In this type of sensor,

the depth is measured by the amount of time it takes for a signal to travel from

the transmitter to the scene, be reflected, and then be received back by the

receiver. Microsoft Kinect V2 sensor is in this category (Figure 5). Time-of-Flight

sensors can operate in one of two ways: direct (pulsed ToF) or indirect

(modulated ToF). The pulsed ToF sensor emits pulses of light and measures

the time they return, whereas modulated ToF sensor emits a continuous

modulated light and measures the phase shift of the returned signal. These

types of sensors have similar disadvantages as structured light sensors, that is,

they perform poorly in the presence of strong sunlight and on shiny or dark

surfaces.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 28

License CC BY-NC-ND 4.0

Figure 5: Illustration of two common RGB-D cameras: Microsoft Kinect v1 and Microsoft

Kinect v2. Microsoft Kinect v1 uses structured light technology and has an infrared

projector. Microsoft Kinect v2 uses Time-of-flight technology and contains an emitter and

a receiver for depth sensing. Figure from [PBN16].

In recent years, newer cameras have combined active and passive technologies to

achieve improved performance. Intel, for example, introduced D435 and D415 sensors

as part of the D400 series [IR22], which employ IR active stereoscopy technology.

These two sensors use stereo vision along with an infrared projector, which improves

the camera performance by projecting a pattern onto the scene. As a result, they can

capture depth in texture-less and dark scenes. The D435 and D415 sensors are

illustrated in Figure 6.

Figure 6 : Intel Realsense D415 (left) and D435 (right). They both use stereo vision with

an infrared projector. Figure from [URL2]

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 29

License CC BY-NC-ND 4.0

Nevertheless, the quality of depth map captured by low-cost RGB-D cameras also

depend on the material properties of the objects present in the scene. In chapter 3, we

first study the limitations of Intel Realsense D435 camera in details before proposing

an approach to correct the measured depth using deep learning.

II.2. Deep Learning

The field of computer vision has become increasingly important over the last few

decades. In computer vision, researchers try to create systems that process and

comprehend images. One approach is using data-driven methods which are inspired

by the human visual system. The idea is that even people comprehend better the

images they see by relating them to previous experiences. As a result, in these data-

driven approaches, the computer learns from a large amount of data and interpret the

new data using its prior knowledge. In this section, we discuss the recent data-driven

approaches for two different tasks in computer vision: image classification and

semantic segmentation. Figure 7 illustrates these two tasks. In image classification,

the computer attempts to understand the image as a whole while in segmentation, the

computer understands the image in pixel level and divides each image to different

segments.

Figure 7 : In classification, the computer understand the image and assigns it to a class

(label). In segmentation, the computer understands the image in pixel level and divides

each image to different segments.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 30

License CC BY-NC-ND 4.0

II.2.1. Image Classification

In image classification, the algorithm tries to understand an image globally and

assign it to a known category (class). In this task, the number of categories is fixed.

Image classification is one of the fundamental components of computer vision and is

used in more complex tasks like object detection (where the algorithm tries to find the

exact location of an object in an image), semantic segmentation (where the algorithm

attempts to assign a label to each pixel) and image captioning (where the algorithm

tries to describe an image with a sentence), etc.

One way of performing image classification, is using convolutional neural networks.

These networks consist of several components:

• Convolutional layers: Convolutional layers are specifically designed to process

images because they preserve the spatial relations of the pixels. Each

convolutional layer takes a four-dimensional tensor as input (a batch of

images/feature maps), convolves it with various weight matrices (also known as

filters/kernels), and outputs a four-dimensional tensor (a batch of feature maps).

Figure 8: Each convolutional layer takes a four-dimensional tensor as input (a batch of

images/feature maps), convolves it with weight matrices (also known as filters), and

outputs a four-dimensional tensor (a batch of feature maps).

In general, each filter has the same depth as the depth of the input tensor (also

known as channel). When it comes to color images, the input tensor has a depth of

three, which is R, G, and B channels. The depth of the output tensor is equal to the

number of filters in that layer. These convolutional layers can be stacked on top of one

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 31

License CC BY-NC-ND 4.0

another in the networks with activation functions in between them (different types of

activation functions are introduced in a later section).

During the convolution operation the filters are slid across the entire spatial positions

of the input tensor, and the dot product of the filters and that section of the input tensor

is computed. Figure 9 shows an example of the operation. For simplicity, here the input

is a single feature map with a depth of one and width and height of 5x5. The filter has

the depth of one and the width and height of 3x3. The output feature map is illustrated

in blue. The filter slides over the input feature map and performs dot product to produce

the output. “Stride” describes how many pixels the filter moves each time, which is one

in this example. The parameters of each filter are learned throughout the training. If

the spatial dimension of a squared input is n and the spatial dimension of a squared

filter is k, and the stride is one, the spatial dimension of the output is calculated as:

𝑜𝑢𝑡𝑝𝑢𝑡𝑑𝑖𝑚 = 𝑛 − 𝑘 + 1

Figure 9: During the convolution operation, the filter slid across the entire spatial

positions of the input tensor, and the dot product of the filter and that section of the input

tensor is computed. In this example (b-d), the filter moves by one pixel at each step

(stride = 1).

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 32

License CC BY-NC-ND 4.0

However, as seen in Figure 8, the spatial dimension of the feature map is decreased

with each convolutional step (even with stride of one). Therefore, it would be

challenging to construct deep CNNs. The solution is to extend each input feature map

by adding extra pixels on the outer dimensions of it. In neural network terminology, this

is referred to as "padding”. Figure 10 shows an example of padding = 1. It is possible

to choose the new added pixel values in various ways; for instance, they can be zero

(as in this example – also known as zero-padding), or they can be the same value as

the closest pixel at the border. If we refer to the padding as p, the spatial dimension of

the output with stride of one can now be calculated as:

𝑜𝑢𝑡𝑝𝑢𝑡𝑑𝑖𝑚 = 𝑛 + 2𝑝 − 𝑘 + 1

Or more generally with the stride s:

𝑜𝑢𝑡𝑝𝑢𝑡𝑑𝑖𝑚 = [(𝑛 + 2𝑝 − 𝑘)/𝑠] + 1

Figure 10: Padding is used in CNNs to control the amount of spatial information lost

during convolutions. In this example we used padding of one with pixel values of zero

(zero-padding - illustrated in pink).

• Pooling layers: These layers are similar to the convolutional layers, but their

main objective is to reduce the spatial dimensions of the input (down sampling).

For each pooling layer, a filter size and a stride are defined (no padding).

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 33

License CC BY-NC-ND 4.0

However, rather than performing the dot product, a fixed function is used on the

input to summarize the values. Therefore, pooling layers do not contain any

learnable parameters. Here are two of the most commonly used fixed functions

for pooling:

1. Max pooling

2. Average pooling

Figure 11 illustrates an example of non-overlapping max pooling.

Figure 11: Here is an example of Max pooling which performs max function on 2x2

regions of the input. The main goal of a pooling layer is to downsample the input.

• Activation functions: Activation functions are one of the most critical

components of the neural networks. They are used to add non-linearity to the

network. There are numerous types of activation functions available, some of

which are demonstrated in Figure 12.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 34

License CC BY-NC-ND 4.0

Figure 12: Activation functions add non-linearity to the neural network. Some of the most

common activation functions are illustrated in this figure.

• Fully-connected layers: The fully connected layers consist of three types of

layers: input layer, hidden layers and the output layer. The size of the input and

output layers is fixed. Figure 13 illustrates a fully connected network with input

and output size of three and two hidden layers. Each layer consists of many

nodes that are connected to the nodes of the next and previous layers. Each

connection has a weight that is learned through the training process. At each

node, every input value is multiplied by the corresponding weight, and then all

values are summed together. Next, a bias value is added to the sum, and the

result goes through an activation function. Here are the equations for each

node:

𝑧 = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

+ 𝑏

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑔(𝑧)

Where n is the number of inputs, x is the input value, w is the corresponding weight,

b is the bias, and g is the activation function.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 35

License CC BY-NC-ND 4.0

Figure 13: The fully connected layers comprised of three types of layers: input layer,

hidden layer(s) and the output layer. Each layer consists of many nodes that are

connected to the nodes of the next and previous layers.

• Normalization layers: The most common used normalization in CNNs is “batch

normalization”. These layers are generally used after convolutional/fully-

connected layers and before the activation functions. Their main objective is to

speed up the training of the network. For more information about batch

normalization please refer to the original paper [IS15].

Nevertheless, it is challenging to figure out how to choose and combine these

components to achieve the best results. In the following section, we discuss the

previous work on designing convolutional neural network architecture for image

classification.

II.2.1.1. Convolutional Neural Network Architecture for Image

Classification

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [RDSK15] was a

competition that took place yearly between the years of 2010 until 2017. The contest

was about creating the best model to perform image classification and object detection

on ImageNet dataset [DDSLLF09]. This contest led to significant amount of research

and advancements in the design of convolutional neural network architecture. Neural

networks were used for the first time in 2012, and prior to that, the winners did not use

any deep learning approach. In 2012, Krizhevsky et al. [KSH12] won the classification

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 36

License CC BY-NC-ND 4.0

and localisation competition by proposing a deep convolutional network model named

AlexNet. AlexNet has 8 layers in total: 5 convolutional layers combined with max-

pooling layers, and 3 fully-connected layers at the end of the network. The network

uses ReLU activation function. Figure 14 shows the overall schema of the AlexNet.

Due to the GPUs' low memory capacity during that time, the entire architecture was

distributed and trained across two GPUs.

When designing AlexNet, all kernel sizes were hyperparameters and the entire

network architecture was designed through trial and error. Thus, it was not easy to

extend the network. Over time, researchers tried to find some general rules to design

the networks that would reduce the experiments and hyper-parameter tuning process.

In 2014, Simonyan and Zisserman designed VGG architecture [SZ14]. This

architecture follows specific design rules:

• The convolutional layers have the kernel size of 3x3 and the stride and padding

of 1 pixel.

• All the pooling operations are performed by max-pooling and have the size of

2x2 with the stride of 2 pixels.

• The number of channels doubles after each max-pooling layer.

• Following the convolution layers, there are fully-connected layers with the same

configurations as AlexNet.

• The network uses ReLU activation function.

As a result of these design rules, researchers would be able to lengthen the

networks without spending too much time on experimenting the size and type of CNN

components. The VGG architecture has two most used variations: VGG-16 and VGG-

19, where the number 16 and 19 indicates the total number of layers. Overall schema

of VGG-16 and VGG-19 is illustrated in Figure 14.

Until then, the tendency was to build larger networks in order to get better

performance; this means building a deeper network with more units at each level.

However, larger networks require a larger training dataset and more computational

resources to learn effectively. Szegedy et al. [SLJS14] aimed to build a network that

performs well without being computationally complex; Therefore, they proposed

GoogLeNet. GoogleNet is a 22-layer network with the following features: the network

starts with a module that quickly downsamples the input image to avoid expensive

convolutions on large spatial feature maps. Afterward, the entire network is

represented by repeating a local structure known as the "inception module."

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 37

License CC BY-NC-ND 4.0

Figure 14: Overall schema of AlexNet, VGG-16 and VGG-19. AlexNet has 8 layers in

total: 5 convolutional layers (with various kernel sizes) combined with max-pooling

layers, and 3 fully-connected layers (FC) at the end of the network. In VGG architecture

design, all convolutional layers have the same kernel size of 3x3, with max-pooling of

2x2, and the number of channels doubles after each layer of max-pooling.The FC layers

of VGG are the same as AlexNet. (Figure from Stanford lectures [URL1])

The inception module uses parallel computation to perform convolutions with

kernels of various sizes (1x1, 3x3, and 5x5) and a max pooling simultaneously.

However, before performing the 3x3 and 5x5 convolutions, it performs a 1x1

convolution to compress the input. In the end, the network consists of an average

pooling layer followed by one fully-connected layer that maps the features to the 1000

classes of ImageNet. Using average pooling rather than the numerous fully-connected

layers allowed for the reduction of a large number of parameters. The entire network

is illustrated in Figure 15.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 38

License CC BY-NC-ND 4.0

Figure 15: Entire GoogLeNet architecture (Figure from [SLJS14]); The inception module

is repeated throughout the network. This module uses parallel computation to perform

convolutions with kernels of various sizes (1x1, 3x3, and 5x5) and a max pooling

simultaneously. However, before performing the 3x3 and 5x5 convolutions, it performs a

1x1 convolution to compress the input.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 39

License CC BY-NC-ND 4.0

In 2015, He et al. [HZRS16] experimented with larger networks and noticed that as

the networks get deeper, they perform worse than the shallower ones because they

are harder to train and optimize. However, they stated that if the layers from a shallow

network were copied to the layers of a deeper network and the remaining layers of the

deeper network only performed identity mapping, the deeper network should be able

to perform at least as well as the shallower one. Thus, they introduced residual blocks

and created the Resnet architecture. The residual blocks add the input to the output of

each block as illustrated in Figure 16.

Resnet architecture contains convolutions with kernel sizes that are mostly 3x3,

which is inspired by the VGG architecture [SZ14], and instead of having many fully-

connected layers at the end, it has average pooling with one fully-connected layer,

similar to GoogLeNet [SLJS14]. The residual blocks are repeated throughout the

network as illustrated in Figure 17. The residual block and a slightly different version

called “Bottleneck” block enabled He et al. to design networks of various sizes, deeper

than previously built, such as Resnet-18, ResNet-34, ResNet-50, ResNet-101, and

ResNet-152. ResNet-152 is 8 times deeper than VGG-19 but has less computational

complexity. The ResNet architecture design was a huge success in neural network

architecture history, winning numerous competitions that year.

Figure 16 : Residual Block adds the input to the

output (Figure from [HZRS16])

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 40

License CC BY-NC-ND 4.0

Figure 17 : Illustration of ResNet-34 vs VGG-19, both designed for classification on

ImageNet dataset (Figure from [HZRS16]). Resnet architecture contains convolutions

with mostly 3x3 kernel sizes, which is inspired by the VGG architecture. The residual

blocks are repeated throughout the network.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 41

License CC BY-NC-ND 4.0

Szegedy et al [SVISW16] proposed some modifications to GoogLeNet to reduce the

computational cost and they proposed Inception-v2 and Inception-v3. The

modifications include some adjustments to the convolutional filter sizes (e.g., replacing

5x5 kernels with two 3x3 kernels, or using asymmetric kernels like nx1), introducing a

new regularization method called “label smoothing”, etc.

Figure 18: Entire inception-v4 (left), Inception-ResNet-v1 and Inception-ResNet-v2 (right)

model architectures. The Inception-ResNet-v1 and Inception-ResNet-v2 models have the

same architecture but their underlying modules differ. For more information on underlying

modules (Inception(resnet)-A, Inception(resnet)-B, Inception(resnet)-C and Reductions)

please refer to the original paper. (Figure from [SIVA16])

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 42

License CC BY-NC-ND 4.0

Later Szegedy et al [SIVA16] proposed three model architectures to further improve

the inception models accuracy: Inception-v4, Inception-ResNet-v1 and Inception-

ResNet-v2. Compared to Inception-v3, Inception-v4 has a larger number of inception

modules, but the architecture is simpler and more uniform. Considering the great

success of ResNet architectures [HZRS16], Szegedy et al also attempted to combine

the residual connections with the inception architecture and create the Inception-

ResNet model. The overall model architectures are illustrated in Figure 18. Their

experiments demonstrate that the inception-v4 and Inception-ResNet-v2 models

perform similarly, but better than inception-v3 and Inception-ResNet-v1. Also, the

Inception-ResNet models converge slightly faster than pure inception models.

Since then, many new architectures have emerged on a frequent basis, most of

which are inspired by previous works. Bianco et al. [BCCN18] provided a throughout

analysis and comparison of more than 40 neural networks in terms of model and

computational complexity, accuracy, memory consumption, etc. They conducted the

experiments on two different platforms: a workstation that used an NVIDIA Titan X

Pascal GPU and an NVIDIA Jetson TX1 embedded system. They measured the

accuracy on the ImageNet dataset for classification task. Figure 19 illustrates a

comparison between the neural networks in terms of computational complexity,

accuracy, and model complexity. The x axis shows the computational complexity

(floating point operations of a forward pass), and the y axis shows the accuracy. The

size of the circle represents the complexity of the model which is the number of

learnable parameters in total.

As we can see, AlexNet has low amount of computational complexity, low accuracy,

and moderate number of learnable parameters. GoogLeNet has less parameters, but

the accuracy is still poor compared to most of the architectures. The VGG_BN are the

VGG architectures that are trained using the batch normalization technique.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 43

License CC BY-NC-ND 4.0

Figure 19 : Comparison of more than 40 neural networks [BCCN18]; The x axis shows

the computational complexity (floating point operations of a forward pass) and the y axis

shows the accuracy. The size of the circle represents the complexity of the model which

is the number of learnable parameters in total. The result is measured on both

workstation and the embedded board.

Despite the fact that all VGG architectures have very large number of learnable

parameters, they are not very accurate which makes them inefficient. On the other

hand, ResNet and Inception architectures have smaller number of parameters but

have high accuracy results.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 44

License CC BY-NC-ND 4.0

II.2.2. Semantic Segmentation

Semantic segmentation is another important task in computer vision that is widely

used in different domains such as diagnosing disease in medical images, autonomous

driving, separating foreground from background in photographs, etc.

In contrast to image classification, which assigns a label to the entire image,

semantic segmentation takes an image as input and assigns a label to each pixel. In

image classification, the network starts with convolutional layers which are then

followed by fully connected layers (e.g VGG [SZ14]) or average pooling (e.g

GoogLeNet [SLJS14]). However, in these cases, the size of the input image to the

network would be fixed because of the fully connected layers. The first convolutional

layers of image classification architectures can be referred to as "encoders" because

they encode the input image by decreasing its spatial size and increasing its

dimensions.

Figure 20: Overall workflow of FCN [LSD15] encoder-decoder.

Figure 21: Segmentation results of FCN [LSD15]. It is important to note that adding

features from lower layers to the up sampling layers adds more details to the final

segmentation result.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 45

License CC BY-NC-ND 4.0

In 2015 Long et al. [LSD15] proposed fully convolutional network (FCN) for semantic

segmentation. Their network contains only convolutional layers, so there is no

restriction on the size of the input image, and the network can receive any arbitrary

sized input. The network consists of an encoder (also known as backbone) and a

decoder. The encoder first down samples the input to generate a feature map and later

the decoder up samples it to the original size using deconvolution. An overview of

FCN's workflow can be seen in Figure 20. First, the input image is down sampled, then

it up sampled in 3 different stages: in (a) the network directly up samples the feature

map to the original size, in (b) and (c) the network up samples the feature map in steps

and adds the features in the down sampling layer to it, to get finer details. The results

from these steps are illustrated in Figure 21. It is important to note that adding

information from lower layers to the up sampling layers adds more details to the final

segmentation result.

Figure 22: U-Net architecture proposed by Ronneberger et al. [RFB15]. The down

sampling and up sampling layers are symmetric. The corresponding layers of down

sampling and up sampling are connected using skip-connections.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 46

License CC BY-NC-ND 4.0

Ronneberger et al. [RFB15] modified the FCN architecture and proposed the U-Net

architecture, which they then used in biomedical segmentation. U-Net is an encoder-

decoder network that has a u-shape architecture; the down sampling and up sampling

layers are symmetric. The entire architecture is illustrated in Figure 22. The

corresponding layers in down sampling and up sampling are connected using skip-

connections. U-Net architecture produced accurate segmentation results while

requiring less training data.

Chen et al [CPKMY17] discussed different problems relating to the segmentation

tasks in their study and proposed a new approach called DeepLabV2. They proposed

three new concepts in their design, which are as follows:

• They proposed using a different type of convolution known as atrous

convolutions to increase the field of view without increasing the number of

parameters or computational cost. When compared to standard convolutions,

the atrous convolution produces a higher resolution feature map. This technique

has been widely used in signal processing tasks [HKMT90].

Figure 23: The ASPP module (atrous spatial pyramid pooling), uses parallel computing of

different atrous convolutions and concatenate the result at the end. (Image from

[CPSA17])

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 47

License CC BY-NC-ND 4.0

• Since each image may contain objects of the same class but in different sizes,

they proposed a module called ASPP (atrous spatial pyramid pooling) for

improving the segmentation result. This module uses parallel computing of

different atrous convolutions (similar to the idea of inception module previously

discussed [SLJS14])

• As previously discussed, the output of a fully convolutional network for the

segmentation tasks may not capture the details. One way to improve is using

skip-connections as Long et al. proposed in FCN [LSD15] (Figure 21). Chen at

al proposed an alternative approach using a fully connected CRF (Conditional

Random Field) [KK11].

Figure 24 illustrates the overall pipeline of the DeeplabV2 [CPKMY17]. Their pipeline

manly consists of a deep CNN (DCNN) that perform the segmentation task and a CRF

that refines the result. (a) First the network takes an image as input and performs

convolutions using the atrous convolutions. At the end of the convolutions there is the

ASPP module that produces the output. (b) Next, the result is upsampled using bilinear

interpolation to reach the resolution of the input image and eventually (c) it goes through

a fully connected CRF for refinement.

Their full pipeline is illustrated in Figure 24. Their pipeline manly consists of a deep

CNN (DCNN) that perform the segmentation task and a CRF that refines the result.

First the network, which is based on a VGG-16 [SZ14] or ResNet-101 [HZRS16], takes

an image as input and performs convolutions using the atrous convolutions. At the end

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 48

License CC BY-NC-ND 4.0

of the convolutions there is the ASPP module that produces the output. Next the result

is upsampled using bilinear interpolation to reach the resolution of the input image and

eventually it goes through a fully connected CRF for refinement.

Later, Chen et al proposed DeepLabV3 [CPSA17]. In their approach, they modified

the DeeplabV2 concept by removing the Fully Connected CRF and only performing

the segmentation using CNN and the ASPP module. They also modified the ASPP by

adding batch normalization and global average pooling.

II.3. Estimating Underlying Properties of an Image

The challenge of producing realistic images in computer graphics has been well

studied throughout history. This process requires a rendering equation to be solved to

obtain each pixel’s color in the image plane of the camera. With technological

advancements in recent years, new tasks such as augmented reality have emerged

that require inverting this process and determining the underlying components of

images, such as material, light, geometry, etc. This section covers the fundamentals

as well as recent approaches to estimating material properties and geometry (surface

normal) from a single image.

II.3.1. Reflectance Estimation

As part of this research, we aim to estimate the material properties of a given object.

In the following section, we will first review the fundamentals of modeling appearance

properties (materials), and then we will discuss the state-of-the-art of finding the

underlying components of an image, particularly the material properties.

II.3.1.1. Preliminaries

The reflection property of a material is described using bidirectional reflectance

distribution function (BRDF) [NRH77]. The BRDF is a four-dimensional function that

depends on the direction of the incoming light and the viewpoint. It can be measured

in a variety of ways: One approach is to completely sample it using a device called a

gonioreflectometer. Figure 25 shows a gonioreflectometer created by Murray-Coleman

et al [MS90]. This device consists of a light source and a reflectance detector. The

material is placed on the sample area and the BRDF is then measured by repositioning

the material, as well as the light source and reflectance detector, in every possible way

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 49

License CC BY-NC-ND 4.0

(4 degree of freedom). This method produces large tables of data, which can then be

approximated using functions.

Figure 25 : The BRDF can be measured directly using a gonioreflectometer [MS90].

Another approach of estimating BRDF is approximating it using analytical models.

There are several models available, including Lambertian, Phong, Ward, Cook-

torrance, etc. Some of these models are only suitable for a certain type of materials.

The Lambertian BRDF is the simplest model and describes an ideal diffuse

reflectance. In this model the BRDF is independent of the viewing angle, and the

surface reflects the light evenly in all directions. However, there aren’t many objects in

real world that adhere to this model; Under focused light, even the rough surfaces

exhibit some specular reflections.

The Phong model [P75] is a simple widely used model for simulating specular

reflections. This model extends the Lambertian model by two more components. Thus,

the BRDF is calculated by the sum of ambient, ideal diffuse (Lambertian) and specular

components. But then again, since this model is empirical and not physically-based, it

is possible that it reflects more light than it receives (No energy conservation).

Therefore, the result may be unrealistic.

There are also physically-based models that describe the BRDF based on the

microfacet theory [TS67]. They assume that every surface is composed of set of small

mirrors (facets) and the roughness of a surface can be specified by altering the

distribution of the orientation of these facets.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 50

License CC BY-NC-ND 4.0

II.3.1.2. Related work

The problem of determining the underlying properties of an image can be

approached using two different ways: intrinsic image decomposition and inverse

rendering.

Inverse rendering: The objective of inverse rendering is to represent a scene from

an image in such a way that it can be rendered again from a new viewpoint. This is a

hard task since we need to estimate lighting information, the shape of the objects

(geometry) and their appearance (material properties) given only one image. In recent

years, this problem is tackled using two approaches of neural rendering [TFT20] and

differentiable renders [ZJL20]. Although neural rendering methods generate high-

quality and realistic results when re-rendering from a novel viewpoint or relighting a

scene under new lighting parameters, their model representation is implicit, and thus

the manipulation of the scene parameters is somewhat constrained. Differentiable

renders are another active research topic that appears to be very promising, but it still

requires extensive research due to its difficulty.

Intrinsic image decomposition: This approach considers that each image is

composed of two image layers: one that exhibits the effects formed by scene

illumination (such as shadows) and one that exhibits material reflectance (color and

texture). Therefore, to obtain the underlying properties of an image, it is sufficient to

divide each image into these two layers; that is, each pixel is formed of the

multiplication of two RGB values. The majority of approaches in this category assumes

a Lambertian material. In the past, this task was accomplished by finding local features

in the images such as edges and its primary application was to edit images [BKPB17]

(removing shadows, re-coloring the objects, etc). Nowadays, deep learning is used

since it can learn more than just the local features and incorporates the global

semantics of each image [GRCL22].

In the next section, we will review the studies that concentrate solely on acquiring

reflectance properties of an object from a single image particularly when using a deep

learning approach:

Georgoulis et al. [GRR18] proposed a two-step learning-based approach to estimate

the BRDF and the illumination from a single color image. They estimated a reflectance

map [HS79] from a given color image and the corresponding binary mask. In the first

step, then divided it into the BRDF and the illumination in the second step. Encoder-

decoder architecture is used for both two steps. The output illumination is represented

as an HRI spherical illumination map, and the BRDF is represented using the Phong

model. Georgoulis et al. also proposed different approaches for each of the two steps;

for example, they proposed a direct and an indirect approach for the first step of

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 51

License CC BY-NC-ND 4.0

reflectance map estimation. The direct approach consists of directly estimating the

reflectance map using neural networks and the indirect one consists of first estimating

the object’s normal map using neural networks, then reconstructing a sparse

reflectance map from the normals and eventually interpolate sparce reflectance using

another network architecture. The complete approach is illustrated in Figure 26.

Figure 26 : Georgoulis et al. [GRR18] proposed a two-step learning-based approach to

estimate the BRDF and the illumination from a single color image

Georgoulis et al made few assumptions in their approach including that there are no

shadows in the image, and the object is chosen from a known class (such as cars) and

has a single material. Also, they performed the image segmentations manually.

Later, Meka et al. [MMZ18] proposed an approach using deep learning that

estimates the BRDF of a material based on Blinn-Phong reflection model. Their

proposed system consists of five sub-networks and is motivated by the process of

physical image formation. First, the SegmentationNet takes a color image as input and

estimates a binary mask. Next the binary masked is applied to the image and the

masked image is fed into SpecularNet, which estimates a specular shading image.

This specular shading image represents the normalized specular reflections of the

object. It is then fed into the MirrorNet, which estimates an image demonstrating the

high-frequency illumination arriving at the surface of the object. In other words, this

network removes the surface roughness. All three networks mentioned previously have

an encoder-decoder architecture (U-Net). Eventually, the two networks AlbedoNet and

ExponentNet estimate the material parameters using the results of the previous

networks. Figure 27 illustrates their pipeline. The AlbedoNet is defined as a regression

problem, whereas the ExponentNet is defined as a classification problem.

Meka et al. also generated a synthetic dataset for training all the networks. Their

images were rendered with an object in the center in an indoor setting.

The proposed system is real-time and performs well on general shapes. However,

Meka et al. made a few assumptions in their work, such as the object not casting a

shadow on itself (no self-shadowing) and not emitting light.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 52

License CC BY-NC-ND 4.0

Figure 27 : Meka et al. [MMZ18] proposed a pipeline consisting of five sub-networks that

is motivated by the process of physical image formation.

II.3.2. Surface Normal Estimation

Research and technology have advanced significantly in recent years, resulting in

the rise of new applications that demand 3D geometric understanding. A few examples

of these applications include robot navigation, robot manipulation, augmented reality,

etc. The 3D geometric information can be represented in numerous ways including

pixel-maps (depth map, normal map), point-cloud, mesh, implicit surfaces.

One of the common types of geometric information is normal map which is a pixel-

map that describes the 3D surface orientation at each pixel. The X, Y and Z of the

normal vector are usually stored in R, G and B of color image. In this section we go

over the state-of-the-art in normal map estimation from a single image.

Wang et al. [WFG15] proposed a pipeline to estimate the normal map from a single

image on two scales: global and local. On the global scale, they trained a network to

take a color image as input and estimate a global normal map and a room layout (under

the Manhattan world assumption) as output; on the local scale, they trained a network

that uses sliding window on the color image and feeds the local patches as input to the

network. The network estimates local normals and local edges as outputs. The local

edges are classified as concave, convex, or occlusion. Although both the normal

estimation and room layout estimation are on continuous spaces and are regression

problems, Wang et al. reformulated them as classification problems. Specifically in

normal estimation, they used the triangular coding method proposed by Ladicky et al

[LZP14] to reduce regression as classification. Eventually, they trained a fusion

network to integrate the previous results and generate a more accurate normal

estimation.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 53

License CC BY-NC-ND 4.0

Eigen et Fergus [EF15] designed a single multiscale convolutional network to

regress depth map, normal map, and semantic labels. Their model architecture is

composed of three scales; the first scale takes the color image as input and predicts a

global estimation as output; the later scales then refine the output to generate a high-

quality result.

Zhang et al [ZS17] provided a synthetic dataset of various interior environments and

analyzed the influence of different types of rendering on neural network training. They

used a modified U-Net [RFB15] structure with VGG-16 encoder for normal estimation

and achieved the state-of-the-art results.

II.4. Depth Completion

Low-cost RGB-D cameras are often incapable of accurately measuring the depth of

objects near their boundaries or the surfaces that are transparent, shiny, thin, too close,

or too far away from the camera. These poor measurements may appear as incorrect

or missing values (holes) in the depth map.

The fast marching method (FMM) was first proposed by Telea [T04] to inpaint color

images. Later Liu et al [LGL12] extended the FMM for depth inpainting. In their method,

they choose the inpainting order based on color similarity and distance to the hole

boundary. Therefore, the pixels on the hole boundaries surrounded by neighbors with

similar colors are inpainted first. The value for the missing depth is calculated by using

a weighted average of the neighbour depth pixels. Eventually, they used an edge-

preserving filter on the completed depth to reduce the noise. However, since the

incorrect regions were not removed prior to depth propagation, the result depth map

may contain incorrect values. Huang et al [HHC14] proposed a method to locate and

remove the unreliable depth values before depth completion. They found all the edges

on the color image using Canny edge detection, then enlarged them to obtain the

unreliable regions in the depth map. They then checked the reliability of each pixel in

the unreliable region by comparing its depth to its neighbors. After removing the

incorrect depth pixels, they used the fast marching method [LGL12] to find the order of

inpainting and completed the depth using a joint bilateral filter.

In recent years, the latest advances in artificial intelligence and deep learning have

led to a wide range of data-driven approaches. Zhang et Funkhouser [ZF18] proposed

a method using convolutional neural networks and optimization to complete the

missing depth in large indoor scenes. Through their work, they explained that depth

completion has some specific challenges. These challenges are described below:

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 54

License CC BY-NC-ND 4.0

1. Training data: The RGB-D images captured by low-cost cameras lack ground-

truth data, where the holes are filled. Many depth estimation methods only train on the

observed depths and can in the best case, reproduce them. These methods can’t fill

the holes because these areas have different properties. Therefore, Zhang et

Funkhouser used Matterport3D [CDF17] dataset to create a large-scale training set of

105,432 RGB-D images. They used multi-view reconstruction and rendering to fill the

missing values of the depth map and obtain ground-truth data. They prepared this data

from 72 real-world scenes. Their reconstructions reduce missing pixels by 64.6 percent

and also reduce the noise in ground-truth depth by averaging between the depth of

different viewpoints.

2. The Method: Zhang et Funkhouser conducted experiments to determine the best

type of input and output of the neural network for depth completion, as well as some

experiments on the ground-truth data and loss calculation, which we discuss in detail

below.

• The best type of output: They first tested whether it is better to predict completed

depth, depth derivatives [CS, S16], or local differential properties of depth

(normal map and boundary map). According to their experiments, predicting the

normal map and boundary map is much easier and more accurate. Therefore,

they trained convolutional neural network to generate boundary map and normal

map from a single color image.

• The best type of input: They tested various types of input to determine which

produced the best results in a normal estimation task; a single color image, a

depth map, or a color image with the corresponding depth (RGB-D). Their tests

demonstrate that using only color image produces better results.

• The ground-truth data: They experimented which ground-truth data is better for

estimating normal map; using normals of the rendered depth map or computing

the loss only on the normals of available pixels in raw depth map. Their

experiments show that using rendered depth improves the normal estimation

result. This is because the rendered depth contains more information (depth of

the holes) and less noise than the raw depth. Furthermore, while using rendered

depth as ground-truth, they tested whether training only on pixels inside holes

or training on all pixels yielded better results. This question arises because the

pixels in holes have different color characteristics than other pixels (for example,

they are too far away or occur due to specular reflections), so training only on

them may produce better result, but this also reduces the amount of training

data. After testing, they came to a conclusion that training on all pixels produces

better results.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 55

License CC BY-NC-ND 4.0

Next, they used an optimization approach with the following objective function to

complete the depth:

𝐸 = 𝜆𝐷𝐸𝐷 + 𝜆𝑆𝐸𝑆 + 𝜆𝑁𝐸𝑁𝐵

𝐸𝐷 = ∑ ∥ 𝐷(𝑝) − 𝐷0(𝑝) ∥2

𝑝∈𝑇

𝐸𝑁 = ∑ ∥< 𝑣(𝑝, 𝑞), 𝑁(𝑝) >∥2

𝑝,𝑞∈𝑁

𝐸𝑆 = ∑ ∥ 𝐷(𝑝) − 𝐷(𝑞) ∥2

𝑝,𝑞∈𝑁

where 𝐸𝐷 is the distance between the estimated depth and the raw depth at pixel p.

𝐸𝑁 uses the dot product to assess the consistency between the estimated depth and

the predicted surface normal. 𝐸𝑆 encourages neighbour pixels to share similar depth

values. B has a value between [0,1] and down-weights the 𝐸𝑁 based on the predicted

probability a pixel is on the boundary.

Figure 28: Proposed pipeline of Zhang et Funkhouser [ZF18]; They estimate normal map

and boundary map from a color image and use them to complete a depth map using a

global optimization method.

Sajjan et al [SMPN20] modified the previous method and proposed the “ClearGrasp”

algorithm to correct the depth of transparent objects for robotic manipulation.

Transparent objects exhibit both specular reflection and refraction and low-cost RGB-

D cameras often confuse their depth with the depth of the surfaces behind them. Sajjan

et al trained neural network to estimate normal map, boundary map and a mask of

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 56

License CC BY-NC-ND 4.0

transparent objects from a single color image. They used the mask to locate the

transparent objects and remove their depth completely. The boundary estimation

network estimates three classes (labels) for each pixel: non-boundary pixel, contact

pixel (where the objects are in contact with other surfaces/objects) and discontinuity

pixel (where depth gets discontinued; meaning that the depth of the object and its

surroundings are different). To train the network, they created a large synthetic dataset

of 50,000 RGB-D images. They prepared the data using Synthesis AI’s platform and

rendering with Blender Cycles. They used 5 types of objects for training and 4 types

for testing. They used physics to produce a random scene by releasing objects onto a

surface or a box. To test the network, in addition of the synthetic test set, they prepared

286 real-world RGB-D dataset.

At last, they used the optimization approach proposed by Zhang et Funkhouser

[ZF18] to complete the depth. They used the same values for 𝜆 as Zhang et

Funkhouser in their experiments.

They demonstrate the effectiveness of their pipeline on a robotic arm using a state-

of-the-art grasping algorithm to grasp transparent objects and show that it significantly

improves the results. However, their method still requires further improvement; they

need to improve the pipeline to reduce the error under varying illumination conditions

as well as where there are sharp shadows and caustics. In addition, the cluttered

environments make their boundary estimation more prone to error.

Chapter III. Depth Completion for Close-Range
Specular Objects

III.1. Introduction and Overview

The common low-cost RGB-D cameras suffer from some limitations in depth

sensing. We used Intel RealSense D435 to observe some of these limitations. This

RGB-D camera is low-cost and lightweight, and it employs active stereo technology.

The following are our observations based on the captured data:

1. The depth map contains missing depth values, mainly near object boundaries

and inside specular objects. Figure 29 illustrates a few examples of this problem.

In this figure, the first column shows the color image while the second column

shows the colorized depth map. As we can see, the depth values at the object’s

boundary are usually missing (shown as black areas in the colorized depth map).

The missing area in the third row is significant due to the object's specular

reflection.

2. There are pixels with incorrect depth values inside the specular or transparent

objects. Figure 30, shows an example of this issue. The first row shows the color

image and the raw colorized depth map while the second row shows two normal

maps; one estimated from the color image and the other calculated from the

depth map. Here, the normal map estimated from the color image serves as the

ground-truth. We can observe that the depth of the bottom part of the box is

completely incorrect, as its normals have the orientation of the table.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 58

License CC BY-NC-ND 4.0

Figure 29: The Intel RealSense D435's depth map contains missing values, which mainly

occur near object boundaries and inside specular objects. Here, the first column shows

the color image while the second column shows the colorized depth map. The missing

depth is shown in black on the depth map.

3. There are some incorrect depth values near the object's boundaries, which

indicates that the camera confuses the object's depth with the background near

borders. This problem also occurs between two nearby objects.

4. The depth contains a lot of noise, which is particularly visible on the curvature

of specular objects.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 59

License CC BY-NC-ND 4.0

Figure 30 : The first row shows the color image and the raw colorized depth map while

the second row shows two normal maps; one estimated from the color image and the

other calculated from the depth map. The normal map estimated from color image is

used as ground-truth. We can observe that the depth of the bottom part of the box is

completely incorrect since its normal map has the orientation of the table.

Figure 31 : The camera confuses the depth between the object and the background near

the borders (Left). The depth also contains noise which can be seen on the noisy

curvature of a mug (Right).

In this work, we present an approach to correct and complete the depth map of

close-range specular objects. Our approach consists of several parts:

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 60

License CC BY-NC-ND 4.0

Figure 32 : Overall illustration of the proposed pipeline. First the networks estimate the

boundary and normal map from a single color image. Next the incorrect depth is located

and removed using the output from the networks. Eventually, the depth is filled out using

a global optimization approach.

We first create a random-scene generator to generate synthetic images for training

neural networks. In the next step, we train a boundary estimation and a normal map

estimation network on our training data, then use their outputs to locate and remove

invalid areas of the depth map. These invalid pixels are detected and removed in three

steps; first the object’s boundaries are removed. Second the regions where there is a

significant difference between the normal map estimated from color image and the one

estimated from depth map are removed. Third, a morphological transformation is used

to eliminate the remaining noise. At last, we complete the depth using an optimization

approach. The proposed pipeline is illustrated in Figure 32.

III.2. Dataset Generation

We used Blender to generate our own dataset to train neural networks for normal

estimation and boundary detection. We started by creating a plane with a random

texture to use as the underlying surface for placing objects on. The texture of the plane

is chosen at random from a set of 82 textures [URL3]. Following that, we placed a

camera in a random location around the plane, with the constraint that it always

focuses on the plane.

Next, we set up the environmental lighting by randomly choosing an HDRI file (High

Dynamic Range Imaging) from a collection of 120 indoor environments [URL4]. We

then rotated the HDRI at random to add more randomness to the rendered results.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 61

License CC BY-NC-ND 4.0

Following that, we carefully selected a set of 9 Blender primitive shapes that varied

in their geometric properties, such as whether they had a smooth surface or sharp

edges or holes or not. The selected shapes are illustrated in Figure 33. Then we

randomly selected a number of objects from the set and resized them to a random

size. Afterward, we applied a random texture to each object from a collection of 47

textures (including the Blender’s checker pattern or a simple color) [URL3]. We also

randomly selected a roughness value to give the objects a rough or specular

appearance.

Next, similar to the approach of Sajjan et al [SMPN20], we applied the Blender

physics system to the objects, and dropped them on the plane. This would create a

random scene, as the objects collide with the plane and one another before coming to

rest in a random location.

Figure 33 : we carefully select a set of 9 Blender primitive shapes with varying geometric

properties to generate a random scene.

We used GPU to generate three types of data for each scene: a rendered color

image, a corresponding normal map and a boundary map. To produce high-quality

rendering images, we used Blender Cycles, which uses a physically-based path-tracer.

We set the rendering resolution to 256x256 pixels.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 62

License CC BY-NC-ND 4.0

The normal map was saved in OpenEXR format, while the color image and

boundary map were both saved in PNG formats.

Figure 34: Dataset generated by our scene generator to be used for training the normal

estimation network

When generating the normal map data, there is a case where the HDRI is visible

through the camera view. In order to prevent the normals of those locations from

remaining empty, we create a bounding-sphere around the plane and the objects. This

does not pose a problem while training the normal estimation network since the

background information is irrelevant in our scenario. Next, we change the orientation

of the normals from world-space to camera-space and normalize them between -1 and

1 values.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 63

License CC BY-NC-ND 4.0

We use this scene generator program to generate a large amount of data for the

following steps. Figure 34 and Figure 35 illustrate the dataset used for training normal

estimation and boundary detection networks.

Figure 35: Dataset generated by our scene generator to be used for training the

boundary detection network

III.3. Network Architecture and Training

We used an encoder-decoder architecture for both normal estimation and boundary

detection tasks. However, the choice of which encoder-decoder architecture to use

was not evident. Therefore, we compared different models to choose the best one for

our data.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 64

License CC BY-NC-ND 4.0

III.3.1. Normal Estimation

We performed a comparison between U-Net [RFB15] and DeepLabV3 [CPSA17]

encoder-decoder architectures to find the best model for our data. The DeeplabV3 is

trained with the Resnet101 [HZRS16] backbone while the U-Net is trained with various

backbones of Resnet101, Inception-V4 [SIVA16] and VGG-16 [SZ14]. All the

backbones (encoders) that we used were pre-trained on ImageNet dataset

[DDSLLF09] [P19].

We modified the output layer of the models to produce a three-channel output.

Therefore, each output channel represents one of the three components of the normal

vector x, y and z. We then normalized the three-channel output to the L2-norm.

We used the data that we generated using our scene generator to train the networks.

We performed few pre-processing on the input data. First, we augmented them using

Gaussian blur. Second, since all the encoders were pre-trained on ImageNet, we

normalized the input data the same way of pre-training for faster convergence. The

normalization is performed this way for each channel c of the data:

output[c] = (data[c] - mean[c]) / standard deviation [c]

where the mean tensor is [0.485, 0.456, 0.406] and standard deviation tensor is

[0.229, 0.224, 0.225]. These values were computed over millions of images of

ImageNet dataset. This is especially good practice if the training datasets contain

“common” natural images similar to ImageNet (such as indoor and outdoor scenes,

animals, people, etc). For other types of “un-common” images (such as images taken

under unusual lighting or medical or satellite images) it is better to calculate the mean

and standard deviation directly from the training dataset.

We calculated the loss function based on the element-wise dot product of the output

and the synthetic ground-truth data. We also shuffled the training data at each epoch

during training to prevent the network from learning the order of the data.

We used the Adam optimizer with learning rate of 0.0001 but reduced it by the factor

of 0.1 when there were no improvements after more than two epochs.

We trained the networks on 10,000 synthetic data that we generated and evaluated

each network based on the common metrics used in normal estimation. Table 1 shows

the results.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 65

License CC BY-NC-ND 4.0

Table 1: This table shows the comparison between the networks on the validation set

based on the common metrics used in normal estimation evaluations.

Model Backbone Mean Median 11.25° 22.5° 30°

DeeplabV3 ResNet101 16 6.4 69.4 87.4 92.0

U-Net ResNet101 16.21 9.2 60.1 87.5 93.4

U-Net Inception-v4 15.61 8.0 67.1 89.1 93.2

U-Net VGG-16 16.49 8.3 62.9 86.5 92.5

We also tested the networks on some real-world data during the training. The results

from DeeplabV3 were always blurrier than those of U-Net. However, changing the

encoders (backbone) of U-Net architecture had little effect on the output. Figure 36

shows an example.

Figure 36: We tested the networks on some real-world data during the training. The

results from DeeplabV3 were always blurrier than those of U-Net. However, changing the

encoders (backbone) of U-Net architecture had little effect on the output.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 66

License CC BY-NC-ND 4.0

Table 2 : Evaluation metrics of our normal estimation model for the synthetic test set

 Mean Median 11.25 22.5 30

Our model 24.2 18.3 38.7 54.3 99.8

Figure 37: The results of the network on some new shapes with new textures. The left

column shows the color image, the middle one shows the ground truth normal map and

the right one shows the result from our network.

We decided to use the U-Net architecture with Inception-v4 encoder as our model.

After choosing the model, we reduced the learning rate and re-trained it on additional

5000 synthetic images of very close-range objects. We also used the previously

described data pre-processing (augmenting the data using the gaussian blur and

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 67

License CC BY-NC-ND 4.0

normalizing them). The reason for training in this way was that in the first step, the

network mostly learns the shape and the angle of the table relative to the camera

viewpoint as well as an approximate shape of the objects on the table. In the second

step, it will learn the shape of the objects more precisely and refine its predictions. By

using a low learning rate in this step, we prevent the network from forgetting the

previous step. We evaluated the performance of the network on 100 previously unseen

synthetic images generated by our scene generator.

Table 2 shows the results of the evaluation of the final version of our model on the

unseen test set. In addition, Figure 37 shows the network's results on some synthetic

data containing new shapes and new textures [URL6].

III.3.2. Boundary Detection

We chose U-Net architecture with Inception-v4 encoder as our boundary detection

network similar to the normal estimation task. In the training data that we generated,

each pixel on the boundary has a value of zero, while all other pixels have a value of

one. Therefore, we changed the output layer of the model to generate one-channel

output to perform a per-pixel binary classification. We applied the sigmoid activation

function to the output layer which assigns each pixel a value between zero and one.

This per-pixel value p can be interpreted as the confidence that the pixel belongs to the

first class, while 1-p can show the confidence of that pixel belonging to the second

class. We calculated the loss by using the binary cross-entropy function. As the number

of pixels who belong to the non-boundary class is much higher than the ones belong

to boundary class, we used a loss weight that is ten times higher for boundary pixels

than for non-boundary pixels. This is suggested by Yang et al. [YPCLY16]. We used

5000 images to train the network which we augmented with gaussian blur and changes

to their contrast, brightness, saturation, and hue.

III.4. Incorrect Depth Pixel Removal

Before completing the depth, it is critical to remove the incorrect depth to prevent it

from propagating. We perform this in three steps:

1. As stated in the introduction to this section, the RGB-D cameras usually confuse

the depth near the boundary of the objects; the confusion can occur between

the adjacent objects or between a foreground object and the background. Thus,

we start this section by removing the depth of the boundaries. For this task, we

use the boundary map estimated by the neural network described in the

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 68

License CC BY-NC-ND 4.0

previous section. Since the boundary map is a grey scale image, we first convert

it to binary; which means that it would only contains black or white values. This

can be achieved simply by using the mean of the pixels intensities as the

threshold, but we preferred to use the Otsu’s method which determines the

threshold of the greyscale image automatically. This method is a well-known

image processing technique that divides the pixels into two classes using the

image’s histogram. After creating our binary mask, we apply it to the depth map

to remove the boundary depth.

2. Next, we compare the normals of the depth map to the normals estimated from

color image using the dot product. We perform this step to remove the incorrect

areas on the depth map that appear due to the specular reflections. We remove

the depth where the difference between the angle of corresponding normals is

more than 30 degrees. We choose this value experimentally because the error

of normal map estimation network is almost always less than 30 degrees

relative to the ground truth value. Additionally, we don’t want to remove the

depth excessively, and if an application demands for a depth map with higher

quality and precision, the depth of the areas with small amounts of normal

differences can get rectified after depth completion using filtering.

3. Finally, we use morphological transformation to remove any remaining small

noise from the previous two steps. Firs we create a binary mask from the depth

map, with a value of zero where there is a hole and a value of one where the

depth is present. Then we use morphological opening with circular structure

kernel of the size 5x5 on the mask to remove the noise. Then we apply the mask

to the depth map.

III.5. Global Optimization

In this step, we complete the depth using the optimization algorithm proposed by

Zhang et Funkhouser [ZF18]. Chapter 2, section 4 provides a thorough explanation of

the optimization algorithm. The approach takes the normal map and boundary map

estimated from color image as input and uses them as a guide in the depth completion

process.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 69

License CC BY-NC-ND 4.0

III.6. Results and Discussion

We tested the proposed approach on real-world data. The acquisition process is as

follows:

We set up a test environment in an indoor scene consisting various objects on a

table. Some of the objects are similar to the synthetic primitive shapes we used to train

the network, while others have new shapes that the networks have never seen before.

The scene is set up under natural lightning.

To capture the depth and the color image, we used an Intel real-sense RGB-D

camera. We set the depth and color stream resolutions to 424x240 pixels. In order to

give the auto exposure time to adjust, we started streaming with the camera but

skipped the first 20 frames. Then, using the Intel RealSense SDK [URL5], we aligned

the color frame and the depth frame since they were obtained using different lenses.

To reduce the noise in the depth map, we used a temporal filtering, which is a post-

processing filter available in the SDK. The temporal filter modifies the depth values

based on the previous frames. It can add depth values where the depth is missing or

find the incorrect depth and change its value based on the history values that it keeps.

This filter is only suitable for use in static scenes.

We then pass the color images through the normal estimation and boundary

detection network. The output of each network is illustrated in Figure 38. The first

column shows the input image, the second shows the output of boundary detection

network, and the third shows the normal map estimated by normal estimation network.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 70

License CC BY-NC-ND 4.0

Figure 38 : The first column shows the input image, the second shows the output of

boundary detection network, and the third shows the normal map estimated by normal

estimation network.

We then continue through the pipeline and perform the incorrect depth removal and

the depth completion steps. We perform all the training and the testing steps on a

desktop computer equipped with an Intel Core(TM) i9 2.80GHz CPU with 16 GB RAM

and NVIDIA GeForce RTX 2080 GPU. The entire process of our proposed approach

takes about 2 seconds for given data with a size of 424x240; this includes 0.3 seconds

for normal and boundary estimation from color image and incorrect depth removal from

the depth map, as well as 1.8 seconds for the optimization-based depth completion

step.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 71

License CC BY-NC-ND 4.0

We compared the result from our proposed method to the results from the work of

Zhang et Funkhouser [ZF18]. We downloaded the code they provided from their

GitHub page and used it without modifying it. In the depth completion step, we used

the same values as Zhang et Funkhouser [ZF18] which are: 𝜆𝐷 = 1000, 𝜆𝑁 = 1 and

𝜆𝑆 = 0.001. Figure 39 illustrates the comparison; the first column shows the color

image, the second shows the raw depth map captured by the Intel-realsense camera,

the third shows the results of the work of Zhang et Funkhouser and the last column

shows the result of our proposed approach. As we can see, our proposed approach

significantly improves the depth map quality of close-range objects. Take note of how

the object boundaries have become sharper and the depth of the boxes in the rows

three and four have become more consistent and accurate.

Figure 39: The first column shows the color image, the second shows the raw depth map

captured by the Intel-Realsense camera, the third shows the results of the work of Zhang

et Funkhouser [ZF18] and the last column shows the result of our proposed approach. In

the first and second rows, the depth further than one meter is clipped to improve the

visualization of the colorized depth map.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 72

License CC BY-NC-ND 4.0

Nevertheless, there is a disadvantage to our approach that may occur, but is very

uncommon; it occurs when the depth of a region is incorrect, but their normals are

correctly oriented. As a result, our approach won’t be able to correctly locate the

incorrect region of the depth map since it depends on the normals. Figure 40 shows

an illustration of this problem; since the incorrect region could not be correctly located,

the inaccurate depth values are propagated during the depth completion step.

Figure 40 : illustration of a rare drawback in our approach; (a) color image (b) raw depth

map (c) normal map estimated from the color image. (d) normal map of the depth map

(e) the completed depth map. The highlighted area shown in the depth map (b) is where

the depth values are incorrect but the orientation of their normals are correct. As a result,

our approach won’t be able to correctly locate this incorrect region and remove it.

III.7. Conclusion

In this chapter, we proposed an approach to correct and complete the depth map of

close-range specular objects. We made two contributions: first we developed a scene

generator to generate large-scale synthetic datasets for training neural networks. In

this way we would have pixel-perfect data for training networks. Second, we proposed

a method to locate the incorrect areas in the depth map and remove them. We then

completed the depth with the method proposed by Zhang et Funkhouser [ZF18].

Eventually, we tested our approach on the real-world data captured by the Intel-real

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 73

License CC BY-NC-ND 4.0

sense camera and compared our results to those of Zhang et Funkhouser. Our

experiments show that our method greatly enhances the depth maps to use for close-

range tasks. However, there are cases that may rarely occur and would prevent our

approach from working effectively. These issues will be addressed in future works.

Chapter IV. Reflectance Estimation

IV.1. Introduction and Overview

Reflectance estimation is an important task in computer vision that is used in many

domains including virtual reality and augmented reality.

In chapter 2 we recalled the fundamentals of reflectance acquisition, as well as the

most recent methods that, like us, have tried to tackle the problem with neural

networks. However, it is clear that the field of reflectance acquisition is extremely broad

and we suggest the reader refer to the state-of-the-art [GGGDG16].

The problem of reflectance acquisition is particularly difficult due to the complexity

of the materials. Thus, while a BRDF aims at representing the reflectance

characteristics of homogeneous materials, a Spatially Varying BRDF (SVBRDF) can

also be considered as a spatial collection of BRDFs distributed on the surface. There

are very recent methods of acquiring SVBRDF as we try to consider on our side on

neural networks, such as [DADDB19]. These types of methods, as we can see, impose

many constraints in exchange for accurately solving this complex problem. These

constrictions apply to:

• the lighting conditions

• the shape of the samples (often flat samples)

• the need for multiple images

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 76

License CC BY-NC-ND 4.0

We will not study these methods further faced with these constraints; instead, we

decide to adopt the opposite reasoning and set the fewest constraints possible in the

context of our cameras. As a result, we accept:

• variable and unknown lighting conditions (power, position)

• the arbitrary shape of objects

• a single input image (taken with a low-cost camera)

In this scope, there are a few methods that try to estimate the material properties of

an object from a single image [MMZ18][GRR18]. However, their approaches consist of

training multiple networks and still imposing numerous constraints on the object and

the scene. Our objective is to define an easy way to estimate this data without

overcomplicating the approach design, producing an acceptable result, and without

imposing too many constraints on the input data. Therefore, this method can be used

in everyday use cases.

Figure 41: The first row shows changes in the metallic parameter, while the second

shows the changes in roughness parameter in Blender. Overall, increasing the metallic

parameter adds a mirror-like reflection to the object, while increasing the roughness

removes specular reflections.

IV.2. Dataset Generation

We created a new scene generator in Blender for reflectance estimation task. First,

we randomly selected an object from one of the nine Blender primitives illustrated in

Figure 33 and placed it on a plane. We then chose a random HDRI [URL4] to light the

environment and a random texture [URL3] to apply to the table. We placed the camera

in the scene at a random location while it focuses on the object. We then chose a

random color for the object.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 77

License CC BY-NC-ND 4.0

Figure 42: Some examples from our scene generator. For each scene, we generate a

color image, a binary mask and a text file containing the object’s Metallic, roughness and

RGB values.

Blender used a BRDF model which consists of many parameters. We only changed

the metallic and roughness parameters of each object and kept all other parameters

at their initial value. Figure 41 illustrates how an object will look when these two

parameters are altered. The first row shows changes in the metallic parameter, while

the second shows the changes in roughness parameter. These parameters can get an

arbitrary floating-point value in the range of zero and one. Overall, increasing the

metallic parameter adds a mirror-like reflection to the object, while increasing the

roughness removes specular reflections.

Eventually, we saved the color, metallic, and roughness values of the object in a

text file and rendered each scene using Blender’s Cycles. We then generated a binary

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 78

License CC BY-NC-ND 4.0

mask for the object. Figure 42 shows some examples generated by our scene

generator.

IV.3. Experiments

Since estimating material properties is a difficult problem, we considered using

neural networks, which have demonstrated good performance on a variety of

challenging tasks. We first started the experiment by training only one network, since

it was not clear for us whether using only one network would be enough or whether we

should take an indirect approach and use multiple models similar to the state-of-the-

art. We defined the problem as a regression and used an inception-v4 [SIVA16] model.

We changed the output layer to estimate five values of metallic, roughness and R, G,

B. We added a sigmoid layer at the end to produce the values between 0 and 1.

We weren't sure which type of input to use when training the network, so we trained

it twice, once with only the masked image (binary masked applied to the color image,

thus 3 channel input) and once with both the masked image and the color image (6

channel input). We used Mean squared error as loss function (MSE). Following is the

definition of the MSE:

𝑀𝑆𝐸 =
1

𝑁
∑(𝑌𝑖 − �̌�𝑖)

2

𝑁

𝑖=1

Where 𝑌𝑖 are the outputs from the network, �̌�𝑖 are the ground-truth values and N is

the number of samples (batches). However, this formula is only valid for a network with

a single output node. Since we had five output nodes in our case, we also had to

calculate the average of loss over the output nodes:

𝑀𝑆𝐸 =
1

𝑂 ∗ 𝑁
∑

𝑁

𝑖=1

∑(𝑌𝑖𝑗 − �̌�𝑖𝑗)2

𝑂

𝑗=1

Where in our case o is 5. We trained both networks on 10,000 synthetic training

data and validated them on 100 synthetic images. We shuffled the training data at each

epoch during training to prevent the network from learning the order of the data. Since

our model was pretrained on ImageNet dataset, we normalized the input data using

the method previously discussed in the section 3.3.1 for faster convergence. We also

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 79

License CC BY-NC-ND 4.0

used an Adam optimizer and trained the networks with the batch size of 8. Both

networks converge around the 6th epoch with the MSE of 0.0237.

Figure 43: Results of the networks on synthetic test data. Although the results from both

networks look similar, the result from the model trained with 6 channels input looks closer

to the ground-truth, especially in the first and second rows.

We compared the results of both networks on synthetic data. Figure 43 shows this

comparison. Although the results from both networks are similar, the result from the

model trained with 6 channels input looks closer to the ground-truth, especially in the

first and second rows.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 80

License CC BY-NC-ND 4.0

Figure 44: Results of our networks on real-world data. We used the output values of

each network as the material values of an arbitrary primitive shape in Blender and

rendered it using Cycles engine.

 We also compared the results from the networks on real-world arbitrary objects. To

create the real-world data, we placed a single object in a scene and took a photo of it

with a mobile phone, and then manually created the corresponding segmentation

mask. Figure 44 shows the results. We used the output values of each network as the

material values of an arbitrary primitive shape in Blender and rendered it using Cycles

engine. The color values of the objects appear to be close enough, but it was difficult

to interpret the combination of metallic and roughness values.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 81

License CC BY-NC-ND 4.0

As a result, we conducted another experiment; this time we removed the metallic

parameter as it is mostly suitable for mirrors. We then added a point light at a random

location near the camera to light up the object. This is because sometimes a specular

object’s shininess was not visible through the camera since the direction of the

incoming light in HDRI lighting environments was random.

Figure 45: Results from our networks. For easier interpretation of the results, we

removed the metallic parameter. However, there were not a drastic change in the output,

meaning that roughness parameter alone could be enough for most items.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 82

License CC BY-NC-ND 4.0

We generated 10,000 synthetic training data and 100 validation data again. We

retrained both networks on the newly generated data. The network with 3 channel input

converges around 5th epoch with MSE of 0.0207 and the network with 6 channel input

converges around 6th epoch with MSE of 0.0176.

IV.4. Preliminary Conclusion

In this chapter, we have proposed a preliminary study concerning the estimation of

the material properties of an object of arbitrary shape, from a single image and under

uncontrolled lighting conditions. The proposed method is simple and gives results that

we consider acceptable given our initial objectives, but it is only a first attempt and

needs to be further developed.

In the first experiment, the results seem to be correct, but the consideration of the

ambient lighting remains a problem and makes the analysis of the results delicate.

Also, the metallic and roughness values in the first experiment remain difficult to

interpret and the removal of the metallic parameter in the second experiment did not

bring any radical changes to the network results. Therefore, we will change the BRDF

model to reduce the number of parameters to be determined. In general, one way to

improve the performance of the network on real-world data could be to add more

complex-looking objects in the synthetic training data.

.

Chapter V. Conclusion

This thesis is about “Simultaneous acquisition of geometry and reflectance” using

RGB-D cameras. In this work, we discussed this subject in two different sections:

geometry acquisition and reflectance acquisition. Our main objective was to get both

the geometry and material of an object using low-cost RGB-D cameras. These

cameras are more accessible to the general public, but as previously discussed, the

depth map obtained from them may contain holes or incorrect measurements. This is

primarily an issue with active sensors and occurs on specular or transparent objects.

For our study of geometry acquisition, we first examined Intel Real Sense D435

camera and carefully observed its limitations in depth sensing. We then proposed a

method based on deep learning to correct and complete the depth of close-range

specular objects. Our method consists of four main parts:

• Dataset generation: We created a scene generator that generates synthetic

dataset to train the networks with pixel-perfect ground-truth data. Each data

consists of a color image with a corresponding normal map and a boundary

map.

• Network training: We trained convolutional neural networks to estimate normal

map and a boundary map from a single color image. We compared different

network architectures to find the best one for our data. We used the output from

these networks for the next two parts.

• Incorrect depth pixel removal: We located and removed the incorrect regions

in the depth map in three steps: first, we removed the object boundaries using

the boundary map generated by our network, second, we compared the normal

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 84

License CC BY-NC-ND 4.0

map estimated from the network and the normal map calculated from the depth

map and removed the areas where these two differ significantly. At last, we

removed all the remaining noise by using a morphological transformation.

• Depth completion: we completed the depth map by using an optimization

approach and with the guidance of the outputs from normal estimation and

boundary detection networks.

Following that, we demonstrate that our pipeline effectively improves the quality of

the acquired depth map.

For the study of material acquisition, we investigated a straightforward method to

estimate the material properties of an object from a single color image. Our proposed

method consists of two steps:

• Dataset generation: We modified the scene generator that we previously

created in geometry acquisition section and created a new synthetic dataset.

Each data consists of a color image, a binary mask and a text file containing

the object’s Metallic, roughness and RGB values.

• Network training: We trained a neural network model on our synthetic data to

directly estimate the material properties.

The network generates decent result, but more experiments are required to improve

its performance.

V.1. Future work

Regarding geometry acquisition, in chapter 3 discussion section, we explained an

uncommon drawback that occurs when locating and removing the incorrect depth. This

drawback can get investigated in future research. In addition, another interesting

subject would be to investigate the impact of noise differentials of synthetic data

compared to real-world data in our pipeline.

Regarding material estimation, the experiments that we presented are still in their

early stages. There are many ways in which the results can be improved. One way is

to thoroughly examine the synthetic dataset to ensure it has enough diversity regarding

its object shapes and shadow positions to cover all real-life situations.

Additionally, since we are using RGB-D cameras, we have both the color image and

the corresponding depth map in a single acquisition. Thus, we can use them both for

improving the material estimation. As stated previously, the depth map obtained by

active RGB-D sensors usually suffers from noise, missing values, and incorrect

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 85

License CC BY-NC-ND 4.0

measurements on specular and transparent objects. Analyzing the depth map

thoroughly for types of noise and missing values can provide valuable information

about the material properties and the light direction. Furthermore, the shape of the

object has an important role in the color image formation process, adding this

information can help improve the results as well.

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 86

License CC BY-NC-ND 4.0

Bibliography

[BCCN18] Bianco, S., Cadene, R., Celona, L., & Napoletano, P. (2018). Benchmark

Analysis of Representative Deep Neural Network Architectures. IEEE Access, 6,

64270–64277. https://doi-org.ezproxy.unilim.fr/10.1109/ACCESS.2018.2877890

[BKPB17] Bonneel, N., Kovacs, B., Paris, S., & Bala, K. (2017). Intrinsic

Decompositions for Image Editing. In Computer Graphics Forum (Proc. Eurographics

STAR), 36(2), 593–609. https://doi.org/10.1111/cgf.13149

[DADDB19] Flexible SVBRDF Capture with a Multi-Image Deep Network. Deschaintre

V., Aittala M., Durand F., Drettakis G., Bousseau A. Computer Graphics Forum (EGSR

Conference Proceedings), 38, 4(July 2019)

[CDF17] Chang, A., Dai, A., Funkhouser, T., Halber, M., Niebner, M., Savva, M., Song,

S., Zeng, A., & Zhang, Y. (2017). Matterport3D: Learning from RGB-D Data in Indoor

Environments. 2017 International Conference on 3D Vision (3DV), 3D Vision (3DV),

2017 International Conference on, 3DV, 667–676. https://doi-

org.ezproxy.unilim.fr/10.1109/3DV.2017.00081

[CPKMY17] Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., & Yuille, A. L.

(2017). DeepLab: Semantic Image Segmentation with Deep Convolutional Nets,

Atrous Convolution, and Fully Connected CRFs. IEEE Transactions on Pattern

Analysis & Machine Intelligence, 40(4), 834–848.

https://doi.org/10.1109/TPAMI.2017.2699184

[CSS16] Chakrabarti, A., Shao, J., & Shakhnarovich, G. (2016). Depth from a Single

Image by Harmonizing Overcomplete Local Network Predictions. Conference on

Neural Information Processing Systems (NIPS) 2016, Barcelona.

[CPSA17] Chen, L.-C., Papandreou, G., Schroff, F. & Adam, H. (2017). Rethinking

Atrous Convolution for Semantic Image Segmentation. ArXiv, abs/1706.05587.

[DDSLLF09] Deng, J., Dong, W., Socher, R., Li, L., Li, K., & Fei-Fei, Li. (2009).

ImageNet: A large-scale hierarchical image database. 2009 IEEE Conference on

Computer Vision and Pattern Recognition, Computer Vision and Pattern Recognition,

2009. CVPR 2009. IEEE Conference On, 248–255. https://doi-

org.ezproxy.unilim.fr/10.1109/CVPR.2009.5206848

https://doi-org.ezproxy.unilim.fr/10.1109/ACCESS.2018.2877890
https://doi.org/10.1111/cgf.13149
https://doi-org.ezproxy.unilim.fr/10.1109/3DV.2017.00081
https://doi-org.ezproxy.unilim.fr/10.1109/3DV.2017.00081

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 87

License CC BY-NC-ND 4.0

[EF15] Eigen, D., & Fergus, R. (2015). Predicting Depth, Surface Normals and

Semantic Labels with a Common Multi-scale Convolutional Architecture. 2015 IEEE

International Conference on Computer Vision (ICCV), 2650–2658.

https://doi.org/10.1109/ICCV.2015.304

[FGW20] Fu, L., Gao, F., Wu, J., Li, R., Karkee, M., & Zhang, Q. (2020). Application of

consumer RGB-D cameras for fruit detection and localization in field: A critical review.

Computers & Electronics in Agriculture, 177, N.PAG.

https://doi.org/10.1016/j.compag.2020.105687

[GGGDG16] Guarnera D., Guarnera G. C., Ghosh A., Denk C., Glencross M.: BRDF

Representation and Acquisition. Computer Graphics Forum (2016).

[GRCL22] Garces, E., Rodriguez-Pardo, C., Casas, D., & Lopez-Moreno, J. (2022). A

Survey on Intrinsic Images: Delving Deep into Lambert and Beyond. International

Journal of Computer Vision, 1–33. https://doi-org.ezproxy.unilim.fr/10.1007/s11263-

021-01563-8

[GRR18] Georgoulis, S., Rematas, K., Ritschel, T., Gavves, E., Fritz, M., Van Gool, L.,

& Tuytelaars, T. (2018). Reflectance and Natural Illumination from Single-Material

Specular Objects Using Deep Learning. in IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 40, no. 8, pp. 1932-1947, 1 Aug. 2018, doi:

10.1109/TPAMI.2017.2742999.

[GSB18] Gomes, L., Silva, L. & Bellon, O. (2018). Exploring RGB-D Cameras for 3D

Reconstruction of Cultural Heritage: A New Approach Applied to Brazilian Baroque

Sculptures. Journal on Computing and Cultural Heritage. 11. 1-24. 10.1145/3230674.

[HHC14] Huang, Y.-L., Hsu, T.-W., & Chien, S.-Y. (2014). Edge-aware depth

completion for point-cloud 3D scene visualization on an RGB-D camera. 2014 IEEE

Visual Communications and Image Processing Conference, Visual Communications

and Image Processing Conference, 2014 IEEE, 422–425.

https://doi.org/10.1109/VCIP.2014.7051596

[HKMT90] Holschneider, M., Kronland-Martinet, R., Morlet, J., & Tchamitchian, P.

(1990). A Real-Time Algorithm for Signal Analysis with the Help of the Wavelet

Transform. Springer Berlin Heidelberg. https://doi-org.ezproxy.unilim.fr/10.1007/978-

3-642-75988-8_28

https://doi.org/10.1109/ICCV.2015.304
https://doi.org/10.1016/j.compag.2020.105687
https://doi-org.ezproxy.unilim.fr/10.1007/s11263-021-01563-8
https://doi-org.ezproxy.unilim.fr/10.1007/s11263-021-01563-8
https://doi.org/10.1109/VCIP.2014.7051596

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 88

License CC BY-NC-ND 4.0

[HS79] Horn, B. K. P., & Sjoberg, R. W. (1979). Calculating the reflectance map.

Applied Optics, 18(11), 1770–1779.

[HZRS16] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep Residual Learning for

Image Recognition. 2016 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), Computer Vision and Pattern Recognition (CVPR), 2016 IEEE

Conference On, 770–778. https://doi-org.ezproxy.unilim.fr/10.1109/CVPR.2016.90

[IR22] Intel RealSense D400 Series Product Family Datasheet – 2022, url:

https://dev.intelrealsense.com/docs/intel-realsense-d400-series-product-family-

datasheet

[IS15] Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep

Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd

International Conference on International Conference on Machine Learning - Volume

37 (ICML'15). JMLR.org, 448–456.

[KK11] Krähenbühl, P., & Koltun, V. (2011). Efficient Inference in Fully Connected

CRFs with Gaussian Edge Potentials.

[KSH12] Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). ImageNet Classification

with Deep Convolutional Neural Networks. Neural Information Processing Systems.

25. 10.1145/3065386.

[LGL12] Junyi Liu, Xiaojin Gong, & Jilin Liu. (2012). Guided inpainting and filtering for

Kinect depth maps. Proceedings of the 21st International Conference on Pattern

Recognition (ICPR2012), Pattern Recognition (ICPR), 2012 21st International

Conference On, 2055–2058.

[LSD15] Long, J., Shelhamer, E., & Darrell, T. (2015). Fully convolutional networks for

semantic segmentation, 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2015, pp. 3431-3440, doi: 10.1109/CVPR.2015.7298965.

[LZP14] Ladicky, L., Zeisl, B., & Pollefeys, M. (2014). Discriminatively Trained Dense

Surface Normal Estimation. In 2014 ECCV.

[MMZ18] Meka, A., Maximov, M., Zollhofer, M., Chatterjee, A., Seidel, H.-P., Richardt,

C., & Theobalt, C. (2018). LIME: Live Intrinsic Material Estimation. 2018 IEEE/CVF

Conference on Computer Vision and Pattern Recognition, 2018, pp. 6315-6324, doi:

10.1109/CVPR.2018.00661.

https://doi-org.ezproxy.unilim.fr/10.1109/CVPR.2016.90
https://dev.intelrealsense.com/docs/intel-realsense-d400-series-product-family-datasheet
https://dev.intelrealsense.com/docs/intel-realsense-d400-series-product-family-datasheet

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 89

License CC BY-NC-ND 4.0

[MS90] Murray-Coleman J.F. & Smith A.M. (1990) The Automated Measurement of

BRDFs and their Application to Luminaire Modeling. In Journal of the Illuminating

Engineering Society, 19:1, 87-99, DOI: 10.1080/00994480.1990.10747944

[NRH77] Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsberg, I.W., & Limperis, T.

(1977). Geometrical considerations and nomenclature for reflectance. In: Monograph,

vol. 161. National Bureau of Standards (US).

[P19] Iakubovskii, P. (2019) Segmentation Models Pytorch, Github, URL:

https://github.com/qubvel/segmentation_models.pytorch

[P75] Phong, B. (1975) Illumination for computer generated pictures. Communications

of the ACM,18(6):311–317, June 1975, DOI: https://doi.org/10.1145/360825.360839

[PBN16] Paul, S., Basu, S., & Nasipuri, M. (2016). Microsoft Kinect in Gesture

Recognition: A Short Review.

[RDSK15] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,

Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. & Li, F. (2015) ImageNet Large

Scale Visual Recognition Challenge. International Journal of Computer Vision

(IJCV) 115, 211–252. https://doi.org/10.1007/s11263-015-0816-y

[RFB15] Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net: Convolutional

Networks for Biomedical Image Segmentation. In Proceedings of the International

Conference on Medical Image Computing and Computer-Assisted Intervention,

Munich, Germany, 5–9 October 2015; pp. 234–241.

[SGHG21] Souley Dosso, Y., Greenwood, K., Harrold, J., & Green, J. R. (2021). RGB-

D scene analysis in the NICU. Computers in Biology and Medicine, 138.

https://doi.org/10.1016/j.compbiomed.2021.104873

[SIVA16] Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. (2016). Inception-v4,

Inception-ResNet and the Impact of Residual Connections on Learning. AAAI

Conference on Artificial Intelligence. 31. 10.1609/aaai.v31i1.11231.

[SLJS14] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan,

D., Vanhoucke, V., & Rabinovich, A. (2014). Going Deeper with Convolutions. IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 1-9, doi:

10.1109/CVPR.2015.7298594.

https://github.com/qubvel/segmentation_models.pytorch
https://doi.org/10.1145/360825.360839
https://doi.org/10.1007/s11263-015-0816-y

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 90

License CC BY-NC-ND 4.0

[SMPN20] Sajjan, S., Moore, M., Pan, M., Nagaraja, G., Lee, J., Zeng, A., & Song, S.

(2020). Clear Grasp: 3D Shape Estimation of Transparent Objects for Manipulation.

2020 IEEE International Conference on Robotics and Automation (ICRA), Robotics

and Automation (ICRA), 2020 IEEE International Conference On, 3634–3642.

https://doi.org/10.1109/ICRA40945.2020.9197518

[SVISW16] Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, Z. (2016).

Rethinking the Inception Architecture for Computer Vision. 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2016, pp. 2818-2826, doi:

10.1109/CVPR.2016.308.

[SZ14] Simonyan, K., & Zisserman, A. (2014). Very Deep Convolutional Networks for

Large-Scale Image Recognition. ICLR 2015

[T04] Telea, A. (2004). An Image Inpainting Technique Based on the Fast Marching

Method. Journal of Graphics Tools, 9(1), 23–34.

https://doi.org/10.1080/10867651.2004.10487596

[TFT20] Tewari, A., Fried, O., Thies, J., Sitzmann, V., Lombardi, S., Sunkavalli, K.,

Martin, B. R., Simon, T., Saragih, J., Nießner, M., Pandey, R., Fanello, S., Wetzstein,

G., Zhu, J. ‐Y., Theobalt, C., Agrawala, M., Shechtman, E., Goldman, D. B., &

Zollhöfer, M. (2020). State of the Art on Neural Rendering. Computer Graphics

Forum, 39(2), 701–727. https://doi.org/10.1111/cgf.14022

[TS67] Torrance, K.E., & Sparrow, E.M. (1967). Theory for off-specular reflection from

roughened surfaces. J. Optical Soc. America, 57:1105–1114.

[URL1] Stanford 2017 Lectures: http://cs231n.stanford.edu/slides/2017/

[URL2] Intel Realsense SDK2 sample program, url:

http://unanancyowen.com/en/realsense-sdk-2-samples/

[URL3] url: https://resources.blogscopia.com/category/textures/, url:

https://3dtextures.me/, and url: https://ambientcg.com/

[URL4] Poly Haven: The Public 3D Asset Library, url: https://polyhaven.com/hdris

[URL5] Intel RealSense SDK 2.0, url: https://www.intelrealsense.com/sdk-2/

[URL6] Poly Haven Models, url: https://polyhaven.com/models

https://doi.org/10.1080/10867651.2004.10487596
https://doi.org/10.1111/cgf.14022
http://cs231n.stanford.edu/slides/2017/
http://unanancyowen.com/en/realsense-sdk-2-samples/
https://3dtextures.me/
https://polyhaven.com/hdris
https://www.intelrealsense.com/sdk-2/
https://polyhaven.com/models

Shahrzad Pourmand | Ph.D. Thesis | University of Limoges | 2023 91

License CC BY-NC-ND 4.0

[URL7] TaraXL sensor by econ systems, url: https://www.e-consystems.com/3d-usb-

stereo-camera-with-nvidia-accelerated-sdk.asp

[URL8] Matterport pro3, url: https://matterport.com/fr/pro3#pro3-packages

[URL9] Kinect adventures game, url: https://www.xboxpassion.fr/jeux-xbox-360/336-

kinect-adventures.html

[URL10] Xbox Kinnect in Sunnybrook hospital, url:

https://www.youtube.com/watch?v=f5Ep3oqicVU

[WFG15] Wang, X., Fouhey, D. F., & Gupta, A. (2015). Designing deep networks for

surface normal estimation. 2015 7th International Conference on Games & Virtual

Worlds for Serious Applications (VS-Games), 539–547.

https://doi.org/10.1109/CVPR.2015.7298652

[YPCLY16] Yang, J., Price, B., Cohen, S., Lee, H., & Yang, M.-H. (2016). Object

Contour Detection with a Fully Convolutional Encoder-Decoder Network. 2016 IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 193–202.

https://doi-org.ezproxy.unilim.fr/10.1109/CVPR.2016.28

[ZF18] Zhang, Y., & Funkhouser, T. (2018). Deep Depth Completion of a Single RGB-

D Image. 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition,

Computer Vision and Pattern Recognition (CVPR), 2018 IEEE/CVF Conference on,

CVPR, 175–185. https://doi-org.ezproxy.unilim.fr/10.1109/CVPR.2018.00026

[ZJL20] Zhao, S., Jakob, W. & Li, T.M: Physics-Based Differentiable Rendering: From

Theory to Implementation. In Special Interest Group on Computer Graphics and

Interactive Techniques Conference Courses (SIGGRAPH ’20 Courses), August 17,

2020. ACM, New York, NY, USA, 30 pages. https://doi.org/10.1145/3388769.3407454

[ZS17] Zhang, Y., Song, S., Yumer, E., Savva, M., Lee, J.-Y., Jin, H., & Funkhouser,

T. (2017). Physically-Based Rendering for Indoor Scene Understanding Using

Convolutional Neural Networks. 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR)

https://www.e-consystems.com/3d-usb-stereo-camera-with-nvidia-accelerated-sdk.asp
https://www.e-consystems.com/3d-usb-stereo-camera-with-nvidia-accelerated-sdk.asp
https://matterport.com/fr/pro3#pro3-packages
https://www.xboxpassion.fr/jeux-xbox-360/336-kinect-adventures.html
https://www.xboxpassion.fr/jeux-xbox-360/336-kinect-adventures.html
https://doi.org/10.1109/CVPR.2015.7298652
https://doi-org.ezproxy.unilim.fr/10.1109/CVPR.2018.00026

Simultaneous Acquisition of Geometry and Reflectance

Cette thèse porte sur « l'acquisition simultanée de la géométrie et de la réflectance ».
Les caméras RGB-D sont utilisées dans une variété d'applications, y compris la numérisation
3D, la navigation et la manipulation de robots, etc. Ces caméras fournissent simultanément
une image couleur (RVB) et une carte de profondeur. La carte de profondeur indique la
distance entre les objets et la caméra par pixel. Ces caméras RGB-D sont disponibles dans
une variété de prix ; avec en particulier des modèles low-costs destinés à un usage grand
public. Cependant, ces caméras présentent des défauts de mesure dans certaines zones /
sous certaines conditions. Par conséquent, la carte de profondeur obtenue présente des
valeurs manquantes (trous), des mesures de profondeur incorrectes et du bruit. Ces
problèmes sont plus fréquents dans les zones où les objets sont transparents, spéculaires,
trop proches ou trop éloignés, ou trop fins.
Dans ce travail, nous proposons une approche pour corriger et compléter la carte de
profondeur d’objets spéculaires proches. Notre approche se compose de différentes parties :
d'abord, nous créons un générateur de scènes 3D aléatoires qui génère des images
synthétiques pour l'entraînement du réseau de neurones. Deuxièmement, nous entraînons
des réseaux de neurones à l'aide de nos images synthétiques pour aider à identifier les régions
incorrectes dans la carte de profondeur. Finalement, nous complétons la profondeur en
utilisant une méthode d'optimisation. Nous testons notre pipeline proposé sur des données du
monde réel et démontrons qu'il obtient d'excellents résultats.
Obtenir la réflectance d'un objet réel à partir d'une seule image est une tâche difficile. Nous
proposons une première approche simplifiée par une adaptation de la méthode que nous
avons proposée précédemment : création d'un nouveau générateur de scènes pour générer
des ensembles de données synthétiques et entraîner des réseaux de neurones. L'objectif est
d'obtenir une première approximation utilisable par un graphiste.

Mots-clés : Complétion de la profondeur, Images RGB-D, Images synthétiques

Simultaneous Acquisition of Geometry and Reflectance

This thesis focuses on the “simultaneous acquisition of geometry and reflectance”.
RGB-D cameras are used in a variety of applications, including 3D scanning, robot navigation
and manipulation, and so on. These cameras provide a color (RGB) image and a depth map
simultaneously. The depth map indicates the distance between objects and the camera per
pixel. These RGB-D cameras are available in a variety of prices; with the low-cost models
intended for general public use. However, these low-cost cameras suffer from measurement
errors in certain areas / under certain conditions. Therefore, the result depth map contains
missing values (holes), incorrect depth measurements, and noise. These issues are most
common in areas where objects are transparent, specular, too close or too far away, or too
thin. In this work, we propose an approach for correcting and completing the depth of close-
range specular objects. Our approach consists of several steps: First, we create a random 3D
scene generator that generates synthetic images for training neural network. Second, we train
neural networks using our dataset to help identifying incorrect regions in the depth map.
Eventually, we complete the depth using an optimization method. We test our proposed
pipeline on real-world data and demonstrate that it achieves excellent results.
Obtaining an object's material properties (reflectance) from a single image is a challenging and
ill-posed task. We propose an early approach simplified by an adaptation of the method we
proposed previously: creation of a new scene generator to generate synthetic datasets and
train neural networks. The objective is to obtain a first approximation usable by a graphic
designer.

Keywords: Depth completion, RGB-D images, Synthetic dataset

	Acknowledgements
	Rights
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Résumé
	Chapter I. Introduction
	I.1. Motivation
	I.2. Contribution and Outline

	Chapter II. Fundamental and Previous work
	II.1. RGB-D Cameras
	II.2. Deep Learning
	II.2.1. Image Classification
	II.2.1.1. Convolutional Neural Network Architecture for Image Classification

	II.2.2. Semantic Segmentation

	II.3. Estimating Underlying Properties of an Image
	II.3.1. Reflectance Estimation
	II.3.1.1. Preliminaries
	II.3.1.2. Related work

	II.3.2. Surface Normal Estimation

	II.4. Depth Completion

	Chapter III. Depth Completion for Close-Range Specular Objects
	III.1. Introduction and Overview
	III.2. Dataset Generation
	III.3. Network Architecture and Training
	III.3.1. Normal Estimation
	III.3.2. Boundary Detection

	III.4. Incorrect Depth Pixel Removal
	III.5. Global Optimization
	III.6. Results and Discussion
	III.7. Conclusion

	Chapter IV. Reflectance Estimation
	IV.1. Introduction and Overview
	IV.2. Dataset Generation
	IV.3. Experiments
	IV.4. Preliminary Conclusion

	Chapter V. Conclusion
	V.1. Future work

	Bibliography

