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reconnaissant envers Serge d’avoir dirigé mon travail pendant ces trois années. Tu as
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Guillaume, Baptiste, Justin, Hadi, Nant, Selma et Alexandre.
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m’avoir soutenu depuis le début, de m’avoir compris dans ma passion pour le monde de
la recherche en physique, et de m’avoir accompagné dans tout ce que j’ai pu entreprendre
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Abstract
Strong correlations arising from interactions between particles are responsible for many

phenomena in condensed matter physics, from superconductivity to heavy fermions. An
accurate theoretical description of such complex systems requires to solve so-called many-
body problems, which are inherently difficult to tackle due to the exponential growth of
the underlying Fock space with the size of the system. Usually, single-particle descrip-
tions or perturbation theory at first orders fail to provide satisfactory results in correlated
regimes, and pertinent Ansätze or cutting edge numerical methods are required to solve
these problems.

Among the wide variety of strongly correlated electronic systems, quantum impurity
systems are of central interest. These systems, where a few localized degrees of freedom
that undergo strong interactions hybridize with a larger system of free particles, have been
widely studied for decades. Beyond their relevance to study dilute dynamic impurities in
metals, quantum dots, or more complex nanostructures, they are exploited in a broader
class of problems through dynamical mean field theory (DMFT), that is designed for fully
interacting lattice problems. Despite the effort devoted to studying of these problems,
some questions remain open and new approaches are required to address them.

In this thesis, quantum impurity problems are tackled with the use of natural orbitals,
a representation rooted in the framework of quantum chemistry. The numerical renormal-
ization group, the standard non-perturbative method to treat these systems, is employed
to demonstrate the hierarchical structure of correlations unveiled by natural orbitals. An
ansatz for the wave function of the ground state is then proposed, separating explicitely
a small set of correlated orbitals to a large uncorrelated one, leaving the problem to a
few-body complexity. This simplification brought new insights for simulating quantum
impurity problems, and a new algorithm is developed to generate an optimized set of cor-
related orbitals independently of existing methods, going beyond their usual limitations.

In the first place, the algorithm is used to compute the screening cloud in large one-
dimensional chains and in a realistic 2D square lattice coupled to a localized adatom. This
observable is of great interest to understand the screening mechanism of the magnetic mo-
ment of the impurity that plays a central role in transport properties, for unidimensional
systems or in bulk metals experiencing RKKY interactions. Spatial correlations were
found to be highly non-symmetric, breaking the s-wave picture. In one direction, corre-
lations vanish way faster than the usual isotropic correlation length, while on the other
one they spread further than this same expected length. This anisotropy suggests that
impurities in bulk systems may interact differently depending on their relative positions
with respect to the lattice.

Taking further advantage of the efficiency of this new algorithm allowed us to per-
form a statistical study on large systems to investigate correlations around a quantum
impurity in a disordered host, averaging over a large amount of realizations, which was
not possible with previous approaches. The question motivating this study was the fate
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of the correlation cloud spreading into the disordered electronic bath. Although spatial
correlations are expected to vanish when the disorder increases, long range correlations
survive to some configurations of the random potential, inducing a bimodal structure
of probability distribution functions of relevant scales. We also observe different effects
on correlations depending on whether the disorder is applied in the charge or spin channel.

Finally, these disordered problems are investigated in the non-interacting situation
with random matrix theory, which reproduced qualitatively the results obtained before.
The joint distribution of one-particle orbitals energies and amplitudes is calculated, which
allows to compute in principle any disordered averaged local correlation functions, and
calculations in the large-N limit and using a random two by two matrix toy model are
presented, which reproduces all qualitative aspects of disordered quantum impurity mod-
els.
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Résumé
Les corrélations fortes résultant de l’interaction de Coulomb entre les particules sont

responsables de nombreux phénomènes en physique de la matière condensée, de la supra-
conductivité aux fermions lourds. La description théorique de ces systèmes complexes
nécessite la résolution de problèmes dits à N-corps, intrinsèquement difficiles à traiter en
raison de la croissance exponentielle de l’espace de Fock sous-jacent avec le nombre de
degrés de liberté dans le système. Dans les régimes corrélés, une description à un corps (en
champ moyen) ou une théorie de perturbation aux premiers ordres ne produisent pas de
résultats satisfaisants, et des Ansätze pertinents ou l’utilisation de méthodes numériques
de pointe sont nécessaires pour résoudre ces problèmes.

Parmi la grande variété de systèmes électroniques fortement corrélés, les systèmes
d’impuretés quantiques sont d’un intérêt central. Ces systèmes, dans lesquels quelques
degrés de liberté localisés qui subissent de fortes interactions s’hybrident avec un système
plus large constitué de particules libres, ont été amplement étudiés au cours des dernières
décennies. Au delà de leur pertinence pour étudier des impuretés dynamiques diluées
dans les métaux, les points quantiques, ou dans des nanostructures plus complexes, ces
modèles sont exploités dans une classe plus large de problèmes à travers la théorie du
champ moyen dynamique (DMFT), conçue pour les problèmes sur réseau en interaction.
Malgré les efforts consacrés à l’étude de ces problèmes, certaines questions restent ou-
vertes et de nouvelles approches sont nécessaires pour y répondre.

Dans cette thèse, les problèmes d’impuretés quantiques sont abordés à l’aide des or-
bitales naturelles, une représentation ancrée dans le cadre de la chimie quantique. Le
groupe de renormalization numérique, la méthode non-perturbative standard pour traiter
ces problèmes, est utilisée pour démontrer la structure hiérarchique des correlations révélée
par les orbitales naturelles. Un ansatz pour la fonction d’onde de l’état fondamental est
proposé, séparant explicitement un petit jeu d’orbitales corrélées d’un grand ensemble
dit décorrélé, simplifiant le problème à une compléxité de peu de corps. Cette simpli-
fication apporte de nouvelles perspectives pour la simulation des problèmes d’impuretés
quantiques, et un nouvel algorithme est développé visant à générer un ensemble optimal
d’orbitales corrélées indépendamment des méthodes existantes, allant au delà des limita-
tions habituelles.

Dans un premier temps, l’algorithme est utilisé pour calculer le nuage d’écrantage dans
de longues châınes unidimensionnelles et dans un réseau carré bidimensionnel réaliste
couplé à un adatome localisé. Cette observable est d’un grand intérêt pour compren-
dre les mécanismes d’écrantage du moment magnétique de l’impureté, qui jouent un rôle
central dans les propriétés de transport des systèmes unidimensionnels ou des matériaux
condensés sujets aux interactions RKKY. Les corrélations spatiales ont révélé être très
asymétriques, brisant l’image s-wave habituellement considérée. Cette anisotropie suggère
que différentes impuretés dans un métal interagissent différemment selon leur position re-
spective dans le réseau.
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Tirant profit de l’efficacité de l’algorithme, nous avons réalisé une étude statistique
sur de grands systèmes et l’étude des correlations dans un environnement désordonné en-
tourant une impureté quantique, en moyennant sur une grande quantité de réalisations,
ce qui n’était pas réalisable avec les approches précédentes. La question centrale de
cette étude concerne le sort du nuage de corrélations s’étendant dans le bain électronique
désordonné. Bien que l’on s’attende à ce que les correlations spatiales disparaissent lorsque
le désordre augmente, des correlations à grande distance survivent à certaintes configu-
rations du potentiel désordonné, induisant une structure bimodale des fonctions de den-
sité de probabilité des échelles étudiées. On observe aussi des effets différents sur les
corrélations lorsque le désordre est appliqué dans le canal de charge ou de spin.

Pour finir, ces problèmes désordonnés sont examinés dans la limite sans interaction
à l’aide d’un modèle se basant sur la théorie des matrices aléatoires, qui reproduit qual-
itativement les résultats obtenues précédemments. La distribution de probabilité jointe
des énergies et des amplitudes des orbitales à un corps est calculée, permettant de cal-
culer en principe toute fonction de corrélation locale moyennée sur le désordre, et des
calculs dans la limite de grand N et avec l’utilisation d’un modèle jouet sont présentés,
qui ont reproduit qualitativement tous les aspects des problèmes d’impureté quantiques
désordonnés.
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Part I.
Introduction





1 The quantum impurity problem

“The frontier of science extends all along a long
line from the newest and most modern intensive re-
search, over the extensive research recently spawned
by the intensive research of yesterday, to the broad
and well developed web of extensive research activ-
ities based on intensive research of past decades.”

P.W. Anderson, Science (1972)

1.1 The many-body problem in condensed matter
Giving a clear and appropriate description of matter requires to consider the coexistence
of an astronomically large number of particles. A piece of metal is expected to host no
less than 1023 particles, and trying to follow the behavior of so many objects interacting
simultaneously has more to do with madness than physics. At some point I have been
introduced to many-body quantum physics, and how powerful mathematical tools com-
bined to simple physical models can explain phenomena originating from the interaction
of all these particles. Employing the word simple here is a bit crude, since building such
theory requires a deep and accurate physical understanding of what may happens in these
quantum systems so far from our sensible world. In the end, what matters is the smallest
number of ingredients that are required for a given phenomena to emerge, and how is it
affected by this or that disturbance. Then, when we believe that the model that we built
could explain the physics in our system (or any new phenomenon that might exists under
some specific conditions), we have to arrange the problem such that we can compute any
observable (a quantity that can be measured) of interest. The models are defined through
a specific Hamiltonian operator, and can be solved in principle by finding the eigenstates
of the latter: in that sense, the Schrödinger equation is solved, and we have ideally access
to the desired physical quantity of the system. There exists plenty of good references cov-
ering the many-body problem in quantum mechanics and its applications, but I suggest
here the ones that I mostly followed during my PhD [1–4].

When the Hamiltonian is quadratic in the fields of the particles under study, it can be
diagonalized in the Hilbert’s space that is spanned by a set of N orbitals |ϕn⟩ = c†

n|0⟩ in
which the problem is defined. We will abuse of the word orbital, that will in the following
denote an accessible state for each particle, in a wider sense than atomic or molecular
orbitals commonly employed in quantum chemistry. We introduced the creation oper-
ator c†

n, defined in the second quantization representation of the physical fields, which
creates a particle in the one-particle state labelled by n. In this thesis, we will focus on
fermionic particles, whose principal properties are the fermionic anticommutation relation
{c†

n, cm} = δmn and the Pauli principle (c†
n)2|0⟩ = 0, which forbids two fermions to be in

the same quantum state. Note that these properties are general and do not depend on
the Hamiltonian. This one-particle modelisation can be used to describe free particles

3



CHAPTER 1. THE QUANTUM IMPURITY PROBLEM

and can explain localization effects in disordered systems, the integer quantum hall effect,
etc. It brings accurate results when the effect of inter-particle interactions is negligible,
which is a strong statement in condensed matter.

Most of the time, interaction between particles must be taken into account, and when
introducing the typical density-density Coulomb interaction between charged particles,
the Hamiltonian is no more quadratic in the fields and the problem is usually treated
in Fock space. This space is defined as the direct sum of single particle Hilbert spaces
for any number of particles. Formally, the Fock space is defined as: F = ⊕N

m=0 H⊗m.
Usually, the occupation number representation for a state is used in this space, so that
each different state corresponds to a specific (unique) distribution of n particles within
the N accessible orbitals. A Fock state can thus be written |Φa⟩ = |n1, . . . , ni , . . . , nN⟩ =
(c†

1)n1 . . . (c†
i )ni . . . (c†

N)nN |0⟩, with ∑N
i=0 ni = m, where ni denotes the occupation of or-

bital i and m the number of particles in the state. Thus, the Fock space is spanned by
all Fock states built by all possible configurations of ni=0,...,n ∈ {0, 1}, and is of dimension
D = 2N . The exponential growth of the Fock space with the number of accessible orbitals
makes the study of such systems difficult, and clever approximations must be done to
reduce the complexity of the problem, for instance by focusing on a subspace that gives
a good description of the whole problem.

As soon as interactions play a central role in the physics at play, the system is said
to be strongly correlated: correlations between all degrees of freedom reveal emergent
phenomena, that could not be explained by a simple extension of a single-particle solu-
tion of the free problem. Among the most notable effects coming from strong fermionic
correlations are superconductivity, Mott insulators, Fermi liquids, etc.

These problems can be tackled by many-body analytical methods including Green’s
functions, perturbation theory, Hartree-Fock theory, [1–3, 5] etc., or numerical simula-
tions, from quantum Monte-Carlo [6, 7] to renormalization group algorithms [8, 9]. Still,
a lot of questions are left open in systems where every existing tool fails to provide sat-
isfactory results, making the theoretical study of strongly correlated systems one of the
most active field of condensed matter.

We will be focused on the rest of this part on quantum impurity models, describing
a few degrees of freedom coupled to a large bath of non-interacting particle via Coulomb
interaction, while hybridizing with the latter. These seemingly simple many-body prob-
lems exhibit non-trivial phenomena emerging from strong correlations, and are widely
studied nowadays for the description of qubits or more complex lattice problems. We will
start with a brief review of the Kondo problem, through which quantum impurity models
were introduced, and then introduce the models that will be study in the following of the
manuscript.
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CHAPTER 1. THE QUANTUM IMPURITY PROBLEM

1.2 The Kondo effect in a nutshell
The following story is well known today, and hence we will not dwell on too specific details
here. For a thorough review, the reader can refer to Refs. [2, 5, 10]. The premises of the
large interest in quantum impurity problems lies in an anomaly observed in the resistiv-
ity of some metals at low temperatures. The processes responsible of the temperature
dependence of the resistivity were well described at this time by solid state physics [11].
As stated by Matthiessen’s rule, the scattering of conduction electrons by phonons – col-
lective displacements of atoms in the metal – were supposed to disappear gradually when
lowering the temperature, with the progressive freezing of phonons. As a result, the re-
sistivity was expected to vanish as a power law of the temperature, up to some constant
depending on the concentration of static defects in the lattice.

What was actually observed by W.J. de Haas and his collaborators [12] went against
these predictions: in Au wires, below a certain temperature, the resistivity was starting
to rise again. It has been understood later that magnetic impurities were responsible of
this effect, but the mechanism was not clear. P.W. Anderson, following ideas of J. Friedel
concerning virtual bound states [13] between electrons and magnetic scatterers, built the
first minimalist theoretical model describing this effect, which we know today as the An-
derson impurity model [14]. However, J. Kondo introduced a simpler s-d model [15], or
Kondo model, involving a localized spin S coupled via exchange interaction J to con-
ducting states. It appeared that this model is only a low-energy description [16] of the
more general Anderson impurity model, that will be presented with more details in the
following. Then, Kondo performed his now notorious perturbation theory that explained
the logarithmic increase of the resistivity with temperature.

Figure 1.1: Set of hyperbolic lines connecting equivalent problems [17] for the anisotropic
Kondo model. The straight lines account for the SU(2) symmetric Kondo model with
only one coupling channel J . The ferromagnetic case is asymptotically equivalent to the
J± = 0 problem, corresponding to the solvable Ising spin in a free electronic gas. In other
cases, one must consider the strong coupling limit J → ∞.

However the perturbative development was diverging as the temperature was ap-
proaching zero, so that the solution was not satisfactory. To address this limit, several
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CHAPTER 1. THE QUANTUM IMPURITY PROBLEM

theoretical studies appeared in a short period of time: Abrikosov-Migdal [18] and Fowler-
Zawadowski [19] used the renormalization group at some perturbative order, and Anderson
introduced his Poor man’s scaling [17] to understand the low energy physics in terms of
equivalent problems. It turns out that as the temperature (or the considered energy scale)
is lowered, interactions between the localized spin and free electrons strengthen, such that
below an energy scale TK, the effective coupling J̃ gets so strong that a possible picture
is that of a singlet state, in such a way that the Kondo impurity is reduced to a non-
magnetic scatterer, see Fig. 1.1. These arguments elucidated the failure of perturbation
theory as T → 0 (J̃ → ∞), which is therefore only valid for high T ≫ TK.

A few years later, K.G. Wilson came with a powerful non-perturbative algorithm that
closed the debate [9]. The numerical renormalization group (NRG), successively trans-
forming the Hamiltonian parameters until they reach a fixed point, was a breakthrough
for the field of Kondo physics, and in general for numerical simulations of many-body
Hamiltonians. It is still a commonly used method to simulate quantum impurity models,
and a detailed description of the algorithm will be provided later on. The real power
of the method is its ability to describe the full crossover between high energy properties
and the strong coupling limit at low energy. Wilson provided a definitive answer for the
ground state of the spin-1

2 problem, and showed that the ratio χ/γ of the susceptibility
χ of the impurity and of the specific heat coefficient γ was twice that of free electrons. It
suggests that the behavior is that of free particles, with some renormalized parameters.
This opened the door to P. Nozières, that used the results of the strong coupling limit to
show that this fixed point behaves as a local Fermi liquid [20], the screening of the im-
purity spins yielding to a remanent interaction between electrons in the vicinity of the spin.

The main line of this story ended with the analytical solution of the Kondo model
for S = 1

2 . Andrei-Lowenstein [21] and Wiegmann [22] used the Bethe ansatz to find the
spectrum and wave functions of the Kondo and Anderson models. Analytical results for
the thermodynamics at all temperatures were found, and were in agreement with Wilson’s
results. The results are also valid in higher than one dimension, if the scattering can be
assumed to be rotationally invariant (s-wave scattering). The models are integrable under
one main assumption: the dispersion relation of electrons must be linearized at all scales
In this sense, the results tend to describe the universal regime T ≪ D, but any effect
related to the band structure is not described [23].

As a small disgression, I would like to discuss some implicationsof these results in terms
of thermodynamics. An integrable system is defined in analytical mechanics through an
infinite number (scaling with the number of degrees of freedom at least) of independent
constant of motion, such that the system is under strong constraints, and usually does not
relax to thermal equilibrium, i.e. does not thermalize. However, any realistic description
of Kondo models requires a finite system, with a separation of energy scales that is not as
perfect as assumed by the Bethe ansatz solution. It has been actually shown with NRG
simulations that these model actually satisfy the eigenstate thermalization hypothesis
(ETH) [24], even if these results must be understood with a lot of care, since the bath
discretization that is required for these simulations may not be able to describe long time
dynamics [25] required to explore thermalization properties.
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CHAPTER 1. THE QUANTUM IMPURITY PROBLEM

1.3 Models of quantum impurities
Throughout the early history of Kondo impurities, two models were introduced to describe
single magnetic impurities in electronic hosts: the Kondo and the Anderson models. How-
ever these models apply to wider applications than the one presented until now. They
provide a good description of quantum dots interacting with one or more metallic leads.
These nanostructures in which the parameters at play can be highly adaptable have
started to be designed in the early 2000’s. These structures allow to simulate atoms [26]
in different regimes, also acting as electronic transistors: the onsite Coulomb repulsion
energy must be paid if we want another electron to occupy the dot. Hence the num-
ber of electrons in the dot is controllable, switching from conducting to insulating states
(Coulomb blockade) as the gate voltage is tuned, corresponding to the onsite energy of
the impurity [27]. In the Coulomb blockade regime, an odd number of electrons can be
in the dot, thus holding a magnetic moment. In this configuration, the screening process
of the impurity can be examinated by tuning the microscopic parameters, which makes
these objects testbeds for Kondo physics [28, 29].

In another context, quantum impurity problems provide the underlying physics of in-
teracting lattice problems in a local perspective. Dynamical mean field theory [30] builds
the local Green’s function by solving a correlated Anderson impurity model, whose pa-
rameters are obtained self-consistently. This method greatly contributed to the field of
strongly correlated materials, from physical models to realistic materials with quantum
chemistry embedded techniques [31]. A true intellectual effort has been implemented to
solve these impurity models in the most efficient way, allowing better quantitative agree-
ments to more and more complex and realistic problems.

In this section, we will present the single impurity Anderson model (SIAM), and how
it is related to other widely used models. We aim to introduce the interacting resonant
level model (IRLM) that has been under study during this work, which shares the same
low energy properties of the SIAM and Kondo models.

1.3.1 Single impurity Anderson model
As stated before, the SIAM is built to describe the interaction between an atom with a
partially filled d or f orbital thus carrying a magnetic moment, and a metal represented by
a bath of non-interacting conduction electrons. The Hamiltonian in second quantization
reads:

HSIAM =
∑

σ

ϵdd
†
σdσ + U n↓n↑ +

∑
k,σ

ϵkσc
†
kσck +

∑
k,σ

(Vk c
†
kσdσ + h.c.). (1.1)

The operator d†
σ (dσ) creates (annihilates) an electron of spin σ ∈ {↑, ↓} in the localized

orbital, while the operator c†
kσ creates an electron in the conduction band with a wave

vector k and spin σ. The Hamiltonian is divided in three parts, as it is common for im-
purity models: an impurity part, with U the local Coulomb interaction (taken postive to
be repulsive between electrons) that is paid when two electrons with opposite spin occupy
the impurity, and ϵd the chemical potential of the orbital. ϵd is defined with respect to
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CHAPTER 1. THE QUANTUM IMPURITY PROBLEM

the Fermi energy of the conduction band, that is taken to be EF = 0. If ϵd < 0, the
impurity will be more likely occupied, and empty if ϵd > 0. A bath part, defined by the
dispersion relation of conduction electrons ϵk. A coupling part, represented by a tunnel
coupling Vk between the impurity and a state in the conduction band of energy ϵk. The
density-density term, describing the interaction, is quartic in the fermionic fields, which
makes this problem truly many-body when the interaction is not negligible compared to
the other parameters. Note that natural units are used trough the manuscript, setting e,
ℏ and kB equals to 1, and unless otherwise stated the energies will be in units of D, the
half-bandwidth of the bath density of states.

This model exhibits two simple but not trivial limits given by the strength of the
interaction U : the non-interacting case U → 0 and the so called atomic limit U → ∞.
We will discuss some properties of the non-interacting case in a later paragraph with the
introduction of the IRLM. We focus first on the atomic limit, that is closely linked to the
Kondo model.

1.3.2 Atomic limit of the SIAM
When the interaction becomes the dominant parameter, the coupling and bath parts can
be neglected. In this way, only the impurity part remains, and constitutes an isolated
system. There are four states available in this limit: one without any electrons on the
impurity |0⟩, that has an energy E0 = 0; two degenerate states with occupation∑σ ndσ = 1
on the impurity d†

↓|0⟩ and d†
↑|0⟩ of energy E1 = ϵd; a last state with ∑σ ndσ = 2, written

d†
↑d

†
↓|0⟩, with E2 = U + 2ϵd. At fixed ϵd and U ≫ |ϵd| it is clear that E2 ≫ E1, E0, such

that double occupancy on the dot is a highly non-probable process. It is also evident
that ϵd < 0 is required for the ground state to hold a magnetic moment. This simplified
picture tells us about the separation of energy scales as a sketch of the true problem.
These arguments are somehow equivalent to the decoupled system Vk = 0, and to explore
beyond the atomic limit, Vk is considered as a small perturbation in front of U and ϵd.

1.3.3 Schrieffer-Wolff transformation and the Kondo model
The full correspondence between the Kondo-like behavior and the Anderson model has
been given by Schrieffer and Wolff [16], by mapping the low energy sector of the SIAM to
an effective model, that turned out to be that studied by Kondo for the resistance increase
in metals. As explained before, the coupling term Vk will be treated as a perturbation,
which is equivalent to a projection onto the low energy sector defined in the atomic limit.
However, it is not possible to treat this problem at first order in Vk: the projection
would be trivial, since the term Vk couples the two sectors, and will simply vanish. The
perturbation theory does not work at higher orders, since some terms are diverging in
the expansion in V . Hence, the idea behind the transformation is to perform a canonical
transformation T = eS after which the sectors are properly separated. The problem to
consider is:

H̃ = eS HSIAM e−S. (1.2)
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In this way, the first order terms in Vk are canceled explicitely and the sectors well
separated. We expand Eq. (1.2) using the Baker-Campbell-Haussdorf formula, and we
label by H1 the term involving Vk in the Hamiltonian, and by H0 all remaining terms:

H̃ = H0 +H1 +
[
S,H0

]
+ 1

2
[
S,H1

]
+ 1

3
[
S,
[
S,H1

]]
+ . . . . (1.3)

This form is used when H1 is off-diagonal in the basis of H0 which can be assumed here,
and the wanted transformation consists in cancelling the linear terms in V in H̃. The
equation to be solved is thus: [

S,H0

]
= −H1. (1.4)

In order to find S, the problem is first simplified. In the non-interacting case, a guess for
S0 would be in a similar form to the term to be cancelled, namely H1:

S0 =
∑
k,σ

Akσ

(
c†

kσdσ − d†
σckσ

)
, (1.5)

Here S0 is guaranteed to be anti-hermitian, imposing T to be unitary as desired. Eq. (1.4)
is solved and once the commutator is computed, it is plain to identify Akσ = Vk /(ϵk − ϵd).
In the interacting case, the interaction Un↓n↑ is added to H0, and the commutation
relation is not filled by S0 anymore:[

S0, H0

]
= −H1 − U

∑
k,σ

Akσ(c†
kσdσ + d†

σckσ)nd−σ. (1.6)

The additional term involving nd−σ has to be canceled, so that a new guess for S in the
interacting case reads:

S = S0 +
∑
k,σ

Bkσ

(
c†

kσdσ + s′ d†
σckσ

)
nd−σ. (1.7)

Proceeding as before, Bkσ = (UVk )/((ϵk − ϵd −U)(ϵk − ϵd)). Putting everything together,
the expression given in the seminal article is found and reads:

S =
∑
k,σ

Vk

ϵk − ϵd

(
c†

kσdσ − d†
σckσ

) (
1 −

U nd−σ

ϵk − ϵd − U

)
. (1.8)

Although the expression for the generator of the transformation has been found, H̃ is still
an infinite series of terms. H1 being treated as a perturbation in the case of interest, it is
approximated by the first non-vanishing terms in Vk, reading:

H̃ ≃ H0 + 1
2
[
S,H1

]
. (1.9)

This second term is computed directly with Eq. (1.7), and, for convenience, the following
spinor notation is used:

Ψk =
(
ck↑
ck↓

)
, Ψd =

(
d↑
d↓

)
, (1.10)
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The Hamiltonian is developed, and four terms are found: Hex, Hdir, H
′
0 and Hch, to

keep the original notation. However, most of these terms are not relevant in the limit
that is considered. Indeed, Hch only changes the number of electrons on the impurity
by two, such that it only lies in the high energy sector and disappears after projection.
H

′
0 contains the same operators as H0, such that it is only an energy shift for U and ϵd.

Hdir allows no spin-flips, and since Ψ†
dΨd = 1 in the low energy sector, it only acts as a

local potential in the sea of conduction electrons and is absorbed in the definition of ϵk.
Finally, only the Hex part remains, which represents an exchange interaction between the
localized moment and conduction electrons:

Hex =
∑
kk′
Jk′k

(
Ψ†

k′
τ⃗

2Ψk

)
·
(

Ψ†
d

τ⃗

2Ψd

)
, (1.11)

with Jk′k = −UVk Vk′

([
(ϵk − ϵd − U)(ϵk − ϵd)

]−1
+
[
(ϵk′ − ϵd − U)(ϵk′ − ϵd)

]−1
)

, and τ⃗

are the Pauli matrices. In addition, the interaction term in H0 also vanishes, such that
the Kondo model is recovered:

HKondo =
∑
k,σ

ϵkc
†
kck + J

2
∑

kk′σσ′
S⃗d ·

(
c†

kσ τ⃗ ck′σ′

)
. (1.12)

In this model, the momentum dependancy of the exchange interaction can also be ne-
glected because only the physics close to the Fermi energy is studied, taking k ∼ k′ ∼ kF,
and hence J = −2V 2

kF
U
[
ϵd

(
ϵd + U

)]−1
. The impurity is only coupled to the fermionic

field at the origin, defined as 1/
√
N
∑N

kσ ckσ = c0. In the present limit where ϵd ≪ −D and
ϵd + U ≫ D, the exchange interaction is antiferromagnetic as predicted by Kondo calcu-
lations for metals. As stated before, there is an energy scale TK under which perturbation
theory does not apply, and it is defined from the above parameters as TK ∝ D e

− 1
ρ0J ,

where ρ0 is the density of states at kF of the band states. The quench of the impurity spin
by the conduction electrons involves states with energy ϵk ≪ D, such that the description
is efficient when the effective exchange coupling is small and TK → 0, or equivalently
ρ0J ≪ 1. This corresponds to the strong coupling (or strongly correlated) regime that
we discussed before, in which the relevant energy scale is exponentially small, and the
physics can be equivalently described by the two models presented above.

1.3.4 Bosonization and the Interacting Resonant Level Model
Previously to the Bethe ansatz solution, some efforts were put in finding a mapping of
the Kondo model to a solvable one [32–36]. It was first seen that certain quantities were
equivalent between the Kondo model and effective non-interacting problems, for some
specific values of the interaction J . At this time, the equivalence was cumbersome to
establish, and the bosonization method introduced some years later provided a simple yet
rigorous mapping between these models [35, 37]. We will give the general idea behind the
bosonization transformation that interests us following Ref. [3], without entering in deep
mathematical details that are out of the scope of this thesis. For an exhaustive discussion,
see Ref. [38, 39].
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The starting point is the spin anisotropic Kondo model (AKM):

HAKM =
∑
k,σ

ϵkc
†
kσckσ + Jz

2
(
ψ†

↑(0)ψ↑(0) − ψ†
↓(0)ψ↓(0)

)
Sz

d

+
Jxy

2
(
ψ†

↑(0)ψ↓(0)S−
d + ψ†

↓(0)ψ↑(0)S+
d

)
.

(1.13)

where Sz is the spin of the impurity, and S±
d = Sx

d ±iSy
d are the impurity spin ladder oper-

ators, basically performing spin flips. The local fermionic operators ψσ(0) = N−1/2∑N
k ck

are introduced, through which the impurity only explicitely couples to the first site of the
1D chain representing the bath. The AKM is used for convenience, since the Hamiltonian
is diagonal when Jxy = 0, allowing to isolate the localized spin dynamics. The realistic
case is recovered for Jz = Jxy = J , for which Eq. (1.13) becomes Eq. (1.12). As for the
Schrieffer-Wolff transformation, the bosonization tends to map two models with equiv-
alent low energy properties, with a linearized spectrum around the Fermi energy. Each
fermion is first of all separated in a left and right moving parts, corresponding to fermions
on each branch of the linearized spectrum: ckσ = ckσ,R + ckσ,L, and they are sorted in an
odd and even contributions with the following canonical transformation:Akσ,o = 1√

2

(
c−kσ,L − ckσ,R

)
Akσ,e = 1√

2

(
ckσ,R + c−kσ,L

)
.

(1.14)

The fermionic commutation relations are still verified by A, that are thus true fermion
operators, but that are not local anymore. The total spin density operator on the first
site of the chain, Sz(0), is also introduced in the Hamiltonian, which becomes:

HAKM =
∑
k,σ

ϵk

(
A†

kσ,eAkσ,e − A†
kσ,oAkσ,o

)
+ Jz

2 Sz(0)Sz
d

+
Jxy

2
(
ψ†

↑,e(0)ψ↓,e(0)S−
d + ψ†

↓,o(0)ψ↑,o(0)S+
d

)
.

(1.15)

It appears that only even modes Ae couple to the spin. The spin-density operator Sz(0),
unlike the fermionic A, obeys bosonic commutation rules, such that the problem is seen as
if the density operator was a bosonic excitation b†. To properly define these new bosonic
operators, we start to compute the following commutator: [Sz(0),HAKM]. Then, a new
Hamiltonian HAKM′ is built in terms of (b†, b) that would produce the same commuta-
tion relations [b,H′

AKM]. Once the transformation is done for the density operators, we
need to treat single fermion operators ψ(0), and we proceed similarly: we compute its
commutator with b, and define a new bosonic operator ψ → eib† that yields the same
commutation relation. One subtility here is that ψ acts in their Fock space by removing
a particle to the system, while b† does not acts on the number of fermionic particles. To
be mathematically precise, the so-called Klein factors F are introduced, and they restore
the action of the operator on Fock states ψ → Feib† [40]. They will appear explicitely at
the end of the transformation, in order to simplify next steps.

11



CHAPTER 1. THE QUANTUM IMPURITY PROBLEM

Once the new bosonic operators have been defined, another canonical transformation
introducing operators ϕ and θ is applied:

ϕσ ∝ ∑
k
ξk(b†

kσ + bkσ)

θσ ∝ ∑
k
ξk(b†

kσ − bkσ),
(1.16)

where ξk is performing the mapping to the bosonic Hamiltonian. The real power of these
new bosonic operators, is that we can perform a linear combination such that the spin and
charge degrees of freedom of the Hamiltonian explicitly separate. The linear combination
is the same for ϕ and θ, and reads:ϕc = 1√

2

(
ϕ↑ + ϕ↓

)
ϕs = 1√

2

(
ϕ↑ − ϕ↓

)
.

(1.17)

The charge part of the Hamiltonian becomes quadratic in the bosonic field thus does not
playing any role in the spin-part dynamics. The charge part is then chosen to be in its
vacuum state (equivalently to any state), and only the following spin part remains:

Hσ = H0
σ + JzS

z
d√

2π
(
∇θs(0) − ∇ϕs(0)

)
+
Jxy

2πα
(
S−

d e
i
√

2(ϕs(0)−θs(0)) + h.c.
)
, (1.18)

where α is introduced as a cutoff, to mimic a bandwidth D ∝ 1/α, so that the mapping
is exact for D → ∞. ∇θs(0) and ∇ϕs(0) are the conjugate fields of (θs(0), ϕs(0)).

The spin and charge degrees of freedom are now separated, but the Hamiltonian that
has just been defined is still in a form that can not be processed. The redefinition of
the old spin density operators with the new ones as ψ†

↑(0)ψ↓(0) = ei
√

2(ϕs(0)−θs(0)) is close
to the form of a single fermionic operator that was defined above ψ(0) = Fei(ϕs(0)−θs(0)).
In fact, there is a factor

√
2 in the exponential that differenciates them. It is known

that without the spin flip part, the problem is solved by the unitary transformation
W = eiγSz

d(ϕs(0)−θs(0)), where γ has to be chosen properly. Such a transformation in
Hamiltonian (1.18) leads to:

WHσW
† = H0′

σ + (2Jz − 2
√

2πγ)Sz
dSz(0) +

Jxy

πα

(
S+

d e
−i(

√
2−γ)(ϕs−θs) + h.c.

)
. (1.19)

It is obvious that it is interesting to take γ = (
√

2 − 1)D in order to recover a single
fermionic operator, that will greatly simplify Eq. (1.19). It corresponds to the refermion-
ization of the bosonic Hamiltonian, in addition to a Jordan-Wigner like transformation
which allows to express the spin of the impurity as a spinless fermion:

1
2S

z
d = d†d− 1

2 , S+
d F = d†, and c0 = Fei(ϕs−θs). (1.20)

Introducing the new fermionic operators in Eq. (1.19) changes the model to the IRLM,
which describes the coupling between a spinless impurity level and a Fermi sea:

HIRLM =
∑

k

ϵkc
†
kck + V

(
d†c0 + h.c.

)
+ U

(
d†d− 1

2

)(
c†

0c0 − 1
2

)
. (1.21)
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The parameters U and V are defined from those of the AKM in the following way:

U = Jz√
2

− π(
√

2 − 1)D, V =
Jxy

2
√
πα

. (1.22)

Historically, this mapping was performed to study the Kondo model from the IRLM at
U = 0, which corresponds to a non-interacting resonant level that can be solved analyt-
ically. This point of parameter space is known as the Toulouse point, that was studied
before the mapping through bosonization [32], and corresponds to the strongly anisotropic
Kondo model at Jz = π

√
2(

√
2−1)D. Hence, it provides an exact benchmark for different

methods in a non-trivial limit, in which any observable in terms of the new fermion d can
be computed. The mapping has been done in the spin sector of the Kondo model, such
that the charge of the d level in the IRLM reflects that of the original spin, which carries
all the low energy physics.

Beyond the Toulouse limit, the strong coupling regime Jz → 0 of the original Kondo
model can be investigated through the IRLM when U → −π(

√
2 − 1)D. The relevant

physics to explore lies at U < 0, where the Kondo regime is expected to appear through
the scale TK, that will be defined for this model in the following section. The IRLM itself
in the interesting Kondo regime is however not realistic, since it would describe negative
Coulomb interaction between electrons on the impurity and in the reservoir. It is therefore
only considered for its low energy properties, which are identical to those of the Anderson
model. Its spinless nature makes it an appealing model to study numerically, lowering
the cost of simulations and simplifying its implementation.

13





2 IRLM and Kondo correlations

In the previous chapter, we traced the history of dilute magnetic impurities in metals and
quantum dots. The SIAM and Kondo models were presented, originally introduced to
describe the situation. The IRLM, a simpler variant that reports the same low energy
properties that are relevant in these models, was also introduced. In this chapter, general
equilibrium properties of this model are discussed without and with interactions, and
problems we will focus on in the following are introduced.

2.1 Non-interacting limit U = 0
In the non-interacting problem, defined through Eq. (1.21) for U = 0, the Hamiltonian
is quadratic in the fermion fields. In this regime, there are plenty of ways to solve the
problem, depending on the quantity of interest. In this section, two observables are
introduced: the occupancy of the impurity, which gives information about the degeneracy
of the impurity and its dynamics through Eq. (1.20), and the local density of states of
the localized level. The latter is a measurable quantity that shows the spectrum of the
states arising from the coupling between the impurity and states of the conduction band.
The resonant level describes equivalently the non-interacting Anderson model in each
spin sector, which are not coupled without interactions. It is natural to find the Green’s
functions of the IRLM that are directly related to these observables, and equation of
motion (EOM) theory is used to derive them. In the case of non-interacting particles, we
can find a closed solution for the EOM, and all quantities can be derived exactly. While
interactions are turned on, correlators of higher and higher order are getting involved, and
approximations are required to close the problem. The Green’s function of the impurity
is defined by the following two-time correlator:

Gdd(τ) = −⟨T
(
d(τ)d†(0)

)
⟩0, (2.1)

where T is the Dyson’s time ordering operator, τ = i(t2 − t1) is an imaginary time, and
the subscript 0 means that the average is performed in the ground state (this subscript is
implicit and will be omitted in the following). This imaginary time is used for convenience:
its Fourier transform is the so-called Matsubara frequency Green’s function G(iωn) that
has a lot of useful properties that simplifly calculations. Matsubara frequencies are de-
fined for fermions as ωn = (2n + 1)π/β, where β is the inverse temperature β = 1/T .
The retarded Green’s function, that is related to physical quantities, is the analytical
continuation of the latter on the real axis, GR(ω) = limη→0 G(iωn → ω+ iη), so that only
use Matsubara frequencies will be used here. The fermionic operators are defined in the
Heisenberg picture d(τ) = eHτd e−Hτ . Eq. (2.1) is derived with respect to τ :

∂τGdd(τ) = ∂τ

(
⟨d†(τ)d(0)⟩θ(−τ) − ⟨d(τ)d†(0)⟩θ(τ)

)
= −{d, d†}δ(τ) − ⟨T

(
[H, d]τ d

†(0)
)
⟩.

(2.2)
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The commutator with the Hamiltonian being computed, the equation is transformed to
Fourier space to perform the derivative, with:

Gdd(τ) = 1
β

∑
ωnGdd(iωn), (2.3)

which simplifies the computation of the derivative as ∂τG(iωn) = −iωnG(iωn):

iωnGdd(iωn) = 1 + ϵdGdd(iωn) + V Gcd(iωn). (2.4)

The mixed Green’s function Gcd(iωn) = ∑
k Gkd(iωn) appears in the equation, and its

EOM is also derived using the same method:

iωnGkd(iωn) = ϵkGkd(iωn) + V Gdd(iωn). (2.5)

Hence solving this system for the two Green’s functions leads to the following result for
Gdd(iωn):

Gdd(iωn) = 1
iωn − ϵd − Γ(iωn)

, (2.6)

with Γ(iωn) = ∑
k V

2/(iωn − ϵk) the hybridization function, encoding the tunneling prop-
erties between the impurity and the bath. The same kind of equations can be derived to
find the Green’s function of the first site of the bath, which couples to the impurity:

Gcc(iωn) =
∑

k

1
iωn − ϵk

+
∑
kk′

V 2Gdd(iωn)
(iωn − ϵk)(iωn − ϵk′)

. (2.7)

The first part corresponds to the free electronic bath, while the second one proportional
to V 2 reflects the scattering processes on the impurity. The different Green’s functions of
this model are closely related to each other, and these results can be recovered in a more
compact form with the following field:

ψ =
(
d
c

)
, (2.8)

whose Green’s function is a matrix G, from which every Green’s function of the problem
is recovered:

G−1(iωn) =

Gdd Gdc

Gcd Gcc


−1

=

iωn − ϵd −V

−V Γ(iωn)−1

 . (2.9)

At this point, it is not much work to compute occupancies nd and nc, and the corre-
sponding densities of states. For the latter, the propagators are written with Matsubara
frequencies, such that they need to be analytically continued to recover the real frequency
spectrum. The occupancy at T = 0 reads:

nd = 1 −Gdd(t = 0+) = 1 −
+∞∫

−∞

dω
2πGdd(ω + i0+)e−iω0+

, (2.10)
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where a continuous bath with a linear dispersion ϵk ∝ k is considered, with a large
bandwidth D → +∞. Under these assumptions the hybridization Γ(iω) can be integrated
analytically and the usual form of the occupancy [5] is recovered:

nd = 1
2 − 1

π
atan

(
ϵd

πρ0V
2

)
, (2.11)

with ρ0 = 1
2D

for a constant density of states in the energy range ϵ ∈ [−D,D] and 0
elsewhere. The impurity occupancy nd is plotted on the left panel of Fig. 2.1 for different
values of the coupling V . As expected, as ϵd goes from negative to positive values, the
dot goes from almost occupied to almost empty. As V is quenched to 0, the impurity
decouples more and more and becomes thus easily polarized, while as V gets larger it
hybridizes with more and more states, such that shifting the level with |ϵd| ≳ 0 only
slightly changes the occupation. This effect is similar to a susceptibility in an external
field ϵd controlling the width of the crossover between nd = 1 and nd = 0. At ϵd = 0
the Hamiltonian is particle-hole (PH) symmetric and this property leads to an exactly
half-occupation of the impurity nd = 1/2, where fluctuations are maximum.

(a) (b)

Figure 2.1: (a) Impurity level occupancy nd for different values of V computed numerically
with a discrete version of Eq. (2.14) using the Lehmann representation against ϵd. The
lines are guides for the eye. (b) Density of states of the impurity and of the first site of
the bath. The points are taken on a logarithmic grid to gain accuracy at low energies,
where the peak is narrow for small V . Each curve is divided by its maximum value for
readability, changing the norm of each function to

∫∞
−∞ dωρ(ω) = max(ρ(ω))−1.

These effects of hybridization are clearly seen in the LDOS of the impurity. This is a
dynamic observable that is usually defined through the retarded Green’s function:

ρd(ω) = − 1
π

Im
(
GR

dd(ω)
)

= Γ0/π

(ω − ϵd)2 + Γ2
0
. (2.12)
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Numerically, this quantity is defined equivalently with the Lehmann representation of the
Green’s function, that uses the completeness of the Hamiltonian eigenvectors written as
the identity 1 = ∑

α |α⟩⟨α|:

ρd(ω) = 1
Z
∑

α

|⟨α|d†|0⟩|2δ (ω − (Eα − E0)) , (2.13)

where Z is a norm, 0 labels the state of lowest energy, state that reads ∏Ei<0 ξ
†
i |0⟩, if

the set of orbitals ξi diagonalizes H. Since the number of modes is finite in numerical
simulations, the δ distributions are smoothed by Lorentzian functions of width η < δE,
where δE is the energy spacing. The spectral functions of the impurity and of the first
site of the bath are reported in the right panel of Fig. 2.1: the impurity hybridizes with
states of the bath over an energy scale Γ0 = πV 2/2D, which are depleted from the bath
as can be seen in ρc. This function is also closely related to the occupancy [1] nd as:

nd =
+∞∫

−∞

dω
2π ρd(ω)nF (ω). (2.14)

Here, nF (ω) is the temperature dependent Fermi occupation function, and we take it
here at zero temperature (that is a step function up to the Fermi energy) to find back
the result (2.11). All these results are relatively simple to derive in the non-interacting
limit, but going to the fully interacting problem is a whole different story. At small
|U | ≪ D, perturbation theory can provide quantitative results, but pushing U to larger
values requires the use of more powerful methods, which are examined now.

2.2 Numerical Renormalization Group
In order to investigate the physics deeper in the strong coupling regime, interactions have
to be fully taken into account. In the framework of quantum impurities, despite the large
number of available methods that we briefly discussed above, the numerical renormaliza-
tion group (NRG) proposed by Wilson [9] is the most practical non-perturbative method
to solve the Kondo problem at zero or finite temperature [41, 42]. The algorithm works for
any form of the impurity, whose only requirement is to be diagonalized exactly, coupled
to a non-interacting bath of fermions or bosons. The information of the coupling between
the environment and the bath is encoded in the hybridization function Γ(ω), that will be
taken constant in the calculations in the interval [−D,D].

To accurately describe the low energy physics of quantum impurity problems, the NRG
relies on a transformation of the bath degrees of freedom. Using the well separated energy
scales of these problem, from D to TK, the density of states of the bath is discretized
logarithmically. This is equivalent to a discretization of Γ(ω), such that the impurity
couples to states exponentially close to the Fermi level, that would require exponentially
large systems without this transformation. Then, the problem is mapped onto a semi-
infinite chain, which is constructed iteratively. This iterative procedure involves successive
transformations of the Hamiltonian parameters and constitutes the renormalization group
flow of parameters and of any observable that is calculated.
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Along the flow, the Fock space dimension is growing exponentially, and high energy
states are discarded at each iteration to keep this dimension fixed. We will not enter in
every details here that are not needed for comprehension, and the reader can refer to
Ref. [43] for a complete review. The detailed NRG implementation of IRLM and SIAM
is given in Appendix A and B respectively.

2.2.1 Writing the Hamiltonian on a logarithmic grid
Before performing the RG procedure, the Hamiltonian with a continuous conduction
band must be rearranged in the so-called Wilson chain. This logarithmic discretization is
parametrized by the unique parameter Λ, such that one state of the band is kept in each
continuous energy interval [ωn+1, ωn], ωn = Λ−n, with n = 0, ...,∞. Λ → 1 corresponds
to the continuous limit of the discretized model, and usually Λ takes values around 2,
but can be taken as large as required for particular cases. However, the larger the Λ, the
worse becomes the description of high energy properties of order D.

Operators of the bath are redefined to fit on the grid by some change of basis, but the
mathematical details are skipped here. Once the Hamiltonian is reshaped, it is tridiago-
nalized through a series of transformations of operators. Fig. 2.2 sketches the mapping.
The principal information of this tridiagonalization is that the impurity part did not
change, and that hopping terms along the chain to which it is coupled are decreasing
exponentially. The Hamiltonian (1.21) is transformed to:

HIRLM = ϵd d
†d+V (d†c0 + h.c.) +U

(
d†d− 1

2

)(
c†

0c0 − 1
2

)
+

∞∑
n=0

tn (c†
n+1cn + h.c). (2.15)

For a general hybridization Γ(ω), the hopping terms tn have no explicit form and are
defined through a recursive series tn+1 = u(tn). However, if Γ(ω) is taken constant, which
is accurate enough for the low energy properties that will be considered, a closed form
exists:

tn = (1 + Λ−1)(1 − Λ−n−1)
2
√

(1 − Λ−2n−1)(1 − Λ−2n−3)
Λ−n/2. (2.16)

Hopping terms along the chain only depend on the discretization parameter Λ, and
tn ∼ Λ−n/2 as n → ∞. In actual simulations, the chain is cut at a given site n = N ,
so that the smallest eigenenergies of the Hamiltonian are of order Λ−N/2. Reaching the
thermodynamic limit in the strict sense requires to deal with infinite systems, but in this
setup chosing N such that the eigenenergies are decades below the lowest energy scale (for
quantum impurity problems it is usually TK) meets our needs. To reach lower energies for
a same N , larger Λ should be taken, but this has an impact on the states under considera-
tion. As an example, taking Λ = 2 and N = 50 sites already leads to energies (in units of
D = 1) of order 10−8, that is more than enough for realistic situations in which TK ∼ 10−3.

Before going further with the iterative diagonalization of the chain, two details must be
clarified about the precedent transformation. First, the mapping to the chain does not re-
quire the original problem to be 1D, and can be equivalently performed for baths of higher
dimension. Second, the mapping presented above is not exact as was the bosonization.
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Besides the discretization, some couplings between the impurity with orbitals defined on
each bath state n have been thrown away. Nevertheless, these couplings correspond to
subdominant processes, and it can be verified that they do not play any tangible role in
simulations.

(a) (b)

Figure 2.2: The figures are taken from Ref. [43]. (a) Coupling of the impurity (green
dot) to a bath via the continuous hybridization Γ(ω). (b) Discretization of Γ(ω) on the
logarithmic grid, and mapping to a 1D chain with hopping parameters tn.

2.2.2 Iterative diagonalization of the chain
Once the problem has been expressed in a convenient way into Eq. (2.15), it remains
to solve it. To do so, the chain Hamiltonian will be constructed through a series of
transformations that approaches H in the limit n → ∞:

H = lim
n→∞

Λ−(n−1)/2Hn. (2.17)

Hn is the intermediate Hamiltonian at step n of the RG procedure, and the factor Λ−(n−1)/2

cancels the n dependence of the hopping terms tn, in such a way that eigenenergies of
Hn are always of order 1 to avoid numerical instabilities. The correct spectrum can
be recovered easily by multiplying it by the inverse factor. The starting point of this
algorithm, H0, is a part of the Hamiltonian (2.15) that can be diagonalized exactly.
Generally, only the impurity part is considered, but as IRLM interactions involve also
the first site of the chain, it is convenient to consider the impurity and this first site as
a starting point. Then, it is diagonalized in Fock space, and the space is augmented
by adding to the system the second site of the chain, and so on. Unlike usual RG
transformations, the flow does not really renormalize a fixed set of parameters of the
Hamiltonian but rather the full Hamiltonian itself, the number of couplings increasing
over successive transformations. It is suitable here to characterize the flow with the
many-body energy spectrum, that is defined at each step as:

Hn|r⟩n = Er
n|r⟩n, (2.18)
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with |r⟩n the complete set of eigenvectors at step n. To build Hn+1, the degrees of freedom
|s⟩ of the new site are added to the current Hamiltonian via the tensor product:

|r′⟩n+1 = |r⟩n ⊗ |s⟩n+1, Hn+1 = Λ1/2∑
r

Er
n|r′⟩n+1⟨r′| + Λn/2tn(c†

n+1cn + h.c.), (2.19)

and in the present case, the new site can have two possible states |s⟩ (empty or full) such
that the size of the total space is doubled at each step. cn+1 and cn are expressed in the
new basis |r′⟩n+1, with the former acting on |s⟩n+1 and the latter on |r⟩n. Then the new
Hamiltonian is diagonalized, and the algorithm is iterated until the desired convergence
is reached, i.e. n = N . The procedure is depicted in the left panel of Fig. 2.3.

(a) (b)

Figure 2.3: The figures are taken from Ref. [43]. (a) Sketch of the iterative construction
of the Hamiltonian. Degrees of freedom |s⟩n+1 are added to the diagonal part of basis
vectors |r⟩n. (b) Truncation scheme when the number of states exceeds a given number
Nkept. 1→ 2: rescaling of the eigenvalues to be of order 1. 2→ 3: extension of the Fock
space by the added degrees of freedom. 3→ 4: shift of the eigenvalues to have E0 = 0 and
truncation of high energy states.

However, the Fock space dimension is growing exponentially, and in a few steps the
reached dimension can not be handled by a computer. Therefore, the Fock space is
truncated at each iteration: only the Nkept lowest energy states are kept while the rest
are discarded. This truncation is well controlled by the logarithmic discretization, since
high energy states of a given iteration are well separated from the low energy ones of the
next step. Nkept must be chosen as a function of the complexity of the problem and of the
desired precision. In general, if Λ is closer to 1, Nkept is taken bigger to compensate the
thiner separation of sectors. The right panel of Fig. 2.3 shows this truncation procedure.
Between the third and fourth steps shown in this figure, the energies have been shifted
by E0

n, that is kept at E0
n = 0 during the flow.

2.2.3 Calculating observables
We first discuss the case of static observables, which are frequency independent. It is not
possible to wait until the last iteration to use the wave function and define an observable.
Indeed, the basis is not complete, there is no simple correspondence between the degrees
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of freedom of the beginning and the final eigenvectors, unless by storing all consecutive
transformations, that would be needless work. Though, it is possible to define an opera-
tor at the beginning of the flow (or when the corresponding operator is introduced into
the flow) as was done for H0, and follow the successive transformation by projecting this
operator on the current basis. At the end, the operator is evaluated in the ground state
to obtain the desired static observable. Any observable involving the impurity only can
be defined, but the use of the Wilson chain puts strong limitations for quantities that are
local in the bath.

On the other hand, for dynamic observables the story is more involved. Along the
flow, the algorithm generates successive sets of eigenvectors, making thus natural the use
of the Lehmann representation defined before in Eq. (2.13), that can be written for any
frenquency dependent correlator. After accessing the spectral part, that corresponds to
the imaginary part of the observables, the real part is obtained via Kramers-Kronig rela-
tions, that will be introduced in a future section. The states taken in the formula will be
the ones defined at each step |r⟩n. As the states are exponentially low in energy, the low
frequency properties will be accurately described. However, for higher frequencies, only
few states are accessible and everything of the order of D will suffer from the discretiza-
tion [44–46].

Another problem with taking every states in each iteration is that the completeness
is ill defined: some low energy states of step n are decomposed on a set of other low
energy states of further iteration, thus counting more than once the same information.
This naive use of the Lehmann representation is unappropriate, and methods have been
developed to properly define dynamic observables: the DM-NRG [47–50] is an extension
that uses the full density matrix to define correctly a complete set of states from the first
discarded state to the last kept state. The reader can refer to the cited articles explaining
extensively the optimized algorithm. Although powerful NRG algorithms are available
to compute such observables, numerical accuracy and the Wilson chain remain the great
barriers of this approach and research is still active on finding new ways to improve these
calculations.

2.3 Quantum phase transition in the IRLM
As expected through the bosonization transformation, the IRLM hosts a quantum phase
transition (appearing at zero temperature, and driven by parameters of the system) sim-
ilar to the ferromagnetic - antiferromagnetic one in the Kondo model. From the mapping
between models, the transformation is expected to appear at a negative value of the inter-
action Uc ≃ −π(

√
2 − 1)D. In the limit U → −∞, the ground state is doubly degenerate

at particle hole symmetry (ϵd = 0), with states d†c†
0|0⟩ and |0⟩. These states are not

coupled by the hybridization V and remain degenerate at large and negative U . The
occupation of the impurity in these states is either full or empty, which corresponds to a
spontaneous breaking of the particle-hole symmetry under which the occupation should
be 1/2. Through the Jordan-Wigner transformation, it corresponds to a ground state
with a residual magnetic moment, the degeneracy being between | ↑ ⟩ and | ↓ ⟩, which
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corresponds to the ferromagnetic phase. As the ground states of the two phases are not
adiabatically connected, it can be expected that the occupation nd is discontinuous at the
transition.

The Kondo correlated regime lies in the symmetric phase 0 > U > Uc , in which the
Kondo temperature TK vanishes as we approach the transition point Uc . In the IRLM,
TK is calculated through the charge susceptibility [5, 43, 51] of the impurity to a local
field ϵd, at PH symmetry:

TK = 1
4χ, χ = ∂nd

∂ϵd

∣∣∣∣∣
ϵ

d
=0
. (2.20)

In practice, nd is calculated with two NRG simulations at ϵd = 0 and ϵd = η, with
η ≪ TK in order not to introduce an infrared cutoff. TK is also recovered from the flow
as the crossover scale to the Fermi-liquid fixed point in which the impurity is screened,
that can be used to check if Eq. (2.20) gives the correct order of magnitude. As TK
becomes smaller, the number of kept states of the NRG and the size of the chain N are
increased for the thermodynamic limit to be reached. While TK becomes of the order of
the numerical accuracy ≃ 10−15D, there is no hope to get accurate results, the impurity
being polarized by the numerical noise, such that an exponential fit of TK in the range
[10−14, 10−6] is used to find the transition point Uc . The results are plotted in the left
panel of Fig. 2.4, and the fit predicts Uc = −1.311D, that corresponds to the expected
value −π(

√
2 − 1) ≃ −1.301D at small V .

(a) (b)

Figure 2.4: (a) Kondo temperature of the IRLM computed in NRG through Eq. (2.20).
An exponential fit for U → Uc is added to extrapolate TK closer to the transition. (b)
Occupation of the impurity for ϵd = 0 and V = 0.15 (Γ ≃ 3.510−3) calculated in NRG
and with the Hartree-Fock approximation. NRG simulations are performed with Λ = 2,
N = 110 sites and with Nkept ≃ 600 kept states for U > −1.0, and Nkept ≃ 1300 for
Uc < U < −1.0. The lowest eigenenergies are of order 2−55 ≃ 10−17, so that convergence
is assured.
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In both phases, the occupation of the localized level which characterizes the transition
is also easily computed in NRG. In Fig. 2.4, NRG results are contrasted with the Hartree-
Fock solution of the IRLM to show the need for such a method. The Hartree-Fock
approximation consists in neglecting the fluctuations of the operators participating to the
interaction. The interaction term becomes quadratic in the fermionic fields, and its effect
is the renormalization of the parameters involving the impurity:

ϵ̃d = ϵd + U⟨c†
0c0⟩, Ṽ = V − U⟨d†c0⟩, ϵ0 = U⟨d†d⟩. (2.21)

ϵ0 is an interaction-induced potential on the first site that reads ϵ0c
†
0c0 in the Hamilto-

nian. The optimized renormalization of parameters is found self-consistently: equations
for the free propagators are solved numerically by diagonalizing an effective Hamitonian
with the renormalized parameters until convergence. While this method provides cor-
rect results for small |U |, where fluctuations are small, it becomes totally false in the
correlated regime |U | ≫ Γ, such that perturbation theory would require the resumma-
tion of diagrams at all orders. Within Hartree-Fock calculation, nd is continuous at the
transition and the critical Uc is under-estimated because of the early polarization of the
impurity by effective potentials. The correct behavior is accurately reproduced by NRG
simulations, but precision is lost due to the quench of TK when U becomes too close to Uc.

While studying the strongly correlated regime, it should be clear that more and more
computational effort should be put when U → Uc since fluctuations are maximal, but
physical systems have intrinsic limitations (temperature, finite size) that prevent TK to
be as small as the ones considered here. The quantum phase transition of the IRLM
will be investigated again in Chapter 3 in the framework of natural orbitals, that will be
defined therein.

2.4 The Kondo screening cloud
Using scaling arguments, it was explained in Chapter 1 that the spin of the Kondo impu-
rity (or charge of IRLM) was quenched by conduction electrons surrounding it. However,
the spatial mechanism responsible for such a screening has not been discussed yet. An
incorrect picture would be that the two electrons with opposite spins in the impurity
forms a spin zero state and thus decouple from the host. However, the price to pay is the
onsite Coulomb interaction, and the previous scaling arguments shown that the interac-
tion renormalizes to large values in the scaling limit, preventing this kind of local singlet.
Thus, the formation of a compensation cloud, that is well-known today as the Kondo
cloud or screening cloud, involving electrons of the host has been adopted to explain the
formation of the singlet [52–55]. While the temperature is lowered, more and more elec-
trons participate to compensate the local moment, and once the scale TK is exceeded, the
screening process is complete and the Fermi-liquid fixed point is reached. The energy of
electrons participating in the process ranges from D down to ∼ TK, which corresponds to
a spatial extension up to the scale LK ≃ 1/TK. As TK is exponentially low, LK is expected
to be large, up to some microns in real setups.
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The long range nature of the screening mechanism, including a wide range of energy
scales makes it difficult to study, and a lot of theoretical works were done to provide a
complete description of the phenomenon [56–79]. The usual observable to study this
screening cloud is the equal-time spin-spin correlator of the impurity and conduction
electrons. This quantity measures correlations spreading from the impurity to the bath,
and reads for the Kondo model:

χt=0(x) = ⟨ S⃗d · S⃗(x)⟩, (2.22)

where the bath can be continuous or discrete: χi = ⟨ S⃗d · S⃗i⟩. As usual, spin correlations
in the Kondo model induces analogous charge Kondo correlation in the IRLM through
the density-density correlator:

Ci = ⟨
(
d†d− ⟨d†d⟩

) (
c†

ici − ⟨c†
ici⟩

)
⟩. (2.23)

The average charges are substracted to reveal the long-distance fluctuations originating
from the non-trivial correlations between the impurity and the bath. At PH symmetry
with U > Uc , the averages are known to be equal to 1/2. This observable is known to
oscillate fast up to large distances, and correlations are expected to be small as the singlet
ground states imposes the sum rule:

for the Kondo model:
N∑

i=0
χi = −3

4 , and for the IRLM:
N∑

i=−1
Ci = 0, (2.24)

where C−1 = ⟨d†d⟩⟨d†d⟩ = 1/4, and it is clear that substracting the averages in Eq. (2.23)
imposes the sum of the observable to be zero. These sum rules can also be useful for
numerical simulations to investigate the accuracy of the constructed observable.

The correlator oscillates at a wavevector 2kF, with inequivalent odd and even compo-
nents along the discrete chain. At intermediate distances i ≪ LK, perturbation theory
predicts that the envelope for both components decays as the inverse of the distance to
the impurity i−1 [80]. In the opposite limit i ≫ LK, Fermi liquid arguments predict an
i−2 decay for the largest component and an i−4 decay for the other one [53]. The full
crossover at scale ∼ LK is not predicted by such arguments, and neither Bethe ansatz nor
NRG (in its simple implementation) can be used to compute accurately such a real space
observable. At high temperatures, spin-spin correlations behaves as the inter-impurity
Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling in bulk systems [56], that extends the
importance of studying the screening cloud around magnetic impurities for bulk materials.

Beyond the perturbative or scaling arguments, numerical simulations were designed to
calculate the cloud accurately in real space. The first advance in that path was a tour de
force from Borda [63], who managed to adapt the NRG to obtain real space resolution of
observables, circmuventing the limitations of the Wilson chain. It uses the combination
of the impurity field with one of the bath at distance x in the bath, where one wants to
evaluate the observable. In terms of this new field, an observable including the impurity
and the site x of the bath can benefit from the accuracy of usual local NRG simulations.
However, there is a price to pay: first, the new field brings more complexity to the im-
purity part, that will be numerically more expensive to converge. Second, the density of
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(a) (b)

Figure 2.5: (a) The plot is taken from Ref. [63]. NRG simulation of the spin-spin equal-
time correlator χt=0(x) in the bath at distance x from the impurity. The inset shows the
envelope of largest component of the oscillations of χ(x), the distance being normalized by
the Kondo length LK, that corresponds to the crossover length between the two different
power law behavior. (b) The plot is taken from Ref. [66]. DMRG results of Σ(x), the
sum of the cloud amplitude up to distance x, Σ(x) = 1 +∑x

i=0 χi/⟨Sd ·Sd⟩, that is plotted
for different system size L. The inset shows the spatially resolved observable χi for a size
of L = 300 sites.

states of the effective bath will be energy dependent, such that the hoppings are not given
by Eq. (2.16), but by recursive relations that may be unstable numerically. Last, each
evaluation of the observable at distance x require an entire NRG simulation. Nevertheless,
the results shown in the left panel Fig. 2.5 were a breakthrough for NRG simulations and
the understanding of Kondo correlations.

In parallel, Density matrix renormalization group (DMRG) implementations of the
SIAM [62, 66] allowed simpler studies of the screening process in different conditions,
since the full many-body wave function allows one to compute χi in a single shot. Still,
in the Kondo regime, the cost of DMRG simulations grows fast (mediating by the bond
dimension), and the system sizes are limited to few hundreds of sites, that is not enough
to converge observables if TK is below 10−2 − 10−3. Results from [66] are reported in the
right panel of Fig. 2.5, and show the distance at which the impurity gets screened for
different system size L. Finite size effects are strong because the thermodynamic limit
is not reached, and the sum rule Eq. (2.24) imposes correlations to vanish fast at the
boundary for small systems.

Thus, the Kondo screening is well understood on the theoretical side, and the existence
of a macroscopic screening phenomenon is considered to be correct. On the other hand,
a direct experimental measure of this cloud is still missing. There were a lot of propos-
als for experiments over the years [62, 65, 82–92], but measuring a non-local observable
over such distances is a real technological challenge. Some experiments reported different
signatures of Kondo correlations at large length scales [93–95], but the first convincing
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Figure 2.6: The plot is taken from Ref. [81]. Maximum amplitude of oscillations of the
measured TK,max as a function of the length of the cavity L. The quantities are normalized
by the bare Kondo length ξK∞ and temperature TK∞ of the dot without the gates in the
lead. Different lengths for the same gate corresponds to a change of TK∞ (and hence
of ξK∞) by tuning the parameters of the dot. The inset shows the same amplitude, but
against the non-normalized size of the electronic channel.

study was done by Borzenets et al. in 2019 [81]. Their experiment shows how the Kondo
temperature is affected by a perturbation in the electronic channel coupled to a quantum
dot. They applied voltage gates at distances L from the impurity, and through a tem-
perature dependent measurement of the conductance, they extracted the corresponding
TK,max. The gates are at L = 1.4µm, L = 3.6µm and L = 6.1µm from the impurity, and
applying a voltage in one of them cuts abruptly correlations between the impurity and
conduction electrons, if they exists at such a distance. They observed strong oscillations
in the measured TK,max when turning on the first gates, and only little changes for the
farthest ones, see Fig. 2.6. It implies that between the two gates must be the true (without
gates) correlation length of the Kondo state, that is thus of the order of few microns, as
predicted. Although this proves the existence of long range correlations around quantum
dots, it is still not a direct measurement of spin-spin correlations Eq. (2.22) at all scales,
that would definitely close the debate.

2.5 Kondo correlations in a disordered host
Experimental realizations of condensed matter systems are inherently subject to structural
disorder, that can strongly affect their properties. In situations studied above, disorder
was supposed to be irrelevant, and only clean systems were considered. The effects mea-
sured experimentally were correctly described by disorder-free models, confirming the
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validity of this assumption. However, later experiments in Kondo alloys presented exotic
non-Fermi liquid (NFL) behavior at low temperatures [96–101], going against the picture
of a quenched moment by conduction electrons. The Fermi-liquid behavior is usually ver-
ified by temperature dependent measurements of the resistivity, that should vary as T 2

at low T . Magnetic susceptibilities or specific heat are also commonly measured in these
experiments and show a quenching of impurity local moments. Such a NFL behavior
of the resisitivity ρ is shown in Fig. 2.7 for the Kondo alloy Y1−xUxPd3 [96]. At high
temperature, logarithmic increase of ρ with the temperature is measured as expected by
the diffusion on magnetic impurities. However, instead of a saturation at low temperature
∝ T 2, a linear dependence is measured.

Figure 2.7: The plot is taken from Ref. [96]. Resistivity ρ against temperature T for
a concentration x = 0.2. The Kondo - NFL transition is seen around T = 80 K. The
inset shows the power-law behavior below 20 K, fitted by: ρ/ρ(0) = 1 − (T/T0)1.13, with
ρ(0) = 357.7µΩ cm and T0 = 180 K. This power-law is the evidence for the NFL behavior.

The mechanism at play for in these systems was the presence of non-negligible disorder
that triggers a wide range of local TK, so that a fraction of local moments remain un-
screened at any temperature, which was confirmed theoretically [102–106], corroborated
by muon spin rotation experiments [97]. To investigate the effect of disorder in Kondo sys-
tems, the distribution of Kondo temperatures was calculated. An NRG or DMRG study
of spatially distributed disorder in a Kondo-correlated regime would be too expensive, so
that the full numerical many-body study of these systems was not considered. However,
the Kondo temperature of a system can be obtained at a mean field level, requiring only
the one-body spectrum of the Hamiltonian. This formula was introduced by Nagaoka in
the early times of the Kondo effect [107], and TK can be computed from:

2D
J

=
N∑

n=1

xn

sn

tanh
(
sn∆
2TK

)
, (2.25)
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where xn = N |ψn(0)|2 is the weight of the wave function on the impurity, sn = (En −
EF)/∆ and ∆ the mean level spacing. The distribution of Kondo temperatures P (TK)
computed in Ref. [104] are reported in Fig. 2.8. It appears that in the Kondo regime, when
the disorder is increased, the Kondo temperatures become smaller and smaller. Actually,
a finite fraction of the TK is zero, and as the disorder is increased this part becomes dom-
inant. A TK going to zero means that the impurity is never screened by its surroundings,
in such a way that the local moment stays free even at low temperatures.

In Ref. [105], the same low temperature behavior is found, and the fraction of un-
screened moments as a function of the interaction strength J is shown in the right panel
of Fig. 2.8. Indeed, the relevant parameter is J/W (W the disorder strength), and
P (TK = 0) → 1 as J/W → 0. The mechanism behind the destruction of the coher-
ent screening by disorder is as follows: there is a disorder induced gap in the density of
states of the impurity, that should be compared to the hybridization between the impurity
and the bath. As J goes to 0, the hybridization involves states in an energy window of
width ∼ TK around the Fermi energy, and the depletion of these states by the disorder
is enough to isolate the impurity from its surroundings. Hence, it stays unscreened, and
the Fermi liquid fixed point can not be reached. That leads to a divergent magnetic sus-
ceptibility as T → 0 that is consistent with NFL experiments. Nonetheless, these studies
are limited to the mean field description of TK, and it would be interesting to see how
does the screening cloud disappear when the disorder gets stronger. It would require to
compute the observable (2.22) for each realization of the disorder, a challenge that will
be addressed in this thesis.

(a) (b)

Figure 2.8: (a) The plot is taken from Ref. [104]. Distribution of Kondo temperatures for
different disorder strengths, for a one-dimensional disordered bath, for 1000 realizations
of the potential in a chain of 1000 sites, with J = D/4. The inset shows the fraction of
unscreened impurity at T = 0 as a function of the disorder strength W . (b) The plot is
taken from Ref. [105] Probability of unscreened moment with in a two-dimensional lattice
at T = 0 as in the inset of (a) yet with respect to the interaction J , for different disorder
strength g (labeled W in the other article).
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Among the theoretical work concerning Kondo correlations within disordered metallic
hosts [102–105, 108–121], disorder in the IRLM has not been studied. In this spinless
model, disorder can only be considered in the charge sector, that corresponds to static
magnetic disorder in the Kondo model, which is less common than charge disorder. This
study will be presented in Chapter 5, and will go further than a mean field calculation of
Kondo temperatures. The algorithm presented in Chapter 4 allows a microscopic study of
each realization of disorder and thus provides interesting details about spatial correlations
spreading in the disordered host. The study will be extended to a Hamiltonian model of
disordered quantum impurity using random matrices, presented in Chapter 6. Random
matrix theory (RMT) for physical systems has been widely developed over the last century,
and its applications to quantum impurities have already proven successful [105, 106, 114,
122, 123]. The presented study will go further by introducing the probability density of
the wave function, that allows to compute any local observable concerning the impurity.
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3 Few-body nature of Kondo
correlated ground states

3.1 Motivations
In the previous part, it was discussed that despite the apparent simplicity of quantum
impurity models, they hide non trivial physics and their solution is in general a hard task.
Indeed, the many-body description of these problems forces one to work in the exponen-
tially large Fock space where every state, or Slater determinant for fermionic systems
that we consider, is treated equally. It could be hoped that most of this huge amount of
determinants do not participate notably to the ground state characterization and it would
be appealing not to consider them. For this purpose, it is desirable to find the corner
of the Fock space within which only the most relevant determinants remain in the com-
putation, changing the exponential scaling to some polynomial function of the system size.

Quantum impurity problems, due to the sparsity of the interaction between Wannier
(real space) orbitals, disclose simplicity when they are expressed with natural orbitals
(NOs) through a given unitary transformation, that is defined in this chapter. Natu-
ral orbitals are widely used in the quantum chemistry community [124–128] to quantify
electronic correlations between molecular spin-orbitals. Although there is no obvious re-
semblance between molecules and impurity problems, they both contain a hierarchical
structure of correlations that is revealed by natural orbitals. Bridges have been built
between these two fields thanks to DMFT, that was investigated to describe strongly
correlated materials beyond the usual approximations of quantum chemistry (density
functional theory, local-density approximation, etc.) [129–131]. To efficiently simulate
the underlying impurity problems of DMFT, exact diagonalization (or full configuration
interaction in quantum chemistry) can be dressed up with various approximations, and
NOs-based approaches originally suited for molecules have thus been democratized for
impurity problems [132–142].

As Kondo-correlations become stronger, the scattering from electronic reservoirs gen-
erates the long ranged Kondo cloud presented in Chapter 2, and we expect particles
participating to the screening process to be correlated with each other. However, the
question concerning the number of correlated particles (that dominantly participate to
correlations) in this state has not been addressed extensively, and natural orbitals are
a powerful tool to answer it. Formally, NOs are eigenvectors of the one-body density
matrix Q, and their corresponding eigenvalues λn (that can take values between 0 and
1 for spinless fermions, corresponding to the NO occupancy) quantify the correlation of
each orbital in the given state. For the purpose of this study, we will consider the ground
state of several quantum impurity models. In these problems, eigenvalues of the one-body
density matrix are exponentially close to the extreme values 0 or 1, such that the corre-
sponding orbital is almost empty or full.
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A mathematical study concerning the complexity of quantum impurities [143] proved
this exponential behavior, and introduced an upper bound for the exponential decay of
Q(1 −Q) (that folds the part of the eigenvalues close to 1 near 0):

σn ≤ c exp
[
− n

14mlog(2ω−1)

]
, (3.1)

where c is a universal constant, ω the spectral gap of the bath and m the size (i.e. the
number of degrees of freedom) of the impurity. This exponential decay supposes that
only a small number of orbitals are relevant in the ground state, that becomes less com-
plicated to deal with. Recent numerical studies proposed a stronger statement, that only
a single orbital would be necessary to describe the Kondo state in the strong and weak
coupling limits [136, 138], such that the full many-problem would become almost trivial.
However, it will be shown in this chapter that the problem is not that simple and that
results reported in these studies are not valid in the thermodynamic limit. An extensive
NRG study is performed to characterize correlations in different regimes, especially where
the Kondo temperature goes to zero, when correlations fully develop through the entire
reservoir.

The results presented in this chapter are published in Ref. [140] and the structure will
follow that of the article. First, generalities concerning the one-body density matrix and
natural orbitals are discussed. Then, the spectrum of this matrix is investigated in the
Kondo regime of the IRLM and the SIAM via NRG simulations. Finally, an ansatz for
the ground state wave function based on natural orbitals is presented, and its precision is
discussed as the interaction strength changes.

3.2 One-body density matrix
The one-body density matrix is defined in any basis as the collection of one-body correla-
tors involving each possible spin-orbital. For spinless fermions of the IRLM, this matrix
is defined as:

Qij =
〈
c†

icj

〉
. (3.2)

In the literature, it is sometimes called the covariance matrix, or the correlation matrix.
Operators can be evaluated in any state, yet the ground state will be the main interest
in this work. Fermion operators can be defined for any basis, such that matrix elements
of Q depend on the starting orbital set. Here, the basis of Wannier orbitals is considered,
and since the impurity is also taken into account here, the labelling starts at −1 with
c−1 = d. Diagonalizing this matrix in any basis leads to the same set of eigenvectors,
the so-called natural orbitals. The diagonalization is performed by the application of the
unitary matrix D, such that in that case natural orbitals qn are linear combinations of
the physical orbital ci :

qn =
N−1∑
i=−1

Dinci , with
N∑

k=0
QikDkn = λnDin. (3.3)
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Eigenvalues of Q have been introduced as λn, and they represent the occupancy of the
nth natural orbital in the ground state:

λn = ⟨q†
nqn⟩ =

∑
i,j

DinDjn⟨c†
icj⟩. (3.4)

From this definition, it is clear that 0 < λn < 1 for the spinless fermions of the IRLM.
If λn = 0, the orbital qn does not appear in the ground state at all, while λn = 1
means that it is present in every determinant consituting the ground state and therefore
trivially factorizes (full orbital). Two extreme cases are studied now to gain intuition
about the spectrum of the matrix Q: the case of free electrons described by a single
Slater determinant, and the simplest case of entangled particles represented by a Bell-like
state.

(a) (b)

Figure 3.1: (a) Spectrum of Q for a free model of 20 sites, sorted in descending order.
The Fermi energy is in the middle of the spectrum, such that there are as many filled
orbitals as empty ones. The straight line is a guide for the eye. (b) Spectrum of Q in a
Bell-like state involving four different orbitals above a Fermi sea of 16 energy modes. The
spectrum of the folded matrix Qfold = Q(1 −Q) is also plotted.

3.2.1 Single Slater determinant
Consider here a translation-invariant tight-binding Hamiltonian of free fermions:

Hfree =
∑

⟨⟨i,j⟩⟩
t
(
c†

icj + h.c.
)
. (3.5)

⟨⟨i, j⟩⟩ is used for nearest neighbor hopping in this example, but can be more general.
This Hamiltonian is diagonalized by plane waves, defined as the Fourier transform of real-
space orbitals: ck = ∑

j e
ikjci, and their dispersion relation is written ϵk. In this case, at

T = 0, the ground state is a single Slater determinant that reads:

|ψ0⟩ =
∏

ϵ
k

≤0
c†

k|0⟩. (3.6)
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In this basis, it is plain that ⟨ψ0|c
†
kck′|ψ0⟩ = δkk′Θ (−ϵk) = nkδkk′ , where Θ is the Heaviside

step function with the convention Θ(0) = 1. The Fermi energy is chosen to be EF = 0
without loss of generality. Hence, it is straighforward to see that plane waves diagonalize
the correlation matrix of this problem, with the spectrum λk = nk, which is depicted in
the left panel of Fig. 3.1.

3.2.2 Simple structure of entanglement: Bell-like state
Consider now a more complicated state, which is a sum of two Slater determinants. This
is a kind of fermionic Bell state, that usually describes the entanglement between two
qubits. Such a state reads:

|ψBell⟩ = 1√
2
(
c†

ac
†
b + c†

cc
†
d

)
|ϕ⟩. (3.7)

|ϕ⟩ is a Slater determinant that does not involve orbitals a, b, c, and d and acts as a
background for the entangled state. These orbitals appear in distinct pairs in the wave
function, so that their occupancy is neither 0 nor 1 as in the previous case. The Q matrix
is nevertheless diagonal in this basis, but the occupancies of these 4 orbitals are here 1/2,
which reflects the strong entanglement between them. The spectrum of Q for this state
is plotted in the right panel of Fig. 3.1. Eigenvalues are sorted in descending order, and
values of λn at 0 and 1 strictly correspond to filled or empty orbitals in |ϕ⟩. It is useful
to introduce the folded Q matrix here, which provides a sensitive measure of correlation
between particles:

Qfold = Q(1 −Q). (3.8)
Indeed, eigenvalues ofQfold far from 0 corresponds to correlated orbitals, and their value λ̃n

corresponds to a degree of entanglement, between 0 for a filled or empty orbital bearing no
correlations and 0.25 for a highly entangled Bell-like state. In the following, the spectrum
of Qfold will be used for readability. Note that its eigenvectors are still natural orbitals,
but its eigenvalues are no more occupancies of the latter.

3.2.3 Some general properties of the Q matrix
In the IRLM, the correlation matrix has to be calculated in the many-body ground state
that is a priori unknown. For this purpose, an NRG simulation of this model (and later
on of the SIAM) is developed to compute Q. It is worth pointing out that most NRG
studies of quantum impurities focus on observables defined with the impurity degrees
of freedom. The matrix Q involves rather observables that are hybridized between the
environment and the impurity degrees of freedom, and implementing such observables
is more demanding. At step N , there are N2 operators that follow the RG flow, which
renders computations quite expensive as the chain grows. However, for the IRLM and
the SIAM, the many-body states are constructed with a reasonable computational cost,
and this makes this study feasible. The details of the RG scheme for the IRLM and the
SIAM, and the implementation of their respective one-body density matrices are given in
appendices A and B.
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The IRLM Hamiltonian manifests particle-hole symmetry at ϵd = 0, and is invariant
under the application of the particle-hole conjugation operator:

P =
N
2 −1∏
i=0

(
c2i−1 − c†

2i−1

) (
c2i + c†

2i

)
, (3.9)

such that P †HIRLMP = HIRLM. This operator transforms annihilation (creation) opera-
tors in their complex conjugate as P †ciP = (−1)ic†

i . Its action on a state is the same,
every electron becomes a hole, and in particular P †|0⟩ = c†

−1...c
†
N−1|0⟩. Its unitarity im-

poses P 2 = 1, and its eigenvalues are thus ±1. Hence, applying P to every operator in Q
leads to the following property:

Qij = δij − (−1)i+jQji. (3.10)

However, HIRLM is hermitian and has real eigenvectors, such that Q should be symmetric,
Qij = Qji. To satisfy both constraints, entries of Q form a chessboard, with Qij = 0 for
even values of i+ j, with i ̸= j. PH symmetry also imposes that every diagonal element
Qii is 1/2: in the ground state, each Wannier orbital is half-filled. It also implies that
the spectrum of Q is symmetric around 1/2, such that natural orbitals come in pairs
with λn = 1 − λN−n. This provides a useful check of the particle-hole symmetry within
numerical simulations, that can be slightly broken by numerical noise if it is not strictly
imposed. As one wants to explore the PH symmetric and the symmetry broken phases,
PH symmetry is not imposed in the simulations and only the conservation of the number
of particles is used. In the simulation of the SIAM, conservation of the total spin is also
implemented.

3.3 IRLM and SIAM correlation spectra
The properties of the correlation spectra of both the IRLM and SIAM are discussed
here. These two models are expected to share the same universal low energy physics,
in the charge sector of the IRLM and in the spin one of the SIAM. The study of the
IRLM, however, may not be universal enough since its fermions are related to the original
degrees of freedom in a complicated fashion, and the study of the SIAM is performed
to enforce generality of the results for ground states of quantum impurity problems.
Using the Wilson chain discretization required by NRG simulations, expressions of these
Hamiltonians are recalled, here at PH symmetry:

HIRLM = U
(
d†d− 1

2

)(
c†

0c0 − 1
2

)
+ V (d†c0 + c†

0d) +
N−1∑
i=0

ti
(
c†

i+1ci + c†
ici=1

)
,

HSIAM = U
(
d†

↑d↑ − 1
2

)(
d†

↓d↓ − 1
2

)
+ V

V∑
σ=↑,↓

(d†
σc0σ + c†

0σdσ)

+
∑

σ=↑,↓

N−1∑
i=0

ti
(
c†

i+1σciσ + c†
iσci+1σ

)
.

(3.11)
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Since an exponential decay of eigenvalues of the one-body density matrix of both
models is expected, elements of Q are calculated at a high precision to obtain the best
resolution for the largest number of eigenvalues. For this purpose, an exhaustive study
concerning the convergence of eigenvalues, in addition to the convergence to the thermo-
dynamic limit of both simulations is presented in the next section 3.4.

The ground state of the SIAM is a spin singlet, so that the different spin sectors do
not mix and ⟨c†

iσcjσ′⟩ ∝ δσσ′ , and ⟨c†
i↑cj↑⟩ = ⟨c†

i↓cj↓⟩. Thus, only the calculation of ⟨c†
i↑cj↑⟩

is required, and an additional two-fold degeneracy is expected in the SIAM with respect
to the IRLM due to this spin symmetry. Another convention for the Q matrix of the
SIAM, would have been to include spin within orbitals such that each entry of Q would
have taken values between 0 and 2, and the two fold degeneracy would have disappeared.
This definition is not used to maintain similarities with the IRLM results, and it is only
a matter of labels.

The spectra are displayed in the top left panel of Fig. 3.2 for the IRLM and in the top
right panel for the SIAM. NRG simulations for the IRLM use Λ = 1.5 for the discretiza-
tion parameter, a tunneling V = 0.15 leading to a hybridization Γ ≃ 3 × 10−2 in units of
half-bandwidth D = 1, and N = 180 sites on the Wilson chain. The lowest eigenenergies
of the Hamiltonian are thus of the order 1.5−90 ≃ 10−16, that is well below any Kondo
scale considered in this study. Parameters for the SIAM are Λ = 1.5, Γ = 10−2 and
N = 180, with twice the number of orbitals because of the spin. The figure plots 1 − λn

on the left part of the spectra 1/2 < λn < 1, and λn on the right part 0 < λn < 1/2.
It is similar to plot the spectrum of Qfold, but the eigenvalues are true occupancies here.
The abscissa axis has been relabeled to be PH symmetry-friendly: the left part ranges
from −N/2 to −1, and the opposite for the right part such that orbital 1 is the PH con-
jugate of the −1 one. The vertical axis is given in log-scale to reveal the exponential decay.

For each value of the interaction considered in the top left panel of Fig. 3.2, the
spectrum exhibits the expected exponential decay [143], on top of an approximate four-
fold degeneracy of the four largest eigenvalues. These four highly-correlated states indicate
a Bell-like entanglement between the concerned natural orbitals q−2, q−1, q1 and q2. This
suggests that at negative U , the impurity and the first energy shell are either both filled
or empty due to Coulomb interaction, and at positive U one is full and the other empty
or vice-versa. Every other orbital has its occupancy departing exponentially from 1/2,
and by writing in a simpler way Eq. (3.1), this exponential decay can be parametrized by
a single parameter x as: {

λn ∝ e−xn for n > 2,
1 − λn ∝ e+xn for n < −2.

(3.12)

This parameter x corresponds to the decay rate of eigenvalues, and varies with the amount
of correlations in the system. We can examine how it depends on the Kondo temperature
TK: the bottom left panel of Fig. 3.2 displays this decay rate as a function of TK, that is
vanishing for U → Uc ≃ −π(

√
2 − 1) in the IRLM: as TK is quenched to zero, x becomes

smaller, corresponding to a slower decay of eigenvalues and hence a more correlated state.
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(a) IRLM (b) SIAM

(c) (d)

Figure 3.2: (a) Spectrum of Q for the IRLM at different values of the interaction U in
both regimes U > 0 and U < 0, for V = 0.15D (that implies an hybridization Γ = 10−3D).
The left part of the plot shows 1 − λn for 1/2 < λn < 1, to exhibit clearly PH symmetry.
The x-axis has been relabeled, such that opposite n corresponds to PH conjugate orbitals.
(b) Same plot as (a) for the correlation spectrum of the SIAM, with Γ = 10−2D. (c)
Decay rate x of Q eigenvalues against the Kondo temperature, defined in the correlated
regime of the IRLM Uc < U < 0. (d) Decay rate x of Q eigenvalues against the Kondo
temperature for the SIAM, defined for U > 0. The spin degeneracy gives a decay rate x
that is roughly halved compared at the one in the IRLM. Another definition of Q including
the spin in each orbital would have given the same x, but occupancies would have taken
values between 0 and 2.

The same behavior is reported for the SIAM on the top right and bottom right panels
of Fig. 3.2. However, in this model the spin degeneracy induces a decay rate x twice
smaller compared to the IRLM for the same TK (that is also computed with the sus-
ceptibility on the impurity). The four highly entangled orbitals are also present in the
ground state, which also indicates a Bell-like state to appear around the impurity, but
these spectra are not enough to describe it precisely. Its structure will be investigated in
the next sections, and it will be shown that the simple picture of a single orbital coupling
to the impurity breaks down in the thermodynamic limit.

The behavior of the largest eigenvalue λmax (in the range [0, 1/2]), and of the decay
rate x are reported in Fig. 3.3 over the full range of the IRLM interaction U . λmax remains
small when U > 0 (the inset shows that it increases slightly up to the half bandwidth
D = 1, and decreases again after), and cancels at U = 0, when the state is trivial. It is
the case since the impurity is accounted in the matrix Q: if the d-level would have been
separated from the bath in Q, the state at U = 0 with natural orbitals would be a sum of
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(a)

(b)

Figure 3.3: (a) Decay rate of Q eigenvalues and of the Kondo temperature of the IRLM as
a function of U. For both (a) and (b) plots V = 0.15, and the U = 0 point corresponding
to the free resonant level model is not plotted (the curve is nevertheless continuous near
this point). (b) Largest eigenvalue λmax of the IRLM matrix Q as a function of interaction
U . Insets zooms on parts where λmax ≃ 0 to see the structure in the weakly-correlated
regime U > 0. Uc corresponds to the transition point to the PH symmetry broken phase,
that is the antiferromagnetic-ferromagnetic transition in the Kondo model.

determinants, leading to the same state but in a more complex fashion, that is avoided in
our definition of Q. In the correlated regime of the IRLM Uc < U < 0, λmax → 0.5, ap-
proaching its maximal value. After the quantum phase transition at U = Uc, the maximal
Q eigenvalue discontinuously falls to small values, indicating a weakly correlated regime.

The decay rate x reports the same behavior in the parameter space. An important
observation here lies at the transition: as the bottom left panel of Fig. 3.2, x seemingly
vanishes at the transition. Hence, in the quantum critical regime, where fluctuations are
maximal, the state is truly many-body and every state carries the same amount of cor-
relations. However, even for an exponentially small TK, x is finite and only few natural
orbitals (few is defined more quantitatively in the next section) are relevant for correla-
tions, while the contribution of the other orbitals are orders of magnitude below.
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Figure 3.4: Decay rate x versus the on-site perturbation ϵd on the d-level rescaled by the
Kondo temperature, at U = −1.0, V = 0.15 and Λ = 1.5. The Kondo temperature at
ϵd = 0 is TK = 1.87 × 10−6. The inset shows the occupancy of the impurity level nd as a
function of the rescaled ϵd, and displays a typical Kondo crossover.

A common probe for Kondo correlations is the perturbation of the system at the
Kondo scale, allowing to investigate the response of the system. In the IRLM, a biasing
potential ϵdd

†d (corresponding to a Zeeman splitting between up and down spins in the
Kondo model) of order TK is applied to prevent the formation of the singlet. The oc-
cupancy nd = ⟨d†d⟩ is very sensitive to symmetry breaking (leaving its 1/2 value), and
the extreme cases nd = 0 (for ϵd ≫ TK) and nd = 1 (for ϵd ≪ TK) remove any kind of
dynamics of the impurity, thus killing all correlations. Therefore, breaking PH symmetry
reduces correlations in the system, and the decay rate x will be used to measure this
reduction. In Fig. 3.4, both nd and x are plotted against the perturbation ϵd, that takes
values below and above TK: ϵd/TK ∈ [10−2, 102]. When ϵd ≪ TK, the perturbation is not
felt by the system and the slight symmetry breaking does not affect correlations. As soon
as the Kondo scale is reached (and then exceeded), the perturbation is strong enough to
suppress correlations, and x increases while the impurity gets polarized (nd → 0 or 1,
depending on the sign of ϵd).

The correlation spectra of the IRLM and SIAM have been investigated in this section,
but some questions remain open. Could the observed few-body behavior of correlations be
only an artifact of the discretization procedure used for numerical simulations. It is shown
in the next section that this potential issue is being ruled out from numerical details on
the convergence of the results. Finally, an ansatz for the wave function using the few-body
structure of correlations will be proposed, and will be confronted to the simplistic picture
of a single orbital coupled to the impurity put forward by previous studies [138, 144].
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(a)

(b) (c)

Figure 3.5: (a) IRLM eigenvalues of Q for U = −1.2 and Λ = 2.25 for various lengths
N of the Wilson chain. The inset shows the convergence of the 25th eigenvalue (starting
from the middle of the spectrum as usual). (b) Same plot as the inset of (a), with the
same data but for different eigenvalues appearing during the flow. (c) Flow of the five
lowest eigenenergies of the rescaled Hamiltonian. There is a clear crossover (similar to
that of λN) to the Kondo fixed point at scales around N = 75, leading to an approximate
Kondo temperature of TK ≃ 2.25−75/2 ≃ 10−13 as expected.

3.4 Convergence to the thermodynamic limit
The thermodynamic limit of any NRG simulation on the Wilson chain is strictly reached
when N → ∞ and Λ → 1. In the IRLM, the one-dimensional continuous conduction
band with a box density of states is recovered, as well as the true hybridization of the
impurity to a continuum. However, actual simulations are performed at finite N and at
Λ > 1, that should be analyzed properly to reach the thermodynamic limit with accurate
enough results for a surmountable numerical cost.

The numerical cost can be reduced by another parameter of the simulation, which is
not explicitly part of the Hamiltonian: the number of kept states in Fock space sectors
Nkept. Tuning this parameter is also important, since it also affects accuracy of the con-
structed state and thus of every observable. The convergence with respect to these three
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parameters is investigated here.

(a) (b) (c)

Figure 3.6: (a) Spectrum of the IRLM Q matrix for different discretizations of the bath
monitored by Λ, for U = 0.5 and a total number of states kept Nkept = 2000. As Λ is taken
closer to 1, thus approaching the continuous limit, small eigenvalues are less converged for
fixed Nkept = 2000. This is an artifact coming from the collapse of energy shells, which
is solved by keeping more states at each step. (b) Same plot as (a), but at fixed Λ = 1.5
for various number of kept states. The issues reported in (a) are seen to be solved as
Nkept increases. (c) Spectrum of the correlation matrix of the SIAM against the number
of kept states, for λ = 2.0 and U = 20Γ. Only this study will be shown to compare to
the IRLM in order not to overburden the text, but every other convergence test has been
done in this model and the figures match. In the SIAM, the number of states required to
reach the same accuracy is much larger, demonstrating the practical advantage of using
the IRLM to describe low energy properties of impurity models, when possible.

In Fig. 3.5, the convergence against chain length N for fixed Λ is shown. The top panel
shows the Q spectrum (for eigenvalues in the range 0 < λn < 1/2) of the IRLM for differ-
ent system sizes N . When the chain is long enough, eigenvalues appear to be converged
to the infinite chain limit. The inset and the bottom left panel show the evolution of some
eigenvalues during the flow. When a new natural orbital enters in the system (at step N
for eigenvalue n = N/2 in the IRLM, or eigenvalue n = N in the SIAM) its occupancy
λn changes until it reaches a fixed value. Before reaching system sizes leading to energies
of the order of the Kondo temperature TK, this evolution is relatively slow, and quickens
when this energy scale is reached. The bottom right panel shows the evolution of the first
five eigenvalues of the Hamiltonian evolving along the flow. The crossover energy from
the short range value to the fixed point corresponds to the Kondo temperature, which
in this case (U = −1.2, Λ = 2.25) is around Λ−75/2 ≃ 10−13. This extreme regime is
investigated here to show that such correlated states can be converged, to ensure that
every set of parameters of the study (for are less extreme values of TK) are converged.
Note that it is not possible to obtain eigenvalues λn>N/2, that are not defined in the flow
yet and that would require to consider longer chain. For the purpose of the study, only
the first tens of orbitals are required, such that N is chosen only for the thermodynamic
limit to be reached. For the convergence with respect to N and Λ only the results of the
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IRLM are shown as they are similar for the SIAM, and every figure is not plotted twice
for obvious reasons of convenience.

The convergence with respect to the discretization parameter Λ is shown in the left
panel of Fig. 3.6 for the IRLM. The first few eigenvalues of Q are shown for Λ = 1.4, 1.5
and 2.0, at fixed Nkept and N . For Λ being too close to one, it seemingly appears that the
exponential decay does not survive in the tails of the spectrum which level off. Actually,
when Λ approaches 1, the energy difference between two consecutive tn is so small, that
every shell (corresponding to a step of the flow) is too close in energy to the next one.
This brings convergence issues when the number of kept states is not sufficently large:
high energy states are thrown away, but they were not sufficiently decoupled from the low
energy states of further iterations, such that one accumulates large errors. To compensate
for this collapse of energy shells, it is thus necessary to keep more states along the flow,
burdening the simulations.

The convergence with Nkept is shown in the center panel of Fig. 3.6 for fixed Λ and
N . The deviation from the exponential decay is only seen when Nkept is too small, and
the spectrum is recovered in its entirety when enough states are kept. For a better un-
derstanding, the total number of kept states is given instead of the number of kept states
in each sector. The truncation procedure is explained in appendix A and B for the IRLM
and the SIAM respectively. The convergence against Nkept in the SIAM is plotted in the
right panel of Fig. 3.6: it appears that this model is harder to converge, and the larger
number of sectors (each sector of fixed number of particles also have sub-sectors of fixed
spin density) requires to keep a larger total number of states in order to converge the
ground state at the same accuracy. Nevertheless, exponential decay seems robust.

Thus, for the simulation performed in this study, Λ = 2.0, N tot
kept ≃ 400 and N =

110 sites are good parameters to reach the thermodynamic limit with high accuracy for
the spinless model, for eigenvalues of Q above the machine precision ≃ 10−16. It is
important to stress that simulations for U ≳ Uc have been individually checked and are
fully converged.

3.5 Few-body ansatz from natural orbitals
The correlation spectrum of impurity models has been shown to be highly hierarchical
in almost all the parameter space, except for TK being too close to zero. However, the
exponential decay stays relatively fast in realistic Kondo regimes, where TK/D ≃ 10−4 −
10−2. With these results, it is established that ground states of quantum impurities are
few-body in nature for practical reasons. Indeed, almost all the eigenvalues λn of Q
are exponentially close to 0 or 1, so that a good approximation is to assume that their
associated natural orbital is totally uncorrelated. In other words, a certain number of
orbitals whose folded eigenvalues λn(1 −λn) lie below an arbitrary threshold are frozen in
the ground state, keeping a core of M active, or correlated orbitals within the ground state
wave function. These orbitals have occupancies the closest to 1/2, and their number M is
chosen to be even in order to respect PH symmetry, so that the correlated sector remains
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exactly half-filled. The N−M frozen orbitals are described by a single Slater determinant
|Ψ0⟩ = ∏− M

2 −1
m=− N

2
q†

m |0⟩, defined in what follows with natural orbitals computed in NRG.
The product goes from −N/2 to −M/2 − 1, which corresponds (with the label of orbitals
defined above) to the (N − M)/2 first eigenvalues of Q that are the closest to 1. The
remaining (N −M)/2 uncorrelated orbitals have an occupancy λn ≃ 0 and do not appear
in the determinant |Ψ0⟩, they are treated as exactly empty.
The full wave function considering the total number N of natural orbitals thus reads:

|Ψfew⟩ =
∑

{Nn=0,1}
Ψ(N− M

2
, . . . , NM

2
)

M
2∏

n=− M
2

[q†
n]Nn|Ψ0⟩, (3.13)

with Nn = 0, 1 the occupancy of the correlated orbital q†
n, where the summation is re-

stricted to occupancies such that ∑M/2
n=−M/2 Nn = M/2 to be at half-filling (where the

ground state obeys PH symmetry), and Ψ(N− M
2
, . . . , NM

2
) are expansion coefficients of

the many-body wave function of the correlated sector. Such an ansatz is common in
quantum chemistry calculations (known as the complete active space (CAS) description),
where core orbitals are frozen and only a part of valence orbitals are taken as active to
approximate electronic correlations in molecules [127, 130, 145–147].

The Hamiltonian of the IRLM can be re-expressed with natural orbitals to obtain
the full wave function. It this thus transformed (without approximation here) by the
orthogonal matrix D that diagonalizes Q as:

HIRLM = Hcorr + Huncorr + Hmix, (3.14)

with each part defined by the nature of orbitals involved, that either belong only to the
correlated sector for Hcorr, and the uncorrelated sector for Huncorr. Hmix concerns terms
with orbitals appearing in both sectors. From now, the following convention to write
tensors will be used to lighten the notation: a superscript Ua corresponds to the matrix
element linked to a creation operator q†

a, and a subscript Ua is linked to an annihila-
tion operator qa. The superscripts and subscripts stacks as more than one operator are
concerned. The three terms in the Hamiltonian are thus written explicitly:

Hcorr =
∑
n,m

tnm q
†
nqm +

∑
n,m,p,q

Unm
pq q†

nq
†
mqpqq

Hmix = Hodd +
∑
n,m

∑
α,β

(
Unα

mβ q
†
nq

†
αqmqβ + Unα

βm q†
nq

†
αqβqm

+ Uαn
mβ q

†
αq

†
nqmqβ + Uαn

βm q†
αq

†
nqβqm

)
Huncorr =

∑
α,β

tαβ q
†
αqβ +

∑
α,β,γ,δ

Uαβ
γδ q†

αq
†
βqγqδ.

(3.15)

The elements of the tensor Uab
cd are defined as Uab

cd = UD†
−1aD

†
0bD0cD−1d correspond-

ing to the form of the interaction of the IRLM, where d†dc†
0c0 has been transformed to

d†c†
0c0d for a matter of conventions. Hodd contains terms with an odd number of parti-

cles in the correlated or uncorrelated sectors, and these terms exactly vanish when the
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Hamiltonian is evaluated in a state written as Eq. (3.13). Correlated orbitals are la-
beled with roman indices n,m ∈ [−M/2,M/2] and uncorrelated ones with greek indices
α, β ∈ [−N/2,−M/2 − 1] ∪ [M/2 + 1, N/2].

In this basis, the uncorrelated part of the state |Ψ0⟩ is already known, and we can get
rid of frozen degrees of freedom qα such that the resulting few-body Hamiltonian to solve
can be reduced to:

Hfew = ⟨Ψ0| HIRLM |Ψ0⟩
=
∑
n,m

tnmq
†
nqm +

∑
n,m,p,q

Unm
pq q†

nq
†
mqpqq

+
∑
nm

∑
α

q†
nqmnα

(
− Unα

mα + Unα
αm + Uαn

mα − Uαn
αm

)
+
∑

α

tααnα +
∑
α ̸=β

(Uαβ
βα − Uαβ

αβ )nαnβ,

(3.16)

with nα = ⟨Ψ0| q†
αqα |Ψ0⟩. Non-zero terms in ⟨Ψ0| Hmix |Ψ0⟩ acts as Hartree terms renor-

malizing the hopping between correlated orbitals, and ⟨Ψ0| Huncorr |Ψ0⟩ is just a global
shift in energy for the correlated sector, since no correlated orbitals come from this term
(see last line of Eq. (3.16)). Note that no approximations were made on the Hamiltonian
part, but only on the form of the wave function |Ψfew⟩ in Eq. (3.13).

The optimal few body wave function Ψ(N− M
2
, . . . , NM

2
) can be found by exact diag-

onalization of the few-body Hamiltonian Hfew. Contrary to the NRG, which only gives
the state in the truncated many-body basis, this approximated wave function is expressed
with one-body orbitals that can be related to the physical degrees of freedom ci and is
thus more practical to use. Remember that in the NRG, any operator must be defined in
parallel to the whole flow of the Hamiltonian, that makes the computation of observables
a bit more involved. The only relevant parameter of the few-body approximation of the
wave function is M , that counts the number of correlated orbitals. In the limit M → N ,
the exact wave function is recovered. In the non-interacting case U = 0, the separation
of sectors is exact for any even value of M .

The accuracy of the few-body ansatz for different degrees of correlation is tested by
comparing the variational ground state energy Efew = ⟨Ψfew|HIRLM|Ψfew⟩ to the true
ground state energy ENRG computed with NRG, and the results are plotted in Fig. 3.7.
Natural orbitals defining |Ψfew⟩ are computed with the NRG. Each computation at finite
M is still in the thermodynamic limit, since every N−M orbitals are fully accounted in the
wave function through |Ψ0⟩. We find that the few-body energy converges exponentially
to the true ground state as M is increased, as anticipated from the structure of the
correlation spectrum. While M ≪ N orbitals are considered, the ground state is at half-
filling such that only M/2 particles bear correlations in the system. As U is pushed deeper
in the correlated regime, the convergence becomes slower and the ansatz loses accuracy.
The convergence of the energy can be related to the occupancy of the first pair of frozen
orbitals: Efew − ENRG ≃ λM/2+1. Hence, even for U = −0.5 (TK ≃ 10−3), 5 particles
in M = 10 correlated orbitals suffice to converge the energy at 6 digits. This clearly
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vindicates that ground states of quantum impurity problems are few-body, unless they
are tuned exponentially close to a phase transition. Equivalent results are found with the
SIAM with a doubled value of M to account for the spin degrees of freedom.

Figure 3.7: Difference between the energy calculated with the few-body wave function
Efew and the exact energy ENRG obtained at the end of the NRG simulation as a function
of the number of correlated orbitals. The difference is plotted for V = 0.15 and various
interaction strengths U , both in the Kondo correlated U < 0 and uncorrelated U > 0
regimes.

3.6 One-body picture and spatial dispersion of
natural orbitals

It was demonstrated in this chapter that only few orbitals were participating in corre-
lations spreading in the host surrounding a quantum impurity, and that this number of
orbitals is increasing when correlations become stronger in the system. In Ref. [138, 144],
it was proposed an even stronger statement, suggesting that only a single orbital is re-
sponsible for the screening process of the magnetic moment carried by the impurity, in
the strong and weak coupling limit of the Kondo model. While the strong coupling limit
J → ∞ of the Kondo model is trivial (a bound state is formed with the first site of the
bath and is thus decoupled from the environment), the weak coupling regime J → 0 is
strongly correlated and this naive picture seems too restrictive.

In the study of Ref. [144], real space lattices are simulated with DMRG, and systems
up to hundreds of sites are investigated. The authors study finite size effects on the Kondo
cloud: when J is lowered from the bandwidth D, it is first found that the picture of a
single orbital becomes worse and worse, but becomes accurate again until it appears to
be exact at J → 0+. They work at fixed system size, and what they truly observe is the
following: when LK ∼ 1/TK (which increases when J decreases) is lower than the system
size, spatial Kondo correlations can extend further in the system, and more and more or-
bitals are involved in these correlations, destroying the one-body picture. However when
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LK is reached, correlations are cut off and the system becomes simple again if LK ≫ L.

In renormalization group studies, the physical length scale L gets larger and larger
with the iterations to reach low energy properties. However, each length scale has to be
considered with respect to the emerging scale of the system, that is the Kondo length.
The equivalent system that is considered in DMRG studies of fixed L ∼ 100 − 500 when
LK → ∞ is similar to having a handful of sites only for a realistic LK, such that the
picture of a single coupled orbital is trivial.

In Fig. 3.8, the spatial extent of the first most correlated orbitals computed by con-
verged NRG simulations is shown. In the uncorrelated regime U > 0, the impurity has
weight only on the first pair of orbitals, and the picture of a single orbital can be approx-
imately valid. When correlations increase (U < 0), the screening process appears to be
still mostly carried by the first pair of orbitals, but correlations carried by the others can
not be neglected for an accurate description of the ground state.

Figure 3.8: Spatial dispersion of the 7 most correlated pairs of PH conjugated natural
orbitals qn for four interaction strengths and for the same parameters as in previous figures.
It is defined as the absolute value of elements of the orthogonal matrix Din at each site
i and orbital n. The spatial extent is cut at site i = 60 for better visibility around the
impurity, but the numerical simulations end at N = 110 for the results to be converged. In
the uncorrelated regime (U > 0), natural orbitals are mostly Wannier orbitals with some
slight amplitude along the chain. When correlations gets stronger (U < 0), the impurity
level is strongly hybridized with Wannier orbitals far from the impurity at distances ∼ LK,
and each natural orbital spreads throughout the entire system (impurity included).
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To study quantitatively the breakdown of the one-body picture as the system size L
is increased above LK, two quantities are considered: the decay of eigenvalues of Q and
the correlation entropy Scorr, both against L. The correlation entropy that is studied here
is defined for every natural orbital except the mostly correlated pair in our system as:

Scorr =
−3∑

n=−N/2

(
nnln(nn) + n−nln(n−n)

)
. (3.17)

If Scorr = 0, only the mostly correlated pair bears correlations, and the one-body picture
is correct. In the left panel of Fig. 3.9, the decay rate x of the SIAM is plotted against
the system size L for U = 55Γ. In this case, TK ≃ 5 × 10−10 so that NRG simulations
can reach both L ≪ LK and L ≫ LK. L is defined during the RG flow, each step n
defining a length scale L = 1/Λ−n/2. The decay rate is decreasing when L → LK and
then saturates at a minimum. Correlations thus decay much faster when the system size
is exponentially small compared to the Kondo length. Scorr is plotted in the right panel of
Fig. 3.9, and shows the same behavior as x: it saturates at a maximum value after LK is
reached, and decreases as L goes to 0. Strictly speaking, the one-body perspective is true
when L → 0 or LK → ∞. However, these statements are trivial or unrealistic, such that
the few-body perspective that we proposed in this chapter is more general and provides
a flexible description of the system, whose accuracy can be tuned with the number of
correlated orbitals M .

(a) (b)

Figure 3.9: (a) Decay rate x of eigenvalues of the correlation matrix Q of the SIAM,
for U = 55Γ, Γ = 10−2 and Λ = 2.0, against the rescaled size L/LK. (b) Correlation
entropy Scorr as a function of the rescaled size, for the same parameters as (a). It increases
logarithmically with the system size until LK is reached then saturates, indicating that
sites added far behind LK does not participate to correlations at all.

A quantitative study of correlations in quantum impurity systems using natural or-
bitals has been presented in this chapter. As was expected from previous studies, an
exponential decay of the occupancies of natural orbitals has been found, which has been
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used to propose an ansatz for the wave function reducing the full-many body problem
to a few-body system of M ≪ N correlated orbitals. Nevertheless, this few-body wave
function relies on the knowledge of natural orbitals, that are eigenvectors of the one-body
density matrix Q of the problem, that was computed through NRG simulations. NRG
requires a discretization of the bath degrees of freedom, and does not take advantage of
the hierarchical structure of correlations in these systems. It would be desirable to find
an NRG-independent method to compute natural orbitals, in order to benefit from the
practical form of the few-body wave function without the disadvantages of the logarithmic
discretization.

During this thesis, a numerical method based on renormalization group ideas has been
developed to find an optimized set of M natural orbitals independently, and is presented
in the following chapter 4. This method scales polynomially as a function of the number
of sites in the system, so that real space calculations with large system sizes (up to some
tens of thousands of sites) become possible with a reasonable computating power and a
controlled accuracy.
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4 Renormalization Group algorithm
for Natural Orbitals

4.1 Motivations
The exponential decay of the one-body density matrix eigenvalues that was investigated
in chapter 3 opens new roads to tackle quantum impurity problems. The strong hierar-
chical structure of correlations allows to consider different kind of relevant descriptions,
the few-body ansatz for the wave function presented previously in the text being one of
them. Another description relies on wave functions defined as a linear superposition of
non-orthogonal Gaussian states [143, 148, 149]. The weight of each Gaussian state in the
wave function is determined by minimization over the manifold of parameters constituting
each state. The number of Gaussian states is expected to be small when the underlying
orbitals are natural orbitals (at least when TK is reasonably large) for quantum impu-
rity systems, which makes the strength of this approximation. However, as the size of
the system increases, the manifold of parameters grows and minimization methods lose
efficiency. The few-body ansatz on its side, which relies on a strict separation of a set
of correlated and uncorrelated orbitals, the latter containing the advantage to work in
the one-body Hilbert space, will be the building block of the method presented in this
chapter. This new method aims to find an optimal set of correlated orbital, from which
the few-body wave function can be defined to compute any observable in the ground state.
The uncorrelated space is defined up to a rotation, and is simply taken as the orthogonal
complement of the correlated space, such that the scaling of the state of interest is not
extensive with the system size.

Equipped with this efficient description, it is wise to think about how this approach
can help address issues that were difficult in the past. Studies of Kondo-correlations in
disordered host, that were presented in chapter 2, clearly lack of a microscopic picture
of spatial correlations, that would require efficient methods to perform statistics. The
Kondo cloud, that was also introduced in this chapter is at the core of quantum impurity
problems, and has also proven expensive to compute numerically due to limitations of
existing methods. A microscopic investigation of this spatial cloud in higher dimension is
also missing from the literature, that usually considers spherical s-wave scattering around
impurities reducing the problem to one dimension. During this thesis a tailored quantum
impurity solver that aims to address all these questions has been developed, and it is
presented in this chapter.

As was stressed earlier, an efficient resolution of impurity problems is required for
DMFT calculations, and various algorithms based on natural orbitals have been proposed
in the past decade [132, 134, 137, 139, 141]. Most of these algorithms aim to compute
dynamical self-energies required by the self-consistent loop of DMFT. These methods are
not adapted when the wave function is sought, so that an independent generation of a set
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of optimized correlated orbitals beyond Hartree-Fock calculations were proposed aside,
using minimization procedures, or iterative schemes [135, 136, 150]. However, they are
based on different ansatz or use global minimization steps that are usually less efficient
than a fully iterative procedure. The algorithm that will be presented here recursively
generates improved guesses for the basis of natural orbials by incorporating new physical
orbitals to the system, and discarding unrelevant ones until convergence (a similar imple-
mentation was proposed for quantum chemistry applications [150]).

The efficiency of this recursive generation of natural orbitals (RGNO) algorithm will
be investigated for different degrees of correlations in the system, and a confrontation
to NRG results will be presented to prove its accurate description of the ground state.
Then, the Wilson chain can be abandoned in favor of a real space tight-binding chain,
that will reveal the true power of the algorithm to resolve real space structure on large-
scale systems, within which the computation of spatially non-local observables such as the
Kondo screening cloud is less demanding. In chapter 5, a microscopic study of Kondo-
correlations in the IRLM in presence of charge disorder using the new algorithm will be
discussed.

4.2 Recursive generation of natural orbitals (RGNO)

4.2.1 General idea
The RGNO is a non-perturbative method based on the few-body ansatz for the wave
function (3.13), that can be written in a simpler way (the notation of chapter 3 for
orbitals and tensors are used):

|Ψ⟩ =
−M/2−1∏
α=−N/2

q†
α

∑
S

ΨS |S⟩ , (4.1)

where |S⟩ is a Slater determinant involving a set of correlated orbitals qn=−M/2,...,M/2,
whose weight in the ground state wave function is given by ΨS. These determinants de-
scribe a number Ncorr of fermions occupying the M active orbitals, with Ncorr = M/2 in
the case of half-filling. The uncorrelated orbitals qα are orthogonal to the correlated ones,
and those with an energy below the Fermi energy EF = 0 are occupied in the ground
state. Thus, uncorrelated orbitals separate into an occupied and an unoccupied sector,
that are PH conjugated when the symmetry is not broken. For a given choice of orbitals
in the three sectors (occupied, correlated, unocuppied), the coefficients ΨS are determined
by minimizing the ground state energy, defined as the expectation value of the effective
correlated Hamiltonian defined as (3.16) in the state |Ψ⟩. In the previous study, a prior
computation of NOs with NRG simulations allowed to work with the optimal set of or-
bitals for the three sectors, and the accuracy of the ansatz was only dependent on the size
of the correlated sector M . Here, the quality of the ansatz hinges firstly on the choice of
orbitals spanning each three orbital space. Unfortunately, the one-body matrix through
which NOs are defined is unknown, as it needs to be calculated from the exact ground
state.
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The method aims to find without recourse to NRG the optimal set of M correlated
orbitals, which are expected to be close to the M most correlated orbitals of the true
correlation matrix Q.

The algorithm starts by choosing an initial repartion of a given set of orbitals in the
three different sectors. This first guess of orbitals has no chance to be the right one,
and needs to be improved. For this purpose, the correlated space is expanded by adding
two well-chosen orbitals belonging to other sectors, that contains now M + 2 orbitals. In
this expanded basis, the ground state

∣∣∣Ψadd
〉

of the effective enlarged Hamiltonian can be
computed, from which the correlation matrix containing the M+2 correlated orbitals can
be computed: Qij = ⟨Ψadd|q†

i qj |Ψadd⟩. As the two added orbitals are not eigenstates of Q,
the new set of eigenvectors is different from the last one. Then, the two eigenvectors of the
enlarged Q with eigenvalues closest to 0 and 1 are moved to the uncorrelated space, thus
leaving a new state of M correlated orbital as the improved new guess. At this point, the
procedure of adding and throwing orbitals is repeated until convergence to a fixed point
of |Ψ⟩.

A simple verification for the convergence of the state is the decrease of the ground
state energy of the effective Hamiltonian for each improvement of correlated orbitals.
The converged state is benchmarked against exact NRG results, and it appears that the
state is almost as accurate as state (4.1) with the exact natural orbitals and shows the
same exponential convergence with the number of correlated orbitals M . This iterative
procedure is similar to an RG for the parameters of the Hamiltonian in the following
sense: the matrix elements of the effective Hamiltonian are defined by the transformation
matrix D from Wannier to natural orbitals, which changes at each step of the flow until
it reaches a fixed point. In the following, the implementation of the RGNO is detailed for
the IRLM Hamiltonian on the Wilson chain (3.11) in order to be compared to the NRG
simulations of this model.

4.2.2 Initial guess of correlated orbitals
The first step is to choose a initial complete set of orbitals to start the flow of orbitals, and
to distribute them between the three sectors. As for every iterative procedure, the closer
the initial guess to the solution the faster the convergence. An optimal initial guess is the
Hartree-Fock set of orbitals, defined through the resolutions of self-consistant equations
similar to Eqs. (2.21) that were introduced in chapter 2. Building these orbitals adds
a slight computational effort to the global procedure yet the guess proposed hereafter is
cheaper to implement and provides comparable results.

In the previous study, the spatial dispersion of the exact natural orbitals in Fig. 3.8
revealed that, generally, the impurity level is not diluted too much into other orbitals, such
that the interaction stays local at zeroth order. This indicates that Hartree-Fock equations
do not renormalize a lot the parameters of the system, and that the bare decoupling of
the interaction is not far from the mean field solution. Hence, an initial guess can be the
following: the first M sites (Wannier orbitals) are taken as the correlated space, and the
remaining N −M will constitute the uncorrelated space.
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Figure 4.1: Initialization procedure of the RGNO. The first M Wannier orbitals (in red)
are chosen to describe the correlated space, whereas the uncorrelated part is defined from
the N −M remaining orbitals. The occupied and unoccupied sectors of the uncorrelated
space are determined through the diagonalization of the free Hamiltonian projected on
the uncorrelated space. Eigenvectors qα, with |α| ∈ [M + 1, N/2] are paired according
to their relative energy to the chemical potential, that is set to zero here. Hence, q−β is
paired with qβ, and qM+1 has the closest energy to the Fermi energy.

To differentiate occupied and unoccupied (PH conjugated) orbitals, the N − M sec-
tor is diagonalized (there is no interaction between these orbitals, the diagonalization is
done in the Hilbert space): if |Punc⟩ is the projector into this subspace, the projected
Hamiltonian HIRLM|Punc⟩⟨Punc| is considered. Each of its eigenvectors with energy ϵn < 0
is occupied, and the remaining ones are unoccupied. This works well because this spec-
trum is nearly degenerate with respect to the one of the one-body density matrix Q.
We could also choose to take the eigenvectors of the free problem U = 0 as a starting
point, including the impurity in every sector. Actually, it depends if the expected natu-
ral orbitals are localized in space (hence the first solution may be better), or in energy
(the second one is thus more approriate). The first choice of orbitals is depicted in Fig. 4.1.

With the chosen initial guess, orbitals will now be improved by the iterative expansion
and reduction of the correlated space. Note that if the initial guess is too far from the
solution, the algorithm may be stuck in a local minimum and yield inconsistent results.
The two presented initializations are the ones that lead to drastically faster convergence
of the algorithm.

4.2.3 Iterative diagonalization
The iterative diagonalization aims to improve the initial separation of orbitals in the three
sectors. The correlated space will be successively enlarged by two uncorrelated orbitals,
one from the occupied sector and one from the unoccupied one. Orbitals that are most
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(a)

(b)

Figure 4.2: (a) Transformation of the Hamiltonian from step n to n+ 1. The correlated
sector of H(n) is enlarged by the uncorrelated pair of orbitals (qm, q−m), with m = M/2 +
1 + n the nth added pair or orbitals. The corresponding matrix Q is diagonalized in the
enlarged ground state of H(n), defining a new set of correlated orbitals q̃i. The two least
correlated orbitals (orange circles) are moved to the uncorrelated space, such that the
Hamiltonian H(n+1) to be enlarged in the next step n + 1 is of size M . (b) Repartition
of orbitals at a given step n of the flow between the three sectors. Thrown orbitals and
uncorrelated ones defined in the initialization of the flow are considered in the same way,
the basis of orbital being complete at each step of the flow.

likely to participate in correlations are added first: they correspond to the ones with en-
ergies the closest to the Fermi energy, namely ϵn the closest to 0. Uncorrelated orbitals
are sorted in ascending order, such that q−N/2 (resp. qN/2) is the furthest in energy from
0 and q−M/2−1 (resp. qM/2+1) the closest. Hence, the pair (q−M/2−1, qM/2+1) is added
first, and (q−N/2, qN/2) will be the last added pair of orbitals to the flow. The enlarged
Hamiltonian is defined as in Eq. (3.16) for M + 2 orbitals, the (N − M − 2)/2 frozen
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orbitals being treated in mean-field. The Hamiltonian is diagonalized to find |Ψadd⟩, and
the corresponding Q matrix is computed. Then, the two least correlated orbitals are
thrown (downgraded to uncorrelated) to keep a space of fixed size, and the procedure
is repeated. The improvement procedure is sketched in the top panel of Fig. 4.2. As
orbitals are thrown, they still participate to the renormalization of the couplings between
correlated orbitals, such that the set of orbitals stays complete at every moment of the
flow. The separation of sectors for a given iteration n is shown in the bottom panel of
Fig. 4.2.

For each definition of the Q matrix, the exact diagonalization of the effective enlarged
Hamiltonian is done in the Fock space of size 2M+2. However, the Hamiltonian is very
sparse, and the absolute number of states to consider is in practice way smaller than
2M+2. The Hamiltonian conserves the number of particles, such that it can be diagonal-
ized by blocks of fixed number of particles, which already reduces a lot the size of the
corresponding matrix. The Hamiltonian (3.11) is particle-hole symmetric, and it would
be beneficial to implement this symmetry in the exact diagonalization. However, at each
step, the Hamiltonian that is considered is already projected on the uncorrelated part
of the wave function, and it appears that this projection explicitely breaks PH symme-
try (see Appendix C). Forcing the PH symmetry in the exact diagonalization has been
tested, and lead to numerical instabilities along the flow that prevents the convergence of
the state. A solution could be to symmetrize the ansatz by taking |Ψ⟩sym = |Ψ⟩ + P |Ψ⟩
(with the PH conjugation operator P defined as in Eq. (3.9)), but this definition is less
tractable and not essential in this study, so that the slight symmetry breaking is tolerated.
However, even without the PH symmetry, the Hamiltonian is sparse enough to deal with
at most 14 correlated orbitals, which is more than enough for the following studies. The
detailed implementation of the sparse Hamiltonian for an optimized exact diagonalization
is presented in appendix D.

During this procedure, we chose to add orbitals by pairs in the correlated space, which
is the minimum required to respect at best the PH symmetry (even if it is inherently
slightly broken by the ansatz for the wave function). It has been tested to add orbitals
four by four instead, but the convergence speed remains the same while the intermediate
diagonalization becomes heavier (the size increases to 2M+4 states).

4.2.4 Sweep until convergence
The iterative diagonalization described previously is repeated until each pair of uncorre-
lated orbitals has been added to the flow, and thus constitutes a sweep. At the end of the
first sweep, the corresponding correlated space has improved, but nothing guarantees that
it is optimal. In order to reach full convergence of NOs for a given size M of the corrlated
space, the NOs obtained at the end of a sweep are taken as the new guess for the next
one, until the final fixed point is reached. The uncorrelated sector is thus diagonalized
once per sweep, and the (N −M)/2 steps of adding / throwing repeated. To monitor the
convergence of NOs, the ground state energy or any observable that needs to be computed
can be computed at the end of each sweep, and in practice for clean systems, 10 to 20
sweeps are enough to reach full accuracy.
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The RGNO method presented above was found to be the optimal one in any case, and
only the accuracy of the first set of orbitals can accelerate the convergence. The scaling
of the algorithm is at most (N − M)3 (≃ N3 for N ≫ M) for the diagonalization of the
uncorrelated space, and (N −M)/2 (≃ N/2) times 2M+2 for each exact diagonalization of
the correlated space at each step, times the number of sweeps that is independent of N .
The total scaling is thus of order O

(
N42M

)
, which is polynomial in the system size N ,

for an exponential precision (that will be discussed just after) against M . As long as M
is small enough (< 10 to 14 without the use of symmetries), the procedure is relatively
fast for large systems up to several thousands of sites.

At the beginning of each sweep, the uncorrelated sector must be diagonalized to deter-
mine in which order will orbitals be added. When N gets too large, the diagonalization in
N3 can be the bottleneck of the algorithm, such that it could be interesting to avoid this
step at each sweep. It has been tested that using the same set of uncorrelated orbitals
but sorted in reverse order (the last thrown will becomes the first added) leads to results
with only slighly lower precision, but the time of calculation saved by this trick makes it
profitable for large enough N .

4.3 Benchmark on the Wilson chain
The accuracy of the wave function produced with the RGNO is tested against converged
NRG results. The same grid of discretization is taken for both algorithms, and the NRG is
ensured to be converged, following the same verifications as in chapter 3. The parameters
used in the NRG simulation for this study, for which the thermodynamic limit is reached,
are Λ = 2, N = 110 sites and a total number of kept states Nkept = 1500. The algorithm
is tested in both the weakly correlated U > 0 and strongly correlated U < 0 regimes of
the IRLM to put to test its robustness to strong correlations.

In the left panel of Fig. 4.3, the ground state energies obtained by RGNO is com-
pared to the one computed in NRG, for different interaction strength yielding different
TK. The algorithm converges exponentially with the number of correlated orbitals M to
the true ground state energy, that is typical for the exponentially decaying spectrum of
Q eigenvalues (see the convergence of the few-body ansatz in Fig. 3.7). For U = −0.5,
the approximate ground state energy is converged up to 5 digits to the true ground state,
that is well below the Kondo temperature for these parameters TK ≃ 3 × 10−3. Kondo
correlations are ensured to be fully captured for M ≥ 6. When correlations are weaker
(U > 0 or U < Uc ), the energy is easily converged with a precision better than 10−8 for
only M = 8 orbitals.

In the non-interacting case U = 0, it is recalled that the construction of the ansatz
is exact such that the algorithm finds the exact ground state wave function (that is not
ensured for every method suited for many-body regimes). Results for U = −1.0 does
not follow the exponential convergence for the following reason: as was said in the last
section, the few-body ansatz explicitely breaks PH symmetry (although very slightly),
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(a) (b)

Figure 4.3: (a) Difference between the ground state energy of the IRLM computed with
the RGNO and NRG against the number of correlated orbitals M for different values
of the interaction U . The calculation is performed within both algorithm for Λ = 2.0,
V = 0.15, N = 110 sites. The dashed lines corresponds to the convergence of the few-
body ansatz with nearly exact NOs computed in NRG, plotted in Fig. 3.7. The curve
at U = −1.0 is not converged by the RGNO due to the slight symmetry breaking of
the ansatz. (b) Amplitude Di1 of the most correlated orbital q1 along each site of the
chain i (with i = −1 ≡ d) computed with both RGNO and NRG. The chain is cut at
i = 48 for readability, the amplitude being almost zero after i ∼ 30. The inset shows the
convergence of the RGNO orbital to the NRG result for D15,1.

with an amount proportional to the coupling terms between correlated and uncorrelated
sectors that are not considered. As correlations become stronger, these terms become
bigger and the symmetry breaking (that can be quantitatively seen in the occupation of
the impurity level in the ground state deviating from 1/2) is larger. In addition to this
larger symmetry breaking, the emergent scale TK is also exponentially smaller (TK ≃ 10−6

for U = −1.0), and the error suffice to polarize the system and cut correlations. Hence,
a correlated space with at least M = 8 orbitals is required for the state to be correct.
This effect is similar to the symmetry breaking in the NRG when U → Uc for too few
kept states. For U = −0.5, this slight symmetry breaking allows more freedom for the
construction of orbitals, and yield to slightly more accurate results.

In the right panel of Fig. 4.3, the spatial dispersion of the most correlated orbital
q1 = ∑

i Di1ci (whose occupancy is the closest to 1/2) is plotted in the correlated regime
U = −0.5 for various sizes of the correlated space, to be compared to the one computed
with the NRG. Even for simulations with a number of correlated orbitals as small as
M = 6, the orbital is nearly indistinguishable from the NRG result, and gets even more
accurate when increasing M . The largest amplitudes are concentrated aroung the site
n = 15, which corresponds on the Wilson chain to an energy of Λ−15/2 = 5 × 10−3, that
corresponds roughly to TK ≃ 3 × 10−3. As a side remark, we could think that it may
be worth to diagonalize the Hamiltonian at the end of the flow in the enlarged space
containing M + 2 orbitals instead of M . Actually, the algorithm tends to optimize the
participation of orbitals in the correlated space with M orbitals, such that the occupancy
of uncorrelated orbitals is the closest to 1 or 0. Hence, the most correlated orbitals of the
uncorrelated sector have occupancies so close to 0 or 1 that including them in the exact
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Figure 4.4: Relative ground state energy (RGNO vs NRG) against the number of sweeps of
the RGNO, for various numbers M of correlated orbitals. The computation is performed
for U = −0.5, corresponding to TK ≃ 3 × 10−3. The sweeping process is stopped when
the difference of energy between two sweeps is less than 10−10.

diagonalization does not change the result.

Finally, it is shown in Fig. 4.4 the convergence of the energy at fixed M as a function
of sweep iterations. The energy first decreases fast to the true value, then saturates to
a plateau. Actually, the convergence criterion is arbitrary, since the sweeping process
can be repeated indefinetly. For these simulations, the algorithm was stopped when the
energy difference between two steps was around 10−10, chosen to be far below TK. This
ensures the state to be converged, but too much effort may be put to converge a state
at 10−10 when it actually converges to 10−4 above the true ground state energy. For
larger M , more sweep are necessary since more degrees of freedom in the correlated sector
need to be updated. In general, only a few tens of sweeps are required for convergence,
and the procedure is even faster for less correlated states. Thus, the RGNO has proven
to reproduce accurately the set of the M mostly correlated orbitals in the Wilson chain
representation of the IRLM. However, it does not rely on any assumptions about the
spectrum, so that it can be extended to real space lattices, thus exceeding the strongest
limits of the NRG.

4.4 Real space simulations and Kondo screening cloud
In this section, the RGNO method is used to compute the screening cloud of the IRLM
that was presented in chapter 2. It was explained before that this observable requires
a good resolution at all scales, from the lattice spacing up to the Kondo length LK and
beyond. Notable studies were presented, using either NRG or DMRG simulations: the
former was numerically expensive, yet accurate at all scales, while the latter was limited
to systems of hundreds of sites that are too small to obtain the full resolution of the Kondo
crossover for realistic TK. The RGNO method is a good candidate for the computation

59



CHAPTER 4. RENORMALIZATION GROUP ALGORITHM FOR NATURAL
ORBITALS

of such observables, as it is demonstrated now.

Figure 4.5: Variance of the Hamiltonian at each sweep of the RGNO procedure for various
M . The parameters for the simulation are N = 103 sites, U = −0.5, t = 0.5 and V = 0.15.
The square root of the variance is proportional to the error of the variational energy to
the true one of the ground state, that is seen to converge in less than 10 sweeps for any
value of M .

To study the screening cloud of the IRLM, the Wilson chain of the Hamiltonian (3.11)
is changed to a real-space tight-binding chain with constant hopping ti = t. For the
density of states at zero energy to remain the same as in the box used for NRG simulations
(ρ0 = D/2), the hopping is chosen to be t = D/2. In this configuration, the screening
cloud observable is still defined by the density-density correlator in Eq. (2.23). This study
consider chains of N = 104 sites, such that energies of the order 10−4 are attainable.
Without any simple benchmark with other methods on this observable at any interaction
strength, the variance of the Hamiltonian is computed for a quantitative measure of the
accuracy of the constructed few-body state. The variance is defined as:

σ = ⟨H2⟩ − ⟨H⟩2

⟨H⟩2 , (4.2)

where the averages are done with respect to the few-body wave function |Ψ⟩few. If Ψ is an
exact eigenvector of the full Hamiltonian, i.e. H|Ψn⟩ = En|Ψn⟩ and H2|Ψn⟩ = E2

n|Ψn⟩, in
such way that σ = 0. A well approximated state is expected to yield a small variance. In
addition to be a check for the accuracy of the state that is being built, it can be a good
criterion of convergence for the algorithm. However, the computation of the variance
requires the exact diagonalization of terms involving 6 fermionic operators (details about
the computation of the variance are given in appendix D) which is numerically expensive
when M ≥ 10. Moreover, the square root of the variance measures the error of the few-
body energy against the real ground state, to be compared to the order of magnitude
found in the benchmarking with the NRG. In Fig. 4.5, the convergence of the variance
against the number of sweeps is computed for a real space chain of N = 1000 sites, for an
interaction strength U = −0.5. The convergence is comparable to the one of the energy
of Fig. 4.4, and it is seen that the algorithm converges faster than with the Wilson chain.
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Figure 4.6: Absolute value of the density-density correlator Ci computed at each site i,
for a real-space tight-binding chain of N = 104 site, for increasing number of correlated
orbitals M . The parameters of the IRLM Hamiltonian are U = −0.5 and V = 0.15,
corresponding to TK ≃ 3 × 10−3 (and LK ≃ 300). Top and bottom panels separate the
odd and even sites to reveal the envelopes of the oscillations of the screening cloud. The
dashed lines are fitted power laws corresponding to the analytical scaling of the cloud at
short and long range. In the bottom panel, a curve for a simulation of N = 5 × 104 sites
is shown, and fits better with the expected scaling. After i = 2 × 104, the observable is
not well converged and is cut for readability.

The correlator Ci is plotted for a chain of N = 104 sites in Fig. 4.6, for U = −0.5,
V = 0.15 and t = 0.5, corresponding to a screening length LK ≃ 300 sites. Even and
odd sites have been separated in the bottom and top panels respectively to extract the
envelope of the 2kF oscillations of the cloud. Dash lines corresponding to the theoretical
predictions [53, 80] for the short and long range scalings are also added. The crossover
between the two regimes happens between i = 100 and i = 400 corresponding to the
expected Kondo length. The computation of this observable is only a single shot evaluation
of each correlator in the few-body ground state obtained through the RGNO. While the
scalings are clearly seen for the smallest component of the cloud, the i−2 decay of the
largest component is less clear. Indeed, the crossover usually takes more than a decade
for long range properties to fully develop, and the sum rule in Eq. (2.24) induces finite
size effect in the tails of the cloud. A result for N = 5 × 104 sites and M = 6 is shown
and the scaling is clearer. However, the results at the end of the chain (not shown here)
are not converged, simulations of so large systems being more sensible to numerical noise.
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This curves show that a correlated space with only M = 6 correlated orbitals is
enough to get a good precision for the screening cloud in a strongly correlated regime.
For N = 104 sites, the one-body diagonalization required in the initialization take some
time to be performed, and as M ≥ 8 the simulations can take few-hours on a computer.
However, for M = 6 and N = 103 sites, a converged state can be built in a few seconds.
This is exploited in the next chapter for a statistical study of Kondo correlations in
disordered metals. The results on the one-dimensional case were already well known from
NRG [151], but the method can be used to study the two-dimensional problem on a large
square lattice, that was not adressed in the literature in a Kondo correlated regime yet.

4.5 Two-dimensional screening cloud
Usually, studies concerning dynamic impurities interacting with a two or three dimensional
bath are considered under the assumption of a circular (or spherical) Fermi surface [89],
within which the rotational invariance together with the short-range interaction reduces
the problem to one radial dimension. In high dimensions, the large dimension of the Fock
space prevented the microscopic study of Kondo screening clouds spreading in two or
three dimensional lattices. The problem that is considered here concerns an interacting
resonant level adatom coupled to the central site (0, 0) of a square lattice containing
(2Ω + 1)2 sites. With uniform nearest neighbor hopping between sites of the bath, the
Hamiltonian reads:

H2d = U
(
d†d− 1

2

)(
c†

0,0c0,0 − 1
2

)
+ V

(
c†

0,0d+ d†c0,0

)
+ t

2
∑

⟨⟨x1,x2⟩⟩

(
c†

i1,j1ci2,j2 + c†
i2,j2ci1,j1

)
,

(4.3)

where xa = (ia, ja) is the set of coordinates of the sites of the lattice, and periodic bound-
ary conditions are considered. The hopping term is normalized such that the half-band
width is 2|t|, as in the one-dimensional case. In this study, a lattice of 301 × 301 sites is
considered, such that 90602 orbitals must be treated in the Hilbert space. However, the
lattice enjoys point group symmetries with which some orbitals are redundant and can
be generated by a smaller set of orbitals. The first symmetry are generated by reflections
about the diagonal (i = j), such that ci,j generates cj,i. The second corresponds to an in-
variance under π/2 rotations with respect to the central cite, which allows ci,j to generate
c−j,i, and by extension of the first symmetry c−i,j.

An implementation of these symmetries would allow to divide the number of orbitals
to be handled by 8. To reveal these simplifications, we start from the set of orbitals
diagonalizing the Hamiltonian decoupled from the impurity (V = 0), which can be written:

am,n = 1√
2

Ω∑
i,j=−Ω

(ψm(i)ψn(j) + ψm(i)ψn(j)) ci,j, ∀m ̸= n

am,m = 1√
2

Ω∑
i,j=−Ω

ψm(i)ψm(j) ci,j,
(4.4)

62



CHAPTER 4. RENORMALIZATION GROUP ALGORITHM FOR NATURAL
ORBITALS

where elements of the expansion ψn(i) are defined by cosine functions, as it is usual for
non-interacting square lattices with nearest neighbor hopping:

ψn(i) = 1√
Ω + 1

cos
[
πj(m+ 1

2)
Ω + 1

]
. (4.5)

The eigenenergy associated to the orbital am,n is:

Em,n = t

(
cos

[
π(m+ 1/2)

Ω + 1

]
+ cos

[
π(n+ 1/2)

Ω + 1

])
. (4.6)

At this point, symmetries are not accounted and the spectrum Em,n is degenerate. As the
impurity only couples to the site (0, 0), and the Wannier orbital associated to this site
c0,0 is left invariant by the generators of both symmetries, we only want to define orbitals
in the symmetric sector containing c0,0. Let Eα∈{1,N} be an eigenenergy in the symmetric
sector containing N orbitals, we can define the associated symmetric orbital as the sum
of every eigenorbital am,n with an energy Em,n = Eα, and we further want each orbital
am,n involved in this new orbital to be coupled to the impurity, i.e. ⟨0|c0,0a

†
m,n|0⟩ ≠ 0.

Such an orbital is easily defined as:

bEα
= 1√

DEα

∑
m,n

δEm,n,Eα
⟨0|c0,0a

†
m,n|0⟩am,n, (4.7)

where ⟨0|c0,0a
†
m,n|0⟩ can be explicitely expressed as

√
2 − δm,n/(Ω+1), such that the norm

DEα
can be written:

DEα
=

∑
m,n

δEm,n,Eα
(2 − δm,n)

(Ω + 1)2 . (4.8)

Hence, we have a new reduced set of orbitals which are all left invariant by application
of the symmetry and which couple to the impurity. Remarking that the Wannier orbital
located at the site coupled to the impurity is the simply sum of these orbitals c0,0 =∑N

α=1
√
DEα

bEα
, the Hamiltonian reads:

H′
2d = U

(
d†d− 1

2

) EN∑
Eα,E

β
=E1

√
DEα

DE
β
b†

Eα
bE

β
− 1

2


+ V

EN∑
Eα=E1

√
DEα

(
b†

Eα
d+ d†bEα

)
+

EN∑
Eα=E1

Eα b
†
Eα
bEα

.

(4.9)

Thus, the RGNO procedure is applied to the above problem concerning roughly 104 or-
bitals, as in the one dimensional study presented in the previous section. The correlated
sector is built from the M bE-orbitals with energies closest to 0 (by pairs around the Fermi
energy). The difference lies in this initialization, where the single-particle Hamiltonian is
diagonalized without the hybridization term V for good convergence. This may be due
to a renormalization of the bare coupling V by the interaction, the interacting solution
being thus closer to the Hamiltonian at V = 0.
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The two-dimensional cloud Ci,j is plotted in real space in the left panel of Fig. 4.7,
for V = 0.15, U = −0.4 and t = 0.5, corresponding to a Kondo temperature of TK ≃
1.2×10−2. In the right panel the same observable is plotted with the same parameters but
at U = 0, corresponding to an enhanced Kondo temperature of TK = 5 × 10−2. Only the
sites 0 ≤ i, j ≤ 100 are plotted for readability, corresponding to 1/9th of the full simulated
system. The correlated space is chosen to harbor M = 12 orbitals to reach an accuracy
of order 10−9, since correlations spreading in the bath are expected to be exponentially
small. In both cases, the screening cloud appears mostly along the (j,±j) diagonals, and
decays exponentially as orbitals are far from the diagonal.

(a) (b)

Figure 4.7: (a) Two dimensionnal density-density correlator Ci,j of the IRLM for V =
0.15, U = −0.4, t = 0.5 in a square lattice of 301 × 301 sites. (b) Same plot as (a) for
U = 0, showing that correlations are always negative in the non-interacting case. Both
screening clouds show the same kind of anisotropic spatial structure.

In the non-interacting case, correlations are always negative and are only non-zero in
the A-sublattice for which i + j is even. Hence, the charge polarity along the lattice is
opposite to that of the impurity. This might indicate, for a spinful model, that only spins
opposite to that of the impurity accumulate to offset it. In contrast, for the interacting
case, the charge polarity is not opposite everywhere. There is a region spreading tens
site away from the impurity exhibiting the same polarity as the impurity (in yellow in
the figure), which is following the shape of the long ranged cloud on shorter scales. An-
other qualitative difference is that correlations in the B-sublattice are not zero anymore.
A similar feature was found with the one dimensional screening cloud, whose odd sites
correlations vanishes exactly at U = 0 only.

The main observation about this screening cloud is its strong anisotropy along the two
directions of space. In the main diagonal, correlations extend further than the expected
LK if the rotational invariance is supposed, while it vanishes faster in the orthogonal
direction. A similar anisotropic pattern around a static impurity embedded in a bath
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with a square Fermi surface as an effect of Friedel oscillations has been reported in Ref.
[152]. From this finding, it can be supposed that on a half-filled square lattice with many
IRLM-type impurities, some of them will interact through the conduction band at scales
larger than LK, while the majority will not even know if they are closer to each other.
This may help to investigate anisotropic RKKY interactions, that is known to be closely
linked to the screening process in the conduction band.

Figure 4.8: Real space dispersion of the first 9 Lanczos orbitals obtained through the
method of Ref. [153], for a lattice of 31 sites with a diamond-like geometry, with a uniform
hopping t = 0.5D. Each Lanczos iteration generates an orbital |Ψn⟩ in the symmetric
sector, with n < L2/8. For n > L2/8, orbitals are combinations of the previous ones, and
are thus redundant.

4.5.1 No reduction to one-dimensional chains
The study presented above considered a fully-interacting problem on a L×L lattice, that
was reduced to L2/8 relevant orbitals taking advantage of point group symmetries of the
square lattice. However, it was proposed in Ref. [153] that tight-binding Hamiltonian of
higher dimensions maps onto one-dimensional chains of size O(L) with nearest neighbor
hopping only. The proposed scheme recursively generates orthogonal Lanczos orbitals
|Ψn⟩, such that ⟨Ψm|H|Ψn⟩ = 0 for m < n − 1. This scheme is exact once all symmetry
class orbitals have been exhausted, (here L2/8 orbitals) but it was claimed in Ref. [153]
that only a linear amount of these orbitals L is enough to converge exactly the ground
state. While the study of symmetries presented before ensures that the result can be exact
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only if L2/8 orbitals are considered, it could be interesting to see if a certain amount of
these orbitals are almost irrelevant, reducing the complexity to O(L) orbitals up to some
numerical accuracy. The procedure presented in Ref. [153] has been implemented to ver-
ify this statement, for the IRLM at U = 0 on a two-dimensional diamond-shaped lattice,
as was suggested in the article. The parameters are V = 0.15 , t = 0.5 and L = 100 sites,
corresponding to 20201 sites in the lattice (without the impurity). Standard procedures
of orthonormalization and normalization during the Lanczos scheme advised by Ref. [153]
yield a stable algorithm for these parameters. In Fig. 4.8, the 9 first generated orbitals
are shown, the first one being the seed of the recursive scheme.

(a) (b)

Figure 4.9: (a) Difference between the local hybridization ⟨d†c0,0⟩ computed with n Lanc-
zos orbitals and the one computed with all eigenorbitals of the system, for the non-
interacting resonant level on a diamond shaped lattice. Boundaries are at |i| + |j| = 100
such that they respect the underlying spatial symmetries. (b) Absolute value of the spa-
tial dispersion of the hybridization along the j direction ⟨d†c2j,0⟩ on the sublattice A only
(i + j even), for different number of Lanczos orbitals n (same parameters as panel (a)).
This result clearly shows that accuracy is lost for a number of orbitals smaller than the one
in the symmetric sector, and demonstrates that no efficient mapping to one-dimensional
chain of size O(L) is possible.

To refute the statement of a chain of size ∼ L coupling to the impurity, we investigate
the error in the hybridization ⟨d†c0,0⟩ as the number of Lanczos orbitals increase compared
to the full system (for a non interacting impurity), and the spatial dispersion of the
hybridization between the impurity and the second site of the chain |⟨d†c2j,0⟩| (2j is used
instead of j to avoid the cancellations of the correlator on the B-sublattice). In the left
panel of Fig. 4.9, the precision after L = 100 iterations is only at 2 digits, and becomes
correct to machine precision only when L2/8 ≃ 2600 orbitals are generated. The result is
confirmed by the right panel of Fig. 4.9: while short range correlations may be described
by fewer orbitals, only the required amount of orbitals L2/8 manages to converge the
observable at all scales. A misunderstanding in Ref. [153] may be the following: for too
small L (L ∼ 102), the reduction due to symmetries L2/8 is close to L. For 400 sites,
the exact reduction accounts for 50 orbitals, while L = 20, that is of the same order of
magnitude. However, it is clear that when L increases, the reduction to O(L) chains can
not be reliable and no shortcut beyond point group symmetries can provide an accurate
calculation of the two-dimensional screening cloud.
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5 RGNO study of screening clouds
in disordered environments

In chapters 3 and 4, natural orbitals of quantum impurity problems (both IRLM and
SIAM) were investigated. They proved to efficiently describe the ground state of these
systems in all regimes, provided that parameters are not tuned too close to a phase tran-
sition. Natural orbitals occupancies revealed a strongly hierarchical structure of correla-
tions, whereupon an ansatz for the ground state wave function was proposed. A method
dubbed RGNO (for Recursive Generation of Natural Orbitals) has been developed to
generate the set of M ≪ N (N the number of sites in the system) mostly correlated nat-
ural orbitals, that are at the core of the wave function. This method is non-perturbative
and allows to deal with systems in any one-particle basis, so that the development of
the RGNO was motivated by real space simulations, that were expensive for usual NRG
calculations. The efficiency of the algorithm was used to solve large systems with a high
precision at every spatial scales. Computing spatial structures with well developed cor-
relations in the non-interacting bath is relatively fast, so that accumulating statistics on
fully many-body simulations in the thermodynamic limit becomes possible.

In section 2.5, the literature concerning Kondo correlations in disordered environ-
ments was presented. The presence of charge disorder in the spinful Kondo model has
been demonstrated to be responsible for non-Fermi liquid behaviors at low temperatures,
where part of the local moments were not quenched by the surrounding electrons. Due
to the difficulty of simulating a large amount of realistic lattices, approximate scaling
equations have been mostly used in these studies. It was however enough to explain the
non-Fermi liquid behavior for dilute Kondo alloys through the distribution of Kondo tem-
peratures, yet these studies were limited to this only quantity.

In this chapter, the RGNO is employed to study the effect of charge disorder on
Kondo correlations in the IRLM. The IRLM is chosen for convenience of implementation
and because disorder in this model was not studied in the literature until now. We
will also consider the disordered SIAM as an outlook in the end of this chapter. This
study also serves as a testbed for the effectiveness of RGNO, which will prove to be
suitable for this type of problem. Contrary to charge disorder in the Kondo model, where
correlations spread in further space, due to the depletion of the DOS, charge disorder in
the IRLM is expected to shorten correlations. Natural orbitals are then expected to be
more localized around Wannier ones, which would help the convergence of the algorithm.
The distribution of Kondo temperatures will be presented, in addition to relevant non-
local observables that will help to better understand the physics involved.
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5.1 Statistics on disordered quantum imputities
The charge disorder is added to the real space IRLM with uniform hopping along the
chain t = D/2 as a random onsite potential vi. The Hamiltonian reads:

Hdis = HIRLM +
N−1∑
i=0

vi c
†
ici , (5.1)

and no potential is added on the impurity level i = −1 that would polarize it trivially. On
each site of the chain, the local potential vi is uniformly distributed in the interval [−v, v].
These terms explicitely break PH symmetry, and the average onsite charge ⟨c†

ici⟩ deviates
randomly from 1/2. The weak symmetry breaking by the ansatz is thus irrelevant in this
context and does not affect the results. This charge potential are equivalent to random
uniaxial magnetic disorder in the Kondo model that has not been studied yet, as it is not
as common as charge disorder that is inherent to experimental samples.

In the following, the parameters of the Hamiltonian for each disorder realization are
chosen to be: U = −0.5, t = 0.5, V = 0.15, M = 6 and N = 103 sites. Various disorder
strengths v will be considered to explore the effect of stronger (or weaker) perturbations.
As correlations are expected to become shorter with the presence of disorder, N = 103

sites are enough for correlations to develop, the clean Kondo scale being LK ≃ 3 × 102.
The statistics are performed (for each set of parameters) for 104 realizations of the disor-
der, which provides smooth distribution functions.

The convergence of a state with M = 6 correlated orbitals has been checked by re-
peated simulations with increasing M for random realizations of the disorder, and M = 6
has proven to give well converged screening clouds and TK (the usual convergence cri-
terions are the ground state energy and the variance) in every case. For each run, the
flow of the ground state energy and of a relevant observable (in this case the expectation
value ⟨d†d⟩ through which TK is computed) is followed and sweeps are stopped when both
observables saturate. The variance saturates similarly to the ground state energy and will
not be computed for evident computational cost reasons (see the section concerning the
variance in appendix D).

While most of the disorder realizations were easily converged by the RGNO (between
a few sweeps and few tens of sweeps), some rare realizations (some tens out of the 104

realizations, corresponding to few permille) led to convergence issues after more than hun-
dreds of sweeps. These problems of convergence arise with disorder when the energetic
landscape is not smooth anymore, and local minima can be accidentally close to the true
global ground state. Hence, the iterative process can be stuck in one of these minima
and give a wrong result. This effect is clearly seen in some observables: for instance, it
happened that ⟨d†d⟩ converged to some value for the first tens of sweeps, then jumped
to another one, went back to the first value etc. This indicates that the picture of local
minima is at play. To circumvent this issue, a solution was found: if a potential ϵd is
added at the begining of the flow (positive and negative) and quenched along the sweeps
(or through several restarts of the algorithm), the algorithm starts with a better guess and
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manage to find its way (both signs are explored, and the ground state energy is compared
to see which solution is better) to the actual ground state. However, as problematic runs
can not be guessed a priori (no special pattern in the disorder has been isolated to be
particularly difficult), the procedure should be applied to each run and would slow down
non-problematic simulations. As these rare realizations were not representative of a spe-
cific part of the results (neither only large or small TK for instance) they were discarded
in the final results.

5.2 Distribution of Kondo temperatures
The fate of Kondo temperatures is firstly examinated as it is the principal scale in clean
systems. The distribution of TK is not supposed to be Gaussian, the distribution is there-
fore studied as a whole instead of the first few moments. The results found in previous
studies presented in chapter 2 concerning the disordered Kondo model are briefly recalled
here. When the disorder strength is small, the distribution follows a log-normal law, cen-
tered around the clean TK with logarithmic tails at lower TK. As the disorder becomes
stronger, the tails become bigger and bigger and a larger fraction of local moments is
unscreened. The mechanism behind these remanent magnetic moment is the disorder-
induced depletion of the density of states of the bath around the Fermi level, which
prevents any state to couple to the impurity (whose chemical potential is at resonnance
with the Fermi level of the bath) and thus to compensate the local spin.

Figure 5.1: Distribution of Kondo temperatures of the disordered IRLM for U = −0.5,
V = 0.15, N = 103 sites and three different disorder strengths v. Kondo temperatures
are normalized by the clean value T 0

K ≃ 3 × 10−3. At strong disorder, the distribution
is peaked at high values of TK with logarithmic tails to T 0

K. A bimodal distribution is
observed at weaker disorder, showing the robustness to disorder of a part of realizations.

For the disordered IRLM, the distribution of Kondo temperatures for various disorder
strengths v is plotted in Fig. 5.1, and the phenomenon appears to be different from the
spinful case. Kondo temperatures are still computed as the inverse of the local suscepti-
bility of the impurity level (see Eq. (2.20)), such that two RGNO runs are necessary for
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each disorder realization. As expected when the disorder is strong enough, correlations
spread less far than in the clean system, and Kondo temperatures drastically increase
compared to the clean T 0

K. Logarithmic tails are also reported for TK → T 0
K as in the

spinful problem, that seems inherent to Kondo systems. For smaller disorder strengths
(but finite, v → 0 becomes trivial again and the effect of disorder is not relevant), the
distribution is bimodal: most of the realizations see their TK increase as expected, but
another significant part of the realizations keep a TK close to the clean T 0

K.

For the runs with TK ≫ T 0
K, the mechanism is the following: local charges along the

chain are driven away from their clean expectation value ⟨c†
ici⟩ = 1/2. Thus, the impurity

is polarized by a strong Hartree shift coming from its Coulomb coupling with the first
site of the chain U(⟨c†

0c0⟩ − 1/2)d†d ̸= 0. Insights can be drawn from the non-interacting
problem: in Fig. 2.1, the susceptibility of the impurity level (that is the slope of the
curve of the occupancy) is smaller when the impurity is almost full or empty (nd ≃ 1, 0)
which yields higher TK. In addition, disorder induces random fluctuations in the density
of states that may become highly asymmetric, which also polarizes the impurity through
Eq. (2.14). Although these explanations are the most favorable to happen and clarify
the part of TK ≫ T 0

K, the picture is missing for the remaining TK ≃ T 0
K. We may argue

that accidental realizations have only a small potential shift on the first site, and that the
density of states remains mostly symmetric, but the question concerns more the quantity
of realizations close to the clean case. To learn more from the effect of disorder on this
system, the individual screening clouds are studied now.

5.3 Effect of disorder on spatial correlations

5.3.1 Screening clouds
Each screening cloud is computed through the correlator (2.23) as in the clean case.
Showing every sample would be impossible, and the averaged screening cloud would be
meaningless, so that three typical screening clouds are plotted in Fig. 5.2 to be com-
pared to the clean one. These clouds are representative respectively of runs with large
Kondo temperatures TK ≫ T 0

K, of almost unchanged TK ≃ T 0
K and of an intermediate

situation between the two, for v = 0.3D. From the 100 and 1000 fold enhancement of
TK between the different disorder realizations, these three clouds are expected to vanish
clearly at different spatial scales, following the relations used in clean systems TK ≃ 1/LK.

However, what is seen in the figure is totally different: each observable has a similar
shape and its spatial extent seems not radically affected by disorder despite the large local
fluctuations. It was verified for more than these three samples that regardless of the TK,
the correlation length LK is not reduced in proportion to the inverse of the enhancement of
TK. The definition of the Kondo temperature related to the local susceptibility TK = 1/4χ
is hence no more related to the spatial extent of correlations into the bath, and only to
the local dynamics of the impurity level.
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Figure 5.2: Spatial correlator |Ci| for i ≥ 0 for the same parameters as Fig. 5.1 with
v = 0.3. Top and bottom panel shows separately even and odd sites respectively for
readability. Three different realizations corresponding to different values of TK are shown,
to be compared to the clean correlator represented by black crosses. The even/odd oscil-
lations are not surviving as in the clean case, but the shape of the cloud (and the decay
length of correlations) is not as much affected as the corresponding TK.

5.3.2 Cloud amplitude
The effect of disorder is in fact stronger on the amplitude of the cloud. At a same site i, the
different realizations give different orders of magnitude for the cloud |Ci|: a quantitative
measure of this decrease is the summed total amplitude of the cloud without the impurity
level, that would otherwise always return 0 due to the sum rule (2.24). As usual, the
Toulouse point U = 0 is firsly investigated to build intuition (it is recalled that TK ̸= 0
in the non-interacting case). In this case, the ground state is a single Slater determinant
such that Wick’s theorem can be used to simplify Eq. (2.23):

Ci≥0 = −|⟨c†
ici⟩| < 0, (5.2)

while C−1 = ⟨n̂−1⟩ − ⟨n̂−1⟩2 > 0 (with n̂−1 = d†d the occupancy operator such that
⟨n−1⟩ = nd). The last equation is valid at any U since 0 < ⟨n̂−1⟩ < 1, and is equal to 1/4
at PH symmetry, and to 0 if the impurity is completely polarized. The sum rule (2.24) is
used to derive the total cloud amplitude in the chain:

N−1∑
i=0

|Ci| = 2
(
⟨n̂−1⟩ − ⟨n̂−1⟩2

)
= 2nd (1 − nd). (5.3)
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The cloud amplitude is then totally controlled (for U = 0) by local properties on the
impurity, that is directly linked to the Kondo temperature as we define it. Eq. (5.3) is
exact if every correlator Ci≥0 remains negative even for U ̸= 0. In Fig. 5.3, this sum is
computed at finite U for every realization of the disorder against the corresponding occu-
pancy of the d-level to see how it deviates from the exact relation Eq. (5.3). For most of
the samples, the statement stays true, and as nd goes to 1/2

(
nd (1−nd) → 1/4

)
becomes

less precise. These realizations, corresponding to TK ≃ T 0
K have indeed several positive

correlators (aligned with the impurity), but the deviation stays small. Therefore, for all
realizations of disorder, the global cloud amplitude is controlled (or mostly controlled)
by the local occupancy of the dot, which may be counter-intuitive at first sight. As U is
getting exponentially closer to Uc, more and more correlators are expected to be aligned
with the impurity, such that the picture of the occupancy controlling the cloud breaks
down at U = Uc + 0+, but it remains correct for more physical regimes as the one studied
here.

Figure 5.3: Summed amplitudes of the absolute value of the correlator Ci deprived from
the impurity site, against the folded occupancy of the impurity. The sum is sampled for
the 104 realizations with the same parameters as Fig. 5.2. The dashed line corresponds
to 2nd(1 − nd), that is shown in Eq. (5.3) to be the exact result for U = 0. While the
match is perfect when the impurity is polarized, small deviations to the non-interacting
result appear as nd → 1/2.

5.3.3 Spatial dispersion of natural orbitals
Correlations can also be investigated through the spatial profile of NOs. In the clean case,
it was shown in Fig. 3.8 that the spatial dispersion of the most correlated NOs are highly
sensible to correlations in the system. The amplitude of the orthogonal matrix defining
the most correlated NO Di1 (and similarly its PH conjugate Di−1) resolve the relevant
scales by an enhancement of its weight around i ∼ LK. For the disordered problem, the
spatial dispersion of the most correlated NO |Di1| is plotted in Fig. 5.4 for two realizations
of disorder, one with TK ≃ T 0

K and another with TK ≫ T 0
K. The absolute value is plotted
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to avoid irrelevant sign changes, and is prefered to the square that crushes the lowest val-
ues to zero, for readibility. In the first case (unchanged TK), correlations survive almost
until LK ∼ 1/TK, but strong fluctuations are observed compared to the clean curve. In
the opposite situation (increased TK), the second curve has all its weight concentrated on
the first ten or twenty sites, but this is still a larger range than 1/TK, that corresponds
to the first few sites only.

Figure 5.4: Spatial dispersion of the most correlated NO for the same parameters as
Fig. 5.2. The results for two different realizations of the disorder leading to a small and a
large TK are plotted, and the additional black curve corresponds to the NO in the clean
system. The spatial extent of the NO with a large TK is much shorter than the other:
compared to the screening clouds, the spatial extent of NOs are more sensitive to the
spatial scale defined by 1/TK.

To conclude this study concerning spatial correlations, local properties (nd, TK) and
global ones (the screening cloud) were shown to be not as closely related as in the clean
system, but remanent effects are however seen in some observables (spatial amplitude
of the most correlated NO Di1, total amplitude of the cloud). Hence, the single scale
TK is insufficient to provide an exhaustive picture of Kondo correlation in dirty samples,
and the support of additional observables are required for this purpose. The observables
presented in this section confirm the existence of rare realizations in which correlations
are partially robust to disorder, and that the relevant quantity controlling this effect is the
occupancy of the dot nd. This quantity will be now investigated in order to understand
more deeply the bimodal structure of the distribution of Kondo temperatures.

5.4 Local charge distribution
Similarly to screening cloud or the Kondo temperature, the average charge on the impu-
rity level nd = ⟨n̂d⟩ is extracted from each simulation. In the last section, it was shown
that the charge of the impurity was closely related to the global amplitude of the corre-
lation cloud. It was also shown that the bigger the global amplitude of the cloud, the
lower the effective TK. In the top left panel of Fig. 5.5, the Kondo temperature of each
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(a) (b)

(c) (d)

Figure 5.5: (a) Kondo temperature against the impurity occupancy nd for every 104

samples. The two variables are clearly correlated when the impurity is more polarized,
corresponding to large values of TK. When the impurity occupancy is close to 1/2, the
dispersion is wider, but it is clear that these realizations correspond to those holding a
low TK. (b) Distribution of the occupancy of the d-level in the same conditions as (a),
in log scale. A plateau is observed around nd ≃ 1/2, which is responsible for the bimodal
distribution of Kondo temperatures. (c) Same plot as (a) yet with the folded occupancy
nd(1 − nd) of each disorder realization, which shows the correlation between the two
observables clearer. (d) Distribution of folded occupancies. A peak around 1/4 appears
due to the folding of nd. It is hence expected that Kondo temperatures are functions of
the folded occupancy, the values around 0 and 1 corresponding to the same information
about correlations.

system is plotted against the corresponding occupancy of the impurity nd The result is
as expected: the two quantities are correlated, and the closer is nd to 1/2, the lower is
the TK. For nd close to 0 and 1, the TK are larger since the impurity is polarized. The
Kondo temperatures are plotted against the folded occupancy nd(1 − nd) are plotted in
the bottom left panel of this figure: the information of nd ≃ 0, 1 is thus concentrated
around 0. In the top right panel of the same figure, the distribution of the occupancy
of the impurity is plotted. A plateau is observed around nd ≃ 1/2 (although nd = 1/2
never happens, and corresponds to the strict PH symmetry), and two peaks around 0
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and 1. As for the previous plot, the distribution of the folded occupancies is plotted
in the bottom right panel, in log-log scale for a good resolution around 0. Indeed, the
impurity folded occupancy goes exponentially close to 0 (up to 10−2) with a bell shaped
curve centered around ≃ 6×10−2. The second peak seen around 1/4 appears only because
the variable has been folded and the graph is in log-scale, the bins being larger around 1/4.

Nevertheless, even if the peak in the folded occupancy distribution is artificial, the
plateau in the unfolded histogram is the one responsible for the bimodal structure of the
distribution of Kondo temperatures. Indeed, the dispersion shown in the left panel has
a finite width, and small TK appears for 0.25 ≲ nd ≲ 0.75, so that the accumulation of
all realizations in this interval participate to low TK almost similarly. The naive picture
would have been a peak around 0 (two peaks around 0 and 1 in the unfolded picture),
and tails vanishing to 1/4 (to 1/2) without the plateau, that would not lead to a bimodal
structure of TK. The effect of the occupancy of the impurity on long ranged correlations
is even stronger in the non-interacting problem where Eq. (5.3) is always exact. The
free disordered problem still contains Kondo correlations (it corresponds to the Toulouse
point of the Kondo model at finite J), and will be investigated in the following section.

5.5 Localization length: one-body perspective
The effect of disorder on correlation properties is usually associated to strong localization
effects. It was firstly investigated by Anderson in the seminal paper concerning the now
called Anderson localization [154], which predicted an exponential localization of wave
functions preventing transport for certain conditions of the disorder. The diffusion pro-
cesses can occur in different channel of transport, and each of these are associated to
a localization length, which corresponds to the spatial scale at which wave functions of
electrons can spread as the system evolves (t → ∞). These properties are associated
to non-interacting systems with short range hopping and have been extensively studied
in the past decades, and the reader can refer to the following references for a review
[122, 155–157].

For the scope of this study, only the localization length of the system for each realiza-
tion of the disorder is looked for. Indeed, the results obtained above may be explained by
localization properties of electrons inside the reservoir, that could take the lead over the
Kondo effect. To compute the localization length of the interacting system, the scattering
matrix must be known. However, computing this matrix in NRG with the disorder is a
tough task, and for the RGNO an implementation of dynamical properties is required.
Hence, the Toulouse point U = 0 will be investigated in this case, and the corresponding
results will be confronted to the ones in the interacting and non-interacting cases, which
also holds Kondo correlations.

As a start, the principal results of the study in the interacting problem are reproduced
for the non-interacting case. In the left panel of Fig. 5.6, the distribution of Kondo tem-
peratures is plotted for four disorder strengths v. The main differences compared to the
interacting case are the stronger disorder required to polarize the impurity, and the larger
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(a) (b)

Figure 5.6: (a) Distribution of Kondo temperatures for the disordered non-interacting
RLM for four disorder strengths v, with V = 0.15, t = 0.5 and N = 103 sites. With these
parameters, the clean Kondo length is T 0

K = 3×10−2, which is 10 times larger than for the
interacting problem at U = −0.5. (b) Kondo temperatures for each disorder realization
against the corresponding folded occupancy of the impurity nd.

amount of impurities showing a TK ≃ T 0
K. Indeed, the Kondo temperature in the clean

free case is TK ≃ 3 × 10−2, which is 10 times larger than for U = −0.5. This is inversely
proportional to the susceptibility of the local charge to external fields, which makes it
more robust to perturbations. Apart from these quantitative discrepancies, the behavior
in the clean case is qualitatively similar to the one in interaction: the impurity is more
and more polarized as the disorder increases, and less and less realizations keep a small
TK. However, bimodality is not seen at U = 0 for these strengths of disorder. In the right
panel of Fig. 5.6, it is confirmed that the occupation of the impurity is directly related to
Kondo temperatures.

The effect of disorder-induced localization is now investigated through the localization
length, which can be obtained with the help of transfer matrices in the case of quadratic
Hamiltonians. Transfer matrices are used to describe the scattering processes across
multiple impurities, that will be modeled in our problem by the random onsite potential
along the tight-binding chain that contains only one channel. The discretized stationnary
Schrödinger equation can be written in the basis of Wannier orbitals |n⟩ as:(
V (| − 1⟩⟨0| + |0⟩⟨−1|) +

N−1∑
n=0

vn|n⟩⟨n| + t (|n⟩⟨n+ 1| + |n+ 1⟩⟨n|)
)

|Ψ⟩ = E|Ψ⟩. (5.4)

An eigenvector of the Hamiltonian can be decomposed on Wannier orbitals as |Ψ⟩ =∑
n Ψn|n⟩, such that projecting Eq. (5.4) on any site |n⟩ yield the following recursion

relation:
Ψn+1 = E − vn

t
Ψn − Ψn−1, (5.5)

and by inserting the trivial identity Ψn = Ψn, the recursion relation can be written in a
vectorial form: (

Ψn+1
Ψn

)
=
(

E−vn

t
−1

1 0

)(
Ψn

Ψn−1

)
= Tn

(
Ψn

Ψn−1

)
. (5.6)
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(a) (b)

Figure 5.7: (a) Kondo temperatures of the interacting problem (U = −0.5) against the
localization length computed for the free problem, with the same disorder realization. (b)
Same figure as (a) but for the Kondo temperatures of the free problem.

The transfer matrix Tn has been introduced to link an element of an eigenvector to the
next one. The total scattering matrix, that is related to the global localization properties
of the system, is defined as the product of each transfer matrix S = ∏N−1

n=−1 Tn. This
quantity can be scaled by a characteristic lengthscale appearing through the exponential
of ln(S) (details can be found in Ref. [157]):

S = e−Na/ξloc , (5.7)

with a = 1 the lattice spacing, and the introduced lengthscale corresponds to the correla-
tion length defined as ξloc = −N/∑N−1

n=−1 ln(Tn). A similar expression can be derived less
phenomenologically with the Lyapunov exponents of the system (linked to the matrix S)
[158]. Each transfer matrix Tn is simplectic, such that their product S stays simplectic,
which imposes for eigenvalues of S to come in pair (s, s−1). Hence, Eq. (5.7) reveals one
ξloc and its inverse ξ−1

loc , corresponding to short and long range decay length. In the fol-
lowing, the scale ξloc that interests us is defined through the minimum eigenvalue smin of
S as ξloc = |N/ln(smin)|.

In the left and right panels of Fig. 5.7, the Kondo temperatures of the interacting and
non-interacting problems are respectively plotted against the localization length, calcu-
lated for the corresponding realizations in the free problem for both cases. In both cases,
the disorder strengh is v = 0.3 , such that the localization length is comparable to the
clean Kondo scale LK. What is however interesting besides the absolute value of ξloc is
that for both cases, ξloc is not correlated to the corresponding Kondo temperature TK.
The comparison at U = −0.5 is delicate, since the interaction may change the localization
properties of the free problem. Nevertheless, the results at U = 0 confirm that localiza-
tion effects of the wave function can not explain the delocalization of correlations in the
system, if the disorder is not infinitely strong.

To summarize, the presence of disorder in the non-interacting bath of electrons renor-
malizes the Kondo temperature of the corresponding impurity, but correlations between
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the localized moment and the bath preserve their spatial structure, with however a de-
creasing amplitude as the disorder increases. The distribution of Kondo temperatures is
bimodal for intermediate values of v, which has been related to the folded occupation of
the impurity level nd(1 − nd), whose distribution shows the same bimodality. The same
results holds for the non-interacting problem, that is the Toulouse point of the Kondo
problem for which J > 0. In the subsequent chapter, a simpler model of random matrices
is analyzed and both numerical and analytical results are presented in different regimes.

5.6 Charge and spin disorder in the SIAM
To end this chapter, we present preliminary results concerning correlations around a spin-
ful impurity surrounded by a disordered bath, modeled by the SIAM with either charge
or spin disorder. The SIAM has been simulated with the RGNO in the same fashion as
the IRLM, with the additional conservation of the total spin. With such an implemen-
tation, the orbitals of the uncorrelated sector are added four by four into the correlated
space, corresponding to the spin up and spin down pair of PH-conjugated orbitals. The
number of orbitals in the correlated sector is also required to be a multiple of four for
the symmetries. The convergence is similar to the one of the IRLM, but with enlarged
correlated sectors as spin comes into play. However, the additional spin symmetry reduces
the amount of available states in a given sector, such that correlated spaces containing as
much as 16 or 20 orbitals can be treated.

In order to unify the literature concerning charge disorder in the Kondo model and our
study focusing on the charge disorder in the IRLM (which is equivalent to spin disorder
in the Kondo model, in the scaling limit), the SIAM is the perfect object of study as both
of these situations can be explored, when the Schrieffer-Wolff transformation presented in
sec. 1.3.3 is valid. The clean Hamiltonian HSIAM is defined as in Eq. (3.11), with uniform
hoppings along the chain ti = t. The spin and charge disordered models are then defined
by the following Hamiltonians:

Hσ = HSIAM +
N−1∑
i=0

vi

(
c†

i↑ci↑ − c†
i↓ci↓

)
,

Hρ = HSIAM +
N−1∑
i=0

vi

(
c†

i↑ci↑ + c†
i↓ci↓

)
,

(5.8)

with vi defined as in Eq. (5.1). The parameters chosen for this study are V =
√

2DΓ/π,
with Γ = 10−1D, t = D/2 and U = 9Γ, in such a way that the Kondo temperature of
the clean system is T 0

K ≃ 3 × 10−3D, which ensures the scaling limit to be reached and
the Kondo length to fit in the system (N = 103 sites). As before, every energy is written
in units of the half bandwidth D = 1 that will be omitted in the following. For each
realization of the disorder, the effective Kondo temperature is computed as the inverse of
the local spin susceptibility:

TK = 1
4χ, with χ = ∂⟨sz⟩

∂Bz

∣∣∣∣∣
Bz=0

, (5.9)

80



CHAPTER 5. RGNO STUDY OF SCREENING CLOUDS IN DISORDERED
ENVIRONMENTS

where sz = nd↑ − nd↓ is the local impurity moment and Bz is a magnetic field on the
impurity, which acts as Bzsz in the Hamiltonian. In Fig. 5.8, the distribution of Kondo
temperatures for spin (left panel) and charge (right panel) disorder are plotted, for a
strong disorder v = 0.5, as in the study concerning the IRLM. With the chosen param-
eters, the localization length is expected to be of the order of the Kondo length, so that
strong effects on correlations are expected.

(a) (b)

Figure 5.8: (a) Distribution of the Kondo temperatures of the SIAM with spin disorder
Hσ, for v = 0.5D, N = 103 sites and 104 realizations of the disorder. This distribution
is similar to ones of the disordered IRLM presented in Fig. 5.1. (b) Distribution of the
Kondo temperatures of the SIAM with charge disorder Hρ for the same parameters. This
distribution is to compared to the one in Fig. 2.8, calculated in Ref. [104]. The trimodal
structure was not predicted in previous studies.

In the left panel, corresponding to the SIAM with spin disorder, the distribution
of Kondo temperatures exhibits a bimodal structure similar to the one observed in the
IRLM. This result is expected as these two models not only share the same non-interacting
limit, within which the bimodal structure is still present, but are also equivalent in the
strongly correlated regime (U ≫ Γ for the SIAM and U ≥ Uc for the IRLM). The first
peak at TK ≃ 10T 0

K corresponds to the part of impurities whose correlations are only
slightly affected by the disorder, and the second peak at TK ≃ 102 T 0

K corresponds to
charge-polarized impurities, whose dynamics are almost frozen. In the right panel, the
charge-disordered case is plotted for the same large disorder v = D/2. In this setup, a
trimodal distribution is observed, with the same two peaks as in the spin-disordered case,
and an additional sharper peak for TK ≃ 10−4 T 0

K.

In Refs. [102–105], the study of the Kondo model did not allow charge fluctuations (nd

is fixed to one), such that charge-frozen configurations with TK ≫ T 0
K are not captured

in theses studies, but they observed the same two other peaks that were explained by the
fluctuations of the DOS near the Fermi energy. Above a given disorder strength, beyond
the logarithmic decay and the peak at low TK ≪ T 0

K, these studies predict a non-negligible
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Figure 5.9: Averaged DOS of the first site of the chain isolated from the impurity (V = 0).
The two curves are associated to averages over different specific realizations of the disorder,
related either to the full system where TK ≪ T 0

K (unscreened moments) or TK ≃ T 0
K

(unaffected moments).

part of totally unscreened impurities, with TK = 0. The disorder in the situation pre-
sented here is strong enough to observe such a feature, and it is believed that the peak at
low TK is an artifact and corresponds to these unscreened moments. Indeed, the position
of the lowest peak is stuck to the magnetic field Bz, meaning that the magnetic moment
is of order one for these realizations.

To confirm this statement, the density of states of the bath is further investigated.
The screening mechanism is mediated by states of the bath coupled to the impurity, on
an energy scale of order TK. If no states is available in this energy scale around the Fermi
energy of the electronic bath (ϵ = 0 here), the screening can not occur properly and the
magnetic moment is not quenched. Let γα = ∑N−1

i=0 Pαici be an eigenstate of the bath
without the impurity with an energy Eα , the local density of states of the first site of the
chain (the one that is tunnel coupled to the impurity in the full problem) is defined as:

ρ(ϵ) =
N∑

α=1
|Pα,0|2 δ (ϵ− Eα) , (5.10)

and each delta distribution is enlarged by a Lorentzian function, whose width is equivalent
to the level spacing, to obtain a smooth function. In Fig. 5.9, this quantity is averaged for
specific realizations of the disorder: a first average is done for disorders associated to the
unscreened moments with TK ≪ T 0

K, and another for unaffected moments with TK ≃ T 0
K.

The averaged DOS for unscreened moment exhibits a dip around ϵ ≃ 0, while it remains
large for unaffected moments, confirming the picture explained above.

In Ref. [106], the distribution of Kondo temperatures were investigated in the SIAM
for different number of channels Nch, and we discuss only the case Nch = 1 corresponding
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to our model. On the contrary to the other study, a part of unscreened moment is not
predicted in Ref. [106] , but do not observe either the three peaks structure that is found
here. Their study is based on the relation between TK and the distribution of effective
width of the level Γ for each realization, and computing the moments of the distribution,
they found badly behaved distribution for small number of channels, noticing that their
result may be accurate for Nch ≥ 10.

To conclude, the distribution of Kondo temperatures may be more complicated than
previously predicted, and the presence of a significant part of unscreened impurities is
confirmed by our study, related to a disorder-induced depletion of the density of states
of the bath about the Fermi level. The distribution is found to be trimodal, with one
mode near the bare T 0

K, a second mode at TK ≫ T 0
K reflecting the fluctuations of the

charge, and an additional dominant mode at exponentially smaller TK accounting for the
depletion of the DOS near the Fermi energy. However, this study is not complete and the
mechanism behind each situations must be further investigated, by varying the disorder,
the interaction strength U etc. As the RGNO simulates systems with a finite size N , it
should be carefuly checked that these observations are not due to finite size effects and
stay valid in the thermodynamic limit.
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6 Random matrix impurity model

6.1 Motivations
The previous chapter was devoted to the full many-body description of correlations in a
disordered host surrounding an impurity. The correlation properties, that can be quanti-
fied through the given Kondo temperature, revealed to be mostly related to local quan-
tities, especially the occupation of the impurity level. This can be understood because
the non-triviality of the problem comes from the dynamic of the d-level, which becomes
frozen if the impurity is fully occupied or empty. To understand the bimodality of the
distribution of TK induced by the plateau in P (nd) around nd = 1/2 in the IRLM, the free
problem U = 0 is further investigated in this chapter. The importance of local properties
suggests that the microscopic details of the disordered environment may not be crucial,
and that underlying mechanisms could be qualitatively explained by a simpler model,
into which the bath part is defined randomly. Numerical and analytical results are both
presented in this chapter, and connections with the microscopic model presented in the
previous chapter appear through the distribution function P (nd).

The benefit of considering a totally random one-body part for the Hamiltonian is the
access to the machinery of the random matrix theory, which contains known analytical
formulations. The theory concerning random matrices was introduced in the context of
nuclear physics in the last century to analyse the structure of excited states of heavy nu-
clei, that was too complex to describe microscopically [159–161]. However, this complexity
was on the contrary a boon: they are statistical in nature, and only averaged properties
need to be explained. On the contrary to statistical mechanics, which assumes that all
states of a large ensemble are equally probable, random matrix theory describes systems
whose nature (its hamiltonian) is unknown, not its states. This means in other words
that every mechanism of interaction, scattering, potential, etc. is equally probable [162].
The accuracy of this description led to the development of theories concerning eigenvalues
and eigenvectors of matrices with random entries [162–165], that found applications in a
context much wider than nuclear resonances, from biology [166] to finance [167]. For gen-
eral reviews concerning random matrix theory, and its applications to condensed matter
physics, the reader can refer to Refs. [122, 168, 169].

However, models of disordered quantum impurities were not as extensively studied
with random matrices as the rest. Studies have been mostly focused on the distribution
of Kondo temperatures [106, 114, 170], which is the relevant scale at low temperatures,
and can be related to the distribution of certain physical quantities of interest. These
studies were based on scaling arguments for the Kondo temperature, and the wave func-
tions, for instance, are out of the scope of such methods. A later work concerning the
mesoscopic Anderson impurity problem [123] used RMT beyond the distribution of TK,
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and calculated the joint distribution of eigenvalues of the problem with and without the
magnetic impurity. A simple toy model based on these result was proposed, that pro-
vides simple expression for spectral correlations in the impurity model. Nevertheless, only
spectral properties were analyzed, and properties related to the eigenstates remained un-
known for the full problem at any coupling between the lead and the impurity. In another
context, a model similar to the one that we will discuss hereafter was studied to describe
Mie scattering of light by large large grains [171, 172].

The study that is proposed in this chapter aims to unify the RMT description of spec-
trum and states, with the calculation of the joint probability of energies and eigenstates
amplitude of the full impurity problem, in the non-interacting limit. The non-interacting
limit can be extended as usual at a mean field level, renormalizing the parameters of
the free Hamiltonian. The model is first of all introduced in its different regimes with
several numerical results, which are related to the results of chapter 5. Then, we analyse
a simplified two-sites model which reproduce at least qualitatively, and in some limits
quantitatively, the occupancy distribution of the impurity P (nd), with which analytical
results can be easily calculated. This limit is nevertheless too simplified to capture every
property, what leads us to the development of the joint probability density function (PDF)
of energies and eigenstate amplitudes of the full problem, which contains information to
compute any averaged quantity. We will end this chapter with large-N calculations of
some quantities, starting from the PDF previously built.

6.2 Random matrix resonant level model
As was introduced above, the model that we are going to study here needs to capture
the local effects on an impurity coupled to a disordered media, that is modeled by a bath
whose properties are totally unknown: the one-body part of the Hamiltonian concerning
the bath is a matrix with gaussian random entries, provided that it is hermitian. This
Hamiltonian reads:

Ĥimp = ϵdd
†d+ V

(
d†c1 + H.c.

)
+

N∑
i,j=1

Gijc
†
icj, (6.1)

where ϵd is the chemical potential of the impurity level, V the tunneling rate to a single
site of the bath, and Ĝ a hermitian matrix with as entries independent random variables
following a centered Gaussian distribution:

P
(
Gij

)
= 1√

2πσ
exp

(
− 1

2σ2G
2
ij

)
, (6.2)

with variance σ. This model has hence two energy scales, σ that mimics the strength of
the disorder, and V for the tunneling rate between the impurity and the bath. Note that
the impurity level is totally deterministic, and this will be important in the limit we are
interested in: if disorder is added on the impurity, the limit V/σ → 0 does not exist as V
would be dominated by σ on the impurity. The model would become equivalent to the
free problem, and no significant effect would be expected in this limit.
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Concerning the matrix Ĝ, that corresponds to the free problem (to be compared to
the perturbed problem, represented by Ĥimp), it is known that its eigenvalues e are, for N
large enough, distributed according to the so-called Wigner’s semi-circle law [168]:

W (e) =


1
2πσ2

√
2Nσ2 − e2, |e| <

√
2Nσ,

0, |e| >
√

2Nσ.
(6.3)

With this definition, the integral of W on the real axis is equal to the number of states
N , and one may normalize W to work with PDF. For the perturbed Hamiltonian, the
PDF of the density of energies E was calculated in Ref. [171]. They consider a model
with m Mie scatterers, and the particular case m = 1 corresponds to Eq. (6.1). They use
the heavy formalism for large-N calculations in RMT [173–175] (Hubbard-Stratonovich
transformation, supersymmetric formalism, steepest descent) that allows to find spectral
properties. The averaged density of level reads:

ρ(E) = 1
N + 1

(
W (E) + 1

N

W (0)Γ/π
E2 + (W (0)Γ)2

)
, (6.4)

which is the distribution of the free problem with an additional level, that is distributed
according Lorentzian of width W (0)Γ, with Γ = V 2/σ2. It is clear that in this situation,
the effect of the impurity is of order 1/N on the bath, which is explicitely revealed by this
distribution function.

It is recalled that the quantity that needs to be calculated to compare to the micro-
scopic impurity model is P (nd), a quantity that involves both the energies and the wave
function, which is not given by previous studies. Hence, exact numerical results are first
investigated, to clearly understand the different situations that occur when we vary the
ratio V/σ. The regimes that will be analyzed are the following: V/σ < δe, where δe
is the spacing between the first negative and the first positive level of the free problem;
V/σ ∝

√
N , where the impurity is well diluted in the bath provided that V 2 < 2Nσ2,

and V >∝
√

2Nσ, when bound states begin to be exist out of the band. In each of these
situations, Fig. 6.1 reports the corresponding averaged distribution of energy levels and
of the occupation of the localized state, defined for each realization of the random matrix
as:

nd = ⟨d†d⟩ =
∑

Eα<0
zα =

∑
Eα<0

|ψd(α)|2, (6.5)

where zα is the squared amplitude of the eigenstate of energy Eα on the impurity level.
Unless otherwise stated, the parameters taken for the numerical simulations in the fol-
lowing are σ =

√
2 and N = 300.

6.2.1 Weak coupling regime: V/σ ∼ 1/
√

2N
This regime corresponds to the weak coupling limit V/σ → 0. When V/σ = 0+, the
impurity is very slightly coupled to its environment, and their mutual effect is small: the
amplitude of the wave function on the impurity is close to one (zα ≃ 1), and the density of
eigenvalues of the bath is the free one. The energy level fluctuates slightly around ϵd = 0
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Figure 6.1: Top panels: Density of energy levels for three different values of the ratio
V/σ corresponding to three different regimes of the problem, for N = 300 (2992 ran-
dom variables). From left to right: weak coupling regime, diluted regime, bound states
regime. The semi-circle law corresponding to the free problem is plotted for comparison.
Lower panels: Distribution of the occupation of the impurity level nd in the same three
situations.

in a range V 2. In this extreme limit, the impurity is polarized, and nd is always close
to 0 or 1, depending on the sign of the energy level that is the closest to the Fermi level
E0 = min

α
(|Eα|), since chosing ϵd = 0 allows sign changes for E0.

In the left top and bottom panels of Fig. 6.1, the averaged energy density and the
distribution P (nd) are plotted, for V = 0.5σ/

√
2N . The bath states remains the ones of

the free problem, given by the semi-circle, and the additional state lies at E ≃ 0, whose
structure is well described by the Lorentzian of Eq. (6.4) in Fig. 6.2.

The corresponding P (nd) has two distinct effects: The two peaks around 0 and 1 cor-
respond to an isolated impurity with respectively a negative or positive energy E0, and
the plateau linking the two peaks, corresponding to realizations into which the impurity
starts to be diluted in the bath, and some zα are of the same order that z0. If V/σ is
decreased, the plateau becomes smaller and smaller up to the limit V = 0+.
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This regime describes the same P (nd) as the one that is seen in the microscopic study
of chapter 5: the plateau in P (nd) corresponds to the crossover between the weak coupling
V/σ ≪ 1 and the strong coupling limit V/σ ≫ 1, and as the disorder increases at fixed
V , the impurity can only be polarized as it is can not couple to any states of the bath.

Figure 6.2: Distribution of the closest energy level to the Fermi energy for N = 300 and
V/σ = 0.5/

√
N . This level has the largest weight on the impurity for this value of V/σ,

and its distribution is compared to the expected Lorentzian function of width Γ = V 2.

6.2.2 Diluted regime: V/σ <
√

2N
As V/σ increases from the previous situation, there a smooth crossover to what is called
here the diluted limit, which is the begining of the strong coupling limit. The impurity
couples to more and more states, and the amplitude of eigenstates are diluted into more
and more zα. When every zα is of order 1/N , the strong coupling limit is reached. How-
ever, the perturbation by the impurity is also of order 1/N , such that it acts only as an
additional state diluted in the bath and the effect is negligible.

The results of the numerical simulations are plotted the middle top and bottom panels
of Fig. 6.1. The spectrum is equivalent to the free one, the effect of order 1/N being al-
ready negligible for N = 300. The distribution P (nd) is simply centered around 1/2: there
are as many levels positive and negative (up to one extra level due to the impurity), and
every state has the same weight on the impurity. The fluctuations comes from occasional
asymmetries of the weight of the wave function on the left and right parts of the spectrum.

This strong coupling regime corresponds in the microscopic model with weak disorder
at particle-hole symmetry, where the impurity fluctuations are maximal and the impurity
occupation is slightly deviated from its clean expectation value nd = 1/2.
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6.2.3 Bound states regime: V/σ >
√

2N
The last situation that is explored appears when V/σ exceeds the bandwidth

√
2N . If

V/σ → ∞, it is clear that two bound state are separated from the system, with energy
±V , with equal weight on the impurity level z+ = z− = 1/2. For V/σ >

√
2N , the picture

is similar: two states are leaving the semi-circle, but the influence of the band on these
states deviates their energy and amplitude from V and 1/2 respectively.

In the top right panels of Fig. 6.1, these two outliers are cleary seen outside of the
main band, with energies |E±| ≃ V , while the band itself stays accurately described by
the semi-circle law. The distribution of nd is sharper as before, what is expected since
fluctuations are smaller when V increases for fixed σ. The mechanism fixing nd around
1/2 is simpler as before, and is mostly due to the negative outlier that has almost half of
the weight of the impurity z− ≃ 1/2, with fluctuations induced by the band.

Figure 6.3: Participation ratio as a function of V , from weak to strong coupling. The
energy scales D and 1/D shown to delimitate the different regimes. The higher is the PR,
the more diluted is the impurity in the bath.

6.2.4 Participation ratio
The three regimes presented above can be characterized quantitatively by the participation
ratio (PR), defined as:

PR =
(

N∑
α=1

z2
α

)−1

=
(

N∑
α=1

|ψd(α)|4
)−1

, (6.6)

which counts the number of dominant eigenstates, for each realization of the random ma-
trix. This quantity is reported with respect to V in Fig. 6.3, each point being averaged over
200 realizations of the random matrix. When V is small, the impurity is almost isolated
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and the PR equals 1 (z0 ≃ 1). When V increases above the energy of the first level of the
bath (its energy is of order 1/D), more and more states are populated, and the PR keeps
increasing until it reaches the edge of the band. After passing the edge, the PR drastically
falls down to 2, indicating the presence of the two outliers, whose weight is about 1/2 each.

Although mechanisms behind each regime seem to be driven by complicated hybridiza-
tion of the impurity in the bath, it turns out that the distribution of the occupation P (nd)
can be sketched by simpler arguments. Until now, the numerical results were shown for
fixed N = 300, in order to be in the regime of large N . Actually, our numerical simula-
tions show that P (nd) is very little changed when N is decreased, and a surprising result
was that it is still qualitatively well reproduced for N = 2. This simplified model, for
which simple analytical results can be built, is investigated now, as well as its limitations
to reproduce the full system.

6.3 Toy model for P (nd)
The toy model is defined by the Hamiltonian (6.1) with N = 2:

H2 = V (d†c1 + H.c.) + ϵ1c
†
1c1 =

(
0 V
V ϵ1

)
, (6.7)

with ϵ1 a random potential following a normal distribution P (ϵ1) = (
√

2πσ)−1e−ϵ2
1/2σ2 . To

calculate the distribution of the occupation of the d-level, the eigenvalues and eigenvectors
are related to the random variable ϵ1:

λ± = ϵ1
2 ± 1

2

√
ϵ2

1 + 4V 2, ψ± = 1
(V 2 + λ2

±)1/2

(
V
λ±

)
, (6.8)

where λ± are the two eigenvalues of H2 associated to eigenvectors ψ±. To find nd, only
the first element of eigenvectors are required, which is related to the impurity level. Using
equation (6.5) for nd, its distribution reads:

P (nd) =
+∞∫

−∞

dϵ1P (ϵ1) δ
nd −

∑
n=+,−

Θ
(

− λn(ϵ1)
)
z0n(ϵ1)


=

0∫
−∞

dϵ1P (ϵ1) δ
(
nd − z0+(ϵ1)

)
+

+∞∫
0

dϵ1P (ϵ1) δ
(
nd − z0−(ϵ1)

)
,

(6.9)

the second line used Θ(−λ−(ϵ1)) = Θ(ϵ1), Θ(−λ+(ϵ1)) = Θ(−ϵ1), that comes directly
from Eq. (6.8). To compute the two integrals, the usual property of the delta distribution
is used:

+∞∫
−∞

dx f(x)δ(g(x)) =
∑
xi

f(xi)
|g′(xi)|

, (6.10)

where xi are the zeros of g(x). In the present case, g(x) has two zeros with opposite sign,
and only one of them appears in the integrals. The derivative of g and its root read:

|g′(x)| = 2V 2

(4V 2 + x2)
3
2
, x1 = V

1 − 2nd

(nd(1 − nd)) 1
2
, (6.11)
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and combining the two integrals in Eq. (6.9) leads to the desired distribution of nd:

P (nd) = V

2σ
√

2π
exp

−2V 2

σ2
(nd − 1

2)2

nd(1 − nd)

(nd(1 − nd)
)− 3

2 . (6.12)

This equation shows the competition of two terms in the different regimes V/σ ≪ 1 and
V/σ ≫ 1. If the coupling is weak, P (nd) ∼ (nd(1 − nd))− 3

2 , and the symmetry under
exchange of nd by 1 − nd gives power laws around 0 and 1, with long tails yielding the
plateau of P (nd) around nd = 1/2. The term in the exponential in 1/nd(1 − nd) prevents
the equation to diverge when nd goes to 0 and 1. In the strong coupling regime, the other
term is dominant and P (nd) ∼ exp[−2V 2

σ2 (nd − 1
2)2] which is a Gaussian of mean 1/2 and

of deviation σ̃ = σ/2V . P (nd) is plotted in these two limits in the left and right panels
of Fig. 6.4 respectively. In the middle panel, an intermediate value of V/σ is plotted to
show the crossover between the two regimes.

Figure 6.4: P (nd) calculated with the analytical results of the toy model for three rep-
resentative values of the coupling V/σ. The distributions in the left and middle panels
ressemble to the one of the microscopic model associated to a bimodal distribution of
Kondo temperatures (see chapter 5).

This model has however no information concerning the bath, such that the bandwidth√
2Nσ can not be felt. In the model with N large, P (nd) is not sensible to the band-

width, only the scale V/σ matters, which explains the success of the toy model to describe
this quantity in all regimes. Nevertheless, this model is not totally quantitative, and any
quantity related to the details of the wave function can not be recovered. In Fig. 6.5, the
plots of Fig. 6.4 are compared to numerical simulation with N = 300 to investigate the
deviations of the toy model. For V/σ ≪ 1, the power law in (nd(1 − nd))−3/2 is correct,
but the edges of the distribution for nd ≃ 0, 1 are not quantitatively described. This is
reflected in the middle panel for the intermediate regime, the edges are enhanced in the
problem with N = 300, so that a bigger dip is induced around nd ≃ 1/2. On the opposite,
there is a quantitative agreement for V/σ ≫ 1.

It is clear that in the weak coupling regime, any quantity other than P (nd) can not
be obtained by this toy model. It is also the case in the strong coupling limit: when
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Figure 6.5: Difference between the sampling of the random impurity model at finite
N = 300 and the analytical results calculated for the toy model. Quantitative deviations
are seen at the edge for the weak and intermediate regimes. The left panel is plotted in
log-log scale to reveal the power law behavior of P (nd) at nd ≃ 0 , which is captured
by the toy model. For V/σ large, P (nd) is accurately described as the two sites model
becomes exact.

N = 300, for V >
√

2Nσ, the two outliers could play the role of the two-sites system.
But the deviations coming from the interaction with the bath renormalize the energy and
the amplitude of these states. In the toy model, these distributions read:

P (λ±) = 1
σ

√
2π

exp
(

− 1
2σ2

(λ2
± − V 2)2

λ2
±

)1 +
(
λ±
V

)2
 . (6.13)

P (z±) = V

2σ
√

2π
exp

(
−2V 2

σ2
(z± − 1

2)2

z±(1 − z±)

)
z

− 5
2

±

(
1 − z±

)− 1
2 , (6.14)

from which it turns out that λ can only stick to ±V , and z to 1/2 at large V/σ. In
Fig. 6.6, this effect is clearly represented, and the curves are expected to match only if
V → ∞.

To sum up, this toy model brought simple analytical formulas that describe P (nd)
at least qualitatively in every regime, and even quantitatively in some situations, that
was unexpected. However, other local quantities are poorly reproduced or can not be
captured, so that a solution for the full problem is needed. In the following, the joint
distribution of eigenvalues and eigenvectors of Hamiltonian (6.1) is exactly built for any
value of N .

6.4 Full PDF of the problem
The work presented in this part aims to find the joint probability distribution of the set
of eigenvalues and eigenvectors of the random impurity model. The starting point is the
distribution of these variables in the free model, that follows the so-called Porter-Thomas
distribution [160]:

PP−T({eα}, {rα}) =
N∏

1≤α<β

|eα − eβ| 1
√
rα

δ

 N∑
β=1

rβ − 1
 e− 1

2σ2

N∑
β=0

e2
β

, (6.15)
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Figure 6.6: Clear limitations of the toy model for other quantities than P (nd), here P (z0)
and P (E0), the respective amplitude and energy of the positive outlier in the bound states
regime. Here, V/σ = 2

√
2N , and the effects of the coupling between the impurity and

the band are totally missed by the toy model.

where rα = |ϕi(α)|2 is the square of any element i of eigenvector α that holds an energy
eα. The δ distribution imposes the wave function to be normed. A similar study was
performed for a random model perturbed by a local perturbation [176, 177]. In their
model, the perturbation is a deterministic potential on a given entry of the random matrix,
corresponding to a rank-one perturbation of the random matrix of rank N . In our system,
the perturbation is of rank two, and the matrix problem (6.1) can be reformulated in a
more convenient way for this study:

Hij = Gij + V (δi0δj1 + δi1δj0), with


Gij = 0, ∀i = 0 or j = 0 | i ̸= j

Gij = ϵd, for i = j = 0,
Gij = Gij otherwise.

(6.16)

In the random impurity model H, if we call zα = |ψ0(α)|2 the amplitude of the eigenvector
of energy Eα on the site 0, which corresponds to the impurity, then the function that we
want to find is P ({Eα}, {zα}). Hence, one wants to perform the change of variables
between the (N − 1)2 variables of the free problem to the (N − 1)2 ones of the perturbed
problem. There are however N2 entries in H, but since the first line and the first column
are known, they are not random variables, meaning that two constraints will be imposed
on the eigenvalues and eigenvectors of H. The details of this calculation are not required
in the main text, and are presented step-by-step in appendix E. The result, up to a norm,
for the PDF of energy levels and amplitudes on the impurity of the random impurity
model is the following:

Ppert

(
{Eα}, {zα}

)
∝

∏
0≤γ<δ

|Eδ − Eγ|e
− 1

2σ2

N∑
γ=0

E2
γ ∏

α≥0

1
√
zα

δ

V 2 −
N∑

γ=0
Eγ(Eγ − ϵd)zγ


× δ

ϵd −
N∑

γ=0
Eγzγ

 δ
1 −

N∑
γ=0

zγ

 .
(6.17)
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These three constraints have been verified numerically, at machine precision for each
realization of the random matrix. The constraint V 2 = ∑N

γ=0 Eγ(Eγ − ϵd)zγ corresponds
to the constraint in Eq. (E.2) expressed with the new variables, and the two others are
imposed to reduce the number of (2N)2 variables in the new basis to (2N − 1)2 random
variables that are present in the original problem. The derivation of these constraints is
detailed in appendix E. Equation (6.17) constitutes the main result of this chapter and
is exact for any value of N , but this form seems not really practical. In the upcoming
section, actual calculations with this distribution function are presented, assuming that
N is large enough.

6.5 Large N calculations of distribution functions
To perform actual calculations with this distribution function, some rearrangements are
required. In appendix F, large-N calculations are presented in simpler models (no per-
turbation, and rank-one perturbation) to gain intuition about the method, and analytical
results are simpler to find in these models. The calculations are similar in the present
case, but the form of the constraints (that are quadratic in E) complicates the analytical
integration over random variables. In this section, the calculations are presented step by
step.

6.5.1 Simplifications for P (nd)
The delta distributions are the first elements to be reexpressed, and they are replaced by
their definition through the Fourier transform as:

δ

V 2 −
N∑

γ=0
Eγ(Eγ − ϵd)zγ

 =
∞i∫

−∞i

dλ
2π exp

−λ

V 2 −
N∑

γ=0
Eγ(Eγ − ϵd)zγ

 , (6.18)

where λ is a Lagrange multiplier which is integrated, and the imaginary element i in the
usual definition can be absorbed in λ for convenience. Transforming each constraint with
their Fourier transform, Eq. (6.17) can be written:

Ppert

(
{Eα}, {zα}

)
∝
∏
α≥0

1
√
zα

+∞i∫
−∞i

dλ
2π

+∞i∫
−∞i

dν
2π

+∞i∫
−∞i

dρ
2π exp

 N∑
γ=0

− 1
2σ2E

2
γ +

N∑
δ<γ

ln
(
|Eδ − Eγ|

)

− λ

V 2 −
N∑

γ=0
E2

γzγ

− ν

−
N∑

γ=0
Eγzγ

− ρ

1 −
N∑

γ=0
zγ

.
(6.19)

This can be done provided that every term is of the same order in N , which is true in
the diluted regime. This form is already more appealing to integrate over the random
variables. Other simplifications will appear when integrating over these variables, in order
to compute P (nd):

P (nd) =
+∞∫

−∞

DEα

+∞∫
0

Dzα Ppert(Eα, zα) δ
nd −

N∑
γ=0

Θ(−Eα)zα

 , (6.20)
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where DEα = ∏N
α=0 dEα is written for readability. Inserting the new constraint in the

exponential, every term proportional to zα can be factorized, and the integration over zα

becomes a Gaussian integration with the change of variables √
zα → z′

α. The equation is
thus further simplified to:

P (nd) =
+∞∫

−∞

DEα

∫
−∞i

∫ ∫ +∞i∫ dλ dν dρ dµ
(2π)7/2 exp

 N∑
γ=0

− 1
2σ2E

2
γ +

∑
0≤δ<γ

ln
(
|Eδ − Eγ|

)

− 1
2

N∑
γ=0

ln
(
|λE2

γ + νEγ + ρ+ µΘ(−Eα)|
) .

(6.21)

The Heaviside function is not analytic and may be problematic in the following. With the
knowledge of the final spectra thanks to numerical simulations, we assume that half of
the eigenvalues are negative and half are positive. Such an approximation is tested for the
free case in appendix F and proved to be accurate. In the limit of large N , the steepest
descend method is used to calculate the integral over all eigenvalues, corresponding to
a mean field treatment of the bath if Green’s functions are used. This steepest descent
method follows the method presented in Ref. [178], in which the renormalization of the
bath is computed for a ϕ4 bulk interaction. The scaling of each terms have to be carefuly
accounted: Eα ∝

√
N and V ∝

√
N , such that λ ∝ 1, ν ∝

√
N and ρ, µ ∝ N . With these

scalings, the saddle-point to solve for the steepest descent reads:

∂Eα
P (nd) = 0 ⇒

∑
β≥0,
β ̸=α

1
Eα − Eβ

= Eα

2σ2 + 1
2

λEα + ν

λE2
α + νEα + ρ

, (6.22)

and by writing explicitely the scalings Ẽα

√
N = Eα, and by remarking that the sum in

the left-hand-side (LHS) concerns N terms:

∑
β≥0,
β ̸=α

1
Ẽα − Ẽβ

= Ẽα

2σ2 + 1
2N

λ̃Ẽα + ν̃

λ̃Ẽ2
α + ν̃Ẽα + ρ̃

, (6.23)

and the term proportional to 1/N in the RHS can be safely neglected in this situation
when N is large. Going to the continuous limit Eα → E(α/N), and 1/N ∑N

α →
∫ 1

0 dx:

1∫
0

dy
E(x) − E(y) = 1

2σ2E(x), (6.24)

where
∫

represents the principal part of the integral. At this point, the density of states
u(E) = dx/dE is introduced, normed on an interval [−2a, 2a] which gives:

2a∫
−2a

dF u(F )
E − F

= 1
2σ2E, ∀|E| ≤ 2a. (6.25)

Following Ref. [178], it is trivial to find that in this case the density of states is the semi-
circle in the support [−

√
2Nσ,

√
2Nσ], u(E) =

√
2Nσ2 − E2/2πN . Integrating over E in
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Eq. (6.25), it allows to introduce the density of states as the mean field solution (or order
0 solution) of the integral over DEα in the definition of P (nd) as:

P (nd) =
∫

−∞i

∫ ∫ +∞i∫ dλ dν dρ dµ
(2π)7/2 exp

 0∫
−

√
2Nσ

dE u(E)
(

ln (|E|) − E2

2σ2 − 1
2 ln

(
λE2 + νE + ρ+ µ

))

+

√
2Nσ∫
0

dE u(E)
(

ln (|E|) − E2

2σ2 − 1
2 ln

(
λE2 + νE + ρ

))
+ λV 2 + ρ+ µnd

.
(6.26)

The integration over the Lagrange multiplier is also treated by steepest descent, with the
saddles defining the following system of equations to solve:

∂λ P (nd) = 0 ⇒
0∫

−
√

2Nσ

dE u(E)E2

λE2+νE+ρ+µ
+

√
2Nσ∫
0

dE u(E)E2

λE2+νE+ρ
= V 2,

∂ν P (nd) = 0 ⇒
0∫

−
√

2Nσ

dE u(E)E
λE2+νE+ρ+µ

+
√

2Nσ∫
0

dE u(E)E
λE2+νE+ρ

= 0,

∂ρ P (nd) = 0 ⇒
0∫

−
√

2Nσ

dE u(E)
λE2+νE+ρ+µ

+
√

2Nσ∫
0

dE u(E)
λE2+νE+ρ

= 1,

∂µ P (nd) = 0 ⇒
0∫

−
√

2Nσ

dE u(E)
λE2+νE+ρ+µ

= nd,

⇒



λV 2 + ρ+ µnd = 1,
√

2Nσ∫
0

dE u(E)
λE2+νE+ρ

= 1 − nd,

0∫
−

√
2Nσ

dE u(E)
λE2+νE+ρ+µ

= nd,

0∫
−

√
2Nσ

dE u(E)E
λE2+νE+ρ+µ

+
√

2Nσ∫
0

dE u(E)E
λE2+νE+ρ

= 0.

(6.27)

Solving these equations and reinjecting the solutions in Eq. (6.26) would give the solution
of this problem. However, this system has no simple analytical form in this case, in
contrast to the simpler toy model of Sec. 6.3.

6.5.2 Remarks on the weak coupling regime
General remarks on calculations in the weak coupling regime are discussed here, as no
results have been found so far in this case. For any distribution function in the weak
coupling regime, some of the previous assumptions do not hold anymore. In this case, V
is subdominant and large N expansions can not be done as before. For the bath density
of states, the terms in 1/N in Eq. (6.23) must be considered, which brings an explicit
dependence of the bath density of states on the Lagrange multipliers. Nevertheless, pre-
vious results for the DOS presented in Eq.(6.4) can be used at 0th order. As the impurity
is mostly decoupled from the bath, a single z0 is larger than the others and must be taken
out of the steepest descent equations, and must be treated apart. Things complicates as
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V/σ increases, as in the crossover more and more zα becomes of order 1, and simplifies
when they all become of order 1/N . The bound states regime, in which calculations are
tractable, is now discussed.

Figure 6.7: Joint distribution of the amplitude and of the energy of the positive outlier in
the bound states regime. The left panel shows the result of the numerical sampling and
the right one the result of the large N calculation. The middle panel correponds to the
numerical sampling with a condition of symmetry on the outliers, to fit the assumptions
taken in the analytical calculation.

6.5.3 P (E0, z0) in the bound states regime
An interesting quantity to look at is the distribution of the energy and of the amplitude
of the outliers when V/σ >

√
2N , that is not accurately reproduced by the toy model.

In this regime, two elements zo1 and zo2 are of order one, and must be taken out in
Eq. (6.18), and in the following. It is also chosen that σ =

√
2. To simplify the equations,

it is assumed that the two outliers are symmetric, such that:
Eo1 = −Eo2 = E0, and zo1 = zo2 = z0. (6.28)

Due to this simplification, the multiplier ν, that holds information concerning the asym-
metry of the distribution, is taken to be 0 such that the last equation of Eq. (6.27) is
always true. The distribution is built by integrating Eq. (6.19) over all but two pairs of
(E0, z0) and reads:

P (E0, z0) ∝ 1
√
z0

∫
−∞i

+∞i∫
dλ dρ exp

− E2
0

2 +
2
√

N∫
−2

√
N

dE u(E)
(

ln
(
|E2

0 − E2|
)

− 1
2 ln

(
λE2 + ρ

))
+ λ

(
V 2 − 2E2

0z0

)
+ ρ (1 − 2z0)

.
(6.29)

In this situation, deriving a similar set of equations as Eq. (6.27), a closed form is found
for the saddle-point: 

λ = N

2(V 2−2E2
0z0) − 1

2(1−2z0) ,

ρ = V 2−2E2
0z0

2(1−2z0) .
(6.30)
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Then, the solutions to the saddle-point equations are inserted in Eq. (6.29), and numerical
integration is used for the integrals over the energy in the exponential. For V/σ = 2

√
2N ,

the distribution is plotted in the right panel of Fig. 6.7. In the left panel, the distribution
of the energy and the amplitude of one of the outliers is plotted, and the distribution
found to be wider than the one computed through Eq. (6.29). This effect is due to
the assumption that the two outliers are symmetric in energy and in amplitude, which
is true only in average: in the middle panel of the figure, only realizations such that
||Eo1| − |Eo2|| < ϵ (with ϵ = 1e − 2 in this case) are considered, and the distribution is
closer to the computed one, and would be the same for ϵ → 0. This confirms the validity
of the large N analysis.
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In this work, correlations in quantum impurity problems have been investigated from
the perspective of natural orbitals (NOs), a concept that has been borrowed from the
field of quantum chemistry. Quantum impurity problems, within which the Coulomb in-
teraction between electrons occupying the impurity induces strong correlations between
particles, exhibit some drastic simplifications when they are expressed through natural
orbitals. This representation reveals the hierarchical structure of correlations in these sys-
tem, in which only a local interaction acts within a large bath of non-interacting particles,
compared to fully interacting lattice systems whose correlations are experienced equally
by all degrees of freedom.

The hierarchical structure of correlations was firstly studied with the non-perturbative
numerical renormalization group algorithm in different regimes of the parameter space of
two quantum impurity models where particles experience different degrees of correlations.
An exponential decay of correlations that was predicted theoretically was observed in all
regimes, with a slower decay rate when correlations are increasing. An ansatz for the
wave function was proposed, based on a separation of natural orbitals in a correlated and
uncorrelated spaces according to their occupancy in a given state.

Then, an algorithm tailored to exploit this hierarchical structure of correlations was
developed, which succeeded in simulating ground-state properties at equilibrium of quan-
tum impurity systems in a polynomial complexity with the system size N , making possible
the simulation of impurity surrounded by large baths containing up to tens of thousands of
particles, with a controllable accuracy. The efficiency of the algorithm was demonstrated
with the computation of the large correlation cloud surrounding the impurity, reflecting
the screening of the local degeneracy by electrons of the bath over the characteristic scale
TK. This quantity was also computed in a two dimensional bath in a strongly correlated
regime, which was not possible with previous numerical methods on such large spatial
scales.

Taking advantage of the efficiency of the algorithm, a statistical study of correlations
spreading in a disordered host around a quantum impurity has been performed. Distribu-
tion functions of static quantities in the ground state have been computed, having access
to tens of thousands of disorder realizations. The study focused especially on the dis-
tribution of Kondo temperatures, the relevant scales related to most of the ground state
properties. Charge and spin disorder were investigated, and in both case the distribution
shown to be multimodal, due to the competition between different mechanisms.

The study concerning charge disorder in the SIAM confirmed the existence of un-
screened impurities at low temperatures, predicted by previous studies to explain non-
Fermi liquid behavior in real setups in presence of disorder. Additional features related to
charge fluctuations on the impurity were discovered in this systems when disorder is not
too large. However, correlations in the disordered SIAM must be further investigated in
the strong disordered regime (where the localization length is of the order of the Kondo
length), since the universal relation between the local TK and the true extent of spatial
correlations remains unclear in these strongly disordered systems.
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Finally, the properties of these disordered systems were studied at a mesoscopic level
through a random matrix model of quantum impurity, in which microscopic information
concerning the bath are lost. Results from the random matrix theory has been used
to build the joint distribution function of energies and eigenstates of this problem, with
which any local property concerning the impurity can be computed in average. A toy
model and large N calculations were then presented in the different regimes of the model,
bringing analytical formulations for certain distribution functions.

Going further with the NO idea requires various extensions of its current implemen-
tation. With the computation of dynamical quantities, the NO method could become an
efficient impurity solver for multi-orbital DMFT calculations in highly correlated systems
that currently lacks accurate description for low temperatures and real frequencies data.
The first step will be to implement dynamics, for example using Krylov spaces, or meth-
ods based on the time-dependent variational principle, to approximate the resolvent and
thus the frequency-dependent Green’s function. These functions are needed to perform
DMFT studies, but are also relevant on their own to compute transport properties of
single impurity problems in quantum dots.

To tackle problems with even more complex internal structure (e.g. with orbital de-
grees of freedom), we could think of hybrid methods involving NO and DMRG, where the
DMRG would describe the correlated part of impurities, going beyond exact diagonaliza-
tion and allowing to deal with larger correlated spaces. On top of the MPS representation
of the correlated sector, the NO algorithm will handle the environment to give the com-
plete picture of these complex systems. These extensions could make it possible to study
complicated composite problems such as multiorbital Hubbard models, via the simulation
of the underlying interacting multiorbital impurity problems.

The NO method could be also useful to answer other open questions concerning the
physics of quantum impurity problems. The description of microscopic properties at large
scale could be used to tackle the RKKY coupling of several Kondo impurities in different
configurations, or any small cluster of impurities coupled to large environments. In a
similar context, the NO ansatz could be extended to bosonic systems, in order to simu-
late precise setups including interfaces, circuit lithography etc. stimulated by the great
advances in superconducting qubits [179].

In correlated systems, computing excited states is also a challenge, especially for the
study of the eigenstate thermalization hypothesis with macroscopic reservoirs, in which
a finite size scaling could be done over few decades in the system size, instead of exact
diagonalization studies that are limited to one order of magnitude. Excited states could
be found in practice with usual ways such as shift-inverse method to target special energy
windows, provided the NO ansatz stays valid.

Finally, in a wider framework, the representation of quantum impurity problems with
NOs opens the door to a first-principles study of Kondo correlations, since ab-initio meth-
ods rely on the same type of ansatz that we used here. Embedding ab-initio descriptions
in this context would be an ambitious project for the future.
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A NRG - Implementation of the
IRLM

Equations concerning the NRG implementation of the IRLM are given in this appendix,
taking into account the conservation of the number of particles by the Hamiltonian to
speed up calculations. The iterative construction of the Hamiltonian is firstly introduced,
and in a second time the construction of some observables of interest is presented.

A.1 Flow of the Hamiltonian
As a reminder, two successive Hamiltonian in the Wilson chain construction are related
as:

HN+1 =
√

ΛHN +
√

Λ
N
tN
(
c†

NcN+1 + c†
N+1cN

)
, (A.1)

where N labels here a given step of the flow, while n will denote a sector of n particle. It
is admitted that HN is already diagonal, with eigenstates written as |α, n⟩N for state α
in the sector of n particles.

It is important for numerical simulations to know the size of each sector, to allocate
the correct amount of memory. At step N , there are at most n = N particles in the
system. For each sector n, there are AN−1,n states α in the basis of last RG step. In this
scheme, the truncation procedure works by sector: AN,n is at most Nkept, and every state
with an energy above the largest kept energy, min

(
E

Nkept
N,n

)
in each sector n, is thrown

away. The total number of kept states is thus: Nkept,tot =
N∑
n
AN,n.

When HN+1 is built, a fermion c†
N+1 is added to the system. The new basis can be

written:

{(cN+1)σ|α, n⟩N},

σ = 0, if c†
N+1 is not in the new state

σ = 1, otherwise.
(A.2)

To write the new basis for HN+1 in each sector of n particles, the introduction the new
states that form a complete basis, in which the Hamiltonian is not diagonal, is done via
the identity:

1 =
min(1,n)∑

σ

AN,n−σ∑
β

(c†
N+1)σ|β, n− σ⟩N⟨β, n− σ|(cN+1)σ, (A.3)

which is used to write the unknown new eigenstates as:

|α, n⟩N+1 =
min(1,n)∑

σ

AN,n−σ∑
β

(c†
N+1)σ|β, n− σ⟩N⟨β, n− σ|(cN+1)σ|α, n⟩N+1. (A.4)
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In the first sum, min(1, n) is used for the extreme cases n = 0 and n = N + 1: if n = 0, σ
must be zero, since the sector n = −1 in the old basis makes no sense. For n = N + 1, σ
must be 1, since there is no sector n = N + 1 in the basis of step N . With this form for
the unknown |α, n⟩N+1, the following matrix elements have been introduced:

N⟨β, n− σ|(cN+1)σ|α, n⟩N+1, (A.5)

and the left part is already known from the last iteration, but not the right one. We write
the Hamiltonian in the new basis (in which HN+1 is diagonal, by definition), using Eq.
(A.2): [

HN+1,n

]
ασ,βσ′

= N⟨α, n− σ|(cN+1)σHN+1,n(c†
N+1)σ′ |β, n− σ′⟩N

= N⟨α, n− σ|(cN+1)σ
√

ΛHN(c†
N+1)σ′|β, n− σ′⟩N

+
√

Λ
N
tN N⟨α, n− σ|(cN+1)σ

(
c†

NcN+1 + c†
N+1cN

)
(c†

N+1)σ′|β, n− σ′⟩N .

(A.6)

The first term, that is diagonal in the sectors σ, σ′ and in the states α, β, since it is the
diagonal basis of HN , reads:

N⟨α, n− σ|(cN+1)σ
√

ΛHN(c†
N+1)σ′ |β, n− σ′⟩N = δαβδσσ′

√
ΛEα

N,n, (A.7)

and the off-diagonal term:
√

Λ
N
tN N⟨α, n− σ|(cN+1)σ

(
c†

NcN+1 + c†
N+1cN

)
(c†

N+1)σ′|β, n− σ′⟩N

=
√

Λ
N
tN


N⟨α, n| c†

N |β, n− 1⟩N , if σ = 0, σ′ = 1
N⟨α, n− 1| cN |β, n⟩N , if σ = 1, σ′ = 0
0 otherwise.

(A.8)

These matrix elements, unlike the ones in Eq. (A.5), are expressed with eigenvectors of the
last step, that are known. However, what is known is not exactly the set of eigenvectors of
last step, but the transformation matrix between the step N − 1 and N . These elements
are introduced through the identity 1 = ∑

µ |µ, n⟩N−1⟨µ, n| + c†
N |µ, n− 1⟩N−1⟨µ, n− 1|cN :

N⟨α, n− 1|cN |β, n⟩N =
AN−1,n−1∑

µ
N⟨α, n− 1|µ, n− 1⟩N−1⟨µ, n− 1|cN |β, n⟩N

+ N⟨α, n− 1|c†
N |µ, n− 2⟩N−1⟨µ, n− 2|cNcN |β, n⟩N

= N⟨α, n− 1|µ, n− 1⟩N−1⟨µ, n− 1|cN |β, n⟩N .

(A.9)

This form proposes to use two new matrices defined as:[
XN,n

]
αβ

= N−1⟨α, n|β, n⟩N[
YN,n

]
αβ

= N−1⟨α, n− 1|cN |β, n⟩N .
(A.10)

The dimension of XN,n is
(
AN−1,n, AN,n

)
, and YN,n is of dimension

(
AN−1,n−1, AN,n

)
, and

these two matrices allow to compute HN+1,n efficiently. It is clearer to show the matrix
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form of the Hamiltonian directly:

HN+1,n =



σ=0 σ=1

σ′=0
√

Λ diag
(
EN,n

) √
ΛN

tN Y
†

N,n ·XN,n−1

σ′=1
√

ΛN
tN X

†
N,n−1 · YN,n

√
Λ diag

(
EN,n−1

)


. (A.11)

Then, the Hamiltonian is diagonalized sector by sector, and we take the transformation
matrix PN,n to define the new matrices XN+1,n and YN+1,n:

PN+1,n =


XN+1,n

YN+1,n



}
AN,n statesAN,n−1 states

, (A.12)

and this transformation is repeated until the end of the flow. As it is a recursive process,
there must be a first step. The initialization is done through H0 containing the impurity
degrees or freedom (and the interaction), which is diagonalized in each sector to start the
flow. Once the flow of eigenvalues is running properly, observables can be computed in
parallel.

A.2 Computing an observable
The computation of any static observable concerning the impurity or the fermions of the
discretized chain of the IRLM is presented here. Any observable of this kind is defined
through an operator O, and it is considered that it changes the number of particle of a
state by m. If the operator is acts on fermions that are already in the flow (if it concerns
the impurity, it is defined on the first step), the observable has to be defined for all pair
of states (α, β) to follow the flow of eigenvectors, and it is evaluated in the ground state
at the end. At a given iteration, it reads:[

ON+1,n

]
αβ

= N+1⟨α, n−m|ON+1,n|β, n⟩N+1

=
(
X†

N+1,n−m Y †
N+1,n−m

)(O11 O12
O21 O22

)(
XN+1,n

YN+1,n

)
.

(A.13)

The usefulness of using matrices X and Y is evident here, the expressions are simple
to write. It is again supposed here that the observable is known in the last basis ON,n.
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Hence, each sector of ON+1,n reads:[
O11

]
αβ

= N⟨α, n−m|ON+1,n|β, n⟩N[
O12

]
αβ

= N⟨α, n−m|ON+1,n−1 c
†
N+1|β, n− 1⟩N[

O21

]
αβ

= N⟨α, n− 1 −m|cN+1 ON+1,n|β, n⟩N[
O22

]
αβ

= N⟨α, n− 1 −m|cN+1 ON+1,n−1 c
†
N+1|β, n− 1⟩N .

(A.14)

For the general case, we can not go further with the equations, and we will give here
the details of the observable required for the study of natural orbitals in the IRLM, the
one-body density matrix Q.

A.3 One-body density matrix
We recall that the density matrix is defined as one-body equal-time correlators for every
pair of fermions in the system:[

Qij,N,n

]
αβ

= N⟨α, n|c†
icj|β, n⟩N . (A.15)

It has four entries along the flow in each sector of fixed number of particle n, since each
element of Q is an observable as defined above. At the end of the flow, the one-body
density matrix is diagonalized with each of its elements evaluated in the ground state.
Each element of Q is an observable defined from operators conserving the number of
particles, such that m = 0 here. At each step of the flow, the fermion c†

N is added to the
system, such that the square matrix Q is always growing and of dimension N . Elements
bearing cN should be taken apart, since this fermion appears explicitely in |β, n⟩N+1 and
thus they do not (anti-)commute. We will thus separate the evolution of elements i, j < N ,
i = N ,j = N and i = j = N .

a. Case i, j < N + 1

We solve Eq. (A.14) for the elements of matrix Q that are not in the border. It is plain
that as c†

N+1 is not in the operators that we consider here, Q12 = Q21 = 0, since c†
N+1

appears only once and the projection on the two resulting states is trivially zero. For Q11
and Q22, there is an equal number of creation and annihilation operators involving the
N + 1 fermions, such that they are non-zero and read:

Qij,N+1,n,11,αβ = N⟨α, n|c†
icj|β, n⟩N = Qij,N,n,αβ

Qij,N+1,n,22,αβ = N⟨α, n− 1|c†
icj|β, n− 1⟩N = Qij,N,n−1,αβ,

(A.16)

such that the new operator is defined from the operator at the previous step as:

Qij,N+1,n = X†
N+1,nQij,N,nXN+1,n + Y †

N,nQij,N,n−1YN,n. (A.17)

Hence, QN+1,n is easily updated along the flow after computing the Hamiltonian eigen-
vectors, and by storing the QN,n of the previous iteration. In the following, the same
arguments are used and we just give the results for QN+1,n.

110



APPENDIX A. NRG - IMPLEMENTATION OF THE IRLM

b. Case i = N + 1, j < N + 1

QN+1j,N+1,n = Y †
N+1,nN⟨α, n− 1| cj |β, n⟩NXN+1,n. (A.18)

In this case, it appears that only the sector Q21 is not zero, and the c†
N+1 of Q cancel

with the one of the state on which we project it. Hence, only a cj survives, that is not
calculated yet. It means that we have to follow the vector constituted of all operators cj

along the flow to compute Q. It will be labeled cj,N,n, and it is computed just after the
last cases for Q. With this notation, the last equation becomes:

QN+1j,N+1,n = Y †
N+1,nNcj,N,nXN+1,n. (A.19)

c. Case i < N + 1, j = N + 1

QiN+1,N+1,n = X†
N+1,nNc

†
i,N,nYN+1,n. (A.20)

c†
N,n,i is not computed separately and is defined as the hermitian conjugate of ci,N,n.

d. Case i = j = N + 1

QN+1N+1,N+1,n = Y †
N+1,nYN+1,n. (A.21)

A.3.1 Annihilation operators
As for Q, the case cN+1 is treated separately. This operator changes the number of
fermions, and we take here m = 1.

a. Case i < N + 1

ci,N+1,n = X†
N+1,n−1ci,N,nXN+1,n − Y †

N+1,n−1ci,N,n−1YN+1,n. (A.22)

b. Case i = N + 1

cN+1,N+1,n = X†
N+1,n−1YN+1,n. (A.23)

Every equation is now closed, and the only thing left to do is the initialization of Q
and c at the first step of the NRG procedure, with H0. Then, the truncation of high
energy states is only a change of each number of states per sector AN,n, and the thrown
states only change the dimension of matrices XN,n and YN,n, that will affect the ob-
servable automatically. For the truncation, we find the sector in which the Nkept state
has the lowest energy (if there are at least this amount of states in the given sector),
that is usually the half-filled sector at particle-hole symmetry. Then, every state with an
higher energy in every other sector is thrown away. Another small thing not to forgot is to
shift the spectrum by the lowest energy E0

N,n, for the rescaling by
√

Λ to be properly done.
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A.4 Initialization

A.4.1 Hamiltonian
The Hamiltonian considered before iterating is composed of the impurity and of the first
site of the chain:

H0 = U
(
d†d− 1

2

)(
c†

0 − 1
2

)
+ V

(
d†c0 + h.c.

)
+ ϵdd

†d (A.24)

We will directly work by sector of states with equal number of particles, to define the
transfer matrices as defined above. There can be 0, 1 or 2 particle in this small system,
hence N = 2 corresponds to the initialization step, so that tN must be taken carefully:
when N = 3 corresponding to the maximum number of particles, the hopping term is t0
and not t3. By sector, the states are:

◦ n = 0:

One state: |0⟩, E20 = Λ−0.5U

4 → X20 = ((1)), Y20 = (()). (A.25)

◦ n = 1:

H21 = Λ−0.5
( d†|0⟩ c†|0⟩

ϵd − U
4 V

V −U
4

)
→ Diagonalization: P =

(
X21
Y21

)
. (A.26)

◦ n = 2:

One state: d†c†
0|0⟩, E22 = Λ−0.5

(
U

4 + ϵd

)
→ X22 = (()), Y22 = ((1)).

(A.27)

A.4.2 Q matrix and c vector

We use the initialization of X2n and Y2n for operators of Qij,2n and the annihilation oper-
ators ci,2n:

◦ n = 0:

Q20 =
(

0 0
0 0

)
, c20 =

(
0
0

)
. (A.28)

◦ n = 1:

Q21 =
(
X†

21X21 Y †
21X21

X†
21Y21 Y †

21Y21

)
, c21 =

(
X†

20X21
X†

20Y21

)
. (A.29)

◦ n = 2:

Q22 =
(

1 0
0 1

)
, c22 =

(
−Y †

21Y22
X†

21Y22

)
. (A.30)
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It is recalled that any entry of Q and c correponds to the matrix form of operator in a
given sector. An integer in Q of c makes no sense, it has to be understood as an operator
defined in a basis composed of one state, and is written only to simplify notations. Any
static observable concerning only the impurity or the first site can be defined at this mo-
ment, and then follows the flow of eigenvectors as explained above.

We provided all details of the NRG implementation of the IRLM, and of its one-body
density matrix (more generally of any static observable). In Appendix. B, we will provide
the same equations for the SIAM, with an additional symmetry involving the conservation
of the spin.
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B NRG - Implementation of the
SIAM

As in appendix A for the IRLM, the NRG implementation of the SIAM is discussed in this
appendix. The implementation accounts for the charge and spin conservations, that is
more involved than only charge conservation in the IRLM. Also, we will give less details
when the calculations are similar to those of appendix A, so we recommand that the
reader read it before this one. As in appendix A, the flow of eigenvectors of the SIAM
will be firstly derived, and followed by the calculation of the one-body density matrix of
this model.

B.1 Flow of the Hamiltonian
The iterative construction of the SIAM, which considers spinful fermions, reads:

HN+1 =
√

ΛHN +
√

Λ
N
tN
(
c†

↑Nc↑N+1 + c†
↓Nc↓N + h.c.

)
, (B.1)

such that two fermions are added at each step, to respect the conservation of the spin.
The new basis for HN+1, knowing the one that diagonalizes HN , reads:

|α, n, sz⟩N+1 =
1∑
ab

(c†
↑N+1)a ⊗ (c†

↑N+1)b ⊗ |α, n− (a+ b), sz − (a− b)⟩N , (B.2)

where n = n↑ + n↓ (a+ b for the new fermions) is the charge, and n = n↑ − n↓ (a− b) the
spin. The Hamiltonian is defined by block for each fixed particle number n and spin sz.
As before, the number of states in each block reads AN,n,sz

. As before, the Hamiltonian
is projected in the new basis:

[
H

N+1,n,sz

]
αβ

=
1∑

abcd
N⟨α, n− (a+ b), sz − (a− b)| (c↓N+1)b(c↑N+1)a×

×H
N+1,n,sz

(c†
↑N+1)c(c†

↓N+1)d |β, n− (c+ d), sz − (c− d)⟩N .

(B.3)

It is clear from Eq. (B.1) that some combinations of a, b, c and d can not exist, if numbers
of cN+1 and c†

N+1 in Eq. (B.3) are not the same. As before, the Hamitonian is written in
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a matrix form for readability:

(B.4)

Diagonal terms (a), (b), (c) and (d) are constituted of the eigenvalues of HN , while the off-
diagonal ones are coming from the hopping terms of Eq. (B.1), and blank cases correspond
to hermitian conjugates of (1), (2), (3) and (4). The corresponding matrix elements reads:

[(a)]α,β = δαβ

√
ΛEα

N,n−2,sz

[(b)]α,β = δαβ

√
ΛEα

N,n−1,sz−1

[(c)]α,β = δαβ

√
ΛEα

N,n−1,sz+1

[(d)]α,β = δαβ

√
ΛEα

N,n,sz

[(1)]α,β =
√

Λ
N
tN N⟨α, n− 2, sz| c↓N |β, n− 1, sz − 1⟩N

[(2)]α,β = −
√

Λ
N
tN N⟨α, n− 2, sz| c↑N |β, n− 1, sz + 1⟩N

[(3)]α,β =
√

Λ
N
tN N⟨α, n− 1, sz − 1| c↑N |β, n, sz⟩N

[(4)]α,β =
√

Λ
N
tN N⟨α, n− 1, sz + 1| c↓N |β, n, sz⟩N .

(B.5)

At this point, the transformation matrix between step N − 1 and N is introduced for
the off-diagonal terms, as before, via the completeness relations (the energies are omitted
here for readability, they will appear back later):

[(1)]α,β =
∑

γ
N⟨α, n− 2, sz|γ, n− 2, sz⟩N−1⟨γ, n− 2, sz| c↓N |β, n− 1, sz − 1⟩N

+ N⟨α, n− 2, sz| c†
↑N |γ, n− 3, sz − 1⟩N−1⟨γ, n− 3, sz − 1| c↑Nc↓N |β, n− 1, sz − 1⟩N

+ N⟨α, n− 2, sz| c†
↓N |γ, n− 3, sz + 1⟩N−1⟨γ, n− 3, sz + 1| c↓Nc↓N |β, n− 1, sz − 1⟩N

+ N⟨α, n− 2, sz| c†
↑Nc

†
↓N |γ, n− 4, sz − 1⟩N−1⟨γ, n− 4, sz| c↓Nc↑Nc↓N |β, n− 1, sz − 1⟩N

[(2)]α,β =
∑

γ
N⟨α, n− 2, sz|γ, n− 2, sz⟩N−1⟨γ, n− 2, sz| c↑N |β, n− 1, sz + 1⟩N + . . .
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[(3)]α,β =
∑

γ
N⟨α, n− 1, sz − 1|γ, n− 1, sz − 1⟩N−1⟨γ, n− 1, sz − 1| c↑N |β, n, sz⟩N + . . .

[(4)]α,β =
∑

γ
N⟨α, n− 1, sz + 1|γ, n− 1, sz + 1⟩N−1⟨γ, n− 1, sz + 1| c↓N |β, n, sz⟩N + . . . ,

(B.6)
and cancelling each zero term, it simplifies to:

[(1)]α,β =
∑

γ
N⟨α, n− 2, sz|γ, n− 2, sz⟩N−1⟨γ, n− 2, sz| c↓N |β, n− 1, sz − 1⟩N

+ N⟨α, n− 2, sz| c†
↑N |γ, n− 3, sz − 1⟩N−1⟨γ, n− 3, sz − 1| c↑Nc↓N |β, n− 1, sz − 1⟩N

[(2)]α,β =
∑

γ
N⟨α, n− 2, sz|γ, n− 2, sz⟩N−1⟨γ, n− 2, sz| c↑N |β, n− 1, sz + 1⟩N

+ N⟨α, n− 2, sz| c†
↓N |γ, n− 3, sz + 1⟩N−1⟨γ, n− 3, sz + 1| c↓Nc↑N |β, n− 1, sz + 1⟩N

[(3)]α,β =
∑

γ
N⟨α, n− 1, sz − 1|γ, n− 1, sz − 1⟩N−1⟨γ, n− 1, sz − 1| c↑N |β, n, sz⟩N

+ N⟨α, n− 1, sz − 1| c†
↓N |γ, n− 2, sz⟩N−1⟨γ, n− 2, sz| c↓Nc↑N |β, n, sz⟩N

[(4)]α,β =
∑

γ
N⟨α, n− 1, sz + 1|γ, n− 1, sz + 1⟩N−1⟨γ, n− 1, sz + 1| c↓N |β, n, sz⟩N

+ N⟨α, n− 1, sz + 1| c†
↑N |γ, n− 2, sz⟩N−1⟨γ, n− 2, sz| c↑Nc↓N |β, n, sz⟩N ,

(B.7)

It is natural here to introduce blocks of the transformation matrix, that reads:

P
N,n,sz

=



D
N,n,sz

C
N,n,sz

B
N,n,sz

A
N,n,sz



}
c↑Nc↓N}
c↑N}
c↓N}

. (B.8)

Matrices A,B,C and D are written explicitely as:[
A

N,n,sz

]
αβ

= N−1⟨α, n, sz|β, n, sz⟩N[
B

N,n,sz

]
αβ

= N−1⟨α, n− 1, sz + 1| c↓N |β, n, sz⟩N[
C

N,n,sz

]
αβ

= N−1⟨α, n− 1, sz − 1| c↑N |β, n, sz⟩N[
D

N,n,sz

]
αβ

= N−1⟨α, n− 2, sz| c↑Nc↓N |β, n, sz⟩N ,

(B.9)
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which allow to write the set of Eq. (B.7) in a simpler form:

[(1)]α,β =
√

Λ
N
tN

(
A†

N,n−2,sz
·B

N,n−1,sz−1
− C†

N,n−2,sz
·D

N,n−1,sz−1

)
[(2)]α,β = −

√
Λ

N
tN

(
A†

N,n−2,sz
· C

N,n−1,sz−1
−B†

N,n−2,sz
·D

N,n−1,sz+1

)
[(3)]α,β =

√
Λ

N
tN

(
A†

N,n−1,sz−1
· C

N,n,sz
−B†

N,n−1,sz−1
·D

N,n,sz

)
[(4)]α,β =

√
Λ

N
tN

(
A†

N,n−1,sz+1
·B

N,n,sz
− C†

N,n−1,sz+1
·D

N,n,sz

)
.

(B.10)

Now that Hamiltonian (B.4) is fully determined, it is diagonalized by blocks, into which
new matrices A,B,C and D are identified via PN+1,n,sz

. The truncation procedure is
the same as explained in appendix A. It was not detailed here, but as in the IRLM, the
number of particles in each sector AN,n,sz

has to be followed for an efficient use of the
computer memory. Now that the flow of eigenvectors is defined, we present here how
to compute observables, and, as the calculations are more involved than in the previous
appendix, we will focus directly on the one-body density matrix and skip the general case
(note that it is not more difficult to calculate, but this lenghty derivation is not of great
interest here).

B.2 One-body density matrix
In the spinless case, spins up and down are stacked in different blocks of the matrix. In
the diagonal blocks, operators are Qij,σσ = ⟨c†

σicσj⟩, and they conserve both the number
of particles n and the spin sz. That is not the case for off-diagonal blocks, that are in σσ′

and do not conserve sz anymore. As for the IRLM, operators ci,σ,n,sz
are required for the

flow of Qi,j,σ,σ′,n,sz
, and they neither conserve n nor sz. The flow of annihilation operators

is discussed here also.

Definition of an operator

In the eigenbasis of step N + 1, an operator O changing the n by m and sz by s reads:[
ON+1,n

]
αβ

= N+1⟨α, n−m|ON+1,n|β, n⟩N+1

=
(
D† C† B† A†

)
N+1,n−m,sz−s


O11 O12 O13 O14
O21 O22 O23 O24
O31 O32 O33 O34
O41 O42 O43 O44




D

N+1,n,sz

C
N+1,n,sz

B
N+1,n,sz

A
N+1,n,sz

 .
(B.11)

Operators that we will consider are hermitian, so we only consider blocks above the
diagonal. As an example, the element O12 reads:

[O12]αβ = N⟨α, n−m− 2, sz − s| c↓N+1c↑N+1ONc
†
↑N+1 |β, n− 1, sz − 1⟩N . (B.12)

The actual calculations for the operators of the reduced density matrix are given now.
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Operators O = c†
σicσj: m = s = 0

◦ i, j < N + 1: terms ̸= 0 → O11,O22,O33,O44

O
i,j,N+1,n,sz

= D†
N+1,n,sz

O
i,j,N,n−2,sz

D
N+1,n,sz

+ C†
N+1,n,sz

O
i,j,N,n−1,sz−1CN+1,n,sz

+B†
N+1,n,sz

O
i,j,N,n−1,sz+1BN+1,n,sz

+ A†
N+1,n,sz

O
i,j,N,n,sz

A
N+1,n,sz

(B.13)

◦ i = N + 1, j < N + 1 and σ =↑: terms ̸= 0 → O13,O24

O
i,j,N+1,n,sz

= −D†
N+1,n,sz

c
↑ j,N,n−1,sz+1

B
N+1,n,sz

+ C†
N+1,n,sz

c
↑ j,N,n,sz

A
N+1,n,sz

(B.14)

◦ i = N + 1, j < N + 1 and σ =↓: terms ̸= 0 → O12,O34

O
i,j,N+1,n,sz

= D†
N+1,n,sz

c
↓ j,N,n−1,sz−1

C
N+1,n,sz

+B†
N+1,n,sz

c
↓ j,N,n,sz

A
N+1,n,sz

(B.15)

◦ i = j = N + 1 and σ =↑: terms ̸= 0 → O11,O22

O
i,j,N+1,n,sz

= D†
N+1,n,sz

D
N+1,n,sz

+ C†
N+1,n,sz

C
N+1,n,sz

(B.16)

◦ i = j = N + 1 and σ =↓: terms ̸= 0 → O11,O33

O
i,j,N+1,n,sz

= D†
N+1,n,sz

D
N+1,n,sz

+B†
N+1,n,sz

B
N+1,n,sz

(B.17)

Operators O = c†
↑ic↓j: m = 0, s = −2

◦ i, j < N + 1: terms ̸= 0 → O11,O22,O33,O44

O
i,j,N+1,n,sz

= D†
N+1,n,sz+2

O
i,j,N,n−2,sz

D
N+1,n,sz

+ C†
N+1,n,sz+2

O
i,j,N,n−1,sz−1CN+1,n,sz

+B†
N+1,n,sz+2

O
i,j,N,n−1,sz+1BN+1,n,sz

+ A†
N+1,n,sz+2

O
i,j,N,n,sz

A
N+1,n,sz

(B.18)

◦ i = N + 1, j < N + 1: terms ̸= 0 → O13,O24

O
i,j,N+1,n,sz

= −D†
N+1,n,sz+2

c
↓ j,N,n−1,sz+1

B
N+1,n,sz

+ C†
N+1,n,sz+2

c
↓ j,N,n,sz

A
N+1,n,sz

(B.19)

◦ i < N + 1, j = N + 1: terms ̸= 0 → O21,O43

O
i,j,N+1,n,sz

= A†
N+1,n,sz+2

c†
↑ j,N,n,sz+2

B
N+1,n,sz

+ C†
N+1,n,sz+2

c†
↓ j,N,n−1,sz+1

D
N+1,n,sz

(B.20)

◦ i = j = N + 1: terms ̸= 0 → O23

O
i,j,N+1,n,sz

= C†
N+1,n,sz+2

B
N+1,n,sz

(B.21)
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Operators O = c↑ i: m = 1, s = 1

◦ i < N + 1: terms ̸= 0 → O11,O22,O33,O44

O
i,j,N+1,n,sz

= D†
N+1,n−1,sz−1

O
i,j,N,n−2,sz

D
N+1,n,sz

− C†
N+1,n−1,sz−1

O
i,j,N,n−1,sz−1CN+1,n,sz

−B†
N+1,n−1,sz−1

O
i,j,N,n−1,sz+1BN+1,n,sz

+ A†
N+1,n−1,sz−1

O
i,j,N,n,sz

A
N+1,n,sz

(B.22)

◦ i = N + 1: terms ̸= 0 → O31,O42

O
i,j,N+1,n,sz

= A†
N+1,n−1,sz−1

C
N+1,n,sz

+B†
N+1,n−1,sz−1

D
N+1,n,sz

(B.23)

Operators O = c↓ i: m = 1, s = −1

◦ i < N + 1: terms ̸= 0 → O11,O22,O33,O44

O
i,j,N+1,n,sz

= D†
N+1,n−1,sz+1

O
i,j,N,n−2,sz

D
N+1,n,sz

− C†
N+1,n−1,sz+1

O
i,j,N,n−1,sz−1CN+1,n,sz

−B†
N+1,n−1,sz+1

O
i,j,N,n−1,sz+1BN+1,n,sz

+ A†
N+1,n−1,sz+1

O
i,j,N,n,sz

A
N+1,n,sz

(B.24)

◦ i = N + 1: terms ̸= 0 → O21,O43

O
i,j,N+1,n,sz

= A†
N+1,n−1,sz+1

B
N+1,n,sz

− C†
N+1,n−1,sz+1

D
N+1,n,sz

(B.25)

This closes the recursive definition of the one-body density matrix of the SIAM, and
only the initialization has to be done by hand before starting the flow. The truncation
acts on the matrices A, ..., D, such that operators are at each step defined in the truncated
basis.

B.3 Initialization
In the SIAM, the interaction part is local on the impurity, such that the initialization can
only take into account the 2 fermions on the impurity. However, the hopping term V has
to be added to the first step of the flow only. One can chose to start with the impurity
and the first site, so that the flow is defined the same way at each step. The price to pay
is the larger basis for the initialization. We make the first choice for simplicity here, but
the second one was chosen for the actual implementation of the algorithm (the results are
the same).
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B.3.1 Hamiltonian
As in appendix A, the initialization step starts at N = 2, and sz ranges from −1 to 1.

◦ n = 0, sz = 0:

One state: |0⟩, E200 = Λ−0.5U

4 → A200 = ((1)), B200 = C200 = D200 = (()). (B.26)

◦ n = 1:
◦ sz = −1:

One state: d†
↓|0⟩, E21−1 = −Λ−0.5U

2 → C21−1 = ((1)), A21−1 = B21−1 = D21−1 = (()).
(B.27)

◦ sz = 0: No states
◦ sz = 1:

One state: d†
↑|0⟩, E211 = −Λ−0.5U

2 → B211 = ((1)), A211 = C211 = D211 = (()). (B.28)

◦ n = 2: No states for sz ̸= 2.
◦ sz = 2:

One state: d†
↑d

†
↑|0⟩, E222 = Λ−0.5U

4 → D222 = ((1)), A222 = B222 = C222 = (()). (B.29)

Transformation matrices being initialized, we can initialize the operators of interest. At
the first step of the flow, the off-diagonal elements to be considered are not proportional
to t0, but to V . Then, for N = 6, t0 is introduced as in the above calculation.

B.3.2 Q matrix and c vector
With a similar format to appendix A, the first definition of these operators are given,
sector by sector: ◦ n = 0, sz = 0:

Q200 =
(

0 0
0 0

)
, c200 =

(
0
0

)
. (B.30)

◦ n = 1:
◦ sz = −1:

Q21−1 =
(

0 B†
211C21−1

0 C†
21−1C21−1

)
, c21−1 =

(
0

A†
200B21−1

)
. (B.31)

◦ sz = 1:

Q211 =
(
B†

211B211 0
C21−1B211 0

)
, c211 =

(
0

A†
200B211

)
. (B.32)

◦ n = 2, sz = 2:

Q222 =
(
D†

222D222 0
0 D†

222D222

)
, c222 =

(
C†

21−1D222
B†

211D222

)
. (B.33)
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Here, we defined Q and c for both spins, but during the flow each sector has to be
treated separately, since they do not evolve with the same equations. Thus, each entry
of Q defined here (it is hermitian so the upper right block can be computed for the lower
left) corresponds to a block that will evolve and grow (by one row and column at each
step) during the flow. It is similar for c, spin up and down must evolve separately. This
initialization ends this appendix, that provided all details for an NRG implementation of
the SIAM, with particle and spin conservation.
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C RGNO - Symmetry breaking by
the few-body ansatz

It is shown in this appendix how the few-body ansatz for the IRLM wave function induces
a spurious breaking of the PH symmetry. The wave function as written in Eq. (4.1) is
recalled here:

|Ψ⟩ =
−M/2−1∏
α=−N/2

q†
α

∑
S

ΨS |S⟩ , (C.1)

where |S⟩ are Slater deerminants concerning only correlated orbitals. The effective Hamil-
tonian concerning the M + 2 correlated orbitals at any step of the iterative process, is
recalled from Eq. (3.16) (in a compact form):

Hfew =
M/2+1∑

n,m
=−M/2−1

tnmq
†
nqm +

M/2+1∑
n,m,p,q

=−M/2−1

Unm
pq q†

nq
†
mqpqq, (C.2)

where tnm contains every initial hopping term plus the Hartree shift induced by the uncor-
related orbitals. The interaction term is firstly investigated to verify that it respects PH
symmetry in this form. The effect of the particle-hole conjugation operator P on natural
orbitals (for each sector) reads P †qaP = q†

−a. Applying this operator on the interaction
term leads to (the identity P †P = 1 is inserted between each fermion operator):

P †

 M/2+1∑
n,m,p,q

=−M/2−1

Unm
pq q†

nq
†
mqpqq

P =
M/2+1∑
n,m,p,q

=−M/2−1

Unm
pq q−nq−mq

†
−pq

†
−q

=
M/2+1∑
n,m,p,q

=−M/2−1

Unm
pq q−n

(
δmp − q†

−pq−m

)
q†

−q

=
M/2+1∑

n,m
=−M/2−1

(Unm
mn − Unm

nm ) −
M/2+1∑
n,m,p

=−M/2−1

(
U−p−m

−p−n + U−m−p
−n−p − U−m−p

−p−n − U−p−m
−n−p

)
q†

nqm

+
M/2+1∑
n,m,p,q

=−M/2−1

U−q−p
−m−n q

†
nq

†
mqpqq,

(C.3)

where indices have been changed from −a to a so that fermionic operators are sorted in
the proper way. If PH symmetry holds, the following equality must hold: U−q−p

−m−n = Unm
pq ,

that would validate the quartic term. Q is diagonalized by the orthogonal matrix D, such
that ci = ∑N/2

a=−N/2 Diaqa, which leads to (it is recalled that c†
−1 ≡ d creates a fermion in

the impurity level, and the eigenvalues of Q are real such that D†
ia = Dia):

U−q−p
−m−n = U D−1−qD0−pD0−mD−1−n. (C.4)
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With the additional property P †ciP = (−1)ic†
i , it is straightforward to see that D−1−a =

−D−1a and D0−a = D0a and hence:

U−q−p
−m−n = U D−1qD0pD0mD−1n = U D−1nD0mD0pD−1q = Unm

pq . (C.5)

Therefore the quartic term obeys PH symmetry, and quadratic terms involving U must
be investigated. Each term quadratic in the fermion operators that is proportional to
the interaction strength in the Hamiltonian must be accounted for to consider eventual
cancellations. All these terms, when transformed by the PH conjugation operator, read:

M/2+1∑
n,m

=−M/2−1

−U

2
(
D−1nD−1m +D0nD0m

)
+

−M/2−2∑
α=−N/2

(
− Unα

mα + Unα
αm + Uαn

mα − Uαn
αm

)P †q†
nqmP

=
M/2+1∑

n,m
=−M/2−1

U
2
(
D−1nD−1m +D0nD0m

)
+

−M/2−2∑
α=−N/2

(
− Unα

mα + Unα
αm + Uαn

mα − Uαn
αm

) q†
nqm,

(C.6)

up to a constant term C that is not written above. Putting Eq. (C.3) and (C.6) together,
the interaction part (constituted of every term proportional to U) of the Hamiltonian
becomes:

P †HUP =
M/2+1∑

n,m
=−M/2−1

[
U

2
(
D−1nD−1m +D0nD0m

)

+
M/2+1∑

α=−N/2

(
− Unα

mα + Unα
αm + Uαn

mα − Uαn
αm

)]
q†

nqm + Unm
pq q†

nq
†
mqpqq + C,

(C.7)

in such a way that it is required for PH symmetry that the following equality holds:

U
(
D−1nD−1m +D0nD0m

)
=

M/2+1∑
a=−N/2

(
− Una

ma + Una
am + Uan

ma − Uan
am

)

=
M/2+1∑

a=−N/2
U

(
−D−1nD0aD0mD−1a +D−1nD0aD0mD−1a

+D−1nD0aD0mD−1a −D−1nD0aD0mD−1a

)
.

(C.8)

The orthonormality of the complete set of natural (and Wannier) orbitals implies the
following relation: ∑N/2

a=−N/2 PiaPja = δij. In Eq. (C.8), sums end at M/2 + 1, such
that orthonormality relations are not fulfilled exactly. This induces an additional term in
P †HUP , which is responsible for the breaking of PH symmetry.

Nevertheless, in regimes where Kondo correlations are small, natural orbitals are ex-
pected to be close to Wannier orbitals as seen in Fig. 3.8, and most of the weight of sites
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−1 and 0 is carried by correlated orbitals such that ∑N/2
a=−N/2 PiaPja ≃ δij. The symmetry

breaking is then quantitatively small, and the occupancy of the dot stays exponentially
close to 1/2. On the other hand, when correlations increase in the system, the impurity
is diluted among more and more natural orbitals (as are other sites of the chain) and
the symmetry breaking gets bigger and bigger. The impurity is therefore more polarized
(nd − 1/2 can become of order 10−2), which is similar to an infrared cutoff > TK that
prevents correlations to fully develop. Forcing Eq. (C.8) to be exact has been tested
in actual simulations and lead to numerical instabilities preventing any convergence of
the algorithm. Indeed, it changes in some sense the parameters of the true Hamiltonian
and therefore the targeted ground state changes at every iteration, while the algorithm is
really sensitive to such inconsistencies.
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D RGNO - Details on the exact
diagonalization

Details concerning the implementation of the exact diagonalization (ED) of the effective
Hamiltonian (dealing with M + 2 correlated orbitals) performed at each RGNO iteration
are given in this appendix. It is not claimed that the proposed method is optimal, but has
proven to be efficient enough for the purpose of the studies performed with the RGNO. The
code has been fully implemented in Python, with help of the external libraries Numpy and
Scipy, providing optimized C-based implementations of various linear algebra operations.
Note that the efficient broadcasting methods of arrays implemented in the Numpy library
overpass time consuming operations with lists inherent to basic Python codes.

D.1 Basis representation and Fock space
The exact diagonalization of an Hamiltonian describing interacting particles needs to be
performed in the Fock space, whose basis contains all possible states. In the present case,
the effective Hamiltonian projected in the correlated sector containing M + 2 orbitals can
be simply written:

Hfew =
M+1∑

n,m=0
tnmq

†
nqm +

M+1∑
n,m,p,q=0

Unm
pq q†

nq
†
mqpqq + C, (D.1)

where hoppings and interactions are all-to-all, and C is a constant shift. This spinless
Hamiltonian contains 2M+2 states, corresponding to all combinations from zero to M + 2
particles in M + 2 orbitals, with at most 1 particle per orbital (Pauli principle). The
above Hamiltonian enjoys the conservation of the number of particles, such that it can be
diagonalized by blocks of fixed number of particles. Since the solution is expected to be
close to the PH symmetric one, the ground state is expected to be found in the half-filled
sector. Without the need of the full spectrum, only this sector will be diagonalized, and
its ground state can be accurately found by a Lanczos procedure (routines for the Lanczos
are taken from the library Scipy, suited for sparse matrices). The Lanczos algorithm is
very profitable when only the first few (or last) eigenvalues and eigenvectors are desired,
which corresponds exactly to the need of the RGNO: at each iteration, only the lowest
energy state is required to project the correlators defining the one-body density matrix.

Fock states can be defined differently according to the chosen representation. Here,
the sector of fixed number of particles needs to be clearly defined, such that the occupancy
representation of states is chosen. A given state is hence written |Ψ⟩ = |n0, . . . , nM+1⟩,
where ni ∈ {0, 1} is the occupancy of the ith correlated orbital. In the text, correlated or-
bitals were indexed from −M/2−1 to M/2+1, but indices will be shifted here by M/2+1
to range from 0 to M +1 for convenience. The half-filled sector is thus defined (M chosen
even) by each state in which ∑M+1

i=0 ni = (M + 2)/2. In the following, M2 = M + 2 is
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written to lighten the notation.

Numerically, a fermionic state can be efficiently defined through binary numbers:
for instance, state |Ψ⟩ = |010110⟩ (for M2 = 6) can be stored by the binary number
0101102 = 2610. Each number between 0 and 2M2 has its own binary notation, and the
number of particles in each state is the sum of ones in the corresponding binary number.
Here, it is (arbitrarily) chosen to count the powers of 2 from the left to the right, which
will be the convention in the following: 1000002 = 1, 0000012 = 32. States range from
0000002 = 0 to 1111112 = 2M2 − 1 which correctly generates 2M2 states. In the half-filled

sector, there are Nh−f =
(
M2
M2/2

)
= M2!

(M2/2)!2 states only, which corresponds to a reduction

of the number of states by a factor ∼ 3 for M2 = 6, and ∼ 5 for M2 = 12.

D.2 Sparse representation: masks
Once states in the half-filled sector are defined, the Hamiltonian must be constructed in
the given basis. The form of Eq. (D.1) is very general, and no additional symmetries
can be implemented. However, a lot of states do not couple through the Hamiltonian,
i.e. ⟨Ψa|Hfew|Ψb⟩ = 0, which renders the matrix in the Fock space relatively sparse. The
Hamiltonian can change the occupancies of 0,2 or 4 orbitals in a given state (without
changing its number of particles). For instance, the state |010011⟩ can not be trans-
formed to the state |101100⟩ by application of the Hamiltonian. When two states do not
couple, the corresponding entry in the Hamiltonian matrix is zero, and bears some value
otherwise. Actually, there are three ways for two states to couple: they can be identi-
cal (no orbital changed its occupancy), a single 1 in a state can exchange to an empty
orbital (a zero in the binary notation) (two orbitals changed their occupancies), or two
1s can exchange to two 0s (four orbitals changed their occupancies). The knowledge of
the coupling matrices between each state allows to compute only non-zero elements of
the Hamiltonian, which is a gain of computational time and of storage. Each entry is
stored as (i, j,Hij), and we only need to define every state j coupling to each state i (the
Hamiltonian is hermitian, such that we define only the upper (or lower) part of the ma-
trix, j < i), and then evaluate the corresponding Hamiltonian element (see the following
section D.3). Hence, there are three masks to define for each coupling possibility between
two states presented above.
1. The first one is straightforward as it corresponds to diagonal elements of the Hamilto-
nian i = j.
2. For the second one and the third one, two matrices Fia and Eia are introduced: Fia con-
tains the position in state i of each occupied (or empty for E) orbital. Thus, i ∈ [0,Nh−f [
and a ∈ [0,M2[, and at half-filling both matrices are of dimension (Nh−f ,M2/2). Then,
the binary representation of the state is used to define all states to which it couples: if
the state i corresponds to Ni = 0101102 = 26, then it couples at the state represented by
Nj = 0100112 = 50 through operators q†

5q3 of the Hamiltonian. In this case, Fi = (1, 3, 4)
and Ei = (0, 2, 5). Hence, the operation used to find the state 50 is Nj = Ni +2Ei,a −2Fi,b ,
where (a, b) = (5, 3) in this example. In this way, each pair (a, b) generates a new state to
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which state i couples, if a ̸= b. If a = b, the state is the same (Ni = Nj → i = j) and is
already defined through the first mask. However, Fi ∩ Ei = 0, such that a ̸= b is always
true. To avoid double counting of states (interchanging a and b leads to the same state),
the condition a < b is imposed.
3. For the third way of coupling, the same method is used yet involves more indices:
Nj = Ni + 2Ei,a + 2Ei,b − 2Fi,c − 2Fi,d , with a ̸= b and c ̸= d to respect the Pauli princi-
ple. As before, a < b and c < d are imposed to avoid multiple counting of the same states.

Since states are defined in the half-filled (or any) sector, Nj does not correspond to
the jth entry of the Hamiltonian in this sector. It is thus necessary to build a list K of
size Nh−f with entries KNj

= j, thanks to which the masks are properly defined. With
these masks, the number of matrix elements is reduced from N 2

h−f to:

Nsparse = Nh−f

(
1 +

(
M2

2

)2
+

M2
2 !

2!(M2
2 − 2)!

)
, (D.2)

which allows to consider only ∼ 40% of the states for M2 = 8, 10% for M2 = 12 and even
less for larger M .

D.3 Construction of the Hamiltonian
The masks being created, each non-zero entry of the Hamiltonian has to be filled by its
value. For each set of coordinate (i, j) of each mask, different terms of the Hamiltonian
are involved, and each of the three different cases are treated separately. Since the system
is constituted of fermionic particles, the fermionic sign arising from anti-commutation
relations has to be treated with care for each matrix element. In order to compute the
fermionic sign, different options are possible: for ⟨Ψj|q†

aqb|Ψi⟩ (with na = 0 and nb = 1
in |Ψ⟩), the correct sign of the term can be the sign of the permutation between a and
b in the sequence defined by |Ψi⟩. It can also be defined by the power of (−1) given by
the number of fermions passed by qb and q†

a. The first method requires the sign of each
permutation, which is the determinant of the corresponding permutation matrix. The
second method is on the contrary easily implemented, and is prefered in the actual code.
1. Diagonal terms concern the constant part of the Hamiltonian, plus every term that does
not change the state after application. Hence, hopping elements contribute by ∑na=1 t

a
a

through operators q†
aqa, if a ∈ Fi (i.e. orbital a is filled in the state). The interaction

term also participates by an amount ∑na=n
b
=1(Uab

ba −Uab
ab ), with a ∈ Ei, b ∈ Ei and a ̸= b.

2. Terms defined through the second mask are every hopping terms s2−abt
a
b (a ̸= b, and

s2 = ±1 is the fermionic sign) such that a ∈ Ei and b ∈ Fi, and interaction terms with
two equal indices that are summed s2

∑
n

b
=1(Uab

bc +U ba
cb −Uab

cb −U ba
bc ), with a ∈ Ei, b ∈ Fi,

c ∈ Fi, b ̸= c.
3. Remaining matrix elements defined by the third mask are only coming from the inter-
action term involving four different orbitals, s4−abcd(Uab

cd +U ba
dc −U ba

cd −Uab
dc ), with s4 = ±1.

Diagonal terms have no fermionic sign because operators q†
aqa come always in pair,

such that if qa yield to a minus sign, it will be canceled by the same minus sign brought

129



APPENDIX D. RGNO - DETAILS ON THE EXACT DIAGONALIZATION

by q†
a. The two other fermionic signs are given by:

s2−ab = (−1)
∑

i<a
ni+
∑

i<b
ni × sign(b− a)

s4−abcd = (−1)
∑

i<a
ni+
∑

i<b
ni+
∑

i<c
ni+
∑

i<d
ni × sign(d− c) × sign(a− b),

(D.3)

where sign functions restore the correct sign if b < a, since ∑i<a ni counts the b orbital
while it was emptied by qb before.

D.4 One-body density matrix
At each iteration, the one-body density matrix is constructed in the ground state of the
current enlarged Hamiltonian. In the uncorrelated sector, the one-body density matrix
Q is trivially 1 or 0, if the orbital is in the occupied or unoccupied sector respectively.
Only the block concerning the M + 2 correlated orbitals is relevant in order to obtain the
new set of natural orbitals. From the exact diagonalization of the sparse Hamiltonian by
Lanczos, the transformation matrix going from the natural orbital basis to the ground
state is used to project each correlator ⟨q†

nqm⟩. Each of these correlators is defined in the
Fock space in the same manner as the Hamiltonian, with only one element q†

nqm of unique
amplitude 1.

Any static observable at T = 0 involving no more than 4 fermionic operators can be
defined similarly: it is the case for the occupancy of the dot (that is actually the first
element of the Q-matrix) or the screening cloud correlator Cij.

D.5 Variance of the Hamiltonian
The variance is computed to determine quantitatively the accuracy of a given state.
Within the few-body wave function, a part of this observable is projected in the Fock
space, as the one-body density matrix previously. However, the variance (that is defined
in Eq. (4.2)) contains higher order terms that require an extension of the construction of
matrices in Fock space. To take advantage of the shape of the interaction in real space,
the Hamiltonian is squared in the Wannier representation:

(HIRLM)2 = U2
(
d†c†

0c0d
)2

+
∑

ij≥−1
tijc

†
icj(d†c†

0c0d) +Hquart +Hquadra, (D.4)

where tij concerns every quadratic term of HIRLM, and Hquart (Hquadra) contains every
quartic (quadratic) term arising when taking the power of the Hamiltonian, which do not
require any extension of the algorithm.
Fortunately (when it is not a matter of fermionic sign) the particles are fermions and
the property (d†d)2 = d†d (similarly (c†

0c0)2 = c†
0c0) reduces the first term to a quadratic

term, so that only terms dealing with 6 fermionic operators are to implement. A new
mask is built for the operators linking two states that differ by 3 fermions (note that this
is not necessary for M2 ≤ 4, but actual simulations consider at least M2 ≥ 6), then the
corresponding terms of H are determined.
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Mask

As before, the states that couple to each other are found through the binary representation
of states Nj = Ni + 2Ei,a + 2Ei,b + 2Ei,c − 2Fi,d − 2Fi,e − 2Fi,f , with c < a, c < b, b < a,
d < f , d < e and e < f . The number of states coupling to each state through this term
is then:

N3 =
(

M2
2
3

)
=

M2
2 !

3!(M2 − 3)! , (D.5)

and for M = 10 this number equals N3 = 400, that is only half of Nh−f = 924 (here the
hermitian character of the operator is not accounted) which makes the calculation of the
variance expensive for M ≥ 12. However, the exponential decay of the variance allows
us to compute it for smaller M , and to trust results for larger M if they were already
converged at a reasonable precision.

Matrix elements

The matrix elements will spread into the 4 masks depending on the indices of the tensors.
The 6-legs tensor is build from: Vabcdef = ∑N−1

i,j=−1 t
i
jDiaDjfUbcde q

†
aq

†
bq

†
cqdqeqf . Then, as

before, one needs to take every term depending on the number of equal indices. For no
equal indices, there is one term linking i to j, 9 for two equal indices (j belongs to the
third mask), 18 for four equal indices (second mask), and 6 for all indices equal by pairs
(first mask). Each fermionic index between state i and j, and the relative signs between
every term must also be computed carefully. The calculation of the variance opens the
possibility to compute every observable that contains 6 fermionic operators, but usually
physical observables of interest have no more than 4 operators.
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E RMT - Probability distribution of
the impurity wave function

E.1 Model
The random impurity model presented in Eq. (6.1) is recalled here. We are looking the
distribution of the occupation of the impurity P (nd), defined as nd = ∑

Eα<0 |ψ0 (α) |2,
where ψ0 (α) is the site 0 component of the eigenvector α of matrix Ĥ, and Eα is its
associated eigenvalue. Hence, we want to determine the probability distribution function
(PDF) of the perturbed Hamiltonian H defined as:

Hij = Gij + V (δi0δj1 + δi1δj0), with


Gij = 0, ∀i ̸= j = 0 and j ̸= i = 0,
Gij = ϵd, for i = j = 0,
Gij = Gij otherwise.

(E.1)
The entries Gij for i, j > 0 are distributed following a Gaussian distribution of zero mean
and of deviation σ, and are real and symmetric. The ensemble under consideration is
known as the Gaussian orthogonal ensemble (GOE), named after the orthogonal ma-
trix that diagonalizes hermitian matrices. The joint distribution of the eigenvalues and
eigenvectors of Ĝ is known:

Pfree({eα}, {rα}) =
N∏

1≤α<β

|eα − eβ| 1
√
rα

δ

 N∑
β=1

rβ − 1
 e− 1

4σ

N∑
β=1

e2
β

, (E.2)

where eα and rα = |ϕi>0 (α) |2 corresponds respectively to the eigenvalue and eigenvector
α of Ĝ. In our case, we imposed in (E.1) that ϕ0(0) = 1, such that ϕi>0(0) = 0, and
e0 = ϵd, and thus we have:

P ({eα}, {rα}) = Pfree({eα}, {rα})δ (e0 − ϵd) δ (r0) (E.3)

E.2 Definition of the eigenvalue problem

For both matrices Ĥ and Ĝ, their respective eigenvalues and eigenvectors can be written
with the following equations:

N∑
j=0

Gijϕj (α) = eαϕi (α) , with e0 = ϵd, ϕ0 (α) = δ0α

N∑
j=0

Hijψj (α) = Eαψi (α) .
(E.4)
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The orthonormality of eigenvectors ψ and ϕ is defined as usual:
N∑
i
ϕi (α) ϕi (β) = δαβ,

N∑
α
ϕi (α) ϕj (α) = δij.

(E.5)

The notation ϕi (α) (and equivalently for ψi (α)) is used in the following, and corresponds
to the ith component of the αth eigenvector which holds an energy eα (Eα). The trans-
formation matrix Ĉ, which changes the new basis ψ to the old one ϕ, is defined as:

ψj (α) =
N∑
β
Cαβ ϕj (β)

ϕj (α) =
N∑
β
C−1

αβ ψj (β)
, with C−1

αβ = Cβα (Ĉ orthogonal). (E.6)

The problem is now completely defined, and explicit relations must be found between
the old set of variables and the new ones to express the problem in the eigenbasis of
the Hamiltonian Ĥ. The PDF being defined through integrals of the old variables, the
determinant of the Jacobian defined for the change of basis is also calculated in the
following. The change of basis is now presented step by step in the spirit of Ref. [177],
which developed the calculation for a perturbation of rank 1.

E.3 Change of basis

E.3.1 From eigenvectors {ϕ1 (α)} to eigenvalues {Eα}
The desired change of variables ({eα}, {rα}) → ({Eα}, {zα}) can not be done in one shot,
and hence will be done in two steps. In this first section, eigenvectors of the free problem
will be expressed through the eigenvalues of the perturbed problem, this choice being
relevant given the form of the equations. Firstly, elements of the transformation matrix
Ĉ are expressed in an explicit form:

N∑
j=0

Hijψj (α) = Eαψi (α) ⇒
N∑

j=0

[
Gij + V (δi0δj1 + δi1δj0)

]
ψj (α) = Eαψi (α)

⇒
N∑

β=0
Cαβ

 N∑
j=0

Gijϕj (β)
− Eαϕi (β)

 = −V
N∑

j=0
(δi0δj1 + δi1δj0)ψj (α)

⇒
N∑

β=0
Cαβ

(
Eα − eβ

)
ϕi (β) = V (δi1ψ0 (α) + δi0ψ1 (α))

⇒
N∑

i,β=0
Cαβ

(
Eα − eβ

)
ϕi (γ) ϕi (β) = V

N∑
i=0

ϕi (γ) (δi1ψ0 (α) + δi0ψ1 (α))

⇒ Cαγ

(
Eα − eγ

)
= V (ϕ1 (γ) ψ0 (α) + ϕ0 (γ) ψ1 (α))

⇒ Cαβ = V
ϕ1 (β) ψ0 (α) + ϕ0 (β) ψ1 (α)

Eα − eβ

.

(E.7)
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This last equality is injected in the change of basis (E.6):

N∑
β=0

Cαβϕ0 (β) =
N∑

β=0

V
Eα−e

β

[
ϕ1 (β) ϕ0 (β)ψ0 (α) + |ϕ0 (β) |2ψ1 (α)

]
,

N∑
β=0

Cαβϕ1 (β) =
N∑

β=0

V
Eα−e

β

[
ϕ0 (β) ϕ1 (β)ψ1 (α) + |ϕ1 (β) |2ψ0 (α)

]
,

ϕ0 (α) = δα0, by definition,

⇒


ψ0 (α) =

N∑
β=0

V
Eα−e

β

(
δβ0ϕ1 (β) ψ0 (α) + δβ0ψ1 (α)

)
,

ψ1 (α) =
N∑

β=0

V
Eα−e

β

(
δβ0ϕ1 (β)ψ1 (α) + |ϕ1 (β) |2ψ0 (α)

)
,

⇒


ψ0 (α)

(
1 − V ϕ1(0)

Eα−ϵ
d

)
= V

Eα−ϵ
d
ψ1 (α) ,

ψ1 (α)
(

1 − V ϕ1(0)
Eα−ϵ

d

)
=

N∑
β=0

V
Eα−e

β
|ϕ1 (β) |2ψ0 (α) ,

⇒


ψ0 (α)

(
1 − V ϕ1(0)

Eα−ϵ
d

)
= V

Eα−ϵ
d
ψ1 (α) ,

(Eα − ϵd)
(

1 − V ϕ1(0)
Eα−ϵ

d

)2
=

N∑
β=0

V 2

Eα−e
β
|ϕ1 (β) |2.

(E.8)

At this point, ϕ1 (0) = 0 is also used to simplify the equations above, since this variable
is exactly known and will not be integrated at the end. Thus, there are N − 1 variables
on one side (|ϕ1 (1) |2, . . . , |ϕ1 (N) |2), that are expressed in N new variables (E0, . . . , EN),
thus one of the variables Eα is not independent. For the moment, this extra variable is
not explicitely determined, and is written E0 = f({Eα≥1}, {ψi∈{1,0} (α)}). The change
of variable ϕ1 (α > 0) → Eα is done first, so that eα and ψi∈{1,0} (α) are supposed to be
known here. The system to solve is thus the following:

ψ0 (α) = V
Eα−ϵ

d
ψ1 (α) , ∀α ≥ 0,

(Eα − ϵd) =
N∑

β≥1

V 2

Eα − eβ

|ϕ1 (β) |2, ∀α ≥ 1 .
(E.9)

The second line corresponds to the eigenvalues equation, for the variables |ϕ1 (β ≥ 1) |2,
that is to be solved. This system can be written in a matrix form:

Â b⃗ = Λ⃗, (E.10)

where tΛ⃗ =
(

(E1 − ϵd), . . . , (EN − ϵd)
)

, t⃗b = V 2
(

|ϕ1 (1) |2, . . . , |ϕ1 (N) |2
)

, and Â a

Cauchy matrix defined as Aij = 1
Ei−ej

. Cramer’s rule is used to determine the solutions
|ϕ1 (β) |2 through determinants of matrices:

V 2|ϕ1 (β) |2 = det(Âβ)
det(Â)

, (E.11)
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with Âβ a matrix defined by the subsitution of the column β of Â by Λ⃗:

Aβ =



1
E1−e1

. . . E1 − ϵd . . . 1
E1−eN... . . . ... . . . ...

... . . . ... . . . ...
1

EN −e1
. . . EN − ϵd . . . 1

EN −eN

 . (E.12)

The determinant of Âβ is calculated with the Laplace expansion of the βth column:

det(Âβ) =
N∑

α≥1
(−1)α+β(Eα − ϵd) det(Aβα), (E.13)

where Aβα is a matrix of rank N − 2, defined by Â without its row α and its column β.
The determinant of Â is then also computed:

det(Â) = det


1

E1−e1
. . . 1

E1−eN... . . . ...
1

EN −e1
. . . 1

EN −eN

 . (E.14)

The column β is substracted to each column j ̸= β, which leaves the determinant un-
changed:

1
Ei − ej

− 1
Ei − eβ

=
Ei − eβ − Ei + ej

(Ei − ej)(Ei − eβ) =
(ej − eβ)

(Ei − eβ)(Ei − ej)
. (E.15)

Each column is factorized by the term (ej − eβ), and each row by 1
Ei−e

β
.

det(A) =
∏
γ≥1

1
Eγ − eβ

∏
γ≥1,
γ ̸=β

(eγ − eβ) det



1
E1−e1

. . . 1 . . . 1
E1−eN... . . . ... . . . ...

... . . . ... . . . ...
1

EN −e1
. . . 1 . . . 1

EN −eN

 . (E.16)

Now the row α has to be eliminated: the row α is substracted to each row i except i = α:

1
Ei − ej

− 1
Eα − ej

=
Eα − ej − Ei + ej

(Eα − ej)(Ei − ej)
= (Eα − Ei)

(Eα − ej)(Ei − ej)
, (E.17)

and as before each column except the β one is factorized by 1
Eα−ej

, and each row except
the α one by (Eα − Ei):

det(Â) =

∏
γ≥1,
γ ̸=β

(eγ − eβ) ∏
γ≥1,
γ ̸=α

(Eα − Eγ)

∏
γ≥1

(Eγ − eβ) ∏
γ≥1,
γ ̸=β

(Eα − eγ)
det



1
E1−e1

. . . 0 . . . 1
E1−eN... . . . ... . . . ...

1 . . . 1 . . . 1
... . . . ... . . . ...
1

EN −e1
. . . 0 . . . 1

EN −eN


,
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det(Â) =

∏
γ≥1,
γ ̸=β

(eγ − eβ) ∏
γ≥1,
γ ̸=α

(Eα − Eγ)

∏
γ≥1

(Eγ − eβ) ∏
γ≥1

(Eα − eγ)
(Eα − eβ)(−1)α+β det(Âβα). (E.18)

Putting everything back in (E.11), the equation becomes simply:

|ϕ1 (β) |2 = 1
V 2

∏
γ≥1

(Eγ − eβ)∏
γ≥1,
γ ̸=β

(eγ − eβ)
∑
α≥1

 (Eα − ϵd)
(Eα − eβ)

∏
γ≥1

(Eα − eγ)∏
γ≥1,
γ ̸=α

(Eα − Eγ)

 . (E.19)

However, simple arguments from complex analysis and contour integration can be used
to express the following sums [180]:

N∑
j=1

xr
j

N∏
i=1,
i ̸=j

(xj − xi)
=


0, for 0 ≤ r < N − 1,
1, for r = N − 1,
N∑

k=1
xk, for r = N,

(E.20)

such that Eq. (E.19) can be simplified:

∑
α≥1

 (Eα − ϵd)
(Eα − eβ)

∏
γ≥1

(Eα − eγ)∏
γ≥1,
γ ̸=α

(Eα − Eγ)

 =
∑
α≥1


(Eα − ϵd) ∏

γ≥1,
γ ̸=β

(Eα − eγ)

∏
γ≥1,
γ ̸=α

(Eα − Eγ)



=
∑
α≥1

EN
α −

[
N∑

γ≥1
(eγ − eβ + ϵd)

]
EN−1

α + P (Er<(N−1)
α )∏

γ≥1,
γ ̸=α

(Eα − Eγ)
.

(E.21)

There is is a sum of 3 terms to calculate: the two first are respectively proportional to
EN

α and EN−1
α , and the last one corresponds to a polynome of degree < N − 1. Using the

simplifications of Eq. (E.20), Eq. (E.19) becomes:

|ϕ1 (β) |2 = 1
V 2

∏
γ≥1

(Eγ − eβ)∏
γ≥1,
γ ̸=β

(eγ − eβ)
∑
α≥1

(
Eα − eα + eβ − ϵd

)

⇒ rβ = |ϕ1 (β) |2 = 1
V 2

∏
γ≥1

(Eγ − eβ)∏
γ≥1,
γ ̸=β

(eγ − eβ)
(
eβ − E0

)
.

(E.22)

The eigenvectors of the free problem are now totally determined in terms of the old and
new eigenvalues. For this change of variables, the determinant of the Jacobian is needed:[

Ĵϕ→E

]
α,β

=
∂ rβ

∂Eα

. (E.23)
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The derivative for each entry of Ĵϕ→E is calculated:

∂ rβ

∂Eα

=
rβ

Eα − eβ

+

∏
γ≥1

(Eγ − eβ)

V 2 ∏
γ≥1,
γ ̸=β

(eγ − eβ)
,

⇒ det
(
Ĵϕ→E

)
= det

 rβ

Eα − eβ

+

∏
γ≥1

(Eγ − eβ)

V 2 ∏
γ≥1,
γ ̸=β

(eγ − eβ)

 .
(E.24)

The second term is identified from Eq. (E.22):∏
γ≥1

(Eγ − eβ)

V 2 ∏
γ≥1,
γ ̸=β

(eγ − eβ)
=

−rβ

E0 − eβ

, (E.25)

so that the determinant is straightforwardly calculated:

⇒ det
(
∂ rβ

∂Eα

)
= det

(
rβ

Eα − eβ

−
rβ

E0 − eβ

)
= det

(
rβ(E0 − Eα)

(E0 − eβ)(Eα − eβ)

)

=
∏
γ≥1

(
E0 − Eγ

E0 − eγ

) ∏
γ≥1

(rγ) det
(

1
Eα − eβ

)

=
∏
γ≥1

(
E0 − Eγ

E0 − eγ

)
(−1)N−1

V 2(N−1)

∏
δ,γ≥1

(Eγ − eδ)∏
δ,γ≥1,
γ ̸=δ

(eγ − eδ)
∏
δ≥1

(E0 − eδ)

∏
1≤γ<δ

(Eδ − Eγ)(eγ − eδ)∏
γ,δ≥1

(Eγ − eδ)

⇒ det(Ĵϕ→E) = 1
V 2(N−1)

∏
1≤γ<δ

(Eδ − Eγ)
(eγ − eδ)

∏
γ≥1

(
Eγ − E0

)
.

(E.26)

The free eigenvectors can thus be correctly replaced by the eigenvalues of the perturbed
problem in the PDF. The free eigenvalues are now replaced by the perturbed eigenvectors,
with the same procedure as above, to close the problem in the new set of variables.

E.3.2 From eigenvalues {eα} to eigenvectors {ψ0 (α)}

The orthogonality of the matrix Ĉ is used to directly compute its inverse:

⇒ C−1
αβ = Cβα = V

ϕ1 (α) ψ0 (β) + ϕ0 (α) ψ1 (β)
Eβ − eα

. (E.27)

As before, the previous equation is reinjected in (E.6):

N∑
β=0

C−1
αβψ0 (β) =

N∑
β=0

V
E

β
−eα

[
|ψ0 (β) |2ϕ1 (α) + ψ0 (β)ψ1 (β)ϕ0 (α)

]
,

N∑
β=0

C−1
αβψ1 (β) =

N∑
β=0

V
E

β
−eα

[
ψ0 (β)ψ1 (β)ϕ1 (α) + |ψ1 (β) |2ϕ0 (α)

]
,

ϕ0 (α) = δα0, ϕ1 (0) = 0, by definition.

(E.28)
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The system to solve in this case is the following:
ϕ0 (α) =

N∑
β=0

V
E

β
−eα

[
|ψ0 (β) |2ϕ1 (α) + ψ0 (β)ψ1 (β) δα0

]
ϕ1 (α) =

N∑
β=0

V
E

β
−eα

[
ψ0 (β)ψ1 (β)ϕ1 (α) + |ψ1 (β) |2δα0

]

⇒



N∑
β=0

V

Eβ − ϵd

ψ0 (β)ψ1 (β) = 1, α = 0 ⇒
N∑

β=0
|ψ0 (β) |2 = 1, (E.29a)

N∑
β=0

V

Eβ − eα

ψ0 (β)ψ1 (β) = 1, ∀α > 0 ⇒
N∑

β=0

Eβ−ϵd

E
β

−eα
|ψ0 (β) |2 = 1, (E.29b)

N∑
β=0

V

Eβ − ϵd

|ψ1 (β) |2 = 0, α = 0 ⇒
N∑

β=0

Eβ−ϵd

V
|ψ0 (β) |2 = 0, (E.29c)

N∑
β=0

V

Eβ − eα

|ψ0 (β) |2 = 0, ∀α > 0 ⇒
N∑

β=0

V
E

β
−eα

|ψ0 (β) |2 = 0, (E.29d)

where we used the relation ψ0 (α) = V
Eα−ϵ

d
ψ1 (α) that is valid ∀α ≥ 0, see Eq. (E.9). As

before, there are N variables ψ0 (β) and only N − 1 variables eα. Conditions on ψ0 (0) to
reduce the number of variables are determined by Eq. (E.29a), that fixes the normalization
of the wave function. The condition fixing E0 was not set before, and is now given by
Eq. (E.29c). The two constraints are therefore:

|ψ0 (0) |2 = 1 − ∑
β≥1

|ψ0 (β) |2,
N∑

β=0

(
Eβ − ϵd

)
|ψ0 (β) |2 = 0,

(E.30)

and injecting (E.29a) in (E.29c) reformulates the constraint on E0:(
E0 − ϵd

)1 −
∑
β≥1

|ψ0 (β) |2
+

∑
β≥1

(
Eβ − ϵd

)
|ψ0 (β) |2 = 0

∑
β≥1

(
Eβ − E0

)
|ψ0 (β) |2 = (ϵd − E0). (E.31)

In the trivial limit V = 0, the impurity is totally decoupled from the bath, so that
ψ0 (β) = δβ0, and the energy of the impurity is E0 = ϵd, a result that is easily seen in
Eq. (E.3.2). To express every |ψ0 (β) |2, it is used that Eq. (E.29a) is the α = 0 case of
Eq.(E.29b), such that the latter is extended for all α:

∑
β≥0

Eβ − ϵd

Eβ − eα

|ψ0 (β) |2 = 1, ∀α ≥ 0. (E.32)

An equation similar to Eq. (E.9) is found yet with a square matrix N × N including z0
and E0, and the system to solve is:

(
Eβ − ϵd

)
zβ =

det(Âβ)
det(Â)

, with zβ = |ψ0 (β) |2. (E.33)
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In this case, the matrix Âβ is defined by:

Âβ =



1
E0−e0

. . . 1 . . . 1
E0−eN... . . . ... . . . ...

... . . . ... . . . ...
1

EN −e0
. . . 1 . . . 1

EN −eN

 . (E.34)

As for Eq. (E.16), it is found that:

det(Â) =

∏
γ≥0,
γ ̸=β

(Eβ − Eγ)

∏
γ≥0

(Eβ − eγ)
det(Âβ), (E.35)

and injecting into Eq. (E.33):

zβ =

∏
γ≥1

(Eβ − eγ)∏
γ≥0,
γ ̸=β

(Eβ − Eγ)
and

∑
β≥1

zβ(Eβ − E0) =
∑
β≥1

(Eβ − eβ) = (ϵd − E0). (E.36)

With this definition, the change of N−1 variables eα to N variables zα must be considered.
At the end, the constraint Eq. (E.29a) is enforced to supress the extra degree of freedom.
As before, the determinant of the Jacobian matrix associated to this change of variables
is determined. In this case, it is simpler to express the derivative in the reversed way: at
the end, the determinant is just the inverse of the one found here. These elements read:(

∂zβ

∂eα

)
α,β≥1

=
−zβ

Eβ − eα

, (E.37)

so that its determinant is defined as:

det(Ĵe→Ψ) = det
(
∂zβ

∂eα

)−1

=
(∏

γ

−zγ

)−1

det(ĈJ)−1, (E.38)

where ĈJ is a Cauchy matrix whose determinant is known, so that:

det(Ĵe→Ψ) = (−1)N−1

∏
β≥1

zβ

∏
1≤δ<γ

(Eδ − Eγ)(eγ − eδ)∏
δ,γ

(Eδ − eγ)


−1

= (−1)N−1


∏

β,γ≥1
(Eβ − eγ)∏

β≥1,γ≥0,
γ ̸=β

(Eβ − Eγ)

∏
1≤δ<γ

(Eδ − Eγ)(eγ − eδ)∏
δ,γ

(Eδ − eγ)


−1

= (−1)N−1

 ∏
1≤δ<γ

(eγ − eδ)
(Eδ − Eγ)

∏
δ≥1

1
(Eδ − E0)

−1

,

(E.39)
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⇒ det(Ĵe→Ψ) = (−1)N−1

 ∏
1≤δ<γ

(Eδ − Eγ)
(eγ − eδ)

∏
δ≥1

(Eδ − E0)
 (E.40)

We arrived at the desired result, the change of variables being completely defined.
However, some terms can not trivially be replaced using this change of variables: the first
one is in the exponential of the PDF, and involves the sum of the squared free eigenvalues.
The second one is in the delta function (enforcing the normalization of the wave function),
and corresponds to the sum of every rβ. Simple results are found for these two terms,
and their derivation is presented now.

E.3.3 Sum of squared eigenvalues

To replace the term
N∑

α=0
e2

α which appears in the exponential in Eq. (E.2), the sum of
the free eigenvalues squared is required. It is easily derived using the trace of the square
matrix Ĝ, which has the useful property not to depend on the basis:

N∑
α=0

e2
α = Tr(G2) = Tr

(
(H − V (δi1δj0 + δi0δj1))2

)

=
N∑

α=0
E2

α + V 2Tr
(

(δi1δj0 + δi0δj1)2
)

− Tr
(

2V
N∑

k=0
Hik(δk1δj0 + δk0δj1)

)

=
N∑

α=0
E2

α + 2V 2 − Tr
(

2V
N∑

k=0

N∑
α=0

Eαψi(α)ψk(α)(δk1δj0 + δk0δj1)
)

=
N∑

α=0
E2

α + 2V 2 − 2V
N∑

j=i=0

N∑
α=0

Eα

(
ψi(α)ψ1(α)δj0 + ψi(α)ψ0(α)δj1

)

=
N∑

α=0
E2

α + 2V 2 − 4V
N∑

α=0
Eαψ0(α)ψ1(α).

(E.41)

Using Eq. (E.9), the sum is easily expressed with the new variables:

N∑
α=0

e2
α =

N∑
α=0

E2
α − 4

N∑
α=0

Eα(Eα − ϵd)zα + 2V 2 . (E.42)

E.3.4 Sum of squared eigenvectors
The sum of all the old eigenvectors appears in a Dirac delta to ensure the normalization
of ϕ1 (β). This sum must also be expressed as a function of our new variables. Using first
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the property that r0 = 0, it reads:

N∑
β=0

rβ =
N∑

β=1
rβ =

N∑
β=1

1
V 2

∏
γ≥1

(Eγ − eβ)∏
γ≥1,
γ ̸=β

(eγ − eβ)
(
eβ − E0

)
= −1
V 2

N∑
β=1

∏
γ≥0

(Eγ − eβ)∏
γ≥1,
γ ̸=β

(eγ − eβ)

= −1
V 2

N∑
β=1

(−1)N

(
−eN+1

β +
(

N∑
α=0

Eα

)
eN

β −
(

N∑
0≤α<δ

EαEδ

)
eN−1

β

)
+ P (eN−2

β )

(−1)N−1 ∏
γ≥1,
γ ̸=β

(eβ − eγ)

= −1
V 2


N∑

β=1

 eN+1
β∏

γ≥1,
γ ̸=β

(eβ − eγ)

−
(

N∑
α=0

Eα

)(
N∑

α=1
eα

)
+
 N∑

0≤α<δ

EαEδ


 ,

(E.43)

where P (eN−2
β ) is a polynom of order N − 2 in eβ, such that it vanishes due to Eq. (E.20).

The terms concerning eβ to the power N and N − 1 are also simplified with the same
equation. However, a last term with a power r = N + 1 is left to calculate. The set
of equations Eq. (E.20) are extended using complex analysis to express this sum also in
simple terms. For this purpose, the following complex valued function f(z) is defined:

f(z) =
zN+1

N∏
i=1

(z − ei)
. (E.44)

Using the residue theorem, this function can be integrated over a contour C enclosing
every simple pole ei:∫

C

f(z) dz = 2πi
N∑

j=1
lim
z→ej

(z − ej)f(z) = 2πi
N∑

j=1

eN+1
j

N∏
i=1
i ̸=j

(ei − ej)
, (E.45)

that is, up to a factor 2πi, the sum that needs to be computed. The function f(z) is
analytic, so that a Laurent series can be defined on the contour C that will converge to
f(z). This expansion reads:

f(z) =
zN+1

N∏
i=1

(z − ei)
=

zN+1

zN
N∏

i=1

(
1 − ei

z

) = z
N∏

i=1

1(
1 − ei

z

) . (E.46)

This function can be developed in series:

f(z) = z
N∏

i=1

+∞∑
j=0

(
ei

z

)j
 , (E.47)
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which corresponds to the Laurent series of f(z). The first orders in 1
z

are developed
explicitely to compute the integral, which gives:

∫
C

f(z) dz =
∫
C

z
N∏

i=1

(
1 + ei

z
+
(
ei

z

)2
+ o

( 1
z2

))
dz

=
∫
C

z

1 +
(

N∑
i=1

ei

)
1
z

+
 N∑

1≤i<j

eiej +
N∑

i=1
e2

i

 1
z2 + o

( 1
z2

) dz

=
∫
C

z +
(

N∑
i=1

ei

)
+ 1
z

 N∑
1≤i<j

eiej +
N∑

i=1
e2

i

+ o
(1
z

)
dz.

(E.48)

Almost all terms in the integral can be eliminated: o
(

1
z

)
terms will tend to 0 when the

radial part of the contour C will be set to +∞, since they are all fractions of the type
1

zα with α > 1. The constant and linear terms will simply be 0 using Cauchy integral
theorem, since they have no poles. Only the z−1 term is left to calculate, which can be
regularized to properly use the residue theorem around the pole at z = 0:

∫
C

f(z) dz =
 N∑

1≤i<j

eiej +
N∑

i=1
e2

i

 lim
ϵ→0+

∫
C

1
z
e−iϵzdz

=
 N∑

1≤i<j

eiej +
N∑

i=1
e2

i

 lim
ϵ→0+

2πi sgn(ϵ)

= 2πi
 N∑

1≤i<j

eiej +
N∑

i=1
e2

i

 .
(E.49)

Putting this last equation in Eq. (E.45), the desired result reads:

N∑
j=1

eN+1
j

N∏
i=1
i ̸=j

(ei − ej)
=
 N∑

1≤i<j

eiej +
N∑

i=1
e2

i

 . (E.50)

The sum of eigenvectors is thus given by:

N∑
β=0

rβ = −1
V 2

 N∑
i=1

e2
i +

N∑
1≤i<j

eiej −
(

N∑
α=0

Eα

)(
N∑

α=1
eα

)
+

N∑
0≤α<δ

EαEδ

 . (E.51)

Further simplifications can be done with some rearrangements in the previous equation:
(

N∑
i=1

xi

)2

=
N∑

i=1
xi

N∑
j=1

xj =
N∑

i=1
x2

i +
N∑

i=1
i ̸=j

xixj =
N∑

i=1
x2

i + 2
N∑

1≤i<j

xixj

⇔
N∑

1≤i<j

xixj = 1
2

( N∑
i=1

xi

)2

−
N∑

i=1
x2

i

 .
(E.52)
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This representation is also used for the sums including EiEj and eiej, which leads to the
following equation:

N∑
β=0

rβ = −1
V 2

1
2

N∑
i=1

e2
i + 1

2

(
N∑

i=1
ei

)2

−
(

N∑
α=0

Eα

)(
N∑

α=1
eα

)
+ 1

2

(
N∑

i=0
Ei

)2

− 1
2

N∑
i=0

E2
i


= −1

2V 2

( N∑
i=1

e2
i −

N∑
i=0

E2
i

)
+
(

N∑
i=1

ei −
N∑

i=0
Ei

)2 .
(E.53)

For the first part, Eq. (E.42) is used, and for the second one, it can be derived in the
same spirit than in the previous Sec. E.3.3:

N∑
i=0

eα = Tr(G) = Tr
(
H − V (δi0δj1 + δi1δj0)

)
= Tr(H) =

N∑
i=0

Eα. (E.54)

The final result is hence given by:
N∑

β=0
rβ = −1

2V 2

(
N∑

α=0
E2

α − 4
N∑

α=0
Eα(Eα − ϵd)zα + 2V 2 − ϵ2

d −
N∑

i=0
E2

i + ϵ2
d

)

= −1
2V 2

(
−4

N∑
α=0

Eα(Eα − ϵd)zα

)
− 1

⇒
N∑

β=0
rβ = 2

V 2

N∑
α=0

Eα(Eα − ϵd)zα − 1 .

(E.55)

E.4 Distribution
Every part of the change of variables being defined, the joint distribution of eigenvalues
and eigenvectors of the random impurity matrix H can be derived:

P
(

{Eα}, {zα}
)

= P
(

{eα}, {rα}
)

| det(Ĵe→Ψ)|| det(Ĵϕ→E)|. (E.56)

The first change of variables reads:

P
(

{eα}, {Eα}
)

= P
(

{eα}, {rα}
)

| det( ˆ̂
Jϕ→E)|

∝
N∏

1≤α<β

(eα − eβ)

V
∏

γ≥1,
γ ̸=α

(eγ − eα) 1
2

(eα − E0)
1
2
∏

γ≥1
(Eγ − eα) 1

2 )
∏

1≤γ<δ

(Eδ − Eγ)
(eγ − eδ)

×
∏
γ≥1

(
Eγ − E0

)
δ

 N∑
γ≥1

rγ − 1
 e− 1

4σ

N∑
γ≥1

e2
γ

∝

∏
1≤γ<δ

(Eδ − Eγ)(eδ − eγ)∏
δ,γ≥1

(Eγ − eδ)
1
2

∏
γ≥1

(
Eγ − E0

)
(
eγ − E0

) 1
2
δ

 N∑
γ≥1

rγ − 1
 e− 1

4σ

N∑
γ≥1

e2
γ

.

(E.57)
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Then the second one:

P
(

{Eα}, {zα}
)

= P
(

{eα}, {Eα}
)
δ

zα −

∏
γ≥1

(Eα − eγ)∏
γ≥0,
γ ̸=α

(Eα − Eγ)

 | det(Ĵe→Ψ)|

∝

∏
1≤γ<δ

(Eδ − Eγ)(eδ − eγ)∏
δ,γ≥1

(Eγ − eδ)
1
2

∏
γ≥1

(
Eγ − E0

)
(
eγ − E0

) 1
2
δ

 N∑
γ≥1

rγ − 1


× δ

zα −

∏
γ≥1

(Eα − eγ)∏
γ≥0,
γ ̸=α

(Eα − Eγ)


 ∏

1≤δ<γ

(Eδ − Eγ)
(eγ − eδ)

∏
δ≥1

(Eδ − E0)
 e− 1

4σ

N∑
γ≥1

e2
γ

(E.58)

∝

∏
1≤γ<δ

(Eδ − Eγ)2

∏
δ,γ≥1

(Eγ − eδ)
1
2

∏
γ≥1

(
Eγ − E0

)2

(
eγ − E0

) 1
2
δ

 N∑
γ≥1

rγ − 1
 e− 1

4σ

N∑
γ≥1

e2
γ

, (E.59)

where ∏
γ,δ≥1

(Eγ − eδ) = ∏
γ≥1

(zγ) ∏
γ≥1,δ≥0,

δ ̸=γ

(Eγ − Eδ) = ∏
γ≥1

(zγ) ∏
γ≥1

(Eγ − E0)
∏

1≤γ<δ
(Eγ − Eδ)2,

and using Eq. (E.55) and Eq. (E.42) for the delta and the exponential:

P
(

{Eα}, {zα}
)

∝
∏

1≤γ<δ

(Eδ − Eγ)
∏
γ≥1

(
Eγ − E0

)3/2

(
eγ − E0

) 1
2
e

− 1
4σ

N∑
γ=0

E2
γ

×
∏
1≤α

1
(zα) 1

2
δ

 N∑
γ=0

Eγ(Eγ − ϵd)zγ − V 2

 e 1
σ

N∑
γ=0

Eγ(Eγ−ϵd)zγ

e− V 2
2σ

(E.60)

Eigenvalues of the free problem are still present, and they are replaced by identifying

(z0)
1
2 =


∏

γ≥1
(E0−eγ)∏

γ≥1
(E0−Eγ)


1
2

. The delta function is applied to cancel the exponential term:

P
(

{Eα}, {zα}
)

∝
∏

0≤γ<δ

(Eδ − Eγ)
∏
α≥0

1
(zα) 1

2
δ

 N∑
γ=0

Eγ(Eγ − ϵd)zγ − V 2

 e− 1
4σ

N∑
γ=0

E2
γ

.

(E.61)

However, this equations still contains the two additional variables, and the constraints
z0 = 1 − ∑

γ≥1
zγ and (E0 − ϵd) = ∑

γ≥1
(E0 − Eγ)zγ must be introduced. The latter can

be simplified E0

(
1 − ∑

γ≥1
zγ

)
− ϵd = − ∑

γ≥1
Eγzγ, and injecting the first constraint leads to
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∑
γ≥0

Eγzγ = ϵd. Finally, the wanted distribution reads:

P
(

{Eα}, {zα}
)

∝
∏

0≤γ<δ

(Eδ − Eγ)e
− 1

4σ

N∑
γ=0

E2
γ ∏

α≥0

1
(zα) 1

2
δ

1 −
N∑

γ=0
zγ


× δ

ϵd −
N∑

γ=0
Eγzγ

 δ
V 2 −

N∑
γ=0

Eγ(Eγ − ϵd)zγ

 .
(E.62)

This result is exact (up to a norm), for any parameters or system size N . The main
difficulty is to treat correctly the different constraints, that are usually treated at a mean
field level for large N . Actual large N calculations with this PDF are presented in the
main part of the manuscript. Calculations are also presented for simpler PDF in the
following appendix F to gain intuition about the methods.
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F RMT - Calculating distribution
functions in simpler models

The calculations performed in the last section of chapter 6 are reproduced here for simpler
random matrix models, namely the free problem and the one with a rank one perturbation
on this free problem.

F.1 Random model without impurity
This is the simplest model that can be built, as the corresponding Hamiltonian has all its
entries randomly distributed:

P
(
Hij

)
= 1√

2πσ
exp

(
− 1

2σ2H
2
ij

)
, (F.1)

and the joint distribution of its eigenvalues and eigenvectors are given by the Porter-
Thomas distribution:

PP−T({eα}, {rα}) =
N∏

1≤α<β

|eα − eβ|
N∏

1=α

1
√
rα

δ

 N∑
β=1

rβ − 1
 e− 1

2σ2

N∑
β=0

e2
β

. (F.2)

The density of energies in this model are known, and are given by the Wigner’s semi-circle
law:

u(e) =
√

2σ2N − e2

2πσ2 , with

√
2Nσ∫

−
√

2Nσ

de u(e) = N. (F.3)

The quantity that we calculate here will be the occupancy of a given site ni (note that
this quantity is the same for any site i in this problem), even if no spatial scale is present
in this problem. This quantity is studied to make the parallel with the occupancy of the
impurity in the model presented in the main text. The occupancy of a given site i is
defined as follows:

ni =
∑

Eα<0
rα. (F.4)

Following the simplifications presented in Sec. 6.5.1, and by inserting the semi-circle law
for the density of levels, one can define the distribution of this occupancy in a convenient
form:

P (ni ) = 1
Z

+∞i∫
−∞i

dλ
+∞i∫

−∞i

dµ e−NF(λ,µ,ni ), (F.5)

where all constant terms (that does neither depend on the Lagrange multipliers nor on
ni) are absorbed in the norm Z, and the functional in the exponential reads:

F
(
λ, µ, ni

)
= 1

2N

√
2Nσ∫
0

de u(e) ln (λ) + 1
2N

0∫
−

√
2Nσ

de u(e) ln (λ+ µ) − 1
N

(
µni + λ

)
. (F.6)

147



APPENDIX F. RMT - CALCULATING DISTRIBUTION FUNCTIONS IN SIMPLER
MODELS

Every term in this functional is expected to be of order 1, since the density of states
u(e) integrates to N . Hence, the factor N can be explicitely factorized in Eq. (F.5), and
the steepest descent method, or saddle-point approxmation, can be used to compute the
integrals over the multipliers. This method replaces the value of the integral by the value
of the function at its maximum, that is dominant due to the power N in the exponential.
The saddle-point equations are easily solved for this model, as the integrals on the semi-
circle are trivially evaluated:

∂λF = 0 ⇒
√

2Nσ∫
0

de u(e)
2λ

= 1 − ni ,

∂µF = 0 ⇒
0∫

−
√

2Nσ

de u(e)
2(λ+µ) = ni ,

⇒


λ = N

4
1

(1−ni )
,

µ = N
4

1−2ni

ni (1−ni )
.

(F.7)

The integrals over λ and µ in Eq. (F.5) are replaced by the functional evaluated at the
saddle-points, and the integration over the semi-circle leads to a simple form for the
distribution of occupancies:

P (ni ) = 1
Z
(
ni (1 − ni )

)N/4
. (F.8)

Since the dependence on ni is determined, the norm can be computed through the nor-
malization constraint of P (ni ) between 0 and 1. This distribution is plotted in Fig. F.1
together with the distribution computed numerically, and both functions fit perfectly.

Figure F.1: Analytical (RMT) and numerical results (sampling) for the distribution func-
tion of the occupancy of a given site of the free random matrix problem. These results
concern matrices of dimension N = 300, and the dispersion of the random variables is
σ =

√
2. The sampling is performed over 104 realizations of the random matrix.

In the diluted regime of the impurity problem presented in the chapter 6, the distri-
bution of eigenvalues was almost the one of the free problem, and we could expect that
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the distribution of nd could be similar to the one presented here. However, the coupling
V/σ rules the width of this distribution in the impurity problem, such that an effective
description of the diluted regime could use the result of Eq. (F.8) but with a renormalized
σ ∝ V , that would change the power of N/4 and adjust the width on the distribution in
a simple manner.

F.2 Random model with onsite potential
The second model that is studied here is the case of a rank-one perturbation on the free
problem. This model was studied already in Ref. [176, 177] to explain deviations from the
Porter-Thomas distribution observed in experimental results. The corresponding problem
is the following:

Hij = Gij + Zδi1δj1, (F.9)
where Z is chosen to be proportional to σ

√
N , such that the parameter Z is always

relevant. In the work of Bogomolny [177], the joint distribution of eigenvalues and eigen-
vectors of H was found:

P ({Eα}, {zα}) =
∏

1≤γ<δ

|Eγ − Eδ|e
− 1

2σ2

N∑
γ=1

(E2
γ−2ZEγzγ) ∏

γ≥1

1
(zγ) 1

2
δ

1 −
N∑

γ=1
zγ

 , (F.10)

in such a way that the eigenvectors and eigenvalues are no more independent because of
the term Eαzα, similar to our study concerning the impurity model. This expression is
valid for the site onto which the perturbation is applied, namely i = 1. In this model,
we will be interested in the distribution of the occupancy of this particular site. When Z
becomes greater than the bandwidth

√
2Nσ, a single level with a weight zout gets out of the

band and must be treated apart, as explained for the two outliers presented in chapter 6.
First, we study the case of Z <

√
2Nσ, in which every zα is of the same order 1/N . As

in the free problem, the distribution of occupancies is expressed as an exponential of a
functional that depends on the Lagrange multiplier and the wanted occupancy number
n1. This functional reads:

F
(
λ, µ, n1

)
= 1

2N

√
2Nσ∫
0

dE u(E) ln
(

|λ− Z

σ2E|
)

+ 1
2N

0∫
−

√
2Nσ

dE u(E) ln
(

|λ+ µ− Z

σ2E|
)

− 1
N

(
µn1 + λ

)
.

(F.11)
This expression is not as simple as before as the logarithms depends on the energy, which
complicates analytical calculations. Note that as before, the density of states at first order
stays the semi-circle. The saddle-point equations to be solved for the two multipliers are
given by the transcendental equations:

1
πZ

(
1 + πλ

2Z
− 2 aCot

[
λ/V −1√
(λ/Z)2−1

]√(
λ
Z

)2
− 1

)
= 1 − n1

1
πZ

(
−1 + π(λ+µ)

2Z
− 2 Re

[
aCosh

[
Z

λ+µ

]√(
Z

λ+µ

)2
− 1

)]
= n1,

(F.12)
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which can not be solved analytically. The complications comes from the fact that the
Heaviside function cuts the integration over the energies in two separates parts, which
brings after integration the trigonometric functions. If the integration can be performed
on the whole range of energies [−

√
2Nσ,

√
2Nσ], simpler results can be found for the

integrals using complex analysis.

Therefore, the solutions to these two equations are found numerically, and the corre-
sponding values of λ and µ are reinjected in the functional F . Then, the last integrals
over E in F are also computed numerically, and we obtain the wanted distribution P (n1).
This distribution is plotted for two different values of Z in Fig. F.2, and reproduce quan-
titatively the numerical simulation. As expected, the site is depleted for Z positive, and
the symmetric behavior with respect to n1 = 0.5 is found for Z negative, since in this
case the site is more favorable to be occupied.

Figure F.2: Analytical (lines) and numerical (bars) solutions for the distribution of the
occupancy of the site containing the perturbation, for two different perturbation strengths
Z. As before, N = 300, σ =

√
2 and 104 realizations of the random matrix are simulated

for the sampling. As Z increases, the average occupancy is lower, as is the width of the
distribution.

When Z becomes stronger than the bandwidth, the calculations are similar, but a state
must be taken out of the density of states u(E). The integrals over Eout and zout must be
done in addition to the one over λ and µ, and they are also treated through saddle-point
equations. The solutions for these new saddle-point equations are given in Ref. [177], such
that as before, only the Lagrange multipliers are left to find. The functional in this case
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would read:

F
(
λ, µ, n1

)
= 1

2N

√
2Nσ∫
0

dE u(E) ln
(

|λ− Z

σ2E|
)

+ 1
2N

0∫
−

√
2Nσ

dE u(E) ln
(

|λ+ µ− Z

σ2E|
)

+ 1
N

(
ln (|Eout|) − E2

out
2σ2 − µ

(
n1 − Θ(−Eout)zout

)
+ λ

(
1 − zout

))
,

(F.13)

The numerical solution of this problem is similar to the one of the previous situation,
and is not shown here as it brings no additional information concerning the analytical
calculation of distribution functions in this type of problems.
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thermoélectrique des impuretés dissoutes dans les métaux nobles. Journal de
Physique et le Radium, 17(1):27–32, Jan 1956.

[14] P. W. Anderson. Localized Magnetic States in Metals. Physical Review, 124(1):41–
53, October 1961.

[15] Jun Kondo. Resistance minimum in dilute magnetic alloys. Progress of Theoretical
Physics, 32:37–49, 1964.

[16] J. R. Schrieffer and P. A. Wolff. Relation between the anderson and kondo hamil-
tonians. Physical Review, 149(2):491–492, Sep 1966.

i



REFERENCES

[17] P. W. Anderson. A poor man’s derivation of scaling laws for the Kondo problem.
Journal of Physics C: Solid State Physics, 3(12):2436–2441, December 1970.

[18] A. A. Abrikosov and A. A. Migdal. On the theory of the Kondo effect. Journal of
Low Temperature Physics, 3(5):519–536, November 1970.

[19] M. Fowler and A. Zawadowski. Scaling and the renormalization group in the kondo
effect. Solid State Communications, 9(8):471–476, 1971.

[20] P. Nozières. A “fermi-liquid” description of the Kondo problem at low temperatures.
Journal of Low Temperature Physics, 17(1):31–42, October 1974.

[21] N. Andrei and J. H. Lowenstein. Scales and Scaling in the Kondo Model. Physical
Review Letters, 46(5):356–360, February 1981.

[22] P B Wiegmann. Exact solution of the s-d exchange model (Kondo problem). Journal
of Physics C: Solid State Physics, 14(10):1463–1478, April 1981.

[23] N. Andrei, K. Furuya, and J. H. Lowenstein. Solution of the Kondo problem.
Reviews of Modern Physics, 55(2):331–402, April 1983.

[24] I. Weymann, J. von Delft, and A. Weichselbaum. Thermalization and dynamics in
the single impurity anderson model. Physical Review B, 92(15):155435, Oct 2015.

[25] A. Rosch. Wilson chains are not thermal reservoirs. The European Physical Journal
B, 85(1):6, Jan 2012.

[26] R. C. Ashoori. Electrons in artificial atoms. Nature, 379(6564), February 1996.

[27] Michael Pustilnik and Leonid Glazman. Kondo effect in quantum dots. Journal of
Physics: Condensed Matter, 16(16):R513–R537, apr 2004.

[28] Sara M. Cronenwett, Tjerk H. Oosterkamp, and Leo P. Kouwenhoven. A tunable
kondo effect in quantum dots. Science, 281:540, July 1998.

[29] T Pohjola, J König, M. M Salomaa, J Schmid, H Schoeller, and Gerd Schön. Res-
onant tunneling through a two-level dot and double quantum dots. Europhysics
Letters (EPL), 40(2):189–194, Oct 1997.

[30] Antoine Georges, Gabriel Kotliar, Werner Krauth, and Marcelo J. Rozenberg. Dy-
namical mean-field theory of strongly correlated fermion systems and the limit of
infinite dimensions. Reviews of Modern Physics, 68(1):13–125, Jan 1996.

[31] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A.
Marianetti. Electronic structure calculations with dynamical mean-field theory.
Reviews of Modern Physics, 78(3):865–951, Aug 2006.

[32] Gérard Toulouse. Expression exacte de l’énergie de l’état de base de l’hamiltonien
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[76] L. C. Ribeiro, G. B. Martins, G. Gómez-Silva, and E. V. Anda. Numerical study of
the kondo cloud using finite-u slave bosons. Physical Review B, 99(8):085139, Feb
2019.

[77] G. Diniz, G. S. Diniz, G. B. Martins, and E. Vernek. Reentrant kondo effect for
a quantum impurity coupled to a metal-semiconductor hybrid contact. Physical
Review B, 101(12):125115, Mar 2020.
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[94] Henning Prüser, Martin Wenderoth, Piet E. Dargel, Alexander Weismann, Robert
Peters, Thomas Pruschke, and Rainer G. Ulbrich. Long-range kondo signature of a
single magnetic impurity. Nature Physics, 7(3):203–206, Mar 2011.

[95] Ying Jiang, Y. N. Zhang, J. X. Cao, R. Q. Wu, and W. Ho. Real-space imaging of
kondo screening in a two-dimensional o2 lattice. Science, 333(6040):324–328, 2011.

[96] C. L. Seaman, M. B. Maple, B. W. Lee, S. Ghamaty, M. S. Torikachvili, J.-S. Kang,
L. Z. Liu, J. W. Allen, and D. L. Cox. Evidence for non-fermi-liquid behavior in
the kondo alloy Y1−xUxPdd. Physical Review Letters, 67(20):2882–2885, November
1991.

[97] D E MacLaughlin, R H Heffner, O O Bernal, K Ishida, J E Sonier, G J Nieuwen-
huys, M B Maple, and G R Stewart. Disorder, inhomogeneity and spin dynam-
ics in f-electron non-fermi liquid systems. Journal of Physics: Condensed Matter,
16(40):S4479–S4498, sep 2004.

[98] M. C. Aronson, R. Osborn, R. A. Robinson, J. W. Lynn, R. Chau, C. L. Seaman, and
M. B. Maple. Non-fermi-liquid scaling of the magnetic response in UCu5−xPdx(x =
1, 1.5). Phys. Rev. Lett., 75:725–728, Jul 1995.

[99] O. O. Bernal, D. E. MacLaughlin, H. G. Lukefahr, and B. Andraka. Copper nmr
and thermodynamics of UCu5−xPdx: Evidence for kondo disorder. Phys. Rev. Lett.,
75:2023–2026, Sep 1995.
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