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Chapter 1

Introduction

The concept of wave-particle duality was definitively settled by L. de Broglie in 1924, stating

that every particle has an associated wave [49]. One year later, A. Einstein, building on de

Broglie’s theory and S. N. Bose’s work on photon statistics, envisioned that an atomic (matter)

gas should undergo a phase transition to a condensed state of lowest possible energy [55]. He

stipulated as a prerequisite for the achievement of such a phenomenon that the de Broglie

thermal wavelength of particles has to be at least equal to the interatomic spacing. These ideas

are today unanimously embraced, following the first observation of superfluidity by P. Kapitsa

in helium in 1938 [82], linked to the Bose Einstein condensation by F. London [105]. Most of

the work of the last few decades has been carried out in matter particle systems, among which

the dilute gases of cold atoms are the paradigmatic representative, after the first experimental

demonstrations of their condensation in 1995 in the W. Ketterle [12] and E. Cornell [48] groups

with sodium and rubidium atoms respectively.

Besides matter particles, the same investigations have been carried out for photons, as

bosonic quanta of the electromagnetic field. However, the possibility to observe collective phe-

nomena seems less straightforward, as they lack a crucial ingredient compared to their matter

equivalent: interactions, mediating collisions between particles and responsible for the collective

hydrodynamic-like behavior of quantum fluids. To solve this issue, the field originating from the

propagation of light through an optical nonlinear medium can be used to engineer an effective

photon-photon interaction. For a Kerr-type nonlinear medium, the paraxial propagation of a

laser field is described by the nonlinear Schrödinger equation (NLSE), which is tightly related

to the Gross-Pitaevskii equation (GPE) governing the mean field dynamics of quantum fluids.

In the hydrodynamic picture provided by the GPE, the laser field is equivalent to a quantum

fluid of light, whose density and flow velocity are defined from the local intensity and phase

gradient, respectively. The self-focusing and self-defocusing effects of the nonlinearity simulate

attractive and repulsive interactions between photons.

In order to achieve large nonlinear interactions to ensure collective behavior, the mixing
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2 CHAPTER 1. INTRODUCTION

mechanisms of the photons with the nonlinear medium can be enhanced via the so-called

strong light-matter coupling regime. This gives rise to the generation of a new quasiparticle,

the polariton, equivalent to a photon dressed by matter excitations. These can be created in

a wide diversity of material systems, however in this manuscript we will only be interested in

those originating from semiconductors, in which photons mix with bound electron-hole pairs

(excitons). The rapid development in the late twentieth century of heterostructure growth

techniques reaching sub-Bohr radius accuracy, allowed the design of planar quantum wells

embedded in optical cavities, which, by confining the motion of photons and excitons in the

same plane, strengthen the light-matter exchange. In this way, the strong coupling regime in

semiconductor cavities was first observed by C. Weisbuch in 1992 [172]. This led to the creation

of massive bosonic quasiparticles in interaction with each other, called exciton-polaritons. Here,

the interactions are mediated by the optical nonlinearity arising from the exchange interactions

between excitons; the mass from the spatial confinement of photons operated by the optical

cavity. Regarding the bosonic nature, it is directly inherited from the photon and the exciton,

considered as a composite boson following the rules of composition of two fermions (electron

and hole).

Remarkably, the space-time evolution of the mean-field wave function of polaritons is very

similar to that of atomic Bose-Einstein condensates. It is described by a driven-dissipative GPE,

taking into account the losses and the driving of the system. Thanks to a dispersion curve acting

as a trap in the momentum space and a low effective mass, four orders of magnitude below that

of the electron, polaritons can in principle undergo a BEC transition at room temperatures.

After a first theoretical proposal by A. Imamoglu [75], the first experimental demonstration

of exciton-polariton condensation was performed in 2006 by J. Kasprzak and M. Richard [84].

Following these observations, the hydrodynamics aspect of quantum fluids in semiconductor

microcavities has gained a great interest, mainly because of the experimental opportunities

offered by the all-optical control and detection of exciton-polariton dynamics. Thus, a whole

series of works on superfluidity have experimentally demonstrated the dispersionless flow of

exciton-polaritons [9, 10], the nucleation of quantized vortex-antivortex pairs [145, 124] and the

generation of dark and bright solitons [8, 153].

Thanks to the light-matter nature of polaritons, a wide range of potential geometries can

be designed to modify the behavior of the quantum fluid [151]. For instance, the tailoring

of the refractive index by etching a planar microcavity provides a way to tightly confine po-

laritons in different geometries, in order to simulate different Hamiltonians. In this way, the

fabrication of microwires has led to the generation of one-dimensional polariton fluids to inves-

tigate condensation phenomena [95, 173], create solitons [62], or implement logic circuits [126].

The dimensionality can be further reduced by etching micropillars, to study for example con-

densation [160] and squeezing [28] of polaritons in zero-dimension. Furthermore, these pillars

can be combined with each other, one by one to study polariton molecules [113] or in lattices

[115, 88, 77], typically used for topological experiments.

In this manuscript, the fluid dynamics is controlled by structuring the excitation laser profile
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using phase and intensity modulation techniques [7] in a planar semiconductor microcavity.

They can be described in the framework of the Bogoliubov theory, demonstrating that the

superfluidity stems from the peculiar behavior of elementary excitations spreading on top of

quantum fluids [24]. The characterization of such excitations is therefore crucial to master the

dynamics at stake in exciton-polariton systems. This is the guiding line followed throughout

this thesis work: each experiment presented here is related to the measurement and control of

exciton-polariton elementary excitations.

The second chapter is dedicated to the description of the semiconductor microcavity.

After the presentations of the cavity photons and the quantum well excitons, we will show how

exciton-polaritons arise from the strong light-matter coupling. We will then focus on the all-

optical excitation and detection of the system, in our case in a continuous and quasi-resonant

regime, and how this influence the behavior of the quantum fluid.

In the third chapter, we will detail the high-resolution coherent pump-probe spectroscopy

method that we have implemented in order to measure the spectrum of elementary excitations

of the exciton-polariton fluid. Its use will allow us to demonstrate how the dynamics of an out-

of-equilibrium quantum fluid deviates from its in-equilibrium counterpart, through the study

of the close relationship between the properties of elementary excitations and the driving field

parameters. In doing so, we will reveal the sonic, gapped and instability modes of superfluid,

forced and turbulent regimes respectively.

Operating in an optical parametric oscillation regime, implying the scattering of two pump

polaritons into an idler and a signal one via the strong nonlinearity of quantum wells, we will

present in the fourth chapter the measurement of another type of elementary excitation, the

Goldstone mode, resulting from the spontaneous breaking of the U(1) phase symmetry of the

system. The high resolution achieved with our spectroscopy setup will allow us to highlight

the charecteristic spectral narrowing, expected for such a mode in the long wavelength limit,

and its diffusive character, specific to out-of-equilibrium systems. Finally, we will prove that

the Goldstone mode indeed originates from a spontaneous symmetry breaking by explicitly

destroying it via the pinning of the polariton phase with the injection of an additional laser.

The fifth chapter concerns the implementation of a new technique to reshape the driving

field intensity profile, in order to promote the development of modulational instability elemen-

tary excitations. In the excitation scheme that we will present in a first step, the polariton fluid

exhibits a low density channel between two high density domain walls, embedding a pair of dark

solitons. Then, we will show in a second step that the respective control of the densities inside

and outside the channel provides a control knob on the transverse instability modes, called

snake instabilities, leading to the decay of solitons into streets of vortex-antivortex pairs with

different patterns. Moreover, the confining potential induced by the channel walls freezes the

motion of the vortices, allowing their direct observation with low temporal resolution devices.

In the sixth chapter, we will focus on another type of dependence of the exciton-polaritons

on the driving field by studying a first-order phase transition whose existence depends on the
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dimensionality of the fluid. This study will lead us to deviate from the mean field description

of polaritons, in order to include quantum fluctuations in the dynamics of our system. These

have a strength that depends on the shape of the driving field profile. Therefore, we will show

that they lead to a first-order dissipative phase transition between the exciton-polariton density

and the driving field strength, which arises only when the fluid density profile is bidimensional.



Chapter 2

Exciton-polaritons quantum fluids

Light-matter interactions occurs when a set of material oscillators are in near resonance with an

electromagnetic field. In such situation, which is usually achieved placing the material system

in an optical resonator, light couples with matter and if the strength of this coupling exceeds

the individual losses of photons and matter excitations, then the system enter in the so-called

regime of strong light-matter coupling. As a textbook definition, polaritons are the quasi-

particle originating from such a strong coupling. They result from the splitting of the energy

levels of the material oscillator and the photon, giving rise to two new hybrid eigenstates: the

upper (UP) and lower polaritons (LP), inheriting both light and matter properties.

Polaritons are the particles of a quantum fluid of light. Their study thus relies on the

possibility of implementing a strong coupling regime. In this manuscript, this is achieved in a

planar semiconductor microcavity by confining two-dimensional quantum wells at the antinodes

of the electromagnetic field of a high quality factor optical cavity, in order to enhance the light-

matter exchange rate. In such a device, polaritons result from the coherent superposition of

cavity photons with quantum well excitons.

In this chapter we will first study independently the design of these two components. We

will focus on the dynamics of excitons confined in a two-dimensional semiconductor quantum

well and of photons in a planar optical cavity. Then, we will describe the strong coupling of

these components giving rise to exciton-polaritons. In the second part, we will present the

collective dynamics of exciton-polaritons. In particular, we will see how the driven-dissipative

nature of the system modifies the properties of the microcavity quantum fluid with respect to

those in equilibrium.

5



6 CHAPTER 2. EXCITON-POLARITONS QUANTUM FLUIDS

2.1 Quantum well excitons

2.1.1 Excitons in a bulk semiconductor

Figure 2.1: Emergence of band structure in solid state physics. Energy levels of a

chain of N atoms. For the single atom N=1, the system has a number n of atomic orbitals,

of discrete energy levels according to the Bohr model. For N=10 atoms, the system has 10n

orbitals at different energy levels centered around the orbitals of the single atom. For N=1022

atoms, the typical population of a solid, the density of orbitals around each level of the single

atom becomes so large that a structure of n bands associated with a finite energy continuum

appears. Adapted from [108].

In the Bohr model of the atom, the electron of an isolated single atom occupies discrete

energy levels associated to different atomic orbitals. In this regard, its behavior differs from

that of the free electron, evolving in a continuum of energies. In the framework of solid-state

physics, the description of electrons dynamics along a matrix of bound atoms lies in between

these two extreme situations.

Band structure. First, if we consider two atoms placed in the vicinity of each other, at

a distance of the order of their Bohr radius a0, an overlap of their wave function occurs: the

electrons are no longer localized on a single atom. The resulting coupling induces an energy

splitting of the atomic orbitals of the same level. Thus, the two-atom system features two

new discrete states, of non-degenerate energies different from that of the single atom. For a

solid, with a large number N ≃ 1022 of atoms packed in a crystalline matrix, the electrons

are delocalized on a macroscopic scale all along the atomic chains: they start acting like free

particles. Similarly to the two-atom system, the atomic orbitals split on N new different levels

spaced from each other by a very small energy, of the order of 10−22 eV. Consequently, their

state density becomes so large that they can be considered as a continuum along a finite energy

band, described via the so-called band theory of solid-state physics [13, 89].
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Since a solid encloses a very large number of electrons in a small volume, the Fermi exclusion

principle applies and the electrons follow the Fermi-Dirac statistical distribution:

f(E) =
1

1 + e(E−EF )/kBT
, (2.1)

where kB is the Boltzmann constant and temperature T . The law f(E) gives the probability

to find an electron at the energy E, equal to 1/2 at the Fermi energy EF .

Bulk semiconductors. A large part of the conductive properties of a solid can be inferred

from the value of EF , as it governs the distribution of electrons that are in the bands just below

and above its level, called the valence and conduction bands respectively. For a conductive

material, EF lies in the conduction band, which is therefore partially filled with electrons able

to move freely under application of an external electric field. On the contrary, for an insulator,

EF lies in a gap, below the conduction band and above the valence band, which are, as a result,

completely empty and filled respectively: under application of an external electric field, there

is no possibility to set the electrons in motion.

The semiconductor material exhibits an intermediate behavior. The gap between its con-

duction and valence bands is small enough that at sufficiently high temperature the number

of electrons in the conduction band is no longer negligible, accordingly to the Fermi-Dirac

distribution, and it behaves as a conductor; while at low-temperature it behaves again as an

insulator.

Direct gap semiconductor. The dynamics of electrons in the conduction and valence

bands are studied using the Bloch model [13]. By considering the translational invariance and

the periodicity inherent to the solid, the eigenmodes of the system are expressed as a product

of plane waves of wavevector k and of the same periodicity as the crystal potential. Within the

bands, they behave as free particles, with effective masses m∗
c,v and energies:

Ec(k) = EG +
ℏ2k2

2m∗
c

, (2.2)

Ev(k) = −ℏ2k2

2m∗
v

, (2.3)

for the electron of the conduction (c) and valence (v) bands respectively. EG denotes the gap

energy between the valence and conduction bands. These dispersion relations have the typical

parabolic shape of single particles, as shown in Fig. 2.2. Here, we have considered a direct

gap semiconductor: the extrema of the valence and conduction bands are at the same k. This

feature has the advantage of increasing the probability of radiative excitation and relaxation

of electrons, occurring without change of momentum and therefore compatible with photon

exchanges typically near zero momentum compared to the spatial frequencies involved in solids

when working with optical wavelength.
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Figure 2.2: Dispersion relations of a direct gap semiconductor. The inverted lower

parabola in red corresponds to the valence band (VB) filled with electrons, while the upper

parabola corresponds to the empty conduction band (CB). Since their extrema are aligned at

the same wave vector, the VB and CB are associated to a direct-gap semiconductor, allowing

the absorption of a photon of almost zero wavevector at the optical frequency ν associated

with the gap energy hν. This results in the promotion of an electron from VB to CB, with an

energy plotted in dashed red, slightly lower than the energy of CB due to its interaction with

the hole left free in VB. The bound electron-hole pair forms an exciton state, depicted on the

right-hand side, over the crystal structure, with a red-dashed Bohr radius larger than the the

black-dashed lattice cell radius. Adapted from [108].
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Excitons. For such materials, an electron can be transferred from the valence to the

conduction band via an optical or an electrical excitation. In doing so, it leaves a vacant

site in the valence band, called a hole of positive effective charge +e, inducing an attraction

potential due to Coulombian interactions. The Hamiltonian of the composite electron-hole

system reads:

H = EG +
p2e

2m∗
e

+
p2h

2m∗
h

− e2

ϵ|re − rh|
, (2.4)

where p2e,h and r2e,h are respectively the momentum and position operators of the electron (e)

and hole (h), m∗
e,h the effective masses, -e the charge of the electron, EG the gap energy and ϵ

the static dielectric permittivity of the semiconductor medium, responsible for the screening of

the electron-hole attraction by the lower-band electrons.

The associated Schrödinger equation is solved by dissociating the free motion of the center-

of-mass of coordinate R = (m∗
ere−m∗

hrh)/M and mass M = m∗
e +m∗

h, from the relative motion

of the electron and the hole. The solution of this problem is well known: the eigenstates are

hydrogen-like bound electron-holes quasiparticles, called excitons, of energy:

EX(kX) =
ℏ2k2

X

2M
− RX

n2
+ EG. (2.5)

The first term is the kinetic energy of the center-of-mass of the electron-hole pair, behaving

like a free particle of wavevector kX . The second term corresponds to the exciton binding

energy, involving RX = ℏ2/2µa2X , the Rydberg constant for excitons, with µ = m∗
em

∗
h/M the

electron-hole reduced mass, aX = ℏ2κ2/µe2 the exciton Bohr radius and n the conduction band

principal quantum number. RX is directly related to the Rydberg constant Ry of the hydrogen

atom via RX = Ry×µ/m0ϵ
2
r, where m0 is the mass of the free electron in vacuum and ϵr = ϵ/ϵ0

the relative dielectric permittivity. The last term, EG, is the gap energy.

GaAs band structure. Beyond the Bloch model, the GaAs material we use in our exper-

iments has a band structure shown in Fig. 2.3(b), whose distribution of the different energy

levels is explained by looking at the origin of the electrons involved in the formation of the cova-

lent bonds between Gallium and Arsenic [178]. Both Ga 3d104s24p1 and As 3d104s24p3 exhibit

incomplete outer shells on a p-type orbital (l=1), resulting in a GaAs hybrid covalent bonds

of sp3-type for the valence band, with a dominant p character, and in a s-type covalent bonds

for the conduction band as the electrons originate only from s-orbitals. In the valence band,

the spin-orbit interaction generates a degeneracy lifting between the states with total angular

momentum J = 1/2 and J = 3/2. The former, called the split-off band, has a lower energy

than the latter, which is divided into two sub-bands of total angular momentum projection Jz
= ± 3/2 and Jz = ± 1/2 on the growth axis, with the same energy at k = 0 but with different

dispersion relations corresponding to different effective masses. The heavier band, Jz = ± 3/2,



10 CHAPTER 2. EXCITON-POLARITONS QUANTUM FLUIDS

Figure 2.3: Band structure of GaAs in the first Brillouin zone. The valence band

includes three p subbands, two of which are energy degenerate at k=0, corresponding to heavy

and light holes. The conduction band of s-type includes only one subband. The parabolic

approximation seen in Fig. 2.2 only holds at low-k. Adapted from [2]

is associated with heavy holes, while the lighter band Jz = ± 1/2 is associated with light holes.

The s-type conduction band has a total angular momentum J = 1/2, Jz = ± 1/2.

Optical excitation. The electron-photon coupling is described in the electric dipole ap-

proximation with the Hamiltonian:

Hdip = −epe ·A
m∗

e

, (2.6)

with pe the momentum operator of the electron of charge -e and A the potential vector of

the electromagnetic field. Such a coupling operates according to selection rules involving:

• the conservation of the total momentum: one exciton of wavevector K couples only with

one photon of same wavevector k = K.

• the conservation of the total angular momentum.

The latter restricts the number of optically active excitons. From the rules of composition

of the angular momentum applied to the electron-hole pair system, the excitons have a total

angular momentum calculated to be J = 0,1,2. Thus, from the semiconductor ground-state

J=0, only the J=1 states are addressed by a circularly polarized wave of angular momentum

J=1 (the direction of propagation of the plane wave coinciding with the quantization axis of J

since k=K). These states correspond to ”bright” excitons, which are in a σ+ or in a σ− spin

state depending on the projection of J along the quantization axis, whereas the other states,

such as the J=2 heavy hole and the J=0 light hole, correspond to ”dark” excitons.

From (Eq.) 2.5, we now calculate the energy that a photon must have in order to generate
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an exciton from the heavy band. Due to the GaAs high relative permittivity ϵ/ϵ0 = 12.4 and

the low effective masses of the electron and hole compared to the mass of the free electron in

vacuum, the binding energy of the electron-hole pair is several orders of magnitude below that

of hydrogen Eb = 4.96 meV ≃ 3.6×10−4Ry. The exciton is therefore a weakly bound state.

Importantly, by considering the value of the thermal energy at room temperature of the order

of kBT = 25 meV, it can thus only be observed at cryogenic temperatures, below a few tens of

kelvin in our experiments. In addition, its Bohr radius aX = 11.6 nm ≃ 100Å is larger than

that of the hydrogen atom and larger than the GaAs crystalline lattice cell size a0 = 5.65Å: it

is delocalised over the semiconductor structure. In the literature, such a weakly bound exciton

is generally referred to as a Mott-Wannier exciton, as opposed to the Frenkel exciton, which is

a localised state due to the much smaller dielectric constant of the material [13]. In the end,

by considering a gap energy EG = 1.519 eV, the photons energy has to be equal to 1.514 eV

(818 nm) in order to be at resonance with the GaAs excitons.

Bulk GaAs parameters

Material EG (eV) m∗
c/m0 m∗

hh/m0 ϵ/ϵ0 Eb (meV) aX (nm)

GaAs 1.519 0.063 0.51 12.4 4.96 11.6

2.1.2 Bidimensional confinement in a quantum well

We now consider a planar layer of GaAs, of width comparable to the Bohr radius of the exciton

aX . It is doped with InAs, another direct gap semiconductor material. As a result, its gap

energy EG is lowered, proportionally to the p-fraction in the final InpGa1−pAs semiconductor.

Then, it is sandwiched between two planar GaAs layers, of same gap energy as the bulk ma-

terial. According to Eq. (2.5), the decrease of EG in InpGa1−pAs leads to a reduction of the

energy of excitons with respect to the pure GaAs: the semiconductor heterostructure behaves

as a quantum well (QW), confining electrons and holes to the plane of the lowest energy semi-

conductor material, as depicted in Fig. 2.4(a), which illustrates the distribution of the valence

and conduction bands maxima and minima across the three superimposed layers along the

z-growth axis.

Confined excitons. The energy of the excitons in the trap induced by the gap difference

is derived from the Hamiltonian:

H = EQW
G +

p2e
2m∗

e

+
p2h

2m∗
h

− e2

ϵ|re − rh|
+ Ve(ze) + Vh(zh), (2.7)

with Ve and Vh the QW potential barriers felt by the electrons and the holes respectively

and EQW
G the gap energy in the InpGa1−pAs. Assuming the geometry shown in Fig. 2.4(a), the

electrons and holes are free to move in the QW plane (x, y), while they are confined in the

transverse direction z. Accordingly, their wave function, eigenstates of the Hamiltonian, can

be simplified as follows:
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Figure 2.4: Quantum well in InGaAs/GaAs. (a) Upper line: spatial structure of the

semiconductor heterostructure. An InpGa1−p layer is placed between two GaAs layers. Lower

line: corresponding energy structure of the valence (VB) and conduction (CB) bands. The

doping with a low In fraction p lowers the gap energy EInGaAs
G of InpGa1−p with respect to the

gap energy EGaAs
G of GaAs. As a consequence, the energy profile of the heterostructure along

the growth z-axis exhibits a dip (a bump) for the VB (CB), forming a localized quantum well

in the InpGa1−p layer. The energy of the excitons confined therein is discretized along the gray

lines. (b) Tuning of the InpGa1−p gap energy EQW
G as a function of the fraction of injected

Indium p, calculated from [129] at T=4K. For the material of our experiments, p = 0.04,

highlighted by the red dot. Adapted from [108].

Ψ(x, y, z) = ψ(x, y)ϕ(z), (2.8)

allowing to solve separately the Schrödinger equation for ψ(x, y) and ϕ(z). The eigenvalues

for the confinement wave function ϕ(z) are easily inferred from the textbook model of the

quantum box, leading to a quantization of the energies of electrons and holes:

Ee,h
n =

ℏ2π1

2m∗
e,hL

2
, (2.9)

which are inversely proportional to the effective mass m∗
e,h and the box width L. This results

in a splitting of each of the sub-bands of the valence band. As a consequence, light and heavy-

holes at k=0 are no longer degenerate. Then, we will consider in the following only the lowest
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energy excitations of the quantum wells, i.e. the excitons generated from the heavy-holes, and

we will exclude from our analysis those generated from the light-holes, as they will not be

optically addressed.

The planar wave function ψ(x, y) is again expressed with the standard hydrogen model and

involves the definition of a new Rydberg constant RQW
X for the QW. From these considerations,

the dispersion relation of the exciton reads:

EX(k||) = EQW
G + Ee

n + Eh
n +

ℏ2k2
||

2M
− RQW

X

n2
. (2.10)

The design of our In0.04Ga0.96As system is such that the n = 1 state, called the two-

dimensional 1s exciton in reference to the hydrogen atom, is significantly lower in energy than

the higher order states n > 1. This will be the only excited state in our experiments and so

every mention to excitons in what follows refers to it.

As an interesting difference from the bulk semiconductor to be noted, the Bohr radius of the

QW exciton is twice as smaller than the GaAs exciton in the bulk aQW
X = aX/2, and therefore

the binding energy derived from the Rydberg constant is four times larger EQW
b = 4Eb. This

results from the enhanced overlap between the electron and hole wave functions induced by the

confinement potential of the heterostructure.

Optical selection rules. Most importantly, by breaking the translational invariance along

the z-direction, the confinement changes the coupling properties of excitons with light. Now, the

conservation of momentum law only applies to the (x, y) plane of the semiconductor structure,

as the momentum in the z direction is fixed by the QW spacing. Correspondingly, The relax-

ation/excitation of an exciton of wavevector kX = (k
||
X , k

z
X) conserves the in-plane wavevector

k
||
γ of the emitted/absorbed photon. This means that the selection rules no longer operate on

the component kzγ of the electromagnetic field, which can thus take any value: in contrast to

the bulk semiconductor in which one exciton mode is only coupled to one photon mode, the

geometry of the quantum well allows one exciton mode to be coupled to a continuum of photon

modes.

The law of conservation of energy must still be fulfilled

E2D
X +

(ℏk||
X)2

2M
=

ℏc
nQW

√
(k

||
γ)2 + (kz

γ)2. (2.11)

Here, on the left-hand side of the equality, the kinetic energy of excitons in the plane of the

QW is dissociated from the energy in the z direction governed by Eq. (2.9). On the right-hand

side, nQW denotes the refractive index felt by the photons in the QW medium. Under the

condition of momentum-conservation, it follows that



14 CHAPTER 2. EXCITON-POLARITONS QUANTUM FLUIDS

∣∣∣k||
X

∣∣∣ ⩽ nQWE
2D
X

ℏc
. (2.12)

Consequently, the reservoir of photon modes to which excitons couple is not infinite: only

excitons with wavevectors verifying the above condition exchange photons with the electromag-

netic field. For higher k
||
X , they are no longer radiative. From the resonance energy value of

E2D
X ≃ 1.485 meV in our system, the radiative mode range is about k

||
X ⩽ 30 µm−1. Accord-

ingly, the coupling occurs on large length scales with respect to the exciton Bohr radius, i.e.

2π/k
||
X ≫ aQW

X .

In addition, the conservation of angular momentum remains valid. The QW sets the quan-

tization axis of J along the growth axis z, collinear with the photon propagation at k
||
γ = 0.

For large wavevectors, the circularly polarized field no longer excites pure spin states, but a

mixture of σ+ and σ− states [38].

Bosonic nature of excitons. Since electrons and holes are fermions, the exciton has

an integer pseudo-spin. Its ground state creation and annihilation (b̂†,b̂) operators verify the

bosonic commutation relation [47, 67]

〈[
b̂, b̂†

]〉
≃ 1. (2.13)

The assimilation of excitons to composite bosons is maintained only if the Coulombian

attraction binding the electron to its hole is dominant over the electron-electron and hole-hole

repulsive interactions. Such a condition can be reasonably satisfied when the spacing between

excitons is much larger than their Bohr radius aQW
X . By estimating that the number of exciton

states follows the same scale as aQW
X , one must verify nX(aQW

X )2 ≪ 1, with nX the exciton

density per unit area. For aQW
X of the order of 6 nm in the QW InGaAs systems, the maximum

density is equal to 4×104 paticles per µm2, well above the densities at stake in our experiments.

We can therefore safely assume that the excitons studied here are indeed bosons.

Exciton-exciton nonlinear interactions. So far we have omitted in the motion of ex-

citons the interactions between their holes and electrons. We need now take them into con-

sideration, as they are at the heart of the dynamics of our quantum fluid. In addition to the

Hamiltonian corresponding to the free motion of the QW exciton, expressed from Eq. (2.7) into

the exciton basis, of creation and annihilation operators (b̂†k, b̂k) [141, 37]

HX =
∑

k

d2k

(2π)2
EX(k)b̂†kb̂k, (2.14)

with EX(k) the QW exciton dispersion relation for the in-plane wavevector k given by Eq. (2.10),

we introduce a second Hamiltonian of interaction
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HXX =
∑

k,k′,q

MX,X(k,k′,q)b̂†k+qb̂
†
k′−qb̂kb̂k′ . (2.15)

MXX(k,k′,q) is the element of the exciton-exciton interaction matrix [141], composed of

the energies of exchange and Coulomb interactions between electrons and holes. In our QW

system, direct Coulomb interactions are dominant at scales smaller than the Bohr radius of

excitons, while exchange interactions are dominant at larger scale. Therefore, by considering

only radiative modes, i.e. dynamics occuring on scales much larger than the Bohr radius of

excitons kaX ≪ 1, Coulomb interactions can be neglected. It allows us to express HXX as a

simple two-body contact interaction term, weighted by an energy potential derived from only

the exchange potential of excitons and labelled VXX(k) in the reciprocal space

HXX =
1

2

∑

k,k′,q

VXX(q)b̂†k+qb̂
†
k′−qb̂kb̂k′ . (2.16)

Here, we don’t account for the spin degree of freedom Jz for the sake of simplification;

its contribution is important as it modifies the strength of interactions: between parallel spin

excitons, the interactions are the strongest and repulsive (VXX > 0), whereas between opposite

spins interactions are weaker and attractive (VXX < 0) [170]. For the first case, one calculates

[141, 163]

VXX =
e2aQW

X

ϵA
, (2.17)

with A the quantification area equal to the quantum well surface. This expression remains

valid in the limit of low wavevectors (verified for radiative modes), where the energy of excitons

varies only slightly with k (in contrast to the energy of photons that excite them) and therefore

where VXX can be assumed constant. The numerical calculation gives A× VXX ≃ 3 µeV·µm2

for our InGaAs system.

Exciton lifetime. Exciton linewidth broadening is pricipally determined by:

• The coupling of excitons to phonons, which becomes weaker the lower the temperature

is. In the material of our system, the decay rate of excitons into phonons is of the order

of 1.5 µeV (440 ps) at T = 10K.

• The exciton-exciton coupling. The broadening due to the collisions between excitons

increases with the density of excitons in the system. For a typical density of a few tens

of excitons per µm2, it induces a decay rate of about 80 µeV (8 ps).
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2.2 Photons in planar microcavity

Let us come back to our initial objective: to couple light with matter. Now that the type

and the geometry of the matter medium are well defined, i.e. a set of quantum wells source

planar excitons, we have to find a tool operating the coupling of photons with excitons. As

a historical and paradigmatic example of the implementation of such a light-matter coupling,

one can consider atoms trapped in optical cavity, exhibiting an enhancement of their exchange

with photons thanks to the modification of their spontaneous emission rate. As for a laser, the

optical cavity performs both the key roles of selecting and strengthening the photon oscillations

across the atoms. This is the device that has also been chosen to couple the excitons with light.

Its particular structure and geometry that we will discuss in this section, reduces to one mode

the reservoir of photons compatible with the exciton modes, resulting in a enhancement of the

light-matter coupling.

Fabry-Perot microcavity. More specifically, the standard cavity used for exciton-polariton

systems is a Fabry-Perot interferometer, made of two flat mirrors parallel to each other. Its op-

tical length selects the wavelengths of the electromagnetic field that can interfere constructively

within it. As with any type of resonator, the decay rate of the field oscillation is characterized

by a quality factor Q, defined as

Q =
ωγ

δωγ

, (2.18)

with ωγ the cavity resonance frequency and δωγ its linewidth, taken equal to the full width at

half mamixmum (FWHM) of the cavity transmission peak at ωγ and fixed by the lifetime of

photons in the cavity τγ = 1/δωγ, which is typically determined by the transmission, reflection

and absorption coefficients of the two mirrors. Another relevant parameter to consider is the

spectral resolution of the cavity, i.e. its ability to separate two adjacent resonance peaks. It is

derived from the from cavity finenesse F , related two the free spectral range (FSR) ∆ωγ

F =
∆ωγ

δωγ

= π

√
R

1 −R
, (2.19)

where R =
√
R1R2 is the total reflectivity of the cavity, whose two mirrors have a reflectivity

R1 and R2 respectively.

To design our coupling system, we first need to match the resonance of the cavity with that

of the quantum wells. Consequently, the optical distance between the two mirrors must be pro-

portionnal to a half-integer number m/2 of the exciton resonance wavelength Lcav = mλ0/2ncav,

with λ0 the wavelength of the electromagnetic field in vacuum and ncav the refractive index of

the cavity medium. Then, we want the system to undergo as much as possible photon/exciton

exchange cycles: the photons must be kept inside the cavity on time scales typically of the same

order of magnitude as the exciton lifetime. Therefore, the linewidth δωγ of the Fabry-Perot
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Figure 2.5: DBR and Fabry-Perot cavity reflectivity. (a) Reflectivity R of a Bragg mirror

of 20 pairs of Ga0.9Al0.1As/AlAs, illuminated at normal incidence for different wavelengths λ.

The DBR has a reflectivity close to 1 over a large range of wavelengths called the stop-band,

which is designed to be centered on λ0 = 836 nm by tuning the thickness of each of the mirror

layers. (b) Corresponding reflectivity of the optical cavity built from the facing of two DBRs

mirrors identical to that in (a) and separated by a distance Lcav = 2λ0/ncav, leading to the

appearance of a very narrow resonance at λ0. Adapted from [83].

cavity has to be as narrow as possible, limiting our choice to cavities of large Q, corresponding

to mirrors with a very high reflectivity.

Distributed Bragg Reflectors. Cavities built with Distributed Bragg Reflectors (DBR)

are typically adequate to meet this last criterion. Their mirrors are made of an alternating

stack of N layers of two materials of different refractive indices n1 < n2, which induce a partial

reflection of the electromagnetic field at each of the N interfaces. It leads to a very high total

reflection coefficient R, given by the following expression [146]

R =

[
(n2/n1)

2N − nf/n0

(n2/n1)2N + nf/n0

]2
, (2.20)

with n0 and nf the refactive indices of the media before and after the mirrors. Fig. 2.5(a)

shows the evolution of R with respect to the wavelength of the electromagnetic field for one

DBR mirror used in our system, built with 20 pairs of Ga0.9Al0.1As/AlAs layers, with respective

refractive indices n2 = 3.48 and n1=2.95. R is equal to 0.9985 over a wide range of wavelength,

called the stop-band, of central wavelenght close to λ0 = 836 nm, which has been tuned by

setting the thickness of the different layers equal to d1,2 = λ0/4n1,2.

The Fabry-Perot cavity of our system is built by placing two of these mirrors in front of

each other, spaced by Lcav = 2λ0/ncav, suitable for the establishment of three antinodes of the

electromagnetic field at λ0. Its resonance corresponds to the appearance of a very narrow dip
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Figure 2.6: Geometry of the optical cavity. Depending on their incidence angle θ, photons

experience a different optical cavity thickness Lθ = Lcav/cosθ, corresponding to a different

resonance energy. Provided that the transverse wavevector kz fixed by the space between the

two mirrors is conserved, such θ dependence leads to the parabolic dispersion relation (2.25).

Adapted from [108].

in the reflectivity of the cavity as shown in Fig. 2.5(b), at λ0, such that the wavelength in the

cavity spacer medium λcav = λ0/ncav matches the resonance of QW excitons.

Fabry-Perot cavity parameters

R1 R2 n1 n2 ncav λ0 (nm)

0.9992 0.9985 2.95 3.48 3.54 836

Photon lifetime The linewidth of the cavity can be calculated simply from the finesse F
and the free spectral range ∆ωγ:

δωγ =
∆ωγ

F =
c

ncavLeff

1 −R√
R

. (2.21)

Leff = Lcav + LBragg is the effective length of the cavity, which includes the length of

penetration of the in-cavity electromagnetic field through the various layers of Bragg mirrors

[146]:

LBragg =
λ0
2

n1n2

ncav(n2 − n1)
(2.22)

The numerical calculation performed with the cavity parameters given in the table 2.2 leads

to a finesse F = 2850 and a linewidth of the resonance ℏδωγ = 140 µeV, corresponding to a

photon lifetime τγ = 5 ps.

Dynamics of cavity photons. In free space, the energy of photons is given by
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Eγ =
ℏc
n

√
k2x + k2y + k2z . (2.23)

However, between the two DBRs, the confinement plane imposes a quantification of the

transverse component kz of the photon wavevector, which must coincide with one of the reso-

nances of the cavity. In our case, the free spectral range is large enough to consider a single

cavity mode, corresponding to the one at the centre of the stop-band

kz =
2πncav

λ0
. (2.24)

By assuming small incident angles with respect to the cavity plane, i.e. kx, ky ≪ kz, one can

rewrite Eq. (2.23) with a Taylor expansion

Eγ =
ℏc
ncav

√
k2 + k2z ≃

hc

λ0

[
1 +

1

2

(
λ0k

2

2πncav

)]
, (2.25)

where k =
√
k2x + k2y is the wavevector of photons lying in the cavity plane (x, y). This is

the dispersion relation of cavity photons, exhibiting the parabolic shape of single particles, for

which one can define an effective mass from the relation

1

m∗
γ

=
1

ℏ2
∂2Eγ

∂k2
, (2.26)

leading to

m∗
γ =

n2
cavℏ
λ0c

, (2.27)

which is of the order of 10−4 times the mass of the exciton.

2.3 Semiconductor microcavity

We have just described in the previous sections the two components of our system: the optical

cavity and the quantum well, which share the common feature of breaking the translational

invariance in one direction of space, chosen here along z. The semiconductor microcavity

originates from the combination of the structures, by inserting the quantum wells between the

two mirrors of the optical cavity.

Exciton-photon coupling. By neglecting the losses of the two components which would

lead to a broadening of the linewidth of the resonances, such a configuration reduces to one

mode kγ the photon reservoir able to excite an exciton mode kX . Thus, an exciton of in-plane

wavevector k
||
X = (kxX , k

y
X) can be excited only by a photon of in-plane momentum k

||
γ = (kxγ , k

y
γ),

with an incidence angle θγ = (θxγ , θ
y
γ) that fulfills the relations
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(a) (b)

Figure 2.7: Quantum well embedded in a Fabry-Perot cavity. (a) Geometry of the

semiconductor microcavity. The quantum well is inserted in the optical cavity such as the

confinement planes (x, y) are overlapped. Its location on an antinode of the electromagnetic

field, indicated by the red line, enhances its coupling with the cavity photons. (b) Dispersion

relations of photons and excitons. Since their mass is four orders of magnitude above that of

photons, excitons have a near-flat dispersion relation at the wavevector scale considered here.

At k=0, the energy of excitons and photons coincide to increase their coupling. Adapted from

[108].

kxX = kxγ,cav = |kγ,cav|sinθxγ,cav =
Encav

ℏc
sinθxγ,cav =

E

ℏc
sinθxγ, (2.28)

kyX = kyγ,cav = abskγ,cavsinθyγ,cav =
Encav

ℏc
sinθyγ,cav =

E

ℏc
sinθyγ , (2.29)

where k
||
γ,cav = (kxγ,cav, k

y
γ,cav) is the wavevector of the photon in the medium of index ncav and

θγ,cav = (θxγ,cav, θ
y
γ,cav) is the corresponding angle, obtained from the Snell-Descartes law. This

means that the choice of the incidence angle of photons, provided that their energy is equal

to Eγ(k
||
γ), enables to select the wavevector of excitons created in the QWs. Reciprocally, the

photons issued from the relaxation of the excitons and leaking from the optical cavity have an

emission angle imposed by the conservation of the transverse momentum. The design of the

system thus allows an all-optical control of the modes flowing within it.

Spontaneous emission. Another consequence of the narrowing of the reservoir of photon

modes concerns the relaxation rate of an exciton from its excited state to its ground state. It

can be deduced from the Fermi golden rule [66], giving the spontaneous emission of an exciton

when a two-level system goes from an initial i state to a final f state

Γi→f =
2π

ℏ
|⟨f |V |i⟩|2δ(Ef − Ei)ρ(Ef ), (2.30)
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where Γi→f is the transition rate from i to f per time unit, weighted by the number of final states

ρ(Ef ) available at the energy Ef and by the squared coupling matrix element of |⟨f |V |i⟩|2
giving the probability of this transition. δ(Ef − Ei) ensures the respect of the conservation

of energy. Therefore, with our system, by selecting with the cavity a single photon mode

compatible with a single exciton mode, the number of final states accessible is reduced to one

and the exciton spontaneous photon emission is drastically lowered, occurring at a characteristic

frequency, |⟨f |V |i⟩|2, also denoted ΩR and called the vacuum Rabi frequency.

Coupling regimes. By taking into account the finite lifetimes of excitons and photons,

different coupling regimes are defined according to the values of the loss rates γcav and γX
with respect to the Rabi frequency ΩR. When ΩR ≪ γcav, γX , the oscillator strength is not

sufficient to reabsorb a spontaneously emitted photon, which is then lost outside the cavity.

The conversion of an exciton into a photon and vice versa is irreversible: it is the weak coupling

regime. On the contrary, when ΩR ≫ γcav, γX , the particles lifetimes are long enough to allow

the reabsorption of a photon emitted by an exciton. The conversion process is reversible: it

is the so-called strong coupling regime, leading to several coherent energy exchanges between

photons and excitons, called Rabi oscillations.

2.3.1 Excitons polaritons

It is from such a strong coupling regime that excitons polaritons emerge. These are the eigen-

modes of semiconductor microcavities, first observed in 1992 by C. Weisbuch [172].

Linear Hamiltonian. Let us write the Hamiltonian of the coupled system from the Hamil-

tonians of photons and excitons expressed in the basis of creation and annihilation operators,

(â†k, âk) and (b̂†k, b̂k) respectively, for the in-plane wavevector k. We consider at first a regime

of weak optical excitation, which allows us to neglect the interactions between excitons as their

density remains low. The Hamiltonian reads

Hlin =
∑

k

[
EX(k)b̂†kb̂k + Eγ(k)â†kâk +

ℏΩR

2
(â†kb̂k + b̂†kâk)

]
, (2.31)

where EX(k) and Eγ(k) are respectively the dispersion relation of excitons and photons written

in Eq. (2.10) and (2.25) respectively. The last term describes the linear exciton-photon coupling,

driving the emission of a photon by relaxation of an exciton â†kb̂k, and, vice versa, the excitation

of an exciton by absorption of a photon b̂†kâk. From these exchanges, the system acquires an

energy determined by its Rabi frequency ΩR, equal to the exciton-photon conversion rate. This

Hamiltonian is linear in the sense that only terms with same wavevectors are mixed. This is

of course a first convenient approximation, we will deviate from it when accounting for the

interactions between excitons.

Polariton basis. The linear hamiltonian is diagonalized into a basis of two new eigenstates,

the exciton-polaritons, that we will call in the following polaritons for simplicity. It yields
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Hlin =
∑

k

[
ℏωLP (k)p̂†kp̂k + ℏωUP (k)û†kûk

]
, (2.32)

with (û†, û) and (p̂†, p̂) the creation/annihilation operators for the upper (UP) and lower

(LP) polaritons, of respective energies ℏωLP and ℏωUP . These eigen-operators are derived

from the sum of the photon â and exciton b̂ operators, which obey the commutation rule of

bosons. Consequently, polaritons are also bosons satisfying their own bosonic commutation

rules: [û†, û] = δk′ and [p̂†, p̂] = δk′ . (û, p̂) are given by the transformation

[
p̂k
ûk

]
=

[
Ck Xk

Xk −Ck

][
âk
b̂k

]
, (2.33)

where Xk and Ck are the Hopfield coefficients of excitons and photons respectively [72]. Since

X2
k + C2

k = 1 because the transformation is unitary, X2
k and C2

k quantify the weigth of the

respective contribution of excitons and photons to the polariton states. We often refer to them

as the exciton and photon fraction of polaritons, equal to

X2
k =

√
∆E2

X−γ + ℏ2Ω2
R + ∆EX−γ

2
√

∆E2
X−γ + ℏ2Ω2

R

, (2.34)

C2
k =

√
∆E2

X−γ + ℏ2Ω2
R − ∆EX−γ

2
√

∆E2
X−γ + ℏ2Ω2

R

. (2.35)

These relations depend on the detuning between the photon and exciton resonances ∆EX−γ(k) =

Eγ(k) − EX(k). Therefore, the Hopfield coefficients can be tuned by modifying the resonance

energy of excitons or photons. In our case, a wedge between the two mirrors of the optical

cavity introduces a small gradient in the energy of photons, along one direction of the (x, y)

plane, measured to be about 0.7 µeV/µm.

Dispersion relations. The analytical calculation of the eigenenergies of the upper and

lower polaritons leads to the following dispersion relations

ℏωUP,LP (k) =
Eγ(k) + EX(k)

2
± 1

2

√
(ℏΩR)2 + ∆E2

X−γ, (2.36)

with ωUP > ωLP for all k. These are plotted for different values of the exciton-photon detuning

∆EX−γ at k = 0 µm−1 in Fig. 2.8, where one can see the exciton and photon energies splitting,

signature of the strong coupling regime that results in the emergence of the UP and LP branches.

For positive detuning, ∆EX−γ > ℏΩR, the UP and LP branches almost follows the shapes

of the exciton and photons branches. At ∆EX−γ = 0, the plot of the Hopfield fractions X2
k and

C2
k shows that the polaritons at k = 0 µm−1 originate from the perfect balanced mixture of
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Figure 2.8: Polariton dispersion relations and Hopfield coefficients. (a, b, c). Disper-

sion relations of the upper (UP) and lower (LP) polaritons in the strong coupling regime,

calculated from (Eq.) 2.36 for different values of the exciton-photon detuning ∆EX−γ =

−ℏΩR, 0, ℏΩR at k=0. At the crossing points of the exciton and photon branches, respec-

tively in red and blue dashed lines, the UP and LP branches are spaced by the coupling energy

ℏΩR. (d, e, f) Corresponding Hopfield fractions of exciton X2
LP and photons C2

LP , in red and

blue lines, calculated from (Eq.) 2.34 for the LP. Changing ∆EX−γ modifies the photonic and

excitonic character of polaritons.
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excitons and photons. At large-k, as the detuning becomes larger, the UP and LP recovers an

exciton and photon shape respectively. At negative detuning, ∆EX−γ < ℏΩR, the anticrossing

is clearly visible where the exciton and photon branches cross each other. In contrast to the

positive detuning case, the UP branch is now mostly made of excitons at low-k, while the LP

branch is mostly made of photons.

The exciton-photon detuning range suitable for the strong coupling regime is summarised

in Fig. 2.9, where the energy of the upper and lower polariton branches at k=0 is plotted as

a function of the exciton-photon detuning. The splitting at ∆EX−γ = 0 meV is fixed by the

Rabi frequency ΩR, whereas, for significantly higher ∆EX−γ > ℏΩR, its value tends to ∆EX−γ.

Effective mass. Consequence of the modification of the shape of the dispersion relations,

the change in exciton-photon detuning ∆EX−γ results into a change in the mass of polaritons

m∗ defined from the curvature of the parabolic regions of the dispersion curves at k = 0 µm−1.

The second derivative of Eq. (2.36) leads to

1

m∗ =
X2

0

m∗
X

+
C2

0

m∗
γ

≃ C2
0

m∗
γ

, (2.37)

in which the first term is neglected because the mass of excitonsm∗
X is much larger than the mass

of photons m∗
γ. To conclude, with a typical mass m∗ = C2

0/m
∗
γ ≃ 5 × 10−35 kg, four orders of

magnitude below the mass of electrons, polaritons are very light quasiparticles. Consequently,

their de Broglie thermal wavelength is much larger than that of bosons commonly used in

quantum fluid experiments, such as cold atoms, which would allow in principle Bose-Einstein

condensation at the high cryogenic temperatures used to generate excitons.

Dissipation. Until now, the finite lifetimes of excitons and photons have been neglected in

the description of polaritons. Their consideration is however essential as it determines whether

it is possible to reach the strong coupling regime in our system and thus whether polaritons

can be generated. Their inclusion to the dynamics of the system is done directly by adding the

corresponding decay rates γX and γcav to the imaginary part of the Hamiltonian (2.32). The

decomposition in the polaritons basis yields

[
γLP (k)

γUP (k)

]
=

[
X2

k C2
k

C2
k X2

k

] [
γX
γcav

]
. (2.38)

Therefore, in addition to altering the mass, the exciton and photon fractions values also

impact the lifetime of polaritons. The lower polariton decay rate γLP is measured equal to 70

µeV in our system, at an exciton-photon detuning ∆EX−γ = 0 meV (τ = 10s).

The transformation (Eq.) 2.38 implies the following dispersion relation
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Figure 2.9: Anticrossing of energy levels. Energies of the upper (UP) and lower (LP)

polaritons branches at k = 0 µm−1, with respect to the exciton-photon detuning ∆EXcav and

the color-coded squared modulus of the Hopfield coefficient X2 (exciton) and C2 (photon). The

yellow and blue dashed lines are respectively the bare exciton and photon energies. At ∆EXcav

= 0 meV, the energy splitting is equal to the Rabi energy ℏΩR. Adapted from [108].

ℏωUP,LP (k) =
Eγ(k) + EX(k)

2
− iℏ

γcav + γX
2

± 1

2

√
[ℏΩR]2 + [∆EX−γ − iℏ(γcav − γX)]2.

(2.39)

From this, still at ∆EX−γ = 0 meV around k = 0 µm−1, one recovers the conditions of strong

coupling expressed above. If |γcav − γX | > ΩR, the square root term in Eq. (2.39) is purely

imaginary. As a result, the real part of the energies of the UP and LP branches matches that of

photons and excitons, thus there is no splitting and the system is in a regime of weak coupling.

On the other hand, if |γcav − γX | < ΩR, the square root term contribute to the real part of the

energy: the UP and LP are split and different from photons and excitons. The system is in a

regime of strong coupling. Now, if one wants to resolve the energy splitting from the spectral

broadening of excitons and photons, the coupling energy must be much larger than the decay

rates of the system, hence the ideal strong coupling condition expressed as ΩR ≫ γX , γcav.

2.3.2 Polariton interactions

The low-density regime assumption we made was sufficient to demonstrate the creation of po-

laritons when excitons couple with photons. Now, the richness of the phenomena described
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in this manuscript stems from the nonlinear dynamics of excitons, whose nature as a pair of

interacting charged particles reappears for densities that are no longer close to zero. Before

explaining how polaritons inherit these exciton-exciton interactions, some preliminary observa-

tions must be made.

Coupling saturation. First, for high densities, the Pauli exclusion principle applies again

for electrons and holes, prohibiting the creation of an exciton in the Bohr radius of a neigh-

boring exciton. Under optical excitation, this leads to an additional interaction term in the

Hamiltonian of excitons, expressed as an exciton exchange mediated by photons [42, 43]

Hsat =
1

2

∑

k,k′,q

Vsat

[
â†k+qb̂

†
k′−qb̂kb̂k′ + h.c.

]
, (2.40)

with a saturation potential Vsat = ℏΩR/Ansat defined from the saturation density nsat ∝
1/(aQW

X )2 and assumed constant for the scale of wavevectors considered. With such a Hamil-

tonian, we express that the interaction leading to the annihilation of two excitons results in

the creation of only one new exciton with a partner photon, thus reduces the population of

excitons in the saturated QW, in contrast to the process depicted by the standard exciton

exchange Hamiltonian HXX . For our system, one calculates nsat ≃ 104µm−2, hence A × Vsat
about 0.1 µeV·µm2, one order of magnitude below A× VXX .

Truncation of the polariton basis. Secondly, in order to consider that the spectrum

always exhibits two distinct UP and LP branches, the interactions between excitons must

remain significantly weaker than the splitting energy ℏΩR. In this way, the polariton basis can

be truncated to the LP eigenstate without loss of generality. By rewritting the interactions

Hamiltonian (2.16) and (2.40) as a function of polariton operators (b̂ = Xp̂ − Cû), the terms

depending on p̂ are isolated to derive an effective interaction potential felt by lower polaritons

Vpp = |Xk|4VXX + 2|Xk|2XkCkVsat. (2.41)

Its strength can be tuned with the exciton-photon detuning ∆EX−γ, via the Hopfield coef-

ficients X and C. When ∆EX−γ = 0 meV, A× Vpp is about 1 µeV·µm2 for our system

LP nonlinear hamiltonian. Finally, these considerations lead to the following expression

for the LP Hamiltonian

HLP =
∑

k

ℏωLP (k)p̂†kp̂k +
1

2

∑

k,k′,q

Vpp

[
p̂†k+qp̂

†
k′−qp̂kp̂k′

]
. (2.42)

The second term corresponds to the interaction Hamiltonian of LPs, defined as a two-body

contact interaction operator. It describes the exchanges between four polariton modes, leading

to the creation of two polaritons at wavevectors k + q and k′ − q from the annihilation of two
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polaritons at wavevectors k and k′. This type of process is the polariton analogue of the optical

four-wave mixing in nonlinear media.

Energy renormalization. To give a simple intuition of the effect of the interactions on

the polariton dynamics, one can restrict the description of the system to two polaritonic modes

with respective wavevectors k1 and k2. The energy of the k1 mode is given by the Heisenberg

equation

iℏ
d

dt
p̂k1 = [p̂k1 ,HLP ] = [p̂k1 ,Hlin] + [p̂k1 ,Hint] , (2.43)

where the contribution of interactions is equal to

[p̂k1 ,Hint] =
Vpp
2
p̂†k2 p̂k2 p̂k1 =

ℏg
A
N̂2p̂k1 , (2.44)

with N̂2 the number operator in the mode k2, ℏg = VppA/2 the polariton-polariton interaction

constant and A the quantization area, equal to the surface of the quantum wells. Provided

that the k2 mode is macroscopically populated, N̂2 can be replaced by its expectation value

⟨N̂2⟩ via the mean field approximation. By normalising the equations by the quantization area

A, one introduces the polariton density n2 = ⟨N̂2⟩/A in the k2 mode. Thus, ℏgn2 defines an

interaction potential felt by the k1 mode polaritons.

In the end, the complete calculation of Eq. (2.43) yields

iℏ
d

dt
p̂k1 = [ℏωLP (k1) + ℏgn2] p̂k1 , (2.45)

where ℏωLP (k1) is the linear dispersion relation of polaritons in the mode k1. For repulsive

interactions (g > 0), the polaritons in the k1 mode undergo a blue-shift proportional to the

density of polaritons in the k2 mode. Under coherent excitation, where polaritons are generated

by resonant injection of a laser beam in the vicinity of the LP branch at k2, the effect of

interactions is described as the renormalization of the k1 mode energy by the pump mode.

This also occurs on the pump mode itself, inducing a mixing of four polaritons in the same

mode. Such a parametric process is related to the optical self Kerr effect, also involving four-

wave mixing in a single mode. It is responsible, as we will see, for the appearance of a bistable

regime in the microcavity.

2.4 Polariton dynamics in resonant excitation

Let us summarize: the strong coupling between a quantum well exciton and a photon in an

optical cavity creates a new type of quasi-particle, the polariton, behaving like an interacting

boson of finite lifetime. Now, in order to achieve a complete description of the fundamental

physics at stake in semiconductor microcavities, we need to address the optical stimulation of

such particles. It is done in our experiments under a quasi-resonant excitation, with a coherent
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and continuous laser beam illuminating the cavity in the vicinity of the LP resonance. We

already know that the conservation of momentum and energy laws implies that only exciton

modes matching the photon modes, i.e. its in-plane wavevector, energy and phase, can be

created. The same applies for the polariton, as it inherits the properties of its constituent

photon and exciton. This makes such an excitation scheme an ideal tool to generate and

control a specific polariton mode in the system. However we have not yet discussed how the

density of polaritons, thereby the strength of interactions and the resulting particle dynamics,

can be optically monitored. This is what we will investigate in this section, by considering for

the excitation field a single mode continuous plane wave of frequency ωP and wave vector kP

FP (r, t) = F 0
P e

i(kPr−ωPt). (2.46)

2.4.1 Mean-field approximation

So far we have carried out a quantum description of polaritons. However, in order to solve the

system dynamics under laser excitation, it is usual to employ a mean field approximation [37], re-

maining valid as long as the number of involved particles N is very large, i.e. N ≃ N+1. In this

approximation, the creation and annihilation operators p̂†k and p̂k are replaced by their classical

field terms, ψ(r, t) = ⟨ψ̂(r, t)⟩ and ψ∗(r, t) = ⟨ψ̂†(r, t)⟩, where ψ̂(r) = 1/
√
V
∑

k p̂k exp(ik · r)
is the polariton field operator and the particle density is defined as |ψ(r, t)|2 = n(r, t).

Gross-Pitaevskii equation. Excitation and losses aside, the evolution of ψ is already well

known in the framework of quantum gas theory. It is a classical partial differential equation

for the order parameter of a superfluid, expressed by Gross [65] and Pitaevskii [137] in 1961 to

describe the behaviour of liquid helium

iℏ
∂

∂t
ψ(r, t) =

[
− ℏ2

2m
∇2

r + Vext(r) + ℏg|ψ(r, t)|2
]
ψ(r, t), (2.47)

where Vext(r) is an external potential in which the system evolve and g = 4πℏas/m the inter-

action constant, proportional to the diffusion length as between particle. It is the well known

Gross-Pitaevskii equation (GPE), describing the collective dynamics of a macroscopic fraction

of particles assimilated to a classical field [100, 138]. It is used to describe thermal Bose gases

at equilibrium, such as the condensates of cold atoms in weak interaction.

De Broglie thermal wavelength. A simple criterion to postulate whether an assembly

of particles can be described as a collective system was proposed by de Broglie in 1924 [49]. In

the context of the development of the wave–particle duality, he suggested that, as for photons,

matter particles can be associated to a wavelength, defined as λT = h/p at thermal equilibrium.

The particle momentum p is governed by a Maxwell Boltzmann thermal distribution, equal to√
2mπkBT , leading to the following expression
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λT =

√
2πℏ2

mkBT
. (2.48)

When λT becomes larger than the mean interparticle spacing, the wavepackets of particles

overlap. As a result, the system can no longer be described as a set of distinguishable particles.

In the case of bosons, it undergoes a phase transition (Bose-Einstein condensation) that yields

an accumulation of a macroscopic fraction of particles in the same quantum state, which is well

described as a single wave function. At cryogenic temperatures typically around 4K, the de

Broglie wavelength for polaritons in our system is of the order of 15 µm, much larger than the

average distance between polaritons for densities near the optical saturation nsatλ
2
T ≫ 1. We

can therefore safely assume the mean field approximation for the polaritons operators and refer

to the Gross-Pitaevskii equation to describe the evolution of a classical wave function.

Out-of-equilibrium Bose gas. We now include the excitation and the losses as they

fundamentally change the dynamics of polaritons compared to those of Bose gases in thermal

equilibrium. These differences appear in the global phase of the fluid wave function. For

the case of thermal equilibrium, ψ oscillates at a frequency fixed by the chemical potential µ,

defined as the energy necessary for the addition of one particle to the system. In the case of

the microcavity system, the thermal equilibrium is never reached due to the decay and the

continuous injection of polaritons [37]. Consequently, the phase of ψ can no longer be derived

by a chemical potential governed only by the intrinsic properties of particles: its definition has

to take into account the balance of the exchanges between the fluid and its environment, i.e.

it depends on the driving and losses parameters. This leads to a generalization of the GPE for

polaritons.

2.4.2 Driven-dissipative Gross-Pitaevskii equation

Since the operator associated to the laser field acts on photon states, it is practical to write first

the Schrödinger equation of our system in the exciton-photon wave functions basis (ψX(r, t), ψγ(r, t)).

In the mean field approximation, the laser field Fp(r, t) is simply added as an external driving

force imposing its phase to to the photon field ψγ(r, t). This yields

iℏ
d

dt

[
ψγ(r, t)

ψX(r, t)

]
=

[
ℏFp(r, t)

0

]
+ (2.49)


Hlin(r) +


Vγ(r) − iℏ

γcav
2

0

0 VX(r) − iℏ
γX
2

+ ℏgXXnX(r, t)





[
ψγ(r, t)

ψX(r, t)

]
,

where Vγ(r) and VX(r) are the mean external potentials felt by photons and excitons respectively

, typically induced by local structural defects in the system; gXX = AVXX/2ℏ is the exciton
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interaction strength, nX = |ψX |2 is the exciton density and Hlin(r) is the linear Hamiltonian

(2.32), written in the real space by replacing k with i∇r

Hlin(r) =

[
ℏωX ℏΩR/2

ℏΩR/2 ℏωγ(−i∇r)

]
. (2.50)

The dispersion relation of excitons is assumed uniform ℏωX = ℏωX(k=0), due to its negligible

curvature in the limit of small wavevectors, compared to that of the photons ℏωγ. We then

reformulate Eq. (2.49) in the polariton basis [44]. Tthe evolution equation of the LP field ψ(r, t)

reads

iℏ
∂

∂t
ψ(r, t) =

[
ℏω0

LP − ℏ2

2m
∇2

r + VLP (r) + ℏgn(r, t) − iℏ
γ

2

]
ψ(r, t) + ℏηLPFp(r, t). (2.51)

Here, VLP = |Xk|2VX + |Ck|2Vγ and g are respectively the external potential and the in-

teraction constant of polaritons. ηLP quantifies the coupling efficiency of the pump with the

polaritons, proportional to the amplitude of the light transmission through the cavity front mir-

ror. ℏω0
LP is equal to the energy of the LP, calculated at k=0 from Eq. (2.36). In the end, we

find an equation similar to Eq. (2.47), with two new terms to take into account the specificities

of the polariton system: its losses and its excitations. It is the so-called driven-dissipative or

generalized Gross-Pitaevskii equation [37]. We will always refer to it in the following to describe

the behavior of the polariton fluid.

2.4.3 Optical bistability

We now address a direct consequence of the dissipation and driving of the system: the emergence

of a bistable behavior of the polariton density with respect to the pump intensity. In the

nonlinear optics literature [161, 25, 106], the term of optical bistability refers to the ability of

a system to adopt two different states over a certain range of input intensities, depending on

its internal state. It is commonly encountered in Kerr media: it is therefore natural that such

a feature emerge for the polariton system [16], since, as mentioned, the interactions between

excitons are equivalent to a Kerr nonlinearity under coherent excitation.

By considering a driving field of the form of Eq. (2.46), the energy-momentum conservation

laws imply to look for plane wave-type solutions for the polariton wave function, with a phase

equal to that of the pump, i.e. ψ(r, t) = ψ0 exp(ikPr − iωPt). After inserting this ansatz into

the steady-state generalized expression of the GPE for a homogeneous system VLP = 0, one

obtains

[
ωP − ωLP − ℏk2

P

2m
− g
∣∣ψ0
∣∣2 + i

γ

2

]
ψ0 = ηLPF

0
P . (2.52)
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Figure 2.10: Optical bistability of polaritons under quasi-resonant excitation, obtained

from the numerical resolution of Eq. (2.53) (a) Interaction energy of polaritons ℏgn as a function

of the pump intensity I. In the hysteresis loop region, the fluid is in a bistable regime, where its

density can either be high (on the higher branch) or low (on the lower branch). The intermediate

branch of negative slope is an unstable solution of the GPE, inaccessible in stationary regime.

As indicated by the black dashed arrows pointing up (down), at the lower (higher) inflection

point, increasing (decreasing) I results in a density switch from the lower (higher) branch to

the higher (lower) branch. (b) Interaction energy ℏgn as a function of the pump detuning δ.

See (a) for details. (c) Interaction energy ℏgn for different pump detuning δ as a function of

pump intensity I. The bistability appears only when δ >
√

3γ/2.

This equation is the analogue of the equation of state of boson gases in thermal equilibrium

[138, 37]: here, instead of depending directly on a fixed chemical potential µ = gn, the polariton

density n = |ψ0|2 evolves in a non-trivial way with the pump parameters kP, ωP, F 0
P and the

losses γ. By multiplying this equation by its complex conjugate and denoting δ = ωP − ωLP

the pump energy detuning with respect to the resonance of LP at kP, the following relation for

the density is derived
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n

[
γ2

4
+

(
δ

ℏ
+ gn

)2
]

= η2LP I, (2.53)

with I = |F 0
P |

2
the pump intensity. In the general case, this equation exhibits several density

solutions for a fixed intensity and detuning of the pump. As an illustration, Fig. 2.10(a) shows

the evolution of n with respect to I for a given detuning: all along a certain intensity range, the

density can take two values localized on the higher or lower branch of a hysteresis loop. The

central branch of negative slope is not considered here because it is dynamically unstable (we

will discuss this case later in the manuscript).Therefore, like all other Kerr medium embedded

in optical cavities, polaritons exhibit a bistable behavior.

The densities associated to the two bistability turning points, called respectively the higher

and lower turning points in the following, can be determined by resolving dI
dn

= 0. This yields

the discriminant

∆ = g2
(
δ2

ℏ2
− 3γ2

2

)
. (2.54)

As a result, one deduces that the system is indeed bistable if it possesses at least two different

turning points, i.e. if ∆ > 0, corresponding to a pump energy blue-detuned with respect to

the LP branch δ >
√

3γ/2. This will be the dominant excitation regime in the following of

this manuscript, and this is why we have emphasized the notion of quasi-resonant excitation

from the beginning of this section. On the contrary, when δ <
√

3γ/2, only one solution exists.

The polariton density is no longer bistable and its evolution as a function of the laser intensity

follows a square root law (see Fig. 2.10 (c)).

From Eq. (2.53), it can be remarkably noticed that, at the higher turning point of the

bistability and by neglecting γ with respect to δ, the interaction energy is equal to the pump

energy gn = δ. As it will be discussed in the next sections, the excitation of such a point will

be crucial in our experiments.

It is also possible to evaluate the variations of the polariton density with respect to the

detuning, at fixed pump intensity. Similarly, as it is plotted on Fig. 2.10(b), there is a range

of δ in which two density values are possible (those located along the negative slope line are

too unreachable because they are dynamically unstable). As well, we find that at the higher

turning point gn = δ (Eq. (2.53)).

Qualitative description of the bistability. To fix the ideas, the emergence of bistability

in semiconductor cavities can be explained qualitatively in the following way. (1) At low

intensity, the laser is out-of-resonance: the injection of photons in the system has a very low

efficiency and produces a small density of polaritons in a finite range of modes k, via the

incoherent scattering process (kP,kP) → (2kP − k,k). (2) Ramping up the pump intensity

increases the polariton injection rate until it exceeds the cavity loss rate: the density increases
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drastically and leads to a renormalization of the resonance energy of the system due to the

subsequent growth of polariton interactions. (3) The system jumps to the higher bistability

branch. The pump is now in resonance with the LP branch, leading to a very efficient injection.

The polariton mode distribution is no longer set by the incoherent scattering processes but

locked by the pump. (4) Now, in order to get back to the lower bistability branch, the laser

must be taken out-of-resonance again. By lowering its intensity, the polariton density decreases

and thus the interaction energy as well. At the higher bistability turning point, the interaction

energy is equal to the pump-polariton detuning. As soon as we cross this point, the system

is again out-of-resonance with the pump, so the injection is again ineffective and consequently

the density falls on lower bistability branch.

Density control knobs. From what we have just discussed, we can derive two ways

to control the density of the polariton fluid: either by tuning the intensity I; or by tuning

the detuning δ of the pump. These two control knobs are not equivalent, essentially because

changing the intensity induces smaller density variations n ∝ I1/3 than changing the detuning

n ∝ δ, for the ranges of powers and energies accessible by the laser used in the experiments.

Moreover, as we will see in the next section, the change in the polariton interaction energy

gn with respect to the laser detuning δ modifies the fluid dynamics, as the values of the GPE

terms are modified. The possibility of having access to these two knobs allows to work at a

fixed value of gn − δ for different densities n. In our experiments, we will generally use δ to

tune roughly the density (we basically select one of the different bistability curves shown in

Fig. 2.10(c)) and then use I to choose the point at which we want to work (corresponding to

tune gn).

2.4.4 All-optical control

Before continuing, let us make a brief summary of all the tools we have to control and detect the

polaritons, thanks to the rules of optical selection and the laws of conservation of energy and

momentum under continuous, single-mode and quasi-resonant excitation. In the same manner

that polaritons inherit the properties of pump photons, thus allowing their direct optical control,

reciprocally, photons leaking from the cavity preserve the properties of polaritons, providing a

direct way to study the dynamics of the quantum fluid. We have an equivalence between the

following quantities:

• the pump intensity I and the polariton density n (modulo the bistability relation),

• the polariton density n and the intensity emitted by the cavity, via the cavity coupling

mirros (losses),

• the in-plane wavevector of the pump kP and the wavevector of polaritons k.

• the wavevector of polaritons k and their group velocity v =
∂ωLP

∂k
(kP), calculated from

Eq. (2.36) and generally referred to as the speed of the polariton flow in the plane of the

cavity,

• the polariton wavevector k and the cavity emission wavevector,
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• the polariton energy and the emission energy,

• the polariton lifetime and the emission linewidth.

2.5 Superfluidity

As explained above, polariton fluids exhibit macroscopic coherence at cryogenic temperatures

and, acting as bosons, they can massively occupy a single quantum state. Their description must

therefore share common characteristics with the equilibrium quantum gases, of which ultra-cold

atomic condensates are the paradigmatic representatives. As an example of the investigations

that went in this direction after the first experiments in semiconductor microcavities, it is

possible to refer to the abundant quantity of papers transposing the theory of polaritons into

that of quantum gases [75, 99, 110, 44, 52, 176]. During our demonstrations, we have seen that

the dynamics of all these systems are related to each other via the Gross-Pitaevskii equation,

common to both systems but enriched with a loss and pump term for polaritons. The question

is now to know if the cold atoms/polaritons analogy can be pushed further by studying their

collective behavior: in particular, if polaritons, like liquid helium or atomic condensates, can

be the seat of superfluidity.

2.5.1 Historical background

Such a particular state of matter was observed in liquid helium by P. Kapitza, then indepen-

dently by J.F. Allen and A. Don Misener in 1938 [82, 5]. Helium, which has the particularity

of not solidifying at low temperatures and atmospheric pressure, undergoes a transition from a

normal fluid to a superfluid state, when cooled below a critical temperature threshold, called

its lambda point (Tλ = 2.17 K at saturated vapor pressure). It exhibits striking new behaviors,

such as abilities to cross narrow channels without friction or to support quantified vortices

within its density. One year later, F. London related these observations to the manifestation

of Bose-Einstein condensation, by describing liquid helium as an interacting Bose gas [105].

He calculated that the temperature for condensation, related to the de Broglie wavelength of

helium atoms becoming larger than the interparticle spacing, was about 3.09K, very close to

the lambda point of superfluidity Tλ. In this picture, helium superfluidity results from the

emergence of macroscopic coherence at low temperatures. However, this correspondence is

limited as all Bose-Einstein condensates do not necessarily present a superfluid regime, as is

the case for instance for the ideal Bose gas, i.e. without interactions. Moreover, in view of

the experiments at that time, it does not explain why the friction reappears when, instead of

observing its non-viscous circulation through microscopic channels, liquid helium is sent against

a macroscopic cylinder [59].

Two-fluid model. L. Tisza [165] followed by L. Landau [96] deepened F. London’s idea in

1941, by introducing a two-fluid model to explain the changes in the helium viscosity according

to the external perturbation - the macroscopic tube or the microscopic tube - it undergoes. It

consists in the interpenetration of a normal fluid component, made of non-condensed atoms,
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Figure 2.11: Energy of the elementary excitations of liquid helium predicted by

Landau, at T=1.114K and plotted with respect to wavevector k = p/ℏ . At low-k, the

spectrum is linear, corresponding to the excitation of phonon-like particles, moving at the first

speed of sound c. At large-k, the inflection of the dispersion curve indicates the emergence of

roton-like particles, whose energy minimum is tangent to the line of slope equal to the second

speed of sound of helium cs (note that these do not exist in polariton fluids). When the speed

of the flow of helium v is lower than cs, the line of corresponding slope v never crosses the

spectrum: no elementary excitation can be created, corresponding to the superfluid regime

according to the Landau criterion. Adapted from [97].

with a superfluid component, made of condensed atoms. The condensed part being in the

ground state, it cannot contribute to the momentum exchange in helium: it has no viscosity

and flows without friction through narrow channels. In contrast, the non-condensed part has a

finite viscosity, responsible for the reappearance of viscosity around large obstacles.

Elementary excitations. The fraction of one component compared to the other varies

continuously with the temperature: helium is a pure superfluid at zero temperature whereas

it is a pure normal fluid at temperature T > Tλ. The superfluid component is considered as

a background fluid, of zero temperature, supporting the normal fluid, described as a sum of

elementary excitations, stimulated from the condensed fraction and whose population grows as

the temperature increases. These excitations are responsible for the singular behavior of the

helium viscosity. Depending on their respective energies, they are classified into two different

families of quasiparticles: phonons and rotons. The former are low energy and momentum

quantized sound waves that do not collide; the later are excitations of higher energies, associated

with motions on a very small area of the fluid, which could result in the generation of elementary

vortices. Their spectrum is plotted in Fig. 2.11, where the characteristic signature of the

phonons can be observed: it is a linear dispersion relation at low wavevectors, with a slope

equal to the speed of sound of helium. The theoretical model underlying such dispersion

relations, which we will apply to polaritons in this manuscript, was developed in depth by N.

Bogoliubov in 1946 [24].
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2.5.2 Landau criterion

From these considerations, it is possible to determine if a fluid is in a superfluid state using the

so-called Landau criterion. To this end, let us imagine an obstacle moving without acceleration

through a uniform fluid of total mass m, and let us see at which velocity v it becomes possible

for it to create perturbations. To simplify the analysis, it is usual to work for such problems

in the reference frame where the obstacle is at rest. If we consider at first an original reference

frame R, with an energy E and a momentum P, the co-moving reference frame R′ has an

energy E ′ given by the standard Galilean transformations

E ′(v) = E −P · v +
1

2
mv2. (2.55)

In its ground state, the fluid is at rest in the original reference frame, so it has zero momen-

tum. Its energy in the moving frame of reference is simply written as

E ′
0 = E +

1

2
mv2. (2.56)

Now, let us consider a state of the fluid supporting a single excitation of momentum p and

energy ϵp. In the original reference frame R, the energy of the fluid is E + ϵp, and therefore, in

the moving reference frame it becomes

E ′
p = E + ϵp − p · v +

1

2
mv2. (2.57)

Thus, to create an excitation of energy ϵp and momentum p, the fluid must acquire in the

moving reference frame an energy E ′
p − E ′

0 = ϵp − p · v. However, in the same reference

frame, the defect is at rest and therefore is not able to transfer energy to the fluid. As a

result, the appearance of elementary excitations is only possible if their energy cost is zero

or negative. Therefore, when the fluid flow velocity is equal to the phase velocity of the

excitation, i.e. v =
ϵp
|p| , the obstacle can create a perturbation of momentum parallel to v. For

higher velocities, the excitations with an angle cos−1(ϵp/|p||v|) with respect to v can also be

stimulated, resulting in the onset of phenomena analogous to the Cherenkov effect [78], which

described the propagation of a cone-shaped shock wave, when a charged particle moves in a

dielectric medium with a velocity larger than the speed of light in that medium.

Critical velocity. Finally, we can deduce the Landau criterion which gives the minimum

flow velocity vc allowing the appearance of perturbations and therefore the departure from the

superfluid regime

|v| < vc = minp

(
ϵp
|p|

)
. (2.58)
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vc can be found from the spectrum of elementary excitations: it corresponds to the line of

maximum slope that no longer crosses the dispersion relation. In the context of liquid helium,

it is plotted in Fig. 2.11 and is called the second speed of sound cs.

2.5.3 Polariton superfluidity

To summarize, the spectrum of the elementary excitations contains the information necessary to

know if a fluid can be superfluid. As we will see in the next chapter, it is possible to calculate the

polariton spectrum from the Bogoliubov theory [24, 37], which consists in studying the dynamics

of small perturbations on top of the fluid. The polariton wave function is decomposed into a

background component, stationary solution of the generalized GPE (2.51), and a low-amplitude

component, corresponding to the elementary excitations. By injecting it then into the GPE,

one can derive the following dispersion relation for the dynamics of weak perturbations

ωBog(k) = ℏ
kPk

m
±
[(

ℏk2

2m
+ 2gn− δ

)2

− (gn)2
]1/2

− i
γ

2
. (2.59)

To simplify the explanations, let us consider the case where the detuning is exactly equal

to the interaction energy of polaritons, i.e. δ = gn. As detailed in the previous section, this

regime is reached by tuning the pump intensity to excite the polariton density at the high

turning point of the bistability. The dispersion relation becomes

ωBog(k) = ℏ
kPk

m
±
√

ℏk2

2m

[
ℏk2

2m
+ gn

]
− i

γ

2
. (2.60)

It is plotted for pump wave vectors kP = 0 and kP = 0.25 µm−1 in Fig. 2.12. Two straight

lines lie at low-k, corresponding to the spectral signature of phonons. Without flow, i.e. kP = 0,

their slope is equal to the polariton speed of sound cs, which can be expressed from the Taylor

expansion of Eq. (2.60) when k → 0

ℏωBog(k) ≃
√

ℏgn
m

k = csk. (2.61)

In the case where the fluid has a non-zero flow velocity, vkP
=
dωBog

dk
= ℏ

kP

m
, the positive

and negative slopes of the dispersion relation are asymmetric: phonons co-propagating with

the direction of the flow go at velocity cs + vkP
; counter-propagating phonons go at velocity

cs − vkP
.

Historical experiments. Because their spectra reveal phonons under certain excitation

conditions, polaritons fluids can behave as a superfluid. The first experimental evidence of

a superfluid behavior in semiconductor microcavity was performed by A. Amo in 2009 [9],
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Figure 2.12: Spectra of elementary excitations of polaritons, calculated from Eq. (2.60),

for a pump detuning ℏδ = 0.2 meV and at the bistability higher turning point gn = δ. (a)

Real part of the energy ℏωBog of the Bogoliubov elementary excitations as a function of their

wavevector k. The pump wavevector, highlighted by the red dot, is set at kP=0, therefore the

flow velocity of polaritons is zero. At low-k, two linear branches appear, corresponding to the

excitation of phonon particles on top of the fluid. Their slope is equal to the speed of sound cs.

At large-k, the standard parabolic dispersion of single particles is recovered. (b) At kP=0.25

µm−1, the fluid flows in the direction of the positive k at a speed vkP
= ℏkP/m. As a result,

the speed of sound at low-k is modified: it is equal to cs+ vkP
in the direction of flow; cs− vkP

in the opposite direction.

in a parametric excitation regime. The same year, the demonstration of superfluidity under

continuous and quasi-resonant excitation, was reported in our group [10], by exploiting the

Landau criterion.

The experiment consisted in sending a flow of polaritons in the wake of a micrometric

structural defect. The cavity used at that time was the same one we still use today (see

Annex). The results are pictured in Fig. 2.13(a), where the top line shows images of the

density of the fluid in the real space of the microcavity plane and the bottom line shows the

corresponding reciprocal space, i.e. the momentum distribution (kx, ky) of polaritons. For each

row, the speed of flow, set by the pump angle kP = -0.337 µm −1, is kept constant and only

the pump intensity increases, resulting in an increase of the polariton density and thus in an

increase of the speed of sound as described in Eq. (2.61).

At low intensities, in Fig. 2.13(a)-I, the system is in linear regime. The fluid scatters elasti-

cally from the defect, leading to the formation of parabolic wavefronts in the direction opposite

to the flow in real space and the appearance of a Rayleigh ring in reciprocal space, proving

the reflection of polaritons by the defect in all directions of the cavity. At higher intensities, in
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Figure 2.13: Superfluidity in polariton fluid. (a) Experimental results of a polariton fluid

transition to superfluidity. Top images are real space while bottom ones are the momentum

space. The flow goes from top to bottom hitting a defect, the in-plane wavevector is kP =

-0.337 µm−1 and the detuning δ = 0.10 meV. The polariton density increases from left to right:

at low density, the fluid scatters on the defect, as shown by the scattering ring in the far field

and the parabolic wavefront in the density map. Those gradually vanish while the density

increases, until they completely disappear in the superfluid regime on the right images. (b)

Same configuration at kP = 0.521µm−1 and δ = 0.11 meV. This time, the increase of density

leads to a linearisation of the scattering fringes around the defect, also known as the Cerenkov

cone. Adapted from [10].
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Fig. 2.13(a)-II and -III, the speed of sound exceeds the speed of the flow. As a consequence,

the wave fronts and the Rayleigh ring vanish: the fluid has lost its initial viscosity, it moves

therefore without friction around the defect, and does not generate any scattering. Polaritons

are in superfluid regime, in accordance with the Landau criterion.

Noteworthy, on the second set of pictures of Fig. 2.13(b) captured for a higher flow velocity,

with kP = 0.52 µm−1, a Cherenkov-Mach cone clearly appears in the nonlinear regime. The

density modulation here has the same shape as that of the air pressure singularities observed

for example in the wake of a plane or a bullet when they break the ”sound barrier”.

Following these discoveries, a whole series of experiments were conducted to study the hydro-

dynamic nucleation of vortex-antivortex [29, 102] pairs and solitons [8] in the superfluid flowing

downstream of the defect. We will details these experiments in details in the following chap-

ter. Although it is very useful to probe the superfluid behavior, the Landau criterion remains

an approximation to explain the superfluidity regime [114]. During the last few years, many

theoretical and experimental works have led to a refinement of it, taking into consideration for

example the shape of the defect or the bistable character of the fluid and allowing to better

account for the conditions of superfluidity in polariton systems.

2.6 Bose-Einstein condensation in off-resonance excita-

tion

Bose-Einstein condensation (BEC) is another phenomenon also observed and studied in semi-

conductor microcavities, pushing the analogy between quantum fluids and polaritons even fur-

ther. Predicted in 1924 by S. Bose for photons [26] and then generalised in 1925 by A. Einstein

to all bosons [55], it arises from the accumulation of a macroscopic fraction of particles in the

lowest-energy state. Although the first hints of condensation were initially unveiled in super-

fluid helium [82, 105], the first observation of a truly BEC dates from 1995 [12, 48], realized in

a rubidium atom gas cooled to nano Kelvin temperatures.

The BEC transition is also associated with the idea of spontaneous U(1) symmetry breaking

of the phase of the order parameter of the considered system. In the present case of quasi-

resonant excitation, this is not achieved as the phase of the polariton wavefunction is pinned

by the driving field, preventing the occurrence of BEC, although the experimental conditions

are suitable for the formation of a condensate, such as the de Broglie thermal wavelength

much larger than the mean spacing between particles at cryogenic temperatures. However, it is

still possible to consider other excitation regimes that decouple the dynamics of the polaritons

from that of the laser. For instance, in the optical parametric oscillation (OPO) regime, the

strong four-wave mixing nonlinearity of the system is exploited to generate from the scattering

of coherently injected polaritons, signal and idler polaritons, whose phases are free to evolve.

This will be discussed in another chapter of the manuscript. Here we are interested in the

off-resonance excitation regime, which, in microcavities designed specifically for this purpose,
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(a) (b)

Figure 2.14: Off-resonance excitation. (a) Scheme of the different steps in the process

leading to the off-resonant excitation of polaritons at the bottom of the lower branch. Adapted

from [84]. (b) Photoluminescence spectrum of polaritons resolved with a spectrometer. Both

the upper and lower branches are visible. Note the presence of replica fringes, related to

photonic resonance apparent at the frequency of the free spectral range of the effective cavity

formed by the association of the two system mirrors with the output substrate.

leads to polariton BEC [35, 85, 23].

2.6.1 Off-resonance pumping

In the off-resonance excitation regime, the laser illuminates the microcavity at much higher

energy than the resonance, in the vicinity of one of the reflectivity minima above the stop band

of DBRs. Then, the injected photons relax towards the LP branch, via the following steps:

1. Free electron-hole pairs are stimulated and cooled down by phonon emission into an

incoherent cloud of bound excitons.

2. These excitons can eventually relax into polaritons accumulating at the wavevectors of

the bottleneck region of the LP branch.

3. Finally, collisions between polaritons cause their scattering around the bottom of the LP

branch.

Once populated, the LP branch emits a photoluminescence (PL) signal via the optical cavity

losses. This signal can be resolved in the reciprocal space (k-space) of the microcavity, collected

by a very large aperture objective and then imaged at the level of the slit of a spectrometer

coupled to a CCD camera. Since the photons preserve the energy and the planar wavevector

of polaritons due to the translational invariance in the cavity plane, we can therefore directly

measure the dispersion relation of the LPs, in the linear regime for low excitation intensities as
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pictured in Fig. 2.36(b). This is a very useful tool, allowing us to access to the key parameters

of our experiments, at the different working points of our sample.

2.6.2 Polariton condensates

(a)

(b)

Figure 2.15: Polariton Bose-Einstein condensation. The off-resonance driving field power

is increased from the left to the right. (a) Momentum space emission intensity of the micro-

cavity. With the driving power exceeding the condensation threshold Pthr, a sharp and intense

peak is formed in the center of the emission distribution (θx = θy = 0 ◦), corresponding to

the lowest momentum state k = 0. (b) Same data, resolved in energy. Below threshold, the

emission is broadly distributed in momentum and energy. Above threshold, the emission comes

almost exclusively from the lowest energy state k = 0. Adapted from [84].

A. Imamoglu and R. J. Ram suggested in 1996 that the bosonic character of polaritons could

lead to the emergence of a condensate-like state emitting coherent laser light [75]. The creation

of such a condensate requires both a macroscopic occupation of a same state by polaritons

and the validity of the bosonic approximation mentioned earlier, requiring that the exciton

population remains below a certain saturation density (nX(aQW
X )2 ≪ 1). It is achieved by

ramping up the driving field intensity: the increasing population of polaritons in the bottom

of the LP branch stimulates and accelerates the relaxation of the polaritons from the high-k.

If the exciton density exceeds the saturation density before reaching a regime of macroscopic

occupation by polaritons, phase-space filling effects and screening of Coulomb interactions lead

to the dissociation of excitons into an electron-hole plasma and consequently to the disappear-
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ance of polaritons. Note that the stimulated emission of the plasma is similar to that of a laser

if the cavity losses are exceeded, making the system equivalent to an optically-pumped vertical

surface emitting laser (VCSEL).

The saturation density can be further increased by adding more QWs in the semiconductor

microcavity to reduce the mean exciton density per QW. In such a system, above a certain

intensity threshold, macroscopic occupation of states is achievable while preserving the bosonic

nature of polaritons. Provided that the relaxations of excitons and polaritons are faster than

the losses, the competition between the different low-k states favours the lowest energy state

along the LP branch, whose macroscopic occupation results in the emergence of a polariton

condensate.

The first microcavity BECs were reported by J. Kasprzak in CdTe system, in 2006 [84]. Due

to the polariton effective mass, they were produced at temperatures of the order of Kelvin.

As shown in Fig. 2.15, above a threshold intensity, a macroscopic accumulation of polaritons

in the lowest energy states is clearly observed. The polariton condensates have of course a

non-equilibrium nature due to the continuous losses and driving of the system. Therefore,

its belonging to the family of Bose-Einstein condensates is still under debate. However, more

recent work involving very high quality factor cavities, show the achievement of equilibrium

condensation of polaritons at 4K [160] and of microcavity photons at room temperature [87].
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Chapter 3

High-resolution coherent pump-probe

Bogoliubov modes spectroscopy

As explained in the second chapter, the characterization of the elementary excitations of a

quantum fluid is essential to study its collective effects, such as its superfluidity. It is commonly

achieved with the help of the Bogoliubov theory.

In the case of polaritons, the behavior of elementary excitations is tightly related to the

properties of the driving field and losses via the driven-dissipative nature of the semiconductor

microcavity. In this regard, it deviates significantly from that expected for an in-equilibrium

cold atom condensate. This is what we will study in this chapter.

The precise detection of the Bogoliubov dispersion in polariton quantum fluids has remained

a challenging goal ever since the observation of superfluidity and Bose Einstein condensation

therein. In the following, we will present the implementation of a high-resolution angle-resolved

coherent probe spectroscopy technique that allows for the measurement of the elementary

excitation spectrum in the linear and nonlinear regimes of interactions.

This work is based on the theoretical study carried out by C. Ciuti and I. Carusotto [44, 36]

and is reported in Ref. [45].

45
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3.1 Bogoliubov dispersion relation

The dynamics of weak perturbation on top of the polariton fluid is described with the Bogoli-

ubov theory in the mean-field approximation, consisting in the linearization of the generalized

GPE around its steady-state solution.

Under a continuous and coherent excitation, we consider first a stationary and homogenous

plane wavefunction solution of the GPE ψ0(r, t) = ψ0 exp(ikPr− iωPt), of spatial and tempo-

ral profiles inherited from the driving field Fp(r, t) = F 0
p exp(ikPr − iωPt). It represents the

background of the fluid, on top of which is introduced a weak perturbation δψ(r, t), typically

induced by a weak fluctuation in the driving field amplitude. The polariton wavefunction is

then assumed to be the sum of these two components, with the following ansatz

ψ(r, t) = exp(ikPr− iωPt) [ψ0 + δψ(r, t)] . (3.1)

The multiplicative exponential expresses the fact that the main state occupied by polaritons

is the pump mode, as expected in coherent excitation and in accordance with the momentum-

energy conservation laws. Now, in order to get the energy of the perturbed polariton fluid, we

inject ψ(r, t) and ψ∗(r, t) into the generalized GPE and look for the first order solution. This

leads to a pair of evolution equations

iℏ
∂

∂t
δψ(r, t) =

(
ℏω0

LP − ℏωP +
ℏ2

2m

[
k2
P − 2ikP∇−∇2

]
+ 2ℏg|ψ0(r, t)|2 − iℏ

γ

2

)
δψ(r, t)

+ ℏgψ2
0(r, t)δψ∗(r, t),

(3.2)

−iℏ
∂

∂t
δψ∗(r, t) =

(
ℏω0

LP − ℏωP +
ℏ2

2m

[
k2
P + 2ikP∇−∇2

]
+ 2ℏg|ψ0(r, t)|2 − iℏ

γ

2

)
δψ∗(r, t)

+ ℏgψ∗2
0 (r, t)δψ(r, t).

(3.3)

The problem is then simplified by expressing the weak perturbations in term of a coherent

superposition of counter-propagating plane waves, with respective amplitude Uk, Vk ≪ √
n

{
δψ(r, t) = Uk · exp(ikr− iωt) − V ∗

k · exp(−ikr + iωt),

δψ∗(r, t) = U∗
k · exp(−ikr + iωt) − Vk · exp(ikr− iωt).

(3.4)

Such decomposition allows to express Eq. (3.2) and (3.3) in a new basis, of eigenvectors

equal to the Uk, Vk plane waves
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ω

[
Uk

Vk

]
= LBog

[
Uk

Vk

]
, (3.5)

where the Bogoliubov operator is defined by

LBog =



ω0
LP +

ℏ(k + kP)2

2m
+ 2gn− ωP − i

γ

2
gn

−gn −ω0
LP − ℏ(k− kP)2

2m
− 2gn+ ωP − i

γ

2


 . (3.6)

The spectrum of elementary excitations, i.e. the frequency of δψ(k), is simply given by the

eigenvalues of LBog, equal to the zeros of det[ω − LBog], with the analytic expression

ωBog(k) = ℏ
kPk

m
±
[(

ωLP (kP) +
ℏk2

2m
+ 2gn− ωP

)2

− (gn)2
]1/2

− i
γ

2
. (3.7)

This is the so-called Bogoliubov dispersion relation of polaritons under a continuous and

coherent excitation. It relates the frequency ωBog(k) = ω(k− kP) − ωP of weak perturbations

of the polariton field to their excitation wavevector k, in the reference frame rotating at the

pump frequency ωP and wavevector kP. Note that the consideration of counter-propagative

plane waves implies the existence of a solution of negative energy, the so-called polariton ghost-

branch, which has the symmetric shape of the positive solution with respect to the polariton

condensate.

Comparison with the equilibrium quantum fluid. Here, the out-of-equilibrium nature

of our system is evident through the dependence of the elementary excitations energy on the

losses γ and the frequencies (ωP, kP) of the pump field. For comparison, in the case of a

thermal equilibrium quantum fluid, whose motion is governed by the classical GPE (2.47), the

Bogoliubov operator depends only on the interaction energy gn, which is directly linked to the

properties of the Bose gas, via its chemical potential µ fixed by the equation of state µ = gn.

It is given by

Leq
Bog =



−ℏk2

2m
+ 2gn− µ gn

−gn ℏk2

2m
− 2gn+ µ


 . (3.8)

Its diagonalization gives

ωBog(k) = ±
√(

ℏk2
2m

+ gn

)2

− (gn)2. (3.9)
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Therefore, the out-of-equilibrium dispersion relation (3.7) is similar to the equilibrium one,

except for the additions of an extra energy term equal to gn − δ, coming from the resonant

pumping, and of an imaginary term iγ/2, coming from the polariton finite lifetime.

Moreover, in the driven-dissipative case, the density is a non-trivial function of the intensity∣∣F 0
p

∣∣2 and frequency ωP of the pump, as seen from the bistability analysis. Thus, the slight

modifications in the pump field parameters drastically modifies the nature of the elementary ex-

citations and thus the shape of the Bogoliubov dispersion curve. The simple picture of phonons

responsible for the onset of the superfluid regime no longer holds and must be completed to

account for the diverse phenomena observed in our microcavity quantum fluid.

Stability of Bogoliubov solutions. LBog eigenvalues are classified into two main families

depending on their imaginary part:

• Im(ωBog) < 0: stable modes,

• Re(ωBog) = 0 and Im(ωBog) > 0: unstable modes, leading to the occurence of dynamical

instabilities.

For the last family, instabilities emerge when two different collective excitations modes enter

in resonance with each other: either the pump mode with one of the Bogoliubov solutions,

(ωP = ω±
Bog at kP), involving the onset of a Kerr instabilities ; either the positive Bogoliubov

solution with the negative one, (ω+
Bog = ω−

Bog at k ̸= kP), responsible for the triggering of

modulational instabilities. In the latter case, the polariton fluid exhibits the generation of

elementary excitation at different finite wavevectors k± on either side of the pump wave vector

kP. Literature generally refers to such wavevectors as lateral bands of instabilities, creating a

spatial modulation of the polariton density all along the surface of the fluid. As the system

is superfluid, if this modulation is strong enough, it can lead to the creation of topological

excitations like vortices.

3.2 Bogoliubov modes characterization

As shown in the previous chapter, depending on the value of δ, two different density regimes

are available:

1. The optical bistability, when δ >
√

3γ/2, which exhibits, depending on the pump inten-

sity, a regime of strong interaction, at high density, and a regime of weak interaction, at

low density.

2. The optical limiter, when δ <
√

3γ/2. We will not deal with its case here because the

different types of elementary excitations it includes are also present in the bistable case.

Without pump, i.e.
∣∣F 0

p

∣∣2 = 0, the real part of ℏωBog matches the parabolic linear-regime

dispersion relation of polaritons (2.39), with an imaginary part determined by the polaritons

decay rate γ. It gives the single particle response of the microcavity system to a weak intensity
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excitation. It will serve us as a reference as we will look for the deviation from its shape when

a high-density, nonlinear fluid is generated.

We will now discuss the modifications of elementary excitations depending on the density

variation of the fluid along the bistability loop. Accordingly, we have chosen to work at constant

detuning ℏδ = 0.2 meV (δ >
√

3γ/2) and to modify the interaction energy ℏgn with the laser

intensity
∣∣F 0

p

∣∣2. The corresponding dispersion relations, plotted from the numerical calculation

of Eq. (3.7), are presented in Fig. 3.0.

3.2.1 Interplay with the optical bistability

i- Sonic dispersion relation

Let us begin by analyzing the most spectacular case, which allows us to directly link polaritons

to the paradigmatic representatives of quantum fluids: the excitation of the bistability turning

point at zero incidence kP = 0. Here, the interaction energy is exactly equal to the laser

detuning δ = gn. Such relation is analogue to that between the density of the thermal in-

equilibrium quantum fluids and their chemical potential µ = gn. The dispersion relation (3.7)

simplifies as follows

ωBog(k) = ±
√

ℏk2

2m

(
ℏk2

2m
+ gn

)
− i

γ

2
. (3.10)

It is plotted in Fig. 3.0(b) D, where two different regimes are distinguishable according to

the value of k compared to the inverse value of the healing length ξ =
√

ℏ2/mgn.

In the small wavevector limit, k ≪ 1/ξ, the dispersion curve is linear with respect to k

Re (ωBog(k)) = csk, (3.11)

with cs =
√

ℏgn/m the polariton speed of sound. In the high wavevector limit, k ≫ 1/ξ, we

recover the standard parabolic dispersion curve of the linear regime, with a renormalization of

the energy due to the interactions (blue shift)

Re (ωBog(k)) =
ℏk2

2m
+ gn. (3.12)

The low-k behaviour is a direct consequence of the disappearance of the dependence of the

generalized GPE on the pump energy that occurs at the bistability turning point, leading to

an oscillation frequency of the polariton field governed only by the value of gn as it is the case

for liquid helium or ultra-cold atomic condensates. It results in the emergence of sound modes

in our system, reminiscent of its superfluidity.
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This feature as been indirectly reported in several of our previous experiments, in particular

in those concerning the generation of vortices and dark solitons [9, 102, 109], which required

to excite polaritons as close as possible to the turning point. The precise measurement of such

a linear dispersion relation thus embodies a leaps in the understanding of a large variety of

phenomena studied in the past by the team.

ii- High-density regime

At high intensity, all along the higher bistability branch, the interaction energy increases with

respect to the pump detuning, gn > δ. It results in a shift toward the higher/lower energies

of the positive/negative Bogoliubov solution (Fig. 3.0(b) E-F). A gap appears between the two

branches, centered on the pump energy and of width increasing as the intensity is ramped up.

This behaviour is accompanied with a modification of the shape of the dispersion curve at low-

wavevectors: as the intensity goes further away from the turning point, the two linear branches

of the Bogoliubov sonic dispersion relation progressively vanish and turn into a single-particle

parabola. Consequently, the collective excitations have no longer a phonon-like character.

In the team, this excitation scheme is often referred to as the regime of fixation of the

polariton phase, since the fluid wavefunction ψ is entirely governed by the properties of the

pump. Ref. [109] is a good illustration of the phenomena observed in such a regime, where

dark solitons generated upstream of a flow fail to propagate towards the downstream excited

at high intensity, as they cannot dig their characteristic π-phase jump in the density because

the fluid phase is pinned by the driving field.

iii- Low-density regime

The excitation on the lower branch of the optical bistability, near its turning point, reveals a

drastic modification of the Bogoliubov solutions, as shown in Fig. 3.0(B).

As the interaction energy drops such that gn < δ/3, the positive and negative branches cross

each other. This causes the energy of elementary excitations to become purely imaginary at

wavevectors for which the argument of the square root in Eq. (3.7) becomes negative

δ − 3gn <
ℏk2

2mLP

< δ − gn. (3.13)

For a fixed δ, the wavevector range of purely imaginary modes grows as gn becomes larger.

Therefore, if one wishes to detect such spectral features, the system must be excited as close

as possible to its lower turning point.

Importantly, the coupling of the positive and negative Bogoliubov branches drastically mod-

ifies the behaviour of Im(ωBog). If the imaginary part turns out to be positive, the solutions are

unstable, as it is the case along the bistability branch of negative slope. However on the bista-

bility lower branch, the losses γ stabilize the solutions by keeping their imaginary part negative
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Figure 3.0: Analytical Bogoliubov dispersion relations. (a) Bistability curve of the fluid

density n as a function of the pump intensity I, calculated from Eq. (2.53), for a pump detuning

ℏδ = 0.2 meV. (b) Positive (solid red lines) and negative (dashed red lines) solutions of the

Bogoliubov dispersion relation in the fluid reference frame, computed from Eq. (3.7), at the

pump wavevector kP = 0 (zero flow velocity), at the pump detuning δ = 0.2 meV and for

pump intensities indicated by the points A, ..., F in (a). Upper line: real part of the energy

of elementary excitations. The black dotted line highlights the pump energy. Lower line:

imaginary part of the energy of the elementary excitations. As long as it remains negative

(below the black dashed line), the Bogoliubov solutions are dynamically stable. Note that near

and all along the negative slope branch of the bistability, the modes are unstable, giving rise

at the point B and C respectively to modulation instabilities (coupling of the positive solution

with the negative solution at k ̸= 0) and Kerr instabilities (coupling of the positive and the

negative solutions with the pump mode at k = 0). At the other points A, D, E, F, the system

losses fix the imaginary part at −γ/2, stabilizing the fluid. (c) Same considerations as for (b)

but at a pump wavevector kP = 0.5 µm−1. The fluid speed of flow is no longer zero, leading to

an asymmetrization of the Bogoliubov solutions. In both (a) and (b) cases, the linearization of

the solutions at low-k, relating the generation of phonon-type elementary excitations, appears

only at the turning point D.

over a large intensity range. In this case, the elementary excitations are related to precursors

of instabilities and can be studied in a steady state regime. Their linewidth γBog ∝ Im(ωBog) is

narrower than the polariton decay rate, inducing an accumulation of particles at the wavevec-

tors given in Eq. (3.13), in addition to those injected by the driving field. This leads to a

reshaping of the spatial distribution of the fluid density.

3.3 Reservoir

The previous theoretical analysis considers the ideal case of a fluid in which the only energy

contributions come from the polariton-polariton interactions. However, previous works have

proven the presence of a long-lived incoherent reservoir of dark excitons in the semiconductor

microcavity systems that adds a parasitic exciton-polariton interaction channel to the fluid.

Ref. [111, 158] have reported it by analyzing the decay time of polaritons stimulated in a

coherent regime. For this purpose, a quasi-resonant pulse was sent in the cavity. From the

temporal analysis of the resulting photoluminescence, two exponential decays were revealed: a

first one short-lived, associated to polaritons; a second one long-lived, associated to excitons

although the system were excited well below the excitonic resonance.

This reservoir of incoherent excitons adds an interaction channel to the polariton fluid [158,

6]. Its contribution to the spectrum of elementary excitations is taken into account by adding

to the generalized GPE its energy grnr and an additional equation describing the evolution of
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the exciton reservoir population

iℏ
∂

∂t
ψ(r, t) =

[
ℏω0

LP − ℏ2

2m
∇2

r + VLP (r) + ℏgn(r, t) + ℏgrnr(r, t) − iℏ
γc + γin

2

]
ψ(r, t)

+ ℏηLPFp(r, t),

(3.14)

∂

∂t
nr = −γrnr + γinn. (3.15)

γin is the decay rate of polaritons into the reservoir and γc the previously defined polariton

decay-rate, dominated by the optical cavity losses. Consequently the total polariton decay rate

is equal to γ = γc + γin.

The reservoir density population nr involves two terms: a source term fed by the polariton

density and a loss term fixed by the decay rate γr of excitons. In steady state regime, the

population of the exciton reservoir is directly proportional to the density of polaritons nr =
γin
γc

n.

Effects of the reservoir. To include the reservoir in our model, we consider an effective

interaction term geffneff = gn + grnr, which allows to integrate in a very simple way the con-

tribution of the exciton-polariton interactions to the dynamics of polaritons. Moreover, the

description of the effect of the reservoir on the collective excitations requires a redefinition of

the Bogoliubov operator. In addition to taking into account in the eigenvector basis of LBog

the Uk, Vk plane waves associated to the fluid perturbation, we also add the fluctuations of

the dark reservoir density δnr around these perturbations. This leads to write the Bogoliubov

matrix as follows

LBog =




− δ
ℏ

+
ℏ(k + kP)2

2m
+ geffneff − iγc+γin

2
gn grψ0

−gn δ

ℏ
− ℏ(k− kP)2

2m
− geffneff − iγc+γin

2
−grψ0

iγinψ0 iγinψ
∗
0 −iγr


 ,

(3.16)

with (Uk, Vk, δnr) its eigenvector basis. The reduced 2x2 matrix is simply the previously derived

Bogoliubov operator in Eq. (3.6); the third row/column correspond to the coupling terms

between polaritons, the reservoir and the microcavity radiative field. Its diagonalization leads

to the following expression of the Bogoliubov dispersion relation

ωBog(k) = ℏ
kPk

m
±
[(

−δ(kP) +
ℏk2

2m
+ 2gn+ grnr

)2

− (gn)2
]1/2

− i
γ

2
. (3.17)

Note in this expression that the reservoir energy is only added to the average energy of

polaritons, fixed by the laser detuning δ, and not to the intrinsic dynamics of the fluid, governed
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primarily by the interaction energy gn between polaritons. Therefore, it does not contribute

to the elementary excitations dynamics.

For instance, at the bistability higher turning point, the polariton density is now associated

to both the laser and reservoir energy via δ = gn + grnr. Correspondingly, one calculates the

following Bogoliubov equation, same as before

ωB(k) = ±
√(

ℏk2
2mLP

)(
ℏk2

2mLP

+ 2gn

)
− iγ/2. (3.18)

One recovers at low-k two linear branches, corresponding to the onset of phonon-like exci-

tations, of speed of sound crs =
√

ℏgn/mLP which does not depend on the reservoir energy.

The only significant effect of the reservoir is to lower the renormalization of the system energy

due to the interactions between polaritons, with respect to the laser detuning, i.e. gn = δ−grnr

at the TP. Accordingly, the speed of sound as expressed a function of δ is also changed by a

factor of proportionality α with respect to the speed of sound of the pure polariton fluid

crs = αcs = α

√
ℏδ
mLP

. (3.19)

From this one can identify the reservoir contribution to the blue shift

grnr = (1 − α2)δ. (3.20)

3.4 Numerical analysis

In order to compare the experimental results with our model, we resolve numerically the eigen-

values of the Bogoliubov operator LBog, based on the methods of Ref. [6]. In our case, the

collective excitations are probed with a weak laser beam, assumed to be a plane wave of suf-

ficiently small energy δω and wave vector δk distributions to be several order of magnitude

below the key parameters of our system, respectively its decay rate γ and the inverse of its

healing length 1/ξ.

Such a probe is included in our model by performing a linear-response analysis of the different

field involved in Eq. (3.16), leading to the relation

ℏω(k)



Uk

Vk
δnr


 = LBog(k)



Uk

Vk
δnr


+ δFpr, (3.21)
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where δFpr = β[1, 0, 0]T represents the weak probe field, considered as a plane wave driving the

perturbation in the Uk mode. β ∝ γc is a factor reflecting the coupling efficiency of the probe

with the elementary excitations.

The intensity response of the system is given by

|Uk|2 ∝ ℏ2γ2c |χ11|2, (3.22)

|Vk|2 ∝ ℏ2γ2c |χ21|2, (3.23)

with χij the elements of the susceptibility response matrix

χij(k, ω) =

[
1

ℏωBog(k, ω) − ℏLBog(k, ω)

]

ij

. (3.24)

Thus, by considering a probe at (+k, +ℏω), i.e. by stimulating the collective excitation

in the Uk mode, one can compute and measure from the cavity output intensity the resulting

population density in the respective Uk and Vk modes from the χ coefficients, up to the coupling

efficiency factor β we did not determine yet.

Moreover, the simultaneous analysis of the Uk and Vk modes allows the measurement of two

different processes of generation of the Bogoliubov modes. According to the decomposition

(3.4), whereas Uk is occupied by elementary excitations in the same mode as the probe (+k,

+ωBog), the population of Vk includes modes of opposite wavevector and energy (-k, -ωBog),

which are generated by the scattering between the probe and pump polaritons following the

four-wave mixing process

(+k,+ωBog) , (+kP,+ωP) → (−k,−ωBog) , (+kP,+ωP) . (3.25)

3.5 State of the art

Before continuing with the experiments at the heart of this chapter, we review here the current

state of the literature in the measurement of Bogoliubov excitations in polariton systems,

as there have been several proposals, in order to understand the technical issues behind the

realization of our own spectroscopy setup.

The spectroscopy experiments can be first classified into two different categories, depend-

ing on the polariton driving scheme: the off-resonance experiments, measuring the spectrum

of polariton condensates; the quasi-resonance experiments, measuring the photo-luminescence

spectrum of coherent polariton fluids, which include our system.
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Figure 3.1: Experimental spectra of elementary excitations. (a-b) Spectra of the lumi-

nescence signal in off-resonance excitation. The sonic dispersion relation is highlighted by the

purple and green curves. (c) Spectrum of the parametric signal (4WM) in quasi-resonant exci-

tation. Red dots: experimental measurements. Map in the background: theoretical spectrum.

(d) Spectrum of the luminescence signal in quasi-resonant excitation, in the linear regime, on

the lower and higher branch of the bistability. The hatched rectangle indicates the frequency

band rejected by a notch filter to eliminate the pump from the detection. Figures from Refs.

[168, 133, 90, 158] respectively.

Off-resonance excitation. The most common used scheme of driving of polaritons is the

off-resonance pumping, at very high blue detuning with respect to the polariton resonances. The

photons are injected in one of the reflectivy dips of the Bragg mirrors, generating an incoherent

reservoir of excitons below the energy of the pump. These excitons then reduce their kinetic

energy by interacting with phonons, resulting in their relaxation into the lower-polariton branch.

In such configuration, the fundamental difference with our resonant cavities comes from the

spontaneous emergence of coherence in the polariton fluid. Due to the intermediary relaxation

process, the phase and density properties of the fluid are not directly inherited from the pump

field: the polaritons and their collective excitations are free to evolve. As presented in the

first chapter, such polariton fluids undergo Bose Einstein condensation, so it was historically

natural to seek to measure their elementary excitations to study the properties of polariton

condensates.

The first report of an experimental measurement of the linear branches of the Bogoliubov

sonic dispersion relation was made by S. Utsunomiya et al. in 2008 [168]. The photolumi-



3.5. STATE OF THE ART 57

nescence emission of an off-resonance polariton condensate was collected with a spectrometer.

When the driving field intensity exceeded the condensation threshold, its spectrum exhibited

two linear branches at low-wavevectors, corresponding to the excitation of phonon-like parti-

cles on top of the condensate. Further refinements of this technique improving the detection

of photoluminescence spectra have been achieved in 2015 to observe the very weak signal of

the ghost branch [133, 73]. In particular, in Ref. [132, 131], the detection of such negative

Bogoliubov solution showed that its population is driven by quantum fluctuations, leading to

a spontaneous depletion of the condensate towards negative energy modes.

However, we will not discuss here in more detail the measurements made with polariton

condensates, primarily because their spectrum can differ significantly from that expected in

resonant excitation. In particular, it has been shown both analytically [? ] and experimentally

[15] that the polariton condensate dispersion relation exhibits a low-k diffusive Goldstone mode,

due to the spontaneous symmetry breaking associated with the condensation process: instead

of having only phonon-type collective excitations, the spectra may exhibit an intertwining of

its two sonic linear branches with a zero energy plateau over a finite range of wavevectors, not

expected in our coherent driving scheme.

Quasi-resonance excitation. The case of coherent driving turns out to be more compli-

cated. The physics differs significantly from that of condensate systems because the dynamics

of polaritons is driven by the pump: it seems less obvious that collective excitations, such as

phonons, can be spontaneously excited and propagate freely on top of the fluid. Moreover, the

presence of the pump conceals the photoluminescence signal of polaritons in an intense pho-

ton bath, making difficult to observe directly the spectrum of elementary excitations at small

wavevectors, precisely where the dispersion curve deviates from the single-particle parabola.

However, as a significant advantage to mention over the off-resonance case, the coherent driv-

ing field directly excites the polaritons without the stimulation of intermediate branches that

can add additional interaction terms to the dynamics of the system. As such, the analysis of the

Bogoliubov spectrum can thus give an estimation of the polariton-polariton interaction energy

gn, via the measurement of the speed of sound (although the contribution of a dark reservoir

must still be accounted for).

The polariton literature presents a large variety of spectroscopy experiments, each of them

innovating in their strategies to reconstruct the elementary excitations dispersion relation.

The previous observation of phonon-like particles under coherent excitation is reported in Ref.

[91, 90] in 2011, where a pulsed laser pump drives the fluid at quasi-resonance with the LP

branch. In addition, a probe laser stimulates at different k the parametic scattering of polariton

into (+k, −k) pairs, via the high Kerr nonlinearity of the system. Then, using a heterodyne

detection to extract the four wave mixing emission signal from the pump, the spectrum of

the scattered polaritons, observed with a spectrometer, reveals both the linear branches of

the Bogoliubov sonic dispersion relation and the ghost branches. Thus, this technique is the

first one to prove that it is possible to directly observe elementary excitations in the coherent

regime, by means of the scattering between polaritons to populate the Bogoliubov modes. Its
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main limitation lies in the use of pulsed lasers: the excitation energy of the system is not well

defined, preventing to study the interplay of the elementary excitations dynamics with specific

pump parameters.

Ref. [148] and [179] are other quasi-resonance experiments worth mentioning, focused on

the detection of the ghost branch. The first one was performed under a pump-probe excitation

scheme, revealing for the first time a dispersion of negative mass; the second one achieved a

high resolution observation of the PL emission of the negative branch over a large continuous

range of wavevectors, after the excitation of polaritons with a weak intensity pulse. However,

these did not show the specific signature of elementary excitation, such as the sonic branches

of phonon particles, as they were operating in a low intensity regime (low interaction), in order

not to be blinded by the pump photons.

Ref. [158] is the latest experimental implementation to our knowledge in which a very ac-

curate measurement of the polariton velocity is achieved in order to measure the contribution

of the dark exciton reservoir to the fluid interactions, under continuous and resonant excita-

tion. Here again, the photoluminescence of polaritons is studied. Its observation is realized by

eliminating from the detection the pump photons, by filtering the polarization and the energy

of the driving field.By a careful processing of the obtained spectra, a precise sound velocity of

the polaritons is measured and its deviation from the theoretical case of the polaritonic fluid

involving only the pure polariton-polariton interaction allows to measure the dark reservoir

interaction strength. This technique exploits the non-zero cross-polarization component due

to low residual birefringence and low TE-TM splitting of polaritons, which allows the photo-

luminescence polarization emitted by the fluid to be filtered in the cross-polarized direction

with respect to the laser. This requires the incident field to be linearly polarized, addressing

the two circular eigenspins of polaritons: in addition to the interactions between polaritons of

same polarizations, interactions between polaritons of crossed polarizations exists, making the

analysis of spectra more difficult.

3.6 Experimental implementation

Here are the critical points that we have sought to improve when implementing our setup,

with the ultimate goal of making the measurement of the Bogoliubov spectrum as versatile as

possible.

• We want to show the dependence of the Bogoliubov spectrum on the excitation. This

means that the pump field parameters, such as its intensity and its energy, must be

both well defined and precisely tunable. For this purpose, the use of pulsed laser is not

adequate: we will rely on cw lasers.

• A complete study of the Bogoliubov modes is only possible if both the real and imaginary

parts of the elementary excitations energy are well resolved. The latter, given by the

linewidth of the spectrum, can reach values below 1 µeV. The use of a spectrometer as
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it is the case in most of the other experiments based on the measurement of the photo-

luminescence, with a typical resolution of the order of 50 µeV is in consequence not

compatible. We must find another tool to measure the energy of collective excitations.

• The number of interaction channels at stake must be as small as possible. Ideally, one

wishes to have as unique contribution to the energy of the fluid, the interactions between

polaritons. For instance, we do not want to excite different polarization states, which

would add new contributions originating from the interactions between polaritons of par-

allel and antiparallel spins. Therefore, the method used by [158] to filter the Bogoliubov

spectrum of the pump signal cannot be exploited in our case.

3.6.1 Experimental setup

The scheme of the experimental setup is shown in Fig. 3.2. It contains three different optical

paths: the pump and the probe at the input of the cavity; the detection at the output. It is

drawn in this case for a detection in reflection: the input and the output are on the same side

of the cavity. However, in our experiments, we can easily change from a detection in reflection,

to a detection in transmission. For this last case, in order to keep this scheme valid, one just

needs to translate the detection arm from the front to the back of the cavity. All information

on the sample and the shaping of the intensity profiles of the laser beams are in the appendices.

Pump path. The pump laser, driving the high-density polariton fluid, is chosen to be as

tunable as possible in order to stimulate a broad range of collective excitations. Here we use

a circularly polarized cw Titane:Sapphire laser, embedding in its optical cavity a thin etalon

allowing a high precision tuning of its energy, centered around the LP resonance at 836 nm.

Its intensity is slaved with a proportional–integral–derivative (PID) controller retroacting on

the RF driving signal of an AOM, to be able to accurately tune the density excitation point

all along the optical bistability. Furthermore, its spatial intensity and phase profiles can be

reshaped at will with a spatial light modulator SLM.

Probe path. We decided in our experiments to not rely on the observation of the photolu-

mionescence spectrum of polaritons to measure the spectrum of Bogoliubov. Instead, we look at

the modification of the cavity resonances induced by the nonlinearity of the fluid on the trans-

mission or reflection of a probe beam. This one is provided by another cw Titane:Sapphire laser,

whose wavelength can be tuned around the polariton energy (836 nm). Its circular polarization

is the same as that of the pump.

The experimental main loop consists in the scan of the quantum fluid resonances by tuning

the angle of the probe over a discrete range of wavevectors lying in the parabolic bottom area

of the dispersion curve. To this end, we use an SLM on which are displayed blazed gratings of

tunable steps size, corresponding to different reflection angles of the light sent on it. Therefore,

with a cat eye conjugation setup between the cavity and SLM planes, the wavevector of the

probe is controlled without changing its working point position in the fluid.
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Figure 3.2: Pump-probe scpectroscopy. Experimental setup. The sample is placed in a

helium cryostat cooled down to 3.8K. Two cw Ti:Sa lasers illuminate it, with the same circular

polarization to excite a single spin state. The pump injects a high density fluid in the area

of its 100µm diameter waist in the plane of the sample. Its intensity IP is controlled by

mean of a proportional-integral-derivative loop (PID) which feedbacks on the RF amplitude

of an acousto-optic modulator (AOM). Its phase and intensity profiles can be reshaped with a

spatial light modulator (SLM), imaged in the sample plane. The probe is recombined with

the pump beam thanks to a 90:10 beam splitter. Its waist in the sample plane has a diameter

of about 50 µm and an intensity of about 0.1% of IP . Its wavevector k is monitored with an

SLM, also imaged in the cavity plane, displaying a blazed grating of controllable step size, to

change the angle of the first diffraction order, filtered by means of an automatically tunable

position slit in the reciprocal space. Its amplitude is modulated with an AOM at fmod = 5

MHz, also slaved with a PID loop. The reflection of the cavity is recovered using a 50:50 beam

splitter, placed just before the cavity. A DMD in the reciprocal space displays a pinhole of

configurable position and size selecting the wavevectors of the signal sent to the detection. In

addition, a quarter-wave plate and a PBS operate a polarization selection, to recover only the

same polarization state as the pump and the probe. The signal is then focused on a photodiode

(PD) and demodulated at fmod with a spectrum analyzer to isolate the probe signal from the

pump signal. The transmission of the probe can be easily deduced from this scheme. (a)

Principle of pump-probe spectroscopy: the pump (yellow square), creates a high density fluid,

of dispersion relation depicted by the black lines. The probe scans the resonances of the fluid

(red squares), at a fixed k, over an energy range of 150 GHz (red vertical arrow). (b) When the

probe resonates with the positive branch, a Lorentzian reflectivity dip appears in the reflection

signal. The position of the minimum and the full width at the half height of the dip give the

real and imaginary parts of the energy of the Bogoliubov mode respectively. In transmission,

the signal trace features a Lorentzian peak instead of a dip.
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For each of these wavevectors, an energy scan of the probe is operated over 120 GHz (0.5

meV) by tuning the lenght of the laser thin etalon cavity. When its energy matches one of the

Bogoliubov modes resonances, the probe is efficiently transmitted by the cavity. Consequently,

a transmission peak (reflectivity dip) is observed in the probe signal. In this way, it is possible

to reconstruct the dispersion relation of polaritons by measuring both the energy and the

momentum of probe transmission (reflection) peaks (dips).

Detection path. In order to separate the probe signal from that of the pump on the

detection side, the amplitude of the probe is modulated with an AOM before entering the

cavity, at a frequency of fmod = 5 MHz which is at least one order of magnitude above the

noise bandwidths of the lasers and the various detection devices used. Then, at the output of

the cavity, the transmission/reflection signal is focused on a photodiode and then demodulated

with a spectrum analyzer centered on fmod to detect only the probe power. In this way, the

spectral resolution of the measurements is only limited by the spectral width of the probe laser,

here lower than 500 kHz (2 neV).

Fig. 3.2(b) shows a typical reflectivity trace of a probe scan retrieved from the spectrum

analyser. A dip is observed, corresponding to the detection of a resonance of the polariton fluid.

To find the energy at which it appears, the scan window of the spectrum analyzer is triggered

on a TTL reference signal of width matching the beginning and the end of the probe energy

scan. In parallel, a wavemeter, also triggered on the same reference signal records at regular

intervals the energy of the probe. From these data, we can then directly calibrate the energy

scale displayed along the horizontal axis on the spectrum analyzer.

Scan resonances analysis. The shapes of the probe transmission and reflection peaks

are directly related to the real and imaginary parts of the energy ℏωBog of the Bogoliubov

dispersion relation. If we consider plane wave like excitations

ψ(t) ∝ exp(−iωBogt) = exp (−iRe(ωBog)t) · exp (Im(ωBog)t) , (3.26)

one easily verifies by taking its temporal Fourier transform that its spectral density has the

following Lorentz-distribution law

I(ω) = |ψ(ω)|2 ∝ 1

(ω −Re(ωBog))
2 +

(
Im(ωBog)

2

)2 . (3.27)

Such a relation applies for both the detection in transmission and in reflection. For the last

case, when a resonance occurs, the trace exhibits a reversed Lorentzian dip rather than a peak.

It is related to the probe being injected inside the system when a resonance occurs, therefore

to a dip of reflectivity in the intensity trace. Far from resonance, the signal corresponds to that

of the total reflection of the probe by the cavity mirrors, so it is renormalized to R = 1.
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Then, we can directly identified Re(ℏωBog) and Im(ℏωBog) to be equal to the energy and

the HWHM linewidth of the transmission (reflection) peak (dip).

k-space filtering. In order to select the wavevector of the detected resonance, the reciprocal

space of the cavity is imaged on a digital micromirror device (DMD), on which a pinhole of

tunable shape and spatial position is displayed. It is thus possible to target a specific wavevector

kDMD in k-space with an uncertainty range δk = 0.0005 µm−1 given by the radius of the pinhole.

This device will be typically used to detect the scattering of +k, -k polariton pairs: by adjusting

the pinhole position we can detect one specific mode.

Helium cryostat. The experiments are performed at low temperature in order to generate

the excitons and thus the polariton fluid. Therefore, we use an Oxford Instrument open-flow

helium cryostat, with two circular windows on both side of the cold finger which supports the

sample, allowing to detect the polariton emission both in reflection and transmission. A 10−6

mbar vacuum is reached thanks to a primary pump and a turbopump. As the cryostat is quite

old (2008) and has a few leaks, we usually keep the pumps running while doing the experiments,

inducing small vibrations of the sample of the order of 1 µm. Such a cryogenic setup achieved

a cooling down of the sample up to 3.6 K, suitable to reach the strong coupling regime.

3.7 Linear regime measurements

As a prelemenary test, we measured first the resonance of the sample in the linear regime. Its

energy and wavevector distribution is already well-known thanks to off-resonance PL measure-

ments made previously with a spectrometer.

Spectrum reconstruction. Fig. 3.3 (a) presents the typical reflectivity map we obtain

from the differents energy scans of the LP branch operated with the weak probe at different k

and without the pump. One of these scans is plotted in Fig. 3.3 (b), where a reflectivity dips

is observed at the energy of the polariton resonance. By iterating such scans at sufficiently

close steps of wavevector (∆k = 0.0189 ± 0.0005 µm−1), one can reconstruct slice by slice the

polaritons spectrum of Fig. 3.3 (a).

Polariton parameters By comparing this dispersion relation with the PL off-resonance

one, we can ensure that our technique provides consistent measurements, and in particular

that the energy and wavevector of the probe associated to the axes of Fig. 3.3 (a) are well

calibrated. Furthermore, because the resonance of the LP branch changes along the wedge,

it is mandatory to realize at each working point such linear-regime measurement in order to

extract the crucial parameters necessary for the data analysis. For each experiments, we need

to make sure we measured the following polariton parameters:

• The mass m, given by the inverse of the second derivative of the parabola

• The resonance frequency ω0, at k = 0 and without interactions. It is the reference for the

laser detuning δ = ωP − ω0.
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Figure 3.3: Spectrum of polaritons in linear regime. (a) Reflectivity map plotted as

a function of the probe energy ℏω and wavevector k. The red dots indicate the energy of

the reflection minima at the different k addressed with the SLM. They give the real part of

the Bogoliubov dispersion relation. (b) Red line: trace of the probe signal taken along the

vertical slice in red dashes on (a); blue line: corresponding Lorentzian fit, used to extract the

polariton decay rate γ = 90 µeV. (c) Theoretical plots of the LP, UP (green), photon (blue)

and excitons (red) branches. The LP branche is fitted from the minima of (a) lying in the red

dashed rectangle.

• The decay rate γ given by the FWHM linewidth of the dispersion relation.

All these parameters are extracted from the fits of the minima/maxima of the reflection/transmission

maps with the dispersion relation (2.36), plotted in Fig. 3.3 (c). Notice that the probe scan

region lies in the parabolic region of the LP branch.

3.8 Speed of sound measurement

Now that all our analysis and measurement tools have been described, we can discuss experi-

mental results. In order to test the reliability of our setup, our first effort focused on measuring

the speed of sound of polaritons.

3.8.1 Preparation of the polariton fluid

The experiments were performed with a pump beam of Gaussian spatial profile, with a diameter

of the order of 100 µm and a detuning of at least ℏδ = 0.2 meV >
√

3ℏγ/2 to be in bistable

regime. Each time we want to operate in the high-density regime, we have to tune carefully

the pump intensity IP =
∣∣F 0

p

∣∣2. In particular, to address densities lying on the higher branch
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Figure 3.4: Spectrum of polaritons at different densities. (a) Left panel: Experimental

bistability of the fluid as a function of pump intensity I, at a detuning ℏδ = 0.2 meV. Points

A, B, C and D indicate the densities at which spectrum measurements are carried out. TP

highlights the turning point of the bistability. Right-hand panels: expected theoretical dis-

persion relations at points TP, C and D. (b) Reflectivity map plotted as a function of probe

energy ℏω and wavevector k, at the point A of the bistability. The horizontal dashed red line

gives the pump energy; the red dots the reflectivity minima for each k scanned by the probe.

(c) Real parts of the Bogoliubov dispersion relations extracted from the reflectivity minima of

the spectra captured in nonlinear regime at points A, B and C of the bistability (red, yellow

and orange dots) and in linear regime (green dots). The plotted curves are the corresponding

fits, calculated from the dispersion relation (3.17). The black dashed line indicates the pump

energy. The panel shows the measurement procedure: the probe performs an energy scan at a

given k. When it enters into resonance with the polariton dispersion relation, a dip appears in

its reflectivity trace (red line). The energy of the minimum of this dip is equal to the real part

of the Bogoliubov spectrum.

of the hysteresis loop shown in Fig. 3.4(a), IP must first be ramped up to the lower turning

point, near D, where a sudden jump in density happens, before being smoothly adjusted to

reach points A, B or C.

Fig. 3.4(b) shows a typical reflectivity map of the probe with respect to the wavevector k

and energy ℏω, measured for a pump intensities IP at the point A, as close as possible to the

turning point. At large-k, the dispersion relation matches the parabolic shape of the linear

resonance of polaritons. However at low-k, it changes significantly, exhibiting a shape between

two linear lines and a parabola. To visualize the modifications of the shape of the dispersion

relations as a function of the excitation point A, B and C of the bistability, we extract from

each of the reconstructed spectra and at each of the k scanned, the real part of the energy of
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the Bogoliubov modes, by measuring the energy at which the minimum of reflectivity appears

in the trace of the probe (indicated by the dots in Fig. 3.4(b) for the curve A in Fig. 3.4(c) for

example). This yields the curves plotted in Fig. 3.4(c), where we have also added the dispersion

relation in linear regime, measured at the same working point.

Energy renormalization. First of all, the renormalization of the polariton energy by the

interactions is well observed, as evidenced by the energy jump of at least ℏδ = 0.2 meV of the

dispersion curves measured in nonlinear regime compared to the bare cavity resonance. The

energy shift depends on the position of IP on the bistability. As expected in theory, the energy

gap decreases as the density is approaching the higher turning point.

Low-k shape. Secondly, the density change is accompanied by a modification of the shape

of the dispersion curve. Indeed, a linearization of the spectrum is expected as the turning point

is approached by IP . This is what is observed here: far from the turning point, the dispersion

relation has the parabolic shape of the linear regime; in the vicinity of the turning point, a

departure from the parabolic regime is observed (see Fig. 3.4 (c) A), leading to a closing of the

gap as the interactions strength decreases.

Limitations. The observation of the two linear branches of the Bogoliubov sonic dispersion

relation requires to reach precisely the turning point of bistability, below A. In our case, the

fluctuations of the laser intensity IP and detuning δ, as well as the temperature fluctuations

in the cryostat, make the direct excitation of this point very challenging: as soon as IP is

lower than that of point A, the system drops from the higher-branch to the lower-branch of the

bistability. In order to directly measure the polariton speed of sound, it is therefore necessary

to find a way to lock the fluid on the higher-branch of the bistability, exactly at the turning

point. Such a solution will be discussed in the following. However, it is possible to develop first

a simple model to explain the particular features observed in the spectrum at the point A, and

then to extract the behavior at the turning point.

3.8.2 Linewidth analysis

In Fig. 3.5,(a) we excite the fluid with a Gaussian intensity profile, leading to the excitation of a

given density distribution governed by the bistability distribution law on the higher branch. As a

consequence, the observed spectrum is an average of several dispersion relations corresponding

to different density modes. This results in an effective broadening of the linewidth, which

exceeds the polariton decay rate γ = 86 µeV.

High-k broadening. For k ≫ ξ, the broadening of the spectrum is not significant, as

shown by the plot of the scan at large k in Fig. 3.5 (c), where the fit of the resonance dip

allows to measure a linewidth about 5% larger than the polariton decay rate calibrated in

linear regime. It results from the excitation of a finite range of interaction energies by the

Gaussian pump beam, which, given the evolution law n ∝ I
1/3
P of the density with respect to

the laser intensity, remains small compared to the standard polariton linewidth.
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Figure 3.5: Analysis of the shape of the spectrum linewidth. (a) Vertical slices taken

along the blue dashed lines at k = 0.16µm−1 and orange dashed lines at k = 0.64µm−1 of

the spectrum shown in (b). (b) Reflectivity map of the probe with respect to its wavevector

k and energy ℏω, at a detuning ℏδ = 0.2 meV. The horizontal red dotted line indicates the

energy of the pump ℏωP . The red points highlight the minima of reflectivity Rmin; the green

points correspond to the reflectivity dips at R = 0.11 × (Rmax −Rmin). The red and green

curves are the corresponding theoretical fits, obtained for ℏgn = 122µeV and ℏgn = 114µeV

respectively. (c) Analytical dispersion curves corresponding to concentric rings of equal width

in the Gaussian pump, of reflectivity calculated assuming a Gaussian probe. The red curve

corresponds to ℏgn = 122µeV ; the linear green curve to ℏgn = 114µeV .

Low-k broadening. At low-k, however, the broadening of the resonance reflects the change

in shape of the dispersion curve (including its linearization) as the pump intensity is close to

the turning point. This results in an asymmetrical trace of the probe scan, plotted in blue in

Fig. 3.5 (c), of linewidth up to 40 % greater than the polariton decay rate.

Phenomenological model. In order to explain such observations, as a first approach one

can evaluate analytically the different density modes n excited by the pump by discretising its

Gaussian intensity distribution. The pump profile is modelized as a set of concentric rings of

equal width wi and of inner radius ri, to which are associated a mean value of gn following the

bistability relation (2.53). Accordingly, the Gaussian intensity profile of the probe is divided

into rings of same width and radius. Then, by considering that the probe beam and fluid area

are overlapping and have roughly the same waist, as it is the case in our experiment, each ring

of the probe resonates with the pump ring of same width and radius, at an energy depending

on its assigned gn value. The real part of the dispersion relations deduced in this way are

represented in Fig. 3.5 (c).

In order to reproduce accurately the experimental spectrum, the reflection of each probe

ring must be weighted according to its intensity I(ri), with respect to the total intensity Ipr of
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the probe. By denoting A(ri) the area of the ring of radius ri and g(ri) a Gaussian distribution

evaluated at ri, the relative intensity for each ring of the probe is expected to be proportional

to

αi =
A(ri) × g(ri)∑
iA(ri) × g(ri)

. (3.28)

Subsequently, assuming that when the αi intensity ring enters in resonance with the fluid,

the other rings are out-of-resonance and then totally reflected, we can associate to each of the

dispersion relations a reflection coefficient proportional to 1 - αi, color-coded in Fig. 3.5 (c).

For instance, the ring of largest αi contributes the most to the decrease in the reflectivity

of the probe when it resonates. Thus, its dispersion relation should match the distribution of

the reflectivity minima of the probe. Since the pump intensity distribution along the optical

bistability is not known precisely, we can use it as a reference: its g0n0 value is determined

by fitting with Eq. (3.17) the minima of the reflectivity map corresponding to the red dots of

Fig. 3.5 (b). From this, we can extrapolate the gn of the other rings.

Results. In the end, from the fit of the spectrum minima, plotted in red in Fig. 3.5 (a)

and (b), we evaluate g0n0 = 122.0 µeV. From there, we compute in Fig. 3.5 (a) the real part

of the dispersion curves for each of the model rings, for gn varying from ±20µeV around g0n0.

Their colors reflects their respective contribution to the total reflectivity of the probe. In this

way, it can be seen that, from this very simple model, the shape of the experimental spectrum

is adequatly reconstructed.

Speed of sound extraction. Importantly, we manage to discern in Fig. 3.5(c) the Bogoli-

ubov sonic dispersion relation of the bistability turning point, plotted in green and correspond-

ing to the ring of gn = 114 µeV, i.e a speed of sound cs = 0.58 µm/ps. From the weighting

factors αi, we can attribute to it a reflectivity of the order of 10%. Then, by following the

isoline of same reflectivity on the experimental spectrum corresponding to the green dot in

Fig. 3.5(b), we remarkably recover the same linear dispersion.

Therefore, we can deduce with the help of this very simple model the speed of sound of

polaritons from the slope of the linear branches of the dispersion curve extracted by isolating

the relevant reflectivity isoline.

3.8.3 Direct measurement of cs

With this model in mind, we decided to directly measure the Bogoliubov sonic dispersion

relation by reducing the range of interaction energy felt by the probe during the scans of

polaritons. It has been accomplished by reshaping with an SLM the probe intensity profile

into a ring of narrow 10 µm width, to spatially select a small range of the density distribution

during the scans. We tuned the ring radius to spatially overlap the inner border of the fluid in
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Figure 3.6: Polariton spectrum at the bistability turning point, measured at a detuning

ℏδ = 0.5 meV. (a) Reflectivity map, plotted as a function of the energy ℏω and wavevector

k of the probe. The red dots indicate the reflectivity minima at each of the k scanned; the

dashed red horizontal line the pump energy ℏωP. At low-k, two linear branches with no gap

with the pump are clearly visible, with slopes equal to the speed of sound, highlighted by the

two white dashed lines. They demonstrate the presence of phonon-type elementary excitations

in the fluid. Inset: Excitation scheme: the probe is reshaped into a 10µm thick ring using an

SLM, in order to scan a reduced range of densities in the fluid, whose distribution is governed

by the Gaussian intensity profile of the pump. Its radius is chosen to match the density regions

closest to the turning point. (b) Numerical calculation, performed under the same conditions

as the experiment.
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the cavity real space, i.e. at the boundary just before the density falls from the higher- to the

lower-bistability branch, where the interaction energy is the closest to the turning point.

The resulting reflectivity map as a function of k and ℏω is shown in Fig. 3.6 (a), where

the two linear branches of the sonic dispersion relation are clearly vissible at low-k. The

reduction of the energy range experienced by the probe is reflected by the observation of the

same resonance linewidth at all wavevectors. The numerical calculation of the model (3.16) in

Fig. 3.6 (b), performed with the same parameters as the experiments accurately reproduces the

spectrum. Then, from the slope at low-k of the linear branches, the polariton speed of sound

is directly measured to be crs = 0.54µm/ps.

Dependance with the density. This measurement was repeated for different fluid densi-

ties, selected by changing the detuning δ of the pump and then the intensity IP to operate as

close as possible to the turning point. The speeds of sound crs measured with the fit (3.17) are

plotted in Fig. 3.7 (a) as a function of δ. We recover here the expected square root dependence.

Reservoir factor. As already mentioned above, in the case of a pure polariton fluid with

only polariton-polariton interactions at stake, cs is directly related to the laser detuning ℏδ =

ℏgn. However, the values measured here are twice lower than expected in such ideal case: this

is due to the energy contribution ℏgrnr of the incoherent exciton reservoir to the total blue shift

of the fluid ℏgeffneff . As the renormalization of the fluid energy to the pump energy still holds

at the turning point, i.e. ℏgeffneff = ℏδ, it follows that the energy of the polariton interaction

is lower than expected ℏgn < ℏδ, hence a lower speed of sound.

Thus, such speed of sound measurements represent a robust method of assessing the inter-

action energy of the exciton reservoir. From the calculation of the ratio α between the speeds

of sound calculated with and without the addition of the contribution of the dark reservoir,

respectively crs and cs, one can directly infer grnr associated to the working point of the sample

where the experiment is performed

α =
crs
cs

=

√
δ − grnr√

δ
, (3.29)

grnr = (1 − α2)δ. (3.30)

Fig. 3.7 (b) and (c) show the reservoir factor α and the renormalization energy grnr extracted

from the data of Fig. 3.7 (a) respectively. Note that grnr depends linearly on δ, so is proportional

to the polariton density n. Such behaviour was expected when we assumed in Eq. (3.15) the

reservoir to be filled by the non-radiative losses of the polaritons γinn. As a result, the reservoir

factor α = 0.59 is almost constant with respect to δ for the given working point.

Moreover, as a final remark, we noticed experimentally that α can be tuned by changing the

exciton-photon detuning ∆EX−γ, that is the photonic C and excitonic X Hopfield coefficients,

by working at different points of the sample. In general, the more excitonic the fluid is, i.e. for
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Figure 3.7: Polaritons speeds of sound. (a) Measurements of the speed of sound cs for

different detunings δ of the pump, carried out at the same working point of the sample and

at kP = 0 µm−1. They are extracted from the fit of the polariton spectra with (Eq.) 3.17.

The dashed line corresponds to the fit of the experimental data points. It demonstrates the

dependence of cs on the square root of the density, as δ ∝ gn. (b) Corresponding reservoir

factor α as a function of δ, calculated from the ratio between the speed of sound measured

in (a) and the expected speed of sound without reservoir. The green dashed line shows that

the reservoir contribution is independent of δ. (c) Corresponding energies of the dark exciton

reservoir ℏgrnr as a function of δ, also extracted from the fit of spectra with (Eq.) 3.17. The red

dashed line indicates the linear dependence of the reservoir population nr with the polariton

density n, as predicted by the theory.

larger values of |X|2, the larger the reservoir factor is. It manifests a more efficient stimulation

process of the incoherent excitons. The analysis of such a phenomenon will be carried out in a

systematic way in future works.

3.8.4 Dark reservoir spectral signature

As briefly explained above, the reflectivity maps can be analyzed numerically by computing

the eigenvalues of the Bogoliubov operator (3.16) at different wavevectors k and energies ℏω
scanned by the probe. In order to reproduce with accuracy the shape of the experimental

spectra, the measured key polariton parameters, δ, γ, m and α, are used to calculate LBog;

the remaining unknown parameters, namely the coefficients γin, γr, which give the feeding and

decay rates of the exciton reservoir, are tuned iteratively, by comparing the numerical and
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Figure 3.8: Spectrum of the dark exciton reservoir, obtained for a detuning and pump

wavevector of ℏδ = 0.3 meV and kP = 0 µm−1. (a) Reflectivity map of the probe as a function

of its energy ℏω and wavevector k. The pump energy is indicated by the red arrow. The striped

area at low-k is due to the saturation of the photodiode in detection by the pump intensity,

masking the probe signal. (b) Right panel: zoom into the red dashed frame of (a). Left panel:

trace of the probe reflection taken along the vertical red dashed line. The normal branch (NB)

and the ghost branch (GB) appear as a dip and a peak respectively. An additional signal peak

of very narrow linewidth is visible at the pump energy. It is identified as the emission signal

from the dark exciton reservoir, originating from the scattering of pump polaritons seeded by

the probe. Its spectrum corresponds to the horizontal line of R > 1 in (a). (c) Numerical

calculations performed under the same conditions as the experiment. When the contribution of

the dark exciton reservoir is included, the flat spectral line on the right panel and the narrow

emission peaks on the left panel are well reproduced. Without the addition of the reservoir,

these signatures disappear.
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experimental results.

With the help of such numerical calculations, we managed to highlight the spectral signature

of the dark exciton reservoir in Fig 3.8. By adding to the model the relaxation of polaritons

towards the dark reservoir (γr ̸= 0), the numerical result in Fig 3.8(c) shows a flat and very

narrow spectral line at the same energy ℏωP as the pump. These features are typical of the

excitations of heavy, long-lived and static particles compared to polaritons, that is, of excitons.

For sufficently slow probe energy scans performed around the pump energy in order to achieve a

high resolution of the dispersion relations linewidth at the spectrum analyzer, such a flat branch

can be observed in Fig 3.8(b), making possible to precisely characterize the exciton reservoir,

in particular its decay rate ℏγr = 1.5 µeV given by the fit of its linewidth and corresponding

to a lifetime τr = 440 ps, in accordance with the typical expected value [158].

Notice that the reflectivity of the reservoir branch is greater than 1: the probe gains intensity

when it enters into resonance with the excitons. We do not detect here a proper resonance

behavior, which would have led to a reflectivity dip associated with the injection of the probe,

but rather a seed-like phenomenon typical of parametric excitation schemes. Here, the probe is

the seed, stimulating the scattering process of polaritons from the pump to the reservoir when

at resonance. Thus, the exciton population results indeed from an incoherent process, i.e. not

directly stimulated by the pump laser, originating from interactions between polaritons.

3.9 Ghost branch

So far, the detection of the Bogoliubov negative solution has still not been observed in our

experiment. This is due to the fact that its resonance, an inverted parabola, does not match

any proper resonance of the optical cavity, and, as a consequence, the efficiency of its direct

excitation by the probe is expected to be very low.

Gain detection. Nevertheless, its observation can be achieved by enhancing the indirect

population of its modes as much as possible, via the exploitation of the four-wave mixing

(4WM) process consisting in the scattering of two polaritons from the pump mode (kP, ωP)

toward one mode of the positive branch (+k, ωP + ωBog) and one mode of the negative branch

(−k, ωinc − ωBog). In such an excitation scheme, the probe fulfills the role of a seed enforcing

the parametric scattering of polaritons toward the mode (kpr, ωpr) when at resonance with

one of the Bogoliubov branches. In order to reach the most efficient 4WM possible to get the

highest polariton population possible in the ghost branch, the driving of polaritons has to be

as single-mode as possible, i.e. the distribution of wavevectors δk and energies ℏ × δω of the

fluid must be as small as possible.

Top-hat excitation scheme. To this end, the probe and pump waists are first chosen to

be as large as possible (of the order of 150 µm), corresponding to a wavevector distribution

δk = 0.042 µm−1. Secondly, in order to narrow the energy distribution of the fluid (ℏ × δω

= ℏg × δn), the polariton density n has to be as homogeneous as possible in the area of the
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working point. Therefore, we reshaped the pump intensity profile with a SLM to drive the fluid

with a top-hat beam, thus a uniform intensity, leading to the excitation of a very small range

of density along the higher-branch of the bistability.

Obviously, one could have also considered using a top-hat beam as well in order to precisely

target the turning point of the bistability to observe the Bogoliubov sonic dispersion relation,

and to spare the analyses we performed in order to extract the linear branches from the linewidth

of the measured spectra. Unfortunately, because of the temperature, intensity and frequency

fluctuations inherent to our setup, as soon as the turning point is reached with the top-hat

pump, the fluid falls on the lower branch of the bistability, making impossible to capture a

spectrum, which requires several seconds of scans. The Gaussian pump that we used previously

had the advantage of featuring an intense center, locking on the higher branch of the bistability

the neighboring regions of lower intensity, including the one at the turning point, by means of

a seed-support effect well known by the team [135].

3.9.1 Reflection detection

Fig 3.9(a) shows the typical reflectivity map observed with the top hat excitation. In addition to

the positive branch already presented, here the negative Bogoliubov branch is clearly detected,

thanks to an increase in the intensity of the probe, exceeding that at the input of the cavity

R > 1 (see the color bar of the reflectivity map or the energy scan of the probe taken along

the red dashed line). Unlike the normal branch, there is no resonant injection of the probe: we

rather detect the creation of polaritons by the aforementioned stimulated 4WM process, hence

an increase in the intensity of the probe, provided by the radiative losses of the polaritons

scattered in the ghost branch from the pump mode. Such a gain process also occurs at the

energy of the positive branch. But, it is masked by the resonance dip because the excitation

efficiency of the polaritons at its level is very high compared to that of at the negative branch.

However, at very low-k, a decrease in the depth of the reflectivity dip, or even a reflectivity

greater than 1 can be observed. Indeed, the 4WM process is more efficient as k approaches kP,

as the phase matching conditions become close to degeneracy.

3.9.2 Transmission detection

4WM detection scheme. Another possibility to observe the ghost branch is to directly select

the scattering modes resulting from the 4WM of the probe and the fluid with the DMD placed

in the reciprocal space of the cavity: instead of filtering with the pinhole displayed in the k-

space, the cavity emission at the same wavevector as that of the probe (kDMD = kpr), one

can rather select the opposite wavevector (kDMD = −kpr). Fig. 3.11 shows what is typically

observed. Fig. 3.11(b) corresponds to the reflectivity spectrum, obtained under the same top-

hat excitation and detection conditions as above, with the DMD selecting the wavevector of

the probe (kDMD = kpr). Fig. 3.11(c) corresponds to the transmission spectrum obtained in

4WM detection, i.e. kDMD = −kpr. In this case, we looked at the transmission signal as we
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Figure 3.9: Normal and ghost branches spectrum. Obtained for a pump detuning and

wavevector ℏδ = 0.2 meV and kP = 0 µm−1. The pump intensity is chosen as close as possible to

the bistability turning point. (a) Trace of the probe scan taken along the red dashed vertical

slice of the map (b). In addition to the R < 1 reflectivity dip of the normal branch (NB)

resonance, a n R > 1 gain peak is discernible under the pump energy highlighted by the yellow

dashed line, revealing the ghost branch (GB) resonance by seeding of the 4WM process leading

to the scattering of two polaritons from the pump mode toward positive and negative modes.

(b) Reflectivity map plotted as a function of the energy ℏω and wavevector k of the probe.

The inset shows the top-hat excitation pattern, which increases the efficiency of the 4WM

processes between the probe and the pump. The NB appears at R < 1; the GB appears below

the pump energy at R > 1 and is of greater intensity the closer the probe wavevector is to

the pump wavevector, since the 4WM becomes more efficient as its phase matching conditions

become quasi-degenerate. (c, d) Corresponding numerical calculations, made under the same

conditions as (a, b).

.

did not achieve to observe the ghost branch signal in reflection with this configuration. These

two maps were obtained for the same experimental parameters and at the same working point.

In the latter, we have deliberately masked the transmission at low-k, as we recover the direct

signal of the probe kDMD ≃ −kDMD ≃ kpr ≃ 0.

U and V coefficients. These two types of detections are of primary importance for us,

because they give access to the densities of the Bogoliubov excitations, via the measurement

of the |Uk|2 and |Vk|2 intensities of the two counterpropagating perturbations described in

Eq. (3.21). In direct detection (kDMD = kpr), the response of the system is proportional to

the population in the Uk mode, while in 4WM detection (kDMD = −kpr), it is proportional

to the population in the Vk mode. Therefore, for a given perturbation, i.e. a given (kpr, ωpr),

we can directly reconstruct the resulting Bogoliubov field, up to a coupling factor, weighting



3.10. DYNAMICAL INSTABILITIES 75

GaAs/AlAs
Bragg mirror

GaAs/AlAs
Bragg mirror

In0.04Ga0.96As
quantum wells

substrate

direct detection

PD

L DMD

beam 
dump

ob
je

ct
iv

e

pump
(k=0)

probe
(+k) 

sample

L

4WM detection

+k -k 

Figure 3.10: Spectroscopy detection scheme. The cavity is illuminated at k = 0 µm−1

by an intense pump beam. The elementary excitations of the resulting polariton fluid are

stimulated with a probe beam injected at +k, modulated at fmod = 5MHz using an acousto-

optic modulator (AOM). A large aperture objective (θ/2 = 40.5°) collects the photons emitted

at the output, including those from the pump, the probe and the four-wave mixing (4WM)

of the probe with the pump at −k. It images the reciprocal space of the cavity on the chip

of a digital micromirror device (DMD), which displays a pinhole of precisely tunable radius

and position kDMD, selecting either photons from the probe kDMD = +k (direct detection)

or photons from the 4WM kDMD = −k (4WM detection). Other non-selected photons are

eliminated by means of a beam dump. At the output of the DMD, a photodiode collects the

filtered signal. It is linked to a spectrum analyzer which demodulates the total signal at fmod,

allowing the signal of the probe (or its 4WM) to be isolated from the intense bath of pump

photons when the pinhole of the DMD is close to the pump wave vector.

the efficiency of stimulation of elementary excitations with the probe. Now, we do not have a

direct access to the value of such a factor: we will try to evaluate in future works. As it is,

however, this detection scheme provides already a sufficient tool to study the evolution of the

elementary excitation densities as a function of the parameters of the pump and the probe.
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Figure 3.11: Direct and 4WM detection spectra, obtained for a pump detuning and

wavevector ℏδ = 0.05 meV and kP = 0mum−1. (a) Left-hand panel: Reflection trace of the

probe taken along the red dashed vertical line of the spectrum. Right-hand panel: Reflectivity

map as a function of the energy ℏω and the wavevector k of the probe, made in direct detection,

with the DMD monitored to select the kDMD = k signal. The pump energy is indicated by the

red dotted horizontal line. . The normal branch (NB) and the ghost branch (GB) appear as a

dip and a peak in the reflectivity signal respectively. (b) Left-hand panel: Transmission map of

the probe as a function of its energy and wavevector. The detection is in 4WM configuration,

i.e. kDMD = −k. Right-hand panel: Trace of the probe transmission taken along the red

dashed line. When the probe is at resonance with NB (ω > ωpump), the detection collects the

4WM scattering at the wavevector opposite to the probe, related to the GB emission. Plotted

as a function of the probe energy, GB appears as a peak at ω > ωpump. It has been confirmed

with a spectrometer that its energy is indeed ωGB < ωpump. When the probe is at resonance

with GB (ω < ωpump), the scattering towards the NB is also detected via a second peak in the

energy scan.

3.10 Dynamical instabilities

Polaritons are now excited as close as possible to the turning point of the lower bistability

branch, in the low-density regime. Consequently, the interaction energy drops with respect to

the previous cases, leading to a shift towards the red of the spectrum, recovering the standard

parabolic shape of linear regime. However, unlike the spectra obtained in linear regime, a

residual density remains here, sufficient to induce a local modification of the polariton dispersion

curve.

Direct detection. Indeed, thanks to the high resolution of our spectroscopy technique, we

detect in the direct detection reflectivity spectrum pictured in Fig. 3.12(b), two very narrow

plateaus corresponding to the crossing of the positive and negative Bogoliubov branches at the

pump energy, highlighting the signature of weak interactions. Such plateaus are detected via the
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Figure 3.12: Precursors of modulation instability spectrum, obtained at pump detuning

and wavevector ℏδ = 0.14 meV and kP = 0 µm−1. The pump intensity is adjusted to be as

close as possible to the lower turning point of the bistability. (a) Trace of the reflectivity of

the probe taken along the horizontal red dashed line of the spectrum in (b). The resonance of

the normal branch corresponds to the dip in the signal. (b) Reflectivity map of the probe as

a function of its energy ℏω and its wavevector k. The yellow dashed line indicates the pump

energy; the white inverted parabola corresponds to the theoretically expected ghost branch

dispersion relation. At the intersection of the normal and ghost branches, narrow plateaus are

visible in the spectrum (see zoom in the red box), due to the local onset of gain on the probe,

as evidenced by the narrow peak in the reflectivity dip shown in the scan (a). They result from

the real part of the Bogoliubov spectrum being equal to zero (here the pump energy) over a

finite range of wavevectors, and from the imaginary part having a modulus smaller than the

standard polariton linewidth, set by the polariton decay rate γ. (c-d) Corresponding numerical

calculations performed with the same parameters as the experiment.

modification of the shape of the probe reflectivity dip (see the energy scan of Fig. 3.12(a) and

(d) taken along the vertical line in red dotted line), which exhibits a narrow peak, corresponding

to the detection of gain. Still, the shape and linewidth of the spectrum remains governed by the

transmission of the probe through the bare resonance of the sample in the fluid background,

partially concealing the effects of interactions between polaritons and therefore making difficult

to extract the properties of modes associated to the gain peaks.

4WM detection. To further improve the detection of these spectral narrow features, we

implemented again the aforementioned 4WM detection scheme, presented in Fig 3.13. The

4WM transmission map in Fig. 3.13(b), obtained under the same experimental conditions than

the direct reflectivity map in Fig. 3.13(a), shows the detection of the ghost branch, crossing the

normal branch at the plateaus energies and wavevectors, which confirms that local transforma-

tion of the spectrum is originating from the coupling of the positive and negative Bogoliubov

solutions. Remarkably, since the 4MW detection only captures the modes resulting from the
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scattering with pump polaritons and thus eliminates from the signal the bare resonance of the

cavity (i.e. the direct transmission of the probe), the spectrum only includes the resonance

of the fluid associated to the excitation of the lower bistability branch. In particular, at the

level of the plateaus, we can extract precisely the linewidth of the elementary excitations, from

which Im(ℏωBog) is measured equal to 10 µeV, much smaller than the decay rate of polaritons

γ.
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Figure 3.13: Direct and 4WM detection of modulation instability precursor spectra,

for a pump intensity near the lower bistability turning point and a detuning ℏδ = 0.16 meV.

(a) Right panel: transmission map of the probe in direct detection. Left panel: slice along the

vertical red dashed line of the spectrum. At the pump energy, a narrowing and amplification of

the probe is visible, related to the change in the imaginary part of the energy of the elementary

excitations. The zoom in the red dashed inset highlights a narrow plateau in the spectrum,

signature of the onset of precursor of modulation instabilities at the pump energy ℏωP indicated

by the red arrow. (b) Left panel: transmission map of the probe in 4WM detection, under the

same experimental conditions as (a). k and ℏω are respectively the energy and wavevector of

the 4WM emission. The ghost branch is detected. The plateau is clearly visible at the crossing

point with the normal branch, with a better resolution than in (a). Right panel: slice along

the vertical red dashed line of the spectrum. The sub-γ linewidth of the resonance peak gives

the imaginary part of the energy of the modulation instability precursor. (c) Density map of

the fluid in the cavity plane.

Modulation instabilities. This narrowing reveals the excitation of precursors of modula-

tional instabilities mentioned in the previous part. The associated gain reveals the generation of

polaritons at different wavevectors than that of the pump, modulating the polariton density at

the spatial frequency of the normal and ghost branch crossing wavevectors. Fig. 3.13(c) shows

the density map related to the dispersion relation in Fig. 3.13(a) and (b). A density modulation

pattern is observed. Although such turbulent dynamics, with a characteristic evolution time

τ of the order of the polariton lifetime, i.e. about 15 picoseconds, cannot usually be resolved

by the low temporal resolution of our cameras, here the structural defects in the cavity plane

fix the shape of the fluid. This means that the spatial frequency of the density pattern results

from a balance between the wavevectors of the instability plateaus of the spectrum and the

distribution of the cavity structural defects.
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The use of the term precursor comes from the fact that these instability modes remain

dynamically stable in the Bogoliubov terminology, i.e. −ℏγ/2 < Im(ℏωBog) < 0, thanks to the

losses inherent to our system.

3.11 Outlooks

The spectroscopy technique is very versatile and can be generalized to many other of excitation

of polaritons.

Analogue gravity

In analogue gravity experiments [20], for instance, the polariton flow is designed to simulate the

geometry of the gravitational field around an astronomical black hole. In this picture, phonons

in the fluid going at the speed of sound and dragged by the flow represent photons going at the

speed of light and trapped by the black hole [76].

1D black hole. In a one-dimensional geometry, a region upstream of a cavity structural

defect is driven in the subsonic regime v < cs, whereas another region downstream is driven

in the supersonic regime v > cs. The use of a defect, i.e. a local modification of the external

potential felt by polaritons, operates an abrupt break between these two flow regimes, thus

allowing a clear definition of the position of an event horizon at the point of intersection of

the sound and fluid velocity curves v = cs, boundary from which the phonons coming from

the upstream region x < 0 can no longer oppose the flow of the fluid and thus find themselves

trapped in the downstream region x > 0 [64]. This is thereby an analogue to a black hole,

first achieved experimentally in Ref. [125]. With our spectroscopy technique, we can precisely

reconstruct the flow and sound velocity profiles and then adjust the pump parameters to obtain

the ideal black hole geometry. Moreover, it is then possible to probe the spectral signatures

of the transmission and reflection of elementary excitations at the level of the event horizon,

in order to observe effects analogous to the Hawking radiation, responsible for the creation of

particle pairs of opposite energies at the boundary of a real black hole [68].

Rotating black hole. Secondly, we have a long track record in the team of giant vortex

generation in polariton fluid [30, 76], with the help of Laguerre-Gauss beam profiles shaped

with a SLM. The subjacent flow structure can be reinterpreted in terms of a two-dimensional

rotating black hole [154]. Indeed, such a geometry siphons the fluid at the level its non-excited

core, thanks to the inherent losses of the system, generating a radial acceleration of the flow

towards its center at r = 0. In addition, by tuning the Laguerre-Gauss mode order, a specific

azymuthal acceleration can be added. Thus, in addition to an event horizon v = cs, the giant

vortex includes a second boundary, delimiting the ergosurface of a rotating acoustic black hole,

where the azymuthal speed of the flow is greater than the speed of sound. In such a region, it is

expected that for certain propagating wavevector, the elementary excitations can be amplified

by pulling some energy out of the background flow. This is the analogue of the Penrose
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phenomenon, that we can also try to measure with the pump-probe spectroscopy, looking in

particular for gain signatures on the probe.

Turbulence

As already discussed, our technique can also be used to study turbulent regimes of polaritons.

Indeed, it allows a spectral detection of instability modes, which has the advantage of not

requiring the use of devices with a high temporal resolution (streak camera and pulsed lasers) to

resolve the typical picosecond dynamics of the fluid. We have only presented here the excitation

of precursors of modulation instabilities, on the lower branch of the bistability, which remain

dynamically stable thanks to the cavity losses. But it is possible to consider other excitation

schemes operating a sustaining of the fluid in an unstable dynamic regime.

Dark solitons in channel. As explained in a next section, the generation of dark solitons

in a confinement channel dug in the density of the fluid reveals such modulation instabilities,

leading to the formation of vortex-antivortex streets [92, 46]. We have investigated in such

a configuration these instabilities through the spatial distribution of vortices. But, with the

pump-probe spectroscopy, the analysis can be pushed even further by measuring exactly the

intensity, energy and momentum of the elementary excitations at stake.

Counter-propagative flows. Second geometry considered, the creation of two counter-

propagating fluids, either in collision or in shear configurations, can result in the creation of

vortex pairs due to instabilities forced by the pump injecting polaritons at to two opposite

and non-zero wavevectors. Depending on the speeds of flow with respect to the speed of

sound, different unstable modes can be addressed, such as Kelvin-Helmotz and super-radiant

instabilities, with different Bogoliubov spectra, that can potentially be identified with our

technique [61].



Chapter 4

Goldstone mode of a planar polariton

fluid in Optical Parametric Oscillation

regime

The coherent probe spectroscopy technique is versatile enough to be used in completely different

excitation regimes of polaritons. In the previous chapter we demonstrated its performance with

the analysis of the spectrum of elementary excitations of a coherently driven fluid; here we will

present its use on a polariton fluid obtained in Optical Parametric Oscillator (OPO) regime:

the resonant pumping in the vicinity of the inflection point of the LP branch generates the

scattering of polaritons in a signal and idler condensates, whose phase is not fixed by the

driving field. Like Bose-Einstein condensation or laser emission, such an excitation scheme

entails a spontaneous breaking of the continuous phase symmetry of the system. Consequently,

the Goldstone theorem predicts that the spectrum of the elementary excitations of polaritons

should exhibit a vanishing (gapless) energy mode in the long wavelength limit.

The objective of this chapter is therefore to measure with our spectroscopy technique the

dispersion curve of such a mode, in order to describe the specificities of an out-of-equilibrium

system and to prove that it is indeed the consequence of a spontaneous symmetry breaking

transition. This work is based on the theoretical study of M. Wouters and I. Carusotto [177].

81
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4.1 Spontaneous symmetry breaking

As a general definition, a spontaneous symmetry breaking (SSB) occurs when a symmetric

system, i.e. with an Hamiltonian H invariant under a unitary transformation U , has a ground

state |Ψ⟩ that is no longer symmetric with respect to this same transformation. The following

two conditions must therefore be met

[U ,H] = 0 & |Ψ⟩ ≠ U |Ψ⟩ . (4.1)

As a consequence, one can associate a new state to every symmetry-broken ground state: if

|Ψ⟩ exists, then U |Ψ⟩ also exists. Furthermore, the symmetry of the Hamiltonian implies

H (U |Ψ⟩) = UH |Ψ⟩ = UEΨ |Ψ⟩ = EΨU |Ψ⟩ , (4.2)

with EΨ the eigen-energy of H related to the state |Ψ⟩. The two different states |Ψ⟩ and

U |Ψ⟩ have the same energy. Thus, if we consider a continuous symmetry, a whole collection of

degenerate broken symmetry states can be mapped by performing the transformation U .

4.2 Goldstone mode

As a consequence of the spontaneous breaking of a continuous symmetry, the spectrum of ele-

mentary excitations of the system under consideration exhibits massless particles. These stem

from the so-called Goldstone mode, predicted by the eponymous theorem following the work of

Y. Nambu [122] and J. Goldstone [63]. In its non-relativistic version [98], the theorem states

that the Goldstone mode emerges in the Bogoliubov spectrum in the form of an elementary

excitation whose energy tends to 0 (gapless) in the long-wavelenght limit k → 0.

As a paradigmatic illustration of Goldstone modes, one can mention those originating from

systems with a second-order phase transition, responsible for SSB at the vicinity of some crit-

ical points. For instance, the magnon branch is associated with the spontaneous breaking of

the rotational symmetry of the magnetic moment orientation of ferromagnets, when the tem-

perature falls below the Curie critical temperature [97]. Another example, more related to

quantum fluids, is the zero-sound mode, which is a manifestation of the spontaneous breaking

of the U(1) gauge symmetry of the mean field of thermal equilibrium Bose-Einstein conden-

sates [128, 74, 56]. The characteristic long-range spatial and temporal coherences observed in

such systems witness the vanishing spectrum in the low-k limit. Finally, works linking the laser

threshold to a second-order phase transition evidence also an SSB [50]. Similar to ferromagnets,

where each spin aligns itself with the direction of the mean magnetic field generated by all the

other spins, each atom in a laser develops a radiative dipole aligned with the mean electro-

magnetic field emitted by all the other atoms, when the critical threshold level of population

inversion is reached. Therefore, a laser system should be the seat of a Goldstone mode.
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In the following, we will present the measurement of a Goldstone mode in the polariton

system, excited under optical parametric oscillation (OPO) regime, which, as we will see,

embodies an SSB whose description lies at the boundary between the laser and BEC systems.

4.3 Optical parametric oscillation

Parametric processes in semiconductor microcavities arise from the large third order nonlinear-

ities induced by the interactions between the QWs excitons. We first present here the nonlinear

equations governing the evolution of the field in such a medium, first from the point of view of

nonlinear optics in order to explicit the four-wave mixing (4WM) that emerges in our system,

then from the point of view of polaritons.

4.3.1 Parametric conversion

In the language of nonlinear optics, the response of matter to an incident electromagnetic

wave E is described by the generation of a new field P, called the dielectric polarization. For

sufficiently large optical powers, P is a nonlinear function of E

P = P(1) + P(2) + P(3) + ..., (4.3)

with,

P(n)(ω = ω1 + ω2 + ...+ ωn) = ϵ0χ
(n)(ω1, ω2, ..., ωn) ⊗ E(ω1)E(ω2)...E(ωn), (4.4)

where ϵ0 is the vacuum permittivity and χ(n) the susceptibility tensor of order n. The expression

of the latter can in principle be entirely determined by the intrinsic properties of the matter,

for instance, the linear susceptibility χ(1) is directly related to the medium refractive index n

via the equality n2 = Re
(
1 + χ(1)

)
. To each of the higher orders n > 1 is assigned a different

nonlinear optical process. These are described by the propagation equation of monochromatic

plane waves in an isotropic medium

∇E− 1

c2
∂2

∂t2

(
E +

P(1) + P(NL)

ϵ0

)
= 0, (4.5)

in which P(1) = ϵ0χ
(1)E and P(NL) =

∑
i>1P

(i) are respectively the linear and the nonlinear

dielectric polarizations, and E(z, t) =
∑

iAi exp(ikiz − iωit). Then, under the approximation

of slowly varying amplitude, Eq. (4.5) is written in the following simplified form

∑

i

2iki
∂Ai

∂z
exp(ikiz − iωit) =

1

ϵ0c2
∂2P(NL)

∂t2
, (4.6)

with k2i = n2
iω

2
i /c

2. By decomposing P(NL) into a sum of monochromatic plane waves
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P(NL)(z, t) =
∑

i

P(NL)
ωi

(z) exp(−iωit), (4.7)

we obtain a final set of equations relating the amplitudes of the input field Ai to the component

P(NL)
ωi of the induced dielectric polarization

∂Ai

∂z
exp(ikiz) = i

ωi

2ϵ0nic
P(NL)

ωi
. (4.8)

In what follows, only the third order linear process is relevant, arising from the dielectric

polarization of amplitude

P(3)
ωi

(z) =
∑

jkl

ϵ0χ
3
jklAjA

∗
kAl exp [i (kj − kk + kl) · z] . (4.9)

It describes a four wave mixing process (4WM), of frequencies (ωi, ωj, ωk, ωl) and wavevectors

(ki, kj, kk, kl) . By injecting it into Eq. (4.8) and then integrating along the length L of the

nonlinear medium, one obtains the output intensity

|Ai(L)|2 =

(
2
ωiχ

(3)
jkl

nic

)2

|Aj|2|Ak|2|Al|2
(

sin∆k · L/2

∆k

)2

, (4.10)

with ∆k = ki − kj + kk − kl. Thus, in order to achieve the longest possible propagation of the

four-wave mixing, the following ideal condition must be verified

∆k = 0, (4.11)

which is generally referred to as the spatial phase matching condition of the four-wave mixing.

Its temporal equivalent, related to the conservation of energy, reads

∆ω = ωi − ωj + ωk − ωl = 0. (4.12)

Parametric conversion. Among the different types of processes arising from third-order

non-linearity, it is the four-wave parametric conversion process that interests us in this manuscript.

It consists in the creation of one signal and one idler photon from two pump photons provided

by a single laser.

4.3.2 Optical parametric oscillator

By inserting the nonlinear medium into an optical cavity at resonance with one or more of

the field involved in the nonlinear process, one creates an effective optical oscillation system

featuring multiple fields. As it is generally the case with such devices, the oscillations of the
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resonant fields arise if the gain of the parametric process dominates the losses for each round trip

in the cavity, regime which is reached above a specific pump power threshold. If this condition

is fulfilled, the cavity emits coherent and amplified waves in the cavity resonant modes. As

a result, the power of the pump decreases to feed the resonant fields, leading to a parametric

gain saturation above the oscillation threshold.

Optical Parametric Oscillators (OPO) are categorized into different types according to the

number of fields at resonance with their cavity [143]: the single (SROPO), double (DROPO)

and triple (TROPO) resonance OPOs. In general, the higher the number of resonant fields is,

the lower the parametric oscillation threshold is, typically from a few watts for the SROPO [27]

to a few milliwatts for the TROPO [149]. OPOs are often used both for their high tunability

and for the generation of wavelengths that cannot be reached by more conventional lasers.

Typically, those based on KTP and BBO crystals cover a range of wavelengths from the visible

(500-800 nm) to the mid-infrared (1-5 µm) [140, 150]. In addition, they can be employed as a

source of highly correlated non-classical states, for example to generate entangled [112, 164] or

squeezed [69] states. For this reason, they are widely spread in the field of quantum optics, for

experiments in quantum cryptography [136], teleportation [33, 31] or memory [80].

In this chapter, we will focus on the polariton analogue of TROPO. Instead of mixing

photons, here we will look at parametric processes between polaritons. Two ingredients are

needed: a nonlinear medium and a spectral selection of the output modes. The former is

obtained via the scattering processes between polaritons, which are equivalent to four-wave

mixing in Kerr medium; indeed the original shape of the spectrum of lower polariton branch

allows to satisfy both the parametric conversion phase matching conditions seen above and the

simultaneous triple-resonance of the pump, signal and idler modes with the microcavity system.

4.4 Polariton parametric oscillations

4.4.1 Theoretical description

Parametric amplification. The first experiments demonstrating a parametric gain effect

in a polariton planar cavity date from 2000 [147, 22], using a pump-probe excitation scheme

depicted in Fig. 4.1: a high-intensity pump beam injects polaritons in the vicinity of the

LP branch inflection point, at wavevector and energy (kP, ωP); a low-intensity probe beam

resonates with the lowest energy state of the LPs, at (kS=0, ωS). By increasing the pump

power above a certain threshold, the authors observe a huge gain on the probe, up to 70, which

is concentrated in a very narrow spectral width, blue-shifted with respect to the bare resonance

of polaritons. They thus highlight a parametric conversion process, involving the scattering of

two polaritons in the mode set by the pump at kP, into a signal polariton, seeded by the probe

to enhance the conversion at kS, and an idler polariton, whose emission can also be detected

at a larger wavevector kI.

It is crucial to note that such a process is enabled by the ”S” shape of the polariton dispersion
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Figure 4.1: Excitation scheme in parametric amplification regime. (a) Energies and

wavevectors of the pump, idler and signal modes of the OPO along the LP resonance. The two

black dots highlight two pump polaritons injected in the vicinity of the LP branch inflection

point at kP. They scatter via the polariton-polariton interactions to generate a polariton in a

signal mode at kS = 0, highlighted by the transparent dot, and a polariton in an idler mode

at kI = 2kP, highlighted by the red dot. (b) Injection of lasers into the cavity in parametric

amplification regime. The pump illuminates the cavity at its magic angle θ; the probe around

k = 0. In [147], when the probe has a polarization aligned with that of the pump (right

circular) and a wavevector matching that of the signal mode, a gain is observed, attesting the

establishment of a parametric amplification regime. Adapted from [147].

relation around the inflection point, allowing the simultaneous fulfillment of the temporal and

spatial phase matching conditions of the 4WM

{
kI = 2kP − kS,

ωI = 2ωP − ωS.
(4.13)

This means that the parametric conversion observed here is an intrinsic feature of the strong

coupling: it results from a mixing between polariton modes and not between photon modes.

Analytical description. The underlying processes in this excitation scheme are explained

theoretically by the quantum model of C. Ciuti [42, 43] and by the classical model of D.

Whittaker [174]. In both cases, the driving mechanism of the parametric conversion is the

interaction between polaritons, given by the Hamiltonian

HOPO
PP = Vpp

(
p̂†kS

p̂†kI
p̂kP

p̂kP
+ h.c.

)
, (4.14)

coupling two polaritons in the pump mode kP to one polariton in the probe mode kS and

another in the ilder mode kI. Its addition to the generalized GPE, expressed from Eq. (2.51)
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for the mean field wave function of each of the resonant modes, leads to the derivation of a set

of evolution equations

iℏ
∂

∂t
ψS =

[
ℏωLP (kS) − iℏ

γS
2

]
ψS + ℏgψ∗

Iψ
2
P + FS(t), (4.15)

iℏ
∂

∂t
ψP =

[
ℏωLP (kP) − iℏ

γP
2

]
ψP + 2ℏgψ∗

PψSψI + FP(t), (4.16)

iℏ
∂

∂t
ψI =

[
ℏωLP (kI) − iℏ

γI
2

]
ψI + ℏgψ∗

Sψ
2
P, (4.17)

where FP(t) and FS(t) are respectively the high-intensity pump and the weak probe fields, γS,

γP and γI the FWHM linewidths of the three considered parametric modes. ℏωLP (ki) is equal

to the polariton energy in the i mode, including the self-interaction energy renormalisation

ℏg|ψi|2ψi. The population in the signal mode is then derived from the following coupled linear

system

ℏω
[
ψ0
S

ψ0∗
I

]
=


ℏωLP (kS) − iℏ

γS
2

ℏgψ2
P

−ℏgψ2
P 2ℏωP − ℏωLP (kI) − iℏ

γI
2



[
ψ0
S

ψ0∗
I

]
+

[F0
S

0

]
, (4.18)

calculated by writing Eq. (4.15) and the conjugate complex of Eq. (4.17) in stationary regime.

ψ0
S and ψ0

I are the amplitudes of the signal ψS = ψ0
S exp(−iωLP (kS)t) and idler ψI = ψ0

I exp(−iωLP (kI)t)

wave functions; F0
S is the amplitude of the probe FS = F0

S exp(−iωt) at the frequency ω.

The signal mode amplitude is given by

ψ0
S =

F0
S

(
ℏω − 2ℏωP + ℏωLP (kI) + iℏ

γI
2

)

(ℏω − E−) (ℏω − E+)
, (4.19)

with E± denoting the eigenvalues of the matrix (4.18).

One can show that ψ0
S is maximal when the diagonal elements of Eq. (4.18) are equal, i.e.

ℏωLP (kS) = 2ℏωP − ℏωLP (kI). This is equivalent to express the energy conservation of the

parametric process. The pump wavevector kP satisfying this condition determines the ”magic”

angle of the polariton amplification. Correspondingly, the eigenvalues E± are equal to

E± = ℏωLP (kS) − iℏ


γS + γI

4
± 1

2

√
(
2g|ψP|2

)2
+

(
γS − γI

2

)2

 . (4.20)

From this, the density in the signal mode |ψ0
S|

2
diverges when Im(E−) → 0 for the probe

frequency ω = ωLP (kS). This yields the expression of a threshold density in the pump mode

∣∣ψthr
P

∣∣2 =
1

g

√
γSγI

4
, (4.21)
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to be reach and in order to achieve the amplification of the probe.

This result simply expresses similar gain condition as for lasers: the population rate of

polaritons from the pump mode toward the signal and idler modes must be faster than the

polariton decay rates, i.e. the losses of the system, in order to achieve gain on the probe.

From it, we define an oscillation threshold for the pump intensity
∣∣F thr

P

∣∣2, related to
∣∣ψthr

P

∣∣2.
Its expression is not trivial since the relationship between the polariton density and the pump

intensity is not linear. Indeed, under the detuning condition δ >
√

3/2γ, a bistability regime

can also appear in the OPO configuration.

In the end, the gain on the probe amplitude reads

G(ωS) =
|ψ0

S|
2 −

∣∣ψlin
S

∣∣2
∣∣ψlin

S

∣∣2 =




1

1 −
(
2g|ψP|2

)2

γSγI




2

− 1, (4.22)

where
∣∣ψlin

S

∣∣2 is the population in the signal mode in linear regime, with the probe only.

Optical parametric oscillation. In the above experiment (Fig. 4.1, scattering processes

in the signal mode are enhanced by a probe beam resonating with it. Further experiments

carried out shortly after the reports in Ref. [22, 159] revealed the generation of macroscopic

populations in the signal and idler modes without the use of a probe beam (|F 0
S |

2
= 0), thereby

demonstrating the achievement of a true OPO regime in semiconductor microcavities.

In such an excitation scheme, a multiplicity of modes are generated from the scattering of

pump polaritons, since there is no probe to favor the population of specific signal and idler

modes. Those with loss rates higher than their generation rate will decay. Thus, in a process

similar to mode selection in laser, the signal mode with the lowest decay rate will dominate,

depleting the pump at the expense of other modes, until it is the only one to survive. When the

pump is at the inflection point of the LP branch, corresponding to the so-called magic angle

of the cavity, the dominant signal mode is at kS = 0, which is expected since it corresponds to

the ground state of polaritons, implying a higher stability. However, in more elaborate models

[54, 53], it is shown that usually several modes survive from this competition, which could

complicate the analysis of the OPO process in our experiments.

4.4.2 SSB in OPO regime

Let us now consider the following transformation

U : ψS → ψS × exp(i∆ϕ) & ψI → ψI × exp(−i∆ϕ). (4.23)

It consists in a simultaneous and opposite phase rotation ∆ϕ of the polariton wave functions

ψS and ψI in the signal and idler modes respectively. By removing the contribution of the probe
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(|FS|2 = 0 in OPO regime), one can easily demonstrate that the evolution equations (4.15),

(4.17) and (4.16) are invariant under application of U . It follows directly that the Hamiltonian

of the system driven in OPO regime is invariant under the application of U . Moreover, if we

apply U to the wave function ψ of the OPO, expressed with the following ansatz

ψ(x, t) = ψP exp(i[kPx− ωPt]) + ψS exp(i[kSx− ωSt]) + ψI exp(i[kIx− ωIt]), (4.24)

the signal and idler wave functions ψS and ψI acquire respectively a ∆ϕ and −∆ϕ phase shift,

whereas the pump wave function ψP remains unchanged. The OPO wave function ψ is therefore

not symmetric with respect to U .

Consequently, all the prerequisites for SSB are met: the pump polaritons driving the para-

metric process undergo a U(1) phase-rotation symmetry breaking which should result in the

emergence of Goldstone mode in the signal and idler polariton spectra.

Signal and idler fluid as BEC. Off-resonance polariton condensates and OPO signal/idler

polaritons share the feature of being excited without phase fixation by the pump. In the off-

resonance configuration, the initial phase of the driving field is lost via the process of sponta-

neous relaxation of the pump photons to the smallest k-states of the LP branch; in the OPO

configuration, although the phase-matching conditions of the 4WM process impose the global

phase of the scattered polaritons to be equal to that fixed by the pump, the respective relative

phases of the signal and idler polaritons are free to evolve. These decouplings between the po-

laritons and the driving field phases enable the SSB, which is responsible for the emergence of

a Goldstone mode in both OPO and off-resonance quantum fluids. For this reason, polaritons

generated in OPO regime have historically been studied as a candidate for BEC, leading to a

whole series of experimental works dedicated to the measurement of the signatures of such a

process, with for example the macroscopic occupancy of a single mode or the spontaneous onset

of large-scale spatial and temporal coherences. In the following, we will therefore assimilate

polariton fluids in the signal and idler modes to condensates. For more details on the differences

between polariton lasers, condensates and OPO, one can refer to the Ref. [85, 35, 23].

4.5 OPO elementary excitations

To characterise the Godstone mode, we first calculate the spectrum of elementary excitations

of polaritons in OPO regime, as explained by M. Wouters in Ref. [177]. This is done again

with the help of the Bogoliubov theory: the generalized GPE equation is linearized around the

stationary solutions of the S, P and I polaritons. The wave functions of the system read





ψS(r, t) = exp(ikSr− iωSt) [ψ0
S + δψS(r, t)] ,

ψP(r, t) = exp(ikPr− iωPt) [ψ0
P + δψP(r, t)] ,

ψI(r, t) = exp(ikIr− iωIt) [ψ0
I + δψI(r, t)] .

(4.25)
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The weak perturbations δψi of polaritons in the mode i = (S, P, I) are then described as the

superposition of two counterpropagating plane waves of respective amplitudes U i
k and V i

k

δψi = U i
k exp(ikr− iωBogt) − V i∗

k exp(−ikr + iωBogt), (4.26)

leading to linearize the GPE in the following simplified form

ℏωBog(k) · Uk = LBog(k) · Uk, (4.27)

with Uk =
[
US
k , U

P
k , U

I
k , V

S
k , V

P
k , V

I
k

]T
. We recover an equation similar to that seen in the third

chapter for the evolution of the amplitude of weak perturbations. Here, in the OPO case, the

Bogoliubov operator LBog is defined in an extended space of dimension 6x6, in order to account

for the polaritons in the signal and idler modes in addition to those directly injected by the

pump. It can be expressed in the form

LBog(k) =

[
M(k) Q(k)

−Q∗(k) −M∗(k)

]
, (4.28)

which is analogue to the 2x2 Bogoliubov operator of the single-mode polariton fluid in (Eq.) 3.6.

The 3x3 matrices M(k) and Q(k) are defined as follows

Mmn(k) =
[
ℏωLP (km + k) − ℏωm − iℏ

γ

2

]
δm,n + 2

3∑

rt=1

ℏgkm+k,kn+k,ktδm,n+r−tψ
∗
rψt, (4.29)

Qmn(k) =
3∑

rt=1

ℏgkm+k,kr,ksδm+n,n+tψrψs, (4.30)

where the three modes (S, P, I) are identified respectively with the values (1, 2, 3) and ℏωLP (km+

k) is the linear dispersion relation of polaritons given by (Eq.) 2.36. We have taken into account

that the strength of these interactions depends on the exciton Hopfield coefficient, by writing

g as a function of the wavevectors of the different polariton modes involved

gk,q1,q2 = X∗(k)X∗(q1 + q2 − k)X(q1)X(q2)g. (4.31)

From this, one can note that the diagonal terms of LBog(k) are equal to the diagonal terms

of the single-mode operator, expressed for each of the S, P and I modes, while the off-diagonal

terms are equal to the interaction energies between each of all possible combinations of two

modes.

S-polaritons spectrum computation. The real and imaginary parts of the energy of the

elementary excitations are computed from the eigenvalues of the Bogoliubov operator, after
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Figure 4.2: Theoretical spectrum of elementary excitations in OPO regime. (a) Real

part ((b) Imaginary part) of the Bogoliubov dispersion relation around the stationary state.

The green dashed line highlights the frequency ωS of the signal condensate (the decay rate of

signal polaritons γS/2). The Goldstone mode has almost zero curvature and a linewidth tending

towards 0 in the low-k limit. (c) Response spectrum to a probe beam for several values of probe

wavevectors k−kS = 0.1, 0.15, 0.2, 0.3 µm−1, around the signal wavevector kS. Adapted from

[177].

considering the linear response of the system to a weak external probe δFpr ∝ [1, 0, 0, 0, 0, 0]T ,

injecting perturbations in the same mode as the signal condensate

ℏωBog(k) · Uk − LBog(k) · Uk = δFpr. (4.32)

The results are plotted in Fig. 4.2(a) and (b) for a pump intensity Fp above the OPO

threshold. The parameters used are very close to those corresponding to our cavity, with a

Rabi energy ℏΩR = 5 meV, exciton-photon detuning ∆EX−γ(k = 0) = 0 meV, an interaction

constant ℏg = 5 µeV ·µm2 and a polariton decay rate ℏγ = 100 µeV.

Goldstone dispersion relation. The dispersion relation of the Goldstone mode is cal-

culated from the diagonalization of the Bogoliubov operator (4.28). It displays a real and

imaginary part equal to 0 when k = 0. Remarkably, its shape differs from that observed for

thermal equilibrium Bose-Einstein condensates, where the Goldstone mode manifests as two

sonic branches Re [ωBog(k)] = cs|k| with a singularity at k=0. In the out-of-equilibrium case,

the Goldstone mode does not show any singularity. Instead, its real part features an energy

plateau with a very small slope, corresponding to a group velocity that is also almost zero with

respect to the typical speed of sound expected for phonon-type elementary excitation. The

Goldstone mode of polariton condensates is thus diffusive rather than propagative: a perturba-

tion introduced locally at the surface of the S-condensate relaxes without moving, feeding the

spatial twist of the polaritons phase. This is a specific feature of out-of-equilibrium systems,

without in-equilibrium counterpart and still under investigation today [116, 70, 117].
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Probe response. The response of the system transmission to a weak probe is shown in

Fig. 4.2(c). The imaginary part of the spectrum tends towards 0 at low-k and results in a strong

narrowing of the linewidth with respect to the polariton decay rate γ and in an amplification of

the amplitude, expected as the probe acts as a seed of the OPO process. At large-k, the probe

recovers a behavior similar to that it would have in linear regime: a linewidth around γ and

an amplitude unchanged compared to the input one. These are the typical features that we

will reveal by exploring the high resolution spectroscopy technique presented in the previous

chapter.

4.5.1 OPO experiments

Before dealing with the experiments, we can mention a set of experiments reporting the im-

plementation of the OPO regime in polariton systems, where the emission of signal and idler

condensates exhibits some of the features of the Goldstone mode.

As already discussed, the first experimental demonstration of parametric optical amplifica-

tion in microcavity has been carried out in 2000 by P. Savvidis [147], where a seed probe send

through the S-condensate is amplified in a narrow band of gain up to 7000%. Then, just after

this first achievement, the same teams demonstrated the successful implementation of OPO

with only the pump drinving polaritons [159, 22]. They revealed a spontaneous drastic change

in the spectrum, becoming maximal and non-thermal around the signal mode wavevector. Pio-

neering measurements of coherence have been made in 2006 [17], pointing out the preservation

of the first-order spatial coherence of S polaritons at macroscopic scales of the order of the

quantum fluid dimension. The article [155] presents further coherence measurement, demon-

strating that the S-polaritons spatial and temporal long-range orders disappear when moving

from a 2D to a 1D fluid geometry. Such a behaviour is related to an increase in fluctuations with

decreasing dimensionality, in agreement with predictions for standard condensates in thermal

equilibrium. Finally, Ref. [18] is the last experimental report to our knowledge which explicitly

refers to a Goldstone mode measurement in OPO regime . It shows a significant increase in the

lifetime of the S mode emission in response to a weak pulsed probe injected in the I conden-

sate, proving the presence of a critical slowing down associated to the elementary excitation

spectrum vanishing in the long wavelength limit.

4.5.2 Bogoliubov spectrum in out-of-equilibrium condensates

These OPO works can be completed by the observation of Goldstone modes in off-resonance

excitation, with microcavities suitable for condensation.

Numerical calculation. Calculations of collective excitations spectra in off-resonance

condensates have been carried out in Ref. [162] and [176], the first using a microscopic model

to evaluate the polariton dynamics; the second using a mean-field description of the condensate,

similar to the one we used to calculate the Bogoliubov dispersion relations. Both lead to the
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Figure 4.3: Theoretical spectrum of elementary excitation of a polariton condensate.

(a) Upper (lower) line: real (imaginary) part of the Bogoliubov dispersion relation. The

Goldstone mode at low-k is evidenced by the vanishing of the gap between the positive (+)

and negative (-) branch in the real part and the zero positive branch in the imaginary part.

(b) Photoluminescence spectrum of the condensate. The Goldstone mode corresponds to the

plateau of zero energy and very narrow linewidth at low-k. Adapted from [162].

same result: the spectrum exhibits a Goldstone branch whose energy tends to 0 as k → 0. It

is again a diffusive mode, of analytical expression

ωBog(k) = −i
Γ

2
±
√
(
ωin−eq
Bog (k)

)2 − Γ2

4
, (4.33)

with Γ the effective polariton decay rate in the off-resonance excitation scheme and ωin−eq
Bog the

standard Bogoliubov dispersion relation of in-equilibrium quantum fluids given by

ωin−eq
Bog =

√
ℏk2

2m

(
ℏk2

2m
+ 2gn

)
. (4.34)

For small k, such as the argument under the square root is negative, ωBog(k) is purely

imaginary, leading to a gapless diffusive plateau in Re (ωBog(k)) in the long wavelength limit.

Such a result is interesting because the same type of analytical expression can be inferred for

the Goldstone mode in OPO regime. It shows especially that the length of the plateau depends

on the loss rate of the system: the larger Γ is, the larger is the range of the wavevectors in which

the real part of ωBog is purely imaginary; conversely, when Γ tends to 0, this range becomes

infinitely small and the plateau is replaced by two sonic branches, as expected for systems in

equilibrium. This is a proof that the intrinsic dissipation of polaritons is indeed responsible for

the formation of a diffusive rather than a propagative Goldstone mode.
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Experiments. Although hints of spectral signatures of a narrow diffusive mode can be

found in historical experiments measuring polariton condensate spectra [84, 168], first explicit

mention to a Goldstone mode are given in Ref. [15, 120, 121]. The most advanced analysis

was carried out by D. Ballarini [19], by measuring the spectrum of elementary excitations

of a polariton condensate from the Fourier transform of the first-order correlation function

g(1)(∆x,∆t). The Goldstone mode has been observed. However, its diffusive character could

not be evidenced due to the use of a very long lifetime microcavity. Moreover, the spectral

resolution of the technique prevented the detection of any spectral narrowing.

4.6 Experimental implementation

Our objective is to propose a fully detailed experimental characterization of the Goldstone

mode: we wish to demonstrate its diffusive character, to quantify precisely its spectral narrowing

and to prove that it is indeed the consequence of a spontaneous symmetry breaking by explicitly

destroying the initial symmetry of the system, and then observing the disappearance of the

Goldstone mode.

4.6.1 Experimental setup

The same pump-probe spectroscopy setup described in the previous chapter is used to measure

the Goldstone mode spectrum with the same sample. The main difficulty lies in the necessity

to have simultaneous access to the signal mode around kS = 0 µm−1 (at angle θS = 0°) and

the idler mode at kI = 2.5 µm−1 (θI = 19.2°). For this purpose, a lens with a large aperture

of 32.4° (of focal length f = 40 mm and radius R = 25.4 mm) is chosen to focus the following

three laser beams in the cavity plane:

• The pump, at the magic angle kP = 1.25 µm−1 (θP = 9.6°), when working at points of

the sample corresponding to near zero exciton-photon detuning ∆EX−γ ≃ 0 meV. It is

provided by a Ti:Sapphire Matisse TR laser with a bandwidth of 500 kHz (2.1 neV).

• The probe, at kS. It is provided by a Ti:Sapphire M2 Solstis laser with a bandwidth

of less than 50kHz (<0.21 neV). Its role is to scan the polariton spectrum in the signal

mode, in order to detect the Goldstone mode.

• A third laser, at kI. It is provided by a motorised Littman/Metcalf Laser System LION

diode, operating between 790 and 840 nm and with a bandwidth of less than 100 kHz

(<0.42 neV). It will be used to destroy the Goldstone mode.

The aforementioned bandwidths are significantly narrower than the typical linewidths that

are observed in the polariton spectrum (of the order of 1 GHz, i.e. 4 µeV): they do not limit

the spectral resolution in the experiments.

In order to minimize the deformation of the Gaussian profile of the laser beams by the optical

aberrations at the edge of the lens before the cavity, the sample is tilted by -kP with respect



4.6. EXPERIMENTAL IMPLEMENTATION 95

to the normal incidence. In this way, the pump beam goes through the center of the lens and

the probe and idler beams go through the angles ± 9.6°. Thus, in the plane of the cavity, the

beam profiles remain Gaussian, with a waist of about 100 µm diameter for the pump and the

idler, and about 50 µm diameter for the probe.

In the following, measurements are always achieved with a pump intensity well above the

OPO threshold |FP|2 >
∣∣F thr

P

∣∣2.

4.6.2 OPO excitation procedure
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Figure 4.4: Microcavity emission signal in OPO regime. (a) Photoluminescence spec-

trum, obtained with a spectrometer. (b) Image of the cavity plane in real space.

Finding the pump configuration leading to the OPO regime is not trivial, especially when

one wants to avoid the appearance of multimode regime, making the analysis of the Goldstone

mode more challenging. The main difficulty lies in the large range of tunable parameters: the

laser detuning δ, intensity IP = |FP|2, wavevector kP and diameter ◦P have to be adjusted

simultaneously to obtain the OPO regime. Moreover, the choice of the working point, in

addition to modify the exciton-photon detuning ∆EX−γ and thus the wavevector of the magic

angle of the LP branch, leads to modifications in the potential felt by polaritons, depending on

the distribution of the local structural disorder. In order to converge in the most efficient way

to the set of parameters allowing the onset of the OPO, we use the reflection R (transmission

T ) probe at k = 0 µm−1 is observed in order to monitor the onset of the signal and idler

condensates. The procedure consists in optimizing the amplitude and the linewidth of the

reflection (transmission) dip (peak) of the probe as described in the following steps:

1. The pump starts at kP = 0 µm−1, at a high enough intensity IP to ensure to be above the

oscillation threshold when the magic angle is reached. Its energy is blue detuned ℏδ ≃ 0.5

meV to keep it above the resonance of LPs when kP is increased. The probe resonance
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signal is a Lorentzian, with a FWHM linewidth equal to the polariton decay rate ℏγ0 ≃
80 µeV and a transmission peak amplitude T0 close to that of the linear regime. It is

blue-shifted with respect to the LP resonance due to the interactions between polaritons.

2. We increase kP by a few 100 mm−1, inducing a decrease in δ(kP), thus a decrease in

pump polariton density and a red-shift of the probe transmission peak energy. This is

compensated for by increasing the driving field energy, in order to recover the initial

polariton density. This step is repeated until the magic angle is roughly reached, by

proceeding in small steps of kP to remain blue-shifted with respect to the LP branch.

3. Near the magic angle, the amplification T > T0 and narrowing γ < γ0 of the probe begins

occurring in accordance with the trigger of the OPO regime. In the cavity real space, an

additional emission signal appears, overlapping the polariton fluid driven by the pump

(Fig. 4.4 (a)). The latter flows ballistically at the velocity set by kP, transforming the

input Gaussian profile of the pump beam into a comet shape; the first corresponds to the

generation of polaritons in the signal mode of the OPO, of shape depending on the flow

velocity of polaritons, therefore on the wavevector kS at which it is generated. Here, our

cameras are not sufficiently sensitive in order to detect the emission of the idler mode.

Indeed, it is generated at very large-k, where the exciton fraction of polaritons is largely

dominant over the photon fraction, thus where polaritons emit very few photons.

4. In order to be as close as possible to the magic angle, corresponding to the OPO scattering

process preferentially feeding the kS = 0 and kI = 2kP modes, we try to cancel the flow

of the signal polaritons. We found that the most efficient way to proceed was to make the

signal condensate density profile in the real space as symmetrical as possible with respect

to a rotation around its center, in addition to shift the signal peak emission wavevector

in the reciprocal space at kS = 0 µm−1. To this end, we tune slightly kP and δ.

5. Once properly done, the other remaining parameters are changed. In particular, the aim

now is to have a resonance peak of the probe at kS as close as possible to a Goldstone

mode resonance, i.e. with a gain T/T0 as big as possible and a linewidth narrowing γ/γ0
as small as possible. At this stage, we detect usually several probe transmission peaks

at distinct energies, manifesting the onset of a multi-mode OPO regime. These can be

canceled by tuning the pump diameter and/or slightly shifting the sample position to

change the working point. Once done, the pump intensity |FP|2 is ramped up to obtain

the highest transmission and smallest linewidth of the probe peak, expected at the highest

intensity. It is then followed by a new optimization of k and δ as described in the previous

step and so on, until the gain and the linewidth are no longer respectively increasing and

decreasing .
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Figure 4.5: Probe intensity scans. (a) FWHM and (b) maximum transmssion amplitude

T0 of the probe in linear regime (|FP|2 = 0 µW/µm2), at wavevector k = 0 µm−1, plotted as

a function of the probe intensity |Fprobe|2. The first is fixed by the polariton loss rate; the

second is linear with the incident probe intensity. (c) HWHM and (d) maximum gain on

probe transmission T/T0 in OPO regime (|FP|2 = 2.0 µW/µm2), at wavevector k = 0 µm−1

near the signal mode wavevector kS. The first increases and the second decreases when the

probe intensity is increased.

4.7 Spectroscopy of the S-condensate

4.7.1 Probe effects on the spectrum

The signal condensate spectroscopy is now performed using the same technique as described

in the previous chapter. As the existence of the Goldstone mode is intrinsically linked to the

phase degeneracy of the S and I polaritons, it is crucial to ensure that the probe does not fix the

phase of the condensates during the resonance scans. Its intensity is thus chosen low enough

to avoid to be in the injection regime.

Probe intensity tuning. Fig. 4.5 shows the probe maximum transmission intensity T and

FWHM linewidth γ/2, for scans of the sample at a specific wavevector choosen near kS = 0

µm−1 and for different intensities |Fprobe|2.

In Fig 4.5(a) and (b), the pump intensity is zero: the probe scans the polariton resonance in

linear regime. As expected, in Fig. 4.5(a), the linewidth is fixed by the polariton decay rate γ0.

In addition, as shown in Fig. 4.5(b), the intensity of the transmission peak T0 evolves linearly

with the probe intensity |Fprobe|2.

In Fig 4.5(c) and (d), the pump is set at the magic angle and to high intensity |FP|2 = 2.0

µW/µm2, well above the OPO threshold
∣∣F thr

P

∣∣2 ≃ 0.5 µW/µm2 at the detuning ℏδ = 0.5 meV.

Consequently, the probe, scanning the signal condensate, exhibits a different behavior with

respect to the linear one. As shown in Fig. 4.5(c), its linewidth depends on the probe intensity:
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at very low intensity, it is well below the standard polariton linewidth set by the decay rate γ0
= 54 µeV; while at higher intensity, it tends towards 0. Thus, the adequate intensity range for

observing the smallest possible linewidths should be no more than three orders of magnitude

below the pump intensity |Fprobe|2/|FP|2 ≃ 10−3. Here we do not show the transmission for

lower probe intensities, as the signal is too weak and lost in the noise of the detection. As a

result, we will still have a residual phase pining by the probe in our experiments, which limits

the minimum Goldstone mode linewidth that can be observed.

4.7.2 Preliminary results

(a) (b) (c) (d)

k [µm-1] k [µm-1]R R

ħω [eV] ħω [eV]

R

Figure 4.6: Reflection spectrum of S-polaritons. (b) Reflection map plotted as a function

of the probe energy ℏω and wavevector k, with the pump at the magic angle. The Goldstone

mode corresponds to the appearance of a narrow and flat plateau at low-k. (a) Red line (green

line): probe trace taken along the red (green) dashed line on (a), fitted from Lorentzian law in a

blue dashed line, from which the linewidth of the S-polaritons is extracted. (c) Reflection map

obtained under the same conditions as (b) but at a different working point, corresponding to

an energy difference along the cavity wedge of 30 µeV. The spectrum shows several resonances

at a same k, indicating the presence of a multimode OPO regime. (d) Traces of the probe

corresponding to the dashed lines in (c)

Initially, our first attempts to observe the Goldstone mode were made in reflection, among

other reasons to avoid the presence of spurious photon transmission branches in the recon-

structed spectrum, related to the subtrate at the sample output which creates in association

with the two Bragg mirrors of the main Fabry-Perot, an effective optical cavity whose free

spectral range ∆FSR ≃ 75GHz falls within the energy range of the probe scan ℏ∆ω ≃ 200

GHz. These photonic resonances are not observed in reflection, making it easier to analyze the

polariton spectrum.

Spectrum analysis. Fig. 4.6(b) shows an example of a reflectivity spectrum, when the
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pump shines the sample at the magic angle. The first feature to be noticed is the atypical

shape of the dispersion relation around the signal wavevector kS ≃ 0 µm−1: instead of a

standard parabolic or sonic dispersion, here we observe a flat plateau over ± 0.15 µm−1, blue-

detuned of about ℏ(ωS − ωLP ) = 0.7 meV with respect to the bare resonance of the LP branch

due to the energy renormalization induced by interactions. This is the signature of a diffusive

mode (dω/dk = 0), as predicted by the theory.

The second striking feature observed at the plateau level is the narrowing of the FWHM

linewidth γ of the reflection dip, which is significantly smaller compared to the polariton decay

rate γ0, up to γ = 0.4γ0 at kS. We measured it from the Lorentzian fit of the probe scan signal.

As shown in Fig. 4.6(a), such a fit law does not match exactly the experimental data. We

will explain later how we will refine our model with the help of the theoretical analysis to best

reproduce the experimental measurements.

All these observations are consistent with the expected behavior of the Goldstone mode in

polariton fluids, i.e. a dispersion relation of a diffusive mode, with a linewidth approaching 0

when k → 0.

Multimode OPO. As an illustration of the close dependance on the experiment parameters

and the wide variety of possible spectra in the OPO regime, Fig. 4.6(c) shows another example

of S-polaritons dispersion relation, taken under exactly the same conditions as Fig. 4.6(b), but

at a sample working point adjacent to the previous one. Several narrow resonances are observed

at the same wavevector, corresponding to several dips in the reflectivity of the probe plotted in

Fig. 4.6(d). They are associated with the onset of a multimode OPO regime, probably induced

by the change in the energy landscape of the cavity background, shifted by 30 µeV with respect

to the previous working point and in proximity to a structural defect.

Limitations of reflection detection. At this point, in order to perform a complete

analysis of the spectra, it is important to know how the population of the elementary excitations

is distributed along the dispersion relations. This is closely related to the OPO gain, which

is an essential information that we do not have access to when looking at the resonances in

reflection, as the amplification of the probe is partially hidden by its transmission through

the cavity. Moreover, for the same reason, the analysis of the properties of the resonance

reflectivity dips becomes difficult when its Lorentzian shape is deformed by the presence of

gain on the probe, preventing, for instance, the measurement of the Goldstone mode linewidth.

An illustration of this is displayed in Fig. 4.7(a), for OPO regimes optimized to obtain the

highest density in the S and I condensates, which correspond to even narrower γ and higher

gain T/T0 than those shown in Fig. 4.6(b) and (c). The reflectivity of the probe exceeds R =

1 at some k and ω, resulting in a local change in the Lorentzian shape of the resonance and

thus making impossible a satisfying extraction of a linewidth, as shown in Fig. 4.7(b). Such

considerations oblige us to work in transmission and therefore to deal with spurious effects

induced by the cavity substrate on the spectrum. Consequently, the spectra in the following

may exhibit parasitic resonances that can be caused by the proximity of a photon branch to
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Figure 4.7: Fano pattern in S-polariton reflection spectrum. (a) Reflection map plotted

as a function of the probe energy ℏω and wavevector k, with the pump at the sample magic

angle. The OPO gain induces a local amplification of the probe amplitude, resulting in the ap-

pearance of typical Fano patterns where the resonance areas R → 0 mix with the amplification

R > 1. (b) Red line (green line): trace of the probe taken along the red (green) dashed line on

(a). The OPO gain hides the expected Lorentzian dip for resonance.

the lower polariton branch.

4.7.3 Goldstone mode linewidth analysis

In Fig. 4.8(a) is presented a transmission spectrum of S-polaritons, obtained with the pump

at the magic-angle kP = 1.2 µm−1, of intensity |FP|2 = 6.11 µW/µm2 and detuning ℏδ =

1.0 meV, optimized to be in a single mode OPO regime. Again, a flat plateau lies at low-

k, in this case with a small slope, revealing that the scattering towards the S-state does not

occur exactly at k = 0 µm−1: the fluid has a non-zero flow velocity which drags the diffusive

elementary excitations at its surface. More importantly, we see now the amplification of the

probe T/T0 ≫ 1 around kS, decreasing very quickly as soon as we move away from it.

Fig. 4.8(b) shows three energy scans for different wavevector k of the probe, corresponding

to the vertical slices of the transmission map in Fig. 4.8(a) (red dashed lines). As for the

reflection detection, we observe a significant narrowing of the transmission peak width when

k → 0, accompanied by a strong amplification of the probe.

Amplification. To quantify the gain, T is compared to the linear transmission of the probe

T0, measured in linear regime. T/T0 is plotted in Fig. 4.9(a). with respect to k for different

pump intensity |FP |2. It decreases rapidly as the probe moves away from kS = 0.06 µm−1, with

a power law that tends towards T/T0 ∝ k−1 as FP increases. Such a behavior is expected as

the polariton scattering in the S-condensate is concentrated in a narrow range of wavevectors.
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Figure 4.8: Transmission spectrum of S-polaritons, in the OPO regime with the pump at

the magic angle kP = 1.2 µm−1, at intensity |FP|2 = 6.11 µW/µm2 and at detuning ℏδ = 1.0

meV. (a) Map of the transmission gain T/T0 of the probe as a function of its wavevector k and

its energy ℏω. The narrow, slightly tilted gain plateau has the expected shape of a diffusive

Goldstone mode. (b) Traces of the probe scans taken along the vertical red dashed lines of

(a). The resonance peaks are amplified and narrow when the probe scans around the central

wavevector kS = 0.06 µm−1 of the signal condensate.



102 CHAPTER 4. GOLDSTONE MODE
T
/T

0

k [µm-1]

γ
/γ

0

k [µm-1]

(a) (b)

FP [µW/µm2]=
6.9
6.5
5.7
5.3
5.0

-----

Figure 4.9: Amplification and spectral narrowing of the Goldstone mode, in OPO

regime. (a) Gain on the maximum transmission T of the probe with respect to the linear

transmission T0, plotted as a function of its wavevector k, for different pump intensities |FP|2.
(b) FWHM linewidth γ of probe scans with respect to the polariton decay rate γ0, plotted as

a function of k, for different pump intensities. The solid lines are the moving average of the

data.

It is a signature of the emergence of the long-range spatial coherence characteristic of the BEC

transition [155]. At large k, T/T0 is again 1: the phase matching conditions are no longer

verified and consequently the probe no longer seeds the parametric process responsible for its

amplification.

Spectral narrowing. The evolution of the probe gain as a function of k is accompanied by

a sharp narrowing of the linewidth of the spectrum around kS. Such analysis is difficult because

the shape of the transmission peaks is not a pure Lorentzian. As a first approximation, the

measurement of the FWHM linewidth is sufficient to account for the spectral narrowing. As

shown in Fig. 4.8(b), it is compared to that measured in the linear regime γ0. At low-k, γ/γ0
is of the order of 0.25, reflecting the vanishing of the imaginary part of the Goldstone mode

energy. At high-k, even if the width remains difficult to evaluate because of the small amount

of signal, we recover the linear regime behavior with γ/γ0 ≃ 1.

The amplification and narrowing increase as the pump intensity moves away from the OPO

threshold. This is shown in Fig. 4.9(a) and (b), where at the highest reachable intensity the

gain approaches T/T0 = 45 and the narrowing γ/γ0 = 0.2, compared to the linear resonance.

Multimode analysis. It is possible to extend further the analysis on the linewidth, as

several spurious modes may be present in the vicinity of the Goldstone mode. These may

originate from the photonic resonances at the free spectral range of the optical cavity coupled

to the substrate, from the co-existence of several signal and idler modes resulting from the OPO

process, or from additional elementary excitation branches predicted by the Bogoliubov theory.

The evidence for such a multimode regime is verified experimentally as illustrated by Fig. 4.10.
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Figure 4.10: Multimode analysis of the S-polaritons spectrum. (a) Transmission map

plotted as a function of the probe energy ℏω and wavevector k, with the pump at the sample

magic, of intensity Fp = 7.0 µW/µm2 and detuning ℏδ = 1.0 meV. The blue, green and yellow

curves correspond to the energy of the Lorenzian maxima extracted from the fits of the probe

traces at each of the scanned k. (b) HWHM linewidths of the different Lorentzians fitted at

each of the scans of the map (a). (c) Left panel: scan of the probe plotted in black line and its

multimode fit plotted in blue line, at the wavevectors -0.62, -0.23 and 0.12 µm−1 respectively

(from the upper to the lower row), indicated by the red dashed line in the map (a). Right

panel: individual Lorentzian components of the multimode fit.

In Fig. 4.10(c), the probe traces extracted from Fig. 4.10(a) does not have a purely Lorentzian

shape. In order to reproduce their peculiar linewidth at the base of the transmission peak, one

has to consider the sum of several Lorentzians. Around kS (lowest panel), the peak of larger

amplitude and smaller width corresponds to the Goldstone mode, whereas the second and third

ones corresponds to spurious modes. The resulting fit closely matches the experimental peaks.

By iterating this fitting procedure to each of wavevectors scanned by the probe, three dif-

ferent dispersion relations are identified, of real ℏω and imaginary γ parts plotted respectively

in Fig. 4.10(a) and (b). The Goldstone mode is the green branch, with almost zero curvature

and a linewidth tending to γ ≃ 0.05 × γ0 around kS.

All these results are consistent with the spectral features that are expected at the onset of
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the Goldstone mode in the OPO process, i.e. a diffusive dispersion relation, of width close

to zero. Now, we can bring a final proof of what we claim here by explicitly destroying the

spontaneous symmetry breaking of the OPO process.

4.8 Destruction of the Goldstone mode

4.8.1 Injection scheme

Similarly to the observation of a gap opening in the magnon spectrum of ferromagnets under

application of an external magnetic field, which fixes a privileged alignment direction of the

magnetic moments and results in the loss of the spontaneous symmetry breaking [97], the

injection of an additional laser into the signal or idler mode of the OPO fixes the phase of

polaritons and should therefore leads to the loss of the SSB. Indeed, the parametric conversion

process occurs preferentially at the phase set by the additional laser. Therefore the SSB no

longer takes place and thus the Goldstone mode vanishes.

In this way, we want to demonstrate that the observed narrow spectra are indeed the result

of a SSB. Theoretically, the destruction of the Goldstone mode is evidenced by the broadening

of the linewidth around the signal mode wavevector kS when injecting the additional laser at

resonance with the signal or the idler condensates. Accordingly, it results in a broadening of

the transmission peak of the probe. Its FWHM linewidth is larger the higher the additional

laser intensity, as the phase fixation gets stronger [177].

In our experiments, a laser diode is used for the injection. Its spectral bandwidth is less than

0.42 neV (100 kHz), thus several order of magnitude below the typical linewidths observed for

polaritons and well below the narrowest Goldstone modes that we managed to detect. Therefore

we can assume that the linewidths measured in the following are determined by the dynamics

of polaritons and not by the lasers.

4.8.2 Injection in the S-condensate

Our first experiment to destroy the SSB of the OPO involved the phase pinning of the signal

condensate, as its position in real and reciprocal space is clearly resolved by CCD cameras

(unlike the idler polaritons), facilitating the mode matching with the injection laser.

Scan of the energy. The experiment is performed in the same conditions used for the

preparation of the OPO regime in the previous section. In Fig. 4.11, the additional laser is

injected at the central wavevector of the signal mode kS ≃ 0 µm−1, at an intensity |Fi|2 = 0.4

µW/µm2, one order of magnitude below the pump intensity |FP|2 = 5 µW/µm2 and two orders

of magnitude above the probe intensity |Fprobe|2 = 0.005 µW/µm2. The diameter of its waist in

the plane of the cavity is similar to the diameter of the signal condensate, of the order of 75 µm.

The probe scans the cavity over 70 GHz at kS. Its transmission is displayed in Fig. 4.11(a), for

different energy detunings ℏδi of the injection laser with respect to the signal mode resonance,
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Figure 4.11: Destruction of the Goldstone mode by laser injection into the signal

mode. The pump is at the magic angle, at intensity |Fp|2 = 5 µW/µm2 (above the OPO

threshold) and at detuning ℏδ = 0.5 meV. The injection laser has an intensity of |Fi|2 = 0.2

µW/µm2. (a) Transmission gain T/T0 map of the probe at k = kS as a function of the detuning

of the probe δS and of the injection laser δS, with respect to the energy of the signal polaritons

at kS ≃ 0 µm−1. (b) Traces of the probe gain T/T0, taken for different δi along the red vertical

lines of (a). (c) Upper panel: Full width at half maximum (FWHM) of the probe transmission

peak versus δi. Lower panel: Maximum amplitude Tmax of the probe transmission T as a

function of δI . When the injection laser energy is far from the signal polaritons resonance, the

Goldstone mode is detected via the spectral narrowing of the linewidth of the probe resonance

peak relative to the polariton decay rate γ indicated by the horizontal back dashed line; when

the injection laser energy is near resonance, the Goldstone mode vanishes, as evidenced by the

decrease in the amplification and the broadening of the probe resonance peak.

going from the red δi < 0 to the blue δi > 0. Out of resonance, ℏδi > 100 µeV, the probe

trace reveals the narrow linewidth peak (of FWHM = 20 µeV = 0.24 ℏγ) characteristic of the

Goldstone mode analysed before. Close to resonance, ℏδi < 100 µeV, this peak broadens and

drops in amplitude, until reaching a linewidth close to γ when ℏδi → 0 µeV: the Goldstone

mode vanishes. The asymmetry of the injection range with respect to ℏδi = 0 µeV is due to

the coupling efficiency of signal polaritons with the additional laser that remains significant for

slight blue shifts (as it is observed in the standard scheme of coherent excitation), while for red

shifts it is very low. The Goldstone mode is therefore recovered as soon as ℏδi < 0 µeV. Note

that we checked that the OPO regime was still operating, by observing that the signal mode

emission remained unchanged when the injection laser was in resonance with it.

Scan of the intensity. In Fig. 4.12, in addition to its energy, the intensity of the additional

laser is ramped up. As soon as the injection is in the vicinity of the signal condensate (ℏδi <
0.075 µeV), the destruction of the Goldstone mode happens for intensities |Fi|2 as low as two
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Figure 4.12: Intensity of the injection signal scan. The pump illuminates the sample in

the OPO conditions. (a) Upper (lower) panel: The color scale shows the map of the full width

at half maximum FWHM (maximum transmission Tmax) of the probe resonance with the signal

mode at k = kS, displayed as a function of the detuning δi between the injection laser energy

and the signal polariton resonance at kS ≃ 0 µm−1, and of the injection laser intensity |Fi|2.
(b) Upper (lower) panel: FWHM (Tmax) of the probe resonance as a function of |Fi|2, for δi
chosen along the vertical white dashed line of (a). (c) Red (green) curve: probe transmission

signal at |Fi|2 = 0.2 (0.5) µW/µm2 and ℏδi = 0.08 meV. The linewidth and amplitude of the

probe resonance peak increases and decreases respectively as |Fi|2 is ramped up. This reveals

the destruction of the Goldstone mode as the phase fixation of the signal polaritons by the

injection laser becomes stronger.

orders of magnitude below the pump intensity |Fp|2. As illustrated in Fig. 4.12(b) and (c), the

broadening of the FWHM and the decrease in the transmission peak of the probe is greater the

higher the injection intensity, meaning that the phase fixation is stronger.

4.8.3 Injection in the I-condensate

Fig. 4.13 presents the destruction of the Goldstone mode when the additional laser is injected

at resonance with idler polaritons. The transmission of the probe scanning the S-polariton

resonance near kS = 0 µm−1 is measured, for different values of detuning ℏδi between the

energies of the injection laser and the I-polaritons at the wavevector kI ≃ 2.5 µm−1. For an

injection intensity an order of magnitude below the pump intensity, there is a broadening of the

linewidth and a vanishing of the gain when the additional laser is near resonance 0 < ℏδi < 15

µeV. This evidences that the Goldstone mode is destroyed by phase fixation of the I-polaritons

as well, and thus it results indeed from the invariance of the simultaneous phase rotation of S-

and I-polaritons.

Fig. 4.14 shows a detailed analysis of the transformation of the probe resonance with the sig-

nal condensate when the third laser is close to the resonance of the idler condensate. Around ℏδi
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Figure 4.13: Destruction of the Goldstone mode by laser injection into the idler

mode. The pump is at the magic angle, at intensity |Fp|2 = 5 µW/µm2 (above the OPO

threshold) and at detuning ℏδ = 0.5 meV. The injection laser has an intensity of |Fi|2 = 0.5

µW/µm2. (a) Transmission gain T/T0 map of the probe at k = kS as a function of the detuning

of the probe ℏδS with respect to the energy of the signal polaritons at kS ≃ 0 µm−1 and of

the injection laser δI, with respect to the energy of the idler polaritons at kI ≃ 2.5 µm−1. (b)

Traces of the probe gain T/T0, taken for different δi along the red vertical lines of (a). When the

injection laser energy is far from the idler polaritons resonance, the Goldstone mode is detected

via the spectral narrowing of the linewidth of the probe resonance peak; when the injection

laser energy is near resonance, the Goldstone mode vanishes, as evidenced by the decrease in

the amplification and the broadening of the probe resonance peak.



108 CHAPTER 4. GOLDSTONE MODE

40-40 20-2040-40 20-20 40-40 20-20

T [a.u.] HWHM [µeV] HWHM [µeV]

ħδi [µeV] ħδi [µeV] ħδi [µeV]

(a) (b) (c)

Figure 4.14: Transmission and linewidth of the probe laser in the vicinity of the signal

condensate, for different injection energies of an additional laser in the idler condensate. Panel

(a) (Panel (b)) Maximum transmission intensity T (HWHM linewidth) of the probe resonance

with the signal condensate as a function different detuning values δi of the injection laser energy

with respect to the idler condensate. (c) Corresponding HWHM linewidths resulting from the

multimode analysis of the probe resonance signal. The shape of the probe transmission peak

is adequately reproduced with a fitting law corresponding to the sum of two Lorentzian, whose

respective HWHM linewidths are plotted in yellow and blue.

= 0 meV, the maximum transmission amplitude of the probe drops as presented in Fig. 4.14(a),

as a consequence of the loss of gain; the HWHM linewidth broadens and tends towards a value

governed by the polariton decay rate (ℏγ0/2 = 40 µeV at the considered working point) as

presented in Fig. 4.14 (b). All these features confirm the vanishing of the Goldstone mode due

to the fixation of the idler condensate phase.

However, as was revealed by the multimode analysis of the Goldstone mode, the probe

resonance peaks displayed on the map in Fig. 4.14 may result from the sum of several Lorentzian

peaks. To ensure that the increase in HWHM observed upon injection of the third laser into

the idler condensate is indeed related to a linewidth broadening of the resonance, and not,

for instance, to an energy splitting of the different modes detected that would produce also

an effective broadening of the peak in the trace of the probe, a multi-Lorentzian analysis is

performed. Here we find that the probe signal is well reproduced when the fit corresponds to

the sum of two Lorentzians. The HWHM linewidths of these two peaks plotted in Fig. 4.14(c)

display a broadening when the energy of the third laser is in the vicinity of the idler condensate

resonance ℏδi → 0 meV: this analysis also reveals the destruction of the Goldstone mode.



Chapter 5

Snake instabilities of dark solitons in

static polariton fluid

In the investigations of polariton Bogoliubov modes, we briefly mentioned the modulational

instability modes as a type of elementary excitation that is out of reach in stationary regime

due to its dynamically unstable nature, i.e. Im(ωBog) > 0. In the regime of continuous

quasi-resonant excitation, under homogeneous driving, we were therefore limited to study the

precursors of such instabilities. However, thanks to the close dependence between the pump

properties and the polariton dynamics, it is possible to design a driving scheme suitable for the

stimulation and observation of modulational instabilities in steady state.

This work, presented in this chapter, is part of the study of the stability of dark solitons in

planar semiconductor microcavities. Indeed, because of their one-dimensional nature, solitons

placed in a two-dimensional environment are inherently unstable due to the presence of trans-

verse modulational instabilities, called ”snake instabilities”, leading to their decay into chains

of quantized vortex-antivortex pairs [86, 94]. This results in the onset of a quantum turbulent

regime equivalent of the von Karman vortex street.

In the previous works of our team, the snake instabilities could not be recorded because

the solitons were always generated in a stabilizing supersonic flow. Moreover, the typical

picosecond relaxation time makes their observation unfeasible without very fast time-resolution

measurements. In the following, we will discuss the experimental implementation of a technique

of reshaping of the pump intensity profile in order to dig in the polariton superfluid a static

low-density channel embedding dark solitons. Such a confined geometry will allow us to observe

in stationary regime the snake-instabilities.

Our work is based on the theoretical study carried out in collaboration with the group of G.

Malpuech in Clermont-Ferrand [92]; and the experimental results are reported in Ref. [46].

109
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5.1 Dark soliton in polariton superfluid

5.1.1 Definition

The concept of soliton refers to solitary non-linear waves, maintaining their shape and velocity

during propagation and upon collision with other solitary waves. Their first historical descrip-

tion was made by J. Russel in 1834 [79], who reported an unusual wave propagating without

dispersion broadening while moving along a narrow water channel. A first attempt to explain

this observation was proposed in 1872 by J.V. Bussinesq, by deriving an equation with solutions

featuring the peculiar property of conserving their initial shape when they intersect with each

other. In 1895, D. Korteweg and G. de Vries developed a simplified form of this equation,

the so-called KdV equation, offering an exactly solvable model of wave propagation on the

surface of shallow water [93]. The concept of soliton, however, did not appear until the 1960s,

when researchers associated the solitary wave shape-retaining properties during propagation

and collision with the behaviour of particles. Today, it refers to a broad class of solitary waves,

including some that do not preserve their shape, accelerate, divide into multiple waves or form

interacting bound states during propagation [107]. The common characteristic of such a diver-

sity of waves, whereby they can be described as solitons, lies in the complete integrability of

the equations describing their motion.

The original behaviour of solitons results from the balance between the classical dispersive

broadening of a wave, which tends to spread out temporally and spatially, and the modifications

on the field induced by a non-linear medium, which, on the contrary, tends to compress the

wave. Thus, nonlinearity is a crucial ingredient in soliton generation, as demonstrated in 1962

by G.A. Askaryan, who showed that the correction to the refractive index proportional to

the illumination intensity in self-focusing media can suppress the diffraction broadening of a

beam [14]. As already reported several times in this manuscript, the physics of such media

is based on the GPE, of which the soliton is a particular solution [107]. For a self-focusing

medium (attractive interactions), solitons are bright: they take the form of an intense peak

propagating over a continuous background. In contrast, for a self-defocusing medium (repulsive

interactions), like the microcavity polaritons, the solitons are dark: they have the form of an

intensity dip in a continuous background.

Dark soliton solution. For the latter case, the one we are interested in, the expression of

the soliton wave function is inferred from the one-dimensional time-dependent GPE, without

application of an external potential

i
∂

∂t
ψ(x, t) = − ℏ2

2m

∂2

∂2x
ψ(x, t) + g|ψ(x, t)|2ψ(x, t), (5.1)

with g positive in the case of a self-defocusing medium. Then, one finds, from a judicious choice

of variable and ansatz, the following solution [166]
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Figure 5.1: Theoretical intensity and phase profiles of a 1D dark soliton calculated

from Eq. (5.2). (a) Intensity profiles of the dark soliton for different values of its velocity vs
relative to the speed of sound cs. Its half-width with respect to its density minimum is equal to

one healing length ξ, fixed by the density of the fluid. (b) Corresponding phase profiles. The

soliton is really ”dark” only in a static regime vs = 0, otherwise its characteristic density dip

and phase jump are not at zero and π respectively. It is then rather called a ”gray” soliton.

ψS(x− vst) =
√
n

[√
1 − v2s

c2s
tanh

(
x − vst

ξ
√

2

√
1 − v2

s

c2s

)
+ i

vs

cs

]
, (5.2)

where vs is the propagation speed of the soliton. The corresponding density |ψS|2 and phase

arg(ψS) profiles are plotted for different values of vs in Fig. 5.1(a) and (b), where the charac-

teristic dark soliton density dip, of depth tending towards 0 when vs/cs → 0, accompanied by

a π-phase jump are shown. Predicted in the 1970s [166], such dark solitons were only observed

experimentally two decades later. Since then, they have been studied in a wide variety of non-

linear systems, such as cold atom condensates [58, 51, 57], thin magnetic fims [1, 41], liquid

helium [175], optical fibres [171, 157] and at the surface of water [39].

5.1.2 Dark soliton pair generation

Regarding polariton fluids, the first observation of dark solitons was made in the Quantum

Fluids of Light team by A. Amo in 2011 [8], following the demonstration of superfluidity in

2009 [10]. The experiment consisted in resonantly exciting a polariton flow at a specific velocity

v, upstream of a structural defect. When the flow velocity exceeds the speed of sound v > cs,

a pair of oblique dark channels appears downstream of the defect, in the density map of the

fluid in Fig. 5.2(a). Their solitonic nature is confirmed by the π-phase jump on either side of

their dip in Fig. 5.2(b). Obviously, the planar geometry and the driven-dissipative character

of the polariton system make the theoretical description of the solitons observed here different
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Figure 5.2: Generation of a pair of oblique dark solitons in a planar polariton fluid.

(a) Density map of the fluid in the cavity plane. (b) Corresponding phase map obtained

by interferometry method. (c) Density profiles taken along the lines of (a) indicated by the

coloured markers. The black arrows indicate the position of the solitons along x. – The dark

solitons of the pair correspond to the two black channels in the fluid density in (a), associated

with the π phase jumps in (b). They are generated within a supersonic fluid, flowing in the wake

of a micrometer-sized structural defect, located just below their junction. The α separation

angle is determined by the Mach number of the fluid M = v/cs. Figure adapted from [8].

from that of the GPE pure 1D case. Nevertheless, one can relate the two configurations by

considering that the direction of the flow is equivalent to an effective time axis. Looking at

successive horizontal slices of Fig. 5.2(c) one observes two solitons of shape similar to those

described in Fig. 5.1, which move away from each other in time.

Interestingly, the aperture angle α between the two solitons is linked to the Mach number

cs/v of the flow after the defect. From Eq. (5.2), it is possible to associate the density dip

phase jump θ to the soliton velocity vs via the relation vs = cscos(θ/2). In addition, to follow

a straight line during its propagation, the soliton has a velocity in the laboratory reference

frame matching vs = vsin(α). Thus, from the combination of these two relations, the following

expression is found

sin(α) =
cs
v

cos

(
θ

2

)
. (5.3)

In this experiment, the generation of solitons under resonant excitation, i.e. in a regime

where the phase of polaritons is directly inherited from the phase of the driving field, is achieved

thanks to the exploitation of the ballistic propagation of the fluid outside the pump injection

area [134], where the phase is free to evolve and thus undergoes a π-phase jump. In this

case, the distance of propagation of solitons is limited to a length governed by the microcavity

losses in the ballistic area, restraining the study to small scales of the order of twenty microns.

Overcoming such a limitation has been the focus of the team works over the last few years, to
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(a)

(b)
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Figure 5.3: Polariton density in seed/support configuration. (a) Polariton density profile

with only the seed. The black solid line shows the intracavity density (logarithmic scale); the

red dashed line the incident intensity. The seed excites a high density polariton reservoir,

highlighted by the red area. It has a small incidence angle with respect to the plane of the

cavity, imposing a flow to the fluid (towards towards increasing x), which decays exponentially

outside the illuminated region. (b) Polariton density profile with only the seed and the support.

Even if the support creates in the green area a density two orders of magnitude below that

excited by the seed, the flow of the fluid outside the reservoir region sustains a high density

on a macroscopic scale, no longer limited by the finite lifetime of polaritons. (c) Density of

polaritons as a function of the incident intensity. Individually, the seed excites a very high

density, far away from the bistability loop; the support a density lying on the lower branch, in

the bistability loop. Adapted from [135].

make solitons propagate over macroscopic distances.

5.1.3 Superfluid propagation enhancement

In order to generate a superfluid flow on macroscopic scales without pinning its phase, S. Pigeon

numerically revealed in 2017 [135] a method to keep the fluid density at high level over distances

of several hundred microns. Two driving fields are considered, with the same frequency ωP and

in-plane wavevector kP but with different intensities. The first one, at a very high intensity

IP chosen far from the bistability hysteresis loop, plays the role of a seed. It is localized in

a small region of the sample and generates a high density fluid whose dynamic is frozen by

phase pinning. The second, called the support, has an intensity IS < IP lying in the bistability

hysteresis loop. It covers an area of several hundred microns length over the cavity, generating

a fluid that is initially in the lower density regime. Then, remarkably, the localized application

of the seed at a point of the support results in a locking of the total illuminated area of the

microcavity density on the higher branch of the bistability. This is shown in Fig. 5.3: when

the seed alone is applied, the fluid flows in the kP direction over a distance governed by the
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exponential decay of polaritons; with application of the support, under an intensity IS here two

orders of magnitude below that of the seed, the propagation is maintained over macroscopic

distances, thus resulting in an effective enhancement of the superfluid propagation.

Back to topological excitations, with this method, the support phase is not pinned by the

driving field as it is excited in a weak intensity regime. Moreover, the addition of the seed

maintains a high density regime suitable for the formation of vortices and solitons. Such a

behavior has been demonstrated empirically, both numerically [135] and experimentally [102],

in a configuration similar to the oblique soliton experiment, with the seed upstream and the

support downstream a structural defect. In a subsonic regime, v < cs, the turbulence created

in the wake of the defect generates a stream of vortex-antivortex pairs of shape preserved all

along the entire length of the support, proving that the phase of the fluid under weak intensity

excitation is free to evolve. Today, a true analytical demonstration of such an observation has

yet to be made.

5.1.4 Parallel dark solitons observation.

Similarly, the pump/support configuration was used to improve the propagation of solitons

downstream the structural defect [101]. To do so, the flow velocity is supersonic v > cs,

resulting in the propagation of a pair of dark solitons in the region of the support over a

hundred microns, instead of the twenty microns observed in 2011 [8]. The modification of the

excitation scheme is accompanied by a change in the dynamics: surprisingly, the solitons are

no longer oblique, but parallel to the flow, with a constant spacing between them, suggesting

the onset of a bound state. Such a phenomenon was unexpected as the repulsive interactions

between dark solitons should have repelled them from each other [181].

Solitons imprinting. As the latest technical refinement of the team dedicated to such

studies, an all-optical method has been implemented to generate solitons at will in order to

no longer have to rely on structural defects and therefore to better control the parameters of

the experiment [109]. It involves the modulation of the phase profile of the seed with a SLM,

to include in it two π-phase jumps. In doing so, the formation of a soliton pair in the sample

is triggered, as the seed sets the phase of polaritons. Then, by giving a sufficient velocity to

the flow in the direction of the support, the solitons propagate freely over distances of several

hundred microns.

The great strength of the imprinting lies in the ability to tailor the initial conditions of

the generation of solitons as desired. In particular, it allowed us to show that the spacing

between the two solitons of the bound pair did not depend on the initial spacing, suggesting

the involvement of a balance between the repulsive force intrinsic to dark solitons and an

attractive force, which tends to reduce the size of the region enclosed by the pair, energetically

costly to sustain as it is out-of-phase with the the rest of the fluid. Further studies of the

mechanisms behind this attractive force have shown that the spacing between solitons is not

governed by the hydrodynamic parameters of the flow, related to the Mach number, but rather
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Figure 5.4: Scan of the initial separation distance between two imprinted dark soli-

tons. Upper (lower) panels: density (phase) maps of the polariton fluid. A pair of dark solitons

are imprinted with a high intensity seed, of phase profile reshaped with an SLM to include two

π-phase jumps separated from each other by a controllable distance. They are generated in

the high density region of the cavity (HD in red), where the phase of the fluid is fixed by that

of the seed. By operating at supersonic velocity and illuminating the rest of the cavity with a

low-intensity support, which injects a bistable fluid locked on the higher branch by the presence

of the seed, the solitons propagate over several hundred microns. Their separation distance is

tuned from 24 µm in panel a. to 15 µm in panel e.. When they enter the bistable fluid, the

solitons propagation is maintained, but not their separation distance: they get closer to one

another until reaching an equilibrium separation distance. Adapted from [109].

by the decay rate of polaritons γ, highlighting that the soliton bound state is a feature peculiar

to out-of-equilibrium quantum fluids [109].

5.2 Snake instabilities

So far, we have investigated flow regimes suitable for the emergence of stable solitons. However,

contrary to the ideal 1D case, it is well known that usually 2D solitons undergo transverse

instabilities [180, 32] leading to their deformation and decay into vortex-antivortex pairs. These

are the so-called snakes-instabilities [11], which we will discuss in this section.
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5.2.1 Soliton stability in 2D

The stability of the fluid is derived from the Bogoliubov theory, which, as already mentioned,

consists in linearising the generalized GPE around its steady state solution ψ0. When the

imaginary part of their energy is negative, the elementary excitations of polaritons correspond

to the stable modes of the problem, stationary if a continuous pump exactly compensates

the losses. On the contrary, when their imaginary part is positive, the elementary excitations

experience a growth of their amplitude over time, until it becomes comparable to the amplitude

of the stationary solution (∝ √
n), making the linearisation of the GPE no longer valid. These

are the unstable solutions. Now, the Bogoliubov problem can be solved in the presence of dark

solitons by simply choosing the soliton wavefunction ψS of Eq. (5.2) as the steady state solution

ψ0 of the GPE. We assume here that the geometry of the system is invariant in the direction

of the soliton axis, chosen along y. The linearization leads to the definition of a new set of

relations between the amplitudes (Uk, Vk) of the elementary excitations and their energy ℏω,

called the Bogoliubov-de Genne equations [92]

ℏω
[
Uk

Vk

]
=

[
L(x, ky) ℏg|ψ0(x, ky)|2

−ℏg|ψ0(x, ky)|2 −L(x, ky)

] [
Uk

Vk

]
. (5.4)

L(x, ky) is defined as follows

L(x, ky) = − ℏ2

2m

[
∂2

∂x2
− k2y

]
+ 2ℏg|ψ0(x, ky)|2 − ℏωP − iℏ

γ

2
, (5.5)

where the translational invariance allows to replace the nabla operator of the GPE by ∇2 →
∂2/∂x2−k2y, with ky the wavevector of the elementary excitations along y. Thus, we find a Bo-

goliubov operator similar to those studied previously, except that here the density distribution

|ψ0|2 is no longer homogeneous and matches the profile of a dark soliton.

In order to get a simple picture of why the solutions of such a problem are generally unstable,

one can refer to the study of the interplay between the energy of elementary excitations and

the bistability of polaritons. It was seen in this section that the densities between the higher-

and lower- branches of the bistability hysteresis loop correspond to unstable solutions of the

Bogoliubov equation. And precisely, the dark solitons density profile switches smoothly from

the bistability higher branch at x≫ ξ to the lower branch at x = 0, thus explores a large range

of these intermediate densities. Consequently, a set of unstable modes exists locally in the fluid,

causing a modulation of the density at specifics wavevectors, which leads to a breaking of the

soliton shape into energetically more favorable vortex-antivortex pairs.

The apparent stability of the aforementioned experiments comes from the supersonic flow

and losses that wash away the transverse modulation instabilities [81]. For flow velocities at the

boundary of the supersonic and subsonic regimes, though, several experiments performed also

in the wake of a structural defect under resonant excitation [145, 123], report the formation

of vortex streams, which can be understood as the decay of solitons by snake instabilities.
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Figure 5.5: Implementation of a domain wall (DW). (a) Polariton bistability. Red and

green plots: density (left vertical axis) as a function of the support intensity S. Black plot: DW

velocity (right vertical axis). Sc denotes the critical intensity of the support at which the DW

velocity is zero. (b) Steady state density profile after the DW propagation along the support.

A high-intensity seed (called pump here) is injected at k=0 µm−1 into the half-space x < 30

µm; a low-intensity support illuminates the entire cavity. The high density reservoir injected by

the seed propagates along the support x > 30 µm until it stabilizes at an equilibrium position.

Its abrupt slope edge models a DW. Adapted from [92].

However, such measurements rely on the use of a pulsed laser and a streak camera with a

resolution of a few ps in order to capture snapshots of the vortices, of evolution time similar

to the lifetime of polaritons. Therefore, it prevents a consistent study of the dynamics of the

instabilities which requires a precise definition of both the energy and the intensity of the

driving field. Nonetheless, based on the previous work of the team and the theoretical work

of S.V. Koniakhin [92], it is possible to consider an excitation scheme suitable for the study of

snake instabilities under continuous pumping and with low temporal resolution devices.

5.2.2 Domain walls

The trick is to confine the solitons and vortex-antivortex (VA) pairs in a static low-density

channel, dug into the fluid, in order to freeze the spatial and temporal dynamics. The edges

of the channel form domain walls (DW) [7, 104], separating two areas of the cavity under two

different excitation regimes: one driven by an intense seed; the other driven by an intermediate-

intensity support beam. Now, before discussing the appearance of topological excitations within

such a geometry, one must first investigate under which conditions such a channel may exist.

This requires first of all to study the motion of the DWs, to know the conditions of operation

that ensure its stability in order to preserve the shape of the channel.

Stability of DW. Polaritons are again excited in a seed/support configuration at zero

incidence k = 0 µm−1 so that no preferential flow direction is imposed, within a cavity assumed

to be translationally invariant along y. The support covers the entire cavity in simulations,

while the seed shines only the x < 30 µm half-space, switching the density from the lower- to
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the higher-branch of the bistability. The resulting high density reservoir then propagates along

the support in the x > 30 µm direction, before decaying abruptly over a distance equal to one

healing length ξ, setting up the DW of the problem, with a velocity that can be derived from

the generalized steady-state GPE

[
−δ − ℏ2

2m
∇2 + ℏg|ψ0|2 − iℏ

γ

2

]
ψ0 + S = 0, (5.6)

with S the support field term, of detuning δ with respect to the LP branch and assumed to

be real without loss of generality. By initially neglecting the polariton decay rate γ compared

to the laser detuning frequency δ/ℏ, such equation can be written in the well-known form of

a Newton equation of motion for a material point, from which one can deduce the conditions

required to maintain the DW around a given equilibrium position [92].

This leads to the definition of a critical value of the support intensity

Sc =
2δ3/2

3
√

3g
. (5.7)

When S < Sc, the DW moves along the decreasing x; when S > Sc, it moves along the

increasing x. Otherwise, when S = Sc, the DW remains stationary.

5.2.3 Solitons in channel

We can now proceed with the construction of the channel by adding a second seed occupying

the x > 54 µm area of the cavity, thus separated by 24 µm from the first one, i.e. about 13

ξ by considering the typical densities of the higher branch of the bistability. The intensity

of the support is chosen at S = 0.25 Sc, so that the two DWs do not propagate within the

channel. Then, thanks to the numerical simulation of the generalized GPE applied to such a

geometry, one can reveal the spontaneous onset of a pair of dark solitons in the channel. This

phenomenon can be explained by the destructive and constructive interference at work in the

low density region, between polaritons of opposite wave vectors originating from the two DWs.

Instabilities. The modulation instabilities are thereafter triggered by the addition of a

noise which breaks the translation invariance along the y direction. Consequently, the solitons

bend and then break up into VA chains. Interestingly, the distriubtion of vortices within the

channel depends critically on the intensities of the seed P and the support S. As shown in

Fig. 5.6(c) and (d), the switch from P = 1.25Sc to P = 2Sc leads to the transition from an

anti-symmetric regime, where two vortices of the same charge face each other on each side of

the channel, to a symmetric regime, where, on the contrary, two vortices of opposite charge

face each other. This is caused by the coexistence of two different instability modes within

the channel, competing with each other. The imaginary parts of their energy, calculated from

the Bogoliubov-de Gennes equation (5.4), are plotted in red and green on Fig. 5.6(b), as a
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Figure 5.6: Simulation of snake intabilities of solitons embedded in a channel. (a)

Density maps of the fluid before instabilities are triggered. The channel has a width of L =

25 µm, driven by the support of intensity S = 0.25Sc. It is enclosed between two regions of

higher density, excited at high intensity P+S, by the seed P in addition to the support S. On

the upper (lower) line, P = 1.25Sc (P = 2Sc). Under these conditions, the channel exhibits a

pair of dark solitons at its center. (b) Imaginary parts of the energy of the instability modes

calculated from Eq. (5.4) under the conditions of (a) and plotted as a function of the wavevector

ky of the elementary excitations along the channel axis. The green and red colors highlight two

different instability modes, competing with each other. The arrows indicate the highest energy

mode, of ky varying with P . (c) Density maps of the fluid after instabilities are triggered by

the introduction of a weak disorder. The solitons break up and then transform into a chain of

vortex-antivortex frozen in time due to the confinement induced by the channel. The change of

dominant mode with P results in a transformation of the vortex distribution, from a symmetric

to an antisymmetric state. (d) Phase maps corresponding to the black dashed square region

in (c). They reveal the existence of vortex-antivortex pairs, with topological charges given by

the direction of rotation of the blue and red arrows. Adapted from [92].
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Figure 5.7: Phase diagram of solitons embedded in a confinement channel as a func-

tion of intensities of the seed P and the support S. The color-code indicates the value of ky
corresponding to the maximum of the imaginary part of the elementary excitations energy cal-

culated from the Bogoliubov-de Genne equation. The black lines demarcate different geometries

of instabilities, with in particular symmetric modes in orange, antisymmetric modes in green

and breathing modes in black. The red and green dots indicate the fluid excitation conditions

of each of the two lines in Fig. 5.6. The blue lines delineate the regimes of different numbers

of solitons (zero, two or four), of density profiles displayed in the insets. Figures adapted from

[92].

function of the wavevector of the elementary excitations in the ky direction. It can be seen

that by changing the intensity of the seed S, one modifies the maximum values of Im(E) and

consequently privileges the excitation of one mode at the expense of the other, resulting in a

transformation of the vortex distribution observed in Fig. 5.6(c), as the dominant wavevector

ky of the instabilities changes.

Phase diagram. From the two previous examples, we can see that such a configuration is a

powerful tool to address and study specific ky modes of instability. To do this, one simply needs

to tune the intensities of the support and the seed. Such a study is summarized in the phase

diagram in Fig. 5.7, where the dominant instability mode, calculated from the Bogoliubov-de

Gennes equation, has been plotted with different color shades as a function of the intensity S

in the region within the channel and the intensity S + P in the outer regions, relative to the

critical intensity of the support Sc. Different regions can be identified, depending on the state

of solitons:

• In purple, polaritons almost completely fill the channel, washing away solitons. This

regime occurs for support values below Sc, as the particle flow comes from two DWs

instead of one.
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• In dark grey, the solutions are non-stationary. and correspond to breathing modes of

solitons. They feature a pair of breathing solitons oscillating in time.

• In light grey, the channels embeds four solitons. These are stables (ωBog(ky) < 0 ) as the

small seed P and large support S intensities ensure weak transverse flows.

• At the bottom left corner, the four solitons decay into symmetric streets of VA pairs, as

the flow from the DWs increases at lower support intensity S.

• In the orange regions (between the blue lines), the channel embeds a soliton pair that

decays into a symmetric street of VA pairs.

• In green regions, the channel embeds a soliton pair that decays into an anti-symmetric

street of VA pairs.

5.3 Experimental implementation

Figure 5.8: Experimental setup. (a) Cross-section skecth of the microcavity. (b) Sketch of

the bistability loop obtained with a quasi-resonant excitation. (c) Detail of the shaping method

to dig a rectangular vertical channel in the center of the driving field. In the scheme of the

experimental set-up the red beam after the SLM corresponds to the laser intensity diffracted

by the grating; the non-diffracted purple beam corresponds to the zero order of the grating,

which is cut by a slit in the Fourier plane to obtain the intensity profile shown in the input

plane of the cavity. The laser spot is flat and square due to the use of a top-hat lens. The real

space detection arm gives access to the density and phase maps of the fluid, while the k-space

detection to the energy-momentum distribution of the fluid by using a spectrometer.
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5.3.1 Setup

The setup used for our experiments is schematized in Fig. 5.8. It involves only one laser

beam, provided by a cw Ti:Sapphire Matisse, driving the sample at quasi-resonance and nor-

mal incidence. Therefore, contrary to what the theory suggests in the implementation of the

seed/support method, we do not use two different beams to excite polaritons. Instead, we

reshape the wavefront of the laser beam with a spatial light modulator (SLM), to incorpo-

rate within it a channel of tunable shape and intensity. More details on the SLM intensity

modulation technique are given in Appendix.

Camera. The intensity and phase pictures shown in the following are taken with a me-

chanical shutter camera PIXIS1024BR eXcellon from Princeton Intruments. Its charge-coupled

device (CCD) embeds a back-illuminated chip with 1024x1024 pixels of 13µm2, and of quantum

efficiency around 95% at 830 nm. The readout rate is equal to 100kHz and the integration time

is down to 1ms.

Intensity. The intensity images are taken by imaging the cavity plane into that of the

camera using a 2-lenses telescope and a polarization filter aligned with the circular polarization

of the input drive, in order to eliminate the contribution of any spin-flip effects in the detection.

The signal collected originates from the photons leaking through the optical cavity: their

dynamics preserve those of polaritons, so no special processing of the image is required after to

analyze the fluid properties.

Phase. The phase profiles are extracted from the measurement of the interference pattern

of the fluid image in the camera plane with a large-waist reference beam issued from the laser

source before any modulation of the phase by the SLM. The overlap between these two beams

is deliberately off-axis, in order to create an interferogram with quasi-straight and parallel

fringes. By changing the angle between the reference with respect to the signal, the size of the

fringes is controlled and set to be as small as possible, about 3 pixels in this case, in order to

achieve the best phase resolution. The phase profile is derived from numerical filtering of the

spatial frequency of the fringes in Fourier space, shifted to the zero frequency to eliminate the

contribution of the global phase shift induced by the angle of the reference beam with respect

to the fluid. In doing so, the inverse Fourier transform argument reveals only the local phase

changes in the fluid (the 2π-phase windings of vortices and the π-phase jumps of solitons). Its

fringes are unwrapped so that the phase map is continuous.

5.3.2 Boundary conditions

A crucial difference with the theory that we had to address at the beginning of our experiments

is that we cannot create a channel with a translational invariant geometry along its length,

because the size of the excitation beam is finite, with a waist of 200 µm, limited by the power

needed to generate polaritons on the higher branch of the bistability (for detunings ℏδ around

0.2 meV). Consequently, two ends are present on both side of the channel length, which modify

the fluid behaviour depending on their geometry, which can be of two types:
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Figure 5.9: Density and phase of the polariton fluid for different channel end geome-

tries. (a) Channel of length l = 240 µm and width L = 15 µm for a laser detuning δE = 0.2

meV. The upper end of the channel is linked to the edge of the driving field (open-end), while

the lower end is closed by a third horizontal wall (dead-end). A pair of dark solitons spreads

along the channel, as confirmed by the two phase jumps of π. Its decay in VA pairs is observed

in the bottom part of the channel, closed by a high-density wall. (b) Zoom in the red dashed

region of (a), where several winding of 2π on the phase map are visible. (c) Same channel as

(a), but open at both ends. The VA pairs due to snake instabilities are not observable.

• dead-end channel, i.e. the channel is closed by a third high density horizontal domain

wall,

• open channel, i.e. the channel is linked to the edges of excitation beam, thus linked to

the non-excited zero density regions of the cavity.

Fig. 5.9(a) displays a low density channel belonging to these two situations: its upper end is

open; its lower end is closed. By setting its width at L=15 µm, a pair of dark solitons appears

within it, at ℏδ = 0.2 meV and kP = 0 µm−1, as shown by the two near-zero density lines in

the density map and the two π jumps in the phase map. At the open end, the solitons remain

straight, a behavior that is also seen in Fig. 5.9(c) where both ends are open. The zero density

region does not impose a stationary boundary condition on the fluid, making it impossible for

the VA pairs to be pinned in the channel and thus to be observed in a steady state regime.

On the other hand, at the dead-end displayed in Fig. 5.9(b), the solitons decay. The breaking

of the translational symmetry induced by the third high-density wall triggers the snake insta-
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Figure 5.10: Density and phase of the polariton fluid for different channel widths

and phases. Three open-end channels surrounded by two (a) in phase ((b) out of phase)

walls, imprinted with different widths L = 25, 40, 55 µm for a detuning ∆E = 0.05 meV. The

channel contains 2, 4 and 6 (1, 3 and 5) dark solitons.

bilities, which lead to the formation of stationary VA pairs, thanks to the local enhancement

of the confinement induced by the DWs. Correspondingly, vortices are detected in the phase

map, by locating the 2π-phase windings. The closed channel geometry is thus suitable for the

observation of snake instabilities.

5.3.3 Channel width

The channel width is another parameter not clearly investigated in the theory, which can be

easily monitored experimentally by modifying the pattern displayed on the SLM. In Fig. 5.10(a),

we consider the case of a channel open at both ends, for different widths L = 25, 40, 55 µm,

equal to several healing lengths ξ = 5.3 µm at detuning ℏδ = 0.05 meV. In this way, we observe

respectively 2, 4 and 6 pairs of dark solitons. Note that the solitons also tend to break up for

the largest L due to snake instabilities.

Continuity of the fluid wave function. In this first case presented in . 5.10 (a), the

number of solitons is even because the symmetric phase parity (no phase jump) between the

two high-density regions on either side of the channel is preserved by the asymmetric phase

parity (π-phase jump) of solitons. Now, as presented in Fig. 5.10(b), if we add a π-phase shift

between these two regions thanks to the SLM, we see that, for the same channel widths L, the

number of solitons is odd, respectively 1, 3 and 5, behaviors also observed in [62]. This gives

another proof that the pump, when operating in the high intensity regime, pins the phase of

polaritons, whereas when operating in a weak intensity regime, as it is the case in the channel,
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it leaves the phase free to evolve.

5.3.4 Channel length

To confirm that the closed geometry does induce an enhancement of the pinning of VA pairs in

the channel, Fig. 5.11 presents a data set taken under the same conditions as in Fig. 5.9, where

the channel length is varied from l = 40 to 240 µm with the SLM.

When the channel is short, l <150 µm, instabilities appear clearly, as illustrated by the pe-

riodic breakup of solitons into VA pairs on the phase maps. The boundary conditions imposed

by the dead ends fix the number of vortices that appear, at a spatial period determined by

the healing length ξ (governing the size of the vortex cores and the mean equilibrium distance

between two vortex of same topological charge). For a longer channel, l > 150 µm, the insta-

bilities remain clearly visible only at both the ends, suggesting that the observed stabilization

of the VAs is closely related to the confinement potential felt locally by polaritons.

5.3.5 Power scans

In order to stimulate different instability modes, the powers of the support S and the pump

P are tuned, as suggested by the theory, in closed channel geometry to freeze of the vortex

dynamics.

Total power scan. First, by varying the total power P + S of the excitation beam,

equivalent to scan the phase diagram in Fig. 5.7 along its diagonal axis as P and S are modified

simultaneously, several regimes are distinguishable, presented on the density and phase maps

of Fig. 5.12. Here, the total power is expressed as a fraction of the maximum accessible total

power Pmax = 100 mW and not of the critical power of the support Sc, since, as shown in

the phase diagram, in the channel configuration the threshold at which the two DWs collapse

depends non-trivially on S and P and is not clearly defined. In Fig. 5.12, P + S is increased

from the left to the right. In practice, we always scan the fluid from higher to lower power, so

that we can access all the density range along the higher branch of the bistability.

At low power P + S < 0.36 Pmax, in the first panel, we observe the imprinted L = 23 µm

wide and l = 150 µm long channel. The polariton density is low because the intensity wall

areas lies below of the range of the bistability loop. At high power P + S > 0.74 Pmax, on the

contrary, the channel fills up completely as S is above Sc, resulting in a vanishing of the stiffness

of the DWs, which collapse and wash out the pair of dark solitons. Notice that the solitons

fade away first by the central region of the channel and then by its ends. This behavior differs

from that of simulations: the incident top-hat may not be as flat as expected when injected

into the system and the energy landscape felt locally by polaritons features a small energy

gradient, of the order of 0.35 µeV/µm along the channel axis, due to the optical cavity wedge.

At intermediate powers, the fluid is in a regime that allows the onset of snake instabilities,

as evidenced by the modulation of the soliton pattern in both the density and phase maps at



126 CHAPTER 5. SNAKE INSTABILITIES OF DARK SOLITONS

(a)

(b)

Figure 5.11: Scan of the length of the channel, of width L = 15 µm and at detuning ℏδ =

0.2 meV. (a) Density map. ((b) Phase map). A pair of dark solitons occupies the whole length

of the channel, which increases from left to right from l = 40 to 240 µm. Snake instabilities

are revealed by the break-up of the solitons into chains of vortex-antivortex pairs (red and blue

circles) near the regions of confinement enhanced by the presence of a horizontal DW.
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Figure 5.12: Scan of the total power P + S of a polariton fluid with an imprinted channel

of width L = 23 µm and lenght l = 150 µm, at a pump detuning ℏδ = 0.2 meV. Upper row:

Density maps. (Lower row: Phase maps) for different values of S + P . The laser power

increases form left to right until the maximum value Pmax = 100 mW. At low intensity, the

whole fluid is linear. When the pump regions jump into the nonlinear regime, the solitonic

pattern appears, best defined for P = 0.71Pmax, then vanishes for higher intensities.
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powers P + S = 0.69 and 0.71 Pmax.

Support power scan. Based on these investigations, we then only scan the power S of

the support, for different powers P fixed between 0.69 and 0.74 Pmax, thus coinciding with

horizontal scans along the lower part of the phase diagram. For example, in Fig. 5.13(a) is

displayed our observations for a total power P = 0.70 Pmax, with S/P varying between 0.1

and 0.6. We found that the distribution of VA pairs in the channel, indicated by the red (+1

charge) and blue (-1 charge) circles in the phase maps, depends strongly on S.

Most strikingly, we go from an excitation of 4 to a 5 VA pairs when S goes from 0.1 to

0.4 P (at S = 0.6 P , the DWs have collapsed). This is due to the decrease of the healing

length ξ that occurs with the increase of the density in the channel as S grows: the number of

vortices rises as their size decreases, as shown in Fig. 5.13(c). Secondly, the position of each

vortex also changes slightly with S, reflecting the modification of the ky wave vector of the

instability modes. Unfortunately, regardless of the P and S powers, the detuning δ, or the

l and L parameters of the channel, we only succeeded in detecting the symmetric mode as

dominant, and never the anti-symmetric mode.

Cavity disorder. In order to understand this last issue, simulations were carried out, under

conditions that more adequately reproduce the experimental microcavity. In particular, we

noticed that the phase diagram in Fig. 5.7 was obtained by breaking the translation invariance

of the channel after introducing of a weak disorder of the order of 0.01 meV, which is small

compared to the typical amplitude of about 0.05 meV of the disorder in the cavity plane (point

and elongated strctural defects), similar to the DW confinement potential energy (ℏgn ≃ 0.1

meV). It is therefore very likely that it also affects the distribution of VA pairs: the pattern

exhibited by the channel should result from a balance between the modal distribution ky of

instabilities and the energetic roughness of the cavity background, not initially taken into

account, hence the fact that the anti-symmetric pattern is not observed as easily as expected.

In the phase diagram, this results in a blurring of the transitions between the different

parameter regions of different instability regimes, as the VAs distributions are no longer regular

and well defined as in the ideal case. However, it is still possible to discriminate a symmetric

state from an anti-symmetric state by measuring the standard deviation of the X coordinate

of the soliton pair mass center Xc(y) along its axis parallel to y

⟨∆2⟩ =
〈
(Xc(y) − ⟨Xc(y)⟩y)2

〉
y
, (5.8)

where ⟨⟩y is the average over the y coordinate. Based on this definition, a symmetric pattern

has its mass centre position quasi-aligned vertically, i.e. ⟨∆2⟩ → 0; the anti-symmetric pattern

has its mass centre position undergoing a sinusoidal oscillation, i.e. ⟨∆2⟩ > 0.

The new phase diagram is depicted in Fig. 5.14, where the value of ⟨∆2⟩ is color-coded in

place of the value of ky. Once again, different areas are distinguishable:

• in dark grey, the DWs have collapsed and therefore the channel has no soliton,
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Figure 5.13: Scan of the support power. (a) Experimental fluid density (upper panels)

and phase maps (lower panels) for a channel with length and width respectively l = 150 µm,

L = 23 µm; the ratio between the support and the seed S/P increases from left to right. The

position of the +1 and -1 charge vortices are indicated in the phase maps by the red and blue

arrows respectively. (b) corresponding numerical simulations. (c) Evolution of the number of

VA pairs Ntop in the channel for different values of the inverse of the healing length 1/ξ. The

black dots are the experimental data. The red curve gives the simulations results under the

same experimental conditions whereas the blue curve shows the vortex density for an infinite

channel.
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Figure 5.14: Phase diagram of solitons embedded in a confinement channel, obtained

by simulations with disorder. Color shows the standard deviation ⟨∆2⟩ of center between the

solitons Xc(y). Light gray area corresponds to limit cycle phase with no solution stationary in

time. Dark gray shows the no-soliton phase with the full filling of the channel with polaritons.

The insets show examples of soliton and instability distributions in the density, at different

values of ⟨∆2⟩ indicated by the black arrows. The irregular distribution of vortices in the zoom

in red frame reveals that the high amplitude disorder attenuates the boundary of the transition

from a symmetric mode to a dominant asymmetric mode. Adapted from [92].

• in light grey, the solutions are not stationary in time and correspond to breathing modes

of solitons,

• in dark orange, 0 < ⟨∆2⟩ < 0.5, the dominant instability mode is the symmetric,

• in green, ⟨∆2⟩ ≃ 2, the dominant mode is anti-symmetric,

• in yellow, no dominant mode can be clearly identified.

For the latter case, the pinning of the VA pairs distribution by the disorder makes it im-

possible to discriminate between a symmetric and anti-symmetric mode. This results in the

pattern shown in the red inset in Fig. 5.14, of shape similar to the experimental observations.

To conclude, the anti-symmetric mode only appears clearly in a very narrow region of the

phase diagram, much smaller than expected in the ideal case, which may explain why we did

not observe it in our experiments.
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Figure 5.15: Experimental guiding of solitons in imprinted channels in (a) circular, (b)

S-shaped and (c) multi-crossing geometry.

5.3.6 Solitons guiding

Besides the study of snake instabilities, the experimental versatility achieved by the use of SLM

to engineer the intensity profile of the pump beam provides the opportunity to guide solitons

into more complicated geometries. As an illustration, Fig. 5.15 shows the density resulting by

the impression of different channel shapes in the fluid. It reveals solitons guided in:

• A circular channel in Fig. 5.15(a), demonstrating that the use of DWs is also suitable for

cylindrical symmetries.

• A S-shaped channel in Fig. 5.15(b), with both ends open to the non-excited regions. It

presents the continuity of solitons at the right angle bends of the DWs.

• A multi-crossing channel in Fig. 5.15(c), where all the ends are open. It shows the

possibility to make solitons cross each other without altering their propagation.

5.4 Outlook: maze solving

Let us discuss again the geometry of the channel at its ends. In the dead-end configuration, a

third high-density DW closes the channel outlets. This DW has stability conditions different

from those of the 1D infinite lateral DWs considered in the theory: it has a higher kinetic

energy due to its confinement between the two main walls of the channel. For this reason,

its propagation occurs at lower critical support intensities. As a consequence, as plotted in

Fig. 5.16 (a), the dead-end channel is completely filled at a critical support intensity Scc below

the critical support intensity Sc of the channel open at both ends. Now that we know that it
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Figure 5.16: Crossroads maze solving with a channel width L = 23 µm and a laser detuning

ℏδ = 0.04 meV. (a) Critical support intensities for the motion of the two types of DWs with

respect to their width L. The dead end channel geometry (in blue) closes for lower intensities

than the open one (in red). Adapted from [92]. (b-c) Experimental (left) and numerical (right)

density maps of the imprinted cross. The vertical channel is dead-end; the horizontal channel

is open at both ends. In Panel (b), the channel intensity with respect to the DW intensity is

equal to S/P = 0.3. Solitonic structures are present in both cross arms. In panel (c), S/P is

slightly lowered. The soliton pair is formed only in the horizontal arm, connecting the entrance

with the exit, thus solving the maze.

is also possible to build complicated shaped channels to guide solitons, we can exploit these

differences in stability to solve analogue maze with polaritons.

The all-optical solving of a maze belongs to the interdisciplinary field of algorithms of maze

and graph solving. Such works were initiated by the research of L. Euler [4], and considered

as precursors of topology. Today, standard maze solving is mostly performed using algorithms

implementing the so-called potential method [130], which consists in assigning an energy to a

final destination, reached following a series of path choices associated with energy gradients.
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Figure 5.17: Maze solving simulation. (a) Snapshot of the density map 20 ps after the

pump and support have been switched on: the heads of solitons start to be repelled by the

dead-ends as indicated by the black arrows. (b) Stationary final density map after 1 ns: the

solitons fill only the path corresponding to the solution of the maze. Adapted from [92].

It is used in robotics [152, 3], biology [167, 119], microfluidics [60] and plasma physics [139].

One can also mention chemistry experiments based on the velocity map of the reaction front

method [156] or optical experiments, via the quantum wavepacket scattering method [36].

Preliminary results. In our setup, the maze solver implements a dead-end filling algorithm

[127]. Fig. 5.16(b) gives an experimental example, where two channels of identical intensity

cross each other to form a very basic maze: the vertical channel is dead-end; the horizontal

channel is open and its two ends simulate the entrance and exit of the maze. By lowering the

intensities of both the pump P and the support S, we go from a state where solitons occupy

both channels, to a state where solitons occupy only the open channel, solution of the maze.

Such a situation is possible thanks to the difference between the support intensity thresholds

at which the two channels are filled. When Scc < S < Sc, the horizontal DWs at the dead ends

move along the vertical channel, erasing the solitons, until they reach the crossroads, where a

rigid open 1D channel geometry is restored. Of course, the cross shape remains a rudimentary

maze architecture. The addition of more paths was more challenging as it was difficult to

prevent the overlapping of the channels with structural defects in the cavity background, which

locally modified the stability conditions of the DWs and thus made the solving of the maze

impossible.

Nevertheless, we give here a first proof of implementation of a maze solving algorithm in a

polariton fluid. By choosing cavities with less structural asperities in their plane, or by using

large excitation power in order to raise the energy of the fluid significantly above the potential

energy variations in the cavity background, we should be able in the future to solve more

intricate mazes, such as that simulated in Fig. 5.17. Theoretically, the polariton maze has a

solving time τ governed by the velocity v of the DWs at the ends. For a maze with N = Z2/W 2

cells, with Z the overall system size and W the width of a channel, τ is in the worst case equal

to NL/v. The small prefactor L/v ≃ 0.5 ns embodies the main strength of our maze solver,
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allowing it to outperform modern processors, which require several hundred clock ticks in order

to solve a single cell.



Chapter 6

Dissipative phase transition with

driving-controlled dimension

The features we have seen in experiments performed under coherent excitation (Bogoliubov

spectroscopy and snake intstabilities study) are intrinsically linked to the bistable nature of

polaritons arising at quasi-resonance. The precise knowledge of the curve relating the polariton

density to the driving intensity is thus necessary to understand the dynamics of quantum fluids

in semiconductor microcavities. It has been achieved analytically so far from the mean-field

derivation of the generalized GPE.

In this chapter we will deviate from the classical description to operate a quantum de-

scription, which includes quantum fluctuations into the polariton dynamics. The stationary

solutions of such an approach give at first sight different results from the mean-field approach:

in particular, it does not reproduce the bistability loop.

However, still in the quantum description, the critical slowing down of the polariton dynamics

in the vicinity of the threshold driving intensity allows to reveal again the bistable behaviour

of polaritons. From this perspective, the bistability curve is the manifestation of a first-order

dissipative phase transition. We will show in the following that its emergence depends on

the quantum fluid dimensionality, via the modification of the characteristic time of quantum

fluctuations in the system.

This work is based on the theoretical studies of Z. Li and is reported in Ref.[103].

135
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6.1 Optical metastability

So far, we have investigated the dynamics of polaritons with a mean field (MF) description. We

deduced from it the bistable character of the fluid, related to the existence of two density solu-

tions accessible by the system in stationary regime, for a single intensity value of a continuous

and blue-shifted quasi-resonant (δ >
√

3γ/2) excitation.

Now, we wish to compare this result with that derived from a quantum description of

polaritons. The LP field is represented by the quantum operator ψ̂(r, t), obeying the standard

boson commutation relation
[
ψ̂(r), ψ̂†(r′)

]
= δ(r, r′). In the reference frame rotating at the

pump frequency ωP, the Hamiltonian of the system reads [37]

Ĥ =

∫
d2r ψ̂†(r)

[
−ℏ∆ψ̂(r) − ℏ2∇2

2m
ψ̂(r)

]

+

∫
d2r

ℏg

2
ψ̂†2(r)ψ̂2(r)

+

∫
d2r ℏ

[
F(r)ψ̂†(r) + F∗(r)ψ̂(r)

]
,

(6.1)

where F(r) describes the amplitude and spatial shape of the coherent pump. The losses,

which couple the polaritons to the environment, are accounted for in the dynamics by means

of a Lindblad master equation, describing the time evolution of the polariton density matrix

ρ̂. Under the Born-Markov approximation, assuming a uniform polariton decay rate γ and

discarding the thermal fluctuations at cryogenic temperature, such an equation is written [34]

dρ̂

dt
=L[ρ̂] = − i

ℏ

[
Ĥ, ρ̂

]
+ D [ρ̂] , (6.2)

with L the Liouvillian non-hermitian superoperator and D the dissipator, defined as

D [ρ̂] =

∫
d2r

γ

2

[
2ψ̂(r)ρ̂ψ†(r) −

{
ψ̂†(r)ψ̂(r), ρ̂

}]
. (6.3)

Within the MF approximation, the dynamics of the classical parameter derived from the

expectation value of the quantum operator ψ(r, t) =
〈
ψ̂(r, t)

〉
is given by

∂ψ

∂t
=
∂

∂t
Tr[ρ̂ψ̂] = Tr

[
dρ̂

dt
ψ̂

]
. (6.4)

This equation is identical to the generalized GPE (2.51), from which the steady state density

bistability relationship (2.53) is calculated. Beyond the MF approximation, the stationary

solution of the Linblad equation is equal to the density matrix ρss related to the eigenvalue λ

= 0 of the problem Lρ̂ = λρ̂. Remarkably, ρss is usually unique (see Fig. 6.1 (a)). Thus, the

density calculated from nss(r) =
1

S

∫
d2r Tr

[
ρ̂ψ̂†(r)ψ̂(r)

]
exhibits a single solution for any value
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Figure 6.1: Probing a dissipative phase transition via dynamical optical hysteresis.

(a) Theoretical mean-field (black curve) and quantum (gray curve) density solutions with re-

spect to the driving intensity. (b) Tunneling time τtunn between the two mean-field metastable

states width respect to the driving detuning ∆, for different interaction strength U . (c) Exper-

imental setu. Experimental setup. The driving field intensity is modulated with a set of ramps

of different frequencies with an electrical optical modulator (EOM). The transmitted intensity

(proportional to the density) is sent to a photodiode (PD) and its signal analyzed with an os-

cilloscope synchronised with the waveform generator monitoring the EOM. (d-e) Transmitted

intensity with respect to the pump power. (d) Single shot (thin lines) and averages over 1000

realizations (thick lines) of dynamic hysteresis. The intensity ramp time is ts = 0.11 ms (0.43

ms) in the left panel (right panel). (e) Dynamic hysteresis loop averaged over 1500 realizations

for different values of ts. The bistability loop of the mean field solution appears when the

intensity ramp time approaches that of the quantum fluctuations. Adapted from [142].

of the pump intensity |F|2. Therefore, at first glance, the mean field and quantum approaches

lead to two different results.

Role of fluctuations. This apparent contradiction is resolved by including fluctuations into

the analysis: the solutions associated with the MF hysteresis loop are interpreted as metastable

realizations of the system, between which the density switches on time scales of the same order

of the characteristic time of fluctuations of the polariton field; the unique steady state solution

of the Linblad equation is viewed as an average over these realizations.

Thus, the experimental observation of one solution rather than the another is simply a

question of the time scale ratio between the measurement time τm and the switching time

from one metastable state to another τf . If τm ≫ τf , a measurement gives the average of

the metastable realizations of the system over time; if τm ≪ τf a measurement gives only a

single metastable realization. Such time scales were historically investigated first in experiments

involving the spontaneous switching of a two-mode laser from one metastable state to another
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performed in the 1980s [144]. In polariton system, τf can be astronomically long when the

fluctuations are small and the number of particles involved is large [71]: we usually detect the

solution given by the MF description, i.e. the metastable solutions relative to the higher and

lower branches of the bistability.

The role of quantum fluctuations in the emergence of the polariton bistability has been

studied in the group of J. Bloch in Ref. [142], where a pillar microcavity is driven by a quasi-

resonant excitation whose intensity is ramped up and down over time scales varying from 1.25

ms to 20 µs (Fig. 6.1 (c)). The high polariton interactions achieved in 0D pillar systems allow

to reach characteristic fluctuations times below microseconds (see Fig. 6.1 (b)). Consequently,

varying the sweep rate of the intensity is equivalent to tuning the number of switches between

high and low metastable states experienced by the polariton density during the total sweep

time. As shown in Fig. 6.1 (d, e), at long sweep times, the average intensity transmitted by the

cavity (proportional to the polariton density) is averaged over a very large number of switching

events: the unique solution expected by the quantum approach is found. On the contrary, at

short sweep times, the transmission integrates few switching events: two density solutions are

evidenced by the opening of the bistability loop, as predicted by the MF approach.

6.2 Dissipative phase transition

In classical systems, thermal phase transitions, such as that from a liquid to a solid phase,

takes place at finite temperature and are driven by thermal fluctuations. In a closed quantum

system, phase transitions can emerge at zero temperature, where the system is in its ground

state. They are driven by the quantum fluctuations that govern the competition between the

non-commutative terms of the gapless Hamiltonian (phases of the system). For open quantum

systems, such as polaritons, provided that thermal fluctuations are negligible, the dissipative

phase transition is driven by both quantum fluctuations and the coupling of the microcavity to

the environment. These determine the nonequilibrium steady state in which the system ends

up by setting the outcome of the competition between the metastable states.

The Linblad equation encompasses the descriptions of the quantum fluctuations dynam-

ics in open systems. The Liouvillian superoperator has a complex spectrum of eigenvalues

{λj | ∃ρ̂j,L[ρ̂j] = λj ρ̂j} of negative real part Re(λj) ≤ 0. While the zero eigenvalue relates the

steady state solution, the non-zero eigenvalues describe the transient relaxation of the density

matrix toward the steady state. The Liouvillian gap is defined as the non-zero eigenvalue of

smallest real part λ = min {|Re(λj)|}, equal to the inverse of the asymptotic decay rate toward

the steady state. Its value governs the characteristic rate of back-and-forth transition from one

metastable state to another. In this picture, a phase transition is defined from the closure of the

Liouvillian gap λ→ 0 in the thermodynamic limit [118, 169]. It is linked to the critical slowing

down of the rate of switching events between the metastable states (phases) of the system.

Such a dissipative phase transition is highlighted by adiabatically varying a parameter of
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the system to switch from one metastable state to another. In our case, the hysteresis loop is

observed in the evolution of the polariton density as a function of the pump intensity, corre-

sponding to the transition from a low- to a high-density phase upon Liouvillian gap closure at

a critical driving strength.
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Figure 6.2: Critical slowing down in driven-dissipative Bose-Hubbad lattices. (a)

Schematic representation of the Bose-Hubbard lattice. (b-d) The left (right) column correponds

to the simulation results for the 1D (2D) lattice. (b) Average steady state population per site

nss as a function of the driving field strength F (in units of the dissipation rate γ) for arrays

of different sizes. The black dashed line corresponds to the solution given by the mean field

GPE. (c) Time-dependent single-trajectory of the population in a single site nW (blue line)

and the average population n̂W over all sites (orange line). (d) Upper row: Liouvillian gap λ

as a function of the driving field amplitude for different array sizes L. Lower row: Minima of

the Liouvillian gap as a function of the array size L. Note that the critical slowing down of

fluctuations appears in the thermodynamic limit of L → ∞ only for the 2D lattice. Adapted

from [169].

System dimension. Here we will study the role of the spatial dimension of the polariton

fluid in the onset of criticality. This research follows theoretical work on driven-dissipative

bosonic resonator lattices with Kerr-type nonlinearity. In the model of Ref. [169], depicted

in Fig. 6.2 (a), a coherent and homogeneous driving field illuminating the system injects a

macroscopic population of bosons in the wavevector mode k = 0. The nonlinearity induces

a local boson-boson interaction denoted U and a boson can hop from one site to another

neighbouring site at a frequency given by the hopping coupling J .

The numerical resolution of the Lindblad equation derived from the Halmiltonian (described
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by the Bose-Hubbard model) shows that the behavior of the Liouvillian gap with respect to

the driving intensity is closely related to the N × M dimension of the lattice. For a 1D

system (M=1), λ converges to a finite value when N is increased; for a 2D system it decreases

continuously when the area N ×M is increased without convergence.

In 1D, the non-closure of the gap proves the absence of critical slowing down and thus of

phase transition as the driving field intensity is scanned. The rate of switching events between

two metastable states remains very fast, as shown in Fig. 6.2 (c) where one observes that the

fluctuations induce fast variations of the boson population. Consequently, the average steady-

state population integrates over a large number of realizations. Its plot as a function of the

intensity shows a single-valued curve, very different from the bistability of the MF description

and whose S-shape slope converges to a finite value as the Liouvillian gap saturates when the

length N increases.

In 2D, the closure of the Liouvillian gap results in a critical slowing down of the fluctuations.

In Fig. 6.2 (b) the different metastable states taken up by the population are clearly discernible.

As a result, the average population curve in steady state approaches the MF bistability. Its

slope does not saturate as the area increases, suggesting the emergence of a discontinuous jump

in the thermodynamic limit, thus the appearance of a first-order phase transition.

6.3 Experimental implementation

In this section, we present the experimental implementation in our planar semiconductor mi-

crocavity of the critical slowing down theoretically studied in driven-dissipative Bose-Hubbard

networks. Thanks to the all-optical control achieved in quasi-resonant excitation, the study of

the dimensionality dependence is enabled by the spatial reshaping of the driving field profile. In

doing so, we seek to examine the dissipative phase transition with respect to the pump intensity

for different dimensions of the polariton fluid (which are not spatially discretized, contrary to

the Bose Hubbard lattice). The same behaviors as described above are expected.

6.3.1 Theoretical model

The steady-state density of polaritons averaged over a disk D of diameter ld at the centre of

the pumping region is given by

nSS
D =

1

µ(D)

∫

D

d2r|ψSS(r)|2, (6.5)

with µ(D) the area of the disk D. ψSS is the steady-state polariton field, computed from the

mean field GPE (2.51) such that ∂tψSS = 0.

Formally, a phase transition of order M is defined as
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lim
I→Ic

∣∣∣∣
∂M

∂IM
lim
l→∞

nSS
D

∣∣∣∣ = +∞, (6.6)

describing a divergent behavior of nSS
D when the intensity I of the driving field tends to a

critical value IC , in the thermodynamic limit of the parameter l → ∞ denoting one of the

spatial dimension of the fluid. In the following, we want to compare the critical behavior of nSS
D

for a 2D and 1D fluid geometry. In the first case, the polaritons are injected by a circular spot

of diameter l; in the second case, by an elliptical spot of major axis l and minor axis b ≪ l.

Our goal is therefore to see if a phase transition of order 1 (M=1) emerges in the 2D case and

not in the 1D case, in the limits given by Eq. (6.6).

6.3.2 Setup
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Figure 6.3: Sketch of the experimental setup. The laser is slaved using a propor-

tional–integral–derivative (PID) controller, an arbitrary function generator (AFG) and an

acousto-optic modulator (AOM) loop to produce a power ramp; its intensity profile is reshaped

using a spatial light modulator (SLM). Two photodiodes (PD) measure the power inside disks

of diameter lD = 5 µm at the center of the beams at the sample input and output. (a) Pump

intensity profile shaping method: the light (dark) beam represents the zero (first) order of the

diffracted beam from the SLM. (b) Output intensity from the sample with as a function of the

input intensity, plotted for a pump detuning of δ = γ and a 2D top-hat drive of diameter l =

30 µm. (c) SLM phase pattern (upper) for obtaining 2D (left) and 1D (right) flat-top beam

profiles (middle) of different sizes and intensities (bottom).

The sample used is the same as for the other experiments. At the working point of our

experiments, the effective mass of the polaritons is m = 5.2 × 10−35 kg and the decay rate ℏγ
= 80 µeV. The interaction constant is equal to ℏg = 0.01 meV·µm2.
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A cw Ti:Sapphire Matisse laser excites polaritons with a circular polarization and at normal

incidence. Its Gaussian profile is reshaped by a Spatial Light Modulator (SLM), whose liquid

crystal matrix plane is imaged in that of the cavity, as shown in Fig. 6.3 (a).

Beam profile reshaping. The phase pattern displayed on the SLM includes a blazed

grating of controllable constrast, in order to tune the intensity fractions diffracted in the 0

and +1 orders. In this way, a flat top-hat intensity profile is produced in order +1, sent at

normal incidence through the cavity, while order 0 (not-diffracted by the SLM) is blocked in the

Fourier space using a slit. Moreover, by adding a non-diffracting mask on top of the grating,

it is possible to select which regions of the laser spot are sent to the cavity. Thus, as shown in

Fig. 6.3 (c), the shape of the driving field follows the shape of the mask contours: we switch from

a 2D circular spot to a 1D elliptical one by just configuring the SLM with a circular aperture

mask to a narrow slit one. In the following, we adjust the diameter of the circular spot and the

length of the major axis of the elliptical spot, both denoted l, by controlling the corresponding

dimension of these masks. In the 1D case, the minor axis b of the ellipse is chosen equal to 6.4

µm, i.e. small enough with respect to the values swept by l to measure the transformation of

the density slope during the scans of the driving intensity and large enough compared to the

diffraction limit (at 3.1 µm) to avoid undesirable diffraction effects at the edges. More details

on the methods to reshape the intensity profiles at the SLM are given in Appendix.

Intensity scan. To probe the phase transition, the driving field power is modulated with a

low-frequency ramp (200 Hz) by an acousto-optic modulator (AOM). With the help of a PID

feedback loop, its maximum and minimum values are kept constant for each modulation period

and chosen to scan a wide range of density.

Detection. The intensities at the input and output of the cavity are measured using two

photodiodes which are positioned behind two pinholes selecting the central ld = 5 µm diameter

region of the driving field and the fluid in the plane of the cavity respectively. Consequently,

as illustrated in Fig. 6.3(b), the density is directly measured with respect to the driving field

intensity by plotting the powers detected by the two photodiodes (one with respect to the

other).

6.4 Results and discussion

6.4.1 Experimental measurements

We now compare the change in the density behavior as a function of pump intensity by scanning

l between 15 and 45 µm. The results for the 1D and 2D geometries are plotted on the upper

and lower parts of Fig. 6.4.

The pump-polariton detuning is chosen to be equal to δ = γ >
√

3γ/2, in order to operate in

a regime where one usually expects to observe a bistability according to the steady-state mean-

field equation. Remarkably, in the present case, the experimental curves of the steady-state
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Figure 6.4: (a) Theoretical ((b) experimental) results for the steady-state polariton density

nSS
D averaged over the probing disk as a function of the drive intensity I for different top-hat

spot sizes l (see colorbar) in the 1D configuration with detuning δ = γ. (c) The maximum

derivative S(l) for each top-hat size l normalized by the maximum derivative at l0 = 15 µm, for

both theoretical and experimental results (see legend). (d)-(f) The same quantities as in (a)-

(c) for the 2D configuration. The dashed line in (d) is the prediction of the mean-field theory in

Eq. (2.53). Note that as the top-hat increases in size, the slope in the 1D configuration quickly

saturates for increasing size l, while in the 2D configuration the slope sharply increases in both

theory and experiment, as expected for a first order phase transition.

density nSS
D averaged over the area of the probing disk D with respect to the pump intensity I

shown in Fig. (b) and (e) do not exhibit any hysteresis loop for most values of l. The maxima of

the slope S(l) = maxI{∂nSS
D (I,l)

∂I
} of the transition from the low- to the high-density (calculated

with a noise-robust numerical differentiation method [40]) are plotted in Fig. 6.4(c) and (f), to

evidence the emergence of the phase transition as defined in Eq. (6.6).

In 1D geometry, S(l) quickly saturates to a finite value such that S(l)/S(l0) < 2 with l0 = 15

µm, as its length l increases: the slope of the crossover remains smooth, implying the absence

of a phase transition. On the opposite, in 2D geometry, the slope S(l) increases drastically up

to a factor S(l)/S(l0) ≃ 40 as the diameter l increases, indicating the emergence of a phase

transition in the thermodynamic limit of l → ∞. Moreovere, at the largest diameters l > 35

µm, the onset of a hysteresis loop is even visible, indicating the critical slowing down of the

dynamics with respect to the detection time of photodiodes. The broadening of the uncertainty
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on the measurement of the slope S(l) at large dimensions comes from the quasi-verticality of

the crossover (tan−1 ≃ 84◦), causing the calculation of the derivative to be more sensitive to

noise. For l > 45 µm, the digital sampling of the photodiode signal was not sufficiently resolved

to capture the diverging slope variations in the thermodynamic limit.

Note that, while the resolution of the generalized GPE should normally lead to bistable

solutions for any dimension due to the absence of fluctuation term, we unexpectedly observe

here the closure of the hysteresis cycle at low-dimension. This can be explained by a coupling

between different modes of the fluid, at different wavevectors. In addition to the dominant

mode at k = 0, the top-hat excitation scheme induces the generation of spurious modes at

k ̸= 0: while the mode at k = 0 is responsible for the phase transition, its coupling with the

k ̸= 0 modes leads to effective fluctuations in the system, and as a result to a vanishing of the

bistability.

To justify the use of the GPE, its results were compared to those obtained from the trun-

cated Wigner approximation method, which explicitly involves a quantum fluctuation term.

Comparing the temporal evolution of the density for each of these two methods, the relative

errors measured are below 5%, and decrease below 1% once the steady-state is reached. This

result was found to be robust for different excitation intensities and system dimensions.

6.4.2 Numerical analysis

These results are consistent with the theoretical predictions made within the driven-dissipative

Bose-Hubbard lattice. They are also adequately reproduced by the mean-field simulations of

the generalized GPE (2.51) with diffusive boundary conditions (since polaritons can diffuse

out of the pumping region) and with the same parameters as the experiment, as shown in

Figs. 6.4(a) and (d) for the 1D and 2D geometry respectively.

Liouvillian gap closure. The study of the dynamic properties of criticality arising in

2D geometry is further investigated by simulating the time evolution of the polariton density

nD(t) averaged over the probe disk towards the steady state density nSS
D . Fig. 6.5(a) reports

the results: when the driving intensity I is close to the critical value Ic, the density difference

nD(t) − nSS
D decreases exponentially towards zero in the limit of large time scales with respect

to the polariton lifetime t≪ 1/γ. This decay exhibits a critical slowing down as l increases, of

characteristic time fixed by the Liouvillian gap value λ. By fitting it with a function of the form

nD(t) = nSS
D +A exp(−λt), one extracts the dependence of λ on the diameter l as a function of

the intensity I. The corresponding curves plotted in Fig. 6.5(b) reveal that λ does indeed show

a dip around a critical intensity which decreases as l increases. This demonstrates the closure

of the Liouvillian gap in the thermodynamic limit and thus confirms the emergence of a first

order dissipative phase transition.
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Figure 6.5: Critical slowing down and the closing of the Liouvillian gap for a 2D top-

hat drive observed in numerical simulations. (a) Relaxation of nD(t) towards the steady state

nSS
D for difference driving spot sizes l (see legend) at driving intensity I = 1.7689 γ2/µm2. The

other parameters are the same as in the experiment. (b) The Liouvillian gap λ evaluated from

the asymptotic decay rate as a function of the driving intensity I for different values of l. (c)

The minimum of λ as a function of l.
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Chapter 7

Conclusion

The starting point of this thesis was to introduce the semiconductor microcavity system in the

second chapter. While photons are interacting-free bosons in vacuum, their strong coupling

with quantum well excitons leads to the generation of new particles, the exciton-polaritons.

These particles, inheriting the interactions of their charged constituents, act as a quantum

fluid. Their dynamics is described by the generalised Gross-Pitatevskii equation, i.e. the same

equation used in ultra-cold atomic condensates, with the addittion of a pumping and a loss

terms to take into account the driven-dissipative nature of the system.

Although similar in many respects to quantum fluids in thermal equilibrium, as evidenced by

the demonstration of superfluidity or Bose-Einstein condensation, polariton fluids are nonethe-

less out of equilibrium: their behaviour depends critically on the way they are driven. This is

manifested by the transformation of their elementary excitations, the emergence of phase tran-

sitions or the appearance of vortices and dark solitons, depending on the pumping parameters.

Thus, in the third chapter, we have presented the implementation of a high-resolution

coherent probe spectroscopy technique in order to investigate the interplay between the ele-

mentary excitations of polaritons and the bistability loop, relating the fluid density to the pump

intensity in a quasi-resonant excitation regime. In doing so, in addition to the particular case

of the onset of phonon-like excitations at the turning point of the bistability, from which we

measured the polariton speed of sound and quantified the contribution of a reservoir of dark

excitons to the dynamics of the system, we demonstrated that in the lower density regime

(lower bistability branch), the fluid exhibits precursors of modulational instabilities, while in

the higher intensity regime (higher bistability branch, far from the turning point), the Bogoli-

ubov spectrum displays the opening of an energy gap. Moreover, we have also presented the

observation of the Bogoliubov negative solution (ghost branch), via the parametric scattering

of polariton pairs.

Such a spectroscopy technique is very versatile and can be used with other excitation

schemes. Typically, as presented in the fourth chapter, it can be exploited to study the
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spectrum of a Goldstone mode, arising in the parametric polariton oscillation regime due to a

spontaneous symmetry breaking. Thanks to it, we have measured very precisely the narrowing

of the linewidth of an elementary excitation mode of almost zero group velocity in the small

wavevector limit, identified as a diffusive Goldstone mode. Then, by fixing the phase of the

signal and idler condensate with an additional laser, we succeeded in explicitly destroying the

spontaneous symmetry breaking of the OPO regime and we observed the subsequent vanishing

of the Goldstone mode.

In the fifth chapter, we presented the implementation of an excitation scheme allowing

the observation of modulational instabilities in stationary regime. It consisted in embedding

in an imprinted static channel of low intensity a pair of dark solitons, decaying into a vortex-

antivortex street due to the onset of transverse snake instabilities. These instabilities presented

different symmetries that we were able to study, as well as different behaviors depending on the

open or dead-end nature of the channel, providing a very first implementation of a fast maze

resolver in a polariton fluid.

Finally, in the sixth chapter, we demonstrated the possibility to control the dynamics of

the quantum fluctuations of our system by changing the dimension of the polariton fluid. In

particular, we have shown that for a two-dimensional fluid, the fluid density switching time

between its two metastable solutions exhibits a critical slowing down in the large diameter

limit. This corresponds to the emergence of a first order phase transition and is manifested by

the appereance of a bistability loop.

The experimental and analysis tools developed in this manuscript can be used for a wide

variety of applications. For instance, our spectroscopy technique can be implemented together

with the driving field intensity and the phase profile reshaping techniques in the context of

analog gravity experiments, in order to probe the Hawking radiation or the super-radiance

phenomena in an acoustic black hole in 1D and 2D geometries [76].

In the context of the quantum turbulence, we are also considering to study precisely the

spectral signatures of dark solitons snake instabilities [92], and the Bogoliubov spectrum of

an optical lattice of polariton condensates [21]. Besides the fundamental study of elementary

excitations, the control of such excitations could open the way to the implementation of a

complex analog maze solver [92].

In the context of the phase transition in driven-dissipative systems, our analysis of the spon-

taneous symmetry breaking in OPO configuration can be pushed further; indeed, the theory

predicts that the Goldstone mode should be accompanied by the apparition of an overdamped

partner mode, the Higgs mode, which could also be of great interest to characterize. More-

over, our spectroscopy technique can be easily adapted to investigate the phase transitions in

quasi-equilibrium polariton condensates obtained in out-of-resonance pumping regime [162, 176]

revealing specific features of such systems.



Appendix A

Microcavity sample design and

fabrication

All the experiments performed during this thesis were carried out on the same semiconductor

microcavity fabricated by molecular beam epitaxy at the Ecole Polytechnique Fédérale de

Lausanne (EPFL) by Romuald Houdré in 1995.

Quantum wells. The sample embeds N=3 In0.04Ga0.96As quantum wells, achieving a com-

promise between a large Rabi splitting ΩR ∝
√
N and strong polariton-polariton interactions

gn ∝ N−1. Note that N is not high enough to use the microcavity under off-resonance excitation

in order to observe polariton condensation.

Bragg reflectors. The two distributed Bragg reflectors (DBR) are made of alternating

layers of Ga0.9Al0.1As and AlAs, of thickness λ0/4ni, with λ0 = 836 nm the resonance wavelength

of the optical cavity in vacuum and ni=(Ga0.9Al0.1As,AlAs) the respective refractive indices of the

two materials. The top has 40 alternating layers; while the bottom has 53 layers, in order to

compensate for the reflectivity decrease induced by its contact with the high refractive index

GaAs substrate. Such a substrate has been used as a base for depositing each of the layers

of the sample and polished such that the system can be used in transmission. The respective

reflectivity of the top and bottom mirrors are equal to R = 0.9985 and R = 0.9993. This gives

a cavity finenesse close to F = 3000.

Optical cavity. The intracavity space is made of GaAs, with a thickness of 2λ0, suitable

for the onset of three antinodes of the electromagnetic field, at the position of which the three

quantum wells are placed to maximise the light-matter coupling. In order to tune precisely

the resonance of the cavity with that of excitons, a small wedge was introduced between the

mirrors, with an angle of about 10−6 radians. The corresponding energy gradient felt by photons

leads to an energy gradient in the LP branch energy, measured to be 0.7 µeV/µm. It is large

enough to explore exciton-photon detuning ranging from +7 meV to -4 meV on either side of

the sample; but also small enough, relative to the polariton decay rate γ, to be able to work
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Figure A.1: Semiconductor microcavity. Two Bragg mirrors of alternated layers of

Ga0.9Al0.1As and AlAs of optical thickness λ0/4 (40 and 53 layers respectively), surround-

ing a spacer of GaAs of optical thickness 2λ0, in which three quantum wells of In0.04Ga0.96As

are embedded at the antinodes of the electromagnetic field, whose amplitude distribution is

highlighted by the white line. The cavity is grown on a substrate of GaAs, previously polished

to allow working in transmission. The excitation takes place on the thin mirror side, while the

detection is done on the substrate side. From [108].

over macroscopic distances of the order of 100 µm without significantly experiencing its effects.

Anticrossing. Fig. A.2(a) shows the measurement of the strong coupling anticrossing in

our sample. The energies of the UP and LP branches are extracted from the photoluminescence

spectrum emitted by the microcavity, under off-resonant excitation at k = 0 µm−1 at different

working points. The energies of the photon and exciton branches are deduced from Eq. 2.36.

At their intersection ℏ∆EX−γ = 0 meV, the Rabi energy is measured equal to ℏΩR = 5.07 meV.

Structural defects. Fig. A.2(b) pictures the transmission of the cavity illuminated at two

different wavelengths (837.21 and 837.05 nm) at zero incidence. The resonance of the lower po-

laritons appears as two visible bright lines orthogonal to the direction of the wedge between the

two mirrors of the optical cavity. Several structural defects are visible. The regular square lat-

tice shape pattern originates from the mosaic phenomenon induced by the mechanical stresses

applied to the sample. The thick and irregular black lines on the upper side of Fig. A.2(b) are

dislocations attributed to mechanical shocks that have been exerted on the cavity during its
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use over time. Finally, point defects are randomly distributed in the sample. They are dark or

bright depending on whether the local modification of the potential they induce is blue-shifted

(potential well) or red-shifted (potential barrier) with respect to the resonance of polaritons.

Their diameter varies from sub-microns to ten microns.

Sample parameters

Material N δ (nm) n(λ0)

DBR1 Ga0.9Al0.1As 40 60.1 3.48

DBR2 AlAs 40 70.8 2.95

SP GaAs 3 275 3.54

QW In0.04Ga0.96As 3 8 3.54

SP GaAs 3 275 3.54

DBR1 Ga0.9Al0.1As 53 60.1 3.48

DBR2 AlAs 53 70.8 2.95

SUB GaAs 1 400 × 103 3.54
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Figure A.2: (a) Experimental anticrossing. The blue dots represent the upper and lower

polariton branches, obtained under off-resonant pumping at k = 0 µm−1. Changing the position

changes the photon-exciton detuning ∆EX−γ (horizontal axis); the exciton and photon energies

are plotted in green and red dashed line, respectively. The experimental value for the Rabi

splitting is extracted at zero detuning: ℏΩR = 5.07 meV. (b) Cavity transmission. Picture

of a sample area of 3.2x0.9 mm2, excited at two different wavelengths (837.05 and 837.21 nm).

The resonances are clearly visible orthogonal to the wedge, as well as the different types of

defects of the cavity: the regular pattern of mosaicity, some elongated dislocations and point-

like defects.
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Spectroscopy experiment routine

Figure B.1: Setup automation.
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We detail in Fig. B.1 the automation routine of the spectroscopy experiment as the quality of

the results relies a lot on it. Indeed, the parameters chosen at the beginning of the experiment

slowly deviate from their initial values due to low-frequency fluctuations (1/τ ∼ 1/100 Hz)

that are technically difficult to eliminate. In particular, the drifts of the laser energy and of the

cryostat temperature significantly modify the dynamics of polaritons on time scales of the order

of a hundred seconds. It is therefore crucial to automate the experiment in order to capture the

Bogoliubov spectrum as quickly as possible, before the excitation regime deviates significantly

from its initial state.

The routine core time, corresponding to the running a complete iteration of the experiment,

is limited by the time of one scan of the probe energy τscan. This parameter is tunable with

the M2 laser driver which automatically adjusts the scan speed of the length of the laser etalon

cavity via the voltage of the piezo mirrors. For energy scans of 120 GHz, it cannot be lowered

below 500 ms. Thus, for a hundred consecutive energy scans at probe wavevectors equally

distributed between -1 and +1 µm−1, the incompressible duration time of the total execution

of the experiment is about 50 s, which remains relatively low compared to the time scale of the

system fluctuations.

To achieve a spectrum acquisition time as close as possible to 50 ms, we slaved all the setup

instruments with the triggering signal of the probe energy scan, provided by an analog output

of the M2 driver. It is sent directly to the analog trigger input of the spectrum analyzer, setting

its sweep time at τscan, and of the DMD, modifying the k position of the filtering pinhole at the

beginning of each new scan. The other instruments, respectively the SLMs, the wavemeter and

the servo-motors, do not have an accessible analog input to trigger them. They are controlled

via a numerical trigger signal, synchronized with the analog one. For this purpose, we use an

Arduino programming board: an FPGA with both analog and digital inputs and outputs. One

of its input is connected to the analog trigger signal, which is then converted into a digital

signal sent to the computer. Thanks to a home-made Python interface, all the changes of state

of the instruments are in this way synchronized with the scan of the probe: the change of the

phase pattern displayed by the SLM (i.e. the change of the probe wave vector), the recording

of the laser wavelength measurements by the wavemeter, and the translation of the various

servo-motors.

This ensures that the execution time of one measurement differs little from the incompressible

time of the scans.
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SLM intensity/phase profiles

reshapping

All the experiments presented in this manuscript are based on a precise control of the spatial

intensity and phase profile of the involved laser fields. This is achieved by using a spatial light

modulator (SLM), embedding a reflective matrix of micrometric liquid crystals. Each pixel is

addressed with a tunable voltage, in order to control its refractive index. This thus allows to

control the local phase of a laser field reflected on the SLM.

SLMs are generally used as a holography device: for a target wavefront, wished in the focal

plane of a lens, it is possible to compute a hologram, i.e. a phase pattern displayed on the SLM

(corresponding to a distribution of voltages applied to each liquid crystal), modulating the

incident wavefront and generating the desired phase and intensity distributions. This method

has the drawback of requiring the numerical calculation of holograms. For relatively simple

wavefront geometries, it is perfectly adequate as the algorithms quickly converge to a hologram

solution, but in our case, we want to generate more complex profiles.

Our technique is based on the implementation of a blazed grating on the SLM, diffracting

the incident beam at tunable angle α (order 1). Its phase pattern has a spatial distribution

given by

ϕgrat(x, y) = mod2π

[
2π

λ
y

]
× C(x, y), (C.1)

with y the space coordinate along which the grating is modulated and λ the grating step size.

C(x, y) ∈ [0, 1] denotes the local contrast of the grating modulation at the coordinate (x, y).

By changing locally its value, we change the diffraction efficiency of the blazed grating, so the

intensity distribution between the orders 0 (direct reflection) and 1 (diffracted reflection).

By cutting in the Fourier plane of the SLM the zero order and aligning the first order along

the optical axis of the setup, the laser intensity distribution matches the C(x, y) map when the
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SLM plane is imaged at the output focal point of a 2f -2f telescope configuration.

In this way, in order to reshape the Gaussian intensity profile Iin(x, y) of lasers, C(x, y) is

set equal to the ratio Iout(x, y)/Iin(x, y), with Iout(x, y) the target intensity profile. This leads

to express the phase pattern to display on the SLM as follows

ϕSLM(x, y) =
Iout(x, y)

Iin(x, y)

(
ϕout(x, y) +mod2π

[
2π

λ
y

])
, (C.2)

where the possibility to modify the phase profile of the field is accounted for, via the addition

of a target phase map ϕout(x, y) to the blazed grating phase.
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