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Titre : Auto-assemblage de quasicrystaux dans des mélanges 2D de sphères dures

Mots clés : Quasicristaux, Simulations numériques, Physique statistique

Résumé : Les  quasicristaux  sont  des
structures  présentant  un  ordre  à  longue
portée  (signalé  par  la  présence  de  pics  de
Bragg  dans  leur  diagramme de  diffraction),
mais  sans  la  périodicité  des  cristaux
traditionnels.  L'absence  de  périodicité  leur
permet  d'adopter  des  symétries  exotiques
impossibles  sinon.  Cet  intrigant  ordre
apériodique  a  été  initialement  découvert
dans des alliages métalliques. Par la suite, il a
aussi été observé dans plusieurs systèmes de
matière  molle  remarquablement  divers  tels
que des assemblages de micelles, polymères
ou  nanoparticules...  Cela  suggère  que  des
mécanismes  généraux  promeuvent  son
émergence,  au  delà  des  détails  des
constituents microscopiques des systèmes.

Dans cette thèse, nous tentons d'identifier
de  tels  ingrédients  minimaux  en  utilisant
des  simulations  numériques  pour  explorer
l'auto-assemblage  de  quasicristaux  dans
l'un  des  systèmes  les  plus  simples  :  des
mélanges  binaires  de  sphères  dures,
confinées à une interface bidimensionnelle.
Nous  montrons  que  des  quasicristaux  de
symétrie  8  et  12  basés  sur  des  pavages
aléatoires  se  forment  en  effet
spontanément  dans  ce  système purement
entropique. Contrairement à la plupart des
autres modèles utilisés jusqu'à présent, les
mélanges  binaires  quasi-2D  de  sphères
dures  pourraient  être  facilement  réalisés
dans  des  expériences  de  colloides,
permettant  une  étude  en  temps  réel  et
dans  l'espace  direct  de  quasicristaux  à
l'échelle micrométrique.

Title : Quasicrystal self-assembly in 2D hard sphere mixtures

Keywords : Quasicrystals, Numerical simulation, Statistical mechanics

Abstract : Quasicrystals are structures that
exhibit  long  range  order  (as  signalled  by
sharp  Bragg  peaks  in  their  diffraction
patterns),  but  that  lack  the  periodicity  of
traditional  crystals,  allowing  them  to  adopt
exotic  symmetries  prevented  by  the  strong
contraint  of  periodicity.  This  puzzling
aperiodic  order  was  first  discovered  in
metallic  alloys.  Later  on,  it  has  also  been
observed  in  several,  very  different  soft
matter  systems  such  as  assemblies  of
micelles,  polymer  melts  or  nanoparticles...
This  suggests  that  general  mechanisms
promote  its  emergence,  regardless  of  the
microscopic  details  of  the  system
constituents.

In  this  thesis,  we  try  to  identify  such
minimal  ingredients  by  using  computer
simulations to investigate the self-assembly
of  quasicrystals  in  one  of  the  simplest
models:  binary  mixtures  of  hard  spheres,
confined at  a  2D interface.  We show that
random tiling quasicrystals  of  symmetry 8
and 12 indeed spontaneously  form in this
purely entropic system. In contrast to most
other  models  studied  so  far,  quasi-2D
binary  mixtures  of  hard  spheres  could  be
easily  realised  in  colloidal  experiments,
allowing direct-space and direct-time study
of quasicrystals at the micron scale.
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Introduction

On April 8, 1982, Dan Shechtman conducts routine transmission electron mi-
croscopy on aluminium alloy samples at the National Bureau of Standards. The
diffraction pattern of one of the samples in the batch plunges him into great per-
plexity. Indeed, the diffraction pattern of sample 1725 seems to exhibit 10-fold
symmetry. Well versed in crystallography, Shechtman knows that a periodic
crystal can only adopt one of the so-called crystallographic rotational symme-
tries, namely 1, 2, 3, 4 or 6-fold. He also knows that the crystallographic zoo
houses strange beasts, and starts to investigate the sample in more details, sus-
pecting that the apparent 10-fold symmetry might in fact be caused by the
twinning of multiple periodic crystals in different orientations. Further research
convinces him that twining is not the answer. Sample 1725 is a new kind of
material, the first of many materials with new symmetries that would trigger a
paradigmatic shift in crystallography.

Indeed, before Shechtman’s discovery, crystallography treated order and pe-
riodicity as equivalent [2]. Ordered materials were assumed to be periodic crys-
tals, that could be described by a periodically repeated unit cell. A simple ge-
ometrical argument shows that the only allowed rotational symmetries in that
case are the “crystallographic” ones. Some structures were known to deviate
from the ideal periodic behaviour. For instance, in incommensurately modulated
phases, the position of the atomic sites of a periodic structure are modulated by
a periodic function whose period is incommensurate with the lattice parameter
of the base structure [3–5], resulting in an overall aperiodic structure. Examples
were also know where the occupancy, or chemical nature of the sites are mod-
ulated [6]. Likewise, a few incommensurate composites were known, which are
composed of multiple weakly interacting periodic sub-structures, with incom-
mensurate lattice parameters [7]. In both cases, the diffraction patterns exhibit
sharp Bragg peaks. The modulation manifests itself by additional “satellite”
peaks around the main reflections corresponding to the base periodic order
[8, 9]. Although they could have suggested the existence of order without peri-
odicity, these structures were considered as rare oddities, and since in all cases
they could be easily linked back to base periodic structures, their existence did
not challenge the established equivalence between order and periodicity.

In the diffraction pattern measured by Shechtman and reproduced in Figure
1-left, it is not possible to identify a set of main reflections accompanied by
satellites. Hence, the structure cannot be rationalised as modulations of an un-

9



10 CHAPTER . INTRODUCTION

Figure 1: (Left) Electron diffraction pattern of an allow of aluminium and
manganese along an axis with 10-fold symmetry. Taken from Reference 1.
(Right) Shechtman’s notebook on the page of the April 8th 1982, showing a
puzzled annotation about the 10-fold symmetry of sample 1725. Courtesy of
Dan Shechtman.

derlying periodic structure. Yet, the existence of sharp Bragg peaks proves the
very ordered nature of the solid. Earlier research on mathematical tilings turned
out to be a key for the understanding of this discovery. In the 70’s, Penrose had
studied a family of tilings that now bear his name1. Penrose tilings exhibit pen-
tagonal symmetry, and incidentally are not periodic. Figure 2 shows a portion
of a two-dimensional Penrose tiling made of two tiles: an obtuse and an oblate
rhombus. The tiles of this aperiodic tiling can be decorated with particles (for
instance putting one particle at each vertex of the tiles) to create an aperiodic
yet ordered structure. Before Shechtman discovery, several attempts had been
made to construct plausible solid structures based on the Penrose tiling [11, 12].
Mackay built an atomic model based on the 3D Penrose tiling and used an
optical diffractometer to directly measure the diffraction pattern [13]. Finally,
Levine and Steinhardt were the first ones to recognise Shechtman sample as
the first experimental realisation of an aperiodic crystal [14]. They computed
the diffraction pattern of a structure based on a 3D generalised Penrose tiling,
showed that the peaks matched exactly those found in the experimental mea-
surement, and coined the term quasicrystal to name this new kind of ordered
but aperiodic materials. A very nice first-hand, personal account of this story
by Steinhardt can be found in Reference 15.

The discovery of the first quasicrystal was met with some scepticism in the
ranks of the crystallographers. Indeed, the accuracy of Shechtman’s measure-
ments could not rule out some twinning scenarios [16]. Yet, soon enough, qua-
sicrystals started to be discovered in other metallic alloys [17–19], establishing

1In fact, aperiodic tilings can be found as early as the medieval era, in Islamic architectural
art. Their very high degree of perfection suggests that scholars and craftmen of the time had
in-depth knowledge of these structures [10].
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the existence of quasicrystals on a much more convincing ground. In 1992,
the Commission on Aperiodic Crystals of the International Union of Crystal-
lographers (IUCr) proposed a new definition of crystal as “any solid having
an essentially discrete diffraction diagram”, hence qualifying quasicrystals as
crystals on their own right [20]. Three decades later though, the use of the vo-
cabulary has still not converged, and the terms crystal, quasicrystal, aperiodic
crystal and the like are still used differently by different authors. In this work,
we try to abide by the definitions proposed by Lifshitz in Reference 2. Crystal
is used according to the IUCr definition, hence encompassing both periodic and
aperiodic ordered structures. We use quasicrystal as a synonym for aperiodic
crystal. Note that, following Lifshitz arguments, we do not require quasicrys-
tals to exhibit a non-crystallographic symmetry, but only to lack periodicity.
Indeed, there exist interesting aperiodic crystals with e.g. symmetry 4 [21] or 6
(see the hexagonal Stampfli tiling discussed in Chapter III, or Ref. 22).

.1 Basic concepts in quasicrystal theories

Figure 2: Two-dimensional
Penrose tiling formed of two
tiles. The tiling is aperiodic,
but ordered. It exhibits 5-fold
rotational symmetry.

The physics of quasicrystals is very rich, with
its own peculiar phenomenology. But what
makes quasicrystals so rich and fascinating
also makes the entry cost for newcomers quite
high. In this section, we introduce the essen-
tial concepts of quasicrystal theories through
the example of the Fibonacci chain. This toy
model has been discussed numerous times and
in-depth studies can be found in many text-
books [8, 9]. Yet, we discuss it here once again
briefly to try make this thesis as self-contained
as possible.

.1.1 Aperiodic tilings

Many ordered structures can be naturally de-
scribed as tilings, i.e. space filling arrange-
ments of tiles without gaps or overlaps. The
tiles that comprise the tiling are all copies of
a finite number of distinct prototiles. Peri-
odic crystal can be viewed as periodic tilings
of the 2D or 3D space by a single decorated
prototile: the unit cell. Likewise, quasicrystals can be rationalised as a set
of more than one decorated prototiles used to tile the space in an aperiodic
way. Aperiodic tilings are actively studied by mathematicians, and a whole zoo
of them have been precisely described2. In particular, the three dimensional

2See for instance the tilings encyclopedia, maintained by Frettlöh, Harriss and Gähler:
https://tilings.math.uni-bielefeld.de/

https://tilings.math.uni-bielefeld.de/
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Figure 3: Illustration of the inflation scheme used to generate the Fibonacci
chain. As a result of the substitution rules depicted on the right, the tiling
obtained at one step is the concatenation of the tilings generated at the two
previous steps.
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Figure 4: Fourier spectrum of the Fibonacci chain. The spectrum is a discrete
but mathematically dense set of Bragg peaks. The right plot is a magnification
of the central region, highlighting the self-similarity of the diffraction pattern.

Penrose tiling is used to model the structure of most icosahedral quasicrys-
tals. In two dimensions, structures have been related to the 8-fold symmetric
Ammann-Beenker or Watanabe-Ito-Soma tiling [23–26] and 12-fold Stampfli or
Schlotmann square-triangle tiling [27, 28].

Let’s consider here a one dimensional tiling made of two prototiles (line
segments in 1D) of length 1 (S tile) and τ = (1 +

√
5)/2 the golden mean (L

tile). We generate the tiling by the so-called inflation method. Starting from an
initial seed, we apply recursively the following substitution rules:

S → L

L → LS. (1)

The procedure is illustrated in Figure 3. When repeated ad infinitum, it gener-
ates an aperiodic tiling that geometrically realises the Fibonacci sequence: step
n of the inflation is the concatenation of steps n− 1 and n− 2, similarly to the
Fibonacci recurrence relation Fn = Fn−1 + Fn−2.

If tiles are decorated with one particle at each contact point between adja-
cent tiles, one obtains a 1D quasicrystal. Its order is revealed by its diffraction
pattern displayed in Figure 4, which is discrete3. However, in contrast to pe-
riodic crystals which exhibit discrete but sparse diffraction patterns, that of

3Note that the existence of order cannot be inferred by the existence of the deterministic
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the Fibonacci chain and quasicrystals in general are dense in the mathematical
sense: in any volume, no matter how small, around a diffraction peak, another
diffraction peak can be found [9]. In practice however, if this quasicrystal was
realised in an experiment, only a few peaks would carry enough of the incident
intensity to be detected. Another striking feature of the diffraction pattern is
the self-similarity property. Figure 4-right is a magnification of the highlighted
region, which reproduces essential features of the full diffraction pattern. This
is the counterpart in Fourier space of the self-similarity of the Fibonacci chain
in direct space enforced by the successive concatenations. Fractal properties are
a general feature of ideal quasicrystals.

.1.2 High-dimensional representation

All Bragg peaks in the diffraction pattern of a periodic crystal in dimension d
are located at integer combinations of d linearly independent vectors in Fourier
space. Hence, they can be indexed in a unique way (up to a choice of origin)
with d integers. For quasicrystals, D > d integers are required. In the case of
the Fibonacci chain, two integers are necessary (d = 1, D = 2), corresponding to
the two vectors that generate the positions of the peaks. In this one-dimensional
example, the vectors are simply real numbers, proportional to the inverse length
of the small and large tiles. Note that while D vectors are necessarily linearly
dependant over R in a d-dimensional vector space, the D d-dimensional vectors
used to index the diffraction patterns of quasicrystals are linearly independent
over the integers. They generate a Z-module which is mathematically dense,
like their diffraction patterns.

This observation motivates the so-called hyperspace, or high-dimensional
representation of quasicrystals. By analogy with the periodic case, aperiodic
crystals of rank D (i.e. whose diffraction pattern is uniquely indexed by D
vectors) can be represented as periodic crystals in dimension D, projected onto
the physical or so-called parallel space E∥ of dimension d. The complementary
space of dimension D− d orthogonal to E∥ is the perpendicular space (or some-
times perp-space) E⊥. The Fibonacci chain is a quasicrystal of rank two, so
it can be represented as the projection of a 2D periodic crystal onto a line, as
depicted in Figure 5-top. Consider a square grid of unit-cell size 1, cut by an
axis with angle α. This axis is the parallel space E∥. If the slope of the parallel
space with respect to the grid is a rational number p/q, then the projection of
the grid vertices onto E∥ generates a periodic structure with period q. With an
irrational slope however, the projection of the grid results in a mathematically
dense set of points in E∥ which is not physical for a realistic structure. To fix
this, only the vertices inside a strip are projected. This amounts to imposing
that the projected vertices belong to a so-called selection region in perpendic-
ular space (thick green segment in E⊥ in Figure 5). The Fibonacci chain is

construction procedure. Indeed, the Thue-Morse substitution rule L → LS, S → SL generates
a sequence with no long range order (no Bragg peaks). Determinism does not imply long range
order [29].
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Figure 5: High-dimensional representation of the Fibonacci chain. The square
grid has an irrational slope with respect to the parallel space E∥. Representa-
tive surfaces are shown as thick grey lines. (Top) Cut-and-project construction:
vertices of the 2D grid with perpendicular coordinate inside the selection region
depicted as a thick green segment in E⊥ are projected onto the parallel space to
generate an ideal Fibonacci chain. (Middle) Sketch of fluctuations of the repre-
sentative surface corresponding to a phason mode with a wavelength of about
7 tiles. Note that in this 1D Fibonacci example, such a fluctuation destroys
long range quasiperiodic order. (Bottom) A shift of the origin in perpendicular
space generates another ideal Fibonacci chain which differs from the top one
by correlated tile flips corresponding to a phason mode of infinite wavelength.
The infinite structures corresponding to the top and bottom constructions are
indistinguishable (all n-points correlation functions equal).
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obtained by taking α such that tan(α) = 1/τ and a selection region correspond-
ing to the projection of the 2D square unit cell on E⊥, i.e. a line segment
of length l = cos(α) + sin(α). This method, known as cut-and-project, can be
generalised to efficiently generate quasicrystals with all kinds of symmetries in
any dimension. As an alternative to the selection region, the same result can
be obtained by instead decorating the square grid with line segments of length
l, perpendicular to E∥. The location of the particles is then obtained as the
intersections of these atomic surfaces with E∥.

Irrational numbers can be approximated by a sequence of rational numbers,
using continued fractions for instance. Replacing the irrational ideal slope in
the cut-and-project method by its rational approximations generates a sequence
of periodic structures with larger and larger unit cells, whose local structure is
very close to that of the quasicrystals. These periodic crystals are called rational
approximants of the quasicrystal.

To study quasicrystals found in experiments or simulations, it is convenient
to use the high-dimensional representation to walk our way “backwards” and
lift the self-assembled structures to sets of points forming a representative sur-
face in the higher dimensional space [30–32]. The representative surface of the
Fibonacci chain is shown as thick grey lines in Figure 5. Real quasicrystals
never correspond exactly to the ideal structure obtained by a cut-and-project
construction. Instead, they exhibit a peculiar kind of disorder which can be
understood as fluctuations of the representative surface in the perpendicular di-
rection E⊥ around the average ideal one. These fluctuations can be decomposed
into modes in Fourier space. In analogy with the phonons that correspond to
modes of lattice fluctuations, modes of the representative surface fluctuations
in the high-dimensional representation of quasicrystals are called phasons. A
phason mode (of rather short wavelength) in the Fibonacci chain is sketched in
Figure 5-middle. Analogous to phonon fluctuations (Mermin-Wagner theorem),
the effect of phason fluctuations depends on the dimension of the system. In 1D
systems, long range aperiodic order is destroyed by phason modes. In 2D, the
order remains, but becomes only quasi-long-range in the presence of phasons:
Bragg peaks broaden and their intensity decays as a power-law. In 3D systems,
weak phason fluctuations cause additional diffuse scattering in the diffraction
patterns of real quasicrystals but do not destroy the long range quasiperiodic
order.

The phason modes correspond to extra degrees of freedom that are unique to
quasicrystals. This appears clearly when realising that, in the cut-and-project
construction, the origin of the cut in perpendicular space can be chosen freely.
For a periodic structure, generated by a cut with a rational slope, shifting the
origin of the cut simply translates the whole structure. This correspond to a
trivial phonon mode of infinite wavelength. In the case of a quasicrystal however,
a shift of the origin in perpendicular space generates a new structure that differs
from the previous one by correlated local rearrangements of tiles all over the
tiling. All quasicrystals obtained this way are equally valid and indistinguishable
in the sense that all n-points correlation functions of their density fluctuations
are the same [33, 34]. The correlated tile rearrangements caused by a shift of
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the cut origin correspond to phason modes of infinite wavelength, and have no
equivalent in periodic structures4. In the Fibonacci chain, tile rearrangements
associated with the phasonic degree of freedom correspond to correlated local
flips of L and S tiles as shown in Figure 5-bottom. These kind of local tile flips
are possible in most quasicrystals and are sometimes confusingly referred to as
“phason flips”. This terminology is misleading because phasons correspond to
tiles rearrangements across the whole structure as a collective excitation. A
tile flip is related to the phasons in the same way that a small displacement
of a particle away from its ideal lattice site is related to phonons. The Fourier
modes of the collective fluctuations of particles positions in E∥ and E⊥ give rise
to phonons and phason respectively5 [35, 36]. As will be discussed briefly in
Section III.5.3, phonon and phason dynamics are coupled in quasicrystals.

We end here the introduction of essential quasicrystal concepts. Additional
crucial concepts are introduced later in the thesis, when needed. In Section
II.3.3, we present the details of the lift procedure and introduce the essential
concept of perpendicular strain. In Section II.3.5, we briefly discuss the growth
of quasicrystals. Very good text books exist for the reader interested in the many
other wonders of quasicrystals theory not directly used in this thesis [8, 9, 37].

.2 Soft quasicrystals

Before the turn of the 21th century, all known quasicrystals had been discovered
in metallic alloys. In 2004, Zeng et. al. discovered a dodecagonal quasicrys-
tal (12-fold symmetry) in a micellar system of dendrons [38]. This finding
introduced quasicrystals in the realm of soft-matter physics, which deals with
system whose basic constituents are much larger than atoms (nanoparticles,
macromolecules, colloids...). The interaction between the basic constituents
of soft-matter systems is typically weaker than the strong interactions holding
atoms together in solids. Hence, the energy density and the elastic modulus
of the assemblies are typically quite small, resulting in “soft” materials such as

4Consider a d-dimensional quasicrystal of rank D. It might be generated as the cut of a
D-dimensional periodic structure by a hyperplane of dimension d. The hyperslope of this cut
is can be written as a (D− d)× d matrix quantifying how much displacement in perp-space is
caused by a displacement in parallel space, for each direction in both spaces. We will look at
this in more detail for an octagonal 2D quasicrystal in Section II.3.3. Along some perp-space
directions, this hyperslope might only contain rational elements. Then, no phason mode is
associated to shifts of the origin in this direction which is called a discrete dimension. Hence,
for a quasicrystal of rank D in dimension d, there are at most D−d phason degrees of freedom
(and at least one) [30].

5The adequacy of the term phason itself has been the matter of debates. Indeed, the -on
suffix suggests a particle interpretation. However, in contrast to phonons, phason modes are
evanescent and do not propagate. Moreover, it was observed that over the years, the term
phason was gradually used more and more for anything related to the perpendicular subspace
of the high-dimensional representation of quasicrystals, leading to much confusion. In this
thesis, we try to follow the experts prescription discussed in References 35 and 36, and in
particular, avoid using misleading terms such as “phason flip” and “phason strain”.
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gels, pastes or liquid crystals6.

Soft quasicrystals quickly became a topic of active research. Indeed, the
ordered nature of the quasicrystals combined with their unusual symmetries
promise interesting optical properties [39–42], which manifest when the wave-
length of the light is comparable to the typical distances in the material. In
metallic quasicrystals, the relevant constituents are atoms, which interact mostly
with X-rays. In order to harness the optical properties of quasicrystals at larger
wavelengths, bigger building blocks, such as those found in soft matter systems,
are required.

Even though quasicrystals exist in both metallic and soft matter systems,
they differ quite a lot. In particular, while icosahedral symmetry is commonly
observed in metallic quasicrystals [1, 17, 43–45], it has to date never been ob-
served in soft-matter systems. Icosahedral quasicrystals are quasiperiodic in all
3 directions of space. Instead, soft quasicrystals discovered to date are only
quasiperiodic in two dimensions, and stack periodically in the third one. In
the quasicrystalline layers, the dodecagonal (12-fold) symmetry seems to be
the most common one. The communities dealing with metallic and soft qua-
sicrystals are also quite different. Researchers working on metallic quasicrystals
typically have a strong background in crystallography and hard condensed mat-
ter. The soft matter community on the other hand is usually more familiar with
statistical mechanics and self-assembly concepts. Of course, many bridges exist
between the fields. Coming from the soft side of the barricade, this thesis adopts
mainly the self-assembly perspective and tends to leave aside crystallographic
aspects, both purposely and by ignorance.

Most soft quasicrystals to date have been observed in systems of micelles,
with the micelles formed by very different building blocks. This includes the first
soft quasicrystal, of symmetry 12, reported in a micellar system of dendrons [38].
Quasicrystals of symmetry 12 and 18 have later been reported formed of micelles
made of block copolymers [46]. A dodecagonal quasicrystal has been found in
a system of micelles turned into mesoporous silica [47] and in star polymer
melts [48]. In diblock copolymer melts, a metastable dodecagonal quasicrystal
has been found to be kinetically favoured upon fast cooling [49]. Aside from
micelles, a dodecagonal quasicrystal has been observed in a binary mixture of
nanoparticles self assembling at an interface [50].

Note that while icosahedral quasicrystals remain elusive in the bulk, large
clusters with icosahedral symmetry have been stabilised by confining colloids in
spherical droplets [51].

As can be seen from this survey of past experimental results, quasicrystalline
order appears robustly in a striking variety of systems. The nature of the
constituents (micelles or nanoparticles), as well as their chemistry (micelles of
very different composition) seem rather unimportant as far as the quasiperiodic
order is concerned. The size of the building blocks varies by almost two orders
of magnitude between the silica micelles [47] (a few Angströms) and the star

6Daan Frenkel once defined soft matter as “stuff that does not get through airport security
checks”.
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Figure 6: (Left) Penrose prototiles with matching rules enforcing ideal
quasiperiodic order. To experience the frustrating fact that matching rules are
not growing rules, the curious reader is encouraged to print many of those tiles
and try making a large patch of ideal Penrose tiling. (Right) Random version
of the Penrose tiling obtained by reshuffling tiles in the tiling of Figure 2. This
tiling contains a very high number of violations of the matching rules depicted
on the left.

polymers [48] (several tens of nanometers), yet they form similar quasicrystals.
This suggests that, regardless of the microscopic details of the interactions,
general mechanisms stabilise quasicrystals in soft-matter systems. This thesis
is an attempt at contributing to unravelling these mechanisms.

.3 Quasicrystal stability

The question of the mechanisms stabilising quasicrystals was raised as soon as
they were discovered in metallic alloys. Right after the publication of Shecht-
man’s puzzling diffraction pattern [1], Levine and Steinhardt rationalised the
underlying structure with a three dimensional Penrose tiling, suggesting that
this aperiodic structure might be the ground state of the system [14]. Soon
after, in a reply to this paper, Elser commented that the constraints that must
be satisfied to construct an ideal Penrose tiling are not compatible with a rapid
growth process [52]. Hence, he suggested that the structure likely contained
a high amount of peculiar defects, in the form of local tile flips (later recog-
nised as phason fluctuations). Such fluctuations would only slightly broaden
the diffraction peaks, and Shechtman’s data was not accurate enough to check
for the their presence. Over the course of four decades of active research, this
question has remained open, and the two original approaches are referred to as
the energetic or entropic stabilisation of quasicrystals.

The energetic point of view postulates that the interparticle interactions en-
code “matching rules” between the tiles, favoring an ideal quasicrystal. Match-
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ing rules between adjacent tiles that enforce an ideal quasicrystal had previously
already been discovered for several mathematical aperiodic tilings. For exam-
ple, Figure 6-left shows the two prototiles of the Penrose tiling of Figure 2
decorated with notches and extrusions at the edges that limit their placement.
The resulting matching rules then enforce ideal 10-fold quasiperiodic order. In
the energetic picture of quasicrystal stability, matching rules violations then
carry an energetic cost due to the particle interactions, and hence should anneal
out towards an ideal tiling ground state. The resulting structures should have a
minimum amount of phason disorder, and the diffraction pattern should be com-
posed only of pure Bragg peaks. Note that in the rapid growth of a quasicrystal
from the melt, matching rules violations inevitably get kinetically trapped, and
annealing is likely to be slow. As a result, some perpendicular-space disorder is
still expected in these systems.

In contrast, the entropic picture of quasicrystal stability ignores matching
rules and considers instead random versions of the tilings. Indeed, in all tilings
mentioned above, tiles can be reshuffled and reorganised in many different ways,
while still covering the whole space without gaps or overlaps7. This defines a
random tiling ensemble, in which the system can adopt many different discrete
configurations. As an example, Figure 6-right shows one randomised version of
the ideal Penrose tiling of Figure 2. The freedom of choosing a realisation from
the random tiling ensemble brings an entropy contribution which is assumed
to stabilise the quasicrystal at high temperatures, where tiles can easily rear-
range to sample the random tiling ensemble. The high amount of disorder in
perpendicular space in such structures adds diffuse scattering to the diffraction
patterns. Note that in contrast to the energetic picture, this disorder is not
expected to fully anneal out over time.

For the quasicrystals found in metallic alloys, four decades of discovery and
many debates give a rather mixed picture. It seems that distinctive features
of both scenarios are observed, depending on the system [35, 43]. To bolster
the energetic picture, a few stable quasicrystals have been found which seem
to exhibit little perpendicular space disorder and to remain stable down to low
temperatures. In particular, after an epic quest of many years, involving sys-
tematic searches in mineralogy museums and expeditions in the Koryak Russian
mountains, the first natural quasicrystal was found in a meteorite [45, 53, 54].
The quasicrystal is of high quality and exhibits a very high degree of order.
Its stability on geological timescales (of the order of hundreds of million years)
suggests that it might actually be stable at low temperatures, although metasta-
bility remains possible, as is the case for e.g. diamonds at room pressure. Yet,
this suggests these structures might be stabilised by energetic matching rules
encoded in the atomic interactions [17].

However, matching rules are not, in general, growing rules, in the sense
that there are many ways of adding a new tile abiding by the matching rules
to an already grown patch, but the majority of them will lead to inevitable

7Note that a random tiling model does not need a reference ideal tiling. Only a set a
prototiles that allow random tiling of a space is required to define a random tiling ensemble
[30].
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gaps or overlaps later on. In practice, it is extremely hard to grow a patch of
Penrose tiling by hand by following the matching rules shown in Figure 6-left
with more than a few dozen of tiles, without creating defects [55]. Hence, a large
amount of tile disorder (matching rule violations) is necessarily created during
the fast growth of quasicrystals from the melt [52]. This suggests that energetic
matching rules can only play a limited role in their formation, but leaves the
door open to a two-step scenario: first, a highly disordered quasicrystal forms
with many matching rule violations, which then anneals towards an energetic
ground state with ideal quasicrystalline order [52, 56].

On the side of the entropic scenario, a very strong argument can be made
based on the observation that most atomic quasicrystals are stable at high
temperatures, where entropy favors perpendicular-space disorder, and where
thermal motion allows an efficient sampling of the random tiling ensemble. They
then loose stability to periodic approximants at low temperatures, when the
magnitude of the entropic contribution of the random tiling is not sufficient
to compete with the lower energy of the periodic ground state [30, 36, 57].
When this is the case, clearly the ground state of the system cannot be an ideal
quasicrystal, and hence the energetic picture breaks down.

In the soft matter realm, owing to the larger size of the constituents, direct
space images of the experimental systems organised in random tilings are often
available, in addition to the diffraction patterns (see Figure 7)[48, 50, 58]. This
observation bolsters the entropic scenario for the stability of soft quasicrystals.
However, due to the much slower dynamics of soft-matter systems in comparison
to atomic ones, it is possible this disorder is left over from the crystallisation
kinetics. One way to test this would be to observe tile rearrangements in real-
time and real-space, but colloidal systems where this is possible have thus far
proven hard to achieve. Additionally, it should be noted that entropy natu-
rally plays a significant role in soft-matter systems, and hence the appearance
of quasicrystals in soft matter is in itself evidence that entropy may play an
important role in their stabilisation. In fact, as we will show in this thesis, it
is entirely possible to design numerical colloidal models that form quasicrystals
purely stabilised by entropy.

.4 A brief note on theoretical treatments of qua-
sicrystal stability

Various theoretical approaches have been used to tackle the stability of qua-
sicrystals. Although we did not study them in depth, we mention the most
important ones here as references for the interested reader.

Soon after the discovery of the first quasicrystals, a hydrodynamic theory was
developed [30]. It predicts that phason modes in stable quasicrystals should re-
lax with a characteristic time that increases (and diverges) with the wavelength.
This relaxation process is associated to so-called phason elastic constants which
drive the fluctuating representative surface of real quasicrystals towards the
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ideal one. In the early days of quasicrystal research, significant efforts were
invested into measuring these elastic constants from experiments and simula-
tions [57, 59–63]. The hydrodynamic theory supports the entropic scenario as
it predicts stable quasicrystals at high temperatures.

Mean-field, “à la Landau” approaches have also been attempted to elucidate
the stability of quasicrystals. Following the discovery of quasicrystals in alloys,
Mermin and Troian developed a simple Landau theory for systems of several
components, which generated stable 2D decagonal and 3D icosahedral order
[64, 65]. The discovery of soft quasicrystals in monodisperse systems motivated
other Landau theories based on single component systems, but with more com-
plex interaction potentials encoding two length scales [66]. This approach is
mostly motivated by the energetic picture, and suggests that isotropic interac-
tion potentials favouring quasiperiodic order can be designed by encoding two
irrational length scales in the Fourier transform of the potential [67].

.5 Numerical simulations

Numerical simulations have been used extensively to study the self-assembly
and stability of quasicrystals in many different models. Self-assembly simula-
tions can be thought of as numerical experiments, on ideal systems. Indeed, one
starts by preparing an initial state of specified parameters (composition, packing
fraction...). Then the simulation is run and measurements are taken that pro-
vide raw data on which analysis can later be performed. Very much like in a lab
experiment, the simulation provides direct access to the behaviour of the system
without approximations. However, in contrast to most traditional experiments,
the collected snapshots contain all the microscopic information about the sys-
tem (position, velocity of every particle) which allows in-depth analysis. The
price to pay is that the studied systems are usually very small (usually up to 108

particles, to be compared to 1023 in typical macroscopic samples), and simu-
lated for very short lengths of time. Moreover, simulations only deal with model
systems. This is both a strength and a limitation depending on the physicist’s
ambitions. On the one hand, the model system never exists as-is in nature (for
example, there is no such thing as a perfectly hard, perfectly spherical particle)
and attempts at reproducing realistic interactions in complex systems typically
result in incredibly complicated simulations that are extremely time-consuming,
and still often fail to quantitatively match experimental results. On the other
hand, numerical simulations are extremely valuable when used on simple sys-
tems, since one can strip a model down to a few key ingredients, and obtain
the exact behaviour of this ideal system. If the phenomenon of interest persists,
the minimal model provides precious insights into the underlying fundamental
mechanisms.

Atomistic simulations using realistic interaction potentials have been used
to study metallic quasicrystals. For instance, using potentials from density
functional theory, simulations suggest that a dodecagonal quasicrystal should
be stable in binary oxides of Ba-O and Ti-O [68]. Interestingly, a dodecagonal
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quasicrystal has been reported in a simulation of a one-component system of
tantalum [69]. Dodecagonal quasicrystals have also been reported in molecular
dynamics simulations of compressed bilayers of water [70] and silicon [71].

Quasiperiodic order requires the interplay of several length scales. Hence,
simpler numerical models for quasicrystals fall into two rough families. The
length scales can either be obtained by mixing particles interacting with rather
simple potentials, or by directly constructing a more complex interaction po-
tential in one-component systems. Both approaches have been used to study
quasicrystals in atomic and soft matter systems.

Decagonal (10-fold symmetric) and dodecagonal (12-fold symmetric) qua-
sicrystals in 2D have been obtained very early in Monte Carlo simulations of
Lennard-Jones binary mixtures [72, 73]. A dodecagonal quasicrystal was found
to be stable at infinite pressure in 2D binary mixtures of hard disks [74], and at
finite pressure in a binary mixture of disks with non-additive hard interactions
[75]. Numerical density functional theory calculations of 3D binary mixtures
of hard spheres have found only metastable ranges for icosahedral quasicrystal
[76]. Inspired by the discovery of the first soft quasicrystals [38, 50], Iacovella et.
al. built a model system for hard particles with size polydispersity, grafted with
ligands. Owing to the high computational cost of simulating explicit ligands,
the study was limited to rather small systems, but self-assembly of quasicrystal
approximants was observed nonetheless [77].

Several studies have reduced the number of components in the system to
one, at the expense of some extra complexity in the interaction potential. Us-
ing an oscillating potential inspired by the Friedel oscillations that appear in
the interaction of atoms in alloys, complex phases have been found to be sta-
ble including clathrates and icosahedral quasicrystals of very good quality [78].
Another family of oscillating potentials was found to stabilise icosahedral, do-
decagonal, decagonal and octagonal quasicrystals [79]. In a remarkable study
of systems interacting via a Lennard-Jones-Gauss potential, Kiselev et. al. re-
ported the existence of a stable decagonal quasicrystal, for which they could
disentangle the free-energy contributions of the phononic and phasonic degrees
of freedom [63]. An interesting dodecagonal quasicrystal based on a Moiré pat-
tern of hexagonal layers rotated by π/6 was found in simulations of particles
with a hard core, short range attraction and long range repulsion [80].

The experimental observation of quasicrystals in polymer systems motivated
numerical studies of soft core particles, which can overlap for a finite energy cost.
Density functional theory and Brownian dynamics simulations of systems inter-
acting with such soft core potential with two length scales revealed a metastable
dodecagonal quasicrystal phase [81]. Self-assembly of dodecagonal and octag-
onal quasicrystals was reported in Monte Carlo simulations of purely repul-
sive soft core particles interacting via a generalised Hertzian potential [82, 83].
Adding an attractive range and repulsive tail to soft core particles allowed self-
assembly of quasicrystals of symmetry 12 and 18 [84]. Free-energy calculations
for systems of tetrablock copolymers showed that a metastable dodecagonal
quasicrystal could form [85].

Great progress in the numerical study of soft quasicrystals has been achieved
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by simulations of particles with a hard core and a repulsive square shoulder at
short distances [86]. These systems model hard colloidal particles surrounded
by a soft corona of ligands. In two dimensions, Monte Carlo simulations have
shown that careful choice of the core-to-corona ratio can lead to the self-assembly
of quasicrystals of symmetry 6 [22], 10, 12, 18 and even 24 [87]. Free-energy
calculations have confirmed that the dodecagonal quasicrystal is indeed ther-
modynamically stable for a range of temperatures [88]. Smooth versions of the
square shoulder potential have been shown to form a decagonal quasicrystal
[89] in 3D, and quasicrystals of symmetry 10, 12, 18 and 24 in 2D [90]. These
simulations contain only one type of particles which nonetheless interact via
a remarkably simple potential. They show that, indeed, two carefully chosen
length scales in a one component system are sufficient ingredients for quasiperi-
odic order to emerge. In this thesis, we aim at obtaining a similar minimal
system with the mixture approach.

Keeping the interaction simple (hard repulsion), some studies have tried
encoding the different length scales in the shape of the particles instead. Self-
assembly of a dodecagonal quasicrystal has been reported in Monte Carlo sim-
ulations of hard tetrahedra [91, 92], and approximants have been observed in
hard rounded tetrahedra [93]. Interestingly, since the interactions are hard in
these systems, the energy plays no role in the equilibrium properties and entropy
is the only drive for self-assembly.

Finally, several studies have explored the possibility of replacing length scale
constraints by bond orientations, in systems of particles with patches on the sur-
face, that encode preferential bonding directions. In two dimensions, disks with
5 or 7 patches have been found to form dodecagonal quasicrystals [94–96]. Oc-
tagonal and decagonal quasicrystals have been observed for very narrow patches
[97]. In three dimensions, patchy particles can self-assemble in dodecagonal [98]
and icosahedral [99] quasicrystals. Colloidal patchy particle systems could be
experimentally realised with DNA origami [100], although to date, no quasicrys-
tal was observed in these systems.

.6 A minimal model for quasicrystal self-assembly

.6.1 Motivations

While quasicrystals have been experimentally observed in several very differ-
ent soft matter systems, these discoveries are mostly serendipitous. Designing
an experimental system targeted for quasicrystal self-assembly remains a chal-
lenge. Yet, a simple colloidal system that robustly and reliably self-assembles
into quasicrystals is highly desirable as it would allow direct real-space and real-
time access to quasicrystal dynamics on the micron scale. Such an experimental
platform would be extremely valuable to tackle many open questions pertaining
to the nucleation and growth of quasicrystals, or the dynamics of their pecu-
liar defects for example. The wealth of numerical simulations have explored
the possibility of quasicrystal self-assembly in many models, but most of them
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remain rather hard to realise in experiments. The remarkable studies of the
hard-core-square-shoulder potential have established that quasicrystalline order
can emerge in quite general settings from carefully chosen interplaying length
scales, built into a single potential. Although the hard-core-square-shoulder
model might be a good approximation of a hard colloid grafted with a soft
corona of ligands, it is still very hard to control the corona interaction in ex-
periments: ligands interact in complex ways and in the dense systems used for
self-assembly, coronas deform giving rise to many-body interactions that are
hard to control [101, 102].

Figure 7: Dodecagonal quasicrystal ob-
tained in binary nanoparticle mixtures
self-assembled at an interface. The 12-
fold symmetry is shown in the diffrac-
tion pattern in inset. Taken from Ref.
50.

In contrast, purely hard colloids
can nowadays be easily produced with
impressive control on their size [103–
105]. They are extremely well ap-
proximated by purely hard spheres,
to the point where hard-sphere simu-
lations and experiments match quan-
titatively in extended regimes [106,
107]. Motivated by this experimen-
tal possibility and following the work
of Likos and Henley that showed
the existence of a stable dodecago-
nal quasicrystal in binary mixtures of
hard disks at infinite pressure [74],
our work takes a closer look at qua-
sicrystal self-assembly in binary mix-
tures of hard spheres. Since all soft
quasicrystals observed in experiments
to date exhibit quasiperiodic order
in two dimensions, and periodically
stack in the third dimension, we focus
on a two-dimensional model and as-
sume that the binary mixture of hard
spheres is confined at an interface.
This geometry is similar to the one used by Talapin et. al., who reported a
dodecagonal quasicrystal in binary mixtures of nanoparticles (see Figure 7).

.6.2 Non-additive hard disks mixtures

A binary mixture of hard spheres confined at an interface can be mapped onto an
equivalent 2D system of hard disks by looking at the projection of the system
in the interface plane, as sketched in Figure 8. In general, particles made of
different materials will have different wetting properties with the fluid interface,
and hence will rest a different heights (see Figure 8-right). Then, in the 3D
configuration, a small sphere can slide under (or above) a large one before
contact is made. This translates in the equivalent 2D model by having a contact
distance for large and small disks smaller than the sum of their radii. Spheres



.6. A MINIMAL MODEL FOR QUASICRYSTAL SELF-ASSEMBLY 25

y

x

z
yx

Figure 8: Binary mixtures of 3D hard spheres confined at an interface (top)
can be described by an equivalent 2D mixture of hard disks, when looking
at the projection of the spheres on the interface plane (bottom). If particles
of different types rest at different heights with respect to the interface, due
to different wetting angles with the fluids, the contact distance between the
equivalent small and large disks becomes smaller than the sum of the spheres
radii and the resulting system is a non-additive hard disk mixture.

of one type all sit at the same level, and hence behave as standard hard disks in
the 2D equivalent system. In this very simple model, we ignore the interactions
that may result from deformations of the interface. The resulting 2D model is
called a non-additive hard disk mixture and it will be our companion for the
rest of this thesis.

A non-additive hard disk mixture containing large disks of diameter σLL

and small disks of diameter σSS is characterised, in the thermodynamic limit,
by only two parameters:

• the size ratio of large and small disks q = σSS/σLL

• the composition of the mixture, which we parametrise by the number
fraction of small disks xS = NS/(NL +NS), with NL and NS the number
of large and small disks respectively.

The interaction potentials between two disks uij (i, j = L or S for large and
small disks respectively) a distance r apart, is given by

uij(r) =

{
∞ if r < σij

0 otherwise.
(2)

Here, σLS is the contact distance for large and small disks.

σLS = σSL = (1 +∆)
σS + σL

2
, (3)

where ∆ is the so-called non-additivity parameter. When ∆ = 0, the model
is called additive and the disks behave like standard hard disks that cannot
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overlap. The 3D situation of spheres at an interface corresponds to nega-
tive non-additivity, i.e. ∆ < 0. If the floating levels of the two species are
offset by a distance z, the non-additivity parameter is given by ∆ = 1 −√
1− 4z2/(σSS + σLL)2.
While self-assembly at an interface is a common geometry in soft matter

(see, e.g. [108–113]) other sources of non-additivity can be readily present in
real-world self-assembling systems. Particles that interact via softer interactions
(due to charge, dipolar interactions, ligand coatings, etc.), may, depending on
the overall packing fraction, favour configurations where the favoured distance
between different pairs of particles behaves non-additively. Non-additive inter-
actions have been shown to significant impact the phase behaviour of mixtures of
particles [114–118], and hence are likely to be an important factor in predicting
the self-assembly of hard-disk mixtures.

.7 Outline

The phase behaviour of binary mixtures of binary (additive) hard disks at infi-
nite pressure has been studied by Likos and Henley in the 90’s [74]. They showed
that even at infinite pressure, such mixtures can form a dodecagonal quasicrys-
talline phase, and suggested non-additivity as a natural extension of their work.
In the first chapter of this thesis, we follow their tracks and explore the infinite
pressure phase behaviour of non-additive hard-disk mixtures. Improving the
sampling of candidate phases allows us to find new stable phases that were not
considered earlier and we show that non-additivity indeed promotes quasicrystal
stability.

In the second chapter, we relax the infinite pressure constraint and perform
direct self-assembly simulations at finite pressure. This study confirms that
the dodecagonal quasicrystal predicted at infinite pressure can self-assemble
under realistic conditions. We also report the self-assembly of a new octagonal
quasicrystal with interesting properties.

In the third chapter, we take a deeper look at the stability of the self-
assembled dodecagonal quasicrystal by performing numerical free-energy cal-
culations. This allows us to draw an essentially exact phase diagram for our
system, and to prove that the dodecagonal quasicrystal is thermodynamically
stable. Using accurate free-energy calculations, we quantitatively assess the va-
lidity of the random tiling hypothesis for our system, that we use before on
several occasions.



Chapter I

Infinite pressure

In the final discussion of a paper published 1993, Likos and Henley suggested
that non-additivity in hard disks mixtures could help stabilising quasicrystals
by providing finer control over the length scales involved in the system [74]. In
this Chapter, we explore this hypothesis in detail, and demonstrate that this
intuition was indeed very fruitful.

We start our investigation by reproducing their results and look at the infi-
nite pressure phase behaviour of additive hard disks. In this study, one challenge
is to identify the best packing structures, as well as their optimal deformations
when the size ratio of the disks is varied. Using a method based on Monte
Carlo simulations, we improve the sampling of candidate crystal structures.
This allows us to find several new crystal structures that, for specific size ratios,
improve on the optimal packings proposed by Likos and Henley. In addition,
we identify three new random tiling quasicrystals stable in the infinite pressure
limit.

We then extend the analysis to binary mixtures of non-additive hard disks
and show that indeed, non-additivity enhances the stability region of the main
square-triangle random tiling quasicrystal.

I.1 A packing problem

Consider a binary mixture of hard disks containing N particles with a number
fraction of small disks xS . At fixed pressure p and temperature T , we wish to
find the stable crystal structures. The stable phase is the one that minimises the
(Gibbs) free-energy G = U−TS+pV with U the internal potential energy of the
system, S its entropy, and V its volume. Since we consider hard interactions,
all accessible configurations contain no overlaps and hence have zero potential
energy. The kinetic energy is linked to the temperature in a trivial way. Hence
U = 0. Moreover in the infinite pressure limit, the term pV dominates the

27
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term TS, which can therefore be neglected1. As a result, in the limit of infinite
pressures,

βG

N
= βp

V

N
= βpv (I.1)

Hence, the stable arrangement of disks minimises the volume per particle v,
i.e. achieves the most efficient packing for a given size ratio q, non-additivity
parameter ∆ and mixture composition xS . Such arrangement might be a single
homogeneous phase, or a coexistence of two different structures.

For ∆ = 0, finding the stable arrangement at infinite pressure reduces to the
long standing mathematical problem of optimal disk packing in the 2D plane.
In a system containing only one type of disks, Lagrange proved in 1773 that the
hexagonal close packing realise the highest density of all periodic arrangements.
A proof in full generality (not restricted to periodic arrangements) was given
by Tóth in 1942 [119].

With binary mixtures, the problem of proving the best packing arrangements
is still open, and the topic of active research. Beyond a size ratio q ≈ 0.74, it is
proven that no arrangement packs better than a phase separation of hexagonal
close packings of large disks on the one hand, and small disks on the other hand
[120]. For 9 specific size ratios, it is possible to construct so-called compact
packings, whose contact graph contains only triangles. These packings have
been proven to realise the highest possible density at their specific size ratios.
[121, 122]. Figure I.1 reproduced from Reference [123] summarises state of the
art upper and lower bounds on the maximum packing fraction ϕ = π(NLσ

2
L +

NSσ
2
S)/4V (i.e. area fraction covered by the disks) as a function of size ratio.

Note that the composition of the structures realising the best packing in Figure
I.1 are not constrained. In this Chapter, we explore the best packing structures
for a wide range of fixed size ratios and compositions.

Instead of trying to prove optimal packings rigorously here, we will employ
numerical simulations to sample dense candidates structures, and build a phase
diagram from there.

I.2 Phase diagram construction

To construct a phase diagram, we first need to know the phases that compete
for stability, i.e. candidate packings of disks with a given size ratio q, non-
additivity ∆ and composition xS . Once the candidate structures are known,
a graphical method called common tangent construction is used to build the
infinite-pressure phase diagram.

I.2.1 Obtaining candidate crystal structures

In their pioneering work [74], Likos and Henley explicitly constructed dense
candidate structures phase using clever heuristics. However, it is extremely

1This term can no longer be neglected in the free-energy difference of two phases that pack
equally well in the infinite pressure limit. This case is addressed in section I.3.1.
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q

φ

Figure I.1: Summary of the upper (red line) and lower (green line) bounds
on the maximal packing fraction ϕ for binary mixtures of hard disks at size
ratio q. The 9 blue points correspond to the magic ratios at which compact
packings, depicted in the above squares, realise the proven maximum density.
Blue line segments highlight size ratios intervals for which no arrangement of
disks can pack better than a phase separation of hexagonal close packings of
large and small disks. Courtesy of T. Fernique, taken from [123] with the kind
authorisation of the author.
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hard, and in fact essentially impossible, to make sure that all relevant structures
have been considered.

In order to generate candidate crystal structures more systematically, we
use the so-called Floppy-Box Monte Carlo simulation method [124, 125]. In this
method, we simulate a small number of particles (up to 12) in a periodic unit cell
and slowly compress them until a dense packing is reached. To accommodate all
unit-cell shapes, Monte Carlo moves are included which deform the (rhomboidal)
simulation box. At the end of the simulation, a quench to infinite pressure
is performed to freeze the configuration, which is then taken as a candidate
structure. The implementation of the algorithm in thoroughly described in
Reference 125.

In our simulations, we considered all possible compositions with up to 12
disks in the simulation box and at least one large and one small disk. For larger
numbers of particles, the method becomes less reliable, as the number of pos-
sible arrangements increases very rapidly with the number of particles and the
systems tend to get kinetically arrested in jammed, rather low density arrange-
ments. Nonetheless, even if it cannot guarantee that all relevant structures have
been found, the Floppy-Box method has proven to be effective for systemati-
cally finding unit-cells of complex crystal structures in a large variety of systems
[125–132], as long as the unit cell is not too large. Since the number of parti-
cles in the box is small, simulations are fast, allowing us to produce at least 50
candidate structures for each composition and size ratio we investigated. The
most efficiently packed crystal structures are typically found multiple times in
these 50 independent runs.

After the quench to infinite pressure, the systems are jammed and particles
cannot move because they are trapped by their neighbours, or rattle in the
cage of formed by their fixed neighbours. Since the quench is performed at a
finite rate, the particles jam in locations that are close to, but not necessarily
exactly the ones that realise the best packing. Therefore, in a second step,
we individually look at all dense candidates, and construct for each of them a
corresponding ideal structure, based on the contacts between pairs of particles.

Using this procedure, in the additive case, we recover all the structures
that were previously considered by Likos and Henley [74] with their explicit
construction method. In addition, the Floppy-Box simulations identified new
crystal candidates that were not considered earlier. Structures relevant to the
phase diagram in the additive case are summarised in Figure I.2. Each structure
is named according to the same scheme as the one used in Ref. 74, extended
where necessary. The new structures S3 and S4 have a rhombic unit cell con-
taining 5 and 7 small particles respectively. The structure that we call Sh1
contains 3 small and 3 large disks in its unit cell, arranged in a shield motif.

The phases drawn in Figure I.2 depict the structures at “magic ratios” where
they are highly symmetric, with a large number of contacts between the disks.
When the size ratio q deviates from those values, the structures are deformed and
the bond network as well as the overall symmetry change. Just like guessing and
explicitly constructing all relevant dense candidate structures is hard, finding
the optimal deformations as the small particles are inflated or shrunk is very
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FIG. 3. Stable structures that appear in the additive phase diagram. The structures a shown at their respective ”magic ratios”.
Dashed grey lines outline the repeating unit of each lattice. Complete deformation paths are depicted in the SI.
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FIG. 4. Infinite pressure phase diagram of binary additive hard-disk mixtures. Horizontal lines represent stability ranges of
pure crystal phases. For state points outside of those lines, the stable phase is a coexistence of the two pure crystal phases
that lie immediately above and below the point. The grey rectangle under Sh1 corresponds to a region where an infinite
family of periodic structures are found, with the same volume per particle as the Sh1-HexL coexistence. Dotted and hashed
rectangles depict random lattice gas and random tiling regions respectively. In the latter, the horizontal red lines highlight
random-tiling quasicrystals. Their compositions are
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FIG. 5. S1 or S2 squares and HexL triangles can be joined without volume-per-particle cost. Moreover, squares and triangles
tile the plane, so S1-HexL and S2-HexL coexistences result in a square-triangle random tiling (left). Random tilings can also
be obtained by mixing rhombi with triangles (see for example T1-HexL and S4-T1 random tilings (right)).

Figure I.2: Stable structures that appear in the additive phase diagram. The
structures a shown at their respective “magic ratios”. Dashed grey lines outline
the repeating unit of each lattice. The Sh1, S3 and S4 phases were identified in
the output of Floppy-Box simulations and were not considered in earlier works.
Complete deformation paths are reported in the Appendix A.

challenging. Luckily, here again, Floppy-Box simulations turn out to be of great
help. By looking at the structures produced by the simulations slightly off the
magic ratios, we can identify the preferred deformation paths and use them to
construct ideal structures for all size ratios in-between magic ratios.

In Appendix A, we report the magic ratios for the identified structures and
present the deformation paths for the phases that appear in the phase diagrams.
Using Floppy-Box simulations to identify deformation paths allowed discovery
of transformations with higher densities than those previously known.

Guided by Floppy-Box simulations, we identify ideal deformations and com-
pute analytically the volume per particle of the phases along the deformation
paths. As the number of particles in the unit cell increases, the complexity
of the analytical expressions for the position of each particle, as a function of
size ratio q and non-additivity ∆ quickly becomes overwhelming. Thus once
a set of constraints (particles contacts and symmetries) for an ideal structure
is identified from the Floppy-Box outputs, we resort to sympy [133], a Python
symbolic computation package to obtain the analytical expressions. Details on
this procedure can be found in Appendix A.4.

At the end of this process, we obtain analytical expressions for the volume
per particle of each of the candidate structures as a function of q and ∆, albeit
typically highly cumbersome ones ! We then use them to construct the infinite
pressure phase diagram.

I.2.2 Common tangent construction

Equipped with a set of candidate structures, we use a graphical approach anal-
ogous to a common tangent construction to determine the relative stability of
the corresponding phases.

For a given size ratio q, we plot each obtained candidate structure as a point
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FIG. 2. Common tangent construction at size ratio q = 0.23. On the vertical axis, we subtracted the volume per particle
vHex(xS) of the coexistence of hexagonal phases of large and small disks. Blue dots represent candidate crystal structures found
by 50 FBMC simulations for each of the 66 compositions LiSj with i, j ≥ 1 and i + j ≤ 12. Red dots correspond to stable
pure crystals and arrows point to snapshots of the FMBC output (unit cells are repeated 9 times). The red line indicates, for
all intermediate fraction of small disks, the volume per particle of the stable coexistence.

Since the number of particles in the box is small, simula-
tions are fast, allowing us to produce at least 50 candidate
structures for each composition and size ratio we inves-
tigated. Note that typically, the most efficiently packed
crystal structures are found multiple times in these 50
independent runs.

Equipped with a set of candidate structures, we used
an approach that is analogous to a common tangent con-
struction to determine the relative stability of the cor-
responding phases. In particular, for a given size ratio
q, we plot each obtained candidate structure as a point
in the (xS − v)-plane, where v is the volume per parti-
cle. At any xS , the stable state is the crystal phase, or
coexistence of two crystal phases, which has the lowest
volume per particle. For a coexistence of two phases α
and β, involving a fraction nα and nβ = 1 − nα of all
particles respectively, the overall fraction of small disks
is xS = nαxS,α + nβxS,β . The volume per particle v
of the coexistence is also linear in the number fraction
of particles involved each of the phases. Therefore, in
the (xS − v)-plane, points corresponding to pure crys-
tal phases can be joined by straight lines which give the
volume per particle of their coexistences. Hence, to find
the set of stable phases for a given size ratio, we draw

a common tangent construction as depicted in Fig. 2
for q = 0.23. For monodisperse disks, the best pack-
ing is proven to be the hexagonal close packing37, so
at xS = 0 and xS = 1 the stable phase is a hexago-
nal packing of large and small disks respectively. For
xS = 2/3, the T1 phase achieves the best packing. The
straight line that joins T1 and HexL points gives the
volume per particle of their coexistence for all composi-
tions xS ∈ (0, 2/3). This coexistence is stable because
no point is found below the line. As xS is increased, S2
is found stable for xS = 4/5. S2 coexists with T1 for
xS ∈ (2/3, 4/5), and with HexS for xS ∈ (4/5, 1). For
clarity, the volume per particle of the coexisting hexago-
nal phases vHex(xS) = xSvHexS + (1− xS)vHexL has been
subtracted on the vertical axis of Fig. 2.

Phase diagrams are mapped out by repeating this con-
struction for the various size ratios q scanned with simu-
lations. Once stable phases are identified from simulation
snapshots, their ideal volume per particle is computed
analytically as a function of the size ratio q to determine
their exact stability range. For this, we take into account
the optimized structure of the FBMC simulations, and
find an analytical solution for the particle coordinates,
based on the pairs of particles in the simulated unit cell

Figure I.3: Common tangent construction at size ratio q = 0.23. For clarity, the
volume per particle of the coexisting hexagonal phases vHex(xS) = xSvHexS

+
(1 − xS)vHexL

has been subtracted on the vertical axis. Blue dots represent
candidate crystal structures found by 50 Floppy-Box simulations for each of the
66 compositions LiSj with i, j ≥ 1 and i + j ≤ 12. Red dots correspond to
stable ideal crystals and arrows point to snapshots of the Floppy-Box output
(unit cells are repeated 9 times). The red line indicates, for all intermediate
fraction of small disks, the volume per particle of the stable coexistence.
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in the (xS−v)-plane, where v is the volume per particle of the structure. At any
xS , the stable state is the crystal phase, or coexistence of two crystal phases2,
which has the lowest volume per particle. For a coexistence of two phases α
and β, involving a fraction nα and nβ = 1− nα of all particles respectively, the
overall fraction of small disks is xS = nαxS,α+nβxS,β . The volume per particle
v of the coexistence is also linear in the number fraction of particles involved in
each of the phases. Therefore, in the (xS − v)-plane, points corresponding to
pure crystal phases can be joined by straight lines which give the volume per
particle of their coexistences.

Then, finding the set of stable phases for a given size ratio, reduces to a
graphical common tangent construction as illustrated in Figure I.3 for q = 0.23.
For monodisperse disks, the best packing is proven to be the hexagonal close
packing [119], so at xS = 0 and xS = 1 the stable phase is a hexagonal packing of
large and small disks respectively. For xS = 2/3, the T1 phase achieves the best
packing. The straight line that joins T1 and HexL points gives the volume per
particle of their coexistence for all compositions xS ∈ ]0, 2/3[. This coexistence
is stable because no point or other line joining two points is found below it. As
xS is increased, S2 is found to be stable for xS = 4/5. S2 coexists with T1 for
xS ∈ ]2/3, 4/5[, and with HexS for xS ∈ ]4/5, 1[. For clarity, the volume per
particle of the coexisting hexagonal phases vHex(xS) = xSvHexS +(1−xS)vHexL

has been subtracted on the vertical axis of Figure I.3.

By repeating this construction on a grid of q, the approximate size ratio of
phase boundaries can be determined for the composition of each crystal phase.
Finally, the exact location of the phase boundary is obtained by numerical
root finding for the two competing phases or coexistence, using the analytical
expressions for the volume per particle of each phase. This allows us to construct
the exact infinite-pressure phase diagram of binary hard disk mixtures, provided
that all relevant candidate structures have been included.

I.3 Infinite pressure phase diagram of hard disks
mixtures

We performed the analysis outlined above for additive hard disks with size
ratios between 0.05 and 1, with a step size of 0.01. The best packed structures
at each size ratio and composition are summarised in the infinite-pressure phase
diagram shown in Figure I.4.

Horizontal lines correspond to the stability ranges of pure crystal phases,
which only exist at one fixed composition each. Points outside of those line
correspond to coexistence regions of the two phases that lie directly above and
below the point (q, xS). We have only investigated size ratios q ≥ 0.05, and
compositions below xS ≤ 11/12 ≃ 0.917. This likely leads to some missed

2The existence of stable 2-phases coexistences at infinite pressure for our binary mixtures
is clear from the geometrical argument described here. It can also be understood on more
thermodynamic grounds from the Gibbs rule, as discussed in section III.1.1.
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Figure I.4: Infinite pressure phase diagram of binary additive hard-disk mix-
tures. Horizontal lines represent stability ranges of pure crystal phases. For
state points outside of those lines, the stable phase is a coexistence of the two
pure crystal phases that lie immediately above and below the point. The vertical
dotted line at q = 0.23 corresponds to the common tangent construction pre-
sented in Figure I.3. The upper left corner of the phase diagram (dark rectangle)
was excluded from the analysis. The grey rectangle under Sh1 corresponds to
a region where an infinite family of periodic structures is found, with the same
volume per particle as the Sh1-HexL coexistence. Dotted and hashed rectangles
depict random lattice gas and random tiling regions respectively. In the latter,
the horizontal red lines highlight random-tiling quasicrystals. Their composi-
tions are
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structures in the top left corner of the phase diagram. In this regime, we ex-
pect that the phase diagram gets more and more complicated for more extreme
size ratios and large fractions of small disks [134]. Moreover, exploring this is
computationally expensive (due to large unit cells), and not necessarily likely to
include interesting results. As such, we have avoided this regime of the phase
diagram.

The dotted vertical line at q = 0.23 corresponds to the common tangent
construction illustrated in Figure I.3. Going from xS = 0 to xS = 1, we indeed
find stable HexL, S1, T1 and HexS, with coexistences in-between.

As expected [120], no stable phase other than the coexistence of two hexago-
nal compact packing is found for size ratios above 0.74. For smaller size ratios, a
wealth of crystal structures are obtained. The main features of Likos and Hen-
ley’s phase diagram [74] are reproduced, but new stable phases (S3, S4, Sh1)
are found among the candidates generated by Floppy-Box simulations.

I.3.1 Special regions

In some regions of the phase diagram, several distinct arrangements of disks can
be found that pack equally well. In those cases, one needs to go beyond the
simple expression given in equation I.1 to understand the equilibrium behaviour
of the system. Indeed, in the free-energy difference between two competing
packings with the same volume per particle in the infinite pressure limit, the pv
terms cancel and the previously neglected entropy difference term T∆S dictates
the stability.

Two sources of entropy must be taken into account. First, at finite pres-
sures, particles vibrate around their equilibrium lattice site which provides a
vibrational entropy difference term ∆Svib. In the limit of infinite pressure, this
vibrational entropy difference tends to a value ∆S∞

vib which is a-priori non-
zero3 . For instance, 3D hard spheres can be packed with the same density
in either face-centred-cubic (FCC) or hexagonal-close-packed (HCP) structures.
Yet, there is a small but finite entropy difference of about 10−3 kB per particle
in the infinite pressure limit, making the FCC structure slightly more stable
than HCP [135, 136]. In addition, in some structures, choices can be made
for the arrangement of some sub-units (e.g. particle clusters). This brings a
configurational entropy contribution ∆Sconf to the global free-energy difference.
Overall, the free-energy difference between two competing disk arrangements
which pack equally well in the infinite pressure limit reads

∆G = −T∆S∞
vib − T∆Sconf (I.2)

At – not in the limit of – infinite pressure, all particles are strictly immobile
or rattling in a fixed cage. Then, the only contribution to ∆S∞

vib comes for the

3The vibrational entropy of the individual phases diverge in the infinite pressure limit,
but their difference remains finite. At infinite pressure, particles are strictly immobile, the
phase space contains a single microstate and the entropy is strictly 0. The divergence stems
from the inappropriate classical counting of microstates in a regime where a discrete quantum
treatment would be necessary.



36 CHAPTER I. INFINITE PRESSURE

rattling particles, which should be extremely small given the tiny size of the rat-
tler’s cages. Therefore, at infinite pressure, we neglect the vibrational entropy.
In our system, the configurational entropy stemming from the competition of
disks arrangement that pack equally well gives rise to several regions of peculiar
equilibrium properties.

Figure I.5: The Sh struc-
ture is formed of shield (upper
left) and triangle (upper right)
tiles which can be combined into
larger unit cells (bottom).

The repeating unit of the Sh1 lattice can
be decomposed into a shield tile (hence the
Sh label), containing the 3 small disks, and
2 HexL triangular tiles, as shown in Figure
I.5. As long as the size ratio is smaller than
a magic ratio for which the deformed shield
looses contacts between large disks, shields
can be combined with HexL triangles without
volume-per-particle cost. Periodic structures
can be constructed, that have the same vol-
ume per particle as the Sh1-HexL coexistence
[137]. Examples of such structures are shown
in the Appendix A.3. As far as packing is
concerned, these phases are all equally stable
as the coexistence between Sh1 and HexL at
infinite pressure. However, it is likely that vi-
brational entropy ∆S∞

vib breaks this stalemate
in favour of one specific crystal structure. We
make no strong claims about the exact phase
to be expected in this region (the very small
area shaded grey in Figure I.4), except that
it will consist of shields and triangles.

At small size ratios, large disks form a hexagonal compact packing (HexL)
whose interstices can host small disks. The T1, T2 and T3 phases all consist
of this same hexagonal packing, in which all interstices are filled with 1,3 and
4 particles respectively. In principle, more of these types of structures exist
with more small particles in each hole [134], but we have not investigated such
extremely asymmetric size ratios and compositions.

Where these phases coexist, it is often possible to randomly fill the inter-
stices with a fluctuating number of particles, such that the overall composition
requirement is satisfied. As this random distribution is entropically favoured,
such a homogeneous random lattice gas state is expected to be stable over a
purely phase separated regime [74]. Figure I.6 illustrates a lattice gas formed
by the coexistence of the T1 and T2 phases. We indicate lattice gases as dotted
regions in the phase diagram. Note that when the size ratio becomes too large
to accommodate the small particles without deforming the hexagonal lattice,
this lattice gas phase is no longer optimal in terms of packing and loses stabil-
ity. This can be seen on the right edge of the lattice gas regions connecting T1
and T2, or T2 and T3.

Usually, creating a boundary between two coexisting phases carries a volume
cost. This normally limits mixing of phases in the infinite pressure limit. Indeed,
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Figure I.7: S1 or S2 squares and HexL triangles can be joined without volume-
per-particle cost. Moreover, squares and triangles tile the plane, so S1-HexL and
S2-HexL coexistences result in a square-triangle random tiling (left). Random
tilings can also be obtained by mixing rhombi with triangles (see for example
T1-HexL and S4-T1 random tilings (right)).

in order for the boundary cost to vanish in the thermodynamic limit, phase
boundaries must remain 1D objects in a 2D system, hence resulting in a true
phase separation.

Figure I.6: Coexistences of T1
and T2 can form a lattice gas,
where the interstices of a hexag-
onal lattice of large particles or
randomly filled with 1, 2 or 3
small particles.

However, some structures have matching
unit-cell edges, and can be stitched together
without a volume cost. If, moreover, the
structural motifs of the two phases together
can tile the plane without gaps or overlaps,
the two phases in coexistence can dissolve into
one another and form a random tiling phase.
For example, as illustrated in Figure I.7, there
is no volume-per-particle cost for creating a
boundary between S1 squares and HexL equi-
lateral triangles (half a HexL unit cell). In ad-
dition, one can tile the plane with squares and
equilateral triangles. Hence a random tiling
of squares and triangles is possible. Like-
wise, it is possible to construct random tilings
of rhombi and equilateral triangles. In fact,
square-triangle random tilings can be continu-
ously deformed into rhombus-triangle random
tilings. For example, all random tiling pieces
displayed in Fig. I.7 are isomorphic.

Random tiling and fully phase separated
mixtures at the same composition xS pack

equally well, however the former has a finite configurational entropy per disk
[61, 62, 138]. Moreover, previous results for 3D hard spheres [135, 136], as well
as numerical evidence for non-additive hard disks presented in Chapter III of
this thesis, suggest that the vibrational entropy contribution is much smaller
than the configurational entropy contribution at large pressures. Therefore,
wherever possible, random tiling regions, depicted as hashed rectangles in the
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phase diagram, should be preferred, on thermodynamic grounds, compared with
phase separated coexistences at infinite pressure.

I.4 Random tiling quasicrystals

Because Floppy-Box Monte Carlo simulations use periodic boundary conditions
to simulate crystal unit-cells, they are unable to directly provide quasicrys-
talline candidate phase, which, by definition, have no such thing as a unit-cell.
However, quasicrystals can be found, hidden in the random tiling regions.

A random tiling is an ensemble of tilings that cover a space with a set of tiles,
without gaps or overlaps. In the square-triangle random tiling of the 2D plane,
as the proportion of small disks xS varies, the ratio of the number of squares
Nsq and triangles Ntr changes. When Nsq/Ntr =

√
3/4, the random tiling

ensemble reaches a maximum entropy meaning that the number of tilings in the
ensemble, or equivalently the number of possible configurations for the squares
and triangles, is the highest. At this point, the random tiling ensemble forms
a so-called random-tiling quasicrystal of 12-fold symmetry [61, 62, 138–140].
Typical tilings in this ensemble exhibit quasi-long-range order with algebraically
decaying diffraction peaks at the positions of the 12-fold symmetric Bragg peaks
of a dodecagonal quasicrystal, along with some diffuse scattering [74].

Hence, in our phase diagram, random tiling quasicrystals can be found at
the specific composition that gives the right numbers of squares and triangles
in the random tiling regions. The quasicrystal compositions have been marked
in red in Fig. I.4 for each random tiling region.

The random tilings in Fig. I.4 are only square-triangle tilings when the size
ratio q exactly corresponds to the magic ratio for either S2 or S1. In all other
cases, the squares are deformed into rhombi. The resulting random tiling is a
continuous deformation of a square-triangle tiling, but no longer possesses its
12-fold symmetry.

The coexistence of the newly identified S4 and T1 yields a rhombus-triangle
random tiling, with an associated quasicrystal. The Floppy-Box simulations also
revealed more optimally packed deformation paths for T2, T3 and S2 phases,
that modify the extent of the stability regions in their vicinity. This causes the
coexistence of the new S2 deformation with HexL to be more stable than T1 at
xS = 2/3, revealing a narrow rhombus-triangle random tiling region and hence
a quasicrystal. In total, we find 4 different types of random tiling quasicrystal
regions, obtained from S1-HexL, T1-HexL, S2-HexL and S4-T1 coexistences, at
compositions

√
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√
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√
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√
3)/(6 + 8

√
3) ≈ 0.812 respectively.

I.4.1 Entropic quasicrystal locking

Neglecting the vibrational entropy contribution ∆S∞
vib, in the limit of infinite

pressure, the free-energy difference between the phase separated coexistence of
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RTQC

S1

HexL  + RTQC

RTQC + 
S1

Figure I.8: Common tangent construction for additive hard disks at q =
√
2−1,

considering the relative stability of the HexL, S1 and quasicrystalline phases, as
well as the random tiling (black line). Because the tiling entropy is not concave,
coexistences of the quasicrystal with either HexL or S1 are entropically favoured
over a fully random tiling involving all particles.

HexL and the random tiling of squares and triangles is simply

∆G = −TSconf,

with Sconf the configurational entropy of the tiling, i.e., up to a multiplica-
tive Boltzmann constant factor, the number of ways one can randomly arrange
squares and triangles in the tiling. This entropy was first estimated with trans-
fer matrix [138, 141] and numerical [59] approaches, before exact analytical
expressions were obtained with a Bethe ansatz [61, 62].

In Figure I.8, we plot the free-energy difference per particle ∆G/N at q =√
2−1 for compositions between xS = 0 (only large disks, pure HexL phase) and

xS = 0.5 (only squares, pure S1 phase), using data from Ref. 62. Strikingly,
the free-energy difference is not convex. Hence, when performing a common
tangent construction as described in section I.2.2, we find that the stable phase
for xS ∈

]
0,
√
3/(2 + 2

√
3)
[
is a coexistence of a hexagonal close packing of large

disks with the random tiling quasicrystal, and a coexistence of the random tiling
quasicrystal with S1 for xS ∈

]√
3/(2 + 2

√
3), 0.5

[
. The system can achieve

a greater configurational entropy by forming a highly entropic random tiling
quasicrystal, and expelling the excess tiles (HexL triangles or S1 squares) in zero-
entropy coexisting crystal phases rather than by completely mixing all available
squares and triangles4. Therefore, at least at infinite pressure, the quasicrystal

4Interestingly, although one can tile the entire plane with squares and triangles, it is not
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is a proper, well defined phase, with first-order purely entropic phase transitions
to other phases[61, 62, 141].

Since rhombus-triangle tilings are isomorphic to square-triangle tilings, they
have the same configurational entropy. Hence, this arguments holds similarly
for random tilings regions identified in the phase diagram of Figure I.4.

I.5 Effects of non-additivity

We now turn our attention to non-additive binary hard-disk mixtures, focusing
on non-additivity parameters ∆ = −0.03,−0.05 and − 0.1. The corresponding
phase diagrams are presented in Figure I.9.

In addition to the non-additive versions of the phases in Figure I.2, using
Floppy-Box Monte Carlo simulations, we find three new candidate structures
depicted in Figure I.10 that are not stable with additive disks.

7

square-triangle tiling, but no longer possesses its 12-fold
symmetry. Note, for example, that random tiling pieces
displayed in Fig. 5 are isomorphic.

The coexistence of S4 and T1 yields a new rhombus-
triangle random tiling, with an associated quasicrys-
tal. The FBMC simulations also revealed more op-
timally packed deformation paths for T2, T3 and S2
phases, that modify the extent of the stability regions
in their vicinity. In particular, the coexistence of the
new S2 deformation with HexL is more stable than T1 at
xS = 2/3, revealing a narrow rhombus-triangle random
tiling region and hence a quasicrystal. In total, we find
4 different types of random tiling quasicrystal regions,
obtained from S1-HexL, T1-HexL, S2-HexL and S4-T1
coexistences, at compositions

√
3/(2 + 2

√
3) ≈ 0.317,

2
√

3/(2 + 3
√

3) ≈ 0.481, 4
√

3/(2 + 5
√

3) ≈ 0.650 and

(4 + 7
√

3)/(6 + 8
√

3) ≈ 0.812 respectively. Deformation
paths of all the stable phases can be found in the SI.

We would like to point out that we have only inves-
tigated size ratios q ≥ 0.05, and compositions below
xS ≤ 11/12 ' 0.917. This likely leads to some missed
structures in the top left corner of the phase diagram.
In this regime, we expect that the phase diagram gets
more and more complicated for more extreme size ratios
and large fractions of small disks20. Moreover, explor-
ing this is computationally expensive (due to large unit
cells), and not necessarily likely to include interesting re-
sults. As such, we have avoided this regime of the phase
diagram.

V. BINARY NON-ADDITIVE HARD DISK MIXTURES

We now turn our attention to non-additive binary
hard-disk mixtures, focusing on non-additivity param-
eters ∆ = 0.03, 0.05 and 0.1. The corresponding phase
diagrams are presented in Fig. 6.

One of the most immediate effects of non-additive oc-
curs on the right-hand side of the phase diagram. While
for additive disks, this region is dominated by a phase
separation between large disks and small disks hexag-
onal crystals, non-additivity allows denser packings for
high size ratios. One of these phases, H4, was not ob-
served at all in the additive case. The repeating unit of
this lattice is presented in Fig. 7-right. The others can
be seen as variations of the H1 and H2 phases, deformed
such that the lattice is approximately a hexagonal crystal
of small disks with part of the particles replaced by large
disks. At the exact size ratio where the contact distance
between a large and a small disk ((1 − ∆)(σS + σL)/2)
is equal to σS , the large spheres can be placed randomly
inside the hexagonal crystal of small spheres with no ad-
ditional volume cost, leading to another zone of lattice
gas. However, for values of q slightly away from this
magic ratio, deformations of the hexagonal lattice make
this random placement unfavorable and the best-packed
crystal remains periodic.

In addition to the changes at high values of q, two new

H4

S5
T4

FIG. 7. Repeating units of the T4, S5 and H4 lattices at (q =
0.344,∆ = 0.1), (q = 0.337,∆ = 0.1) and (q = 0.905,∆ =
0.05) respectively. These structures are only stable for non-
additive hard disks.

phases, T4 and S5, are found stable at smaller size ratios.
These lattices are depicted in Fig. 7. T4 and H4 cannot
exist without non-additivity, while S5 can, but turns out
to not pack efficiently enough to be stable in the additive
case.

In Fig. 7, two global trends are observed as ∆ is in-
creased. First, most phases can be seen as small disks en-
closed into shells of large ones (see Fig. 3). These phases
quickly become unstable as q increases beyond the point
where the (cluster of) small spheres fit into the holes left
by the large ones. Non-additivity mitigates the inflation
of the small disk clusters as q grows, which causes an
overall shift of the phase diagram towards larger size ra-
tios. Second, non-additivity favors phases with a large
number of contacts between large and small disks, such
as T1, S1, S2, H1 and H2. Those phases gradually take
over larger and larger portions of the phase diagram.

Another interesting effect of non-additivity is the ten-
dency to promote random lattice gas and random tiling
regions. In Fig. 8, we plot the evolution of the phase dia-
gram with ∆ at a fixed composition xS =

√
3/(2+2

√
3) ≈

0.317 equal to the composition where quasicrystal for-
mation is expected19. In this way, we can, for example,
follow the growth of the S1-HexL quasicrystalline region.
As ∆ increases, S1 is one of the few remaining stable
phases, along with T1 and H2. This results in a signif-
icant growth of the range of q over which the S1-HexL
quasicrystal is stable. In contrast, as seen in Fig. 6, the
random tiling regions involving S4 and T1, and S2 and
HexL vanish for these values of ∆.

VI. CONCLUSIONS AND DISCUSSION

We have systematically explored the infinite-pressure
phase diagram of additive and negatively non-additive bi-
nary hard disk mixtures in two dimensions. These phase
diagrams can serve as useful guidelines for targeted 2D
self-assembly experiments, since many building blocks
comprising a hard core will behave as hard particles when
compressed to sufficiently high densities. In the case of
additive hard disks, our phase diagram expands on ear-
lier work19 by incorporating several new stable phases
(see S3, S4, Sh1 in Fig. 3), as well as better-packed de-

Figure I.10: Repeating units
of the T4, S5 and H4 phases at
(q = 0.344, ∆ = −0.1), (q =
0.337, ∆ = −0.1) and (q =
0.905, ∆ = −0.05) respectively.
These structures are only stable
for non-additive hard disks.

One of the most immediate effects of non-
additivity occurs on the right-hand side of the
phase diagram. While for additive disks, this
region is dominated by a phase separation be-
tween large disks and small disks hexagonal
crystals, non-additivity allows denser pack-
ings for high size ratios. One of these phases,
H4, was not observed at all in the additive
case. The repeating unit of this lattice is
presented in Figure I.10-right. The others
can be seen as variations of the H1 and H2
phases, deformed such that the lattice is ap-
proximately a hexagonal crystal of small disks
with part of the particles replaced by large
disks. At the exact size ratio where the con-
tact distance between a large and a small disk
((1+∆)(σS +σL)/2) is equal to σS , the large
spheres can be placed randomly inside the hexagonal crystal of small spheres
with no additional volume cost, leading to another region of lattice gas. How-
ever, for values of q slightly away from this magic ratio, deformations of the
hexagonal lattice make this random placement unfavourable and the best-packed
crystal remains periodic.

In addition to the changes at high values of q, two new phases, T4 and S5,
are found stable at smaller size ratios. These structures are depicted in Figure
I.10. T4 and H4 cannot exist without non-additivity, while S5 can, but turns
out to not pack efficiently enough to be stable in the additive case.

In Figure I.9, two global trends are observed as ∆ is increased. First, most
phases can be seen as small disks enclosed into shells of large ones (see Fig. I.2).
These phases quickly become unstable as q increases beyond the point where

possible to have these coexistences without a volume cost (gaps) at the boundary [140].
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Figure I.9: Infinite pressure phase diagrams of binary non-additive hard disks
mixtures for ∆ = −0.03 (top), ∆ = −0.05 (middle) and ∆ = −0.1 (bottom).
The overlap between large and small disks allowed by the non-additivity is
represented in each case for q = 0.2, 0.5 and 0.8.
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Figure I.11: Evolution of the phase diagram as a function of the non-additivity
parameter ∆ ∈ [−0.1, 0] at fixed composition xS =

√
3/(2 + 2

√
3) ≈ 0.317

where the S1-HexL quasicrystal is stable. At this composition, no pure periodic
phase is stable, and the phase diagram consists of coexistences between HexL
and other phases. For clarity, we only display the name of the pure phase in
coexistence with HexL in the labels. As in previous diagrams, the dotted region
highlights the random lattice gas and random tiling regions are hashed.

the (cluster of) small spheres fit into the holes left by the large ones. Non-
additivity mitigates the inflation of the small disk clusters as q grows, which
causes an overall shift of the phase diagram towards larger size ratios. Second,
non-additivity favours phases with a large number of contacts between large
and small disks, such as T1, S1, S2, H1 and H2. Those phases gradually take
over larger and larger portions of the phase diagram.

Another interesting effect of non-additivity is the tendency to promote ran-
dom lattice gas and random tiling regions. In Figure I.11, we plot the evolution
of the phase diagram with ∆ at a fixed composition xS =

√
3/(2+2

√
3) ≈ 0.317

equal to the composition where the pure HexL-S1 quasicrystal is stable. In this
way, we can, for example, follow the expansion of the S1-HexL quasicrystalline
region. As ∆ decreases, S1 is one of the few remaining stable phases, along
with T1 and H2. This results in a significant enhancement of the range of size
ratios over which the S1-HexL quasicrystal is stable. In contrast, as seen in Fig.
I.9, the random tiling regions involving S4 and T1, and S2 and HexL vanish for
these values of ∆.

Despite our systematic search for candidate crystal structures, it is impossi-
ble to exclude the possibility that additional, better packing crystal structures
are possible in these systems. As we limit ourselves here to unit cells containing
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at most 12 particles, we miss all possibly densest structures with more complex
unit cells.

Nevertheless, this study shows that simple packing considerations combined
with configurational entropy are sufficient to stabilise quasiperiodic order in
random tilings in the infinite pressure limit. 3D effects occurring in experimen-
tal self-assembly at interfaces, modelled here with non-additivity, enhance the
stability region of the S1-HexL dodecagonal quasicrystal. The results of this
Chapter are summarised in Reference 142.

The phase diagrams presented here are obtained in the infinite pressure
limit. At finite pressures, particles can vibrate around their equilibrium posi-
tion. This provides an extra source of entropy, which should simplify the phase
diagram considerably, as some structures are expected to rapidly lose stability
to other phases favoured by entropic considerations. On the other hand, nu-
merical measurements of entropy are challenging and require quite advanced
simulation techniques. Before diving into this topic in Chapter III, we will ex-
plore the finite pressure phase behaviour of the non-additive hard disk mixtures
with direct self-assembly simulations in the next Chapter.
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We thank Thomas Fernique for many interesting discussions and inputs on the
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Chapter II

Finite pressure
self-assembly

In Chapter I, we showed that binary mixtures of non-additive hard disks exhibit
a remarkably rich phase behaviour in the limit of infinite pressure. In particular
several quasicrystalline phases are stable in this limit.

In practice however, self-assembly always takes place at finite pressures,
when particles can diffuse to reach their equilibrium position. In this chapter, we
want to look at the self-assembly of binary mixtures of non-additive hard disks,
at finite pressure. To this end, we simulate large systems and directly study
their self-assembly. In these numerical experiments, we focus on the special
values of the non-additivity parameter ∆ that correspond to an equivalent 3D
geometry of spheres lying on a planar substrate.

As the mixture parameters are varied, we observe the direct self-assembly of
several solid structures already observed in the infinite pressure limit. In particu-
lar, the dodecagonal random tiling quasicrystal of S1 squares and HexL triangles
turns out to self-assemble spontaneously at finite pressures, for a range of size
ratios and compositions. Finally, we report the self-assembly of an unexpected
octagonal random tiling quasicrystal that was not foreseen in the infinite pres-
sure exploration. This quasicrystal with eight-fold symmetry can self-assemble
in a wide range of compositions by continuously adapting the relative concen-
tration of tiles in its underlying random tiling. We use the high-dimensional
representation of quasicrystals to study this new structure.

II.1 Numerical experiments

II.1.1 Spheres on a plane

At infinite pressures (see Chapter I), binary mixtures of non-additive hard disks
in the thermodynamic limit were fully described by the size ratio of the disks
q, the number fraction of small disks in the mixture xS , and the non-additivity

45
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parameter ∆. Here, the pressure (or packing fraction) becomes an additional
relevant parameter, and it is no longer tractable to study the systems as all four
parameters are independently varied.

Instead, we focus on the specific case of hard spheres of two different sizes
constrained to lie on a flat plane. This geometry is motivated by self-assembly
experiments of colloids on a substrate [106, 107], and might even provide valu-
able insights into the phase behaviour of out-of-equilibrium quasi-2D granular
systems [143, 144]. As illustrated in Figure II.1 and already discussed in Sec-
tion .6.2, binary mixtures of hard spheres on a plane can be mapped onto an
equivalent 2D system by looking at the projection of the system on the plane,
where spheres become disks. As the particles are constrained to move in only
two dimensions, the disks corresponding to spheres of equal size cannot over-
lap, and hence interact simply as hard disks. However, for spheres of different
sizes, a small amount of overlap of the 2D projections of the particles is allowed.
Specifically, in the 2D projection, the distance of closest approach between a
large particle of diameter σL and a small particle of diameter σS lying on the
same plane is given by the geometric mean of their diameters σLS =

√
σLσS .

σL σLS σS

Figure II.1: Schematic depiction of
the model. 3D hard spheres lying on a
flat surface (top) can be interpreted as
an equivalent 2D system of non-additive
hard disks (bottom). Spheres of the
same type behave like standard hard
disks (their projections cannot overlap),
while the closest projected distance be-
tween particles of different types σLS is
smaller than the sum of the radii.

Focusing on the configuration of
spheres lying on a plane amounts to
imposing the relation (II.1) between
the size ratio q and the non-additivity
parameter ∆ defined in Section .6.2.

∆ = ∆plan(q) =
2
√
q

1 + q
− 1 (II.1)

Then, the phase behaviour of a mix-
ture of NL large spheres and NS small
spheres confined to a substrate of area
A is controlled by only three param-
eters: the size ratio q = σS/σL, the
composition parametrised by the frac-
tion of small spheres xS = NS/(NL+
NS), and the packing fraction η =
(NSσ

2
S + NLσ

2
L)π/4A, which corre-

sponds to the area fraction occupied
by the equivalent 2D disks. Since
some overlap is allowed between dif-
ferent species in the 2D projection,
the total packing fraction may exceed
1 in some cases.

II.1.2 Event-driven molec-
ular dynamics

To study the self-assembly of the mixtures, we perform event-driven molecu-
lar dynamics (EDMD) simulations in the canonical ensemble, i.e. at constant
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number of particles N , volume V , and temperature T . In traditional molecular
dynamics simulations, one specifies the interaction potential between the parti-
cles and computes the force acting on every particle in the system at each time
steps. The equations of motion are then numerically integrated using a carefully
chosen finite difference scheme to advance the system to a new configuration a
small time step further [145, 146].

For systems with hard interactions however, the forces are singular: the
particles feel no force at all until they collide. This breaks the standard molec-
ular dynamics approach, but allows for a very efficient alternative simulation
method called event-driven molecular dynamics (EDMD). Indeed, between two
collisions, the particles move along straight lines at constant velocity and it is
easy to compute the exact time of future collisions. The event-driven algorithm
is the following:

1. Prepare a system with initial positions and velocities.

2. Predict the time of the collisions that will occur in the futur.

3. Jump straight to the time of the earliest collision, and update the velocities
of the colliding particles using conservations of energy and momentum.

4. Repeat from 2.

The method is named event-driven because time progresses by jumps of
variable size from a collision event to the next, rather than by small fixed
time increments. Several optimisations can be made to store the event list
in an efficient data structure, or predict only the relevant collisions [147–151].
For hard-sphere systems, event-driven molecular dynamics simulations are ex-
tremely efficient and typically much faster than simple Monte Carlo schemes,
especially at the relatively large densities relevant to the study of solids [152].

The simulation code used is a variant of the simulation code provided in
Reference 151, which was adapted to non-additive hard disks in two dimensions.
Initial configurations are obtained by starting in a dilute state at the desired
composition, and then performing an EDMD simulation in which the particle
diameters grow until the desired packing fraction is reached [151].

II.2 Self-assembly results

II.2.1 Infinite pressure

Even for simple binary mixtures in 2D, the number of different ordered struc-
tures that can emerge can be quite large and difficult to enumerate. To obtain
an impression of the structures we might expect to find, we first compute the
phase diagram of the system in the limit of infinite pressure using the procedure
presented in Chapter I. Instead of a fixed non-additivity parameter ∆, we use
the size ratio dependant ∆plan of equation (II.1). The resulting phase diagram
in shown in Figure II.2.



48 CHAPTER II. FINITE PRESSURE SELF-ASSEMBLY

Figure II.2: Infinite-pressure phase behaviour of binary mixtures of spheres on
a flat plane, as a function of the size ratio q and fraction of small particles xS .
Phases are labelled following the naming scheme of References 142 and 74. The
white regions correspond to coexistences between the phases directly above and
below. The hashed and dotted areas indicate regions where these two phases
can form random tilings or a lattice gas, respectively. Examples of finite patches
of the three possible random tilings, corresponding to the hashed regions in the
diagram, are displayed on the right.
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For each binary phase in Figure II.2 we also depict the repeating unit that
can be used to construct the crystal phase. We obtain again lattice gas and
random tiling regions discussed in Section I.3.1. The dodecagonal random
tiling quasicrystal described in section I.4 made of S1 squares and HexL tri-
angles is still stable for the geometry of spheres on a plane, at its composition
xS = (3 −

√
3)/4 ≃ 0.317 [59, 74, 140, 142]. Two closely related tilings, also

illustrated in Figure II.2 are found at lower size ratios. As a result, one in-
triguing prediction from Figure II.2 is the possibility of a 12-fold quasicrystal
self-assembling from simple binary mixtures of hard colloidal spheres on a sub-
strate at infinite pressure.

II.2.2 Finite pressure self-assembly

In practice, the infinite-pressure phase behaviour is not a reliable indication for
the phases one might find in a real self-assembly experiment. Self-assembly in
a colloidal system takes place at finite pressure, where contributions from the
vibrational entropy to the free energy of different solid1 phases can fundamen-
tally change the phase behaviour. Moreover, dynamical arrest or competition
with other candidate phases can prevent the reliable formation of a structure
even if it is thermodynamically stable.

Hence, for a more realistic look at the self-assembly, we perform event-driven
molecular dynamics simulations in the canonical ensemble, i.e. at constant
number of particles N , volume V , and temperature T on an extensive grid of
state points spanning size ratios 0.25 ≤ q ≤ 0.75 in steps of 0.05, composi-
tions 0.05 ≤ xS ≤ 0.95 in steps of 0.05. The packing fraction η ranged from
0.7 to up to 1.0 in steps of 0.01, where we only considered state points where
the growing-particle simulations were able to rapidly reach the desired packing
fraction without jamming. In other words, we assume that at packing fractions
where jamming occurs during our initial compression, the system would likely
be too densely packed to observe self-assembly on a reasonable time scale. The
initial configurations contain NL + NS = 2000 particles. Each self-assembly
simulation is allowed to run for at least 106τMD, with τMD =

√
mσ2

L/kBT our
simulation time unit, m the mass of a particle2, σL the large-particle diameter,
and kB Boltzmann’s constant. Subsequently, longer simulations were performed
for state points where self-assembly was considered likely to occur on a reason-

1The Mermin-Wagner theorem forbids the existence of long-range translational order in
2D at finite pressure[153]. The proof given in Ref. 153 requires some assumptions on the in-
teraction potential which are quite general but nonetheless excludes hard interactions. How-
ever, long wavelength density fluctuations caused by the Mermin-Wagner instability have
been measured both in colloidal self-assembly experiments and hard disks simulations [154].
Hence, strictly speaking, there are no crystals at finite pressure and we instead name the
self-assembled structures solids which can have quasi-long-range translational order and long-
range orientational order. Interestingly, while for hard condensed matter systems, samples of
cosmological size would be required to detect the very weak effects of the Mermin-Wagner in-
stability [155, 156], it becomes measurable in the dynamics of only a few thousands of particles
in soft matter systems [154].

2Since the equilibrium phase behaviour of the system does not depend on the mass of the
particles, we chose them equal for both species.
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Figure II.3: Self-assembly summary for binary mixtures of spheres on a flat
plane, as a function of the size ratio q and fraction of small particles xS . For
each combination of q and xS , we perform simulations at a range of different
packing fractions, and report the observed phases. A coloured point in the phase
diagram indicates the self-assembly of the corresponding phase. At state points
where no point is shown, no crystallization was detected. For each binary crystal
phase, we include a typical snapshot and the scattering pattern that results from
a Fourier transform of the positions of the large spheres. For the QC8 phase,
we include two snapshots: one containing a large concentration of S1 squares
(top middle) and one containing a large concentration of S2 squares (top right).
HexL and HexS are hexagonal crystals consisting of only large or small spheres,
respectively, and are not depicted.
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able time-scale based on the final configurations of the first simulations. For
each simulation, we measure the two-dimensional structure factor of the final
configuration by computing

S(k) =
1

N

∣∣∣∣∣
N∑

n=1

exp(ik · rn)
∣∣∣∣∣
2

. (II.2)

where k is an allowed wave vector in the periodic simulation box, and rn is the
position of particle n. Up to a multiplicative factor, the static structure factor is
identical to the diffraction pattern that would be obtained in a diffraction exper-
iment for instance. Hence, it is very useful for detecting crystallisation, which
manifests itself by the appearance of sharp peaks in the diffraction pattern.
Disordered structures exhibit only ring, liquid-like structure factors.

The self-assembly results are summarized in Fig. II.3. The central diagram
reports for each investigated combination of q and xS what ordered phases were
observed. We consider a structure to have self-assembled for a given combination
of q and xS when we find significant clusters of the structure in the simulation
box for at least one packing fraction. At state points without an indicated
crystal phase, no crystallization was observed at any of the investigated packing
fractions. For the quasicrystals, local crystalline order is typically hard to see
by eye, and we instead rely on the symmetry of the scattering pattern for our
classification.

The simulations show that a number of the best-packed phases predicted
in Figure II.2 indeed spontaneously self-assemble. Naturally, this includes the
trivial hexagonal solids of the large and small spheres (HexL and HexS) that can
be found at compositions close to xS = 0 and 1, respectively. Additionally, we
observe large-scale self-assembly into the S1 and S3 phases close to the regions
expected from Figure II.2. We also observe the more complex H2 phase, albeit
only in finite clusters – a closer inspection of the systems where these form
show a very low overall mobility of the system, suggesting that crystallization
of this phase is hindered by slow dynamics. For sufficiently low q, the system
nearly always forms a hexagonal lattice of large spheres, with the small spheres
interspersed between them (labelled HexS

+). Depending on the composition,
this may look similar to the T1 phase (as depicted in the sample snapshot in
Figure II.3), but the number of small spheres per triangular cavity in the lattice
of large spheres appears to continuously depend on the composition xS . For
xS < 2/3, this simply means that a random selection of the triangular holes are
empty, resulting in a lattice gas or interstitial solid solution [74, 142]. For larger
xS , progressively more small particles are included between the large spheres,
but we observe no clear structural transition between these regimes. Hence, we
choose to collectively indicate this region as HexS

+.
Most intriguingly, in addition to these periodic phases, we also observe the

self-assembly of two distinct quasicrystals, both at size ratios between q = 0.45
and q = 0.55. The dodecagonal quasicrystal (QC12) that appears at low frac-
tions of small spheres is indeed the square-triangle tiling [59, 74, 140, 142] ex-
pected from the infinite-pressure diagram. It is made of regular squares and
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triangles (S1 and HexL tiles). This quasicrystal is analogous to a number of
quasicrystals observed in soft matter systems, including binary Lennard-Jones
mixtures [157], patchy particles with attractive patches [94–96], hard disks with
a square-shoulder repulsion [87, 88], binary mixtures of nanoparticles [50], block
copolymers [49, 85], and soft repulsive colloids [82, 84]. Additionally, various
3D systems have been shown to form quasicrystals consisting of layers of a
square-triangle tiling [38, 91, 158, 159].

II.3 A new octagonal quasicrystal

The second quasicrystal (QC8) has octagonal symmetry and is also a random
tiling quasicrystal. It consists of a mixture of three tiles: isosceles triangles,
small squares, and larger squares. Octagonal quasicrystals are notably rarer
than dodecagonal ones in soft matter, and to our knowledge, this specific qua-
sicrystal with three types of tiles has never been studied before. In this Section,
we examine this new quasicrystal in detail. After verifying that the identified
tiles indeed define a good random tiling model, we propose a lifting to a hy-
perspace of four dimensions for the structure. We then use the lift to derive
a prediction for the tiles concentrations in the perfect octagonal random tiling
quasicrystal and compare it to the values measured in the self-assembled sys-
tems. Finally, we show that the stability of the QC8 can be understood by
simple geometric arguments.

II.3.1 Random tiling reconstruction

The quasicrystalline phases can be rationalised as tilings of the plane by deco-
rated tiles. We find that the structures are predominantly formed of a mixture
of three tiles: the isosceles triangles that appear in the H1 phase, the squares
from the S1 lattice, and the larger squares from the S2 lattice. To identify the
underlying tiling from simulation snapshots, we first create bonds between all
large particles that are closer than 1.7σLL. Since this cut-off distance is larger
than

√
2σLL, crossing bonds are formed inside small S1 squares. We remove

these crossing bonds before further analysis.
The bond network is characterised by the bonds length and angle distribu-

tions, as shown in Figure II.4 for a typical quasicrystal configuration resulting
from self-assembly. In the vicinity of the QC8 region, the bonds length distri-
bution is clearly bimodal. A cut-off is set at the minimum of the distribution
in-between the two peaks, which discriminates between long and short bonds.
Since the cut-off value can vary slightly with the composition and packing frac-
tion of the system, it is determined separately for each simulation snapshot.
The bond angle distribution exhibits 16 sharp peaks. Correlating the orienta-
tion with the bond length shows that short and long bonds each follow a distinct
set of 8 orientations, offset by π/8. Tiles are then reconstructed from cycles,
and sorted by shape and orientation. Two examples of reconstructed tilings are
shown in Figure II.5.
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Figure II.4: Neighbour bonds characterisation in a system of 104 non-additive
hard disks, with size ratio q = 0.5, composition xS = 0.675 and packing fraction
η = 0.86. This system forms an octagonal random tiling quasicrystal. (Left)
Bonds length distribution showing a clear distinction between short and long
populations. The vertical red line highlights the cut-off value obtained as the
minimum in the dip. (Right) Bonds angle distribution. The 16 peaks correspond
to the possible edge orientations in the tiling underlying the reported octagonal
quasicrystal. Short (orange) and long (blue) bonds follow two distinct set of 8
orientations, offset by π/8. Bond angles are relative to the horizontal.

II.3.2 A random tiling model

Before going further in the analysis of the self-assembled structures, we want
to explore the properties of the perfect3 tiling formed by the identified set of
prototiles. By looking at the reconstructed tilings, we identify 12 prototiles of 3
distinct shapes: small squares (2 orientations), large squares (2 orientations) and
isosceles triangles (8 orientations). The two long edges of the isosceles triangles
match the edges of the large squares while the edges of the small squares attach
to the short edge of the triangles. Since the opening angle of the triangles is

π/4, for a long edge length a, the short edges have length
√
2−

√
2a ≈ 0.765a.

The prototiles are depicted in Table II.1.

We want to make sure that the identified set of prototiles defines a proper
random tiling model. In his textbook chapter on random tiling models for qua-
sicrystals [30], Henley defines a random tiling as a set of prototiles and packing
rules that defines an ensemble of allowed configurations with the following two
properties:

1. Structurally distinct tiling configurations are possible. More specifically,
several configurations with different global perpendicular strains are pos-
sible (see section II.3.3 for a discussion of perpendicular strain).

3We call perfect a tiling configuration that covers the plane without gaps or overlaps,
with undeformed tiles. The tilings underlying the self-assembled structures contain a lot of
defects and are thus not perfect. In a random tiling ensemble, as defined in Section I.4, all
configurations are perfect.
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Figure II.5: Self-assembled octagonal random-tiling quasicrystals in mixtures
of 104 spheres on a flat plane, at state points corresponding to the QC8 phase
with different concentrations of large and small squares. The underlying tilings
are highlighted and tiles coloured according to shape and orientation. The
insets show the diffraction patterns, signalling the global 8-fold symmetry. Tile
distributions show that all tile orientations of the same shape appear with similar
frequencies. The bar labelled “Def.” denotes all tiles that could not be classified
as either small square, large square or triangle. The state points are: (Left)
q = 0.5, xS = 0.675 and η = 0.86. (Right) q = 0.55, xS = 0.715 and η = 0.84.
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Figure II.6: Examples of two structurally distinct periodic tilings formed by
the identified prototiles. Thick black lines highlight the unit-cells. The second
tiling contains a finite concentration of octagonal clusters that can appear in
two different orientations.

2. The number of allowed configurations grows exponentially with the size
of the tiling.

The first condition can be checked by constructing two distinct periodic
tilings with the provided set of prototiles. Two such structures are presented in
Figure II.6 for the three-tiles tiling of interest here.

For the second condition, we note that the second example tiling in Figure
II.6 contains a finite concentration of octagonal clusters formed of one small
square and 12 triangles. These cluster can adopt two different orientations
without disrupting the surrounding tiles. In a finite patch of tiling containing N
of these clusters, 2N distinct configurations are possible. If the size of the tiling
patch is doubled, the number of possible configurations grows exponentially to
22N , which verifies the second condition for a random tiling model. Note that
since the entropy is the logarithm of the number of configurations, condition
2 amounts to having a finite configurational entropy per vertex in the random
tiling ensemble. Therefore, our set of three tiles defines a proper random tiling
ensemble.

II.3.3 Lift to four dimensions

As discussed in Section .1, the vertices of a periodic lattice in dimension d
can be indexed with a set of d integers. In contrast, one usually needs more
than d integers to uniquely index all the vertices of a quasicrystal. This suggests
that quasicrystals are linked to periodic lattices in higher dimensions. Indeed, in
general, quasicrystal vertices can be seen as a projection of a higher-dimensional
periodic hyperlattice onto a lower dimensional space [9, 37]. Although this
representation can appear rather artificial at first, it in fact proves very powerful
to analyse quasicrystals, and provides valuable physical insights. Here, we show
how to construct a 4-dimensional lattice that captures the structures of the
octagonal tiling following the procedure outlined in Reference 30.
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The process of linking the vertices of quasicrystal to a set of points in the
lattice of dimension D > d is called lifting [31, 32]. The higher-dimensional
space E (or lift space) can be decomposed into a so-called parallel or physical
subspace E∥ of dimension d, and its supplement E⊥ of dimension D − d = d⊥

call perpendicular subspace.

E = E∥ ⊕ E⊥ (II.3)

A vector in the basis {ei}Di=1 of E can be written as ei =
(
e
∥
i , e

⊥
i

)
with e

∥
i ∈ E∥

and e⊥i ∈ E⊥. The quasiperiodic tiling is then the projection of points of the
D-dimensional lattice on the parallel space.

We start by constructing the parallel components
{
e
∥
i

}D

i=1
of the lift-basis as

the largest4 set of vectors allowing a unique (up to a choice of origin) indexing
of every vertex in the tiling, i.e. such that for every vertex of the tiling with
coordinates x∥,

x∥ =

D∑
i=1

nie
∥
i , ni ∈ Z (II.4)

In the octagonal tiling, each long edge can only lie along one of 4 different

orientations e
∥
1 through e

∥
4, illustrated in Figure II.7-top. Short edges can then

be constructed by taking the difference between two of these vectors (e.g. e
∥
2 −

e
∥
1). As a result, each vertex in the tiling can be written as a linear combination

of an integer number of the four vectors e
∥
i , and hence can be seen as a point

on a lattice in dimension D = 4. It is easily checked that the sum of e
∥
i along

any closed path in the tiling is 0, which ensures that this set of vectors allows
to index all vertices in a unique way, up to a choice of origin [30].

We now construct the perpendicular components
{
e⊥i
}D
i=1

of the lift-basis.
We use the action of transformations on the tiling to constrain the choices of
the perpendicular components. Under a rotation of π/4, the parallel projections
realise the following permutation:

e
∥
1 → e

∥
2

e
∥
2 → e

∥
3

e
∥
3 → e

∥
4

e
∥
4 → −e

∥
1 (II.5)

The rotation by π/4 in the parallel subspace E∥ corresponds to a more general
transformation in the 4-dimensional lift space E, that permutes the basis vectors
ei according to (II.5) without the ∥ superscripts. Hence, the action of the 4D
transformation on the perpendicular subspace E⊥ should again realise the same

4It might happen that all vertices of a tiling can be uniquely indexed by n or m > n
integers. In that case, m should be used. See Ref. [30] for details.
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permutation. Without loss of generality, we fix e⊥1 = (1, 0). Then, we look for
a transformation that will generate the other perpendicular vectors and satisfy
the permutation (II.5) with ∥ superscripts replaced by ⊥. Using a rotation
by π/4 again obviously satisfies the permutation requirement, but results in a
trivial E in which the projections of the 4D lattice on E∥ and E⊥ give the
same tiling, and nothing more is learnt. Therefore, we need to find a different
transformation. Restricting ourselves to rotations, we find that a rotation of
3π/4 satisfies the permutation5. Hence, by applying successive rotations, we
generate the projections of the four basis vectors on the perpendicular space
depicted in Figure II.7-bottom.

e1
⊥

e2
⊥

e3
⊥

e4
⊥

e1
∥

e2
∥

e3
∥

e4
∥

Figure II.7: Pro-
jections of the 4D lift
vectors on the parallel
(top) and perpendicular
(bottom) sub-spaces.

Using this procedure, we recover the vectors that
are traditionally used to lift quasicrystals of the
Ammann-Beenker family [32, 82], to which the QC8
presented here is indeed related as discussed in the
next subsection.

For any tiling made from the prototiles of the QC8
tiling, we can now use the lifting vectors in Figure II.7
to associate each vertex with a point of the 4D lat-
tice. Each tile is lifted to the facet of a corrugated
hypersurface in 4D (a generalisation of the 1D “sur-
face” that represented the Fibonacci sequence in Sec-
tion .1), as illustrated in Figure II.8, whose projection
on the parallel space is the tiling. The perpendicular
space is the orthogonal supplement to E∥ in E. In
the 3D representation of Figure II.8, E⊥ reduces to
the 1D vector space in the ϕ vertical direction.

A tiling is globally uniform when the corrugated
hypersurface is essentially flat, i.e. it follows a hyper-
plane in E [140, 160]. In practice this means that the
tiling looks homogeneous in E∥. In this case, there
is a well-defined average hyperslope between the cor-
rugated surface and the parallel subspace, which is
called the global perpendicular strain. For a tiling in
dimension d lifted to a space of dimension D, the hy-
perslope is a d× (D−d) matrix that encodes how much displacement x⊥ in E⊥

is caused by a displacement x∥ in E∥.

Periodic tilings are globally uniform with non-zero perpendicular strain.
Quasicrystals however have zero global perpendicular strain, which means that
their corrugated hypersurface is essentially parallel to E∥. As a consequence,
the hypersurface is orthogonal to E⊥, and the lifted vertices projections form a
dense set in a finite region of the perpendicular subspace, called the acceptance
region.

The lifted representation of tilings encodes the extra phasonic degrees of

5A rotation of 5π/4 would result in an equally valid set of perpendicular vectors mirrored
about the e⊥1 direction.
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freedom that are specific to quasicrystals. It is also very useful to analyse
them. In particular, in globally uniform tilings, the global perpendicular strain
is directly linked to the concentration of the various types of tiles.

II.3.4 Tile concentrations

Figure II.8: Schematic representation
of a lifted tiling. The bottom flat plane
is the parallel space E∥ in which the
tiling lives. The lifted vertices form a
hypersurface in the lift space, here of
dimension D = 3 to allow representa-
tion. Courtesy of P. Kalugin and A.
Katz, from [160].

In Figure II.5, we show portions of the
final state of two simulated mixtures
of 104 particles, at different state
points. The left one is dominated
by small squares, while the right one,
which contains more small particles,
predominantly contains large squares.
Both systems possess global octag-
onal symmetry as indicated by the
diffraction patterns. The analysis of
the tile orientations shows that for
a given shape – small squares, large
squares and isosceles triangles – all
possible orientations appear roughly
with the same frequency, which is
a common feature of random-tiling
quasicrystals [140]. Random tilings
with the same number of tiles in
all orientations are called maximally
symmetric tilings.

As illustrated in Figure II.5, the
relative concentrations of the differ-

ent tiles in the QC8 phase vary drastically as a function of the fraction of small
spheres in the system. Since the S2 squares contain 4 small particles each, while
the S1 squares only contain a single small sphere, higher compositions xS favour
a larger concentration of S2 squares. For high xS , the QC8 tiling consists almost
purely of large S2 squares and H1 triangles, with the triangles joined in pairs
that form a thin rhombus. In this limit, the tiling can be seen as a mixture of
just two types of tiles – square and rhombic – that are identical to the tiles that
form e.g. the Ammann-Beenker [23, 26] and Watanabe-Ito-Soma [24] octagonal
aperiodic tilings. The same tiling – with different decorations of the tiles with
particles – was previously observed in simulations of soft colloids [82], parti-
cles with an oscillating interaction potential [79, 84], and patchy particles [97].
However, to our knowledge, no octagonal quasicrystal has yet been observed to
spontaneously self-assemble in soft-matter experiments.

On the other hand, at low xS the quasicrystal approaches a tiling of only
H1 triangles and small S1 squares. This can be seen as a separate two-tiles
random-tiling quasicrystal which, to our knowledge, has not previously been
observed in soft matter systems. Interestingly, however, a closely related tiling,
where the isosceles triangles are slightly deformed, was recently conjectured to
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Name Tile Area AXi Hyperslope BXi detBXi

S1 a2
(
1 0
0 −1

)
-1

S2 a2
(
−1 0
0 1

)
-1

s1 (2−
√
2)a2 (1 +

√
2)

(
0 −1
−1 0

)
−3− 2

√
2

s2 (2−
√
2)a2 (1 +

√
2)

(
0 1
1 0

)
−3− 2

√
2

T1,5
1

2
√
2
a2

(
1 −2
0 1

)
1

T2,6
1

2
√
2
a2

(
−1 0
2 −1

)
1

T3,7
1

2
√
2
a2

(
−1 0
−2 −1

)
1

T4,8
1

2
√
2
a2

(
1 2
0 1

)
1

Table II.1: Summary of the 12 different prototiles comprising the QC8 tiling.
The third column reports the area of each tile, assuming that large squares have
edges of length a. The fourth column contains the constant hyperslope of each
tile, i.e. the 2x2 matrix that maps points inside that tile in the original tiling
to the perpendicular space. The last column displays the determinant of the
hyperslope for each tile, which is used to obtain Eq II.11.

be the densest-packed structure for a ternary mixture of hard disks [161].

It is interesting to consider under what conditions the QC8 tiling observed
here can exhibit true 8-fold symmetry. As developed in Reference 140, we use
the lifted representation of the tilings to 4D in order to determine constraints
on the relative concentrations of the different tiles.

For the square-triangle tiling associated with the QC12 phase, it is well
known that global twelve-fold symmetry only occurs under the condition that
the two area fractions of the tiling covered by squares and triangles are the same
and equal to 1/2 [59, 62, 140]. Here, we determine under what conditions the
QC8 phase can exhibit 8-fold symmetry. To this end, we consider a QC8 tiling
consisting of large squares S, small squares s, and triangles T , with long edge
length a. Counting the different orientations, this results in a total of 12 differ-
ent prototiles: two orientations of both types of squares, and 8 orientations of
the triangles. These are listed in Table II.1. We then consider an infinite, glob-
ally uniform tiling consisting of a mixture of these tiles, with the area fraction
covered by each tile type denoted as Σi for the large squares, σi for the small
squares, and τi for the triangles, where i denotes the orientation of the tile.
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The first obvious constraint on our tiling is that it should cover the entire
plane. Hence, the area fractions must satisfy

Σ + σ + τ = 1, (II.6)

where Σ =
∑

i Σi, σ =
∑

i σi, and τ =
∑

i τi.
One set of constraints on these tile concentrations follows from the simple

observation that each edge must have an opposing partner. Considering, for
example, the short edge in triangle T1, this leads to the constraint that

nT1
+ ns1 = nT5

+ ns1 , (II.7)

with nXi denotes the number of tiles of type Xi. This trivially implies that τ1 =
τ5 = τ15/2, and likewise it can be shown that τ2 = τ6 = τ26/2, τ3 = τ7 = τ37/2,
and τ4 = τ8 = τ48/2.

Another constraint on the various tile concentrations can be obtained by
lifting the tiling to four-dimensional space. For this, we follow the procedure
outlined in e.g. [32, 59, 140].

Using the lifting basis constructed in the previous subsection II.3.3 we con-
sider a mapping ϕ(r) that maps each vertex in our original tiling to its corre-
sponding point in the perpendicular space. Within each tile, ϕ(r) is a linear
interpolation between the mapped vertices of that tile. Hence, ϕ is a continu-
ous, piecewise linear function, with a constant hyperslope within each tile. The
hyperslope within one tile is completely determined by the vectors that form
it. Hence, tiles of the same type and orientation have the same hyperslope.
Specifically, within a tile Xi, the hyperslope BXi

is given by:

BXi
=

(
∂ϕx

∂x
∂ϕx

∂y
∂ϕy

∂x
∂ϕy

∂y

)
. (II.8)

In Table II.1, we report the hyperslope for each of the 12 tiles in the QC8 tiling.
In a globally uniform tiling, over long distances r, ϕ(r) has a well-defined

average hyperslope B (also known as the global perpendicular strain), which
can be written as the weighted sum of the hyperslopes of the individual tiles
[140]:

B =

2∑
i=1

ΣiBSi +

2∑
i=1

σiBsi +

8∑
i=1

τiBTi . (II.9)

Following Ref. 140, uniformity of the tiling then imposes that

2∑
i=1

Σi detBSi
+

2∑
i=1

σi detBsi +

8∑
i=1

τi detBTi
= detB. (II.10)

Using the matrices listed in Table II.1, this leads to the following constraint:

Σ + (3 + 2
√
2)σ − τ =(Σ1 − Σ2)

2 + (3 + 2
√
2)(σ1 − σ2)

2 − τ2

+ (2 + 2
√
2)(τ15 − τ26 + τ37 − τ48)(σ1 − σ2)

+ 8(τ15τ37 + τ26τ48). (II.11)



II.3. A NEW OCTAGONAL QUASICRYSTAL 61

This constraint can be regarded as the equivalent of the Nienhuis relation [139]
for the QC12 square-triangle tiling, but for the QC8 tiling.

Assuming that the octagonal tiling is maximally symmetric:

Σ1 = Σ2 =
Σ

2
(II.12)

σ1 = σ2 =
σ

2
(II.13)

τ15 = τ26 = τ37 = τ48 =
τ

4
. (II.14)

When we impose this, the average hyperslope B vanishes (zero perpendicular
strain), and as a result the right-hand side of Eq. II.11 similarly becomes zero,
yielding:

Σ + (3 + 2
√
2)σ − τ = 0. (II.15)

Finally, we can express the area fractions Σ, σ and τ in terms of the particle
composition xS by using the known composition of each tile, combined with
equations II.6 and II.15.

Σ =
2
(
4 + 3

√
2
)
xS − 4

√
2− 5

6− 4xS
(II.16)

σ =
−
(
4 +

√
2
)
xS + 4

6− 4xS
(II.17)

τ =
−
(
8 + 5

√
2
)
xS + 4

√
2 + 7

6− 4xS
(II.18)

In Figure II.9, we draw this prediction together with the measured tile concen-
trations in our self-assembled configurations of 104 particles. In the analysis
of the simulation data, we consider only the portion of the system covered by
the three valid types of tiles and omit all defects. We find that the observed
tile concentrations are essentially independent of size ratio and packing frac-
tions within the investigated regime. Considering the fact that the analysed
configurations were the result of spontaneous self-assembly, and hence contain
significant number of defects, the agreement is excellent, demonstrating that
the system indeed favours tile compositions that correspond to an eight-fold
quasicrystalline symmetry. This suggest that a locking mechanism similar to
the one described in section I.4.1 might also exist for the octagonal quasicrystal.
The locking of the QC8 as a proper thermodynamic phase is bolstered by the
observation of a fluid-QC8 coexistence in some simulations.

II.3.5 Perpendicular space analysis

As explained in subsection II.3.1, we reconstruct the tilings of the self-assembled
system from the large particles bond network. The tiles obtained by joining
the centres of large particles are subject to thermal fluctuation and slightly
deformed. From the reconstructed noisy tiling, we then build an idealised tiling
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Figure II.9: Area fractions of the three different tiles in the QC8 tiling, Σ,
σ, and τ , corresponding to the large squares, small squares, and triangles, re-
spectively. The lines indicate the theoretical prediction on the assumption of
a maximally symmetric and globally uniform eight-fold tiling with no defects.
Points correspond to simulation results at size ratios q = 0.5 (full symbols) and
q = 0.55 (open symbols). Different colours of points correspond to different
packing fractions, with 0.855 ≤ η ≤ 0.87 for q = 0.5 and 0.835 ≤ η ≤ 0.85
for q = 0.55. For the simulation data, we only consider the area covered by
non-defect tiles when calculating the composition xS and the tile area fractions.
At the top, three patches illustrate the evolution of the tilings with the compo-
sition. From left to right: primarily small squares, mixture of small and large
squares and primarily large squares.
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Figure II.10: Parallel (left) and perpendicular (right) projections of the lifted
tiling reconstructed from the last configuration of a mixture of 104 non-additive
hard disks with q = 0.5, xS = 0.675, η = 0.86 and ∆ = ∆plan. The vertices are
coloured according to their distance to the origin in the perpendicular subspace.

Figure II.11: (Top) Tears defects formed in a simple growth model for the
QC12. (Bottom) Schematic representation of the bending of the representative
hypersurface linked to the tear defects. Courtesy of Joseph and Elser, taken
from Ref. 162.
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where are tiles are drawn with their perfect shape, as depicted in Figure II.10-
left.

The idealised tilings contain small defects that are local and do not disrupt
the tiling further away, as well as long defect lines that nucleate at topological
tiling defects and separate islands of tiling. Interestingly these “tears” defects
were previously observed by Joseph and Elser in a simple growth model for the
QC12 tiling of squares and triangles [162] (see Figure II.11-left). They interpret
the tears as bending of the representative hypersurface that eventually forms
several “sheets” as illustrated in Figure II.11-right.

Choosing an arbitrary origin point, every vertex in the idealised tiling can be
indexed by recursively following all links and mapping them to one of the four
vectors of the lift basis of subsection II.3.3. Then, the perpendicular projection
of the self-assembled tiling can be obtained as shown in Figure II.10-right. In
Figure II.10, we colour the vertices of the tiling according to their distance to
the origin in perpendicular space. The vertices form a dense cloud around the
origin in perpendicular space, which is a strong indication of the quasicrystalline
nature of the system. In the parallel projection, larger distance in perpendicular
space correspond to localised tiling islands, separated from the main tiling chunk
by narrow bridges between two tears. This is consistent with Joseph and Elser’s
interpretation of a flaky hypersurface.

The tiling in Figure II.10 was obtained after 5×106τMD molecular dynamics
time units of equilibration. Other tilings at the same state points were obtained
after only 1×106τMD time units. Although a QC8 tiling can be found in each of
them, it seems that the number of defects slowly decreases, and the projection in
perpendicular space gradually becomes denser as the simulation time increases.
Even though we simulated our systems for long times, the high density of solid
phases combined with the inherent slow dynamics of the tiling rearrangements
mean that we probably did not reach the equilibrium state.

This suggests that the quasicrystal formation follows a two-step process,
where first a highly defective tiling rapidly self-assembles, which then slowly
anneals toward a zero-perp strain quasicrystal. This scenario was proposed by
Steurer [56] for the growth of atomic quasicrystals. He suggests that the slow an-
nealing step is energetically driven (by electron interactions in atomic quasicrys-
tals) towards an ideal quasicrystalline ground state. However, in our purely
entropic systems, there is no energy to play that role. Alternatively, Joseph
and Elser suggest that bulk annealing might not be necessary if the growth of
the quasicrystal is sufficiently slow [52, 162]: numerous attachment and detach-
ment events may be sufficient for entropy ensure a defect-free growth. Since
local matching rules cannot enforce defect-free growth in two-dimensional qua-
sicrystals [55], information transfer from the whole quasicrystal to the growing
boundary is necessary. This requires an infinitely slow growth for a macroscopic
quasicrystal, which does not correspond to the rapid self-assembly conditions
observed which are required to observe spontaneous quasicrystal formation in
our simulations. An intermediate picture, where a metastable three-dimensional
dodecagonal quasicrystal grows by incorporating icosahedral clusters that pre-
exist in the fluid phase close to the growing boundary was proposed in Reference



II.3. A NEW OCTAGONAL QUASICRYSTAL 65

163, blurring the distinction between the first and second steps of Steurer’s sce-
nario. We did not look specifically at the growth dynamics of self-assembling
quasicrystals and thus cannot report on the possible pre-existence of stable ele-
mentary tiling units in the fluid. We note that this seems rather unlikely without
energetic interactions though, as there is no cohesive force holding tiles together.
Hence, our simulations seem to follow a scenario similar to the one proposed by
Steurer [56], but where the defects are annealed out by entropy alone. Whether
entropy favours random quasicrystal configurations or a specific ground state is
unclear. This point will be addressed more precisely in Chapter III.

Moreover, since the interactions are purely repulsive, our systems must be
compressed to high density to reach the solid phase. Since we use periodic
boundary conditions for the simulation boxes, the self-assembled quasicrystals
are frustrated. This might explain the relatively high number of defects found
in the self-assembled quasicrystals. Systems with net-attractive potentials can
form solid nuclei in a fluid with a free boundary, upon simple decrease of the
temperature in a low density initial configuration. Quasicrystals of high quality
with few defects are typically formed in this case [78, 99].

II.3.6 Simple geometrical constraints

An intriguing question remains – is there a way to understand why these oc-
tagonal quasicrystals appear in this highly simple system? As stated, the three
prototiles that comprise the tiling are the small S1 square, the large S2 square,
and the H1 triangle. In order to form the observed tilings, these shapes must
have compatible edge lengths on their shared edges. In particular, the shared
edges in the observed tilings are between the large square and the long edge of
the H1 triangle, and the small square and the short edge of the H1 triangle.
As shown in Figure II.12, the long edge of the triangle matches up almost ex-
actly with the edge of a large square for size ratios between 0.5 and 0.6, in the
region where we observe the self-assembly of this phase. Similarly, the short
edge of the triangle and the small square match exactly for size ratios below
q = 2 −

√
2 ≃ 0.59. The fact that a QC8 with mainly small squares is not

observed at size ratios below q = 0.45 can be understood from a packing argu-
ment. As shown in the inset of Figure II.12, when q is decreased below 1/2, the
packing fraction of the triangle tile, which makes up the majority of the QC8
phase, decreases rapidly and drops below that of competing phases, such as the
simple hexagonal lattice.

We also examine here the geometrical constraints in mixtures of additive
hard disks, which cannot overlap (i.e., the non-additivity parameter is ∆ = 0).
The 3D equivalent of this system would consist of spheres whose centres are
constrained to lie in the same plane. Figure II.13 shows the short and long
edge lengths of the square and triangle tiles that can be formed with additive
hard disks. While edge lengths could match for size ratios around q = 0.6,
the inset graph shows that in this regime, the packing fraction of the tiles is
systematically lower than that of hexagonal packing of large and small disks
suggesting that the tiles are not dense enough to be stable in this system.
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Figure II.12: Evolution of the possible long (top) and short (bottom) edge
lengths as a function of size ratio. Matching regions are highlighted with a darker
background. For size ratios between 0.5 and 0.6, long edges of the triangle and
large square tiles on one hand, and short edges of triangle and small square tiles
on the other hand match, thus allowing for the tiles that comprise the octagonal
tiling to mix. The inset of the bottom graph displays the packing fraction of
the three individual tiles, along with that of a coexistence of hexagonal packings
of large and small particles. Self-assembly of QC8 is indeed observed for these
values of the size ratio where edge lengths match and tiles pack better than Hex
phases.
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Figure II.13: Comparison of the long (top) and short (bottom) edge length
of the tiles expected to form an octagonal quasicrystal in binary mixtures of
additive hard disks. Size ratio intervals for which long or short edges match are
highlighted with a darker background. The inset in the bottom graph displays
the packing fraction of the various tiles as a function of size ratio, along with
that of hexagonal packings.
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This observation was confirmed by simulating binary additive hard disk mix-
tures for size ratios between q = 0.4 and q = 0.6 in steps of 0.05, packing frac-
tions between η = 0.7 and 0.9 in steps of 0.02, and compositions ranging from
xS = 0.6 to 0.9 in steps of 0.05. Quasicrystal self-assembly was observed in
none of these simulations, although we cannot exclude the possibility of QC8
formation in longer simulations or different parameter regimes. As suggested
by the above packing argument, many of the systems instead had a tendency to
demix into separate large and small hexagonal domains. This is also consistent
with the sparsity of stable binary crystal structures found at infinite pressure
for additive hard disks in this regime [74, 142].

II.4 Perspectives

In this Chapter, we have explored the self-assembly of binary mixtures of hard
spheres on a flat plane. In addition to a variety of periodic crystals, we found
that this very simple system is capable of forming two different quasicrystal
structures: one dodecagonal, commonly observed in soft matter systems, and
one octagonal which, to our knowledge, is described here for the first time. The
octagonal quasicrystal consists of three distinct tiles, whose relative concentra-
tion can be continuously tuned by manipulating the number fraction of small
spheres in the mixture, while maintaining the octagonal symmetry. Both ob-
served quasicrystals self-assemble rapidly and reliably over a significant region
of parameter space. The tiles proportions in the self-assembled octagonal qua-
sicrystals are in remarkable agreement with theoretical predictions and their
stability can be readily understood from geometrical arguments.

In contrast to most other numerical models that have been shown to form
2D quasicrystals, hard spheres on a flat plane can be easily realized experimen-
tally on the colloidal scale, to the point of quantitative agreement between the
experimental hard spheres and their ideal counterparts [106, 107].

The simplicity of the model allows us to identify minimal ingredients for
quasicrystal self-assembly: dense tiles with matching edges and entropy alone
are sufficient to induce the formation of quasicrystals of different symmetries.
Since many colloidal particles include a repulsive spherical core, these simple
ingredients might explain quasicrystal formation in a broad range of soft matter
systems, beyond hard-sphere colloids alone. This identifies hard spheres on a
plane as a perfect candidate system for tackling fundamental open questions on
quasicrystals, such as the dynamics of their nucleation, growth and annealing,
the role of their unique phason excitations or the dynamics of defects, both
theoretically and in colloidal experiments on the micron scale.

The present work could be extended in several directions. First, further
simple analysis could be performed on the self-assembled quasicrystals. In par-
ticular, since we already have the lifted tilings, their global perpendicular strain
could easily be calculated, and would give an measure of the quality of the
quasicrystalline order on large scales. Since the quasicrystals are frustrated in
periodic boxes though, some residual perpendicular strain may persist, which
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should decrease with the system size. Simple tiling analysis, similar to the one
performed in Ref. 157 could be used to locate precisely disclinations. While
we focused on the surprising QC8 in this study, similar investigation could be
performed on the QC12.

For the QC12 state, Stampfli [27] and Schlottmann tilings provide ideal ref-
erence points. These quasiperiodic tilings can be generated from inflation rules
which prescribe a scheme to replace each tile by inflated versions made of smaller
tiles [28, 140, 164]. The ideal, inflated tilings have the same composition and
similar local environments as the randomised version that are typically found in
self-assembled tilings, but usually exhibit additional self-similarity symmetries.
For the QC8, Ammann-Beenker [23, 25] and Watanabe-Ito-Soma [24] tilings
are related to the extreme composition where the QC8 contains no more small
squares. Preliminary results not reported here suggest that inflation schemes
could be designed to generate octagonal tilings with intermediate compositions,
which could serve as useful reference states to study the properties of the qua-
sicrystal.

The entropy of the QC12 tiling – the number of configurations in the random
tiling ensemble – has been both calculated from simulations, and derived exactly.
As discussed in subsection I.4.1, it allows to understand the locking mechanism
of the quasicrystal phase. Ergodic tiling rearrangements for the QC8 could be
designed to measure the entropy of the tiling numerically, following the method
developed in Reference 59. It would be interesting to see if the entropy has a
cusp similar to that observed in the dodecagonal [61, 62] and another octagonal
tilings [165], and explore the role of the tiling composition.

As discussed in subsection II.3.5, a satisfactory scenario for the nucleation
and growth of quasicrystals driven solely by entropy is still lacking. Melting
in two dimensions is notoriously tricky. For instance, Kosterlitz, Thouless,
Halperin, Nelson and Young (KTHNY) have proposed a special 2D melting sce-
nario involving two continuous transitions with an intermediate hexatic phase
in-between the solid and the fluid [166–168]. This scenario has been partially
verified for the melting transition of hard disks [107, 152, 169, 170], but it was
also shown that addition of ∼ 1% of a second species of disks with a different
size kills the hexatic phase in favour of a first order phase transition between
fluid and solid [171]. In our self-assembly simulations, we observe coexistences
between a fluid and the quasicrystal, so the transition appears to be first order
here.

The QC8 appears as a good candidate to study defects in quasicrystals. It
exhibits disclinations whose dynamics could be followed in the reconstructed
tiling. Moreover, the possibility of continuously changing the tiling composition
by changing the mixture composition brings new puzzles: should a tile that
appears with very small concentration be considered a defect, or a valid tile of
the tiling6?

6The question also arises for the shield “defects” that are commonly observed in QC12.
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The spontaneous self-assembly of dodecagonal and octagonal random tiling
quasicrystals in the simple mixtures of non-additive hard disks shows that this
structures are kinetically accessible. Although it is also a strong indication of
their thermodynamic stability, full free-energy calculations are required to prove
it. This –rather technical– endeavour will be carried out in the next Chapter.
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Chapter III

Thermodynamic stability of
the dodecagonal
quasicrystal

Direct self-assembly simulations provide strong indications about the phases
that are kinetically accessible. However, the self-assembled phases can be meta-
stable, in which case the system will eventually relax into it equilibrium stable
phase1. The determination of equilibrium phase diagrams requires free-energy
calculations for all phases in competition.

This Chapter presents free-energy calculations for binary mixtures of hard
disks, focusing on the region where the dodecagonal quasicrystal is expected.
Numerical free-energy calculations are rather technical, and very often, the devil
hides in the details. Therefore we tend to include more technical details than in
the previous Chapters, including brief reports of failed attempts, with the aim
of saving some time to future investigators.

We first discuss a mean-field cell approximation that allows us a to draw
a first phase diagram. Then, we resort to the more elaborate Frenkel-Ladd
method to compute an essentially exact phase diagram. Finally, we use this
very powerful method to investigate free-energy differences between ideal and
random tiling quasicrystals, which provides a quantitative assessment of the
random tiling hypothesis.

1This might take a very long time. Anecdotally, transition from a metastable crystalline
form into an other, more stable one, caused the withdrawal of Ritonavir, a medicine that
was produced in one crystalline form for two years before a more stable, but less kinetically
favoured one took over the production lines. See https://en.wikipedia.org/wiki/Ritonavi

r#Polymorphism_and_temporary_market_withdrawal.
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III.1 General strategy

The general strategy for free-energy calculations in general is similar to that
described in the Section I.2 of Chapter I for infinite pressure. One first identifies
the relevant competing phases, then compute their free-energy, and finally uses
a common tangent construction to obtain the stable phases and coexistences.
At finite pressure however, two complications emerge.

First, in addition to solid structures, a fluid phase enters the arena. In a
mixture, the fluid phase may exist at all compositions, which complexifies the
common tangent construction, as described in this Section. The calculation of
the fluid free-energy is explained in Section III.2.

Second, in addition to packing constraints which completely dictate the
phase behaviour at infinite pressure, particles in a finite pressure system can
move. This provides an entropy contribution that must be accounted for in the
free-energy. The cell approximation, a mean-field treatment of the entropy is
presented in Section III.3. Then, the essentially exact, more involved Frenkel-
Ladd method is used to compute the free-energy of the solid phases in Section
III.4.

III.1.1 Common tangent construction with fluid

In a system described by pressure/volume, temperature and composition, the
Gibbs rule states that there can be at most P phases in coexistence with

P = C − F + 2, (III.1)

with C the number of components in the system and F the number of intensive
variables fixed in the chosen thermodynamic ensemble. For our binary mixtures
in the isobaric-isothermal (NpT ) ensemble, C = 2 and F = 2, so there can be
at most only P = 2 phases in coexistence.

In addition to the solid structures, a fluid phase can also exist at finite
pressure, whose composition can vary continuously. The common tangent con-
struction described in Section I.2.2 of Chapter I for the special case of solid
phases only can be adapted to deal with the fluid. As depicted in Figure III.1,
in the composition-free-energy plane at a given pressure, the solid phases are
represented by points while the fluid free-energy draws a continuous line. To
find the stable phases at all composition, one simply needs to draw the set of
coexistence straight lines that minimises the free-energy per particle. Doing so,
coexistence lines with the fluid always end-up tangent to the fluid curve.

III.1.2 State point choice

Free-energy calculations are computationally demanding. Hence we focus on
binary mixtures of non-additive hard disks that correspond to the equivalent
3D geometry of spheres on a plane, with size ratio q = 0.46 and non-additivity
parameter ∆ ≈ −0.0709. As shown in Figure III.2, at this point, the system lies
close to the low-q limit of the random tiling region at infinite pressure, where the
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Fluid
Fluid + RTQC RTQC + S1 S1 + Fluid Fluid

Figure III.1: Common tangent construction (red line) for a mixture of non-
additive hard disks at pressure 11 kBTσ

−2. Solid phases are represented by
single points at their composition while the fluid can exist for the full range
of compositions. The free-energy of the HexL + HexS coexistence has been
subtracted on the y-axis for clarity. The black labels signal the stable phase
or coexistence for each composition. Solids and fluid free-energies are obtained
from the cell approximation and thermodynamic integration of Santos [173]
equation of state respectively (see next Sections).

dodecagonal random tiling quasicrystal is expected (see Chapter I). We expect
that keeping small particles as small as possible might help them escape the S1
squares centre, which should ease tiles rearrangement and speed-up the random
tiling dynamics.

The chosen state point lies within the region where the dodecagonal qua-
sicrystal is found to spontaneously self-assemble in simulations as was shown
in Figure II.3. We limit the free-energy investigation to the region relevant to
this quasicrystal which is related to quasicrystals observed in many other soft
matter systems [38, 49, 50, 82, 84, 85, 87, 88, 91, 94–96, 157–159], and leave
aside for now the more complicated and exotic octagonal quasicrystal. Hence,
we will only consider mixtures with small particle concentrations xS ≤ 1/2.

We draw relevant competing phases for the phase diagram construction from
the results of our infinite pressure and self-assembly studies presented in the
previous Chapters. In addition to the fluid, we consider the hexagonal close
packings of large and small spheres HexL and HexS, the S1 square phase, the
quasicrystal and its first periodic approximant called the sigma-phase.

III.2 Fluid free energy

The standard method to compute the free-energy of fluids is the so-called ther-
modynamic integration of an equation of state.
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III.2.1 Thermodynamic integration

0.40 0.45 0.50 0.55
Size ratio q

−0.10

−0.08
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−0.02

0.00

∆

Limit of RT region

∆plan

Figure III.2: Non-additivity parameters that
correspond to spheres-on-plane geometry (red
line). The orange point highlights the size ratio
chosen for free-energy calculations, at the low-q
boundary of the infinite pressure random tiling
region (dashed lines).

In the canonical ensemble,
the pressure p is related to the
Helmholtz free energy F by(

∂βF/N

∂ρ

)
N,T

=
βp

ρ2
,

(III.2)
with ρ

.
= N/V the particles

density, β
.
= (kBT )

−1, kB
the Boltzmann constant and
T the temperature.

The general idea of ther-
modynamic integration is to
integrate equation III.2 to ob-
tain the free-energy difference
between the system at a ref-
erence density where the free-
energy is known and the den-
sity of interest [174]. This
assumes that no first-order
phase transition takes place
along the integration path. In

general, for fluid states, the ideal gas provides a good reference state in the limit
ρ → 0.

Applying equation III.2 to the excess free energy (free-energy difference with
the ideal gas) of a binary mixture gives

∂β(F − F id)/N

∂ρ
=

β(p− pid)

ρ2
, (III.3)

where βF id/N = ln(ρΛ2
T )−1+xS ln(xS)+(1−xS) ln(1−xS) is the free energy

of the binary ideal gas mixture. ΛT
.
=
√
2πℏ2βm−1 is the thermal wavelength

with ℏ the reduced Plank’s constant and m the mass of the particles, taken
equal for both species without loss of generality for the equilibrium properties.
Then we integrate up to target density ρ. The boundary term at ρ = 0 of the
left-hand-side vanishes since in this limit, the mixture of hard disks becomes an
ideal gas:

βF (ρ)

N
− βF id(ρ)

N
=

∫ ρ

0

dρ′β
p− pid

ρ′2

βF (ρ)

N
= ln

(
ρΛ2

T

)
− 1 + xS ln(xS) + (1− xS) ln(1− xS)

+

∫ ρ

0

dρ′

ρ′

(
βp

ρ′
− 1

)
. (III.4)
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The first four terms on the right-hand-side correspond to the free-energy of
the two-components perfect gas at density ρ and composition xS , including the
mixing entropy term2. In the following, we set ΛT = σL which amounts to
fixing the particle mass. Since the particle mass has no impact on the equilib-
rium phase behaviour, this arbitrary choice does not affect the generality of the
calculations.

The Gibbs free-energy G is obtained from the Helmholtz free-energy F by
simply adding a pressure term where ρ(p) is the inverted equation of state:

βG(N, p, T )

N
=

βF (N,V, T )

N
+

βp

ρ(p)
. (III.5)

To compute the integrand in the last term of equation III.4 one needs an equa-
tion of state p(ρ). It can be obtained from an approximate analytical expression,
or directly measured in computer simulations.

III.2.2 Obtaining an equation of state

Approximate analytical expression

For many systems, analytical expressions for the equation of state in the fluid
range have been determined. They are usually easily integrated with simple
numerical schemes and computationally cheap to evaluate. The main drawback
is that analytical equations of state are almost always approximate, and usually
do not perform well at high densities close to freezing.

An approximate analytical equation of state for mixtures of non-additive
hard spheres in dimension d has been derived by Santos, de Haro and Yuste
(SHY) [173]. We report here the closed expression for the specific case of binary
mixtures in dimension 2 which is not completely trivial to obtain from the
general expressions:

βpSHY

ρ
= 1 +

η

1− η

b3⟨σ2⟩B2 − b2B3

(b3 − b2)⟨σ2⟩2

+(Zpure(η)− 1)
B3 − ⟨σ2⟩B2

(b3 − b2)⟨σ2⟩2 . (III.6)

with ⟨σ2⟩ .
= xSσ

2
S + (1− xS)σ

2
L and η

.
= πρ⟨σ2⟩/4 the packing fraction. b2

.
= 2

and b3
.
= 16/3 − 4

√
3/π are the second and third reduced virial coefficients of

the one-component hard-disk fluid. Bn
.
= (4/π)n−1Bn with Bn the nth virial

coefficient of the non-additive binary mixture. The second and third virial

2The mixing entropy term has infinite derivatives at xS = 0 or 1. This turns out to be
very important for common tangent constructions near those extreme values.
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coefficients of the mixture are given by

B2 =
π

2

[
σ2
LL(1− xS)

2 + 2σ2
LSxS(1− xS) + σ2

SSx
2
S

]
B3 =

(π
4

)2 [
BLLL(1− xS)

3 + 3BLSSx
2
S(1− xS)

+ 3 BLLSxS(1− xS)
2 +BSSSx

3
S

]
, (III.7)

with

Biii = b3σ
4
i (III.8)

Biij = b3σ
4
i B
(
σij

σii

)
(III.9)

B(s) = 4

3πb3

[
4πs4 − 8s2(s− 1) arccos

(
1

2s

)
− (2s2 + 1)

√
4s2 − 1

]
for s ≥ 1

2
.

(III.10)

Note that the condition s ≥ 1
2 is always satisfied in our system. Finally, Zpure(η)

is the compressibility factor of a one-component hard disk fluid at the same
packing fraction as the mixture. Here, we use Henderson’s equation of state
[175], given by

Zpure(η) =
1 + η2/8

(1− η)2
, (III.11)

which is quite accurate for monodisperse hard disks. The SHY equation of
state for xS = 0.3 is depicted in Figure III.3-Left as a continuous blue line.
The Gibbs free-energy obtained after thermodynamic integration is plotted in
Figure III.3-Right as dotted lines for three different pressures.

Simulated equation of state

Alternatively, the equation of state can be directly measured in simulations.
This approach is much more computationally demanding, but yields essentially
exact results (up to finite size and simulation length effects).

We measure the equation of state in isobaric-isothermal (NpT) Monte Carlo
simulations [145, 146] with a total of N = 2000 particles. The simulations
are run in two steps. First the system is randomly initialised at low density,
and 5× 105 MC sweeps are performed at the target pressure, while MC moves
amplitudes are adapted every 500 MC sweeps to match target rejection rates3.
This results in a rapid compression. Then, the moves amplitudes are frozen,
and 5× 105 MC sweeps are performed, during which the density is measured.

For each composition between compositions xS = 0 and xS = 1 with
step size δxS = 100/2000 = 0.05, we sample the equation of state in at

3We target a rejection rate of 0.7 for particles translation moves and 0.8 for box scaling
moves. In hard particles systems, any overlap results in rejection. This makes rejection
computationally cheap, and the optimal rejection rate is therefore typically larger than the
generally assumed value of 0.5 [176]. Preliminary benchmark simulations are used to determine
good rejection rates.
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Figure III.3: (Left) Equation of state of a binary mixture of non-additive
hard disks at q = 0.46, ∆ = −0.0709 and xS = 0.3. The continuous line
is the SHY approximate analytical expression derived in Ref. 173, while the
orange points are direct measurements in NpT Monte Carlo simulation of 2000
particles. (Right) Gibbs free-energy at three different pressures obtained from
thermodynamic integration of simulated and SHY equations of state (solid and
dashed lines respectively).

least 250 pressures logarithmically distributed between pmin = 0.1 kBTσ
−2
LL and

pmax. Monodisperse hard disks crystallise at a pressure of about 9 kBTσ
−2
LL

[177, 178]. Hence our systems will freeze at p ∼ 9 kBTσ
−2
LL when xS = 0 and

at p ∼ 9 kBTσ
−2
SS = 9q−2 kBTσ

−2
LL ∼ 45 kBTσ

−2
LL when xS = 1. At intermediate

compositions, the freezing pressure is unknown, so we set the maximum pressure
at βpmaxσ

2
LL = 35xS+15 which linearly interpolates between two points located

above the monodisperse freezing pressures. At some compositions, extra points
at larger pressures were sampled. In total, 5770 simulations were performed.

The integrand of equation III.4 can be rewritten as a virial expansion

I(ρ) =
1

ρ

(
βp

ρ
− 1

)
=

∞∑
k=2

Bkρ
k−2 (III.12)

The integrand is computed from the simulated equations of state at each com-
position and fitted with a polynomial of degree 8 to 12 depending on the compo-
sition. After numerical integration we obtain the Gibbs free-energy of the fluid
as a function of pressure for each sampled composition. Finally, to perform
the common tangent construction a fixed pressure, we compute the Gibbs free-
energy using the fitted expressions at each composition and fit again to obtain
a smooth free-energy as a function of composition for a given pressure.

The fitting of the integrand is quite critical and requires some care. Because
the pressure increases very quickly with density, a linear sampling in pressure
tends to result in a very dense sampling of high densities, which leads to a
poor fit with oscillations in the low density regime. We find that a logarithmic
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sampling of pressures is much better. To further improve fitting at low density,
we compute the exact second and third Virial coefficients in equation III.12
using expressions III.7 from Ref. 173.

The measured average density at each pressure comes with a statistical un-
certainty owing to the finite length of the simulations. Hence, we have error bars
on both ρ and I(ρ). However, least squares fitting by construction can only take
into account y-error bars. We observed that better fits were obtained by using
orthogonal distance regression instead, which can weight the contribution of
each fitted point according to both y and x error bars.

To assess the magnitude of finite size effects, we repeated the thermody-
namic integration at composition xS = 0.5 using equations of state measured
in systems of N = 250, 500 and 1000 particles. We estimate that the finite
size error on the final Gibbs free-energy for the fluid is at most of the order of
10−2kBT/N .

Likewise, we assess the error coming from the choice of the order of the
fitting polynomial by repeating the procedure with larger and smaller values,
and estimate an error of the order of 10−3kBT/N .

At each composition, some of the sampled pressures lie beyond the freez-
ing point. Because of the fast compression, we observe no crystallisation, but
instead end-up in a glassy, super-compressed metastable fluid. The very slow
dynamics in this regime combined with the finite duration of our simulations
cause additional errors which we estimate by repeating again the procedure with
10 times as long production runs for the equation of state sampling. We find that
the resulting error is again of the order of 10−3kBT/N . Hence, overall, finite
size effects appear to dominate the error on the calculated Gibbs free-energy,
which is at most of the order of 10−2kBT/N .

In Figure III.3-Right, we compare the fluid Gibbs free-energies computed
from the approximate SHY (dashed lines) and simulated (solid lines) equations
of state. Both yield similar values close to the extreme regimes xS = 0 or 1
where the system is almost monodisperse. For intermediate compositions how-
ever, using the analytical equation of state overestimates the free-energy. The
discrepancy increases with pressure, which is expected since the SHY equation
of state becomes less accurate at larger densities.

III.3 Cell approximation

While very useful for fluids, thermodynamic integration alone does not usually
work for solids because there is no equivalent of the perfect gas reference state
from which to integrate without crossing a phase transition.

In this Section, we use a mean-field approach called the cell approximation
to compute the free energy of solids [179–181]. It allows us to map out a first
approximate phase diagram of our system. A similar approach has been used
by Wheatley to compute the phase diagram of binary mixtures of additive hard
disks [182].
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III.3.1 General setting

Consider a 2D solid of N particles occupying n types of non-equivalent sites.
Let Ni be the number of particles occupying a site of type i. We assume that
each particle is trapped in a cage formed by its nearest neighbours sitting at
their ideal lattice sites. This is a mean-field approximation: all sites of a given
type are equivalent and thus the partition function can be factorised:

Z ≈ 1

Λ2N
T

n∏
j=1

(∫
dr⃗e−βUj(r⃗)

)Nj

=
1

Λ2N
T

n∏
j=1

A
Nj

j , (III.13)

with Aj
.
=

∫
dr⃗e−βUj(r⃗).

Uj is the potential felt by the central particle rattling around a site of type j,
caged by its nearest neighbours. Then the free energy reads

−βF = lnZ

= −2N ln ΛT +

n∑
j=1

Nj lnAj . (III.14)

Let ϕj = limN→∞,Nj→∞ Nj/N be the fraction of sites of type j in the solid.
Then

βF

N
≈

n∑
j=1

ϕj ln

(
Λ2

Aj

)
. (III.15)

And the pressure is given by

βp

ρ
= ρ

∂βF/N

∂ρ
= −ρ

n∑
j=1

ϕj

Aj

∂Aj

∂ρ
. (III.16)

As a –surprising– sanity check we can consider a perfect gas, for which there is
only one type of site with A(ρ) = 1/ρ. Then, βp/ρ = 1 as expected. In fact, as
discussed in Ref. 179 the perfect gas is the case for which the cell approximation
is the worst. Indeed, equation III.15 yields a Helmholtz free-energy per particle
of ln(ρΛ2

T ) instead of ln(ρΛ2
T ) − 1 so the error on the total free energy scales

with N and diverges in the thermodynamic limit. However, this huge error does
not depend on the volume and therefore the equation of state is not affected.

In the special case of hard disks, Aj is simply the accessible volume for the
central particle in site j. The cell approximation is obviously no longer valid
when the spacing between particles of the cage becomes large enough to let the
central particle escape.
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III.3.2 Application to our solid phases

Hexagonal solid

There is only one type of site in the hexagonal solid, as depicted in Figure III.4.
Let L be the lattice parameter and σ the particles diameter. Then

ρ
.
=

N

V
=

2

L2
√
3
, so L =

√
2√
3ρ

. (III.17)

L

σ

Figure III.4: The one
and only type of site in the
hexagonal solid. We ap-
proximate the volume ac-
cessible to the central par-
ticle by the pink disk.

We approximate the accessible volume for the
central particle Ahex by a disk. It then reads

Ahex(ρ) ≈ π(L− σ)2 = π

(√
2√
3ρ

− σ

)2

.

(III.18)
The maximum density is achieved when all disks
are in contact, ie. L = σ, so ρmax = 2/(σ2

√
3).

When L = 2σ, the spacing between particles is
large enough to let the central particle escape and
the cell approximation is no longer valid. There-
fore ρmin = 1/(2

√
3σ2). For densities ρ between

ρmin and ρmax, the cell approximation yields the
following approximate Helmholtz free energy.

βF (ρ)

N
≈ ln

(
Λ2
T

Ahex(ρ)

)
= 2 ln

 ΛT√
2√
3ρ

− σ

−lnπ

(III.19)
Then, adding the pressure term obtained from
equation III.16, we can compute the Gibbs free
energy.

βGHex

N
= 2 ln

 ΛT√
2√
3ρ

− σ

− lnπ +
1

1−
√√

3ρ
2 σ

(III.20)

It can be expressed in terms of p by solving for ρ in equation III.16 and replacing.
In our binary systems, since we measure lengths in large disk diameters, we take
σ = σLL for hexagonal solid of large particles and σ = qσLL for hexagonal solid
of small ones. To compute actual values, without loss of generality, we set
ΛT = σLL which fixes particles mass. This does not affect the equilibrium
phase behaviour.

S1 solid

There are two types of sites in the S1 crystal as depicted in Figure III.5. They
both appear with the same frequency ϕ1 = ϕ2 = 0.5.
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σLL

L

Figure III.5: The two types of site of the S1 solid. The volume accessible to
the central particle is approximated by the Voronoi cell highlighted in pink.

Let L be the lattice parameter. ρ = 2/L2 so L =
√
2/ρ. The minimum

density is achieved when the small disk can escape the cage of large ones, ie.
L = (1+q)(1+∆)σLL. So ρmin = 2/((1+q)(1+∆)σLL)

2. The maximum density
is achieved when L = σLL (large disks in contact) or L = (1+ q)(1+∆)σLL/

√
2

(large and small disks touching along the square diagonal). The first case occurs
for q <

√
2/(1 +∆)− 1 and the second for larger q’s. The discriminating value

corresponds to a magic ratio of S1. The maximum densities read respectively
ρmax = 2/σ2

LL or ρmax = 4/((1 + q)(1 + ∆)σLL)
2.

We now need to compute the contribution to the free energy and pressure
contributions of both sites. For this, we approximate the accessible volume to
the central large disk by its Voronoi cell.

For type 1 sites occupied by small particles, the accessible volume is given
by

ρA1(ρ) = ((1 + ∆)
√
ρσ(q + 1)− 2)2 (III.21)

which yields the Gibbs free-energy contribution of type 1 sites

βG1

N
=

0.5
(
(1 + ∆)

√
ρσ (q + 1)− 2

)
ln

(
Λ2ρ

((1+∆)
√
ρσ(q+1)−2)

2

)
− 1

(1 + ∆)
√
ρσ (q + 1)− 2

. (III.22)

For type 2 sites, occupied by large particles, two shapes are possible for the
accessible volume. When the closest neighbour is a large disk, the accessible
volume is a square of area

ρA
(LL)
2 (ρ) = 4(

√
ρσ −

√
2)2. (III.23)

When a small disk is encountered before a large one, the Voronoi cell has
the shape depicted in Figure III.5-Right and its volume reads

ρA
(LS)
2 (ρ) = 4(

√
ρσ −

√
2)2

− [2 + 2
√
2(
√
ρσ −

√
2)− (1 + ∆)

√
ρσ(q + 1)]2. (III.24)
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The two corresponding curves cross at ρcσ
2 = 8/(

√
2(1 + ∆)(1 + q) − 4)2. As

can be seen in Figure III.6, the accessible volumes in both regimes have the
same derivatives at the crossing point. Earlier attempts with cruder approxi-
mations for the accessible volumes did not have this property and resulted in
an unphysical jump of the pressure between the two regimes.

Figure III.6: Accessible volume for
type 2 sites of the S1 solid for q =
0.46 and ∆ = −0.709. The crossover
between two regimes has a continuous
derivative.

The resulting Gibbs free-energy of
the type 2 sites is easily derived from
the volume expressions above. Fi-
nally, the total Gibbs free-energy of
the S1 solid is obtained as βGS1/N =
0.5βG1/N + 0.5βG2/N .

Dodecagonal quasicrystal

In the QC12 tiling, large particles can
occupy four types of sites (up to dif-
ferent orientations, see Figure III.7)
while small particles always occupy
the same S1 square sites. Instead
of computing the free energy of each
site with the cell approximation, we
rely on the random tiling hypothe-
sis which assumes that all realisations
of the random tiling are essentially
equally likely. We can then obtain the
free energy of the random tiling quasicrystal as the free energy of any one tiling
configuration in the ensemble with an extra term accounting for the tiling en-
tropy.

βGRTQC

N
=

βGconf

N
− SRT

kBN
. (III.25)

From the free energies of the hexagonal and S1 solids, we can easily obtain
the free energy of their coexistence and use the coexistence at the quasicrystal
composition as our reference tiling configuration:

βGHexL+S1(xS)

N
= 2

β(GS1 −GHexL
)

N
xS +

βGHexL

N
. (III.26)

As discussed in Section I.4 of Chapter I, the square-triangle tiling entropy
has been determined exactly [62]. It reaches a maximum value of [ln(108) −
2
√
3 ln (2 +

√
3)](1−xRTQC

S ) ≈ 0.082 kB per particle at the quasicrystal compo-

sition xRTQC
S =

√
3/(2 + 2

√
3) ≈ 0.317.

We see right away that the random tiling hypothesis cannot be fully correct
here. Indeed, not all configurations in the random tiling ensemble have the same
proportion of each types of site. In particular, the HexL + S1 coexistence does
not have any of the last two sites depicted in Figure III.7.

Moreover, as already noted in Section I.4, it is not possible to realise a phase-
separated coexistence of HexL and S1 without a defective grain boundary [140].
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Figure III.7: The four types of sites for the large particles in the random tiling
of squares and triangles.

Thus, strictly speaking, the HexL + S1 reference configuration we chose does
not even belong in the random tiling ensemble.

However, as we will see later in Section III.5, the random tiling hypothesis is
a good approximation in our system. The cell approach developed here is itself
a quite strong and uncontrolled approximation. Therefore, we assume that in
spite of these caveat, this cell approach is good enough to give a first rough idea
of the phase behaviour of our system.

III.3.3 Approximate phase diagram

We now have all the ingredients to compute a first phase diagram for our binary
mixtures of non-additive hard disks with q = 0.46 and ∆ = −0.0709. We per-
form common tangent constructions as explained in Section III.1.1 for hundreds
of pressures using the Gibbs free energy obtained from SHY equation of state
for the fluid, and cell approximation for the hexagonal, S1 and random tiling
quasicrystal solids. The resulting phase diagram is displayed in Figure III.8.

We first note that for compositions above xS = 0.5, this phase diagram
is not reliable. Indeed, we know from the infinite pressure study that the H3
phase (see Figure II.2) as well as the octagonal quasicrystal described in Sec-
tion II.3 should be considered but were ignored here to focus on the dodecagonal
quasicrystal. Moreover, the (composition dependent) tiling entropy of the oc-
tagonal quasicrystal is not known. Hence, an accurate determination of the
phase diagram for xS > 0.5 would require significant additional work.

In the relevant range of compositions, we find that all candidate phases are
stable, including the random tiling quasicrystal. At high pressures, we recover
the infinite pressure limit behaviour and at smaller pressures, various coexis-
tences with the fluid appear. In particular, below the quasicrystal composition,
we find a region of coexistence between the fluid and the quasicrystal. In this
region, the high mobility of the fluid could help equilibrating the quasicrystal
and annealing out the tiling’s defects. However, in self-assembly simulations, we
instead typically observe that the quasicrystal coexists with a fluid and anneals
better with a higher concentration of small disks.

Experience suggests that the cell approximation is rather reliable when com-
paring solid free energies, but performs quite badly when predicting coexistence
with a fluid. Hence the present phase diagram should be taken with a grain of
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Fluid

HexL + RTQC
RTQC 

+ 
S1

RTQC 
  + fluid

    HexL 
+ 

fluid
Fluid + S1

Figure III.8: Phase diagram determined from the cell approximation for a
binary mixture of non-additive hard disks with q = 0.46 and ∆ = −0.709.
Missing phases make the phase diagram unreliable for compositions larger than
xS = 0.5. The random tiling quasicrystal, labelled as RTQC, is found stable
among the other periodic solid phases.

salt in the freezing regions. In particular, at xS = 0, the one-component fluid
of hard disks is predicted to freeze at a pressure of about 12.5 kBTσ

−2
LL which

is quite far from the value of 9.18 kBTσ
−2
LL known from hard disks simulations

[177, 178]4.
Yet, this first rough phase diagram shows that we can expect the dodecagonal

quasicrystal to be thermodynamically stable at finite pressures. For a more
precise investigation, we need a more reliable determination of the free energies.

III.4 Frenkel-Ladd method

In 1984, Frenkel and Ladd proposed a method that is now considered the Rolls
Royce of free-energy calculation methods [183]. Indeed, it allows to compute the
free energy of solids (ordered or not) to an accuracy only limited by the amount
of computing power one is willing to invest. The so-called Frenkel-Ladd method
has been used in a huge variety of systems and has become de-facto standard for
precise free-energy calculations. In particular, it was used to establish that the
FCC crystal of hard spheres is more stable than the competing HCP stacking
in the close packed limit by a tiny free-energy difference of 0.001164(8)NkBT
per particle [136]5.

4We note however that at xS = 1 the monodisperse fluid of small disks is predicted to
freeze at a pressure of about 58 kBTσ−2

LL ≈ 12.3 kBTσ−2
SS . The one-component fluids on both

ends of the phase diagram freeze at the same reduced pressure which is a good sanity check.
5In fact, the development of the method was partly motivated by this question. Hard

spheres are taken as an example for the method in the original paper by Frenkel and Ladd
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The power of the method comes at the price of some technicality. Thus, in
this Section, we describe the method in details and present some critical aspects
of our implementation. Then, we use it to map out an essentially exact phase
diagram of our non-additive binary hard disk mixtures.

III.4.1 The method

The general idea is to start from a reference system whose free energy is known,
and then gradually transform it into the system of interest by a combination
of explicit free-energy differences calculations and Hamiltonian integration. In
contrast to thermodynamic integration discussed in Section III.2.1, the param-
eters of the Hamiltonian are varied along the transformation path instead of
the thermodynamic parameters. This allows for a wider variety of integration
paths. Note that in order for the free-energy calculation to be accurate, the
chosen integration path should not cross any first-order phase boundaries.

Since its original description [183], several variants of the Frenkel-Ladd
method have been developed, using different reference states or integration
methods [174, 184–187]. Here we use the so-called Einstein molecule approach
developed by Vega and Noya [186]. It is simpler than the original approach and
an excellent review can be found in Ref. 174. We report here the main steps
for the specific case of binary non-additive hard disk mixtures.

The reference system is the ideal Einstein molecule in which all particles
but one are tight to their lattice site by harmonic springs. The particle that is
not attached to a spring (say particle 1, without loss of generality) is called the
carrier and defines the lattice. The potential energy of the system is then

Uein-mol-id(r⃗1, r⃗2, . . . , r⃗N ) = γ

N∑
i=2

(r⃗i − r⃗i0(r⃗1))
2. (III.27)

Notice that the sum starts at 2, so the carrier can move freely. The lattice site
positions are functions of the position of the carrier since the lattice moves with
it. γ is the stiffness of the springs.

The ideal Einstein molecule is first transformed into an interacting Einstein
molecule with the hard repulsion between particles added on top of the springs.
Then, the springs are gradually turned off to transform the system into the
target hard disk mixture.

Drifts of the whole solid lead to a quasi-divergence of the integrand in the
Hamiltonian integration. This can be avoided by fixing the position of one of
the particles in the system. In the Einstein molecule, this is easily done by
fixing the position of the carrier, which is the reason for choosing such a strange
reference system to start with. Fixing a particle’s position comes with an extra
free-energy contribution that needs to be accounted for, but allows to keep the
numerical method stable.

Overall, the transformation path is the following:

[183], but at the time, the available computing resources were not sufficient to settle the
competition between FCC and HCP packings.
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• Start from an ideal Einstein molecule at the desired packing fraction. Its
free energy Fein-mol-id can be computed analytically.

• Transform it into an ideal Einstein molecule with one particle fixed. The
free-energy difference due to fixing the carrier can be computed analyti-
cally, and turns out to not play a role. In the following, a star superscript
indicates that one particle is fixed in the system.

• Add the hard core interaction on top of the springs to get an interacting
Einstein molecule. The resulting free energy F ∗

ein-sol (the “sol” subscript
stands for “solid”) can be obtained from a average calculation in a simu-
lation.

• Gradually turn off the springs and perform a Hamiltonian integration to
get the free energy F ∗

sol of the solid with one particle fixed.

• Free the fixed particle to get the free energy Fsol of system of interest.

After this procedure, we get the Helmholtz free-energy of the solid at a given
packing fraction. The Gibbs free-energy is computed by adding βp/ρ that can
be obtained from a simulated equation of state.

In the following, we derive the expressions for the free-energy calculation of
a binary mixture with N1 particles of type 1 and N2 particles of type 2. We
assume that the carrier is a particle of type 1.

Free-energy of the ideal Einstein molecule

The free-energy of the ideal Einstein molecule can be computed analytically.
After integration over the momentum degrees of freedom, the partition function
of the ideal Einstein molecule reads

Zein-mol-id =
1

N1!

1

N2!

1

Λ2N
T

∫
dr⃗1 . . . dr⃗Ne−βUein-mol-id

=
1

N1!

1

N2!

1

Λ2N
T

V

∫
dr⃗2 . . . dr⃗Ne−βUein-mol-id . (III.28)

For the remaining configurational integral, one needs to take into account all
possible permutations of the particles on the lattice sites:

Zein-mol-id =
(N1 − 1)!

N1!

N2!

N2!

1

Λ2N
T

V

∫
one perm

dr⃗2 . . . dr⃗Ne−βγ
∑N

i=2(r⃗i−r⃗i0 )
2

=
1

Λ2N
T

V

N1

(∫
dre−βγr2

)2(N−1)

=
V

Λ2
T

1

N1

(
π

βγΛ2
T

)N−1

. (III.29)

The corresponding Helmholtz free energy is

βFein-mol-id

N
=− 1

N
ln(Zein-mol-id)

=
1

N
ln

(
Λ2
TN1

V

)
+

(
1− 1

N

)
ln

(
Λ2
Tβγ

π

)
. (III.30)
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Fixing one particle

To avoid quasi-divergence in the Hamiltonian integration, we need to prevent
drifts of the whole solid. This can be achieved by fixing the position of one
particle in the system.

Consider a general mixture of two types of particles. If the potential energy
is invariant under the translation of all the particles, we can write

Z =
1

N1!

1

N2!

1

Λ2N
T

∫
dr⃗1

∫
dr⃗2 . . . dr⃗Ne−βU (⃗0,r⃗2−r⃗1,...,r⃗N−r⃗1)

=
V

Λ2
T

Z, (III.31)

with Z∗ the partition function of the system with particle 1 fixed. The free
energy can then be written

βF

N
=

1

N
ln

Λ2
T

V
− 1

N
lnZ∗

=
1

N
ln

Λ2
T

V
+

βF ∗

N
. (III.32)

The free-energy of a system with one particle fixed and the free-energy of the
full system only differ by a constant term that is independent of the potential,
which corresponds to the entropy associated with the center of mass of the
crystal exploring the available volume with no energy penalty.

The above derivation relies on the fact that the potential energy is invariant
under a translation of the whole system. This assumption holds for any system
whose energy is determined by particles interactions alone, so in particular for
a hard disks mixture. It is also valid for the Einstein molecule because the
external field applied by the springs is tethered to the carrier. Hence, when the
whole system is translated (including the carrier), the lattice sites are translated
by the same amount and the potential energy is unchanged.

This means that the free energy term 1
N ln

Λ2
T

V coming from fixing the position
of the carrier exactly cancels with the term coming from freeing the position of
particle 1 in the real solid. Hence, it is enough to add the free-energy difference
between the ideal Einstein molecule with one particle fixed and the solid with
one particle fixed directly to the free-energy of the ideal Einstein molecule (with
no particle fixed) to get the free-energy of the solid (with no particle fixed):

Fsol = Fein-mol-id +∆F ∗
1 +∆F ∗

2 . (III.33)

with ∆F ∗
1 the free-energy difference between the ideal Einstein molecule with

one particle fixed and the interacting Einstein molecule with one particle fixed,
and ∆F ∗

2 the free-energy difference between the interacting Einstein molecule
with one particle fixed and the solid with one particle fixed.

∆F∗
1

We want to compute the free-energy difference between the ideal Einstein molecule
with one particle fixed and the interacting Einstein molecule with one particle
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fixed whose potential energy is given by U∗
ein-sol = U∗

sol + U∗
ein-mol-id. Using the

partition function for each system, we can write this free-energy difference as

∆F ∗
1 = F ∗

ein-sol − F ∗
ein-mol-id

= −kBT ln

( ∫
dr⃗2 . . . dr⃗Ne−βU∗

ein-sol∫
dr⃗2 . . . dr⃗Ne−βU∗

ein-mol-id

)

= −kBT ln

(∫
dr⃗2 . . . dr⃗Ne−β(U∗

ein-sol−U∗
ein-mol-id)e−βU∗

ein-mol-id∫
dr⃗2 . . . dr⃗Ne−βU∗

ein-mol-id

)
= −kBT ln(⟨e−β(U∗

ein-sol−U∗
ein-mol-id)⟩ein-mol-id∗)

= −kBT ln(⟨e−βU∗
sol⟩ein-mol-id∗). (III.34)

We measure the expectation value in the logarithm by sampling equilibrium
configurations of the ideal Einstein molecule with one particle fixed. Since the
particles do not interact with each other, the probability of finding a particle at
a position r⃗i is proportional to exp(−βγ(r⃗i − r⃗i0)

2). Hence, for a given spring
stiffness γ, an equilibrium configuration of the Einstein molecule can be quickly
generated by drawing new positions for all particles (except the carrier) from a
Gaussian distribution with standard deviation (2βγ)−1/2.

The exponential term only takes value 0 (when there is at least one over-
lap in the configuration) or 1 (when the configuration has no overlap). Thus,
the average term takes values in [0, 1] and ∆F ∗

1 is positive. This makes sense
since turning on hard core repulsion on top of the harmonic springs reduces the
entropy per particle, leading to a higher free-energy.

The value of the spring constant used at this step sets the maximum spring
stiffness for the rest of the calculation. If it is chosen too low, then all sampled
configurations contain overlap and ∆F ∗

1 becomes infinite. Using an overly large
value compromises the accuracy of the next step of the method, where springs
are gradually turned off. We choose a value of γmax such that ⟨exp(−βUsol)⟩γmax ≃
0.9. We use a bisection search to find γmax within a given accuracy.

∆F∗
2

The free-energy difference between the interacting Einstein molecule with one
particle fixed and the solid of interest with one particle fixed is computed by
Hamiltonian integration. This is a generalisation of the thermodynamic inte-
gration where the Hamiltonian of the system itself is changed rather than the
thermodynamic variables [183].

We consider a system interacting with the potential energy

U∗
λ = λU∗

sol + (1− λ)U∗
ein-sol = U∗

sol + (1− λ)U∗
ein-mol-id, (III.35)

that interpolates between the two systems as λ varies from 0 to 1. The derivative
of the free energy of this system reads

∂F ∗
λ

∂λ
= −kBT

∂Z∗
λ

∂λ

1

Z∗
λ

, (III.36)
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with

∂Z∗
λ

∂λ
= −β

1

Λ
2(N−1)
T

1

N1!

1

N2!

∫
dr⃗2 . . . dr⃗N (−U∗

ein-mol-id)e
−βU∗

λ . (III.37)

Hence
∂F ∗

λ

∂λ
= −⟨U∗

ein-mol-id⟩(1−λ)γmax
. (III.38)

The expectation value on the right-hand side is an ensemble average for a com-
posite system with one particle fixed, with spring stiffness (1 − λ)γmax and
hard-core repulsion. Then the free-energy difference between the interacting
molecule with one particle fixed and the solid with one particle fixed is obtained
as

∆F ∗
2 = −

∫ 1

0

dλ⟨U∗
ein-mol-id⟩(1−λ)γmax

= −
∫ γmax

0

dγ

〈
N∑
i=2

(ri − ri0)
2

〉
γ

. (III.39)

We compute the integrand for various spring stiffness using Monte Carlo canon-
ical simulations (N , V and T constant). Following Ref. 174, we sample the
spring stiffness logarithmically by performing the change of variable

∆F ∗
2 = −

∫ ln(γmax+c)

ln(c)

d[ln(γ + c)](γ + c)

〈
N∑
i=1

(ri − ri0)
2

〉
γ

. (III.40)

Steps are performed in ln(γ+c) which results in a finer sampling at low γ where
the integrand varies more quickly. Using benchmark simulations, we concluded
that c = e1kBTσ

−2 is nearly optimal for our systems6. We typically measure
the integrand at 30 spring stiffness between 0 and γmax, and use Simpson rule
to compute the integral numerically.

While the Monte Carlo simulations reach equilibrium quickly at large and
moderate spring stiffness, the equilibration time increases sharply when γ → 0.
In a first equilibration run, we automatically increase simulation length until
the equilibrium is reached according to the procedure described in Appendix B.
Then, the system is simulated for the same length and averages are measured.
Simulations run for at least 104 Monte Carlo cycles7, but the automatic increase
of the simulation length leads to some systems at γ = 0 being simulated for as
much as 107 cycles. In practice, we observe that the vast majority of CPU
time in the whole Frenkel-Ladd procedure is spend in simulating the one or
two systems at the lowest spring stiffness. For our systems of non-additive
hard disks, the Monte Carlo simulation at γ = 0 could be replaced by a faster
event-driven molecular dynamics simulation as described in Section II.1.2.

6Larger values of c seem to be better in 3D [174].
7One Monte Carlo cycle is N trial moves with N the number of particles in the system.
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Putting everything together...

The calculation of the solid Helmholtz-free-energy by the Frenkel-Ladd method
with the Einstein molecule approach boils down to

βFsol
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N
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+
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N

∫ γmax

0

dγ

γ
⟨U∗⟩γ , (III.41)

where each term is either computed analytically or can be obtained to an arbi-
trary precision from simulations.

III.4.2 Estimating uncertainties

Since we aim for precise free-energy calculations, it is useful to have a way
of estimating uncertainties. One can always run the Frenkel-Ladd calculation
several times at the same state point and obtain a estimate of the statistical error
from the standard deviation of the calculated values, but the computational cost
can quickly become prohibitive.

In the Frenkel-Ladd method, the first term Fein-mol-id is exact, so statisti-
cal errors only come from ∆F ∗

1 and ∆F ∗
2 . The error on ∆F ∗

1 stems from the
uncertainty on the measured ensemble average. Since all the sampled configu-
rations are uncorrelated, the expected error in ∆F ∗

1 is simply obtained from the
standard deviation of the measurements in each configuration.

For ∆F ∗
2 , the error again stems from the ensemble averages. This time,

the configurations generated by the Monte Carlo simulations are not necessarily
uncorrelated, and we use the standard block-average (or Flyvbjerg-Peterson)
method to compute the statistical error on the measured mean values [145, 146,
188]. To estimate the propagated error on the integral of these points with
error bars, we draw new sets of point from Gaussian distributions centred at
the simulated points, with a width equal to the error bar at that point. This
provides fake new realisations of the simulated data points, from which ∆F ∗

2

can be computed. Finally, the standard deviation of the integrals on the fake
points is taken as the uncertainty on ∆F ∗

2 .
To assess the reliability of the method, we computed 100 times the free en-

ergy of a S1 solid of 200 particles at density 1.7σ−2
LL, using 30 points logarithmi-

cally sampled for the calculation of ∆F ∗
2 , and compared the standard deviation

of these real realisations with the error estimated as described above. The stan-
dard deviation measured from fake sets 0.0069 kBT is in excellent agreement
with the directly measured one 0.0067 kBT .

The simulated points can be seen as obtained after one step of a random walk
around the exact curve, with a Gaussian step of width given by the measured
error on the points. Creating the fake data sets from the simulated points
actually samples the second step of this random walk. For most reasonable
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functions, we expect that this will lead to a slight overestimation of the error,
which is safe for error bars. Hence, with the fake set method, we can compute
an accurate estimate of the statistical error on the free-energy with a single
realisation of the Frenkel-Ladd method8.

III.4.3 Finite size correction

The Frenkel-Ladd calculations are always performed on finite systems, but we
aim to calculate the free-energy of the phases in the thermodynamic limit. In
order to correct for finite-size effects, we repeat the Frenkel-Ladd calculation
for systems of different sizes. Then, assuming that the leading order of finite
size correction scales like 1/N , we fit the measured free energies as a function
of 1/N with a linear function and extrapolate to infinite systems.

The error bars on each point are propagated to the fit parameters, which
provides an estimate of the error bar on the extrapolated value. An example of
a fit is shown in Figure III.10 for the hexagonal solid. We observe that, while
the linear scaling is excellent for the monodisperse systems, the free-energy of
binary mixtures is typically more noisy, and seem to exhibit a small deviation
from the linear scaling (see for instance Figure III.16 for the deviation from
linear scaling).

III.4.4 Solids free-energies

For the Frenkel-Ladd method to be accurate, no particle in the solid should
escape their lattice site when the springs are turned off. Therefore, instead of
using it to compute free-energies at all densities down to the melting transition,
where particles start to diffuse, we use the Frenkel-Ladd method to compute the
free-energy of each solid at only one high density point where we are guaranteed
to have no defect formation. Then, we use this reference point in conjunction
with an accurately measured equation of state to obtain the free-energy at all
densities by thermodynamic integration (see Section III.2.1).

We measure equations of state with high accuracy for each solid using event-
driven molecular dynamics simulations. Since the error bars on the points are
tiny, we use cubic splines interpolation rather than fit to obtain continuous
expressions for the integration. Finally, the Gibbs free-energy for the solid
phases at any pressure is obtained as

βG(p)

N
= β

∫ ρ(p)

ρ0

p(ρ′)

ρ′2
dρ′ +

βF (ρ0)

N
+

βp

ρ(p)
. (III.42)

Hexagonal solids

The case of the pure hexagonal solid allows us to validate our Frenkel-Ladd im-
plementation. Figure III.9-Left displays the free energy of hard disks for various

8We also tried propagating the errors analytically using the expressions of Simpson inte-
gration. The resulting –very long– expressions turn out to slightly underestimate the error
bars.
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Figure III.9: (Left) Helmholtz free-energy of the hexagonal solid of hard disks
computed from Frenkel-Ladd method (blue points), extrapolated from the first
and last point with thermodynamic integration (red and green points) or re-
ported by Schilling and Schmid in Ref. 187 purple point. The orange curve is
corresponds to the cell approximation. (Right) Free-energy difference between
the blue, red an green points that are almost indistinguishable on the left plot.

densities computed with the Frenkel-Ladd method. The green and red points
are obtained by thermodynamic integration from the first (or last) Frenkel-Ladd
point. The points obtained from direct Frenkel-Ladd calculations or thermody-
namic integration are almost indistinguishable in this representation. In Figure
III.9-Right, the free-energy difference between the thermodynamic integrations
and direct Frenkel-Ladd simulations is shown. Error bars correspond to one
standard error. The points are all consistent within 2 standard errors, which
confirms that our implementation of the Frenkel-Ladd method yields accurate
free-energy differences.

To validate the absolute value of the computed free-energies, we show on
Figure III.9-Left the free-energy obtained from the cell approximation (orange
curve). At large densities, when the cell approximation becomes good, the curve
converges to the value computed with the Frenkel-Ladd method. In addition,
the purple point corresponds to the free-energy value reported in Schilling and
Schmid [187] for a solid of 100 hard disks at pressure 10 kBTσ

−2. The corre-
sponding density is obtained from the simulated equation of state. The resulting
value is compatible with our Frenkel-Ladd calculations within the error bars.
The reported system is much smaller than the one we use, so finite size effects are
also expected. These observations give us confidence that our implementation
of the Frenkel-Ladd method is working correctly.

For the phase diagram construction, we choose as a reference point a hexag-
onal solid of monodisperse hard disks at density ρ0σ

2
LL = 1.11. Using the

Frenkel-Ladd method we calculate the Helmholtz free-energy for systems con-
taining N = 418 to 10864 particles. The free-energy in the thermodynamic limit
is obtained by linear extrapolation as depicted in Figure III.10, which yields a
final value of βF (ρ0)/N = 6.5253 ± 0.0001. For both Frenkel-Ladd calculation
and equation of state measurement, we simulate the system in a rectangular
box as close as possible to a square that accommodates the periodic structure.
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The free-energy of the hexagonal solid of small disks is obtained from the one
of large disks by noting that both should have the same reduced free-energy at
the same reduced pressure.

βGS
hex(p)

N
=

βGL
hex(pq

2)

N
− ln(q2). (III.43)

The logarithm term comes from the rescaling of the thermal wavelength ΛT in
the Frenkel-Ladd expression (Equation III.41).

Figure III.10: Extrapolation of the
free-energy of the hexagonal solid
to infinite system sizes, at density
ρ0σ

2
LL = 1.11.

S1 solid

We use a system of 1024 particles of each
type to compute the equation of state of
the S1 solid. At a reference density of
1.9 σ−2

LL, the Helmholtz free energy ob-
tained from the Frenkel-Ladd method ex-
trapolated to the thermodynamic limit is
5.1554 ± 0.0002 kBT/N . We use systems
of size ranging from N = 450 to N =
20000 for the extrapolation.

Sigma solid

Figure III.11: Unit cell
of the Sigma-phase, the
first approximant to the
square-triangle dodecagonal
quasicrystal.

In addition to the hexagonal and S1 solids, we
consider the sigma solid as a candidate phase.
It did not show up in the infinite pressure study
nor in the self-assembly simulations, but it is the
first approximant of the dodecagonal quasicrys-
tal ie. the smallest of an infinite sequence of
periodic phases whose local structure converges
to that of the quasicrystal. Hence, it is reason-
able to compare its stability. The sigma-phase
unit-cell is depicted in Figure III.11.

At a reference density of 1.5σ−2
LL, the

Frenkel-Ladd calculation gives a Helmholtz free
energy of 4.9623±0.0002 kBT/N in the thermo-
dynamic limit, extrapolating from systems con-
taining up to N = 14700 particles.

Dodecagonal quasicrystal

Finally to obtain the free-energy of the do-
decagonal quasicrystal, we use again the random
tiling hypothesis, but rather than using the free-
energy of the HexL + S1 coexistence as a reference, we compute the free-energy
of a real quasicrystal configuration with the Frenkel-Ladd method.
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Fluid

HexL + fluid

HexL + QC12
QC12 + S1

QC12 + fluid
Fluid + S1

Figure III.12: Phase diagram of binary mixtures of non-additive hard disks with
size ratio q = 0.46 and non-additivity parameter ∆ = −0.0709 corresponding to
the equivalent 3D geometry of spheres sedimented on a flat surface. The random
tiling dodecagonal quasicrystal is labelled “QC12”. Although considered as a
candidate phase, the sigma approximant of the quasicrystal is nowhere stable.

The quasicrystal configuration is constructed from the Schlottmann inflation
rule (see later Section III.5.1) applied 4 times to a S1 square seed. The generated
patch is then cut to fit in a periodic box. Note that this step destroys the global
12-fold symmetry and frustrates the quasicrystal. Rigorously, the configuration
is a very large approximant of the quasicrystal.

The tiling entropy is then added to the free-energy of the configuration like
in Equation III.25. Doing so, we obtain a Helmholtz free-energy of 5.550309±
0.00005 kBT/N at the reference density 1.5σ−2

LL for the random tiling dodecago-
nal quasicrystal.

III.4.5 Finite pressure phase diagram

We construct the phase diagram by repeating common tangent constructions on
a fine grid of pressures, as explained in Section III.1.1. The fluid free-energy is
obtained from thermodynamic integration of equations of state measured in sim-
ulations as described in Section III.2.2. For the solid phases, the free-energy is
calculated from the Frenkel-Ladd method, in conjunction with thermodynamic
integration of accurate equations of states measured in simulations.

The resulting phase diagram is shown in Figure III.12. As before, we focus
on the region xS ≤ 0.5 which is relevant for the dodecagonal quasicrystal.

As for the phase diagram calculated with the cell approximation (see Fig-
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ure III.8), we recover the infinite pressure phase behaviour at large pressures.
However, the bottom part of the phase diagram is very different. The solidifica-
tion of the S1 and QC12 phases occurs at much larger pressures than what was
predicted in the previous phase diagram. This difference most probably comes
from the fluid. Indeed, in the previous phase diagram, the fluid free-energy was
obtained from an analytical equation of state that seriously overestimates the
pressure at large densities, thus artificially destabilising the fluid. As shown in
Figure III.3, the error is the largest at intermediate compositions. Consistently,
we observe the largest discrepancy in solidification pressure for the S1 phase
between the two phase diagrams. At xS = 0, the monodisperse system of hard
disks freezes at pressure 9.2 kBTσ

−2 very close to the value reported in large
scale simulations [152, 169].

Even though it was included in the common tangent constructions as a candi-
date structure, the sigma phase is nowhere found to be stable. The dodecagonal
random tiling quasicrystal however is stable for pressures above 28.8 kBTσ

−2
LL. It

coexists with the fluid for a small range of pressures above the freezing transition,
for compositions larger than the ideal quasicrystal compositions. In contrast to
what was predicted in the previous phase diagram, this is in line with our obser-
vation that the quasicrystal is more easily self-assembled with an excess of small
particles. Other authors reported that self-assembly of certain phases may be
kinetically facilitated off-stoichiometry [189].

Figure III.13: Free-energy difference
between the competing coexistence of
HexL + S1 and the quasicrystal at the
quasicrystal composition. For the qua-
sicrystal, the orange curve correspond-
ing to the vibrational entropy alone and
lies above the coexistence free-energy,
while the addition of the constant tiling
entropy term in the blue curve stabilises
the quasicrystal.

Interestingly, the random tiling
entropy is required to stabilise the
dodecagonal quasicrystal. In Figure
III.13, we compare the free-energies of
the dodecagonal quasicrystal and the
competing coexistence of HexL and
S1 at the quasicrystal composition.
Without the constant tiling entropy
term, the coexistence prevails and the
quasicrystal is not stable. In a pre-
vious study of hard disks augmented
by a repulsive square-shoulder inter-
action, Pattabhiraman et al. [88]
observed a similar dodecagonal qua-
sicrystal based on the square-triangle
random tiling. In their case however,
free-energy calculations showed that
the quasicrystal is stable even with-
out the random tiling entropy. This
means that the vibrational entropy
alone is sufficient for the quasicrystal
to be stable, and although it might
still be relevant, the random tiling hy-
pothesis is not crucial there. In con-
trast, our findings depend rather critically on this hypothesis, which we should
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now investigate in more details.

III.5 The random tiling hypothesis

Entropy is the only driving force in our systems with hard interactions. The
random tiling quasicrystals that we consider are stabilised by two kinds of en-
tropies: the vibrational entropy of the particles wiggling around their lattice
sites on the one hand, and the tiling entropy accounting for all possible realisa-
tions of the random tiling on the other hand. The random tiling hypothesis is
the assumption that these two entropy contributions can be decoupled. This as-
sumes that all tiling configurations have essentially the same vibrational entropy,
thus allowing the whole random tiling ensemble to be considered a degenerate
single phase with non-zero configurational entropy.

In this Section, we would like to quantitatively assess the validity of the
random tiling hypothesis for the dodecagonal quasicrystal of binary non-additive
hard disks. As before, we focus on the size ratio q = 0.46 and non-additivity
parameter ∆ = −0.0709 which corresponds to the equivalent 3D geometry of
spheres on a plane.

To assess the validity of the random tiling hypothesis, we perform high-
precision calculations of the vibrational entropy of various tiling configurations.
In particular, we compare the vibrational entropy of ideal quasicrystal configu-
rations obtained by an inflation method, and random tiling configurations.

III.5.1 Inflation rules

Ideal quasicrystal configurations can be generated by so-called inflation meth-
ods, in which every tile of a tiling is replaced by a cluster of tiles. By iterating
the inflation rules on an initial seed, one generates larger and larger patches of
tiling that converge to a quasicrystalline configuration.

Several inflation rules exist for the square-triangle tiling. The most com-
mon Stampfli [27] and Schlottmann [28, 190] rules are depicted in Figure III.14.
The simpler Stampfli rule generates a quasiperiodic tiling with 6-fold symmetry
while the Schlottmann rule produces a dodecagonal tiling. The quasicrystals
obtained by decorating these tilings are called ideal because the 6 or 12-fold
rotational symmetry is exact at the central point. In contrast, random tiling
quasicrystals exhibit their n-fold symmetry only on average over the random
tiling ensemble. In addition to the rotational symmetry, the inflated tilings pos-
sess a self-similarity symmetry which is obvious from the construction process:
an infinite sequence of bigger and bigger squares and triangles can be drawn on
top of an inflated tiling that form again a square triangle tiling. In the high
dimensional representation, ideal tilings corresponds to those with no phason
fluctuations, i.e. whose representative surface follows the ideal hyperslope as
close as possible.

The square-triangle inflation rules can also be realised by the following al-
gorithm [164]:
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Figure III.14: Stampfli (left) and Schlottmann (right) inflation rules. They
respectively generate a hexagonal and dodecagonal quasiperiodic tiling when
iterated ad infinitum. Note that in both sets of rules, tiles of the same shape
can exist with different labels (represented by colors), and that the replace-
ment in the Schlottmann rule additionally depends on the orientation of the tile
(represented by the black dots on the tiles). Taken from the Tilings Encyclope-
dia (https://tilings.math.uni-bielefeld.de) maintained by Frettlöh, Harriss and
Gähler.

1. Choose a initial seed.

2. Scale up the tiling by a factor 2 +
√
3.

3. Replace every vertex by a dodecagonal wheel.

4. Repeat from 2.

The procedure is depicted in Figure III.15. The dodecagonal wheel placed
at each vertex can appear in two different orientations (blue and red) that have
the same boundary. Different rules for the wheels orientations result in different
quasiperiodic tilings, with possibly different symmetries [140]. The hexagonal
Stampfli tiling is obtained by picking the same orientation for all wheels. To
obtain the Schlottmann dodecagonal tiling, a more complicated rule must be
followed. Because of the self-similarity property, the tiling patch at step n can
be found again at the centre of the tiling patch obtained at step n + 1. The
Schlottmann tiling is obtained by orienting each wheel at step n+ 1 according
to the dominant colour of the edges attached to the vertex it came from at step
n. Since the majority rule is ambiguous at step n for points at the border of the
tiling patch, their local environment is determined by looking at the image of the
step n patch at step n+1. Other selection rules for the orientations of the wheels
can be invented [140]. For instance, one can pick the orientation uniformly at
random for every wheel. This results in random tiling quasicrystal that has
average 12-fold symmetry and approximate self-similarity. Note that, while this
method is very useful to generate alternative tiling by playing with orientation
selection rules, it is not strictly equivalent to the traditional tile-replacement
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Figure III.15: Illustration of the inflation procedure. At each step, vertices are
replaced by dodecagonal wheels which can appear in two orientations. Different
selection rules result in different quasiperiodic tilings. Courtesy of Impéror-
Clerc et al., taken from Ref. 140.
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inflation method. Indeed, for the Schlottmann scheme in particular, it requires
that the tiling patch at step n can be recovered at the centre of the patch at
step n + 1. This can only work with a very limited set of seeds for which the
inflation procedure preserves the location and orientation of the central point.
No such issue occur with the tile-replacement approach, but designing new rules
that enforce alternative symmetries is harder there.

When starting from a square seed with Stampfli or Schlottmann rules, the
inflated borders of the initial square allow us to cut out square periodic approx-
imants of the quasicrystal. We use this to generate our configurations. The
number of particles in the tiling patch grows exponentially fast in the number
of inflation iterations. Starting from a square seed, we used the configurations
obtained after n = 2, 3 or 4 inflation steps, which corresponds to systems of
306, 4263 and 59362 particles respectively. In addition, we generate Stamplfi
tiling by applying 2 or 3 inflation steps to a sigma unit cell, which results into
systems of 2284 and 31812 particles respectively. Since the orientation of the
original sigma seed changes when the inflation rule is applied, our current im-
plementation of the Schlottmann inflation fails in this case, so we only use the
sigma seed to generate hexagonal Stampfli tilings. The exponential growth of
the tilings with inflation iterations limits the number of available points for fi-
nite size scaling. However, the largest systems are large enough that we expect
finite size corrections to be very small there. Other schemes exist, such as the
Schlottmann half-step rule [191], that generates intermediate approximants, but
its implementation is cumbersome, and we did not use it here. Likewise, seeds
of intermediate size could be used, although, as described above, these can only
be inflated with the tile-replacement approach, which we did not implement.

III.5.2 Zipper moves

To generate random tiling configurations, we apply zipper moves to ideal con-
figurations [59]. A zipper move is a rearrangement of tiles around a closed loop
that conserves the number of tiles of each type. Although to our knowledge, the
ergodicity of the zippers have not been rigorously proven, numerical estimates
of the square-triangle entropy based on zipper moves are consistent with the
known exact value, suggesting that zipper moves indeed allow us to sample all
configurations in the random tiling ensemble [59].

To obtain random tiling configurations for our free-energy calculations, we
generate random configurations from ideal ones by applying 1000 zipper moves.
Since the length of the zipper scales with the number of particles in the system
[59], there is a priori no need to use more for larger systems. The generated
configurations indeed look completely random and uncorrelated with the ideal
starting point.

III.5.3 Ideal versus random quasicrystals

To assess the validity of the random tiling hypothesis, we compare the vi-
brational entropies of the ideal Schlottmann quasicrystal, the ideal hexagonal
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Stampfli quasicrystal and their random tiling counterparts, using the Frenkel-
Ladd method. For each inflation step (n = 2, 3 or 4 for the square seed and
n = 2 or 3 for the sigma seed), we generate 5 different random configurations
by applying zipper moves to the approximant. The density is fixed at 1.5σ−2

LL

for all systems.
In order to reduce the statistical error on the entropy, we repeat the Frenkel-

Ladd calculation more than 6000 times for the smallest configurations obtained
after 2 inflation steps of the square seed, more than 1000 times for the con-
figurations obtained after 3 inflation steps of the square seed, and between 50
and 150 times for the largest systems. For the random configuration obtained
from the sigma seed inflation, we repeat the calculation more than 2000 times
on the tilings obtained after 2 inflation steps, and more than 200 times on the
tilings obtained after 3 inflation steps. We check that for every configuration,
the repeated measurements follow a Gaussian distribution, and use the stan-
dard deviation of the outcomes, divided by the square root of the number of
repetitions (i.e. the statistical error on the mean) as our error bars. The results
are shown in Figure III.16. The finite size scaling of the free energy appears to
be non-linear, and adding the heuristic finite size correction term ln(N)/(2N)
proposed in Reference 145 does not remove the non-linearity. One could argue
that a linear regime is reached for very large system sizes, with an almost zero
slope. Therefore, we perform no extrapolation and use the value of the free en-
ergy per particle for the largest systems as our estimate of the thermodynamic-
limit value. We obtain 5.50309(5) kBT for the ideal dodecagonal quasicrystal,
5.50342(4) kBT for the ideal hexagonal quasicrystal and 5.50392(4) kBT for the
average over the 5 largest realisations of the random tiling quasicrystal.

First we note that the free energies of the 5 random tiling quasicrystals
generated at each system size are consistently degenerate within our errorbars
(black clusters in Figure III.16). Although we considered only 5 out of many
possible configurations in the random tiling ensemble at each system size, the
absence of any outliers gives us confidence that the vast majority of configura-
tions in the random tiling ensemble indeed have essentially the same vibrational
entropy. This observation quantitatively validates the random tiling hypothesis
and justifies the treatment of the earlier quasicrystals as random tiling phases
with non-zero configurational entropy.

The measurements show, nonetheless, that some configurations in the ran-
dom tiling ensemble are special. The free energy of the ideal quasicrystals is
consistently lower than that of the random configurations, with the difference on
the order of 10−3kBT per particle. Although small, this difference is measurable,
and of the same order of magnitude as the free-energy difference between face
centred cubic (FCC) and hexagonal close packing (HCP) crystals of monodis-
perse hard spheres [135, 136, 192]. Moreover, we find that the ideal dodecagonal
quasicrystal obtained with Schlottmann inflation has slightly more vibrational
entropy than the ideal hexagonal Stampfli quasicrystal.

The vibrational entropy difference between random and ideal quasicrystals
can be understood from the different local environments that can be found in
the underlying tiling. For instance, ideal quasicrystals obtained by the inflation
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Figure III.16: Free-energies of the dodecagonal (grey), hexagonal (blue) and
5 random dodecagonal quasicrystals (black), for various system size. The error
bars are the statistical error on the mean obtained by repeating Frenkel-Ladd
calculations many times, and are smaller than the symbols for most points. Two
system sizes are obtained by inflation of a sigma seed, for which our implemen-
tation of the Schlottmann inflation fails. Hence, two grey points are missing.
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method contain no local environment formed of 4 squares meeting at the same
vertex while the randomised ones contain a non-zero concentration of those
[193]. We expect however that the first-neighbour local environments alone
do not explain fully the entropy difference. Indeed, both the dodecagonal and
hexagonal ideal quasicrystals have the same distribution of local environments
when considering only the first neighbour shell (ignoring the orientation of the
environments). Hence, neighbour shells beyond the first one certainly play a
non-negligible role.

From the point of view of quasicrystals theory, the vibrational entropy dif-
ference between ideal and random structures is an interesting illustration of
phonon-phason coupling [30, 63]. The representative surface of the ideal qua-
sicrystal in the high-dimensional picture follows the average slope as closely
as possible. In contrast, the surfaces obtained from the lifting of the random
tiling quasicrystals exhibit fluctuations in the perpendicular space whose modes
correspond to phasons. The lower vibrational entropy of the random quasicrys-
tals shows that the presence of phason modes in these systems hinders lattice
vibrations, i.e. reduces the amplitude of the phonon modes. Conversely, the
high vibration entropy of ideal quasicrystals suggests that phonon modes are
the strongest in the ideal quasicrystal, in the absence of phasons.

III.6 Perspectives

The non-linear scaling of the free-energy with inverse system size for the qua-
sicrystals is puzzling [184]. It would be interesting to compute the free energy
of systems of intermediate sizes to obtain a better idea of the actual tiling.
As mentioned before, such configurations could be generated by using the tile-
replacement implementation of the inflation rules, which do not suffer from the
absence of exact self-similarity that occur with most seeds. In addition, more
complex “half-step” rules could be used to generate tilings of intermediate sizes
from all seeds [191].

In addition to ideal dodecagonal, ideal hexagonal, and random quasicrystals,
it would be interesting to include the quasicrystals obtained from the random
Stampfli rule to the comparison. Random Stampfli tilings are obtained by choos-
ing the orientation of the wheels at random at each inflation step. The resulting
structures have dodecagonal symmetry, but in contrast to the ideal Schlottmann
tiling, they only have approximate self-similarity properties. Random tiling qua-
sicrystals also have dodecagonal symmetry and lack self-similarity properties,
but they exhibit much stronger phason modes.

The use of a binary mixture, which provides an explicit handle on the compo-
sition, is very convenient to control the relative amount of each tile. In addition,
it allowed us to discover an octagonal quasicrystal whose underlying tiling can be
continuously changed as a function of composition. However, the binary nature
of the system becomes a limitation when trying to measure phonon-phason cou-
plings. Indeed, the hydrodynamic theory of quasicrystals predicts that the free
energy of the system is quadratic in the global perpendicular strain [30]. This
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prediction has been verified in the remarkable work of Reference 63, where the
authors measured the dependence of the free energy on the perpendicular strain,
by measuring the free energy of a sequence of approximants with small perpen-
dicular strains, in one-component Lennard-Jones-Gauss systems. It would be
tempting to do the same thing in our mixtures of hard disks. However, in a
binary system, changing the perpendicular strain also changes the composition.
Hence, the measured free energies cannot be meaningfully compared. Repeat-
ing the analysis of Reference 63 in other one-component quasicrystal-forming
systems would be extremely valuable in assessing the generality of the random
tiling hypothesis and hydrodynamic theory. In particular, the very simple hard-
core-square-shoulder systems would be excellent candidates [87, 88].
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Conclusion

Likos and Henley’s intuition that binary mixtures of non-additive hard disks
might prove good models for quasicrystals [74] turned out fruitful. This simple
two-dimensional model appears naturally in the study of binary mixtures of
three dimensional hard spheres confined at an interface (see Section .6.2). As
demonstrated throughout this thesis, our simulations strongly suggest that this
elegant model system provides a robust recipe for realizing the self-assembly of
at least two different colloidal quasicrystals.

In Chapter I, using an Monte-Carlo method to sample candidate structures
in a more systematic way than the explicit constructions used in previous studies
[74], we confirmed that several random tiling quasicrystal phases are stable in
binary mixtures of hard disks at infinite pressure. Moreover, the introduction
of non-additivity which models three-dimensional effects that inevitably occur
when two different types of particles sit at an interface, was shown to increase
the size ratio interval in which the main quasicrystal is stable at infinite pressure.
This result is encouraging for experimental searches of this quasicrystal.

In Chapter II, we turned our attention to the finite pressure phase behaviour
of our binary mixtures, focusing on the common geometry of spheres lying
on a plane. Performing extensive self-assembly simulations, we show that the
dodecagonal random tiling quasicrystal predicted to be stable at infinite pressure
can also spontaneously self-assemble at finite pressures. In addition, we found
a surprising new octagonal random tiling quasicrystal based on a tiling of the
plane with three types of tiles, whose composition can be continuously changed
while keeping the 8-fold symmetry. This discovery suggests that dense tiles
compatible with a random tiling of the plane are sufficient ingredients for the
self-assembly of quasicrystals. The configurational entropy of the random tiling
ensemble then ensures that the maximally symmetric, quasicrystalline phase, is
favoured.

Finally, in Chapter III, we quantitatively addressed the question of the ther-
modynamic stability of the dodecagonal random tiling quasicrystal. Using both
an approximate analytical method and an essentially exact numerical approach,
we predict the phase diagram for a binary mixture of hard spheres lying on a
plane, at size ratio q = 0.476. We confirm that the dodecagonal quasicrystal
is indeed thermodynamically stable over all considered competitors, and show
that the configurational entropy of the random tiling ensemble is essential to its
stability. Finally, we performed high-precision measurements of the free energy
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of ideal and random realisations of the dodecagonal quasicrystal showing that
all random realisations have essentially degenerate free energies, as conjectured
by the random tiling hypothesis. Interestingly, our measurements show that the
ideal dodecagonal quasicrystal has a slightly higher vibrational entropy than its
randomised counterparts. This is the signature of phonon-phason couplings that
are paticular to quasicrystals.

This work opens up perspectives in several directions. The most exciting one
is perhaps the possibility of an experimental realisation of the system. In con-
trast to many of the more complex interaction potentials that have been shown
to facilitate quasicrystal self-assembly in simulations [82, 87, 99], hard sphere col-
loids are readily realizable in experiments in a wide range of sizes [103–105]. The
expertise on the synthesis of hard colloids is already there, and mixing two types
of such particles in a quasi-two-dimensional geometry should be readily doable
in experiments. For example, past research by Thorneywork and co-authors has
explored both single-component and binary mixtures of hard spheres sedimented
onto a substrate, demonstrating excellent agreement with simulations and theo-
retical predictions based on hard-disk models [106, 107]. Our work suggests that
such attempts should focus on size ratios around q ∼ 0.46 and number fractions
of small spheres close to xS ∼ 0.32. The octagonal quasicrystal might be found
for size ratio between 0.45 and 0.55, and number fractions of small particles
between 0.65 and 0.73. These range of size ratio can be accurately realised in
current experimental systems, where size polydispersity is very well controlled.
Having an experimental system in which quasicrystals of different symmetries
could reliably self-assemble, on the micron scale, would be a real breakthrough
in the study of quasicrystals. Imaging at this scale only requires optical mi-
croscopy, enabling real-time and real-space tracking of particles. This would be
particularly valuable in the study of nucleation and growth of quasicrystals, as
well as the dynamics of their peculiar defects. Moreover, colloidal quasicrystals
with particle sizes similar to the wave length of visible light have been suggested
as intriguing candidate structures for creating photonic materials capable of e.g.
manipulating light signals [39, 40]. Hence, a colloidal quasicrystal at the micron
scale would also be a huge step forward in the direction of photonic applications
in the visible spectrum.

Growth and defect studies can already be carried out in numerical simula-
tions and will be valuable to guide or interpret experiments. More studies are
required in general on the dodecagonal and octagonal quasicrystals found in the
hard sphere mixtures. Aside from the obvious extension to non-additivities that
realise other geometries than spheres-on-plane, the study of the self-assembled
structures would benefit from improved methods to analyze the perpendicular
space structure of quasicrystals in the presence of strong thermal fluctuations.
Additionally, significant work remains to be done on the new octagonal qua-
sicrystal. In particular, it would be interesting to compute its tiling entropy as
a function of composition, and to identify possible ideal configurations hidden in
the random tiling ensemble. Having access to the correct configurational entropy
of the octagonal quasicrystal would also enable direct free-energy calculations
on this phase, which would be extremely helpful for proving its thermodynamic



107

stability. In the absence of a good estimate of this entropy, direct coexistence
simulations could still be used to determine phase boundaries and quasicrystal
free energies [95].

In a more exploratory direction, self-assembly of hard spheres lying on a
plane is reminiscent of billiard balls, and begs the question of how far can these
systems be scaled up. In contrast to colloidal systems which undergo thermal
motion and hence fall under the laws of equilibrium statistical mechanics, gran-
ular systems formed of millimetre-sized particles must be shaken up to induce
motion. For some vibration parameters, a so-called vibro-fluidised steady state
can be reached in which the energy injected by the vibration is dissipated as
head (and sound) in the collisions. Such systems are clearly out of equilibrium
and should in principle obey very different physics than the thermal ones. Yet, it
has been shown that in some regimes, vibro-fluidised quasi-2D granular systems
behave very closely to thermal systems [194, 195]. Using a realistic granular
model, taking into account friction, deformation and dissipation of the beads,
we performed molecular dynamics simulations of systems mimicking the ther-
mal situation of spheres on a plane. Preliminary results shown in Figure III.17,
left out of this thesis, suggest that the analogy with the thermal systems could
hold so far as allowing self-assembly of a dodecagonal quasicrystal in a granular
system.
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Figure III.17: Last snapshot of a molecular dynamics simulations of a vibro-
fluidised mixture of steel beads of diameters 1.19 mm and 2.5 mm. The self-
assembled structure exhibits a 12-fold symmetric diffraction pattern, shown in
the inset, and the contact graph of large beads shows extended regions of square-
triangle tilings. Could a dodecagonal quasicrystal form spontaneously at the
granular scale?



Résumé en français

Découverte des quasicristaux

Le 8 avril 1982, Dan Shechtman conduit des expériences routinières de micro-
scopie électronique sur des échantillons d’alliages d’aluminium au Bureau Na-
tional des Standards (USA). Le diagramme de diffraction d’un des échantillons
le plonge dans une grande perplexité. En effet, le diagramme de diffraction
de l’échantillon 1725 semble avoir une symmétrie d’ordre 10. Bien formé à
la cristallographie, Schechman sait bien que les cristaux périodiques peuvent
adopter uniquement l’un des “symétrie cristallographiques”, c’est à dire d’ordre
1, 2, 3, 4 ou 6. Mais il sait aussi que le zoo cristallographique abrite des bêtes
étranges, et se lance dans une étude plus poussée de l’échantillon, suspectant
que l’apparent symétrie d’ordre 10 pourrait être causée par une macle (une as-
sociation de plusieurs cristaux dans plusieurs orientations). Mais ces recherches
supplémentaires l’amènent à la conclusion que la macle n’est pas une solution
satisfaisante. L’échantillon 1725 est un nouveau type de matériau, le premier
d’une longue série présentant de nouvelles symétries qui allaient provoquer un
changement de paradigme en cristallographie.

En effet, avant la découverte de Shechtman, la cristallographie traitait ordre
et périodicité comme équivalents [2]. Les matériaux ordonnés étaient supposés
être des cristaux périodiques, qui pouvaient être décrits comme une répétition
périodique d’un motif de base : la cellule unitaire. Un argument géométrique
élémentaire montre alors que les seules symétries de rotations autorisées dans
ce cas sont les fameuses symétries “cristallographiques”. Quelques structures
étaient déjà connues qui déviaient du cas periodique idéal. Par exemple, dans
les phases modulées incommensurables, les positions des sites atomiques d’une
structure périodique sont modulées par une fonction périodique dont la période
est incommensurable avec le paramètre de maille de la structure de base [3–5],
produisant une structure globalement apériodique. Quelques exemples étaient
aussi connus où l’occupation, ou la nature chimique des sites sont modulés [6].
De même, quelques composites incommensurables étaient connus. Ces systèmes
sont composés de plusieurs sous-structures périodiques intérangissant faible-
ment, avec des paramètres de maille incommensurables [7]. Dans ces deux
cas, le digramme de diffraction est composé de pics de Bragg. La modulation se
manifeste par la présence de pic “satellites” supplémentaires autour des pic prin-

109



110 CHAPTER III. CONCLUSION

Figure III.18: (Gauche) Diagramme de diffraction électronique d’un alliage
d’aluminium et manganèse le long de l’axe de symétrie 10. Extrait de la référence
1. (Droite) Carnet de bord de Shechtman à la page du 8 avril 1982, montrant
l’annotation perplexe à propos de la symétrie d’ordre 10 de l’échantillion 1725.
Propriété de Dan Shechtman.

cipaux qui correspondent à la structure périodique de base [8, 9]. Bien qu’elles
auraient pu suggérer l’existence d’ordre sans périodicité, ces structures étaient
considérées comme de rares curiosités, et comme, dans tous les cas, elles pou-
vaient être facilement reliées à des structures périodiques de base, leur existence
ne remettait pas en question l’équivalence établie entre ordre et périodicité.

Figure III.19: Pavage de Pen-
rose formé de deux tuiles. Le
pavage est apériodique, mais or-
donné. Il possède une symétrie
rotationelle d’ordre 5.

Dans le diagramme de diffraction mesuré
par Shechtman et reproduit en Figure III.18-
gauche, il n’est pas possible d’identifier un
ensemble de pics principaux accompagnés de
satellites. Ainsi, la structure ne peux pas être
comprise comme une modulation d’une struc-
ture périodique sous-jacente. Cependant, la
présence de pics de Bragg prove la nature très
ordonnée du solide. La clef pour comprendre
ces résultats fut trouvée dans des recherches
antérieures sur les pavages en mathématiques.
Dans les années 70, Penrose a étudié une
famille de pavages qui portent maintenant son
nom. Une portion d’un pavage de Penrose en
deux dimension est présenté en Figure III.19.
Le pavage est formé de dux tuiles, un rhombe
obtus et un aigu. Ces tuiles peuvent petre
décorées avec des particules (par exemple en
mettant une particle à chaque sommet des
tuiles) pour créer un structure apériodique
mais ordonnée. Plusieurs tentative de construction de structures atomiques
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réalistes basées sur le pavage de Penrose ont précédé la découverte de Shecht-
man [11, 12]. Mackay a contrsuit un modèle atomique basé sur une version 3D
du pavage et mesuré son diagramme de diffraction directement à l’aide d’un
diffractomètre [13]. Finalement, Levine et Steinhardt furent les premier à re-
connaitre dans l’échantillon de Shechtman la première réalisation expérimentale
d’un cristal apériodique [14]. Ils calculèrent le diagramme de diffraction d’une
structure basée sur une généralisation en trois dimensions du pavage de Pen-
rose et montrèrent que les pics correspondaient exactement à ceux trouvés
dans les mesures expérimentales, et baptisèrent quasicristal ce nouveau type
de matériaux ordonnées mais non périodiques. Un récit de première main de
cette histoire par Steinhardt peut être trouvé dans la Référence 15.

La découverte du premier quasicristal a rencontré un certain scepticisme
dans les rangs des cristallographes. En effet, la précision des mesures de Shecht-
man ne permettait pas d’exclure certaines configurations complexes de macles
[16]. Rapidement, cependant, d’autres quasicristaux furent découvert dans
d’autres alliages métalliques [17–19], établissant leur existence sur des bases plus
convaincantes. En 1992, la Comission des Cristaux Apériodiques de l’Union
Internationale des Cristallographes proposa une nouvelle définition de cristal
comme “un solide possédant un diagramme de diffraction essentiellement dis-
cret”, qualifiant de ce fait les quasicristaux comme des cristaux de plein droit.

Quasicristaux en matière molle

Avant les années 2000, tous les quasicristaux connus avaient été découverts
dans des alliages de métaux. En 2004, Zeng et. al. ont découvert un quasi-
cristal dodécagonal (symétrie d’ordre 12) dans un system de micelles [38]. Cette
trouvaille introduit les quasicristaux dans le champ de la physique de la matière
molle, qui s’intéresse aux systèmes dont les constituants élémentaires sont bien
plus grands que des atomes (nanoparticules, macromolécules, colloids etc...).
L’interaction entre les constituants de base des systèmes de matière molle est
typiquelent plus faible que les intéractions fortes qui lient les atimes entre eux
dans les solides. De ce fait, la densité d’énergie et le module élastique de ces
assemblage sont typiquement assez faibles, produisant des matériaux “mous”
comme des gels, pâtes ou cristaux liquides9.

Les quasicristaux en matière molle sont rapidement devenus un sujet de
recherche actif. En effet, leur nature ordonnée combinée avec leur symétries
exotiques promettent d’intéressantes propriétés optiques [39–42], qui se man-
ifestent quand la longeur d’onde des la lumière incidente est comparable aux
distances typiques dans le matériau. Dans les quasicristaux métalliques, les
constituents pertinents sont les atomes, qui intéragissent principalement avec les
rayons X. Pour utiliser les propriétés des quasicristaux à des longueurs d’onde
plus grandes, des constituents de bases plus gros, comme ceux trouvés dans les
systèmes de matière molle sont nécessaires.

9Daan Frenkel définit parfois la matière molle comme “tout ce qui ne passe pas les contrôles
de sécurité à l’aéroport”
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Depuis la découverte de Zeng et. al., d’autres quasicristaux ont été observés
dans des systèmes de matière molle remarquablement différents [46–50]. La
nature des constituents (micelles ou nanoparticules, aussi bien que leur pro-
priétés chimiques (micelles de nature très différente), semble importer peu à
l’émergence de l’ordre quasi-cristallin. La taille des constituents élémentaires
varie de presques deux ordres de grandeur entre les micelles de silice [47] (quelques
Angströms) et les polymers étoilés [48] (plusieurs dizaines de nanomètres), et
pourtant ces systèmes forment des quasicristaux très similaires. Cela suggère
qu’au delà des détails des interactions microscopiques, des mécanismes généraux
stabilisent les quasicristaux dans les sytèmes de matière molle. Cette thèse est
une contribution aux tentative d’élucidation de ces mécanismes.

Simulations numériques

Les simulations numériques sont un outil de choix pour aborder ces questions.
En particulier, nous utilisons des simulations d’auto-assemblages, qui peuvent
être imaginées comme de véritables expériences numériques. En effet, on com-
mence par préparer le système dans un état initial contrôllé (composition, den-
sité...). Ensuite, la simulation est démarrées, qui fait évoluer les systèmes selon
la dynamique choisie, et des mesures sont prises qui fournissent des données
brutes sur lesquelles des analyses seront ensuite effectuées. A l’image d’une
expérience réelle, la simulation donne accès au comportement réel du système,
sans approximation. A la différence de la plupart des expériences traditionelles
en revanche, les données brutes collectées contiennent toute l’information micro-
scopique du système (position et vitesse de toutes les particules), ce qui permet
une analyse très détaillée. Le prix à payer pour cette précision est que les
systèmes étudiés sont généralement très petits (typiquement jusqu’à 108 par-
ticules, à comparer avec les 1023 qui forment un échantillon macroscopique),
et simulés sur des temps réels très courts. De plus, les simulations traitent de
systèmes modèles. Ceci est à la fois une force et une faiblesse, selon l’ambition
du physicien ou de la physicienne. D’un côté, le système modèle n’existe ja-
mais tel quel dans le monde des expériences sensibles (par exemple, il n’existe
pas d’objet parfaitement sphérique et dur) et les tentatives de reproduire des
intéraction réalistes dans des systèmes complexes produisent typiquement des
simulations incroyablement compliquées et couteuses en ressources de calcul,
pour des comparaisons souvent décevantes avec les expériences. D’un autre côté,
les simulations numériques peuvent se révéler extrêmement précieuses quand
elles sont utilisées sur des systèmes simples, car on peut alors épurer le modèle
jusqu’à ne garder que quelques ingrédients clef, et obtenir le comportement ex-
act de ce système idéalisé. Si le phénomène d’intérêt (par exemple la formation
d’un quasicristal) persiste, le modèle minimal fournit des indices précieux sur
les mécanismes fondamentaux à l’oeuvre.

Un très grand nombre de simulations se sont attachées à la formation des
quasicristaux. On peut grossièrement les classer en deux groupes, selon que
les différents longueurs nécessaires à l’ordre quasipériodique sont obtenus par
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un mélange de plusieurs types de particules [72–77], ou intégrées dans un po-
tentiel d’interaction plus complexe pour un système ne contenant que un type
de particules [22, 63, 78–93]. Certaines études ont aussi étudier la possibilité
de remplacer une longueur caractéristique par une contrainte sur les angles de
liaison des particules, en simulant des particules munies de patches attractifs
directionnels [94–100]

Un modèle minimal pour les quasicristaux

La plupart des observations de quasicristaux dans des systèmes de matière
molle sont le fruit du hasard. Concevoir un système expérimental pour l’auto-
assemblage de quasicristaux reste très ardu. Pourtant, un système colloidal
simple dans lequel des quasicristaux se formerait de manière robuste et re-
productible serait très précieux car il offrerait une fenêtre sur la dynamique
des quasicristaux en temps réel, dans l’espace direct à l’échelle micrométrique.
Une telle plateforme expérimentalle est indispensable pour attaquer plusieurs
question ouvertes quant à la nucléation et la croissance des quasicristaux, ou
la dynamique de leur défauts particuliers par exemple. La grande variété de
simulations numériques passées ont exploré la possibilité d’auto-assemblage de
quasicristaux dans de nombreux systèmes modèles, mais la plupart d’entre eux
sont difficilement réalisable expérimentallement.

A l’inverse, des colloids durs peuvent aujourd’hui être produits avec un grand
contrôle sur la taille [103–105]. Ces particules sont extrêmement bien modélisées
par de simples sphères dures, au point que les simulations et les expériences
concordent quantitativement dans une grande gamme de paramètres [106, 107].
Motivés par cette possibilité expérimentale et prenant la suite des travaux de
Likos et Henley qui ont montré l’existence d’un quasicristal dodécagonal dans
des mélanges binaires de disques durs à pression infinie [74], notre travail étudie
l’auto-assemblage de quasicristaux dans des mélanges binaires de sphères dures.
Comme tous les quasicristaux de matière molle observés à l’heure actuelle dans
des expériences possèdent un ordre quasipériodique en deux dimension seuleu-
ment, notre étude se focalise sur les systèmes 2D et considère des mélange
des sphères dures confinées à une interface. Cette géométrie est similaire à
celle utilisée par Talapin et. al., qui ont observé la formation d’un quasicristal
dodécagonal dans un mélange binaire de nanoparticules.

Un mélange de sphères dures confinées à une interface peut être transformé
en un système 2D équivalent de disques durs, en considérant la projection des
particules sur le plan de l’interface (voir Figure III.20 En général, des particules
composées de matériaux différents on des propriétés de mouillage différentes
avec l’interface fluide et reposeront donc à des hauteurs différentes. Dans le
configuration 3D, une petite sphère peut alors glisser légèrement en dessous (ou
au dessus) d’une grande avant qu’un contact n’ait lieu. Cela se traduit dans
le système 2D équivalent par une distance de contact entre les petits et grands
disques inférieure à la somme de leurs rayons. Les sphères d’un même type
reposent toutes à la même hauteur et se comportent donc comme des disques
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Figure III.20: Un mélange binaire de sphères dures confinées à une interface
(haut) peut être décrit par un système équivalent de disques durs en 2D, en
considérant la projection des spheres sur le plan de l’interface (bas). Si les
particules de différent types reposent à des niveaux différents par rapport à
l’interface, à cause d’angle de mouillage différents avec les fluids par exemple,
la distance de contact entre les petits et grands disques devient plus petite que
la somme des rayons des spheres correspondantes. Le systèmes modèle ainsi
obtenu est un mélange de disques durs non-additifs.

durs standard dans le système 2D équivalent. Dans ce modèle très simple, les
intéractions qui pourraient résulter des déformations de l’interface sont ignorées.
Le modèle 2D équivalent est appelé mélange binaire de disque durs non-additifs,
et constitue le système exclusif des travaux présentés dans cette thèse.

Le diagramme de phase des mélanges binaires de disques durs additifs a
pression infinie a été étudié par Likos et Henley dans les années 90 [74]. Ils ont
montré que, même à pression infinie, ce système simple peut former un qua-
sicristal dodecagonal, et suggèrent dans leur publication l’étude de systèmes
non-additifs comme une extension naturelle de leurs travaux. Dans le pre-
mier chapitre de cette thèse, nous suivons leurs pas et explorons le diagramme
de phase à pression infinie des mélanges de disques durs non-additifs. En
améliorant l’échantillonnage des structures candidates, nous trouvons de nou-
velles phases stables qui n’étaient pas considérées précédemment et montrons
que l’introduction de la non-additivité promeut la zone de stabilité du quasi-
cristal.

Dans le second chapitre, la contrainte de pression infinie est relâchée et des
simulations directes d’auto-assemblage sont conduites à pression finie. Cette
étude confirme que le quasicristal dodecagonal prédit à pression infinie peut aussi
se former spontanément dans des conditions réalistes. Nous rapportons aussi
l’auto-assemblage d’un nouveau quasicristal octagonal dont la composition peut
être continuement variée tout en préservant la symétrie non cristallographique
d’ordre 8.

Le troisième chapitre explore en détail la stabilité du quasicristal dodécagonal
à l’aide de calculs numériques d’énergie libre. Ces calculs nous permettent de
tracer un diagramme de phase essentiellement exact pour notre système, et
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prouvent que le quasicristal dodécagonal est bien thermodynamiquement sta-
ble. Enfin, à l’aide de calculs d’énergie libre de grande précision, nous évaluons
quantitativement la validité de l’hypothèse de pavage aléatoire, utilisée plus tôt
dans cette thèse à plusieurs reprises.
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Appendix A

Infinite pressure phases

Phases drawn in Figure I.2 depict the structures at “magic ratios” where they are
highly symmetric, with a large number of contacts between the disks. When the
size ratio q deviates from those values, structures are deformed, bonds are broken
and some symmetries are lost while others are gained. This appendix provides
additional details on the magic ratios of these phases, and the deformations they
undergo at infinite pressure as a function of size ratio.

A.1 Magic ratios

In Table A.1, we provide numerical values for the various magic ratios for
∆ = 0,−0.03,−0.05 and − 0.1. Each crystal structure has several magic ratios
associated with its deformation path. For example, qT2 2 is the magic ratio
for crystal structure T2, with index 2. Note that some magic ratios that carry
different labels are actually identical.

A.2 Deformation paths

In Figures A.1 to A.8, we present deformation paths for the phases that ap-
pear in the phase diagrams, in which we highlight how the contacts between
particles (red lines) are changed upon deformation between different magic size
ratios. In some cases, multiple paths are possible, which will have different vol-
umes per particle depending on the exact choice of size ratio and non-additivity
parameter.

All deformations are obtained from Floppy Box Monte Carlo simulations
[124]. Some structures that have the same composition xS can deform contin-
uously one into the other. We still give them separate names to conform to
the naming scheme of Ref. 74. In such cases, the deformation paths are linked
together and each phase corresponds to one portion.
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label ∆ = 0 ∆ = −0.03 ∆ = −0.05 ∆ = −0.1

qT1 0 0.155 0.190 0.215 0.283
qT1 1 0.281 0.308 0.327 0.376
qT2 0 0.101 0.124 0.140 0.183
qT2 1 0.216 0.220 0.224 0.235
qT2 2 0.349 0.335 0.326 0.304
qT3 0 0.082 0.101 0.115 0.152
qT3 1 0.119 0.131 0.139 0.163
qT3 2 0.233 0.224 0.219 0.205
qT4 0 0.349 0.335 0.326 0.304
qT4 1 0.308 0.319 0.326 0.344
qS1 0 0.155 0.190 0.215 0.283
qS1 1 0.414 0.458 0.489 0.571
qS2 0 0.101 0.124 0.140 0.183
qS2 1 0.217 0.238 0.252 0.290
qS2 2 0.369 0.372 0.374 0.381
qS2 3 0.620 0.590 0.571 0.525
qS3 0 0.187 0.204 0.217 0.250
qS3 1 0.473 0.453 0.439 0.407
qS4 0 0.073 0.090 0.102 0.136
qS4 1 0.199 0.162 0.149 0.131
qS4 2 0.136 0.149 0.156 0.175
qS4 3 0.288 0.284 0.281 0.272
qS5 0 0.244 0.248 0.251 0.260
qS5 1 0.389 0.373 0.363 0.337
qH1 0 0.533 0.536 0.538 0.543
qH1 1 1 0.942 0.905 0.818
qH2 0 0.638 0.669 0.691 0.748
qH3 0 0.101 0.124 0.140 0.183
qH3 1 0.386 0.404 0.416 0.448
qH3 2 1 0.942 0.905 0.818
qH4 0 1 0.942 0.905 0.818
qSh1 0 0.101 0.124 0.140 0.183
qSh1 1 0.545 0.571 0.589 0.636

Table A.1: “Magic” size ratios where the various crystal structures exactly
accommodate a specific set of contacts between neighbours.
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qT1_0(Δ)

qT1_1(Δ)

qH1_0(Δ)

qH1_1(Δ)

q

T1

Figure A.1: T1 and H1 deformation paths. Both phases have the same compo-
sition and can continuously deform one into the other at q = qH1 0(∆). We call
T1 the branch of the path in the grey frame. The other portions are labelled
H1.
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qT2_0(Δ)

qT2_1(Δ)

qT2_2(Δ)

q
Figure A.2: T2 deformation path. There are two ways to expand the unit cell
above qT2 0(∆). The right branch takes over the other in terms of volume per
particle at a size ratio between qT2 0(∆) and qT2 2(∆), that does not correspond
to a magic ratio. We decide to keep the same name T2 for both branches to
lighten the naming scheme.



A.2. DEFORMATION PATHS 121

qT3_0(Δ)

qT3_2(Δ)
q

qT3_1(Δ)

qT4_0(Δ)

qT4_1(Δ)
q

Figure A.3: T3 (Left) and T4 (Right) deformation paths.



122 APPENDIX A. INFINITE PRESSURE PHASES

q

qS1_0(Δ)

qS1_1(Δ)

qH2_0(Δ)

1

H2

Figure A.4: Deformation paths of S1 and H2 structures. We label H2 the
branch that deforms the unit cell beyond qS1 1(∆) by breaking one contact
between large disks. The rest of the path is labelled S1.
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q
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qS2_1(Δ)

qS2_2(Δ)

qS2_3(Δ)

qS3_0(Δ)

qS3_1(Δ)
q

Figure A.5: S2 (Left) and S3 (Right) deformation paths.
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q

qS4_0(Δ)

qS4_3(Δ)

qS4_1(Δ)

qS4_4(Δ)

qS4_1(Δ)

qS4_2(Δ)
No phase here

Δ < -0.031

Δ > -0.031

Figure A.6: S4 deformation path. Depending on the non-additivity parameter
∆, different contacts occur first as the small disks are inflated, leading to two
possible deformation branches. On the left branch (∆ < −0.031), we could not
find a deformation linking the S4 structure at qS4 3(∆) and qS4 1(∆)
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qS5_0(Δ)

qS5_1(Δ)
q

qSh1_0(Δ)

qSh1_1(Δ)

q
Figure A.7: S5 (Left) and Sh1 (Right) deformation paths.
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q

qH3_0(Δ)

qH3_1(Δ)

qH3_2(Δ)
q

qH4_0(Δ)

1

Figure A.8: H3 (Left) and H4 (Right) deformation paths.
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n = 1
n = 2

Figure A.9: The two first iterations of an (infinite) family of periodic structures
with shield and triangular tiles (upper-left). They have the same volume per
particle as the coexistence of Sh1 and HexL at the same fraction of small disks
p.

A.3 Shield-triangle structures

The Sh1 unit cell can be decomposed into a shield-shaped tile and triangular
HexL tiles. Those tiles can be combined without volume-per-particle cost for
q ≤ qSh 0(δ) (see Figure A.9). While these shields and triangles do not allow
random tiling of the plane, they can be combined into a family of periodic
structures with larger and larger unit cells[137]. In Figure A.9 we show the two
first members (n = 1 and n = 2) of an infinite family of periodic structures that
exist for a fraction of small disks. In this family, the structure with index n has
a composition

xS(n) =
3n(n+ 1)

6n(n+ 1) + 1
. (A.1)

In the limit where n → ∞ this converges to xS = 1/2, and the phase becomes
identical to the Sh1 phase. However, for small n, the composition is slightly
smaller, as extra large particles are included at the crossing points of the red
lines in Fig. A.9. Since this inclusion of HexL tiles comes without volume cost,
structures within this family (or coexistences between them) are as stable as
the HexL-Sh1 coexistence at infinite pressure at their respective compositions.
Hence, there is a small region of many competing tilings at compositions between
xS = 6/13 and 1/2 in the phase diagram in Figure I.4. However, we expect that
vibrational entropy contribution will favour one of these crystals and simplify
this region of the phase diagram, either in the infinite pressure limit, or in any
case at finite pressures.

In our simulations, we only consider periodic crystals with up to 12 disks
in the unit cell so the family of structures mentioned above is out of scope.
However, we note that the existence of these complex structures suggests that
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periodic structures with large unit cells may exist elsewhere, when unit cells of
coexisting phases can be decomposed into a set of matching tiles that can tile
the plane in a variety of ways, even if fully aperiodic tilings are not possible.

A.4 Calculations of the volumes per particle

Candidate crystal structures are sampled by Floppy-Box simulations for discrete
values of the size ratio q and composition xS . To draw the phase diagrams and
get the exact range of stability of the different phases, we compute their volume
per particle v along the deformation paths. To this end, we identify the disks in
contact from the simulations, and write down a set of equations for the position
of all the disks in the unit cell. Then, we use the symbolic library sympy [196]
to obtain analytical expressions for the magic ratios, particle positions and the
volume per particle of each structure as a function of q and ∆.

In some cases, sympy fails to solve the equation for the magic ratio. We then
rely on a numerical solution. In the worst case (S4), we did not find analytical
expressions for the position of the particles. For this case, we compute the
positions numerically, deduce the volume per particle for a large number of
(q,∆) points and use 2D linear interpolation to estimate missing values.

Figure A.10 displays the packing fraction of the pure phases that appear in
the additive phase diagram (∆ = 0) in Figure I.4. Note that the best packing
phase in these diagrams is not necessarily the stable phase, because a coexistence
of two phases (not shown in the graph), could pack better at this composition.

Finding optimal deformations, even with guidance from Floppy-Box simu-
lations, remains a challenging task. It can never be excluded that we missed
some more optimal deformation paths, and indeed, in Figure A.11, we repro-
duce deformation paths for the T2 and H3 phases in the additive case, provided
by Thomas Fernique in a private communication, which have a higher pack-
ing fraction than the ones presented above for q ∈ ]qT2 2, 1[ and q < qH3 1

respectively.
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Figure A.10: Packing fraction of the pure phases at ∆ = 0, for compositions
a) xS = 1/2, b) 2/3, c) 7/9, d) 4/5, e) 5/6, f) 6/7, g) 7/8, and h) 8/9.
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qH3_1

qT2_0 qT2_2

Figure A.11: Denser deformation paths found by Thomas Fernique for the T2
(Top) and H3 (Bottom) phases for q ∈ ]qT2 2, 1[ and q < qH3 1 respectively (red
thick lines).



Appendix B

Automatic detection of
non-equilibrated
simulations

Our work relies heavily on measuring equilibrium quantities from simulation
snapshots containing the position and – in the case of molecular dynamics sim-
ulations – velocities of all the particles. Under the assumption that the system
is ergodic and at equilibrium, the time averages taken from simulations are the
same as ensemble averages.

The ergodicity hypothesis is not very easy to assess, and rarely checked in
practice. The equilibrium hypothesis is easier to verify, and usually checked by
looking at a property versus simulation time plot. If the quantity fluctuates
around a mean value, the system is assumed to be at equilibrium. If a drift is
observed in curve, the simulation has not reached equilibrium yet.

This visual verification works fine, but quickly gets impractical when the
number of simulations grows. This section presents attempts made at automat-
ing the detection of non-equilibrated simulations. To benchmark the methods,
I use data from a Monte Carlo measurement of an equation of state for a binary
mixture of non-additive hard disks. The volume is recorded as a function of
simulation time for various pressures in [0.05 kBTσ

−2
L , 45 kBTσ

−2
L ]. At high

pressures, the simulations are typically less equilibrated.

B.1 Linear fit

At equilibrium, thermodynamic quantities fluctuate around a constant mean.
Therefore, a linear fit to an infinitely long measurement of an equilibrated quan-
tity should yield a line of slope 0. Fitting an affine function to the data is es-
sentially what one does when eyeballing at the curve to check whether a drift is
present or not.
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Figure B.1: Results of the linear fit on Monte Carlo measurement of the
volume in a binary mixture of non-additive hard disks at pressures 5.3 kBTσ

−2
LL

(left, equilibrated) and 42.2 kBTσ
−2
LL (right, not equilibrated). The bottom plot

shows the outcome of the classification on all points sampled for the equation
of state. Blue and red points are classified as equilibrated and non-equilibrated
respectively.

The x-axis is arbitrary, and simply taken as the index of the sample in the
data set. The fit function returns both fit parameters and standard error. The
standard error is multiplied by a factor to obtain the confidence interval for the
slope. The factor is computed from a Student’s t-distribution adapted to the
size of the data set. Finally, if zero does not lie within the slope error bars,
the system is assumed to be out of equilibrium. The output of the method is
illustrated in Figure B.1.

The confidence level used in the error bar determination gives the probability
that the true slope lies within the error bars. It can be used to adapt the
strictness of the test. The smaller the confidence level, the smaller the error
bars, thus the stricter the test.

For the equation of state data, the method allows to clearly identify that sim-
ulations of pressure above∼ 33 kBTσ

−2 have not reached equilibrium. However,
at lower pressures, some simulations are classified as not equilibrated although
visual inspection suggests they are. Increasing the size of the confidence interval
reduces this effect, but does not suppress it.

This method yields decent results. It corresponds to a relatively direct im-
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plementation of the manual process. It would however fail spectacularly in
some pathological cases such as sampling that would be symmetrical around
the middle of the x-axis. This could occur with long wavelength fluctuations for
instance, although this should be pretty rare.

We use this method to assess equilibration in the Frenkel-Ladd calculations,
as discussed in section III.4. The next two sections describe a failed attempt at
solving the same problem using a normality test, and suggestion of a possible
better solution using block averages.

B.2 Normality test

The thermodynamic quantities of a system at thermal equilibrium can be rep-
resented as random variables following a Gaussian distribution whose mean and
width are physically meaningful quantities.

To assess equilibration of a system, one could use a statistical test to see
whether the measured points can reasonably be assumed to have been drawn
from a normal distribution.

The Shapiro-Wilk test computes a p-value for the null hypothesis that the
samples were drawn from a normal distribution. P-values are strange objects,
and interpretations should be made with extreme care. The p-value of the
Shapiro-Wilk test is the probability that a set of points drawn from a normal
distribution would have displayed a behaviour at least as extreme as the ob-
served one. Typical use of p-values involve setting a-priori a threshold value
and rejecting the null hypothesis if the computed p-value is smaller than the
threshold.

This method does not work well. This might be due to time correlations
between samples. Indeed, the samples are not exactly drawn from a normal
distribution when snapshots are dumped too often. A way around this would
be to prune the data set to keep only uncorrelated samples. The mixing time
can be obtained from the Flyvbjerg-Peterson (or block average) analysis.

B.3 Block averages

In a time sequence of equilibrated simulation snapshots, samples are usually
correlated. To measure meaningful errors on the calculated means, we routinely
use Flyvbjerg-Peterson (or block-average) analysis [145, 188]. This works great
and allows us to detect whether the simulation was long enough to decorrelate
or not by looking at the appearance of a plateau in the standard error on mean
computed on block averages.

The plateau typically doesn’t appear when the simulation is not equilibrated.
Instead, the standard error grows monotonically.

Figure B.2 displays the Flyvbjerg-Peterson analysis for equation of state
simulations at P = 4.8 kBTσ

−2 and P = 44.8 kBTσ
−2. The first one would

reasonably be classified as equilibrated and is not by the slope analysis, while the
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Figure B.2: Flyvbjerg-Peterson (or block average) analysis for equation of state
simulations of non-additive hard disks at pressures P = 4.8 kBTσ

−2 (left) and
P = 44.8 kBTσ

−2 (right). In the first case, a plateau appears indicating that
equilibrium was reached, while in the second case, samples are still correlated.

second looks equilibrated (and is classified as such by the slope analysis) but is
in fact still completely correlated, which means that no meaningful equilibrium
quantities can be measured from it.

In both cases, the block average plot provides a clear indication. This sug-
gests that detecting the plateau in the block averages is a more reliable method
to assess equilibration. However, automatic plateau detection on curves with
typically less than a dozen points seems tricky, and I did not implement it
provided that the slope method provides good enough results.



Bibliography

[1] D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, Metallic Phase with
Long-Range Orientational Order and No Translational Symmetry, Phys.
Rev. Lett. 53, 1951 (1984).

[2] R. Lifshitz, Quasicrystals: A Matter of Definition, Fond. Phys. 33, 1703
(2003).

[3] V. Daniel and L. Henry Solomon, An X-ray study of the dissociation of an
alloy of copper, iron and nickel, Proc. R. Soc. Lond. A 181, 368 (1943).

[4] S. Tanisaki, Microdomain Structure in Paraelectric Phase of NaNO 2, J.
Phys. Soc. Jpn. 16, 579 (1961).

[5] G. C. Dubbledam and P. M. de Wolff, The average crystal structure of
γ-Na 2 CO 3, Acta Crystallogr B Struct Sci 25, 2665 (1969).

[6] P. B. Jamieson, D. de Fontaine, and S. C. Abrahams, Determination of
atomic ordering arrangements from a study of satellite reflections, J Appl
Crystallogr 2, 24 (1969).

[7] C. K. Johnson, Superstructure and modulation wave analysis for the uni-
dimensional conductor hepta- (tetrathiafulvalene) pentaiodide, J. Chem.
Phys. 64, 2271 (1976).

[8] C. Janot, Quasicrystals: A Primer (Oxford Univ. Press, Oxford, 1998).
OCLC: 833136900.

[9] T. Janssen, G. Chapuis, and M. de Boissieu, Aperiodic Crystals: From
Modulated Phases to Quasicrystals (Oxford University Press, Oxford ;
New York, 2007).

[10] P. J. Lu and P. J. Steinhardt, Decagonal and Quasi-Crystalline Tilings in
Medieval Islamic Architecture, Science 315, 1106 (2007).

[11] P. Kramer and R. Neri, On periodic and non-periodic space fillings of
Em obtained by projection, Acta Crystallogr A Found Crystallogr 40, 580
(1984).

135



136 BIBLIOGRAPHY

[12] V. Elser, The diffraction pattern of projected structures, Acta Crystallogr
A Found Crystallogr 42, 36 (1986).

[13] A. L. Mackay, Crystallography and the penrose pattern, Physica A 114,
609 (1982).

[14] D. Levine and P. J. Steinhardt, Quasicrystals: A New Class of Ordered
Structures, Phys. Rev. Lett. 53, 2477 (1984).

[15] P. J. Steinhardt, Quasicrystals: A brief history of the impossible, Rend.
Fis. Acc. Lincei 24, 85 (2013).

[16] L. Pauling, Apparent icosahedral symmetry is due to directed multiple
twinning of cubic crystals, Nature 317, 512 (1985).

[17] A.-P. Tsai, A. Inoue, and T. Masumoto, A Stable Quasicrystal in Al-Cu-Fe
System, Jpn. J. Appl. Phys. 26, L1505 (1987).

[18] N. Wang, H. Chen, and K. H. Kuo, Two-dimensional quasicrystal with
eightfold rotational symmetry, Phys. Rev. Lett. 59, 1010 (1987).

[19] A.-P. Tsai, “Back to the Future”-An Account Discovery of Stable Qua-
sicrystals, Acc. Chem. Res. 36, 31 (2003).

[20] IUCr, Report of the Executive Committee for 1991, Acta Crystallogr A
Found Crystallogr 48, 922 (1992).

[21] R. Lifshitz, The square Fibonacci tiling, J. Alloys Compd. 342, 186 (2002).

[22] T. Dotera, S. Bekku, and P. Ziherl, Bronze-mean hexagonal quasicrystal,
Nature Mater 16, 987 (2017).

[23] F. Beenker, Algebraic Theory of Non-Periodic Tilings of the Plane by Two
Simple Building Blocks : A Square and a Rhombus (Eindhoven University
of Technology, 1982).

[24] Y. Watanabe, M. Ito, and T. Soma, Nonperiodic tessellation with eight-
fold rotational symmetry, Acta Crystallogr A Found Crystallogr 43, 133
(1987).

[25] M. Baake and D. Joseph, Ideal and defective vertex configurations in the
planar octagonal quasilattice, Phys. Rev. B 42, 8091 (1990).
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[140] M. Impéror-Clerc, A. Jagannathan, P. Kalugin, and J.-F. Sadoc, Square-
triangle tilings: An infinite playground for soft matter, Soft Matter 17,
9560 (2021).

[141] H. Kawamura, Entropy of the random triangle-square tiling, Physica A
177, 73 (1991).

[142] E. Fayen, A. Jagannathan, G. Foffi, and F. Smallenburg, Infinite-pressure
phase diagram of binary mixtures of (non)additive hard disks, J. Chem.
Phys. 152, 204901 (2020).

[143] P. M. Reis, R. A. Ingale, and M. D. Shattuck, Crystallization of a Quasi-
Two-Dimensional Granular Fluid, Phys. Rev. Lett. 96, 258001 (2006).



BIBLIOGRAPHY 145

[144] N. Mujica and R. Soto, in Recent Advances in Fluid Dynamics with En-
vironmental Applications, edited by J. Klapp, L. D. G. Sigalotti, A. Med-
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