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Résumé

La catégorie amassée généralisée (supérieure) associée a une dg-algebre (n + 1)-Calabi-
Yau appropriée a été introduite par Claire Amiot et Lingyan Guo. Elle est Hom-finie, n-
Calabi-Yau et admet un objet canonique object n-amas-basculant. Notre premier objectif
dans cette these est de généraliser leur construction au contexte relatif. Nous prouvons
I’existence d’un object n-amas-basculant dans une catégorie extriangulée de Frobenius qui
est stablement n-Calabi—Yau et Hom-finie, associée a un morphisme (n + 1)-Calabi—Yau.
Nos résultats s’appliquent en particulier aux dg-algebres relatives de Ginzburg provenant
de carquois glacé a potentiel. Ils sont étroitement associées par Iyama-Oppermann aux
algeébres de n-représentation finie.

En 2009, Keller et Yang ont catégorifié les mutations du carquois en l'interprétant
en termes d’équivalences entre catégories dérivées. Leur approche était basée sur les
algebres de Calabi-Yau de Ginzburg et sur la mutation de Derksen-Weyman-Zelevinsky
des carquois a potentiel. Récemment, Matthew Pressland a généralisé la mutation des
carquois a potentiel a celle des carquois glacés a potentiel. Notre deuxieme objectif dans
cette these est de catégorifié la mutation de Pressland. Nous montrons que sa regle produit
des équivalences dérivées entre les algebres de Ginzburg relatives associées, qui sont des
cas particuliers des complétions relatives Calabi-Yau déformées de Yeung. Nous donnons
également une catégorifiation de la mutation aux sommets gelés telle qu’elle apparait dans
les travaux récents de Fraser-Sherman-Bennett sur les structures d’amas sur les variétés
positroides ouvertes.

Mots-clefs. Structures relatives de Calabi—Yau, complétions relatives de Calabi—Yau,
catégories relatives amassées, mutations de carquois glacés, carquois glacés a potentiel,
algebres de Ginzburg relatives, équivalences dérivées.



Abstract

The generalized (higher) cluster category arising from a suitable (n+1)-Calabi—Yau differ-
ential graded algebra was introduced by Claire Amiot and Lingyan Guo. It is Hom-finite,
n-Calabi-Yau and admits a canonical n-cluster-tilting object. Our first aim in this thesis
is to generalize their construction to the relative context. We prove the existence of an
n-cluster tilting object in a Frobenius extriangulated category which is stably n-Calabi-
Yau and Hom-finite, arising from a left (n + 1)-Calabi—Yau morphism. Our results apply
in particular to relative Ginzburg dg algebras coming from ice quivers with potential.
They are closely linked to Iyama—Oppermann’s theory of (n + 1)-preprojective algebras
of n-representation-finite algebras.

In 2009, Keller and Yang categorified quiver mutations by interpreting it in terms of
equivalences between derived categories. Their approach was based on Ginzburg’s Calabi—-
Yau algebras and on Derksen—Weyman—Zelevinsky’s mutation of quivers with potential.
Recently, Matthew Pressland has generalized mutation of quivers with potential to that
of ice quivers with potential. Our second aim in this thesis is to categorify Pressland’s
mutation. We show that his rule yields derived equivalences between the associated rela-
tive Ginzburg algebras, which are special cases of Yeung’s deformed relative Calabi—Yau
completions. We also give a categorification of mutation at frozen vertices as it appears
in recent work of Fraser-Sherman-Bennett on positroid cluster structures.

Keywords. Relative Calabi—Yau structures, relative Calabi—Yau completions, relative
Cluster categories, ice quiver mutations, ice quivers with potential, relative Ginzburg
algebras, derived equivalences.
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Introduction

0.0.1 Version francaise

Cette these est consacrée a I'étude de la catégorification des algebres amassées a coeffi-
cients en utilisant le formalisme des structures de Calabi—Yau relatives qui a été développé
par Bertrand Toén [85, pp. 227-228] et Brav—Dyckerhoff [16].

Il'y a & peu pres 20 ans, Fomin et Zelevinsky [27] ont inventé les algebres amassées afin
de créer un cadre combinatoire pour 1’étude des bases canoniques [52] [69] dans les groupes
quantiques et ’étude de la positivité totale dans les groupes algébriques [70]. Parmi ces
algebres, il v a les algebres de coordonnées homogenes sur les Grassmanniennes, sur les
variétés de drapeaux et sur de nombreuses autres variétés qui jouent un role important
dans la géométrie et la théorie des représentations. Il s’est rapidement avéré que la
combinatoire des algebres amassées apparait également dans de nombreux autres sujets,
par exemple dans la géométrie de Poisson [34, [35], 36, [37], les espaces de Teichmiiller
supérieurs [24] 25] 20], et dans la théorie des représentations des carquois et des algebres
de dimension finie [IT], 12].

Une algebre amassées est une algebre commutative avec une famille distinguée de
générateurs, appelées variables d’amas, qui ont des propriétés combinatoires spéciales.
Pour construire une algebre amassée, on part d’une graine

(X = (xla---axnaxn-‘rla"'7Im]aB)

constituée, par définition, d’'un ensemble X qui engendre librement un corps ambiant
F =Q(zy...xy) et d'une matrice B = (b;;) de taille m x n, a coefficients entiers dont la
partie principale B’ = (b;j)1<i<n,1<j<n €St antisymétrique. De fagon équivalente, au lieu
de la matrice B, nous pouvons utiliser un carquois fini () avec des sommets 1,2,...,m, et
sans cycles orientés de longueur 1 ou 2. Pour chaque i = 1,. .., n, la mutation u;( X, Q) =
(X', Q') est définie en remplacant d’abord z; par un autre élément z} dans F selon une
regle spécifique qui dépend a la fois de (z1,...,z,) et de ). Ensuite, nous obtenons
un nouvelle partie génératrice libre X' = (xy, ..., 21,2, Tig1, oy Tny Tog1y -« - T ). L€
carquois muté 1;(Q)) = @ est obtenu a partir de () en appliquant une certaine regle
combinatoire dépendant de i aux fleches de ). Cela donne la nouvelle graine (X', @Q’).
Nous continuons a appliquer puy, ..., i, a la nouvelle graine pour obtenir d’autres graines.
Les ensembles a m éléments X" présents dans les graines (X", Q") sont appelés amas, et
les éléments des amas sont appelés variables d’amas. Les variables d’amas x,,11, ..., %, ne
peuvent pas étre mutées, elles sont appelées variables gelées. L’algebre amassées associée
est la sous-algebre du corps de fonctions F engendrée par toutes les variables d’amas.



Etant donné que la combinatoire des algebres amassées est tres compliquée, il est
utile de les modéliser catégoriquement, car au niveau catégorique, davantage d’outils
conceptuels sont disponibles. Considérons une algebre amassée A sans variables gelées et
telle que 'un des amas ait un carquois acyclique ). Dans ce cas particulier, Buan—-Marsh-
Reineke-Reiten—Todorov [12] ont introduit la catégorie amassée Cp, définie comme la
catégorie d’orbites

Cq = D'(kQ) /T2,

olt 7 désigne la translation d’Auslander-Reiten de la catégorie dérivée DP(kQ) et ¥ le
foncteur suspension de D?(kQ). 1l a été démontré qu’elle était triangulée par un résultat
de Keller [59]. La catégorie amassée possede un ensemble distingué 7 d’objets T', appelés
objets amas-basculants. Tout objet T" dans 7 satisfait

addT = {X € Cq : Exte (X, T) = 0} = {X € Cq : Exte, (T, X) = 0}.
Alors Cg, avec T', a les propriétés agréables suivantes :

e Tout objet T dans T ala forme T'=T; & ---® T, ou les T; sont indécomposables et
T; % T pour ¢ # j. Les T; correspondent alors aux variables d’amas. Le carquois de
chaque amas est donné par le carquois de I'algebre d’endomorphismes Ende,, (T) de
I'objet amas-basculant correspondant.

e Pour chaque ¢ = 1,...,n, nous avons un objet indécomposable unique 77 % T;, ou
T; est un facteur direct indécomposable de T tel que T/T; @ T est dans 7. Le
passage de T a T'/T; ® T} correspond a la mutation des graines dans la définition de
I’algebre amassée. Ce type de mutation est bien défini dans toute catégorie triangulée
2-Calabi—Yau dans laquelle les carquois des algebres d’endomorphismes des objets

amas-basculants n’ont pas de boucles [50].

e La catégorie amassée Cg est équipée d'un caractere d’amas M — ¢y € A [19], qui
envoie les objets sur des éléments de l'algebre amassée. Les variables d’amas sont
données par ¢y pour M un objet rigide indécomposable de Cq, c’est-a-dire un M
indécomposable tel que Ext Q(M , M) =0.

Claire Amiot [4] a généralisé la construction de la catégorie amassée a certaines algebres
de dimension finie Ay de dimension globale < 2. Dans son approche, afin de montrer qu’il
existe une équivalence triangulée entre C4,, construit comme une enveloppe triangulée
[59], et la catégorie quotient perII3(Ag)/pvd II3(Ap)), ou II3(Ag) est la complétion 3-
Calabi-Yau [62] de Ay, elle a d’abord étudié la catégorie Cy = per(IT)/pvd(IT) associée a
une dg-algebre II avec les quatre propriétés suivantes :

e II est homologiquement lisse,
e IT est connective, c’est-a-dire que la cohomologie de IT s’annule en degrés > 0,
o IT est 3-Calabi-Yau en tant que bimodule,

e HO(II) est de dimension finie.
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Théoréme 0.0.1. [j/ Soit II une dg-algebre avec les propriétés ci-dessus. Alors la
catégorie triangulée
Cn = per(IT)/pvd(II)

est Hom-finie, 2-Calabi—Yau et [’objet 11 est un objet amas-basculant avec
Ende, ) (IT) ~ H(IT).

En particulier, si nous prenons pour Ag l'algebre des chemins k() d’un carquois acy-
clique @, la catégorie amassée Cq est équivalente a Crr, k). Plus tard, Lingyan Guo [39] a
généralisé la construction d’Amiot aux algebres de dimension finie A de dimension globale
< n et aux dg-algebres satisfaisant 1),2),4) et n-Calabi-Yau comme bimodule.

Soit IT une dg-algebre avec les propriétés ci-dessus. Soit F(II) la sous-catégorie pleine
de per(IT) définie par

F(II) = (per(IT))<o N (per(IT)s_s)*,

ou (per(IT)), (resp. (per(Il))s,) est la sous-catégorie pleine de per(II) constituée des
objets ayant leur homologie concentrée en degrés < p (resp. = p). C’est ce qu’on appelle
le domaine fondamental de per(IT).

Théoréme 0.0.2. [J]] La composition suivante est une équivalence de catégories k-linéaires
F(IT) — per(II) — per(II)/pvd(II) = C(II).
De plus, le diagramme suivant commute

per(IT) D F(IT) — C(IT)

k /@H,?)

mod H°(IT)

Soit (@, W) un carquois a potentiel (QP). La dg-algébre de Ginzburg T'(Q, W) associée
est homologiquement lisse et porte une structure canonique 3-Calabi-Yau a gauche [38, [62].
Ainsi, elle satisfait les propriétés (1), (2) et (3) du théoreme L’homologie en degré
0 de T'(Q, W) est 'algebre jacobienne J(Q, W).

Théoreme 0.0.3. [J] Soit (Q,W) un carquois a potentiel Jacobi-fini, c’est-a-dire que
Ualgebre jacobienne correspondante J(Q, W) est de dimension finie. Alors la catégorie

C(Q,W) =perI(Q,W)/pvd I'(Q, W)

est Hom-finie et posséde un objet amas-basculant canonique dont l’algebre d’endomorphis-
mes est isomorphe a J(Q,W).

La catégorie C(Q, W) est appelée la catégorie amassée associée au carquois a potentiel
(Q,W). Si (Q,W) n’est pas Jacobi-fini, une généralisation de la catégorie C(Q), W), qui
n’est pas Hom-finie, a été construite par Plamondon dans [74].

Soit @ un carquois fini et ¢ une source de @, c’est-a-dire un sommet sans fleches
entrantes. Soit )’ la mutation de () par rapport a i, c’est-a-dire le carquois obtenu a

11



partir de () en renversant toutes les fleches qui partent de 7. Soient k£ un corps, k@
'algebre des chemins de @ et D(kQ) la catégorie dérivée de la catégorie de tous les kQ-
modules a droite. Pour un sommet j de ()’ respectivement de (), soit P; respectivement
PJ{ I'indécomposable projectif associé au sommet j. Par le résultat principal de Bernstein-
Gelfand-Ponomarev [9] reformulé en termes de catégories dérivées suivant Happel [40], il
existe une équivalence triangulée canonique

F: D(kQ) — D(kQ)

: . ., , . .
qui envoie P} sur P; pour j # i et P/ sur le cone du morphisme

P—Pr
dont les composantes sont les multiplications a gauche par toutes les fleches qui partent
de 7. Cela donne une interprétation catégorique de la mutation par rapport a une source 1.

Keller et Yang [64] ont obtenu un résultat analogue pour la mutation d’un carquois
a potentiel (Q, W) par rapport a un sommet arbitraire i, ou le role du carquois avec
fleches renversées est joué par le carquois a potentiel (@', W) obtenu a partir de (@, W)
par mutation dans le sens de Derksen-Weyman-Zelevinsky [23]. Le role de la catégorie
dérivée D(kQ)) est maintenant joué par la catégorie dérivée D(T") de l'algebre différentielle
graduée complete I' = T'(Q, W) associée a (Q,W).

Soit (@, W) un carquois a potentiel tel que () n’a pas de boucles. Soit i un sommet tel
que @ n’a pas 2-cycles passant par i. Soit u;(Q, W) la mutation de (@, W) par rapport
au sommet ¢ [23]. Soient I' = T'(Q, W) et T = T'(u;(Q, W)) les algebres complétées de
Ginzburg associées respectivement a (Q, W) et p;(Q, W). Pour un sommet j de @, soit
Pj = ¢, et P; = ¢;I". Keller—Yang ont prouvé les résultats suivants [64].

Théoreme 0.0.4. [6])] 1] existe une équivalence triangulée qui envoie Pj sur P; pour j # i
et sur le cone T du morphisme
P — @ Py

pour © = j, ot nous avons un facteur Py pour chaque fleche a de source i et la com-
posante correspondante du morphisme est la multiplication a gauche par «. Le foncteur
F se restreint a des équivalences triangulées de per(I1') sur per(II) et de pvd(IT') sur
pvd(II).

Leur résultat est un analogue mais pas une généralisation de celui de Bernstein-Gelfand-
Ponomarev puisque méme si le potentiel W s’annule, la catégorie dérivée D(I") n’est pas
équivalente a D(kQ).

Remarque 0.0.1. [ existe également une équivalence triangulée
F': D) — D(I)

qui, pour j # i, envoie P! a P; et, pour i = j, sur le cone décalé
T} = 57 (ED Pus) — P,
B

12



ot nous avons un facteur Pygy pour chaque fleche 8 de cible i et la composante corre-
spondante du morphisme est la multiplication a gauche par 3. Les deux foncteurs F et F”
sont liés par le foncteur de torsion tg, par rapport a l'objet 3-sphérique S; (le dg-module
simple sur T' associé au sommet i). Plus précisément, nous avons

F/ = tgi o F,
ot tg, : D(T') — D(T') est donné sur un objet X de D(T') par le triangle suivant
RHom(S;, X) ® S; = X — tg,(X) - XRHom(S;, X) ® S;.

Les résultats suivants donnent un lien entre les dg-algebres de Ginzburg associées a
des QP liés par une mutation.

Théoréme 0.0.5. [6/ Soit (Q, W) un QP sans boucles et i € Qo un sommet qui n’est pas
sur un 2-cycle dans Q. Désignons par I' = T'(Q, W) et I" = I'(u;,(Q, W)) les dg-algébres
de Ginzburg associées.

a) 1l existe des équivalences triangulées

per(I') —=— per(I")

J

pvd(T) — pvd(T").
Par conséquent, nous avons une équivalence triangulée C(Q, W) ~ C(u;(Q,W)).

b) Nous avons un diagramme

per(T) - per(I")

modJ(Q, W) - DWmeutation) modJ(,uZ(Q, W))

Dans le cas des algebres amassées avec des variables gelées, un modele catégorique
approprié devrait avoir certains objets apparaissant comme des facteurs indécomposables
de chaque objet amas-basculant (ces objets correspondent & des sommets gelés). Prendre
un quotient approprié de cette catégorie devrait correspondre a la suppression des vari-
ables gelées de I'algebre amassée et la catégorie quotient devrait étre la catégorie amassée
habituelle.

Pour certaines algebres amassées avec des variables gelées non inversibles, il existe un
modele naturel a cet effet, a savoir une catégorie de Frobenius &, ¢’est-a-dire une catégorie
exacte avec suffisamment d’objets projectifs et injectifs, et telle que les objets projectifs
et injectifs coincident. Alors par définition, chaque objet projectif-injectif I satisfait

Ext;(I,?) = 0= Exte(?,1).

Ainsi, chaque objet projectif-injectif I est dans add T" pour tout objet amas-basculant
T € &. De plus, par un résultat de Happel [41], la catégorie stable £, formée en prenant
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le quotient par I'idéal des morphismes se factorisant a travers un objet projectif-injectif,
est une catégorie triangulée. La catégorie stable correspondante £ est 2-Calabi—Yau s’il
existe une dualité bifonctorielle

Exte(X,Y) = DExt;(Y, X)
pour tous X, Y € £.

Remarque 0.0.2. Pour les algébres amassées avec des wvariables gelées inversibles, on
)
peut considérer la C(ltégO? e dérivée d’une CdtégO? 1e de Frobenius £.

Soient k un corps et () un carquois de Dynkin. Soit J un sous-ensemble de (o. Nous
désignons par k@) l'algebre préprojective correspondante de £Q. Soit ¢ un sommet. On

désigne par S; le kQ)-module simple supporté en i, par P; sa couverture projective et par
(; son enveloppe injective.
Soit Q; = P,c;Q;. Geil-Leclerc-Schroer [32] définissent la sous-catégorie pleine

Sub Q; de la catégorie mod /;\6/2 des modules sur ’algebre préprojective /;\6/2 comme ayant
les objets isomorphes a des sous-modules de sommes directes finies de copies de @);. La
catégorie Sub () est stable par passage a des sous-modules. Elle a donc des noyaux qui

sont en accord avec ceux de mod k(), mais elle n’a pas de conoyaux en général. Cependant,
elle est stable par extensions.
Ainsi, elle hérite de la structure d’une catégorie exacte dans laquelle une suite

X—=>Y—>Z7
en Sub (); est une conflation si et seulement si la suite
0-X—->Y—=>272—-0

est exacte dans mod /;ZQ

Pour tout module M € mod k@, soit 6;(M) le sous-module minimal de M tel que
M/0;(M) est dans Sub @ ;. Alors la projection canonique M — M /60 ;(M) est une Sub @ ;-
approximation minimale a gauche de M. Nous définissons F; = I;/0,(1;). Par [32]
Proposition 3.2], ces F; sont les objets projectifs-injectifs indécomposables dans Sub @ ;.
De plus, Sub @); est une catégorie de Frobenius.

Proposition 0.0.3. [32] La catégorie Sub Q) ; est une sous-catégorie fonctoriellement finie
de mod k(@) qui est stable par extensions, de Frobenius et stablement 2-Calabi—Yau.

En particulier, si nous prenons pour J I'ensemble des sommets o, alors Sub @), est
toute la catégorie mod k().

Une construction plus générale de Sub () ; a été donnée par Buan—Iyama—Reiten—Scott
dans [I3]. Soit ) un carquois connexe fini sans cycles orientés. Nous désignons par
{1 .,n} Pensemble des sommets de (). Pour un sommet i de @), on désigne par I; I'idéal
k:Q(l — ez)k;Q de kJQ Nous désignons par W le groupe de Cozeter associé au carquois ().
Le groupe W est défini par les générateurs 1,...,n et les relations:

e ;> =1 pour tous les i dans {1,...,n};
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e ;7 = ji s’ il n’y a pas de fleches entre les sommets i et j;
e 171 = 717 s’il y a exactement une fleche entre ¢ et j.
Soit w = 1119 - - - 7, un mot réduit. Pour m < r, soit I, 1'idéal suivant :
Iy, =1, - I,1;.
Pour simplifier les notations, nous écrivons [,, au lieu de I, . Soit Sub k/:\C/) /1, la sous-

catégorie pleine de mod /{:AQ dont les objets sont les l?@-sous—modules de sommes finies de
copies de kQ/I,. Buan, Iyama, Reiten et Scott ont prouvé les résultats suivants.

Théoréme 0.0.6. [153/ La catégorie Sub l;@/]w est une catégorie de Frobenius et sa
catégorie stable Sub kQ/1,, est 2-Calabi-Yau. L'objet T, = @, _, e;,,kQ/L, est un objet
amas-basculant.

Soit (@, F, W) un carquois glacé a potentiel, c’est-a-dire que @) est un carquois fini,
F est un sous-carquois de ) et W un potentiel sur (). Le sous-carquois F' est appelé
sous-carquois gelé de (). Pour toute fleche o de @), nous définissons la dérivée cyclique
0,W de W par rapport a « par

804(051“'0516): ZO(FFI.”O{]CO(].“'Oéif]_

pour n’importe quel chemin ay - - - a4, puis nous étendons linéairement cette application.
Alors I'algebre jacobienne relative (gelée) est définie comme le quotient

J(Q,F W) =kQ/(0.W v € Qy \ ).

Pour chaque mot réduit w, Buan-Iyama-Reiten—Smith |14, Section 6] ont construit un
carquois glacé a potentiel (Q., Fiy, Wi,) associé a w.

Theorem 0.0.4. [1], Théoréme 6.6/ On a un isomorphisme d’algébres
SubI;CJ)/Iw (Tw) = J(Qwa Fw; Ww)

et donc un isomorphisme d’algebres induit

Endg,, i1, (Tw) = T (Qus W),

End

ou Q. est obtenu a partir de (), en supprimant les sommets gelés et les fleches incidentes
avec des sommets gelés et W, est le potentiel obtenu a partir de W, par suppression des
termes donnés par des cycles passant par des sommets gelés.

Plus tard, Amiot—Reiten—Todorov ont démontré que la catégorie stable Sub kQ/I,, est
en fait une catégorie amassée généralisée [6, Théoreme 3.1].

Dans la construction d’Amiot de la catégorie amassée généralisée, I’hypothese ho-
mologique clé est la propriété 3-Calabi-Yau de ’algebre comme bimodule sur elle-méme.
Dans le contexte relatif, les structures Calabi—Yau relatives a droite ont été inventées
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par Bertrand Toén dans [85, pp. 227-228|. Plus tard, les structures Calabi—Yau rela-
tives a droite et a gauche ont été étudiées par Chris Brav et Tobias Dyckerhoff dans [16].
Une structure n-Calabi—Yau relative a gauche sur un morphisme f : B — A entre des
dg-algebres lisses est la donnée d’'une classe [£] en homologie cyclique négative HN,,(f)
induisant certaines dualités dans D(B°) et D(A°). En particulier, si la dg-algebre B est
nulle, alors A est n-Calabi-Yau en tant que bimodule. Une fagon canonique de pro-
duire des structures Calabi—Yau relatives a gauche est la complétion Calabi—Yau relative
déformée qui a été introduite par Wai-kit Yeung [87]. Cela a généralisé la construction
par Keller [62] de complétions n-Calabi-Yau déformées au contexte relatif.

L’objectif principal de cette these est de généraliser les constructions de Claire Amiot
et Lingyan Guo au contexte relatif. Nous remplagons les propriétés utilisées dans la
construction d’Amiot par les propriétés suivantes d’'un morphisme de dg-algebres f :
B — A (ne préservant pas nécessairement 1'unité)

1) A et B sont homologiquement lisses,

2) A est connective, c’est-a-dire que la cohomologie de A s’annule en degrés > 0,
3) le morphisme f: B — A a une structure (n + 1)-Calabi—Yau a gauche,

4) HY(A) est de dimension finie.

Nous introduisons la catégorie amassée relative C, (A, B) associée a f : B — A et
montrons qu’elle est Hom-finie sous les hypotheses ci-dessus. Nous prouvons 'existence
d’un objet n-amas-basculant dans la catégorie de Higgs H qui est une sous-catégorie stable
par extensions de C, (A, B) et est stablement n-Calabi—Yau.

En 2009, Keller et Yang [64] ont catégorifié la mutation des carquois en I'interprétant
en termes d’équivalences entre catégories dérivées (Théoreme . Matthew Pressland
a généralisé la mutation des carquois a potentiel a celle des carquois glacés a potentiel
[80]. Notre deuxieme objectif dans cette these est de catégorifier la mutation de Press-
land des carquois glacés a potentiel. Nous montrons que sa regle donne des équivalences
dérivées entre les algebres de Ginzburg relatives associées, qui sont des cas particuliers de
complétions de Calabi-Yau relatives déformées de Yeung [87]).

De maniere inattendue, Fraser et Sherman-Bennett ont tres récemment découvert une
construction de mutation par rapport & certains sommets gelés dans leur étude [29]
de structures amassées sur des variétés positroides. Soit v un sommet gelé. Supposons
que v est un sommet source dans F' tel qu’il n’y a pas de fleches non gelées de source
v, ou que v est un sommet puits dans F' tel qu’il n’y a pas de fleches non gelées de
cible v. Notre résultat indique que la mutation au sommet gelé v est ’catégorifiée’ par
le foncteur twist (respectivement twist inverse) tg, (respectivement tgvl ) par rapport
a lobjet 2-sphérique S, (le module simple au sommet v) dans la catégorie dérivée de
'algebre préprojective dérivée complétée IIy(F'). Dans [86], nous montrerons comment
des compositions appropriées de mutations par rapport a des sommets gelés peuvent étre
décatégorifiées en des isomorphismes quasi-amassés au sens de Fraser [2§].
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0.0.2 English version

This thesis is devoted to the study of the categorification of cluster algebras with coeffi-
cients by using the relative Calabi—Yau formalism which was developed by Bertrand Toén
(see [85), pp. 227-228]) and Brav-Dyckerhoff (see [16]).

Almost 20 years ago, Fomin and Zelevinsky [27] invented cluster algebras, in order to
create a combinatorial framework for the study of canonical bases [52, 69] in quantum
groups and the study of total positivity in algebraic groups [70]. Among these algebras,
there are the algebras of homogeneous coordinates on the Grassmannians, on the flag
varieties and on many other varieties which play an important role in geometry and
representation theory. It has rapidly turned out that the combinatorics of cluster algebras
also appear in many other subjects, for example in Poisson geometry [34, [35] [36], 37],
higher Teichmuller spaces [24, 25, 26], and in the representation theory of quivers and
finite-dimensional algebras [I1], 12].

A cluster algebra is a commutative algebra with a distinguished family of generators,
called cluster variables, displaying special combinatorial properties. To construct it, we
start with a seed

(X = (21, , T, Tpsty -+, T, B),

consisting, by definition, of a set X which freely generates an ambient field

F=Q(x1,...,Tm),

and an integer m x n matrix B = (b;;) such that the principal part B’ = (bi;)1<i<n,1<j<n
is skew symmetric. Or, we can instead of the matrix B use a finite quiver ) with vertices
1,2,...,m, and without oriented cycles of length 1 or 2. For each ¢ = 1,...,n, the
mutation p;(X, Q) = (X', Q") is defined by first replacing z; with another element z} in
F according to a specific rule which depends upon both (z1,...,z,,) and . Then we get
a new free generating set X' = (z1,...,%i_1, %, Tit1,- -+, Ty Tpit, - -, Ty). LThe mutated
quiver p;(Q)) = @' is obtained from @) by applying a certain combinatorial rule depending
on i to the arrows of (). This yields the new seed (X', Q)"). We continue applying p1, . . ., fin
to the new seed to get further seeds. The m-element sets X” occurring in seeds (X", Q")
are called clusters, and the elements in the clusters are called cluster variables. The
cluster variables x,.1, ..., x, cannot be mutated, these are called frozen variables. The
associated cluster algebra is the subalgebra of the function field F generated by all cluster
variables.

Since the combinatorics of cluster algebras are very complicated, it is useful to model
them categorically, where more conceptual tools become available. Consider a cluster
algebra A without frozen variables and such that one of the clusters has an acyclic quiver
Q. In this special case, Buan-Marsh-Reineke-Reiten—Todorov [12] introduced the cluster
category Cg, given by the orbit category

Co=D"(kQ)/TE7",

where 7 denotes the Auslander—Reiten translation of the derived category D°(kQ) and %
the shift functor on D°(kQ). It was shown to be triangulated by a result of Keller [59].
It is a 2-Calabi-Yau triangulated category by construction. The cluster category has a
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distinguished set of objects T, called (basic) cluster tilting objects. Any object T in T
satisfies

addT = {X € Cq : Exte (X, T) = 0} = {X € Cq : Extg, (T, X) = 0},
Then Cg, together with 7, has the following nice properties:

e Any object T in T has the form T'=T} & - - - & T,, where the T; are indecomposable
and T; % Tj for ¢ # j. The T; would then be the analogs of cluster variables. The
quiver of each cluster is given by the quiver of the endomorphism algebra Endc,, (7T')
of the corresponding cluster-tilting object.

e For each ¢ = 1,...,n we have a unique indecomposable object T>* % T;, where T}
is a summand of an object in T, such that T/T; & T} is in 7. This would be the
analogs of mutations in the definition of cluster algebra. This mutation property for
cluster-tilting objects holds in any 2-Calabi—Yau triangulated category in which the
quivers of endomorphism algebras of such objects have no loops (see [50]).

e The cluster category Cq is equipped with a cluster character M +— ¢y € A (see [19]),
mapping objects to elements of the cluster algebra. Under this assignment, the
cluster variables are given by ¢y, for M an indecomposable rigid object of Cq, i.e.
an indecomposable M such that ExtéQ(M, M) =0.

Claire Amiot [4] generalized the construction of the cluster category to finite-dimensional
algebras Ag of global dimension < 2. In her approach, in order to show that there is a
triangle equivalence between C,,, constructed as a triangulated hull [59], and the quotient
category per IT3(Ay)/pvd IT3(Ap)), where IT3(Ap) is the 3-Calabi—Yau completion [62] of
Ap. She first studied the category Cp = per(II)/pvd(II) associated to a dg algebra IT
with the following four properties:

1) IT is homologically smooth,

2) IT is connective, i.e. the cohomology of IT vanishes in degrees > 0,
3) IT is 3-Calabi-Yau as a bimodule,

4) H(II) is finite-dimensional.

Theorem 0.0.5. [/ Let IT be a dg algebra with the above properties. Then the triangulated
category

Crt = per(IT) /pvd(I1)
is Hom-finite, 2-Calabi-Yau and the object 11 is a cluster-tilting object with Ende, 1) ~
HO(IT).

In particular, if we take Ay to be the path algebra k() of an acyclic quiver @), the
cluster category Cq is equivalent to Cr,(rg). Later, Lingyan Guo [39] generalized Amiot’s
construction to finite-dimensional algebras A of global dimension < n and to dg algebras
satisfying 1), 2), 4) and n-Calabi-Yau as a bimodule.
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Let IT be a dg algebra with the above properties. Let F(IT) be the full subcategory of
per(II) defined by
F(II) = (per(IT))<o N ((per(TT)=2)) ™,

where (per(Il))<, (resp. (per(Il))s,) is the full subcategory of per(II) consisting of ob-
jects having their homology concentrated in degrees < p (resp. > p). It is called the
fundamental domain of per(II).

Theorem 0.0.6. [/ The following composition is an equivalence of k-linear categories
F(IT) < per(II) — per(IT)/pvd(IT) = C(II).

Moreover, the following diagram commutes

per(IT) D F(IT) — C(IT)

R /@H,‘?)

mod H(IT)

Let (@Q,W) be a quiver with potential (QP). The associated completed Ginzburg dg
algebra T'(Q, W) is homologically smooth and it carries a canonical left 3-Calabi-Yau
structure (see [38,62]). Thus, it satisfies the properties (1),(2) and (3) in Theorem [0.0.5]
The zero-th homology of I'(Q, W) is the Jacobian algebra J(Q, W).

Theorem 0.0.7. [4] Let (Q, W) be a Jacobian-finite quiver with potential, i.e. the corre-
sponding Jacobian algebra J(Q,W) is finite dimensional. Then the category

C(Q,W) =perI'(Q,W)/pvd T'(Q, W)

is Hom-finite and has a canonical cluster-tilting object whose endomorphism algebra is

isomorphic to J(Q,W).

The category C(Q, W) is called the cluster category associated with a quiver with po-
tential (Q, W). If (Q, W) is not Jacobian-finite, a generalization of the category C(Q, W),
which is not Hom-finite, was constructed by Plamondon in [74].

Let @ be a finite quiver and 7 a source of @), i.e.a vertex without incoming arrows.
Let @' be the mutation of @) at i, i.e.the quiver obtained from ) by reversing all the
arrows going out from i. Let k be a field, k@ the path algebra of @ and D(kQ) the
derived category of the category of all right kQ-modules. For a vertex j of ) respectively
Q, let Pj’ respectively P; be the projective indecomposable associated with the vertex j.
Then Bernstein—Gelfand—Ponomarev’s [9] main result reformulated in terms of derived
categories following Happel [40] says that there is a canonical triangle equivalence

F:D(kQ') = D(kQ)

which takes P to P; for j # i and P/ to the cone over the morphism
P~ PP
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whose components are the left multiplications by all arrows going out from ¢. This gives
a categorical interpretation of the mutation at a source 1.

Keller and Yang [64] obtained an analogous result for the mutation of a quiver with
potential (Q, W) at an arbitrary vertex i, where the role of the quiver with reversed arrows
is played by the quiver with potential (Q’, W’) obtained from (Q, W) by mutation at i in
the sense of Derksen-Weyman-Zelevinsky [23]. The role of the derived category D(kQ)
is now played by the derived category D(T') of the complete differential graded algebra
I' =T(Q, W) associated with (Q, W).

Let (@, W) be a quiver with potential such that ¢ has no loops. Let ¢ be a vertex
such that @ does not have 2-cycles at . Let p;(Q, W) be the mutation of (Q, W) at the
vertex i (see [23]). Let T' = T'(Q, W) and IV = T'(u;(Q, W)) be the completed Ginzburg
dg algebras associated to (Q, W) and p;(Q,W) respectively. For a vertex j of @, let
Pj = ¢;T" and P} = e;I". They proved the following results [64].

Theorem 0.0.8. [64] There is a triangle equivalence
F: D) — D(I),
which sends the P]’ to P; for j # 1 and to the cone T; over the morphism

P — @ Py

for i = j, where we have a summand Pyq) for each arrow o of Q with source i and
the corresponding component of the map is the left multiplication by «. The functor F
restricts to triangle equivalences from per(Il') to per(II) and from pvd(IT') to pvd(II).

Their result is analogous to but not a generalization of Bernstein-Gelfand-Ponomarev’s
since even if the potential W vanishes, the derived category D(T") is not equivalent to

D(kQ).
Remark 0.0.9. There is also a triangle equivalence
F': D) - D(I)
which, for j # i, sends the P to P; and, for i = j, to the shifted cone

T = S HEP Pus — P,
B

where we have a summand Pyg) for each arrow 3 of ) with target ¢ and the corresponding
component of the morphism is left multiplication by . The two functors F' and F’ are
related by the twist functor tg, with respect to the 3-spherical object S; (the simple dg
I'-module associated with the vertex 7). More precisely, we have

F'' =tg o F,
where tg, : D(IT') — D(T") is given by the following triangle
RHom(S;, X)® S; = X — ts,(X) — ERHom(S;, X) ® S;
for each object X of D(I").
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The following results give a link between Ginzburg dg algebras associated with QPs
linked by a mutation.

Theorem 0.0.10. [6] Let (Q, W) be a QP without loops and i € Qo a vertex which is not
on a 2-cycle in Q. Denote by I' =T(Q, W) and I" = T'(u;(Q, W)) the completed Ginzburg
dg algebras.

a) There are triangle equivalences

per(T') —=— per(I")

pvd(T) — pvd(T).
Hence we have a triangle equivalence C(Q, W) ~ C(u;(Q,W)).
b) We have a diagram

per(T) - per(I”)

modJ(Q, W) B DWmeutatzon) modJ(uZ(Q, W))

In the case of cluster algebras with frozen variables, a suitable categorical model should
have certain objects occurring as summands of every cluster-tilting object (those objects
correspond to frozen vertices). Taking a suitable quotient of this category should corre-
spond to removing the frozen variables from the cluster algebra and the quotient category
should be the usual cluster category.

For cluster algebras with non invertible frozen variables, there is a natural model for
this purpose, a Frobenius category &, i.e. an exact category with enough projective and
injective objects, and such that the projective and injective objects coincide. Then by
definition, each projective-injective object I satisfies

Ext;(I,?) = 0= Exte(?,1).

Thus, each projective-injective object I is in addT for any cluster-tilting object T' € £.
Moreover, by a result of Happel [41], the stable category £, formed by taking the quotient
by the ideal of morphisms factoring through a projective-injective object, is a triangulated
category. The corresponding stable category £ is 2-Calabi-Yau if there is a bifunctorial
duality

Exts(X,Y) = DExt;(Y, X)
for all X,Y € &.

Remark 0.0.11. For cluster algebras with invertible frozen variables, we can consider
the derived category of a Frobenius category £.

Let k be a field and ) a Dynkin quiver. Let J be a subset of ()o. We denote by é@
the corresponding preprojective algebra of k(). Let i be a vertex. We denote by S; the

simple kQ-module supported at i, by P; its projective cover and by (); its injective hull.
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Let Q; =D, Q;- Geii-Leclerc-Schrder (see [32]) constructed a subcategory Sub @ ;

of the category mod kQ of modules for the projective algebra kQ whose objects are iso-
morphic to a submodule of a direct sum of copies of ();. The category Sub @ is closed

under submodules so it has kernels which agree with those in mod k@), but it does not
have cokernels in general. However, it is extension-closed.
Thus, it inherits the structure of an exact category in which a sequence

X—=>Y—>Z7
in Sub @) is a conflation if and only if the sequence
0-X—->Y—=>272—-0

is exact in mod IE\C/Q

For any module M € mod kQ. Let 6;(M) be the minimal submodule of M such that
M/6;(M) is in Sub@,. Then the canonical projection M — M/60;(M) is a minimal
left Sub @ j-approximation of M. We set F; = 1;/0,(1;). By [32, Proposition 3.2], these
F; are the indecomposable projective-injective objects in Sub @) ;. Moreover, Sub@; is a
Frobenius category.

Proposition 0.0.12. [32] The category Sub Q; is a functorially finite, extension closed,
stably 2-Calabi—Yau Frobenius subcategory of mod k().

In particular, if we take J to be the whole vertex set @, then Sub @ is the whole
category mod kQ).

A more general construction of Sub ) ; was given by Buan—Iyama—Reiten—Scott in [13].
Let @ be a finite connected quiver without oriented cycles. We denote by {1,... n} the

set of vertices of ). For a vertex ¢ of (), we denote by I; the ideal k‘Q(l — ez)k‘Q of k‘Q
We denote by W the Coxeter group associated to the quiver ). The group W is defined
by the generators 1,...,n and the relations:

o i2=1foralliin{1,...,n};
e 17 = j1 if there are no arrows between the vertices ¢ and 7;
e 1j1 = jij if there is exactly one arrow between ¢ and j.

Let w = 414 - - - i, be a reduced word. For m < r, let I, be the the following ideal:

I, =1,

[

I

For simplicity of notation, we write I, instead of I,,.. Let Sub /;ZQ /I, be the subcategory

of mod k@ generated by the kQ-sub-modules of kQ/I,. Buan, Iyama, Reiten and Scott
proved the following results.

Theorem 0.0.13. [13/ The category Sub lg@/fw is a Frobenius category and its stable
category Sub kQ/1,, is 2-Calabi- Yau. The object T,, = B! _, e;, kQ/1L, is a cluster-tilting
object.
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Let (Q, F, W) be an ice quiver with potential, i.e. @ is a finite quiver, F' is a subquiver
of @ and W a potential on (). The subquiver F' is called the ice subquiver of (). For any
arrow « in @), we define the cyclic derivative 0,W of W with respect to a by

8a(a1...ak): ZOCi+1.”akOél"'aifl

a;=a

on any cycle a; - - -y, and then extending linearly. Then the relative (frozen) Jacobian
algebra is defined as the quotient

J(Q,F,W):/{Q/<aaWZC(€Q1\F1>-

For each reduced word w, Buan-Iyama-Reiten-Smith [14], Section 6] constructed an
associated ice quiver with potential (Qy, Fiy, Wiy).

Theorem 0.0.14. [14, Theorem 6.6 The algebra Endg, 1, (Ti) is isomorphic to J(Qu, Fuy, W)
and hence Endg; =7 (Tw) = J(Qu, W), where Qu is the full subquiver of Q. on the

vertices corresponding to (Qu)o \ (Fuw)o and Wy, is the potential obtained from W, by
deleting terms given by cycles passing through frozen vertices (Fy)o.

Later, Amiot—Reiten—Todorov proved that the stable category Sub kQ/I,, is actually
a generalized cluster category (see [0, Theorem 3.1]).

In Amiot’s construction of the generalized cluster category, the homological assumption
is the 3-Calabi-Yau bimodule property. In the relative context, relative right Calabi—Yau
structures were invented by Bertrand Toén in [85, pp. 227-228]. Later, relative right
and left Calabi-Yau structures were studied by Chris Brav and Tobias Dyckerhoff in [16].
A relative left n-Calabi—Yau structure on a morphism f : B — A between smooth dg
algebras is the datum of a class [{] in negative cyclic homology HN,(f) inducing certain
dualities in D(B¢) and D(A®). In particular, if the dg algebra B is zero, then A is n-Calabi—
Yau as a bimodule. A canonical way to produce relative left Calabi—Yau structures is the
deformed relative Calabi-Yau completion which was introduced by Wai-kit Yeung [87].
This generalized Keller’s construction [62] of deformed n-Calabi-Yau completions to the
relative context.

The main aim of this thesis is to generalize the construction of Claire Amiot and
Lingyan Guo to the relative context. We change the properties used in Amiot’s construc-
tion to the following properties on a dg algebra morphism f : B — A (not necessarily
preserving the unit)

1) A and B are homologically smooth,

2) A is connective, i.e. the cohomology of A vanishes in degrees > 0,
3) the morphism f: B — A has a left (n + 1)-Calabi—Yau structure,
4) HOY(A) is finite-dimensional.

We introduce relative cluster category C, (A, B) associated with f : B — A and show
that it is Hom-finite under the above assumptions. We prove the existence of an n-cluster
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tilting object in the Higgs category H which is an extension closed subcategory of C,, (A, B)
and is stably n-Calabi—Yau.

In 2009, Keller and Yang (see [64]) categorified quiver mutation by interpreting it in
terms of equivalences between derived categories (see Theorem|[0.0.8). Matthew Pressland
has generalized mutation of quivers with potential to that of ice quivers with potential
(see [80]). Our second aim of this thesis is to categorify Pressland’s mutation of ice
quivers with potential. We show that his rule yields derived equivalences between the
associated relative Ginzburg algebras, which are special cases of Yeung’s deformed relative
Calabi-Yau completions (see [87]).

Unexpectedly, Fraser and Sherman-Bennett have very recently discovered a construc-
tion of mutation at frozen vertices in their study [29] of cluster structures on positroid
varieties. Let v be a frozen vertex. Suppose that v is a source vertex in F' such that
there are no unfrozen arrows with source v, or v is a sink vertex in F' such that there
are no unfrozen arrows with target v. Our result says that the mutation at the frozen
vertex v is ‘categorified” by the twist (respectively inverse twist) functor tg, (respectively
t;j ) with respect to the 2-spherical object S, (the simple module at the vertex v) in the
derived category of the complete derived preprojective algebra Ily(F'). In [86], we will
show how suitable compositions of mutations at frozen vertices can be decategorified into
quasi cluster isomorphisms (see [2§]).

0.0.3 Organization of the thesis

The structure of the thesis is as follows. In Chapter [2, we recall the definitions of relative
left Calabi—Yau structures and relative Calabi-Yau completions, and proving Proposi-
tion [2.6.2, where we obtain a reduced version of the deformed relative Calabi-Yau com-
pletion for a dg functor between finitely cellular type dg categories. We also discuss the
relation between relative Calabi—Yau completions and absolute Calabi—Yau completions,
see Proposition 2.7.1]

Let f: B — A be a morphism (not necessarily preserving the unit element) between
dg k-algebras and let e = f(1,4). Under the above assumptions on f, we define the relative
n-cluster category C,(A, B) as

Cn(A, B) = perA/pvdg(A),

where pvdg(A) is the full subcategory of pvd(A) whose objects are the perfectly valued
derived category pvd(A) formed by the dg modules whose restriction to B is acyclic
(see Definition [3.0.1). The relation between the triangulated categories involved can be
summarized by the following commutative diagram

per(eAe) per(eAe)

rel

pvdp(A)——————per(4) ——=C,(A

: ek

, B)
p*
pvd(A)—————— per(A) ——=C,(A),

)
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where A is the homotopy cofiber of f : B — A, and the rows and columns are exact
sequences of triangulated categories.

Then we define the relative fundamental domain F'¢ as a certain extension closed full
subcategory of perA (see Definition [3.6.11). Similarly as in [4] and [39], the canonical
quotient functor 77 : perA — C, (A, B) induces a fully faithful embedding "¢ : Frel —
Cn(A, B) (see Proposition [3.6.17). Then the Higgs category H is defined as the image of
Frebin C,(A, B) (see Definition [3.6.19). We show that it is closed under extensions in
Cn(A, B) (see Proposition and thus becomes an extriangulated categories in the
sense of [71]. More precisely, we prove the following theorem.

Theorem 0.0.15. (Theorem [3.6.42| and Proposition [3.6.46) The Higgs category H is a
Frobenius extriangulated category with projective-injective objects P = add(eA) and addA
is an n-cluster-tilting subcategory of H with Endy(A) = H°(A). Moreover, the quotient

functor p* : C, (A, B) — C,(A) induces an equivalence of triangulated categories

H/[P] = Cu(A),
where [P] denotes the ideal of morphisms of H which factor through objects in add(eA).

In [86], for n = 3, we will define and study cluster characters on the Higgs category
and the relative cluster category.
We have the follwong results related to n-angulated categories.

Theorem 0.0.16. (Theorem Suppose that the n-cluster tilting category addA sat-
isfies
Y"addA = addA

in C,(A). Then the n-cluster-tilting subcategory addA of C,(A) carries a canonical (n+2)-
angulated structure. The n-cluster-tilting subcategory add A of H carries a canonical struc-
ture of Frobenius n-exangulated category with projective-injective objects P = add(eA).
The quotient functor p* : Co(A, B) — Cn(A) induces an equivalence of (n + 2)-angulated
categories

addA/[P] = add(A).

In Section , under the hypotheses 1)-4), when the dg algebra A is concentrated in
degree 0, we show that HY(A) is of global dimension at most n + 1 so that we have the
equivalence

D’ (modH°A) = perA.
Moreover, A is internally bimodule (n + 1)-Calabi-Yau respect to the idempotent e =
f(1p) in the sense of Matthew Pressland (see [77]) and restriction induces an equivalence
from the Higgs category H to the category of Gorenstein projective modules over B’ =
eH°(A)e. More precisely, we have the following theorem.

Theorem 0.0.17. (Theorem [3.7.2)

a) The algebra B' = eH°(A)e is Iwanaga-Gorenstein of injective dimension at most
g<n-+1as a B'-module.

b) Under the equivalence D’(mod H®A) ~ perA, the subcategory F"¢ corresponds to the
subcategory mod,,_1 (HA) of H°A-modules of projective dimension at most n — 1.
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c¢) Via the equivalence res : D’(modH®A) —— perA, the localization 7™ : perA —

C.(A, B) identifies with the restriction functor D’(modH°A) — D’(modB’), i.e. we
have a commutative square

Db(mod H°A) —— Db(modB’)

I I

perA —— C,(A, B).

d) Under the equivalence D°(modB’) — C,(A, B), the Higgs category H C Cn(A, B)
corresponds to the subcategory gprB’ of Gorenstein projective modules over B’ =
eH°(A)e. In particular, when B’ is self injective, we have H = modB'.

We summarize the situation in the following commutative diagram

rel

perA Ul C.(A, B)

S~ e

DP(modHYA) ">~ Db(modB’)

modH%A — ™ mod B’

mod,,_; (HYA) ——— gprB’

frel ~ 7_[ )

The paradigmatic example for A is the relative 3-Calabi—Yau completion of the Aus-
lander algebra of a Dynkin quiver @) (cf.below). Then B’ is the preprojective algebra of
@ and H is equivalent to the module category of B’. This motivates the terminology
"Higgs category” because Higgs bundles [43] [82] are the geometric version of modules
over preprojective algebras.

In Section [3.8, we apply this general approach to Jacobian-finite relative Ginzburg dg
algebras associated with ice quivers with potential. In this way, with each Jacobian-finite
ice quiver with potential (Q, F, W), we associate a Frobenius extriangulated categories H
endowed with a canonical cluster-tilting object (see Theorem .

In Chapter [, we apply our main result to the higher Auslander-Reiten theory. Let By
be an n-representation-finite algebra in the sense of Iyama-Oppermann [48]. Let 7, be
the higher inverse Auslander-Reiten translation of By and let Ay := Endp,(®=07, ‘Bo)
be the higher Auslander algebra of By.

Then there is a natural fully faithful morphism

Jo: B~ A .
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The relative (n + 2)-Calabi—Yau completion of f
[:B=1L,11(By) — A =1I,.5(Ao, Bo)

satisfies the assumptions 1)-4) and A is concentrated in degree 0. Moreover, HO(f) is fully
faithful (see Proposition . Let By denote the higher preprojective algebra of By in
the sense of Iyama-Oppermann [48]. We give a new proof (see Lemma |4.2.8)) of the fact,

first proved in [48], that By is a self-injective algebra. By our main results in Section
and Section [3.7, we have the following theorem.

Theorem 0.0.18. (Theorem [4.2.9) Consider the relative cluster category C,+1(A, B) as-
sociated with f : B — A.

a) The Higgs category H C Cn11(A, B) is equivalent to mod(E)) and the image of A in
H is an (n + 1)-cluster-tilting object.

b) We have a triangle equivalence mod(/Bvo) = Cpi1(Ao/AveAy), where e = f(1p,). In
particular, mod(By) contains a canonical (n + 1)-cluster-tilting object.

Notice that b) is the main result of [4§]. We deduce it from a) thereby giving a new
proof which is essentially different from that of [4§].

In the last Chapter, we study the categorification of mutations of ice quivers with
potential which is defined by Pressland in [80]. Let (@, F,W) be an ice quiver with
potential. Let v be a unfrozen vertex of () such that no loops or 2-cycles are incident with
v. Let p,(Q, F,W) = (Q', F',W’) be the Pressland’s mutation of (Q, F, W) at vertex v.
We have the following theorem which generalizes Keller-Yang’s results in [64].

Theorem 0.0.19. (Theorem [5.3.3) Let I'yep = T (Q, F, W) and I, = T (Q', F', W)

be the complete relative Ginzburg dg algebras associated to (Q,F,W) and u,(Q, F,W)

respectively. For a vertex i, let I'; = e,y and T, = e,I" ;.

a) There is a triangle equivalence

o, :=J DT

rel

) - D(Frel)7

which sends the the T'; to T'; for j # v and to the cone over the morphism

r,— @ Ft(a)

for j = v, where we have a summand Iy for each arrow o of Q with source v and
the corresponding component of the map is the left multiplication by «. The functor
(G")* restricts to triangle equivalences from per(I'.,) to per(T,e) and from pvd(T.,,)
to de(Frel>'
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b) The following diagram commutes up to isomorphism

D<F;"el)
L(G.)"
D(IIy(F)) = 2
L(G'rel)*
D(Tyer).

We then define the associated boundary dg algebra Bd(Q, F, W) (see Definition |5.3.5))

as

Bd(Qa Fa W) = REndI‘,.el(Q,F,W)((Grel)*(H2<F))) ~ eFFrel(Qa Fa W)eFv

where ep = ), - €; is the sum of idempotents corresponding to the frozen vertices. Corol-
lary shows that the boundary dg algebra is invariant under mutations at unfrozen
vertices. By using this Corollary, we illustrate our results on examples arising in the
work of Baur—King—Marsh on dimer models and cluster categories of Grassmannians (see
Example .

In the last section, we study the categorification of mutation at a frozen vertex. Let
(Q, F,W) be an ice quiver with potential. Let v be a frozen vertex. Suppose that v
satisfies the following conditions

1) v is a source vertex in F' such that there are no unfrozen arrows with source v, or
2) v is a sink vertex in F' such that there are no unfrozen arrows with target v.

In this situation, we define (see Definition the mutation of (Q, F') at the frozen
vertex v by using the same mutation rule as that defined by Pressland for mutation at
unfrozen vertices. Then we also give the definition of the mutation of an ice quiver with
potential at the frozen vertex v (see Definition [5.4.5)).

If v is a source vertex in F', our result shows that the mutation at v is ‘categorified” by
the inverse twist functor tgvl with respect to the 2-spherical object S, (the simple module at
vertex v) in D(II(F')). Let us make this more precise. Write (Q', F', W') = [i,(Q, F, W).
Let Tvey = Tu(Q, F,W) and I, = T (Q', ', W) be the complete relative Ginzburg
dg algebras associated to (Q, F, W) and (@', F', W’) respectively.

Theorem 0.0.20. (Theorem We have a triangle equivalence
U, : D(Ty) = D(Tya),

rel

which sends the I'; to IT'; for i # v and to the cone

Cone(I‘v — @ I‘t(a)),

where we have a summand Ty, for each arrow o of F with source v and the corresponding
component of the map is the left multiplication by o. The functor U restricts to triangle
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equivalences from per(I".,) to per(T,e) and from pvd(T',,) to pvd(T'ye). Moreover, the

following square commutes up to isomorphism

D(ILy(F)) <~ D(T},)

canl v
D(ILy(F)) D(Tye) (1)
5] |
D(IL,(F)) —— D(Tvar).
where can is the canonical functor induced by an identification between Iy (F") and TIy(F)

and t;j 18 the twist inverse functor with respect to the 2-spherical object S,, which gives
rise to a triangle

t5(X) — X — Homy(RHom, (X, S,), Sy) — St5' (X)
for each object X of D(ILy(F)).
Dually, if v is a sink frozen, the mutation at v is ‘categorified’ by the twist functor tg,
with respect to the 2-spherical object S, in D(II(F)).

0.0.4 Notations

Throughout this thesis, £ will denote an algebraically closed field. We denote by D =
Homy(—, k) the k-linear dual. All modules are right modules unless stated otherwise. We
say an algebra A is Noetherian if it is Noetherian as both a left and right module over
itself. We denote by g o f or gf the composition of morphisms (or arrows) f : X — Y
and g: Y — Z.
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Chapter 1

Preliminaries

1.1 Triangulated categories

In this section, we recall some basic definitions and properties of triangulated categories
as well the facts on t-structure and co-t-structure. Our main references for this section
are [41], [72], [8] and [2].

1.1.1 Definitions and basic properties

Let 7 be an additive category endowed with an autoequivalence 3, which is usually
called the suspension functor. The quasi-inverse of ¥ is denoted by Y71, A sextuple
(X,Y, Z u,v,w) is given by three objects X,Y,Z € T and three morphisms u : X —
Yv:Y = Zw:Z — XX. We will note such a sextuplet by

X5y 575 %X

A morphism of sextuples from (X, Y, Z, u,v,w) to (X', Y', Z' v/, v/, w’) isa tuple (f, g, h)
of morphisms such that the following diagram commutes:

LN Vg LN/ QLN ) '¢

; |s i lw

v,y v

If f,g and h are isomorphisms in T, then (f, g, h) is called an isomorphism of sextuples.

Definition 1.1.1. An additive category 7 with suspension functor ¥ is called a triangu-
lated category if it is endowed with a class U of sextuples (called triangles) which satisfies
the following axioms (TR1) to (TR4):

(TR1) Every sextuple isomorphic to a triangle is a triangle. Every morphism u : X — Y in
T can be embedded into a triangle X — Y — Z — Y X. For every object X of T,

the sextuple X —% X — 0 — $X is a triangle.

(TR2) If X - Y — Z — XX is a triangle, then Y — Z — XX — XY is a triangle.
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(TR3) Given two triangles (X, Y, Z,u,v,w) and (X', Y’, Z', v/, v',w"), and morphisms f and
g satisfying v/ o f = g o u, there exists a morphism (f, g, h) of triangles.

(TR4) Let |
X3y L 72754%X
vy z5hx Lyy
x oz Moy I yx

be three triangles. There exist two morphisms f : Z/ — Y’ and g : Y/ — X' such
that the following diagram commutes:

E—IX/ 2—1X/
_Eflj/
X —“ Ly Ny S NG 3 ‘e
H : ; H

X v 7 Yy —L %X

il g lEu

X/:XI]—>EY

~
2\

where the two middle rows and the two middle columns are triangles.

Let (7,%,U) and (T7,%,U’) be two triangulated categories. A triangle functor 7 —
T’ is a pair (F,«) consisting an addictive functor F' and an isomorphism of functors
a : FY — Y'F such that

Fx P py B gy (ax)o(Fuw) SEY

S >

is a triangle of 7" for each triangle (X, Y, Z, u,v,w) of T.

Proposition 1.1.2. [/1] Let T be a triangulated category. Let (X,Y,Z u,v,w) be a
triangle and M an object of T. Then we have

1)vou=wov=0.

2) The following long exact sequences are exact:
= T(MY'X) = T(M, YY) = T(M, Y Z) = T(M, 2 X) — - -
S T(ETX, M) = T(S'Z,M) — T(XY, M) = T(XX, M) — -

3) Let (f,qg,h) be a morphism of triangles. If two of the three morphisms are isomor-
phisms, then so is the third.
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Proposition 1.1.3. [/1] Let (X,Y, Z,u,v,w) and (X',Y', Z' u',v',w") be two triangles
in a triangulated category T . Let g :' Y — Y’ be a morphism. Then the following are
equivalent:

1) v ogou=0.
2) There exists a morphism (f,g,h) from the first triangle to the second.

Proposition 1.1.4. [79, Lemma 1.4.3] Consider the following commutative diagram
whose rows are triangles

g

x 1.y A y YX

bk P

X Yy y 7 y X

It may be completed to a morphism of triangles

f

X y s YX

I L

X Y,y Mg ¢ vy

g

so that
vy Mz
is homotopy cartesian, i.e. there is a canonical triangle in T

g
y )y 7 —2 ¥y
In fact, the differential 0 : Z — XY can be chosen to be the composition

(n 3)

7z owx 2

Y.

1.1.2 Triangulated quotients
Let T be a triangulated category.

Definition 1.1.5. An additive subcategory N of T is a thick subcategory if N is a
full triangulated subcategory (i.e. N is stable under ¥ and ¥~ and A is closed under
extensions) of 7 which is stable under taking direct factors.

Given a thick subcategory N of T, the triangle quotient (denoted as T /N) is the
category constructed as follows:

e The objects of T /N are the objects of T.
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e The morphisms in Homy (X, Y) are the equivalence classes f o s of diagrams of

the form
A
SN
X Y,

where s and f are morphisms in 7, and s is contained in a triangle
Z%X—N—=XZ

with N an object of N, while the equivalence relation is given by:

X/ZXY

and

Z/
2
X Y

are equivalent if there exist another such diagram

Z//
2
X Y

and a commutative diagram

7

2N

x< gy

A

ZI

Let fos™! be in Homy/u(X,Y) and g o ¢t~* in Homy/n (Y, Z). Suppose that f is in
Hom(X',Y) and ¢ is in Hom7(Y”’,Y), and the morphism ¢ is contained in a triangle

VLY 4L NSy
with N € N. The morphism ¢f € Hom7(X’, N) can be embedded into a triangle
W X' NS s
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The commutative diagram
b _af N

lf
y 2.N

can be completed to the following commutative diagram

W x' YN SW

SN

y' -ty 4. N Ny’

Then there is a new diagram
W
SN
X’ Y’
X Y Z

with fr = th. The octahedral axiom (T R4) ensures that (gh)o(sr) ™" lies in Homy (X, Z).
The composition of f o s~ and g o ¢! is defined as the morphism (gh) o (sr)~t. Tt is
well-defined.

For each morphism s € Homy(X,Y") which is contained in a triangle

X3Y 5> N-oYX

with N € N, the morphism (1x) ' os is an isomorphism in Homy (X, Y") whose inverse
is s7' o (1x). The canonical functor @ : T — T /N sends each object to itself and sends
cach morphism f € Homy(X,Y) to the morphism f o (1x)™' € Homy/n(X,Y). The
images of the objects in AV under @ are zero objects in T/N. The functor @) induces
a triangulated structure on 7 /N. Moreover, the canonical functor @ has the following
universal property.

Proposition 1.1.6. [72] For any triangle functor F : T — T’ which sends the objects
of a thick subcategory N of T to zero objects of T', there exists a unique triangle functor
F': T/N — T such that the following diagram commutes

T Q TIN

e
Ve
F L F

T

Let T be an additive category. We say that T is idempotent complete if any idempotent
morphism e : X — X has a kernel. We say that a morphism f : X — Y is right minimal
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if any morphism ¢g : X — X satisfying fg = f is an isomorphism. Dually we define a
left minimal morphism. For a collection X of objects in T, we denote by addrX (or
simply addX’) the smallest full subcategory of 7 which is closed under finite coproducts,
summands and isomorphisms and contains X.

Let X be a subcategory of 7. We say that a morphism f : X — Y is a right X'-
approximation of Y if X € X and Homy (X', f) is surjective for any X’ € X. We say
that X is contravariantly finite if any object in 7 has a right X-approximation. Dually,
we define a left X -approximation and a covariantly finite subcategory. We say that X is
functorially finite if it is contravariantly and covariantly finite. For example, if 7 satisfies
the following finiteness condition (%), then addX is a functorially finite subcategory of T
for any X € T.

(x) Hom7(X,Y) is finitely generated as an End;(X)-module and as an Endz(Y)%-
module.

This condition (x) is satisfied if 7 is k-linear and Hom-finite for a commutative ring k.
Denote by [X] the ideal of T consisting of morphisms which factor through an object
of addrX and denote by T /[X] the corresponding additive quotient of 7 by X. Define
full subcategories
X+7 .= {T ¢ T |Hom(X,T) = 0},

17X .= {T € T|Hom(T, X) = 0}.

When it does not cause confusion, we will simply write X+ and +X.

Let 7 be a triangulated category. For two objects X and Y of T and an integer
n, by Hom7(X,3”"Y) = 0 (respectively, Hom7(X,>>"Y) = 0, Homy(X,X<"Y) = 0,
Hom7(X,¥5"Y) = 0, we mean Hom7X,X'Y) = 0 for all i > n (respectively, for all
i>mn,1<n,1<n) Let X be a full subcategory of 7. We say that X" is a thick
subcategory of T if it is a triangulated subcategory of 7 which is closed under taking
direct summands. In this case we denote by 7 /X the triangle quotient of 7 by X. In
general, we denote by thick +X (or simply thick X') the smallest thick subcategory of T
which contains X.

For collections & and Y of objects in 7, we denote by X x ) the collection of objects
Z € T appearing in a triangle X - 7 — Y — XX with X e X and Y € ).

1.1.3 Presilting and silting subcategories

Definition 1.1.7. A full subcategory P of T is presilting if Homy(P,%'P) = 0 for any
1> 0. It is silting if in addition T = thick P.

We denote by silt T (respectively, presilt 7) the class of silting (respectively, presilting)
subcategories of T . As usual we identify two (pre)silting subcategories M and N of T
when add M = add N. The class silt 7 has a natural partial order:

for M, N € silt T, we say M > N if Homy(M, >N = 0.

Theorem 1.1.8. [2, Theorem 2.11] The relation > gives a partial order on silt T .

Proposition 1.1.9. [2, Proposition 2.4] Let T be a triangulated category with a silting
subcategory M.
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(a) For any X,Y € T, there exists i € Z such that Homy (X, X>Y) = 0.
(b) Forany X € T, there existi, j € Z such that Homy (M, X?") = 0 and Hom (X, 37" M) =
0.
1.1.4 t-structures and co-t-structures

Definition 1.1.10. [§] A ¢-structure on T is given by two strictly (i.e. stable under
isomorphisms) full subcategories 7<? and 7>" which satisfy the following three conditions:

a) for X € TS® and Y € 72!, we have that Hom(X,Y) = 0,
b) T<O c T<t and 72! C T°°,

c) for any object X € T, there exists a triangle X’ — X — X" — XX’ such that
X' e T and X” € T2, where T<" denotes X~"(T<") and 7>" denotes X~"(T>0)
for any n € Z.

We denote by Q7 the full subcategory 7<0 N T=Y of T. It is called the heart of the
t-structure (T<°, T>9). The heart Q7 is an abelian category(see [§]).
The t-structure (7<% 72Y) is said to be bounded if

UJrs=1= 7"

neL ne”

equivalently, if 7 = thick Q7.

There is an alternative description of ¢-structures which was given in the work on aisles
of Keller-Vossieck (see [56]). A strictly full subcategory A of T is called an aisle if it is
stable under shifts ¥! (I € N) and extensions, and the inclusion A — T admits a right
adjoint.

Proposition 1.1.11. [56] A strictly full subcategory A is an aisle if and only if (A, (LA)*)
15 a t-structure.

Definition 1.1.12. [73] A co-t-structure on a triangulated category T is a pair of full
subcategories T=o and T« of T such that

a) both 75¢ and T are additive and stable under taking direct factors;
b) the subcategory T is stable under ¥~ and the subcategory T<q is stable under ¥;
c¢) we have Hom7(X,Y) =0 for all X € 77% and all Y € T<Y;
d) for each object X € T, there is a triangle
X =X - X" - 3¥X’

such that X’ € T5p and X" € T

The co-heart P is defined as the intersection T>¢ N T<o. This is usually not an
abelian category. For any two objects M and N in the co-heart, the morphism space
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Hom(M,¥™N) vanishes for any m > 0. The co-t-structure (7=o, T<o) is said to be
bounded if

U =7 =70,

neZ neZ
equivalently, if 7 = thick P. The co-heart of a bounded co-t-structure is a silting subcat-
egory of T.

1.2 The category of dg categories

In this section, we recall some basic definitions related to dg categories and their invariants.
We refer to Keller’s ICM address [60] and [22] for the details.

Let k£ be a commutative ring. A differential graded or dg category is a k-category A
whose morphism spaces are dg k-modules and whose compositions A(y, z) ® A(z,y) —
A(z, z) are morphisms of dg k-modules. We denote the category of all (small) dg categories
over k by dgcat,. In particular, dg categories with one object can be identified with dg
algebras A, i.e. graded k-algebras endowed with a differential d such that the Leibniz rule
holds:

d(fog)=d(f)og+ (=1)"fod(g)

for all f € AP and all g.
Let A be a dg category. The opposite dg category A° has the same objects as A and
its morphisms are defined by

AP(X,Y) =AY, X);

the composition of f € AP(Y, X )P with g € AP(Z,Y )4 is given by (—1)Pgf.
The category Z°(A) has the same objects as A and its morphisms are defined by

(Z2°A)(X,Y) = Z°(A(X,Y)),

where Z° is the kernel of d° : A(X,Y)? — A(X,Y)!. The category H(A) has the same
objects as A and its morphisms are defined by

(HY(A)(X,Y) = H'(A(X,Y)),

where H? denotes the 0-th homology of the complex A(X,Y). We say that a morphism
f iz —yin Z°%A) is a homotopy equivalence if it becomes invertible in H°(A).

Let A and B be dg categories. A dg functor G : B — Ais given by a map G : obj(B) —
obj(A) and by morphisms of dg k-modules G(z,y) : B(z,y) — A(Gz, Gy),z,y € obj(B),
compatible with the composition and the units. The category of small dg categories
dgcat, has the small dg categories as objects and the dg functors as morphisms.

The tensor product A ® B has the class of objects obj(.A) x obj(B) and the morphism
spaces AR B((z,y), (',y')) = A(z,2") @ B(y, y') with the natural compositions and units.
The enveloping dg category of A is defined as A ® A and we denote it by A°.

Let G,G" : B — A be two dg functors. We define Hom (G, G’)" to be the k-module

formed by the families of morphisms

o € A(Gx,G'z)"

37



such that G'(f) o ¢, = ¢, 0 G(f) for all f € B(z,y). We define Hom(G,G’) to be the
graded k-module with components Hom(G, G')" and whose differential is induced by the
differential of A(Gz,G'z). The set of morphisms G — G’ is by definition in bijection
with Z°(Hom(G,G")). Thus, we can form a dg category Hom(B,.A), which has the dg
functors as objects and the morphism space Hom (G, G’) for two dg functors G and G'.

Endowed with the tensor product, the category dgcat;, becomes a symmetric tensor
category which admits an internal Hom-functor, i.e.

Hom(A ® B,C) = Hom(A, Hom(B,C)),
for A, B,C € dgcat,.
Definition 1.2.1. A quasi-equivalence is a dg functor G : B — A such that
(1) G(z,y) : B(z,y) - A(G(z),G(y)) is a quasi-isomorphism for all objects x,y of A;
(2) the induced functor H°(G) : H°(B) — H°(A) is an equivalence.

By [83], there is a model structure on dgcat, with weak equivalences being quasi-
equivalences. We denote by Ho(dgcat,) the corresponding homotopy category.

Theorem 1.2.2. [83, Theorem 0.1] There is a cofibrantly generated model structure
(Dwyer-Kan model structure) on dgcat, where a dg functor G : B — A is

e a weak equivalence if G is quasi-equivalence;

e a fibration if

1. for all objects x,y € B the component G(x,y) is a degreewise surjection of
chain complezes;

2. for each isomorphism G(z) — z in H°(A) there is a lift to an isomorphism
in HY(B).
1.2.1 Drinfeld dg quotients

Suppose that k is a field. Let A be a dg category and B C A a full dg subcategory.
Denote by j : B — A the inclusion.

Definition 1.2.3. [22] The dg quotient category A/B is defined as follows:
® 0bj(A/B) = obj(A);

e freely add new morphisms ey : U — U of degree —1 for each U € obj(B), and set
d(EU) = 1U'

We denote by p : A — A/B the canonical functor. For any objects x and y, we have
a decomposition of graded k-modules

A/B (E y @ @ ./4 Un,y kkeUn ®]g ®k kZEUQ ®kA(U1,U2) ®kk5€U1 ®kA(ZE,U1).

nz0 U;eobj(B)

Using the formula d(e;y) = 1y, one can easily find the differential on A/B(z,y).
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Let G : B — A be a dg functor. The homotopy cofiber A/B of G is defined by the
following homotopy push-out diagram in dgcat, with respect to the Dwyer-Kan model
structure

G

— > A

B
|
0——A/B
and we will call B — A — A/B a homotopy cofiber sequence in dgcat,.

The homotopy cofiber A/B can be computed as the Drinfeld dg quotient of A by its

full dg subcategory Im(G), where Im(G) is the full dg subcategory of A whose objects are
the y € A such that there exist an object z in B and an isomorphism G(z) = y in H°(A).

Definition 1.2.4. A dg category A is called strictly pretriangulated (=spt) if it satisfies
the following:

e cach object has a suspension, and ¥ : A — A is dg dense (i.e. every object in the
target category is dg isomorphic to some object in the image);

e cach closed morphism of degree zero has a cone.

Proposition 1.2.5. [58, Lemma 2.3] Let A be a spt dg category. Then Z°(A) has a
canonical Frobenius exact structure, whose stable category coincides with H°(A). There-
fore, H°(A) is canonically triangulated.

Definition 1.2.6. The pretriangulated hull AP"'" is the smallest dg subcategory of Cyy(.A)
containing A, closed under ¥* and cones. As AP is spt, the triangulated hull A" of A
is defined to be HO(AP™e™).

Theorem 1.2.7. [22, Theorem 3.4 Let A be a dg category and B C A a full dg subcate-
gory. Then the canonical functor

Atr/Btr L) (A/B)tr
1s a triangle equivalence.

1.2.2 Homotopy between dg functors

Let B be a small dg category. The dg category P(B) is defined as follows: its objects
are the homotopy equivalences f : x — y. The complexes of morphisms are defined (as
Z-graded k-modules) by:

P(B)(f.9) = B(z,w) ® B(y, z) ® B(x, 2)[-1],

where f: 2 — y,g: w — z are in P(B).
A homogeneous element of degree r of this graded k-module can be represented by a

matrix
ma 0
h mo ’
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where my € B(z,w)", my € B(y, 2)” and h € B(z,2) .
The differential is given by

d{ ml ”32}} - {d(h) +gmcf<T1()—1)’“(mzf) d(gbz)} '

The Composition in P(B) corresponds to matrix multiplication and the units to the
identity matrices.
Then we have a dg inclusion functor

I:B—— P(B)

which sends an object z in B to (z = z) and I(f) = [“5 ]OC} .

Moreover we have two projection functors
Po,Plip(B)%B
which are defined by as follows

B(f:z—y) =u Po{{ml 0}}27711;

h ™o
0
P(f:x—y)=y Pl{{n;; mJ}Zm}
Then we obtain the following commutative diagram in dgcat,.
B A=(idsids) o
\ 431
P(B) :

where [ is a quasi-equivalence, Fy x P; is a fibration, with respect to the Dwyer-Kan
model structure on dgcat; (see Theorem [1.2.2)). Then the dg category P(B) is a path
object for B [84, Proposition 2.0.11]. Moreover Py and P; are quasi-equivalences.

Definition 1.2.8. [84, Remark 2.0.12] Let G,G’" : B — A be two dg functors, where B
is a cofibrant dg category. Two dg functors G and G’ are homotopic if there exists a dg
functor H : B — P(A) that makes the following diagram commutes

A
% In
B P(A)

The dg functor H corresponds exactly to



e a homotopy equivalence a(x) : G(x) — G'(x) in A for every object x in B, and

e a degree —1 morphism h = h(x,y) : B(z,y) — A(G(x),G'(y)), for all objects x and
y in B, such that

a(y)G(f) = G'(fa(z) = d(h(f)) + h(d(f))

and
hfg) = h(f)G(g) + (=1)"G'(f)h(g),

where f and g are composable morphisms in B with f of degree n.

1.2.3 The derived category of a dg category

Let A, B be small dg categories. A left dg A-module is a dg functor L : A — Cyy(k). A
right dg A-module is a dg functor M : A? — Cy,(k). A dg A-B-bimodule is a dg functor
N :B?® A — Cy4(k). For each object X of A, we have the right module represented by
X

X" = A7, X).

The category of right dg modules C(A) has as objects the right dg A-modules and as
morphisms L — M the morphisms of dg functors.
We identify A bimodule with right A° module via the morphism

MRA =MARLA? 5 AP M@ A

taking m ® a ® b to (—1)Pl(m*+aDp @ m ® a. And we denote by C(A°) the category of A
bimodules. There is a distinguished A-bimodule Ax given by morphisms in the category
A ie. Ax(z,y) = A(z,y). We call it diagonal bimodule of A and still denote it by \A.

A bimodule M € C(A°) is said to be semi-free if there is a set of homogeneous elements
& € M(x;,y;)i € S, called a basis of M, such that, for any pair (z,y) € obj(.A) x obj(A),
every object n € M(x,y) can be written uniquely as a finite sum

n = Yiesfio& o g,

where ¢g; € A(z,z;) and f; € A(y;,y), and only finitely many of them are nonzero. When
the basis set is finite, its cardinality is called the rank of the semi-free module M.

The dg category Cqy(A) is defined by Cyqq(A) = Hom (A%, Caq(k)). We write Hom(L, M)
for the complex of morphisms from L to M in C4y(.A). For each X € A, we have a natural
isomorphism

Hom (X", M) = M(X).
The category up to homotopy of dg A-modules is
H(A) = HO(Cdg(A)).

A morphism f : L — M is a quasi-isomorphism if it induces an isomorphism in homol-
ogy. Then the derived category D(A) is the localization of the category C(.A) with respect
to the class of quasi-isomorphisms. The category of perfect objects per(.A) associated with
A is the closure in D(.A) of the set of representable functors X" = A(?, X), X € A, under
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shifts in both directions, extensions and taking direct factors. The category of perfectly
valued modules pvd(.A) is the full subcategory of D(A) formed by the dg modules M such
that each dg k-module M(X), X € A, is perfect, i.e. > dim HP(M (X)) is finite.

Definition 1.2.9. A dg category A is said to be (homologically) smooth if the diagonal
bimodule A is perfect as a module over A°, i.e. A is in per(.A°).

Definition 1.2.10. A dg category A is said to be proper if A(X,Y) € per(k) for all
objects (X,Y) € A°.

Definition 1.2.11. For any right A° module M, we define its derived dual ©,; in the
derived category D(A°) as

MY = RHom 4 (M, A°).
In particular, the inverse dualizing bimodule of A is defined as A".

Definition 1.2.12. Let G : B — A be a dg functor. We define the inverse dualizing
bimodule of G O as

O = RHom 4 (Cone(A @5 A — A), A%).

1.2.4 Derived functors

Let A and B be two dg categories. An A-B-bimodule N defines a functor between the
categories of dg modules

704N :C(A) = C(B),

given by
M @4 N(X) =M ®4 N(—, X)
=coker( @M )R AX,)Y)® N(Y —>@M X)),
X,YeA XeA

where v(m® f@n) =mf@n—m®e fn.
This gives an adjoint pair (?®4 N, Homp(N, 7)) between the categories of dg modules:

QAN
—
C(A) c(B).
N~
Homp(N,?)

This adjoint pair induces an adjoint pair between the homotopy categories:

QAN
—
H(A) H(B).
\_/
Homp(N,?)

However, in general these two functors are not well-defined triangle functors between the
derived categories.
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Definition 1.2.13. a) A dg A-module P is cofibrant if
homC(A) (P, L) 8—*> homC(A)(P, N)

is surjective for each quasi-isomorphism s : L — N which is surjective in each
component.

b) A dg A-module P is fibrant if

homc(A)(N, I) Z—) hOIIlc(A) (L, I)

is surjective for each quasi-isomorphism ¢ : L — N which is injective in each compo-
nent.

Proposition 1.2.14. [57] A dg A-module is cofibrant if and only if it is a direct summand
of a dg A-module P which admits a filtration

0=, CclycHhC---CF,CF,;C---CP,peN
in C(A) such that
a) P is the union of the F,, p € N;
b) as graded A-module, for each p, F, is a direct summand of F,1;

c) for each p, the subquotient F,.1/F, is isomorphic in C(A) to a direct summand of a
direct sum of the form ¥X"A", A€ A, n € Z.

Proposition 1.2.15. [57] A dg A-module is fibrant if and only if it is a direct summand
of a dg A-module I which admits a filtration

I=FyDF D---
such that

a) the canonical morphism
[ —lim [ / F;

1 an isomorphism;
b) the inclusion Fi 1 — F; splits as a morphism of graded modules;

c) each quotient F;/F;yq is isomorphic in C(A) to a direct summand of a direct sum of
the form Y"Homy (A k), A€ A, n€Z.

Proposition 1.2.16. [57] The canonical triangle functor wy : H(A) — D(A) admits a
left adjoint p and a right adjoint i such that for each object X of D(A),

a) the object pX is cofibrant and the object iX is fibrant, and

b) there exist quasi-isomorphisms pX — X and X — iX.
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We call pX a cofibrant resolution of X and iX a fibrant resolution of X. We have the
following diagram of triangle functors:

Q4N

L
Definition 1.2.17. Let N be a dg A-B-bimodule. The left derived functor ? ®4 N :
D(A) — D(B) is defined as the composition g o (? ® 4 N) o p. The right derived functor
RHomgp(N,?) : D(B) — D(A) is defined as the composition 74 0 Homp(N,?) o i.

L

The left derived functor ? ®4 N : D(A) — D(B) and the right derived functor

RHompg(N,?) : D(B) — D(A) form an adjoint pair, i.e. there is a canonical isomor-
phism

L
HOIHD(B)(L ®a N, M) ~ HOIHD(A)(L, RHOIHB(N, M))
for each dg A-module L and dg B-module M.

Let G : B — A be a dg functor. Then G induces the restriction functor G, : C(A) —
C(B) which is given by G.(M) = M o G. It fits into the usual triple of adjoint func-
tors (G*,G.,G") between C(A) and C(B). We denote the corresponding adjoint functors
between D(A) and D(B) by (LG*, fGx, RG").

1.2.5 Hochschild homology

Let A be a dg category. The bar resolution (C*"(A),¥) of the diagonal bimodule A is
the dg A-bimodule whose value at (z,y) is given by the total complex of the bicomplex
whose (n, j)-th entry is

O (2, )V = @y o AA =1, Y) @k ATz, Tn1) ®p -+ @ Alwo, 1) @k Al 20)}V)
where the horizontal arrows are given by the Hochschild differential
do(ag @ -+~ ® ay) = B3 (=1)%ap ®@ - @ @11 @ -+ D ay .

and the vertical arrows are the differentials of the tensor products.
The augmentation is the morphism bimodules

€q:CM"(A)—A
which is
€Exy - EBzEObj(A)~’4<Z7 y) gn A(LU, Z) HA(!E, y) : f ® f/ I f © f/

and 0 everywhere else. C%"(A) is a cofibrant replacement of A in the category of A-
bimodules.
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Definition 1.2.18. Let A be a small dg category. Then the Hochschild complex of A is
defined as

HH(A) = A@: C*"(A)

and the Hochschild homology HH4(A) of A is the homology of this complex. More pre-
cisely,

HH(A) = @201 o2, ey conja) AlTm: 70) @ (BA(Tm 1, 2)) @ - - - @ (BA(20, 1)) }

We denote by b the differential of HH(A).

Let G : B — A be dg functor. Then G induces a canonical morphism of B-bimodules
Gp.a: C*(B) — C"(A) and we have the following commutative diagram of B-bimodules

B—% A
] ¥
Cbar (B) Gs.A Cbar (A) .

Thus, we have a canonical morphism of Hochschild complexes

G®GB7A

e+ HH(B) = B @5 C*(B) A@pe O (A) —" o HH(A) = A@ 40 CP(A)

Definition 1.2.19. The Hochschild homology H He(G) of the dg functor G : B — A is
the homology of the relative Hochschild complexr which is defined as follows

HH(G) = Cone(yg : HH(B) — HH(A)) .

1.2.6 Mixed complexes and (negative) cyclic homology

Let A be the dg algebra generated by an indeterminate e of chain degree —1 with €2 =0
and de = 0. The underlying complex of A is

v > ke—>k—0---.

Then a mixzed compler over k is a dg right A-module whose underlying dg k-module is
(M, b) and where € acts by B. Suppose that M = (M, b, B) is a mixed complex. Then
the shifted mized complezr ¥M is the mixed complex such that (¥M), = M,_; for all p,
bsy = —b and By = —B. Let f: M — M’ be a morphism of mixed complexes. Then
the mapping cone over f is the mixed complex

/ by f By 0
(rowly S 15 5l)
We denote by Mix the category of mixed complexes and by DMiz, i.e. the derived
category of the dg algebra A.
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Let A be a dg category. We associate a precyclic chain complex C(.A) (see [68]) with
A as follows: For each n € N, its n-th term is

[T A, 20) © Alwn-1,20) @ A9, 20 1) ® -+ @ Alzo, 1),

where the sum runs over all sequences zy, ..., x, of objects of A. The degeneracy maps
are given by

ny ooy JiJimly ey if 1 ,
dz-<fn,...,fi,fi_l,...,fo):{<f fificroooo fo) ifi>0

(=" (fofu,---, 1) ifi=0,
where 0 = (degfy)(degfi + -+ + degf,_1). The cyclic operator is given by

t(fn—l, . '7f0> = (_1)n+o(f07fn—17fn—2; T 7f1)'

Then we associate a mixed complex (M (A), b, B) with this precyclic chain complex as
follows: The underlying dg module of M (.A) is the mapping cone over (1 — t) viewed as
a morphism of complexes

1—t: (C(A),B) — (C(A),b),

where b = 32" (=1)d; and b’ = 37" '(—1)d;. Tts underlying module is C(A)BC(A); it is
endowed with the grading whose n-th component is C(A), ®C(A),_1 and the differential

is
b 1—t
0 = |-

0 0
N 0}’
where N = >""  t".

Definition 1.2.20. The cyclic homology HC.(A) of A is defined to be the homology of
the cyclic chain complex of A

The operator B : M(A) — M(A) is

HO(A) = M(A) &, k.

The negative cyclic homology HN,(.A) of A is defined to be the homology of the negative
cyclic chain complex of A

HN(A) = RHomy (k, M(A)).

Remark 1.2.21. The dg algebra A is the singular homology with coefficients in k of
the circle S*. The circle action is captured algebraically in terms of the structure of a
mixed complex so that the above constructions can be explained as homotopy orbit and
homotopy fixed points of the Hochschild complex C,(.A) with the algebraic circle action
(see [53) 68, [44]).
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The augmentation morphism A — k induces natural morphisms in D(k)
HN(A) — HH(A) — HC(A).

Let G : B — A be a dg functor. Then it induces a canonical morphism 7 : M (B) —
M (A) between their mixed complexes. We denote by M (G) the mapping cone over 7.

Definition 1.2.22. The cyclic homology HC.(G) of G : B — A is defined to be the
homology of the cyclic chain complex of G

HO(G) = M(G) &y k.

The negative cyclic homology HNo(G) of G : B — A is defined to be the homology of the
negative cyclic chain complex of G

HN(G) = RHomy (k, M(G)).
Similarly, the augmentation morphism A — & induces natural morphisms in D(k)
HN(G) — HH(G) — HC(G).

Theorem 1.2.23. [58, Theorem 1.5] Let A and B be dg categories and G : B — A be a
Morita functor, i.e. a dg functor such that G, : D(B) — D(A) is an equivalence. Then
Yo : M(B) — M(A) is an isomorphism in D(A).

1.3 The pseudocompact derived categories

Let k be a field and R a finite dimensional separable k-algebra (i.e. R is projective as a
bimodule over itself). By definition, an R-algebra is an algebra in the monoidal category
of R-bimodules.

Definition 1.3.1. [30, Chaper IV] An R-algebra A is pseudocompact if it is endowed
with a linear topology for which it is complete and separated and admits a basis of
neighborhoods of zero formed by left ideals I such that A/ is finite dimensional over k.

Remark 1.3.2. Recall [10, Lemma 4.1] that the notion of pseudocompact R-algebra can
be defined equivalently using right respectively two-side ideals.

Let A be a pseudocompact R-algebra. A right A-module M is pseudocompact if it
is endowed with a linear topology admitting a basis of neighborhoods of zero formed by
submodules N of M such that M/N is finite-dimensional over k. A morphism between
pseudocompact modules is a continuous A-linear map. We denote by Pcm(A) the category
of pseudocompact right A-modules.

The common annihilator of the simple pseudocompact A-modules is called the radical
of A and is denoted by radA.

Proposition 1.3.3. [10, Proposition 4.3] The radical of A coincides with the ordinary
Jacobson radical of A.
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Definition 1.3.4. [64, section 7.11] Let & and R be as above. Let A be an algebra in
the category of graded R-bimodules. We say that A is pseudocompact if it is endowed
with a complete separated topology admitting a basis of neighborhoods of 0 formed by
graded ideals I of finite total codimension in A. We denote by PcGr(R) the category of
pseudocompact graded R-algebras.

We say that a dg R-algebra A is pseudocompact if it is pseudocompact as a graded
R-algebra and the differential d is continuous. We denote by PcDg(R) the category
of pseudocompact dg R-algebras. We say that a morphism f : A — A’ in PcDg(R) is
quasi-isomorphism if it induces an isomorphism H*(A) — H*(A’).

Definition 1.3.5. An augmented R-algebra is an algebra A equipped with k-algebra
homomorphisms

RLASR
such that eon is the identity. We use the notation PcAlg(R) for the category of augmented
pseudocompact dg R-algebras. We say that a pseudocompact augmented dg R-algebra
A'is complete if A := kere = radA. We denote by PcAlgc(R) the full subcategory of
PcAlg(R) consisting of complete algebras.

Let S be another finite dimensional separable k-algebra and B a pseudocompact dg
S-algebra. A morphism f from B to A consists of a k-algebra morphism (not necessarily
unital) fo : S — R and a dg k-algebra morphism (not necessarily unital) f; : B — A such
that the following square commutes in the category of k-algebras

S
UBJ/
B

Similarly, we define morphisms from an object in PcAlg(S) (respectively PcAlge(S)) to
an object in PcAlg(R) (respectively PcAlge(R)).

Example 1.3.6. [64, Section 7.11] Let @ be a finite graded quiver. We take R to be
the product of copies of k indexed by the vertices of ) and A to be the completed path
algebra, i.e. for each integer n, the component A" is the product of the spaces kp, where p
ranges over the paths in @ of total degree n. We endow A with a continuous differential
sending each arrow to a possibly infinite linear combination of paths of length > 2. For
each n, we define I,, to be the ideal generated by the paths of length > n and we define the
topology on A to have the I, as a basis of neighborhoods of 0. Then A is an augmented
pseudocompact complete dg R-algebra.

fo

— R

B
f1

— A.

Let A be a pseudocompact dg R-algebra. A right dg A-module M is pseudocompact
if it is endowed with a topology for which it is complete and separated (in the category
of graded A-modules) and which admits a basis of neighborhoods of 0 formed by dg
submodules of finite total codimension. It is clear that A is a pseudocompact dg module
over itself.

A morphism between pseudocompact dg A-modules is a continuous dg A-module mor-
phism. We denote by C,.(A4) the the category of pseudocompact dg right A-modules. A
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morphism f : L — M between pseudocompact dg right A-modules is a quasi-isomorphism
if it induces an isomorphism H*(L) — H*(M).

Proposition 1.3.7. [6], Lemma 7.12.]

a) The homology H*(A) is pseudocompact graded R-algebra. In particular, H°(A) is a
pseudocompact R-algebra.

b) For each pseudocompact dg module M, the homology H*(M) is a pseudocompact
graded module over H*(A).

The category Cpe(A) has a natural dg enhancement Ci9(A). It has the same objects
as Cpe(A). For L,M € Ci9(A), the Hom-complex ’Homcgg(A)(L, M) is the complex of
p
Cpe (A)
mogeneous A-linear maps of degree p form L to M (here we consider A as a pseudocompact
graded algebra and L, M as pseudocompact graded A-modules) and with its differential

defined by

R-modules with degree p component Hom (L, M) being the space of continuous ho-

d(f) =duo f—(-1)fodg
p
for f e Homcgg(A)(L,M).
For a dg category A, the category H°(A) has the same objects as A and its morphisms
are defined by

(H(A)(X,Y) = H'(A(X,Y)),
where H° denotes the 0-th homology of the complex A(X,Y"). We denote by H,.(A) the
zeroth homology category of Ci9(A), i.e. Hyo(A) = H(CH(A)).

Theorem 1.3.8. [75, Section 8.2] Let A be an object in PcAlgc(R). There exits a model
structure on Cp.(A) which is given as follows:

(1) The weak equivalences are the morphisms with an acyclic cone. Here, an object
is acyclic if it is in the smallest subcategory of the homotopy category of A which
contains the total complexes of short exact sequences and is closed under arbitrary
products.

(2) The cofibrations are the injective morphisms with cokernel which is projective when
forgetting the differential.

(3) The fibrations are the surjective morphisms.

The corresponding homotopy category is called the pseudocompact derived category of A.
We denote it by D,.(A).

Remark 1.3.9. [10, pp.10] Under suitable boundedness assumptions (algebras concen-
trated in degrees < 0 and modules concentrated in degrees < V), weak equivalence is the
same as quasi-isomorphism.
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Let A be an object in PcAlge(R). We define the perfect derived category per,.(A)
to be the thick subcategory of D,.(A) generated by the free A-module of rank 1. The
perfectly valued derived category pvd,.(A) is defined to be the full subcategory of D,.(A)
whose objects are the pseudocompact dg modules M such that Homp, () (P, M) is finite-
dimensional for each perfect P.

Let A and A’ be two pseudocompact dg R-algebras. Their complete tensor product is
defined by

A@pA" = lm AJU @, A'/V,
A%

where U, V run through the system of open neighborhoods of zero in A and A’ respectively.
Then A®,A’ is also pseudocompact. We define the enveloping algebra A¢ of A to be the
complete tensor product A®;A%.

The dg algebra A is a pseudocompact dg module over the enveloping algebra A®;, A%,
We say that A is (topologically homologically) smooth if the module A considered as a
pseudocompact dg module over A° lies in per,,.(A°).

Proposition 1.3.10. [64, Lemma 7.13] If A is the completed path algebra of a finite
graded quiver endowed with a continuous differential sending each arrow to a possibly
infinite linear combination of paths of length > 2, then A is smooth.

Proposition 1.3.11. [64, Proposition 7.14] Let A be a pseudocompact dg R-algebra.
Assume that A is smooth and connective.

a) The canonical functor Hye(A) — Dpe(A) has a left adjoint M — pM.

b) The triangulated category pvd, A is generated by the dg modules of finite dimension
concentrated in degree 0.

c¢) The full subcategory pvd,.A of Dy.(A) is contained in the perfect derived category
per,.A.

d) The opposite category Dy.(A)? is compactly generated by pvd, A.

e) Let A — A" be a quasi-isomorphism of pseudocompact, smooth dg algebras whose ho-
mology is concentrated in non positive degrees. Then the restriction functor Dp.(A’) —
D,e(A) is an equivalence. In particular, if the homology of A is concentrated in degree
0, there is an equivalence Dpy.(A) — D,(H°(A)). Moreover, in this case Dp.(H°A)
is equivalent to the derived category of the abelian category Pcm(HC°A).

f) Assume that A is a complete path algebra. There is an equivalence between D,.(A)%
and the localizing subcategory Do(A) of the ordinary derived category D(A) generated
by the finite-dimensional dg A-modules.

Remark 1.3.12. In a) of the above Proposition, we only need the condition ‘smooth’.
In b), we need the condition ‘connective’.

For two objects L and M of D,.(A), define
RHom (L, M) = Homyeag 4, (pL, M).
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Then we have Homp,, (a)(L, M) = Hye(A)(PL, M) = H*(Homeay , (PL, M)). Moreover,
we have the tensor-Hom adjunction

RHom,(X®%Y, Z) ~ RHom (X, RHom,(Y, Z))
for objects X,Y and Z in D,.(A).

Definition 1.3.13. Let A be an object in PcAlgc(R). For a pseudocompact dg A-
bimodule M, we define its derived dual MV as

MY = RHom (M, A°).

In particular, the inverse dualizing bimodule of A is defined as AV.
Let S be an other finite dimensional separable k-algebra and B an object in PcAlge(S).
Let f be a morphism from B to A. The inverse dualizing bimodule ©; of f is defined as

©; = RHom 4 (Cone(ADpA — A), A%).

The morphism f induces the restriction functor fi : Cp(A) = Cpe(B). It fits into the
usual triple of adjoint functors (f*, f.) between D,.(A) and D,.(B).

Proposition 1.3.14. [67, [1] Let A be a pseudocompact dg R-algebra. The forgetful func-
tor Dp.(A) — D(A) restricts to a triangle equivalence per,.(A) — per(A). If A is also
smooth, then it restricts to a triangle equivalence pvd,.(A) — pvd(A).

Corollary 1.3.15. Let f: A — A’ be a morphism in PcAlg(R). Assume that A and A’
are connective and smooth. Then f, : D(A") — D(A) is a triangle equivalence if and only
if fu: Dpe(A') = Dpe(A) is.

1.3.1 Hochschild/cyclic homology in the pseudocompact setting

Let A be the dg algebra generated by an indeterminate € of cohomological degree —1 with
€2 = 0 and de = 0. The underlying complex of A is

o= ke—k—=0—---.

Then a mized compler over k is a dg right A-module whose underlying dg k-module is
(M,b) and where € acts by a closed endomorphism B. Suppose that M = (M,b, B) is
a mixed complex. Then the shifted mixzed complex XM is the mixed complex such that
(XM)P = MP~ for all p, bgas = —b and Bsy, = —B. Let f: M — M’ be a morphism of
mixed complexes. Then the mapping cone over f is the mixed complex

, by f By 0
(M@M’[o “by|"| 0 —Bu| )
We denote by Mix the category of mixed complexes and by DMix the derived category
of the dg algebra A.

Let A be an object in PcAlge(R) (see Definition [1.3.5). For an R-bimodule U, we
define Ur = U/[R, U] and we let U® be the R-centralizer in U. We associate a precyclic
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chain complex C(A) (see [?, Definition 2.5.1)) with A as follows: For each n € N, its n-th
term is

Cp(A) = (AR A7%)p,

The degeneracy maps are given by

a)_{(an,...,aiai_l,...,ao) if 1 > 0,
y o) —

di my e ey Wgy Wg—1y .- o
(a i, Qi1 (_1)n+a(a0an,...,a1) if i =0,

where o = (degag)(dega; + - - - + dega,,_1). The cyclic operator is given by
t(anfla s 7a0) = (_1)n+o<a0, Ap—1,0p—-2," " 7a1)-

Then the corresponding product total complex (HH(A),b) of (C(A),b= 37" (—1)'d;)
is called the normalized Hochschild complex of A. The homology of this complex is denoted
by HH.(A) and called the (continuous) Hochschild homology of A. By [10, Proposition

B.1], the normalized Hochschild complex is quasi-isomorphic to A@ieA in D(k).

We associate a mixed complex (M (A),b, B) with this precyclic chain complex as fol-
lows: Consider the product total complex (HH(A), ') of (C(A),¥ = 32"/ (—1)%d;). The
underlying dg module of M (A) is the mapping cone over (1 —t) viewed as a morphism of
complexes

1—t:(HH(A),b)— (HH(A),b),
where b = 327 (—1)id; and & = Y277 (—1)%d;. Tts underlying module is HH(A)@® HH (A);

it is endowed with the grading whose n-th component is HH(A), ® HH(A),_1 and the
differential is

b 1—t

b ]

0 0
¥ )
where N =37 t".
Let S be an other finite dimensional separable k-algebra and B a pseudocompact dg
S-algebra. Let f be a morphism from B to A. Then f induces a canonical morphism
between their Hochschild complexes

The operator B : M — M is

vy HH(B) — HH(A).

Definition 1.3.16. The (continuous) Hochschild homology HH.(f) of f is the homology
of the relative Hochschild complex which is defined as follows

HH(f) = Cone(ys: HH(B) — HH(A)).

Definition 1.3.17. The (continuous) cyclic homology HC4(A) of A is defined to be the
homology of the cyclic chain complex of A

HC(A) = M(A) B k.
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The (continuous) negative cyclic homology HN4(A) of A is defined to be the homology
of the negative cyclic chain complexr of A

HN(A) = RHomy (k, M(A)).
The augmentation morphism A — k induces natural morphisms in D(k)
HN(A) - HH(A) - HC(A).
The morphism f also induces a canonical morphism between their mixed complexes
v M(B) — M(A).
We denote by M (f) the mapping cone over 7.

Definition 1.3.18. The (continuous) cyclic homology HC(f) of f : B — A is defined
to be the homology of the cyclic chain complex group of f

HC(f) = M(f) &4 k.

The (continuous) negative cyclic homology HN(f) of f : B — A is defined to be the
homology of the negative cyclic chain complex of f

HN(f) = RHom (k, M(f)).
Similarly, the augmentation morphism A — k induces natural morphisms in D(k)

HN(f) — HH(f) — HC(f).
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Chapter 2

Relative Calabi—Yau structures

2.1 Reminder on the derived category of morphisms

Let I be the path k-category of the quiver 1 — 2. The letter I stands for ‘interval’.
Let A be a dg k-category. The objects of the derived category D(I? ® A) identify with
morphisms f : M; — M, of dg A-modules. Each such object gives rise to a triangle

My L My —— cof (f) —= SM,

of DA which is functorial in the object f of D(I? ® A). Here, we write cof for the
homotopy cofiber, i.e. the cone of a morphism.
For two objects f : My — My and f’ : M] — M), consider a morphism of triangles

My L My —— cof (f) ——= SM,

1V Tk
ML T ot (f) ——SM

in the derived category D.A. It is well-known that a given morphism b : My — M} extends

to such a morphism of triangles (a,b,¢) if and only if we have ¢’ obo f = 0 and that in

this case, the pair (a,b) lifts to a morphism of D(I? ® A). The following easy lemma

makes this more precise. Here, we write fib for the homotopy fiber, i.e. the desuspension
of the cone of a morphism.

Lemma 2.1.1. We have a canonical isomorphism bifunctorial in the objects f and f' of

DI @ A)
RHomjorga(f, f') = fib(RHom 4 (M, M3) — RHom 4( My, cof(f')).

More precisely, let g : Ny — Ny and ¢ : N{ — N} be objects in D(I? @ A) and let
a:f—gand B : g — g be morphisms in D(I? ® A), then we have the following

54



commutative diagrams

RHomjorg a(g, f') —— fib(RHom 4 (N2, M5) — RHom 4( Ny, cof(f"))

RHomjorgA(f, f') —— fib(RHom 4 (Ms, M4) — RHom 4 (M, cof(f')),

RHom orga(f, g') —— fib(RHom 4 (Ms, N}) — RHom 4 (M, cof(g'))

| |

RHom org a(f, ) —— fib(RHom 4 (M2, N3) — RHom 4 (M7, cof(g)).

Proof. We have isomorphisms of dg categories
Cag(I? @ A) =Hom(I & AP, Cyy(k))
~Hom(I, Hom(A”?,Cyy(k)))
=Hom(I,Cay(A)).

In this way, C4,(A) identifies with the category of morphisms M; — M, of dg A-modules
with the dg enhancement given by

Hom(f, f') ——— Hom (M, M))

Lo
Hom o(My, M]) — Hom (M, Mj).

The model structure on C(I/?®.A) translates into a model structure on Hom(I, Cyy(A))
whose weak equivalences are the componentwise quasi-isomorphisms and whose cofibrant
objects are the graded split monomorphisms M; ~— My with cofibrant M; and Ms. There-
fore, we can assume that f and f’ are graded split injective morphisms between cofibrant
dg A-modules. Then we have the following commutative diagram in C(.A)

My —— M, » coker(f)

L !

M| —— M} » coker(f'),

where the first row and second row are graded split exact sequences. It induces the the
following commutative diagram of complexes

Hom(coker(f), M) »——— Hom(f, ') ————» Hom(My, M;)

| ! 0 !

Hom(coker(f), Ms) ——— Hom(Msy, M) ————» Hom(M,, M))

| |

Hom(Mj, coker(f'")) == Hom(Mj, coker(f")),
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where the upper right square is a bicartesian. Thus we have the exact sequence
Hom(f, f,) — HO?TL(MQ, Mé) — Hom(Mb coker(f’))

and the canonical isomorphism

RHom o a(f, f') = fib(RHom 4 (M, M3) — RHom 4 (M, cof (f)).

Let G : B — A be a dg functor. It induces the dg functor
100G IPB —I7® A,
which we still denote by G. It yields the adjunction
LG :D(IP@B) S DIPRA):G..

Lemma 2.1.2. Let f: My — My and f': M] — M} be objects in D(I? @ B). We have
the following commutative diagram

RHomyorgp(f, ) = > fib(RHomp(Ms, M) — RHom 4 (M, cof (f'))

lLG* lLG*

RHomerg A(LG*(f), LG*(f")) —— fib(RHom 4(LG* (M), LG*(M})) — RHom 4(LG* (M), cof (LG*(f’

Similarly, let g : Ny — Ny and ¢’ : N{ — N be objects in D(I? ® A). We have the
following commutative diagram

RHom/org 4(g, g') = > fib(RHomp(N2, Nj) — RHom 4(Ny, cof(g'))

l6- l6-

RHom;orgs(Gi(9), G(¢")) —— fib(RHom4(G.(N2), G.(N})) — RHom4(G.(Ny), cof (G.(¢')).

Proof. We only show the first statement since the second one can be shown similarly.
We can assume that f, f are graded split injective morphisms between cofibrant dg A-
modules. Then it is easy to see that the following diagram commutes

Homperes(f, f') » > Homp(Ms, M}) » Homp(My, coker(f"))

| | |

Homorga(G*(f), G*(f')) = Homa(G* (M), G*(MS)) —— Hom4(G*(M,), coker(G*(f"))).

Thus we get the first commutative diagram.

V

Relative right Calabi-Yau structures were invented by Bertrand Toén in [85, pp. 227-
228]. Later, the theory of relative right and left Calabi-Yau structures was developed by
Chris Brav and Tobias Dyckerhoff in [16].
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2.2 Relative right Calabi—Yau structures

Let G : B — A be a dg functor [[] We denote by DA the dg A-bimodule defined as
follows:

DA?(X,)Y)=DA(Y,X), VY(X,Y)e A
where D is the k-linear dual Homy(?, k). We call it the linear dual bimodule of A. Sim-
ilarly, we define the dg B-bimodule DB°. The natural B-bimodule morphism ug : B —
G A induces a morphism between their linear dual bimodules

G.(DA*) — DB”.
It canonically lifts to an object ug, of D(I°? ® B°). Similarly, its homotopy fiber
fib(ut) — G.(DA®)

lifts to an object dg of D(I? ® B°). Each morphism X" !(ug) — dg gives rise to a
morphism of triangles in D(B°)

wroig PGy A cof(u) (2.1)
fib(us) — ¢ G (DA®) "¢ pBer Sfib(uz)

We are therefore interested in morphisms ¥ tug — ¢ in D(I? ® B°).
Lemma 2.2.1. We have a canonical isomorphism
L L
RHOIH[op@Be (UG, 50) = ﬁb(HOHlk<A X Be .A, ]{3) — Homk(B X Be B, k’))

Moreover this isomorphism is compatible with the composition of dg functors, i.e. if
Q : A — C be another dg functor, then we have the following commutative diagram

L L
RHom[op®B€ (UQog, (SQog) — ﬁb(HOHlk(C X pge C, k’) — Homk(B X pBe B, l{))

|

fib(Homy (A g A, k) — Homy(B @g. B, k))

Proof. Using the standard adjunctions, we get

RHOHl[oP@Be (UG, 50)

RHompg. (B, DB ~ Homy (B &g B, k)

and
RHomgpg: (G, A, G.(DA?)) ~RHom 4 (LG*(G,A), D(A?))

~Homy,(G,(A) é)zse A° k)
~Homy (A G%Be A, k).

IThe definition we will give actually makes sense even if we do not assume A and B to be proper.
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We know that the composition QQ o G : B — A — C induces the following morphisms
in D(I? ® B°)
ug — UQoG 6QoG — (50.
Then the claim follows by Lemma [2.1.1}

We therefore obtain the following chain of morphisms

Hom(HC(G), k)

i

Hom(HH (G), k) = fib(Hom(A & A, k) — Hom(B g B, k))

|

fib(Hom (A @g. A, k) — Hom(B @p. B, k)) ~ RHom or e (11, 5:)
(2.2)

Definition 2.2.2. [16, Definition 4.7] A right n-Calabi-Yau structure on the dg functor
G : B — Ais a class [w] in Hom(HC,,_1(G), k) such that the associated morphism
Y lug — d¢ is invertible, i.e. its associated morphism of triangles (2.1]) is invertible.

2.3 Relative left Calabi—Yau structures

Let G : B — A be a dg functor. We assume that B is smooth. This ensures that the
canonical morphism
L L L L y
AR B @ A — (.A@BB@BA)

is invertible in D(A¢). The composition of A induces the morphism

AdgA— A

of D(A®). Tt canonically lifts to an object ug of D(I? ® A°). Similarly, its homotopy
fiber

fib(ue) — A g A

lifts to an object v of D(I? ® A°). Notice that each morphism X" 1%, — v gives rise
to a morphism of triangles in D(.A°)

n—

st gy 2 st g G A Sr=Teof (1)) AV (2.3)
fib(1ic;) % A A a A Sb(pc).

We are therefore interested in morphisms X"~ !, — vg in D(I7 @ A°).
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Lemma 2.3.1. We have a canonical morphism

L L
ﬁb(A ®Be ./4 _> A ®_Ae A) — RHOIH[OP@AS(IU/\C/;’ VG’).

It is invertible if A is smooth. Moreover this canonical morphism is compatible with the
composition of dg functors, i.e. if Q : A — C is another dg functor between smooth dg
categories, then we have the following commutative diagram

L L
fib(A ®pge A - A ®ye A) —— RHomopg 4¢ (,Uéa ve)
L L l
ﬁb(C Qe cC—¢C Rce C) —_— RHOII]]op@Ce (MéoG’ VQog).
Proof. By Lemma [2.1.1], we have
L L
RHOIHIOP@_A@ (ILLé, VG) l) ﬁb(RHOmAe ((./4 ®B A)V) A ®B A) — RHomAe (A\/’ A))
We have a canonical morphism
L
A®4e A — RHom ye (A, A),
which is invertible if A is smooth. Moreover, we have the isomorphisms
L L L
RHomAe ((A Xp .A)V, A Xn A) ~ RHOHIAe(LG*(BV), .A Xn A)
L
~ RHomge(B",G.(A®5 A))
L L
~B g (ARp5.A)
L
~ A Qg A,

where we use the smoothness of B for the first and the 3rd isomorphism. Thus, we have
a canonical morphism

L L
fib(A ®@pe A - A @4 A) — RHomopgae (110, Vi),

which is invertible if A is smooth.
By Lemma |2.1.2] we have the following commutative diagram

L L
ﬁb(A ®Be ./4. % .A ®_Ae A) > RHOIHIUP@AE (/,Lé, VG)

i l

fib(LQ* (A ©pe A) — LQ* (A S 40 A)) —— RHompomsce (LQ* (1), LQ* (v6)),

L L
where LQ* (1) is given by AY® 4C¢ — BY®pC¢ and LQ*(vg) is given by LG*(fib(ug)) —
L
B ®ge C°.
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It is easy to see that we have natural morphisms p),q — LQ*(ug) and LQ*(vg) —
Voo in D(I? @ C). Then by Lemma we get the following commutative diagram

L L
ﬁb(A X pBe A — A@Ae .A) > RHOHl]oP@Ae(Mé,VG)

l |

fib(LQ*(A ©pe A) — LO*(A &4 A)) —— RHomyorsee (LQ* (1), LQ* (vs))

|

~

L L

ﬁb(C Qe C—¢C & Ae .A) > RHom]op®ce (MéoG? LQ*(I/G'))
L L A

ﬁb(C X pBe C—C Rce C) > RHom]op®ce (ﬂéoG? l/Qo(;).

We therefore obtain the following chain of morphisms

HN(G) (2.4)

l

HH(G) = SAib(B G B — A4 A)

|

Shb(A B5e A — A G 4 A)

ERHOHI[OP@_A@ (/,Lé, VG) .

Definition 2.3.2. [16, Definition 4.11][87, Definition 1.13] A left n-Calabi-Yau structure
on the dg functor G : B — A is a relative negative cyclic class [¢] in HN,,(G) such that

a) the associated morphism X"~ !Y, — vg is invertible and
b) the morphism X""'BY — B corresponding to the image of [¢] in HH,, _(B) is invert-
ible in D(B°).

Notice that the morphism gl — ¥" !vg is invertible if and only if its associated
morphism of triangles (2.3) is invertible. We point out that condition b) is not imposed
by Brav—Dyckerhoff [I6] but is imposed by Yeung [87].

Remark 2.3.3. If we take the dg category B to be the empty dg category (), which is
the initial object in the category of small dg categories dgcat,, then the above definition
coincides with the definition of an absolute left n-Calabi—Yau structure on A.

Proposition 2.3.4. [16, Corollary 7.1] Let f : B — A be a dg functor between homolog-
tcally smooth dg categories which carries a left n-Calabi—Yau structure. Then there is a
canonical left n-Calabi—Yau structure on the cofiber A/B.
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Proposition 2.3.5. Let B, A, A" be smooth dg categories. Let G : B — A be a dg functor
and Q : A — A’ be a quasi-equivalence. The isomorphism

HN,(G) — HN,(Q o G)

induced by Q yields a bijection between the left n-Calabi—Yau structures on G and on

Qod.

Proof. By Theorem [1.2.23] the functor () induces the following quasi-isomorphism of
triangles in D(Mix)

M(B) — M(A) —— M(G) S M(B)
M(B)—— MJEC) — M(Qlo G) ——~SM(B).

Combining with Lemma [2.3.1] the above diagram yields the following commutative dia-
gram in D(k)

HN(G) ~ HN(Q o G)

HH(G) ~ HH(QoG)

SHb(A G A — AGae A) — SHb(A e A — A G e A)

~ ~

S

Y RHom org 4 (1185 Vi) Y RHom rorg are (Hyocr VQoG)-

The map © admits the following description. The quasi-equivalence functor ¢) induces a
quasi-equivalence
1®QGZIOP®A6—>IOP®A/6,
which we still denote by (). Then the extension along () yields an equivalence
LQ" :D(I?® A°) = D(I? ® A°).

The functor LQ* maps pg; to 1. and vg t0 vgog. Then the map © is the map induced
by LQ* on mapping complexes. In particular, © preserves equivalences. Thus each left
n-Calabi—Yau structure on G induces a left n-Calabi—Yau structure on ) o G. Similarly,
we can use the restriction functor Q. : D(I? @ A"®) = D(I? ® A’°) to show that each
left n-Calabi—Yau structure on () o G induces a left n-Calabi-Yau structure on G. V

Corollary 2.3.6. Let B, A be two homologically smooth dg categories and moreover B
is cofibrant with respect to the Dwyer-Kan model structure (see Theorem . Let
G,G" : B — A be two homotopic dg functors. The canonical isomorphism

HN,(G) = HN,(G')

induces a bijection between the relative left n-Calabi—Yau structures on G and on G'.
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Proof. Since G and G’ are homotopic, there exists a dg functor H : B — P(A) that
makes the following diagram commutative (see Definition [1.2.8])

A
e
B T_. p(A)
\ l P
G’
A.
We know that P, and Py are quasi-equivalences. They induce isomorphisms HN,,(G) <
HN,(H) = HN,(G'). Now the claim follows from the above Proposition [2.3.5] V

2.4 From left to right

Let G : B — A be a dg functor between smooth dg categories. Suppose that G carries a
left n-Calabi—Yau structure. We define per,,(A) to be the dg subcategory of C4y(.A) whose
objects are the perfect cofibrant dg .A modules and pvd,,(A) to be the dg subcategory
of Cyqy(A) whose objects are the perfectly valued cofibrant dg A modules. Similarly, we
define per,,(B) and pvd,,(B). The restriction along G : B — A induces a dg functor
R: & =pvdy,(A) = F = pvd,,(B).

Theorem 2.4.1. [16, pp. 389] The functor R : &€ — F inherits a canonical right n-
Calabi-Yau structure, i.e. we have a class [w] in Homy(HC,_1(R), k) which yields an
isomorphism of triangles in D(E°)

anluR

yn-lg SR F

Y lcof(ug) ——— = X"€ (2.5)

fib(us) — 2~ R,(DF®) — DEP Sfib(ul),

where R, is the restriction along R¢ : £ — F°.

Proof. By the definition of pvd3, we have a dg functor
(pery,B)? @ F — pery,(k), (P, M) +— Homp(P, M).
It yields a morphism in DMix
M(pet,, B)) & M(F) = M(peryy (k) € M(k) ~ k.
By the adjunction between ?®, M (F) and Homy (M (F),?), we get a morphism in DMix
M(B) = M (per,,B) — Hom(M (F), k).
Similarly, we get another morphism in DMix
M(A) = M(pery,A) — Hom(M(E), k).
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And those two maps fit into the following commutative diagram in DMz
M (B) —— M (perz,B) — Homy (M (F), k)
lm ’YG*\L lﬁa
M(A) —— M(per,,A) — Homy (M (), k).
It yields the following commutative diagram in DMix

HN(B) —— RHom, (k, Homy (M (£), k)) ~ Homy,(HC(F), k)

l l

HN(A) —— RHom (k, Homy, (M (F), k)) ~ Hom(HC(E), k)
Therefore we get the following commutative diagram in D(k)

HN(G) o Homy, (S~ HC(R), k)

HH(G) Homy (S~'HH (R), k)

L L L L
Eﬁb(.A XRpe A— A X e .,4) — COf(HOHIk(f Rge f, k) — Homk(é’ Rge 5), k)

ERHOHI[OP@_A@ (/I,é, VG) RHOH][OP@&’e (E_IUR, 5R)
Consider the functor ¥ given by the composite
C(A®) — C(pery,(A)°) = Cqe(E” ® pery, A) — C(E @ (pery, A)7P) — C(E°)7,

where the second and last functors are given by restriction along £ C per,, A, the first
functor is given by the extension along Yoneda embedding and the third functor is given
by

M — M*7 <a7p) = RHOIHA(M(?,]?), A(?a CL))

Then we obtain an induced functor
LY : D(IP? ® A°) —— D(IP? ® E°)P.

Explicitly, this functor associates to a graded split monomorphism of A-bimodules f :
M, — M, with cofibrant M; and Ms, the morphism of £-bimodules given by

RHom 4(M; ®¢e pery, (A)(?,p'), A7, p))

(p,p') —

RHOI’H_A(Ml Rge perdg(A)e(?7 p/)7 A(?, p))
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L
Therefore, the functor LV maps pg : A®@g A — Ato & — R.(F), and pf : AY —

(A ég A)Y to R, (DF°) — DE. Suppose that the left n-Calabi-Yau structure on
G : B — A is induced by [£] € HN,,(G). Then we have an isomorphism of triangles
in D(A°). After applying the functor L to this diagram [2.3 we get an isomorphism of
triangles [2.5) in D(£€) and this isomorphism is induced by the class a([]).

Proposition 2.4.2. Let G : B — A satisfy the above assumption. For L, M € D(A).
We put

C(L, M) := Cone(RHomy (L, M)) - RHomp(G.(L), G.(M)).
Suppose that L € pvd(A) and M € D(A). Then there is a bifunctorial isomorphism of
triangles

DG

DC(L, M) DRHomg(G. (L), G.(M)) 2%~ DRHom.(L, M) $DC(L, M)
RHom(M, 5" L) ~%> RHomg (G, (M), "G, (L)) C(M,x" L) RHom (M, S"L).
(2.6)
IfG.(L) =0 or G.(M) =0, then DRHom 4(L, M) = RHom4(M, L[n]). In particular,

the full subcategory pvdgz(A) defined as the kernel of the restriction functor G, : pvdA —
pvdB is n-Calabi—Yau as a triangulated category.

Proof. Since G : B — A has a relative n-Calabi—Yau structure, we have an isomor-
phism in D(A°)
¥ AY ~ Cone(LG*(B) — A),
and an isomorphism in D(B°)
yiBY ~ B.

Let Py, and Py, be cofibrant resolutions of L and M respectively. By [61, Lemma 4.1], we
have

DRHomg(G, (L), G.(M)) ~ RHomg(G.(M),~"G,(L))

and
DRHomy (L, M) ~ DHom 4(Pr, Py)

~ Homa(Py % AY, Pr)
~ fib(Hom (P, £"Pr) — Hompa) (Py @5 LG*(B), X" Pr))
~ fib(RHom (M, ¥X"L) — Homa(Py @4 (A®5 A),S"Pp))
~ fib(RHom (M, X"L) — Homa(Py ®5 A, X" Pr))
~ fib(RHom4 (M, X"L) — Homp(G.(Py), "G.(Py))
~ fib(RHom4(M, ¥"L) — RHomg(G.(M), £"G.(L)))
~C(M, =" 1L).

64



Thus, we get the bifunctorial isomorphism of triangles (2.6)). If G.(L) =0 or G.(M) =
0, then we have the following functorial duality

DRHom (L, M) ~ RHom4(M,X"L) .

In particular, the kernel pvdg(A) of G, : pvd(A) — pvd(B) is n-Calabi-Yau as a trian-
gulated category.
\/

Let BS A% A/B be a homotopy cofiber sequence of small dg categories. By con-
struction, the dg category A/B is the Drinfeld dg quotient of A by its full dg subcategory
Im(G), where Im(G) is the full dg subcategory of A whose objects are the y in A such
that there exists an object z in B and an isomorphism F(z) 2 y in H°(A). We denote by
i the dg inclusion Im(G) — A.

Corollary 2.4.3. For any dg module N and any dg module M in pvd(A) whose restriction
to ImG is acyclic, there is a canonical isomorphism

DHompay(M, N) ~ Homp (N, E"M) .

Proof. Since the restriction of M to ImG is acyclic, we have G.(M) = 0. Then the
claim follows from the above Proposition [2.4.2] V

2.5 Relative Calabi—Yau completions

Given a dg category B, the forgetful functor (dgcat,)s, — C(B°), sending a dg functor
G : B — A to the B-bimodule given by (a,d’) — A(G(d'),G(a)), has a left adjoint T,
that can be described as follows:

Given a B-bimodule M, the tensor category Tr(M) is defined as follows:

Tg(M)=BoM & (M M)d(MepM s M)D---
Thus, the dg category Ts(M) has the same objects as B and morphism complexes

Ts(M)(z,y) = B(z,y) ® M(z,y) ® {D.csM(z,y) @ M(z,2)}&
{B2 20eBM (22,Y) @p M (21, 20) @) M(z,21)} B -

The dg structure on T(M) is given by the differentials of B and M and the multiplication
is given by the concatenation product. This adjunction is Quillen, and thus induces an
adjunction between their homotopy categories. We will denote by LT3 the left derived
functor of Ty : C(B°) — (dgcat,,)s,-

An B-bilinear (super-)derivation D of degree 1 on LTg(M) is determined by its restric-
tion to the generating bimodule M. Then it is easy to see that each morphism ¢ : M — B
in D(B°) gives rise to a ‘deformation’

(LTB(M)7 dc)

of LTg(M), obtained by adding the A-bilinear (super-)derivation D, determined by ¢ to
the differential of LT (M).
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Let G : B — A be a dg functor between smooth dg categories and let [] be an element
in HH,,_»(G). Our objective is to define the deformed relative n-Calabi—Yau completion
of G : B— A with respect to the Hochschild homology class [£] € HH,,_»(G).

The dg functor G : B — A induces a morphism of dg A-bimodules B ®zc A° — A.
Let = be the cofiber of its bimodule dual, i.e. == Cone(AY — (B®ge A°)"). Clearly, the

L
the dualizing bimodule O = (Cone(B ®p: A° — A))¥ of G is quasi-isomorphic to L 7'Z.
By the definition of Hochschild homology of GG, we have the following long exact se-
quence

e —> HHn_Q(B) — HHn_Q(.A> — HHn_Q(G) — HHn_g(B) —

Thus, the Hochschild homology class [{] € HH,,_2(G) induces an element (5] in HH,,_3(B).
Notice that since B, A are smooth, we have the following isomorphisms

Hompse) (3" *BY, LB) ~H* (B @%Be B) = HH,_3(B),

Homp(u) (E"2Z, £.A) ~Hompae)(Cone(A — (A &5 A)Y), T3 A)
~ I (Cone(B G A — A 40 A)).
Thus, via the canonical morphism
HH,_»(G) = H>"(Cone(B &g B — A& 4 A)) — H>"(Cone(B &pe A — A& 4 A)),
the homology class [¢] induces a morphisms in D(.A)
£:X" 22 5 %A

and the homology class [¢g] induces a morphism in D(B°)

& X" ?BY — ¥B.
Moreover, we have the following commutative diagram in D(.A)

LG* (En—ZBV) - E"‘zE

y !

LG*(SB) SA.

Therefore the morphism £z gives rise to a ‘deformation’

IT, (B, &)

of I, 1(B) = LTz(X"2B"), obtained by adding &z to the differential of I, ;(B); the
morphism & gives rise to a ‘deformation’

IL, (A, B, )
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of I, (A, B) = LT 4(X"22), obtained by adding ¢ to the differential of LT 4(X"?=); and
the commutative diagram above gives rise to a dg functor

G : I, (B, &5) — IL,(A, B, €). (2.7)

A standard argument shows that up to quasi-isomorphism, the dg functor G and the
deformations IT,,_1 (B, &), IL, (A, B, £) only depend on the class [£].

Definition 2.5.1. [87, Definition 3.22] Let G : B — A be a dg functor between smooth
dg categories. The dg functor G ( } defined above is called the deformed relative n-

Calabi—Yau completion of G : B — A with respect to the Hochschild homology class
[S] S HHn—Q(G) :

Remark 2.5.2. If we take the class [{] be 0, then the above definition coincides with
the definition of the relative n-Calabi—Yau completion of G : B — A. If we take B to
be the empty category, then deformed relative n-Calabi—Yau completion is the deformed
n-Calabi-Yau completion of [62].

Theorem 2.5.3. [87, Theorem 3.23][15, Proposition 5.28.] Let G : B — A be a dg
functor between smooth dg categories and let [£] be an element in HH, _o(G). If [£] has
a negative cyclic lift, then each choice of such a lift gives rise to a canonical left n-
Calabi—Yau structure on the dg functor

G L, (B, &5) —=I1,(A, B, £) .

2.6 Reduced relative Calabi—Yau completions

Recall that a dg category A over k is said to be semi-free if there is a graded quiver
Q = (Qo, Q1) such that the underlying graded k-category of A is freely generated by the
arrows of () over the vertex set (). We write this as A = Tjq,(kQ1).

Definition 2.6.1. [87, Definition 2.52] A dg category A is said to be cellular if it is
semi-free over some graded quiver @ = (Qo, Q1) that admits a filtration

QD Q...

such that every generating arrow f € Q@ has differential d(f) contained in the graded
category Tro, (kQU~Y).

We say that A is finitely cellular if the graded quiver (Qo, Q1) is finite (i.e. both Qo
and @, are finite).

We say that A is of finite cellular type if it is quasi-equivalent to a finitely cellular dg
category.

Let G : B — A be a dg functor between finitely cellular type dg categories. By
[87, Remark 4.19], we can assume that B and A are finitely cellular and G : B — A
is a semi-free extension, i.e. there is a finite graded quiver ) and a subquiver F' C @
such that the underlying graded k-category of B and A are isomorphic to Tyg, (kF;) and
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Ty, (kQ1), respectively. We abbreviate Ry = kFy and Ry = kQy. Then we have a short
exact sequence of B-bimodules

0——>QYB) 2> B@p, B—>B—=0

where the bimodule of differentials Q'(B) is generated by {D(f)|f € Fi}, the map « is
given by D(f) — f® 1, — 1, ® f where f : © — y and the map m is the composition
map in B.
Similarly, we have an exact sequence of A-bimodules for A. We put Py = Cone(}(B) —= B ®g, B )

and P4 = Cone(Q'(A) —*~ A ®p, A). Then Pg and P, are cofibrant replacements of
the bimodules B and A respectively. The B-bimodule Py is cellular of finite rank, with
basis {f4|f € Fi} and {c, 5|z € Fo} where the arrow f has degree |f4| =1 — |f|, and
points in the opposite direction to f; the loop ¢, 5 has degree |c, 5| = 0, and is based at
x. Similarly, the A-bimodule P} is also cellular of finite rank, with basis {g4|g € @1} and
{cy.aly € Qo} where the arrow ¢4 has degree |g4| = 1 — |g|, and points in the opposite
direction to g; the loop ¢, 4 has degree |c, 4] =0, and is based at y.

The natural map ag : G*(Pg) — P4 in C(A°) induces the dual map o : Py —
G*(Pg)" in C(A°). This « is given as follows:

o al(cya) = ¢y p if y belongs to Fy; otherwise, ai(cy 1) =0,
e al(g}) = g5 if g belongs to Fi; otherwise, af:(ga) = 0.

Clearly, the morphism oy} is a graded split surjection of A-bimodules. Let I be the
kernel of as. Then K is cellular of finite rank, with basis {g%,c, 4| g € N1 = Q1 \ F1, y €
No = Qo \ Fo}. We have a split exact sequence in the category of graded .A-bimodules, i.e.
there exist two graded bimodule morphisms s¢ : G*(Pg)¥ — PX, rr : Py — K such that
adosq = Lge(pg)v, Tk Otk = 1, sgoaf +ixorg = 1py. We summarize the notations
in the diagram

iK ag
0—— K " P{ . G(Pg)Y ——0. (2.8)

YTk sG

We choose the graded morphisms r¢ and s¢ are given as follows:
e The graded morphism s maps gy to g% and maps ¢, g to ¢, 4.

e The graded morphism ¢ maps g} to g} if ¢ is in Ny; otherwise, we put ri(gy) = 0.
Moreover, it maps ¢, 4 to ¢, 4 if y is in Np; otherwise, we put rr(c, 4) = 0.

The above exact sequence yields a triangle in D(A€)

PY % G*(Pg)V ">~ 3K : (2.9)

where u is equal to ri od PY © SG- Thus, we get the following isomorphism of triangles in

D(A)
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Py ——" G*(Pg)” v

; ll

P G*(Ps)’ :

(2.10)

Vv
Rle

[1]<§—)%

Y

where = = Cone(Py — G*(Pg)") and v is the quasi-isomorphism induced by the inclusion
of K into Pj.

Now we consider the derived tensor category LT (X" 1K). Since the A-bimodule K
is cofibrant, we have LT (X" 1K) = T4 (X" 'K).

The following morphism induced by &

Eo: DI Y y2E 6 A

determines an A-bilinear derivation dj- on T4(X"'K). Then we get a ‘deformation’
TA(E"'K, &)

of T4(X"!K), obtained by adding dj- to the differential of T4 (X" 'K).

Then the canonical inclusion of dg A-bimodules " !K<"— ¥"2= induces a fully
faithful dg functor

U T2, ) —=T1,(A, B, €) .

Next we will construct a dg functor from I, 1(B, &) to T4(X" 1K, &k).
Firstly, we have the following diagram

N2 (Pg)Y — nrol
| :

n2G(Pg)Y — »n2g
G*(Es)i l&
SG*(B) Jc SA,

where the upper square is commutative up to homotopy and the lower square is commu-
tative. The homotopy is given by
n—2.V

H/ : Ensz*(PB)V Y Sa anszc inclusion Enng :

where s is the map defined in [2.§
Combining those two diagrams, we get the following diagram commutative up to ho-
motopy

ZniQG*(PB)V u Enfllc
iG*(fB) §ov
SG*(B) Jc $A
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where the homotopy is given by

H 2 572G ()Y — %6 =2 py_indusion _ gn—s=z ~¢ _ 4|

Then the following diagram commutes strictly

(7H7U)T

En72G*(PB)\/ A fa Enfllc
(dc*(PB)V»G*(fB))Tl (d.a,Eov)

Sr1GH (Pe)Y @ G (B) — ) v

Thus, the above commutative diagram induces a dg functor
Grel : Hn—l(Bv SB) HH;ed(Aa Ba 5) (211)

where we put TI7°¢(A, B, &) = Ta4(X" 1K, &). A standard argument shows that up to
quasi-isomorphism, the dg functor G, and the deformed dg category IT1"¢( A, B, £) only
depend on the class [¢] and the dg functor G : B — A.

We call the dg functor G,. reduced deformed relative n-Calabi—Yau completion of
G : B — A with respect to the Hochschild homology class [£] € HH,,_o(G).

Proposition 2.6.2. Let G : B — A be a dg functor between finitely cellular type dg
categories and let [£] = [(s€g,E)] be an element in HH,,_(G) which has a negative cyclic
lift. Then we have the following diagram which is commutative up to homotopy and where
U is a quasi-equivalence.

Hn—l(Ba &3) Lnn(Aa 87 5) (212)

(A, B, €)

Thus, the dg functor G : IL, (B, &) — TI7°Y( A, B, £) has a canonical left n-Calabi—Yau

structure.

Proof. Since the map v in diagram is a quasi-isomorphism between cofibrant
dg A°-modules, the map v is a homotopy equivalence. Then we can construct a homotopy
inverse of . Thus the dg functor ¥ is a quasi-equivalence.

Suppose that B and A are finitely cellular and G : B — A is a semi-free extension, i.e.
there is a finite graded quiver () and a subquiver F' C @, cf. above. We know that the
bimodules

Pp = Cone(Q(B) —2~B@p, B)

and

P = Cone(Q'(A) —*> AR5z, A)

are cofibrant replacements of the bimodules B and A respectively. Therefore, the B-
bimodule ¥""?Py is cellular of finite rank, with basis {f¥|f € Fi} and {c,5|z € Fo}
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where the arrow f has degree |f§| =3 —n — |f], and points in the opposite direction to
f; the loop ¢, 5 has degree |c, 5| =2 —n , and points from z to .

Similarly, the A-bimodule X"~*P} is also cellular of finite rank, with basis {g4|g € Q1}
and {c, aly € Qo} where the arrow g has degree |g%| = 2 —n — |g|, and points in the
opposite direction to g; the loop ¢, 4 has degree |c, 4| =1 —n , and points from y to y.

Then the homotopy (see Definition between ¥ o G,.; and G is given as follows:

e For cach object  in Ry, we have U o G,q(z) = G(z) = z, i.c, a(z) is the identity
map in IT,, (A, B, §).

e For all objects x and y in Ry, the degree —1 map

h = h(x,y) . Hn_l(BQSB)(xay) - HH(A787§>($7?J)

is obtained from the following map of degree —1,
hg : En—?G*(P[\g/) — En_ll]);/‘
where hy is given by f§ — fX, and ¢, 5 = ¢z oa.

By Proposition and Corollary[2.3.6], the dg functor G : IL,_1(B, &5) — IT74( A, B, )
has a canonical left n-Calabi—Yau structure.
\/

2.7 Relation with the absolute Calabi—Yau completion

Let G : B — A be a dg functor between smooth dg categories. In [I5, Section 5.2.3],
Bozec—Calaque—Scherotzke defined the following tensor category over A

IT,(G) = T4(X"'BY @5. A°).

Let A/B be the homotopy cofiber of G, i.e. we have the following homotopy push-out
diagram in dgcat, with Dwyer-Kan model structure [83]

B——A

|

0——A/B.
Proposition 2.7.1. The following sequence is a homotopy cofiber sequence in dgcaty,
IT, (B) —» IL,(A, B) — I1,(A/B).

Proof. By [I5, Remark 5.32], the dg functor IT,, ;(B) — IIL,(A, B) is the following
composition

I, ,(B) — I,_1(G) — I, (A, B).
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Consider the diagram

B G I, (A) —— A

l@l/@

Hn_l(B) E— Hn 1(G — Hn 1(./4 B)

| o |

0 A/B.

The square (1) is a homotopy push-out by [I5, Lemma 5.24]. Since the rectangle around
(D and (2) is a homotopy push-out, it follows that so is (2). By [15, Section 5.2.4], the
square (3) is also a homotopy push-out.

Therefore the homotopy cofiber of IT,,_;(B) — II,,(.A, B) is the homotopy push-out of
the following diagram

Hn—l (./4) —_— A

|

Hn—l(G)

|

A/B

It is easy to see that the composition II,1(A) — II,_1(G) — A/B is equal to
IT, ;(A) - A — A/B. Consider the diagram

IT, 1(A) — A

| o |

A S TL(A)

|

A/B

The square (4) is a homotopy push-out by [62, Proposition 5.6]. By [62, Theorem 4.6],
the following diagram is a homotopy push-out

A IL,(A)
A/B—TL,(A/B).

Thus, the sequence

I, 1 (B) — IL,(A, B) — IL,(A/B)

is a homotopy cofiber sequence in dgcat,,.
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Chapter 3

Relative cluster categories

Let f : B — A a morphism (not necessarily unital) between differential graded (=dg)
k-algebras. We consider the following assumptions.

Assumption 1. Suppose that the morphism f : B — A satisfies the following properties:
1) A and B are smooth,
2) A is connective, i.e. the cohomology of A vanish in degrees > 0,
3) the morphism f: B — A has a left (n + 1)-Calabi-Yau structure,
4) H°(A) is finite-dimensional.

Let pvd(A) be the perfectly valued derived category of A, ie. pvd(A) is the full
subcategory of D(A) whose objects are the perfectly valued dg A-modules. Since A is
homologically smooth, pvd(A) is a full subcategory of perA (see [61, Lemma 4.1]). We
denote by e the idempotent f(1g) and by i : eAe — A the canonical inclusion of dg
algebras.

Definition 3.0.1. Let pvdz(A) be the full triangulated subcategory of pvd(A) defined as
the kernel of the restriction functor i, : D(A) — D(eAe). The relative n-cluster category
Cn(A, B) is defined as the following Verdier quotient

Cn(A, B) = perA/pvdg(A).

We denote by 77 the canonical quotient functor perA — C,(A, B).

3.1 Gluing t-structures

Let G : B — A be a dg functor. Let A/B be the homotopy cofiber of G in dgcat,. Then
the dg category A/B can be computed as the Drinfeld dg quotient of A by its full dg
subcategory Im(G), where Im(G) is the full dg subcategory of A whose objects are the
y € A such that there exists z € B and an isomorphism G(z) = y in H°(A). We denote
by i the dg inclusion functor Im(G) < A and by p the quotient functor A4 — A/B.
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Proposition 3.1.1. [20, Theorem 5.1.3] We have the following recollement of derived
categories

*

D(A/B)=2 D(A) =% D(Im(G)). (3.1)

The respective triangle functors are explicitly given as follows:

p=7@% A/B p« = RHom 4/5(A/B,7) ~ 7 ®5/B A/B = p, p' = RHomy(A/B,?)

O | i» = RHomyu (A, 7) ~ 7 @5 A =1 i' = RHompy ) (A, ?)
Consequently, we have a triangle equivalence up to direct summands
per(A) /per(Im(G)) —— per(A/B).

Theorem 3.1.2. [§, Gluing t-structures] Suppose that we have the following recollement
of triangulated categories
q J
TN N
U——T—=V.
S
p T

Let (US,U?°) be a t-structure in U and (VS°,V>Y) be a t-structure in V. Then we have
a canonical t-structure in T defined as follows:

Ts"={X € Tle(X) € V" and ¢(X) e US"}

T2 ={X € Tle(X) € V>™ and p(X) € U”"}.

We say that the t-structure (75", 7>") on T is glued from the given t-structure on U
and V.

For any object X in 7T, the canonical distinguished triangle for X with respect to the
glued t-structure can be constructed as follows: Let X be an object in 7. We have a
distinguished triangle in V,

TX(e(X)) = e(X) = 75 (e(X) = D1 (e(X)).
Hence we obtain a distinguished triangle
Y L X 5 r(he(X) - Y,
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where X — r(7¥,e(X)) is the composition X — r(e(X)) — r(7;e(X)).

Similarly, we have a distinguished triangle in i,
7%(a(Y)) = q(Y) = 1% (a(Y)) = Ty (a(Y)).
Hence we obtain a distinguished triangle

Z-5Y —i(4qY)) = 22,

where Y — i(7;;'¢(Y)) is the composition Y — i(g(Y)) — i(7%¢(Y)). Thus, we have the

following octahedron

Z g Y i(%q(Y)) WA

f

gz 19 _x U WA

=

r(t¥e(X)) r(t¥e(X)) XY
Y Zi(Tglq(Y))

Then one can show that we have Z € T<C and U € T2!. Thus, for any X € T, the
canonical distinguished triangle for X with respect to the glued t-structure is given by

=X —-U—=XZ.

Corollary 3.1.3. Let f : B — A be a morphism between dg k-algebras. Suppose that
A is connective and H°(A) is finite-dimensional. Let e = f(1g). We denote by A the

homotopy cofiber of f. We have the following recollement

* .
P i*

N

D(A) L= D(A) —>D(eAe) , (3.2)
p! ’[!
where the respective triangle functors are explicitly given as follows
pr =% A p. = RHom(A4,?) ~ ? ®%Z =P p' = RHomy (A, ?)
it =7, cA i, = RHomy(eA,?) ~ 7@k Ae =4 i' = RHom, 4. (Ae, ?).
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Consequently, we have the following triangle equivalences

i* : per(ede) = (eA)pera,

p* : per(A)/per(eAe) = per(A),

where (eA)pera is the thick subcategory of perA generated by eA.

Proof. This is a special case of Proposition [3.1.1] We have a triangle equivalence up
to direct summands

p* :per(A)/(eA) — per(A).
By Proposition [3.6.15] the functor p* is dense. Thus, we get an equivalence
p* : per(A)/(eA) —= per(A).
\/

Definition 3.1.4. Let A be an abelian k-category. For ¢ € Z and for a complex M of
objects in A, we define the standard truncations 7<;M and 7-;M by

M < 0 if j<i
(t<iM) = < ker(di,) 1£ ]:@ (ro; M) = Ko () if j=i
0 it g =1 M >

Their respective differentials are inherited from M. Notice that 7¢;(M) is a subcomplex
of M and 7-;(M) is the corresponding quotient complex. Thus we have a sequence, which
is componentwise short exact,

0—7<;(M)— M — 7-;(M) — 0.

Moreover, taking standard truncations behaves well with respect to cohomology, i.e.
we have ,
: H (M) it j <1,

H (r;M) = (M) LN

0 if j>u.

3.2 Relative {-structure

Let f: B — A be a dg k-algebra morphism satisfying the Assumptions[I] Then the map
of complexes T<pA — A is a quasi-isomorphism of dg algebras. Thus, we may assume that
the components AP vanish for all p > 0. Then the canonical projection A — H°(A) is a
homomorphism of dg algebras. We view a module over H(A) as a dg module over A via
this homomorphism. This defines a natural functor Mod H°(A) — D(A) which induces an
equivalence from ModH°(A) onto the heart of the canonical t-structure on D(A) (whose
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left aisle (see [50]) is the full subcategory on the dg modules M such that HPM = 0 for
all p > 0).

Let ModgH?(A) be the full subcategory of ModH°(A) whose objects are the right
H°(A)-modules X such that the restriction of X to H°(eAe) vanishes. Thus, we get i a
natural functor Modg H°(A) — D(A).

On D(A), we take the canonical t-structure with heart © = Mod H°(A) and on D(eAe),
we take the trivial t-structure whose left aisle is D(eAe). We deduce the following corollary
from Theorem B.1.21

Corollary 3.2.1. There is a t-structure in D(A) obtained by gluing the canonical t-
structure on D(A) with the trivial t-structure on D(eAe) through the recollement diagram
. We denote by (D(A)S), D(A)D) the glued t-structure on D(A). That is, for any
n € 7,

DAY = {X € D(A)H(pX) = 0, VI > n},

D(A)Z} = {X € D(A)]i.(X) = 0, H'(pX) = H(X) = 0, ¥l < n}

and the heart Q" of this glued t-structure is equivalent to ModgH°(A). We will call
(D(A)}, D(A)Z]) the relative t-structure on D(A). We illustrate this glued t-structure

rel?
in the following picture

D(eAe)

7 77
Ay

Y

where the blue Tegz'on represents the subcategory D(A)fg and the red region represents the
subcategory D(A)Z)

rel”

Proof. The functor p, : D(A) — ker(i, ) is an equivalence of triangulated categories.
So the restrictions of the adjoints p* and p' to ker(i,) give quasi-inverses of p, : D(A) —
Ker(i,). Thus, we have

Orel = D(A)S)

ND(A);; = {X € D(A)]i.(X) = 0, H'(p'X) = H'(p"X) =0, VI # 0}

={X € D(A)|i,(X) =0,H'(X) =0, VI #0}.

rel rel

(3.3)

The morphism of dg algebras A — H°(A) induces a natural functor i : Modg H°(A) —
Qrel. Let X be an object in Q"¢ C Ker(i,). Then X is concentrated in degree 0 and X
is isomorphic to an object X’ in ModH°(A). Since we know that i,(X) is acyclic, X’ is
also in Modg H°(A). This shows the denseness of 7. The full faithfulness follows from the
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following commutative square with three fully faithful functors

ModpH(A)“— ModH"(A)

l 5

@rel% Q?

\/
By Corollary the canonical triangle for an object X € D(A) with respect to the

glued t-structure can be constructed as follows: Let X be an object in D(A). We have
the following canonical triangle triangle

(1, X) —= X —=p.(p*X) —= 2" (i, X) .
For the object p*X € D(A), we have the following canonical triangle triangle
Tan(p"X) —=p'X ——= 70 (p"X) — E7ca (p7X).
Then we get a triangle in D(A)
Pe(Tn(P" X)) — pu(p*X) — pu(Ton(p" X)) — Epu(T<n(p™ X)) -
Thus, by the octahedral axiom, there exists an object TéffX in ngl‘(A) such that we

have an isomorphism p* (724X ) = 7, (p*X) and the following morphism of distinguished
triangles

Pe(T<n(p* X)) 0 Yps(Ten(p* X)) ——
T2 X X Pu(Ton(p* X)) ——
1x
i*(1,.X) X p«(p*X)

Pe(T<n(P* X)) [~1] —= 0 ——pu(T<n(p* X)) ——.

Definition 3.2.2. We define the relative truncation functor 77¢ to be the following com-
position

77l : D(A) L= D(A) =5 D(A) L= D(A).

Thus, for any X € D(A), we have a canonical triangle in D(A)
TIX = X = 7l = Sl X

such that 72¢X belongs to D(A)5) and 77¢(X) = p.(7-n(p* X)) belongs to D(A)Z5".

>n rel
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3.3 The restriction of the relative t-structure

Proposition 3.3.1. [53, Proposition 2.5] For each p € Z, the space HP(A) is finite
dimensional. Consequently, the category perA is Hom-finite.

Proposition 3.3.2. The relative t-structure on D(A) restricts to perA.

Proof. Let X be in perA and look at the canonical triangle respect to the relative
t-structure on D(A)
THX = X = L0 X = S X,
where 779 X = p.(1-0p*(X)). By Proposition m, the algebra H(A) is finite-dimensional.

Then by [55, Proposition 2.5, the category per(A) is also Home-finite. Thus, the space
HY (179X = Homp4)(A, Yoot X) =~ Homp (A, Sl gp*X)

equals zero or H'(p*X) which is finite-dimensional. Thus the object 779X is in pvd(A)
and so in perA. Since perA is a triangulated subcategory, it follows that TQ%ZX also lies

in perA.
\/

Proposition 3.3.3. Let pvdz(A)SY) be the full subcategory of D(A)SS whose objects are the

rel rel

M € pvd(A) whose restriction along i : eAe — A is acyclic. Then (pvdg(A)5), D(A)ZY)
is a t-structure on pvdg(A) and the corresponding heart is equivalent to modgH°(A),
where modgH(A) is the full subcategory of ModgH°(A) whose objects are the finite-
dimensional H°(A)-modules. Moreover, the triangulated category pvdg(A) is generated

by its heart.
Proof. Let n € Z. For any object X € pvdgz(A), we have the following triangle

TZIX — X — 70X —

with 724X € D(A)5) and 774X € D(A)>9 C pvdgz(A). So the object 728X is also in

rel

pvdg(A). This is the triangle required to show that (pvd(A)S), D(A)Z)) is a t-structure.

To show the second statement, let M be an object in pvdgz(M). Let n < m be integers
such that H'(M) # 0 only for [ € [n,m]. We use induction on m —n. If m —n = 0, then
a shift of M is in the heart. Now suppose m —n > 0. Then the relative truncations yield
a triangle in pvdgz(A)

TEOM — M — 70 M — XM,

The homology of TSLIM is concentrated in degree n. Thus, the object Tng belongs to a
shifted copy of the heart. Moreover, the homology of 77¢M is bounded between degrees
n + 1 and m. By induction hypothesis, the object 77%M contains in the triangulated

subcategory generated by the heart. Therefore the same holds for M. V
Recall that we have defined C,,(A4, B) = perA/pvdg(A).

Proposition 3.3.4. [{, Proposition 7.1.4] Under ©" the projection functor perA —
Cn(A, B), for any X and Y in perA, we have

Home, (4, p) (7" X, 7™Y) = hﬂngo Homp(a) (T2 X, 728Y).
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Proof. Let X and Y be in perA. An element of lim _ Hompa) (T2 X, 729Y) is an

: : rel rel : . ~rel rel
equivalence class of morphisms 725X — 725Y. Two morphisms f : 725X — 725 and
g: TQ%X — TQ?}IY with m > n are equivalent if there is a commutative square

! f !
T;%X — T;%Y

L

rel 9 rel
e X —=15,,Y,

where the vertical arrows are the canonical morphisms.
Suppose that f is a morphism f : Tng — TQ%Y. We can form the following morphism
from X to Y in Cr°(A, B)

rel f rel
Teg X =T Y

NG

X Y

Y
where the morphisms 724X — X and 72%Y — Y are the canonical morphisms.

If 729X — 729 and g : 724X — 720Y with m > n are equivalent, there is an
equivalence of diagrams

rel f
Ten X

> TgffY
/ \ ;
X Y
\ / A
7_rel X 9 - Trel Y
<m <m .
Thus, we have a well-defined map from lim _ "Hompa) (128 X, 729Y) to Home, (4, p) (7" X, 77Y)
which is injective.

Let h : X — Y be a morphism in Homere(4 p) (7" X, 7"Y"). Suppose that h can be
represented by the following right fraction

X/
7N
X Y.

Let X” be the cone of s. It is an object of pvdz(A) and therefore lies in D7 for some
n < 0. Therefore there are no morphisms from 72%X to X” and we have the following
factorization

rel
Ten X

N

X' X X" YX'
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We obtain an isomorphism of diagrams

rel
Tin X

rel rel
a morphism f : 724X — Tng which lifts the given morphism. Thus the map from

lim _ Homp(a (TgX, 728Y) to Homerer( 4 py (7 X, 77Y") is surjective.

Since 77X is in D(A)5] and 77¢Y is in D(A);7, the morphism f': 729X — Y induces

V

3.4 SMC Reduction

Let T be a Krull-Schmidt triangulated category and S a subcategory of T.

Definition 3.4.1. [51], Definition 2.4.] We call S a pre-simple-minded collection (pre-
SMC) if for any X,Y € S, the following conditions hold.

(1) Homy (X, X<%") = 0;
(2) dimkHomT(X, Y) = 5X7y.

We call S a simple-minded collection (SMC) if S is a pre-SMC and moreover, thick (S) =
T.

Let S be a pre-SMC. The SMC' reduction of T with respect to S is defined as the
following Verdier quotient |51, Section 3.1]

U := T /thick(S).

The subcategory thick (S) admits a natural t-structure (Xs, Vs), where Xs is the small-
est extension closed subcategory of T containing any non-negative shift of S and )s is the
smallest extension closed subcategory of 7 containing any non-positive shift of S (see [3]
Corollary 3 and Proposition 4],[65, Proposition 5.4] or [81]). Then the corresponding hear
is denoted by Hs. It equals to the smallest extension closed subcategory of T containing
S.

Consider the following mild conditions:

(R1) The heart Hs is contravariantly finite in the Hom-orthogonal subcategory (2>°S)+
and covariantly finite in +(%<°S).

(R2) For any X € T, we have Hom7(X,XHs) = 0 = Homy(Hs, X' X) for i < 0.
Proposition 3.4.2. [51, Proposition 3.2.] The following are equivalent.
(1) (Xs, X3) and (*Vs,Vs) are two t-structures on T ;
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(2) Hs satisfies the conditions (R1) and (R2).
Let W be the following subcategory of T
W = (82°8)* nt (£598).

Theorem 3.4.3. [51, Theorem 3.1.] Assume the assumptions (R1) and (R2) hold. Then
the composition
W—T-=U

1s a k-linear equivalence W = U.

In our case, since the k-algebra H°(A) is a finite-dimensional k-algebra, we can suppose
that 14 has a decomposition
]-A:el—l—"'—‘f_en

into primitive orthogonal idempotents e; such that e = f(1g) = e; + - -+ + e for some
0 < k < n. Then modgH?(A) is generated by S = {Sk11, Skt2, - Sn}, where S; is the
simple H°(A) module associated to the idempotent e;.

Then it is easy to see that S is a simple-minded collection of pvdgz(A) and is a pre-
simple-minded collection of perA.

Corollary 3.4.4. The composition W — perA — C,(A, B) = perA/pvdg(A) is a k-
linear equivalence W = C,,(A, B), where W is the following subcategory of perA

W = (828t n H(E508).
In particular, the category is idempotent complete.

Proof. It suffices to check the conditions (R1) and (R2). For any X € perA, it
is easy to see that Hompe (X, X Hg) vanishes for i < 0. By the relative Calabi-Yau
duality (Corollary , the space Homy(Hs, X°X) also vanishes for i < 0. Therefore
Hs satisfies the condition (R2). By the Lemma below, the category modgH?(A) is
functorially finite in perA. So Hg satisfies the condition (R1). Then the claim follows

from Theorem m Vv

Lemma 3.4.5. Let B — A be morphism between dg k-algebras which satisfies the as-
sumptions . Then modgH(A) is functorially finite in perA.

Proof. Let P be an object in perA. Since A is connective, there is a canonical
co-t-structure (see Subsection [3.6.2)) ((perA)so, (perd)<p) on perA, where

(perd)so == | S "add A - xS 'addAxaddA and (perA) := | ] addAxTaddAx- - -«¥"add A.

n=0 n=0
Then we have a canonical triangle in perA
t
O'>[)P — P — O'gop — EO’>0P

such that o-gP € (perd)~o and o<y P € (perA)<,. Consider the object X = m50(0<oP) =
H°0<oP). Tt is easy to see that 7¢(c<P) is in modHY(A) and we have a canonical
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morphism f : P % o-oP — X. Let M be an object in modH%(A) and g : P — M
be a morphism. Since the space Hompe 4 (050P, M) vanishes, we have Hompea (P, M) =~
Homypeea(o0<oP, M). Then there exists a morphism h : X — M such that the following
diagram commutes

P—tso,P — X

This shows that mod H%(A) is covariantly finite in perA. By [51, Lemma 3.8], the subcate-
gory modg H?(A) is functorially finite in mod H°(A). Thus, the subcategory modgH°(A)
is also covariantly finite in perA. It remains to show modgH°(A) is contravariantly finite
in perA.

Let N ba an object in modg H°(A). Let ¢ : N — P be a morphism of dg A-modules.
By the relative Calabi—Yau duality (see Corollary , the spaces

HomperA(Na TéfanP) ~ DHomperA (T§7n72p, E"+1N)
and
HOmperA(N, ZTg_n_gp) ~ DHomperA (Té—n—QP, EnN)
vanish. Thus, we have Hompea(N, P) o~ Hompeea (N, 75_,—1P). We denote by ¢” the

composition N g—,> P — 7 _,_1P. Let Ip be a fibrant replacement of 7~_,,_1 P. Then we
have Homypera (N, P) ~ Hompera (N, 7>—p—1 P) o~ Homyya)(NV, Ip).

Since 7>_,_1 P has finite total homology dimension, the dg module Ip also has finite
total homology dimension. We write Ip as a k-complex and consider the following diagram

bl

> 0 > >
_ d-1 d°
s 11 s 10 s 1

> e e
7

—_

> e e
7

We put Np = {z € I’|d°(z) = 0,za = 0,Va € A?,p < 0}. Then Np is in modH’A and
g"(N) is contained in Np. Thus, we have the following commutative diagram

Np
-

NT)IP

Since the subcategory modg H%(A) is functorially finite in mod H(A), there exists an
object Y in modg H°(A) with a right modp(H"A)-approximation j : Y — Np. Then

83



there exists a morphism k£ : N — Y such that the following diagram commutes

Y

£

|

NT)IP

This shows that modp H°(A) is contravariantly finite in perA.

Corollary 3.4.6. The relative cluster category C, (A, B) is Hom-finite.

3.5 Relation with generalized cluster categories

In [39], Lingyan Guo generalized Claire Amiot’s construction [4] of the generalized clus-
ter categories to finite-dimensional algebras with global dimension < n. She studied
the category C,(I') = per'/pvd(I") associated with a dg algebra I' under the following
assumptions:

Assumption 2. 1) I' is homologically smooth.
2) I' is connective, i.e, HP(I") is zero for each p > 0.

3) I'is (n + 1)-Calabi-Yau as a bimodule, i.e. there is an isomorphism in D(I'¢)

E”+1RH0mD(pe)(F, Fe) =T,

4) The space H°(T') is finite-dimensional.

Theorem 3.5.1. [39, Chapter 3] Let T be a dg k-algebra with the four properties above.
Then

(1) the category C,(I") = per I'/pvd(T") is Hom-finite and n-Calabi-Yau;

(2) the object T = wT' is an n-cluster tilting object in C,(I") where 7 : perl'’ — C,,(I") is
the canonical quotient functor, i.e. we have

Home, (T, X"T) =0for r=1,--- ,n—1,

and for each object L in C,(A), if the space Home, ry(T,¥"L) vanishes for each
r=1,---,n—1, then L belongs to add T, the full subcategory of C,,(I') consisting of
direct summands of finite direct sums of copies of TA;

(3) the endomorphism algebra of T over C,(T) is isomorphic to H°(T).
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We consider the following homotopy cofiber sequence in dgcat,,

B-—1.4

|k

0—— A
Then we have the following immediate Proposition.

Proposition 3.5.2. [16, Corollary 7.1] The homotopy cofiber A is homologically smooth
and it has a canonical (n + 1)-Calabi-Yau structure.

Proposition 3.5.3. The homotopy cofiber A is connective and H(A) is finite-dimensional.

Proof. By the construction of the Drinfeld dg quotient and the assumption that A is
connective, the dg algebra A is also connective. By [17, Theorem 5.8], the 0-th cohomology
HP(A) is isomorphic to H°(A)/(e). Thus, the algebra H°(A) is finite-dimensional.

Vv

Therefore, the dg algebra A satisfies the assumptions . We consider the associated
generalized n-cluster category C,(A) = perA/pvd(A).

Proposition 3.5.4. We have the following equivalence of triangulated categories

p*: Cu(A, B) /per(ede) = C,(A).

Proof. We know that p* induces an equivalence between per(A)/per(eAe) and per(A).
Thus, it is enough to show that we have an equivalence of triangulated categories p* :
pvdg(A) = pvd(A) and the two subcategories pvdg(A) and per(eAe) are left and right
orthogonal to each other.

It is clear that the functor p, : D(A) — ker(i,) is an equivalence of triangulated
categories. Then the restriction of p* and p' to ker(i,) gives quasi-inverse of p, : pvd(A) —
pvdg(A).

Let X be an object in pvdgz(A) and let Y be an object in per(eAe). Then i,(X) is
acyclic. Thus, we have

HomD(A) (X7 i (Y)) = Hom'D(eAe) (2*<X>, Y) =0

and
Homp(a)(i*(Y), X) 2 DHomp(4) (X, 2" (Y)) = 0,

where the second isomorphism is due to the relative Calabi—Yau property [2.4.3 Thus,
the categories pvdz(A) and per(eAe) are left and right orthogonal to each other.
\/
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Corollary 3.5.5. We have the following commutative diagram

per(eAe) per(eAe)

P

pvdp(A)————per(4) ——=Cy(A, B)

| i

pvd(A) = per(A4) Ca(4)

and the rows and columns are exact sequences of triangulated categories.

3.6 Silting Reduction and relative Fundamental domain

3.6.1 Silting Reduction

Let 7 be a triangulated category. A full subcategory P of T is presilting if Hom7 (P, X' P) =
0 for any ¢ > 0. It is silting if in addition 7 = thick P. An object P of T is presilting if
addP is a presilting subcategory and silting if addP is a silting subcategory.

Let P be a presilting subcategory of 7. Let S be the thick subcategory thick P of T
and U the quotient category T /S. We call U the silting reduction of T with respect to
P (see [2]). For an integer [, there is a bounded co-t-structure (Ss;,S¢;) on S (see [49,
Proposition 2.8.]), where

So =81 = U NPk NP 0P,

120

Sa=8441:= U S 4 LD L D

120

Let Z be the following subcategory of T
Z=(178,)N(S]) =7 (Z70P) N (Z0P) LT

Example 3.6.1. Let £ be a Frobenius category. Let 7 = D(€) be its bounded derived
category and P the projective-injective subcategory of £. Then Z is equal to & C D(£).

We consider the following mild technical conditions:
(P1) P is covariantly finite in -7 (3>°P) and contravariantly finite in (X<0P)L7.
(P2) For any X € T, we have Hom7(X, X/P) = 0 = Hom (P, %' X) for [ > 0.
Proposition 3.6.2. [/9, Proposition 3.2.] The following conditions are equivalent.
(a) The conditions (P1) and (P2) are satisfied.
(b) The two pairs (*7S<q, S<o) and (Sso, S=T) are co-t-structures on T .

In this case, the co-hearts of these co-t-structures are P.
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Theorem 3.6.3. [/9, Theorem 3.1.] Under the conditions (P1) and (P2), the composi-
tion Z C T L U of natural functors induces an equivalence of additive categories:

p:2Z/[P] —U.
Moreover, we have the following.

Theorem 3.6.4. [50, Theorem 4.2.] The category Z/[P] has the structure of a triangu-
lated category with respect to the following shift functor and triangles:

(a) For X € Z, we take a triangle

X5 Py — X(1) — 52X

with a (fized) left P-approzimation lx. Then (1) gives a well-defined auto-equivalence
of Z/[P], which is the shift functor of Z/[P].

(b) For a triangle X — Y — Z — XX with X,Y,Z € Z, take the following
commutative diagram of triangles

x-1loy_ 9 . 7 9. ¥vx

|k

X2 py - X(1)——=3X.
Then we have a complex X Ly4z3 X(1). We define triangles in Z/[P] as the

complexes which are isomorphic to complexes obtained in this way.

Theorem 3.6.5. [49, Theorem 3.6.] The functor p: Z/[P] — U in Theorem[3.6.3 is a
triangle equivalence where the triangulated structure of Z/|P] is given by Theorem m

In our case, we put 7 = perd, P = add(eA), and S = thick 7P = per(ede). Then it
is clear that the categories 7, P and S satisfy the conditions (P1) and (P2).

Corollary 3.6.6. We have the following equivalence of triangulated categories
p*: Z/[P] = perA/{eA) = per(A),

where Z =tvera (L20P) N (S<0P)Lpera,

3.6.2 The standard co-t-structure on perA

Proposition 3.6.7. [/Y, Proposition 2.8.] Let T be a triangulated category and M a
silting subcategory of T with M = add M.

(a) Then (T=o, T<o) is a bounded co-t-structure on T , where

BO::UZ_”M*---*Z_IM*M and Eof:UM*EM*"'*EnM.

n=0 n=0
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(b) For any integers m and n, we have

STTME YT Mk kT M if n<m,

Ton 07 { 0 if n>m.

Let A be a connective dg algebra. Then A is a silting object in perA. By the above
proposition, the pair ((perA)so, (perd)<g) is a co-t-structure on perA, where

(perd)so = | S 7"add A - xS 'addAxaddA and (perA) := | ] addAxTaddAx- - -« add A.

n=0 n=0

The corresponding co-heart is addA.

3.6.3 Fundamental domain for generalized cluster categories

Let F be the full subcategory D(A)<°N +D(A)S"Nper(A). In the paper [4], it is called the
fundamental domain of perA. We denote by 7 : perA — C,(A) the canonical projection
functor.

Lemma 3.6.8. [39, Lemma 8.2.8] For each object X of F, there exist n — 1 triangles
(which are not unique in general)

P1%Q0—>X—>EP1,
P2—>Q1—>P1—>EP2,

Pn—l — Qn—Z — Pn—2 — EPn—la

where Qo, Q1, *++, Qun_2 and P,_1 are in add(A).
Remark 3.6.9. In fact, the fundamental domain F is equal to
(perd)s1_,, N (perd)<y = addA * YaddA * - - -+ X" addA,
where ((perA)s, (perA)<g) is the canonical co-t-structure on perA.
Proposition 3.6.10. [39, Proposition 4.3.1] The projection functor 7 : perA — C,(A)
induces a k-linear equivalence between F and C,(A).
3.6.4 Relative Fundamental domain and Higgs category

Definition 3.6.11. We define the relative fundamental domain F of perA to be the
following full subcategory

Z N (perA)s_, N (perd)co = Z N (addA * YaddA * - - - x X" tadd A),

where ((perA)so, (perd)<p) is the canonical co-t-structure on perA and Z is the subcate-

gory
Lpera <E>0P) N (Z<UP)LPQTA

with P = add(eA).
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By the proof of [4, Lemma 7.2.1] (or [39, Lemma 3.2.8]), we can see that the subcategory
addA * YaddA x - - - x X" tadd A is equal to D(A)S° N H(D(A)S™) N per(A). Thus, the
relative fundamental domain F7¢ is also equal to Z ND(A)S° N +(D(A)S™) N per(A).

Remark 3.6.12. The relative fundamental domain F"¢ is also equivalent to the full
subcategory of Z C per(A) whose objects are the X € Z such that X fits into the
following n — 1 triangles in perA

M1—>Ng—>X%EM1,
M2—>N1—>M1—>2M2,

Mnfl — Nn72 — Mnf2 — E]\/[nfl
with No, Ny, -+, N,_o and M,,_; are in add(A).
Proposition 3.6.13. The relative fundamental domain F"¢ is contained in

D(A);a N ~(Dp(A)5

rel

") N per(A),

rel

where Dp(A)S,™ is the full subcategory of D(A)S,™ whose objects are the objects X in

rel rel

D(A)S,™ whose restriction i.(X) to eAe is acyclic.

Proof. Let X be an object in F™ = Z N (addA « addA[1] % - - - x addA[n — 1]). Since
A SA, - 3TA are in D(A)S) N H(Dp(A )r% ) N per(A), by using the triangles in
Remark |3. 6 12} we see that X also lies in D(A)S) N +(Dg(A)S;") Nper(A).

\/

rel

We still denote by p* the restriction of p* : per(A) — per(A) to Fre.
Proposition 3.6.14. The functor p* : F'¢ — F is dense.

Proof. It is easy to see that p* is well defined. Let Y be an object in F C perA. By
Lemma [3.6.8] “ there exist n — 1 triangles in perA

P20, Y =3P,

%O - P =3P,

Pn—2 bn_*3> Qn—3 — Pn—3 — EPn—27
Pn—l bn_*2> Qn—2 — Pn—2 — ZJPn—l:
with Qo, @1, -+ -, Qn_2 and P,_; are in add(A). B
We start from the last triangle. Since the functor p* : addA C Z — addA is
dense, there exist two objects M, _,, N} _, in addA such that p*(M]_,) = P,_; and

n

p*(N!_5) = Q,_o. We know that p* : Z/[P] = perd/(eA) — per(A) is fully faithful,
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where Z =5(X>%P) N (X<P)L and P = add(eA). Thus we have the following surjective
map

HomZ(M;lflv NT/L72) - Homper(Z) (Pn—17 QH—Q)'

We lift the map b,—o : P,—1 — @Qn_o from add(A) to add(A) € Z. Then we get
Gn—z * My, — Ny such that p*(g;,_5) = by

Since P is covariantly finite and contravariantly finite in Z, we can find hy,—o : M) _, —
W, 2 a left add(eA)-approximation of M/ ;. We define

[92727 hn—2]t

(My—1 R Npoo) i= (M;,_, Ny o @ Wys).

Then we can see that p*(g,_2) = b,_ and the following map is surjective
Gy Hompepa (NVy—2, add(eA)) — Homye,a(M,,—1, add(eA)).
We form a triangle in perA
My &= Nyoo — Mg — M, ;.

Then p*(M,,_») is isomorphic to P, _».
Since the map ¢;_, : Hompe,4(Ny—2, add(eA)) — Homype,a(M,,—1,add(eA)) is surjec-
tive, we can see that M,,_, is an object in Z =+ (P[> 0]) N (P[< 0])*+.
Next, we consider the penultimate triangle. Repeating the above argument, we get a
triangle in perA
My %= Ny = M5 = SMy o

such that N,,_3 € addA, p*(N,-3) = Qn-3, p*(gn-3) = bp_3, p*"(M,_3) = P,_3 and
M, 3 € Z ="(P[>0]) N (P[< 0])*.

Then, we keep repeating this argument until the first triangle. We get the following
n — 1 triangles in perA
M, 2 Ny — X — =M,

My, 25 Ny — My — M,

In-3
Mn72 — anB — Mn73 — ZMTL*27

n—
Mn—l —2> Nn—2 — Mn—2 — EMn—l

such that M,, 1, N, _2,--- , Ny € addA, X € Z and p*(X) = Y. Thus, the object X
belongs to F"¢ and therefore p* : F ¢ — F is dense.
\/

Proposition 3.6.15. The functor p* : perA — perA is dense. Thus, we have equivalences
Z/[P] ~ perA/{eA) ~ perA,
where Z =+ (P[> 0]) N (P[< 0])* with P = add(eA).
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Proof. There is a canonical co-t-structure (per(A)sg, per(A))<o on per(A), where

per(A)so = U Y "add(A) * -+ * X tadd(A) * add(A),

n=0

per(A)<o = U add(A) x Ladd(A) * - - - x X add(A).

n=0

Let Z be an object in per(A). By using the canonical co-t-structure on per(A), we
have a triangle in per(A)

X 7Y 5 nx,

with X € per(A)so and Y € per(A4)<o.
We will find objects U,V € Z C perA such that p*(U) = X and p*(V) =2 Y. Suppose
that X is in ¥7™add(A) * - - - x ¥ 'add(A) xadd(A) and Y is in add(A) * Zadd(A) * - - - *

Ymadd(A). If ng = 0 or ny =0, we are done. So we can assume that ng > 1 and n; > 1.

For the object Y, there are n; triangles in per(A)
P1—>Q0—>Y—)ZP1,
P2—>Q1—>P1—>ZP2,

Pn1 — in—l — Pn1—1 — E_Pn“

with P, in_l, - Qo € add(A)

Similarly, by the same argument in Proposition[3.6.14] there is an object V' € Z C perA
such that p*(V) =Y.

For the object X € Y ™add(A)  --- * X~ 'add(A) * add(A4), we have ¥"X is in
add(A) * Yadd(A) * - - -+ X0add(A). Thus there exist an object U € Z such that p*(U) =
Yo X,

Since P = add(eA) is covariantly finite and contravariantly finite in Z, we can take
the following ny + 1 triangles in perA

U(—1) = Ry 2% U — xU(-1),

U(-2) — R_, 125 U(~1) - SU(-2),

Ul—np — 1) = Rony 5% U{—ng) = SU(—ng — 1)
with f; is a right add(eA)-approximation for any —ng < ¢ < 0. Then the object p*(U)
X[no] is isomorphic to p*(U(—ng))[ng]. Thus, we have p*(U(—ny)) is isomorphic to X.

Since Z/[P] = perA/{eA) — per(A) is fully faithful, the following map is a surjection

(see Proposition |3.6.25])
Homz(V, XU (—ng)) - Homgp(Y,XX) = Hom,, 7 (Y, 2X).

~
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We can lift the following triangle in per(A)

X > 7Y Dhex,
to a triangle in perA
Ul=no) = W = V 5% SU(—ny).

Therefore, the object p*(W) is isomorphic to Z. Hence the functor p* : perA — per(A)
is dense. vV

Corollary 3.6.16. We have the following equivalence of k-categories
pt i F[P] &= F.

Proof. By Proposition [3.6.14] we know that the quotient functor F</[P] — F is
dense. Since we have an equivalence Z/[P] = perA, this quotient functor 77 /[P] — F
is also fully faithful. Thus the quotient functor F7¢/[P] = F is an equivalence of k-
categories. V

Proposition 3.6.17. [/, proposition 7.2.1] The restriction of the quotient functor 7" :
perA — C,(A, B) to Fr is fully faithful.
v N H(Dp(A);,") Nper(4). By

Proof. Let X and Y be objects in F"® C D(A)3) o
Proposition m, the space Homerei 4 p (7! X, 7"°!Y") is isomorphic to the direct limit
li?ml§ , Homp(a) (r2 X, 725'Y"). A morphism between X and Y in C, (4, B) is a diagram of
the torm

Tg'l X
X Y.

The canonical triangle
STHETX) - X = X = 70X

yields a long exact sequence:

-+ = Homp(a) (729X, Y) — Hompa) (727X, Y) — Homp(4)(X,Y) = Homp4) (X 7'720X),Y) — -+ .

Since i, (779 X) = 0, it satisfies the conditions of relative Calabi-Yau duality the
space
Homp4) (57 (720 X),Y)

is isomorphic to the space DHomp(a)(Y, E"775'X). The object X is in D(A)5), hence we
have

(r27X) € Dp(A);g

rel

and then the space
Homp ) (Y, "725)
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vanishes. For the same reasons, the space Homp(4)(72¢'X,Y) vanishes. Thus there are
bijections

Homp(a) (TQ?ZX, TgZY) — Homp4) (TSZX, Y) ——= Homp)(X,Y)

Thus, the functor 77 : Fr¢ — C,(A, B) is fully faithful. vV
Corollary 3.6.18. We have an isomorphism Ende, (4 py(A) = Endpe(a)(A) = HY(A).
Proof. This follows from Lemma [3.6.17| and the fact that A itself is in F. V

Definition 3.6.19. The Higgs category H is the image of ™ in C,(A, B) under the
quotient functor 77 : perA — C,(A, B).

Remark 3.6.20. The reason for the name “Higgs category” is that this category gener-
alizes the category of modules over the preprojective algebra of a Dynkin quiver and a
module over the preprojective algebra can be called a “Higgs category” (in analogy with
a “Higgs bundle”, which is the same object in a geometric context, see [43] [82]).

3.6.5 Equivalence between the shifts of F¢

Definition 3.6.21. Let [ > 0 be an integer. We define the relative [-shifted fundamental
domain F°'(l) to be the following full subcategory of Z

Frlly ={X € Z | p*(X) € ¥'F C per(A)},
where Z =1rera($>0P) 0 (S<0P)Leera with P = add(eA).

Remark 3.6.22. If [ = 0, then F7¢(0) = {X € Z | p*(X) € F C per(A)} is equal to
frel.

Our aim is to show that the functor Tg_ll induces an equivalence

Frell—1) — Freiy,

cf Proposition [3.6.30}
Let [ be a positive integer and X an object of F(l). Then the object p*(X) lies in

Y F C per(A). Hence ©'7'p*(X) is in ©F. By definition, there are n — 1 triangles related
to the object X1~ Ip*(X), i.e. £1-p*(X) fits into the following n — 1 triangles in per(A)

P = YQ — St (x) % wpy,

P, Y0, — P yp,

Pn—2 — EC271—3 — Pn—3 _’71;3_} EPn—Qa

SPy 1 = SQn_s = Pyy 225 52P,

where Qq, @1, -+, Qn_o and P,_; are in add(A).
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We denote by v =7 ® o0z D(H'(A)) the Nakayama functor on modH°(A). Then

vHO(P,_1) and vH°(Q,_») are injective H°(A)-modules. Let M’ be the kernel of the
morphism vH(P,_;) — vH%(Q,_2). We define M to be X!"1p,(M’). Then it is clear
that M belongs to

D(A)Z; = {X e D(A)|i(X) =0, H (p'X) = H(X) = 0,Vi < —1}.

rel

Lemma 3.6.23. The object M = X! 1p, (M) is in Z.

Proof. It is clear that M belongs to pvdz(A). Then M is an object in Z since pvdz(A)
is a full subcategory of Z.
Vv

Lemma 3.6.24. Let | be an integer. Then the subcategory Z of perA is stable under the
relative truncation functors 725", 775" : perA — perd, i.e. TI(Z) C Z and 7I5H(Z) C Z.

Proof. Let [ be an integer and let X be an object in Z. We have a triangle in per A
X - X = 7{X - orl'X.

Let Ly be an object in ©>%P. By the relative Calabi-Yau property [2.4.3/and 7. (775 X)) = 0,
we have
Hompe (725X, eA) =~ DHompea(e A, 2" 7780 X)
~ DHomype4(i* (eAe), £ 7050 X)
~ DHomyper(eae) (€ Ae, »rtly (T>llX))
=0.
Thus, we have Hompe, 4 (779X, L1) = 0, i.e. 776X is in +(¥7°P). And it is easy to see

that 779X is in (X<P)*. Thus, the object 779X is in Z.
By the following exact sequence

- — Hompera (X, L) — Hompera (727X, L1) — Hompera (87720 X, L) — -+

we can see that Hompea (724X, Ly) = 0, i.e. 727X is in +X>0P.
Let Ly be an object in ¥<°P. We have
HomperA(eA,Tng) Homper(eae)(eAe, Z*(TQZlX))
~ Homper(eae) (A€, i, (X))
~ Homyper(ene) (€Ae, Xe).

Since X is in (X<P)%, the space Hompera(eA,X*X) = H¥(Xe) vanishes for any
positive integer k. Then we can see that Hompe (Lo, 729 X) vanishes, i.e. 729X is in
(2<9P)*+. Thus 72%X is in Z.

\/

Lemma 3.6.25. Let X and Y be two objects in Z. Let | > 0 be an integer. Then we
have
Hompera (X, 5'Y) = Homy, ) (0 (X), B'p"(Y)).
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Proof. Let X and Y be two objects in Z. For the object Y, we have the following
triangle in perA

Y% P oY oYy,

where fi : Y — Py, is a left add(eA)-approximation and Y; € F"¢(1).
Similarly, for the object Y, we have the following triangle in perA

Y, & P, 5 Y o oY,

where fy : Y] — Py, is a left add(eA)-approximation and Y, € F7¢/(2).
Repeating this process, we can get the following [ triangles in perA

LN VNG VNG 76

N IELN) VG VR 5, 7%

Yoo & Py V= XY,

where for each 1 <@ <[, f; is left add(eA)-approximation.
By the first triangle, we can see that

Homper 4 (X, 371Y1) 22 Hompera (X, 21Y).
Similarly, by the second triangle, we can see that
Hompera (X, X' 7%Y2) & Hompera (X, 257'Y7).
Repeating this argument, we have

Hompea (X, 2'Y) 2 Hompera (X, ¥71Y))
>~ Hompea (X, 272Y5)

= HomperA<Xa 2)/l—l) :

By the last triangle, it induces a long exact sequence

— Homypera (X, Py,) = Hompera (X, Y;) — Homypera (X, SY,_1) — 0.

Thus we have
Hompe,a (X, Y[l]) = HomperA(X, XY 1)
= Hompea(X, Y))/Im(®)
= Homg/[p] (X, Y<l>>
= Homper(Z) (p* (X)7 Elp* (Y>)
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Lemma 3.6.26. [39, Lemma 3.2.9.]
(1) There are isomorphisms of functors:

Homp, (7, 2Pt (X Do = Homp g (?EPINQ?

- = HOIHD(Z)(‘? En_lpn_2)|®(Z) = Hom@(Z)(?, M,)
(2) There is a monomorphism of functors: Ext 7, M") — Homp7) (7, X" Pu2) o),

where Q(A) = modH°(A).

Q?(A)(

By the above Lemma, the following two spaces are isomorphic
Hom,, 1) (M', 5*7'p*(X)) = Hom,, ., 5 (M', M").
By Lemma [3.6.25 we have
HomPeTA(M7 ZX) = Homper(A) (p*< ) (X))
~ Hom,,,, ) (X'~ M', 5p* (X))
~ Hom,,, 5 (M', 2> 'p*(X))
~ Hom,,, (M, M").
Let € be the preimage of the identity map on M’ under the isomorphism
Hompa) (M, 2X) = Hom,,, ) (M, M").

Then we form the corresponding triangle in perA

X—>Y—>M—-3%X. (3.4)

Similarly, let &’ be the the preimage of the identity map on M’ under the isomorphism
Homy, 5 (M, X7'p* (X)) = Home, ) (M, M')
Then we form the corresponding triangle in per(A)
DU (X) = Y = M!S 22 (X)),
Then we can see that p*(Y') is isomorphic to /-1,

Lemma 3.6.27. [39, Lemma 3.2.11.] The object Y' is in the fundamental domain F C
per(A).

Lemma 3.6.28. The object Y is in F/(I — 1) and 725'Y is isomorphic to X.

Proof. Step 1: Y is an object in Fr(l —1) .

By Lemma [3.6.23| the object M is in Z. By the triangle (3.4]), we can see that Y is in
Z. Then by Lemma [3.6.27, p*(Y) = X7V’ belongs to X!"1F. Thus, the object Y is in
frel(l _ >

Step 2: TQellY 1s isomorphic to X.
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Since X € D(A)S," and 77,(Y) = p Xt H 1 (p*(Y)) € D(A)Z;', the space

>—1 rel

Hompa)(X, 72¢,(Y)) is zero. Hence, we can obtain a commutative diagram of triangles

By the octahedral axiom, we have the following commutative diagram

Y M $X Sy
Y —— 7 (V) ——= S Y — %Y

|

Cone(d;) - - > XCone(dy) —= XM

XM 2 X

and the object Cone(d;) is isomorphic to 3Cone(dy) in perA.
Since 72¢Y € D(A)5,' and X € D(A)5,", Cone(d,) is also in D(A)S,'. Thus

rel rel rel

SCone(dy) is in D(A)S;~". On the other hand, M and 77¢,(Y) are in D_;""'(A). Thus

rel

Cone(d;) is in D", Hence we can conclude that Cone(d;) = YCone(d,) is zero. Thus,

the relative truncation 72,Y of Y is isomorphic to X. v

Lemma 3.6.29. Let | > 0 be an integer. The image of the functor Tgill restricted to
Frel(l — 1) is in Frl{l) and the functor 72, : Fre(l — 1) — F K1) is fully faithful.

Proof. Step 1: The image of the functor T2, restricted to F (1 — 1) is in Fre(l).
Let X be an object in Fr(l — 1) C Z. By Lemma [3.6.24] 72 X is still in Z. It is
clear that p*(72¢,X) = 7<_;(p*(X)) is in D(A)S7".

We have a triangle in per(A)
S (01 (X)) = rea(p'X) = p"(X) = 7 (07(X)).
Let W be an object in D(A)S™7!. The space Hompz(p*(X), W) is zero since
p*(X) €(D(A)S7="*1). By the Calabi-Yau property, we have
HomD(Z)(Z_lT>—l(p* (X)), W) = DHOIHD(Z)(W Y a(pt(X))).

The space Homp, ) (W, 5775y (p*(X))) vanishes because "7 _(p*(X)) € D(A)>~F "+

Thus p*(72,X) is in F[l] C per(A) and then 72%,X belongs to F(l).
Step 2: The functor T2, : Fret(l — 1) — Fr(1) is fully faithful.
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Let X and Y be two objects in F™/(I — 1) and f : 72 X — 72¢,Y be a morphism.

—1,rel rel rel
Yt X —>7’<_ZX — X —71%X

|
v
T e e e )

By the relative Calabi—Yau property, the space Home(A)(EflT;‘illX ,Y') is isomorphic
to DHomp4)(Y,X"72%,X). Since Y €+ (D(A)S" 1) and 774 X € D(A)S ",
this space is zero. Then the composition ¢f factorizes through the canonical morphism
72¢ X — X. Thus the functor 72¢, : F(I — 1) — F(I) is full.

Now let X and Y be objects of F™¥(l — 1) and f : X — Y a morphism satisfying

TQflf = 0. Then it induces a morphism of triangles:

_ h
by 17’§*le HTQ‘ZX —X *>T£€£ZX

| P

—1,.-rel rel rel
XYY —— 7)Y ——Y —— 7)Y

The composition foh vanishes, so f factorizes through 77¢,X. By the relative Calabi-
Yau property, the space Hompy4)(72¢,X,Y") is isomorphic to DHompy(4)(Y, Z" 774, X))
which is zero because Y lies in +(D(A)S™""*1) and ¥, X € D(A)S™=" . Thus
f =0, i.e, the functor

Tgill CFHL— 1) — FrN)

is faithful.

vV

Proposition 3.6.30. For any positive integer [, the functor Tge_ll mduces an equivalence

from Fret(l — 1) to Fel).

Proof. This follows from Lemma and Lemma (3.6.29| Vv
Proposition 3.6.31. Let X and Y be two objects in the relative fundamental domain
Frel. Let | > 0 be an integer. Then we have

Homper (X, 2'Y) = Homy,, 7, (p*(X), Z'p*(Y))
Proof. This follows from Lemma [3.6.25] V

Proposition 3.6.32. Let X and Y be two objects in the Higgs category H. Let 1 > 0 be
an wnteger. Then we have

Home, (4,5 (X, 2'Y) = Home, 4 (p*(X), E'p"(Y))
Proof. For the object Y, we have the following triangle in perA
Y& op By, oy,
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where f; : Y — Py, is a left add(eA)-approximation and Y; € F"(1). Since 72¢, :
Freb — Frel(1) is an equivalence, there is an object Wy € F* such that 72¢, W, = ;.
Thus we get a triangle in C, (A, B)

ﬂ.'rel(

7T7‘el
(fl) Pyl gl) Wl — EY,

Y

For the object W7, we have the following triangle in perA

W2 Py, B Y, - YW,

where fy : Wi — Py, is a left add(eA)-approximation and Y, € F"¢(1). By the same
reason, there is an object Wy € F such that TQE_ZIWQ = Y,. Thus we get a triangle in
Cn(A, B)
W 7" (f2) 77 (g2)
14)Py2 —>W2—>EW1.

Repeating this process, we can get the following [ triangles in perA
Y 45 P By, - Yy,

Wy 2 Py, &Y, — W,

fi—1 gi—1
VVl_Q — PYZ,1 — }/1_1 — EVVI_Q,

Wi 2 Py By = swi,
where for each 1 <i <, f; is a left add(eA)-approximation, Y; is in F"(1) and 72¢, W; =
Y.
Thus we get [ triangles in C, (A, B)

el el
y 70 p T sy,
el el
7 (fi-1) 7 (gi-1)
Wio ———= Py, ——— W1 = ZW_,
7IJ“el ﬂ_rel

Then we have

Home, (4,5 (X, Y[I]) ~ Home, (4,5 (X, Z"7'W7)
~ Homg, (4,5 (X, X' *Ws)

~ Home, (4,5 (X, XW;_1)

99



By the last triangle, we have the following exact sequence
— Homcn(A,B) (X, Pyl) 3} Homcn(AB)(X, VV[) — HOIIlCn(A’B) (X, ZVVI_l) — 0.

Thus, we have

Homcn <A7 B) <X7 Y[l]) = Hoan(A,B) (X, Z]I/Vlfl)
~ Home, (a,p) (X, Wi)/Im(P)
~ Homypeea (X, W))/Im(P)

~ Homg, ) (p"(X),p"(W1))

~ Homg, 7 (p"(X), T<—1p"(W2))
~ Home, 5 (p*(X), p" (722, (W)
~ Homg, 7, (p"(X), p" (1))

~ Homg, ,(p"(X), 'p*(Y))

V

Proposition 3.6.33. [39, Proposition 4.8.1.] Suppose that X and Y are two objects in

F C Cn(A). Then there is a long exact sequence

(X,Y) = DExt™ 1 (X,Y)

1
0 — Ext D)

pay (X, Y) = Extg

n(4)

— Ext, ) (X,Y) = Ext
— o« e —

X,Y) — Extg;(lz) (X,Y) = DExtp4(X,Y) — 0.

X,Y) — DExtgg)(X, Y)

n—1
— EXtD(Z)(

Corollary 3.6.34. Suppose that X and Y are two objects in the Higgs category H C
Cn(A, B). Then there is a long exact sequence

0 = Extp ) (X,Y) = Exte, 4 5)(X,Y) = DExt ) (X,Y)
— Extf (X, Y) = Extg 4 5)(X,Y) = DExtgg) (X,Y)
— Ext ) (X,Y) = Extgy 5(X,Y) = DExtp4)(X,Y) — 0.

Proof. This follows from Proposition[3.6.31], Proposition|3.6.32|and Proposition[3.6.33|
Vv

Proposition 3.6.35. The Higgs category H is an extension closed subcategory of C,(A, B).

Proof. Let X and Y be two objects in H C C,(A, B). For the object Y, we take a
triangle in perA
Yy & opy v By,
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where f, : Y — Py, is a fixed left add(eA)-approximation and Y; € F/(1). Then we can
get a triangle in C,(A, B)

7.‘.1"el 7.(.1"el
% (f1) Py =Y (¢1)

YY.
This induces a long exact sequence
-+ — Home, (4,3 (X, Y1) = Home, (4,5 (X, XY) = Home, (4,5 (X, EPy,) — - .
Since Py, € pvdg(A)*, we have
Homgere (X, X Py, ) = Hompera (X, XPy;) = 0.
Thus we get the following surjective map
-+ — Home, (4,5)(X, Y1) = Home,, 4,5)(X,XY) — 0.

For the object X, we have a canonical triangle in perA

X = X = 100X = B X
Hence, 72¢, X is isomorphic to X in C, (A, B). Then we get the following exact sequence

-+« — Home, (4,5 (724, X, Y1) — Home, (4,5 (X, XY) — 0.

It is clear that 7%, X and Y; are in F"¢(1). Since 7" : F"¢ = Fri(1) — C,(A, B)
is also fully faithful, we have that the space Home,(a,p) (729 X,Y]) is isomorphic to
Homye, 4 (72, X, Y1) and the following sequence is exact

-+« — Homypera (729, X, Y1) — Home, (4,5 (X, ZY) — 0.
Let € be an element in Home, (4,)(X, £Y’). We suppose that the corresponding triangle

in C, (A, B) is given by
Y 5 W—= X535y

We need to show that W is also in H.

Since the map Homype (72, X, Y1) — Homge, (4,5 (X, ZY) is surjective, there is a mor-
phism ¢ : 72%, X — Y] in perA such that 77 (¢ o &’) = ¢ in C,(A, B).

We take a triangle in perA

¢pr0e’

Y =W = 4 X 2 1Y
Then, the following morphism of triangles in C, (A, B) is an isomorphism

7TTEZ(¢108,)

Y — W, — 7 X Sy

ST

Y 1% X < Y.

In particular, W is isomorphic to W in C, (A, B).
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Since Y and Tgele are in Z C perA, W, is also in Z. It is easy to see that
p*(Y) € F = D(A)~ n* (D(A)~™") N per(A)

and
P X) 2 e 4 (pH(X)) € BF = D(A)S 0t (D(A)S") Nper(A).

Then by the triangle in perA
Y = Wy o e X 2 vy,

we can see that p*(W)) is in D(A)<0 Nt (D(A)S™"1) Nper(A).

rel rel

Next we consider the object 72¢, W, € perA. Since W is in Z, 7%, W) is still in Z.

And we have a canonical triangle in per(A)
T<-1(p"(Wh)) = p"(Wh) = 720 (p"(W1)) = Er<a(p"(W1)).
Because that p*(W;) is in D(A)S? Nt (D(A)S™1) N per(A), we have
T<_1(p*(W1)) € D(A)S Nt (D(A)S™ 1) Nper(A) = F.

Thus the object 72, W is in F7°/(1). By the equivalence 72, : F" — F°/(1), there
exist an object Wy € F¢ such that Tgille = TgillWl.

Since Wy and W) are isomorphic in C,(A, B), W is isomorphic to W in C,(A, B).
Thus W is an object in H C C,(A, B). Therefore, H is an extension closed subcategory
of C,,(A, B).

\/

Recall that a full subcategory P of a triangulated category 7T is presilting if Homy (P, $>0P) =
0.
Proposition 3.6.36. (1) P = add(eA) is a presilting subcategory of C,(A, B) = perA/pvdg(A).
(2) P is covariantly finite in ~ena.B) (X>OP) and contravariantly finite in (S<0P)tenan),

(3) For any X € C,(A, B), we have Home, (4 p)(X,X'P) = 0 = Home, (4 p)(P, ' X) for
[>0.

Proof. For P € P, X € perA and m € Z, we have isomorphisms
Hompera (P, £™X) = Home, (a,5)(P, X" X)

and
Hompera (X, X™P) = Homge, (4,5 (X, X™P)

because P is left orthogonal and right orthogonal to pvdz(A). This implies (1), (2) and
(3)- Vv
Corollary 3.6.37. Let £ be the following additive subcategory of C, (A, B)

£ =tenan (820P) 0 (S0P tenan,
Then the composition € C C,,(A, B) 7, Cn(A) induces a triangle equivalence
EJ[P] = C.(A).
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Proof. This follows from Proposition [3.6.36] and Theorem [3.6.3| vV

Theorem 3.6.38. The Higgs category H C C,(A, B) is equal to & =+enan) (L>0P) N
(S<0P)Lenan . In particular, the Higgs category H is idempotent complete.

Proof. It is clear that we have the inclusion H C &. Let X be an object in & =1¢n4.5)
(X20P) N (Z<0P)Lenan

Since per(eAe) and pvdgz(A) are left orthogonal and right orthogonal to each other,
we see that X is in Z =tveera (£>0P) 0 (B<0P)Leera C perA.

For the object p*(X) € per(A), there exists a non-negative integer r such that p*(X)
is in +(D(A)S™"). We consider the object X’ = 72 X. Then X’ becomes isomorphic
to X in C,(A, B) and X' belongs to F"!(r). By Proposition [3.6.30] there exists an object
Y in Fr¢ such that Y is isomorphic to X’ in C, (A, B). Thus, X is in the image of ",
i.e. X belongs to H. Hence H is equal to &.

By Corollary [3.4.4] H is idempotent complete.
\/

Theorem 3.6.39. For any object X € C,(A, B), there ezxists | € Z, FF € H and P €
per(eAe), such that we have a triangle in C,(A, B)

YUF X P YR

Dually, there exist m € Z, F' € H and P' € per(eAe), such that we have a triangle in
Cu(A, B)
P—sX—=¥"F —=¥P .

Proof. We only show the first statement since the second statement can be shown
dually. Let X be an object in C, (A, B). We view it as an object in perA. There exists a
positive integer r; such that the object X is in D(A)S™. We set Y = X" X. Then Y is
in D(A)O.

By Proposition m the pairs (1789, S<o) and (Sso, S=J) are co-t-structures on
T = perA, where

Soy =8 =S Px kSRR NTIP,

120
Sa=Sap = U YIP kNI ey
120

and P = add(eA). Hence we have a triangle
X =Y = S—>3X

where X’ €+ (S¢) and S € S.o C D(A)S7L. And we can see that X’ belongs to D(A)<°.
Step 1: The object X' is in Z =+ (X>P) N (Z<OP)L.
Since X' €1 (S.p), it is enough to show that X’ is also in (X<°P)L. For any positive
integer k, we have

Hompa)(eA, SFX’) 2 Homp(a)(i*(eAe), 2" X)
>~ Hompyeae) (eAe, S, (X)).
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The space Hompay(eA, Y¥ X') vanishes for any positive integer k. Thus the object X’
isin Z.

Step 2: There exists an object W € F" such that W is isomorphic to X' in C,(A, B).

By Step 1, the object X’ is in Z C perA. Thus, there is a non-negative integer ry
such that p*(X') €t (D(A)S™""2). We consider the object W' = 72% W. Then W' is
isomorphic to W in C,(A, B) and W’ belongs to F'¢/(r). By Proposition [3.6.30} there
exists an object W” in F"¢ such that W” is isomorphic to W’ in C"“'(A, B). Thus, we get
the following triangle in C, (A, B)

W' —=3¥X — S —XWwW,

where W is in H and S is in per(eAe).

vV

3.6.6 Frobenius n-exangulated categories

In this subsection, we describe our results using the framework of n-exangulated cate-
gories. We refer to the readers to [71], [42] and [67] for the relevant Definitions and facts
concerning n-exangulated categories.

Definition 3.6.40. [67, Definition 3.2.] Let (C,E,s) be an n-exangulated category.

(1) An object P € C is called projective if, for any distinguished n-exangle

é
A()&)Al—}"'—)Ana—n)An_,_l——)

and any morphism ¢ in C(P, A,+1), there exists a morphism b € C(P, A,,) satisfying
a,b = c. We denote the full subcategory of projective objects in C by P. Dually, the
full subcategory of injective objects in C is denoted by Z.

(2) We say that C has enough projectives if for any object C' € C , there exists a distin-
guished n-exangle

g Qn s
B—P—---—>P —C-—

satisfying Py, P, --- , P, € P. We can define the notion of having enough injectives
dually.

(3) C is said to be Frobenius if C has enough projectives and enough injectives and if
moreover the projectives coincide with the injectives.

Remark 3.6.41. In the case n = 1, these agree with the usual definitions [71, Definition
3.23, Definition 3.25 and Definition 7.1].

Theorem 3.6.42. The Higgs category H carries a canonical structure of Frobenius ex-
triangulated category with projective-injective objects P = add(eA). The functor p* :

Cn(A, B) — C,(A) induces an equivalence of triangulated categories

H/[P] — Cu(A).
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Proof. Step 1: H is an extriangulated category.

By Proposition [3.6.35 the Higgs category H is an extension closed subcategory of
Cn(A, B). Then by [71, Remark 2.18.], # is an extriangulated category and (#,E,s) can
be described as follows:

(1) For any two objects X,Y € H C Cr®(A, B), the E-extension space E(X,Y) is given
by Home, (4,5) (X, ZY).

(2) For any § € E(X,Y) = Homg,(4,5)(Z, £X), take a distinguished triangle
XLy z%nx

and define s(0) = [X Ly 4 Z). This s(0) does not depend on the choice of the
distinguished triangle above.

Step 2: H has has enough injectives and the full subcategory of injective objects in H
is P = add(eA).
Let I be an object in add(eA). For any distinguished triangle in H

b
X—=>Y—~>/7——.

The space Home, (4,5(X7'Z, I) = Hompea(Z, £1) vanishes since Z € Z =+(P[> 0])NP[<
0]+ C perA. Thus, we have the following exact sequence

HOmcn(AJ_;) (Y, [) — Homcn(A’B)(X, [) — 0.

Thus, any object in add(eA) is injective.
Now let X be an object in H C C,,(A, B). Then X is an object in Z C perA. We take
a triangle in perA
X5 Py o X, - 5X
with a left P = add(eA)-approximation Ix and X; € Z. It is easy to see that X; is in
Fr¢i(1). By Proposition [3.6.30, there is an object X, € F"® such that 7% X, = X;.
Thus, we have a triangle in C,,(A, B)

X5 py o X, 55X

with Px in add(eA) and [x an inflation. Therefore, H has has enough injectives.
It remains to show that any injective object is in add(eA). Let J be an injective object
in H. We take a triangle in per A

Jp, 50 v

with a left P = add(eA)-approximation [; and J; € Z. Since J is injective, the morphism
ly:J — Pjissplit in H C Cr(A, B). Thus I is also split in 77 C Z C perA.
Therefore, J belongs to add(eA) and the subcategory of injective objects in H is
P = add(eA).
Step 3: H has has enough projectives and the full subcategory of projective objects in
H is P = add(eA).
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This follows from the dual of the argument in Step 2.

Step 4: H is a Frobenius extriangulated category.

By Steps 1, 2, and 3, the Higgs category H is a Frobenius extriangulated category with
projective-injective objects P = add(eA). By Corollary [3.6.16] we have the equivalence
between triangulated categories

H/[P] = F = C,(A).
v

3.6.7 Higher extensions in an extriangulated category

Let (C,E,s) be an extriangulated category. Assume that it has enough projectives and
injectives, and let P C C (respectively, Z C C) denote the full subcategory of projectives
(resp. injectives). We denote the ideal quotients C/[P] and C/[Z] by C and C, respectively.
The extension group bifunctor E : C% x C — Ab induces E : C®? x C — Ab, which we
denote by the same symbol. To define the higher extension groups, we need the following
assumptions

Assumption 3. Each object A € C is assigned the following data (i) and (ii).

(i) A pair (ZA,14) of an object A € C and an extension [* € E(XA, A), for which
s(11) = [A — I — Y A] satisfies I € T.

(ii) A pair (QA,w?) of an object QA € C and an extension w? € E(A, QA), for which
s(w?) = [QA — P — A] satisfies P € P.

Definition 3.6.43. [42) Definition 5.4.] Let ¢ > 1 be any integer. Define a biadditive
functor E? : C°? x C — Ab to be the composition of

CP x C— CP x C 2 oo G E 4,

where ¥'! is the (7 — 1)-times iteration of the endfunctor X..
Dually, define E} : C? x C — Ab to be the composition of

CP x C — € x C 2d oov o G By pp

where Q71 is the (i — 1)-times iteration of the endfunctor €.

Proposition 3.6.44. [/2, Proposition 5.9.] Let i be a positive integer. we have natural
isomorphism

E, = E'.
Thus, for any pair of objects X,Y € C, we have Eﬁl(X, V)2 E(X,Y).

By Theorem [3.6.42] the Higgs category H is a Frobenius extriangulated category (or
Frobenius 1-exangulated category) with projective-injective objects P = addeA. Thus
the higher extension can be computed as follows:

Let X and Y be two objects in H. Let [ > 0 be an integer. We have

E'(X,Y) = Homz p)(X, Y (1)) = Homg, ) (p*(A), 'p*(Y)) = Home, (4, (X, X'Y).

106



Definition 3.6.45. [42] Definition 5.19.] Let 7 C C be a full additive subcategory
closed under isomorphisms and direct summands. Then 7T is called an n-cluster tilting
subcategory of C, if it satisfies the following conditions.

(1) T C C is functorially finite.

(2) For any C € C, the following are equivalent.
i) CeT,
(i) EY(C,T)=0forany 1 <i<n—1,
(iii) E(7,C) =0 for any 1 <i<n—1.

Proposition 3.6.46. The category addA is an n-cluster-tilting subcategory of H.

Proof. Since H is Hom-finite, it is clear that add(A) is functorially finite in H.
Step 1: 7 (A) is an n-rigid object in H.
By Proposition [3.6.32, we have that

Home, 4, (7" (A), B (A)) ~ Homg (A, XA)
~0

for any 1 <4 < n — 1. Therefore, the endomorphism algebra of 77 (A) is isomorphic to
the zeroth homology H°(A) of A and

Homcn(A’B)(Wrel(A)’ Ei,/rrel(A)) = ()’ 7 = 17 cooon—1.

Step 2: Let X be an object in H satisfying EY(X,addA) =0 for 1 <i<n—1. Then
X is in addA.

Since E{(X,addA) = 0 for 1 < i < n — 1, we have Homcn(z)(p*(X),add(X)) = 0 for
1 <i<n—1 We know that add(A) is an n-cluster tilting subcategory of F = C,(A)
(see [4, 39]). Hence p*(X) is in add(A). By the equivalence p* : Z/[P] = F = C,(A),
the object X is in addA.

Step 3: Let X be an object in H satisfying E'(addA, X) =0 for 1 <i<n—1. Then
X is in addA.

This is due to Step 2.

Thus, the category addA is an n-cluster tilting subcategory of H. V

Proposition 3.6.47. Suppose that the n-cluster tilling category addA of C,(A) satisfies
Y (addA) = addA. Then we have:

(1) If X € H satisfies E" ' (addA, X) = 0, then there is s-triangle
YLPoX—o (PeP=addled))

for which,
H(T, f) : Homy(7T,Y) — Homy(T, P)

is injective for any T € add(A).
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(2) Dually, if Z € H satisfies E""1(Z addA) = 0, then there is s-triangle
Z—-15W—— (IcP=addeA))

for which,
H(g,T) : Homy (W, T) — Homy (I,T)
is injective for any T € add(A).

Proof. We only show the first statement since the second statement can be shown
dually. Let X be an object in ‘H which satisfies

E"'(addA, X) = Homg, (4,5 (add(A4), 2" X) ~ Homcn(z)(add(Z), Yt X) = 0.
Since H is a Frobenius extriangulated category, there is a s-triangle
YLPosX—5 (PeP=addleA))

with Y in H and P in P = add(eA). Then it is enough to show that Home, (4, p)(Xadd(eA), X') =
0.
By Proposition [3.6.32, we have

Home, (4,p)(Xadd(4), X) ~Hom, (Badd(A),p*X)
~Hom, (X"add(A), X" 'p* X)
~Homg, 7 (add(A4), 5" 'p* X)
=0.
Thus, the space Home,, (4 5)(Xadd(eA), X) vanishes.

Vv
Proposition 3.6.48. By Theorem (H,E,s) is an extriangulated category. We

have

(1) Let f € H(X,Y), g € H(Y,Z) be any pair of morphisms. If g o f is an s-inflation
(see [42, Definition 2.23]), then so is f.

(2) Let f € H(X,Y), g € H(Y,Z) be any pair of morphisms. If go f is an s-deflation
(see [42, Definition 2.23]), then so is g.

Proof. We only show the first statement since the second statement can be shown
dually. Let f € H(X,Y), g € H(Y,Z) be any pair of morphisms. Suppose that gf is an
s-inflation, i.e. there is a triangle in C, (A, B)

XY 75w osex

such that W is also in H. By the octahedral axiom, we have the following commutative
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diagram in C, (A, B)

Xty A N X
:
x-Y.z7 1% NX
B——RB
Y YA

and the upper middle commutative diagram is a homotopy bi-cartesian square. Thus,
there is a triangle in C,(A, B)

YA Z - W = XY.

Since H is an extension closed subcategory of C, (A, B), A@® Z is in H. By Theo-
rem [3.6.38] H is closed under taking direct summand. Thus A is in H. We can conclude
that f: X — Y is an s-inflation.

\/

Theorem 3.6.49. Suppose that the n-cluster tilting category addA of C,(A) satisfies
Y"addA = addA.

Then the n-cluster-tilting subcategory addA of C,(A) carries a canonical (n+2)-angulated
structure. Moreover, the n-cluster-tilting subcategory addA of H carries a canonical struc-
ture of Frobenius n-evangulated category with projective-injective objects P = add(eA).

The quotient functor p* : C,(A, B) — C,(A) induces an equivalence of (n + 2)-angulated
categories

addA/[P] = add(A).

Proof. Since addA is closed under the n-th power of the shift functor in C,(A), by [33,
Theorem 1], the n-cluster-tilting subcategory addA carries a canonical (n + 2)-angulated
structure (addA, X", ©), where O is the class of all (n + 2)-sequences in addA

Oy — n d
M2 X X, L X I NSy

such that there exists a diagram

X, @ > X e X,
M < I X1_5 <

I Xos Xn—05 ¢ I N

with X; € C,(A) for i ¢ Z, such that all oriented triangles are triangles in C,(A), all
non-oriented triangles commute, and ¢ is the composition along the lower edge of the
diagram.

For any two objects M, N in addA, the category T’f\}’]zV (see [42]) is defined as follows:
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(a) An object in Tﬁ/ﬁv is a complex X*® = (X", d%) of the form

d9 d} dyt
XO X Xl X Xn Xn—l—l

with all X; in addA and X° = M, X" = N.

(b) For any X°*,Y* € T’](Z]ZV, a morphism f between X* and Y* is a chain map f =
(f% -+, f"*1) such that f© = 1j; and f*™' = 1y. Two morphisms f* and ¢* €

TK;JQV (X*,Y*) are homotopic if there is a sequence of morphisms h® = (h',---  h")
satisfying
0 :hl O dg(,
g~ fl=dyt ol + W ody (1<i<n),
0 :dg o hn-i—l'

By Propositions[3.6.47] and [3.6.48], the n-cluster-tilting subcategory add A C H satisfies
the conditions in [42, Theorem 5.39]. Thus, it carries a canonical n-exangulated structure
(addA,E" ") which is given by

(1) For any two objects M, N in add A, the group E"(M, N) is the higher extension group
defined in Definition(3.6.43 i.e. E"(N, M) = Home, (a,5)(N, X" M) >~ Hom¢ 7 (p*(N), X"p"(M));

(2) For any M, N in addA and any ¢ € E"(N, M), define
5"(0) = [X"]

to be the homotopy equivalence class of X* in T’;ZJQV, where X* is given by an (n+2)-
sequence in addA

An—1

M 29 X, 24 x, 22 Sty eng v O sy

such that there exists a diagram

X1 e >X2
M < I X15<

- Xos Xn—05 <

with X; € H for i ¢ Z, such that all oriented triangles are triangles in C, (A4, B), all
non-oriented triangles commute, and ¢ is the composition along the lower edge of
the diagram.

Next, we will show that addA carries a canonical structure of Frobenius n-exangulated
category with projective-injective objects P = add(eA).

Firstly, we show that P = add(eA) consist of projective-injective objects in addA. Let
P be an object in add(eA). We take a distinguished n-exangle in add A

. 5
Yo %Y, = =Y, I Y, 52,
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Then we have a distinguished triangle in C, (A, B)
X =Y, ™Y, %X

such that X isin H. Let ¢: P — Y,,.1 be a morphism in addA. It induces the following
long exact sequence

e — Homcn(A,B)(P, Yn) — Homcn(AB)(P, Yn—i—l) — Homcn(AB)(P, EX) —

Since X is in H, the space Home, (a,5)(P, ¥X) ~ Hompea (P, XX ) vanishes. Thus, there
exists a morphism b : P — Y, in addA satisfying «,, o b = ¢. This shows that P is
projective. Dually, we can show that P is injective.

Let N be an object in addA. Since add(eA) is functorially finite in C, (A, B), there
exists a distinguished triangle in C, (A, B)

0, s P, N 0,

with P, in add(eA). We see that p*(N) ~ Xp*(Q,,) € add(4) in C,(A).
For the object @, we also have a distinguished triangle in C, (A, B)

n— bn— n—
anl a—1> Pnfl —1> Qn C—1> Eanl

with P,_; in add(eA). And we see that p*(N) ~ X%p*(Q,_1) € add(A) in C,(A).
Repeating the process, we get the following triangles in C, (A, B)

Q, & P, N & 20,

An—1 brn—1 Cn—1
anl — Pnfl - I Qn - Eanb

Qo 2% Py 2% Q) 2 £Q

such that all P, 0 <4 < n, are in add(eA) and p*(N) ~ X"p*(Qo) € add(A).
By our assumption ¥"addA = addA, we see that p*(Q) is in addA. Thus, the object
(o is in addA. Then we get a distinguished n-exangle in add A

b bn d
Qo P22 P — ... P, 2% N 35 X"Q,,

where ¢ is the composition

N 2 5Q, 0 52Quy — o = @ 2 Q.

Thus, this shows that addA has enough projectives. Dually, we can show that addA
has enough injectives. Moreover, projective-injective objects form exactly the subcategory
P = add(eA). Therefore, we have shown that addA carries a canonical structure of
Frobenius n-exangulated category with projective-injective objects P = add(eA).

The stable category addA/[P] has the same objects as addA. For any two objects M
and N, the morphism space is given by the quotient group

HOHladdA(M, N)/[P](M, N),

111



where [P](M, N) is the subgroup of Hom,gq4 (M, N) consisting of those morphisms which
factor through an object in P = addeA.
For any object M in addA, we have the following triangles in C, (A, B)

M1, %% Qo %% S M,

Qo 2 I 2 Q1 5 $Q,

n b’!L mn
Qn—l fl_} In — Qn C_> Ean—l

such that all I;, 0 < ¢ < n, are in add(eA) and @, is in addA. Those triangles induce a
distinguished n-exangle in add A

b n é
ML, =15 Q, 5 "M,

where ¢ is the composition

Qn <5 DQnt — -+ — TLQy 2 S M.

We define the functor S : addA/[P] — addA/[P] such that it takes M to @,. By [67,
Proposition 3.7], the S functor is well defined and it is an auto-equivalence. It is easy to

see that S(M) is isomorphic to X"p*(M) in C,(A).
Thus, by [67, Theorem 3.13], the stable category addA/[P] carries a canonical (n + 2)-
angulated structure (addA/[P], S,0g) which is given by

(1) The functor S defined as above.

(2) For any two objects M, N in addA, there is a one-to-one correspondence between
E™(N, M) = Home, a,5)(IN, X" M) and Homuqq/p) (N, S(M)) ~ E*(N, M) (see [67,
Lemma 3.12]). Any distinguished n-exangle

n— n )
M2 x, 2 x, 22 .. 2l x2S g

in addA induces an (n + 2)-sequence

M2 X, B X, 2 Tl B N S g ()

in addA/[P]. We call such sequence an (n + 2)-S-sequence. We denote by Og the
class of (n + 2)-S-sequences.

Then it is clear that we have an equivalence of (n + 2)-angulated categories
addA/[P] = add(A).

V

Remark 3.6.50. If addA is stable under " in C,(A, B), then the algebra B is zero.
So the n-cluster-tilting subcategory addA C C,(A, B) can only carry an n-angulated
structure with higher suspension X" if B = 0 (see [33, Theorem 1]).

112



3.7 The case when A is concentrated in degree 0

Let f: B — A be a morphism (not necessarily preserving the identity element) between
two differential graded (=dg) k-algebras. We assume that f satisfies the assumptions
and moreover, A is concentrated in degree 0. In particular, f carries a relative (n + 1)-
Calabi—Yau structure.

Proposition 3.7.1. Under the assumption above, the k-algebra H°(A) is a finite-dimensional
with gldim HY(A) < n + 1.

Proof. By assumptions , the algebra H°(A) is finite-dimensional. Suppose that

Lyo(4) has decomposition
1H0(A) :€1+€2+"'—|—€n

into primitive orthogonal idempotents such that
6:f(13)261+"'+6k

for an integer 0 < k < n. Here we regard e as an element of H(A). By Proposition m,
pvdg(A) is an (n + 1)-Calabi-Yau triangulated category. Thus for each simple module
Si, k+1 <7< n, we have pdim S; < n + 1.

Let M be a finite-dimensional H°(A)-module. For each simple module S;, 1 < i < k,
by Proposition [2.4.2] we have the following isomorphism of triangles

C(S;,x7M) RHom 4 (S;, M) RHomp(S;|p, M|p) —

- - ;

DRHom (M, S"*18;) — DC(M, $"S;) —= DRHomp(M|p, "S;|5) — .

For each integer p > n + 2, we have
HOIDD(B) (S’i|By ZP(M|B)) = 0

because B is n-Calabi—Yau.
Thus, we have

HO(C(S;, ©P~ M) Extlyo ) (Si, M)

0= DEXH;;};;’(M, S;) —= DH°(C(M,x"177S;)) —=0.

We see that the space Ext%O(A)(Si, M) vanishes for each p > n+2. Then pdim S; < n+1
for each 1 < i < k. Therefore, we have gldim H°(A) < n + 1. Vv

Theorem 3.7.2. a) The algebra B' = eH°(A)e is Iwanaga-Gorenstein of injective di-
mension at most g < n+ 1 as a B'-module.

b) Under the equivalence D°(mod H®A) ~ perA, the subcategory F"¢ corresponds to the
subcategory mod,,_1 (HA) of H°A-modules of projective dimension at most n — 1.
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c¢) Via the equivalence res : D’(modH®A) —— perA, the localization 7™ : perA —
C.(A, B) identifies with the restriction functor D’(modH°A) — D’(modB’), i.e. we
have a commutative square

Db(mod H°A) —— Db(modB’)

I I

perA —— C,(A, B).

d) Under the equivalence D°(modB’) — C,(A, B), the Higgs category H C Cn(A, B)
corresponds to the subcategory gprB’ of Gorenstein projective modules over B’ =
eH°(A)e. In particular, when B’ is self injective, we have H = modB'.

Proof. Since H°(A) is of finite global dimension, the restriction along the quasi
isomorphism

A — H(A)
induces a triangle equivalence
Db (modH(A)) = perA.
Under this equivalence, pvdz(A) identifies with
Db (mod HO(A)) ={X € D’(modH°(A))| H'(X)|p = 0,VI € Z}
—{X € D’(modH(A))|H'(A) € N,VI € Z},

where N' = {M € modH(A) | M|g = 0}. Clearly, the category A is a Serre subcategory
of modH(A) and the restriction modH%(A) — modB’ induces an exact sequence of
abelian categories

0 — N — modH"(A) — modB’ — 0.

This exact sequence induces an exact sequence of triangulated categories
0 — Dh(modH"A) — D’ (modH’(A)) — D’(modB’) — 0.
Thus, the restriction perA = D?(modH°(A)) — D°(modB’) induces an equivalence
Cn(A, B) = D’ (modB').
By inspecting the definition of F7¢, it is equivalent to the following subcategory
mod,_1(H°A) = {M € modH"(A) | pdimM < n — 1}.

The Higgs category H is contained in mod B” and stable under extensions in C,, (A, B) ~
D(B'). Thus, it is a fully exact subcategory of modB’ with the induced exact structure.
Moreover, H is a Frobenius exact category with projective-injective objects P = proj(B’)

and H contains an n-cluster-tilting object T, namely the image of A, such that Endy (7)) =
H°(A) with gldim H°(A) < n + 1.
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By Theorem [3.6.38] the Higgs category is idempotent complete. Thus, we can ap-
ply Iyama—Kalck—Wemyss—Yang’s structure theorem for Frobenius category with an n-
cluster-tilting object (see [54, Theorem 2.7]), to conclude that B’ is Iwanaga-Gorenstein
of injective dimension at most ¢ < n + 1 as a B’-module and that restriction to B’ is
an equivalence from H C modH°(A) to the category gpr(B’) of Gorenstein projective
B’-modules, i.e. we have an equivalence

H = gpr(B') = {M € modB' | Ext, (M, B') =0, Vi > 0}.
\/

3.7.1 Relation with Matthew Pressland’s works

Definition 3.7.3. [76] Let A be a k-algebra, e an idempotent of A, and d a non-negative
integer. We say that A is internally d-Calabi—Yau with respect to e if

(1) gldimA < d, and
(2) for each i € Z, there is a functorial duality
DExt,(M, N) = Ext4™(N, M)
where M and N are perfect A-modules such that M is also a finite dimensional
A/AeA-module.

Let A be an algebra and e an idempotent of A. We denote the corresponding quotient
algebra by A := A/(e). Let D(A) be the unbounded derived category of A, D.(A) the

full subcategory of D(A) consisting of complexes with homology groups in Mod(A), and
pvd,(A) the full subcategory of D.(A) consisting of objects with finite dimensional total
cohomology.

Definition 3.7.4. [77] An algebra A is bimodule internally n-Calabi—Yau with respect to
an idempotent e € A if

e pdim A < n,
e A€ perA°, and
e there exists a triangle
A—3¥"0 —C——=3%A

in D(A°), such that RHom(C, M) = 0 = RHom e (C, N) for any M € pvd,(A)
and N € pvd,(A%).

Proposition 3.7.5. [76, Corollary 5.12] If A is internally bimodule n-Calabi-Yau with
respect to an idempotent e of A, then it is internally n-Calabi—Yau with respect to e.

Proposition 3.7.6. Let f : B — A be a morphism between dg k-algebras. Suppose that
f satisfies the assumptions |1l and moreover, A is concentrated in degree 0. Then A and
A°P are internally bimodule (n + 1)-Calabi-Yau with respect to e = f(1g). Hence, the
algebras A and AP are internally (n + 1)-Calabi-Yau with respect to e = f(1p).
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Proof. By the definition of a relative (n + 1)-Calabi—Yau structure, we have the
following triangle in D(A®)

A—s SV o SHLL Y (BY) —> YA,

where AV = RHom ¢ (A, A°), BY = RHompg. (B, B®) and Lf*(BY) = A ®@% BY @} A.
Let M be an object in pvd,(A). We have

RHom (L f*(B"), M) = RHomu(A & B &5 A, M)

L L
~ RHOIIIA(A XB B\/@B, RHOIIIB(A, M|B))
=0
Similarly, we have RHom 4o» (L f*(BY), N) = 0 for any N € pvd,(A°). Thus, the algebra
A is bimodule internally (n + 1)-Calabi-Yau with respect to the idempotent e = f(15).

By the same way, we can show that A° is bimodule internally (n 4 1)-Calabi—Yau with
respect to the idempotent e.
\/

3.8 Relative cluster categories for Jacobi-finite ice quivers with
potential

3.8.1 Ice Quivers with potential

Definition 3.8.1. A quiver is a tuple Q = (Qo, @1, s,t), where Qg and @), are sets, and
s,t: Q1 — Qo are functions. Each o € @) is realised as an arrow « : s(a) — t(a). We
call @) finite if Qy and @)1 are finite sets.

Definition 3.8.2. Let ) be a quiver. A quiver F' = (Fy, Fy,s',t') is called a subquiver
of Q if Fy C Qo, F1 C @ and §',t' are the restrictions of s,t to F;. We call F is a full
subquiver of @) if F' a subquiver and F} = {a € Q1 : s(a),t(«a) € Fy}.

Definition 3.8.3. An ice quiver is a pair (Q, F'), where @ is a quiver, and F' is a subquiver

of Q.

Let @ be a finite quiver. For each arrow a of (), we define the cyclic derivative with
respect to a as the unique linear map

aa : kQ/[ka kQ] - kQ

which takes the class of a path p to the sum )
the path p.

p—uay VU taken over all decompositions of

Definition 3.8.4. An element of kQ/[kQ, kQ)] is called a potential on Q. It is given by
a linear combination of cycles in ). An ice quiver with potential is a tuple (Q, F, W) in
which (Q, F') is a finite ice quiver, and W is a potential on Q. If F is the empty quiver 0,
then (Q,0, W) := (Q, W) is simply called a quiver with potential.
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3.8.2 Relative Ginzburg algebras and relative Jacobian algebras

Definition 3.8.5. Let (@, F, W) be a finite ice quiver with potential. Let @ be the graded
quiver with the same vertices as () and whose arrows are

e the arrows of ),
e an arrow a* : 7 — ¢ of degree -1 for each arrow a of () not belonging to F,
e aloop t; : 7 — 7 of degree -2 for each vertex i of () not belonging to F'.

The relative Ginzburg dg algebra I‘T% (Q, F,W) is the dg algebra whose underlying graded

space is the graded path algebra kQ). Its differential is the unique linear endomorphism
of degree 1 which satisfies the Leibniz rule

d(uowv) =d(u) ov+ (—1)Puod(v)
for all homogeneous u of degree p and all v, and takes the following values on the arrows
of ():
e d(a) = 0 for each arrow a of @Q,
e d(a*) = 9,W for each arrow a of () not belonging to F,

o d(t;) = €i(Y_4cq,la, a’])e; for each vertex i of @ not belonging to F, where ¢; is the
lazy path corresponding to the vertex i.

Definition 3.8.6. Let (Q, F, W) be a finite ice quiver with potential. The relative (or
frozen) Jacobian algebra J(Q, F, W) is the zeroth cohomology of the relative Ginzburg
algebra T, (Q, F, W). Tt is the quotient algebra

kQ/{(OW,a € Q1 \ F1)
where (0,W,a € Q1 \ F1) is the two-sided ideal generated by 9, with a € Q1 \ F3.

{

Let (@, F, W) be a finite ice quiver with potential. Since W can be viewed as an element
in HCy(Q), ¢ = B(W) is the element in HH,(Q), where B is the Connes’connecting map
(see [62], Section 6.1])

B : HC,(kQ) — HH, 1 (kQ).

Then £ = (0,c¢) is an element of HHy(G) which provides the deformation parameter for
the relative 3-Calabi-Yau completion of G : kF' — k(), namely the functor

Gro : Ty (kF) — TI54(kQ, kF, €)

defined in Proposition [2.6.2, An easy check shows that the dg algebra TI;¢(kQ, kF,€)
is isomorphic to I',;(Q, F, W) and that the dg functor G,.; takes the following values as
follows:

e G, (i) =i for each frozen vertex i € Fy,

e G,.(a) = a for each arrow a € F,
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e G,y(a) = —0,W for each arrow a € F,

o Gra(ri) = €i(Dneq\m @, a’])e; for each frozen vertex i € Fy.

Proposition 3.8.7. Let (Q, F, W) be a finite ice quiver with potential. Let Q) be the quiver
obtained from @ by deleting all vertices in F' and all arrows incident with vertices in F.
Let W be the potential on Q obtaining bu deleting all cycles passing through vertices of F
i W. Then

H2<F) % Frel(Q7F7 W) — I‘(@a W)
is a homotopy cofiber sequence of dg categories, where T'(Q, W) is the Ginzburg algebra
(see [62]) associated with quiver with potential (Q,W).

Proof. By Proposition 2.6.2, the homotopy cofiber of G, is isomorphic to that of G.
Since G is a cofibration, the dg quotient identifies with the quotient of IT3(kQ, kF,§) by
the 2-side ideal generated by the image of G. This quotient is isomorphic to I'(Q, W) as

a dg category. V

3.8.3 Jacobi-finite ice quivers with potential

An ice quiver with potential (Q, F,W) is called Jacobi-finite if the relative Jacobian
algebra J(Q, F, W) is finite-dimensional.

Definition 3.8.8. Let (Q, F, W) be a Jacobi-finite ice quiver with potential. Denote by
[, the relative Ginzburg dg algebra I'.;(Q, F,W). Let e = ). . e; be the idempotent
associated with all frozen vertices. Let pvd,(T',¢;) the full subcategory of pvd(T,;) of the
dg T',,-modules whose restriction to frozen vertices is acyclic.

Then the relative cluster category C(Q, F, W) associated to (Q, F, W) is defined as the
Verdier quotient of triangulated categories

per(rrel>/dee(Frel) )

The relative fundamental domain F"¢ associated to (Q, F, W) is defined as the following
subcategory of per I,

Frel .= {Cone(X, EN Xo) | X; € add(T',¢;) and Hom(f, I) is surjective, ¥V I € P = add(el',¢)}.

We have a fully faithful embedding 7" : F¢ C perT,oq — C(Q,F,W). Then the
Higgs category H associated to (Q, F, W) is the image of 7" in C(Q, F,W) under the
functor 7.

Combining Theorem |3.6.42 and Proposition [3.6.46] we get the result.

Theorem 3.8.9. Let (Q, F,W) be a Jacobi-finite ice quiver with potential. Then the
relative cluster category C(Q, F, W) is Hom-finite, the Higgs category H is a Frobenius 2-
Calabi—Yau eztriangulated category with projective-injective objects P = add(el',¢;). The
free module T',q; in H is a cluster-tilting object. Its endomorphism algebra is isomorphic
to the relative Jacobian algebra J(Q, F,W).
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Moreover, the stable category of H is equivalent to the usual cluster category
H=H/[P] — C(Q,W) = per(T(Q,W))/pvd(T(Q, W))
and the following diagram commutes

per(el,e) === per(el,e€)

pvd, (Te)© per(T'ye) —=C(Q, F, W)

l i :

pvd(D(Q, W)= per(T(Q,W)) ——=C(Q, W)

1%

where the rows and columns are exact sequences of triangulated categories.
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Chapter 4

Relative Calabi—Yau structures in
higher Auslander-Reiten theory

4.1 For algebras of finite global dimension

Let n be a non-negative integer. Let By be a finite dimensional algebra with global
dimension at most n. Let Sp, =7 ®%0 DB be the Serre functor of D’(modBy). The
corresponding inverse Serre functor is given by Sgg =7 ®%O RHompg.(By, Bf). Moreover,
the Nakayama functor vg, for modBj is given by vg, = DHomp, (7, By).

Definition 4.1.1. [45] The higher inverse Auslander-Reiten translation 7, ' of modBj is
defined to be the following composition

ng—1

1 b 2"Sg, b HO
T, . modBOC—> D (Bo) ——7D (B()) — HlOdBo.

n

Definition 4.1.2. Let f : B — A be a dg functor. The relative inverse Serre functor for
D(A) is defined as

Sis =7 @5 05 : D(A) = D(A),

where ©; = RHom 4 (Cone(A @ A — A), A°) € D(A°).
Remark 4.1.3. It is clear that we have an isomorphism IT,,,5(A, B) ~ @i>0(2”+1®f)®5
in D(A).
Definition 4.1.4. [48] Let By be an algebra of global dimension at most n. Then the
(n + 1)-preprojective algebra of By is defined as

By = T, (Ext?y, (D By, By)),
i.e, the tensor algebra of the By-bimodule Ext’y (D By, By) over By. Then /BE(/) is isomorphic
to @07, ‘By as a By-module.

Remark 4.1.5. In [62] Section 4], Keller introduced the notion of derived (n + 1)-
preprojective algebras I, .1 (By) (also called (n + 1)-Calabi—Yau completion of By). The
(n + 1)-preprojective algebras are the 0-th homology of his derived (n 4 1) preprojective
algebras.
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We denote by B := projBy € modBj the projective modules. Let A be a subcategory
of modBy which contains B as a full subcategory. Then there is a natural dg inclusion
functor

fo: B — A.
For any X € A, we put X" := Homp,(?, X)|4 € projA.

Proposition 4.1.6. Assume that A is homologically smooth and is an n-rigid subcategory
of modBy, i.e. Extlfgo (A, A) =0 for1 < k<n—1. Then for X € A, we have a functorial
isomorphism X" @% Y10, = (1,1 X))

Proof. Let X be an object in A. We will show that
X" @G ey, = (1,1 X)",

n

where O, = RHom 4¢(Cone(A ®F A — A), A°).
Step 1. We compute the image of X" under the functor ? @5 RHom 4 (A ®F A, A°) :
D(A) — D(A).
Since B and A are smooth as dg categories, we have
RHom 4 (A ®F A, A°) =2 RHomyu (A ®5 B o5 A, A°) =2 AL 05 @5 A,

where ©5 = RHomg. (B, B°).
Then we have

X" @L v ARL 05 0F A) 2 (X" 0k O5) @k XA
> Sp (" X)N ®F A.
Fix a minimal injective resolution of X
0=X—1"=T' . =" =0.

Then S3! (5" X) = v} (8" X) is the following complex

0O—=F—PFP-—PF, =0,
where P; is in degree i —n — 1 and P, = l/gol(li) € projBy. After applying the functor

?7@% A:D(B) — D(A),

we get
0= (" P)—(?P)—>-—(7,P,)—0,
where (?, P;) = Homyeap, (7, P;)|4 € proj(.A).
Thus the image of X" under the functor ? @4 RHom 4 (A ®@F A, A°) : D(A) — D(A)
is
0= (7, R)— (1,P)— - —(?,P,) =0,
where (7, P;) = Homuean, (7, Fi)|a € proj(A).
Step 2. We compute the image of X" under the functor ? @4 X AN = ¥rH§ !
D(A) — D(A).
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We have the minimal injective resolution in Step 1
0=X—1"=T1' . = I"=0.
Then ¥"1S7,'(X") is the following complex
0— (7,X) = (2,1% = (2,1") - — (2,I™).
For any 1 < i < n — 1, the cohomology at (?,1?) is Extl (7, X) = 0 because A is an
n-rigid subcategory of modBy. The cohomology at (?,1") is Extz (7, X). For any object
L in modB,, we have
DExt?, (L, X) ~ DHompg,)(L, " X)

>~ HOI’H'D (Bo) (an SBO( ))

~ Homp(,) (X"(Sp,X), L)

~ Homp(p,) (H° (2" (S5, X)), L)

~ Homp(py (1, ' X, L)

~ Homgp, (7, ' X, L),
where the fourth equivalence follows from Sj;! = RHomp, (DB, ?) and gldim(By) < n
Then the cohomology at (?,1™) is isomorphic to DHomp, (7, X, ?).

Since we have isomorphisms (7, I') ~ D(F;,?) for all 1 < i < n—1, we get the following
injective resolution of (7, X)

0— (7,X) = D(Py,?) = D(P,?)-+-— D(P,,?) = D(1,' X,?) — 0.
Applying the functor X"*1S ;" : D(A) — D(A) to the above complex, we get a complex
0= (?,P) = (7, P) = = (2, P) = (?,75,,X) =0,

where (?,P;) is in degree i — n — 1 and (?,7,'X) is in degree 0. This is because
SAHD(?, M) = vty u(D(M,?)) = (?, M) for any object M in A.

Step 3. From the computations in step 1 and step 2, the object X” ®ﬁ YOy, s
equal to the homotopy fiber of the following morphism of complexes

0 (2 Ry) —> (7, P) —> o — (2, P) —> (2,71 X) ——0
00— (2, P)) — (2, P) —> - — (2, P,) 0 0
Thus, the object X" (S 4 5)(X") is quasi-isomorphic to 7,1 (X)". Vv

Corollary 4.1.7. Let B = projBy C modB, be the subcategory of projectives and let
A be a subcategory of modBy which contains B as a full subcategory. Suppose that A
is homologically smooth and is n-rigid in modB. Then the relative (n + 2)-Calabi-Yau
completion of fo: B — A

[, (B) — II,,,2(A, B)

can be described as follows:
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e The objects in I, 2(A, B) are the same as those of A;
e For any two objects L, M in A, the space Homm, ,,(a8)/(L, M) is given by

Homp, 4 (L, M) = RHomy(L", @;50M" @5 (5"16,)%)
=~ RHomy (L", @iso(7, " M)™)
=~ Homp, (L, ®i=o(7, " M)).
In particular, the dg category IL,1o(A, B) is concentrated in degree 0 and we have a fully

faithful functor s
Ho(f> : HO(Hn_H(B)) = B(] — Hn+2(.A, B)

4.2 n-representation-finite algebras
Let n > 0 be an integer. Let By be a finite dimensional algebra with global dimension at

most n.

Definition 4.2.1. [47] We say that By is 7,-finite if 7, °By = 0 for sufficiently large 1.
We say that By is n-representation-finite if mod B, contains an n-cluster tilting object.

Remark 4.2.2. If B; is n-representation-finite, then it is 7,,-finite.

Theorem 4.2.3. [/7, Proposition 1.3] Suppose that By is an n-representation-finite al-
gebra. Then By = 69@07']5;‘7”30 1s the unique basic n-cluster tilting object in modBy.

Theorem 4.2.4. [0, Theorem 0.2] Let By be n-representation-finite. Then
gldim EndBO(E)) <n—+ 1

Let By be an n-representation-finite algebra. The corresponding n-Auslander algebra
is given by Endg, (D07, ‘Bo). We denote it by Ag. Then there is a natural fully faithful
morphism

fo: Bo— Ay = Endg, (Di=07,, " By)-
Proposition 4.2.5. Let e = fy(1p,). The homotopy cofiber of fo : By — Ay is equal to
the usual quotient Ag/ApeAy, i.e. the stable Auslander algebra of By.
Proof. Let A, P and B be the following full subcategories of modB,
A = ind(add({7,(By) | i = 0})),
P = ind(projBy),
B={MecA|M¢TP}

Foe P € P and M € B, we have

DHomp, (M, P) =Homp g, (P, Sp,(M))

=Homppy) (P, X" (7, (M))).

The above space vanishes since P € P and 7,(M) € modBy. Then, by Lemma
below, the homotopy cofiber of fy : By — Ag is equal to the usual quotient Ay/ApeAy.

v
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Lemma 4.2.6. Let A be a dg category, P C A and B C A two full dg subcategories such
that obj(A) = obj(P) U obj(B) and Homu(B, P) is acyclic for all B € B, P € P. Then
the Drinfeld dg quotient A/P is Morita equivalent to B.

Proof. The restriction functor f, : D(A) — D(B) induced by f : B — A is a
localization functor. Moreover, its kernel is generated (as a localizing subcategory) by its
intersection with perA. Since the space Hom4(B, P) is acyclic for all B € B and P € P,
the induction functor

D(P) < D(A)

induces an equivalence between ker(f,) and D(P). Thus, we have an exact sequence of

triangulated categories
0 — D(P) = D(A) — D(B) — 0.

It follows that the Drinfeld dg quotient .4/P is Morita equivalent to B.

vV

Proposition 4.2.7. Via the relative (n + 2)-Calabi—Yau completion of fo : By < Agy, we
get the following dg functor which has a canonical left (n + 2)-Calabi-Yau structure

[ B=1141(By) — A =1L,12(Ao, By).
Then
1) The dg algebra A is concentrated in degree 0.
2) H°(A) is a finite-dimensional algebra with finite global dimension at most n + 2.
3) The homotopy cofiber of f is equal to I, 2(Ag/AoeAy) where e = f(1p,).
4) The functor HO(f) : H(B) = By — H°(A) is fully faithful.
5) A is internally bimodule (n + 2)-Calabi-Yau with respect to e = f(1p,).

Proof. The first and fourth statement follows from Corollary The third state-
ment follows from Proposition and the last statement follows from Proposition [3.7.6|
It remains to show the second one.

By Corollary and the fact that By is 7,-finite, the algebra HY(I1,,5(Ag, By)) is
finite-dimensional. By Proposition , the algebra HY(I1,,2(Ag, By)) has finite global
dimension at most n + 2.

\/

Suppose that 1p, has decomposition
130 :€1+€2+"'+€n

into primitive orthogonal idempotents. We denote by P; = e; By the projective By-module
associated with the idempotent e;. Let U be the following full subcategory of D°(modBy)
(see [48, Theorem 2.16))

U = add{S] By |i € Z} C D’(modBy),
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where S,, = ¥7"Sp, and Sp, is the Serre functor of D’(modBy). By [48, Theorem 2.16],
U is an n-cluster tilting subcategory of D°(modBy).

Let Y2U = add{¥FS! By|i,k € Z} be the ¥ closure of U in D°(modBy). It is a
bigraded category where the gradings are given by S,, and .

The dg category

I1,1(By) = T, (X"By)

is Adams graded with |[X"By|, = 1. Let P = ¢;,11,,,1(By) be the cofibrant dg IT,,,1(By)-
module associated with e;. For any integer k, let T% P! be the shift of P! by degree k
with respect the Adams grading.

We denote by Cj,(IL,41(Bo)) the category of Adams graded dg II,i(Bp)-modules
with morphisms of bigraded (0,0). The corresponding derived category is denoted by
DZ(I1,,11(By)).

For any two objects P, PIT in D?(IL,41(By)), we have
80y (P TP PIY) o Homp(aasy) (P, S, "5 F)

= (k,p)-component of e; H*(I1,+1(By))e;,

HOHIDZ (T py

where H*(I1,,1(By)) is the graded algebra whose i-th component is H*(IT,1(By)).
We have an equivalence of bigraded categories

DE(IL,41(By)) 2 add(T*>P P14,k € Z) = XU

which maps T*¥P P to S, *¥PP;.
Via taking the orbit categories with respect to T and S, respectively, we have the
following equivalence of graded categories

add(T*SPP™ ik € Z) /T = S2U/S,,.

We denote by Gpr(H*IIL,,,1(By)) the category of graded projective modules over IT,, 1 (By).
There is an equivalence of graded categories

add(T*>P P! ik € Z))T ~ Gpr(H*I1,,1(By)).
Thus, we have an equivalence of graded categories
Gpr(H*TL, 1 (By)) ~ X2U/S,,.
Since By is n-representation-finite, by [48, Theorem 3.1 and Proposition 3.6], we have
Homp modny) (XU, U) =0

for 1 < i < n—1. Thus, the i-th homology H'(B) of B = II,,(B,) vanishes for
1=—1,...,—n+ 1.

Lemma 4.2.8. The higher preprojective algebra E) is self-injective.

Proof. It is enough to show that EE is injective as a right E—module. The category
pvd(B) has a canonical t-structure

(pvd(B)<o, pvd(B)>0),
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where pvd(B)<o is the full subcategory of pvd(B) whose objects are the dg modules X
such that H?(X) vanishes for all p > 0 and pvd(B)s¢ is the full subcategory of pvd(B)
whose objects are the dg modules X such that H?P(X) vanishes for all p < 0. The

corresponding heart is equivalent to modB,. Moreover, by Section 3.1.7 of [§], for all X
and Y in modB,, we have an isomorphism

Extp, (X,Y) ~ Homp(p) (X, ZY).

Let M be an object in modBy. By the (n+1)-Calabi—Yau property of pvd(B) and the
above isomorphism, we have

EXt%}(M, Bo) >~ HOIHD(B) (M, 230)
~ DHomp(p)(By, X" M).
If n = 1, we have HomD(B)(/B%,ZM) = HomD(B)(/BE(/),EM) ~ Ext}gvo(fB:),ZM) = 0.
Suppose that n > 1. There exists a canonical triangle in D(B)
Tgle — B — /B\g — ET§_1B.

Since the spaces Hompg) (B, X" M) and Homp(p) (X B, £" M) vanish, we have
Homp(p)(Bo, £"M) =~ Homp(p) (1< 1 B, £" ' M).

We see that 7<_1 B is in D(B)<_,. Thus, the space Homp(p)(7<_1 B, " ' M) vanishes.
Therefore, Extp (M, By) vanishes. It follows that By is injective.

By Propositions [3.7.2] and the above Lemma which first proved in [48], Corollary
3.4], we get the following Theorem.

Theorem 4.2.9. [/8, Theorem 1.1] Consider the relative cluster category Cpni1(A, B)
associated with

f:B=1IL,11(By) — A= 1IIL,42(Ao, By).

a) The Higgs category H C Cp11(A, B) is equivalent to mod(E)) and the image of A in
H is an (n + 1)-cluster-tilting object.

b) We have a triangle equivalence mod(gg) = Chi1(Ao/AoeAy), where e = fo(lp,).

Remark 4.2.10. Above, we have used a different method to reprove Iyama—Oppermann’s
results in [48]. Notice that the algebra H°(II, 2(Ag, By)), which is quasi-isomorphic to
IL,.2(Ap, By), is isomorphic to the (non stable) endomorphism algebra of the (n + 1)-
cluster-titling object T given by the image of A in H. This algebra does not appear
explicitly in [48].

Example 4.2.11. Let @ be a Dynkin quiver and let Aus(kQ@) be the Auslander algebra
of the path algebra k£(Q). We consider the following canonical dg inclusion

fo: kQ — Aus(kQ).
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We know that gl.dim(kQ) = 1 and gl.dim(Aus(kQ)) < 2. Moreover, the homotopy
cofiber of f is the stable Auslander algebra Aus(kQ) = Aus(kQ)/(e), where e = f(1xg)

(see Proposition |4.2.5)).
Applying the relative 3-Calabi—Yau completion to the functor fy, we get the following

dg functor f which has a canonical left 3-Calabi-Yau structure and IT3(Aus(kQ), kQ) is
concentrated in degree 0

[ (kQ) — 3(Aus(kQ), kQ).
On the level of H°, we get a fully faithful inclusion

HO(f) : kQ = Ta(Aus(kQ), kQ),

where E@ is the preprojective algebra of () and hence is self-injective. So the Higgs
h

category H = gpr(kQ) is equivalent to mod(kQ@). By Theorem
equivalence

9, we get a triangle

mod(kQ) = C4- = perILy(Ay) /pvd(IL5(A)),

where Aj is the stable Auslander algebra Aus(kQ). Thus, we have reproved that mod(l;@)

contains a canonical cluster-tilting object (see [31]) and that mod(kQ) is triangle equiva-
lent to Cz, (see [6]).
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Chapter 5

Derived equivalences from mutations
of ice quivers with potential

5.1 Relative Calabi—Yau completions in the pseudocompact set-
ting

Let k£ be a field and R a finite dimensional separable k-algebra. Let A be an object in
PcAlge(R).

Definition 5.1.1. Let M be a pseudocompact dg A-bimodule. The completed tensor
algebra Ta(M) is defined as

Ta(M) = ﬁM@)n,
n=0

where M@’O — Aand M%" = M®AM®A . ~-</25A]\4/ for n > 1. The dg algebra structure

n-times

on Tx(M) is given by the differentials of A and M and the multiplication is given by the
concatenation product.
The derived completed tensor algebra is defined as

LTA<M) = TA(pM)

where pM is a cofibrant replacement of M as a pseudocompact dg A-bimodule. Up to
weak equivalence, it is well defined.

The ideals T4(M)>s =[], M ®" are clearly closed in Ty (M) and we have
Ta(M) = Jm Ta(M)/Ta(M)zs.

seN

Thus, the completed tensor algebra is again in PcAlge(R).

5.1.1 Relative deformed Calabi—Yau completions

Let S be another finite dimensional separable k-algebra and B an object in PcAlge(SS). Let
f be a morphism from B to A. We assume that B and A are topologically homologically
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smooth and connective. Let [] be an element in HH,,_»(f). Our objective is to define the
deformed relative n-Calabi—Yau completion of f : B — A with respect to the Hochschild
homology class [{] € HH,,—o(f).

The morphism f induces a morphism in D,.(A¢)

my: B@éeAe — A.
After taking the bimodule dual, using the smoothness of B, we get a morphism
my: A — BVGA@Z&AC.

Let = be the cofiber of m}. The dualizing bimodule O = (cof(B&x\)geAe — A))Y of fis
quasi-isomorphic to X71=.

By the definition of Hochschild homology of f, we have the following long exact se-
quence

-+ — HH, »(B) — HH,,_»(A) — HH,,_»(f) - HH,_3(B) — - - - .

Thus, the Hochschild homology class [{] € HH,,_o(f) induces an element [£5] in HH,,_3(B).
Notice that since B, A are smooth, we have the following isomorphisms:

Homp,, 5oy (5" *BY,%B) ~H*"(B& . B) = HH,_3(B),
Homp,, (1) (8" °E, B A) zHZ’”(Cone(BfX\)LBeA — A@jeA))

«H>"(Cone(B&p. B — AB:. A))
EHHH,Q(f>

Thus, the homology class [¢] induces a morphism in D,,.(A¢)
£:3" 2 5 %A
and the homology class [£p] induces a morphism in D,,.(B°)
£ ¥"?BY — ¥B.

Moreover, we have the following commutative diagram in D,.(A¢)
L (S 'BY) —— $n22
e !
Lf*(SB) —— YA.
Therefore, the morphism &g gives rise to a ‘deformation’
I, 1(B,¢B)

of II,,_1(B) = LTs(Z"2BY), obtained by adding g to the differential of IT,_;(B); the
morphism & gives rise to a ‘deformation’

IL,(A, B,§)
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of IT,,(A, B) = LT4(X"2Z), obtained by adding £ to the differential of LT (X" ?Z); and
the commutative diagram above gives rise to a morphism

fTL, (B, &) — IL,(A, B,£).

A standard argument shows that up to weak equivalence, the morphism f and the defor-
mations IT, 1(B,¢p), IL,(A, B,§) only depend on the class [{].

Definition 5.1.2. [87, Definition 3.14] The dg functor f defined above is called the
deformed relative n-Calabi—Yau completion of f: B — A with respect to the Hochschild
homology class [{] € HH,,_o(f).

Theorem 5.1.3. [§7, Theorem 3.23][15, Proposition 5.28] If [£] has a negative cyclic lift,
then each choice of such a lift gives rise to a canonical left n-Calabi—Yau structure on the
morphism R

f : anl(BafB> — Hn(Aa Bag)

5.2 Ice quiver mutations and complete relative Ginzburg alge-
bras

5.2.1 Ice quivers

Definition 5.2.1. A quiver is a tuple Q = (Qo, @1, s,t), where Qg and @), are sets, and
s,t: Q1 — Qp are functions. We think of the elements of ) as vertices and those of )y
as arrows, so that each o € @ is realised as an arrow « : s(a) — t(«). We call Q finite
if QQp and @) are finite sets.

Definition 5.2.2. Let @ be a quiver. A quiver F' = (Fy, Fy,s',t') is a subquiver of @ if
it is a quiver such that Iy C Qq, F1 € @, and the functions s’ and t’ are the restrictions
of sand t to Fy . We say F is a full subquiver if Fi = {a € Q1 : s(a),t(«a) € Fy}, so that
a full subquiver of @) is completely determined by its set of vertices.

Definition 5.2.3. An ice quiver is a pair (Q, F'), where @) is a finite quiver, F' is a (not
necessarily full) subquiver of Q). We call Fy, F} and F' the frozen vertices, arrows and
subquiver respectively. We also call Qg \ Fy and @ \ F; the unfrozen vertices and arrows
respectively.

5.2.2 Combinatorial mutations

Definition 5.2.4. (Pressland [80, Definition 4.4]) Let (Q, F') be an ice quiver and let v
be an unfrozen vertex such that no loops or 2-cycles of ) are incident with v. Then the
extended mutation ut(Q, F) = (uf(Q), uf’ (F)) of (Q, F) at v is defined to be the output
of the following procedure.

(1) For each pair of arrows o : u — v and 8 : v — w, add an unfrozen arrow [Sa] : u — w
to Q.

(2) Replace each arrow o : w — v by an arrow a* : v — u, and each arrow § : v — w by
an arrow 8* :w — v.
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(3) Remove a maximal collection of unfrozen 2-cycles, i.e. 2-cycles avoiding the subquiver
F.

(4) Choose a maximal collection of half-frozen 2-cycles, i.e. 2-cycles in which precisely
one arrow is frozen. Replace each 2-cycle in this collection by a frozen arrow, in the
direction of the unfrozen arrow in the 2-cycle.

Remark 5.2.5. Because of the choices involved in steps (3) and (4), this operation is
only defined up to quiver isomorphism. If we ignore all arrows between frozen vertices,
we obtain the usual definition of Fomin—Zelevinsky mutation (see [27, Definition 4.2]).

Example 5.2.6. Consider the ice quiver (Q, F') given by

N
1]« . 3,

where the blue part is the subquiver F.
We perform the extended Fomin—Zelevinsky mutation at the vertex 3. Then we get
the following ice quiver uf’ (Q, F) = (Q', F")

2]
[y \
e > 3.

If we preform the usual Fomin—Zelevinsky mutation at the vertex 3, we get a different
final quiver

2

<

] —— 3.

a*

5.2.3 Ice quivers with potential
Let k be a field. Let ) be a finite quiver.

Definition 5.2.7. Let S be the semisimple k-algebra Hier ke;. The vector space k(@)
naturally becomes an S-bimodule. Then the complete path algebra of () is the completed
tensor algebra

FQ = Ts(kQy).

It has underlying vector space

[Tk@1)®s,

d=0

and multiplication given by concatenation. The algebra lg@ becomes a graded pseudo-
compact S-algebra.
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Definition 5.2.8. [80, Definition 2.8] The natural grading on Ig@ induces a grading
on the continuous Hochschild homology HHO(I@) = l;@/ [/@,l@] A potential on Q
is an element W in HHO(/;@) expressible as a (possibly infinite) linear combination of
homogeneous elements of degree at least 2, such that any term involving a loop has degree
at least 3. An ice quiver with potential is a tuple (@, F, W) in which (Q, F) is a finite ice
quiver and W is a potential on Q. If F' = () is the empty quiver, then (Q, 0, W) = (Q, W)
is called simply a quiver with potential. We say that W is irredundant if each term of W
includes at least one unfrozen arrow.

A potential can be thought of as a formal linear combination of cyclic paths in @ (of
length at least 2), considered up to the equivalence relation on such cycles induced by

Q" Q] ~ Q1 * - 1Oy,

Definition 5.2.9. Let p = v, - - - @1 be a cyclic path, with each a; € ()1, and let o € Q4
be any arrow. Then the cyclic derivative of p with respect to « is

aap = Zai:aai—l SRS IR 7N B

We extend 0, by linearity and continuity. Then it determines a map HHO(I;CT)) — /;@
For an ice quiver with potential (Q, F, W), we define the relative Jacobian algebra

J(Q,F,W) = kQ/(0.W - a € Qi \ Fi).

If F=0,wecall J(Q,W)=J(Q,0,W) the Jacobian algebra of the quiver with potential
(Q,W).

Definition 5.2.10. Let @ be a quiver. An ideal of lg@ is called admussible if it is contained
in the square of the closed ideal generated by the arrows of (). We call an ice quiver with

potential (Q, F, W) reduced if W is irredundant and the Jacobian ideal of k(@) determined
by F and W is admissible. An ice quiver with potential (Q, F, W) is trivial if its relative
Jacobian algebra J(Q, F, W) is a product of copies of the base field k.

Definition 5.2.11. [80] Definition 3.7] Let (Q, F, W) and(Q’, F',W’') be i ice quivers with

potential such that Qy = @ and Fy = F{. In particular, this means that kQ and kJQ’ are
complete tensor algebras over the same semlslmple algebra S = k@)y. An isomorphism
p: kQ — k@) is said to be a right equivalence of the ice quivers with potential if

(1) ¢ls = 1g,

(2) (kF ) = kF ' where kF and kF' are treated in the the natural way as subalgebras
of kQ and kQ/ respectively, and

(3) (W) equals W’ in HHO(kQ’).

The following lemma provides a normal form for irredundant potentials, up to right
equivalence.

132



Lemma 5.2.12. [80, Lemma 3.14] Let (Q, F, W) be an ice quiver with potential such that
W is irredundant. Then W admits a representative of the form

/W = sz\i1 ;B + Zfi]\/pfl (azﬁz + Oéipi) + Wy (5.1)

for some arrows a; and f3; and elements p; € m?, where

(1) o is unfrozen for all 1 < i < N, and B; is frozen if and only if i > M. Then for
1 <1< M, the a;8; are unfrozen 2-cycles and for M +1 < i < N, they are half
frozen 2-cycles,

(i1) the arrows oy and B; with 1 < i < M each appear exactly once in the expression ,
(111) the arrows ; for 1 <i < N, do not appear in any of the p;, and

() the arrow o; and B;, for 1 < i < N, do not appear in the term Wy, and this term
does not contain any 2-cycles.

The following result allows us to replace any ice quiver with potential by a reduced
one, without affecting the isomorphism class of the Jacobian algebra.

Theorem 5.2.13. [80, Theorem 3.6] Let (Q, F, W) be an ice quiver with potential. Then
there ezists a reduced ice quiver with potential (Qreq, Fred, Wrea) such that J(Q, F,W) =

J(Qred; Fredu Wred)-

Proposition 5.2.14. [80, Proposition 3.15] Let (Q, F,W') be an irredundant ice quiver

with potential. Then the ice quiver with potential (Qreq, Freas Wiea) from Theorem
is uniquely determined up to right equivalence by the right equivalence class of (Q, F,W).

Definition 5.2.15. [80, Definition 3.16] Let (Q, F, W) is an irredundant ice quiver with
potential. We call (Qyeq, Fred, Wreq) from Theorem [5.2.13| the reduction of (Q, F,W).
5.2.4 Algebraic mutations

Let (Q, F, W) be an ice quiver with an irredundant potential. Let v be an unfrozen vertex
of ) such that no loops or 2-cycles of () are incident with v.

Definition 5.2.16. [80, Definition 4.1] The ice quiver with potential fi,(Q, F, W), called
the pre-mutation of (Q, F,W) at v, is the output of the following procedure.

(1) For each pair of arrows v : u — v and 5 : v — w, add an unfrozen ‘composite’ arrow
[Ba] :u— w to Q.

(2) Reverse each arrow incident with v.

(3) Pick a representative W of W in kQ such that no term of W begins at v (which is
possible since there are no loops at v). For each pair of arrows «a, 8 as in (1), replace

each occurrence of Sa in W by [fal, and add the term [Sa]a*[*.
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Let us write (Q', F',W') for fi,(Q,F,W). It is clear that F’ equals F' and the new
potential W’ is also irredundant, since the arrows [Sa] are unfrozen, but it need not be
reduced even if (Q, F,W) is. We define p,(Q, F, W) as replace the resulting ice quiver
with potential fi,(Q, F, W) by its reduction, as in Theorem this being unique up
to right equivalence by Proposition [5.2.14 We call yu, the mutation at the vertex v.

Theorem 5.2.17. a) [80, Proposition 4.2] The right equivalence class of pu,(Q, F,W)
is determined by the right equivalence class of (Q, F,W).

b) [80, Theorem 4.3] Let (Q, F, W) be a reduced ice quiver with potential and v € Qo \ Fy
an unfrozen vertex. Then u2(Q, F, W) is right equivalent to (Q, F,W).

Example 5.2.18. Consider the following ice quiver with potential (Q, F, W)

where F' is the full subquiver on {1,3} C @y and the potential W = yBa. Then the
pre-mutation of (Q, F, W) at vertex 2 is given by the following ice quiver with potential

where F is the subquiver with vertex set Fyy = {1,2} and arrow set F; = {7} and the new
potential is jio(W) = a*8*[Ba] + v[Ba]. This ice quiver with potential is not reduced.
The mutation us(Q, F, W) is given by its reduction, which is the ice quiver

S
(12(Q), p2(F)) = ;\ %

with potential psW = g*[fala’*.

Theorem 5.2.19. [80, Proposition 4.6] Let (Q, F, W) be an ice quiver with an irredundant
potential and v an unfrozen verter. If (1,Q, p,F) has no 2-cycles containing unfrozen
arrows, then the underlying ice quiver of u,(Q,F,W) agrees with pf(Q,F) defined in
Definition |5.2.4].
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5.2.5 The complete relative Ginzburg algebra and the Ginzburg functor

Definition 5.2.20. Let (Q, F, W) be a finite ice quiver with potential. Let Q be the
graded quiver with the same vertices as () and whose arrows are

e the arrows of @,
e an arrow a” : j — 1 of degree —1 for each unfrozen arrow a,
e aloop t; : © — i of degree —2 for each unfrozen vertex 1.

Define the complete relative Ginzburg dg algebra T, (Q, F, W) as the dg algebra whose

—

underlying graded space is the completed graded path algebra k@ Its differential is the
unique k-linear continuous endomorphism of degree 1 which satisfies the Leibniz rule

d(uowv) =d(u)ov+ (=1)Puod(v)
for all homogeneous u of degree p and all v and takes the following values on the arrows
of ():
e d(a) = 0 for each arrow a of @Q,
e d(a") = 9,W for each unfrozen arrow a,

o d(ti) = €i(3_,cq,la, a’])e; for each unfrozen vertex i, where ¢; is the lazy path corre-
sponding to the vertex 1.

Similarly, we define the complete derived preprojective algebra IIy(F') for any finite
quiver F'. Let F' be the graded quiver with the same vertices as F' and whose arrows are

e the arrows of F,
e an arrow a : j — ¢ of degree 0 for each arrow a of F',
e a loop r; : @ — i of degree —1 for each vertex ¢ of F.

Define the complete derived preprojective algebra IIy(F') as the dg algebra whose under-

lying graded space is the completed graded path algebra kE. Tts differential is the unique
k-linear continuous endomorphism of degree 1 which satisfies the Leibniz rule

d(uowv) =d(u) ov+ (—1)Puod(v)
for all homogeneous u of degree p and all v, and takes the following values on the arrows
of F":
e d(a) = 0 for each arrow a of F,
e d(a) = 0 for each arrow a in F,
o d(r;) = €i(Y e [a, a])e; for each vertex i of I, where e; is the lazy path correspond-

ing to the vertex .
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Via the deformed relative 3-Calabi—Yau completion of G : EF < k/@ with respect to
the potential W, we get a dg functor

G II(F) > Tq(Q, F,W).
We call it Ginzburg functor. It is given explicitly as follows:
e G,.(i) =i for each frozen vertex i € Fy,
e G,.(a) = a for each arrow a € I},
e G,y(a) = —0,W for each arrow a € F,
o Gra(ri) = €i(Dneqi\m [a: a’])e; for each frozen vertex i € Fy.
By Theorem we get the following Proposition.

Proposition 5.2.21. The Ginzburg functor Gre : a(F) — T'q(Q, F, W) has a canon-
ical left 3-Calabi—Yau structure.

The following lemma is an easy consequence of the definition.

Lemma 5.2.22. Let (Q, F, W) be an ice quiver with potential. Then the Jacobian algebra
J(Q, F,W) is the 0-th homology of the complete Ginzburg dg algebra T',.o(Q, F, W), i.e.

J(QaFa W) = HO(Frel(Q7F> W))

Moreover, the complete preprojective algebra kF is the O-th homology of the complete
derived preprojective algebra Ily(F'), i.e.

kF = H(TIy(F)).

Let (@, F, W) be an ice quivers with potential. Let I',; = I',)(Q, F, W) be the asso-
ciated complete relative Ginzburg dg algebra. Let (Qeq, Freq, Wreq) be the reduction of

(Q, F,W) as in Theorem [5.2.13]
Lemma 5.2.23. There is an irredundant potential W' such that T (Q, F, W) 2 T (Q, F, W').

Proof. We collect all terms containing only frozen arrows. Then there is a unique
decomposition W = W’ + Wg in which W’ is irredundant and Wy is a potential on F.
Since 9,Wp is 0 for any arrow a € Q1 \ F, it is clear that I',(Q, F, W) is isomorphic to
L.a(Q, F,W).

Lemma 5.2.24. Let (Q', F',W') be another ice quivers with potential. We denote by
I’ L.a(Q, F',W') the associated complete relative Ginzburg dg algebra. Assume that

rel —
(Q, F,W) and (Q', ', W) are right-equivalent. Then T',.; and I'., are isomorphic to each
other.

Proof. The proof is the same as that of [64, Lemma 2.9]. vV

Lemma 5.2.25. There exists a quasi-isomorphism between the complete relative Ginzburg
algebras

Frel(@? Fa W) — Frel(@reda Freda Wred)-
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Proof. By Lemma [5.2.23] we can assume that W is irredundant. By Lemmas [5.2.12
and [5.2.24] we can assume that W has an expression of the form ([5.1)) satisfying conditions
(1)—(iv), i.e. the potential W can be written as

W = Zf\il a;Bi + Z?LMH(%B@' + a;p;) + W,

as in . Take @' to be the subquiver of () consisting of all vertices and the arrows
a;, B for i < M and W' = Zf‘il a; ;. Then the quiver with potential (@', W’) is trivial.
Let Q" be the subquiver of ) consisting of all vertices and those arrows that are not
in Q). Let W' =W -W'= Zf\;MH(aiﬁi + a;p;) + Wi. We see that W” does not involve
any arrows of @)’. Thus, this defines a potential on Q”. As in [64, Lemma 2.10], we see
that the canonical projection 'y (Q, F, W) — I'(Q", F,W") is a quasi-isomorphism.
Simplifying the expression for W” and relabeling arrows for simplicity, we have

K
W” = Z aiﬁi + Wred7
=1

where each «; is unfrozen and each f; is frozen and does not appear in any term of W,..4.
This is ensured by the condition (iii) in Lemma [5.2.12]

By the proof of [80, Theorem 3.6], the ice quiver (Q™?, F*?) is obtained from (Q”, F')
by deleting ; and freezing «a; for each 1 < ¢ < K. Then the ice quiver with potential
(Qreds Freas Wiea) is the reduction of (Q, F, W).

Let M,.q be the pseudocompact dg kQj-bimodule generated by
Sred = {7,071 |7 € (Qrea)1, 0 € (Qrea)1 \ (Frea)1,7 € (Qrea)o \ (Frea)o}-
Let M"” be the pseudocompact dg k/@)’—bimodule generated by
S" = Speq U{Bi,a) |1 <i < K},

By the construction of relative Ginzburg dg algebras, the underlying graded categories
have the forms

]-_‘rel(Qredu Freda Wfred) - Tk/Q\g (Mred)
and
Frel<Q”> F, W”) = T@<M”>'

It is easy to see that we have an inclusion i : M,.q — M" of dg IC/CQ\g—bimodules.
Then 4 induces a fully faithful morphism i : Tyei(Qreds Frea, Wred) <= Trea(Q”, F, W) in

PCAlgC(If/@)’)- We define another dg kQf-bimodule morphism ¢ : M" — M, .4 as follows:
e ©(y) =~ for any arrow 7 in QY such that v # §; with 1 <i < K,
(7Y) =+ for any arrow « in Q7 \ Fj such that v # a; with 1 <i < K,
o (i) = —0o;Wyeq for each 1 <i < K,
(

/) =0 for each 1 <i < K,
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e ©(t;) = t; for each unfrozen vertex i.

Then ¢ induces a morphism f : T (Q", F, W") = Tret(Qreds Frea, Wreq) in PcAlgc(l;Q\g).
To see that f is a quasi-isomorphism, it is enough to show that f is a homotopy inverse
of 7.

It is clear that we have foi = 1. We define a continuous morphism h : I',.(Q", F, W) —
e (Q7, F,W") of graded k-modules which is homogeneous of degree -1, satisfies

h(zy) = W) f(y) + (=1)""zh(y)
for all z € I‘ff;l)(Q”, FW"), y € Tra(Q", F,W") and
e h(B;) =a) foreach 1 <i < K,
e /() = 0 for all other arrows J.

Then we have 1 — i o f = d(h). Thus, the morphism f is a homotopy inverse of i. Vv

5.2.6 Cofibrant resolutions of simples over a tensor algebra

Let be a finite graded quiver and k:Q the complete path algebra. Let m be the two-sided

ideal of kQ generated by arrows of (). Let A = (kQ d) be a pseudocompact dg algebra
whose differential takes each arrow of () to an element of m.

For a vertex i of @), let P, = ¢;A, and let S; be the simple module corresponding to i.
Then we have a short exact sequence in C(A)

0 — ker(m) — P, 5 S; — 0,
where 7 is the canonical projection from F; to S;. More explicitly, the graded A-module
ker(m) decomposes as
ker(m) = @ PP ()

PEQ1:t(p)=i

with the induced differential. Thus, the simple module S; is quasi-isomorphic to
P = Cone(ker(m) — P,),
whose underlying graded space is
B o, PP
pPEQ1:t(p)=i

By [64, Section 2.14], the dg module P is a cofibrant dg A-module and hence it is a
cofibrant resolution of S;. In particular, the simple dg module S; belongs to the perfect
derived category per(A).
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5.3 Main results

5.3.1 Compatibility with Morita functors and localizations

Let R be a finite dimensional separable k-algebra. Let J : A — A’ a morphism in
PcAlge(R). We say that J is a localization functor if the derived functor J* induces an
equivalence

J*: D(A)JN = D(A')

for some localizing subcategory N of D(B). Equivalently, the restriction functor J, :
D(A’) — D(A) is fully faithful.

We say that J : A — A’ is a Morita functor if restriction functor J, is an equivalence
from D(A’) to D(A). Equivalently, the derived functor J* is an equivalence.

Theorem 5.3.1. Let S be another finite dimensional separable k-algebra and B an object
in PcAlge(S). Let I : B — B’ be a localization functor in PcAlge(S) and J : A — A’
a localization functor in PcAlge(R). Suppose that we have morphisms f : B — A and
f': B"— A’ such that the following square commutes in the category of dg k-algebras

B ! A (5.2)

| |

p— 1

Assume that B, A, B’ and A’ are smooth and connective. Let [§] = [(s€p,£a)] be an
element of HH, o(f) and [£'] = [(sp,&a’)] the element of HH, o(f") obtained as the
image of [£] under the map induced by I and J. Then we have the following commutative
diagram in the category of dg k-algebras

B T0, (B, &5) — L~ TL,(A, B.€)

L

B'—— Hn—1<B/a gB’) L Hn(A/> B, 5/)

where I', J' are also localization functors. Moreover, I' (respectively, J') is a Morita
functors if I (respectively, J) is.

Proof. By [62, Thm 5.8], there exists a canonical localization functor I’ such that
the leftmost square above commutes and I’ is a Morita functor if I is. We use the same
method as in [62, Thm 5.8] to show the existence of J' and the commutativity of the
rightmost square.

Let Pg, P4, Py and Pp be the canonical bar resolutions of B, A, B’ and A’ as
pseudocompact bimodules over themselves respectively (see [10, Lemma B.2]). We denote
by jy o f*(Pg) = Pa, jy : f*(Pp) — Pu, jr : I"(Pg) — Pp and j; : J*(Pa) — Pa
the canonical morphisms induced by f, f’, I and J respectively. We denote by k; :
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Pp — I.(Pp/) the canonical morphism induced by the adjunction (I*,I,). Then we have
a commutative diagram in Cp.(A®)

iy . ly -
Py f(Py) Sy (5.3)

; o]
J.

()Y Jelp) Y
TPy == J.["(PY) = [*1.(Py) —= L.(Ep),

where = is the mapping cone of ji and =y is the mapping cone of j..
By the commutative diagram ([5.2]), we have the following commutative diagram of
Hochschild complexes

HH(B) —L—~ HH(A) — HH(f)

K | l
HH(B") L~ HH(A" —— HH(f).
Thus, we have {gr = I(Ep) and 40 = J(€a).

The Hochschild homology classes &g and €4 yield the following two commutative
squares in Cp.(B°) and C,.(A°) respectively

py—2 . p (5.4)
1.(Py) L L(BY),
py— .4 (5.5)

TP e g,

Then we get the following commutative diagram in C,.(A°)

.

Jo(Ep) == J(A).

Combining the commutative diagrams (5.3)), (5.4]), (5.6)) and the proofs in [62, Theorem
4.6, Theorem 5.8|, we obtain the following commutative diagram in the category of dg
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k-algebras.

BC— =TI, \(B,&p) )~ TL,(A, B,£)
| o
B =TI, (B, ép) LTI, (A, B, €.

It remains to be shown that the restriction functor J. : D(IL, (A, B',¢{')) — D(IL, (A, B,¢))
induced by J' is fully faithful.

Let M be a right IT, (A", B’,£')-module and suppose that M is cofibrant. It is given
by its underlying right A’-module and a morphism of graded modules homogeneous of
degree 0

A M®Spn—2 —= M

such that (d\)(m ®@ x) = m&'(x) for all m € M and x € Zp[n — 2|. Since IL,(A’, B',¢') is
also cofibrant as right A’-module, the underlying A’-module of M is also cofibrant. Then
we have an exact sequence of cofibrant I, (A", B', ¢')-modules

04>M®A/ Ef/[n— 2] X A TA/(Ef/[n— 2])4OC>M®A/ TA/(Ef/[n—2])—>M—>O

where a(m® z ® u) = mer @ u —m @ zu.
This shows that the cone over the following morphism

M ®A’ Ef/[n — 2] ®A’ TA/(Ef/[’n, - 2]) *OZ)M ®A’ TA/(Ef/[TL — 2])

is quasi-equivalent to M. Let N be another right IT, (A", B’, {')-module. Then Homp(rr, (4,5 ¢y (M, L)
can be computed as the cone of the following morphism of dg k-modules

HOIIIA/(M, N) *>HOII1A/(M X A Ef/[n — 2],N)

Similarly, Hompx, (4,5, (J. (M), J.(M)) can be computed analogously. Thus, it suffices
to check that for all N, the dg functor J induces the following bijections

HOIH'D(A/)(M, N) 4>HOH1D(A)(J*<M), J*(N))
and
HOIIID(A/)<M ®ﬁ/ Ef/[n - 2], N) —— HOIHD(A)(J*(M) ®£ Ef[n — 2], J*(N))

The first bijection follows from the full faithfulness of J.. For the second one, it is enough
to show that the following two morphisms are bijections

HOHlD(A/)<M ®£/ A/V, N) — HOIHD(A)<J*(M) ®£ AV, J*(N))

Hompan (M &%, f*(BY), N) — Hompa)(J.(M) @% f*(BY), J.(N)) .
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In deed, this is a consequence of the full faithfulness of J, and of the following formulas
(see [62, Proposition 3.10])

J(J.(M) @5 AY) = M % AV, BY = I"(BY)
and

J(J.M ®F f*(BY)) = M &% J*(f*(BY)).

If J is a Morita functor, by part (e) of [62, Proposition 3.10], the morphisms j} and
kY in diagram are quasi-isomorphisms. Then we see that r : =y — J,(Ep) is a
quasi-isomorphism in C,.(A¢). It induces quasi-isomorphisms between the tensor powers

for all n > 1. Thus, r and J yield a morphism
J IL,(A,B,§) —=11,(A', B, £)

which is a quasi-equivalence. Thus, the morphism J’ is a Morita functor.

5.3.2 Derived equivalences

Let (Q, F,W) be a finite ice quiver with potential. For a vertex ¢ of @, let P, = eik/@.
Let v be an unfrozen vertex of () such that no loops or 2-cycles are incident with v. Let

T = @z P; ®T,, where T, is the mapping cone of the following morphism in D(lg@)

r— P p,

a€Qq:s(a)=v

where the sum is taken over all arrows a : v — j and the corresponding component
of the map from P, to the sum is the left multiplication by a. If there are no arrows
starting at v, the direct sum is zero. It is easy to see that T' is a silting object in

D(kQ). When v is the source of at least one arrow, the object T, is quasi-isomorphic to

coker(P, — P _, D). Then T is a tilting module over k(Q).

Theorem 5.3.2. [57] Let A be a dg algebra and T' an object of D(A). Denote by A’ the
dg algebra RHom® (T, T). Denote by (T)4 the thick subcategory of D(A) generated by T
Then the functor RHom%(T,7) : D(A) — D(A’) induces a triangle equivalence

a€Qq:s(a)

RHom%(T,7?) : (T)a — perA’.

Now let A’ be the pseudocompact dg algebra RHom (T T). Since T is a silting object
in D(kQ), by the above Theorem , we have a triangle equivalence

L _
?@a T :perA’ — (T) 5 ~ per kQ.
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Thus, the pseudocompact dg algebras A" and k/@ are Morita equivalent.
Let A be the full dg subcategory of ng(kQ) whose objects are T, and the P;, i # v.

Then A is Morita equivalent to kQ. Let A’ be the full dg subcategory of Cgf (A") whose
objects are the P/ =¢;A’, i € Qy. Then A’ is equivalent to A’. We define a dg functor

J: A — A
as follows:
e For k # v, we put J(P)) = Py,
e For k = v, we put J(P)) =T,.
Then J is a Morita functor. It induces an isomorphism HCy(A") ~ H Co(k/@). We denote
by W' € HCy(A’) the element corresponding to W € HCy(kQ).
Let B be the full dg subcategory of C2¢(kF) whose objects are P, = e;kF, i € F. Since

the vertex v is unfrozen, we have dg inclusions G : B <— A and G’ : B — A’. Moreover,
the following diagram commutes

Applying the deformed relative 3-Calabi-Yau completion to the above diagram with
respect to the potentials W/ and W = J(W’), we get the following commutative diagram
of pseudocompact dg algebras

II;(A, B, W)
G;«el
HQ(F) J
]-_‘rel(Q7 F) W)

By Theorem [5.3.1] the dg functor J is a Morita functor.

We define the quiver @)’ to be obtained from the quiver of A" by adding a new arrow
pr: j — i for each minimal relation r : i — j. We defined a potential Wi on Q" by Wy =
Yp,r and a potential Wy by lifting W’ along the surjection kQ’ — A’ taking all arrows
pr to zero (see [62, Section 7.6]). Thus, the ice quiver with potential (@', F, Wy + W5)
is the pre-mutation of (Q, F, W) at the vertex v, i.e. i,(Q,F,W) = (Q', F,W; + W5).
The pseudocompact dg algebra Il3( A", B, W) is quasi-isomorphic to the complete relative
Ginzburg algebra I, (Q', F, W, + W3) (see [62, Theorem 6.10]). Therefore, we have the
following theorem which generalizes the result in [64, Theorem 3.2].
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Theorem 5.3.3. Let 'y = Lot(Q, F, W) and T, = T (Q', F, W' = Wy + W) be the
complete Ginzburg dg algebras associated to (Q, F,W) and [i,(Q, F, W) respectively. For

- / /
a vertex i, let I'; = e,y and I'; = ;1) ;.

a) There is a triangle equivalence

o, = J" DI

rel

) - D<Frel)7

which sends the the I'; to T'; for j # v and to the cone over the morphism

FU — @ Ft(a)

Jor j =wv, where we have a summand Iy for each arrow o of Q with source v and
the corresponding component of the map is the left multiplication by «. The functor

O restricts to triangle equivalences from per(I'.,,) to per(I'ye) and from pvd(T7,,)
to de(Frel)'

b) Let T7¢ respectively T be the complete Ginzburg dg algebra associated with the
reduction of (Q,F,W) respectively the reduction u,(Q,F,W) = (Q",F", W") of
[y (Q, F,W). Then functor ®, yields a triangle equivalence

@t D) — DT,

rel

which restricts to triangle equivalences from per(Tr5%) to per(T7¢4) and from pvd(T7<d)
to pvd(T7ed).

rel

c¢) The following diagram commutes

D(I‘;“el)
(C:;el)a‘<
D(I1(F)) 2
(Grel)*
D(T,er).

d) Since the frozen parts of ,(Q, F,W) = (Q", F",W") and of ji,(Q, F, W) = (Q', F, W’)
only differ in the directions of the frozen arrows, we have a canonical isomorphism
between ly(kF) and Tlo(EF"). It induces a canonical triangle equivalence

can : D(IL(F)) — D(IL(F")).
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Moreover, the following diagram commutes up to isomorphism

D(7s")
(G'Irel)*

D(IL(F)) S
(Grel)*

D(L7e).

Remark 5.3.4. Instead of using the silting object T' = @;.,P; ® T,, we can use 1" =
@, P; ® T, where T} is the shifted cone

=S @ Py — PR
BEQ1;t(B)=v

where the sum is taken over all arrows 3 : 7 — v and the corresponding component of
the map from P; to P, is the left multiplication by 3. Then 7" is also a silting object
in D(lg@) When v is the target of at least one arrow, the object 77 is isomorphic to
ker(P, = @ac,.s(a)=0 7). Then T is a tilting module over lg@

There is also a triangle equivalence ®_ : D(I".,) — D(T,;) which, for j # v, sends
the I'; to I'; and for j = v, to the shifted cone

SN P Tug — T,
BEQ1;t(B)=v

where we have a summand I'y() for each arrow 3 of ) with target ¢ and the corresponding
component of the morphism is left multiplication by 5. Moreover, the two equivalences
®, and ®_ are related by the twist functor tg, with with respect to the 3-spherical object
Sy, i.e. & =tg, o P,. For each object X in D(T,), the object tg, (X) is given by the
following triangle

RHom(S,, X) ®; Sy, = X — ts,(X) = XRHom(S,, X) ®; S,.

Definition 5.3.5. Let (Q, F, W) be a ice quiver with potential. The boundary dg algebra
is defined to be the dg subalgebra of I',;(Q, F, W)

Bd(Q7 F, W) - REndrr&l(QvFvw)(Gjel(HZ(F>)) = eFFTel(Qﬂ F, W)€F7
where ep = ), €; is the sum of idempotents corresponding to the frozen vertices.

Corollary 5.3.6. The boundary dg algebra is invariant under the mutations at unfrozen
vertices. Moreover, if T'.(Q, F, W) is concentrated in degree 0, then the boundary dg
algebra Bd(Q, F, W) is also concentrated in degree 0.

Proof. This follows from the Definition of boundary dg algebra and part (c) of Theo-
rem [5.3.3
v
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5.3.3 Stability under mutation of relative Ginzburg algebras concentrated in
degree 0

Let (Q, F, W) be an ice quiver with potential. Let I',.; be the complete Ginzburg algebra
associated with (Q, F, ). For each vertex i of (), we denote by I'; the cofibrant dg I,
module associated with i. Recall that the relative Jacobian algebra J. = J(Q, F, W) is
the 0-th homology of T, (Q, F, W).

For each vertex i of (), we denote by .S; the associated simple module and by P; = ¢;J,.¢;
its projective cover. Let v be an unfrozen vertex. Consider the complex 7}, which is the
sum of the P;, j # v, concentrated in degree 0 and of the complex

0— P, i> @ Pt(a) — 0,
a€Qq:s(a)=v

where P, is in degree -1 and the components of ¢ are the left multiplications by the
corresponding arrows.

Theorem 5.3.7. [64, Theorem 6.2] Suppose that the complete Ginzburg algebra Ty =
L.(Q, F,W) has its homology concentrated in degree 0. Then T, is a tilting object in
the perfect derived category per(J.) =~ per(Ty,e). Thus, the complete relative Ginzburg
algebra T, associated with p,(Q, F, W) still has its homology concentrated in degree 0
and then Bd(u,(Q, F,W)) is concentrated in degree 0.

Proof. The proof follows the lines of that of [64, Theorem 6.2]. There is a decompo-
sition of J,.¢ as right J,..,-module

Jrel:Pv®‘ ;9¢ PZ
1€Q0:11FV

By the construction of 77, we have a map ¢ : P, — @atezs(a):v Py). We set B =
@ate;s(a):U Py and Ty = @iEQO#U P;. Then by [64], Proposition 6.5], we have to check
that the map ¢ : P, — B satisfies the following conditions

1) B belongs to add(7});

2) the map ¢* : per(L',) (B, T1) — per(L',¢)(P,, T1) is surjective and

3) the map c, : per(Lyq) (T, P,) — per(T,e) (11, B) is injective.

Condition 1) holds since B belongs to add(7}). Condition 2) holds since ¢ : P, — B
is a left add(T})-approximation. Finally, in order to show condition 3), it is enough to
show that ¢ is injective. Since the homology of I',.; is concentrated in degree 0, the

L
functor ? ®r,_, Jre is an equivalence from per(I',.;) to per(.J.,) whose inverse is given
by the restriction along the projection morphism I',.; — J.;. Applying the equivalence

L
?®r,., Jre to the cofibrant resolution Pg, — S, constructed in subsection [5.2.6 we obtain
a projective resolution of S,

0P, >B—B —-P,—S,—0.
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Thus, the map c is injective. vV

Let QFF = Qo \ Fo and Q7' = Q1 \ F1. Let S be the semisimple k-algebra Hz‘er ke;.
We denote by 5™, V and V™ the S-bimodules generated by Qf', @)1 and Q7" respectively.
Let V™ be the dual bimodule Homge (V™ S€).

We have a canonical short exact sequence of I',..-bimodules

0— ker(m) & I‘Tel ®S Frel ﬂ> Frel — 07

where the map m is induced by the multiplication of IT',.;. The mapping cone Cone(p) of
p is a cofibrant resolution of I',.; as a bimodule over itself.

Then J,¢ ®r,,, Cone(p) ®r,,, Jre is the following complex and we denote it by P(J;¢;)
(see [79, pp. 10])

rel

00— Jra Qs QR™ Qg Jral s Jrel @5 QV™ Qg Jyrel s J ®s QV Qg Jre M J R Jpeg — 07
where mgs, mo and my are given by as follows:
mi(rRay)=ra®y—rQay

and
my(z @ty = Y wa®d@y— Y b Dby
at(a)=t; b,s(b)=t;

For any path p = a,, - - - a; of kQ, we define

Aa(p) = Z A Qip1 @ a3 @ Aj—1 -+ - aq,

and extend by linearity to obtain a map A, : kQ — J,a ®skQ1®pg Jre;. Then myo is given
by:
my(r @ a" @ y) =Y w0V )y.
be@n

There is a canonical morphism P(J,;) — Jye, which is induced by the multiplication
map m in Jy,g

0—— Jrel Xs QR™ Ks Jrel e Jrel Xs @V Ks Jrel R Jrel Xs QV Xs Jrel s Jrel Ks Jrel —0

l | | |

0 0 0 Jrel~
(5.7)

Remark 5.3.8. When F = (), the complex defined above is the complex associated
to (Q, W) defined by Ginzburg in [38, Section 5]. In general, it is exactly the complex
P(J,¢) defined by Pressland in [79, pp. 10]. And it also has already appeared in work of
Amiot—Reiten—Todorov [6, Propostion 2.2].

Lemma 5.3.9. If the complex 15 exact, then I'.o 1s concentrated in degree 0.
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Proof. Let D,.(I';e) be the pseudocompact derived category of I',;. For each vertex
i, we denote by S; the simple I',..;-module (or J,-module) associated with . By Proposi-
tion [1.3.11] the opposite category Dye(Tye)? is compactly generated by {S;|i € Qo} and
similarly for D,.(Jy)?. The restriction functor

R: Dpc(Jrel) — Dpc<rrel)
takes S; to S;. Thus, we can conclude that R is an equivalence if it induces isomorphisms
EXt*Jrel(Si’ S]) = EXt;ml(Si, Sj), VZ,j c QO.

If the complex (/5.7 is exact, then P(J,) is a projective resolution of J,; as a bimodule
over itself. Thus, for each vertex i € Qy, S; ®,,., Py,., is a cofibrant resolution of S; as a
right J,..;-module. So we have:

RHoerez(Si> SJ) = Hoerez<S AN SJ)
 Homy (S; @, Conelp) Gr,. Ty, S5)
= Homr, ,(S; ®r,,, Cone(p), Hom (Jrel7 Sj))
= Homrm(si ®I‘7el Cone(p)> S])

= RHOII]FTGZ (SZ7 Sj)

Thus, the restriction functor R is an equivalence. It follows that I',.; is concentrated in
degree 0. v

Example 5.3.10. Let D be a Postnikov diagram in the disc (see [79]). We can asso-
ciate to D an ice quiver with potential (Qp, Fp, Wp) (see [19, Definition 2.3]). By [79,
Proposition 3.6] and Lemma the corresponding complete relative Ginzburg algebra
I'a(Qp, Fp,Wp) is concentrated in degree 0. Thus, the associated boundary dg alge-
bra Bd(Qp, Fp, Wp) is also concentrated in degree 0. Hence the boundary dg algebra is
invariant under the mutations at the unfrozen vertices.

If D has the property that every strand has exactly k boundary regions on its right,
then each strand must terminate at a marked point k steps clockwise from its source. Such
D is called a (k,n)-diagram (see [7]). In this case, Corollary gives a different proof
of Baur-King—Marsh’s result 7, Corollary 10.4] which says that the boundary algebra is
independent of the choice of Postnikov diagram D, up to isomorphism.

5.4 Mutation at frozen vertices

Let (@, F') be an ice quiver. Let v be a frozen vertex.

Definition 5.4.1. We say that v is a frozen source of @) if v is a source vertex of F' an
no unfrozen arrows with source v. Similarly, We say that v is a frozen sink of Q) if v is a
sink vertex of F' and no unfrozen arrows with target v. For two vertices ¢ and 7, we say
that they have the same state if they are both in Fy or Qg \ Fy. Otherwise, we say that
they have different state. Similarly, for two arrows in (), we say that they have the same
state if they are both in F} or @ \ F}. Otherwise, we say that they have different state.
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5.4.1 Combinatorial mutations

Mutation at frozen vertices first appears in recent work of Fraser—Sherman-Bennett on
positroid cluster structures [29].

Definition 5.4.2. Let v be a frozen source or a frozen sink of Q. The mutation u?(Q, F) =
(ul(Q), ub (F)) of (Q, F) at v is defined to be the output of the following procedure.

(1) For each pair of arrows o : u — v and 5 : v = w, add an unfrozen arrow [fa] : u — w
to Q.

(2) Replace each arrow « : u — v by an arrow o : v — u of the same state as o and
each arrow 8 : v — w by an arrow * : w — v of the same state as [3.

(3) Remove a maximal collection of unfrozen 2-cycles, i.e. 2-cycles avoiding the subquiver
F.

(4) Choose a maximal collection of half-frozen 2-cycles, i.e. 2-cycles in which precisely
one arrow is frozen. Replace each 2-cycle in this collection by a frozen arrow, in the
direction of the unfrozen arrow in the 2-cycle.

Remark 5.4.3. The procedure in the Definition above is the same as in Pressland’s
Definition [(5.2.4]

Example 5.4.4. Consider the following ice quiver (@, F)

[1] <
%
7N

> 4],

where the frozen subquiver F' is drawn in blue. The frozen vertex 3 is a frozen source.
Performing the mutation at vertex 3, we get the following ice quiver

<

d

(leF/): d
EIR [4].

The frozen vertex 2 is a frozen source. Performing the mutation at vertex 2, we get the

(@Q, F) =
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following ice quiver

[=]
!
[]

(QII’ F//) —

3] < 4.

Surprisingly, after performing the mutation u5 (@, F) at the unfrozen vertex 5, we get
the same ice quiver (Q”, F"), i.e. uf(Q,F) = pf(pf(Q, F)).

5.4.2 Algebraic mutations

Let (Q, F, W) be an ice quiver with an irredundant potential. Let v be a frozen source or
a frozen sink.

Definition 5.4.5. [80, Definition 4.1] The ice quiver with potential fi,(Q, F, W), called
the pre-mutation of (Q, F,W) at v, is the output of the following procedure.

(1) For each pair of arrows o : u — v and 8 : v — w, add an unfrozen ‘composite’ arrow
[Ba] :u— w to Q.

2) Replace each arrow « : © — v by an arrow by an arrow o : v — u of the same state
Y Y
as « and each arrow 3 : v — w by an arrow 3* : w — v of the same state as (.

(3) Pick a representative W of W in kQ such that no term of W begins at v (which is
possible since there are no loops at v). For each pair of arrows «, § as in (1), replace

each occurrence of fa in w by [Ba], and add the term [Sa]a*(*.

Let us write (@', F', W) for f1,(Q, F, W). It is clear that the new potential W’ is also irre-
dundant, since the arrows [Sa] are unfrozen, but it need not be reduced even if (Q, F, W)
is. We define 1, (Q, F, W) by replacing the resulting ice quiver with potential fi,(Q, F, W)
by its reduction, as in Theorem [5.2.13] this being unique up to right equivalence by
Proposition We call p,, the mutation at the vertex v.

Example 5.4.6. Consider the following ice quiver (Q, F)
"
N A
g 5 /
DN
>[4,

where the blue subquiver represents the frozen subquiver F'. We consider the potential

W = cba — gea + hie — fbh.
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The vertex 3 is a frozen source. The pre-mutation at vertex 3 is the following ice quiver

X”/
/\

where the blue subquiver represents the frozen subqulver ,u3(F ) The new potential is
given by p4(W) is given by

ps(W) = cba — [gela + hlie] — foh + [ge]e*g* + [ie]e*i*

This ice quiver with potential is not reduced. Then p3(Q, F, W) is given by its reduction,
which is the following ice quiver with potential

—

(13(Q), pa(F), us(W)) = g 5 !

4],

where the blue subquiver represents the frozen subquiver pz(F') and the new potential
wus(W) is zero. We see that the underlying ice quiver of us(Q, F,W) is the same as

14 (Q, F) in Example [5.4.4]

Theorem 5.4.7. [80, Proposition 4.6] Let (Q, F, W) be an ice quiver with potential and
v a frozen source or a frozen sink. If (p,Q, pF) has no 2-cycles containing unfrozen
arrows, then the underlying ice quiver of u,(Q, F,W) agrees with ur(Q, F) defined in

Definition[5.4.3

5.4.3 Categorical mutations

Let (Q, F, W) be an ice quiver with potential. Let v be a frozen source. Write (@', F', W’) =
fp(Q, F,W). Let I'vey = Tyt (Q, F, W) and I, = T, (Q', F', W’) be the complete rel-

ative Ginzburg dg algebras associated to (@, F, W) and (@', F’,W') respectively. For a
vertex i, let I'; = ¢;I',¢; and T, = ¢, T"

rel*

Theorem 5.4.8. We have a triangle equivalence

v, D(F;el) - D(Frel>>

which sends the I'; to T'; for i # v and T, to the cone
Cone(I‘v — @Ft(a)),
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where we have a summand Ty, for each arrow o of F with source v and the corresponding
component of the map is the left multiplication by o. The functor U restricts to triangle
equivalences from per(I' ) to per(T,e) and from pvd(T ) to pvd(T,e). Moreover, the

rel rel
following square commutes up to isomorphism

D(IL,(F")) —— D(T},,)

D(IIy(F)) D(T'ya) (5-8)
|

D(I,(F)) —5 D(Tya).

where can is the canonical functor induced by an identification between I1y(F") and Iy (F)
and tgvl 1s the inverse twist functor with respect to the 2-spherical object S,, which gives
rise to a triangle

t5(X) = X — Homy,(RHom, () (X, S,), S») = St5' (X)
for each object X of D(I1y(F)).

Proof. By using the same proof as for Theorem [5.3.3] we can show the existence of
V.. For a frozen vertex i, let Q; = ¢;II1(F) and Q) = ¢;II5(F’). For the commutativity
of the diagram, it is enough to show that we have (U, o G™)(Q}) ~ (G* o tg' o can)(Q})
for each dg IT5(F’)-module Q.

For i # v, we have RHomy,(r)(Q;, Sy) = 0. Then tgkl(Qi) = (Q; and we have

(U0 G")(Q;) = W (T%) =T
(G otg, ocan)(Q) = (G" o t5))(Qi)
= G"(Qi)
Thus, for each i # v, we have (U, o G™)(Q}) = (G* o tg! o can)(Q}).

For i = v, we have RHompy, (p)(Qu, Sy) = k. Then tg'(Q,) is computed by the following

triangle
t5H(Qy) = Qu — Sy — Tt (Qy).
By Subsection we have a short exact sequence in C(Ily(F))

0 — ker(m) = Q, =% S, — 0,

where 7, is the canonical projection from @, to S,. Explicitly, we have

ker(ﬂ-l) = erv + @ d@s(&)

a€Fy:t(a)=v
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with the induced differential. Then it is easy to see that ker(m;) is isomorphic to the
mapping cone of the morphism below

Qv — @ Qt(a)a
a€F:s(a)=v

where the corresponding component of the map is the left multiplication by a. Thus, we

see that
t51(Q,) = Cone(Q, — GB Qt(a))-

a€F:s(a)=v
We have

(U1 0G")(Q,) = Vi(I) =Cone(T, = P Tya)

(G o t5) 0 cam)(Q)) = (G* 0 151)(Q.)
— G (Cone(@ = D Quw))

a€F:s(a)=v

~ Cone(l"v — @ Ft(a))-

a€Fy:s(a)=v

Thus, for each i € Fy, we have (U4 0 G™)(Q}) ~ (G* o tg' o can)(Q}). The commutativity
of diagram [5.8| is now easy.
\/

Similarly, if v is a frozen sink, we have the following dual of Theorem |5.4.8|

Theorem 5.4.9. Suppose that v is a frozen sink in Q. Write (Q', F',W') = 1,(Q, F, W).
Let T'vep = Tru(Q, F, W) and T, = To(Q', F',W') be the complete relative Ginzburg

dg algebras associated to (Q,F,W) and (Q', F',W') respectively. We have a triangle

equivalence
v_:D(I,) — D(T.y),

which sends the T to T'; for i # v and to the shifted cone

E_1Cone(@ L) — Tw),

where we have a summand L'y, for each arrow o of F' with target v and the corresponding
component of the map is the left multiplication by . The functor W restricts to a triangle
equivalence from per(I' ) to per(I'.) and from pvd(I'.,,) to pvd(L',e). Moreover, the
following square commutes up to isomorphism

D(IL;(F")) = D(T},,)

D(HQ(F>> D(Frel)

D(IL,(F)) —5 D(Tya).
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where can is the canonical functor which identifies Iy (F") with IIo(F') and tg, is the twist
functor with respect to the 2-spherical object S, which give rise to a triangle

RHOIHHQ(F)(SU, X) Rk SU - X - ts’v (X) — ZRHOHIHQ(F)(SU, X) R Sv
for each object X of D(I1y(F)).
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