
HAL Id: tel-04010123
https://theses.hal.science/tel-04010123

Submitted on 1 Mar 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data-free Generation of Molecular Configurations with
Normalizing Flows

Loris Felardos

To cite this version:
Loris Felardos. Data-free Generation of Molecular Configurations with Normalizing Flows. Machine
Learning [cs.LG]. Université Grenoble Alpes [2020-..], 2022. English. �NNT : 2022GRALM026�. �tel-
04010123�

https://theses.hal.science/tel-04010123
https://hal.archives-ouvertes.fr


THÈSE 
Pour obtenir le grade de 

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Informatique
Unité de recherche : Laboratoire d'Informatique de Grenoble

Génération de configurations moléculaires avec des flux normalisants
sans données

Data-free Generation of Molecular Configurations with Normalizing Flows

Présentée par :

Loris FELARDOS SAINT JEAN
Direction de thèse :

Bruno RAFFIN
Directeur de recherche, INRIA, LIG, Université Grenoble Alpes

Directeur de thèse

Jérôme HÉNIN
Chargé de Recherche, CNRS, IBPC, LBT

Co-directeur de thèse

Guillaume CHARPIAT
Chargé de recherche, INRIA, LISN, Université Paris Saclay

Co-encadrant de thèse

Rapporteurs :

ERIC VANDEN-EIJNDEN
Professeur, New York University, CIMS

TONY LELIEVRE
Ingénieur HDR, École des Ponts ParisTech, CERMICS

Thèse soutenue publiquement le 2 décembre 2022, devant le jury composé de :

BRUNO RAFFIN
Directeur de recherche, INRIA, LIG, Université Grenoble Alpes

Directeur de thèse

JÉRÔME HÉNIN
Chargé de recherche HDR, CNRS, IBPC, LBT

Co-directeur de thèse

ANDREW FERGUSON
Professeur associé, University of Chicago

ExaminateurKIM THANG NGUYEN
Professeur des Universités, LIG, Université Grenoble Alpes

Examinateur

ERIC VANDEN-EIJNDEN
Professeur, New York University, CIMS

Rapporteur

TONY LELIEVRE
Ingénieur HDR, École des Ponts ParisTech, CERMICS

Rapporteur

JEAN-PHILIP PIQUEMAL
Professeur des Universités, Sorbonne Université, CNRS, LCT

Examinateur

GUILLAUME CHARPIAT
Chargé de recherche, INRIA, LISN, Université Paris Saclay

Co-encadrant de thèse, Invité

DANILO REZENDE
Senior Staff Research Scientist, Deepmind

Invité

Invités



Data-free Generation of Molecular
Configurations with Normalizing Flows

Loris Felardos
Co-supervised by Guillaume Charpiat (INRIA, LISN, Université Paris-Saclay)

Co-supervised by Jérôme Hénin (CNRS, IBPC, LBT)
Directed by Bruno Raffin (INRIA, LIG, Université Grenoble Alpes)

Abstract
Generating a Boltzmann distribution in high dimension has recently

been achieved with Normalizing Flows, which enable fast and exact
computation of the generated density (and thus unbiased estimation
of expectations of interest). However, current implementations rely on
training data, which typically comes from computationally expensive
simulations. There is therefore a clear incentive to train models in a
data-free setting by only relying on the target density, which can be
obtained from a physical energy model (up to a constant factor).

In this work, we start by analyzing the properties of the only data-
free loss used in the literature and expose its limitations. It is based
on a Kullback-Leibler divergence and shows a strong propensity for
mode collapse during optimization on high-dimensional distributions.
We then propose multiple guidelines to alleviate the issue and demon-
strate the disproportionate impact that flat degrees of freedom in the
target distribution may have on the quality of convergence. Another
KL loss, which we make data-free, solves the collapse problem but is
still brittle since it relies on numerically unstable importance sampling
weights.

We then introduce a new loss function, well-grounded in theory and
with suitable optimization properties (including a low computational
cost and the absence of importance sampling weights). Using as a
benchmark the generation of 3D molecular configurations, we show on
several tasks that, for the first time, imperfect pre-trained models can
be further optimized in the absence of training data. This work is a
fundamental step towards complete trainings that could be 100% data-
free and we discuss the remaining conditions for how to achieve that.
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0 Notation

General distributions and energies:
- c = 3×N : the total number of atomic coordinates of the molecule of interest

(i.e. the dimensionality of the problem) with N the number of atoms.
- x: one molecular configuration, a vector of size c, with energy UB(x)

- z: one embedding, a vector of size c, with energy UN (z)
Real distributions:

- xB ∼ pB: one real molecular configuration (i.e. from the dataset)
- UB(x) is the physically-grounded potential energy1

- pB(x) = 1
ZB
· e−βUB(x) is the Boltzmann distribution

- p̃B = ZBpB is the “unnormalized” Boltzmann distribution
- ZB =

∫
e−βUB(x)dx is the partition function

- zN ∼ qN : one sample of the Gaussian
- qN (z) = 1

ZN
· e−

1
2σ2UN (z) = 1

(σ
√
2π)

c · e−
1

2σ2

∑c
i z

2
i

is a c-dimensional multivariate Gaussian distribution N (µ,Σ) that
is centered (µ = 0) and has a diagonal covariance matrix with
equal entries (Σ = diag(σ2) = σ2Id) usually with σ = 1 (see ap-
pendix A.1).

- q̃N = ZN qN is the “unnormalized” Gaussian distribution
- Within plots, real data is colored in orange.

Generated distributions:
- xG = G(zN ) ∼ pG: one generated molecular configuration (with G = F−1)

- by definition, pG is the pushforward measure of qN by G
- G = F−1 is the model used during Generation
- pG(x) = pG(G(z)) is the generated x-distribution with:

pG(G(z)) = qN (z)·
∣∣∣det(∂G(z)

∂z

)∣∣∣−1 by the change of variable formula
- the energy of generation of xG samples is denoted UG(x) and defined

by pG(x) := 1
ZG
· e−UG(x) (to mimic the Boltzmann formula)

- zF = F (xB) ∼ qF : one inferred sample of the Gaussian (with F = G−1)
- by definition, qF is the pushforward measure2 of pB by F
- F = G−1 is the model used during inFerence
- qF (z) = qF (F (x)) is the inferred z-distribution with:

qF (F (x)) = pB(x)·
∣∣∣det(∂F (x)

∂x

)∣∣∣−1 by the change of variable formula
- the energy of generation of zF samples is denoted UF (z) and defined

by qF (z) := 1
ZF
· e−UF (z) (to mimic the Gaussian formula)

- θ denotes the model parameters and is usually implicit: G = Gθ and F = Fθ

- JG(z) denotes the Jacobian of the function G (i.e. the matrix of all its first-
order partial derivatives at point z).

1Here, approximated by a molecular mechanics force field.
2Herein, we only describe regular measures that are associated with a density. When the context

is clear, we sometimes refer to a measure using the corresponding density.
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Batch Weights:
- (xB ∼ pnB) = {xB,i|xB,i ∼ pB and i ∈ [1, ..., n]} is a mini-batch of xB points
- (zN ∼ qnN ) = {zN ,i|zN ,i ∼ qN and i ∈ [1, ..., n]} is a mini-batch of zN points
- wi: batch weight associated with element i of a mini-batch of size n

Summary Diagram:

Gaussian distribution︷ ︸︸ ︷
zN ∼ qN

G

−−−−−−−→
generated distribution︷ ︸︸ ︷
xG = G(zN ) ∼ pG

zF = F (xB) ∼ qF ←−−−−−−−
F

xB ∼ pB︸ ︷︷ ︸
target distribution

Detach Operator:
- [...]‡: detach operator (acts as a no op during the forward pass but treats

the contents of the brackets as a constant during back-propagation):

∂

∂x
[x · cosx] = cos x− x · sinx

∂

∂x

[
x · [cosx]‡

]
= cosx

∂

∂x

[
x‡ · cosx

]
= − x · sinx

Color Scheme:
- Simulated “pB” data is colored in orange. This is the “real data” often used

during model pre-trainings and/or to assess the quality of model generation.
- Generated “pG” data sampled from pre-trained models is colored in pink.
- Generated “pG” data sampled from models fine-tuned with variations of
LKLx or LRN1/2

is colored in blue.
- Generated “pG” data sampled from models fine-tuned with variations of
Ldd

KLz is colored in cyan.
- Generated “pG” data sampled from models fine-tuned with variations of
LKLx + Ldd

KLz is colored in purple.
- Generated “pG” data sampled from models fine-tuned with variations of
LPL2 is colored in green.

- Generated “pG” data sampled from models fine-tuned with variations of
Ldd

OT ε is colored in teal.
Loss superscripts. If a loss does not have a superscript then it is data-free (e.g.

LKLx or LPL2). To avoid confusion, some losses are labeled with the superscripts dd

or df to denote data-dependent or data-free losses respectively (e.g. Ldd
KLz and Ldf

KLz)

Infoboxes:

“Infoboxes” like this one contain the most important observations and/or conclu-
sions of this work.
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1 Context: Molecules and Neural Networks

1.1 Boltzmann distribution and Molecular Dynamics

Being able to efficiently analyze the distributions of molecular configurations has
been a long-standing objective of Statistical Mechanics. One successful method to
estimate these distributions consists in reproducing the movements of individual
atoms through Molecular Dynamics simulations. Given an initial 3D-configuration,
one can numerically solve Newton’s equations of motion to get an accurate approx-
imation of the trajectory that the molecule will follow over some timescale. If the
dynamics is sufficiently disordered, it is ergodic, which means that averages over the
trajectory converge towards averages over the macroscopic distribution under the
relevant conditions.

In an isolated system, the total energy (sum of the kinetic energy and potential
energy UB) is conserved, and the system tends to maximize its thermodynamic
entropy. If the system is in contact with an external heat bath (a large system with
thermal inertia), it exchanges energy until it reaches thermal equilibrium, which is
a stable distribution of molecular configurations characterized by the temperature
T of the heat bath. This distribution is called the Boltzmann distribution and is
described by:

pB(x) =
1

ZB

e−βUB(x) (1a)

=
1

ZB

e−UB(x)/kBT (1b)

with:

- pB(x): the probability that the molecule is in a configuration x
- UB(x): the energy of the configuration x
- ZB: the partition function defined as ZB =

∫
e−UB(x)/kBTdx

- β: the thermodynamic beta defined as β = 1/kBT

- kBT : the Boltzmann constant multiplied by the temperature

The potential energy term UB can be estimated from particle interactions (cf.
section 2.2 for how to achieve this), and its negative gradient −∇UB represents the
forces that apply to all the particles of the system. Back to the dynamics perspective,
Newton’s second law states the following formula which implies conservation of
energy:

M ⊙ ẍ = −∇UB(x) (2)

with:

- M the masses of all the particles
- ẍ the acceleration of the particles
- ⊙ an element-wise multiplication
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This, however, represents an isolated system, not one at constant temperature,
and does not produce the Boltzmann distribution. One also needs to model thermal
coupling to an external heat bath. One way to represent such a “thermostat” is
to introduce an implicit material present throughout the system, interacting with
all particles though friction forces (modeled with Stokes’ law) and random colli-
sions. The full model, referred to as Langevin dynamics is described in the following
equation:

Mẍ = −∇UB(x)− γẋ+
√

2γkBTR(t) (3)

with:

- ẋ the velocity of the particles
- γ the friction coefficient of the system (which multiplies the velocity ẋ to

form the friction force −γẋ)
- R(t) a Gaussian process (with zero-mean and such that samples taken at

two different time steps are completely uncorrelated with one another)

In this model, the temperature is given as a hyperparameter of the dynamics
and can therefore be controlled like with a thermostat. At higher temperatures,
the trajectory becomes noisier because of the relatively higher influence of R(t). As
a consequence the probability distribution over the possible configurations of the
system becomes more uniform (as illustrated by the Boltzmann equation) and the
entropy SB rises:

SB = S(pB) = −kB
∫
pB(x) log pB(x) dx (4)

1.2 Rationale behind using Neural Networks

The approximations made so far with the choice of the dynamics model and later
of the energy function (see section 2) are sufficiently reliable to produce realistic
trajectories when compared with quantum simulations operating at a much finer
scale. In principle, molecular dynamics could even take advantage of considerable
improvements in hardware and higher parallelism to predict protein structure by
replicating the folding of polypeptide chains. In practice, such simulations run at a
timescale in the order of the femtosecond (10−15s) whereas slow protein movements
can reach several minutes. As a result they remain notoriously slow and the field
would be of limited practical utility without algorithmic improvements.

In addition to the high-dimensionality of the configuration space, another culprit
behind the poor sampling efficiency is usually the presence of free energy barriers
that separate the space into several more or less isolated regions. Various methods
have been proposed over the years to address that problem [23]. For example, such
methods may aim to:

- carefully balance the temperature of the simulation (e.g. Simulated anneal-
ing [31, 59], Parallel Tempering [16, 48, 49]),
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- flatten the energy landscape along directions of interest (e.g. Umbrella Sam-
pling [27, 53], Metadynamics [2, 14, 30], Adaptive Biasing Force (ABF)
[8, 11, 22]),

- sample rare events more efficiently while keeping track of the relative prob-
ability of such events with importance sampling (e.g. Adaptive Multilevel
Splitting method (AMS) [9, 10]),

- etc.
Those methods significantly improve the efficiency (and therefore the practical

utility) of Molecular Dynamics but three significant problems remain:
- First, samples are highly correlated in time. In principle, one would want

to sample configurations independently of previous ones.
- Second, analysis is difficult. Producing the correct distribution does not

mean understanding it. A simple density estimation around a configuration
for example can be too computationally expensive to do in practice.

- Third, there is no transfer of knowledge from one simulation to another. A
new simulation needs to be run each time a new molecule is being studied.

The objective of this work is to address these problems by capturing the dis-
tribution of molecular configurations with an Artificial Neural Network. This
would make the generation of samples completely uncorrelated, some new meth-
ods of analysis would become available (like precise density estimation) and this
would open the door to transfer learning. The underlying strategy is to make
use of existing energy calculators and carefully tuned force fields parameters from
the literature to train the model without having to rely on lengthy simulations
(i.e. without data).

1.3 Outline and contributions

During training, two fundamental quantities need to be computed: the potential
energy UB and the energy of generation UG. In this work, the force-fields to compute
UB and the flow-based layers to compute UG all come from the literature, as well as
the losses LKLx and Ldd

KLz. The novel contributions of this work include:
- A principled clipping method of the individual terms of the potential en-

ergy UB to avoid numerical instability issues. The associated code enables
efficient force-field computations on GPU through batching with PyTorch
(which is something that other frameworks like OpenMM do not support
yet). See section 2.2.

- A simple method to deal with rotational and translational invariances in the
target distribution without having to rely on data augmentation, internal
coordinates nor special architectures. See section 2.2.

- A new proposition for how to remove the combinatorial complexity of the
target distribution introduced by the presence of hydrogen atoms. See sec-
tion 3.2.5 for the easiest approach and section 9.2 for the more general one.
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- An analysis of the collapse behavior of LKLx on multiple datasets and the
circumstances that make the collapse more likely. See sections 4.2, 4.4 and
4.5.

- A modification of the data-dependent loss Ldd
KLz into the data-free loss Ldf

KLz

with importance sampling weights. This results in a clear improvement over
LKLx in training stability and resistance to mode collapse. See section 5.

- A new family of losses that improve upon Ldf
KLz qualitatively by relying on

L2 losses on the energy ratios of pairs of points. See section 6.
- A loss that specifically optimizes the quality of unbiased estimations of

expections of interest in downstream applications. This loss is developed by
using many conclusions from the previous sections, does not require unstable
importance sampling weights and outperforms every other data-free loss
in terms of quality of generation (even managing to retain a minor mode
representing just about 1% of the target distribution of the configurations
of dialanine). This is the most important contribution of this work. See
section 7.

- An investigation of yet another data-free loss based on Optimal Transport.
See section 8.

- A description of how to make flow-based models hierarchical, even when
the topological structure of the target distribution is irregular or changing
between samples. See section 9.2.

- A presentation of how to scale the current approach in the future with cur-
riculum learning in order to achieve data-free trainings of a larger scale,
that would not rely on any pre-training steps. This approche would lever-
age transfer learning by using a single model for multiple molecules. See
section 9.
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2 Preparing UB, the molecular energy

2.1 A differentiable molecular energy

Most loss functions used in the following sections rely on optimizing pB = e−βUB

ZB

and pG = e−UG

ZG
.3 Since ZB is generally unknown, but also for numerical stability, it

is usually UB and UG that are used instead of pB and pG. This section analyzes how
to compute UB in a differentiable and numerically stable manner. The next section
(section 3) focuses on UG.

The simplest method to compute the energy of a given molecular configuration
is to use the OpenMM4 python library. An energy computed in this fashion is not
differentiable within existing Deep Learning frameworks (i.e. PyTorch5 or Tensor-
Flow6) and is therefore not optimizable at first sight. But since the forces applied
to the individual atoms are the negative of the energy gradient (e.g. −∇UB(x)) one
can use the forces provided by OpenMM directly and propagate them backward to
get the same result.

In practice, using this approach during training introduces two difficulties. First,
it makes it almost impossible to modify the energy function (which is essential both
for numerical stability and debug, as discussed below). And second, since OpenMM
does not support batch computations on GPU7, all the molecular configurations
xG of each mini-batch need to be loaded sequentially, which causes a considerable
overhead.

The solution is to reimplement the energy calculator in PyTorch by relying on
the same two parameter files as OpenMM:

- A .psf (aka. the “structure” file) which is specific to each molecule and
holds lists of every bond, angle, dihedral and improper torsion as well as
information needed to generate the hydrogen bonds and the non-bonded
list.

- And a .prm (aka. the “parameter” file) which is provided by CHARMM8

(another molecular simulation program) and holds the set of force field
parameters used to determine the structural potential energy (more details
on force fields are provided in section 2.2).

When comparing the individual energy terms computed with PyTorch with those
provided by OpenMM, the resulting worst absolute difference is on the order of 10−5

3Note that here there is no factor multiplying UG that would be controlling the temperature
of the pG distribution. This is because UG is assumed to be a multiplicative function of zN which
already has such a temperature parameter in the form of its standard deviation.

4https://openmm.org/
5https://pytorch.org/
6https://www.tensorflow.org/
7https://github.com/openmm/openmm/issues/1995
8https://www.charmm.org/
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with float32 precision which is negligible and thus demonstrates the validity of the
implementation.9 Note that an even lower absolute difference could be achieved
with float64 precision.

As a consequence of using PyTorch directly, the measured speedup lies between
a factor 5 and 200 depending on the size of the batch. But most importantly it is
now possible to differentiate each term of the energy separately (which is essential
for diagnostic) and to modify them freely (which is critical for numerical stability
as discussed in section 2.3).

2.2 Terms of the energy function

Interatomic interactions, which are quantum mechanical in nature, do not have
simple analytical functional forms but can be estimated in Molecular Mechanics
with force fields . Those are functions, associated with sets of parameters, used to
compute potential energy terms. The energy function UB(x) of a given configuration
x can be computed as a sum of several such terms [36]:

UB(x) = Ubonds(b)

+ Uangles(θ) + Uurey−bradley(u)

+ Udihedrals(ϕ) + Uimpropers(ω)

+ Unb(r) + Ucoulomb(r)

(5)

with b, θ, u, ϕ, ω and r being functions of x corresponding to bonds, angles, etc.

More specifically:
- Ubonds(b) =

∑
bonds

kb(b−b0)2 accounts for bond stretches, where kb is the bond

force constant and b− b0 is the distance from equilibrium.
- Uangles(θ) =

∑
angles

kθ(θ− θ0)2 accounts for angles between bonds, where kθ is

the angle force constant and θ − θ0 is the angle distance from equilibrium
between 3 bonded atoms.

- Uurey−bradley(u) =
∑
ub

ku(u − u0)
2 accounts for angle bending using non-

bonded 1-3 interactions, where ku is the force constant and u the distance
between atoms 1-3.

- Udihedrals(ϕ) =
∑

dihedrals

kϕ
[
1+cos(mϕ+δ)

]
accounts for dihedrals (e.g. torsion

angles), where kϕ is the force constant, m the multiplicity, ϕ the dihedral
angle and δ the phase shift.

- Uimpropers(ω) =
∑

impropers

kω(ω−ω0)
2 accounts for impropers (e.g. out of plane

bending), where kω is the force constant and ω−ω0 is the out of plane angle.
9The worst absolute difference observed on the gradients of the energy (i.e. the forces) is of the

same order of magnitude.
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- Unb(r) =
∑
nb

ϵ

[(rmin

r

)12
−
(rmin

r

)6]
accounts for nonbonded Van der Waals

forces between atom pairs separated by at least three bonds, where ϵ is the
Lennard-Jones well-depth and rmin is the distance at the Lennard-Jones
minimum (see figure 1 for a chart of the Lennard-Jones potential).

- Ucoulomb(r) =
∑

coulomb

qiqj
εrrij

accounts for Coulomb potentials where qi is the

partial atomic charge, εr is the effective dielectric constant (around 78.5 for
water at 25◦C), and rij is the distance between atoms i and j.

Note also that the values of the parameters depend on the type of the interaction.
For example, the bond equilibrium value b0 may change depending on the bond type.

2.3 Numerical stability of the energy gradient

The description of the individual terms of the energy sheds light on an important
problem in the computation of UB(xG): numerical instability. Small deviations
of Cartesian coordinates can increase the energy by many times kBT , and more
critically, its associated gradient passed on to the model. The problem is especially
pronounced at initialization when the outputs of the generator are close to random,
to the point that it makes training effectively impossible.

Three types of terms in particular are responsible for this:

- Unb(x) because of its Lennard-Jones potential which requires a computation
in the order of r−12 and thus blows up quickly when r goes to 0.

- Ucoulomb(x) which suffers from the same problem with r−1.
- Ubonds(x) and other harmonic potentials which grow quadratically with the

deviation from the equilibrium.

The first idea that may come to mind to make the training more stable is to clip
the gradient norm of the parameters of the model (or restrict it by using a log as
in Noé et al. [39]). However this would require the manual tuning of the clipping
value which may change with the model architecture. A better method consists
in clipping each term individually. Not only this method is much more robust to
the choice of the clipping value but it also provides a clear physical meaning to the
operation, which is to soften the “hard” terms of the energy function. It also allows
for clipping one specific term while preserving the information coming from all the
other terms, which would be squashed by global clipping.

Two options remain. First, the value of the energy terms could be left unchanged
and the gradients clipped only during the backward pass, or alternatively the func-
tion itself could be modified to become k-Lipschitz (with k the clipping value). The
first method is slightly faster and simpler to implement, the second gives a better
intuition of how much the clipping operation changes the energy function that the
network tries to satisfy.
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Focusing on the second method, the strategy consists in using affine functions to
replace the sections of the potential where the derivative explodes in order to make
the norm of the gradient bounded. For example, the clipping of the gradient of the
Lennard-Jones potential is implemented as follows:

- The threshold value of rth at which the gradient exceeds u′th (e.g. the clipping
value) is estimated. Given that U ′nb(x) ≈ −

12ϵr12min

r13
when r is small, the

clipping value verifies |u′th| ≈
12ϵr12min

r13th
and therefore rth ≈

[
12ϵr12min

|u′
th|

]1/13
.

- The linear approximation Lnb of Unb at rth is used to replace the Lennard-
Jones potential for small r.

- The final function becomes: Ũnb(r) =

{
Lnb(r), if r < rth

Unb(r), if r ⩾ rth

(a) Before clipping. (b) After clipping

Figure 1: Lennard-Jones potential

(a) Before clipping. (b) After clipping

Figure 2: Harmonic bond potential

As a result, the Lennard-Jones potential is modified as in figure 1 (which uses
the distance between two hydrogen atoms as an example), and the harmonic poten-
tials are similarly transformed as in figure 2 (which uses a bond between a carbon
and a hydrogen). Note that unrealistic clipping values have been chosen for better
visualization.1011

10Losses where UB is not differentiated will be less sensitive to the gradient, but will benefit
from the modified Lennard-Jones potential being bounded, as clashes between atoms are the type
of singularity most likely to cause numerical issues.

11The clipped version of the energy function is used in every experiment performed in this work.
But note that it is possible to reweight generated samples to compute expectations according to a
different distribution if its energy function is known (see equation 9). So models trained with the
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2.4 Handling rotations and translations

The potential energy UB(x) of a molecule x is both translationally and rotation-
ally invariant. Although it makes perfect physical sense, this property can be a
significant issue when it comes to generating molecular configurations.12 Such in-
variances introduce degrees of freedom that unnecessarily complicate the task that
the generative model has to solve.

There are several ways to deal with this issue:
- Data Augmentation. In this case, when a dataset is provided (usually

during pre-training), the data needs to cover all possible rotations, for ex-
ample by applying a different random rotation matrix to each data point
sampled from the dataset. This approach is problematic for several reasons.
It cannot handle translations on its own since an infinite amount of trans-
lations are possible13, it is typically slower to learn since the target space
is larger, and it makes fast density estimation (a fundamental feature of
Normalizing Flows) impossible since it requires integration over all possible
rotations.

- Internal Coordinates. Here, when encoding the data, the Cartesian co-
ordinates are discarded in favor of internal coordinates. The obvious benefit
is the complete removal of the redundant degrees of freedom. But in prac-
tice, internal coordinates are defined on specific domains: bond lengths are
positive, angles live in [0, π] and torsions are periodic in [−π, π]. These con-
straints are difficult to satisfy with flow-based models [29] (as used in this
work) which need to be invertible (see section 3). Another issue is that small
placement errors in the backbone of a protein may result in instabilities and
even collisions between sections of the molecule that are far apart. Lastly,
it is unclear how to design a single model that could be applied to different
molecules in internal coordinates, whereas many equivariant architectures
can do this trivially in Cartesian coordinates (see section 9).

- Equivariant Architectures. This method relies on models that are made
translational and rotational equivariant by construction.14 Such architec-
tures include specific types of Graph Neural Networks [4, 44, 45] and can
also be flow-based [28, 37, 43]. See section 9.

- Translational and Rotational Penalties. This is the simplest method,
which is based on an additional term to the energy function that penalizes
the rotations and translations of both simulated and generated configura-
tions. The only requirement is a single configuration example (usually at an

clipped energy function are still useful to compute valuable quantities that depend on the orginal
(non-clipped) energy function.

12One reason for that is described in section 5.2
13The model would actuallly learn the distribution of translations used in the data augmentation,

which can only be different from the true uniform distribution over the whole non-bonded space.
14Note that the term “invariant” is used when the output does not change when the input changes,

but “equivariant” means that it does change in equivalent proportions (for example, a small input
translation leading to a small output translation).
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energy minimum) to use as reference during alignments.15 Unlike the three
points above, this approach is a novel contribution.

Translational penalties (denoted Utran(x)) are easy to implement by simply us-
ing some distance function dtran between the generated molecule and its centered
counterpart:

Utran(x) = dtran (x− xcentered) (6)

Figure 3: In orange: the target position.
In blue: the current position. In red: a
gradient that follows a simple euclidean
interpolation. In purple: a gradient that
follows a circular interpolation.

Rotational penalties (denoted Urot(x)) are
quite similar in the sense that some distance
function drot is used between the generated
molecule and its rotated counterpart. But in
this case several distances are possible, leading
to different gradients:

Urot(x) = drot (x− xrotated) (7)

In figure 3, two possible gradients are repre-
sented that aim to rotate the blue segment on
top of the orange one. The red gradient follows
the shortest distance at the price of distorting
the segment (essentially shortening it in this
case), whereas the purple gradient follows the
tangent of the circle, so as to leave the length
of the blue segment unchanged during the transformation.

In this work, both translational and rotational penalties are combined into a
single term which measures an L2 distance between the generated configuration
and a better aligned counterpart xaligned (both translationally and rotationally).1617

Note that the xaligned target may not be perfectly aligned since the magnitude of the
maximum possible rotation with respect to x is capped at π/3 to avoid excessive
distortions:

Ualign(x) = dalign (x− xaligned) = λalign · (x− xaligned)2 (8)

with λalign being a factor determining the balance between Ualign and the rest of
the terms of the energy UB.18

15If such an example is unavailable, it may be best to let the model decide (for example by
choosing the mode of a generated mini-batch).

16Essentially choosing the red arrow over the purple one in figure 3.
17Alignment is performed with scipy’s align_vectors() which is based on the Kabsch algo-

rithm.
18In this work, a value of λalign = 10 is used in every Butane and Dialanine experiment.

16

https://en.wikipedia.org/wiki/Slerp
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.align_vectors.html
https://en.wikipedia.org/wiki/Kabsch_algorithm
https://en.wikipedia.org/wiki/Kabsch_algorithm


3 Preparing UG, the energy of generation

3.1 Explicit pG calculation for statistical physics applications

Now that the question of how to compute UB in a differentiable manner is out
of the way, the focus of this section is on how to do the same with UG.

The task is to capture the target Boltzmann distribution pB by training a gen-
erative model G with parameters θ. For a given molecule, a vector of Gaussian
noise zN ∼ qN = N (0, Id) is given to the generator which produces an output con-
figuration xG = G(zN ) ∼ pG ∈ Rc of dimension c = 3 × N (e.g. the number of
3D-coordinates for all the atoms of the molecule).

zN ∼ qN
G

−−−−−−−−→ xG = G(zN ) ∼ pG

zF = F (xB) ∼ qF ←−−−−−−−−
F

xB ∼ pB

If pG can be computed, a very powerful feature becomes available: the unbiased
estimation of expectations with respect to pB, provided that the reweighting via p̃B

pG
remains reasonable (i.e. pG must not be too close to zero where pB is not):

E
x∼pB

[f(x)] =

E
x∼pG

[
p̃B(x)

pG(x)
f(x)

]
E

x∼pG

[
p̃B(x)

pG(x)

] (9)

for any function f .

In addition, being able to compute pG explicitly is very precious in the design of
loss functions. An example of a frequently occurring term (see Section 4.1) involving
pG is the entropy19 SG:

SG = −
∫
pG(x) · log pG(x) dx (10a)

= −
∫
qN (z) · log

[
qN (z) ·

∣∣∣∣det(∂G(z)∂z

)∣∣∣∣−1
]
dz (10b)

= −
∫
qN (z) · log qN (z) dz +

∫
qN (z) · log

∣∣∣∣det(∂G(z)∂z

)∣∣∣∣ dz (10c)

= SN +

∫
qN (z) · log

∣∣∣∣det(∂G(z)∂z

)∣∣∣∣ dz (10d)

= SN + E
zN∼qN

[
log

∣∣∣∣det(∂G(zN )∂zN

)∣∣∣∣
]

(10e)

19Note that equation 10e shows that the mean log Jacobian determinant measures the change of
entropy introduced by the mapping into its output distribution, with respect to that of the input
distribution.

17



with:
- (10a) note that SG is the almost simplest integral that involves UG and a
pG weight (used for sampling later) since SG =

∫
pG(x)UG(x)dx+ logZG

- (10b) by substitution of pG(x) by the change of variable formula:

pG(x) dx = qN (G
−1(x)) ·

∣∣∣∣det(∂G−1(x)∂x

)∣∣∣∣ dx
= qN (z) ·

∣∣∣∣det(∂G(z)∂z

)∣∣∣∣−1 dx

= qN (z) dz

(11)

- (10c) note that this step may not be possible if we are not using SG but
some other, more general, integral of the form

∫
pG(x)f(UG(x))dx with f a

non-linear function.
- (10d) by definition of the entropy: SN = S(qN ) = −

∫
qN (x) log qN (x)dx

- (10e) by definition of expectations EzN∼qN
[
f(zN )

]
=
∫
qN (z)f(z)dz

Having to compute pG introduces two requirements over the model:
1. The model must be easily invertible for fast exact density estimation

(but also for the computation of some useful loss terms described later).
2. The architecture must make the computation of the log of the Jacobian

determinant (i.e. log |det J |) efficient.

Flow-based generative models (often just called Normalizing Flows) satisfy both
requirements.20 See Tabak and Vanden-Eijnden [51] as well as Papamakarios et al.
[40] for an overview.

3.2 Simplest Normalizing Flow layers

Many layers have recently been developed that satisfy the requirements of Nor-
malizing Flows, of which just a few are described below. To stay consistent with the
previous notation z denotes the input of a layer and x its output. In this section,
J (l) is used to denote the Jacobian of a layer l. If a layer is invertible, then a stack
of such layers is invertible too, and if one can compute the Jacobian determinant of
each layer, then the Jacobian determinant of the stack can be computed as well:

log |det J | =
∑
l

log
∣∣det J (l)

∣∣ (12)

3.2.1 Addition of a bias vector:

The addition of a bias vector b is an operation that is easily invertible (by simply
subtracting b) and has a known Jacobian determinant of 1 (and therefore a log

20Note that the term “Normalizing Flow” refers to the statistical method leveraging the change
of variable formula from equation 11, but may also refer to the associated Flow-based generative
models as it is the case here.
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Jacobian determinant of 0).

Forward pass: x = z + b

Inverse pass: z = x− b
Jacobian Determinant: log

∣∣det J (l)
∣∣ = 0

3.2.2 Multiplication by a diagonal matrix D:

Multiplication by a diagonal matrix D is equivalent to element-wise multiplica-
tion by its diagonal d. The inverse operation is an element-wise division by d which
exists if and only if all the entries of d are different from 0. To avoid a possible
numerical instability during training, every entry di, and its inverse 1/di, must be
constrained to stay away from 0. Although many strategies are possible, one conve-
nient way to do this is to define di such that di = etanh(d̃i) with d̃i a trainable vector
in R.

Forward pass: x = Dz

Inverse pass: z = D−1x

Jacobian Determinant: log
∣∣det J (l)

∣∣ = Tr(log |D|)

3.2.3 Multiplication by an orthogonal matrix:

Orthogonal matrices have a determinant of 1 but are not easily invertible unless

parameterized as a composition of Householder Reflections R = Id− 2
vv⊺

v⊺v
with v a

non-null vector (chosen to be trainable within models). Householder Matrices are
their own inverses and any orthogonal matrix of size n× n can be constructed as a
product of at most n such reflections. If a single reflection is used, this gives:

Forward pass: x =
(
Id− 2

vv⊺

v⊺v

)
z

Inverse pass: z =
(
Id− 2

vv⊺

v⊺v

)
x

Jacobian Determinant: log
∣∣det J (l)

∣∣ = 0

3.2.4 Coupling Blocks based on products and sums:

A more expressive alternative is to use so-called “Coupling Blocks” [15] defined
as an invertible element-wise transformation of half the features xa, parameterized
by a function M of the other half of the features xb. In case the element-wise
transformation is a product, it is important to make sure that the outputs of M
stay away from 0. This is usually done by defining M as M(xb) = etanh(M̃(xb)) with
M̃ an arbitrary differentiable function.

Forward pass:

{
xa = za ⊙M(zb)

xb = zb

Inverse pass:

{
za = xa ⊘M(xb)

zb = xb
Jacobian Determinant: log

∣∣det J (l)(z)
∣∣ = Tr(log |M(zb)|)
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with ⊙ denoting element-wise multiplication and ⊘ element-wise division. The
element-wise transformation can also be a sum (sometimes denoted with the oper-
ators ⊕ for the forward pass and ⊖ for the inverse pass).

The high expressivity of Coupling Blocks [33] largely comes from the internal
arbitrary function M , but also on the fact that J is a direct function of z (it does
not act as a trained constant as in the previous subsections).

3.2.5 More general Normalizing Flow layers

The list above is only a very small sample of all the flow-based layers that have
been developed in recent years:

- Kingma and Dhariwal [25] use an LU decomposition to parameterize a
weight matrix W = PL(U +diag(s)) with P a random permutation matrix,
L a lower-triangular matrix, U an upper-triangular matrix and s a simple
vector. In this formulation only L, U and s are trained, while P is chosen
at random once and remains fixed afterwards.

- Krämer et al. [26] discuss a method to optimize invertible matrices via low-
rank updates by keeping track of the matrix inverse and its determinant
during the optimisation.

- Wu et al. [58] introduce Stochastic Flows which consist in using stochastic
MCMC sampling blocks as a stochastic layer.

- Behrmann et al. [5] and Chen et al. [7] propose Residual Flows based on
residual layers whose inverse and Jacobian can be computated with iterative
estimators.

- Huang et al. [21] use Coupling Blocks with additional Gaussian degrees of
freedom to increase the dimensionality of the layers at the price of requiring
an integration during density estimation.

3.3 Dealing with hydrogen permutations

One difficulty, unique to the task of generating molecular configurations, is the
presence of many hydrogen atoms that are of little interest for most downstream
applications. They often represent a large fraction of all the atoms to place in 3D
space, and needlessly increase the dimensionality of the problem. They can also
be permuted within CH2 and CH3 groups, multiplying the number of modes by 2
or 3 each time. Overcoming the complexity induced by hydrogen permutations is
sometimes the difference between a training that converges and one that does not.21

The simplest way to address this problem is to avoid generating hydrogen atoms
altogether. But since the energy of a molecule can only be computed (at the desired
level of precision using current force fields) if the coordinates of all the atoms are
known, hydrogen atoms must still be placed after the model has generated the heavy
atoms. There are several possibilities here:

21A common theme of the following sections is that simplifying the task that the model has to
solve can often go a long way toward better quality of generation.
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1. The hydrogen atoms could be placed according to some custom-made algo-
rithm, but this solution is often tedious and prone to errors.

2. They could be placed approximately and their position could then be opti-
mized by gradient descent, but this solution, although more robust, is quite
compute intensive since it requires iteratively minimizing the energy of the
hydrogen atoms both during and after training.

3. The best method would probably consist in using a two-stage Normalizing
Flow, with the second stage being conditional on the output of the first
one. The first stage would output the coordinates of the heavy atoms and
the second the coordinates of the hydrogen atoms. Crucially, it does not
matter if the second stage collapses to only one mode, since they are all
symmetrical. This is an approach that is explored in section 9.2.

4. A simpler solution which decreases the dimensionality of the problem is to
make the second stage deterministic, by using a feed-forward model. This
is the method chosen in the remainder of this work.

The full model is therefore composed of two stages:

- The first stage (denoted GC in the representation below) is a function of zN
and its role is to generate the 3D coordinates of the heavy atoms. It is a flow-
based model which is therefore bijective and preserves the dimensionality of
the input. As a consequence, the dimensionality of zN is chosen to be equal
to the number of coordinates of the heavy atoms xG.

- The second stage (denoted GH) takes the output xCG of GC and places the
hydrogen atoms close to their minimum of energy. The reverse operation FH

removes hydrogen atoms from its input (typically xallB ). GH is not bijective
since the dimensionality of its output xallG is equal to the total number of
coordinates of the molecule (including the hydrogen atoms) which is strictly
larger than that of xG as soon as there is a single hydrogen atom in the
molecule.

zN ∼ qN
GC

−−−−→−−−−→ xCG = GC(zN ) ∼ pCG
GH

−−−−→−−−−→ xallG = GH(xG) ∼ pallG

zF = F (xB) ∼ qF ←−−−−←−−−−
FC

xCB = FH(xallB ) ∼ pCB ←−−−−←−−−−
FH

xallB ∼ pallB

with:

- xallG ∈ R3N with N the total number of atoms
- xCG ∈ R3NC with NC the total number of heavy atoms
- xHG ∈ R3NH with NH the total number of hydrogen atoms

In summary, all-atom coordinates are generated as xallG ={xCG, xHG}=GH(GC(zN )),
and the reverse operation is zF = FC(FH(xC, xH)). As a result, whereas the first
stage GC is bijective, the complete model GH ◦GC is not. While FC ◦FH ◦GH ◦GC

is identity in the latent space, GH ◦ GC ◦ FC ◦ FH = GH ◦ FH corresponds to
energy minimization with respect to hydrogen atom coordinates, i.e. the projection
of complete atomic coordinates onto the minimum-energy-hydrogen manifold.
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In the remainder of this work, to simplify the notation on molecular tasks:
- G refers to the flow-based generator GC (and F = FC to its inverse).
- pG = pCG refers to the probability of generation of the heavy atoms.
- pB = pCB refers to the target distribution of G but not necessarily to

the Boltzmann distribution of the full molecule (noted pallB when the
distinction is necessary).

- The energy function UB from section 2 is implicitly taken to mean
Uall
B ◦GH to accommodate for the change.

See appendix A.2 for more details on how the ratio between modes changes when
placing the hydrogen atoms deterministically near their energy minimum, and how
the new ratio can be estimated in practice.

3.4 Building the complete flow-based model

In the remainder of this work, only two model architectures are used: one for
Double Well datasets (presented in section 4.4), and one for molecular datasets like
Butane and Dialanine (both presented in section 4.2).

The architecture used in Double Well experiments is a simple stack of 8 × 4

Coupling Blocks (as described in section 3.2.4) corresponding to 8 times the following
substack:

- A multiplicative Coupling Block modifying the first half of the features (this
would be denoted xa = za ⊙M(zb) in section 3.2.4),

- followed by an additive Coupling Block also modifying the first half of the
features (xa = za ⊕M(zb)),

- followed by a multiplicative Coupling Block modifying the second half of
the features (xb = zb ⊙M(za)),

- followed by an additive Coupling Block again modifying the second half of
the features (xb = zb ⊕M(za)).

Every Coupling Block uses an internal feed-forward sub-network M composed of
two layers with an internal feature size of 64 separated by a CELU non-linearity [3].

The architecture used in Butane and Dialanine experiments is quite similar
except for two changes:

- The stack is made deeper (24 × 4 Coupling Blocks) and wider (internal
sub-networks M have a layer size of 256),

- and an additional feed-forward network is used to generate the position
of the hydrogen atoms (referred to as GH in section 3.3). It has 3 fully-
connected linear layers separated by CELUs and a hidden size of 512.
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4 Using KL(pG||pB) as a training objective

Formally, the training objective can be defined as finding the optimal parameter
vector θ∗ such that the divergence D between the two distributions pG and pB is
minimized. As a reminder, pG is the distribution that is optimized and is therefore
a function of θ (i.e. pG = pGθ

).

θ∗ = argmin
θ

D(pG||pB) (13)

Any divergence D measures how far apart two probability distributions are, and
has two important properties22:

1. D(pG||pB) ⩾ 0

2. D(pG||pB) = 0 if and only if pG = pB

for all pG, pB with common support.

The fact that pG and pB are probability distributions implies that they are pos-
itive and sum to one, i.e. pG ⩾ 0 and

∫
pG = 1. In practice though, ZB is typically

not known. Only p̃B is known, which does not sum to 1. This can be a tricky
problem in the design of a sensible training objective.

An important consequence of choosing D appropriately is that the optimization
behavior may change drastically depending on which divergence D is chosen. One
could assume that the choice of D is not too critical as long as θ∗ is reached suffi-
ciently quickly and reliably. Indeed, if the parametric function used to produce pG
is fully expressive (in the sense that it is able to model pB perfectly), then p∗G should
be the same regardless of which divergence D is used.23 But crucially, p∗G may also
depend on D if pG cannot model pB perfectly. Said differently, for a model that
lacks expressivity (or faces optimization issues), the best solution depends on what
is being measured.

4.1 Expression of the loss function

KL divergences, are typically not symmetrical (i.e. KL(pG||pB) ̸= KL(pB||pG)).
The optimization behavior resulting from choosing D = KL(pG||pB) is analyzed in
this section (the other KL divergence and other choices are analyzed in the following
sections).

22Note that these two properties are necessary but not sufficient to define a divergence mathe-
matically.

23With p∗G being a shorthand for pGθ∗ . Note that several θ∗ can produce the same p∗G.
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First, we rewrite the KL divergence in a numerically tractable form:

KL(pG||pB) =
∫
pG(x) log

pG(x)

pB(x)
dx (14a)

=

∫
pG(x) logZB dx+

∫
pG(x) log

pG(x)

p̃B(x)
dx (14b)

= logZB +

∫
pG(x) log

pG(x)

p̃B(x)
dx (14c)

= logZB +

∫
qN (z) log

qN (z) ·
∣∣∣det(∂G(z)

∂z

)∣∣∣−1
p̃B(G(z))

dz (14d)

= logZB − SN +

∫
qN (z) log

∣∣∣det(∂G(z)
∂z

)∣∣∣−1
p̃B(G(z))

dz (14e)

= logZB − SN +

∫
qN (z) log

∣∣∣det(∂G(z)
∂z

)∣∣∣−1
e−βUB(G(z))

dz (14f)

= logZB − SN + E
zN∼qN

[
βUB(G(zN )) + log

∣∣∣∣det(∂G(zN )∂zN

)∣∣∣∣−1
]

(14g)

= logZB − SN + E
zN∼qN

[
βUB(G(zN ))− log

∣∣∣∣det(∂G(zN )∂zN

)∣∣∣∣] (14h)

with:

- (14a) by definition of the KL divergence
- (14b) by using pB = p̃B/ZB

- (14c) by using
∫
pG(x)dx = 1 (probabilities sum to one)

- (14d) by using the change of variable formula (from equation 11)
- (14e) by definition of the entropy: SN = S(qN ) = −

∫
qN (x) log qN (x)dx

- (14f) by using: p̃B(x) = e−βUB(x)

- (14g) by definition of expectations: E
zN∼qN

[
f(zN )

]
=

∫
qN (z)f(z)dz

The gradient of equation 14h can be expressed as:

∇θKL(pG||pB) = ∇θ

[
logZB − SN + E

zN∼qN

[
βUB(G(zN ))− log

∣∣∣∣det(∂G(zN )∂zN

)∣∣∣∣]]
(15a)

= E
zN∼qN

∇θ

[
βUB(G(zN ))− log

∣∣∣∣det(∂G(zN )∂zN

)∣∣∣∣] (15b)

There are a few things to notice here:

1. Since logZB and −SN are constants, those terms can be safely ignored
during training. This is very convenient since ZB is generally unknown.

2. The transition from equation 15a to equation 15b (which puts the gradient
operator ∇θ within the expectation) is the principle behind Stochastic Gra-
dient Descent. It is only allowed if the probability that is sampled in the
expectation (qN in this case) is not itself differentiated with respect to θ.

24



3. Computing the expectation of equation 15b seems difficult since it would
require sampling an infinite amount of points. Instead, training is performed
by minimizing a loss function (inside the brackets) repeatedly over many
points. In practice, mini-batches of finite size n are used and resampled at
each iteration.

KL(pG||pB) therefore leads to the definition of the following empirical loss func-
tion over mini-batches:

LKLx(zN ) =
n∑

i=1

[
1

n
·
[
βUB(G(zN ,i))− log

∣∣∣∣det(∂G(zN ,i)

∂zN ,i

)∣∣∣∣]] (16)

with zN ∼ qnN a mini-batch of size n, and zN ,i ∼ qN its ith element.24

This loss25 (originally defined in Noé et al. [39]) is very intuitive since it amounts
to a minimization of the potential energy of generated samples with UB(G(zN ))

and a maximization of the local expansion with − log
∣∣∣det(∂G(zN )

∂zN

)∣∣∣.26 The balance
between those two terms is controlled through β, which determines the temperature
of the generated distribution. At high temperatures, β = 1

kBT
is small and the

entropy term dominates, whereas at low temperatures, β is high and the energy
term dominates.

This loss is also very similar to the one used in conventional Normalizing Flows
[40] which minimizes KL(qF ||qN ) (see appendix A.6). In that case, data samples
from pB are required to compute F (xB) = G−1(xB) by using the model in the other
direction (the “inverse” pass) and by leveraging the fact that it is bijective27:

Ldd
KLz(xB) =

n∑
i=1

[
1

n
·
[

1

2σ2
UN (F (xB,i))− log

∣∣∣∣det(∂F (xB,i)

∂xB,i

)∣∣∣∣]] (17)

with
- xB ∼ pnB a mini-batch of size n, and xB,i ∼ pB its ith element
- σ the standard deviation of the multivariate Gaussian distribution used to

generate zN (denoted N (0, diag(σ2)), see appendix A.1).
Note that when using LKLx(zN )+Ldd

KLz(xB) the second terms of these two losses
(the log of the determinant of the Jacobians) cancel each other when the global

24It is preferable to have a good approximation of the gradient rather than the gradient of a
good approximation. This is why the discretization step (which is the approximation that is made
when using mini-batches) is done last.

25LKLx(zN ) is a function of a mini-batch zN . The corresponding loss associated to a single data
point zN is denoted: LKLx(zN ) = βUB(G(zN ))− log

∣∣∣det(∂G(zN )
∂zN

)∣∣∣. In a slight abuse of notation,
the same operator LKLx is used for both the loss function applied to a single data point and the
loss function applied to a mini-batch.

26When averaged over x-space, this is, up to an additive constant, the Helmholtz free energy of
the generated distribution (see section 3.1).

27If the pushforward measure qF of pB by F is sufficiently close to qN , then the pushforward
measure pG of qN by G should be sufficiently close to pB .

25



optimum is reached (i.e. when pB = pG). This is not true before convergence since
the terms are not sampled over the same distribution.

To summarize, two losses are available at this point:
- LKLx(zN ) has its energy term applied to the output xG of a forward pass

that itself takes zN as input. Its local entropy term is a direct function of
zN . The batch version of this loss is LKLx(zN ).
It is sometimes referred to as just “KLx” in the legends of some figures.
This loss does not rely on data.a See equations 14 and 16.

- Ldd
KLz(xB) has its energy term applied to the output zF of an inverse pass

that itself takes xB as input. Its local entropy term is a direct function of
xB. The batch version of this loss is Ldd

KLz(xB).
It is sometimes referred to as just “KLz” in the legends of some figures.
This loss relies on data from which to sample xB.b See equations 92 and 17.

aA data-free version of Ldd
KLz, denoted Ldf

KLz, is introduced in section 5.1.
bA data-dependent version of LKLx could also be formulated.

4.2 Experiments on small molecules

First, this section investigates what happens when these losses are used to try
to capture the distribution of the configurations of two small molecules (butane and
dialanine):

- The butane molecule is known to have three main modes (figure 4b), cor-
responding to different values of the dihedral angle ϕ of its carbon chain
(around the red axis in figure 4a).

- The dialanine molecule also has several modes (shown in the Ramachandran
plot of figure 5b), with the main ones (C7eq and C7ax) corresponding to
movements around the backbone dihedral angles ϕ and ψ (represented by
the red axes in figure 5a).

For both molecules, the model (whose architecture is described in section 3.4) is
trained to generate all the atomic Cartesian coordinates from a Gaussian vector of
the same dimensionality c.28 For butane this amounts to 14 × 3 = 42 coordinates,
and for dialanine 22 × 3 = 66 coordinates. Other types of molecular encodings
(sometimes involving internal coordinates) can be considered, mainly to simplify the
task, but also to make transfer learning between molecules possible (as described in
section 9).

In both figures (4 and 5), Ldd
KLz is used during pre-trainings and LKLx is used

during fine-tunings (see section 4.4 for more information on the experimental setup).

28Both Butane and Dialanine datasets are the result of long Metropolis-Hastings simulations
with Parallel tempering.

26

https://en.wikipedia.org/wiki/Butane
https://en.wikipedia.org/wiki/Dihedral_angle
https://en.wikipedia.org/wiki/Dipeptide
https://en.wikipedia.org/wiki/Alanine
https://en.wikipedia.org/wiki/Ramachandran_plot
https://en.wikipedia.org/wiki/Ramachandran_plot
https://en.wikipedia.org/wiki/Metropolis-Hastings_algorithm
https://en.wikipedia.org/wiki/Parallel_tempering


(a) Butane molecule (b) Reference distribution of ϕ

(c) Generated distribution of the dihedral
angle ϕ after pre-training with: Ldd

KLz

(d) Generated distribution of the dihedral
angle ϕ after fine-tuning with: LKLx

Figure 4: Pre-training with Ldd
KLz on Butane (in pink), followed by a fine-tuning with

LKLx (in blue) without alignment penalty. Reference data is in orange according to the
color theme described in section 0.

(a) Dialanine molecule (b) Reference joint distribution of ϕ and ψ

(c) Generated dihedral angles ϕ and ψ after
pre-training with: Ldd

KLz

(d) Generated dihedral angles ϕ and ψ after
fine-tuning with: LKLx

Figure 5: Pre-training with Ldd
KLz on Dialanine (in pink), followed by a fine-tuning

with LKLx (in blue) without alignment penalty. Reference data is in orange according
to the color theme described in section 0.
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Importantly, the alignment penalty (described in section 2.4) is removed during the
fine-tuning (more on this in section 5.2).29

Ldd
KLz works more or less as intended (figures 4c and 5c) although it leads to an

overestimation of the probability density in some regions of the space (like the inter-
modes of butane for example). This problem could be referred to as the “mode-add”
problem, which is assumed to be caused by the fact that the energy of generated
samples is not penalized directly. This loss is well defined because it takes real
molecular configurations as inputs and therefore forces the generated configurations
to span the entire space covered by the dataset.

The most concerning problem is that when the generator is pre-trained with
Ldd

KLz and then fine-tuned with LKLx without alignment penalty, the multimodal-
ity is lost . This problem is often referred to as “mode-drop” or “mode collapse” or
“mode-seeking” in the literature. Once a mode is lost it is never recovered, since the
exploration strategy implicitly used here (which consists in maximizing the expan-
sion with the term − log

∣∣∣det(∂G(zN )
∂zN

)∣∣∣ is only local, not global, and generally not
sufficient to break through high free-energy barriers. The model has no incentive to
match the full Boltzmann distribution, and is not penalized for ignoring important
parts of the target distribution since LKLx is only defined on xG points from pG.

Note that it is highly probable that qF also experiences some mode collapse in
z-space when using Ldd

KLz. But since the target distribution qN has only one
mode, that behavior is not noticeable.

4.3 Gradient of KL(pG||pB)

When minimizing KL(pG||pB), pG follows the following negative gradient (see
appendix A.3 for a proof):

−∇pGKL(pG||pB) = log(pB)− log(pG)− 1 (18)

A stable point is reached when ∇pGKL(pG||pB) = 0. At first glance, this would
imply that the optimization ends when: log(pB)− log(pG)− 1 = 0 =⇒ pG = pB

e
.

But since pG is assumed to be a probability distribution, the optimization being
performed is actually under the constraint that

∫
pG = 1. This implies that pG

cannot be decreased (nor increased) everywhere, and constants (like the −1 term
of equation 18) can be ignored. Therefore, the steady point is indeed reached when
pG = pB.

29Discarding the alignment penalty during fine-tuning makes the performance clearly worse but
is done on purpose to showcase the phenomenon of mode collapse. As studied in section 5.2,
keeping the alignment penalty alleviate the problem but does not fix it.

28



However, crucially, the same conclusion cannot be drawn when optimizing on
batches of finite size. In this case, the loss is not rebalancing the distribution over
the whole support but only between the points that have been sampled in the batch.
Indeed, equation 14h uses an exact expectation value which cannot be computed on
batches of finite size. But does the sum of the probabilities of the batch stays the
same after one gradient update? In other words: Are the points that are sampled
in each batch becoming more or less probable globally (when compared to all the
points, including those that have not been sampled)?

No approximation is made between equation 14a and equation 15b, and ZB

should be unnecessary when using this particular training objective. But many
other approximations used elsewhere could be causing the observed mode collapse
regardless. For example:

- The expectation from equation 14h cannot be computed exactly over the
whole space, and is estimated with batches have a finite size instead.

- The model itself has limited expressivity, which means that it cannot capture
every possible probability distribution and may suffer from an unfavorable
inductive bias.

- Even the training procedure is performed with optimizers (like Adam [24]
or RMSProp [52]) that change the dynamics of the optimization and that
are dependent on important hyperparameters like the learning rate.

Since the mode collapse could come from any of those (known or unknown)
reasons or any combination thereof, section 4.4 focuses on describing its behavior
under different experimental settings.

4.4 Observed behavior of the mode collapse

As a quick reminder, the objective of this work is to successfully train a model
without data (see end of section 1.2), by only relying on the information coming
from the energy UB. In practice, since training from scratch on large molecules is
probably extremely challenging, some form of curriculum learning should probably
be used (see section 9.4). To imitate this setup, most experiments are performed in
two steps:

- A pre-training step, which does use data but only for the purpose of proper
initialization of the model during the next step.

- And a fine-tuning step which does not use data (except for illustrative pur-
poses).

Three Double Well datasets are used in this section: Double Well Medium 12D,
Double Well Wide 12D and Double Well Narrow 12D.30 They are all composed of
one bimodal dimension (denoted x0) and 11 centered unimodal Gaussian dimensions.

30Much like with Butane and Dialanine, those datasets are the result of long Metropolis-
Hastings simulations with Parallel tempering.
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The only difference between the datasets is the standard deviation of the 11 Gaus-
sians: in the Medium the standard deviation is 1 (see figure 6), in the Wide case the
standard deviation is 10 and in the Narrow case the standard deviation is 0.1.

(a) 2D Projection of the
dataset

(b) Projection of the dataset
on its multimodal dimension

(c) UB energies of real samples
xB ∼ pB as a function of x0

Figure 6: Various representations of the Double Well Medium 12D Dataset.

The conventional loss Ldd
KLz is used here during pre-training on data from Double

Well Medium 12D.31 The model is composed of a stack of 8 × 4 Coupling Blocks
(as described in sections 3.2.4 and 3.4) and is able to perfectly capture the target
distribution (see figure 7), with the exception of a slight residual connection between
the two modes. See figures 43 and 44 in appendix A.4 for a visualization of the
transformation performed by a similar model on Double Well Medium 2D.

The model obtained at the end of the pre-training with Ldd
KLz (from figure 7) can

then be fine-tuned with LKLx (see figure 8). Unlike the results from figures 4d and
5d, no mode collapse is observed.

Figure 7: Pre-training with Ldd
KLz on Double Well Medium 12D. Top: Percentage of

points generated by pG in the minor mode during training (in pink) compared with
the real ratio of ≈ 0.22 from the dataset (in orange). Bottom Left: Scatter plot of
pG projected in 2D. Bottom Center: Histogram of pG projected onto its multimodal
dimension x0. Bottom Right: Scatter plot of UB energies of generated samples xG ∼ pG
(in pink) and UB energies of real samples from the dataset xB ∼ pB (in orange).

The results obtained on Double Well Wide 12D give a very different picture.
The dataset itself seems virtually identical to Double Well Medium 12D except for
the standard deviation of the 11 Gaussian dimensions. The pre-training however is
a bit less successful since after 2000 iterations the ratio between the 2 modes is still

31Unless specified otherwise, every pre-training and fine-tuning is done with Adam and a learning
rate of 10−4 on Double Well datasets and 10−5 on molecular datasets, without regularization.
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Figure 8: Fine-tuning with LKLx on Double Well Medium 12D (see caption of figure 7
for more details).

incorrect and the energies remain too high (see figure 9).32 When fine-tuning with
LKLx alone (in figure 10), pG completely collapses after less than 200 training steps.
This collapse is reminiscent of the ones observed in figure 4d and 5d.33

Figure 9: Pre-training with Ldd
KLz on Double Well Wide 12D (see caption of figure 7

for more details).

The difference between the perfect generation of figure 8 and the collapse of
figure 10 suggests that the relative standard deviation of the 11 unimodal dimensions
plays a role in the collapse. Locally, this corresponds to flater or steeper directions
of space. The flater the other directions, the more the model is prone to collapse
in the multimodal direction. When working on Butane, the dimensions of pB in
Cartesian coordinates can roughly be separated in 3 groups:

- The multimodal direction of interest corresponding to different values of its
central dihedral angle.

- Other directions that also correspond to changes in the shape of the molecule
(like bond lengths and angles). These directions are typically unimodal and
quite steep in the sense that small variations in the shape of the molecule

32A longer pre-training does lead to a correct ratio between the modes and also improves the
collapse situation during fine-tuning as discussed in section 4.4

33To observe the collapse “as it happens”, see figure 45 in appendix A.5.
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Figure 10: Fine-tuning with LKLx on Double Well Wide 12D (see caption of figure 7
for more details).

lead to large changes in potential energy UB. As long as there is no nu-
merical instability (see section 2.3), they don’t seem to be an issue from a
optimization perspective.

- And then remains the 6 degrees of freedom related to movements of global
translation and rotation. These directions, if not properly penalized, make
the collapse problem much worse since they are absolutely flat (see sec-
tion 5.2). As a consequence, it is important to not forget the Ualign(x) term
within the energy function UB(x) (which penalize both translations and ro-
tations as described in section 2.4) both during simulation (when generating
the pre-training data) and during generation (when training the model).

When fine-tuning with both Ldd
KLz and LKLx (in figure 11), there is no collapse

but the ratio between the two wells still gets worse after the poor pre-training of
figure 9, hinting to the fact that LKLx may lead to collapse in an active manner and
not as a consequence of the variance inherent to the discretization of the dataset in
batches.34

Figure 11: Fine-tuning with both Ldd
KLz and LKLx on Double Well Wide 12D (see

caption of figure 7 for more details).

34LKLx is indeed the culprit here since using Ldd
KLz + 0.01 · LKLx leads to ratios that are indis-

tinguishable from the correct ones, but increasing the factor from 0.01 to 1 yields worse ratios.

32



4.5 Relationship between pre-training quality and collapse

At the end of the pre-training, the performance of the same model architecture
is already much worse on Double Well Wide 12D (figure 9) than it is on Double
Well Medium 12D (figure 7) which is an almost identical dataset. This is further
illustrated in figure 12 when comparing the correlations between UB and UG. Note
that the only change between figures 12a, 12b, and 12c is the standard deviation of
the 11 unimodal dimensions of the datasets.

(a) Double Well Narrow 12D
(with unimodal standard

deviations of 0.1)

(b) Double Well Medium 12D
(with unimodal standard

deviations of 1)

(c) Double Well Wide 12D
(with unimodal standard

deviations of 10)

Figure 12: Correlations between UB and UG on generated samples xG ∼ pG after pre-
training on several Double Well 12D datasets with Ldd

KLz. The more “diagonal” the
point cloud is, the better the quality of generation.

This is surprising, since the model is perfectly able to simply multiply by a learned
factor each pG dimension that needs it, and yet, has difficulty doing it. This is an
important fact to notice already in 12 dimensions, since it shows how critical data
normalization is.35 It also implies that simplifying the data (as with the removal
of hydrogen atoms in section 3.3) or using more expressive models adapted to the
structure of molecular data (see sections 2.4 and 9) could go a long way toward
improving the performance of generative models on molecular data.

In a more general sense, it may be that the pre-training performance (measured
by the ability of the model to correlate UB and UG) may predict the risk of col-
lapse. A much longer pre-training on Double Well Wide 12D (similar to the one
from figure 9 but 50 times longer) eventually leads to the correct ratios (data not
shown). Fine-tuning with LKLx from that point onward does not lead to collapse
(see figure 13) contrary to the fine-tuning of figure 10 which suffered from an inferior
pre-training quality.

Given this result, it may be tempting to think that the solution is simply to
pre-train the model longer. However, in order to scale to larger molecules with
curriculum learning (see section 9.4), one must assume that the pre-training quality
will often not be sufficient. Besides, already in figure 9, the bottom of both wells

35Ensuring that models can be trained just as efficiently regardless of the relative scaling of the
dimensions of the data seems a promising avenue of research. Noé et al. [39] uses a data-dependent
whitening layer.
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Figure 13: Fine-tuning with LKLx on Double Well Wide 12D after a pre-training 10
times longer than the one from figures 9 and 12c used in the fine-tunings of figures 10
and 11 (see caption of figure 7 for more details).

are properly sampled, and whatever fine-tuning is applied after that should not lead
to the loss of a mode.

In summary, although poor pre-trainings can exacerbate the collapse problem,
they do not cause it. Simplifying the data or increasing the expressivity of the model
may improve the situation but does not fix the root issue. One must keep in mind
that in order to scale to larger molecules, fine-tunings should be stable (i.e. they
should not collapse) regardless of the pre-training quality, as long as there are at
least a few points in each mode.

Another important result is that the temperature of the data also has an impact
on the risk of collapse. In figure 14, the temperature of the target distribution pB
is increased by a factor 2, and as a result, the stability of the fine-tuning noticeably
improves.36 This is made clear by comparing the curve of figure 14 (which does
not display any noise beyond the variance induced by the sampling of mini-batches)
with the one of figure 13 (which is noisy in a time-correlated fashion).

It could be suggested that the pre-training quality has a favorable impact or that
more balanced wells, with a lower free-energy barrier, are easier for the model to
generate.37

Another supposition could be made that the better performance at the higher
temperature comes from the fact that it decreases the influence of UB within the
loss (by reducing β = Cte/T in equation 16). This would make sense since a relative
lower influence of UB implies a relative higher influence of the local expansion term
− log |det (JG)| which directly counteracts the collapse. A more comprehensive hy-
pothesis, justifying all the observations of this section (why mode collapses is made

36Since the data changes, new simulations and pre-trainings have to be prepared accordingly.
37This is difficult to assess with certainty one way or the other since comparing the quality of

generative models is notoriously hard. Even with a good metric (i.e. divergence) between the two
distributions to compare, it is virtually impossible to sample enough points to estimate it properly
in high dimension. The strategy used in the remainder of this work (starting in figures 17b and 17c)
is to measure the potential energy of generated samples (i.e. UB(xG)) and the energy of generation
of samples from the dataset (i.e. UG(xB)). More on this at the end of section 5.1.
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Figure 14: Fine-tuning with LKLx on Double Well Wide 12D at a temperature of ×2
(see caption of figure 7 for more details). Note that the reference data used here in
orange and the pre-training (not shown) are also at a temperature of ×2 and that the
target ratio between the modes increases from ≈ 0.22 (at a temperature of ×1) to ≈ 0.37
(at a temperature of ×2).

(a) Pre-training at a temperature of ×1 as
used in figure 13.

(b) Pre-training at a temperature of ×2 as
used in figure 14.

Figure 15: Correlations between UB and UG on generated samples xG ∼ pG after two
pre-trainings (at two different temperatures) on Double Well Wide 12D with Ldd

KLz.

worse by poor data normalization, by inferior pre-trainings, and low temperatures)
and the next (why the alignment penalty is so critical), is formulated in section 5.4.

Finally, note that training at higher temperatures is not prohibitive for density
estimation since the generated distribution pG can be re-weighted by a factor p̃B

pG
after the training is complete (equation 9, as demonstrated in figure 16).

(a) Before re-weighting.

−→

(b) After re-weighting.

Figure 16: Re-weighting of the pG distribution after fine-tuning with LKLx on Double
Well Wide 12D at a temperature of ×2 (as in figure 14). Here, the reference data in
orange is at a temperature of ×1.
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5 Using batch weights for data-free trainings

5.1 Data-free KL(qF ||qN )

Ldd
KLz probably leads to collapse in z-space, but since the target multivariate

Gaussian distribution qN has only one mode, the problem is less critical and does
not lead to collapse in x-space. One limitation of using this loss is that it requires
real xB samples from the target distribution pB (see equation 17), but properly
detached x‡G samples can be used instead by using importance sampling:

∇θKL(qF ||qN ) = ∇θ

[
E

xB∼pB

[
1

2σ2
UN (F (xB))− log

∣∣∣∣det(∂F (xB)∂xB

)∣∣∣∣]] (19a)

= ∇θ

[∫
p‡B(x)

(
1

2σ2
UN (F (x))− log

∣∣∣∣det(∂F (x)∂x

)∣∣∣∣) dx] (19b)

= ∇θ

[∫
p‡G(x)

(
pB(x)

pG(x)

)‡( 1

2σ2
UN (F (x))− log

∣∣∣∣det(∂F (x)∂x

)∣∣∣∣) dx
]

(19c)

= ∇θ

 E
x‡
G∼p

‡
G

(pB(x‡G)
pG(x

‡
G)

)‡(
1

2σ2
UN (F (x

‡
G))− log

∣∣∣∣∣det
(
∂F (x‡G)

∂x‡G

)∣∣∣∣∣
) (19d)

=
1

ZB
· ∇θ

 E
x‡
G∼p

‡
G

( p̃B(x‡G)
pG(x

‡
G)

)‡(
1

2σ2
UN (F (x

‡
G))− log

∣∣∣∣∣det
(
∂F (x‡G)

∂x‡G

)∣∣∣∣∣
)

(19e)

=
1

ZB
· E
x‡
G∼p

‡
G

∇θ

( p̃B(x‡G)
pG(x

‡
G)

)‡(
1

2σ2
UN (F (x

‡
G))− log

∣∣∣∣∣det
(
∂F (x‡G)

∂x‡G

)∣∣∣∣∣
)

(19f)

with:

- (19a) by taking the gradient of equation 92h.
- (19b) by definition of expectations. Note the subtle replacement of pB with
p‡B which is allowed inside the gradient operator∇θ since pB is not a function
of θ.

- (19c) by importance sampling.
- (19d) by definition of expectations.
- (19e) by definition of p̃B = ZBpB.
- (19f) by noticing that, although p‡G is a function of θ, it is not differentiated

with respect to θ. Since it is detached, it is treated as a constant by the
gradient operator and the expectation can be sampled in the context of
Stochastic Gradient Descent.

This leads to the definition of the following loss function:

Ldf
KLz(x

‡
G) =

n∑
i=1

1

n
·

[
wi ·

(
1

2σ2
UN (F (x

‡
G,i))− log

∣∣∣∣∣det
(
∂F (x‡G,i)

∂x‡G,i

)∣∣∣∣∣
)]

(20)
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with:

- x‡G a detached mini-batch of size n, and x‡G,i ∼ p‡G its ith element.

- wi a quantity proportional to
(
p̃B(x

‡
G)/pG(x

‡
G)
)‡

as in equation 19f. It is
this term that focuses the loss onto regions of the space that are under-
sampled by the model. The set {wi|i ∈ [1, ..., n]} is referred to as the “batch
weights” of the loss function.38

Equation 19d cannot be turned into a loss function directly since ZB, and there-

fore pB, are unknown. As a consequence, the fraction
(
pB(x

‡
G)/pG(x

‡
G)
)‡

can only
be computed up to a factor. This is not an obstacle because batch weights can be
scaled for convenience by any quantity that can be factored out of both the expecta-
tion Ex‡

G∼p
‡
G

and the gradient operator ∇θ. In equation 19f, the factor 1
ZB

is factored
out of both, but any other multiplicative constant could be treated similarly. So
defining wi =

e
−UB,i

e
−UG,i

should suffice in theory, but in practice, to avoid computing
numerically unstable exponentials, softmaxes are used instead39:

w̃i =
softmax (−UB(xG,i))

softmax (−UG(xG,i))
(21a)

or softmax (−UB(xG,i)) · softmax (UG(xG,i))

or softmax (−UB(xG,i) + UG(xG,i))

wi =

[
w̃i ·

n∑n
j w̃j

]‡
(21b)

with the softmaxes being computed between the n elements of a mini-batch

according to the definition: softmax(vi) =
evi∑n
j e

vj
. The three alternatives of equa-

tion 21a are proportional to one another40 and lead to the same wi after normaliza-
tion in equation 21b. Note that the softmax formula is reminiscent of the one used
to compute the probabilities of a Boltzmann distribution (see equation 1).41

38Since quantities like these are importance sampling weights but only up to a factor, they are
simply referred to as “batch weights” (or even just “bws” in the legends of some figures).

39The normalization factor of the softmaxes changes between mini-batches but this can be safely
ignored.

40The xG,i points used in equation 21a do not have to be detached because of the detach operator
that follows in equation 21b. Mathematically: ∇θ

[
f(x‡)

]‡
= ∇θ [f(x)]

‡

41A softmax is almost a discretized version of the Boltzmann distribution formula. However,
it uses a incorrect partition function computed over a finite set of discrete samples instead of
the correct partition function ZB , which is computed on the whole support. Another difference
in our case is that the softmaxes from equation 21a use xG points that are sampled according
to pG whereas the probabilities of a Boltzmann distribution are defined according to a uniform
integral over the support. But all those scaling factors are made irrelevant by the normalization
of equation 21b.
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At this point, two losses are available in a data-free setting :
- LKLx(zN ) stems from a divergence defined in x-space and is referred to as

just “KLx” in the legends of some figures. See equations 14 to 16.
- Ldf

KLz(x
‡
G) stems from a divergence defined in z-space, leverages importance

sampling, and is referred to as just “bws * KLz” in the legends of some
figures. See equations 92, 19 and 20.

(a) Ratio of generated xG samples in the minor
modes during pre-training.

(b) UB energies of
samples xG ∼ pG.

(c) UG energies of
samples xB ∼ pB .

(d) xG translations. (e) xG rotations under 3 different view points.

Figure 17: Pre-training with Ldd
KLz + 0.02 · LKLx on Butane. The reference data is

represented in orange and the pre-training data in pink (according to the color scheme
described in section 0).
- Figure 17b is a scatter plot that compares the potential energies UB(xG) (in pink and
in the label of the ordinates) with UB(x

MinH
B ) (in orange). Here, xMinH

B represents xB
points that had the energy of their hydrogen atoms minimized. This is to take into
account the effect of using GH which is trained to minimize the energy of the generated
hydrogen atoms (as described in section 3.3).
- Figure 17c is a scatter plot that compares the energies of generation UG(xB) (in or-
ange) with UG(xG) (in pink and in the label of the ordinates). Note that even though
G(F (xB)) ̸= xB , it is still true that UG(G(F (xB))) = UG(xB) since UG is computed on
the heavy atoms only (see section 3.3). The log scale of the y-axis is kept on purpose
for comparison with other figures (figures 18d and 19c in particular).
- Figure 17d is a 3D scatter plot where each point represents the barycenter of one
generated xG ∼ pG sample. The large scale of the axes is chosen for better comparison
with figure 19d.
- Figure 17e shows three different viewpoints of the same 3D scatter plot where each
point is the rotation of the red reference point by the uncapped alignment rotation
matrix of one xG ∼ pG sample (see section 2.4 for more details). In essence, it represents
the rotations that align xG samples with the configuration of reference (as used in
Ualign(x)).

The pre-training on butane is performed with Ldd
KLz+0.02·LKLx and is illustrated

in figure 17. Only Ldf
KLz is required but the regularization with 0.02 · LKLx speeds

up the training since it adds a direct penalization of the energy UB of the generated
configurations (see equation 16).

After pre-training, the generated data is virtually identical to the real data (not
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shown for this reason) and several observations can be made:

- In figure 17a the ratio of the minor modes is perfectly stable already at
iteration 105.42

- In figure 17b the UB energies of generated samples match those of the ref-
erence data: roughly, one can say that pG ⊂ pB (in the sense that pG ∝ pB
within the support of pG). And in figure 17c the UG energies of samples from
the simulated dataset are very low and match those of generated samples:
roughly, one can say that pB ⊂ pG (in the sense that pB ∝ pG within the
support of pB).

- Figure 17d shows how the generated data is well centered. Although this
cannot be seen in the figure, there is a little bit of Gaussian noise in the
barycenters of the generated configurations since the centering of the distri-
bution is not enforced exactly but through the alignment penalty.

- Figure 17e shows how one axis of rotation remains dominant during simula-
tion (and therefore in the pre-training data) despite the alignment penalty.
This is explained by the fact that rotations around the main axis of butane
(the one parallel to its carbon chain) result in a lower penalty than rotations
in the other directions. Since the rotation penalty is capped, the lower part
of the circle has the same density everywhere, and the density is higher at
the top of the circle, where the rotation penalty gets close to zero. A higher
λalign could be chosen to concentrate all the points near the top of the sphere
(as in figure 21e).

Fine-tunings with LKLx, Ldf
KLz and a combination thereof are represented in

figure 18:

- Figure 18a shows how using LKLx (which penalizes UB(xG) directly in one of
its terms) lead to lower energies very early during training when compared
with using Ldf

KLz alone which optimizes UB only indirectly.
- Figure 18b shows ratios between the modes that are almost correct with

all losses, although one can notice that LKLx seems to be slightly unstable
when compared with Ldf

KLz. This is a phenomenon that can be exacerbated
and that is investigated in section 5.2.

- Figure 18c shows an excellent distribution of UB(xG) for both losses but
figure 18d suggests that, when using LKLx, some collapse is occurring within
the central mode since some data samples have an energy of generation UG

that is orders of magnitude too high. A similar phenomenon occurs in
figure 19c which is explained by the fact that some rotations are lost during
training (as illustrated in figure 19e).

Ldf
KLz is the first loss that is stable in a data-free regime.
LKLx, as investigated in section 5.2, leads to more ambiguous results.

42The pre-training is carried out for 4 · 105 more iterations to ensure that its quality is not
redhibitory in the subsequent fine-tunings (such as those of figures 18 and 19).
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(a) Potential energies UB of generated xG samples during fine-tuning.

(b) Ratio of generated xG samples in the minor modes during fine-tuning.

(c) UB energies of samples xG ∼ pG. (d) UG energies of samples xB ∼ pB .

Figure 18: Comparison of three data-free fine-tunings on Butane with λalign = 10.
- In blue: a fine-tuning with LKLx alone.
- In purple: a fine-tuning with Ldf

KLz + LKLx.
- In cyan: a fine-tuning with Ldf

KLz alone.
See caption of figure 17 for more details.

5.2 Exploring some directions leads to collapse in others

As a reminder, the objective of this work is to train bi-directional generative
models in a data-free manner. Given that randomly initialized models typically
produce absurd configurations, data-dependent pre-trainings are used to lower the
UB energies of generated samples and to ensure that the model does not completely
miss large portions of the target distribution. But one has to assume that the quality
of the pre-training is poor since in general the available data may be insufficient or
even non-existent (as in a curriculum learning setup for example, see section 9.4).

Fine-tuning behaviors, starting from poor pre-trainings, can be examined by
changing the target distribution pB between the two training phases, thereby pre-
training the model to generate a distribution that is not exactly correct. This can
be achieved in a controlled manner by tweaking the terms of the potential energy
UB.

Two such experiments, starting from the same pre-training from figure 17, are
analyzed in this section, and a comprehensive hypothesis explaining all the observed
results is presented in section 5.4.

Before the fine-tunings of figure 19 the factor λalign (described in section 2.4)
is decreased from 10 (at the end of the pre-training from figure 17) to 0. As a
consequence, the total volume of pB is effectively “widened” and many translations
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(a) Ratio of generated xG samples in the minor modes during fine-tuning.

(b) UB energies of samples xG ∼ pG. (c) UG energies of samples xB ∼ pB .

(d) xG translations. (e) xG rotations under 3 different view points.

(f) xG translations. (g) xG rotations under 3 different view points.

Figure 19: Comparison of three data-free fine-tunings on Butane with λalign = 0.
- In blue: a fine-tuning with LKLx alone.
- In purple: a fine-tuning with Ldf

KLz + LKLx.
- In cyan: a fine-tuning with Ldf

KLz alone.
See caption of figure 17 for more details.

and rotations penalized during pre-training are now allowed:

- Figure 19a shows how using LKLx leads to immediate collapse whether or
not it is used in conjunction with Ldf

KLz. This result is reminiscent of the fast
collapse observed in figure 10 on Double Well Wide 12D. If Ldf

KLz is used
alone on the other hand, although the percentage of points in the minor
modes decreases rapidly at first, it eventually stabilizes and no collapse
occurs.

- Figure 19b shows that the collapse does not lead to an increase in the energy
of generated samples UB(xG) which means that pG ⊂ pB remains true.43

- Conversely figure 19c demonstrates how the collapse induced by LKLx im-
43One can also notice that in figure 19b that the energies of UB(x

MinH
B ) (in orange) are slightly

lower than those of UB(xG) (in blue and cyan). This can be explained by the fact that GH is not
perfect and may not generate hydrogen positions that strictly minimize UB .
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pacts all three modes (the minor modes are completely lost and the central
mode also loses some of its mass). Surprisingly pB ⊂ pG remains true when
using Ldf

KLz instead.
- Figure 19d shows how LKLx leads to the exploration of the newly available

translations through the explicit optimization of the local entropy term
− log

∣∣∣det(∂G(zN ,i)

∂zN ,i

)∣∣∣ and figure 19e indicates that the mass that is lost
within the central mode corresponds to the rotations in the lower part of
the sphere.

- In figure 19f, although Ldf
KLz leads to a somewhat stable data-free fine-tuning

(since neither the modes nor the rotations are lost as shown in figures 19c
and 19g) it does not seem to promote exploration whatsoever. This lack of
exploration can be explained by the fact that even though this loss increases
the probability of under-sampled points, it does so only among those that
are already generated by pG, and does not encourage expansion explicitly.

It would be tempting to believe that the collapse mostly occurs on regions of
the space that are the hardest to generate, and that by removing those regions,
better correlations are obtained between UB and UG on generated samples. But this
assumption is refuted by the results of figure 20, where clearly, the fine-tuning that
did not collapse (with Ldf

KLz in cyan) is the one with the best correlations. Said
differently: the fine-tuning that gave the best correlations (with Ldf

KLz) did not need
to collapse for that.

(a) LKLx alone (b) Ldf
KLz + LKLx (c) Ldf

KLz alone

Figure 20: Correlations between UB and UG on generated samples xG ∼ pG after fine-
tunings on Butane with λalign = 0.

In figure 21, contrary to figure 19, λalign is increased from 10 to 100, effectively
“narrowing” the total volume of pB. This means that at the beginning of the fine-
tuning, the generated distribution pG already covers the whole space, but also gener-
ates some additional, unwanted, configurations (namely the lower part of the sphere
from figure 17e).

- Figures 21a and 21c show how LKLx leads to unstable ratios between the
modes, but no collapse. In fact, quite the opposite is observed, since the
ratio between the modes shows more mass being assigned to the minor
modes. Ldf

KLz, as usual, is remarkably stable.
- In figure 21b, the energies of generated configurations UB(xG) are very low,

thereby demonstrating that both losses manage to ensure that pG ⊂ pB at
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the end of the fine-tuning (by making the model lose the portions of the
distribution it generated in excess at the start of the fine-tuning).

- Finally, figure 21e displays the impact of the higher λalign = 100 on the shape
of the distribution, and shows very constrained rotations as expected.

(a) Ratio of generated xG samples in the minor modes during fine-tuning.

(b) UB energies of samples xG ∼ pG. (c) pG distribution of the dihedral angle ϕ.

(d) xG translations. (e) xG rotations under 3 different view points.

Figure 21: Comparison of two data-free fine-tunings on Butane with λalign = 100.
- In blue: a fine-tuning with LKLx alone.
- In cyan: a fine-tuning with Ldf

KLz alone.
See caption of figure 17 for more details.

A complete depiction of the collapse phenomenon and its hypothesized inner-
workings are presented in section 5.4.

5.3 Managing the instability of batch weights

Although softmaxes are numerically stable, they are inherently “peaky” in the
sense that they tend to put most of their mass on just a few points. As a consequence,
most of the batch weights are very close to zero, which has an effect similar to
reducing the size of the mini-batch. The only rare points on which the loss stays
significant are where pB

pG
is high (i.e. where the model is under-sampling the most).

This can be illustrated by noting that the maximum of a softmax computed over
1024 values distributed normally and with a standard deviation of 10, is above 76%
on average:

E
w∼N 1024(0,10)

max ({softmax(wi)|i ∈ [1, 1024]}) > 0.76 (22)
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If −UB + UG were to have a standard deviation higher than 10 in equation 21a
(as is often the case in practice), then more than 76% of the loss would be focused
on a single point out of 1024.

One approach to address that problem is to adjust the batch weights from equa-
tion 21 by dividing the energy differences by their standard deviation (which essen-
tially puts the “temperature” of the softmaxes in a more acceptable range):

˜̃wi =
−UB(xG,i) + UG(xG,i)

max (1, σ (−UB(xG) + UG(xG)))
(23a)

w̃i = softmax
(

1
stemp

· ˜̃wi

)
(23b)

wi = [w̃i · n]‡ (23c)

with:

- σ(v) =
√

1
n

∑n
i (vi − µ(v))

2 the standard deviation of v over the mini-batch.
- µ(v) = 1

n

∑n
i vi the expected value (the average) of v over the mini-batch.

- stemp the enforced “temperature” of the softmax.
Such batch weights are much less peaky, but incorrect everywhere since they are

not proportional to the importance sampling weights from equation 19d. A second
approach is to clamp the batch weights in the following fashion:

˜̃wi = softmax (−UB(xG,i) + UG(xG,i)) (24a)

w̃i = clamp
(
˜̃wi, 0.1, 10

)
(24b)

wi =

[
w̃i ·

n∑n
j w̃j

]‡
(24c)

with clamp(x, cmin, cmax) =


cmin if x < cmin

x if cmin ⩽ x < cmax

cmax if x ⩽ cmax

This is better, since only clamped points have incorrect weights but such clamping
still impacts negatively the quality of experimental results.44

A third (and better) option is to use very low learning rates.4546 Peaky batch
weights are similar to applying the loss to just a few points of the mini-batch, which
is similar to sampling much smaller mini-batches on whatever region the batch
weights favor. And just like small mini-batches need smaller learning rates, losses
with peaky batch weights have the same requirement.

44The choice of cmin = 0.1 and cmax = 10 means that each point weighs between 0.1 and 10
times the uniform weights.

45Using a learning rate 10 times smaller implies having to train for roughly 10 times longer.
46Small learning rates also address other instabilities (not just the one induced by the use of

batch weights).
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Figure 22: UB energies of a fine-tuning
on Butane with Ldf

KLz and a learning rate
of 10−4. This is to be compared with
figure 18a, which uses a learning rate of
10−5.

In the context of Butane, the learning rate
is lowered from 10−4 to 10−5 during the fine-
tuning. This ensures that, if the softmax is too
peaky and only a small region of the space re-
ceives a non-negligible loss, then the effect of
one weight update is not too damaging to the
rest of pG before the softmax of the next mini-
batch focuses on another point. The effect be-
ing leveraged here is a form of time-averaging.

To appreciate how important the choice of the learning rate is, one only needs
to compare the fine-tunings of figure 18a (which is completely stable at a learning
rate of 10−5) and figure 22 (which produces absurd configurations in less than 2000
iterations at a learning rate of 10−4). Both use Ldf

KLz and are perfectly identical
except for learning rate.

5.4 How to minimize the risk of collapse

LKLx is a combination of two terms: the energy term βUB(G(zN )) and the
entropy term − log

∣∣∣det(∂G(zN )
∂zN

)∣∣∣. Combined, they interact to ensure that the dis-
tribution pG generated by the model converges to the target distribution pB. But
this is true only under several assumptions that cannot be verified. In particular,
the true expectation from equation 15 cannot be computed, only estimated, and the
model is limited in expressivity. Given the results of section 5.2, it is clear that at
least one assumption made along the way breaks the promise of perfect convergence.

In figure 19, setting λalign to zero is equivalent to removing the energy term in
some directions of the space (the directions of translations and rotations). As a
consequence, the entropy term is now free to expand pG there, but it does so at the
expense of letting the distribution contract in other directions, leading to collapse.
It is tempting to believe that it is the energy term that causes the contraction
in the multimodal direction by overpowering the entropy term (which is suddenly
busy expanding the distribution somewhere else). But, although it is possible that
the energy term accelerates the collapse, it is not necessary for it to occur. This is
illustrated in figure 19e, where the rotations represented at the bottom of the sphere
are completely lost, regardless of the fact that no energy term encourages this (since
λalign = 0).

In figure 21, still with LKLx, the phenomenon is reversed. The energy term is
suddenly increased in some directions, by setting λalign to 100, and the model quickly
contracts in those directions, but at the expense of spreading more uniformly in
other directions, resulting in the loss of the proper balance between the modes (see
figures 21a and 21c).
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Since the overall mass of pG remains constant (it always sums to one), what
seems to be happening when using LKLx is the following:

- When having to expand in some directions, pG must find the mass some-
where, and it tends to contract in other directions rather that decrease its
mass uniformly (see diagram of figure 23a, and experiments of figure 19).

- When having to contract in some directions, pG must redistribute that
excess mass uniformly, but instead tends to increase unevenly in other
directions (see diagram of figure 23b, and experiments of figure 21).

(a) If expansion comes first (in black), it may
be simpler for pG to contract in other

directions (in gray), rather than to lose mass
uniformly everywhere (as in figure 19).

(b) If contraction comes first (in black), it may
be simpler for pG to expand in other

directions (in gray), rather than to gain mass
uniformly everywhere (as in figure 21).

Figure 23: Diagram summarizing the observed behavior of LKLx. Note that this merely
an interpretation of what is observed experimentally and not proven mathematically.

In retrospect, this phenomenon is not too surprising since LKLx does not ex-
plicitly move generated xG points from the over-sampled regions toward the under-
sampled regions. In other words, the loss is not applied on the generated points
themselves, but on their probability distributions instead, which is considerably less
informative, and becomes a significant problem when only a finite number of points
is sampled within each mini-batch.

According to the change of variable formula from equation 11, pG can be expressed
as follows:

pG(xG) = pG(G(zN )) = qN (G(zN )) ·
∣∣∣∣det(∂G(zN )∂zN

)∣∣∣∣−1 (25)

LKLx pushes pG to increase where it is under-sampled by maximizing the second

term of equation 25:
∣∣∣det(∂G(zN )

∂zN

)∣∣∣−1.47 To increase that term near a given point
xG = G(zN ), the model G brings the image of points that are near zN closer to
xG, thereby “stealing” them from other xG points. This effect is local and does not
guarantee that the other xG points are remapped correctly if they are not sampled
in the next batch.

47qN (G(zN )) is optimized only indirectly.
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Alternative losses are presented in sections 6 to 8 that aim to address that issue,
but for now, here is a summary of the list of practical training considerations that
alleviate the problem (including the risk of collapse):

- Trainings with Ldf
KLz are more stable than trainings with LKLx. However,

Ldf
KLz can only be used if exploration is not a significant requirement. This is

because it merely redistributes pG among points that are already probable
according to it. It does not expand in new directions (as illustrated in
figure 19).

- Removing (or constraining) degrees of freedom that are unnecessary for
downstream tasks in paramount. For example in this work, hydrogen per-
mutations are removed altogether (see section 3.3) and translations and ro-
tations are constrained with the alignment penalty Ualign(x). For the later
point, many other possibilities exist, including using model architectures
that are invariant to such translations and rotations (see in section 2.4).

- If data is available, a better pre-training quality always helps (see section
4.5). This point will surely become critical in the context of curriculum
learning (see section 9.4).

- The data should be standardized properly. Although this is a very general
statement, it is especially true in the context of generative models. This
means that not only qN should have a variance close to 1, but pB too.48

The encoding of xB points should have a reasonable scale and the energy
function UB should be adapted accordingly.49

- Increasing the temperature simplifies the task that the model has to solve
(see section 4.5) since the target distribution pB is slightly more uniform.
However, the training temperature should not be too high50, so as to ensure
that re-balancing the distribution remains numerically stable (see figure 16).

- Low learning rates are usually preferable, particularily when using batch
weights with Ldf

KLz, even at the cost of longer trainings.

Although these important precautions significantly improve the quality of train-
ings, they do not fix the underlying issue. It is unavoidable that better losses are
required (see the following sections).

Further experiments on the Dialanine dataset confirm that Ldf
KLz remains stable

on somewhat larger systems (see figures 24 and 25), although it seems that very small
modes are still at risk of being lost if not trained at a high temperature. Between the
pre-training (figure 24b) and the fine-tuning (figure 24c), the mode in the lower left
quadrant of the Ramachandran plot is completely lost, and as a result the energy
of generation of those samples explodes (figure 25c).

Ldf
KLz also manages to adapt the distribution to a change of thickness when λalign

is either increased or decreased by a factor 10 as illustrated in figure 26.

48If possible in every direction of space, although this is hardly feasible in the context of molecular
datasets.

49It would be interesting to know whether invariance to homotheties is a desirable feature.
50Roughly, no more than 4 times the baseline temperature.
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(a) ϕ and ψ from the
Dialanine dataset.

(b) ϕ and ψ after pre-training
with Ldd

KLz.
(c) ϕ and ψ after fine-tuning

with Ldf
KLz

Figure 24: Dihedral angles ϕ and ψ of the dialanine molecule.

(a) UB energies of samples xG ∼ pG. (b) Correlations. (c) UG energies of samples xB ∼ pB .

Figure 25: Quality of generation after fine-tuning on Dialanine with Ldf
KLz.

(a) Fine-tunning with
λalign = 1.

(b) Fine-tunning with
λalign = 10.

(c) Fine-tunning with
λalign = 100.

Figure 26: Results of a fine-tuning on Dialanine with Ldf
KLz after a pre-training with

λalign = 10.

LKLx, on the other hand, completely fails to maintain the pG distribution stable51,
even after lowering the learning rate a second time to 10−6. The potential energy of
generated samples gets progressively worse, until it becomes off by several orders of
magnitude (data not shown).

5.5 Re-weighting KL(pG||pB)

When training with LKLx on a dataset like Double Well Wide 12D, the model
always collapses to the same well (the larger one as in figure 10). Since the con-
clusions from section 4.3 suggest that the collapse may (at least in part) be caused
by the sampling procedure itself, reweighting the gradients between the elements

51As foreshadowed in section 5.2
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of the mini-batch seems to be a promising approach. The idea here is to focus the
loss differently between the sampled points so as to imitate a different sampling
procedure. It is very similar to the classic method of scaling weight updates used to
address class imbalance in classification problems [32]. The loss becomes:

Lbw
KLx(zN ) =

n∑
i=1

1

n
·
[
wi ·

(
βUB(G(zN ,i))− log

∣∣∣∣det(∂G(zN ,i)

∂zN ,i

)∣∣∣∣)] (26)

with zN ∼ qnN a mini-batch of size n, and zN ,i ∼ qN its ith element.

This loss is not an unbiased estimator of the KL divergence, so optimizing it
is expected to lead to a biased pG, however a moderate bias in pG is acceptable in
practice, thanks to the reweighting approach used in applications (see section 3.1).

The efficiency of this approach can be demonstrated by trying to collapse on the
smaller well. This can be done very simply by using weights wi of the form:

w̃i =

{
1 if xG,i is in the minor mode
0.1 if xG,i is in the major mode

(27a)

wi = w̃i ·
n∑n
j w̃j

(27b)

The results of figure 27 show that even if some weight is still attributed to points
from the major mode, the model ends up collapsing completely.

Figure 27: Fine-tuning with Lbw
KLx on Double Well Wide 12D with batch weights fo-

cusing the loss on the minor mode (see equation 27) (see caption of figure 7 for more
details).

Now that it is clear that batch weights can control which well is favored during
collapse, it can be shown that there exist batch weights that prevent mode col-
lapse altogether. This can be achieved by leveraging information coming from our
knowledge of pB: the target ratio between the wells.

Roughly, in Butane’s dataset, 71.0% of the points are in the major mode, and
the remaining 29.0% are split between the two minor modes in equal proportions
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(14.5% each). These target ratios are denoted as follows, with the arrows ←, ↑ and
→ corresponding the “left”, “middle” and “right” modes respectively:

r←trg ≈ .145 r↑trg ≈ .710 r→trg ≈ .145 (28)

During training, proper ratio between the wells can be enforced by using batch
weight of the form:

w̃i =


r←trg/r

←
out if dihedral(xi) < 120◦

r↑trg/r
↑
out if 120◦ ⩽ dihedral(xi) ⩽ 240◦

r→trg/r
→
out if 240◦ < dihedral(xi)

(29a)

wi =

[
w̃i ·

n∑n
j w̃j

]‡
(29b)

with r←out, r
↑
out, and r→out being the ratios of output points xG, in each mini-batch,

that are in the “left”, “middle” and “right” modes respectively. This ensures that
the less populated a well is, the larger the batch weights become. As a result, the
training is somewhat stabilized (see figure 28).

(a) Ratio of generated xG ∼ pG points that are in the minor modes
during training (in blue) compared with the real ratio of ≈ 0.29

from the dataset (in orange).

(b) UB energies computed
on generated samples

xG ∼ pG.

Figure 28: Fine-tuning with Lbw
KLx on Butane with batch weights from equation 29.

Despite this relative improvement the correct ratios are not maintained during
fine-tuning. This problem could be somewhat alleviated by using more adaptive
batch weights. Since w̃i (from equation 29a) can only have three possible value at
each time step, simply increasing w̃i gradually each time a well is undersampled and
decreasing it each time it is oversampled should be sufficient:

˜̃w←↑→i,t =

{
˜̃w←↑→i,t−1 × 1.01 if r←↑→out < r←↑→trg

˜̃w←↑→i,t−1 ÷ 1.01 if r←↑→out ⩾ r←↑→trg

(30a)

w̃i =


˜̃w←i,t if dihedral(xi) < 120◦

˜̃w↑i,t if 120◦ ⩽ dihedral(xi) ⩽ 240◦

˜̃w→i,t if 240◦ < dihedral(xi)

(30b)

wi =

[
w̃i ·

n∑n
j w̃j

]‡
(30c)
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with:

- t: the fine-tuning time step.
- ˜̃w←↑→i,t : three values corresponding to each mode and initialized at 1.52

(a) Ratio of generated xG ∼ pG points that are in the minor modes during training (in blue)
compared with the real ratio of ≈ 0.29 from the dataset (in orange).

(b) UB energies computed on
generated samples xG ∼ pG. (c) Energy correlations.

(d) UG energies computed on
simulated samples xB ∼ pB .

Figure 29: Fine-tuning with Lbw
KLx on Butane with batch weights from equation 30.

This time, the ratios are perfectly maintained (see figure 29a) but this does not
stop the distribution from collapsing within each mode (see figure 29d).

A similar method, based on this approach, would consist in replacing the esti-
mation of how much a mode is over- or under-sampled in equation 29a, with some
other estimate, this time computed in a neighborhood and without expert informa-
tion about what the correct ratios should be. One of the most rudimentary example
of this is:

xlowG,i = minimize_energies (xG,i) (31a)

paggB,i = aggregate
(
softmax

(
−UB(x

low
G,i)

)
, xlowG,i

)
(31b)

paggG,i = aggregate
(
softmax

(
−UG(x

low
G,i)

)
, xlowG,i

)
(31c)

w̃i =
paggB,i

paggG,i

(31d)

wi =

[
w̃i ·

n∑n
j w̃j

]‡
(31e)

with:

- minimize_energies(x): a function that outputs the last x obtained from
a few steps of minimization of the potential energy UB.

- UG(x
low
G,i): the energy of generation computed with an inverse pass through

the model.
52Note that when using the batch weights of equation 29b the mini-batch size must be large

enough (say 1024) to ensure that there is always at least one point sampled in each mode to avoid
a division by zero. This requirement is dropped here in equation 30c.
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- aggregate(vi, xi): a function that averages the value vi in the neighborhood
of xi (which requires some measure of similarity between xlowG,i points).

Experimental results based on variation of Lbw
KLx are generally underwhelming,

with or without an aggregate function, based or not on energy minimization and
using different distance metrics (data not shown), and do not successfully counteract
the collapse without expert information. That is not to say that designing better
batch weights for Lbw

KLx may not be a promising avenue of research. But significant
difficulties have to be overcome to pursue this strategy:

- The most fundamental problem is that batch weights would be used to
counteract a phenomenon that is not well measured. Although it seems
possible in practice (as the result from figure 29 suggests), without a good
quantification of the collapse phenomenon, it seems more likely that batch
weights can only approximately counteract it. In other words, it is unclear
what batch weights should actually do and what quantity they should help
minimize. Furthermore, it is unclear whether averaging quantities of the
form p̃B/pG (as in equations 29a and 31d) is sufficient or not since some
completely different type of information may be required.

- Even if one accepts the imprecise nature of Lbw
KLx and decides to use batch

weights similar to those of equation 31, the clustering method alone remains
a substantial complication. It heavily relies on a good distance metric in
x-space that represents the difference between molecular configurations, but
given such a metric, better methods may be available (see section 8).

In conclusion, using Lbw
KLx seems tricky. Ldf

KLz on the other hand, is both theoret-
ically justified and leads to convincing experimental results as shown in sections 5.1
and 5.2.
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6 Using Renyi divergences and L2 losses

6.1 Using KL(pB||pG)

In section 4.1, the choice has been made to useKL(pG||pB) as a training objective,
but it is a well known result from the literature53 that when the KL is not weighted
by the target distribution (i.e. pB), it can under-estimate its support.54 KL(pB||pG)
on the other hand tends to over-estimate the support of the target distribution
pB

55 which could be a valuable property to avoid mode collapse on problems more
complex than Butane.

There are two main ways to derive a loss function from the KL(pB||pG) objec-
tive. The first one consists in noticing that KL(pB||pG) is actually equivalent to
KL(qF ||qN )56 (see Papamakarios et al. [40]):

KL(pB||pG) =
∫
pB(x)

[
log pB(x)− log pG(x)

]
dx (32a)

=

∫
pB(x)

[
log pB(x)− log

∣∣∣∣det(∂G−1(x)∂x

)∣∣∣∣− log qN (G
−1(x))

]
dx (32b)

=

∫
qF (z)

[
log qF (G(z)) + log

∣∣∣∣det(∂F−1(z)∂z

)∣∣∣∣− log qN (z)

]
dz (32c)

=

∫
qF (z) [log qF (z)− log qN (z)] dz (32d)

= KL(qF ||qN ) (32e)

with:

- (32a) by definition of the KL divergence
- (32b, 32c and 32d) by using the change of variable formula
- (32e) by definition of the KL divergence

The Ldd
KLz loss and its data-free variant Ldf

KLz are therefore already minimizing this
reverse KL which may explain (at least in part) their good performance. One can
also notice that during training Ldf

KLz only differentiates the inverse pass F = G−1

of the generator (i.e. it moves the points zF for a given mini-batch xB), whereas
LKLx only differentiates the forward pass G = F−1 of the generator (i.e. it moves
the points xG for a given mini-batch zN ).

So a second way to derive a loss function from KL(pB||pG) = KL(qF ||qN ) would

53See Murphy [38], chapter 21, figures 21.1 and 21.2.
54KL(pG||pB) is sometimes referred to as the “exclusive” KL and is said to be “zero-forcing”.
55KL(pB ||pG) is sometimes referred to as the “inclusive” KL and is said to be “zero-avoiding”.
56Note that the same method can be used to show the equivalence between KL(pG||pB) and

KL(qN ||qF ).
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consist in trying to differentiate the forward pass instead of the inverse pass:

KL(pB||pG) =
∫
pB(x) log

pB(x)

pG(x)
dx (33a)

= −
∫
pB(x) logZB dx+

1

ZB

∫
p̃B(x) log

p̃B(x)

pG(x)
dx (33b)

= − logZB +
1

ZB

∫
p̃B(x) log

p̃B(x)

pG(x)
dx (33c)

= − logZB +
1

ZB

∫
pG(x)

p̃B(x)

pG(x)
log

p̃B(x)

pG(x)
dx (33d)

= − logZB +
1

ZB

∫
qN (z)

p̃B(G(z))

qN (z)
∣∣∣det(∂G(z)

∂z

)∣∣∣−1 log
 p̃B(G(z))

qN (z)
∣∣∣det(∂G(z)

∂z

)∣∣∣−1
 dz

(33e)

= − logZB +
1

ZB

∫
qN (z)

e−βUB(G(z))

qN (z)
∣∣∣det(∂G(z)

∂z

)∣∣∣−1 log
 e−βUB(G(z))

qN (z)
∣∣∣det(∂G(z)

∂z

)∣∣∣−1
 dz

(33f)

= − logZB +
1

ZB
E

zN∼qN

 e−βUB(G(zN ))

qN (zN )
∣∣∣det(∂G(zN )

∂zN

)∣∣∣−1 log
 e−βUB(G(zN ))

qN (zN )
∣∣∣det(∂G(zN )

∂zN

)∣∣∣−1



(33g)

= − logZB −
1

ZB
E

zN∼qN

 e−βUB(G(zN ))

qN (zN )
∣∣∣det(∂G(zN )

∂zN

)∣∣∣−1
×

(
βUB(G(zN )) + log

(
qN (zN )

∣∣∣∣det(∂G(zN )∂zN

)∣∣∣∣−1
))]

(33h)

with:

- (33a) by definition of the KL divergence
- (33b) by using pB = p̃B/ZB

- (33c) by using
∫
pB(x)dx = 1 (probabilities sum to one)

- (33d) by multiplying by pG/pG
- (33e) by using the change of variable formula (from equation 11)
- (33f) by using: p̃B(x) = e−βUB(x)

- (33g) by definition of expectations: E
zN∼qN

[
f(zN )

]
=

∫
qN (z)f(z)dz

Although it seems that the unknown ZB has successfully been factored out of
the expectation, it is not possible to transform equation 33g into a loss suitable for
training, for two different reasons:

- The main reason (that we shall call the “additive ZB problem”) refers to
the fact that the first fraction of equation 33g is multiplied by a quantity
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which can be either positive or negative depending on an arbitrary additive
constant in the energy UB. This means that factoring out ZB between
equations 33a and 33b actually has a profound impact on the optimization.
For illustration, equation 33f is analyzed here:

- If a large constant is added within the log then the log is positive
and the UB term from the first fraction is always maximized during
training. Although it can make sense mathematically in the con-
tinous limit (and under the constraint that the probabilities must
sum to 1), it is extremely detrimental to the optimization process
when sampling mini-batches. It results in markedly unstable train-
ings since the model is being asked to increase the energy of the
generated samples as quickly as possible.

- On the other hand, if a large constant is subtracted within the log

then the log is negative and UB from the first fraction is always
minimized during optimization, which LKLx already does.

- Only a careful balance between these two extremes would truly
minimize KL(pB||pG), and this balance is achieved when ZB is not
factored out of the log (see equation 33g). As a result, the log would
then be either positive or negative, depending on whether points are
over- or under-sampled.

- The second reason (that we shall call the “multiplicative ZB problem”)
refers to the fact that the unknown fraction 1/ZB before the expectation
of equation 33g makes it impossible to perfectly balance KL(pB||pG) and
KL(pG||pB) to get a “symmetrical” training objective (in which pG and pB
can be swapped freely).

To address these issues, Rényi divergences are investigated in section 6.2 and L2

losses in section 6.3.

6.2 Using RN1/2(pG||pB) as a way to symmetrize the objective

KL divergences are a special case of a broader family of divergences called Rényi
Divergences57 which depend on an hyperparameter α, called the order, where α ≥ 0

and α ̸= 1:

RNα(pG||pB) =
1

α− 1
log

∫
pG(x)

α

pB(x)α−1
dx (34)

The limit of α→ 1 gives the KL divergence:

RN1(pG||pB) =
∫
pG(x) log

pG(x)

pB(x)
dx = KL(pG||pB) (35)

Instead of trying to balance KL(pG||pB) and KL(pB||pG), one can also use the
57See van Erven and Harremoes [54] for an overview as well as Hernandez-Lobato et al. [20] and

Li and Turner [34] for applications to Variational Inference.
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symmetrical Rényi divergence58, with α = 1/2:

RN1/2(pG, pB) = RN1/2(pG||pB) = −2 log
∫ √

pB(x)pG(x) dx (36)

The associated loss function is obtained like this:

RN1/2(pG, pB) = −2 log
∫ √

pB(x)pG(x) dx (37a)

= logZB − 2 log

∫ √
p̃B(x)pG(x) dx (37b)

= logZB − 2 log

∫
pG(x)

(
p̃B(x)

pG(x)

) 1
2

dx (37c)

= logZB − 2 log

∫
qN (z)

 p̃B(G(z))

qN (z)
∣∣∣det(∂G(z)

∂z

)∣∣∣−1


1
2

dz (37d)

= logZB − 2 log

∫
qN (z)

 e−βUB(G(z))

qN (z)
∣∣∣det(∂G(z)

∂z

)∣∣∣−1


1
2

dz (37e)

= logZB − 2 log E
zN∼qN


 e−βUB(G(zN ))

qN (zN )
∣∣∣det(∂G(zN )

∂zN

)∣∣∣−1


1
2

 (37f)

with:

- (37a) by definition of the Rényi divergence with α = 1/2

- (37b) by using pB = p̃B/ZB and
∫
pB(x)dx = 1 (probabilities sum to one)

- (37c) by multiplying by pG/pG
- (37d) by using the change of variable formula (from equation 11)
- (37e) by using: p̃B(x) = e−βUB(x)

- (37f) by definition of expectations: E
zN∼qN

[
f(zN )

]
=

∫
qN (z)f(z)dz

Note that in equation 37f the expectation is trapped within a log which means
that the principle of Stochastic Gradient Descent cannot be applied directly to trans-
form it into a loss function (see section 4.1). Although using the log of an expectation
as an empirical loss introduces a bias in the resulting stochastic gradients, that bias
is almost negligible [20], especially when sampling large mini-batches. Under this

58Divergences are not symmetrical in the general case, i.e. D(pG||pB) ̸= D(pB ||pG) in most cases.
The divergence RN1/2(pG, pB) is a notable exception, hence the use of a comma instead of two
vertical bars to separate the two distributions.
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approximation, one can derive the following loss function59:

LRN1/2
(zN ) = − log

n∑
i=1

 1n ·
 e−βUB(G(zN ,i))

qN (zN ,i)
∣∣∣det(∂G(zN ,i)

∂zN ,i

)∣∣∣−1


1
2

 (38)

Symmetrizing the training objective does not prevent the collapse (see figure 30).

Figure 30: Fine-tuning with LRN1/2
(zN ) on Double Well Wide 12D (see caption of

figure 7 for more details).

6.3 Using PL2(pB, pG), an L2 loss on pairs of points

6.3.1 Definition of the PL2(pB, pG) objective

The simplest L2 criterion that could be applied to log-probabilities is:

L2(pG, pB) =

∫ (
log

pG(x)

pB(x)

)2

dx (39)

But this criterions cannot be used since it relies on knowing ZB. As reminded
in section 6.1, one major requirement when designing a good training objective is
not to rely on the unknown ZB when transforming the objective into a usable loss
function. Since ZB divides p̃B, the simplest way to remove it from an equation is
by using ratios of the form pB(xγ)

pB(xβ)
= p̃B(xγ)

p̃B(xβ)
, where xγ and xβ are pairs of points in

x-space. Following this reasoning, an L2 loss using pairs of points (denoted PL2)

59In practice, the exponential terms are computed with softmaxes with detached denominators.
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can be defined as follows:

PL2(pG, pB) =

∫∫ (
log

pB(xγ)

pG(xγ)
− log

pB(xβ)

pG(xβ)

)2

dxγdxβ (40a)

=

∫∫ (
log

p̃B(xγ)

pG(xγ)
− log

p̃B(xβ)

pG(xβ)

)2

dxγdxβ (40b)

=

∫∫ ((
UG(xγ)− βUB(xγ)

)
−
(
UG(xβ)− βUB(xβ)

))2
dxγdxβ (40c)

= E
(xUγ,xUβ)∼p2U

[((
UG(xUγ)− βUB(xUγ)

)
−
(
UG(xUβ)− βUB(xUβ)

))2]
(40d)

with:

- (40a) by defining xγ and xβ as two different points in x-space such that
pG(xγ) ̸= 0 and pG(xβ) ̸= 0.60

- (40b) by noticing that the logZB terms (from pB(xγ) and pB(xβ)) cancel
one another

- (40c) by using log p̃B = −βUB and log pG = −UG (see section 0) with:

UG(x) = − log

(
qN (F (x))

∣∣∣∣det(∂F (x)∂x

)∣∣∣∣) (41)

- (40d) by definition of expectations and with U referring to the uniform
distribution

6.3.2 Proof that the optimum of PL2(pB, pG) is correct

Since the double integral of equation 40a is defined over something that is always
positive, it means that if PL2(pG, pB) reaches 0 then it is also at its minimum. One
can also note that:

∀(xγ, xβ) ∈ supp(pG)
2,

(
log

pB(xγ)

pG(xγ)
− log

pB(xβ)

pG(xβ)

)2

= 0 =⇒
pB(xγ)

pG(xγ)
=
pB(xβ)

pG(xβ)
= K

(42)
with K some constant.

This means that, at 0, pG and pB must be proportional. Moreover, since pG
and pB are both probability distributions, they must sum up to 1, which implies
that K = 1 when the support of pG covers the support of pB. In that case, this
proves that the PL2(pG, pB) objective has only one minimum, which is the correct
one. However, if there exists some region of the space with pG = 0 and pB ̸= 0,
PL2(pG, pB) can still be equal to 0, with K ̸= 1 (see section 6.4.1).61

6.3.3 Proof that PL2(pB, pG) is convex in UG = − log pG

PL2 can also be proven to be convex in UG = − log pG. Equation 40d can
be generalized since the sampling procedure can be done according to any fixed

60Note that the β in xβ has nothing to do with the thermodynamic β defined in section 1.1
61This is what happens when a mode is completely ignored by the generator.
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distribution p (not just pU) under the condition that p is not 0 anywhere. This leads
to:

PL2(pG, pB) = E
(xγ,xβ)∼p2

[(
UG(xγ)− UG(xβ)− β

(
UB(xγ)− UB(xβ)

))2]
(43)

xγ and xβ can even be sampled according to different distributions, but this
use-case will not be introduced until section 6.4.3.

The first derivative of equation 43 is:

dPL2

dUG
(δUG) = 2 · E

(xγ,xβ)∼p2

[(
UG(xγ)− UG(xβ)− β

(
UB(xγ)− UB(xβ)

))
δUG(xγ)

]
− 2 · E

(xγ,xβ)∼p2

[(
UG(xγ)− UG(xβ)− β

(
UB(xγ)− UB(xβ)

))
δUG(xβ))

]
(44a)

= 2 · E
(xγ,xβ)∼p2

[(
UG(xγ)− UG(xβ)− β

(
UB(xγ)− UB(xβ)

))
δUG(xγ)

]
+ 2 · E

(xγ,xβ)∼p2

[(
UG(xβ)− UG(xγ)− β

(
UB(xβ)− UB(xγ)

))
δUG(xβ))

]
(44b)

= 4 · E
(xγ,xβ)∼p2

[(
UG(xγ)− UG(xβ)− β

(
UB(xγ)− UB(xβ)

))
δUG(xγ)

]
(44c)

with:

- (44a) by differentiating equation 43
- (44b) by putting the negative sign within the second expectation
- (44c) by noticing that xγ and xβ can be swapped

The second derivative, in turn, is:

d2PL2

df 2
(δUG)(δU

′
G) = 4 · E

(xγ,xβ)∼p2

[(
δU ′G(xγ)− δU ′G(xβ)

)
δUG(xγ)

]
(45)

This quantity is a matrix which is positive if and only if when multiplied from
the left and from the right by any vector the result is always positive. To pick the
same vector, δU ′G is replaced with δUG in the following equation:

d2PL2

dU2
G

(δUG)(δUG) = 4 · E
(xγ,xβ)∼p2

[(
δUG(xγ)− δUG(xβ)

)
δUG(xγ)

]
(46a)

= 4 · E
(xγ,xβ)∼p2

[
δUG(xγ)

2
]
− 4 · E

(xγ,xβ)∼p2

[
δUG(xβ)δUG(xγ)

]
(46b)

= 4 · E
xγ∼p

[
δUG(xγ)

2
]
− 4 · E

xγ∼p

[
δUG(xγ)

]
E

xβ∼p

[
δUG(xβ)

]
(46c)

= 4 · E
xγ∼p

[
δUG(xγ)

2
]
− 4 ·

(
E

xγ∼p

[
δUG(xγ)

])2

(46d)

= 4 ·

(
E

xγ∼p

[
δUG(xγ)

2
]
−
(

E
xγ∼p

[
δUG(xγ)

])2
)

(46e)

⩾ 0 (46f)
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with:

- (46c) since xγ ∼ p and xβ ∼ p are independent.
- (46f) by noticing that equation 46e is a formula for the variance, which is

known to always be positive.

This proves the convexity of the PL2(pG, pB) objective in UG = − log pG.

6.4 Choosing the distribution p that weights PL2(pB, pG)

6.4.1 Picking p = pG leads to collapse

The expectation from equation 43 can be weighted according to any distribution
p, as long as p is not zero anywhere and does not depend on pG, otherwise the
optimality proof from section 6.3.2 does not hold (because one would have to differ-
entiate wrt p also). But what happens if p is chosen to be pG anyway in equation 47?
This quantity is always positive (or 0), and pG = pB is indeed a global minimum
(i.e. PL2(pG = pB, pB) = 0):

PL2
G(pG, pB) = E

(xγ,xβ)∼p2G

[(
UG(xγ)− UG(xβ)− β

(
UB(xγ)− UB(xβ)

))2]
(47)

However, there are plenty of other global minima. This is because:

PL2(pG, pB) = 0

⇐⇒

∀(xγ, xβ)
[
pG(xγ)pG(xβ) = 0 or

(
UG(xγ)− UG(xβ)− β

(
UB(xγ)− UB(xβ)

))2
= 0

]
Said differently, it means that it is possible for pG to be equal to 0 in some regions

of the space (for example in one of many modes) and to be equal to K · pB in other
regions with K ≥ 1.62

When choosing p = pG, the resulting loss from equation 48 leads to a quick
collapse (as shown in figure 31).63. This result is interesting, in the sense that the
only term that is differentiated w.r.t. θ here is UG, which means that the collapse
behavior is not induced by the differentiation of the potential energy term UB.

LPL2
G
(x‡G) =

n∑
i=1

n∑
j=1

1

n2

[(
UG(x

‡
G,i)− UG(x

‡
G,j)− β

(
UB(x

‡
G,i)− UB(x

‡
G,j)

))2]
(48)

62Other training objectives like KL(pG||pB) and RN1/2(pG, pB) do not have this problem in the
limit of a dense sampling. However, once transformed into loss functions, when sampling mini-
batches, regions of the space that are not sampled by pG will not be penalized and therefore never
recovered. But, as said before, this observation does not explain why modes are lost if pG already
samples them.

63The double sum of equation 48 corresponds to the double integral of equation 40c. The first
index i refers to xγ points and the second index j refers to xβ points.

60



Figure 31: Fine-tuning with LPL2
G

on Double Well Wide 12D (see caption of figure 7
for more details).

6.4.2 Picking p = pB leads to instabilities

When choosing p = pB, importance sampling weights appear (similar to those
from equation 19) and result in the following loss function:

LPL2
B
(x‡

G) =

n∑
i=1

n∑
j=1

1

n2

[
wiwj

(
UG(x

‡
G,i)− UG(x

‡
G,j)− β

(
UB(x

‡
G,i)− UB(x

‡
G,j)

))2]
(49)

with wi a quantity proportional to (p̃B(xG,i)/pG(xG,i))
‡.

This loss leads to a progressive increase in the potential energy of generated
points (i.e. UB(xG)), until the generated distribution has almost no point in common
with pB (data not shown). Since this objective only works within a mini-batch,
some points are always considered over-sampled relative to others (even when the
generated distribution is already excellent). The energy of these points is then
maximized, even if it doesn’t need to be, and the model ends up generating many
high-energy points.

To summarize, this loss only corrects the relative probabilities of pB points, even
if they have a very low probablity of being generated by the model and without
making them any more probable as a whole.

Side-note: Having well-defined training objectives leading to losses that behave
poorly experimentally is a recurring theme. Although it is only an hypothesis, the
main cause of the problem probably comes from the fact that training objectives
use integrals whereas empirical losses are estimated over finite sets of points,
which considerably changes the expected behavior of the training procedure.
This point is discussed further in section 9.

6.4.3 Picking p(xγ) = pG(xγ) and p(xβ) = pB(xβ) leads to stable trainings

A promising idea to overcome the problems of section 6.4.2 is to only optimize
points that are deemed under -sampled within each mini-batch. This can be accom-
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plished quite simply by using a mask as follows:

Ũdiff(x
‡
G,i, x

‡
G,j) = UG(x

‡
G,i)− U

‡
G(x

‡
G,j)− β

(
UB(x

‡
G,i)− UB(x

‡
G,j)

)
(50a)

Udiff(x
‡
G,i, x

‡
G,j) =

{
Ũdiff(x

‡
G,i, x

‡
G,j) if Ũdiff(x

‡
G,i, x

‡
G,j) ≥ 0

0 if Ũdiff(x
‡
G,i, x

‡
G,j) < 0

(50b)

LPL2
GB

(x‡G) =
n∑

i=1

n∑
j=1

1

n2

[
wj

(
Udiff(x

‡
G,i, x

‡
G,j)

)2]
(50c)

with:
- wj a quantity proportional to (p̃B(xG,j)/pG(xG,j))

‡

Importantly, the variation of PL2 used here is denoted PL2
GB(pG, pB). The sub-

script GB refers to the fact that the points in each pair of the loss are associated
with different probabilities.

- The first points of each pair, with index i, are sampled according to pG
(notice the missing wi in equation 50c). They produce UG(x

‡
G,i) which is

not detached. It is through this term alone that θ is optimized.
- The second points of each pair, with index j, are sampled according to
pG but have pB importance sampling weights (notice the presence of wj in
equation 50c). They produce U ‡G(x

‡
G,j) which is detached. Therefore those

points are only used as reference points.
In essence, this loss is similar to comparing the probability ratios of points sam-

pled according to pG with points sampled according to pB, and leads to excellent
results as shown in figure 32, albeit some slightly over-sampled points in the inter-
mode.64

Figure 32: Fine-tuning with LPL2
GB

on Double Well Wide 12D (see caption of figure 7
for more details).

Compared to the results of LPL2
G

in figure 31 there are two changes that may
justify the better performance of LPL2

GB
in figure 32. First, a mask is added is equa-

tion 50b, and second, batch weights wj are added to the points used as “reference”
64Having slightly over-sampled points in the inter-mode might actually provide more stability

during training, since the model ends up tearing the space less in these regions (see figure 44a
appendix A.4 for a visualization).
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in equation 50c. Among those two changes, it is the mask that brings the most im-
provement. Simply using the batch weights wj without the mask leads to collapse
(data not shown), whereas using the mask without the batch weights hinders the
performance but does not lead to collapse as shown in figure 33. This is a crucial
result that is explored further in section 6.5.3.

Figure 33: Fine-tuning with LPL2
G

on Double Well Wide 12D but with the mask from
equation 50b ensuring that only under-sampled points are optimized (see caption of
figure 7 for more details).

6.4.4 Using a cache of the most under-sampled points

This idea of only optimizing points that are deemed under-sampled can be pushed
one step further by using a cache. At each timestep during training, half of the points
of the mini-batch, those that are the most under-sampled, are kept in memory within
the cache and passed on to the next timestep. At the next timestep, this “half-mini-
batch” is completed with new random points sampled according to pG.

In this setup, the first point of each pair (which is differentiated) comes from this
sampling method, whereas the second point of each pair (which is not differentiated)
is still sampled from pG with importance sampling weights from pB. This loss is
denoted LPL2

CB
(with “C” refering to the sampling method using the cache).65

Figure 34: Percentage of points generated by pG in the minor mode during fine-tuning
with LPL2

CB
(in green) compared with the real ratio of ≈ 0.22 from the Double Well

Wide 12D dataset (in orange).

This simple trick ensures that the model has a chance to recover an entire missing
mode from only a single point sampled in that mode at one timestep. Overall,
the result shows a slightly improved convergence on Double Well Wide 12D (as

65To be clear, the mask introduced in section 6.4.3 is still in use here.
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shown in figure 34) and a higher quality of generation on Dialanine (as shown in
section 6.5).66

6.5 LPL2
CB

compares favorably with any other loss so far

6.5.1 Data-free fine-tuning with LPL2
CB

on Dialanine

LPL2
CB

performs identically to Ldf
KLz on Butane (see appendix A.7) but outper-

forms it on Dialanine. When comparing figure 36c with figure 24c, one can im-
mediately notice that some points remain in the minor mode when using LPL2

CB

whereas they do not when using Ldf
KLz. This is also confirmed in figure 37c where

points in the minor mode have a low energy of generation, contrary to figure 25c
where those points are close to impossible to generate.67

6.5.2 Impact of having hydrogen atoms that are deterministically fixed

But although the minor mode of Dialanine has not been lost, points in that
mode are generated only about 1% of the time at the end of the fine-tuning, when in
fact they represent about 6% of the dataset (as illustrated in figure 35). Importantly,
this problem is not related to the loss, but is a consequence of using a model in
two stages, with the second stage placing the hydrogen atoms deterministically (as
described in section 3.3). This method drastically simplifies the task that the model
has to solve (since it lowers the dimensionality and makes hydrogen permutations
irrelevant) but also changes the target distribution. Indeed, a simulation produces
different mode ratios depending on whether or not the energy of the hydrogen atoms
is continuously minimized (see appendix A.2). The expected percentage of points
that would be expected under such a constraint can be estimated to be close to 1.2%
by using the estimator from equation 87. It is remarkable to notice that the model
did not lose the C7ax mode even though it is represented by so few points.

LPL2
CB

is therefore the first loss that demonstrates perfectly stable fine-tunings
across all datasets (Double Well Wide 12D, Butane and Dialanine), and pro-
duces correct ratios between modes in a data-free regime, with excellent energy
correlations between UG and UB.

Note that when transforming the training objective into a loss in equation 40, no
change of variable was used (contrary to equations 14d and 37d for instance). This
is a deliberate choice since using the change of variable produces a loss that leads
to collapse, in a similar fashion to LKLx.

66Note that using a cache with the KLz slows down the loss of the minor mode on Dialanine,
but does not prevent it (data no shown).

67In fact, those results can also be achieved without using the concept of a cache introduced in
section 6.4.4 (i.e. by using LPL2

GB
instead of LPL2

CB
) as shown in appendix A.8.
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Figure 35: Ratio of generated xG samples in the minor modes during fine-tuning with
LPL2

CB
on Dialanine. The ordinates go from 0% to 20%.

(a) ϕ and ψ from the
Dialanine dataset.

(b) ϕ and ψ after pre-training
with Ldd

KLz.
(c) ϕ and ψ after fine-tuning

with LPL2
CB

Figure 36: Dihedral angles ϕ and ψ of the dialanine molecule. Figures 36a and 36b are
duplicates of figures24a and 24b since the same data and pre-training are used.

(a) UB energies of samples xG ∼ pG. (b) Correlations. (c) UG energies of samples xB ∼ pB .

Figure 37: Quality of generation after fine-tuning on Dialanine with LPL2
CB

.

6.5.3 The likely culprit behind the mode collapse

Every single data-free loss introduced so far optimizes one or several of the four
following terms:

- The potential energy in x-space: βUB(G(zN ))

- The expansion factor from z to x: log
∣∣∣det(∂G(zN )

∂zN

)∣∣∣
- The potential energy in z-space: 1

2σ2UN (F (x
‡
G))

- The expansion factor from x to z: log
∣∣∣det(∂F (x‡

G)

∂x‡
G

)∣∣∣
Crucially, log

∣∣∣det(∂G(zN )
∂zN

)∣∣∣ is by definition the opposite of log
∣∣∣det(∂F (x‡

G)

∂x‡
G

)∣∣∣.
Therefore, minimizing log

∣∣∣det(∂G(zN )
∂zN

)∣∣∣ amounts to maximizing log
∣∣∣det(∂F (x‡

G)

∂x‡
G

)∣∣∣
and vice versa.

Here is a summary of the losses studied so far:
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- LKLx(zN )
68 and LRN1/2

(zN )
69 both minimize βUB(G(zN )) and maximize

log
∣∣∣det(∂G(zN )

∂zN

)∣∣∣. These losses easily lead to collapse if the pre-training qual-
ity is not sufficient.

- Ldf
KLz(x

‡
G)

70 minimizes 1
2σ2UN (F (x

‡
G)) and maximizes log

∣∣∣det(∂F (x‡
G)

∂x‡
G

)∣∣∣. This
loss is stable.

- Unmasked versions of LPL2
G
(x‡G)

71 and LPL2
GB

(x‡G) sometimes minimize and
sometimes maximize log

∣∣∣det(∂G(zN )
∂zN

)∣∣∣. These losses easily leads to collapse
if the pre-training quality is not sufficient.

- Masked versions of LPL2
G
(x‡G) and LPL2

GB
(x‡G)

72 are both stable and only
maximize log

∣∣∣det(∂F (x‡
G)

∂x‡
G

)∣∣∣.
βUB(G(zN )) log

∣∣∣det ∂G(zN )
∂zN

∣∣∣ 1
2σ2UN (F (x‡G)) log

∣∣∣det ∂F (x‡
G)

∂x‡
G

∣∣∣
LKLx ↓ ↑ ✗

LRN1/2
↓ ↑ ✗

Ldf
KLz ↓ ↑ ✓

LPL2
GB

↓↑ ↓↑ ✗

LPL2
GB

+mask ↓ ↑ ✓

Table 1: Summary of the main losses studied in sections 4, 5 and section 6. The arrows
↑ and ↓ indicate whether each loss increases or decreases the column terms respectively.
The symbols of the last column indicate whether the loss leads to collapse (✗) or not
(✓).

At this stage, a clear pattern emerges. Losses that rely on a maximization of
log
∣∣∣det ∂G(zN )

∂zN

∣∣∣ (or an equivalent minimization of log
∣∣∣det ∂F (x‡

G)

∂x‡
G

∣∣∣) lead to collapse,
whereas losses that only minimize it are stable. Although this is true for every vari-
ation of every loss investigated, there is no guarantee that this observation always
holds as it is unclear why maximizing log

∣∣∣det ∂G(zN )
∂zN

∣∣∣ (which is equivalent to min-

imizing pG(x
‡
G)) would lead to collapse when sampling mini-batches, nor why the

problem is exacerbated under the conditions explored in this work (i.e. when the
pre-training is poor, when sampling mini-batches on a high dimensional problem
and when the target distribution has multiple modes).

68See equation 16 in section 4.1 and figures 10, 18, 19 and 21 in their respective sections.
69See equation 38 in section 6.2 and figure 30.
70See equation 20 in section 5.1 and figures 18, 19, 21 and 24/25/26 in their respective sections.
71See equation 48 in section 6.4.1 and figure 31.
72See equation 50 in section 6.4.3 and figures 32, 33 and 35/36/37 in their respective sections.
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7 Using the variance of probability ratios as a loss

7.1 Using the variance of estimators as a loss

With Normalizing Flows, one can compute exactly the probability pG with which
one generates any given point. As a consequence, one can correct the sampler based
on the trained generator with importance sampling, i.e. by associating each sample
x with a weight pB(x)

pG(x)
(see equation 9). Expectations are then taken with respect to

pB
pG
pG, which exactly matches the target pB, regardless of pG (provided that it has

positive density everywhere pB does). However, if importance sampling weights are
closer to 1, the produced distribution will converge faster towards pB, that is, fewer
samples will need to be generated. The question here is how to design a loss to train
pG in such a context where the output distribution is always perfect.

An important application of the generator G is often to estimate integral quan-
tities of the form EpB [f ] for some given function f . For instance, a classic use case
in practice is to compute the free energy difference ∆FBC between the state being
sampled (with energy UB) and an alternate state (with energy UC). Then:

e−β∆FBC := E
x∼pB

[f ] with f(x) = e−β(UC(x)−UB(x)) (51)

The true value of the quantity to estimate is denoted Q:

Q := E
pB
[f ] = E

pG

[
pB
pG
f

]
(52)

This equality is always exactly true provided that pG is never 0 where pB is
not. For any pG, the following quantity Q̂ is an unbiased estimator of Q (see ap-
pendix A.10):

Q̂ :=
1

n

∑
xG,i∈xG

pB(xG,i)

pG(xG,i)
f(xG,i) (53)

where xG = (xG,1, . . . , xG,n) is a mini-batch of points sampled according to pG. That
is, when averaging over all possible mini-batches, Q̂ becomes Q (i.e. ExG∼pnG [Q̂] = Q).
Yet, for some distributions pG, the estimate Q̂ may converge faster than for others,
in terms of number of samples required to reach a given target accuracy. The quality
of a generator can thus be quantified through the expected error when estimating
Q with n points. This error is proportional to the variance of Q̂, and can then be
turned into a training loss (see appendix A.11):

E
xG∼pG

[
p2B(xG)

p2G(xG)
f 2(xG)

]
(54)

If the function f is not fixed and can be any bounded function over x-space, then
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one can deduce the following loss function:

LL2(x‡G) = E
xB∼pB

[
pB(xB)

pG(xB)

]
= E

x‡
G∼pG

[
p2B(x

‡
G)

p2G(x
‡
G)

]
= eRN2(pB ||pG) = var

x‡
G∼pG

[
pB(x

‡
G)

pG(x
‡
G)

]
+ 1

(55)
where RN2(pB||pG) is the Rényi divergence of order 2, thus penalizing high ratios
pB
pG

more strongly. The last equality derives from equation 102 in appendix A.11.73

Thus we arrive at LL2 as a principled loss to minimize the variance of estimators
of expectations over the Boltzmann distribution. Another justification for this loss
is that one aims to find pG ∝ p̃B, and therefore to make the ratio p̃B

pG
constant over

x-space. Without knowing the value of the target constant, this can still be achieved
by minimizing the variance of the ratio, which is precisely the LL2 loss.

Building on equation 55, we replace ratios pB(x)
pG(x)

with log-ratios for numerical
reasons, since Normalizing Flows actually compute log-probabilities and the expo-
nentiation leads to instability:

r(xG) = log
pB(xG)

pG(xG)
(56)

We also note that:

var
pG

[r] = E
pG

[(
r − E

pG
[r]

)2
]

(57)

This formulation with differences between log-ratios has the advantage of making
ZB cancel out from the computations in practice. To avoid decreasing pG(x‡G) explic-
itly at any point x‡G (see section 6.5.3), the loss is modified by masking (r−EpG [r])

(similarily to the strategy followed in section 6.4). As a consequence, r(x‡G) can
only be minimized (i.e. UG(x

‡
G) can only be minimized and pG(x‡G) can only be max-

imized) whereas UB(x
‡
G) is not differentiated with respect to θ. The masked loss

with detached means is therefore defined as:

LL2
+
(x‡G) =

n∑
i=1

[
1

n
·
[(
r(x‡G,i)−K

‡
)2
+

]]
(58)

where a2+ = a2 if a > 0 and 0 otherwise, and where K‡ =
[∑n

j=1

[
1
n
· r(x‡G,j)

]]‡
is

not differentiated (so as to ensure that it is never increased).74 See section 7.2 a
proof of convergence.

One can prove that, in spite of the non-differentiation of K‡, a pseudo-gradient
descent on this loss will converge towards pB, provided the model is expressive

73In practice, one knows how to compute p̃B(x) := ZBpB(x) but not pB(x) directly. This is not
an issue since ZB cancels out in equations 57 and 58. Moreover, a model pG trained with L will
yield by definition a good estimator of ZB = EpB

[ZB ] = EpG

[
p̃B

pG

]
74Note that in the continuous limit: EpG

[r] = −KL(pG||pB) ⩽ 0.
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(a) A configuration of
dialanine (b) Percentage of generated samples xG ∼ pG in the minor modes.

(c) Projections on (ϕ, ψ) dihedral angles. Ground truth target (orange), model after
data-dependent pre-training (pink), models fine-tuned with Ldf

KLz (cyan) and LL2
+

(green)

(d) UB energies with
Ldf
KLz

(e) UB energies with
LL2

+

(f) UG energies with
Ldf
KLz

(g) UG energies with
LL2

+

(h) Correlations (i) UB energy of generated samples xG ∼ pG during fine-tuning.

Figure 38: Results of two fine-tunings (with Ldf
KLz and LL2

+
) after the same pre-training

with Ldd
KLz on Dialanine. In all sub-figures, data from pB (i.e. the dataset) is repre-

sented in orange, pre-training results are represented in pink, fine-tuning results with
Ldf
KLz are represented in cyan, fine-tuning results with LL2

+
are represented in green.

- Figure 38b represents the percentage of generated samples xG ∼ pG in the minor
modes during fine-tuning. The solid orange line corresponds to the “real” ratio, whereas
the dashed orange line corresponds to the same ratio from pB but with the energy min-
imized with respect to hydrogen atom coordinates (see section 3.3 and appendix A.2).
- Figure 38c contains 2D projections of the ground truth dataset and generated data.
- Figures 38d and 38e represent the potential energy UB of generated samples xG ∼ pG
(in cyan or green) vs. samples from the dataset xB ∼ pB (in orange). Note that in both
cases the energy of the hydrogen atoms is minimized (either by the model or manually).
These figures visualize whether or not pG ⊂ pB .
- Figures 38f and 38g represent the energy of generation UG of samples from the dataset
xB ∼ pB (in orange) vs generated samples xG ∼ pG (in cyan or green). These figures
visualize whether or not pB ⊂ pG.
- Figures 38h represents the correlations between the energy of generation UG and the
potential energy UB of generated samples xG ∼ pG.
- Figure 38i represents the potential energy UB of generated samples xG ∼ pG during
fine-tuning. Note the instability of Ldf

KLz compared to the stability of LL2
+
.

Note that similar excellent results are achieved with LL2
+

when changing the targed
distribution with λalign = 1 or λalign = 100 (data not shown).
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enough and that the initial pG is non-zero on the support of pB (see section 7.2).

Experimentally, LL2
+

performs extremely well when compared to Ldf
KLz. It is clear

that Ldf
KLz completely loses the minor mode (figures 38c and 38f) whereas LL2

+
does

not (figures 38c and 38g) and converges to the expected ratio of ≈ 1.2%.75 The bias
induced by the deterministic placement of the hydrogen atoms does not change the
main point that LL2

+
converged to the ratio it was supposed to produce. Another

thing to notice is that Ldf
KLz has unstable UB energies during fine-tuning whereas

the LL2
+

does not (figure 38i).

In addition to those clear qualitative improvements, and unlike Ldf
KLz, LL2

+
does

not rely on numerically unstable importance sampling weights.

Note that the accuracy on this test is limited by the choice of generating deter-
ministic hydrogen atom positions: this could be lifted by using a conditional normal
flow to generate a Boltzmann distribution of hydrogen atom positions given a set of
heavy atom positions generated by the main network.

7.2 Proof of convergence

Introductory remarks. Given a mini-batch of xi points, ri = log pB(xi)
pG(xi)

denotes
the log-ratio of the target and generated densities at point xi. As mentioned in the
section 7.1, differences of log-ratios satisfy:

ri − rj = log
pB(xi)

pG(xi)
− log

pB(xi)

pG(xi)
= log

p̃B(xi)

pG(xi)
− log

p̃B(xi)

pG(xi)
(59)

where p̃B = ZBpB is easily computable in closed form, which makes such differences
easily computable, to the opposite of the log-ratios ri themselves.

Interestingly:

E
xj∼pB

[rj] = KL(pB||pG) and E
xi∼pG

[ri] = −KL(pG||pB) (60)

The simplest version of the loss (see equation 55) is equal to eRN2(pB ||pG) where
RN2 is the Rényi divergence of order 2, a measure of divergence between distribu-
tions. As a consequence, the only minimum is the global one, reached at pG = pB.

The objective of this section is to study the optimization properties of LL2
+

(de-
fined in equation 58) which uses both a mask and detached means.

75Recall that the “real” distribution pB has about ≈ 6% of its mass in the minor mode (the one
where ϕ > 0) but when taking into account the minimization of the energy of hydrogen atoms,
this ratio drops to ≈ 1.2% (dashed line in figure 38b, see section 3.3 and appendix A.2). This
means that the result of the pre-training with the data-dependent Ldd

KLz produces a ratio (≈ 6%,
figure 38c) that is different from the one expected at the end of the fine-tuning (≈ 1.2%).
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- (ri−K‡) is masked with ()+ so that ri can only be asked to decrease. Since
pG is a probability distribution, this implies that some other rj will increase
to compensate (pG cannot increase everywhere), but importantly this will
not be done by the gradient descent, hence not in the worst possible direction
(by making xj as unlikely as possible as fast as possible), but rather in the
smoothest possible way (by pushing the probability mass to regions where
it is more needed).

- not detaching K would ask it to increase, and thus to decrease values of pG
at most points xj.

This loss is non-negative, and 0 can be reached if all ri are equal (note that a
0-loss implies that no ri is greater than the mean K, and consequently no ri can
be strictly less than the mean K as well, otherwise the mean would be lower than
itself). As said previously, this is the case if and only if pG is proportional to p̃B and
thus equal to pB (see the end of this section below for more details).

Optimization process. However, since only part of the loss is differentiated (al-
though K changes with pG it is treated as a constant), then strictly speaking the
optimization process is not a gradient descent, as the loss function is different at
each time step. Therefore one needs to check that this optimization process does
converge, and to the global minimum.

This task is hindered by the fact that the constraint over the total mass of pG
(which remains equal to 1) is handled implicitly by the Normalizing Flow, and so
the precise way the gradient with respect to pG is replaced with a variation δpG that
preserves the total mass depends on the architecture and the weights of the model.

The variation of K induced by a (partial) gradient step is:

δK = δ

(
E

x∼pG
[r]

)
= δ

(∫
pG r dx

)
= E

x∼pG
[δr] +

∫
r δpG dx (61)

Note that:
pG(xi) = elog pG(xi) = e−ri+log pB(xi) = e−ripB(xi) (62)

By taking the integral of equation 62 over xi, if follows that ExB∼pB [e
−r(xB)] = 1

(since EpG [1] = 1), and this is true for any pG or equivalently for any associated
r. As a consequence, the variation of ExB∼pB [e

−r(xB)] with respect to any realizable
change δr (pB being fixed and pG varying) is necessarily 0:

δ

(
E

x∼pB
[e−r]

)
= − E

x∼pB
[e−rδr] = 0 and so: E

x∼pG
[δr] = 0 (63)

Consequently δK can be simplified as:

δK =

∫
r δpG dx (64)
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but also rewritten as:
δK =

∫
(r −K) δpG dx (65)

since K
∫
δpG = 0 as pG has a conserved total mass of 1.

Now, note that the gradient descent step is asking to decrease all r that are
greater than K. Since r = log (pB/pG), this means increasing pG for such points
(where r > K). So δpG > 0 when r −K > 0.

For points where r < K, pG is not asked to change, but the conservation of mass
makes that (at least some of) such points will have their probabilities decreased, to
produce the extra mass needed by the previous points above (r > K). Thus δpG ⩽ 0

where r < K.

In the end, for all points, (r −K)δpG ⩾ 0 and consequently:

δK ⩾ 0 (66)

Consequences K is therefore increasing with time, and since K = −KL(pG||pB),
this means that with this optimization process, pG is getting closer to pB. As K
is actually strictly increasing as long as pG is not pB, one can conclude that the
optimization process leads to the desired global optimum.

Another way to see this is thatK is an increasing, upper-bounded value (bounded
by 0). When K converges (possibly to a non-0 value), then the training criterion
becomes stable and the optimization process becomes a real gradient descent with
respect to ri. Therefore a local minimum of this loss (for a fixed limit K) is reached.
Now, the gradient of this “fixed-K” loss is 0 when all ri are either equal to or less
than K. If at such a minimum, one ri is strictly less than K, then the average of all
ri (according to pG) would be strictly less than K, while it is precisely K. Therefore
all r are equal and the global minimum is reached.
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8 Optimal Transport and the Sinkhorn algorithm

8.1 Data-dependent case

Losses based on L2 distances and Rényi Divergences (including KL divergences)
all aim to change the probability pG of the generated points of the mini-batch. A
different approach consists in considering the global movement of the mini-batch by
interpreting the task as a transportation problem. The goal here is to move pG’s
mass closer to pB but at minimal cost (i.e. by also taking into account the total
distance traveled to reach pB). The training objective that follows this formulation
of the problem is called the Wasserstein distance W . See Peyré and Cuturi [42] for
a comprehensive review.

In the data-dependent case, two mini-batches are available at each training it-
eration: xG ∼ pnG and xB ∼ pmB .76 Those mini-batches correspond to discrete
probability measures:

γ =
n∑

i=1

giδxG,i
and β =

m∑
i=1

bjδxB,j
(67)

with:

- δx the Dirac measure at position x
- gi the weight associated with point xG,i such that

∑n
i gi = 1

- bj the weight associated with point xB,j such that
∑m

j bj = 1

The objective here is to find the optimal coupling matrix P ∈ Rn×m
+ from the

set of admissible couplings U(g,b), where Pi,j describes the amount of mass flowing
from bin i to bin j:

U(g,b) :=
{
P ∈ Rn×n

+ : P1m = g and P⊤1m = b
}

(68)

Formally, this amounts to minimizing the Wasserstein Distance:

W (γ, β) := min
P∈U(g,b)

⟨C,P⟩ =
∑
i,j

Ci,jPi,j (69)

with:

- the operator ⟨., .⟩ denoting the Frobenius Inner Product:

⟨A,B⟩ := Tr
(
A⊤B

)
:=
∑
i,j

Ai,jBi,j (70)

- C ∈ Rn×m the “Cost Matrix” which describes the cost of moving an elemen-
tary mass from xi to xj.

76Note that the mini-batches do not need to be of equal size.
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- P ∈ Rn×m
+ the “Coupling Matrix”.

In practice, solving the transport problem exactly (i.e. finding the best P) is
difficult, but good approximations can be computed efficiently by introducing the
concept of entropic regularization. The discrete entropy of a coupling matrix P is
defined as:

H(P) := −
∑
i,j

Pi,j (log (Pi,j)− 1) (71)

Adding this term to the objective changes it slightly:

W ε(γ, β) : = min
P∈U(g,b)

⟨C,P⟩ − εH(P) (72a)

= min
P∈U(g,b)

{∑
i,j

Ci,jPi,j + ε
∑
i,j

Pi,j (log (Pi,j)− 1)

}
(72b)

The solution to this new transport objective is unique and has the form: Pi,j =

uiKi,jvj for two non-negative vectors (u,v) ∈ Rn
+ × Rm

+ . u and v, as well as the
gradient of W ε(γ, β) with respect to each xG point, can be found efficiently with the
Sinkhorn algorithm (see Peyré and Cuturi [42] for a detailed overview and proofs of
convergence).

Importantly, the objective of equation 72 cannot be used directly. Indeed,
W ε(γ, β) is non-zero even when γ = β, causing γ to contract. This phenomenon is
called the entropic bias and leads the generated distribution to be a shrunk version
of the target distribution. This bias can be canceled by subtracting autocorrelation
terms [17, 50]. The final objective becomes:

OT ε(γ, β) = W ε(γ, β)− 1

2
W ε(γ, γ)− 1

2
W ε(β, β) (73)

with ∀i,gi = 1/n and ∀j,bj = 1/m in the data-dependent case.

Its associated Ldd
OT ε loss gives good results on Double Well Medium 12D (see

appendix A.9) as well as on Butane (see figure 39).

One practical word of caution here is that the points of the mini-batches are
mostly assigned to themselves in the coupling matrices of the autocorrelation terms.
Experimental results seem to suggest that such assignations are undesirable and
should be avoided to prevent a failure mode in which the autocorrelation terms
(W ε(γ, γ) and W ε(β, β)) do not properly cancel the entropic bias (see figure 40).
This is done by tweaking the diagonal of the cost matrix so that there is an infinite
distance between each point and itself, ensuring that the coupling matrix maps each
point to the average of its neighbors.

Results on Dialanine are not as good as those on Butane. Although the 2D
projection on the angles ϕ and ψ looks correct (see figure 41d), a large portion of
the target distribution pB is not covered by the model (see figure 41e) and some
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(a) Ratio of generated xG samples in the minor modes during fine-tuning.

(b) UB energies of samples xG ∼ pG. (c) Correlations. (d) UG energies of samples xB ∼ pB .

Figure 39: Fine-tuning with Ldd
OT ε on Butane (see caption of figure 17 for more details).

(a) Ratio of generated xG samples in the minor modes during fine-tuning.

(b) UB energies of samples xG ∼ pG. (c) UG energies of samples xB ∼ pB .

Figure 40: Fine-tuning with Ldd
OT ε on Butane without tweaking the diagonal of the cost

matrix of the autocorrelation terms (see caption of figure 17 for more details).

generated samples have a high potential energy UB (see figure 41c). The cause of
this poor perfomance is unclear. It could be that Ldd

OT ε , as it is currently defined,
simply performs worse on more complex problems, and it could also be that some
hyperparameters (like ε or the number of Sinkorn iterations) need to be tuned more
precisely.

8.2 Data-free case

In the data-free case, the same training objective is used (see equation 73) but β
(from equation 67) becomes:

β =
m∑
i=1

bjδxG,j
(74)
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(a) Ratio of generated xG samples in the minor modes. (b) Correlations.

(c) UB energies of samples xG ∼ pG. (d) 2D projection (e) UG energies of samples xB ∼ pB .

Figure 41: Fine-tuning with Ldd
OT ε on Dialanine (see captions of figures 35, 36 and 37

for more details).

with bj ∝ pB(xG,j)/pG(xG,j) to take into account the fact that the points are now
sampled according to pG instead of pB within the Dirac term δxG,j

.77

Figure 42: Fine-tuning with Ldf
OT ε on Double Well Medium 12D (see caption of figure 7

for more details).

The associated Ldf
OT ε loss gives good results on Double Well Medium 12D (see

figure 42), but fails as soon as the dataset becomes slightly more complex. The
potential energy UB of the generated samples progressively increases by a few orders
of magnitude during fine-tuning on Double Well Wide 12D, Butane and Dialanine
(data not shown). More work would be needed to investigate the cause of this
instability.

77Note that in both the data-dependent case and the data-free case b must verify
∑m

j bj = 1.
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9 Future Work

9.1 The dream

Every experiment performed in this work relies on data-dependent pre-trainings.
While the methods developed here (in particular the LL2

+
loss from section 7.1)

allow for stable optimization of a correctly trained model, lifting the requirement
for reference data requires a training protocol able to explore the target space to
discover new modes.

We envision two families of approaches to that effect:

- Keeping the current paradigm of a generator fully trained on a single system,
training could be initiated based on a limited and/or biased set of data, for
example from high-temperature simulations, then extended using the prop-
erties of Normalizing Flows themselves [13], enhanced-sampling simulations
[23], or hybrid approaches [18].

- Alternately, the cost of complete training for every new target could be
reduced considerably by transferring information between systems using
curriculum learning. In the case of molecular targets, this would require
a single model able to generate the configurations of several molecules (e.g.
one based on graph convolutions [35, 45, 56]).

Ultimately, this last point would be truly transformative. This section 9 discusses
what future work would be needed to train on all molecules, fully in data-free and
with a model and training procedure that scales:

1. Data-free trainings with hierachical architectures. Although data-
free fine-tunings have been demonstrated in this work (for the first time,
to the best of our knowledge), hydrogen atoms still need to be removed
on molecular systems to avoid a combinatorial explosion of the number of
modes in the target distribution pB. This requirement causes the ratio be-
tween the modes to change (see section 3.3 and appendix A.2), but it can be
lifted with hierachical architectures (see section 9.2) by leveraging the col-
lapsing behavior of LKLx. Hierachical architectures are also a fundamental
ingredient of methods that scale to very large systems (like proteins).

2. Exploration to discover missing modes. Although the LL2
+

loss is
extremely stable and manages to recover the correct mode ratios from pre-
trained models that are imperfect78, if a mode is completely missing, it
cannot be discovered. This is a significant problem if the pre-training is
particularily poor (or in the context of curriculum learning), but the LL2

+
loss

78This is demonstrated in several experiments. The one from figure 38 shows that correct mode
ratios are recovered from incorrect ones at the end of the pre-training. The one that decreases λalign
by a factor 10 during the fine-tuning shows that LL2

+
can expand the width of the distribution

within known modes. The one that increases λalign by a factor 10 shows that LL2
+

can also narrow
of the distribution where needed.
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seems compatible with many approaches inspired from the field of Molecular
Dynamics that could address that problem (see section 9.3).

3. Scaling with Transfer and Curriculum Learning. In order to remove
the pre-training requirement altogether, curriculum learning offers a good
strategy in which models trained on larger systems would be initialized with
models trained on smaller systems.79 A prerequisite to enable this strategy
is to have a model architecture that can be applied to several molecules
(i.e. with different chemical formulas). This is a form of transfer learning
that is explored in section 9.4 with equivariant models (in particular with
GraphNN and attention layers).

9.2 Data-free trainings with hierachical architectures

In the context of molecular systems, not being able to generate hydrogen atoms
is an important limitation of the current approach (since it distorts the target ratio
between the modes, see appendix A.2). As mentioned in section 3.3, a better solution
to placing the hydrogens atoms deterministically near their energy minimum would
be to place them stochastically, directly with a Normalizing Flow.80 This is not so
easy to do in practice since hydrogen permutations (in CH2 and CH3 groups) cause
a combinatorial explosion of the number of modes. But since the energy landscape
is perfectly symmetrical under hydrogen permutations, generating only one of those
“hydrogen modes” would be sufficient. And there is already a tool that enables the
convergence of a model toward only one mode: it is the mode collapse induced by
the LKLx loss showcased in section 4.

The challenge now is to separate the generative model in two stages (denoted
GC and GH to stay consistent with the notation of section 3.3) so that heavy atoms
generated by GC are trained with LL2

+
and hydrogen atoms generated with by GH

are trained with LKLx. This would ensure mode collapse only on the hydrogen
atoms and can be achieved by making the second stage GH conditional on the
output of the first one. Conditional Normalizing Flows [57] can be implemented with
Coupling Blocks by simply ensuring that their parameterized functions (denoted M
in section 3.2.4) take two inputs: half of the features of each layer (like before) plus
the condition (which in this case would be the position of the heavy atoms).

The following diagrams represent the forward and inverse passes respectively:

zN ∼ qN


zHN ∼ qHN −−−−−→ zHN

GH

−−−−−−−−→−−−−−−−−→ xHG ∼ pHG

−
→

zCN ∼ qCN −−−−−−−−→−−−−−−−−→
GC

xCG −−−−−→ xCG ∼ pCG

 xG ∼ pG

79Note that this approach is likely to miss modes, hence the need for exploration
80At the price of adding some variance to the target energy UB .
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zF ∼ qF


zHF ∼ qHF ←−−−−− zHF

FH

←−−−−−−−−←−−−−−−−− xHB ∼ pHB

−
→

zCF ∼ qCF ←−−−−−−−−←−−−−−−−−
FC

xCB ←−−−−− xCB ∼ pCB

 xB ∼ pB

with the thick arrows representing the two flow-based stages of model and the dashed
upward arrows representing the conditioning of the second stage.

Interestingly, this hierachical architectures can be extended to any arbitrary num-
ber of stages. In the case of proteins for example, one can imagine a three-stage
model: one stage for the protein backbone, one stage for the heavy atoms of the
amino acids and one stage for the hydrogens.

9.3 Exploration to discover missing modes

When sampling mini-batches, in any data-free training, regions of the space that
are not sampled by pG are not be penalized by the loss function, and are therefore
never recovered. This is a fundamental problem that makes data-dependent pre-
trainings mandatory, since the model needs to already sample each mode sufficiently
well before fine-tuning. To lift this contraint, better exploration strategies need to
be investigated.

The issue is made even more critical when using LL2
+
, and even Ldf

KLz, since
neither loss nor their variants explore x-space properly beyond the modes that are
already covered. Fortunately during training, all these losses use the inverse pass
of the model over x‡G mini-batches, which could be a significant advantage during
exploration. Indeed one can take advantage of this by simply expanding the mini-
batches with additional candidate points generated with any exploration strategy
(as long as the distribution that produce those candidate points converges to pG).81

Many exploration methods have been developed over the years in the field of
Molecular Dynamics (see section 1.2 and Hénin et al. [23] for a review). Recently,
Gabrié et al. [18] has shown how Adaptive Monte Carlo methods can be augmented
with Normalizing Flows to enhance the sampling of high-dimensional distributions.
Interestingly, this uses the generative model to accelerate the sampling, and uses
the newly sampled data to adapt the generative model, thereby showing how the
two methods can seamlessly be integrated with one another.

Other exploration strategies may consist in using the local entropy term of LKLx

in some sort of Simulated Annealing strategy or seeding the model with known
low-energy points.82

81A similar approach is already used successfully when using the cache introduced in section 6.4.4,
although it is not for exploration but rather to increase stability during training.

82Note that, when combining Normalizing Flow losses, they should have the same target. So
anchoring at the bottom of each mode should only be temporary.
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9.4 Scaling with Transfer and Curriculum Learning

Another promising avenue of research is to design a single model to generate the
distributions of multiple molecules (i.e. with different chemical formulas). Beyond
the obvious benefit of not having to retrain the model on each new molecule, the hope
is to transfer knowledge from molecules of known configurations to molecules more
poorly described. Given that biomolecules share a common set of substructures,
this would leverage the generalization capabilities of Neural Networks via transfer
learning.

Such a model would also enable the use of curriculum learning [6, 19, 46] which
can be interpreted as a way to constantly fine-tune the same model on larger and
larger systems, making the task more complex as training progresses. Efficient
exploration methods would be mandatory to discover new modes gradually on the
larger systems.

The Normalizing Flow architecture used in work can be modified to work on
molecules of different topologies by making the parameterized functions M of Cou-
pling Blocks able to adapt to any number of atoms. This can be achieved by using
GraphNN and attention layers (see sections 9.4.1 and 9.4.2 respectively).83

9.4.1 GNNs and Path-aware convolutions

Graph Neural Networks are a convenient architectural framework that would
support different molecular graphs during generation (see Battaglia et al. [4] for
a review). Graph convolutions are conditioned on the structure of the molecule
(described by its sparse adjacency matrix Amol) and are applicable on

{
zN , b

mol
}

directly (with bmol the set of additional information about the molecule such as
atom types, bond types etc.).

A naïve approach consisting in simply stacking multiple GAT layers [56] is in
principle able to solve the generation problem (given a deep enough model). In
practice, conventional graph convolutions suffer from a lack of expressivity for two
important reasons. First, their receptive field is limited to neighbors of degree one.
And second, most of the computation is usually performed on the nodes with a
ligthweight aggregation function (such as a sum) to make the nodes communicate.

To address the first problem, one needs to consider the reason why a larger
receptive field may be needed. A quick look at the terms of the energy function UB

suggests that the model needs to be able to compute bonds, angles, dihedrals and
impropers internally (cf. section 9.4.2 for nonbonded interactions), and therefore
requires receptive fields of size at least three with access to the intermediary nodes.
This motivates the following Path-aware convolution which is adapted to computing

83Note that the Schnet [45], although it shows great performance on energy prediction, would
not be usable easily for generation since it relies on radial convolutions that depend on the very
distances between atoms that the model is supposed to predict.
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the energy terms of interest but still general enough to be used in other contexts:

v
(l+1)
0 = [MFF0(v0),∑

v1

MFF1([v0, v1]),∑
v2

MFF2([v0, v1, v2]),∑
v3

MFF3([v0, v1, v2, v3])]

with:

- v(l+1)
0 the features of the central node at the next layer

- v0, v1, v2 and v3 the features of the central node (i.e. atom) and its neighbors
of degree 1, 2 and 3

- [v0, v1, v2, v3] the concatenation of the features of all the nodes that lead to
v3 (aka. the “path” to v3, hence the name of the convolution)

- MFF a “Multiplicative Feed-Forward” described below
- [·, ·] the concatenation operator

This establishes a change of paradigm when compared to conventional graph con-
volutions in the sense that most of the computation is performed on the interactions
between multiple nodes, which makes this approach more similar to Hypergraph
Convolutions [1].

The last thing to consider is to make the interaction layer (denoted MFF here)
sufficiently expressive by being able to make products (which are needed to compute
euclidean distances for example). This can be achieved by using a simple feed-
forward Neural Network with GLU non-linearities [12] defined as:

GLU(a, b) = a⊗ S(b) (75)

with:

- a and b two feature vectors of the same size (usually coming from two
different linear transformations of the features of the layer below)

- S(x) = 1
1+e−x the sigmoid function

- ⊗ the element-wise product

Note that using Graph layers within Coupling Blocks requires cutting the features
of each atom in 2 [35], which means cutting 3 features in 1 + 2 at each layer since
atoms live in 3D space. It is unclear if this limitation could be a significant problem,
but Augmented Normalizing Flows [21] may provide a solution to this.

9.4.2 Long-distance attention

Finally, when working on larger systems like proteins, the model needs to be able
to capture long-distance interactions if, for example, one terminus of a polypeptide
chain interacts with the other. Those interactions are constrained by the energy
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terms Unb(r) and Ucoulomb(r). Since not every section of the graph interacts with
every other, an attention mechanism seems particularly adapted to this task.

One major limitation of attention mechanisms is that they are typically in the
order of n2

k (with nk the number of nodes). A solution to this problem consists in
defining a two-steps attention layer that is in the order of 2nqnk with nq a fixed
hyperparameter corresponding to the number of hubs through which nodes commu-
nicate.

As defined in Vaswani et al. [55], the output matrix of an attention layer is
computed as:

Attention(Q,K, V ) = softmax

(
QK⊺

√
dk

)
V (76)

with:
- Q the matrix of shape nq × dk corresponding to “queries”
- K the matrix of shape nk × dk corresponding to “keys”
- V the matrix of shape nk × dv corresponding to “values”
- nk and nq the number of nodes and the number of queries respectively
- dk and dv the number of features for the keys and values
- Attention(Q,K, V ) the output of shape nq × dv

Ignoring Multi-Head Attention for simplicity, the Long-Distance Attention using
hubs can be defined as:

Qnodes, Knodes, V nodes = Linear(F (l))

F hubs = Attention(Qhubs, Knodes, V nodes)

Khubs, V hubs = FF(Linear(F hubs))

F (l+1) = Attention(Qnodes, Khubs, V hubs)

with:
- F (l) and F (l+1) the features at layers l and l + 1 respectively
- Linear() a linear transformation of the input features
- FF() some feed-forward layer
- Qnodes, Knodes, V nodes the queries, keys and values associated with the nodes.
- Qhubs, Khubs, V hubs the queries, keys and values associated with the hubs.

Importantly here, Qhubs is the only matrix that is a learned parameter of the
model.

This newly defined Long-Distance Attention is reminiscent of the Agglomerative
Attention of Spellings [47] and supports sparse communication between nodes.

9.5 Practical recommendations

Beyond the obvious guidelines that are general to any deep learning training
procedure (data should be properly normalized, learning rates should be chosen
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carefully, etc.), this sections lists a few practical recommendations that seem to be
of importance when training flow-based models on Boltzmann distributions.

9.5.1 Degrees of freedom:

- As illustrated in section 4, avoiding unnecessary symmetries within the tar-
get distribution is often beneficial to ease the training. Hydrogen atoms for
instance are permutation invariant within CH3 groups and thus each group
multiplies by 6 the total number of modes. Since the position of hydro-
gen atoms is often irrelevant for downstream applications they can often be
ignored. In this work we choose the simplest method which consist in plac-
ing the hydrogen atoms deterministically near their energy minimum at the
cost of intruducing a bias that changes the ratio between modes (see sec-
tion 3.3). Better options exist such as adjusting UB (to encourage having
only one permutation possible), or placing hydrogen atoms stochastically
but with a model that does not care about mode collapse (see section 9.2).

- More importantly, extremely flat degrees of freedom should be removed if
possible. When it comes to translations and rotations, several approaches
are available. One could add an alignment penalty to the potential energy
UB (as described in section 2.4), but it is also possible to generate con-
figurations in internal coordinates directly (thereby removing 6 degrees of
freedom).

9.5.2 Numerical instabilities:

- The Ldf
KLz loss may suffer from training instabilities due to the use of im-

portance sampling weights that have a high variance and therefore often
focuses most of the gradient onto just a few points of each mini-batch (see
section 5.3 and figure 38i). It is better to avoid using such weights during
the design of new loss functions (as it is the case with the loss LL2

+
developed

in section 7).
- The potential energy term UB is also at risk of introducing training insta-

bilities since it can be very sensitive to small changes in the position of the
atoms. The strategy followed in this work is to cap each term of the energy
function individually, so that their gradient never exceeds a given threshold
(see section 2.3). This approach is much more fine-grained than using a
global capping, directly on UB.

9.5.3 Minimizing vs. maximizing the energy terms:

- The UB term should probably never be increased explicitly through gradient
descent (which is equivalent to saying that pB should never be decreased
directly). Although some training objectives that do this may seem to be
principled in the context of an integral over the whole space, they usually
fail once converted into loss functions applied to discrete mini-batches (see
section 6.1).
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- In the same spirit, it is often a preferable to avoid decreasing pG directly.
Indeed, decreasing pG at a given point implies moving the mass somewhere
else, but since the direction where to move this mass is not specified, it
could go anywhere without actually getting any closer to pB. Since pG is
a probability distribution, increasing it anywhere implies that some other
region of the space will become less probable to compensate (i.e. pG cannot
increase everywhere). In the case where pG is never decreased explicitly
(maybe by masking the troublesome points) the training is much smoother
since the probability mass is always pushed where it is most needed (see
section 6.5.3).

9.6 Conclusion

This work explores the conditions necessary for refining flow-based models based
on an explicitly known target distribution, rather than pre-determined samples.
Several losses that may seem appropriate in theory lead to numerical failures in a
discrete setting. In particular, optimizing the KL divergence KL(pG||pB) between
the generated and target distributions leads to major instabilities, including mode
collapse in most cases. Loss functions whose minimization amounts to decreasing the
probability of a sample point (lowering either pG or pB) push the model to spread
local mass in improbable directions, resulting in instability. Using this insight, a
stable data-free loss (denoted LL2

+
) is developed based on an estimator variance

minimization approach. This loss is the first one to exhibit stable data-free opti-
mization on the Boltzmann distribution of Dialanine, which is a good benchmark
for small molecules of pharmacological interest, and a smaller proof of concept for
proteins.

In a broader context, this work is an important milestone paving the way to-
ward the training of a single deep learning model used to generate the Boltzmann
distributions of multiple molecules without any data requirement (see section 9.1).
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A Appendix

A.1 Multivariate Normal Distributions

The probability density function qN (PDF) of a multivariate normal distribution
N (µ,Σ) (sometimes simply referred to as a “multivariate Gaussian”) is:

qN =
1√
|2πΣ|

· e−
1
2
(z − µ)⊤Σ−1(z − µ) (77)

with:
- z: a c-dimensional random vector
- µ: a c-dimensional mean vector
- Σ: a c× c covariance matrix

If the distribution is centered, by definition µ is equal to the zero vector 0 and
so the PDF of N (0,Σ) is:

qN =
1√
|2πΣ|

· e−
1
2
z⊤Σ−1z (78)

If the distribution also has a diagonal covariance matrix with equal diagonal
entries of the form:

Σ = diag(σ2) =


σ2 0 · · · 0

0 σ2 · · · 0
...

... . . . ...
0 0 · · · σ2

 = σ2Id (79)

then the PDF of N (0, diag(σ2)) is:

qN =
1√

(2πσ2)c
· e−

1
2z
⊤ diag(σ2)−1z (80a)

=
1(√

2πσ2
)c · e−1

2

∑c
i

(
zi
σ

)2
(80b)

=
1(

σ
√
2π
)c · e− 1

2σ2

∑c
i z

2
i (80c)

and so:
qN (z) =

1

ZN
· e−

1
2σ2UN (z) (81)

with:
- ZN =

(
σ
√
2π
)c

: the partition function

-
1

2σ2
: a quantity analogous to the thermodynamic beta

- UN (z) =
∑c

i z
2
i : the energy function of the multivariate Gaussian
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A.2 Deterministic hydrogen placement changes target ratios

In the spirit of a coarse-graining approach, the desirable target for the generated
distribution pCG of heavy atom coordinates is the marginal pCB of the target pallB with
respect to those coordinates:

pCB(x
C) =

∫
pallB (xC, xH)dxH (82)

The Boltzmann probability of any given modeM⊂ R3N is:

P all
B (M) =

∫
M
pallB (xall)dxall (83a)

=

∫
M
pallB (xC, xH)dxCdxH (83b)

=

∫
MC

[∫
pallB (xC, xH)dxH

]
dxC (83c)

=

∫
MC

pCB(x
C)dxC (83d)

where 83c uses the fact that M is defined solely based on the values of xC, so that
it can be writtenM =MC×R3NH , withMC a set of heavy atom coordinates, and
NH the number of hydrogen atoms.

However, in practice, data-free optimization of GC (using only samples with
minimum-energy hydrogen coordinates) minimizes the divergence between pCG and
an auxiliary distribution p̄CB:

lim
t→∞

pCG,t(x
C) = p̄CB(x

C) = pallB (GH(xC)) (84)

In general, pCB (defined as a marginal of pallB ) differs from p̄CB (defined by the energy
function UB ◦ GH, i.e. by mapping the space R3NC of heavy atom coordinates to a
slice of the space R3Nall of all-atom coordinates). This difference introduces a bias
in the generation of heavy atom coordinates. Furthermore, the generation density
pallG of an all-atom configuration xall is optimized towards:

p̄allB (xall) = p̄CB(x
C) pallB (xall|xC) (85a)

= pallB (GH(xC)) δ(xall −GH(xC)) (85b)
= pallB (GH ◦ FH(xall)) δ(xall −GH ◦ FH(xall)) (85c)

which is non-zero only on the minimum-energy-hydrogen manifold that is the image
of GH ◦ FH. Assuming perfect training (pCG = p̄CB), we obtain the probability of the
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minor mode as generated:

P̄ all
B (M) =

∫
M
pallB (GH ◦ FH(xall)) δ(xall −GH ◦ FH(xall)) dxall (86a)

≈ 1

σ
√
2π

∫
M
pallB (GH ◦ FH(xall)) exp

(
−∥x

all −GH ◦ FH(xall)∥2

2σ2

)
dxall

(86b)

where 86b approximates the Dirac distribution with a Gaussian kernel with a well-
chosen width σ to pave the way for numerical estimation. Such an estimator can be
based on the dataset sampled according to pallB , thanks to the fact that the conditional
Boltzmann distribution of hydrogen atom positions is peaked, that is, pallB is largest
around minimal-energy hydrogen coordinates (i.e. close to where x = GH ◦ FH(x)).

Equations 83a and 86b taken together lead to an importance sampling estimator84

for this probability P̄ all
B (M) based on samples from the reference dataset:

ˆ̄P all
B (M) =

∑
xall
B ∼p

all
B |x

all
B ∈M

p̃allB (GH ◦ FH(xallB ))

p̃allB (xallB )
exp

(
−∥x

all
B −GH ◦ FH(xallB )∥2

2σ2

)
∑

xall
B ∼p

all
B

p̃allB (GH ◦ FH(xallB ))

p̃allB (xallB )
exp

(
−∥x

all
B −GH ◦ FH(xallB )∥2

2σ2

) (87)

84In practice, this estimator has a very high variance making it unreliable to assess the expected
mode ratio for Butane. For Dialanine however, since the minor mode (known to biochemists as
the C7ax conformation) has a very low probability, it can be estimated a bit more reliably to be
close to 1%.
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A.3 Functional derivative of KL(pG||pB)

A KL divergence is a functional , which is a rule for going from a function to a
number, in the same way that a function is a rule for going from a variable to a
number. Functionals are usually expressed in terms of an integral of functions, as is
the case with KL divergences (the function being pG in this case).

The functional derivative of the KL divergence with respect to pG is denoted:
∇pGKL(pG||pB). It is the part of the difference KL(pG + δpG||pB) − KL(pG||pB)
that depends on δpG linearly:

δKL(pG||pB) =
∫
δKL(pG||pB)

δpG(x)
δpG(x) dx

=

∫
∇pGKL(pG||pB) δpG(x) dx

(88)

One way to compute the functional derivative of KL(pG||pB) is to just do a
Taylor expansion of KL(pG + δpG||pB), keeping only the first-order terms [41]:

KL(pG + δpG||pB) =
∫
(pG + δpG)(x) log

(pG + δpG)(x)

pB(x)
dx

=

∫
pG(x) log

pG(x)

pB(x)
dx+

∫ (
1 + log

pG(x)

pB(x)

)
δpG(x) dx+ o(δpG)

(89)

This gives:

∇pGKL(pG||pB) = 1 + log
pG(x)

pB(x)

= log(pG)− log(pB) + 1

(90)

And since the KL divergence is minimized, the quantity of interest is:

−∇pGKL(pG||pB) = log(pB)− log(pG)− 1 (91)
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A.4 Flow-based Transformations

(a) Input grid in z-space.

−→

(b) Output grid in x-space.

Figure 43: Deformation of the space performed by a pre-trained model on Double Well
Medium 2D. A regular grid is defined in z-space (left) and visualized after transformation
by the model in x-space (right).

(a) Output grid in z-space.

←−

(b) Input grid in x-space.

Figure 44: Deformation of the space performed by a pre-trained model on Double Well
Medium 2D. A regular grid is defined in x-space (right) and visualized after transforma-
tion by the model in z-space (left).
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A.5 Visualizing the collapse

Figure 45 is a visualization of the start of the collapse, after 20 steps of fine-tuning
the model from figure 9 with LKLx. A grid is defined in x-space, along 2 dimensions
(the multi-modal one in abscissa, and a unimodal one in ordinates), and the value
of the 10 remaining dimensions is chosen at random (but the same 10 values are
used for all the points of the grid). The result is a clear visualization that the small
well moves in the direction of the larger well.

Figure 45: Displacement of the pG distribution produced by a pre-trained model on
Double Well Wide 12D after 20 steps of fine-tuning with LKLx.
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A.6 Derivation of KL(qF ||qN )

KL(qF ||qN ) =
∫
qF (z) log

qF (z)

qN (z)
dz (92a)

=

∫
qF (z) logZN dz +

∫
qF (z) log

qF (z)

q̃N (z)
dz (92b)

= logZN +

∫
qF (z) log

qF (z)

q̃N (z)
dz (92c)

= logZN +

∫
pB(x) log

pB(x) ·
∣∣∣det(∂F (x)

∂x

)∣∣∣−1
q̃N (F (x))

dx (92d)

= logZN − SB +

∫
pB(x) log

∣∣∣det(∂F (x)
∂x

)∣∣∣−1
q̃N (F (x))

dx (92e)

= logZN − SB +

∫
pB(x) log

∣∣∣det(∂F (x)
∂x

)∣∣∣−1
e−

1
2σ2UN (F (x))

dx (92f)

= logZN − SB + E
xB∼pB

[
1

2σ2
UN (F (xB)) + log

∣∣∣∣det(∂F (xB)∂xB

)∣∣∣∣−1
]

(92g)

= logZN − SB + E
xB∼pB

[
1

2σ2
UN (F (xB))− log

∣∣∣∣det(∂F (xB)∂xB

)∣∣∣∣] (92h)

with:

- (92a) by definition of the KL divergence
- (92b) by using qN = 1

ZN
q̃N

- (92c) by using
∫
qF (z)dz = 1 (probabilities sum to one)

- (92d) by substitution of qF (z) by the change of variable formula:

qF (z) dz = pB(F
−1(z)) ·

∣∣∣∣det(∂F−1(z)∂z

)∣∣∣∣ dz
= pB(x) ·

∣∣∣∣det(∂F (x)∂x

)∣∣∣∣−1 dz

= pB(x) dx

(93)

- (92e) by definition of the entropy: SB = S(pB) = −
∫
pB(x) log pB(x)dx

- (92f) by using: q̃N (z) = e−
1

2σ2UN (x)

- (92g) by definition of expectations: E
xB∼pB

[
f(xB)

]
=

∫
pB(x)f(x)dx

The development of KL(pG||pB) is detailed in section 4.1.
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A.7 Applying LPL2
GB

to Butane

Results with LPL2
GB

and Ldf
KLz are almost identical on Butane regardless of the

value of λalign.

With λalign = 0 figure 46 should be compared with figure 18

(a) Ratio of generated xG samples in the minor modes during fine-tuning.

(b) UB energies of samples xG ∼ pG. (c) Correlations. (d) UG energies of samples xB ∼ pB .

Figure 46: Data-free fine-tunings on Butane with λalign = 10. See caption of figure 17
for more details.

With λalign = 10 figure 47 should be compared with figure 19.

(a) Ratio of generated xG samples in the minor modes during fine-tuning.

(b) UB energies of samples xG ∼ pG. (c) Correlations. (d) UG energies of samples xB ∼ pB .

Figure 47: Data-free fine-tunings on Butane with λalign = 0. See caption of figure 17
for more details.
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A.8 Applying LPL2
GB

to Dialanine

The results of the fine-tuning with LPL2
GB

on Dialanine without using a cache
are shown in figures 48, 49 and 50 (which are almost identical to figures 35, 36 and
37, albeit with slightly less points in the minor mode). This demonstrates that the
concept of cache introduced in section 6.4.4 is not necessary to obtain a satisfactory
performance with LPL2

GB
.

Figure 48: Ratio of generated xG samples in the minor modes during fine-tuning with
LPL2

GB
on Dialanine. The ordinates go from 0% to 20%.

(a) ϕ and ψ from the
Dialanine dataset.

(b) ϕ and ψ after pre-training
with Ldd

KLz.
(c) ϕ and ψ after fine-tuning

with LPL2
GB

Figure 49: Dihedral angles ϕ and ψ of the dialanine molecule. Figures 36a and 36b are
duplicates of figures24a and 24b since the same data and pre-training are used.

(a) UB energies of samples xG ∼ pG. (b) Correlations. (c) UG energies of samples xB ∼ pB .

Figure 50: Quality of generation after fine-tuning on Dialanine with LPL2
GB

.
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A.9 Applying Ldd
OT ε to Double Well 12D

The data-dependent Ldd
OT ε loss leads to good results on Double Well Medium

12D (see figure 51) but fails to give better results on Double Well Wide 12D than
Ldd

KLz (see figure 52), hinting to the fact that it may be very sensitive to proper
normalization of the target distribution.

Figure 51: Fine-tuning with Ldd
OT ε on Double Well Medium 12D (see caption of figure 7

for more details).

Figure 52: Fine-tuning with Ldd
OT ε on Double Well Wide 12D (see caption of figure 9

for more details).

The hyperparameters used here and in every other optimal transport experiment
are as follows: ε = 0.01, the number of Sinkhorn iterations is 256 and the learning
rate is kept at 10−5.
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A.10 Unbiased estimators

This section supposes that the use case of the generator G is to estimate integral
quantities of the form EpB [f ] for some given function f and denote by Q its true
value85:

Q := E
pB
[f ] = E

pG

[
pB
pG
f

]
(94)

In practice, one estimates Q by sampling:

Q ≃ Q̂ :=
1

n

∑
xG,i∈xG

pB(xG,i)

pG(xG,i)
f(xG,i) (95)

where xG = (xG,1, . . . , xG,n) is a mini-batch of points sampled according to pG.86

Regardless of the distribution pG, Q̂ is an approximation of Q, in that for very
large mini-batches xG, i.e. large n, the estimate Q̂ tends to Q. The estimator is said
to be unbiased and the convergence rate typically behaves as O(1/

√
n). Indeed:

E
xG∼pnG

[Q̂] = Q (96)

where the expectation is taken over mini-batches of n independent samples, taken
according to pG. To prove this, see that even for just one sample (n = 1) one has:

E
xG∼pG

[
Q̂
]
= E

x∼pG

[
pB(x)

pG(x)
f(x)

]
=

∫
x∈X

pB(x) f(x)dx =: Q (97)

For a mini-batch xG of arbitrary size n, one gets the average of n such quantities,
each of which are Q on expectation, so one recovers Q again:

E
xG∼pnG

[Q̂] = E
xG∼pnG

 1
n

∑
xG,i∈xG

pB(xG,i)

pG(xG,i)
f(xG,i)

 (98a)

=
1

n

n∑
i=1

E
xG∼pnG

[
pB(xG,i)

pG(xG,i)
f(xG,i)

]
(98b)

= E
xG∼pG

[
pB(xG)

pG(xG)
f(xG)

]
(98c)

=: Q (98d)

85Equation 94 is exact provided that pG is never 0 where pB is not.
86Note however than pB is unknown but this is not an issue since p̃B = ZBpB is sufficient for

all practical purposes.
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A.11 Estimator variance as a loss

Variance of the estimator. For some distributions pG, the estimator Q̂ may
converge faster than for other ones, in terms of number of samples required to reach
a given target accuracy. This is reflected in the variance of the estimator Q̂:

V = E
xG∼pnG

[(Q̂−Q)2] (99)

that one would like to be as small as possible. Indeed the typical gap between an
estimate Q̂ for a mini-batch and the real value Q can be expected to be of the
order of magnitude of V (by definition). The question is: Can we train pG so as to
minimize V ?

Reducing variances over mini-batches to variances over single samples.
For a given mini-batch size n, the variance over the choice of mini-batch xG is:

V = E
xG∼pnG

[(Q̂−Q)2] (100a)

= E
xG∼pnG

[Q̂2 − 2Q̂Q+Q2] (100b)

= E
xG∼pnG

[Q̂2]− 2 E
xG∼pnG

[Q̂]Q+Q2 (100c)

= E
xG∼pnG

[Q̂2]−Q2 (100d)

Since Q2 is does not depend on pG, we aim at minimizing only:

E
xG∼pnG

[Q̂2] = E
xG∼pnG

 1

n

∑
xG,i∈xG

pB(xG,i)

pG(xG,i)
f(xG,i)

2 (101a)

=
1

n2
E

xG∼pnG

 ∑
xG,i∈xG

p2B(xG,i)

p2G(xG,i)
f2(xG,i)


+

1

n2
E

xG∼pnG

 ∑
xG,i,xG,j∈xGi ̸=j

pB(xG,i)

pG(xG,i)
f(xG,i)

pB(xG,j)

pG(xG,j)
f(xG,j)

 (101b)

=
1

n2

n∑
i=1

E
xG,i∼pG

[
p2B(xG,i)

p2G(xG,i)
f2(xG,i)

]

+
1

n2

n∑
i,j=1,i ̸=j

E
xG,i∼pG

[
pB(xi)

pG(xi)
f(xG,i)

]
E

xG,j∼pG

[
pB(xG,j)

pG(xG,j)
f(xG,j)

]
(101c)

=
1

n
E

xG∼pG

[
p2B(x)

p2G(x)
f2(x)

]
+
n(n− 1)

n2
E

xG∼pG

[
pB(x)

pG(x)
f(x)

]2
(101d)

=
1

n
E

xG∼pG

[
p2B(x)

p2G(x)
f2(x)

]
+

(
1− 1

n

)
Q2 (101e)
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with:

- (101a) by definition of Q̂
- (101c) by noticing that points xG,i and xG,j are sampled identically (accord-

ing to the same law) and independently.

The variance (without forgetting the constant term −Q2 from equation 100d)
thus interestingly rewrites as:

V =
1

n
E

xG∼pG

[
p2B(xG)

p2G(xG)
f 2(xG)

]
− 1

n
Q2 (102)

which can be interpreted as: the variance of an estimator based on n samples is 1
n

times the variance of the estimator based on a single sample. This implies that the
variance behaves as O( 1

n
) and thus the typical error (standard deviation) is O( 1√

n
).

Optimizing the variance with respect to pG. Based on the variance formula
above, one can consider that the expected error of the generator G can be quantified
by:

E
xG∼pG

[
p2B(xG)

p2G(xG)
f 2(xG)

]
(103)

and we would like to minimize it with respect to pG.

If f can be any bounded function in x-space87, then one can deduce the following
optimization criterion:

E
xG∼pG

[
p2B(xG)

p2G(xG)

]
=

1

Z2
B

E
xG∼pG

[
e2(UG−βUB)

]
(104)

87Note that if the function f that needs to be integrated is known, it could be used explicitly in
the criterion to optimize.
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