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Résumé : De nombreux problèmes de contrôle se
ramènent à imposer que la sortie du système suive
un signal donné, tout en rejetant les effets de per-
turbations. Dans ce vaste contexte de probléma-
tiques traitées principalement en temps continu,
l’utilisation de techniques de contrôle reposant sur
l’inversion est bien connue. Cependant, la présence
incontournable de capteurs et d’actionneurs numé-
riques nécessite une conception ad hoc en temps
discret. Plus précisément, il s’agit de contrôler
des systèmes dits échantillonnés, dont les mesures
sont acquises à des instants échantillonnés dans
le temps et pour lesquels les variables de com-
mande sont maintenues constantes sur un inter-
valle de temps donné, la période d’échantillonnage.
Dans ce domaine des systèmes échantillonnés, des
systèmes supposés en temps continu à déphasage
minimal, perdent cette propriété sous échantillon-
nage ; le système en temps discret équivalent n’est
plus à déphasage minimal. L’objet de cette thèse
est d’établir des résultats constructifs, procédures
et algorithmes permettant de réduire les effets dus
à l’inversion dans le contexte échantillonné.

Une première contribution propose une pro-
cédure d’inversion stable pour une classe de sys-
tèmes à déphasage non minimal multi-input multi-
output (MIMO). L’approche repose sur le linéarisé
tangent du système et une factorisation de la dy-
namique des zéros dont une partie seulement est
a déphasage minimal. Les contributions suivantes
concernent la commande prédictive (MPC) et la

linéarisation transverse par bouclage (TFL), deux
stratégies de commande concernées par la perte
de la propriété de déphasage minimal sous échan-
tillonnage.

Concernant la commande prédictive deux pro-
blématiques utilisant des techinques de discréti-
sation à échelles de temps multiques sont étu-
diées pour des objectifs de prédiction puis de pla-
nification de trajectoire. Les solutions développées
sont validées sur plusieurs exemples allant de la
conduite et poursuite de systèmes admettant des
formes chainées jusqu’au maintien des quasi Halo
orbites du système terre-lune.

Concernant la linéarisation transverse par bou-
clage, deux solutions préservant l’invariance des
sous espaces caractérisant les objectifs de contrôle
sont proposées. L’une repose sur des techniques
d’échantillonnage simple et, quoique solution ap-
prochée, est très simple de calcul et présente des
performances bien supérieures à une implantation
classique par bloqueur d’orde zéro. La deuxième
solution, proposée au sens exact, fait appel à des
techniques d’échantillonnage multiple et propose
aussi des solutions par blouclage statique dans des
cas ou seul un bouclage dynamique résoud le pro-
blème en temps continu. Les deux approches sont
validées sur des exemples académiques et appli-
quées à la résolution de problèmes de poursuite
de trajectoires pour des robots mobiles ou de sta-
bilisation d’orbites périodiques pour des systèmes
mécaniques sous actionnés.
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Abstract : Several well studied control problems
reduce to asking the output of a given process
to track a desired signal while rejecting effects
of undesired perturbations. In the rich body of
knowledge dealing with problems of this type in
continuous-time, the use of partial inversion-based
controllers (i.e controllers that cancel part of the
dynamics in the sense of rendering it unobser-
vable) and their effectiveness is well established.
Nowadays, however, sensing and actuation is done
through digital devices so necessitating a suitable
control design. In this setting, the control engineer
works with systems referred to as sampled-data
systems where measures of the output are available
only at sporadic discrete-time instants while the
control is piecewise constant over a fixed time in-
terval. In this sampled-data context, systems that
are originally minimum phase in continuous-time,
and because of sampling and holding, may lose
this property. The general argument of this the-
sis contributes to establishing constructive results,
procedures and algorithms to the purpose of mi-
tigating the issues caused by sampled-data design
under partial inversion-based controllers.

Since partial inversion-based controllers typi-
cally cancel the zero dynamics, the central idea is
to mitigate the loss of the minimum-phase pro-
perty. A first contribution in this direction stands
in proposing a procedure for stable partial inver-
sion for a class of continuous-time non-minimum
phase Multi-Input Multi-Output systems. The pro-
cedure proposed, generalizing a previous result,
works over the linear tangent model of a system

factorizing a sub-set of the zero dynamics known
to be minimum-phase apriori. This preliminary re-
sult is at the basis of control strategies which
are herein proposed for model predictive control
and digital transverse feedback linearization. Both
control strategies under sampling are affected by
the above-mentioned pathology linked to the loss
of the minimum-phase property.

In particular, for model predictive control, two
solutions based on multi-rate sampling techniques,
employed at the prediction, or the trajectory plan-
ning level are proposed and compared. Their va-
lidity is established through several case studies
ranging from steering and tracking in systems ad-
mitting chained forms to quasi Halo orbits station-
keeping for space-crafts in the Earth-Moon system.

Concerning transverse feedback linearization,
two sampled-data solutions preserving the inva-
riant subset specifying the control objectives are
proposed. The former is based on single-rate sam-
pling and, albeit approximate in nature, is compu-
tationally simple and outperforms zero-order hol-
ding of the continuous-time design. The later, an
exact solution based on multi-rate sampling, im-
proves upon the former solution and provides, in
special cases, static state feedback solutions even
when the problem is only solvable via dynamic
feedback in continuous-time. Both solutions are
validated over academic case studies as well as in
solving path following for mobile robots and perio-
dic orbits stabilization for underactucated mecha-
nical systems.
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Sommario : Numerosi problemi di controllo non
lineare, tra questi quelli che richiedono di seguire
prescritti comportamenti e/o compensare l’effetto
di disturbi, si ispirano a procedure di inversione
e richiedono una parziale cancellazione della dina-
mica. Tale cancellazione si realizza rendendo inos-
servabile, rispetto ad opportune funzioni, una parte
della dinamica del sistema a ciclo chiuso. Tale pro-
cedura si confronta dunque con la massima inos-
servabilità che può essere ottenuta sotto contro-
reazione rispetto a prefissate funzioni, quella cor-
rispondente alla cosiddetta « dinamica zero » ; e
con la sua stabilità, la proprietà di « fase minima ».
In questo lavoro sono studiate alcune procedure
di controllo che richiedono la cancellazione, even-
tualmente parziale, della dinamica zero e saranno
riferiti come “basati su inversione, o cancellazione,
parziale”.

Oggi giorno i controllori vengono realizzati con
componenti digitali ; si ottengono in tal modo sis-
temi di controllo « ibridi » caratterizzati da dina-
miche a tempo continuo, misure ottenute mediante
campionamento ad intervalli di tempo usualmente
regolari, e ingressi al sistema controllato costanti a
tratti durante i periodi di campionamento. Il pro-
getto del controllo in questo contesto impiega il
modello a tempo discreto equivalente del sotto-
sistema controllato che non mantiene necessaria-
mente le proprietà del modello a tempo continuo,
prima tra tutte, la stabilita’della dinamica zero.

Come procedere nel progetto di un controllore
digitale che risolva un problema di controllo ba-
sato su inversione dinamica parziale assicurando
la stabilità del processo a tempo continuo ? La
tesi contribuisce a rispondere a questa domanda
per classi di problemi di controllo basati su inver-
sione dinamica parziale fornendo metodologie cos-
truttive che garantiscano il soddisfacimento della
specifica di fase minima del modello a tempo dis-
creto equivalente e la realizzabilitàdel sistema di
controllo. Più nel dettaglio, nella prima parte viene
proposta una nuova procedura di sintesi per in-

versione dinamica parziale di sistemi a fase non
minima che garantisca la stabilità del sistema ad
anello chiuso. La procedura è dapprima illustrata
nel contesto di sistemi lineari e poi generalizzata
per classi di sistemi non lineari. Questo primo ri-
sultato è alla basa dei contributi principali proposti
nella tesi nel quadro dei metodi di “Model Predic-
tive Control” (MPC) e “Transverse Feedback Li-
nearization” (TFL) per sistemi a dati campionati.
Nel primo caso, è ben noto che l’implementazione
digitale di schemi di controllo basati su MPC non
garantisce, in generale, la stabilità del

sistema ad anello chiuso. In generale, le solu-
zioni tipicamente utilizzate in letterature sono di
natura empirica e valide caso per caso. Il primo
contributo della tesi consiste quindi nella defini-
zione di due nuove metodologie per l’implemen-
tazione di schemi di controllo MPC per sistemi
a dati campionati mediante multi-rate a livello di
controllo, in prima istanza, e pianificazione, in se-
conda. Sono proposti numerosi casi di studio tra
cui l’applicazione a problemi di “station-keeping”
per satelliti nel sistema Terra-Luna. Nella seconda
parte sono invece illustrati i contributi sull’esten-
sione delle metodologie di TFL al contesto di sis-
temi a dati campionati. In questo contesto, sono
proposte due soluzioni. Nel primo caso viene pro-
posto un controllore di tipo “single-rate” basato
sulla ridefinizione dell’uscita associata alla superfi-
cie da stabilizzare. La soluzione, sebbene appros-
simata, garantisce prestazioni notevoli se confron-
tate a quelle del classico controllo per emulazione,
tipicamente usato in letteratura. In seconda is-
tanza viene proposta una soluzione esatta, basata
su controllori di tipo multi-rate in cui l’ordine della
frequenza di campionamento è fissato dal grado
relativo del sistema a tempo continuo e, quindi,
associato alla superficie da stabilizzare. Le solu-
zioni sono confrontate e applicate su diversi casi
di studio tra cui la stabilizzazione orbiale di sis-
temi meccanici sotto attuati e il controllo di robot
mobili.
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Résumé détaillé

Cet mémoire rassemble les principales activités de recherche menées par l’auteur au cours de sa
période de doctorat développées conjointement entre le Dipartimento di ingegneria Informatica
Automatica e Gestionale (DIAG) à l’Università degli Studi di Roma La Sapienza et au Laboratoire
des Signaux et Systèmes (L2S) de l’Université Paris-Saclay. La mobilité entre les deux institutions
a été partiellement financée par Université Franco-Italienne/Università Italo-Francese UFI/UIF à
travers la Bourse Vinci 2019.

Le cadre général de la recherche effectuée doit traiter des problèmes liés à la soi-disant conception
de données échantillonnées des lois de contrôle par rétroaction. En termes plus simples, les prob-
lèmes concernant les lois de commande par rétroaction conçues pour fonctionner sur la dynamique
résultant de l’échantillonnage d’un processus en temps continu.

Plus précisément, les problèmes traités sont limités à une classe spécifique de contrôleurs que
nous appelons contrôleurs basés sur l’inversion partielle. Ce sont des contrôleurs qui annulent une
partie de la dynamique, typiquement la dynamique zero, dans le sens de la rendre inobservable. À
cet égard, ce document se concentre sur l’apport de solutions constructives ; lois de rétroaction,
algorithmes et procédures préservant les propriétés requises d’un système de commande en temps
continu malgré la perte de ces propriétés due à l’échantillonnage.

Plus en détail, les contributions apportées dans cette thèse peuvent être regroupées en trois
domaines principaux ; stabilisation via annulation partielle de la dynamique en temps continu, an-
nulation partielle stable en contrôle prédictif du modèle et annulation partielle stable en linéarisation
par rétroaction transversale.

Stabilisation par annulation partielle de la dynamique en temps continu : la con-
tribution apportée dans ce sens est principalement abordée au Chapitre 3 de ce document, en
s’appuyant sur les notions introduites au Chapitre 1. En effet, le chapitre commence par raconter
comment on peut atténuer l’obstruction posé par une dynamique zero instable lors de la conception
de contrôleurs basés sur l’inversion en temps continu. Cela se fait en s’assurant que la dynamique
annulée n’est qu’une sous-dynamique de la dynamique zero, connue pour être stable a priori. Cette
procédure très intuitive consistant à assurer une stabilization via une factorisation à dynamique
nulle a été formalisée pour une classe spéciale de systèmes non linéaires à entrée unique et sortie
unique dans un travail récent du groupe de recherche. Il a en outre été utilisé pour résoudre certains
problèmes de contrôle basés sur l’inversion, comme par exemple la stabilisation par équivalence de
rétroaction linéaire et le découplage des perturbations avec stabilité à la fois en temps continu et
sous échantillonnage.

En conséquence; une extension de la procédure par factorisation dynamique zero au cas des
systèmes linéaires Multi-Input Multi-Output en temps continu. De plus, la même procédure s’est
ensuite avérée rentable pour une classe spéciale de systèmes non linéaires à temps continu multi-
entrées multi-sorties, au moins au sens local. Des applications à la résolution de problèmes de
stabilisation et de découplage des perturbations sont également détaillées.

Annulation partielle stable en contrôle prédictif : Les contributions en ce sens couvrent
la deuxième partie de ce document, à savoir les Chapitres 4,5,6. Dans le Chapitre 4, et en utilisant
l’outil d’échantillonnage multi-taux discuté au Chapitre 2 au niveau de la conception de contrôle, il
est montré que, sous certaines conditions, le problème MPC est grandement simplifié tout en four-



nissant également l’existence, des garanties d’unicité et de délimitation pour le retour d’expérience
résolvant le problème. Le prix est cependant que, de par la nature du multi-taux, à certains sous-
intervalles de la période d’échantillonnage, le système de contrôle fonctionne en boucle ouverte, avec
des capteurs et des actionneurs nécessitant des fréquences d’échantillonnage asynchrones. Un autre
problème réside dans la robustesse, ou son absence, associée au contrôle multi-taux.

Motivé par les lacunes ci-dessus, le Chapitre 5 améliore la solution proposée dans le chapitre
précédent en reléguant l’utilisation d’un modèle équivalent échantillonné multi-taux en MPC au
rôle d’un planificateur de trajectoire. Par conséquent, en modifiant les signaux de référence dans la
formulation du problème MPC, on peut obtenir (presque) les mêmes avantages en termes d’existence
et de délimitation tout en atténuant les deux problèmes soulevés.

Le Chapitre 6 valide plutôt les résultats méthodologiques obtenus sur une étude de cas complète
concernant la stabilisation des orbites Halo autour du point L2 dans le système Terre-Lune.

Annulation partielle stable en linéarisation par rétroaction transversale: Les contri-
butions dans cette direction couvrent la troisième partie de ce mémoire , à savoir les chapitres 7 et
8. Au chapitre 7, une conception à taux unique de données échantillonnées préservant la solution
idéale en temps continu à la linéarisation par rétroaction transversale est présentée. Cette solution
fonctionne en modifiant les sorties fictives spécifiant les objectifs de contrôle, de manière équivalente
la sous-variété à stabiliser en temps continu. La solution s’avère simple du point de vue des calculs.
Le prix à payer, cependant, est qu’il est approximatif de par sa conception.

Le chapitre 8, d’autre part, atteste de l’existence d’une solution exacte multi-taux de données
échantillonnées chaque fois qu’une solution en temps continu existe. La mise en œuvre, cependant,
est naturellement portée sur des approximations.

Étant une technique de stabilisation d’ensemble, les solutions obtenues ont un large éventail
d’applications possibles. Le problème du suivi de path pour les robots mobiles à roues sous contrôle
numérique est traité sous les deux angles, montrant les avantages supplémentaires de l’utilisation du
multi-cadence. A savoir le fait qu’on n’exige pas d’extension dynamique préalable même lorsque c’est
une exigence en temps continu. D’autres résultats sur la stabilisation des orbites et les contraintes
holonomiques virtuelles pour les systèmes d’Euler-Lagrange sont discutés.

La thèse se termine par les principales questions ouvertes et les orientations futures possibles de
l’intérêt de la recherche.





Sommario dettagliato

Questa tesi raccoglie le principali attività di ricerca svolte dall’autore durante il suo periodo di dot-
torato sviluppato congiuntamente dal Dipartimento di ingegneria Informatica Automatica e Ges-
tionale (DIAG) presso l’Università degli Studi di Roma La Sapienza e presso il Laboratorio di
Segnali e Sistemi (L2S) di Ateneo Parigi-Saclay. La mobilità tra le due istituzioni è stata parzial-
mente finanziata da Université Franco-Italienne/Università Italo-Francese UFI/UIF attraverso il
Vinci Grant 2019.

Il quadro generale della ricerca svolta è quello di affrontare i problemi relativi al cosiddetto
sampled data design delle leggi di controllo del feedback. In termini più semplici, problemi relativi
a leggi di controllo di retroazione atte ad agire sulla dinamica risultante dal campionamento di un
processo a tempo continuo.

Più precisamente, i problemi trattati sono limitati ad una specifica classe di controllori che chi-
amiamo controllori basati su inversione parziale. Si tratta di controllori che annullano parte dello
slancio, tipicamente lo slancio zero, nel senso di renderlo non osservabile. A questo proposito, questo
documento si concentra sulla fornitura di soluzioni costruttive; leggi di feedback, algoritmi e proce-
dure che preservano le proprietà richieste di un sistema di controllo a tempo continuo nonostante
la perdita di queste proprietà dovuta al campionamento.

Più in dettaglio, i contributi forniti in questa tesi possono essere raggruppati in tre aree princi-
pali; stabilizzazione tramite annullamento parziale della dinamica a tempo continuo, annullamento
parziale stabile nel controllo predittivo del modello e annullamento parziale stabile nella lineariz-
zazione mediante feedback trasversale.

Stabilizzazione per annullamento parziale della dinamica nel tempo continuo: il con-
tributo dato in questa direzione è affrontato principalmente nel Capitolo 3 di questo documento,
sulla base delle nozioni introdotte nel Capitolo 1. Il capitolo, infatti, inizia con raccontare come si
può mitigare l’ostruzione posta da una dinamica zero instabile durante la progettazione di controller
basati sull’inversione a tempo continuo. Ciò viene fatto assicurando che la dinamica annullata sia
solo una sottodinamica della dinamica zero, nota per essere stabile a priori. Questa procedura molto
intuitiva di fornire la stabilizzazione tramite la fattorizzazione dinamica zero è stata formalizzata
per una classe speciale di sistemi non lineari a ingresso singolo e uscita singola in un recente lavoro
del gruppo di ricerca. È stato inoltre utilizzato per risolvere alcuni problemi di controllo basati
sull’inversione, come la stabilizzazione mediante equivalenza di feedback lineare e il disaccoppia-
mento dei disturbi con stabilità sia in tempo continuo che sotto campionamento.

Di conseguenza; un’estensione della procedura per fattorizzazione dinamica zero al caso di sistemi
lineari Multi-Input Multi-Output in tempo continuo. Inoltre, la stessa procedura si è poi rivelata
vantaggiosa per una classe speciale di sistemi non lineari a tempo continuo multi-ingresso e multi-
uscita, almeno in senso locale. Vengono inoltre descritte in dettaglio le applicazioni per risolvere i
problemi di stabilizzazione e disaccoppiamento dei disturbi.

Cancellazione parziale stabile nel controllo predittivo: I contributi in questa direzione
coprono la seconda parte di questo documento, ovvero i capitoli 4,5,6. Nel Capitolo 4, e utilizzando
lo strumento di campionamento multi-rate discusso nel Capitolo 2 a livello di progettazione del
controllo, viene mostrato che, in determinate condizioni, il problema MPC è notevolmente sempli-
ficato fornendo anche l’esistenza, garanzie di unicità e delimitazione per il esperienza di feedback



risolvendo il problema. Il costo, tuttavia, è che, a causa della natura del multi-rate, a determinati
sotto-intervalli del periodo di campionamento, il sistema di controllo opera in anello aperto, con
sensori e attuatori che richiedono frequenze di campionamento asincrone. Un altro problema è la
robustezza, o la sua mancanza, associata al controllo multi-rate.

Motivato dalle carenze di cui sopra, il Capitolo 5 migliora la soluzione proposta nel capitolo
precedente relegando l’uso di un modello equivalente campionato multi-rate in MPC al ruolo di
pianificatore di traiettoria. Pertanto, modificando i segnali di riferimento nella formulazione del
problema MPC, si possono ottenere (quasi) gli stessi vantaggi in termini di esistenza e delimitazione,
mitigando i due problemi sollevati.

Il capitolo 6 convalida piuttosto i risultati metodologici ottenuti su un caso di studio completo
riguardante la stabilizzazione delle orbite di Halo attorno al punto L2 nel sistema Terra-Luna.

Stable Partial Cancellation in Linearization by Transverse Feedback: i contributi in
questa direzione coprono la terza parte di questa tesi, vale a dire i capitoli 7 e 8. Nel capitolo
7, una progettazione a tasso singolo di dati campionati preservando la soluzione ideale in tempo
continuo alla linearizzazione per retroazione trasversale. Questa soluzione funziona modificando gli
output fittizi specificando gli obiettivi di controllo, equivalentemente la sottovarietà da stabilizzare
in tempo continuo. La soluzione risulta essere computazionalmente semplice. Il prezzo da pagare,
tuttavia, è che è disgustoso in base alla progettazione.

Il capitolo 8, d’altra parte, attesta l’esistenza di una soluzione esatta multi-rate dei dati campi-
onati ogni volta che esiste una soluzione a tempo continuo. L’attuazione, tuttavia, è naturalmente
vincolata ad approssimazioni.

Essendo una tecnica di stabilizzazione dell’insieme, le soluzioni ottenute hanno un’ampia gamma
di possibili applicazioni. Il problema del path following per i robot mobili su ruote a controllo nu-
merico viene affrontato da entrambe le angolazioni, mostrando gli ulteriori vantaggi dell’utilizzo del
multi-rate. Vale a dire il fatto che non richiediamo un’estensione dinamica preventiva anche quando
è un requisito a tempo continuo. Vengono discussi altri risultati sulla stabilizzazione dell’orbita e
sui vincoli olonomi virtuali per i sistemi di Eulero-Lagrange.

La tesi si conclude con i principali quesiti aperti e le possibili future direzioni di interesse della
ricerca.
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Basic definitions and notations

Table 1: Notations used throughout the thesis

Notation Meaning

Z the set of integers
R the set of reals
C the set of complex numbers
Z≥0, R≥0 non-negative integers and reals
Rn the Euclidean n-space
I, Id the identity operator and function
0m×n the n×m matrix with all zero entries
x⊤, A⊤ the transpose of a vector x or a real valued matrix A
col(x, y) is the column of two vectors x, y i.e. (x⊤, y⊤)⊤

blkdiag(A,B) the block-diagonal matrix composed by the matrices A,B
∥x∥2 the square of the Euclidean norm i.e x⊤x
∥x∥2Q the weighted square of the Euclidean norm i.e x⊤Qx
∇λ(x) the column vector derivative of λ(x)
Lf the Lie derivative operator i.e f : Rn → Rn, Lf =

∑n
i=1 fi(x)

∂
∂xi

Lℓf the ℓth order Lie derivative operator i.e Lℓf = LfL
ℓ−1
f , L0

f = I
eLf the exponential Lie operator along the vector field f i.e. eLf = I +

∑
i≥1

Li
f

i!

eLfx the exponential Lie operator evaluated at x i.e. eLf Id|x
O(δp) big O notation for approximation of series expansions via truncations
C+ right half of the complex plane, i.e. {p ∈ C : |Re(p)| > 0}
C− left half of the complex plane, i.e. {p ∈ C : |Re(p)| < 0}
S1 the unit disk in the complex plane, i.e. S1 = {p ∈ C : |p| < 1}

Additionally, the following notions, which are sometimes used, are defined in this way;

The symbols > 0 and < 0 (resp. ≻ and ≺) denote positive and negative definite functions
(resp. matrices), respectively.

Given a manifold M and a closed connected set N ⊂M , N is said to be invariant under the
dynamics ẋ = f(x) + g(x)u if ∀x0 ∈ N and any control u(·), x(t) ∈ N , ∀t.

N is controlled invariant if there exists a feedback u⋆ making N invariant for the closed loop
system.

A continuous function β(·) : [0,∞) → [0,∞), that is zero at zero and strictly increasing and
unbounded is said to be of class κ∞.
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A continuous function R(x, δ) is of order O(δp) with p ≥ 1 if, whenever it is defined, it can be
written as R(x, δ) = δp−1R̃(x, δ) and there exists a function β(δ) ∈ κ∞ and δ⋆ > 0 such that
∀δ ≤ δ⋆, |R̃(x, δ)| ≤ β(δ).

Finally, some commonly used acronyms are listed herein;

Table 2: Acronyms

Acronym Meaning

SISO single-input single-output
MIMO multi-input multi-output
SD sampled-data
SR single-rate
ASR approximate single-rate
MR multi-rate
MPC model predictive control
TFL transverse feedback linearization
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Introduction

This work collects the main research activities carried out by the author during his PhD period
developed jointly between the Dipartimento di ingegneria Informatica Automatica e Ges-

tionale (DIAG) at Università degli Studi di Roma La Sapienza and the Laboratoire des Signaux et
Systèmes (L2S) at Université Paris-Saclay. The mobility between the two institutions has been par-
tially funded by Université Franco-Italienne/Università Italo-Francese UFI/UIF through the Vinci
Grant 2019.

The overarching setting of the research carried out has to deal with issues arising due to the
so-called sampled-data design of feedback control laws. In simpler terms, issues concerning feedback
control laws designed working over dynamics resulting from sampling a continuous-time process.

Being a huge undertaking overall, the issues dealt with are limited to a specific class of controllers
that are ubiquitous enough making this work both interesting and manageable. In this respect, this
document focuses on providing constructive solutions; feedback laws, algorithms and procedures
preserving required properties of a continuous-time control system despite the loss of those properties
due to sampling when dealing with the class of control methodologies we call partial inversion-based
controllers. These are controllers that cancel part of the dynamics, typically the zero dynamics, in
the sense of rendering it unobservable. Maximal cancellation is gained under feedback through zero
dynamics assignment and methods which employ this are denoted as inversion-based. Consequently,
by generalizing this terminology we will refer to partial cancellation or partial inversion-based when
a partial assignment of the zero dynamics is involved. These notions and choices of terminology
will be made more apparent in Part I.

Before going into the details however, this chapter will provide a general historical and technical
context for the topics addressed in this thesis as well as a sketch of the contributions and an outline
of the thesis. Accordingly, we start by recalling the story of the developments relevant to our
discussions. These developments will make clear the “source” of the addressed problems, namely
the stability of the zero dynamics both in continuous-time and when modified by sampling. This
sampling-induced “modification” of the zero dynamics structure of a continuous-time process is the
main obstruction affecting performances of the class of control problems studied, and indeed a large
part of this work is devoted to solutions to mitigate this issue.

The general context and motivation

Beginning in the seventies of the previous century, a huge body of work in the control and systems
research community was devoted to generalizing concepts already well established in the linear
setting to nonlinear control systems. A seminal work in this direction is that of Hermann and

4



Krener (1977) which generalized to the nonlinear control the geometric tools studying structural
properties like observability and reachability.

This paper in turn had huge implications leading to the introduction of the zero dynamics by
Byrnes and Isidori (1984); a dynamics characterizing the unobservable behavior of a system once
initial conditions and control are chosen in such a way as to constrain the output to be zero.

It became rapidly clear that the properties of this dynamics, generalizing the concept of a
transmission blocking zero of a transfer function, had similar impact on a huge array of feedback
design methodologies and control problems. Naturally, the first place where such consequences
are understood to arise is the disturbance decoupling problem for nonlinear systems discussed
by Hirschorn (1981) where later it became clear that stability of the zero dynamics, rendered
unobservable via the feedback solving this problem is paramount.

Additionally, stabilization and output tracking controllers that utilize linear feedback equiva-
lence Krener (1973) are faced with the same limitation. They “cancel ”, in the sense of rendering
unobservable, the dynamics coincident with the zero dynamics thus requiring stability of the zero
dynamics (Isidori, 1995, Chapter 6). This is also clear in applications of such controllers relying
on linear feedback equivalence. A major example of these applications stands in the problem of
Input-Output non-interaction (see Isidori et al. (1981)). Examples of this are the results reported
by Isidori and Grizzle (1988) concerning conditions for solvability of state feedback Input-Output
non-interaction with stability. Similar results concerning the role of stability of the zero dynamics
in solving the non-interaction problem with dynamic feedback were detailed by Battilotti (1990).

In the meantime, stabilizing feedback laws based on high-gain output were shown to require the
zero dynamics to be (locally exponentially ) stable by Sontag (1990). The same was shown to be
the case when using dynamic feedback with a high gain robust observer in Teel and Praly (1995)
(see also Ghanes et al. (2012) for a more recent note on observers design for nonlinear systems).

Perhaps even more surprisingly is the fact that this pathology is encountered when designing
stabilizing and tracking state feedback laws in the optimal control setting. Particularly, the problem
of cheap optimal control ; a variation of the Linear Quadratic Regulator Kirk (2004) in which the
penalty on the control is vanishingly small, exposes that a stabilizing feedback solution results in
perfect regulation (or tracking) of the output only when the zero dynamics is stable Seron et al.
(1999).

As the alert reader may have already gathered, the underlying common theme among all of
the aforementioned control methodologies and problems is that feedback solutions impose (partial)
cancellation of the dynamics effecting unobservability. Indeed, controllers like output tracking,
disturbance decoupling, input-output non-interaction, local stabilization and even finite-horizon
optimal controllers (e.g. tracking Model predictive control MPC) all require the cancellation of
dynamics. State feedback controllers requiring (partial) cancellation of the (zero) dynamics are
hence referred to, in this work, as the class of partial inversion-based controllers. The reason for
this choice of nomenclature will be made apparent in Chapter 1.

It is important to stress that the brief recount on the developments concerning the zero dynamics
is in no way comprehensive. The mentioned pioneering works are complemented by the contributions
of many in the field which the author apologies for omitting in this document. All of the mentioned
results concerning the zero dynamics and partial inversion-based controllers were developed in the
continuous-time framework. Nowadays, however, computations, sensing and actuation are almost
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always carried out using some digital device or a computer (in the general sense of the word). In fact,
this is not a recent trend, and thus the study of digital control dates back to as early as the fifties
of the last century as for instance in the work by Ragazzini and Franklin (1958). In the subsequent
six decades, the investigations of digital control, and more specifically sampled-data systems (i.e.
continuous-time systems whose information are available over discrete time instants and are fed
by piecewise constant input signals switching at certain times) albeit not as exhaustive as their
continuous-time counterpart were steadily progressing. This sampled-data nature necessitates the
need for ad-hoc tools for both analysis and control design purposes.

From the analysis side, the study of basic properties was evolving throughout the seventies and
eighties. Examples of this includes Sontag’s realization of discrete time systems Sontag (1979),
Normand-Cyrot’s study of nonlinear discrete-time systems Normand-Cyrot (1983), controllability
of discrete time nonlinear systems as studied by Fliess and Normand-Cyrot (1981), the proper
introduction of the sampled-data equivalent model for nonlinear systems by Monaco and Normand-
Cyrot (1985) and later a unified approach to the description of discrete and sampled-data systems
in Monaco and Normand-Cyrot (1995).

On the control design front, the effects of sampling on the underlying continuous-time system
properties came to the forefront of research. Indeed, having a mature body of knowledge on the
continuous-time framework, control and systems researchers were concerned with the following
question: “How to preserve the properties and structure of the continuous-time control system under
sampling ?”. In this respect, the seminal work by Åström et al. (1984) exposed the fundamental
difficulty relevant to our current endeavor. Put in simple terms, the sampled equivalent model
of a linear system of dimension n will always have n − 1 zeros irrespective of the number of the
zeros of the underlying continuous time process. This fact was shown to hold true even for the
more general zero dynamics of nonlinear systems by Monaco and Normand-Cyrot (1988). This in
turn implied that the relative degree, an important property of a control system used in the linear
feedback equivalence design, is modified by sampling. At this point, one in principle could classify
the research into the design paradigm of digital controllers into three distinct groups;

■ Design by emulation the increasing performances of computers, sensors and actuators ren-
dered the direct implementation of continuous-time controllers through emulation via a zero-
order-holding device more attractive in recent times. In this respect the digital control research
community focused on studying “bounds” on the sampling rate that preserves the continuous-
time design when emulated. Examples of these studies in recent times are the work by Nesic
et al. (2009), and the work addressing robustness to the sampling period by Mazenc et al.
(2013) among others.

■ Discrete-time design in which the feedback law is design working over typically approximate
discrete-time model of the plant disregarding its underlying continuous-time nature. How
close those approximate models evolution follow the continuous-time ones and conditions for
a controller designed through this approach to stabilize the sampled nonlinear system are the
main topics of research in this approach. Examples of recent works in this direction are those
of Nešić et al. (1999).

■ Sampled-data design where feedback laws are designed working over an exact or approxi-
mate discrete-time model of the plant obtained as a power series expansion in the sampling
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period, but also taking the underlying continuous-time nature of the process. The appeal
of this approach is the fact that controllers designed in this way almost always outperform
emulation so cheap sensors and actuators can be utilized by the engineer. In this approach,
Monaco and Normand-Cyrot have contributed significantly in enriching the available set of
tools for controller synthesis, examples of their works can be found in Monaco and Normand-
Cyrot (1983b), Monaco et al. (1986b), Monaco and Normand-Cyrot (1992), (Monaco and
Normand-Cyrot, 1997, Chapter 5) among others.

With the preceding discussion in mind, this thesis is contextualized in the sampled-data design
approach, and more specifically to designing sampled-data controllers preserving the properties of
the ideal continuous-time solution in inversion-based control problems.

As it is not possible to cover all inversion-based controllers we will limit our focus to two examples
of inversion-based controllers, Model predictive controllers, and Transverse feedback linearization
set stabilizing controllers. The pathologies linked to the stability of the zero dynamics in continuous-
time and the appearance of extra sampling zero dynamics that is typically unstable deteriorating
the performances of those controllers will be discussed, and solutions provided.

The choice to study these two controllers is self-explanatory, however a small discussion is
provided to further enforce this statement;

■ Model Predictive Control - MPC originally developed by process engineers Clarke et al.
(1987), is rapidly becoming the tool of choice for feedback design in almost all engineering
applications due to its ability to handle constrained Multi-Input Multi-Output systems Cama-
cho and Alba (2013), Boucher and Dumur (1996), Borrelli et al. (2017). When used to solve
stabilization and tracking problems, MPC solves a constrained optimization problem working
over a quadratic cost function penalizing the states or tracking error together with a penalty
on the control. This optimization problem is subject to a so-called prediction model of the
process, typically an approximate sampled-data model obtained via integration Bemporad
et al. (2010). It is because of this, and the fact that tracking MPC when no state constraints
are present and the penalty on the control is small enough falls under the inversion-based
control problems class, that MPC is a very interesting candidate for our investigations.

■ Transverse Feedback Linearization - TFL set stabilization (in the sense of Seibert (1969),
see also Shiriaev (2000)) using transverse feedback linearization first introduced by Banaszuk
and Hauser (1995) and later generalized by Nielsen and Maggiore (2008) relies on linear
feedback equivalence, thus requiring the cancellation of the zero dynamics. This control
technique, being a set stabilization as opposed to equilibria stabilization technique, finds
a wide array of applications in current and pertinent control problems in a natural way.
Examples include path fallowing for electro-mechanical systems Nielsen et al. (2010), Hladio
et al. (2012), Akhtar et al. (2015) and synchronization and formation keeping Doosthoseini
and Nielsen (2015a), to name a few.

This thesis hence contextualizes the effect of zero-dynamics cancellation on closed loop stability
for the two mentioned inversion-based control problems. In the sequel, explicit reference to the
contributions of this thesis, as well as the organization of the following chapters will be provided.
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Of note is that, while perhaps not comprehensive, this document is written to be as self-contained
and accessible as possible, and hence reference to tools and definitions will be made available when
required. This is further supported with an attempt to unify the style, nomenclature and notations
used throughout.

Outline and contributions of the thesis

In what follows, we describe the content of each part and chapter of this document. Details on
contributions made by this work, together with a brief description of the relevant state of the art
are made when appropriate.

Part I

Chapter 1 provides the basic notions and definitions needed concerning the zero dynamics and its link
to inversion-based control in continuous-time for both Single-Input Single-Output and Multi-Input
Multi-Ouput systems. Corresponding definitions for the discrete-time case are recalled briefly as
well. The emphasis is put into how the stability properties of the zero dynamics defines obstructions
when using inversion-based controllers.

Chapter 2 mirrors the discussion of the first chapter in the sampled-data context. Accordingly, the
second main obstruction to the direct digital design of inversion based controllers, the appearance
of extra unstable zero dynamics due to sampling is emphasized. An important tool mitigating this
pathology, multi-rate sampling, is formally recalled and examples are given.

Chapter 3 starts by recounting how one can mitigate the obstruction posed by unstable zero dynam-
ics when designing inversion based controllers in continuous-time. This is done by ensuring that the
cancelled dynamics is only a subdynamics of the zero dynamics, known to be stable apriori. This
very intuitive procedure of ensuring stable inversion via zero dynamics factorization was formalized
for a special class of Single-Input Single-Output nonlinear systems in a recent work of Mattioni
et al. (2017a). It was further used to solve some inversion-based control problems as for example
stabilization through linear feedback equivalence and disturbance decoupling with stability by the
same authors both in continuous-time and under sampling Mattioni et al. (2017a), Mattioni et al.
(2019).
It is in this chapter that a first contribution is given; an extension of the procedure of stable
inversion via zero dynamics factorization to the case of linear Multi-Input Multi-Output systems
in continuous-time. Additionally, the same procedure was then demonstrated to be profitable for
a special class of Multi-Input Multi-Output nonlinear continuous-time systems at least in a local
sense. Application to solving stabilization problems and disturbance decoupling are also detailed
in the results reported in Elobaid et al. (2020a). Similar technique were independently described in
the work by Kavaja et al. (2018) for designing feed-forward control laws for continuous-time linear
systems.
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Part II

Chapter 4 stresses the fact that model predictive control implies cancellation of the zero dynamics
under some conditions i.e. is an inversion-based control. This observation then allows the author
to make the second contribution of this work. Namely, using the tool of multi-rate sampling
discussed in Chapter 2 at the level of control design, it is shown that, under some conditions,
the MPC problem is greatly simplified while also providing existence, uniqueness and boundedness
guarantees for the feedback solving the problem.
This contribution stands in using a (possibly simplified) multi-rate sampled equivalent model of
the plant as a prediction model in the MPC problem formulation. The payback is that for an
originally minimum phase continuous-time plant in the cheap control setting of the problem, the
MPC feedback preserves internal stability. The price however is that by the nature of multi-rate,
at some sub-intervals of the sampling period, the control system works in open loop, with sensors
and actuators requiring asynchronous sampling frequencies. Another issue stands in the robustness,
or lack thereof, associated with multi-rate control. These particular downsides motivates the third
contribution made in this work. The example of systems admitting chained form is treated in
this chapter as a detailed case study so as to illustrate the benefits associated with this proposed
solution.

Chapter 5 improves upon the solution proposed in the previous chapter by relegating the use of a
multi-rate sampled equivalent model in MPC to the role of a trajectory planner. In this way a third
contribution is proposed stressing that by modifying the reference signals in the MPC problem
formulation, one can obtain (almost) the same benefits in terms of existence and boundedness while
mitigating the two issues raised.
Namely, working as a trajectory planner, the references are known to be admissible apriori in the
unconstrained case i.e. for which there exists bounded control achieving the control objective.
Additionally, the need for asynchronous sampler is transferred to the planner, and the actuation
and feedback sampling rates are left synchronous. Moreover, the feedback works over the smaller
intervals defining the multi-rate, thus the loop is closed at all sampling instants. Lastly, and
by exploiting some nominal robustness properties Allgöwer and Zheng (2012), working with this
approach is shown, through a detailed case study on the Planar Vertical Take-Off and Landing
- PVTOL aircraft to provide robustness to parameter uncertainties, additive perturbations and
sampling period increase as compared to control design methods in the literature.
The comparison to the solution presented in Chapter 4 is made explicit by treating the same example
of systems admitting chained forms in different situations. It is shown that the “enhancement”
afforded by this approach greatly motivate its use. The contribution calumniates in a planning and
control algorithm.

Chapter 6 presents a comprehensive case study for the use of multi-rate sampled equivalent models
as a trajectory planner in performing station-keeping by space-crafts on quasi Halo orbits in the
Earth-Moon system. The used multi-rate model is a simplified model obtained under an assumed
nonlinear regulation feedback.
The associated optimization problem is further assumed to be a constrained one, thus incorporating
the effect of the presence of box constraints on the controls (the thrusts in three directions) previously
neglected in the proposed algorithm.
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The contribution of this chapter is then twofold; on the one hand incorporating constraints and
a more realistic simulation model incorporating eccentricity perturbations and solar radiation pres-
sure allows to validate the algorithm proposed in Chapter 5 even in scenarios where no theoretical
guarantees for existences and boundedness were provided. On the other hand, comparisons to
several control techniques typically used in station keeping applications in terms of tracking perfor-
mance and energy expenditure provides promising conclusions. How to mitigate high computation
requirements are also briefly studied.
This chapter concludes by providing a summary of the contributions in Part II and a commentary
on the open questions, chief among which is the effect of the presence of state constraints in the
MPC problem on the guarantees obtained by the two solution methodologies.

Part III

Chapter 7 starts by recalling the well motivated and studied inversion-based control problem of
sets stabilization through transverse feedback linearization. This problem is well studied in the
continuous-time literature, but to the best of the author’s knowledge, no work was dedicated to this
problem by the digital control community.
Accordingly a fifth contribution is made in this chapter extending a previous result on the preser-
vation of the relative degree under single-rate sampling due to Barbot et al. (1996) to this setting.
The word “extending” is used loosely here, for the author means simply showing that the use of that
previous result (after the necessary algebaraic manipulations associated with dealing with Multi-
Input systems as compared to Single-Input systems) is fruitful in our context of set stabilization.
The result provided is constructive, it provides a coordinate change and feedback under single-rate
sampling preserving the zero-dynamics sub-manifold and the TFL structure, albeit in an approx-
imate sense. The computations are simple and stand in modifying the continuous-time functions
specifying the desired set to be stabilized and the control performances.
The chapter also further elaborates on the results reported in Elobaid et al. (2020c) by providing
details on how to achieve higher orders of approximation in an iterative way. Additionally a further
example than the ones treated in the cited paper is detailed to demonstrate the procedure and its
effectiveness.
Chapter 8 improves upon the provided solution in the previous chapter by discussing the existence
of an exact solution preserving TFL whenever a continuous-time one exits when using the tool of
multi-rate sampling. The computation of the exact solution maybe impossible as is usual in the
sampled-data design context and thus computations are carried over approximations obtained via
truncation of the power series expansion describing the exact solution.
An additional and final contribution is also made in this chapter, namely showing that a state
feedback solution may exist even when no continuous-time solution via TFL exists for some classes
of set stabilization problems. This claim is demonstrated for the problem of path following with
reference to the kinematic model of a car-like robot detailing and commenting on the results reported
by Elobaid et al. (2021).
Additionally, the chapter compares this solution with that obtained in chapter 7 illustrating its
superior performances. Note that both sampled-data solutions are shown to outperform emulation
based design. The Chapter concludes with a small unpublished case-study on the use of this so-
lution for periodic orbits stabilization of underactuated mechanical systems. The discussion not

Applications of sampled-data methodologies 10



only reports the detailed example, but the alert reader may gather the mechanics and more general
statements that can be made. At the end, as is usual, some commentary summarizing the contri-
butions made in this part and the still open questions most interesting of which is the application
to nested-sets stabilization under sampling.

Comments on style and writing

Before delving into the technical details proper, an important note on the overall “style” and struc-
ture needs to be clarified. This is a thesis collecting the results on several articles. However, since
the results are closely related treating an overarching single topic, this document is written with
emphasis on having a cohesive structure and a “story”.

Because of this, each chapter (apart from the first two) is written as a more accessible companion
contextualizing the results given in a specific article as well as some self-criticism and discussion
of open issues. By companion the author means providing additional commentary, examples and
details of computations (e.g. Chapters 3 — 5), or even more technical details and unpublished
examples and applications as is the case in Chapters 7 — 8. The article itself is then attached at
the end of the corresponding chapter for the interested reader apart from that corresponding to
Chapter 6 which is currently under review.

The reader is advised to read the chapters in a given Part in the order they appear, however it
is not necessary to read Part II before part III. What is important is that Part I should always be
tackled first. For those chapters corresponding to contributed articles, the reader may chose any
order i.e. reading the full chapter first and then take a look at the attached article, read both at the
same time moving from one to the other, read the article first, or omit reading the article altogether
for a more informal and high-level treatment of the subject.

Important definitions, problem statements and results recalled from the literature or contributed
by the author are all highlighted appropriately and color coded. In particular, every definition is
marked with a blue box, every Problem statement is marked with red, every result recalled from the
literature is marked in gray, and every result contributed by the author is marked in green. Some
abuse of nomenclature is also present where sometimes inversion-based and partial inversion-based
controllers are used interchangeably. The author thanks the reader for spending the time and hopes
that this document is both accessible and easy to read.
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Chapter 1

Background on zero dynamics in
continuous-time
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The purpose of this chapter is twofold. First; an overview of basic facts about the zeros of
linear systems and the zero dynamics in a nonlinear setting will be provided for both Single-

Input-Single-Output (SISO) systems and (square) Multi-Input-Multi-Output (MIMO) systems. In
particular we utilize the relative degree and normal forms to define the zero dynamics (and their zeros
counterpart in the linear context). Definitions of what it means for a system to be minimum phase,
non-minimum phase and partially minimum phase will be provided. Second; some preliminary
remarks on how cancellation of the zero dynamics, rendering it unobservable via feedback, faces
limitations when the zero dynamics is non-minimum phase. These last aspects will constitute the
motivations for the discussion in the following two chapters.

It is the hope of the author that this chapter provides a simple and concise starting point for
the reader, thus it will be very synthetic and brief in nature. The notions appearing hereinafter are
recalled from Isidori (1995), Isidori, Kailath (1980), Marro (1990), Mattioni et al. (2017a) and the
references therein.

1.1 The Single-Input Single-Output case

Our point of departure is a nonlinear control affine system of the form

ẋ = f(x) + g(x)u (1.1a)

y = h(x) (1.1b)

with the states x ∈ Rn, the control u is real analytic, and the output map h(x) : Rn → R and the
vector fields f(x), g(x) are smooth and real analytic. The following definition is instrumental;

13



1.1. The Single-Input Single-Output case

A SISO nonlinear system of the form (1.1a)-(1.1b) is said to have a well defined relative
degree r at a point x0 ∈ Rn if and only if

• LgL
ℓ
fh(x) = 0 on a neighbourhood of x0 for ℓ = 1, . . . , r − 2

• LgL
r−1
f h(x0) ̸= 0 at x0.

Definition: the relative degree of a SISO nonlinear system

Following (Isidori, 1995, Chapter 4) it results that if the above holds true, then there exists a
coordinates change defined in a neighbourhood of x0 of the form

z = ϕ1(x) =
(
h(x) Lfh(x) . . . Lr−1

f h(x)
)⊤

∈ Rr

η = ϕ2(x) ∈ Rn−r
(1.2)

with ϕ2(x) such that ϕ(x) is a diffeomorphism (a differentiable bijection with a differentiable inverse).
Moreover, in the SISO setting, it is always possible to find a special choice for the last n − r

coordinates η⋆ = ϕ⋆2(x) with Lgϕ⋆2(x) = 0. If this choice is made then the system takes the following
normal form

ż1 = z2

ż2 = z3

...

żr−1 = zr

żr = b(z, η⋆) + a(z, η⋆)u

η̇⋆ = q⋆(z, η⋆)

y = z1

(1.3)

where b(z, η) = Lrfh(x), a(z, η) = LgL
r−1
f h(x), q⋆(z, η⋆) = Lfϕ

⋆
2(x) all computed at x = ϕ−1(z, η).

For the normal form (1.3), consider the following state feedback law;

u = β(z, η⋆) + α(z, η⋆)ν =
−b(z, η⋆)
a(z, η⋆)

+
ν

a(z, η⋆)
(1.4)

where ν ∈ R an external control. The feedback system takes the form;

ż1 = z2

ż2 = z3

...

żr−1 = zr

żr = ν

η̇⋆ = q⋆(z, η⋆)

y = z1
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1.1. The Single-Input Single-Output case

This feedback makes the input-output link a chain of r integrators as depicted in the figure below
and renders the η⋆(t) sub-dynamics unobservable.

Figure 1.1: System structure under an inversion feedback and unobservability of the residual dynamics.

Roughly speaking an unobservable dynamics of dimension n − r appears under the feedback
(1.4). As a matter of fact such a feedback has the property of maximizing the unobservability
reducing the input-output link to a linear transfer function y(s) = 1

sr ν(s) and a suitable further
feedback actions can be used to get a closed loop;

GF (s) =
1

(1 + τs)r
τ ≈ 0

so realizing an “almost inversion” of the given system. In this sense q⋆(z, η⋆) represents the part
which must be cancelled to allow the output to follow the input (thus the terminology inversion
based controllers) Hirschorn (1979).

A related point of view stands in looking at the q⋆(z, η⋆) dynamics when ν = 0. It is readily verified
that if the initial condition on the integrators is zero, then the output is identically zero. The
following problem definition is instrumental: (Isidori, 1995, Chapter 4);

Consider a system of the form (1.1a)-(1.1b); Find the set of initial conditions and controls
(x(t0), u(t)) ∈ Rn × R such that the output y(t) is identically zero, for all t ≥ t0.

Problem: output zeroing

In the (z, η⋆) coordinates, and from the previous discussion it results that the set of initial
conditions solving the output zeroing problem are necessarily such that

z1(t0) = z2(t0) = . . . = zr(t0) = 0
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1.1. The Single-Input Single-Output case

and the feedback, starting from those initial conditions, is given by (1.4) when ν = 0, z = 0 i.e;

u⋆ = − b(0, η⋆)
a(0, η⋆)

(1.5)

where η⋆ is a solution to the differential equation defining the zero dynamics

η̇⋆ = q⋆(0, η⋆), η⋆(t0) = η◦⋆ (1.6)

This dynamic describes the motion on the zero dynamics submanifold;

Z⋆ = {(z, η⋆) ∈ Rn : z = 0} (1.7)

In the original x coordinates, the zero dynamics submanifold is characterized by;

Z⋆ = {x ∈ Rn : h(x) = Lfh(x) = . . . = Lr−1
f h(x) = 0} (1.8)

on this surface, the feedback (1.5) reads

u⋆ = −
Lrfh(x)

LgL
r−1
f h(x)

(1.9)

with the zero dynamics describing the motion on Z⋆ being;

ẋ = f⋆(x)|Z⋆

=
[
f(x)− g(x)

Lrfh(x(t))

LgL
r−1
f h(x(t))

]
|Z⋆

with this in place, we can recall the following solution to the output zeroing problem;

The solution to the output zeroing problem is given by the set of initial conditions char-
acterized by (1.8) together with the feedback (1.9). Moreover, the restriction of the
controlled dynamics under the feedback (1.9) to the submanifold Z⋆ namely f⋆(x)|Z⋆ is
called the zero dynamics vector field of the system, and Z⋆ its corresponding zero dynam-
ics submanifold.

Zero dynamics in continuous-time

In a linear setting, given a state space realization of the form;

ẋ = Ax+ bu (1.10a)

y = cx (1.10b)

with the triplet A ∈ Rn×n and b, c⊤ ∈ Rn, the relative degree is defined as the smallest integer r
for which cAℓb = 0 for all ℓ = 0, . . . , r − 2 and cAr−1b ̸= 0. If the relative degree is defined then a
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1.1. The Single-Input Single-Output case

suitable choice for the coordinates defining the normal form can be

z =
(
cx cAx . . . cAr−1x

)⊤

η⋆ =
(
x1 x2 . . . xn−r

)⊤

one has that in these coordinates the system takes the form

ż1 = z2

ż2 = z3

...

żr−1 = zr

żr = Rz + Sη⋆ + au

η̇⋆ = P⋆z +Q⋆η⋆

y = z1

(1.11)

with R,S row vectors of suitable dimension, a = cAr−1b ̸= 0 and P⋆, Q⋆ square matrices of
dimension n− r. In this setting, the state feedback (1.4) reduces to

u =
−Rz − Sη⋆

a
+
ν

a
(1.12)

Under this feedback the input-output link reduces again to a chain of r integrators, equivalently;

y(s) =
1

sr
ν(s) (1.13)

and the η⋆ sub-dynamics is rendered unobservable. We turn our attention to the output zeroing
problem now, and note that it is evident in the (z, η⋆) coordinates, and from (1.11), the set of initial
conditions solving the problem coincide with the set z1(t0) = . . . = zr(t0) = 0 characterizing the
subspace

Z⋆ = {(z, η⋆) : z = 0}

on which the feedback solution coincides with (1.12) when z = 0, ν = 0, namely;

u⋆ =
−Sη⋆
a

(1.14)

In these coordinates the zero dynamics are characterized by the cancelled dynamics

η̇⋆ = Q⋆η⋆, η⋆(t0) = η◦⋆ (1.15)

and the zeros of the system are precisely the eigenvalues of the matrix Q⋆. In the original x
coordinates of the system, the initial conditions solving the problem are the ones characterized by
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1.1. The Single-Input Single-Output case

the subspace;

Z⋆ = ker




c

cA
...

cAr−1




on this subspace, the feedback (1.14) reads

u⋆ =
−cArx
cAr−1b

and the zero dynamics, motion on Z⋆, is

ẋ = (A+ bu⋆)|Z⋆ =
[
Ax− b cAr

cAr−1b
x
]
|Z⋆

wherein the zeros are characterized by σ((A+ bu⋆)|Z⋆) = σ(Q⋆) ◀

If we now recall that regular state feedback does not modify reachability and that it modifies
eigenvalues but not the zeros, we understand that the unobservability of the feedback system results
from the assignment of eigenvalues to the zeros, i.e. pole-zero cancellations. Indeed, for a linear
system with a transfer function G(s) = n(s)

d(s) , the feedback (1.12) corresponds to pole-zero cancella-
tion of all the zeros of the transfer function i.e. this feedback is the one assigning the closed loop
eigenvalues to roots of the polynomial d⋆(s) = srn(s) so getting a closed loop;

GF (s) =
n(s)

srn(s)
=

1

sr

This fact puts in light that the unobservability generated under (1.12) cancelling all the zeros
is the maximal which can be obtained.

Remark 1.1 note that the arguments presented concerning cancellation of the zeros via state feed-
back for a linear SISO system put in light also the possibility of partially cancelling the zeros; i.e.
generating unobservability of smaller dimension. This is due to the possibility of factorization of
the numerator of a transfer function. More in detail, let the numerator polynomial of a transfer
function G(s) admit a maximal factorization n(s) = n1(s)n2(s). A feedback assigning a subset of
the poles of the closed loop system to the roots of the polynomial n1(s) achieves cancellation of only
the subset of the zeros coincident with roots of the polynomial n1(s). This later aspect does not
appear to be as evident in the nonlinear context, and will be revisited again in Chapter 3.

The same arguments discussed above can be precisely characterized making use of geometric ob-
jects; the so-called controlled and conditioned invariant subspaces introduced by Basile and Marro
Basile and Marro (1969) and later used to solve tracking and disturbance decoupling problems by
Wonham and Morse Wonham and Morse (1970). This geometric formalism, not herein recalled
for brevity, is very attractive since it lends itself seamlessly to extending the notions of maximiz-
ing unobservability via state feedback to the nonlinear control affine setting making use of the
corresponding so-called controlled invariant distributions, at least in a local sense (Isidori, 1995,
Chapter 2).
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1.2. The Multi-Input Multi-Output case

As a result of these observations, inversion-based state feedback laws that cancel (in the sense
of rendering unobservable) the zero dynamics (equivalently, perform pole-zero cancellations in the
linear setting) in order to force the output to follow the input has to face with limitations pertaining
to the stability properties of the cancelled dynamics.

Those limitations are at the core of this work in continuous-time and specially in a digital context
as we will see in later chapters.

However before discussing possible methods for mitigating those limitations, we need to formally
recall an important classification of control systems based on the stability properties of the zero
dynamics. This classification exposes in a concise manner the main limitations in direct control
design methods that utilize inversion. To this end, recall the following;

Let f⋆(x)|Z⋆ of dimension n − r be the zero dynamics vector field associated with the
system (1.1a),(1.1b) and let x⋆ = 0 be a regular point for the zero dynamics algorithm
and s.t. f⋆(0) = 0, then

• the system is minimum phase if x⋆ = 0 is an asymptotically stable equilibrium of
the zero dynamics; that is over Z⋆

– ∀ϵ > 0, ∃δϵ > 0 : ∥x(t0)− x⋆∥ ≤ δϵ =⇒ ∥x(t)− x⋆∥ ≤ ϵ ∀t ≥ t0
– ∃Br = {x ∈ Rn : ∥x∥ < r} : limt→∞ ∥x(t)− x⋆∥ = 0 =⇒ ∀x(t0) ∈ Br

• the system is non-minimum phase if x⋆ = 0 is an unstable equilibrium of the zero
dynamics.

Definition: minimum and non-minimum phase systems

Remark 1.2 as can be clearly seen, in the linear context, the above definition of minimum and
non-minimum phase systems reduces to the property that the eigenvalues of the matrix Q⋆ in (1.15)
lying in the open left half and right half of the complex plane respectively.

1.2 The Multi-Input Multi-Output case

Similar arguments to the ones presented previously can be made for the square MIMO nonlinear
system of the form

ẋ = f(x) +
m∑

i=1

gi(x)ui (1.16a)

yi = hi(x), i = 1, . . .m (1.16b)

in which each output map hi(x) : Rn → R smooth functions. The vector fields f(x), g1(x), . . . , gm(x)
are assumed smooth. To start, an equivalent definition of the relative degree in this setting is recalled
(Isidori, 1995, Chapter 5);
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1.2. The Multi-Input Multi-Output case

System (1.16a),(1.16b) is said to have a well defined vector relative degree r = (r1 . . . rm)

at a point x0 if and only if for ℓ = 1, . . . , ri − 2, i, j = 1, . . . ,m;

• LgjL
ℓ
fhi(x) = 0 while LgjL

ri−1
f hi(x) ̸= 0 for some j at x0.

• the m×m decoupling matrix

D(x) =




Lg1L
r1−1
f h1(x) . . . LgmL

r1−1
f h1(x)

. . .

Lg1L
rm−1
f hm(x) . . . LgmL

rm−1
f hm(x)


 (1.17)

is full rank in a neighbourhood of x0.

Definition: the vector relative degree of MIMO nonlinear systems

If the above definition holds, then necessarily r1+r2+. . .+rm ≤ n and there exists a coordinates
change defined in a neighbourhood of x0 mapping x 7→ (z1 . . . zm η)⊤ of the form;

z1 = ϕ1(x) =
(
h1(x) Lfh1(x) . . . Lr1−1

f h1(x)
)⊤

∈ Rr1

...

zm = ϕm(x) =
(
hm(x) Lfhm(x) . . . Lrm−1

f hm(x)
)⊤

∈ Rrm

η = ϕm+1(x) ∈ Rn−d

(1.18)

with d =
∑m

i=1 ri. If the vector fields g1(x), . . . , gm(x) are involutive1, then it is possible to choose
the last n− d coordinates in a special way η⋆ = ϕ⋆(x) such that Lgiϕ⋆ = 0, i = 1, . . . ,m. If this is
the case, and letting zi,j be the jth component of the state vector zi ∈ Rri , the system in the new
coordinates reads;

ż1,1 = z1,2

ż1,2 = z1,3

...

ż1,r1−1 = z1,r1

ż1,r1 = b1(z, η⋆) + a1(z, η⋆)u

...

żm,1 = zm,2

żm,2 = zm,3

...

(1.19)

1meaning the Lie bracket of any pair in the set is not independent from the set (at a given point).
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...

żm,rm−1 = zm,rm

żm,rm = bm(z, η⋆) + am(z, η⋆)u

η̇⋆ = q⋆(z, η⋆)

y1 = z1,1 . . . ym = zm,1

where for i = 1, . . . ,m we have bi(z, η⋆) = Lrif hi(x), q⋆(z, η⋆) = Lfϕ⋆(x) and

ai(z, η) =
(
Lg1L

ri−1
f hi(x) . . . LgmL

ri−1
f hi(x)

)
(1.20)

all computed at x = ϕ−1(z1, . . . , zm, η⋆). Consider now a state feedback of the form;

u = β(z, η⋆) + α(z, η⋆)ν

= −



a1(z, η⋆)

. . .

am(z, η⋆)




−1

b1(z, η⋆)

. . .

bm(z, η⋆)


+



a1(z, η⋆)

. . .

am(z, η⋆)




−1

ν1

. . .

νm




(1.21)

This feedback maximizes unobservability and renders the input-output behaviour of the closed loop
to be linear with a transfer function representation;



y1(s)

. . .

ym(s)


 =




1
sr1 . . . 0

. . .

0 . . . 1
srm






ν1(s)

. . .

νm(s)




and the residual dynamics of dimension n− d described by;

η̇⋆ = q⋆(z, η⋆)

As we would expect from the discussion in the previous section, and returning to the output
zeroing problem in this setting we again note that the set of states solving the problem are essentially
such that zi,j(t0) = 0 ∀i = 1, . . . ,m, j = 1, . . . , ri. Moreover, the feedback solving the problem
starting from those initial conditions is given by (1.21) when ν = 0, z1 = . . . = zm = 0, i.e. ;

u⋆ = −



a1(0, η⋆)

. . .

am(0, η⋆)




−1

b1(0, η⋆)

. . .

bm(0, η⋆)


 (1.22)

and the zero dynamics is described by

η̇⋆ = q(0, η⋆), η⋆(t0) = η◦⋆ (1.23)

coincident with the restriction of the feedback system to the zero dynamics submanifold defined as

Z⋆ = {(z, η⋆) : z1,1 = z1,2 = . . . = z1,r1 = . . . = zm,1 = zm,2 = . . . = zm,rm = 0} (1.24)

Applications of sampled-data methodologies 21



1.2. The Multi-Input Multi-Output case

In the original x coordinates of the system, the zero dynamics submanifold reads;

Z⋆ = {x ∈ Rn :

h1(x) = Lfh1(x) = . . . = Lr1−1
f h1(x) = . . . = hm(x) = Lfhm(x) = . . . = Lrm−1

f hm(x) = 0}

over which the feedback solving the problem is;

u⋆ = −D−1(x)



Lr1f h1(x)

. . .

Lrmf hm(x)




and the zero dynamics, motion on Z⋆ takes the form;

ẋ = f⋆(x)|Z⋆ =
[
f(x) +

m∑

i=1

gi(x)u
⋆
i (x)

]
|Z⋆

In the linear context, and for simplicity considering the case where m = 2 i.e. ;

ẋ = Ax+ b1u1 + b2u2 (1.25a)

y1 = c1x, y2 = c2x (1.25b)

we have that the integers ri are the smallest integers such that ciAℓbj = 0, j = 1, 2 and ciAri−1bj ̸= 0

for some j. Accordingly the decoupling matrix reads

D =

(
c1A

r1−1b1 c1A
r1−1b2

c2A
r2−1b1 c2A

r2−1b2

)

If the relative degree is defined then a suitable coordinates change x 7→ (z1 z2 η)
⊤ is

z1 = T1x =
(
c1x c1Ax . . . c1A

r1−1x
)⊤

z2 = T2x =
(
c2x c2Ax . . . c2A

r2−1x
)⊤

η = T3x

if in addition T3 : T3bi = 0 i = 1, 2 one has for the last n − d coordinates the choice η⋆ and the
normal form is;

ż1,1 = z1,2

ż1,2 = z1,3

...

ż1,r1−1 = z1,r1

ż1,r1 = R1z + S1η⋆ + a1,1u1 + a1,2u2

...
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ż2,1 = z2,2

ż2,2 = z2,3

...

ż2,r2−1 = z2,r2

ż2,r2 = R2z + S2η⋆ + a2,1u1 + a2,2u2

η̇⋆ = Pz +Q⋆η⋆

y1 = z1,1, y2 = z2,1

where for i, j = 1, 2 ai,j being the [i, j] element of the decoupling matrix, Ri, Si row vectors of
suitable dimension and P, Q⋆ square matrices of dimension n − r1 − r2. In this setting, the state
feedback (1.21) that maximizes unobservability reduces to

u = D−1ν −D−1

(
R1z + S1η⋆

R2z + S2η⋆

)
(1.26)

under which the input-output link becomes

yi(s) =
1

sri
νi(s), i = 1, 2

Finally, and mirroring the previous section, when the output is constrained to remain identically
zero setting ν = 0, z1 = z2 = 0, the unobservable dynamics reduce to the zero dynamics;

η̇⋆ = Q⋆η⋆, η⋆(t0) = η◦⋆ (1.27)

and the zeros of the system coincide with the eigenvalues of the matrix Q⋆. Moreover, the feedback
(1.26) with ν = 0, z = 0 is the one cancelling all the zeros.

Remark 1.3 the matrix transfer function corresponding to (1.25a),(1.25b) takes the form

G(s) = C(sI −A)−1B =

det

(
sI −A −B
C 0

)

det(sI −A)

for C = (c⊤1 c⊤2 )
⊤, B = (b1 b2) because of the definition of the determinant of a partitioned matrix.

The matrix in the numerator is commonly referred to as the (Rosenbrock) system matrix Rosenbrock
(1967), and the roots of it’s determinant polynomial coincide with the zeros of the system. If
the linear system is minimal and square, those modes not only coincide with σ(Q⋆) in (1.27),
but also with the Smith McMillan zeros of the matrix transfer function associated with the system
Skogestad and Postlethwaite (2007). The Smith McMillan form and other corresponding aspects will
be revisited again in detail in Chapter 3.

Remark 1.4 for a non-square control system with more inputs than outputs the same definition
for the relative degree applies with the non-square decoupling matrix required to be full row rank.
However, in this case the arguments concerning the geometric characterization of the zero dynamics
sub-manifold ( the zero dynamics subspace and the Smith McMillan zeros in the linear setting ),
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do not carry over and more sophisticated machinery are needed; at that point one speaks of right
invertibility as the discussion in Chapter 3 highlights. See also for example Silverman (1969);
Hirschorn (1979); Basile and Marro (1992).

Remark 1.5 if the system lacks vector relative degree, one can still define the zero dynamics uti-
lizing the so-called generalized normal forms obtained via Singh’s structure algorithm Singh (1981)
(see also (Isidori, Chapter 9)). These aspects will be revisited in a linear setting when we discuss
stable inversion in continuous-time at a later point in this work.

1.3 Inversion based control and the zero dynamics

As already hinted at, inversion based control is ubiquitous and not only used to force the output to
track a given input arbitrarily fast, but in other applications as well, e.g. disturbance decoupling.

Clearly under inversion based feedback laws the stability properties of the residual dynamics
is paramount. In this sense, a non-minimum phase zero dynamics presents an obstruction, in
continuous-time, to the utilization of such direct inversion based control methods.

A possible workaround in continuous-time is to design the feedback law in such a way as to render
unobservable only a sub-dynamics of the zero dynamics known to be minimum phase apriori. This
is typically done via partial cancellation through output redefinition; finding a new dummy output
function with respect to which the system has only the minimum phase component as the zero
dynamics and designing the control laws based on this new dummy output under some technical
assumptions (Isidori, 1995, Chapter 4).

As maybe clear to the reader, for a SISO linear system with a transfer function G(s) = n1(s)n2(s)
d(s)

and let r1 = deg(n1(s)), a feedback assigning the poles of the closed loop to the roots of the
polynomial p⋆(s) = sr1n1(s) achieves cancellation of only the subset of the zeros coincident with
roots of the polynomial n1(s). This methodology can be directly translated to the linear state
space context and, in a local sense using the Linear Tangent Model LTM at a given point x0,
to a special class of nonlinear control affine SISO systems Mattioni et al. (2017a, 2019). In fact,
if the minimum phase component of the zeros polynomial of the transfer function is of the form
n1(s) = b10 + b11s + . . . + b1m1

sm1 then the system (at least locally under a suitable coordinates
change) will have the zero dynamics coinciding with n1(s) with respect to the output ỹ = c̃ x with
c̃ =

(
b10 . . . b1m1

0 . . . 0
)
.

A more elegant and easier to generalize method for partial cancellation utilizing directly the
normal form of linear SISO systems (equivalently the normal form of the LTM of a nonlinear SISO
system at a point) can be hypothesized;

Claim 1.1 let TQ : Rn−r → Rn−r be the transformation putting the matrix Q⋆ in (1.15) in Jordan
form such that Q⋆ = diag(Q1

⋆, Q
2
⋆). Assume that one is interested in finding a dummy output with

respect to which the zero dynamics is described by η2⋆ = Q2
⋆η

2
⋆. Defining r2 = n − dim(Q2

⋆), an
iterative procedure can then be applied in the new coordinates obtaining an output ỹ = c̃η2⋆; linear
combination of the states η2⋆ and the original output, having a relative degree r2 and with respect to
which Q2 characterize the zeros of the system. If σ(Q2

⋆) ⊂ C− then the system is minimum phase
with respect to ỹ. ◀
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Following from the discussion presented in Section 1.1 and the above remarks for SISO systems,
the obstruction caused by the zero dynamics (equivalently the zeros) of a square MIMO system for
direct controller synthesis via inversion could be mitigated utilizing partial cancellation techniques.
In a linear square LTI MIMO setting this could be done in the matrix transfer function context
directly extending the previous comments. In fact, the Smith McMillan form of a given matrix
transfer function being diagonal lends itself to a so called partial matrix fraction description (Kailath,
1980, Chapter 6). As a result, one can write the transfer function matrix as G(s) = N1(s)G̃(s) in
which N1(s) contains only a subset of the zeros and G̃(s) proper (possibly after introducing a so-
called right divisor Kailath (1980)) containing the remaining zeros and all the poles of the system.
As a byproduct, if G̃(s) is minimum phase, one has obtained a dummy output with respect to
which direct controller synthesis design via inversion preserves stability. In state space setting, and
let ỹ(s) = C̃x be the output associated with the minimal state space realization of G̃(s), then the
original system, after suitable coordinates transformations, will be minimum phase with respect to
this dummy output ỹ.

These techniques, as the reader may surmise, will carry over seamlessly to nonlinear square
MIMO systems with a linear output map locally using the LTM. Additionally, direct output redef-
inition for partial zero dynamics cancellation via the normal form (as stated in Claim 1.1) will be
shown, via an example, to work on a nonlinear square MIMO system in a local sense.

1.4 Concluding remarks

A few final comments to close this chapter are in order;

■ When the zeros and zero dynamics are non minimum phase (more precisely when the residual
dynamics under feedback is unstable) they pose limitations to inversion based control design.

■ A possible way to mitigate those limitations is partial zero dynamics cancellation and output
redefinition.

■ In a digital context, this workaround is not enough on it’s own as will be seen in the sequel
and additional sampled-data methodologies are needed detailed in the next chapter.

It is important to note that this chapter, while introducing most of the necessary definitions
needed for our work, is not a complete treatment of the structure of zero dynamics in continuous-
time.

In fact, in the linear context, arguments pertaining to the frequency domain analysis of the
zeros Bode et al. (1945), Monaco (2020), the zeros of non-square LTI MIMO systems Marro (1990),
and the zeros at infinity (Kailath, 1980, Chapter 4) were not covered and the interested reader is
referred to those references for more comprehensive study.

Concerning the non-linear setting, treatment of non-square MIMO systems Hirschorn (1979),
the zero dynamics algorithm for systems lacking vector relative degree (Isidori, Chapter 9), MIMO
systems in discrete time Califano et al. (1999), Aranda-Bricaire et al. (1996), Monaco and Normand-
Cyrot (1983b) are omitted for brevity and the interested reader is advised to refer to the cited
references.
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Chapter 2

Background on zero dynamics under
sampling
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In this chapter, we will mirror the discussion in the previous chapter in the sampled-data context
i.e when the control and sensing of a continuous-time system are implemented at discrete time

instants. More in detail, this chapter will attempt to:

• give an overview of basic facts about Single-Rate sampling (SR) of a continuous-time system
both in SISO and MIMO contexts. The effects of sampling on the structure of the resulting
sampled-data equivalent system will be discussed in details. Focus will be on aspects related
to the so-called sampling zero dynamics and loss of relative degree with some examples.

• recall a powerful tool that mitigates the issues pertaining to the loss of the relative degree
and the appearance of sampling zero dynamics, namely multi-rate sampling. In this sense,
multi-rate sampling allows one to overcome the limitations imposed on inversion based control
in a digital context. This fact is at the basis of the results obtained in later chapters of this
work.

This chapter will define the notation, nomenclature and the mechanics of the discussions related
to sampling in the rest of the thesis. It is also intended as a motivating chapter for some of the
problems addressed in this work. The notions appearing hereinafter are recalled from Monaco
(2020), Franklin et al. (1998), Monaco and Normand-Cyrot (1985), Åström et al. (1984), Monaco
et al. (1986b), Monaco and Normand-Cyrot (1992), Monaco and Normand-Cyrot (1997), and Yuz
and Goodwin (2005a).

Before proceeding to present formal definitions and comments on sampled-data equivalent mod-
els and the loss of control properties under sampling, we start with an example.
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2.1. The discrete-time case

Example 2.1 consider a simple triple integrator in continuous-time

G(s) =
1

s3

which has relative degree r = 3 and no zeros. Given a desired reference yr, one can find a state
feedback such that the output-reference transfer function y(t)− yr(t) is almost unity. This is done
in the following manner, looking at the triple integrator;

ż1 = z2

ż2 = z3

ż3 = u

y = z1

and using the feedback

u =
ν

cA2b
−
�
�
�cA3z

cA2b
= ν = F (z − zr)

with zr = (yr ẏr ÿr)
⊤, (A, b, c) are the Brunovsky’s triplet of dimension 3 Brunovskỳ (1970).

Choosing F placing the poles of the closed loop at {− 1
τ , − 1

τ , − 1
τ }, τ ≈ 0, small enough, one can

get a sort of inversion via feedback because y(s)
yr(s)

= 1
(1+τs)3

≈ 1.
However if we want to implement a digital control of the same type designed working over the

sampled model we face a limitation. In fact the triple integrator zero-order-holding pulse transfer
function (Franklin et al., 1998, Chapter 4) reads;

H(z) =
δ3(z2 + 4z + 1)

6(z − 1)3

with δ > 0 sampling period. This pulse transfer function has two new zeros, the so-called sampling
zeros being z⋆d = {−

√
3 − 2,

√
3 − 2} the former of which is non-minimum phase (outside the

unit disk), and thus the excess of poles over zeros under sampling falls to rd = 1. Consequently,
following the same logic as in continuous-time of designing a feedback that renders the y(k)− yr(k)
link (almost) unity which requires zeros cancellation results in placing the closed loop poles in
{−
√
3− 2,

√
3− 2, ⋆} leading to closed-loop instability.

This examples emphasizes that under sampling extra zeros appear that are typically non-
minimum phase. This fact poses an obstruction to inversion-based control design working over
the sampled model irrespective of minimum phaseness of the underlying continuous-time system.
These aspects and methods to mitigate these issues are the subject of this chapter.

2.1 The discrete-time case

In the purely discrete-time context the definitions and arguments presented for the relative degree,
normal forms and zero dynamics in continuous-time, can be developed along the same lines in
the linear case. Difficulties arise in nonlinear context not only from a computations point of view
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Monaco and Normand-Cyrot (1997). Let us recall the definition of relative degree in discrete time
Monaco and Normand-Cyrot (1983a);

Consider the discrete-time (DT) SISO system described by the difference equation

x(k + 1) = F (x(k), u(k))

y(k) = h(x(k))

with x ∈ Rn, u, y ∈ R. Denote by F j0 (x) = F0(·) ◦ F0(·) ◦ . . . ◦ F0(x) the j−times
composition with F0(x) = F (x, 0). The discrete relative degree rd is the smallest integer
satisfying

∂h ◦ F ℓ0 ◦ F (x, u)
∂u

=0, ℓ = 0 . . . rd − 2

∂h ◦ F ℓ0 ◦ F (x, u)
∂u

̸=0, ℓ = rd − 1.

Definition: relative degree in DT

In words, the discrete relative degree is the number of delays in time-steps for the input to
influence the output. If this is the case it results that a coordinates change of the form

z = ϕ1(x) =
(
h(x) h ◦ F (x, u) . . . h ◦ F rd−1

0 ◦ F (x, u)
)⊤

∈ Rrd

η = ϕ2(x) ∈ Rn−rd
(2.1)

with ϕ2(x) completing the coordinates change allow the system to take the discrete normal form

z1(k + 1) = z2(k)

z2(k + 1) = z3(k)

...

zrd−1(k + 1) = zrd(k)

zrd(k + 1) = Fz(z(k), η(k), u(k))

η(k + 1) = q(z(k), η(k), u(k))

y(k) = z1(k)

(2.2)

where Fz(z, η, u) = h ◦F (x, u) ◦ . . . ◦F (x, u) for rd times and q(z, η, u) = ϕ2 ◦F (x, u) all computed
at x = ϕ−1(z, η). This normal form highlights two difficulties;

■ the nonlinear dependence of the map q(z, η, u) on the states and control. It is not obvious if
one can always find coordinates η⋆ such that the η dynamics is independent of the control

■ more importantly, the map Fz(z, η, u) highlights the difficulty of designing an output zeroing
feedback and defining the zero dynamics as done in the continuous-time case.
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Remark 2.1 for a linear system described by

x(k + 1) = Adx(k) + bdu(k)

y(k) = cdx(k)

with x(k) ∈ Rn and u(k), y(k) ∈ R, it can be easily verified that one recovers for the discrete relative
degree the usual identities

cdA
ℓ
dbd = 0, ℓ = 1, . . . , rd − 1, cdA

rd−1
d bd ̸= 0

and the same arguments for the normal form apply. Additionally, notions of minimum phase and
non-minimum phase zeros are well defined with reference to stability in discrete time Monaco (2020).

On linear equivalence and partial inversion in discrete-time

Following Monaco and Normand-Cyrot (1987), if the discrete-time relative degree is well defined,
(2.2) rewrites;

z1(k + 1) = z2(k)

z2(k + 1) = z3(k)

...

zrd−1(k + 1) = zrd(k)

zrd(k + 1) = h ◦ F rd0 ◦ F (x, u) = h ◦ F rd0 (x(k)) + S(x(k), u(k))

η(k + 1) = q(z(k), η(k), u(k))

y(k) = z1(k)

where

S(·, 0) = 0,
∂S(·, u)
∂u

̸= 0

Consequently, one can find a control u = γd(x, ν) of the form

γd(x(k), ν(k)) = S−1(x(k), ν(k))− h ◦ F rd0 (x(k)) (2.3)

under which the discrete-time normal form reads;

z1(k + 1) = z2(k)

z2(k + 1) = z3(k)

...

zrd−1(k + 1) = zrd(k)

zrd(k + 1) = ν(k)

η(k + 1) = q(z(k), η(k), γd(x(k), ν(k)))

y(k) = z1(k)
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It is clear that this control mirrors the “partial inversion” control in continuous-time treated in
Section 1.1 and under which the η(k+ 1) dynamics is unobservable. If in addition one restricts the
output and its prediction for rd steps to be precisely zero by suitably choosing ν(k) and the initial
conditions z(0), one mirrors the definition of zero dynamics in continuous-time in this setting.

The Multi-Input Multi-Output discrete-time case

In the square MIMO setting, things become much more involved Monaco and Normand-Cyrot
(1983b), Califano et al. (1999), and so we will limit our discussion to defining the discrete vector
relative degree. Detailed aspects pertaining to normal forms and zero dynamics properties in this
case will be ommitted since they are not needed for the developments in this work. To this purpose,
consider a discrete-time square MIMO system of the form;

x(k + 1) = F (x(k), u1(k), . . . , um(k))

y(k) =
(
h1(x(k)) . . . hm(x(k))

)⊤

with x ∈ Rn, ui, yi ∈ R for i = 1, . . . ,m. Recall the following definition Califano et al. (1999);

The DT square MIMO system has a well defined discrete vector relative degree rd =

(rd,1 . . . rd,m) at a point x0 if and only if

• For each rdi , i = 1, . . . ,m;

∂hi ◦ F ℓ0 ◦ F (x, u)
∂u

=0, ℓ = 0 . . . rdi − 2,
∂hi ◦ F

rdi−1

0 ◦ F (x, u)
∂u

̸= 0

• the following matrix is full rank at x0;

D =




∂h1◦F
rd,1−1

0 ◦F (x,u)
∂u1

. . .
∂h1◦F

rd,1−1

0 ◦F (x,u)
∂um

. . .
∂hm◦F rd,m−1

0 ◦F (x,u)
∂u1

. . .
∂hm◦F rd,m−1

0 ◦F (x,u)
∂um


 |u=0 (2.4)

Definition: vector relative degree in DT

The same arguments concerning a linearizing and “inverting feedback” can be carried in this
case as well and the interested reader is referred to Califano et al. (1999).

2.2 The sampled-data Single-Input Single-Output case

Motivated by the above fact, we now turn to a more general and formal discussion of sampling and
its effects on the structure of the control system. How sampling induces further obstructions on
inversion based control in addition to the ones in continuous-time will be discussed as well, and a
multi-rate sampling scheme to mitigate this issue is highlighted. To this end, let the continuous-
time SISO system of the form (1.1a)-(1.1b) assumed having a well defined continuous-time relative
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degree r (see Section 1.1). By Single-Rate (SR) sampling, typically resulting from the use of a
holding device and a sampler, we mean the following;

• the control is piecewise constant over time intervals of length δ > 0 ∈ R called the sampling
period, namely for k ∈ Z+; u(t) = u(k), ∀t ∈ [kδ, (k + 1)δ[

• measures of the states (outputs) are available only at the sampling instants, i.e. x(t) =

x(kδ), y(t) = y(kδ) at the sampling instant.

Accordingly, the SR sampled-data system equivalent to (1.1a)-(1.1b) at the sampling instants is

x(k + 1) = F δ(x(k), u(k)) (2.5a)

y(k) = h(x(k)) (2.5b)

The map F δ(x, u) is obtained by integrating the continuous time dynamics (1.1a) under the
piecewise constant control at t = kδ over the period t ∈ [kδ, (k+1)δ[, which admits a formal Taylor
expansion parametrized by δ, i.e.

F δ(x(k), u(k)) = x(k) +

∫ (k+1)δ

kδ

(
f(x(τ)) + g(x(τ))u(k)

)
dτ

= eδ(Lf+u(k)Lg)x(k) = x(k) +
∑

i>0

δi

i!
(Lf + u(k)Lg)

ix(k)

(2.6)

with this in mind, we have the following definition;

Consider the continuous-time input affine SISO system (1.1a)-(1.1b), then there exists
T ⋆ > 0 small enough such that ∀δ ∈ [0, T ⋆[ the exponential (2.6) converges. If this is the
case then (2.5a)-(2.5b) is called the SR sampled-data equivalent model.

Definition: SR sampled equivalent model

Remark 2.2 in the case of LTI systems of the form (1.10a),(1.10b), the SR equivalent model
(2.5a),(2.5b) reduces to

x(k + 1) = Aδx(k) + bδu(k)

y(k) = cx(k)
(2.7)

where

Aδ = eδA, bδ =

∫ δ

0
eτAb dτ (2.8)

Noting that (2.6) is an infinite series expansion in powers of δ; the question of existence of a
closed form solution and other practical limitations requires one to consider approximations. In
this sense, consider truncations of (2.6) up to a given power p ≥ 1 in δ, namely (dropping the time
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argument for simplicity)

F δ(x(k), u(k)) = x(k) +

p∑

i=1

δi

i!
(Lf + u(k)Lg)

ix+O(δp+1) = F δ[p](x(k), u(k)) +O(δp+1) (2.9)

this approximation then defines the following property;

Consider the continuous-time input affine SISO system (1.1a)-(1.1b), then there exists
T ⋆ > 0 small enough such that ∀δ ∈ [0, T ⋆[ the exponential (2.6) converges. Accordingly,
for any p ≥ 1

∥F δ(x(k), u(k))− F δ[p](x(k), u(k))∥ ≤ O(δp+1)

for all k where F δ[p](x, u) as in (2.9) is called the Approximate SR (ASR) sampled-data
equivalent dynamics at the order p.

Definition: ASR sampled equivalent model

Remark 2.3 it is clear from (2.7) that in the linear context, the SR sampled equivalent model is
exactly computable.

Applying the definition of the discrete-time relative degree in Section 2.1 to the SR sampled
equivalent system (2.5a)-(2.5b), using the expansion (2.6), we recall the following Lemma Monaco
and Normand-Cyrot (1997);

Consider a continuous-time SISO system with a well defined relative degree r, and let
(2.5a)-(2.5b) be it’s SR sampled equivalent model, then the discrete relative degree of the
SR sampled equivalent model always falls to rd = 1; namely for all x(k),

∂y(k + 1)

∂u(k)
=
δr

r!
LgL

r
fh(x)

∣∣
x(k)

+O(δr+1) ̸= 0.

As a consequence, whenever in continuous-time r > 1, the sampling process induces a
further (possibly) unstable so-called sampling zero dynamics of dimension r − 1.

Lemma: zero dynamics under sampling

A more precise characterization of this fact can be drawn in the LTI setting using the example
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of a chain of n integratos described by the triplet (An, bn, cn);

An ∈ Rn×n =




0 1 0 . . . 0

0 0 1 . . . 0
...

0 0 0 . . . 1

0 0 0 . . . 0



, bn ∈ Rn×1 =




0

0
...
0

1




cn ∈ R1×n =
(
1 0 . . . 0 0

)

(2.10)

The SR sampled equivalent model, applying the definition (2.7), takes the form

x(k + 1) = Aδnx(k) + bδnu(k)

y(k) = cnx(k)
(2.11)

with

Aδn =




1 δ . . . δn−1

(n−1)!

0 1 . . . δn−2

(n−2)!

. . .

0 0 . . . 1



, bδn =




δn

n!
δn−1

(n−1)!
...
δ




(2.12)

consequently, it is clear that cnbδn = δn

n! ̸= 0 for all δ > 0 and so rd = 1.
With this in mind, we can now recall, with slight rewording, the following statement due to

Åström et al. (1984);

Let (2.7) be the SR sampled equivalent model to a SISO LTI continuous-time system with
a continuous-time relative degree r > 1, then the discrete-time relative degree will always
fall to rd = 1 and unstable zeros appear under sampling. Moreover, as δ → 0, the r − 1

sampling zeros are the roots to the Euler-Frobenius polynomial given by

Er(z) = br1z
r−1 + br2z

r−2 + . . .+ brr

bjk =
k∑

ℓ=1

(−1)k−ℓℓj
(
j + 1

k − ℓ

)

Theorem: LTI sampling zeros

The above result states that, given a continuous-time transfer function G(s) = n(s)
d(s) having m

zeros z⋆i , then the sampled-data equivalent transfer function G(z) = n(z)
d(z) will have n − 1 zeros.

Those n− 1 zeros, while not always easy to characterize explicitly, can be divided into two groups
asymptotically as δ → 0;

Zeros of G(z) :





m zeros corresponding to the continuous-time zeros under sampling being ez
⋆
i δ

n-m-1 sampling zeros roots of the polynomials Ej(z) = 0, j = n−m
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and for the first terms one has the polynomials Ei(z) being;

E1(z) = 1

E2(z) = z + 1,

E3(z) = z2 + 4z + 1

...

Example 2.2 For the case of the triple integrator in continuous-time and looking at the SR sampled
equivalent model (2.11) it is clear that the determinant polynomial of the corresponding Rosenbrock
system matrix coincide with

det




z − 1 −δ − δ2

2 − δ3

6

0 z − 1 −δ − δ2

2

0 0 z − 1 −δ
1 0 0 0




=
δ3

6
(z2 + 4z + 1) =

δ3

6
E3(z)

and it’s roots, for all δ > 0 are precisely those of E3(z), namely the sampling zeros are z⋆d =

{−
√
3− 2,

√
3− 2} ≈ {− 3.732, −0.268}.

An important consequence of the comments made above is the fact that, even when starting with
a continuous-time minimum phase system where direct controller synthesis via inversion applies
with stability, sampling introduces an additional obstruction. This obstruction is caused by the
appearance of extra r − 1 sampling zeros which are typically non-minimum phase.

2.3 Preserving the relative degree under single-rate sampling

As already explained, the fall of the relative degree under sampling is emblematic of the appearance
of extra sampling zero-dynamics responsible for serious limitations in feedback design. In the sequel,
and for Single-Input Single-Output systems we recall a result due to Barbot et al. (1996) where a
δ-dependent change to the output function defining the normal form in continuous-time is shown to
preserve the relative degree of the system in a predefined order of approximation. We will illustrate
this procedure for a SISO system assuming r = 3 thus explaining the intuition behind the result
in Barbot et al. (1996). This procedure is then generalized in Chapter 7 to the setting of MIMO
systems. In this simple case of r = 3, the normal form in continuous-time reads;

ż1 = z2

ż2 = z3

ż3 = b(z, η⋆) + a(z, η⋆)u

η̇⋆ = q⋆(z, η⋆)

y = z1
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and under single-rate sampling with rate δ this form reads;

z1(k + 1) = z1(k) + δz2(k) +
δ2

2!
z3(k) +

δ3

3!
(b(z(k), η⋆(k)) + a(z(k), η⋆(k))u(k)) +O(δ4)

z2(k + 1) = z2(k) + δz3(k) +
δ2

2!
(b(z(k), η⋆(k)) + a(z(k), η⋆(k))u(k)) +O(δ3)

z3(k + 1) = z3(k) + δ (b(z(k), η⋆(k)) + a(z(k), η⋆(k))u(k)) +O(δ2)

η⋆(k + 1) = η⋆(k) + δq⋆(z(k), η⋆(k)) +O(δ2)

y(k) = z1(k)

Define the “modified” dummy output

yδ = y − δẏ + δ2

3
ÿ = z1 − δz2 +

δ2

3
z3

and note that the prediction of this output can be written as;

yδ(k + 1) = z1(k + 1)− δz2(k + 1) +
δ2

3
z3(k + 1)

= z1(k)−
δ2

3!
z3(k) +O(δ4)

yδ(k + 2) = z1(k + 2)− δz2(k + 2) +
δ2

3
z3(k + 2)

= z2(k) +
δ

2
z3(k) +O(δ3)

yδ(k + 3) = z1(k + 3)− δz2(k + 3) +
δ2

3
z3(k + 3)

= z3(k) + δ (b(z(k), η⋆(k)) + a(z(k), η⋆(k))u(k)) +O(δ2)

In this way, the effect of the control on the output yδ is relegated to terms in O(δ4). Consequently,
defining the new coordinates ;

zδ1(k) = yδ(k), zδ2(k) = z2(k)−
δ

2
z3(k), zδ3(k) = z3(k)

one has

zδ1(k + 1) = zδ1(k) + δzδ2(k) +O(δ4)

zδ2(k + 1) = zδ2(k) + δzδ3(k) +O(δ3)

zδ3(k + 1) = zδ3(k) + δ (b(·, η⋆(k)) + a(·, η⋆(k))u(k)) +O(δ2)

η⋆(k + 1) = η⋆(k) + δq⋆(·, η⋆(k)) +O(δ2)

yδ(k) = zδ1(k)
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truncating the zδ dynamics at the vector of non-homogeneous orders (for p = 1, r = 3)

O(∆p+1) =




O(δr+p)
...

O(δp+1)


 =



O(δ4)

O(δ3)

O(δ2)




and applying the definition of the relative degree in discrete-time, we can say that, different from
Euler’s truncation, the relative degree of the sampled system with respect to yδ is preserved up
to approximations in order of O(δr+1) when considering the dynamics in approximations of order
O(∆p+1), p = 1. A generalization of this procedure for any r ≥ 1 and in any order p ≥ 1 can be
found in Barbot et al. (1996) for SISO systems. This procedure will be adapted in Chapter 7 to
the case of MIMO systems allowing us to treat a special type of partial inversion-based controllers
under single rate sampling.

2.4 Multi-rate sampling of continuous-time systems

An interesting method for handling the issues arising due to SR sampling in terms of loss of relative
degree and zero dynamics structure is multi-rate sampling Monaco and Normand-Cyrot (1992). As
the name suggests, and compared to SR sampling, by multi-rate sampling of order m we mean the
following;

• the control is piecewise constant over sub intervals of the sampling period of length δ̄ = δ
m ,

namely for k ∈ Z+, i = 1, . . . ,m; u(t) := ui(k) = u(kδ+ iδ̄), ∀t ∈ [kδ+(i− 1)δ̄, kδ+ iδ̄[

• measures of the states (or outputs) are available only at the sampling instants i.e. x(t) =

x(kδ), y(t) = y(kδ) at the sampling instants.

Given a continuous-time SISO dynamics of the form (1.1a), the multi-rate sampled-data dy-
namics of order m equivalent at the sampling instant reads

x(k + 1) = F δm(x(k), u(k)) (2.13)

where u(k) =
(
u1(k) u2(k) . . . um(k)

)⊤
. The map F δm(x, u) is obtained by integrating the

continuous time dynamics (1.1a) under the piecewise constant multi-rate controls and admitting a
formal Taylor expansion, parametrized by δ̄, i.e.

F δm(x(k), u(k)) = eδ̄(Lf+u
1(k)Lg) . . . eδ̄(Lf+u

m(k)Lg)x
∣∣
x(k)

= F δ̄(·, um(k)) ◦ · · · ◦ F δ̄(x(k), u1(k))
(2.14)

and we have the following definition;
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Consider the continuous-time input affine SISO system (1.1a)-(1.1b), then there exists
T ⋆ > 0 small enough such that the expansion (2.14) converges. If this is the case then
(2.13) is called the multi-rate sampled-data equivalent dynamics.

Definition: multi-rate sampled equivalent dynamics

Preserving the zero dynamics under multi-rate sampling

In what follows, let the SISO continuous-time system (1.1a),(1.1b) have a well defined relative degree
r, and consider it’s multi-rate sampled equivalent dynamics of order r, i.e. setting in (2.13) m = r.
Additionally, consider the dummy output vector defined by

H(x) =
(
h(x) Lfh(x) . . . Lr−1

f h(x)
)⊤

(2.15)

namely a vector containing the original continuous-time output and it’s higher r − 1 derivatives.
Applying the DT vector relative degree definition, it is possible to verify that the multi-rate sampled-
data dynamics (2.13) has a well defined MIMO vector relative degree rd = (1 1 . . . 1) with respect to
the dummy output (2.15). Consequently, the zero dynamics submanifold of the multi-rate sampled
equivalent model is the n− r dimensional submanifold

Z⋆ = {x ∈ Rn : H(x) = 0} (2.16)

which recovers the same properties as that of the continuous-time zero dynamics submanifold (1.8).
Similar discussion can be carried out about the zero dynamics and its stability properties. Accord-
ingly, whenever the continuous-time system is minimum-phase; so is the corresponding multi-rate
sampled model (2.13),(2.15) and partial inversion-based techniques can be designed working over
the multi-rate sampled-data model with the confidence that the residual dynamics under feedback
is stable.

Remark 2.4 if the continuous-time dynamics is LTI with relative degree r then the multi-rate
sampled equivalent dynamics of order r with δ = rδ̄ reads;

x(k + 1) = (Aδ̄)rx(k) + (Aδ̄)r−1bδ̄u1(k) + . . . +Aδ̄bδ̄ur−1(k) + bδ̄ur(k) (2.17)

where the pair (Aδ̄, bδ̄) as in (2.7).

Returning to the same example of the triple integrator, we discuss how varying the input in
sub-intervals of the sampling period in this manner mitigates the sampling zeros.

Example 2.3 consider again the triple integrator. This system has no zeros in continuous-time
and relative degree r = 3 while it’s SR sampled equivalent model applying (2.7) has two zeros roots
of the Euler-Frobenius polynomial E3(z) = z2 + 4z + 1 = 0.

■ Multi-rate of order 3: Let us augment the sampling rate even more. The multi-rate sampled
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equivalent dynamics of order r = 3 for the triple integrator takes the form (2.17) with

z(k + 1) = Amz(k) +Bmu(k)

Am=3 =



1 3δ̄ 9δ̄2

2!

0 1 3δ̄

0 0 1


 , Bm=3 =




19δ̄3

6
7δ̄3

6
δ̄3

6
5δ̄2

2
3δ̄2

2
δ̄2

2

δ̄ δ̄ δ̄




where u(k) =
(
u1(k) u2(k) u3(k)

)⊤
. Consider the augmented output vector y(k) =

Cm=3z(k) with Cm = col(c3 c3A c3A
2) as the original output and it’s higher r − 1 deriva-

tives. This multi-rate sampled equivalent system has vector relative degree rd = (1 1 1).
Indeed this system is a MIMO square system that has no zeros recovering the properties of
the continuous-time original system. An interesting fact is that each muli-rate order reduces
the sampling zeros by one as seen below.

■ Multi-rate of order 2: apply a multi-rate of order 2, increasing the degrees of freedom by 1,
and notice that the multi-rate sampled model reads;

z1(k + 1) = z1(k) + 2δ̄z2(k) + 2δ̄2z3(k) +
7δ̄3

6
u1(k) +

δ̄3

6
u2(k)

z2(k + 1) = z2(k) + 2δ̄z3(k) +
3δ̄2

2
u1(k) +

δ̄2

2
u2(k)

z3(k + 1) = z3(k) + δ̄u1(k) + δ̄u2(k)

Now consider the augmented output vector

y(k) = H(x(k)) =

(
z1(k)

z2(k)

)

which is the the original output and it’s first derivative. The determinant of the Rosenbrock
system matrix in this case reads;

det




z − 1 −2 δ̄ −2 δ̄2 −7 δ̄3

6 − δ̄3

6

0 z − 1 −2 δ̄ −3 δ̄2

2 − δ̄2

2

0 0 z − 1 −δ̄ −δ̄
1 0 0 0 0

1 δ̄ δ̄2

2 0 0




=
δ̄6(5z + 1)

6

which has a single root. Thus this multi-rate sampled model of the continuous-time triple
interator, by increasing the multi-rate order, decreased the number of sampling zeros by (1).

This example highlights how multi-rate sampling can be used to recover the relative degree and
the zeros (zero dynamics) properties of the continuous-time system under sampling by properly
choosing the multi-rate order. It also emphasizes the interesting fact that, while the limiting sam-
pling zeros of a SISO system are well understood, the same can not be said about MIMO systems,
which brings us to the following section.
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2.5 The sampled-data Multi-Input Multi-Output case

Consider the continuous-time square MIMO system (1.16a)-(1.16b), the associated SR sampled-data
equivalent model will take the form

x(k + 1) = F δ(x(k), u1(k), . . . , um(k)) (2.18a)

yi(k) = hi(x(k)), i = 1, . . . ,m (2.18b)

and the map F δ(x, u1, . . . , um) is of the form

F δ(x(k), u(k)) = eδ(Lf+u1(k)Lg1+...+um(k)Lgm )x(k)

= x(k) +
∑

i>0

δi

i!
(Lf + u1(k)Lg1 + . . .+ um(k)Lgm)

ix(k)
(2.19)

The following definition of ASR sampled equivalent model generalizes the one in the SISO case;

Consider the continuous-time input affine SISO system (1.16a)-(1.16b) with a well defined
vector relative degree (r1 . . . rm), then there exists T ⋆ > 0 small enough such that ∀δ ∈
[0, T ⋆[ the exponential (2.19) converges. If that is the case, then for p ≥ max(rj) , j =

1 . . .m

∥F δ(x(k), u1(k), . . . , um(k))− F δ[p](x(k), u1(k), . . . , um(k))∥ ≤ O(δp+1).

for all k and F δ[p](x, u1, . . . , um) is called the ASR sampled equivalent model of order p.

Definition: ASR sampled equivalent model

Remark 2.5 a similar way to define ASR sampled equivalent models is used interchangeably in the
sequel. Namely; when truncating each row of the expansion (2.19) at any fixed order col(p1, . . . , pn)
in δ, so neglecting row-wise the remaining terms in (O(δp1+1), . . . , O(δpn+1)) in the infinite se-
ries expansion, the resulting SR sampled equivalent model is said to be approximated at the order
col(p1, . . . , pn). This notion of vector heterogeneous approximation in powers of δ will be used in
Chapter 7.

Applying the DT vector relative degree definition to the sampled-data system (2.18a),(2.18b)
one has that the integers rd,i = 1, ∀i = 1, . . . ,m and the decoupling matrix loses rank, when taking
the sampled-data equivalent model (2.18a)-(2.18b), or an ASR of order col(p1, . . . , pn) such that
∀i = 1, . . . , n, pi ≥ max(rj), j = 1, . . .m. A consequence of the above is that the zero dynamics
as well as the structure of the continuous-time system is not preserved, and additional possibly
unstable sampling zero dynamics appear.

In a linear setting, and unlike in the SISO case, the limiting zeros (i.e. zeros of the SR sampled
equivalent model as δ → 0) of an LTI MIMO system are not only dependent on the relative degree
and the original continuous-time invariant zeros but also on the system parameters Hayakawa et al.
(1983). However, in some simple cases, the results on the limiting zeros of SISO systems carry over.
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This fact explains the limiting zero obtained when we took a multi-rate of order 2 of the triple
integrator. The following example further enforces this difficulty associated with the asymptotic
characterization of the sampling zeros of a MIMO LTI system;

Example 2.4 Let a continuous-time LTI MIMO system be described by the following triplet;

A =




0 1 0 0 0

0 0 1 0 0

−1 −3 −3 0 1

4 0 0 −1 1

0 0 0 0 0



, B =




0 0

0 0

1 0

0 0

0 1




C =

(
−2 −2 0 1 0

0 0 0 −2 0

)

and note that the continuous-time vector relative degree is r = (2 2) and CB = 0, CAB ̸= 0 and
full rank. As a consequence, the continuous-time system has a single zero because n− r1 − r2 = 1,
this zero being z⋆ = −1. Let δ = 0.1 and using the expressions in (2.7) we have

Aδ =




0.9998 0.0995 0.0045 0 0.0002

−0.0045 0.9863 0.0860 0 0.0045

−0.0860 −0.2624 0.7284 0 0.0860

0.3806 0.0193 0.0006 0.9048 0.0952

0 0 0 0 1



, Bδ =




0.0002 0

0.0045 0.0002

0.0860 0.0045

0.00001 0.0048

0 0.1




and rd = (1 1) while CBδ ̸= 0 and full rank. Clearly, the SR sampled equivalent model has
n − rd,1 − rd,2 = 3 zeros being z⋆d = {0.9048,−0.9354,−0.9674}. The first zero corresponds to
the limiting zero of the continuous-time one i.e. ez⋆δ ≈ e−0.1 ≈ 0.9048 while the other 2 are extra
sampling zeros. Those sampling zeros as can be seen do not relate to the solution of a corresponding
Euler-Frobenius polynomial, even as δ decreases further.

2.6 Concluding remarks

A few comments to summarize this chapter are in order;

■ when designing control laws, it is beneficial to remember that both sensing and actuation
are implemented through digital devices and sensors acting over discrete time instants in a
synchronous or asynchronous manner.

■ in this sampled-data context, properties of the continuous-time system are not preserved.
Examples of such lost properties are the relative degree and zero dynamics structure and
stability.

■ the loss of such properties, particularly the loss of minimum phaseness of the zero dynamics,
imposes limitation on control design that utilizes partial inversion techniques.

■ to avoid such limitations, single-rate and multi-rate sampled data mythologies are available
that prove beneficial.
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The effects of sampling, and the rise of sampling zero dynamics is a rich subject and this chapter
is in no way a complete overview of sampled-data systems and the loss of control properties under
sampling.

Different approaches are available in the literature for defining the sampled-data equivalent
model to a nonlinear system. In Yuz and Goodwin (2005b), the equivalent models of sampled
systems were derived using the so-called δ−operator. Alternatively, in Hetel et al. (2017) sampling
effect was viewed as a time-delay, specifically when dealing with aperiodic and generalized sample
and hold strategies Kabamba (1987). A more recent viewpoint is modelling the sampled-data
systems using the tools of hybrid systems Goedel et al. (2012).

The representation of nonlinear discrete and sampled systems in a unified manner was treated in
Monaco and Normand-Cyrot (1995), while a different representation, being the so-called Differential-
Difference Representation DDR was properly formalized in Monaco and Normand-Cyrot (2005).
Additionally, aspects pertaining to finite descritzability Di Giamberardino et al. (1996b) and the
structure of the sampled equivalent models Arapostathis et al. (1989) are contained on those cited
references for the interested reader (see also Mattioni (2018) for a more recent recount).
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Chapter 3

On stabilization via partial cancellation
of the zero dynamics
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With this chapter, concepts pertaining to stabilization through partial inversion-based con-
trollers as well as obstructions to the design of stabilizing inversion-based controllers in

continuous-time are elaborated. In this sense, the chapter will start by discussing the current lit-
erature on stabilization via partial zero dynamics cancellation for continuous-time SISO nonlinear
systems. This method recalled for the SISO case based on the results reported in Mattioni et al.
(2017a), constitute the basis for a preliminary contribution in the continuous-time LTI MIMO case.
Finally, a discussion on the possible extension, at least in a local sense, of the proposed result to
a special class of nonlinear MIMO systems will be provided. In this sense, this chapter serves as a
more accessible companion to the formal statements, proofs and results reported in;

Mohamed Elobaid, Mattia Mattioni, Salvatore Monaco and Dorothée Normand-Cyrot. “On
stable right-inversion of non-minimum-phase systems”. 59th IEEE Conference on Decision
and Control IEEE CDC 2020, 5153-5158. DOI: 10.1109/CDC42340.2020.9303851.

The notions and formal definitions provided in this chapter are based on Basile and Marro
(1992), Mattioni et al. (2017a), Mattioni et al. (2019) and the references therein.

Before proceeding further, and as done in the previous chapter, we present a simple example to
motivate the discussion that follows;

Example 3.1 Consider the following transfer function

G(s) =
(s− 1)(s+ 1)

(s+ 2)(s+ 3)(s+ 4)

and assume we want to stabilize this system and render the input-output link almost unity (inver-
sion). Notice that r = 1 and the transfer function has two zeros at s = ±1 the former of which is
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Chapter 3. On stabilization via partial cancellation of the zero dynamics

non-minimum phase. This system admits the following state space canonical realization

ẋ1 = x2

ẋ2 = x3

ẋ3 = −24x1 − 26x2 − 9x3 + u

y = x3 − x1

Define a coordinate change using y as in Section 1.1 putting the system in the normal form;

ż = −9z − 33η⋆,1 − 27η⋆,2 + u

η̇⋆,1 = −η⋆,2
η̇⋆,2 = −z − η⋆,1
y = z

from which it is clear that a feedback of the form

u⋆ = 9z + 33η⋆,1 + 27η⋆,2 + ν

with ν = Fz cancels both the zeros, rendering the input-output link almost unity, but the closed
loop unstable. Now, looking at the transfer function isolating the non-minimum phase zero;

G(s) = (s− 1)
(s+ 1)

(s+ 2)(s+ 3)(s+ 4)
= (s− 1)Gs(s)

this corresponds to defining a dummy output Y s(s) corresponding to Gs(s) and related to the
original output of the system by;

Y (s) = (s− 1)Y s(s)

Note that Gs(s) defines a transfer function with r = 2 and only the minimum phase zero. In the
original state space coordinates, Gs(s) can be realized with the same dynamics by modifying the
output to be;

ys = x1 + x2

this new dummy output can then be used to define the following normal form;

żs1 = zs2

żs2 = −18zs1 − 8zs2 − 6ηs⋆ + u

η̇s⋆ = zs1 − ηs⋆
ys = zs1

It results that over this ys defined normal form, the feedback cancelling all the zeros

u⋆ = 18zs1 + 8zs2 + 6ηs⋆ + ν
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3.1. The case of continuous-time Single-Input Single-Output systems

transforms the system into;

żs1 = zs2

żs2 = ν

η̇s⋆ = zs1 − ηs⋆
ys = zs1

so a suitable ν can be designed to stabilize the z sub-dynamics rendering the zero dynamics

η̇s⋆ = −ηs⋆

Additionally, from the fact that y = ẏs− ys we have in this normal form, the original output reads;

y = zs2 − zs1

thus stabilization via inversion with respect to y could be attained.

The above example shows that; even when starting from a non-minimum phase LTI system, an
inversion based feedback maybe obtained via partial cancellation of only the minimum phase zeros
ensuring stability. Can we utilize this procedure, at least in a local sense, in the nonlinear setting
is the question addressed in the next section.

3.1 The case of continuous-time Single-Input Single-Output sys-
tems

Consider the nonlinear SISO system of the form (1.1a),(1.1b), assumed to have a linear output map;

ẋ = f(x) + g(x)u

y = cx
(3.1)

With c⊤ ∈ Rn and let f(0) = 0, equivalently the origin x◦ = 0 ∈ Rn is an equilibrium point. we
further assume that the system has a well defined relative degree r at x◦. Consequently the system
admits the following normal form recalled in a compact manner;

ż = Arz + br(b(z, η⋆) + a(z, η⋆)u) (3.2a)

η̇⋆ = q⋆(z, η⋆) (3.2b)

y = crz (3.2c)

with b(z, η⋆), a(z, η⋆), q⋆(z, η⋆) are as in (1.3) and Ar, br, cr as in (2.10). Now recall the following;
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3.1. The case of continuous-time Single-Input Single-Output systems

For system (3.1), let yr(t) be a desired output reference with bounded higher derivatives
yr(t), ẏr(t), . . . , y

(r−1)
r (t). Find (u(t), x(0)) such that;

• the pair u(t), x(0) satisfy the dynamics of the system (3.1) for 0 ≤ t ≤ ∞.

• under u(t), the output of the system exactly tracks the desired reference i.e. y(t) =
yr(t), ∀0 ≤ t ≤ ∞.

• the pair u(t), x(t) are bounded.

Problem: stable inversion

Problem 3.1 above is equivalent to ask; given a desired bounded, in the sense of L2-norm,
output signal yr(t) with bounded derivatives, one is interested in an inverse of the system in which
the internal dynamics is stable. As we have seen from the discussion in Chapter 1, a possible
solution to this problem resulting from the normal form (3.2a)-(3.2c) is obtained by noting that
y
(i)
r (t) = zi(t), i = 0, . . . , r − 1, and so setting in (3.2a)

zr =
(
yr ẏr . . . y

(r−1)
r

)⊤

for which u(t) solving Problem 3.1 above, starting from initial conditions z(t0) = zr, takes the form;

u =
y
(r)
r − b(zr, η⋆)
a(zr, η⋆)

(3.3)

and η⋆(t) is the solution to

η̇⋆ = q(zr, η⋆), η⋆(t0) = η◦⋆ (3.4)

which characterizes the residual dynamics of the system, and thus Problem 3.1 admits a bounded
solution whenever the equilibrium of (3.4) is stable. In the special case that yr(t) = 0 and all it’s
higher derivatives, the dynamics (3.4) and the feedback (3.3) reduce to the zero dynamics and the
output zeroing feedback respectively.

Consequently, stability of the cancelled zero dynamics is a main obstruction to solving the stable
inversion problem in this setting. This fact explains the common convention that minimum phase
systems are easier to deal with, in terms of controller design. How to handle this obstruction in
continuous-time when the system is non-minimum phase is the question addressed in this chapter.
For those systems, it is well known that one of the most common approaches to stable inversion
is inversion with respect to a suitably redefined dummy output. The state-of-the-art on stable
inversion via partial zero dynamics cancellation for SISO systems is discussed next.

Following Mattioni et al. (2017a), let the linear tangent model LTM corresponding to system
(3.1) at the origin be
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3.1. The case of continuous-time Single-Input Single-Output systems

ẋ = Ax+ bu (3.5a)

y = cx (3.5b)

assumed controllable, that is;

A =
∂f(x)

∂x
|x=x◦ =




0 1 0 . . . 0
. . .

0 0 . . . 0 1

−a0 −a1 . . . −an−2 −an−1




b = g(x)|x=x◦ =




0
...
0

1




c =
(
b0 . . . bn−r 0 . . . 0

)

possibly after a suitable coordinates change. The coefficients ai, bi ∈ R are those characterizing the
numerator and denominator polynomials of the transfer function of (3.5a),(3.5b) i.e.

G(s) = c(sI −A)−1b =
n(s)

d(s)
=

b0 + b1s+ . . .+ bn−rsn−r

a0 + a1s+ . . .+ an−1sn−1 + sn
(3.6)

with r being the relative degree. It is possible to find a non-trivial maximal factorization of the
numerator polynomial such that;

n(s) = n1(s)n2(s)

= (b10 + b11s+ . . .+ b1m1
sm1)(b20 + b21s+ . . .+ b2m2

sm2)

Let r1 = n−m1, r2 = n−m2 such that;

n(s) = n1(s)n2(s)

root(n1(s)) ∩ root(n2(s)) = ∅
root(ni(s)) = {s ∈ C : ni(s) = 0} ≠ ∅, i = 1, 2

(3.7)

Now, assume that system (3.1) is partially minimum phase in the sense of n(s) being hyperbolic,
then a nontrivial factorization of the form (3.7) can be chosen denoting n1(s) = ns(s), n2(s) = nu(s)

where

root(ns(s)) ∈ C− root(nu(s)) ∈ C+ (3.8)

equivalently ns(s) being Hurwitz having all roots with negative real part, while nu(s) is non Hurwitz.
Accordingly, define the dummy output

ys(t) = csx(t)

cs =
(
b10 . . . b1n−r1 0 . . . 0

) (3.9)

corresponding to the coefficients of the Hurwitz polynomial ns(s). It is then possible to verify that
the original output is related to this dummy output, near x◦, via the differential relation (noting
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3.1. The case of continuous-time Single-Input Single-Output systems

that n− r2 = r1 − r)

y(t) = nu(
d

dt
)ys(t)

= b20y
s(t) + b21

d

dt
ys(t) + . . .+ b2n−r2

dn−r2

dtn−r2
ys(t)

= b20y
s(t) + b21ẏ

s(t) + b22ÿ
s(t) + . . .+ b2n−r2y

s(r1−r)
(t)

(3.10)

and let

c2 =
(
b20 b21 . . . b2n−r2 0 . . . 0

)
(3.11)

With this relationship, the following statement holds true Mattioni et al. (2017a);

The partially non-minimum phase system 3.1 is locally minimum phase with respect to
the dummy output ys(t) given in (3.9).

Lemma: stable zero dynamics factorization

The interested reader can follow the original statement of this result and its proof in Mattioni
et al. (2017a). It is then clear that a direct consequence of the above statement is the following
statement reported in Mattioni et al. (2017a);

If the system is invertible with respect to the dummy output (3.9), then the system is
invertibile with stability with respect to the original output.

Theorem: stable inversion for SISO systems

Proof: Let ys(t) be the dummy output defined in (3.9) having a relative degree r1, and define
the coordinates change

(
zs

ηs⋆

)
=

(
ϕs1(x)

ϕs2(x)

)

ϕs1(x) =
(
csx Lfc

sx . . . Lr1−1
f csx

)⊤

where ϕs2(x) : Lgϕs2(x) = 0. Under this coordinates change the system takes the strict normal form

żs = Ar1z + br1(b
s(zs, ηs⋆) + as(zs, ηs⋆)u)

η̇s⋆ = qs⋆(z
s, ηs⋆)

y = nu(
d

dt
)ys = c2z

s

where n2(·), c2 are as in the stable factorization (3.10),(3.11). Let yr be a desired bounded output
signal as in Problem 3.1 and define the inversion feedback w.r.t ys(t) as in (3.3). Under this feedback
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3.2. The case of continuous-time Multi-Input Multi-Output systems

the closed loop system has internal dynamics described by

η̇s⋆ = qs⋆(z
s
r , η

s
⋆)

which has an LTM with a Hurwitz polynomial by construction which verifies boundedness of the
closed loop trajectories under the inversion feedback, thus solving Problem 3.1.

The statement of Theorem 3.1 gives a sufficient condition for solving the problem i.e. it is
enough that there exists an inversion feedback with respect to the dummy output ys to get stable
inversion with respect to the original output. However, This is not necessary, because other types
of feedback (and initial conditions) solution to the stable inversion problem may exist, even if the
system is not partially minimum phase e.g. stable inversion via dynamic feedback Descusse and
Moog (1985).

This intuitive statement proved very useful in solving control problems that require cancellation
of the zero dynamics for SISO linear and nonlinear systems with a linear output map such as input-
output feedback linearization, tracking and disturbance decoupling with stability Mattioni et al.
(2017a), Mattioni et al. (2019). In the following section we give an extension of this method to the
linear MIMO setting as discussed in Elobaid et al. (2020a) together with some comments about
local applicability to the nonlinear MIMO case.

3.2 The case of continuous-time Multi-Input Multi-Output systems

In what follows, an extension to the previous statements concerning stable inversion of partially
minimum phase SISO systems is developed for the special LTI MIMO case. The main difficulty
of extending the result is the fact that the zeros of a matrix transfer function in the LTI MIMO
setting is not as straightforward to tackle. Formally we ask the following;

Given a minimal LTI MIMO system with p inputs and q outputs respectively. Let y = Cx

be the output of the system, Find if possible an output ys = Csx associated with the stable
component of the zero dynamics such that solving the stable inversion problem for this
dummy output ys implies solving inversion-based problems with stability for the original
output y.

Problem: stable inversion of LTI MIMO systems

For the sake of simplicity, we constrain ourselves to the case p = q = 2, namely we consider;

ẋ = Ax+Bu (3.12a)

y = Cx (3.12b)
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with u, y ∈ R2, x ∈ Rn and B =
(
b1 b2

)
, C⊤ =

(
c⊤1 c⊤2

)
and transfer function

G(s) = C(sI −A)−1B =
1

d(s)
N(s) (3.13)

where d(s) is the characteristic polynomial and N(s) is a sqaure polynomial matrix. In this case,
right and left invertibility coincide Marro (1990) and thus we will speak only of invertibility. Before
proceeding further, the following standing assumptions are set;

Assumption 3.1 System (3.12a),(3.12b) is assumed to be such that;

A1. The system is minimal, i.e. (A,B) and (C,A) are, respectively, controllable and observable.

A2. The system is invertible in the sense of Marro (1990).

A3. The system is partially minimum-phase; i.e., the zero polyonmial defined as

z(s) = det

(
sI −A B

−C 0

)
= zu(s)zs(s), s ∈ C

is non-Hurwitz with zs(s) denoting the corresponding Hurwitz component with roots in the left
hand side of the complex plane.

For the matrix transfer function (3.13) consider the polynomial matrix N(s) and following
(Kailath, 1980, Chapter 6) we can always find elementary row and column operations i.e. uni-
modular matrices {L−1(s), R−1(s)} such that

N(s) = L(s)Nsm(s)R(s) (3.14)

with

Nsm(s) =

(
ϵ1(s) 0

0 ϵ2(s)

)
(3.15)

where {ϵi(s)} are unique monic polynomials verifying ϵ1(s) is a factor of ϵ2(s). Moreover, by
denoting as ∆i(s) the greatest common divisor of all i× i minors of N(s) for i = 1, 2 one gets that
ϵi(s) =

∆i(s)
∆i−1(s)

with ∆0(s) = 1. Note that, although Nsm(s) is unique, {L−1(s), R−1(s)} are not.
Accordingly, one gets that the (rational) matrix transfer function (3.13) always admits a unique
Smith McMillan form;

G(s) = L(s)Nsm(s)D
−1(s)R(s) (3.16)

with

M(s) = Nsm(s)D
−1(s) =

(
z1(s)
d1(s)

0

0 z2(s)
d2(s)

)
=

(
ϵ1,1(s)ϵ1,2(s)

d1(s)
0

0
ϵ2,1(s)ϵ2,2(s)

d2(s)

)

where, d(s) = d1(s)d2(s) is the pole-polynomial with the property that d2(s) is a factor of d1(s).
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3.2. The case of continuous-time Multi-Input Multi-Output systems

From A3. one has
z(s) = ϵ1(s)ϵ2(s) = ϵ1,1(s)ϵ1,2(s)ϵ2,1(s)ϵ2,2(s)

= ϵ1,1(s)ϵ2,1(s)︸ ︷︷ ︸
=:zu(s)

ϵ1,2(s)ϵ2,2(s)︸ ︷︷ ︸
=:zs(s)

= zu(s)zs(s)

corresponds to a maximal factorization of the zero-polynomial.

Example 3.2 To illustrate the computations associated with the factorization presented, consider
an LTI MIMO system with the following canonical form

A =




0 1 0 0

−20 −21 0 0

0 0 0 1

0 0 −20 −21


 , B =




0 0

1 0

0 0

0 1


 , C =

(
− 4

5
4
5 0 4

5

− 168
5 0 16 4

5

)

corresponding to which one can has the transfer function

G(s) =
1

s2 + 21s+ 20

(
4 s
5 − 4

5
4 s
5

−168
5

4 s
5 + 16

)
=
N(s)

d(s)

To obtain the Smith-McMillan form, one can compute;

L =

(
1
42 − s

42 1

1 0

)
, R =

(
−42 s+ 20

0 1
42

)

corresponding to which we have

Nsm(s) =

(
1 0

0 s2 + 61 s− 20

)

As a result, and continuing from (3.12a),(3.12b), we identify a new dummy output

ys(t) = Csx(t)

corresponding to the stable component of the zero dynamics associated to the system output and
related to (3.12b) through a differential equation of the form

y(t) = Zu(d)y
s(t) (3.17)

with d = d
dt and a suitably defined two dimensional square differential matrix Zu(d) such that

det(L(Zu(d))) = zu(s). This new dummy output corresponds to factorizing the matrix transfer
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function (3.13) in the following way;

G(s) =
1

d(s)
L(s)M(s)R(s)

=
1

d(s)
L(s)

(
ϵ1,1(s) 0

0 ϵ2,1(s)

)(
ϵ1,2(s)d2(s) 0

0 ϵ2,2(s)d1(s)

)
R(s)

= L(s)Nu(s)
1

d(s)
Ns(s)R(s) = Zu(s)Gs(s)

thus obtaining a transfer function matrix Gs(s) with zeros polynomial zs(s). Accordingly, in a
compact form the transfer function (3.16) rewrites as

G(s) = Zu(s)Gs(s) (3.18)

and in particular, Zu(s) is a polynomial matrix in s whereas Gs(s) is transfer function matrix.

Example 3.3 [example continued] Having obtained

Nsm(s) =

(
1 0

0 s2 + 61 s− 20

)

it is straight to see that the factorization (3.18) corresponds to writing

Nsm(s) = Ns(s)Nu(s)

=

(
1 0

0 s+
√
3801
2 + 61

2

)(
1 0

0 s−
√
3801
2 + 61

2

)

with the minimum and non-minimum phase zeros provided by {−
√
3801
2 − 61

2 ,
√
3801
2 − 61

2 } respectively.
From which one obtains directly;

Zu(s) =

(
1
42 − s

42 s−
√
3801
2 + 61

2

1 0

)
, Gs =

1

s2 + 21s+ 20

(
−42 s+ 20

0 s
42 +

√
3801
84 + 61

84

)

Figure 3.1: Stable factorization of the zeros of LTI MIMO systems.

When system (3.12a),(3.12b) possesses distinct poles with unitary algebraic multiplicity the
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term Ns(s)D
−1(s)R(s) is improper as (L(s), R(s)) introduce poles at s = ∞ Kailath (1980). To

handle this issue, one can compute a matrix K(s) (the so-called right divisor) such that:

G̃s(s) = K(s)Ns(s)D
−1(s)R(s)

is proper and with the same poles as (3.13) and

Z̃u(s) = L(s)Nu(s)K
−1(s)

is a polynomial matrix in s ∈ C. Accordingly, (3.18) rewrites as

G(s) =Z̃u(s)G̃s(s) (3.19)

such that Gs(s) is strictly proper and verifying

G̃s(s) = Cs(sI −A)−1B. (3.20)

From now on, for the sake of clarity, we shall assume K(s) = I although all the statements to follow
hold true in general whenever such K(s) exists.

The new output (3.23b) in the original state space coordinates of the system can be computed
as follows. Let (Â, B̂, Ĉ) with Â ∈ Rn̂×n̂ with n̂ ≥ n be a realization of (3.20) and (Â⋆, B̂⋆, Ĉ⋆) with
Â⋆ ∈ Rn×n the corresponding restriction onto the observable and controllable subspaces. Denote
by T and T⋆ the non-singular transformations putting, respectively, (A,B) and (Â⋆, B̂⋆) into the
eigenvalues assigmenent canonical form Marro (1990). Then, because TAT−1 = T⋆ÂT

−1
⋆ and

TB = T⋆B̂⋆ one gets Cs = Ĉ⋆T
−1
⋆ T .

With the previous discussion, we are now in position to make the following statement, corre-
sponding to (Elobaid et al., 2020a, Proposition 3.1) attached at the end of this chapter;

Consider the system (3.12a),(3.12b) under Assumptions 3.1 A1-A3 and let z(s) =

zu(s)zs(s) be the zero-polynomial where zs(s) denotes the Hurwitz component. Let the
transfer function matrix G(s) be of the form (3.19) with Gs(s) as in (3.20) and ys = Csx

solution to (3.17). Then, the system

ẋ = Ax+Bu (3.21a)

ys = Csx (3.21b)

identifies the minimum-phase component of (3.12a) with zero polynomial given by zs(s).

Result: stable zeros factorization for LTI MIMO systems

Remark 3.1 Two matrices sI −A and sI − Â possess the same Smith form if and only if, A and
Â are similar. This easily extends to the case of two realizations (A,B,C) and (Â, B̂, Ĉ) (with the
same dimension) sharing the same transfer function G(s).
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Remark 3.2 Starting from a system with a well defined vector relative degree, one may obtain
an output with respect to which the system is invertible but lacks a well defined vector relative
degree. This observation shows that non interaction (and input/output decoupling) for an invertible
system may not be achieved with stability through static state-feedback while the same does not stand
for disturbance decoupling. A more rigorous treatment of these aspects are carried out utilizing
generalized normal forms and reported in Elobaid et al. (2020a).

3.3 Extensions to the continuous-time nonlinear Multi-Input Multi-
Output case

The alert reader can see that the results presented in the previous section apply, in a local sense,
to the class of nonlinear control affine square MIMO systems with linear output mapping. In fact,
consider a system of the form;

ẋ = f(x) +
m∑

i=1

gi(x)ui

yi = cix, i = 1, . . . ,m

(3.22)

having a well defined vector relative degree. Let the origin be an equilibrium point for (3.22), and
assume the LTM at the origin be of the form (3.12a),(3.12b). If the LTM satisfies Assumption 3.1,
then the following statement (which is also reported in the attached paper) can be made generalizing
that of (Elobaid et al., 2020a, Proposition 3.1);

Consider the system (3.22) with the origin being an equilibrium point. Let (3.12a),(3.12b)
be its LTM at the origin satisfying Assumption 3.1 and z(s) = zu(s)zs(s) be the zero-
polynomial of the LTM model where zs(s) denotes the Hurwitz component. Let the LTM
transfer function matrix G(s) be of the form (3.19) with Gs(s) as in (3.20) and ys = Csx

solution to (3.17). Then;

■ the system

ẋ = f(x) +

m∑

i=1

gi(x)ui (3.23a)

ys = Csx (3.23b)

is locally minimum-phase near the origin.

■ the system is (locally) invertible with stability.

Result: stable inversion via partial zero dynamics cancellation

The above fact is demonstrated via the following benchmarking example;
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Example 3.4 Consider the case of a 4-tanks system Johansson and Nunes (1998) given by

ḣ = f(h) +Bu (3.24a)

y = Ch (3.24b)

with h = col{h1, h2, h3, h4}, f(h) = 2F (h)h

F (h) =




−p1(h1) 0 A3

A1
p3(h3) 0

0 −p2(h2) 0 A4

A2
p4(h4)

0 0 −p3(h3) 0

0 0 0 −p4(h4)




B =




γ1k1
A1

0

0 γ2k2
A2

0 (1−γ2)k2
A3

(1−γ1)k1
A4

0



, C = κt




1 0

0 1

0 0

0 0




⊤

pi(hi) = ci
√
2ghi

2Aihi
. For the sake of compactness, let bij correspond to the element in position (i, j)

of the input-state matrix B. In particular, hi, Ai and ci are, respectively, the level of water in
the ith-tank, its cross-section area and the cross-section of the outlet hole for i = 1, 2, 3, 4. The
control signals uj with j = 1, 2 correspond to the voltage applied to jth-pump with kjuj being the
corresponding flow. We consider the problem of locally asymptotically tracking the output of (3.24)
to a desired y⋆ = (h⋆1, h

⋆
2) corresponding to make h⋆ = (h⋆1, h

⋆
2, h

⋆
3, h

⋆
4)

⊤ with

h⋆3 =
(c1γ2

√
h⋆1 − c2(1− γ2)

√
h⋆2)

2

c23a
2
3γ

2
2

h⋆4 =
(c2γ1

√
h⋆2 − c1(1− γ1)

√
h⋆1)

2

c24a
2
4γ

2
1

for a3 = γ2
1−γ2 −

1−γ1
γ1

and a4 = γ1
1−γ1 −

1−γ2
γ2

a locally asymptotically stable equilibrium for the
closed-loop system under nonlinear feedback.

Analysis of the zero-dynamics

The vector relative degree of (3.24) is well defined and given by r = (1 1) so that it exhibits a
two-dimensional zero-dynamics. Accordingly, for investigating minimum-phaseness of (3.24), one
computes the linear tangent model (LTM) at h⋆ of the form (3.12a) with x = h−h⋆ and A = 2F (h⋆)

with corresponding transfer function matrix

G(s) = κt

(
b11
s+p1

b32 p3
(s+p1) (s+p3)

b41 p4
(s+p2) (s+p4)

b22
s+p2

)
(3.25)

pi = pi(h
⋆
i ) > 0 for i = 1, 2, 3, 4 , Smith form as M(s) = diag{ 1

d(s) , z(s)}, with pole-polynomial
d(s) = (s+p1)(s+p2)(s+p3)(s+p4) and zero-polynomial z(s) = s2+(p3+p4)s+

p3p4
b11b22

(b11b22−b32b41).
Thus, (3.24) is nonminimum-phase if b11b22−b32b41 < 0 so that one can factorize z(s) = (s−zu)(s−
zs) for zu ∈ R+ and zs ∈ R−. As a consequence, if b11b22 − b32b41 < 0, output regulation to y⋆
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cannot be achieved through classical right-inversion even if the relative degree is well-defined.
In the following we show how the factorization procedure detailed in the previous section allows

to deduce a new output ys = Csh and a nonlinear feedback locally solving the regulation problem
with stability for (3.24).

The new dummy output using matrix transfer function factorization

Because (A,B,C) possesses three distinct poles in general, one gets that the matrix Gs(s) =

diag{1, s− zs}diag{d(s), 1}R(s) is improper for all choices of (L(s), R(s)). However, for the pair

L(s) =

(
− ψ1(s)

b32 b41
2 p3 p42 (p2−p3) (p3−p4) − p2−p1+p4+s

(p1−p2) (p1−p4)
− ψ2(s)
b32 b41 p3 p4 (p2−p3) (p3−p4) − b41 p4

b11 (p1−p2) (p1−p4)

)

R(s) =


 b41 p4 (p3 + s) − ψ3(s)

b11 (p1−p2) (p1−p4)
− b11

2 b22 (p1−p2) (p1−p4)
b32 b41 p3 p4 (p2−p3) (p3−p4)

ψ4(s)

b32 b41
2 p3 p42 (p2−p3) (p3−p4)




where

ψ1(s) = b11 (p2 + s) (p4 + s)

(
b11 b22 s

4 + b32 b41 p3
3 p4 + b11 b22 p2 s

3 + b11 b22 p3 s
3 + 2 b11 b22 p4 s

3

− b32 b41 p32 p42 − b11 b22 p12 s2 + b11 b22 p4
2 s2 + b11 b22 p1 p3 p4

2 − b11 b22 p12 p3 p4 − b32 b41 p1 p3 p42

+ b32 b41 p1
2 p3 p4 + b32 b41 p2 p3 p4

2 − b32 b41 p2 p32 p4 + b11 b22 p1 p2 s
2 − b11 b22 p12 p3 s+ b11 b22 p1 p4 s

2

+ b11 b22 p1 p4
2 s+ b11 b22 p2 p3 s

2 − b11 b22 p12 p4 s+ b11 b22 p2 p4 s
2 + 2 b11 b22 p3 p4 s

2 + b11 b22 p3 p4
2 s

− b32 b41 p3 p4 s2 − b32 b41 p3 p42 s+ b11 b22 p1 p2 p3 p4 − b32 b41 p1 p2 p3 p4 + b11 b22 p1 p2 p3 s

+ b11 b22 p1 p2 p4 s+ b11 b22 p1 p3 p4 s+ b11 b22 p2 p3 p4 s− b32 b41 p2 p3 p4 s
)

ψ2(s) = (p1 + s) (p3 + s)

(
b32 b41 p3

2 p4 − b32 b41 p3 p42 − b32 b41 p3 p4 s− b32 b41 p2 p3 p4 + b11 b22 p4
2 s

+ b11 b22 p2 p4
2 + 2 b11 b22 p4 s

2 + 2 b11 b22 p2 p4 s+ b11 b22 s
3 + b11 b22 p2 s

2

)

ψ3(s) = (p4 + s)

(
b11 b22 s

3 − b11 b22 p12 p3 − b11 b22 p12 s+ b11 b22 p2 s
2 + b11 b22 p3 s

2 + b11 b22 p4 s
2

+ b11 b22 p1 p2 p3 + b11 b22 p1 p3 p4 − b32 b41 p2 p3 p4

+ b11 b22 p1 p2 s+ b11 b22 p1 p4 s+ b11 b22 p2 p3 s+ b11 b22 p3 p4 s− b32 b41 p3 p4 s
)

ψ4(s) = b11 b22

(
− b11 b22 p12 p4 − b11 b22 p12 s+ b11 b22 p1 p4

2 + b11 b22 p1 p4 s+ b11 b22 p2 p1 p4 + b11 b22 p2 p1 s

+ b32 b41 p3
2 p4 − b32 b41 p3 p42 − b32 b41 p3 p4 s− b32 b41 p2 p3 p4 + b11 b22 p4

2 s+ 2 b11 b22 p4 s
2

+ b11 b22 p2 p4 s+ b11 b22 s
3 + b11 b22 p2 s

2

)

One can obtain a matrix K(s) so getting in the proper factorization (3.19) the minimum phase
proper component;

G̃s(s) =

(
b11
p1+s

b32 p3
(p1+s) (p3+s)

ψ5(s) ψ6(s)

)
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where

ψ5(s) =
b32 b41 p4 (β + 2 b11 b22 p2 − b11 b22 p3 + b11 b22 p4 + 2 b11 b22 s)

2β (p2 + s) (p4 + s)
− b11 b22 b32 b41 p4

β (p1 + s)

ψ6(s) =
b22 b32 (β − b11 b22 p3 + b11 b22 p4)

2β (p2 + s)

−
(
b32β(p1 + s)b22 (β − b11 b22 p3 + b11 b22 p4)− 2b32b22 b32 b41 p3 p4

2β (p1 + s) (p3 + s)

)

In the original state space coordinates, a suitable realization of Gs(s) yeids;

ys =

(
1 0 0 0

− b32b41p4
2b11β

b32
2 −

b32(p3+p4)
2β − b22

2 −
b22(p3+p4)

2β
b32 p4
2β

)
h (3.26)

with β =
√

(p3 + p4)2 − 4 p3p4
b11b22

(b11b22 − b32b41) making the LTM model of (3.24a) minimum-phase.

The new dummy output using the normal form

At this point, it is interesting to verify the claim stated in Section 1.3, namely to try, through the
iterative procedure described to arrive the the dummy output (3.26) directly utilizing a normal form
for the LTM of the 4-tanks system. To this end, note that the coordinates change

T =




1 0 0 0

0 1 0 0

b41 0 0 −b11
0 b32 −b22 0




puts LTM at h⋆ of the 4-tanks system into the normal form;

ż1 = R1z + S1η⋆ + a1,1u1 + a1,2u2

ż2 = R2z + S2η⋆ + a2,1u1 + a2,2u2

η̇⋆ = Pz +Q⋆η⋆

y1 = z1, y2 = z2

where a1,1 = b11, a2,2 = b22, a1,2 = a2,1 = 0 and

R1 =
(
−p1 b32 p3

b22

)
, R2 =

(
b41 p4
b11

−p2
)
, S1 =

(
0 − p3

b22

)
, S2 =

(
− p4
b11

0
)

P =

(
−b41 (p1 − p4) b32 b41 p3

b22
b32 b41 p4

b11
−b32 (p2 − p3)

)
, Q⋆ =

(
−p4 − b41 p3

b22

− b32 p4
b11

−p3

)

The transformation V putting Q⋆ in Jordan canonical form is;

V =

(
β−b11 b22 p3+b11 b22 p4

2 b22 b32 p4
−β+b11 b22 p3−b11 b22 p4

2 b22 b32 p4

1 1

)
=⇒ Q̃ = V QV −1 =

(
zs 0

0 zu

)
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Step 1: Fix the first output as ỹs1 = h1 and for the second output the ỹs2 = η2⋆ corresponding to zu
in original h coordinates. Namely, let

ỹs2 = C̃s2h

C̃s2 =
(
0 0 − b22 b32 p4

β
β−b11 b22 p3+b11 b22 p4

2β

)
T−1

=
(
− b32b41p4

2b11β
b32
2 −

b32(p3+p4)
2β − b22

2 −
b22(p3+p4)

2β
b32 p4
2β

)

and testing this output, it has relative degree r = (1 2) and with respect to which only zs is the
corresponding zero. In fact this output ỹs = (ỹs1 ỹ

s
2)

⊤ is precisely that found in (3.26). Consequently,
no need to reiterate and the procedure terminates.

Asymptotic tracking with stability

It is easily checked that, the nonlinear dynamics (3.24a) with output as in (3.26) possesses a well-
defined relative degree rs = (1, 2) at h⋆. Also, it is a matter of computations to verify that
(3.24a) with output (3.26) is locally minimum-phase with zero-dynamics η̇s = qs(0, η

s) verifying
∂qs
∂ηs

(0, ηs⋆) = zs < 0. At this point, along the lines the previous section and by exploiting the results
in (Isidori, 1995, Chapter 5), one gets that output tracking of (3.24) can be solved over the dummy
output (3.26) by setting the constant ys⋆ = (ys1,⋆, y

s
2,⋆)

⊤ ∈ R2 as solution to y⋆ = Zu(d)y
⋆
s which is

given by construction as ys⋆ = Csh
⋆. Accordingly, for all k0, k1 > 0 the feedback

u=−M−1
s (h)

(
cs1f(h) + ys1 − ys1,⋆

Lfc
s
2f(h)+k1c

s
2f(h)+k0(y

s
2 − ys2,⋆)

)
(3.27)

with decoupling matrix

M−1
s (h) =

(
cs1B

L2
fc
s
2f(h)B)

)

ensures local asymptotic regulation of y to the desired y⋆ while preserving internal stability.
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Figure 3.2: The four tank model under stable dynamic inversion.
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3.4. Concluding remarks

Simulations

For completeness, simulations are reported in Figure 3.2 for the closed-loop system under the sta-
bilizing feedback designed over the new dummy output highlighting the locally minimum-phase
components of (3.24). Simulations are performed for the parameters fixed as in the Table below.

A1 [cm2] 28 A3 [cm2] 28
A2 [cm2] 32 A4 [cm2] 32
c1 [cm2] 0.071 c3 [cm2] 0.071
c2 [cm2] 0.057 c4 [cm2] 0.057
kt [V/cm] 1 g [cm/s2] 981

γ1 0.43 γ2 0.34
k1 65.12 k2 94.12

In addition, we fixed y⋆ = (7.1, 6.2)⊤ corresponding to h⋆ = (7.1, 6.2, 3.58, 1.632)⊤. In particular,
with this choice of parameters, the plant is nonminum-phase with the zeros of LTM model at the
desired equilibrium provided by zu = 0.018 and zs = −0.0789. The gains of the controller (3.27)
are fixed as (k0, k1) = (1, 2). Simulations report the story of the original and dummy outputs plus
the real residual internal-dynamics of the feedback plant (that is the water levels of the third and
fourth tank with respect to the real output) while proving the effectiveness of the proposed design
approach.

3.4 Concluding remarks

A few comments to summarize this chapter and conclude the first part of the thesis are in order;

■ the stability of the zero dynamics in continuous-time presents an obstruction to inversion
based control design which is ubiquitous in different applications.

■ an established workaround in the SISO case, is the partial cancellation of only the minimum
phase component of the zero dynamics via output redefinition. This method was extended to
the MIMO case in continuous-time for LTI systems.

■ the method of partial cancellation of the zero dynamics is also valid, for a class of nonlinear
MIMO systems in a local sense, utilizing the design techniques introduced in the linear context
on the LTM model of the nonlinear system.

■ the sampled-data context, inherently introduces additional limitations being the non-minimum
phase sampled zero dynamics have not been addressed in this chapter. In the sequel, and
similar to the reasoning presented for the continuous-time case, sampled-data methodologies
are discussed addressing stable inversion in two classes of control problems; nonlinear Model
Predictive Control MPC, and Transverse Feedback Linearization TFL.

It is important to note that this chapter, while introducing most of the necessary state of the
art and some contributions in the MIMO setting, is still not a comprehensive treatise on the topic
of stable inversion via partial zero dynamics cancellation. The interested reader is advised to refer
to Isidori and Byrnes (1990), Sepulchre et al. (2012), Astolfi et al. (2008).
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On stable right-inversion of non-minimum-phase systems

Mohamed Elobaid1,2, Mattia Mattioni1, Salvatore Monaco1 and Dorothée Normand-Cyrot2

Abstract— The paper deals with the characterization of a
dummy ’output function’ associated with the stable component
of the zero-dynamics of a linear square multi-input multi-output
system. With reference to the 4-Tank dynamics, it is shown
how such a procedure, applied to the linear tangent model of
a nonlinear plant, may be profitably applied to assure local
stability in closed loop.

Index Terms— Algebraic/geometric methods; Linear systems;
Stability of nonlinear systems

I. INTRODUCTION

As well known, most control problems are concerned
with partial cancellation of the dynamics which is achieved
by forcing unobservability [1]–[8]. In the linear case, this
is achieved by designing a feedback assigning part of the
eigenvalues coincident with the zeros of the system so
making the corresponding dynamics unobservable. Such an
approach is at the basis of feedback linearization which
is achieved, in general, by cancelling the so-called zero-
dynamics whose stability is thus necessary for guaranteeing
feasibility of the control system [9].

The idea of employing factorization, properly introduced
in [10] for studying the zero-dynamics of sampled-data
systems, and consequently partial dynamic cancellation has
been formalized and developed in [11] to deal with feedback
linearization of nonlinear single-input single-output (SISO)
non-minimum phase systems (i.e., whose zero-dynamics are
unstable). The design approach represents a first generaliza-
tion to the nonlinear context of the idea of assigning part of
the eigenvalues over part of the zeros of the transfer function
of a linear system (partial zero-pole cancelation). When
considering dynamical systems, stability of the feedback
system can be achieved when only a stable component of
the zero-dynamics is cancelled. Such a stable component
can be identified, in the SISO case, by considering the
output associated with the minimum-phase factorization of
the transfer function of the linear tangent model at the origin.
However, when dealing with MIMO systems identifying such
a stable component and hence the corresponding dummy
output is still challenging.
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In this paper, the results in [11] are extended to the
multi-input multi-output context by providing a systematic
procedure for extracting, via factorization, a dummy output
identifying the minumum-phase component of a dynamical
system. In particular, focusing on linear time-invariant and
right-invertible dynamics, we show how the Smith form can
be suitably exploited for factorizing the matrix transfer func-
tion and extract, in the state-space representation, the output
identifying the minimum-phase component of the original
system. Then, the geometric relations among the original
system and the one with the dummy output are investigated
in terms of invariant subspaces and making reference to
MIMO normal forms [12]. In particular, it is shown that the
new output identifies the largest control-invariant subspace
contained in the kernel of the original one maximizing
unobservability while, at the same time, preserving stability
of the closed loop. This allows the definition of systematic
solutions with stability of a large variety of control problems
dealing with right-inversion (e.g., disturbance decoupling,
tracking). The case of nonlinear systems is sketched through
the simulated example of a four tanks dynamics dealt with
at an academic level. The case of square systems is dealt
with as the extension to larger number of inputs and outputs
follows the same lines.

The paper is organized as follows. In Section II, recalls
on MIMO systems are given and the problem is formulated.
In III, the procedure for constructing an output associated
to the minimum-phase component is presented and applied
to several control problems in Section IV. In Section V, the
example of a four tank dynamics serves, at an academic level,
for sketching the extension to nonlinear dynamics with linear
output while conclusions and perspectives are in Section VI.

Notations: R and N denote the set of real and natural
numbers including 0, respectively. C+ (resp. C−) denote
the left-hand (resp. right-hand) side of the complex plane.
MatR(n,m) defines the group of real matrices of dimension
n×m with, for short, MatR(n) = MatR(n, n). Given a matrix
A ∈ MatR(n), σ{A} defines its spectrum. For a sorted set
of ai ∈ R with i = 1, . . . , n, diag{a1, . . . , an} defines a
diagonal matrix with ai being the diagonal elements. For a
smooth vector field f , Lf denotes the Lie derivative operator,
Lf =

∑n
i=1 fi(·)

∂
∂xi

.

II. PRELIMINARIES AND PROBLEM STATEMENT

Consider a linear time invariant (LTI) system of the form

ẋ = Ax+Bu (1a)
y = Cx (1b)
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with u, y ∈ R2, x ∈ Rn, B =
(
b1 b2

)
, C> =

(
c>1 c>2

)>
and transfer function

P (s) = C(sI −A)−1B. (2)

The following standing assumptions are set.

A1. The pairs (A,B) and (C,A) are, respectively, con-
trollable and observable.

A2. The system (1) is right-invertible [12], [13].
A3. The system (1) is partially minimum-phase; i.e., the

zero polyonmial defined as

z(s) = det

(
sI −A B
−C 0

)
= zu(s)zs(s), s ∈ C

is non-Hurwitz with zs(s) denoting the correspond-
ing Hurwitz component with roots in the left hand
side of the complex plane.

In the following, general recalls for MIMO linear systems
are given as instrumental for the problem we address.

A. The Smith McMillan form

Consider any p×p polynomial matrix N(s), then there ex-
ist elementrary row and column operations, or corresponding
unimodular matrices {L−1(s), R−1(s)} such that

N(s) = L(s)Nsm(s)R(s) (3)

with

Nsm(s) = diag{ε1(s), . . . , εp(s)} (4)

where {εi(s)} are unique monic polynomials verifying εi(s)
is a factor of εi+1(s) for all i = 1, . . . , p − 1. Moreover,
by denoting as ∆i(s) the greatest common divisor of all
i× i minors of N(s) for i = 1, . . . , p one gets that εi(s) =

∆i(s)
∆i−1(s) with ∆0(s) = 1 [14]. Note that, although Nsm(s)

is unique, {L(s), R(s)} are not. Accordingly, one gets that
the (rational) matrix transfer function (2) always admits a
unique Smith form, that is

P (s) = L(s)Nsm(s)D−1(s)R(s) (5)

with M(s) = Nsm(s)D−1(s) = diag{ z1(s)
d1(s) , . . . ,

zp(s)
dp(s)}

where from A1.: z(s) = z1(s) . . . zp(s) = zu(s)zs(s)
corresponds to the zero-polynomial defined in A3.; d(s) =
d1(s) . . . dp(s) is the pole-polynomial with the property that
di+1(s) is a factor of di(s). For the sake of notational
simplicity, and without loss of generality, we will assume
in the sequel that p = 2.

Remark 2.1: [14] Two matrices sI − A and sI − Ar
possess the same Smith form if, and only if, A and Ar are
similar. This easily extends to the case of two realizations
(A,B,C) and (Ar, Br, Cr) (with the same dimension) shar-
ing the same transfer function P (s).

B. Generalized normal forms and the zero-dynamics
As (1) is invertible [12, Chapter 9], one can pick constant

r2 ≥ r1 > 0 such that

ciA
`B = 0, ` = 0, . . . ri − 2, ciA

ri−1B 6= 0

and ν ≥ 0 such that there exist constant αr2 , . . . , αr2+ν−1 ∈
R verifying for j = 0, . . . , ν − 1

c2A
r2+j−1B + c1A

r1(αr2+jI + · · ·+ αr2A
j−1)B = 0.

and

M=

(
c1A

r1−1B
c2A

r2+ν−1B + c1A
r1(αr2+ν−1I + · · ·+ αr2A

ν−1)B

)
det{M} 6= 0.

In this setting, one can define a coordinate transformation

z1

z2

z3

...
zν+2

η


=



T1

T2

T3

...
Tν+2

Tη


x, zi =

 zi,1
. . .
zi,ri

 (6)

for i = 1, 2 and , for j = 0, . . . , ν − 1 with

Ti =
(
c>i . . . (ciA

ri−1)>
)>
, TηB = 0

Tj+3 = c2A
r2+j + c1A

r1(αr2+jI + · · ·+ αr2A
j)

such that

żi,` =zi,`+1, i = 1, 2, ` = 1, . . . , ri − 1

ż1,r1 =c1A
r1x+ c1A

r1−1Bu

ż2,r2 =c2A
r2x+ c2A

r2−1Bu

=z3 − αr2
(
c1A

r1x+ c1A
r1−1Bu

)
żj+3 =c2A

r2+j+1x+ c1A
r1+1(αr2+jI + · · ·+ αr2A

j)x

=zj+4 − αr2+j+1

(
c1A

r1x+ c1A
r1−1Bu

)
żν+2 =c2A

r2+νx+ c1A
r1+1(αr2+ν−1I + · · ·+ αr2A

ν−1)x

+
(
c2A

r2+ν−1 + c1A
r1(αr2+ν−1I + · · ·+ αr2A

ν−1)B
)
u

Accordingly, defining

R1z + S1η + b̂1u := c1A
r1T−1

(
z
η

)
+ c1A

r1−1Bu

R2z + S2η :=
(
c2A

r2+ν

+ c1A
r1+1(αr2+ν−1I + · · ·+ αr2A

ν−1)
)
T−1

(
z
η

)
b̂2 :=

(
c2A

r2+ν−1 + c1A
r1(αr2+ν−1 + · · ·+ αr2A

ν−1)B
)
u

one gets for i = 1, 2, `i = 1, . . . , ri−1 and j = 0, . . . , ν−2

ż1,`1 =z1,`1+1, ż1,r1 = R1z + S1η + b̂1u

ż2,`2 =z2,`2+1

ż2,r2 =z3 − αr2
(
R1z + S1η + b̂1u

)
żj+3 =zj+4 − αr2+j+1

(
R1z + S1η + b̂1u

)
zν+2 =R2z + S2η + b̂2u

η̇ =Pz +Qη

y1 =z1,1, y2 = z2,1

(7)
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that is the MIMO normal form associated to (1).
As a straightforward consequence of (7), one gets that the

zero-dynamics of (1) is η̇ = Qη with η ∈ Rn−r1−r2−ν with
n−r1−r2−ν being the excess poles-zeros and σ{Q} = {s ∈
C s.t. z(s) = 0} that is, the eigenvalues of Q correspond to
the transmission zeros of (1).

From the properties described above it is hence immediate
to state that the control

u =M−1(v − Lx)

(6)
=M−1v −M−1

(
R1z + S1η
R2z + S2z

)
(8)

with v = col(v1, v2) and

L =

(
c1A

r1

c2A
r2+ν + c1A

r1+1(αr2+ν−1I + · · ·+ αr2A
ν−1)

)
achieves right-invertibility of (1); namely, one gets

ż1,` =z1,`+1, ż1,r1 = v1

ż2,` =z2,`+1, ż2,r2 = z3 − αr2v1

żj+3 =zj+4 − αr2+j+1v1

zν+2 =v2

η̇ =Pz +Qη

y1 =z1,1, y2 = z2,1.

(9)

Remark 2.2: In this setting, the largest control-invariant
subspace contained in kerC is given by

V? = ker

 c1
...

c1A
r1−1

 ∩ ker

 c2
...

c2A
r2−1


∩ν−1
j=0 ker

 c2A
r2+αr2c1A

r1

...
c2A

r2+ν−1+c1A
r1(αr2+ν−1I+. . .+αr2A

ν−1)

 .

Accordingly, the feedback law (8) represents the friend of
V? ⊂ kerC and thus the one achieving maximum unobserv-
ability via zeros cancellation. In general, we refer to V? as
the zero-dynamics subspace.

Remark 2.3: We note that if ν = 0 one recovers the
standard normal form issued when (1) possesses a well-
defined relative degree with non-singular decoupling (and
right-invertibility) matrix provided by

M =

(
c1A

r1−1B
c2A

r2−1B

)
.

In general, as ν > 0 the above form shows that non
interaction (and input/output decoupling) cannot be achieved
through static state-feedback. However, the same does not
stand for disturbance decoupling.

III. STABLE ZERO FACTORIZATION OF MIMO SYSTEMS

In this section, we extend the approach proposed in [11]
for extracting the minimum-phase component of a general
non-minimum phase systems (1). The approach is based on
output factorization; namely, starting from (1), we identify
a new dummy output ys(t) = Csx(t) corresponding to the

stable component of the zero-dynamics associated to (1) and
related to (1b) through the differential equation

y(t) = Zu(d)ys(t) (10)

with d = d
dt and a suitably defined two dimensional square

differential matrix

Zu(d) =

(
z1,1(d) z1,2(d)
z2,1(d) z2,2(d)

)
. (11)

More in details, starting from (5), one can split the
zero-matrix as Nsm(s) = Nu(s)Ns(s) with Nu(s) =
diag{zu,1(s), zu,2(s)} and Ns(s) = diag{zs,1(s), zs,2(s)}
such that zu(s) = zu,1(s)zu,2(s), zs(s) = zs,1(s)zs,2(s)
containing, respectively, the zeros on the right and left hand
side of the complex plane; that is det(Ns(s)) = zs(s) and
det(Nu(s)) = zu(s). Accordingly, the (5) rewrites as

P (s) =L(s)Nu(s)Ns(s)D
−1(s)R(s)

=Zu(s)Ps(s)
(12)

with Zu(s) = L(s)Nu(s) and Ps(s) = Ns(s)D
−1(s)R(s).

In particular, Zu(s) is a polynomial matrix in s whereas
Ps(s) is transfer function matrix.

Remark 3.1: When (1) possesses distinct poles with uni-
tary algebraic multiplicity the term Ns(s)D

−1(s)R(s) is
improper as (L(s), R(s)) introduce poles at s = ∞ [14].
To handle this issue [14], one can compute a matrix
K(s) (the so-called right divisor) such that: P̃s(s) =
K(s)Ns(s)D

−1(s)R(s) is proper and with the same poles as
(2) and zs as zeros polynomial; Z̃u(s) = L(s)Nu(s)K−1(s)
is a polynomial matrix in s ∈ C. Accordingly, (12) reads

P (s) =Z̃u(s)P̃s(s) (13)

such that P̃s(s) is strictly proper and verifying (Remark 2.1)

P̃s(s) = Cs(sI −A)−1B. (14)

The computation of such K(s) might not be an easy task
and needs to be performed through a vis-a-vis study. From
now on, for the sake of clarity, we shall assume K(s) =
I although all the results to come hold true in general as
illustrated through the case study.

Proposition 3.1: Consider the system (1) under Assump-
tions A1 to A3 and let z(s) = zu(s)zs(s) be the zero-
polynomial where zs(s) denotes the Hurwitz component. Let
the transfer function P (s) be of the form (13) with Ps(s) as
in (14) and ys = Csx solution to (10). Then, the system

ẋ = Ax+Bu (15a)
ys = Csx (15b)

identifies the minimum-phase component of (1) with zero
polynomial given by zs(s).

Proof: The proof is a straightforward consequence of
the Smith McMillan form associated to (2) and (12).

Remark 3.2: The new output (15b) can be computed as
follows. Let (Â, B̂, Ĉ) with Â ∈ MatR(n̂) with n̂ ≥ n be
a realization of (14) and (Â?, B̂?, Ĉ?) with Â? ∈ MatR(n)
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the corresponding restriction onto the observable and con-
trollable subspaces. Denote by T and T? the non-singular
transformations putting, respectively, (A,B) and (Â?, B̂?)
into the eigenvalues assignment canonical form [13](Ch.5).
Then, because TAT−1 = T?ÂT

−1
? and TB = T?B̂? one

gets Cs = Ĉ?T
−1
? T .

IV. APPLICATIONS

A. Right-invertibility with stability
As a consequence of the factorization in Section III,

because of Assumption A2, one gets the following result.
Lemma 4.1: Consider the system (1) under Assumptions

A1 to A3 and let (15) identify its minimum-phase component
with transfer function (14). Then, (15) is right-invertible with
indexes (rs1, r

s
2, ν

s) verifying rs1 +rs2 +νs = n−deg(zs(s)).
Proof: The proof is a straightforward consequence of

the factorization (12). Indeed, as R(s) is unimodular, the
result follows from [15].

Remark 4.1: From the result above it is always possible
to choose L(s) such that the components of the matrix
Zu(s) in (11) are such that deg{z1,1(s)} = rs1 − r1,
deg{z1,2(s)} = rs2 + νs − r1, deg{z2,1(s)} = rs2 + νs − r1,
deg{z2,2(s)} = rs2 + νs − r2 − ν with deg{·} denoting the
degree of the corresponding polynomial and (r1, r2, ν) being
the invertibility indices associated to (1).

By virtue of the result above and Section II-B, right-
invertibility of the stable component of (1) can be achieved
through right-invertibility of the same system with dummy
output (15b).

Proposition 4.1: Consider the system (1) under Assump-
tions A1 to A3. Let (15) identify the minimum phase
component of (1) with invertibility indices (rs1, r

s
2, ν

s). Then,
there exist αrs2+j ∈ R with j = 0, . . . , νs − 1 such that

cs2A
rs2+j−1B + cs1A

rs1

j−1∑
`=0

αrs2+`A
j−`−1B = 0 (16)

and

Ms=

(
cs1A

rs1−1B

cs2A
rs2+νs−1B + cs1A

rs1
∑νs−1
i=0 αrs2+iA

νs−i−1B

)
with det{Ms} 6= 0. Accordingly, the feedback

u = M−1
s (v − Lsx) (17)

with

Ls =

(
cs1A

rs1−1

cs2A
r2+ν + cs1A

rs1+1(αrs2+νs−1I + · · ·+ αrs2A
νs−1)

)
performs right-invertibility of the minimum-phase compo-
nent of (1).

Proof: Along the lines of Section II-B, we introduce
the coordinate transformation

zs1
zs2
zs3
...

zνs+2

η


=



T s1
T s2
T s3
...

T sνs+2

Tηs


x, zsi =

 zsi,1
. . .
zsi,rsi

 (18)

for i = 1, 2 and with, for j = 3, . . . , νs + 2 so that, under
the control (17), (15) gets the form

żs1,` =zs1,`+1, żs1,r1 = v1

żs2,` =zs2,`+1, ż2,rs2
= zs3 − αrs2v1

żsj+3 =zsj+4 − αrs2+j+1v1

zsνs+2 =v2

η̇s =P szs +Qsηs

ys1 =zs1,1, ys2 = zs2,1

with η̇s = Qsηs being the asymptotically stable zero-
dynamics with σ{Qs} = {s ∈ C s.t. zs(s) = 0} ⊆ {s ∈
C s.t. z(s) = 0}. From (10), one gets in the new coordinates

y = Zu(d)ys = Zu(d)

(
zs1,1
zs2,1

)
= Ĉzs

and thus the result.

As a consequence, one gets the following result.

Proposition 4.2: Consider the systems (1) and (15) and
let V? and V?s be, respectively, the largest controlled (A,B)-
invariant subspaces contained in ker{C} and ker{Cs}. Then,
V?s ⊂ V?.

Proof: For the ease of the proof, assume that for (1)
ν = 0. By virtue of (10) one has, for i = 1, 2 and j =
0, . . . , ri − 1

djyi(t) = ciA
jx = djzi,1(d)ys2 + djzi,2(d)ys2

= zi,1(d)cs1A
jx+ djzi,2(d)cssA

jx

with, by definition of r1, r2, ∇u(Zu(d))djys) = 0. By
exploiting (16), it is a matter of computations to deduce that

(
T1

T2

)
︸ ︷︷ ︸
V

= N

 T s1
...

T sνs+2


︸ ︷︷ ︸

Vs

.

with Ti and T sj as in (6) and (18) for i = 1, 2 and
j = 1, . . . , νs + 2 and N being an upper triangular full
rank matrix. From the equality above one gets that V?s =
ker{Vs} ⊂ ker{V } = V? and thus the result.

The feedback (17) is the one generating in closed loop
the maximal unobservability constrained to stability; namely,
(17) is the one canceling only the Hurwitz component of the
zero dynamics of the original system (1). In other words,
(17) is rendering only the stable component of V? feedback-
invariant (that is V?s ).

Remark 4.2: It must be noted that, albeit (1) possesses a
well-defined relative degree (that is ν = 0), when introducing
the new dummy output issued from Proposition 3.1 through
the Smith form, one might get νs ≥ 0. However, νs defines
the order of the dynamic extension that is necessary (over
the control input u1) for recovering a well-defined relative
degree (r̂s1, r

s
2).

Remark 4.3: By virtue of Assumption A2 and Remark
2.3, one gets that the asymptotic tracking problem of a
smooth reference yr(t) ∈ R2, corresponding to zsr(t) in
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the new coordinates, admits a solution with stability (under
dynamical feedback if νs > 0) by solving the equivalent
problem over the partially minimum-phase system (15) and
with respect to the dummy output reference ysr(t) ∈ R2.

B. DDP of non minimum-phase systems with stability

Let (1) be affected by a disturbance w ∈ R2 that is

ẋ = Ax+Bu+ Pw (19a)
y = Cx (19b)

with P ∈ MatR(n, 2). In this section, it is shown how
disturbance decoupling (DDP) can be solved with stability
by making use of the new output deduced in Section III.
It is worth recalling that, in general and regardless stability,
disturbance decoupling is solvable if and only if Im{P} ⊂
V? ⊂ ker{C}. However, the corresponding solution guar-
antees stability of the closed loop if and only if the zero-
dynamics associated to (19) is asymptotically stable. The
next statement provides a new result ensuring the existence
of a disturbance decoupling controller preserving stability of
the internal dynamics.

Theorem 4.1: Consider (19) under assumptions A1. to A3.
and the dummy output (15b) defined by Proposition 3.1.
Then, output disturbance decoupling with stability for (19)
is solvable for all P verifying Im{P} ⊂ V?s ⊂ ker{C}
where V?s is the largest (A,B)-invariant subspace contained
in ker{Cs}. In addition, the corresponding feedback is (17).

Proof: The proof is a straightforward consequence of
Proposition 4.2 ensuring V?s ⊂ V? ⊂ ker{C}.

Remark 4.4: By virtue of Remark 4.2, one gets that dy-
namical feedback extension is unnecessary for solving DDP
whenever the system is right-invertible even if (15) do not
possess a well-defined relative degree.

V. THE 4-TANKS AS AN EXAMPLE

Consider the case of a 4-tanks system [16] given by

ḣ = f(h) +Bu (20a)
y = Ch (20b)

with h = col{h1, h2, h3, h4}, f(h) = 2F (h)h

F (h) =

−p1(h1) 0 A3
A1
p3(h3) 0

0 −p2(h2) 0 A4
A2
p4(h4)

0 0 −p3(h3) 0
0 0 0 −p4(h4)



B =


γ1k1
A1

0

0 γ2k2
A2

0 (1−γ2)k2
A3

(1−γ1)k1
A4

0

 , C = κt


1 0
0 1
0 0
0 0


>

pi(hi) = ci
√

2ghi

2Aihi
. For the sake of compactness, let bij

correspond to the element in position (i, j) of the input-
state matrix B. In particular, hi, Ai and ci are, respectively,
the level of water in the ith-tank, its cross-section area and
the cross-section of the outlet hole for i = 1, 2, 3, 4. The
control signals uj with j = 1, 2 correspond to the voltage

applied to jth-pump with kjuj being the corresponding flow.
We consider the problem of locally asymptotically tracking
the output of (20) to a desired y? = (h?1, h

?
2) corresponding

to make h? = (h?1, h
?
2, h

?
3, h

?
4)> with

h?3 =
(c1γ2

√
h?1 − c2(1− γ2)

√
h?2)2

c23a
2
3γ

2
2

h?4 =
(c2γ1

√
h?2 − c1(1− γ1)

√
h?1)2

c24a
2
4γ

2
1

for a3 = γ2
1−γ2 −

1−γ1
γ1

and a4 = γ1
1−γ1 −

1−γ2
γ2

a locally
asymptotically stable equilibrium for the closed-loop system
under nonlinear feedback.

1) Analysis of the zero-dynamics: The vector relative
degree of (20) is well defined and given by r = (1 1) so that
it exhibits a two-dimensional zero-dynamics. Accordingly,
for investigating minimum-phaseness of (20), one computes
the linear tangent model (LTM) at h? of the form (1) with
x = h − h? and A = 2F (h?) with corresponding transfer
function matrix

P (s) = κt

(
b11
s+p1

b32 p3
(s+p1) (s+p3)

b41 p4
(s+p2) (s+p4)

b22
s+p2

)
(21)

pi = pi(h
?
i ) > 0 for i = 1, 2, 3, 4 , Smith form as M(s) =

diag{ 1
d(s) , z(s)}, with pole-polynomial d(s) = (s+ p1)(s+

p2)(s+ p3)(s+ p4) and zero-polynomial z(s) = s2 + (p3 +
p4)s+ p3p4

b11b22
(b11b22 − b32b41). Thus, (20) is nonminimum-

phase if b11b22−b32b41 < 0 so that one can factorize z(s) =
(s−zu)(s−zs) for zu ∈ R+ and zs ∈ R−. As a consequence,
if b11b22 − b32b41 < 0, output regulation to y? cannot be
achieved through classical right-inversion even if the relative
degree is well-defined.

In the following we show how the procedure detailed in
Section III allows to deduce a new output ys = Csh and
a nonlinear feedback locally solving the regulation problem
with stability for (20).

2) The new dummy output: By virtue of Remark 3.1,
because (A,B,C) possesses three distinct poles in gen-
eral, one gets that the matrix Ps(s) = diag{1, s −
zs}diag{d(s), 1}R(s) is improper for all choices of
(L(s), R(s)). However, by suitably setting K(s)1 so to make
P̃s(s) = K(s)Ps(s) rational one gets the dummy output

ys =

(
1 0 0 0

− b32b41p42b11β
b32
2 −

b32(p3+p4)
2β − b222 −

b22(p3+p4)
2β

b32 p4
2β

)
h

(22)
with β =

√
(p3 + p4)2 − 4 p3p4

b11b22
(b11b22 − b32b41) making

the LTM model of (20a) minimum-phase.
3) Asymptotic tracking with stability: It is easily checked

that, the nonlinear dynamics (20a) with output as in (22)
possesses a well-defined relative degree rs = (1, 2) at h?.
Also, it is a matter of computations to verify that (20a) with
output (22) is locally minimum-phase with zero-dynamics
η̇s = qs(0, η

s) verifying ∂qs
∂ηs

(0, ηs?) = zs < 0. At this point,

1For the sake of space, (L(s), R(s),K(s)) are reported at https://
hal.archives-ouvertes.fr/hal-02526676.
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Fig. 1. The four tank model under stable dynamic inversion.

along the lines of Remark 4.3 and by exploiting the results
in [9, Chapter 5], one gets that output tracking of (20) can be
solved over the dummy output (22) by setting the constant
ys? = (ys1,?, y

s
2,?)
> ∈ R2 as solution to y? = Zu(d)y?s which

is given by construction as ys? = Csh
?. Accordingly, for all

k0, k1 > 0 the feedback

u=−M−1
s (h)

(
cs1f(h) + ys1 − ys1,?

Lfc
s
2f(h)+k1c

s
2f(h)+k0(ys2 − ys2,?)

)
(23)

with decoupling matrix

M−1
s (h) =

(
cs1B

L2
fc
s
2f(h)B)

)
ensures local asymptotic regulation of y to the desired y?

while preserving internal stability.
4) Simulations: For completeness, simulations are re-

ported in Figure 1 for the closed-loop system under the
stabilizing feedback designed over the new dummy output
highlighting the locally minimum-phase components of (20).
Simulations are performed for the parameters fixed as in the
Table below.

A1 [cm2] 28 A3 [cm2] 28
A2 [cm2] 32 A4 [cm2] 32
c1 [cm2] 0.071 c3 [cm2] 0.071
c2 [cm2] 0.057 c4 [cm2] 0.057
kt [V/cm] 1 g [cm/s2] 981

γ1 0.43 γ2 0.34
k1 65.12 k2 94.12

In addition, we fixed y? = (7.1, 6.2)> corresponding to
h? = (7.1, 6.2, 3.58, 1.632)>. In particular, with this choice

of parameters, the plant is nonminum-phase with the zeros
of LTM model at the desired equilibrium provided by zu =
0.018 and zs = −0.0789. The gains of the controller (23) are
fixed as (k0, k1) = (1, 2). Simulations report the story of the
original and dummy outputs plus the real residual internal-
dynamics of the feedback plant (that is the water levels of the
third and fourth tank with respect to the real output) while
proving the effectiveness of the proposed design approach.

VI. CONCLUSIONS

In this paper, a systematic procedure for controlling
MIMO non-minimum phase systems has been proposed
based on output factorization. In particular, recurring to the
Smith-MacMillan form, a dummy output associated with
the stable component of the zero-dynamics is exhibited to
perform inversion of the minimum-phase component. The
results locally apply to the case of nonlinear dynamics with
linear outputs. Perspectives concern the extension of this
methodology to the case of nonlinear output mappings.
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Chapter 4

Stable partial inversion via sampled-data
multi-rate model predictive control
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Starting from the major points which have been raised in Chapter 2 that brought us to un-
derstand that direct digital control strategies may induce instability also due to the loss of

minimum phase property of the sampled-data model of the process, we will address in the sequel
MPC control which is strongly affected by this pathology.

Accordingly, the chapter starts by providing an overview of the fact that the so-called tracking
nonlinear MP at the limit, i.e. when the problem is unconstrained and the control penalty is small
enough implies inversion. This fact clearly puts in light possible instability of the closed loop system
under MPC when using the sampled-data model for prediction is a consequence of the unstable zero
dynamics which characterize the sampled-data equivalent model.

This fact, and taking into account the discussion in Section 2.4, lead one naturally to understand
that the use of multi-rate sampled-data equivalent models for prediction in the MPC formulation
can be a way to mitigate the obstructions linked to the cancellation of unstable zero dynamics and
guaranteeing closed loop stability. These aspects are discussed and settled in;

Mohamed Elobaid, Mattia Mattioni, Salvatore Monaco and Dorothée Normand-Cyrot. “On
unconstrained MPC through multirate sampling”. IFAC-PapersOnLine, 52(16), 388-393. DOI:
10.1016/j.ifacol.2019.11.811.

The proposed solution will be called sampled-data multi-rate MPC. It is characterized by the
use, at the control and prediction level of an MPC formulation, a multi-rate discrete time model
over which the optimization problem is worked out. Some concluding remarks on the costs and
benefits related to the proposed solution are also provided. It results that robustness, also linked to
multi-rate control remains a major point, which leads us to ask for a “better” solution detailed in
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4.1. Cheap unconstrained model predictive control implies partial inversion

Chapter 5. The notions appearing hereinafter are recalled from Camacho and Alba (2013), Grüne
et al. (2008), Allgöwer and Zheng (2012), Mayne et al. (2000a), Seron et al. (1999) and the references
therein.

4.1 Cheap unconstrained model predictive control implies partial
inversion

We start by considering a nonlinear SISO input affine system herein recalled for completeness

ẋ = f(x) + g(x)u (4.1a)

y = h(x) (4.1b)

assumed minimum phase having a well defined continuous-time relative degree r. We recall the
finite time optimal control problem Grüne and Pannek (2017);

V = minu
∫ tf

t0

ℓ(y(t), yr(t), u(t))dt

s.t. ẋ(t) = f(x(t)) + g(x(t))u(t), y(t) = h(x(t))

x(t) ∈ X , t ∈ [t0, tf ],

u(t) ∈ U , t ∈ [t0, tf ]

(4.2)

where V is the so-called optimal value function, t0, tf are initial and final time respectively, the term
ℓ(y(t), yr(t), u(t)) is the stage cost function to be penalized and yr(t) a desired reference signal. The
sets X ,U , being the state and control constraints sets are assumed compact, convex and containing
the origin (equivalently the trajectory y(t) = yr(t)) in their interior.

In the limit when: (1) the sets X ,U are the whole state and input space respectively (uncon-
strained problem), (2) the penalty on the control is very small, and (3) the stage cost is quadratic
in the tracking error the resulting optimal control problem is known in the literature as the cheap
optimal control problem Seron et al. (1999). In this cheap control setting, the optimal value of the
cost index is known as the ideal performance. It is then natural to ask; when the ideal performance,
typically proportional to the tracking error, is exactly zero? and to this end recall;

Given a nonlinear control affine system and ϵ ∈ R small, the cheap optimal control problem
asks for a feedback that minimizes the cost function

V = minu
∫ ∞

t0

∥y(t)− yr(t)∥2Q + ϵ∥u(t)∥2Rdt (4.3)

subject to the system dynamics. Moreover, at the limit when ϵ = 0, the problem asks for
conditions under which this feedback results in zero ideal performance for the system.

Problem: cheap optimal control

In Seron et al. (1999) (equivalently in Qiu and Davison (1993) for the linear case), it was shown
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4.1. Cheap unconstrained model predictive control implies partial inversion

that, the ideal performance of a control system, that is the lowest attainable norm of its output
tracking error, is the least amount of energy required to stabilize the zero dynamics and that unstable
zero dynamics represent a structural obstacle to attaining zero ideal performance. The following
statement is herein recalled to emphasize this fact;

For a (locally observable and controllable) nonlinear control affine systems having a
continuous-time relative degree r, the feedback solving the cheap optimal control prob-
lem achieves zero ideal performance if and only if the system is minimum phase.

Lemma: zero ideal performance

The continuous-time optimal control problem is an infinite dimensional Nonlinear Program NLP
hindering the ability to provide numerical/implementable solutions. A workaround this issue is the
transformation of this infinite dimensional non-convex NLP into a finite dimensional nonlinear MPC
problem through transcription methods (also called shooting) and integration. In this sense, and
following Camacho and Alba (2013), one obtains the following equivalent nonlinear MPC problem;

V = minUVnp(x(k + np)) +

np−1∑

i=1

ℓ(y(k + i), yr(k + i), u(k + i− 1)) (4.4a)

st. x(k + 1) =F δ(x(k), u(k)), y(k) = h(x(k)) (4.4b)

x(k + i) ∈ X ,i = 1 . . . , np − 1 (4.4c)

u(k + j) ∈ U , j = 0, . . . , nc − 1 (4.4d)

u(k + j) = unp , j = nc, . . . , np − 1 (4.4e)

x(k + np)∈ Xnp (4.4f)

where U is the control decision variable over nc steps, np, nc are the so-called prediction and control
horizons respectively such that t0 = kδ, tf = (k+np)δ. Note that, through integration (and possibly
truncation as in (2.9)), one obtains an equivalent ASR sampled-data model of the continuous-time
system as a so-called prediction model (4.4b). Typically the stage cost function in tracking MPC
is quadratic in the error Camacho and Alba (2013), namely;

ℓ(y(k + i), yr(k + i), u(k + i− 1)) = ∥y(k + i)− yr(k + i)∥2Q + ∥u(k + i− 1)∥2R (4.5)

with Q,R positive definite and positive semi-definite penalizing matrices respectively. The terminal
penalty Vnp(·), terminal control unp(·) and terminal constraints set Xnp(·) are added to the opti-
mization problem to the purpose of ensuring closed loop stability. In fact, the following conditions
on the terminal ingredients are imposed as detailed in the important survey Mayne et al. (2000a);

• terminal penalty Vnp(x(k + np)): this is “typically” designed as a quadratic form x(k +

np)
⊤Px(k + np), where P is the solution to the discrete algebraic Riccati equation associ-

ated with the Linear Quadratic Regulator LQR problem Anderson and Moore (2007) of the
LTM model of the system. The terminal penalty serves as a local Lyabonuv function over the
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4.1. Cheap unconstrained model predictive control implies partial inversion

terminal constraints set.

• terminal control u(k + j) = unp(x) after nc time steps, being the LQR feedback deriving the
LTM model of the system to the reference. This feedback should ensure that the terminal
constraints set is positively forward invariant.

• terminal constraints set x(k + np)∈ Xnp ensuring that the trajectories of the closed loop con-
verge to a predefined (typically a closed subset of the maximal output admissible set Gilbert
and Tan (1991)) region.

Those terminal ingredients are specifically designed to ensure, absent other horizon length and
technical controllability assumptions, closed loop stability under MPC. These ingredients are done
in conjunction with the usual practical recommendation of setting bounds on the minimum length
of np and selecting nc << np.

All of this discussion suggests that indeed when the output is required to track the input via
MPC, some cancellation of the zero dynamics occur provided the penalty on the control small enough
and the problem is unconstrained. And while the above intuition is discussed in the continuous-time
literature, it is not difficult to see that also holds in the digital context Qiu and Davison (1993).

In the following simple example, we illustrate this fact, that MPC requires the cancellation of
zeros in the linear case at the cheap control limit;

Example 4.1 recall the triple integrator;

G(s) =
1

s3

which has a pulse transfer function;

H(z) =
δ3(z2 + 4z + 1)

z3 − 3z2 + 3z − 1

where δ is the sampling period. As already discussed in Section 2.2, the sampled-data model has
an additional r − 1 = 2 sampling zeros one of which lies outside the unit disk. The sampled-data
state-space model matrices, recalled again for completeness, read

Ad =



1 δ δ2

2

0 1 δ

0 0 1


 , Bd =



δ3

3!
δ2

2!

δ


 , Cd =

(
1 0 0

)

Consider now a tracking unconstrained MPC problem with a quadratic cost function, namely let
the decision variable over the prediction horizon be U = (u(k) u(k + 1) . . . u(k + np − 1))⊤ and
define

V = minU
np∑

i=1

(
∥y(k + i)− yr(k + i])∥Q + ∥u(k + i− 1])∥R

)

s.t x(k + i) = Adx(k + i− 1) +Bdu(k + i− 1), y(k + i) = Cdx(k + i)

Applying the first order necessary optimality conditions we have and taking only the first optimal
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control;

∂V

∂U
=

∂

∂U

np∑

i=1

(
∥y(k + i)− yr(k + i])∥Q + ∥u(k + i− 1])∥R

)
|U⋆ = 0

=⇒ u⋆ =
(
1 0 . . . 0

)
(B⊤

e QeBe +Re)
−1B⊤

e Qe(yre −Aex)

where Qe = Q⊗ Inp , Re = R⊗ Inp , yre =
(
yr(k + 1) yr(k + 2) . . . yr(k + np)

)⊤
and

Ae =




CdAd

CdA
2
d

...
CdA

np

d



, Be =




CdBd 0 . . . 0

CdAdBd CdBd . . . 0
...

...
. . .

...
CdA

np−1
d Bd CdA

np−2
d Bd . . . CdA

np−nc

d Bd




As the figure below illustrates, fixing the prediction horizon at np = 5 and changing the control
horizon nc one can see the closed loop poles and zeros under the feedback u⋆ and note that as
nc → np, R→ 0 zero-poles cancellation occurs. Consequently we have unstable inversion in MPC.

The example above demonstrates how unconstrained tracking MPC reduces to inversion and zero
dynamics cancellation when the prediction and control horizon coincide. This fact also explains a
suggested practice among engineers of setting np >> nc (see for example the guidelines of MATLAB
(2020)), as well as gives a hint on how unstable inversion with a sampled-data prediction model
is a key factor motivating the use of technical terminal ingredients to guarantee stability in MPC
formulations Camacho and Alba (2013).

This last aspect, tracking MPC under sampling being an inversion based control at the limit,
compounded with the additional knowledge of the rise of non minimum phase zero dynamics under
sampling, is the reason we study some possible solutions so that, at the limit, MPC provides (an
almost) zero ideal performance while maintaining stability.
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Figure 4.1: Poles and zeros map of the triple integrator under unconstrained MPC np = 5, R = 0.1I, Q = I
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4.2. Stable partial inversion in model predictive control via multi-rate sampling

4.2 Stable partial inversion in model predictive control via multi-
rate sampling

Building upon the discussion in the previous section, and the reality of digital implementation we
restrict the problem to ask for finding a solution at all instants of time t = kδ, k ∈ Z≥0 with δ a
suitable sampling period, namely;

Find a bounded digital feedback ensuring that at the sampling instants that: y(k) = yr(k),
k ≥ k⋆ with yr(k) = yr(kδ) by minimizing:

J =

np∑

i=1

(
∥yr(k + i)− y(k + i)∥2Q + ϵ∥u(k + i− 1)∥2R

)
(4.6)

with Q,R > 0 being appropriate penalizing weights and ϵ ∈ R small.

Problem: unconstrained cheap MPC under sampling

Note that this is a cheap optimal finite-time control problem and thus we will address it using
a multi-rate sampled-data equivalent model for prediction in a nonlinear MPC design. This is
motivated by: (1) cheap optimal control implies cancellation of the zero dynamics and (2) multi-
rate sampling preserves the structure of the zero dynamics.

In this sense, the proposed nonlinear MPC problem is an optimization problem, subject to the
system dynamics described by a multi-rate sampled-data equivalent model of order r, repeated
herein for completeness of the form;

x(k + 1) = F δm(x(k), u(k)) (4.7a)

Y (k) = H(x(k)) (4.7b)

where the output map H(x) is as in (2.15). The dynamics constraint above is joined by possibly
additional requirements and bounds. In essence, we are replacing (4.4b) with (4.7a) in the nonlinear
MPC problem, and removing the terminal ingredients. Additionally the following assumption is
needed;

Assumption 4.1 The following assumptions are assumed to hold;

• Measures of the desired output reference yr and it’s higher r−1 derivatives y(i)r , i = 1 . . . r−1

are available at the sampling instants.

• The sets X ,U in (4.4c), (4.4d) are the whole state and input space respectively.

• The control and prediction horizons coincide nc = np

The above assumption is not restrictive and can be weakened via an exogenous system generator
of the reference, which allows us to predict the future values of y(i)r , i = 0 . . . r − 1.
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4.2. Stable partial inversion in model predictive control via multi-rate sampling

To solve the problem we adopt the so called direct single shooting (Hicks and Ray (1971)) in
which one rewrites the cost function (4.6) as;

J =

np∑

i=1

L(., y⋆(k + i), u(k + i− 1)) ◦ (F δm(., u(k + i− 1)) ◦ . . . ◦ (F δm(x(k), u(k)))

essentially plugging (4.7a),(4.7b) into (4.6). At this point, an optimum is found applying the first
order necessary conditions solving

∂J

∂ue
= 0

where
ue(k) =

(
u(k) . . . u(k + np − 1)

)⊤

For our purposes it is interesting to repeat that in its usual implementation MPC makes use of
a sampled data model of the plant for prediction. This induces the loss of the minimum-phaseness,
so indeed, forcing the designer to choose nc << np to guarantee internal stability while also defining
a dynamical controller to ensure off-set free tracking. In the approach we are proposing, the use of
multirate sampled data model will provide a static feedback overcoming both issues.

For the sake of compactness, define the extended output vector dynamics for np future steps;

Ye(k + 1) = AeY (k) +Be(x(k))ue(k) + Θ(x(k), ue(k)) (4.8)

with
Ye(k + 1) =

(
Y (k + 1) Y (k + 2) . . . Y (k + np)

)⊤

and

Be(.) = LgL
r−1
f h(.)




B 0 . . . 0

AB B . . . 0
...

Anp−1B Anp−2B . . . B



, B = D∆(r) D = diag(δ̄r/r!, . . . , δ̄)

∆(r + j) =




(r + j)r+j − (r + j − 1)r+j . . . (j + 1)r+j − (j)r+j

. . .

(r + j)j − (r + j − 1)j . . . (j + 1)j − (j)j


 , Ae =




A

A2

...
Anp




A =




1 δ . . . δr−1/(r − 1)!
. . .

0 0 . . . 1




with j ≥ 0 and Θ(.) containing all other terms in δ̄i, i > r Mattioni et al. (2017a). Let the extended
reference over np steps be denoted by;

Yre(k + 1) =
(
Yr(k + 1) Yr(k + 2) . . . Yr(k + np)

)⊤

Yr(k) =
(
yr(k) ẏr(k) . . . y

(r−1)
r (k)

)⊤
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The next result from (Elobaid et al., 2019, Theorem 2) shows that the problem stated in the previous
section is always solvable with np = nc > 1 under multirate feedback, provided the relative degree
is well defined.

Given a continuous-time nonlinear SISO control affine system that possesses a relative
degree r ≤ n, and let (4.7a),(4.7b) be its multi-rate sampled-data equivalent model of
order r. Consider the sampled-data optimal cheap control problem with internal stability
and cost functional (4.6) and let e(k) = ∥Y (k)− Yr(k)∥2. Then the sampled-data optimal
cheap control problem (4.2) is solvable for all np = nc ≥ 1. Moreover, the feedback solving
the problem is defined as the unique solution to:

K(x, ue)Qe(Be(x) +Re)ue = Be(.)(Yre −AeY −Θ(x, ue)) (4.9)

with Qe = I ⊗Q, Re = ϵI ⊗R and

K(x, ue) = (B⊤
e (x) +

∂

∂ue
Θ(x, ue))

Result: unconstrained MPC through multi-rate sampling

Remark 4.1 the solution obtained in the Theorem above is implicitly defined by the above equality
and is a formal series in powers of δ̄. Such a solution cannot be exactly computed in practice although
several procedures are available for deducing approximation up to any desired order so to guarantee
the required performances (see Monaco and Normand-Cyrot (1997)) for further details).

Remark 4.2 as ϵ → 0, the feedback defined by (4.9) coincides with the deadbeat inverting control
that steers the output to the desired yr in one step; such a feedback comes with an effort that is in
general, inversely proportional to δ, thus by suitably setting ϵ, R one can reduce the effort while still
guaranteeing off-set free tracking in finite time.

It is rather straightforward to show that when the system (3.1) is linear (i.e. f(x) = Fx, g(x) = G

and h(x) = Cx) one recovers the known prediction matrices of the output trajectory of the discrete
time equivalent model and the explicit MPC solution as in (Camacho and Alba, 2013, Chapter 2).
To see this in detail, one can refer to the paper (Elobaid et al., 2019, Remark 5).

4.3 Optimality of multi-rate control

As discussed in the beginning of this chapter, we will limit our attention to the limit case, i.e. the
cheap optimal control problem in which the penalty on the control is vanishingly small. Thus, in
this section we attempt to show the interesting fact that a multi-rate sampled-data control deriving
the states to a desired point in one step is equivalent to the feedback solving a minimum time
cheap optimal control problem at the sampling instants when the system is minimum phase. This
observation will highlight the interesting fact that the solution proposed to the MPC problem via
multi-rate prediction recovers, at the limit, this multi-rate control.
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This aspect can be more readily seen through the special class of systems that admits the
so-called chained form, as discussed in the sequel.

Cheap control and steering of systems in chained form

A nonholonomic driftless mechanical system Sastry (1999) with configuration x ∈ Rn is a mechanical
control affine dynamics of the form

ẋ = g1(x)u1 + g2(x)u2

g1(x) =
∂

∂x1
+

n∑

i=2

gi1(x)
∂

∂xi

g2(x) =

n∑

i=2

gi2(x)
∂

∂xi

subject to k kinematic constraints of the form

αi(x)ẋ = 0, i = 1, . . . , k (4.10)

where αi(·) are smooth and linearly independent, and such that any point in the configuration space
is reachable. Define the distributions;

∆0(x) = span{g1, g2, adg1g2, . . . , adn−2
g1 g2}

∆1(x) = span{g2, adg1g2, . . . , adn−3
g1 g2}

and define the function h(x) satisfying dh(x) ∆1 = 0 and dh(x) adn−2
g1 g2 ̸= 0. If ∆0(x) = Rn and

∆1(x) is involutive, then there exists a coordinates change;

z = ϕ(x)

ϕ(x) =
(
x1 Ln−2

g1 h(x) . . . Lg1h(x) h(x)
)⊤

and feedback;

ν1 = u1

ν2 = Ln−1
g1 h(x)u1 + Lg2L

n−2
g1 h(x)u2

such that the system takes the so-called single chained form Murray and Sastry (1991);

ż1 = ν1

ż2 = ν2

żi = zi−1ν1 i = 3, . . . , n

(4.11)

It is possible to verify that systems of the form (4.11) admit a finitely computable sampled-data
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equivalent model, applying (2.6), of the form

z1(k + 1) = z1(k) + δν1(k) (4.12a)

z(k + 1) = A(δ, ν)z(k) + b(δ, ν1(k))ν2(k) (4.12b)

where z(k) = (z2(k) z3(k) . . . zn(k))
⊤, and

A(δ, ν) =




1 0 0 . . . 0

δν1(k) 1 0 . . . 0
...

. . . . . .
δn−2

(n−2)!ν1(k)
δn−3

(n−3)!ν1 . . . δν1 1



, b(δ, ν1) =




δ
δ2

2! ν1
...

δn−1

(n−1)!ν1




(4.13)

Writing the sampled-data equivalent dynamics to a system in chained form in the compact form
(4.12a), (4.12b) highlights that not only are they finitely computable, but also is still affine in the
second control ν2(k). At this point we recall that our cheap optimal control problem asks us to
minimize the cost function (4.3) at the sampling instants t = kδ. Let y = z, yr = z⋆ in (4.3), then
at the sampling instants, the problem asks for a digital control that steers the system (4.11) from
an initial configuration z(t0) to a final configuration zr.

Being affine in the second control input ν2(k), and the fact that ν1(k) can be used to steer z1(t0)
to it’s desired configuration in one step of length δ, one can set a multi-rate of order n− 1 on ν2(k).
Namely, let ν1(k) be constant over the sampling interval of length δ and let δ̄ = δ

n−1 . Define

νi2(k) = ν2(k), t ∈ [kδ + (i− 1)δ̄, kδ + iδ̄[ i = 1, . . . , n− 1 (4.14)

and denote ν2(k) =
(
ν12(k) ν22(k) . . . νn−1

2 (k)
)⊤

. With this in mind, it is possible to verify that
the multi-rate sampled equivalent model to (4.11) of order n− 1 on ν2 takes the form

z1(k + 1) = z1(k) + δν1(k) (4.15a)

z(k + 1) = An−1(δ̄, ν1(K))z(k) +R(δ̄, ν1(k))ν2(k) (4.15b)

where
R(δ̄, ν1) =

(
b(δ̄, ν1) A(δ̄, ν1)b(δ̄, ν1) . . . An−2(δ̄, ν1)b(δ̄, ν1)

)
(4.16)

is a full rank matrix. With this discussion, the following statements can be made Di Giamberardino
et al. (1996a);

Applications of sampled-data methodologies 75



4.4. Application to the control of systems in chained form

Given the chained form (4.11), together with the cheap optimal control cost function (4.3)
where the output is the configuration vector y(t) = z(t). Let (4.15a),(4.15b) be the multi-
rate equivalent model of order n− 1 on the second control. Furthermore let z1,r, zr be the
first component of zr and the vector of remaining desired configurations respectively. Then
the feedback

ν1(k) =
z1,r(k)− z1(k)

δ
(4.17a)

ν2(k) = R#(δ̄, ν1)
(
zr(k)−An−1(δ̄, ν1)z(k)

)
(4.17b)

exactly steers the system in one step of length δ from z(k) to zr(k) and coincides with the
solution to the cheap optimal control problem in finite time with zero ideal performance.

Lemma: zero ideal performance and multi-rate digital steering

Taking into account of the preliminary feedback, steering is achieved under piece-wise continuous
control designed on the basis of the multirate sampled model.

Having established the fact that multi-rate sampled feedback, in some cases, is an optimal feed-
back, and recalling that MPC induces cancellation of the zero dynamics, it is natural to utilize
multi-rate sampling whenever designing MPC control laws as done in Section 4.2. In the sequel
we utilize the proposed multi-rate MPC to solve steering and tracking problems for finitely des-
critizable systems. To this end we use the example of systems admitting chained forms. It is also
highlighted how, in the limit, the feedback defined by the MPC scheme and the feedback obtained
from (4.17a),(4.17b) coincide.

4.4 Application to the control of systems in chained form

For simplicity, the following discussion will consider a chained form in R3 albeit the arguments
extend to the general case.

Suppose one wants the state of the system to converge to a desired trajectory yr = (yr,1 yr,2 yr,3)
⊤ ∈

R3. Considering ν2(t) = νi2(k) = ν2(kδ + (i − 1)δ̄) for t ∈ [kδ + (i − 1)δ̄, kδ + iδ̄[, i = 1, 2, one can
write the output prediction y(k) = z(k) over np steps as

z1(k + np) = z1(k) + δ

np−1∑

i=0

ν1(k + i)

z(k + np) = ϕ(k + np, k)z(k) +

np−1∑

i=0

ϕ(k + np − 1, k + i+ 1)R(·, ν1(k + i))ν2(k + i) (4.18)

where z(k) = (z2(k) z3(k))
⊤, ν2(k) = (ν12(k ν

2
2(k))

⊤ and

ϕ(k + np, k) =

np−1∏

i=0

Am(δ̄, ν1(k + np − i− 1)) (4.19)
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with Am(·) = A2(δ̄, ν1) and

A(δ̄, ν) =

(
1 0

δ̄ν1(k) 1

)
, b(δ̄, ν1) =

(
δ̄

δ̄2

2! ν1(k)

)
, R(δ̄, ν1) =

(
A(δ̄, ν1)b(δ̄, ν1) b(δ̄, ν1)

)
(4.20)

Over this prediction, and proceeding in a similar fashion to the previous section, using the cost
index (4.6) we have the following result corresponding to (Elobaid et al., 2019, Theorem 8)

Consider a nonholonomic system admitting a chained form and let the associated multirate
equivalent model be of the form (4.15a),(4.15b). Then, the multirate plant-inverting feed-
back (4.17a),(4.17b) solves the MPC problem associated with (4.6) under the multi-rate
sampled-data model as a prediction model with perfect steering and zero ideal performance,
whenever np = nc, Q = I, ϵ = 0 for any np ≥ 1.

Result: stable inversion in chained forms via multi-rate and MPC

The proof of the above result is omitted and the interested reader is referred to (Elobaid et al.,
2019, Section 4) for the corresponding formal statements and related proofs. However, through the
following example of a differential drive we will highlight two aspects;

• The correspondence between multi-rate deadbeat control and multi-rate prediction in MPC.

• How using multi-rate prediction in MPC problems not only simplifies the problem (by dis-
carding the terminal ingredients) but preserves boundedness of the closed loop at the limit.
This is in contrast with the standard implementation of MPC without terminal ingredients.

The differential drive example

Given a unicycle kinematics;
ẋ = v cos θ

ẏ = v sin θ

θ̇ = ω

(4.21)

and following Section 4.3, first we convert the system to the standard nonholonomic form by defining
the scaling u1 = cos θv, u2 = ω so getting;

ẋ = u1

ẏ = tan θu1

θ̇ = u2

It is then possible to define a coordinates change;

z1 = x

z2 = tan θ

z3 = y
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and feedback

u1 = ν1

u2 =
ν2

cos2 θ

putting the system in the chained form;

ż1 = ν1

ż2 = ν2

ż3 = z2ν1

This system, applying the identities (4.15a), (4.15b) admits the following multi-rate equivalent
model;

z1(k + 1) = z1(k) + δν1(k)

z(k + 1) = A2(δ̄, ν1(K))z(k) +R(δ̄, ν1(k))ν2(k)

with z = (z2 z3)
⊤ and

A2(δ̄, ν1(k)) =

(
1 0

2δ̄ν1(k) 1

)
, R(δ̄, ν1) =

(
δ̄ δ̄

3δ̄2

2 ν1(k)
δ̄2

2 ν1(k)

)

Simulations are performed to first to establish how, in the limit, the proposed control scheme
(hereinafter denoted MPC-MR) reduces to to the classical multi-rate deadbeat control (Figs 4.4).
More interestingly, we compare the use of multi-rate models for prediction in MPC against the
standard MPC implementation that uses a single-rate sampled model for prediction (Figs 4.5,4.6)
respectively. In all the cases the sampling period is set to δ = 1.

Two cases of simulations have been carried out. In the first case, the overall simulations scheme
is depicted in the figure below, where the feedback controlling the plant is a piecewise continuous
feedback resulting from the digital MPC feedback under the feedback transformation bringing the
system to a finitely descritizable one (the chained form). Notice how the sampling and hold rates
are asynchronous.









MPC control with MR
prediction model




Finitely discretizable

Figure 4.2: The simulation scheme for a finitely descritizable chained form in the first test scenario
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In the second scenario, the feedback transformation putting the system into the finitely descriti-
zable form is removed. Nevertheless, in the MPC controller we use the multi-rate sampled model
of the finitely desctizable dynamics in chained form. In this sense, we are relying on the inherent
robutsness, discussed more formally in the next chapter, of the MPC controller to handle the un-
modeled dynamics. Additionally, this results in a purely piecewise constant feedback that is more
suitable for digital implementation.









MPC control with MR
prediction model




Not finitely discretizableNot finitely discretizable

Figure 4.3: The simulation scheme for a finitely descritizable chained form in the second test scenario

As done in the original attached manuscript (Elobaid et al., 2019, Figure 1), which is not
repeated here, we can see the pathology motivating this work; the MPC may fail when np = nc and
no stability constraints are incorporated, when considering the cheap control specifications at the
limit. However, in Figure 4.4 under the same conditions, we show that the multi-rate MPC reduces
exactly the multi-rate steering deadbeat control at the limit thus emphasizing the motivation for
utilizing multi-rate sampled prediction models.

In this situation depicted in Figure 4.4, we are starting from an initial pose of (0 0 0)⊤ to a
desired pose of (1 1 0)⊤. The prediction horizon is set to np = nc = 4 in the proposed MPC-MR
depicted on the left column, as compared to the multi-rate deadbeat control depicted on the right
column. In the upper plot, we show the movement of the differential drive from it’s initial pose to
the desired pose on the plane. On the middle plots we show the trajectories of the states, namely
the x−displacement depicted in blue, the y−displacement depicted in red and the angle θ depicted
in green. The bottom figure depicts the linear velocity v in red and the angular velocity ω in blue.
The proposed MPC-MR is always depicted using solid lines while the other control scheme being
compared to is depicted with dashed lines.
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Figure 4.4: MPC-MR vs multi-rate steering with ϵ = 0, Q = I.

In the second case, depicted in Figure 4.5, we simulate the situation where the differential drive
is required to track a line with slope 0.5. The standard MPC works with np = 4 > nc = 2 as well as
a penalty on the control ϵ = 0.2, R = I. This is done to avoid the cheap control limit that is shown
to result in instability. The same parameters are also set for the proposed MR MPC. It is clear that
better performances, both in terms of tracking error, and control effort are achieved thanks to the
proposed MPC-MR even when not working in the cheap control limit.
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Figure 4.5: MPC-MR vs Standard MPC tracking scenario 1 ϵ = 0.2, R = I, Q = 2I.

A more interesting comparison is shown in Figure 4.6 where the input transformation putting
the system in chained form is unmodelled as suggested in Figure (4.3). We require both controllers,
working away from the cheap control limit with ϵ = 0.2, R = I, Q = 3I to perform the same
steering action as in the first simulation. Because of nominal robustness, both MPC based schemes
are able to handle the unmodelled dynamics, however, it is again clear that the proposed MPC-MR
scheme outperforms standard MPC both in terms of tracking and control effort.
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Figure 4.6: MPC-MR vs Standard MPC steering scenario 2 ϵ = 0.2, R = I, Q = 3I.

4.5 Concluding remarks

A few comments to summarize this chapter are in order;

■ Unconstrained (nonlinear) tracking MPC problem in the cheap optimal control formulation
under sampling reduces to cancellation of the internal dynamics when np = nc.

■ Systems that are non-minimum phase represents an obstruction to achieving zero ideal perfor-
mance when solving this problem. This is further complicated by the unstable zero dynamics
induced by the sampling process Qiu and Davison (1993).
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■ To mitigate those issues, terminal ingredients are typically used in the literature to provide
stability guarantees of the closed loop system with no guarantee of zero ideal performance.

■ A preliminary workaround is proposed utilizing multi-rate sampled-data models for prediction
in the MPC problem. This not only allows for zero ideal performance when ϵ, R→ 0, but also
simplifies the optimization problem by removing the need for terminal ingredients when the
system is minimum phase and np = nc.

While the solution proposed in this chapter is attractive, it has some disadvantages, namely;

■ The proposed scheme necessities the use of asynchronous sampling and actuation devices in
the control loop with different frequencies.

■ The feedback is computed only at the big sampling intervals and work in open loop during
the smaller sub-intervals.

■ All the obtained results hold only at the limit when treating unconstrained MPC problems
with cheap control.

■ While MPC by itself is inherently robust, the obtained results lack in terms of bounds on the
possible handled additive perturbations and unmodelled dynamics.

With these observation we ask if multi-rate sampling can be combined with MPC in a better
way to handle stable inversion at the limit. In the following chapter, one possible improvement is
proposed and validated through case studies.
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Abstract: This paper formally highlights how the multirate sampled data equivalent model can
be exploited for prediction in an MPC formulation in order to mitigate the possible instability
arising from an MPC design while ensuring prefixed boundedness of the control amplitude. This
last aspect is in particular addressed and solved with reference to the class of systems which
admit, under feedback, a computable sampled model.
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1. INTRODUCTION

Model Predictive Control (MPC) has become a widely
investigated research area in linear and nonlinear control
and their applications (e.g., Boucher and Dumur (1996);
Camacho and Alba (2013); Borrelli et al. (2017); Kwon
et al. (1982)). Roughly speaking the control action is
designed by solving a constrained optimization problem
subject to the system dynamics and possibly additional
requirements and bounds.
The simplest way to design and implement the resulting
control law makes use of a sampled data model of the plant
for prediction that is exploited for solving the optimization
problem over a finite prediction horizon of length np. In
this context, one implicitly assumes the dependence of the
predicted future values of the output over nc future con-
trols actions, generally referred to as the control horizon.
Driving the output trajectory to a desired reference at
the sampling instants via discrete time model predictive
control while preserving stability in closed loop may induce
difficulties especially when the plant (and the model used
for prediction) is not minimum phase. In that case, the
choice of the prediction and control horizons plays a key
role. In fact, typically, one sets nc much smaller than np to
address this fact as well as minimizing the computations
required (Clarke et al. (1987)).
As proven in Monaco and Normand-Cyrot (1988), single-
rate (or standard) sampling generally induces unstable
and extra zero-dynamics so that minimum-phaseness is
lost independently of the continuous-time plant proper-
ties; to overcome such a pathology, a multirate sampling
procedure has been properly introduced to preserve the
continuous-time internal properties. With this in mind, it
is proposed and shown in the sequel that the use of a mul-

? Partially funded by Université Franco-Italienne/Università Italo-
Francese (UFI/UIF) through the Vinci Program.

tirate (MR) sampled equivalent model at the prediction
and implementation level overcomes the aforementioned
problems in an MPC control scheme.
Recalling moreover the peculiar properties of MR sam-
pling when applied to nonholonomic systems (Monaco and
Normand-Cyrot (1992)), it is shown that a MR based
MPC control scheme can be fruitfully employed to limit
the amplitude and increase the robustness of MR solution
to the steering problem. This result relies on the fact that
MPC restitutes the MR steering solution.
The work is organised as follows. In Section 2 recalls on
single and multi-rate sampling are given and the problem
under investigation is stated. Section 3 is devoted to the
proposed MR-MPC control scheme and prove its effective-
ness. Section 4 investigates the relation between MPC and
MR controllers in the sampled data context with reference
to the steering control of nonholonomic dynamics; the
example of the unicycle dynamics is used to verify the
effectiveness of the proposed control scheme. Concluding
remarks end the paper.

2. RECALLS AND STATEMENT OF THE PROBLEM

2.1 Notation and definitions

All functions and vector fields defining the dynamics
are assumed smooth and complete over the respective
definition spaces. MU (resp. M I

U ) denotes the space of
measurable and locally bounded functions u : R → U
(u : I → U , I ⊂ R) with U ⊆ R. Uδ ⊆ MU denotes the
set of piecewise constant functions over time intervals of
fixed length δ ∈]0, T ∗[; i.e. Uδ = {u ∈ MU s.t. u(t) =
uk,∀t ∈ [kδ, (k + 1)δ[; k ≥ 0}. When u(t) ∈ Rm then

ujk, (uk)j , u
(j)
k are the jth component of u for t ∈ [kδ, (k +

1)δ[; k ≥ 0}, uk raised to the power j and the jth derivative
respectively. Given a vector field f , Lf denotes the Lie



derivative operator, Lf =
∑n
i=1 fi(·)∇xi

with ∇xi
:= ∂

∂xi

while ∇ = (∇x1
, . . . ,∇xn

). The Lie exponential operator

is denoted as eLf and defined as eLf := I +
∑
i≥1

Li
f

i! .

A function R(x, δ) = O(δp) is said to be of order δp

(p ≥ 1) if whenever it is defined can be written as

R(x, δ) = δp−1R̃(x, δ) and there exist function θ ∈ K∞
and δ∗ > 0 such that ∀δ ≤ δ∗, |R̃(x, δ)| ≤ θ(δ∗).

2.2 Sampled data systems and multirate sampling

The following recalls on sampled-data systems are given
(see Monaco and Normand-Cyrot (2001) and the refer-
ences therein). Given a SISO system

ẋ = f(x) + g(x)u, y = h(x) (1)

and considering u(t) ∈ Uδ and y(t) = y(kδ) for t ∈ [kδ, (k+
1)δ[ (δ the sampling period), the dynamics of (1) at the
sampling instants is described by the single-rate sampled-
data equivalent model

xk+1 = F δ(xk, uk), yk =h(xk) (2)

with xk := x(kδ), yk := y(kδ), uk := u(kδ). The mapping
F δ(·, u) : Rn × R → Rn gets the form of formal series
expansion in powers of δ that is (dropping the time
subscript for clarity)

F δ(x, u) = eδ(Lf+uLg)x = x+
∑

i>0

δi

i!
(Lf + uLg)

ix. (3)

It is a matter of computations to verify that if (1) has
well defined relative degree r ≤ n, the relative degree of
the sampled-data equivalent (2) always falls to rd = 1;
namely, one has

yk+1 =

r∑

i=0

δi

i!
Lifh(x)

∣∣
xk

+
δr

r!
ukLgL

r
fh(x)

∣∣
xk

+O(δr+1)

so that ∇uk
yk+1 = δr

r! LgL
r
fh(x)

∣∣
xk

+ O(δr+1) 6= 0. As

a consequence, whenever r > 1, the sampling process
induces a further zero-dynamics of dimension r−1 (the so-
called sampling zero-dynamics) that is in general unstable
for small values of δ when r > 1. As a consequence,
dynamics-inverting controllers via single-rate sampling do
not guarantee internal stability.
Multirate sampling has been developed in a nonlinear
context to overcome those issues. Namely, by setting
u(t) = uik for t ∈ [(k+ i− 1)δ̄, (k+ i)δ̄[ for i = 1, . . . , r and
y(t) = yk for t ∈ [kδ, (k + 1)δ[, the multirate equivalent
model of order r of (1) gets the form

xk+1 =F δ̄m(xk, uk), Yk = H(xk) (4)

with δ̄ = δ
r , u ∈ Rr =

(
u1 . . . ur

)>
, a dummy output

vector H(x) =
(
h(x) Lfh(x) . . . Lr−1

f h(x)
)>

and

F δ̄m(xk, uk) =eδ̄(Lf+u1
kLg) . . . eδ̄(Lf+ur

kLg)x
∣∣
xk

=

F δ̄m(·, urk) ◦ · · · ◦ F δ̄(xk, u1
k).

One gets so far a MIMO system possessing vector relative
degree rδ = (1, . . . , 1) and zero dynamics which inherits
the zero-dynamics stability properties of (1).
It must be recalled that exact computation of the sampled
data equivalent model cannot in general be achieved,
so that approximated models are usually computed by

truncation in different ways of the expansion (3). Related
to the properties of (3), the notion of exact and finite
computability of the sampled data model, possibly under
preliminary feedback, has also been introduced in Monaco
and Normand-Cyrot (1992).

2.3 Multirate digital steering of chained forms

Multirate sampling has been shown to be of interest
in the digital design of nonholonomic and under actu-
ated mechanical systems (see Monaco and Normand-Cyrot
(1992)). Under preliminary continuous-time feedback, a
nonholonomic mechanical system admits the so-called sin-
gle chained dynamics

ξ̇1 = u1, ξ̇2 = u2, ξ̇i = ξi−1u1 i = 3, . . . , n (5)

admitting a finitely computable sampled dynamics; more-
over, the one-step ahead dynamics can be easily inverted
with respect to the control input to deduce a multirate
feedback ensuring exact deadbeat steering. For, consider
(5) and (ξ

0
, ξ
f
) then there exists a multirate control of

order (n − 1) on u2 and 1 on u1 (i.e. δ̄ = δ
n−1 ) such

that system (5) is exactly steered in one step δ from ξ
0

to ξ
f
. The feedback ensuring exact steering for (5) can

be easily deduced by inverting the multirate sampled data
equivalent model of (5) provided by

ξ1,k+1 = ξ1,k + δu1,k, ξ2,k+1 = ξ2,k + δ̄
∑

i

ui2,k

ξ3,k+1 = ξ3,k + δu1,kξ2,k + η1(δ̄2, u1,k)u2,k (6)

...

ξn,k+1 = ξn,k +G(δ, ξk, u1,k) + ηn−2(δ̄n−1, u1,k)u2,k

with η1(·), G(·) and ηn(·) being

η1(u1,k) =
1

2!

[
c11u1,k c

2
1u1,k . . . c

n−1
1 u1,k

]

G(δ, ξi,k, u1,k) = ξn,k + δu1,kξn−1,k +
δ2

2!
(u1,k)2ξn−2,k

+ . . .+
δn−2

(n− 2)!
(u1,k)n−2ξ2,k

ηn−2(u1,k) =
1

(n− 1)!

[
c1n−2u1,k c

2
n−2u1,k . . . c

n−1
n−2u1,k

]

with some suitable constants cji .
For all fixed ξ0 = ξ[kδ], ξf = ξ[kδ+ δ], directly solving the
above system in the unknowns (u1,k, u2,k), one gets

u1,k =
1

δ
(ξ1,k+1)− ξ1,k)

u2,k = η−1(ξ
k+1
−G(·))

(7)

with η(·), G(·) and ξ(·) being the compact forms of the
corresponding elements in (6). Taking into account the
preliminary feedback, steering is achieved under piecewise
continuous control designed on the basis of the multirate
sampled model. Roughly speaking, the multirate sampling
is used as a trajectory planner.
A key thing to note on the control solution above is
that, while it does steer the system to the desired final
state, it is indeed an inverting controller and the control
effort might grow unboundedly so making the feedback not
implementable in practice. To overcome this issue, we shall
improve such a feedback via MPC.



2.4 Problem statement

Consider the continuous-time system (1) under sampling,
with relative degree r ≤ n being minimum phase . Here-
inafter we shall address the problem of driving the output
trajectory, to a desired reference ν(t) at the sampling
instants t = kδ, k ≥ 0 via discrete time MPC (Camacho
and Alba (2013)) while preserving stability in closed loop;
that is yk = νk, k ≥ k∗ with νk = ν(kδ) by minimizing the
cost functional

J =

np∑

i=1

(
‖ek+i‖2Q + ‖uk+i−1‖2R

)

=

np∑

i=1

L(xk+i, νk+i, uk+i−1)

(8)

with Q > 0, R ≥ 0 being appropriate penalizing weights
on the tracking error and input magnitude and np being
the prediction horizon; moreover, e is a suitably defined
error map, such that ek = 0 iff yk = νk.
MPC induces a constrained optimization problem subject
to the dynamics (4) and possibly additional requirements
and bounds. To solve this problem several methods are
available, the simplest to implement of which is the so
called direct single shooting (Hicks and Ray (1971)) by
plugging (4) into (8) so getting

J =

np∑

i=1

L(·, uk+i−1) ◦ (F δ̄m(·, uk+i−1) ◦ . . . ◦ (F δ̄m(xk, uk)).

Hence, an optimal solution ue =
(
uk . . . uk+nc−1

)>
is

computed by solving ∇ueJ = 0 with nc being the so-called
control horizon.
For our purposes it is interesting to note that in its usual
implementation MPC makes use of a single-rate sampled
data model of the plant of the form (2) for prediction.
This induces the loss of the minimum-phaseness, so forcing
the designer to set nc < np to recover internal stability
(or using terminal penalties and/or constraints sets) while
also defining a dynamical controller (in the sense of using
feedback on the states and also on the previous controls)
to ensure off-set free tracking. In the approach we are
proposing, the use of multirate sampled data model will
provide a static feedback overcoming both issues.

3. PREDICTIVE MULTIRATE DIGITAL CONTROL
OF NONLINEAR SYSTEMS

With reference to the problem statement in the previous
section, and the augmented output vector, we set out to
state our main result, however to do so one needs the
following assumption;

Assumption 1. Measures of ν and its derivatives ν(i) for
i = 1 . . . r − 1 are available at all t = kδ, k ≥ 0.

For the sake of compactness, we shall define the extended
output vector dynamics for np = nc future values as

Yek+1
= AeYk +Be(xk)uek + Θ(xk, uek)

with Yek+1
=
(
Yk+1 Yk+2 . . . Yk+np

)>
and uek =(

uk uk+1 . . . uk+nc−1

)>

Be(·) = LgL
r−1
f h(·)




B 0 . . . 0
AB B . . . 0

...
Anp−1B Anp−2B . . . B


 ,

B = D∆(r) D = diag(δ̄r/r!, . . . , δ̄)

∆(r + j) =




(r + j)r+j − (r + j − 1)r+j . . . (j + 1)r+j − (j)r+j

. . .

(r + j)j − (r + j − 1)j . . . (j + 1)j − (j)j




A =




1 δ . . . δr−1/(r − 1)!
. . .

0 0 . . . 1


 Ae =




A
A2

...
Anp




with j ≥ 0 and Θ(·) containing all higher order terms
in O(δ̄r+1). The next result shows that the problem in
Section 2.4 is always solvable with np = nc > 1 under
multirate feedback, provided the relative degree is well
defined.

Theorem 2. Let (1) possess relative degree r ≤ n, and (4)
be its multirate equivalent model of order r. Consider the
MPC problem with cost functional (8) and ek = Yk − νk
with νk =

(
νk . . . ν

(r−1)
k

)>
. Then, there exists δ∗ > 0

such that for all δ ∈ [0, δ∗[, the MPC problem is solvable
with internal stability for all np = nc ≥ 1. The feedback is
defined as the unique solution to the equality

(K(x, ue)QeBe(x) +Re)ue =

Be(·)(νe −AeY −Θ(x, ue))
(9)

with Qe = I ⊗Q, Re = I ⊗R
K(x, ue) = (B>e (x) +∇ueΘ(x, ue))

νek =
(
νk+1 . . . νk+np

)
.

Sketch of proof. To prove that (9) is optimal, we
first rewrite (8) as J = ‖Yek+1

− νek‖Qe + ‖uek‖Re

whose jacobian is clearly annihilated by the solution to
(9). Existence of a feedback solution can be deduced by
rewriting (9) a formal series expansion in powers of δ
and applying the implicit function theorem. Indeed, the
term (D−1K(x, ue)QeBe(x) + Re) is invertible as δ →
0 (Monaco and Normand-Cyrot (2001); Mattioni et al.
(2017)). Internal stability is ensured by the minimum
phaseness of the continuous-time plant which is conse-
quently preserved under multirate sampling (Monaco and
Normand-Cyrot (1988)).

Remark 3. The solution obtained in Theorem 2 is im-
plicitly defined by the above equality and is a formal
series in powers of δ̄. Such a solution cannot be generally
exactly computed in practice although several procedures
are available for deducing approximation up to any de-
sired order so to guarantee the required performances (see
Monaco and Normand-Cyrot (2001) for further details).

Remark 4. As R → 0, the feedback defined by (9) coin-
cides with the deadbeat inverting control that steers the
output to the desired ν in one step of length δ. Such a
feedback comes with an effort that is in general, inversely
proportional to δ, thus by suitably setting R one can re-
duce the effort while still guaranteeing off-set free tracking
in finite time.

Remark 5. It is rather straightforward to show that when
(1) is linear (i.e. f(x) = Fx, g(x) = G and h(x) =



Cx) one recovers the known output trajectory predic-
tion of the discrete time model with Ad = eFδ, Bd =

[Āδ̄(r−1)B̄ . . . B̄], Ā = eF δ̄, B̄ =
∫ δ̄

0
eFsdsG and Cd = C;

i.e,

Y ek+1
=




CdAd
CdA

2
d

...
CdA

np

d


xk+




CdBd 0 . . . 0
CdAdBd CdBd . . . 0

...

CdA
np−1
d Bd CdA

np−2
d Bd . . . CdA

np−nc

d Bd


uek

which in compact form can be written as Yek+1
= Aexk +

Beuek . Along the lines of Borrelli et al. (2017), the opti-
mal control is u∗e = (B>e QeBe + Re)

−1B>e Qe(νe − Aex).
When implementing the above optimal control trajectory
a receding horizon algorithm (i.e. selecting the first m
components of ue[k] and discarding the rest and repeating
at each sampling instant) one has

u?k = (Im 0 . . . 0) (B>e QeBe +Re)
−1B>e Qe(νe −Aex).

Thus, when np = nc, Qe = I and Re = 0 the MR-MPC
feedback reduces to u?k = (CdBd)

−1(ν − CdAdx), which is
the classical dynamics inverting feedback.

Roughly speaking, with reference to a minimum-phase
plant, Theorem 2 suggests the use of MR-MPC control
law of order equal to the relative degree. In what follows,
we explicitly define this solution for nonholonomic systems
that are feedback-equivalent to chained forms (Brockett
et al. (1983)). In doing so, we formally show that as
R → 0 one recovers the standard deadbeat control. As
a byproduct, we also provide an extension of Theorem 2
to the case of MIMO systems for which the relative degree
might not be defined.

4. PREDICTIVE MULTIRATE STEERING FOR
CHAINED FORMS

For illustrative purposes, the following discussion will
consider the chained form (5) with n = 3 albeit the
arguments extend to the general case as highlighted. For,
suppose one wants the state of the system to converge to
a desired trajectory ν ∈ Rn. Considering u2(t) = ui2,k =

u2(kδ + (i − 1)δ̄) for i = 1, 2, one can write the output
prediction over np = 1 as[

x1,k+1

xk+1

]
=

[
1 0
0 A2

m(·)

] [
x1,k

xk

]
+

[
1 0
0 Rm(·)

] [
u1,k

u2,k

]

(10)
with u2 = (u1

2 u
2
2)> and

Am(·) =

[
1 0

δ̄u1,k 1

]
, b =




δ̄
δ̄2

2!
u1,k


 , Rm(·) = [Am(·)b b]

which compactly rewrites as Y = F (δ, u1)X+G(δ, u1, u2)u2.
One can then proceed in a similar fashion to the previous
section, using the cost index (8) with e = col(e1, e2, e3) =(
x1 x

>)> − ν and setting ∇uJ = 0, so getting (when
Q = I) that the optimal control u = u? is solution to
(dropping time subscript for clarity)

u1 =
−2δe1 − e3(3δ̄2u1

2 + δ̄2u2
2 + 4δ̄x2)

2δ2 + (3δ̄2u1
2 + δ̄2u2

2 + 4δ̄x2)

u1
2 = −2δ̄(e2 + δ̄u2

2)− 3δ̄2u1(e3 + 2δ̄u1x2 − 0.5δ̄2u1u
2
2)

2δ̄2 + 4.5δ̄4u2
1

u2
2 = −2δ̄(e2 + δ̄u1

2)− δ̄2u1(e3 − 2δ̄u1x2 − 1.5δ̄2u1u
1
2)

2δ̄2 − 0.5δ̄4u2
1

(11)
with ui2 (i = 1, 2) being the two controls resulting from
multirate of order 2 over u2 and νi, i = 1, 2, 3 being the
reference values over the single step prediction horizon.
To show that the solution to this system of equations
coincides with that of the multirate inverting controller, it
is sufficient to show that the multirate inverting solution,
is indeed a solution of this system of equations.

Proposition 6. The multirate inverting controller (7) is
a solution of the optimal control problem with the cost
function (8) and np = nc = 1, Q = I,R = 0.

Proof: Starting from (7), one has that

u1 =
ν1 − x1

δ
, u1

2 = −ν2 − x2

2 δ̄
− x3 − ν3 + 2 δ̄ u1 x2

δ̄2 u1

u2
2 =

3 (ν2 − x2)

2 δ̄
+
x3 − ν3 + 2 δ̄ u1 x2

δ̄2 u1

solves (11). As a matter of fact, (11) admit two solutions
for (u1, u

1
2, u

2
2), one of which corresponds to the solution

u1 = 0 which is discarded 1 whereas the other one is
u1 = e1

δ and

u1
2 =
−2 δ e3 − δ̄ ν1 ν2 − 3 δ̄ ν1 x2 + δ̄ ν2 x1 + 3 δ̄ x1 x2

2 δ̄2 (ν1 − x1)

u2
2 = −−2 δ e3 − 3 δ̄ ν1 ν2 − δ̄ ν1 x2 + 3 δ̄ ν2 x1 + δ̄ x1 x2

2 δ̄2 (ν1 − x1)

clearly coinciding with the expression above from (7). /

4.1 The case of np = nc > 1

We write the prediction model for the two components of
the states vector as follows

x1,k+np
= x1,k + δ

np−1∑

i=0

u1,k+i

xk+np
= φ(k + np, k)xk+ (12)

np−1∑

i=0

φ(k + np − 1, k + i+ 1)R(·, u1,k+i)u2,k+i

where

φ(k + np, k) =

np−1∏

i=0

A(δ̄, u1,k+np−i−1) (13)

and A(·) = A2
m(·).

We can then substitute this expression of prediction in
our cost function and take the partial derivatives with
respect to each ui and, then prove that whenever np = nc
the multirate inversion control is an optimum control
with respect to our cost function. The following statement
highlights this fact.

1 Since, this solution doesn’t bring the error on the state x1 to zero.



Proposition 7. As R → 0, the control minimizing (8)
computed over the prediction model (12) reduces to the
multirate plant inversion solution (7) if np = nc andQ = I.

Proof: The proof follows from induction starting with
Proposition 6 which proves np = nc = 1. By assuming
that the statement holds for some np = N , we show it
holds for np = N + 1. Let us split the cost functional (8)
along the prediction model (12) as follows

J = J1︸︷︷︸
first N steps terms

+ J2︸︷︷︸
last step terms

J1 =
N∑

j=1

(
(ν1,k+j − x1,k − δ

j−1∑

i=0

u1,k+i)
2+

(r(k + j)− φ(k + j − 1, k)xk−
j−1∑

i=0

φ(k + j − 1, k + i)R(·, u1,k+i)u2,k+i)
2

)

J2 = (ν1,k+N+1 − x1,k − δ
N∑

i=0

u1,k+i)
2+

(r(k +N + 1)− φ(k +N + 1, k)xk−
N∑

i=0

φ(k +N + 1, k + i)R(·, u1,k+i)u2,k+i)
2.

Denoting by u∗mr the multirate inverse controller which
satisfies by assumption ∇uJ1(u∗mr) = 0, it remains to
prove that that ∇uJ2(u∗mr) = 0. For, notice that

φ(k +N + 1, k) =




1 0

2δ̄
N∑

s=0

u1,k+s 1




and recalling that u∗mr is of the form (7), the proof proceeds
as follows; one gets that as ∇u2

J2 = 0 (for compactness
we omit the time variable k and we write i for k + i)

− 2nφ(N, i+ 1)R(·, u1,i)

(
r(N + 1)− φ(N + 1, .)x−

N−1∑

i=0

φ(N, i+ 1)R(·, u1[i])u2,i

)>
= 0

Inspecting the second equation above, namely ∇u2
J2 =

0 gives two possibilities, either the term −2nφ(N, i +
1)R(·, u1,i) = 0 or the term between the large brackets
is 0, which upon inspection is 0 exactly when we set for
i = 1 . . . N − 1

u2,i = Ξ(δ̄, u1)−1(r(i+ 1)− φ(N + 1, ·)xk)

u2,N = R(·, u1,N )−1(r(N + 1)− φ(N + 1, ·)xk)
(14)

with Ξ(δ̄, u1) collecting the product terms of φ(N, i +
1)R(·, u1,i) which coincides with the solution obtained
from (7). We then write only ∇u1,N

J2, since by assump-
tion and from the expression above for u2, ∇u1,i

J2 =
0,∇u2,j

J2 = 0 ∀i = 1 . . . N − 1, j = 1 . . . N so getting

2 δ (x1,N − ν1,N+1 + δ u1,N ) +

δ̄
(
4x2,N + 3 δ̄ u1

2,N + δ̄ u2
2,N

)

(x3,N − ν3,N+1 +
3 δ̄2 u1,N u

1
2,N

2
+
δ̄2 u1,N u

2
2,N

2
+

2 δ̄ u1,N x2,N ) = 0.

By substituting u1
2,N , u

2
2,N as in (14) one recovers

u1,N =
ν1,N+1 − x1,N

δ
which possesses the same form as in Proposition 6. /

It is rather intuitive to see that the discussion above
holds for general chained forms, and the statements can
be extended along the same lines, albeit the notations
and algebraic manipulations will get rather long and
cumbersome, the following statement summarizes this.

Theorem 8. Consider the dynamics of the form (5) admit-
ting multirate equivalent model (6). Then, the multirate
plant-inverting feedback (7) solves the MPC problem with
(8) under prediction model (6) with perfect steering, when-
ever np = nc ≥ 1, Q = I,R = 0.

5. SIMULATION RESULTS AND COMMENTS

Simulations are performed to compare the proposed con-
trol scheme (MPC-MR) with respect to the standard MPC
implementation (Figs 1,2) and the classical MR control
(Figs 3,4). In all the cases MPC-MR is implemented with
np = nc, δ = 1. Figure 1 clearly emphasises the pathology
motivating this work; the MPC may fail when np = nc
and no stability constraints are incorporated, even with
no penalty on the control. To prevent this, as suggested
in the literature, in Fig 2 MPC works with np > nc; the
comparison with the proposed MPC-MR with R > 0 in
this case shows the better performance of our solution.
A deeper comparison is proposed in Figs 3 and 4 where
the proposed MPC-MR and the standard MR solutions
are shown for steering and tracking maneuvers under the
penalty R > 0. The proposed MPC-MR scheme appears
to be the natural context to be adopted to account for the
control amplitude in standard MR.

6. CONCLUSION

We establish an intuitive interpretation of MR inverting
controllers, by highlighting the roles of the prediction and
control horizons, and their relations to the relative degree.
We then motivate the use of MPC with a MR prediction
model through penalizing the controls, and obtaining
comparable performance to the plant inversion controller,
while maintaining low control effort. Future works concern
the application of this improved MPC scheme to several
case studies as in power systems or automotive control
Giuseppi et al. (2018); Gionfra et al. (2016). Ongoing work
is addressing the extension to other classes of systems,
possibly non-minimum phase Mattioni et al. (2019).
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Chapter 5

Stable partial inversion in model
predictive control via multi-rate planning

Contents

5.1 Background material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Stable partial inversion in model predictive control via multi-rate reference planning . . . . . 94
5.3 Planning and Control algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.4 Comparison between the two multi-rate strategies for the differential drive . . . . . . . . . . . 99
5.5 Steering and tracking for the PVTOL aircraft . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.6 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

In this chapter a different solution approach to the one detailed in Chapter 4 is proposed. It is
shown that a sampled-data planned trajectory computed making use of a multi-rate sampled-

data model provides references for the MPC which overcomes stability issues linked to the loss of
the minimum phase property under sampling.

The difference with respect to the solution previously proposed stands in the fact that now
multi-rate is employed to plan the reference trajectory so that to circumvent the problems of un-
stable zero dynamics at the planning level. As a consequence, one also relaxes the demand on
asynchronous actuation and sampling frequencies. Indeed, existing control loops employing MPC
with synchronous sampling and actuation frequencies are left intact and the designer only works on
the trajectory planner.

The striking aspect which highlights the benefit of the proposed solution is the fact that when
setting the prediction horizon very large compared to the control horizon, as done typically to
overcome stability issues, no significant benefits are obtained when using the proposed control
scheme.

As specified in the sequel, in the proposed control scheme, MPC is used to robustify multi-rate
design and mutli-rate planning is used to imporve MPC. Some examples and applications will be
developed to compare the performances in the two proposed approaches and to highlight these
aspects. This chapter is written to serve as a companion to the results formalized in;

Mohamed Elobaid, Mattia Mattioni, Salvatore Monaco and Dorothée Normand-Cyrot. “Sampled-
data tracking through MPC and multirate planning”. 21st IFAC World Congress 2020, 53(2),
3620-3625. DOI: 10.1016/j.ifacol.2020.12.2043.
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Chapter 5. Stable partial inversion in model predictive control via multi-rate planning

The notions appearing hereinafter are recalled from Elobaid et al. (2020b), Camacho and Alba
(2013), Grüne et al. (2008), Allgöwer and Zheng (2012), Allgöwer and Zheng (2012), Isidori (1995)
and the references therein.

Again as done in the previous chapter, we motivate our discussion in the sequel by the simple
example of the triple integrator.

Example 5.1 Given a tracking MPC problem over the triple integrator;

V = minu(k)
np∑

i=1

(
∥y(k + i)− yr(k + i])∥2Q + ∥u(k + i− 1])∥2R

)

s.t x(k + i) = Adx(k + i− 1) +Bdu(k + i− 1), y(k + i) = Cdx(k + i)

withAd, Bd, Cd as in Section 4.1. As we have seen, using the explicit solution to MPC computed from
the sampled-data equivalent model, an unstable closed loop is obtained. The multi-rate sampled
equivalent model of the triple integrator of order m = r = 3;

x(k + 1) = Amx(k) +Bmu(k)

with Am, Bm, u as in Section 2.4. As we discussed in Chapter 2, this multi-rate sampled model has
no zeros with respect to the output

ye = H(x) = x

and with respect to which there exists an inversion feedback

u(k) = B−1
m (yre(k)−Amx(k))

with yre = (yr ẏr ÿr)
⊤ maintaining stability while rendering the y(k)—yr(k) link almost unity. Let

ŷe(k) be the evolution of the output of the multi-rate model under the above feedback. This output
is admissible in the sense that it defines the evolution, over sub-intervals of the sampling period, of
the states to reach the reference while maintaining stability under the multi-rate inversion feedback.
Let us now replace the reference in the tracking MPC problem with ŷe(k), i.e

V̂ = minu
np∑

i=1

(
∥y(k + i)− ŷe(k + i])∥2Q + ∥u(k + i− 1])∥2R

)

s.t x(k + i) = Adx(k + i− 1) +Bdu(k + i− 1), y(k + i) = Cdx(k + i)

As discussed, in the cheap control limit when R→ 0, we know apriori that a solution to the above
problem is (almost) the control u(k). Using the Matlab© MPC solver, and setting Q = I, R =

0.1, δ = 1 we get the closed loop evolution depicted in Figure 5.1.

This simple example suggests that, given a standard tracking MPC problem over a non-minimum
phase system, one can avoid exciting the unstable sampling zero dynamics through modifying the
reference. A multi-rate sampled equivalent model, for which there exists inversion feedback ren-
dering the output-reference link almost unity can be used to plan reference trajectories over the
sampling instants. Those planned references allows for obtaining a solution, which at the limit
(almost) replicates the multi-rate deadbeat feedback. “Can we say something more” is the question
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discussed in this chapter.
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Figure 5.1: Modified MPC problem VS standard MPC problem for the triple integrator.

5.1 Background material

We turn our attention to formalize the idea of modifying the reference signal via multi-rate sampling.
We start with a sampled equivalent model of the form;

x(k + 1) = F δ(x(k), u(k)) (5.1a)

y(k) = h(x(k)) (5.1b)

with δ the sampling period, and F δ(x, u) as in (2.6). The multi-rate equivalent model of order
m = r is

x(k + 1) = F δr (x(k), u(k)) (5.2a)

Y (k) = H(x(k)) (5.2b)

where F δr (x, u) is as in (2.14), u =
(
u1 . . . ur

)⊤
, r ∈ N, with ui(k) = u(t), t ∈ [kδ+(i−1)δ̄, kδ+iδ̄.

Moreover, H(x) is as in (2.15).

Design a single-rate piecewise constant state feedback (with sampling period δ̄) that tracks
samples of suitable reference yr(t) at prefixed sampling instants by minimizing the cost:

J =

np∑

i=1

(
∥y(k + i)− yr(k + i)∥2Q + ϵ∥u(k + i− 1)∥2R

)
(5.3)

at all t = kδ, k ≥ 0 and ensuring boundedness of the closed loop trajectories for small ϵ.

Problem: sampled-data tracking through multi-rate sampling and MPC
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With reference to the Problem statement, and in the cheap control limit when ϵ = 0 and Q = I,
a zero ideal performance can be achieved, as discussed in the previous chapter, by solving in u(k)

the following system of nonlinear algebraic equations

H(F δm(x(k), u
1(k), . . . , um(k)) = Yr(k + 1) (5.4)

and setting m = r where the vector Yr is an augmented reference vector of yr and it’s higher r − 1

derivatives, so as to guarantee that, by invoking the implicit function theorem, a solution exists
Monaco and Normand-Cyrot (1992). While the possibility of varying the control several times in
the sampling interval confers more degrees of freedom to the control action Monaco and Normand-
Cyrot (2001), however, a major limitation in the use of multi-rate control stands in its intrinsic
dependence on the model so implying lack of robustness. Moreover, since the input signal changes
over sub-intervals of the sampling period, the control works in open loop at all those sub-intervals
since the corresponding measures of the states are not available. In this sense, nonlinear MPC
can be used coupled with multi-rate, as discussed in the example, to improve multi-rate control
robustness. This is due to the fact that MPC is known to possess inherent robustness properties as
the following discussion highlights.

Inherent robustness in model predictive control

By inherent robustness, we refer to the fact that a sampled-data nonlinear MPC controller based
on a nominal model of the plant possess certain robustness properties with respect to small model
uncertainties and additive disturbances. To this end, consider the perturbed system associated with
the dynamics (1.1a) in a sampled-data equivalent form

x(k + 1) = F δ(x(k), u(k), d(k)) (5.5)

where d ∈ W ⊂ Rp for some p < n ∈ Z+ is a disturbance. Then the sampled-data unperturbed
dynamics of the form (5.1a) is called the nominal dynamics, and by the nominal MPC controller,
we refer to the solution of the unconstrained cheap MPC problem utilizing the nominal dynamics
for prediction. To this end, we recall the following definition ?;

Definition 5.1 The system (5.5) is said to be input-to-states stable (ISS) under feedback u(k) =
α(x(k)), if there exists class KL function β and class K function γ such that, for any initial state,
and any bounded disturbances, a solution exists for all k ≥ 0 and is bounded; i.e. it satisfies

∥x(k)∥ ≤ β(∥x(0)∥, k) + γ
(
sup ∥d(k)∥

)
.

By robust input to state stability we mean input to state stability on a robustly positive invariant
set denoted Γ for system (5.5) under a given bounded disturbance d(k).

To prove nominal robustness of MPC, the following body of assumptions are recalled.

Assumption 5.1 (Grimm et al. (2004)) the minimization problem associated to the sampled-
data dynamics (5.1a) with cost function 5.3 is feasible for the given initial state x(k); Moreover, the
presence of uncertainties and disturbances does not cause loss of feasibility.
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Remark 5.1 For a general cost function, it has been proved in (Picasso et al. (2010); Limon et al.
(2009)) that for ISS of the closed-loop of the perturbed dynamics (5.5) under an optimal feedback,
the stage cost needs to be continuous, zero at zero and bounded from below by some K∞ function
αl(x). However, our stage cost is quadratic as (5.3), and thus this assumption is trivially verified.

Assumption 5.2 Following similar arguments as in the previous chapter (see also Limon et al.
(2009) and others), assume that the unconstrained MPC problem is enriched with terminal stability
ingredients satisfying the conditions in Section 4.1.

The theorem below due to Picasso et al. (2010) (and separately to Grimm et al. (2007)) addresses
inherent robustness of the closed loop system under a nonlinear MPC control feedback solution to
a problem of the form (4.4a)-(4.4f);

Consider a continuous-time system with a sampled data equivalent dynamics (5.1a) with
feedback u⋆(x(k)) being the optimal with respect to the cost function (5.3) and under
Assumptions 5.1-5.2. Assume that there exists a compact set Γ in whose interior the cost
function is continuous. Then the closed loop perturbed system (5.5) under u(k) = u⋆(x(k))

is robustly ISS.

Lemma: inherent robustness of sampled-data MPC

5.2 Stable partial inversion in model predictive control via multi-
rate reference planning

In this section we present a solution to Problem 5.1 making use of multi-rate sampling to modify
the reference signal. Consequently, given a nonlinear system of the form (1.1a),(1.1b), and it’s sam-
pled equivalent model (5.1a),(5.1b). it is required to design a single rate piecewise constant state
feedback (with sampling period δ̄) that tracks samples of suitable reference yr at prefixed sampling
instants (that is yr(k) = yr(kδ), δ = mδ̄ for some m ∈ N) by minimizing the cost functional (5.3)
at all t = kδ̄, k ≥ 0 and ensuring boundedness of the closed loop trajectories.

Remark 5.2 notice that the relaxation of the problem by requiring tracking only at the big sampling
instants δ = mδ̄ is not restrictive for δ̄ can be chosen very small.

To achieve the above, it is proposed to design a sampled-data single-rate control law, acting at all
t = kδ̄ and based on the corresponding sampled measures of the state, through a sampled-data MPC
procedure that makes use of the intermediate reference output values denoted ŷir(k) resulting from
the application of the nominal control sequence computed from (5.4) to the multi-rate sampled-data
model (5.2a),(5.2b). This reference is said to be admissible in the sense of the definition below;
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A sampled-data reference sequence {yr(k), k ≥ 0} is said to be admissible for the
continuous-time system of the form (1.1a),(1.1b) from an initial state x0 ∈ Rn if, for
a suitable integer m ≤ n, equality (5.4) has a solution {ui(k), i = 1, . . . ,m} which re-
mains bounded. It will be said single-rate or multi-rate admissible if m = 1 or m > 1,
respectively.

Definition: admissible reference sequence

Note that, from the definition above, a multi-rate admissible sequence can be suitably enriched
to be single-rate admissible. This in turn allows us to state the following result elaborating on that
in (Elobaid et al., 2020b, Theorem 3.1);

Consider a system of the form (1.1a),(1.1b) and let yr(t) be a reference signal to be
tracked at t = kδ for k →∞ and δ = mδ̄. Denote by {yr(k) = yr(kδ), k ≥ 0} the sequence
of multi-rate admissible samples of the reference under the input sequence {ûi(k), k ≥
0, i = 1, . . . ,m} solution for all k ≥ 0 to

(
yr(k + 1)

yr(k + 2)

)
=

(
H ◦ F δm(x(k), û1(k), . . . , ûm(k))

H ◦ F δm(·, û1(k + 1), . . . , ûm(k + 1)) ◦ F δr (x(k), û1(k), . . . , ûm(k))

)

(5.6)

Let {ŷi(k), k ≥ 0, i = 1, . . . ,m} be the augmented reference generated by ŷ1(k) = yr(k),
and for, i = 2, . . . ,m, ŷi(k) = h(x̂i(k)) with

x̂1(k) = x(kδ)

x̂i(k) = F δ(x̂i−1(k), ûi−1(k))

Then, the MPC problem defined via the cost function (5.3) together with a single-rate
sampled-data prediction model of the form (5.1a),(5.1b) admits a solution which is bounded
for np = nc ≥ m at the cheap limit when ϵ→ 0 small enough.

Result: sampled-data tracking through MPC and multi-rate planning

Note that the statement above does not assume that the reference can be tracked in continuous
time, but merely that it is multi-rate admissible. Given a reference yr(t) that the continuous-time
system can exactly track (in the sense of Isidori (1995)[Chapter 4]), then a sufficiently fast sampling
of this reference yr(k) is multi-rate admissible, namely one can define H(x) = (h(x), . . . , Lr−1

f h(x))⊤

and Yr = (yr, ẏr, . . . , y
(r−1)
r )⊤ as in (Monaco and Normand-Cyrot, 1997) corresponding to which

(5.4), and by extension (5.6) admits a solution. The following consequence can be hence given;
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Given a nonlinear control affine SISO system of the form (1.1a),(1.1b) assumed
minimum-phase and has a well defined relative degree r ≤ n, then equality (5.4) always
admits a solution with a multi-rate of order m ≥ r.

Corollary: existence of solution for minimum phase systems

5.3 Planning and Control algorithm

In this section, and referring to the discussion above, we present in a detailed manner the control
scheme for designing a sampled-data feedback ensuring tracking of a given output profile at the
sampling instants t = kδ for all k ≥ 0 by exploiting a planned admissible trajectory generated via
the multi-rate model (5.2a),(5.2b) at the sub-intervals of length δ̄ = δ

m .
We assume that the continuous-time dynamics is finitely descritizable with the map F δm(x, u)

denoting the corresponding multi-rate finite model of order m (possibily computed under coordinate
change and preliminary feedback).

The following algorithm is proposed by using the admissible sequence {ŷi(k), i = 1, . . . ,m, k ≥
0} defined in Theorem 5.2 as a reference trajectory for the MPC fixing the prediction horizon at
np = m. Such a trajectory is computed and updated at all t = kδ based on the nominal multi-rate
solution defined through (5.6). Thus, for all t ∈ {kδ, kδ+iδ̄, . . . , kδ+(m−1)δ} the planned reference
sequence is fed to the MPC for computing the optimizing controller which is guaranteed to exist
for ϵ ≥ 0 small enough by virtue of Theorem 5.2.

Specifically, the algorithm works over the steps below depicted in Algorithm 1 below.

Remark 5.3 With reference to the algorithm below and the previous discussion, we only exploit the
samples of the reference over two big steps (that is yr(k + 1), yr(k + 2) and correspondingly setting
in the MR planner (5.4) an augmented output vector He(x) = (y(k), y(k+1))⊤). This is due to the
fact that in the implementation of a receding horizon algorithm, we will need explicitly the values
of the desired reference sequence over np = m steps, and writing the second iteration of the MPC
(i.e., at time t = kδ+ δ̄), one notes the explicit dependence of the (optimal) control on values of the
desired output trajectories at ŷm+1(k) = ŷ1(k + 1).
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Algorithm 1 Planning and control algorithm
Initialization:

Yr ← (yr(k + 1) yr(k + 2))⊤

x(k)← x(kδ), Q← Q,R← R,m← r, np ← m

while t ≥ 0 do
if t = (k + j)δ, j ∈ Z≥0 then

k ← k + j
(ŷ(k + 1), ŷ(k)) = Planning(x(k), Yr)
u(k) = Control(m,Q,R, ŷ(k), ŷ(k + 1))

else
for t = kδ + iδ̄, i = 1, . . . ,m− 1 do

ui(k) = Control(m,Q,R, ŷ(k), ŷ(k + 1))

procedure ŷ(k + 1), ŷ(k) = Planning(x(k), Yr)
(
yr(k + 1)
yr(k + 2)

)
=

(
H ◦ F δ

m(x(k), û1(k), . . . , ûm(k))
H ◦ F δ

m(·, û1(k + 1), . . . , ûm(k + 1)) ◦ F δ
r (x(k), û

1(k), . . . , ûm(k))

)

for j = 0 : 1 do
for i = 2 : m do

x̂i(k + j) = F δ(x̂i−1(k + j), ûi−1(k + j))

ŷi(k + j) = h(x̂i(k + j)).

procedure u⋆(k) = Control(m,Q,R, ŷ1(k), . . . , ŷnp(k))

u(k) = minu
np∑

i=1

(
∥ŷi(k)− yi(k)∥2Q + ∥ui−1(k)∥2R

)

u⋆(k) = u1(k)
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Remark 5.4 The design of the planner can be worked out on a simplified sampled-data model so to
reduce the computational burden related to solve equality (5.6). When the conditions of the corollary
are met, the computations associated with the planner are simply the inversion of a matrix Bδ

m which
is full rank by construction. Consequently, as will be shown in the next chapter, one in principle
uses a simplified finite model for the planner, while a more exhaustive one is employed by MPC for
prediction.







SD-MR control







SD-MR planner




SR-MPC control







Figure 5.2: Multi-rate planning and MPC control based on a simplified model

From the figure, in the standard multi-rate control, one designs the feedback based on a simplified
model obtained via coordinates change and feedback. This feedback works over time steps of length
δ, while over the sub-interval the system is running in open loop. The resulting feedback is piecewise
continuous. On the other hand, in the proposed scheme one can replicate the zero ideal performance
obtained in nominal conditions via multi-rate control using MPC and multi-rate planning instead.
The MPC still uses an “assumed” simplified model of the plant but discarding the continuous-time
feedback and relying on the nominal robustness of MPC. The result is a simplified MPC problem with
no terminal ingredients replicating zero ideal performance at the limit of cheap control. Moreover
the feedback is piecewise constant (completely digital design).

Remark 5.5 The proposed control scheme inherits the nominal robustness properties of the (non-
linear) MPC; see for example Grimm et al. (2007); Picasso et al. (2010); Grimm et al. (2004).
This will be further demonstrated in Chapter 6.
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5.4 Comparison between the two multi-rate strategies for the dif-
ferential drive

In this section, and recalling again the example of the differential drive kinematics in Section 4.4,
we compare the two solution approaches to the problem of stable inversion in MPC via multi-rate
sampling. We will mirror the situations depicted there, however this time comparing the use of
multi-rate at the prediction level and at the planning level.

In all of the simulations we set np = nc and δ = 1 and the MPC solver is the standard Matlab©

one. Figure 5.3 emphasizes that at the cheap control limit, when no penalty is applied on the
control inputs, when using multi-rate at the prediction level we recover the multi-rate deadbeat
control as a solution to the optimization problem. On the other hand, when multi-rate is applied
at the planning level we almost get inversion with the notable difference being the control effort (in
terms of magnitude is noticeably lower). This later observation also explains the smooth movement
towards the reference point (yr = (2 2 π

4 )
⊤.

In Figure 5.4 similar observations can be made as in the case of steering when both methodologies
are applied at the cheap control limit, when no penalty is applied on the control inputs. When using
multi-rate at the prediction level, and as expected and depicted in Chapter 4, we recover the multi-
rate deadbeat control as a solution to the optimization problem. On the other hand, when multi-rate
is applied at the planning level we almost get an inversion-like control with lower control effort and
smoother movement towards the reference trajectory being a line on the (x, y) plane unity slope.

Finally in Figure 5.5 we have a more interesting situation in which both multi-rate solutions to
the inversion problem in MPC are compared when ϵ − 0.5 i.e. when the problem is not that of a
cheap control. Similarly to Section 4.4, the differential drive is required to track a line on the plane
with unity slope. Both solutions are able to achieve perfect tracking with the sampled-data solution
employing a multi-rate planner perfroming better in terms of required control effort.

Figure 5.3: MPC with MR prediction and MPC with MR planning steering ϵ = 0, Q = I.
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Figure 5.4: MPC with MR prediction and MPC with MR planning tracking ϵ = 0, Q = I.

Figure 5.5: MPC with MR prediction and MPC with MR planning tracking ϵ = 0.5, Q = 2I.
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5.5 Steering and tracking for the PVTOL aircraft

Figure 5.6: PVTOL in the plane.

In this section we introduce a more comprehensive case
study that highlight the validity of the proposed ap-
proach in terms of following a given trajectory. This
case study reports simulations and detailed compar-
isons not published in Elobaid et al. (2020b). This
scheme is compared to the stand-alone multi-rate con-
trol (see for example Di Giamberardino et al. (1994),
Pucci et al. (2011) and the references therein), thus
specifying the results to this particular example, as
well as a typical implementation of single-rate nonlin-
ear MPC (denoted SR MPC) with a given trajectory
planner. Let the model of the dynamics of a Planar Vertical Take-Off and Landing PVTOL in the
x− z (Figure 5.6) plane of R3 take the form:

ẍ = − sin(θ)v1 + γ cos(θ)v2

z̈ = cos(θ)v1 − 1 + γ sin(θ)v2

θ̈ = v2

(5.7)

for which the position is p = h(x, ẋ, z, ż, θ, θ̇) = (x, z)⊤.

Construction of the MR planner model

To use our control scheme, we first define the multi-rate sampled data model of the PVTOL. To
this end, it is known that (5.7) is feedback equivalent to a finitely discretizable system, by setting

v =

(
1

cos θ + γθ̇2

−2θ̇2 tan θ

)
+

(
1

cos θ 0

0 cos2 θ

)
u

together with the coordinates change

ζ = φ(x, ẋ, z, ż, θ, θ̇) = γ




cos θ

−θ̇ sin θ
0

− sin θ

0

−θ̇ cos θ




+




z

ż

tan θ

x
θ̇

cos2 θ

ẋ




.

Thus obtaining

ζ̇ = f̃(ζ) + g̃1(ζ)u1 + g̃2(ζ)u2

f̃(ζ) =
(
ζ2 0 ζ5 ζ6 0 −ζ3

)⊤
, g̃1(ζ) =

(
0 1 0 0 0 −ζ3

)⊤

g̃2(ζ) =
(
0 0 0 0 1 0

)⊤
(5.8)
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The above model (5.8) admits the closed-form sampled-data equivalent model of the form (5.1a),(5.1b)
that can be computed. We then select our multi-rate order m = 4 and, in particular

u1(t) = uj1(k), t ∈ [(k +
j − 1

2
)δ, (k +

j

2
)δ[, j = 1, 2

u2(t) = uj2(k), t ∈ [(k +
j − 1

4
)δ, (k +

j

4
)δ[, j = 1, . . . , 4.

so getting the multi-rate planner dynamics (dropping the subscript k for the control):

ζ(k + 1) = (Aδ̄ +Bδ̄
1(u

2
1))

2(Aδ̄ +Bδ̄
1(u

1
1))

2ζ(k) (5.9)

+ (Aδ̄ +Bδ̄
1(u

2
1))

2(I +Bδ̄
1(u

1
1))B

δ̄
0(u

1
1, u

1
2)

+ (Aδ̄ +Bδ̄
1(u

2
1))

2Bδ̄
0(u

1
1, u

2
2)

+ (I +Bδ̄
1(u

1
1))B

δ̄
0(u

2
1, u

3
2) +Bδ̄

0(u
2
1, u

4
2)

with ζ(k) = φ(x(k), ẋ(k), z(k), ż(k), θ(k), θ̇(k)) for all k ≥ 0 with

Aδ̄ =




1 δ̄ 0 0 0 0

0 1 0 0 0 0

0 0 1 0 δ̄ 0

0 0 − δ̄2

2 1 − δ̄3

6 δ̄

0 0 0 0 1 0

0 0 −δ̄ 0 − δ̄2

2 1




, Bδ̄
1(u1) =




03×6

− δ̄2

2 u1 0 − δ̄3

6 u1 0

03×2 0 0 0 0

−δ̄u1 0 − δ̄2

2 u1 0




Bδ̄
0(u1, u2) =

(
δ̄2u1
2 δ̄u1

δ̄2u2
2

−δ̄4(1+u1)u2
24 δ̄u2

−δ̄3(1+u1)u2
6

)⊤

with δ̄ ≥ 0 being the sampling period and δ = 4δ̄.

Planning and control

For all t = kδ with k ≥ 0 planning is made on the basis of the simplified equivalent model (5.9) so
getting, for the original system (5.7) a sequence of admissible outputs {(x̂i(k + j), ẑi(k + j)), i =

1, . . . , 4 and j = 0, 1} when setting (x̂i(k+ j), ˙̂xi(k+ j), ẑi(k+ j), ˙̂zi(k+ j), θ̂i(k+ j),
˙̂
θi(k+ j))⊤ =

φ−1(ζ̂i(k)).
Consequently, for all t = kδ + iδ̄, the MPC computes the feedback ui(k) (for i = 0, . . . , 3) with

the sampled data SR model of the PVTOL used for prediction. This feedback is then applied to
the simulation model of system (5.7) while recomputing the reference for all t = kδ.

Simulations and Remarks

In the following we will compare the proposed control algorithm (denoted MR MPC) to both
the stand-alone multi-rate deadbeat control (denoted MR) and MPC with the trajectory planner
proposed by Biagiotti and Melchiorri (2019) (hereinafter denoted FIR MPC). In all simulations
δ̄ = 1 seconds while np = nc = 4. In the exact steering scenarios, The PVTOL is required to
perform the classical lateral maneuver of 10 m, namely a reference on the normalized position of
(x z)⊤ = (1 0)⊤. While in the time varying references case, a linear path is fixed on both the lateral
and vertical displacements (that is x, z respectively) as a ramp signal with velocity v0 = 1m/s to

Applications of sampled-data methodologies 102



5.5. Steering and tracking for the PVTOL aircraft

be tracked at t = kδ, δ = 4δ̄.
Exact steering with Perturbation Here we perform the manuever of a lateral displacement, as-

suming the system is perturbed by a disturbance w(t) where w is a randomly generated actuation
white noise (that is u(t) = umpc(t) + w(t)). In that case, the following comparisons are made:

• Figure 5.7 compare the performance of this control scheme to that obtained in Di Giamber-
ardino et al. (1994). Notice that in the figure the proposed planning and control algorithm is
able to stabilize the vertical displacement to zero despite the disturbance, while the multi-rate
deadbeat alone fails at doing so. On the other hand, the rotation is kept bounded by the
proposed control scheme below 0.1 rads after 10 seconds.

• Figure 5.8 compare the performance of this control scheme to that obtained with an FIR MPC
trajectory planner with a rest to rest motion. In this case, both control schemes perform
similarly in the steady state keeping the desired position while also ensuring the stability of
the θ dynamics (the PVTOL doesn’t perform flips around its axis). It’s worth mentioning
that the FIR MPC does better in the transient compared to our scheme and requires less
vertical movement to recover the required lateral manuever. Once stabilization is achieved,
both control schemes stabilize the PVTOL.

Exact steering with γ variation Here we perform the same manuever above, without an actuation
perturbation, and we assume that the value of γ = 1.1 in the actual model, while it’s the nominal
value for defining the MR planner simplified model and the MPC prediction models, we perform
the following comparisons

• Figure 5.9 compare the performance of MR MPC to that obtained with an FIR MPC. Similar
performances are recovered, although MR MPC performs slightly worse than FIR MPC in
the transient as expected due to the fact that the feedback and coordinate change bringing
(5.7) to (5.8) are not defined for γ ̸= 0.8
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Figure 5.7: PVTOL perturbed steering to (x, y) = (1, 0) MR VS MR MPC with ϵ = 0, Q = I

Figure 5.8: PVTOL perturbed steering to (x, y) = (1, 0) FIR MPC VS MR MPC with ϵ = 0, Q = I
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Figure 5.9: PVTOL perturbed steering to (x, y) = (1, 0) FIR MPC VS MR MPC with γ = 1.1, ϵ = 0, Q = I

Time-varying references tracking
We require both the lateral x and vertical displacement z to follow a given reference, in this

case, a ramp signal with velocity v0 = 0.1 (i.e without normalization v0 = 1m/s). We show that
the proposed scheme outperforms both stand-alone MR control and FIR MPC one, and to this end,
the following comparisons are made:

• In the nominal case depicted by Figure 5.10, we set γ = 0 in the cost (5.3) i.e. cheap control.
Notice that, contrarily to the MR MPC scheme, the FIR MPC is unable to follow the reference
over the larger steps δ, and for the same choices of Q,R, np, nc an off-set is evident.

• Figure 5.11 shows that, even when there is actuation perturbation, and parameter variation,
our proposed scheme outperforms the FIR MPC one, not just on the big sampling instants
kδ, but also during the smaller sub-intervals kδ̄.

• Figure 5.12 compares our scheme tracking a straight line, under the action of a perturbation,
against the stand-alone MR control, and the benefit in using our proposed scheme is evident
as expected, both in terms of tracking at the small sampling instants, and maintaining the
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• Figure 5.13 shows the effect of weighting the output R > 0 and verifying that the MR MPC
scheme performs better compared to FIR MPC in this case, under both the action of a
perturbation and the parameter ϵ change.
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5.5. Steering and tracking for the PVTOL aircraft

Figure 5.10: PVTOL nominal tracking of a straight line FIR MPC VS MR MPC with R = 0, Q = I

Figure 5.11: PVTOL perturbed tracking of a straight line FIR MPC VS MR MPC with γ = 0.5, ϵ =
0, Q = I
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5.6. Concluding remarks

Figure 5.12: PVTOL perturbed tracking of a straight line MR VS MR MPC with γ = 0.8, ϵ = 0, Q = I

Figure 5.13: PVTOL perturbed tracking of a straight line FIR MPC VS MR MPC with γ = 0.5, ϵ =
0.5, R = I, Q = I

5.6 Concluding remarks

A few concluding remarks to summarize this chapter are in order;

Applications of sampled-data methodologies 107



5.6. Concluding remarks

■ Concerning the unconstrained MPC problem, utilizing a multi-rate sampled-data trajectory
planner ensures the availability of admissible references by construction.

■ Those planned references, when no additional constraints are present guarantee recursive
feasibility when considering the cheap control variation of the optimization problem.

■ Combining nonlinear MPC with multi-rate sampled-data planning ensures that the the closed
loop inherits the nominal robustness of MPC. In essence MPC robustifies multi-rate control,
and multi-rate improves the performances achieved by MPC.

■ In this scheme, all the sampling and holding devices on the loop run at a synchronous rate.
The asynchronous sampling rate is relegated to the planner level.

■ In both solutions presented in this chapter and the previous one, we treated a specific variation
of the unconstrained MPC problem under the hypothesis of cheap control. Effects of state
and input constraints were not taken into account.

As already explained, this chapter barely touches upon the use of multi-rate sampled models
as trajectory planners in MPC to avoid closed-loop instability. Aspects concerning the role of
trajectory planners in ensuring recursive feasibility and stability at large are not discussed as well
as the role of state and input constraints in the inversion-like nature of MPC. The interested reader
is referred to Camacho and Alba (2013), Allgöwer and Zheng (2012), Grüne and Pannek (2017) and
the references contained therein.

Applications of sampled-data methodologies 108



IFAC PapersOnLine 53-2 (2020) 3620–3625

ScienceDirect

Available online at www.sciencedirect.com

2405-8963 Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license.
Peer review under responsibility of International Federation of Automatic Control.
10.1016/j.ifacol.2020.12.2043

10.1016/j.ifacol.2020.12.2043 2405-8963

Copyright © 2020 The Authors. This is an open access article under the CC BY-NC-ND license  
(http://creativecommons.org/licenses/by-nc-nd/4.0)

Sampled-data tracking under model
predictive control and multi-rate planning�

Mohamed Elobaid ∗,∗∗ Mattia Mattioni ∗ Salvatore Monaco ∗

Dorothée Normand-Cyrot ∗∗

∗ Dipartimento di Ingegneria Informatica, Automatica e Gestionale (La
Sapienza University of Rome) Rome, 00185 Italy (e-mail:

{mohamed.elobaid, mattia.mattioni, salvatore.monaco}@uniroma1.it).
∗∗ Laboratoire de Signaux et Systèmes (L2S, CNRS); 3, Rue Joliot
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1. INTRODUCTION

Several control problems involve the cancellation of the so
called zero-dynamics. This issue is even more evident in
the nonlinear context when solving input-output feedback
linearization or tracking problems (see Isidori (2013)).
The problem becomes more delicate under sampling and,
in particular, when direct digital control approaches are
employed to design the controller. In that case in fact,
the minimum-phase property of the system can even be
lost for small sampling periods, due to the appearance
of the unstable so-called sampling zeros (Åström et al.
(1984); Monaco and Normand-Cyrot (1988) for linear and
nonlinear cases).
The idea of making use of a piecewise constant control over
sub-intervals of the sampling interval, that is multi-rate
control, has been properly introduced in the nonlinear con-
text to overcome the aforementioned pathologies (Monaco
and Normand-Cyrot (1992)). The possibility of varying
the control several times in the sampling interval confers
more degrees of freedom to the control action (Monaco
and Normand-Cyrot (1991, 2001)).
A major limitation in the use of multi-rate control stands
in its intrinsic dependence on the model so implying lack of
robustness. Moreover, since the input signal changes over
sub-intervals of the sampling period, the control works in
open loop at all those sub-intervals since the corresponding
measures of the states are not available.
On the other hand, model predictive control (MPC) repre-
sents a powerful and effective design technique that relies
upon the solution of a constrained optimization problem
subject to the system dynamics plus possible additional
requirements over a finite time horizon. Indeed, it has
now become the mainstay for regulation and tracking
in the industry for constrained multi-input/multi-output
(MIMO) systems (see Camacho and Alba (2013); Garćıa

� Partially funded by Université Franco-Italienne/Università Italo-
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et al. (1989)). Additionally, under suitable assumptions, it
has been proved that the feedback generated by a nominal
nonlinear model predictive problem is inherently robust
with respect to different perturbing actions and model
uncertainties (e.g., Picasso et al. (2010); Grimm et al.
(2004); Magni et al. (2009)). Still, as the intuition suggests,
some difficulties may arise when discrete-time models are
used by the MPC designer to ensure a prefixed reference
profile for the output. As sampling induces unstable zero-
dynamics, a naive implementation of MPC feedback might
yield unboundedness of the internal trajectories and thus
of the feedback. To overcome this issue, standard MPC
implementations introduce further penalizing weights on
the objective function and/or constraints (typically LMI)
over the optimization problem (e.g., Bemporad and Morari
(1999); Byun (1988)). As a drawback, such a stratagem is
not based on the understanding of the source of unstability
so that ad-hoc tuning is needed.
Motivated by these reasons, in Elobaid et al. (2019a) a
first attempt to handle those aspects has been proposed by
directly designing MPC utilizing multi-rate inputs and the
equivalent multi-rate sampled-data model for prediction.
Under small penalties on the input, this approach has
been shown to be effective as no further modifications
of the optimization problem are required for preserving
boundedness of the closed loop; however it requires huger
capabilities of the sample and hold devices.
In this respect, this work is aimed to weaken this demand
by leaving the holding and sampling devices (i.e., actua-
tors and sensors) synchronous. The new proposed control
scheme combines a classical single-rate MPC controller
with a multi-rate planner that computes, starting from
samples of the desired output profile, a suitable admissible
reference trajectory to be fed to the MPC. The inner MPC
controller working on the fast sampling rate will now guar-
antee the prefixed boundedness of the internal behaviour
of the overall system with no need of introducing further
constraints. Roughly speaking, in the proposed control
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(1984); Monaco and Normand-Cyrot (1988) for linear and
nonlinear cases).
The idea of making use of a piecewise constant control over
sub-intervals of the sampling interval, that is multi-rate
control, has been properly introduced in the nonlinear con-
text to overcome the aforementioned pathologies (Monaco
and Normand-Cyrot (1992)). The possibility of varying
the control several times in the sampling interval confers
more degrees of freedom to the control action (Monaco
and Normand-Cyrot (1991, 2001)).
A major limitation in the use of multi-rate control stands
in its intrinsic dependence on the model so implying lack of
robustness. Moreover, since the input signal changes over
sub-intervals of the sampling period, the control works in
open loop at all those sub-intervals since the corresponding
measures of the states are not available.
On the other hand, model predictive control (MPC) repre-
sents a powerful and effective design technique that relies
upon the solution of a constrained optimization problem
subject to the system dynamics plus possible additional
requirements over a finite time horizon. Indeed, it has
now become the mainstay for regulation and tracking
in the industry for constrained multi-input/multi-output
(MIMO) systems (see Camacho and Alba (2013); Garćıa
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implementations introduce further penalizing weights on
the objective function and/or constraints (typically LMI)
over the optimization problem (e.g., Bemporad and Morari
(1999); Byun (1988)). As a drawback, such a stratagem is
not based on the understanding of the source of unstability
so that ad-hoc tuning is needed.
Motivated by these reasons, in Elobaid et al. (2019a) a
first attempt to handle those aspects has been proposed by
directly designing MPC utilizing multi-rate inputs and the
equivalent multi-rate sampled-data model for prediction.
Under small penalties on the input, this approach has
been shown to be effective as no further modifications
of the optimization problem are required for preserving
boundedness of the closed loop; however it requires huger
capabilities of the sample and hold devices.
In this respect, this work is aimed to weaken this demand
by leaving the holding and sampling devices (i.e., actua-
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Curie, 91192, Gif-sur-Yvette, France (e-mail: {mohamed.elobaid,

dorothee.normand-cyrot}@centralesupelec.fr)

Abstract: In this paper, a new control scheme for sampled-data nonlinear model predictive
control is proposed making use of a multi-rate based trajectory planning for designing admissible
references over the prediction horizon. The proposed controller is compared with existing
reference generators for model predictive control through simulations over a benchmark example.

Keywords: Digital implementation; Nonlinear predictive control; Tracking

1. INTRODUCTION

Several control problems involve the cancellation of the so
called zero-dynamics. This issue is even more evident in
the nonlinear context when solving input-output feedback
linearization or tracking problems (see Isidori (2013)).
The problem becomes more delicate under sampling and,
in particular, when direct digital control approaches are
employed to design the controller. In that case in fact,
the minimum-phase property of the system can even be
lost for small sampling periods, due to the appearance
of the unstable so-called sampling zeros (Åström et al.
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by leaving the holding and sampling devices (i.e., actua-
tors and sensors) synchronous. The new proposed control
scheme combines a classical single-rate MPC controller
with a multi-rate planner that computes, starting from
samples of the desired output profile, a suitable admissible
reference trajectory to be fed to the MPC. The inner MPC
controller working on the fast sampling rate will now guar-
antee the prefixed boundedness of the internal behaviour
of the overall system with no need of introducing further
constraints. Roughly speaking, in the proposed control
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1. INTRODUCTION

Several control problems involve the cancellation of the so
called zero-dynamics. This issue is even more evident in
the nonlinear context when solving input-output feedback
linearization or tracking problems (see Isidori (2013)).
The problem becomes more delicate under sampling and,
in particular, when direct digital control approaches are
employed to design the controller. In that case in fact,
the minimum-phase property of the system can even be
lost for small sampling periods, due to the appearance
of the unstable so-called sampling zeros (Åström et al.
(1984); Monaco and Normand-Cyrot (1988) for linear and
nonlinear cases).
The idea of making use of a piecewise constant control over
sub-intervals of the sampling interval, that is multi-rate
control, has been properly introduced in the nonlinear con-
text to overcome the aforementioned pathologies (Monaco
and Normand-Cyrot (1992)). The possibility of varying
the control several times in the sampling interval confers
more degrees of freedom to the control action (Monaco
and Normand-Cyrot (1991, 2001)).
A major limitation in the use of multi-rate control stands
in its intrinsic dependence on the model so implying lack of
robustness. Moreover, since the input signal changes over
sub-intervals of the sampling period, the control works in
open loop at all those sub-intervals since the corresponding
measures of the states are not available.
On the other hand, model predictive control (MPC) repre-
sents a powerful and effective design technique that relies
upon the solution of a constrained optimization problem
subject to the system dynamics plus possible additional
requirements over a finite time horizon. Indeed, it has
now become the mainstay for regulation and tracking
in the industry for constrained multi-input/multi-output
(MIMO) systems (see Camacho and Alba (2013); Garćıa
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et al. (1989)). Additionally, under suitable assumptions, it
has been proved that the feedback generated by a nominal
nonlinear model predictive problem is inherently robust
with respect to different perturbing actions and model
uncertainties (e.g., Picasso et al. (2010); Grimm et al.
(2004); Magni et al. (2009)). Still, as the intuition suggests,
some difficulties may arise when discrete-time models are
used by the MPC designer to ensure a prefixed reference
profile for the output. As sampling induces unstable zero-
dynamics, a naive implementation of MPC feedback might
yield unboundedness of the internal trajectories and thus
of the feedback. To overcome this issue, standard MPC
implementations introduce further penalizing weights on
the objective function and/or constraints (typically LMI)
over the optimization problem (e.g., Bemporad and Morari
(1999); Byun (1988)). As a drawback, such a stratagem is
not based on the understanding of the source of unstability
so that ad-hoc tuning is needed.
Motivated by these reasons, in Elobaid et al. (2019a) a
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et al. (1989)). Additionally, under suitable assumptions, it
has been proved that the feedback generated by a nominal
nonlinear model predictive problem is inherently robust
with respect to different perturbing actions and model
uncertainties (e.g., Picasso et al. (2010); Grimm et al.
(2004); Magni et al. (2009)). Still, as the intuition suggests,
some difficulties may arise when discrete-time models are
used by the MPC designer to ensure a prefixed reference
profile for the output. As sampling induces unstable zero-
dynamics, a naive implementation of MPC feedback might
yield unboundedness of the internal trajectories and thus
of the feedback. To overcome this issue, standard MPC
implementations introduce further penalizing weights on
the objective function and/or constraints (typically LMI)
over the optimization problem (e.g., Bemporad and Morari
(1999); Byun (1988)). As a drawback, such a stratagem is
not based on the understanding of the source of unstability
so that ad-hoc tuning is needed.
Motivated by these reasons, in Elobaid et al. (2019a) a
first attempt to handle those aspects has been proposed by
directly designing MPC utilizing multi-rate inputs and the
equivalent multi-rate sampled-data model for prediction.
Under small penalties on the input, this approach has
been shown to be effective as no further modifications
of the optimization problem are required for preserving
boundedness of the closed loop; however it requires huger
capabilities of the sample and hold devices.
In this respect, this work is aimed to weaken this demand
by leaving the holding and sampling devices (i.e., actua-
tors and sensors) synchronous. The new proposed control
scheme combines a classical single-rate MPC controller
with a multi-rate planner that computes, starting from
samples of the desired output profile, a suitable admissible
reference trajectory to be fed to the MPC. The inner MPC
controller working on the fast sampling rate will now guar-
antee the prefixed boundedness of the internal behaviour
of the overall system with no need of introducing further
constraints. Roughly speaking, in the proposed control

scheme, MPC is used to robustify multi-rate design, and
multi-rate planning is used to improve MPC.
This work is organized as follows. In Section 2 recalls
on single and multi-rate sampling and model predictive
control are given. In Section 3 the main ideas and mo-
tivations behind multi-rate planning for MPC control are
introduced. Section 4 is devoted to the proposed MPC-MR
control scheme which is applied to the simplified model
of a planar vertical take-off and landing in Section 5.
Concluding remarks end the paper.

Notations: All functions and vector fields defining the
dynamics are assumed smooth and complete over the
respective definition spaces. In the paper T will be the
length of the sampling period, and any suitable sub-
interval will be denoted by δ. MU denotes the space of
measurable and locally bounded functions u : R → U with
U ⊆ R. Us ⊆ MU denotes the set of piecewise constant
functions over time intervals of fixed length s ∈]0, T ∗[
and T ∗ small enough; i.e. Us = {u ∈ MU s.t. u(t) =
uk, ∀t ∈ [ks, (k + 1)s[; k ≥ 0}. Given a vector field f , Lf

denotes the Lie derivative operator, Lf =
∑n

i=1 fi(·) ∂
∂xi

.

The Lie exponential operator is denoted as eLf and defined

as eLf := I +
∑

i≥1

Li
f

i! with I being the identity operator.

Finally, ‖x‖P = x�Px denotes the seminorm of x ∈ Rn for
some P ≥ 0. A function β(·) : [0,∞) → [0,∞) that is zero
in zero and strictly increasing and unbounded is said to
be of class κ∞. A function R(x, δ) = O(δp) is said to be of
order δp, p ≥ 1 if, whenever it is defined, it can be written
as R(x, δ) = δp−1R̃(x, δ) and there exists a function

β(δ) ∈ κ∞ and δ� > 0 s.t. ∀δ ≤ δ�, |R̃(x, δ)| ≤ β(δ)

2. PRELIMINARIES AND RECALLS

2.1 Sampled-data systems

Single-rate (SR) and multi-rate (MR) sampled-data (SD)
equivalent models of a continuous-time process are recalled
in the sequel (Monaco and Normand-Cyrot (2001)). Con-
sider a nonlinear continuous-time input-affine system

ẋ = f(x) + g(x)u, y = h(x) (1)

and let u(t) ∈ UT and y(t) = yk for t ∈ [kT, (k + 1)T [
(with T ≥ 0 being the sampling period). Then, denoting
xk := x(kT ), yk := y(kT ), uk := u(kT ) for k ≥ 0, the
evolutions of (1) at the sampling instants t = kT with
T ≥ 0, are described by its single-rate (SR) sampled-data
equivalent model

xk+1 = FT (xk, uk), yk =h(xk) (2)

where the mapping FT (·, ·) : Rn × R → Rn admits the
following series expansion in powers of T

FT (xk, uk) =eT (Lf+ukLg)x
∣∣
xk

= xk +
∑

i>0

T i

i!
(Lf + ukLg)

i
∣∣
xk
.

(3)

Since a closed-form expression for the state and output
evolutions of (1) does not exist in general, only approxi-
mated expansions in power of T can be computed. In this
respect, if the series expansion (3) is characterized by a
finite number of terms, then system (1) is said to be finitely
discretizable (Monaco and Normand-Cyrot (2001)).
It is a matter of computations to verify that if (1) has well

defined relative degree, say r ≤ n, the relative degree of
the sampled-data equivalent model always falls to rd = 1;
namely, one has

yk+1 =h(xk) +

r∑

i=1

T i

i!
Li
fh(x)

∣∣
xk

+
T r

r!
ukLgL

r−1
f

h(x)
∣∣
xk

+O(T r+1)

so that ∂yk+1

∂uk
�= 0. As a consequence, whenever r > 1,

the sampling process induces a further zero-dynamics of
dimension r−1 (the sampling zero-dynamics, Monaco and
Normand-Cyrot (1988)) that is in general unstable for
r > 1. In that case inversion-like techniques via single-rate
sampling cannot be achieved while guaranteeing stability
of the internal dynamics.
To overcome this pathology multi-rate (MR) sampling,
corresponding to sample the state and output at lower
frequency with respect to changes of the piecewise constant
control, has been introduced in Monaco and Normand-
Cyrot (1991). Accordingly, denoting by ui

k(t), xi
k(t) and

yik(t) the input, state and output variables at any t = kT +
(i − 1)δ for i = 1, . . . ,m (with uk = u1

k, xk = x1
k and

yk = y1k), the multi-rate equivalent model of order m of
(1) gets the form

xk+1 =FT
m(xk, u

1
k, . . . , u

m
k ) (4)

with T = mδ, u(t) ∈ Uδ and

FT
m(xk, u

1
k, . . . , u

m
k ) =eδ(Lf+u1

kLg) . . . eδ(Lf+um
k Lg)x

∣∣
xk

=

F δ(·, um
k ) ◦ · · · ◦ F δ(xk, u

1
k).

It has been proved by the authors that, with m = r,
the MR sampled-data model has vector relative degree
rδ = (1, . . . , 1) under the choice of a suitable output vector
specified by the output itself and its first (r−1) derivatives.
Accordingly, the corresponding zero-dynamics inherits the
zero-dynamics stability properties of (1) (see Monaco and
Normand-Cyrot (1988)). In addition in Mattioni et al.
(2017), it has been shown that the minimum-phase condi-
tion can be relaxed by increasing the MR order.
This MR-SD equivalent model can then be used to de-
sign tracking controllers over the sampling interval T as
developed in Section 3.

2.2 Sampled-data unconstrained MPC

The problem of tracking a reference v(t) at the sampling
instants is typically addressed within the framework of
nonlinear model predictive control. Roughly speaking,
the feedback is computed to minimize a quadratic cost
function of the form

J =

np∑

i=1

(
‖ek+i‖Q + ‖uk+i−1‖R

)
(5)

with ek(yk, vk) a suitable tracking error, Q > 0, R ≥ 0
being appropriate penalizing weights and np, nc the pre-
diction and control horizons respectively. The functional
cost (5) is repeatedly optimized at each sampling instant
t = kδ over a finite horizon while the feedback is applied
via a receding horizon implementation.
As well know, tracking control implicitly requires zero-
dynamics cancellation. In this respect, as the above prob-
lem is formulated in the sampled-data context, instability
of the closed loop system unavoidably arises due to the
sampling zero-dynamics. To overcome this, the uncon-
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strained MPC problem is typically enriched by redefining
the cost function as

J =

np−1∑

i=1

(
‖ek+i‖Q + ‖uk+i−1‖R

)
+ Vnp

s.t. xk+1 = FT (xk, uk), xnp
∈ Xf

with Vnp and Xf being the terminal cost and constraints
set suitably constructed for keeping the state bounded
(Camacho and Alba, 2013). This new formulation gives
rise to possible feasibility issues so that solution might not
exist for a given set of initial conditions.
On the other hand, reformulation of the tracking MPC
problem under multi-rate sampling allows to overcome
those unstability and feasibility issues while avoiding un-
necessary complications. Indeed, it was proved in Elobaid
et al. (2019a) that, given (1) with well-defined relative
degree and the MPC problem over (5) subject to the
MR-SD model (4), the optimal SD feedback always exists
and is uniquely defined as a formal series in powers of
δ for all np = nc ≥ 1. Thus using MR control at the
implementation level of MPC allows to handle the issues
arising due to sampling, without resorting to penalizing
terminal costs and constraints. However, it places a greater
burden on the sampling and hold devices, assumes a cheap
control, and does not address the issue of working in open
loop over intervals of length T ; this motivates the proposed
control scheme.

3. MULTI-RATE PLANNING FOR MPC CONTROL

For system (1), it is required to design a single rate
piecewise constant state feedback (with sampling period
δ) that tracks samples of suitable reference v(·) at prefixed
sampling instants (that is vk = v(kT ), T = mδ) by
minimizing the cost functional (5) at all t = kδ, k ≥ 0
and ensuring boundedness of the closed loop trajectories.
In the nominal multi-rate scenario and when R = 0 and
Q = I, this can be achieved by considering (4) with
m ≥ 1 and solving in (u1

k, u
2
k, .., u

m
k ) the following system

of nonlinear algebraic equations

H(FT
m(xk, u

1
k, . . . , u

m
k )) = Vk+1 (6)

where H : Rn → Rm and the vector V are respectively
suitable augmented output and reference vectors so as to
guarantee that, by invoking the implicit function theorem,
the solution exists.
As already commented, major limits of this stand in its
lack of robustness with respect to model uncertainties
and sampling approximations and to the fact it works
in open loop over time intervals of length T . How to
improve its effectiveness? We propose to design a sampled-
data single-rate control law, acting at all t = kδ and
based on the corresponding sampled measures of the state,
through a sampled-data MPC procedure that makes use of
the intermediate reference output values yik resulting from
the application of the nominal control sequence computed
from (6) to the MR-SD model (4). This reference is said
to be admissible in the sense of the definition below.

Definition 3.1. A sampled-data reference sequence {vk, k ≥
0} is said to be admissible for (1) from x0 ∈ Rn if, for
a suitable integer m ≤ n, equality (6) has a solution
{ui

k, i = 1, . . . ,m} which remains bounded. It will be said
SR or MR admissible if m = 1 or m > 1, respectively.

Note that, from Definition 3.1 a MR admissible sequence
can be suitably enriched to be SR admissible, as suggested
by the following result.

Theorem 3.1. Consider the system (1) and let v(t) be a
reference signal to be tracked at t = kT for k → ∞.
Denote by {vk = v(kT ), k ≥ 0} the sequence of samples of
the reference that is assumed to be MR admissible for a
suitable m > 1 under the input sequence {ûi

k, k ≥ 0, i =
1, . . . ,m} solution to (6) for all k ≥ 0. Let {ŷik, k ≥
0, i = 1, . . . ,m} be the augmented reference generated
by ŷ1k = vk, and for, i = 2, . . . ,m, ŷik = h(x̂i

k) with

x̂1
k = x(kT ) x̂i

k = F δ(x̂i−1
k , ûi−1

k ). Then, the unconstrained
MPC problem defined via the cost (5) with ek+i = ŷik−yik
subject to the SR-SD model (2) admits a solution which
is bounded for np = nc ≥ m and R = 0.

Proof: Whenever {vk, k ≥ 0} is admissible, then there
exists a solution sequence {ûi

k, k ≥ 0, i = 1, . . . ,m}
such that (6) is solved and s.t yk+1 = vk+1, k ≥ 0. Then
applying the solution to (2), one gets x̂i

k = F δ(x̂i−1
k , ûi−1

k )
and correspondingly the intermediate output values ŷik =

h(x̂i
k). Setting δ = T

m this sequence is SR admissible by
construction, and by Definition 3.1 there exists a sequence
of controls such that y(kT ) = v̂k, so implying feasibility.
To show that the MPC optimization problem recovers this
solution, one sets np = nc and the proof proceeds along
the lines of (Elobaid et al., 2019a, Th.2, Prop.7). 	

Note that the statement above does not assume that the
reference can be tracked in continuous time, but merely
that it is MR admissible. Given a reference v(t) that
system (1) can exactly track (in the sense of Isidori
(2013)[Chapter 4]), then a fast sampling of this reference
vk is MR admissible, namely one can define H(x) =
(h(x), Lfh(x), . . . , Lr−1

f h(x))�,V = (v, v̇, . . . ,v(r−1))� as

in (Monaco and Normand-Cyrot, 1991) corresponding to
which which (6) admits a solution. The following result
can be hence given.

Corollary 3.1. Suppose system (1) is minimum-phase and
has a well defined relative degree r ≤ n, then equality (6)
always admits a solution with a multi-rate of order m ≥ r.

Proof: Since (1) has a well defined relative degree, then the
input-output feedback linearization problem is solvable so
that, under feedback and change of coordinates, (1) reads

ż = Az + Bv, η̇ = q(z, η) + p(z, η)v

with A,B, q(·), p(·) as in Isidori (2013)[Chapter 4]. Accord-
ingly, the MR equivalent model of order m ≥ r is given
by

zk+1 = AT
mzk + BT

mvk, ηk+1 = F̃T
m(zk, ηk, vk) (7)

with AT
m = (eAδ)m, BT

m =
[
Am−1

sr Bsr . . . Bsr

]
and

Asr = eAδ, Bsr =
∫ δ

0
eAδu(τ)dτ and F̃T

m(zk, ηk, vk) =

eδ(Lq+v1
kLp) . . . eδ(Lq+vm

k Lp)x
∣∣
(zk,ηk)

. In this setting, zk cor-

responds to H so that (6) reduces to a linear map on the
multi-rate inputs vk. Because Bδ

m is full rank by construc-
tion and because the relative degree is invariant under
feedback, one gets the solution v̂k = (BT

m)−1(Vk+1 −
Aδ

mzk). Moreover, by the fact that η̇ = q(z, η)+ p(z, η)v is
stable, and combined with Theorem 3.1 and the arguments
in Monaco and Normand-Cyrot (1988), one gets that the
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k , ûi−1

k ). Then, the unconstrained
MPC problem defined via the cost (5) with ek+i = ŷik−yik
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k). Setting δ = T

m this sequence is SR admissible by
construction, and by Definition 3.1 there exists a sequence
of controls such that y(kT ) = v̂k, so implying feasibility.
To show that the MPC optimization problem recovers this
solution, one sets np = nc and the proof proceeds along
the lines of (Elobaid et al., 2019a, Th.2, Prop.7). 	

Note that the statement above does not assume that the
reference can be tracked in continuous time, but merely
that it is MR admissible. Given a reference v(t) that
system (1) can exactly track (in the sense of Isidori
(2013)[Chapter 4]), then a fast sampling of this reference
vk is MR admissible, namely one can define H(x) =
(h(x), Lfh(x), . . . , Lr−1

f h(x))�,V = (v, v̇, . . . ,v(r−1))� as

in (Monaco and Normand-Cyrot, 1991) corresponding to
which which (6) admits a solution. The following result
can be hence given.

Corollary 3.1. Suppose system (1) is minimum-phase and
has a well defined relative degree r ≤ n, then equality (6)
always admits a solution with a multi-rate of order m ≥ r.

Proof: Since (1) has a well defined relative degree, then the
input-output feedback linearization problem is solvable so
that, under feedback and change of coordinates, (1) reads

ż = Az + Bv, η̇ = q(z, η) + p(z, η)v

with A,B, q(·), p(·) as in Isidori (2013)[Chapter 4]. Accord-
ingly, the MR equivalent model of order m ≥ r is given
by

zk+1 = AT
mzk + BT

mvk, ηk+1 = F̃T
m(zk, ηk, vk) (7)

with AT
m = (eAδ)m, BT

m =
[
Am−1

sr Bsr . . . Bsr

]
and

Asr = eAδ, Bsr =
∫ δ

0
eAδu(τ)dτ and F̃T

m(zk, ηk, vk) =

eδ(Lq+v1
kLp) . . . eδ(Lq+vm

k Lp)x
∣∣
(zk,ηk)

. In this setting, zk cor-

responds to H so that (6) reduces to a linear map on the
multi-rate inputs vk. Because Bδ

m is full rank by construc-
tion and because the relative degree is invariant under
feedback, one gets the solution v̂k = (BT

m)−1(Vk+1 −
Aδ

mzk). Moreover, by the fact that η̇ = q(z, η)+ p(z, η)v is
stable, and combined with Theorem 3.1 and the arguments
in Monaco and Normand-Cyrot (1988), one gets that the

planned trajectories are admissible for the overall dynam-
ics over the small interval δ = T

m . �

Theorem 3.1 applies to finitely discritizable systems.

4. PLANNING AND CONTROL ALGORITHM

In this section, and referring to the discussion above,
we present in a detailed manner the control scheme for
designing a sampled-data feedback uk = u(xk) ensuring
tracking of a given output profile at the sampling instants
t = kT for all k ≥ 0 by exploiting a planned admissible
trajectory generated via the MR model (4).
We assume that the dynamics (1) is finitely descritizable
with FT

m(·, û1
k, . . . , û

r
k) denoting the corresponding multi-

rate finite model of order m (possibily computed under
coordinate change and preliminary feedback).
The following algorithm is proposed by using the admis-
sible sequence {ŷik, i = 1, . . . ,m, k ≥ 0} defined in
Theorem 3.1 as a reference trajectory for the MPC with
np = m. Such a trajectory is computed and updated at all
t = kT based on the nominal multi-rate solution defined
through (4). Thus, for all t ∈ {kT, kT + δ, . . . , kT + (m−
1)δ} the planned reference sequence is fed to the MPC for
computing the optimizing controller which is guaranteed
to exist for R ≥ 0 small enough by virtue of Theorem 3.1.
Specifically, the algorithm works over the steps depicted
in Algorithm 1.

Algorithm 1 Planning and control algorithm

1: Initialization:

Va ← (vk+1, vk+2)
�

xk ← x(kT ), Q ← Q,R ← R,m ← m

2: while t ≥ 0 do
3: if t = (k + j)T, j ∈ Z≥0 then
4: k ← k + j
5: (ŷk, ŷ) = Planning(xk)
6: uk = Control(m,Q,R)
7: else
8: for t = kT + iδ, i = 1, . . . ,m− 1 do
9: ui

k = Control(m,Q,R)

10: procedure (ŷk, ŷk+1) = Planning(xk,Va)
11: x̂1

k ← xk




û1
k
...

ûm
k
...

ûm
k+1




=

(
(h ◦ FT

m)−1(x̂k, vk+1)

(h ◦ FT
m)−1(·, vk+2) ◦ (FT

m)−1(x̂k, vk+1)

)
(8)

12: for j = 0 : 1 do
13: for i = 1 : m do

x̂i+1
k+j = F δ(x̂i

k+j , û
i
k+j), ŷik+j =h(x̂i

k+j).

14: procedure u�
k = Control(m,Q,R, ŷ1k, . . . , ŷ

np

k )
15: np ← m
16:

uk = argminuk

np∑

i=1

(
‖ŷik − yik‖Q + ‖ui−1

k ‖R
)

17: u�
k = u1

k

Remark 4.1. From the previous arguments, we only ex-
ploit the samples of the reference over two big steps (that is
vk+1, vk+2 and correspondingly setting in the MR planner
(6) an augmented output vector Ha(x) = (yk, yk+1)

�).
This is due to the fact that in the implementation of a
receding horizon algorithm, we will need explicitly the
values of the desired reference sequence over np = m
steps, and writing the second iteration of the MPC (i.e.,
at time t = kT + δ), one notes the explicit dependence
of the (optimal) control on values of the desired output
trajectories at ŷm+1

k = ŷ1k+1.

Remark 4.2. The design the planner can be worked out
on a simplified sampled-data model so to reduce the com-
putational burden related to solve equality (8). When the
conditions of Corollary 3.1 are met, the computations asso-
ciated with the planner are simply the inversion of a matrix
BT

m which is full rank by construction. Consequently, as
shown in the case study, one in principle uses a simplified
finite model for the planner, while a more exhaustive one
is employed by MPC for prediction.

Remark 4.3. The proposed control scheme inherits the
nominal robustness properties of MPC (e.g. Grimm et al.
(2007); Picasso et al. (2010); Grimm et al. (2004)). This
will be further demonstrated in the following case study.

5. THE PVTOL AS A CASE STUDY

Let the model of the PVTOL (planar vertical take-off and
landing) aircraft take the form:

ẍ = −sin(θ)v1 + εcos(θ)v2
z̈ = cos(θ)v1 − 1 + εsin(θ)v2

θ̈ = v2

(9)

with output y = h(x, ẋ, z, ż, θ, θ̇) = (x, z)�.

5.1 Construction of the simplified MR planner model

To use our control scheme, we first define the multi-rate
sampled-data model of the PVTOL. To this end, it is
known (e.g. Di Giamberardino and Djemai (1994)) that
(9) is feedback equivalent to a finitely discretizable system,
by setting

v =

( 1

cosθ
+ εθ̇2

−2θ̇2 tan θ

)
+

(
1

cosθ
0

0 cos2 θ

)
u

together with the coordinates change

ζ = ϕ(x, ẋ, z, ż, θ, θ̇) = εϕ1(·) + ϕ2(·)
with ϕ1(·) =

(
cos θ −θ̇ sin θ 0 − sin θ 0 −θ̇ cos θ

)�
, ϕ2(·) =(

z ż tan θ x
θ̇

cos2 θ
ẋ

)�
, thus obtaining

ζ̇ = f̃(ζ) + g̃1(ζ)u1 + g̃2(ζ)u2

f̃(ζ) = (ζ2 0 ζ5 ζ6 0 −ζ3)
�
, g̃1(ζ) = (0 1 0 0 0 −ζ3)

�

g̃2(ζ) = (0 0 0 0 1 0)
�

A multi-rate of order 2 on u1 and 4 on u2 can be employed
to ensure the invertibility of the sampled-data dynamics.
Explicitly writing

u1(t) = uj
1(k), t ∈ [(k +

j − 1

2
)T, (k +

j

2
)T [, j = 1, 2

u2(t) = uj
2(k), t ∈ [(k +

j − 1

4
)T, (k +

j

4
)T [, j = 1, 2, 3, 4.
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and developing the calculations and rearranging the terms,
we obtain the MR SD equivalent model of the PVTOL as:

ζk+1 = (Aδ + Bδ
1(u

2
1))

2(Aδ + Bδ
1(u

1
1))

2ζk (10)

+ (Aδ + Bδ
1(u

2
1))

2(I + Bδ
1(u

1
1))B

δ
0(u

1
1, u

1
2)

+ (Aδ + Bδ
1(u

2
1))

2Bδ
0(u

1
1, u

2
2)

+ (I + Bδ
1(u

1
1))B

δ
0(u

2
1, u

3
2) + Bδ

0(u
2
1, u

4
2)

with ζk = ϕ(xk, ẋk, zk, żk, θk, θ̇k) for all k ≥ 0 with

Aδ =




1 δ 0 0 0 0

0 1 0 0 0 0

0 0 1 0 δ 0

0 0 −
δ2

2
1 −

δ3

6
δ

0 0 0 0 1 0

0 0 −δ 0 −
δ2

2
1




, Bδ
0(v, w) =




δ2v

2
δv

δ2w

2
−δ4(1 + v)w

24
δw

−δ3(1 + v)w

6




Bδ
1(v) =




03×6

−
δ2

2
v 0 −

δ3

6
v 0

03×2 0 0 0 0

−δv 0 −
δ2

2
v 0




with δ ≥ 0 being the sampling period and T = 4δ.
The model (10) will be used for planning the admissible
reference trajectories.

5.2 Planning and control

For all t = kT , planning of the intermediate output ref-
erences is made on the basis of the simplified equivalent
model (10). Hence one gets for all t = kT +(i−1)δ, an ad-

missible sequence (x̂i
k+j ,

˙̂xi
k+j , ẑ

i
k+j ,

˙̂zik+j , θ̂
i
k+j ,

˙̂
θik+j)

� =

ϕ−1(ζ̂ik), and thus the intermediate reference output values
{(x̂i

k+j , ẑ
i
k+j), i = 1, 2, 3, 4 and j = 0, 1} for system (9).

Consequently, for all t = kT +(i−1)δ, the MPC computes
the feedback ui

k (for i = 1, . . . , 4) with the sampled-
data SR model of the PVTOL (in the form (2)) used for
prediction. This feedback is then applied to the simulation
model of system (9) while recomputing the reference for
all t = kT .

5.3 Simulations

In the following we will compare the proposed control
algorithm (denoted MR-MPC) to the stand-alone MPC
with the trajectory planner proposed by Luigi Biagiotti
(2019) (denoted FIR-MPC). Figure 1 depicts the nomi-
nal scenario (with no external perturbations nor model
uncertainties), while in Figure 2 actuator disturbances as
well as uncertainties on the parameter ε are considered.
In all simulations δ = 1 seconds while np = nc = 4
seconds and Q = I. Both schemes will utilize a sequential
quadratic programming SQP based optimization solver.
Time varying references are fixed on both the lateral and
vertical displacements (that is x, z respectively) as a ramp
signal (shown in black) with velocity v0 = 1 m/s to be
tracked at t = kT, T = 4δ.
It results that the proposed control algorithm favourably
compares to the FIR-MPC.
In the nominal case (Figure 1), we set R = 0. Contrarily to
the MR-MPC scheme, the FIR-MPC is unable to follow
the reference over the sampling steps δ and an off-set is
evident. While the number of iterations in each instant to
compute the minimizer is slightly more in the MR-MPC

case, the minimum obtained is lower, namely it is Vnp
= 0

compared to 0.5 obtained by the FIR-MPC.
In Figure 2, R > 0 and a white noise is added on the
actuation signal. In addition the parameter ε = 0.5 in the
simulation model, while the nominal value ε = 0.8 is used
to construct the planner and the prediction model for the
MPC. In this case as well, the proposed algorithm is able
to track the reference over the big intervals T , despite the
effect of uncertainties being evident (although acceptable
i.e. |θ| ≤ 0.1 rads) in the internal dynamics. Note also
that while the number of iterations required to obtain the
minimum is comparable between the two algorithms, the
value function was still lower Vnp = 0.08 for MR-MPC
compared to 0.1 for FIR-MPC. Further simulations are
reported in Elobaid et al. (2019b) comparing the MR-MPC
with FIR-MPC and stand-alone MR control in different
situations.

6. CONCLUSIONS

We establish an intuitive implementation of sampled-data
tracking control through multi-rate planning utilizing dis-
crete time nonlinear single-rate MPC for reference track-
ing. This is done by highlighting the role played by ensur-
ing the availability of good and admissible references to the
MPC controller so to improve the effectiveness of the two
stand-alone design methodologies. Future works concern
the study of the effect of incorporating constraints on the
control, on the benefits incurred by the proposed scheme.
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and developing the calculations and rearranging the terms,
we obtain the MR SD equivalent model of the PVTOL as:

ζk+1 = (Aδ + Bδ
1(u
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with δ ≥ 0 being the sampling period and T = 4δ.
The model (10) will be used for planning the admissible
reference trajectories.

5.2 Planning and control

For all t = kT , planning of the intermediate output ref-
erences is made on the basis of the simplified equivalent
model (10). Hence one gets for all t = kT +(i−1)δ, an ad-

missible sequence (x̂i
k+j ,

˙̂xi
k+j , ẑ

i
k+j ,

˙̂zik+j , θ̂
i
k+j ,

˙̂
θik+j)

� =

ϕ−1(ζ̂ik), and thus the intermediate reference output values
{(x̂i

k+j , ẑ
i
k+j), i = 1, 2, 3, 4 and j = 0, 1} for system (9).

Consequently, for all t = kT +(i−1)δ, the MPC computes
the feedback ui

k (for i = 1, . . . , 4) with the sampled-
data SR model of the PVTOL (in the form (2)) used for
prediction. This feedback is then applied to the simulation
model of system (9) while recomputing the reference for
all t = kT .

5.3 Simulations

In the following we will compare the proposed control
algorithm (denoted MR-MPC) to the stand-alone MPC
with the trajectory planner proposed by Luigi Biagiotti
(2019) (denoted FIR-MPC). Figure 1 depicts the nomi-
nal scenario (with no external perturbations nor model
uncertainties), while in Figure 2 actuator disturbances as
well as uncertainties on the parameter ε are considered.
In all simulations δ = 1 seconds while np = nc = 4
seconds and Q = I. Both schemes will utilize a sequential
quadratic programming SQP based optimization solver.
Time varying references are fixed on both the lateral and
vertical displacements (that is x, z respectively) as a ramp
signal (shown in black) with velocity v0 = 1 m/s to be
tracked at t = kT, T = 4δ.
It results that the proposed control algorithm favourably
compares to the FIR-MPC.
In the nominal case (Figure 1), we set R = 0. Contrarily to
the MR-MPC scheme, the FIR-MPC is unable to follow
the reference over the sampling steps δ and an off-set is
evident. While the number of iterations in each instant to
compute the minimizer is slightly more in the MR-MPC

case, the minimum obtained is lower, namely it is Vnp
= 0

compared to 0.5 obtained by the FIR-MPC.
In Figure 2, R > 0 and a white noise is added on the
actuation signal. In addition the parameter ε = 0.5 in the
simulation model, while the nominal value ε = 0.8 is used
to construct the planner and the prediction model for the
MPC. In this case as well, the proposed algorithm is able
to track the reference over the big intervals T , despite the
effect of uncertainties being evident (although acceptable
i.e. |θ| ≤ 0.1 rads) in the internal dynamics. Note also
that while the number of iterations required to obtain the
minimum is comparable between the two algorithms, the
value function was still lower Vnp = 0.08 for MR-MPC
compared to 0.1 for FIR-MPC. Further simulations are
reported in Elobaid et al. (2019b) comparing the MR-MPC
with FIR-MPC and stand-alone MR control in different
situations.

6. CONCLUSIONS

We establish an intuitive implementation of sampled-data
tracking control through multi-rate planning utilizing dis-
crete time nonlinear single-rate MPC for reference track-
ing. This is done by highlighting the role played by ensur-
ing the availability of good and admissible references to the
MPC controller so to improve the effectiveness of the two
stand-alone design methodologies. Future works concern
the study of the effect of incorporating constraints on the
control, on the benefits incurred by the proposed scheme.
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Chapter 6

Application to halo orbits stabilization
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Building on the discussions found in the previous chapter, and having seen the benefit of
using multi-rate sampling at the planning level of an MPC controller, this chapter will give a

more complete case study. Referencing a constrained nonlinear MPC problem, Halo orbits station
keeping under digital control is studied. In this instant a simplified, under an assumed regulation
feedback, multi-rate model of the plant are used as trajectory generators. And while no theoretical
guarantees on the equivalence to inversion and stability of the closed loop are provided due to the
presence of state constraints, nonetheless better performances are achieved compared to a host of
control techniques from the literature.

The notions appearing hereinafter are recalled and elaborated on based on the contributions
found in

Mohamed Elobaid, Mattia Mattioni, Salvatore Monaco and Dorothée Normand-Cyrot. “Station-
keeping of L2 halo orbits under sampled-data model predictive control”. Journal of Guidance,
Control, and Dynamic, 2022 to appear.

This chapter will conclude Part II with some remarks concerning the general constrained case, its
equivalence to inversion at the limit of cheap control requirement, and ways to incorporate sampled-
data methodologies in handling such situations. Indeed, this chapter, and the previous two, merely
constitute an introduction into looking at ways that leverage the available and rich sampled-data
tools to handle in tracking nonlinear MPC at large. And with the detailed applications provided in
this chapter hopefully the reader will appreciate the practical validity of such ideas.

Introduction and context

The dynamics of a spacecraft in the Earth-Moon gravitational system (the so-called Restricted
Three-Body Problem (RTBP) Poincaré (1893); Barrow-Green (1997)) exhibit equilibria commonly
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known as Libration (or Lagrangian) points. This makes Lagrangian points excellent locations for
spacecrafts in exploration applications Farquhar (1970). Among those the so-called translunar Li-
bration point L2 has been attracting particular interest for various satellite communication applica-
tions Wu et al. (2018) and deep space observation and exploration purposes Farquhar (1971) as also
testified by the numerous space missions that have already taken place (e.g., NASA’s ARTEMIS
Woodard et al. (2009) and CNSA’s Chang’e 5-T1 Harvey (2019)) and new ones are in schedule
Bobskill and Lupisella (2012).

However, keeping a spacecraft close to L2 requires an active control action because, as well-
known, it is an unstable equilibrium point as are most equilibrium trajectories within the Halo
family of orbits around it Gómez et al. (2001); Zimovan-Spreen et al. (2020). In this respect, several
control design methods have been proposed throughout the last decades for stabilizing Halo orbits
while mitigating the effect of perturbations and unmodelled dynamics (see Shirobokov et al. (2017)
for a complete survey, and Howell and Pernicka (1993) for an earlier work). Among these and
related to this work, the most important ones are based on optimization Simó et al. (1987); Folta
and Vaughn (2004); Breakwell et al. (1974); Folta et al. (2014); Ulybyshev (2015); Rahmani et al.
(2003); Bando and Ichikawa (2015), receding horizon Kalabic et al. (2015); Misra et al. (2018) and
advanced nonlinear design (e.g. projection to the stable manifold Zhang and Li (2019), feedback
linearization, nonlinear regulation Di Giamberardino and Monaco (1996) and backstepping Qi and
de Ruiter (2019)). In the majority of the aforementioned works, a circular RTBP model is used
to describe the dynamics of a spacecraft so neglecting the primaries motion perturbations whose
effect, however, cannot be discarded in practice. Only few works consider the more realistic elliptic
RTBPs in which the eccentricity is not zero (e.g. Farquhar (1970); Di Giamberardino and Monaco
(1996)) possibly making use of ephemeris models considering the solar radiation pressure and other
gravitational perturbations (e.g. Qi and de Ruiter (2019)).

In the sequel, we provide a new control scheme assuming the so-called elliptic RTBP model
under the influence of solar radiation pressure which captures the principal feature of the dynamics
while retaining simplicity Shirobokov et al. (2017). In addition, a modified model predictive control
approach is proposed to cope with real-time implementation issues as, for instance, the digital nature
of both actuation and sensing and possible limits on control, unavoidable in practice. In particular,
we consider the case in which measures are available only at sporadic time instants whereas the
control is piecewise constant over the sampling period (e.g. Celsi et al. (2015)). The approach
we propose is based on the design of multi-rate (MR) strategies at the planning level providing
a suitable reference governor for a model-predictive control (MPC) control scheme. The resulting
control system enables to overcome the limits of small prediction horizons underlined in Misra et al.
(2018), when the controller is designed under usual MPC. As a matter of fact, such limits would
bring to unfeasible controllers for small prediction horizons when the design makes use of a the
sampled-data model, due to the cancellation of the possibly unstable zero-dynamics under sampling
Elobaid et al. (2019). Also, the use of large prediction horizons, typically used as a stratagem in
practice, might introduce large computational delays.

This work is contextualized in this framework by proposing a new sampled-data MPC control
scheme where the problem is simplified. This is achieved by generating a suitable reference trajec-
tory based on a multi-rate planner which guarantees stability of the closed loop and feasibility of
the optimization problem solved, at each step, by the MPC assuming cheap control. In particu-

Applications of sampled-data methodologies 116



6.1. Modelling and problem statement
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Figure 6.1: Figure showing the rotating and inertial reference frame in the EM three body system

lar, such a planner is designed starting from the nonlinear regulation-based controller proposed in
Di Giamberardino and Monaco (1996) which yields, by construction, admissible and bounded tra-
jectories which can be then fed to the MPC as reference to track. In this context, the contribution
of this paper stands in the proposition of a new control scheme which employs at the low level an
inherently robust nonlinear MPC fed by a references generated by a multi-rate sampled-data model
of a control system designed making use of nonlinear regulation.

The choice of the proposed control scheme is motivated by the observation that MPC and non-
linear regulation can be employed together to mitigate each the deficiencies of the other: nonlinear
regulation appears to be the natural context for setting the problem since the references and pertur-
bations are periodic although it lacks in robustness to unmodelled disturbances; MPC is becoming
a standard tool for handling tracking applications, it is inherently robust to bounded perturbations
Grüne and Pannek (2017) despite it requiring reference signals pre-processing to guarantee con-
vergence and recursive feasibility. Thus, the implementation of a nonlinear MPC fed by samples
of a reference signal generated by the sampled-data model of the controlled circular RTBP under
nonlinear regulation provides a natural solution.

6.1 Modelling and problem statement

The mathematical model describing the motion of a satellite under the gravitational pull of both the
earth and moon referred in the current literature (see Shirobokov et al. (2017) and the references
therein) takes the form:

ẍ−u1 − 2ẏ(1 + β(t))− x(1 + 2β(t) + β(t)2)− y ˙β(t) = −(1− µ)(x+ µ(1 + α(t)))

r1

− µ(x− (1− µ)(1 + α(t)))

r2
+
Gsc
c

cos2(ζt)

ÿ−u2 + 2ẋ(1 + β(t))− y(1 + 2β(t) + β(t)2)− xβ̇(t) = −(1− µ)y
r1

− µy

r2
+
Gsc
c
sin2(ζt)

z̈−u3 = −
(1− µ)z

r1
− µz

r2

(6.1)
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where, with reference to Fig. 6.1: x , y , z are the distance normalized1 coordinates of the
planetoid expressed in the rotating frame when the eccentricity e is assumed to be zero; u1 , u2 , u3
are three axis thrusts in the corresponding direction, α(t) and β(t) are periodic functions with zero
mean value admitting the form of a series expansion in e given by

α(t) = −e cos(t+ ϕ) + 0.5e2(1 + cos(2t+ 2ϕ)) +O(e3) (6.2)

β(t) = 2e cos(t+ ϕ) + 2.5e2 cos(2t+ 2ϕ) +O(e3) (6.3)

m1,m2 are the masses of the earth and moon respectively, and µ = m2
m1+m2

; ri =
|ri,3|
∥ri,3∥3 , i = 1, 2 are

the norms, in the distance normalized rotating frame, of the vectors from the earth to the planetoid,
and the moon to the planetoid respectively; Gsc is the solar constant and c the speed of light and
Gsc
c ≈ 4.5−3N/m2; finally ζ ≈ 0.9252 is the angular rate of the sun light line in non-dimensional

units.
Some comments about the validity of the model are in order; as usual, in (6.1) it is assumed that

the solar radiation pressure (SRP) is constant in magnitude throughout the earth-moon system. In
addition, assuming the primaries (earth and moon) move in a circular path around the barycenter,
one can set α(t) = β(t) = 0 and the model above reduces to the well known approximated Circular
Restricted Three Body Problem (CRTBP) model. The periodic functions α(t) and β(t) are indeed
used to capture the effect of eccentricity of the orbits. This effect is used to get better approxima-
tions, in the normalized coordinates, of the distance between earth and moon d(t) and the angular
rate of change between the rotating and inertial frame θ̇(t). A reliable Elliptic Restricted Three
Body Problem (ERTBP) model for our problem is obtained assuming e ≈ 0.0549.

The motion equations (6.1) can be re-written in the control affine perturbed state-space form

q̇ = f(q, ξ) +B(u+D)

p = h(q) = Cq
(6.4)

with

f(q, ξ) =

[
f1(q)

f2(q, ξ)

]
, f1(q) =

[
03×3 I3

]
q, B =

[
03×3

I3

]
, C =

[
I3 03×3

]

f2(q, ξ) =−Mp− 2Nṗ− ξ1(2Mp+ 2Nṗ)− ξ2Mp− ξ3Nṗ−
1− µ
∥p− d1∥3

(p− d1)−
µ

∥p− d2∥3
(p− d2)

M =



−1 0 0

0 −1 0

0 0 0


 , N =



0 −1 0

1 0 0

0 0 0


 , d1 =



−µ− ξ4

1−µ
0

0


 , d2 =



1− µ+ ξ4

µ

0

0




where p = (x y z)T ∈ R3 specifies the output, q := (q1 . . . q6)
⊤ = (p⊤ ṗ⊤)⊤ ∈ R6 the state, u ∈ R3

the control input,

ξ(t) =
(
β(t) β2(t) β̇(t) µ(1− µ)α(t)

)⊤
∈ R4 (6.5)

1Following Farquhar (1970), the average distance between earth and moon is normalized (i.e., d(t) = d1(t)+d2(t) =
1) as well as the sum of masses of earth and moon (i.e., m1+m2) and the average angular rate of change θ̇(t) between
the rotating and inertial frame.
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and the vector of the eccentricity perturbation and the Solar Radiation Pressure (SRP)

D(t) =




Gsc
c cos2(ζt)
Gsc
c sin2(ζt)

0


 .

-1 -0.5 0 0.5 1
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Figure 6.2: Family of Lyapunov planar orbits around the translunar point L2.

When setting ξ = 04×1, D(t) = 03×1, the dynamics (6.1) reduces to the so-called circular RTBP
model. In that case, the resultin dynamics possesses five equilibria with fixed location on the rotating
frame and usually denoted by Li, with i = 1, . . . , 5. Among these, L1, L2 and L3 are the so-called
collinear points with the corresponding x coordinates, in the distance normalized rotating frame,
given by L3 = −1.0050627, L1 = 0.8369147, L2 = 1.155682. As shown in Richardson (1980); Doedel
et al. (2007) (see also Carletta et al. (2019); Gurfil and Meltzer (2007) for comments on the circular
and elliptic RTBP cases respectively), the solutions of (6.4) close to the collinear equilibria, when
suitably initialized, are periodic in nature as also underlined by the corresponding linear tangent
model of (6.1).

The quasi-halo orbit model and L2-station keeping

When neglecting external signals (i.e., D = u = 03×1), the linear tangent model of (6.4) at q⋆ =

(L2 0 0 0 0 0)⊤ gets the form

q̇ = Aq, A =

[
03×3 I3

A2,1 A2,2

]
, A2,1 =



1 + 2η 0 0

0 1− η 0

0 0 −η


 , A2,2 =




0 2 0

−2 0 0

0 0 0


 (6.6)

with η = 1−µ
(L2+µ)3

+ µ
(L2−1+µ)3

= 3.194075. Because A possesses periodic modes, for a suitable
set of initial conditions q0 ∈ R6, (6.6) admits periodic and bounded solutions of the form q(t) =
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(ν(t) ν̇(t))⊤ Richardson (1980) with

ν(t) =
[
−k(1−η+Ω2)

2Ω cos(Ωt+ ϕ) k sin(Ωt+ ϕ) k cos(Ωzt)
]⊤
. (6.7)

where, in addition, k being a constant depending on the initial displacement from L2, ϕ a phase angle
and Ω,Ωz the in-plane and out-of-plane natural frequencies. It is assumed that Ω = Ωz = 1.8636

for guaranteeing visibility from Earth. In addition, when simulating, ϕ is set to zero.
Expression (6.7) defines a quasi Halo orbit that is an approximate circular orbit in 3D centered

around L2. In this sense, the objective is to drive and maintain the satellite onto such an orbit.
Formally, the control objective consists in designing a feedback law ensuring tracking of the quasi
halo orbit described by (6.7) (i.e., that p(t) → ν(t) as t → ∞). In the concerned literature (e.g.,
Shirobokov et al. (2017) and references therein) such a problem is commonly referred to as station-
keeping of the L2 orbit and has found, as already mentioned, numerous solutions under different
working assumptions. However none of them considers, at the same time, issues arising from both
digital implementation of the control laws and the effect of unmodelled perturbations over the closed
loop as formally set here below.

With this in mind and assuming the general case of thrusts inputs to be piecewise constant over
the sampling period, we can now formally state the problem under investigation.

Figure 6.3: Approximated quasi Halo orbits around the translunar point L2

Consider a spacecraft whose dynamics around L2 is described by (6.4). Let measures of
the state be available at periodic sampling instants t = kδ, k ∈ Z≥0, with δ the sampling
period, and the thrusts input be piecewise constant over δ that is, u(t) = u(kδ) = u(k) for
t ∈ [kδ, (k + 1)δ[. Design a piecewise constant control u(k) = γ(q(k), ν(k)) such that the
position of the satellite approaches and stays on the quasi-Halo orbit reference (6.7) at all
sampling instants t = kδ, k ≥ 0; namely, p(kδ)→ ν(kδ) as k →∞.

Problem: station-keeping under digital control

‘

Several solutions were found in the literature to the problem above when assuming, in most
cases, a continuous control signal (i.e., δ → 0). The most relevant to the purpose of this paper are
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recalled here below whereas the interested reader is referred to Shirobokov et al. (2017) for a more
in deep discussion.

6.2 Background material on station-keeping techniques

Continuous-time nonlinear regulation for Halo orbits stabilization

When neglecting the effects of the SRP, a good solution to the L2-station-keeping control is achieved
under regulation by fixing the exosystem as

ω̇ =Sω (6.8a)

ξ =Tξω (6.8b)

ν =Tνω (6.8c)

with ω ∈ R4 and

S =

[
S1 02×2

02×2 S2

]
, S1 =

[
0 −1
1 0

]
, S2 = ΩS1, (6.9)

Tν =


03×2

−k(1−η+Ω2)
2Ω 0

0 k

k cosϕ k sinϕ


 , Tξ =




2 0

0 0

0 −2
−µ(1− µ) 0

04×2



e. (6.10)

The so-defined exosystem dynamically generates, when setting the initial condition

ω0 =
(
cosϕ sinϕ cosϕ sinϕ

)⊤

the external signals feeding (6.4) and, in particular, the quasi Halo orbits (6.7), the reference
trajectories to track, and the periodic eccentricity perturbations (6.8b) to asymptotically reject.

As the intuition suggests, the exosystem satisfies the internal model principle Francis and Won-
ham (1976) so that the problem reduces to stabilizing the internally admissible trajectory (6.8c)
while negating the effect of the eccentricity perturbations (6.8b); namely, one seeks for a control
law ensuring the regulation error falls to zero asymptotically, i.e.,

e(t) = Cq(t)− Tνω(t)→ 0 as t→∞.

This argument is at the basis of the controller proposed in Di Giamberardino and Monaco (1996)
deduced by assuming ξ(t) ≈ 0 and approximating (6.4) as

q̇ = f0(q) + P (q)ξ +Bu (6.11)

with
f0(q) = f(q, 0), P (q) =

∂f

∂ξ

∣∣∣
ξ=0

.
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In this way, one gets the feedback law

u = c(ω) +K(q − π(ω)) (6.12)

with: π : R4 → R6 and c : R4 → R3, solutions to the Francis-Byrnes-Isidori equations ??,

∂π(ω)

∂ω
Sω = f0(π(ω)) + P (π(ω))ω +Bc(ω)

0 = Cπ(ω)− Tνω,

given by

π(ω) = Πω, Π =

[
Tν

TνS

]
, c(ω) = −

[
03×3 I3

] (
f0(π(ω)) + P (π(ω))Tξω

)
+ΠSω (6.13)

with K ensuring σ(A + BK) ⊂ C−, A = ∂f0(q)
∂q

∣∣∣
q=q⋆

. In Di Giamberardino and Monaco (1996),

this control was shown to provide good results both in terms of quasi-Halo orbit station-keeping
error (also when considering higher order terms in (6.2)) and energy expenditure in the sense of
∥u(t)∥ in the nominal case of D(t) = 0. However, such a controller lacks in robusteness with respect
to unmodelled uncertainties (e.g., the effect of the SRP) and digital implementation of the control
laws as demanded from more recent practical scenarios Farquhar (1971). To make regulation robust
with respect to sampling, a solution based on direct digital design has been proposed in Celsi et al.
(2015) solving the regulation problem on the sampled-data multi-rate equivalent model of (6.4).
Still, in this setting, measures are available only at the sampling periods while the control switches
at suitably defined sub-intervals, so making it work in open loop during such sub-intervals.

Multi-rate L2-station under sampling

When D = 03×1, the corresponding unperturbed model (6.4) possesses a well-defined (vector)
relative degree r = (2 2 2); i.e., the following holds:

• LBh(q) = CB = 03×3 while LBLf (·, ξ)h(q) = C ∂f(q,ξ)
∂q B ̸= 03×3;

• the decoupling matrix U(q, ξ) = C ∂f(q,ξ)
∂q B is non-singular.

Let us now assume that measurements are available only at t = kδ (i.e., the sampling instants) with
k ≥ 0 and the control and the eccentricity perturbation are piecewise constant over the sampling
period δ ≥ 0; i.e., ξ(t) = ξ(k) and u(t) = u(k) for t ∈ [kδ, (k + 1)δ(. Then, the dynamics are
described at all sampling instants by the so-called single-rate (SR) equivalent sampled-data model
which takes the form of a map

q(k + 1) = F δ(q(k), ξ(k), u(k))

p(k) = h(q(k)) = Cq(k)
(6.14)

with q(k) = q(kδ) and

F δ(q, ξ, u) = eδLf(·,ξ)+Buq = q +
∑

j>0

δj

j!
(Lf(·,ξ)+Bu)

jq. (6.15)
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It is a matter of computation to verify that, independently on the continuous-time vector relative
degree r, the relative degree of each output channel of the sampled-data equivalent model (6.14)
always falls to rd = (1 1 1); namely, one gets

∂p(k + 1)

∂u(k)
=
δ2

2!
LBLf(·,ξ)h(q) +O(δ3) =

δ2

2!
C
∂f(q, ξ)

∂q
B +O(δ3) ̸= 0.

As a consequence, the sampled dynamics (6.14) possesses a further unstable zero dynamics (the
so-called sampling zero-dynamics) of dimension 3. For this reason, inversion-like techniques via
single-rate sampling cannot be achieved while guaranteeing stability of the internal dynamics. This
fact induces some obstructions due to the appearance of the sampling zero-dynamics. To overcome
this pathology, multirate sampling has been introduced and developed in a nonlinear context Monaco
and Normand-Cyrot (1992).

In detail, fixing δ̄ = δ
2 and u(t) = ui(k), t ∈ [kδ, kδ + iδ̄(, i = 1, 2 one gets the multirate (MR)

equivalent model of order 2 of the form

q(k + 1) =F δ2 (q(k), ξ(k), u(k)) (6.16)

with

F δ2 (q, ξ, u) = F δ̄(·, ξ, u2) ◦ F δ̄(q, ξ, u1) =
∑

j1,j2≥0

δ̄j1+j2

j1!j2!
(Lf(·,ξ)+Bu1)

j1 ◦ (Lf(·,ξ)+Bu2)j2q.

At this point, the multi-rate design model used for regulation is deduced by approximating (6.16)
as

q(k + 1) =q(k) +
δ

2

(
f δ(q(k), ω(k)) + gδ(ω(k))u(k)

)
(6.17)

with

f δ(q, ω) =f(q, Tξω) + f(q, Tξe
δ
2
Sω) +

δ

2

∂f

∂q
(q, Tξe

δ
2
Sω)f(q, Tξω)

gδ(ω) =
[(
I + δ

2
∂f
∂q (q, Tξe

δ
2
Sω)

)
B B

]

where we have used the exosystem (6.8) for predicting the disturbance at the small sampling instants
t = kδ + δ̄; namely, ξ(kδ + δ̄) = Tξe

δ
2
Sω(k) and ω(k) = ω(kδ).

Because gδ(ω) is non-singular the regulation problem is solved by the feedback

u =
(
gδ(ω)

)−1
(
Ad(q − π(ω))− f δ(q, ω) + π(eδSω)

)

with π(ω) as in (6.13) and Ad any Schur stable matrix (i.e., with σ(I + δ̄Ad) ∈ S1). In this sense a
MR feedback was used to solve the station-keeping problem in an approximate sense. This feedback
was shown to give better results when applied to the simulation model (6.4) without SRP compared
to the emulation-based implementation of the continuous-time regulation feedback (6.12) (i.e., when
directly implemented via zero-order-holding (ZOH) and no redesign). On the other hand, a known
limitation of MR sampled-data control is the lack of robustness.
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L2-station keeping under nonlinear MPC

With reference to the SR sampled-data model (6.14) and assuming ξ = 04×1, a station-keeping
nonlinear MPC has been proposed in Misra et al. (2018) based on the online solution, at all sampling
instants, of a finite horizon optimal control problem of the form;

min
{
Vnp(q(k + np)) +

np−1∑

i=1

∥p(k + i)− ν(k + i)∥2Q + ∥u(k + i− 1)∥2R
}

(6.18a)

s. t. q(k + 1) = F δ(q(k), 0, u(k)) (6.18b)

q(k + i) ∈ X , u(k + j) ∈ U , i = 1 . . . , np − 1, j = 0, . . . , nc − 1 (6.18c)

q(k + np) ∈ Xnp (6.18d)

where: the sampled-data equivalent model is used as prediction model Grüne and Pannek (2017);
ν(k) = ν(kδ) is the sample of the reference trajectory in (6.7); Q ⪰ 0 and R ≻ 0 are the penalizing
weights; np, nc are the prediction and control horizons; X ,U are the states and control constraints
sets assumed, as usual, compact, convex and containing the origin; Vnp and Xnp represent the
terminal cost and terminal constraint set respectively. Those terminal ingredients are incorporated
into the optimization problem (6.18) for providing closed-loop stability and convergence Mayne
et al. (2000b). Instability in closed loop, when no further constraint is included, arises due to the
generally unstable zero-dynamics induced by single-rate sampling Monaco et al. (1986b).

Remark 6.1 In Halo-orbit station-keeping applications usually one has box constraints on the con-
trols Shirobokov et al. (2017).

The nonconvex nonlinear programming (NLP) problem (6.18) can be recast into a polynomial
optimization problem Raff et al. (2006); Misra et al. (2018) of the form

V ⋆ = max
U∈U ,λ∈R

λ (6.19a)

s.t p0(U)− λ ≥ 0 (6.19b)

with λ ∈ R, U = (u(k), . . . u(k + np − 1))⊤ being the decision variable, and denoting the single-
shooting prediction of the output for i steps by Hi(U);

p0(U) = H1(U) +H2(U) + . . .+Hnp(U)

H1(U) = ∥ν(k + 1)− CF δ(q(k), 0, u(k))∥Q
H2(U) = ∥ν(k + 2)− CF δ(·, 0, u(k + 1)) ◦ F δ(q(k), 0, u(k))∥Q

...

Hnp(U) = ∥ν(k + np)− CF δ(·, 0, u(k + np − 1)) ◦ · · · ◦ F δ(q(k), 0, u(k))∥Q

so to guarantee, if any, convergence to a solution in finite time and the corresponding global opti-
mality. The above problem is a Sum-Of-Squares (SOS) polynomial minimization problem Putinar
(1993) subject to convex polynomial constraints, for which one can utilize a Semi-Definite Pro-
gramming (SDP) solver to reach global optimal solutions in polynomial time. However, as noted in
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Misra et al. (2018), when solving (6.25) via SDP solvers two issues arise: semi-definite programming
solutions to (6.25) are computationally demanding (depending on the degree of the sum of squares
polynomial relaxations for p0(U)− λ), and the closed loop system may lack in robustness since the
employed prediction model neglects both eccentricity and SRP and for which no reference signal
pre-processing is done.

In the context of tracking known limitations with nonlinear MPC are related to two main
aspects: recursive feasibility of the optimization problem that is linked to admissibility of the
reference trajectory for the dynamics, and boundedness of the closed-loop trajectories Gilbert and
Tan (1991).

6.3 Station-keeping under sampled-data model predictive control

With reference to Fig. 6.4 below, we detail the proposed single-rate sampled-data quasi Halo
orbit station-keeping control scheme. This proposed scheme solves Problem 6.1 combining an outer
trajectory planner together with an inner nonlinear MPC controller working at different sampling
rates. More In detail, the trajectory is planned at all t = 2kδ̄ (the so-called planning instants),
whereas the control is computed by the MPC inner controller at all t = kδ̄ (the sampling instants).

• MR reference planner. Given the samples of the quasi Halo orbit reference generated by
the exosystem (6.8c). This MR reference planner produces a sequence of admissible position
trajectories, denoted p̂(k), based on a simplified model of the spacecraft under the regulation
feedback (6.12) neglecting SRP.

• Inner-loop MPC controller. A simplified nonlinear MPC control problem is obtained by
feeding the reference generated by the MR reference planner to the stage cost function (6.18a)
in place of ν(k), thus ensuring tracking, while mitigating the effect of the unmodelled additive
SRP disturbance.

ERTBP Approx. Model

SRP

CRTBP
Prediction mode

+ RK45 int

Inner-loop MPC

OCP + NLP/SDP
solver

Exo-System

Sampled-
data MR
planner 

Reg closed
loop

 MR reference planner

Simulation Model

Figure 6.4: The proposed control scheme MR MPC
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Construction of the MR planner model

Consider the feedback system (6.4) under the control (6.12) computed for K = 0 and D ≡ 0;
namely, we get

q̇(t) = f̃(q(t), ω(t)) +Bũi(k) (6.20)

for t ∈ [(k + i−1
2 δ, (k + i

2)δ[ and i = 1, 2 and f̃(q, ω) = f(q, Tξω) + Bc(ω). Accordingly, the
corresponding MR sampled-data equivalent model is approximately provided by

q(k + 1) = F̃ δ2 (q(k), ω(k), ũ(k)) (6.21)

with ũ = (u⊤1 u⊤2 )
⊤ ∈ R6, the map

F̃ δ2 (q, ω, ũ) = q +
δ

2

(
f̃ δ(q, ω) + g̃δ(ω)ũ

)

and

f̃ δ(q, ω) =
(
I +

δ

4
(A+

∂Γ

q
(q, Tξe

δ
2
Sω))

)
Aq

g̃δ(ω) =
[
B + δ

4AB
δ
4
∂Γ
q (q, Tξe

δ
2
Sω)B

]

Γ(q, ω) = −M(p+ Tνω)− 2N(ṗ+ TνSω)− (2Mp+ 2Nṗ)(e1Tξω)−Mp(e2Tξω)−Nṗ(e3Tξω)

− (1− µ)[ p− d̃1
∥p− d̃1∥3

+
Tνω − d̃1
∥Tνω − d̃1∥3

]− µ[ p− d̃2
∥p− d̃2∥3

+
Tνω − d̃2
∥Tνω − d̃2∥3

] + P (π(ω))Tξω − Tνω

d̃1 =
[
−µ− e4Tξωξ

1−µ 0 0
]⊤
, d̃2 =

[
1− µ+

e4Tξωξ

µ 0 0
]⊤
, A =

[
0 I

0 0

]

Accordingly, station keeping is guaranteed for the discrete-time model (6.21) by the planned feedback
law

ũ(q, ω) =
(
g̃δ(ω)

)−1
(
Ad(q − π(ω)) + π(eδSω)− f̃ δ(q, ω))

)
(6.22)

and Ad being such that σ(I + δAd) ⊂ S1. for all δ > 0.

Remark 6.2 It can be verified that Γ(q, ω) vanishes as p → Tνω that is, as the satellite reaches
the Halo orbit, apart from the external perturbation. More in detail, one computes at the Halo orbit
(i.e., p = Tνω)

Γ(q, ω) = −(e1Tξωξ)(2Mp+ 2Nṗ)− (e2Tξωξ)Mp− (e3Tξωξ)Nṗ+ P (π(ω))Tξωξ = Γ̄(q)ωξ.

Moreover, denoting ωξ =
[
I 0

]
ω, one gets ∥Γ̄(q)ωξ∥ is bounded at the quasi Halo orbit since

∥ωξ∥ ≤ c, c ∈ (0, 1].

At all planning instants t = kδ, the simplified MR model (6.21) under the feedback (6.22)
provides an admissible sequence of bounded references p̂i(k) = p̂(kδ + iδ

2 ) with k = 1, . . . , n̂p,
i = 1, 2 for the original dynamics (6.4) over the prediction horizon of length np = 2n̂p and n̂p > 1.
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More rigorously, for i = 1, 2, k = 1, . . . , n̂p and q0(k) = q(kδ) the multi-rate planner gets the form

qi(k) =F̃ δ̄(qi−1(k), ũi(k)) (6.23a)

p̂i(k) =Cqi(k) (6.23b)

with the single-rate map associated to (6.20) given by

F̃ δ̄(q, ũ) = q + δ̄
(
f̃(q, ω) +Bũ

)
+O(δ̄2)

Accordingly, such references can be directly fed to MPC controller for which, then, the optimization
problem can be notably simplified by discarding the terminal ingredients when the penalty on the
control is small as discussed in Chapter 5.

The inner-loop MPC controller

Assuming now the references computed by the planner (6.23), the actual single-rate control is
computed via MPC solving at all sampling instants t = kδ̄ the modified optimization problem
(6.18) of the form

V ⋆ = min
U

{ n̂p−1∑

ℓ=0

2∑

i=1

∥p((2k + ℓ+ i)δ̄)− p̂i((2k + ℓ)δ̄)∥2Q + ∥u(2k + ℓ+ i− 1))∥2R
}

(6.24a)

s. t. q(k + 1) = F δ(q(k), 0, u(k)) (6.24b)

lb ≤ u(k + i− 1) ≤ ub, i = 1, . . . , np and np = 2n̂p (6.24c)

Some comments are in order.
The MPC problem we propose is notably simplified discarding terminal ingredients. This is due

to the fact that the references p̂(·) provide bounded and admissible trajectories for the dynamics
by construction of the multi-rate planner (6.21). This is specially true for ϵ small enough, when
neglecting (6.24c) Elobaid et al. (2020b). In this sense, the admissible references p̂i(k) are specifically
designed to ensure better performances while simplifying the optimization problem. The generated
references are generated depend on the quasi Halo references obtained from (6.8c).

Expression (6.24b) represents a simplified prediction model for MPC being an approximate
sampled-data equivalent CRTBP model.

The constraint (6.24c) takes into account possible saturations and physical limitations of the
actuators and safety margins on thrusts. Note that (6.24c) are simple algebraic convex box con-
straints. Consequently, polynomial optimization reformulation of the nonlinear MPC problem above
is possible by noting that this problem can be rewritten as

V ⋆ = max
U∈U ,λ∈R

λ (6.25a)

s.t L
(
U I

)
≤ 0 (6.25b)
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with λ ∈ R, U = (u(k), . . . u(k + np − 1))⊤ being the decision variable and

L =




I 0 . . . 0 −ub
I 0 . . . 0 lb
...

...
. . .

...
...

I 0 . . . 0 −ub
I 0 . . . 0 lb



∈ R3np×3np+3 (6.26)

The above problem is a Sum-Of-Squares (SOS) polynomial minimization problem Putinar (1993)
subject to convex polynomial constraints, one can utilize a Semi-Definite Programming (SDP) solver
to reach global optimal solutions in polynomial time. To sum up, the control scheme we propose is
summarized in the algorithm below applying algorithm (A1) in Chapter 5.

Algorithm 2 Halo orbit station keeping algorithm
Solving Problem 6.1: p(k)→ ν(k)

initialization q(k)← q(t = kδ), Q← Q,R← R, ub← uMAX , lb← uMIN

while t ≥ 0 do
if t = (k + j)δ, j ∈ Z≥0 then k ← k + j

p̂ = Planning(q(k), Tνω(k))
u(k) = SolveNMPC()

for t = kδ + iδ̄, i = 1, 2 do
u(k) = SolveNMPC()

Remark 6.3 In the algorithm above, the SolveNMPC() routine is a NLP (equivalently SDP routing)
routine that solves the optimization problem 6.24. This can be any off the shelf routine. The
implementation details and a brief discussion on the computational aspects associated with this
routine are deferred to the next section. The if statement in the algorithm specifies that planning
and control are carried at different sampling rates as already discussed. This is precisely why we
need to propagate the MR planner (6.21) and compute the admissible reference p̂i(k) over double
the prediction horizon.

Combined in this way, it will be illustrated through simulations depicting various realistic sce-
narios, how utilizing a simplified MR model to provide admissible references for a nonlinear MPC
with a simplified prediction model solves problem (6.1) while addressing the limitations discussed
associated with the lack in robustness associated with nonlinear regulation.

6.4 Simulations and comparative discussions

Utilizing Matlab/Simulink©, a comparative study is carried out testing the proposed control scheme
(later on denoted by MR MPC) with respect to nonlinear MPC via polynomial optimization (PolyN-
MPC, Misra et al. (2018); Shirobokov et al. (2017)), nonlinear regulation and feedback lineariza-
tion proposed in Di Giamberardino and Monaco (1996). In particular, the nonlinear controllers
(regulation and feedback linearization) are implemented via sampling and hold devices with no
sampled-data redesign. For PolyNMPC, a polynomial approximation of the CRTBP model is used
for prediction deduced from Runge–Kutta (RK) numerical integrator of (6.4) assuming D(t) ≡ 0
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and ξ ≡ 0. Consequently the nonlinear MPC problem (6.24a)-(6.24b)-(6.24c) is transformed into a
polynomial optimization problem using sum of squares (SOS), as detailed in (6.25)-(6.25b). This
equivalent optimization problem is then solved in a receding horizon approach utilizing SOSTools©
Prajna et al. (2002).

We assume as simulation time T ≈ 2.7days = mδ̄ coinciding the time needed for at least two
revolutions around the orbit and δ̄ > 0 being the sampling period of the sampling and hold devices.
The comparison is aimed at showing how the various controllers succeed in keeping the spacecraft
on the Halo orbit based, also, on Key Performance Indicators (KPIs) below.

• Tracking Error in terms of the root-mean-square value of the spatial tracking error; namely,
eRMS(t) =

√
1
3(∥ν(t)− p(t)∥ and eRMS(T ) =

√
1
3(∥ν(T )− p(T )∥ in non-dimensional units.

• Energy Expenditure based on the L2-norm of the controls for the duration of the flight

(i.e., T ); i.e., EET =
√∫ T

0 ∥u(t)∥2dt = δ̄
√∑m

k=0 ∥u(k)∥2 with u(k) = u(kδ̄) and k ≥ 0 in
m/s2. Additionally, the instantaneous control norm (i.e., ∥u(t)∥ ) is reported as well as an
indicator of the so-called velocity budget.

More in details, starting from several initial conditions (e.g. near L2, close to the quasi-Halo
orbit), the proposed MR MPC scheme is compared with different control strategies available in the
literature in terms of robustness with respect to the effect of:

• unmodelled perturbations and actuator saturations (Sections 6.4-6.4) that is, when the
spacecraft starts from various initial conditions (e.g. near L2, close to the quasi-Halo orbit)
in nominal conditions (i.e., D(t) ≡ 0 in (6.4)) and when assuming SRP terms and saturation
of the actuators which were neglected during the design;

• sampling (Section 6.4) in presence of perturbations but no limits on the thrusts.

The computational aspects and the application of a Real Time Iteration MPC (RTI MPC) solver
to the proposed control scheme conclude the comparative study (Section 6.4).

First comparison starting from L2 in nominal conditions

The spacecraft is assumed to start in the translunar point i.e. q(0) = (L2 0 0 0 0 0)⊤ in the rotating
frame with no SRP terms. The proposed MR MPC and the PolyMPC are set with penalizing
weights Q = diag{10, 10, 10, 1, 1, 1}, R = 0.1I. The sampling period δ̄ ≡ 0.65hr in dimensional time
(this is a reasonable sampling period for this application see Sec. 4.A.7 in Shirobokov et al. (2017)).
Figure 6.5 shows the emulated Feedback linearization controller, while Fig. 6.6 depicts the feedback
nonlinear regulation feedback. These two control schemes are compared to the proposed MR MPC
(Fig 6.7) and polynomial based NMPC (Fig. 6.8). The results show that all the control schemes
are comparable, with nonlinear regulation outperforming others in terms of tracking error at the
expense of marginally higher energy demand. It is of note however that the proposed MR MPC
outperforms PolyMPC in tracking at the expense of relatively higher energy demand. Table 6.1
summarizes the main KPIs and performances of the various controllers tested in this scenario.
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Figure 6.5: Station-keeping under feedback linearization (emulated)

Figure 6.6: Station-keeping under nonlinear regulation (emulated)

Applications of sampled-data methodologies 130



6.4. Simulations and comparative discussions

Figure 6.7: Station-keeping under the proposed MR MPC control scheme

Figure 6.8: Station-keeping under nonlinear MPC in the nominal case

FL NL regulation MR MPC PolyMPC

eRMS(T ) 0.04 0.002 0.047 0.069
EET 2.238 m/s2 2.29 m/s2 1.927 m/s2 0.98 m/s2

Table 6.1: Summary of main KPI comparisons in scenario 1 at T = 65hours

Second comparison starting from L2 with SRP and control limits

This is a more realistic scenario in which the spacecraft start at the translunar libration point. In this
situation however, the spacecraft is subject to the primaries perturbations, solar radiation pressure
as well as assuming each thrust being able to provide a maximum of 0.55[ND]. The sampling
period is maintained at δ̄ = 0.65hr. While emulation of the standard feedback linearization fails

Applications of sampled-data methodologies 131



6.4. Simulations and comparative discussions

with this limit on the control (Figure 6.9), emulation of nonlinear regulation feedback yields better
results in terms of tracking error and control effort. Similar performance is obtained when utilizing
the proposed MR MPC approach (Figure 6.11) with Q = diag{10, 10, 10, 1, 1, 1}, R = 0.1I, and
PolyMPC (Figure 6.12). Unlike the previous case, the propose control scheme yields the best
tracking performance, even outperforming nonlinear regulation. This is achieved at the expense of
a relatively higher control effort over the station-keeping simulation period. Table 6.2 summarizes
the main KPIs and performances of the various controllers tested in this scenario.

Figure 6.9: Failure of station-keeping under feedback linearization (emulated) with SRP and control limits

Figure 6.10: Station-keeping under nonlinear regulation (emulated) with SRP and control limits
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Figure 6.11: Station-keeping under the proposed control scheme with SRP and control limits

Figure 6.12: Station-keeping under nonlinear MPC with SRP and control limits

FL NL regulation MR MPC PolyMPC

eRMS(T ) N/A 0.044 0.0255 0.0323
EET N/A 4.2001 m/s2 6.0708 m/s2 5.3414 m/s2

Table 6.2: Summary of the main KPI comparisons in scenario 2 at T = 65hours

Third comparison starting away from the orbit with SRP and control limits

In this scenario, we start away from the orbit with a so called insertion error of 300km in dimensional
units and the same control limit imposed previously. While at the end of simulation period, the
nonlinear regulation seems closer to the orbit (Figure 6.13), yet, it is clear from Figure 6.14 that
the proposed controller maintains the space craft closer to the Halo orbit consistently during the
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whole simulation period with no jumps in ∥e(t)∥ value. It is also worth mentioning that in this
scenario, the proposed controller, while being comparable to the emulated nonlinear regulation, the
PolyMPC controller suffers both in terms of energy expenditure and tracking error (Figure 6.15).
Emulated feedback linearization fails to maintain the spacecraft in the vicinity of the orbit, and
thus omitted for the sake of space. Table 6.3 reflects the previous discussion.

Figure 6.13: Station-keeping under nonlinear regulation (emulated) with SRP and control limits

Figure 6.14: Station-keeping under the proposed control scheme with SRP and control limits
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Figure 6.15: Station-keeping under nonlinear MPC with SRP and control limits

FL NL regulation MR MPC PolyMPC

eRMS(T ) N/A 0.0174 0.0255 4.61
EET N/A 5.4 m/s2 6.5410 m/s2 7.479 m/s2

Table 6.3: Summary of the main KPI comparisons in scenario 3 at T = 65hours

Fourth comparison on the effect of δ

A major benefit for the proposed MR MPC is the robustness with respect to higher sampling
intervals. In fact Fig. 6.16 depicts how the proposed MR MPC maintains the spacecraft close to
the quasi Halo orbit when increasing the sampling interval length to δ̄ = 1.2hr in dimensional units
(still lower than that reported in 4.A.7 in Shirobokov et al. (2017)), starting close to the orbit,
namely q(0) = (L2 0 0.12 0 0.186 0)⊤. Indeed, in this comparison we assume nominal conditions,
i.e. D(t) ≡ 0. At this sampling rate, both feedback linearization (through emulation) and emulated
nonlinear regulation fail to keep the spacecraft in the vicinity of the quasi Halo orbit, as well as the
polynomial optimization based PolyMPC.
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Figure 6.16: Station-keeping under MR MPC with δ̄ = 1.2hr

Computational aspects and RTI MPC

To study the real time implementation question, we opt to utilize the real time iteration model
predictive control Diehl et al. (2002), together with the multirate sampled-data planner. The
simulations are carried out using ACADO’S Houska et al. (2011) Matlab Interface. Simulations
were run on a PC running Windows 10 with an Intel i7 9th generation CPU and 16 GB of RAM.
For testing reasons, Horizon lengths up to 40 steps were used for the 3 different simulation scenarios
discussed in the previous section. Figure 6.17 shows the performance of MR MPC in the RTI
framework, together with time to QP solution corresponding to scenario 6.4. Indeed fast QP
solution times are possible, at the expense of degraded tracking performance. Table 6.4 shows QP
solution time for a prediction horizon length of np = 30. This indicates that the MR MPC, with an
RTI MPC solver can be implemented to solve the problem of station-keeping in real time provided
some trade off is admissible in terms of quasi Halo orbit station-keeping performance.

Figure 6.17: Figure shows time required by the CPU to solve the QP in the RTI in Scenario 1
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Average time to QP solution

Scenario 1 187 µs

Scenario 2 191 µs

Scenario 3 220 µs

Table 6.4: Table showing average time to QP solution when using RTI

Final comments on the simulations

A sampled-data controller based on the algorithm introduced in Chapter 5 was proposed for allowing
a spacecraft to track a quasi Halo orbit around the L2 point in the earth-moon system. In particular,
the control is composed of two main components: a multi-rate trajectory planner which, based on
a simplified feedback equivalent discrete-time model, generates admissible and bounded references
guiding the space-craft to the orbit; a model predictive controller which, based on the aforementioned
trajectories and a suitably defined sampled-data prediction model, solves at each sampling instants
a constrained optimization problem. Because of the generated references, such a problem is feasible
and the closed-loop trajectories are bounded.

Simulations based on realistic scenarios highlight that the performances achieved under the pro-
posed control scheme are significantly improved when compared to standard digital implementations
(that is through zero order holding) of standard nonlinear control laws (e.g., based on regulation,
feedback linearization control) and polynomial optimization based nonlinear MPC in station-keeping
of quasi Halo orbits applications. Several aspects were considered such as eccentricity related per-
turbations and saturation limits on the control inputs. Key performance indicators enforce the
validity of the proposed control scheme, both in terms of orbit tracking root-mean-square error and
the L2 norm of the accelerations required for station-keeping as a measure of energy expenditure.
Furthermore, robustness to both solar radiation pressure, as modelled by an additive periodic per-
turbation, and slower sampling rates, is illustrated. Finally, it results that the proposed scheme
is suitable for real time digital implementation on modern hardware, even with longer prediction
horizon for the MPC than is typically reported to be possible in the literature (e.g. longer than 40

time steps), through small adjustment to the online optimization solver.
Since the methodology here proposed is general in nature, an additional conclusion that can be

drawn is that this methodology can be used, with the appropriate changes, to handle a variety of
Halo and Lyapunov orbits around liberation points both in the Earth-Moon and Sun-Earth systems.
Of course the results here reported are preliminary in nature albeit paving the way for sampled-data
approaches in station-keeping applications

6.5 Conclusions to Part II and further comments

A few concluding remarks to this chapter, and by extension our discussion of stable inversion in
unconstrained sampled-data model predictive control are in order;

■ In this part of the thesis we concerned ourselves with the problem of tracking a desired
reference via unconstrained finite time cheap optimal control. Furthermore, the design of the
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controller followed a receding horizon approach (MPC) in which the prediction and control
horizons were assumed to coincide.

■ From the point of view of achieving zero ideal performance, this control design faces limita-
tions even when the system is minimum phase in continuous-time due to the rise of unstable
sampling zero dynamics. Not surprisingly, tracking with zero ideal performance implies the
cancellation of the internal dynamics when no penalty on the control is imposed.

■ In this sense, this part introduced two possible multi-rate sampled-data solutions to the prob-
lem; (i) utilizing multi-rate sampling at the prediction model level as carried out in Chapter
4, or (ii) utilizing multi-rate sampling to modify the reference signals coming to the MPC as
carried out in Chapter 5.

■ For the first solution, application to the class of non-holonomic systems admitting chained
forms was studied. This example was repeated again for the second proposed solution to
illustrate the benefits of working at the reference planning level.

■ This part was concluded with two bench-marking examples on the use of multi-rate reference
planners with MPC.

What remains, for this work to constitute a somewhat complete framework for sampled-data
model predictive control is to study the effects of state (and input) constraints on the achieved zero
ideal performance. This is indeed a big gap that, while interesting in its own merit, is not strictly
pertinent to the sampled-data nature of the controller, in particular concerning the use of multi-rate
sampling. It can, by the way, noted that possible over-dimensioning of the multi-rate order can be
fruitfully employed to address additional state constraints Di Giamberardino et al. (1996a).

Additionally, some ideas on the use of a multi-rate sampled-data trajectory planner as an ex-
tended command governer to (i) enforce those constraints and (ii) provide some stable inversion
guarantees will be highlighted briefly at the end of the thesis. Those ideas, while being proposed in
a rather superficial way, can form a starting point for possible extensions.

As the reader may have noted, this work is rather written as a companion to the published
articles. As a consequence, the author makes no claims of this part being complete, self-contained
or formally rigorous. To this effect, different strategies, and combinations thereof of designing the
terminal ingredients to ensure stability of MPC controlled systems are omitted. For example the
use of terminal strict equality constraints can be found in Keerthi and Gilbert (1988) and Chen and
Shaw (1982), while the use of set inclusion for the terminal constraint can be studied in Michalska
and Mayne (1993). On the other hand, other methods of enforcing stability using an extra stability
constraint Sznaier and Damborg (1990), bounds on the horizons length Limón et al. (2008) and
a combination thereof Allgöwer and Zheng (2012) are well documented in the literature and the
interested reader is advised to refer to the cited works and the references therein.
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Chapter 7

Approximate transverse feedback
linearization via single-rate sampling
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The assignment of a prefixed behavior to a given control system can be assured by confining,
through feedback, its evolution to a submanifold specifying the required performances. In

other words, the target submanifold is rendered attractive and invariant through feedback.
Transverse Feedback Linearization - TFL solves this problem through linear feedback equiv-

alence, linearizing and stabilizing the dynamics transverse to the desired sub-manifold. In this
respect, TFL implements the solution through two main steps: (1) define function(s) with respect
to which the performances are set and the sub-manifold specifying those performances is the zero
dynamics sub-manifold. (2) Compute a feedback linearizing and stabilizing the transverse dynamics
to the characterized zero dynamics sub-manifold.

In this context, TFL is equivalent to the zero dynamics assignment problem and thus poses two
issues to the control designer. On the one hand, TFL implies restricting the motion to a “desired”
zero dynamics sub-manifold in continuous-time and hence boundedness of the evolution of the
internal dynamics is paramount. On the other hand, even when the problem admits a satisfactory
solution in continuous-time, it is clear that the pathology put in light in Chapter 2 may destroy the
feedback equivalence desired by TFL under sampling. To make this discussion more concrete, and
as is usual by now, we start with an example reported first in Nielsen and Maggiore (2008), that
we use to also highlight the obstructions caused by sampling.
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Chapter 7. Approximate transverse feedback linearization via single-rate sampling

Example 7.1 Consider the dynamics

ẋ =




−x2
x1

x3x4

0




+




0

0

x3

1



u1 +




−x2
x1

0

0



u2

and assume we want to confine its evolution to an elliptic paraboloid immersed in the subspace
{x ∈ R4 : x4 = 0}, namely the controlled invariant submanifold

Γ⋆ = {x ∈ R4 : x21 + x22 − x3 = x4 = 0}

Note that n⋆ = dim(Γ⋆) = 2, and consider the function

α(x) = ln(
x3

x21 + x22
)− x4

which indeed has relative degree r = 2 over R4/{x ∈ R4 : x1 = x2 = 0;x3 = 0}. Additionally, this
function is transverse to Γ⋆, i.e. in Γ⋆, α(x) = α̇(x) = 0. Consequently, the coordinates change




z1

z2

η1

η2




= ϕ(x) =




α(x)

α̇(x)

x1

x2




puts the system in the normal form

ż1 = z2

ż2 = u1

η̇1 = −η2(1 + u2)

η̇2 = η1(1 + u2)

from which setting

u1 = −k1z1 − k2z2, k1, k2 > 0

confines the evolution to Γ⋆ on which the dynamics are described by the η sub-dynamics. However,
the ASR sampled-data equivalent model of the normal form above is;

z1(k + 1) = z1(k) + δz2(k) +
δ2

2
u1(k)

z2(k + 1) = z2(k) + δu1(k)

η1(k + 1) = η1(k)− δη2(1 + u2)−
δ2

2
η1(1 + u2)

2 +O(δ3)

η2(k + 1) = η2(k) + δη1(1 + u2)−
δ2

2
η2(1 + u2)

2 +O(δ3)
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and for which, as detailed in Chapter 2, the discrete relative degree of α(·) = z1 falls to rd = 1 and
the zero-dynamics submanifold of the sampled-data model does not coincide with Γ⋆. Consequently,
stabilizing z1 sub-dynamics does not confine the evolution to Γ⋆ as desired.

With reference to the above discussion, and example, two different design approaches are pro-
posed in this chapter and the next. The first solution, working on the first step of the above men-
tioned TFL program, is based on a redesign of the functions with respect to which the performances
of the feedback system are defined in a single-rate sampled data context. The second solution, on
the other hand, works over the second step keeping the functions specifying the performances intact,
and working over the feedback computation via multi-rate sampling.

This chapter will focus on the first solution; a single rate sampled-data approximate solution
(that can be made arbitrarily accurate via an iterative procedure). This solution will be shown to
exist whenever a continuous-time solution does. The results, discussion and example presented in
this chapter serve as a more elaborate companion to the formal statements found in;

Mohamed Elobaid, Salvatore Monaco and Dorothée Normand-Cyrot. “Approximate trans-
verse feedback linearization under digital control”. IEEE Control System Letters (L-CSS),
2021, 6, 13 - 18. DOI: 10.1109/LCSYS.2020.3046539.

The notions and concepts appearing in this chapter are based on Banaszuk and Hauser (1995),Nielsen
and Maggiore (2008), Nielsen and Maggiore (2006), Akhtar et al. (2015) and the references therein.
It is important here to remind the reader how useful TFL, and set stabilization techniques in general
are. For it is enough to consider the case in which the set to be stabilized is physically meaningful
(e.g. the lift of a path on the plane to the state-space, or the synchronization hyper plane) and the
usefulness of those techniques becomes apparent.

Our point of departure is a general nonlinear control affine system of the form;

ẋ = f(x) +
m∑

i=1

gi(x)ui (7.1)

where the vector fields are assumed complete and gi(x), i = 1, . . . ,m are independent over Rn.

7.1 Transverse feedback linearization in continuous-time

As already alluded to from the discussion, and the academic example above; transverse feedback
linearization essentially refers to equivalence under feedback to a system characterized by a linear
controllable sub-dynamics transverse to a given closed, controlled invariant, embedded sub-manifold
in the system state-space. Formally from Nielsen and Maggiore (2008), one sets the problem below.
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Let Γ⋆ ⊂ Rn be a closed, controlled invariant sub-manifold for dynamics (7.1) and let
x0 ∈ Γ⋆; TFL is said to be locally solvable if there exist a feedback u = γ(x, ν) and a
coordinates change ϕ(x) = col(ϕ1(x), ϕ2(x)) : x→ col(ξ, z), defined in a neighbourhood
U of x0, such that (7.1) rewrites

ż = Az +Bν1

η̇ = fη(z, η) + g1η(z, η)ν1 + g2η(z, η)ν2
(7.2)

where z ∈ Rn−n⋆
, η ∈ Rn⋆

, ν = col(ν1, ν2) ∈ Rm, n⋆ = dim(Γ⋆), g1η(·), g2η(·) are smooth
(matrix) valued functions, B full column rank, the pair (A,B) controllable, ϕ(Γ⋆ ∩ U) =

{(z, η) : z = 0}. When U is a tubular neighbourhood of the whole Γ⋆, then TFL is said
to hold globally.

Problem: (Local) TFL in continuous-time

The following comments are in order;

■ ż = Az +Bν1 specifies the transverse dynamics and ν1 the transverse control ;

■ the dynamics of η, restricted to ϕ(Γ⋆ ∩ U), η̇ = fη(0, η) + g2η(0, η)ν2, is referred to as the
tangential dynamics with ν2 the tangential control ;

■ setting ν1 = −Kz for a suitable K : σ(A−BK) ⊂ C−, (local) stabilization of Γ⋆ is achieved.
If the trajectories of the closed loop system (under ν1) are bounded, stabilization of Γ⋆ holds.

Thanks to the decoupling of the control components, one independently forces the state evolu-
tions towards Γ⋆ via the control ν1 and assigns a desired behaviour over Γ⋆ through ν2.

Nielsen and Maggiore (2006) showed that Problem (7.1) is equivalent to the well known zero
dynamics assignment problem with relative degree through output redefinition. The necessary and
sufficient conditions for the solvability of the zero dynamics assignment problem, and hence (L)TFL
problem, set in Nielsen and Maggiore (2008),Nielsen and Maggiore (2006) and recalled in the sequel,
rely on the notion of a well defined vector relative degree in continuous-time as detailed in Section
1.2.

The LTFL Problem 7.1 is solvable if and only if there exist ρ smooth R-valued functions
(α1(x), . . . , αρ(x)), ρ ≤ m, defined on U such that:

1. Γ⋆ ∩ U ⊂ {x ∈ U : αi(x) = 0, i = 1, . . . ρ};

2. the dynamics (7.1) with output α(x) = col(α1(x), . . . , αρ(x)), has a well defined
vector relative degree r = (r1, . . . , rρ) at x0 with

∑ρ
i=1 ri = n− n⋆.

When the vector relative degree is defined everywhere in a tubular neighbourhood of Γ⋆,
then TFL holds globally.

Theorem: TFL equivalence to zero dynamics assignment
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Note that the above result is not constructive; it does not provide a method for finding the
functions αi, i = 1, . . . , ρ solving the problem, nor does it provide structural and verifiable conditions
on the dynamics (7.1) to admit a solution to TFL. To this effect, we recall the following result which
provides such verifiable necessary and sufficient conditions;

Consider the distributions Gi = span{adjfgk, 0 ≤ j ≤ i, 1 ≤ k ≤ m}, and suppose the
involutive closure Ḡi are regular at x0, then the (L)TFL problem is solveable if and only
if;

1. dim(Tp0Γ⋆ + span{Gn−n⋆−1}) = n.

2. ∃U : (∀x ∈ Γ⋆ ∩ U)dim(TpΓ
⋆ + Gi(p)) = dim(TpΓ

⋆ + Ḡi(p)) = constant, 1 ≤ i ≤
n− n⋆ − 2.

Theorem: TFL necessary and sufficient conditions

Remark 7.1 While the solvability of the (L)TFL problem is addressed by the Theorem above, the
construction of the functions αi(x), i = 1, . . . , ρ is not. A constructive result to that effect, based
on the annihilator of some controlled invariant distributions coinciding with the tangent bundle of
the set Γ⋆ can be found in (Nielsen and Maggiore, 2008, Th 3.5). Informally, the (L)TFL problem
is typically solved in continuous time in the following steps:

1. Find the coordinate transformation ϕ(x). This is done through the following steps

• Check the necessary and sufficient conditions on the dynamics for the solvability of the
problem.

• If yes, try to write the set Γ⋆ as the 0−level set of some n − n⋆ functions, and check if
there exists a subset of those meeting the requirements of the zero dynamics assignment
result.

• If not possible, utilize the result in (Nielsen and Maggiore, 2008, Th 3.5) to construct the
dummy output.

2. Once the required outputs are found with well defined vector relative degree, one uses the usual
transformation to put the system in normal form. Then it is always possible to use a decoupling
static state feedback to split the control into transverse and tangential components, Figure 7.1
illustrates this fact.

Remark 7.2 As depicted in Figure 7.1 below, the decoupling of the controls into transverse and
tangential controls is done in the following manner: by the definition of the vector relative degree
of the output functions αi(x) solving the TFL problem in continuous-time, the ρ × m decoupling
matrix D(x)|x=ϕ−1(z,η) is full row rank. One can re-write this matrix as D(·) = [M(·) N(·)] where
the ρ× ρ matrix M(·) is non-singular, and N(·) = span{kerD(·)}. Thus, setting

u1 =M−1(x)
(
ν1 −N(x)− f̃(x)

)
|x=ϕ−1(z,η)

u2 = ν2
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Figure 7.1: Solution of TFL in continuous time

with f̃(·) = col(Lr1f α1(x), . . . , L
rρ
f αρ(x)) performs the desired effect. Consequently, one gets the

TFL normal form as in Figure 7.1

At this point, it is imperative to stress that to the best of the author’s knowledge, TFL has
never been addressed in the digital context. Motivated by this fact, in what follows, we will attempt
to address this gap first in an approximate sense under single-rate sampling, and later in a more
complete manner under multi-rate sampling.

7.2 Preservation of the relative degree under single-rate sampling

Starting from the observations made in Chapter 2 concerning the loss of relative degree and appear-
ance of extra zero dynamics under sampling, it is clear that the TFL normal form structure is lost
under sampling as depicted in the figure below. Indeed the sampled equivalent model to a system
in normal form is a nonlinear map as depicted in red losing the structure of a linear controllable
dynamics transverse to the desired sub-manifold.

As discussed in Section 2.3, and detailed for SISO systems in Barbot et al. (1996) (see also
Barbot et al. (1992)), it is possible to preserve the relative degree and the normal form structure in
a predefined approximate order. In the sequel, we adapt these developments found in Barbot et al.
(1996) to the general MIMO case posed by the dynamics (7.1) in the context of TFL.

To this end, let the continuous-time dynamics (7.1) have a well defined vector relative degree
r = (r1 r2 . . . rρ) in a neighbourhood of a point x0, with respect to an output function

y =
(
α1(x) α2(x) . . . αρ(x)

)⊤
(7.3)
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Figure 7.2: Failure of TFL emulation via sample and zero order holding to preserve the TFL normal form

Consequently, there exists a continuous-time coordinates change

z1 = ϕ1(x) =
(
α1(x) Lfα1(x) . . . Lr1−1

f α1(x)
)⊤

∈ Rr1

...

zρ = ϕρ(x) =
(
αρ(x) Lfαρ(x) . . . L

rρ−1
f αρ(x)

)⊤
∈ Rrρ

η = ϕρ+1(x) ∈ Rn−r1−...−rρ

(7.4)

under which the system takes the normal form;

ż1 = Ar1z1 + br1(b1(z, η) + a1(z, η)u)

...

żρ = Arρzρ + brρ(bρ(z, η) + aρ(z, η)u)

η̇ = q(z, η) + p(z, η)u

with Ari , bri as in (2.10) and bi(z, η) = Lrif αi(x) and

ai(z, η) =
(
Lg1L

ri−1
f αi(x) . . . LgmL

ri−1
f αi(x)

)
(7.6)

Under piecewise constant control, and applying the definition (2.6), the single-rate sampled
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equivalent model reads;

z1(k + 1) = Aδr1z1(k) + bδ1,r1(b1(z(k), η(k)) + a1(z(k), η(k))u(k))

+
∑

i≥2

bδi,r1L
i−1
f+

∑m
i=1 giui(k)

(b1(z(k), η(k)) + a1(z(k), η(k))u(k))|x=ϕ−1(z(k),η(k)) (7.7a)

...

zρ(k + 1) = Aδrρzρ(k) + bδ1,rρ(bρ(z(k), η(k)) + aρ(z(k), η(k))u(k))

+
∑

i≥2

bδi,rρL
i−1
f+

∑m
i=1 giui(k)

(bρ(z(k), η(k)) + aρ(z(k), η(k))u(k))|x=ϕ−1(z(k),η(k)) (7.7b)

η(k + 1) = η(k) + δ
(
q(z(k), η(k)) + p(z(k), η(k))u(k)

)
+O(δ2) (7.7c)

yi(k) = crizi(k), i = 1 . . . ρ (7.7d)

with cri as in (2.10), the δ-dependent matrix Aδri as in (2.12) and for j ≥ 1

bδj,ri =
(

δri+j−1

(ri+j−1)!
δri+j−2

(ri+j−2)! . . . δj

j!

)⊤
(7.8)

As mentioned earlier, it can be verified that the discrete vector relative degree with respect to the
output (7.7d) falls to rd,i = (1, 1, . . . , 1) when truncating the SR sampled equivalent model at the
order col(p1, . . . , pn) with pi ≥ max(rj) or higher in δ because

∂yi(k + 1)

∂u(k)
=
∂crizi(k + 1)

∂u(k)
=
δri

ri!
ai(z(k), η) ̸= 0

To weaken this pathology, it has been proposed in Barbot et al. (1996) (see also the work by the
same authors Barbot et al. (1992)) to modify the continuous-time output function in a δ dependent
manner, namely setting

yδ =
(
αδ1(x) . . . αδρ(x)

)⊤
= Cδz (7.9)

Where Cδ = blkdiag{cδ1, . . . , cδρ} and

cδi = δri
(
0 0 . . . 1

)(
bδ1,ri Aδrib

δ
1,ri

. . . (Aδri)
(ri−1)bδ1,ri

)−1
(7.10)

corresponding to this output, one can obtain a coordinates change;




zδ1
...
zδρ
ηδ




= ϕδ(x) =




Tr1(δ) . . . 0
. . .

0 . . . Trρ(δ)

0(n−n⋆)×n⋆

0n⋆×(n−n⋆) In⋆×n⋆







z1
...
zρ

η




(7.11)
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where z, η are as in (7.4), and

Tri(δ) :=




cδri
1
δ c
δ
ri(A

δ
ri − I)
...

1
δri−1 c

δ
ri(A

δ
ri − I)(ri−1)




(7.12)

and we have the following statement extending that of Proposition 3.2 in Barbot et al. (1996).

The sampled-data system (7.7a),(7.7b),(7.7c),(7.7d), has a DT vector relative de-
gree (rd,1, . . . , rd,ρ) with respect to the dummy output (7.9) up to approximation
in col{O(δr1+1), . . . , O(δrρ+1)} and is transformed under the coordinates change
(7.11),(7.12) into the approximate sampled normal form of order p = 1

zδ1(k + 1) = (I + δAr1)z
δ
1(k) + δbr1(b1(·, ηδ(k)) + a1(·, ηδ(k))u(k)) +O(∆2

1) (7.13a)
...

zδρ(k + 1) = (I + δArρ)z
δ
ρ(k) + δbrρ(bρ(·, ηδ(k)) + aρ(·, ηδ(k))u(k)) +O(∆2

ρ) (7.13b)

ηδ(k + 1) = ηδ(k) + δ
(
q(zδ(k), ηδ(k)) + p(zδ(k), ηδ(k))u(k)

)
+O(δ2) (7.13c)

yδi (k) = criz
δ
i (k) (7.13d)

with
∆p+1
i =

(
δri+p

(ri+p)!
δri+p−1

(ri+p−1)! . . . δp+1

(p+1)!

)⊤
(7.14)

Result: MIMO Sampled normal form of order p = 1

One should emphasize that the coordinates change (7.11) allows for the definition of an approx-
imate sampled data normal form (7.13a) — (7.13d) in O(∆2

i ) which corresponds to preserving
the relative degree of each output at O(δri+1) unlike in Euler’s approximation. This normal
form preserves the relative degree of the continuous-time system in an approximate sense in a pre-
fixed order of approximation, and consequently recover linear feedback equivalence via inversion
under digital control despite sampling.

Remark 7.3 the dummy output (7.9), and the coordinates change (7.12) for the first values of r
explicitly are

• the case r = 2:

yδ = y − δ

2
ẏ = (1 0)zδ

zδ = T2(δ)z =

(
1 −δ

2

0 1

)(
z1

z2

)
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• the case r = 3

yδ = y − δẏ + δ2

3
ÿ = (1 0 0)zδ

zδ = T3(δ)z = T3(δ) =



1 −δ δ2

3

0 1 −δ
2

0 0 1






z1

z2

z3




Preserving the relative degree in higher order approximations

For preserving the relative degree, and the sampled normal form structure in higher orders of
approximations, i.e col{O(∆p+1

1 ), . . . , O(∆p+1
ρ )} with p ≥ 2, an iterative procedure was proposed

in Barbot et al. (1996) in the SISO case and hereinafter extended to the MIMO setting. In this
context, the first successive term of the approximation is detailed and the general iterative procedure
is outlined.

To this end, let p = 2 and consider the sampled normal form (7.13a) — (7.13d) and let

u(x(k)) = u0(x(k)) + δu1(x(k)) (7.15)

equivalently, rewrite the control adding a single successive so-called corrective term. With this in
place, and considering higher truncations in (7.13a) — (7.13d) i.e.;

zδ1(k + 1) = (I + δAr1)z
δ
1(k) + δbr1

[
b1(·, ηδ(k)) + a1(·, ηδ(k))(u0(k) + δu1(k))

]

+ Tr1(δ)b
δ
2,r1Lf+

∑m
i=1 giui(k)

(b1(·, ηδ(k)) + a1(·, ηδ(k))u0(k)) +O(∆3
1)

...

zδρ(k + 1) = (I + δArρ)z
δ
ρ(k) + δbrρ

[
bρ(·, ηδ(k)) + aρ(·, ηδ(k))(u0(k) + δu1(k))

]

+ Trρ(δ)b
δ
2,rρLf+

∑m
i=1 giui(k)

(bρ(·, ηδ(k)) + aρ(·, ηδ(k))u0(k)) +O(∆3
ρ)

ηδ(k + 1) = ηδ(k) + δ
(
q(zδ(k), ηδ(k)) + p(zδ(k), ηδ(k))u(k)

)
+O(δ2)

so one is interested in finding a corrective term u1(k) such that the underlined terms are compensated
for. Equivalently, after gathering terms in a compact way, a corrective term solving the following
equality

δ2




a1(·, ηδ(k))
...

aρ(·, ηδ(k))


u1(k) = −




Tr1(δ)b
δ
2,r1

Lf+
∑m

i=1 giui(k)
(b1(·, ηδ(k)) + a1(·, ηδ(k))u0(k))

...
Trρ(δ)b

δ
2,rρLf+

∑m
i=1 giui(k)

(bρ(·, ηδ(k)) + aρ(·, ηδ(k))u0(k))


 (7.16a)

which admits a solution since simple calculations yield Tri(δ)bδ2,ri = δ2bri and the matrix multiplying
u1(k) from the right is full row rank by construction considering truncations, at least locally where
the continuous-time vector relative degree is assumed defined. Consequently solving for u1(k) one
obtains the approximate sampled normal form;
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zδ1(k + 1) = (I + δAr1)z
δ
1(k) + δbr1

[
b1(·, ηδ(k)) + a1(·, ηδ(k))u0(k))

]
+O(∆3

1)

...

zδρ(k + 1) = (I + δArρ)z
δ
ρ(k) + δbrρ

[
bρ(·, ηδ(k)) + aρ(·, ηδ(k))u0(k))

]
+O(∆3

ρ)

ηδ(k + 1) = ηδ(k) + δ
(
q(zδ(k), ηδ(k)) + p(zδ(k), ηδ(k))u(k)

)
+O(δ2)

yδi (k) = criz
δ
i (k), i = 1, . . . , ρ

(7.17)

The sampled-data model (7.7a) — (7.7d) has a DT vector relative degree
(rd,1, . . . , rd,ρ) with respect to the dummy output (7.9) up to approximation in
col{O(δr1+p), . . . , O(δrρ+p)} when considering p additional corrective terms in the con-
trol, namely

u(k) = u0(k) + δu1(k) + . . .+
δp

p!
up(k) =

p∑

i=0

δi

i!
ui(k) (7.18)

and the single-rate sampled-data system, under the coordinates change (7.11),(7.12) is
transformed into the approximate sampled data normal form

zδ1(k + 1) = (I + δAr1)z
δ
1(k) + δbr1

[
b1(·, ηδ(k)) + a1(·, ηδ(k))u0(k))

]
+O(∆p+1

1 )

...

zδρ(k + 1) = (I + δArρ)z
δ
ρ(k) + δbrρ

[
bρ(·, ηδ(k)) + aρ(·, ηδ(k))u0(k))

]
+O(∆p+1

ρ )

ηδ(k + 1) = ηδ(k) + δ
(
q(zδ(k), ηδ(k)) + p(zδ(k), ηδ(k))u(k)

)
+O(δ2)

yδi (k) = criz
δ
i (k), i = 1, . . . , ρ

(7.19)

Result: MIMO sampled normal form in order p > 1

Remark 7.4 note that solving for the first corrective term requires predictions of the states and the
control u0(k + 1) because of the operator Lf+∑m

i=1 giui(k)
. This requirement is not restrictive as can

be seen extending the statements in Barbot et al. (1992).

It is perhaps obvious to the reader by now that a byproduct of the approximate sampled normal
form is the preservation of the zero dynamics structure at the first approximation. This motivates
the use of this normal form to the purpose of preserving TFL in an approximate sense under single
rate sampling as will be detailed in the sequel.
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7.3 Approximate transverse feedback linearization under single rate
sampling

Following on from the discussion above we can set the problem addressed in this chapter, namely;

Let Γ⋆ ⊂ Rn be a closed, controlled invariant sub-manifold for dynamics (7.1) and let
x0 ∈ Γ⋆. Find for any δ ∈]0, T ⋆[, T ⋆ > 0 small enough, a piecewise constant feedback
uδ = γδ(x, v) and a coordinates change ϕδ(·) : x 7→ (zδ, ηδ) defined in a neighbourhood
U of x0 ∈ Γ⋆, under which the sampled-data closed loop dynamics takes the normal form
below

zδ(k + 1) = (Id+ δA)zδ(k) + δBν1(k) (7.20a)

ηδ(k + 1) = F δη (z
δ(k), ηδ(k), ν1(k), ν2(k)) (7.20b)

with zδ ∈ Rn−n⋆
, ηδ ∈ Rn⋆

, ν = col{ν1, ν2} ∈ Rm and ϕδ(Γ⋆∩U) = {(zδ, ηδ) : zδ = 0} ≡
{(z, η) : z = 0} = ϕ(Γ⋆ ∩ U). If instead (7.20a) is approximated in O(∆p+1);

zδ(k + 1) = (Id+ δA)zδ(k) + δBv1(k) +O(∆p+1) (7.21)

with
∆p+1 =

(
∆p+1

1 . . . ∆p+1
ρ

)⊤
(7.22)

with ∆p+1
i as in (7.14), the solution is said to be approximate of order p. If the relative

degree is well defined for all x ∈ Γ⋆ we will say, with a little abuse of nomenclature, that
the problem is globally solved around Γ⋆.

Problem: (Local) TFL under single-rate sampling

The utilization of approximate sampled normal forms to preserve feedback equivalence is coupled
with the observation that the zero dynamics sub-manifold of the sampled-data model associated
with the continuous-time dummy outputs αi(·), i = 1, . . . , ρ contains Γ⋆ because;

ZSD = {x̃ : α1(x) = . . . = αρ(x) = 0} ⊆ Rn−ρ

ZSD ⊃ Γ⋆={x : α1(x) = Lfα1(x) = Lr1f α1(x) = . . . = αρ(x) = Lfαρ(x) = L
rρ
f αρ(x) = 0} ⊆ Rn

⋆

This is a byproduct of the transformation defining the sampled-normal form being a linear
transformation with constant matrix zδ = T (δ)z, ηδ = η so that z = 0 =⇒ zδ = 0. ■

Indeed, for an approximate solution at the order p = 1 it is enough to directly apply the result
concerning the sampled normal form as the following figure suggests;
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Figure 7.3: Approximate preservation of TFL via single-rate sampling for p = 1

with the above discussion we can make the following statement generalizing that in (Elobaid
et al., 2020c, Theorem 1)

Let Γ⋆ ⊂ Rn be a closed, controlled invariant sub-manifold for dynamics (7.1) and specify-
ing the TFL problem. Assume there exists output functions αi(·), i = 1, . . . , ρ solving the
TFL problem in continuous-time. Then there exist a small enough T ⋆ > 0, and for any
δ ∈]0, T ⋆[, a δ-dependent coordinates change ϕδ(x) and a sampled-data feedback γδ(x, v)
under which the sampled-data equivalent model takes the following approximate normal
form

zδ(k + 1) = (Id+ δA)zδ(k) + δBν1(k) +O(∆p+1)

ηδ(k + 1) = F δη (z
δ(k), ηδ(k), ν1(k), ν2(k))

where O(∆p+1), p ≥ 1 is the vector approximation of the form (7.22). Moreover, Γ⋆ is
the zero dynamics sub-manifold associated with the modified output function of the form
(7.9), and the zero dynamics coincide with the dynamics of ηδ at the first order. .

Result: approximate SD-TFL

Some comments are in order;

■ The sub-manifold Γ⋆ is given a priori, and in this context the problem above concerns the
preservation of the (L)TFL property under single-rate sampling. It does not concern the exis-
tence and the computation, for the equivalent sampled-data dynamics, of a closed controlled
invariant sub-manifold for which the problem is solvable.

■ The sampled-data tangential ηδ-dynamics on Γ⋆ recovers the continuous-time η-dynamics in
the first approximation i.e O(δ2).
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■ The sampled-data transverse dynamics recovers the transverse dynamics in the vector ap-
proximation O(∆p+1) drastically improving over Euler’s approximation. In fact, this
is precisely the reason we obtain better performances compared to ZOH of the continuous-time
solution.

■ As the previous section suggests, an approximate solution could be obtained preserving
the TFL normal form structure by modifying the dummy outputs solving the problem in
continuous-time. The modification stands in adding δ−dependent additional terms, suitable
combinations of the higher derivatives, to the original dummy outputs thus preserving the
relative degrees at prefixed orders.

■ From Figure 7.3 above, it is clear that the proposed solution, at least at the order O(∆2)

is very simple, with the modification highlighted in green in Figure 7.3 requir-
ing only a change of coordinates that can be pre-calculated offline. The feedback
linearizing the transverse dynamics comes to be the emulation one, and the stabi-
lizing external transverse control comes to depend on the new coordinates change
and thus on δ explaining the better performances compared to emulation of the
external stabilizing control.

■ For a sketch of the proof one can refer to the statements and results in Elobaid et al. (2020c).

7.4 Illustrative example

To demonstrate the effectiveness of using approximate sampled normal forms to preserve TFL under
digital control as compared to holding the continuous-time solution via ZOH, an academic example
complementing the ones already reported in Elobaid et al. (2020c) is presented below. Note that, in
the cited reference, both a treatment of Example 7.1 using the developed machinery in this chapter,
and a path following application for a differential drive are reported for the interested reader.

Example 7.2 Consider the following academic example due to Banaszuk and Hauser (1995)

ẋ = f(x) + g1(x)u (7.23)

with

f(x) =



x2 + x1x3

−x1 + x2x3

0


 , g(x) =



x1

x2

1




The TFL problem has been set and solved in Banaszuk and Hauser (1995) with the control goal of
stabilizing the family of orbits given by Γ⋆ = {x ∈ R3 : x21 + x22 − R2 = x3 = 0} where R ∈ R. It
has been shown that the function

α(x) =
1

2
ln(x21 + x22)− lnR− x3
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has relative degree r = 2 = n− n⋆, so defining the coordinates change

z1 =
1

2
ln(x21 + x22)− lnR− x3

z2 = x3

η1 = − tan−1 x2
x1

puts the system, approperiately defining tan−1(·), in the form;

ż1 = z2

ż2 = u

η̇1 = 1

Under sampling, setting according to (7.9)

yδ = y − δ

2
ẏ = α(x)− δ

2
α̇(x)

one defines the sampled coordinates change as

zδ = T2(δ)z =

(
1
2 ln(x

2
1 + x22)− lnR− (1 + δ

2)x3

x3

)

ηδ = η = tan−1 x2
x1

under which (7.23) is transformed, after sampling, into

zδ1(k + 1) = zδ1(k) + δzδ2(k)

zδ2(k + 1) = zδ2(k) + δu(k)

ηδ(k + 1) = ηδ(k) + δ

(7.24)

Accordingly, setting the (single) transverse control

uδ(k) = −k1zδ1 − k2zδ2 (7.25)

with k, k2 such that the closed loop transverse dynamics poles are located at the corresponding
closed loop ideal continuous-time ones. This feedback stabilizes the transverse dynamics over Γ⋆ =

{x ∈ R4 : α(x) = α̇(x) = 0} = {x ∈ R4 : zδ1 = zδ2 = 0}.
In Figure 7.4, the initial condition is x0 = col(0.1, 0.2, 0)⊤ ̸∈ Γ⋆ and the continuous-time

feedback is set to
u = −z1 −

√
3z2

thus placing the poles of the linearized transverse dynamics at pd = {−0.8660+0.5i, −0.8660−0.5i}.
The sampling period is set to δ = 0.5 and the feedback (7.25) is set with gains k1 = 0.4387, k2 =

1.2617 placing the linearized sampled transverse dynamics poles at {e(−0.8660−0.5i)δ, e(−0.8660+0.5i)δ}.
This feedback stabilizes the system to the periodic orbit solution.

Applications of sampled-data methodologies 154



7.4. Illustrative example

Figure 7.4: States Evolution approaching Γ⋆, δ = 0.5

Figure 7.5 illustrates that the same situation when the sampling period is increased δ = 1. Note
that the approximate sampled solution, at the first approximation order (7.25) manages to follow
the continuous-time ideal performance while the emulation fails when holding constant (ZOH) the
CT control.

Figure 7.5: Failure of the emulation with δ = 1

Finally, 7.6 depicts the interesting situation where we start on the set Γ⋆ with the sampling
period increased to δ = 3. Indeed both the ideal continuous-time solution and the proposed method
coincide managing to maintain invariance, emulation fails to maintain invaraince of the periodic
orbit.
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Figure 7.6: Invariance of Γ⋆, δ = 3

7.5 Concluding remarks

A few comments to summarize this chapter are in order;

■ A single-rate sampled-data solution that preserves TFL up to suitably defined approximations
has been described based on similar results for linearization under feedback Barbot et al.
(1996), Monaco et al. (1986a).

■ The proposed solution leads to the redefinition of a transverse output function that depends on
delta and allows to preserve in the so defined approximate sense the continuous-time relative
degree. Then the digital stabilizing control (negative output feedback plus stabilizing terms)
is easily computed on the sampled data normal form.

■ The proposed solution recovers Γ⋆ as the zero dynamics sub-manifold of the sampled-data
model.

■ By construction the proposed digital scheme outperforms a simple emulated one that does
not preserve for the same order of approximation the invariance of Γ⋆

■ The degree of approximation can be arbitrarily enhances by adding additional corrective terms
in the control.

While the solution proposed in this chapter is attractive, it has a few disadvantages, namely;

■ The solution proposed is approximate in nature. Thus no general statements on the existence
of an exact solution preserving the continuous-time one was made.

■ Even if the order of approximation can be arbitrarily enhanced leading to a “quasi-exact”
solution, the price is quite heavy computations depending on the nonlinearities.
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With these observation we ask if one can obtain: First, guarantees of existence of an exact solu-
tion recovering TFL under sampling using multi-rate. And second, if this multirate solution, even
when approximated for implementation purposes at the first order, improves upon the approximate
single-rate solution in practical situations. These aspects will lead us to the next and final core
chapter of this work.
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Approximate Transverse Feedback Linearization
Under Digital Control

Mohamed Elobaid , Salvatore Monaco , Fellow, IEEE , and Dorothée Normand-Cyrot , Fellow, IEEE

Abstract—Thanks to a suitable redesign of the maps
involved in the continuous-time solution, a digital design
procedure preserving transverse feedback linearization up
to a prefixed order of approximation in the sampling period
is described. Simulated examples illustrate the results.

Index Terms—Sampled-data control, feedback lineariza-
tion, algebraic/geometric methods.

I. INTRODUCTION

SEVERAL control problems, as for instance synchroniza-
tion, path following or manoeuvring electro-mechanical

systems, can be naturally cast in the context of set stabi-
lization, relying on stabilization over surfaces that specify the
control goals (e.g., [1], [2], [3], [4]). Various approaches have
been proposed in the recent literature for solving set stabi-
lization problems; among them the ones based on Lyapunov
arguments (e.g., [1]), immersion and invariance (e.g., [5], [6])
and, more relevant for this letter, those based on the notion of
feedback linearization (e.g., [7], [8]).

Generalizing the idea proposed in Banaszuk and Hauser [9]
for solving a periodic orbit stabilization problem, Nielsen and
Maggiore introduced in [2] the Transverse feedback lineariza-
tion - TFL - approach. The underlying idea is to make the
closed sub-manifold to be stabilized the zero-dynamics man-
ifold associated to a suitable set of dummy output functions.
Stabilization is then achieved by stabilizing the transverse
linearized dynamics to this sub-manifold. The formalization
and solution proposed in [2] provide an elegant framework
for solving problems which can be reduced to constrain and
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control the evolutions over a suitable sub-manifold of the state
space.

It is well known that in a digital context, i.e., under
piecewise constant controls and periodical sampled measures,
holding the continuous-time feedback solution constant over
the sampling intervals significantly degrades the performances
as the sampling period increases. On the other hand, a direct
digital design based on the sampled-data model suffers from
limitations induced by the loss of crucial control properties
under sampling (e.g., feedback equivalence and zero-dynamics
stability [10], [11]). Consequently, ad hoc schemes and design
procedures are needed [12], [13].

In this letter, under the assumption that a continuous-time
feedback exists, we propose a digital solution that preserves
transverse feedback linearization in an approximate sense.
The result is achieved through a suitable sampling-dependent
redesign of the functions which define the invariant sub-
manifold. The procedure is based on the generalization to set
stabilization of multi-input multi-output (MIMO) dynamics,
of an iterative approach proposed in [14] for preserving the
relative degree under sampling.

This letter is organized as follows. Section II recalls the
continuous-time solution, motivates and sets the problem. The
proposed control strategy is developed in Section III in a con-
structive way. Simulated examples are discussed in Section IV.
Concluding remarks end the manuscript.

Notations: Functions and vector fields are assumed smooth
and complete. Given f and g, vector fields on Rn, Lf denotes
the first order differential operator Lf = ∑n

i=1 fi(·) ∂
∂xi

, Lf Lg

their composition, eLf := Id + ∑
i≥1

Li
f

i! the exponential Lie
series operator with Id the identity operator and Li

f iterative
composition i times of Lf . Given a real valued function h(·)
on Rn, eLf h(x)|x(k) denotes the application of the Lie series
operator eLf to the function h(x) evaluated at the state x(k) so
recovering the equality eLf h(x)|x(k) = h(eLf (x(k)) where for
simplicity one writes eLf (x)|x(k) = eLf (x(k)). Ir indicates the
identity square matrix of order r. Given a manifold M and a
closed connected set N ⊂ M, N is said to be invariant under
the dynamics ẋ = f (x)+g(x)u if ∀x0 ∈ N and any control u(·),
x(t) ∈ N, ∀t. N is controlled invariant if there exists a feedback
u� making N invariant for the closed loop system. Given a
pair of matrices (A, B), one sets col(A, B) = (

A� B�)�
and

similarly, blkdiag(Ai) the block diagonal matrix formed by the
matrices Ai. A continuous function β(·) : [0,∞) → [0,∞),

2475-1456 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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that is zero at zero and strictly increasing and unbounded is
said to be of class κ∞. A continuous function R(x, δ) is of
order O(δp) with p ≥ 1 if, whenever it is defined, it can be
written as R(x, δ) = δp−1R̃(x, δ) and there exists a function
β(δ) ∈ κ∞ and δ� > 0 such that ∀δ ≤ δ�, |R̃(x, δ)| ≤ β(δ).
Given x0 ∈ M, U denotes a connected neighbourhood of x0
in M.

II. PRELIMINARIES AND RECALLS

We consider the input-affine dynamics defined on Rn

ẋ = f (x) +
m∑

i=1

gi(x)ui = f (x) + g(x)u (1)

with u ∈ Rm and independent vector fields g1(x), . . . , gm(x).

A. Recalls on Transverse Feedback Linearization

Transverse feedback linearization essentially refers to equiv-
alence under feedback to a system characterized by a lin-
ear controllable sub-dynamics transverse to a given closed,
controlled invariant, embedded sub-manifold in the system
state-space. Formally from [2], one sets the problem below.

Problem 1 [(L)TFL]: Let �� ⊂ Rn be a closed, con-
trolled invariant sub-manifold for dynamics (1) and let x0 ∈
��; TFL is said to be locally solvable if there exist a
feedback u = γ (x, v) and a coordinates change φ(x) =
col(φ1(x), φ2(x)) : x �→ (ξ, z), defined in a neighbourhood
U of x0, such that (1) rewrites

ξ̇ = Aξ + Bv1

ż = fz(ξ, z) + g1
z (ξ, z)v1 + g2

z (ξ, z)v2 (2)

where ξ ∈ Rn−n�
, z ∈ Rn�

, v = col(v1, v2) ∈ Rm, n� =
dim(��), g1

z (·), g2
z (·) are smooth (matrix) valued functions, B

full column rank, the pair (A, B) controllable, φ(�� ∩ U) =
{(ξ, z) : ξ = 0}. When U is a tubular neighbourhood of the
whole ��, then TFL is said to hold globally.

The following comments are in order:
• ξ̇ = Aξ + Bv1 specifies the transverse dynamics and v1

the transverse control;
• the dynamics of z, restricted to φ(�� ∩ U), ż = fz(0, z) +

g2
z (0, z)v2, is referred to as the tangential dynamics with

v2 the tangential control;
• setting v1 = −Kξ for a suitable K, (local) stabilization

of �� is achieved. If the trajectories of the closed loop
system (under v1) are bounded, stabilization of �� holds.

Thanks to the decoupling of the control components, one
independently forces the state evolutions towards �� under v1
and assigns a desired behaviour over it through v2.

Before stating the necessary and sufficient conditions solv-
ing the (L)TFL problem given in [2], the well known notion
of well defined vector relative degree is recalled [7].

Definition 1: The dynamics (1), with output y =
col(h1(x), . . . , hq(x)), q ≤ m, hi(·) : Rn → R has well-defined
vector relative degree r = (r1 . . . rq) at x0 if Lgj L

k
f hi(x) = 0

on U for k = 1, . . . , ri − 2, i = 1, . . . , q, j = 1, . . . , m, while
LgjL

ri−1
f hi(x0) 
= 0 for some j and the (q × m) decoupling

matrix [D(x)]i,j = LgjL
ri−1
f hi(x) is full rank at x0; r is globally

defined if the rank condition holds on Rn with respect to a
fixed decoupling sub-matrix.

Theorem 1 [2], [15]: The LTFL Problem 1 is solvable
if and only if there exist ρ smooth R-valued functions
(α1(x), . . . , αρ(x)), ρ ≤ m, defined on U such that:

1) �� ∩ U ⊂ {x ∈ U:αi(x) = 0, i = 1, . . . ρ};
2) the dynamics (1) with output α(x) =

col(α1(x), . . . , αρ(x)), has a well defined vector relative
degree r = (r1, . . . , rρ) at x0 with

∑ρ
i=1 ri = n − n�.

When φ(x) and α(x) are defined everywhere in a tubular
neighbourhood of ��, then TFL holds globally.

Theorem 1 specifies that Problem 1 is indeed equivalent to
partial feedback linearization and zero dynamics assignment
with respect to a suitable dummy output vector.

Remark 1: Finding the functions αi, i = 1, . . . , ρ, from
the given control specifications may be a difficult task. A
procedure based on the annihilator of some controlled invari-
ant distributions coinciding with the tangent bundle to �� is
developed in [2].

Without loss of generality, we assume in the sequel that the
matrices (A, B) are in the Brunowsky canonical form with

A := blkdiag(A1, . . . , Aρ) ∈ Rn−n� × Rn−n�

B := blkdiag(B1, . . . , Bρ) ∈ R(n−n�)×m

Ai ∈ Rri×ri =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0 1 0 . . . 0
0 0 1 . . . 0

...

0 0 0 . . . 1
0 0 0 . . . 0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

, Bi ∈ Rri×1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

0
0
...

0
1

⎞

⎟
⎟
⎟
⎟
⎟
⎠

. (3)

B. Recalls on Sampled-Data Dynamics

The sampled-data model we are dealing with is charac-
terized by a dynamics for which the measures are available
at periodic sampling instants and the controls kept constant
over the sampling period. This naturally arises in presence
of digital actuation and sensing devices. More precisely in
this letter, dynamics (1) is fed by constant controls over
time intervals of length δ, i.e., ui(t) = ui(kδ) = ui(k) for
t ∈ [kδ, (k + 1)δ[, k ≥ 0. Accordingly, the sampled-data
dynamics equivalent to (1) takes the form

x(k + 1) = Fδ(x(k), u(k)) = eδ(Lf +∑m
i=1 ui(k)Lgi )(x(k))

= x(k) +
∑

j≥1

δj

j!
(Lf +

m∑

i=1

ui(k)Lgi)
j(x(k)) (4)

with u(k) = col(u1(k), . . . , um(k)) and the function Fδ(·, u)

defined by its series expansion in powers of δ, [16]. When
truncating each row of this expansion at any fixed order
col(p1, . . . , pn) in δ, so neglecting row-wise the remaining
terms in (O(δp1+1), . . . , O(δpn+1)) in the infinite series expan-
sion, the sampled-data model is said to be approximated at
the order col(p1, . . . , pn). Given a real valued output function
yi = hi(x), starting from x(k) at time t = kδ, one computes the
output at any sampling instant t = (k + j)δ, j > 0, under the
control sequence (u(k), . . . , u(k + j − 1)), through the usual
composition of functions so getting

yi(k + j) = hi(x(k + j))

= hi ◦ Fδ(·, u(k + j − 1)) ◦ . . . ◦ Fδ(x(k), u(k)).
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For sampled-data dynamics, the notion of relative degree reads
as follows.

Definition 2 [16]: The MIMO sampled data dynamics (4)
with output vector y = col(h1(x), . . . , hq(x)) has a well defined
vector relative degree r = (r1, . . . , rq) at x0, if the following
holds true for x ∈ U, i = 1, . . . , q

∂yi(l)

∂uj(0)
(x) = 0, l = 1, . . . ri − 1; j = 1, . . . m

∂yi(ri)

∂uj(0)
(x0) 
= 0 for some j (5)

and the sampled data (q × m) decoupling matrix [Dδ(x)]i,j =
∂yi(ri)
∂uj(0)

(x) is full rank at x0. If the pi’s are the highest orders of
the expansions in power of δ at which the conditions above
hold, the system (4) is said to have a vector relative degree
r = (r1, . . . , rq) at x0 at the order p = col(p1, . . . , pq) in δ

(truncation with error in col(O(δp1+1), . . . , O(δpq+1)).
The falling to one of the relative degree is a well known

fact, which is emblematic of the appearance of extra sampling
zero-dynamics responsible for serious limitations in feedback
design (see [17] for the linear framework and (e.g., [11], [18])
for the nonlinear one). The following result from [16] is
recalled.

Lemma 1: Given dynamics (1) with output vector y =
col(h1(x), . . . , hq(x)) and well defined vector relative degree
at x0 then, there exists T� > 0 such that for any δ ∈ ]0, T∗[, its
sampled-data equivalent model (4) has well defined vector rel-
ative degree equal to r = (1, . . . , 1) at x0, whenever one takes
into account for each respective output yi, approximations in
δ of order at least ri, the continuous-time relative degree.

The result easily follows from (4) by computing

∂yi(1)

∂uj(0)
= δri

ri!
LgjL

ri−1
f hi(x)

∣
∣
x0

+ O(δri+1)

because ∀i = (1, . . . , q), LgjL
ri−1
f hi(x0) 
= 0 for some j.

C. Problem Statement

Assuming that a solution to the (L)TFL Problem 1 exists,
does a sampled-data solution exist ? How to compute it and
what about its performances ? With this in mind and recalling
that, because of (3), the coordinates ξ in Theorem 1 are

ξ = col(ξ1, . . . , ξρ) with ξi = col(αi, . . . , Lri−1
f αi)(x) (6)

the sampled-data (L)TFL problem is set.
Problem 2 [SD-(L)TFL]: Given dynamics (1) satisfying the

conditions of Theorem 1, find for any δ ∈ ]0, T�[, T∗ > 0
small enough, a piecewise constant feedback uδ = γ δ(x, v)
and a coordinates change φδ(·) : x �→ (ξ δ, z) defined in a
neighbourhood U of x0 ∈ ��, under which the sampled-data
closed loop dynamics takes the normal form below

ξδ(k + 1) = (Id + δA)ξ δ(k) + δBv1(k) (7a)

z(k + 1) = Fδ
z (ξ

δ(k), z(k), v(k)) (7b)

with ξδ ∈ Rn−n�
, ξ δ = col(ξ δ

1 , . . . , ξ δ
ρ), z ∈ Rn�

, v =
col(v1, v2) ∈ Rm and φδ(�� ∩ U) = {(ξ δ, z) : ξδ = 0} =

{(ξ, z) : ξ = 0} = φ(�� ∩ U). The approximate SD-(L)TFL is
solvable at degree p ≥ 1, if (7a) is approximated in O(
p+1)

ξ δ(k + 1) = (Id + δA)ξ δ(k) + δBv1(k) + O(
p+1) (8)

with 
p+1 = col(δr1+p, . . . , δp+1, . . . , δrρ+p, . . . , δp+1). If the
relative degree is well defined for all x ∈ �∗ we will say, with
a little abuse of nomenclature, that the problem is globally
solved around �∗.

Some remarks are in order.
• Problem 2 should be understood as the preservation of

the (L)TFL property under sampling. It does not con-
cern the existence and the computation, for the equivalent
sampled-data dynamics, of a closed controlled invariant
sub-manifold. This data of the design is assumed to be
known from the continuous-time solution. Note that, with
a little abuse, the same notation, U, is used to denote the
set over which the continuous-time and the sampled-data
solutions are defined.

• The sampled-data tangential z-dynamics on �� (setting
ξδ = 0) is not constrained and recovers the continuous-
time z-dynamics in O(δ2).

• The (L)TFL solution described in Theorem 1 relies on
partial feedback linearization with respect to outputs with
suitable well defined vector relative degrees. It is clear
from Lemma 1 that (L)TFL is lost under sampling except
when these relative degrees are all equal to 1.

• The approximation in (8) must be understood as an
approximation at the 
p-vector’s order; i.e., the jth com-
ponent of ξδ

i = col(ξ δ
i,1, . . . , ξ

δ
i,ri

) in ξδ , is approximated
at the order (p+ri − j). Such a non homogeneous approx-
imation reflects the preservation of each relative degree
ri of the respective ξδ

i at an order of approximation that
has to be at least ri itself. This is at the basis of the result
here proposed and reveals to be profitable in the achieved
performances illustrated through simulations.

III. APPROXIMATE TRANSVERSE FEEDBACK

LINEARIZATION UNDER DIGITAL CONTROL

In this section, making use of a suitable sampling-dependent
redesign of the output functions, we propose an approximated
solution which combines computational simplicity with a sig-
nificant improvement with respect to the zero-order-holding
implementation of the continuous-time control law.

Let us start by pointing out why the continuous-time design
approach cannot be directly applied in the sampled-data con-
text. As noted before, the continuous-time solution is achieved
by stabilizing �∗, rendered the zero dynamics sub-manifold
of (1) with respect to a set of (ρ ≤ m) suitably chosen
dummy output functions, the αi(·)’s, that have a well defined
vector relative degree r = (r1, . . . , rρ). The control goal is
then assured under input-to-output feedback linearization and
linear stabilization. Such an approach cannot be applied to
the sampled-data model as �∗, the subset of the state-space
to stabilize and to make invariant, is not a zero dynamics
sub-manifold of the sampled-data model (4) associated to the
αi(·)’s. Moreover, because of Lemma 1, even the dimension
of the sampled-data zero dynamics sub-manifold is not the
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same as that of �∗. The main result stated below, relying
on the extension to MIMO systems of a procedure proposed
in [14], shows how starting from the αi(·)’s, a new set of
delta-dependent functions, the αδ

i (·)’s , can be designed for
preserving the relative degrees and, at the same time, the
zero dynamics sub-manifold. In addition, by working on the
approximated sampled-data model it is shown that solutions,
at increasing degrees of approximation can be computed.

With this in mind, under the conditions of Theorem 1,
in the coordinates ξ = φ1(x) as in (6) and z = φ2(x),
with col(φ1(x), φ2(x)) defining a smooth deffeomeorphism, (1)
takes the form

ξ̇ = Aξ + B(fa(ξ, z) + ga(ξ, z)u)

ż = fz(ξ, z) + gz(ξ, z)u (9)

with ξ = col(ξ1, . . . , ξρ) ∈ Rn−n�
, z ∈ Rn�

,
ξi = col(ξi,1, . . . , ξi,ri) ∈ Rri , (A, B) as in (3),
B(fa(ξ, z) + ga(ξ, z)u) := col(B1(fa1 + ga1 u), . . . , Bρ(faρ +
gaρ u)) ∈ R(n−n�)×m, fa = col(fa1 , . . . , faρ ), ga(ξ, z) =
col(ga1 , . . . , gaρ ), gai = (g1

ai
, . . . , gm

ai
) and

fai(ξ, z) = Lri
f (x)ξ

1
i |x=φ−1(ξ,z), i = 1, . . . , ρ

gj
ai
(ξ, z) = Lgj(x)L

ri−1
f (x) ξ1

i |x=φ−1(ξ,z), i = 1, . . . , ρ, j = 1, . . . , m

fz(ξ, z) + gz(ξ, z)u = ∂φ2

∂x
(f (x) + g(x)u)|x=φ−1(ξ,z).

In these coordinates, the sampled-data dynamics equivalent
to (9) reads as (dropping the k-index in the right hand side)

ξ(k + 1) = Aδξ + Bδ
1(fa(ξ, z) + ga(ξ, z)u) + O(
2)

z(k + 1) = z + δ(fz(ξ, z) + gz(ξ, z)u) + O(δ2) (10)

with Aδ = blkdiag(Aδ
1, . . . , Aδ

ρ), Bδ
j = blkdiag(Bδ

j,1, . . . , Bδ
j,ρ)

with Aδ
i = eδAi and Bδ

1,i = ∫ δ

0 eτAi Bidτ , Bδ
j,i =

∑
k≥j

δk

k! (Ai)
k−jBi, so getting

Aδ
i =

⎛

⎜
⎜
⎜
⎜
⎝

1 δ δ2

2! . . . δri−1

(ri−1)!

0 1 δ . . . δri−2

(ri−2)!
...

0 0 0 . . . 1

⎞

⎟
⎟
⎟
⎟
⎠

, Bδ
j,i =

⎛

⎜
⎜
⎝

δri+j−1

(ri+j−1)!
...
δj

j!

⎞

⎟
⎟
⎠.

(11)

The main result can now be stated.
Theorem 1: Under the conditions of Theorem 1, there exist

a small enough T� > 0, and for any δ ∈ ]0, T�[, a
δ-dependent coordinates change φδ(x) and a sampled-data
feedback γ δ(x, v) solving Problem 2 in O(
2).

Proof: Under the assumption of well-defined vector relative
degree and without loss of generality (possibly after a reorder-
ing of the control variables in ξ ), ga(ξ, z) in (9) takes the
form of a full rank matrix D(ξ, z) = [

M(ξ, z) N(ξ, z)
]

with
M(ξ, z), ρ × ρ full rank, and N(ξ, z) spanning ker(D(ξ, z)).
Thus, with a little abuse of notations, the continuous-time
normal form rewrites as

ξ̇ = Aξ + B(fa(ξ, z) + M(ξ, z)u1 + N(ξ, z)u2)

ż = fb(ξ, z) + gb(ξ, z)u

with u = col(u1, u2), u1 ∈ Rρ, u2 ∈ Rm−ρ . Accordingly, the
linearizing continuous-time feedback reads as

u1 = γ1(ξ(k), z(k), v1(k), u2(k))

= M−1(ξ, z)(−fa(ξ, z) − N(ξ, z)u2(k) + v1(k)) (12)

with external control vector v1 ∈ Rρ . The second part
of the proof stands in the computation of a reshaped δ-
dependent dummy output, αδ(x) = col(αδ

1(x), . . . , α
δ
ρ(x)),

under which the vector relative degree r = (r1, . . . , rρ)

is preserved under sampling, up to approximations in
col(O(δr1+1), . . . , O(δrρ+1)). Moreover, the zero dynamics
sub-manifold is preserved at the same orders of approximation.
For, let us associate to each function αi, i = 1, . . . , ρ

αδ
i (x) = αi(x) +

ri−1∑

j=1

δjci,jα
(j)
i (x) = Cδ

i ξi(x) (13)

where α
(j)
i = Lj

f (αi) is the jth-time derivative of αi and the real
coefficients ci,j are the entries of the row matrix

Cδ
i = col(1, δci,1, . . . , δ

ri−1ci,ri−1)

= δri BT
i

(
Bδ

1,i Aδ
i Bδ

1,i . . . (Aδ
i )

(ri−1)Bδ
1,i

)−1
(14)

with Aδ
i and Bδ

1,i as in (11). The so defined δ-dependent
functions are used to define the first (r1 + · · · + rρ) coor-
dinates of a block diagonal transformation to be applied to
the approximated sampled-data representation (10). For, we
define

φδ(x) = col(ξ δ, z) :=
(

Tn−n� (δ) 0
0 In�

)(
ξ

z

)

with Tn−n� (δ) = blkdiag(T1(δ), . . . , Tρ(δ)) ∈ R(n−n�)×(n−n�)

ξ δ
i (x) = Ti(δ)ξi(x) :=

⎛

⎜
⎜
⎜
⎝

Cδ
i

1
δ
Cδ

i (A
δ
i − Iri)
...

1
δri−1 Cδ

i (A
δ
i − Iri)

(ri−1)

⎞

⎟
⎟
⎟
⎠

ξi(x). (15)

It is a matter of computation to verify that the vector relative
degree of the functions (13) is r = (r1, . . . , rρ) and that the
feedback (12), with vδ

1 in the place of v1, transforms (10) into

ξδ(k + 1) = (I(n−n∗) + δA)ξ δ(k) + δBvδ
1(k) + O(
2)

z(k + 1) = z(k) + δ(fb(ξ, z) + gb(ξ, z)col(vδ
1, u2) + O(δ2).

(16)

Hence, the posed problem is solved at the fixed approxi-
mated order. Moreover, setting vδ

1(k) = −Kξδ(k), with gains
ki,j’s, i = 1, . . . , ρ, j = 1, . . . , n − n∗, suitably chosen to
assign Hurwitz polynomials, stabilization of �∗ is attained
at the same order of approximation, since the sampled-data
zero dynamics manifold recovers the continuous-time one, i.e.,
φδ(��∩U) = {(ξ δ, z); ξδ = 0} = {(ξ, z); ξ = 0} = φ(��∩U).
The sampled-data feedback so far designed is thus

uδ
1(k) = γ δ

1 (ξ(k), z(k),−Kξδ(k), u2(k)). (17)

It provides a local solution around any point at which the vec-
tor relative degree is well defined; it provides a global solution
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Fig. 1. Implementation of the proposed sampled-data solution (a), compared to zero-order-holding of the continuous-time solution (b). The modified
coordinates change and feedback of the proposed solution are highlighted in blue.

around �∗ if the vector relative degree is defined at any point
of �∗.

The approach could be further developed to increase the
approximation order along the lines of the proof of Theorem 1
and extending the SISO procedure in [14]. Starting from an
higher order approximation of the sampled-data model (10), the
idea is to add a δ-dependent part to the control law to compensate
the effects of the additional terms occuring at the corresponding
degree of approximation. Iteratively, a controller of the form
u1(k) = u1,0(k)+δu1,1(k)+· · ·+ δp

p! u1,p(k) is built, with u1,0 as
in (17), to reach a solution approximated in O(
p+1). Detailed
computations are left out for the sake of space.

Remark 2: It is worth to note that the controller (17) can
be easily computed since ξδ = T(δ)ξ depends on r1, . . . , rρ

only and can be precomputed offline. Each function αδ
i (·) is

a polynomial in the first ri time derivatives of αi(·), with real
δ-depend coefficients. For the first values of ri, one computes

ri = 2: αδ
i = αi − δ

2
α̇i = ξi,1 − δ

2
ξi,2

ri = 3: αδ
i = αi + δα̇i − δ2

3
α̈i = ξi,1 + δξi,2 − δ2

3
ξi,3

T2(δ) =
(

1 −δ
2

0 1

)

; T3(δ) =
⎛

⎝
1 δ − δ2

3
0 1 −δ

2
0 0 1

⎞

⎠.

IV. EXAMPLES

In this section two examples from [2] and [19] are worked
out to illustrate the benefits of the proposed digital design
procedure. Figure 1 depicts the implementation schemes.

Example 1 (SISO): Consider the unicycle model

ẋ = vcosθ, ẏ = vsinθ, θ̇ = w (18)

with v = 1, under the control goal of tracking a circular path
{(x, y, θ) : x2 + y2 − 1 = 0}. Following [19], one sets the
transversal output as α(x, y, θ) = x2 + y2 − 1, with relative
degree r = 2 = n − n� over R3\{θ = tan−1 y

x }. Then, under
the coordinates change φ(x, y, θ) = col(x2 +y2 −1, 2(xcosθ +
ysinθ), θ) = (ξ1, ξ2, z), the dynamics (18) is transformed into
the normal form

ξ̇1 = ξ2; ξ̇2 = 2(1 + b(ξ, z)u); ż = u (19)

with b(ξ, z) = 2(ycosθ − xsinθ)|(x,y,θ)=φ(ξ,z)−1 . Under
sampling, because (n = 3, n� = 1, m = 1), one reshapes the

Fig. 2. SD feedback VS ZOH of the CT feedback δ = 0.3.

transversal output as in (13), so getting

αδ(x, y, θ) = α(x, y, θ) − δ

2
α̇(x, y, θ) = x2 + y2 − δ(xcosθ + ysinθ).

Accordingly, under the coordinates change

φδ(·) = col(ξ δ
1 , ξ δ

2 , z) = col(T2(δ)ξ, z) = col(ξ1 − δ

2
ξ2, ξ2, z)

the sampled-data equivalent model to (19) is transformed into

ξδ
1 (k + 1) = ξδ

1 (k) + δξδ
2 (k) + O(δ3)

ξ δ
2 (k + 1) = ξδ

2 (k) + 2δ(1 + b(ξ, z)u(k)) + O(δ2)

z(k + 1) = z(k) + δu(k).

Finally, the sampled-data feedback law

u(k) = (2b(ξ(k), z(k)))−1(−2 + vδ(k)) (20)

with vδ(k) = −k1ξ
δ
1 − k2ξ

δ
2 and suitably chosen k1 =

16.6, k2 = −11.1, stabilizes the dynamics onto �� (ξδ = 0).
Setting x0 = (−1.5, 1, π

4 ), comparative simulations between
the continuous-time CT design (in red), ZOH of the CT feed-
back (in black) and the sampled-data proposed solution (in
blue) are plotted, for a sampling period δ = 0.3. As clearly
illustrated through the simulations (Figure 2), the proposed
design outperforms ZOH of the CT solution.

Example 2 (MIMO): Let the input-affine dynamics

ẋ = f (x) + g1(x)u1 + g2(x)u2 (21)

with f (x) = (−x2 x1 x3x4 0
)�, g1(x) = (

0 0 x3 1
)�,

g2(x) = (−x2 x1 0 0
)�. The LTFLP has been set and solved

in [2] with the control goal of reaching and traversing an
elliptic paraboloid immersed in the subspace x4 = 0; i.e.,
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Fig. 3. States Evolution approaching ��, δ = 0.4.

Fig. 4. Invariance of ��, δ = 1.

{x ∈ R4 : x2
1 + x2

2 − x3 = x4 = 0} around x0 = col(4, 0, 2, 0).
Because (n = 4, n� = 2, m = 2), it has been shown
that the function α(x) = ln(

x3
x2

1+x2
2
) − x4, has relative degree

2 = n − n� over R4/{x ∈ R4 : x1 = x2 = 0; x3 = 0},
so defining the coordinates change col(ξ1, ξ2, z) = φ(x) =
col(ln(

x3
x2

1+x2
2
) − x4, x4, x1, x2) and u� = (0, 0)�. Under sam-

pling, setting according to (13) αδ(x) = α(x) − δ
2 α̇(x), one

defines the sampled coordinates change as col(ξ δ
1 , ξ δ

2 , z) =
φδ(x) = col(φδ

1(x), x1, x2), with

φδ
1(x) = col(ln(

x3

x2
1 + x2

2

) − (1 + δ

2
)x4, x4) = T2(δ)col(α(x), α̇(x))

under which (21) is transformed, after sampling, into

ξδ
1 (k + 1) = ξδ

1 (k) + δξδ
2 (k)

ξ δ
2 (k + 1) = ξδ

2 (k) + δu1(k)

z1(k + 1) = z1(k) − δz2(k)(1 + u2(k)) + O(δ3)

z2(k + 1) = z2(k) + δz1(k)(1 + u2(k)) + O(δ3). (22)

Accordingly, the control

uδ
1(k) = −k1ξ

δ
1 − k2ξ

δ
2 (23)

with k = 2, k2 = −1.5, stabilizes the transverse dynamics over
�� = {x ∈ R4 : α(x) = α̇(x) = 0} = {x ∈ R4 : ξδ

1 = ξδ
2 = 0}.

In Figure 3, the initial condition is x0 = col(1, 2, 2, 0.5) 
∈
�� and the feedback (23) stabilizes the system to ��. Figure 4
illustrates that the invariance of �� is preserved under the
proposed feedback (23) while it fails when holding con-
stant (ZOH) the CT control; the initial state being x =
col(1, 1, 2, 0) ∈ ��. In both simulations, the motion on ��

is free, i.e., u2(k) = 0.

V. CONCLUSION

A procedure to preserve transverse feedback linearization
under digital control has been proposed. The first step of this
iterative procedure leads to the redefinition of a linearizing
output which comes out to depend in a polynomial way on
the sampling period and allows for the design of a digital
stabilizing control which outperforms simple zero-order hold-
ing of the continuous-time solution. Accordingly, attractivity
and invariance of the set �� is preserved under digital feed-
back with arbitrary orders of approximation. An exact solution
to the (L)TFL-SD problem can be obtained using multi-rate
sampling techniques, special care is needed when selecting
the multirate orders on the input channels, this is deferred to
a different work.
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Chapter 8

Exact transverse feedback linearization
via multi-rate sampling
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The second, and more advantageous, solution to the problem of preserving the TFL normal
form under sampling is detailed in this chapter. As briefly alluded to in the introduction of

Chapter 7, this solution utilizes multi-rate sampling working over the second step of the general TFL
two-step program. Namely, instead of modifying the functions specifying the zero dynamics sub-
manifold and solving the problem in continuous-time, we modify the computation of the feedback
that linearizes and stabilizes the dynamics transverse to the desired sub-manifold.

This multi-rate sampled solution to the problem of preserving TFL under sampling relies on the
fact that multi-rate, as detailed in Chapter 2 preserves the zero dynamics structure of a continuous-
time plant.

The main advantage of using multi-rate sampled solution is two fold: First, it allows one to
demonstrate that whenever a continuous-time solution to the TFL problem exists, an exact digital
solution exists, even if the implementation is carried over approximations. Second, and more inter-
estingly, it allows one to find a piecewise constant state solution in particular cases where no static
feedback continuous-time solution exists. This later aspect is demonstrated on the application to
the path following problem serving as a companion to the results obtained in;

Mohamed Elobaid, Mattia Mattioni, Salvatore Monaco and Dorothée Normand-Cyrot. “Dig-
ital path-following for a car-like robot”. Control Conference Africa IFAC CCA 2021, 174-179,
DOI: 10.1016/j.ifacol.2021.12.030

Mohamed Elobaid, Mattia Mattioni, Salvatore Monaco and Dorothée Normand-Cyrot. “Vir-
tual Holonomic Constraints for Euler-Lagrange systems under sampling” ECC 2022, to appear
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8.1. Linear feedback equivalence under multi-rate sampling

The notions and concepts appearing in this chapter are based on Banaszuk and Hauser (1995),Nielsen
and Maggiore (2008), Nielsen and Maggiore (2006), Akhtar et al. (2015) and the references therein
together with the referenced paper.

8.1 Linear feedback equivalence under multi-rate sampling

In this section we recall how preservation of linear equivalence under feedback for nonlinear continuous-
time systems can be done via multi-rate sampling. This idea is precisely the one applied, with some
care, to the problem of preserving the TFL normal form under sampling. To this end, consider a
continuous-time system of the form (3.1),(1.1b), having a well defined relative degree r together with
feedback u = γc(x, ν) of the form (1.4) that renders the input-output link a chain of r integrators.

As discussed in Chapter 2, the multi-rate sampled model of order r is

x(k + 1) = F δr (x(k), u(k)) = eδ̄(Lf+u
1(k)Lg) ◦ . . . ◦ eδ̄(Lf+u

r(k)Lg)x|x(k)
y(k) = h(x(k))

(8.1)

with δ = rδ̄. The question is then to find a multi-rate digital feedback

u = γd(x, ν) =
(
γ1d(x, ν) . . . γrd(x, ν)

)⊤

such that the sampled data system under this feedback recovers the input-output linearaization
of the original continuous-time system. Considering the extended output vector (2.15), namely
H(x) = (h(x), Lfh(x), . . . , L

r−1
f h(x))⊤, then our question is equivalent to asking for a digital

feedback such that;
H(F δr (x(k), γd(·, ν(k)))) = AδrH(x(k)) + bδrν(k) (8.2)

for Aδr, bδr as in (2.12). It turns out that such feedback solution preserving input-output linearization
exists. In fact, expanding the equality (8.2), one has (droppping time arguments for clarity)

eδ̄(Lf+γ1
dLg) ◦ . . . ◦ eδ̄(Lf+γr

dLg)h(x) = h(x) + δLfh(x) + . . .+
δr−1

(r − 1)!
Lr−1
f h(x) +

δr

r!
ν (8.3a)

eδ̄(Lf+γ1
dLg) ◦ . . . ◦ eδ̄(Lf+γr

dLg)Lfh(x) = Lfh(x) + δL2
fh(x) + . . .+

δr−2

(r − 2)!
Lr−2
f h(x) +

δr−1

(r − 1)!
ν (8.3b)

...

eδ̄(Lf+γ1
dLg) ◦ . . . ◦ eδ̄(Lf+γr

dLg)Lr−1
f h(x) = Lr−1

f h(x) + δν (8.3c)

The left hand side of the r equations above can be rearranged, for the ith equation as

eδ̄(Lf+γ
1
d(k)Lg) ◦ . . . ◦ eδ̄(Lf+γ

r
d(k)Lg)Lifh(x(k)) = Lifh(x(k)) + δLi+1

f h(x(k)) + . . .

+ Lr−i−1
f h(x(k)) +

δr−i

(r − i)!Pi−1(δ̄, γ
1
d , . . . , γ

r
d) (8.4)

where Pi(δ̄, γ1d , . . . , γ
r
d) is an infinite series collected, term by term, according to the powers of δ̄

Monaco and Normand-Cyrot (1997). In this sense, the equations (8.2) reduces to setting

Pi(δ̄, γ
1
d , . . . , γ

r
d) = ν(k), i = 0, . . . , r − 1 (8.5)
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for which we can recall the following;

The equations (8.2) admits a digital feedback solution of the form

γd(x, ν) = γd,0(x, ν) +
∑

j≥1

δ̄j

(j + 1)!
γd,j(x, ν) (8.6)

infinite series expansion in powers of δ around the continuous-time input-output linearizing
feedback.

Lemma: linear feedback equivalence under multi-rate sampling

Remark 8.1 The multi-rate digital feedback (8.6) preserving feedback equivalence under sampling
is an infinite series expansion around the continuous-time feedback. Because of this, in practice,
only approximations can be computed obtained by truncating the feedback (8.6) at a finite power of
δ so getting for the p−th order approximate feedback

γpd(x, ν) = γd,0(x, ν) +

p∑

j=1

δ̄j

(j + 1)!
γd,j(x, ν) (8.7)

In the next section, we revisit an example treated using the single rate approximate solution
to the TFL preservation problem in Elobaid et al. (2020c) and demonstrate the effectiveness of
multi-rate.

The example of the differential drive revisited

To show explicitly the computations involved we revisit the example of a differential drive with
constant forward velocity treated in (Elobaid et al., 2020c, Example 1). This unpublished example
complements the results with single-rate and provides further insights into the differences with
respect to multi-rate. Consider

q̇ = f(q) + g(q)ω =



v cos q3

v sin q3

0


+



0

0

1


ω (8.8)

Let

y = α(q) = (q21 + q22 + a2)2 − 4a2q21 − b4

with a, b ∈ R describe the Casini oval, a geometric path on the plane with no self-intersections.
This output has relative degree r = 2. In this sense, there exist a linearizing feedback of the form;

ωc =
ν − [4 v2

(
a2 cos (2 q3) + q1

2 cos (2 q3)− q22 cos (2 q3) + 2 a2 + 2 q1
2 + 2 q2

2 + 2 q1 q2 sin (2 q3)
)
]

4 q1 v sin (q3) (3 a2 + q12 + q22)− 4 q2 v cos (q3) (a2 + q12 + q22)
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Setting

ν = −k1α(q)− k2α̇(q)

with k1, k2 > 0 stabilizes the linear input-output link allowing the differential drive to follow the
path. Now define the multi-rate sampled equivalent model of order r = 2 on ω, equivalently setting
ωi(k) = ω(t), t ∈ [k δ2 + (i− 1) δ2 , (k + i) δ2 [, i = 1, 2 and applying the identity (8.1) so getting

q(k + 1) = F δ2 (q(k), ω
1(k), ω2(k)) = eδ̄(Lf+ω

1(k)Lg) ◦ eδ̄(Lf+ω
2(k)Lg)q|q(k)

α(k) = h(q(k))
(8.9)

and the equations (8.2) reduces to

eδ̄(Lf+ω
1(k)Lg) ◦ eδ̄(Lf+ω

2(k)Lg)α(q)|q(k) = α(q) + δLfα(q) +
δ2

2
ν

eδ̄(Lf+ω
1(k)Lg) ◦ eδ̄(Lf+ω

2(k)Lg)Lfα(q)|q(k) = Lfα(q) + δν

Expanding the left hand side of the above one has for the expansions Pi in (8.5) the expressions;

P0 =
3

16
(Lf + ω1Lg)Lfα+

1

16
(Lf + ω2Lg)Lfα+

δ̄

12
(Lf + ω1Lg)

2Lfα

+
δ̄

16
δ̄(Lf + ω1Lg)(Lf + ω2Lg)Lfα+

δ̄

48
(Lf + ω2Lg)

2Lfα+O(δ̄2)

P1 =
1

2
(Lf + ω1Lg)Lfα+

1

2
(Lf + ω2Lg)Lfα+

δ̄

8
(Lf + ω1Lg)

2Lfα

+
δ̄

8
δ̄(Lf + ω1Lg)(Lf + ω2Lg)Lfα+

δ̄

4
(Lf + ω2Lg)

2Lfα+O(δ̄2)

Following (8.7), and taking the first two terms by substituting in the above the expressions

ω1 = ω1
d,0 +

δ̄

2
ω1
d,1, ω2 = ω2

d,0 +
δ̄

2
ω2
d,1

and collecting terms in similar powers of δ̄, one has

ω1
d,0 = ωc(·, ν(k)), ω2

d,0 = ωc(·, ν(k))

ω1
d,1 =

2

3
ω̇c(·, ν(k)), ω2

d,1 =
10

3
ω̇c(·, ν(k))

Setting in our example a constant forward velocity of v = 0.5m/s, with the curve parameters
being a = 3, b = 1.05a and for the continuous-time feedback gains k1 = 2, k2 = 3 and δ = 0.2 we
note in Figure (8.1) that at the cusps of the oval, the emulation slightly leaves the curve while the
multi-rate solution preserves invariance tracing the ideal continuous-time performance.

In Figure 8.2, the initial conditions were changed to x0 = (2, 0, 2π
3 )⊤ and δ = 0.5. Both the

gains of the continuous-time controller and its corresponding digital gains are kept the same. The
forward velocity is kept the same. Significant deterioration in the performances observed from the
emulation controlled system are reported in the figure.
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Figure 8.1: Tracing the Casini oval with δ = 0.2
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Figure 8.2: Tracing the Casini oval with δ = 0.5

The above example showed that when there exists a continuous-time inversion control linearizing
the input-output link of a given system, a multi-rate digital feedback exists preserving this property.
This sampled feedback is of the form (8.6), an infinite series expansion in powers of δ around the
continuous-time solution. This idea can then be specialized to the context of TFL as done in the
sequel.

8.2 Exact transverse feedback linearization via multi-rate sampling

Following from the discussion presented in the previous section, we can now draw some general
conclusions concerning the preservation of TFL under sampling. In the case of a SISO system, the
following statement, not published anywhere, is straightforward
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Given a SISO continuous-time system and Γ⋆, a controlled invariant sub-manifold of
dimension n⋆. Let there exists a function α(x) solving TFL in continuous-time, i.e. having
relative degree r = n − n⋆ and for which Γ⋆ = {x ∈ Rn : α(x) = Lfα(x) = . . . =

Ln−n
⋆−1

f α(x) = 0}. Then there exists T ⋆ such that for any δ ∈ [0, T ⋆[, the multi-rate
equivalent dynamics (8.1) together with the output;

H(x) =
(
α(x) Lfα(x) . . . Ln−n

⋆−1
f α(x)

)⊤
(8.10)

under the feedback (8.6) preserves TFL under sampling and Γ⋆ will be its zero dynamics
sub-manifold. Additionally, the zero dynamics, motions on Γ⋆ are preserved in the first
order.

Result: TFL under multi-rate sampling for SISO systems

The proof of this claim follows directly from applying (Monaco and Normand-Cyrot, 1997,
Theorem 5.2) and its subsequent corollary. Additionally, in this setting, the (single) control is used
to derive the evolutions to Γ⋆ thus stabilizing Γ⋆ and the tangential dynamics are uncontrolled.

In the more interesting and general MIMO scenario, things are more delicate as the reader can
predict. To this end consider the following dynamics

ẋ = f(x) +
m∑

i=1

gi(x)ui (8.11)

with x ∈ Rn and ui ∈ R, i = 1, . . . ,m real analytic. Assume the vector fields describing the
dynamics are complete and gi(x), i = 1, . . . ,m are independent. Let there exists ρ functions αi(x)
solving TFL in continuous-time for the controlled invariant sub-manifold Γ⋆, i.e.

Γ⋆ = {x ∈ Rn : α1(x) = . . . = Lr1−1
f α1 = 0, . . . , αρ(x) = . . . = L

rρ−1
f αρ = 0} (8.12)

and the dummy output

y =
(
α1(x) . . . αρ(x)

)⊤
(8.13)

has a well defined vector relative degree r = (r1, . . . , rρ) with
∑ρ

i=1 ρi = n − n⋆. As discussed in
Chapter 7, after possibly rearranging the columns, the ρ×m decoupling matrix can be written as
D(x) = [M(x) N(x)] with the ρ× ρ matrix M full rank. Then a coordinates change similar to that
reported in Section 1.2 and a feedback u = γc(x, ν) of the form;

u1 =M−1(x)
(
ν1 −N(x)− f̃(x)

)

u2 = ν2

where f̃(x) = (Lr1f α1(x) . . . L
rρ
f αρ(x))

⊤, stabilizes the trajectories to Γ⋆ by appropriately setting
ν1 ∈ Rρ, the transverse control.

Under sampling, let the multi-rate order on the control u1 linearizing the transverse dynamics
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be m = ℓcm(ri), i = 1, . . . , rρ, i.e. the least common multiple of the relative degrees, while u2
kept constant over the larger sampling period δ = mδ̄. One obtains a multi-rate sampled equivalent
dynamics being

x(k + 1) = F δm(x(k), u1(k), u2(k)) (8.14)

with

F δm(x, u1, u2) = F δ̄(·, um1 , u2) ◦ . . . ◦ F δ̄(x, u11, u2)

=
∑

j1,...,jm≥0

δ̄j1+j2+...,+jm

j1!j2! . . . , jm!
(u11LG1 + u2LG2)

j1 ◦ . . . ◦ (um1 LG1 + u2LG2)
jmx.

where, after possible rearrangement, G1(x), G2(x) are the first ρ, (m − ρ) vector fields of the set
gi(x) respectively corresponding to the controls u1, u2. Define now the extended output vector

He(x) =
(
α(x) Lfα1(x) . . . Lr1−1

f α1(x) . . . αρ(x) Lfαρ(x) . . . L
rρ−1
f αρ(x)

)⊤
(8.15)

with these machinery settled we can now make the following statement;

Given the dynamics (8.11) and Γ⋆, a controlled invariant sub-manifold of dimension n⋆.
Let there exists a function (8.13) solving TFL in continuous-time. Then there exists T ⋆

such that for any δ ∈ [0, T ⋆[, the multi-rate equivalent dynamics (8.14) together with
the output (8.15) admit a feedback of the form (8.6) preserving TFL under sampling, i.e.
solving an equality of the form

He(F
δ
m(x(k), γd(·, ν1(k)), u2(k))) = AδHe(x(k)) +Bδν1(k) (8.16)

with Aδ = blkdiag(Ar1 , . . . , Arρ), Bδ = blkdiag(br1 , . . . , brρ) and ν1 ∈ Rρ the transverse
control. Moreover, Γ⋆ will be its zero dynamics sub-manifold of the sampled dynamics
associated to (8.15), and the zero dynamics, motion on Γ⋆, is preserved in the first order.

Result: TFL under multi-rate sampling for MIMO systems

It is clear that this is, albeit intuitive, a very strong claim for which the author provides no
rigorous proof. The existence of a multi-rate solution follows from the application of the Implicit
function theorem, however the difficulty stands on showing that the choice of the multi-rate order
m = ℓcm(ri), i = 1, . . . , rρ is sufficient. In anycase, in the sequel we verify, through application
to different control problems, the existence and efficacy of multi-rate sampled solutions preserving
TFL.

8.3 Applications to path following without dynamic extension

In this section we apply the above statements to two the important control problem of allowing a
nonholonomic system to follow a given path.

Moreover, through the treatment of the specific example of the car-like robot, it is demonstrated
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that the multi-rate solution, in addition to preserving TFL under sampling allow to find a state
feedback when the problem admits only a dynamic feedback solution in continuous-time.

Figure 8.3: The car-like kinematics.

Given a car-like robot kinematics be described
as(Siciliano et al. (2010))

q̇ = g1(q)v + g2(q)ω

p =
(
x y

)⊤ (8.17)

with (see Figure 8.3)

g1(q) =




cos θ

sin θ
1
ℓ tanϕ

0



, g2(q) =




0

0

0

1




q =
(
q1 q2 q3 q4

)⊤
=
(
x y θ ϕ

)⊤
∈ R4, v ∈

R, the forward linear velocity, ω ∈ R, the angular
velocity and ℓ the distance between the wheels. The position on the plane p = h(q) := (q1 q2)

⊤ ∈ R2

is the output of the system.
The desired path is given by ϱ : D 7→ R2 = {w ∈ R2 s.t. s(w) = 0} a regular parameterized

curve on the plane with no self-intersections. The path following problem formally asks;

Find if possible, a feedback law for the car-like kinematics (8.17) such that for a set of
some initial conditions containing the path the following holds true.

1. Invariance: if the robot starts on the path it remains on the path.

2. Attractivity : if the robot starts close enough to the path, it reaches the path asymp-
totically.

3. Motion on the curve: the robot traverses the path with a given desired velocity or
acceleration profile.

Problem: Path following for the car-like kinematics

It is known that, because of requirement (3) above, TFL can not be applied directly to solve
the problem with static feedback. Indeed the n⋆ = 3 dimensional path following sub-manifold
characterized by Γ⋆ ⊆ {q ∈ R4 : q = (s ◦ h)−1(0)} can not be made into the zero dynamics sub-
manifold for a physically meaniful output map while also satisfying (3) Nielsen and Maggiore (2006),
Akhtar et al. (2015) because

Lg1α(q1, q2) ̸= 0, Lg2α(q1, q2) ̸= 0

for any α(q1, q2) related to the path parametrization. The workaround, in continuous-time, is to
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define a dynamics extension of order 2 on the linear velocity v;

ξ̇ = ξ2, ξ̇2 = u1

v = ξ1, ω = u2

Such that for the dynamically extended system;

˙̃q = f̃(q̃) + g̃1(q̃)u1 + g̃2(q̃)u2

with

f̃ =




ξ1 cos q3

ξ1 sin q3
ξ1
ℓ tan q4

0

ξ2

0




, g̃2 =




0

0

0

0

0

1




, g̃2 =




0

0

0

1

0

0




the dummy physically meaningful output function

y =

(
α(q̃)

π(q̃)

)
=

(
(s ◦ h)(q̃)
arctan( q̃2q̃1 )

)
(8.18)

being the parametrization of the curve and the projection of the position on the curve, have a well
defined vector relative degree r = (n − n⋆ n⋆) = (3 3). Because of this, there exists a coordinates
change z = ϕ1(q̃), η = ϕ2(q̃) and

ϕ1 = (α Lf̃α L
2
f̃
α)⊤, ϕ2 = (π Lf̃π L

2
f̃
π)⊤

and linearizing feedback as the one reported in Section 1.2 of the form;

u = γc(q̃, ν) (8.19)

such that the system takes the form

ż = A3z + b3ν1 (8.20)

η̇ = A3η + b3ν2 (8.21)

with A3, b3 as in (2.10), and TFL is solved simply by setting ν1 = Kz with K : σ(A+BK) ⊂ (C−).
As is obvious, in these coordinates Γ⋆ = {(z, η) : z = 0}. In this sense, requirement (1), (2) in the
path following problem are solved by the transverse control, while requirement (3) is solved by the
tangential control.

Path following under multi-rate sampling

It is clear that, in the digital context, if one wants to preserve TFL using the approximate single-
rate solution presented in Chapter 7, one needs the preliminary dynamic extension thus obtaining
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a piecewise continuous feedback. This puts us in the position to highlight an additional benefit of
the exact solution offered by multi-rate sampling, namely a workaround the need for the dynamic
extension.

Following the claim stated in the previous section, and setting δ̄ = δ
3 and ω(t) = ωi(k) for

t ∈ [kδ+ (i− 1)δ̄, kδ+ iδ̄[ with i = 1, 2, 3 and v(t) = v(k) for t ∈ [kδ, (k+1)δ[ we get the multi-rate
dynamics of order n− n⋆ = 3 equivalent to the the car-like kinematics;

q(k + 1) =F δ3 (q(k), v(k), ω(k))

F δ̄3 (q, v, ω) =F
δ̄(·, v, ω1) ◦ F δ̄(·, v, ω2) ◦ F δ̄(q, v, ω3)

=
∑

j1,j2,j3≥0

δ̄j1+j2+j3

j1!j2!j3!
(vLg1 + ω3Lg2)

j1 ◦ (vLg1 + ω2Lg2)
j2 ◦ (vLg1 + ω1Lg2)

j3q.

(8.22)

As discussed in the previous section, and because the linear velocity v is constant over the large
sampling period, define the extended transverse output;

H(q) =
(
α(q) α̇(q) α̈(q)

)⊤
(8.23)

α̇ = v cos q3
∂

∂q1
α+ v sin q3

∂

∂q2
α (8.24)

α̈ =
v2

ℓ
[ℓ cos2 q3

∂2

∂q21
α+ 2 ℓ cos q3 sin q3

∂

∂q2

∂

∂q1
α−

tan q4

(
sin q3

∂

∂q1
α+ cos q3

∂

∂q2
α

)
+ ℓ sin2 q3

∂2

∂q22
α] (8.25)

With this output, the equality (8.16) becomes;

eδ̄(vLg2+ω
1(k)Lg1 ) ◦ eδ̄(v(k)Lg1+ω

2(k)Lg2 ) ◦ eδ̄(v(k)Lg1+ω
3(k)Lg2 )α|q(k) = α+ δα̇+

δ2

2
α̈+

δ3

6
ν1

eδ̄(vLg2+ω
1(k)Lg1 ) ◦ eδ̄(v(k)Lg1+ω

2(k)Lg2 ) ◦ eδ̄(v(k)Lg1+ω
3(k)Lg2 )α̇|q(k) = α̇+ δα̈+

δ2

2
ν1

eδ̄(vLg2+ω
1(k)Lg1 ) ◦ eδ̄(v(k)Lg1+ω

2(k)Lg2 ) ◦ eδ̄(v(k)Lg1+ω
3(k)Lg2 )α̈|q(k) = α̈+ δν1

Denoting f(q) ≡ g1(q)v since v(k) is constant during the large interval by definition, we have
Lf ≡ vLg1 . With this notation, expanding the left hand side of the above equality and setting as
in (8.7);

ωi = ωid,0 +
δ̄

2
ωid,1 (8.26)
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we have for the terms (8.5);

P0 = [

(
19

27
ω1
d,1 +

7

27
ω2
d,1 +

1

27
ω3
d,1

)
LgL

2
f +

1

24

(
Lf + ω1

d,0Lg

)2
L2
f

+
1

120

(
Lf + ω2

d,0Lg

)2
L2
f ] δ̄ +

19

27

(
Lf + ω1

d,0Lg

)
L2
f +

7

27

(
Lf + ω2

d,0Lg

)
L2
f

+
1

27

(
Lf + ω3

d,0Lg

)
L2
f +O(δ̄2)

P1 = [

(
5

9
ω1
d,1 +

3

9
ω2
d,1 +

1

9
ω3
d,1

)
LgL

2
f + 5

(
ω1
d,0 + ω2

d,0 + ω3
d,0

)
LgL

3
f

+ 8L4
f ] δ̄ +

5

9

(
Lf + ω1

d,0Lg

)
L2
f +

3

9

(
Lf + ω2

d,0Lg

)
L2
f +

1

9

(
Lf + ω3

d,0Lg

)
L2
f +O(δ̄2)

P2 = [

(
1

3
ω1
d,1 +

1

3
ω2
d,1 +

1

3
γ3d,1

)
LgL

2
f LgL

2
f +

39

2
L4
f + 12

(
ω1
d1 + ω1

d,1 + ω3
d,1

)
LgL

2
f

+ 18
(
ω1
d,0 + ω2

d,0 + ω3
d0

)
LgL

3
f + 6

(
ω1
d,0 ω

2
d,0 + ω1

d,0 ω
3
d,0 + ω2

d,0 ω
3
d,0

)
L2
gL

2
f ]δ̄

+
1

3

(
Lf + ω1

d,0Lg

)
L2
f +

1

3

(
Lf + ω2

d,0Lg

)
L2
f +

1

3

(
Lf + ω3

d,0Lg

)
L2
f +O(δ̄2)

which, solving for the terms with the same power in δ̄ we obtain the statement simplifying that
made in (Elobaid et al., 2021, Proposition 3.1);

Consider the kinematic model of the car-like robot and a regular parameterized curve
ϱ : D 7→ R2 for which the path following problem admits a solution in continuous-time.
Then, requirement (1) of the path following problem is guaranteed, at all t = kδ with
k ≥ 0, by the feedback ω = ωδ̄(q, v, ν1) of the form

ωδ̄(q, v, ν1) = ω0(q, v, ν1) +
∑

i>0

δ̄i

(i+ 1)!
ωi(q, v, ν1) (8.27)

defined as the unique solution to (8.16). In addition, requirement (2) of the path following
problem is guaranteed, at all t = kδ with k ≥ 0, setting

ν1(k) = −K δ̄H(q(k)) (8.28)

with K δ̄ is a suitable stabilizing gain.

Result: stabilizing the path following sub-manifold

Remark 8.2 It turns out that the digital feedback solving the first two requirements of the path
following problem is an expansion around the continuous-time solution when assuming v constant.
Intuitively we use the angular velocity to stabilize the path following sub-manifold, thus satisfying
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requirements (1),(2) at all sampling instants. For the first terms, one has;

ω1
d,0 = ω2

d,0 = ω3
d,0 = γ(q, ν1) =

vL3
g1α− ν1

vLg2L
2
g1α

(8.29)

ω1
d,1 =

15

4
γ̇(q, ν1), ω2

d,1 = −
15

4
γ̇(q, ν1), ω3

d,1 =
87

4
γ̇(q, ν1) (8.30)

which stabilizes the car-like robot to the path at all t = kδ.

Since the linear velocity is kept constant and free during the big interval, it can then be used to
assign a desired motion (velocity and acceleration π(k) = π(q(k)), π̇(k) = π̇(q(k))) on the path
by thus satisfying requirement (3). In fact setting the discrete-time feedback

v(k + 1) =v(k) + δa(k) +
δ2

2
ν2(k) (8.31a)

a(k + 1) =a(k) + δν2(k) (8.31b)

over the tangential component with v(k), a(k) are the linear velocity and acceleration over the path
respectively and

ν2(k) =
(

1
δ2
(aδ0 − aδ1 − 1) 1

2δ (a
δ
0 + aδ1 − 3)

)
e(k) (8.32)

+ π̈ref (k + 1)− π̈ref (k)

so to guarantee, asymptotically,

lim
k→∞

e(k) =

(
v(k)− π̇ref (k)
a(k)− π̈ref (k)

)
= 0

for aδ0, aδ1 given by

aδ0 = e−λ1δe−λ2δ

aδ1 = −(e−λ1δ + e−λ2δ), λ1, λ2 > 0.

Simulations

In Figure 8.4, the car-like robot is made to follow a Casini oval , i.e. α(q) = (q21+q
2
2+a

2)2−4a2q21−b4
with a = 3, b = 1.05a. The sampling period is set to δ = 0.32. And a desired velocity on the path
being a step signal π̇ref = 2. The external transverse continuous-time control was computed via pole
placement, placing the desired closed loop poles of the linearized transverse dynamics as roots to the
polynomial p = s3+3s2+4s+1, i.e. (−0.317, −1.34+1.16i, −1.34−1.16i). Correspondingly, one
finds the corresponding discrete time roots (0.96, 0.86+0.1i, 0.86−0.1i), for which one computes
the external transverse controls ν1 through pole placement for both the single rate solution (depicted
in dashed orange as Approximate SR) and the multi-rate solution depicted in dashed blue. It is
clear that for this sampling period, emulation depicted in dashed red fails to achieve path following.

Changing the path to a circle of radius R = 2 by setting α(q) = q21 + q22 − R2 and maintaining
the same external controls gains we have that for δ = 0.3235 again the emulation fails at achieving
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Figure 8.4: Tracing the Casini oval with δ = 0.32
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path following as depicted in Figure 8.5.

Figure 8.5: Tracing a circle with δ = 0.3235

More simulations, formal statements and proofs can be found, for the interested reader, in the
work Elobaid et al. (2021) which is attached at the end of this chapter. In the next section we tackle
another interesting control problem through which we specify an additional benefit to preserving
TFL via multi-rate sampling.
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8.4 Application to periodic orbits stabilization for the Pendubot

Figure 8.6: The Pendubot robot

In this section we specialize the results of preserving
TFL under sampling to the case of underactuated
mechanical systems under collocated feedback in the
sense of Spong and Block (1995) (see also Pucci et al.
(2015)). To this end, consider the dynamics of a
Pendulum robot (Pendubot) depicted in Figure 8.6
which can be written as Spong and Block (1995),
Romero and Yi (2021);

muu(qu)q̈u +muaq̈a + cu(q, q̇)q̇ +
∂V (q)

∂qu
= 0

mau(qu)q̈u +maaq̈a + ca(q, q̇)q̇ +
∂V (q)

∂qa
= τ

where

muu(qu) = m2ℓ
2
c2 + I2

mua(qu) = m2ℓ
2
c2 + I2 +m2ℓ1ℓc2 cos qu

mau(qu) = m2ℓ
2
c2 + I2 +m2ℓ1ℓc2 cos qu

maa(qu) = m1ℓ
2
c1 +m2ℓ

2
1 + I1 +m2ℓ

2
c2 + I2 + 2m2ℓ1ℓc2 cos qu

are the entries of the inertia matrix. The parameters mi, Iiℓi, ℓci are the mass, inertia, length and
length to center of mass for link i = 1, 2 respectively. Additionally, the Coriolis terms and potential
energy reads;

cu(q, q̇) = (m2ℓ1ℓc2 sin qu)q̇a

ca(q, q̇) = (m2ℓ1ℓc2 sin qu)q̇a − 2(m2ℓ1ℓc2 sin qu)q̇u

∂V (q)

∂qu
= m2ℓc2gr sin(qa + qu)

∂V (q)

∂qa
= (m1ℓc1 +m2ℓc2)gr sin qa +m2ℓc2gr sin(qa + qu)

where gr is the gravity constant. Under a preliminary collocation feedback

τ = ca(q, q̇) +
∂V (q)

∂qa
+
mau(qu)

muu(qu)
(cu(q, q̇) +

∂V (q)

∂qu
) + ũ (8.34)

we have;
q̈a = u

q̈u =
−1

muu(qu)
(cu(q, q̇) +

∂V (q)

∂qu
−mua(qu)u)

(8.35)

with u = 1
m̃aa

ũ and m̃aa(qu) > 0 a parameter depending on the entries of the inertia matrix as in
Spong and Block (1995). Note that because of underactuation, forcing a behaviour on the actuated
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joint qa through the external control u also defines a behaviour for the underactuated joint qu.

Find if possible, a feedback law u for the Pendubot under collocation feedback such that
the underactuated link in (8.35) admits a stable periodic solution.

Problem: periodic orbits stabilization for the Pendubot

Let the states vector be x =
(
qu qa q̇u q̇a

)⊤
and define the set of desired stable periodic

orbit solutions to the dynamics in the state-space as ;

Γ⋆ = {x ∈ S1 × R1 × S1 × R1 : x2 + k2x1 = 0, x4 + k2x1 = 0} (8.36)

where k2 ∈ R is a parameter as in Romero and Yi (2021). This set can be made controlled invariant
in continuous-time using TFL by setting the output

α(x) = x2 + k2x1 (8.37)

which has a well defined relative degree r = 2 = n − n⋆ with respect to the dynamics rewritten in
state-space format;

ẋ = f(x) + g(x)u (8.38)

with

f(x) =




x3

x4
−1

muu(x1)
(cu(x, ẋ)ẋ+ ∂V (x)

∂x1
)

0



, g(x) =




0

0
mua(x1)
muu(x1)

1




In fact it is enough to set

u = γc(x, ν) = −
(c1 + c2 + 2 c3 cos (x1))

(
c3 k2 sin (x1) x4

2 + c2 ν + c5 gr k2 sin (x1 + x2)
)

c2 (c1 + c2 − c2 k2 + 2 c3 cos (x1)− c3 k2 cos (x1))
(8.39)

with ci as reported in Romero and Yi (2021), namely

c1 = m1ℓ
2
c1 +m2ℓ

2
1 + I1

c2 = m2ℓ
2
c2 + I2

c3 = m2ℓ1ℓc2

c4 = m1ℓc1 +m2ℓ1

c5 = m2ℓc2

To solve the problem then one sets

ν = −f1α(x)− f2α̇(x) (8.40)

with f1, f2 > 0 and the Pendubot is forced to perform periodic motions above the horizontal.

Applications of sampled-data methodologies 179



8.4. Application to periodic orbits stabilization for the Pendubot

Periodic orbits stabilization under multi-rate sampling

Being a SISO system, the results in Section 8.2 directly applies and one sets a multi-rate of order
m = r = 2 on u and directly, similar to the differential drive example, obtain a feedback;

u =
(
u1 u2

)⊤

u1 = u1d,0 +
δ̄

2!
u1d,1 = γc(x, ν) +

δ̄

3
γ̇c(x, ν)

u2 = u2d,0 +
δ̄

2!
u2d,1 = γc(x, ν) +

5δ̄

3
γ̇c(x, ν)

(8.41)

Simulations

To validate the approach proposed, simulations are performed with the following parameters

m1 [kg] 0.2 m2 [kg] 0.052
I1 [kgm2] 3.38× 10−1 I2 [kgm2] 1.17× 10−1

ℓ1 [m] 0.2 ℓ2 [m] 0.28
ℓc1 [m] 0.13 ℓc2 [m] 0.15

The parameter k2 = −1 following Romero and Yi (2021) and gr = 10[m/s2]. Figure 8.7 depicted
the transient behaviour under multi-rate control depicted in blue for and dashed blue, following the
ideal continuous-time control depicted in black and dashed black for different initial conditions. The
sampling period is set to δ = 0.5 and the continuous-time external gains f1 = 1, f2 =

√
3 while the

corresponding digital ones are set to f1 ≈ 0.4387, f2 ≈ 1.2617. It is clear that the multi-rate digital
solution manages to stabilize the periodic orbit, following closely the ideal continuous-time solution
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Figure 8.7: Multi-rate stabilizing the periodic orbit for different initial conditions δ = 0.5

Figures 8.8, 8.9 depicted the transient behaviour under multi-rate control compared to the Em-
ulation depicted in dashed red, and the approximate single rate solution depicted in dashed orange
as the sampling period δ increases. Both sampled solution manage to stabilize the periodic orbit
while the emulation, for δ = 1.2 fails. The situations depicted are initialized at x0 = (π3 ,

π
1.5 , 0, 0)

⊤.
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Figure 8.8: Comparing transient behaviour of qu, qa and their velocities δ = 0.5
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Figure 8.9: Failure of emulation δ = 1.2

The above example suggests a very interesting application for the proposed methodology. Namely,
the resulting set describing the periodic orbit was obtained through Immersion and Invariance tech-
niques as in Romero and Yi (2021). This suggests a close link between immersion and invariance,
once the implicit sub-manifold was characterized, and TFL both in continuous-time and under
sampling. This point brings us to some concluding remarks and future works discussion.

While writing this manuscript, an additional and closely related paper herein attached was
submitted. The paper deal with the stabilization of Virtual Holonomic Constraints - VHC
under digital control. The feedback designed is of the linearizing type and which, as demonstrated
in Chapter 8 can be preserved under sampling using multi-rate techniques. Being of this type, the
work generalizes the intuition obtained dealing with periodic orbit stabilization for the pendubot.
In fact; it is shown that one can impose Virtual Holonomic Constraints (VCHs) to a mechanical
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systems in Euler-Lagrangian form under sampling. The provided feedback solution is exact based
on a multi-rate sampling device of order two over each input channel. This work is submitted to the
upcoming European Control Conference and is under review. For the interested reader the work is
attached below.

8.5 Conclusions to Part III and further comments

In this part of the thesis we concerned ourselves with the problem of preserving TFL both under
single rate and multi-rate sampling schemes.

■ In Chapter 7, under single-rate sampling, an approximate solution relying on a previous
result due to Barbot et al. (1996) was developed. Additionally, arbitrary higher orders of
approximation was shown to follow provided an iterative procedure is carried out Elobaid
et al. (2020c).

■ In this chapter, we further proposed that an exact multi-rate solution exists whenever a
continuous-time solution to the TFL problem exists. Moreover, through the application to
the well studies path following problem, this solution was shown to have the additional benefit
of mitigating the need for a preliminary dynamics extension.

■ This part was concluded with two important control problems demonstrating how to use
multi-rate to preserve TFL.

Some comments and self-criticisms are in order;

■ What remains, for this work to constitute a somewhat complete framework for Transverse
feeback linearization under digital control is to; starting from a purely discrete-time system
and a set Γ⋆, the question of necessary and sufficient conditions for the solvability of TFL, as
opposed to simply preserving a continuous-time solution, remains open.

■ Finally, the application of the results obtained in Chapter 7 and the current chapter to different
set stabilization problems is a worthy endeavour in and of itself. As an example to possible
applications we mention nested sets stabilization and hierarchical control Doosthoseini and
Nielsen (2015b), coordinated path following Doosthoseini and Nielsen (2015a) and stabilization
of virtual holonomic constraints. It is also of interest to study the equivalence of those solutions
to the feedback obtained using Immersion and Invariance Astolfi and Ortega (2003), Mattioni
et al. (2017b) and those obtain through energetic techniques Moreschini et al. (2020), Ortega
et al. (2008), Hilairet et al. (2013). This last aspect is motivated by the example developed
in the previous section as the reader may have gathered. Indeed, for the Pendubot, once
the set characterizing the desired periodic orbits solution was parametrized via I&I, applying
TFL solutions both in continuous-time and digitally becomes a matter of computations. This
motivates the question of such equivalence.

As the reader may have noted, this work is rather written as a companion to the published
articles. As a consequence, the author makes no claims of this work being complete or self-contained.
To this end the reader is advised to consult the seminal work of Banaszuk and hauser Banaszuk
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and Hauser (1995) and the more recent and elegant formulation and solution of the problem of TFL
in continuous time by Nielsen and Maggiore Nielsen and Maggiore (2008), Nielsen and Maggiore
(2006). Additionally, for general treatment of linear equivalence under feedback, the reader may
consult the important book by Isidori Isidori (1995) and for the digital treatment of the subject
the monographs Monaco and Normand-Cyrot (1983b), Arapostathis et al. (1989), Grizzle and Shor
(1988) and the references therein.
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Mohamed Elobaid ∗,∗∗ Mattia Mattioni ∗ Salvatore Monaco ∗

Dorothée Normand-Cyrot ∗∗

∗Dipartimento di Ingegneria Informatica, Automatica e Gestionale A.
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1. INTRODUCTION

Path following control deals with the confinement of the
evolutions of a nonholonomic mechanical system to a pre-
scribed geometric path. The assignment of time require-
ments on the way the system moves along the path repre-
sent an extra constraint which can be handled separately
from the geometric requirement, allowing for better per-
formances compared to trajectory tracking design (Aguiar
et al. (2008)).
Several approaches solving path following problems are
discussed in the continuous-time literature. Among others,
let us mention the work relying on energy shaping through
Immersion and Invariance by Yi et al. (2020), sliding
mode path following by Dagci et al. (2003), smooth time-
varying feedback and input scaling by De Luca et al. (2001)
and, more relevant to this work, Transverse Feedback Lin-
earization (TFL) by Banaszuk and Hauser (1995); Altafini
(2002); Nielsen and Maggiore (2008).
Among these, the latter one aims to stabilize a general set
which is made the zero dynamics sub-manifold associated
with a suitable output function with well-defined relative
degree. Accordingly, static (or possibly dynamic) feedback
linearization is applied to stretch the trajectories onto the
target set (Nielsen and Maggiore (2006)). In this sense,
path following admits a solution via TFL when the path
can be implicitly represented by the equations which spec-
ify the zero-dynamics sub-manifold (Akhtar et al. (2015)).
When approaching these problems in a digital context, one
has to face well-known limitations due to the sampling
process as, for instance, the loss of the relative degree
and the rise of the unstable sampling zero-dynamics (see
Aström et al. (1984); Monaco et al. (1986)) so directly
affecting TFL in general. For those reasons, a first single
rate solution preserving TFL in an approximate sense was
proposed in Elobaid et al. (2020) providing, under suitable
assumptions, a solution to the path following problem as
? Partially funded by Université Franco-Italienne/Università Italo-
Francese (UFI/UIF) through the Vinci program.

well. For instance, when dealing with the car-like robot
approximate TFL under sampling is preserved for the kine-
matic model under a preliminary continuous-time dynamic
extension (Akhtar et al. (2015)). Beyond TFL, a multi-
rate technique has been proposed in Di Giamberardino
et al. (1996) to solve steering problems for mobile robots,
when assuming a preliminary continuous-time feedback
making the dynamics finitely discretizable. In the method
we propose, both these demands are weakened.
In this work, following Monaco and Normand-Cyrot
(1992), we propose a solution which circumvents the need
for the dynamic extension, making use of a multi-rate
sampled-data control strategy. Simulation results validate
the proposed design approach in a comparative way with
respect to the continuous-time solution and its direct im-
plementation through Zero Order Holding (ZOH) referred
to as emulation as well as the design approach previously
recalled (Elobaid et al. (2020)). The proposed multi-rate
solution provides efficient and improving results with re-
spect to the preliminary ones.

The paper is organized as follows: Section II provides
some background material and states the problem. The
proposed control solution is developed in Section III in a
constructive way. Simulations are discussed in Section IV.
Concluding remarks end the manuscript.

Notations: S1 denotes the unit disk, i.e. S1 = {z ∈ C :
|z| ≤ 1}. Z≥0 denotes the set of non-negative integers.

Given a pair of matrices (A,B), col(A,B) =
(
A> B>

)>
while diag(A,B) is the block diagonal matrix with blocks
A,B. The couple (An, Bn) with

An =

(
0(n−1)×1 In−1

0 01×(n−1)

)
, Bn =

(
0(n−1)×1

1

)

is said to be in Brunovský’s canonical form with In−1 being
the identity matrix of dimension n− 1 and 0m×n the zero
matrix of dimension m × n. Given a manifold M and a
closed connected set N ⊂ M , N is said to be invariant
under the dynamics q̇ = f(q) + g(q)u if for all q(0) ∈ N



and any control u(·), q(t) ∈ N , ∀t. N is controlled invariant
if there exists a feedback u? making N invariant for the
closed loop system. The point-to-set distance is denoted
‖q0‖M = inf‖q − q0‖, q ∈ M . Lf denotes the operator

Lf =
∑n
i=1 fi(·) ∂

∂qi
, LfLg their composition. Given a

real valued function h(·) on Rn, eLfh(q)|q(k) denotes the

application of the Lie series operator eLf to the function
h(q) evaluated at the state q(k). A continuous function
R(x, δ) is of order O(δp) with p ≥ 1 if, whenever it is

defined, it can be written as R(x, δ) = δp−1R̃(x, δ) and
there exists a function β(δ) of class κ∞ and δ? > 0 such

that ∀δ ≤ δ?, |R̃(x, δ)| ≤ β(δ).

2. PRELIMINARIES AND PROBLEM STATEMENT

2.1 Path following for a car-like robot in continuous time

Consider the kinematic model of a car-like robot (Siciliano
et al. (2010))

q̇ = g1(q)v + g2(q)ω

p = (x y)
> (1)

with (see Figure 1)

g1(q) =




cos θ
sin θ

1

`
tanφ

0


 , g2(q) =




0
0
0
1




q = (q1 q2 q3 q4)
>

= (x y θ φ)
> ∈ R4, v ∈ R, the forward

linear velocity, ω ∈ R, the angular velocity and ` the
distance between the wheels. The position on the plane
p = h(q) := (q1 q2)> ∈ R2 is the output of the system.

The desired path is given by a regular parameterized curve
% : D 7→ R2 with no self-intersections. Following Nielsen
and Maggiore (2004); Akhtar et al. (2015), we refer to
for a precise characterization, let the path %(D) be an
embedded sub-manifold of R2 of dimension 1; i.e., there
exists a function s(·) : R2 → R such that 0 is a regular
value of s and %(D) = {w ∈ R2 s.t. s(w) = 0}.
The path following problem for a car-like robot asks for the
design of a feedback control law maneuvering the output
of system (1) to approach and move along a given curve
in a desired way. The problem is formally stated below.

Problem 2.1. Given a regular parameterized curve C =
Im{%(D)}, find if possible, a smooth feedback law for
system (1) such that for a set of some initial conditions
X , with C ⊂ X the following holds true.

(1) Invariance: if p(0) = h(q(0)) ∈ C then ∀t ≥ 0
‖p(t)‖C = 0.

(2) Attractivity : system (1) under feedback is s.t ∀t ≥ 0,
‖p‖C → 0 as t→∞.

(3) Motion on the curve: system (1) traverses the curve
C with a given desired velocity or acceleration profile
(π̇ref (t), π̈ref (t)).

It is known (Altafini (2002); Nielsen and Maggiore (2006))
that TFL is a natural tool to handle path following
problems. To see this, denote the n? = 3 dimensional
sub-manifold Γ?⊆{q ∈ R4 : q = (s ◦ h)−1(0)} as the
control invariant subset for (1); i.e., the set of all initial

Fig. 1. Kinematics of a car-like robot

conditions q0 ∈ R4 under which the car-like robot is forced
to remain on the curve (i.e., p(t) ∈ C for all t ≥ 0) under
a suitably designed feedback. Consequently, Γ? is referred
to as the path following sub-manifold associated with the
curve. With this in mind, Problem 2.1 is equivalent in
the context of TFL to the problems of stabilizing Γ?

and zero dynamics assignment. The problem has been
solved in Akhtar et al. (2015) making use of continuous-
time TFL through dynamic control defining the function
β : R4 → R2

β(q) = (α(q) π(q))
>

(2)

with α(q) = (s ◦ h)(q) ∈ R the transverse output function
(i.e., the curve implicit function) and π(q) = arctan( q2q1 )

is the tangent output function. Under the control dynamic
extension

η̇1 = η2, η̇2 = u1

v = η1, ω = u2
(3)

the feedback system

˙̃q = f̃(q̃) + g̃1(q̃)u1 + g̃2(q̃)u2

f̃(q̃) =
(
η1 cos θ η1 sin θ

η1

`
tanφ 0 η2 0

)>

g̃1(q̃) = (0 0 0 0 0 1)
>
, g̃2(q̃) = (0 0 0 1 0 0)

>

(4)

with q̃ = (q η1 η2)
> ∈ Rñ, ñ = 6 possesses strong vector

relative degree r = (ñ − n? n?) = (3 3) with respect to
the output function (2). Accordingly, the following result
is recalled.

Theorem 2.1. (Akhtar et al. (2015)). Given a regular, three
times differentiable curve C in the plane with Γ? the
path following sub-manifold associated with C. Consider
the dummy output function (2), then the Path-Following
Problem 2.1 is solved by the feedback (3) with

u = γ(q̃, ν) = A−1(q̃)(ν −B(q̃)) (5)

with u = (u1, u2)>,

A(q̃) =

(
Lg̃1L

2
f̃
α(q) Lg̃2L

2
f̃
α(q)

Lg̃1L
2
f̃
π(q) Lg̃2L

2
f̃
π(q)

)
, B(q̃) =

(
L3
f̃
α(q)

L3
f̃
π(q)

)

and ν = (ν1, ν2) are respectively the transverse and
tangential external stabilizing controls.

In the continuous-time case, dynamic extension is neces-
sary for guaranteeing a well-defined relative degree ñ−n?
and, thus, TFL with respect to Γ? via the input ω ∈ Rn.

Remark 2.1. Setting the feedback (5), and the coordi-

nates change φ(q̃) = (φ1(q̃) φ2(q̃))
>

with ξ = φ1(q̃) =



(α(q̃) Lf̃α(q̃) L2
f̃
α(q̃))>, z = φ2(q̃) = (π(q̃) Lf̃π(q̃) L2

f̃
π(q̃))>

the extended system (4) takes the form

ξ̇ = A3ξ +B3ν1 (6a)

ż = A3z +B3ν2 (6b)

where A3 ∈ R3×3, B3 ∈ R3. From the result above, ξ ∈ R3

is the transverse component to Γ? while z describes the
motion when the dynamics is restricted to Γ? i.e. Γ? =
{(ξ z)> : ξ = 0}. It is intuitively understood that Γ? is
precisely the zero dynamics sub-manifold of the system (4)
with output α(q̃).

Remark 2.2. Theorem 2.1 states that, under TFL with
dynamics extension, (1) and (2) in Problem 2.1 are solved
by ν1 = −Kξ so to make (6a) asymptotically stable.
Denoting z = (z1 z2 z3)>, requirement (3) is solved setting

ν2 = −f2(z3 − π̈ref (t))− f1(z2 − π̇ref (t)) +
...
π ref (t)

with f1, f2 > 0 over the tangential dynamics (6b).

2.2 Path following for the car-like robot under sampling

In the sequel, we provide a solution to the path following
problem for the car-like robot under sampled-data control
and digital transverse feedback linearization as set in the
following problem.

Problem 2.2. Design a digital control (v(k) ω(k)) =

γ3δ̄(q(k), ν(k)) with external inputs ν solving the Path
Following Problem 2.1 for the car-like robot (1) at all
sampling instants t = kδ, k ≥ 0 and δ > 0 the sampling
period.

In the present context, digital control design refers to
design over the sampled-data equivalent model for which
measures of the states are available at periodic sampling
instants t = kδ, k ∈ Z≥0, where δ is the sampling period,
and controls kept constant over δ. A first solution to
Problem 2.2 can be carried out over the extended model
(4) with inputs (u1, u2) by directly applying the results in
Elobaid et al. (2020). More in detail, let ui(t), i = 1, 2 be
constant over the sampling period, i.e. ui(t) = ui(kδ) =
ui(k) for t ∈ [kδ, (k + 1)δ[. Then the sampled-data model
equivalent to (4) takes he form

q̃(k + 1) = F̃ δ(q̃(k), u(k)) (7)

with

F̃ δ(q̃, u) =eδ(Lf̃+u1Lg̃1
+u2Lg̃2

)q̃

=q̃ +
∑

j≥1

δj

j!
(Lf̃ + u1Lg̃1 + u2Lg̃2)j q̃

with the function F̃ δ(·, u) defined by its series expansion
in powers of δ, Monaco and Normand-Cyrot (1997).

At this point, it is easily verified that the relative degree
of the sampled-data model (7) with the output (2) falls to
(1 1) for all δ > 0 (Monaco and Normand-Cyrot (1987)).
As a matter of facts, one gets that

∂α(q̃(k + 1))

∂uj(k)
=

δñ−n
?

(ñ− n?)!Lg̃jL
ñ−n?−1

f̃
α(q̃)

∣∣
q̃(k)

+O(δñ−n
?+1)

∂π(q̃(k + 1))

∂uj(k)
=
δñ

?

n?!
Lg̃jL

ñ?−1

f̃
π(q̃)

∣∣
q̃(k)

+O(δñ
?+1)

for n−n? = 3 j = 1, 2 are non-zero (at least not simultane-
ously) by definition of the continuous-time relative degree.

Thus, the path following sub-manifold Γ? is no longer the
zero dynamics sub-manifold for the sampled-data model
(7) with output α(q̃). In fact, the (typically unstable) zero
dynamics of the sampled-data equivalent model evolves
over a sub-manifold containing Γ? ⊂ R3 that is given by

ZSD = {q̃ : α(q̃) = 0} ⊂ R5

ZSD ⊃ Γ?={q̃ : α(q̃) = Lfα(q̃) = L2
fα(q̃) = 0}.

Accordingly, transverse feedback linearization is lost for
the sampled-data model (7) with respect to the output
function (2).

In Elobaid et al. (2020) TFL under sampling is achieved,
up to a prescribed approximation order, by means of a
δ-dependent dummy output computed from (2) as

αδ(q̃) = α(q̃) + δLf̃α(q̃)− δ2

3
L2
f̃
α(q̃) +O(δ3) (8a)

πδ(q) = π(q̃) + δLf̃π(q̃)− δ2

3
L2
f̃
π(q̃) +O(δ3). (8b)

The vector relative degree (3 3) is preserved under the dy-
namics (7) together with the zero dynamics sub-manifold
Γ? in O(δ4), so that a digital solution can be computed
to approximately solve the TFL problem under single-
rate sampling. In fact, consider the coordinates change
q 7→ (ξδ zδ), with ξδ = T3(δ)φ1(q̃), zδ = T3(δ)φ2(q̃),
where φ1(·), φ2(·) are as in Remark 2.1, and T3(δ) as in
Elobaid et al. (2020). This coordinates change, together
with the piecewise continuous feedback for t ∈ [kδ, (k+1)δ[

η̇(t) = A2η(t) +B2u1(k) (9a)

u(k) = A−1(q̃(k))(νδ(k)−B(q̃(k))) (9b)

recovers the TFL normal form in an approximate sense,
with (v, ω) piecewise continuous. The control νδ =
−Kδcol(ξδ, zδ), Kδ : σ(I3 +δ(A3 +B3K

δ)) ⊂ S1 stabilizes
the system to the path following sub-manifold and allows
for solving Problem 2.2 in an approximate sense.

In the following we present an exact (and fully digital)
solution for Problem 2.2 based on multi-rate sampling with
no need of a preliminary continuous-time dynamic exten-
sion. Namely, we design a digital control (v(k) ω(k)) =

γ3δ̄(q(k), ν(k)) for solving path following based on the
sampled-data equivalent model to the kinematic car-like
robot in (1); i.e., one gets for ω(t) = ω(k) and v(t) = v(k)
for t ∈ [kδ, (k+ 1)δ[ the sampled-data equivalent kinemat-
ics

q(k + 1) = F δ(q(k), v(k), ω(k)) (10)

with

F δ(q, v, ω) =eδ(vLg1
+ωLg2

)q = q +
∑

j≥1

δj

j!
(vLg1 + ωLg2)jq.

3. EXACT PATH FOLLOWING FOR A CAR-LIKE
ROBOT UNDER MULTI-RATE SAMPLING

As shown in the previous section, dynamic extension is
used over system (1) to guarantee v2Lg2L

2
g1α(q) 6= 0,

that is relative degree 3 with respect to the dummy
output component in (2) associated with Γ? (i.e., α(q)).
However, the relative degree can also be guaranteed for the
kinematic model (1) under multi-rate sampling without
dynamic extension, as shown in Monaco and Normand-
Cyrot (1992). To this end, we set in (10) a multi-rate of



order n − n? = 3 over the input ω that is δ̄ = δ
3 and

ω(t) = ωi(k) for t ∈ [kδ + (i− 1)δ̄, kδ + iδ̄[ with i = 1, 2, 3
and v(t) = v(k) for t ∈ [kδ, (k + 1)δ[. Accordingly, the
multi-rate model of (1) gets the form

q(k + 1) =F δ̄3 (q(k), v(k), ω(k)) (11)

with

F δ̄3 (q, v, ω) =F δ̄(·, v, ω3) ◦ F δ̄(·, v, ω2) ◦ F δ̄(q, v, ω1)

=
∑

j1,j2,j3≥0

δ̄j1+j2+j3

j1!j2!j3!
(vLg1 + ω1Lg2)j1

◦ (vLg1 + ω2Lg2)j2 ◦ (vLg1 + ω3Lg2)j3q.

In this respect, with reference to Problem 2.2, we seek for
a digital piecewise constant control that preserves TFL
with respect to Γ? for the multi-rate equivalent model (11)
based on the dummy output (2).

The problem is set for (11) based on the augmented output
vector (Monaco and Normand-Cyrot (1992))

H(q) = (α(q) α̇(q) α̈(q))
>

(12)

ensuring that the multi-rate model (11) possesses vector
relative degree (1, 1, 1) so that transverse feedback lineariz-
ability under sampling is guaranteed. Accordingly, require-
ments (1),(2) of Problem 2.1 at all sampling instants are

satisfied by a digital feedback ω = ωδ̄(q) solution to the
equality

H(F δ̄3 (q, v, ω)) = A3δ̄H(q(k)) +B3δ̄ν1(k) (13)

with A3δ̄ = e3δ̄A3 , B3δ̄ =
∫ 3δ̄

0
eτA3B3dτ , A3, B3 as in (6a)

and ν1 the external stabilizing transverse control. More
in detail, the TFL feedback solution to (13) is the one
making the H(q) − ν1 link in (11) linear. The following
result asserts the existence of such feedback.

Proposition 3.1. Consider the kinematic model of the car-
like robot (1), and a regular parameterized curve % :
D 7→ R2 under the hypotheses of Theorem 2.1. Then,
requirement (1) of Problem 2.1 is guaranteed, at all t = kδ

with k ≥ 0, by the feedback ω = ωδ̄(q, v, ν1) of the form

ωδ̄(q, v, ν1) = ω0(q, v, ν1) +
∑

i>0

δ̄i

(i+ 1)!
ωi(q, v, ν1) (14)

defined as the unique solution to (13). In addition, require-
ment (2) of Problem 2.1 is guaranteed, at all t = kδ with
k ≥ 0, setting

ν1(k) = −K δ̄H(q(k)) (15)

with K δ̄ such that σ(A3δ̄ −B3δ̄K δ̄) ⊂ S1.

Proof: Rewriting (13) as a formal series equality in powers
of δ̄ so getting


eδ̄(v(k)Lg1+ω1(k)Lg2 ) . . . eδ̄(v(k)Lg1+ω3(k)Lg2 )α(q)

eδ̄(v(k)Lg1+ω1(k)Lg2 ) . . . eδ̄(v(k)Lg1+ω3(k)Lg2 )α̇(q)

eδ̄(v(k)Lg1+ω1(k)Lg2 ) . . . eδ̄(v(k)Lg1+ω3(k)Lg2 )α̈(q)




= A3δ̄H(q(k)) +B3δ̄ν1(k)

(16)

The equations (16) rewrite as S δ̄(q, ω, v, ν1) = 0 with

S δ̄(q, ω, v, ν1) (17)

=
(
δ̄3Sδ1(q, ω, v, ν1) δ̄2Sδ2(q, ω, v, ν1) δ̄Sδ3(q, ω, v, ν1)

)>

and

δ̄4−iS δ̄i = eδ̄(vLg1+ω1Lg2 ) ◦ . . . ◦ eδ̄(vLg1+ω3Lg2 )α(i−1)(q)

− α(i−1)(q)−
2∑

`=i

3`δ̄`

`!
α(`)(q)− 34−iδ̄4−i

(4− i)! ν1

Accordingly, because v(k) constant over the sampling
interval, denoting f(q) = g1(q)v, one looks for ω satisfying
(17), where each term can be written as Si(q, ω, v, ν1) =∑
j≥0 δ̄

jSi,j(q, ω, v, ν1) with i = 1, 2, 3 and

Si,0(q, ω, v, ν1) = ∆4−i
(
Lg2L2

fα(q)ω + 1L3
fα(q)− 1ν1(k)

)

where 1 = (1 1 1)>, ∆ = col(∆3 ∆2 ∆1), and

∆j =
1

j!

(
j4−j − (j − 1)4−j , (j − 1)4−j − (j − 2)4−j , 1

)

with j = 1, 2, 3. Following Monaco and Normand-Cyrot
(1997) , it results that the matrix

∂

∂ω
S δ̄(q, v, ω)|δ̄→0 → ∆Lg2L

2
fα(q)

is full rank because Lg2L
2
fα(q) 6= 0 and ∆ is invertible.

Hence, by the Implicit Function Theorem, the existence
of ωδ̄ unique solution to (13) of the form (14) can be
deduced (Mattioni et al., 2017, Proposition 4.1). Under
the coordinates transformation (ξ z̄)> := q 7→ φ(q) =

(H(q) π(q))
>

, the controlled dynamics reads

ξ(k + 1) = A3δ̄ξ(k) +B3δ̄ν1(k)

z̄(k + 1) = ψ(ξ(k), z̄(k), v(k), ν1(k))

where ψ(ξ, z̄, v, ν1) = arctan q2(k+1)
q1(k+1) |(ξ z̄)>=φ−1(q) bounded

on the curve by definition and hence the result follows. /

From the statement above, denoting π̇ref (k) = π̇ref (kδ)
and π̈ref (k) = π̈ref (kδ), requirement (3) at all t = kδ is
fulfilled by the discrete-time feedback

v(k + 1) =v(k) + δa(k) +
δ2

2
ν2(k) (18a)

a(k + 1) =a(k) + δν2(k) (18b)

over the tangential component with v(k), a(k) are the
linear velocity and acceleration over the path respectively
and

ν2(k) =

(
1

δ2
(aδ0 − aδ1 − 1)

1

2δ
(aδ0 + aδ1 − 3)

)
e(k) (19)

+ π̈ref (k + 1)− π̈ref (k)

so to guarantee, asymptotically,

e(k) =

(
v(k)− π̇ref (k)
a(k)− π̈ref (k)

)
→ 0

for aδ0, aδ1 given by

aδ0 = e−λ1δe−λ2δ

aδ1 = −(e−λ1δ + e−λ2δ), λ1, λ2 > 0.

Those arguments, together with Proposition 3.1, consti-
tute the proof of the result below.

Theorem 3.1. Consider the kinematic model of the car-like
robot (1), and a regular parameterized curve % : D 7→ R2

under the hypotheses of Theorem 2.1. Then, Problem 2.2
admits a solution under multi-rate control that is given
by the feedback (v, ω) with: (i) ω = ωδ̄(q, v, ν1) defined
as in Proposition 3.1 with transverse control (15); (ii) v
generated by the discrete dynamics (18) with tangential
control (19).



Remark 3.1. It is important to stress the fact that, in the
digital context, TFL is achieved working directly on the
kinematic model of the car-like robot with no preliminary
dynamic extension, contrarily to the continuous-time case.

The above discussion ascertains the intuitive expectation
that whenever the path following problem is solvable in
continuous time using TFL, a digital multi-rate feedback
solution under sampling exists. As noted, the feedback
component ω = ωδ̄(q, v, ν1) soltion to (13) comes in the
form of a series expansion in powers of δ̄. All terms of such
an expansion (14) are computable through an iterative
and constructive procedure solving, at each step, a linear
equality in the corresponding unknown. For the first terms,
one gets

ω0(q, v, ν1)=1ω(q, v, ν1), ω(q, v, ν1)=
L3
fα(q)− ν1

Lg2L
2
fα(q)

(20a)

ω1(q, v, ν1) =

(
15

4
−15

2

87

4

)>
ω̇(q, v, ν1) (20b)

when denoting f(q) = g1(q)v and ω̇(q, v, ν1) = (vLg1 +
ω(q, v, ν1)Lg2)ω(q, v, ν1).

Remark 3.2. From the expression below, it is clear that
the digital feedback ω = ωδ̄(q, v, ν1) solution to (13) is
an expansion around the continuous-time (static) TFL
solution when no velocity and acceleration requirements
on the path are enforced (i.e., when only (1) and (2) in
Problem 2.1 are given).

Because a closed-form of (14) cannot be computed, only
approximations can be implemented in practice as the
truncation of the series at a finite order ρ > 0, i.e.,

ωδ̄,[ρ](q, v, ν1)=ω0(q, v, ν1)+

ρ∑

i=1

δ̄i

(i+ 1)!
ωi(q, v, ν1). (21)

Such approximate controllers (21) with (18)-(19) solve
Problem 2.2 in a practical sense with trajectories of
the closed-loop system converging to a neighbourhood of
target set Γ? in O(δp+1), Mattioni et al. (2017).

4. SIMULATIONS

Consider the case where the car-like robot is required to
follow a circle of radius r = 2. In this case; % : D 7→
R2, λ 7→ (r cos q3 r sin q3)>, satisfies the hypotheses
of Theorem 2.1. Consequently, one has α(q) = q2

1 +
q2
2 − r2. Suppose we are given a constant reference on

the linear velocity π̇ref (q) = 2 with zero acceleration
(i.e., π̈ref (q) = 0). To follow the path, let v(k) be as
in (18)-(19), with λi = 5, i = 1, 2, and the first order
approximate feedback be as in (21) with ρ = 1. In
addition, for the transverse dynamics, let ν1(k) be as

in (15) with K δ̄ placing the poles of (A3δ̄ + B3δ̄Kδ) in
(e−0.317δ, e(−1.34+1.16i)δ), e(−1.34−1.16i)δ)) for δ = 3δ̄.

Simulation compare, for different initial conditions and
increasing values of δ, the proposed multi-rate controller
(21) with ρ = 1 (MR Sampling) with both the emulation-
based (ZOH emulation) and the one proposed in Elobaid
et al. (2020) (Approx Sampling), based on the continuous-
time preliminary dynamic extension. For completeness, the
results under continuous-time control are reported as well.

In Figures 2 and 3, the initial condition is fixed as q0 =
(1 1 π 0)> with increasing values of δ. The former one high-
lights that, albeit all controllers ensure convergence to the
circle, the results under multi-rate control are slightly bet-
ter compared to the other controllers. The latter one shows
that as δ increases one notices deteriorated performances
by both the approximate feedback in Elobaid et al. (2020)
as well as emulation based control with higher peak values
for the control effort. In all cases, the multi-rate control
ensures satisfactory performances with improved control
effort even with respect to the continuous time control law.
In Figure 4, the initial condition is fixed as q0 = (3 2 π 0)
and δ = 0.3235s. Whereas similar comments hold true in
this case for the emulation and the approximate single-rate
controllers (which strongly rely on the continuous-time
design), for such initialization (outside the circle) both
the aforementioned controllers are significantly sensible to
variations of δ, with no guarantee for convergence to the
path under emulation. In this case, the multi-rate solution
provides still notable performances with a desired velocity
profile and limited control effort.
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Fig. 2. From top to bottom: position on the plane, path-
following error, control effort for δ = 0.1s

5. CONCLUSIONS

Existence of a multi-rate digital feedback solution to the
path following problem for a car-like robot via transverse
feedback linearization was studied assuming a continuous
time solution to the problem exists. In addition, this multi-
rate solution was shown, through simulations, to provide
better performances, both in terms of path-following po-
sition error and the required magnitude of input velocities
to the robot. Perspectives concern the extension to the
case of general nonlinear systems being transverse feed-
back linearizable in continuous time and the consequent
application to further case studies.
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Fig. 3. From top to bottom: position on the plane, path-
following error, control effort for δ = 0.3s

Fig. 4. From top to bottom: position on the plane, path-
following error, linear velocity tracking, control effort
for δ = 0.3235s
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Virtual Holonomic Constraints for Euler-Lagrange systems under
sampling

Mohamed Elobaid1,2, Mattia Mattioni1, Salvatore Monaco1 and Dorothée Normand-Cyrot2

Abstract— In this paper, we consider the problem of imposing
Virtual Holonomic Constraints to mechanical systems in Euler-
Lagrangian form under sampling. An exact solution based on
multi-rate sampling of order two over each input channel is
described. The results are applied to orbital stabilization of the
pendubot with illustrative simulations.

Index Terms— Sampled data control, Feedback linearization,
Algebraic/geometric methods.

I. INTRODUCTION

Most control problem rely upon the design of feedback
laws asymptotically zeroing a given function of the state as,
for instance, orbital or set-point stabilization, motion plan-
ning, tracking, path following, to cite a few [1]–[5]. When
dealing with mechanical systems, such a function writes
h(q) = 0, with generalized coordinates q, and is generally re-
ferred to as Virtual Holonomic Constraints (VHCs, [6]–[9]).
Stabilization of VHCs unavoidably requires to asymptotically
drive the trajectories of the system onto a sub-manifold
associated to the zero-level set of the function. Accordingly,
the problem can be recast into a zero-dynamics perspective:
setting the function as a dummy output for the dynamics,
one must define a feedback making the corresponding zero-
dynamics (and the zero-dynamics submanifold) invariant and
attractive. With this in mind, it has been proved in [8] that
the VHC is stabilizable if and only if the system possesses
a well-defined vector relative degree r = (2, . . . , 2) with re-
spect to the associated dummy output function. Accordingly,
under suitable hypothesis, the feedback imposing the VHC is
the one rendering the corresponding zero-dynamics attractive
and invariant (e.g., input-output feedback linearization) while
preserving boundedness of the whole system trajectories.

All of this essentially concerns continuous-time systems
despite the practical interest to treat mechanical systems
under sampling when the control is piecewise constant and
the state or output measures are sampled [10]. In this context,
it is well known that the relative degree falls to one under
single-rate sampling with the rising of an unstable sampling
zero dynamics making the corresponding sampled-data sys-
tem non-minimum phase in general [11], [12]. Accordingly,
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when dealing with stabilization of VHCs, single-rate sam-
pling and, in particular, mere emulation control cannot be
employed as the necessary relative degree condition is lost.
This motivates the present paper whose contribution stands
in providing control strategies ensuring the preservation of
VHCs for mechanical systems under sampling. Based on
the work in [13], it is shown that VHCs can be imposed
under sampling according to a multi-rate device of suitably
defined order. The proof is constructive and the feedback
is shown to be the solution to a nonlinear implicit equality
parameterized by δ, the sampling period, naturally recovering
the continuous-time counterpart as δ → 0. Despite exact
forms are hard to be computed in practice, approximate
feedback laws computed as approximate solutions to the
associated equalities are naturally defined and implemented
in practice with notably improved performances with respect
to standard emulation controllers [14], [15]. The results are
applied to orbital stabilization of the pendubot [8], [16] and
based on the VHC associated to the preliminary continuous-
time I&I design recently proposed in [17].

The rest of the paper is organized as follows. In Section
II, the problem is formally formulated with preliminaries on
VHCs for continuous-time mechanical systems and sampled-
data dynamics. The main result in Section III with the
simulated example of the pendubot in Section IV. Section
V concludes the paper with some perspectives.

Notations. R and N denote the set of real and natural
numbers including 0. For any vector z ∈ Rn, ‖z‖ and z>

define respectively the norm and transpose of z. Given a full
rank matrix B ∈ Rn×m with n > m, B† = (B>B)−1B>

denotes the pseudoinverse, while B⊥ its orthogonal comple-
ment verifying B⊥B = 0. Also, ker{B} denotes the null
space of B. Given two matrices of any dimension, A ⊗ B
denotes the Kronecker product. 1n ∈ Rn is the vector with
all unitary entries while 0 denotes the zero matrix of suitable
dimensions. diag{a1, . . . , an} ∈ Rn×n denotes the diagonal
matrix with ai ∈ R the coefficients on the main diagonal
for i = 1, . . . , n. x = col{a1, . . . , an} ∈ Rn1+···+nn denotes
the column vector with entries provided by ai ∈ Rni of
suitable dimensions. If (X , d) is a metric space, Γ ⊂ X and
x ∈ X , then ‖x‖Γ = infy∈Γ d(x, y) defines the point-to-set
distance of x to Γ. I and Id denote the identity matrix and
Identity operator (or function, depending on the context) of
suitable dimensions, respectively. Given a twice continuously
differentiable function S(·) : Rn → R, ∇S(·) represents its
gradient (column) vector while ∇2S(·) is its Hessian matrix.
Given a n-dimensional vector field f(x) with x ∈ Rn,



Lf =
∑n
i=1

∂
∂xi

denotes the Lie derivative operator, and
recursively, Lif = Lf ◦ Li−1

f with L0
f = Id. For δ > 0,

eδLf = Id +
∑
i>0

δi

i! Lif denotes the Lie exponential. Given
a smooth function H : Rn → R by the Exchange Theorem
H(eδLfx) = eδLfH(x) = H(x) +

∑
i>0

δi

i! LifH(x). A
function R(x, δ) = O(δp) is said of order δp, p ≥ 1
if whenever it is defined it can be written as R(x, δ) =
δp−1R̃(x, δ) and there exist a function θ ∈ K∞ and δ∗ > 0
s. t. ∀δ ≤ δ∗, |R̃(x, δ)| ≤ θ(δ).

II. PRELIMINARIES AND PROBLEM STATEMENT

In the sequel, we consider Euler-Lagrange systems of the
form

D(q)q̈ + C(q, q̇)q̇ +∇P (q) = B(q)u (1)

with n-dimensional generalized coordinates q ∈ Q, Q ⊂ Rn
the configuration space, input torque u ∈ Rm with m =
n − 1, D(q) = D>(q) � 0 the generalized inertia matrix,
C(q, q̇)q̇ representing the Coriolis and centrifugal forces,
P (q) the potential energy function, B(q) of rank m = n−1
and

L(q, q̇) =
1

2
q̇>D(q)q̇ + P (q)

being the Lagrangian verifying

L̇(q, q̇) = q̇>B>(q)u.

A. VHCs for EL systems in continuous time

As formalized in [8], a virtual holonomic constraint (VHC)
for a mechanical system (1) is a relation of the form h(q) = 0
which can be made invariant under feedback. In this sense,
the following formal definition is recalled.

Definition 2.1: A virtual holonomic constraint is a relation
h(q) = 0 where h : Q → Rm is smooth, rank(dh) = m for
all q ∈ h−1(0) and the constraint manifold

Γ = {(q, q̇) : h(q) = 0, dh(q)q̇ = 0} (2)

is controlled invariant. A VHC is stabilizable if there exists
a smooth feedback u(q, q̇) that asymptotically stabilizes1 Γ.

In the following, it is assumed that m = n− 1 so that the
configuration variable can be regrouped, with a slight abuse
of notation, as q = col{qa, qu} ∈ Rn−1×R so that the VHC
can be described in parametric form as

qa = ϕ(qu), h(q) = qa − ϕ(qu)

with hence h−1(0) a closed curve. The definition of regu-
lar VHC is recalled below as fundamental to characterize
asymptotically stabilizable VHS [8]2

Definition 2.2 ( [8]): Consider a smooth relation h : Q →
Rm and rank(dh) = m for all q ∈ h−1(0). The relation
h(q) = 0 is said to be a regular VHC of order m > 0

1In the sense of [9, Definition 3]
2Necessary and sufficient conditions for the relation h(q) = 0 to be a

regular VHC are given in [8].

for the system (1) if it possesses relative degree {2, . . . , 2}
everywhere on the constrained manifold (2); i.e., the matrix

U(q) = dh(q)D−1(q)B(q) (3)

has full rank for all q ∈ h−1(0).

By Definition 2.1, the constraint manifold (2) is the zero-
dynamics manifold corresponding to the output e = h(q)
so that the reduced dynamics coincides with the zero-
dynamics. As a consequence, Γ is asymptotically stabilized
via feedback linearization under mild hypotheses on the maps
h(q),dh(q)q̇ as recalled in the result below.

Proposition 2.1: Let h(q) = 0 be a regular VHC of order
n− 1 for (1) with constraint manifold Γ in (2). Let

H(q, q̇) =

(
h(q)

dh(q)q̇

)
(4)

and assume there exist functions α1, α2 ∈ K such that

α1(‖(q, q̇)‖Γ) ≤ ‖H(q, q̇)‖ ≤ α2(‖(q, q̇)‖Γ).

Then, the input-output linearizing controller

u(q, q̇) =U−1(q)
(

dh(q)D−1(q)
(
C(q, q̇)q̇ +∇P (q)

)

−H(q, q̇)− κpe− κdė
) (5)

with decoupling matrix U(q) as in (3),
h(q) = col{h1(q), . . . , hn−1(q)}, H(q, q̇) =
col{q̇>∇2h1(q)q̇, . . . , q̇>∇2hn−1(q)q̇}, makes Γ in (2)
asymptotically stable for all κp, κd ∈ R(n−1)×(n−1)

rendering the matrix below Hurwitz

A(κp, κd) =

(
0 In−1

−κp −κd

)
. (6)

B. Problem statement and motivations

From the result recalled in the previous section, imposing
VHC generally corresponds to making Γ the zero-dynamics
manifold of the dynamics, with a stable zero dynamics.
Accordingly, a VHS can be imposed under a continuous-time
control if it is regular in the sense of Definition 2.2. However,
what does it occur if the control is of sampled-data type, that
is a piecewise constant signal based on sampled measures
of the configuration variables q, q̇? More in detail, denoting
by δ > 0 the sampling period, we address the following
problem.

VHCs under digital control. Consider the mechanical
dynamics (1) and a regular VHC h(q) = 0 in the sense of
Definition 2.2 with constraint manifold Γ in (2). Let δ > 0
be the sampling period and qk := q(kδ), q̇k = q̇(kδ) for
all k ≥ 0. Design, if any, a piecewise constant control
uk = uδ(qk, q̇k), enforcing the VHC h(q) = 0, while
asymptotically stabilizing the constraint manifold Γ. �

More in detail, setting u(t) = uk for t ∈ [kδ, (k + 1)δ),
x = col{q, q̇} and xk = x(kδ) for all k ≥ 0, (1) is described
by the so-called sampled-data equivalent model [18]

xk+1 = F δ(xk, uk) (7)



with

F δ(x, u) = eδLf(x)+G(x)ux = x+
∑

i>0

δi

i!
Lif(x)+G(x)ux

f(x) =

(
q̇

−D−1(q)
(
C(q, q̇)q̇ +∇P (q)

)
)

G(x) =

(
0

D−1(q)B(q)

)
.

It is convenient to rewrite (7) in block-component-wise as

qk+1 =F δq (qk, q̇k, uk)

q̇k+1 =F δq̇ (qk, q̇k, uk)

with, by definition

F δq (q, q̇, u) =q +

∫ δ

0

F sq̇ (q, q̇, u)ds.

Accordingly, the definition of relative degree for discrete-
time systems is recalled here below from [19].

Definition 2.3 (Discrete-time vector relative degree): A
discrete-time system

xk+1 =F (xk, uk)

y1
k =h1(xk), . . . , ymk = hm(xk)

with x ∈ Rn, u ∈ Rm, yi ∈ R for i = 1, . . . ,m, is said
to possess vector relative degree r = (r1, . . . , rm) ∈ Rm at
x◦ ∈ Rn if the following holds:
• for all i = 1, . . . ,m, ` = 1, . . . , ri − 1

∂

∂u
hi(F

`−1
0 (F (x, u)) = 0,

∂

∂u
hi(F

ri−1
0 (F (x, u)) 6= 0;

• the decoupling matrix

Ud(x, u) =




∂
∂uh1(F r1−1

0 (F (x, u)))
...

∂
∂uhm(F rm−1

0 (F (x, u)))




is non-singular at x = x◦, u = 0.
It is well-known that under sampling the relative degree

is not preserved [12]. As a matter of fact, let us consider
the output map e = h(q) with h(q) = 0 a regular VHC in
the sense of Definition 2.2. By Definition 2.3, one computes
for the sampled-data model (7) the discrete-time decoupling
matrix

1

δ2
Ud(x, u) = dh(q)D−1(q)B(q) +O(δ)

that is non-singular in Γ by non-singularity of the
continuous-time one in (3). Thus, h(q) is no longer a regular
VHC for (7) as it possesses a discrete vector relative degree
(1, . . . , 1) ∈ Rn−1 with respect to the output e = h(q)
with a zero-dynamics sub-manifold Zδ of dimension n and
corresponding to a generally unstable reduced dynamics (due
to the rise of the so-called sampled-data zero dynamics [12]).
In addition, h(q) = 0 is not a VHC for (7) in the weaker
sense of Definition 2.1 as control invariance of Γ is lost under
sampling and thus its stabilizability via piecewise constant

control. As a particular case, it is naturally deduced that
standard emulation of the continuous-time feedback (5) via
sampling and hold devices (i.e., setting uk = u(qk, q̇k)) fails
into imposing h(q) = 0.

Remark 2.1: The characterization of the properties and
structure of the reduced dynamics (i.e., the scalar dynamics
governing (1) over Γ) under sampling is not addressed here.
As a matter of fact, such a characterization relies upon
sampled-data Lagrangian structures as particular classes of
discrete-time Hamiltonian structures as proposed in [20].

III. MAIN RESULT

The proposed solution, relying upon the results in [13],
ensures that regularity of the VHC is preserved under multi-
rate sampling of order (2, . . . , 2) ∈ Rn−1 (i.e., of the
same order 2 over each input channel). Namely, we assume
the control piecewise constant over the sub-interval of the
sampling period of length δ̄ = δ

2 ; namely, uik = u(kδ +
(i− 1)δ̄) ∈ Rn−1 for i = 1, 2 with the multi-rate equivalent
model of (1)

xk+1 =F δ̄2 (xk, uk) (8)

with u = col{u1, u2} ∈ R2(n−1) and

F δ̄2 (x, u) =F δ(·, u2) ◦ F δ̄(x, u1)

=eδLf+Gu1 ◦ eδLf+Gu2x.
At this point, the following main result can be proved.

Theorem 3.1: Let h(q) = 0 be a regular VHC of order
n − 1 for (1) under the hypotheses of Proposition 2.1 and
constraint manifold Γ in (2). Then, h(q) = 0 is a stabilizable
regular VHC of order n− 1 under multi-rate digital control
of order 2; equivalently, it is a regular VHC of order n− 1
for the sampled-data equivalent model (8).

Proof: For showing the result, one must show that
the extended output (4) possesses vector relative degree
(1, 1, . . . , 1, 1) ∈ R2(n−1) everywhere on the constraint
manifold Γ in (2). By Definition 2.3, one gets that the
discrete-time decoupling matrix associated to (8) with the
extended output (4) is given by

Uδd (q, u) = ∆⊗ dh(q)D−1(q)B(q) +O(δ)

with

∆ =

(
3
2

1
2

1 1

)
.

The matrix above is invertible everywhere on Γ because U(q)
in (3) is such by assumption and ∆ is non singular.

In the next result, the sampled-data control law enforcing
the VHC h(q) = 0 is proved to exist in a constructive way
starting from the continuous-time solution.

Proposition 3.1: Let h(q) = 0 be a regular VHC of order
n − 1 for (1) under the hypotheses of Proposition 2.1 and
constraint manifold Γ in (2). Let (8) be the sampled-data
equivalent model of order 2 with extended output H(x) =
H(q, q̇) in (4). Then, the following holds true.



(i) The implicit equality

H(F δ̄2 (x, u)) = Aδ(κp, κd)H(x) (9)

with, for A(κp, κd) as in (6),

Aδ(κp, κd) =eδA(κp,κd) (10)

admits a unique solution u = uδ̄(x) in the form of a
series expansion in powers of δ around the continuous-
time one in (5); namely, one gets

uδ̄(x) = 12 ⊗ u(x) +
∑

`>0

δ̄`

(`+ 1)!
u`(x). (11)

(ii) The feedback u = uδ̄(x) solution to (9) enforces the
VHC h(q) = 0 that is, it makes Γ in (2) asymptotically
stable.
Proof: The feedback solution to (9) is the one ensur-

ing input-output linearization with respect to the extended
mapping H(x). Accordingly, the proof of (i) follows from
Theorem 3.1 and by the Implicit Function Theorem along
the lines of [13]. As far as (ii) is concerned, by construction
of the matrix (6), Aδ(κp, κd) in (10) is asymptotically stable
(in the discrete-time sense3) and H(xk) → 0 as k → ∞
ensuring that the trajectories asymptotically converge to Γ
so getting the result.

Remark 3.1: The constraining feedback is given by the
solution of the implicit equality (9) ensuring I/O lineariza-
tion under sampling with, moreover, output matching of
the continuous-time output trajectories under the feedback
(5). We underline that such a choice is made to allow, as
developed in the next section, comparison with respect to
the nominal continuous-time behavior. More general assign-
ments of the output linear dynamics are possible for the
closed-loop sampled-data equivalent model. In general, one
can compute the feedback so to assign a desired LTI discrete-
time equivalent dynamics of the form

H(F δ̄2 (x, u)) = (Aδ +BδF δ)H(x)

with

A0 =

(
0 1
0 0

)
, B0 =

(
0
1

)

Aδ =eA0δ ⊗ In−1, Bδ0 =

∫ δ

0

eA0sdsB0

Bδ =
(
A
δ
2B

δ
2
0 B

δ
2
0

)
⊗ In−1

and F δ any feedback gain ensuring asymptotic stability of
the closed loop.

Remark 3.2: The (invariant and attractive) zero-dynamics
(i.e., the reduced dynamics over Γ) of the closed-loop
sampled-data system under the feedback solution to (9) pre-
serves the same stability and boundedness properties as the
continuous-time counterpart, at least in first approximation
[12]. Accordingly, nothing can be concluded on the possible
preservation of the sampled-data Lagrangian structure.

3i.e., all the eigenvalues are in the open unit circle.

Although closed forms to (9) are hard to compute, all
terms of the series expansion (5) can be deduced via an
iterative and constructive procedure: first, one substitutes (11)
into (9) and then equates all terms with the same power of δ;
each term u`(x) is the solution to a linear equality depending
on x and the previous terms u`−1(x), . . . , u0(x). For the first
term, one gets

u1(x) =
1

3

(
1
5

)
⊗ u̇(x), u̇(x) = Lf+Gu(x)u(x).

Accordingly, only controllers computed as truncations of
the series expansion (11) at all desired order β ≥ 0 are
implementable in practice; namely, the βth-order approximate
feedback law is defined by

uδ̄[β](x) = 12 ⊗ u(x) +

β∑

`=1

δ̄`

(`+ 1)!
u`(x) (12)

with δ̄ = δ
2 so recovering for β = 0 the usual emulation-

based control [15]. The stabilizing properties under such
feedback laws are guaranteed only in a practical sense with
h(q) converging to a ball containing the origin with radius
in O(δβ+1) [18, Theorem 5.1].

IV. DIGITAL ORBITAL STABILIZATION OF THE PENDUBOT

Consider the dynamics of a pendulum robot (Pendubot) in
Figure 1 in the form (1) with n = 2 and [8], [17], [21]

D(q) :=

(
duu(qu) dua(qu)
dua(qu) daa(qu)

)
, C(q, q̇)q̇ =

(
cu(q, q̇)
ca(q, q̇)

)
q̇

∇P (q) =

(
∇Pa(q)
∇Pu(q)

)

where

duu(qu) =m2`
2
c2 + I2

dua(qu) =m2`
2
c2 + I2 +m2`1`c2 cos qu

dau(qu) =m2`
2
c2 + I2 +m2`1`c2 cos qu

daa(qu) =m1`
2
c1 +m2`

2
1 + I1 +m2`

2
c2 + I2

+ 2m2`1`c2 cos qu

cu(q, q̇)q̇ =(m2`1`c2 sin qu)q̇a

ca(q, q̇)q̇ =(m2`1`c2 sin qu)q̇a − 2(m2`1`c2 sin qu)q̇u

∇Pa(q) =m2`c2gr sin(qa + qu)

∇Pu(q) =(m1`c1 +m2`c2)gr sin qa

+m2`c2gr sin(qa + qu)

mi, Ii, `i, `ci, gr being the mass, inertia, length and length
to center of mass for link i = 1, 2 and the gravity constant
respectively.

Following [8], [17], the design goal stands in the gener-
ation of non-trivial stable oscillations of the underactuated
link under a sampled-data feedback. This corresponds to
stabilizing the regular VHC

h(q) = qa + κqu (13)

with κ ∈ R [17] and, equivalently, the set

Γ = {(q, q̇) : qa − κqu = 0, q̇a − κq̇u = 0}. (14)



Fig. 1. The pendubot robot

Following Proposition 2.1, the stabilizing continuous-time
control is provided by (5) which is specified as

u =ca(q, q̇)q̇ +∇Pa(q) + γ1(qu)(cu(q, q̇)q̇ +∇Pu(q)

− γ2(qu)
(
κph(q) + κdḣ(q)− cu(q, q̇)q̇ +∇Pu(q)

)

with

γ1(qu) =
dau(qu)

duu(qu)

γ2(qu) =
daa(qu)

(m2`2c2 + I2)(daa(qu)− κdau(qu))
.

As far as the sampled-data solution is concerned, follow-
ing Proposition 3.1 the problem is solved under multi-rate
control of order r = 2 with uk = (u1

k u2
k)>, uik =

u(kδ + (i− 1)δ̄, δ̄ = δ
2 and i = 1, 2 as in Section III.

Applying Proposition 3.1, the feedback takes the form of
the series expansion (11) with the first term specified by

u1(q, q̇) =
(

1
3

5
3

)>
u̇(q, q̇)

u̇(q, q̇) = ċa(q, q̇)q̇ + ca(q, q̇)q̈ +∇2Pa(q)q̇

+ (γ̇1(qu) + γ̇2(qu))cu(q, q̇)q̇

+ (γ1(qu) + γ2(qu))ċu(q, q̇)q̇

+ (γ1(qu) + γ2(qu))cu(q, q̇)q̈

+ (γ1(qu)− γ2(qu))∇2Pu(q)q̇

+ (γ̇1(qu)− γ̇2(qu))∇Pu(q)

− (γ1(qu)− γ2(qu))
(
κpḣ(q) + κdḧ(q)

)

− (γ̇1(qu)− γ̇2(qu))
(
κph(q) + κdḣ(q)

)

We are now in position to compare the stabilization proper-
ties of the obtained sampled-data feedback, approximated at
the first order, against that of emulation, i.e. when consider-
ing the 0thorder approximation in (12).

Simulations

To validate the approach proposed, simulations of the con-
trolled pendubot are performed with the parameters reported
in the table below.

m1 [kg] 0.2 m2 [kg] 0.052
I1 [kgm2] 3.38× 10−1 I2 [kgm2] 1.17× 10−1

`1 [m] 0.2 `2 [m] 0.28
`c1 [m] 0.13 `c2 [m] 0.15

In all cases, we fix the parameter κ = −1 in (13) so
comparing similar situations to those reported in [17]. Addi-
tionally, the stabilizing continuous-time gains in (5) are fixed
at κp = 1, κd =

√
3. In Figure 2 we show the performance

of the (1st order approximate) sampled-data multi-rate sta-
bilizing controller for two different sets of initial conditions
when compared to the ideal continuous-time solution. The
dashed lines corresponds to the multi-rate solution while the
continuous line is the ideal continuous-time solution. Both
are compared staring from the configuration q0 = (π6

π
1.5 )>

with zero velocities, as well as q0 = (π3
π

1.5 )> with zero
velocities. The sampled-data control follows closely the ideal
continuous-time behaviour even for larger sampling period
δ = 0.3.
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Fig. 2. Sampled-data stabilization for different initial conditions and δ =
0.5 under multi-rate approximate control of order β = 1.

Figures 3 and 4 highlight the significant benefits obtained
from the additive terms introduced by the proposed ap-
proximate sampled-data control when compared to standard
emulation for increasing values of δ. Also, it is worth
to underline that the control effort required by the multi-
rate approximate control is comparable with respect to the
continuous-time one and much better than emulation. Further
simulations have been perormed also considering different
control objectives as, for instance, swing-up stabilization4.

4More animated cases at https://youtu.be/YqGJnm1oNo0
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Fig. 3. Simulations for the pendubot when δ = 0.2 seconds
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Fig. 4. Simulations for the pendubot when δ = 0.6 seconds

V. CONCLUSIONS AND PERSPECTIVES

In this paper, it is shown that multi-rate sampling allows
to impose VHCs to mechanical systems in Euler-Lagrangian
form. In particular, the order of the multi-rate must be
equal to two over each input channel in order to guarantee
invariance of the corresponding surface. Future perspectives
concern the problem of preserving the Euler-Lagrangian
structure of the residual dynamics (the associated zero-

dynamics) possibly exploiting redundant multi-rate control.
Also, the application of those methods to deal with control of
multi-agent autonomous systems is under investigation [22].
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General conclusions and open
perspectives
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In this work obstructions caused by the instability of the internal dynamics under stabilizing con-
trollers that (partially) cancel the zero dynamics were investigated and solutions proposed. These
solutions were developed to ensure stable inversion starting from the continuous-time setting and
moving to treating two classes of inversion-based controllers in a digital context.

From the continuous-time perspective, and motivated by the fact that non-minimum phase zero
dynamics implies instability of the closed loop under inversion control, a procedure for mitigating
this issue is proposed. In particular, for a class of non-minimum phase Multi-Input Multi-Output
systems, stable inversion can be guaranteed by ensuring that cancellation only affects the minimum
phase component of the zero dynamics. This was done working over the linear tangent model
associated with the system and using factorization tools over its corresponding Smith McMillan
form. In this sense, the procedure proposed in this work naturally extends previous results for
Single-Input Single-Output systems in the same direction. This is further used to solve problems
of stabilization and disturbance decoupling with stability in continuous-time. Additionally, this
work provides a preliminary and rough claim on the possibility of achieving the same factorization
procedure working over the corresponding generalized normal form. The appeal of this is that, by
not working over the linear tangent model, the procedure specified will hold everywhere where the
coordinates change bringing the system the generalized normal form is defined. This claim was
tested on the bench-marking example of a four-tanks process with promising results.

On the digital control side, this work proposed solutions ensuring stable inversion under both
model predictive control and digital transverse feedback linearization. For systems under model
predictive control with a quadratic cost function penalizing the control and output tracking error,
we start by stressing how the optimal solution is of the inversion type when the penalty on the
control is small and no state constraints are present. This fact, coupled with the use of sampled-data
models which are typically non-minimum phase as prediction models in the model predictive control
problem formulation, leads naturally to the use of multi-rate sampled models to mitigate the effects
of unstable sampling zero dynamics in the cheap control setting. When used as prediction models
in the problem formulation, internal stability of the closed loop is ensured when the penalty on the
control is small and the prediction and control horizons coincide. Lacking in robustness and working
in open-loop over the smaller sampling sub-intervals, a better solution is then sought and proposed
in this thesis. This second solution uses a (possibly simplified under an assumed feedback) multi-rate
model of the plant to modify the reference signals coming to the model predictive controller. It is
then shown that, under the assumption of cheap control, this solution guarantees internal stability
without the need for terminal stabilizing ingredients as done in the literature. Additionally, it
improves on the robustness issues faced by the previous solution. Several cases studies were carried
out both comparing the proposed solution as well as investigating situations not satisfying the strict
assumptions of no state constraints and cheap control.
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Starting from systems admitting a continuous-time solution to the (local) transverse feedback
linearization problem, sampled-data based methodologies preserving the ideal continuous-time so-
lution under sample and hold devices are proposed. These proposed methodologies being: (1) an
approximate single-rate sampled-data solution working by redesigning the continuous-time functions
specifying the controlled invariant set to be stabilized, and (2) an exact multi-rate sampled-data
solution keeping the functions specifying the controlled invariant set intact and modifying the feed-
back law. This later solution additionally has the property of providing state feedback laws when
only dynamic feedback laws are available in continuous-time. Both sampled-data mythologies are
then used to solve interesting control problems in path following for non-holonomic systems and
periodic orbit stabilization for underactuated mechanical systems.

The author in no way claims that this work is complete, and accordingly, a wide range of
perspectives and open questions still remain. In the following we highlight a few;

■ Stabilization via partial cancellation of the zero dynamics: the main remaining ques-
tions regarding this approach is the generalization to other classes of nonlinear systems, as
well as under sampling. In this sense, the factorization of the Smith McMillan form associated
with the linear tangent model, may not be the best approach to provide theoretical guarantees
in the general setting. The use of generalized normal forms, and the proof of the claim made
in Section 1.3 is still open.

■ Model Predictive Control - MPC: as mentioned previously, one can use simplified models
on both the MPC prediction level as well as the MR planner level. If that is the case, one can in
principle obtain the “optimal” MPC feedback, by solving a much simpler optimization problem.
Indeed, an interesting question would be to ask, if one can provide “general guarantees” on
when such simplification can work. An example of that would be the following: consider a
feedback linearizable system, and suppose γc(x, v) is the feedback transformation rendering
the system linear. Are there conditions on such γc(x, v) which, when satisfied, allows one to
utilize linear prediction model for the MPC with some performance and stability guarantees?.
If such conditions are obtained, one can greatly reduce the complexity of nonlinear MPC
problems, allowing for real time implementation while meeting certain performance indices.

Moreover, concerning the case where strict state constraints are present, the use of Extended
Command Governor- ECG Bemporad et al. (2010), coupled with the multi-rate planner is
natural. This can be a solution providing admissible references that ensure constraints satis-
faction to the MPC controlled closed loop system. This point in particular is very useful when
dealing with special case of convex box state constraints since the command governor reduces
to a least square projection on the maximal output admissible set Gilbert and Tan (1991).
Additionally, if it is possible, this implementation will inherit all the benefits of extended
command governors (e.g. larger max domain of attraction, convergence guarantees ..etc).
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Figure 8.10: A multi-rate sampled-data planner in the state constrained case

■ Transverse Feedback Linearization - TFL: relevant questions of nested-set stabilization
using LTFL techniques in a digital context are being studied. This will allow for the concur-
rent satisfaction of multiple control requirements modelled as nested sets, while mitigating
the known issues arising due to the implementation of partial inversion-like controllers digi-
tally. Applications such as coordinated path following and synchornoization Panteley (2015),
together with obstacles avoidance are a direct consequence those investigations.

In any case, research on the wider topic of sampled-data systems is constantly evolving thanks
to new challenges that go far beyond the issues addressed in this manuscript. Those challenges arise
from both practical and theoretical problems which deserve particular attention. As demonstrated
by the example of path following for the car-like robot, sampled-data methodologies can even be
used to work around the need for dynamic feedback.
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