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Abstract

Wearable wireless radio-frequency identification (RFID) devices pro-

vide novel ways to track face-to-face human interactions in various

settings. Their application in pre-schools to record daily contacts and

verbal interactions of children can reveal how the social networks and

linguistic skills of children co-develop over time during early time of

schooling.

This thesis addresses this challenge through the design, performance,

and analysis of a large-scale social experiment carried out in a French

pre-school. In this project we used wireless RFID sensors to collect

proximity and voice data from over 200 participants (children and staff)

over an observation period of three years, for one week in each month.

In parallel, we collected extensive ground-truth data and using periodic

questionnaires in which we determined the socio-demographic back-

ground and linguistic development of children.

The first goal of the thesis focused on the collection and processing of

raw RFID sensor data using conventional data cleaning and signal pro-

cessing techniques. The second goal was to develop techniques to pre-

cisely reconstruct the interactions of participants as temporal networks,

using advanced machine learning methods applied on sequential data.

Using the reconstructed social networks and recorded linguistic and

socio-demographic attributes of children, I conducted a multivariable

statistical analysis to study the effects of homophily, inducing over-

represented social interactions between linguistically and demograph-

ically similar individuals. Finally, a visualisation technique of lineage

graphs is presented.



Résumé

Les dispositifs portables RFID offrent de nouveaux moyens de suivre

les interactions en face à face des personnes dans divers environne-

ments. Leur application dans les écoles maternelles pour objectif d’en-

registrer les contacts quotidiens et les interactions orales des enfants

permet de révéler comment les réseaux sociaux et les compétences lin-

guistiques des enfants se développent conjointement au fil du temps

pendant les premières années de scolarité.

Ma thèse aborde ce défi à travers la conception, la réalisation et l’ana-

lyse d’une expérience sociale à grande échelle menée dans une école

maternelle française. Dans ce projet, nous avons utilisé des capteurs

RFID pour collecter des données de proximité et vocales auprès de

plus de 200 participants (enfants et personnels) pendant trois ans de

période d’observation, à raison d’une semaine par mois. En parallèle,

nous avons collecté de nombreuses données de vérité terrain et, à l’aide

des questionnaires périodiques, nous avons suivi le contexte sociodém-

ographique et le développement linguistique des enfants.

Le premier objectif de la thèse portait sur la collecte et le traitement des

données brutes des capteurs RFID à l’aide de techniques classiques de

nettoyage des données et de traitement du signal, avec l’alimentation

de méthodes personnalisées. Par rapport au deuxième objectif, j’ai dé-

veloppé des techniques pour reconstruire précisément les interactions

des participants sous forme de réseaux temporels, en utilisant des mé-

thodes avancées d’apprentissage automatique appliquées aux données

séquentielles. En utilisant les réseaux sociaux reconstruits et les attri-

buts linguistiques et socio-démographiques enregistrés des enfants, j’ai

mené une analyse statistique multivariable afin d’ étudier les effets de

l’homophilie, induisant des interactions sociales surreprésent- ées entre

des individus linguistiquement et démographiquement similaires. En-

fin, une technique de visualisation des graphiques de lignage est pré-

sentée.
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Chapter 1

Introduction

1.1 Modelling Human Dynamics

To understand, explain, and predict the behaviour of the natural world, scientists

have developed diverse modelling approaches, from the descriptive to the mecha-

nistic. This is true not only in natural sciences such as physics and biology, but also

in the social sciences, such as economics, political science, and linguistics [Loayza

(1996), Alvarez and Nagler (2000), Kornai (2007)].

Complex, emergent phenomena has been observed in seemingly unrelated nat-

ural systems. It is often repeated that in recent decades, researchers across a variety

of domains have encountered systems where collective, large-scale behaviour can-

not be explained by studying individual constituents of the system in isolation.

Systems demonstrating this feature are called complex systems. Said differently, a

complex system is a system composed of many interacting parts, or agents, which

displays collective behaviour that does not follow trivially from the behaviours of

the individual parts [Newman (2011)]. The challenge of modelling complex sys-

tems is due to the intrinsic heterogeneity of different system components, and the

dynamics and interactions among them. The challenges addressed in this work in-

volves not the system itself, but the dynamical processes through which it evolves.

Its complexity arises through several distinct properties, such as non-linearity,

feedback, emergence and self-organisation [Ladyman et al. (2013)]. Real-world

complex systems are as ubiquitous as they are diverse, from networks of biologi-

cal nerves, financial markets, transport networks and the Internet [Bullmore and

Sporns (2009), Mantegna and Stanley (1999), Helbing (2001)]. Building on meth-

ods from statistical physics, computational science and mathematics, the study of

complex systems has come to define itself as a discipline in its own right, devoted

to the study of collective behaviour [Bar-Yam (2002)].

1



1.1. MODELLING HUMAN DYNAMICS 2

Human dynamics, as a field in complex systems, aims to explain how human be-

havioural patterns emerge and shape observed collective social phenomena. Hu-

man dynamics have long been an intriguing subject of modern science, and of po-

tential use in explaining large scale social, technological and economic phenomena

[Vázquez et al. (2006)]. One of the most significant advances that complex systems

have made is in understanding human behaviour, such as in decision making,

scheduling, collaboration and community formation. For example, in the study

of epidemiology, compartmental models such as the SIR (Susceptible, Infectious,

Recovered) model, initially assumed populations to be homogeneously mixed. In

order to more simulate more realistic scenarios, [Edmunds et al. (1997)] studied the

mixing contact patterns among people using questionnaires. The study used mul-

tilevel modelling to identify and quantify the contact patterns of potential epidemi-

ological significance. [Wallinga et al. (1999)] proposed using structural characteris-

tics of contact patterns such as the number of contacts per person, transitivity and

characteristic path lengths to increase our understanding of the impact of human

contact networks on the spread of infectious disease. [Colizza et al. (2006)] fore-

cast global epidemics by considering detailed worldwide air travel infrastructure,

complemented with census population data. [Musse and Thalmann (1997)] devel-

oped an approach based on autonomous virtual crowds to describe the emergent

behaviour observed in large groups of people in the real world. When studying

leadership in organisations, [Marion and Uhl-Bien (2001)] used complexity theory

to understand the emergence of structure, fitness, and innovation in organisation,

and how emergence is influenced by leadership behaviour. An often-cited example

is the Zachary’s karate club, first studied in [Zachary (1977)], where the author stud-

ied a karate club and defined a network that represents its 34 members as nodes

and interactions among them as links. After the club split into two parts, Zachary

correctly classified all but one member into the groups they actually joined using

the Ford–Fulkerson algorithm [Ford and Fulkerson (1956)]. This dataset became

an illustrative example of social networks, including in the pioneering study of

community structure in [Girvan and Newman (2002)]. Not being limited to us-

ing digital records to portray communication network’s dynamics and phenom-

ena, human dynamics also include research topics in the traditional scope of social

science. This was recognised in [Cameron and Larsen-Freeman (2007)] that intro-

duced complexity theory as a metaphor for systems in applied linguistics owing to

their shared characteristics of temporal evolution and heterogeneity, as well as in
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[Horn (2008)], which identified complexity as a new scientific paradigm, could of-

fer the potential to develop a new kind of social science. Sustained research efforts

in this direction have lead to the emergence of a new field, that of computational

social science [Lazer et al. (2009a)], which aims to observe and understand social

phenomena with an emphasis on data.

1.2 Networks

The most often used abstraction of a complex system is that of a network. Bor-

rowing the language of graph theory, a system can be represented by a network

where nodes (vertices) represent the system’s components and links (edges) rep-

resent their interactions. Such representation provided a universal model to study

various systems even with great difference. For example, protein–protein inter-

action network was initiated in model organisms’ biological processes [Walhout

et al. (2000)], where proteins are nodes and their interactions are edges. In social

network the nodes are social entities, which could be people, groups, web sites,

publications, and links are connection between the entities. There are some funda-

mental definitions and attributes that can be computed to analyse networks and

distinguish how they contrast to each other. Complex network is an inevitable con-

cept when studying complex systems. Behind each complex system there is an

intricate network that encodes the interactions between the system’s components

[Barabási and Pósfai (2016)]. Again borrowing from graph theory, complex net-

works can be characterised by their topological features, which are irregular and

heterogeneous, in contrast to chains, grids, lattices or fully-connected graphs. Net-

work representation has been applied in a wide range of real complex systems in

nature and society [Bhalla and Iyengar (1999), Donges et al. (2009), Cohen et al.

(2012), Bassett and Sporns (2017)] resulting in network science being one of the

fastest growing disciplines in recent decades.

To understand the structure, formation and dynamics of empirical systems,

various network models have been proposed, and we discuss them below.

1.2.1 Models of complex networks

Erdős–Rényi model. The story of complex networks started with two closely re-

lated models proposed by Paul Erdős and Alfréd Rényi for generating random

graphs [Erdos et al. (1960)]. For a more precise definition, here we use the repre-

sentation G(N, p), where N is the number of nodes and p is the probability that
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an edge exists between a randomly selected pair of nodes. Each edge generated

in an Erdős–Rényi (ER) model network is independent from each other, which

straightforwardly determines the distribution of their degrees, i.e. the number of

connection each node has in the graph. Degrees in an ER graph follow a binomial

degree distribution. That is, for a randomly chosen node, the probability of its

degree to be equal to k is

Pk =

(

N − 1

k

)

pk(1− p)N−1−k. (1.1)

Most real networks are sparse, meaning that the average degree is much smaller

than the system size, that is, ⟨k⟩ ≪ N . With this condition, when the ER graph is

large (N → ∞), its degree distribution (Eq. 1.1) tends to the Poisson distribution,

Pk = e−⟨k⟩ ⟨k⟩
k

k!
. (1.2)

The Poisson distribution has the advantage of analytical simplicity since its prop-

erties are independent of the network size and depend only on a single parameter

⟨k⟩ [Barabási and Pósfai (2016)].

One important characteristic of complex networks is their connected compo-

nent structure, which is a connected subgraph that is not part of any larger con-

nected subgraph. Among the connected components of a network the largest com-

ponent deserves special attention, as its size (denoted NG) determines the behaviour

of any large scale, or global phenomena (such as epidemics, opinion dynamics and

synchronisation) observable on the structure. For random networks, one would

expect that the NG grows gradually with increasing of ⟨k⟩. However counter-

intuitively, NG/N stays close to 0 for small ⟨k⟩, even with increasing average de-

gree. Once ⟨k⟩ exceeds a critical value, NG/N starts to increase rapidly, resulting

the emergence of a giant component. More precisely, for inreeasing ⟨k⟩, networks

generated by the Erdős–Rényi model pass through four regimes,

• ⟨k⟩ < 1 (Np < 1): sub-critical, the largest component in this regime is in

O(logN) scale, only a small number of links exist in this regime, therefore

only small components will be observed.

• ⟨k⟩ = 1 (Np = 1): critical point, the largest component in this regime is in

O(N
2

3 ) scale. Compared with sub-critical regime, the size of the largest com-

ponent starts to show a significant raise. The size of connected components

in this regime follows the power law distribution.



1.2. NETWORKS 5

• ⟨k⟩ > 1 (Np > 1): super-critical, the size of largest component in this regime

is ∼ yN , where y = p− 1
N

. This regime has the most relevance to real systems,

a giant component covers large fraction of nodes and no other component

will have size larger than O(logN).

• ⟨k⟩ > lnN (Np > lnN): connected, with sufficiently large p, the giant com-

ponent will include almost all nodes, where NG ≃ N , therefore the whole

network becomes connected.

The critical point of random network is arguably the most noteworthy regime

of all. The phase transition in many physical systems is resembled by the emer-

gence of giant component in random networks near critical point, representing the

system which goes through a continuous phase transition such as water-ice transi-

tion and magnetism [Barabási and Pósfai (2016)].

Average path length. Here we focus only on the connected regime for simplicity.

Distance between two nodes in a connected network is defined as the number of

links one need to pass through the shortest walk from one node to another. For

most values of p, the diameter, i.e. the maximum of any distances in a given net-

work, with the same N and p have the same values concentrated at logN/ logNp

(or equivalently logN/ log⟨k⟩) [Chung and Lu (2001)]. Consequently, the average

path length of a random graph is

⟨l⟩ =
ln(N/z1)

ln(z2/z1)
+ 1, (1.3)

where zm is the average number of m-th nearest neighbours. With the Erdős–Rényi

model, z1 = ⟨k⟩, and z2 = ⟨k⟩2, then ⟨l⟩ =
lnN

ln⟨k⟩
, which is the same as the diameter

of the network.

Clustering coefficient (in a local sense) is defined as the number of connected

neighbours of a node with degree k divided by the number of possible connected

neighbours it can have, that is (k(k−1)/2). If we consider a node in a random graph

and its neighbours, the probability that two of its neighbours are connected is equal

to the probability that two randomly selected nodes are connected. Consequently,

the clustering coefficient of a random graph is

Ci = p =
⟨k⟩

N
. (1.4)

Watts–Strogatz model. While the Erdős–Rényi model is concise and enlightening,

the assumptions that edges are independent, and that edges between all node pairs
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are present with same probability, fails to model many phenomena observed in real

networks. Many biological, technological and social networks exhibit high cluster-

ing, like regular lattices, yet have small average path lengths, like random graphs

[Watts and Strogatz (1998)]. Many network models have been proposed to better

explain such phenomena. The first, and most well-knwon, was the Watts–Strogatz

model, which generates so called small-world networks, combining the small-world

phenomenon (colloquially known as “six degrees of separation”) with properties

such as small average shortest path lengths and high clustering. The Watts–Strogatz

model constructs networks by interpolating between regular and random net-

works. The model starts from a ring lattice with N vertices and k edges per vertex,

then each edge will have probability p to be randomly rewired. This construction

allows the network to interpolate between order (p = 0) and disorder (p = 1).

Average path length. We could analyse by first checking two extrema of p. As

p → 0, ⟨l⟩ ∼ N/2k ≫ 1, while p → 1, the network turns into a random network,

where ⟨l⟩ ∼ ln(N)/ ln(k) ≫ 1. The rapid drop in ⟨l⟩ is caused by the introduc-

tion of a few long-range edges, which result in small-world networks. For small p,

each short cut has an effect on ⟨l⟩ owing to not only the reduction of distance be-

tween the pair of vertices that rewiring connects, but also the pass-through effect

between their neighbourhoods, and neighbourhoods of neighbourhoods. A large

drop in average path length can be observed by the time p = 10−2. A more in-

depth analysis is performed in [Barthélémy and Amaral (1999)], where crossover

size n∗ ∼ p−τ with τ ≈ 1, and average distance ⟨l⟩ between any two vertices of the

network is a scaling function of n/n∗. This implies that rewiring a finite number of

links already has a strong influence on ⟨l⟩ of a network.

Clustering coefficient. In the study of [Barrat and Weigt (2000)], the authors de-

fine C(p) as the average of cluster coefficient over all vertices with each edge has

probability p to be randomly rewired. Each vertex is assumed to have 2k neigh-

bours for simplicity. For p = 0, it is easy to see that the number of links between

these neighbours is N0 = 3k(k − 1)/2. Then C(0) =
3(k − 1)

2(2k − 1)
. For p > 0, two

neighbours of node i that were connected at p = 0 are still neighbours of i (their

link to node i is not rewired) and linked together with probability (1 − p)3, up to

terms of order 1
N

. Instead of considering C(p) which computes over all nodes, the

authors define C̃ as the ratio of the mean number of links between the neighbours

of a vertex and the mean number of possible links between the neighbours of a
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vertex, it could calculated as

C̃p =
3(k − 1)

2(2k − 1)
(1− p)3. (1.5)

By comparing these two characteristics with their counterparts in the Erdős–Rényi

model, this model captured two crucial features of many real world networks: the

first is the small world property which is depicted by ⟨l⟩ ∼ lnN ; the second feature

is high clustering coefficient that obviously exceeds its counterpart in Erdős–Rényi

model, where Ci ∼ ⟨k⟩/N .

Barabási-Albert model of scale-free networks. The Watts–Strogatz model gen-

erates networks with small-world features: small average path length and large

clustering coefficient, which is typical in real-world networks. This model takes

a significant step towards reproducing the characteristics of real-world complex

system. However, it exhibits degree distributions that fail to match with those

of real-world networks. For example, the Internet, online social networks and ci-

tation networks typically contain a few nodes, called hubs, with unusually high

degree. In [Albert et al. (1999)], the authors found that the distributions of in-

degree and out-degree of World Wide Web follow power-law degree distributions

P (k) ∼ k−γ with a tail ranging over several orders of magnitude with exponent

γout = 2.45 and γin = 2.1. This is in strong contrast to the Poisson distribution

predicted by the Erdős–Rényi random graph model and the bounded distribution

predicted by the Watts–Strogatz model. Networks with power-law degree distri-

bution are called scale free network, due to the fact that in power-law distributions,

all moments larger than γ − 1 diverge. The moment of degree distribution is de-

fined as

⟨kn⟩ =

∫ ∞

kmin

knP (k)dk. (1.6)

This scale-free property is essential to produce network structures such as hubs.

Also, the Watts–Strogatz model sets a fixed number of nodes and thus cannot be

used to model networks with growth. The two aforementioned properties of net-

works can be generated by a preferential attachment model proposed in [Barabási

and Albert (1999)]. This model incorporates two important properties,

• Growth, which describe that networks expand over time with new vertices

joining.

• Preferential attachment, which regulates that new vertices attach preferen-

tially to vertices with higher degree.
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The construction of Barabási-Albert model is as follows. Starting with m0 vertices,

at every time step a new vertex with m ≤ m0 edges will be introduced in the

network and link to m different vertices already present in the network. Then,

to introduce the preferential attachment mechanism, each new vertex connects to

existing nodes with a probability that is proportional to the degree of the latter.

Formally, the probability that the new vertex is connected to vertex i with degree

ki is

pi =
ki

∑

j

kj
. (1.7)

Evolving in this way, after t time steps the network turns to a scale-free network

with t+m0 vertices and mt edges. The rate at which a vertex i acquires edges is

ki(t) = m

(

t

ti

)
1

2

, (1.8)

where ti is the time at which vertex i was added to the system. The so-called rich-

gets-richer phenomenon are able to be observed in this way. Based on Eq. 1.8,

we could then calculate the exponent γ of the generated network. The probability

that a vertex i has a connectivity smaller than k, P (ki(t) < k), can be written as

P (ti > m2t/k2), which is equal to 1 − P (ti ≤ m2t/k2) = 1 −m2t/k2(t +m0). Then

the probability density P (k) can be obtained from P (k) = ∂P (ki(t) < k)/∂k which

will leads to the stationary solution

P (k) ∼ k−γ, (1.9)

where giving γ = 3, independent of m, reproduces the observed scale-free dis-

tribution. Furthermore, it is easy to modify the model to account for exponents

different from γ = 3, for example, when introducing new vertices, we could as-

sume that a fraction p of the links is directed, we obtain γ(p) = 3 − p. Also some

networks evolve by adding links not only between new vertices and existed coun-

terparts, but also between existed vertices, this modification could also alter the

value of γ [Barabási and Albert (1999)].

Average path length. In the work Cohen and Havlin (2003), author used ana-

lytical arguments to show that scale-free networks with 2 < γ < 3 have a much

smaller diameter as d ∼ ln lnN , featuring an ultra-small network. For γ = 3, the

analysis yields d ∼ lnN/ ln lnN , while for γ > 3, d ∼ lnN .

Clustering coefficient. Here we assume that one node is added for each time step,

and that nodes are indexed by the time step they are added to the network. When
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adding node j to the network, the probability for one link of node j to connect with

node i is the ratio of the degree of the node i, ki, and the sum of all node degrees in

the network, 2mj. The probability for the existence of a link from j to i is given by

Prob{(ij)} =
m

2
(ij)−

1

2 . (1.10)

The local clustering of node l in a network of size N is denoted by Cl(N). Taking

into account expectation values and treating the nodes as a continuum, it can be

calculated to be

Cl(N) =

∫ N

1

di

∫ N

1

djProb{(ij)}Prob{(il)}Prob{(jl)}

kl
2(N)

, (1.11)

using kl
2(N) = m2N/l (from Eq. 1.8) and approximating the total number of neigh-

bors by k2
l /2. Then, substituting Eq. 1.10 into Eq. 1.11, we derive

Cl(N) =
8

m

(lnN)2

N
. (1.12)

A more detailed deduction can be found in the work of [Klemm and Eguiluz

(2002)].

As we could see from Eq. 1.12, Barabási–Albert model fails to produce the high

levels of clustering that is frequently observed in real networks, something that the

Watts-Strogatz model succeeded in doing. A more general preferential attachment

is studied in [Krapivsky et al. (2000)], where attachment probability is replaced by

a more general form that proportional to

pi =
kα
i

∑

j

kα
j

. (1.13)

where α is used to tune the preferential attachment. Moreover, in many real world

networks, the oldest node may not always have the most links. That is, a new-

comer may attract a large number of links within a short period of time and become

the largest hub. A variant of the Barabási–Albert model called Bianconi-Barabási

model [Bianconi and Barabási (2001)] is proposed in to simulate this observed phe-

nomenon.
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1.2.2 Temporal networks

While early network studies focused on static structures, more advanced and re-

alistic models have over time been proposed in accordance with observations of

real-world systems. One such observation was of their tendency to evolve in time,

through mechanisms such as the addition or removal of nodes, and the forming

and severing of links, probabilistically and sometimes as a function of local topo-

logical features. These models have proved successful in explaining observed phe-

nomena in many empirical systems. However when the network and its dynamic

process evolve at comparable timescales, classic network models are incapable of

capturing the fine-grained time-varying nature of real systems connectivity pat-

terns [Karsai et al. (2014)]. For such cases, the temporal structure can affect the dy-

namics of systems interacting through the network [Holme and Saramäki (2012)],

from the spread of disease to the diffusion of information in online social settings.

For example in information propagation, two peers connected by a link in static

network indicates information could pass between between them at any time. In

contrast, in case of temporal networks, information can be passed between con-

nected nodes only at the time of their interactions, a property which could greatly

affect properties such as reachability and transitivity of the network [Nicosia et al.

(2013), Williams and Musolesi (2016), Badie-Modiri et al. (2020)]. Also in [Li et al.

(2017)], the authors demonstrated that temporal networks, compared with their

aggregated counterpart, could reach controllability faster, they demand orders of

magnitude less control energy, and they have significantly more compact control

trajectories to reach its final states. Therefore if applicable, it is essential to in-

corporate temporal dynamics between pairs of nodes into the modelling process.

Thanks to the digital revolution and development of related technologies, large

volumes of network data with time and other metadata details on nodes and links

have been generated and collected.

Temporal networks are network structures with edges vary with time. The inclu-

sion of temporal dimension has brought network modelling to another perspec-

tive that other types of network modelling are unable to hold. Therefore temporal

network could provide better understanding about the mechanism behind the ob-

served phenomena and in turn could greatly improve their predictions. In many

studies the temporarily of interactions is considered. One of the most well-studied

types of temporal networks are human proximity networks, which measure contact
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between individuals in close range, as well as the duration of this contact. Vari-

ous technologies have been developed to collect such data, e.g. radio-frequency

identification (RFID) [Isella et al. (2011), Barrat and Cattuto (2013), Kibanov et al.

(2014), Voirin et al. (2015)], autonomous low-power wearable devices (LPWD) [Du-

val et al. (2018)] and infrared sensors [Takaguchi et al. (2011)]. This kind of exper-

iment are widely applied in multiple settings, like schools [Stehlé et al. (2011b),

Fournet and Barrat (2014)], museums or conferences [Isella et al. (2011)]. Brain net-

works is another example of temporal network application. In the work [Bassett

et al. (2015)], authors built temporal networks from functional magnetic resonance

imaging (fMRI) data and extracted groups of brain regions (network communities)

that were coherently active in each time window, with each group is assumed to

be responsible for a specific cognitive function. Temporal networks have also been

applied to help improving epidemic modelling [Salathe et al. (2012), Pastor-Satorras

et al. (2015)], the importance of such works cannot be stated enough under the

current context of the COVID-19 global pandemic. In the work of [Stehlé et al.

(2011a)], the authors considered high-resolution face-to-face interactions data be-

tween the attendees at a conference, and used an SEIR (Susceptible, Exposed, In-

fectious, Recovered) model to simulate the spread of epidemics along these inter-

actions. [Gautreau et al. (2008)] studied the problem of the arrival time of epi-

demics spread with a metapopulation model on large-scale networks. This work

proposed an easily computable quantity that depends only on the links weights

and nodes populations to accounts for the average arrival time of the spread in

each city. Recently, [Cencetti et al. (2021), Barrat et al. (2021)] used empirical high-

resolution contact data collected by digital devices (such as Bluetooth on mobile

phone) to build up models to test the effectiveness of different policies to contain

the epidemic.

1.2.2.1 Representation of temporal networks

To represent temporal networks, one needs to incorporate information about the

time of contacts between pairs of nodes. How this is done depends on the type

of contact and the process the temporal network supports. Typically there are two

categories: “lossy representation” where some information of the original tempo-

ral network is lost, and “lossless” representation, which carries all information.

This thesis used mostly lossless representations called “event lists”. In this rep-

resentation, temporal networks are defined as Gt = (V,Et, T ), where V denotes

vertex set composed of vertices v ∈ V . The edge set Et is defined as a set of events
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(or temporal edges), which represent the interactions in a temporal network. To

incorporate temporal information, events take the form Et ⊂ V × V × [0, T ], that

indicates two nodes have interaction over a time span T . A temporal network is

then described as a sequence of such events. Explicitly, a temporal edge is a triplet

(u, v, t), indicating an interaction between vertex u and v at time t ∈ [0, T ]. Just like

static networks, the events (temporal edges) is directed and undirected depending

on the context. For many cases the events contains more information than just the

event time t such as duration or weight, thus it is necessary to extend the definition

of event to Et ⊂ V × V × T ×
∏

i A
e
i , where Ae

i is a set of additional information of

an event based on on the actual scenario.

There are also other popular representations, for example graph sequences or

snapshots. These are representations that present temporal network as sequences

of static graphs. This representation allows the use of methodology and measures

from well-established static network research. By doing this, we could perceive

temporal network by looking at characterisations change at different time. One

disadvantage is that this representation is effective only for networks with low

temporal resolution, which means the dynamic of edges are not rapidly changing,

for instance ecological networks. Another representation called stream graph or

link stream is proposed by [Latapy et al. (2018)], where interactions are modelled as

S = (V,W,E, T ). That is, a node set V and time instants set T are defined like their

counterparts in event list. What makes them different is the temporal nodes defined

by W ⊆ T×V , and a set of links E ⊆ T×V ⊗V such that (t, uv) ∈ E implies (t, u) ∈

W and (t, v) ∈ W , where u, v ∈ V . This representation has the advantage of directly

dealing with interactions over time, which includes both temporal and structural

nature instead of simply combining the two. Equivalent of most elementary and

more advanced network concepts such as density and centrality are also defined

for stream graphs and link streams.

1.2.2.2 Temporal structure and characteristics

As outlined above, static networks can be characterised by certain measures of

their topology, such as the degree, clustering coefficient and path lengths. Corre-

sponding quantities in temporal networks need to be revised. Here we summarise

some concepts and characteristics which are important for temporal network anal-

ysis.
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Temporal path [Pan and Saramäki (2011)] tells the reachability between nodes,

which constrains the dynamics taking place on the network. In a static graph, a

sequence of adjacent edges, sharing a common ending node, could be constituted

as a path. Such a path indicates all nodes that are connected and reachable (for

undirected networks). For the temporal network, temporal paths must be con-

strained to sequences of events that activate chronologically. For example con-

sidering a set of events {(vs1, v
e
1, t1), (v

s
2, v

e
2, t2), · · · , (v

s
n, v

e
n, tn)} (here the node index

indicates the event number, not the actual node), it could form a temporal path if

for ∀i ∈ [1, n − 1], vei = vsi+1 and ti+1 > ti, with length defined as tn − t1. Temporal

path is non-symmetric, like path in a directed graph, a path from i to j does not

mean the same from j to i. However different from directed graph, temporal paths

are neither transitive, which means in temporal network, if there is a path from i

to j and from j to k does not necessary indicates there is a path from i to k. What’s

worth noting is that temporal paths are themselves temporal, and are only valid

paths during a specific time interval, this also means there can exist multiple paths

from i to j with different starting time t.

Temporal distance Another basic measure in static network is distance, defined

as the smallest number of (non-weighted or weighted) links of a path connecting

two nodes. In temporal networks there are many ways of defining distances. For

example, a commonly used definition is for nodes i and j to define a distance as the

shortest time it would take to reach j from i at time t along a temporal paths [Pan

and Saramäki (2011)]. This distance is commonly denoted as τij(t). However with

the temporal feature, τij(t) changes with t, thus it is useful to characterise temporal

distances with their average τij over all time [0, T ].

Burstiness and interevent time statistics. Recall that we have observed abundant

networks with power-law degree distribution. Just like topological measures, cer-

tain temporal structures of temporal network are intriguing. A very common tem-

poral structure we could examine is the inter-event time distribution a.k.a. distri-

bution of the gap of starting time between the events on the same pair of nodes. If

the probability of an event is time-independent, we would naturally think of Pois-

son process. In this case the inter-event time τ between two consecutive events

follows an exponential distribution [Haight (1967)]. Interestingly, for varies hu-

man involved temporal network, it has been discovered that such timings exhibits

bursty non-Poisson character [Barabasi (2005)]: substantial events happens during
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a relatively short period, then followed by long periods of inactivity. This kind

of phenomena are marked with emergent scale-free inter-event distributions, indi-

cating present temporal heterogeneity in their dynamics. Detailed mechanism that

forms the bursty phenomenon is introduced in detail in [Barabasi (2005), Goh and

Barabási (2008), Karsai et al. (2018)].

1.2.3 Social networks

Studies of social networks are especially focusing on structures where nodes rep-

resent people and the edges represent interactions between them such as social or

family acquaintances, common interests, friendship or religious affiliation. Social

networks are studied ubiquitously, such as in anthropology, economics, sociology,

as well as other related interdisciplinary fields.

One interesting characteristic of social networks are is their community struc-

ture, which has been analysed in [Bedi and Sharma (2016), Chunaev (2020), Fortu-

nato (2010)]. Correct partitioning of a social network can give important insights

to understand network structure and is helpful in studying information diffusion

and marketing. Another important research directions in social networks is on

how micro-level interactions coded in the network could shape macroscopic phe-

nomena like communities themselves. Many studies focus on the mechanisms in

the growth of networks and social tie creation. Georg Simmel in 1908 proposed

the concept of triadic closure, describing the property that given three people A,B,

and C, if the connections A − B and B − C exist, there is a high probability for

A and C to be connected. [Bianconi et al. (2014)] showed this mechanism alone is

capable of generating systems with community structure. To further investigate,

links in network could be assigned with weight. More specifically, in social network

the strength of a social tie is the combination of time, emotional intensity and in-

timacy. Dichotomy could divide a social tie into strong or weak by certain criteria

e.g. multiplexity. In the work of [Granovetter (1973)], considered that weak ties

act as the role of “bridge” that links between tightly connected communities and is

vital to global information dissemination. In contrast, strong ties shapes local con-

nectivity. This effect is also observed in mobile phone data [Onnela et al. (2007)],

where authors found that removing weak ties could cause social networks to fall

apart after a phase transition.
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Another social tie creation mechanism depends on node properties, for exam-

ple a person’s age, gender, education, occupation, workplace or socioeconomic sta-

tus. The tendency of people to associate more than randomly expected with others

who are similar to themselves is called homophily. This link creation mechanism

has been observed in several studies like [McPherson et al. (2001), Newman (2018),

Shrum et al. (1988), Aiello et al. (2012)]. It has been found to work together with

triadic closure to shape social networks into communities [Kossinets and Watts

(2009)]. The effects of homophily, however, are hardly distinguishable from the

consequences of another process called influence, which describe the mechanism

that people adopt feature or habit from their connected peers through social or

interpersonal interaction. The influence helps the forming of several macroscopic

social phenomena, such as simple information spreading [Barthélemy et al. (2004),

Madar et al. (2004)] and the emergence of other collective complex phenomena

[Granovetter (1978)]. The core difference between homophily and influence is who

comes first, the similarity or the relationship. Regardless of the entanglement be-

tween homophily and influence, they are likely to result in significantly different

dynamics and purely data-driven observations sometimes struggle to distinguish

them. Thus, this question sets one of the most important challenges of computa-

tional social science [Aral et al. (2009)].

1.3 Collection of Digital Behavioural Data

Earlier observations of human behaviour were traditionally conducted using meth-

ods such as interviews, surveys, direct observation etc. While these methods have

achieved significant insights of several key problems, the capacity of data collec-

tion is overstretched facing increasing demand with regard to meticulousness, ac-

curacy, timeliness, long-term and large-scale. In recent years however, the rapid

growth of Internet access, the maturation of satellite navigation and the increas-

ing penetration of mobile devices removed these limitations [Lazer et al. (2009b),

Vespignani (2009)]. Subsequently, enormous datasets have been gathered to fuel

the research of human dynamics. In return, the studies of these datasets have re-

vealed in-depth knowledge inducing pioneering works in this direction.

As email became a means of day-to-day communication, email exchange logs

formed a network with email address as nodes, and email exchanges as links. [Ebel

et al. (2002)]. these networks were found to emerge with scale-free degree distribu-

tions and small-world behaviour. [Newman et al. (2002)] studied structure of email
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network and found random vaccination (install anti-virus software) of computers

has little effect on containing the spreading of virus, while targeted vaccination are

more promising. [Eckmann et al. (2004)] discovered that email network develops

self-organised structures which arise from temporal correlations when users act in

a synchronised manner. This work also observed distribution of the response time

roughly approximated by a power-law.

The popularity of mobile communication provided rich spatio-temporal data[Onnela

et al. (2007)] exploited mobile phone call records to construct a society-wide com-

munication network which was inaccessible at the societal level before. This work

demonstrated a local coupling between tie strengths and network topology, and

showed that this coupling has important consequences for the network’s global

stability if ties are removed. [Candia et al. (2008)] showed that spatio-temporal

anomalies can be described using standard percolation theory tools, and the heavy-

tail property of inter-event time of consecutive calls was once again observed.

Besides the studies that focused on structure and topology, there are also plenti-

ful research in the field of computational social science that benefit from spatio-

temporal data, [Blumenstock et al. (2015)] used call detail records of Rwanda as

an example to prove that the past history of mobile phone use of an individual

is related to his/her socioeconomic status (SES). The increasing availability of large

human mobility datasets has enabled new systematic studies of mobility patterns

[Gonzalez et al. (2008), Noulas et al. (2012), Lotero et al. (2016), Carra et al. (2016)].

Furthermore, compared with traditional data collection methods, the accurate and

fine-grained mobile data also provides a powerful weapon against epidemic. Mo-

bile phone data have been proposed to assess potential drivers of spatio-temporal

spread, and to support contact tracing using data from cellular base stations or

Bluetooth. [Grantz et al. (2020), Budd et al. (2020)]. Except for location acquired

from the cellular base station, the finest level of accuracy on locations and tra-

jectories is from Global Positioning System (GPS) data, which has better resolution

compared with data from base station and is broadly applied in tasks such as nav-

igation, traffic monitoring and congestion prediction [Zheng et al. (2009; 2010),

Bazzani et al. (2010)].

The emergence of online social platforms, like Twitter, Facebook and Weibo, gen-

erated data with unprecedented speed and connected people in unprecedented

scales. [Leskovec et al. (2007)] analysed blog network and found out that the de-

cline of a post’s popularity follows a power-law instead of an exponential decay
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as originally expected. This work also studied cascading phenomenon, and it dis-

covered that most rapid cascades of information adoption are tree-like, stars or

chains. [Wu et al. (2011)] studied information flow pattern among the members of

an online ecosystem. Users were first classified into “elite” and “ordinary” groups

and revealed that messages from elite users reached the masses indirectly, but via

a large population of intermediaries. The rich messages that users posted on social

platform act as a great repository to estimate users’ social class and socioeconomic

status [Preoţiuc-Pietro et al. (2015), Lampos et al. (2016), Luo et al. (2017)], and

could further extend to studies on inequality, discrimination. However, with its

openness and accessibility, the online social platforms also facilitated widespread

dissemination of misinformation. To tackle this problem, many studies focused

on the detection of misinformation by studying its diffusion pattern, message and

source. [Shu et al. (2017), Shin et al. (2018), Wu et al. (2019), Shu et al. (2020)].

In contrast to large online social platforms, several experiments to record hu-

man proximity has been conducted as introduced in Section 1.2.2. Such experi-

ments focus on relatively small groups with more specialised purposes. [Elmer

et al. (2019)] conducted two experiments with RFID badges in order to accurately

measure face-to-face interactions.

1.4 Machine Learning Methods

The ever-growing volume of data produced by electronic devices demands auto-

mated statistical learning methods [Alpaydin (2020)]. Without aiming a compre-

hensive summary of the whole field, next I summarise those techniques, which I

applied during my work for the solution of various types of classification, infer-

ence, or prediction problems.

1.4.1 Logistic regression

Logistic regression dates back to 1830s when Pierre Verhulst proposed logistic func-

tion to model population growth. The logistic function is

f(x) =
L

1 + e−(x−µ)/γ
(1.14)

The standard logistic function, where L = 1, µ = 0, γ = 1, is the famous sigmoid

function.
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Logistic regression as a statistical model was proposed in [Cox (1958)]. It nor-

mally applies to model the probability of binary dependent variable. Consider

a binary regression problem, given a dataset D = (x1, y1), (x2, y2), · · · , (xN, yN)

where xi ∈ R
M and yi ∈ {0, 1}, and i = 1, 2, · · · , N . In this model we could con-

struct a decision boundary defined as θTx+ b = 0 where θ ∈ R
M . For simplicity we

append 1 for each xi as corresponding constant term so w = (θ(1), θ(2), · · · , θ(M), b)

to include b. To connect the classification probability p(y = 1) and the input vector

x, we apply the 1.14,

P (y = 1|x;w) =
1

1 + ewTx

P (y = 0|x;w) = 1− P (y = 1|x;w) =
ew

T
x

1 + ewTx

(1.15)

The logistic regression choose the class which gives higher probability in terms of

probabilities summarised above. By checking the logit function of classification

probability, we could get

log
P (y = 1|x;w)

1− P (y = 1|x;w)
= w

T
x, (1.16)

which illustrate that logistic regression actually uses the predicted value of the

linear regression model to approximate the log-odds of the true label of the classi-

fication task.

The learning process of logistic regression is to estimate the parameters w. It

is often solved by using maximum likelihood estimation (MLE), i.e., finding a set of

parameters such that the likelihood of dataset sampled from the fitted distribution

is maximised. More precisely, assume P (y = 1|x;w) = p(x) and P (y = 1|x;w) =

1− p(x), the likelihood function is:

L(w|x; y) =
N
∏

i=1

[p(xi)]
yi [p(xi)]

1−yi . (1.17)

To facilitate the computation we take the log form of likelihood. Thus, together

with the notation of 1.15, we could derive

L(w|x; y) =
N
∑

i=1

[yi(w ∗ xi)− ln(1 + ew∗xi)]. (1.18)

In machine learning perspective, L(w|x; y) in form 1.17 is equivalent to the cross

entropy loss function: J(w) = − 1
N logL(w). A slight difference is that the loss func-

tion is usually appended with a regularisation term to prevent overfitting. Finally

the likelihood function is optimised using Newton’s method or gradient descent [Al-

paydin (2020)].
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1.4.2 Hidden Markov Model

Hidden Markov Model (HMM) [Alpaydin (2020)] is a statistical model proposed by

Leonard E. Baum in a series of papers [Baum and Petrie (1966), Baum and Eagon

(1967), Baum et al. (1970; 1972)]. It is extensively used to model sequential data,

especially in pattern recognition [Varga and Moore (1990), Yamato et al. (1992),

Schuller et al. (2003), Starner and Pentland (1997)], and in bioinformatics [Krogh

et al. (2001), Ernst and Kellis (2012)].

The system being modelled is assumed to follow a Markov process and its gen-

erated sequence is the state sequence of the system, denoted as X . However this

sequence is unable to be observed directly or precisely, which is common in real

world systems. Instead, in HMM there is an observation sequence whose out-

comes of each step are determined solely by corresponding step in X , denoted

as Y as shown in Fig. 1.1. More formally, definition of HMM with discrete time

step is given: For two sequence X = (x1, x2, · · · , xT ) and Y = (y1, y2, · · · , yT ) be

discrete-time stochastic processes instance:

• X is generated by a Markov process and observation Y doesn’t affect state X :

P (xt|xt−1, yt−1, · · · , x1, y1) = P (xt|xt−1) for t = 1, 2, · · · , T , with its behaviours

unable to be directly observed, also known as hidden.

• Observation at any time depends and only depends on the state at same time:

P (yt|xT , yT , · · · , x1, y1) = P (yt|xt).

In order to construct a HMM, several other components should be introduced:

• Q = {q1, q2, · · · , qN}: State set which include all possible states.

• V = {v1, v2, · · · , vM}: Observation set which include all possible observations.

• A = [aij]N×N : State transition probabilities of Markov process, aij = P (xt =

qj|xt−1 = qi).

• B = [bij]N×M : Emission probabilities, which tells the probability of a state qi to be

observed as vj , bij = P (yt = vi|xt = qi).

• π = (πi)N×1 Start probabilities, which represents the probability of initial state of

system is qi, πi = P (x1 = pi).

There are three basic type of problems with system being modelled as HMM:
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Figure 1.1: An instance of HMM. t−1, t, t+1, · · · are time steps, upper sequence X
is the state sequence which is unobservable and lower sequence Y is the observe
sequence, each ellipse present a state (q) or an observation (v). aij is the transition
probability from qi to qj , bij is the emission probability from qi to vj , as defined
above.

• Probability of an observed sequence. Given model parameters λ = (A,B, π),

this task is to compute the probability of the observed sequence O by adding up

over all possible state sequences.

• Learning. Given the the observed sequence X , the goal is to estimate the best

set of model parameters λ = (A,B, π) that maximise the probability of observed

sequence X : P (X|λ). The task is usually to be solved using the maximum

likelihood estimate. The Baum–Welch algorithm which is a special case of the

expectation-maximisation algorithm. For time-series prediction problems, more

sophisticated Bayesian inference methods, such as Markov chain Monte Carlo

(MCMC) sampling are proven to be favourable over finding a single maximum

likelihood model both in terms of accuracy and stability.

There is also a supervised learning method when both observation and state se-

quence are given. With this materials we could estimate parameters by MLE, for

example to learn state transition probabilities A = [aij]N×N , Aij is the frequency

that state qi at time t is transited to state qj at time t+ 1, then âij =
Aij

∑
N

k=1
Aik

.

• Inference problems. Several inference problems are associated with HMM, one

of the most used is the decoding of the observed sequence. Given λ = (A,B, π)

and observed sequence Y , the task is to find the state sequence X that maximise

the probability P (X|Y ). Speech recognising, for example, where the words of

speech is states sequence and corresponding to an observed sequence of voice.

The goal would be from voice sequence to decode the words in it. To solve

this type of problem, a dynamic programming algorithm called Viterbi algorithm
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[Viterbi (1967)] could decode the most likely state sequence by obtaining the

maximum a posteriori probability (MAP) estimate.

1.4.3 Artificial neural network

Traditional machine learning methods are based on the routine of rigorously defin-

ing the problems, followed by designing a feature extractor with engineering and

domain expertise, to finally propose an algorithm with calculus, probability and

statistical methods to optimise and infer parameters in order to achieving the goal

of learning from data. Different from it, artificial neural networks (ANNs) take an-

other approach of building a model with structure inspired by the biological neu-

ral networks. Two who took first step toward artificial neural networks are Warren

McCulloch and Walter Pitts, whose work in 1943 modelled a simple neural network

with electrical circuits [McCulloch and Pitts (1943)]. Different from tradition ma-

chine learning methods, ANNs could learn the representations of the data directly

from the data itself.

The basic components of ANN are nodes (artificial neurons) and connections.

Nodes consist layers - an input layer, one or several hidden layers, and an out-

put layer - and different layers are stacked, as shown in Fig. 1.2. The nodes are

linked by connections with associated weights and thresholds, to allow signals

(a real number) transmit over the network. An artificial neuron receives one or

several signals from other neurons as inputs whose summation is feed to a non-

linear activation functions, then the result is propagated as input to its connected

neurons, normally with certain direction. When layers are stacked deep enough

(known as deep learning), a neural network can composite a very complex func-

tions to approximate the real mapping between inputs and output of sample data.

The learning of ANN aims at adjusting the weights and the thresholds of the net-

work to improve the accuracy of the results which is achieved by minimising the

observed errors.

Integrating information of the past (backwards) could obviously enhance our

ability to learn from data, yet for certain task, the information of future (forward)

could also be profitable. For example in handwriting recognition task, when recog-

nising a word, not only the information of previous words, but also the informa-

tion of following words helps. Bidirectional recurrent neural networks (BRNN) pro-

posed in [Schuster and Paliwal (1997)] is the right medicine for this concern. The

BRNN group two independent RNNs together as demonstrated in Fig. 1.3. The in-

put sequence is fed to one RNN in normal time order, and to another in a reversed
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Figure 1.2: Structure of basic ANN (left) and RNN (middle), with recurrent struc-
ture of hidden layer highlighted in grey shade. Simplified representation of RNN
is on the right.

Figure 1.3: BRNN unrolled by temporal logic.

order. The outputs of the two RNNs are combined (usually by concatenation) and

then pass to activation function.

There are many such cases where the information of a sequence determines

the event itself, for example when we encountered ambiguous phrase while read-

ing, information from its context is beneficial to eliminate the ambiguity. Tradition

neural network doesn’t provide the architecture to link order dependent data. To

tackle this, we focus on a special ANN structure called recurrent neural network

(RNN), proposed in [Rumelhart et al. (1986)], that is capable of learning order de-

pendent data. In the traditional artificial neural networks, neurons are connected

from the input layer to the hidden layer to the output layer, with no connections

within each layer. In the structure of RNN, however, the nodes of the hidden

layers are connected so that the input of the hidden layers includes not only the

output from the input layer but also the output of the hidden layer at previous mo-

ment, which makes RNN capable of keeping the information of previous time step
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Figure 1.4: Structure of LSTM. The horizontal line in upper part of cell is the cell
state. 1

and join it to the computation of the current time step. This feature makes RNN

applicable to tasks with sequential data such as speech recognition, emotion clas-

sification or image description generation [Graves et al. (2013), Tang et al. (2015),

Ebrahimi Kahou et al. (2015), Karpathy and Fei-Fei (2015)].

In the most basic RNN architecture - fully recurrent neural networks - the hid-

den layer connects the outputs of all neurons to the inputs of all neurons. Consid-

ering the basic RNN with tanh as activation function, we have

ht = tanh(Whhht−1 +Wxhxt)

yt = Wyhht

(1.19)

where t is the time step, xt, ht are the input and output of t. Whh,Wxh is the weight

of hidden layer and input layer respectively. Since RNN incorporates information

of the past, a different training method called Backpropagation through time (BPTT)

is designed for RNN. In vanilla RNNs training, BPTT cannot solve the long-time

dependence problem because of the gradient vanishing and exploding. To handle

this, a modified RNN architecture called Long short-term memory (LSTM) is pro-

posed in [Hochreiter and Schmidhuber (1997)]. Compared with traditional RNN,

its core module includes Memory cells and gate units. Recall that the recurrent hid-

den layer in traditional RNN holds memories, the gates in LSTM are introduced

to “protect the stored memory contents from perturbation by irrelevant inputs”

[Hochreiter and Schmidhuber (1997)]. All gates resulting a more complex unit

called memory cell which holds the memory of past information.

1Image from https://colah.github.io/posts/2015-08-Understanding-LSTMs.
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1.5 Thesis Objective

Relying on the advancements in complex networks, computational human dynam-

ics and machine learning I introduced, my thesis thesis aims to contribute into the

directions of five main objectives:

• Unique data collection: The project related to this thesis have collected 3 years

of temporally fine-grained longitudinal interaction data for the critical peri-

ods of children’s socialisation and language development. Along with it we

have collected sociodemographic data to assign children with rich attributes

for future analysis. Linguistic data has been collected once a year to monitor

the linguistic performance. We also collected several ground truth data to

facilitate the training of machine learning model which will be established

later in the thesis.

• Data cleaning and activity re-construction: We have designed a complex scheme

of re-constructing the collected interaction data based on the type of error

occurred such as equipment failure, accidental drop etc., which has never

been achieved in such kind of experiment. Furthermore, due to the different

social behaviour under different environments, we segment interaction into

two periods and removing signals during transition to make sure the validity

of signals.

• Temporal network reconstruction: There has always been a lack of comprehen-

sive methods to reconstruct temporal networks from raw RFID. Thus my

subsequent aim was to established a pipeline and to investigate several ma-

chine learning methods to reconstruct temporal interactions from wireless

signal data. With training on our ground truth data, the reconstruction accu-

racy increased from 77.28% with traditional method to 90.03% of our pipeline

with Bidirectional Long Short Term Memory (BLSTM).

• Multivariate analysis of homophily: With the reconstructed temporal network,

accompanied with sociodemographic data, we search for attributes which ex-

hibit effects of individual and group level homophily. We investigated three

homophilic indices and compared empirical aggregated network with fully

randomised network. Discovered that gender is the most homogeneous at-

tribute for each age group and its effect increase by age. We have also found
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evidence that two linguistic features induce homophilic tie creation effects

that increase with age.

• Visualisation tools of genealogical networks: Finally I describe a visualisation tool

that we developed to visualise multidimensional and dynamical genealogi-

cal trees. The tool is demonstrated on a large scale family genealogical history

data from China.

As it follows I summarise my achievements in four main Chapters. First I con-

centrate on the description of the design of the large-scale social experiment, and

the data collection pipelines. In the next chapters I introduce my methods for the

temporal network and activity reconstruction. Using the reconstructed datasets, I

present my results on the homophily analysis. Then I shortly summarise our ge-

nealogy tree visualisation tool with case study and finally I close my thesis with a

short discussion.



Chapter 2

DyLNet Project and Data Collection

This chapter describes my work, which has been summarised in the paper [Dai

et al. (2022)].

2.1 Background and Motivation

The structure of social networks and their dynamics over time strongly influence

language usage and change [Labov (2001)]. Conversely, the way in which indi-

viduals use language contributes to the way they are judged in society [Giles and

Billings (2004)], and therefore influences their friendship choices, modifying the

structure of their social network. Despite this recognised relation, the co-evolution

of dynamically changing social networks and language dynamics mitigated by

social interactions is a largely unobserved phenomenon. Preschool environment

provides an ideal place to observe these reciprocal influences. Children’s language

changes rapidly during the preschool years due to the acquisition process [Conti-

Ramsden and Durkin (2012)]. Meanwhile, children integrate and adapt at school

via socialisation and increased opportunities to communicate with peers and with

the adults in charge. Besides, contacts with many peers cause preschoolers to ex-

pand and restructure their social network [Lynn Martin et al. (2005), Schaefer et al.

(2010)]. This co-evolution process, through the interactions between language ac-

quisition and socialisation, has societal implications as it may promote or under-

mine academic success and linguistic skills. A virtuous circle – or a spiral of failure

– between children’s sociability, oral communication and learning at school may

therefore ensue.

Social inequalities are a key factor in this causal chain since, as of age 2, it has

been observed that children from families of higher socio-economic status (SES)
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have a richer lexicon and use more complex syntax than children from lower-

SES environments [Le Normand et al. (2008)]. Children from different back-

grounds do not use, to the same extent, the academic language that is encour-

aged at school [Aarts et al. (2011), Snow (2010)]. The observations of these early

differences, which are transmitted within the family [Huttenlocher et al. (2007)],

led to numerous studies that have revealed the key-influence of the nature and

quantity [Rowe (2012)] of speech addressed to children by their parents in the dif-

ferent social environments. School attendance introduces a new factor into the

equation through peers influence, especially when the academic group is socially

mixed [Schechter and Bye (2007)], or through the speech produced by the teach-

ers [Bowers and Vasilyeva (2011)]. The linguistic skills of a child will advance more

quickly if they are a member of a peer group with a high level of language abilities.

This effect has been observed across various indicators of language development:

vocabulary, syntax, or narrative skills [Henry and Rickman (2007), Justice et al.

(2011), Mashburn et al. (2009), Schechter and Bye (2007)].

The aim of the DyLNet project [dyl] is to observe and characterise the relations

between child socialisation and oral language learning during the preschool pe-

riod by means of an innovative multidisciplinary approach that combines work in

the fields of language acquisition, sociolinguistics and network science. This goal

has been achieved via a large-scale longitudinal social experiment, where a com-

plete preschool in France was followed, including children from three different

grades as well as their teachers and assistants. During the experiment we collected

the proximity interactions of about 200 participants (circa 170 preschoolers and 30

adults in charge) in every 5 seconds using autonomous Radio Frequency Identifi-

cation (RFID) Wireless Proximity Sensors, which were (for a large part) equipped

with directional microphones allowing to record continuously the oral interactions

of participants too. During the observation period of three years, data collection

was conducted monthly with each deployment lasting one week. In parallel, sur-

vey campaigns using conventional techniques were carried out to record, on the

one hand, the social, economic, cultural, educational, and language background

of children’s families and, on the other hand, the individual level of language de-

velopment of the children. All together, these simultaneous data collection efforts

culminated in a long, large, and comprehensive children language development

study conducted in the context of peer interaction.

This data allow for several types of analysis potentially interesting not only

for sociolinguists and researchers in child language development, but also for ex-
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perts in social networks, human dynamics, behavioural science, education science

or even social anthropology. It may open a cross-disciplinary approach to learn

about how children language development depends on age, gender or socioeco-

nomic background and how it co-evolves with the social interaction dynamics on

the short and long temporal scales at the level of individuals and groups in a su-

pervised (classroom) or unsupervised (playground) school setting.

2.2 Data Collection Methods

Novel digital technologies enable to follow human social interactions with an un-

precedented resolution in time and space [Lazer et al. (2009b)]. Over the last

decade, these advancements led to an avalanche of experimental and data-driven

studies addressing the precise observations of human interactions [Goffman (2017)]

to explain phenomena like social tie formation or group dynamics. One exciting

direction involves wearable devices as they allow for tracking dynamically human

actions or proximity interactions at the individual level for large populations in

various settings. Social studies using wearable technologies have been deployed in

multiple settings such as schools [Stehlé et al. (2011b), Fournet and Barrat (2014)],

conferences [Isella et al. (2011)] and hospitals [Martinet et al. (2018), Duval et al.

(2018)]. These studies commonly relied on some already existing wireless archi-

tectures using RFID technology adjusted for the purpose of recording face-to-face

interactions between people. Standards as OpenBeacon [ope] or Open badges [Le-

derman et al. (2017)] were deployed as centralised communication protocols for

data collection about the relative distance and orientation of RFID tags distributed

among people moving around in the same space. Our data collection method relies

on similar but decentralised technology to record face-to-face interactions of chil-

dren with the original goal to understand how their social interactions co-evolve

with their language acquisition dynamics.

In this section first I introduce the ethics implication of our data collection, then

I will present different types of data we collected and how we manage to identify

problems followed by the pre-processing techniques. Finally we present the result

of our data collection.

2.2.1 Ethics and data protection

The DyLNet project data collection was carried out during three successive years

between 2016 and 2020 to gather transactional, vocal, language and socio-demographic
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data about children and staff in a preschool in France. Acceptance of the experi-

ment by pupils, parents, educational staff and school authorities, as well as issues

of benefit-risk balance and privacy were carefully considered before and during

the project.

The choice of the school was made with the involvement of the local and re-

gional education authorities prior to the start of the project. The goal was to find a

school with pupils from a variety of cultural, linguistic and socio-economic back-

grounds and to obtain official permission for the experiment in the form of an

agreement signed by the regional education officer and the university. Before

launching data collection, meetings were organised with the parents and school

staff to explain the purpose and organisation of the experiment as well as the func-

tioning of the RFID devices. We also offered parents the opportunity to meet in-

dividually with the researchers during drop-in sessions. In addition, we created

a webpage dedicated to the families accessible from the website of the project.

This webpage provided them with every details about the implementation of the

project: goals, methods, benefits, risks, and the schedule of data collection [Nardy

(2016)].

The issue of children’s exposure to radio signals emitted by RFID devices has

been carefully considered. We followed the advice of an expert on radio frequency

safety who was a member of the French National Council for Public Health. She

recommended that we have a Specific Absorption Rate measurement (i.e. rate of

energy absorption per unit of mass by a human body) of the RFID device per-

formed by an authorised company. The value obtained for one device was 0.0001683

W/kg under normal conditions of use in contact with the body, which is much

lower than the European standard (2 W/kg). In addition, in agreement with the

company that designed and manufactured the devices, we made sure that they

complied with the European standards on the mechanical and physical properties

of objects to be used by young children.

To protect the privacy of participants, we applied the principles of not men-

tioning participants’ names, precise locations and dates in the stored data ahead of

analysis and dissemination of the results. The exact dates and timestamps at which

data were collected and the child participants’ age were notably coded relatively to

an arbitrarily defined T0 set for the research project database. All participants were

assigned anonymous numerical identifiers with association keys available only to

the principal investigator. Start and end dates of data collection periods were ap-



2.2. DATA COLLECTION METHODS 30

proximated, and birth dates were replaced with children’s ages. Re-identification

of participants thus appears to be impossible from the shared datasets.

As a prerequisite to be included in the study, parents (on behalf of their child)

and school staff were asked to give a written consent for their participation, while

informed that they could nevertheless opt-out from the experiment at any time.

Non-participating children were offered to wear empty shells of RFID badges to

minimise feelings of envy among classmates. Participants were asked to provide

a second written consent to share the collected and anonymised data with the sci-

entific community under the control of the Principal Investigator. The acceptance

rate of participation in our experiment was 80.63% (283/351) for pupils and 96.88%

(62/64) for school staff over the three years of the project.

The whole project including experimental design, subject recruitment, data col-

lection and processing, data handling, storing and sharing, privacy protection, and

all aspects of the involvement of underage children were screened and approved

by the ethics committee of INRIA (National Institute for Research in Digital Science

and Technology) (favourable opinion, reference 2017-014, IRB00013144) as well as

by the Data Protection Officer of the Université Grenoble Alpes (favourable opin-

ion, reference CIL-UGA-2017-0980683).

2.2.2 Data collection

We collected four different types of datasets during the DyLNet project Dai et al.

(2022). The main dataset focuses on the dynamical recording of social and oral in-

teractions as transactional and vocal data. These data were collected autonomously

using badges installed on children and school staff at the preschool (for details see

Section 2.2.2.1). Additionally, we gathered information about the school level of

each child, that is being in 1st grade (about three years of age), 2nd grade (about

four years of age), or 3rd grade (about five years of age). We also recorded the class

in which the pupils and school staff were participating (out of the 7 classes in the

preschool). Meanwhile, ground truth (GT) data were collected with the purpose

of understanding how distance and relative orientation between a pair of badges

influence the Received Signal Strength Indicator (RSSI) of recorded signals. GT

data were also essential for training Machine Learning models to classify signal se-

quences as social interactions (for details see Section 2.2.2.2). In addition, the main

data collection was accompanied with survey campaigns. A first type of survey

consisted in asking parents to provide information about the socio-demographic,

cultural, educational, and occupational background of the family and the daily
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out-of-school activities of participating children (for details see Section 2.2.2.3).

In addition, a language survey using vocabulary and syntactic skills assessment

methods was performed with all participating children once a year throughout the

project to follow their linguistic development (for details see Section 2.2.2.4). Dur-

ing the observation period, we followed the interactions among preschoolers and

school staff for one week each month (among the 10 months of the academic year).

More precisely, we recorded data during five morning and four afternoon sessions

each week, as traditionally schools are closed in France on Wednesday afternoons.

In practice, children and staff were equipped with a wearable RFID badge every

morning of deployment under the supervision of a researcher on site. Badges were

then collected before lunch break and re-distributed in the early afternoon (or af-

ter nap time for the youngest preschoolers). Badges were collected again in the

evenings for charging overnight. Data were extracted from the flash memory card

of the badges at the end of each week of deployment. As the RFID badges were

autonomous, they were worn not only in the classroom but also during play time

when children were moving freely in the open-air yard of the school.

2.2.2.1 Transactional data collection

We employed a decentralised Low Power Wireless technology to collect transac-

tional data between autonomous RFID badges. Each badge could be in two modes,

whether broadcasting their own radio frequency ID or listening to signals emitted

by other badges. To be more precise, each badge was associated with a unique

ID and used the IEEE 802.15.4 low-rate wireless standard to communicate1. Since

badges in our experiment worked in a decentralised mode, in order to make sure

that they shared consistent global time, they were first synchronised with a synchro-

niser, which was connected to a computer and propagated the same time reference

to all badges. During data collection, badges broadcast a ‘hello’ packet with 0 dBm

transmission power for 384 µs every 5 seconds. For communication, they used the

carrier-sense multiple access (CSMA) protocol. To avoid collision, they first lis-

tened to the dedicated channel, then transmitted a packet if the channel was clear.

A badge listened to incoming packets from other devices when it was not transmit-

ting a packet. The decentralised architecture means there was no central node to

1The employed technology and its implementation meet the requirements of the product
standard EN50566 following the basic restrictions of the European Council recommendations
1999/519/EC.
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record all traffic. Instead, all badges worked autonomously and recorded incom-

ing packets described by the sender badge ID, the timestamp of reception, and the

RSSI. Each received signal was stored in a file locally on the flash memory card

of each badge if its RSSI value overreached the minimum sensitivity value of -94

dBm. To facilitate charging of the badges (every night of deployment) and to trans-

fer data to a local computer (at the end of every week of data collection), multi-USB

hubs were designed where up to 35 badges could be plugged at the same time.

Our architecture employed three types of badges serving different purposes:

• PROX: These badges were given to participants and were hanged on their

chest during data collection days. They were equipped with a battery, a

memory card, and about half of them with two directional microphones for

voice recordings. As soon as they were unplugged from the charging hub,

these PROX badges emitted a radio signal every 5 seconds, as well as lis-

tened and recorded incoming signals on their own flash memory card. They

stopped collecting data once plugged back on the charging hub.

• RX: These were special sensors, which were installed on the charging hub of

each class and left unaltered during the whole week of data collection. Unlike

PROX badges, RX badges only listened and recorded incoming signals (even

when plugged on the charging hub). Their role was to observe when the

participants belonging to a given class (attached to a given RX) were inside

their classroom or not.

• FOX: This device was used for the time synchronisation of all badges at the

beginning of every week of data collection. This special synchroniser device

was first plugged onto a PC to catch global time, then moved around the

classrooms to propagate time information among the PROX and RX badges.

At the end of each data collection period, data from each badge were trans-

ferred to a local computer. Badge IDs were then associated to the correspond-

ing badge bearer (participant) ID within each file of contact data, and finally data

were passed through an initial cleaning pipeline. The obtained cleaned raw data

served as the input for the data pre-processing and temporal network reconstruc-

tion pipeline. All the steps of these pipelines are explained in the Section 2.2.3.
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2.2.2.2 Ground truth data collection

In parallel to the autonomous transactional data collection, we occasionally recorded

ground truth data about actual social interactions between participants using di-

rect visual observation methods. For two datasets (GT1 and GT2), the researcher

focused on a given pair of children for a given period of observation, whereas

the third (GT3) was recorded among a complete class group. Besides, while GT1

and GT3 were collected in-situ within a classroom with all noise and interference

present (i.e. among 20 − 28 participants wearing a badge), GT2 was recorded in a

separate room, away from other badge bearers, in controlled settings.

More specifically, GT1 consists of the recordings of the state of interaction/no-

interaction between a given pair of children at a fixed 10 seconds interval (scan

sampling method [Altmann (1974)]), as well as their relative body orientation. GT3

corresponds to the logs at a fixed 2 minutes interval (scan sampling method [Alt-

mann (1974)]) of distances between all the children and adults of one class group

during regular activities within their classroom. Both GT1 and GT3 were collected

using the Animal Observer application for iPad [Ani]. These observations make

possible a direct comparison between the RSSI values collected by the badges and

the actual interaction state (GT1) or distance (GT3) between classmates. Finally, to

get an even clearer idea of the relation between RSSI values and the actual distance

between badge bearers, as well as their relative orientation, in a noise-free environ-

ment, GT2 dataset was recorded among pairs of children statically positioned at a

given distance (0.1 meters, 1 meter, 2 meters) and orientation (face-to-face, side-

by-side, back-to-back) for ∼ 10 minutes periods. For a more detailed description

on how ground truth data were collected see Appendix A.1.

2.2.2.3 Socio-demographic survey data collection

Each family that consented to let their child participate in the study was asked to

fill in a paper questionnaire. This questionnaire aimed at collecting information

about the child and their daily family environment. In its first part, we recorded

basic socio-demographic information about the participating child: gender, date of

birth, birth rank and number of siblings. Other questions aimed at gathering in-

formation about the places of socialisation frequented by the child before entering

school (nursery, childminder...) and within the school (daycare, canteen). We also

asked the parents about their child’s level of sociability, talkativeness, favourite

out-of-school activities (e.g. sports, drawing, imagination/construction games...)
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and customary activities before sleep (e.g. story telling, cartoons, music...). Finally,

two questions aimed to identify the child’s language environment and language

practices at home (i.e. whether French and/or other languages are spoken within

the family, and whether or not they are understood/spoken by the child).

In the second part of the questionnaire, we collected information about the

child’s family environment and living place(s) (i.e. the composition of the house-

hold, and, in the case of separated families, the child’s habitual place(s) of resi-

dence). We also recorded the parents’ geographical origin, their employment sta-

tus, their area of professional activity and their level of education. That question-

naire was fully completed when each child participant entered the study, then par-

ents were asked every year to fill in a shorter version of it in order to update some

information likely to change over time (e.g. the child’s favourite activities, the par-

ents’ professional status). The variable sample is presented in the Section 4 later.

2.2.2.4 Linguistic survey data collection

Individual tests were administered to participants at school in order to assess the

children’s level of language development at several points throughout the longi-

tudinal 3-years follow-up. Tests were performed at the beginning of every school

year for participants entering the study, then at the end of every school year for

children already enrolled in the project. Children were evaluated individually, in

a separate room, by a member of the research team. Test sessions were designed

to last no more than 15 minutes, hence each child took part in two short sessions

a few days apart: one during which their receptive lexical skills and short-term

memory span were evaluated, and the other for assessing their receptive syntactic

skills.

Language tests aimed at evaluating the participating children’s level of com-

prehension of words and utterances. Four versions of the tests were designed to

be appropriate for each stage of preschool education, that is for pupils 1) entering

1st grade, 2) completing 1st or entering 2nd grade, 3) completing 2nd or entering

3rd grade, and 4) completing 3rd grade. The evaluation of lexical skills included

40 items (words), 30 of which being ‘test items’ specific to each version (i.e. items

chosen to be adapted to the children’s school level) and the remaining 10 being ‘an-

chor items’ shared across all four versions (i.e. items systematically presented to

the children whichever their grade, and chosen to be rather adapted to 3rd grade

pupils). Similarly, the evaluation of syntactic skills contained 20 items (utterances),

namely 10 ‘test items’ and 10 ‘anchor items’. In both cases, for each item, the child
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was presented with a plate of four pictures. The experimenter then produced the

item (a word or an utterance), and the child had to point to the corresponding

image with their finger.

Besides, as memory span is known to be closely linked to language skills [Blake

et al. (1994)], we gave each child a memory span test as a control measure. More

precisely, we asked the child to repeat after the experimenter a series of digits of

increasing length. Each level contained two trials (i.e. two different series of digits

of the same length). We started with a series of two digits, then proceeded with

increasingly longer series (of three, four, etc.), and stopped the evaluation when the

child had failed the two consecutive trials for a given level (i.e. two consecutive

series of a given length).

2.2.3 Transactional data pre-processing

2.2.3.1 Initial data cleaning

The data directly recorded by the badges appeared with several trivial corrup-

tions, which were corrected during a pre-cleaning pipeline. In this pipeline, we

first converted the recorded binary data files to human readable format. Then we

systematically removed signals that were recorded during out-of-school time, and

pushed it through an individualised cleaning process. In fact, a researcher on site

during each deployment week continuously followed which badge was attributed

to which participant, whether a defective badge had to be replaced, whether it

was dropped by a child, or if a participant was absent over a given period of time.

Also, in such recorded situations, all signals emitted or received by unused, bro-

ken or missing badges were removed, not only from their own data sequence but

also from the data sequence of other badges. At the end of this initial cleaning

pipeline, we applied a file merging procedure to ease further analysis of the data.

According to the schedule of the observed preschool, each day was divided into

two periods: a morning session from 8:30 to 11:20, and an afternoon session be-

tween 13:45 and 15:50. To follow the same schedule, we merged the raw files of

each participant into two files each day. This merging procedure allowed to retain

only one file per participant per half-day, notably in cases where a participant wore

different badges during that period (when a defective badge had to be replaced)

or when file fragmentation had been caused by system errors. Consequently, each

individual appeared with nine half-day files for each week of data collection (i.e.
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every mornings and afternoons from Monday to Friday, except for Wednesday af-

ternoon) in the cleaned raw transactional dataset, from now on called the raw data.

2.2.3.2 Data pre-processing

Taking the raw data as input, we developed a data pre-processing pipeline that

we present below and whose corresponding source code we share [Nardy et al.

(2022)]. This pipeline contains some methodological choices that we made for the

purpose of our very own study. However, the shared raw data allow other re-

searchers to develop their own data pre-processing pipeline with their own con-

straints and needs, potentially requiring other methods and parameterisation than

those we used. During data pre-analysis, we identified multiple issues that we

corrected during this data pre-processing stage.

Issue 1 In the raw data, we identified some rare corruptions induced by a few

badges: occasionally, some badges (‘silent badges’) only received signals without

emitting any data packet or, on the contrary, some other badges (‘deaf badges’)

only sent out signals without receiving any. To solve this issue, we copied the

signal sequence that silent badges received and reversed the direction of senders

and receiver, then added these reconstructed signals to the corresponding half-

day files of the senders. Meanwhile, all signals received by badges that detected

the deaf badge were gathered to reconstruct its incoming signal.

Issue 2 There were other situations where the recorded signals were meaning-

less, that is when badges were turned on but not worn by the participants. This

happened notably when data collection was on hold and badges were retrieved

and gathered before being plugged back on the charging hub. To deal with this

issue, we exploited the signals received by the special RX badges which were lo-

cated on the charging hub of each classroom, and thus received strong and stable

RSSI from any unused badge located in the vicinity of the hub. To detect such

situations, we used sliding time windows over the signal sequence of each RX

badge (assigned to a given class) and computed the average and standard devia-

tion (STD) of RSSI values for each PROX badge used in that classroom within each

window. We used a relatively long time window of 3 minutes with a 1 minute step

to avoid spotting situations where equipped children only approached the hub for

short periods. Also, we considered only time windows with at least 80% of the

expected number of signals present (i.e. at least 29 signals for a time window of 3
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Figure 2.1: Signal strength statistics during interactions and no-interactions. (a)
Standard deviation (x-axis) and average (y-axis) of RSSI values recorded by RX
devices and coming from badges either worn (green dots) or not worn (red dots)
by a child participant. Annotation is based on ground truth collected at the school
(i.e. known absences). Within this uncleaned set of data, cases of misclassification
are likely due to wrong manipulations. Red points in the green zone would be
badges of absent children approached or manipulated by other classmates, but
such cases will be solved during the Initial Data Cleaning procedure based on
recorded absences. However, green points in the red zone would be badges un-
used or dropped by present children (notably at the beginning and end of a half-
day of data collection), and these are such cases that will be filtered by the de-
scribed cleaning procedure in Issue 2. Settings: window size = 3 minutes, step = 1
minute. Plot based on observational data from 7 classes, i.e. 163 children and 7 RX
badges, during 1 week of data collection. (b) Distributions of RSSI values shown as
box-plots for pairs of children observed at different experimentally-fixed distances
and relative orientations (from GT2 dataset), and used to parameterise the cleaning
procedure described in Issue 3. Black diamonds indicate the average value and bar
is the median value. Position-distance (x-axis): letters indicate relative orientation
as ‘FF’ face to face, ‘SS’ side by side, ‘BB’ back to back; and the following number
indicates the distance in centimetres. Plot based on observational data from: FF-10:
1 pair, 120 seconds, 48 data points ; FF-100: 5 pairs, 2765 seconds, 1106 data points
; FF-200: 2 pairs, 720 seconds, 288 data points ; SS-100: 1 pair, 240 seconds, 96 data
points ; BB-100: 1 pair, 335 seconds, 134 data points. (c) Correlation between dis-
tance (x-axis) and RSSI values (y-axis) shown as a density plot (from GT3 dataset).
Plot based on observational data from: 1 class with 28 participants, 8 observation
sessions for a total of 302 minutes, 62965 data points.
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minutes), as otherwise it meant that the RX had temporarily lost contact with the

badge (e.g. when the participant had left the classroom to get to the yard).

To set an appropriate RSSI threshold for distinguishing between worn and un-

used badges, we analysed the average and STD (i.e. the strength and (un)stability)

of signals collected by RX devices and coming from unplugged active badges dur-

ing the known presence or absence of the corresponding children (see Fig. 2.1a).

Based on this analysis, we decided to set the threshold for RSSI average at -62

dBm and for STD at 2.5. These two thresholds together allowed us to achieve 93%

accuracy as compared with ground truth.

To further refine data cleaning, we added two auxiliary treatments:

1. Two spotted consecutive inactive periods were concatenated if they followed

each other by less than 2 minutes, i.e. if period 1 goes from ts1 to te1, period 2 goes

from ts2 to te2, and ts2-te1 < 120 seconds, then we considered as inactive the period

going from ts1 to te2. This step was necessary in order to remove isolated residual

signals induced by noise between periods spotted as inactive.

2. Anytime the script identified an inactive period between ts and te, data were

in fact deleted from ts − x to ts and from te to te + x, with x being a safety margin

set at 30 seconds. This helped solving cases where badges were in the midst of

being transferred from the charging hub to the participants (or vice-versa), hence

recording meaningless data that the sliding time window method failed to detect

because of the high STD of the RSSI values received by the RX in such situations.

These two treatments together with the sliding window method effectively re-

moved the relative long periods of inactivity in the cases of unworn badges be-

fore equipment of the participants or after retrieval, badges dropped on a table, or

badges inadvertently lost in the school for instance.

Issue 3 It also happened that PROX badges could not be detected by the RX

badge assigned to the corresponding class, either because the RX badge was not

working properly or because a PROX badge had been dropped somewhere far

from the charging hub, hence too far from the RX. To circumvent this issue and

still manage to detect periods of inactivity for PROX badges, we applied a similar

sliding time window method but, this time, on the signal sequence of each PROX

badge. This allowed us to identify relatively long periods of inactivity when two

or more PROX badges were laid together, e.g. after retrieving all the badges from

a class group at the end of a day or during certain sport sessions when wearing a

badge could be uncomfortable. Meanwhile, we tried to avoid deleting any signal
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corresponding to a potential social interaction. An actual social interaction typi-

cally involves just a pair of mutually observing badges for a short period of time

and with largely varying RSSI values. To prevent spotting (and therefore deleting)

such valuable series of signals, more restrictive thresholds were applied, namely

−55dBm for average RSSI and 1.5 for STD. From the ground truth dataset collected

in controlled settings (GT2), we could assess that such a high signal strength can

be reached only when badges are 10 centimetres away from each other or closer,

and that such a low STD is very unlikely in natural settings with badges worn by

children who typically never stand still (see Fig. 2.1b). In natural settings, such

high RSSI values are in fact almost never observed among participants during reg-

ular class activities (see Fig. 2.1c). Here again, we considered only time windows

with at least 80% of the expected number of signals present, and we applied the

two above-described auxiliary treatments (i.e. concatenation and safety margin)

whenever an inactive period was spotted.

Issue 4 Once long inactive periods had been discarded from the signal sequence

of each badge, we often observed some remaining unrealistically strong signals.

Situations where badges had been gathered in close proximity during equipment

or retrieval process (e.g. in a box, or in the hands of an adult) resulted in par-

ticularly strong, though unstable, signal exchanges that should not be considered

as actual social contacts. Contrary to the periods of inactivity, these periods were

short and with large RSSI variation. They were likely to be found at the edges (be-

ginning and end) of each data collection period, and also occasionally within the

day (e.g. when retrieving badges ahead of a sports session then equipping the chil-

dren again), so sequences of signals were analysed both forwards and backwards.

During this procedure we applied a 1 minute window with a 20 seconds offset,

thereby avoiding to delete longer periods because of a single strong RSSI value.

In the forward analysis, we first spotted the first signal (with the earliest times-

tamp) to define the ‘initial time’ t0. Within a 1 minute window starting from t0,

we scanned signals chronologically to detect signals with RSSI > −45 dBm. That

threshold was chosen based on the observation that this level of signal intensity is

rarely observed even when badges are 10 cm away from each other (see Fig. 2.1b),

and actually never observed in natural settings during regular class activities (see

Fig. 2.1c). Then:

− if none were found, this initial time t0 was kept untouched (it meant that the

badge was already in use)
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Figure 2.2: Illustration of the issues detected during pre-processing. On all these
panels, each black dot represents a signal, and colour shaded areas show the prob-
lematic signals spotted by each procedure: (a) Issue 2 detected (red area) on a half-
day file after initial data cleaning. The signals in the red area were subsequently
removed; (b) Issue 3 detected (orange area) within the remaining signals from sub-
plot a; (c) Issue 4 detected (yellow area) within the remaining signals from subplot
b, and (d) remaining signals from subplot c constituting the final half-day file with
cleaned signal sequence (i.e. pre-processed data).

− if a signal with RSSI > −45 dBm was found, then its timestamp was defined

as ‘strong signal time’ ts. The script continued to look for signals with RSSI

> −45 dBm, and updated ts every time a new strong signal was found within

the 1 minute window.

− once we reached the end of this 1 minute window, we continued to update

ts only if a new strong signal was found not later than 20 seconds from the

previous ts.

We applied this procedure the same way for the backwards analysis, but the other

way round: a final 1 minute window was defined at the end of each data clip,

signals with RSSI > −45 dBm were searched to define ts, and a step of 20 seconds

was applied when the analysis continued backwards outside of the final 1 minute

window.

These four issues were detected and treated in the order presented above. The

effects of the data pre-processing pipeline are evident from Fig. 2.2, where issues

are detected step-by-step on an example of a half-day signal sequence. After solv-

ing all the issues we listed above, we obtained pre-processed data sequences for

164 children and 32 adults over 50 days during 10 weeks in the 10 months of

the academic year. We used these pre-processed data as input to reconstruct the

temporal network of real social interactions and to identify class-time and free-

playtime periods during each day for each class.
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2.3 Summary

In this chapter first I introduced the DyLNet project with its motivation, aim and

experiment settings. This was followed by the detailed explanation on the collec-

tion procedure and results of four types of data: transactional data, ground truth

data, socio-demographic survey data and linguistic data, which provided materi-

als of studies in following chapters. Furthermore, four types of identified anoma-

lous were discussed in the transactional data after comparing it with data recorded

in regular situation. For each anomalous behaviour we developed corresponding

methods to remove meaningless and corrupted signals to minimise their impact.

These work has been summarised in [ Dai et al. (2022)], with sample data of one

year and corresponding code available on request.



Chapter 3

Network and Activity Reconstruction

In this chapter I describe my work summarised in the papers [Dai et al. (2020;

2022)]. In this work we first explored several pipelines of event reconstruction

using machine learning methods on sequential data. Then we simulated informa-

tion spreading on the reconstructed networks obtained by different reconstruction

methods. The results showed that network reconstructed in different ways may

lead to significantly similar spreading dynamics, even if their network reconstruc-

tion accuracy was very different, which demonstrated the importance of precise

network reconstruction and the careful choice of the reconstruction method. Fur-

thermore, after we reconstruct the temporal networks, we designed a method to

distinguish data collected in free- and class-time, which is essential due to their

different interaction patterns. Finally in order to conduct homophily analysis, we

developed algorithms to group class according to their mutual presence of free-

time, and remove fragmentary groups with small duration.

3.1 Temporal Network Reconstruction

The precise observation of the dynamics of face-to-face interactions of people have

been a major challenge in social studies [Goffman (2017)]. Such observations were

commonly limited to small-scale observations for short periods of time [Duncan

and Fiske (2015)]. Recently developed new technologies of wearable wireless de-

vices made possible a giant leap in this direction, as they allowed for large-scale

experiments to observe offline interactions in multiple settings. However, using

the collected data streams, the reconstruction methods of temporal interactions

were commonly based on naïve assumptions [Cattuto et al. (2010), Elmer et al.

(2018)], which may seem convenient at first, but have indisputable consequences

on the reconstructed event structure and any observed process taking place on it.

42
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To bridge this shortcoming, by focusing on the proximity data collected by DyLNet,

and relying on ground truth data recorded simultaneously in controlled settings,

we explore several supervised reconstruction methods of the temporal social inter-

actions. As demonstrated in Fig. 3.1, first we build a binary interaction sequence

from the raw data of packet exchange between the LPW badges of a pair of individ-

uals, and then use it to reconstruct the time and duration of the mutual interactions

among the participants in order to obtain a temporal network representation of the

social interaction dynamics. As we explain in Section 3.1.2.1, we translate the first

level problem to a regression task, while in Section 3.1.2.2 we explore multiple

naïve and advanced statistical learning methods to solve the final reconstruction

problem of the dynamical interaction sequences. Further, in Section 3.1.3, via data-

driven simulation of spreading processes, we demonstrate that while commonly

used naïve reconstruction methods consistently overestimate the number of inter-

actions, using advanced statistical learning methods, even a minor improvement

in the reconstruction performance can have radical effects on the dynamics of an

ongoing process.
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Figure 3.1: Temporal network reconstruction pipeline. Starting (a) from mu-
tually observed packets of pairs of LPWD tags, (b) we train models using the
raw and annotated data to (c) reconstruct interaction and non-interaction pe-
riods between individuals to (d) reconstruct events and ultimately (e,f) build
a temporal network.
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3.1.1 Environmental dependencies and parameters

During the experiments, each badge recorded a time-stamped sequence of packets,

which were broadcast by other badges in its vicinity. More precisely, a sequence

recorded by a given badge consists of (t, ID, RSSI) tuples, where t is the time of

observation, ID is the unique identifier of the observed badge, and RSSI is the

received signal strength indicator of the observed packet transmitted as a radio

signal. In Fig. 3.2a we show the distribution of RSSI values recorded over a week

(24 hours, 196 badges). Values were observed between −24 and −94 dBm with a bi-

modal distribution. One peak, above −45 dBm, corresponds to the situation when

badges are stored in a box close to each other thus communicating with strong

radio signals. The other peak, below −75 dBm, corresponds to any other obser-

vations, including ones capturing real social interactions with an −94 dBm ceiling

value hardwired in the badges configuration. Observed RSSI values can depend

on external factors like distance, body orientation, battery status, or humidity con-

ditions. While battery status should not be an issue here as badges are charged

overnight, and we can control for distance and orientation (as explained below),

we cannot account for changing weather conditions, which can cause some fluc-

tuations in our measurements. In addition, the potential conflict of signals within

1µs may induce accidental loss of observed packet in case of interactions within

large social groups.

Social as well as verbal interactions depend upon the relative distance and ori-

entation of the participants, which should be reflected by the RSSI values of cap-

tured packets in our experiments. The strength of transmitted radio signals de-

pends on distance and orientation as they are effectively absorbed by the water of

the human body. These dependencies are demonstrated by the measurements de-

picted in Fig. 2.1c and 3.2b. There, in panel Fig. 2.1c, the density plot of RSSI values

(y-axis) of captured packets shows a non-linear negative correlation with the dis-

tance between participants (x-axis). This measure suggests, for a realistic distance

of maximum 1.5 − 2 meters for verbal interactions, a corresponding RSSI range

between −70 · · · − 75 dBm, while high intensity regions for lower RSSI values are

due to noise and situations of close, non-interacting proximities. This is verified

by other measures based on GT2 dataset (see panel Fig. 3.2b), where RSSI values

remain within this range for several orientations and radically change only when

participants are back to back to each other. However, only visually inspecting these

results, it is very difficult to determine a precise RSSI threshold separating real and
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Figure 3.2: LPWD packet statistics. Panel (a) shows the distribution of RSSI
values (bin-width = 3) observed by single badges over a week (24 hours, 196
badges); (c) Recorded RSSI values as a function of time in settings where the
relative orientation of participants has been changed (based on GT2 dataset ;
position FF : face to face, SS : side by side, BB : back to back ; distance : 10cm,
1m, 2m.)

false social interactions. To better solve this task, next we frame this question as

a classification problem to distinguish between packets indicating real and false

social interactions that we can use then to reconstruct the temporal network.

3.1.2 Temporal network reconstruction

In our pipeline, we are going to reconstruct the temporal network from raw data

in five main steps, as demonstrated in Fig. 3.1. First, we discuss how to arrive

from the recorded data to a handshake pair sequence, whose items indicate mutual

handshakes between interacting badges. Then we perform a binary state classifi-

cation process, turning handshake pair sequence into the binary sequence where

each item indicates mutual social interaction state. Finally, we propose several

methods to reconstruct the real dyadic temporal interactions with duration, which

in turn provides us with a temporal network capturing time-varying interactions

between a larger group of individuals.

We separate the binary state classification step from event reconstructions as

our first goal was to create a binary sequence of interactions from the raw data

that we can apply earlier defined methods on. In addition, we found this ap-

proach necessary as we identified two potential sources of errors effective dur-
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ing the reconstruction process. One is due to the fluctuations of recorded signal

strengths of transmitted packets, while the other is caused by packet loss or in-

ferences, which induce uncertainties in present or absent handshake pairs. This

second type of errors makes it difficult to reconstruct events with longer dura-

tion, a problem for which earlier studies provided overly simplified heuristic solu-

tions only with limited precision. We will explore various methods relying on this

two-steps approach, but show also a method, which solves the problem at once

by taking packets with signal strength values as input and directly reconstructing

temporal interactions with duration.

3.1.2.1 Binary signal reconstruction

Physical proximity between two participants, A and B, within the right distance

range and orientation should appear as a sequence of consecutive mutual ‘hand-

shakes’ of badges for the duration of their interaction. To obtain the sequence of

these handshakes, we take the sequences of packets observed by the badges of A

and B and match those packets, which correspond to the mutual observation of

the two participants. In other words, since packets are transmitted every 5 sec-

onds, we match two packets into a single handshake event (see Fig. 3.1b) if they

appear within ±2.5 seconds to each other and they refer to the opposite ID (for A

from B and for B from A). Missing packets are also recorded in the handshake se-

quence (see Fig. 3.1b empty red arrows) and are assigned a default RSSI value, −95

dBm, out of the possible RSSI range, that we can easily distinguish from observed

packets. To clearly distinguish ‘fake signal’ from ‘real signal’, we appended one

item called ‘pair_state’ to each handshake RSSI pair to indicate the number of ‘real

signals’ in the pair. This variable can take values 0, 1 or 2, and it enables to code for

the presence of ‘fake signals’ while keeping the normalisation of RSSI values possi-

ble for the coming reconstruction methods. Thus the encoding of each handshake

pair becomes a vector (RSSIA, RSSIB, pair_state), forming a sequence of hand-

shake events recording all information for the reconstruction task. A handshake

signal with appended fake signal is shown in Fig. 3.3.

In order to determine if a handshake pair should be considered as a state of

social interaction, we use GT1 where we recorded the start and end time of each

social interaction so that we could mark each handshake pair as interaction or non-

interaction event. This is shown in Fig. 3.4a, where we plot handshake pairs using

their RSSI values as coordinates. Colours code a handshake being an interaction

(green) or non-interaction (red). Since different handshake pairs could appear with
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Figure 3.3: (a) is handshake pairs sequence, where signal of different direction
marked by arrow’s point. The y-axis shows signal strength (RSSI). (b) presents the
same raw signal, but with patched “fake signal” marked by red arrow.

Figure 3.4: Reconstructing binary sequences and interactions. (a) Scatter plot
of RSSI values of pairs of interacting (green) and non-interacting (red) badges
observed in GT1, with decision boundary presented as grey line; (b-d) Demon-
stration of reconstruction strategies of (b) an observed binary sequence of in-
teractions using (c) a naïve method with gap = 1 threshold, (d) a HMM with
window size win = 3 and (e) a BiLSTM with window size win = 3.

the same RSSI values but different interaction states, in Fig. 3.4a we represent with

a small pie chart their fraction at a given location (magnified example pointed by

black arrow). The strong diagonal component indicates that the RSSI values of mu-

tual observations are very similar to each other as expected, while the interactions

seem to separate from non-interactions around ∼ −70 dBm, which corresponds

well to the earlier estimated threshold range. To solve this classification problem

in a more systematic way, we trained a logistic regression model on the annotated

GT1 dataset. As input we gave vectors of handshake pairs and we used their an-
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notated labels for the training task. As output we received a probability for each

state to be a real social interaction and we thresholded this probability at 0.5 to as-

sign 0/1 states to each handshake pair. The obtained decision boundary is shown

as a grey line in Fig. 3.4a, which appears to be linear, except close to the bound-

aries where saw-teeth appears due to the two dimensional projection of a three

dimensional decision surface. With this method we reached a 77.28% accuracy

with 10-fold cross validation (for further details see Table 3.1) to classify a hand-

shake pair as real social interaction or not. This way we can turn our sequence of

handshakes into a binary signal (demonstrated in Fig. 3.1c), by assigning 1/0 to

interaction and non-interaction events in every 5 seconds.

Table 3.1: Confusion matrix with accuracy for logistic regression to reconstruct
binary signals.

acc.=0.7728 contact no-contact

contact 0.7728 0.2272
no-contact 0.2272 0.7728

3.1.2.2 Interaction state reconstruction methods

Using the obtained binary sequences, what we call now on un-reconstructed se-

quences, our next task is to reconstruct the real interactions, which appeared be-

tween pairs of participants. The general problem here is to identify false interac-

tion events, which were induced by interference and thus should appear as ac-

tual non-interactions, and reconstruct true ones, which were missed due to packet

loss. As this is the most challenging task in our methodological pipeline, we are

going to follow three different methodological tracks. We will start with a naïve

approach commonly used in the literature, then we will explore variants of the

Hidden Markov model (HMM) and the Long Short-Term Memory (LSTM) model

to find the best solution for this dynamical reconstruction task. Note that while the

naïve method only reconstructs interaction periods, the two learning methods nat-

urally adapt to the inverse problem and also reconstruct non-interacting periods

with falsely observed interactions in the middle.

Naïve reconstruction model

Consecutive binary signals in a sequence (following each other in 5 seconds

here) can be merged into long interaction periods (we call them events) with dura-

tion equal to the length of the continuous interaction. These events are separated
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by non-interaction gaps. If such a non-interaction gap is induced by an acciden-

tal packet loss, it is assuming to be very short. On the other hand, if it is due to

a real break of social engagement, it may occupy a longer period. Based on this

assumption we can design a very simple reconstruction method, where we merge

two interaction periods if they are separated only by a sequence of non-interaction

events shorter than a given gap threshold value. This naïve reconstruction method

is demonstrated in Fig. 3.4c, where we assume with gap = 1 to reconstruct the

sequence observed in Fig. 3.4b. This method has been used conventionally in

most of the RFID social experiments so far, typically choosing the threshold to

be gap = 0, thus merging only directly consecutive interaction packets (what we

call non-reconstructed method here) or gap = 1 corresponding to a gap smaller

than 40 seconds. This choice has been challenged recently by [Elmer et al. (2018)],

who identified the optimal threshold being 75 seconds for the best reconstruction

accuracy.

Hidden Markov model

The second reconstruction method we chose is the Hidden Markov Model that

has been introduced in Section 1.4.2. To set the parameters for HMM with super-

vised learning method we used the GT1 dataset with the annotated states of hand-

shake sequences as states sequence, and the sequence of binary states (explained

in Section 3.1.2.1) as the observations. After training on the annotated data (GT1),

we determined the values of the conditional transition probability of hidden states

as transition matrix, conditional emission probability from hidden states to obser-

vation states as emission matrix and the initial states probability as start matrix. In

turn, we used these as parameters for the Viterbi algorithm to solve the most likely

sequence problem and use the output as the reconstructed sequence.

To enrich the information coded in the input sequence, instead of providing a

sequence of binary values for each time step, we define a backward window, which

contains some short term information before the actual state being reconstructed.

More precisely, as demonstrated in Fig. 3.4d, we define a tuple of win number

items (there win = 3), where the last one is yet the state to reconstruct while the

others are the previous states in the sequence. Applying these envelop definitions

to a unit of binary state sequence, we create an envelop with backward signals for

each signal, thus transforming a binary state sequence into an embedded envelop

sequence. Subsequently, we use these transformed envelops instead of binary sig-

nals to define the hidden states, observation states, as well as determining all the
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matrices. Finally, as an output of the Viterbi algorithm we obtain a sequence of en-

velops, with last item of each envelop as the predicted interaction/non-interaction

state of each time step. Note that we tried multiple other envelop methods (not

reported here) coding different distance information between actual and last inter-

action packets but received worst performance than in the actual case.

Bidirectional LSTM model

The Hidden Markov Model has two limitations in terms of reconstructing the

real interaction signal. First, it can only consider states from the past, while states

in the future may be also important for the actual state to predict. Second, it is a

Markov model thus it can consider only short-term temporal correlations between

the actual and previous states. We tried to overcome this shortcoming by intro-

ducing longer observation windows for each state, which helped to learn longer

temporal correlations yet they were very limited to the actual window size.

Bidirectional recurrent neural networks propose simultaneous solutions to these

two problems as they can be trained using input information in the past and fu-

ture of a specific time frame [Schuster and Paliwal (1997)] (for demonstration see

Fig. 3.4e). Especially the Bidirectional Long Short-Term Memory (BiLSTM) model

has been shown to perform well on dynamical signal reconstruction (for more de-

tail in Section 1.4.3). This model was initially adopted in speech recognition and

showed to improve model performance on sequence classification problems. In

practise, it trains two LSTM models on a complete input sequence from opposite

directions, one on the input sequence as it is, and another on a reversed copy. The

output of each time step from the two LSTM models are merged and passed to

the next layer, this way providing some additional context to perform the learning

task better.

We applied this model in three different settings to find the best performing

one. In one case, that we call BiLSTM-bin, the input of the model was a sequence

of binary states we obtained from the classifier’s binary output as explained in Sec-

tion 3.1.2.1. In the second setting, that we call BiLSTM-logi, the input sequence was

also generated from the classifier but, instead of binary states, it was a sequence of

probabilities obtained as the direct output of the logistic regression before thresh-

olding it. Finally, the third case, that we call BiLSTM-RSSI, is not relying on the

sequence of classified states, but instead it takes directly sequences of encoded

handshake pair vectors (RSSIA, RSSIB, pair_state). This solution has the advan-

tage to skip one step of the reconstruction pipeline and to use a more complex set
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of information, but it needs to solve the same problem using noisy RSSI signals

without pre-processing.

3.1.2.3 Event reconstruction

To train all these models we used GT1 since it was recorded in the most realistic set-

ting. These data were built from 7 observation clips of 1290, 3060, 3200, 1230, 1740,

1350 and 1030 sec, covering 3 hours 35 minutes combined. For training and valida-

tion purposes, we divided evenly observations longer than 3000 seconds (2 clips)

into 3 shorter periods, and retained 10 observation clips all with length between

1000 and 1740 seconds (for a total of 3 hours and 18 minutes since we discard small

clip with corruption). To determine the best hyper-parameter set for each method,

we applied a nested cross validation strategy. In the outer loop, we selected one

clip (each of them once) for testing purposes thus we kept it out from the training

of the model at this round. From the remaining 9 clips we perform the traditional

9-fold cross validation. Considering all combinations, we could compute the aver-

age accuracy over 9 possible divisions of training-validation sets in order to screen

hyper-parameter dependencies. Subsequently, we could repeat it 10 times to ob-

tain the average test accuracy with the selected best hyper-parameters. Note that

while computing averages we took into account the variance in length of the actual

clips used for validation or testing.

Hyper-parameters

All BiLSTM models have two hyper-parameters to define their architecture, the

number of hidden neurons and hidden layers. In our computations, we decided

to use all architectures with a single hidden layer, which was a sufficient choice

for the relatively small training data we have. At the same time, with grid search

we explored the dependency of the models on the number of hidden neurons. The

results summarised in Appendix A.2 suggested that the performance of the models

were weakly depending on this hyper-parameter, but suggested different optimal

values for their best performance as summarised in Table 3.2.

The most important hyper-parameter controlling the performance of all of the

methods was the window size, which determined the length of temporal corre-

lation a given method could consider. For the naïve model, this window can be

associated with the gap parameter (see Fig. 3.4c). In case of the HMM model, as

shown in Fig. 3.4d, it is the size of the window that the model considers from the

past to infer the actual state. Finally for the BiLSTM models, this window was
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Table 3.2: Selected optimal hyper-parameters as number (No.) of hidden neurons,
optimal (Opt.) window size, average test accuracy values, and the corresponding
standard deviations for each model.

unrec naïve HMM BiLSTM-
bin

BiLSTM-
logi

BiLSTM-
RSSI

No. hidden neurons - - - 64 16 32
Opt. window size 0 6 6 27 25 27
Average accuracy 77.28 % 83.36% 84.25% 88.34% 89.02% 90.03%

Standard deviation 14.91% 12.11% 11.67% 9.55% 9.36% 8.99%

defined as an envelope of equal number of states before (past) and after (future)

relative to the actual state to reconstruct (see Fig. 3.4e).

To choose the best window size, we took it as a parameter to compute the

dependency of average accuracy values over the validation sets. As results in

Fig. 3.5a depict, the reconstruction accuracy of each of the models shows strong

dependency on the selected window size. First, in the case of the naïve method,

by increasing the filled non-interaction gap size the accuracy reaches a maximum

at gap = 61. This corresponds to a gap length of 35 seconds, which is somewhat

smaller than the gap window size of 75 seconds reported by [Elmer et al. (2018)]

on another RFID dataset. In the case of the HMM model, the best performance cor-

responds to the same window size win = 6. For the BiLSTM models, the accuracy

increases with the window size but reaches a plateau at window size win = 27 for

the BiLSTM-bin, win = 25 for the BiLSTM-logi, and win = 27 for the BiLSTM-RSSI,

after which the reconstruction accuracy decreases.

Performance of network reconstruction

After computing the average accuracy values over the test sets, surprisingly all

methods performed relatively well the reconstruction task (see Table 3.2 and Ap-

pendix A.2 for the confusion matrices). Even the unreconstructed sequence (abbr.

as “unrec” in the tables and figures) reaches a surprisingly high accuracy of 77.28%.

On the other hand, the naïve method, commonly used in other studies, performs

significantly better with 83.36%, closely matching the performance (84.25%) of the

considerably more complicated model of HMM. It is evident, however, that from

all tested models, the BiLSTM methods perform the best to solve the temporal net-

work reconstruction. They all provide accuracy at least 4% better than any other

method reaching 88.34% for the BiLSTM-bin method, closely matching the values

1Note that in case the threshold was gap = 0, we obtain the unreconstructed sequence.
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(a) (b)

Figure 3.5: Accuracy of temporal network reconstruction (a) Average accu-
racy values as a function of window size for the naïve, HMM, BiLSTM-bin,
BiLSTM-logi and BiLSTM-RSSI models, with fixed number of hidden neu-
rons for BiLSTM models as summarised in Table 3.2. (b) Distribution of accu-
racy values shown as box-plots for the different models with optimal hyper-
parameters values summarised in Table 3.2. Horizontal white bar inside box
is median and white star is average.

of 89.02% and 90.03% for the BiLSTM-logi and BiLSTM-RSSI methods respectively.

More importantly, the best performing BiLSTM methods are also the ones pro-

viding accuracy values with the smallest fluctuations over the different test cases.

This is reflected by the standard deviation values reported in Fig. 3.5b and Table 3.2

where all performance measures are summarised. In summary, these results sug-

gest that the pipelines with the binary classification and logistic regression provide

one of the best performances, but the BiLSTM-RSSI model trained directly on the

RSSI values of interaction pairs provide just as good but simpler solution.

The reconstructed temporal network

The different models we introduced may reconstruct the temporal network

with different characteristics. First of all, difference may arise as some models

would label the same event to be present and some others as being absent inter-

action. This can be easily demonstrated by looking at the rates of reconstructed

interactions by each model, as shown in Fig. 3.6a for a single morning period (3

hours). There, evidently, the highest event rate appears for the unreconstructed

signal (naïve method with gap = 0) where we only merge consecutive packets

labelled as interactions by the binary classifier. Relative to the unreconstructed se-

quence, each reconstruction method reduces considerably the rate of identified in-

teraction events. The naïve method, being still a very simple model, which merges

events maximum 30 seconds apart, appears with the second highest event rate.
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Subsequently, the HMM method provides a lower event rate while BiLSTM-logi,

BiLSTM-bin and BiLSTM-RSSI methods are closely grouped with lowest rates, re-

constructing about four times less events than in the unreconstructed case. The

detailed data is listed in Table 3.3.

Figure 3.6: Characterisation of the reconstructed network. (a) Number of
events per minute reconstructed by different methods (for colours see key).
(b) Inter-event time distribution between original and reconstructed event on
single links. (c) Distribution of the duration of interactions. Dashed lines on
panels (b) and (c) depict approximating power-law functions with exponents
1.8 and 2.1 respectively. (d) Weighted static representation of a reconstructed
network using the BiLSTM-RSSI method. Here link widths are proportional to
the time spent together when both nodes were present and node sizes are pro-
portional to node degrees. Nodes are coloured according to the original class
partitions with darker nodes indicating adults (teachers, assistants or interns).
For better visualisation we removed links which correspond to the weakest 3%
of weights.

Despite these large differences in the reconstructed volume, the P (τ) inter-

event time distributions between interactions on single links (shown in Fig. 3.6b)

and the P (dur) distribution of duration of interactions (Fig. 3.6c) appear with very

similar shapes. These distributions all depict broad tails ranging over several or-

ders of magnitudes and can be approximated well with power-law functions with

exponents of α = 1.8 and γ = 2.1 respectively. Interestingly, this scaling is very

similar to earlier observations in independent RFID studies [Zhao et al. (2011),

Cattuto et al. (2010)]. In one way, this match verifies our experimental setting

and observations, and at the same time it suggests that heterogeneity present in
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Table 3.3: Event numbers of temporal networks reconstructed by different meth-
ods. The percentages shows the ratio of reconstructed temporal networks’ event
numbers to the unreconstructed temporal network’s event number.

unrec naïve HMM BiLSTM-
bin

BiLSTM-
logi

BiLSTM-
RSSI

number of events 715,702 271,567 195,908 130,903 115,230 87,592
% of unreconstructed
event number

100% 37.94% 27.37% 18.29% 16.10% 12.23%

the interaction dynamics of face-to-face interactions may be universal with similar

characteristics in independent systems.

To demonstrate the structure of the reconstructed network, we chose the BiLSTM-

RSSI method as it was one of the best performing models with the smallest vari-

ance in accuracy. Using this method, we reconstructed the events recorded in five

consecutive mornings (15 hours observation combined) for 165 children and 25

adults (teachers, assistants and interns), and aggregated the obtained interaction

sequences into a static network structure. Link weights in this representation were

defined as per hour interaction rates between participants. This network is visu-

alised in Fig. 3.6d where we draw links with width proportional to the time the

connected nodes interacted during periods when they were both present. The size

of the nodes reflects their degrees, while their colours are associated to the class

they belong to (with darker colours indicating teachers, assistants and interns).

This network structure appears with several interesting characteristics. First of all,

the network is heterogeneous in degree, which is a common characteristic of social

networks. Second of all, it well recovers the expected community structure where

children of the same class connect densely together including the teaching staff in

charge of that group.

3.1.3 Spreading processes on reconstructed networks

Temporal social interactions are far from being random but highly correlated in

time and structure. They are characterised by heterogeneous bursty dynamics [Kar-

sai et al. (2018)], which potentially appear due to causal correlations between events.

Such causally related adjacent events, sharing at least one person in common, build

long time respecting paths [Holme and Saramäki (2012), Kivelä et al. (2018)], which

are extremely important as they determine how information/epidemics/influence

can flow in the temporal network.
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Consequently, the precise inference of temporal interactions in a network is ex-

tremely important not only to study the emergent structure but any ongoing pro-

cess, like language evolution or information spreading or epidemics. To demon-

strate this issue, here we take all the different event reconstruction methods we

explored, and study how the temporal networks reconstructed in different ways

influence the dynamics of a simple information spreading process. More precisely,

we use the susceptible-infected (SI) model [Barrat et al. (2008)] as one of the sim-

plest prototypical models of information spreading, which in turn can be used to

simulate the fastest possible spreading under certain conditions. This model, de-

fined on temporal networks, assumes that each node in the network initially is in

susceptible state except for a single randomly selected node, which was set to be

infected initially at a randomly selected time. Infection can be transferred with

rate β from an infected to a susceptible node (i.e. S
β
−→ I) only at the time and

direction of their temporal interactions. In case β = 1 the model is equivalent to

a breadth-first-search process realising the fastest possible information spreading

scenario with given initial conditions in the actual temporal network. However,

if β < 1, the process would be arguably less sensitive to local fluctuations in the

temporal networks, as it could take alternative routes than the shortest paths to

reach nodes, thus would spread slower on the same network. Note that due to the

finite observation period of temporal interactions, in our simulation we divided

a 150 minutes long observation period into a 30 minutes and a 120 minutes time

windows. We selected 800 random seeds from the first window and simulated the

SI process for 120 minutes in each case. This way we obtained simulated spreading

curves with the same length that we could easily average.

To depict our simulation results, in Fig. 3.7a we show the average spreading

curves for each model for β = 1 case, while in the inset for lower β values the

average times the process reached 90% infection on each reconstructed networks.

Fig. 3.7b shows the corresponding distributions of time to reach 90% infection in

each case, again when β = 1. All these results indeed demonstrate large differ-

ences between spreading dynamics simulated on temporal networks reconstructed

with the different methods, despite they all relied on the same raw observation se-

quences. Not surprisingly, in general, the speed of spreading is largely determined

by the overall number of events that the different models reconstructed, as already

shown in Fig. 3.6a. Larger number of interactions means larger number of possi-

ble transitions between the same set of nodes and over the same period. Following

this logic, not surprisingly the unreconstructed network spread the infection the
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(a) (b)

Figure 3.7: Characterisation of information spreading on reconstructed net-
works. (a) Average spreading curves of susceptible-infected processes with
β = 1 simulated on different reconstructed temporal networks as indicated in
the key. Inset shows the β dependencies of the speed of spreading processes
measured as the average t90% 90% infection time. (b) Distributions of 90% in-
fection times as box-plots for the different reconstruction methods in case of
β = 1. Distribution averages are represented by stars. For the parameters of
the SI simulations see the main text.

fastest, while BiLSTM models were the slowest. However, there is an important

exceptions, which reflects our main conclusion here. The naïve method reduced by

more than ∼ 90% the event rates as compared to the unreconstructed sequence, but

when it turns to disseminating information, this seems to make no difference. It is

suggested by the corresponding spreading curves in Fig. 3.7a, which are almost in-

distinguishable, and by the distributions of 90% infection time which appear with

almost the same average and standard deviation (see Fig. 3.7b). At the same time,

these results seem to be consistent over a range of β values. From Fig. 3.7a inset it

is evident that at small β values the spreading is strongly stochastic, fluctuations

are very large, and the process takes a long time to spread. However, as we in-

crease β the spreading becomes faster on each network. More importantly, after

an initial β regime, the spreading processes evolve with similar relative speeds on

the different structures as observed in case of the deterministic β = 1 case. This

indicates that even for stochastic settings (β < 1) the dynamical process is sensitive

to the precise reconstruction of the underlying temporal network.

In conclusion, when using wireless proximity sensors to capture temporal in-

teractions, (a) it is very important to carefully reconstruct events from the raw data

and not only rely on simplistic intuitive conditions, otherwise the constructed tem-

poral network will be biased by noise and overestimated event rates and will lead

to unreliable outcomes of simulated dynamical processes; and (b) it is not enough



3.1. TEMPORAL NETWORK RECONSTRUCTION 58

to choose the best reconstruction method by its final accuracy, but it is crucial to

choose carefully the reconstruction pipeline, which balances between good recon-

struction performance and matching the purpose of the actual system under study.

3.1.4 Discussion

The goal of this work was manyfold. First, we developed a filtering and tempo-

ral network reconstruction pipeline to obtain the best approximation of temporal

social interaction sequences from proximity data recorded via wearable wireless

devices. We used ground truth data recorded in various settings and explored dif-

ferent reconstruction strategies involving supervised methods of classification and

sequence reconstruction. We found that, while all tested methods provide reason-

able performance, naïve methods commonly used in the literature show the worst

performance. At the same time, bi-directional LSTM methods, which take into ac-

count information from the past and future of the actually predicted state, solve

the reconstruction task the best, with accuracy up to ∼ 90%.

Furthermore, we wanted to highlight the importance of precise reconstruction

of temporal interactions from raw data. Over the last few years, experiments us-

ing wearable wireless devices provided an ideal way to study collective social

phenomena through the precise recording of temporal social interactions of peo-

ple/animals in various settings. At the same time, these datasets became induc-

tive resources to study ongoing dynamical processes such as epidemics [Stehlé

et al. (2011a), Chowdhury et al. (2009)], opinion dynamics [Maity et al. (2012)], etc.

evolving on the temporal social fabric. However, without the careful reconstruc-

tion of social interactions, any study addressing the dynamics or structure of the

evolving networks or any ongoing collective dynamics would risk to draw wrong

or inaccurate conclusions. We demonstrated the sensitivity of this issue by simu-

lating susceptible-infected processes on the reconstructed networks, which in turn

follow significantly different scenarios depending on the actual method used for

event reconstruction, even for those with comparable accuracy.

As any data-driven study intending to predict or infer human behaviour, our

study has also limitations. First of all, the collected data contains certain noise,

which cannot be reconstructed with any actual method. Noise is also inevitably

present in the ground truth data, which at the same time code only a finite set

of configurations used for training, while rare and exceptional scenarios may re-

main unobserved. These limitations together with the stochastic nature of human

behaviour lead to an always perfectible reconstruction of human traits of actions
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or interactions. Finally, although we payed special attention on de-noising, pre-

filtering, model selection, and the exploration of the hyper-parameter space of each

model, surely the optimal inference pipeline we identified is not universal but may

be different in the case of data from other wireless proximity sensors.

Beyond scientific merit, our results highlight the importance of the careful de-

sign of event reconstruction in studies using wireless sensors. We demonstrated

this in the case of LPWD based experiments recording social interactions, but it

is important more generally in any study relying on similar data collection meth-

ods. This way, we hope that our study contributes not only to the better design of

coming scientific studies but also to future emerging technologies.

3.2 Free/class-time Activity Separation

The school schedule assign free-time in the middle of each half-day, during such

period the restriction on behaviour and partners during class-time period are un-

restricted. Moreover, children from different classes will have the chance to mix.

Thus making it essential to distinguish the free-time and class-time once we have

reconstructed the temporal network. First I utilised the dynamic of signals to dis-

tinguish the period of free- and class-time, then in order to conduct homophily

analysis on different population, we designed an algorithm to keep track of class

mixture.

3.2.1 Free/class-time periods

While we distinguish between morning and afternoon periods in our data collec-

tion according to the school’s schedule, we can further divide these periods into

sub-periods when the children are in the classroom or in the schoolyard. These

two settings allow characteristically different interaction patterns for the partici-

pants. During class-time, children are limited to interact only with peers from their

own class. Moreover, they are commonly seated by the teacher in formations or

around a table, in which settings potential social interactions are even further re-

stricted. On the contrary, during free-time, children are free to choose to interact

with anyone else from their own or any other class, as long as they are present

in the schoolyard during the same free-time period. This allows for more spon-

taneous social interactions, and potentially larger mixing between children from

different classes, grades, genders and sociodemographic groups. As we explain
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next, we inferred for each social interaction whether it took place during a class-

or a free-time period and we share this information in the data as a feature of each

temporal network event.

To distinguish between class- and free-time for a given class, we define two

types of interactions, the first type is interaction that children had with peers be-

longing to the same class, which we call intra-class interactions and denoted as a.

The second type is interaction that children had with peers not belonging to their

own class, which we call inter-class interactions and denoted as b. For every 10

seconds, we counted the number of a and b, therefore resulting in two sequences:

A = {a1, a2, · · · , aT}; B = {b1, b2, · · · , bT} (3.1)

The fraction of these two counts for time t provided the inter/intra ratio, denoted as

rt =
bt
at , and by dividing the two sequence we could get the sequence of inter/intra

ratio R:

R = {r1, r2, · · · , rT}, rt =

⎧

⎨

⎩

bt
at
, at ̸= 0

2 ∗ Cr, at = 0

(3.2)

where Cr is the ratio threshold which we will explain later. This sequence R sensi-

tively reflects whether the children were in the classroom (the ratio takes low val-

ues) or having free-time (the ratio takes larger values). Indeed, the school sched-

ule was organised in such a way that pupils went out on free-time simultaneously

with age-peers (of similar grade), thus class-groups successively met in the yard in

group of 2 to 4 classes. This is demonstrated in Fig. 3.8a, where the inter/intra ratio

sequence R is shown as curves for the seven classes in the school during a usual

morning period.

As can be seen on that plot, spikes appeared frequently in the observed contact

numbers, which could cause false detection of free-time or class-time. To overcome

this, before computing the inter/intra ratio sequence R, we smoothed the number

of interactions using a Gaussian kernel with σ = 3:

K(x∗, xi) = exp(−
(x∗ − xi)

2

2σ2
) (3.3)

Therefore the at after smoothing will be:

Ŷ (at) =

N
∑

i=1

K(t, i)ai

N
∑

i=1

K(t, i)

(3.4)
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Figure 3.8: Free and class-time detection. (a) Examples of inter/intra ratios (as
curves) for one morning period for each of the seven classes with detected free-
time periods (green shaded areas) using the optimal hyperparameters. (b) Grid
search of the optimal hyperparameters of gap size and inter/intra ratio minimising
classification error (coded in blue colour). Optimal parameters correspond to the
smallest classification error and were found at gap = 600 seconds and ratio = 0.15,
respectively (marked by a red square).

We then developed a method which uses a ratio threshold, denoted as Cr to seg-

ment every half-day into class- and free-time periods for each class. For time-steps

with zero division problem, a default value was set at 2Cr. Sometimes, the ratio

signal fluctuates for short periods in the middle of long free- or class-time periods.

This could happen when children from one class in the schoolyard played close

to a classroom where other children were taking class. Similar fluctuations appear

when a class was leaving the schoolyard and another class stayed there alone for

a short period of time until being joined by yet another class. To filter these short

periods, we decided to bridge consecutive free-time (or class-time) periods of any

given class if these periods were separated by a fluctuating period shorter than

a gap threshold, denoted as Cg. To determine the best values of these two thresh-

old parameters (Cr and Cg), we used a grid search over an extensive range of the

parameter space, as shown in Fig. 3.8b.

To estimate the precision of a given parameter set, we compared the identified

free- or class-time periods to the ground truth data. We associated the ground truth

free-time period with its start and end time FT = [t, t′], and duration τFT = t′ − t.

Meanwhile, the corresponding inferred free-time period was between F̂ T = [t̂, t̂′]
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with duration τF̂ T . If F̂ T and FT overlapped, the overlapping period will be:

diff(F̂ T , FT ) = [max(t, t̂),min(t′, t̂′)] (3.5)

and its duration denoted as τdiff. Then we could defined error of free- and class-

time identification as:

err(F̂ T , FT ) = τF̂ T + τFT − 2τdiff (3.6)

The minimum error of free- and class-time identification (as compared to ground

truth observations, i.e. the recording of the actual schedule of the 7 classes on site,

over a four months sample of the data for morning periods) appeared for a ratio

threshold Cr of 0.15 and a gap threshold Cg of 600 seconds. The total error com-

puted for all classes with these two parameter values was 60, 768 seconds, which

is only 3.13% as compared to the total observation time of 1, 941, 000 seconds for

the four-month period considered. The identified free-time periods for a typical

morning session are demonstrated as shaded areas in Fig. 3.8a.

In most cases, this method resulted in the identification of free-time periods

shared by two or more classes, who were simultaneously in the yard, as expected

based on our knowledge of the school typical organisation. In few occasions though,

only one class was detected as being on free-time. A high inter/intra ratio could in-

deed occur when one class was on the move to the yard, children being spread out

in the corridor and passing by the other classrooms, thus having numerous short

contacts with pupils from other classes. During such periods where only one class

is out of its classroom, interactions among children can still be considered to be

restricted to peers from the same class. Thus, we applied a final correction that

consisted in aligning the detected free-time periods for the first two classes out in

the yard, and the last two classes leaving it, on every half-day. By doing so, we

retained only free-time periods where at least two class-groups were together out

in the playground, that is periods where pupils could possibly interact with peers

from other classes.

3.2.2 Reconstructed temporal network data with free/class-time

annotation

As introduced in Section 3.1.2, annotated ground truth dataset GT1 was used

to train the model to reconstruct events based on the pre-processed data. Fur-

thermore, since we distinguished between free-time and class-time for each class-

group, we annotated each event with four state labels Si
t S

i
t′ S

j
t Sj

t′ and a binary
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flag X . State labels are denoted Si
{t,t′} ∈ {F,C} where ‘F ’ and ‘C’ indicate free-

and class-time respectively. Si
t indicates whether i was in class-time or in free-time

at time t, while the binary flag X indicates whether i, j are from the same class or

not. For example, the event θ = (10, i, j, 40) and its corresponding label FCFC1

would refer to an interaction between two children i and j, belonging to the same

class (indicated by · · · · 1 at the end of the label). In this case, both of them were

in free-time at t = 10 when the interaction event started, as indicated by the first

and third letters (respectively F ·F ·). However, they were in class at the end of the

interaction event (at t′ = t + δ = 50) as indicated by the second and fourth letters

(respectively ·C · C).

Table 3.4: Free- and class-time events annotation statistics.

Type of interaction Count Count (%) Duration (sec) Duration (%)
CCCC1 604,065 81.32 66,472,625 88.04
FFFF1 63,009 8.48 4,011,285 5.31
FFFF0 50,878 6.85 2,716,530 3.60
CCCC0 15,347 2.07 1,180,295 1.56
FCFC1 2,641 0.36 343,315 0.45
CFCF1 2,567 0.35 481,575 0.64
FFCC0 1,650 0.22 70,735 0.09
CCFF0 1,007 0.14 39,095 0.05
FFFC0 350 0.05 37,130 0.05
CFFF0 308 0.04 37,795 0.05
FCFC0 213 0.03 31,955 0.04
FFCF0 208 0.03 30,240 0.04
FCFF0 196 0.03 22,030 0.03
CFCF0 146 0.02 12,860 0.02
FCCC0 90 0.01 5,405 0.01
CFCC0 67 0.01 4,695 0.01
CCCF0 52 0.01 3,490 0
CCFC0 45 0.01 1,935 0
CFFC0 5 0 2,205 0

In Table 3.4 we indicate the total count of each type of interaction that we in-

ferred for a sample dataset corresponding to one academic year (i.e. 10 weeks of

data), and the total duration of dyadic interactions they represent. Over the sam-

ple dataset, most frequently observed types of interactions were CCCC1 (81.32%

of the total number of interaction events, accounting for 18,465 hours of dyadic

contacts) corresponding to classmates interacting during class-time, and FFFF1
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(8.48%, i.e. 1,114 hours) corresponding to classmates interacting during free-time.

Less frequent patterns were FFFF0 (6.85%, i.e. 755 hours) corresponding to chil-

dren from different classes interacting during free-time, CCCC0 (2.07%, i.e. 328

hours) corresponding to children from different classes interacting during class-

time (e.g. visiting each other class, meeting in the corridor or in the lavatory), and

CFCF1 (0.35%, i.e. 134 hours) and FCFC1 (0.36%, i.e. 95 hours) corresponding to

classmates starting an interaction in class that continued in the yard or vice-versa.

3.2.3 Free-time class grouping

Once the free-time and class-time periods for each class are split, in order to con-

struct temporal network for free-time and class-time periods, the following step

should be allocating social interaction to the period it belongs to. Each interaction

has four elements: child_A, child_B, start_time and end_time, where time infor-

mation and kids involved should be used to assign them to different periods. The

easier task is to allocate interaction to class-time period: for a class C, an inter-

action belongs to C’s class-time period if start_time and end_time are within the

range of its class-time period and both kid_A ∈ C and kid_B ∈ C. Allocating in-

teraction to free-time period is however more subtle. Recall that multiple classes,

denoting the set of classes as Cft, could have free-time together, therefore an inter-

action should be allocated to free-time period if both kids are from class C ∈ Cft,

which requires us to gather free-time periods of all classes and group them into

ranges with unique associated classes. For instance, if free-time period of class Ca

is [0, 5] and free-time period of class Cb is [3, 8], ranges after splitting will be [0,3]

with {Ca}, [3,5] with {Ca, Cb} and [5,8] with {Cb}. This is also necessary when

analysing homophily during free-time since we need to consider the population

with different class compositions.

To split our morning and afternoon observation periods into shorter periods

associated to the actual list of classes on free-time together, we first defined a data

structure called action with three items: [type, tsp, class], where type is the start

(S) or end (E) of a free-time period, tsp is the timestamp of the action, and class

indicates to which class the action refers to. With the definition of action, each

free-time period could thus be represented as two actions: start action [Sa, tspSa
, Ca]

and end action [Ea, tspEa
, Ca] for class Ca for example. In addition, we needed to

compute the active_list to record active class(es) for each period (between a given

S and E). Actions of all classes were then sorted chronologically (note that end

action should appear prior to start action if their timestamps collide). Next, we
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went through the list to spot any action that would cause a change in the active

list. We could then define the range between the last action and a new action, as

well as their associated class(es). Detailed process is described in algorithm 1.

Algorithm 1: merge-split of free-time

input : chronologically sorted actions of all free-time periods
output: split ranges range_list, with associated class(es) of each range

classes_list
1 active_list ← ∅; range_list ← ∅; classes_list ← ∅
2 range_start ← 0; range_end ← 0
3 for act in actions :
4 if act.type = S then
5 if size(active_list) > 0 then
6 range_end ← act.tsp
7 if range_start ̸= range_end then
8 range_list.add([range_start, range_end])
9 classes_list.add(active_list)

10 end

11 end
12 active_list.add(act.class)
13 range_start ← act.tsp

14 else
15 range_end ← act.tsp
16 if range_start ̸= range_end then
17 range_list.add([range_start, range_end])
18 classes_list.add(active_list)

19 end
20 active_list.remove(act.class)
21 if size(active_list) > 0 then
22 range_start ← act.tsp
23 end

24 end

25 end

3.2.4 Boundary corrections for free-time class group

We noticed that some fragmented ranges, which we call unstable ranges, that would

be generated after aforementioned process, mostly due to the case that start/end of

free-time periods of different classes are very close. Social interactions during this

period is likely to be inadvertent so it is more surefooted to remove interactions
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within these unstable ranges. Also, in order to preserve more meaningful interac-

tions in unstable ranges, we don not simply remove all interactions in these small

ranges. We use a scheme as shown in Fig. 3.9a where A, B are two classes, S, E is

start and end action respectively, marked by vertical dashed line. Horizontal lines

represent free-time period of corresponding class. For unstable range formed by :

1. two start actions, we postpone the tsp of the first start action to tsp of the second

one; 2. first a start action then an end action, we bring forward the tsp of the end

start action to tsp of the start action; 3. two end actions, we bring forward the tsp of

the second end action to tsp of the earlier one. We sort unstable ranges by size and

iterate from short to long until no more unstable range exists. Like the problem in

Section 3.2.1, here we have to decide how short is the range to be considered as an

unstable range, the curve of duration and number of left ranges when threshold

changes is plotted in Fig. 3.9b. It could be seen that there are not much (< 10%)

data lost even with threshold of 300 seconds (less than 20000 seconds lost out of

205000 seconds), so we took a middle value of 3 minutes so that when we will not

risk deleting many real social interactions.

Figure 3.9: Illustration of boundary corrections. (a) Strategies for removing short
overhanging segments indicated between the two red dashed lines in the top pan-
els: panels I present the case of non-matching beginnings, panels II show the case
of overlapping beginning and end times, and panels III present the case of non-
overlapping endings of free-time periods and their corrections. (b) Loss of total
free-time duration and number of free-time segments. The dashed line indicates
the selected time threshold of 180 second corresponding to ∼ 50% segment num-
ber loss and only ∼ 5% total duration loss.

After process above, free-time periods and class-time periods are separated,

classes are also properly grouped. Since the social behaviour and language devel-

opment is a process of gradual change, hence we do not need to keep a very high

temporal resolution and it is advisable to merge meaningful interactions into ag-

gregated networks. For each free-time period, interactions within period of each

class group could be merged into a network that includes all children from the
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group of classes, the link weight is defined as the summation of duration of inter-

actions since it contains more information. Interactions within class-time periods

on the other hand, should be divided into 7 different networks since each class

during class-time is a network with its children as nodes. An example of class

grouping and boundary corrections result is shown in Fig. 3.10.

Figure 3.10: Example of boundary correction result. Blue lines are the original free-
time for each class, green lines are free-time after boundary correction. Raw is the
result after free-time class grouping. Stable is the result after boundary correction,
different colours represent different class grouping, which is labelled on top-right.
The vertical red dashed lines mark the start and end of free-time of each classes

3.3 Technical Validation

To validate the structure and dynamics of the inferred social temporal network,

we present here some frequently used statistics about the unreconstructed and re-

constructed temporal structures. Note that although some of these network char-

acters have been discussed in Section 3.1.2.3, but here we discuss with more focus

and additional information. For this presentation, we randomly chose a week in

the dataset and aggregated its morning periods into a sample network. First, the

distribution of event duration, presented in Fig. 3.11a, appears with fat tails for

both unreconstructed and reconstructed networks, similar to earlier observations

made in independent systems Zhao et al. (2011). However, while the distribu-

tion corresponding to the unreconstructed network decreases monotonously, the

distribution for the reconstructed network starts with a plateau (corresponding

to the range of 5 - 30 seconds). Moreover, probabilities for the first three dura-

tion values (5 - 15 seconds) are lower for the reconstructed network than for the

unreconstructed one. That reduced probability of short duration is due to the re-

construction method merging short events separated by short inter-event times
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into longer interactions, making low values less frequent. The reconstruction pro-

cess also accounts for the different scaling of the tails of the distributions. Indeed,

longer events appear with a higher probability and over a larger range in the case

of the reconstructed network.

Figure 3.11: Statistical characteristics of the observed social temporal networks.
(a) Distribution of event duration; (b) Distribution of inter-event times on links;
(c) Distribution of node degrees. Dark symbols and bars indicate the logarith-
mic binned distributions of the corresponding probability density functions (PDF)
(light symbols). Results are shown for the unreconstructed (orange) and the BiL-
STM reconstructed (blue) structures.

Similar differences can be observed for the inter-event time (IET) distributions

measured on links, which are shown in Fig. 3.11b. This metric measures the length

of time between the end of an event and the beginning of the next one for each pair

of interacting participants. Its scaling indicates how heterogeneous an activity se-

quence is in time. If it appears with a broad tail, it demonstrates that the observed

dynamic is bursty, thus characterised by short periods with events of short inter-

event times separated by long periods of inactivity. As it has been observed in

similar systems Zhao et al. (2011), the inter-event time distribution appears with a

long tail both for the unreconstructed and reconstructed temporal networks. Simi-

lar to the duration distributions, short inter-event times become underrepresented

after reconstruction as compared to the unreconstructed case. For larger values,

both distributions scale close to a power-law, but with longer IETs more likely in

the reconstructed temporal network. These differences can again be explained by

the merging process, which commonly bridges short inter-event times between

events, this way creating longer interactions and removing short inter-event times.

Nevertheless, the scaling of the tails of both distributions is similar since the recon-

struction model does not connect two events separated by a very large gap, thus

not affecting the frequencies of long IETs.

To verify some structural character of the aggregated network, we measured its

node degree (number of neighbours) distribution, plotted in Fig. 3.11c. Similar to
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earlier observations Zhao et al. (2011), the degree distribution of both of the net-

works indicates certain heterogeneity. The unreconstructed network appears with

a broader range of node degrees, ranging from 24 to 163 with an average of 90.4,

while the reconstructed structure is more homogeneous with degrees between 16

and 104, for an average of 47.1. This difference is evidently caused by the recon-

struction method, which filters a number of falsely observed interactions induced

by noise and other external effects. Furthermore, the reconstructed network, by

observing preceding and succeeding signals, gives a more accurate evaluation of

whether exchanged signals between two participants indicate a real interaction or

just an accidental encounter. Therefore, the number of neighbours is reduced in

the reconstructed network.

Finally, to present directly the structure and long term evolution of the ob-

served social network, we show three successive networks in Fig. 3.12 during

class-time (upper panels) and free-time (lower panels) periods, which were aggre-

gated over three distinct weeks of observation to illustrate the beginning, middle,

and end of the academic year (i.e. September, February and June, respectively).

Here, node sizes indicate the total duration of interaction for each participant, the

width of links scale with the total duration of interaction between peers, and dark

shaded nodes are assigned to adult participants. Classes coloured in different ways

are easily identifiable from the structure, especially during class-time observations

(see Fig. 3.12 a-c). On the other hand, free-time observations (Fig. 3.12 d-f) evi-

dently demonstrate the different, potentially inter-class mixing patterns between

children.

3.4 Summary

In this chapter, we first presented a pipeline of reconstructing signal data to tempo-

ral network. After applying different techniques from the field of machine learning

in the pipeline, we achieved 90.03% accuracy with BiLSTM, which is significantly

better than conventional methods with 77.28% accuracy, and outperforms other

methods we tested. Then we used a spreading model to simulate information

propagation on networks reconstructed by different methods. The results are gen-

erally consistent with the event rate of reconstructed network: higher event rate

means faster spreading. However, even though the naïve method significantly out-

performs the unreconstructed data in reconstruction accuracy, their reconstructed
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Figure 3.12: Aggregated network for morning periods over a week in September, February and June of the academic year.
Networks are shown in panels (a-c) for class-time interactions, and in panels (d-f) for free-time periods. Node colour
indicates the class, node size scales with the total duration of interaction time for the corresponding participant, and edge
width represents aggregated duration of interaction between two participants. Nodes with darker shaded colours are adult
participants. In the caption, next to the class number, the class-group composition is given in terms of grade(s): G1 for 1st
grade, G2 for 2nd grade, G3 for 3rd grade.
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network lead to similar spreading dynamics. Moreover, naïve and HMM recon-

struct networks with similar accuracy, but with significantly different spreading

speed. These cases demonstrated the importance of precise network reconstruc-

tion and the careful choice of the reconstruction method. These results are pub-

lished in [Dai et al. (2020)]. In next task of activity reconstruction, we used number

of intra- and inter-class interaction to separate free- and class-time with 3.13% er-

ror rate. Finally in order to conduct homophily analysis, we developed algorithms

to group classes according to their mutual presence of free-time. This method lead

to only ∼ 5% free-time lost but reduced largely (∼ 50%) the number of different

class group combinations. In the end we validated our methods with several ex-

amples. The results of the second part of this chapter were summarised in [ Dai

et al. (2022)] and the data has been shared in [Nardy et al. (2022)]



Chapter 4

Network Homophily Analysis

As the profound proverb “birds of a feather flock together”, the presence of ho-

mophily has been discovered and studied in plentiful networks, with the most

attention being paid to social networks. This link creation mechanism, that we

already discussed briefly in Section 1.2.3, induces more likely social interactions

between peers of people similar in terms of gender, religion and organisational

role or social status, etc. [McPherson et al. (2001)]. However, seldom does re-

searchers have access to a longitudinal network data with considerable change to

observe the dynamic of homophily. Also, the entanglement between homophily

and influence is still not fully resolved. Here in this chapter of the thesis, with the

network and sociodemographic data collected by DyLNet projects, we try to bring

some new insights of the aforementioned topics.

To achieve this, first of all, social contact data collected of 4 consecutive months

are selected as study sample. Then we selected 8 most fundamental attributes

as node features, as well as 3 different homophily indices to compute the ho-

mophily effect. We used a reference model to fully permute empirical network

as the baseline to represent the homophily in randomised cases. Furthermore, due

to the natural difference of class-time and free-time, social contacts are separated

into respecting class/free-time periods thus we could further compare mixing in

free- and class-time by observing their difference of homophily. Finally, we con-

ducted cross-sectional observation through grouping participants by their grades

to demonstrate the development of homophilic preferences with age.

4.1 Sample Data and Attributes Description

To analyse homophily, we focus on six sociodemographic attributes, namely: ‘sex’,

‘child_lang’ (dominant language of the child), ‘mother_occ’ (occupation category

72
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Table 4.1: explanation of attributes and their values

attribute description value value explanation
sex gender f, g ‘f ’ means girl, ‘g’ means boy
child_lang does the child un-

derstand or speak
other language(s)
other than French

oui,
non

‘oui’ is yes and ‘non’ means no

mother_occ category of mother’s
employment, in 3
levels

1, 2, 3 1: basic profession; 2: interme-
diate skilled profession; 3: High
skilled profession

father_occ category of father’s
employment, in 3
levels

1, 2, 3 1: basic profession; 2: interme-
diate skilled profession; 3: High
skilled profession

mother_dip category of mother’s
diploma, in 3 levels

1, 2, 3 1: basic degree (below bachelor);
2: intermediate degree (between
bachelor and master); 3: Higher
degree (master and higher)

father_dip category of father’s
diploma, in 3 levels

1, 2, 3 1: basic degree (below bachelor);
2: intermediate degree (between
bachelor and master); 3: Higher
degree (master and higher)

voc performance of vo-
cabulary in language
test

1, 2, 3 1: lowest 25%; 2: between 25%
to 75%; 3: Top 25%

synt performance of syn-
tax in language test

1, 2, 3 1: lowest 25%; 2: between 25%
to 75%; 3: TOP 25%

of mother), ‘father_occ’ (occupation category of father), ‘mother_dip’ (education

level of mother) and ‘father_dip’ (education level of father). Additionally, we have

two linguistic performance attributes that we are especially interested: ‘voc’ (vo-

cabulary size) and ‘synt’ (syntactic development level). More details about these

attributes see Table 4.1. Among these attributes, ‘sex’ and ‘child_lang’ are binary

attributes and the values of other attributes are categorised and digitised into 3

groups: 1 (low), 2 (middle) and 3 (high). The distribution of each attribute’s value

is shown in Fig. 4.1, from where the heterogenous background of children is ev-

ident. This endows the data with potential of observing the behaviour and dy-

namics of children from different social backgrounds. Besides, as illustrated in

Section 2.2.2, the observed participants are from of 7 classes and 3 grades, hence

enabling us to conduct cross-sectional analyse with different age groups involved.

In this end, in order to exclude interference between different age groups and to
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reach equilibrium in group size, we selected 2 classes of 1st grade (PS) and 2 classes

of 3rd grade (GS) for our research focus.

Figure 4.1: distribution of each attributes, grouped by grade (PS - 1st grade (petite
section (in French), GS - 3rd grade (grand section)).

After the selection of features and participants, it is also vital to choose the

identify precisely the social ties which connect individuals in the temporal social

network. As described in Section 2.2.3.1, the data collection is comprised of two

parts: morning (8:30 to 11:20) and afternoon (13:45 to 15:50) part. For our analysis

we decided to choose the morning part due to two reasons. First, in the morning

there are both types of activities in the schedule of the preschool, class-time and

free-time. Their different behavioural patterns and social mixing could lead to

more discovery. Second, children are more active during morning part, in contrast,

children of 1st grade (PS) usually had a nap during afternoon parts.

4.2 Homophily Analyses

While socialising, people exhibit the tendency of choosing similar partners (e.g.

in terms of race, gender and socioeconomic status) more frequently than random

from the same population. However the ubiquitous presence of homophily may

lead to critical social problems such as inequality and segregation [Moody (2001),

Blau and Schwartz (2018)]. Studies has found that there are many reasons account-

ing for people’s preference of forming ties with similar others. On one hand, the

similarity is beneficial to the communication and understanding, and helps to es-

tablish trust and solidarity with the counterparts [Festinger (1957), Werner and

Parmelee (1979), Portes and Sensenbrenner (1993), Mollica et al. (2003)]. On the

other hand, the cost of maintaining a social ties would be lower between similar

than between dissimilar partners [Felmlee et al. (1990)].
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In reality, however, an individual’s social relations are not entirely decided

by preference, but constrained by the environments where he/she lives, such as

schools, workplaces or neighbourhoods. The population of these environments

are not uniformly distributed in terms of race, gender or wealth. Therefore, the

exhibited homophily arises from two theoretically distinct mechanisms: the first is

induced homophily, which originates from the homogeneity of structural opportu-

nities for interaction, for example in neighbourhoods and workplace; the second

is choice homophily which reflects people’s preference in choosing whom to interact

with [McPherson and Smith-Lovin (1987), Kossinets and Watts (2009)]. Further-

more, in order to include the effects of biased sorting of individuals among groups,

inbreeding and baseline homophily are introduced in [McPherson et al. (2001)] where

baseline homophily is defined as the level of homophily expected from random

mixing in the population, and inbreeding homophily is defined as the level of ho-

mophily in excess of that baseline. In this chapter we focus on the inbreeding and

baseline homophily of our data.

4.2.1 Random network construction

In network science, randomisation techniques shuffle the given network to pro-

duce a random structure. Randomised networks serve as reference when trying to

assessing whether a character of an empirical network is significant. Randomisa-

tion techniques on graphs have been studied and applied in considerable amount

of literature for various fields [Milo et al. (2002), Gionis et al. (2007), Hanhijärvi

et al. (2009), Ray et al. (2012)]. In our study, the observed homophily in the empir-

ical network is the accumulation of baseline and inbreeding homophily, and the

homophily in randomised network could be considered as baseline homophily. To

observe the difference of these two types of homophily, the key of randomisation of

our network is to keep the properties of each individual, for example node degree

(number of peers) or strength (total duration of interactions), while rearranging the

network structure to eliminate the correlation caused by attributes of node. There

are several randomisation schemes we have considered, namely:

• weight randomisation, which keeps the edges as where they are but shuffles

their weights.

• attribute randomisation. Attribute randomisation shuffles attribute of nodes

while preserving network structure and edges weight.
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• link swap. Select two dyadic pairs randomly (no overlapping of nodes), rewire

the edges such that could form two new dyadic pairs. Repeat this process for

enough times.

The weight randomisation could preserve the connectivity and neighbour struc-

ture of network, however this randomisation possess lacks the capability of bridg-

ing disconnected pairs in empirical data, in another words the structure is not

shuffled enough. With attribute randomisation, all structures are preserved, but

the connection of attribute and structural properties of nodes will be completely

destroyed. Finally with link swap, we are able to achieving our goal of randomi-

sation. By repeating rewiring in Markov process sufficiently, the network loses

its original topography. However in our network, the edges (interactions) are

weighted with aggregated duration time, which we need to take into consider-

ation when rewiring if we want to preserve the node’s strength. DCWB (equal-

weight link-sequence shuffled) method proposed in [Karsai et al. (2011), Gauvin

et al. (2018)] allows links to be rewired only if they are with same weight. Unluck-

ily in our data, the edge weight is sparsely distributed within the range of weight,

so we have to make a compromise proposal to rewire edges with approximate

weights. More precisely, we first group all edges to 5 linear bins by their weights,

then rewire edges within each bin. The network shuffled in this way is therefore

fully randomised and almost preserve the strengths of each node.

4.2.2 Homophily analysis with EI index

E-I index proposed in [Krackhardt and Stern (1988)] is a straightforward and clas-

sic ego-centric individual level homophily index. Its simplest definition expresses

the homophily with EI = (EL − IL)/(EL + IL) where EL, IL represents number

of external and internal link respectively. Since children have their own attributes,

in our case internal means interaction happens between children with same value

for a given attribute. The E-I index range from -1.0 to 1.0, with values representing

homophilic (-1) to heterogeneous (1) patterns, while 0 indicates neutral contacts

with the same number of external and internal links in one’s egocentric network.

Given the fact that duration is a pivotal feature of an social interaction, we modify

the EI index to weighted form:

EI =
EW − IW

EW + IW
(4.1)
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where EW and IW indicates weights of external and internal links respectively.

EI index applied on our data indicates the homophily tendency of a child when

choosing friends. We compute average EI index of each individual on every at-

tributes for our empirical network and randomised network. To be more precise,

recall that in Section 3.2.3, we have segmented the freetime into group of classes,

denote all free-time class groups during our selected 4 months as Ω. Then for child

i, its average E-I index is defined as:

EIi =

∑

f∈Ω(i) EIfi

|Ω(i)|
(4.2)

where Ω(i) is set of free-time class groups that child i participates, |Ω(i)| is the size

of Ω(i) and EIfi is EI index for kid i in free-time class group f ∈ Ω(i). In prac-

tice, when randomising network we rewire each network 50 times (i.e. 50×|E|

rewiring, where |E| is the edge number) to sufficiently remove any residual cor-

relation from the structure. For each free-time class groups we iterate aforemen-

tioned randomisation procedure 100 times to create 100 randomised sample hence

100 EIrand scores, trying to cover enough possible randomised network topology.

Figure 4.2: Probability density and cumulative distribution functions of E-I index
for free-time periods. In the legend ‘emp’, ‘swp’, ‘hist’ and ‘CDF’ means ‘empiri-
cal’, ‘swapped’, ‘histogram’ and ‘Cumulative Distribution Function’ respectively,
same notation applies below.

Firstly in Fig. 4.2 we have the distribution of EI index of free-time periods, we

divided the EI indices by grade so that we could also make cross-sectional com-

parison between different age groups to discover the dynamic of homophily ten-

dency changing along with age. In the figure we have histogram (y-axis on the

left) and eCDF (empirical Cumulative Distribution Function) curve (y-axis on the

right). From the figure we could judge intuitively by the median value (red line
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in boxplots), for the EI index distribution of gender (sex) there is significant differ-

ence in observed data and randomised data for both grades, which shows over-

whelming homophily phenomenon, and the tendency of inbreeding homophily is

getting even stronger with growing of grades if we compare different age groups.

While for randomised network, for both grades the EI index are centred around

0, the neutral value. Its small variation of 100 randomisation also proves that our

randomisation process is sufficient to permute the network. Since network after

rewiring is entirely randomised, the deviation from 0 should be owing to baseline

homophily, for attribute sex is the imbalance of gender in group. The difference of

EI index of empirical and link swapped network should be attributed to inbreed-

ing homophily. Other attributes with significant inbreeding homophily includes

mother_occ for GS, father_occ for PS, as well as linguistic attribute voc for GS and

synt for both grades.

Table 4.2: KS-test for EI index in free-time

sex child_lang mother_occ father_occ mother_dip father_dip voc synt

PS
KS 0.59 0.37 0.23 0.27 0.21 0.42 0.24 0.26

p-val 0.000 0.003 0.231 0.086 0.269 0.002 0.123 0.072

GS
KS 0.88 0.18 0.32 0.37 0.40 0.29 0.35 0.49

p-val 0.000 0.346 0.025 0.003 0.002 0.052 0.004 0.000

To analyse the inbreeding homophily more accurately, we use KS test to mea-

sure the difference of EI index distribution in empirical and randomised cases. KS

test is a non-parametric test to determine the probability that a sample is drawn

from a reference probability distribution, or two samples are drawn from the same

(unknown) distribution, which is our case. For two given probability distribu-

tions, the KS test quantifies the absolute maximum distance between the empirical

distribution functions of two samples. KS test results of free-time EI index distri-

bution in empirical and randomised cases are shown in Table 4.2. From the ta-

ble, combined with corresponding Fig. 4.2, we could see that gender (sex) exhibits

the largest inbreeding homophily in empirical network with significant difference

from randomised counterpart, moreover, the inbreeding homophily grows with

age. For child_lang, we could observe significant difference of empirical and ran-

domised EI distribution in PS (given by the small p-value), while not in GS. How-

ever no homophily effect is observed from Fig. 4.2. The attribute father_occ does

not show inbreeding homophily in PS but homophily appeared in GS, same situa-
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Table 4.3: KS-test for EI index in class-time

sex child_lang mother_occ father_occ mother_dip father_dip voc synt

PS
KS 0.18 0.18 0.31 0.35 0.12 0.19 0.18 0.13

p-val 0.437 0.437 0.039 0.011 0.910 0.479 0.437 0.790

GS
KS 0.41 0.14 0.12 0.17 0.16 0.17 0.16 0.16

p-val 0.001 0.665 0.902 0.452 0.580 0.564 0.494 0.494

tion happened for mother_dip and two linguistic attributes voc and synt. However

father_dip showed the opposite trend with homophily fades with age growth.

Figure 4.3: distribution and eCDF of EI index for class-time

For comparison, the distributions of EI index of class-time periods are shown in

Fig. 4.3. Network during class-time is in essence a “randomised” network because

children are randomly assigned to fixed seats and do not have much choice of

whom they talk to, as we demonstrated in Section 3.2.1. Therefore the distribution

of EI for empirical and randomised cases in class-time intertwines together for

most attributes and grades, with exception of sex in GS as well as mother_occ and

father_occ in PS. Same conclusion could be derived from the very large p-value in

Table 4.3.

4.2.3 Homophily analysis with Coleman index

Different from EI index, which measures homophily in ego-centric fashion, the

index proposed by Coleman [Coleman (1958)] measures group homophily. It con-

centrates on links of a homogeneous group of people in excess of their population

shares and then normalise it by the group proportion. Coleman index is popular

in various fields [Currarini et al. (2009; 2010)] due to its simple definition given as:

ColemanL =
HL − wL

1− wL

. (4.3)
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Here wL = NL/N , which is the population share of group L, NL is the population of

group L, N is total population. wL is also the expected proportion of homophilic

matches that would result if links in the network would be randomly matched.

HL = mLL/mL is called group homophily of group L, with mLL being the link num-

ber inside the group L and mL is the total link number that all members of group

L is involved in. The numerator of Coleman index is called excess homophily,

which compares HL with wL. Coleman index facilitates the comparison of different

groups by normalising the excess homophily of group L by its maximal possible

value 1− wL.

The range of the Coleman index is between (−∞, 1], corresponding to a het-

erogeneous or to a homophilic network (respectively). 0 value implies that for the

given group, proportion of internal links are equal proportion of the group over

the whole population, which could be interpreted as neutral. Since the Coleman

index is defined on the group level, in our case we define a group Lg
v including

children at the grade g with attribute values equal to v. For the same reason in

Section 4.2.2, we take link weights (total duration) into consideration, therefore in-

stead of link number, the definition of mLL,mL is replaced by the total weight of

links. As with the average scheme in Section 4.2.2, we use the average Coleman

index over all free-time of a class to represent the Coleman index of a group.

Figure 4.4: Coleman index of freetime, neutral index value (0) is marked as hor-
izontal red dashed line. Blue points are the average index value for all freetime
intervals of empirical network. Boxplots are distribution of average index value of
100 instances of link swap reference networks.

The Coleman homophily indices of free-time period are shown in Fig. 4.4. It

indicates that many groups show homophilic preferences in our empirical net-
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work (blue dots) and these empirical index values significantly deviate from the

distribution of reference indices measured in randomised networks, which rep-

resents the level of baseline homophily of each group. Just like in case of the EI

index, the difference between the Coleman index of randomised and empirical

networks tells us the inbreeding homophily level of each group. However, the

consideration of the homophily values for the different value groups of each di-

mension give us more detailed information as compared with EI index. Overall,

all groups show heterogeneous (smaller than 0) patterns for randomised network

and appear with more homophily (larger index value) in empirical network. This

indicates ubiquitous inbreeding homophily among all attributes. In the empirical

network, ‘sex’ showed unquestionable homophilic phenomenon, with girls (f) be-

ing more homophilic than boys (g). In addition, most high-valued (3) groups of

sociodemographic attributes show homophily effects and they deviate from their

randomised homophily value. In contrast, most middle-valued (2) groups in the

empirical network show heterogeneity or appear neutral with close values to their

randomised homophily average. Nevertheless, the situations for low-valued (1)

groups are more irregular without evident trends regarding present homophilic,

neutral and heterogeneous patterns. Differently from EI index, when comparing

between PS and GS, the homophily of mother_occ, father_occ show decrease with

the grow of age, while homophily of other sociodemographic attributes grow with

age. For the linguistic attributes, low and middle level (1 and 2) groups of voc

are close to their neutral values, while children with well developed vocabulary

show homophilic network preferences among themselves. As comparison, most

groups in synt show homophily which grows with age. To check the difference of

empirical and randomised network, we computed the Z-score for every groups as:

Z =
ColemanL − E[Colemanrand

L ]

σ(Colemanrand
L )

, (4.4)

The results of Z-score are shown in Table 4.4. Results here complement our vi-

sual evaluation. Beyond our earlier observations they suggest that linguistic ho-

mophily in terms of vocabulary decreases from 1st grade to 3rd grade, while for

syntax the contrary is true (except for the value group 3).

In contrast, the Coleman index measured during class-time (see Fig. 4.5) for

empirical network show a very different picture. Empirical values in this setting

commonly fall close to the range of randomised network and show no clear trends
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for any group due to the random assignment of children during class-time, as de-

scribed in Section 4.2.2. This conclusion is well supported by the corresponding

Z-score values summarised in Table 4.4.

Figure 4.5: Coleman index of classtime, with same groups and notation in freetime.

4.2.4 Homophily analysis with Naive index

Finally, we consider another group homophily index, that was proposed in [Asikainen

et al. (2020)] as a more precise measure as compared to the Coleman index. It mea-

sures group homophily similar to the Coleman homophily index, but corrects for

a disproportionate amount of links potentially observed within large groups as

compared with small groups even if there is no intrinsic bias. This feature leads to

a different size-correction than the Coleman homophily index as:

NaiveL =
nO ∗ TLL

nL ∗ (1− TLL) + nO ∗ TLL

, (4.5)

where nL is the population share of group L and nO = 1 − nL is the population

share of other groups except for L. TLL has the same meaning as mLL in Coleman

index. The range of Naive index is [0,1], indicating heterogeneous to homophilic

patterns (respectively).

The Naive homophily indices computed for free-time periods are shown in

Fig. 4.6. These results, however, closely resemble the result derived from the Cole-

man index. As earlier observed, attribute like ‘sex’ is significantly different from

the reference values and they grow with age. Children who speak only French

becoming more homophilic with age, while multilingual children getting more
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Table 4.4: Z-score of Coleman index in freetime

attr. sex child_lang mother_occ father_occ mother_dip father_dip voc synt

val. f g non oui 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

PS 22.12 22.68 18.15 10.69 9.97 4.89 15.91 12.39 2.82 16.72 9.93 4.36 16.61 13.48 1.01 18.91 8.90 13.33 14.19 6.14 16.29 11.28
GS 36.87 37.34 19.06 8.52 4.14 -3.75 10.11 14.76 4.68 11.12 11.41 0.93 19.56 6.32 6.22 19.83 8.82 10.52 12.33 20.20 19.67 3.08

Table 4.5: Z-score of Coleman index in classtime

attr. sex child_lang mother_occ father_occ mother_dip father_dip voc synt

val. f g non oui 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

PS 0.89 0.77 -0.14 -0.99 -1.29 -2.83 -1.82 1.95 0.28 1.81 3.46 1.64 -0.25 1.32 -1.25 0.70 5.16 -0.17 1.64 1.33 1.67 6.71
GS 7.40 7.47 0.83 0.79 0.90 -1.92 -0.29 1.72 1.04 1.03 0.82 -2.37 1.56 -1.72 3.05 -2.49 0.85 -0.08 0.77 3.02 1.88 -2.29

Table 4.6: Z-score of naive index in freetime

attr. sex child_lang mother_occ father_occ mother_dip father_dip voc synt

val. f g non oui 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

PS 15.58 17.26 14.72 8.33 7.92 4.56 12.98 11.25 4.47 12.97 9.33 4.23 13.42 12.68 1.28 14.04 8.28 10.48 9.47 6.21 11.83 9.31

GS 18.45 23.22 12.42 7.35 4.31 -3.35 9.58 13.06 6.81 11.08 8.91 0.59 13.45 6.16 7.17 11.80 8.84 8.46 10.67 15.40 11.70 4.21

Table 4.7: Z-score of naive index in classtime

attr. sex child_lang mother_occ father_occ mother_dip father_dip voc synt

val. f g non oui 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

PS 1.42 0.01 -0.45 -0.69 -1.24 -3.03 -1.68 1.62 -0.11 1.94 3.38 1.80 -0.46 1.22 -0.79 0.77 5.29 -0.10 1.64 1.45 1.60 6.93
GS 7.41 7.33 0.52 1.14 1.80 -2.00 -0.15 1.76 0.55 0.92 1.52 -2.19 1.74 -1.53 3.06 -2.39 0.68 -0.12 0.49 2.21 1.81 -2.13
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Figure 4.6: Naive index of freetime, with neutral index value (0.5) is marked as
horizontal red dashed line.

Figure 4.7: Naive index of classtime, with neutral index value (0.5) is marked as
horizontal red dashed line.

heterogeneous. Using this index, groups show slightly less homophily as com-

pared with the Coleman index, but still indicate considerable level of inbreeding

homophily present. The Naive index in classtime are in Fig. 4.7 together with the

corresponding Z-score for free- and class-time are summarised in Table 4.6 and Ta-

ble 4.7 respectively. Their values reinforce our conclusion we have drawn already

from the Coleman index analysis, indicating way less evident homophily patterns

in classroom settings due to the the restrictive interaction possibilities.
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4.3 Summary

In this chapter we conducted a homophily analysis for aggregated social networks

of children collected during free-time and class-time periods. We first came up

with a scheme to randomise the network to fully remove structural correlations,

while keeping some node properties invariant. Homophily measured in the ran-

domised networks indicate the baseline level of homophily. Homophily observed

in empirical networks could be identified as the effects of inbreeding homophily

compared to these reference values. We used three different homophily indices

on the individual and group level and witnessed strong inbreeding homophily on

free-time network with almost every sociodemographic attribute in all cases. On

the contrary, no significant inbreeding homophily was observed in class-time net-

works. In terms of different attributes, the most significant was sex, which exhibits

the strongest homophily effects and homophily grows with age. Other attributes

behaves were also found important, including linguistic development features of

the observed children.



Chapter 5

Visualisation System

Finally, in this last chapter I introduce a data visualisation system, which serves

for the purpose of visual analysis of genealogy data. Although this chapter falls

somewhat far from the main focus of the previous chapters, it has a relevance in

visualising complex attributed network in a way that can be potentially applied for

temporal networks in the future. The work summarised in this chapter has been

published in [Liu et al. (2017)]. I participated in this work to carry out case studies

of migration pattern analysis, as we demonstrate some of them in the end of this

chapter.

5.1 Brief description of data and visualisation system

Genealogical datasets provide a great opportunity for sociologists, historians and

the public to study a wide variety of topics in demography, family, household, kin-

ship, stratification, and health. Nevertheless, These types of data are usually large

scale, hierarchical, record spatio-temporal information and multi-dimensional de-

tails thus they pose special challenges for effective data analysis. “GenealogyVis” is

a visualisation system developed to analyse family history and evolution using the

China Multi-Generational Panel Dataset-Liaoning (CMGPD-LN) [Lee et al. (2010),

Lee and Campbell (2016)], which has more than 1.5 million observations and pro-

vides socioeconomic, demographic and other information for more than 260,000

residents from 698 communities in China.

The design study was conducted with a research group led by a domain expert

of humanities & social sciences in an iterative manner over half a year. Several in-

depth case studies, involving the research group, are described to demonstrate the

usefulness of GenealogyVis and to discuss new findings. GenealogyVis provides

86
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Figure 5.1: Overview of GenealogyVis system.

various perspectives on the CMGPD-LN data through multiple visualisation mod-

ules called “views”. The system includes a control panel on the left side, and five

main linked views:

• Tree View (A) to show the family structure and details of individuals. It fo-

cuses on the family tree structure and original data attributes, which can help

the users check the details after applying other visualisation views to solve

the analytic tasks from the high level

• Stream View (B) to show various statistical information such as population,

birth and mortality rate. It depicts various statistical information such as

demographic information and temporal information, which combined with

Tree View to present demographic characteristic and evolution pattern.

• Migration View (C) to present the genealogical migratory behaviours.

• Matrix View (D) to analyse the reproduction pattern between two genera-

tions.

• Scatterplot View (E) to provide overview of the data and further explore the

correlation analysis.

• List View (F) to order the families by different attributes.
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Tree View for structure and original Data

The genogram is a conventional way to present family trees, which is very use-

ful for people to research the genetic and interpersonal family-household data. In

this system we use square and circle to represent male and female respectively.

The CMGPD-LN data, due to patrilineality in that time, emphasise the males with

records and most of the patterns related to males. Therefore the design in Geneal-

ogyVis links the child nodes to their father nodes instead of the middle position

of the parent nodes. In the design, all males of the same generation are ordered

top-down by the birth year. Each female node is placed under its husband node.

Stream View for demographic and temporal information

The Stream View present the demographic information of each generation or

the whole family. Each divided stream shows the population changing over time

of the corresponding generation, where the width of the stream encodes the num-

ber of people alive in the current year. Thus, users can know the changing trend of

population in each generation. Streams could be merged to show the total popula-

tion changing over time by Merge/Split button in the Control Viewy. Those streams

are filled with different opacity of colour, which represents the number of births or

deaths.

Migration View for genealogical migratory behaviours

For a family in pre-industrial period, the migration is usually a slow process

that may last for several decades, and its scale is limited with short distance. Tra-

ditional visualisation scheme of migration usually label the itinerary on a map,

which is bothersome to encoding the temporal information, for example to know

the time and scale of migration. To solve aforementioned problems, a storyline-

like visualisation is proposed to show the process of migration, which eliminates

the overplotting that would occur on geographic maps. We use dotted-border rect-

angle to represent a region, and within which the colour area represents a district.

Each stream in the colour area represents the population of this family living in the

village. Migration is represented by links between the corresponding streams, with

link’s horizontal positions represent the time and width encodes the size. More-

over, the links is designed to be slant, with horizontal position from left to right to

show the starting village to destination.
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Figure 5.2: Patterns of migration.

5.2 Case Study of Family Migration Patterns

Migration View is particularly useful in discovering migration pattern. In Fig. 5.2

we show migration patterns of four different, only for demonstration purposes.

Fig. 5.2a show a relatively common one-way migration, moving from the ancestral

home to other villages. The figure shows that the family initially lived in village

102, then family members moved to village 92, where the family settled down

and population increased through reproduction, at the same time the population

of this family in village 102 gradually demised. In contrast, the family shown in

Fig. 5.2b moved to two different villages. Some family members moved farther

away to village 525 which located in another district Shenyang. While some other

members moved to a closer village 399 which was still the same district. The group

of village 525 and original village 423 gradually disappeared and the group moved

to a closer village 399 thrived.

The family shown in Fig. 5.2c showed the pattern of reverted migration. Parts

of the family in village 568 migrated to village 458 in 1790s. But starting from 1810s

the same group of people started moving back to ancestral village 568, with peak

in 1850s, left with only limited family member. In the end the bloodline of this

family faded in village 568. Fig. 5.2d showed a complementary situation. A family

from village 273 first moved to village 287, then several member again moved to
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village 185, whom entirely moved back to village 287 and no more member stayed

there. However after 50 years later, when the family again chose to migrate, they

choose the same village 185, following the path of their predecessors.

5.3 Summary

In this chapter, I gave a brief introduction of visualisation system GenealogyVis,

with slightly detailed description of three most informative parts and designs and

in the end, we discussed some cases of migration patterns of families using this vi-

sualisation tool. The way of processing, organising and presenting data with such

rich attributes is inspiring and with prospective of porting to other dataset with

temporal feature such as DyLNet. This system is made possible by the collabora-

tion with team from Hong Kong University of Science and Technology.



Chapter 6

Conclusion and outlook

My main goal in this Thesis was to summarise my contributions to the design,

collection, and analysis of a large-scale behavioural dataset that we gathered in

a unique social experiment involving hundreds of pre-school children and their

teachers over several years. This experiment, one of the largest of its kind, was

carried out to follow the social and oral interactions of children to understand how

socialisation, influence, and language acquisition co-evolves in children groups in

a pre-school setting.

This data collection, reconstruction, and analysis, that was in the main focus of

my thesis, were carried out with wearable wireless RFID tags. These autonomous

devices could detect the distance and orientation of proxy individuals and they

recorded their voice too. They provided a massive amount of sequential data, that

could be used for the reconstruction of real social and oral interaction with high

spatial and temporal resolution

I started my Thesis with an introduction to the research landscape of Human

Dynamics, where most of my works landed. I did it in relation with the corre-

sponding fields of Network Science, Machine Learning and Digital Data Collec-

tion Methods. Subsequently, in Chapter 2, I introduced in details the goals of

the DyLNet project, its empirical setting, the data collection processes, and most

importantly how I arrived from the recorded raw RFID signals to a meaningful

dataset that was used for further analysis. In Chapter 3, I summarised meth-

ods and pipelines I developed for two purposes: One of my goal was to pre-

cisely reconstruct meaningful temporal interactions between pairs of participants.

This highly non-trivial task required to adapt a pipeline of classification methods

and sequential learning models, but in turn provided a temporal network verified

against several expected network and dynamical characters. My other goal in this

Chapter was to describe a method I developed to reconstruct free and class time
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periods, which correspond to significantly different activities and behavioural pat-

terns of children in a school. I developed algorithmic methods to solve this issue

and demonstrated their capacities to precisely reconstruct different activity peri-

ods simultaneously for several school classes, that I verified against the ground

truth data. In Chapter 4, I combined the reconstructed temporal networks with

individual level socio-demographic and linguistic data, which was collected in

parallel using offline questionnaires. This combined dataset allowed for a mul-

tivariable data analysis to understand, which dimensions of homophily (tendency

of similar people to be socially connected) are determinant for the formations of

social ties between children and staff. I carried out this homophily analysis at the

individual and group level by comparing children from different age groups. This

analysis provided evidences about the effects of gender, demographic and linguis-

tic homophily and their effects in socially restricted (class-time) and non-restricted

(free-time) settings. In Chapter 5, I summarised some of my earlier contributions

to develop a visualisation tool for genealogy trees. Finally I closed my Thesis with

some concluding words.

There are several promising research directions I can foresee in the future us-

ing the presented datasets. Topics from social group dynamics, co-development of

language and social networks, or the data-driven modelling of epidemic processes

in a school setting are only a few. Nevertheless, the work presented in this Thesis

marks a milestone in this process, as it demonstrates a complete methodological

circle from experimental design, data collection, reconstruction, analysis and the

achievement of new fundamental results. This way it provides an example how

cutting-edge digital technologies and methods borrowed from Computer Science

can be used to learn about the behaviour of people to answer long-lasting ques-

tions in remote fields.



Appendix A

Supplementary computation results
and experimental details

A.1 Experimental design of ground truth data collec-

tion

While designing the ground truth data collection, special attention has been paid to

the feasibility and reliability of our observation method, to decrease human errors

during observations while obtaining a meaningful ground truth dataset. To meet

with all these requirements we followed the following logic and conditions:

• To record the ground truth data for GT1 and GT3 we had a researcher in

the classroom who was monitoring the behaviour of children to record their

interaction state, their relative orientation or position at regular intervals. To

quantify interactions, distance and orientation, we chose a scan sampling strat-

egy (i.e. observations of states at predetermined time intervals) [Altmann

(1974)]. Another option was focal sampling (i.e. continuous recording of inter-

action events) [Altmann (1974)], however social interactions (and kids posi-

tion/distance too) were sometimes too short and fluctuating for continuous

observation, thus it was impossible to record the beginning and end of each

interacting event without using video-recording.

In addition, for scan sampling, we made trials to find the appropriate time

intervals between two observations (scans) that allowed us to record data

without loss (i.e. the shortest step possible for recording the data of interest

without taking the risk to miss one observation point). In the end, we chose

10 second steps for pair observations (GT1) and 2 minute steps for group

observations (GT3).
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• For GT1 observations, we worked during free play time to be able to observe

spontaneous play interactions. To decrease the possible noise due to fleet-

ing behaviours and random moves, observations were carried out on older

children from the middle (4-5 years old) or the grand class (5-6 years old).

Importantly, we focused only on one pair of kids at a time to record their

state (interacting or not) and relative position every 10 seconds. This way

we reduced to the minimum the possible human observation errors in this

setting.

Regarding the scoring of the state of interaction/no-interaction, we set the

criteria of interactions based on the literature [Santos et al. (2008)] and the

field expertise of the participating researchers from earlier similar experi-

ments. Specifically, we considered two children "interacting" if they were

within arm’s reach (i.e. less than 1 meter from each other), either playing

together (e.g. cooperatively manipulating construction blocks, kitchen toys,

puzzles...) or playing alongside (e.g. making a drawing next to each other).

These situations typically involved talking to each other at times.

• Regarding GT3, we selected the most appropriate and stable conditions to

observe distance and orientation of as many children as possible. In prac-

tice, we performed observations only with older children (grand class) when

their movements inside the classroom were limited for an extended period of

time. This was possible during specific activities that involved standing still

(like collectively sitting on a bench to listen to the teacher reading a book,

sitting around tables in small groups to do written work...) rather than freely

moving around (like during free play time).

• Measuring distances between children is very much subject to inter- (and

even intra-) individual variations. To minimise such fluctuations in record-

ing the distances in GT3, we used a customised behavioural observation app

originally developed to record the positions and distances of animals in a

fixed environment (Animal Observer application for iPad [Ani]). This app

projects a scaled map of the classroom with indicated reference objects (furni-

tures, doors, windows, etc.) and allows to record by an observer the positions

of individuals on this map as the function of time. Using this temporal loca-

tion dataset inter-individual distances of children have been computed after-

ward. Relative to the objects on the classroom map the location of children

could be estimated precisely with a very small error margin (around 10cm),
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something that would have been impossible to accurately assess through

“naked eye" estimations and “hand" recording.

To further check the impact of potential errors due to human encoding, we

conducted a randomisation experiment where we induced noise in the already

collected data. More precisely, we randomly selected the 5%, 10%, 15%, and 20%

of observation points from the ground truth data sequences and flipped the an-

notated flags from interaction to non-interaction or vice versa to add noise to our

original observations. Through remeasuring the accuracy change of the BiLSTM-

RSSI method on these randomised data we found that the average and variance of

accuracy is rather robust against such small induced noise, only having the aver-

age to decrease slightly as summarised in Table A.1.

Table A.1: Average and standard deviations of BiLSTM-RSSI reconstruction
method trained on GT1 after introducing random noise of various levels. Aver-
age values are computed over 20 independent realisations.

Flipped random fraction 0.05 0.1 0.15 0.2

Average accuracy 90.02% 89.98% 89.91% 89.84%
Standard deviation 9.14% 9.24% 9.53% 9.26%

A.2 Parameters and performance of reconstruction meth-

ods

In this appendix, we summarise the parametrisation of the different reconstruction

methods together with the confusion matrices corresponding to their best perform-

ing parameters, as summarised in the Section 3.1.2.3 in the main text.

A.2.1 Classification model choice

When choosing method to classify the handshake pairs, we have tested two meth-

ods: Logistic regression (LR) and Support vector machine (SVM). We chose LR

because it achieved slightly better accuracy compared with SVM, also considering

the data is a simple 3-dimension vector, LR could handle it well enough, although

SVM could better avoid overfitting. The decision boundary of two models on our

ground truth data is shown in Fig. A.1
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Figure A.1: Decision boundary of RL and SVM

A.2.2 Naïve method

The naïve method has a single parameter gap, which determines the maximum

length of non-interaction gaps between two interaction events to be filled auto-

matically with interaction states. gap = 0 is a special case as it belongs to the non-

reconstructed signal where no state has been filled. We explored gap from 0 to 9,

corresponding from 0 to 45 seconds of non-interaction gaps, with 5 seconds in-

cremental step size. We found that in our setting the best reconstruction can be

reached with gap = 6 with accuracy reaching 0.834 as summarised in the confu-

sion matrix in Table A.2. Consequently, if a longer than 30 second gap appears in

the interaction sequence of two individuals, the two participants most probably

broke their actual social interaction, thus events before and after the gap should be

considered separately.

Table A.2: Confusion matrix with accuracy of the naïve event reconstruction
method with gap = 6.

acc.=0.8336 contact no-contact

contact 0.8942 0.1058
no-contact 0.2361 0.7639

A.2.3 Hidden Markov model

When parametrizing the HMM with annotated data, we used maximum likelihood

estimation to compute three matrices. Take transition matrix for example, if the

frequency of hidden state i at t transiting to hidden state j at t + 1 is Aij , then the
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estimated transition probability âij is computed as follows: âij = Aij/
∑N−1

j=0 Aij ,

where N is the number of hidden states. Same method is applied for computing

emission matrix and initial matrix.

With embedded envelop sequence, we first pad 0 (indicating non-interaction

states) at the beginning of each sequence, with size of windowsize− 1. We then use

transformed envelop signals instead of binary signals to define the hidden states,

observation states, as well as determining all the matrices. Finally, as an output

of the Viterbi algorithm we obtain a sequence of envelop, the last item of each

envelop being the predicted interaction/non-interaction state of each time step.

Table A.3: Confusion matrix with accuracy of the HMM model with window size
win = 6.

acc.=0.8425 contact no-contact

contact 0.8917 0.1083
no-contact 0.2176 0.7824

The reconstruction accuracy and the confusion matrices of the HMM methods

are shown in Tables A.3 for window size win = 6.

A.2.4 Bi-directional LSTM methods

For each BiLSTM method we used an envelop with size of winsize located sym-

metrically on the middle state which we wanted to reconstruct (as demonstrated

in Fig. 3.4e). We pad void signals at the beginning and at the end of each sequence,

with size of ⌊winsize/2⌋ on each side. More precisely, the padded void signal for

BiLSTM-RSSI is a vector (−95,−95, 0), for BiLSTM-logi is a vector (1, 0) and for

BiLSTM-bin is a single number 0.

We merged the outputs of the two LSTMs using concatenation, which provided

double size of outputs to the next layer. For the training, we split our labelled

data into 10 clips with each around 25 mins then use nested cross validation to

select best hyper-parameters and examine the performance of each reconstruction

method. The confusion matrix of the three BiLSTM reconstruction tasks are shown

in Table A.4, Table A.5 and Table A.6. The accuracy of the BiLSTM-RSSI reached

0.9003, which is the best among all the tested methods.



A.3. LINGUISTIC DATA VALIDATION 98

Table A.4: Confusion matrix with accuracy of the BiLSTM-RSSI for event recon-
struction.

acc.=0.9003 contact no-contact

contact 0.9165 0.0084
no-contact 0.1226 0.8774

Table A.5: Confusion matrix with accuracy of the BiLSTM-logi for event recon-
struction.

acc.=0.8902 contact no-contact

contact 0.9067 0.0933
no-contact 0.1333 0.8667

Table A.6: Confusion matrix with accuracy of the BiLSTM-bin for event reconstruc-
tion.

acc.=0.8834 contact no-contact

contact 0.8919 0.1081
no-contact 0.1294 0.8706

A.3 Linguistic data validation

In both the lexical (vocabulary) and syntactic skills (syntax) tests, we used two

types of items. Ten identical so-called ‘anchor items’ were presented to children

whichever their grade, every time they took a test (at every period of testing all

along the project). These anchor items had been meticulously chosen to allow the

researchers to evaluate linguistic skills development over time. Results shown in

Fig. A.2a confirm that subjects’ scores indeed increase with age. Besides, different

so-called ‘test items’ were used in the four different versions of the tests adapted to

the subject’s grade, namely 30 items in the vocabulary test and 10 in the syntax test.

These test items had been carefully selected to allow to evaluate the level of linguis-

tic abilities in children of similar school level. Results presented in Fig. A.2b show

that scores for these items are, as expected, centered around the average (≈15/30

for vocabulary, ≈5/10 for syntax). Moreover, the scores within each group (i.e.

each test version) are widespread, thus meeting the requirements for achieving the

goal to distinguish between high-, medium- and low-skilled pupils. These results

attest to the relevance of the linguistic tests we designed specifically to achieve our

objectives, which were two-fold: first to assess the improvement of linguistic skills

in pupils over time, and second to measure the heterogeneity in language ability
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levels within same-grade groups.

In addition, the memory span test was used as a control measure, given that

linguistic skills are known to be constrained by working memory capacities in de-

veloping children Blake et al. (1994). Children were asked to repeat the exact same

series of digits whichever their grade, allowing the researchers to evaluate mem-

ory skills improvement in subjects over time. Subjects’ scores indeed increase with

age (Fig. A.2c). More interestingly, the fact that language test scores correlate with

memory span scoring (as shown in Fig. A.2d) is an additional way of validating

the relevance of the linguistic tests we designed specifically to achieve our research

goals.
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Figure A.2: Language test results, shown as box-plots, for children of different grades tested at the beginning and end of
the academic year during which transactional data collection took place. Four versions of the tests were designed to be
adapted to subjects’ grade (G1: startG1 version of the tests designed for children entering 1st grade, G1-2: endG1-startG2
version for children completing 1st grade or entering 2nd grade, G2-3: endG2-startG3 version for children completing 2nd
grade or entering 3rd grade, G3: endG3 version for children completing 3rd grade). For both vocabulary and syntax tests,
children were presented with two types of items: (a) anchor items, shared across versions, and (b) test items, adapted to the
subject’s grade. (c) Scoring for the memory span test during which identical series of digits to repeat were used whichever
the subject’s grade. In every box-plot, black diamond indicates the average value and bar shows the median value. (d)
Correlation between memory span and performance in linguistic tasks for children of all school levels combined. Circle
size is proportional to the number of data points at each (x,y) coordinates. Each of the six plots was drawn from 341 points
originating from 174 children tested twice in the academic year (or only once for just 7 of them who left or entered the school
over the course of the year).
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DyLNet supplementary information

Ethics

Experiments were approved by relevant ethics committees, COERLE (Comité Opér

ationnel d’Evaluation des Risques Légaux et Ethiques of INRIA institute, favourable

opinion no. 2017-014) and CNIL (Commission Nationale de l’Informatique et des Lib-

ertés, favourable opinion Avis CIL_UGA-2017_0980683). The study was conducted

within a French primary school with permission from the relevant authorities of

Education Nationale. Written informed consent was obtained from all adults of the

teaching staff and from the parents of all the children who took part in the study.

Usage Notes

Note that the data presented in this paper were recorded in 174 children as study

subjects, however observations of only 164 children are shared as parents of 10

children opted out to be included in data shared with researchers outside of the

project team. In addition, data about 32 adult study subjects are shared. Further-

more, as the data contain sensitive information on human subjects, it cannot be

shared fully openly and used freely. Access to the data can be granted by the Prin-

cipal Investigator (Aurélie Nardy - corresponding author), after submission of a

short research proposal, via email, on the planned use of the recorded data. Access

to the data is conditional to the prior signature of the Data Access Agreement. The

data can be exclusively used for scientific purposes.
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Code availability

The program codes for data cleaning and temporal network reconstruction are

shared along the dataset in an open repository. The codes have been developed

in Python language using only standard or open licensed packages, and they are

shared as iPython notebooks at Nardy et al. (2022).
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